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 L’Ordine del Giorno è il seguente: 

 

… 

2. Presentazioni delle tesi dei Dottorandi del 28° Ciclo e dei prorogati del 27° Ciclo 

… 

 

 

2. Presentazioni delle tesi dei dottorandi del 28° Ciclo e dei prorogati del 27° Ciclo 

 

Il Coordinatore fa presente al Collegio dei docenti che i dottorandi, iscritti all’ultimo 

anno di corso, hanno presentato, nei termini previsti, le dissertazioni finali scritte. 

Il Collegio è chiamato a redigere, per ciascuno di essi, la “presentazione“ da allegare 

alla tesi finale. 

Si invitano, a tal fine, i componenti del Collegio, che prevalentemente hanno guidato le 

attività di ricerca dei dottorandi, a voler illustrare i contenuti delle predette tesi ed i risultati 

conseguiti. 

Dopo ampia discussione, sentiti anche i dottorandi in merito alle ricerche svolte, oggetto 

della dissertazione scritta, il Collegio dei Docenti decide unanime di approvare le 

“presentazioni” di seguito riportate le quali illustrano l’attività scientifico-formativa svolta 

durante il corso, mettendone in luce gli aspetti positivi o, eventualmente, negativi. 

 

… 

 

2) Dott. Nicola Armenise 

Supervisore: Prof. Emilio Tagliavini 

Cosupervisore: Prof. Paola Galletti 

Curriculum: Scienze Chimiche 

Indirizzo: Chimica Organica 

Titolo della tesi: Environmentally sustainable design of innovative chemical processes and 

synthetic methods focused on the synthesis of novel molecular libraries 

 

 The activity carried out by Nicola Armenise during his PhD has been principally 

addressed to the development of eco-sustainable chemical processes and syntheses. The most 

relevant topics pursued by Dr. Armenise are: 1) design and synthesis of surfactants from 

renewable sources; 2) development of methods aimed to the synthesis of novel molecular 

libraries; 3) design and exploitation of innovative catalysts for the aerobic oxidation of 

alcohols. The first two topics have been carried out during the first and the second year of the 

PhD program in the Laboratory of Organic Chemistry of the supervisors in Ravenna. The first 

has been focused to the synthesis and the evaluation of the physicochemical properties of a 

family of surfactants, obtained from fatty amines of different chain length and itaconic acid, 

through conjugate addition followed by spontaneous cyclization The candidate has develop a 

variety of selective transformation of the resulting polar head-groups, obtaining a library of 
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surfactants that possess specific physicochemical properties; for example they can be exploited 

in micellar catalysis and in the field of soft matter. The second topic has been focused to the 

challenging multicomponent cascade synthesis of biaryl-based chalcones in pure water and in 

aqueous micellar system. The first step of the protocol is a simple Pd-catalyzed, ligand-free and 

aerobic Suzuki-Miyaura reaction. Subsequently, the biarilyc intermediates undergo in situ aldol 

condensation reaction, providing biaryl(hetero)chalcones in good to excellent yields. When the 

protocol is applied to highly lipophilic or less reactive reagents, micellar catalysis is required 

for achieving good performances. To this aim one of the novel surfactant described previously 

proved to be particularly effective, allowing also the repeated recycling of the catalytic system.  

 During the third year of the PhD project, the candidate has been awarded a Marco Polo 

fellowship and he spent a period of research (8 months) at the University of Groningen under 

the supervision of Prof. A. J. Minnaard. In this period, he has pursued the straightforward 

deuteration of the methyl substituents in neocuproine ligand, that has allowed the development 

of a new catalyst system that increases the turnover number in aerobic oxidation of alcohols, 

respect to the non-deuterated ligand. This improvement is due to the longer lifetime of new 

catalyst respect to the self-oxidation. The increase in turnover number has allowed the aerobic 

oxidation of glycosides with acceptable catalyst loadings. 

 During his PhD project the candidate has acquired excellent skills in research projecting 

and work self-organization. He has been proficient in collaboration with peer colleagues and 

supervisors. He also acquired very good abilities of manuscript writing and discussion of 

results. He has been  the co-supervisor of one 2nd level degrees thesis in organic chemistry, 

proving a great ability in coordination of the activities of the student.  

 The main results achieved during his period of PhD are documented by 3 scientific full 

papers (2 of these as first author) published in important peer-reviewed international journals. 

In addition, other 3 manuscripts are in preparation. He has taken part actively in 3 international 

congresses and 2 national congresses with poster presentations. 

 My overall evaluation of the candidate is excellent. 

 

The Board expresses a score of excellence on the activity carried out by the candidate during 

the whole cycle of doctorate and considers him worthy to attain the PhD in Chemistry. 

 

 

… 

 

 Le deliberazioni assunte nella presente seduta sono state redatte, lette, approvate e 

sottoscritte seduta stante. 

 

 Il verbale della presente seduta del Collegio dei Docenti, dopo essere stato firmato e 

scansionato, sarà inserito, in formato .pdf, a cura del Coordinatore, nell’apposito applicativo 

reperibile al link: https://www.aric.unibo.it/DottoratoDiRicerca/verbalizzazioni/default.aspx ed 

accessibile mediante l’utilizzo delle credenziali istituzionali (l’art. 5, comma 10 del 

“Regolamento per l’istituzione e il funzionamento dei corsi di dottorato di ricerca” DR n. 524 

https://www.aric.unibo.it/DottoratoDiRicerca/verbalizzazioni/default.aspx
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del 26/06/2013 prevede che: “Delle riunioni e deliberazioni assunte dal Collegio dei docenti 

deve essere redatto verbale da archiviare, debitamente sottoscritto, nell’apposito applicativo di 

Ateneo entro cinque giorni lavorativi dalla data della riunione del Collegio”). 

 

 Esaurito l’Ordine del Giorno, il Collegio dei Docenti del Corso di Dottorato in Chimica 

termina la seduta alle ore 16.30. 

 

 

Il Presidente      Prof. Aldo Roda 

 
      

Segretario      Prof. Massimo Guardigli 
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To whom it may concern 

 
   
Date Our reference  

14 March 2016 23AJM/2016  
 
Subject 

Thesis manuscript assessment Nicola Armenise, MSc 
 
 
Dear sir, 
 
Hereby I give a short overview and analysis of the PhD-thesis manuscript of Nicola Armenise, 
entitled “Environmentally Sustainable Design of Innovative Chemical Processes and Synthetic 
Methods Focused on the Synthesis of Novel Molecular Libraries”. Nicola Armenise joined my 
lab from February 1st 2015 to October 1st 2015. 
Chapter 1 gives an overview of the field of green chemistry, discusses extensively the various 
aspects, also in terms of application in bulk chemicals, fine chemicals and pharmaceuticals, and 
explains the use of the terms E-factor, QE factor etc. In the final part of the chapter, an overview 
is given of the following chapters in the thesis. 
Chapter 2 describes the synthesis of a set of surfactants based on itaconic acid and alkylamines. 
The resulting products have been extensively studied by physical organic chemistry methods in 
order to establish their critical micellar concentration, Krafft temperature etc. This is essential 
in order to establish their usefulness in applications. In addition, it has been established how the 
synthesis of these amphiphiles fits in the green chemistry field. In a quantitative and accurate 
manner. 
Chapter 3 gives a thorough overview on micellar catalysis. All important aspects are covered and 
documented, the chapter functions in connection with chapter 4. 
Chapter 4 gives an overview of the literature on transition metal-catalyzed cross coupling 
reactions in water or aqueous environment. In particular attention is given on the use of 
surfactants in these processes.  
In chapter 5 an efficient synthetic protocol for multicomponent cascade Suzuki-Aldol reactions 
is presented aiming at the synthesis of biarylchalcone derivatives in water. In some cases, 
micellar catalysis provided better results, obtained employing a new surfactant described in 
chapter 2.  
In chapter 6 an overview is given of the most important advances made recently in the field of 
the (aerobic) oxidations of alcohols, in particular catalyzed by palladium in the form of 
homogeneous, heterogeneous and nanoparticle catalysts. The current status of palladium-
catalyzed alcohol oxidation is critically evaluated. Attention is paid to concurrent autoxidation of 
the ligand in homogeneous palladium-catalyzed oxidation reaction.  In my opinion the most 
important papers have been cited and used for this chapter and the content functions as a 
versatile guide for researchers that want to inform themselves on palladium-catalyzed alcohol 
oxidation.  
In chapter 7 it is described how (partial) deuteration of the ligand used in the palladium-
catalyzed oxidation of carbohydrates leads to an enhanced catalyst performance. First the ligand 
neocuproine is deuterated by proton exchange with D2O/NaOD at high temperature. This 
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deuterated ligand was characterized and used for the preparation of the (deuterated) catalyst. In 
a careful comparative study, those two catalysts were used in the oxidation of 2-heptanol and 
Me-glucoside. This is particularly challenging as for this oxidation reaction it is difficult to carry 
out the reactions in an identical way, and reaction analysis according to Blackmond is not 
possible as the amount of oxidant (oxygen) cannot reliably varied. Nevertheless, the results were 
obtained, and reproduced. It has been shown that the deuterated catalyst is roughly twice as 
stable as the non-deuterated catalyst. This was a genuine team effort as expertise in different 
disciplines was required (NMR spectroscopy, GC-analysis, deuteration protocols, etc.) and all 
relevant ligands and complexes had to be thoroughly characterized and shown to be pure by 
elemental analysis. The results have been described in a manuscript that was accepted for 
publication in Chem Comm, recently. 
Overall, in my opinion Nicola Armenise is a dedicated researcher who quickly learned in 
catalytic oxidation, not the easiest field of research, and was able to apply his experience in 
physical organic chemistry gained earlier in his PhD research. This is underpinned by the fact 
that his efforts, together with his colleagues in our team, were rewarded by a publication in an 
international, peer reviewed journal.  
 
Would more information be required, do not hesitate to contact me 

 
 
 
Sincerely yours 
 

 
 
 
 
 
 
 

     Adriaan Minnaard 



  
 
 
 Professor Teresa F Fernandes 
 Head of Environment Department 
 School of Life Sciences 
 Heriot-Watt University 
 Riccarton 
 Edinburgh EH14 4AS 
 United Kingdom 
 
 
 

Edinburgh, 7th April 2016 
 
 
 
To whom it may concern 
 
 
 

Subject: Thesis manuscript assessment Nicola Armenise, MSc 
 
 
I hereby give an assessment of the PhD-thesis manuscript of Nicola Armenise. The 
research in the thesis entitled “Environmentally Sustainable Design of Innovative 
Chemical Processes and Synthetic Methods Focused on the Synthesis of Novel 
Molecular Libraries” focuses on the development of surfactants starting from 
renewable sources, development of multicomponent cascade reactions in water and 
improving ligand stability. A brief overview and my opinion of the thesis are given 
below. 

Chapter 1 reviews the advances in the field of green and sustainable chemistry and is 
in my opinion of interest to a broad readership. 

The research in Chapter 2 aims at developing novel surfactants based on renewable 
sources. Synthetic strategies that allow efficient coupling of itaconic acid to alkyl-
amines are described. The critical micellar concentration and the ability to lower the 
surface tension have been established for the obtained surfactants. Moreover, the 
greenness of the synthetic methods has been studied in detail. 

Chapters 3 and 4 give a detailed literature overview of organic synthesis in water. The 
chemistries detailed in these chapters form the starting point for the development of a 
multicomponent cascade Suzuki-Aldol reaction that efficiently yields biarylchalcone 
derivatives in water. The results of these studies are accurately described in Chapter 
5. 

The advances in the metal catalysed oxidation of hydroxyl groups using oxygen as the 
oxidant are critically evaluated in Chapter 6. 

In Chapter 7 it is described how (partial) deuteration of the ligand used in the palladium-
catalysed oxidation of carbohydrates leads to an enhanced catalyst performance. 



The research described in Chapter 2 is part of a collaborative project between my 
Laboratory at Heriot Watt University and the Laboratory of the supervisor of the 
candidate. In this framework, I can vouch for the good performance of the candidate in 
the preparation of the surfactants that have later assessed in my Laboratory.    

Overall, the quality of the thesis is of high level. 

Please let me know if you require any further information. 

 
Yours faithfully 
 
 
Teresa F Fernandes 
 
 
Teresa F Fernandes 
Professor 
Heriot-Watt University 
 
Email: t.fernandes@hw.ac.uk 
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Aim and arrangement of the thesis 

 

Following the establishment of the 12 Principles of Green Chemistry, there has been a gradual and 

constructive growth in our understanding of what green chemistry means. Green chemistry is a 

relatively young science in its own respect. Interest in this subject, however, has grown rapidly and, 

although no concerted agreement has been reached as yet about the exact content and limits of this 

interdisciplinary field, there appears to be increasing interest in countless environmental topics, 

which are based on chemistry embodied in this subject. To the pleasant surprise of all, this increased 

understanding of the principles that are the backbone of green chemistry has spurred many 

outstanding efforts to implement chemical processes and innovative technologies, that are 

incrementally moving society toward more sustainable practices and products that embody and 

foster environmental management and environmental protection.  

The proposal and risk of changing the way chemistry is done and applied, the development of new 

chemistries and chemical synthetic pathways, and the establishment of novel and benign chemical 

processes that are significantly more efficient using non-petrochemical and renewable feedstocks 

have been challenging notions for a world that has been surrounded by the products of petroleum 

for more than a century. Green chemistry has hence brought a relatively prompt and positive shift in 

the paradigm as it concerns the overall use and management of natural resources and raw materials 

for the development of society with a promise to cause far less pronounced harm to the environment 

at large. By adopting green chemistry principles and methodologies, researchers are devising new 

processes to help protect and ultimately save the environment from further damage. 

This thesis is intended to be a work that encompasses some of the various relevant aspects linking 

the Green Chemistry practice to environmental sustainability. The thesis covers sustainable 

development through chapters that contribute to the design of novel environmentally benign 

chemical processes and green approaches to minimize and/or remediate environmental pollution. 

 

In this context, my PhD project has faced three main topics: 

 

1. Design, synthesis and characterization of new surfactant molecules employing renewable 

feedstocks, itaconic acid and fatty amines, as starting materials; Chapter 2 describes this topic. 

2. Development of a sustainable procedure aimed to the multicomponent cascade synthesis of 

biaryl-based chalcones in pure water or under micellar catalysis conditions; in the latter case, 

one of the surfactants previously synthesized has been widely employed. Chapter 5 describes 

this topic. Chapter 3 and Chapter 4 describe the scientific context and the most important 

innovations that have paved the way to the results that I achieved during the 2nd year of Ph.D. 

course; the former is an overview on the use of water as solvent for organic reactions; the latter 
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is an overview on cross-coupling reactions and the exploitation in this context of micellar 

catalysis. 

3. Design, synthesis and exploitation of deuterated phenanthroline-type ligands for the aerobic 

palladium-catalyzed oxidation of methyl glucoside, allowing a high performance improvement 

in this challenging reaction; Chapter 7 collects the obtained results, while Chapter 6 

summarizes the most important advances obtained in the last years in the palladium-catalyzed 

aerobic oxidations of alcohols.  

 

Thesis outline 

 

Chapter 1 gives an overview of the field of Green Chemistry, discusses extensively the various 

aspects, also in terms of application in bulk chemicals, fine chemicals and pharmaceuticals, and 

explains the use of the terms E-factor, QE factor etc. 

 

Chapter 2 describes the synthesis of a new family of surfactants having C12 and C18 alkyl chains 

obtained from itaconic acid and fatty amines, molecules industrially obtained from renewable 

resources. 

 

Chapter 3 is an overview on the use of water as solvent, that features many benefits such as 

improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of 

the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to 

being benign itself. 

 

Chapter 4 is an overview on cross-coupling reactions in the form of micellar catalysis, wherein 

nanoparticles composed of surfactants enable the same cross-couplings, albeit in water. 

 

Chapter 5 describes the challenging multicomponent cascade synthesis of biaryl-based chalcones. 

It has been carried out in pure water and in aqueous micellar system, overcoming existing 

drawbacks. 

  

Chapter 6 is an overview on the most important advances made in the last years in the field of 

aerobic oxidations of alcohols, in particular catalyzed by Palladium in the form of homogeneous, 

heterogeneous and, more recently, nanoparticles catalysts. 

 

Chapter 7 describes that deuteration of a phenanthroline-type ligand leads to a significant increase 

in turnover number in the aerobic palladium-catalyzed oxidation of methyl glucoside and allows this 

reaction to be carried out using oxygen as the sole terminal oxidant. 



CHAPTER 1 

 

 

Introduction to Green Chemistry 

 

 

Serious environmental concerns are changing the way chemical research evolves, in particular new 

advances in the chemical synthesis and catalysis areas are strongly linked to “Green Chemistry”. 

The latter is not only a recent sub-discipline of chemistry; all new research studies in synthesis and 

catalysis have to comply with this new standard. It is mandatory to pass on these concepts to new 

generations of chemists and to change the perception the public has about their work. 
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1.1 Introduction 

 

It is generally acknowledged that there is an increasing need for more environmentally acceptable 

processes in the chemical industry. This tendency towards what has become known as “Green 

Chemistry” or “Sustainable Technology” necessitates a paradigm shift from traditional concepts of 

process efficiency, that focus largely on chemical yield, to one that assigns economic value to 

eliminating waste at source and to avoiding the use of toxic and hazardous substances.[1] 

The term “Green Chemistry” was coined by Paul Anastas of the US Environmental Protection 

Agency (EPA).[1c] In 1993 the EPA officially adopted the name “US Green Chemistry Program” which 

has served as a focal point for activities within the United States, such as the Presidential Green 

Chemistry Challenge Awards and the annual Green Chemistry and Engineering Conference. This 

does not mean that research on green chemistry did not exist before the early 1990s, but the idea 

of pursuing the common goal of greenness and of sharing a common framework of principles aimed 

to safe and environmentally benign chemistry was not present in the scientific community. Since the 

early 1990s both Italy and the United Kingdom have launched major initiatives in green chemistry 

and, more recently, the Green and Sustainable Chemistry Network was initiated in Japan. The 

inaugural edition of the journal Green Chemistry, sponsored by the Royal Society of Chemistry, 

appeared in 1999. Hence, it is possible to conclude that Green Chemistry is here to stay. 

A reasonable working definition of Green Chemistry can be formulated as follows: “Green chemistry 

efficiently utilizes (preferably renewable) raw materials, eliminates waste and avoids the use of toxic 

and/or hazardous reagents and solvents in the manufacture and application of chemical products”.[2] 

As Paul Anastas has pointed out, the guiding principle is the “design of environmentally benign 

products and processes (benign by design)”.[1d] This concept is embodied in the 12 Principles of 

Green Chemistry which can be paraphrased as:[1a,1d] 

 

1. Waste prevention instead of remediation 

2. Atom efficiency 

3. Less hazardous/toxic chemicals 

4. Safer products by design 

5. Innocuous solvents and auxiliaries 

6. Energy efficient by design 

7. Preferably renewable raw materials 

8. Shorter syntheses (avoid derivatization) 

9. Catalytic processes rather than stoichiometric reagents 

10. Design products for degradation 

11. Analytical methodologies for pollution prevention 

12. Inherently safer processes 
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Green Chemistry addresses the environmental impact of both chemical products and the processes 

by which they are produced. Green chemistry eliminates waste at source, i.e. it is primary pollution 

prevention rather than waste remediation (end-of-pipe solutions). 

An alternative term, that is currently favoured by the chemical industry, is “Sustainable 

Technologies”. Sustainable development has been defined as: “Meeting the needs of the present 

generation without compromising the ability of future generations to meet their own needs”.[3]  

 

1.2 Green metrics 

 

Two useful measures of the potential environmental acceptability of chemical processes are the “E 

factor”,[4] defined as the mass ratio of waste to desired product and the “atom efficiency”, calculated 

by dividing the molecular weight of the desired product by the sum of the molecular weights of all 

substances produced in the stoichiometric equation. The sheer magnitude of the waste problem in 

chemicals manufacture is readily apparent from a consideration of typical E factors in various 

segments of the chemical industry (Table 1.1). 

 

Table 1.1. The “E factor”. 

Industry segment Product tonnage[a] kg waste[b]/kg product 

Oil refining 106-108 < 0.1 

Bulk chemicals 104-106 < 1-5 

Fine chemicals 102-104 5 - >50 

Pharmaceuticals 10-103 25 - >100 

[a] Typically represents annual production volume of a product at one site (lower end of 
range) or world-wide (upper end of range). [b] Defined as everything produced except the 
desired product (including all inorganic salts, solvent losses, etc.). 

 

The E factor is the actual amount of waste produced in the process, defined as everything that is not 

the desired product. It takes the chemical yield into account and includes reagents, solvents losses, 

all process aids and, in principle, even fuel as energy source (although this is often difficult to 

quantify). There is one exception: water is generally not included in the E factor. For example, when 

considering an aqueous waste stream only the inorganic salts and organic compounds contained in 

the water are counted; the water is excluded. Otherwise, this would lead to exceptionally high E 

factors which are not useful for comparing processes. 

A higher E factor means more waste and, consequently, greater negative environmental impact. The 

ideal E factor is zero. Put quite simply, it is kilograms (of raw materials) in, minus kilograms of desired 

product, divided by kilograms of product out. It can be easily calculated from a knowledge of the 

number of tons of raw materials purchased and the number of tons of product sold, for a particular 
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product or a production site or even a whole company. It is perhaps surprising, therefore, that many 

companies are not aware of the E factors of their processes. However, this situation is rapidly 

changing and the E factor, or an equivalent thereof, is being widely adopted in the fine chemicals 

and pharmaceutical industries (where the need is greater). It is also possible to note that this method 

of calculation will automatically exclude water used in the process but not water formed. 

Other metrics have also been proposed for measuring the environmental acceptability of processes. 

Hudlicky and co-workers,[5] for example, proposed the “effective mass yield” (EMY), which is defined 

as the percentage of product of all the materials used in its preparation. As proposed, it does not 

include so-called environmentally benign compounds, such as sodium chloride, acetic acid, etc. 

However, this is questionable as the environmental impact of such substances is very volume-

dependent. Constable and co-workers of GlaxoSmithKline proposed the use of “mass intensity” 

(MI),[6] defined as the total mass used in a process divided by the mass of product, i.e. MI = E factor 

+ 1, and the ideal MI is 1 compared with zero for the E factor. These authors also suggest the use 

of so-called “mass productivity” which is the reciprocal of the MI and, hence, is effectively the same 

as EMY. Nevertheless, none of these alternative metrics appears to offer any particular advantage 

over the E factor for giving a mental picture of how wasteful a process is. 

As is clear from Table 1.1, enormous amounts of waste, comprising primarily inorganic salts, such 

as sodium chloride, sodium sulphate and ammonium sulphate, are formed in the reaction or in 

subsequent neutralization steps. The E factor increases dramatically on going downstream from bulk 

to fine chemicals and pharmaceuticals, partly because production of the latter involves multi-step 

syntheses but also owing to the use of stoichiometric reagents rather than catalysts. 

The “atom utilization”,[4b-4g] “atom efficiency” or “atom economy” concept, first introduced by Trost,[7,8] 

is an extremely useful tool for rapid evaluation of the amounts of waste that will be generated by 

alternative processes. It is calculated by dividing the molecular weight of the product by the sum total 

of the molecular weights of all substances formed in the stoichiometric equation for the reaction 

involved. For example, the atom efficiencies of stoichiometric (CrO3) vs. catalytic (O2) oxidation of a 

secondary alcohol to the corresponding ketone are compared in Scheme 1.1. 

 

 

Scheme 1.1. Atom efficiency of stoichiometric vs. catalytic alcohol oxidation. 
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In contrast to the E factor, it is a theoretical number, i.e. it assumes a yield of 100% and exactly 

stoichiometric amounts and disregards substances which do not appear in the stoichiometric 

equation. 

All of the metrics discussed above take only the mass of waste generated into account. However, 

what is important is the environmental impact of this waste, not just its amount, i.e. the nature of the 

waste must be considered. One kg of sodium chloride is obviously not equivalent to one kg of a 

chromium salt. Hence, the term “environmental quotient” (EQ), obtained by multiplying the E factor 

with an arbitrarily assigned unfriendliness quotient (Q), was introduced.[4d] For example, one could 

arbitrarily assign a Q value of 1 to NaCl and, say, 100-1000 to a heavy metal salt, such as chromium, 

depending on its toxicity, ease of recycling, etc. The magnitude of Q is obviously debatable and 

difficult to quantify but, importantly, “quantitative assessment” of the environmental impact of 

chemical processes is, in principle, possible. It is also worth noting that Q for a particular substance 

can be both volume-dependent and influenced by the location of the production facilities. For 

example, the generation of 100-1000 tons per annum of sodium chloride is unlikely to present a 

waste problem, and could be given a Q of zero. The generation of 10 000 tons per annum, on the 

other hand, may already present a disposal problem and would warrant assignation of a Q value 

greater than zero. But, when very large quantities of sodium chloride are generated the Q value 

could decrease again as recycling by electrolysis becomes a viable proposition, e.g. in propylene 

oxide manufacture via the chlorohydrin route. Thus, generally speaking the Q value of a particular 

waste will be determined by its ease of disposal or recycling. Hydrogen bromide, for example, could 

warrant a lower Q value than hydrogen chloride as recycling, via oxidation to bromine, is easier. In 

some cases, the waste product may even have economic value. For example, ammonium sulphate, 

produced as waste in the manufacture of caprolactam, can be sold as fertilizer. It is worth noting, 

however, that the market could change in the future, thus creating a waste problem for the 

manufacturer. 

 

1.3 The role of catalysis 

 

As noted above, the waste generated in the manufacture of organic compounds consists primarily 

of inorganic salts. This is a direct consequence of the use of stoichiometric inorganic reagents in 

organic synthesis. In particular, fine chemicals and pharmaceuticals manufacture is rampant with 

antiquated “stoichiometric” technologies. Examples, which readily come to mind, are stoichiometric 

reductions with metals (Na, Mg, Zn, Fe) and metal hydride reagents (LiAlH4, NaBH4), oxidations with 

permanganate, manganese dioxide and chromium(VI) reagents and a wide variety of reactions, e.g. 

sulfonations, nitrations, halogenations, diazotizations and Friedel-Crafts acylations, employing 

stoichiometric amounts of mineral acids (H2SO4, H3PO4) and Lewis acids (AlCl3, ZnCl2, BF3). The 

solution is evident: substitution of classical stoichiometric methodologies with cleaner catalytic 
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alternatives. Indeed, a major challenge in (fine) chemicals manufacture is to develop processes 

based on H2, O2, H2O2, CO, CO2 and NH3 as the direct source of H, O, C and N. Catalytic 

hydrogenation, oxidation and carbonylation (Scheme 1.2) are good examples of highly atom efficient, 

low-salt processes. 

 

 

Scheme 1.2. Atom efficient catalytic processes. 
 

The generation of copious amounts of inorganic salts can similarly be largely circumvented by 

replacing stoichiometric mineral acids (such as H2SO4), Lewis acids and stoichiometric bases (such 

as NaOH and KOH) with recyclable solid acids and bases, preferably in catalytic amounts. 

For example, the technologies used for the production of many substituted aromatic compounds 

(Scheme 1.3) have not changed in more than a century and are, therefore, ripe for substitution by 

catalytic, low-salt alternatives (Scheme 1.4). 

 

 

Scheme 1.3. Classical aromatic chemistry. 
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Scheme 1.4. Non-classical aromatic chemistry. 
 

Catalysis has many advantages in the context of green chemistry, e.g. mild reaction conditions and 

often fewer steps than conventional chemical procedures because protection and deprotection of 

functional groups are often not required. Consequently, classical chemical procedures are 

increasingly being replaced by cleaner catalytic alternatives in the fine chemicals industry. 

 

1.4 The development of organic synthesis 

 

If the solution to the waste problem in the fine chemicals industry is so obvious (replacement of 

classical stoichiometric reagents with cleaner, catalytic alternatives) why was it not applied in the 

past? There are several reasons for this. First, because of the smaller quantities compared with bulk 

chemicals, the need for waste reduction in fine chemicals was not widely appreciated. 

A second, underlying, reason is the more or less separate evolution of organic chemistry and 

catalysis; catalysis developed as a sub-discipline of physical chemistry. With the advent of the 

petrochemicals industry in the 1930s, catalysis was widely applied in oil refining and bulk chemicals 

manufacture. However, the scientists responsible for these developments, which largely involved 

heterogeneous catalysts in vapour phase reactions, were generally not organic chemists. 

Organic synthesis followed a different line of evolution. Fine chemicals and pharmaceuticals have 

remained primarily the domain of synthetic organic chemists who, generally speaking, have clung to 

the use of classical “stoichiometric” methodologies and have been reluctant to apply catalytic 

alternatives. 

A third reason, which partly explains the reluctance, is the pressure of time. Fine chemicals generally 

have a much shorter lifecycle than bulk chemicals and, especially in pharmaceuticals, “time to 

market” is crucial. An advantage of many time-honoured classical technologies is that they are well-

tried and broadly applicable and, hence, can be implemented rather quickly. In contrast, the 

development of a cleaner, catalytic alternative could be more time consuming. Consequently, 
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environmentally (and economically) inferior technologies are often used to meet market deadlines. 

Moreover, in pharmaceuticals, subsequent process changes are difficult to realise owing to problems 

associated with FDA approval. 

There is no doubt that, in the twentieth century, organic synthesis has achieved a high level of 

sophistication with almost no molecule beyond its capabilities, with regard to chemo-, regio- and 

stereoselectivity, for example. However, little attention was focused on atom selectivity and catalysis 

was only sporadically applied. Hence, now the paradigm is changing: under the increasing pressure 

of environmental legislation, organic synthesis and catalysis have come together to achieve waste 

minimisation. 

 

1.5 The question of solvents: alternative reaction media 

 

Green chemistry strongly influences chemical research, and there is an insistence on the use of 

“greener” reaction conditions.[9] It has been estimated by GSK workers[10] that volatile organic 

solvents amount to over 85% of mass utilization in a typical chemical manufacturing process, and 

because recovery efficiency is far from satisfactory they are major contributors to environmental 

pollution.[11] It is also worth noting that in the redesign of the sertraline manufacturing process,[12] for 

which Pfizer received a Presidential Green Chemistry Challenge Award in 2002, among other 

improvements a three-step sequence was streamlined by employing ethanol as the sole solvent. 

This eliminated the need to use, distil and recover four solvents (methylene chloride, tetrahydrofuran, 

toluene and hexane) employed in the original process. 

The use of chlorinated hydrocarbon solvents, traditionally the solvent of choice for a wide variety of 

organic reactions, has been severely curtailed. Indeed, so many of the solvents that are favoured by 

organic chemists have been blacklisted that the whole question of solvent use requires rethinking 

and has become a primary focus, especially in the fine chemicals industry.[13] 

In order to remove volatile organic solvents from the chemical process, an important aspect pertains 

to their replacement by non-flammable, non-volatile, non-toxic and inexpensive “green solvents”.[14] 

In this regard, development of solvent-free alternative processes is the best solution, especially when 

either one of the substrates or the products is a liquid and can be used as the solvent of the 

reaction.[15] However, if solvents are crucial to a process, we should select solvents that will have no 

or limited impact on health and the environment. 

Indeed, the use of unconventional green solvents in organic reactions has improved not only the 

aspect of the reactions from the viewpoint of green and sustainable properties, but also the synthetic 

efficiency by stabilizing the catalyst, changing the reaction selectivity or facilitating product 

isolation.[16] 

Different non-classical reaction media have, in recent years, attracted increasing attention from the 

viewpoint of avoiding environmentally unattractive solvents and/or facilitating catalyst recovery and 
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recycling. Two examples, which readily come to mind, are supercritical carbon dioxide and room 

temperature ionic liquids. Catalytic hydrogenation in supercritical CO2, for example, has been 

commercialised by Thomas Swan and co-workers.[17] Ionic liquids are similarly being touted as green 

reaction media for organic synthesis in general and catalytic reactions in particular.[18] They exhibit 

many properties which make them potentially attractive reaction media, e.g. they have essentially 

no vapour pressure and cannot, therefore, cause emissions to the atmosphere. 

The best solvent is no solvent and if a solvent (diluent) is needed then water is preferred.[19] Water 

is non-toxic, non-flammable, abundantly available and inexpensive. Moreover, owing to its highly 

polar character one can expect novel reactivities and selectivities for organometallic catalysis in 

water. Furthermore, this provides an opportunity to overcome a serious shortcoming of 

homogeneous catalysts, namely the cumbersome recovery and recycling of the catalyst. Thus, 

performing the reaction in an aqueous biphasic system, whereby the catalyst resides in the water 

phase and the product is dissolved in the organic phase,[20] allows recovery and recycling of the 

catalyst by simple phase separation (for more detailed explanations of the effects of water on organic 

reactions, see the chapters 3, 4 and 5 of this thesis). An example of novel catalysis in an aqueous 

medium is the use of lanthanide triflates as water-tolerant Lewis acid catalysts for a variety of organic 

transformations in water.[21] 

 

1.6 Multicomponent reactions 

 

The conventional multistep preparation of a complex molecule generally involves a large number of 

synthetic operations, including extraction and purification processes in each individual step. This 

leads to not only synthetic inefficiency but also generates large amounts of waste. Multicomponent 

reactions (MCRs), defined as one-pot reactions in which at least three different substrates join 

through covalent bonds, have steadily gained importance in synthetic organic chemistry. MCRs allow 

the creation of several bonds in a single operation and offer remarkable advantages like 

convergence, operational simplicity, facile automation, reduction in the number of workup, extraction 

and purification processes, and hence minimize waste generation, rendering the transformations 

green.[22] One-pot MCRs often shorten reaction periods, giving higher overall chemical yields than 

multiple-step syntheses, and therefore can reduce the use of energy and manpower. MCRs are 

useful for the expedient creation of chemical libraries of drug-like compounds with high levels of 

molecular complexity and diversity, thereby facilitating identification/optimization in drug discovery 

programmes.[23] Therefore, the design of new MCRs with green procedure has attracted great 

attention, especially in the areas of drug discovery, organic synthesis, and material science.[24] 

Moreover, improving already known MCRs also is of substantial interest in current organic synthesis.  

Recently there has been increasing concern with regard to the tight legislation on the maintenance 

of “greenness” in synthetic pathways and processes.[25] 
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Particularly, unconventional solvents also showed a great ability for assisting development of MCRs. 

Many new one-pot MCRs have been successfully developed by means of using an innovative 

solvent instead of conventional organic solvents. Moreover, taking advantage of utilizing 

unconventional solvents as reaction media, various known MCRs have also been improved in terms 

of reaction yield, substrate generality, isolation of products and catalyst recycling. In view of the 

emerging importance of this area, a plethora of reviews have summarized the recent achievements 

in performing MCRs in unconventional solvents. Because water and ionic liquids are the main 

contenders in the area of green solvents, the majority of these reviews have covered MCRs in these 

two solvents. Polyethylene glycol polymers (PEGs) have also been considered as a new class of 

green solvents. Recent attempts at using PEGs as reaction media for MCRs also has been 

described. Benefiting from recent innovation in utilizing bio-based chemicals as green solvents,[26] 

some MCRs have also been developed in bio-based solvents.  

Because performing MCRs in water combines the synthetic efficiency of multicomponent protocols 

with the environmental benefits of using water as the reaction medium, which would lead to 

processes close to the ideal synthetic reaction, this topic thus constitutes a very important challenge 

for green chemistry. Indeed, many unique MCRs that cannot be attained in conventional organic 

solvents have been developed.[27] 

 

1.7 Renewable raw materials 

 

The UN World Summit on Sustainable Development, held in Johannesburg in 2002, called for the 

promotion of a sustainable use of biomass.[28] It was recently shown that biomass can be produced 

in a volume sufficient for industrial utilization without compromising the food supply for the increasing 

global population.[29] Chemists have much to contribute to meet this challenge.[30,31]  

Oils and fats of vegetable and animal origin are historically and currently the most important 

renewable feedstock of the chemical industry. Classical and well-established oleo-chemical 

transformations occur preferentially at the ester functionality of the native triglycerides,[32] such as 

hydrolysis to free fatty acids and glycerol[33] and trans-esterification to fatty acid methyl esters. Fatty 

acids are transformed by reactions at the carboxy group to soaps, esters, amides, or amines. 

Hydrogenation of both fatty acids and their methyl esters gives fatty alcohols, which are used for the 

production of surfactants.[34] Competitive petrochemical processes to produce fatty alcohols, such 

as the Ziegler-Alfol process and hydroformylation of alkenes, exist, but the share of fatty alcohols 

from renewable resources is steadily increasing, from about 50% in 2000 to just under 65% in 

2010.[35] The basic oleochemicals (Figure 1.1) are fatty acids (~ 52%), the respective methyl esters 

(~ 11%), amines (~ 9%), and alcohols (~ 25%).[36] These are used for the production of important 

product groups, that is, surfactants,[37,38] lubricants,[39,40] and coatings.[41]  
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The production volume of fatty acid methyl esters strongly increased during the last ten years 

because of their large-scale utilization as biodiesel,[42,43,44] giving as side product about 10 w% of 

glycerol which has to be utilized. This fact stimulated research on glycerol as a platform chemical for 

the production of bulk chemicals, that is, 1,2- and 1,3-propanediol, acrylic acid, or 

epichlorohydrin.[45,46,47] The latter is an especially interesting development, since during the second 

half of the last century glycerol was petro-chemically produced based on propene via 

epichlorohydrin. 

 

 

Figure 1.1. Fatty compounds as starting materials for synthesis: oleic acid (1a), linoleic acid (2a), linolenic acid (3a), erucic 
acid (4a), ricinoleic acid (5a), petroselinic acid (6a), 5-eicosenoic acid (7a), calendic acid (8a), α-eleostearic acid (9a), 
punicic acid (10a), santalbic acid (11a), vernolic acid (12), 10-undecenoic acid (13a), and the respective methyl esters 
(1b–13b) and alcohols (1c–13c). 
 

Most of the native oils contain unsaturated fatty acids, such as oleic acid (1a), which is a cis-

configured alkene and thus allows, in principle, the application of the well-known reactions of 

petrochemical alkenes. Remarkably, only very few reactions across the double bond of unsaturated 

fatty compounds are currently applied in the chemical industry (i.e., hydrogenation, ozone cleavage, 
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and epoxidation). Moreover, there are no industrial processes utilizing selective C-H functionalization 

of the alkyl chain of saturated and unsaturated long-chain fatty acids. Interesting exceptions are the 

production of C2-branched Guerbet alcohols from fatty alcohols and the microbial ω-oxidation of 

methyl oleate 1b to cis-octadec-9-endioic acid dimethyl ester.[48] The latter is an example of the 

amazing opportunities offered by enzymatic and microbial reactions. Fatty acids of plant seed oils 

show a remarkable variety.[49,50,51] In contrast, the fatty acids of bulk oils currently used in 

oleochemistry are rather uniform. Saturated fatty acids with an even number of carbon atoms (C8–

C18) and unsaturated C18 fatty acids, such as 1a and linoleic acid (2a) as well as relatively small 

amounts of linolenic acid (3a), erucic acid (4a), and ricinoleic acid (5a) are industrially utilized. The 

most important oleochemical reactions performed with 5a are the thermal cleavage to 10-undecenoic 

acid 13a[52] and basic cleavage to sebacic acid (decanedioc acid).[53] Interestingly, the enantiomeric 

purity of 5a, which makes it an interesting substrate for organic synthesis, has not yet been exploited 

appropriately.  

Thus, it will be important to introduce and to cultivate more and new oil plants that provide fatty acids 

with new and interesting properties for chemical utilization. The cultivation of the respective plants 

for the production of these oils would increase the agricultural biodiversity, an important aspect of a 

sustainable utilization of renewable feedstocks. Moreover, classic breeding as well as genetic 

engineering will be necessary to improve the oil yield and the fatty acid composition for chemical 

utilization.[54,55,56,57] Here again, the processes used for the conversion of renewable feedstocks 

should produce minimal waste, i.e. they should preferably be catalytic. White biotechnology is 

currently the focus of considerable attention and is perceived as the key to developing a sustainable 

chemical industry.[58] Metabolic pathway engineering is used to optimise the production of the 

required product based on the amount of substrate (usually biomass-derived) consumed.[59] A so-

called bio-based economy is envisaged in which commodity chemicals (including biofuels), specialty 

chemicals such as vitamins, flavours and fragrances and industrial monomers will be produced in 

bio-refineries. 

 

1.8 Outlook on Green Chemistry: the road to sustainability 

 

There is no doubt that Green Chemistry is here to stay. Chemical companies and, indeed, companies 

in general are placing increasing emphasis on sustainability and environmental goals in their 

corporate mission statements and annual reports.  

The European Technology Platform on Sustainable Chemistry (SusChem) has recently published 

an Implementation Action Plan entitled “Putting Sustainable Chemistry into Action”.[60] The report 

defines three key technology areas: (i) industrial biotechnology, (ii) materials technology, and (iii) 

reaction and process design. The goal is “improving the eco-efficiency of products and processes to 

optimize the use of resources and minimize waste and environmental impact”.  
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Similarly, the US chemical industry produced a strategic plan (Technology Vision 2020) which 

defined a long-term technology roadmap for the future.[61] Important goals were to “improve efficiency 

in the use of raw materials, the reuse of recycled materials, and the generation and use of energy 

and to continue to play a leadership role in balancing environmental and economic considerations”. 

Initially, many people confused Green Chemistry with what is generally known as environmental 

chemistry which is concerned with the effects of chemicals on the environment and remediation of 

waste and contaminated land and water. In contrast, Green Chemistry is concerned with redesigning 

chemical products and processes to avoid the generation and use of hazardous substances and the 

formation of waste, thus obviating the need for a lot of the environmental chemistry. 

The twelve principles of Green Chemistry, as expounded by Anastas and Warner in 1998,[1] have 

played an important role in promoting its application. They inspired others to propose additional 

principles[62] and, more recently, Anastas and Zimmerman[63] proposed the twelve principles of green 

engineering which embody the same underlying features, conserve energy and resources and avoid 

waste and hazardous materials, as those of green chemistry, but from an engineering viewpoint. 

Graedel has reduced the concept of green chemistry and sustainable development to four key areas: 

(i) sustainable use of chemical feedstocks, (ii) sustainable use of water, (iii) sustainable use of energy 

and (iv) environmental resilience.[64] These reflect the central tenets of sustainability, that is, “using 

natural resources at rates that do not unacceptably draw down supplies over the long term and 

generating and dissipating residues at rates no higher than can be assimilated readily by the natural 

environment”. 

 

1.8.1 Concluding Remarks 

With sustainability as the driving force, the production and applications of chemicals are undergoing 

a paradigm change in the 21st century and Green Chemistry and catalysis are playing a pivotal role 

in this change. This revolutionary development manifests itself in the changing feedstocks for fuels 

and chemicals, from fossil resources to renewable feedstocks, and in the use of green catalytic 

processes for their conversion. In addition, there is a marked trend towards alternative, greener 

products that are less toxic and readily biodegradable. Ultimately this revolution will enable the 

production of materials of benefit for society while, at the same time, preserving the earth’s precious 

resources and the quality of our environment for future generations. 
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CORRIGENDA 

 

List of additional references 

 

Paragraph 1.1, pp. 2-3: “It is generally acknowledged that there is an increasing need for more 

environmentally acceptable processes in the chemical industry… Sustainable development has 

been defined as: “Meeting the needs of the present generation without compromising the ability of 

future generations to meet their own needs”.”[i] 

 

Paragraph 1.2, pp. 3-5: “Two useful measures of the potential environmental acceptability of 

chemical processes are… It is worth noting, however, that the market could change in the future, 

thus creating a waste problem for the manufacturer.”[ii] 

 

Paragraph 1.3, pp. 5-7: “As noted above, the waste generated in the manufacture of organic 

compounds consists primarily of inorganic salts… Consequently, classical chemical procedures are 

increasingly being replaced by cleaner catalytic alternatives in the fine chemicals industry.”[iii] 

 

Paragraph 1.4, pp. 7-8: “If the solution to the waste problem in the fine chemicals industry is so 

obvious… Hence, now the paradigm is changing: under the increasing pressure of environmental 

legislation, organic synthesis and catalysis have come together to achieve waste minimisation.”[iv] 

 

Paragraph 1.5, pp. 8-9: “Green chemistry strongly influences chemical research, and there is an 

insistence on the use of “greener” reaction conditions… An example of novel catalysis in an aqueous 

medium is the use of lanthanide triflates as water-tolerant Lewis acid catalysts for a variety of organic 

transformations in water.”[v] 

 

Paragraph 1.6, pp. 9-10: “The conventional multistep preparation of a complex molecule generally 

involves a large number of synthetic operations… Indeed, many unique MCRs that cannot be 

attained in conventional organic solvents have been developed.”[vi] 

 

Paragraph 1.7, pp. 10-12: “The UN World Summit on Sustainable Development, held in 

Johannesburg in 2002, called for the promotion of a sustainable use of biomass… Here again, the 

processes used for the conversion of renewable feedstocks should produce minimal waste, i.e. they 

should preferably be catalytic.”[vii] 

 



Paragraph 1.8, pp. 12-13: “There is no doubt that Green Chemistry is here to stay… and generating 

and dissipating residues at rates no higher than can be assimilated readily by the natural 

environment.”[viii] 
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CHAPTER 2 

 

 

Surfactants from Itaconic Acid: Physicochemical Properties and 

Assessment of the Synthetic Strategies 

 

 

Surfactants are a large class of compounds used in a broad spectrum of applications. In this chapter, 

it is presented the synthesis of a new family of surfactants having C12 and C18 alkyl chains obtained 

from itaconic acid and fatty amines; these molecules are industrially obtained from renewable 

resources. Main physicochemical properties of synthesized surfactants have been measured and 

their rheological behaviours have been evaluated at the air−water interface using the pendant drop 

technique. Some of the synthesized surfactants are stimuli responsive compounds, switchable to a 

polar form in the presence of CO2. The synthetic strategies have been optimized aiming at the 

sustainability of the process, employing a complete set of green metrics and the software EATOS.[i] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[i] This chapter is an adaptation of the original paper: Danilo Malferrari, Nicola Armenise, Stefano Decesari, 

Paola Galletti and Emilio Tagliavini, ACS Sustainable Chem. Eng. 2015, 3 (7), 1579-1588. 
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2.1 Introduction 

 

Since their introduction in the early 20th century, the use of synthetic surfactants has continually 

increased and, as a result, surfactants are currently among the highest volume synthetic chemicals 

produced globally. Nowadays, the overall market of surfactants is growing at a rate of 3−4% each 

year and synthetic surfactants cover the majority of the market share.[1] Surfactants, which are here 

not meant to include soaps, have historically been produced using either petrochemical or 

oleochemical feedstocks, favouring petrochemicals which account for roughly two thirds of the 

organic carbon embodied in the final products.[2] 

In the last decades, however, the industrial and research interest in surfactants obtainable from 

renewable resources has considerably increased. This interest in renewable feedstocks is driven by 

awareness and concern for the environmental impact of various household products. Moreover, 

petroleum is a finite resource, the availability of fossil feedstocks in the next future will decrease and 

its use has adverse effects.[3] Several studies have shown that the use of renewable feedstocks can 

significantly reduce the CO2 emissions associated with the production and use of surfactants. For 

example, Patel et al. estimate that oleochemicals may lead to greater CO2 savings when used for 

surfactant production rather than in the production of biodiesel.[4] Patel et al. further estimated that, 

if renewable surfactants were to entirely replace petrochemical surfactants in the EU, total CO2 

emissions associated with surfactant production and use could be reduced by as much as 37%. 

While the full replacement of petrochemical surfactants may be desirable from a CO2 abatement 

standpoint, considerations such as cost and performance will ultimately determine the success of a 

surfactant technology, and the expansion in the use of renewable chemicals must be implemented 

with care in order to avoid adverse environmental impacts associated with land and water use. To 

this end, next generation renewable surfactant technologies must be derived from robust and 

sustainable feedstocks, must be produced efficiently, and must have physicochemical properties 

that are comparable or superior to petrochemical surfactants, all while maintaining a low production 

cost. Surfactant performance is evaluated by a multitude of criteria, including stability, foaming 

power, detergency, solubility, emulsifying properties, toxicity, skin irritability, and environmental 

performance.[5] Although surfactants continue to be used predominantly as detergents and cleaners, 

they find use in a variety of industrial, agricultural, and specialty uses as well, with each application 

requiring unique performance characteristics. The diversity of function that is required from 

surfactants in turn requires diverse chemical building blocks and synthetic strategies to 

accommodate a range of physicochemical properties.  

Synthetic surfactants are generally produced through the coupling of a hydrophilic ‘‘head’’ group and 

a lipophilic ‘‘tail,’’ generating an amphiphilic molecule that can be further modified or used directly. 

The properties of the surfactants are largely determined by the charge of the head group, which can 

be positive, negative, zwitterionic, or neutral, and by the ratio of the hydrophilic portion of the 
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molecule to the hydrophobic portion, often expressed as the Hydrophilic–Lipophilic Balance, or 

HLB.[6] Surfactant design requires considerate selection of a hydrophilic and hydrophobic pair such 

that they can be readily synthesized with minimum purification and have optimum properties for a 

given application.

Amphiphiles synthesized from renewable resources represent a commercial alternative to building 

blocks derived from petrochemical feedstocks. Recent examples of hydrophilic building blocks for 

“renewable surfactants” are constituted by carbohydrates, amino acids and polycarboxylic acids. 

Hydrophobic building blocks mainly comprise fatty acids, terpenes, sterols and sterols derivatives. 

Some non-ionic surfactants classes obtained from renewable raw materials are also well 

established, like alkylpolyglucosides (APGs) that are used as self-emulsifiers, as agrochemicals, in 

personal care products and in pharmaceutical formulations.[7] Despite their popularity, 

alkylpolyglucosides have encountered a variety of synthetic challenges that result in the products 

being obtained as relatively expensive technical mixtures.[7] Recently, C-glycosides surfactants have 

been synthesized from carbohydrates through a nonulose intermediate.[8] 

Compounds derived from waste carbohydrate biomass, such as 5-hydroxymethylfurfural,[9] 

furfural,[10] cellulose[11] and sorbitol,[12] have been proposed as starting materials for surfactants. 

Nevertheless, some of the compounds listed above come from edible feedstocks and it would be 

convenient to replace them with non-edible counterparts, such as lignocellulosic biomass. 

Recently, the synthesis and biological properties of surfactants incorporating amino acids in the 

structure have been reported.[13,14] These molecules belong to the group of stimuli responsive 

amphiphiles: molecules that are responsive to a variety of triggers, including pH, light, magnetic field, 

CO2 concentration and redox state.[15] 

Another interesting group of surfactants presented in the recent years contains some examples 

derived from polycarboxylic acids like fumaric acid, itaconic acid (IA) and aconitic acid.[16] In this 

group, itaconic acid has not been fully exploited as building block in surfactants synthesis.[17] 

 

2.2 Goal 

 

Here is depicted a family of surfactants, obtained from fatty amines and itaconic acid, that present 

C12 and C18 alkyl chains. Specifically, fatty amines are industrially produced from fatty acids in three 

steps through the nitrile process (Scheme 2.1).[18] Itaconic acid is a naturally occurring compound, 

non-toxic and readily biodegradable;[19] itaconic acid is industrially obtained in high yields mainly 

through biotechnological processes based on fungi of the genus Aspergillus, grown on substrates 

like sucrose, glucose, starch hydrolysates and purified molasses.[20] It is mainly used by the polymer 

industry where it is employed as a co-monomer for the synthesis of polyesters,[21,22] but it finds 

applications also in other industrial compounds like additives, detergents, pharmaceuticals and in 

agriculture. Currently, the total market size involving itaconic acid is around 10.000−15.000 t/year.[23] 
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Scheme 2.1. Synthesis of fatty amines through the “Nitrile Process”. 
 

Herein we report the two step synthesis starting from itaconic acid that lead to a new group of 

surfactants, carrying different functionalities in the polar head-groups; these structural features 

permit us to design molecules that possess specific physicochemical properties and have the 

potential to be exploited in micellar organic catalysis and in the soft matter field. In surfactants design, 

the greenness of raw materials together with the choice of synthetic strategies are factors of 

paramount importance; thus, following this ultimate goal, a Green Metric assessment (exploiting the 

software EATOS[24] or a set of green metrics parameters) has been performed to evaluate the 

synthetic strategies.[25] The synthetic routes employed have been compared and evaluated looking 

at the sustainability of the process, solvents and by-products minimization. 

 

2.3 Results and discussion 

 

2.3.1 Optimization of synthetic pathways 

Efficient synthetic routes used for the synthesis of compounds 1−8 are represented in Scheme 2.3. 

For the complete description of synthetic routes and reaction conditions, refer to Scheme 2.4 and to 

the Experimental Section. 

The compounds prepared are characterized by a 3-substituted pyrrolidine ring and can be divided 

into four main groups that belong to different classes of surfactants: anionic (1, 2), non-ionic (3, 4) 

and ionizable (5−8) in water solution. Compounds 1 and 2 bear a 2-pyrrolidone ring and a 3-

carboxylic acid or 3-carboxylate functionality depending on pH, compounds 3 and 4 have a 2-

pyrrolidone ring with a methyl ester group, compounds 5 and 6 have a pyrrolidine ring and a methyl 

ester group whereas compounds 7 and 8 have a pyrrolidine ring and a hydroxymethyl moiety in 

position three of the ring. The pyrrolidone scaffold was obtained by conjugate Michael addition of a 

primary alkyl amine to itaconic acid followed by intramolecular spontaneous lactamization between 

the carboxylic acid in β-position and the secondary amine (Scheme 2.2). In the literature, the 

conjugate Michael addition reactions of primary amines to the double bond of itaconic acid have 

been already explored in solvents like toluene and water.[26] 
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Scheme 2.2. Synthetic mechanism of the pyrrolidone scaffold. 
 

Compounds 1a (1-dodecyl-5-oxopyrrolidine-3-carboxylic acid) and 3 (1-dodecyl-5-oxopyrrolidine-3-

carboxylic acid methyl ester) have been previously synthesized and tested as transdermal drug 

delivery agents[27,28] but their interfacial properties have not been reported yet, so a deeper 

knowledge of their physicochemical properties is desired. 

The synthesis of 1a and 2a proceeded smoothly under microwave irradiation, but compounds 3 and 

4 have been obtained from dimethylitaconate (9) and the corresponding primary amine in good yields 

simply by mixing the starting materials and crushing them at RT in a mortar. Compound 9 has been 

synthesized from itaconic acid and methanol both in the presence of Lewis and Brønsted acid 

catalysts. Compounds 5 and 6 have been obtained by reducing the lactam functionality of 3 and 4 

with 2 eq. of borane dimethylsulfide (BH3-DMS), whereas compounds 7 and 8 have been obtained 

by reducing both the lactam functionality and the carboxylic acid group of 1a and 2a with 4 eq. of 

BH3-DMS, optimizing reaction time and product selectivity. 

 

 

Scheme 2.3. General synthetic routes (A, B and C) to compounds 1−8. 
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2.3.2 Physicochemical characterizations 

Because of their amphipathic structure in solutions, surfactants tend to form micelles, namely 

thermodynamically stable molecular aggregates in water solutions. The micellar formation takes 

place above a certain surfactant concentration, the critical micellar concentration (CMC), below 

which surfactant molecules are present as monomers, above the CMC the free monomers coexist 

with micellar structures.  

To determine the CMC of 1−8, three different techniques have been used: two of them exploit the 

spectroscopic properties of a solubilized dye, the third one examines the behaviour of a bulk solution 

property (conductivity). We employed two different fluorescent probes: Pyrene (Py) and Nile Red 

(NR); the steady-state fluorescence emission spectra are presented in Figure 2.1.  

Pyrene is a hydrophobic molecule and it has been recently proposed to be localized in the 

hydrophobic interior of the micelles or aggregates, under the hydrophilic heads of the molecules.[29,30] 

Nile Red is used to localize and quantitate lipids, particularly neutral lipid droplets within cells. Nile 

Red undergoes fluorescence enhancement and large absorption and emission blue shifts in 

nonpolar environments; on the contrary, in polar media Nile Red exhibits a red shift in the emission 

maximum, owing to its capability to establish H-bonds with protic solvents, together with fluorescence 

quenching (Figure 2.1).[31] The CMC values have been also measured by means of conductivity.[32] 

 

 

Figure 2.1. Steady-state fluorescence emission spectra of Py (Panel a) and NR (Panel b) at different concentrations (mM) 
of surfactant 1 in water solution. 
 

Pyrene I1/I3 ratio measurements, maximum emission intensities for Nile Red and conductivity data 

are presented in Figure 2.2, Figure 2.3 and Figure 2.4, respectively; CMC results are summarized 

in Table 2.1. CMC values are in the concentration range between 0.1 and 5 mM, in line with values 

of common surfactants, to give few examples: sodium dodecyl sulphate (SDS, 7.4 mM, see Table 

2.1), cetyltrimethylammonium bromide (CTAB, 0.92 mM) and Triton X-100 (0.2−0.9 mM).[33,34]  

Compounds 7 and 8, characterized by an alcohol functionality and a tertiary amine, present the low 

CMC values in the C12 series as well as in the C18; whereas CMC values of 5 and 6 are the highest 

of the C12 and C18 series, respectively. CMC values of compounds 3 and 4 (Table 2.1), which do 
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not present ionizable groups in the molecular structure, are not measurable by means of conductivity, 

thus the CMC is measured only by means of I1/I3 ratio and Nile Red. 

 

 

Figure 2.2. Vibronic ratio measurements (I1/I3) of Py for compounds 1, 3, 5 and 7 (Panel a) and 2, 4, 6 and 8 (Panel b). 

 

 

Figure 2.3. CMC of compounds 1, 3, 5 and 7 (Panel a) and 2, 4, 6 and 8 (Panel b) using the probe NR. CMC values are 
indicated by vertical arrows. 

 

 

Figure 2.4. Conductivity vs. concentration of compounds 1, 5, 7 (Panel a) and 2, 6, 8 (Panel b). CMC values are indicated 
by vertical arrows. 
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Table 2.1. CMC values, mean aggregation numbers, logKow, logD and pKa values for compounds 1−8. 

Compound CMC[a] [mM] CMC[b] [mM] CMC[c] [mM] Nagg[d] logKow
[e] logD[e] pKa

[g]

SDS 7.4 8.1 7.2 63 / / / 

1 1 5 1 54 4.8 2.0 4.5 

2 0.3 0.3 0.3 64 7.0 5.2 4.5 

3 0.2 0.1 n.d. 57 4.8 (4.7)[f] 5.3 n.d. 

4 1.0 1.8 n.d. 68 7.5 8.4 n.d. 

5 1.7 1.3 0.8 43 5.9 (5.8)[f] 4.4 9.2 

6 0.8 0.7 0.4 52 8.6 7.5 9.3 

7 0.7 0.6 0.8 57 5.5 (5.3)[f] 2.8 10.1 

8 0.2 0.5 0.1 60 8.4 6.0 10.1 

[a] From Py I1/I3 ratio. [b] From NR fluorescence. [c] From conductivity. [d] Value at 25 °C (RT).[35] [e] Predicted using ALOGPS 
software version 2.1; logD values at pH 7.4.[36,37,38] [f] Measured with OECD method No. 117, 2004.[39] [g] Predicted using the 
EPISUITE software.[40] 

 

In Table 2.1 are also recorded the mean aggregation numbers (Nagg) for compounds 1−8, measured 

using cetylpyridinium chloride (CPC) as a quencher molecule and Pyrene as a fluorescent probe; 

SDS, a common anionic surfactant, was used to check the consistency of values.  

In Table 2.1, the estimated logarithmic values of the octanol−water partition coefficient (logKow), the 

logD values and pKa values of 1−8 are reported. In the C12 and C18 series, it is visible that the 

reduction of the amide functionality in the pyrrolidone ring (in compounds 5, 7 and 6, 8) is expected 

to determine a higher degree of lipophilicity, with respect to compounds characterized by the 

carboxylic (1 and 2) and methyl ester functionality (3 and 4). 

The lower hydrophilicity and solubility in water of compound 4 with respect to 2 is reflected by the 

logKow (7.5) and by the logD values. For non-ionizable compounds and for compounds characterized 

by logKow values lower than 7, corresponding values have also been measured using an OECD 

method (Figure 2.5) obtaining values comparable with those previously estimated.  

Given the pKa values of these compounds, the pH of the aqueous solutions of compound 1 is acidic, 

compound 5 and 7 are basic and compound 3 is neutral (Figure 2.6); titration curves are reported in 

Figure 2.7. 
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Figure 2.5.  LogKow values for compounds 3, 5 and 7 and the relative calibration curve. 
 

 

Figure 2.6. 5 mM water solutions of 1, 3, 5 and 7 in the presence of bromothymol blue. 

 

 

Figure 2.7. Titration curves of water solutions of compounds 1 (Panel a), 5 (Panel b) and 7 (Panel a). 
 

The study of surface tension and other surface properties is another important parameter, motivated 

by the large number of industrial processes involving interfaces, such as coating, detergency, 

printing and foams. At the air−water or oil−water interface, above the CMC, the equilibrium surface 

tension (σeq) of a surfactant solution is not achieved instantaneously: surfactant molecules must first 

diffuse from the bulk solution to the interface and then adsorb.  
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For compounds 1−8, this phenomenon is visible in the surface tension profiles plotted in Figure 2.8. 

 

 

Figure 2.8. Surface tension profiles for compounds 1, 3, 5 and 7 (Panel a) 2, 4, 6, and 8 (Panel b) (5 mM). 
 

Compounds 1−8 have been solubilized at concentrations above the CMC values (5 mM). Each 

compound presents a different profile, indicating a specific tendency to go at the air−water interface 

associated with specific kinetics. It is interesting to notice the difference between σeq values of 

compounds 3 and 4. Even if 3 and 4 have the same polar head-group, the difference in the length 

of the hydrophobic tail is fundamental to determine different kinetics of absorption; compound 4 

presents a high lipophilicity, as suggested by high values of logKow and logD and the lowest value of 

HLB of the series (according the Davies’ method). Lower values of σeq are achieved with compounds 

7 and 8, which are characterized by quick kinetics of absorption. Compounds 3, 5 and 6 are the ones 

characterized by slower kinetics to σeq.  

Table 2.2 summarizes the σeq values, the elastic modulus (ε) and the effective dilation viscosity (ηd) 

values for compounds 1−8. These data have been collected to characterize different types of 

rheological properties of the surfactant films formed at the air−water interface, because the 

macroscopic response of film properties to surface deformation is inherently linked to fundamental 

physicochemical properties of surfactants.  

Several technological steps in the detergent industry, flotation and sewage disposal are based on 

the formation of foams of a definite lifetime. The stability or instability of foams and emulsions is to a 

great extent determined by the surface rheological properties of adsorption layers at the liquid 

interfaces; for these aspects, the knowledge of dilational elasticity, dilational viscosity and transport 

effects are important.  

Dynamic surface tension was measured while variations of the surface area were induced using the 

“pending drop” technique. The σeq values reported in Table 2.2 are referred to the equilibrium state 

of the films. 
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Common surface dilatational parameters like ε and ηd were derived by increasing or reducing the 

volume of the drop, resulting in the expansion or compression of its surface.[41] The σeq values for 

compounds 7 and 8 are the lowest in the group of surfactants synthesized. Interestingly, the two 

compounds alter dramatically the surface tension at the air−water interface. Compound 4 is 

characterized by a low solubility in the water phase and consequently does not change the σeq to a 

great extent (61 mN m−1 at equilibrium). These data can be explained in terms of poor solubility of 

compound 4 and reflect its scarce tendency to distribute at the air−water interface. Compound 4 also 

presents a high CMC value and the minimum decrease in the σeq can be related to the higher number 

of molecules that participate to the formation of micellar aggregates. Moreover, the kinetic of 

absorption at the air−water interface (similarly to compound 3, Figure 2.8) is linear for compound 4 

and presents a value that is not far from that of pure water surface tension (72 mN m−1 at RT). 

 

Table 2.2. σeq, ε, ηd, HLB and Kt of compounds 1−8 for 5 mM solutions. 

Compound σeq, surface tension 

[mN m-1] 

ε, elastic modulus 

[mN m-1] 

ηd, viscosity 

[mN m-1] 

HLB[a] Kt [°C]

1 45 36 37 8.6 (27.8) 64 

2 39 147 480 6.7 (24.9) 70 

3 33 34 151 9.1 (9.1) 48 

4 61 31 26 7.2 (6.2) 56 

5 35 11 25 8.6 (11.2) 48 

6 44 38 149 6.7 (8.4) 68 

7 28 11 58 7.4 (10.2) 26 

8 30 20 170 5.7 (7.4) 38 

[a] Calculated using the Griffin’s and Davies’ (between brackets) methods.[42,43] 

 

For three homologues of surfactants couples, 1−2, 5−6 and 7−8, it can be noted that the ε and ηd 

values increase moving from compounds that present C12 chains to the compounds having C18 

chains. In these cases, the lengthening of the alkyl chain increases the viscoelastic behaviour of the 

water layer at the air−water interface. Increases in ε and ηd values are particularly evident for anionic 

compounds 1 and 2, but are also relevant for non-ionic compounds 5−6 and for the couple 7−8, 

where the difference in σeq values is not so relevant. 

In Table 2.2 are also reported the hydrophile−lipophile balance (HLB) values calculated for 

compounds 1−8 using the Griffin’s and Davies’ methods. The HLB of a surfactant is an empirical 

correlation that measures the tendency to partition between oil and water phase and the value is 

directly proportional to the surfactants’ solubility in water. The Griffin’s method does not take into 
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account the contribution of highly hydrophilic substituents like carboxylate and sulfonate ones, 

whereas the Davies’ method does. As it is predictable, big differences are registered in HLB values 

of compounds 1 and 2 when measured employing the two different methods. According to Griffin’s 

HLB values, compounds 1, 4, 5 and 7 can be classified as wetting agents; compound 3, which is 

non-ionic, can be classified as a wetting agent or an oil in water (o/w) emulsifier. Compounds 2, 6 

and 8 present the lower HLB values and are classified as water in oil (w/o) emulsifiers. 

In Table 2.2, Krafft temperature (Kt) values for 1−8 are listed. Kt is the temperature at which the 

solubility of the surfactant monomer becomes equal to the CMC and is generally interpreted as the 

melting temperature of a hydrated solid surfactant. Kt usually coincides with the temperature of full 

clarification of the system and above the Kt, micelles begin to form provoking a rapid increase in the 

solubility of the surfactants (see also Figure 2.9). 

 

 

Figure 2.9. The Krafft temperatures (Kt) of compounds 1-6 (Panel a) and 7-8 (Panel b), indicated by arrows in figure, 
correspond to a complete clarification of the solutions. 
 

Data clearly show that compounds 1, 2, 4 and 6 are characterized by the higher Kt values (around 

70 °C). This property undoubtedly limits their applications in certain processes. Therefore, it is 

desirable to tailor the molecular structure of surfactants or adjust the aqueous environment by 

introducing inorganic salts to decrease their Kt for practical uses. Compounds 7 and 8 are the most 

interesting ones in terms of solubility at low temperatures, the Kt values are present at 26 °C and 38 

°C, respectively. 

Compounds 5−8 present in their structure two functionalities that allow them to be switched to a 

polar structure in water phase in the presence of water and CO2. The tertiary amine can be converted 

into a quaternary ammonium group and the alcohol functionality converted into a carbonate moiety 

(Figure 2.10a). As straightforward example, solely the switching of surfactants 5 and 7 is presented 

in Figure 2.10b. To measure the property of switching polarity, solutions of 5 and 7 at 5 mM in DMSO 

have been prepared; we chose DMSO solutions thanks to the good solubility of both amphiphilic 

molecules and CO2.  
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Figure 2.10b shows that the conductivity of DMSO solutions can increase during time in the presence 

of a CO2 flux directly bubbled into the solution (for details, see the Experimental Section). The 

conductivity values, indicative of the presence of the charged form, can be reversibly decreased by 

removing CO2 through heating and bubbling an inert gas like nitrogen (N2) into the solution containing 

surfactant. It is interesting to note that the increase or decrease in conductivity from bubbling CO2 or 

N2 is not registered in pure DMSO, indicating that the “switching process” of compounds 5 and 7 (as 

well as for compounds 6 and 8) needs water (150 μL of H2O in 3 mL of DMSO), as outlined in Figure 

2.10a. Interestingly, this property can be useful in applications where the increase in surfactant 

hydrophilicity can decrease its loss into an extracting organic phase. 

 

 

Figure 2.10. (a) Switching of 5−8 in the presence of H2O and CO2. (b) Conductivity of DMSO solutions of 5 and 7 as a 
function of time during two cycles of treatment with CO2 followed by N2. 

 
2.3.3 Assessment of the synthetic strategies 

Looking for the sustainability of the synthetic processes, we conducted the synthesis of 1−8 with 

three different pathways and we have analyzed the procedures using two complementary types of 

green metrics: we employed the software EATOS and the worksheet developed by Andraos.[25]  

In the Experimental Section, these metrics and their definitions are specified. Interconnections 

between these parameters were demonstrated by Andraos.[44,45] The variables measured with 

EATOS are the quantity of substrate used (indicated as S-1), the Environmental Index in input of the 

reaction (EI input), that measures the resources used and the risk connected with the chemical 

reaction and the Environmental Index in output (EI output) that measures the toxicity, the 

eutrophication potential, the ozone depletion and the greenhouse effect of products and by-products. 



Chapter 2     Surfactants from Itaconic Acid 

30 
 

 

Scheme 2.4. Reaction schemes of the synthetic routes used for the synthesis of compounds 1−4. 
 

We have decided to limit the green metrics investigation to the synthesis of the lactam surfactants 

1−4 through conjugate addition of primary fatty amines to itaconic acid and its methyl ester, 

corresponding to the synthetic routes depicted in Scheme 2.4. Besides the reaction conditions 

usually employed and shown in Scheme 2.3, here a comparison is performed with other synthetic 

conditions that also lead to compounds 1−4. Evaluation of the further elaboration of the lactam 

moiety goes beyond the aim of the present study. Therefore, the synthetic procedures used for the 

synthesis of 5−8 will not be taken into account here. Comparison between the synthetic routes A1, 

A2 and A3 using EATOS is visible in Figure 2.11a; comparison between routes B1, B2 and B3 is 

depicted in Figure 2.11b.  
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The corresponding numerical values are summarized in Table 2.3, and summarize the greenness of 

the processes evaluated following this approach. Routes A1, A2 and A3 mainly differ in the 

presence/absence of solvent, in reaction duration, temperature and in the kind of energy input used: 

external heating with a silicon oil bath (for routes A1 and A2) or a microwave irradiation (for route 

A3). Interestingly, routes A2 and A3 provide exactly the same profile, when assessed with EATOS 

software. However, we should point out that the energy consumption in route A3 is lower than in 

route A2; indeed, microwaves energy supply to chemical reaction is much more efficient than heat 

transfer from external heating[46] but this aspect is not taken into account by the EATOS approach. 

For A routes, the major impact on S-1, EI input and EI output is due to the solvent. The reactions 

conducted in solventless conditions (A2 and A3) proved to be more efficient in terms of energy and 

substrates consumption. We postulate that possible concerns that could arise when solvent free 

reactions are carried out on a larger scale, like heat release of strongly exothermic reactions, local 

temperature increase and inhomogeneity,[47] should be of minimal impact in our system, but further 

investigation will be required before moving to a pilot-plant or industrial scale. A1 and A2 proceed at 

high temperatures whereas in routes B1 and B2 dodecylamine and 9 reacted quickly at room 

temperature (mechanically crushing the reagents in a mortar) so a dramatic temperature increase is 

not expected. Clearly, in view of the scaling up of the solvent free reaction, a deeper understanding 

of the thermal characteristics is required. For the synthesis of compounds 3 and 4, three synthetic 

procedures have been compared. Routes B1 and B2 exploit dimethylitaconate 9 that is obtained 

from itaconic acid using MeOH-BF3 and H2SO4, respectively. Otherwise, the methylation of the 

carboxylic acid functionality of 1a and 2a in route B3 has been carried out with dimethyl carbonate 

(DMC) in the presence of the base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). DMC has been 

chosen because it is considered a green solvent with low toxicity values, it is not classified as a 

volatile organic compound (VOC)[48] and is a potential green methylating agent. DBU was used as a 

base because the less expensive and toxic K2CO3 or KOH gave rise to the formation of itaconic 

anhydride only. 

 

 

Figure 2.11. S-1, EI input and EI output values for synthetic routes A1, A2, A3 (a) and B1, B2, B3 (b) investigated with 
EATOS software. 
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Figure 2.11b shows that route B3 is by far less convenient in terms of solvents consumption, 

substrates use and by-products production according to the EATOS evaluation. It is interesting to 

notice that the more efficient route is B1, involving the use of MeOH-BF3 complex instead of H2SO4, 

acid that presents serious health and environmental drawbacks (Figure 2.11b and Table 2.3). 

 

Table 2.3. S-1, EI input and EI output values for synthetic routes A1, A2, A3, B1, 
B2 and B3 calculated with EATOS software. 

Synthetic route S-1 [Kg Kg-1] 

resp. [PEI Kg-1]

EI input [Kg Kg-1]

resp. [PEI Kg-1] 

EI output [Kg Kg-1] 

resp. [PEI Kg-1] 

A1 6.58 13.04 18.69 

A2 1.24 2.73 1.08 

A3 1.24 2.73 1.08 

B1 2.66 8.03 4.31 

B2 2.72 8.16 5.01 

B3 38.95 100.85 66.28 

 

Moving now to the Andraos approach, Figure 2.12 shows the pentagons that summarize the raw 

material footprints for the synthetic routes compared; corresponding numerical values are 

summarized in Table 2.4. 

 

 

Figure 2.12. Comparison of the raw material footprints for synthetic routes A1, A2, A3 to compounds 1 (a) and 2 (b); for 
synthetic routes B1, B2, B3 to compounds 3 (c) and 4 (d), including the purification steps. 
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The synthetic routes A1−B2, with the exception of route B3, are characterized by high levels of 

reaction yield (Rxn Yield), atom economy (AE) and stoichiometric factor (SF). These data are in 

agreement with green chemistry principles,[49] which suggest to prefer addition reactions and 

solventless conditions. With respect to the other two parameters taken into account, Reaction Mass 

Parameter (RMP) and Process Mass Intensity (PMI), the assessment through Andraos method is 

not highly meaningful for processes carried out with typical laboratory methods. Interestingly, as 

underlined in the worksheets present in the Experimental Section, the values of RMP and PMI are 

low if solvents and materials used in the purification steps are taken into account, independently 

from the synthetic route considered. Otherwise, RMP and PMI values are high if measured 

considering exclusively the amount of solvent used in the synthetic steps (Figure 2.13). 

 

 

Figure 2.13. Comparison of the raw material footprints (considering or not the contribution of purification steps) for synthetic 
routes A3 to compound 1 (Panel a) and for synthetic routes B1 to compound 3 (Panel b). 

 
Molar Efficiency (ME) values summarized in Table 2.4 highlight that solvents used during the 

reactions or in the purification steps have a heavy influence on this metric, rarely highlighted by other 

metrics. 

 

Table 2.4. Comparison of raw material footprints for synthetic routes A1, A2, A3, 
B1, B2 and B3. 

Routes Rxn Yield 

[%] 

AE 

[%] 

SF 

[%] 

RMP

[%] 

RME

[%] 

E-Factor PMI ME[a] 

[%] 

A1 95 94 77 100 69 0.44 1.4 38 (24) 

A2 88 94 94 100 78 0.28 1.28 42 

A3 88 94 94 100 78 0.28 1.28 42 

B1 90 90 95 100 77 0.3 1.3 29 (4) 

B2 90 90 95 100 77 0.3 1.3 28 (4) 

B3 85 77 1.28 100 84 0.2 1.9 21 (1) 

[a] Values between brackets have been calculated taking into account the solvent presence. 
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In the synthesis of compounds 3 or 4 is recorded the higher difference in terms of ME, depending 

on the presence of the solvent. In conclusion, we point out that a complete toxicological 

characterization such as biodegradability and eco-toxicity of the surfactants has to be assessed to 

have a complete picture of the toxicological properties and environmental fate of the compounds. 

 

2.4 Conclusions 

 

We have reported the two step synthesis of a new class of surfactants derived from itaconic acid 

and fatty amines. The synthetic strategies have been designed for minimizing waste, by-products 

and energy consumption. The products obtained constitute an exploitable pool of surface active 

compounds that thanks to different structures present specific rheological behaviours. Moreover, the 

compounds synthesized can be exploited in reactions of micellar catalysis in water phase (see 

Chapter 5). When assessed through green metrics protocols, reactions conducted in solventless 

conditions and using microwave devices proved to be efficient and sustainable in terms of toxicity, 

substrate, solvent and energy consumption. Evaluation of biodegradability and eco-toxicity of the 

surfactants presented in the present chapter, as well as the design of similar surfactants still based 

on itaconic acid, is ongoing in our laboratory. 

 

2.5 Experimental Section 

 

2.5.1 Materials  

All reactants were purchased from Sigma Aldrich and used without purifications. Aqueous solutions 

were prepared using Milli-Ro water (resistivity 18.2 MΩ cm at 25 °C; filtered through a 0.22 μm 

membrane). Flash chromatography was performed on silica gel (230−400 mesh). 

 

2.5.2 General methods and techniques 

NMR analyses 

1H and 13C NMR spectra were recorded on a Varian Mercury 400 spectrometer. 

GC−MS analyses 

GC−MS analyses were performed using a 6850 Agilent HP gas chromatograph connected to a 5975 

Agilent HP quadrupole mass spectrometer. The GC−MS analysis of compounds 1a, 2a, 1, 2, 7 and 

8 was done by means of silylation. 

LC-MS analyses 

LC-MS analyses were performed on a 1200 series Agilent liquid chromatograph coupled with an 

electrospray ionization-mass spectrometer (LC-ESI-MS) Quattro Premier XE Waters, using 

H2O/CH3CN as solvents at RT (positive scan, 50−800 m/z). 
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Elemental analyses 

The elemental composition of the compounds was determined by using an elemental analyzer 

(Thermo Scientific, Flash 2000, Organic Elemental Analyzer) by means of the flash combustion 

technique. 

FT-IR analyses  

Spectra were measured on a Bruker Alpha FT-IR spectrometer as neat films between NaCl plates 

and reported in cm−1. 

Microwave reactions 

Microwave assisted reactions were performed in a Milestone Mycrosynth equipped with a dual 

magnetron system with pyramid-shaped diffuser, 1000 W maximum output power, temperature 

monitor and control via an optic fibre up to 250 °C in the vessel. 

Conductivity measurements 

Measurements for the determinations of CMC, Kt and switching properties of 5−8 were carried out 

with an AMEL 160 conductivity-meter. 

Steady-state fluorescence measurements 

Pyrene and Nile Red steady-state fluorescence emission spectra (Figure S21 in the Experimental 

Section) were acquired with a Jasco spectrofluoro-meter FP-6200 equipped with a thermostated 

cuvette holder and a magnetic stirring device. 

 

2.5.3 Biophysical characterization techniques 

Critical micellar concentration (CMC) 

The CMC of 1−8 has been measured using three different techniques: a) Pyrene I1/I3 vibronic ratio 

measurement, b) Nile Red fluorescence (the CMC has been measured as stated in the literature),[50] 

c) conductivity method. 

 

a) Pyrene I1/I3 vibronic ratio measurement 

Water solutions (3 mL) of 1-8 were prepared at different concentrations (0.001, 0.005, 0.01, 0.05, 

0.1, 0.5, 1, 5, 10 mM) and left to stabilize at RT before each measurement. A stock solution of Pyrene 

in ethanol (0.75 mM) was prepared daily and stored in the dark at 4 °C for one night before usage. 

For the preparation of water solutions containing Pyrene, an aliquot of ethanol solution containing 

Pyrene was used, the solvent was evaporated under vacuum and then an adequate volume of water 

was added to obtain the final concentration of 0.75 μM. Pyrene’s final concentration in solution was 

low enough to avoid excimer formation. Before measurements, solutions containing Pyrene and 

surfactants have been sonicated. Solutions of 1−8 were placed into a thermostated bath where 

temperature was maintained constant within ±0.05 °C. A gentle flow of N2 for 20 min was used to 

degas all solutions before measurements. The conductivitymeter was previously calibrated with a 

KCl standard solution of 0.01 M (1.29 mS cm−1). 
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The steady-state fluorescence emission spectra excited at 334 nm were recorded in the 350 to 550 

nm range (see Figure 2.1). Pyrene is a hydrophobic molecule and it has been recently proposed to 

be localized in the hydrophobic interior of the micelles or aggregates,[51] under the hydrophilic heads 

of the molecules. Typical features of the structured emission spectra of Pyrene are the maxima at 

375 nm, 385 nm and 395 nm due to vibronic bands (see Figure 2.1), known to be environmentally 

sensitive[52] and this property has been effectively used for evaluating the polarity of 

microenvironments in which Pyrene is dissolved.[53] The ratio of the first (I1, 375 nm) and third (I3, 

385 nm) vibronic peak intensities (I1/I3) in Pyrene emission spectra provides a measure of the 

apparent polarity of the environment: an increase in the I1/I3 ratio is indicative of an increased polarity, 

while a decrease is indicative of a reduction of polarity, for example the presence of an organized 

lipidic environment (Figures 2.2). It is fundamental to point out that the I1/I3 ratio considerably 

changes in different experimental settings depending on the optical configuration used for the 

measurements (front-face or right-angle geometry and slits bandwidth), Pyrene concentration, 

temperature and ionic strength of the solution.[54] The spectra of all solutions were acquired with the 

usual right angle configuration. The fluorescence intensities of the first (I1 - 375 nm) and third (I3 - 

385 nm) emission peaks were measured. Excitation and emission slits had a nominal bandpass of 

5 nm. The CMC has been measured as stated in the literature, using the Boltzman sigmoidal eq. (1) 

and the χ2 (chi-square) coefficient: 

 

y ൌ 	 భି	మ
ଵା	ୣ
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 Aଶ          (1)    

 

where the dependent variable (y) corresponds to the Pyrene I1/I3 ratio value, the independent 

variable (x) is the total concentration of the tested compound, A1 and A2 are the upper and lower 

limits of the sigmoid, respectively, x0 is the centre of the sigmoid and the corresponding CMC value. 

Each measurement has been carried out in at least three replicates. 

 

b) NR fluorescence 

Water solutions (3 mL) of 1-8 have been prepared at different concentrations (0.001, 0.005, 0.01, 

0.05, 0.1, 0.5, 1, 5, 10 mM). For the preparation of water solutions containing Nile Red a final 

concentration of 0.2 μM Nile Red was added to the surfactant dispersions by injection. The samples 

were sonicated with an ELMASonic S 70 system. Then the surfactant samples were left to stabilize 

at RT for at least 1 day prior to the measurements. Steady-state emission spectra of Nile Red were 

recorded at RT using 5 nm slit widths (nominal) at excitation of 550 nm using a Jasco 

spectrofluorometer FP-6200 equipped with a thermostated cuvette holder and a magnetic stirring 

device (PerkinElmer, MA, USA). The emission spectra were recorded at a scanning speed of 60 

nm/min from 560 to 700 nm.  
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The given data are plotted as the Nile Red emission peak (λ max) in the surfactant system versus 

the logarithmic function of the surfactant concentration (mM): obtained data in CMC determination 

experiments were extrapolated by logistic fitting curve using the eq. (2) (software Origin 8, 

OriginLabTM Northampton, MA, US): 

 

y ൌ 	 భି	మ
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where the dependent variable (y) corresponds to the fluorescence intensity value, the independent 

variable (x) is the total concentration of the compound tested, A1 and A2 are the lower and upper 

limits of the curve, respectively, x0 is the centre of the curve and the corresponding CMC value, p is 

the exponent of the power law. Each measurement has been carried out in three replicates. 

 

Mean aggregation number (Nagg)  

The steady-state fluorescence quenching method was used for the determination of Nagg at RT.[55] 

In all experiments, CPC was used as the quencher. Working solutions containing 0.75 μM Py and 5 

mM of 1−8 or 10 mM for SDS (above the CMC) were prepared in milli-Ro water. Quencher 

concentration [CPC] in solution was maintained low enough (0.012 mM) to not perturb the surfactant 

micelle assembly. The nominal slit widths of excitation and emission were 5 nm, the scan speed was 

250 nm min−1. Fluorescence steady-state emission spectra were recorded between 350 and 500 nm 

using excitation at λ = 334 nm (Figure 2.1).  

The micelle Nagg was obtained from eq. (3):[56] 

 

ln(I0/IQ) = (Nagg × [CPC]) / ([surf] − CMC)          (3) 

 

where I0 and IQ are the fluorescence intensities of Pyrene in the absence and presence of the 

quencher CPC, respectively; [surf] is the total concentration of 1−8, which was kept constant and 

[CPC] is the concentration of quencher, which was varied (0.00012, 0.0006, 0.0012, 0.006, 0.012 

mM). The slope of the linear plots between ln(I0/IQ) versus [CPC] yielded the mean aggregation 

number (Nagg) of the micelles. 

Hydrophile−Lipophile Balance methods (HLB)  

HLB values have been measured using the Griffin’s and Davies’ methods.[41,42] 

Krafft temperature measurements (Kt) 

To determine Kt, aqueous solutions of 1−8 (10 mM) and SDS were prepared and placed in a 

refrigerator at ~4 °C for 24 h, where the precipitation of surfactants occurred. The temperature of the 

precipitated system was raised gradually under constant stirring using a thermostated bath (Heating 
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Immersion Circulator Julabo 13) and its conductance (G, mS) was measured. At each temperature, 

the conductance reading was checked every 2 min until it reached a steady value.[57] 

 

logKow, logD, pKa predictions 

The software Alogps 2.1,[37,38] ECOSAR 1.11 and EPIWEB[39] were employed for the prediction of 

logKow, logD and pKa values of 1−8. logKow values have been measured using the OECD method 

No. 117, 2004.[40] 

Colorimetric changes 

5 mM water solutions of 1, 3, 5 or 7 were prepared and 5 drops of bromothymol blue solution were 

added. The solutions were gently shaken and the colorimetric response observed. 

Acid−base titrations 

Titration curves were determined with a pH electrode at RT under a N2 atmosphere and magnetic 

stirring. Aqueous surfactant solutions (1.5 mL) of 5 mM were titrated with aqueous NaOH solution of 

the same concentration. The experiment was twice repeated. 

Surface tension measurements 

Surface tension measurements were performed by a SINTECH PAT1 tensiometer. The σeq values 

of 1−8 were measured using solutions (5 mM) of deionized water above the CMC (cf. with data in 

Table 2.2). The σeq values were determined at RT using the pendant drop method (data are reported 

in Figure 2.3). Elastic module ε and viscosity values ηd (Table 2.2) for each compound have been 

calculated acquiring dynamic surface tension data.[46] Elastic module values |ε| have been calculated 

using eq. (4): 

 

|ε| = −dσ/dInA         (4) 

 

where A is the area of the drop surface and σeq is the equilibrium surface tension. Viscosity values 

ηd have been calculated using eq. (5): 

 

ηd = ε0ω-1sinθ          (5) 

 

where ε0 equals the dilatation elasticity modulus |ε| only for an instantaneous deformation and ω is 

the angular frequency of the area variation. 

Conductivity measurements of compounds 5−8 

The conductivity of 5−8 (10 mM) in wet DMSO (150 μL of H2O in 3 mL of DMSO) was measured. 

CO2 was bubbled through the solution for 30 min at RT (24 °C). After this step, N2 was bubbled 

through the solution and in the meanwhile the temperature was raised to 60 °C for 30 min. The CO2 

and temperature increase cycles were repeated two times (60 and 60 minutes, respectively). In a 

control experiment, air was bubbled through the solution of 5 (10 mM) in undried DMSO (3 mL) for 
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15 min at RT. The conductivity did not rise. CO2 was then bubbled through for 2 min, causing the 

conductivity to rise. 

 

2.5.4 Green metrics 

S-1 values, EI in and EI out values have been measured employing the software EATOS v 1.1[24] and 

a group of metrics described hereby.  

The data required for EATOS were obtained from the MSDS downloadable from the Sigma-Aldrich 

website and from the database of the European Chemical Agency (ECHA).[19] They include: 

information dealing with risk (R phrases), human toxicity (LD50 oral or dermal, hazard symbols), 

chronic toxicity (suspect of carcinogen, teratogen, mutagen by International Agency for Research on 

Cancer - IARC), eco-toxicology (WGK, EC50 48h Daphnia magna), biodegradation and 

accumulation (BCF, log Pow). Prices were taken from the Aldrich catalogue (updated March 2015). 

For the calculation of stoichiometric factor (SF), reaction mass parameter (RMP) and the reaction 

mass efficiency (RME), the spreadsheet produced by J. Andraos[44,45] has been used. 

The E-factor[58] was calculated as eq. (6): 

 

ܧ െ factor ൌ ሺ୲୭୲ୟ୪	୵ୟୱ୲ୣ	ሾ୩ሿሻ

ሺ୫ୟୱୱ	୭	୮୰୭ୢ୳ୡ୲/ୱ	ሾ୩ሿሻ
          (6) 

 

Process mass intensity (PMI) was calculated applying eq. (7):[59] 

 

PMI ൌ 	 ୲୭୲ୟ୪	୫ୟୱୱ	୳ୱୣୢ	୧୬	ୟ	୮୰୭ୡୣୱୱ	୭୰	୧୬	ୟ	ୱ୲ୣ୮	ሾ୩ሿ
୫ୟୱୱ	୭	୮୰୭ୢ୳ୡ୲/ୱ	ሾ୩ሿ

          (7) 

 

Molar efficiency (ME)[60] was calculated using eq. (8): 

 

ME ൌ		
moles	products

∑ሺmoles	starting	materials  	moles	of	additives  moles	catalyst  moles	solventሻ
ൈ 100				ሺ8ሻ 

 

2.5.5 General procedures for the synthesis of compounds 1-8 

Synthesis of compounds 1a and 2a: Route A1  

In a typical experiment itaconic acid (2-methylidenebutanedioic acid, 1 eq.) was added to a stirring 

solution of the alkylamine (dodecylamine for compound 1a, octadecylamine for compound 2a; 1.1 

eq.) in CH3CN at RT and then the solution stirred at 70 °C for 24 h; the course of the reaction was 

monitored by means of TLC and GC–MS. Evaporation of the solvent under reduced pressure left a 

solid, which was purified on a silica gel column chromatography (cyclohexane/ethyl acetate 9:1) to 

give a white solid (1a yield 95%; 2a yield 92%). 
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Synthesis of compounds 1a and 2a: Route A2  

Reaction was adapted from previously reported one.[61] Itaconic acid (1 eq.) was added to a stirring 

solution of the alkylamine (dodecylamine for compound 1a, octadecylamine for compound 2a; 1.3 

eq.) in solventless conditions and the reaction mixture heated at 120 °C for 3 h. Purification 

procedure is the same as in route A1 (1a yield 88%; 2a yield 85%). 

Synthesis of compounds 1a and 2a: Route A3 

The reactions were carried out in analogous conditions of Route A2 but in a microwave oven; the 

reaction mixture was heated at 120 °C at 700 Watt for 20 min (1a yield 88%; 2a yield 85%). 

Synthesis of compounds 1 and 2 

Compounds 1a and 2a have been added at RT in an equimolar ratio to a water stirring solution 

containing KOH, at the end of the procedure the neutral pH of the solution was checked with a pH-

meter, water was evaporated under reduced pressure to give solids (quantitative yield). 

Synthesis of compounds 3 and 4: Route B1 – 1st step  

Itaconic acid (1 eq.) was added to a stirring solution of MeOH-BF3 (1.3 M in THF, 1 eq.) and the 

solution stirred for 1 h under reflux. The solvent was evaporated and the product (dimethyl itaconate, 

9) extracted in n-hexane (x2) from water. The organic layers were combined and dehydrated with 

anhydrous Na2SO4. After filtration the solvent was evaporated under reduced pressure to give a 

liquid (quantitative yield). 

Synthesis of compounds 3 and 4: Route B2 – 1st step 

Reaction was adapted from previously reported one.[62] Itaconic acid (50 mmol, 1 eq.) has been 

added to a stirring solution of MeOH (25 mL) and H2SO4 (30 % moles) and the solution stirred for 6 

h under reflux. The solvent was evaporated under reduced pressure and the crude product (dimethyl 

itaconate, 9) extracted in ethyl acetate (x2) from water. The organic layers were combined, dried 

over sodium sulphate and concentrated under reduced pressure (quantitative yield).   

Synthesis of compounds 3 and 4: Routes B1 and B2 – 2nd step  

For routes B1 and B2 dimethyl itaconate (9) was added to the corresponding alkylamine 

(dodecylamine for compound 3, octadecylamine for compound 4; 1.1 eq.) at RT and the solution 

stirred for 30 min; the course of the reaction was monitored by means of TLC and GC–MS (3 yield 

90%; 4 yield 89%). 

Synthesis of compounds 3 and 4: Route B3 

Reaction was adapted from previously reported one.[63] Compound 1a or 2a were synthesized as 

stated in route A2. Dimethylcarbonate (DMC) (70 eq., 2 mL) was added to the crude product (0.34 

mmol, 1 eq.) and then DBU was added (0.34 mmol, 1 eq.), the mixture was stirred at 90 °C for 7 h. 

DMC was evaporated under reduced pressure and the product extracted in H2O / Ethyl acetate (x2). 

The organic layers were combined, dried over sodium sulphate and concentrated under reduced 

pressure, the crude product purified by means of column chromatography (cyclohexane : ethyl 

acetate gradient elution, 8 : 2); (3 yield 85%; 4 yield 85%). 
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Synthesis of compounds 5 and 6  

Reaction was adapted from previously reported one.[64] To a solution of methyl 1-dodecyl-5-

oxopyrrolidine-3-carboxylate (3 - 500 mg, 1.68 mmol) or methyl 1-octadecyl-5-oxopyrrolidine-3-

carboxylate (4 - 641 mg, 1.68 mmol) in dry THF (4 mL), a THF solution of borane dimethyl sulphide 

(2 M, 1.7 mL, 3.36 mmol) was added dropwise stirring under inert atmosphere at 0 °C over 10 min. 

After the addition was completed, the temperature was left to rise to RT and the solution was stirred 

for a further 3 h at RT. Then 4N HCl in methanol was added (1.9 mL) and the solution refluxed for 1 

h. The reaction mixture was concentrated, water was added and the pH was raised to 10 adding 

NaOH. The basic water phase was extracted with CH3CN and the combined organic phases were 

dried over magnesium sulphate and concentrated under reduced pressure. Evaporation of the 

solvent left an oily residue, which was purified by means of column chromatography on silica gel 

(eluent: methanol) to give a liquid (5 yield 93%; 6 yield 90%). 

Synthesis of compounds 7 and 8  

To a solution of 1-dodecyl-5-oxopyrrolidine-3-carboxylic acid (1a - 500 mg, 1.68 mmol) or 1-

octadecyl-5-oxopyrrolidine-3-carboxylic acid (2a - 641 mg, 1.68 mmol) in dry THF (4 mL), a THF 

solution of borane dimethyl sulphide (2 M, 3.4 mL, 6.72 mmol) was added dropwise stirring under 

inert atmosphere at 0 °C over 10 min. After the addition was completed, the temperature was left to 

rise to RT and the solution was stirred for a further 3 h at RT. Then 4N HCl in methanol was added 

(3.7 mL) and the solution refluxed for 1 h. The reaction mixture was concentrated, water was added 

and the pH was raised to 10 adding NaOH. The basic water phase was extracted with CH3CN and 

the combined organic phases were dried over Na2SO4 and concentrated under reduced pressure. 

Evaporation of the solvent left an oily residue, which was purified by column chromatography on 

silica gel (eluent: methanol) to give a white solid (7 yield 85%; 8 yield 87%). 

 

2.5.6 Characterization data of compounds 1-8 

1-Dodecyl-5-oxopyrrolidine-3-carboxylic acid (1a); m.p. 39 °C; Retention factor (Rf  = 0.34, AcOEt : 

cyclohexane = 7:3); 1H NMR (400 MHz, CDCl3): δ = 3.68 (dd, J(H,H) = 10, 8 Hz, 1H), 3.60 (dd, 

J(H,H) = 12, 10 Hz, 1H), 3.32-3.21 (m, 3H), 2.80 (dd, J(H,H) = 16, 8 Hz, 1H), 2.74 (dd, J(H,H) = 16, 

8 Hz, 1H), 1.53-1.49 (m, 2H), 1.29-1.25 (m, 18H), 0.87 (t, J(H,H) = 8 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ = 175.81, 173.23, 49.11, 42.75, 35.86, 34.09, 31.83, 30.85, 29.54, 29.49, 29.43, 29.27, 

29.18, 26.99, 26.70, 22.60, 14.04. IR (neat): 2922, 2852,1722, 1632, 1467, 1350, 1225, 676 cm–1; 

ESI-MS positive scan (cone 30 V): m/z (%): 296.31 (100) [M-]; GC-MS retention time (rt) 26.6 min; 

m/z (EI) 369.44 ((M-1) + Si(CH3)3), 354 ((M-1) + Si(CH3)2), 298 (M+1), 252 (M - COO), 239 (M - 

COOCH), 214 (M – COOCH(CH2)2), 185 (M – COOCH(CH2)2CO), 129 (M – CH3(CH2)11); elemental 

analysis: calculated (%) for C17H31NO3 (297.4): C 68.65, H 10.51, N 4.71; found: C 68.93, H 10.63, 

N 4.72. 
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1-Octadecyl-5-oxopyrrolidine-3-carboxylic acid (2a); m.p. 81-92 °C; Retention factor (Rf  = 0.28, 

AcOEt : cyclohexane = 8:2); 1H NMR (400 MHz, CDCl3): δ = 3.65 (dd, J(H,H) = 10, 8 Hz, 1H), 3.58 

(dd, J(H,H) = 12, 10 Hz, 1H), 3.30-3.20 (m, 3H), 2.77 (dd, J(H,H) = 16, 8 Hz, 1H), 2.71 (dd, J(H,H) = 

16, 8 Hz, 1H), 1.52-1.48 (m, 2H), 1.31-1.23 (m, 30H), 0.86 (t, J(H,H) = 8 Hz, 3H);13C NMR (100 

MHz, CDCl3): δ = 176.28, 172,82, 48.97, 42.72, 35.85, 34.12, 31.90, 29.68, 29.63, 29.56, 29.50, 

29.34, 29.25, 27.08, 26.88, 26.76, 22.67, 14.10; IR (neat): 2917, 2850, 1723, 1640, 1468, 1225  cm–

1; GC-MS rt 30.8 min; m/z (EI) 453.6 ((M-1) + Si(CH3)3), 438 ((M-1) + Si(CH3)2), 382 (M+1), 336 (M 

- COOH), 318 (M - COOHO), 214 (M – COOCH(CH2)2), 185 (M - COOCH(CH2)2CO), 129 (M – 

CH3(CH2)11); elemental analysis: calculated (%) for C23H43NO3 (381.6): C 72.39, H 11.36, N 3.67; 

found: C 72.51, H 11.68, N 3.96. 

Potassium 1-dodecyl-5-oxopyrrolidine-3-carboxylate (1); 1H NMR (400 MHz, CD3OD): δ = 3.59 (d, 

J(H,H) = 4 Hz, 2H), 3.24 (t, J(H,H) = 8 Hz, 2H), 3.09-3.01 (m, 1H), 2.68 (dd, J(H,H) = 20, 8 Hz, 1H), 

2.55 (dd, J(H,H) = 16, 8 Hz, 1H), 1.55-1.48 (m, 2H), 1.32-1.27 (m, 18H), 0.88 (t, J(H,H) = 8 Hz, 3H); 

13C NMR (100 MHz, CD3OD): δ = 180.69, 174.99, 50.68, 42.07, 38.52, 35.23, 31.64, 29.34, 29.32, 

29.29, 29.25, 29.04, 28.94, 26.66, 26.42, 22.30, 13.01; GC-MS rt 26.6 min; m/z (EI) 369.44 ((M-1) + 

Si(CH3)3), 354 ((M-1) + Si(CH3)2), 298 (M+1), 252 (M - COO), 239 (M - COOCH), 214 (M – 

COOCH(CH2)2), 185 (M – COOCH(CH2)2CO), 129 (M – CH3(CH2)11); elemental analysis: calculated 

(%) for C17H30NO3K (335.5): C 60.85, H 9.01, N 14.01; found: C 61.05, H 10.05, N 14.25. 

Potassium 1-octadecyl-5-oxopyrrolidine-3-carboxylate (2); 1H NMR (400 MHz, CD3OD): δ = 3.59 (d, 

J(H,H) = 8 Hz, 2H), 3.24 (t, J(H,H) = 8 Hz, 2H), 3.07-2.99 (m, 1H), 2.68 (dd, J(H,H) = 20, 8 Hz, 1H), 

2.54 (dd, J(H,H) = 16, 8 Hz, 1H), 1.55-1.47 (m, 2H), 1.31-1.23 (m, 30H), 0.88 (t, J(H,H) = 8 Hz, 3H); 

13C NMR (100 MHz, CD3OD): δ = 179.29, 175,06, 50.79, 42.08, 38.73, 35.32, 31.65, 29.36, 29.27, 

29.05, 28.97, 26.68, 26.45, 22.32, 13.03; GC-MS rt 30.8 min; m/z (EI) 453.6 ((M-1) + Si(CH3)3), 438 

((M-1) + Si(CH3)2), 382 (M+1), 336 (M - COOH), 318 (M - COOHO), 214 (M – COOCH(CH2)2), 185 

(M - COOCH(CH2)2CO), 129 (M – CH3(CH2)11); elemental analysis: calculated (%) for C23H42NO3K 

(419.7): C 65.82, H 10.08, N 3.34; found: C 65.98, H 10.33, N 3.36. 

1-Dodecyl-5-oxopyrrolidine-3-carboxylic acid methyl ester (3) m.p. 30-35 °C; Retention factor (Rf  = 

0.52, AcOEt : cyclohexane = 7:3); 1H NMR (400 MHz, CDCl3): δ = 3.75 (s, 3H), 3.61 (dd, J(H,H) = 

10, 8 Hz, 1H), 3.57 (dd, J(H,H) = 10, 8 Hz, 1H), 3.34-3.19 (m, 3H), 2.71 (dd, J(H,H) = 16, 7 Hz, 1H), 

2.65 (dd, J(H,H) = 16, 10 Hz, 1H), 1.55-1.49 (m, 2H), 1.28-1.26 (m, 30H), 0.88 (t, J(H,H) = 8 Hz, 3H); 

13C NMR (100 MHz, CDCl3): δ = 173.17, 172.00, 52.24, 48.78, 42.37, 35.88, 34.10, 31.78, 29.50, 

29.49, 29.43, 29.39, 29.21, 29.15, 27.03, 26.64, 22.55, 13.98; IR (neat): 2925, 2854, 1740, 1695, 

1437, 1267, 1199  cm–1; ESI-MS positive scan (cone 35 V): m/z (%): 312.25 (100) [M+]; GC-MS rt 

25.2 min, m/z (EI) 312 (M +1), 294 (M – CH3), 280 (M – OCH3), 252 (M – COOCH3), 156 (M – 

CH2NHCO(CH2)2CHCOOCH3), 127 (M – CH3(CH2)11N); elemental analysis: calculated (%) for 

C18H33NO3 (311.46): C  69.41, H 10.68, N 4.5; found: C  69.78, H 10.77, N 4.42. 
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1-Octadecyl-5-oxopyrrolidine-3-carboxylic acid methyl ester (4); m.p. 58-61 °C; Retention factor (Rf  

= 0.24, AcOEt : cyclohexane = 1:1); 1H NMR (400 MHz, CDCl3): δ = 3.69 (s, 3H), 3.57 (dd, J(H,H) = 

10, 8Hz, 1H), 3.52 (dd, J(H,H) = 12, 8 Hz, 1H), 3.29-3.14 (m, 3H), 2.67 (dd, J(H,H) = 16, 8 Hz, 1H), 

2.60 (dd, J(H,H) = 16, 8 Hz, 1H), 1.49-1.44 (m, 2H), 1.23-1.20 (m, 30H), 0.83 (t, J(H,H) = 8 Hz, 3H); 

13C NMR (100 MHz, CDCl3): δ = 173.2, 172.02, 52.32, 48.81, 42.43, 35.94, 34.15, 31.83, 29.57, 

29.55, 29.43, 29.20, 27.07, 26.69, 22.59, 14.02; IR (neat): 2952, 2915, 2849, 1735, 1682 cm–1; GC-

MS rt 30.3 min, m/z (EI) 396 (M + 1), 378 (M – CH3), 364 (M – OCH3), 336 (M – COOCH3), 156 (M 

– CH2NHCO(CH2)2CHCOOCH3), 144 (M - NHCO(CH2)2CHCOOCH3), 127 (M – CH3(CH2)11N); 

elemental analysis: calculated (%) for C24H45NO3 (395.63): C  72.86, H 11.46 , N 3.54 , found: C  

72.53, H 11.64, N 3.36. 

Methyl 1-dodecylpyrrolidine-3-carboxylate (5); liquid at RT; Retention factor (Rf  = 0.17, 100% 

AcOEt); 1H NMR (400 MHz, CDCl3): δ = 3.66 (s, 3H), 3.02 (dd, J(H,H)=16, 8 Hz, 1H), 2.91 (dd, 

J(H,H) = 10, 8 Hz, 1H), 2.70 (dd, J(H,H) = 14, 8 Hz, 1H), 2.59 (dd, J(H,H) = 10, 8 Hz, 1H), 2.48-2.34 

(m, 3H), 2.09-2.03 (m, 2H), 1.48-1.45 (m, 2H), 1.24-1.22 (m, 18H), 0.84 (t, 3J(H,H) = 8 Hz, 3H); 13C 

NMR (100 MHz, CDCl3): δ = 175.37, 56.66, 56.15, 53.84, 51.84, 41.79, 31.86, 29.60, 29.57, 29.55, 

29.51, 29.50, 29.29, 28.65, 27.57, 27.54, 22.63, 14.06; GC-MS rt 23.7 min, m/z (EI) 298 (M +1), 282 

(M – CH3), 266 (M – OCH3), 238 (M – COOCH3), 212 (M – CH2CHCOOCH3), 142 (M - 

NHCO(CH2)2CHCOOCH3); elemental analysis:  calculated (%) for  C18H35NO2 (297.48): C 72.68, H 

11.86, N 4.71, found: C  72.74, H 11.96, N 4.77. 

Methyl 1-octadecylpyrrolidine-3-carboxylate (6); liquid at RT; Retention factor (Rf  = 0.41, AcOEt : 

MeOH = 9:1); 1H NMR (400 MHz, CDCl3): δ 3.67 = (s, 3H), 3.04 (dd, J(H,H) = 16, 8 Hz, 1H), 2.94 

(dd, J(H,H) = 10, 8 Hz, 1H), 2.74 (dd, J(H,H) = 16, 8 Hz, 1H), 2.63 (dd, J(H,H) = 16, 8 Hz, 1H), 2.50-

2.37 (m, 3H), 2.12-2.06 (m, 2H), 1.50-1.47 (m, 2H), 1.25-1.23 (m, 30H), 0.86 (t, J(H,H) = 8 Hz, 

3H);13C NMR (100 MHz, CDCl3): δ = 175.36, 56.67, 56.19, 53.87, 51.90, 41.82, 31.90, 29.67, 29.64, 

29.59, 29.54, 29.52, 29.34, 28.64, 27.59, 27.56, 22.67, 14.10; GC-MS rt  27.4 min, m/z (EI) 382 (M 

+1), 366 (M – CH3), 350 (M – OCH3), 338 (M – COOCH3), 322 (M – CH2COOCH3), 198 (M – 

(CH2)4NH(CH2)3CHCH2OH), 142(M – CH3(CH2)16); elemental analysis: calculated (%) for C24H47NO2 

(381.64): C 75.53, H 12.41, N 3.67, found: C  75.86, H 12.27, N 3.40.  

(1-Dodecylpyrrolidin-3-yl)methanol (7); m.p. 45-47 °C; Retention factor (Rf  = 0.22, AcOEt : MeOH 

= 8:2); 1H NMR (400 MHz, CDCl3): δ = 3.69 (dd, J(H,H) = 12, 4 Hz, 1H), 3.62 (dd, J(H,H) = 10, 4 Hz, 

1H), 3.32-3.21 (m, 2H), 3.13-3.07 (m, 1H), 2.92-2.88 (m, 2H), 2.68-2.61 (m, 1H), 2.21-2.12 (m, 1H), 

1.96-1.88 (m, 1H), 1.80-1.72 (m, 2H), 1.28-1.21 (m, 20), 0.85 (t, J(H,H)=8 Hz); 13C NMR (100 MHz, 

CDCl3): δ = 63.20, 56.19, 55.71, 53.69, 38.96, 31.83, 29.53, 29.44, 29.35, 29.26, 29.04, 26.84, 26.28, 

26.00, 22.61, 14.05; ESI-MS positive scan (cone 30 V): m/z (%): 270.49 (100) [M+]; GC-MS rt  22.6 

min, m/z (EI) 341 ((M-1) + Si(CH3)3), 326 ((M-1) + Si(CH3)2), 312 ((M-1) + SiCH3), 270 (M+1), 186 

(M -CO(CH2)2CHCH2OH), 143 (M – (CH2)2NH(CH2)3CHCH2OH); elemental analysis: calculated (%) 

for C17H35NO (269.47): C 75.77 , H 13.09, N 5.2, found: C 76.10, H 13.33, N 5.2. 
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(1-Octadecylpyrrolidin-3-yl)methanol (8); m.p. 58-62 °C; Retention factor (Rf  = 0.35, AcOEt : MeOH 

= 7:3); 1H NMR (400 MHz, CDCl3): δ = 3.54 (dd, J(H,H) = 12, 8 Hz, 1H), 3.46 (dd, J(H,H) = 8, 4 Hz, 

1H), 2.92-2.86 (m, 2H), 2.79-2.72 (m, 1H), 2.63-2.59 (m, 2H), 2.47-2.39 (m, 1H), 2.02-1.94 (m, 1H), 

1.72-1.64 (m, 1H), 1.54-1.46 (m, 2H), 1.15-1.12 (m, 32H), 0.77 (t, J(H,H) = 8 Hz, 3H); 13C NMR (100 

MHz, CDCl3): δ = 64.36, 56.67, 55.67, 53.58, 38.82, 31.67, 29.45, 29.40, 29.34, 29.28, 29.10, 26.99, 

26.47, 26.18, 22.42, 13.85; GC-MS rt 27.4 min, m/z (EI) 426 (M + Si(CH3)3),  410 (M + Si(CH3)2), 

396 ((M-1) + SiCH3), 382 (M + Si), 354 (M+1), 323 (M - CHOH), 242 (M – 

CH2NH(CH2)3CHCH2OH),186 (M - (CH2)6NH(CH2)3CHCH2OH), 143 (M - 

(CH2)9NH(CH2)3CHCH2OH); elemental analysis: calculated (%) for C23H47NO (353.63): C 78.12, H 

13.4, N 3.96, found: C 78.2, H 13.77, N 4.35. 
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CHAPTER 3 

 

 

Green Chemistry Oriented Organic Synthesis in Water 

 

 

The utilization of water as solvent presents many benefits such as improving reactivities and 

selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing 

mild reaction conditions and protecting-group free synthesis. In addition, exploring organic chemistry 

in water can lead to uncommon reactivities and selectivities supplementing the organic chemists’ 

synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained 

into Nature’s way of chemical synthesis. 
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3.1 Organic reactions in aqueous media 

 

The utilization of water as solvent in organic chemistry was revisited in the 1980s by Breslow,[1] who 

showed that hydrophobic effects could strongly enhance the rate of several organic reactions. 

Previously, the limited solubility of the reactants in water was the main reason that restricted the use 

of aqueous media in chemical reactions. Notably, in the exploration of new ‘‘green’’ procedures, high 

temperature water (HTW) was found to be useful in synthetic organic conversions.[2] Under near-

critical and supercritical conditions water behaves as a ‘‘pseudo-organic solvent’’[3] because its 

dielectric constant decreases substantially; the solvating power toward organic molecules becomes 

comparable with that of ethanol or acetone at room temperature, and acid or base-catalyzed 

reactions typically require less catalyst and often proceed rapidly.[4] 

Considering the importance of environmentally friendly protocols in organic chemistry, the 

applications of aqueous chemistry protocols have attracted significant interest in synthetic 

processes.[5] Water is the solvent of choice not only from an environmental standpoint but also from 

an economic point of view since it is cheap, non-flammable, and abundantly available.[6] Compared 

with common organic solvents, the unique and unusual physical properties such as high specific 

heat, high surface tension, high dielectric constant, large cohesive energy density and chemical 

properties (ability to form hydrogen bonds and amphoteric nature) of water can in principle influence 

positively the reactivity and selectivity of chemical reactions (Figure 3.1).[7] 

 

 

Figure 3.1. Chemical structure of water and its physical interactions with solute molecules. 
 

The main advantages of using water are based on: 

- Its flexibility to form strong hydrogen bonds that give it a significant surface tension (three 

times that of liquid ammonia) which could facilitate the aggregation of reactants. 

- Its ability to form weak non-covalent bonds with other compounds. 

- Its ability to engage in electron transport reactions as exemplified by many biological and 

synthetic reactions.[8] 

- It provides an ideal environment for fast proton transfer processes. 
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In spite of the described interesting properties of water as solvent for chemical processes, water has 

several associated issues. Most importantly, the solubility of organic reactants is the main drawback 

in aqueous processes, which generally leads to immiscible and/or biphasic reaction mixtures. 

Several ways to solve this issue have been proposed by using surfactant combined phases, mixing 

with co-solvents, heating the reaction mixture, grinding the reactants or, finally, exploiting phase-

transfer catalysis (PTC). Moreover, water is a readily reacting molecule. Some of reactants and 

products can decompose upon heating of the aqueous reaction mixture, while in other cases water 

sensitive reactants are simply not compatible or are unable to react in the presence of water. In the 

case of heterogeneously catalyzed protocols, aqueous phases require stable and water tolerant 

catalysts which need to be designed to work under these conditions.[9] Formation of unwanted side 

products is also a major drawback of the utilization of water in organic synthesis. However, some of 

these issues have been addressed and solved by designing protocols based on the use of 

microwaves, ultrasound or pressure reactors, and using other benign (co)solvents. Very recently, 

water-promoted reactions were classified by Butler and Coyne as in-water or on-water reactions, 

according to the associated experimental conditions.[10] 

 

3.1.1 On-water organic reactions 

Water is considered a green solvent for disparate chemical and biological reactions. It commonly 

agreed that reactants should be soluble in solvents for the successful performance of reactions. This 

concept completely changed with the earlier research work on Diels–Alder reactions, the first reports 

on the use of water as solvent.[1a] Subsequently, the advancements in studying the existence of 

hydrophobic effect in organic synthesis are mainly responsible for the emerging interest in water as 

a solvent.[11] 

Recently, this concept was revisited by Sharpless and co-workers with some representative 

reactions where water insoluble reactants are converted to products in high yields; the reaction 

mixture is usually stirred vigorously in water for a short period.[12] The representative examples 

included cycloadditions, such as classic Diels–Alder reactions, as well as nucleophilic ring-opening 

of epoxides and aromatic Claisen rearrangements. Since the reactants were highly insoluble in 

water, the reactions were described as being on-water. Due to the aforementioned versatile and 

unique properties of water, rates and selectivities of pericyclic reactions under on-water conditions 

can be improved, as well as in a series of related organic transformations in the presence and/or 

absence of catalysts.[13]  

Nowadays, on-water reactions refer to the remarkable phenomenon of substantial rate 

accelerations, when insoluble reactants are stirred in aqueous suspensions.[14] The water surface 

itself has been proposed as a catalyst in such reactions, but a clear rationalization for the on-water 

effect is still not available. 
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Jung and Marcus proposed a kinetic model[15] and compared the rate of the reaction for neat, surface 

and aqueous homogeneous reactions with experimental data. According to their theory, the free OH 

groups in the case of on-water catalysis are better promoters of organic reactions when compared 

to ‘‘in-water conditions’’, but additional validation of the reaction mechanisms with experimental data 

is required. 

A summary of these molecular interpretations is depicted in Figure 3.2 and a range of selected 

examples of these acceleration effects will be highlighted in subsequent sections. According to the 

Jung and Marcus model, to apprehend the on-water chemistry it is essential to understand the 

singular pathway that occurs at the water-oil phase boundary where hydrogen-bonding interactions 

that utilize free OH groups of interfacial water molecules are facilitated. 

 

 

Figure 3.2. On-water catalysis in comparison with surface and aqueous homogeneous conditions. 
 

3.1.2 In-water organic reactions 

Water can be a better solvent to perform catalyst-free organic reactions. Currently, organic reactions 

that are carried out in water are classified as on-water or in-water, depending on the solubility of 

reactants. According to Breslow, in-water, the organic molecules are forced to form aggregates in 

order to decrease the exposed organic surface area.[1b] Due to these aggregates, holes are formed 

in the cluster structure of liquid water and the bulk water molecules surround or hydrate the 

aggregates.[10] In the final layer of the hydration shell, as the bulk water molecules approach the 

surface of small aggregates their H-bond links run laterally along the hydrophobic surface.[16] This 

effect is known as the ‘‘Breslow hydrophobic effect’’. With large hydrophobic surfaces some dangling 

hydrogen bond (OH-free) groups are orientated toward the barrier to maximize the packing density 

of the molecule.[17]  

In the last few decades in-water reactions have been studied in detail,[18] the main characteristics 

being: (a) hydrophobicity, which speeds up reactions; (b) hydrogen bonding, with impact on reactants 

and transition states which may or may not favour the hydrophobic effect; and (c) water polarity, 

which may again increase or decrease the reaction rates. 
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3.2 Catalysis in micellar media 

 

Concepts such as the hydrophobic effect and the donor–acceptor hydrogen bonding ability of water 

have allowed to rationalize the enhanced productivity as well as regio-, diastereo- and 

enantioselectivity in several catalytic reactions.[19] The above mentioned advantages are some of the 

motivations that prompt scientists to deeply explore the use of water as a solvent in organic 

synthesis. As far as catalysis is concerned, water as a solvent provides an additional advantage of 

possible catalyst recycling when products are extracted with a water immiscible organic solvent 

leaving the catalyst dissolved in water. 

However, the need for product extraction from aqueous phases poses some critical issues about the 

green character of catalysis in water, such as (i) the volume of organic solvent used in the workup 

often exceeds the total volume of water used in the reaction by factors of up to 30-fold and this 

operation is of major concern for the overall green character of the system and (ii) the resulting water 

solution is essentially a water stream contaminated by organics that is subject to strict regulations 

and purified usually by stripping under vacuum or adsorption of activated carbon.[20] From this point 

of view the green character of aqueous media in replacing organic solvents while using an organic 

solvent to extract products from water is questionable, but as long as water provides extra 

performance in terms of activity and selectivity, the concerns about the use of limited amounts of 

traditional solvents at the end of the reaction are at least mitigated and in the cases of successful 

recycling, reduced to a minimum. 

Once again, Nature provides inspiration with enzymes as highly active water soluble catalysts 

operating within cells. In these systems weak intermolecular interactions that are the toolbox of 

supramolecular chemistry play a pivotal role. The supramolecular viewpoint is helpful in rationalizing 

enzyme catalysis and this is testified by the emerging interest in supramolecular catalysis as the 

contact point between supramolecular chemistry and traditional homogeneous catalysis. 

Development of artificial enzyme models mimicking natural enzymes is a promising and active field 

that has been pursued by researchers for several decades.[21]  

Enzymes are macromolecular catalysts while traditional homogeneous catalysts are orders of 

magnitude smaller and can at most mimic the behaviour of the enzyme active site without the extra 

properties induced by the surrounding protein. Therefore, the simplest approach to mimic some of 

the features of enzymes consists of exploiting self-assembling units that generate highly ordered 

structures capable of surrounding the catalyst. This ensures the formation of nano-metric 

environments that, similarly to enzymes, can accommodate substrates, accelerate the reaction and 

impart peculiar selectivities on both sides of the reaction, i.e. reagents and products.[22] 

The marriage between supramolecular chemistry and homogeneous catalysis led to the proposal of 

a number of supramolecular artificial enzymes based on various unimolecular building blocks (like 

macrocycles, cyclodextrins, calixarenes, cyclophanes, crown ethers, cavitands, capsules, molecular 
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cages and others), and self-assembled nanometre sized objects (metal–ligand or hydrogen bonded 

capsules, micelles, vesicles, nanoparticles, nanotubes and nano-gels).[23] The ultimate goal of such 

systems consists of mimicking biosynthesis and catalysis even in total synthesis, emulating 

enzymatic cascade reactions.[24] 

 

3.2.1 Micelles: structure and properties 

Surfactants as amphiphilic molecules (Figure 3.3) in the presence of water and immiscible organic 

species tend to mediate between the two phases. If water is present in a large amount the 

hydrophobic effect drives the formation of spontaneous micellar aggregates in solution when the 

surfactant is present above a certain minimum concentration (CMC, critical micelle concentration). 

The nanoscale assemblies formed by aggregation of about 50–100 monomers are in thermodynamic 

equilibrium where monomers rapidly exchange among aggregates. For example, the typical lifetime 

of a surfactant micelle is on the order of 10-3–10-2 seconds.[25] 

The use of surfactants under micellar conditions represents one of the simplest methods to achieve 

catalysis in water since surfactants are in most cases very economical thanks to their extensive 

everyday use in detergency. As recently pointed out by Sorrenti,[26] micellar environments are not 

just a soapy version of homogeneous catalysis, but micelles behave much more as nano-reactors 

characterized by unique features. 

Most of the commercially available surfactants are derived from petroleum feedstock. In recent years 

some classes of bio-surfactants have emerged where the amphiphilic molecule presents biological 

functionalities. Examples are known based on glycolipids, lipopeptides, phospholipids, fatty acids, 

and neutral lipids. In most cases they are anionic or neutral with the hydrophobic part of the molecule 

based on long-chain fatty acids, hydroxyl fatty acids or α-alkyl-β-hydroxy fatty acids and the 

hydrophilic portion based on carbohydrates, amino acids, cyclic peptides, phosphates, carboxylic 

acids or alcohols.[27] Bio-surfactants, thanks to their self-assembling properties,[28] found interesting 

application directly in the environment,[29] or heavy metal or organic contaminant removal such as oil 

removal from contaminated soil or for bioremediation enhancement. Their extension as reaction 

media for chemical transformations is still an un-investigated topic; the auspice is that in the near 

future their peculiar properties, in particular the presence of several enantiomerically pure bio-

surfactants, will spur their employment for catalytic applications as alternative more environmentally 

friendly media. Similar to enzymes, micelles are characterized by a hydrophobic core, shielded from 

the contact with water, and a hydrophilic surface where the hydrophilic groups remain exposed to 

water ensuring solubility. Water molecules surround the polar external surface of the aggregate and 

their behaviour and properties are rather different from water molecules in the bulk.[30] The type of 

aggregate formed is a function of several variables: (i) the molecular structure of the amphiphile, (ii) 

the proportion between hydrophilic and hydrophobic parts, (iii) the geometry of the molecule and (iv) 

the experimental conditions in which they are used such as temperature, pH and ionic strength.[31] 
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Figure 3.3. Structures of some commercially available surfactants. 

 

The effect of concentration is extremely important since possible aggregates are initially typically 

spherical micelles, but as soon as the concentration increases also ellipsoidal micelles, rods, 

hexagonal liquid crystal phase (LC, hexagonal arrangement of long cylinders), lamellar LC phase 

and, eventually, reverse phases are possible. In the presence of large amounts of substrates, usually 

liquids, to favour their close contact with water and the surfactant, micro-emulsions are obtained and 

also under these conditions, enhancement of catalytic activity and selectivity has been observed. 
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3.2.2 Micellar effects 

Early papers on the topic of micellar catalysis date back to the late 1970s describing catalysis directly 

performed by the supramolecular aggregates.[32] Since that time this area has witnessed a growing 

interest demonstrated by the periodical update provided on some specific aspects of the topic.[33] 

Depending on the surfactant employed, micelles can be either charged or neutral with size and polar 

properties encompassing a wide range. 

From a certain point of view micelles behave like enzymes, isolating species from the bulk solvent, 

playing several roles at a time like improving solubilisation of organic reagents in water, favouring 

compartmentalization of reagents with enhancement of the local concentration and reactivity, 

imparting unique chemo-, regio- and stereoselectivities. A limitation of micellar catalysis is related to 

the amounts of substrates that can be loaded into the micelles, usually lower than in common organic 

solvents, although the higher selectivities often observed with micelles can partially compensate the 

disadvantage of working in diluted media. Since solubilisation of the organic reagents occurs 

predominantly within micelles and not in the entire volume of the liquid phase, the local concentration 

may be higher even if the overall concentration of substrates typical for catalysis in the entire micellar 

medium is usually smaller than that possible in traditional organic solvents and usually falls in the 

range 10-1–10-3 M. It is also worth noting that often the concentrations of surfactant used are much 

higher than the CMC and micro-emulsion conditions are present. Under these conditions, the loading 

of substrates in the medium can be much higher than previously described. 

Organic species added to micellar media are distributed between bulk water and micelles depending 

on their polarity, charge and dimension. Apolar substrates that are almost exclusively hosted within 

micelles experience a local concentration in the supramolecular aggregates some orders of 

magnitudes higher than that calculated considering the entire volume of solution. This is one of the 

main advantages of micelles, again a consequence of the hydrophobic effect. Moreover, charged 

micelles tend to concentrate species of opposite charge on their surface. Therefore, in cationic 

micelles the surface local pH is slightly more basic than in the bulk solution, and the opposite is 

observed for anionic micelles.[34] 

Similarly, intrinsically water insoluble charged metal species can be concentrated and dissolved in 

micellar media thanks to ionic interactions with micelles of opposite charge. Like in metallo-enzymes 

non-covalent interactions in the second coordination sphere[35] play a significant role in determining 

the activity and selectivity. Thus micellar catalysis represents one of the simplest methods to 

combine easy metal catalyst dissolution in close contact with apolar or charged secondary 

interactions thus providing suitable model complexes with a functional second coordination sphere. 

The use of water as a solvent opens the way to biphasic extraction of products and recycle of the 

catalyst. This is possible if the catalyst remains confined in the micellar aggregates during product 

removal. In the best cases, the product is insoluble and can be filtered off from the reaction mixture, 

but more often it is extracted with the aid of an organic water immiscible solvent. A frequent problem 
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is emulsion formation that limits the number of successful examples in the area. Moreover, the 

chemical nature of the extraction solvent and its amount contribute heavily to the environmental 

impact of the entire process. When product extraction is accomplished by adding directly in the flask 

a limited amount of a single organic solvent followed by removal of the organic phase, then the 

environmental impact of the process is greatly reduced. This was recently pointed out by Bruce 

Lipshutz and co-workers that underlined the extremely positive effect of the use of specific 

surfactants and water, with respect to traditional organic solvents, on the E factor of a broad series 

of transition-metal-catalyzed carbon–carbon and carbon–heteroatom bond formation reactions 

broadly employed both in industry and in the academia.[36] 

These authors observed that the E factor drops dramatically, becoming in some cases much lower 

than one tenth of the original value in organic solvents, thus reaching values typical of bulk rather 

than fine chemicals. Moreover, the possible recycling of the micellar medium containing the catalyst 

further reduces the dependence on organic solvents. Since industrial fine chemical synthesis is more 

and more moving from old processes to new environmentally friendly processes, one of the driving 

forces for the future implementation of micellar catalysis in industry could certainly be the reduction 

of waste which is also an economic cost. 

Recycling is subject to catalyst robustness as well as proper solvent choice for efficient phase 

separation. This point is more critical with neutral surfactants that generally have similar affinity to 

both water and organic solvents. Conversely, charged anionic or cationic surfactants can usually be 

exploited for extraction with apolar solvents like alkanes or diethyl ether as they remain in the 

aqueous phase. 

Catalyst and surfactant interactions open a different scenario. Under the best conditions it could be 

possible to simply extract efficiently the product leaving the catalyst and the surfactant in the micellar 

medium. This occurs when the metal catalyst and surfactant are oppositely charged and the organic 

reagents and reaction products are rather apolar and easily removable from the micellar medium. In 

other cases, product isolation is much more difficult because extraction with a solvent removes 

partially the surfactant and the catalyst from the aqueous phase. This often occurs when neutral 

surfactants, neutral metal complexes or organocatalysts are used. Nevertheless, even in these 

cases despite a less straightforward product isolation, the use of micellar media instead of organic 

solvents is justified when the activity and selectivity are higher and overcome the drawbacks. 

 

3.3 Outlook on micellar catalysis 

 

Green chemistry is a complicated challenge. Though complete greenness may be difficult to reach, 

it is a goal that chemists must aim at, through the improvement of several aspects and parameters 

of a given reaction, from the synthesis and availability of its reactants and reagents, to the separation 

and purification of the product. In this context, the use of water as solvent features many benefits: 
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not only because water itself is innocuous, but also it can potentially improve reactivities and 

selectivities, simplify the workup procedures, enable the recycling of the catalyst and allow mild 

reaction conditions and protecting group free synthesis. In addition, development of organic 

chemistry in water can lead to uncommon reactivities and reverse selectivities compared to organic 

solvents, thus complementing the organic chemists’ synthetic toolbox. Moreover, the emergence of 

this field is also crucial for novel applications and developments in biology and bioorganic chemistry, 

leading to rich research opportunities. Studying chemistry in water is also an interesting way to gain 

insights into the biosynthesis of natural products and then to learn how Nature does chemistry and, 

ultimately, to which extent we can mimic it.  

Like in Nature, the ideal micellar medium working well in all cases simply does not exist. Rather, the 

chemical nature of the surfactant, its concentration and molar ratio are all parameters with a profound 

influence on the outcome of the catalytic reaction and they deserve careful optimization. A critical 

balance between catalyst, substrate and surfactant properties must be analyzed in detail in order to 

ensure high yield, selectivity and recyclability. The wide availability of surfactants and their generally 

low cost are definite benefits that clearly speak for their potential towards practical synthetic methods 

and also the possible scale up of suitable industrial productions. Micellar catalysis offers the great 

advantage of using catalysts already developed for use in organic media, where the tuning of subtle 

electronic and steric effects associated with the use of ligands has been already optimized, without 

the need to perturb these properties modifying the ligands to make the catalyst compatible with 

water. What is still largely under-investigated is a deeper look into the positioning and the interactions 

between the catalyst employed and the surfactant aggregates. Only with a larger interdisciplinary 

approach it would be possible to shed light onto these aspects of micellar catalysis thus greatly 

helping in understanding the reasons for improved selectivities and activities. 

The development of new surfactants, with the auspice to be made with renewable sources, is one of 

the next challenges for micellar catalysis, together with the development of chiral micelles from 

economic natural sources able to impart high levels of stereocontrol possibly acting as self-

assembled organocatalysts themselves or in combination with achiral metal catalysts. 

The self-assembly strategy that lies at the base of micellar catalysis recently suggested the 

preparation of hydrophobic core–hydrophilic shell-structured heterogeneous catalysts that showed 

good catalytic performance in pure water opening the way to metal-supported catalysts based on 

the same strategy for reactions in water.[37] Catalysis with dendrimers shares similar concepts. Once 

again, this clearly speaks for the versatility of micelles that have the great advantage of not requiring 

synthetic modification of the catalytic system because self-assembly of the structure is spontaneous.  

A cross-contact is possible between micellar catalysis and heterogeneous catalysis especially for 

the stabilization of catalytically active metal nanoparticles. A recent report on Ag nanoparticles 

stabilized by traditional surfactants[38] suggests the employment of surfactants and micellar 

conditions for tailoring the shape and properties of metal nanoparticles to be exploited in catalysis. 
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Reversibility is another important feature in catalysis to implement control over catalytic activity and 

catalyst recovery. For instance, recent findings showed that by addition of carbon dioxide it is 

possible to reversibly modify the aggregation properties of surfactants, as also showed by our 

research group.[39] It is therefore advisable that in the near future recovery of the surfactant or 

separation of the catalytic system from the reaction mixture would be feasible using this approach. 

In summary, micellar catalysis is nowadays a well-established green alternative to traditional 

homogeneous catalysis in organic media and will certainly benefit new features in the coming future 

that will favour its larger diffusion especially in fine chemical production. In this context it is possible 

to attribute the results recently published by our research group, depicted in this thesis (see chapter 

5). 
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CORRIGENDA 

 

List of additional references 

 

Abstract, p. 46: “The utilization of water as solvent presents many benefits such as… Studying 

chemistry in water also allows insight to be gained into Nature’s way of chemical synthesis.”[i] 

 

Paragraph 3.1, pp. 47-48: “The utilization of water as solvent in organic chemistry was revisited in 

the 1980s by Breslow… Very recently, water-promoted reactions were classified by Butler and 

Coyne as in-water or on-water reactions, according to the associated experimental conditions.”[ii] 

 

Subparagraph 3.1.1, pp. 48-49: “Water is considered a green solvent for disparate chemical and 

biological reactions… to apprehend the on-water chemistry it is essential to understand the singular 

pathway that occurs at the water-oil phase boundary where hydrogen-bonding interactions that 

utilize free OH groups of interfacial water molecules are facilitated.”[iii] 

 

Subparagraph 3.1.2, p. 49: “Water can be a better solvent to perform catalyst-free organic 

reactions… which may again increase or decrease the reaction rates.”[iv] 

 

Paragraph 3.2, pp. 50-51: “Concepts such as the hydrophobic effect and the donor–acceptor 

hydrogen bonding ability of water have allowed to rationalize… The ultimate goal of such systems 

consists of mimicking biosynthesis and catalysis even in total synthesis, emulating enzymatic 

cascade reactions.”[v] 

 

Subparagraph 3.2.1, pp. 51-52: “Surfactants as amphiphilic molecules (Figure 3.3) in the presence 

of water and immiscible organic species tend to mediate between the two phases… to favour their 

close contact with water and the surfactant, micro-emulsions are obtained and also under these 

conditions, enhancement of catalytic activity and selectivity has been observed.”[vi] 

 

Subparagraph 3.2.2, pp. 53-54: “Early papers on the topic of micellar catalysis date back to the late 

1970s describing catalysis directly performed by the supramolecular aggregates… the use of 

micellar media instead of organic solvents is justified when the activity and selectivity are higher and 

overcome the drawbacks.”[vii] 

 

Paragraph 3.3, pp. 54-56: “Green chemistry is a complicated challenge… and will certainly benefit 

new features in the coming future that will favour its larger diffusion especially in fine chemical 

production.”[viii,ix] 
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CHAPTER 4 

 

 

On the Way Towards Greener Transition-Metal Catalyzed 

Processes 

 

 

Transition-metal-catalyzed carbon–carbon bond formations are among the most massively used 

types of reactions in both academic and industrial contexts. As important as these reactions are to 

the synthetic community, such cross-couplings have a heavy price for our environment and 

sustainability. In particular, organic solvents are the main contributors to the waste created by the 

pharmaceutical and fine-chemical companies which utilize these reactions. An alternative to organic 

solvents in which cross-couplings are run can be found in the form of micellar catalysis, wherein 

nanoparticles composed of surfactants enable the same cross-couplings, albeit in water. 
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4.1 Pd-catalyzed cross-coupling reactions: a historical contextual perspective to the 

2010 Nobel Prize 

 

The award of the 2010 Nobel Prize in Chemistry to Richard Heck, Ei-ichi Negishi,[1] and Akira 

Suzuki[2] was a monumental event that was applauded by chemists worldwide, since their 

discoveries laid the foundations of the field of palladium-catalyzed cross-coupling reactions. 

Their observations revolutionized the way chemists conceptualized and constructed molecules 

whilst simultaneously providing methods for previously impossible, yet highly significant, C-C bond 

forming processes. With time, these discoveries served to inspire chemists to develop a wide-range 

of additional cross-coupling reactions such as carbon–heteroatom coupling, α-arylation, direct 

arylation by C-H activation, and decarboxylative coupling. Researchers worldwide strove to extend, 

apply, and discover new variants of these powerful chemistries and, indeed, such efforts continue at 

an ever increasing rate today. Substantial growth in this area has taken place during the last decade 

in terms of publications and patents[3] with the Suzuki–Miyaura cross-coupling proving by far the 

most popular, followed by the Heck and Sonogashira coupling reactions. Nonetheless, all of the 

palladium-mediated transformations continue to enjoy attention from the academic and industrial 

communities. The generally accepted mechanisms for these palladium-catalyzed cross-coupling 

reactions are depicted in Scheme 4.1.[4] 

 

 

Scheme 4.1. General catalytic cycles for Mizoroki–Heck, Negishi, and Suzuki–Miyaura reactions. 
 

Common to both types of coupling reaction is the oxidative addition of the aryl halide (or pseudo-

halide) to the catalytically active LnPd0 species which initiates the catalytic cycle. At this stage the 

processes diverge. In the Mizoroki–Heck coupling,[5] the reaction progresses by coordination of an 

alkene to the PdII species, followed by its syn migratory insertion. The regioselectivity of this insertion 

depends on the nature of the alkene, the catalyst, and the reaction conditions employed.  
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The newly generated organo-palladium species then undergoes syn β-hydride elimination to form 

the alkene product. Subsequently, base-assisted elimination of H-X from [LnPd(H)(X)] occurs to 

regenerate the LnPd0 catalyst (n=2 typically).[6] Alternatively, in the Negishi and Suzuki–Miyaura 

reactions (and the related Corriu–Kumada, Stille, and Hiyama coupling processes), the oxidative 

addition is followed by trans-metalation of an organometallic species to generate a PdII intermediate 

bearing the two organic coupling partner fragments. Subsequent reductive elimination results in C-

C bond formation with the regeneration of Pd0 species to re-enter into the catalytic cycle. 

These cross-coupling processes have a rich and intriguing history, commencing in the 19th century. 

The 1970s was ripe with innovation in the field of transition-metal catalysis with important 

contributions from Corriu, Kumada, Sonogashira, Stille, Trost, Tsuji and Yamamoto. These 

contributions, among which stand the defining work by Heck, Negishi, and Suzuki, demonstrated 

that carbon atoms in all hybridization states (dominated by sp2 carbon) undergo C-C bond forming 

reactions under palladium catalysis. This work ushered in a new era in organic chemistry, which 

stimulated dedicated research efforts worldwide towards broadening the scope of all of these 

reactions. As a consequence, coupling reactions under milder conditions with lower Pd loadings 

were developed, using more efficient catalytic systems by incorporating a plethora of ligands with 

different steric and electronic properties. These powerful ligands ultimately led to the discovery of 

new cross-coupling reactions generating other bonds (e.g. C-N, C-O, C-P, C-S, C-B). 

In a broad sense, the development of coupling chemistry outlined above may be contemplated to 

occur over three periods or waves after the discovery of cross-coupling as a concept (Scheme 4.2): 

 

1st wave: investigation of the metal catalysts capable of promoting these transformations in a 

selective fashion. 

2nd wave: expansion of coupling partner scope. 

3rd wave: the continuous improvement and extension of each reaction type through ligand 

variation, accommodating wider substrate scope, by reaction optimization and fine tuning. 

 

 

Scheme 4.2. The three waves of coupling chemistry as defined by reaction component. 
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4.2 Pd-catalyzed cross-couplings to form C–C bonds in aqueous media 

 

Water is an exceptionally attractive alternative solvent,[7] inasmuch it is a renewable, although limited, 

resource that is nontoxic, non-flammable, and relatively inexpensive. The unusual properties of 

water, such as its strong hydrogen bonding ability, can lead to unusual reactivity that is not seen in 

traditional organic solvents. Nevertheless, water is a poor solvent for most organic compounds. 

Although this can limit the use of water as a reaction medium, it also provides opportunities for 

alternative reactivity and simplified product isolation compared to organic solvents. Water is also 

highly reactive with many useful reagents, particularly many organometallic reagents. This can limit 

the types of reactions that can be performed in water. Late transition metal–carbon bonds as well as 

many of the common organometallic reagents used in cross-coupling reactions, such as organotin, 

organoboron, and organosilicon compounds, are tolerant of water, however. The primary motivations 

to carry out cross-coupling reactions in aqueous solvents have been economic and environmental. 

For the reasons described above, water is potentially safer than organic solvents. Although water is 

often considered an environmentally benign solvent, water contaminated with organic materials must 

still be treated as hazardous waste. Recycling of water and decreased solvent demand in purification 

may still make water a better choice economically and environmentally. Another motivation to use 

water is to allow for simple separation of the catalyst from the product stream. The simplified 

separation can significantly decrease cost and waste output for a given process. The palladium 

catalysts most commonly used in these reactions are expensive. The possibility to recover and reuse 

the palladium catalyst is critical for the application of these methodologies in large-scale production 

of fine chemicals. Because the catalysts are often homogeneous, separation of the metal from the 

product stream can also be quite challenging, particularly to the low levels required in pharmaceutical 

synthesis.[8] With respect to solubility in water, metal catalysts can be classified into four general 

types (Figure 4.1): 

 

(a) intrinsically soluble catalysts; 

 

(b) catalysts developed for organic media containing ligands modified with water soluble pony 

tails[9] that often turn out in tedious and time consuming synthetic efforts and that in some cases 

deeply alter the electronic and steric properties of the catalysts; 

 

(c) organic soluble catalysts that are dissolved in water, maintaining their original integrity, thanks 

to the employment of supramolecular aggregates; 

 

(d) metallo-surfactant molecules that self-assemble into micelles in solution. 
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Figure 4.1. Approaches to metal catalysis in water: (A) intrinsically water soluble catalyst; (B) covalent modification of 
ligands with water solubilizing tags; (C) solubilization of catalysts in micelles or in hosts by means of the supramolecular 
hydrophobic effect. (D) Covalent metal–surfactant adduct forming metallo-micelles. 
 

The use of a water-soluble catalyst in an aqueous–organic biphasic system helps in potentially 

constraining the catalyst to the aqueous phase, allowing for simple separation of the catalyst from 

the organic product stream. 

A number of authors have shown that water can be used as the reaction medium even when using 

hydrophobic catalysts and substrates. In some cases, reactions carried out in this manner give 

superior results to traditional homogeneous organic-phase reactions. In recent years, ‘‘on-water’’ 

reactions of this sort have received significant attention, as it has been shown that water can have 

promoting effects on cross-coupling reactions of hydrophobic substrates.[10] 

Even though the third approach reported in Figure 4.1C is the simplest one and provides the best 

advantages in terms of greening up existing processes developed to run in organic solvents, the first 

two approaches (Figures 4.1A and 4.1B) based on water-soluble catalysts can also benefit from the 

presence of micelles in aqueous media. In fact, interactions between apolar substrates dissolved 

within micelles and water-soluble charged catalysts are possible employing surfactants with 

complementary charge with respect to the catalyst, thus favouring the interaction between the two 

reaction partners in the double layer of the micelles (Figure 4.1C). The approach reported in Figure 

4.1D was introduced some time ago[11] but, even if a complex synthetic effort is made, it provides 

excellent micellar catalysts especially for asymmetric reactions. 

 

4.3 Surfactant-promoted cross-couplings 

 

Owing to the poor solubility of typical organic substrates in water, reaction rates are often lowered 

when an organic co-solvent is not used. One approach to overcoming this limitation is through the 

use of surfactants or phase-transfer catalysts to enhance the solubility of water-insoluble reactants 

in the aqueous phase. A wide variety of surfactants and phase-transfer catalysts have been 



Chapter 4     Greener Transition-Metal Catalyzed Processes 

64 
 

employed, including tetraalkylammonium salts, anionic surfactants, and non-ionic surfactants. 

Surfactants and PTCs have been shown to promote cross-coupling reactions using water-soluble 

catalysts, hydrophobic catalysts, and heterogeneous catalysts. 

The role of tetraalkylammonium salts in accelerating palladium-catalyzed cross-coupling reactions 

carried out in water was first demonstrated by Jeffery.[12] Low yields were obtained in the Heck 

coupling of phenyl iodide and methyl acrylate catalyzed by Pd(PPh3)4 in water at 50 °C. When 1 

equivalent of tetrabutylammonium chloride (TBAC) was added, the yield increased from 5 to 98% 

under otherwise identical conditions. Nearly identical yields were obtained with the corresponding 

bromide (TBAB) and hydrogensulfate salts. In contrast, LiCl and KCl did not improve reaction yields 

significantly. Jeffery concluded that the tetrabutylammonium ion promoted the reaction by acting as 

a PTC. TBAB is the most commonly used PTC for promoting cross-coupling reactions in aqueous 

media. 

Anionic surfactants such as SDS or SLS are inexpensive commodity chemicals that can be used to 

generate microemulsions from water organic biphasic media. The high interfacial surface area of the 

microemulsion promotes reactions taking place at the water/organic interface. In the synthesis of 

liquid crystalline compounds by Pd(PPh3)4-catalyzed Suzuki coupling, SDS was shown to 

significantly improve product yields (Scheme 4.3).[13] Water/toluene/n-BuOH (1 : 1 : 0.14) was used 

as the solvent system. Butanol was added as a co-surfactant in the reaction mixture. The anionic 

surfactant was chosen because of the basic conditions required by the Suzuki coupling. 

 

 

Scheme 4.3. Synthesis of liquid crystalline compounds by Pd(PPh3)4-catalyzed Suzuki coupling. 
 

PEG is a cheap, nontoxic surfactant that is commonly used to enhance solubility of hydrophobic 

compounds in water. When homogeneous catalysts are used in aqueous media, they often cannot 

be recycled because they cannot be easily separated from the organic product. The Pd(DPPF)Cl2-

catalyzed Suzuki coupling of aryl bromides could be carried out in water with good yield, but the 

catalyst could not be recycled.[14] Using a 20% PEG 2000 aqueous solution, the catalyst could be 

retained in the aqueous/PEG phase, while the biaryl product was extracted with pentane. The 

aqueous catalyst solution was used for three reaction cycles with the yield decreasing from 91% in 

the first cycle to 80% in the third. PEG-400 was used in the Pd/DABCO-catalyzed Suzuki, Stille, 

Sonogashira, and Heck coupling of aryl bromides and iodides.[15] In the Suzuki coupling of 4-

bromoanisole, a quantitative yield was obtained with PEG-400 compared to 87% without a 
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surfactant. Other surfactants such as TBAB and 18-crown-6 did not significantly improve the yield 

compared to the reaction without surfactant. 

 

4.3.1 Designer surfactants 

In the last decade, thanks to the intuition of Lipshutz and co-workers, the nature of the surfactant 

started to become the subject of in depth investigations. This led to the design, synthesis, 

development and application of new surfactants in catalysis. In fact, while traditional surfactants have 

been developed focusing on the cheapness of the starting materials employed and looking at their 

properties as dispersing agents, recent tailored surfactants are specifically designed to exploit the 

nanoreactor properties of micelles. This is the case of polyoxyethanyl-α-tocopheryl sebacate (PTS, 

Figure 4.2) that is a non-ionic surfactant composed of racemic vitamin E as the apolar portion, 

sebacic acid, and PEG-600 as the hydrophilic portion. Neither PTS that actually is a pro-vitamin 

molecule, nor any of its three components is environmental concerning, clearly showing the green 

design of the molecule.[16] The PTS amphiphile is commercially available and forms nanoscale 

micelles in water that can accommodate hydrophobic compounds within the micelle interior. 

 

 

Figure 4.2. Polyoxyethanyl-α-tocopheryl sebacate (PTS). 
 

The Lipshutz group has applied the PTS surfactant to a wide range of palladium-catalyzed cross-

coupling reactions, including those that normally do not proceed in aqueous solvents. The catalysts 

used in these reactions are based on hydrophobic phosphines that have been successfully applied 

in organic-phase reactions. The hydrophobic catalyst is believed to partition into the hydrophobic 

core of the micelle. Hydrophobic substrates can also partition into the micelle allowing the reactions 

to occur at very high local concentration. The PTS/water solvent system allows Suzuki coupling of 

aryl and heteroaryl halides catalyzed by Pd(DtBPPF)Cl2 to be carried out under mild conditions even 

with highly hydrophobic substrates (Scheme 4.4).[17] 

 

Scheme 4.4. Suzuki coupling of aryl and heteroaryl halides catalyzed by Pd(DtBPPF)Cl2. 
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An evolution of PTS is polyoxyethanyl-α-tocopheryl succinate (TPGS) that represents a second 

example of a designer green surfactant. It is composed of a lipophilic a-tocopherol moiety, a succinic 

spacer and a hydrophilic poly(ethyleneglycol) methyl ether chain (PEG-750-M) with the average 

molecular weight of 750 u.m.a. The proportion between lipophilic and hydrophilic portions has been 

tailored in order to allow a broader array of chemical reactions in water. 

An example of straightforward reaction promoted by TPGS-750-M is the Miyaura borylation of aryl 

bromides catalyzed by Pd(P(t-Bu)3)2.  

 

 

Figure 4.3. Miyaura borylation of aryl bromides catalyzed by Pd(P(t-Bu)3)2 in presence of TPGS-750-M. 
 

These two surfactants, even if sharing similar lipophilic structures, lead to different outcomes in 

several catalyzed reactions. This is likely due to the different kinds and shapes of micellar aggregates 

formed. While PTS forms both 8–10 nm spheres and larger worm- or rod-like particles with the overall 

average size of 25 nm, TPGS in water provides very sharp 12–13 nm spherical micelles. In the 

following part contributions from the Lipshutz group concerning the application of these tailored 

surfactants are described.[18] 

Very recently the same group developed the latest designer surfactant SPGS-550-M called “Nok” 

based on a β-sitosterol methoxypolyethyleneglycol succinate structure, prepared in two steps from 

β-sitosterol with succinic anhydride and PEG-550-M (Figure 4.4).[19] 

 

 

Figure 4.4. Structure of SPGS-550-M “Nok” as a new designer surfactant. 
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Third generation surfactants were tested in a wide series of reactions and compared with the 

performance observed with TPGS-750-M. In most of the cases, the new surfactant led to similar or 

better yields than those typically obtained with TPGS-750-M. The main advantage of SPGS-550-M 

consists of its much lower cost that will favour its use in micellar catalysis in the near future.  

The peculiar application of these new surfactants covers several aspects of palladium-catalyzed 

cross-coupling reactions, such as Heck, Suzuki–Miyaura, Sonogashira and Buchwald–Hartwig 

aminations, specifically carried out under mild room temperature conditions in water. 

 

4.4 Heterogeneous catalysts in aqueous media: nanoparticle-catalyzed cross 

couplings 

 

Palladium nanoparticles are readily formed under typical cross-coupling conditions, particularly in 

reactions performed at high temperatures. It is often unclear whether a particular Pd/ligand complex 

catalyzes a reaction as molecular species or through the formation of nanoparticles.[20] In some 

cases, the ligand may play a role in stabilizing the nanoparticles from agglomeration into larger 

catalytically inactive particles. 

 

4.4.1 Unsupported Pd-nanoparticle catalysts 

The use of phosphine or other strong ligands increases the cost of the catalyst system and can 

potentially complicate the product isolation. Early studies by Novak showed that triphenylphosphine 

can inhibit catalytic activity in the Suzuki coupling of highly activated aryl iodides in water/acetone.[21] 

Palladium acetate is an effective catalyst for the Suzuki coupling of water-soluble aryl iodides and 

bromides in water without supporting ligands or surfactants.[22] In the absence of ligands, the 

palladium nanoparticles aggregate into larger particles that precipitate from the solution as palladium 

black. To avoid precipitation, the substrate must react rapidly with the nanoparticles. Thus, these 

systems are often limited to highly reactive and water-soluble aryl iodides. Adding the base last to 

the reaction mixture resulted in improved catalyst performance with less reactive aryl iodides.[23] By 

adding the base last, nanoparticle formation occurs in the presence of the aryl iodide substrate and 

the catalytically active nanoparticle can enter the catalytic cycle before agglomeration occurs. 

The ligand-free reactions in water show limited activity with hydrophobic substrates. Improved 

reaction rates can be achieved using water-miscible organic co-solvents or surfactants. Excellent 

yields were obtained with hydrophobic aryl bromides by using a water/acetone-mixed solvent 

system.[24] The anionic SDS surfactant has been used to promote palladium nanoparticle-catalyzed 

Suzuki,[25] Sonogashira,[26] and Heck,[27] couplings in water. The cationic CTAB surfactant was shown 

to give higher yields in Heck coupling of aryl iodides in water catalyzed by Pd(OAc)2 than SDS, Brij 

56, or TBAB.[28] 
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Tetraalkylammonium salts are commonly used in ligand-free systems to improve the catalyst activity 

and stability of the palladium nanoparticles. Badone showed that TBAB significantly increased the 

yield in ligand-free palladium-catalyzed Suzuki coupling of aryl bromides in water.[29] A 35% yield 

was obtained in water alone, whereas the yield was 95% with 1 equiv. of TBAB. An 80% yield was 

obtained under homogeneous conditions in DMF. This methodology was used in the synthesis of 

colchinoids to overcome isolation problems encountered with triphenylphosphine, which was used 

as a ligand.[30] Coupling of tropolone with boronic acid gave colchinoid precursor in 95% yield 

(Scheme 4.5). 

 

 

Scheme 4.5. Coupling of tropolone with boronic acid to synthesize colchinoid precursor. 

 

Using aryl trihydroxyborates rather than arylboronic acids allows Pd(OAc)2-catalyzed Suzuki 

coupling of aryl bromides and iodides to be carried out at room temperature in water/TBAB.[31] 

Activated aryl chlorides could be coupled at 100 °C. Using microwave heating, coupling of aryl 

bromides could be accomplished in 5 min at 150 °C in water/TBAB.[32] 

 

4.5 Outlook on cross-coupling reactions in aqueous media 

 

The field of study concerning the aqueous-phase cross-coupling reactions has grown from an effort 

to an area receiving significant attention. The initial motivations of decreasing the cost and 

environmental impact of catalytic processes remain the driving forces behind current research. There 

is still strong interest in developing efficient and recoverable catalysts for use in pharmaceutical and 

other fine chemical synthetic processes. An interesting development in recent years is that water 

can promote cross-coupling reactions of hydrophobic substrates. Reactions carried out on water with 

hydrophobic substrates and catalysts can in many cases occur faster than traditional homogeneous 

phase reactions, while avoiding organic solvents. In this context it is possible to attribute the results 

recently published by our research group, depicted in this thesis (see chapter 5). 

Challenges for future developments in this area will be to develop catalysts with scope and activity 

comparable to the best organic-phase catalytic systems. Good progress has been made in recent 

years in developing catalysts capable of activating aryl chlorides, but most systems remain limited 

to aryl iodides or bromides.  
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In addition, the majority of work on aqueous-phase catalysis has focused on the Suzuki and Hiyama 

couplings, which occur with a wide range of catalyst systems. Further development of efficient 

catalysts for Heck reactions, as well as carbon–heteroatom bond formation, is welcome. 
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CORRIGENDA 

 

List of additional references 

 

Abstract, p. 59: “Transition-metal-catalyzed carbon–carbon bond… wherein nanoparticles 

composed of surfactants enable the same cross-couplings, albeit in water.”[i] 

 

Paragraph 4.1, pp. 60-61: “The award of the 2010 Nobel Prize in Chemistry to Richard Heck, … the 

continuous improvement and extension of each reaction type through ligand variation, 

accommodating wider substrate scope, by reaction optimization and fine tuning.”[ii] 

 

Paragraph 4.2, pp. 62-63: “Water is an exceptionally attractive alternative solvent, inasmuch it is a 

renewable, although limited, resource that is nontoxic, non-flammable, and relatively inexpensive… 

even if a complex synthetic effort is made, it provides excellent micellar catalysts especially for 

asymmetric reactions.”[iii,iv] 

 

Paragraph 4.3, pp. 63-65: “Owing to the poor solubility of typical organic substrates in water, reaction 

rates are often lowered when an organic co-solvent is not used… Other surfactants such as TBAB 

and 18-crown-6 did not significantly improve the yield compared to the reaction without surfactant.”[v] 

 

Subparagraph 4.3.1, pp. 65-67: “In the last decade, thanks to the intuition of Lipshutz and co-

workers, the nature of the surfactant started to become the subject of in depth investigations… such 

as Heck, Suzuki–Miyaura, Sonogashira and Buchwald–Hartwig aminations, specifically carried out 

under mild room temperature conditions in water.”[vi,vii] 

 

Paragraph 4.4, pp. 67-68: “Palladium nanoparticles are readily formed under typical cross-coupling 

conditions, particularly in reactions performed at high temperatures… Activated aryl chlorides could 

be coupled at 100 °C. Using microwave heating, coupling of aryl bromides could be accomplished 

in 5 min at 150 °C in water/TBAB.”[viii] 

 

Paragraph 4.5, pp. 68-69: “The field of study concerning the aqueous-phase cross-coupling 

reactions has grown from an effort to an area receiving significant attention… Further development 

of efficient catalysts for Heck reactions, as well as carbon–heteroatom bond formation, is 

welcome.”[ix] 
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CHAPTER 5 

 

 

Multicomponent Cascade Synthesis of Biaryl-Based Chalcones in Pure 

Water and in an Aqueous Micellar Environment 

 

 

In this chapter, the challenging multicomponent cascade synthesis of biaryl-based chalcones is 

presented. It has been carried out in pure water and in an aqueous micellar system, overcoming 

existing drawbacks. The first step of the protocol is a simple Pd-catalyzed, ligand-free and aerobic 

Suzuki-Miyaura reaction in aqueous medium, which has proved to be extremely efficient for the 

coupling of aryl and heteroaryl bromides with different arylboronic acids. Consequently, the 

obtained intermediates undergo an in situ aldol condensation reaction, providing 

biaryl(hetero)chalcones in good to excellent yields. When the protocol has been applied to highly 

lipophilic or less reactive reagents, micellar catalysis has been required for achieving good 

performances. To this aim it has been successfully employed a new surfactant, obtained from 

renewable resources, that our research group have recently designed. Besides, thanks to this 

additive, the catalytic system can be repeatedly recycled without significant loss of activity.[i] 

 

 

 

 

 

 

 

 

 

 

 

 

 

[i] This chapter is an adaptation of the original paper: Nicola Armenise,* Danilo Malferrari, Sara Ricciardulli, 

Paola Galletti and Emilio Tagliavini, Eur. J. Org. Chem. 2016, doi: 10.1002/ejoc.201600095. 
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5.1 Introduction 

 

From the environmental point of view, the large employment of solvents is highly concerning since 

it gives rise to toxicity, hazard and pollution issues. Moreover, solvents generally account for the 

major source of the wasted mass of a chemical process or a synthetic route.[1] Consequently, many 

efforts have been dedicated to the finding of sustainable reaction media.[2] In this context the 

employment of water as solvent has attracted much interest in recent years. In fact, water offers 

many advantages because it is a cheap, readily available, non-toxic and non-flammable solvent, 

thus being very attractive from both an economical and an environmental point of view.[3] 

Among the organic reactions that can be conducted in water, cross-coupling[4] and aldol 

condensation reactions[5] play an outstanding role; moreover, these reactions can be coupled 

together with one-pot and sequential procedures. 

The traditional multistep design of complex molecules generally involves several operations, 

including extraction and purification processes for each single synthetic step, leading to synthetic 

inefficiency and also generating large amounts of waste.  

Multicomponent reactions (MCRs) allow to generate several chemical bonds in a single synthetic 

operation and offer notable advantages like convergence, operational simplicity, reduction in the 

number of workup and purification steps, minimizing therefore the generation of waste. Generally, 

one-pot MCRs decrease overall reaction time, affording higher chemical yields respect to usual 

multistep synthesis. MCRs are useful for the development of chemical libraries of potential drugs 

and lead compounds with high levels of molecular complexity and diversity. Therefore, the design 

of new MCRs in water[6] has attracted great attention, especially in the areas of drug discovery and 

material science. 

In the literature there are a lot of examples involving Suzuki-Miyaura cross-coupling reaction 

followed by aldol or Knoevenagel condensation as the steps of larger synthetic strategies; these 

are aimed to the total synthesis of different classes of natural products, such as alkaloids, fungal 

metabolites and hetero-polycyclic compounds that exhibit manifold biological activities.[7]  

In particular, the one-pot synthesis of biarylchalcones in aqueous medium, through the sequential 

Suzuki–Miyaura coupling and aldol condensation reactions, is a challenging but attractive synthetic 

route. Unfortunately, the poor solubility of many substrates in water, the incompatibility of some of 

these with different catalysts and the formation of β-arylated ketones as side product still limit the 

exploitation of this strategy (Figure 5.1).[8] 

Chalcones are relevant natural products and they are pivotal intermediates in the synthesis of 

flavonoids and isoflavonoids. Because of their importance, numerous preparation procedures have 

been developed.[9] Chalcones exhibit a wide range of biological activities; some of them display 

anti-inflammatory, anti-microbial (antibacterial, antifungal), anti-malarial, anti-mitotic, antioxidant 

and anticancer properties.[10] 
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Figure 5.1. Drawbacks in the one-pot synthesis of biarylchalcones in aqueous medium.  
 

Structurally, in chalcones two aryl groups are linked to a 2-propenone moiety and any alteration of 

this arrangement is known to result in loss of their biological activity, therefore the two aromatic 

rings have been extensively modified by appending different hydrophilic or hydrophobic 

substituents, obtaining a variety of biologically active chalcone-based compounds.[11] As a 

consequence, biarylchalcones and more complex chalcone derivatives have gained importance in 

the field of medicinal chemistry (Figure 5.2), although their syntheses still proceed through two 

distinct steps and in water/organic co-solvents mixtures as reaction media.[12] 

 

 

Figure 5.2. Examples of valuable biarylchalcone derivatives as anti-cancer agents.[12d] 
 

5.2 Goal 

 

Looking for the environmental sustainability of the synthetic processes, herein we report a highly 

efficient protocol aimed to perform the multicomponent cascade synthesis of 

biaryl(hetero)chalcones and of their functionalized derivatives, in pure water or in an aqueous 

micellar system, overcoming the existing drawbacks. The first step of our protocol is a simple Pd-

catalyzed, ligand-free and aerobic Suzuki-Miyaura reaction in aqueous medium,[13] which has 

proved to be extremely efficient for the coupling of aryl and heteroaryl bromides, bearing a 

carbonyl moiety, with different arylboronic acids. The second step consists in the addition of the 

third substrate (the appropriate ketone or aldehyde) that undergoes an in situ aldol condensation 

reaction. A major limitation sometimes encountered in the just described protocol is the poor 

solubility of some substrates that prevented the achievement of good results.  
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We have found an environmentally sustainable solution to this issue employing a new ionic 

surfactant recently developed by our group.[14] This amphiphilic compound allows the system to 

undergo micellar catalysis; furthermore, the catalytic system composed of Pd, base, water and 

surfactant has proved to be highly recyclable without significant loss of activity. 

 

5.3 Results and discussion 

 

5.3.1 Optimization of reaction conditions 

The optimal reaction conditions were determined carrying out a set of experiments, adopting as 

model reaction the Suzuki cross-coupling of 4-bromobenzaldehyde (1a; 0.27 mmol) with 

phenylboronic acid (2a; 0.32 mmol) catalyzed by Pd(OAc)2 (3 mol%) at 80 °C for 1 h in pure water 

(3 mL) in the presence of a base, to afford biphenyl-4-carboxaldehyde (4a), followed by the 

addition of acetophenone (3a; 0.30 mmol) to perform in situ the aldol condensation at 80 °C in 5 h, 

to give biarylchalcone 5aa (see Table 5.1). 

 

Table 5.1. Screening of bases and catalysts for the synthesis of biarylchalcone 5aa in pure water.[a] 

 

 

 

 

 

Entry Catalyst Base Eq. Conv. [%][b] 
Yield [%][e] 

    4a                  5aa 

1 
Pd(OAc)2 

(3 mol%) 
Et3N 3 100 100 0 

2 
Pd(OAc)2 

(3 mol%) 
n-Pr3N 3 100 100 0 

3 
Pd(OAc)2 

(3 mol%) 
n-Bu3N 3 100 100 0 

4 
Pd(OAc)2 

(3 mol%) 
DMCHA 3 100 97 3 

5 
Pd(OAc)2 

(3 mol%) 
DMCHA 6 98 98 0 

6 
Pd(OAc)2 

(3 mol%) 
DMAP 3 59[c] 0 0 
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7 
Pd(OAc)2 

(3 mol%) 
DBU 3 100[d] 5 4 

8 
Pd(OAc)2 

(3 mol%) 
Pyrrolidine 3 99 56 35 

9 
Pd(OAc)2 

(3 mol%) 

K2CO3 3 85 82 0 

10 
Pd(OAc)2 

(3 mol%) 
KOH 3 100 96 4 

11 
Pd(OAc)2 

(3 mol%) 
KOH 6 100 4 88 (83)[f] 

12 
Pd(OAc)2 

(3 mol%) 
KOH 9 100 2 81 

13 
Pd(OAc)2 

(1.5 mol%) 
KOH 6 100 15 60 

14 
Pd/C 

(3 wt. %) 
KOH 6 100 0 13 

15 
Pd/C 

(4 wt. %) 
KOH 6 100 0 25 

[a] Reaction conditions: 1) 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.32 mmol), Pd catalyst, base, H2O (3 mL), 
80 °C, 1 h; 2) acetophenone (3a; 0.30 mmol), 80 °C, 5 h. [b] Conversion determined by GC-MS (1,3,5-tri-tert-butylbenzene as the 
internal standard) is referred to 1a. [c,d] For characterization of the crude reaction mixtures and the identification of obtained by-
products, see Experimental Section. [e] Yield of product 5aa determined by GC-MS. [f] Yield of isolated 5aa. 

 

Firstly, we screened different bases: tertiary amines such as Et3N, n-Pr3N, n-Bu3N and N,N-

dimethylcyclohexylamine (DMCHA) were very effective for promoting the Suzuki coupling reaction 

and we obtained the quantitative formation of the intermediate 4a, but they were completely 

ineffective toward aldol condensation and we could not observe the formation of the desired 

product 5aa (Table 5.1, entries 1-4), also when the amount of DMCHA was increased from 3 to 6 

molar eq. (Table 5.1, entry 5). When we moved to 4-dimethylaminopyridine (DMAP) and 

diazabicycloundecene (DBU) only by-products formed (Table 5.1, entries 6 and 7),[15] while the 

secondary amine pyrrolidine performed better and the desired product 5aa was obtained in 35% 

yield (Table 5.1, entry 8). We realized that strong bases were required at least for promoting the 

aldol condensation, thus we switched to screen some inorganic bases. K2CO3 (3 eq.) was 

completely ineffective to the aim of reaction (Table 5.1, entry 9) and using 3 eq. of KOH we 

obtained only 4% of 5aa along with 96% of the intermediate 4a (Table 5.1, entry 10). An increase 

in the amount of KOH to 6 eq. was however successful, affording 88% of 5aa (Table 5.1, entry 11); 

further addition of KOH did not improve the yield (Table 5.1, entry 12). Although it is still not 
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completely clear why such excess of base is required for achieving good yield, we have 

consciousness that 2 eq. of KOH are consumed in the catalytic cycle of Suzuki cross-coupling 

reaction.[16]  

Then we screened different quantities and types of Pd catalyst: the decrease in the amount of 

Pd(OAc)2 from 3 mol% to 1.5 mol% afforded lower yield (Table 5.1, entry 13), as well as employing 

3 wt. % and 4 wt. % of Pd/C (Table 5.1, entries 14 and 15). Thus we chose Pd(OAc)2 (3 mol%) and 

KOH (6 eq.) as the optimal conditions of the synthetic protocol. 

Later, we focused on improving the greenness of the work-up procedure. After extracting the crude 

reaction mixture with ethyl acetate, we isolated the pure product 5aa in very good yield (83%) by 

means of simple recrystallization from methanol, avoiding purification by flash chromatography. 

 

5.3.2 Screening of different aromatic ketones and additives 

After optimization of the reaction conditions, we explored the scope and limitations of this protocol 

(Table 5.2). Therefore, 4-bromobenzaldehyde (1a) and phenylboronic acid (2a) were coupled in 

water and subsequently condensed with different aromatic ketones (3a-3g) to provide 

biarylchalcones 5aa-5ag in various yields (65%-93%). Interestingly, several functional groups were 

tolerated in the substrates: 4’-hydroxy-3’-methoxyacetophenone (3b), 2-acetylfuran (3f) and 2-

acetylthiophene (3g) successfully afforded the corresponding hetero-biarylchalcones 5ab, 5af and 

5ag respectively in good to excellent yields. 

Sharpless et al. adopted the term on-water to describe the substantial rate acceleration that is 

observed when some insoluble organic reactants are stirred in aqueous suspension;[17] recently, 

McErlean et al. proposed a mechanism that explains the phenomenon of on-water catalysis.[18] 

Based on the concepts of on-water catalysis, we expected that in all the investigated cases the 

rate of aldol condensation of the intermediate 4a with aromatic ketones could be accelerated by 

conducting the reaction as a heterogeneous suspension of organic droplets in water (the reaction 

conditions described by Sharpless et al. as on-water). On the other hand, two highly lipophilic 

ketones such as 2-acetonaphthone (3h) and α-tetralone (3i) were poorly reactive under the 

optimized reaction conditions and provided low yields of the expected products 5ah and 5ai (42% 

and 44%, respectively) only at higher concentration for longer reaction times. Therefore, we tested 

different additives to improve reaction performances of lipophilic ketones (Table 5.3). Addition of 

0.5 eq. of each selected additive provided different results: we observed lower yields of 5ah, along 

with larger amounts of by-products, in presence of tetra-n-butyl ammonium bromide (TBAB) and 

sodium dodecyl sulphate (SDS) (Table 5.3, entries 2 and 4). On the contrary, we obtained the 

desired 5ah in 87% yield in presence of Triton X-100 (Table 5.3, entry 3).  

Thereafter we tested the new surfactant C18-OPC developed by our research group starting from 

itaconic acid (Scheme 5.1).[19] Given that the carboxylic acid moiety of this surfactant was 
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converted into carboxylate anion under basic reaction conditions, we slightly increased the amount 

of KOH and pleasingly we obtained 5ah with a comparable high yield (89%) (Table 5.3, entry 5). 

 

Table 5.2. Cascade Suzuki-aldol reaction of 4-bromobenzaldehyde and phenylboronic acid with different aromatic 
ketones in water.[a] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1) 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.32 mmol), Pd(OAc)2 (3 mol%), KOH (6 
eq.), H2O (3 mL), 80 °C, 1 h; 2) aromatic ketone (3a-3i; 0.30 mmol), 80 °C, 5 h. [b] Yield determined by GC-MS (internal standard). [c] 
KOH (7.1 eq.) was used. [d] 2 mL of H2O were used, 15 h to perform the second step. 
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Scheme 5.1. Synthesis of surfactant C18-OPC. 
 

Moreover, we studied the effect of adding C18-OPC only during the second synthetic step and we 

observed a comparable result, obtaining 5ah in 86% yield (Table 5.3, entry 6). It means that, in the 

specific case of the Suzuki coupling reaction of 1a with 2a, the addition of C18-OPC exerted only a 

little beneficial effect on the cross-coupling step, in which smaller and less lipophilic molecules are 

involved. On the contrary, C18-OPC revealed itself to be crucial for providing a suitable reaction 

medium for the next aldol condensation with the bulky ketone 3h. 

 

Table 5.3. Cascade Suzuki-aldol reaction of 4-bromobenzaldehyde and phenylboronic acid with lipophilic aromatic 
ketones in water, in presence of different additives.[a] 

 

 

 

 

 

 

 

 

 

 

Entry Additive Yield [%][b] 

  5ah 5ai 

1 / 42 44 

2 TBAB 21 / 

3 Triton X-100[c] 87 54 

4 SDS 73 / 

5 C18-OPC[c] 89 67 

6 C18-OPC[c,d] 86 / 

[a] Reaction conditions: 1) 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.32 mmol), Pd(OAc)2 (3 mol%), KOH (6 
eq.), additive (0.5 eq.), H2O (3 mL), 80 °C, 1 h; 2) aromatic ketone (3h, 3i; 0.30 mmol), 80 °C, 5 h. [b] Yield determined by GC-MS 
(internal standard). [c] KOH (6.5 eq.) was used. [d] C18-OPC (0.5 eq.) was added during the second step. 
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Encouraged by this result, we compared our surfactant with Triton X-100 also in presence of α-

tetralone (3i); exploiting C18-OPC we obtained 5ai in higher yield (67%) (Table 5.3, entry 5). 

Subsequently, we tested the generality of the previously optimized work-up procedure. Pleasingly, 

after extracting the crude reaction mixtures with ethyl acetate, we were able to isolate pure 

products 5ab-5ai without appreciable losses of yield by means of simple recrystallization from 

methanol, confirming the robustness of our work-up procedure.  

To the best of our knowledge, no reports are available in which biaryl-based chalcone derivatives 

are isolated through a similar procedure, avoiding tedious and solvent consuming chromatographic 

purifications. 

 

5.3.3 Screening of different arylboronic acids 

Next, the influence of the electronic properties of arylboronic acid derivatives on the reaction with 

4-bromobenzaldehyde was investigated carrying out the Suzuki coupling reaction of 1a with 

different arylboronic acids (Table 5.4). 4-methoxyphenylboronic acid (2b), bearing a para electron-

donating group, provided the desired products 5bc-5bg in pure water in excellent yields. 

 

Table 5.4. Cascade Suzuki-aldol reaction of 4-bromobenzaldehyde and arylboronic acids with different aromatic ketones 
in water.[a] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1) 4-bromobenzaldehyde (1a; 0.27 mmol), arylboronic acid (2b, 2c; 0.32 mmol), Pd(OAc)2 (3 mol%), KOH (6 
eq.), H2O (3 mL), 80 °C, 1 h; 2) aromatic ketone (3c, 3f, 3g, 3h; 0.30 mmol), 80 °C, 5 h. [b] Yield determined by GC-MS (internal 
standard). [c] C18-OPC (0.5 eq.), KOH (6.5 eq.) were used, 2 h to perform the first step. 
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On the other hand, 4-(trifluoromethyl)phenylboronic acid (2c) showed a much lower reactivity in the 

Suzuki coupling reaction with 1a in pure water, but we obtained the expected products 5cc and 

5ch in high yields exploiting micellar catalysis conditions (C18-OPC; 0.5 eq.). 

 

5.3.4 Suzuki coupling reaction on the ketone moiety followed by aldol condensation 

To further extend the flexibility of our synthetic protocol and to synthesize new biaryl-based 

chalcones, we changed the halogenated partner of the Suzuki coupling reaction from 4-

bromobenzaldehyde (1a) to 4-bromoacetophenone (3e) obtaining the 4-biphenyl methyl ketone 

able to subsequently react with various aromatic aldehydes (Table 5.5). 

 

Table 5.5. Cascade Suzuki-aldol reaction of 4-bromoacetophenone and phenylboronic acid with different aromatic 
aldehydes in water.[a] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1) 4-bromoacetophenone (3e; 0.25 mmol), phenylboronic acid (2a; 0.30 mmol), Pd(OAc)2 (3 mol%), KOH (6.5 
eq.), C18-OPC (0.5 eq.), H2O (3 mL), 80 °C, 1 h; 2) aromatic aldehyde (1b-1g; 0.28 mmol), 80 °C, 5 h. [b] Yield determined by GC-MS 
(internal standard). [c] KOH (6 eq.), pure water (3 mL) were used. 

 

On the other hand, in this case pure water did not prove to be a suitable reaction medium both for 

the synthesis and for the further aldol condensation of such poorly polar intermediate ketone (final 

yields of 6ab, 6ac and 6ae in pure water were about 10%). Therefore, micellar catalysis conditions 

were exploited by the addition of C18-OPC (0.5 eq.) providing the desired products 6ab-6ag in 

very high to excellent yields.  
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To the best of our knowledge, no reports are available in which the micellar catalysis (mediated by 

an environmentally sustainable surfactant) is deeply investigated for synthesizing new biaryl-based 

chalcone derivatives and also obtaining these very promising results.  

We observed that also when the micellar catalysis conditions were required we were able to take 

advantage of the previously optimized work-up technique, isolating pure products 6ab-6ag without 

appreciable losses of yield. 

 

5.3.5 Synthesis of thiophene-centered biarylchalcones  

Thiophene-containing biarylchalcone is an intriguing scaffold in medicinal chemistry because 

thiophene nuclei are found in many natural products exhibiting promising anticancer, antibacterial 

and antifungal activities.[20,21] Peculiarly, a biarylchalcone containing a thiophene nucleus flanked 

by a phenyl ring on one side and a phenylpropenone on the other side is a scaffold that is found in 

specific classes of DNA-binding-anticancer drugs.[21b] 

Many reports dealing with the synthesis of thiophene-containing biarylchalcones[22] through Suzuki-

couplingWittig-olefination reactions,[22a] Vilsmeier-Haack chloroformylationcyclization 

reaction,[22b] direct arylation of thiophene-containing alkenes,[22c] and Pd-catalyzed C-H olefination 

of (hetero)arenes with (hetero)aryl ethyl ketones[22e] are present in the literature. However, some of 

these methods exhibit relevant drawbacks, such as the requirement of harsh reaction conditions 

(phosphine reagents, hazardous organic solvents, high temperature, etc.) and very long reaction 

times. In particular (hetero)biaryl-carboxaldehydes,[23] the key intermediates for synthesizing 

(hetero)aryl-centered biarylchalcones, are commonly obtained through cross-coupling reactions 

that exploit various Pd catalysts containing expensive ligands, such as dialkyl(biphenyl-2-

yl)phosphines[23a,b] or 1,1’-bis(diphenylphosphino)ferrocene.[23d] 

Aware of the importance of just discussed scaffolds, we tested our unprecedented synthetic 

protocol for achieving thiophene-centered biarylchalcones (Table 5.6). Firstly, 5-bromo-2-thiophene 

carboxaldehyde (1h) was successfully coupled with phenylboronic acid (2a) and subsequently 

condensed with selected aromatic ketones (3c, 3f and 3g), providing (hetero)biarylchalcones 7ac-

7ag in very high yields. Thereafter, we moved to 4-methoxyphenylboronic acid (2b) as the Suzuki 

coupling partner of 1h, obtaining the corresponding (hetero)biarylcarboxaldehyde intermediate 

which condensed with selected aromatic ketones to afford the desired products 7bc-7bg in very 

high to excellent yields. 

To the best of our knowledge, no reports are available in which Suzuki coupling and aldol 

condensation reactions were carried out in a cascade manner, employing pure water as the only 

reaction medium, for the synthesis of these bisthiophene-substituted enone derivatives. 
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Table 5.6. Cascade Suzuki-aldol reaction of 5-bromo-2-thiophene carboxaldehyde and arylboronic acids with different 
aromatic ketones in water.[a] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1) 5-bromo-2-thiophene carboxaldehyde (1h; 0.26 mmol), arylboronic acid (2a, 2b; 0.31 mmol), Pd(OAc)2 (3 
mol%), KOH (6 eq.), H2O (3 mL), 80 °C, 1 h; 2) aromatic ketone (3c, 3f, 3g; 0.29 mmol,), 80 °C, 5 h. [b] Yield determined by GC-MS 
(internal standard). 

 

5.3.6 Synthesis of bischalcones and (bis)biarylated-chalcones 

As final implementation of the synthetic strategy described above, we investigated aldol-Suzuki-

aldol and Suzuki-aldol-Suzuki cascade reactions in water, in order to obtain more complex biaryl-

based chalcone derivatives. 

Bischalcones display a wide range of pharmacological properties,[24] including antibacterial 

activity,[24b,d] cytotoxic activity against a number of human cancer cell lines[24a,e,f] and anti-

inflammatory activity by inhibiting NO production.[24c] 

Thus, we synthesized bischalcone 8g through a cascade aldol-Suzuki-aldol approach under 

micellar catalysis conditions realized by addition of C18-OPC (0.75 eq.). Firstly, we performed the 

Suzuki coupling reaction of 4-bromobenzaldehyde (1a) with 4-formylphenylboronic acid (2d) and 

then the double aldol condensation between the [1,1'-biphenyl]-4,4'-dicarbaldehyde intermediate 

and the aromatic ketone 3g obtaining the bischalcone 8g in good yield (Table 5.7). 
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Table 5.7. Synthesis of bischalcone 8g by cascade aldol-Suzuki-aldol reaction in water.[a] 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1) 4-bromobenzaldehyde (1a; 0.27 mmol), 4-formylphenylboronic acid (2d; 0.32 mmol), Pd(OAc)2 (3 mol%), 
KOH (10.75 eq.), C18-OPC (0.75 eq.), H2O (4 mL), 80 °C, 2 h; 2) 2-acetylthiophene (3g; 0.59 mmol), 80 °C, 5 h. [b] Yield determined by 
GC-MS (internal standard). 

 

Subsequently, we developed a synthetic strategy for accomplishing (bis)biarylated-chalcones.[25] 

These interesting scaffolds not only possess wide-ranging pharmacological properties, including 

anti-cancer, anti-microbial, analgesic and DPPH scavenging activities,[25a,c] but some of their 

derivatives are essential components for organic-based electroluminescent devices.[25b] However, 

the attempted one-pot Suzuki-aldol-Suzuki approach provided 9b in only 18% yield (Table 5.8). 

 

Table 5.8. Synthesis of (bis)biarylated chalcone 9b by cascade Suzuki-aldol-Suzuki reaction in water.[a] 

 

 

 

 

 

 

 

 

 

 

 

[a] Reaction conditions: 1) 4-bromobenzaldehyde (1a; 0.27 mmol), 4-bromoacetophenone (3e; 0.30 mmol), KOH (8.75 eq.), C18-OPC 
(0.75 eq.), H2O (5mL), 80 °C, 2 h; 2) 4-methoxyphenylboronic acid (2b; 0.65 mmol), Pd(OAc)2 (6 mol%), 80 °C, 2 h. [b] Yield determined 
by GC-MS (internal standard). [c] One-pot, 80 °C, 4 h. 
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On the contrary, performing first the aldol condensation between 4-bromobenzaldehyde (1a) and 

4-bromoacetophenone (3e) and subsequently the double Suzuki coupling reaction on the 

intermediate 4,4’-dibromochalcone with 4-methoxyphenylboronic acid (2b) we obtained the 

expected product 9b in 93% yield. 

We were pleased to obtain the desired products 8g and 9b in good to excellent yields, 

respectively, confirming the robustness of our new surfactant C18-OPC to promote both Suzuki 

coupling and aldol condensation reactions aimed to the synthesis of highly functionalized biaryl-

based chalcone derivatives. 

 

5.3.7 Recycling tests of catalytic systems 

Recycling of solvents, additives and catalysts is one of the main goal of sustainable chemistry. In 

fact, it not only reduces the overall cost of the synthetic process, but it also avoids the generation 

of waste and potentially polluting materials, and the requirement of new feedstocks. 

To evaluate the lifetime and reusability of Pd catalyst, recycling experiments were carried out. First 

of all, we performed recycling tests choosing as model reaction the synthesis of 5aa under the best 

conditions previously found. After the reaction was complete (starting material consumption), the 

product was extracted with ethyl acetate and the remaining aqueous phase was charged again 

with 4-bromobenzaldehyde (1a), phenylboronic acid (2a), KOH and acetophenone (3a). The yields 

of 5aa for the first three cycles were 88%, 46% and 35%, respectively, clearly evidencing a 

worsening of catalyst performance. Thus, we passed to investigate if micellar catalysis conditions 

(water–C18-OPC) could provide better results in the synthesis of 6af. After the first cycle, the 

catalytic system composed of Pd, C18-OPC and H2O was subjected to the next run by charging 

with 4-bromoacetophenone (3e), phenylboronic acid (2a), KOH and 4-chlorobenzaldehyde (1f). 

Notably, we performed five cycles without significant loss in activity; the yield of each cycle is 

shown in Figure 5.3. 

 

 

Figure 5.3. Recycle of the system PdC18-OPCH2O in the synthesis of biarylchalcone 6af. 
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As extensively described in literature, Pd(OAc)2 in aqueous phase acts as a catalyst precursor, in 

fact it is reduced in situ to catalytically active Pd(0) species both in molecular, colloidal and 

nanoparticles forms. Further aggregation of these species occurs in pure water to form larger and 

less reactive particles (Figure 5.4), eventually leading to the deposition of black Pd.[26] Addition of 

additives/stabilizers can prevent aggregation, significantly prolonging catalyst’s lifespan and 

recycling.[27] 

 

Figure 5.4. Aggregation of Pd(0) species. 
 

Our new surfactant C18-OPC proved to be highly effective to this purpose, probably interacting 

with the in situ generated Pd nanoparticles through its carboxylic moiety. Careful analysis of the 

extraction medium allowed to exclude any appreciable loss of C18-OPC during the work-up of 

reaction; this allows to employ the whole micellar catalytic system for different cycles, as reported 

above (Figure 5.3).  

The loss of Pd catalyst was determined by atomic absorption measurements (GFAAS) and it was 

found that, at the end of each synthetic cycle, the extraction solvent employed (15 mL) contained 

approximately 3-7 ppm of Pd (see Table 5.11 in the Experimental Section). This means that a 

significant amount of Pd catalyst remained into the aqueous micellar environment and it could be 

reused in the next cycle maintaining its high activity. 

 

5.4 Conclusions 

 

We have developed a highly efficient synthetic protocol for multicomponent cascade Suzuki-aldol 

reactions aimed to the synthesis of (hetero)biarylchalcones derivatives in water. In some cases, 

micellar catalysis, obtained employing the new surfactant C18-OPC developed by our research 

group upon manipulation of itaconic acid (see chapter 2 of this thesis), provided much better 

results. A wide range of functional groups were tolerated in the reactants and good to excellent 

yields were obtained under the optimized conditions. Further, this synthetic protocol was extended 

to the multiple construction of carbon-carbon bonds through aldol-Suzuki-aldol and Suzuki-aldol-

Suzuki cascade reactions performed in micellar environment, in order to obtain more complex 

biarylchalcones derivatives, demonstrating the generality and robustness of the developed 

synthetic routes.  
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Besides the green reaction medium, our catalytic system showed other sustainable features such 

as the employment of a Pd catalyst free from phosphine ligands and the fact that no significant 

presence of metal or additive was found in the final product. The most important one is that the 

catalytic system Pd(OAc)2-C18-OPC-H2O could be recycled at least five times without significant 

loss in activity.  

Finally, due to high yields and few by-products, the pure products could be isolated without a 

significant loss of yield by means of simple recrystallization from methanol, avoiding 

chromatographic separation.  

We anticipate that the design of similar new catalytic systems and the development of 

multicomponent tandem/cascade cross-coupling reactions are in progress at our laboratory. 

 

5.5 Experimental Section 

 

5.5.1 General methods and techniques  

NMR analyses  

1H, 13C and 19F NMR spectra were recorded with a Varian Mercury 400 spectrometer with a 5 mm 

probe. All chemical shifts have been quoted relative to deuterated solvent signals (CDCl3), δ in 

ppm, J in Hz. 

GC-MS analyses 

GC-MS analyses were performed with a 6850 Agilent HP gas chromatograph connected to a 5975 

Agilent HP quadrupole mass spectrometer. Measurement solutions were injected under splitless 

condition with injector temperature set at 280 °C. Analytes were separated by a HP-5 fused-silica 

capillary column (stationary phase poly[5% diphenyl / 95% dimethyl]siloxane, 30 m, 0.25 mm i.d., 

0.25 mm film thickness), with helium as carrier gas (at constant pressure, 33 cm s−1 linear velocity 

at 200 °C).  

Mass spectra were recorded under electron ionization (EI, 70eV) at a frequency of 1 scan s−1 

within the 12-500 mz-1 range. The following thermal program was used: 50 °C for 5 min, then 10 °C 

min-1 up to 310 °C and hold for 10 min.  

GC-MS analyses of compounds C18-OPC and 5ab were done by means of silylation: 5 mg of 

compound were dissolved in acetonitrile (1 mL), then 0.1 mL of bis-trimethylsilyltrifluoroacetamide 

(BSTFA) containing 1% of trimethylchlorosilane (TMCS) and triethylamine (0.05 mL) were added. 

The sample was placed in an incubator at 60 °C for 20 min. 

FT- IR spectra  

FT-IR spectra were measured on a Bruker Alpha FT-IR spectrometer as neat films between NaCl 

plates and reported in cm-1. 
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Elemental analyses 

The elemental analyses of compounds were determined using an elemental analyzer (Thermo 

Scientific, Flash 2000, Organic Elemental Analyzer) by means of the flash combustion technique. 

The reported data are means of at least two replicates. 

Melting point analyses  

Melting point of compounds was determined by using a Büchi Melting Point B-540 analyzer. 

Chromatographic techniques  

Analytical thin-layer chromatography (TLC) was done using Merck 60 F254 silica gel plates and a 

UV lamp. Chromatographic purifications were done with 240-400 mesh silica gel. 

Microwave assisted synthesis 

Microwave assisted synthesis of C18-OPC was performed in a Milestone Mycrosynth oven 

equipped with a dual magnetron system with pyramid-shaped diffuser, 1000W maximum output 

power, temperature monitor and control via optical fiber up to 250 °C in the vessel. 

Fluorescence emission experiments  

Steady state fluorescence emission spectra of pyrene (for determination of critical micellar 

concentration of C18-OPC) were acquired with a Jasco spectrofluorometer FP-6200 equipped with 

a thermostated cuvette holder and a magnetic stirring device. 

Conductivity measurements 

Conductivity measurements for the determination of Krafft temperature of C18-OPC were carried 

out with an AMEL 160 conductivity meter. 

 

5.5.2 Materials 

Unless otherwise specified, all reactions were carried out in a two-necks round-bottom flask 

equipped with a reflux condenser and a magnetic stirrer, in open air without nitrogen atmosphere. 

Reagents and solvents were purchased from commercial sources (Sigma Aldrich and Fluka) and 

were used as received without further purifications. 

 

5.5.3 General procedure for the synthesis of surfactant C18-OPC 

In a typical experiment itaconic acid (A; 3.84 mmol) and octadecylamine (B; 4.99 mmol) were 

added in a two-necks round-bottom flask equipped with a thermometer and a magnetic stirrer. The 

reaction mixture was heated at 120 °C and 700W for 20 min in a microwave oven under solvent-

free conditions, in open air without nitrogen atmosphere. The progress of reaction was monitored 

by means of TLC and GC–MS. After the reaction was complete, the solid residue was purified by 

means of flash-chromatography on a silica gel column (cyclohexane/ethyl acetate 1:1) to give C18-

OPC as a white solid (yield 88%). 
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5.5.4 Characterization data of surfactant C18-OPC 

1-octadecyl-5-oxopyrrolidine-3-carboxylic acid (C18-OPC)  

White solid; MW = 381.59; m.p. = 81-92 °C; 1H NMR (400 MHz, CDCl3): δ=3.65 

(dd, J=10, 8 Hz, 1H), 3.58 (dd, J=12, 10 Hz, 1H), 3.30-3.20 (m, 3H), 2.77 (dd, J 

=16, 8 Hz, 1H), 2.71 (dd, J=16, 8 Hz, 1H), 1.52-1.48 (m, 2H), 1.31-1.23 (m, 30H), 

0.86 (t, J=8 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ=176.28, 172,82, 48.97, 42.72, 

35.85, 34.12, 31.90, 29.68, 29.63, 29.56, 29.50, 29.34, 29.25, 27.08, 26.88, 

26.76, 22.67, 14.10; IR (neat): 2917, 2850, 1723, 1640, 1468, 1225 cm–1; GC-MS: retention time = 

30.8 min; GC-MS: m/z (EI) = 453 (MW + Si(CH3)3), 438 (MW + Si(CH3)3 – CH3), 382 (MW), 336 

(MW - COOH), 318 (MW - COOH - O), 281 (MW - COOH - CO - CH2 - CH); elemental analysis: 

calculated (%) for C23H43NO3 (381.59): C 72.39, H 11.36, N 3.67; found: C 72.31, H 11.48, N 3.96. 

 

Table 5.9. Equilibrium surface tension (eq), critical micellar concentration (CMC), hydrophilic-lipophilic balance (HLB) 
and Krafft temperature (Kt) of surfactant C18-OPC. 

Surfactant (eq) [mN/m][a] CMC [mM][b] HLB[c] Kt [°C][d] 

C18-OPC 39 0.3 6.7 70 

[a] Calculated by means of the pendant drop technique.[28] [b] Calculated by means of the ratio of pyrene vibronic peak intensities 
(I1/I3).[29] [c] Calculated by means of the Griffin‘s method.[30] [d] Calculated by means of conductance.[31] 

 

5.5.5 General procedures for the synthesis of products 5aa-9b 

Synthesis of products 5aa-5ag 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.32 mmol), Pd(OAc)2 

(3 mol%) and KOH (6 eq.) was dissolved in H2O (3 mL) and stirred at 80 °C for 1 h (until complete 

conversion of 1a). Then aromatic ketone (3a-3g; 0.30 mmol) was added and the mixture was 

stirred at 80 °C for 5 h. The progress of reaction was monitored by means of TLC and GC-MS. 

After the reaction was complete, the mixture was allowed to cool to RT, diluted with water (2 mL) 

and extracted with ethyl acetate (3 x 5 mL).[32] The combined organic phases were washed with 

brine and dried over Na2SO4. After solvent removal under reduced pressure, the solid residue was 

purified by means of recrystallization from methanol to provide pure 5aa-5ag. 

 

Synthesis of products 5ah and 5ai 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.32 mmol), Pd(OAc)2 

(3 mol%), KOH (6.5 eq.) and C18-OPC (0.5 eq.) was dissolved in H2O (3 mL) and stirred at 80 °C 

for 1 h (until complete conversion of 1a). Then aromatic ketone (3h, 3i; 0.30 mmol) was added and 

the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by means of TLC 

and GC-MS. After the reaction was complete, the same work-up procedure reported before was 

adopted to provide pure 5ah and 5ai. 
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Synthesis of products 5bc-5bg 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), 4-methoxyphenylboronic acid (2b; 0.32 

mmol), Pd(OAc)2 (3 mol%) and KOH (6 eq.) was dissolved in H2O (3 mL) and stirred at 80 °C for 1 

h (until complete conversion of 1a). Then aromatic ketone (3c, 3f, 3g; 0.30 mmol) was added and 

the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by means of TLC 

and GC-MS. After the reaction was complete, the same work-up procedure reported before was 

adopted to provide pure 5bc-5bg. 

 

Synthesis of products 5cc and 5ch 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), 4-(trifluoromethyl)phenylboronic acid (2c; 0.32 

mmol), Pd(OAc)2 (3 mol%), KOH (6.5 eq.) and C18-OPC (0.5 eq.) was dissolved in H2O (3 mL) and 

stirred at 80 °C for 2 h (until complete conversion of 1a). Then aromatic ketone (3c, 3h; 0.30 mmol) 

was added and the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by 

means of TLC and GC-MS. After the reaction was complete, the same work-up procedure reported 

before was adopted to provide pure 5cc and 5ch. 

 

Synthesis of products 6ab-6ag 

A mixture of 4-bromoacetophenone (3e; 0.25 mmol), phenylboronic acid (2a; 0.30 mmol), 

Pd(OAc)2 (3 mol%), KOH (6.5 eq.) and C18-OPC (0.5 eq.) was dissolved in H2O (3 mL) and stirred 

at 80 °C for 1 h (until complete conversion of 3e). Then aromatic aldehyde (1b-1g; 0.28 mmol) was 

added and the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by 

means of TLC and GC-MS. After the reaction was complete, the same work-up procedure reported 

before was adopted to provide pure 6ab-6ag. 

 

Synthesis of compounds 7ac-7bg 

A mixture of 5-bromothiophene-2-carboxaldehyde (1h; 0.26 mmol), arylboronic acid (2a, 2b; 0.31 

mmol), Pd(OAc)2 (3 mol%) and KOH (6 eq.) was dissolved in H2O (3 mL) and stirred at 80 °C for 1 

h (until complete conversion of 1h). Then aromatic ketone (3c, 3f, 3g; 0.29 mmol) was added and 

the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by means of TLC 

and GC-MS. After the reaction was complete, the same work-up procedure reported before was 

adopted to provide pure 7ac-7bg. 

 

Synthesis of compound 8g 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), 4-formylphenylboronic acid (2d; 0.32 mmol), 

Pd(OAc)2 (3 mol%), KOH (10.75 eq.) and C18-OPC (0.75 eq.) was dissolved in H2O (4 mL) and 

stirred at 80 °C for 2 h (until complete conversion of 1a). Then 2-acetylthiophene (3g; 0.59 mmol) 

was added and the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by 
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means of TLC and GC-MS. After the reaction was complete, the mixture was allowed to cool to 

RT, diluted with water (2 mL) and extracted with ethyl acetate (3 x 6 mL). The combined organic 

phases were washed with brine and dried over Na2SO4. After solvent removal under reduced 

pressure, the solid residue was purified by means of recrystallization from methanol to provide 

pure 8g. 

 

Synthesis of compound 9b 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), 4-bromoacetophenone (3e; 0.30 mmol), KOH 

(8.75 eq.) and C18-OPC (0.75 eq.) was dissolved in H2O (5 mL) and stirred at 80 °C for 2 h (until 

complete conversion of 1a). Then 4-methoxyphenylboronic acid (2b; 0.65 mmol) and Pd(OAc)2 (6 

mol%) were added and the mixture was stirred at 80 °C for 2 h. The progress of reaction was 

monitored by means of TLC and GC-MS. After the reaction was complete, the mixture was allowed 

to cool to RT, diluted with water (2 mL) and extracted with ethyl acetate (3 x 7 mL). The combined 

organic phases were washed with brine and dried over Na2SO4. After solvent removal under 

reduced pressure, the solid residue was purified by means of recrystallization from methanol to 

provide pure 9b. 

 

5.5.6 General procedure for recycling test of catalytic system PdH2O 

A mixture of 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.32 mmol), Pd(OAc)2 

(3 mol%) and KOH (6 eq.) was dissolved in H2O (3 mL) and stirred at 80 °C for 1 h (until complete 

conversion of 1a). Then acetophenone (3a; 0.30 mmol) was added and the mixture was stirred at 

80 °C for 5 h. The progress of reaction was monitored by means of TLC and GC-MS. After the 

reaction was complete, the mixture was allowed to cool to RT, diluted with water (2 mL) and 

extracted with ethyl acetate (3 x 5 mL). The combined organic phases were washed with brine and 

dried over Na2SO4. After solvent removal under reduced pressure, the solid residue containing the 

product 5aa was stored.  

After the first cycle, the aqueous phase containing Pd catalyst and base was subjected to the next 

run by charging with 4-bromobenzaldehyde (1a; 0.27 mmol), phenylboronic acid (2a; 0.30 mmol), 

KOH (2 eq.) and acetophenone (3a; 0.30 mmol) under the same reaction conditions. At the end of 

each of the later runs, the same work-up procedure reported before was adopted. The solid 

residues obtained at the end of the three runs, each containing the product 5aa, were separately 

stored for following determination of the Pd catalyst lost during the work-up procedure. 

 

5.5.7 General procedure for recycling test of catalytic system PdC18-OPCH2O 

A mixture of 4-bromoacetophenone (3e; 0.25 mmol), phenylboronic acid (2a; 0.30 mmol), 

Pd(OAc)2 (3 mol%), KOH (6.5 eq.) and C18-OPC (0.5 eq.) was dissolved in H2O (3 mL) and stirred 

at 80 °C for 1 h (until complete conversion of 3e). Then 4-chlorobenzaldehyde (1f; 0.28 mmol) was 
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added and the mixture was stirred at 80 °C for 5 h. The progress of reaction was monitored by 

means of TLC and GC-MS. After the reaction was complete, the mixture was allowed to cool to 

RT, diluted with water (2 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic 

phases were washed with brine and dried over Na2SO4. After solvent removal under reduced 

pressure, the solid residue containing the product 6af was stored. After the first cycle, the aqueous 

phase containing Pd catalyst, C18-OPC and base was subjected to the next run by charging with 

4-bromoacetophenone (3e; 0.25 mmol), phenylboronic acid (2a; 0.30 mmol), KOH (2 eq.) and 4-

chlorobenzaldehyde (1f; 0.28 mmol) under the same reaction conditions. At the end of each of the 

later runs, the same work-up procedure reported before was adopted. H2O (0.5 mL) was added to 

the catalytic system in the third run. The solid residues obtained at the end of the five runs, each 

containing the product 6af, were separately stored for following determination of the Pd catalyst 

lost during the work-up procedure. 

 

5.5.8 Determination of Pd by graphite furnace atomic absorption spectrometry (GFAAS) 

All atomic absorption measurements were carried out with Perkin Elmer Analyst 100 flame and 

graphite furnace (HGA 800) spectrometer equipped with a Zeeman effect background corrector, 

and an automatic data processor. A 20-μl volume sample solution was injected by an auto 

sampler. Single element hollow cathode lamp of Pd was used as radiation source. 

Aqueous solutions of Pd(OAc)2 and palladium samples were prepared using Milli-Ro water 

(resistivity 18.2 MΩ cm at 25 °C; filtered through a 0.22 μm membrane). Calibration curve for Pd 

quantification was done using known amounts of Pd (20, 40, 60, 80 and 100 ppb) prepared from 

Pd(OAc)2. Samples of Pd(OAc)2 were dissolved in 5 mL of Piranha solution (H2SO4 : H2O2 = 3 : 1, 

v/v) and stirred one night at RT before measurements. Mother solutions were diluted to appropriate 

amounts. Blank, calibration and samples solutions were prepared using Milli-Ro water with 2% 

(v/v) of HNO3. Analytes solutions were prepared dissolving the crude material of the examined 

reaction in 5 mL of Piranha solution (H2SO4 : H2O2 = 3 : 1, v/v) and stirring them for one night at RT 

before measurements. Each measurement was carried out in at least three replicates. The 

reported data are mean values with the associated standard errors (SE) and they are expressed in 

part per million (ppm). 

 

Table 5.10. Amount of Pd lost at the end of each synthetic cycle for the product 5aa. 

Cycle Pd [ppm] (Mean ± SE)

1st 4.9 ± 0.1 

2nd 10.1 ± 0.1 

3rd 5.8 ± 0.1 
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Table 5.11. Amount of Pd lost at the end of each synthetic cycle for the product 6af. 

Cycle Pd [ppm] (Mean ± SE)

1st 5.6 ± 0.2 

2nd 6.9 ± 0.2 

3rd 6.8 ± 0.2 

4th 3.5 ± 0.2 

5th 3.2 ± 0.2 

 

5.5.9 Characterization data of products 5aa-9b 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-phenylprop-2-en-1-one (5aa)  

Pale yellow solid; 88% yield; m.p. 120-122 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.03 (d, J=8 Hz, 2H, CH), 7.85 (d, J=16 Hz, 1H, CH), 7.72 

(d, J=8 Hz, 2H, CH), 7.66-7.44 (m, 10H, CH), 7.38 (d, J=8 Hz, 1H, 

CH); 13C NMR (100 MHz, CDCl3): δ=190.36, 144.35, 143.24, 140.04, 

138.23, 137.08, 133.82, 133.07, 132.77, 132.16, 130.22, 129.78, 128.98, 128.90, 128.50, 128.28, 

127.61, 127.53, 127.31, 127.00, 121.82; GC-MS retention time (rt): 30.31 min; m/z (EI) (%): 285 

(21%), 284 (100%), 207 (45%), 178 (79%), 152 (18%), 77 (50%); elemental analysis: calculated 

(%) for C21H16O (284.35): C 88.70, H 5.67; found: C 88.48, H 5.83. 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one (5ab) 

Light yellow solid; 74% yield; m.p. 157-159 °C; 1H NMR (400 

MHz, CDCl3): δ=8.07 (d, J=12 Hz, 1H, CH), 7.85 (d, J=16 Hz, 

1H, CH), 7.71 (d, J=8 Hz, 2H, CH), 7.65-7.60 (m, 5H, CH), 

7.57 (s, 1H, CH), 7.46 (t, J=8 Hz, 2H, CH), 7.39 (d, J=8 Hz, 

1H, CH), 6.99 (d, J=12 Hz, 1H, CH), 6.24 (s, 1H, OH), 3.89 (s, 3H, CH3); 13C NMR (100 MHz, 

CDCl3): δ=190.19, 163.81, 156.09, 144.76, 142.92, 142.38, 141.62, 133.67, 131.19, 130.78, 

130.15, 129.94, 129.03, 128.48, 127.42, 121.35, 119.33, 115.10, 114.55, 114.09, 113.89, 55.52; 

GC-MS (rt): 25.81 min (silylated compound); m/z (EI) (%): 359 (19%), 358 (63%), 344 (30%), 300 

(10%), 299 (34%), 269 (31%), 73 (35%); elemental analysis: calculated (%) for C22H18O3 (330.38): 

C 79.98, H 5.49; found: C 79.66, H 5.58. 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (5ac) 

Light brown solid; 87% yield; m.p. 143-146 °C; 1H NMR (400 

MHz, CDCl3): δ=8.05 (d, J=12 Hz, 2H, CH), 7.83 (d, J=16 Hz, 
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1H, CH), 7.70 (d, J=8 Hz, 2H, CH), 7.64-7.59 (m, 5H, CH), 7.45 (t, J=8 Hz, 2H, CH), 7.37 (d, J=8 

Hz, 1H, CH), 6.98 (d, J=12 Hz, 2H, CH), 3.87 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=188.61, 

163.39, 143.49, 143.05, 140.13, 133.99, 133.12, 131.09, 130.80, 129.69, 128.88, 127.83, 127.53, 

127.02, 121.63, 113.82, 55.48; GC-MS (rt): 32.61 min; m/z (EI) (%): 314 (100%), 237 (20%), 178 

(39%), 152 (24%), 135 (25%), 92 (18%), 77 (30%); elemental analysis: calculated (%) for C22H18O2 

(314.38): C 84.05, H 5.77; found: C 83.81, H 5.96. 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(4-nitrophenyl)prop-2-en-1-one (5ad) 

Brown solid; 65% yield; m.p. 206-209 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.49 (d, J=8 Hz, 2H, CH), 8.10 (d, J=8 Hz, 2H, CH), 

7.98 (d, J=16 Hz, 1H, CH), 7.73-7.64 (m, 6H, CH), 7.53-7.40 (m, 

3H, CH), 7.27 (d, J=8 Hz, 1H, CH); 13C NMR (100 MHz, CDCl3): 

δ=192.66, 152.58, 147.08, 144.23, 143.30, 140.13, 130.11, 129.61, 129.45, 128.86, 128.80, 

128.32, 127.91, 127.53, 127.36, 127.20, 127.03, 126.91, 124.52, 120.77; GC-MS (rt): 31.05 min; 

m/z (EI) (%): 299 (64%), 284 (100%), 254 (8%), 152 (11%), 77 (7%), 43 (14%); elemental analysis: 

calculated (%) for C21H15NO3 (329.35): C 76.58, H 4.59, N 4.25; found: C 76.27, H 4.91, N 4.60. 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(4-bromophenyl)prop-2-en-1-one (5ae) 

White solid; 66% yield; m.p. 202-205 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.89 (d, J=8 Hz, 2H, CH), 7.85 (d, J=16 Hz, 1H, CH), 

7.71 (d, J=8 Hz, 2H, CH), 7.66-7.61 (m, 7H, CH), 7.46 (t, J=8 Hz, 

2H, CH), 7.38 (d, J=8 Hz, 1H, CH); 13C NMR (100 MHz, CDCl3): 

δ=189.30, 144.96, 143.51, 140.01, 136.93, 133.57, 131.92, 130.01, 129.04, 128.92, 127.95, 

127.88, 127.62, 127.04, 124.49, 121.19; GC-MS (rt): 32.51 min; m/z (EI) (%): 364 (83%), 363 

(98%), 362 (87%), 283 (68%), 178 (100%), 152 (52%); elemental analysis: calculated (%) for 

C21H15BrO (363.25): C 69.44, H 4.16; found: C 69.19, H 4.40. 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(furan-2-yl)prop-2-en-1-one (5af) 

Pale yellow solid; 93% yield; m.p. 138-140 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.91 (d, J=16 Hz, 1H, CH), 7.71 (d, J=8 Hz, 2H, CH), 7.65-

7.60 (m, 5H, CH), 7.50 (d, J=4 Hz, 1H, CH), 7.47-7.43 (m, 3H, CH), 

7.37 (d, J=8 Hz, 1H, CH), 7.34 (d, J=4 Hz, 1H, CH); 13C NMR (100 

MHz, CDCl3): δ=177.96, 153.71, 146.51, 143.52, 143.35, 140.08, 133.64, 132.17, 129.85, 129.04, 

128.89, 127.89, 127.56, 127.03, 120.92, 117.49, 112.56; GC-MS (rt): 29.23 min; m/z (EI) (%): 274 

(95%), 273 (100%), 217 (21%), 197 (40%), 178 (48%), 152 (29%), 95 (33%), 39 (19%); elemental 

analysis: calculated (%) for C19H14O2 (274.31): C 83.19, H 5.14; found: C 82.97, H 5.38. 
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(E)-3-([1,1'-biphenyl]-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (5ag) 

Off white solid; 91% yield; m.p. 136-138 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.90-7.86 (m, 2H, CH), 7.72-7.60 (m, 7H, CH), 7.47-7.43 

(m, 3H, CH), 7.37 (t, J=8 Hz, 1H, CH), 7.18 (t, J=4 Hz, 1H, CH); 13C 

NMR (100 MHz, CDCl3): δ=181.95, 145.56, 143.61, 143.34, 140.07, 

133.88, 133.61, 131.76, 128.99, 128.90, 128.24, 127.89, 127.58, 127.03, 121.37; GC-MS (rt): 

30.82 min; m/z (EI) (%): 291 (24%), 290 (100%), 261 (14%), 213 (39%), 178 (52%), 152 (34%), 

111 (46%); elemental analysis: calculated (%) for C19H14OS (290.38): C 78.59, H 4.86, S 11.04; 

found: C 78.83, H 4.63, S 11.01. 

 

(E)-3-([1,1'-biphenyl]-4-yl)-1-(naphthalen-2-yl)prop-2-en-1-one (5ah) 

Yellow solid; 89% yield; m.p. 130-132 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.56 (s, 1H, CH), 8.11 (d, J=8 Hz, 1H, CH), 8.01-7.89 

(m, 3H, CH), 7.77 (d, J=8 Hz, 3H, CH), 7.71-7.55 (m, 7H, CH), 

7.46 (t, J=8 Hz, 2H, CH), 7.39 (t, J=8 Hz, 1H, CH); 13C NMR (100 

MHz, CDCl3): δ=190.23, 144.34, 143.30, 140.13, 135.57, 135.44, 133.88, 132.54, 132.12, 129.93, 

129.52, 129.02, 128.92, 128.59, 128.39, 127.90, 127.83, 127.61, 127.06, 126.79, 124.49, 121.85; 

GC-MS (rt): 35.08 min; m/z (EI) (%): 335 (25%), 334 (100%), 257 (22%), 178 (37%), 152 (25%), 

127 (51%), 77 (14%); elemental analysis: calculated (%) for C25H18O (334.41): C 89.79, H 5.43; 

found: C 90.06, H 5.18. 

 

(E)-2-([1,1'-biphenyl]-4-ylmethylene)-3,4-dihydronaphthalen-1(2H)-one (5ai) 

Dark red solid; 67% yield; m.p. 42-45 °C; 1H NMR (400 MHz, CDCl3): 

δ=7.91 (s, 1H, CH), 7.64 (t, J=8 Hz, 4H, CH), 7.53-7.45 (m, 6H, CH), 

7.36 (t, J=8 Hz, 3H, CH), 3.18 (t, J=8 Hz, 2H, CH2), 2.96 (t, J=8 Hz, 

2H, CH2); 13C NMR (100 MHz, CDCl3): δ=187.83, 143.19, 141.33, 

140.31, 136.33, 135.42, 134.76, 133.45, 133.29, 131.65, 131.36, 130.49, 130.27, 129.88, 128.89, 

128.21, 128.18, 127.68, 127.08, 127.04, 28.81, 27.32; GC-MS (rt): 32.59 min; m/z (EI) (%): 310 

(68%), 309 (100%), 233 (38%), 191 (13%), 165 (12%), 90 (17%); elemental analysis: calculated 

(%) for C23H18O (310.39): C 89.00, H 5.85; found: C 89.28, H 5.60. 

 

(E)-3-(4'-methoxy-[1,1'-biphenyl]-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (5bc) 

White solid; 93% yield; m.p. 148-150 °C; 1H NMR (400 

MHz, CDCl3): δ=8.05 (d, J=4 Hz, 2H, CH), 7.83 (d, J=16 

Hz, 1H, CH), 7.68 (d, J=8 Hz, 2H, CH), 7.60-7.54 (m, 

5H, CH), 6.98 (d, J=8 Hz, 4H, CH), 3.88 (s, 3H, CH3), 

3.85 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=188.66, 163.37, 159.59, 143.62, 142.69, 133.37, 

O

H3CO

OCH3
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132.59, 131.17, 130.78, 128.88, 128.08, 126.99, 121.31, 114.33, 113.82, 55.35; GC-MS (rt): 34.73 

min; m/z (EI) (%): 345 (24%), 344 (100%), 329 (12%), 237 (11%), 165 (24%), 135 (20%), 92 

(11%), 77 (13%); elemental analysis: calculated (%) for C23H20O3 (344.40): C 80.21, H 5.85; found: 

C 80.49, H 5.53. 

 

(E)-1-(furan-2-yl)-3-(4'-methoxy-[1,1'-biphenyl]-4-yl)prop-2-en-1-one (5bf) 

Yellow solid; 96% yield; m.p. 140-142 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.93 (d, J=16 Hz, 1H, CH), 7.72 (d, J=8 Hz, 2H, 

CH), 7.67 (dd, J=8, 4 Hz, 1H, CH), 7.62 (d, J=8 Hz, 2H, CH), 

7.59 (d, J=9 Hz, 2H, CH), 7.49 (d, J=16 Hz, 1H, CH), 7.36 (d, 

J=4 Hz, 1H, CH), 7.01 (d, J=8 Hz, 2H, CH), 6.62 (d, J=4 Hz, 

1H, CH), 3.87 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=177.99, 159.63, 153.76, 146.43, 

143.66, 142.97, 133.01, 132.53, 129.06, 128.08, 126.98, 120.58, 117.39, 114.33, 112.51, 55.32; 

GC-MS (rt): 31.07 min; m/z (EI) (%): 305 (20%), 304 (100%), 275 (8%), 261 (12%), 197 (16%), 165 

(28%), 139 (15%), 95 (17%); elemental analysis: calculated (%) for C20H16O3 (304.34): C 78.93, H 

5.30; found: C 78.57, H 5.33. 

 

(E)-3-(4'-methoxy-[1,1'-biphenyl]-4-yl)-1-(thiophen-2-yl)prop-2-en-1-one (5bg) 

Yellow solid; 97% yield; m.p. 138-140 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.88-7.85 (m, 2H, CH), 7.69-7.66 (m, 3H, CH), 7.60 

(d, J=8 Hz, 2H, CH), 7.55 (d, J=8 Hz, 2H, CH), 7.42 (d, J=16 

Hz, 1H, CH), 7.17 (dd, J=8, 4 Hz, 1H, CH), 6.98 (d, J=8 Hz, 

2H, CH), 3.84 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=181.87, 159.61, 145.58, 143.61, 

142.89, 133.72, 132.94, 132.43, 131.65, 128.96, 128.15, 128.01, 126.93, 120.99, 114.29, 55.24; 

GC-MS (rt): 32.95 min; m/z (EI) (%): 321 (25%), 320 (100%), 277 (10%), 213 (15%), 184 (17%), 

165 (31%), 139 (17%), 111 (36%); elemental analysis: calculated (%) for C20H16O2S (320.40): C 

74.97, H 5.03, S 10.01; found: C 75.16, H 5.32, S 9.72. 

 

(E)-1-(4-methoxyphenyl)-3-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)prop-2-en-1-one (5cc) 

Grey solid; 82% yield; m.p. 109-112 °C; 1H NMR (400 

MHz, CDCl3): δ=8.05 (d, J=8 Hz, 1H, CH), 7.79 (d, J=16 

Hz, 1H, CH), 7.74-7.71 (m, 5H, CH), 7.68-7.63 (m, 3H, 

CH), 7.59 (d, J=16 Hz, 2H, CH), 7.15 (d, J=16 Hz, 1H, 

CH), 6.99 (d, J=8 Hz, 1H, CH), 3.89 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=189.71, 163.49, 

143.19, 143.08, 140.00, 133.98, 132.14, 131.10, 130.80, 129.89, 128.96, 127.93, 127.63, 127.12, 

124.11, 121.73, 113.92, 55.58; 19F NMR (376 MHz, CDCl3): δ=-62.50 (s, 3F, CF3); GC-MS (rt): 

31.92 min; m/z (EI) (%): 383 (25%), 382 (100%), 354 (11%), 237 (11%), 178 (13%), 135 (28%), 

O

S

H3CO
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107 (8%) 92 (13%), 77 (14%); elemental analysis: calculated (%) for C23H17F3O2 (382.38): C 72.24, 

H 4.48; found: C 71.93, H 4.62. 

 

(E)-1-(naphthalen-2-yl)-3-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)prop-2-en-1-one (5ch) 

Black solid; 80% yield; m.p. 96-99 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.59 (s, 1H, CH), 8.14 (d, J=8 Hz, 1H, CH), 8.03 

(d, J=8 Hz, 1H, CH), 7.98 (d, J=9 Hz, 2H, CH), 7.93 (d, J=8 

Hz, 2H, CH), 7.83-7.80 (m, 3H, CH), 7.77-7.75 (m, 3H, CH), 

7.70 (d, J=8 Hz, 1H, CH), 7.66-7.58 (m, 3H, CH); 13C NMR (100 MHz, CDCl3): δ=190.06, 143.87, 

141.63, 135.51, 135.45, 134.81, 132.54, 129.98, 129.52, 129.13, 128.64, 128.47, 127.84, 127.78, 

127.34, 127.22, 126.84, 125.87, 125.83, 125.61, 124.44, 122.42; 19F NMR (376 MHz, CDCl3): δ=-

62.47 (s, 3F, CF3); GC-MS (rt): 34.33 min; m/z (EI) (%): 403 (24%), 402 (100%), 257 (16%), 178 

(18%), 152 (22%), 127 (70%), 77 (12%); elemental analysis: calculated (%) for C26H17F3O 

(402.41): C 77.60, H 4.26; found: C 77.29, H 4.59. 

 

(E)-1-([1,1'-biphenyl]-4-yl)-3-phenylprop-2-en-1-one (6ab) 

Off white solid; 89% yield; m.p. 145-148 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.11 (d, J=8 Hz, 2H, CH), 7.85 (d, J=12 Hz, 1H, CH), 7.73 

(d, J=8 Hz, 2H, CH), 7.65-7.56 (m, 5H, CH), 7.50-7.41 (m, 6H, CH); 

13C NMR (100 MHz, CDCl3): δ=189.92, 145.51, 144.75, 139.90, 

136.87, 134.90, 130.56, 129.12, 128.95, 128.47, 128.21, 127.28, 121.97; GC-MS (rt): 30.20 min; 

m/z (EI) (%): 285 (20%), 284 (100%), 181 (18%), 178 (15%), 152 (58%), 103 (24%), 77 (27%); 

elemental analysis: calculated (%) for C21H16O (284.35): C 88.70, H 5.67; found: C 88.45, H 5.89. 

 

(E)-1-([1,1'-biphenyl]-4-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (6ac) 

Orange solid; 86% yield; m.p. 125-127 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.01 (d, J=8 Hz, 2H, CH), 7.73 (d, J=16 Hz, 1H, 

CH), 7.62 (d, J=8 Hz, 2H, CH), 7.54 (t, J=8 Hz, 4H, CH), 7.41 

(s, 1H, CH), 7.37 (t, J=8 Hz, 2H, CH), 7.31 (d, J=4 Hz, 1H, 

CH), 6.85 (d, J=9 Hz, 2H, CH), 3.75 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=189.64, 161.60, 

145.14, 144.44, 139.84, 137.07, 130.16, 128.92, 128.82, 128.03, 127.13, 127.07, 119.47, 114.30, 

55.23; GC-MS (rt): 32.60 min; m/z (EI) (%): 315 (23%), 314 (100%), 299 (19%), 206 (14%), 161 

(16%), 152 (49%), 77 (15%); elemental analysis: calculated (%) for C22H18O2 (314.38): C 84.05, H 

5.77; found: C 83.84, H 5.97. 

 

 

 

O

F3C
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(E)-1-([1,1'-biphenyl]-4-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (6ad) 

Yellow solid; 81% yield; m.p. 198-201 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.00 (d, J=8 Hz, 2H, CH), 7.67-7.64 (m, 3H, CH), 

7.56 (d, J=8 Hz, 2H, CH), 7.40-7.30 (m, 4H, CH), 6.81 (s, 2H, 

CH), 3.84-3.81 (m, 9H, CH3); 13C NMR (100 MHz, CDCl3): 

δ=190.52, 153.31, 145.58, 145.21, 139.70, 136.67, 130.32, 129.05, 128.87, 128.17, 127.19, 

127.13, 121.28, 105.66, 60.87, 56.09; GC-MS (rt): 34.54 min; m/z (EI) (%): 375 (25%), 374 

(100%), 359 (27%), 343 (48%), 331 (11%), 181 (13%), 152 (42%); elemental analysis: calculated 

(%) for C24H22O4 (374.43): C 76.99, H 5.92; found: C 76.71, H 6.18. 

 

(E)-1-([1,1'-biphenyl]-4-yl)-3-(4-nitrophenyl)prop-2-en-1-one (6ae)  

Yellow solid; 90% yield; m.p. 231-233 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.27 (d, J=8 Hz, 2H, CH), 8.11 (d, J=8 Hz, 2H, CH), 

7.80 (t, J=8 Hz, 3H, CH), 7.74 (d, J=8 Hz, 2H, CH), 7.70 (s, 1H, 

CH), 7.65 (d, J=9 Hz, 2H, CH); 7.48 (t, J=8 Hz, 2H, CH), 7.41 (t, 

J=8 Hz, 1H, CH); 13C NMR (100 MHz, CDCl3): δ=188.93, 148.47, 146.03, 141.34, 141.02, 139.61, 

136.13, 130.20, 129.17, 128.94, 128.92, 128.33, 127.35, 127.21, 125.57, 124.14; GC-MS (rt): 

33.94 min; m/z (EI) (%): 330 (23%), 329 (100%), 301 (26%), 282 (16%), 181 (35%), 152 (64%), 

102 (23%), 77 (13%); elemental analysis: calculated (%) for C21H15NO3 (329.35): C 76.58, H 4.59, 

N 4.25; found: C 76.31, H 4.84, N 4.57. 

 

(E)-1-([1,1'-biphenyl]-4-yl)-3-(4-chlorophenyl)prop-2-en-1-one (6af) 

Light yellow solid; 89% yield; m.p. 216-219 °C; 1H NMR (400 

MHz, CDCl3): δ=8.09 (d, J=9 Hz, 2H, CH), 7.77 (d, J=16 Hz, 1H, 

CH), 7.71 (d, J=8 Hz, 2H, CH), 7.63 (d, J=8 Hz, 2H, CH), 7.57 (t, 

J=8 Hz, 3H, CH), 7.47 (t, J=8 Hz, 2H, CH), 7.39 (t, J=8 Hz, 3H, 

CH); 13C NMR (100 MHz, CDCl3): δ=189.57, 145.65, 143.19, 139.82, 136.66, 136.40, 133.38, 

129.59, 129.23, 129.09, 128.95, 128.24, 127.30, 127.26, 122.33; GC-MS (rt): 31.60 min; m/z (EI) 

(%): 319 (36%), 318 (100%), 283 (28%), 152 (79%), 102 (30%); elemental analysis: calculated (%) 

for C21H15ClO (318.80): C 79.12, H 4.74; found: C 78.86, H 4.92. 

 

(E)-1-([1,1'-biphenyl]-4-yl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (6ag) 

Orange solid; 92% yield; m.p. 143-146 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.02 (d, J=8 Hz, 2H, CH), 7.62 (d, J=8 Hz, 2H, CH), 7.55 

(d, J=4 Hz, 2H, CH), 7.45 (s, 1H, CH), 7.38-7.24 (m, 4H, CH), 6.56 

(d, J=4 Hz, 1H, CH), 6.05 (d, J=4 Hz, 1H, CH), 2.30 (s, 3H, CH3); 

13C NMR (100 MHz, CDCl3): δ=189.02, 155.76, 150.26, 145.12, 139.89, 136.97, 130.58, 128.85, 
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128.79, 127.99, 127.12, 127.06, 118.16, 117.29, 109.26, 14.01; GC-MS (rt): 29.52 min; m/z (EI) 

(%): 289 (21%), 288 (95%), 273 (100%), 217 (26%), 202 (15%), 152 (41%), 77 (18%); elemental 

analysis: calculated (%) for C20H16O2 (288.34): C 83.31, H 5.59; found: C 83.07, H 5.85. 

 

(E)-1-(4-methoxyphenyl)-3-(5-phenylthiophen-2-yl)prop-2-en-1-one (7ac) 

Yellow solid; 85% yield; m.p. 152-155 °C; 1H NMR (400 MHz, 

CDCl3): δ=8.02 (d, J=8 Hz, 2H, CH), 7.89 (d, J=16 Hz, 1H, 

CH), 7.62 (d, J=8 Hz, 2H, CH), 7.42-7.28 (m, 6H, CH), 6.97 

(d, J=8 Hz, 2H, CH), 3.87 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=188.15, 163.25, 139.77, 

136.44, 133.58, 133.21, 131.03, 130.66, 129.03, 128.41, 125.96, 125.77, 124.15, 124.04, 120.19, 

113.81, 109.94, 55.44; GC-MS (rt): 32.52 min; m/z (EI) (%): 321 (24%), 320 (100%), 289 (18%), 

277 (22%), 184 (25%), 160 (22%), 115 (18%), 92 (19%), 77 (27%); elemental analysis: calculated 

(%) for C20H16O2S (320.40): C 74.97, H 5.03, S 10.01; found: C 74.69, H 5.32, S 10.28. 

 

(E)-1-(furan-2-yl)-3-(5-phenylthiophen-2-yl)prop-2-en-1-one (7af) 

Orange solid; 90% yield; m.p. 108-111 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.88 (d, J=16 Hz, 1H, CH), 7.60-7.55 (m, 3H, CH), 7.35-

7.31 (m, 2H, CH), 7.28-7.23 (m, 4H, CH), 7.15 (d, J=16 Hz, 1H, CH), 

6.53 (d, J=8 Hz, 1H, CH); 13C NMR (100 MHz, CDCl3): δ=177.55, 153.69, 147.96, 146.42, 139.36, 

136.42, 133.62, 133.46, 129.06, 128.52, 125.99, 124.25, 119.62, 117.26, 112.52; GC-MS (rt): 

29.11 min; m/z (EI) (%): 281 (20%), 280 (100%), 252 (21%), 223 (53%), 184 (32%), 121 (19%), 

115 (20%), 95 (26%), 39 (22%); elemental analysis: calculated (%) for C17H12O2S (280.34): C 

72.83, H 4.31, S 11.44; found: C 72.56, H 4.54, S 11.46. 

 

(E)-3-(5-phenylthiophen-2-yl)-1-(thiophen-2-yl)prop-2-en-1-one (7ag) 

Yellow solid; 88% yield; m.p. 105-108 °C; 1H NMR (400 MHz, CDCl3): 

δ=7.92 (d, J=16 Hz, 1H, CH), 7.84 (d, J=4 Hz, 1H, CH), 7.67-7.62 (m, 

3H, CH), 7.42-7.38 (m, 2H, CH), 7.34-7.28 (m, 3H, CH), 7.21-7.16 

(m, 2H, CH); 13C NMR (100 MHz, CDCl3): δ=181.45, 145.59, 139.28, 136.50, 133.74, 133.67, 

131.54, 129.05, 128.53, 128.20, 125.99, 124.25, 119.94, 109.99; GC-MS (rt): 30.59 min; m/z (EI) 

(%): 297 (21%), 296 (100%), 267 (24%), 184 (32%), 160 (21%), 152 (20%), 111 (40%), 39 (23%); 

elemental analysis: calculated (%) for C17H12OS2 (296.41): C 68.89, H 4.08, S 21.64; found: C 

68.62, H 4.32, S 21.77. 
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(E)-1-(4-methoxyphenyl)-3-(5-(4-methoxyphenyl)thiophen-2-yl)prop-2-en-1-one (7bc) 

Orange solid; 87% yield; m.p. 175-178 °C; 1H NMR 

(400 MHz, CDCl3): δ=8.02 (d, J=4 Hz, 2H, CH), 7.90 

(d, J=16 Hz, 1H, CH), 7.55 (d, J=4 Hz, 2H, CH), 7.32-

7.16 (m, 3H, CH), 6.97-6.91 (m, 4H, CH), 3.87 (s, 3H, CH3), 3.83 (s, 3H, CH3); 13C NMR (100 MHz, 

CDCl3): δ=187.99, 163.31, 159.93, 142.85, 136.63, 133.49, 130.63, 130.59, 127.30, 123.11, 

119.65, 114.43, 113.79, 55.47, 55.38; GC-MS (rt): 34.84 min; m/z (EI) (%): 351 (24%), 350 

(100%), 335 (18%), 319 (15%), 307 (23%), 190 (15%), 171 (17%), 135 (15%), 92 (14%), 77 (17%); 

elemental analysis: calculated (%) for C21H18O3S (350.43): C 71.98, H 5.18, S 9.15; found: C 

71.73, H 5.34, S 9.11. 

 

(E)-1-(furan-2-yl)-3-(5-(4-methoxyphenyl)thiophen-2-yl)prop-2-en-1-one (7bf)  

Orange solid; 93% yield; m.p.146-148 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.94 (d, J=16 Hz, 1H, CH), 7.63 (d, J=4 Hz, 1H, 

CH), 7.56 (d, J=8 Hz, 2H, CH), 7.30-7.28 (m, 2H, CH), 7.19 (d, 

J=8 Hz, 1H, CH), 7.16 (d, J=4 Hz, 1H, CH), 6.92 (d, J=8 Hz, 2H, CH), 6.57 (d, J=4 Hz, 1H, CH), 

3.83 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ=177.54, 160.01, 153.76, 148.12, 146.28, 138.45, 

136.54, 133.90, 127.32, 126.31, 123.16, 119.08, 117.05, 114.44, 112.45, 55.35; GC-MS (rt): 31.17 

min; m/z (EI) (%): 311 (20%), 310 (100%), 267 (18%), 253 (19%), 239 (11%), 171 (20%), 151 

(18%), 95 (23%), 39 (13 %); elemental analysis: calculated (%) for C18H14O3S (310.37): C 69.66, H 

4.55, S 10.33; found: C 69.35, H 4.86, S 10.71. 

 

(E)-3-(5-(4-methoxyphenyl)thiophen-2-yl)-1-(thiophen-2-yl)prop-2-en-1-one (7bg) 

Yellow solid; 92% yield; m.p.142-144 °C; 1H NMR (400 MHz, 

CDCl3): δ=7.91 (d, J=16 Hz, 1H, CH), 7.83 (d, J=4 Hz, 1H, 

CH), 7.65 (d, J=4 Hz, 1H, CH), 7.56 (d, J=9 Hz, 2H, CH), 7.30 

(d, J=4 Hz, 1H, CH), 7.18-7.13 (m, 3H, CH), 6.92 (d, J=8 Hz, 2H, CH), 3.83 (s, 3H, CH3); 13C NMR 

(100 MHz, CDCl3): δ=181.41, 160.00, 148.03, 145.65, 138.28, 136.60, 133.88, 133.55, 131.40, 

128.13, 127.33, 126.26, 123.14, 119.38, 114.42, 109.91, 55.73; GC-MS (rt): 32.68 min; m/z (EI) 

(%): 327 (24%), 326 (100%), 298 (12%), 283 (21%), 190 (18%), 171 (21%), 151 (13%), 111 (32%); 

elemental analysis: calculated (%) for C18H14O2S2 (326.43): C 66.23, H 4.32, S 19.65; found: C 

65.96, H 4.57, S 19.81. 

 

(2E,2'E)-3,3'-([1,1'-biphenyl]-4,4'-diyl)bis(1-(thiophen-2-yl)prop-2-en-1-one) (8g) 

Yellow solid; 76% yield; m.p. 116-119 °C; 1H NMR (400 

MHz, CDCl3): δ=7.88-7.81 (m, 2H, CH), 7.72-7.61 (m, 

5H, CH), 7.55 (d, J=4 Hz, 2H, CH), 7.45 (d, J=16 Hz, 
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1H, CH), 7.39-7.34 (m, 1H, CH), 7.27-7.22 (m, 3H, CH), 7.18-7.14 (m, 2H, CH), 7.08-7.05 (m, 2H, 

CH); 13C NMR (100 MHz, CDCl3): δ=181.85, 145.50, 144.21, 144.02, 143.26, 143.16, 142.04, 

134.24, 134.01, 133.89, 133.71, 132.19, 132.14, 131.89, 131.66, 129.25, 129.11, 128.61, 128.29, 

128.18, 128.12, 127.47, 127.40, 126.80, 121.74; GC-MS (rt): 32.46 min; m/z (EI) (%): 296 (7%), 

295 (51%), 126 (16%), 113 (11%), 111 (100%), 83 (12%), 39 (12%); elemental analysis: calculated 

(%) for C26H18O2S2 (426.55): C 73.21, H 4.25, S 15.03; found: C 73.47, H 3.99, S 15.16. 

 

(E)-1,3-bis(4'-methoxy-[1,1'-biphenyl]-4-yl)prop-2-en-1-one (9b) 

Pale brown solid; 93% yield; m.p. 227-230 °C; 

1H NMR (400 MHz, CDCl3): δ=8.01 (d, J=8 Hz, 

1H, CH), 7.62 (d, J=8 Hz, 2H, CH), 7.55 (d, J=8 

Hz, 2H, CH), 7.48-7.45 (m, 2H, CH) 7.35 (d, J=8 

Hz, 2H, CH), 7.01-6.77 (m, 9H, CH), 3.84 (s, 3H, CH3), 3.82 (s, 3H, CH3); 13C NMR (100 MHz, 

CDCl3): δ=198.28, 159.86, 145.34, 134.95, 132.19, 130.87, 128.81, 128.34, 127.98, 127.84, 

127.69, 127.00, 126.90, 126.61, 115.28, 114.36, 114.12, 114.10, 55.30; GC-MS (rt): 40.71 min; 

m/z (EI) (%): 421 (22%), 420 (100%), 358 (26%), 283 (28%), 178 (33%), 152 (50%), 77 (10%); 

elemental analysis: calculated (%) for C29H24O3 (420.50): C 82.83, H 5.75, O 11.41; found: C 

83.14, H 5.64. 
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5.5.10 Identification of the by-products obtained in the entries 6 and 7 of Table 5.1 

 

  

Figure 5.5. GC chromatogram of the crude reaction mixture (Table 5.1, entry 6). 
 

 

 

Figure 5.6. MS spectrum of the by-product (peak with retention time 25.96 min.). 
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Figure 5.7. GC chromatogram of the crude reaction mixture (Table 5.1, entry 7). 
 

 

 

Figure 5.8. MS spectrum of the main by-product (peak with retention time 33.09 min). 
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CHAPTER 6 

 

 

Recent Advances in the Palladium-Catalyzed  

Aerobic Oxidation of Alcohols 

 

 

The oxidation of alcohols to the equivalent carbonyl compounds is a crucial reaction in organic 

synthesis. Nevertheless, conventional oxidants are toxic and release copious amounts of by-

products. As an alternative, oxygen (or even better air) is among the cheaper and less polluting 

stoichiometric oxidants, because it produces no waste or water as the unique by-product. The 

development of a transition metal-based catalyst in combination with oxygen represents an emerging 

alternative to the customary procedures. This chapter aims to give an overview on the most important 

advances made in the last years in the field of aerobic oxidations of alcohols, in particular catalyzed 

by Palladium in the form of homogeneous, heterogeneous and, more recently, nanoparticle 

catalysts.[1] 
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6.1 Introduction 

 

Oxidation reactions are among the most helpful and applied reactions in industrial processes. 

Nevertheless, they are among the most hazardous and polluting processes, often occurring with a 

high E-factor[2] and producing considerable amounts of toxic waste, for example metal salts in 

oxidations employing stoichiometric Cr(VI) or Mn(VII) derivatives or nitrogen oxides in oxidations 

carried out with HNO3.  

Specifically, the oxidation of primary and secondary alcohols to the equivalent carbonyl compounds 

is of crucial importance in organic synthesis, due to the broad ranging utility of these products as 

relevant precursors and intermediates for many drugs.  

From the environmental point of view, it is very important to develop methods which adopt cleaner 

oxidants and minimize the amount and toxicity of the released waste. Furthermore, the employment 

of catalysis, that allows processes to occur under mild conditions in order to save the overall implied 

energy, is convincingly encouraged.[3] In this respect, the recovery and reuse of the catalyst is an 

additional important target. 

Oxygen (or even better air) is among the cheaper and less polluting stoichiometric oxidants, because 

it produces no waste or water as the unique by-product.[4] The development of a catalyst in 

combination with molecular oxygen represents an emerging alternative to the customary procedures. 

In the development of transition metal-catalyzed aerobic alcohol oxidations exist numerous 

challenges, as the necessity of low pressures of oxygen in particular in flammable organic solvents, 

mild reaction conditions, low catalyst loadings, and avoidance of expensive or toxic additives. 

Another important issue is the tolerance of functional groups and the chemo-selectivity of the alcohol 

transformation when other groups vulnerable to oxidation are present. An additional goal is the 

development of methods able to oxidize one class of alcohols in the presence of another.  

Both homogeneous and heterogeneous catalytic systems have been developed,[5] and more 

recently, metals in the form of nanoparticles.[6] In fact, mainly in industrial chemistry, heterogeneous 

catalytic systems are preferred over homogeneous systems due to easier recyclability. On the other 

hand, they generally suffer from low catalytic activity relative to their homogeneous analogues. Much 

endeavour has been made to overcome the difficulties encountered with heterogeneous catalysis, 

because lowering of environmental loading due to easy separation and reuse of the catalyst could 

result. In addition, in view of a possible recycling of the catalyst, alternative solvents such as ionic 

liquids, fluorinated solvents and supercritical CO2 have been considered. 

 

6.2 Homogeneous, heterogeneous and nanoparticle catalysts 

 

A homogeneous catalyst, that is usually a soluble metal complex, is in the same phase as the 

reactants, having the advantage to possess catalytic sites accessible to all reagents. Appropriate 
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modification of the ligands allows to tune the chemo-, regio- and enantioselectivity of homogeneous 

catalysts, that have numerous other advantages such as high efficiency, high selectivities, and 

yields. They are applied both in academia and in industry; on the other hand, their utilization in 

industrial applications (where metal contamination is heavily regulated) is limited by the difficulties 

found in the separation of catalyst from the final products. Removal of trace amounts of catalyst from 

the target product is of pivotal importance and still remains a key challenge that homogeneous 

catalysis has to address.  

To overcome the separation problems found in homogeneous catalysis, heterogeneous catalysts 

have been introduced. Even if the first tests of heterogenization were made with polymeric materials 

as solid supports, the greatest part of the new heterogenized catalysts are based on silica supports, 

because silica has an excellent chemical and thermal stability, good accessibility and porosity. 

Furthermore, organic moieties can be strongly anchored to the surface to provide catalytic centres 

for metal-based catalysis. These hybrid organic/inorganic catalysts can anchor the catalytic metal 

owing to covalent binding or by simple adsorption. On the other hand, some issues still remain, as 

the accessibility of all active sites to reagents which renders heterogeneous catalysts often less 

efficient than homogeneous catalysts, and the leaching of metals from solid supports, which again 

requires separation of metal traces from the target product. 

Nanoparticles are emerging as excellent sustainable alternatives to conventional solid supports, 

because they enhance the exposed surface area of the active component of the catalyst, thus 

increasing the contact among the reagents and the catalytic centre, as it happens in homogeneous 

catalysis. On the other hand, if nanoparticles are immobilized on a solid and insoluble support, they 

can be simply separated from the reaction mixture, which is the main advantage of heterogeneous 

catalysis. Therefore, nanocatalysis is generally considered as the “bridge” between homogeneous 

and heterogeneous catalysis, because it offers a new sustainable alternative to customary 

materials.[6] 

 

6.3 Mechanisms of metal-catalyzed oxidations: general considerations 

 

The ground state of dioxygen is a triplet containing two unpaired electrons with parallel spins. The 

direct reaction of 3O2 with singlet organic molecules to give singlet products is a spin forbidden 

process with a very low rate. Fortunately, this precludes the spontaneous combustion of living matter, 

a thermodynamically very favourable process.  

One way of circumventing this activation energy barrier involves a free radical pathway in which a 

singlet molecule reacts with 3O2 to form two doublets (free radicals) in a spin-allowed process 

(Scheme 6.1, reaction (1)). However, this process is highly endothermic (up to 50 kcal mol–1) and it 

is observed at moderate temperatures only with very reactive molecules that afford resonance 

stabilized radicals. 
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A second way to overcome this spin conservation obstacle is via reaction of 3O2 with a paramagnetic 

(transition) metal ion, affording a superoxo-metal complex (Scheme 6.1, reaction (2)). Subsequent 

inter- or intramolecular electron-transfer processes can lead to the formation of a variety of metal-

oxygen species (Scheme 6.2) which may play a role in the oxidation of organic substrates. 

 

 

Scheme 6.1. Reactions of triplet oxygen. 

 

 

Scheme 6.2. Metal–oxygen species. 
 

Basically, all (catalytic) oxidations, with dioxygen or peroxide reagents, either under homogeneous 

or heterogeneous conditions, can be divided into two types on the basis of their mechanism: 

homolytic and heterolytic. The former involves free radicals as reactive intermediates. Such reactions 

can occur with most organic substrates and dioxygen, in the presence or absence of metal catalysts. 

This ubiquity of free radical processes in dioxygen chemistry renders mechanistic interpretation more 

difficult than in the case of hydrogenations or carbonylation reactions, where there is no reaction in 

the absence of the catalyst. Heterolytic oxidations generally involve the (metal-mediated) oxidation 

of a substrate by an active oxygen compound, e.g. H2O2 or ROH. Alternatively, stoichiometric 

oxidation of a substrate by a metal ion or complex is coupled with the re-oxidation of the reduced 

metal species by the primary oxidant (e.g. O2 or H2O2). 

 

6.3.1 Homolytic mechanisms 

As noted above, dioxygen reacts with organic molecules, e.g. hydrocarbons, via a free radical 

pathway. The corresponding hydroperoxide is formed in a free radical chain process (Scheme 6.3). 

The reaction is autocatalytic, i.e. the alkyl hydroperoxide accelerates the reaction by undergoing 

homolysis to chain initiating radicals, and such processes are referred to as autoxidations.[7] The 
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susceptibility of any particular substrate to autoxidation is determined by the ratio kp/(2kt)1/2, which is 

usually referred to as its oxidizability.[8] 

 

 

Scheme 6.3. Mechanism of autoxidation. 
 

The reaction can be started by adding an initiator which undergoes homolytic thermolysis at the 

reaction temperature to produce chain-initiating radicals. The initiator could be the alkyl 

hydroperoxide product although relatively high temperatures (> 100 °C) are required for thermolysis 

of hydroperoxides. Alternatively, chain-initiating radicals can be generated by the reaction of trace 

amounts of hydroperoxides with variable valence metals, e.g. cobalt, manganese, iron, etc. The 

corresponding alkoxy and alkylperoxy radicals are produced in one-electron transfer processes 

(Scheme 6.4). 

 

Scheme 6.4. Metal initiated and mediated autoxidation. 
 

In such processes the metal ion acts (in combination with ROOH) as an initiator rather than a 

catalyst. It is important to note that homolytic decomposition of alkyl hydroperoxides via one-electron 

transfer processes is generally a competing process even with metal ions that catalyze heterolytic 

processes with hydroperoxides (see above).  
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Since dioxygen can be regenerated via subsequent chain decomposition of the alkyl hydroperoxide, 

this can lead to competing free radical autoxidation of the substrate. Generally speaking, this has 

not been recognized by many authors and can lead to a misinterpretation of results. 

 

6.3.2 Heterolytic mechanisms 

Catalytic oxidations with dioxygen can also proceed via heterolytic pathways which do not involve 

free radicals as intermediates. They generally involve a two-electron oxidation of a (coordinated) 

substrate by a metal ion. The oxidized form of the metal is subsequently regenerated by reaction of 

the reduced form with dioxygen. Typical examples are the Pd(II)-catalyzed oxidation of alkenes 

(Wacker process) and oxidative dehydrogenation of alcohols (Scheme 6.5). 

 

 

Scheme 6.5. Wacker oxidation and oxidative dehydrogenation of alcohols. 
 

In a variation on this theme, which pertains mainly to gas phase oxidations, an oxo-metal species 

oxidizes the substrate and the reduced form is subsequently re-oxidized by dioxygen (Scheme 6.6). 

This is generally referred to as the Mars-van Krevelen mechanism.[9] 

 

 

Scheme 6.6. Mars-van Krevelen mechanism. 
 

A wide variety of oxidations mediated by mono-oxygenase enzymes are similarly thought to involve 

oxygen transfer from a high-valent oxo-iron intermediate to the substrate (although the mechanistic 

details are still controversial).[10] However, in this case a stoichiometric cofactor is necessary to 

regenerate the reduced form of the enzyme. 

Indeed, the holy grail in oxidation chemistry is to design a “suprabiotic” catalyst capable of mediating 

the transfer of both oxygen atoms of dioxygen to organic substrates, such as alkenes and alkanes.[11] 

This would obviate the need for a stoichiometric cofactor as a sacrificial reductant, i.e. it would 

amount to a Mars-van Krevelen mechanism in the liquid phase. 
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6.4 Ligand design in oxidation catalysis 

 

In the majority of catalytic oxidations simple metal salts are used as the catalysts. In contrast, 

oxidations mediated by redox enzymes involve metal ions coordinated to complex ligands: amino 

acid residues in a protein or a prosthetic group, e.g. a porphyrin ligand in heme-dependent enzymes. 

Indeed, many of the major challenges in oxidation chemistry involve demanding oxidations, such as 

the selective oxidation of inactivated C–H bonds, which require powerful oxidants. This presents a 

dilemma: if an oxidant is powerful enough to oxidize an inactivated C–H bond then, by the same 

token, it will readily oxidize most ligands, which contain C–H bonds that are more active than the C–

H bonds of the substrate. The low operational stability of, for example, heme-dependent enzymes is 

a direct consequence of the facile oxidative destruction of the porphyrin ring. Nature solves this 

problem in vivo by synthesizing fresh enzyme to replace that destroyed. In vitro this is not a viable 

option. In this context it is worth bearing in mind that many simple metal complexes that are used as 

catalysts in oxidation reactions contain ligands, e.g. acetylacetonate, that are rapidly destroyed 

under oxidizing conditions. 

Collins has addressed the problem of ligand design in oxidation catalysis in some detail and 

developed guidelines for the rational design of oxidatively robust ligands.[12] Although progress has 

been achieved in understanding ligand sensitivity to oxidation, the ultimate goal of designing metal 

complexes that are both stable and exhibit the desired catalytic properties remains largely elusive. 

In this context, an additional requirement has to be fulfilled: the desired catalytic pathway should 

compete effectively with the ubiquitous free radical autoxidation pathways. In this context it is 

possible to attribute the results recently published by Minnaard research group, depicted in this 

thesis (see chapter 7). 

 

6.5 Oxidation of alcohols 

  

Traditional methods to perform the oxidation of primary and secondary alcohols generally involve 

the use of stoichiometric quantities of inorganic oxidants, notably Cr(VI) reagents.[13] However, from 

both an economic and environmental point of view, atom efficient, catalytic methods that employ 

clean oxidants such as O2 and H2O2 are more desirable. 

The catalytic oxidation of alcohols is a heavily studied field, where many metals can be applied. New 

developments in the 21st century can be discerned, such as the use of nanocatalysts (notably Pd 

and Au) which combine high stability with high activity. Furthermore, catalysis in water and the use 

of non-noble metals such as copper are important green developments. In addition, biocatalysis is 

on the rise. In combination with a mediator, the copper-dependent oxidase, laccase is very promising 

for alcohol oxidation.[14] 
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It should be noted that hydrogen peroxide is not really needed for alcohol conversion, compared to 

the use of oxygen it has little advantage. The focus in this section will therefore be on molecular 

oxygen. 

 

6.5.1 Pd-based homogeneous catalysts 

Generally, Pd(II) catalysis is one of the most evolved fields in the aerobic oxidation of alcohols. Much 

exertion has been dedicated to finding synthetically helpful methods.[15] A large number of 

mechanistic studies have been undertaken and a broadly accepted mechanism involves initial 

coordination of the alcohol to the Pd(II) catalyst A to give intermediate B (Scheme 6.7). An 

exogenous base helps deprotonation of the alcohol to yield the Pd(II)-alkoxide intermediate C. Next, 

β-hydride elimination affords the Pd(II) hydride intermediate D, that undergoes reductive elimination 

to give E.[16,17] The transient Pd(0) species E is metastable and prone to aggregation to bulk 

palladium metal (Pd black) with concomitant loss of catalytic activity. One approach to avoid this 

issue is to add coordinating ligands, that stabilize the transient Pd(0) species. 

 

 

Scheme 6.7. The generally accepted mechanism of the aerobic Pd(II)-catalyzed oxidation of alcohols. 
 

The first synthetically helpful system was reported in 1998 by Peterson and Larock, showing that 

simple Pd(OAc)2, in combination with NaHCO3 as a base in DMSO as solvent, catalyzed the aerobic 

oxidation of primary and secondary allylic and benzylic alcohols to the equivalent aldehydes and 

ketones, respectively.[18] Uemura reported an improved procedure using Pd(OAc)2 (5 mol%) that 

allowed oxidation of primary and secondary aliphatic alcohols in addition to benzylic and allylic 

ones.[19] This approach could also be applied under fluorous biphasic conditions.[20] 
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A more active catalyst is represented by a water-soluble Pd(II) complex of sulphonated 

bathophenantroline developed by Sheldon.[21] This stable and recyclable catalyst (0.25 mol%) 

permitted oxidation in a two-phase aqueous–organic medium. No organic solvent was necessary 

(except for solid alcohols) and the carbonyl product was recovered simply by phase separation. 

Primary alcohols provided the corresponding carboxylic acids by further oxidation of the aldehyde 

intermediate; differently, in the presence of 1 mol% of TEMPO, the aldehyde was obtained in high 

yield (Scheme 6.8). 

 

 

Scheme 6.8. Sheldon’s Pd-catalyzed aerobic oxidation of alcohols. 
 

Pd-neocuproine (in the presence of ethylene carbonate as co-solvent) was found to be even more 

active and exceptionally tolerant to many functional groups such as C=C bonds, triple bonds, halides, 

ethers, amines etc., thus demonstrating a large synthetic utility.[22] On the other hand, a deeply 

detailed recent investigation of this latter ligand confirmed that in this case formation of Pd 

nanoparticles, which are presumably the active catalytic species, occurs.[23]  

One of the principal problems linked to homogeneous Pd(II)-catalysts is frequently represented by 

Pd black formation. Tsuji used substituted pyridines as ligands to prevent formation of Pd black, 

allowing oxidations to be conducted under air and employing low catalyst loading.[24] Sigman also 

developed three novel Pd(II)-catalysts,[25] and in a comparison study it has been evaluated the 

substrate scope and the reaction conditions of each of them, concluding that the 

Pd(OAc)2/triethylamine system represents the most convenient among the three developed.[26] 

Another interesting example of Pd oxidation catalysis in tandem reactions was shown by Lebel and 

Paquet, applying the catalyst developed by Sigman to the one-pot synthesis of alkenes through a 

tandem oxidation/olefination process (Scheme 6.9).[27] 
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Scheme 6.9. One-pot Pd-catalyzed oxidation and Rh-catalyzed methylenation reaction. 
 

Nevertheless, all the Pd(II)-catalysts reported to date are not broadly used on a larger industrial 

scale. Catalysts with improved stability and activity need to be developed and the research is still 

very active in this field. A recent study investigated the use of N,O-ligated Pd(II) complexes, which 

compared well with the previously reported N,N-ligands in the aerobic oxidation of 2-octanol on the 

gram scale.[28] In this context it is possible to attribute the results recently published by Minnaard 

research group, depicted in the next chapter of this thesis. 

 

6.5.2 Pd-based heterogeneous catalysts 

Beyond the aerobic oxidation of alcohols, palladium catalyzes various oxidative transformations 

including epoxidation of alkenes, oxidation of terminal alkenes to ketones and other Wacker-type 

reactions, oxidation of alkanes, hydroxylation of benzenes, and oxidative coupling reactions.[29] 

Among the transition metals, palladium exhibits very promising catalytic properties in the form of 

heterogeneous metal catalysts or nanoparticles. For example, Uemura heterogenized Pd(OAc)2 on 

hydrotalcite (a naturally produced basic clay mineral) and applied it to the oxidation of allylic alcohols 

such as geraniol and nerol.[30] 

The general routes to nanoclusters/nanoparticles synthesis are based on the chemical reduction of 

transition metal salts with the suitable reducing agent in the presence of a stabilizer for the metal. 

The resulting stabilized metal nanoclusters dispersed in solution can be applied as catalysts as such 

or consequently heterogenized on solid supports through different methods, such as surface 

adsorption, covalent anchoring or embedding by sol–gel techniques. 

Several examples of palladium-based heterogeneous catalysts obtained by dispersion of the metal 

on an inorganic support have been recently reported, such as Pd/MgO[31] or Pd/Al2O3.[32] It should 

be noted that the preparation method of such catalysts is important for the catalytic performance.[33] 

A specific mechanistic study in the aerobic oxidation of benzyl alcohol by PdOx/Al2O3 in scCO2 as 

solvent was undertaken by Grunwaldt and co-workers, that helped to explain the structure–activity 

relationships at the solid/fluid interphase.[34] 

Supercritical CO2 was also studied by Leitner, who developed a quite different approach. He found 

that the giant palladium cluster, [Pd561Phen60(OAc)180], dispersed in poly(ethylene glycol) (PEG), 

efficiently catalyzes the aerobic oxidation of alcohols in scCO2 (Scheme 6.10).[35] 
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Scheme 6.10. Aerobic oxidation of alcohols catalyzed by PEG-stabilized Pd-nanoparticles in scCO2. 
 

In this biphasic system, the PEG matrix contains the catalyst (helping in preventing aggregation and 

deactivation of the catalytically active nanoparticles) while the scCO2 phase dissolves the substrate 

and the product (therefore providing a safe environment for the use of O2 under essential solvent-

free conditions and allowing continuous operation, even with substrates of low volatility). The author 

postulates that the high activity and long term stability of the novel catalytic system is due to the high 

dispersion of Pd-nanoparticles in the PEG phase during the reaction. A variety of alcohols were 

oxidized under these conditions. Both the catalyst matrix and the mobile phase utilized in this 

approach are toxicologically innocuous and environmentally benign materials, therefore making this 

approach particularly interesting for “green” nanoparticle catalysis. 

As previously mentioned, Sheldon recently demonstrated that, oppositely to the catalytic system 

based on the bathophenanthroline disulphonate ligand (Scheme 6.8),[21] his previously described 

homogeneous catalytic system based on Pd(II) acetate in combination with the more hindered 

neocuproine ligand actually involves palladium nanoparticles.[22] The substrate alcohol acts as the 

reducing agent and in situ generates Pd-nanoparticles which are the effective catalysts. The catalytic 

system based on neocuproine-stabilized palladium nanoparticles was applied to the oxidation of 

nandrolone (Scheme 6.11).[23] 

 

 

Scheme 6.11. Aerobic oxidation of nandrolone with Pd nanoparticles in aqueous media. 
 

In conclusion, much effort has to be done yet in order to study in detail the mechanisms involved 

when nanoparticles are formed in the reaction. Certainly, it is difficult to attribute the actual catalytic 

activity uniquely to the ligand bound palladium or to the palladium nanoparticles. 
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6.6 Outlook on Pd-catalyzed aerobic alcohol oxidations 

 

During the last years there has been a noteworthy increase of interest in the area of metal-catalyzed 

aerobic alcohol oxidations. In the area of homogeneous alcohol oxidations, the Sheldon’s Pd-

(sulphonated bathophenantroline) and the Sigman’s Pd(OAc)2/trimethylamine systems are the most 

ripe.  

Also, a notable effort has been made to supplant common organic solvents with alternative solvents 

such as ionic liquids, fluorinated solvents or supercritical CO2 or to conduct the oxidation reactions 

in water or without the use of any solvent at all. 

Moreover, the discovery that Pd nanoparticles are effective catalysts for the oxidation of alcohol 

moieties has expanded this research area in the search for new heterogeneous systems, that can 

allow recovery and reuse of the metal catalyst and the accomplishment of pure products. From a 

mechanistic point of view, not much work has been done to explain the fine details for many of the 

metal-catalyzed aerobic alcohol oxidations, except for Pd-catalyzed ones. Particularly for the new 

heterogeneous procedures involving nanoparticles, the exact nature of the active catalyst has still to 

be understood. While there has been an enormous amount of effort applied to the development of 

metal-catalyzed aerobic alcohol oxidations, many improvements can be still envisioned. To cite an 

instance, in order to apply these methods in target synthesis, the scope of the individual catalytic 

systems must be broadened to include more complex alcohols that are synthetically relevant, such 

as carbohydrates. Moreover, each method should be tested on a larger scale to explore its potential 

utility in the industrial processes. In this context it is possible to attribute the results recently published 

by Minnaard research group, depicted in this thesis (see chapter 7).[36]  

 

References 

[1] C. Parmeggiani, F. Cardona, Green Chem. 2012, 14, 547-564. 

[2] R. A. Sheldon, Chem. Ind. 1992, 23, 903-906. 

[3] R. A. Sheldon, I. Arends, U. Hanefeld, Green Chemistry and Catalysis, Wiley-VCH, 2007. 

[4] J.-E. Bäckvall, Modern Oxidation Methods, Wiley-VCH, 2004. 

[5] For reviews see: a) T. Mallat, A. Baiker, Chem. Rev. 2004, 104, 3037-3058; b) M. J. Schultz, M. S. Sigman, 

Tetrahedron 2006, 62, 8227-8241; c) T. Matsumoto, M. Ueno, N. Wang, S. Kobayashi, Chem.–Asian J. 

2008, 3, 196-214; d) C. P. Vinod, K. Wilson, A. F. Lee, J. Chem. Technol. Biotechnol. 2011, 86, 161-171. 

[6] a) A. T. Bell, Science 2003, 299, 1688-1691; b) R. Schlögl, S. B. A. Hamid, Angew. Chem., Int. Ed. 2004, 

43, 1628-1637; c) D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem., Int. Ed. 2005, 44, 7852-7872; d) V. 

Polshettiwar, R. Varma, Green Chem. 2010, 12, 743-754. 

[7] R. A. Sheldon, J. K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, New 

York, 1981. 

[8] J. A. Howard, Adv. Free-radical Chem. 1972, 4, 49. 

 

                                                            



Chapter 6                                                                        Pd-Catalyzed Aerobic Oxidation of Alcohols 

118 
 

                                                                                                                                                                                                     
[9] P. Mars, D.W. van Krevelen, Chem. Eng. Sci. Spec. Suppl. 1954, 3, 41. 

[10] a) Oxygenases and Model Systems (Ed.: T. Funabiki), Kluwer, Dordrecht, 1996; b) Metalloporphyrins in 

Catalytic Oxidations (Ed.: R. A. Sheldon), Marcel Dekker, New York, 1994; c) Metalloporphyrin Catalyzed 

Oxidations (Eds.: F. Montanari, L. Casella ), Kluwer, Dordrecht, 1994; d) M. Sono, M. P. Roach, E. D. 

Coulter, J.H Dawson, Chem. Rev. 1996, 96, 2841-2887. 

[11] R. A. Sheldon in Catalytic Activation and Functionalisation of Light Alkanes (Eds.: E.G. Derouane et al.), 

Kluwer, Dordrecht, 1998. 

[12] T. J. Collins, Acc. Chem. Res. 1994, 27, 279. 

[13] G. Cainelli, G. Cardillo, Chromium Oxidations in Organic Chemistry, Springer, Berlin, 1984. 

[14] P. Galletti, M. Pori, F. Funiciello, R. Soldati, A. Ballardini, D. Giacomini, ChemSusChem 2014, 7, 2684-

2689. 

[15] a) J. Muzart, Tetrahedron 2003, 59, 5789-5816; b) S. S. Stahl, Angew. Chem., Int. Ed. 2004, 43, 3400-

3420; c) S. S. Stahl, Science 2005, 309, 1824-1826. 

[16] M. S. Sigman, D. R. Jensen, Acc. Chem. Res. 2006, 39, 221-229 and references cited therein. 

[17] For a recent review on Pd(II)-catalyzed aerobic oxidations see: K. M. Gligorich, M. S. Sigman, Chem. 

Commun. 2009, 3854-3867. 

[18] K. P. Peterson, R. C. Larock, J. Org. Chem. 1998, 63, 3185-3189. 

[19] a) T. Nishimura, T. Onoue, K. Oheand, S. Uemura, Tetrahedron Lett. 1998, 39, 6011-6014; b) T. 

Nishimura, T. Onoue, K. Ohe, S. Uemura, J. Org. Chem. 1999, 64, 6750-6755. 

[20] T. Nishimura, K. Ohe, S. Uemura, J. Am. Chem. Soc. 1999, 121, 2645-2646. 

[21] a) G.-J. ten Brink, I. W. C. E. Arends, R. A. Sheldon, Science 2000, 287, 1636-1639; b) G.-J. ten Brink, I. 

W. C. E. Arends, R. A. Sheldon, Adv. Synth. Catal. 2002, 344, 355-369. 

[22] G.-J. ten Brink, I. W. C. E. Arends, M. Hoogenraad, G. Verspui, R. A. Sheldon, Adv. Synth. Catal. 2003, 

345, 1341-1352. 

[23] M. Mifsud, K. V. Parkhomenko, I. W. C. W. Arends, R. A. Sheldon, Tetrahedron 2010, 66, 1040-1044. 

[24] T. Iwasawa, M. Tokunaga, Y. Obora, Y. Tsuji, J. Am. Chem. Soc. 2004, 126, 6554-6555. 

[25] a) M. J. Schultz, C. C. Park, M. S. Sigman, Chem. Commun. 2002, 3034-3035; b) D. R. Jensen, M. J. 

Schultz, J. A. Mueller, M. S. Sigman, Angew. Chem., Int. Ed. 2003, 42, 3810-3813. 

[26] M. J. Schultz, S. S. Hamilton, D. R. Jensen, M. S. Sigman, J. Org. Chem., 2005, 70, 3343-3352. 

[27] H. Lebel, V. Paquet, J. Am. Chem. Soc. 2004, 126, 11152-11153. 

[28] D. S. Bailie, G. M. A. Clendenning, L. McNamee, M. J. Muldoon, Chem. Commun. 2010, 46, 7238-7240. 

[29] T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329-2364. 

[30] a) T. Nishimura, N. Kakiuchi, M. Inoue, S. Uemura, Chem. Commun. 2000, 1245-1246; b) N. Kakiuchi, Y. 

Maeda, T. Nishimura, S. Uemura, J. Org. Chem. 2001, 66, 6620-6625. 

[31] U. R. Pillai, E. Sahle-Demessie, Green Chem. 2004, 6, 161-165. 

[32] S. F. J. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson, A. F. Lee, Angew. 

Chem., Int. Ed. 2007, 46, 8593-8596. 

[33] H. Wu, Q. Zhang, Y. Wang, Adv. Synth. Catal. 2005, 347, 1356-1360. 

[34] J.-D. Grunwaldt, M. Caravati, M. Ramin, A. Baiker, Catal. Lett. 2003, 90, 221-229. 

[35] a) Z. Hou, N. Theyssen, A. Brinkmann, W. Leitner, Angew. Chem., Int. Ed. 2005, 44, 1346-1349; b) Z. 

Hou, N. Theyssen, W. Leitner, Green Chem., 2007, 9, 127-132. 



Chapter 6                                                                        Pd-Catalyzed Aerobic Oxidation of Alcohols 

119 
 

                                                                                                                                                                                                     
[36] a) M. Jager, M. Hartmann, J. G. de Vries, A. J. Minnaard, Angew. Chem. Int. Ed., 2013, 52, 7809-7812; 

b) N. Armenise, N. Tahiri, N. N. H. M. Eisink, M. Denis, M. Jäger, J. G. De Vries, M. D. Witte, A. J. Minnaard, 

Chem.Commun. 2016, 52, 2189-2191. 

 



CORRIGENDA 

 

List of additional references 

 

Paragraph 6.1, p. 107: “Oxidation reactions are among the most helpful and applied reactions in 

industrial processes… In addition, in view of a possible recycling of the catalyst, alternative solvents 

such as ionic liquids, fluorinated solvents and supercritical CO2 have been considered.”[i] 

 

Paragraph 6.2, pp. 107-108: “A homogeneous catalyst, that is usually a soluble metal complex, is in 

the same phase as the reactants, having the advantage to possess catalytic sites accessible to all 

reagents… Therefore, nanocatalysis is generally considered as the “bridge” between homogeneous 

and heterogeneous catalysis, because it offers a new sustainable alternative to customary 

materials.”[ii] 

 

Paragraph 6.3, pp. 108-111: “The ground state of dioxygen is a triplet containing two unpaired 

electrons with parallel spins… This would obviate the need for a stoichiometric cofactor as a 

sacrificial reductant, i.e. it would amount to a Mars-van Krevelen mechanism in the liquid phase.”[iii] 

 

Paragraph 6.4, p. 112: “In the majority of catalytic oxidations simple metal salts are used as the 

catalysts… the desired catalytic pathway should compete effectively with the ubiquitous free radical 

autoxidation pathways.”[iv] 

 

Paragraph 6.5, p. 112: “Traditional methods to perform the oxidation of primary and secondary 

alcohols generally involve the use of stoichiometric quantities of inorganic oxidants… The focus in 

this section will therefore be on molecular oxygen.”[v] 

 

Subparagraph 6.5.1, pp. 113-115: “Generally, Pd(II) catalysis is one of the most evolved fields in the 

aerobic oxidation of alcohols. Much exertion has been dedicated to finding synthetically helpful 

methods… A recent study investigated the use of N,O-ligated Pd(II) complexes, which compared 

well with the previously reported N,N-ligands in the aerobic oxidation of 2-octanol on the gram 

scale.”[vi] 

 

Subparagraph 6.5.2, pp. 115-116: “Beyond the aerobic oxidation of alcohols, palladium catalyzes 

various oxidative transformations including… Certainly, it is difficult to attribute the actual catalytic 

activity uniquely to the ligand bound palladium or to the palladium nanoparticles.”[vii]  

 



Paragraph 6.6, p. 117: “During the last years there has been a noteworthy increase of interest in the 

area of metal-catalyzed aerobic alcohol oxidations… Moreover, each method should be tested on a 

larger scale to explore its potential utility in the industrial processes.”[viii] 

 

[i] C. Parmeggiani, F. Cardona, Green Chem. 2012, 14, 547-564. 

[ii] C. Parmeggiani, F. Cardona, Green Chem. 2012, 14, 547-564. 

[iii] Green Chemistry and Catalysis (Eds: R. A. Sheldon, I. W. C. E. Arends, U. Hanefeld), Wiley-VCH Verlag 

GmbH & Co. KGaA, 2007, pp. 134-136. 

[iv] Green Chemistry and Catalysis (Eds: R. A. Sheldon, I. W. C. E. Arends, U. Hanefeld), Wiley-VCH Verlag 

GmbH & Co. KGaA, 2007, pp. 136-137. 
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GmbH & Co. KGaA, 2007, pp. 138-139. 
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CHAPTER 7 

 

 

Deuteration Enhances Catalyst Lifetime in  

Palladium-Catalysed Alcohol Oxidation 

 

 

Aerobic oxidation of secondary alcohols catalyzed by the complex [(neocuproine)Pd(µ-OAc)]2-(OTf)2 

(neocuproine = 2,9-dimethyl-1,10-phenanthroline) proceeds under mild conditions, but competitive 

ligand oxidation leads to catalyst inactivation. In an effort to mitigate the oxidative degradation of the 

catalyst, an innovative deuterated neocuproine-ligated palladium complex is prepared. The catalyst 

palladium/2,9-CD3-phenanthroline has a 1.8 times higher turnover number than its non-deuterated 

counterpart in the aerobic alcohol oxidation of methyl glucoside and allows the regioselective 

oxidation with dioxygen as the terminal oxidant.[i] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[i] This chapter is an adaptation of the original paper: Nicola Armenise, Nabil Tahiri, Niek N. H. M. Eisink, 

Mathieu Denis, Manuel Jäger, Johannes G. De Vries, Martin D. Witte and Adriaan J. Minnaard, Chem. 

Commun. 2016, 52, 2189-2191. 
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7.1 Introduction 

 

The oxidation of alcohols to carbonyl compounds (aldehydes, ketones and carboxylic acids) is one 

of the most widely used synthetic transformations.[1] In an incessant search for more sustainable 

technologies, selective catalytic oxidations are environmentally attractive alternatives to those 

utilizing stoichiometric heavy-metal oxidants.[2] In this regard, palladium-catalyzed oxidations have 

turned out to be attractive due to the mild conditions and the high chemo-[3] and stereoselectivities.[4] 

Moreover, the use of air or oxygen as the terminal oxidant contributes to a more atom efficient 

process, producing water as the only by-product. 

Waymouth et al. recently reported that cationic palladium complexes[5] ligated by neocuproine 

ligands[6] catalyze the chemoselective oxidation of vicinal diols to α-hydroxy ketones at room 

temperature; α-hydroxy ketones are versatile synthetic intermediates and common functional groups 

in biologically active natural products.[7] 

In particular, Waymouth showed that [(neocuproine)Pd(OAc)]2[OTf]2 selectively oxidizes the 

secondary hydroxyl group of glycerol and 1,2-propanediol with excellent selectivity and yield.[8] 

Still on the issue of synthetically suitable natural feedstock, carbohydrate chemistry has always been 

an intriguing field of research. Especially, the selective oxidation of unprotected carbohydrates, of 

which pyranosides are the most important representatives, is a longstanding challenge in organic 

chemistry. The selective oxidation of the primary hydroxyl group in pyranosides has been well-

described.[9] In contrast, the selective oxidation of the secondary hydroxyl groups is extremely difficult 

and marginally known.[10] Since we wondered whether the approach of Waymouth would also be 

able to discriminate between multiple secondary hydroxyl groups, extending this work, we showed 

that the catalyst system is also able to discriminate between different secondary hydroxyl groups in 

the first catalytic, regioselective oxidation of unprotected pyranosyl glycosides to the corresponding 

ketosaccharides.[11]  

Although designed, and effective, for aerobic oxidation, the reactions using air or dioxygen require 

high Pd loadings up to 10 mol%.[5a,5c,8] This is caused by concomitant autoxidation of the ligand 

(Scheme 7.1). Oxidation of a methyl substituent via C-H insertion of Pd(II) hydroperoxide (4), 

followed by subsequent further oxidation, forms an inactive palladium complex (6). 

When employing other terminal oxidants, such as benzoquinone, oxidation of the ligand is much 

slower and the turnover number of the catalyst therefore considerably enhanced. However, the use 

of oxygen or air is highly desirable, in particular also for carbohydrate oxidation, as it strongly 

simplifies the isolation of the products. 

The presence of substituents at the 2 and 9 position of the phenanthroline ligand is critical. In this 

way, the dimeric pre-catalyst is in equilibrium with the active monomeric catalyst in solution. 

Palladium complexes ligated by unsubstituted phenanthrolines are inactive at room temperature.  
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Therefore, efforts were made to develop oxidation resistant 2,9-phenanthroline ligands, but with 

limited success. Also, Waymouth et al. reported a mono-trifluoromethyl substituted phenanthroline 

ligand and studied it in the palladium-catalyzed oxidation of 2-heptanol.[5c] The turnover number of 

this catalyst doubled, and no ligand oxidation was observed, however at the cost of a 3.7 times lower 

initial rate compared to 1. Furthermore, the ligand is difficult to access. 

 

Scheme 7.1. Ligand oxidation in palladium-catalyzed aerobic alcohol oxidation. 
 

Considering the requirement of substituents and their desired resistance against C-H activation, we 

realized that deuteration of the methyl groups in neocuproine could enhance the stability of palladium 

catalyst against autoxidation to such an extent that the aerobic alcohol oxidation, in particular of 

carbohydrates, would become feasible. 

The lower zero point energy of the deuterium-carbon bond compared to the hydrogen-carbon bond 

(around 5 kJ/mol) results in a higher activation energy for C-H bond cleavage manifested as a kinetic 

isotope effect.[12] In addition, as the deuterium-carbon bond is slightly shorter than the hydrogen-

carbon bond, also a steric isotope effect might be present.[13] Consequently, the deuterated catalyst 

should be more stable without changing its properties in catalysis. 

Hydrogen–deuterium (H–D) exchange reactions at carbon witnessed increasing attention since 

isotopically labelled compounds were recognized as having cumulative significance in NMR 

spectroscopy and mass spectrometry.[14] For example, deuterated compounds are widely used as 

efficient tools for mechanistic investigations of chemical reactions,[15] for mapping metabolic 

pathways[16] and for the structural elucidations of biological macromolecules.[17]  

The approach is reminiscent to deuteration strategies in drug development, that are used to enhance 

the stability of a drug in oxidative metabolism.[18] In synthesis, deuteration has been applied in 

specific cases to alter reaction selectivity.[19] The strategy of ligands deuteration for tuning their 

physicochemical properties is reported,[20] to the contrary there are a few papers on the use of 

deuterium as protecting or steering group to mitigate competitive ligands oxidation pathways.[21] 
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Besides, efficient deuterium labelling approaches are of high importance to prepare deuterated 

ligands. Browne et al. have described a practical perdeuteration of bipyridine and phenanthroline 

ligands with NaOD/D2O at high temperature.[22] More recently, Neranon and Ramström extended 

this method applying microwave heating.[23] 

 

7.2 Goal 

 

Herein we report that deuteration of neocuproine leads to a significant increase in turnover number 

in the aerobic Pd-catalyzed oxidation of methyl glucoside (7) and allows this reaction to be carried 

out using oxygen as the sole terminal oxidant (Scheme 7.2). 

 

 

Scheme 7.2. Regioselective aerobic oxidation of methyl α-D-glucopyranoside at room temperature. 
 

7.3 Results and Discussion 

 

7.3.1 Preparation of deuterated catalyst  

Deuteration of the methyl groups of neocuproine was carried out according to the procedure reported 

for a similar substrate, 6,6’-dimethyl-2,2’-bipyridine.[23] Treatment of 9 with aqueous sodium 

deuteroxide at 190 °C for 180 min in a microwave provided 9-d6 in 99% isotopic purity and 92% 

isolated yield. The degree of deuteration was determined by NMR using the residual solvent peak 

as internal standard. 

In their early work,[5a] Waymouth et al. found that comproportionation of (neocuproine)Pd(OAc)2
[6a] 

and the ditriflate analogue (neocuproine)Pd(MeCN)2(OTf)2
[24] in acetonitrile afforded the dimeric 

acetate-bridged complex [(neocuproine)Pd(μ-OAc)]2[OTf]2 1, which could be isolated and used in 

aerobic alcohol oxidations. Later, it was shown that dimer formation can be carried out in situ 

preceding the catalysis, and we followed the latter method for the preparation of the deuterated 

catalyst.[5c] The new deuterated neocuproine palladium precursor complexes 10-d6 and 11-d6 were 

prepared similar to their non-deuterated analogues. Complexation of ligand 9-d6 with palladium 

acetate gave 10-d6 in 87% yield (pure according to NMR and elemental analysis), and subsequent 

treatment of 10-d6 with triflic acid furnished 11-d6 in 93% yield (pure according to NMR, see 

Experimental Section). 
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7.3.2 Aerobic oxidation of 2-heptanol 

In order to accurately determine the difference in activity between the deuterated and the non-

deuterated catalyst, first, the oxidation of 2-heptanol under an oxygen atmosphere at room 

temperature was studied as a model reaction. This reaction is readily monitored by GC-MS, contrary 

to the oxidation of methyl α-D-glucopyranoside. 

As the goal was aerobic oxidation of carbohydrates, which is carried out in DMSO, we chose this 

solvent also for the oxidation of 2-heptanol (12, 1 mmol, 0.5 M). Deuterated catalyst 1-d12 (3 mol% 

of the Pd dimer) prepared in situ from the deuterated complexes 10-d6 and 11-d6 (3 mol% each) 

exhibited a turnover frequency (TOF) of 13 h-1. The conversion was 81% after 24 h (TON = 13.5, 

entry 1, Table 7.1). Waymouth and co-workers reported that the addition of water has an accelerating 

effect on the rate of diol oxidation but not on the rate of mono-alcohol oxidation, and that water 

(produced by oxygen reduction) does not inhibit the catalyst. In fact, the addition of molecular sieves 

even leads to a lower initial rate and conversion.[5a] 

Therefore, the oxidation of 12 (0.5 M) in DMSO in the presence of 1 mol% of water (with respect to 

DMSO) was evaluated. Under these conditions, 1-d12 showed a higher TOF (19 h-1) compared to 

the reaction in pure DMSO, and full conversion of 12 was reached in 14 h (entry 2, Table 7.1). 

Although an explanation for this improvement is currently lacking, we attribute it to this solvent 

system (Figure 7.1). 

Subsequently, the maximum turnover number for the deuterated catalyst was determined by 

doubling the amount of substrate to prevent complete conversion. The oxidation of 12 (1 M) 

catalyzed by 1-d12 (1.5 mol%) resulted in 68% conversion of 2-heptanol after 24 h (TON = 23). 

Compared to the activity of 1-d12, complex 1 shows a similar TOF (20 h-1) but during the course of 

the reaction the rate decreases to afford 84% conversion after 24 h (entry 4, Table 7.1). Since the 

oxidation of 12 with catalyst 1 did not result in full conversion, the maximum turnover number of 1 

could be directly determined (TON = 14). 

 

Table 7.1. Deuterated vs. non-deuterated neocuproine in the palladium-catalyzed aerobic oxidation of 2-heptanol (12).[a] 

 

 

Entry Solvent Pd cat. Conv. [%][b] TON TOF [h-1][e] 

1 DMSO 1-d12 81 13.5 13 

2 DMSO/H2O 1-d12 100[c] 17 19 

3 DMSO/H2O 1-d12 68[d] Max (23) - 

4 DMSO/H2O 1 84 Max (14) 20 

[a] Reaction conditions: 12 (1 mmol, 0.5 M), O2 (1 atm), Pd cat. (3 mol%), solvent, rt, 24 h. [b] Conversion determined by GC-MS 
(ratiometric method, see Experimental Section). [c] After 14 h. [d] Reaction conditions: 12 (2 mmol, 1 M), O2 (1 atm), Pd cat. (1.5 mol%), 
DMSO/H2O (1 mol% with respect to DMSO), rt, 24 h. After 30 h the conversion had not changed. [e] TOF determined by interpolation of 
reaction progress curves, see Experimental Section. 
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Figure 7.1. Reaction progress curves for the aerobic oxidation of 2-heptanol (12) with catalyst 1-d12 in DMSO (♦) 
and in DMSO/H2O (■) at room temperature. The reaction was carried out in quadruplo and the mean values were 
plotted. 
 

The comparison of the reaction curves highlights the improved stability of the new deuterated 

neocuproine palladium complex 1-d12 in the oxidation of mono-alcohols, against non-deuterated 1 

(Figure 7.2) and the increase in maximum turnover number for 1-d12 over 1 underlines this further. 

 

 

Figure 7.2. Reaction progress curves for the aerobic oxidation of 2-heptanol (12) with catalysts 1-d12 (■) and 1 (♦) in 
DMSO/H2O at room temperature. Reactions were carried out in duplo with the mean conversion being plotted. 
 

7.3.3 Aerobic oxidation of methyl α-D-glucopyranoside 

With these results in hand, we focussed on the oxidation of methyl α-D-glucopyranoside (7) under 

the same conditions. As we reported,[11] 7 is selectively oxidized at the C3 position and this permits 

accurate determination of the conversion by 1H-NMR. 

The oxidation of 7 (0.5 M) in DMSO-d6/D2O with 1-d12 (3 mol% Pd cat.) gave a TOF of 8 h-1 and full 

conversion to the sole product 8 within 14 h (entry 1, Table 7.2). Non-deuterated catalyst 1 under 

the same reaction conditions gave a slightly lower rate (TOF = 7 h-1) and a considerably lower 
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conversion (58% after 24 h, TON = 10, Figure 7.3). These results demonstrate the increased stability 

of 1-d12 in the oxidation of glucopyranosides as well. The TON for 1-d12 was determined by doubling 

the amount of glucopyranoside. The oxidation of 7 (1 M) catalyzed by 1-d12 (1.5 mol%) resulted in 

53% conversion of α-D-glucopyranoside after 24 h (TON = 18). 

For both substrates 7 and 12, turnover numbers of the deuterated catalyst are increased by a factor 

of at least 1.6 compared to the non-deuterated catalyst. 

 

Table 7.2. Catalyst efficiency in the selective oxidation of glucopyranoside (7).[a] 

 

Entry Pd cat. Conv. [%][b] TON TOF [h-1][e] 

1 1-d12 100[c] 17 8 

2 1 58 Max (10) 7 

3 1-d12 53[d] Max (18) - 

[a] Reaction conditions: 7 (1.25 mmol, 0.5 M), O2 (1 atm), Pd cat. (3 mol%), DMSO-d6/D2O, rt, 24 h. [b] Conversion determined by 1H-
NMR (ratiometric method, see Experimental Section). [c] After 18 h. [d] Reaction conditions: 7 (2.5 mmol, 1 M), O2 (1 atm), Pd cat. (1.5 
mol%), DMSO-d6/D2O, rt, 24 h. After 30 h the conversion had not changed. [e] TOF determined by interpolation of reaction progress 
curves, see Experimental Section. 

 

 

Figure 7.3. Reaction progress curves for the oxidation of glucopyranoside (7) with catalyst 1-d12 (■) and 1 (♦) in 
DMSO-d6/D2O (1 mol%) at room temperature. Reactions were carried out in duplo with the mean conversion 
being plotted. 
 

7.4 Conclusions 

 

Concluding, the straightforward deuteration of the methyl substituents in neocuproine allowed the 

development of a catalyst system (1-d12) that increased the turnover number in aerobic alcohol 

oxidation with at least 1.6 times and for methyl glucoside with 1.8 times.  
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The turnover frequency of the catalyst is similar, as expected, but as inactivation of the catalyst by 

intramolecular C–H activation is retarded due to the kinetic isotope effect, the catalyst 1-d12 has a 

longer lifetime. The increase in turnover number allows the aerobic oxidation of glycosides with 

acceptable catalyst loadings and this is a major practical advantage compared to the use of 

benzoquinone, as purification of the oxidation products is considerably simplified. 

Deuteration of neocuproine and other pyridine and phenanthroline-type ligands is so straightforward 

and inexpensive that neocuproine-d6 (9-d6) should find application in related catalytic oxidation 

reactions as well. Although the problem of ligand oxidation is not solved in this way, it is significantly 

relaxed. 

 

7.5 Experimental Section 

 

7.5.1 General methods and techniques  

All solvents used for syntheses, extractions and filtrations were of commercial grade, and used 

without further purification. Reagents were purchased from Sigma-Aldrich, TCI and Merck, and used 

without further purification. 

Microwave assisted syntheses were conducted in a CEM Discover Explorer Hybrid microwave.  

1H-, 13C- and 19F-NMR spectra were recorded on a Varian AMX400 (400 MHz, 101 MHz and 376 

MHz respectively) using CDCl3, CD3CN or DMSO-d6 as solvent. Chemical shift values are reported 

in ppm with the solvent resonance as the internal standard (CDCl3: δ 7.26 for 1H, δ 77.3 for 13C; 

CD3CN: δ 1.94 for 1H, δ 118.3 for 13C; DMSO-d6: δ 2.50 for 1H, δ 39.5 for 13C). Data are reported as 

follows: chemical shifts (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m 

= multiplet), coupling constants J (Hz), and integration.  

GC-MS measurements were performed with an HP 6890 series gas chromatography system 

equipped with a HP 5973 mass sensitive detector. GC measurements were made using a Shimadzu 

GC 2014 gas chromatograph system bearing a AT5 column (Grace Alltech) and FID detection. 

High Resolution Mass Spectrometry (HR-MS) measurements were performed with a Thermo 

Scientific LTQ OribitrapXL spectrometer. 

 

7.5.2 General procedure for synthesis of ligand 2,9-bis(methyl-d3)-1,10-phenanthroline (9-d6) 

N N N N

D3C CD3

NaOD/D2O (1 M)

190 oC (MW), 180 min

9 9-d6  

Neocuproine (9, 2.4 mmol, 500 mg) and 1 M NaOD/D2O (15 mL) were placed in a 40 mL pressure-

resistant glass ampoule. The ampoule was sealed with a silicone cap and placed into a microwave 

reactor and subjected to continuous irradiation with stirring at 190 °C for 180 min.  
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The reaction mixture was then allowed to cool to room temperature, followed by filtration of the 

produced white precipitation by vacuum filtration. The separated product 9-d6 was washed with water 

several times and dried under vacuum. Yield: 470 mg (2.19 mmol, 92%). The degree of deuteration 

was 99%; determined by 1H-NMR using the residual solvent peak (CDCl3) as internal standard. 

 

7.5.3 General procedures for synthesis of complexes 1, 10-d6 and 11-d6 

 

Synthesis of (2,9-bis(methyl-d3)-1,10-phenanthroline)Pd(OAc)2 (10-d6) 

 

A solution of 2,9-bis(methyl-d3)-1,10-phenanthroline (9-d6) (1.89 mmol, 400 mg) in anhydrous CH2Cl2 

(7 mL) was added to a solution of Pd(OAc)2 (1.72 mmol, 385 mg) in anhydrous toluene (35 mL) at 

room temperature under nitrogen. The mixture was stirred overnight and pentane was added to 

precipitate the complex. Solids were filtered off, washed with acetone and dried under vacuum to 

give 10-d6 as a dark yellow solid (660 mg, 1.5 mmol, 87% yield). 

 

Synthesis of (2,9-bis(methyl-d3)-1,10-phenanthroline)Pd(MeCN)2(OTf)2 (11-d6) 

 

To a slurry of 10-d6 (2.5 mmol, 1.1 g) in anhydrous acetonitrile (5 mL) was added a solution of triflic 

acid (6.2 mmol, 550 μL) in anhydrous acetonitrile (0.33 M, 19 mL) at room temperature under 

nitrogen. The mixture was stirred for 1 h and diethyl ether was added to precipitate the complex. 

Solids were filtered off and dried under vacuum to give 11-d6 as a light yellow solid (1.62 g, 2.31 

mmol, 93% yield). 

 

The complex [(neocuproine)Pd(OAc)]2[OTf]2 (1) was prepared and crystallized according to the 

literature procedure.[5a] 
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7.5.4 General protocol for aerobic oxidation of 2-heptanol (12) 

 

 

To a 20 mL vial with magnetic stirrer were added 10-d6 (26.32 mg, 0.06 mmol), 11-d6 (42.06 mg, 

0.06 mmol), DMSO (0.5 M, 4 mL) and H2O (1 mol%, 10 μL). The mixture was vigorously stirred at 

room temperature until the Pd complexes had dissolved completely. 

To two different 20 mL vials, equipped with magnetic stirrers, were added in each one Pd catalyst 

solution (2 mL, 3 mol%) and 2-heptanol (12) (142 μL, 1 mmol). The reaction mixtures were vigorously 

stirred at room temperature under a balloon of oxygen. During the reactions, aliquots were taken, 

quenched by dilution into ethyl acetate, and subjected to GC analysis to determine the conversion 

of 12. 

 

7.5.5 General protocol for aerobic oxidation of methyl-α-D-glucopyranoside (7) 

 

 

To a 20 mL vial with magnetic stirrer were added 10-d6 (32.91 mg, 0.075 mmol), 11-d6 (52.58 mg, 

0.075 mmol), DMSO-d6 (0.5 M, 5 mL) and D2O (1 mol%, 12 μL). The mixture was vigorously stirred 

at room temperature until the Pd complexes had dissolved completely.  

To two different 20 mL vials, equipped with magnetic stirrers, were added in each one methyl-α-D-

glucopyranoside (7) (243 mg, 1.25 mmol) and Pd catalyst solution (2.5 mL, 3 mol%). The reaction 

mixtures were vigorously stirred at room temperature under a balloon of oxygen. During the 

reactions, aliquots were taken, quenched by dilution into DMSO-d6, and subjected to 1H-NMR 

analysis to determine the conversion of 7. 

 

7.5.6 Determination of reaction progress 

The reaction progress in the aerobic oxidation of both the substrates, 2-heptanol (12) and methyl-α-

D-glucopyranoside (7), was determined using a ratiometric method, shown by the following equation: 

 

% conversion = [areasubstrate / (areaproduct + areasubstrate)] × 100 

 

This equation is valid because:  

1) 2-heptanol (and methyl-α-D-glucopyranoside) is converted selectively to 2-heptanone (or methyl-

α-D-ribo-hexapyranoside-3-ulose); 
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2) equimolar amounts of 2-heptanol and 2-heptanone produce the same FID response in GC-MS. 

In cases where the secondary alcohol and its corresponding ketone produce different detector 

responses, it is necessary to account for this using a response factor. 

 

7.5.7 Reaction progress curves with indicated standard deviations 

 

 

Figure 7.4. Reaction progress curves for the aerobic oxidation of 2-heptanol (12) with catalyst 1-d12 in DMSO (♦) and in 
DMSO/H2O (1 mol% with respect to DMSO) (■) at room temperature. Reactions were carried out in quadruplo and the 
mean conversion and the standard deviation are plotted. 
 

 

Figure 7.5. Reaction progress curves for the aerobic oxidation of 2-heptanol (12) with catalysts 1-d12 (■) and 1 (♦) in 
DMSO/H2O (1 mol% with respect to DMSO) at room temperature. Reactions were carried out in duplo and the mean 
conversion and the standard deviation are plotted. 
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Figure 7.6. Reaction progress curves for the oxidation of glucopyranoside (7) with catalyst 1-d12 (■) and 1 (♦) in DMSO-
d6/D2O (1 mol% with respect to DMSO) at room temperature. Reactions have been carried out in duplo and the mean 
conversion is plotted. 
 

7.5.8 Interpolation of reaction progress curves for determination of initial TOF 

 

 

Figure 7.7. Interpolation of reaction progress curves for the aerobic oxidation of 2-heptanol (12) with catalyst 1-d12 in 
DMSO (♦) and in DMSO/H2O (1 mol%) (■) at room temperature. 
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Figure 7.8. Interpolation of reaction progress curves for the aerobic oxidation of 2-heptanol (12) with catalysts 1-d12 (■) 
and 1 (♦) in DMSO/H2O (1 mol%) at room temperature. 
 

 

Figure 7.9. Interpolation of the reaction progress curves for the oxidation of glucopyranoside (7) with catalyst 1-d12 (■) and 
1 (♦) in DMSO-d6/D2O (1 mol%) at room temperature. 
 

7.5.9 Characterization data of ligand (9-d6) 

 

2,9-bis(methyl-d3)-1,10-phenanthroline 

Off-white solid; 1H NMR (400 MHz, Chloroform-d) δ 8.11 (d, J = 8.2 Hz, 2H), 7.69 

(s, 2H), 7.48 (d, J = 8.2 Hz, 2H); 13C NMR (101 MHz, Chloroform-d) δ 159.1, 

145.2, 136.1, 126.7, 125.3, 123.3, 25.0; HRMS (ESI+) Calcd. for C14H6D6N2 ([M 

+ H]+): 215.145, found: 215.145 (100%); elemental analysis calculated (%) for C14H6D6N2 (214.30): 

C 78.47, H (corrected for deuterium) 2.82, N 13.07; found: C 78.58, H 2.81, N 13.31.  

 

7.5.10 Characterization data of complexes 1, 10-d6 and 11-d6 

 

[(2,9-Dimethyl-1,10-phenanthroline)Pd(µ-OAc)]2(OTf)2 (1) 

 

Characterization matches literature. Purity confirmed by element analysis.[5a]  

Elemental analysis calculated (%) for C34H30F6N4O10Pd2S2 (1045.582): C 39.06, H 2.89, N 5.36, 

found: C 38.97, H 2.87, N 5.57. 
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 (2,9-bis(methyl-d3)-1,10-phenanthroline)Pd(OAc)2 (10-d6) 

Pale brown solid; 1H NMR (400 MHz, Chloroform-d) δ 8.37 (d, J = 8.4 Hz, 2H), 

7.86 (s, 2H), 7.41 (d, J = 8.4 Hz, 2H), 2.05 (s, 6H, 2CH3COO-); 13C NMR (101 

MHz, Chloroform-d) δ 178.56, 165.21, 147.26, 138.56, 127.98, 126.81, 126.48, 

23.09; HRMS (ESI+) Calcd. for C18H12D6N2O4Pd ([M + H]+): 439.075, found ([M - CH3COO- + H]+): 

379.054 (100%), ([M - 2CH3COO- + H]+): 320.041 (28%); elemental analysis calculated (%) for 

C18H12D6N2O4Pd (438.81): C 49.27, H (corrected for deuterium) 2.76, N 6.48, found: C 49.57, H 3.08, 

N 6.89. 

 

(2,9-bis(methyl-d3)-1,10-phenanthroline)Pd(CH3CN)2(OTf)2 (11-d6) 

Pale yellow solid; 1H NMR (400 MHz, Acetonitrile-d3) δ 8.69 (d, J = 8.4 Hz, 

2H), 8.08 (s, 2H), 7.78 (d, J = 8.4 Hz, 2H); 1H NMR (400 MHz, DMSO-d6) δ 

8.87 (d, J = 8.3 Hz, 1H), 8.79 (d, J = 8.4 Hz, 1H), 8.28 (s, 1H), 8.16 (s, 1H), 

7.96 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 2.06 (s, 6H, 2CH3CN); 13C 

NMR (101 MHz, DMSO-d6) δ 164.75, 163.18, 144.95, 140.15, 128.88, 128.54, 127.47, 127.22, 

127.07, 126.72, 125.54, 122.34, 119.13, 118.13, 115.93, 1.19; 19F NMR (376 MHz, Acetonitrile-d3): 

δ -79.30 (s); HRMS (ESI+) Calcd. for C20H12D6F6N4O6Pd2+S2 ([M + H]+): 701.006, found ([M - 2CH3CN 

- 2CF3SO3
- + H]+): 321.048 (100%), ([M - CF3SO3

- - 2CH3CN]): 468.992 (34%); As acetonitrile slowly 

evaporated from the complex even at low temperature, a correct elemental analysis could not be 

obtained. This has been noted before, see ref 5a.  
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