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1.1. Biogenic amines 

Biogenic amines are organic bases with low molecular weight that can be easily found in a wide 

variety of raw or processed food, and, in particular, in fermented foods. 

Low concentrations of these compounds are normally present in human organisms because they 

play important physiological functions. Norepinephrine, serotonin and dopamine are important 

monoamines that are neurotransmitter for human organisms. In fact they are involved in the 

regulation of the sympathetic nervous system and in the coordination of bodily movement. Another 

example is represented by epinephrine that is a stress hormone and a neurotransmitter.  

These compounds are totally different from those produced from the decarboxylation of free amino 

acids by microbial enzymes for this reason it must be clearly distinguish. 

Biogenic amines with microbial origin, in fact are considered anti-nutritional factors because they 

are implicated in different food poisoning episodes and it is reported that they can interfere with 

some pharmacological reactions (Önal, 2007). 

In Figure 1.1 are reported the different biogenic amines that can be found in foods and their 

precursor amino acids. 

 
Figure 1.1: Precursor amino acids of biogenic amines (Ancìn-Azplicueta et al., 2008) 

The decarboxylation process causes the substitution of one, two or three hydrogens of ammonia 

with alkyl or aryl groups (Shalaby, 1996). Three different chemical structures characterize these 

compounds as shown in Figure 1.2 (Silla-Santos, 1996): 

• Aliphatic structure � putrescine, cadaverine, spermine and spermidine; 

• Aromatic structure � tyramine and 2-phenylathylamine; 

• Heterocyclic structure � histamine and tryptamine. 
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Figure 1.2: Chemical structures of different biogenic amines (Önal, 2007) 

Based on the number of amine groups these compounds can be classified into monoamines 

(tyramine and 2-phenylethylamine), diamines (cadaverine and putrescine) and polyamine (spermine 

and spermidine) (Spano et al., 2010). 

Fresh foods can present low concentrations of different biogenic amines, but the presence of 

dangerous amounts of these compounds can be associated with a massive growth of 

microorganisms able to decarboxylate the amino acids (>7 log CFU/ml). For this reason, some 

researchers proposed the use of biogenic amine content as a quality index for fresh and processed 

foods (Al Bulushi et al., 2009; Özogul and Özogul, 2006; Baixas-Nogueras et al., 2005; Ruiz-

Capillas and Jiménez-Colmenero, 2004; Karmas, 1981). Nevertheless, fermented foods are the 

product of a massive growth of microorganisms which can often cause a biogenic amine 

accumulation (Linares et al., 2012b, Rabie et al., 2011; Ancín-Azpilicueta et al., 2008; Suzzi and 

Gardini, 2003), especially during the ripening period (when the selected starter cultures can be 

replaced by wild strains) or when natural (spontaneous) fermentations occur. 

Biogenic amines can be produced both by Gram-positive and Gram-negative bacteria. In particular, 

Gram-negative spoilage microorganisms belonging to the Genus Enterobacteria and Pseudomonas, 

are known as the main producers of histamine, cadaverine and putrescine (Lorenzo et al., 2010; de 

las Rivas et al., 2007; Pircher et al., 2007; Ben-Gigirey et al., 2000). 
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Regarding Gram-positive bacteria, the attention has been mainly focused on lactic acid bacteria 

(LAB), which are commonly present in the ripening microflora of several fermented foods. These 

microorganisms can produce different biogenic amines, but, in particular, they are the most efficient 

producers of tyramine and 2-phenylethylamine (Ladero et al., 2012; Bunková et al., 2011; Kuley 

and Özogul, 2011; Buňková et al., 2009; Pircher et al., 2007; Suzzi and Gardini, 2003; Arena and 

Manca de Nadra, 2001; Pereira et al., 2001).  

The most important biogenic amines in foods, in relation to their amounts and their toxicological 

effects, are histamine, tyramine, 2-phenylethylamine, tryptamine, putrescine and cadaverine 

(Wunderlichová et al., 2014; Marcobal et al., 2012; Landete et al., 2008; Tanaka et al., 2008; Silla-

Santos, 1996). In addition, other polyamines (spermine and spermidine) can be produced with 

pathways more complex, which starts from putrescine (Kalač and Krausová, 2005; Bardócz, 

1995b). 

1.2. Biogenic amines production 

Biogenic amines are the products of the decarboxylation of free amino acids carried out by specific 

microbial enzymes of the family of the decarboxylase. Chemically the decarboxylation involves the 

α-carboxylic group of the amino acid that is removed from the structure to obtain the amine as 

reported in Figure 1.3. 

 

Figure 1.3: Tyrosine and phenylalanine decarboxylation 

The capacity to decarboxylate amino acids is generally recognized as strain dependent (Bover-Cid 

and Holzapfel, 1999), but in some cases it is a characteristic of the entire species, as shown for 

Enterococcus faecalis and it is extremely widespread in E. faecium and E. durans species (Ladero 

et al., 2012). 

Microbial decarboxylases can be divided in two groups: 

• Pyridoxal-phosphate dependent and 

• Pyruvoyl dependent. 
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The first group, which includes almost all the decarboxylase enzymes, require the pyridoxal-5-

phospate as cofactor, in fact this compound reacts with the amino group of the amino acid to obtain 

a Schiff base that is the final substrate of the decarboxylation with the production of the biogenic 

amine, CO2 and H2O (Guirard and Snel, 1987). 

The enzymes of the second group, that are represent by the histidine decarboxylases, utilize a 

covalently bound pyruvoyl moiety as prosthetic group (Landete et al., 2008; Recsei and Snell, 

1984). 

Generally microbial decarboxylase enzymes are pyridoxal-phosphate dependent, so the presence of 

this cofactor is necessary for the production of biogenic amines. 

In addition to the enzyme there are some other proteins that play an important role in this pathway, 

the first one is the membrane antiport transporter that absorbs the amino acids and excretes the 

biogenic amine that is toxic for the microbial cell. This transport protein is located in the cellular 

membrane and for its correct activity the membrane must be in a perfect status because a 

delocalization of the transporter alter the entire process. The second membrane protein is a Na+/H+ 

pump that regulate the balance of H+ between the cytoplasm and the external environment. 

The process is schematically reported in Figure 1.4. 

 

Figure 1.4: Bacterial biosynthesis pathways of biogenic amines (EFSA, 2011) 

1.3. Physiological role of the production of biogenic amines for  microbial cells 

Microbial cells can be characterized by the presence of two different amino acid decarboxylase 

enzymes with two different physiological roles: constitutive and induced. The first role that these 

enzymes can play is strictly related with the cells growth, in fact some decarboxylase enzymes are 
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constitutive and they are part of some biosynthetic pathways as reported by Kamio et al. (1986) and 

Kamio and Nakamura (1987). These types of enzymes represent the minority, in fact most of them 

are inducible. These last are the most common in microbial cells, they are synthetized in response to 

different environmental factors, as biodegradative mechanisms. 

The decarboxylation represent a defence mechanism used by bacteria to withstand acidic 

environments as reported by Lee et al. (2007) and Rhee et al. (2002). In fact, the consumption of 

protons and the excretion of neutral biogenic amines and CO2 through a specific electrogenic amino 

acid/amine antiport, restore the internal pH and produce energy as ATP by the generation of proton 

motive force as reported by Marcobal et al. (2012) for tyramine production in Figure 1.5. 

 

Figure 1.5: scheme of the decarboxylation process (adapted from Marcobal et al., 2012) 

For example, de Palencia et al. (2011) have reported that the production of tyramine contribute to 

the survival of Enterococcus durans in human colon, so this metabolism characterize the 

pathogenesis of some bacteria. This mechanism can be also apply to the other biogenic amines and 

other bacteria, in particular the ones characterized by low yields of ATP caused by a lacking 

respiratory chain (Vido et al., 2004). 

Tkachenko et al. (2001) reported that some microorganisms, like Escherichia coli use biogenic 

amines as an enhancer of the expression of oxyR, the gene that contrast oxidative stress. Another 

hypothesis regards the role of the putrescine as a protector of DNA from the damage caused by 

oxygen species. 

It is also know that some biogenic amines play an important role in living cells as fundamental 

components for the stability of cellular membranes and regulators of the synthesis of nucleic acids 

and proteins, therefore these compounds are precursor of hormones (Silla-Santos, 1996).  
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Generally, microorganisms that can produce biogenic amines could overcome or reduce the effects 

of the stress generated from different environmental factors such as NaCl concentration, oxygen, 

temperature and pH. 

1.4. Factors influencing the decarboxylation process 

There are different factors that influencing the production of biogenic amines, some of these are 

linked to the specific characteristics of the substrate and others depend on the environmental and 

process production conditions. The different factors can modify directly the production of biogenic 

amines or indirectly by the influence on the microbial growth.  

1.4.1. Substrate character istics 

The production of biogenic amines is strictly related to the concentration and the availability of free 

amino acids in the substrates, therefore the proteolysis is a crucial factor in fermented foods because 

it is directly related to the availability of free amino acids. High proteolysis, induces an increase of 

biogenic amines formation in foods (Komprda et al., 2008a,b; Fernàndez et al., 2007a,b; Innocente 

and D’Agostin, 2002; Leuschner et al., 1998), for this reason fermented foods are more subjected to 

high accumulation of biogenic amines as shown by many authors for different type of fermented 

foods (de las Rivas et al., 2008; Gardini et al., 2008; Suzzi and Gardini, 2003; Ansorena et al., 

2002; Halàsz et al., 1994). 

The presence of free amino acids is fundamental for the production of biogenic amines, but it is also 

necessary the presence of pyridoxal-5-phospate that is the cofactor of decarboxylase enzymes.  

1.4.2. Environmental and process production character istics 

The main environmental factors affecting microbial activities in foods are temperature, aw and pH. 

These factors can influence the formation of biogenic amines in two different ways: in first instance 

they are responsible for the overall metabolism of the cells and in addition, the activity of 

decarboxylase enzyme depends on the same parameters.  

Temperature 

The activity of the enzyme involved in biogenic amines formation is related to the temperature. In 

fact, the production of biogenic amines increase with temperature within specific values that 

characterize the enzyme. Temperatures close to the optimum growth value promote the proliferation 

and the metabolism of the cells, thus favouring the production of biogenic amines that is often 

related to the number of cells that are present in the system. This is the reason for which low 
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temperatures, that slow down or inhibit microbial growth, cause a reduction of the activity of 

decarboxylase enzymes. 

Studies carried out by Gardini et al., 2001 with a strain of Enterococcus faecalis in a model system 

demonstrated that an increase of temperature from 16 to 44°C promote the growth of the strain and 

enhances the kinetic and the final amount of tyramine produced. Marcobal et al., 2006b, using an 

experimental design characterized by several factors, have shown that the redox condition play a 

crucial role in the definition of the optimum temperature of tyramine production of Enterococcus 

faecium and Lactobacillus brevis. They reported that aerobic condition requires higher temperature 

(32°C) that the anaerobic one, where the maximum tyramine concentrations were reached at 22.0-

24.5°C.  By contrast, Zhang and Ni (2014) have reported that the tyrosine decarboxylase of Lb. 

brevis had an optimum of temperature of activity temperature at 50°C, but it is inactivated at higher 

temperatures. 

Other studies have been conducted on the histidine decarboxylase activity by Tabanelli et al., 2012. 

In these studies it is showed that a cell free extract of a strain of Streptococcus thermophilus had its 

maximum decarboxylase activity at 50°C and rapidly decreased at higher temperatures. The same 

study was conducted using living cells and the results showed a different kinetic in histamine 

production, in fact the most rapidly histamine accumulation was found at 40°C. It was also reported 

that the histamine production was limited or negligible at 25 and 20°C.  

Few information about the production of others biogenic amines in relation to the temperature can 

be found in literature. Generally, it can be assumed that the production of biogenic amines increase 

with the temperature (Wunderlichova et al., 2014). Psychrotrophic pseudomonadas represent an 

exception to this general rule, in fact they can produce biogenic amines at low temperature (Paulsen 

and Bauer, 1997).  

All these examples highlight that the time and the temperature that characterize the storage period 

of some foods represent a key factors for the control of biogenic amines accumulation. In fact, 

abuse temperatures can cause an increase of the concentrations of tyramine, putrescine and 

cadaverine as shown by some authors (Ferreira and Pinho, 2006; Suzzi and Gardini, 2003; Bover-

Cid et al., 2001b). This implies that the control of the cold chain plays an important role to avoid 

the accumulation these molecules, in particular in not fermented foods, such as fishery products 

(Knope et al., 2014). 

Regarding fermented foods, the temperature of fermentation and ripening is established to allow the 

microbiological activity of the desired microflora by the protocols for the production of the different 

fermented foods. For example, the temperature applied during the first three days of fermentation of 

dry sausages determined the concentrations and the balance of the different biogenic amines (in 
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particular, tyramine, 2-phenylethylamine, cadaverine and putrescine) also during all the ripening 

period (one month) as reported by Gardini et al. (2008) and Bover-Cid et al. (2009). 

The application of thermal treatments (when possible) to raw material such as the milk before 

fermentation (pasteurization) can contribute to the elimination of the wild decarboxylating 

microflora. For this reason, usually cheeses from pasteurized milk are characterized by lower 

biogenic amines content (Marino et al., 2008; Novella-Rodriguez et al., 2004; Novella-Rodriguez et 

al., 2003; Schneller et al. 1997). However, Ladero et al. (2011) and Tabanelli et al. (2012) have 

found some strains of L. curvatus and S. thermophilus that maintain a residual activity after thermal 

treatment over 70°C.  

The effects of temperature on biogenic amines production is the result of the influence on the 

enzyme activity and on the balance of the growth of the different strains and species that compose 

the specific microflora. 

pH 

The pH level is one of the main factors that influence microorganism growth and their enzymatic 

activity (Silla-Santos, 1996). Since the decarboxylation is a mechanism that the cells activate to 

counteract acidic stress, it is clear that there is an important relationships between pH and biogenic 

amine accumulation. As for the temperature, also the effect of pH is different if the focus is directed 

towards the activity of the pure enzyme or to the activity of the living cells. In any case, it has been 

extensively demonstrated that the transcription of genes of many decarboxylase clusters are induced 

by low pH and improves the fitness of cells subjected to acidic stress (Perez et al., 2015; Romano et 

al., 2014; Marcobal et al., 2012; Romano et al., 2012; Pessione et al., 2009). 

For example, histidine decarboxylase of S. thermophilus has its optimum value of pH at 4.5, 

measured in cell free extract, while histamine accumulation by viable cell cultures was very low at 

the same pH, due to the negative effect of acidity on the overall metabolism of the strain (Tabanelli 

et al., 2012).  

The effect of this factor on the production of biogenic amines is twofold because, first it influence 

the growth of microorganisms and then the activity of the enzyme, so the balance of these 

regulation results in the production of biogenic amines.  

aw and NaCl concentration 

Generally, the presence of NaCl causes the reduction of the activity of decarboxylase enzyme, for 

example the rate of biogenic amines production of some strains of Lactobacillus is reduced when 

sodium chloride concentration in the medium increase from 0% to 6%. This effect can be explained 
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by the reduction of cell yields and the alteration of the stability of cellular membrane where the 

specific amino acids transport proteins are located. 

In particular, Gram negative bacteria are more inhibited by increasing salt concentrations than Gram 

positive microflora. For example, Gardini et al., 2001 demonstrated that the ability to accumulate 

tyramine and 2-phenylethylamine of a strain of E. faecalis was inversely related to NaCl 

concentration, in a range comprised between 2 and 6%. It is also demonstrated that in fermented 

sausages inoculated with the same tyraminogenic E. faecalis strain, increasing amounts of salt 

reduced the concentration of tyramine, 2-phenylethylamine, but also limited cadaverine and 

putrescine production by enterobacteria (Bover-Cid et al., 2009; Gardini et al., 2008).  

Recent studies demonstrate that the production of histamine by the histidine decarboxylase of living 

cells of a strain of S. thermophilus can be significantly reduced with NaCl concentrations of 2.5%, 

but the activity of the enzyme in cell free extract was not influenced up to NaCl concentration of 

5% and the activity was reduced at NaCl concentration of 20-30% (Tabanelli et al., 2012). Another 

study reported that the presence of NaCl cause an upregulation of the histidine decarboxylase gene 

in the same strain grown on skim milk, suggesting a potential role of this enzyme in osmoprotection 

mechanisms (Rossi et al., 2011) and confirming that the activation of decarboxylase system is a part 

of a complex metabolic responses in presence of different stress conditions (Pessione et al., 2009). 

Kimura et al. (2001) reported that a halophilic strain of Tetragenococcus muriaticus isolated from 

fish sauce produced histamine during the late exponential phase and reached the maximum 

production at 5-7% of NaCl and was able to maintain an histidine decarboxylase activity also in 

presence of 20% of salt. In literature is reported that the histamine decarboxylase activity of two 

strains of Photobacterium phosphoreum decreased rapidly with the increase of salt from 2-5% to 

10%, but Raoultella planticola, Photobacterium damselae and Morganella morganii are more 

resistant (Kanki et al., 2007). 

Regarding putrescine and cadaverine it is reported that they were produced with more efficiency by 

Serratia marcescens in the presence of 1-3% NaCl (3-5 in the yield factor was applied) (Buňka et 

al., 2015). In other words, stressed cells seem to activate the decarboxylating pathways in the 

framework of a more complex response system. This make the potential of biogenic amines 

production by each single cell more efficient. 

In fermented sausages biogenic amines are accumulate during ripening. However, the rate of 

accumulation decreases with the decrease of water activity due to the water losses. Products 

packaged under modified atmosphere, in which the weight losses were inhibited, continued to 

accumulate biogenic amines when the water activity at the moment of the packaging was high (0.92 

and more) (González-Tenorio et al., 2013; Tabanelli et al., 2013). The Greek cheese Feta, 
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characterized by a high salt content, with a ripening carried out in brine and with a low pH, was 

characterized by a noteworthy amine concentration (about 200 mg/kg of tyramine, 90 mg/kg of 

histamine and 200 mg/kg of putrescine) (Valsamaki et al., 2000). 

It can be assumed that the effects of sodium chloride on the inhibition and stimulation biogenic 

amines production is strain specific (Hernandez-Herrero et al., 1999; Rodriguez-Jerez et al., 1994; 

Taylor and Speckard, 1984; Taylor and Woychik, 1982).  

Carbon sources 

The concentration of carbon sources, such as glucose, in the food matrix plays a fundamental role in 

the regulation of the production of biogenic amines. Biogenic amines are produced when microbial 

cells require energy to survive in harsh environment characterized by low concentration of energetic 

substances, so the presence of carbon sources can minimize the production of amines.   

Oxygen 

The effect of the oxygen on the production of biogenic amines is controversial and less studied 

respect the other factors. The availability of oxygen has a significant effect on the biogenic amines 

production, it can reduce the quantity of some amines and increase the concentrations of others 

(Halàsz et al., 1994). Generally, the oxygen availability has little influence on the production of 

tyramine, putrescine and 2-phenylethylamine while it influences the quantity of cadaverine and 

histamine. 

Additives 

The addition of additives during the production of fermented foods can significantly reduce the final 

amount of biogenic amines. Bover-Cid et al. (2001c) reported that an addition of sodium sulphite 

can inhibit cadaverine accumulation but not the tyramine ones. Cantoni et al. (1994) highlighted 

that the addition of sodium nitrite can reduce the production of cadaverine and putrescine in 

sausages, but it cause an increase of histamine concentration. 

1.5. Biogenic amines toxicology 

Biogenic amines are normally synthesize by human body because they are hormone and 

neurotransmitter, but high consumption of these compounds with foods can cause health problems. 

The appearance and the severity of toxicological effects (flushing, headaches, nausea, cardiac 

palpitation and increase and decrease blood pressure) of all the biogenic amines depends not only 

on the intake with foods, but also on the consumption of monoamine oxidase inhibiting (MAOI) 

drugs, alcohol and other food amines. In fact, the concomitant intake of diamines (putrescine and 
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cadaverine) and polyamines (spermine and spermidine) favour the intestinal absorption ad decrease 

the catabolism of the other amines (Bardócz, 1995a,b). 

Despite these knowledge it is very difficult to determinate the exact toxicity threshold of every 

biogenic amine for human because the toxic dose is variable in relation to the personal sensibility to 

these molecules. In fact, the efficiency of human detoxification mechanisms depends on each 

individual, as reported by Halasz et al. (1994). Nout (1994) reported that the maximum 

concentration of histamine and tyramine in foods must be in the range of 50-100 mg/kg and 100-

800 mg/kg respectively, in fact over 1080 mg/kg of tyramine becomes toxic. 

1.5.1. Detoxification mechanisms 

Normally, low daily intake of biogenic amines do not represent a problem for human health because 

in human liver and gut there are specific detoxification system that metabolise these molecules to 

physiologically less active degradation products as shown in Figure 1.6.  

 

Figure 1.6: Gut MAO and DAO systems (Ancín-Azpilicueta et al., 2008) 

These systems include enzymes named monoamineoxidase (MAO) and diamineoxidase (DAO). 

Unfortunately, these systems can metabolise only reduced concentrations of biogenic amines, and 

high consumptions can cause their saturation. Another characteristic of the activity of MAO and 

DAO consist in the reduction of effectiveness caused by genetic predisposition, gastrointestinal 

disease or consumption of medicines and alcohol. For these reasons, the sensibility to biogenic 

amines can be really different between subjects. 

All these molecules generally, and tyramine and 2-phenylethylamine in particular, are considered 

anti-nutritional compounds that can be a serious problem for sensitive individuals. 
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1.5.2. Toxic effects and dose-response relationships of biogenic amines 

The most dangerous biogenic amines for human health are histamine and tyramine. Histamine 

causes a symptomatology known as “ fish (scombroid) poisoning”  (because it is often associated 

with the consumption of contaminated fish products) (Hungerford, 2010; Lehane and Olley, 2000), 

while tyramine is the responsible of the syndrome known as “cheese reaction”  (Marcobal et al., 

2012; McCabe-Sellers et al., 2006; Shalaby 1996). 

1.5.2.1. Histamine 

Histamine is the most implicated in outbreaks of food poisoning, in fact the symptoms cause by this 

amine are recognized as “ fish poisoning” . The intolerance caused by histamine appears when DAO 

system is saturated or less active due to the consumption of specific drugs, genetic predisposition or 

gastrointestinal diseases. In these cases, also the ingestion of small amounts can cause an allergic 

reaction (Maintz and Novak, 2007). First symptoms can appear after few minutes or some hours 

and can last for few hours. In particular, histamine cause headache, nasal secretion, tachycardia, 

hypotension, edema, flushing and asthma (Maintz and Novak, 2007; Jarisch, 2004). As reported by 

EFSA (2011), a consumption of 25-50 mg of histamine with solid foods or non-alcoholic drinks by 

healthy persons doesn’ t produce any effects, but an intake ranging between 75 and 300 mg could 

provoke headache and flushing as shown in Table 1.1. 
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Table 1.1: dose-response relationship of histamine (EFSA, 2011) 

1.5.2.2. Tyramine, 2-phenylethylamine and tryptamine 

Generally, high consumption of tyramine, 2-phenylethylamine and tryptamine cause hypertension, 

headache, perspiration, vomiting and pupil dilatation. Also in this case the consumption of MAOI 

drugs can interact with detoxification system and increase the sensibility of some person. These 

symptoms appear between 30 minutes and few hours after the consumption and disappear 

completely after 24 hours. In particular, tyramine and 2-phenylethylamine have been recognized as 

agent of dietary-induced migraines and initiators of hypertensive crisis in some patients. 

Few information about the dose-response for these biogenic amines can be found in literature so, 

actually, no dose-response curve has been estimated. Some study suggest that a consumption from 

600 mg up to 2000 mg of tyramine in a meal is necessary to cause minimal blood pressure increase. 
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1.5.2.3. Cadaverine, putrescine and polyamines 

Cadaverine, putrescine and the polyamines seem not be responsible of direct poisoning, but they 

can react with nitrite to form carcinogenic nitrosamines as reported from many author (Eerola et al., 

1997; Hernandez-Jover et al., 1997). In particular, cadaverine and putrescine seems to have less 

potent pharmacological activity, in fact no data about the dose-response for humane are now 

available. Even if these amines do not show a directly toxicity they are recognized as enhancer of 

the effect of other biogenic amines (Hui and Taylor, 1985; Chu and Bjeldanes, 1981).  

1.5.3. Legislation  

Nowadays there is not a specific legislation about the content of biogenic amines in foods in 

Europe. Only for histamine exist a dose governed by law, but this limit regard specific fishery 

products. The European Commission Regulation (EC) n. 2073/2005 reports the safety criteria for 

histamine in fresh fish and fermented fish products of some specific species of the families 

Scombridae, Clupeidae, Engraulidae, Coryphenidae, Pomatomidae and Scombreresosidae. 

Sampling plan for fresh fish placed on market comprising nine units of which two can contain 

histamine between 100 and 200 mg/kg and no one over this value. For fermented fish products the 

sampling plan is composed by nine units of which two can present a content of histamine between 

200 and 400 mg/kg, and no one over 400 mg/kg. 

No limit has been established for other biogenic amines, only some information about the dose-

response can be found in literature as reported previously. 

1.6. Biogenic amines producing microorganisms 

Different group of microorganisms are characterized by the ability to produce biogenic amines, for 

example the Enterobacteria are known as producer of putrescine and cadaverine, while enterococci 

are the major producer of tyramine. Normally, this characteristic is strain-specific, but in the case of 

the specie Enterococcus seems to be a characteristic of the specie. 

1.6.1. Tyramine and 2-phenylethylamine 

Tyramine producing bacteria are usually Gram positive microorganisms isolated from cheese and 

fermented sausages. The main genera that produce relevant quantity of tyramine in these foods are: 

Enterococcus, Lactobacillus, Leuconostoc, Lactococcus and Carnobacterium as reported by 

Fernández et al. (2007a,b), Fernández et al. (2004), Bover-Cid et al. (2001b), Bover-Cid et al. 

(2000) and Masson et al. (1999). 
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An important characteristic of the enzyme that decarboxylate tyramine is the ability of this enzyme 

to decarboxylate also phenylalanine to obtain 2-phenylethylamine as reported by Marcobal et al., 

2012. 

1.6.2. Histamine 

Histamine producing bacteria have been found in Gram positive and Gram negative groups, but is 

the Gram negative group the most important for food industries. Some of the major producer of 

histamine in foods are Photobacterium phosphoreum and psychrotolerans, Klebsiella pneumonia, 

Morganella morganii and psychrotolerans that can be easily isolated from spoilage fish (Dalgaard 

et al., 2008; Özogul and Özogul, 2006; Emborg et al., 2006; Kanki et al., 2004). 

1.6.3. Putrescine and cadaver ine 

Putrescine and cadaverine producing bacteria have been found especially in Gram negative spoilage 

bacteria such as Enterobacteriaceae (in particular Citrobacter, Klebsiella, Escherichia, Proteus, 

Salmonella and Shigella), Pseudomonadaceae and Shewanellaceae as reported by Lopez-Caballero 

et al. (2001). Not only spoilage microorganisms are responsible of the production of these biogenic 

amines, in fact in fermented food also some genera of lactic acid bacteria, such as Lactobacillus and 

Staphylococcus, are recognized as relevant producer of putrescine and cadaverine (Beneduce et al., 

2010; Coton et al., 2010; Arena et al., 2001). 

1.7. Biogenic amines in foods 

Biogenic amines can be found in a wide range of foods, in fact all the foods that contain proteins 

and/or free amino acids are good substrates for the growth of microorganisms that can 

decarboxylate these substrates. Normally, biogenic amines are produced by the spoilage microflora, 

because starter cultures should be selected so they do not produce these compounds during the 

fermentation. In any case the production of biogenic amines require also the presence of favourable 

conditions for the microorganisms growth and for the activity of decarboxylase enzymes (ten Brink 

et al., 1990; Stratton et al. 1991). 

The concentrations of the different biogenic amines and the total amount depends on different 

factors, first the specific composition of the food, second the characteristics of the microbial flora 

and finally the storage conditions. Some data about the concentration of different biogenic amines 

in foods are shown in Table 1.2 (EFSA, 2011). 
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Table 1.2: Sum of biogenic amine in different food sample (EFSA, 2011). 

1.7.1. Non-fermented foods 

Non-fermented foods are normally characterize by the presence of low concentration of biogenic 

amines of endogenous origin, but sometimes is possible to find high concentrations of these 

compound caused by undesired microbial activity. For this reason, in these products, they can be 

used as an indicator of food spoilage.  

Fish 

In particular Scombroid fish has been associated with incidents of histamine intoxication, 

commonly named “scombroid fish poisoning” . The production of this biogenic amine in marine fish 

containing high concentration of endogenous histidine has been attributed to microbial action rather 

than to endogenous histidine decarboxylase activity (Halàz et al., 1994).  

Different biogenic amines can be found in mackerel, herring, tuna and sardines such as histamine, 

putrescine, cadaverine, tyramine, spermine and spermidine as reported by different authors 

(Lebiedzinska et al., 1991; Middlebrooks et al., 1988; Ramesh and Venugopalan, 1986). 

These biogenic amines are produced in particular during fish spoilage and usually the 

concentrations of histamine, putrescine and cadaverine increase, while the contents of polyamines 

decrease (ten Brink et al., 1990). 

Fruit and vegetables 

Juices and nectar produced from a wide range of fruit (oranges, raspberries, lemons, grapefruit, 

mandarins, strawberries, currants and grapes) can contain different biogenic amines (Maxa and 

Brandes, 1993). Halàz et al. (1994) have reported high concentration of biogenic amines in orange 
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juice (noradrenaline, tryptamine), tomato (tyramine, tryptamine, histamine), banana (tyramine, 

noradrenaline, tryptamine, serotonin), plum (tyramine, noradrenaline) and spinach leaves 

(histamine). 

Meat 

Normally, fresh meat correctly stored contain only low level of spermine, spermidine and 

putrescine. An improper storage can promote the growth of an environmental contaminant 

microflora that can produce high concentration of cadaverine and histamine. In particular, fresh 

minced meat is a problematic matrix because the increase of the surface expose to the deterioration 

factors can cause an increase of the concentration of the different biogenic amines. For these 

reasons the biogenic amines content can be used as freshness quality index for unprocessed meat 

(Vinci and Antonelli, 2002) 

Milk 

In general, the concentration of biogenic amines in milk of different species are very low and 

normally regards only polyammines.  

1.7.2. Fermented foods 

Fermented foods are characterized by the presence, at the end of the fermentation, of different 

biogenic amines. The presence of these compounds is caused by the decarboxylation of free amino 

acids that are produced from the proteolysis that characterize these foods. In fact during the 

preparation of these products a lot of different microorganisms, not only the starter culture added 

during manufacture can be present in the raw materials and some of them can produce biogenic 

amines during the fermentation. These are the reasons that explain the concentration of putrescine, 

cadaverine, histamine and tyramine that can be found especially in sausages and cheese. 

Cheese and dairy products 

Cheese is one of the fermented foods most involved in biogenic amine poisoning, in fact the 

syndrome caused by the consumption of high concentration of tyramine is named “cheese reaction” . 

In literature are presents many studies that characterize dairy products regarding the amount of 

biogenic amines, and all of these are agree that in these foods all the biogenic amines known can be 

present. In particular, histamine and tyramine can be present in different amount in relation to the 

type of cheese and to the quality of raw materials and ripening conditions. 
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The key role of the quality of the milk is demonstrated from the study of Lau et al., 1991, where 

they showed that cheese obtained from raw milk contain higher concentrations of biogenic amine 

than the one obtained from pasteurized milk.   

Vegetables 

Generally, in fermented vegetables very low levels of biogenic amines can be detected. Fermented 

vegetables obtained by high quality raw materials are not characterized by relevant concentration of 

biogenic amine, but a contamination or a thermal abuse can cause a relevant increase of the 

concentration of tyramine. 

Fermented meat products 

Fermented meat products are the mainly food products studied for their content in biogenic amines. 

These products are characterized by an important proteolysis process that produce high quantity of 

free amino acids that are available for the decarboxylation, in fact fresh meat (utilized to produce 

for example dry fermented sausages) can contain only minimal concentrations of spermidine and 

spermine, sometimes also putrescine (Hernandez-Jover et al., 1997). These amines are produced by 

contaminant microorganisms, so they are an index of the freshness of the meat. 

The type and the quantity of the biogenic amines present in fermented sausages are characterized by 

a great variability even if the microbiological profile are similar between the products, as reported 

by Gardini and Suzzi (2003). This variability is the result of the complex interaction of different 

factors that influence the fermentation process. 

Many authors (Komprda et al., 2001; Eerola et al., 1998; Maijala et al., 1995) confirmed the key 

role of the quality of raw materials and chemical-physical factors (pH, aw, NaCl concentration, 

temperature, etc.) to obtain products with low concentrations of biogenic amines.  

Tyramine and putrescine are the principal amines that can be found at the end of the ripening of 

fermented dry sausages due to the activity of lactic acid bacteria, but sometimes can be found also 

cadaverine and histamine, generally deriving from low quality raw materials or environmental 

contamination. In fact, during the producing process raw material can be contaminated by 

environmental microorganisms and some of them can decarboxylate amino acids causing an 

increasing amount of some amines. 

To obtain fermented products with low concentration of these compounds it is necessary to control 

the quality of raw materials, to choose starter cultures that do not produce biogenic amines and to 

select the best conditions in terms of chemical-physical factors that characterize these products.   
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Fermented fish products 

Fermented fish products are characterize by a great variability in the content of biogenic amines as 

demonstrated from the study of Yankah et al. (1993) on Ghananian fish and Ayensa, (1993) on 

anchovies. In this study only few sample present detectable quantity of histamine, in fact the 

decarboxylation of histidine is very variable and dependent on time, temperature and on the specific 

characteristics of the microflora present. 

Wine and beer 

In this type of product relevant quantities of agmantine, ethanolamine, cadaverine, histamine, 

tyramine and putrescine can be found as products of microorganisms that operate the alcoholic 

fermentation. Numerous authors including Bravo et al. (1983) and Dumont et al. (1992) have 

showed the presence of histamine and tyramine in red wines and beer. 

As reported by EFSA (2011) it is possible to create two different ranks for these foods, one based 

on the mean content in tyramine and histamine (the most toxic amines) and one on the consumer 

exposure. 

Based on the mean concentration foods can be ranked in following increasing order: 

• histamine � fermented sausages (23.0 – 23.6 mg/kg), other fish and fish products (26.8 – 

31.2 mg/kg), cheese (20.9-62 mg/kg), fermented vegetables (39.4 – 42.6 mg/kg), fish sauce 

(196-197 mg/kg) and dried anchovies (348 mg/kg); 

• tyramine � fermented vegetables (45 – 47.4 mg/kg), fermented fish (47.2 – 47.9 mg/kg), 

cheese (68.5 – 104 mg/kg), fish sauce (105 – 107 mg/kg) and fermented sausages (136 

mg/kg). 

Based on the consumer exposure foods can be ranked in following increasing order: 

• histamine � fermented vegetables, fish sauce (0.4 – 29.9 mg/day), cheese (13 – 32.1 

mg/day), fermented sausages (6.4 – 37.1 mg/day) and other fish and fish products (8.8 – 

41.4 mg/day). 

• tyramine � preserved meat, fermented fish meat (2 – 94.4 mg/day), fermented sausages 

(17.2 – 99.3 mg/day), cheese (44 – 108 mg/day) and beer (18.5 – 124.6 mg/day). 

  



22 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

Chapter  2 
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2.1. Character istics of the genus Enterococcus 

 

Figure 2.1: Enterococcus spp. (www.sourcemolecular.com) 

Enterococci are ubiquitous microorganisms that have as predominant habitat the gastrointestinal 

tract of humans and animals. Generally, they are characterized by a high heat tolerance and a 

relevant survival under adverse environmental conditions. For these reasons, they can easily 

colonize a wide variety of habitats, including foods. Their origin, ubiquity and resistance justify the 

use of their microbial count as a quality index for fresh and processed foods. In fact, their presence 

is considered negative in fresh foods and fermented sausages in which they can promote the 

spoilage process and in which they are often considered indicators of faecal contamination. 

Nevertheless, they are fundamental in the production of some cheeses because they play an 

important role in the development of organoleptic characteristics during the ripening. For these 

reasons they are sometime utilized in the formulation of the starter cultures for cheese production 

(Giraffa, 2003). Others important characteristics of these microorganisms are their resistance 

towards several antibiotic (such as ampicillin, vancomycin, aminoglycosides and glycopeptides) 

and the ability to exchange genetic material that can enhance their survival. For example it has been 

demonstrated that the 25% of the DNA of E. faecalis is exogenously acquired (Polidori et al., 

2011). It is also demonstrated that these transferred genes derive from different genus like 

Streptococcus and Staphylococcus (Gilmore et al., 2014). 

In the last two decades Enterococcus species have acquired an important role in the clinical 

microbiology, in fact they are considered nosocomial pathogens and often they are involved in 

food-borne illnesses due to their virulence factors (Foulquié Moreno et al., 2006). 

2.2. Taxonomy 

The identification of the microorganisms belonging to the genus Enterococcus has always been 

problematic, because this genus is composed by a heterogeneous group of Gram-positive cocci that 
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are characterized by many proprieties typical of other genera, such as Streptococcus and 

Lactococcus. 

During the last century the classification of the genus Enterococcus has been refined and in 1984, 

with the use of DNA hybridization and 16s rRNA sequencing, the most significant changes were 

made. Until some decades ago, the homo lactic coccal shaped cells of LAB were classified in the 

genus Streptococcus. The evidence of the heterogeneity of this genus (both physiological and 

genetic) determined its subdivision into in three genera: Streptococcus, Lactococcus and 

Enterococcus (Giraffa, 2002) as reported in Figure 2.2. 

 

Figure 2.2:16s rRNA dendrogram (Fisher and Phillips, 2009) 

Even if this classification is accepted, today still difficult to define the phylogenetic system for 

Enterococcus. Nowadays, the genera Enterococcus consists of 28 species: E. faecalis, E. faecium, 

E. durans, E. mundtii, E. asini, E. avium, E. canis, E. casseliflavus, E. cecorum, E. columbae, E. 

dispar, E. flavescens, E. gallinarum, E. gilvus, E. haemoperoxidus, E. hirae, E. malodoratus, E. 

moraviensis, E. pallens, E. phoeniculicola, E. pseudoavium, E. raffinosus, E. ratti, E. 

saccharolyticus, E. saccharominimus, E. solitarius, E. sulfureus and E. villorum (Foulquié Moreno 

et al., 2006). 
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2.3. General aspects 

Enterococci are Gram positive microorganisms, non-spore forming, catalase-negative that can occur 

singly, in pairs or in short chains. They are facultative anaerobes, their metabolism is homo-

fermentative and they produce only L-lactic acid. They can grow in a wide range of temperature 

from 10 to 45°C, but their optimum is around 35°C. Enterococci can survive to a heat treatment at 

60°C for 30 minutes. Generally, their growth is scarcely influenced by osmotic pressure and pH, in 

fact they can grow in hypotonic, hypertonic, acidic and alkaline environments. As facultative 

anaerobes they can grow also under reduced or oxygenated conditions (Fisher and Phillips, 2009). 

They can survive to a range of stress and hostile environments, characterize by extreme values of 

temperature (5-65°C), pH (4.5-10.0) and concentrations of NaCl (up to 6.5%) (Fisher and Phillips, 

2009). Not all the strains are able to grow in all the reported conditions, there are some exception 

that include E. dispar, E. sulfureus, E. malodoratus and E. moraviensis which do not grow with a 

temperature of 45°C (Svec et al., 2001; Martìnez-Murcia and Collins, 1991; Collins et al., 1984), 

and E. cecorum and E. columbae that do not grow at 10°C, as reported by Devriese et al., 1993. 

Other exception regard the ability to grow in presence of 6.5% of NaCl, in fact E. avium, E. 

saccharominimus, E. cecorum and E. columbae do not grow in this condition (Vancanneyt et al., 

2004; Devriese et al., 1993). 

These general aspects are the reasons for which the species of this genus can be isolated in a large 

variety of habitats, such as fresh vegetables, processing foods, water, soil and so on.  

2.4. Genome 

In literature there are different studies about the genome of Enterococcus, but the majority regards 

the genome of Enterococcus faecalis V538, because it is a pathogenic antibiotic-resistant bacteria. 

These studies have highlighted that the main chromosome of E. faecalis V583 is composed by 

3.218.031 bp and contains 3.182 open reading frames (ORFs). The genome of this microorganism 

is characterized by the presence of three plasmids of 66.320, 57.660 and 17.963 bp, respectively. 

Also it has been identified a “pathogenicity island” , that is composed by 150 kbp and contains the 

genes that help microbial cells in the colonization and infection processes.  

2.5. Physiology and metabolism 

Enterococci are bacteria characterized by a vast metabolic potential that promote their growth in a 

wide variety of environments characterized by different stress factors. This complex metabolism is 

under investigation from the last century and in the last few years with the tools of molecular 
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biology a lot of new information has been obtained. These researches have shown that many 

metabolic genes and pathways vary even within single species, for this reason the knowledge of the 

principal metabolic pathways that characterize the genus is fundamental. 

2.5.1. Sugar metabolisms 

The sugar metabolism is the most implied in the survival of enterococci in extremely different 

habitats. All the Enterococcus species are able to metabolize 13 sugars and it is demonstrated that at 

least two members can metabolize other 30 sugars. Studies about the Enterococcus metabolism 

have highlighted that these species can be able to utilize carbon sources that characterize the 

metabolism of different genus or species thanks to mobile elements. Anyway, they can easily 

metabolize carbohydrate monomers and polymers. 

Enterococci can metabolize sugars by two different pathways: 

• Embden-Meyerhof-Parnas 

• Pentose phosphate. 

An important characteristic of the specie Enterococcus faecalis is the ability to metabolize glucose 

also by Entner-Doudoroff  pathway. This pathway normally is associated only to Gram negative 

microorganism, but E. faecalis represent an exception, in fact is the only Gram positive 

microorganism that can follow this way (Gilmore et al., 2014). Peykov et al. (2012) have 

demonstrated that the  genes involved in this pathway can be used to identify E. faecalis strains by a 

novel method based on a PCR (polymerase chain reaction) with specific primers for these genes. 

In addition to simple sugars, enterococci are able to metabolize some biological polymers resistant 

to human digestive system. One of these sugars is cellulose, it is demonstrated by different studies 

that E. saccharolyticus, E. faecalis and E. gallinarum can grow on substrate where the only sugar 

source is represented by the cellulose (Chassard et al., 2010; Adav et al., 2009; Wang et al., 2009). 

Other sugars that can be metabolized by enterococci are: raffinose (Zhang et al., 2011), maltose 

(Mokhtari et al., 2013) and trehalose (Andersson et al., 2001). 

Embden-Meyerhof-Parnas 
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In general, lactic acid bacteria do not possess a respiratory system, so they produce energy through 

different metabolic pathway. Enterococci, in particular, obtain energy by an homo-lactic 

fermentation based on the Embden-Meyerhof-Parnas pathway (glycolysis). This fermentation 

produce 2 moles of ATP for every mole of glucose used and lactic acid as shown in Figure 2.3. 

 

Figure 2.3: Glycolysis and homo lactic fermentation pathways (Von Wright and Axelsson, 2012) 

Glucokinase 
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The glycolysis pathway is composed by ten reactions that can be divided in two phases: 

1. From glucose to glyceraldehyde-3-phosphate; 

2. From glyceraldehyde-3-phosphate to pyruvate. 

The first reaction consist in the phosphorylation of the glucose to glucose-6-phophate by the action 

of the enzyme glucokinase. This reaction requires ATP for the phosphorylation of the substrate that 

is necessary to maintain it inside the cells. The second reaction  is catalysed by glucose-6-phosphate 

isomerase that made the isomerization to fructose-6-phosphate, in this way the carbon in position 3 

is activated for the action of the phosphofructokinase (PFK). The third reaction represent the 

regulation step of the entire metabolic pathway (Figure 2.4), in fact the PFK is highly regulated. 

The enzyme is activated when the cells need energy (high concentration pf AMP) or in presence of 

fructose-2,6- diphosphate (that is the product of the reaction) and  is inhibited when the 

concentration of ATP is high, as reported in Figure 2.5. 

 

Figure 2.5: PFK reaction (Garrett and Grisham, 2012) 

 

Figure 2.4: Regulation of PFK by ATP and AMP (Garrett and Grisham, 2012) 

Moreover, PFK is allosterically inhibited by citrate. The next reaction is catalysed by fructose-1,6-

diphosphate aldolase, that “cut”  the molecule of fructose-1,6-diphosphate and produce 



31 

 

dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. The dihydroxyacetone phosphate 

obtained must be converted to glyceraldehyde-3-phospate to be metabolized by the triosephosphate 

isomerase. 

The second part of glycolysis is the energetic one, in fact it is characterized by the production of 

two phosphorylated compounds with high energy, from which are obtained four ATP. 

This phase starts with the oxidation of the glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate 

through the action of glyceraldehyde-3-phosphate dehydrogenase. This is the first molecule with 

high content of energy that is used to synthetize ATP by a process of substrate phosphorylation 

made by the enzyme phosphoglycerate kinase, as shown in Figure2.5. 

 

Figure 2.5: Phosphoglycerate kinase reaction (Garrett and Grisham, 2012) 

Then the phosphoric group of 3-phosphoglycerate is replaced on the C-2 atom to obtain 2-

phosphoglycerate, that is the substrate for the following reaction that produces 

phosphoenolpyruvate (PEP) through the action of enolase. Finally, PEP is converted in pyruvate by 

pyruvate kinase, with the production of ATP, as shown in Figure 2.6. 

 

Figure 2.6: Pyruvate kinase reaction (Garrett and Grisham, 2012) 

In the last reaction of the homo-fermentative pathway the pyruvate obtained is reduced to lactate by 

the enzyme lactate dehydrogenase. This enzyme can catalyse the conversion of pyruvate to lactate, 

but also the conversion of lactate to pyruvate, for this reason it exhibits a feedback inhibition when 

lactate is present in high concentration in the medium. The inhibition result in a reduction of the 
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conversion of pyruvate and of the regeneration of NAD+. In this case the pyruvate is metabolized by 

other pathways which will be shown later (Von Wright and Axelsson, 2012). Another important 

characteristic of the lactate dehydrogenase is its enantiospecificity, in fact it can produce D-lactate 

or L-lactate in relation to its specificity (Kim and Whitesides, 1988). 

Other hexose, for example fructose, galactose and mannose, are metabolized by this pathway after 

an isomerization and a phosphorylation. In particular, galactose can follow two different pathways 

depending on the form in which it enters in the cells, as reported in Figure 2.7. Galactose, in fact, 

can be phosphorylated by a phosphoenolpyruvate-dependent phosphotransferase system (PEP:PTS) 

and absorbed, or can be imported as free galactose by a specific membrane permease. 

 

Figure 2.7: Galactose metabolisms a) tagatose-6-phosphate pathway; b) Leloir pathway (Von Wright and 

Axelsson, 2012) 

Pentose phosphate 

The pentose phosphate is an alternative pathway of glucose. This is not an energetic metabolism, 

but it is a way to obtain sugars with five atoms of carbon that are precursors of  important 

molecules,  such as deoxyribose and nicotinamide adenine dinucleotide phosphate. They are 

fundamental for the synthesis of nucleic acids and for the process of reduction of some biosynthetic 

pathways, respectively.  
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This metabolism produce also some compounds, such as fructose-6-phosphate and glyceraldehyde-

3-phosphate. 

2.5.2. Pyruvate metabolism 

The pyruvate obtained by these and other metabolisms are not converted totally in lactate, but it can 

be utilized to obtain different compounds important for microbial cells as shown in Figure 2.8. 

 

Figure 2.8: Alternative metabolisms of pyruvate (Von Wright and Axelsson, 2012) 

These alternative metabolisms do not produce high quantity of energy for cells, but they are 

important when the activity of lactate dehydrogenase is suppressed and the growth of cells are slow. 

In fact, these pyruvate metabolism are activated in particular when the microbial cells are in 

nutritional stress (Von Wright and Axelsson, 2012). 

Four are the alternative pathways of pyruvate: 
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1. Diacetyl/acetoin pathway; 

2. Pyruvate-formate lyase system; 

3. Pyruvate dehydrogenase pathway; 

4. Pyruvate flavodoxin/ferredoxin oxidoredeuctase; 

5. Pyruvate oxidase pathway. 

Diacetyl/acetoin pathway 

This is one of the most important pathway for the construction of the aromatic profile of cheeses 

and fermented sausages. This metabolism is activated only if there is an excess of pyruvate (respect 

the amount needed to produce NAD+ from the homo-fermentative pathway), that is normally 

obtained from other pathway, for example the breakdown of citrate (Von Wright and Axelsson, 

2012). The pyruvate can follow two different route to form diacetyl, but the most common is the 

one that involves the α-acetolactate, in fact this compound is converted spontaneously to diacetyle 

without any enzymatic reaction (Von Wright and Axelsson, 2012). 

Pyruvate-formate lyase system 

Another use of the pyruvate is the formate lyase system. This pathway is activated by enterococci in 

anaerobic condition and when the substrate is limited (Von Wright and Axelsson, 2012). In this 

metabolism pyruvate is used to obtain acetyl-CoA and formate by the enzyme pyruvate-formate 

lyase (named also as formate acetyltransferase) (Kandler, 1983; Thomas et al., 1979). These 

compounds are then used to obtain different end products (lactate, acetate, formate and ethanol) 

and, in particular, acetyl-CoA is used as an electron acceptor in the production of ethanol and as a 

substrate for the production of ATP in the reaction that has as end product acetate (Von Wright and 

Axelsson, 2012). 

An important characteristic of the pyruvate-formate lyase is its high sensibility to the oxygen, in 

fact it cause an alteration of the bound between the sub-units of the enzyme and completely 

inactivate the protein (Gilmore et al., 2014).   

Pyruvate flavodoxin/ferredoxin oxidoredeuctase 

This is a specific pathway that characterize the specie E. faecalis (Yamazaki et al., 1976) and 

produce acetyl-CoA in reduced condition by the action of the enzyme flavodoxin/ferredoxin 

oxidoreductase. The products are the same of the pyruvate-formate lyase system, but this enzyme is 

not sensitive to catabolite repression. 
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Pyruvate dehydrogenase pathway 

The dehydrogenation of pyruvate represent another metabolic pathway that lead to the production 

of acetyl-CoA that is utilized in the lipid biosynthesis (Von Wright and Axelsson, 2012). This 

pathway is composed by different oxidative reactions, so it require oxygen to be active.    

Pyruvate oxidase pathway 

This pathway take place only in presence of oxygen because the main reaction is an oxidation of the 

pyruvate by the enzyme pyruvate oxydase, to obtain acetate. Sedewitz et al., 1984 have reported 

that this metabolism can lead to the aerobic formation of acetic acid. 

2.5.3. Glycerol metabolism 

Another important metabolism that characterize this genus is the glycerol catabolism from which 

microbial cells can obtain fundamental molecules for the synthesis of lipids and lipoteichoic acids 

(Coyette and Hancock, 2002). In particular, Bizzini et al., 2009 reported that the metabolism of the 

specie E. faecalis is very different from the one that characterize the genus, in fact the members of 

this specie can metabolize glycerol under aerobic conditions, but also in anaerobic conditions. The 

two different pathways are reported in Figure 2.9. 

 

Figure 2.9: Different pathways of glycerol metabolism in Enterococcus faecalis (Gilmore et al., 2014) 

The first pathway involves two enzymes that phosphorylate and oxidate the glycerol to obtain a 

product that can be used in the glycolysis. In particular, the glycerol absorbed by the specific 
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membrane protein (GlpF) from substrate is firstly phosphorylated to glycerol-3-phosphate by 

glycerol kinase (Glpk) and then it is oxidized to dihydroxyacetone-phosphate by the action of the 

enzyme glycerol-3-oxidase (Glpo). These two enzymes, along with the specific carrier, are encoded 

in a single operon that is highly conserved among enterococci, without any differences between 

species. 

The second pathway starts with the oxidation of glycerol by glycerol dehydrogenase (GldA) to 

obtain dihydroxyacetone that is subsequently phosphorylated to dihydroxyacetone phosphate by the 

enzyme dihydroxyacetone kinase (Dhak). As for the enzymes of the first pathway, also in this case 

the enzymes are encoded in a single operon for E. faecalis. The same operon can be found in the 

genome of E. faecium, but it lacks of the enzyme GldA and this justifies the inability of the species 

to grow and metabolize glycerol in anaerobic conditions. 

2.5.4. Citrate metabolism 

Citrate is an important organic tribasic acid that can be found in several raw materials and is often 

used as an additive (in form of salt of sodium or potassium) in some food production. The 

metabolism of this compound has a principal role in the construction of the characteristic flavour of 

different fermented food, in particular cheeses. For this reason the microorganisms that can 

metabolize citrate are particularly important in this production. Unfortunately,  not all the lactic acid 

bacteria are able to metabolize citrate (Kennes et al., 1991), in fact this ability is linked to the 

presence of a specific gene encoding for the transporter citrate permease, that control the uptake of 

citrate from the medium, as shown by Bandell et al. (1998). This gene is not normally present in the 

genome of lactic acid bacteria but it is acquired by an endogenous plasmid (Bandell et al., 1998). In 

literature there are some studies that demonstrated that enterococci isolated from different dairy 

products are able to metabolize citrate with an high efficiency (Vaningelgem et al., 2006; 

Sarantinopoulos et al., 2001b). 

In Figure 2.10 is reported the citrate pathway, in particular the first step of this pathway require the 

transport of the citrate from the substrate, then it must be cleavage to acetate and oxaloacetate by 

the action of the enzyme citrate lyase, as shown by Hugenholz, (1993). The oxaloacetate obtained is 

then decarboxylated to pyruvate and CO2. The pyruvate that is produced by this pathway is then 

utilized as substrate for different reaction that produce important end products, such as diacetyle, 

acetaldehyde, acetoin, acetate, formate, lactate, ethanol, α-acetolactate and 2,3-butanediol, that 

characterize the organoleptic profile of some foods (Vaningelgem et al., 2006). Moreover, the 

carbon dioxide produced with the decarboxylation of oxaloacetate is important in the definition of 

the structure of dairy products. 
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Figure 2.10: Citrate metabolism (Sarantinopoulos et al., 2001b) 

Recently, the interest of some researchers is focalized on citrate metabolism of Enterococccus spp. 

because the molecules that are produced by this metabolism can be used as a quality index for 

fermented foods (Rea and Cogan, 2003a,b; Sarantinopoulos et al., 2001a,b) and represent a criteria 

in the selection of Enterococcus strains that can be used in the formulation of starter cultures for 

dairy and meat industry. 

2.5.5. Respiration 

Some enterococcal species are able to produce energy through a partial respiration metabolism. This 

pathway is not completely characterize for all the species, but some information can be found about 

E. faecalis. Given the inability of LAB (and enterococci among them) to synthetize heme, the 

enterococcal electron transport chain can work only when cells has aa exogenous supply of this 

important cofactor needed for cythocrome activity (Pritchard and Wimpenny, 1978; Ritchey and 

Seeley, 1974). In E. faecalis the respiration chain involves: demethylmenaquinone (the electron 

carrier), cytochrome bd (the protein which oxidizes the quinone and generate the protons that 

release outside the cell provide the proton-motive force), fumarate reductase (the enzyme that 

catalyzes the reduction of fumarate) and F0F1-ATP synthase (primary ion pump that control the 
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electrochemical gradient of protons). In Figure 2.11 is reported the respiration pathway in E. 

faecalis. 

 

Figure 2.11: Respiration pathway of E. faecalis (Gilmore et al., 2014) 

2.5.6. Redox metabolism 

Another important metabolism for enterococci is the redox one. In fact, they are recognized as 

potent producers and scavengers of reactive oxygen species. These compounds are dangerous for 

the cell viability because they can react with the cell membrane and irreversibly damage it. There 

are different systems that provide the inactivation of these compounds and they are represent by: 

peroxidases, oxidases, peroxiredoxins, alkyl hydroperoxidases and glutathione. 

The activity of these systems justify the resistance to oxidative stress that characterize enterococci, 

this is the reason for which they can survive inside phagocytic cells (Gentry Weeks et al., 1999).  

2.5.7. Deiminase catabolism 

Arginine and agmatine are alternative energy sources for few species of enterococci, in particular E. 

faecalis. Obviously this metabolism produce less energy respect to the glycolysis, in fact one mole 

of substrate produces one mole of ATP. This pathway starts with the deiminase of argine and 

agmatine to obtain, respectively, citrulline and carbamoylputrescine. These reactions are catalysed 

respectively by the enzymes arginine and agmatine deiminase. Then two different reactions take 

place, one is the phosphorolysis of the citrulline carried out by the ornithine carbamoyltransferase to 

form carbamoyl phosphate and ornithine and the other regards the carbamoylputrescine that reacts 

with putrescine carbamoyltransferase to obtain putrescine and carbamoyl phosphate. The carbamoyl 

phosphate is characterized by a high-energy phosphate bond that can be used to produce ATP. 

Figure 2.12 shows the deiminase pathway.   
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Figure 2.12: Deiminase pathway (Gilmore et al., 2014) 

2.5.8. Ion metabolism 

Enterococci are able to survive in harsh environments characterized by extreme pH and high salt 

concentration. This ability implies that microbial cells must have an efficient system of transport 

that maintain a constant ion concentration, essential for the homeostasis of the cells. 

The survival of cells in environments characterize by high salt concentration require some system 

that can regulate the intracellular concentration of cations and anions. It is demonstrated that E. 

hirae has two systems that act to control the Na+ concentrations. These systems are represented by a 

Na+/H+ antiporter and a vacuolar-type ATPase. It is worthy to note that not all the cations must be 

strictly bound to the concentration between the inside and the outside of the cells, for example, 

potassium is a cation fundamental for cells and it must be present in high concentration inside the 

cells. This ion is necessary to neutralize intracellular anions, to activate some enzymes and to 

regulate the cytosolic pH. It is obvious that high intracellular proton concentrations is a problem 

when low concentration of potassium is available in the cells. To avoid this problem the cells are 

provided with specific active transporter for this ion, as reported for E. hirae by Kawano et al., 

2001. 

Another important ion for microbial cells is copper. It is a cofactor of redox-active metabolic 

enzymes because of the redox activity between its two oxidation states (Cu+ and Cu2+). The high 

reactivity that characterize this ion can cause important problem to microbial cells, in particular the 

ones of enterococci. To reduce the toxicity of the copper the cells have specific proteins, named 

copper chaperones and copper-ATPase, that regulate its uptake and export as reported in Figure 

2.13. 
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Figure 2.13: Copper metabolism (Gilmore et al., 2014) 

Iron is a fundamental ion for microbial cells, it can be considered an essential nutrient (Lisiecki and 

Mikucki, 2006). Due to the physiological pH the concentration of this ion in cells is usually low, for 

this reason enterococci are able to synthesize and secret specific binding compounds named 

siderophores. These molecules bind iron and then the cells with specific membrane receptors absorb 

it and utilize the iron bind (Lisiecki et al., 2000). 

Another important ion for microbial cells is the manganese. It is a cofactor of numerous enzymes 

and a regulator of some metabolic pathways related to signal transduction and oxidative stress 

(Jakubovics and Jenkinson, 2001).                                                                                                                                                                                                                                 

2.6. Stress response general aspects 

Enterococci are recognized as members of the intestinal microbiota and for this reason they are 

considered faecal contaminants. To survive in the intestine these microorganisms must be resistant 

to a wide range of stress conditions and stress factors, such as change of pH, high salt 

concentrations, presence of bile salt. In particular, their resistance to high temperature, low and high 

pH and high NaCl concentration are important characteristics that should be taken into 

consideration for industrial production of fermented foods such as sausage and cheese. Giard et al. 

(2003) and Bøhle et al. (2010) have reported that the synthesis of over 200 polypeptides is 

enhanced when the microorganisms grow in stress conditions. These stress proteins represent the 

tool that enterococci use to survive in inhospitable habitats. Two of the principal stress proteins 

correspond to GroEL and DnaK chaperones and are named Gsp 66 and Gsp 67 respectively (Rince 
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et al., 2001). Some other stress proteins are found from the analysis on E. faecalis such as Gsp 65, 

that is homologous to bacterial hydroperoxide reductases, and Gls 24 that is related to the virulence. 

2.7. Functional proper ties of enterococci 

Enterococci are characterized by many positive functional properties, that can play an important 

role in some food productions. 

2.7.1. Production of bacteriocins 

The bacteriocins are small cationic peptides with important antimicrobial activity that are 

synthesised in the ribosomes. These compounds are characterized by different mode and target of 

activity, moreover they have different molecular mass, chemical structure, thermostability, pH of 

activity and genetic determinants (Riley and Wertz, 2002; Cleveland et al., 2001; McAuliffe et al., 

2001; Ennahar et al., 2000).  

Bacteriocins are classified into three classes characterized by different structural, molecular and 

physicochemical properties (Nes et al., 1996; Klaenhammer, 1993): 

• Class I: bacteriocins named lantibiotics, that are post-translationally formed; 

• Class II: bacteriocins not post-translationally modified divided into three subclasses: 

o Class IIa or pediocin–like bacteriocins;  

o Class IIb bacteriocins require two polypeptide chains to be functional; 

o Class IIc contain the molecules that can be part of other groups. 

•  Class III: hydrophilic and heat-labile peptides. 

Enterococci are able to produce enterocins (Fontana et al., 2015; Beshkova and Frengova, 2012), 

that are bacteriocins that belong to class I, class IIa, class IIc and class III. 

In literature there are many studies about the activity of enterocins towards Listeria spp.. For 

example Garcia et al. (2004) studied the inhibition of Listeria monocytogenes by enterocin EJ97, 

that is produced by E. faecalis EJ97, against these microorganisms. 

Today many different bacteriocins produced by enterococci are known as shown in Table 2.1.  
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Table 2.1: Enterocins present in literature (Foulquié Moreno et al., 2006). 

Only few of these molecules have been purified to homogeneity, in fact the  majority still not be 

purified, for example some enterocins produce by: E. faecalis E-1 (Bottone et al., 1971), E23 

(Nakagawa, 1979), K 4 (Kühnen et al., 1985), DS16 (Ike et al., 1990), 226 NWC (Villani et al., 

1993) and E. faecium E1 (Krämer and Brandis, 1975), S-34 (Nakagawa and Matsuo, 1981), 3 

(Krämer et al., 1983), 25 (Reichelt et al., 1984), 100 (Kato et al., 1993), NA01 (Olasupo et al., 

1994), 7C5 (Torri Tarelli et al., 1994), L1 (Lyon et al., 1995). 

The target of these compounds is the cytoplasmic membrane In fact they create pores that alter its 

functionality in terms of transmembrane potential and pH gradient. Moreover these pores cause the 

loss of important intracellular molecules (Cleveland et al., 2001).  

2.7.2. Proteolysis 

The studies about the proteolytic activity of enterococci are scarce, in fact the majority of the 

researches concerns other genus of lactic acid bacteria such as Lactococcus and Lactobacillus.  

The proteolysis is an important microbial metabolic process because it produces peptides of 

different molecular weight, that contribute to the organoleptic characteristics of some foods, in 

particular the fermented ones. These peptides can give to products good flavour, but also 

undesirable bitter taste, for this reason is necessary to control the proteolysis through the selection 

of the correct microorganisms. 

The first study about the proteolysis of enterococci was performed by Somkuti and Babel (1969), 

they analyse the activity of an extracellular proteinase of a strain of E. faecalis var. liquefaciens. 
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This research revealed that this proteinase can degrade with high activity the casein, but it is less 

active on α-lactalbumin and β-lactoglobulin. Another study on E. durans protease highlight its 

activity only on casein and β-lactoglobulin (Wallace and Harmon, 1970). 

Carrasco de Mendoza et al., (1989) from the characterization of 61 strains of Enterococcus report 

that proteolytic activity is strain and time dependent. Moreover, Wessels et al., (1990) found that 

some strains of E. faecium, E. faecalis and E. durans are characterized by a relevant proteolytic 

activity at psychrotrophic temperatures. 

In a recent study performed by Sarantinopoulos et al., (2001a) is reported that E. faecalis strains, in 

general, are more active respect strains of E. faecium and E. durans. 

2.7.3. Lipolysis 

Lipolysis, such as proteolysis, is a fundamental process for the construction of the typical sensory 

profile of some fermented foods. Lipolysis contribute to the formation of organoleptic  profile by 

the production of short chain fatty acids (that are precursors of sapid compounds such as methyl 

ketones and lactones), the oxidation of fatty acids (that produce strongly flavoured compounds) and 

the solubilisation of aromatic compounds that are derived from other metabolisms. 

Also in this case the information that can be found in literature are few, probably because lactic acid 

bacteria are known as weakly lipolytic. The first study on the lipolysis of enterococci, that was 

known as Streptococci yet, was performed by Lund (1965), he found some esterases in the cell free 

extracts of E. faecalis, E. faecium and E. durans and, in particular, the one identified from E. 

faecalis exhibited higher activity respect the other. Another study reported that the lipolityc activity 

of enterococci (also in this case these strains was known as streptococci and only after new genetic 

study they are recognized as enterococci) is higher respect the activity of streptococci (Dovat et al., 

1970). Carrasco de Mendoza et al., (1992) reported that the lipolytic activity of enterococci is strain 

dependent, in fact the majority of enterococci strains are not lipolytic, but some strains of E. 

faecalis shown important lipolytic activities. Sarantinopoulos et al., (2001a) confirmed the data of 

the previous studies, they reported that in their trials E. faecalis strains were the most lipolytic and 

esterolytic, followed by E. faecium and E. durans. 

2.7.4. Probiotics 

Probiotics are living microorganisms that improve the health of the host, if they are ingested in 

adequate amounts, through the modification of the intestinal microbiota. The beneficial effects that 

these microorganisms can produce on the host are different, including: improvement of the immune 

response, modification and improvement of  the composition of the colonic microbiota, reduction of 
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the enzyme implied in cancer initiation, treatment of diarrhea caused by travel and antibiotics, 

vaccine adjuvant effects and prevention of ulcers caused by Helicobacter pylori. 

To define a microorganism as probiotic some specific characteristics are required: 

• Ability to adhere to the intestinal epithelium; 

• Prevent or reduce the adherence of pathogens; 

• Persistence and multiplication; 

• Production of important microbial compounds, such as acids, hydrogen peroxide and 

bacteriocins; 

• Be safe for human organisms (Salminen et al., 1996). 

The best known probiotics belong to the genus Bifidobacterium and Lactobacillus, but there are 

some other genus of lactic acid bacteria that are characterized by typical probiotic features. Among 

them there is the genus Enterococcus and, in particular the species E. faecium and E. faecalis. 

The most studied strain is E. faecium SF 68, that is actually produced in Switzerland. It is reported 

that this strain can prevent antibiotic associated diarrhea (Wunderlich et al., 1989) and treat the 

children’s diarrhea (Bellomo et al., 1980). Other strains that are considered as probiotics are E. 

faecium CRL 183 (Rossi et al., 1999) and E. faecium PR88 (Allen et al., 1996).  

The use of enterococci as probiotics is still a controversial topic of discussion in microbiology 

research. The major problem is related to the increasing association of enterococci with some 

diseases and their multiple antibiotic resistance. 

2.8. Safety status of enterococci 

Enterococci are known as common nosocomial pathogens, in fact they are associated to numerous 

cases of endocarditis, bacteremia and infections. One of the most worrisome characteristics of these 

microorganisms is their wide antibiotic resistance (Rossi et al., 2014; Klein, 2003; Giraffa, 2002), 

in particular respect to vancomycin. There are also some other virulence factors that characterize 

the genus (Hollenbeck and Rice, 2012; Foulquié Moreno et al., 2006), for example the important 

ability, that characterize some of the strains of the genus Enterococcus, consist in the possibility to 

produce biogenic amines, such as tyramine and 2-phenylethylamine. 

2.8.1. Antibiotic resistance 

The antibiotic resistance that characterize enterococci can be intrinsic or acquired by plasmids 

(Klare et al., 2001; Clewell, 1990).  
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Enterococcal antibiotic resistance is not important only for the clinical arena, but also for the food 

industry (Verraes et al., 2013; Nawaz et al., 2011; Andersson and Hughes, 2010). This 

microorganisms are resistant to different antibiotics, such as: vancomycin, isoxazolylpenicillins, 

cephalosporins, monobactams, aminoglycosides, lincosamides, polymyxins, ampicillin, 

tetracyclines, macrolides, chloramphenicol, quinolones and streptogramins (Vignaroli et al., 2011; 

Foulquié Moreno et al., 2006, Cocconcelli et al., 2003). In particular, the strains resistant to 

vancomycin are known as VRE (vancomycin resistant Enterococcus), and their number is increased 

in the last years. This resistance is related to the presence in the genome of some microorganisms of 

specific genes, in fact there are six different gene clusters that induce this resistance: vanA, vanB, 

vanC, vanD, vanE, vanF and vanG. Of the different VRE phenotypes known, the vanA and vanB 

are the most important from a clinical point of view and they are the phenotypes most frequently 

observed in E. faecium and E. faecalis. 

2.8.2. Biogenic amines production 

Enterococci are known as the most efficient tyramine producers among lactic acid bacteria (Ladero 

et al., 2012; Capozzi et al., 2011; Kuley and Özogul, 2011; Özogul and Özogul, 2007; Suzzi and 

Gardini, 2003). This metabolism is particularly important foe these microorganisms and justify their 

high survival rate in harsh environments, in fact the decarboxylation is a secondary metabolic 

pathways to obtain energy for cells, moreover it is a way to contrast the acidic stress, as reported by 

Molenaar et al. (1993) and Fernández and Zúñiga (2006). 

Usually this enzyme and the related metabolism can be considered a strain characteristic, but the 

species E. faecalis represent an exception because all the strains that belong to the species are 

characterized by the presence of this metabolism, also many strains belongings to E. faecium and E. 

durans species possess this ability (Ladero et al., 2012). 

E. faecalis is the first species for which the tyrDC locus was studied and described, in fact in 

literature can be found different researches, for example the one about the genome of E. facealis 

JH2-2 (Connil et al., 2002), E. faecium RM58 (Marcobal et al., 2006a) and E. durans IPLA 655 

(Ladero et al., 2013). Marcobal et al. (2012) have reported that the gene that encode for the enzyme 

tyrosine decarboxylase (tyrDC) is part of an operon in which four open reading frames (ORFs) can 

coexist, as reported in Figure 2.7. 
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Figure 2.7: Genetic organization of genome region that contain the operon encoding for the proteins involved 

in the decarboxylating metabolism of different species (Marcobal et al., 2012). 

The tdc operon (cluster) of E. faecalis is formed by: 

• tyrS � gene encoding for tyrosyl tRNA synthetase; 

• tyrDC � gene encoding for the enzyme tyrosine decarboxylase; 

• tyrP � gene encoding for the specific tyrosine/tyramine antiporter; 

• nhaC-2 � gene encoding for a Na+/H+ antiporter.  

The role of these proteins are different but their complex lead to the formation of biogenic amines. 

In particular, the role of the protein tyrosyl tRNA synthetase is not totally clear but is known that it 

is involved in a mechanism of activation of tyrosine by the formation of a bound between the 

enzyme and the intermediate tyrosyl-adenylate (Marcobal et al., 2012). TyrP is the specific 

transporter that catalyse the exchange between tyrosine and its decarboxylation product tyramine. 

This protein is fundamental for the energization of the cell membrane, in fact the tyrosine/tyramine 

exchange is electrogenic and the energy produced is represent by a proton motive force. The 

activation of the proton motive force is also related to the activity of the nhaC-2 pump that regulate 

the exchange of Na+ and H+ (Marcobal et al., 2012). 

Connil et al. (2002) and Marcobal et al. (2012) have reported that the first three genes in some 

species are co-transcribed. It is important to highlight that the transcriptional organization can be 

different between the strains, for example in some cases tyrS is transcribed independently. 
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Tyrosine decarboxylase is an enzyme located in the cellular membrane characterized by large 

hydrophobic regions and a wide range of physico-chemical conditions in which can work 

efficiently, also outside the cells. This ability is already reported by different study regarding 

species Lactobacillus brevis (Moreno-Arribas and Lonvaud-Funel, 2001), E. faecalis and E. 

faecium (Liu et al., 2014a).  

An important characteristic of tyrosine decarboxylase is its ability to decarboxylate also 

phenylalanine to obtain 2-phenylathylamine. Obviously the affinity of the enzyme with 

phenylalanine is lower than tyrosine, this results in a lower efficiency of the decarboxylation. 

2.8.3. Virulence factors 

This factors can be explained as molecules or cell products that can enhance the ability to create a 

damage to an organism (Kayaoglu and Orstavik, 2004). Enterococci are able to produce some 

substances that can act in this way, such as: gelatinase, aggregation substances and extracellular 

surface proteins. These virulence factors are easily transfer from a microorganism to another by 

gene transfer mechanisms as reported by Rossi et al. (2014). These mechanisms can be called 

“horizontal gene transfer”  (HGT) and it includes all the non-genealogical transmission of genetic 

materials between organisms, as reported by Golden and Woese, (2007). 

There are three different mechanism of HGT: 

• conjugation; 

• transduction and 

• transformation (Rossi et al., 2014). 

The first mechanism requires the direct contact between the two bacterial cells, different studies 

have reported that this is the principal way of mobilization of the genes involved in antibiotic 

resistance and toxin production (Gazzola et al., 2012; Van der Auwera et al., 2007; Cocconcelli et 

al., 2003). 

The transduction require the activity of specific bacteriophages that transfer the DNA of a 

microorganism to another as a carrier and a receiver microorganism that can acquire the phage. 

Brabban et al. (2005) have reported that the transmission by phage is restricted because the 

microorganisms that can receive this genic information are few. 

The last mechanism is a transmission that are carried out by virus-like gene transfer agents, that are 

small bacteriophage with a genome composed by their DNA and a part of the DNA of another 

microorganism. Also in this case it represent a minor way to transmit genetic information in a food 

system. 
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Cytolytic activity 

The studies performed by Granato and Jackson (1969 and 1971a,b) highlighted the ability of some 

strains of E. faecalis to produce a particular type of molecules with hemolytic effect, named 

cytolysins. Cytolysins are classified as bacteriocins, of the group of the lantibiotics, that are 

characterized by important bactericidal effect, but they are also able to cause the lysis of eukaryotic 

cells (Fisher and Phillips, 2009; Foulquié Moreno et al., 2006; Cox et al., 2005). 

The production of cytolysins require the presence in the genome of six genes (Foulquié Moreno et 

al., 2006; Saris et al., 1996; Gilmore et al., 1994) and only the strains that are able to express and 

secrete the subunits that are encoded in these genes can produce these molecules. Unfortunately the 

cytolysin genes are located on highly transmissible plasmids, for this reason this production is a 

virulence factor related in particular to the specie E. faecalis. 

Gelatinase 

Gelatinase are extracellular metallo-endopeptidases that cause the hydrolysis of collagen, gelatin, 

haemoglobin and other important peptides. They are considered a virulence factor, in particular in 

nosocomial condition, in fact it is demonstrated that gelatinase contributes to the pathogenesis of 

enterococcal endocarditis (Thurlow et al., 2010; De Fátima et al., 2006). Eaton and Gasson (2001) 

and Franz et al. (2001) found some strains of E. faecalis isolated from food positive to the 

production of gelatinase, but they also found that the presence of the gene is not necessarily related 

to the production of the enzyme. In fact there are some phenotypes that are negative to the 

production even if they have the gene. 

Aggregation substance 

Enterococcus faecalis strains are characterized by the presence of pheromone-inducible surface 

proteins that promote the aggregation during bacterial conjugation, as reported by Clewell (1993). 

These proteins can contribute to the pathogenesis of enterococcal infection, for example trough the 

increasing of the hydrophobicity of cells and the enhancement of the activity of the cytolysins 

(Süβmuth et al., 2000). 

Extracellular surface protein 

These proteins play a relevant role in enterococcal infection, in fact they act on the adhesion and  

the evasion of the immune response of the host. Eaton and Gasson (2001 and 2002) and Franz et al. 

(2001) reported an high incidence of this protein in strains of E. faecalis and E. faecium isolated 

from food. 
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2.9. Enterococci in foods 

The genus Enterococcus is the most controversial group of lactic acid bacteria, in fact they are 

ubiquitous microorganisms that have as predominant habitat the gastrointestinal tract of humans and 

animals, in particular the species E. faecalis and E. faecium. For this reason is common to find these 

microorganisms in products of animal origins, such as meat and milk, and in products such as 

sausages and cheeses. It is worthy to note, as demonstrated by Mundt (1986), that the presence of 

these microorganisms is not always related to a direct faecal contamination, in fact enterococci can 

be easily isolated from soil, water, plants, vegetables and insects. 

Despite this research, usually the presence of enterococci in raw matrices is considered a faecal 

contamination and often is related to their hygienic condition, but in European Union no legal limits 

are reported for this microorganisms. The reason for which do not exist these limits is probably 

related to the important role that they play in the definition of the typical organoleptic profile 

(aroma and texture) of cheeses and sausages. In fact, enterococci are important during the ripening 

processes due to their typical proteolysis, lipolysis and citrate breakdown. These positive 

characteristics is the reason for which in recent years the use of enterococci in the formulation of 

some starter cultures is rising.  

In addition, some strains are able to produce bacteriocins (enterocines) that can contrast the growth 

of some undesirable microorganisms (in particular Listeria spp., Clostridium spp., Escherichia coli 

and Vibrio colerae) and some other can be used as probiotics. 

In Table 2.2 are reported some of the studies about the application of enterocins producing strains in 

cheeses and meat products. 

 

Table 2.2: Application of enterocin producing strains (Foulquié Moreno et al., 2006) 
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Obviously their adaptability to a lot of different stress conditions (high treatment temperature, high 

salt concentration and acid pH) with the antibiotic resistance which characterize them represent for 

some products an important problem. 

2.9.1. Enterococci in dairy products 

The presence of enterococci is usually related to traditional European cheeses, in particular the ones 

produced in Mediterranean countries (Italy, Spain, Greece and Portugal). 

Some studies about the characterization of the microflora of these cheeses report concentrations of 

enterococci between 104 and 106 CFU/g in curds and concentrations between 105 and 107 CFU/g in 

ripened cheeses (Razavi et al., 2007; Giraffa, 2003; Franz et al., 2003; Manolopoulou et al., 2003; 

Giraffa, 2002; Sarantinopoulos et al., 2001a; Xanthopoulos et al., 2000; Suzzi et al., 2000), with a 

prevalence of the species E. faecium and E. faecalis. These values are different in relation, not only 

to the type of cheese considered, but also to the season of production, to the initial milk 

contamination and to the specific survival rate related to the productive process and to the ripening 

variables. 

Researcher opinion about these value are in contrast, because some sustain that enterococci can 

cause only a deterioration of sensory characteristics of the product, but some other researchers have 

recognized to these microorganisms an important and fundamental role the definition of the 

organoleptic characteristics of the final.  

In recent years, the important role of these microorganisms in the cheese ripening has led producers 

to include them in the formulation of the starter cultures. Some studies have reported that the use of 

E. faecalis and E. durans as starter cultures in dairy products can enhance the proteolysis and the 

lipolysis process leading to an overall improvement of the production of some important component 

such as: volatile free fatty acids (in particular short chain free fatty acids), acetoin and diacetyl 

(Franz et al., 2003; Sarantinopoulos et al., 2001a,b). 

The use of enterococci in the production of cheese can be further favoured by recent studies 

concerning the production in situ of enterocins. It is known that enterocins are effective on Listeria 

spp. and Clostridium spp. in vitro or in pilot-scale conditions, but no information about their 

activity in large industrial scale conditions are now available. 

2.9.2. Enterococci in meat products 

Enterococci can be isolated from  many different habitats and they are often contaminant in food of 

animal origin because of their association with gastrointestinal tract. Stiles et al., (1978) reported 

that the predominant species that can be isolated in pork and beef cuts are E. faecalis and E. 
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faecium. Also in the research of Franz et al., (2003 and 2011) is recognized E. faecalis as the 

predominant specie isolated in beef, poultry and pig carcasses. 

Their tolerance to high concentrations of NaCl and  their ability to grow over a wide range of 

temperature and pH, are the reasons of their competitiveness, especially when the environmental 

conditions become harsher (Gardini et al., 2001). In fact, these microorganisms can survive to the 

fermentation process and can be isolated also in fermented meat products, such as sausages (Franz 

et al., 2003; Hugas et al., 2003; Giraffa, 2002). For example Hugas et al., (2003) analysed 31 types 

of Spanish naturally fermented sausages and they found concentrations of enterococci between 1.30 

and 4.48 log CFU/g. Also Ferreira et al. (2006 and 2007) studied the presence of enterococci in 

fermented sausages of north Portugal and found concentrations ranging between 104 and 108 

CFU/g. These microorganisms can be also isolated in thermal processed meat, in fact the heat 

treatments do not inactivate enterococci and confer to them a selective advantage in the colonization 

of the products. This is the reason for which E. faecalis and E. faecium are frequently related to the 

spoilage of cured meat products (Magnus et al., 1986; Magnus et al., 1988).  

The role of enterococci in meat products are important because they contribute to the development 

of the aroma and the structure of fermented meat products (Latorre-Moratalla et al., 2011; Giraffa, 

2002). Moreover they are able to produce enterocins, that can be used to prevent the growth of 

pathogens, such as Listeria monocytogenes, during the fermentation process or in the final products, 

especially in sliced vacuum packed cooked meat (Hugas et al., 2003). For these reasons the use of 

selected enterococcal strains in the formulation of starter cultures is rising in the last few years. 

On the other hand, several studies reported that enterococci are characterized by different virulence 

factors  important for consumers health (Cariolato et al., 2008; Valenzuela et al., 2008; Mannu et 

al., 2003; Semedo et al., 2003a,b; Eaton and Gasson, 2001; Franz et al., 2001).   

Another important characteristic of these microorganisms id the ability to produce high 

concentrations of biogenic amine, in particular in fermented meat products (Tabanelli et al., 2015; 

Foulquié Moreno et al., 2006; Suzzi and Gardini, 2003; Joosten and Northolt, 1989). 

2.9.3. Enterococci in vegetable products 

Enterococci are normally present in a large variety of products that includes vegetables, olives and 

plant material (Ben Omar et al., 2004; Giraffa, 2002; Franz et al., 1999). Some studies report that 

during the Spanish-style green olive fermentation is possible to isolate different species of 

Enterococcus, in particular the predominantly are E. faecium and E. faecalis. Randazzo et al., 

(2004) studied the microflora of naturally fermented green olives from different areas of Sicily. The 
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phenotypic characterization and the analysis of 16S rDNA of the isolates revealed the presence of 

E. faecium, E. hirae and E. casseliflavus. 

In literature the information about the presence of enterococci in vegetable products is scarce also 

regarding minimally processed foods and ready-to-eat products. 
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Even if the presence of biogenic amines in foods (and the risks associated with them) is known 

since a long period (Gale, 1946), systematic studies regarding their presence have been carried out 

only in relatively recent times. The reviews of Shalaby (1996) and Silla-Santos (1996) had the merit 

to collect the fragmented information about this issue and were the starting point for a drastic 

multiplication of scientific publications regarding the presence of biogenic amine in food products 

and the elucidation of the metabolic and genetic drivers of their production by microorganisms. 

 

Figure 3.1: Number of citations in Web Of Science responding to the key words "biogenic", "amine" and 

"food" (date of acquisition 26/02/2016). 

A strong impulse to this growth was given also by the publication of some papers, which proposed 

analytical and microbiological methods accepted by the scientific community to standardize the 

results of the researches allowing the possibility to compare the data obtained by food technologists 

and microbiologists (Bover-Cid and Holzapfel, 1999; Moret and Conte, 1996; Eerola et al., 1993; 

Maijala, 1993). 

On the other hand, the interest about the presence of these molecules increased not only to assure a 

simple and generic “quality”  of food, but also in relation with the numeric increase of the more 

susceptible consumers to biogenic amines (i.e. more exposed to the adverse effects). This category 

includes elder and younger people, immunocompromised patients and consumers using specific 

drugs, which may potentiate the negative effects of some biogenic amines. The consequence of this 

amplification of the possible target of the adverse effect of biogenic amines was well highlighted by 

a recent scientific opinion of EFSA addressed mainly to fermented foods (EFSA, 2011). 
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In the last decades, the presence of biogenic amines has been screened in several foods. In 

particular, several recent papers have been addressed to review these aspects in foods like cheese 

(Buňkova et al., 2010; Komprda et al., 2008a,b; Marino et al., 2008; Innocente and D’Agostin, 

2002), sausages (Tabanelli et al., 2013; Gonzáles-Tenorio et al., 2013; de las Rivas et al., 2008; 

Gardini et al., 2008; Pircher et al., 2007; Suzzi and Gardini, 2003); wine (Beneduce et al., 2010; 

Ancín-Azpilicueta et al., 2008; Ferreira and Pinho, 2006), beer (Kalac and Krízek, 2003; Anli et al., 

2006; Loret et al., 2005) and fish products. Similarly, genetic and metabolic aspects has been 

reviewed for histamine (Rossi et al., 2011; Landete et al., 2008), tyramine and 2-phenylethylamine 

(Zhang and Ni, 2014; Marcobal et al., 2012; Torriani et al., 2008; Connil et al., 2002), cadaverine 

and putrescine (Pircher et al., 2007; de las Rivas et al., 2006). 

In the fermented foods, the production of biogenic amines is often related to the activity of the 

microbiota responsible for secondary fermentation or better for the transformation characterizing 

the ripening and maturation processes. This microbiota is in many cases completely different from 

those responsible for the fermentation steps, which occur at the beginning of the production. 

Within this microbiota, enterococci have often a crucial role, due to their ubiquity, their ability to 

survive and multiply in harsh environments and their capacity to produce biogenic amines. In 

particular, enterococci are known to be the major producer of tyramine and 2-phenylethylamine, 

together with other LAB species. The Laboratory in which I have carried out my PhD thesis has a 

fifteen year experience in this field. The main topics in this field interested the concentration in 

fermented foods of these substances (Tabanelli et al., 2013; Bover-Cid et al., 2009; Gardini et al., 

2008), the study of the factors influencing their accumulation (Tabanelli et al., 2012; Gardini et al., 

2001) as well as the development of genetic tools for improving the detection and the study of 

amino positive strains (La Gioia et al., 2011; Rossi et al., 2011; Torriani et al., 2008). 

My PhD thesis is the prosecution of some of these studies and, in particular, of the researches 

concerning the tyraminogenic properties of enterococci. Previous works interested the relationships 

between the activity of enterococci and tyramine in food systems (Bover-Cid et al., 2009), the 

studies of the possible influence of some technological factors on tyrosine decarboxylation activity 

in an E. faecalis strain (Gardini et al., 2008) and the set up of a genetic probe able to recognize the 

presence of the tyrDC gene also in enterococci (La Gioia et al., 2011; Torriani et al., 2008). 

Starting from these acquisitions, the activity of this PhD thesis was addressed to have a deeper 

insight on the genetic and metabolic characteristic of enterococci in relation to their ability to 

produce biogenic amines and, in particular, tyramine. Strains belonging to the species E. faecalis 

and E. faecium with different tyraminogenic potential were compared. The kinetics of tyramine 

(and 2-phenylethylamine) accumulation were studied in nutritionally rich as well as poor substrates. 
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In addition, the tyraminogenic activity was analysed in cells suspended in buffered systems at 

different pH, temperature and NaCl concentrations and the results were compared with the result of 

the activity of the pure enzyme, in order to better understand the relationships between 

decarboxylating activity and the integrity and viability of microbial cells. From a genetic point of 

view, the tyrosine decarboxylase cluster were sequenced in order to study their similarity and 

evidence the possible genetic reasons for the differences observed. As a further investigation, also 

the transcription of the tyrosine decarboxylase gene was quantified following the growth on a 

specific medium containing defined amounts of tyrosine and phenylalanine. 

Another field of study regarded the characterization of the tyramine production activity of strains 

belonging to the species E. mundtii. For the first time, the tyrosine decarboxylase cluster of this 

species was sequenced and revealed differences with the same cluster in E. faecalis and E. faecium. 

Finally, a part of this work was addressed to exploit the possibility to use bioprotective cultures 

(Lactococcus lactis producing bacteriocins) against biogenic amine producing LAB strains. 
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ABSTRACT 

The ability to accumulate tyramine and 2-phenylethylamine by four strains of Enterococcus faecalis 

and Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. 

Enterococci differed in rate and level of biogenic amines accumulation in relation to substrate 

availability and strain. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount 

early and 2-phenylethylamine when tyrosine was depleted. The behavior of E. faecium FC12 and E. 

faecalis ATCC 29212 differed as they accumulated gradually tyramine during 72 h incubation and 

ATCC 29212 produced 2-phenylethylamine in both media without tyrosine added. The tyrDC gene 

expression was high during the exponential phase in rich medium for all the strains and 

subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among 

enterococci, this study underlines the extremely variable decarboxylating potential of strains 

belonging to the same species, suggesting strain-dependent implications in food safety. 

 

 

Key words: Enterococci, Tyramine, 2-phenylethylamine, tyrDC gene expression, intraspecific 

variability 
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4.1.1. Introduction 

Tyramine is a biogenic amine (BA) deriving from the microbial decarboxylation of tyrosine. It can 

have severe acute effects if ingested in excessive amounts with food, causing an hypertensive 

syndrome known as “cheese reaction” , which consists in peripheral vasoconstriction, increased 

cardiac output, increased respiration, elevated blood glucose and release of norepinephrine 

(Marcobal et al., 2012; McCabe-Sellers et al., 2006). 

Lactic acid bacteria (LAB) are among the most efficient producers of tyrosine decarboxylase 

(tyrDC), the enzyme responsible for tyramine formation. In LAB, BA formation provides metabolic 

energy and/or acid resistance (Molenaar et al., 1993; Fernández and Zúñiga, 2006). The presence of 

this enzyme is widespread among all LAB species (Marcobal et al., 2012). However, LAB 

belonging to the genus Enterococcus are recognized as the most efficient tyramine producers (Suzzi 

and Gardini, 2003; Ladero et al., 2012; Kuley and Özogul, 2011; Özogul and Özogul, 2007). 

Tyramine production is considered a species characteristic of Enterococcus faecalis and also many 

strains of Enterococcus faecium possess this ability (Ladero et al., 2012). The E. faecalis tyrDC 

region was the first tyrosine decarboxylase locus described in prokaryotes (Connil et al., 2002). In 

E. faecalis, upstream the tyrDC gene, an ORF can be found (tyrS), responsible for a tyrosyl tRNA 

synthetase involved in an ATP-dependent activation of tyrosine by forming an enzyme-bound 

tyrosyl-adenylate intermediate (Marcobal et al., 2012). This tyrS could act as a sensor of the 

intracellular tyrosine pool to regulate tyrosine decarboxylation (Linares et al., 2012). The ORF 

(tyrP) located downstream of tyrDC encodes a tyrosine-tyramine antiporter. The three genes are co-

transcribed in some strain (Connil et al., 2002  ̧Marcobal et al., 2012). In addition, in enterococci 

downstream of tyrP an ORF was found related to a gene encoding for an Na+/H+ antiporter (nhaC-

2) (Marcobal et al. 2012; Pessione et al. 2009). It has been demonstrated that the tyrDC of many 

tyraminogenic LAB, and especially enterococci, can decarboxylate, although with a lower 

efficiency, phenylalanine producing 2-phenylethylamine, a BA with characteristics very similar to 

tyramine (Marcobal et al., 2006a).  

Enterococci occur in many different habitats and, due to their association with the gastrointestinal 

tract, they are often contaminant in food of animal origin (Franz et al., 2003; Franz et al., 2011). 

When present in the raw material, enterococci can survive to the fermentation process and can be 

found in fermented foods such as sausages and cheeses in which they can have a relevant role 

during ripening (Franz et al., 2011; Giraffa, 2003). Due to their salt and pH tolerance, as well as 

their ability to grow over a wide temperature range, these LAB are particularly competitive 

especially when the environmental conditions become harsher, and can be a relevant component of 

the ripening microbiota of fermented foods. Their beneficial technological properties and their 
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positive impact on ripening and aroma formation in fermented sausages, cheeses and olives are 

reported by several authors. In addition, some strains showed probiotic features, while many 

enterococci produce bacteriocins able to limit the growth of pathogenic and spoilage 

microorganisms (Fisher and Phillips, 2009; Franz et al., 2011).  

On the other hand, enterococci are among the most common nosocomial pathogens and they can be 

responsible for endocarditis, bacteremia, as well as urinary tract, central nervous system, intra-

abdominal and pelvic infections. In addition, enterococci are also known for their multiple 

antibiotic resistance (including vancomycin), which is in some case carried on mobile genetic 

elements transferable to other microorganisms (Klein, 2003). Moreover, several enterococci 

virulence factors have been described, such as cytolysins, aggregation substances and gelatinase 

extracellular surface proteins (Foulquié Moreno et al., 2006). Finally, the presence of excessive 

content of tyramine in cheese and fermented meat is often attributed to these microorganisms 

(Foulquié Moreno et al., 2006; Joosten and Northolt, 1989; Suzzi and Gardini, 2003; Komprda et 

al., 2008b).  

The aim of this research was to study the tyramine and 2-phenylethylamine accumulation by four 

tyraminogenic strains of Enterococcus, two belonging to the species E. faecalis (EF37 and ATCC 

29212) and two to the species E. faecium (FC12 and FC643). The ability to accumulate BAs was 

tested in a rich cultural medium, which does not limit enterococcal growth, and in a poor medium 

enhancing BA production (Bover-Cid and Holzapfel, 1999). Both media were tested with or 

without the addition of the precursor (tyrosine). In addition, the tyrDC gene expression of the four 

enterococci was analyzed by reverse transcription-quantitative real time PCR (RT-qPCR) during 

growth in rich medium in presence or not of the precursor. 

4.1.2. Mater ials and methods  

4.1.2.1. Enterococcal strains and growth conditions 

The strains E. faecalis EF37 and ATCC 29212, E. faecium FC12 and FC643 were stored in 20% 

(w/v) glycerol at -80°C and pre-cultivated for 24 h at 37°C in BHI Broth (Oxoid, Basingstoke, UK) 

added with 800 mg/l of tyrosine (Sigma-Aldrich, Gallarate, Italy). 

After 24 h of pre-cultivation, the microorganisms were inoculated, at a concentration of 

approximately 6.5 log CFU/ml, in BHI Broth and in Bover-Cid and Holzapfel broth, a medium 

proposed to highlight the biogenic amine formation (BAM) (Bover-Cid and Holzapfel, 1999), 

added or not with 800 mg/l of tyrosine and incubated at 37°C for 96 h. At defined times (1, 2, 3, 4, 

5, 6, 7, 8, 24, 48, 72 and 96 h), the changes of optical density at 600 nm (OD600) were monitored. 
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The modification of pH was determined by a pHmeter Basic 20 (Crison Instruments, Barcelona, 

Spain). 

The maximum cell concentration reached in stationary phase was determined after 24 h of 

incubation by plate counting enterococci onto BHI agar. In addition, 2 ml aliquots of each culture 

was centrifuged at 3000 rpm for 10 min and the obtained cell pellets were frozen at -80°C.  

4.1.2.2. Growth parameters 

The evaluation of enterococcal growth in the different media was performed by measuring the 

OD600 with a UV-VIS spectrophotometer (UV-1204, Shimadzu Corporation, Kyoto, Japan) with 

plastic cuvettes (1.5 ml). The OD600 data were fitted with the Gompertz equation as modified by 

Zwietering, Jongenburger, Rombouts and van’ t Riet (1990). 

 

 

where y is the OD600 at time t, A represent the maximum OD600 value reached, µmax is the maximum 

OD600 increase rate in exponential phase and λ is the lag time.  

4.1.2.3. Biogenic amine determination 

The BA were determined after 4, 8, 24, 48, 72 and 96 h of incubation. The cultures were 

centrifuged at 10000 rpm for 10 min at 10°C, and the supernatants were used for biogenic amines 

(BAs) determination by HPLC after derivatization with dansyl-chloride (Sigma-Aldrich, Gallarate, 

Italy) according to Martuscelli, Crudele, Gardini and Suzzi (2000). The BA content was analyzed 

using a PU-2089 Intelligent HPLC quaternary pump, Intelligent UV–VIS multiwavelength detector 

UV 2070 Plus (Jasco Corporation, Tokio, Japan) and a manual Rheodyne injector equipped with a 

20 µl loop (Rheodyne, Rohnert Park, CA). The quantification was performed according to 

Tabanelli, Torriani, Rossi, Rizzotti, and Gardini (2012) and the amount tyramine and 2-

phenylethylamine were expressed as mg/ml by reference to a calibration curve obtained with 

standard solutions. 

4.1.2.4. Nucleic acid extraction from enterococcal cultures 

Total DNA was isolated from cell pellets by using the Wizard Genomic DNA purification system 

(Promega Corporation, Madison, WI), following the manufacturer’s instructions. 

For total RNA extraction, cells were washed twice with 500 μl of sterile diethyl pyrocarbonate 

(DEPC)-treated water and shaken three times at the maximum speed for 30 s at 10-s intervals with 
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500 μl of LETS (200 mM LiCl, 20 mM EDTA, 20 mM Tris, 0,4% SDS, 0,1% DEPC), 500 mg of 

450 μm-diameter glass beads (Sigma-Aldrich), 500 μl of phenol pH 4.7-chloroform-isoamyl alcohol 

(25:24:1 v/v; Sigma-Aldrich) in a cell disrupter (Mini-BeadBeater, BioSpec Products, Bartlesville, 

Okla). After centrifugation (4°C, 13000 rpm, 10 min), the supernatant was twice treated with 600 μl 

of chloroform-isoamyl alcohol (24:1 v/v; Sigma-Aldrich), added with 60 μl of 3 M sodium acetate, 

1 ml of ice-cold absolute ethanol and left for 1 h at -80 °C. Total RNA was pelleted by 

centrifugation at 13000 rpm for 5 min at 4°C, washed with 200 μl of ethanol 70%, and dissolved in 

30 μl of sterile water (RNAse- and DNAse-free).  

DNA elimination was performed using 50 U of RNase-free DNase I recombinant (Roche 

Diagnostic, Germany) in 50 μl of DNAse reaction buffer (40 mM Tris-HCl, 10 mM NaCl, 6 mM 

MgCl2, 1 mM CaCl2, pH 7.9) for 30 min at 25°C. A PCR assay was carried out to check for any 

contaminating DNA, and, when necessary, the DNase treatment was repeated.  

DNA and RNA integrity, concentration, and purity were checked by electrophoresis on a 1,5% 

(wt/vol) agarose gel and by measurement with the NanoDropTM Lite Spectrophotometer (Thermo 

Fisher Scientific Inc. MA, USA). 

DNA and DNA-free RNA samples were stored at -20°C and -80°C, respectively, until use. 

4.1.2.5. PCR amplification and expression of the tyrDC gene 

A tyrDC fragment of about 336 bp was amplified using the primers DEC5 (5’ -CGT TGT TGG TGT 

TGT TGG CAC NAC NGA RGA RG-3’ ) and DEC3 (5’ -CCG CCA GCA GAA TAT GGA AYR 

TAN CCC AT-3’ ), following the PCR conditions described previously (Torriani et al., 2008). PCR 

product was visualized on a 2% agarose gel. 

Total cDNA was synthesized from 1 μg of RNA using the ImProm-IITM Reverse Transcriptase kit 

(Promega, USA), following the manufacturer's recommendations. 

The expression level of the tyrDC gene was analyzed by a RT-qPCR assay with primers TYR3f (5’ -

CGT ACA CAT TCA GTT GCA TGG CAT-3’ ) and TYR4r (5’ -ATG TCC TAC TTC TTC TTC 

CAT TTG-3’); thermo cycler, reaction mixture, and amplification program were described in 

Torriani et al. (2008), as well as the procedure of the absolute quantification of the tyrDC copies 

number. 

4.1.2.6. Statistical analysis 

The growth model was fitted using the statistical package Statistica for Windows 6.1 (Statsoft Italia, 

Vigonza, Italy). 
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4.1.3. Results 

4.1.3.1. Growth and pH modification in cultural media 

The growth of four enterococcal strains, i.e. E. faecalis EF37 and ATCC 29212, and E. faecium 

FC12 and FC643, was monitored by measuring the OD600 increase in the absence or in the presence 

of tyrosine (800 mg/l) added in BHI and BAM media. The OD600 changes were modelled with the 

Gompertz equation (Zwietering et al., 1990) and the estimates of the parameters are reported in 

Table 1.  

Table 1: Gompertz equation parameters for enterococcal growth measured as OD600. R
2 and RMSE are given 

as diagnostics of the regression. The maximum cell concentrations (expressed as log CFU/ml) at the 

beginning of the stationary phase is also reported.  
a A: maximum OD600 value reached; µmax: maximum OD600 increase rate in exponential phase (OD600/h); λ: 

lag phase duration (h); b BHI Broth plus 800 mg/l tyrosine; c Bover-Cid and Holzapfel medium (BAM) plus 

800 mg/l tyrosine 

Strain Cultural 
medium 

Gompertz equation  
parametersa 

R2 
Residual mean 
square er ror  

(RMSE) 

Maximum cell 
concentration 
(log CFU/ml) 

A µmax
 

λ
 

EF37 BHI + tyrb 0.947 0.767 2.532 0.977 0.042 9.40 (±0.13) 

 BHI 1.029 0.601 2.030 0.954 0.068 9.42 (±0.13) 

 BAM + tyrc 0.600 0.171 2.619 0.991 0.024 8.95 (±0.14) 

 BAM 0.803 0.192 2.121 0.993 0.031 9.04 (±0.11) 

ATCC 

29212 

BHI + tyr 0.899 0.494 2.399 0.989 0.013 9.30 (±0.15) 

BHI 1.014 0.632 2.109 0.990 0.069 9.48 (±0.19) 

  BAM + tyr 0.544 0.191 3.455 0.989 0.049 8.52 (±0.15) 

  BAM 0.788 0.252 2.544 0.992 0.043 8.80 (±0.14) 

FC12 BHI + tyr 1.119 1.170 3.589 0.996 0.029 9.34 (±0.12) 

 BHI 1.095 0.559 2.848 0.995 0.054 9.35 (±0.16) 

 BAM + tyr 0.362 0.132 1.882 0.989 0.037 8.33 (±0.14) 

 BAM 0.425 0.124 2.077 0.993 0.039 8.31 (±0.17) 

FC643 BHI + tyr 1.114 0.566 2.876 0.983 0.047 9.38 (±0.09) 

 BHI 1.191 0.584 2.158 0.989 0.036 9.52 (±0.13) 

 BAM + tyr 0.739 0.177 1.635 0.992 0.028 8.46 (±0.20) 

 BAM 0.807 0.187 1.445 0.993 0.028 8.72 (±0.11) 
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When inoculated in BHI medium, all the strains reached the maximum value of OD600 after 8 h of 

incubation at 37°C, independently on the presence of tyrosine. Given the high initial inoculums 

(about 6 log CFU/ml), the lag phase (λ) was always very short and it was followed by a sharp 

increase of OD600, whose maximum values (estimated by the A parameter of the equation) ranged 

between 0.9 and 1.2. In particular, the absence of tyrosine favoured the reaching of higher OD600 

values for the two E. faecalis strains, and for E. faecium FC643. By contrast, no differences in the 

maximum OD600 were found for E. faecium FC12 in relation to the presence of tyrosine added.  

Table 1 reports also the cell counts detected in the stationary phase (determined after 24 h 

incubation). In BHI no differences were detected in relation to the strain and to the addition of 

tyrosine. In fact, the counts revealed final cell concentrations comprised between 9.30 and 9.52 log 

CFU/ml. 

All the strains, as expected, showed lower growth extent in BAM if compared with BHI. BAM is 

considered a poor medium and the energetic supply provided by aminoacid decarboxylation (and, 

consequently, by BA formation) became fundamental to support microbial growth. The more 

stringent conditions provided by this medium are reflected also in the lower OD600 reached in the 

stationary phase. Anyway, the OD600 was always higher in the BAM not supplemented with 

tyrosine (Table 1). Also cell counts in stationary phase confirmed this behaviour and were always 

higher in the medium without tyrosine, with the exception of the strain E. faecium FC643 in which 

no differences related to the presence of the aminoacid were found. 

During incubation, the pH of the media was also monitored and the data are reported in Figure 1.  
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Figure 1: Modification of the pH in BHI and Bover-Cid  medium (BAM) with or without tyrosine. (A) E. 

faecalis EF37, (B) E. faecalis ATCC 29212, (C) E. faecium FC12, (D) E. faecium FC643. 

The results in BHI were specular to the growth curves for all the strains, and the pH decrease within 

the first 8 h was of about 1.5 units, and was quite constant during the remaining incubation period. 

In the samples added with tyrosine the pH value was higher of about 0.5 units, both at the beginning 

and at the end of incubation. 

As far as BAM, the initial pH was 5.5 and only a slight decrease was observed in the first 8 h of 

incubation. This behavior can be attributed to the higher buffering potential of the medium. After 

the first 8 h, the pH showed a slight increase determined by the accumulation of BAs. 

4.1.3.2. Biogenic amine production in the cultural media not added with tyrosine  

Both the media used for the trials contained, in different amount, aminoacid sources (proteins and 

peptides) among which precursors for tyrDC were present, allowing a decarboxylase activity of the 

strains also in the absence of tyrosine added. The amounts of tyramine and 2-phenylethylamine 

produced during the growth in these media are reported in Figures 2 and 3.  

Enterococcus faecalis EF37 was able to produce tyramine in both media. However, the final 

amount after 72 h did not exceed 70 mg/l in BHI and 90 mg/l in BAM (Figure 2A). These values 
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did not significantly change prolonging the incubation up to 96 h (data not shown). The maximum 

tyramine concentration was observed in the samples taken after 24 h of incubation. Also 2-

phenylethylamine was produced under the same conditions and this BA was gradually accumulated 

reaching a concentration of about 270 mg/l in BHI and 130 mg/l in BAM after 72 h. Enterococcus 

faecalis ATCC 29212 showed an analogous decarboxylating activity even if lower tyramine 

amounts were produced in both media (Figure 2C).  

A similar trend was observed for E. faecium FC12, though this strain accumulated in BHI higher 

concentrations of both the BAs while an opposite trend was observed for BAM (Figure 3A). 

Finally, E. faecalis FC643 showed the minor BA production in both the media and produced only 

traces of 2-phenylethylamine only in BHI (Figure 3C). 

 

Figure 2: Amounts of tyramine and 2-phenylethylamine produced during the growth in BHI and Bover-Cid 

medium (BAM) without (A, C) and with (B, D) tyrosine addition. (A, B) E. faecalis EF37 (C, D) E. faecalis 

ATCC 29212. 
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Figure 3: Amounts of tyramine and 2-phenylethylamine produced during the growth in BHI and Bover-Cid 

medium (BAM) without (A, C) and with (B, D) tyrosine addition. (A, B) E. faecium FC12 (C, D) E. faecium 

FC643. 

4.1.3.3. Biogenic amine production in the cultural media added with tyrosine  

Figures 2 and 3 report also the tyramine and 2-phenylethylamine accumulation when tyrosine (800 

mg/l) was added to the two media. Enterococcus faecalis EF37 and E. faecium FC12 accumulated 

the maximum tyramine concentration within the first 8 h of incubation both in BHI and BAM and 

the reaching of the stationary phase did not further increase significantly these amounts (Figure 2B 

and 3B, respectively).  

Enterococcus faecalis EF37 was the most efficient strain in the conversion of tyrosine to tyramine 

and the final concentration of this BA was about 515 mg/l in BHI and 620 mg/l in BAM. The 

behaviour of E. faecium FC12 was similar, but the final amounts of tyramine were lower than E. 

faecalis EF37, i.e. 505 and 360 mg/l of BA were produced in BAM and BHI, respectively. In 

addition, both the strains began to produce 2-phenylethylamine only after 8 h of incubation, i.e. 

when stationary phase and the maximum amount of tyramine have been reached. The 2-

phenylethylamine accumulation increased during subsequent incubation and reached its maximum 

level at 72 h. About 513 and 428 mg/l of this amine were produced in BHI by E. faecium FC12 and 
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E. faecalis EF37, respectively, while lower concentrations were detected in BAM (about 230 mg/l 

for both the strains). In any case, these amounts were higher if compared with the 2-

phenylethylamine produced in the same media in the absence of the tyrosine addition. 

The presence of tyrosine determined a different behaviour in the sample inoculated with E. faecalis 

ATCC 29212. Indeed, the growth of this strain was characterized by a slowed rate of accumulation 

of tyramine. This BA was mainly produced when the cells reached the stationary phase and 

amounts of about 325 and 510 mg/l were detected only after 72 h of incubation in BHI and BAM, 

respectively. In addition, no 2-phenylethylamine was produced in both the conditions, even if this 

ability was displayed in the media without the addition of precursor (Figure 2D).  

Enterococcus faecium FC643 showed a similar behaviour and reached in BAM a double 

concentration of tyramine with respect to BHI (592 mg/l vs. 288 mg/l). Also E. faecium FC643 did 

not accumulate 2-phenylethylamine when tyrosine was added to the media (Figure 3D). 

4.1.3.4. Expression of the tyrDC gene in BHI added or not with tyrosine 

All the enterococcal strains produced a 336-bp fragment characteristic of the tyrDC gene with the 

degenerate primers DEC5/DEC3 (data not shown), in accordance with their ability to accumulate 

tyramine. Therefore, the expression of the tyrDC gene could be evaluated by RT-qPCR during a 

period of 72 h. The expression of tyrDC gene has been evaluated during the enterococcal growth in 

BHI with or without tyrosine added. 

As shown in Table 2, the tyrDC gene expression level differed considerably depending on the the 

strains and the growth phase. In general, the two strains with the most effective tyraminogenic 

activity showed since the beginning of incubation a level of transcript considerably higher than the 

other strains. It is important to note that the amount of tyrDC transcription is given as absolute 

value and the higher amount detected after 2 h did not correspond with the reaching of the 

maximum cell counts during incubation. Thus, the cell showed a considerably higher transcription 

activity during their early exponential phase. 

Enterococcus faecalis EF37 displayed the highest level of tyrDC transcription [up to 5-6 log 

(copies/µg cDNA)] during the exponential phase of growth (2-5 h) in both media, according with its 

great ability to accumulate tyramine. After that, a significant decrease was found in BHI without 

tyrosine, while the tyrDC mRNA was rather high in BHI added with tyrosine, thus supporting the 

sequential 2-phenylethylamine production.  

The tyrDC gene expression of E. faecalis ATCC 29212 was always lower (about two log units in 

the first 8 h) if compared with E. faecalis EF37. Its expression was higher in BHI without added 

tyrosine at the beginning of the growth and transcription decreased drastically after 8 h.  
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The strain E. faecium FC12, although exhibiting a phenotypic behavior analogous to E. faecalis 

EF37, showed a very different trend of the tyrDC gene expression. Indeed, the transcript level in 

both media was not related to the phase of growth, but it was rather constant during the entire 

incubation period. For this strain the high level of transcript after 24 h could determine the increase 

of 2-phenylethyamine in both the media. 

Finally, Enterococcus faecium FC643 exhibited a tyrDC gene expression behavior similar to E. 

faecalis ATCC 29212. However, it was characterized by the lowest levels of tyrDC transcription 

after 4 h of incubation.  

Time 
(h) 

Log (copies/µg cDNA) 

 
E. faecalis EF37 

E. faecalis ATCC 
29212 E. faecium FC12 E. faecium FC643 

 BHI BHI + tyr BHI BHI + tyr BHI BHI + tyr BHI BHI + tyr 

2 5.08 
(±0.02) 

4.79 
(±0.06) 

3.11 
(±0.07) 

2.60 
(±0.08) 

4.98 
(±0.22) 

3.91 
(±0.18) 

3.86 
(±0.02) 

2.79 
(±0.02) 

4 4.87 
(±0.01) 

6.11 
(±0.02) 

3.06 
(±0.14) 

3.25 
(±0.02) 

3.45 
(±0.01) 

3.49 
(±0.07) 

2.19 
(±0.11) 

2.65 
(±0.01) 

8 5.22 
(±0.05) 

5.03 
(±0.05) 

2.23 
(±0.09) 

2.07 
(±0.09) 

3.37 
(±0.42) 

2.98 
(±0.19) 

1.98 
(±0.25) 

0.98 
(±0.34) 

24 2.42 
(±0.07) 

4.15 
(±0.05) 

1.10 
(±0.45) 

1.61 
(±0.17) 

3.42 
(±0.07) 

4.61 
(±0.24) 

1.65 
(±0.29) 

0.84 
(±0.06) 

48 2.81 
(±0.03) 

3.38 
(±0.03) 

1.02 
(±0.04) 

1.83 
(±0.01) 

3.08 
(±0.63) 

4.37 
(±0.02) 

2.04 
(±0.02) 

1.24 
(±0.02) 

72 1.01 
(±0.29) 

4.10 
(±0.12) 

1.01 
(±0.29) 

1.61 
(±0.02) 

3.52 
(±0.27) 

3.47 
(±0.68) 

1.63 
(±0.02) 

1.11 
(±0.20) 

Table 2: TyrDC gene expression level for enterococcal strains grown in BHI Broth and BHI Broth added 

with 800 mg/l tyrosine during 72h. 

4.1.4. Discussion 

All the enterococcal strains used in these trials possessed an active tyrDC which determined 

tyramine accumulation (even if at different level) in all the conditions tested, independently on the 

addition of high concentration of free tyrosine. This fact clearly indicated the possibility of the 

enterococci to decarboxylate amino acids present in the proteic and peptidic ingredients used for 

media preparation. 

Recently, Liu et al. (2014a) showed that the activity of purified recombinant tyrDCs of the strains 

E. faecalis R612Z1 and E. faecium R615Z1 was similar, and that the enzymes exhibited higher 

specificity for tyrosine than for phenylalanine. However, in our trials, different behaviours of 
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tyramine and 2-phenylethylamine accumulation were observed in relation to the strain. In particular, 

strains belonging to the same species (E. faecalis or E. faecium) were characterized by different 

responses indicating that, if the presence of tyrDC is common among enterococci, the 

decarboxylating potential can be extremely variable. The transcriptional analyses of the gene tyrDC 

confirmed these observations. In recent years, a number of studies have been conducted to evaluate 

the gene expression level of amino acid decarboxylases on the BAs accumulation in different food 

and model systems (Gardini et al., 2008; La Gioia et al., 2011; Rossi et al., 2011; Arena et al., 

2011; Liu et al., 2014b). However, up to now no studies have compared the tyrDC transcript levels 

in enterococcal strains of the same species. In the present study a variability of the tyrDC gene 

expression in different strains of E. faecalis and E. faecium was evidenced for the first time. The 

two strains with the higher decarboxylating potential (E. faecalis EF 37 and E. faecium FC12) were 

characterized by a higher transcription of tyrDC after 2 h of incubation and the maintenance of a 

remarkably higher transcription level throughout all the incubation period considered here. 

In contrast with Arena et al. (2011), who observed an increase of tyrDC transcription in the 

presence of tyrosine for Lactobacillus brevis IOEB 9809 in wine, in our conditions the presence of 

the precursor in high amounts (800 mg/l) did not enhance the transcript at the beginning of growth, 

but stimulated a higher transcription during the successive incubation. 

Linares et al. (2009) evidenced that the maximization of the transcription of tyrDC and tyrP in E. 

durans was caused by a tyrosine concentration comprised between 2 mM and 5 mM. In this 

framework, the presence of tyramine added (800 mg/kg, i.e. 4.42 mM) should be sufficient to reach 

a high level of tyrDC transcript. Nevertheless, similar and often higher transcripts were obtained 

also in the medium without the addition of the precursor. 

Enterococcus faecalis EF37 showed the higher tyramine production and tyrDC gene expression in 

the presence of tyrosine added to the media. In addition, independently on the media, E. faecalis 

EF37 and E. faecium FC12 produced also high amount of 2-phenylethylamine, which were 

significantly higher in the presence of tyrosine added. On the other hand, E. faecalis ATCC 29212 

and E. faecium FC643 were not able to accumulate significantly 2-phenylethylamine when tyrosine 

was added; however, the same strains produced this BA in reduced amounts in the absence of 

tyrosine in BHI if compared with the other two strains and in the same magnitude in the poor 

medium (BAM). The absence of 2-phenylethylamine in BAM and BHI added with tyrosine and 

inoculated with E. faecalis ATCC 29212 and E. faecium FC643 reflected the lower efficiency of 

their tyrDC and could indicate that for these strains the increasing amount of tyramine can lower or 

inhibit further decarboxylase activities. Concerning transcriptional analysis, the maintenance of the 
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tyrDC gene expression in the stationary phase of growth could contribute to enhance 2-

phenylethylamine biosynthesis in enterococcal strains when the preferred precursor was depleted.  

However, in the case of the strains E. faecalis ATCC 29212 and E. faecium FC643, that 

accumulated gradually tyramine, the tyrDC gene expression was still present at the end of the 

incubation period, but 2-phenylethylamine was not produced because tyrosine was not entirely 

consumed after 72 h growth. 

The early production of tyramine by E. faecalis EF37 and E. faecium FC12 confirms the results of 

Pessione et al. (2009), who demonstrated that tyrDC activity in E. faecalis DISAV1022 reached its 

maximum level during the exponential growth phase, suggesting that tyrosine decarboxylation was 

not simply a response to starvation or nutrient depletion typical of the stationary phase.  

By contrast, the strains E. faecalis ATCC 29212 and E. faecium FC643 accumulate great part of 

tyramine after they reached the stationary phase, independently on the addition of precursor. 

However, these strains, although their transcript levels were much lower respect to E. faecalis 

EF37, showed a tyrDC transcription trend similar to E. faecalis EF37. In particular, these profiles, 

were characterized by an higher expression during the exponential phase followed by a decrease 

after 8 h of incubation.  

Many authors reported the widespread ability of enterococci to produce both tyramine and 2-

phenylethylamine (Beutling and Walter, 2002; Bonetta et al., 2008; Aymerich et al., 2006). This 

characteristic was found also in some lactobacilli (Landete et al., 2007), even if in other case a 

highly tyrosine selective tyrDC was described (Moreno-Arribas and Lonvaud-Funel, 2001). 

Marcobal et al. (2006a) proved that tyrDC gene in E. faecium encoded for a functional and dual 

decarboxylase resulting in tyrosine and phenylalanine decarboxylation. Also Landete et al. (2007) 

demonstrated that tyrDC present in LAB allowed the production of 2-phenylethylamine. Pessione et 

al. (2009) carried out a comparative proteomic investigation on E. faecalis, which demonstrated a 

membrane bound tyrDC highly overexpressed during the production of both tyramine and 2-

phenylethylamine. According to these authors, a yield of 100% was observed for the conversion of 

tyrosine, which takes place since the exponential phase. On the other hand, the yield for 2-

phenylethylamine was lower (about 10%) and its production occurred in the stationary phase when 

tyrosine was exhausted. Also other authors observed that phenylalanine is decarboxylated with a 

reduced efficiency and only when the tyrosine become a limiting substrate (Joonsten, 1988; Latorre-

Moratalla et al., 2014). Regarding the different amount of tyramine accumulated under the same 

conditions, it has been demonstrated that the presence of high amounts of tyrosine in the medium 

can reduce the tyramine production by some LAB (Fernández et al., 2007a,b). In other words, the 
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increase in the availability of the precursor did not necessarily coincide with an increase in the 

decarboxylation. 

The maximum yield for tyrosine conversion is 75.7%; then, in this study a stoichiometric 

conversion of the aminoacid added should produce a maximum theoretical level of 609 g/l of 

tyramine. Taking into account that BHI without precursor supports the production of 70-90 mg/l of 

tyramine, the maximum accumulation of this BA showed by E. faecalis EF37 in the presence of 

tyrosine is lower than this theoretical limit (about 150 mg/l below). However, in these conditions a 

higher production of 2-phenylethylamine (150 mg/l above the yield in not supplemented BHI) 

occurred. The overproduction of this BA was observed also in E. faecium FC12; however, in this 

case the results were reached in the presence of lower tyramine concentration. The same trend was 

also observed in BAM, in which E. faecalis EF37 seems to operate an almost complete conversion 

of the aromatic aminoacids added or naturally present in the medium.  

4.1.5. Conclusions 

The presence of Enterococcus strains that can decarboxylate tyrosine and 2-phenylalanine is a 

serious concern in fermented food for consumer’s health. Indeed, even if these activities are 

common among enterococci, this study underlines the extremely variable decarboxylating potential 

of strains belonging to the same species, suggesting strain-dependent implications in food safety. In 

spite of the fact that all the strains tested here had the tyrDC gene, the amounts of tyramine (and 2-

phenylethylamine) produced was strictly dependent on the amount of its transcription, which was 

extremely different among the strains. The composition of the media also affected and modulated 

the amount and ratio of these BAs by tyraminogenic strains, indicating the need of preventive 

measures to control BAs accumulation in foods. Future researches will be planned to a deep 

knowledge on the conditions which can favour the production of BAs by enterococci and on the 

reasons which determine the important differences among the transcripts of the same gene. This 

could be ascribed to different activity and specificity of tyrDC enzyme or to different regulation 

mechanisms. In this regards, further studies have to be performed to better explain the genetic and 

functional basis, and the environmental factors affecting the different decarboxylating potential of 

the strains.  
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ABSTRACT 

The aim of this study was to investigate the diversity of tyramine production capability of four 

Enterococcus strains in buffered systems in relation to their genetic characteristics and 

environmental conditions. Cells of the strains Enterococcus faecalis EF37 and ATCC 29212, and 

Enterococcus faecium FC12 and FC643 were re-suspended in phosphate/citrate buffers with 

different pH, NaCl concentration and incubation temperature. At intervals, cell viability and 

tyramine production were assessed by plate counting and HPLC analysis, respectively. The activity 

of a purified tyrosine decarboxylase (TDC) was determined under the same conditions, as a 

reference.  

Reduced loss in cell viability was observed in all the tested conditions, except for pH 4 after 24 h. 

The TDC activity was greatly heterogeneous within the enterococci: EF37 and FC12 produced the 

higher tyramine concentrations, ATCC 29212 showed a reduced decarboxylase activity, while 

EF643 did not accumulate detectable amounts of tyramine in all the conditions assayed. Among the 

considerate variables, temperature was the most influencing factor on tyramine accumulation for 

enterococcal cells. 

To further correlate the phenotypic and genetic characteristics of the enterococci, the TDC operon 

region carrying the genes tyrosine decarboxylase (tyrDC), tyrosine/tyramine permease (tyrP), and 

Na+/H+ antiporter (nhaC-2) was amplified and sequenced. The genetic organization and nucleotide 

sequence of this operon region were highly conserved in the enterococcal strains of the same 

species. The heterogeneity in tyramine production found between the two E. faecalis strains could 

be ascribed to different regulation mechanisms not yet elucidated. On the contrary, a codon stop was 

identified in the translated tyrDC sequence of E. faecium FC643, supporting its inability to 

accumulate tyramine in the tested conditions. In addition, the presence of an additional putative 

tyrosine decarboxylase with different substrate specificity and genetic organization was noticed for 

the first time. 

Concluding, the high TDC activity heterogeneity within enterococci determined different 

accumulation of tyramine, depending on different genetic determinants, regulation mechanisms and 

environmental factors. 

The present research contributes to elucidate the genetic characteristics of enterococcal strains and 

correlate specific mutations to their different strain-dependent tyraminogenic activity.  

 

 

Key words: Enterococcus faecium, Enterococcus faecalis, tyramine, tyrosine decarboxylase  

activity, gene expression.  
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4.2.1. Introduction 

Tyramine is a biogenic amine (BA) which can have severe acute effects if ingested in excessive 

amounts with food consisting in peripheral vasoconstriction, increased cardiac output, accelerated 

respiration, elevated blood glucose and release of norepinephrine, symptoms known also as “cheese 

reaction” (Shalaby, 1994; McCabe-Sellers et al., 2006; Marcobal et al., 2012).  

Lactic acid bacteria (LAB) are among the most efficient producers of tyrosine decarboxylase 

(TDC), the enzyme responsible for tyramine formation (Marcobal et al., 2012). Among LAB, 

species belonging to the genus Enterococcus are recognized as the most efficient tyramine 

producers (Leuschner et al., 1999; Suzzi and Gardini, 2003, Ladero et al., 2012; Marcobal et al., 

2012). BA formation provides metabolic energy and⁄or resistance against acidic stress (Molenaar et 

al., 1993; Fernández and Zúñiga, 2006; Pereira et al., 2009).  

Enterococci occur in many different habitats and they are often contaminant in food of animal 

origin (Franz et al., 2011). Due to their salt and pH tolerance and to their ability to grow over a wide 

temperature range, these LAB are particularly competitive in harsh environmental conditions, and 

can be a relevant component of the ripening microbiota of cheeses and sausages (Franz et al., 1999; 

Giraffa, 2003; Franz et al., 2011). In addition, some strains showed probiotic features, and produce 

bacteriocins able to limit the growth of pathogenic and degradative microorganisms (Beshkova and 

Frengova, 2012; Fontana et al., 2015). On the other hand, enterococci are among the most common 

nosocomial opportunistic pathogens because of their antibiotic resistance often carried on mobile 

genetic elements transferable to other microorganisms (Giraffa, 2002; Klein, 2003; Rossi et al., 

2014). Moreover, several enterococcal virulence factors have been described, such as cytolysins, 

aggregation substances, gelatinase extracellular surface proteins (Foulquié Moreno et al., 2006; 

Hollenbeck and Rice, 2012). A further matter of concern with respect to the safety of enterococci is 

their tyraminogenic capacity (Suzzi and Gardini, 2003; Foulquié Moreno et al., 2006; Kompdra et 

al., 2008b; EFSA, 2011). In fact, the ability to produce tyramine is considered a species 

characteristic of Enterococcus faecalis and it is extremely widespread among strains of 

Enterococcus faecium and Enterococcus durans (Ladero et al., 2012).  

TDC is a membrane located enzyme with large hydrophobic regions, which can efficiently work in 

a wide range of conditions also outside of the cells, as demonstrated in Lactobacillus brevis 

(Moreno-Arribas and Lonvaud-Funel, 2001) and in E. faecium and E. faecalis (Liu et al., 2014a). In 

any case, tyramine is often accumulated by enterococci in higher amount already during the late 

exponential growth, before stationary phase, suggesting that this decarboxylation activity is not 

necessarily a response to starvation or nutrient depletion, and no competition between sugar 

catabolism and amino acid decarboxylation was observed (Pessione et al., 2009, Bargossi et al., 
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2015b). The tyramine formed inside microbial cells through the action of TDC, is successively 

excreted in the environment by the cells in exchange with tyrosine through the action of the 

antiporter tyrosine/tyramine permease (Marcobal et al., 2012).  

The proteins involved in the tyramine pathway are encoded by the TDC gene cluster, which has 

been described in detail in various enterococcal species, such as E. faecalis JH2-2 (Connil et al., 

2002), E. faecium RM58 (Marcobal et al., 2006a), and E. durans IPLA 655 (Ladero et al., 2013), 

and it has also been annotated in the genome sequence of other enterococci. All the tyramine 

biosynthetic loci revealed a high similarity either in gene sequence and organization (Marcobal et 

al., 2012). This locus usually contains the genes encoding a tyrosyl tRNA synthetase (tyrS), the 

tyrosine decarboxylase (tyrDC), a tyrosine/tyramine permease (tyrP), and a Na+/H+ antiporter 

(nhaC-2) (Linares et al., 2011). However, reverse transcription-PCR analyses demonstrated that 

different strains can have different transcriptional organizations of the TDC gene cluster and tyrS is 

often transcribed independently and not included in the catabolic operon (Perez et al., 2015). 

The relationships between the presence of enterococci and the accumulation of tyramine has been 

demonstrated in several fermented food, such as fermented sausages (Gardini et al., 2008), cheeses 

(Linares et al., 2011) and wine (Pérez-Martin et al., 2014). However, not all the strains able to 

decarboxylate tyrosine were characterized by the same phenotypic potential in relation to the 

kinetics of tyramine accumulation (Bargossi et al., 2015b). 

While the mechanisms of action and the role of TDC in LAB are well elucidated (Wolken et al., 

2006; Pereira et al., 2009; Pessione et al., 2009), the effects on the potential decarboxylase activity 

of enterococcal cells in relation the main environmental factors need to be further investigated. The 

production of tyramine observed during the growth in laboratory media of tyraminogenic E. faecalis 

and E. faecium strains has been modeled in relation to environmental factors such as NaCl and 

tyrosine concentration, pH, pyrodoxal-5-phospate supplementation and temperature (Gardini et al., 

2001; Marcobal et al., 2006a; Gardini et al., 2008). The effects of carbon source, tyrosine and 

tyramine concentration, and pH on tyramine accumulation during the growth of E. durans were 

described by Fernández et al. (2007a). In addition, Liu et al. (2014a) characterized the TDC activity 

of two strains of E. faecalis and E. faecium, heterologously expressed in Escherichia coli and 

purified in relation to temperature, NaCl concentration and pH.  

The aim of this paper was to investigate the diversity of tyramine production capability of four 

Enterococcus strains in buffered systems in relation to their genetic characteristics and 

environmental conditions. The strains E. faecalis EF37 and ATCC 29212, and E. faecium FC12 and 

FC643 were chosen for their different behaviour in tyramine accumulation during the growth in 

culture media (Bargossi et al., 2015b). In detail, we evaluated the functionality of the TDC pathway 
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in stationary phase cells re-suspended in buffers with different pH, NaCl concentration or 

incubation temperature. The activity of a purified TDC was also assessed under the same 

conditions, as a reference. Finally, the nucleotide sequence of the TDC operon region carrying the 

genes tyrDC, tyrP and nhaC-2 was determined. 

4.2.2. Mater ials and methods 

4.2.2.1. Enterococcal strains and evaluation of TDC activity in phosphate/citrate buffer 

The strains E. faecalis EF37 and ATCC 29212, E. faecium FC12 and FC643 were stored in 20% 

(w/v) glycerol at -80°C and pre-cultivated twice for 24 h at 37°C in BHI Broth (Oxoid, 

Basingstoke, UK) added with 4.4 mM tyrosine (Sigma-Aldrich, Gallarate, Italy). 

After 24 h of pre-cultivation, the cells were collected by centrifugation at 8000×g for 10 min and 

washed twice with physiological solution (0.9% w/v NaCl). The strains were resuspended in 20 mL 

of the same solution and inoculated at a concentration of approximately 8.2-8.5 log cfu/ml in 

phosphate/citrate buffer (obtained by mixing citric acid 0.3 M and Na2HPO4 0.6 M solutions) added 

with tyrosine 4.4 mM and incubated at 37°C for 48 h. The determination of the effect of pH on TDC 

activity was performed in the phosphate/citrate buffer at pH values of 7, 6, 5 and 4 and incubated at 

37°C. The effect of NaCl was determined at 37°C in buffer at pH 5 adding 0, 5, 10 and 15% (w/v) 

of NaCl while the influence of temperature was monitored by incubation at 20, 30, 37 and 45°C in 

buffer at pH 5 and with no NaCl added. At defined times (0, 2, 8, 24 and 48 h) the cell viability was 

assessed by plate counting in BHI Agar (Oxoid, Basingstoke, UK) incubated for 48 h at 37°C. In 

addition, the number of enterococci was determined after 48 h with Burker counting chamber to 

assess the proportion of undamaged (not lysed) cells. After 2 and 24 hours of incubation, tyramine 

accumulation was determined. 

4.2.2.2. Purified TDC enzyme activity 

At the same conditions described above, also the activity of a purified TDC (Sigma-Aldrich, 

Gallarate, Italy) was monitored. The pure enzyme, obtained from E. faecalis according to the 

producer, was added at 0.15 U/100 mL of phosphate/citrate buffer in the different conditions. At 

defined times (2, 4, 8, 24 and 48 h) the tyramine accumulation was assessed by the HPLC method 

described below. 

4.2.2.3. Biogenic amine determination 

One ml of each culture obtained according to the condition described in paragraph 2.1 was 

centrifuged at 10000 rpm for 10 min at 10°C; pellet and supernatant were collected for further 
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analysis. The supernatants were used for BAs determination by HPLC after derivatization with 

dansyl-chloride (Sigma-Aldrich, Gallarate, Italy) according to Tabanelli et al. (2012). The tyramine 

content was analyzed using a PU-2089 Intelligent HPLC quaternary pump, Intelligent UV–VIS 

multiwavelength detector UV 2070 Plus (Jasco Corporation, Tokio, Japan) and a manual Rheodyne 

injector equipped with a 20 µl loop (Rheodyne, Rohnert Park, CA). The quantification of tyramine 

was performed as follows: gradient elution 0–5 min phosphate buffer (pH 7.0)/acetonitrile 35:65, 5–

6 min water/acetonitrile 20/80, 6–15 min water/acetonitrile 10/90, 15–25 min phosphate buffer (pH 

7.0)/acetonitrile 35:65 with flow rate 0.8 mL/min. The amount of tyramine was expressed as mM by 

reference to a calibration curve obtained with standard solutions. 

4.2.2.4. Analysis of the TDC operon region 

Total genomic DNA was extracted from cell pellets using the Wizard Genomic DNA purification 

system (Promega Corporation, Madison, WI), according to the manufacturer’s instructions. The 

TDC operon fragments were obtained for each strain by PCR amplification with the partially 

degenerate primers reported in Table 1.  

Primer 

code 
Sequence (5’ -3’ ) 

Amplicon (pb) 

E. faecalis E. faecium 

TyrS-F1 

Tdc-R1 

GGA GCT ATA AGT ATT AAC GGT GA 

GAT TT(A/G) ATG TT(A/G) CG(G/C) GCA TAC CA 
957 943 

Tdc-F2 

Tdc-R2 

CAA ATG GAA GAA GAA GT(A/T) GGA 

CC(A/G/T) GCA CG(G/T) T(C/T)C CAT TCT TC 
1287 1340 

Tdc-F3 

TyrP-R3 

CCA GA(C/T) TAT GGC AA(C/T) AGC CCA 

CCT AAA GTA GAA GC(A/G) ACC AT 
819 784 

TyrP-F4 

TyrP-R4 

TGG GTG CAA ATG TTC CCA GG 

ACC (A/G)AT TCG (A/G)TA AGG ACG 
839 940 

TyrP-F5 

NhaC-R5 

(A/T)CT GCT TGG GT(A/T) ACT GGA CC 

CAT (C/T)GC AT(C/T) (A/G)T(C/T) GAA TCC AAG 
1098 1056 

NhaC-F6 

NhaC-R6 

GTG TCT TAG TTG CT(A/T) C(A/T)T GGA T 

CCA TAA TGA A(G/T)G T(A/G)C C(A/G)C T(A/G)A CT 
1017 1017 

Table 1: Newly designed primers used in this study and expected size of the amplicons. 

PCR mixture was composed of 1× PCR buffer, 1,5 mM MgCl2, 200 nM dNTPs, 0,5 µM each 

primer and 50 ng DNA. Amplification program comprised: 95°C for 5 min, 35 cycles at 94°C, 30 

sec; 56°C, 45 sec; 72°C, 1 min and final extension at 72°C, 10 min. Amplicons were purified with 
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the Wizard SV gel and PCR clean-up system (Promega, Italy), and cloned with the cloning kit 

pGEMT-easy vector system (Promega, Madison, USA). Recombinant plasmids were sequenced at 

the GATC Biotech Ltd (Koln, Germany). Promoters prediction was carried out by BPROM, a 

bacterial sigma70 promoter recognition program   

(http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb; 

Solovyev and Salamov, 2011). Putative Rho–independent transcription terminators were predicted 

by the Arnold Finding Terminators (http://rna.igmors.u-psud.fr/toolbox/arnold/index.php). The 

search procedure uses two complementary programs, Erpin (Gautheret and Lambert, 2001) and 

RNAmotif (Macke et al., 2001). 

Similarity searches were performed with the Basic Local Alignment Search Tool (BLAST) 

available at the National Center for Biotechnology Information (NCBI; 

http://www.ncbi.nlm.nih.gov). Sequence alignments were carried out with the ClustalW2 analysis 

Tool Web Services from the EMBL-EBI (McWilliam et al., 2013). 

4.2.2.5. Statistical analysis 

Biogenic amine values and enterococci counts for each strains and for each condition are the mean 

of three different samples. The presence of significant differences was tested with ANOVA, using 

the Tukey HSD test carried out with Statistica 6.1 (StatSoft Italy srl, Vigonza, Italy). 

4.2.3. Results and discussion 

4.2.3.1. Purified TDC enzyme activity  

The amount of tyramine produced in phosphate/citrate buffer containing the purified TDC (0.15 

U/100 ml) under different conditions is reported in Table 2.  
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Hours Tyramine (mmol/l) 

 37°C, 0% NaCl pH 5, 37°C pH 5, 0% NaCl 

 pH 4 pH 5 pH 6 pH7 0% 
NaCl 

5% 
NaCl 

10% 
NaCl 

15% 
NaCl 

20°C 30°C 37°C 45°C 

0 - - - - - - - - - - - - 

2 0.02 

(±0.01) 

0.14 

(±0.02) 

0.14 

(±0.01) 

0.08 

(±0.01) 

0.14 

(±0.01) 

0.14 

(±0.00) 

0.11 

(±0.01) 

0.10 

(±0.01) 

0.11 

(±0.00) 

0.14 

(±0.01) 

0.14 

(±0.01) 

0.13 

(±0.00) 

4 0.03 

(±0.01) 

0.19 

(±0.03) 

0.19 

(±0.01) 

0.11 

(±0.02) 

0.19 

(±0.02) 

0.18 

(±0.01) 

0.16 

(±0.01) 

0.13 

(±0.00) 

0.15 

(±0.01) 

0.19 

(±0.02) 

0.19 

(±0.01) 

0.18 

(±0.01) 

8 0.04 

(±0.01) 

0.28 

(±0.03) 

0.28 

(±0.02) 

0.16 

(±0.03) 

0.28 

(±0.01) 

0.24 

(±0.02) 

0.21 

(±0.02) 

0.18 

(±0.01) 

0.20 

(±0.01) 

0.27 

(±0.02) 

0.28 

(±0.02) 

0.27 

(±0.01) 

24 0.02 

(±0.01) 

0.60 

(±0.04) 

0.59 

(±0.04) 

0.26 

(±0.02) 

0.60 

(±0.02) 

0.50 

(±0.03) 

0.42 

(±0.02) 

0.33 

(±0.02) 

0.39 

(±0.01) 

0.55 

(±0.04) 

0.60 

(±0.03) 

0.43 

(±0.02) 

48 0.03 

(±0.01) 

0.88 

(±0.06) 

0.95 

(±0.06) 

0.37 

(±0.03) 

0.88 

(±0.03) 

0.81 

(±0.02) 

0.70 

(±0.04) 

0.54 

(±0.03) 

0.56 

(±0.02) 

0.92 

(±0.05) 

0.88 

(±0.04) 

0.64 

(±0.03) 

Table 2: Tyramine produced in phosphate/citrate buffer containing the purified commercial TDC 

(0.15U/100ml) under different conditions. Standard devistion is reported within brakets. 

Similar amounts of tyramine (ranging from 0.60 and 0.59 mM) were detected at pH 5 and 6 after 24 

h of incubation, suggesting that the optimum pH for TDC activity was comprised between these 

values. At pH 7, the amine production was drastically reduced (0.26 mM), while at pH 4 it was 

negligible (less than 0.02 mM). Shorter or longer incubation periods decreased and increased, 

respectively, the tyramine detected without significantly changing the proportion of BA produced.  

The increase of NaCl concentration determined a progressive and constant decrease of the efficacy 

of the enzymatic activity, throughout all the incubation period. However, the purified TDC 

maintained a high effectiveness even at 15% NaCl (about 62% of the tyramine produced in the 

absence of salt). 

Regarding the effect of temperature, tyramine was produced in higher amount, and with higher rate, 

at 30 and 37°C (without significant differences between these two temperatures) and, after 24 h 

incubation, 0.55 and 0.60 mM of tyramine were detected, respectively. Slower decarboxylation 

kinetics were observed at 45 and 20°C. However, the final amount of tyramine was rather high, 

about the 65% of those observed under optimal conditions, indicating a good enzymatic activity 

also at the minimum and maximum temperature considered in these trials. 

Liu et al. (2014a) studied the effect of pH, temperature and salt concentration on TDC activity from 

two strains of E. faecalis and E. faecium and heterologously expressed in Escherichia coli. They 

found an optimum pH for tyrosine decarboxylation at 5.5 for the enzyme from E. faecalis and 6.0 

for the enzyme from E. faecium. By contrast, the optimum temperature coincided for the two 
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enzymes and was lower (25°C) than that found here. The same authors observed no effect on TDC 

activity of NaCl concentration up to 4.5%. Moreno-Arribas and Lonvaud-Funel (1999) 

demonstrated a maximum tyrosine decarboxylase activity at pH 5.5 in cell free extracts of two L. 

brevis strains. In addition, the TDC activity of cell free extract was always higher if compared with 

the activity of whole cells in relation not only to pH, but also to citrate, lactate, ethanol and 

tyramine concentration in the medium. 

4.2.3.2. Cell viability 

The viability of the cells was checked at different times (2, 8 and 24 h incubation) and Table 3 

reports the diminution of the log cfu/ml with respect to the initial inoculum (approx. 8.2-8.5 log 

cfu/ml).  

Hours Cell load reduction 

 
37°C, 0% NaCl pH 5, 37°C pH 5, 0% NaCl 

 pH 4 pH 5 pH 6 pH 7 0% 

NaCl 

5% 

NaCl 

10% 

NaCl 

15% 

NaCl 

20°C 30°C 37°C 45°C 

EF37 

2 0.13 0.04 0.18 0.11 0.04 0.01 0.16 0.13 0.16 0.03 0.04 0.03 

8 0.26 0.03 0.32 0.17 0.03 0.14 0.14 0.25 0.16 0.10 0.03 0.09 

24 1.64 0.09 0.65 0.60 0.09 0.18 0.17 0.43 0.17 0.12 0.09 0.01 

 ATCC 29212 

2 0.11 0.06 0.19 0.21 0.06 0.17 0.06 0.28 0.06 0.11 0.06 0.03 

8 1.12 0.07 0.31 0.34 0.07 0.28 0.41 0.31 0.32 0.46 0.07 0.43 

24 3.45 0.29 0.65 0.59 0.29 0.48 0.29 1.37 0.29 0.65 0.29 0.66 

FC12  

2 0.04 0.03 0.07 0.14 0.03 0.03 0.11 0.03 0.11 0.05 0.03 0.01 

8 0.81 0.09 0.47 0.62 0.09 0.16 0.12 0.02 0.32 0.53 0.09 0.46 

24 2.57 0.30 0.57 0.69 0.30 0.51 0.24 1.57 0.14 0.52 0.30 0.43 

FC643 

2 0.09 0.01 0.01 0.08 0.01 0.11 0.13 0.25 0.34 0.13 0.01 0.16 

8 0.31 0.13 0.28 0.35 0.13 0.21 0.08 0.34 0.27 0.33 0.13 0.54 

24 5.29 0.31 0.66 0.58 0.31 0.77 0.64 0.60 0.20 0.20 0.31 2.17 

Table 3: Viability loss of the strains inoculated in the different buffers after 2, 8 and 24 h of incubation, 

expressed as diminution of the log cfu/ml with respect to the initial inoculum. 
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Enterococcus faecalis EF37 was characterized by a reduced loss of viability after 2 and 8 h, while 

after 24 h a marked reduction was observed at pH 4 (1.64 log cfu/ml). In all the other cases, the 

viability loss was always below 0.65 log unit and the strain showed the higher level of survivors in 

the presence of salt if compared with the other strains. 

Also E. faecalis ATCC 29212 presented a reduced diminution in viable counts after 2 h (less than 

0.30 log cfu/ml). After 8 h, the diminution was always lower of 0.5 log unit, with the exception of 

pH 4 at which the decrease was higher than 1 log unit. After 24 h of incubation high viability losses 

were observed at pH 4 (3.45 log cfu/ml) and in the presence of 15% NaCl (1.37 log cfu/ml). 

An analogous behaviour was shown by E. faecium FC12, with the higher level of cell death found 

after 24 h at pH 4 (2.57 log cfu/ml) and at 15% NaCl (1.57 log cfu/ml). 

Finally, also E. faecium FC643 was characterized by a dramatic loss of viability after 24 h 

especially at 45°C (2.17 log cfu/ml) and at pH 4 (5.29 log cfu/ml). 

Independently on the results of plate counting, after 24 h, the number of whole enterococcal cells 

was evaluated with a Burker chamber. No significant differences were found with the initial 

inoculum (data not shown). Thus, this suggests that, at least within 24 h, the enterococcal loss of 

viability was not associated to cell lysis, with a consequent release of cell decarboxylase in the 

buffer.   

4.2.3.3. Tyramine production 

Tyramine concentrations detected after 2 and 24 h for the tested strains in relation to pH, NaCl 

concentration and incubation temperatures are reported in Figures 1, 2 and 3, respectively.  
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Figure 1: Tyramine produced by enterococcal strains in phosphate/citrate buffer having different pH values 

after 2 and 24 hours of incubation at 37°C. When ANOVA was significant (P ≤ 0.05) lower-case letters are 

reported. For the same strain, values with the same letter are not statistically different (P > 0.05) according to 

the post-hoc comparisons of the ANOVA. In the same graphs also the TDC activity ratio is shown, i.e. the 

ratio of mM of tyramine accumulated by cells and mM of tyramine produced by commercial TDC pure 

enzyme (0.15 U/100 ml) in the same conditions. 
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Figure 2: Tyramine produced by enterococcal strains in phosphate/citrate buffer added with different 

amounts of NaCl after 2 and 24 hours of incubation at 37°C. When ANOVA was significant (P ≤ 0.05) 

lower-case letters are reported. For the same strain, values with the same letter are not statistically different 

(P > 0.05) according to the post-hoc comparisons of the ANOVA. In the same graphs also the TDC activity 

ratio is shown, i.e. the ratio of mM of tyramine accumulated by cells and mM of tyramine produced by 

commercial TDC pure enzyme (0.15 U/100 ml) in the same conditions. 
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Figure 3: Tyramine produced by enterococcal strains in phosphate/citrate buffer incubated at different 

temperatures after 2 and 24 hours of incubation at 37°C. When ANOVA was significant (P ≤ 0.05) lower-

case letters are reported. For the same strain, values with the same letter are not statistically different (P > 

0.05) according to the post-hoc comparisons of the ANOVA. In the same graphs also the TDC activity ratio 

is shown, i.e. the ratio of mM of tyramine accumulated by cells and mM of tyramine produced by 

commercial TDC pure enzyme (0.15 U/100 ml) in the same conditions. 

All the strains were pre-cultured in presence of the precursor to activate the transcription of the 

TDC gene cluster (Bargossi et al., 2015b). The pre-adaptation in media containing tyrosine also 

allowed a rapid beginning of decarboxylase activity, with a detectable tyramine concentration since 

2 h of incubation.  

Under the adopted conditions, the strains EF37, ATCC 29212 and FC12 were able to decarboxylate 

amounts of the tyrosine supplied far from the maximum theoretical yield (4.4 mM). In particular, 

EF37 and FC12 produced the higher tyramine concentrations, while ATCC 29212 showed a reduced 

decarboxylase activity in all the conditions assayed (Figure 1, 2 and 3). By contrast, E. faecium 

EF643 was not able to accumulate detectable amounts of tyramine in any of the tested conditions in 

24 h and, for this reason, it is not present in the Figures. These different aptitudes of the tested 

strains confirm the trends of tyramine accumulation during growth in more complex systems, i.e. 

BHI and Bover-Cid and Holzapfel medium (Bargossi et al., 2015b). In fact, in these media E. 

faecalis EF37 and E. faecium FC12 have shown an early tyramine accumulation (since the 

EF37  FC12 ATCC 29212 

 

Tyramine 

TDC activity ratio 
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exponential phase) and the maximum BA concentration was reached at the beginning of the 

stationary phase. By contrast, the accumulation of tyramine by E. faecalis ATCC 29212 and E. 

faecium FC643 has been delayed and characterized by a slower rate while the amine has been 

accumulated in relevant amounts only during the stationary phase.  

The strain E. faecalis EF37 generally showed the highest ability to decarboxylate tyrosine in 

citrate/phosphate buffer while E. faecium FC12 accumulated slightly lower amounts of tyramine. 

On the other hand, E. faecalis ATCC 29212 showed under all the conditions tested an extremely 

low aptitude to produce this BA. In fact, in all the samples, both after 2 and 24 h of incubation, the 

amount was always below 0.15 mM. 

Regarding pH (Figure 1), E. faecalis EF37 accumulated higher amounts of tyramine at the lower pH 

values, with more marked differences after 24 h. Tyramine production of E. faecium FC12 was 

weakly affected by pH, and the amounts detected varied between 0.34 and 0.43 mM after 2 h and 

0.60 and 0.66 mM after 24 h of incubation.  

The tyrosine decarboxylation pathway is reported to contribute to an acid response mechanism in E. 

faecium because it gives to the strain a competitive advantage in nutrient-depleted conditions, as 

well as in harsh acidic environments (Pereira et al., 2009). The same role in the maintenance of pH 

homeostasis in acidic environment has been described also in E. durans (Linares et al., 2009), E. 

faecium (Marcobal et al., 2006a) and E. faecalis (Perez et al., 2015). These latter authors have 

reported that tyrosine decarboxylation pathway improves survival under acidic conditions. This 

could explain the higher cell viability loss at pH 4 of E. faecium FC643, which did not produce 

tyramine, and of E. faecalis ATCC 29212, which accumulated low amounts of amine. However, in 

this perspective, the behavior of E. faecium FC12, which did not present significant differences in 

relation to pH, appears to be surprising and needs further investigations. On the other hand, the 

purified TDC showed a low activity at pH 4 (Table 2) and the environmental pH influenced the 

overall cell metabolism rather than the specific activity of TDC inside the cytoplasm. In other 

words, the heterogeneity found in the enterococcal strains could be related to the general 

physiological state of the cells which, in turn, influenced the TDC activity. 

Figure 2 reports the tyramine accumulation in relation to NaCl concentrations. The addition of 

increasing amounts of salt caused a progressive diminution in tyrosine decarboxylation by E. 

faecalis EF37 after 2 h. This strain accumulated 0.73 mM of tyramine in the absence of NaCl and 

tyramine decreased to 0.59 mM in the presence of 5% NaCl and 0.27 mM with 15% NaCl. After 24 

h, small differences in tyramine content (ranging from 0.46 mM and 0.57 mM) were observed in the 

presence of the different NaCl concentrations, while this amount was about doubled in the control 

sample without salt (1.07 mM). The decarboxylating activity of FC12 was not particularly affected 
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by increasing NaCl concentrations, except for a partial reduction at 15% NaCl, both after 2 and 24 h 

of incubation. The tyramine production by E. faecalis ATCC 29212 was negligible, without 

differences in relation to salt modulation. 

A general reduction of tyramine accumulation by enterococci due to NaCl concentration has already 

been described both in vitro (Liu et al., 2014b) and in fermented foods (Gardini et al., 2008). In 

addition, the same trend was observed using the purified TDC, as evidenced in Table 2. 

Bunkova et al. (2011) showed that the presence of the higher NaCl concentration tested (2%) 

favoured the accumulation of tyramine by Lactococcus lactis strains that started during the active 

growth phase of the cells. 

For E. faecalis EF37, the effect of the temperature was noteworthy. In fact, after 2 h, the higher 

tyramine accumulation was observed at 37°C (0.73 mM), which is the optimal temperature for 

enterococci, while for the purified enzyme no differences were observed within 30 and 37°C. Lower 

tyramine concentrations were found at 20 and 45°C (0.53 and 0.47 mM, respectively). By contrast, 

after 24 h of incubation, the highest content of tyramine were found at 20°C (2.25 mM), while in 

the samples incubated at 30 and 37°C this concentration was halved. In the trial at 45°C the 

concentration remained quite stable (0.60 mM) with respect to sample collected after 2 h. 

For E. faecium FC12, after 2 h of incubation, no significant differences were found between 20 and 

37°C, while the BA concentration was reduced at 45°C. This lower production at the higher 

temperature tested was found also after 24 h of incubation. In addition, at the lowest temperature 

(20°C) the highest tyramine accumulation was observed as already found for E. faecalis EF37. This 

behaviour was confirmed also for E. faecalis ATCC 29212, which accumulated the highest amount 

of amine in the sample incubated at 20°C for 24 h (0.12 mM). In general, the effect of temperature 

has been tested in relation to the growth of the cells and, under these conditions, lower incubation 

temperature are associated with lower BA accumulation (Masson et al., 1996; Gardini et al., 2001). 

Under the conditions applied to the cells suspended in the buffer, the higher tyramine levels were 

detected at the lower temperature, suggesting the possibility that the tyrosine decarboxylase activity 

can be highly activated under not favourable temperature. 

The lines drawn in Figures 1, 2 and 3 represent the ratio between the tyramine produced by the cells 

in the buffer and the tyramine accumulated under the same conditions by the purified enzyme 

(reported in Table 2). These values were added with the aim to highlight the different performances 

of TDC when it worked inside or outside the cells. 

First of all, this index reflects the inability of E. faecalis ATCC 29212 to decarboxylate tyrosine 

under the adopted conditions. In the other two strains, the decarboxylase activity after 2 h of 

incubation is always higher than in samples with the purified enzyme and, consequently, the ratio 
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was higher than 1. By contrast, after 24 h, the amine produced by the purified enzyme and the 

enterococcal strains was comparable with ratio close to 1. A noteworthy exception to this trend was 

represented by the samples inoculated with E. faecalis EF37 and E. faecium FC12 incubated at 

20°C and at pH 4. In these cases, the decarboxylase activity was extremely higher in the presence of 

cells and the ratios were comprised between 3 and 6 at 20°C and 30 and 45 at pH 4. 

In other words, the decarboxylating activity inside the cells is influenced by the chemico-physical 

factors through two different mechanisms; on one side the environmental factors directly affect the 

enzyme activity while, on the other side, they regulate the overall cell metabolism and, in turn, the 

rate of exchange between inside and outside. The interaction between these two aspects can explain 

the different responses of tyramine accumulation observed using the purified enzyme and the viable 

cells. In this perspective, it is noteworthy the cell response at 20°C of the strains EF37 and FC12 in 

which the production of tyramine seems to be an important strategy for the enterococcal growth at 

this unfavourable temperature. 

Therefore, the final results of the decarboxylase activity, i.e. the amount of BA accumulated, 

depends on the activity of TDC which works inside the cell, but also by the ability of the cells to 

transport the precursor in the cytoplasm and to excrete the final product (tyramine) outside. This 

antiport, driven by the tyrP activity (Marcobal et al., 2012), could be affected by the environmental 

conditions.  

4.2.3.4. Analysis of the TDC operon region 

To characterize the TDC pathway of the four enterococcal strains, we amplified and sequenced the 

region carrying the genes tyrDC, tyrP and nhaC-2. The six sets of newly designed primers 

amplified overlapping fragments of the expected size (Table 1) for all the strains including E. 

faecalis ATCC 29212 which was used as a control, since its complete genome sequence was already 

available (gb|CP008816.1|; Minogue et al., 2014). The TDC cluster sequence of all the strains 

shares the same genetic organization, which comprises, downstream the gene tyrS, the three 

predictable complete open reading frames (ORF) corresponding to the genes tyrDC, tyrP and nhaC-

2. They are oriented in the same direction and encode polypeptides larger than 300 amino acids 

(Figure 4).  
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Figure 4: Genetic organization of the TDC region containing the genes tyrS, tyrDC, tyrP, and nhaC-2 in the 

enterococcal strains studied. ORFs are represented by arrows, putative promoters by broken arrows, 

transcription terminator regions by lollipops. Expected mRNA and enzymatic function are also indicated. 

Sequence analysis performed by the software BPROM and Arnold did not revealed the presence of 

putative promoters and terminators between the genes tyrDC and tyrP, indicating that they could be 

co-transcribed. Putative promoters and terminators were conversely found upstream the start codon 

of the genes tyrDC and nhaC-2 (Figure 4). This suggests that the expression of tyrDC and tyrP is 

probably independent from that of the flanking genes tyrS and nhaC-2. Different polycistronic 

mRNA transcripts have been described in enterococcal strains, such as tyrS-tyrDC-tyrP (Connil et 

al., 2002), tyrDC-tyrP (Linares et al., 2009), tyrDC-tyrP-nhaC-2 and tyrP-nhaC-2 (Perez et al., 

2015). So tyrDC and tyrP can be transcribed from different manner and future Reverse-

Transcription-PCR experiments are needed to clarify the transcriptional organization of the TDC 

gene cluster in the examined strains. 

BLASTN analysis of the 5259 bp nucleotide sequence of E. faecalis EF37 TDC operon region 

showed an overall identity of 99% (5231/5259 bp) with that of E. faecalis ATCC 29212, and 100% 

identity (5259/5259 bp) with that of another completely sequenced strain of the same species, E. 

faecalis D32 (gb|CP003726.1|). 

BLASTX analysis and comparison of the deduced amino acid sequences of the two E. faecalis 

strains was also carried out. These analyses revealed only two substitutions in amino acid sequences 

of EF37 and ATCC 29212. The first one (leucine to methionine) was found at the beginning of the 

ORF coding for the amino acid permease and the second one (isoleucine to valine) was located in 

the ORF corresponding to the Na+/H+ antiporter (position 18). These amino acid substitutions are 

conservative, and thus probably have no effect on the enzymatic activities. 

Nucleotide sequence analysis of the E. faecium FC12 showed the highest identity (5293/5294 bp, 

99%) with the operon of the strain E. faecium NRRL B-2354 (complete genome NC_020207), 



94 

 

while the identity decrease to a value of 97% (5128/5296 bp) with the other E. faecium strain 

studied in this research. 

As regards amino acid residues, BLASTX analysis of the TDC locus of FC12 showed a 100% of 

identity with TDCs (frame +3, 625 aa), amino acid permeases (frame +2, 456 aa) and Na+/H+ 

antiporters (frame + 3, 414 aa) in the database. Amino acid sequences corresponding to the genes 

tyrP and nhaC-2 of E. faecium FC643 were characterized by a 100% of identity with known amino 

acid permeases (frame +3, 456 aa) and Na+/H+ antiporters (391 aa) proteins, respectively. The TDC 

region translated sequence of FC643 showed an identity of 99% (624/625) with the amino acid 

sequences of almost all E. faecium strains present in database. However, a premature codon stop, 

introduced by a non-sense mutation (TGG/TAG) was found at position 40 of the protein. This 

mutation probably produces an abnormally shortened protein, supporting the inability of the strain 

FC643 to accumulate tyramine in the tested conditions at 24 h.  

Nevertheless, Bargossi et al. (2015b) highlighted the capacity of FC643 to accumulate lower level 

of tyramine in stationary phase of growth in complex media if compared with E. faecium FC12. 

Moreover, this strain did not accumulated 2-phenylethylamine in the same conditions. The 

decarboxylase activity of FC643, even if slow and reduced, in the presence of the premature codon 

stop in TDC region, could be ascribed to the presence of an additional gene coding for a 

decarboxylase enzyme involved in tyramine production. Indeed, comparison analysis of the tyrDC 

sequence to databanks allowed the identification of another gene coding for a putative tyrosine 

decarboxylase in all the publicly available whole genome sequences of E. faecium, i.e. E. faecium 

strains Aus0085 (AGS74230.1), NRRL B-2354 (AGE29157.1), DO (AFK57968.1), Aus0004 

(AFC62424.1), and T110 (AII38451.1). This gene was not detected in the genome of E. faecalis. 

The additional enzyme has a nucleotide and amino acid identity score of 67-68% with the first 

known tyrosine decarboxylase, but it maintains catalytic residues involved in enzyme activity, the 

consensus pattern for pyridoxal phosphate-dependent decarboxylases where lysine (K) is the 

attachment site for the cofactor and the conserved LHVDAAY motif (Sandmeier, 1994) (Figure 5).  
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tyrDC1_WP_002286400.1      MSESLSKDLNLNALFIGDKAENGQIYKALLNELVDEHLGWRQNYMPQDMP 50 
tyrDC2_WP_002287561.1      -----MKDMDIKAVFIGDKAENGPVYKMLLNKMVDEHLGWRENYIPSDMP 45 
                                 **::::*:********* :** ***::********:**:*.*** 
 
tyrDC1_WP_002286400.1      IITPEEKSSASFEHTVNKTKDVLSEISARMRTHSVPWHNAGRYWGHMNSE 100 
tyrDC2_WP_002287561.1      AISEGDKLTPDYLATRDHMIEVLDEVSQRLRAGSIPWHSAGRYWGQMNAE 95 
                            *:  :* :..:  * ::  :**.*:* *:*: *:***.******:**:* 
 
tyrDC1_WP_002286400.1      TLMPSLLAYNFAMLWNGNNVAYESSPATSQMEEEVGMEFAKLMSYKDGWG 150 
tyrDC2_WP_002287561.1      TLMPALLAYNYAMLWNPNNVALESSMATSQMEAEVGQDFASLFNMTDGWG 145 
                           ****:*****:***** **** *** ****** *** :**.*:. .**** 
 
tyrDC1_WP_002286400.1      HIVADGSLANLEGLWYARNIKSLPLAMKEVTPELVAGKSDWELMNLSTEE 200 
tyrDC2_WP_002287561.1      HIAADGSIANLEGLWYARCIKSIPLAVKEVLPEKVKKMSEWELLNLSVEE 195 
                           **.****:********** ***:***:*** ** *   *:***:***.** 
 
tyrDC1_WP_002286400.1      IMNLLDSVP-EKIDEIKAHSARSGKHLEKLGKWLVPQTKHYSWLKAADII 249 
tyrDC2_WP_002287561.1      ILEMTESFTDEEMDEVKAASSRSGKNIQRLGKWLVPQTKHYSWMKALDIC 245 
                           *::: :*.. *::**:** *:****::::**************:** **  
 
tyrDC1_WP_002286400.1      GIGLDQVIPVPVDHNYRMDINELEKIVRGLAAEKTPILGVVGVVGSTEEG 299 
tyrDC2_WP_002287561.1      GVGLDQMVAIPVQEDYRMDINALEKTIRELAGQKIPILGVVAVVGTTEEG 295 
                           *:****::.:**:.:****** *** :* **.:* ******.***:**** 
 
tyrDC1_WP_002286400.1      AIDGIDKIVALRRVLEKDGIYFYLHVDAAYGGYGRAIFLDEDNNFIPFED 349 
tyrDC2_WP_002287561.1      QVDSVDKIVQLRERLKDEGIYFYLHVDAAYGGYARSLFLNEAGEFVPYAS 345 
                            :*.:**** **. *:.:***************.*::**:* .:*:*: . 
 
tyrDC1_WP_002286400.1      LKDVHYKYNVFTENKDYILEEVHSAYKAIEEAESVTIDPHKMGYVPYSAG 399 
tyrDC2_WP_002287561.1      LAEFFEEHHVFHHCVT-IDKEVYEGFRAISEADSVTIDPHKMGYVPYAAG 394 
                           * :.. :::** .    * :**:..::**.**:**************:** 
 
tyrDC1_WP_002286400.1      GIVIKDIRMRDVISYFATYVFEKGADIPALLGAYILEGSKAGATAASVWA 449 
tyrDC2_WP_002287561.1      GIVIKHKNMRNIISYFAPYVFEKSVKAPDMLGAYILEGSKAGATAAAVWT 444 
                           *****. .**::*****.*****... * :****************:**: 
 
tyrDC1_WP_002286400.1      AHHVLPLNVTGYGKLMGASIEGAHRFYNFLNDLSFKVGDKEIEVHPLTYP 499 
tyrDC2_WP_002287561.1      AHRVLPLNVTGYGQLIGASIEAAQRFREFLDHLTFTVKGKTIEVYPLNHP 494 
                           **:**********:*:*****.*:** :**:.*:*.* .* ***:**.:* 
 
tyrDC1_WP_002286400.1      DFNMVDYVFKEKGNDDLVAMNKLNHDVYDYSSYVKGSIYGNEFLTSHTDF 549 
tyrDC2_WP_002287561.1      DFNMVNWVFKEQGCTDLNAINELNEKMFDRSSYMDGDVYGERFITSHTTF 544 
                           *****::****:*  ** *:*:**..::* ***:.*.:**:.*:**** * 
 
tyrDC1_WP_002286400.1      AIPDYGNSPLQFVNQLGFSDEEWNRAGKVTVLRASVMTPYMNKEEHFEEY 599 
tyrDC2_WP_002287561.1      TQEDYGDSPIRFVERMGLTKEEWKKEQKITLLRAAIMTPYLNDDRIFNFY 594 
                           :  ***:**::**:::*::.***::  *:*:***::****:*.:. *: * 
 
tyrDC1_WP_002286400.1      AEKIKAALQEKLEKIYADQLLASEAK 625 
tyrDC2_WP_002287561.1      TKKIAKAMEKKLNEIIQ--------- 611 
                           ::**  *:::**::*            

Figure 5: Comparison of TDC protein sequences found in the genome of E. faecium Aus0085. The 

HVDAAY conserved motif and PLP binding site characteristics of the group II PLP-dependent 

decarboxylase family are indicated in bold and highlighted in gray. 

Nowadays no information are available about this additional enzyme that in the complete genomes 

of E. faecium is always followed by two amino acid permease coding genes. To elucidate the role of 

these proteins in E. faecium strains amino acid metabolism further investigations are needed. 
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4.2.4. Conclusion 

The tyramine production by cells re-suspended in buffered systems highlighted the heterogeneity of 

TDC activity within enterococci. The study of the genetic characteristics of the E. faecium strains 

allowed to correlate specific mutations in the tyrDC gene sequence to their different tyraminogenic 

activity, and suggested the involvement of another gene annotated as putative tyrosine 

decarboxylase in the complete genome of E. faecium. To our knowledge, the potential role of an 

additional decarboxylase enzyme with different substrate specificity and genetic organization was 

here noticed for the first time. The two E. faecalis strains showed highly conserved TDC operon 

region, thus their phenotypic behaviour could be ascribed to different regulation mechanisms not 

yet elucidated, and affected by environmental factors or by the overall cell metabolism. In fact, the 

higher tyramine concentration produced by the enterococcal strains was found in the less favourable 

conditions for the purified TDC (at 20°C and pH 4). Further investigations have to be performed for 

better understanding the genetic determinants and mechanisms involved in tyramine production 

under different chemico-physical conditions by the application of “omic”  approaches. 
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4.3.1. Introduction 

Tyramine is a biogenic amine (BA) produced by decarboxylation of tyrosine. The adverse effects 

due to large amount of tyramine ingestion with diet are known as “cheese reaction”  and consist in 

migraine, hypertension and vasoconstriction, increased cardiac output, increased respiration, 

elevated blood glucose, and release of norepinephrine (EFSA, 2011; Marcobal et al., 2012; Shalaby, 

1996). 

Even if many microorganisms can accumulate biogenic amines in foods, the presence of the 

enzyme tyrosine decarboxylase (tyrDC) is particularly widespread among all lactic acid bacteria 

LAB species (Marcobal et al., 2012). In this framework, LAB belonging to the genus Enterococcus 

are recognized as the most efficient tyramine producers (Suzzi and Gardini, 2003; Özogul and 

Özogul, 2007; Capozzi et al., 2011; Kuley and Özogul, 2011; Ladero et al., 2012). 

Enterococci occur in many different habitats and, due to their association with the gastrointestinal 

tract, they are often contaminant in food of animal origin (Franz et al., 2003; Franz et al., 2011). 

When present in the raw material, enterococci can survive to the fermentation process and can be 

found in fermented foods such as sausages and cheeses in which they can have a relevant role 

during ripening (Franz et al., 2011; Giraffa, 2003). In fact, due to their salt and low pH tolerance, as 

well as their ability to grow over a wide temperature range, these LAB are particularly competitive 

especially when the environmental conditions become harsher. The presence of excessive tyramine 

content in cheese and fermented meat is often attributed to these microorganisms (Foulquié Moreno 

et al., 2006; Joosten and Northolt, 1989; Suzzi and Gardini, 2003; Komprda et al., 2008a,b).  

The presence of a gene coding for the tyrosine decarboxylase (tyrDC) is considered a species 

characteristic in E. faecalis, while it is widely diffused in E. faecium (Ladero et al., 2012). This 

gene has been found also in E. durans (Linares et al., 2009) and, recently, tyramine production has 

been studied in E. mundtii (Gatto et al., submitted).  

The tyrosine decarboxylase cluster of enterococci usually contains four genes. In addition to tyrDC 

(responsible for the decarboxylation), also tyrS (aminoacyl transfer RNA (tRNA) synthetase-like 

gene), tyrP (encoding for a tyrosine/tyramine antiporter) and often nhaC-2 (encoding an Na+/H+ 

antiporter) are present (Marcobal et al., 2012, Connil et al., 2002, Coton et al., 2011). Tyrosine is a 

substrate for which tyrDC has a great affinity. However, it has been demonstrated that enterococci 

can decarboxylate also phenylalanine with the same enzyme even if with a lower efficiency and 

when tyrosine is almost completely depleted (Pessione et al., 2009). 

Decarboxylation of tyrosine can be advantageous in microorganisms because it i) is a metabolic 

response against acidic stresses and ii) constitutes a mechanism through which proton motive force 

is generated (Connil et al., 2002, Marcobal et al., 2012, Pessione et al., 2009; Pereira et al., 2009).  
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In spite of the several works relating the tyramine content to enterococci activity in many fermented 

foods, scarce information is still available about the regulation and the physiological role of 

tyramine production in LAB and especially in enterococci. Some authors investigated also the 

possible role of tyrosine decarboxylation in GIT resistance, immunomodulation and adhesion of 

pathogen to enterocytes (de Palencia et al., 2011; Lyte, 2004; Pereira et al. 2009). 

Recently, Perez et al. (2015) demonstrated that the activation of the tyrDC favored the survival of 

E. faecalis when subjected to gastrointestinal stress and low pH and substrate availability induced 

the expression of the tyrDC (and tyrP and 2nhaC-2, which are cotranscribed). Further, tyrosine 

enhanced tyrDC expression, while it repressed tyrS, as already observed in E. durans (Linares et al. 

2012a) and in Sporolactobacillus sp. (Coton et al., 2011). Also in L. brevis the expression of tyrDC 

was increased by substrate availability while less evident was the correlation between tyramine 

production and survival at low pH in wine (Arena et al., 2011).  

In spite of the extremely wide diffusion of tyrDC among enterococci, different behavior in the 

production rate and in the growth phase in which tyramine is accumulated have been evidenced by 

several authors. Tyramine is often produced by some enterococci in higher amount already during 

the late exponential growth suggesting that this decarboxylation activity is not necessarily a 

response to starvation or nutrient depletion (Pessione et al., 2009). This trend was observed also by 

Bargossi et al. (2015a) in the strain E. faecalis EF37 and E. faecium FC12; however, in the same 

experiment, the strains E. faecalis ATCC 29212 and E. faecium FC643 produced tyramine only after 

the reaching of the stationary phase. These differences were partially explained by different 

transcription levels of tyrDC. In a successive work, the unusual scarce activity of E. faecium 

FC643, was explained by a premature codon stop, introduced by a non-sense mutation (TGG/TAG) 

of tyrDCA (Bargossi et al., 2015b).  

In this work, a defined medium containing precise amounts of tyrosine and phenylalanine was used 

for the growth of two strains of E. faecalis. The strains used were inoculated after their pre-grown 

with or without pre-induction in media containing or not tyrosine. Growth was monitored through 

optical density increase at 600 nm (OD600) and cell concentration was periodically monitored 

together with the amounts of tyramine and 2-phenylethylamine produced. Then, the level of 

transcription of tyrDC in not induced cells was measured in buffered media at pH 5.5 and 7.0 

containing different amounts of tyrosine, with the aim to better understand the mechanisms, which 

allow different behaviour in tyramine (and 2-phenylethylamine) accumulation. 

4.3.2. Mater ials and methods 

4.3.2.1. Enterococcal strains and evaluation of tyrDC activity in synthetic media 
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The strains E. faecalis EF37 and ATCC 29212, stored in 20% (w/v) glycerol at -80°C, were pre-

cultivated twice for 24 h at 37°C in synthetic medium, with full defined composition (adapted from 

Jensen and Hammer, 1993 and reported in Table 1), added or not with 4.4 mM tyrosine (Sigma-

Aldrich, Gallarate, Italy) to evaluate the effect of pre-adaptation. 

Table 1: Synthetic media composition (adapted from Jensen and Hammer, 1993). 

After 24 h of pre-cultivation, the culture were inoculated at a concentration of approximately 5.3-

5.5 log cfu/ml in synthetic medium with different combination of tyrosine (tyr) and phenylalanine 

(phe) concentration: 0 mM tyr-0 mM phe; 0 mM tyr-4.4 mM phe; 4.4 mM tyr-0 mM phe; 2.2 mM 

tyr-2.2 mM phe and 4.4 mM tyr-4.4 mM phe. The samples were incubated at 20°C, 30°C and 40°C 

for 200h.  

4.3.2.2. Growth parameters 

The evaluation of enterococcal growth in the different media was performed by measuring the 

OD600 with a UV-VIS spectrophotometer (Jenway, 6705UV-Vis, Staffordshire, UK). The OD600 

data were fitted with the Gompertz equation as modified by Zwietering et al. (1990). 

Components Concentration  Components Concentration 

Macro component (mM)  Amino acid (mM) 
NaCl 42.78   L-alanine 3.40 
Glucose 55.51  L-arginine 1.10 
MgSO4·7H2O 0.81  L-asparagine 0.80 
MnSO4·4H2O 0.22  L-cysteine 0.80 
FeSO4·7H2O 0.14  L-glutamate 2.10 
Di-ammonium hydrogen citrate 8.84  L-glutamine 0.70 
K2HPO4 11.48  Glycine 2.70 
CaCO3 1.00  L-histidine 0.30 
Piridoxal-5-phosphate monohydrate 0.19  l-isoleucine 0.80 
Tween 80 1 g/l  L-leucine 0.80 

   L-lysine HCl 1.40 
Vitamin (μM)  L-methionine 0.70 

Biotin 0.40  L-phenylalanine 2.20-4.40 
Folic acid 2.30  L-proline 2.60 
Riboflavin 2.60  L-serine 2.90 
Niacinamide 8.00  L-theonine 1.70 
Thiamine HCl 3.00  L-tryptophan 0.50 
Pantothenate 2.00  L-tyrosine 2.20-4.40 
   L-valine 0.90 

Micro nutr ient (μM)    
(HH4)6Mo7O24 0.003    
H3BO3 0.400    
CoCl2 0.030    
CuSO4 0.010    
ZnSO4 0.010    



101 

 

 

 

 

 

where y is the OD600 at time t, A represent the maximum OD600 value reached, µmax is the maximum 

OD600 increase rate in exponential phase and λ is the lag time.  

4.3.2.3.Biogenic amine determination 

One ml of each culture obtained according to the condition described in paragraph 4.3.2.1. was 

centrifuged at 6000 rpm for 10 min at 6°C, then the supernatant were collected for BAs 

determination by HPLC after derivatization with dansyl-chloride (Sigma-Aldrich, Gallarate, Italy) 

according to Tabanelli et al. (2012). Tyramine and 2-phenylathylamine contents were analyzed 

using a PU-2089 Intelligent HPLC quaternary pump, Intelligent UV–VIS multiwavelength detector 

UV 2070 Plus (Jasco Corporation, Tokio, Japan) and a manual Rheodyne injector equipped with a 

20 µl loop (Rheodyne, Rohnert Park, CA). The quantification of the amines was performed as 

follows: gradient elution 0-5 min phosphate buffer (pH 7.0)/acetonitrile 35:65, 5-6 min 

water/acetonitrile 20/80, 6-15 min water/acetonitrile 10/90, 15-25 min phosphate buffer (pH 

7.0)/acetonitrile 35:65 with flow rate 0.8 mL/min. The amount of tyramine and 2-phenylethylamine 

were expressed as mM by reference to a calibration curve obtained with standard solutions. 

4.3.2.4. RNA extraction and Real Time PCR 

The strains E. faecalis EF37 and ATCC 29212 were pre-cultivated at 37°C in synthetic medium 

without tyrosine and phenylalanine. After 24 h the cells were collected by centrifugation at 6000 

rpm for 10 min and washed twice with physiological solution (0.9% w/v NaCl). The strains were 

resuspended in the same solution and inoculated at a concentration of approximately 8.2-8.5 log 

cfu/ml in phosphate/citrate buffer (obtained by mixing citric acid 0.3 M and Na2HPO4 0.6 M 

solutions) with two different pH, 5.5 and 7, and two different tyrosine concentration, 0.28 and 4.4 

mM, and incubated at 30°C for 1 h. The determination RNA extraction was performed after 15, 30 

and 60 min of incubation.  

Two ml of each culture were centrifuged at 10000 rpm to collect the pellet. Cells were washed 

twice with 500 μl of sterile diethyl pyrocarbonate (DEPC) treated water, then five cycle of bead 

beater (Mini-BeadBeater, BioSpec Products, Bartlesville, Okla) of 1 min, interspersed with 1 min in 

ice, were performed with 500 μl of a LETS solution (200 mM LiCl, 20 mM EDTA, 20 mM Tris, 

0,4% SDS, 0,1% DEPC), 250 mg of 450 μm diameter glass beads (Sigma-Aldrich, Gallarate, Italy), 

500 μl of  a phenol-chloroform-isoamyl alcohol solution (25:24:1 v/v; Sigma-Aldrich, Gallarate, 
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Italy). After centrifugation (4°C, 13000 rpm, 10 min), the supernatant was treated with 600 μl of a 

chloroform-isoamyl alcohol solution (24:1 v/v; Sigma-Aldrich, Gallarate, Italy). The supernatant 

was collected after centrifugation and were added 60 μl of 3 M potassium acetate and 1 ml of ice-

cold absolute ethanol and left for 1 h at -80 °C. Total RNA was pelleted by centrifugation at 13000 

rpm for 15 min at 4°C, washed with 500 μl of ethanol 70%, and dissolved in 35 μl of diethyl 

pyrocarbonate (DEPC) treated water.  

DNA elimination was performed using 50 U of RNase-free DNase I recombinant (Roche 

Diagnostic, Germany) in 50 μl of DNAse reaction buffer (40 mM Tris-HCl, 10 mM NaCl, 6 mM 

MgCl2, 1 mM CaCl2, pH 7.9) for 70 min at 25°C. A PCR assay was carried out to check for any 

contaminating DNA, and, when necessary, the DNase treatment was repeated.  

RNA integrity, concentration, and purity were checked by electrophoresis on a 1,5% (wt/vol) 

agarose gel and by measurement with the NanoDropTM Lite Spectrophotometer (Thermo Fisher 

Scientific Inc. MA, USA). DNA-free RNA samples were stored at -80°C until use. 

A tyrDC fragment of about 336 bp was amplified using the primers DEC5 (5’ -CGT TGT TGG 

TGT TGT TGG CAC NAC NGA RGA RG-3’ ) and DEC3 (5’ -CCG CCA GCA GAA TAT GGA 

AYR TAN CCC AT-3’ ), following the PCR conditions described by Torriani et al., 2008. PCR 

product was visualized on a 1.5% agarose gel. 

Total cDNA was synthesized from 1 μg of RNA using the ImProm-IITM Reverse Transcriptase kit 

(Promega, USA), following the manufacturer's recommendations. 

The expression level of the tyrDC gene was analyzed by a RT-qPCR assay with primers TYR3f (5’ -

CGT ACA CAT TCA GTT GCA TGG CAT-3’ ) and TYR4r (5’ -ATG TCC TAC TTC TTC TTC 

CAT TTG-3’ ); thermo cycler, reaction mixture, and amplification program were described in 

Torriani et al. (2008), as well as the procedure of the absolute quantification of the tyrDC copies 

number. 

4.3.2.5. Statistical analysis 

The growth model was fitted using the statistical package Statistica for Windows 6.1 (Statsoft Italia, 

Vigonza, Italy). 

4.3.3. Results 

4.3.3.1. Growth kinetics of Enterococcus faecalis strains in defined medium 

The strains E. faecalis EF37 and E. faecalis ATCC 29212 were pre-grown in the presence or in the 

absence of the tyrDC inducer (tyrosine) and then inoculated in a synthetic medium containing 

different amounts of tyrosine and phenylalanine. The growth was indirectly monitored by 
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evaluating the OD600 over time. The data obtained were modelled using the Gompertz equation as 

modified by Zwietering et al. (1990) and the estimates of the resulting parameters (A, µmax and λ) 

for both the strains are shown in Figure 1.  
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Figure 1: Gompertz equation parameters for enterococcal growth measured as OD600 in the five synthetic 

media. Each group of white or grey bar represent the sample at 40°C, 30°C and 20°C from top to bottom. 

Independently on the pre-grown conditions, all the parameters were affected by the temperature of 

incubation and, as expected, while A and µmax increased with temperature, λ showed an opposite 
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0 mM tyrosine 
4.4 mM phenylalanine 

0 mM tyrosine 
0 mM phenylalanine 

2.2 mM tyrosine 
2.2 mM phenylalanine 

4.4 mM tyrosine 
0 mM phenylalanine 

4.4 mM tyrosine 
4.4 mM phenylalanine 

0 mM tyrosine 
4.4 mM phenylalanine 

0 mM tyrosine 
0 mM phenylalanine 

4.4 mM tyrosine 
4.4 mM phenylalanine 

2.2 mM tyrosine 
2.2 mM phenylalanine 

4.4 mM tyrosine 
0 mM phenylalanine 

0 mM tyrosine 
4.4 mM phenylalanine 

A 

λ 

μmax 

E. faecalis ATCC 29212 
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trend. Regarding the strain E. faecalis EF37, the A parameter was scarcely affected by the pre-

adaptation of cells, at least in the presence of tyrosine, while, where no precursors were not added, 

the pre-adapted cells were characterized by lower A values. By contrast, in all the conditions tested 

lower A estimates were observed using pre-adapted E. faecalis ATCC 29212 with respect to the not 

adapted cells. 

The main differences regarding µmax in E. faecalis EF37 concerned the samples incubated at 20°C, 

which had µmax markedly higher when pre-adapted. Less relevant differences were found among the 

samples incubated at 30 and 40°C. The adaptation in E. faecalis ATCC 29212 did not determined 

significant differences in the µmax values at 20°C, while this parameter was always higher in the pre-

adapted samples at 30°C. In samples containing tyrosine incubated at 40°C, µmax values were higher 

in not pre-adapted cells.  

The major differences related to the pre-adaptation concerned the λ estimates. In fact, in E. faecalis 

EF37 incubated at 20°C the absence of adaptation markedly prolonged λ (three times and more), 

even in the samples in which neither tyrosine or phenylalanine were added. Remarkable differences 

were observed also at 30 and 40°C. An analogous behavior was recorded also for E. faecalis ATCC 

29212. 

4.3.3.2. Tyramine and 2-phenyethylamine accumulation 

The media containing different amounts of tyrosine and phenylalanine were periodically analysed to 

determine the quantity of tyramine and 2-phenylethylamine produced during the incubation at 

different temperatures. The results obtained for tyramine are shown in Figure 2 and 3. 

For the strain E. faecalis EF37, the induction of tyrDC by pre-growing the strain in the presence of 

precursor determined a faster tyramine accumulation rate. When tyrosine was added at 2.2 and 4.4 

mM the maximum biogenic amine concentration was reached after about 16, 24 and 48 h of 

incubation at 40, 30 and 20°C, respectively. In the sample added with 2.2 mM of tyrosine the yield 

of tyrosine conversion ranged between 1.85 and 1.99 mM, very close to the maximum theoretical 

yield. In the samples added with tyrosine 4.4 mM, tyramine was accumulated at concentration 

comprised between 2.70 and 3.06 mM. In the absence of tyrosine added (0 mM tyrosine-0 mM 

phenylalanine, 0 mM tyrosine-4.4 mM phenylalanine), a small tyramine accumulation (about 0.15 

mM) was evidenced only in the pre-adapted enterococci. This is presumably due to the intracellular 

turnover and synthesis of amino acids, indicating a decarboxylase activity even in the absence of an 

external precursor induced by the presence of the precursor in the cytoplasm. When the cells were 

not adapted, the tyramine accumulation was extremely slowed down. In the presence of tyrosine 

added at 2.2 and 4.4. mM, the rate of tyramine production was again related to the temperature 
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(40°C>30°C>20°C) but the biogenic amine accumulation started after about 24 h at 40°C, 48 h at 

30°C and 150 h at 20°C. Moreover, with the exception of the samples at 40°C, which reached 

maximum BA concentrations comparable with the adapted cells, the rate of tyramine accumulation 

was slower and its amount at the end of incubation (192 h) was markedly lower if compared with 

the respective condition using adapted cells. Using not adapted cells the tyramine accumulation was 

negligible in the absence of both tyrosine and phenylalanine, while small amount (about 0.1 mM) 

were detected at 0 mM tyrosine and 4.4 mM phenylalanine, even if the amounts were lower than 

those observed under the same conditions using adapted cells. 

Figure 2: Amounts of tyramine produced in the five synthetic media by E. faecalis EF37 with or without pre-

adaptation during the incubation at different temperatures. 

The strain E. faecalis ATCC 29212 showed a quite different behavior (Figure 3). In all the 

conditions, the tyramine accumulation was lower than that observed using the strain EF37. In 

addition, regarding the samples containing tyrosine, surprisingly tyramine accumulation was faster 

and higher in the samples inoculated with not adapted cells at 40 and 30°C, while negligible 
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differences were observed at 20°C. In all the cases, the final tyramine amount (after 192 h) was 

strongly dependent on the temperature and it never exceeded 1.2 mM, with the exception of the 

samples at 40°C inoculated with not adapted cells. In addition, the final tyramine content was 

always lower than 1.7 mM, independently on the initial precursor concentration. 

Figure 3: Amounts of tyramine produced in the five synthetic media by E. faecalis ATCC 29212 with or 

without pre-adaptation during the incubation at different temperatures. 

Regarding 2-phenylethylamine production, this amine was detected in very low amount (<0.04 

mM) in all the samples inoculated with E. faecalis ATCC 29212, independently on the induction of 

the cells (data not shown). Similar low levels of the amine were found when the medium was 

inoculated with not adapted E. faecalis EF37 cells and with adapted cells of the same strain in the 

conditions 0 mM tyrosine-0 mM phenylalanine and 4.4 mM tyrosine-0 mM phenylalanine. 

Hovewer, in the presence of phenylalanine, pre-induced cells were able to accumulate 2-

phenylethylammine. This conversion was characterized by a lower yield if compared with tyramine. 

In fact, in the more favorable conditions, E. faecalis EF37 accumulated 0.8-0.9 mM in the presence 



108 

 

of phenylalanine 4.4 mM and about 0.45 mM in the presence of phenylalanine 2.2 mM (Figure 4). 

At 40°C the amine was accumulated more rapidly than at 30°C in the first 24 h of incubation; 

however, in the successive sampling times the amount were similar. In the samples incubated at 

20°C the accumulation was slower and started after 48 h.  

 
Figure 4: Amounts of 2-phenylethylammine produced by E. faecalis EF37 with or without pre-adaptation 

during the incubation at different temperatures in the media where phenylalanine was added. 

4.3.3.3. Relationships between cell concentration and biogenic amine accumulation 

In Table 2 the growth level of the strains after 72 h is reported. The data are expressed as percentage 

of the maximum OD600 (according to the Gompertz parameter A reported in Figure 1) reached after 

this time. For the adapted cells of both the strains this values was very high, indicating that the 

maximum cell concentration was almost reached. In the samples inoculated with E. faecalis EF37 

this value was higher than 96% at 30 and 40°C; only the samples incubated at 20°C had lower 

percentages, which were, in any case, higher than 86%. A similar behaviour was evidenced also for 

E. faecalis ATCC 29212, with slightly lower values, especially at 20°C.  

Completely different was the situation of the not pre adapted cells. The growth at 20°C after 72 h 

was very low (always inferior to 4%) for both the strains. Enterococcus faecalis EF37 reached after 

72 h an OD600 ranging between 51.5 and 77.2% of the maximum estimated at 30°C, while E. 

faecalis ATCC 29212 had performances comprised between 48.7 and 65.6%. Higher growth 
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percentage were reached by the strains at 40°C (between 86.7 and 93.9% for E. faecalis EF37, and 

between 61.6 and 83.8% for E. faecalis ATCC 29212).  

 

Synthetic media Temperature E. faecalis EF37  E. faecalis ATCC 29212 

  Adapted 
cells 

Not adapted 
cells 

 Adapted 
cells 

Not adapted 
cells 

Tyrosine 0 mM 
Phenylalanine 0 mM 

20 86.7 3.8  93.0 0.4 
30 98.7 51.5  99.1 51.7 
40 96.4 86.7  98.7 69.6 

 
      

Tyrosine 0 mM 
Phenylalanine 4.4 mM 

20 93.8 1.9  86.8 1.9 
30 99.0 75.8  98.7 51.7 
40 96.9 88.1  97.9 68.3 

 
      

Tyrosine 4.4 mM 
Phenylalanine 0 mM 

20 98.1 < 0.1  79.1 3.0 
30 96.9 73.5  98.7 65.6 
40 98.2 90.1  92.2 83.8 

 
      

Tyrosine 2.2 mM 
Phenylalanine 2.2 mM 

20 91.5 < 0.1  85.2 4.0 
30 97.8 77.2  98.5 57.3 
40 97.1 92.3  90.4 79.9 

 
      

Tyrosine 4.4 mM 
Phenylalanine 4.4 mM 

20 92.7 < 0.1  92.8 1.1 
30 96.7 74.8  92.7 48.7 
40 97.4 93.9  92.2 61.6 

Table 2: Growth level of the strains E. faecalis EF37 and E. faecalis ATCC 29212 at the different conditions 

after 72 h. The data are expressed as percentage of the maximum OD600 (the A parameter of the Gompertz 

equation) reached after this time. 

For the samples incubated with not pre adapted cells, in which the growth rates were significantly 

slower the adapted ones, also the precursor, i.e. tyrosine and phenylalanine,  were quantified after 

72 h, in addition to the BAs (Table 3). As already observed, in the media inoculated with E. faecalis 

EF37, after 72 h tyramine had already reached its maximum concentration in all the samples with 

pre-adapted cells (Figure 2). The pre adapted cells of E. faecalis ATCC 29212 after 72 h produced 

tyramine amounts below those obtained at the end of the incubation period (Figure 3). In addition, 

the pre adapted cells of the strain EF37 after 72 produced also 2-phenylethylamine (about the half 

of the final amount). 

In the samples at 20°C (characterized by a lower growth extent after 72 h) the production of BAs 

was negligible. However, the amount of the precursors was slightly reduced in E. faecalis EF 37; 

this trend was particularly evident in the media containing 4 mM of tyrosine and/or phenylalanine. 

A similar behaviour was recorded also for E faecalis ATCC 29212, which, at the same temperature, 
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showed a more intense phenyalanine consumption (up to 1 mM) in the absence of 2-

phenylethylamine production. 

The media containing E. faecalis EF37 incubated at 30°C were characterized by a more intense 

amino acid consumption. Tyrosine was depleted more intensively than phenylalanine, and only 

partially decarboxylated to tyramine. Similar tyramine concentration were recorded in E. faecalis 

ATCC 29212 which also consumed higher phenylalanine concentration without producing 2-

phenylalanine. An almost complete consumption of tyrosine was observed in the sample incubated 

at 40°C inoculated with E. faecalis EF37 even if the concentration of tyramine was far from the 

maximum theoretical concentration (about 2.9 mM in the sample containing tyrosine 4.4 mM and 

1.4 mM with tyrosine 2.2 mM).  Phenylalanine concentration further decreased if compared with 

the sample at 30°C. At the same temperature, the presence of E. faecalis ATCC 29212 caused a less 

marked diminution of tyrosine content (with a consequent lower amounts of tyramine), while the 

concentrations of phenylalanine were comparable with the values observed for E. faecalis EF37. 
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Synthetic media 
Biogenic 

amine/precursor 

E. faecalis EF37 E. faecalis ATCC 
29212 

20°C 30°C 40°C  20°C 30°C 40°C 

Tyrosine 0 mM 
Phenylalanine 0 mM 

Tyramine 
 
Tyrosine 

-*  
 
- 
 

- 
 

0.06 
(0.04) 

- 
 

0.03 
(0.02) 

 - 
 
- 
 

- 
 

0.07 
(0.04) 

- 
 

0.06 
(0.03) 

        2-Phenylethylamine 
 
Phenylalanine 

- 
 
- 
 

- 
 

0.14 
(0.06) 

- 
 
- 
 

 - 
 
- 
 

- 
 

0.15 
(0.06) 

- 
 

0.10 
(0.05) 

Tyrosine 0 mM 
Phenylalanine 4.4 mM 

Tyramine 
 
Tyrosine 

0.08 
(0.05) 
0.01 

(0.02) 

0.07 
(0.03) 

- 
 

0.08 
(0.04) 

- 
 

 0.01 
(0.02) 

- 
 

0.08 
(0.04) 
0.01 

(0.03) 

0.07 
(0.02) 
0.10 

(0.02) 
        2-Phenylethylamine 
 
Phenylalanine 

0.01 
(0.01) 
4.13 

(0.35) 

0.02 
(0.03) 
3.58 

(0.19) 

0.06 
(0.04) 
3.03 

(0.25) 

 - 
 

3.60 
(0.12) 

- 
 

3.05 
(0.18) 

- 
 

2.85 
(0.16) 

Tyrosine 4.4 mM 
Phenylalanine 0 mM 

Tyramine  
 
Tyrosine 

0.06 
(0.03) 
3.94 

(0.29) 

0.80 
(0.10) 
2.91 

(0.16) 

2.91 
(0.10) 
0.08 

(0.05) 

 0.01 
(0.01) 
4.19 

(0.27) 

0.75 
(0.08) 
3.27 

(0.20) 

1.33 
(0.05) 
2.50 

(0.13) 
        2-Phenylethylamine 
 
Phenylalanine 

- 
 

- 
 

- 
 
0.19 

(0.02) 

0.01 
(0.02) 

- 
 

 - 
 
- 
 

- 
 

0.16 
(0.04) 

- 
 

0.13 
(0.03) 

Tyrosine 2.2 mM 
Phenylalanine 2.2 mM 

Tyramine 
 
Tyrosine 

0.04 
(0.02) 
2.14 

(0.12) 

0.50 
(0.04) 
1.48 

(0.07) 

1.45 
(0.08) 
0.04 

(0.01) 

 0.02 
(0.01) 
2.12 

(0.08) 

0.48 
(0.06) 
1.58 

(0.14) 

0.82 
(0.09) 
1.46 

(0.12) 
        2-Phenylethylamine 
 
Phenylalanine 

0.02 
(0.01) 
2.17 

(0.10) 

0.02 
(0.01) 
1.90 

(0.12) 

0.02 
(0.02) 
1.35 

(0.06) 

 - 
 
1.65 

(0.07) 

0.02 
(0.01) 
1.46 

(0.08) 

0.02 
(0.02) 
1.32 

(0.15) 

Tyrosine 4.4 mM 
Phenylalanine 4.4 mM 

Tyramine 
 
Tyrosine 

0.06 
(0.00) 
4.25 

(0.24) 

0.57 
(0.06) 
3.43 

(0.17) 

2.96 
(0.12) 
0.14 

(0.03) 

 0.01 
(0.01) 
4.19 

(0.22) 

0.55 
(0.08) 
3.55 

(0.16) 

1.33 
(0.10) 
2.65 

(0.11) 
        2-Phenylethylamine 
 
Phenylalanine 

0.02 
(0.01) 
3.93 

(0.16) 

0.02 
(0.01) 
3.47 

(0.22) 

0.04 
(0.03) 
2.94 

(0.19) 

 - 
 

3.46 
(0.15) 

0.02 
(0.02) 
3.05 

(0.10) 

0.02 
(0.03) 
2.90 

(0.07) 

Table 3: Biogenic amines and amino acids precursor quantification after 72 h of incubation of E. faecalis 

EF37 and E. faecalis ATCC 29212 in the different media. The data are expressed in mM and the standard 

deviation is reported within the brackets. 

* : Under the detection limit
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4.3.3.4. Expression of the gene tyrDC in synthetic media 

A previous investigation has demonstrated that the gene tyrDC of the strains E. faecalis ATCC 29212 and 

EF37 showed different transcriptional behaviour during growth in BHI medium (Bargossi et al., 2015a). 

These results were in accordance with the ability of these strains to accumulate different amounts of 

tyramine. Furthermore, it was observed that the mRNA level was high after 2 h incubation for both the 

strains in BHI added or not with tyrosine. Gene transcription could probably be affected by the tyrosine 

present in the pre-cultivation medium or could be modulated just after the exposure to the substrate. Thus, in 

order to deeply investigate the expression of the gene tyrDC in these enterococcal strains, further analysis 

were carried out in short time distances after inoculation of cells pre-cultivated in absence of precursor into a 

synthetic medium with different amounts of tyrosine (0.3 and 4.4 mM) and pH (5.5 and 7.0).  

As shown in Figure 4a, the expression levels of the gene tyrDC in the strain ATCC 29212, calculated by the 

absolute quantification method previously described (Torriani et al., 2008), increased gradually in the 

condition with 4.4 mM tyrosine, while the expression level reached high values [up to 4 log (copies/µg 

cDNA)] after 30 min at the lower substrate concentration. Acidic pH had a moderate effect on the tyrDC 

transcription in presence of high amounts of tyrosine.  

As regard the strain EF37 (Figure 4b), a similar expression trend was observed in presence of 4.4 mM 

tyrosine, i.e. a gradual augment, but more appreciable at low pH. Differently from the strain ATCC 29212 

the maximum gene expression [up to 3.5 log (copies/µg cDNA)] was reached only after 15 min of incubation 

both at pH 5.5 and 7.0. 
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Figure 4: Expression of the gene tyrDC in the strains Enterococcus faecalis EF37 and ATCC 29212 after 

inoculation into a synthetic medium up to 60 min.  

Table 4 reports the fold-changes of the tyrDC transcript for each strain in all the assayed conditions, 

where the condition with the lowest level of expression was selected as the calibrator for all 

experiments. These data underline more evidently the different short-term transcriptional response 

of the two strains. Indeed, the presence of 0.3 mM tyrosine induced the tyrDC transcription in both 

the strains, but EF37 showed the highest response in the shortest time. Otherwise, the strain ATCC 

29212 reached high concentration of mRNA only after 1 h in presence of 4.4 mM tyrosine. Also, 

pH had a strong impact on the transcription levels, since the highest values were observed at pH 5.5.  
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Strain 

 

 

Time  

(min) 

mRNA relative levels 

pH 5.5 

0.3 mM tyrosine 

pH 5.5 

4.4 mM tyrosine 

pH 7 

0.3 mM tyrosine 

pH 7 

4.4 mM tyrosine 

ATCC 29212 

15  4.14 9.11 1.00 8.73 

30 28.22 71.95 12.59 64.84 

60 17.24 274.43 15.84 119.76 

EF37 

15 177.79 6.81 133.21 1.00 

30 12.15 7.13 2.68 1.34 

60 6.21 3.83 2.66 6.21 

Table 4: Relative tyrDC transcript amount under different substrate and pH conditions. 

4.3.4. Discussion 

The pre-induction obtained by incubating the pre-cultures in the presence of tyrosine favoured the 

growth performances in the synthetic media independently on the presence of tyrosine or 

phenylalanine added. This fact was not necessarily correlated with a higher and/or faster tyramine 

and 2-phenylethylamine accumulation in the strain E. faecalis ATCC 29212. In fact, in the strain E. 

faecalis ATCC 29212, in spite of the pre-adaptation, tyramine accumulation was higher and faster 

in not pre-adapted cells. However, E. faecalis ATCC 29212 was characterized by a production of 

tyramine which took place only after the beginning of the stationary phase and was absent in the 

presence of an active primary metabolism (i.e. sugar fermentation). This delayed production seems 

to determine the ineffectiveness of the preliminar pre-adaptation. In pre-induced cells, tyramine 

accumulation was close to the maximum theoretical yield only in the media containing tyrosine 2.2 

mM, while in the samples containing tyrosine 4.4 mM the yield was lowered, indicating a possible 

inhibition of tyrDC when the concentration of amine increased up to a threshold level of about 3.0 

mM. In any case, tyrosine was almost completely depleted in the media. 

By contrast, the pre-induction was essential for the rapid accumulation of tyramine by E. faecalis 

EF37 and the use of cell in which the decarboxysative pathway was activated resulted essential to 

reach the maximum tyramine accumulation within the first 24 h (at 30 and 40°C) and 48 h (at 20°C) 

of incubation. 

2-phenylethylamine was produced in relevant amount only by the strain EF37. In any case its 

accumulation started only when tyramine was accumulated at its maximum concentration and the 

yield was far from its theoretical potential, at least in the incubation period considered here. 
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Especially in pre-induced cells, tyramine was accumulated, though in very low amounts, also when 

tyrosine (and phenylalanine) was added in the medium, indicating that the decarboxylation activity 

is stimulated inside the cell even by the turnover of cytoplasmatic amino acids. 

Tyrosine decarboxylation is a metabolic pathway widely diffused among enterococci (Marcobal et 

al., 2012). However, the resulting tyramine accumulation can be extremely heterogeneous within 

the genus and the species both quantitatively and quantitatively. This heterogeneity has been 

recently evidenced in two strains of E. faecalis (EF37 and ATCC 29212) and two of E. faecium 

(Bargossi et al., 2015a) grown in nutritionally rich or poor media added or not with tyrosine. E. 

faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth 

phase while E. faecium FC12 and E. faecalis ATCC 29212 showed a slower decarboxylase activity, 

which took place mainly in the stationary phase (Bargossi et al., 2015a). The strains differed also 

for their ability to produce 2-phenylethylamine, which, between E. faecalis, was more enhanced in 

EF37 strain. 

The same strains were characterized by different behaviour when transferred in buffered systems 

containing tyrosine incubated under different conditions (temperature, NaCl concentration and pH) 

(Bargossi et al., 2015b). The work confirmed that the genetic organization and nucleotide sequence 

of the tyrosine decarboxylase cluster was highly conserved in the enterococcal strains of these 

species. In particular, the cluster sequence of E. faecalis EF37 and ATCC 29212 shares the same 

genetic organization, which comprises the four predictable complete open reading frames (ORF) 

corresponding to the genes tyrS, tyrDC, tyrP and nhaC. They are oriented in the same direction and 

encode polypeptides larger than 300 amino acids. In particular, BLASTN analysis of the 5259 bp 

nucleotide sequence of E. faecalis EF37 TDC operon region showed an overall identity of 99% 

(5231/5259 bp) with that of E. faecalis ATCC 29212, and 100% identity (5259/5259 bp) with that 

of another completely sequenced strain of the same species, E. faecalis D32 (gb|CP003726.1|). Two 

conservative aminoacid substitution were found (one in the amino acid permease and one in the 

Na+/H+ antiporter), which probably have no effect on the enzymatic activities (Bargossi et al., 

2015b). 

The use of the synthetic medium used in this work allowed to strictly control the amounts of 

precursors (tyrosine and phenylalanine) and to evaluate the effects of pre-adaptation on the 

metabolic potential of cells. The first evidences of these trials confirmed results obtained for these 

two strains in complex media (Bargossi et al., 2015a), according to which E. faecalis EF37 

accumulated tyramine since the exponential phase and the maximum biogenic amine concentration 

was rapidly reached. By contrast E. faecalis ATCC 29212 delayed the tyramine production to the 

stationary phase. The production of tyramine during the exponential phase has been already 
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observed in E. faecalis (Pessione et al., 2009), while other LAB, such as Carnobacterium 

divergens, preferentially accumulated this amine in the stationary phase (Masson et al., 1999).  

In the samples in which tyrosine was added at 2.2 mM, the pre-adapted cells of the strain E. faecalis 

EF37 showed a high final yield of tyramine, ranging between 84 and 90% with respect to the 

precursor added, while the same yield was considerably reduced in the presence of tyrosine 4.4 mM 

(from 61 to 70%). A possible inhibiting effect of increasing tyramine concentration on 

decarboxylase activity has already been observed in E. durans (Fernández et al., 2007a), L. brevis 

(Moreno-Arribas and Lonvaud-Funel, 1999). The higher decarboxylating activity of the tyrDC of E. 

faecalis EF37 was evident also in the accumulation of 2-phenylethylamine. The ability to 

decarboxylate phenylalanine by the same tyrDC responsible for tyramine production was firstly 

demontrated by Marcobal et al. (2006a,b) in E. faecium and it is rather common among enterococci, 

as observed by Bonetta et al. (2008) in E. faecalis. A similar behaviour was found in L. curvatus 

strains isolated from sausages, many of which were able to decarboxylate both the amino acids 

(Aymerich et al., 2006); the same aptitudes was less diffused among L. brevis strains from wine 

(Landete et al., 2007). In any case, usually phenylalanine is decarboxylate only when tyrosine is 

depleted and with a minor efficiency (Gardini et al., 2008; Marcobal et al., 2012; Bargossi et al., 

2015a). In this work, under the adopted conditions only EF37 was able to accumulate significant 

amount of 2-phenylethylamine in the presence of the precursor, confirming a trend observed by 

Bargossi et al. (2015a). These trends were also confirmed by the transcriptional response of the two 

strains. The transcription of tyrDC was more rapid and efficient in E. faecalis EF37 and the pH at 

which it resulted higher was 5.5. These findings suggest a relevant effect of the growth medium 

composition on the gene tyrDC that is probably regulated by different mechanisms in the two 

studied strains. Indeed the two strains tested showed great differences in the mRNA levels of the 

gene involved in tyramine production. These transcriptomic differences were observed from the 

beginning of growth and can account for the different production of tyramine detected for these 

strains. 

4.3.5. Conclusion 

Significant results, coming from the present investigation, underline differences between 

enterococcal strains both at transcriptional and metabolic level. 

An interesting result of this work was the evidence that pre-adapted cells (pre-grown on tyrosine) of 

both the strains grew faster than not pre-adapted ones, independently on the addition of tyrosine and 

phenylalanine. The better growth performances of pre-adapted cells were mainly linked to a drastic 

reduction of the λ parameter of the OD600 growth curves, especially in the samples incubated at 
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20°C. The improvement of growth parameters was not necessarily associated to the tyrDC activity, 

as demonstrated by the faster growth curve in the absence of tyrosine and phenylalanine, and by the 

growth parameters estimated for E. faecalis ATCC 29212 for which the faster growth was not 

associated by a concomitant increase of tyramine. Indeed, Pessione et al. (2009) in their proteomic 

study on the tyrDC activity on phenylalanine and tyrosine, demonstrated that the pre-induction of E. 

faecalis cells grown in the presence of tyrosine determined marked increases of the expression of 

tyrDC, but also many other important gene shown an increased expression. In particular, the pre-

adaptation increase the transcription of genes of the glycolytic pathway (such as mannose-6-p-

isomerase, phosphoglycerate mutase, enolase and pyruvate kinase), pyruvate metabolism (lactate 

dehydrogenase, pyruvate dehydrogenase, formate acetyltransferase) as well as enzymes involved in 

purine and pyrimidine metabolism, ABC trasporters as well as some stress proteins (such as DNAj 

and gls 24). In other words, the pre-adaptation in the presence of tyrosine stimulated not only the 

transcription of the tyrosine decarboxylase cluster; other genes which can confer competitive 

advantages to the cells were transcribed in higher proportion by enterococci in the presence of 

tyrosine.  
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4.4. Tyrosine decarboxylase activity of Enterococcus mundtii: new 

insights on phenotypic and genetic aspects. 
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ABSTRACT 

The capability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus 

mundtii was evaluated in a cultural medium added or not with 1 g/l tyrosine. Both the strains 

possessed a tyramine decarboxylase which determined tyramine accumulation from the beginning 

of exponential phase of growth, independently on the tyrosine addition. The strains accumulated 

also 2-phenylethylamine, although with lower efficiency and in greater extent when tyrosine was 

not added to the medium. Accordingly, the tyrosine decarboxylase (tyrDC) gene expression level 

increased during the exponential phase with tyrosine added, while it remained constant and high 

without precursor. The genetic organization as well as sequence identity levels of tyrDC and 

tyrosine permease (tyrP) genes indicated that the tyramine-forming pathway in E. mundtii is similar 

to those in phylogenetically closer enterococcal species, such as E. faecium, E. hirae, and E. 

durans; however the gene Na+/H+ antiporter (nhaC), that usually follow tyrP is missing. In addition, 

analysis of available genomic data of E. mundtii QU 25 and other Enterococcus strains revealed an 

unexpectedly presence of additional genes encoding for decarboxylase and permease. It is 

speculated the occurrence of a duplication event and the acquisition of different specificity for these 

enzymes that deserves further investigations. 

 

Key words: Enterococcus mundtii, tyramine, 2-phenylethylamine, tyrDC gene expression, TDC 

operon 
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4.4.1. Introduction 

Tyramine is a biogenic amine (BA) deriving from tyrosine decarboxylation and can have severe 

acute effects if ingested in excessive amounts with food, consisting in peripheral vasoconstriction, 

increased cardiac output, accelerated respiration, elevated blood glucose and release of 

norepinephrine, symptoms known also as “cheese reaction”  (Shalaby, 1994; McCabe-Sellers et al., 

2006; Marcobal et al., 2012). Tyrosine decarboxylase, the enzyme responsible for tyramine 

production, can use as substrate also phenylalanine, producing 2-phenylethylamine, whose adverse 

effects are similar to tyramine (Marcobal et al., 2006a). 

In general, the amino acid decarboxylation leading to BA formation provides metabolic energy 

and⁄or resistance against acid stress (Molenaar et al., 1993; Fernández and Zúñiga, 2006; Pereira et 

al., 2009). The microorganisms responsible for tyramine accumulation in foods belong mainly to 

the group of lactic acid bacteria (LAB) (Marcobal et al., 2012). Among LAB, species belonging to 

the genus Enterococcus are recognized as the most frequent and intensive tyramine producers 

(Leuschner et al., 1999; Suzzi and Gardini, 2003, Ladero et al., 2012).  

Due to their salt and pH tolerance, and to their ability to grow over a wide temperature range, 

enterococci are isolated from different habitats and are often contaminants in food of animal origin, 

such as cheese and sausages (Franz et al., 2011; Giraffa, 2003). In spite of their homolactic 

metabolism, their potential role in cheese ripening and their ability to produce bacteriocins (Fontana 

et al., 2015; Beshkova and Frengova, 2012), enterococci have a controversial status and they are 

often considered at the crossroad of food safety (Franz et al., 1999). In fact, this group is considered 

as indicator of the hygienic quality of raw material and food, as well as marker of fecal 

contamination (Leclerc et al., 1996). In addition, virulence factors can be present (Foulquié-Moreno 

et al., 2006; Hollenbeck and Rice, 2012) and they can act as opportunistic human pathogens 

frequently associated with nosocomial infections due to their antibiotic resistance with a high 

capacity to disseminate this resistance to other microorganisms (Giraffa, 2002; Klein, 2003; Rossi 

et al., 2014). Furthermore, they are strong tyramine producers and this ability has been deeply 

exploited in Enterococcus faecalis (in which tyramine production is considered a species trait), 

Enterococcus faecium and Enterococcus durans (Linares et al., 2009; Ladero et al., 2012; Bargossi 

et al., 2015a; Bargossi et al., 2015b). For this reasons, the presence of enterococci has been put in 

relation with the presence of tyramine in several fermented foods, such as fermented sausages 

(Gardini et al., 2008), cheeses (Linares et al., 2011) and wine (Pérez-Martin et al., 2014).  

The enterococcal species most frequently isolated from fermented foods are E. faecalis and E. 

faecium, but also E. durans, Enterococcus gallinarum, Enterococcus casseliflavus, Enterococcus 

hirae can be found in food matrices (Franz et al., 2003; Giraffa, 2003; Foulquié Moreno et al., 
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2006; Komprda et al., 2008b, Corsetti et al., 2007). Recently, also E. mundtii has been isolated 

from the food chain; it is a non-motile, yellow-pigmented enterococcus infrequently associated to 

human infection (Collins and Farrow, 1986; Higashide et al., 2005). Strains of E. mundtii have been 

isolated from soy and cereals (Todorov et al., 2005; Corsetti et al., 2007), water (Moore et al., 

2008; Graves and Weaver, 2010; Furtula et al., 2013), soil (Collins et al., 1986; Bigwood et al., 

2012) and forage grass or silage, in which this species is often the predominant among enterococci 

(Muller et al., 2001; Ni et al., 2015). It has also been isolated from animals (Espeche et al., 2014; 

Collins et al., 1986) and from food (Schöbitz et al., 2014; Vera Pingitore et al., 2012). 

This species has been deeply studied in relation to the bacteriocin produced, among which 

mundticine (de Kwaadsteniet et al., 2004; Todorov et al., 2005; Corsetti et al., 2007; Feng et al., 

2009; Vera Pingitore et al., 2012; Espeche et al., 2014). 

Recently, the genome of E. mundtii QU 25 isolated from ovine faeces has been completely 

sequenced (Shiwa et al., 2014) and comparative analysis of the genetic content of this species with 

respect to other representative enterococcal species of diverse origins was conducted (Repizo et al., 

2014). Despite to those recent acquisitions, scarce information is available about E. mundtii 

tyraminogenic potential. Trivedi et al. (2009) carried out a study testing the ability to decarboxylate 

tyrosine in several enterococci isolated from different foodstuff. Regarding E. mundtii, four of five 

strains isolated from meat products and six of 12 isolated from vegetables and fruits possessed this 

ability. Also Kalhotka et al. (2012) found an E. mundtii strain able to produce tyramine and 

agmatine. This latter amine derives from the decarboxylation of arginine and can be transformed in 

putrescine by a specific deiminase (Linares et al., 2015). 

In this research, the tyramine and 2-phenylethylamine accumulation by two E. mundtii strains 

isolated from grass silage was studied during their growth in a rich medium. In addition, 

information on the genetic basis of the tyraminogenic potential of E. mundtii were obtained 

analysing the expression of the tyrosine decarboxylase (tyrDC) gene, the sequence of tyrDC and 

tyrosine permease (tyrP) genes, and the genetic organization of the TDC operon region. 

4.4.2. Results and discussion 

4.4.2.1. Tyramine-positive enterococci 

In the first part of the research, 35 isolates of coccal LAB, originating from different matrices and 

positive for the production of tyramine according to the method of Bover-Cid and Holzapfel 

medium (Bover-Cid and Holzapfel, 1999) were considered. These isolates were presumptively 

identified as enterococci based on their physiological and morphological characteristics (von Wright 

and Axelsson, 2012). They were cocci, Gram-positive, catalase-negative, non-spore-forming, 
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occurring both as single cells and in chains. They were able to growth at 10°C and 45°C, at pH 4.4 

and 9.6, and in the presence of 6.5% of NaCl.  

To confirm the decarboxylase activity revealed by the Bover-Cid and Holzapfel medium, the 

occurrence of the gene tyrDC, coding for tyrosine decarboxylase (TDC), was examined. A tyrDC 

gene fragment was amplified according to Torriani et al. (2008). For all the 35 isolates the 336 bp 

amplicon was obtained, confirming their tyraminogenic potential.  

Successively, RAPD-PCR fingerprinting technique with the primer 1254 (Table 1) was applied to 

investigate the genetic diversity of the strains.  

PCR type Target Primer code Sequence (5’ -3’ ) 
Amplicon 

(pb) 
Reference 

RAPD-PCR 
Arbitrary 

DNA 
sequences 

1254 CCG CAG CCA A Variable 
Akopyanz et al., 
1992 

RT-qPCR tyrDC 

TYR3f  

 

TYR4r 

CGT ACA CAT TCA GTT GCA TGG 
CAT 

ATG TCC TAC TTC TTC TTC CAT 
TTG 

171 

Torriani et al., 2008 

Conventional 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tyrDC 

DEC5 

 

DEC3 

CGT TGT TGG TGT TGT TGG CAC 
NAC NGA RGA RG 

CCG CCA GCA GAA TAT GGA AYR 
TAN CCC AT 

350 

pheS 

pheS-21-F 

 

pheS-22-R 

CAY CCN GCH SGY GAY ATG C 

 

CCW ARV CCR AAR GCA AAR CC 

455 Naser et al., 2005 

tyrS/ 

tyrDC 

TyrS-F1 

 

Tdc-R1 

GGA GCT ATA AGT ATT AAC GGT 
GA 

GAT TT(A/G) ATG TT(A/G) CG(G/C) 
GCA TAC CA 

940 

Bargossi et al., 
2015a 

 

 

 

 

 

 

 

 

 

 

tyrDC 

Tdc-F2 

 

Tdc-R2 

CAA ATG GAA GAA GAA GT(A/T) 
GGA 

CC(A/G/T) GCA CG(G/T) T(C/T)C 
CAT TCT TC 

1340 

tyrDC/ 

tyrP 

Tdc-F3 

 

TyrP-R3 

CCA GA(C/T) TAT GGC AA(C/T) 
AGC CCA 

CCT AAA GTA GAA GC(A/G) ACC 
AT 

788 

tyrP 

TyrP-F4 

 

TyrP-R4 

TGG GTG CAA ATG TTC CCA GG 

 

ACC (A/G)AT TCG (A/G)TA AGG 
ACG 

940 

tyrP/ 

nhaC-2 

TyrP-F5 

 

NhaC-R5 

(A/T)CT GCT TGG GT(A/T) ACT 
GGA CC 

CAT (C/T)GC AT(C/T) (A/G)T(C/T) 
GAA TCC AAG 

na* 

Table 1: Primers used in this study in RAPD-PCR, RT-qPCR and conventional PCR reactions and expected 

amplicon size. 
* na: no amplicon 
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This molecular typing method has proved to be reliable, discriminative and suitable for the study of 

a large number of strains in short time (Vancanneyt et al., 2002). The primer 1254 generated 

reproducible RAPD-PCR fingerprints thanks to an accurate standardization of all the PCR and 

electrophoresis conditions. The reproducibility of PCR assays and running conditions was higher 

than 90%. Figure 1 shows the resulting dendrogram from cluster analysis of the RAPD-PCR 

fingerprints.  

 

Figure 1: UPGMA dendogram derived from RAPD-PCR-fingerprinting patterns of all the 35 isolates using 

the primer 1254. The codes of the isolates are indicated on the right-hand side of the figure. The vertical 

dotted line indicates the 60% similarity level that delineates the species E. mundtii (cluster I), E. faecalis 

(cluster II) and E. faecium (cluster III). Isolates marked with *  were identified by phenylalanyl-tRNA 

synthase α-subunit (pheS) gene sequence analysis. 

Using a profile similarity of about 60% as a threshold, the 35 isolates were subdivided into three 

clusters. Seven strains were grouped in the first cluster, four strains belonged to the second cluster 
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and, finally, 24 strains were clustered in the third group. For each cluster, some representative 

isolates were chosen to proceed with their identification at the species level by the pheS gene 

analysis. Indeed, this gene is considered a reliable genomic marker for differentiating the species 

within the genus Enterococcus, and it was demonstrated to be much more discriminatory than 16S 

rRNA (Naser et al., 2005). The pheS gene has a high degree of homogeneity among strains of the 

same enterococcal species (at least 97% sequence similarity), whereas, distinct species reveal at 

maximum 86% gene sequence similarity. The pheS partial gene sequence data obtained indicated 

that the strains C38, C46, C47, C53 and C77, grouped in the cluster I, can be assigned to the species 

E. mundtii (99-100% identity), the strain E599 (cluster II) to E. faecalis (100% identity), while the 

strains E175, G52 and C5 (cluster 3) to E. faecium (100% identity).  

These results confirmed the tyrosine decarboxylase potential of E. faecalis and E. faecium, the 

stronger tyramine producers (Aymerich et al., 2006; Gardini et al., 2008; Bonetta et al., 2008; 

Ladero et al., 2012; Marcobal et al., 2012). On the other hand, tyramine production is considered a 

species characteristic of E. faecalis (Ladero et al., 2012). In addition, the tyraminogenic potential of 

E. durans has been deeply studied (Fernández et al., 2007; Linares et al., 2009).  

Regarding E. mundtii, scarce are the studies regarding their capability to accumulate tyramine and 

the genetic aspects involved in its accumulations. Kalhotka et al. (2012) investigated the 

decarboxylase activity of enterococci isolated from goat milk and found that all of the tested strains, 

identified as E. mundtii, E. faecium and E. durans, showed significant tyrosine and arginine 

decarboxylase activity, in relation to temperature and duration of cultivation. In addition, Trivedi et 

al. (2009) studied the ability to decarboxylate tyrosine in many enterococcal strains isolated from 

different foodstuffs and found that more than 90% of isolates showed the presence of the gene 

tyrDC. In particular, these authors found that 10 of 17 E. mundtii strains were tyramine producers. 

These preliminary studies indicated the occurrence of tyramine producing E. mundtii strains, but did 

not highlight the tyraminogenic potential of this species. Moreover, the molecular aspects involved 

in the tyramine biosynthesis have not yet studied in depth. For this reason, two of the E. mundtii 

strains considered here were chosen as targets for investigating their tyramine accumulation 

capability and tyrosine metabolism. In particular, the strains E. mundtii C53 and C46, isolated from 

grass silage and belonging to two different RAPD-PCR subclusters, were considered.  

4.4.2.2. Growth parameters and tyramine production of Enterococcus mundtii strains 

The growth of the strains E. mundtii C46 and C53 was monitored by measuring the OD600 increase 

in BHI medium added or not with tyrosine. The OD600 changes were modelled with the Gompertz 

equation (Zwietering et al., 1990) and the estimates of the parameters are reported in Table 2. 
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Table 2: Gompertz equation parameters for enterococcal growth measured as OD600. R2 is given as 

diagnostics of the regression. The maximum cell concentrations (expressed as log CFU/ml) at the beginning 

of the stationary phase is also reported. 
aA: maximum OD600 value reached; µmax: maximum OD600 increase rate in exponential phase (OD600/h); λ: 

lag phase duration (h) 
bBHI Broth plus 1 g/l tyrosine 

All the parameters were characterized by a high significance (p≤0.05). Both the strains reached the 

maximum value of OD600 (A), ranging between 1.11 and 1.27, after 6-8 h incubation at 37°C. The 

curves presented a very short lag phase (λ), followed by a sharp increase of OD600. As far as A and 

λ, no marked differences were found among the two strains, while E. mundtii C53 presented a lower 

maximum OD600 increase rate in exponential phase (µmax). Moreover, the addition of tyrosine 

generally determined lower values of A, higher values of µmax and a shorter lag phase. Table 2 

reports also the cell counts detected at beginning of the stationary phase. The models obtained are 

graphically represented in Figure 2, which reports the growth curves in the first 24 h of incubation.  

As a reference, in the same figure also the growth curves obtained under the same conditions by 

Bargossi et al. (2015b) for E. faecalis EF37, a strong tyramine producer (Gardini et al., 2008), 

which showed analogous behaviours. 

 

 

 

 

Strain 
Cultural 
medium 

Gompertz equation  
parametersa 

(Standard error) R2 
Maximum cell 
concentration  
(log CFU/ml) 

A µmax λ 

C46 
 

BHI + tyrb 
1.153 

(0.029) 
0.635 

(0.079) 
1.771 

(0.119) 
0.994 

9.09 
(±0.04) 

BHI 
1.269 

(0.036) 
0.615 

(0.077) 
2.556 

(0.132) 
0.994 

9.06 
(±0.01) 

 

C53 
 

BHI + tyr 
1.113 

(0.037) 
0.594 

(0.101) 
2.024 

(0.177) 
0.990 

9.01 
(±0.02) 

BHI 
1.215 

(0.028) 
0.563 

(0.060) 
2.345 

(0.121) 
0.996 

8.97 
(±0.05) 
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Figure 2: Growth curves of E. mundtii C46 (A) and E. mundtii C53 (B) obtained according to the Gompertz 

parameters reported in Table 2. The growth was obtained in BHI not added (blue solid line) or added (red 

dotted line) with tyrosine. As a comparison, also the growth curves obtained under the same conditions for 

the strain E. faecalis EF37 (C) are reports according to the data of Bargossi et al. (2015b). 

The production of tyramine by E. mundtii C46 and C53 during their growth in BHI, added or not 

with the precursor, is shown in Table 3, which reports also the accumulation of 2-phenylethylamine. 

Also in this case, the data already available for E. faecalis EF37 (Bargossi et al., 2015b) are 

reported. It is well known that enterococci can decarboxylate phenylalanine producing 2-

phenylethylamine through the activity of the same decarboxylase. The characteristics of this BA are 

very similar to tyramine, but it is produced with a lower efficiency (Marcobal et al., 2006a).  
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Time 

(h) 

E. mundtii C53  E. mundtii C46  E. faecalis EF371 

BHI BHI + 0.1% tyrosine  BHI BHI + 0.1% tyrosine BHI BHI + 0.1% tyrosine 

OD600
2 

TYR 

(mg/l) 

2-PHE 

(mg/l) 
OD600 

TYR  

(mg/l) 

2-PHE 

(mg/l) 
 OD600 

TYR   

(mg/l) 

2-PHE 

(mg/l) 
OD600 

TYR   

(mg/l) 

2-PHE 

(mg/l) 
 OD600 

TYR   

(mg/l) 

2-PHE 

(mg/l) 
OD600 

TYR   

(mg/l) 

2-PHE 

(mg/l) 

2 0.000 8.35 

(±0.41) 
-3 0.000 20.31 

(±0.32) 
-  0.004 7.14 

(±0.19) 
- 0.167 15.66 

(±0.65) 
-  0.059 n.d.4 n.d. 0.000 n.d. n.d. 

3 0.367 
21.30 

(±1.12) 
- 0.575 

42.18 

(±1.05) 
-  0.279 

21.56 

(±0.72) 
- 0.748 

72.89 

(±2.04) 
-  0.575 n.d. n.d. 0.359 n.d. n.d. 

4 0.865 
32.16 

(±1.84) 
- 0.953 

64.88 

(±1.54) 
-  0.846 

36.59 

(±0.08) 
- 1.047 

130.34 

(±2.56) 
-  0.913 n.d. n.d. 0.851 n.d. n.d. 

5 1.103 
46.29 

(±1.70) 
- 1.073 

93.59 

(±2.32) 
-  1.139 

61.37 

(±1.81) 
- 1.128 

189.87 

(±3.63) 
-  1.004 n.d. n.d. 0.936 n.d. n.d. 

8 1.212 
72.25 

(±2.31) 
- 1.112 

221.25 

(±5.48) 
-  1.267 

97.55 

(±2.50) 

4.80 

(±0.06) 
1.153 

396.36 

(±5.68) 
-  1.029 

11.65 

(±1.75) 

39.67 

(±1.71) 
0.947 

503.75 

(±6.16) 

85.21 

(±2.12) 

24 1.215 
101.71 

(±3.44) 

11.77 

(±0.48) 
1.113 

508.88 

(±8.93) 

4.07 

(±0.80) 
 1.269 

112.33 

(±6.32) 

33.24 

(±1.24) 
1.153 

630.09 

(±6.75) 

6.72 

(±0.74) 
 1.029 

90.97 

(±6.71) 

177.10 

(±5.46) 
0.947 

536.16 

(±4.32) 

295.61 

(±5.75) 

48 1.215 
116.73 

(±6.78) 

32.52 

(±0.87) 
1.113 

691.44 

(±8.49) 

6.91 

(±0.22) 
 1.269 

121.42 

(±4.96) 

63.21 

(±3.09) 
1.153 

770.35 

(±7.06) 

14.84 

(±0.95) 
 1.029 

69.64 

(±2.93) 

213.79 

(±7.25) 
0.947 

551.40 

(±4.43) 

405.80 

(±6.17) 

72 1.215 
129.12 

(±4.09) 

56.26 

(±0.94) 
1.113 757.43 

(±9.69) 

24.59 

(±0.65) 
 1.269 

127.57 

(±5.24) 

91.00 

(±2.16) 
1.153 

781.50 

(±5.83) 

43.46 

(±1.92) 
 1.029 

68.30 

(±4.88) 

262.45 

(±6.87) 
0.947 

513.94 

(±5.65) 

428.50 

(±4.91) 

96 1.215 
134.15 

(±5.11) 

75.63 

(±1.68) 
1.113 

766.57 

(±9.91) 

20.55 

(±0.71) 
 1.269 

129.46 

(±4.68) 

108.56 

(±3.82) 
1.153 

797.28 

(±11.05) 

44.94 

(±2.16) 
 1.029 n.d. n.d. 0.947 n.d. n.d. 
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Table 3: OD600 and tyramine (TYR) and 2-phenylethylamine (2-PHE) production by E. mundtii C53 and C46 

during their growth in BHI, added or not with tyrosine. It is also reported the production of TYR and 2-PHE 

of E. faecalis strain (rielaborated from Bargossi et al., 2015b). the standard deviations are reported within 

brackets. 

1: rielaborated from Bargossi et al. (2015b); 2: optical density at the different sampling time as predicted by 

the Gompetz model (Table 2); 3: under the detection limit (0.5 mg/L); 4: not determined. 

In all the tested conditions, the two E. mundtii strains were able to accumulate tyramine 

independently on the addition of tyrosine. In fact, the decarboxylase activity was detected also in 

the medium not supplemented with tyrosine, because BHI contains amino acid sources (proteins 

and peptides) among which precursors for TDC. This observation was previously reported by 

Bargossi et al. (2015b) for E. faecalis and E. faecium grown in the media BHI and Bover-Cid and 

Holzapfel. 

The data showed that the two E. mundtii strains began to produce tyramine after 2 h from the 

inoculum, both in the presence and in the absence of the precursor, and they continued to gradually 

accumulate tyramine during their stationary phase. In all the conditions, the maximum tyramine 

concentration was reached after 48 h for the strain C46 and after 72 h for the strain C53. However, 

the final amount of tyramine was similar for both the strains. In fact, it not exceeded 135 mg/l in 

BHI medium, while, in presence of tyrosine added, the final amount of tyramine was about 767 

mg/l and 797 mg/l for the strains C53 and C46, respectively. As reported in Table 3, Bargossi et al. 

(2015b) found that E. faecalis EF37 under the same conditions after 8 h reached the maximum 

tyramine concentration in the presence of tyramine added. The E. mundtii strains showed a slower 

tyramine production kinetics, but the final amount was significantly higher than E. faecalis EF37 

(approx. 500 mg/l). In the absence of tyrosine added, the strain E. mundti C46 was characterized by 

a faster tyramine accumulation in BHI. The major differences between E. faecalis EF37 and the E. 

mundtii strains were in the ability to accumulate 2-phenylethylamine, which was dramatically 

higher in E. faecalis. These amounts were higher than those reported by Liu et al. (2013) who, 

testing the tyraminogenic potential of E. faecalis strains from water-boiled salted duck, found 

concentrations of tyramine lower than 330 mg/l in MRS broth added with 0.1% tyrosine.  

The two E. mundtii strains were also able to decarboxylate phenylalanine leading to the production 

of 2-phenylethylamine (Table 3). This BA was accumulated only after 24 h of growth for the strain 

C53, while C46 began to produce this compound already after 8 h in absence of tyrosine added.  

The 2-phenylethylamine accumulation increased during subsequent incubation and reached its 

maximum level after 72 h with amended tyrosine and after 96 h without this amino acid. Moreover, 

the production of 2-phenylethylamine was higher when tyrosine was not added to the growth 
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medium. Indeed, in this case, concentrations of about 76 mg/l and 109 mg/l for E. mundtii C53 and 

C46, respectively, were reached, compared with concentrations lower than 45 mg/l in BHI when 

tyrosine was added to the medium. Interestingly, however, the accumulation of this BA became 

relevant when the tyramine concentration reached its maximum level (independently on the addition 

of the precursor). In any case, the amount of this BA was lower than that accumulated by E. 

faecium FC12 and E. faecalis EF37 (more than 400 mg/L) grown in the same medium (Bargossi et 

al., 2015b). These findings could reflect the lower efficiency of the E. mundtii TDC for 

phenylalanine decarboxylation and could indicate that these amounts of tyramine can lower or 

inhibit further decarboxylase activities in the tested strains. 

The continue tyramine accumulation until late stationary growth phase observed in this research 

could represent an advantage for the microorganism against acidification during the fermentation 

process and growth. In fact, the decarboxylation of amino acids has been indicated as a mechanism 

through which LAB and human pathogenic bacteria can resist acidic conditions (Lund et al., 2014; 

Romano et al., 2014) and this protective effect seems to be mediated via the maintenance of 

intracellular pH (Perez et al., 2015). The same role in the maintenance of pH homeostasis in acidic 

environment has been also described in E. durans (Linares et al., 2009) and E. faecium (Marcobal et 

al., 2006a).  

4.4.2.3. Time course of tyrDC gene expression 

The two E. mundtii strains analysed in this study showed similar trends in the accumulation of 

tyramine and phenylethylamine, and produced comparable final levels of these BAs in the different 

tested conditions. Thus, only the strain C46 was selected for transcriptional analysis of the gene 

tyrDC. Table 4 reports the tyrDC expression data obtained by RT-qPCR during 72 h growth in BHI 

supplemented or not with tyrosine.  

Table 4: Tyrosine decarboxylase (tyrDC) gene expression data for E. mundtii C46 grown in BHI added or 

not with 0.1% tyrosine during 72 h, as determined by RT-qPCR. 

Cultural medium 
Log (copies/µg cDNA) at time (h) 

2 3 4 5 8 24 48 72 

BHI 
3.4 

(±0.06) 

3.0 

(±0.03) 

2.5 

(±0.03) 

2.7 

(±0.30) 

3.1 

(±0.004) 

2.9 

(±0.14) 

3.0 

(±0.13) 

2.3 

(±0.83) 

BHI + tyr 
2.9 

(±0.002) 

3.5 

(±0.06) 

4.6 

(±0.05) 

4.1 

(±0.13) 

2.5 

(±0.03) 

3.1 

(±0.11) 

1.6 

(±0.04) 

1.6 

(±0.13) 
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In the medium without tyrosine added, a high value of transcript (3 log copies/µg cDNA) was 

already observed after 2 h (early exponential phase), probably due to the strong residual effect of 

the precursor present in the pre-cultivation medium. The amount of tyrDC transcript remained 

rather stable throughout all the period monitored. The addition of the precursor affected 

considerably the tyrDC expression level depending on the growth phase. Indeed, the expression of 

tyrDC increased rapidly, peaked (about 4.6 log copies/µg cDNA) at 4 h during the exponential 

phase of growth, when the highest number of cells for ml was reached. After 8 h, the gene 

expression decreased progressively until the end of the 72 h period monitored.  

As notice above, this E. mundtii strain was able to accumulate greater amounts of BAs than that of 

other previously studied enterococcal strains E. faecalis EF37 and E. faecium FC12 under the same 

conditions (Bargossi et al., 2015b). However, the maximum tyrDC gene copies number of E. 

mundtii C46, obtained after 4 h growth in BHI added with tyrosine, did not reach the value found 

for E. faecalis EF37 (6.1 log copies/µg cDNA) in the same conditions. The expression trend of E. 

mundtii C46 in BHI without tyrosine was more similar to that of E. faecium FC12 which presented 

a rather constant tyrDC transcript level during the entire incubation period. However, in BHI added 

with tyrosine the expression profile differed between E. mundtii C46 and E. faecium FC12 because 

the tyrDC gene transcript reached the maximum level in the exponential (4 h) and in the stationary 

phase (24 h), respectively, when the highest cell number of 9 log CFU/mL was detected for both the 

strains. 

4.4.2.4. Analysis of the TDC operon region 

The characteristics of the TDC operon region involved in tyramine production have been described 

in several tyraminogenic bacterial strains, including enterococci (Connil et al., 2002, Lucas et al., 

2003, Fernandez et al., 2004, Coton et al., 2004, Marcobal et al., 2012; Bargossi et al., 2015a). 

However, the molecular knowledge of this region for E. mundtii is extremely scarce. Therefore, it 

was carried out an investigation to determine the DNA and amino acid sequences of the E. mundtii 

C46 tyramine production-associated genes and the genetic organization of the TDC operon region, 

considering also the available genome sequencing data. In particular, the region downstream the 

gene tyrS including the genes tyrDC and tyrP, which encode for the tyrosine decarboxylase and the 

tyrosine/tyramine permease, respectively, was amplified and sequenced. Indeed, the gene Na+/H+ 

antiporter (nhaC), that usually follow tyrP in the TDC operon of several tyramine-producing LAB, 

such as E. faecalis, E. faecium and L. brevis (Marcobal et al., 2012; Bargossi et al., 2015a) was not 

recognized by PCR performed with the primers covering the intergenic region between tyrP and 

nhaC. Such gene organization was found also in the fully sequenced and assembled genome of E. 
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mundtii QU 25 (Shiwa et al., 2014) (GCA_000504125.1), that shows a lacI family transcriptional 

regulator gene downstream tyrP (Figure 2a).  

BLASTN analysis of the 3677 bp nucleotide sequence of the E. mundtii C46 TDC operon region 

showed the best overall identity of 99% (3673/3677 nt) with that of E. mundtii QU 25. High levels 

of DNA sequence identity (> 80%) were also found for several strains belonging to other 

enterococcal species: E. hirae ATCC 9790 (1884/2282, 83%), E. durans KLDS 6.0930 and KLDS 

6.0933 (1876/2285, 82%), and E. faecium Aus0085, NRRL B-2354, Aus0004, DO, and T110 

(1877/2286, 82%). On the contrary, lower sequence identity (76%) was achieved for strains 

belonging to the species E. faecalis (e.g. ATCC 29212, and V583). Putative promoter and 

terminator were found upstream the start codon of the genes tyrDC (Figure 2a), but not in the short 

intergenic sequence before the gene tyrP, suggesting that these two genes are probably co-

transcribed, as already showed for other species, such as E. faecalis and L. brevis (Marcobal et al., 

2012). 

Surprisingly, BLASTN analysis discovered in the genome of E. mundtii QU 25 (Shiwa et al., 2014) 

the presence of another region constituted by two genes similar to tyrDC and tyrP. These genes 

showed lower sequence identity values, 69% and 64%, respectively, with those present in the TDC 

operon. The genetic organization of the genomic segment that includes these two genes is shown in 

Figure 2b. This additional portion was also recovered in the genome of other enterococcal strains, 

such as E. hirae ATCC 9790, E. faecium NRRL B-2354, E. durans KLDS6.0930 and KLDS6.0930. 

However, in these strains a further putative amino acid permease was annotated between the 

tyrosine permease and the cation transporter E1-E2 family ATPase. The presence of a gene 

associated to a transposase after the ATPase encoding gene in E. mundtii QU 25 (Shiwa et al., 

2014) is of particular interest, as it could be involved in spontaneous events of gene duplication or 

horizontal transfer.  

BLASTX analysis and comparison of the deduced amino acid sequences of E. mundtii C46 TDC 

operon region were also carried out. The translated nucleotide sequence generated two proteins in 

the frame +1 and +2, respectively. The first one showed the highest identity with a tyrosine 

decarboxylase (BAO05941.1) of E. mundtii QU 25 (624/624 nt, 100%) and E. mundtii CRL35 

(616/624 nt, 99%) and decreasing identity (90-71%) with decarboxylases from other species of the 

genus Enterococcus. On the contrary, lower similarity (61-59%) was found with the additional 

PLP-dependent decarboxylase detected with BLASTN analysis. The second protein presented a 

putative conserved domain associate to a putative glutamate/gamma-aminobutyrate antiporter 

(TIGR03813). This sequence showed 100% identity with the amino acid permease family protein of 

E. mundtii QU 25 and E. mundtii ATCC 883, and decreasing identity with the amino acid 
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permeases of other species of the genus Enterococcus. Also in this case, lower identity (58-60%) 

was found with the additional amino acid permease detected with BLASTN analysis.  

These sequence analysis results taken together indicated the presence in the E. muntii genome of a 

TDC operon with a classical genetic organization (i.e. tyrS, tyrDC and tyrP) and provided evidences 

for a new additional copy consisting of three ORF. According to Lynch and Conery (2000) 

duplications of a genome segments have been thought to be a primary source of material for the 

origin of evolutionary novelties, including new gene functions and expression patterns. Therefore, 

the additional copy may acquire a novel, beneficial function and become preserved by natural 

selection, with the other copy retaining the original function. Recently, Bargossi et al. (2015a) 

described the compromised tyrosine decarboxylase activity of the strain E. faecium FC643 due to a 

codon stop in the translated tyrDC sequence. However, this strain showed a slow and reduced 

production of tyramine, and not 2-phenylethylamine, probably due to the presence of the additional 

enzyme with different substrate specificity and regulation mechanism respect to the decarboxylase 

encoded by the gene tyrDC of the TDC operon. 

As regards E. mundtii, it can be supposed that all the genes in the two operon regions detected are 

expressed and produce functional products. However, the role of the additional proteins in the 

context of biogenic amine production needs further deep investigation. 

 

Figure 2: a) Organization of the TDC operon in the strain E. mundtii QU 25 (GCA_000504125.1); b) 

genome fragment encoding for an additional PLP-dependent decarboxylase, an APC family amino acid 

transporter and a cation transporter E1-E2 family ATPase; upstream it is recognized a M protein trans-acting 

positive regulator and downstream an ISEfa11 (ISL3 family) transposase, followed by an additional M trans-

acting positive regulator gene. 
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4.4.3. Conclusions 

In this study the capability of E. mundtii strains to accumulate tyrosine and 2-phenylalanine in 

cultural media was assessed, and more information on the genetic basis of their tyraminogenic 

potential were obtained for the first time. The two strains considered here produced relevant 

amounts of tyramine, greater than those accumulated by other strains belonging to E. faecium and 

E. faecalis previously studied in the same conditions (Bargossi et al., 2015b). By contrast, their 

ability to decarboxylate phenylalanine was less enhanced if compared with the same strains. 

Likewise the other enterococcal strains, the expression analysis of the gene tyrDC showed that an 

excess of the precursor tyrosine affected the amount of the transcript during the exponential phase 

of growth, and that the amino acids fraction present in the medium also modulated the level of the 

transcript. The genetic organization as well as sequence identity levels of the genes tyrDC and tyrP 

indicated that the tyramine-forming pathway in E. mundtii is similar to those in phylogenetically 

closer enterococcal species, such as E. faecium, E. hirae, and E. durans, however the gene Na+/H+ 

antiporter (nhaC), that usually follow tyrP is missing. Analysis of the available data on genome 

content and organization of E. mundtii QU 25 (Shiwa et al., 2014) and other Enterococcus strains 

revealed an unexpectedly presence of another region that includes two genes encoding for an 

additional PLP-dependent decarboxylase and an amino acid permease. It is tempting to speculate 

that a duplication event occurred and the evolution of this redundant copy induced the acquisition of 

different specificity leading to the maintenance of both the functional copies. Thus, this discovery 

uncovers another level of complexity in the enterococcal biogenic amines regulatory network. 

Further studies have to be performed to better explain the genetic and functional characteristics of 

these further enzymes and their correlation with tyrosine decarboxylating potential of enterococci. 

4.4.4. Exper imental procedures 

4.4.4.1. Characterization of the strains and screening procedure for tyramine production 

Thirty-five isolates of cocci LAB from the collection of the Biotechnology Department of the 

Verona University were tested for morphological characteristics, Gram test, catalase test, growth in 

the presence of 6.5% NaCl, growth at 15°C and 45°C and at pH 4.4 and 9.6, as well as for their 

homo or heterolactic fermentation.  

The tyrosine decarboxylase activity of the isolates was evaluated using the screening plate method 

described by Bover-Cid and Holzapfel (1999).  
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4.4.4.2. TyrDC gene detection 

Genomic DNA of tyramine-positive isolates was obtained from 1 ml of overnight culture by using 

the Wizard Genomic DNA purification system (Promega Corporation, Madison, WI), following the 

manufacturer’s instructions. Isolates were assayed for the presence of the gene tyrDC by PCR 

analysis with the primers DEC5 and DEC3 (Table 1), following the conditions described previously 

(Torriani et al., 2008). PCR product was visualized on a 2% agarose gel. 

4.4.4.3. Randomly amplified polymorphic DNA (RAPD) analysis and identification of tyramine-

positive cocci  

In order to genetically typify the 35 tyramine-positive coccal strains, a preliminary RAPD-PCR 

analysis was performed with the primer 1254 (Table 1). Species identification was carry out by 

phenylalanyl-tRNA synthase α-subunit (pheS) gene sequence analysis (Naser et al., 2005). The 

pheS partial gene amplification was obtained with the primers pheS-21-F and pheS-22-R (Table 1). 

PCR conditions were set according to Naser et al. (2005) with exception that annealing temperature 

was 50°C. The expected amplicon (455 bp) was purified with the Wizard SV gel and PCR clean-up 

system (Promega Corporation) and cloned with the cloning kit pGEMT-easy vector system 

(Promega Corporation). Recombinant plasmids were sequenced at the GATC Biotech Ltd (Koln, 

Germany). Data were analyzed with the Basic Local Alignment Search Tool (BLAST) provided by 

National Center for Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

4.4.4.4. Growth parameters of two Enterococcus mundtii strains and tyramine production 

Two strains (C46 and C53), isolated from grass silage and identified as Enterococcus mundtii, were 

used for deeper investigations. 

The two considered E. mundtii strains were stored in 20% (w/v) glycerol at -80°C and pre-

cultivated for 24 h at 37°C in BHI Broth (Oxoid, Basingstoke, UK) added with 1000 mg/l of 

tyrosine (Sigma-Aldrich, Gallarate, Italy). After 24 h of pre-cultivation, the microorganisms were 

inoculated, at a concentration of approximately 7 log CFU/ml, in BHI Broth, added or not with 1 g/l 

of tyrosine and incubated at 37°C for 72 h. The evaluation of the strain growth in BHI was 

performed by measuring the OD600 with a UV-VIS spectrophotometer (Cary 60 UV-Vis, Agilent 

Technologies, Santa Clara, CA) with plastic cuvettes (1.5 ml) at defined times (1, 2, 3, 4, 5, 6, 7, 8, 

24, 48, 72 and 96 h). The OD600 data were fitted with the Gompertz equation as modified by 

Zwietering et al. (1990). 
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where y is the OD600 at time t, A represent the maximum OD600 value reached, µmax is the maximum 

OD600 increase rate in exponential phase and λ is the lag time.  

The maximum cell concentration reached was determined at the beginning of the stationary phase 

by plate counting enterococci onto BHI agar.  

The BAs were determined after 2, 3, 4, 5, 8, 24, 48, 72 and 96 h of incubation. The cultures were 

centrifuged at 10000 rpm for 10 min at 10°C, and the supernatants were used for BAs determination 

by HPLC after derivatization with dansyl-chloride (Sigma-Aldrich, Gallarate, Italy) according to 

Bargossi et al. (2015b). The quantification was performed according to Tabanelli et al. (2012) and 

the amount of tyramine and 2-phenylethylamine was expressed as mg/ml by reference to a 

calibration curve obtained with standard solutions. The trials were always analyzed in triplicate.  

4.4.4.5. RNA isolation, cDNA synthesis and RT-qPCR assay 

Two ml aliquots of E. mundtii cultures were centrifuged at 3000 rpm for 10 min and the obtained 

cell pellets were frozen at -80°C until the time of RNA extraction. Total RNA was isolated from 

cell pellets according to Bargossi et al. (2015b). Total cDNA was synthesized from 1 μg of RNA 

using the ImProm-IITM Reverse Transcriptase kit (Promega Corporation), following the 

manufacturer's recommendations. 

The expression level of the gene tyrDC was analyzed by a reverse transcription-quantitative real 

time PCR (RT-qPCR) assay with the primers TYR3f and TYR4r (Table 1); thermo cycler, reaction 

mixture, and amplification program were previously described in Torriani et al. (2008), as well as 

the procedure of the absolute quantification of the tyrDC copies number. 

4.4.4.6. Analysis of the TDC operon region 

The TDC operon fragments were obtained for E. mundtii C46 by PCR amplification with the 

partially degenerate primers reported in Table 1. PCR mixture was composed of 1× PCR buffer, 1.5 

mM MgCl2, 200 nM dNTPs, 0.5 µM each primer and 50 ng DNA. Amplification program 

comprised: 95°C for 5 min, 35 cycles at 94°C, 30 sec; 56°C, 45 sec; 72°C, 1 min, and final 

extension at 72°C, 10 min. Amplicons were purified, cloned and sequenced as reported in the 

paragraph 2.3.  

Promoters prediction was carried out by BPROM, a bacterial sigma70 promoter recognition 

program 
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(http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb; 

Solovyev and Salamov, 2011). Putative Rho–independent transcription terminators were predicted 

by the Arnold Finding Terminators (http://rna.igmors.u-psud.fr/toolbox/arnold/index.php).  

Similarity searches were performed with the BLAST programs available at the NCBI. Sequence 

alignments were carried out with the Clustal Omega analysis Tool Web Services from the EMBL-

EBI (Sievers et al., 2011). 

4.4.4.7. Statistical analysis 

The growth model was fitted using the statistical package Statistica for Windows 6.1 (Statsoft Italia, 

Vigonza, Italy). 
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ABSTRACT 

The aim of this study was to evaluate the competitive effects of three bacteriocin producing strains 

of L. lactis subsp. lactis against two aminobiogenic lactic acid bacteria, i.e. the tyramine producing 

strain Enterococcus faecalis EF37 and the histamine producing strain Streptococcus thermophilus 

PRI60, inoculated at different initial concentration (from 2 to 6 log cfu/ml). The results showed that 

the three L. lactis subsp. lactis strains were able to produce bacteriocins: in particular, L. lactis 

subsp. lactis VR84 and EG46 produced, respectively, nisin Z and lacticin 481, while for the strains 

CG27 the bacteriocin has not been yet identified, even if its peptidic nature has been demonstrated. 

The co-culture of E. faecalis EF37 in combination with lactococci significantly reduced the growth 

potential of this aminobiogenic strain, both in terms of growth rate and maximum cell 

concentration, depending on the initial inoculum level of E. faecalis. Tyramine accumulation was 

strongly reduced when E. faecalis EF37 was inoculated at 2 log cfu/ml and, to a lesser extent, at 3 

log cfu/ml, as a result of a lower cell load of the aminobiogenic strain. All the lactococci were more 

efficient in inhibiting streptococci in comparison with E. faecalis EF37; in particular, L. lactis 

subsp. lactis VR84 induced the death of S. thermophilus PRI60 and allowed the detection of 

histamine traces only at higher streptococci inoculum levels (5-6 log cfu/ml). The other two 

lactococcal strains did not show a lethal action against S. thermophilus PRI60, but were able to 

reduce its growth extent and histamine accumulation, even if L. lactis subsp. lactis EG46 was less 

effective when the initial streptococci concentration was 5 and 6 log cfu/ml. This preliminary study 

has clarified some aspects regarding the ratio between bacteriocinogenic strains and aminobiogenic 

strains with respect to the possibility to accumulate BA and has also showed that different 

bacteriocins can have different effects on BA production on the same strain. This knowledge is 

essentially aimed to use bacteriocinogenic lactococci as a predictable strategy against 

aminobiogenic bacteria present in cheese or other fermented foods.  

 

 

Keywords: Bacteriocins, Competition, Biogenic amines, Lactococcus lactis, Enterococcus faecalis, 

Streptococcus thermophilus.  
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4.5.1. Introduction 

Biopreservation refers to those processes in which the extension of food shelf life and safety 

improvement are obtained with the use of microorganisms, or their extracellular extracts, able to 

inhibit the growth of other bacteria, due to antimicrobial metabolites production (Papagianni, 2012). 

Such strategy is based upon the idea that some non-pathogenic bacteria can compete successfully 

with pathogenic and spoilage microorganisms avoiding their survival and growth in food (Stiles, 

1996). This approach has been used since several centuries for the preservation of fermented food 

where the microbial population plays several roles, among which the inhibition of undesirable 

microbiota. 

In recent years, particular interest has been posed on protective cultures, which are selected food-

grade bacteria inoculated in food, due to their antagonistic properties rather than for their influence 

on the organoleptic or nutritional values. In fact, the microorganisms used as protective cultures 

should not affect the sensorial profile of the product (Rodgers, 2001). Lactic acid bacteria (LAB) 

are often used as biopreservation agents because they can produce a wide range of antimicrobial 

metabolites, such as organic acids, diacetyl, acetoin, hydrogen peroxide, antifungal peptides and 

bacteriocins without safety implications (Ghanbari et al., 2013). 

Among the substances produced by bacteria with antimicrobial properties, bacteriocins have been 

deeply studied. Bacteriocins are defined as a heterologous group of ribosomally synthesized, 

extracellularly released bioactive peptides or proteins displaying antimicrobial activity against other 

bacteria (Klaenhammer, 1993; Nishie et al., 2012). In spite of the fact that several microbial groups 

(including Gram positive and Gram negative bacteria) can produce these molecules, the 

researchers’  interest is focused mainly on LAB bacteriocins (Guinane et al., 2005; Parente and 

Ricciardi, 1999; Reis et al., 2012). This is due to the wide potential applications of these food-grade 

bacteria that open interesting perspectives for bacteriocin producing LAB (used as starter or 

protective cultures) or bacteriocin preparation in food (Beshkova and Frengova, 2012). 

Lactococci are LAB ubiquitous in foods and they are widely present in dairy products because of 

their technological properties (Casalta and Montel, 2008). In fact, they are an important component 

of cheese microbiota, both during initial cheese-making steps, when they are often used as starter 

cultures, and during the ripening phase, when a complex microbiota determines transformations, 

which allow the obtaining of the peculiar cheese characteristics (Cogan et al., 2007). Moreover, 

they can have an important role as protective cultures in food preservation. In fact, they can exert 

important antimicrobial actions by synthesizing a variety of bacteriocins, such as nisins, lacticins 

and lactococcins (Beshkova and Frengova, 2012; Ghanbari et al., 2013; Leroy and de Vuyst, 2010; 

Stoyanova et al., 2012). In particular, nisin has a wide range of applications because of its broad 
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bactericidal spectrum and its mode of action. Since it can be easily broken down by digestive 

proteases and it does not disturb gut biota, it is to date the first bacteriocin approved for commercial 

use (Guinane et al., 2005).  

Due to the activities of ripening microbiota during cheese making and ripening, also undesirable 

reactions can take place, such as the formation of biogenic amines (BAs). These substances are 

accumulated through the microbial decarboxylation of aminoacids. The most dangerous are 

histamine (produced from histidine) and tyramine (produced from tyrosine) (EFSA, 2011). Even if 

the selection of starter cultures is based on the absence of these features, the presence of 

aminobiogenic microorganisms in natural starter cultures or among ripening microbiota is often 

unavoidable (Linares et al., 2011; Novella-Rodriguez et al., 2002). Among LAB, many strains are 

endowed with high decarboxylating potential. For example, enterococci are known as the most 

efficient tyramine producers in fermented foods (Ladero et al., 2012; Marcobal et al., 2012). In 

addition, recently, the presence of efficient histaminogenic strains of Streptococcus thermophilus 

has been reported (Calles-Enriquez et al., 2010; Rossi et al., 2011; Tabanelli et al., 2012; Trip et al., 

2011). 

Even if some strains can produce tyramine (Buňková  et al., 2011; de Llano et al., 1998), this 

feature in the genus Lactococcus is not widespread. For this reason, the selection of not 

tyraminogenic lactococci able to produce bacteriocins could represent an important tool to control 

BA accumulation in dairy products. In fact, the competition between two or more species in a 

habitat (such as cheese) affects both the partners in a negative way. However, it usually leads to an 

increase in the relative abundance of one of the interacting bacteria and to the possible exclusion or 

reduction of the other ones from the microbiota (Smid and Lacroix, 2013). Through this ability, 

selected lactococcal strains could contribute to reduce the risks of survival and multiplication of 

aminobiogenic microbiota during ripening and storage of fermented foods. 

The aim of this research was the evaluation of the competitive effects against aminobiogenic LAB 

of three bacteriocin producing Lactococcus lactis strains isolated from raw cow milk. In particular, 

the tyramine producing strain Enterococcus faecalis EF37 (Gardini et al., 2001; Gardini et al., 

2008) and the histamine producing strain Streptococcus thermophilus PRI60 (Rossi et al., 2011; 

Tabanelli et al., 2012) were considered as target microorganisms. The effects of the inhibiting 

potential of L. lactis strains were evaluated in vitro and both the population dynamics and BA 

production were assessed. 

4.5.2. Mater ial and methods 

4.5.2.1. Isolation and characterization of lactococci with antimicrobial activity 
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A total of 25 LAB were isolated from samples of raw cow milk from different local dairies. 

Colonies grown on M17 (Oxoid, Basingstoke, UK) plates incubated at 15°C were randomly 

selected, purified and deposited in the laboratory culture collection. The isolates were subjected to a 

preliminary phenotypic characterization: cell morphology, Gram stain, gas production from 

glucose, catalase reaction, growth at 45°C and with 6.5% (w/v) NaCl. Lactococcus lactis subsp. 

lactis LMG 6890T and L. lactis subsp. cremoris LMG 6897T served as control strains. 

The presumptive lactococci isolated as described above were tested for their inhibiting potential 

towards the tyramine producer E. faecalis EF37 (Gardini et al., 2001) and the histamine producer S. 

thermophilus PRI60 (Rossi et al., 2011; Tabanelli et al., 2012). All strains were cultivated in M17 

medium at 30°C. 

The antibacterial activity of lactococci was determined by using a deferred agar spot test under 

aerobic conditions (Schillinger and Lücke, 1989). M17 was used as bottom and upper layer 

medium. The production of antimicrobial substances was confirmed by well-diffusion agar assay 

using filter-sterilized and neutralized cell-free supernatants, as described by Aktypis et al. (1998). 

The presence of an inhibition zone greater than 5 mm around the well indicated a positive result. To 

evaluate the sensitivity of the inhibitory substances to proteolytic enzymes, the well-diffusion agar 

assay was repeated after treatment of the filter-sterilized cell-free supernatants with proteinase K (2 

mg/ml), and pancreatin (1 mg/ml) at 37°C for 4 h. 

4.5.2.2. Molecular identification of lactococcal isolates  

The presumptive lactococcal isolates showing the greater inhibition diameter in the deferred agar 

spot test (CG27, VR84 and EG46) were identified by 16S rDNA sequencing following by 

subspecies-specific PCR. Genomic DNA was extracted from pure cultures using the Instagene 

matrix (Bio-Rad Laboratories, Italy) according to the manufacturer’s instructions.  

In order to amplify the 16S rDNA gene the primers LpigF/LpigR (5’ -

TACGGGAGGCAGCAGTAG-3’  and 5’ -CATGGTGTGACGGGCGGT-3’ ) (Eurofins MWG 

Operon, Germany) and the PCR conditions described by Di Cagno et al. (2011) were used. The 

resulting amplicons (each about 600 kb long) were purified with the QIAquick PCR Purification Kit 

(Qiagen, USA) and sequenced at the BMR Genomics sequencing facility (Padova, Italy) using the 

same primers used for amplification. Sequence similarity searches were performed using the 

BLAST network service (http://blast.ncbi.nlm.nih.gov/).  

The primers Lhis5F/Lhis6R (5’ -CTTCGTTATGATTTTACA-3’  and 5’ -

AATATCAACAATTCCATG-3’ ) and the conditions described by Beimfohr et al. (1997) were used 

for the distinction of the subspecies L. lactis subsp. lactis and L. lactis subsp. cremoris. The 
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expected sizes of amplification products for L. lactis subsp. cremoris and L. lactis subsp. lactis were 

1,149 bp and 934 bp, respectively. To investigate the genetic diversity of the three lactococcal 

isolates, typing was carried out by randomly amplified polymorphic DNA (RAPD)-PCR with 

primer M13 according to Zapparoli et al. (1998). 

4.5.2.3.  Determination of the bacteriocin-encoding genes 

A screening for structural genes encoding bacteriocins previously described for L. lactis was done 

using PCR of the genomic DNA from the three lactococcal strains CG27, VR84 and EG46, 

identified as L. lactis subsp. lactis.  

PCRs were carried out with the primers listed in Table 1 and in a 20 μl reaction mixture containing 

200 mM dNTPs, 1.5 mM MgCl2, 0.5 U of Taq polymerase (GoTaq, Promega, Italy) and 2.5 μM of 

each primer. 

The amplification programs comprised an initial denaturation at 94° C for 5 min followed by 30 

cycles of denaturation for 45 s at 94° C, annealing for 60 s at the appropriate temperature, and a 

final extension at 72° C for 60 s. All primers were used with an annealing temperature of 54°C 

except for the primer pair LcnQZ-F/LcnQZ-R where a 53°C annealing temperature was used. The 

generated PCR products were purified and sequenced with the specific primers, as previously 

described, and then compared with the sequences for known bacteriocins produced by L. lactis 

strains, using the BLAST network service. 

4.5.2.4. Screening of biogenic amine potential of L. lactis EG46, VR84 and CG27 

The lactococcal strains used in competition trials were tested for their ability to produce biogenic 

amines (tyramine, histamine, putrescine, cadaverine and 2-phenylethylamine) firstly with the 

method proposed by Bover-Cid and Holzapfel (1999) and then with HPLC analysis of the culture 

media used to study the competition, i.e. M17 broth (Oxoid) and MRS broth (Oxoid), added with 

0.1% (w/v) precursors (tyrosine, histidine, ornithine, lysine and phenylalanine). The latter trials 

were carried out after a 48 h fermentation at 30°C with an initial inoculum of about 7 log cfu/ml of 

the three strains. 

4.5.2.5. Competition between lactococci and the biogenic amine producing strains 

Before each trials E. faecalis EF37 and S. thermophilus PRI60 were pre-cultured twice in media 

added with precursors (tyrosine and histidine, respectively) at 0.05% (w/v). The competition 

between each Lactococcus strain and E. faecalis EF37 was analysed using MRS Broth (Oxoid) as 

medium while the competition between lactococci and S. thermophilus PRI60 was studied in M17 
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broth. Both the media were added with 0.05% (w/v) of tyrosine or histidine as precursors. 

Competition was evaluated by inoculating one of the Lactococcus strain (at a level of about 7 log 

cfu/ml) in the presence of different initial inoculum level of the aminobiogenic strains (approx. 2, 3, 

4, 5, 6 log cfu/ml). The co-culture samples and broths with S. thermophilus PRI60 and E. faecalis 

EF37 inoculated alone were incubated at 30°C (± 1) and periodically monitored for microbial 

counts and biogenic amine content. Also, the growth of L. lactis CG27, VR84 and EG46 alone was 

monitored in the same conditions.  

4.5.2.6. Microbial counts  

Plate counts were performed at regular intervals for 48 h using selective conditions for the different 

species. Specifically, lactococci were enumerated onto M17 incubated at 15°C for 72 h, S. 

thermophilus PRI60 and E. faecalis EF37 onto M17 and Slanetz and Bartley media (Oxoid), 

respectively, incubated at 45° C for 48 h.  

4.5.2.7. Biogenic amine determination 

Five-mL cultures were centrifuged at 8000 g for 10 min at 10° C, and the supernatants were used 

for biogenic amines (BAs) determination by HPLC after derivatization with dansyl-chloride 

(Sigma-Aldrich, Gallarate, Italy) according to Martuscelli et al. (2000). The BA content was 

analyzed using a PU-2089 Intelligent HPLC quaternary pump, Intelligent UV–VIS multiwavelength 

detector UV 2070 Plus (Jasco Corporation, Tokio, Japan) and a manual Rheodyne injector equipped 

with a 20 μL loop (Rheodyne, Rohnert Park, CA). The BA quantification was performed according 

to Tabanelli et al. (2012). The amount of histamine and tyramine was expressed as mg/mL by 

reference to a calibration curve obtained with histamine standards. 

4.5.2.8. Growth modelling 

Microbial growth was modelled with the Baranyi model (Baranyi and Roberts, 1994): 

���� = �� + �	
����� − �� �1 + ��������� − 1
���������� � 

where 

���� = � + 1
�	
� ��������� � + ���� − ������� �����  
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y(t) is the log cfu/ml of cell concentration (at time t), y0 is the initial cell concentration and ymax is 

the maximum cell concentration (both expressed as log cfu/ml, μmax is the maximum specific 

growth rate in the exponential phase (expressed as log (cfu/ml)/h), and h0 is a measure of the initial 

physiological state of cells and expresses the work necessary for the cells to adapt to the 

environmental condition. In particular, h0=μmaxλ, where λ is the duration of lag phase. 

The death of cell was modelled with the classical model derived from the Arrhenius equation 

(Stumbo, 1973):  

!"#$� = !"#$� − %� 

where Nt represents the cell concentration at time t, N0 the cell concentration at time 0, while k 

represents the rate of cell death with time. 

The models were fitted using the non-linear regression procedure of the statistical package Statistica 

per Windows 6.1 (Statsoft Italia, Vigonza, Italy). 

4.5.3. Results 

4.5.3.1. Isolation of lactococci with antimicrobial activity  

Twenty-five presumptive lactococci (Gram positive, catalase negative, chain forming 

homofermentative cocci able to grow at 6.5% NaCl and at 15°C, but not at 45°C) were isolated 

from raw cow milk and screened for their inhibition activity by an agar spot test against two LAB 

producing BAs, i.e. E. faecalis EF37 producing tyramine (Gardini et al., 2001), and S. thermophilus 

PRI60 producing histamine (Rossi et al., 2011). On the basis of their inhibition potential showed in 

this preliminary test (data not shown), three lactococci were chosen for further experiments. These 

isolates (CG27, VR84 and EG46) were identified and all of them belonged to the species L. lactis 

subsp. lactis. Indeed, the 16S rDNA amplification indicated that these isolates presented 99% 

similarity with the 16S rDNA sequences reported for L. lactis subsp. lactis in the GenBank 

database. The amplification of genomic DNA with subspecies specific primers yielded a 934 bp 

fragment, which corresponded to the expected size for L. lactis subsp. lactis strains. The genetic 

polymorphism detected by RAPD-PCR with primer M13 (data not shown) permitted to clearly 

discriminated the three lactococcal isolates as different strains. 

None of the chosen strains was able to produce histamine, tyramine, cadaverine, putrescine and 2-

phenylethylamine after a 72 h growth in Bover-Cid and Holzapfel medium or in MRS and M17 

broth, added with 0.1% of precursor aminoacids. 

The three strains were then analysed for their ability to produce bacteriocins. Results of the well-

diffusion agar assay using filter-sterilized cell-free supernatants treated with proteolytic enzymes 
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(proteinase K and pancreatin) indicated the proteinaceus nature of the inhibitory substances and 

suggested that the three strains were potential bacteriocin producers. 

The amplification of genomic DNA extracted from L. lactis subsp. lactis VR84 and EG46 with 

primers targeting known bacteriocins generated positive results for nisin Z and lacticin 481, 

respectively. The sequence of these amplicons presented 100% similarity to the nisin Z gene and 

97% similarity to the lacticin 481 gene. By contrast, for L. lactis subsp. lactis CG27 no 

amplification was recorded for the genes enconding nisin, lacticin 481, lacticin 3147, lacticin RM, 

lacticin Q, lacticin Z, lactococcin A, lactococcin B, lactococcin M, lactococcin G, lactococcin Q, 

lactococcin 513, and lactococcin 972 (Table 1), even if the proteinaceous nature of the antimicrobial 

substance was demonstrated. 

Target Pr imer  Sequence (5’  – 3’ ) a 
Product 
(pb) 

Reference 

Lacticin 481 
LactAF TCTGCACTCACTTCATTAGTTA 

366 Martínez et al. (1998) 
LactAR AAGGTAATTACACCTCTTTTAT 

     

Lactococcin 513 
Lcn513F  GCTCCAAAAAGCGCTAGATC 

466 

Villani et al. (2001) 
Lcn513R GCTGGCTACGATATTGCTAG 

Lacticin RM 
LactRM-F ATCCTATCCGATACCGTCAG 

644 
LactRM-R GTTTTCCTTGAACCATTGGG 

     

Nisin 
NisinF GGATAGTATCCATGTCTG 

250 Li and O’Sullivan (2002) 
NisinR CAATGATTTCGTTCGAAG 

     

Lactococcin LcnFor GAAGAGGCAATCAGTAGAG  

Alegría et al.(2010) 

A LcnA GTGTTCTATTTATAGCTAATG 525 

B LcnB CCAGGATTTTCTTTGATTTACTTC 578 

M LcnM GTGTACTGGTCTAGCATAAG 546 

Lactococcin 972 
Lcn972F TTGTAGCTCCTGCAGAAGGAACAT

GG 232 
Lcn972R GCCTTAGCTTTGAATTCTTACCAAA

AG 

Lacticin 3147 
L3147For TACTGGGGAAATAACGG 

663 
L3147Rev TGGACAAGTATTGGTAC 

Lactococcin G and Q 
LactGQ-F GAAAGAATTATCAGAAAAAG 

379 
LactGQ-R CCACTTATCTTTATTTCCCTCT 

     

Lacticin Q and Z 
LcnQZ-F ATGGCAGGGTTTTTAAAAGTAGT 

155 This study 
LcnQZ-R TTAATACCYAAAATTTGCTTAAT 

Table 1: Primers for genes encoding known bacteriocins used in this study. 
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4.5.3.2. Competition between lactococci and the tyramine producing Enterococcus faecalis EF37  

The growth of enterococci inoculated at concentrations of about 2, 3, 4, 5 and 6 log cfu/ml in M17 

medium incubated at 30°C in the presence of an initial inoculum of lactococci of about 7 log cfu/ml 

was monitored for 48 h by plate counting. In addition, also the growth of E. faecalis EF37 at the 

same initial concentration in the absence of lactococci was analysed. These data were modelled 

with the Baranyi and Roberts (1994) equation and the estimated parameters are reported in Table 2. 

The same samples were also analysed in order to determine the tyramine concentration. 

When E. faecalis EF37 was grown alone, the growth rate during the exponential phase (µmax) was 

quite constant (between 0.91-1.02 (log cfu/ml)/h) independently of the initial inoculum; also the 

ymax values (the maximum cell concentration reached) was similar in all the samples (8.80-9.03 log 

cfu/ml).  

At the lowest initial inoculum (2 log cfu/ml), the presence of the three lactococci significantly 

decreased the growth potential of E. faecalis EF37, both reducing the µmax and drastically limiting 

to values lower than 5 log cfu/ml the maximum cell concentration, without significant differences in 

relation to the L. lactis subsp. lactis strain (Table 2). The increase of the initial concentration of E. 

faecalis resulted in a correspondent raise of ymax (which was higher than 8 log cfu/ml with initial 

concentration of 5 and 6 log cfu/ml) and in an increase of µmax. Only the strain L. lactis subsp. lactis 

CG27 was able to exert a slight inhibiting activity also at the higher initial E. faecalis µmax value 

with respect to the control.  

In Figure 1 the growth curves of E. faecalis EF37 at the different initial cell concentrations alone or 

in the presence of the lactococcal strains are showed together with the corresponding tyramine 

accumulation. 

When E. faecalis EF37 was inoculated without the competitive cultures, at the lower enterococci 

initial concentrations (2 and 3 log cfu/ml), the accumulation of tyramine was detectable only after 

the beginning of the stationary phase, while in the other conditions tyramine was already detectable 

during the late exponential phase. However, independently of the initial enterococci inoculum, 

tyramine reached a final concentration of about 300 mg/l after 48 h. This concentration did not 

significantly change if the incubation was prolonged up to 96 h (data not shown).  

The presence of the three lactococci decreased the rate of tyramine accumulation and its final 

amount depending on initial inoculum and L. lactis subsp. lactis strain. The tyramine final amount 

was reduced with minor efficacy at the higher E. faecalis EF37 initial concentration while, when 

EF37 was inoculated at 2 or 3 log cfu/ml, tyramine did not exceed 80 mg/l at the end of incubation 

period. 
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The lactococcal strains VR84 and EG46 were able to reduce the accumulation rate and the final 

amount of tyramine, also in the presence of 4 log cfu/ml E. faecalis EF37 initial inoculum. In fact, 

in this case, they limited at about 200 mg/l the accumulation of tyramine. By contrast, no difference 

with respect to the control was found in the presence of L. lactis subsp. lactis CG27.  

At higher initial concentrations of E. faecalis, also the inhibition due to the strains VR84 and EG46 

was less evident, even if L. lactis subsp. lactis VR84 was able to slow the rate of tyramine 

accumulation, but not the final tyramine amount. 
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Parameter/Diagnostic E. faecalis EF37 initial inoculum: 2 log cfu/ml 
EF37 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 2.05 (± 0.10) 2.19 (± 0.14) 1.92 (± 0.16) 2.07 (± 0.13) 
μmax 0.98 (± 0.04) 0.52 (± 0.06) 0.32 (± 0.08) 0.47 (± 0.10) 
h0 3.02 (± 0.34) 1.35 (± 0.23) 0.22 (± 0.12) 2.45 (± 0.38) 
ymax 8.80 (± 0.10) 4.97 (± 0.07) 4.73 (± 0.08) 4.64 (± 0.07) 
RMSE 0.319 0.212 0.123 0.285 
R 0.980 0.994 0.991 0.992 
Parameter/Diagnostic E. faecalis EF37 initial inoculum: 3 log cfu/ml 

EF37 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 2.99 (± 0.10) 3.13 (± 0.16) 3.10 (± 0.13) 3.07 (± 0.16) 
μmax 0.97 (± 0.05) 0.55 (± 0.11) 0.52 (± 0.13) 0.51 (± 0.09) 
h0 2.88 (± 0.36) 1.23 (± 0.20) 1.64 (± 0.27) 2.39 (± 0.45) 
ymax 8.97 (± 0.09) 6.21 (± 0.08) 5.71 (± 0.09) 6.60 (± 0.08) 
RMSE 0.319 0.212 0.123 0.285  
R 0.996 0.995 0.993 0.994 

Parameter/Diagnostic E. faecalis EF37 initial inoculum: 4 log cfu/ml 
EF37 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 3.82 (± 0.10) 4.08 (± 0.23) 4.07 (± 0.14) 4.07 (± 0.13) 
μmax 0.91 (± 0.05) 0.46 (± 0.09) 0.94 (± 0.23) 0.54 (± 0.08) 
h0 2.15 (± 0.35) 0.20 (± 0.12) 3.73 (± 0.75) 2.01 (± 0.57) 
ymax 8.99 (± 0.07) 7.64 (± 0.14) 6.81 (± 0.09) 7.33 (± 0.06) 
RMSE 0.319 0.212 0.123 0.285 
R 0.995 0.990 0.991 0.996 
Parameter/Diagnostic E. faecalis EF37 initial inoculum: 5 log cfu/ml 

EF37 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 4.95 (± 0.07) 5.10 (± 0.28) 5.30 (± 0.21) 4.97 (± 0.21) 
μmax 0.99 (± 0.06) 0.43 (± 0.15) 0.88 (± 0.17) 0.94 (± 0.20) 
h0 2.63 (± 0.33) 1.14 (± 0.45) 4.02 (± 0.58) 3.88 (± 0.82) 
ymax 8.87 (± 0.04) 8.34 (± 0.17) 8.37 (± 0.12) 8.99 (± 0.20) 
RMSE 0.319 0.212 0.123 0.285 
R 0.992 0.993 0.992 0.991 
Parameter/Diagnostic E. faecalis EF37 initial inoculum: 6 log cfu/ml 

EF37 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 6.00 (± 0.06) 6.11 (± 0.24) 6.08 (± 0.15) 6.11 (± 0.13) 
μmax 1.02 (± 0.08) 0.68 (± 0.13) 0.79 (± 0.09) 0.84 (± 0.07) 
h0 2.79 (± 0.41) 2.39 (± 0.16) 2.40 (± 0.28) 1.29 (± 0.35) 
ymax 9.03 (± 0.05) 8.43 (± 0.12) 8.94 (± 0.11) 9.18 (± 0.06) 
RMSE 0.319 0.212 0.123 0.285 
R 0.987 0.973 0.991 0.995 

Table 2: Estimates of the Baranyi and Roberts model parameters describing the population dynamics of E. 

faecalis EF37, inoculated at different initial concentrations, grown alone or in competition 

withbacteriocinogenic L. lactis subsp. lactis strains (at a concentration of 7 log cfu/ml). The parameters are 
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reported with the relative standard error (within brackets), residual mean square error (RSME) and 

correlation coefficient (R). 

 

Figure 1: Growth curves (according to the parameters of Table 2) of Enterococcus faecalis EF37 with or 

without competitor cultures of bacteriocinogenic L. lactis subsp. lactis strains. In the same figure also the 

tyramine accumulated after 4, 8, 16, 24 and 48 h is reported. The graphs are referred to initial concentrations 

of 2 (A), 3 (B), 4 (C), 5 (D) and 6 (E) log cfu/ml of E. faecalis EF37. 
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4.5.3.3. Competition between lactococci and the histamine producing Streptococcus thermophilus 

PRI60.  

The inhibition of S. thermophilus PRI60 growth and its histamine production due to the presence of 

the bacteriocinogenic lactococci were evaluated using the same experimental design adopted for E. 

faecalis EF37. When cultured alone, S. thermophilus PRI60 reached always a maximum cell 

concentration of about 9.2-9.4 log cfu/ml. Also in this case the microbial growth was modelled with 

the Baranyi and Roberts equation (Table 3). The streptococci growth alone or in co-culture with 

lactococci and the corresponding histamine accumulation in relation to the initial inoculum are 

shown in Figure 2. All the lactococci were more efficient in inhibiting S. thermophilus PRI60 in 

comparison with E. faecalis EF37. In particular, the nisin Z producer strain L. lactis subsp. lactis 

VR84 caused the death of the streptococci. For this reason, it was not possible to calculate under 

these conditions the parameters of Baranyi and Roberts equation, and Table 3 reports for this strain 

the parameters of the linear inactivation model. In this case, logN0 defines the initial cell log cfu/ml 

while -k is the rate ((log cfu/ml)/h) at which streptococci were killed as result of the competition 

with L. lactis VR84. The rate of inactivation was rather constant (about 0.5 (log cfu/ml)/h), 

independently on the initial cell concentration, and no survivor were detected at the end of 

incubation. 

The other two lactococcal strains did not show a lethal action against S. thermophilus PRI60, but 

were able to reduce consistently its final amount in relation to the initial streptococci inoculum. 

Among the strains employed, L. lactis subsp. lactis CG27 was more efficient than EG46 in reducing 

the streptococci final concentration (at 3.2, 4.4 and 5.8 log cfu/ml) at the lower inoculum levels. No 

significant differences were observed in relation to the presence of these two lactococcal strains at 

initial S. thermophilus PRI60 inoculum of 5 and 6 log cfu/ml. However, in this case the final 

streptococci concentrations were comprised between 6.8 and 7.9 log cfu/ml, well below the level 

reached by S. thermophilus PRI60 grown alone under the same conditions (9.2-9.4 log cfu/ml). 

The data relative to the histamine indicated that when the strain was not in competition with 

lactococci, the biogenic amine accumulation started at the beginning of the stationary phase 

(independently on the streptococci initial concentration) and rapidly reached a maximum level of 

about 200 mg/l after 48 h. As already observed for E. faecalis EF37, this value did not significantly 

change by prolonging the incubation time till 96 h (data not shown). The competition with 

lactococci dramatically decreased this accumulation (Figure 2). In the presence of L. lactis subsp. 

lactis VR84 only traces of histamine were detected in the samples inoculated with 5 and 6 log 

cfu/ml. Also L. lactis subsp. lactis CG27 drastically decreased the production of histamine. 

Reduced amounts (about 75 mg/l) at the end of incubation were found only when S. thermophilus 
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PRI60 was inoculated at 6 log cfu/ml. Lactococcus lactis subsp. lactis EG46 was less effective in 

limiting histamine production and, at the end of incubation, about 80 mg/l and 160 mg/l of this 

biogenic amine were found in the samples with initial streptococci inoculum of 5 and 6 log cfu/ml, 

respectively. However, also in this case, these amounts were lower than those produced by S. 

thermophilus PRI60 grown alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 

 

Parameter/Diagnostic S. thermophilus PRI60 initial inoculum: 2 log cfu/ml 
PRI60 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84* 

ymin 1.86 (± 0.22) 1.88 (± 0.12) 1.82 (± 0.32) N0   2.03 (± 0.08) 
μmax 0.56 (± 0.04) 0.55 (± 0.15) 0.49 (± 0.12) -k    0.51 (± 0.14 ) 
h0 1.32 (± 0.52) 1.56 (± 0.39) 1.68 (± 0.33) - 
ymax 9.46 (± 1.18) 3.22 (± 0.66) 4.69 (± 0.37) - 
RMSE 0.196 0.049 0.162 0.106 
R 0.998 0.994 0.973 0.988 
Parameter/Diagnostic S. thermophilus PRI60 initial inoculum: 3 log cfu/ml 

PRI60 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 2.80 (± 0.16) 2.89 (± 0.27) 2.84 (± 0.13) N0    3.01 (± 0.13) 
μmax 0.53 (± 0.04) 1.43 (± 0.66) 1.02 (± 0.16) -k   0.50 (± 0.12 ) 
h0 1.08 (± 0.18) 3.79 (± 0.77) 3.71 (± 0.86) - 
ymax 9.30 (± 0.12) 4.37 (± 0.09) 5.63 (± 0.07) - 
RMSE 0.138 0.131 0.118 0.140 
R 0.998 0.934 0.995 0.978 

Parameter/Diagnostic S. thermophilus PRI60 initial inoculum: 4 log cfu/ml 
PRI60 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 3.91 (± 0.17) 3.89 (± 0.34) 3.78 (± 0.25) N0   3.96 (± 0.18 ) 
μmax 0.55 (± 0.05) 0.84 (± 0.27) 0.47 (± 0.10) -k   0.49 (± 0.10 ) 
h0 1.38 (± 0.52) 3.05 (± 0.81) 1.52 (± 0.43) - 
ymax 9.35 (± 0.12) 5.76 (± 0.15) 6.71 (± 0.13) - 
RMSE 0.151 0.312 0.215 0.209 
R 0.997 0.925 0.983 0.991 
Parameter/Diagnostic S. thermophilus PRI60 initial inoculum: 5 log cfu/ml 

PRI60 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 4.91 (± 0.19) 4.86 (± 0.20) 5.17 (± 0.24) N0   5.14 (± 0.10 ) 
μmax 0.73 (± 0.10) 1.77 (± 0.61) 1.64 (± 0.08) -k    0.49 (± 0.08 ) 
h0 2.08 (± 0.74) 4.42 (± 0.93) 6.30 (± 0.93) - 
ymax 9.37 (± 0.11) 6.92 (± 0.07) 6.83 (± 0.18) - 
RMSE 0.163 0.170 0.262 0.202 
R 0.996 0.976 0.930 0.964 
Parameter/Diagnostic S. thermophilus PRI60 initial inoculum: 6 log cfu/ml 

PRI60 without L. lactis subsp. lactis strain 
competition CG27 EG46 VR84 

ymin 6.05 (± 0.17) 5.90 (± 0.05) 5.83 (± 0.15) N0   5.96 (± 0.18 ) 
μmax 0.92 (± 0.17) 2.27 (± 0.32) 1.21 (± 0.40) -k    0.53 (± 0.04) 
h0 2.95 (± 0.97) 5.86 (± 0.89) 4.34 (± 0.81) - 
ymax 9.27 (± 0.10) 7.47 (± 0.02) 7.89 (± 0.08) - 
RMSE 0.118 0.044 0.138 0.322 
R 0.994 0.997 0.986 0.982 

Table 3: Estimates of the Baranyi and Roberts model parameters describing the population dynamics of S. 

thermophilus PRI60 inoculated at different initial concentrations grown alone or in competition with 

bacteriocinogenic L. lactis subsp. lactis strains (at a concentration of 7 log cfu/ml). The parameters are 
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reported with the relative standard error (within brackets) and residual mean square error (RSME) and 

correlation coefficient (R). 

 

Figure 2: Growth curves (according to the parameters of Table 3) of Streptococcus thermophilus PRI60 with 

or without competitor cultures of bacteriocinogenic L. lactis subsp. lactis strains. In the same figure also the 

histamine accumulated after 4, 8, 16, 24 and 48 h is reported. The graphs are referred to initial concentrations 

of 2 (A), 3 (B), 4 (C), 5 (D) and 6 (E) log cfu/ml of S. thermophilus PRI60. Since the presence of L. lactis 

subsp. lactis VR84 caused the death of the strain PRI60, the curve reported is not the microbial growth 

modelled with Baranyi and Roberts model but the death kinetic modelled with Arrhenius equation. 
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4.5.4. Discussion 

The reduction of BA content in food, and especially in fermented foods, is attracting increasing 

attention by researchers and international Agencies (EFSA, 2011). Effective strategies able to limit 

the accumulation of the most dangerous BAs (tyramine and histamine) can be based on the 

inhibition of aminobiogenic microorganism growth or of their decarboxylase activity, with the aim 

to improve the quality of foods. Up to date, the potential of modified atmosphere packaging, high 

hydrostatic or homogenization pressure, irradiation or thermal treatments have been tested with this 

purpose (Naila et al., 2010). In fermented foods a crucial role can be played by compositional and 

process variables (temperature, salt, pH), by raw material microbial quality and by the choice of 

proper starter cultures (Ancín-Azpilicueta et al., 2008; Linares et al., 2011; Suzzi and Gardini, 

2003). The presence of the bacteriocin producing bacteria, like those studied here, can be a further 

tool to control undesirable BA accumulation. In fact, the antimicrobial potential of bacteriocins has 

been studied mainly with respect to pathogenic species such as Listeria monocytogenes, 

Staphylococcus aureus and Clostridium spp. (Balciunas et al., 2013; Guinane et al., 2005; Reis et 

al., 2012). In particular, the possible application of antimicrobial strategies based on bacteriocins 

use has been tested in dairy industry (Beshkova and Frengova, 2012; Leroy and de Vuyst, 2010) 

and in other food products (Chen and Hoover, 2003). In a paper of some years ago, 

bacteriocinogenic LAB strains were used to contrast the decarboxylation activity of a histamine 

producing Lactobacillus buchneri strain. In particular, two bacteriocinogenic E. faecalis strains and 

a nisin producer L. lactis strain were employed (Joonsten and Nuñez, 1996). Good results were 

obtained in cheese in which the initial concentration of histaminobiogenic strain was 2.28 log 

cfu/ml. However, usually E. faecalis produces tyramine, which is considered a species trait for these 

microorganisms (Ladero et al., 2012), and the production of this BA was not considered in the 

paper. In addition, Özogul (2011) demonstrated possible interactions between LAB strains and 

foodborne pathogens with respect to BA production. 

The lactococcal strains considered in this research did not produce BAs but were able to synthesize 

three different types of bacteriocins. One of the strains (L. lactis subsp. lactis CG27) likely 

produced a bacteriocin not yet identified, whose peptidic nature was, however, demonstrated. 

Further studies are needed to characterize the antimicrobial substance produced by this strain. By 

contrast, the strains L. lactis subsp. lactis VR84 and EG46 produced nisin Z and lacticin 481, 

respectively. Lacticin 481 is a medium spectrum lantabiotic able to inhibit other LAB and clostridia 

with a bacteriolytic mode of action (Guinane et al., 2005), while nisin is a single peptide composed 

of 34 amino acid residues and five natural variants are known. It displays a broad spectrum of 

activity against different Gram positive bacteria and inhibits outgrowth of spores of bacilli and 
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clostridia (Leroy and de Vuyst, 2010). The effects of these bacteriocins have already been studied in 

cheese manufacture for several reasons, including pathogen and spoilage microorganism control 

and acceleration of ripening by favouring the lysis of starter LAB cells (Beshkova and Frengova, 

2012). 

In the absence of competition, the accumulation of tyramine by E. faecalis EF37 was detectable 

since the late exponential phase or at the beginning of stationary phase, depending on the initial 

inoculum. In any case, the final amount of tyramine produced (about 300 mg/l) was close to the 

maximum theoretical concentration allowed by the precursor added (378 mg/l if all the tyrosine 

added was converted). Pessione et al. (2009) found that tyramine production in E. faecalis 

DISAV1022 was accumulated in large amounts during the late exponential growth and was 

maintained until tyrosine was depleted, suggesting that tyrosine decarboxylation was not a response 

to starvation or nutrient depletion typical of the stationary phase. In these trials, this observation 

was confirmed for E. faecalis EF37 only for the higher initial inoculums (5 and 6 log cfu/ml). A 

similar behaviour was observed in the presence of lactococcal bioprotective cultures.  

All the three bacteriocin producing lactococci were able to reduce the growth performance of E. 

faecalis EF37 by limiting its final concentration, with some exceptions only when it was inoculated 

at 5 log cfu/ml or more. Several studies on food microorganism interactions highlighted that the 

relationships between the populations involve the reduction of maximum population density 

without showing significant effects on lag time and growth rate. Then, the minority population 

decelerates when the majority population reaches its maximum (Buchanan and Bagi, 1997; Carlin 

et., 1996; Cornu et al., 2011; Devlieghere et al., 2001). Also in this case, the most important effect 

of the presence of lactococci was their ability to reduce, whenever possible, the cell density of E. 

faecalis EF37. 

In spite of this inhibition, enterococcal cells remained viable in the medium and could accumulate 

tyramine, whose quantity and rate firstly depended on the maximum cell concentration reached by 

enterococci and by the time of incubation. In co-cultured samples, the production of tyramine was 

very low during incubation only in the medium inoculated with 2 log cfu/ml and, to a lesser extent, 

with 3 log cfu/ml. Under the conditions adopted in these trials, tyramine accumulation was 

detectable only when enterococci concentration reached and exceeded a threshold of about 6 log 

cfu/ml or after a prolonged incubation if the concentration reached was lower (between 4 and 5 log 

cfu/ml). However, in these cases the tyramine was accumulated at very low concentrations (from 10 

to 80 mg/l) if compared with the control. 

The positive relation between extent of growth and tyramine production in E. faecalis EF37 in 

relation to pH, temperature and salt concentration has already been described (Gardini et al., 2001). 
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Nevertheless, the amount of tyramine produced was often negatively correlated with the 

transcription of tyrosine decarboxylase gene (tyrDC), suggesting a higher tyrDC expression under 

suboptimal environmental conditions (Torriani et al., 2008). In other words, the tyramine 

accumulation was the results of two interactive factors, the amount of tyrDC transcripte inside the 

cells and the number of cells in the medium. The presence of some cases of similar Enterococcus 

faecalis EF37 (see for example Figure 1C) and S. thermophilus PRI60 (Figure 2D) final cell 

concentration associated with different BA amounts suggests that the reduction of biogenic amine 

accumulation could be associated to a diminution of decarboxylase transcription or to intracellular 

conditions less favourable for enzyme activity caused by the different bacteriocin mechanism of 

action. However, this hypothesis needs to be supported by further experiments.  

The ability of the species S. thermophilus to produce histamine has been recently demonstrated 

(Calles-Enriquéz et al., 2010; Gezginc et al., 2013; Rossi et al., 2011; Tabanelli et al., 2012; Trip et 

al., 2011). S. thermophilus PRI60 accumulated histamine (alone or in competition) only after the 

beginning of stationary phase. The maximum expression of histidine-decarboxylating gene (hdcA) 

during the stationary phase in S. thermophilus has been already observed, together with a reduced 

transcription activity during the lag and exponential growth phases (Calles-Enriquez et al., 2010). 

Also Pessione et al. (2005) indicated in the stationary phase the maximum histamine biosynthesis in 

Lactobacillus 30a. By contrast, Landete et al. (2006) found that the expression of hdcA gene was 

higher in the exponential phase in wine LAB (lactobacilli, pediococci and oenococci) and decreased 

in the stationary phase; however, the enzyme accumulated in the cells could express its maximum 

activity when the environmental conditions became harsher. In addition, histamine acted as a 

competitive inhibitor towards hdcA expression (Landete et al., 2006; Rollan et al., 1995). This fact 

could explain, at least in part, that the maximum histamine production by S. thermophilus PRI60 in 

the absence of competitors was well below the maximum theoretical concentration (358 mg/l). This 

means that about 55% of the available histidine was converted into histamine by S. thermophilus 

PRI60, while E. faecalis EF37 was able to decarboxylate tyrosine at 78%. 

In general, S. thermophilus PRI60 was less competitive than E. faecalis EF37 when grown in co-

culture with bacteriocinogenic lactococcal strains. The production of nisin Z by L. lactis subsp. 

lactis VR84 rapidly killed streptococcal cells. This drastic effect of nisin on this species has already 

been described and is responsible for cell lysis (Aslim and Alp, 2009; de Arauz et al., 2009; Garde 

et al., 2004) which makes the intracellular enzymes free in the medium. The aminoacid 

decarboxylases which produce BAs are often more active in cell free extracts than inside the viable 

cells (Moreno-Arribas and Lonvaud-Funel, 2001) and this ability was demonstrated for the hdcA of 

S. thermophilus PRI60 both in vitro and in cheese (Gardini et al., 2012; Tabanelli et al., 2012;). In 
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these trials, however, the possible cell lysis did not determine a histamine accumulation. This could 

confirm that hdcA gene was actively expressed only during the stationary phase, although a basal 

level of hdcA expression occurs even without histidine (Landete et al., 2006). The latter aspect 

could be the reason for the low presence of histamine in the samples containing L. lactis subsp. 

lactis VR84 and characterized by the higher S. thermophilus PRI60 inoculum. In any case, 

independently on the cell lysis, the bacteriocinogenic strains demonstrated the capacity to limit the 

accumulation of histamine even when streptococci were present at high concentration; this fact 

opens promising developments for the use of bioprotective cultures in dairy industry. 

4.5.5. Conclusions 

The presence of aminobiogenic LAB in natural starter cultures or among the ripening microbiota is 

a serious problem for the safety features of many fermented products. Lactococci are often used as 

starter cultures in many cheeses since they can keep their viability and produce bacteriocins during 

all the processing and ripening. In fact, the lactococci will continue to synthesize bacteriocin, 

avoiding the risks linked to the ex situ philosophy, due to the degradation of the bacteriocins by 

peptidases. Moreover, the use of bacteriocins ex situ (i.e. produced by bacteria and added as 

ingredients or food additives) is still limited, probably because of the generally negative attitude of 

consumers towards food additives. In this context, the in situ production of bacteriocins by 

microorganisms present in food constitutes an advantage, both for legal aspects (labelling) and 

economic costs. 

This preliminary study has clarified some aspects regarding the ratio between bacteriocinogenic 

strains and aminobiogenic strains with respect to the possibility to accumulate BA and has also 

showed that different bacteriocins can have different effects on BA production on the same strain. 

Further investigations are needed to better elucidate the mechanism of these interactions also in real 

systems. This knowledge is essentially aimed to use bacteriocinogenic lactococci as a predictable 

strategy against aminobiogenic bacteria present in cheese or other fermented foods. 
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Even if the presence of biogenic amines in foods (and the risks associated with them) is known 

since a long period (Gale, 1946), systematic studies regarding their presence have been carried out 

only in relatively recent times. The reviews of Shalaby (1996) and Silla-Santos (1996) had the merit 

to collect the fragmented information about this issue and were the starting point for a drastic 

multiplication of scientific publications regarding the presence of biogenic amine in food products 

and the elucidation of the metabolic and genetic drivers of their production by microrganisms. 

Combining the words “biogenic amine”  and “ food”  the number of publication selected by the Web 

of Science passed from about 500 in the year 2000 to more than 4500 in 2015.  

This increasing scientific effort allowed to obtain a deeper knowledge about the genetic and 

biochemical mechanisms responsible for biogenic amines production by foodborne 

microorganisms, but also furnished important information about the possibility to reduce their 

accumulation in food and the risks associated with their presence.  

The possible ways to achieve this goal in food are mainly based on two strategies, which always are 

strictly interacting each other: the modulation of process and environmental factors including 

storage and distribution conditions and the control of the microbiota associated with foods.  

In this perspective, the researches carried out in this PhD thesis are a contribution aimed to give a 

deeper insight of the factors and biological mechanisms influencing the activity of tyrosine 

decarboxylases in LAB belonging to the genus Enterococcus. In particular, these studies indicate 

that, even if the presence of tyrDC gene is, as expected, widespread among enterococci, the 

potential for tyramine (and 2-phenylethylamine) accumulation can be very different. These 

differences interested the kinetics of accumulation (both qualitatively and quantitatively), the effects 

of some technological variables (temperature, salt concentration and pH) on the decarboxylase 

activity and also the genetic of the tyrosine decarboxylase cluster as well as the transcription of the 

genes involved. 

In addition, fundamental differences concerning the responses to environmental factors of the pure 

enzyme and microbial cells were highlighted, indicating that the decarboxylation activity has to be 

viewed in the light of the overall cell metabolism. 

During this work, a particular attention has been posed on strains belonging to the species 

Enterococcus faecalis and Enterococcus faecium. However, a relevant part of the work has been 

addressed to the elucidation of the mechanisms of tyrosine decarboxylation in the species 

Enterococcus mundtii. This is the first contribution to the study of decarboxylases in this species, 

which can be associate with animal feed (silage) but also with fermented foods of animal origin. 

Finally, also the use of bioprotective cultures producing bacteriocins as antagonists against biogenic 
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amine producing microorganisms has been exploited and this strategy seems to be a promising tool 

to reduce the risks due to excessive biogenic amine accumulation in fermented foods. 
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