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Abstract

The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly
deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these
phenomena are very important to understand the recent decay of the geomagnetic field.
The thesis concerns also the dynamics of the outer core and some very rapid changes
of the geomagnetic field observed in the Earth’s surface and some aspects regarding the
(likely) isotropic turbulence in the Magnetohydrodynamics. These topics are related to
the Dynamo Theories and could be useful to investigate the geomagnetic field trends.
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Introduction

The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly
deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that
these phenomena are very important to understand the recent decay of the geomagnetic
field. The thesis concerns also the dynamics of the outer core and some very rapid
changes of the geomagnetic field trend observed in the Earth’s surface and some aspects
regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These topics
are related to the Dynamo Theories and could be useful to investigate the geomagnetic
trends.

In Chapter 1 we introduce the Magnetic Field of the Earth and the Dynamo Theo-
ries. More specifically, we briefly describe the main sources of the Magnetic Field of
the Earth, we recall Maxwell equations in the Earth core and we derive the Magnetic
Induction Equation by making some suitable geophysical approximations. We Finally,
in a particular case, we discuss some properties and features of the geomagnetic field
as the decay times.

The aim of Chapter 2 is to extend a methodology about Random Forcing in isotropic
turbulence in order to understand better the dynamics of the fluid Earth’s Core. We
explain some previous studies and computational methods aimed to study some tur-
bulence problems. These methods use the "Random forcing" techniques in order to
investigate on the isotropic turbulence of Navier-Stokes equation. The purpose is to
adapt these methods to treat isotropic turbulence in Magnetohydrodynamics by mod-
ifying in a suitable way some codes used by M. Maxey(see e.g.Ruetsch and Maxey,
1991).

In Chapter 3 we deal with some turbulent dynamo theory problems. In other words,
we discuss how some small scale phenomena affect the trend of the geomagnetic field.
We study the temporal behaviour of the geomagnetic field in the last few millennia
in the context of turbulent dynamo theory. We consider several global geomagnetic
models concerning up to 14000 years. In particular we analyze the recent trend of the
dipolar geomagnetic field, in order to find some evidences for a turbulent diffusivity.
This work contributes, in an original way, to improve the knowledge of the geodynamo
turbulent regime and helps to understand how much of this regime can be observed in
the recent geomagnetic field. Moreover our approach uses a new method and our study
concerns a temporal interval greater than the interval considered by previous works.

In Chapter 4 we consider some large scale dynamo theory problems. We use an
optimization method in order to estimate the rapid changes of the dipolar geomagnetic
field. This method was firstly developped by P.W. Livermore, A. Fournier and Yves
Gallet ( Livermore et al., 2014) in order to evaluate the maximum of the intensity
variations and to search the links between the outer core dynamics and rapid changes
of the geomagnetic field. Here we modify this method in a suitable way to our setting
and we present the related results. This extension is new, flexible and it could have
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interesting applications.



Chapter 1

The Earth’s Magnetic Field:
Dynamo Theories

1.1 Introduction

The geomagnetic field is an important property of our planet and it is shared with other
planets in the solar system and with the Sun itself. We can use the magnetic compass
because the magnetic field is a vector quantity, so it has a magnitude and a direction;
this feature requires to introduce a suitable reference frame to describe properly the
geomagnetic field as the following:

X, north

By,

y, east

7z, down

Figure 1.1: Reference frame for the magnetic field. 1 is the inclination or latitude. D is the
declination or longitude (Figure by Parker, 2005).



12 1. The Earth’s Magnetic Field: Dynamo Theories

If B is the magnitude of the geomagnetic field B, D is the declination and [ is the
inclination, by the Figure 1.1 we can easily deduce that

B, = BcosIcosD

By = BcosIsinD
B, =Bsinl
1.2 Magnetic Induction Equation

In this section we deduce and analyze the Magnetic Induction Equation in a similar
way as it is done in Gubbins and Roberts, (1987).

magnetosphere

Figure 1.2: Schematic representation of the different sources responsible for the Earth’s magnetic field.

In the Earth the main sources of the magnetic field are located in the outer Core
(see Fig. 1.2), namely the fluid region inside the Earth between 3000 and 5000 km
depth. This region is constituted mainly of iron and its compounds although there are
also other material like Mg, Ni, O, S, Si; however the concentration of these materials
is much less than that of iron and its compounds.

Material Tc [K]
Fe 1043
FeSi 1043
Fe5 Sig 385
FesSi 799
Ni 629
Magnetite Fe3Oy4 850
Hematite a-FeoO3 943

Table 1.1: Curie temperatures of some materials in the Earth (For references see e.g. Blaney,
2007, Heller, 1967, Kolel-Veetil and Keller, 2010, Pan et al., 2000)
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Figure 1.3: Temperature vs depth (Figure by http://www.nhn.ou.edu/~jeffery/astro/astlec/lec01 1/earth_004_temperature.png).

See e.g. Ganguly, (2009) and Dziewonski and Anderson, (1981) for references on
the Earth Interior temperature gradient and on the Outer Core.

In order to deduce the most important equations in the Dynamo Theory, firstly we
recall the Maxwell Equations:

V:-D =p,

V-B =0 (LD
5 .

VxE =-2

— oD
V xH _J+W

Where D = ¢E, B = pH, p. is the electrical density and J is defined by the
well-known Ohm’s law, namely

J=0E+o(vxB) (1.2)

Here D is the electric displacement, E and B are the electric and magnetic field, H
is the magnetizing force and J is the electric current density vector. If we look at Fig.
1.4 and Table 1.1, we can state that the temperature in the core is much higher than
the typical Curie temperatures of the materials compounding the core itself; this fact
allow us to say that, in the outer core, the magnetic permeability is almost equal to the
vacuum magnetic permeability and also the dielectric permeability is almost equal to
the vacuum dielectric permeability, namely

B =uH ~ yoH (1.3)

and
D =¢E ~ ¢E (1.4)

If we introduce some suitable spatial and temporal scale L and 7', we can define the
orders of magnitude of the L.H.S. and of V x E and of %—? in this way:

&
El~ — 1.
|V x El I (1.5)



14 1. The Earth’s Magnetic Field: Dynamo Theories

and OB A
— |~ = 1.6
‘ ot T (1.6)

where B and £ are the typical mean values of the magnetic and electric field. The III
Maxwell’s equation and a comparison between (1.5) and (1.6) lead to:

& L
= 1.7
B T (4.7)
So, bearing in mind the (1.3), (1.4) and the (1.7) we can state that
2P|
ﬁ ~ eopo(L/T)? (1.8)

But from electromagnetic theory eqpg = 1/c?, where c is the light speed; the typical
geomagnetic length-scales and time-scales allow us to say that the ratio (L/T) is < ¢
(for references see e.g. Backus et al., 1996 and Parker, 2005); in other words in Geo-
magnetism we can neglect the displacement current.

VxH=~J (1.9)

The expression written above is called Magnetohydrodynamic approximation. By tak-
ing the curl of the IV Maxwell’s equation and bearing in mind the (1.2), (1.3) and the
(1.9) we obtain:

B 1,

The equation (1.10) is called Magnetic Induction Equation and it is the most im-
portant equation in the Dynamo Theory and in Magnetohydrodynamics.
1.2.1 Toroidal and poloidal vectors. Free decay modes for a sphere
The B field is divergenceless, so it can be separated into toroidal and poloidal part.

BZVX’L/)TI‘+V><(VXTZJPI'):BT+BP (1.11)

Now, it is convenient to use the spherical coordinates (r, 8, ¢), where r is the radius, 6
is colatitude and ¢ is the latitude.

_ 1 9yr OYr
Br = (O’ sinf d¢ = 00 ) (1-12)

Bp = (Pwp 15rve) 1 a%T¢P)> (1.13)

r 'r 000r 'rsinf O0@or

where [? is the angular-momentum operator in quantum mechanics, namely

P?=- L 0 sin@2 +L872
- sin 6 96 00 sin? 0 0¢?

Note that the toroidal field Bt cannot be measured on the Earth’s Surface, because its
radial component vanishes.




1.2 Magnetic Induction Equation 15

Now, if we consider the simple case where v = 0, the (1.10) is equal to the well-known

diffusion equation

B
887 =nV’B (1.14)

withn = %; it is very easy to prove that any solution of the (1.14) can be written like
the (1.11) where ¥ and ¥ p are solutions of the following equations:

9or = V24
(1.15)
9r = nV2yp
The (1.15) can be solved by some standard techniques described e.g. in Gubbins and

Roberts, (1987). After developping these techniques we can state that two solutions of
the (1.15) are:

o) 1
Pr(r,0,0,8) = >3 7 (r)yum (0 Ze*t/m (1.16)

=1 m=0
0o l
Yp(r0,6,8) = > 0" (r)yim (0 Ze‘t/m (1.17)
1=1 m=0
where
(0.6) = [EHDE=mD? 1 L d oo 1)
Yo7 )= (U + m)! 2111 d(cos B)1+1ml
]ﬂTT
=h m
tmJi (Rc)
ka
p *qlmjl R
and )
R¢
Tyl = W (118)

where h;,, and q;,,, are constants, j; are the Bessel functions of half-integer order,
R¢ is the radius of the outer core, k1 and kp are the solutions of the equations:

Jilkr) =0 (1.19)
Ji-1(kp) =0 (1.20)

7, are the decay times and each k"' is the v-th solution of the equations (1.19), (1.20)
Equations (1.18)-(1.20) can be easily derived according to Gubbins and Roberts,
(1987), by using the following property of the Bessel functions (see e.g. Abramowitz
and Stegun, 1970)
Ji(x)
T

ji(z) + (1 +1)

and reminding these important continuity conditions of the electromagnetic fields:

= ji—1(x) (1.21)
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[7-B]=0 su r=Ry (1.22)
[AxB]=0 su r=Ry (1.23)
[ x E] =0 su r=Rpn (1.24)
[7-J]=0 su r=Rpy (1.25)
[f-E] #0 su r=Rn (1.26)

where [ | denotes the jump across the Outer Core Surface.

1.3 Internal and external sources

We said in Section 1.2 that the main sources of the Geomagnetic Field are in the Outer
Core. However, there are some relevant geomagnetic field sources also in the iono-
sphere, the region of the upper atmosphere where the ionization is much greater than in
the low atmosphere. Indeed, this great ionization creates several electric currents (see
Fig. 1.2). In other words, the main sources of the geomagnetic field are in the Outer
Core (internal sources) and in the Ionosphere (external sources). From (1.9), we can
formalize this fact in the following way:

VXB(T,9,¢):O if Roy <r < Rjon
V x B(T,e,(b) = uoJco if Riep<r<RcmuB (1.27)
V x B(T,@, ¢) = poJion if 72> R

where R B is the radius of the Outer Core, R;¢c g is the radius of the Inner Core,
R;on is the radius of the Ionosphere (by CMB we mean the Core Mantle Boundary,
and by ICB the Inner Core Boundary). So, the B can be represented as a conservative
field, if Roprp < 1 < Rjon. This fact together with the II Maxwell’s equation, allow
us to state that if Roygp <7 < Rion:

B=-VV
V2V =0 (1.28)
V= ‘/int + ‘/ext
where:
Ni n a\nt1
Vint = @ Z (7) (gnm cos(me) + hpm sin(me)) P (cos 6) (1.29)
T
n=1m=0
and
Ni n r n
Vet = a Z Z (5) (Grm cos(me) + Spm sin(mae)) P2 (cos ). (1.30)

n=1m=0
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1.4 Spatial and temporal spectra of the Geomagnetic
Field

According to the contribution of De Santis et al., (2003), we can introduce the spatial
and temporal spectra of the Geomagnetic Field. The spatial spectrum of the Geomag-
netic Field and of its first temporal derivative B are:

(B => (B2) (B2)=(n+1)Y_ (9o + Do) (1.31)
m=0

n

(B2) =Y (B2) (B2 = (n+1) Y (3 + ) (1.32)

n m=0

where Gmn and h,,, are the coefficients defined at the end of the previous section and
Jmn and h,,,, are their time derivatives. It is possible to express:

(B2) = ke (1.33)

(B2) = K'eo'™ (1.34)

where k, k/, « and o’ are suitable parameters. It is important to note that by means of
the geomagnetic spatial spectrum we can distinguish core from crustal fields (see e.g.
De Santis et al., 2016 ).

7 Outer Core

Energy density (nT)*

Figure 1.4: Energy density vs n.
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By the (1.33) and (1.34) we can define the temporal spectrum in the following way:

(B2) o< (M) = w,” (1.35)

n

[k / 2
wp =4/ —e (@72 and v = e
k a—a

where



Chapter 2

Random forcing in isotropic
turbulence and
Magnetohydrodynamics

In this chapter we describe a methodology about Random Forcing in isotropic turbu-
lence in order to highlight the dynamics of the fluid Earth’s Core. We explain some
previous studies and computational methods aimed to study some turbulence prob-
lems. These methods use the "Random forcing" techniques in order to investigate on
the isotropic turbulence of Navier-Stokes equation. Our aim is to discuss how much
is important the the turbulence in Magnetohydrodynamics and how can be observed in
the trend of the Geomagnetic Field.

2.1 A first approach to homogeneous isotropic turbu-
lence

There are several works that used the Random Forcing methods to study the rotational
form of the Navier-Stokes equation, namely:

ov B p 1 5 9
a+wxvf V<p+2|v>+z/Vv 2.1

Firstly, we briefly explain a method to study a problem in homogeneous isotropic tur-
bulence developped in Ruetsch and Maxey, (1991). This method for simplicity’ s sake
uses a simplified geometry. It considers a cube of side L = 2, that is discretized

into N3 grid points, with periodic boundary conditions in all three directions. The grid
points in physical space are defined as

L. L. L
(xivijzk) - (NZ’ N]v Nk) (22)

where ¢, j,k = 1,2, ..., N. The grid points in Fourier space, or wave-number compo-
nents, are of the form:
ki = +n;(2n/L) (2.3)
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where n; = 0,1,2,...,N/2 for i = 1,2, 3. Data specified at the physical grid points,
such as the velocity field v(r, t), can be transformed to Fourier space by

1

(k1) = 13 > v(r,t)exp(—ik 1) (2.4)

and the Fourier coefficients v (k, t) can be transformed back to physical space by

v(r,t) = % > v(k,t)exp(ik - T) (2.5)
k

Such transformations are of order (N?3)? operations, but with the use of FFT’s the
operation count is reduced to N3 In(N?3) operations.

2.2 Random Forcing and Turbulence in Magnetohydri-
dynamics

A possible application to Magnetohydrodynamics is to use the method, described in
the section 2.1, in order to study a system like this:

P twxv=-V(Z+ivP)+rV3v+ L (VxB)xB
(2.6)
9B — L ¢2B 4V x (v x B)

ot o Ko

In other words, if we suppose that in the velocity field of the outer core, there is a
random part, that creates a turbulence we can try to solve, also under suitable approxi-
mations, the system (2.6) and then compare the Geomagnetic Field, we found with the
observed Geomagnetic Field; this , can help us to understand whether the Outer Earth’
Core is in a turbulent regime or not.

There is also another way to investigate on the (supposed) turbulence in the core: we
consider the the main equations of the Dynamo Theories when the geodynamo is in
a turbulent state, we put, atfer assuming some hypothesis, these equations in a more
handy way, and then we deduce from then what we expect about the behaviour of the
geomagnetic field in these turbulent conditions. Finally, we analyze the trend of the
geomagnetic field in order to check whether this trend is consistent with a "turbulent
geodynamo" or not. For logistical reasons, we chose to use this second way in order to
investigate on the turbulence in the core; we present the methodology and the results in
Chapter 3.



Chapter 3

Turbulent diffusive regime of
the geomagnetic field during the
last millennia

In this chapter we report the study of the temporal behaviour of the geomagnetic field
in the last few millennia in the context of turbulent dynamo theory, in order to estab-
lish whether the corresponding geomagnetic field is in a turbulent diffusivity regime
or not. In the positive case, this would support the possibility of an imminent geo-
magnetic reversal of the present polarity of the field, as some recent papers prospected
this possible event (Hulot et al., 2002; De Santis et al., 2004; De Santis, 2007; but see
also Constable and Korte, 2006 ). To do this, in the next section, in order to introduce
the problem and to explain the meaning of what we call “turbulent diffusivity”’we will
recall the foundations of the theory of the turbulent phenomena in the Earth’s fluid core
i.e. how the geomagnetic field is generated and sustained. This turbulence is a conse-
quence of the strong non-linear interactions among the physical quantities involved in
the generation of the planetary magnetic field as shown in section 3.1. In the section 3.2
we will analyse several global models to look at some properties of the diffusive part
of the field in the last years: more specifically we analyse models of the geomagnetic
field for the last 3000, 7000, 10000 and 14000 years. Finally, in the section 5 we will
attempt to establish a connection between our results and the theoretical predictions of
a turbulent geomagnetic field in the Earth’s outer core, together with some discussion
about possible improvements of the present work.

3.1 Magnetic induction equation and diffusion

In the outer core the dynamics of the Earth’s magnetic field B is determined by the
well-known magnetic induction equation, already derived in Section 1.2

%—?:WQB+VX (V x B) (3.1)

where V is the velocity field of the fluid core, n = alm is called “magnetic diffusivity”

or “coefficient of ohmic diffusion of the magnetic field”, o is the electrical conductivity
and g is the vacuum magnetic permeability. The first part of the R.H.S. of the (3.1) is
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a diffusive term, namely a term that gradually extinguishes the field; the second part of
the R.H.S. is the “inductive term” and may contribute in producing (and possibly in-
tensifying) new field. However, in some particular turbulence situations, the inductive
term may increase the diffusion: we will better explain this concept below in a simi-
lar way as it was explained by different authors (Moffatt, 1978; Radler, 1968a; Ridler,
1968b). When we have a turbulent situation the detailed properties of the main physical
quantities (B, V, etc.) are too complicated for either analytical description or obser-
vational determination, so we have to determine these in terms of their given statistical
(i.e. average) properties. First we introduce some suitable spatial and temporal scales,
L and T, respectively. L is a "global’ spatial scale, namely is of the same order as the
linear dimension of the region occupied by the conducting fluid: L = O(R¢), where
R is the radius of the outer core. T is the time-scale of variation of the various fields
composing the whole geomagnetic field produced in the outer core. The turbulence
phenomena are generally confined in a length-scale [y < L and in a temporal scale ¢
< T'. We may also define two intermediate scales a, t1 satisfying

lp<<a<k L

to<t1 T

So we can reasonably suppose that in a sphere of radius a or in a time ¢; the mag-
netic and velocity fields are weakly varying. Therefore we can, in general, define the
following averages for a certain quantity F'(r, t)

3
(F(r,t))e = / F(r+1' t)dr’ (3.2)
4ra’ Ir'|<a
I
(F(r,t)), = T F(r,t+ 7")dr’ (3.3)
—t1

In the next considerations we will not specify if we are making a temporal or spatial
average; so we will not use the suffix a or ¢1, and from now on we use the more compact

notation
F

—~

F)
and the following relations:

+F,F=F F =0

!

F =

F+G=F+0C, FG=FG, FG' =0
FG=FG+F'Q&
where G is another fluctuating field. Some of the previous relations hold only in an
approximate sense (as in the asymptotic limits lo/L — 0 and to/T — 0). The aver-
aging operator commutes with the differential and integration operators in both space
and time.

Having thus defined a mean, either the velocity or the magnetic field may be sepa-
rated into mean and fluctuating parts:

V(r,t) = Vo(r,t) + v(r,t), (v)=0 (3.4)

B(r,t) = Bo(r,t) + b(r,t), (b)=0 3.5)



3.1 Magnetic induction equation and diffusion 23

where V and B have longer time and space scales than those of their associated fluc-
tuating parts. By means of (3.4) and (3.5) we can decompose the magnetic induction
equation (3.1) into its mean and fluctuating parts:

0By

W:Vx (Vo x Bo) + V x A +1V?Byg (3.6)
ob 9
a:Vx(vao)+Vx(Voxb)+nVb+V><C 3.7)
with
A=vxb
and
C=vxb-A

The term A, sometimes called mean electromotive force, is the most important part
of the equation (3.7) because it describes the coupling between the fluctuating velocity
and magnetic field; as we will show in more detail in the Appendix A, this term may
be developed as a series involving temporal and spatial derivatives of By and may be
represented as a sum of a power series of ascending powers of |v|™ with n > 2. These
manipulations are performed in order to rewrite in this manner the equation (3.6)

% =V x (Vo X B0)+(77+6)VQB0+ 3.8)
with 3 > 0, that we call "turbulent diffusivity " (see Appendix A).

Therefore, as mentioned at the beginning of section 3.1, in particular turbulent
situations the inductive term may generate a “turbulent diffusivity”, namely it may
increase the diffusion whereas, as we have reminded at the beginning of this section, in
other conditions it may intensify the field. This phenomenon is also called “(-effect”
(see e.g. Gruzinov and Diamond, 1994 or Leprovost and Kim, 2003). The fact that
these inductive and diffusive terms of (3.1) are in cooperation or in competition, is an
interesting aspect of the Earth’s magnetic field. This interplay between cooperation and
competition is a typical feature of complex systems, as it is explained for example in
De Santis (2009): therefore, in this sense, the geomagnetic field may be considered a
complex system (see also Baranger, 2001 for a general definition of a complex system).
In the Appendix A we will derive also the following special case, at the order O(|v|?),
of the (3.8) for each i-th component of the geomagnetic field :

oB;
ot

(77 + EWC(OO))V2§' 4 & <8V|26ﬂ _ 8|V|2833>
3 1

3 al‘j 8:}@ 8xj 8,@2

a® [ o OB, 0lv|]2 — 9*v]?
B,V?[v|? ’ —B.
+ 3 ( v |V| + (’)mj al‘j j@x‘jaxi
a®Y [ 9?v|2 9B, »—0B;  0|v|? 9°B;
— 2 ’ . 3.9
3 (axjaxi A R T r T I 9

where the Einstein summation convention on the repeated indices is adopted; the coef-
ficients a(°9), a(OV), ¢(90) depend on the geometry of the outer core and on the turbulent
velocity field and the term ¢(°9) is connected with /3; this expression, as we will say
in the section 5, might be a good starting point for future developments of the analysis
described in the next section.
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3.2 Global models analysis

In this section we report the analysis of some global models of the geomagnetic field.
In particular, we analyse 3 types of CALS models: CALS3k (see Korte and Constable,
2003 and Korte et al., 2009), CALS7k (Korte and Constable, 2005) and CALS10k (Ko-
rte et al., 2011); these models cover the last 3000, 7000 and 10000 years, respectively.
Then, we analyze the SHA.DIF.14k model (Pavon-Carrasco et al., 2014) that covers
14000 years and pfm9k.1 model (Nilsson et al., 2014) that covers 9000 years. We also
analyse the IGRF model to have a more detailed look at the last 100 years (Finlay et
al., 2010). Our main purpose was to estimate the relaxation times at epochs when the
geomagnetic field was significantly decaying. First, as a simple working hypothesis,
we suppose that when the field is in this specific situation only the diffusive term of
equation (3.1) will be present. Second, we analyse the typical time scales of the cor-
responding geomagnetic dipole field decay. We would then expect that the relaxation
times are those typical of a diffusive regime. If we do not find this, (as actually it will
be) we will interpret the results in terms of the presence of some "turbulent diffusivity".
More discussion on these aspects will be given below.

3.2.1 Paleomagnetic and IGRF models

The CALS models are continuous global models of the geomagnetic field defined as
spherical harmonics in space of the scalar magnetic potential and splines functions in
space. The CALS3k is valid from 1000 B.C. to 1990 A.D.(see Korte and Constable,
2003 and Korte et al., 2009). This model is based on all available archeomagnetic and
sediment data, without a priori quality selection; it currently constitutes the best global
representation of the past field in its time of validity. Relative intensities from sedi-
ment cores have been calibrated by a model based on archeomagnetic data or by using
archeomagnetic data from nearby locations where available, and have subsequently
been used together with the sediment directional records. The CALS7k (Korte and
Constable, 2005) is derived using a great number of archeomagnetic and paleomag-
netic data covering the last 7000 years. The CALS10k is an average of 2000 individual
models obtained by a bootstrap statistical approach based on data of the last 10 mil-
lennia. The data used to develop it come from two distinct kinds of materials: rapidly
accumulated sediments which preserve a post-depositional magnetic remanence, and
materials which acquire a thermal remanent magnetization (Korte et al., 2011).

The SHA.DIF.14k model is based on archacomagnetic and lava flow data, avoiding the
use of lake sediment data. The remanent acquisition time for the archaeomagnetic and
volcanic lava flow material is nearly instantaneous. This feature allows to get a model
with an unprecedented temporal resolution on the past evolution of the Earth’s mag-
netic field.

The pfm9k.1 is a spherical harmonic geomagnetic model covering the past 9000 years.
It is based on magnetic field directions and intensity stored in archaeological artefacts,
igneous rocks and sediment records. A new modelling strategy introduces alternative
data treatments with a focus on extracting more information from sedimentary data. To
reduce the influence of a few individual records all sedimentary data are resampled in
50-yr bins, which also means that more weight is given to archaeomagnetic data dur-
ing the inversion. The sedimentary declination data are treated as relative values and
adjusted iteratively based on prior information. Finally, an alternative way of treating
the sediment data chronologies has enabled us to both assess the likely range of age
uncertainties, often up to and possibly exceeding 500 yr and adjust the timescale of
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each record based on comparisons with predictions from a preliminary model.

The IGRF is a spherical harmonic model of the Earth’s main magnetic field used widely
in studies of the Earth’s deep interior, its crust, ionosphere and magnetosphere. It pro-
vides the Gauss coefficients from 1900 A.D. to the present times and is based on many
magnetic data from land observatories around the world and, more recently, from satel-
lites (like @rsted launched 1999, CHAMP launched 2000). For references about the
version of IGRF we have used see Finlay et al. (2010); for references about an earlier
version of the IGRF model see Maus et al. (2005a; 2005b).

All above models represent the magnetic field as a conservative field, because they are
models of the global magnetic field in source-free regions at the Earth’s surface and
above:

n=1 m=0

Nmax nl
< Z Z ( ) (gnm cos(me) + hym sin(mae)) P (cos 6)

(3.10)
where a is the Earth mean radius, r is the distance from the centre of the Earth, 6 is the
colatitude and ¢ is the longitude, n and m, that € N, are the spherical harmonic degree
and order, respectively. P* are the so-called associate Legendre functions, namely

d"t™(cos? 0 — 1)"

mo__
P = 2nn| d(cos 9)n+m

@3.11)

The functions cos(me)P." and sin(me) P, usually called spherical harmonics, have
the following orthogonality property

o m cos(ma) cos(lp) | . _ 2epm(n+m)!
/ d¢/ P { mnm¢JJ%{ smU@}smaw@n+1x )1 Otm Ok
(.12)

cos(pg)

where ¢g = 2 and ¢,,, = 1 if m > 0; with { sin(pe)

fozﬂ cos(pg) sin(p'¢d)dp =0V p, p’ € N.

} we want only remind that

The development of a Paleomagnetic model, like the models cited above, can be
summarized in the following steps (for reference see e.g De Santis et al., 2016):

1. In terms of Spherical Harmonic Analysis (SHA), the internal potential of the
geomagnetic field can be established as:

Vint = a Z Z ( )nH (gnm cos(me) + hpm sin(me)) P (cosf) (3.13)

n=1m=0

2. The magnetic field components can be represented by the negative gradient of
the potential:
B - —VV - —V (‘/7,nt + ‘/est) (314)

3. Any scalar element d (e.g. total intensity ) of the geomagnetic field is expressed
as a non-linear function f and depends on the time-dependent SH model coeffi-
cients m:

d=f(m)+e (3.15)

we used the "vector" m in the (3.15), because a function d in general depends on
all m coefficients



3. Turbulent diffusive regime of the geomagnetic field during the last
26 millennia

4. The regularized weighted least square inversion applying the Newton-Raphson
iterative approach:

mi+1:mi+(Ai/-éeflfiq:+a-‘i/+7~<i>)fl(A,/-Cifl%—oz-\i/-m,;—ré-mg,)

(3.16)

5. The ¥ and ® matrices are the spatial and temporal regularization norms, respec-
tively, with damping parameters « and 7:

N,—a U= B2dOdt 17
o t_tgo/fudd G.17)

3.2.2 Time scales, turbulent diffusivity and apparent core conductivity

In the data analysis we have used only the term proportional to the dipolar power
(910)?, instead of the term proportional to the total power > (n+1)>" (gnm)” +
(hnm)z, for two reasons:

1. If we compare Figure 3.1 and Figure 3.2 we can see that the behaviours of both
terms (dipolar and total powers) are similar. This is because CALS7k model
probably underestimates g,,,,, withn > 1.

2. For our aims it is enough to use only g;g because that is the leading term of
the total power of the field and it is important for defining the polarity of the
magnetic field.

After drawing the graph in Figure 3.1, we supposed that in some temporal intervals, at
least longer than 100 years, characterised by a clear dipolar field decay the “dynamo
effect”, namely the intensification of the field due to the inductive term of magnetic
induction equation, was negligible with respect to the ohmic diffusion of magnetic
fields. Therefore, for these intervals (here indicated in chronological order as i=1,...,6)
we have supposed, in accordance with the diffusive term of the (3.1), a decay law of
this type

g10(t) = g10(0)eH/™ (3.19)
with )
RoﬂoUi
= T (3.20)

where T7; is the longest dipolar relaxation time of the i-th interval, R is the outer core
radius and kg, is the least non-zero solution of the Bessel function .J; /o(2) which is
the radial part of the solution of degree n = 1 of the heat equation/diffusive part of the
magnetic induction equation; ¢; is the corresponding apparent electrical conductivity
of the core, supposed solid and with the only diffusion process acting. It is for this
reason that we call o; "apparent” electrical conductivity. For references about the (3.20)
see for example Gubbins and Roberts (1987) or Yukutake (1968) while for references
about Bessel functions see for example Abramowitz and Stegun, (1970). From (3.20)
we can easily deduce

_ T (k1)

(3.21)
to R
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that was used to calculate o; from each ;.

We performed several fits over the logarithm of the square of g1 coefficient at

different values of ¢; so we have written In (910)2 vs t in the Figs. 3.1, 3.3 and 3.4; the
argument of the logarithm in these graphs is not dimensionless but given in nT?.
In order to estimate the errors on the 7; and o; we bore in mind that the data synthesized
by the CALS7k model improve their quality in time, i.e. they are more precise in the
recent centuries than in the earlier centuries (De Santis and Qamili, 2010). So we have
done the following assumptions on the relative errors on the 7;

1. 40% concerning the age 5000 B.C.-4800 B.C.
2. 30% concerning the age 4465 B.C.-4360 B.C.
3. 30% concerning the age 2075 B.C.-1935 B.C.
4. 20% concerning the age 545 B.C.-415 B.C.
5. 20% concerning the age 580 A.D.-770 A.D.
6. 10% concerning the age 1900 A.D.-2010 A.D.

In practice this will mean that relaxation times (and associated errors) and apparent
conductivities (and associated errors) are approximated at the closest hundred and
thousand, respectively. We have done the same assumptions to perform the simula-
tions using CALS3k and CALS10k models (see tables 3.2 and 3.3). In the next pages
there are some figures and tables that summarize the results of our analysis.
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Figure 3.1: In (g10)2 vs t. The red parts of this graphic represent temporal intervals longer
than 100 years when In (910)2 decreased approximately linearly with time; so we
have decided to estimate T; by the data of these intervals. The gio coefficients were
synthesized by CALS7k model except for the last red interval when the coefficients
were synthesized by IGRF model.
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Figure 3.2: Temporal trend of the geomagnetic field power on the Earth’s Surface and on the
Core Mantle Boundary (CMB)(Figure by Korte and Constable, 2005).
temporal intervals [ years] | 7; [years] | A7; [years] | o; [S/m] | Ag; [S/m]
5000 B.C.-4800 B.C. (200) 800 300 17000 7000
4465 B.C.-4360 B.C. (105) 1400 400 28000 8000
2075 B.C.-1935 B.C. (140) 1700 500 34000 10000
545 B.C.-415 B.C. (130) 2000 400 42000 8000
580 A.D.-770 A.D. (190) 2100 400 43000 9000
1900 A.D.-2010 A.D. (110) 1700 200 34000 3000

Table 3.1: Relaxation times and apparent electrical conductivities estimated by CALS7k and
IGRF data. Relaxation times (and associated errors) and apparent conductivities
(and associated errors) are approximated at the closest hundred and thousand, re-

spectively.
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Table 3.2: Relaxation times and apparent electrical conductivities estimated by CALS10k data.
Relaxation times (and associated errors) and apparent conductivities (and associated
errors) are approximated at the closest hundred and thousand, respectively.

temporal intervals 7; [years] | A7 [years] | o; [S/m] | Ao; [S/m]
7190 B.C.-6810 B.C. (380) 2500 1000 50000 20000
5580 B.C.-5450 B.C. (130) 2300 900 47000 19000
95 B.C.-160 A.D. (255) 5800 1200 118000 24000
1305 A.D.-1555 A.D. (250) 3000 600 61000 12000
1755 A.D.-1990 A.D. (235) 1700 200 34000 3000
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Figure 3.3: In (g10)2 vs t. The red parts of this graphic represent temporal intervals longer
than 100 years when In (910)2 decreased approximately linearly with time; so we
have decided to estimate T; by the data of these intervals. The g1 coefficients were
synthesized by CALS10k model.
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Table 3.3: Relaxation times and apparent electrical conductivities estimated by CALS3k data.
Relaxation times (and associated errors) and apparent conductivities (and associated
errors) are approximated at the closest hundred and thousand, respectively.

temporal intervals [ years] | 7; [years] | A7, [years] | o; [S/m] | Ao; [S/m]

835 B.C.-715 B.C. (120) 1700 300 34000 7000
10 B.C.-100 A.D. (110) 1500 300 30000 6000
260 A.D.-445 A.D. (185) 1600 300 32000 6000
540 A.D.-685 A.D. (145) 1000 200 21000 4000
800 A.D.-915 A.D. (115) 1600 300 33000 7000
1165 A.D.-1275 A.D. (110) 1800 400 36000 7000
1340 A.D. -1440 A.D. (100) 700 100 14000 3000
1565 A.D. -1670 A.D. (105) 1900 400 40000 8000
1755 A.D. -1990 A.D. (235) 1700 200 34000 3000
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Figure 3.4: In (g10)2 vs t. The red parts of this graphic represent temporal intervals longer
than 100 years when In (910)2 decreased approximately linearly with time; so we
have decided to estimate T; by the data of these intervals. The gio coefficients were
synthesized by CALS3k model.
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In the table below we report the results from the analysis of SHA.DIF.14k.

Table 3.4: Relaxation times and apparent electrical conductivities estimated by SHA.DIF.14k
data. Relaxation times (and associated errors) and apparent conductivities (and as-
sociated errors) are approximated at the closest hundred and thousand, respectively.

temporal intervals [ years] 7; lyears] | Ar; [years] | o; [S/m] | Ao; [S/m]

11200 B.C.-11080 B.C. (120) 500 100 9000 2000
6460 B.C.-6320 B.C. (140) 700 100 14000 1000
1750 A.D.-1875 A.D. (125) 2500 500 50000 10000

We estimated the errors in this table, by a gaussian bootstrap method with 10000
iterations. We used also this gaussian bootstrap method to estimate the errors, because
it is a robust method widely used in geomagnetism (See e.g Korte et al., 2011 or Pavén-
Carrasco et al., 2014) and there are several articles that highlight the importance of the
fact that the statistics of the geophysical data is gaussian (see e.g Constable and Parker,
1988). In the next pages there are some histograms about the relaxation times and the
"apparent conductivities" got by the bootstrap method.
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Figure 3.5: Histogram about the 10000 decay times got by a bootstrap method in the age between
11200 B.C and 11080 B.C.



3. Turbulent diffusive regime of the geomagnetic field during the last
34 millennia

T T T T T T T 0

1200
1000
800
600
400

200

0 I I T T - T o T I

5000 10000 15000 20000 25000 30000 35000 40000
S
7 [;]

Figure 3.6: Histogram about the 10000 apparent conductivities got by a bootstrap method in
the age between 11200 B.C and 11080 B.C.
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Figure 3.7: Histogram about the 10000 decay times got by a bootstrap method in the age be-
tween 6460 B.C and 6320 B.C.
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Figure 3.8: Histogram about the 10000 apparent conductivities got by a bootstrap method in

the age between 6460 B.C and 6320 B.C.
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Figure 3.9: Histogram about the 10000 decay times got by a bootstrap method in the age be-
tween 1750 A.D. and 1875 A.D.
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Figure 3.10: Histogram about the 10000 apparent conductivities got by a bootstrap method in

the age between 1750 A.D. and 1875 A.D.

140

000



3.2 Global models analysis 39

21.0

20.5

Ln(g 10 [nT])2

20.0

195 .

-12000 -10000 -8000 -6000 —-4000 -2000

[years]

Figure 3.11: Analysis of several Geomagnetic Axial dipoles vs t ; blue lines: go1 by sha.dif.14k;
pink lines: strong decays of go1 by sha.dif.14k; green lines: go1 by calslOk; red
lines: strong decays of go1 by cals10k; yellow lines: go1 by pfm9k.1; black lines:
strong decays of go1 by pfm9k.1; purple line: go1 by IGRFI12 . (Figure by Filippi et
al., 2015)

Finally we can state that the best value of the apparent core conductivity for the
last 7000 years deduced by our study is the average of the o; =+ the ratio between their
standard deviation and v/6

Teore = (33000 & 4000) S/m

By the analysis of the data synthesized by the other CALS model we found con-
ductivities of the same order of the conductivity found by the data synthesized by
CALS7k. More specifically the conductivity estimated by geomagnetic field synthe-
sized by CALS10k is

Ocore = (62000 £ 15000) S/m

and the conductivity estimated by the field synthesized by CALS3k is
Oeore = (30000 = 3000) S/m

By analyzing the results in the Table 3.4 and the Figures 3.5, 3.7, 3.9, 3.6, 3.8 and 3.10,
we can state that also the decay times and the correspondent apparent conductivities are
one order of magnitude smaller than the commonly accepted values; in other words we
found for the last 14000 years some values of the conductivities smaller than expected

0

20
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So the found apparent core conductivities for the last 14000 years are, at least, one
order of magnitude smaller than the commonly accepted values (see e.g. Gubbins and
Roberts, 1987; Stacey and Loper, 2007; Pozzo et al., 2012 and the articles cited in those
papers); this fact would have interesting implications as we will explain in Chapter 5 .



Chapter 4

Outer Core Dynamics and rapid
intensity changes

In this chapter we use an interesting large scale method in order to estimate the rapid
changes of the dipolar geomagnetic field. This method was developped by P.W. Liv-
ermore, A. Fournier and Yves Gallet and it is described in the paper Livermore et al.,
(2014). We describe this method and then we present the results got by an extension of
this method.

4.1 Introduction

The work described in Livermore et al., (2014) gives an estimation of the maximum
temporal variation of the Geomagnetic Field in some epochs by the Lagrange multi-
pliers technique. The unique constraint assumed is that the root-mean-squared (rms)
flow speed on the Core Mantle Boundary (CMB) is 13 km/yr (Holme, 2007). This
constraint is a results of several simulations performed on some geomagnetic models.
In these models there are two fundamental assumptions:

1. The Geomagnetic Field is in the frozen-flux condition, namely the first term of
the R.H.S of the (1.10) vanishes.

2. The flow of the liquid core is tangentially geostrophic, namely Vg - (v cosf) =
0, where V  is the "horizontal divergence" and v is the velocity field of the outer
core.

If we consider only short-time intervals, the Frozen-Flux hypothesis is reasonable, be-
cause the diffusive effects are more effective after long-time intervals. If the gravity is
fully radial the condition about the tangentially geostrophic flow is satisfied. The Outer
Core is more spherical than the Earth’s Surface, so it is quite correct to assume that
the gravity is fully radial on the CMB. So, we can state that it is a good approximation
to assume the constraint that the root-mean-squared flow speed on the Core Mantle
Boundary (CMB) is 13 km/yr.
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4.2 Methodology

The geomagnetic intensity at S site is given by

=|B|=/B} + Bj + B} (4.1)

dF 1 (. dB, _ dBy . dB,\ 1 (. dB
dt_F<B T B T B dt) F(B dt) 42)

SO

If we ignore the diffusion and assume V - v = 0 the radial component of the magnetic
induction equation at the CMB (r = ¢, ¢ = 3485 km) becomes

o,

;e —Vu-(vaBy) 4.3)

where vy is the horizontal flow and Vg = V — f%, with 7 is the radial unit vector.
Since the main sources of the Geomagnetic Field are in the core, we can represent the
B and hence ‘fﬁ’ as a conservative field for each » > c¢; by bearing in mind the (3.10),
we can formalize these concepts in the following way:

1 m=0

dE =-V (az Z ( )Hl (gim cos(mae) + him sin(me)) P/™ (cos 9)) 4.4)

We are interested on the temporal evolution of the B field at P site; so we wrote a
derivative and not a partial derivative in the equation above. In the (4.4) a is the Earth’s
radius, [ are the degrees of a Spherical Harmonic expansion, m are the orders of a
Spherical Harmonic expansion, §;,, and h;,, are the Gauss coefficients of the secular
variation; by the (4.3) and (4.4) we can deduce that these coefficients depend linearly
on v, from it follows that all the components of dB atr = a and 1ndeed depend
linearly on v at r = c. In other words:

dF
- =GT 4.5

7 q 4.5
Where G is a suitable ad hoc column vector, and q is a vector verifying:

V=) Qv (4.6)
k

Since the velocity field are divergence-free, the field v can be, in general, expressed as
the following sum of the Spherical Harmonic Y, (6, ¢):

v=Vx{t;"Y,"(0,9)r) + Vg (rs*Y," (0, 0)) “4.7)

up to a fixed spherical harmonic degree Ly, where vy is defined by the vector of
coefficients (¢, s") of zeros except for a one in the k-th position.

For a given site location and prescribed magnetic field (to degree L), the vector
G is then straightforward to assemble, one element at a time. Each mode of flow was
taken in sequence, so it is possible to calculate the spherical harmonic spectrum to
degree L+ Ly of B, /0t at r = c using a standard transform methodology based on
Gauss-Legendre quadrature and fast-Fourier transform; then using (4.4) it is possible
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to obtain the the contribution to dF'/dt at S; so it is possible to deduce the elements of
G. The "mean-squared velocity" on a sphere can be written in this way:

47
20+ 1

a"Ba= - S0+ 1) () + (7)) (48)

, M

E is a diagonal matrix with elements (I + 1)(2] + 1)~!. If we bear in mind the
important constraint on the rms on the CMB and the (4.8) we can evaluate the q (and
so the v) that maximizes the dF'/dt by the Lagrangian multipliers technique, namely

aF
dt

=max [G'q— \(q" Eq — T})] (4.9)

max a

where A is the Lagrange multiplier and 7T is the root-mean-squared (rms) velocity on

the CMB:
/1
To = —/ |v]2dQ (4.10)
4m r=c

dS is the infinitesimal solid angle and the integral in the (4.10) is taken over the surface
of the outer core.
At a local maximum, the gradient of the function G'q — A(q” Eq — T#) with respect

to each component of the vector q is zero, so we can define the "q,, p,,":

1
Ampv = 5E‘1GT (4.11)

where A is found by scaling the flow to the target rms. The inclusion of magnetic
diffusion is a simple extension of the above methodology, indeed we can write

0B,

5 = ~Vy - (vgB,) +ni-V?B (4.12)

where 7 is the magnetic diffusivity already defined in the previous chapters. Since
Since B is assumed known, the second term of the R.H.S. of the (4.12) does not depend
on v; 80, it has no no bearing on the optimising flow.

This approach, maybe, could be useful for understanding whether some very rapid
changes in the intensity of the Earth’s Magnetic Field are consistent with a model of
the source region of the magnetic field, namely the fluid flow at the surface of Earth’s
outer core. In this regard it is worth to remind that some recent works suggest that
extremely rapid fluctuations in the Earth’s Magnetic Field have occurred in the past
(see e.g. Ben-Yosef et al., 2009, Shaar et al., 2011 or Gdmez-Paccard et al., 2012). The
maximum variation of the instensity of the geomagnetic field estimated by Livermore
et al., (2014) is consistent with the study performed by Gémez-Paccard et al., (2012),
but not with the studies performed by Ben-Yosef et al., 2009 and Shaar et al., 2011.
However this second case may be due to the fact

We modify the program used by Livermore et al., (2014), in order to get a program
that estimates the maximu of the temporal derivative of the gg; Gauss coefficient during
several ages. In the next page there are some figures that summarize the results of our
analysis. We analyzed a small temporal interval, because during these short ages it
is reasonable assuming the constraint that the root-mean-squared (rms) flow speed on
the Core Mantle Boundary (CMB) is 13 km/yr, but probably it is possible to extend the
analysis, at least, for a time interval between 1900 A.D. to 2015 A.D
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Figure 4.1: Maximum temporal variation of go1 in the ages between 1980 A.D. and 2015 A.D.

(these coefficients are by IGRF12 model (Thebault et al., 2015))
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Figure 4.2: Maximum temporal variation of go1 in the ages between 1980 A.D. and 1990 A.D.
(these coefficients are by CALS10k model (Korte et al., 2011))
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Chapter 5

Discussion and Conclusions

In this thesis we deal with some aspects of the Dynamo Theories. In the Chapter 3,
we looked for a connection between the recent trend of the geomagnetic field and the
turbulent dynamo theories. The models of the geomagnetic field of the last 3000, 7000,
10000 and 14000 years show a field that has intermittent decays so that the magnetic
diffusivity would correspond to a value of conductivity much smaller than the most
commonly accepted value. If we compare Figs. 3.1, 3.3 and 3.4, we can see that there
is no contemporary turbulent diffusive behaviour in the different studied models; in fact
the exponential decays of the dipole field occur in different epochs for different models.
However, as we can check by the tables 3.1, 3.2 and 3.3, almost all apparent electrical
conductivities are one order of magnitude smaller than the commonly accepted values,
that are probably more correct than ours. In other words, all models show that when
the geomagnetic dipolar field decays it does with a rate faster than the typical diffusive
rate so we can speculate that this is a general feature of the geomagnetic field of the
last millennia. This is due to the presence of an additional term /[ in the diffusion part
(see eq.(3.8)), so we can call this process a "turbulent diffusive" regime of the recent
geomagnetic field. This "turbulent diffusivity" is probably due to the turbulence effects
in the core and accelerates the process of field decay (according to the (3.8)). This tur-
bulent diffusivity would explain why our conductivity values, obtained neglecting the
inductive term in (3.1), are one order of magnitude smaller than the expected values for
the core. In this regard, we recall that 5 x 10° S/m, a value we find quite often in the
literature (see e.g. Gubbins and Roberts, 1987 and also Stacey and Anderson, 2001)
and 2.76 x 10° S/m (that is a more recent estimate performed by Stacey and Loper,
2007), are approximately one order of magnitude greater than our o;. This turbulent
diffusivity, in turn, could eventually bring the planetary magnetic field toward a field
reversal in a sort of avalanche process, typical of a turbulent, and occasionaly chaotic,
regime. This turbulent diffusive effect, as we will see in the Appendix A, is greater in
case of a isotropic, homogeneous and mirror-symmetric turbulence. This is coherent
with some other papers (see for example De Santis, 2007 or Hulot et al., 2002, which
are based on fully different approaches) that suggest that an imminent magnetic field
reversal is possible (about 1000 or 2000 years from now). Also the article of Liu and
Olson (2009) could support our hypothesis; in fact it reminds the very fast decrease of
the geomagnetic dipole moment in the last 160 years (at least one order of magnitude
faster than the free decay rate) and emphasizes that the process of advective mixing in
the core can enhance the magnetic diffusion. There are also other articles that show that
the geomagnetic dipole moment has recently decayed with a rate faster than the typical
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diffusive rate (see e.g. Gubbins et al., 2006 and other references here cited). However
most of this works speak about the last century or the last 4 centuries. Instead, our
results show a turbulent diffusive regime regime which lasts for at least 14000 years.
This, in our opinion, strengthens the hypothesis that the recent geomagnetic field is in
a turbulent diffusive regime. Furthermore, there is a paleomagnetic study described in
Nowaczyk et al. (2012) that shows that the Laschamp excursion occurred in a time
much shorter than the time corresponding to the free decay rate due to the ohmic diffu-
sion of the geomagnetic field. In fact the record relating to this excursion, shows a full
polarity reversal, although temporary, that lasted for about 200 years; the whole pro-
cess, namely from the beginning when there was the current geomagnetic polarity until
the end, when there was again the current geomagnetic polarity, lasted for about 3600
years, a time comparable to the relaxation times estimated by us from the geomagnetic
global models. Therefore, an excursion, and so probably also a polarity reversal, would
occur in a time faster than the time corresponding the typical magnetic diffusivity. This
experimental observation could suggest that before an excursion or reversal there is a
turbulent diffusive regime. For some details about the Laschamp excursion see the ar-
ticle of Nowaczyk et al. (2012). Of course, because of the limited number of cases
here analysed, further studies will be necessary to establish if the hypothesis of the
turbulent diffusivity for the recent geomagnetic field is correct or not. This could be
verified in several ways. For instance, we could try to estimate some other important
geophysical parameters such as, for example, the 3 coefficient in the eq. (3.8). In
fact, as it is shown in the Appendix A, this coefficient is connected with |v|2. In other
words we could do some more accurate estimations of other important parameters, or
use some values reported in other woks, to try to solve the magnetic induction equation
under less restrictive assumptions and then compare the results with those of previous
works (e.g. with the Glatzmaier-Roberts dynamo described in Glatzmaier and Roberts
(1995a; 1995b)) and with experimental data. More specifically, it will be worth trying
to solve the (3.9) or more simplified expressions (for example we can assume that |v|?
is uniform and constant or that ¢(°?) > ¢(90) and ¢(99) > ¢(01)) Furthermore we could
try to estimate the terms O(|v|?) or O(|v|*) of A (for more details see the Appendix
A). In this manner we may find a solution of the magnetic field less approximate than
the solution of the diffusive part of the (3.1) and we can, by simple numerical simu-
lations, compare these results with experimental data. Moreover we could repeat our
analyses on some regional models; so we can verify if there are some turbulent diffu-
sive behaviours limited to more restricted regions. This would be important because
there are some regions where the geomagnetic field decays more quickly than in others
and there also some regions where it seems that the magnetic field doesn’t decay at all
(Gubbins, 1987). So we could try to understand if the turbulent diffusivity is also space
dependent.

There are several arguments that suggest that the turbulent diffusivity may be an
important component of any possible magnetic field reversal. In fact if the inductive
term disappears, the decay times will be about 10000 years instead of about 1000-2000
years as it reported in several papers (see e.g. Liu and Olson, 2009 or Hulot et al.,
2002). But if the inductive term vanishes, maybe the magnetic field will not regener-
ate itself. So we think that a better understanding of the turbulence in the core can be
useful to improve our knowledge about the generation, extinction and regeneration of
the geomagnetic field. On the other hand, several authors believe that the geomagnetic
polarity reversal might be connected with a magnetic flux of opposite sign in the south-
ern hemisphere (see e.g. Gubbins, 1987); so we could try to compare these types of
studies with our studies on the turbulent diffusivity of the geomagnetic field. Another
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interesting aspect of the dynamo theories is the role of the symmetries as explained for
example in Réadler (1968a) or in Merrill et al. (1996). We think that these studies could
be useful to understand better some aspects of the dynamics of the Earth’s Magnetic
Field, that has several features not well-understood yet.

It is interesting to note, by analyzing the Figures 4.1, 4.2 and 4.3 that when the dipolar
geomagnetic field exponentially decay its temporal derivative linearly decrease. Maybe
it could be interesting to do other analysis with simulations or during real situations, in
order to check whether this feature is verified before a polarity reversal or excursion.
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5. Discussion and Conclusions




Appendix A

Calculation of the mean
electromotive force

In this appendix we will give some details on the calculation of the mean electromotive
force within suitable approximations. We will perform some manipulations in a sim-
ilar way as was already done by different authors (see Moffatt, 1978; Ridler, 1968a;
1968b).

To discuss the term A in (3.6) and (3.7) we need, at least, a formal solution of the
(3.7); so we assume that V. = V|, v, By = B and (for the moment) C are known and
we rewrite the (3.7) in tensor notation !

o — b, 9 _
nV2b; + EimnEnpa 5, (Vpby) — 5 = Smng— (enpgvpBq + Cn)  (AD)

We may solve (A.1) with a suitable boundary condition on b(r, ¢y) in the form

bi(r,t) = /Gil(r,t;r’,to)bl(r’,to)dr'+

¢
0 _
+/ t Gil(r,t; r’,t’)slmnﬁ {Enpqvp(r’,t’)Bq(r’7t’) + Cn(r’,t’)} dr'dt’
0

m

(A.2)
where G (r, ¢; 1, ') is a suitable function that satisfies the following properties

0 ,— 0G,

VG + Cimnenpgm— (VpGa) — = a8t —t)o(r — 1) (A.3)
0xm ot

Gi(r,t;x',t') — 0, for |r — 1’| —» +0 (A4)

Gu(r,t;r' t') — 8;0(x — '), for (t—t') — 0 (A.5)

the expression V2G,;(r, t;1’,¢') means > %Gil(r, t;r',t’") and the integrals with

no end points of integration, like f dr’ in the (A.2), are, of course, integrals that must

'In this appendix we adopt the Einstein summation convention everytime we write two repeated indices
and do not use the symbol of sum



52 A Calculation of the mean electromotive force

be taken over all the space. Now we set b;(r, tg) = 0V 4 and, for semplicity we suppose
that Vi = 0. With this condition G;; is the following well-known Green’s function

/2 712
. ol N 5 1 ’ _ |I‘—I‘|
Gu(r,t; 0’ t') = 6y <n47r(t—t’) exp yP -

With the condition b;(r, tg) = 0V 4, after an integration by parts and other simple steps
we obtain

') ————————
A = gzjkslmngnpq// ale—/r) (r t)vp(r’ t’) Bq(r',t/)dr’dt/Jr
ox!,

6Gk;l r t r t ) 8Gk’l’(1",t’;r”’t”)
+EijkElmnEng’ k' El'm/n/ En’ pq oz’ .
l’m/

w; (e, )y (x), 1) o, (2 ¢7) By (x” , ¢")dr" dt" de’dt’ + O(|v|*) (A.6)

We can also write a more general expressions for A;
t —
A= // Kig(r,t;x' t")By(r', t")dr' dt’ (A7)
to

where Kq(r,t;1’,t") can be deduced from (A.6) and (A.2). Now we suppose that the

correlation tensors, namely the expressions v; (r, t)v, (r/, '), v; (r, t)v; (r/, t/ v, (r”, t")
and the other averages of higher order in v;, differ significantly from zero only for small
values of |[r — r’| and ¢ — ¢’; this is a reasonable approximation because, as we have
already said, the turbulence phenomena are bounded in a small region and in time-scale
much smaller than T"; we therefore need only to know B, (r’, ') in a small neighbour-
hood of r’ = r and t' = ¢; so after a Taylor expansion of B, (r’, ') we can write

Ly okt B r,t
A - gz(go)Bq<r’ t) + Z ggqr.?.sW(;(atZ (AS)
kto>1 re.0OTg

(00) (kv)

where £ is the space-derivative order, v is the time-derivative order and g;, . ;o s

are defined as )
91(20) // Kig(r, t;x' ¢ )dr'dt’
to

o = W// Kigr, 60 ) (@], — @)@, — 2,)(F — )7 de'd (A9)

and

So the main problem in the mean-field dynamo theory is to determine the correlation
tensors. In the next pages we will give some details about this question (Radler, 1968b).
If we replace the integration variables r’ and ¢’ by & = r—r’ and 7 = ¢t —¢’ respectively
we can rewrite the (A.9) in this manner

(k) _ Dt 1@.
gzqr .8 gljk’gkmnenpq k' 1 = 9=

Rip(r,t; =& —7") 205, EsmVdEdr + O(|v]?) (A.10)
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where = = |Z|,

1 \*? =2
o= () "on(-E)

Rjp(r,t;E,7) = v (r, t)vp,(r + E,t +7)

It can be shown (see for example Ridler, 1968b) that within suitable approximations

and

ij(l‘,t; E"T) = ;lW(r?t){go( V=, T )6JP + f0< =, T >+

_ |EE Ov[2(r,t) _ _
+(_1)go(t7:7T)] ;gp}+ |(‘f91'l ) gl<t7:‘77—)5jp+

Ov[A(r, )

hi(t;2,7)2
1(7 aT) p+ axp

k(6= )ua] (A.11)
where fo, 9o, f1, 91, h1 and k; are suitable functions that depend on the geometry and
on the dynamics of the Earth’s outer core; the first three terms of the (A.11) (involv-
ing fo and go) give the correlation tensor in the homogeneous, isotropic and mirror-
symmetric case, while the remainder, involving V|v|2, described departures from that
state.

We are mainly interested, as we will explain better later, only in a few terms of the
expression (A.8) so we write

(10) 6§q (I‘7 t) n g((n) 8§q(r, t)

00
A~ gl(q )Bq(r,t) + Gigr pe i 5

(A.12)

If we retain only O(|v|?) terms in the (A.9), bearing in mind the (A.11), we can easily
deduce from the (A.10) that

g = 6iqr%W(r,t)c(°0) (A.13)
W = iqj(;i!) aaZLQ (r,t)a®) (A.14)
with
ooy _ 4T / / OCET) ¢ (13, —r)Zrd=dr
to
and

4 (=
G — / / aG S DA BE ~7) + g1 (15, —7) + k(4 2, —7)]E3 7 dEdr

and in some situations ¢(°?) is positive (see for example Ridler, 1968b) so if we sub-
stitute (A.13) and (A.12) in (3.6) we obtain the equation (3.8)
0By

T (Vo x Bo) + (n+ B)VBg + ... (3.8)
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It is worth to note that if we assume a homogeneous, isotropic and mirror-symmetric
turbulence the term gl(OV) = 0 (see the comment under (A.11)); so in this situation if
we look at the (3.6) at the lowest orders we find only the turbulent diffusive term and
we do not find any terms derived by (A.14); in other words if there is a homogeneous,
isotropic and mirror-symmetric turbulence the process of field decay is further acceler-
ated and, consequently, the chance for a magnetic polarity reversal is even greater. As
anticipated at the end of the section 3.1, we can consider a more particular expression
of the (3.8) substituting (A.12), (A.13) and (A.14) in (3.6) and assuming V, = 0

OB, 1— — % (9v[2oB; O|v|? OB,
i EpSCON vey-3 v J
g~ M FIVEETOVEB + = (axj oz, oz, 0z )
O (= oy OBiONE 5 OIE
B,V?|v]2 + — —B.
+ ( v |V‘ + al'j 8xj jax]@xi +
) [ 9?v]2 0B; _,—0B; O|v|]? 9*B;
- 2 i 3
3 \amam o ¥ e o amar ) T 39)

Other useful references on the calculation of the correlation tensor and on his impor-
tance in the dynamo theories in turbulent conditions can be found in the book of Krause
and Ridler, (1980) and in the article of Rédler (1974).
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