

AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

INFORMATICA

Ciclo XXVIII

Settore Concorsuale di afferenza: 09/H1

Settore Scientifico disciplinare: ING-INF/05

CREATING AND RECOGNIZING 3D OBJECTS

Presentata da: Dott. Alioscia Petrelli

Coordinatore Dottorato: Relatore:

Chiar.mo Prof. Ing. Paolo Ciaccia Chiar.mo Prof. Ing. Luigi Di Stefano

Esame finale anno 2016

“It is a capital mistake to theorize before one has data. Insensibly one

begins to twist facts to suit theories, instead of theories to suit facts.”

Sir Arthur Conan Doyle

ii

Abstract

This thesis aims at investigating on 3D Computer Vision, a research
topic which is gathering even increasing attention thanks to the more
and more widespread availability of affordable 3D visual sensor, such
as, in particular consumer grade RGB-D cameras. The contribution of
this dissertation is twofold. First, the work addresses how to compactly
represent the content of images acquired with RGB-D cameras. Second,
the thesis focuses on 3D Reconstruction, key issue to efficiently popu-
late the databases of 3D models deployed in object/category recognition
scenarios.

As 3D Registration plays a fundamental role in 3D Reconstruction, the
former part of the thesis proposes a pipeline for coarse registration of
point clouds that is entirely based on the computation of 3D Local Ref-
erence Frames (LRF). Keys to the method are: (a) the observation that
any two corresponding points endowed with a LRF provide a hypothe-
sis on the rigid motion between two views, (b) the intuition that feature
points can be matched based solely on cues directly derived from the
computation of the LRF, (c) a feature detection approach relying on a
saliency criterion which captures the ability the establish a LRF repeat-
ably. Unlike related work in literature, we also propose a comprehensive
experimental evaluation based on diverse kinds of data (such as those
acquired by laser scanners, RGB-D and stereo cameras) as well as on
quantitative comparison with respect to three other methods. We also
address the issue of fairly and realistically set the many parameters that
characterize coarse registration pipelines. The experimental evaluation
vouches that our method can handle effectively data acquired by differ-
ent sensors and is remarkably fast.

Driven by the ever-lower costs and growing distribution of 3D sensing
devices, we expect broad-scale integration of depth sensing into mo-
bile devices to be forthcoming. Accordingly, the thesis investigates on

iii

merging appearance and shape information for Mobile Visual Search
and focuses on encoding RGB-D images in compact binary codes. An
extensive experimental analysis on three state-of-the-art datasets, ad-
dressing both category and instance recognition scenarios, has led to
the development of an RGB-D search engine architecture that can at-
tain high recognition rates with peculiarly moderate bandwidth require-
ments. More in depth, the analysis seems to suggest that maintaining
the processing of the color and depth information independent may turn
out the most effective strategy. Moreover, Deep Features provided by
Convolutional Neural Networks better encode appearance information,
whereas shape is more effectively represented through Kernel Descrip-
tors globally encoded by Fisher Kernel. Our experiments also include
a comparison with the CDVS (Compact Descriptors for Visual Search)
pipeline, candidate to become part of the MPEG-7 standard. Finally,
our evaluation show that appearance and depth are synergistically bene-
ficial in category recognition tasks, whereas shape features provide lim-
ited contribution in discriminating among different instances of objects.
Further analysis suggests that learning to weigh the relative contribution
of depth and appearance in a specific task is key to devise an engine able
to work seamlessly both in category and instance recognition scenarios.

iv

Contents

Abstract iii

1 Introduction 1

2 3D Reconstruction 11
2.1 Coarse pairwise registration 13

2.1.1 Feature extraction 14
2.1.2 Local description 15
2.1.3 Description matching 16
2.1.4 Rigid motion estimation 16

2.2 Fine pairwise registration 17
2.3 Coarse global registration 18
2.4 Fine global registration 20
2.5 Mesh reconstruction 20

2.5.1 Computational geometry based methods 21
2.5.2 Implicit functions based methods 22

3 Pairwise registration by local orientation cues 25
3.1 Pipeline Description 28

3.1.1 LRF estimation 28
3.1.2 LRF matching 30
3.1.3 Hough voting 33
3.1.4 Rigid motion estimation 35

3.2 Feature Extraction . 35

4 Pairwise registration: Experimental Evaluation 45
4.1 Datasets . 47

v

4.2 Methodology . 49
4.3 Parameters . 52
4.4 Results . 53

5 RGB-D Mobile Visual Search 61
5.1 Local description . 63

5.1.1 SIFT . 63
5.1.2 Dense SIFT 63
5.1.3 Kernel Descriptors 64

5.2 Global encoding . 64
5.2.1 VLAD . 64
5.2.2 Fisher kernel 65
5.2.3 Efficient match kernels 66
5.2.4 Deep Features 67

5.3 Binary hashing . 68
5.3.1 Locality Sensitive Hashing 68
5.3.2 Spherical Hashing 68

5.4 Matching . 69
5.5 Fusion of appearance and shape 69

6 RGB-D Mobile Visual Search: Experimental Evaluation 71
6.1 Datasets . 71

6.1.1 RGB-D Object Dataset 72
6.1.2 CIN 2D+3D 72
6.1.3 BigBIRD . 75

6.2 Experimental investigation 77
6.2.1 Matching . 78
6.2.2 Binary hashing 79
6.2.3 Global encoding 80
6.2.4 Contribution of appearance and shape 81
6.2.5 Impact of binary compression 83
6.2.6 Image features 84

6.3 Performance evaluation 89
6.3.1 Compact Descriptors for Visual Search 90

vi

6.3.2 Results . 91
RGB-D object dataset 91
CIN 2D+3D 91
BigBIRD . 93

7 Implementation of the Visual Search engine on embedded/mobile
platforms 95
7.1 Implementation on the STxP70 ASMP platform 96

7.1.1 STxP70 ASMP architecture 96
STxP70 ASMP programming model 97
Gepop simulator 97

7.1.2 Implementation of Fisher Kernel 98
Fixed-point conversion 101
Scalability evaluation on ASMP platform . . . 101

7.1.3 Implementation of Spherical Hashing 102
Fixed-point conversion 103
Scalability evaluation on ASMP platform . . . 106

7.2 Implementation on an Android tablet 107

8 Concluding remarks 111
8.1 Learning to rank color and depth 115
8.2 Saliency-based encoding 117

Bibliography 121

Author’s publications related to PhD topic 135

Author’s publications during the PhD course related to other
topics 137

vii

List of Figures

1.1 Examples of low-cost depth sensing devices. From left
to right: Kinect, Xtion, Senz3D and Kinect V2. 1

1.2 Example of partial view acquired with a depth sensor. . 2
1.3 Examples of 3D sensing solutions for mobile devices.

Top-left: the Structure sensor mounted on an iPad; top-
right: the PiCam by Pelican Imaging; bottom-left: the
HTC One (M8) smartphone; bottom-right: a prototype
Tango device by Google. 4

1.4 Overview of a Mobile Visual Search application. . . . 6

2.1 Result of the main stages of a 3D reconstruction pipeline.
a) Set of acquired partial views, each represented with
respect to the reference frame defined by the vantage
point of the sensor. b) Coarse alignment of the input
views. c) Refined global registration. d) Outcome of
the 3D reconstruction process as a watertight manifold
mesh. 11

2.2 Example of 3D mesh composed by points and triangles. 13
2.3 Overview of a typical 3D reconstruction processing flow. 14
2.4 Outline of the ICP method. The red and green line rep-

resent, as 2D curves, the points clouds before and after
the alignment. 18

2.5 Fully-connected graph representing the rigid motions
estimated between each pair of views. Edge weights are
the percentages of overlapping area after the alignment,
whereas green edges represent the maximum spanning
tree extracted from the graph. 19

ix

3.1 Alignment of two partial views by the method described
in the chapter. The small overlap area between the two
scans is highlighted in yellow. The zoom-in panels con-
veys the key idea of the approach: the only information
deployed to establish correct correspondences deals with
LRFs attached to feature points. Though, as illustrated
by the panels, a single correct one would suffice, we
deploy many correspondences to estimate the rigid mo-
tion robustly (Right, with green/red lines representing
correct/wrong correspondences). 26

3.2 Outline of the proposed pipeline: LRF computation is
key to match feature points based on an elementary shape
cue (D) as well as to prune most outliers by Hough
Voting. The final pose estimation is accomplished by
RANSAC. 28

3.3 An example helping to describe the computation of the
local reference frames. 29

3.4 Probability density functions of normalized differences,
D̃ij , for feature correspondences dealing with the high-
quality Neptune dataset (left) and low-quality DuckKinect

(right) dataset (see sec. 4.1). Blue and red curves con-
cern correct and wrong correspondences respectively. . 31

3.5 An example of the robustness of the LRF algorithm.
Even though one of the two corresponding supports shows
a wide missing region, the associated local reference
frames are correctly aligned. 32

3.6 Feature matching on the Bunny dataset with increasing
noise. The blue and red solid curves report, respec-
tively, the average number of correct (left vertical axis)
and wrong (right vertical axis) correspondences. The
blue dashed curve highlights the average number of cor-
rect correspondences yielding aligned LRFs. 33

x

3.7 Flatness Vs Orientability. On the left the flatness map of
a view, on the right the corresponding orientability map.
The green colour represent flat and highly-orientable
points respectively, red points feature high curvature in
the flatness map and poor LRF repeatability in the ori-
entability map. 38

3.8 Exemplar feature extraction by the proposed algorithm.
The zoom-in panel on the left shows the detection pro-
cess at a glance: for each randomly chosen seed point
(in green), the flattest point (in fuchsia) in its neighbour-
hood is extracted. The image on the right highlights the
two-step extraction process: the points selected by the
first step are shown as black smaller dots, while the final
features provided by the second step as larger ones. . . 39

3.9 Comparison on the Buste dataset between proposed de-
tector, random extraction, ISS and MeshDOG. In both
charts the figure of merit is plotted as a function of the
mean number of extracted feature points. The top chart
reports the number of view pairs aligned correctly by
our pipeline, whereas the bottom one shows the mean
computation time required to align two views. To bet-
ter compare our proposal to the random detector, the
working points providing the highest number of correct
alignments are highlighted by dots in both charts. Chap-
ter 4 explains how the figures of merit plotted in the two
charts are calculated. 41

xi

3.10 LRFs computed at corresponding features found on a
portion of Neptune’s hand. The left image deals with
randomly extracted features, the right image with fea-
tures detected by our algorithm. Both images show
the LRFs computed in VI together with those computed
in VJ and transformed into VI according to the ground
truth rigid motion. Misaligned LRFs are highlighted by
the pink circles. 43

4.1 Thumbnails of the 24 datasets considered in the ex-
perimental evaluation. For each dataset the number of
views, M , is reported between brackets. 47

4.2 Registration of the Venus de Milo by alignment of 61
views and about 50 million points. 58

4.3 Registration of the Shell by alignment of 98 views and
about 72 million points. 59

4.4 Reconstructions of DuckKinect and FrogKinect. Top:
initial disarranged views. Center: coarse reconstruc-
tions provided by our pipeline. Bottom: final meshes
attained by refining coarse reconstructions by Scanalyze

and then running Poisson Reconstruction. 59

5.1 Outline of the proposed RGB-D Visual Search engine
architecture. 63

5.2 Processing flow of the client deploying deep neural net-
works. 63

5.3 The three strategies for fusion of the appearance and
shape information associated with RGB-D images con-
sidered in our experimental investigation. 70

xii

6.1 RGB-D Object dataset. Top: examples of objects com-
posing the dataset. Bottom: category/instance organi-
zation of the dataset. Each category comprises a set of
different instances which have been acquired from dif-
ferent vantage points. 73

6.2 Objects composing the CIN 2D+3D dataset. The num-
ber of instances for each category is reported in brackets. 74

6.3 BigBIRD dataset. Top: examples of objects included in
the dataset. Bottom: setup staged to acquire the dataset. 76

6.4 Examples of BigBIRD objects distinguishable by colour
and texture only. 77

6.5 Comparison between Locality sensitive hashing (LSH)
and Spherical hashing (SH). 79

6.6 EMK vs. Fisher Kernel vs. VLAD. 80
6.7 EMK vs. Fisher Kernel on encoding all four types of

Kernel Descriptors. 81
6.8 Performance when deploying the RGB channels (Ap-

pearance only), the depth channel (Shape only) or fus-
ing the two kinds of information according to the Local,
Global and Hashing methods. The performance attain-
able without binary compression are shown by circular
dots. 83

xiii

6.9 The charts are organized as a table, the rows dealing
with the different datasets and recognition tasks (first 2
rows: category recognition, last 3 rows: instance recog-
nition) and the 3 columns reporting, respectively, the re-
sults obtained with appearance-based descriptions only,
shape-based descriptions only and fusion of appearance
and shape. Each chart reports the recognition rate as a
function of the length in bits of the binary code. The
different curves are identified by the legend underneath
columns. Kernel Descriptors (KD) based on Intensity
gradients, Color, Depth gradients and Spin Images are
labeled as I, C, D and S respectively. 86

6.10 Instance recognition experiments with a varying rela-
tive contribution of appearance (Deep Features) and shape
(Kernel Descriptors). The horizontal axis indicates the
ratio of bits of the binary code deployed to encode ap-
pearance. Accordingly, the performance of the best meth-
ods in Table 6.1 are denoted by blue dots (all bits encode
appearance by Deep Features). The best recognition
rates attainable by splitting code bits unevenly between
appearance and shape are highlighted by red dots. . . . 89

6.11 Comparison between our Visual Search engine (deploy-
ing deep features for the encoding of appearance and
Kernel descriptors for representing shape information)
and CDVS. The top and bottom horizontal axes report,
respectively, the description lengths in bytes for CDVS
and the description lengths in bits for our proposal. . . 92

7.1 Architectural framework of the STxP70 ASMP. 98
7.2 Contribution in terms of recognition rate of the L2 and

Power normalization proposed in [76] on the RGB-D
Object, CIN2D+3D and BigBIRD datasets. 100

xiv

7.3 Execution times, expressed in elapsed processor clock
cycles, spent for the computation of a Fisher vector as
the number of available ASMP cores increases. The
chart shows the computation times in the case the L2
and Power normalization are disabled (No power – No
L2), in the case only one is enabled (Only L2, Only
Power) and when both are applied (Power – L2). . . . 102

7.4 Recognition rates obtained by applying Spherical hash-
ing based on Euclidean distance (L2) and the modified
formulation grounding on Manhattan distance (L1). . . 104

7.5 Comparison between the floating-point version of the
Spherical hashing algorithm and the 16, 32 and 64 bit
fixed-point porting. Results are reported both in the
case of the original formulation (L2) and the modified
version deploying the Manhattan distance (L1). 105

7.6 Comparison between the 32-bit fixed point formulations
- based respectively on Euclidean (L1) and Manhattan
(L2) distance - of the Spherical hashing algorithm. The
corresponding floating-points versions are also reported. 106

7.7 Computation times (in elapsed processor clock cycles)
required to compute a 1024-bit code as varying of the
the number of available ASMP cores. The chart shows
the executions times regarding the 32-bit fixed-point ver-
sions of the L1 and L2 distance based formulations.
Moreover, the corresponding floating-point versions are
reported. The figure also shows a close-up of the fixed-
point times to better perceive their differences. 107

7.8 Structure Sensor clipped onto the Samsung tablet for
the acquisition of the depth image. 108

xv

7.9 Two screenshots of the app user interface. The acquired
RGB and depth images are shown on the left of the
tablet screen. On the right, the app displays the por-
tions of the images containing the object to recognize
as the result of the plane detection procedure that seg-
ments the background. The bottom part of the screen
displays the category of the object (in green) and ex-
ecution times required to perform the recognition: the
computational time spent for producing the binary code
and the time required to perform the matching. 109

8.1 Preliminary results attained by exploiting the learning-
to-rank approach (Ranking SVM) on the three datasets:
RGB-D Object Dataset, CIN2D+3D and BigBIRD. Each
chart reports the comparison with the recognition rates
obtained by the pipelines deploying separately the four
Kernel descriptors (KD I, KD C, KD D, KD S) and
concatenating them through the Hashing fusion strat-
egy (Hashing fusion). Overall, each pipeline transmits
1024 bits to the server. 116

8.2 Outline of the pipeline deploying saliency to stronger
weigh local features belonging to the object. 118

8.3 Example of saliency map. Brighter pixels represent more
salient portions of the image. 119

8.4 Procedure performed for modifying the BigBIRD dataset:
for each image (a), the mask (b) included in the dataset
is used to segment and discard the background. Then, a
random image of the NYU Depth V1 dataset is cropped
at a random position so as to extract a region of the same
size of the image (c). Finally, the foreground of the orig-
inal image is merged with the extracted region (d). . . . 119

xvi

List of Tables

4.1 Parameters for the four methods and Generalized ICP. . 50
4.2 Different values for Open Technologies R© datasets. . . . 51
4.3 N ◦ Registrations, RMSE and CPU time of the four meth-

ods on the 24 datasets considered in the evaluation. Darker
colors denote, respectively, a larger number of view pairs
correctly registered, more accurate alignments and faster
computations. For each dataset, the number of view
pairs that share at least 10% of their surface as well as
the number of tested view pairs, N , are reported be-
tween brackets. 54

4.4 Comparison between our proposed pipeline (LRF) and
the pipeline (Mitra) that would be achieved by comput-
ing and matching local reference frames according to
[71]. The Table reports the N ◦ Registrations on three
datasets (MarioKinect, Buste, Angels) for different quan-
tities of randomly extracted features. 57

6.1 Summary of the results reported in Fig 6.9. For each
dataset and both types of experiment, the first two columns
highlight the method providing the best recognition rate
in case either only appearance or only shape informa-
tion is deployed for image representation. Then, the
last column highlights the approach yielding the high-
est possible recognition rate assuming that both kinds
of information are available. 88

xvii

Chapter 1

Introduction

Before the advent of Microsoft Kinect, in 2010, most 3D acquisition
systems had been purposely designed to provide accurate and noiseless
acquisitions, often to the detriment of cheapness and ease of use. Since
then, Kinect has established itself not only as an entertainment tool but
also as a means to obtain real-time acquisitions at low cost. Conse-
quently, in the last years, the computer vision community has given
more and more attention to 3D sensing as a way to improve the capa-
bility of algorithms to perceive and understand the surrounding world.
The effort in this direction has already led to the development of novel,
sometimes groundbreaking, approaches to address hard vision problems
like human pose recognition [85], SLAM [30], object recognition [12],
object detection and semantic segmentation [39]. Moreover, inspired
by the philosophy of Kinect, other manufacturers have proposed their
depth sensors as Xtion by Asus, Senz3D by Creative and Microsoft
itseft has recently launched on the market the Kinect 2.0 based on time-
of-flight technology (see Fig. 1.1).

FIGURE 1.1: Examples of low-cost depth sensing devices. From left to right:
Kinect, Xtion, Senz3D and Kinect V2.

1

2 Chapter 1. Introduction

All the cited devices project the observed 3D environment onto the 2D
plane of the sensor so as to produce a map of depths that are usually
referred to as 2.5D acquisitions. In other words, 3D data returned by
the device is limited to the portion of the scene that is visible from the
point of view of the sensor at the time of the acquisition, as shown in
Fig. 1.2.

FIGURE 1.2: Example of partial view acquired with a depth sensor.

Such restrain strongly affects two fundamental tasks of computer vision:
3D Reconstruction and 3D Object Recognition.

The former concerns the creation of a tridimensional representation of
a physical object, a fundamental task for a broad range of application
areas such as e.g. digital preservation of cultural heritage, robotics and
video games. Reconstructed 3D models are also widely used in 3D Ob-
ject Recognition, which addresses the problem of picking out an object
in an acquired scene from a set of objects stored in a database. 3D mod-
els allow for establishing the pose of the objects in the scene, which is
essential in applications like robot grasping and augmented reality.

This thesis addresses both of these tasks. The process of creating a 3D
model is not solved in a single comprehensive step, but involves a set of
successive stages that will be described in detail in Chap. 2 and that start

Chapter 1. Introduction 3

with the acquisition of the object from different vantage points so as to
cover its entire surface. As each acquisition is represented with respect
to a reference frame centered in the sensor, multiple acquisitions have
to be aligned in a unique and common reference frame. Such process
takes the name of 3D Registration and is typically solved by aligning,
in the first place, the partial views in pairs. This thesis focuses on this
step, here referred to as Pairwise registration, which involves the match-
ing of the overlapping surface between the two partial views. Usually,
this problem is faced by extracting a set of characteristic points from
the two views, that are eventually matched on the basis of a descrip-
tion of the neighbourhood (support) of the feature points. To achieve
invariance of the descriptions to the pose of the object, the support is
encoded w.r.t. a Local Reference Frame (LRF) defined on the feature
point and anchored to the surface. A trait common to the descriptors
proposed in literature is the representation in the form of sequences of
floating-point numbers that are usually lengthy. For example, Spin Im-

age descriptors [51] are of the order of 100 numbers, whereas 3D Shape

Contexts [35] produces feature vectors of about 2000 elements. Such
descriptions, together with the large amount of feature points typically
extracted in the detection stage, slow down the computation and burden
on the subsequent matching stage, which, as a consequence, resorts to
high-dimensionality indexing schemes. Chapter 3 addresses this issue
and describes, as solution, a pairwise registration pipeline that avoids
the computation of onerous descriptors and grounds the matching only
on local reference frames. Chapter 4 reports the extensive experimen-
tal evaluation we performed against three state-of-the-art methods on a
plethora of datasets acquired with different sensors, and shows that the
proposed algorithm turns out faster than the other algorithms based on
canonical descriptors. Surprisingly, it also proves to be more effective
in aligning partial views that share a limited surface area.

Trends as relevant as the already mentioned wide diffusion of depth
sensors, their increasing miniaturization, the advances in 3D computer

4 Chapter 1. Introduction

FIGURE 1.3: Examples of 3D sensing solutions for mobile devices. Top-left:
the Structure sensor mounted on an iPad; top-right: the PiCam by Pelican
Imaging; bottom-left: the HTC One (M8) smartphone; bottom-right: a proto-

type Tango device by Google.

vision and the growing development of software tools dedicated to mo-
bile platforms seem to build momentum for integration of depth sens-
ing into mobile devices at a large scale. Some existing solutions to
endow mobile devices with depth sensing are shown in Fig. 1.3. The
Structure Sensor1 by Occipital is a structured light depth camera that
can be clipped onto a tablet. Though originally designed for iOS de-
vices, it can work with Android and Windows as well. In [100], Pelican

imaging2 proposed a camera array that captures light fields and synthe-
sizes a range image. The camera is small enough to be embedded into
next generation smartphones. In 2014 HTC released the HTC One (M8)

smartphone, which combines the main RGB camera with a 2-megapixel

1http://structure.io
2http://www.pelicanimaging.com

http://structure.io
http://www.pelicanimaging.com

Chapter 1. Introduction 5

depth sensor, and delivered the Dual Lens SDK to stimulate develop-
ment of 3D applications on Android. Project Tango3 by Google has
just started shipping to professionals and researchers a prototype tablet
equipped with 3D sensing capabilities and up-to-date APIs.

Motivated by the foreseeable broad availability of depth sensing on mo-
bile devices and the achievements enabled by RGB-D imagery across
a variety of computer vision tasks, in collaboration with STMicroelec-
tronics that also funded this thesis, we investigated on joint deployment
of color and depth in the realm of Mobile Visual Search.

Accordingly, the latter part of the thesis regards RGB-D Object recog-
nition and addresses how to better merge appearance and shape infor-
mation in order to improve the recognition capabilities of the system in
the task of recognizing the specific instance of an object as well as in
determining the category to which it does belong. Lai et al. in [58] pro-
vide the first experimental analysis on the benefits of exploiting depth
information in object recognition. The other relevant works in this field
ground on approaches based on machine learning and propose learned
features for both RGB and depth channels: Bo et al. in [11, 10] pro-
posed Kernel Descriptors, learned features that encode different patch
attributes of the image like intensity and depth gradients, color and ob-
ject size. Then, Bo et al. in [12] and Yu et al. in [103] introduced,
respectively, the Hierarchical matching pursuit and the Hierarchical

Sparse Shape Descriptor, unsupervised learning schemes that exploit
sparse coding to learn hierarchical feature representations of RGB-D
data. The recent successes of Convolutional neural networks (CNN)
and, in wider terms, Deep Learning, prompted the research on RGB-D
recognition in such direction and significant works have been published.
[9] proposed the Convolutional k-means descriptor, whereas Socher et
al. [88] combined convolutional (for low-level representation) and re-
cursive neural networks (for higher order features) for classifying RGB-
D images. Lately, Gupta et al. in [39] propose a framework for object

3www.google.com/atap/projecttango

www.google.com/atap/projecttango

6 Chapter 1. Introduction

segmentation and recognition that deploys the “AlexNet” proposed in
[56] for encoding both the appearance and shape information.

Essential feature of an RGB-D Object Retrieval architecture is the abil-
ity to recognize the object regardless the acquisition viewpoint. Such
invariance to pose can be obtained by modeling the objects compris-
ing the database as a set of partial views acquired by different vantage
points, which are, subsequently, matched against the query image in or-
der to find the most similar one. As the recognition capability of the
system tends to improve as the amount of acquisitions increases, typi-
cally the number of partial views acquired for each object reaches the
hundreds. It is therefore clear that building the database turns out infea-
sible as the cardinality of objects becomes conspicuous. A solution that
is usually adopted consists in reconstructing the complete 3D model of
the object. Then, a large amount of partial views are generated synthet-
ically by means of a virtual camera simulating the sensor employed to
acquire the query images. That highlights the strong link between 3D
Object Recognition and 3D Reconstruction and points out the impor-
tance of a 3D Registration stage able to operate in conditions of limited
surface overlap between the partial views, which would enable to rely
on fewer acquisitions, thereby to obtain a correct reconstruction cutting
down time and effort spent for populating the database.

Query

description

Server database

Visual search

result

description 0

description 1

description N

FIGURE 1.4: Overview of a Mobile Visual Search application.

A Mobile Visual Search engine allows the user to easily gather infor-
mation about the objects seen in the camera field of view. Purposely,

Chapter 1. Introduction 7

she/he would just snap a picture to have the mobile device comput-
ing a representation of the image which is sent to a remote server and
matched into a database to recognize image content and report back
relevant information (see Fig. 1.4). Technological advances and dif-
fusion of mobile devices equipped with high-resolution cameras have
made fertile the research on Mobile Visual Search [36, 23, 48, 21] and
fostered the advent of both applications and development tools, such
as Amazon Flow, CamFind, Google Goggles, SHOT & SHOP, Shot
& Find, SnapPlay, Whatzit, Calliope, Visual Search for Shoes, Visual
Search for Groceries.

As a Mobile Visual Search client transmits information to the server
wirelessly, the search engine is subjected to strict bandwidth require-
ments so to reduce latency, cut down device power consumption and
enhance user experience. Purposely, several approaches to either con-
ceive compact image descriptors or compress existing ones have been
proposed in literature [18, 20, 22, 52, 98, 37]. Besides bandwidth re-
quirements, research on compact and binary description is also driven
by the demand for handling databases that nowadays may comprise mil-
lions of images. Indeed, the ability to encode image content with as few
bits as possible has become key to properly deal with storage issues and
allow for efficient image matching.

Hence, our investigation addresses both how to merge the contributions
provided by the color and depth channels as well as how to encode them
in a compact binary code. Accordingly, this thesis propose, discuss and
evaluate what we believe to be the first Visual Search engine specifically
conceived for next-generation mobile devices equipped with RGB-D
cameras.

Whereas Chapter 5 describes the Mobile Visual Search architecture we
devised, Chapter 6 reports the results of an experimental investigation
we performed aimed at identifying its best configuration. Our find-
ings reveal that shape features are more effective in the case of cate-
gory recognition. On the contrary, appearance is the primary trait that

8 Chapter 1. Introduction

identifies a specific object. To take an example, the spherical shape is
the very feature that characterizes a ball, whereas a particular type of
ball (soccer ball, basket ball, etc. . .) is recognized on the basis of its
textures and colors. Our findings also suggest that densely computed
kernel descriptors aggregated at the image level through Fisher Kernel
constitutes the best approach for the description of shape information.
Instead, deep features are more effective for encoding appearance. Fur-
thermore, both the representations can be compressed in binary codes
by Spherical Hashing without any loss in descriptiveness. Indeed, high
recognition rates can be achieved with binary codes as compact as 512-
1024 bits in both category and instance retrieval experiments. More-
over, keeping the processing flows of the color and depth channels sep-
arate to concatenate the final binary codes seems not to hinder perfor-
mance while potentially allowing for a great deal of flexibility at the
system and application level. In the same chapter, we experimentally
compare our proposal on three state-of-the-art RGB-D datasets with the
Compact Descriptors for Visual Search architecture [1], an appearance-
based search engine which, similarly to our proposal, is specifically
aimed at generating compact encodings and it is currently in the Draft
International Standard stage as Part 13 of the MPEG-7 standard.

The thesis concludes with Chap. 7 which reports the result of the work
carried out during a three-month internship at the Imaging division of
STMicroelectronics in Grenoble under the supervision of Dr. Alain Is-
sard. This period led to the porting of Fisher Kernel and Spherical
Hashing on the STxP70 ASMP embedded multicore platform. The al-
gorithms have been plugged in the Visual Search architecture so as to
assess the reduction in recognition rate caused by the adopted fixed-
point representation. Furthermore, the scalability of the implementa-
tions have been evaluated on varying of the number of cores made avail-
able by the simulator of the embedded platform. Finally, to validate how
the architecture works on a mobile device, the engine has been ported
on a Samsung Galaxy Tab Pro 10.1 equipped with a Structure Sensor

for the acquisition of the depth image. The chapter ends by describing

Chapter 1. Introduction 9

the details about the implementation and the considerations regarding
its employment.

Chapter 2

3D Reconstruction

a) b) c) d)

FIGURE 2.1: Result of the main stages of a 3D reconstruction pipeline. a) Set
of acquired partial views, each represented with respect to the reference frame
defined by the vantage point of the sensor. b) Coarse alignment of the input
views. c) Refined global registration. d) Outcome of the 3D reconstruction

process as a watertight manifold mesh.

3D Reconstruction is a fundamental task in 3D computer vision and
plays an increasingly important role in reverse engineering and rapid
prototyping, virtual reality, movie and game industries. Given a physi-
cal object, it concerns the automatic creation of an accurate and realistic
3D model. The majority of 3D sensors used to acquire shape informa-
tion, such as laser scanners, stereo and time-of-flight cameras, struc-
tured light systems, share the inability to scan the entire object at once.
Indeed, a single acquisition captures only the portion of the object seen
from the viewpoint of the sensor as depicted in Fig. 1.2. Such acqui-
sition, in this thesis referred to as mesh or partial view, represents the
surface of the object as a lattice of points and triangles, and, typically,

11

12 Chapter 2. 3D Reconstruction

includes additional information such as surface normals computed on
points (see Fig 2.2).

Hence, to obtain its complete model, the object has to be acquired from
different vantage points up to covering its entire surface. Yet, upon
completion of the acquisition session, the partial views are not aligned
coherently but each is represented in its own reference frame as deter-
mined by the vantage point of the sensor (see Fig. 2.1a). Therefore,
views have to be aligned with respect to a unique reference to obtain
the final reconstruction of the object. This process, known as 3D Regis-

tration, is most desirably accomplished without assumptions on the rel-
ative position and orientation of the views at hand and it is typically ad-
dressed by determining the rigid motions that align each pair of views.
Such task, referred to as Pairwise registration, is ordinarily faced by
a two-step procedure. The aim of the former (Coarse pairwise regis-

tration) is solely to provide a sufficiently correct alignment to the latter,
which then attends to refine the registration until it converges (Fine pair-

wise registration). Eventually, the estimation of the rigid motions that
align all the view pairs enables the arrangement of the views in a com-
mon global reference frame (Coarse global registration) (see Fig. 2.1b).
Sensor noise, the discretization of the views in lattices and inaccuracies
in the estimation of the rigid motions render the ongoing alignment not
sufficiently precise to be correctly reconstructed. For this reason, a suc-
cessive stage of Fine global registration refines the alignment so as to
minimize the global misalignment error between corresponding points
of the views. Once the partial views are correctly aligned (as shown
in Fig. 2.1c), a final stage of Mesh reconstruction produces a manifold
mesh (see Fig. 2.1d).

The purpose of this chapter is far from providing an exhaustive overview
of the literature on this topic (that would be, by this time, too extensive
to be addressed in a single manuscript), but it aims at explaining the
steps that are commonly adopted to tackle this task. Such stages, sum-
marized in Fig. 2.3, will be described in more details in the subsequent

Chapter 2. 3D Reconstruction 13

FIGURE 2.2: Example of 3D mesh composed by points and triangles.

sessions.

2.1 Coarse pairwise registration

The coarse registration methods published during the last two decades
can be categorized into global and local approaches. Prominent meth-
ods within the former category rely on Principal Component Analysis

[25], on Extended Gaussian Images [67] as introduced by Horn in [44],
as well as on Algebraic Surface Models [93]. All these methods try to
find the mapping between the two surfaces by computing descriptions
that globally represent the views. Such criteria find it difficult to deal

14 Chapter 2. 3D Reconstruction

Coarse global
registration

Fine global
registration

Mesh
reconstruction

Fine pairwise
registration

Coarse pairwise
registration

FIGURE 2.3: Overview of a typical 3D reconstruction processing flow.

with nuisances such as point density variation, noise and missing re-
gions due to self-occlusions, thereby failing when the overlap between
the two surfaces is limited. To overcome these issues, local methods
have become established. Local methods have proved to be signifi-
cantly resilient to nuisances such as those mentioned above and hence
allow registering view pairs that share just a limited portion of surface.
Typically, they follow a similar processing flow comprising the steps
described below.

2.1.1 Feature extraction

At first, a subset of points (feature points) are extracted from the two
partial views. Various criteria have been proposed, from simple uni-
form or random picking (with the only purpose to lighten the subsequent
processing) to more sophisticated approaches (attempting to select the
features that better characterize the surface). Among them, different
works, inspired by [65], extend the Difference of Gaussian detector to
3D meshes. Examples are [61, 15, 19] and the MeshDoG detector pro-
posed by [104]. In [3], instead, mesh points compete in a game theory
framework until a subset of them stands out as the most dissimilar to
the others. Mian et al. in [70] perform a mesh simplification and keep
survived points as features. Furthermore, [106] proposes the Intrin-

sic Shape Signatures detector that discards points not possessing large
variations in their neighborhood (here referred to as supports) along the
three dimensions. This is carried out by computing the shatter matrix
of the support points coordinates and checking if two of the eigenval-
ues of the matrix are too similar. A recent survey and evaluation of

Chapter 2. 3D Reconstruction 15

state-of-the-art 3D detectors can be found in [97].

2.1.2 Local description

Subsequently, each feature point is described so as to obtain a numerical
representation of the neighbour surface of the point. On the one hand,
such encoding should be as descriptive as possible, meaning that similar
supports should provide similar representations. On the other hand, the
description has to be robust to the nuisances already mentioned and
invariant to rigid motions of the view. Such requirements have fostered
the research community to propose a multitude of 3D descriptors, some
of which have been evaluated in a recent survey proposed in [38].

The most widely-used method, proposed in 1997 by Johnson et al., is
Spin Image [50] that projects the support point coordinates on a 2D im-
age representation. In the same year, Chua and Jarvis proposed Point

Signature [24] that encodes the distances of the surface points intersect-
ing a support sphere from the tangent plane defined on the feature point.
Tombari et al. introduce Shot [95], which provides a good trade-off
between descriptiveness and robustness by encoding the feature point
through orientation histograms of support normals. Other methods have
been designed to focus on descriptive power, such as e.g. [91, 6, 70,
104], [19] which models each descriptor by a Hidden Markov Model,
and [61, 69] that encode the magnitude of the Fourier Transform of
the descriptor and discards phase component representing pose infor-
mation. On the other side, works as [3, 81, 57] proposed loosely dis-
tinctive encodings, by relying, subsequently, on matching stages able
to robustly handle a large amount of false positives and on geometric
consistency methods.

16 Chapter 2. 3D Reconstruction

2.1.3 Description matching

Descriptions are, therefore, used to establish correspondences between
feature points of the two partial views. Such stage is typically per-
formed by matching descriptions with respect to the euclidean distance
in the description space. To speed up the nearest neighbour search,
works like [95, 69, 61] deploy a Kd-tree index. Other works, grounding
on descriptors not defined in euclidean space, resort to more sophis-
ticated - and slower - matching schemes. For example, [3] exploits
the same game-theory framework used for feature detection to discover
correspondences through a competitive process among all possible cor-
respondence pairs. [50], instead, computes the normalized linear corre-
lation coefficient between Spin Images to match features, whereas, [57]
sets multiple candidate matches for each feature, that eventually prune
as an optimization problem through weighted bipartite matching.

2.1.4 Rigid motion estimation

Once a set of correspondences has been established, the rigid motion
that aligns the two partial views is estimated. As a percentage of these
correspondences are false matches, a robust estimator, such as e.g. RANSAC
[33], is applied. Starting from the observation that three correct cor-
respondences are sufficient to define a rototranslation, RANSAC iter-
atively picks out three correspondences at random and computes the
rigid motion that best fits the correspondences in the least-squares sense.
Such problem is called Absolute orientation and the closed-form solu-
tion can be obtained, for three or more points, by the method proposed
in [43]. Then, the candidate rigid motion is applied to all the correspon-
dences so as to count the number of them that aligns up to a user-defined
threshold (consensus set). The process is repeated until a fixed number
of iterations is reached or the largest consensus set so far obtained is suf-
ficiently wide. As the loop stops, all the correspondences in the largest
consensus set are used to estimate the final rigid motion.

Chapter 2. 3D Reconstruction 17

Whereas several works deploy the standard RANSAC framework (e.g.
[6, 57, 15, 69, 61]), others extend it or are inspired by its sample con-
sensus based scheme. For example, [81] introduces the Sample consen-

sus initial alignment (SAC-IA) that constrains the points of the three
correspondences selected in each iteration to have pairwise distances
greater than a threshold and check the goodness of the consensus set
through the Huber penalty measure. The 4-Points Congruent Set al-
gorithm (4PCS) proposed in [2], instead, iteratively selects four planar
points in a partial view and search for a fitting set of four points in the
other.

2.2 Fine pairwise registration

Pairwise registration methods are able to align two partial views re-
gardless their initial pose but, generally, provide rigid motion estima-
tions that are not sufficiently accurate as input for the next stages of
the reconstruction process. Grounding the estimation on a subset of the
partial views points, sensor noise, and the discretization of the views,
all together contribute to the coarseness of the resulting registration.
Consequently, such initial coarse step is coupled with a subsequent re-
finement, that, complementarily, exploits all the points of the views but
needs an initial guess to converge. Such task is solved effectively by the
ubiquitous Iterative closest points algorithm (ICP) [102, 8].

In its early formulation, given two input point clouds (depicted, for the
sake of clarity, as bidimensional curves in Fig. 2.4, left), each point of
one cloud is matched with its closest point in the other one so as to
estimate a rigid motion in a least square sense. As a single iteration
is not usually sufficient to provide the minimum alignment error, the
process is repeated up to convergence or a fixed number of iterations is
reached (see Fig. 2.4, right).

18 Chapter 2. 3D Reconstruction

FIGURE 2.4: Outline of the ICP method. The red and green line represent, as
2D curves, the points clouds before and after the alignment.

Since its introduction in 1992, the research community has proposed
several works addressing improvements and extensions to the original
method. Most of them are summarized in [80, 63]. Among the most
relevant ones, it is worth citing the deployment of a nearest neighbor
search index to speed up the search for the closet point (the expensive
step of the algorithm). Furthermore, the point-to-point distance is re-
placed by minimizing, instead, the sum of the squared distances be-
tween the points and the tangent plane at their corresponding points. At
the cost of slower iterations, the algorithm generally converges in fewer
steps. Other significant contributions regard the Generalized ICP [84],
a probabilistic framework that exploits the maximum-likelihood estima-
tion algorithm to minimize a plane-to-plane symmetrical distance, and
the LM-ICP proposed in [34], that replaces the closed-form inner loop
with the Levenberg-Marquardt algorithm.

2.3 Coarse global registration

Once rigid motions have been estimated for each pair of views, they are
used to infer the rototranslations that align each view in a global refer-
ence frame. A common approach consists in defining a fully-connected
weighted graph in which each node represents a different view, whereas
the edges represent the estimated rigid motion between the views con-
nected by the edge (see Fig. 2.5). To each edge is assigned, as weight,

Chapter 2. 3D Reconstruction 19

0.5

0.0

0.3

0.7

0.6 0.2 0.0

0.1

0.50.4

0.7

0.6

0.50.4

FIGURE 2.5: Fully-connected graph representing the rigid motions estimated
between each pair of views. Edge weights are the percentages of overlapping
area after the alignment, whereas green edges represent the maximum span-

ning tree extracted from the graph.

the percentage of overlapping area of the two views after the rigid mo-
tion is applied. An extended overlapping area suggests that two partial
views share same portions of the object and the method succeeded in
finding the correct rigid motion. To select the minimum subset of rigid
motions that permits to align all the views and that, at the same time,
maximize the probability to obtain a correct registration, the Maximum

spanning tree is extracted from the graph (see again Fig. 2.5). Then,
the identity transformation is applied to the view chosen as the root of
the tree, whereas, for each other partial view, the concatenation of rigid
motions that align it to the root view is computed and applied.

20 Chapter 2. 3D Reconstruction

2.4 Fine global registration

Even though each pair of partial views are finely aligned through ICP,
the global registration obtained as result of the previous stage does not
usually come out sufficiently accurate to be correctly reconstructed (as
shown in Fig. 2.1b). Such effect is due to the alignment errors that
are negligible if considered individually, but that become conspicuous
when they are accumulated as the rigid motions are concatenated. Such
issue is typically solved by performing a further optimization that con-
siders all the points at once and carrying out a joint minimization of all
distances between corresponding points.

Former work that address such issue is [79], which proposes an opti-
mization framework that spreads the alignment error evenly across view
pairs. An implementation is provided by the author in the Scanalyze

tool1. Nishino et al. in [73] apply conjugate gradient search to mini-
mize the objective function and exploit M-estimators for robust outlier
rejection. Fantoni et al. in [31] extend the idea of [34] to multi-view
alignment. All these methods ground on the assumption that partial
views are free from warpings and deformations and, therefore, rigid-
body transformations are sufficient to a correct alignment. In [17], the
authors argue that such deformations are not negligible as related to the
unavoidable imperfection of sensor calibration. For this reason, they
propose a framework that performs non-rigid warps to each partial view
and jointly distributes error evenly across all meshes.

2.5 Mesh reconstruction

Once partial views are correctly aligned, the last step of the process
aims at yielding a manifold and watertight mesh. A non-manifold mesh
is a geometry that cannot exist in real world. Overlapping edges or

1http://graphics.stanford.edu/software/scanalyze/

http://graphics.stanford.edu/software/scanalyze/

Chapter 2. 3D Reconstruction 21

triangles, disconnected vertices, or areas with no thickness are exam-
ples of causes of non-manifold geometries. A watertight mesh, instead,
completely separates the internal volume of the object from the outside.

Typically, mesh reconstruction algorithms do not rely on the surfaces
initially computed for each partial view, but discards all the triangles
and computes the final surface on the basis of the points or, at most,
their normals. The Mesh zippering algorithm, introduced in [99], is
the only notable work that, instead, exploits the geometry of the initial
meshes. Starting from two overlapping meshes, the algorithm performs
tree steps to produce a single geometry. First, all the triangles of one
mesh that overlap entirely the surface of other one are identified and
discarded. Then, the triangles that still partially overlap the other ge-
ometry are clipped to perfectly adhere to the other geometry and finally
the two meshes are merged. Such process is repeated for each partial
view until all the views are integrated in the final mesh.

All the other relevant methods proposed over the years can be divided
into two main categories: computational geometry based and implicit
functions based.

2.5.1 Computational geometry based methods

Starting from a set of points sampled from a surface, the algorithms be-
longing to this category usually provide a resulting mesh composed by
the initial points. For this reason they are more suited for low-level noise
data scanned with high-precision sensors. On the other hand, they often
provide theoretical guarantees for the quality of the resulting surface.

The ball-pivoting algorithm [7] is the first remarkable work falling un-
der this category. Starting from a seed triangle, it is a region-growing
method that searches for adjacent triangles by revolving a ball around
each edge of the current triangle until the ball touches a new point. The
edge extremes and the touched point define a triangle that is added to

22 Chapter 2. 3D Reconstruction

the mesh in a process that is repeated until all the points are scanned.
The method assumes a uniform point density and a distance between
adjacent points smaller than the user-defined radius of the ball.

Other approaches ground on the computation of the 3D Delaunay tri-

angulation, which partitions the volume enclosing the object in a set of
tetrahedra whose vertices are the input points augmented with the eight
volume corners. By observing that the sought surface is composed by
the triangles shared by pair of inside/outside tetrahedra, the proposed
methods differ only on the approach deployed for identifying tetrahedra
located inside or outside the object. The Powercrust method, introduced
in [5], exploits the Voronoi diagram - dual to Delaunay triangulation -
that divides the volume so as to get, for each input point, a cell com-
prising all the points closer to that input point to any other. Under the
assumption of a sufficiently dense sampling, the Voronoi tessellation is
composed by long and skinny cells perpendicular to the surface. The
algorithm selects, for each sampled point, the two most distant points
in the corresponding Voronoi cell, called poles, so that a pole is inside
and the other outside the object. Then, the method label the pole closest
to the bounding box of the volume as outer and propagates the labels
up to the inner poles. Finally, the Voronoi/Delaunay duality enables
the proper labeling of the tetrahedra. Kolluri et al. in [55] propose
the Eigencrust that, instead, builds a graph of the Voronoi vertices and
applies a spectral graph partitioning to segment the tetrahedra.

2.5.2 Implicit functions based methods

This category of algorithms solves the problem through two main steps.
The former computes an implicit function defined over a voxel parti-
tioning of the volume enclosing the object. It estimates the signed geo-
metric distance of the voxels to the unknown surface. As the distance is
signed, most of the algorithms rely on point normals as additional infor-
mation to ease this step. The latter extracts a zero-crossing isosurface as

Chapter 2. 3D Reconstruction 23

a polygonal mesh. This step is usually solved by means of the Marching

cube algorithm [64] (or one of its variants), which takes the eight cor-
ners of each voxel and determines the triangles needed to represent the
part of the isosurface that passes through the voxel. The extracted tri-
angles are, then, merged in a single surface. Methods based on implicit
functions are generally more robust to sensor noise and misalignments
of the partial views as they perform an interpolation of the input points.
On the other hand, the computation of the implicit function turns out
the most critical part of the procedure and different proposal have been
introduced to tackle this step.

Hoppe et al. in [42] compute the tangent plane of each input point and
estimate the implicit function as point-plane signed distances. The work
introduced in [27] grounds on the assumption that the input point cloud
comes from a set of acquired partial views. A signed distance func-
tion is computed for each view by exploiting normal orientations and,
then, they are merged together on the basis of the relative motion of
the sensor. Finally, in 2006, Kazhdan et al. proposed the Poisson re-

construction method [53] that can be considered the de-facto standard
algorithm for mesh reconstruction. Instead of estimating the implicit
function, the method computes the 3D indicator function defined as 1
at points inside the object and 0 at points outside. The key idea stems
from the observation that the gradient of the indicator function is a vec-
tor field that is different from zero only at points near the surface, where
it is equal to the surface normal. Thus, the computation of the indica-
tor function can be obtained by inverting the gradient operator. As the
divergence of the gradient (laplacian) of the indicator function equals
the divergence of the normal vector field, the solution of the problem
reduces to computing the divergence of the normal vector field and to
solving the Poisson equation.

Chapter 3

Pairwise registration by local
orientation cues

As described in the previous chapter, 3D registration is generally han-
dled by describing a set of feature points extracted from the partial
views. The descriptions are subsequently matched so as to find a set of
correspondences from which estimate the rigid motion. A fundamental
trait that any feature descriptor deployed in 3D registration (and, more
broadly, in surface matching) ought to possess is invariance to pose.

Indeed, not all the feature descriptors proposed in the last years are in-
herently pose-invariant. For example, both [14] and [35] compute mul-
tiple descriptions, one for each angular subdivision of the support. This
requires the matching stage to perform circular shifts in order to evalu-
ate the similarity between two descriptors. In other proposals, though,
the description method is itself endowed with invariance to pose. Spin

Images [51], FPFH [81] and Normal/Integral Hash [3] are histograms
wherein the contributions of the points within the support are related to
the normal at the feature point only. [19] treats feature points by Hid-

den Markov Models that intrinsically own pose invariance, whereas [61]
and [69] take the magnitude of the Fourier Transform of the descriptor,
thereby gaining invariance to rotation which is encoded into the phase.

However, the most widespread approach ([57, 70, 6, 83, 89, 24, 91, 106,
95, 94, 54, 104]) to attain pose-invariance deploys a Local Reference

25

26 Chapter 3. Pairwise registration by local orientation cues

Frame (LRF) centered at the feature point and attached to the surface re-
gardless of its orientation. Thereby, description can encode local shape
traits with respect to a canonical reference associated with the feature
point. The findings reported in [95, 78, 77] highlight clearly how the
repeatability1 of the computation of the LRF is key to robustness of the
description and, accordingly, to the performance of the overall feature
matching process.

RT

FIGURE 3.1: Alignment of two partial views by the method described in the
chapter. The small overlap area between the two scans is highlighted in yellow.
The zoom-in panels conveys the key idea of the approach: the only informa-
tion deployed to establish correct correspondences deals with LRFs attached to
feature points. Though, as illustrated by the panels, a single correct one would
suffice, we deploy many correspondences to estimate the rigid motion robustly

(Right, with green/red lines representing correct/wrong correspondences).

Although effective and fast algorithms pertaining computation of lo-
cal reference frames have been devised [95, 78, 83, 77], in the field
of registration, LRFs have so far only been considered instrumental to
feature description. Conversely, this chapter proposes a different and
novel registration paradigm, which stems from the observations that
LRFs can indeed provide basic shape cues and that two corresponding
points equipped with their LRFs allows the rigid motion that aligns two
views to be computed (as illustrated in the zoom-in panel of Fig. 3.1).
More precisely, we rely on the method proposed in [77] to compute

1An LRF algorithm is said to be repeatable when it provides the same canoni-
cal orientation across different views of a surface patch. Specific figures of merit to
quantify this property have been proposed in literature [95, 78, 77].

Chapter 3. Pairwise registration by local orientation cues 27

highly repeatable LRFs at feature points and show how such computa-
tion provides the core of a coarse registration pipeline which does not
require a costly feature description stage. Thanks to the minimal fea-
ture description, which also implies a light downstream correspondence
process, the ensuing pipeline turns out remarkably fast without any loss
of registration efficacy.

It is worth pointing out that the idea of using the LRF attached to points
to estimate the rototranslation to align two views can be found also in
[68], [32] and [70]. However, such papers rely on a single correspon-
dence, whilst we deploy an Hough Voting scheme [96] to robustly ac-
count simultaneously for many correspondences (Fig. 3.1, Right). More
importantly, the pipeline in [70] follows the standard paradigm whereby
LRFs are primarily deployed to establish a canonical reference for the
purpose of feature description. On the other hand, the work in [32] turns
out infeasible unless views consist of quite a small number of points, as
it consists in a RANSAC-based approach bound to operate with just
a small fraction of outliers and it mandates running as many nearest
neighbour searches as the number of points to determine the consensus
set.

Although our registration pipeline can be feed with any kind of 3D fea-
ture points, as a second contribution of this chapter we propose a novel
detector specifically conceived to provide features suited to our method.
In particular, we argue that the underling saliency cue should capture the
orientability of features, i.e. the ability to compute the LRF repeatably
despite feature localization being possibly inaccurate. Accordingly, we
develop an efficient algorithm which conveniently deploys the observed
relationship between orientability and flatness to quickly extract fea-
tures particularly suitable for our pipeline and uniformly distributed
throughout the views, the latter being a beneficial property for coarse
registration.

28 Chapter 3. Pairwise registration by local orientation cues

3.1 Pipeline Description

Feature matching

based on distance D

Outlier removal:

3D Hough voting

Rigid motion estimation:

RANSAC + Abs. Orientation

Extraction of
feature points

LRF

computation

Extraction of
feature points

LRF

computation

FIGURE 3.2: Outline of the proposed pipeline: LRF computation is key to
match feature points based on an elementary shape cue (D) as well as to prune
most outliers by Hough Voting. The final pose estimation is accomplished by

RANSAC.

Given two partial views of an object acquired from different vantage
points, VI and VJ , the aim of a pairwise registration pipeline is to find
the rigid motion that aligns the views so that the shared surface portions
do overlap. Our method, outlined in Fig. 3.2, starts by extracting two
sets of feature points, FI and FJ , from the two views. This can be
achieved either by random selection of a given number of points or by
the feature detection algorithm described in Section 3.2.

3.1.1 LRF estimation

The second step of our pipeline differs significantly from mainstream
literature approaches. As explained, we dismiss the time-consuming
description stage carried out at this level of the pipeline and instead
keep only the local reference frame computation ordinarily devoted to
endowing description with invariance to pose. Purposely, we deploy
the method introduced in [77], which requires the normals2 associated
to points and the computation of the mesh resolution (hereinafter mr ,
computed as either the average length of the edges of the meshes or,
should the dataset consist of point clouds, the average distance between
neighbouring points).

2The normals are computed by the vtkPolyDataNormals function of the VTK li-
brary (http://www.vtk.org), which computes the normal of each triangle and,
then, computes the normal of each point by averaging the normals of the triangles
connected to the point.

http://www.vtk.org

Chapter 3. Pairwise registration by local orientation cues 29

Given a feature point p, the algorithm starts by robustly estimating the z
axis (colored in blue in Fig. 3.3) as the normal to the plane, πz, that best
fits the points within a small spherical support of radius Rz centered at
p (depicted in blue in Fig. 3.3). The sign of the z axis is disambiguated
so as to orient it coherently to the average normal computed over sup-
port points. It is worth pointing out that the algorithm is not critically
affected by the stability of the computed normals as they are used - af-
ter having been averaged - only to disambiguate the sign of the z axis.
A different support is considered for estimation of the x axis, namely
the intersection between the surface and the spherical shell centered at
the feature point and defined by the radii pair [0.85×Rx, Rx] (depicted
in red points in Fig. 3.3). Considering such points, the signed distance
from plane πz is evaluated and the point, pD, exhibiting the largest dis-
tance, D , is selected. The x axis (represented in red in Fig. 3.3), is
attained by projecting onto πz the vector from the feature point to pD.
The y unit vector (shown in green in Fig. 3.3) is then given by the cross-
product z × x.

FIGURE 3.3: An example helping to describe the computation of the local
reference frames.

The method in [77] possesses traits that render it particularly suited to
the task of registration. First of all, the repeatability of the LRFs tends
to increase significantly with the support size Rx. The main nuisance
that would hinder repeatability along with increasing such a size turning

30 Chapter 3. Pairwise registration by local orientation cues

out clutter, which, however, is not present in the registration task. This
vouches that the method is robust to missing surface portions within
the neighbourhood of a point, as it would happen at features located
close to the boundaries of a view. Indeed, the repeatability of a LRF
only depends on whether point pD ends up or not in a missing region,
such “highest” points tending to better withstand changes of the vantage
point as they are less likely to be occluded by other surface patches.
This is a quite favorable property in registration applications, as, when
the views in a pair are acquired from angularly distant viewpoints, and
thus are hard to align, most of the limited overlap is found at boundary
regions. Another benefit of the approach dwells on its robustness to
point density variations, both uniform, as induced by changes of the
acquisition distance, and non-uniform, as determined by out-of-plane
rotations of the sensor. Finally, the algorithm comes out fast even when
applied to wide supports due to the small fraction of points actually
involved in the computation.

3.1.2 LRF matching

Any pair of corresponding feature points equipped with correctly estab-
lished LRFs defines the sought rigid motion. Stemming from this ob-
servation, the next stages of our pipeline aim at sifting out from the set
of all the FI × FJ candidate pairs a sizable subset of correspondences
to estimate the rototranslation to align the views, i.e. to bring them to
the same reference frame. We found a good cue to be the distance, D ,
inherently associated with each feature point upon computation of the
LRF. Indeed, as the LRF algorithm establishes a canonical reference,
D turns out to be a basic measurement related to the local shape of
the surface around the feature point. Accordingly, assuming LRFs to
have been correctly established, corresponding features should exhibit
similar D values. This property can be exploited to discard candidate
correspondences between feature points showing significantly different
D values. To this purpose, the difference Dij = |Di − Dj | is computed

Chapter 3. Pairwise registration by local orientation cues 31

and normalized with respect to Dmax = maxi ,j (Dij) for each candidate
pair. If the normalized difference, D̃ij =

Dij

Dmax
, is above a threshold, TD ,

the pair is discarded. This is vouched by Fig. 3.4, in which we consider
two very different datasets and show as a blue curve the pdf of D̃ij ,
p
(
D̃ij |P

)
, for good correspondences, P . Despite the diversity in the

data, both curves look very similar and clearly show that when D̃ij ex-
ceeds a certain threshold (such as e.g. 0.2) a feature correspondence is
unlikely to be correct.

0

5

10

15

0 0.2 0.4 0.6 0.8 1

p(D|TP)

p(D|FP)

𝑝 𝐷𝑖𝑗 𝑃

𝑝 𝐷𝑖𝑗 𝑁

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

 𝐷𝑖𝑗 𝐷𝑖𝑗

FIGURE 3.4: Probability density functions of normalized differences, D̃ij , for
feature correspondences dealing with the high-quality Neptune dataset (left)
and low-quality DuckKinect (right) dataset (see sec. 4.1). Blue and red curves

concern correct and wrong correspondences respectively.

The proposed matching process is really fast, as it boils down to sorting
both the features in FI and FJ with respect to D and simultaneously
scanning the sorted lists to collect those pairs that do not satisfy the
previous pruning condition. In standard pipelines, instead, the match-
ing stage is typically expensive as it involves computing distances in
a high-dimensional description space so as to retain pairs of features
appearing close one to another in that space. Furthermore, as shown
in Fig. 3.5, if either of the two supports around corresponding features
gets spoiled due to missing surface regions, the associated descriptors
will be corrupted alike, so that, typically, the features would result far
away one to another in the description space. This does not happen in
our matching scheme due to the LRF algorithm being resilient to miss-
ing regions: as long as the LRFs have been correctly established, the

32 Chapter 3. Pairwise registration by local orientation cues

D values related to two corresponding features turn out similar. The
proposed matching approach turns out also very robust to noise.

FIGURE 3.5: An example of the robustness of the LRF algorithm. Even
though one of the two corresponding supports shows a wide missing region,

the associated local reference frames are correctly aligned.

Indeed, the D value of the “highest” point pD is typically large and,
as such, it is unlikely that noise at pD would decrease D as much as
to promote another point far away from pD to become the “highest”
point. More likely, noise may promote another point in the vicinity of
pD, which, however, implies a tolerable error. Fig. 3.6 shows the result
of an experiment carried out on the Bunny dataset in order to analyze
the behavior of the matcher while different levels of Gaussian noise are
injected into the data. For each view, 2000 points have been randomly
extracted and matched setting TD = 0.01 (see Table 4.1) so to evalu-
ate the mean number of correct (TP) and wrong (FP) correspondences
established across all 45 view pairs. Moreover, the chart reports the
number of correctly aligned LRFs (TP_LRF) according to the figure
of merit Ā introduced in [77]. Hence, Fig. 3.6 highlights clearly the
robustness to noise of the matching process as the curves remain very
stable as the noise level increases.

Chapter 3. Pairwise registration by local orientation cues 33

0

20,000

40,000

60,000

80,000

100,000

120,000

0

200

400

600

800

1000

1200

1400

0 0.1 0.3 0.5

FPTP

σ noise (mr)

TP

TP_LRF

FP

FIGURE 3.6: Feature matching on the Bunny dataset with increasing noise.
The blue and red solid curves report, respectively, the average number of cor-
rect (left vertical axis) and wrong (right vertical axis) correspondences. The
blue dashed curve highlights the average number of correct correspondences

yielding aligned LRFs.

3.1.3 Hough voting

On the other hand, our basic shape cue D has a rather poor discrimina-
tive power compared to a high-dimensional descriptor, so that measur-
ing close (or even identical) values cannot be treated as a sufficient con-
dition to declare two features as corresponding. This is shown, again,
in Fig. 3.4, where the red curves represent p

(
D̃ij |N

)
, i.e. the pdf of

D̃ij concerning wrong correspondences (N). Though choosing a suit-
able threshold, TD , somehow in the range [0, 0.2], assures the preser-
vation of the majority of inliers, it still brings in a large percentage of
false correspondences. Therefore, we further prune outliers by enforc-
ing geometric consistency constraints according to the Hough Voting

method proposed in [96], which, again, relies on the availability of re-
peatable LRFs attached to features. First, for each feature Fj in VJ , the
centroid CJ of VJ is expressed with respect to LRFj , i.e. the canoni-
cal reference attached to Fj , in order to obtain the set of LRF jJ(CJ),
where the notation LRF jJ(.) expresses the change of basis from the
global reference frame of VJ to LRFj . Then, for each pair of correspon-
dences (Fi, Fj), the change of basis from LRFi to the global reference
of VI , LRF Ii (.) is computed and applied to the transformed centroid of

34 Chapter 3. Pairwise registration by local orientation cues

VJ : LRF Ii
(
LRF jJ (CJ)

)
. In other words, for each pair of correspon-

dences, a candidate rototranslationRT ij (.) is estimated as the transfor-
mation that alignsLRFj toLRFi: RT ij (.) = LRF Ii

(
LRF jJ (.)

)
. This

is used to move the centroid CJ of VJ to the new position RT ij (CJ).
Correct correspondences (Fi, Fj) will vote coherently for the position
of CJ in VI , i.e. the estimated motions will tend to localize RT ij (CJ)

in a unique position within the 3D volume associated with VI , which is
referred to as Hough Space in [96].

To implement the Hough Space, we compute the centroid and standard
deviations of the x, y, z coordinates of the points in VI . The origin of
the Hough Space is given by the centroid and each dimension is taken
as large as 4 times the corresponding standard deviation, so as to con-
sider about 95% of the points of VI and neglect possible outliers far
away from the centroid. Moreover, the size of each dimension is further
enlarged by a factor fhough , to allow rotated centroids to fall outside the
tight bounding volume around VI . The thus defined volume is evenly
quantized into cubic bins of side Sbin. Each of the RT ij(CJ) votes
for the bin hit by the rototranslated centroid. Then, bin scores are com-
puted by accumulating the votes falling into the 3×3×3 neighbourhood
centered at each bin. Eventually, the bin showing the highest score is
selected in order to sift out the correspondences to be used to estimate
the rigid motion to align the views.

The matching process based on the distance D and the Hough voting
stage contribute synergistically to effective filtering of wrong corre-
spondences. For example, considering again the experiment of Fig. 3.6,
when exacting 2000 random features from each partial view of Bunny,
the matching stage sifts out, on average, 2.66% of all the FI × FJ can-
didate pairs, i.e. 106768 correspondences, whereas the further pruning
performed by the Hough voting delivers about 0.54% of the pairs pro-
vided by the matching process, so to forward to the final stage of our
pipeline only 561 correspondences on average.

Chapter 3. Pairwise registration by local orientation cues 35

3.1.4 Rigid motion estimation

Nonetheless, such pairs are not guaranteed to be inlier correspondences
only. Indeed, for the sake of memory efficiency, the method in [96]
relies on a 3-dimensional (translation only) rather than 6-dimensional
(translation plus rotation) Hough Space, thereby allowing, in principle,
different rigid motion hypotheses to vote for the same bin. Likewise,
quantization effects may determine different hypotheses to collapse into
a single bin. Therefore, given the correspondences associated with both
the highest bin and its neighboring bins, we carry out the final rigid mo-
tion estimation stage robustly by applying the standard Absolute Orien-
tation algorithm proposed in [43] within the RANSAC framework [33].

Finally, it is worth highlighting that the idea of matching 3D points
based on LRFs has been proposed also in [71]. However, their work
is not related to pairwise registration but instead aims at establishing
correspondences between the points belonging a single mesh for the
sake of symmetry detection. Accordingly, they deploy the curvature
tensor defined in [4] as LRF and the ratio between the two principal
curvatures as matching cue. The experimental evaluation reported in
the next chapter demonstrates that, differently from our approach, the
curvature-based LRF and matching cue adopted in [71] are not effective
for the task of pairwise registration.

3.2 Feature Extraction

The registration pipeline described so far is agnostic with respect to the
kind of features extracted in the first stage. As such, one may rely on
random extraction of feature points or use any of the several 3D detec-
tors proposed in literature (see [97] for a recent survey and evaluation
of prominent proposals).

36 Chapter 3. Pairwise registration by local orientation cues

Unfortunately, the evaluation in [97] highlights that the computational
efficiency of all considered proposals is by far unsatisfactory, so there
is no algorithm that may be plugged into our pipeline without exceed-
ingly slowing down the computation. Moreover, existing detectors rely
on maximizing a specific saliency criterion which inherently privileges
certain shape structures so that, generally, features tend to cluster in
some areas rather than scatter uniformly across a view. However, for the
purpose of accurate estimation of the rigid motion between two views, it
is highly beneficial to rely on features as uniformly distributed as possi-
ble across the views. Accordingly, we conjecture that a suitable feature
detector for coarse registration should better provide a good trade-off
between saliency and uniformity rather than maximize saliency.

Based on the above considerations, investigation on suitable features
to be fed into our pipeline seems to call for the design of a novel 3D
detector that would provide rapidly salient and uniformly distributed
points. First of all, this requires reasoning about the saliency criterion.
Unlike mainstream work on the subject, our coarse registration pipeline
is rooted only on the ability to compute LRFs repeatably despite nui-
sances. Accordingly, a suitable saliency criterion would capture this
ability: "good" features for our pipeline are points where the LRF can
be computed repeatably. We dub orientability such a peculiar saliency
criterion3.

In the LRF algorithm proposed in [77], the repeatability of the x axis
is significantly dependent on the stability of the z axis, as the latter
provides the reference plane to compute the signed distances that then
would define the former. Thus, as the stability of the z axis is clearly
highest at points located in flat surface areas, it seems that with the
method in [77] there is an inherent relationship between flatness and
orientability. To validate this intuition, we performed a qualitative ex-
perimental study aimed at comparing the flatness and orientability of

3Our notion of orientability differs from the use of this term to denote the property
of consistently disambiguating the sign of the normal at every point of a surface.

Chapter 3. Pairwise registration by local orientation cues 37

surface points. Given a surface point p together with its normal np,
the flatness at p is higher as the normals at the points within a neigh-
bourhood of p are more closely aligned to np. Therefore, we define the
flatness at p as the mean cosine between np and the normals at the points
within a sphere of radius Rf centered at p. As the nuisance inherently
associated with feature extraction is imprecise localization of feature
points, the resilience to be captured by a proper orientability notion
should address this type of nuisance. Thus, given a point p, the cor-
responding points pj in the other views of a dataset are determined by
applying ground truth rigid motions between the views (ground truth in-
formation is available for all the considered datasets). According to the
above mentioned notion, p would exhibit high orientability whenever
the LRF computed at p is correctly aligned to those computed at points
pj despite localization of the latter turning out imprecise. Hence, to
capture this property, we compute the LRF at all the points, pk,j falling
within a neighbourhood centered at each of the pj , so as to then establish
whether the LRF computed at p is correctly aligned or not to that com-
puted at each pk,j (i.e. aligned or not to that computed at corresponding
though imprecisely localized features). To establish whether any two
such LRFs are correctly aligned or not we rely on the repeatability crite-
rion proposed in [77] and, accordingly, calculate the orientability index
at p as the percentage of correctly aligned LRFs.

Fig. 3.7 allows a visual comparison of the flatness and orientability

maps of a partial view of the Bunny object of the Stanford Repository
[26]. As a first consideration, the left map shows that our measure of
flatness captures the curvature of the shape properly. Besides, as for the
orientability map, it is worth highlighting the high orientability of the
majority of points as a further proof of the effectiveness of the method
adopted to compute LRFs. But more importantly, the comparison shows
clearly that there exists a relationship between flatness and orientabil-
ity. In particular, many red points in the left map turn out red also in the
right one: the repeatability of the LRFs is usually poor at surface areas
featuring a pronounced curvature so that the computation of the z axis

38 Chapter 3. Pairwise registration by local orientation cues

FIGURE 3.7: Flatness Vs Orientability. On the left the flatness map of a view,
on the right the corresponding orientability map. The green colour represent
flat and highly-orientable points respectively, red points feature high curvature

in the flatness map and poor LRF repeatability in the orientability map.

turns out to be unstable (e.g. the ears of the Bunny).

As in real registration settings the rigid motions between views are ob-
viously not available (we indeed seek to estimate them!), the defined
orientability index cannot be measured directly in practice. Hence, the
idea stemming from our analysis is to try to extract flat points instead,
as with respect to our pipeline they are more likely to be salient (i.e.
orientable) than high-curvature ones. As such, whereas most detectors
present in literature are based on extraction of points exhibiting high
curvature, we take, somehow paradoxically, just the opposite path. This
approach provides at least two additional benefits, though. Firstly, com-
putation of flatness is fast as it involves only inner products within a
small supporting neighbourhood (as shown in Table 4.1 a small Rf suf-
fices). Secondly, flat surface areas are less prone than high-curvature
ones to self-occlusions caused by out-of-plane rotations of the sensor.

The devised feature detector is described with the aid of Fig. 3.8. The
algorithm repeatedly extracts a random point pseed (shown in light green
in the zoom-in panel on the left side of the Figure). Then, the flatness
index is computed at all the points within a spherical support of radius
Rsearch centered at pseed (highlighted in yellow in the panel), so as to

Chapter 3. Pairwise registration by local orientation cues 39

FIGURE 3.8: Exemplar feature extraction by the proposed algorithm. The
zoom-in panel on the left shows the detection process at a glance: for each
randomly chosen seed point (in green), the flattest point (in fuchsia) in its
neighbourhood is extracted. The image on the right highlights the two-step
extraction process: the points selected by the first step are shown as black
smaller dots, while the final features provided by the second step as larger

ones.

pick-up as feature the point, pmax, turning out maximally flat (coloured
in fuchsia in the panel). To avoid further detections in the proximity
of already selected features, the points at a distance lesser than Rdiscard

from pmax (in purple in the panel) are pruned from the set of candi-
date feature points, and, alike, those around pseed according to Rdiscard

pruned from the set of candidate random seeds (in green in the panel).

The method continues to iterate until the percentage of discarded points,
either as potential feature, pmax, or random seed, pseed, gets higher than
a threshold, Tarea, which is tightly correlated to the fraction of the view
that one wishes to explore during the feature extraction process. As for
the requirement to trade-off between saliency and uniformity, random
extraction of seeds ensures feature points to be scattered throughout the

40 Chapter 3. Pairwise registration by local orientation cues

partial view, while the subsequent flatness maximization weighs in favor
of saliency. Regarding efficiency, the critical step of the algorithm con-
sists in gathering the points inside the support of radius Rsearch, which
needs to be large enough in size and thus may slow down the adopted
kd-tree search. To overcome this issue, we devised the two-step ap-
proach illustrated in the right image of Fig. 3.8. In the first step, the
method is applied to the whole view with a small radius, R1

search, to
search for maximally flat points around random seeds. Due to R1

search

being small, the first step efficiently subsamples the view so as to pro-
vide a subset of candidate flat points. The second step consists of run-
ning the process with a larger radius, R2

search, on the subsampled view
made out of the candidate features provided by the first step only. Ac-
cordingly, much fewer instances of the slower search do take place and
efficiency is not penalized. The termination threshold for the first step,
T 1
area, is set high enough to explore a large fraction of the input view,

whereas the threshold for the second step, T 2
area, represents the parame-

ter that actually controls the amount of extracted features points.

We performed comprehensive experiments to validate the improvement
brought in by the proposed feature extraction algorithm. In particu-
lar, we compared the performance delivered by our pipeline with fea-
tures provided by the proposed detector, random extraction (our initial
choice), Intrinsic Shape Signatures (ISS) [106] and MeshDOG [104].
According to the evaluation in [97], ISS and MeshDOG may be regarded
as prominent fixed-scale and adaptive-scale detectors, respectively. In-
deed, in their respective categories, both turn out to be the fastest and
rank quite high in terms of repeatability. We found that the pipeline
deploying the proposed detector delivers the best performance consis-
tently across datasets: it can align a higher number of view pairs, and,
in the event of similar registration rates, it comes out, on the whole,
the fastest. This is perhaps surprising, as one might guess that random
detection would deliver the highest efficiency. However, though our de-
tection scheme is obviously slower than random extraction, it provides

Chapter 3. Pairwise registration by local orientation cues 41

0

0.1

0.2

0 500 1000 1500

C
P

U
 t

im
e

(s
ec

)

N° feature points

MeshDOG

Random

Proposed

ISS

0

10

20

30

40

50

60

70

80

0 500 1000 1500

N
°

re
gi

st
ra

ti
o

n
s

N° feature points

MeshDOG

Random

Proposed

ISS

0.5

1

1.5

2

2.5

3

0 500 1000 1500

C
P

U
 t

im
e

(s
ec

) MeshDOG

Random

Proposed

ISS

FIGURE 3.9: Comparison on the Buste dataset between proposed detector,
random extraction, ISS and MeshDOG. In both charts the figure of merit is
plotted as a function of the mean number of extracted feature points. The
top chart reports the number of view pairs aligned correctly by our pipeline,
whereas the bottom one shows the mean computation time required to align
two views. To better compare our proposal to the random detector, the working
points providing the highest number of correct alignments are highlighted by
dots in both charts. Chapter 4 explains how the figures of merit plotted in the

two charts are calculated.

42 Chapter 3. Pairwise registration by local orientation cues

better features, that is, according to our saliency notion, inherently en-
dowed with more repeatable LRFs, so that a smaller amount of features
needs to be forwarded to the next stages of the pipeline, which makes
the overall computation faster.

The above described behavior is well pictured in Fig. 3.9, which shows
the results regarding the registration of all the view pairs composing the
Buste dataset (see sec. 4.1). The charts report the number of correctly
aligned view pairs (top) and the mean CPU time to align two views (bot-
tom) as a function of the average number of feature points detected in
the partial views, which can be controlled by the user through a param-
eter in each of the four considered detectors. The top chart highlights
how, regardless of the chosen number of extracted features, the pro-
posed detector significantly improves the effectiveness of our pipeline
with respect to the other detectors. It is worth highlighting here that, al-
though any feature detection algorithm is inherently more repeatable
than the random detector, the kind of saliency deployed by ISS and
MeshDOG does not seem particularly suited to our pipeline. Indeed, the
improvement provided by ISS over random extraction is modest on av-
erage and also not consistent across working points, whereas using the
keypoints extracted by MeshDOG leads to lower registration rates than
randomly extracted features. This may be explained by observing that,
as also illustrated in Fig. 2 and Fig. 5 of [97], ISS and MeshDOG tend to
fire on high-curvature structures, like those depicted in red in Fig. 3.7,
than on flattish areas, as instead would be required by the saliency no-
tion deployed in our pipeline. As for the bottom chart of Fig. 3.9, at first
sight the computational efficiency would seem somehow comparable
between our detector and random extraction, with ISS and MeshDOG

definitely turning out to be slower4. However, a deeper analysis reveals
that our detector can improve the efficiency of the pipeline. Indeed, as

4Due to software compatibility issues we could not run MeshDOG on the machine
used to measure the computation times of the other detectors. Thus, the timings for
MeshDOG reported in the bottom chart of Fig. 3.9 represent our best estimation of the
actual efficiency of the algorithm.

Chapter 3. Pairwise registration by local orientation cues 43

FIGURE 3.10: LRFs computed at corresponding features found on a portion
of Neptune’s hand. The left image deals with randomly extracted features, the
right image with features detected by our algorithm. Both images show the
LRFs computed in VI together with those computed in VJ and transformed
into VI according to the ground truth rigid motion. Misaligned LRFs are high-

lighted by the pink circles.

highlighted by the two dots in the top chart, choosing the feature quan-
tity that yields the highest number of correctly aligned pairs for both the
random detector and our detector, we end up requiring 1200 features (so
to align 61 pairs) and 525 features (so to align 75 pairs) respectively. As
pointed out by the dots in the bottom chart, at these two working points
the proposed detector does render the pipeline faster than random ex-
traction of features.

Finally, in Fig. 3.10 we show a qualitative experiment aimed at com-
paring the repeatability of the LRFs computed at random features and
feature points detected by our algorithm. We consider two views, VI
and VJ , of the Neptune dataset (see sec. 4.1), extract feature points by
both methods and detect correspondences based on the ground truth

alignment transformation. Then, for the two methods, we compute the
LRFs for each pair of corresponding features and, deploying again the
ground truth rigid motion, draw both the LRFs in one view (i.e. VI):
the two LRFs drawn at each point will look more aligned as they have

44 Chapter 3. Pairwise registration by local orientation cues

been computed more repeatably in the two views. Accordingly, in the
right image (our detector) all LRF pairs look correctly aligned, whilst
notable misalignments can be perceived in the pairs depicted in the left
image (random detector).

Chapter 4

Pairwise registration:
Experimental Evaluation

Even though the literature on pairwise registration is mature and pro-
vides a great number of remarkable works, surprisingly, they lack ade-
quate experimental evaluation. Indeed, between all those cited in Chap. 2,
most papers present experiments on data acquired with a sole type of
sensor, while just a few of them consider more than one modality. Even
more questionably, no paper attempts a comparison to other proposals.
Usually, only the assessment between different variants of the proposed
algorithm is presented and, sometimes, no quantitative results are pro-
vided. The only exception concerns [70], which considers three well-
known datasets and compares the proposed method to a pipeline based
on Spin Images. Furthermore, though a significant number of surveys
have been published (see e.g. [92]), only one experimental evaluation
has been issued ([82]). Unfortunately, it considers proposals that nowa-
days would be regarded as baseline methods. Such condition of things
might be due to the lack of an acknowledged benchmark, let alone stan-
dard methodologies, on which to ground the evaluation process. This
issue is worsened by the need to obtain and make proper use of the au-
thor’s original implementation for the sake of fairness in the evaluation,
as well as by that of running lengthy processes to tune, on diverse kinds
of data, the many parameters which typically characterize coarse regis-
tration algorithms. As a result, we found it exceedingly difficult, if not

45

46 Chapter 4. Pairwise registration: Experimental Evaluation

impossible, to shed light on which coarse registration pipelines are most
effective and under which conditions.

This chapter, therefore, describes an extensive experimental evaluation
we carried out on a large ensemble of datasets acquired with different
sensors and shows how our method easily adapts to the different modal-
ities. Moreover, we compare quantitatively our proposal to a pipeline
relying on the popular Spin Image descriptor as well as to two more
recent methods, the comparison neatly proving that our algorithm is ca-
pable to align many views that can not be handled by the three other
considered methods. Regarding the Spin Image pipeline (SI), proposed
in [50], we have used the implementation available in the Mesh Tool-

box. Feature matching relies on the normalized linear correlation co-
efficient between Spin Images, with correspondences then filtered on
the basis of the similarity measure and partitioned into groups geomet-
rically consistent with respect to their Spin Map distances. Each such
group defines a rigid transformation which is further verified by ICP so
to finally select the rigid motion that better aligns the two views. Con-
cerning more recent methods, the former is the 4-Points Congruent Set

algorithm (4PCS) by Aiger et al. [2]. It randomly extracts a quadruple
of coplanar points from view VI and searches for those quadruples in VJ
that can be transformed into the quadruple in VI through a rigid motion.
For each candidate, the whole view is transformed and the number of
points in VJ that are close enough to a point in VI is counted. The pro-
cess is repeatedly run with different random quadruples of VI , so that
the rigid transformation racking up the largest set of points is eventually
selected. The latter proposal is a recent local approach introduced in
[15] (BSL12) which works on range images only. After scale-invariant
detection, feature points are encoded in a cyclic description which im-
poses the matching process to shift and match the descriptor as many
times as the number of angular subdivisions. Then, correspondences are
subject to a geometric consistency check based on rigidity constrains,
and a final RANSAC step ends up with the estimated rigid motion.

Chapter 4. Pairwise registration: Experimental Evaluation 47

Hence, we compare the performance of our method, referred to here
as LRF, to those yielded by SI [50], 4PCS [2] and BSL12 [14, 15].
The original implementations of the three algorithms have been kindly
provided by the authors who also helped us a great deal through per-
sonal communications to tune the parameters of their methods properly.
However, as far as SI is concerned, instead of describing all the points
in one view and a subset in the other, as done in the original code,
we have introduced a slight modification in order to execute random
extraction of keypoints in both views. This has been necessary as oth-
erwise the pipeline would have resulted exceedingly slow, making it
impossible to complete most of the experiments. Indeed, even with the
introduced modification, it turned out infeasible to follow out the ex-
periments on the datasets comprising the largest number of views, i.e.
OilPump, Venus and Shell.

4.1 Datasets

Kinect

Mario (13) Squirrel (15) Frog (20) Duck (16) Room (18)

Space time stereo

Mario (18) Squirrel (18) Frog (21)

AIM@SHAPE

Amphora (14) Children (26) Neptune (15) Fish (10) MasterCylinder (28) OilPump (56) Blade (11) WoodChair (15) Buste (16) Glock (8)

Stanford

Bunny (10) Dragon (20) Armadillo (23)

Open Technologies

Angels (8) Shell (98) Venus (61)

FIGURE 4.1: Thumbnails of the 24 datasets considered in the experimental
evaluation. For each dataset the number of views, M , is reported between

brackets.

An essential trait of a registration pipeline is to work successfully with
different sensing modalities and under various real working conditions
and nuisances. For this reason, as mentioned above, we evaluate the
considered pipelines on the extensive collection of datasets detailed in
Figure 4.1. Each dataset consists of a number of partial views for which

48 Chapter 4. Pairwise registration: Experimental Evaluation

normals are computed and the ground truth rigid motion between each
view pair is available. Three of the datasets are taken from the very pop-
ular Stanford Repository [26], namely Bunny, Armadillo and Dragon,
all acquired with a Cyberware 3030 MS laser scanner. Many other
datasets come from the AIM@SHAPE Repository1, and have been ac-
quired with different scanners such as the very accurate Minolta VI910
(Amphora, Children, Neptune, Fish, MasterCylinder, OilPump, Blade,
WoodChair), the Roland LPX-250 (Buste), and the low quality Mi-
nolta VI700 (Glock). Then, to extend the evaluation to different sens-
ing modalities, we acquired four datasets in our laboratory by means
of a Kinect device (MarioKinect, DuckKinect, FrogKinect and Squir-

relKinect) and three datasets by a Spacetime Stereo set-up [28, 105]
(MarioStereo, SquirrelStereo, FrogStereo). All our datasets were ac-
quired by rotating the objects in the scene whereas the sensors were
kept still. Then, we performed a background subtraction so as to hold
only the partial views of the object. After that, we performed a coarse
registration and, finally, we carried out a fine global registration by ap-
plying the Scanalyze tool. As a coarse registration algorithm should
provide a rototranslation sufficiently correct to let the subsequent fine
registration converge, such ground truth is sufficiently precise for vali-
dating the performance of the compared methods. We plan to render
the datasets acquired in our Lab and the code of our method avail-
able for research purposes through the project web page. Moreover,
we considered the fr1/room sequence from the RGB-D SLAM Bench-

mark[90], which deals with the reconstruction of an indoor scene ac-
quired by a Kinect. In particular, we sampled the sequence every 10
frames so as to obtain a dataset comprising 18 partial views, referred
to as Room in Figure 4.1. Finally, we added to the ensemble the three
datasets scanned by an high-precision Open Technologies R© system used
for the experimental evaluation in [14, 15], i.e. Angels, Venus and Shell.
The considered datasets feature different noise levels and point densi-
ties. Kinect datasets, and Glock alike, show the worst quality, with very

1http://shapes.aim-at-shape.net

http://shapes.aim-at-shape.net

Chapter 4. Pairwise registration: Experimental Evaluation 49

noisy scans especially along the line-of-sight direction; Open Technolo-

gies R© datasets, on the contrary, consist of very detailed and clean scans;
Spacetime Stereo allows scans to be obtained with good precision and
resolution. Moreover, every dataset comprises a different number of
views and different degrees of overlap between them. OilPump, Venus

and Shell respectively consist of, 56, 61 and 98 scans. On the other
hand, Glock, Angels, Bunny and Fish include from 8 to 10 views. Even
the physical objects they represents are quite different. Open Technolo-

gies R© datasets deal with large objects, which have been scanned in the
context of cultural heritage applications. Conversely, Stanford objects
are extremely small. Furthermore, together with complex, rich of fea-
tures objects, such as Armadillo, Dragon and Mario, we considered a
set of mechanical parts (MasterCylinder, OilPump, Blade) as well as the
WoodChair and Room datasets, so as to also address simple shapes and
large flat surfaces that, as such, often turn out to be hard to reconstruct
due to the scarcity of features. As range images are available only for
the Stanford, Open Technologies R©, Kinect and MarioStereo datasets,
we have tested BSL12 only on this subset of datasets.

4.2 Methodology

The goal of a coarse registration algorithm is, in practice, to provide
an alignment sufficiently correct to then permit a successful fine regis-
tration by ICP. Furthermore, even if the task is not subject to real-time
constraints, execution time becomes relevant, especially when dealing
with datasets comprising large sets of partial views. Finally, for those
view pairs that have been coarsely registered, the accuracy of the align-
ment can be taken as an additional index of the quality of the algorithm.
Given a dataset made out of M views, we consider all the N = M(M−1)

2

possible view pairs {VI , VJ}, and, for each of them, attempt to estimate
the rigid motion RT (VJ) that aligns VJ to VI by means of the coarse
registration algorithm under evaluation. Then, Generalized ICP [84] is

50 Chapter 4. Pairwise registration: Experimental Evaluation

Generalized ICP

𝑁 𝜀 𝑅

10 0.1 8 ∙ 𝑚𝑟

LRF

𝑅𝑓 𝑅𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑅𝑠𝑒𝑎𝑟𝑐ℎ
1 𝑅𝑠𝑒𝑎𝑟𝑐ℎ

2 𝑇𝑠𝑒𝑎𝑟𝑐ℎ
1 𝑇𝑠𝑒𝑎𝑟𝑐ℎ

2

5 ∙ 𝑚𝑟 2 ∙ 𝑚𝑟 2 ∙ 𝑚𝑟 20 ∙ 𝑚𝑟 0.9 0.9

𝑅𝑧 𝑅𝑥 𝑇𝐷

5 ∙ 𝑚𝑟 [10, 250] ∙ 𝑚𝑟 0.01

𝑓ℎ𝑜𝑢𝑔ℎ 𝑆𝑏𝑖𝑛 𝑇𝑅𝐴𝑁𝑆𝐴𝐶 𝑁𝑅𝐴𝑁𝑆𝐴𝐶 𝑃𝑅𝐴𝑁𝑆𝐴𝐶

1.4 2 ∙ 𝑚𝑟 8 ∙ 𝑚𝑟 1000 0.99

BSL12

𝜎 𝑁𝑜𝑐𝑡𝑎𝑣𝑒𝑠 𝑁𝑚𝑎𝑝𝑠 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

[0.5, 4.0] 3 2 2

𝑀 𝐿 𝑄 𝑈

3 12, 24, 36 150 150

4PCS

𝛿 𝑓 𝑇 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 𝐷𝑛𝑜𝑟𝑚

[0.1, 0.5] 0.7 1.0 300, 500, 700 30.0

SI

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 𝑆𝑏𝑖𝑛 𝑁𝑏𝑖𝑛 𝑇𝑎𝑛𝑔𝑙𝑒

[1000, 4000] 1, 2, 3 ∙ 𝑚𝑟 20 𝜋 2

𝜆 𝑇𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑇𝑐𝑜𝑟𝑟 𝑇𝑣𝑜𝑡𝑒 𝑇𝑔𝑐 𝑇𝐼𝐶𝑃

3 3 0.5 0.5 0.1 4.0 ∙ 𝑚𝑟

TABLE 4.1: Parameters for the four methods and Generalized ICP.

applied to the pair {VI ,RT (VJ)}, and the resulting view ICP(VJ) is
compared to GT (VJ), the latter being the view obtained by transform-
ing VJ according to the known ground truth rigid motion which aligns
VJ to VI . In particular, if the Root Mean Square Error (RMSE) between
ICP(VJ) and GT (VJ) is lower than 5 × mr , VI and VJ are judged as

Chapter 4. Pairwise registration: Experimental Evaluation 51

4PCS

𝛿 𝑓 𝑁𝑝𝑜𝑖𝑛𝑡𝑠

0.2 0.5 700

LRF

𝑅𝑓 𝑅𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝑅𝑠𝑒𝑎𝑟𝑐ℎ
1 𝑇𝑠𝑒𝑎𝑟𝑐ℎ

2

8 ∙ 𝑚𝑟 8 ∙ 𝑚𝑟 8 ∙ 𝑚𝑟 0.5

𝑅𝑥 𝑆𝑏𝑖𝑛 𝑇𝑅𝐴𝑁𝑆𝐴𝐶

150 ∙ 𝑚𝑟 6 ∙ 𝑚𝑟 7 ∙ 𝑚𝑟

BSL12

𝜎 𝐿

4.0 36

SI

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 𝑆𝑏𝑖𝑛 𝑇𝐼𝐶𝑃

5000 4 ∙ 𝑚𝑟 7 ∙ 𝑚𝑟

TABLE 4.2: Different values for Open Technologies R© datasets.

correctly registered by the algorithm under evaluation, otherwise a reg-
istration failure is recorded. In the event of successful registration, the
RMSE between RT (VJ) and GT (VJ) is also recorded for the purpose
of estimating the accuracy of the algorithm. Therefore, for each dataset
and algorithm we collect the following three measurements. N ◦ Regis-

trations, i.e. the number of correctly aligned view pairs; CPU time, i.e.
the average execution time to compute the rigid motion to align a view
pair (regardless the outcome being either success or failure); RMSE,
which represent the average accuracy (i.e. RMSE) across all correctly
registered view pairs. It is important to point out that N ◦ Registrations

is the key performance index that captures the ability of the algorithm
to handle view pairs featuring different degrees of overlap. The higher
is the registration rate, the more effective in aligning views sharing a
limited surface area is the algorithm.

52 Chapter 4. Pairwise registration: Experimental Evaluation

4.3 Parameters

As outlined in the introduction of this chapter, coarse registration al-
gorithms include many parameters which are hard to set properly. Al-
though default settings are typically suggested by the authors, more of-
ten than not these guidelines come from insights gained by running the
algorithm on one specific kind of data. Unfortunately, it turns out that
such "standard" values are unlikely to make the method equally effec-
tive on diverse data. Thus, running our evaluation using a fixed set of
parameters for each method would be unfair and also useless for shed-
ding light on the real limits and merits of the algorithms. On the other
hand, to sift out the best from a method in real working conditions, i.e.
new data and no ground truth, one should manually set many parame-
ters on a trial-and-error basis, which is simply infeasible. Therefore, we
believe that a method capable of working seamlessly on diverse kinds
of data should allow the user to get the desired result by setting just one
or two parameters by trial-and-error.

Based on these considerations we contacted the authors of the algo-
rithms involved in the evaluation and, following their indications, de-
fined proper default values for all the parameters but the two identified
as those most critically affecting performance, which we then tuned op-
timally on each dataset by an exhaustive grid search so as to maximize
the number of correct registrations, N ◦ Registrations. In particular, the
two parameters selected by authors of BSL12 are the Gaussian kernel
size, σ, to be varied in the range {0.5, 4.0} with 0.25 as step, and the
number, L, of angular subdivisions of the descriptor, with possible val-
ues 12, 24 and 36. As for 4PCS, their authors decided to span δ in
the range {0.1, 0.5} with increment 0.1 and three possible numbers of
extracted points Npoints (300, 500, 700). Finally, SI has been tested
by spanning the number of extracted keypoints, Npoints, in the range
{1000, 4000} with step 500 and trying three values (1, 2, 3) for the size
of the Spin Image bins. Likewise, we chose suitable defaults for all the

Chapter 4. Pairwise registration: Experimental Evaluation 53

parameters of our method but one, i.e. Rx, which was left free to vary
in the range {10, 250} with step 10 so to maximize N ◦ Registrations on
each dataset. Rx depends on the mesh resolution as well as on the extent
of the flat areas of the objects, and it turns out to be the only parameter
of our method that varies significantly across diverse data. Instead, the
tuning we performed on the other methods has shown that at least two
parameters affect their performance critically. Table 4.1 summarizes the
parameter values adopted for each method, together with those related
to Generalized ICP.

Open Technologies R© datasets are indeed very different from all the
other datasets considered in our evaluation, and in particular are char-
acterized by a far higher point density and size. Moreover, BSL12 has
been specifically designed to deal with this kind of data and therefore
the authors already tuned their parameters optimally for Open Technolo-

gies R© datasets. On the other hand, we found that the default settings
chosen for LRF, 4PCS and SI are less appropriate on these datasets.
Therefore, for the purpose of comparative evaluation, we found it fairer
to also allow the other three methods to determine their default settings
for these so diverse data. The authors of 4PCS kindly determined the
parameter values of their method, and we did so for LRF and SI. The
parameter values that turned out different from Table 4.1 are listed in
Table 4.2.

4.4 Results

The results of the evaluation are summarized in Table 4.3, with the
adopted color code (the darker the better for all the three indexes) help-
ing to catch, at a glance, the relative performance of the algorithms.
Accordingly, our proposal can align a larger number of view pairs with
almost all the datasets (21 out of 24). Moreover, in terms of accuracy,
our algorithm is only equaled by SI, despite the higher registration rate
implying considering more challenging pairs in the computation of the

54 Chapter 4. Pairwise registration: Experimental Evaluation

Amphora (63/91) 39 22 15 0.91 0.96 4.52 0.97 157.68 77.92

Children (152/325) 123 96 81 0.82 1.07 6.25 1.82 65.13 64.69

Neptune (34/105) 23 16 9 1.15 0.84 13.07 2.63 201.77 61.74

Fish (22/45) 16 12 9 1.40 2.38 8.75 1.58 61.53 2.29

MasterCylinder (245/378) 142 90 87 0.99 0.78 3.31 0.15 168.79 110.46

OilPump (941/1540) 719 -- 300 1.49 -- 5.38 1.35 -- 78.28

Blade (29/55) 21 10 14 2.01 1.70 7.29 1.64 34.02 18.48

WoodChair (58/105) 27 13 20 2.63 2.57 5.62 0.75 316.88 44.74

Buste (85/120) 69 43 49 1.90 2.81 9.04 0.18 314.37 46.79

Glock (16/28) 13 6 11 2.19 5.14 6.84 1.51 127.74 13.43

MarioKinect (39/78) 30 26 32 9 2.32 1.56 3.33 8.49 0.08 115.04 951.67 0.01

SquirrelKinect (62/105) 34 33 33 9 2.24 1.33 2.04 5.41 0.03 88.32 1312.83 0.05

FrogKinect (96/190) 72 47 54 29 2.14 1.63 3.48 7.92 0.23 159.06 392.15 0.10

DuckKinect (61/120) 43 39 39 15 2.28 1.98 3.99 9.02 0.21 110.29 25.49 0.10

Room (55/153) 40 24 25 32 5.42 7.04 7.16 13.21 7.02 70.02 118.41 0.34

MarioStereo (61/153) 58 44 57 38 4.10 4.03 6.44 9.66 0.65 136.28 19.94 0.10

SquirrelStereo (68/153) 44 34 33 2.77 3.43 4.74 0.54 112.68 358.96

FrogStereo (83/210) 70 37 63 3.19 3.12 5.73 2.11 252.65 221.57

Angels (18/28) 15 16 5 19 2.09 2.72 20.26 3.64 5.11 1074.31 386.86 0.58

Shell (822/4753) 620 -- 104 646 1.71 -- 22.32 3.24 1.21 -- 258.07 0.48

Venus (256/1830) 207 148 51 160 2.25 2.91 15.94 4.54 0.68 414.2 393.91 0.25

N° Registrations RMSE (mr) CPU time (sec)

LRF SI 4PCS BSL12 LRF SI 4PCS BSL12 LRF SI 4PCS BSL12

Bunny (31/45) 27 20 16 14 1.09 0.74 3.77 2.37 0.74 338.53 1177.54 0.17

Dragon (108/190) 98 65 70 36 1.50 0.80 3.40 3.04 0.39 235.69 780.49 0.11

Armadillo (141/253) 118 72 95 39 0.94 0.95 3.23 2.25 0.20 72.50 453.07 0.12

TABLE 4.3: N ◦ Registrations, RMSE and CPU time of the four methods on the
24 datasets considered in the evaluation. Darker colors denote, respectively, a
larger number of view pairs correctly registered, more accurate alignments and
faster computations. For each dataset, the number of view pairs that share at
least 10% of their surface as well as the number of tested view pairs, N , are

reported between brackets.

RMSE index. As for computational efficiency, BSL12 proves to be the
fastest method although our pipeline fairly competes, with 4PCS and SI
on the other hand turning out to be notably slower.

A more in-depth analysis of the results highlights that 4PCS overtakes
our proposal solely on MarioKinect and for a couple of view pairs.
Also, 4PCS obtains results comparable to ours on SquirrelKinect, Mar-

ioStereo and Glock, and gets good performances, in general, on Kinect

and Spacetime Stereo datasets. However, 4PCS seems less suited to
high resolution datasets such as those by Open Technologies R©. Nonethe-
less, it is important to recall that, for each dataset, our evaluation pro-
vides the result that maximizes the registration rate, regardless of the
associated computation time. By comparing the CPU time of LRF

Chapter 4. Pairwise registration: Experimental Evaluation 55

and 4PCS on MarioKinect, SquirrelKinect, MarioStereo and Glock, it
is evident that 4PCS spends too much computational effort to obtain
these high registration rates. Had the tuning process taken into account
constraints on practically acceptable execution times, the registration
rates of 4PCS would have turned out notably lower. It is worth observ-
ing that, between all datasets, Neptune is the one featuring the highest
differences of point density between the views, as these include both
close-ups on the head and wider scans around the body. The compar-
ison between the performance of 4PCS and LRF on Neptune proves
that significant benefits can be achieved by the latter, which is designed
to handle point density variations robustly. As for BSL12, it turns out
to be the best method on high resolution and clean data such as Open

Technologies R© datasets, i.e. the kind of data for which the method has
been designed, tuned and tested. Kinect data lies exactly on the oppo-
site side: low resolution and very noisy. Interestingly, Table 4.3 shows
BSL12 to be much less effective on such diverse kind of data. It is also
worth pointing out that on the Venus dataset LRF obtains a registration
rate higher than BSL12. The peculiar cylindrical shape of the object
causes acquisitions which involve mainly out-of-plane rotations of the
sensor. On the contrary, the Angels object, a bas-relief, and Shell, ac-
quired on one side only, permit a higher number of simpler in-plane
rotations of the acquisition system. BSL12 relies on matching feature
descriptors computed on 2D supports defined on range images: such
kind of supports capture different portions of the physical space around
a feature point due to out-of-plane rotations of the vantage point, which
inevitably renders feature matching less effective. Differently, LRF re-
lies on 3D supports, which are inherently invariant to any rigid motion
of the sensor. Finally, SI provides registration rates similar to 4PCS
on the low-precision Kinect datasets, and it seems to possess the abil-
ity to achieve good performance on the accurate Open Technologies R©

datasets, although this observation relies on the results pertaining the
Angels and Venus datasets only. Generally speaking, even though SI
does not turn out to be the best method on any dataset, it demonstrates a

56 Chapter 4. Pairwise registration: Experimental Evaluation

fair behavior across all the diverse sensing modalities considered in the
evaluation.

The RMSE values reported in Table 4.3 vouch that the highest accura-
cies are obtained by our proposal and SI. As for the SI pipeline, the high
accuracy is likely to be due to the verification stage that refines the fi-
nal alignment through ICP. Instead, we ascribe the high accuracy of our
proposal to the large quantity of uniformly distributed correspondences
that survive the filtering stages of the pipeline and jointly participate in
the final estimation of the rigid motion. This helps keeping the RMSE

low across the entire surface acquired by a partial view.

Concerning computational efficiency, all the experiments were conducted
on a PC equipped with a 3.50 GHz Intel i7 CPU and 16 GB RAM.
The results show that the fastest method is BSL12, whereas, usually,
4PCS and SI spend conspicuously higher times to align views. How-
ever, BSL12 is optimized to work on multi-core architectures whilst our
proposal exploits a single core so far. Moreover, a registration pipeline
based on range images is inherently faster than one working on points
clouds, due to the former deploying the lattice provided by the image
to find the neighbours of a feature, the latter requiring a slower kd-tree
search. Thus, the efficiency of our pipeline, which is comparable to
that of BLS12, is due to the purposely devised feature extraction and
inexpensive feature matching approaches.

As anticipated in Section 3.1, although in a different domain, the idea
of matching 3D points based on a scalar cue derived from LRF com-
putation can be found also in [71]. Thus, to highlight how the adopted
repeatable LRF [77] and proposed matching cue are crucial ingredients
in the design of our pairwise registration pipeline, we devised an exper-
iment aimed at plugging into our method the LRF computation (curva-
ture tensor) and matching cue (ratio of principal curvatures) proposed
in [71], so to then comparatively ascertain performance (curvature ten-
sors are obtained by means of the original implementation, kindly pro-
vided by the authors, of the algorithm used in [71] and proposed in [4]).

Chapter 4. Pairwise registration: Experimental Evaluation 57

For the sake of fairness, instead of employing our detector of locally
flat keypoints, we rely here on randomly extracted feature points and
report the results for different numbers of extracted features. As for
computation of the adopted LRF [77], for each dataset considered in
the experiment we use the same support radius as in Table 4.3 and keep
the matching threshold as in Table 4.1 (TD = 0.01) independently of
the number of extracted features. Instead, for the method proposed in
[71], we specifically tuned the support radius and matching threshold
for each number of extracted feature points so as to report here the best
results. The N ◦ Registrations performance indexes on three datasets
are shown in Table 4.4. The results highlight clearly that the choice
of the proper cues to compute and match LRFs is key to determining
the registration rates provided by our pipeline. Indeed, we argue that
whereas our approach allows the computation of the LRF on wide sup-
ports, the estimation of the principal curvatures forces the use of small
supports that, as such, can hardly capture distinctive shape information
around a keypoint. In addition, features related to pointwise curvatures
are known to be susceptible to sensor noise. Finally, in the matching
stage, the Dmax feature results to have more discriminative power than
the k1/k2 score based on curvatures.

MarioKinect Buste Angels

Mitra LRF Mitra LRF Mitra LRF

500 6 20 500 18 55 500 0 7

1,000 9 26 1,000 23 60 1,000 1 10

1,500 9 27 1,500 23 60 1,500 1 9

2,000 8 25 2,000 23 59 2,000 3 11

3,000 7 27 3,000 23 64 3,000 3 12

TABLE 4.4: Comparison between our proposed pipeline (LRF) and the
pipeline (Mitra) that would be achieved by computing and matching local
reference frames according to [71]. The Table reports the N ◦ Registrations
on three datasets (MarioKinect, Buste, Angels) for different quantities of ran-

domly extracted features.

58 Chapter 4. Pairwise registration: Experimental Evaluation

Once all the pairwise rigid motions are estimated, it is possible to align
the views in a unique reference frame. Based on the pairwise registra-
tions provided by our pipeline, we exploit the framework of [6] to get
a global, though coarse, reconstruction by determining a spanning tree
where the edges join the view pairs that maximize the overlap area. We
apply this process to two Open Technologies R© datasets and two Kinect

datasets. The results are depicted in Fig. 4.2, Fig. 4.3 and Fig. 4.4. Due
to both the acquisition quality of the Open Technologies R© datasets and
the accuracy of our pipeline, the views come out finely aligned, even
though no ICP-based fine registration is run downstream. Conversely,
for DuckKinect and FrogKinect, we then also run the Scanalyze tool
to get a global refinement of the registration and the Poisson Recon-

struction algorithm [53] to obtain the final 3D models. Although Kinect

acquisitions are noisy and inaccurate, the results are worthy.

FIGURE 4.2: Registration of the Venus de Milo by alignment of 61 views and
about 50 million points.

Chapter 4. Pairwise registration: Experimental Evaluation 59

FIGURE 4.3: Registration of the Shell by alignment of 98 views and about 72
million points.

FIGURE 4.4: Reconstructions of DuckKinect and FrogKinect. Top: initial
disarranged views. Center: coarse reconstructions provided by our pipeline.
Bottom: final meshes attained by refining coarse reconstructions by Scanalyze

and then running Poisson Reconstruction.

Chapter 5

RGB-D Mobile Visual Search

As discussed in the introduction, the foreseeable advent of depth sens-
ing on mobile devices at a significant scale may pave the way to a new
generation of mobile applications able to exploit 3D (i.e. shape) infor-
mation. In particular, in this thesis, we are interested in investigating
on whether and how Mobile Visual Search architectures may benefit of
depth sensing capabilities. Accordingly, the next two chapters propose
an investigation on how to encode both appearance and depth infor-
mation to obtain compact binary codes that properly describe RGB-D
images in Mobile Visual Search scenarios. More precisely, this chapter
describes a suitable architecture and proposes different approaches for
carrying out the stages involved in the processing flow. Next chapter re-
ports a comprehensive experimental analysis aimed at establishing the
best configuration of the pipeline and, in particular, at which level of the
flow appearance and shape information should better be merged.

Although, to the best of our knowledge, this is the first work that pro-
poses an RGB-D Visual Search engine amenable to mobile applications,
research on object recognition over the past years has yielded a large
body of work that leverages on RGB-D sensing [58, 12, 103, 9, 88, 72,
39]. Unfortunately, all these proposals rely on a computational flow
unsuited to Mobile Visual Search. Indeed, they first encode the RGB
and depth images into lengthy representations: e.g., in [88], Socher et

61

62 Chapter 5. RGB-D Mobile Visual Search

al. stack a recursive neural network on a layer of CNN to build a fea-
ture vector of 32,000 elements, whereas in [12] the resulting descriptor
is as large as 188,300. Then, this rich description feeds a classifier,
such as a SVM or a Random Forest, that, depending of the task, rec-
ognizes either the object category or instance associated with image
content. As already pointed out, though, in Mobile Visual Search sce-
narios compactness of description is at least as key as distinctiveness.
Furthermore, a classifier is confined to recognition of learned classes
only and would require a typically expensive training process to be able
to work with new ones. Conversely, a Visual Search engine should
feature far higher flexibility so to enable easy and fast updating of the
database of images seamlessly handled by the application. Thus, a sim-
ilarity search approach dealing with matching the query into a database
of candidates images is more suited to Mobile Visual Search scenarios
than a trained classifier, as also vouched by the reference architecture
established within the Compact Descriptors for Visual Search (CDVS)
[1] proposal, which is likely to become part of the MPEG-7 standard.

Accordingly, our architecture grounds on an such approach, as depicted
in Fig. 5.1. Given an RGB and depth image pair, the pipeline ex-
tracts a set of local descriptors for representing both appearance and
shape information. The subsequent stage aggregates the local descrip-
tors into a global encoding of the whole image which is then compressed
into a binary description through a similarity-preserving hashing stage.
Then, the binary code is sent to the server where it is matched against
a database of descriptions in order to find the most similar image. Be-
sides such established paradigm dealing with aggregation of local fea-
tures into a global representation, we also considered an approach based
on deep neural networks that avoids the computation of hand-crafted
features in favor of a learned global representation of the image (see
Fig. 5.2).

Chapter 5. RGB-D Mobile Visual Search 63

Local
description

Global
encoding

Binary
hashing

Binary

description

Client

Server database

Binary description Obj 0 View 0

Binary description Obj 0 View 1

Binary description Obj 0 View N

Binary description Obj 1 View 0

Binary description Obj 1 View 1

Binary description Obj 1 View N

Binary description Obj N View 0

Binary description Obj N View 1

Binary description Obj N View N

Visual search query

Visual search result

FIGURE 5.1: Outline of the proposed RGB-D Visual Search engine architec-
ture.

PCA
Binary

hashing
Binary

description

Client

FIGURE 5.2: Processing flow of the client deploying deep neural networks.

5.1 Local description

5.1.1 SIFT

As a baseline local description approach we use SIFT1 [65], which de-
tects keypoints through DoG and produces descriptions of length D =

128. We apply SIFT on intensity images without any preprocessing,
whereas depth images are rescaled in the range [1, 255], reserving the
0 value to denote invalid depths. To isolate depths belonging to the
searched object, we modeled the distribution of depths of database im-
ages by a gaussian, then we linearly rescaled depths falling within 2×σ
from the gaussian mean and saturated all the others.

5.1.2 Dense SIFT

To investigate on whether uniform sampling of features may turn out
more beneficial than keypoint detection to Visual Search applications,
we compute SIFT1 descriptors on 16×16 patches sampled across a reg-
ular grid.

1SIFT and Dense SIFT features are computed by the OpenCV implementation.

64 Chapter 5. RGB-D Mobile Visual Search

5.1.3 Kernel Descriptors

Given the excellent results reported on a variety of RGB-D recognition
tasks, we have considered the RGB-D Kernel Descriptors introduced in
[11, 10]. Kernel descriptors are a generalization of descriptors based
on orientation histograms, such as SIFT and HOG, which may suffer
from quantization errors due to binning. Kernel descriptors overcome
this issue by defining the similarity between two patches through ker-
nel functions, referred to as Match Kernels, that average out across the
continuous similarities between pairs of pixel attributes within the two
patches. Local description is performed on patches sampled across a
regular grid, with each patch represented by a 200-dimensional feature
vector. The authors propose 8 types of kernel descriptors by defining
match kernels for different patch attributes such as intensity and depth
gradient, local binary patterns and object size. In our experiments we
used the C++ implementation made available online by the authors,
which permits to apply 4 types of Kernel Descriptors2. In particular,
appearance information is described by kernels dealing with Intensity

Gradients and Color, while shape information is captured by kernels
based on Depth Gradients and Spin Images.

5.2 Global encoding

We compared the following three state-of-the-art methods for the global
encoding of the local descriptors extracted from the image.

5.2.1 VLAD

The method, introduced in [47], learns at training time a set of NC vi-
sual words via k-means clustering in the space of the local descriptors

2http://www.cs.washington.edu/robotics/projects/kdes/

http://www.cs.washington.edu/robotics/projects/kdes/

Chapter 5. RGB-D Mobile Visual Search 65

extracted from the training database. Let X = {xt, t = 1...T} be a
set of local descriptors extracted from a test image at encoding time.
For each local description xt, of length D, the nearest visual word ci is
found and the vector xt−ci is computed and associated to ci. Therefore,
for each visual word ci, the associated vectors xt − ci are summed to
form the vector ei. Finally, all the ei are juxtaposed to form the global
D ×NC dimensional representation of the image.

5.2.2 Fisher kernel

In [46], Jaakkola and Haussler introduced Fisher kernels with the aim to
combine the power of discriminative classifiers with the ability of gen-
erative models to handle representations comprising a variable number
of measurement samples. The encoding vector is the gradient of the
samples log-likelihood with respect to the parameters λ of the genera-
tive model uλ:

GX
λ =

1

T
∇λ log uλ(X) (5.1)

and, intuitively, it can be seen as the contribution of the parameters to
the generation of the samples.

Perronnin et al. in [75] applied Fisher kernels to image classification by
modeling visual vocabularies with Gaussian mixture models (GMM)3:

uλ(xd) =

NG∑
i=1

αiui(xd) (5.2)

denoting λ = {αi, µi,Σi, i = 1...NG}, where αi, µi and σi are, respec-
tively, the mixture weight, mean vector and covariance matrix (assumed
diagonal) of gaussian ui.

3We use the Fisher Kernel and VLAD implementations available in the VLFeat
libray (http://www.vlfeat.org/).

http://www.vlfeat.org/

66 Chapter 5. RGB-D Mobile Visual Search

By assuming local descriptors xd as generated independently by uλ, the
encoding vector can be computed as:

GX
λ =

1

D

T∑
t=1

∇λ log uλ(xt) (5.3)

Let γt(i) be the soft assignment of descriptor xt to Gaussian i:

γt(i) =
αigi(xt)

NG∑
j=1

αjgj(xt)

(5.4)

the D-dimensional gradients GX
µ,i and GX

σ,i with respect to the mean µi
and standard deviation σi can be derived as:

GX
µ,i =

1

T
√
αi

T∑
t=1

γt(i)

(
xi − µi
σi

)
(5.5)

GX
σ,i =

1

T
√

2αi

T∑
t=1

γt(i)

[
(xi − µi)2

σ2
i

− 1

]
(5.6)

The final encoding is the concatenation of the GX
µ,i and GX

σ,i vectors for
i = 1...NG and, hence, has length 2×D ×NG.

5.2.3 Efficient match kernels

Similarly to kernel descriptors exploiting match kernels to overcome the
potential loss of descriptiveness due to binning in orientation histogram
descriptors, Efficient Match Kernels (EMK)4 [13] generalize the bag-of-
words aggregation scheme to counteract binning errors. This method is
specifically designed to aggregate local kernel descriptors into image-
level representations. Accordingly, the implementation made available

4http://research.cs.washington.edu/istc/lfb/software/
EMK.htm

http://research.cs.washington.edu/istc/lfb/software/EMK.htm
http://research.cs.washington.edu/istc/lfb/software/EMK.htm

Chapter 5. RGB-D Mobile Visual Search 67

by the authors allows to encode kernel descriptors only and does not
permit training on different kinds of local representation. Unlike VLAD
and Fisher kernel, EMK takes into account spatial information by per-
forming the encoding using a spatial pyramid, as proposed by Lazebnik
et al. in [59]. The image is subdivided in 1×1, 2×2 and 4×4 subre-
gions on three level of abstraction and each of them is separately en-
coded5. The final description consists in the concatenation of all the
encodings. For local descriptions based on appearance information,
the single encoding is 500-dimensional, hence the image is represented
with a (1 + 4 + 16)× 500 = 10500 lengthy descriptor, whereas by en-
coding of shape information the description reaches a length of 14000
as the single encoding is 1000-dimensional.

5.2.4 Deep Features

In [39], Gupta et al. address the problem of globally encoding an RGB-
D image through a Convolutional Neural Network (CNN) architecture.
Purposely, they exploit the so called “AlexNet” proposed in [56], that
processes a 256×256 RGB image and can produce a 4096-dimensional
feature vector as output of the last hidden layer. Besides describing the
RGB image, the authors of [39] deploy the HHA representation to map
the depth image into three channels: Horizontal disparity, Height above
ground and Angle between local surface normal and inferred gravity di-
rection. Accordingly, AlexNet is also fed with the HHA representation
as if it were an RGB image. The authors ground this approach on the
hypothesis that RGB and depth images share common structures due
to, for example, disparity edges corresponding to object boundaries in
RGB images. Moreover, the authors perform fine tuning of AlexNet
based on HHA data. In our pipeline, the 4096-dimensional RGB and
HHA features do not directly feed the hashing stage, but they are first

5In the case of shape-based kernel descriptors, the third level of the pyramid is
divided in 3×3 subregions.

68 Chapter 5. RGB-D Mobile Visual Search

reduced in dimensionality through Principal component analysis (PCA)
(see Fig. 5.2).

5.3 Binary hashing

As the global descriptions obtained so far would typically require exces-
sive bandwidth should they be sent to the server directly, the addressed
Mobile Visual Search scenario calls for further compression. Thus, we
perform a similarity-preserving hashing stage aimed at producing the
final compact and binary description sent to the server. Among the
several hashing methods proposed in the last years, we considered the
baseline approach referred to as Locality Sensitive Hashing (LSH) [45]
and the state-of-the-art Spherical Hashing (SH) method [40], which has
been reported to turn out peculiarly effective on large datasets.

5.3.1 Locality Sensitive Hashing

LetNb be the number of bits comprising the binary description, Locality

sensitive hashing (LSH) defines the hashing functions simply by creat-
ing, at training time, a set of Nb random hyperplanes in the description
space. Then, to perform the hashing of a new descriptor, each bit of the
binary code is labeled as 1 if the description is situated in the positive
half-space of the associated hyperplane, 0 otherwise.

5.3.2 Spherical Hashing

Spherical Hashing (SH) represents the data with a set of Nb hyper-
spheres and choose the value of the i − th bit depending on whether
the description is inside or outside the i− th hypersphere. To determine
the centers and radii of the hyperspheres, and iterative optimization pro-
cess is performed so to achieve balanced partitioning of descriptions for

Chapter 5. RGB-D Mobile Visual Search 69

each hash function as well as independence between any two hashing
functions. Furthermore, the authors of SH propose a new distance in
the Hamming space better suited to their coding scheme, namely the
Spherical Hamming Distance, that normalizes the standard Hamming
distance by the number of corresponding bits equal to 1 between the
two strings. Corresponding bits set to 1 denotes that the two descrip-
tions are inside the same hypersphere and therefore an higher likelihood
that the two points are close in the feature space.

5.4 Matching

As far as the server side of our engine is concerned, in the current exper-
imental embodiment, binary descriptions are computed for each image
representing the objects populating the database and a similarity index
is built by means of the multi-probe LSH scheme (mpLSH) proposed in
[66]. Given a query image, the binary code received from the client is
matched against the database applying the weighted k-NN search intro-
duced in [29].

5.5 Fusion of appearance and shape

Although several works in literature show how the fusion of RGB and
depth channels can improve the recognition ability of the proposed frame-
works, few of them discuss at which level of the pipeline the fusion
ought better occur. In [103], the authors suggest two different versions
of their pipeline, the former fusing RGB and depth at the local descrip-
tion level, the latter at an higher level. Interested in investigating on this
matter, we considered three different fusion approaches (as outlined in
Fig. 5.3) and performed a comparison. The first approach, referred to
as Local Fusion, computes the local description of both appearance and
shape for each patch extracted from the image and then juxtaposes them.

70 Chapter 5. RGB-D Mobile Visual Search

Binary Hashing

Local fusion

Global encoding

Binary Hashing

Local

description

Local

description

Global fusion

Local

description

Local

description

Global

encoding

Global

encoding

Hashing fusion

Local

description

Local

description

Global

encoding

Global

encoding

Binary
hashing

Binary

hashing

FIGURE 5.3: The three strategies for fusion of the appearance and shape in-
formation associated with RGB-D images considered in our experimental in-

vestigation.

VLAD and Fisher Kernel are therefore trained on the concatenation of
the appearance and shape descriptions of image patches6. With Global

Fusion, global descriptors are computed for appearance and shape sepa-
rately and then concatenated before being delivered to the hashing stage.
Finally, with Hashing Fusion, binary codes for RGB and depth images
are computed independently and eventually juxtaposed just before the
matching stage.

6As explained in the previous section, the available EMK implementation does not
permit training on new data. Accordingly, EMK cannot be applied with Local fusion.

Chapter 6

RGB-D Mobile Visual Search:
Experimental Evaluation

This chapter discusses the experimental evaluation of the Visual Search
architecture introduced in the previous chapter. After an overview of
the datasets considered in the evaluation, the chapter summarizes the
key findings resulting from an extensive experimental investigation we
performed to identify the best configuration of the architecture as well
as to tune properly the main key parameters. Then, the engine resulting
from such analysis has been compared with the Compact Descriptors

for Visual Search (CDVS), a state-of-the-art RGB-based architecture
designed for Mobile Visual Search.

6.1 Datasets

The experiments reported in this chapter have been performed on 3
state-of-the-art datasets of household objects: the RGB-D Object Dataset,
CIN 2D+3D and BigBIRD. The former two datasets share a two-level
category/instance structure that allows us to evaluate our framework on
both category and instance recognition tasks, whereas BigBIRD con-
sists of object instances not partitioned into categories.

71

72 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

6.1.1 RGB-D Object Dataset

The RGB-D Object Dataset [58] is nowadays the de-facto standard for
evaluating and comparing visual recognition systems relying on RGB-D
sensing. For each of the 300 household objects composing the dataset,
a set of acquisitions from different vantage points has been collected
and segmented from the background so as to gather a total of 41,877
RGB-D images (see Fig. 6.1, top). Each object belongs to one of 51
categories based on the WordNet hierarchy. This two-level organiza-
tion allow researchers to evaluate their proposals both on category and
instance recognition scenarios (see Fig. 6.1, bottom). As for instance
recognition, we chose the Alternating Contiguous Frames methodology
and, as suggested in [58], average results over 10 randomly defined tri-
als.

6.1.2 CIN 2D+3D

The CIN 2D+3D dataset [16] shares with the RGB-D Object Dataset a
similar two-level category/instance structure. Indeed, it consists of 18
categories, which in turn include about 10 instances each (see Fig. 6.2).
The objects, placed on a turntable, have been acquired from 36 vantage
points by rotating the turntable by 10◦ upon each acquisition. In [16],
the authors propose a procedure aimed at evaluating simultaneously the
ability to recognize both instances and categories. Conversely, similarly
to the RGB-D Object Dataset methodology, we prefer to separately test
the performance for the two tasks of category and instance recognition.
Thus, for category recognition, we select a tenth of the instances for
each category as test set and train the pipeline on the remaining ones.
We repeat the procedure 10 times by choosing each time different in-
stances for the test set and averaging the recognition rates thus obtained.
Likewise, we perform 10 trials for instance recognition. Each trial splits
a different tenth of the views of each instance and uses it as test set
whereas the remaining acquisitions are used for training. As suggested

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 73

FIGURE 6.1: RGB-D Object dataset. Top: examples of objects composing the
dataset. Bottom: category/instance organization of the dataset. Each category
comprises a set of different instances which have been acquired from different

vantage points.

74 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

FIGURE 6.2: Objects composing the CIN 2D+3D dataset. The number of
instances for each category is reported in brackets.

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 75

by the authors, we discard the "Perforator" and "Phone" categories from
the evaluation as they do not include a sufficient number of instances.
Instead, we do not aggregate "Fork", "Spoon" and "Knife" into a "Sil-
verware" super-category.

6.1.3 BigBIRD

The BigBIRD dataset [87] comprises 125 object instances not parti-
tioned into categories (see Fig. 6.3, top). The authors staged a setup,
shown on the bottom of Fig. 6.3, that allows acquisition of an object
from 5 different vantage points via 5 PrimeSense Carmine sensors uni-
formly disposed along an arc, so that the first sensor acquires the front
of the object whereas the last sees it from above. Moreover, the ob-
ject is placed on a turntable and acquired every 3◦, making a total of
600 views for each object. The depth maps have been taken at a res-
olution of 640×480 pixels, whereas RGB images feature a resolution
of 1280×1024 pixels. Mask images that allow segmenting out object
pixels in the RGB images are also provided within the dataset. Ob-
jects are mainly supermarket products and include quite challenging in-
stances as most of them are boxes recognizable only by their packages,
which sometimes are very similar (e.g. as in the case of "chewy dipps
chocolate chip" and "chewy dipps peanut butter" shown in Fig. 6.4) or
distinguishable just by colour. Other products are bottles with very sim-
ilar shapes which may be told apart from above based on the can only.
Unfortunately, sensors are too distant from objects to properly simulate
a typical Visual Search scenario wherein the object to be recognized
would typically cover most of the query image. Therefore, by exploit-
ing the available RGB masks, we cropped each RGB and depth image of
the dataset so to get the object closed-up. First, by means of calibration
information, we projected each valid point of the depth map onto the
mask image so to obtain the mask associated with the depth map. Then,
we computed the centroid and standard deviations σx, σy of foreground
pixels. Therefore, we defined a bounding box centered at the centroid

76 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

FIGURE 6.3: BigBIRD dataset. Top: examples of objects included in the
dataset. Bottom: setup staged to acquire the dataset.

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 77

FIGURE 6.4: Examples of BigBIRD objects distinguishable by colour and
texture only.

and wide 4 × σx and 4 × σy along x and y dimension, so to consider
about 95% of the pixels of the object. The cropping bounding box is
obtained by enlarging both dimension by a factor of 1.5. The process
is repeated to perform the cropping of the RGB image which is finally
rescaled to get the same dimensions as the cropped depth map. As re-
liable segmentation masks are not provided for 11 objects (the majority
of them being transparent bottles), we discarded them from the data
used in our experiments. The authors do not suggest a methodology to
evaluate object recognition algorithms using the BigBIRD dataset; thus,
for each of 10 trials, we randomly select 100 acquisitions and split them
so as to perform testing on a tenth of them and training based on the
others.

6.2 Experimental investigation

This section describes the experimental analysis we performed in order
to determine the best configuration of each stage of the pipeline. As an
exhaustive exploration of the parameter space would turn out infeasible,
we performed a stage-by-stage tuning starting from the matching and
backing up to the local description: once the proper configuration for
a stage has been determined, the tuned parameters are kept fixed and
adopted in the analysis of the upstream stage. For the tuning of the
stages following the local description, we report only the investigation
performed on the RGB-D Object Dataset, as probing experiments on the
other datasets turn out consistent in terms of obtained results. Moreover,
we adopted the kernel descriptors as specifically designed to encode

78 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

both appearance and depth. Also, they proved to achieve competitive
results on different recognition tasks. In this phase of the investigation
we are not concerned with peak performance of the search engine but,
rather, in comparing its diverse possible configurations. Therefore, and
for the sake of time alike, between all kernel descriptors, we considered
here only the gradient match kernel applied on image intensities, so to
represent appearance information, and on depths, so to capture shape as
well. Once the best configuration of such stages had been determined,
we assessed the performance of the other local descriptors and compare
them with deep features.

For each experiment run, we use the training set to perform k-means
and GMM estimation, as required by VLAD and Fisher Kernel respec-
tively, as well as to train LSH and SH. After that, we described each
image of the training set with the trained pipeline and built the index
used by the matching stage. Finally, we described all the test images
and calculated the rate of them correctly recognized in the training set.
This procedure is repeated for each of the 10 trials splitting differently
the training and test sets. Eventually, the attained recognition rates are
averaged. For each configuration, we run the pipeline while varying the
length of the final binary code from 16 to 1024 bits and plot the attained
mean recognition rates as a function of the code length.

6.2.1 Matching

The first experiments addressed the matching stage. The analysis, per-
formed on different configurations of the client pipeline, revealed no
loss in recognition rate and about a 10× speedup in applying the approx-
imated mpLSH indexing scheme in place of an exhaustive search. In
addition, we experimented with the Spherical Hamming Distance [40]
as an alternative to the standard Hamming Distance, but did not per-
ceive any improvement in the results. Moreover we tuned the weighted
k-NN search so to set k=9.

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Category recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64 128 256 512 1024

description length (bits)

Instance recognition

LSH

SH Ps=0.001

SH Ps=0.010

SH Ps=0.050

SH Ps=0.100

SH Ps=0.200

SH Ps=0.300

FIGURE 6.5: Comparison between Locality sensitive hashing (LSH) and
Spherical hashing (SH).

6.2.2 Binary hashing

Then, to delineate about the Binary Hashing stage, we carried out exper-
iments dealing with the different fusion strategies and global encoders.
All the tests coherently indicated the trend that we report in Fig. 6.5
for the specific case of global encoding by EMK and Hashing Fusion

strategy, with recognition rates plotted as a function of the length of the
binary codes,Nb. In the iterative process used to construct the Spherical
Hashing functions only a percentage PS of all database descriptors are
considered, but the authors do not provide hints or guidelines regard-
ing the choice of this parameter [40]. Hence, as shown in Fig. 6.5, we
experimented with different PS values. The plots show that, for both
the category and instance recognition tasks, PS = 0.01 is sufficient to
guarantee adequate training of SH and that SH turns out more effective
than LSH with very compact codes while the two hashing approaches
may be considered equivalent with longer codes. Thus, in all the sub-
sequent experiments discussed in this paper we make use of SH with
PS = 0.01. Nonetheless, it is worth pointing out that our findings seem
not to confirm the results reported in [40], wherein SH, especially when
exploiting the Spherical Hamming Distance, is reported to outperform

80 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Category recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64 128 256 512 1024

description length (bits)

Instance recognition

EMK

Fisher Kernel

VLAD

FIGURE 6.6: EMK vs. Fisher Kernel vs. VLAD.

LSH neatly. This inconsistency may likely be ascribed to the differ-
ent experimental settings: besides the diverse evaluation protocols and
adopted figure of merits, in [40], the experiments addressed very large
datasets, such as Tiny Images, comprising millions of images whereas
the standard RGB-D Object Dataset consists of thousands of RGB-D
images.

6.2.3 Global encoding

As next step, we investigated on the three methods considered for the
Global Encoding stage of our proposed architecture. Purposely, we
performed the tuning of the number of visual words, NC , learned by
k-means in VLAD training and the number of gaussians, NG, of the
GMM used by Fisher Kernel. Accordingly, the results shown in Fig. 6.6
have been obtained with NC = 1, NG = 2. The charts highlight that
EMK overtakes the other methods, followed by Fisher Kernel. Nonethe-
less, it is worth pointing out that EMK incorporates spatial information
by aggregating local features in pyramidal subregions and juxtaposing
the encodings of each subregion, whereas Fisher Kernel, and VLAD
alike, disregards the information concerning the position of local fea-
tures. The non-invariant global representation produced by EMK may

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 r

at
e

description length (bits)

Category recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 r

at
e

description length (bits)

Instance recognition

EMK

Fisher Kernel

FIGURE 6.7: EMK vs. Fisher Kernel on encoding all four types of Kernel
Descriptors.

thus turn out more effective as long as the images are acquired in a con-
trolled setup, as it is indeed the case of the RGB-D Object Dataset where
objects had been placed upright on a turntable and always acquired from
a fixed distance to the sensor. On the other hand, we expect Fisher Ker-
nel to yield superior results than EMK in scenarios involving in-plane
rotations and distance variations of the RGB-D sensor while capturing
the objects. To better assess which one of the two encoders is more
suited for our architecture, we repeated the experiment but considering
also the other two types of Kernel Descriptor so as to aggregate a richer
description. The comparison is reported in Fig. 6.7. The curves, com-
ing out now approximately overlapped, point out that the differences
between EMK and Fisher kernel tend to disappear as the descriptive
power of the pipeline increases. In the light of this result, Fisher Kernel
emerges as the proper global encoder for the pipeline.

6.2.4 Contribution of appearance and shape

Having identified the optimal configuration and parameter tuning for
each stage, we investigated on how the shape and appearance informa-
tion separately contributes to the recognition capability of our engine as

82 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

well as on how their synergy improves the overall performance, espe-
cially as the fusion strategy changes. The curves in Fig. 6.8 report the
recognition rates obtained by exploiting RGB information only, depth
information only as well as by fusing the two kinds of information ac-
cording to the three considered strategies. We run the experiments for
both instance and category recognition using Fisher Kernel as global
encoder. The charts allow us to appraise separately the impact, for the
two different tasks, of the RGB and depth features. In case of instance
recognition, the appearance information provides the stronger contri-
bution to the recognition ability whereas shape proves to have a more
limited descriptive power. Conversely, in the category recognition task,
shape features are more effective in discriminating the categories com-
prising the dataset. These results are in line with the findings reported in
[10] and vouch as a specific instance of an object is better characterized
by textures and colors whereas shape is the primary trait that allows to
determine the category to which an object does belong. The figure also
suggests that synergistic deployment of appearance and shape can im-
prove the recognition rate in both tasks and by means of all the three
considered fusion strategies. As for a comparison between these, the
Hashing Fusion approach appears the best choice. That is somehow
coherent with the results reported in [103] and seems to suggest that
maintaining the processing of the two information flows as disjoint as
possible along a recognition pipeline may turn out the most effective
strategy. Furthermore, from a more practical viewpoint, Hashing Fu-

sion would allow the server to match the two descriptions separately.
This is particularly worthwhile in case in the addressed application sce-
nario only one of the two descriptions may be available in either the
query image or some database objects. Furthermore, having the chance
to match them separately might turn out a favorable trait if under some
circumstance acquisition of either appearance or shape may not be con-
sidered reliable enough. This may happen, for example, when acquir-
ing a transparent object, so that shape features are likely faulty or, as
regards appearance cues, had the RGB image been captured under very

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Category recognition

Appearance only

Shape only

Local fusion

Global fusion

Hashing fusion

0

0.1

0.2

0.3

0.4

0.5

0.6

16 32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Instance recognition

Appearance only

Shape only

Local fusion

Global fusion

Hashing fusion

FIGURE 6.8: Performance when deploying the RGB channels (Appearance
only), the depth channel (Shape only) or fusing the two kinds of information
according to the Local, Global and Hashing methods. The performance attain-

able without binary compression are shown by circular dots.

low lighting conditions.

6.2.5 Impact of binary compression

We continue the analysis by studying the impact of binary compression
on Visual Search performance. Purposely, we ran again the experiments
reported in Fig. 6.8 by removing the final hashing stage and matching
the descriptions provided by the global encoding based on the Euclidean

84 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

Distance. Thus, for each curve in Fig. 6.8 (but the two relative to Hash-
ing Fusion) we also show by a circular dot the recognition rate obtained
without performing binary compression. The important finding here is
that there is no significant performance decay if an adequate description
length is deployed within the hashing process, such adequate lengths be-
ing rather small. Indeed, the comparison between the recognition rates
obtained by matching 1024 bits codes and uncompressed global encod-
ings highlights a slight drop in performance only in case of Global and
Local Fusion for the instance recognition task, whereas, under certain
conditions, binary compression may even improve the recognition rate,
as vouched by the curves dealing with category recognition for the Ap-

pearance only and Shape only pipelines.

6.2.6 Image features

This section analyzes the different image features considered in the pre-
vious chapter. Unlike the experiments reported so far, we carry out the
comparison on all the three available datasets so as to better uncover
the relative merits and limits of the methods. For local approaches, we
deployed the configuration of the pipeline resulting from the tuning re-
ported in previous sections: global encoding performed through Fisher
kernel and SH for the computation of the binary codes that are juxta-
posed according to the hashing fusion strategy. In the case of SIFT
features, we only performed the tuning of the NG components of the
mixture, and left all the other parameters unaltered. According to our
experiments, the best results can be obtained with a number of compo-
nents as small as NG = 3 if the DoG detector is applied, NG = 1 for the
dense description. In the case of kernel descriptors, both for appearance
and shape description, we compute the two available kernel descriptors,
and, eventually, perform the hashing separately followed by the juxta-
position of the resulting binary codes. For deep features, we deploy
the Hashing fusion strategy and keep the same tuning both for spherical
hashing and the matching stage. Moreover, our experiments indicate

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 85

that the best results are achieved by feeding the hashing stage with the
100 principal components of the 4096-dimensional vectors computed
by both the RGB and HHA networks. To compare the different types of
features, we execute the pipeline by considering either the appearance
information extracted from the RGB image only or the shape informa-
tion extracted from the depth image only or fusing the two kinds of
information by concatenating their binary codes.

The results of the experimental analysis are reported in Fig 6.9. Firstly,
the charts reveal that encoding based on SIFT keypoints (the green
curves in the figure) is not effective within our Visual Search architec-
ture as it provides the lowest recognition rates in all but the experiment
dealing with appearance-only description on BigBIRD. Better results
are scored by methods leveraging on densely computed local descrip-
tors. Indeed, if SIFT is applied to patches extracted across a regular
grid, the recognition rate raises substantially (red plots), especially in
category recognition experiments (first 2 rows of the figure). Overall,
the best performance are provided by representations based on Kernel
Descriptors and Deep Features. Accordingly, in the remainder of the
discussion we will mostly focus on these two approaches.

We start by commenting the behavior of representations based on ap-
pearance information only (first column of Fig 6.9) and address the im-
pact of the two types of Kernel Descriptors first. The charts report the
recognition rates yielded by Kernel Descriptors based on either inten-
sity gradients or color as orange and cyan curves respectively, whereas
purple curves deal with the performance attained assigning half of the
binary code to the former and half to the latter. In category recogni-
tion experiments, both Kernel Descriptors contribute significantly to the
recognition ability of the pipeline, so that their synergistic deployment
ends up in improving the recognition rate, as perceivable more clearly
in the case of the RGB-D Object dataset. On the other hand, in case of
instance recognition experiments, color seems the main cue that allows
for telling apart objects in the considered datasets. This is particularly

86 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

Appearance only Shape only Appearance + Shape

R
G

B
-D

 o
b

je
ct

 d
at

as
et

C
at

e
go

ry
C

IN
 2

D
+3

D
C

at
e

go
ry

R
G

B
-D

 o
b

je
ct

 d
at

as
et

In
st

an
ce

C
IN

 2
D

+3
D

In
st

an
ce

B
ig

B
IR

D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

KD I KD C KD IC

SIFT Dense SIFT Deep RGB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

KD D KD S KD DS

SIFT Dense SIFT Deep HHA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

KD ICDS SIFT

Dense SIFT Deep RGB HHA

FIGURE 6.9: The charts are organized as a table, the rows dealing with the
different datasets and recognition tasks (first 2 rows: category recognition,
last 3 rows: instance recognition) and the 3 columns reporting, respectively,
the results obtained with appearance-based descriptions only, shape-based de-
scriptions only and fusion of appearance and shape. Each chart reports the
recognition rate as a function of the length in bits of the binary code. The
different curves are identified by the legend underneath columns. Kernel De-
scriptors (KD) based on Intensity gradients, Color, Depth gradients and Spin

Images are labeled as I, C, D and S respectively.

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 87

noticeable in the BigBIRD dataset, as deploying half of the binary code
to represent intensity gradients turns out even detrimental with respect
to spending all bits to encode color. This can be ascribed to the na-
ture of the dataset that, as already pointed out, consists mainly of boxes
and bottles distinguishable by color features only (a few examples are
shown in Fig. 6.4). The comparison between Kernel Descriptors and
Deep Features (the blue plots in the charts) highlights how, with the ex-
ception of category recognition on the CIN 2D+3D dataset, the latter
approach provides quite consistently higher recognition rates.

As for the experiments addressing representation of shape information
only (second column of Fig 6.9), it is unclear which Kernel Descriptor
allows for encoding more effectively the depth channel between that re-
lying on Depth Gradients and on Spin Image, which represented by the
orange and cyan curves respectively. Nonetheless, it is clear that fusing
the two contributions by splitting the code bits evenly (purple curve)
does increase the recognition rates insomuch as to outperform Deep
Features in 4 out of the 5 experiments. This vouches as the two types of
kernel descriptors are complementary and thus the recognition ability
of the pipeline can benefit significantly of their synergistic deployment.

Looking now at the first two columns, it seems quite evident how shape
is more relevant than appearance in category recognition experiments,
the opposite being the case of instance recognition, as appearance turns
out definitely the primary cue to tell apart the different objects compris-
ing the considered datasets.

The third column of charts in Fig 6.9 reports the recognition rates at-
tained by exploiting jointly the appearance and shape information pro-
vided by RGB-D images. In the task of category recognition (first 2
rows), Kernel Descriptors (purple curve) provide the best performance
whereas Deep Features (blue curve) turn out more effective in distin-
guishing object instances (last 3 rows). This can be explained by observ-
ing that Kernel Descriptors seem more effective to encode shape infor-
mation that, in turn, is more relevant to the task of category recognition,

88 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

Appearance Shape Best

RGB-D Object Dataset - Category Deep RGB KD DS KD ICDS

CIN 2D+3D - Category KD IC Deep HHA KD ICDS

RGB-D Object Dataset - Instance Deep RGB KD DS Deep RGB

CIN 2D+3D - Instance Deep RGB KD DS Deep RGB

BigBIRD Deep RGB KD DS Deep RGB

TABLE 6.1: Summary of the results reported in Fig 6.9. For each dataset and
both types of experiment, the first two columns highlight the method providing
the best recognition rate in case either only appearance or only shape informa-
tion is deployed for image representation. Then, the last column highlights
the approach yielding the highest possible recognition rate assuming that both

kinds of information are available.

whereas Deep Features better capture the appearance information that is
key to effective instance recognition. In Table 6.1 we summarize the re-
sults shown in Fig 6.9 by highlighting the approaches providing the best
performance when deploying either appearance or shape information
only (first 2 columns). Furthermore, the last column of the table reports
the configuration yielding the highest recognition rate when both kinds
of information are available. In the case of category recognition, ex-
ploiting both appearance and shape information is beneficial as the best
configuration involves the combined use of all Kernel Descriptors. Con-
versely, for the task of instance recognition, our evaluation suggests to
simply discard the shape contribution for the available code bits would
be best spent to encode the RGB image only by Deep Features.

Puzzled by the above finding, we devised an additional type of instance
recognition experiment, whereby the bits of the binary codes are no
longer split evenly between appearance and shape but, instead, accord-
ing to a varying ratio. We run the experiments setting the description
length to 1024 bits (i.e. the lengthiest considered in Fig 6.9) while de-
ploying Deep Features to encode the RGB image and Kernel Descrip-
tors (Depth gradient and Spin Image-based) to encode the depth image,
i.e. the best approaches to represent appearance and shape respectively.
In Fig 6.10 we report the obtained recognition rates: as expected, peak

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 89

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

R
e

co
gn

it
io

n
 R

at
e

Appearance ratio

RGB-D Object Dataset - Instance

0.6

0.65

0.7

0.75

0.8

0.85

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Appearance ratio

CIN 2D+3D - Instance

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Appearance ratio

BigBIRD

FIGURE 6.10: Instance recognition experiments with a varying relative con-
tribution of appearance (Deep Features) and shape (Kernel Descriptors). The
horizontal axis indicates the ratio of bits of the binary code deployed to encode
appearance. Accordingly, the performance of the best methods in Table 6.1 are
denoted by blue dots (all bits encode appearance by Deep Features). The best
recognition rates attainable by splitting code bits unevenly between appearance

and shape are highlighted by red dots.

performance are reached with a high ratio of code bits deployed to rep-
resent appearance. Interestingly, though, the best performance are never
achieved by allocating the totality of the binary code to appearance in-
formation, but, rather, by splitting properly code bits between appear-
ance and shape. In particular, with CIN 2D+3D the best recognition rate
is reached by allocating 1/4 of the binary code to shape, while the opti-
mal ratio is 1/8 for both the RGB-D Object dataset as well as BigBIRD.
Indeed, a shape-to-appearance ratio of about 1/8 would provide better
performance than disregarding shape with all the considered datasets.
Hence, proper deployment of the depth channel associated with RGB-
D images may contribute to improve instance recognition performance
even in scenarios where texture and color provide the primary cues to
tell objects apart.

6.3 Performance evaluation

Having identified a suitable configuration of the proposed Visual Search
architecture by an experimental analysis concerned with the diverse op-
tions for the main processing stages, we are now interested in assessing

90 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

its peak performance as well as in evaluating ours with respect to other
comparable proposals.

As for the first objective, the investigation points out that the architec-
ture provides the highest recognition rates when RGB channels are en-
coded through deep features, whereas shape information is represented
by depth gradient kernels and spin kernel descriptors. Also, according
to the Hashing Fusion strategy, the descriptions are computed sepa-
rately and, then, juxtaposed.

As regards the second objective, as already pointed out, unfortunately
we are not aware of any Visual Search engine devised to address the
case of RGB-D data. For this reason, we are confined to a comparison
with search engines dealing with RGB images. Among the available
options, we choose the Compact Descriptors for Visual Search (CDVS)
[1] because, similarly to our proposal, it is specifically aimed at gen-
erating compact encodings and it is currently in the Draft International
Standard stage as Part 13 of the MPEG-7 standard.

6.3.1 Compact Descriptors for Visual Search

The CDVS pipeline extracts a set of keypoints using a Laplacian of
Gaussian (LoG) detector and compute descriptors through SIFT. Then,
Fisher kernel is applied to obtain a global encoding of the image that is
binarized by labeling each component as 1 if positive and 0 otherwise.
To enrich description, in addition to the compressed global encoding,
CDVS sends to the server a compressed version of the local SIFT de-
scriptors as well as an histogram-based encoding of the feature coordi-
nates that are subjected to a geometric consistency check by means of
the DISTAT algorithm [60]. CDVS defines six possible lengths for the
final code sent to the server: 512, 1K, 2K, 4K, 8K and 16K bytes.

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 91

6.3.2 Results

The comparison between CDVS and our pipeline is reported in Fig. 6.11
for the three datasets.

RGB-D object dataset

Considering first the RGB-D object dataset, the curves clearly show as
our proposal is more effective both in the task of category and instance
recognition. Moreover, our pipeline proves to be extremely cheap in
terms of bandwidth requirements, as its highest recognition rates are
reached by transmitting 1024 bits. Conversely, to get its best perfor-
mance, CDVS requires, at least, binary codes of 1024 bytes in the case
of instance recognition and 4K bytes if applied to the task of category
recognition. A deeper analysis reveals that CDVS is more effective in
the case of instance recognition. Indeed, the difference between the
recognition rates of our proposal and CDVS, in the task of instance
recognition, is about 20 percentage points, whereas in the case of cate-
gory recognition the difference grows to nearly 40%.

CIN 2D+3D

The behaviour of the compared pipelines are corroborated by the charts
concerning the CIN 2D+3D dataset. Again, our proposal achieves higher
recognition rates. In the case of instance recognition, CDVS obtains
similar results and confirms that it has been essentially devised to work
in instance recognition scenarios. As a matter of fact, the retrieval stage
takes advantage of the geometric consistency check on keypoint coordi-
nates and it is enhanced by the matching of the local descriptors which
are sent together with the global encoding. This helps the recognition
of specific instances of an object but limits the ability to identify its cat-
egory. Anyway, it is worth noting that our proposal reaches the highest

92 Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation

RGB-D Object Dataset

CIN 2D+3D

512 1K 2K 4K 8K 16K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 128 256 512 1024

CDVS description length (Bytes)

R
e

co
gn

it
io

n
 r

at
e

description length (bits)

Category recognition

512 1K 2K 4K 8K 16K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512 1024

CDVS description length (Bytes)

R
e

co
gn

it
io

n
 r

at
e

description length (bits)

Instance recognition

Deep RGB +
KD DS

CDVS

512 1K 2K 4K 8K 16K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

32 64 128 256 512 1024

CDVS description length (Bytes)

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Category recognition

512 1K 2K 4K 8K 16K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

CDVS description length (Bytes)

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Instance recognition

Deep RGB +
KD DS

CDVS

512 1K 2K 4K 8K 16K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 64 128 256 512 1024

CDVS description length (Bytes)

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

BigBIRD

Deep RGB +
KD DS

CDVS

FIGURE 6.11: Comparison between our Visual Search engine (deploying deep
features for the encoding of appearance and Kernel descriptors for representing
shape information) and CDVS. The top and bottom horizontal axes report,
respectively, the description lengths in bytes for CDVS and the description

lengths in bits for our proposal.

Chapter 6. RGB-D Mobile Visual Search: Experimental Evaluation 93

recognition rate just by exploiting 256 bit descriptions whereas CDVS
requires at least 2048 bytes to obtain the best performance.

BigBIRD

The observations made on results regarding instance recognition of CIN
2D+3D dataset are also applicable to the case of BigBIRD dataset. In-
deed, CDVS and our proposal share comparable recognition rates, but
the former obtains the best performance by exploiting 2048 bytes as
description length, whereas the latter attains the same accuracy but en-
coding a 1/16-long binary code.

Chapter 7

Implementation of the Visual
Search engine on
embedded/mobile platforms

This chapter addresses primarily the work carried out during a three-
months internship at ST Microelectronics Imaging Division in Greno-
ble under the supervision of Dr. Alain Issard. The internship was
aimed at implementing the architecture described in Chap. 5 on the
STxP70 Application-Specific Multiprocessor (ASMP) embedded multi-
core platform.

Focus of this thesis is on studying how to aggregate appearance and
shape in a compact description. Moreover, the comparison reported in
Sec. 6.2.6 shows how the architecture is agnostic with respect to the de-
ployed local descriptors, as it can be fed with different local features.
For these reasons, the work performed during the internship addresses
the implementation of the Fisher kernel and Spherical hashing algo-
rithms (described, respectively, in Sec. 5.2.2 and Sec. 5.3.2), that encode
the image description in a global binary code.

As STxP70 processors do not have hardware support for floating-point
operations, both algorithms have been converted to fixed-point and plugged
into the Visual Search architecture so as to assess the reduction in recog-
nition rate caused by the adopted fixed-point representation. Then, the

95

96
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

algorithms have been executed on the Gepop simulator, in order to eval-
uate the performance and scalability of the implementations while vary-
ing of the number of ASMP cores.

The concluding part of this chapter, instead, describes the implemen-
tation of the whole architecture on a Samsung Galaxy Tab Pro 10.1

equipped with a Structure Sensor for the acquisition of the depth im-
age. Tests performed by acquiring objects in real-world settings helped
to shed light on the limits of the pipeline and future directions of the
work.

7.1 Implementation on the STxP70 ASMP plat-
form

7.1.1 STxP70 ASMP architecture

The STxP70 ASMP is a configurable SMP architecture devised by STMi-
croelectronics with up to 16 STxP70 cores – 32-bit dual-issue RISC
CPUs. Fig. 7.1 depicts the architectural template of the STxP70 ASMP.
It relies on a one-cycle access shared L1 data memory, organized in
several banks with interleaved addressing, all of which can be accessed
simultaneously. In case of bank access conflict, processors block until
access is granted by a round-robin arbiter that ensures fair access for all
processors. Additionally, each processor has 16KB of program cache
(I$), but no data cache. The physical prototype for the STxP70 ASMP
platform is based on an Field Programmable Gate Array (FPGA) im-
plementation whose configuration is limited to 8 STxP70 cores and 512
KB of shared data memory, organized into 32 memory banks.

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 97

STxP70 ASMP programming model

The standard parallel programming model supported bySTxP70 ASMP
is the OpenMP 2.5 programming model1. In the OpenMP programming
model, the application code is annotated with a series of pragmas that
are interpreted by a compiler to produce parallel code. An OpenMP run-
time is linked to the application and is responsible for thread creation,
dispatching, parallel scheduling, synchronization and thread termina-
tion. Upon compiling code with OpenMP pragmas, the compiler au-
tomatically applies the necessary transformations and adds calls to the
OpenMP runtime. The user can also explicitly call OpenMP runtime
functions within the application code. If parallel code generation is dis-
abled in the compiler options, the OpenMP pragmas in the user code are
ignored producing a sequential executable. This is especially useful for
debugging purposes, to evaluate the actual parallelization benefits over
the sequential version of the application, as well as to ensure portability
between sequential and parallel systems.

Gepop simulator

Fisher kernel and Spherical hashing implementations have been tested
on a Gepop simulator, a cycle-approximate simulator for the STxP70
ASMP platform. It is built over STxP70 ISS simulators and integrates
hardware device models for other components such as DMAs, memo-
ries and interconnects. Experimental measurements show that Gepop
reports errors in the order of 10% in estimating the execution time on a
physical device.

1www.openmp.org

www.openmp.org

98
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

FIGURE 7.1: Architectural framework of the STxP70 ASMP.

7.1.2 Implementation of Fisher Kernel

Given a set of local descriptors X = {xt, t = 1...T}, to perform the
encoding, at first, the method computes the posteriors γi(xt) through
5.4. As the generative model is a mixture of gaussians, the gi(xt) are
defined as:

gi(xt) =
wi√

(2π)D|Σi|
exp

(
−1

2
(xt − µi)TΣ−1i (xt − µi)

)
(7.1)

To avoid numerical instability due to the high dimensionality D of the
local descriptor space, 7.1 is expressed as:

gi(xt) = exp

(
lnwi −

D

2
lnπ − 1

2
ln |Σi| −

1

2
(xt − µi)TΣ−1i (xt − µi)

)
(7.2)

The Fisher Kernel algorithm used in the experiments reported in Chap. 6
includes two improvements proposed in [76]: the former involves the
L2 normalization of the final encoding vector aimed at rendering the
representation more robust to scale variations. The latter stems from

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 99

the observation that, as the number of gaussians increases, the vectors
become sparser. As a matter of fact, the soft assignment of the descrip-
tors xt to the gaussians tends to become an hard assignment - only few
among the corresponding γt(i) will turn out not equal to zero - as the
number of gaussians increases. Accordingly, most of the GX

µ,i and GX
σ,i

(see eq. 5.5 and eq. 5.6) will come out null. A possible solution is to
“unsparsify” the encoding by applying the following power normaliza-
tion:

f(z) = sign(z)|z|α (7.3)

with α = 0.5.

As the work focused mainly on the computational efficiency of the
ported algorithm, we performed again the tests described in Sec. 6.2.6
but disabling the two improvements so as to assess their contribution
in terms of recognition rate. The comparison has been performed on
the three datasets introduced in Chap. 6 by applying only the Kernel
descriptor based on intensity gradients. The light blue curves shown in
Fig. 7.2 represent the recognition rate obtained if the two improvements
are enabled, whereas the red curves let to evaluate the loss in recogni-
tion rate when the improvements are lacking. When a binary code of
1024 bits is deployed, only 2-3% percentage points are lost on average.
Unfortunately, the peculiar traits of the datasets used for the compar-
ison do not permit to assess thoroughly the contribution of these two
improvements. Indeed, as the datasets have been acquired in controlled
setups, they do not include scale variations and, therefore, it is difficult
to appreciate the contribution caused by the L2 normalization. More-
over, as the experimental investigation reported in Chap. 7.2 proved that
a mixture of only two gaussians is sufficient to properly represent the
data, the benefit of the Power normalization is hardly estimable.

100
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

RGB-D Object Dataset

CIN 2D+3D

0.3

0.35

0.4

0.45

0.5

0.55

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Category recognition

0.2

0.25

0.3

0.35

0.4

0.45

0.5

32 64 128 256 512 1024
R

e
co

gn
it

io
n

 R
at

e

description length (bits)

Instance recognition

No Power - No L2

Only L2

Only Power

Power - L2

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Category recognition

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Instance recognition

No Power - No L2

Only L2

Only Power

Power - L2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

BigBird

No Power - No L2

Only L2

Only Power

Power - L2

FIGURE 7.2: Contribution in terms of recognition rate of the L2 and Power
normalization proposed in [76] on the RGB-D Object, CIN2D+3D and Big-

BIRD datasets.

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 101

Fixed-point conversion

For the fixed-point conversion of the algorithm, a 32 bit-based represen-
tation with 16 fractional bits (Q15.16) has been adopted. Unfortunately,
both the computation of 7.2 and the L2 normalization involve the sum-
mation of addends, along the D dimensions of descriptor space, that
usually produces overflows of a 32 bit accumulator due to the effect
of the “curse of dimensionality”. Such issue has been solved by sum-
ming the addends in a 64 bit accumulator and finally converting back
the result of 7.2 and L2 normalization to 32 bit representation.

Logarithmic terms in 7.2 are precomputed as they are independent from
X , whereas fixed-point computation of exponential is performed by ex-
panding it to a power series:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ ... (7.4)

The Visual Search architecture has been equipped with the fixed-point
version of the algorithm and run on all the three datasets. The results
reveal that there is no loss in recognition rate with respect to the floating-
point version. Such behaviour could be due to the adopted 64-bit repre-
sentation that preserves the floating-point precision.

Scalability evaluation on ASMP platform

To evaluate the multi-core scalability of the algorithm on the ASMP
platform simulator, the fixed-point version has been parallelized by means
of the OpenMP library. As the mixture representing the data is com-
posed by only two gaussians, the processing has not been parallelized
by separating the encoding with respect to the mixture components. In-
stead, the computation of posteriors γi(xt) and gradients GX

µ,i and GX
σ,i

are performed by splitting up, among the available threads, iterations
along the local descriptors X .

102
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

0

5

10

15

20

25

1 2 4 8

El
ap

se
d
cy
cl
e
s
(1
0
6
)

N° Threads

No Power - No L2

Only Power

Only L2

Power - L2

FIGURE 7.3: Execution times, expressed in elapsed processor clock cycles,
spent for the computation of a Fisher vector as the number of available ASMP
cores increases. The chart shows the computation times in the case the L2 and
Power normalization are disabled (No power – No L2), in the case only one is

enabled (Only L2, Only Power) and when both are applied (Power – L2).

Fig. 7.3 shows the processor clock cycles2 spent for the computation of
a single Fisher vector as the number of the ASMP cores increases from
1 to 8. The chart proves a good scalability of the algorithm as it is able
to exploit the available cores. Furthermore, the chart permits to assess
the computational load due to the L2 and Power normalization, which
is, indeed, negligible with respect to the execution time spent for the
computation of the posteriors γi(xt) requiring the computation of the
exponential.

7.1.3 Implementation of Spherical Hashing

At hashing time, SH computes the euclidean distance between each
hypersphere center and the descriptor produced by the global encod-
ing stage. Then, it evaluates if each distance is greater or smaller than

2The clock frequencies for the ASMP could theoretically be as high as 1GHz ac-
cording to some synthesis results in 28nm, but it is usually used at 500MHz as target
frequency. Therefore, the expected execution times can be easily derived from this
frequency and the number of elapsed clock cycles.

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 103

the hyperphere radius. As such euclidean distances are measured in an
high-dimensional space (e.g. in the case of Kernel descriptors encoded
by Fisher Kernel, global representations have length 2×D×NG = 800),
distance computations are affected by the curse of dimensionality, in a
similar way to what happens in the case of Fisher kernel. To mitigate
such effect, that is worsened by the square operations required by the
euclidean distance, we changed the Spherical hashing formulation so as
to consider Manhattan distances (L1), instead. Such modification af-
fects the training process only on the counting on the number of sample
points inside an hyperphere and the consequent update of its radius.

Fig. 7.4 shows the recognition rates yielded by a pipeline equipped with
the original formulation of Spherical hashing (L2) and with the one us-
ing the Manhattan distance (L1). Here and in the rest of this chapter, we
report only the results regarding the category recognition of the RGB-D
dataset, as the outcomes in the case of the other datasets show similar
trends. The comparison reveals that adopting the formulation based on
L1 distance causes an almost constant loss of about three percentage
points at varying of the bit-rate. However, such result could be due to
the Fisher kernel encoding that has been specifically designed to pro-
duce descriptions in the euclidean space and that could be, therefore,
beneficial to the original formulation of Spherical Hashing.

Fixed-point conversion

Both the L1 and L2 based formulations of SH have been converted to
a fixed-point representation. To investigate on which representation
length could be better suited for the fixed-point conversion of Fisher
vectors and hypersheres parameters, we performed a comparison be-
tween 16, 32 and 64 bit representations. Differently from the static ap-
proach adopted for Fisher kernel that always assigns 16 bits to the frac-
tional part, in the case of SH, the number of integer bits is determined on
the basis of the data to encode: at training time, the maximum distance

104
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 r

at
e

description length (bits)

L2

L1

FIGURE 7.4: Recognition rates obtained by applying Spherical hashing based
on Euclidean distance (L2) and the modified formulation grounding on Man-

hattan distance (L1).

between a sample descriptor and an hypersphere center is computed.
The number of integer bits is set to the minimum number for which
the integer part can represent the maximum distance. Fig.7.5 reports
the comparison in recognition rates between the floating-point version
and the three fixed-point conversions of the algorithm both in the case
of L1 and L2 formulations. Both the charts show that the precision of
the 16-bit conversion is not sufficient to represent the data (specially in
the case of Euclidean distance). Conversely, 64-bit representation does
not induce any loss in recognition rate. 32-bit representation, instead,
manifests a different behaviour with respect to the L1 and L2 formula-
tions: it perfectly represents data in the case of the formulation based on
Manhattan distance, whereas causes a decay in recognition rate of about
two percentage points when data is represented in euclidean space. As
32-bit representation is the most suitable for the ASMP architecture,
Fig.7.6 directly compares the L1 and L2 floating-points versions of
the algorithm with their corresponding 32-bit fixed point conversions.
The chart shows that there is not significant difference between the two
fixed-point versions if an adequate bit-rate is deployed.

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 105

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Euclidean distance

L2

L2 - FP16

L2 - FP32

L2 - FP64

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

Manhattan distance

L1

L1 - FP16

L1 - FP32

L1 - FP64

FIGURE 7.5: Comparison between the floating-point version of the Spherical
hashing algorithm and the 16, 32 and 64 bit fixed-point porting. Results are
reported both in the case of the original formulation (L2) and the modified

version deploying the Manhattan distance (L1).

106
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024

R
e

co
gn

it
io

n
 R

at
e

description length (bits)

L2

L2 - FP32

L1

L1 - FP32

FIGURE 7.6: Comparison between the 32-bit fixed point formulations - based
respectively on Euclidean (L1) and Manhattan (L2) distance - of the Spher-
ical hashing algorithm. The corresponding floating-points versions are also

reported.

Scalability evaluation on ASMP platform

The 32-bit fixed-point formulations of the algorithm have been imple-
mented to the ASMP architecture. To assess the benefits introduced
by the fixed-point conversion, we also performed the porting of the
floating-point formulations. Fig. 7.7 reports the execution times re-
quired to compute a 1024-bit code as the number of available cores
increases. A first look reveals an almost 10× speedup brought in by
the fixed-point representation. The figure also reports a close-up of
the fixed-point times to better appreciate their relative differences. The
comparison between the formulation based on Euclidean distance and
the version grounding on Manhattan distance reports a constant 10%

time reduction along the increasing number of available cores. Further-
more, both the formulations prove to perfectly scale with respect to the
number of cores.

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 107

0

20

40

60

80

100

120

140

160

180

1 2 4 8

El
ap

se
d

 c
yc

le
s

(1
0

6
)

N° Threads

L2

L1

L2 - FP32

L1 - FP32

0

2

4

6

8

10

12

14

16

18

1 2 4 8

El
ap

se
d

 c
yc

le
s

(1
0

6)

N° Threads

FIGURE 7.7: Computation times (in elapsed processor clock cycles) required
to compute a 1024-bit code as varying of the the number of available ASMP
cores. The chart shows the executions times regarding the 32-bit fixed-point
versions of the L1 and L2 distance based formulations. Moreover, the corre-
sponding floating-point versions are reported. The figure also shows a close-up

of the fixed-point times to better perceive their differences.

7.2 Implementation on an Android tablet

The architecture has been deployed to devise an Android app that rec-
ognizes the category of an acquired object. The porting has been carried
out on a Samsung Galaxy Tab Pro 10.1 equipped with a Structure Sen-

sor for the acquisition of the depth image (see Fig. 7.8). The pipeline
describes the acquired RGB-D image with the four types of Kernel De-
scriptors. Fisher Kernel and Spherical Hashing have been trained on
the entire RGB-D Object Dataset which is also deployed as database.
The framework is composed by two main modules. The former, imple-
mented in Java, includes the user interface (two screenshots are shown
in Fig. 7.9) and the acquisition stage. The latter, implemented in C++,
comprises the Visual Search engine. When a user acquires an object, the
Java module displays the RGB and depth image on tablet screen (shown
on the left of Fig. 7.9). Then, through the JNI protocol, the images are
sent to the Visual Search engine. The application requires that the ob-
ject to be recognized is placed on a flat support (such as e.g. a table or

108
Chapter 7. Implementation of the Visual Search engine on

embedded/mobile platforms

FIGURE 7.8: Structure Sensor clipped onto the Samsung tablet for the acqui-
sition of the depth image.

a floor) so as to easily segment the background from the object through
the plane detection algorithm proposed in [101]. More precisely, after
the pixels belonging to the plane has been identified, the coordinates
of the remaining pixels are modeled as a two-dimensional gaussian so
as to define two regions of interest (relative to RGB and depth images)
having the center in the mean of the gaussian and as large as 4 times the
corresponding standard deviation (the two isolated regions of interest
are displayed on the right part of the screen as shown in Fig. 7.9). Then,
the engine is applied to the clipped images and the estimated category is
displayed on the bottom on the screen (see again 7.9), together with the
time required to produce the binary code and the time spent to match
it against the database. Tests performed on the different images prove
that, on average, the pipeline spends 1870 ms for producing the binary
code and 5 ms to perform the matching.

Chapter 7. Implementation of the Visual Search engine on
embedded/mobile platforms 109

FIGURE 7.9: Two screenshots of the app user interface. The acquired RGB
and depth images are shown on the left of the tablet screen. On the right,
the app displays the portions of the images containing the object to recognize
as the result of the plane detection procedure that segments the background.
The bottom part of the screen displays the category of the object (in green)
and execution times required to perform the recognition: the computational
time spent for producing the binary code and the time required to perform the

matching.

Chapter 8

Concluding remarks

The effectiveness of a 3D Object Recognition system strongly depends
on the quality of 3D models representing the objects to recognize. 3D
Registration, playing a fundamental role in 3D Reconstruction, addresses
the problem of aligning in a unique reference frame two separately ac-
quired views, relying only on information extracted from the object sur-
face shared by the two views. Thus, the former part of the thesis intro-
duces a 3D registration algorithm and points out the lack in literature
of an adequate experimental comparison between the different methods
proposed in the last twenty years. Purposely, we compare our approach
with other three methods on a large corpus of datasets acquired with
different sensing devices.

The evaluation neatly shows that, whereas 4PCS [2] gets better results
with lower-resolution data, BSL12 [14, 15] is suited for high-precision
datasets and SI [50] provides fairly stable performance, our approach
attains considerable registration rates on any kind of dataset, regardless
of the type of sensor used for acquisition. Furthermore, it runs in times
comparable to those of BSL12, which exploits parallelism and works
on range images.

As for its limits, even though our proposal can handle successfully noisy
data, it is not robust to the presence of outliers in the input data. In
the 4-Points Congruent Set paper, instead, the authors show that 4PCS
easily deals with a broad percentage of outliers. Such weakness in our

111

112 Chapter 8. Concluding remarks

pipeline is due to the definition of the local reference frame that does
not account for the presence of spurious points in the support. Another
issue is the large number of parameters of our pipeline. However, only
a bunch of them actually affects performance significantly. Indeed, the
proposed evaluation suggests that most parameters may be left at their
default values (Table 4.1), and only the support radius, Rx, adjusted by
trial-and-error to optimize performance on unseen data.

Nonetheless, in order to both make its usage even easier and to im-
prove performance, the pipeline may be equipped with an initial stage
aimed at estimating some parameters automatically. For example, it
may be possible to try to quickly estimate on-line the value of the sup-
port radius, Rx, based on a set of random probes, e.g. so as to optimize
the trade-off between the information content associated with the basic
shape cue deployed to match features, D, and computational efficiency.

In the reconstruction stage, to build the spanning tree including the best
pairwise alignments, it is necessary to check for all the combinations of
view pairs so as to find those showing high overlaps. This process can
be costly, especially in case of datasets, like Venus, Shell and OilPump,
comprising a large number of views. Even though the Hough voting

stage is itself rather inexpensive, such a large number of runs may slow
down reconstruction time notably. Therefore, it would be beneficial
to be able to abort the registration before the Hough stage in case a
view pair is unlikely to belong to the spanning tree. This may be done
efficiently on the basis of the distribution of the scores resulting from the
fast feature matching stage. More precisely, as a small D̃ij is more likely
to come from a good correspondence while a larger one will come from
a wrong correspondence (see Fig. 3.4), we may analyze the distribution
of D̃ij in the current view pair, p

(
D̃ij

)
, so as to guess, e.g. based on the

probability of D̃ij to be small enough (p
(
D̃ij < T

)
), whether the pair

provides enough good correspondences and, as such, is likely to belong
to the spanning tree.

As already mentioned, the main bottleneck of the pipeline resides in

Chapter 8. Concluding remarks 113

the search for neighboring points, especially in the extraction of the
spherical support used for the computation of the local reference frame.
Indeed, a standard kd-tree extracts all the points inside the sphere, which
mandates a further filtering operation to then select only those in the
shell used to determine the tangential axis. To speed-up the search, a
dedicated indexing scheme may be devised to allow for a radius search
that directly extracts only the useful points in the shell of the sphere.

Mobile devices with synchronized depth and color sensing may be fore-
seen to become more and more widespread in the forthcoming future.
Based on these premises, the latter part of the thesis proposes the first
investigation towards a plausible architecture aimed at Visual Search
through RGB-D images and compact binary representations.

The findings emerging from experimental analysis suggest that a pipeline
deploying densely computed Kernel Descriptors aggregated at the im-
age level through Fisher Kernel followed by Spherical Hashing consti-
tutes an effective reference architecture. Similar performance can be
obtained by compressing Deep Features computed via Convolutional
Neural Networks. In particular, Deep Features seem the best choice to
represent appearance, whereas shape information is better captured by
Kernel Descriptors.

Indeed, recognition rates between 70-80% can be achieved with binary
codes as compact as 512-1024 bits in both category and instance re-
trieval experiments. Moreover, keeping the processing flows of the
color and depth channels separate to concatenate the final binary codes
seems not to hinder performance while potentially allowing for a great
deal of flexibility at the system and application level.

In category recognition scenarios, both RGB and depth information
contribute notably to ascertain the class to which a query object does be-
long. Instead, in instance recognition tasks, our experiments highlight
how appearance features, like texture and colour, are key to tell apart
the specific object instances stored into the database, whereas depth

114 Chapter 8. Concluding remarks

furnishes a limited, though still informative, contribution. Indeed, an
approach based on simply juxtaposing the two representations does not
take into account the different discriminative power that the two cues
may convey in diverse scenarios. Hence, devising suitable strategies to
learn and deploy the relative prominence of appearance and depth in di-
verse settings is among the key research issues to be addressed in order
to leverage on depth sensing in forthcoming Mobile Visual Search sce-
narios. We are currently investigating on a learning-to-rank approach
aimed at discovering the contribution brought in by the different de-
scriptions on the basis of the Hamming distances between query and
database binary codes.

As already mentioned, the available RGB-D datasets are not sufficiently
realistic to take into account many of the nuisances occurring in real-
world settings. In particular, the three datasets used in our evaluation
deal with controlled setups wherein the illumination has been kept con-
stant and the objects are always at the same distance from the sensor.
In addition, they do not comprise clutter as the objects have been seg-
mented from the background. This state of affairs calls for some sub-
stantial effort to create new datasets aimed at evaluating RGB-D Visual
Search engines. As a first contribution along this direction, we have
developed a standardized software interface that allows the aggregation
of existing datasets1 so as to treat them collectively and seamlessly as
the server side database of an RGB-D Visual Search pipeline. We will
then provide query RGB-D images dealing with objects belonging to
the categories in the database and taken under uncontrolled settings and
clutter, so as to enable more realistic category recognition experiments.

In such more realistic setup – in which objects comprising the database
are typically segmented from the background, whereas query images
may be affected by any type of clutter – the ability to properly describe
the portion of the image containing the object of interest and discard

1Besides the datasets considered in this thesis, it is worth highlighting the MV-
RED dataset, recently introduced in [62].

Chapter 8. Concluding remarks 115

the surrounding background appears essential to effective recognition.
To give an example, the app described at the end of chapter 7 performs
an initial background detection. Unfortunately, it relies on an unreal-
istic assumption of background flatness. Accordingly, we are working
on a more general framework able to weigh more the local features de-
scribing the object than those representing the surrounding background
based on automatic estimation of a per-pixel visual saliency score.

During the very last part of the Ph.D., the learning-to-rank approach as
well as the saliency-based encoding have been investigated and, even if
at a very early stage, they proved to be promising. For this reason, the
next two sections describe their current development and report prelim-
inary experimental results.

8.1 Learning to rank color and depth

In a information retrieval system, in which different strategies indepen-
dently produce different rankings, learning-to-rank approaches are used
to learn a ranking model that fuses the individual ranking into a joint
ranking in order to improve the recognition capabilities of the system.
In our architecture, each processing flow describes the query image with
a different descriptor (Kernel Descriptors, Deep Features, etc. . .) and
produces a binary code that is matched in the Hamming space. There-
fore, a processing flow can be seen as a strategy that yields a ranking of
the database images based on the Hamming distance. Learning-to-rank
approaches perform a supervised learning aimed at discovering which
strategies produce better rankings in a particular task and, hence, learn
how to properly weigh them in the final ranking. Such behaviour ful-
fills, in principle, our requirement to treat differently the contributions
of the color and depth descriptions in category and instance recognition
tasks. Accordingly, we exploit the Ranking SVM method proposed in
[41, 49] that formulates the learning-to-rank problem as a classification
problem.

116 Chapter 8. Concluding remarks

RGB-D Object Dataset

CIN 2D+3D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KD I KD C KD D KD S Hashing
fusion

Ranking
SVM

R
e

co
gn

it
io

n
 r

at
e

Category recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KD I KD C KD D KD S Hashing
fusion

Ranking
SVM

R
e

co
gn

it
io

n
 r

at
e

Instance recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

KD I KD C KD D KD S Hashing
fusion

Ranking
SVM

R
e

co
gn

it
io

n
 r

at
e

Category recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KD I KD C KD D KD S Hashing
fusion

Ranking
SVM

R
e

co
gn

it
io

n
 r

at
e

Instance recognition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KD I KD C KD D KD S Hashing
fusion

Ranking
SVM

R
e

co
gn

it
io

n
 r

at
e

BigBIRD

FIGURE 8.1: Preliminary results attained by exploiting the learning-to-rank
approach (Ranking SVM) on the three datasets: RGB-D Object Dataset,
CIN2D+3D and BigBIRD. Each chart reports the comparison with the recog-
nition rates obtained by the pipelines deploying separately the four Kernel de-
scriptors (KD I, KD C, KD D, KD S) and concatenating them through the
Hashing fusion strategy (Hashing fusion). Overall, each pipeline transmits

1024 bits to the server.

Chapter 8. Concluding remarks 117

Purposely, we applied our pipeline exploiting the four Kernel descrip-
tors to obtain four-dimensional feature vectors containing the Hamming
distances between the binary codes computed on the query and database
images. Fig. 8.1 reports the comparison between the learning-to-rank
approach and the Hashing fusion strategy which simply juxtaposes the
binary codes produced by the separate encoding of the four Kernel de-
scriptors. Moreover, the charts report the recognition rates obtained by
deploying the four Kernel descriptors separately. As already discussed
in Chap. 7, simple concatenation of the binary descriptions leads to an
improvement in terms of recognition rates in the task of category recog-
nition but turns out ineffective if applied in the recognition of the spe-
cific instance of an object and even detrimental in the case of BigBIRD
dataset where loses about 10 percentage points with respect to the de-
ployment of the Kernel descriptor based on color features only. Instead,
the learning-to-rank approach better combines the contribution brought
in by the different types of descriptions. As a matter of fact, in the case
of BigBIRD dataset, the recognition rate raises to 77% and comes close
to pair the performance of the description based only on color. This
result proves that the method learned to weigh more the description
based on color as also corroborated by the coefficients of the hyper-
plane estimated by the SVM training which show a prominent maxi-
mum corresponding to the coefficient related to the color feature. Such
behaviour seems confirmed by the experiments on the other datasets in
which the learning-to-rank approach slightly outperforms the Hashing
fusion strategy in three out of four cases.

8.2 Saliency-based encoding

In real-world settings, the object acquired through the query image may
be immersed in any kind of background. Therefore, relying on an esti-
mation of the visual saliency of the diverse areas of the image holds the

118 Chapter 8. Concluding remarks

Local
description

Weighted
Global

encoding

Image

description

Client

Saliency

Extraction

Saliency-
based

Weighting

FIGURE 8.2: Outline of the pipeline deploying saliency to stronger weigh
local features belonging to the object.

potential for isolating and recognizing the object. So as to validate such
idea, we devised the pipeline depicted in Fig. 8.2.

Given a query image, the pipeline extracts a set of local descriptors.
Furthermore, a saliency map (see Fig. 8.3 for an example) is extracted
through the method proposed in [74], which synergically exploits both
RGB and depth information. Then, a weight is assigned to each local
feature grounding on the saliences of the pixels of the feature patch. So
as to consider these saliency-based weights in the global representation
of the image, we extended the Fisher Kernel formulation by introducing
the feature weights in the computation of 5.5 and 5.6:

GX
µ,i =

1

Ω
√
αi

T∑
t=1

ωtγt(i)

(
xi − µi
σi

)
(8.1)

GX
σ,i =

1

Ω
√

2αi

T∑
t=1

ωtγt(i)

[
(xi − µi)2

σ2
i

− 1

]
(8.2)

where ωt represents the weight associated to descriptor xt and Ω =
T∑
t=1

ωt.

As already discussed, a dataset suited for the evaluation of our approach
does not exist yet. Accordingly, we have workarounded such issue by
modifying the BigBIRD dataset so to vary the backgrounds of the im-
ages comprising the dataset. Precisely, for each image, we replaced

Chapter 8. Concluding remarks 119

FIGURE 8.3: Example of saliency map. Brighter pixels represent more salient
portions of the image.

a) b) c) d)

FIGURE 8.4: Procedure performed for modifying the BigBIRD dataset: for
each image (a), the mask (b) included in the dataset is used to segment and
discard the background. Then, a random image of the NYU Depth V1 dataset
is cropped at a random position so as to extract a region of the same size of
the image (c). Finally, the foreground of the original image is merged with the

extracted region (d).

120 Chapter 8. Concluding remarks

the background by exploiting the mask provided by the authors of the
dataset (see Fig. 8.4 b). The new background is extracted by cropping
a random patch – of the same size of the image – from a random image
of the NYU Depth V1 introduced in [86] (see again Fig. 8.4 c).

We performed a comparison on this dataset between the pipeline de-
ploying the standard formulation of Fisher Kernel and this new pipeline
weighting on the basis of the saliency. The results, showing an im-
provement of about 20% in terms of recognition rate with respect to the
standard pipeline, prove how the deployment of saliency may turn out
highly beneficial in real-world scenarios.

Bibliography

[1] ISO/IEC JTC 1/SC 29/WG 11, Information technology - Multi-
media content description interface - Part 13: Compact descrip-
tors for visual search. 2014.

[2] D. Aiger, N. J. Mitra, and D. Cohen-Or. “4-points Congruent
Sets for Robust Surface Registration”. In: ACM Transactions

on Graphics 27.3 (2008), 85:1–85:10.

[3] Andrea Albarelli, Emanuale Rodolà, and Andrea Torsello. “Loosely
Distinctive Features for Robust Surface Alignment”. In: Euro-

pean Conference On Computer Vision (ECCV). 2010.

[4] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno
Lévy, and Mathieu Desbrun. “Anisotropic Polygonal Remesh-
ing”. In: ACM SIGGRAPH Papers. San Diego, California, 2003,
pp. 485–493.

[5] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. “The
Power Crust”. In: 6th ACM Symposium on Solid Modeling. 2001,
pp. 249–260.

[6] Prabin Bariya, John Novatnack, Gabriel Schwartz, and Ko Nishino.
“3D Geometric Scale Variability in Range Images: Features and
Descriptors”. In: International Journal of Computer Vision 99.2
(2012), pp. 232–255.

[7] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Clau-
dio Silva, and Gabriel Taubin. “The ball-pivoting algorithm for
surface reconstruction”. In: IEEE Transactions on Visualization

and Computer Graphics 5.4 (1999), pp. 349–359.

121

122 BIBLIOGRAPHY

[8] Paul J. Besl and Neil D. McKay. “A method for registration of
3-D shapes”. In: Transactions on Pattern Analysis and Machine

Intelligence (1992).

[9] Manuel Blum, Jan Wulfing, and Martin Riedmiller. “A learned
feature descriptor for object recognition in RGB-D data”. In:
International Conference on Robotics and Automation (IROS).
Ieee, 2012, pp. 1298–1303.

[10] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Depth kernel de-
scriptors for object recognition”. In: Intelligent Robots and Sys-

tems (IROS). 2011.

[11] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Kernel descrip-
tors for visual recognition”. In: Advances in Neural Information

Processing Systems 23 (2010), pp. 1–9.

[12] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “Unsupervised fea-
ture learning for rgb-d based object recognition”. In: Interna-

tional Symposium on Experimental Robotics (2012), pp. 1–15.

[13] Liefeng Bo and Cristian Sminchisescu. “Efficient match kernel
between sets of features for visual recognition”. In: Advances in

Neural Information Processing Systems (2009), pp. 1–9.

[14] Francesco Bonarrigo, Alberto Signoroni, and Riccardo Leonardi.
“A robust pipeline for rapid feature-based pre-alignment of dense
range scans”. In: International Conference on Computer Vision

(ICCV). 2011, pp. 2260–2267.

[15] Francesco Bonarrigo, Alberto Signoroni, and Riccardo Leonardi.
“Multi-view alignment with database of features for an improved
usage of high-end 3D scanners”. In: Journal on Advances in

Signal Processing (EURASIP) 2012.1 (2012), p. 148.

BIBLIOGRAPHY 123

[16] B Browatzki and Jan Fischer. “Going into depth: Evaluating 2D
and 3D cues for object classification on a new, large-scale ob-
ject dataset”. In: International Conference on Computer Vision

Workshops (ICCV Workshops) (2011).

[17] Benedict J. Brown and Szymon Rusinkiewicz. “Global non-
rigid alignment of 3-D scans”. In: ACM SIGGRAPH (2007),
p. 21.

[18] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pas-
cal Fua. “Brief: Binary robust independent elementary features”.
In: European Conference on Computer Vision (ECCV) (2010).

[19] U Castellani, M Cristani, S. Fantoni, and V. Murino. “Sparse
points matching by combining 3D mesh saliency with statistical
descriptors”. In: Computer Graphics Forum (2008).

[20] Vijay Chandrasekhar, Mina Makar, Gabriel Takacs, David Chen,
Sam S. Tsai, Ngai-Man Cheung, Radek Grzeszczuk, Yuriy Reznik,
and Bernd Girod. “Survey of SIFT compression schemes”. In:
International Conference on Pattern Recognition (2010).

[21] Vijay Chandrasekhar, Gabriel Takacs, David M. Chen, Sam S.
Tsai, Mina Makar, and Bernd Girod. “Feature Matching Per-
formance of Compact Descriptors for Visual Search”. In: Data

Compression Conference (2014).

[22] Vijay Chandrasekhar, Gabriel Takacs, David M. Chen, Sam S.
Tsai, Yuriy Reznik, Radek Grzeszczuk, and Bernd Girod. “Com-
pressed Histogram of Gradients: A Low-Bitrate Descriptor”. In:
International Journal of Computer Vision (2011).

[23] David M. Chen, Sam S. Tsai, Vijay Chandrasekhar, Gabriel
Takacs, Jatinder Singh, and Bernd Girod. “Tree Histogram Cod-
ing for Mobile Image Matching”. In: Data Compression Con-

ference (2009), pp. 143–152.

124 BIBLIOGRAPHY

[24] C. S. Chua and R. Jarvis. “Point Signatures: A New Represen-
tation for 3D Object Recognition”. In: International Journal of

Computer Vision 25.1 (1997), pp. 63–85.

[25] DH Chung, ID Yun, and SU Lee. “Registration of multiple-
range views using the reverse-calibration technique”. In: Pat-

tern Recognition 31.4 (1998), pp. 457–464.

[26] B. Curless and M. Levoy. “A volumetric method for building
complex models from range images”. In: SIGGRAPH. 1996,
pp. 303–312.

[27] Brian Curless and Marc Levoy. “A volumetric method for build-
ing complex models from range images”. In: SIGGRAPH. 1996,
pp. 303–312.

[28] James Davis, Diego Nehab, Ravi Ramamoorthi, and Szymon
Rusinkiewicz. “Spacetime Stereo: A Unifying Framework for
Depth from Triangulation”. In: Transactions on Pattern Analy-

sis and Machine Intelligence. 27.2 (2005), pp. 296–302.

[29] Sahibsingh a. Dudani. “The Distance-Weighted k-Nearest-Neighbor
Rule”. In: Transactions on Systems, Man, and Cybernetics (1976),
pp. 325–327.

[30] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, and
Wolfram Burgard. “3D Mapping with an RGB-D Camera”. In:
Transactions on robotics (2012), pp. 1–11.

[31] Simone Fantoni, Umberto Castellani, and Andrea Fusiello. “Ac-
curate and automatic alignment of range surfaces”. In: Interna-

tional Conference on 3D Imaging, Modeling, Processing, Visu-

alization and Transmission (3DIMPVT). 2012.

[32] Jacques Feldmar and Nicholas Ayache. “Rigid, affine and lo-
cally affine registration of free-form surfaces”. In: International

Journal of Computer Vision (1996).

BIBLIOGRAPHY 125

[33] MA Fischler and RC Bolles. “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography”. In: Communications of the ACM

(1981).

[34] Andrew W Fitzgibbon. “Robust registration of 2D and 3D point
sets”. In: Computer Vision and Image Understanding 2.13-14
(2003), pp. 1145–1153.

[35] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. “Rec-
ognizing Objects in Range Data Using Regional Point Descrip-
tors”. In: European Conference On Computer Vision (ECCV).
Vol. 3. 2004, pp. 224–237.

[36] Bernd Girod, Vijay Chandrasekhar, David M. Chen, Ngai-Man
Cheung, Radek Grzeszczuk, Yuriy Reznik, Gabriel Takacs, Sam
S. Tsai, and Ramakrishna Vedantham. “Mobile visual search”.
In: Signal Processing Magazine, IEEE July (2011), pp. 61–76.

[37] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent
Perronnin. “Iterative Quantization: A Procrustean Approach to
Learning Binary Codes for Large-Scale Image Retrieval”. In:
IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (2013), pp. 2916–2929.

[38] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu,
Jianwei Wan, and Ngai Ming Kwok. “A Comprehensive Per-
formance Evaluation of 3D Local Feature Descriptors”. In: In-

ternational Journal of Computer Vision (2015), pp. 1–24.

[39] Saurabh Gupta, Ross Girshick, Pablo Arbel, and Jitendra Malik.
“Learning Rich Features from RGB-D Images for Object Detec-
tion and Segmentation”. In: European Conference on Computer

Vision (ECCV) (2014), pp. 1–16.

126 BIBLIOGRAPHY

[40] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and
Sung-Eui Yoon. “Spherical hashing”. In: Conference on Com-

puter Vision and Pattern Recognition (CVPR) (2012), pp. 2957–
2964.

[41] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. “Large
Margin Rank Boundaries for Ordinal Regression”. In: Advances

in Large Margin Classifiers. MIT Press, 2000. Chap. 7, pp. 115–
132.

[42] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. “Surface reconstruction from unorganized
points”. In: SIGGRAPH. 1992, pp. 71–78.

[43] Berthold K. P. Horn. “Closed-form solution of absolute orienta-
tion using unit quaternions”. In: Journal of the Optical Society

of America A 4.4 (1987), pp. 629–642.

[44] Berthold K. P. Horn. “Extended gaussian images”. In: Proceed-

ings of the IEEE 12 (1984).

[45] Piotr Indyk and Rajeev Motwani. “Approximate nearest neigh-
bors: towards removing the curse of dimensionality”. In: Pro-

ceedings of the thirtieth annual ACM symposium on Theory of

computing (1998), pp. 604–613.

[46] T Jaakkola and D Haussler. “Exploiting generative models in
discriminative classifiers”. In: Advances in Neural Information

Processing Systems (1999).

[47] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick
Pérez. “Aggregating local descriptors into a compact image rep-
resentation”. In: Conference on Computer Vision and Pattern

Recognition (CVPR) (2010).

BIBLIOGRAPHY 127

[48] Rongrong Ji, Ling-Yu Duan, Jie Chen, Hongxun Yao, Junsong
Yuan, Yong Rui, and Wen Gao. “Location Discriminative Vo-
cabulary Coding for Mobile Landmark Search”. In: Interna-

tional Journal of Computer Vision (2011), pp. 290–314.

[49] Thorsten Joachims. “Optimizing search engines using clickthrough
data”. In: International conference on Knowledge discovery and

data mining. 2002, pp. 133–142.

[50] Andrew Edie Johnson and Martial Hebert. “Surface registration
by matching oriented points”. In: International Conference on

3D Digital Imaging and Modeling (1997).

[51] Andrew Edie Johnson and Martial Hebert. “Using Spin Images
for Efficient Object Recognition in Cluttered 3D Scenes”. In:
Pattern Analysis and Machine Intelligence 21 (1999), pp. 433–
449.

[52] Matthew Johnson. “Generalized Descriptor Compression for Stor-
age and Matching”. In: British Machine Vision Conference (2010),
pp. 23.1–23.11.

[53] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. “Pois-
son Surface Reconstruction”. In: Proceedings of the Fourth Eu-

rographics Symposium on Geometry Processing. Cagliari, Sar-
dinia, Italy: Eurographics Association, 2006, pp. 61–70.

[54] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool.
“Hough transform and 3D SURF for robust three dimensional
classification”. In: European Conference On Computer Vision

(ECCV). 2010, pp. 589–602.

[55] R Kolluri, J R Shewchuk, and J F O’Brien. “Spectral Surface
Reconstruction from Noisy Point Clouds”. In: SIGGRAPH. Vol. 71.
2004, pp. 11–21.

128 BIBLIOGRAPHY

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Networks”.
In: Advances In Neural Information Processing Systems (2012),
pp. 1–9.

[57] NA Kulkarni and S Kumar. “Vote based correspondence for 3D
point-set registration”. In: Indian Conference on Computer Vi-

sion, Graphics and Image Processing (ICVGIP) (2012).

[58] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. “A large-
scale hierarchical multi-view rgb-d object dataset”. In: Interna-

tional Conference on Robotics and Automation (2011), pp. 1817–
1824.

[59] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. “Beyond
bags of features: Spatial pyramid matching for recognizing nat-
ural scene categories”. In: Conference on Computer Vision and

Pattern Recognition (CVPR) (2006).

[60] Skjalg Lepsoy, Gianluca Francini, Giovanni Cordara, Pedro Porto,
and Buarque de Gusmiio. “Statistical modelling of outliers for
fast visual search”. In: International Conference on Multimedia

and Expo (2011).

[61] Xinju Li and Igor Guskov. “Multi-scale Features for Approx-
imate Alignment of Point-based Surfaces”. In: Eurographics

Symposium on Geometry Processing (2005).

[62] Anan Liu, Zhongyang Wang, Weizhi Nie, and Yuting Su. “Graph-
based characteristic view set extraction and matching for 3D
model retrieval”. In: Information Sciences 320 (2015), pp. 429–
442.

[63] Wang Liying and Song Weidong. “A review of range image reg-
istration methods with accuracy evaluation”. In: Urban Remote

Sensing Joint Event (2009), pp. 1–8.

BIBLIOGRAPHY 129

[64] William E. Lorensen and Harvey E. Cline. “Marching cubes:
A high resolution 3D surface construction algorithm”. In: SIG-

GRAPH. Vol. 21. 4. 1987, pp. 163–169.

[65] David G. Lowe. “Distinctive Image Features from Scale-Invariant
Keypoints”. In: International Journal on Computer Vision 60.2
(2004), pp. 91–110.

[66] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and
Kai Li. “Multi-probe LSH: efficient indexing for high-dimensional
similarity search”. In: International Conference on Very Large

Data bases (2007).

[67] A. Makadia, A.I. Patterson, and K. Daniilidis. “Fully Automatic
Registration of 3D Point Clouds”. In: Conference on Computer

Vision and Pattern Recognition (CVPR). 2006.

[68] M. R G Márquez and Shin Ting Wu. “An automatic crude reg-
istration of two partially overlapping range images”. In: Brazil-

ian Symposium on Computer Graphics and Image Processing

(2008), pp. 245–252.

[69] Takeshi Masuda. “Log-polar height maps for multiple range im-
age registration”. In: Computer Vision and Image Understand-

ing 113.11 (2009), pp. 1158–1169.

[70] A. Mian, M. Bennamoun, and R. Owens. “A Novel Represen-
tation and Feature Matching Algorithm for Automatic Pairwise
Registration of Range Images”. In: International Journal of Com-

puter Vision 66.1 (2006), pp. 19–40.

[71] NJ Mitra, LJ Guibas, and Mark Pauly. “Partial and approximate
symmetry detection for 3D geometry”. In: ACM Transactions

on Graphics (2006).

[72] Toru Nakashika, Takafumi Hori, Tetsuya Takiguchi, and Ya-
suo Ariki. “3D-Object Recognition Based on LLC Using Depth

130 BIBLIOGRAPHY

Spatial Pyramid”. In: International Conference on Pattern Recog-

nition (2014).

[73] Ko Nishino and Katsushi Ikeuchi. “Robust simultaneous reg-
istration of multiple range images”. In: Asian Conference on

Computer Vision (ACCV). January. 2002, pp. 71–88.

[74] Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and Ron-
grong Ji. “RGBD Salient Object Detection : A Benchmark and
Algorithms”. In: European Conference on Computer Vision. 1.
2014, pp. 92–109.

[75] Florent Perronnin and Christopher Dance. “Fisher kernels on
visual vocabularies for image categorization”. In: Conference

on Computer Vision and Pattern Recognition (CVPR) (2007).

[76] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. “Im-
proving the fisher kernel for large-scale image classification”.
In: European Conference on Computer Vision (ECCV). 2010,
pp. 143–156.

[77] Alioscia Petrelli and Luigi Di Stefano. “A Repeatable and Ef-
ficient Canonical Reference for Surface Matching.” In: Confer-

ence on 3D Imaging, Modeling, Processing, Visualization and

Transmission. 2012, pp. 403–410.

[78] Alioscia Petrelli and Luigi Di Stefano. “On the repeatability
of the local reference frame for partial shape matching”. In:
International Conference on Computer Vision (ICCV). 2011,
pp. 2244–2251.

[79] Kari Pulli. “Multiview registration for large data sets”. In: 3Dim

(1999), pp. 160–168.

[80] S Rusinkiewicz and M Levoy. “Efficient variants of the ICP al-
gorithm”. In: International Conference on 3D Digital Imaging

and Modeling (2001).

BIBLIOGRAPHY 131

[81] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast
Point Feature Histograms (FPFH) for 3D registration”. In: Inter-

national Conference on Robotics and Automation (2009), pp. 3212–
3217.

[82] Joaquim Salvi, Carles Matabosch, David Fofi, and Josep Forest.
“A review of recent range image registration methods with ac-
curacy evaluation”. In: Image and Vision Computing 25 (2007),
pp. 578–596.

[83] Thiago R. dos Santos, A. Franz, H.-P Meinzer, and L. Maier-
Hein. “Robust multi-modal surface matching for intra-operative
registration”. In: 25th International Symposium on Computer-

Based Medical Systems 0 (2011), pp. 1–6.

[84] A. Segal, D. Haehnel, and S. Thrun. “Generalized-ICP”. In:
Robotics: Science and Systems. 2009.

[85] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark
Finocchio, Richard Moore, Alex Kipman, and Andrew Blake.
“Real-time human pose recognition in parts from single depth
images”. In: Computer Vision and Pattern Recognition (2011),
pp. 1297–1304.

[86] Nathan Silberman and Rob Fergus. “Indoor scene segmenta-
tion using a structured light sensor”. In: International Confer-

ence on Computer Vision Workshops (ICCV Workshops) (2011),
pp. 601–608.

[87] Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, and
Pieter Abbeel. “BigBIRD: A large-scale 3D database of object
instances”. In: International Conference on Robotics and Au-

tomation (2014), pp. 509–516.

[88] Richard Socher, Brody Huval, Bharath Bhat, Christopher D.
Manning, and Andrew Y. Ng. “Convolutional-Recursive Deep

132 BIBLIOGRAPHY

Learning for 3D Object Classification”. In: Advances in Neural

Information Processing Systems (2012), pp. 1–9.

[89] F. Stein and G. Medioni. “Structural Indexing: Efficient 3-D
Object Recognition”. In: Transactions on Pattern Analysis and

Machine Intelligence 14.2 (1992), pp. 125–145.

[90] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. “A Benchmark for the Evaluation of RGB-D SLAM Sys-
tems”. In: International Conference on Intelligent Robot Sys-

tems. 2012.

[91] Y. Sun and M. A. Abidi. “Surface Matching by 3D Point’s Fin-
gerprint”. In: International Conference on Computer Vision (ICCV)

2 (2001), pp. 263–269.

[92] G. K. L. Tam, Zhi-Quan Cheng, Yu-Kun Lai, F. C. Langbein,
Yonghuai Liu, D. Marshall, R. R. Martin, Xian-Fang Sun, and P.
L. Rosin. “Registration of 3D point clouds and meshes: a survey
from rigid to nonrigid.” In: Transactions on Visualization and

Computer Graphics 19.7 (2013), pp. 1199–217.

[93] JP Tarel, H Civi, and DB Cooper. “Pose estimation of free-form
3D objects without point matching using algebraic surface mod-
els”. In: Workshop Model Based 3D Image Analysis (1998).

[94] F. Tombari, S. Salti, and L. Di Stefano. “Unique shape context
for 3d data description”. In: ACM Workshop on 3D Object Re-

trieval. 2010, pp. 57–62.

[95] F. Tombari, S. Salti, and L. Di Stefano. “Unique Signatures of
Histograms for Local Surface Description”. In: European Con-

ference On Computer Vision (ECCV). 2010, pp. 356–369.

[96] Federico Tombari and Luigi Di Stefano. “Object Recognition
in 3D Scenes with Occlusions and Clutter by Hough Voting”.

BIBLIOGRAPHY 133

In: Proceedings of the 2010 Fourth Pacific-Rim Symposium on

Image and Video Technology. 2010, pp. 349–355.

[97] Federico Tombari, Samuele Salti, and Luigi DiStefano. “Perfor-
mance Evaluation of 3D Keypoint Detectors”. In: International

Journal of Computer Vision 102.1–3 (2013), pp. 198–220.

[98] Tomasz Trzcinski, CM Christoudias, Pascal Fua, and Vincent
Lepetit. “Boosting Binary Keypoint Descriptors”. In: Computer

Vision and Pattern Recognition (2013).

[99] Greg Turk and Marc Levoy. “Zippered polygon meshes from
range images”. In: SIGGRAPH 94pp (1994), pp. 311–318.

[100] Kartik Venkataraman, Dan Lelescu, Jacques Duparr, Andrew
McMahon, Gabriel Molina, Priyam Chatterjee, and Robert Mullis.
“PiCam: an ultra-thin high performance monolithic camera ar-
ray”. In: Siggraph Asia (2013).

[101] Junhao Xiao, Jianhua Zhang, Jianwei Zhang, Houxiang Zhang,
and Hans Petter Hildre. “Fast plane detection for SLAM from
noisy range images in both structured and unstructured envi-
ronments”. In: IEEE International Conference on Mechatronics

and Automation (ICMA). 2011, pp. 1768–1773.

[102] Chen Y. and G Medioni. “Object modelling by registration of
multiple range images”. In: Image and Vision Computing (1992),
pp. 2724–2729.

[103] Kuan-Ting Yu, Shih-Huan Tseng, and Li-Chen Fu. “Learning
hierarchical representation with sparsity for RGB-D object recog-
nition”. In: International Conference on Intelligent Robots and

Systems (2012), pp. 3011–3016.

[104] A. Zaharescu, E. Boyer, and R. Horaud. “Keypoints and Local
Descriptors of Scalar Functions on 2D Manifolds”. In: Interna-

tional Journal of Computer Vision (2012).

134 BIBLIOGRAPHY

[105] Li Zhang, Brian Curless, and Steven M. Seitz. “Spacetime Stereo:
Shape Recovery for Dynamic Scenes”. In: Conference on Com-

puter Vision and Pattern Recognition (CVPR). Madison, WI,
2003.

[106] Yu Zhong. “Intrinsic Shape Signatures: A Shape Descriptor for
3D Object Recognition”. In: International Conference on Com-

puter Vision Workshops (3DRR). 2009.

Author’s publications related to
PhD topic

[107] Alioscia Petrelli and Luigi Di Stefano. “Pairwise Registration
by Local Orientation Cues”. In: Computer Graphics Forum 00.0
(2015), pp. 1–15.

[108] Alioscia Petrelli, Danilo Pau, and Luigi Di Stefano. “Analysis
of Compact Features for RGB-D Visual Search”. In: Interna-

tional Conference on Image Analysis and Processing (ICIAP).
Vol. 9280. 2015, pp. 14–24.

[109] Alioscia Petrelli, Danilo Pau, Emanuele Plebani, and Luigi Di
Stefano. “RGB-D Visual Search with Compact Binary Codes”.
In: International Conference on 3D Vision (3DV). 2015.

135

Author’s publications during
the PhD course related to other
topics

[110] Samuele Salti, Alioscia Petrelli, Federico Tombari, Nicola Fio-
raio, and Luigi Di Stefano. “A traffic sign detection pipeline
based on interest region extraction”. In: International Joint Con-

ference on Neural Networks (IJCNN). 2013, pp. 1–7.

[111] Samuele Salti, Alioscia Petrelli, Federico Tombari, Nicola Fio-
raio, and Luigi Di Stefano. “Traffic sign detection via interest
region extraction”. In: Pattern Recognition 48.4 (2015), pp. 1035–
1045.

[112] Federico Tombari, Nicola Fioraio, Tommaso Cavallari, Samuele
Salti, Alioscia Petrelli, and Luigi Di Stefano. “Automatic detec-
tion of pole-like structures in 3D urban environments”. In: Inter-

national Conference on Intelligent Robots and Systems (IROS).
2014, pp. 4922–4929.

137

	Abstract
	Introduction
	3D Reconstruction
	Coarse pairwise registration
	Feature extraction
	Local description
	Description matching
	Rigid motion estimation

	Fine pairwise registration
	Coarse global registration
	Fine global registration
	Mesh reconstruction
	Computational geometry based methods
	Implicit functions based methods

	Pairwise registration by local orientation cues
	Pipeline Description
	LRF estimation
	LRF matching
	Hough voting
	Rigid motion estimation

	Feature Extraction

	Pairwise registration: Experimental Evaluation
	Datasets
	Methodology
	Parameters
	Results

	RGB-D Mobile Visual Search
	Local description
	SIFT
	Dense SIFT
	Kernel Descriptors

	Global encoding
	VLAD
	Fisher kernel
	Efficient match kernels
	Deep Features

	Binary hashing
	Locality Sensitive Hashing
	Spherical Hashing

	Matching
	Fusion of appearance and shape

	RGB-D Mobile Visual Search: Experimental Evaluation
	Datasets
	RGB-D Object Dataset
	CIN 2D+3D
	BigBIRD

	Experimental investigation
	Matching
	Binary hashing
	Global encoding
	Contribution of appearance and shape
	Impact of binary compression
	Image features

	Performance evaluation
	Compact Descriptors for Visual Search
	Results
	RGB-D object dataset
	CIN 2D+3D
	BigBIRD

	Implementation of the Visual Search engine on embedded/mobile platforms
	Implementation on the STxP70 ASMP platform
	STxP70 ASMP architecture
	STxP70 ASMP programming model
	Gepop simulator

	Implementation of Fisher Kernel
	Fixed-point conversion
	Scalability evaluation on ASMP platform

	Implementation of Spherical Hashing
	Fixed-point conversion
	Scalability evaluation on ASMP platform

	Implementation on an Android tablet

	Concluding remarks
	Learning to rank color and depth
	Saliency-based encoding

	Bibliography
	Author's publications related to PhD topic
	Author's publications during the PhD course related to other topics

