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To my family

”I am struck by how, except when you’re young, you really need to prioritize in life, figuring out

in what order you should divide up your time and energy. If you don’t get that sort of system set

by a certain age, you’ll lack focus and your life will be out of balance.”

Haruki Murakami, What I Talk About When I Talk About Running
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Abstract

This thesis collects the outcomes of a Ph.D. course in Electronics, Telecommunications, and Infor-

mation Technologies Engineering and it is focused on the study and design of techniques able to

optimize resources in distributed mobile platforms. It is related to a typical smart city environment,

in order to enhance quality, performance and interactivity of urban services. The subject is the

operation of computation offloading, intended as the delegation of certain computing tasks to an

external platform, such as a cloud or a cluster of devices. Offloading the computation tasks can

effectively expand the usability of mobile devices beyond their physical limits and may be necessary

due to limitations of a system handling a particular task on its own.

The computation offloading within an ecosystem as a urban community, where a large amount

of users are connected towards even multiple devices, is a challenging subject. In a very close

future, smart cities will be peculiar sources of intensive computing tasks, since they are conceived

as systems where e-governance will be not only transparent and fast, but also oriented to energy

and water conservation, efficient waste disposal, city automation, seamless facilities to travel and

affordable access to health management systems. Also traffic will need to be monitored intelligently,

emergencies foreseen and resolved quickly, homes and citizens provided with a wide series of control

and security devices. All these ambitious aspirations will require the deployment of infrastructures

and systems where devices will generate massive data and should be orchestrated in a collective way,

to pursue synergic goals. In this context, the computation offloading is an operation dealing with

the optimization of urban services, in order to reduce costs and consumption of resources and to

improve the connection between citizens and government.

This dissertation is organized in three main parts, dealing with the optimization of the resources

in a smart city background from different points of view.

The first part introduces the Urban Mobile Cloud Computing (UMCC) framework, a system

model that takes into account a series of features related to Heterogeneous Networks (HetNets),

cloud architectures, various characteristics of the Smart Mobile Devices (SMDs) and different types

of smart city application, performed to pursue several goals.

The second part deals with a partial offloading operation, taking into account the possibility

of delegating towards a cloud infrastructure only a portion of the computation load. It is focused
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on the tradeoff between energy consumption and execution time, in a non-trivial multi-objective

optimization approach. Furthermore, a utility function model developed from the economic field is

introduced, in order to optimize the system. It takes into account a series of parameters related to

the UMCC, showing that, when the network is overloaded, the partial offloading operation allows to

achieve the target throughput values although the energy consumption and the computational time

consumed in the partial offloading are lower than the resources consumed in the total offloading

operation. In addition, the proposed UMCC framework and the partial computation offloading

are applied to a vehicular environment for handling a real-time navigation application, so that the

SMDs can exploit road side units and other neighbor devices forming clusters for delegating a shared

application. It is shown that the clusterization allows to reduce the consumed energy in case of high

traffic scenarios, optimizing the cluster size for different populations size and various offloading

policies.

Finally, in the third part, the problem of Cell Association (CA) in a UMCC framework deals

with the system as a community, thinking about improving the collective performance and not

only the achievement of a single device. A probabilistic algorithm that uses biased-randomization

techniques is proposed as an efficient alternative to exact methods, which require unacceptable levels

of computational time to solve real life instances. This probabilistic algorithm is able to provide

near-optimal solutions in real time, thus outperforming by far the solutions provided by existing

greedy heuristics. Since this algorithm takes into account all users in the assignment process, it

avoids the selfish or myopic behavior of the greedy heuristic and, at the same time, is able to quickly

find near-optimal solutions for the allocation of the available resources.
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Introduction

According to the flagship publication of the United Nations World Urbanization Prospect1, more

than one half of the world population is living nowadays in urban areas, and about 70% will be city

dwellers by 2050. Furthermore, the world population is estimated to increase in the second half of

the 21st century, while the urban areas are expected to absorb all the predicted growth and to draw

in some of the rural population. The United Nations report predicts that, by mid-century, there will

be 27 megacities, with at least 10 million population, while at least half of the urban growth in the

coming decades will occur in small cities with less than 500,000 people, envisioning therefore that

cities, big or small, are becoming a determining shift in the organization of human society. Cities

and megacities are predicted to magnify problems such as difficulty in waste management, scarcity

of resources, air pollution, human health concerns, traffic congestion, and inadequate, deteriorating

and aging infrastructures.

Concurrently with such urbanization effect, an extraordinary phenomenon concerning the Infor-

mation and Communication Technology (ICT) is happening: smart mobile devices are becoming

an essential part of human life and the most effective and convenient communication tools, not

bounded in time and place. According to the Cisco Visual Networking Index 2, the number of

mobile-connected devices has already overtaken the number of people in the world, and by 2018 it

will be over 10 billion, including Machine to Machine (M2M) modules. Overall mobile data traffic

is expected to have nearly an 11-fold increase in the next five years.

Urbanization tendency and smart mobile expansion are going to reach a relevant convergence

point through the concept of smart city, an icon of a sustainable and livable city, projecting the

ubiquitous and pervasive computing paradigms to urban spaces, focusing on developing city network

infrastructures, optimizing traffic and transportation flows, lowering energy consumption and offering

innovative services. It is through ICT that smart cities are truly turning smart [1], in particular

by means of the exploitation of smart mobile devices, forming together with cloud computing the

Mobile Cloud Computing (MCC), since, as suggested by Michael Batty, to understand cities we

must view them not simply as places in space but as systems of networks and flows [2].

In this context a new urban framework, named UMCC, is introduced in this thesis. It can

1http://esa.un.org/unpd/wup/
2http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
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be thought as the technological nervous system allowing the networks and flows of the city for

achieving a better urban way of life. By means of the UMCC framework, and considering various

configurations of clouds and networks, data storage and processing can be dynamically delegated

to resource-rich devices, thus shortening execution time, extending battery life and exploiting the

possibility to preserve data in the cloud.

The UMCC framework can effectively support a smart city vision, gathering, collecting and

processing data in real time, aiming to take advantage of the most advanced communication tech-

nologies, to hold up added-value services for the administration of the city and for the citizens. The

resources optimization, within the UMCC framework, can be driven by purposely defined cost func-

tions, including throughput, energy efficiency, latency and computing performance. The challenges

and the exploiting opportunities of the UMCC are discussed in relation to smart city solutions,

highlighting the features that can affect the Quality of Service (QoS) of various types of smart city

related applications.
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Original Contributions

In this dissertation, innovative techniques and methodologies aimed to enhance the performance of

MCC applied to a smart city are proposed and investigated. In particular the UMCC, a global

framework that can be adapted depending on the optimization objectives is introduced, highlighting

the features that can affect the QoS of various types of smart city-related applications. Furthermore,

various optimization techniques, based on opportunely defined cost or utility functions, are presented

and inspected for the optimization of the resources in the UMCC. Specifically:

• a partial offloading tecnique is determined for optimizing time and energy consumption in a

smart city HetNets scenario, where smart mobile devices are supposed to perform a distributed

application;

• a utility function model derived from the economic world has been presented, aiming to mea-

sure the QoS, in order to choose the best access point in a HetNet for offloading part of an

application on the MCC;

• a cluster-based optimization technique is proposed and utilized in a distributed computing

resource allocation, exploiting resource sharing, in high density SMD environments.

During my Ph.D. course I had the opportunity to collaborate with the Internet Interdisciplinary

Institute (IN3) at the Open University of Catalonia (UOC), where I contributed to develop new

optimization heuristics for improving heterogeneous communication systems. The applied approach

is based on the use of biased randomization techniques, which have been used in the past to solve

similar combinatorial optimization problems in the fields of logistics, transportation, and production.

This work extends the use of these biased randomization techniques to the field of smart cities

and mobile telecommunications. Some numerical experiments contribute to the validation of the

proposed approach.

The outcomes of this research stay are described in chapter 5.
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Glossary

3G short form of third generation, is the third generation of mobile telecommunications technology.

This is based on a set of standards used for mobile devices and mobile telecommunications

use services and networks that comply with the International Mobile Telecommunications-2000

(IMT-2000) specifications by the International Telecommunication Union. 3G finds application

in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls

and mobile TV. 3G telecommunication networks support services that provide an information

transfer rate of at least 200 kbit/s. Later 3G releases, often denoted 3.5G and 3.75G, also

provide mobile broadband access of several Mbit/s to smartphones and mobile modems in

laptop computers. This ensures it can be applied to wireless voice telephony, mobile Internet

access, fixed wireless Internet access, video calls and mobile TV technologies. 9

femtocell a small, low-power cellular base station, typically designed for use in a home or small

business. A broader term which is more widespread in the industry is small cell, with femtocell

as a subset. It connects to the service providers network via broadband (such as DSL or cable);

current designs typically support four to eight active mobile phones in a residential setting

depending on version number, and eight to 16 active mobile phones in enterprise settings.

A femtocell allows service providers to extend service coverage indoors or at the cell edge,

especially where access would otherwise be limited or unavailable. 7, 9

HSPA+ Evolved High-Speed Packet Access, is a technical standard for wireless, broadband telecom-

munication. HSPA+ enhances the widely used WCDMA (UMTS) based 3G networks with

higher speeds for the end user that are comparable to the newer LTE networks. HSPA+ was

first defined in the technical standard 3GPP release 7 and expanded further in later releases.

7

IaaS Infrastructure as a Service. The IaaS provider offers you raw computing, storage, and net-

work infrastructure so that you can load your own software, including operating systems and

applications, on to this infrastructure. This scenario is equivalent to a hosting provider provi-

sioning physical servers and storage and lets customers install their own OS, web services, and

xix



database applications over the provisioned machines. Amazon is arguably the first major pro-

ponent of IaaS through its Elastic Computing Cloud (EC2) service. It permits to rent servers

with a certain CPU speed, memory, and disk capacity along with the OS and applications

that a need to have installed on them. However, customers can also install their own OSs (or

no OS) and applications over this server infrastructure. Scaling and elasticity are under the

responsibility of the customer. CPU time, storage space, and network bandwidth (related to

data movement) are some of the resources that can be billed on a usage basis. 1, 6

IEEE 802.11 a set of media access control (MAC) and physical layer (PHY) specifications for

implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6,

5, and 60 GHz frequency bands. They are created and maintained by the IEEE LAN/MAN

Standards Committee (IEEE 802). The base version of the standard was released in 1997,

and has had subsequent amendments. The standard and amendments provide the basis for

wireless network products using the Wi-Fi brand. 7

LTE an abbreviation for Long-Term Evolution, commonly marketed as 4G LTE, is a standard for

wireless communication of high-speed data for mobile phones and data terminals. 7, 9, 27, 32,

44, 45, 74

PaaS Platform as a Service. Unlike the fixed functions offered by SaaS, it provides a software

platform on which users can build their own applications and host them on the PaaS provider’s

infrastructure. The software platform is used as a development framework to build, debug,

and deploy applications. It often provides middleware-style services such as database and

component services used by applications. PaaS is a true cloud model in which applications do

not need to worry about the scalability of the underlying platform (hardware and software).

When enterprises write their application to run over the PaaS provider’s software platform,

the elasticity and scalability is guaranteed transparently by the PaaS platform. 1, 6

picocell a small cellular base station typically covering a small area, such as in-building (offices,

shopping malls, train stations, stock exchanges, etc.), or more recently in-aircraft. In cellular

networks, picocells are typically used to extend coverage to indoor areas where outdoor signals

do not reach well, or to add network capacity in areas with very dense phone usage, such

as train stations or stadiums. Picocells provide coverage and capacity in areas difficult or

expensive to reach using the more traditional macrocell approach. 7, 9

SaaS Software as a Service. It is a series of hosted service offered from a cloud provider through

a network connection. It can be used instead of desktop and server products. The interface

to the software is usually through a web browser. SaaS saves the complexity of software

installation, maintenance, upgrades, and patches (for example, for security fixes), because the
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software is managed centrally at the SaaS provider’s facilities. Also, the SaaS provider can

provide this service to multiple customers and enterprises, resulting in a multitenant model.

The pricing of such a SaaS service is typically on a per-user basis for a fixed bandwidth

and storage. Monitoring application-delivery performance is the responsibility of the SaaS

provider. Salesforce.com is an example of a SaaS provider. The company was founded to

provide hosted software services, unlike some of the software vendors that have hosted versions

of their conventional offerings. 1, 6

WiFi a local area wireless computer networking technology that allows electronic devices to con-

nect to the network, mainly using the 2.4 gigahertz (12 cm) UHF and 5 gigahertz (6 cm) SHF

ISM radio bands.The WiFi Alliance defines WiFi as any wireless local area network (WLAN)

product based on the Institute of Electrical and Electronics Engineers’ (IEEE) 802.11 stan-

dards. However, the term WiFi is used in general English as a synonym for WLAN since most

modern WLANs are based on these standards. 7, 9, 27, 32, 44, 45, 75

WiMAX Worldwide Interoperability for Microwave Access. It is a family of wireless communica-

tions standards initially designed to provide 30 to 40 megabit-per-second data rates, with the

2011 update providing up to 1 Gbit/s for fixed stations. The name WiMAX was created by

the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperabil-

ity of the standard. The forum describes WiMAX as a standards-based technology enabling

the delivery of last mile wireless broadband access as an alternative to cable and DSL. IEEE

802.16m or WirelessMAN-Advanced is a candidate for the 4G, in competition with the LTE

Advanced standard. 7
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PART I

URBAN MOBILE CLOUD

COMPUTING: A FRAMEWORK AT

THE SERVICE OF SMART CITIES

Innovative designs of smart cities, aiming at realizing a vision where municipalities can use infor-

mation and communications technologies to meet sustainability goals, boost local economies, and

improve urban services, have been and are being adopted in the political agenda of many gov-

ernments as a primary program, in a large number of developed and developing countries. This

development is in line with the evolutionary trends in the Information Society [3].

The ever-growing demand for services from citizens and institutions, intending to make the cities

smarter and improve the quality of life of the communities, has given a great boost to the conception

of diverse wireless communication systems and has extended the envision of cloud architectures for

providing infrastructures (IaaS), platforms (PaaS), and software (SaaS) [4,5] , offering computation,

storage and network and going towards the integration with novel opportunistic communications as

fog networking [6–8].

In order to interact with city services, MCC and wireless HetNets contribute in different and

sinergic way for handling this smart city scenario, allowing ubiquitous and pervasive computing in

a framework we called UMCC.

In this first part of the dissertation, the proposed UMCC system model is described and inves-

tigated. It takes into account a series of features related to HetNet’s nodes, cloud architectures,

SMDs’ characteristics, in association with several types of application and goals - mobility, health-

care, energy and waste management, and so on. It can be employed in the optimization of the QoS’s

requirements related to the needs of citizens.

Smart cities applications are gaining an increasing interest among administrations, citizens and

technologists for their suitability in managing the everyday life. One of the major challenges is

managing in an efficient way the presence of multiple applications in this UMCC framework, in a

Wireless HetNet environment, alongside the presence of a MCC infrastructure.

The content of the following chapter was extracted from publications [P1], [P2], [P3] and [P4]
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CHAPTER 1
The Urban Mobile Cloud Computing Ar-

chitecture

1.1 Introduction to the UMCC in a smart city scenario

The increasing urbanization level of the world population has driven the development of technology

toward the definition of a smart city geographic system, conceived as a wide area characterized

by the presence of a multitude of smart devices, sensors and processing nodes aiming to distribute

intelligence into the city; moreover, the pervasiveness of wireless technologies has led to the presence

of heterogeneous networks operating simultaneously in the same city area. One of the main challenges

in this context is to provide solutions able to optimize jointly the activities of data transfer, exploiting

the heterogeneous networks, and data processing, by using different types of devices. In this chapter,

the UMCC framework is introduced, considering a mobile cloud computing model that describes the

flows of data and operations taking place in the smart city scenario.

The challenges and the opportunities of exploiting the UMCC are discussed in relation to smart

city solutions, highlighting the features that can affect the QoS of various types of smart city-related

services.

The UMCC sprang from the MCC, that is gaining an increasing interest in the recent years, due

to the possibility of exploiting both cloud computing and mobile devices for enabling a distributed

cloud infrastructure [9]. Considering the peculiarity of the MCC, we can observe that, on one hand,

the cloud computing idea has been introduced as an enabling technology for allowing remote com-

putation, storage and management of information, and, on the other hand, the mobility skill allows

to gain by the most modern smart devices and broadband connections for creating a distributed and

flexible virtual environment. At the same time, the recent advances in the wireless technologies are

defining a novel pervasive scenario where several heterogeneous wireless networks interact among

3



4 CHAPTER 1. THE UMCC ARCHITECTURE

them, giving users the ability to select the best network choosing among those present in a certain

area. As a consequence, the development of the UMCC is introduced, gaining from both computing

and wireless communication technologies. It is a challenging opportunity for the creation of smart

city infrastructures, providing solutions fulfilling the urgent need for richer application and services,

requested from citizens that, as mobile users, are facing many demanding tasks in relation to mobile

device resources as battery life, storage and bandwidth.

The triple role of Smart Mobile Devices

By analyzing the technology systems underlying a smart city framework, mobile devices can be

considered in a three-fold way, as illustrated in Figure 1.1:

• Sensors: They can acquire different types of data regarding the users and the environment,

transmitting a large amount of information to the cloud in real time, by means of wireless

communication systems. This is the underlying concept leading to the Internet of Things

(IoT) network, profitably exploited to improve urban life, for instance for extracting descrip-

tive and predictive models in the urban context of cities [10]. As well as the expansion of

Internet-connected automation into a plethora of new application areas, IoT is also expected

to generate large amounts of data from diverse locations, with the consequent necessity for

quick aggregation of the data, and an increase in the need to index, store, and process such

data more effectively.

• Nodes: They can form distributed mobile clouds where the neighboring mobile devices are

merged for resource sharing, becoming integral part of the network. Furthermore, they can

form Vehicular Cloud Networks (VCNs) offering content routing, security, privacy, monitoring,

virtualization services [11], easy to be used for providing smart city services and applications, in

particular for traffic and mobility control. This is the crucial concept of fog networking, where

a collaborative multitude of users carry out a substantial amount of storage, communication,

and data management in a collaborative way.

• Outputs: They can make the citizens aware of results and able to decide consequently, or

become actuators without need of human intervention. This is the concept underlying M2M

communications where computers, embedded processors, smart sensors, actuators and mobile

devices acquire information and act in an autonomous way [12].

To perform this triple role, mobile devices have to become part of an infrastructure that is consti-

tuted by different cloud topologies and, at the same time, have to exploit heterogeneous wireless

link technologies, allowing to address the different requirements of a smart city scenario. This infra-

structure starts from the concept of MCC, where the cloud works as a powerful complement to

resource-constrained mobile devices.
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Figure 1.1: Mobile devices acting in the UMCC framework as (a) sensors, (b) nodes, (c) outputs.

The vision of MCC has increasingly become a source of interest, beginning from the early 2000s,

when Amazon realized that a huge amount of space on their premises was underused. This awareness

pushed toward the implementation of remote services, gaining by the presence of storage space and

computing power and creating a cloud system. Alongside with the expansion of wireless technologies,

the cloud computing has been integrated through a broadband system, exploiting the opportunity

of working in mobility. The SMDs, then, can use MCC devolving demanding tasks and referring to

it for data storage.

Computation Offloading

The strategy allowing to delegate to one or more cloud computing elements storage and computing

functions is commonly called cyberforaging or computation offloading. It allows to tackle with the

limited battery power and computation capacity of the SMDs, and plays a key role in a smart

environment where wireless communication is of utmost relevance, particularly in mobility and

traffic control domains [13]. If the storage is one of the most common and legacy activities that can

be delegated to a remote cloud infrastructure, recently, thanks to modern programming paradigms,

it is possible to allot even only a part of the computation load to a remote unit. This allows users

to optimize the system performance by offloading only a fraction of the application to be computed,

or distributing the application among different cloud structures. Offloading is an effective network

congestion reduction strategy to solve the overload issue compared to scaling and optimisation [14].

It enables network operators to reduce the congestion in the cellular networks, while for the end-user

it provides cost savings on data services and higher bandwidth availability.
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1.2 Cloud Topologies

In relation to the SMD’s roles previously described, we take into account various cloud topologies.

This is a different categorization with respect to the common taxonomy used for cloud computing -

SaaS, PaaS and IaaS. It looks on the different interaction among the nodes constituting the cloud,

instead of the services provided by the cloud itself, so we can distinguish among centralized cloud,

cloudlet, distributed mobile cloud and a combination of all, as shown in Figure 1.2.

Centralized Cloud

A centralized cloud provides the citizens to interact remotely, e.g., for accessing to open data de-

livered by the public administrations. It refers to the presence of a remote cloud computing infra-

structure having a huge amount of storage space and computing power, virtually infinite, offering

the major advantage of the elasticity of resource provisioning. The centralized cloud infrastructure

is often used for delivering the computing processes to remote clusters, owing a higher computing

power, and/or for storing big amount of data. The centralized cloud allows to reduce the computing

time by exploiting powerful processing units, but it could suffer from the distribution latency, due to

the data transfer from the users to the cloud and vice versa, the congestion, due to the multiple users

exploitations, and the resiliency, due to the presence of a single performing infrastructure leading to

the Single-Point-of-Failure (SPOF) issue.

Cloudlet

One of the main drawback of the centralized cloud is the great distance between the mobile devices,

requesting services, and the clusters, performing computation in the cloud. Even if the SPOF issue

is often resolved by implementing mirroring or redundancy solutions, the big distance that may

occur between users and centralized clouds can be better addressed by means of the introduction of

cloudlets, representing small clouds installed in proximity of the users. Furthermore, the inclusion

of cloudlets allows a most appropriate sizing depending on the number of contemporary requests of

the users.

Cloudlets are fixed small cloud infrastructures installed between the mobile devices and the

centralized cloud, limiting their exploitation to the users in a specific area. Their introduction

allows to decrease the latency of the access to cloud services by reducing the transfer distance at

the cost of using smaller and less powerful cloud devices.

Distributed Mobile Cloud

A third configuration can address the issue of non persistent connectivity, whereas both the previous

concepts must assume a durable state of connection. In a distributed mobile cloud the neighboring
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mobile devices are pooled together for resource sharing [15]. An application from a mobile device can

be either processed in a distributed and collaborative fashion on all the mobile devices or handled

by a particular mobile device that acts as a server.

The possibility of implementing a distributed mobile cloud infrastructure has become a reality

since the introduction of smarter and powerful mobile devices, e.g., smartphones, tablet, phablet,

having the ability, even if limited, of computing and storaging. Moreover, it has to be noted that

their number is still increasing, leading to a pervasive presence and allowing to form a cloud of

pervasive distributed devices that can interact among them. This fog network architecture uses one

or a collaborative multitude of end-user clients or near-user edge devices to carry out a substantial

amount of storage (rather than stored in centralized clouds), communication, and control, configura-

tion, measurement and management [7,8]. It can be seen as the fog layer that encapsulates phisical

objects - equipped with computing, storage, networking, sensing, and/or actuating resources - and

constitutes a piece of a wider Cloud Assisted Remote Service (CARS) architecture [16], a geograph-

ically distributed platform that connects many billions of sensors and things, and provides multitier

layers of abstraction of sensors and sensor networks, enabling the Sensing as a Service (SenaaS).

Combination of different topologies

The proposed framework foresees the joint exploitation of the three aforementioned topologies. As

outlined before, they are characterized by different features, leading to a different usage depending

on the scenario. Hence, a joint exploitation could steer to a more efficient usage aiming to achieve

the performance goals of a certain application. As it will be better specified below, a smart city

scenario is characterized by the presence of a lot of different applications, each one with different

characteristics and requirements. An integrated UMCC framework composed by centralized clouds,

cloudlets and distributed mobile clouds, as shown in Figure 1.2, allows to respect the application

requirements with regard to other solution in a more efficient way.

1.3 Types of RATs

In order to connect the devices, different types of Radio Access Technologies (RATs) should be taken

into consideration, providing a pervasive wireless coverage.

Multiple RATs, such as IEEE 802.11, mobile WiMAX, HSPA+, LTE and WiFi, must be in-

tegrated to form a HetNet. For enhancing the network capacity, generally there is an increasing

interest in deploying relays, distributed antennas and small cellular base stations - picocells, femto-

cells, etc - indoors in residential homes and offices as well as outdoors in amusement parks and busy

intersections. These new network deployments, comprised of a mix of low-power nodes underlying

the conventional homogeneous macrocell network, by deploying additional small cells within the

local-area range and bringing the network closer to users, can significantly boost the overall network
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Figure 1.2: Cloud topologies in the UMCC framework: centralized cloud, cloudlet and distributed
mobile cloud.
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capacity through a better spatial resource reuse. Inspired by the attractive features and potential

advantages of HetNets, their development have gained much momentum in the wireless industry

and research communities during the past few years. The heterogeneous elements are distinguished

by their transmit powers/coverage areas, physical size, backhaul, and propagation characteristics.

We can basically distinguish between two components, i.e., macrocells and small cells, where the

former provide mobility while the latter boost coverage and capacity.

Macrocells

The distance between the access points (base stations of the macrocells) is usually higher than

500 m. Thanks to this type of base stations the environment is completely covered and the devices

can move by minimizing the handover frequency. On the other hand, in macrocells the system suffers

for channel fading and traffic congestion. This leads to a lack of stability, not allowing to reach very

high data rate. The technology used for this type of cells refers to the cellular networks, e.g. 3G

and LTE.

Small Cells

Small cells are characterized by low power radio access nodes, which have a cover range of about

100-200 m or less. We can distinguish between picocells, for providing hotspot coverage in public

places - malls, airports and stadiums - without limits in terms of number of connected devices, and

femtocells, for covering a home or small business area, available only for selected devices. Picocells

and femtocells have been recently introduced as a way for increasing the coverage and maximize the

resource allocation in LTE networks. We also consider WiFi access points as nodes with a small

cover range (less than 100 m) which can typically communicate with a small number of client devices.

However, the actual range of communication can vary significantly, depending on such variables as

indoor or outdoor placement, the current weather, operating radio frequency, and the power output

of devices.

1.4 Challenges of the UMCC

The UMCC approach foresees the definition of a scenario where smart city applications can exploit

jointly the three topologies, as shown in Figure 1.3, by distributing and performing among the

different parts composing the framework. The application requested by a particular SMD, signed

as the Requesting Smart Mobile Device (RSMD), is partitioned and distributed among the different

clouds using the available RATs. In the example of Figure 1.3, the application is divided among the

centralized cloud, two cloudlets, and a distributed cloud formed by five devices. Furthermore, part

of the application can be computed locally by the RSMD itself.
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Figure 1.3: The process of distributing and performing the application among different parts of the
UMCC.

The main issue is that, for transferring data from the requesting mobile device to the selected

cloud topology, a certain time is required. This mostly depends on some communication parameters

of the selected RAT, such as the end-to-end throughput, the amount of users, the QoS management

of a certain transmission technology between the user device and each type of cloud processing unit.

Furthermore, in terms of energy consumption, it should be taken into account the tradeoff between

the energy saved in offloading part of the application to the cloud and the energy spent in sending

the data.

Hence, when a RSMD needs to select the clouds infrastructures to be used for computing the

smart city application, we must focus on two main elements:

• the processing and storage devices - smart mobiles, per se or together forming distributed

mobile clouds, and cloud servers, constituting the cloudlets and the centralized cloud;

• the wireless transmission equipments, - different RAT nodes entailing diverse transmission
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speeds in relation to their own channel capacity and to the number of linked devices.

In Figure 1.3, the UMCC framework is sketched by representing the functional flows of the

architecture. Whenever a smart city application should be performed, the citizen within the UMCC

can select among different MCC infrastructures, i.e., centralized clouds, cloudlets, and distributed

mobile clouds, aiming to respect the requirements of the specific application depending on their

features. The distribution depends on the application requirements, and the UMCC features; its

optimization will be discussed in the Section 1.7.

Computation, storage, and tranmission features

The features of the selected processing and storage devices, considered per se or in a group forming

cloud/cloudlets, are:

• Processing Speed : The processing speed corresponds to the performance speed of a device or

a group of devices for processing the applications;

• Storage Capacity : The storage capacity corresponds to the amount of storage space provided

by a device or a group of devices.

In the same time, the features of the transmission equipments to be taken into account are:

• Channel Capacity : The nominal bandwidth of a certain communication technology that can

be accessed by a certain device;

• Priority/QoS management : The ability of a certain communication technology to manage

different QoS and/or priority levels;

• Communication interfaces: The number of communication interfaces of each device, that

impacts on the possibility of selection among the available heterogeneous networks.

1.5 The UMCC model

In this paragraph we focus on the different entities playing a role in the UMCC framework, describing

the functions and the interactions among them. First of all, we are focusing on an application App

requested by a RSMD, defined through the number of operation to be executed, O, the amount

of data to be exchanged, D, and the amount of data to be stored, S. An application can be seen

as a smart city service, that can be executed either locally or remotely by exploiting the cloud

infrastructures. Furthermore, each application has many requirements regarding the levels of QoS.

We have taken into account the following:

• the maximum accepted latency Tapp, intended as the interval between the request of performing

an application and the acquisition of its results by the RSMD,
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• the minimum level of energy consumption Eapp, that the RSMD necessarily uses for performing

the application itself,

• the throughput ηapp, intended as the minimum bandwidth that the application needs for being

performed.

Hence, for highlighting the App dependence from the above measures, we can write:

App = App(O,D, S, Tapp, Eapp, ηapp) (1.1)

A foundamental entity acting in the system is the RSMD requesting the App, we named Dev,

characterized by certain features that are involved in the offloading operation: the power to compute

applications locally, Pl, the power used for transferring data towards clouds, Ptr, the power for idling

during the computation in the cloud, Pid, the computing speed to perform locally the computation,

fl, and the storage availability, Hl. Furthermore, also the time-varying position of the device plays

an important role in the system interactions. Hence, we can write:

Dev = Dev(Pl, Ptr, Pid, fl, Hl, posdev(x, y)) (1.2)

Focusing on the different types of cloud entities in our scenario, we considered a unique centralized

cloud Ccc and various cloudlets Ccl characterized by their own computing speed to perform the

computation, i.e., fcc for the centralized cloud and fcl for the cloudlets. Additionally, the storage

availability Hcl of each cloudlet has to be taken in consideration, while the storage availability of the

centralized cloud can be considered infinite, therefore not constraining in the interaction. Hence, we

can write for the centralized cloud Ccc:

Ccc = Ccc(fcc) (1.3)

and for each cloudlet, considering also the influence of the position poscl(x, y) of the in-built Access

Point (AP), the end-to-end throughput ηcl provided by the AP itself, the maximum number of

devices that it is possible to connect at the same time ncl, and the range of action rcl:

Ccl = Ccl(fcl, Hcl, poscl(x, y), ηcl, ncl, rcl) (1.4)

We are considering the system from the point of view of a single RSMD requesting to run an

application, while the set of the other SMDs constituting the distributed cloud are providing a

service for supporting the RSMD. Thus, the distributed cloud is a set of generic entities MDs, each

characterized by its specific connectivity, computation and storage for the exchange of data, i.e. the

computing speed fMD, the storage availability HMD, the position posMD(x, y), the throughput ηMD,

the number of devices that can be connected to each devicenMD, and each range of action rMD.
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Thus, we can write for the generic device MD:

MD = MD(fMD, HMD, posMD(x, y), ηMD, nMD, rMD) (1.5)

While the connection to the cloudlets can be made only through the unique AP that can be

considered built-in in each cloudlet itself, and the connection of the distributed cloud to the RSMD

can be made directly, the nodes of the HetNet offer different choices to connect towards the cen-

tralized cloud. Thus, for each involved node Nod constituting the centralized cloud, specifying that

posNod(x, y) is the position of the node, ηNod is the end-to-end throughput in bit per second between

the user and the exploited node, nNod is the number of devices available to connect, and rNod is the

range of availability of the node, we can write:

Nod = Nod(posNod(x, y), ηNod, nNod, rNod) (1.6)

The Table 1.1 summarizes the entities and the characteristics above described. They are in a

certain relationship due to some physical and logical constraints derived from the following consid-

erations.

First, for distributing the computation of the application among the different types of clouds,

the system has to evaluate which HetNet nodes, cloudlets, and SMDs are available. The availability

is realized if the RSMD is in the range of action of a particular HetNet node, cloudlet or SMD and

if these entities are not busy, i.e., if the number of devices connected to an entity nconn is less than

nNod, ncl, or nMD, dependently from the type of entity.

Thus, there are M available HetNet nodes Nod for offloading towards the centralized cloud, N

cloudlets Ccl and K devices MD, able to share the computation in the distributed cloud. After the

detection of the available entities (which are a total of 1 + M + N + K, including the local node

RSMD, which we consider for simplicity the node of index 0), the next step is to distribute, by

means of all these entities, different percentages αi of operations O, βi of data D, and γi of memory

S, to all the available nodes, cloudlets and devices, under the constraints:

M+N+K∑
i=0

αi = 1 (1.7)

and
M+N+K∑
i=1

βi = 1 (1.8)

Alongside the computing capacity, it is possible to define a constraint regarding the storage avail-

ability of the cloudlets and the SMDs by means of the following equations, considering infinite the



14 CHAPTER 1. THE UMCC ARCHITECTURE

T
ab

le
1.

1:
S

u
m

m
ar

y
of

en
ti

ti
es

an
d

re
la

ti
o
n

s
in

th
e

U
M

C
C

-
In

vo
lv

ed
fe

a
tu

re
s

a
n

d
re

q
u

ir
em

en
ts

E
n
ti

ty
C

o
n

n
ec

ti
v
it

y
S

to
ra

g
e

T
h

ro
u

g
h

p
u

t
E

n
er

g
y

T
im

e
la

te
n

cy

R
ef

er
en

ce
E

q
u

at
io

n
1
.9

1
.1

0
1
.1

1
1
.1

2

A
p
p

=
A
p
p
(O
,D
,S
,T

a
p
p
,E

a
p
p
,η

a
p
p
)

-
S

η a
p
p

O
,
D

,
E

a
p
p

O
,D

,
T
a
p
p

D
ev

=
D
ev

(P
l,
P
tr
,P

id
,f

l,
H
l,
p
os

d
e
v
(x
,y

))
p
os

d
e
v
(x
,y

)
H
l

-
P
l,
P
tr

,
P
id

,
f l

f l

C
cc

=
C

cc
(f

cc
)

-
-

-
f c

c
f c

c

C
c
l
=
C

c
l(
f c

l,
H

c
l,
p
os

c
l(
x
,y

),
η c

l,
n
c
l,
r c

l)
p
os

c
l(
x
,y

),
n
c
l,
r c

l
H

c
l

η c
l

f c
l,
η c

l
η c

l,
f c

l

M
D

=
M

D
(f

M
D
,H

M
D

,p
os

M
D

(x
,y

),
η M

D
,n

M
D
,r

M
D

)
p
os

M
D

(x
,y

),
n
M

D
,
r M

D
H

M
D

η M
D

f M
D

,
η M

D
η M

D
,
f M

D

N
od

=
N

od
(p
os

N
o
d
(x
,y

),
η N

o
d
,n

N
o
d
,r

N
o
d
)

p
os

N
o
d
(x
,y

),
n
N
o
d
,
r N

o
d

-
η N

o
d

η N
o
d

η N
o
d



1.5. THE UMCC MODEL 15

storage availability of the centralized cloud:

γiS ≤ Hi ∀i ∈ {0, 1, ..., i, ...,N+K} (1.9)

that stands for an upper limit of remotely used storage of a certain i-th cloud infrastructure.

A constraint related to the application’s requirements ηapp involves the throughput of the entities

designated for the offloading: the overall throughput offered by the selected devices should be higher

than the minimum throughput requirement of a certain application:

M+N+K∑
i=1

ηi ≥ ηapp (1.10)

From the point of view of the RSMD, the energy spent for offloading the application can be written

as the sum of the energy spent to perform locally a part of the task, plus the energy spent by the

RSMD for the transmission of data to the clouds, plus the energy spent during the idle period when

the computation is being offloaded. Hence, the restriction related to the requirement Eapp leads to

the following:

Pl
α0O

fl
+

M+N+K∑
i=1

Ptr
βiD

ηi
+ Pid arg max

i=1,M+N+K

{
αiO

fi

}
≤ Eapp (1.11)

In the same time, the total latency is the sum of the time for computing locally the α0 percentage of

computation, plus the times to transmit/receive data to/from the other computation units, plus the

maximum of the time to compute in offloading. Hence, the restriction related to the requirement

Tapp leads to the following:

α0
O

fl
+

M+N+K∑
i=1

βiD

ηi
+ arg max
i=1,M+N+K

{
αiO

fi

}
≤ Tapp (1.12)

Furthermore, the throughput ηi is related to the number of devices ni connected to the ith entity

and the channel capacity BWi as shown by the following representing the Shannon Formula:

ηi =
BWi

ni
· log2

(
1 +

SNRi

d2
i

)
(1.13)

where SNRi is the Signal to Noise Ratio (SNR) of the related link and di the distance between

the receiver and the transmitter. Thus, the optimization of the system consists in finding the

values of αi, βi and γi that satisfy eqs. (1.7)-(1.13). This is a nontrivial optimization problem, but

the complexity can be decreased with the introduction of some simplifications, as presented in the

following chapters.
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1.6 Requirements of smart city applications

There are many taxonomies trying to define smart city key areas, where social aims, care for en-

vironment, and economic issues are related and interconnected. The European Research Cluster

on the Internet of Things (IERC) has identified in [17] a list of applications in different domains

of IoT, including the smart city domain, showing the utmost strategic technology trends for the

next five years. Moreover, the Net!Works European Technology Platform for Communications Net-

works and Services has issued a white paper [18] aiming to identify the major topics of smart cities

that will influence the ICT environment. Furthermore, a relevant document aiming to categorize

and define the different applications has been released by European Telecommunications Standards

Institute (ETSI), where several application types have been specified focusing on their bandwidth

requirements [19].

Taking into account all the relevant observations presented in these essays, we analyzed some

particular smart city applications covering the areas of mobility, healthcare, disaster recovery, energy,

waste management and tourism, in order to leverage the UMCC identifying the requirements which

are related to the QoS.

Each application is defined through the service provided to the citizens, concerning the require-

ments in terms of throughput, energy consumption, time due to the transferring and computation

processes, and number of users. In addition, for every application, the typical requirements of pro-

cessing, data to exchange and storage have been established. The following list summarizes the

definition of these requirements:

• Latency : The latency is defined as the amount of time required by a certain application between

the event happens and the event is acquired by the system;

• Energy Consumption: The energy consumption corresponds to the energy consumed for exe-

cuting a certain application locally or remotely;

• Throughput : The throughput corresponds to the amount of bandwidth required by a specific

application to be reliably installed in the smart city environment;

• Computing : The computing corresponds to the amount of computing process requested by a

certain application;

• Exchanged data: The exchanged data correspond to the amount of input, output and code

information to be transferred by means of the wireless network;

• Storage: The storage corresponds to the amount of storage space required for storing the

sensed data and/or the processing application;

• Users: The users correspond to the number of users for achieving a reliable service.
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The QoS is a function of the previous requirements, where each one of these plays a role less

or more important depending on the aims of the application. In the following list the considered

application types are described by highlighting their technological requirements and characteristics,

while in Table 1.2 the considered application types and the significance of their requirements are

summarized.

Mobility All the components in an intelligent transportation system could be connected to im-

prove transportation safety, relieve traffic congestion, reduce air pollution and enhance comfort of

driving. The three-layered hierarchical cloud architecture for vehicular networks proposed by Yu et

al. [20], where vehicles are mobile nodes that exploit cloud resources and services, can be considered

as included in the UMCC framework. A real-time navigation with computation resource sharing,

where the computation resources in the central cloud are utilized for data traffic mining, requests

a minimal latency, since a ready response is needed. On the other hand, considering that the great

part of mobile devices can be recharged directly from the car, energy consumption has to be consid-

ered only for pedestrians and bicycles. The necessary throughput, the computational load and the

amount of data to exchange are high, whereas we can think the storage as a secondary requirement,

unless for security recording.

Healthcare Intelligent and connected medical devices, monitoring physical activity and providing

efficient therapy management by using patients’ personal devices, could be connected to medical

archives and provide information for medical diagnosis. We considered in the UMCC framework the

typical architecture proposed by He et al. [21], requiring a full integration of the clinical devices and

efficient processing of the collected data, considering, for instance, a cloudlet nearby the home of the

patient. In this case there are relatively low requirements regarding energy consumption, throughput

and number of users, whereas the requirements of latency, computation, exchanged data and storage

are high, considering the complexity of the management algorithm, the video monitoring for remote

diagnosis and the data to store for the personal record archive.

Disaster Recovery In [22] a disaster relief scenario is described, where people are facing with the

destruction of the infrastructures and local citizens are asked to use their mobile phones to photo-

graph the site. Also this case introduces the three-layered cloud described in the UMCC framework,

requiring to transmit a lot of data using the cameras provided by the smartphones to reconstruct

the disaster scene. In this case there are relatively low requirements regarding throughput, whereas

it is important to have a quick response and to save the energy of the devices. There are a lot of

computation to reconstruct the scene and a lot of data to exchange and to store. The number of

users is variable.



18 CHAPTER 1. THE UMCC ARCHITECTURE

T
ab

le
1.

2:
S

u
m

m
a
ry

o
f

sm
a
rt

ci
ty

a
p

p
li

ca
ti

o
n

s
a
n

d
R

eq
u

ir
em

en
ts

R
eq

u
ir

em
en

ts

A
p

p
li

ca
ti

on
la

te
n

cy
en

er
g
y

th
ro

u
g
h

p
u

t
co

m
p

u
ti

n
g

ex
ch

a
n

g
ed

d
a
ta

st
o
ra

g
e

u
se

rs

M
ob

il
it

y
re

st
ri

ct
iv

e
va

ri
a
b

le
re

st
ri

ct
iv

e
h

ig
h

h
ig

h
va

ri
a
b

le
h

ig
h

H
ea

lt
h

ca
re

re
st

ri
ct

iv
e

n
on

-r
es

tr
ic

ti
ve

n
o
n

-r
es

tr
ic

ti
ve

h
ig

h
h

ig
h

h
ig

h
lo

w

D
is

as
te

r
R

ec
ov

er
y

re
st

ri
ct

iv
e

re
st

ri
ct

iv
e

n
o
n

-r
es

tr
ic

ti
ve

h
ig

h
h

ig
h

h
ig

h
va

ri
a
b

le

E
n

er
gy

n
on

-r
es

tr
ic

ti
ve

n
on

-r
es

tr
ic

ti
ve

n
o
n

-r
es

tr
ic

ti
ve

h
ig

h
h

ig
h

h
ig

h
h

ig
h

W
as

te
M

an
ag

em
en

t
n

on
-r

es
tr

ic
ti

ve
re

st
ri

ct
iv

e
n

o
n

-r
es

tr
ic

ti
ve

lo
w

lo
w

lo
w

lo
w

T
ou

ri
sm

n
on

-r
es

tr
ic

ti
ve

re
st

ri
ct

iv
e

n
o
n

-r
es

tr
ic

ti
ve

h
ig

h
h

ig
h

h
ig

h
va

ri
a
b

le



1.7. A UTILITY BASED RESOURCE OPTIMIZATION APPROACH 19

Energy Energy saving can take advantage from the cloud basically thanks to smart grid systems,

aimed to transform the behavior of individuals and communities towards a more efficient and greener

use of electric power. Data fusion and mining, as well as scheduling and optimization, are critical

in order to include the use of wireless communications to collect and exchange information about

electric quality, consumption, and pricing in a secure and reliable fashion. By analyzing the specific

aspects regarding the UMCC, if we consider an application where vehicles are involved in a smart

grid system, we can suppose that a big data exchange is needed, there is a lot of computation and

storage between a large number of users, whereas there are relatively low requirements regarding

latency and throughput, and energy saving is not a problem for the devices involved.

Waste Management Automatically generated schedules and optimized routes which take into

account an extensive set of parameters (future fill-level projections, truck availability, traffic infor-

mation, road restrictions, etc.) could be planned not only looking at the current situation, but also

considering the future outlook. A logistic solution that uses wireless sensors to measure and forecast

the fill-level of waste and recycling containers could combine fill-level forecasts with an extensive set

of collection parameters (e.g., traffic information, vehicle information, road restrictions) in order to

calculate the most cost efficient collection plan. This smart plan would be automatically generated

and accessed by the driver through a tablet1. We can expect non-restrictive requirements of latency

and throughput, whereas resource-poor equipments have to be taken into consideration. The re-

quirements related to data to be exchanged, load of computation, storage and number of users are

not critical.

Tourism Augmented reality and social networks are the characteristics of applications that more

take advantage from the cloud, that becomes also useful for mobile users sharing photos and video

clips, tagging their friends in popular social networks like Twitter and Facebook. The cloud is

effective also when mobile users require searching services, also using recognition techniques (using

voice, images and keywords)2. We can expect not-restrictive requirements of latency and throughput,

whereas resource-poor equipments have to be taken into consideration. There are a great amount

of data to be exchanged, load of computation and storage and number of users are variable.

1.7 A utility based resource optimization approach

The requirements related to the applications, and the associated QoS, can be respected by optimizing

the application partitioning and node/cloud association based on the features of the processing and

storage devices and of the transmission equipments introduced in section 1.4. Moreover, it should be

1Example from http://www.enevo.com/
2Example from http://www.mtrip.com/augmented-reality/

http://www.enevo.com/
http://www.mtrip.com/augmented-reality/
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noted that there is a correlation among the application requirements and the features of the UMCC

equipments.

The latency suffered to perform a certain application can be seen as composed by the time needed

for transferring the application data to the cloud computing infrastructure and the time needed for

the cloud computation, therefore it is affected by the processing speed of the involved devices and

by the channel capacity and the communication interfaces of the chosen transmission equipments.

Furthermore, the energy spent to perform an application depends on the time needed for the data

transfer, thus it depends on the channel capacity and the number of communication interfaces of the

communication equipments; it has to be noticed that we have to consider also the energy spent by

the user device while idles during the cloud computation, so that the processing speeds of the cloud

devices are involved. The storage value of the application does not influence directly the performance

of the system, but it can represent a limitation for the usability of a certain cloud infrastructure, as

well as the number of potential users of the application.

A feasible optimization regarding the computing and the exchanged data requirements can be

performed by operating on the complexity of the computability resources, considering also that, in

partial offloading, the exchanged data could not be a predetermined value [23].

In this context, a utility function aiming to optimize the application-dependent QoS is proposed,

acting as input for a procedure of partition and a node/cloud association, as shown in Figure 1.4.

The utility function can be written as:

U =

Nreq∑
i=1

γifi(ξi) (1.14)

where Nreq is the number of requirements for a certain smart city application, ξi stands for the i-th

application requirement among those defined in section 1.6, and γi is a weight value, while fi(·)
corresponds to a specific utility function used for evaluate the respect of the i-th requirement.

In Figure 1.4, the functional blocks of the UMCC framework, based on a utility function opti-

mization, are represented. On one hand, the smart city applications define specific requirements,

while the cloud topologies in a certain scenario set their features. The utility function aims at

selecting those cloud topologies that allow to respect the requirements by setting an optimized dis-

tribution of the application itself. The optimization of the partition and the node association will

impact again on the UMCC features to be used by the other applications.

The maximization of the introduced utility function could be a nontrivial optimization problem,

depending on the considered number of applications and devices acting in the selected scenario. In

relation to the introduced requirements, the number of constraints could be reduced, and the com-

plexity of the problem decreased by introducing opportunely defined sub-optimal solutions. All the

utility and cost functions presented in the following chapters are particular cases of the Equation 1.14.
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Figure 1.4: The utility function acts for distributing and performing the application in different
parts of the Urban MCC.

In particular, in chapter 2 a cost function including the tradeoff between energy consumption of mo-

bile devices versus the time to offloading data and to compute tasks on a centralized remote cloud

server is provided, evaluating the optimal offloading fraction depending on the networks load; in

chapter 3 and in chapter 5 we focused on a utility function representing the QoS degree perceived by

the user, modeled as a sigmoid curve, that is a well-known function often used to describe QoS per-

ception [24]; finally, in chapter 4 we focused on the computation offloading towards the distributed

cloud, for offloading a real-time navigation application in a distributed fashion, aiming to minimize

the execution time, since the devices are autonomous regarding the energy provision.

1.8 Conclusions

In this chapter we introduced the UMCC framework, a concept that supports the smart city vision

for the optimization of the QoS of various types of smart city applications. The UMCC consists of

different topologies of cloud and diverse types of RATs, that are used for offloading computation

and share resources among the mobile devices. The QoS depends on the type of application, since it

is affected by the defined requirements in a different way depending on the aims of the application

itself. A cost function optimization approach is proposed, aiming to select the optimal partition level

of the applications and the cloud infrastructures to be used for their computation. The optimization

of the QoS is influenced by a big number of features, related to the choice of the distribution of

data in the cloud units and the nodes used for the transmission, but the problem can be restricted

considering some simplifications suggested by the aims and the domain of the application.





PART II

PARTIAL OFFLOADING

OPTIMIZATION

A UMCC framework settled on an efficient wireless network allows users to benefit from multimedia

services in an ubiquitous, seamless and interoperable way. In this context MCC and HetNets are

viewed as infrastructures providing together a key solution for the major facing problems: the former

allows to offload application to powerful remote servers, shortening execution time and extending

battery life of mobile devices, while the latter allows the use of small cells in addition to macrocells,

exploiting high-speed and stable connectivity in an ever grown mobile traffic trend. In order to fulfill

the computation offloading efficiently, in the following chapters we explore techniques aiming to move

the computing application towards the cloud, considering a non-trivial multi-objective optimization

approach that takes into consideration the tradeoff between the energy consumption of the SMDs

and the time for executing the application. The aim of the optimization is to find the percentage of

application offloading that minimizes the proposed cost function, in such a way that only a part of

the application is transfered and computed outside, whereas the rest of the application is computed

locally.

The chapter 2 deals with the partial offloading technique in a centralized cloud scenario. The

results show that exists a particular offloading percentage value fitting the system in case of simul-

taneously high data and network workload, differently from the simple yes/no offloading decision

which would move the entire application or would perform it locally. In chapter 3 the partial offload-

ing technique is applied using a utility function model arising from the economic world. It aims to

measure the QoS, in order to choose the best AP in a HetNet for running the partial computation

offloading. The goal is to save energy for the SMDs and to reduce computational time. In chapter 4

the proposed UMCC framework and the partial computation offloading are applied to a vehicular

environment for handling a real-time navigation application. In this case, we consider also cloudlets

and distributed clouds, so that the SMDs can exploit road side units and other neighbor devices for

delegating a shared application.

The content of the following chapters was extracted from publications [P3], [P4], and [P5].

23





CHAPTER 2
A Partial Computation Offloading

Technique

2.1 Introduction

Smart cities are considered a paradigm where wireless communication is an enhancing factor to

make better urban services and improve the quality of life for citizens and visitors. In a smart city

scenario several entities should be taken into consideration: the wireless infrastructure that allows

data-exchange, the user devices, the sensing nodes, the machine devices, access points, one or more

cloud infrastructures. Moreover, for delivering the requested services lots of data are exchanged

among the citizens and the devices, and these data need also to be elaborated in order to give the

correct information to the users. Thanks to various wireless communication technologies, users can

move through different environments, indoor and outdoor, providing data to the cloud and receiving

access services as browsing, video on demand, video streaming, information about location and

maps. In this context, energy saving and performance improvement of the SMDs have been widely

recognized as primary issues. In fact, the execution of every complex application is a big challenge

due to the limited battery power and computation capacity of the mobile devices, especially in a

smart environment where communication is considered a key to get better features in important

areas such as mobility and transportation.

The exploitation of HetNet infrastructures together with the opportunity to delegate computation

load to MCC, as shown in Figure 2.1, is an appealing connection achieving the aims of saving the

SMD’s power resource and executing the requested tasks in a faster way [23]. HetNets involve

multiple types of low power radio access nodes in addition to the traditional macrocell nodes in a

wireless network, reaching the major goal to enhance connectivity. On the other hand, MCC aims to

increase the computing capabilities of mobile devices, to conserve local resources - especially battery

25
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Figure 2.1: The reference scenario with access nodes in HetNet for Mobile Cloud Computing
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charge - to extend storage capacity and to enhance data safety for making the computing experience

of mobile users better [25].

The distributed execution (i.e., computation/code offloading) between the cloud and mobile

devices has been widely investigated [9], highlighting the challenges towards a more efficient cloud-

based offloading framework and also suggesting some opportunities that may be exploited. Indeed,

the joint optimization of HetNets and distributed processing is a promising research trend [5].

Several works have already analyzed characteristics and capacity of MCC offloading, for example

aiming to extract offloading friendly parts of codes from existing applications [26, 27]. Also, in [28]

the key issues are identified when developing new applications which can effectively leverage cloud

resources. Furthermore, in [29] a real-life scenarios, where each device is associated to a software

clone on the cloud, has been considered, and in [30] a system that effectively accounts for the power

usage of all of the primary hardware subsystems on the phone has been implemented, distinguishing

between CPU, display, graphics, GPS, audio, and microphone.

In [31] an offloading framework, named Ternary Decision Maker (TDM), has been developed,

aiming to shorten response time and reduce energy consumption simultaneously with targets of

execution including on-board CPU and GPU in addition to the cloud, from the point of view of

the single device. In addition, there are many studies that focus on whether to offload computation

to a server, providing solutions related to a yes/no decision for the entire task at one time [32, 33],

or studies that focus on optimization of the energy consumption in SMDs necessary to run a given

application under execution time constraint [34].

Differently from the literature, we propose a partial offloading technique able to exploit the Het-

Nets scenario and the presence of MCC devices - the UMCC framework - by optimizing the amount

of partial offloading of the computational tasks depending on the number of devices connected to a

network and their location with respect to the WiFi access points or LTE eNodeBs. The SMDs can

exploit the partial data offloading to distribute high computational tasks among centralized servers

and local computing.

In Figure 2.2 the workflow and the entities involved in the performance of a task are shown.

From the point of view of a single user, the decision about offloading or not is taken on the basis of

the following considerations:

• If the task is delegated to the cloud, the energy consumed by the mobile device is due to the

data transfer - uploading data and downloading results - plus the energy consumed in an idle

state during the outside computation - waiting for the results; the global time for having the

task accomplished is related not only to the computational time but also to the transfer time

for moving data from the mobile device to the cloud and vice-versa.

• If the task is computed locally, the energy consumed by the mobile device is due to the

computation itself; the global time for having the task accomplished is related only to the

computational ability of the SMD.
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Figure 2.2: The offloading decision from the point of view of a single user.

In this chapter the optimization of the entire system is considered, not for a single device but

for the whole community of devices, by taking into account partial offloading in a non trivial multi-

objective optimization approach, where both energy consumption and execution time constraints are

considered. A cost function including the tradeoff between energy consumption of mobile devices

versus the time to offloading data and to compute tasks on a remote cloud server is provided,

evaluating the optimal offloading fraction depending on the network’s load. It can be exploited when

the network is overloaded and the tasks request large amounts both of computation to perform and

data to exchange.

2.2 System Model

The reference scenario is characterized by a urban area with a pervasive wireless coverage, where

several mobile devices are interacting with a traditional centralized cloud and request for services

from a remote data center, as illustrated in Figure 2.1. Alongside the presence of a pervasive wireless
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Table 2.1: Offloading Parameters

symbol meaning unit of measure

Pl power for local computing W

Pid power while being idle W

Ptr power for sending and receiving data W

Smd SMD’s calculation speed no. of instructions / s

Str SMD’s transmission speed bit / s

Scs cloud server’s calculation speed no. of instructions / s

C instructions required by the task no. of instructions

D exchanged data bit

network, the system deals with many sensing and user terminals that generate and exploit a large

amount of data. In order to connect the SMDs to the cloud and the data centers for delegating

data for the computation, we take into account a simple categorization of the UMCC’s trasmission

entities, considering only two types of RATs forming the basic elements of the HetNets: macrocells

and small cells. If, on one side, the strategy of delegating computation to the centralized cloud allows

to exploit high performance computing centers, on the other side, it copes with the energy spent

by the SMDs for transferring data. Similarly, the SMDs which compute locally the applications in

a distributed approach, face with the energy issues due to the computation itself. In other words,

the SMDs consumes energy both to delegate the application to the data centers and to compute

it locally. Furthermore, both the speed to transmit data and the speed for local computation are

related to the energy consumed by the SMDs. Thus, the offloading decision between offloading the

application or computing it locally leads to a tradeoff. For this reason our model provides a cost

function by resorting to a previously introduced model in [32, 33] which compares the energy used

for a 100% offloading with the ones used to perform the task locally. The parameters used in the

following are listed in Table 2.1.

In our scenario we suppose that the computation of a certain task requires C instructions. Smd

and Scs are, respectively, the speeds in instructions per second of the mobile device and the cloud

server. Hence, a certain task can be completed in an amount of time equal to C/Smd on the device

and C/Scs on the server. On the other hand, let us suppose that D corresponds to the amount of

bits of data that the device and the server must exchange for the remote computation, and Str is the
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transmission speed, in bit per second between the SMD and the access point; hence, the transmission

of data lasts an amount of time equal to D/Str. In this case we consider that the transmission time

is mostly due to the access network transfer, because the transfer rate of the backbone network can

be considered as negligible due to the higher data rate. Moreover, we consider as negligible the

transfer time from the access point to the user terminal because the amount of data in response

to the elaboration in centralized server is little with respect to the data sent to the centralized

server [32,33].

Hence, it is possible to derive the energy for local computing:

El = Pl ×
C

Smd
(2.1)

as the product of the power consumption of the mobile device for computing locally, Pl, and the

time C/Smd needed for the computation. Similarly, it is possible to derive the energy needed for

performing the task computation on the cloud as the energy used while being in idle for the remote

computation plus the energy used to transmit the whole data from the SMD to the cloud:

Eod = Pid ×
C

Scs
+ Ptr ×

D

Str
, (2.2)

where Pid and Ptr are the power consumptions of the mobile device, in watts, during idle and data

transmission periods, respectively.

Similarly, it is possible to derive the time needed for the local computing as:

Tl =
C

Smd
, (2.3)

and the time for the whole offloading computing as

Tod =
C

Scs
+

D

Str
(2.4)

In many applications, this approach is not efficient or feasible, and it is necessary to partition

the application at a finer granularity into local and remote parts, which is a key step for offloading.

2.3 Adaptive Offloading

In this section, firstly, two equations are provided, to represent the energy used by a SMD to execute

an application in partial offloading and to express the time needed to execute such application.

Secondly, the impact of the traffic workload in the wireless network is taken into account, since the

RATs and the number of SMDs entails the transmission speed of the the offloading data. Thirdly,

a cost function is introduced, to evaluate the percentage of offloading which minimizes both energy

and time.
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In order to analyze the energy spent for offloading only a part of the application, we introduce

the weight coefficients γ and δ, satisfying 0 ≤ γ, δ ≤ 1, representing respectively the percentage of

the computational task and the percentage of the exchanged data for offloading. Then, the used

energy of a single device Epart od has been introduced, as the sum of the one spent to perform a part

of the task locally plus the one spent to idle and transmit the other part of the task to the cloud:

Epart od = Pl ×
(1− γ) · C

Smd
+ Pid ×

γ · C
Scs

+ Ptr ×
δ ·D
Str

(2.5)

Taking into account the same coefficients γ and δ used in Equation 2.5, we can calculate the

time for the partial offloading Tpart od as the maximum between the time needed for computing the

local part of the task and the time needed for the offloading, considering the two phases performed

in the same time:

Tpart od = max

(
(1− γ) · C

Smd
;

γ · C
Scs

+
δ ·D
Str

)
(2.6)

The structure and the workload of the network are implicitly considered in Equation 2.5 and

Equation 2.6. Now we are going to describe the effect on Epart od and Tpart od due to the different

RATs performing in the HetNets and to the amount of devices connected to this different RATs. The

HetNet mainly consists of two components, macrocells and small cells, with different bandwidths

BW. Since, for a single SMD, the speed rate of the data exchange Str is affected by the bandwidth

of the node to which the SMD is connected, by the distance d from this node, and by the number

n of the overall SMDs connected to the same node, Str can be written in an explicit way as:

Str =
BW

n
· log2

(
1 +

SNR

d2

)
(2.7)

where SNR is the SNR, typical parameter of the device.

In order to allow the evaluation of the offloading percentage, aiming to save energy and improve

performance, the introduction of a cost function that can consider the minimization of both Equa-

tion 2.5 and Equation 2.6 for the entire set of SMDs is required. This is a non-trivial multi-objective

optimization problem that we addressed by setting the cost function as a weighted sum of both the

average values, with α and β coefficients with the constraints 0 ≤ α, β ≤ 1 and α+β = 1, N number

of network’s devices and El, Tl reference values representing average energy and time spent when

the task is computed locally by a SMD:

F = α
1
N

∑N
k=1Epart od,k(γ, δ)

El
+ β

1
N

∑N
k=1 Tpart od,k(γ, δ)

Tl
(2.8)

This cost function is based on a network centric approach in which a central entity is responsible for

choosing values of the offloading percentage γ and δ after collecting informations about the SMDs’

features. Furthermore, in the partial offloading procedure, γ and δ are bounds, because before a
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Table 2.2: Application Types

Application Computation Data transmis-
sion

C D δ/γ

1 - Real time traffic analysis High Low 107 105 0.25

2 - Mobile Video and Audio Com-
munication

Low High 105 107 0.75

3 - Mobile Social Networking High High 107 107 0.50

task is executed it may require certain amount of data from other tasks [23]. Moreover, the weighted

coefficients α and β are chosen at a main level to give a major importance to energy or time saving.

2.4 Numerical Results

During a partial offloading the amount of energy and time in Equation 2.5 and Equation 2.6 is affected

by the percentage of computation and communication exchanged, represented respectively by the

coefficients γ and δ. These are correlated each other, since the execution of a remote computation

task requires a certain amount of input/output data to be exchanged. So we can consider the ratio
δ
γ as a typical value, peculiar of a type of application. To summarize typical scenarios we have taken

into account three kinds of applications represented in Table 2.2, according to the aims to analyze

cases of a smart transportation system [35].

We considered a deployment area of 1000 × 1000 m2, where one LTE eNodeB with channel

capacity equal to 100 MHz and three WiFi access point with channel capacities equal to 22 MHz

are positioned to cover the entire area. Specifically, the access points are positioned at point (0,0),

(500,1000) and (0,1000), and the LTE station at (500,500), as shown in Figure 2.3.

The values of Smd, Pid, Ptr and Pl are specific parameters of the mobile device. For example we

utilized the values of an HP iPAQ PDA with a 400 MHz Intel XScale processor (Smd = 400) and

the following values: Pl ≈ 0.9W , Pid ≈ 0.3W and Ptr ≈ 1.3W [32].

The cost function coefficients, α and β, are equal to 0.5, aiming to give the same importance to

both time and energy consumptions. In Figures 2.4, 2.5, and 2.6 the performance results of the cost

function are represented for the three applications described in Table 2.2.

Figure 2.4 shows that, when a task requires high computation and low communication, i.e.

Application 1, it is better to offload the task totally, no matter how many devices are connected to

the network. In fact, the curves are overlapped and the cost function assumes the sames values for

the same percentage γ.
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Figure 2.3: Area in case of 500 and 5000 SMD connected, where the access points are positioned at
point (0,0), (500,1000) and (0,1000), and the LTE station at (500,500)
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Figure 2.4: Cost function behavior for Application 1 - Real Time Traffic Analysis

On the other hands, Figure 2.5 shows that, when a task requires low computation and high

communication, i.e. Application 2, it is better to compute the task locally. In this case a big

number of connected devices affects the cost function in a negative way; it is possible to see that

there is a minimum for γ = 0.

The most interesting case is shown in Figure 2.6. In fact, when the network is overloaded, tasks

with both a large amount of computation to execute and data to exchange - as in Application 3 -

are better performed for a specific value of γ. For example, in this case, the best performance is for

γ = 0.4 when a population of 5000 devices is whithin the area, and γ = 0.7 for a population of 2000

devices. When the network is not overloaded, instead, as in cases of less devices within the area, it’s

better to perform the total offloading.

Finally, as shown in Figure 2.7 and Figure 2.8, we compare energy and time spent in the adaptive

case with those spent for the local execution and the total offloading case to perform Application 3;

for the adaptive algorithm we have considered the use of the optimized γ parameter following the

previous analysis. While for the energy there is a compromise between the two boundary cases, the

adaptive function allows the best performance considering time as the primary issue.
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Figure 2.5: Cost function behavior for Application 2 - Mobile Video and Audio Communication
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Figure 2.6: Cost function behavior for Application 3 - Mobile Social Networking
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Figure 2.7: Energy for Application 3 - Mobile Social Networking
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Figure 2.8: Time for Application 3 - Mobile Social Networking
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2.5 Conclusions

In this chapter, a cost function has been defined for optimizing contemporaneously time and energy

consumption in a scenario where smart mobile devices are supposed to perform an application;

the aim was to optimize the amount of computation performed locally and remotely. The remote

execution is faster and can relieve mobile devices from the correlated energy consumption, but it

involves data exchange with the cloud server, spending time and energy to transmit, depending also

from the load of the HetNet. The cost function is proposed to evaluate the percentage of application

to offload for time and energy optimization. The results show that for applications requesting both

high execution work and data exchange a particular value of this percentage, depending on the

number of devices, optimize the performance.





CHAPTER 3
A User-Satisfaction Based Offloading Tech-

nique for Smart City Applications

3.1 Introduction

New user’s needs cause a major boost of wireless communication techniques employed in smart cities,

as well as a rapid growth and diffusion of enhancing technologies. To achieve the goal of interacting

with city services, allowing to simplify everyday life, MCC and HetNets become together the killer

applications for resolving the significant facing problems: the former for offloading application to

powerful remote servers, shortening execution time and extending battery life of mobile devices,

the latter for exploiting high-speed and stable connectivity in an ever grown mobile traffic trend,

allowing the use of small cells in addition to macrocells [23]. In such a scenario users can access to

remote resources without interruption in time and space.

In this context, energy saving and performance improvement of SMDs have been widely recog-

nized as primary issues. In fact, the execution of every complex application is a big challenge due

to the limited battery power and computation capacity of the mobile devices [25]. The distributed

execution between the cloud and mobile devices has been widely investigated [9], highlighting the

challenges towards a more efficient cloud-based offloading framework and also suggesting some oppor-

tunities that may be exploited. Indeed, the joint optimization of HetNets and distributed processing

is a promising research trend [5]. We envision that the success of HetNets, jointly with MCC, would

ultimately depends on user satisfaction, which in turn relies on saving energy and computing applica-

tion quickly. Identifying the relevant QoS for each of the diverse application types and distinguishing

the variation of user satisfaction related to the QoS is a research challenge [36].

Various mobile data offloading policies are proposed in the literature where the partial offload-

ing of data to the network infrastructure is performed according to the variations of the network

39
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conditions and the operator strategies [37]; however, a model related to user satisfaction regarding

battery saving and speed of computation is not already taken in consideration.

In this chapter we propose a utility function model that takes into account a series of parameters

related to HetNet’s nodes, SMDs’ characteristics and types of performed application. We categorize

applications in different classes, and consider for each application type the amount of data and

computation transferred to the MCC and how the HetNet traffic load affects the power consumption

of the SMDs and their execution time. The opportunity to move to the cloud a portion of the

computing application is taken into account, because the decision whether moving the computation

tasks of mobile applications from the local SMDs to the remote cloud involves a tradeoff between

energy consumption and computational time [38].

The proposed utility function takes into account the QoS parameters in terms of throughput,

amount of energy used by the SMDs and time spent to execute the application. Furthermore, it

acts as input for a CA procedure aiming to select the best access point for respecting the system

requirements. The user-satisfaction CA algorithm is compared with a legacy algorithm that foresees

the connection with the nearest access point. The results show that when the network is overloaded,

the algorithm based on the proposed utility function offers a better service with respect to the

nearest-node technique, since the average throughput is stable, allowing less outage of connectivity

and reduced values of average energy and average time in comparison to the nearest-node algorithm.

3.2 System Model

The system model we are focusing on relies on the results of the chapter 2. We consider a reference

scenario analogous to Figure 2.1, but, in this case, various SMDs are requesting three different

types of application, with a casual uniform distribution. Each type is partially offloaded giving

the optimization problem investigated previously. The SMDs are interacting with a traditional

centralized cloud requesting for offloading through two types of RAT that compose the basic elements

of the HetNet: macrocells and small cells.

Recalling the characteristics the system is premised on, we can summarize:

– a certain application requires O operations and D data,

– the speeds of the mobile device and of the cloud server are, respectively, Smd and Scs

– the speed of the mobile device for transferring data to the access point is Str

– the weight coefficients representing, respectively, the fraction of the computational task and

the fraction of the data sent for the offloading are γ and δ, satisfying 0 ≤ γ, δ ≤ 1

We recall also that the transmission time is mostly due to the access network transfer, by considering

as negligible the transfer time on the backbone network between the access point and the cloud server,
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Table 3.1: Values and fraction of computation and transmission

Application Ok γk Dk[b] δk

1 - Real time road traffic analysis 107 0.9 105 0.25

2 - Mobile Video and Audio Communication 105 0.1 107 0.07

3 - Mobile Social Networking 107 0.7 107 0.35

due to the higher data rate, and the return time from the cloud server to the user terminal because

the amount of data in response to the elaboration in the cloud server is small with respect to the

data sent toward the cloud server [32,33].

The values γ and δ, previously found in the optimization procedure of chapter 2 have been

considered here for each selected application. We will focus on three application types, characterized

by a specific amount of required operations Ok, amount of data that need to be exchanged Dk,

fraction of offloaded computational tasks γk, and fraction of offloaded data δk, as defined in Table 3.1.

The considered application classes are:

1. Real time road traffic analysis: the applications aiming to optimize the route toward a certain

destination (e.g., navigation applications);

2. Mobile Video and Audio Communications: the applications that elaborates user generated

audio and video content;

3. Mobile Social Networking: the applications used for social networking.

In order to describe the throughput, the consumed energy and the time spent by a device for the

computation - the three measures we chose for the QoS evaluation - let us focus now on the network

infrastructure, by considering a generic couple composed by the i-th access point and the j-th SMD.

Throughput Str,ij The throughput Str,ij is affected by the bandwidth BWi of the i-th access

point, by the distance dij between the access point and the SMD, by the signal to noise ratio SNRi

at the receiver, and by the number of devices ni already connected to the i-th access point. By

resorting to the Shannon formula, the throughput Str,ij can be written as:

Str,ij =
BWi

ni
· log2

(
1 +

SNRi

d2
ij

)
(3.1)

Energy Epart od,ijk The energy spent for the partial offloading can be written as the sum of the

energy spent to perform locally a part of the task and the energy spent during the idle period and
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during the transmission of the remaining part of the task to the cloud; the idle period corresponds

to the amount of time needed by the cloud to perform the computation: we suppose that during

this time the SMD remains in an idle state. In this case it is possible to derive the overall spent

energy for the k-th application as:

Epart od,ijk = Pl,j ×
(1− γk) ·Ok

Smd,j
+ Pid,j ×

γk ·Ok
Scs

+ Ptr,ij ×
δk ·Dk

Str,ij
(3.2)

where Pl,j corresponds to the power consumption for performing the local computation by the j-th

SMD, Pid,j is the power consumption of the j-th SMD in idle state, Ptr,ij is the power consumption

of the j-th SMD for transmitting the data to the i-th access point, and Smd,j is the computing speed

in operations per second of the j-th SMD.

Time Tpart od,ijk The computation time for executing the application can be written as the maxi-

mum value between the time needed to compute the local portion of the task and the time needed

for the offloaded portion; we have supposed that the two phases can be performed at the same time,

so that the overall time corresponds to the maximum value:

Tpart od,ijk = max

(
(1− γk) ·Ok

Smd,j
;

γk ·Ok
Scs

+
δk ·Dk

Str,ij

)
(3.3)

3.3 User-Satisfaction Based Utility Function

We introduce, for each of the three quality parameters taken in consideration, a function representing

the QoS degree perceived by the user. The functions are modeled as sigmoid curves, since they are

well-known functions often used to describe QoS perception [24, 36, 39]. A sigmoid curve can be

defined as:

U(x) =
1

1 + e−α(x−β)
(3.4)

where α and β decide the steepness and the center of the curve. The value of α indicates user’s

sensitivity to the QoS degradation, while β indicates the acceptable region of operation. The deriva-

tive of the sigmoid function describes the subject perception, so that it does not make sense to give

more resources over a certain value above which the derivative of the utility function approximates

to zero.

Focusing on the three QoS parameters we are considering, i.e., throughput, energy and time, it

is possible to define the related sigmoid functions, by taking into account that the user satisfaction

grows with higher throughput values and lower energy and time values. To this aim, concerning the

user throughput, it is possible to define the related sigmoid function as:

f1(Str,ij) =
1

1 + e−α1(Str,ij−Stro,k)
(3.5)
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Table 3.2: Reference values for QoS functions

Application Stro,k(kb/s) Eo,k(W · s) To,k(s)

1 - Real time road traffic analysis 0.52 2.9 0.5

2 - Mobile Video and Audio Communication 1.42 3.6 0.1

3 - Mobile Social Networking 0.93 7.1 2

where Stro,k is the objective throughput value for the k-th application.

On the other hand, since the energy and time parameters need to decrease for increasing the

user satisfaction, the related cost functions need to be decreasing sigmoid functions defined as:

f2(Epart od,ijk) = 1− 1

1 + e−α2(Epart od,ijk−Eo,k)
(3.6)

f3(Tpart od,ijk) = 1− 1

1 + e−α3(Tpart od,ijk−To,k)
(3.7)

The parameter αq (q = 1, 2, 3) is defined as the steepness of fq and is related to the user’s

sensitivity to the QoS degradation of the q-th parameter. The parameters Stro,k, Eo,k and To,k

are the center points of the curves fq, indicating the acceptable region of operation. Stro,k and

To,k are reference values for the data transmission rate and the computing time related to the

type of application requested, whereas Eo,k, the energy spent to compute le application locally,

is also associated to the type of device in addition to the type of application. For the goal of

this study, referring to network analysis rather than SMD’s types analysis, we considered values of

Eo,k dependent only to application types. The values of Stro,k, Eo,k and To,k in relation with the

application classes are defined in Table 3.2.

On the basis of the QoS sigmoid functions, we introduce a model developed from the economic

concept of utility function [39]. By focusing on the access point i (related to the type of RAT) and

the SMD j, the cost function for the association of the j-th SMD to the i-th access point is given

by:

Uij = c1 · f1(Str,ij) + c2 · f2(Epart od,ijk) + c3 · f3(Tpart od,ijk) (3.8)

where Str,ij, Epart od,ijk and Tpart od,ijk are the QoS parameters related to the connection between

the i-th access point and the j-th SMD for partial offloading of the k-th application. The weight

parameters cq are associated to the importance of the respective quality-related parameters in the

performance of the application. For example, for an application of type 1 (real time road traffic

analysis) a high weight c1 (related to Str) is required, rather then in an application of type 2 (Mobile

Video and Audio Communication) where it is more important to have a low delay time, therefore a
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Table 3.3: Weight parameters of Utility Function

Application c1 c2 c3

1 - Real time road traffic analysis 0.6 0.2 0.2

2 - Mobile Video and Audio Communication 0.2 0.2 0.6

3 - Mobile Social Networking 0.2 0.6 0.2

high value of c3.

The weight parameters cq are normalized with respect to a certain application, so that it is

possible to assume that:
3∑

h=1

ch = 1.

for each application k. Table 3.3 shows the considered weight parameters for each type of application;

it is worth to be noticed that, higher is a certain parameter ck for a certain application k, higher is

the importance of the related QoS parameter for the selected application.

Cell Association

The above defined utility function is at the basis of the CA scheme that allows the selection of

the best access point by the SMD, for respecting the requirements of the considered applications;

whenever a SMD requests to offload an application, the utility function is evaluated for each access

point of the network. The SMD will connect to the access point with the maximum utility function.

The selection of a certain access point for establishing the connection could modify the values

Str, Epart od and Tpart od for the SMDs already connected with the same access point. Hence, the

utility function related to those SMDs is evaluated again, by considering the new incoming SMD.

The cell association algorithm is reported in Algorithm 1, where it is possible to note the utility

function elaboration and the updating of the utility function for all the SMDs already connected to

the selected access point. The CA algorithm is performed for all the SMDs in the scenario.

3.4 Numerical Results

This section deals with the numerical results of the proposed utility function approach by resorting

to computer simulations. The smart city scenario has been modeled in Matlab by considering a

randomly placed number of SMDs in a deployment area of 1000× 1000 m2, where one LTE eNodeB

with channel capacity equal to 100 MHz and three WiFi access points with channel capacities equal
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Algorithm 1 Cell Association Algorithm

Cell Association Algorithm
for all SMD do

Cell association request by the SMDj

for offloading the Appk

for all RATi do
compute Str,ij

compute Epart od,ijk

compute Tpart od,ijk

compute Uij

associate SMDj with RATa s.t. Uajk = max(Uij)∀i
RATa.n = RATa.n+ 1 // update the number of SMDs associated to the RATa
for all SMDh associated to RATa do

compute Str,ah

compute Epart od,ahk

compute Tpart od,ahk

compute Uahk

end for
end for

end for

to 22 MHz are positioned to cover the entire area. The SMDs, positioned randomly, will connect to

one of the access point/eNodeB, depending on the cell association policy; to this aim we suppose

that all the SMDs are capable to connect to both WiFi and LTE. The infrastructures are positioned

in the same configuration as represented in Figure 2.3, where the access points are positioned at

point (0,0), (500,1000) and (0,1000), and the LTE eNodeB at (500,500).

The SMDs, positioned randomly, request in sequence to offload a random application type and

are connected accordingly, on the basis of the presented cell association algorithm. The values Smd,

Pid, Ptr and Pl are specific parameters of the mobile devices. We utilized the values of an HP iPAQ

PDA with a 400 MHz Intel XScale processor (Smd = 400) and the following values: Pl ≈ 0.9W ,

Pid ≈ 0.3W and Ptr ≈ 1.3W . As for the cloud server used for the offloading we suppose that Scs =

8000 [32].

In the same way used for the utility function, we have resorted to the following values for the

steepness of the sigmoidal functions: α1 = 1.6 · 10−3, α2 = 10−6, and α3 = 10−6. These values have

been selected after a numerical optimization phase as reported in ??. We have supposed that the

three applications are equally distributed among all the SMDs existing in the environment, so that

they have same probability equal to 1/3.

The numerical results are reported by focusing on the performance in terms of average energy

consumption, computational time and throughput for each SMD. The numerical results have been

compared with three other approaches: local computation, total offloading and nearest node. For the
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Figure 3.1: Performance results in terms of average energy consumption with a variable number of
SMDs.

local computation algorithm is assumed that the computation is performed locally by each SMD;

in this case no data is exchanged on the network. In the total offloading algorithm an opposite

situation is assumed, since nothing is computed locally, while the entire data load is offloaded to the

centralized cloud servers. The nearest node algorithm, finally, assumes that each SMD will connect

to the nearest AP/eNodeB.

In Figure 3.1 the results in terms of energy consumption are reported. It is possible to note that

both the utility function and the nearest node approaches outperform the local computing and the

total offloading. Moreover, it is possible to note that the utility function algorithm allows to have

almost the same values for different numbers of nodes, outperforming the nearest node approach for

increasing number of SMDs. A similar behavior can be noted in terms of average time for executing

the application, in Figure 3.2, where, also in this case, the utility function algorithm outperforms

the other approaches.

In Figure 3.3, the performance in terms of average throughput has been reported. In this case the

performance for the local computation approach is not reported because in this case no data transfer

occurs. It is possible to note that the throughput for the utility function algorithm remains stable,

hence giving an optimized value to each SMD, while in the nearest node approach the throughput

decreases when the number of SMDs increases.
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Figure 3.2: Performance results in terms of average computation time with a variable number of
SMDs.

3.5 Conclusions

In this chapter we introduced a utility function derived from the economic world aiming to optimize

the cell association of the smart devices for achieving low energy consumption and computational

time while maximizing the overall throughput. The proposed approach allows to increase the per-

formance with respect to a nearest node association, and with respect to statical approaches where

the computation is performed locally or is completely offloaded.
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Figure 3.3: Performance results in terms of average throughput with a variable number of SMD.



CHAPTER 4
A Cluster Based Computation Offloading

Technique for the UMCC

4.1 Introduction

The evolutionary trends of the Information Society have lead to the definition of the smart city as the

most challenging scenario for the IoT applicability. Among several things composing a smart city,

the computing infrastructures are responsible for giving a distributed elaboration intelligence to the

environment aiming at providing unprecedented services and efficiency. The increasing number of

devices, appliances, smart-phones and objects connected to the Internet has lead to the introduction

of the IoT paradigm, aiming at design the network infrastructure as composed by a moltitude of

devices collaborating each others. Among several different functions provided by the IoT devices,

the distributed computing approach seems to have an increasing interest allowing to establish an

interaction between the IoT and the MCC worlds [7, 40].

This chapter takes into consideration the computation offloading towards other SMDs pooled

together, in addition to powerful remote servers, with the aim of an exploitation for shortening

execution time and extending battery life. The actual innovation is to take into account different

types of mobile cloud infrastructures, considering also a non-trivial extension of the MCC paradigm

to the edge of the network, where a collaborative crowd of end-user clients or near-user edge devices

share storage, communication, computation, and control. In this context, the issues of mobile

device energy saving and performance improvement become increasingly a source of concern, because

of the strict constraints on their memory capacity, network bandwidth, CPU speed and battery

power [25]. The proposed cluster based computation offloading technique is able to work in a

distributed environment, in order to better satisfy the QoS requirements of the SMD users, by

minimizing a cost function that takes into account the already mentioned tradeoff between SMD’s

49



50 CHAPTER 4. A CLUSTER BASED COMPUTATION OFFLOADING TECHNIQUE

energy consumption and execution time. By analyzing an actual case of this very complex system,

we introduce an algorithm for offloading a real-time navigation application in a distributed fashion,

aiming to minimize the execution time.

Although the computation offloading can significantly increase the data processing capabilities

for each mobile user, it is challenging to achieve an efficient coordination among the entire set of

requesting devices, because this operation can affect the efficiency of the Cloud Computing In-

frastructures (CCIs), since the channel capacity has to be shared among all the devices, causing a

reduction of the throughput experienced by each user. This could make not convenient the offloading

operation [41].

Several excellent works have been done to study cloud and radio resource management issues;

among them in the last years there is an increasing importance in the collaborative mobile device

offloading [42–44], as well as other considerable studies that face up jointly to clouds and fog archi-

tectures [13,45]. Further, this investigation proposes a system model that takes into account jointly

a series of features related to HetNet nodes, different CCIs - in particular a distributed cloud of

devices merged together to share resources - and various SMDs characteristics [46,47].

In this chapter we consider a system where users can interact with all the different topologies of

cloud - centralized, cloudlets, and distributed mobile cloud - as described in section 1.2. This allows

users to optimize the system performance by offloading a fraction of the application among different

cloud structures. The advantage of this approach consists in computing the application that is

referred to a specific service exploiting the different cloud infrastructures and network technologies,

optimizing important characteristics of the system, i.e. maximize throughput and time computation

or minimize the energy used by the SMDs.

A cost function is introduced to optimize the nodes assignment and the resources allocation for

distributing the application through the system. In particular we focused on a cluster based solution

aiming at exploiting the MCC environment for executing an application in a distributed fashion, for

handling a real-time navigation application in a vehicular environment.

4.2 Application Scenario

We consider a UMCC environment where each SMD aims at performing an application, interacting

with many CCIs, through different wireless connections, in order to distribute the computation

load to one or more CCIs and receive data results from the CCIs themselves. We will consider

the possibility of distributing the computation load exploiting multiple CCIs at the same time, for

offloading to each one of them a different part of the application. In this chapter we neglect the

storage optimization, since each device is supposed to own a storage capacity fitting its computation

load. This simplification allows to focus on the proper computation offloading optimization.
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A SMD can delegate computation functions towards one or more CCIs for performing the re-

quested application. The CCIs can be distinguished on the basis of their features and are classified

following the three types described in section 1.2: an ubiquitous centralized cloud infrastructure,

many roadside cloudlet infrastructures, and a distributed cloud infrastructure composed by neigh-

boring SMDs pooled together for resource sharing. The centralized cloud refers to an infrastructure

with a huge amount of storage space and computing power, virtually infinite, offering the major

advantage of the elasticity of resource provisioning. The cloudlets are instead fixed small cloud

infrastructures available in a delimited area, installed in proximity of the users and provided with a

dedicated transmission node that supports the wireless communication into this area. Finally, the

distributed cloud is a Mobile Ad-hoc Network (MANET) composed by the neighboring SMDs.

From the computational point of view, the centralized cloud allows to reduce the computing time

by exploiting powerful processing units, but it could suffer from the distribution latency, due to the

remote data transfer. Cloudlets, instead, allow to decrease the distribution latency with respect to

the centralized cloud, but the storage capacity and the computation power are reduced. Finally,

a distributed cloud is composed by the SMDs themselves sharing their own amount of resources

depending on the instantaneous usage.

The communication side consists of all the wireless connections available within the selected

smart city environment allowing to exploit the centralized cloud, various cloudlet nodes and the

SMDs themselves. Aim of the selected system is to divide a certain smart city application into

different parts and distribute them among the available nodes. In case a fraction of an application

is distributed towards the centralized cloud infrastructure, one of the available HetNet nodes is

used for the offloading operation. In case of computation offloading towards a roadside cloudlet

infrastructure, the only available node is the one provided in the proximity of the cloudlet itself. In

case of computation offloading towards other SMDs belonging to the distributed cloud infrastructure,

the transferring operation is made directly by the SMDs. Besides, part of the application can be

computed locally by the SMDs requesting the application. Referring to Figure 1.3, we consider the

complete distribution, exploiting each of the CCIs represented.

4.3 The Partial Distributed Offloading Model

Even if every SMD of the system can simultaneously requests the computation offloading of one

or more applications, we are focusing on a scenario where a single requesting smart mobile device

wants to perform an application App, whereas all the other SMDs are considered only for receiving

and computing it. This simplification does not prevent the generalization of the system, as we can

consider the general case as an extension composed by the overlapping of many simplified cases.

The application App is defined through the number of operations to be executed, O, and the

amount of data to be exchanged, D. The App is running on a certain SMD, named Requesting
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Smart Mobile Device RSMD, that is the SMD requesting to the CCIs to execute the App. We focus

for the moment on the presence of a single App and a single requesting RSMD.

We suppose that the system demands some features in terms of QoS, in order to have a reliable

execution of the App. We have taken into account:

– latency : the interval between a task of the application is requested and its results are acquired,

– energy consumption: the amount of energy the RSMD consumes for performing the application.

Thus, being TRSMD and ERSMD, respectively, the amount of time and energy spent by the RSMD

for offloading the application, the system optimization consists in minimizing a weighted sum of the

normalized TRSMD and ERSMD, giving more weight to the first or the second parameter depending

on the importance of minimizing the energy consumption or the latency :

wE
ERSMD

Eo
+ wT

TRSMD

To
(4.1)

where wE and wT are the weight coefficients, and Eo and To reference values.

Both TRSMD and ERSMD depend on the parameters O and D of the App and on the overall

throughput ηRSMD between the nodes and the RSMD, hence, we can rewrite the eq. (4.1), for

emphasizing this dependency, as:

wE
ERSMD(O,D, ηRSMD)

Eo
+ wT

TRSMD(O,D, ηRSMD)

To
(4.2)

The system is composed by M available HetNet nodes for offloading towards the centralized

cloud (marked as HN), N cloudlets nodes (marked as CL), and K SMDs’ nodes (marked as MD),

for sharing the computation in the distributed cloud. Thus, being ηXi the throughput offered by the

ith node of type X, where X stands for HN, CL, and MD, it results that ηRSMD is the sum of the

throughput offered by the nodes available for the transfer operation:

ηRSMD =

M∑
i=1

ηHNi +

N∑
i=1

ηCLi +

K∑
i=1

ηMDi (4.3)

where we suppose that the RSMD can connect ideally with all the available nodes. The throughput

ηXi is related to the number of SMDs nXi connected to the ith node and the channel capacity BWXi

of the ith node, and can be expressed by resorting to the Shannon Formula:

ηXi =
BWXi

nXi
· log2

(
1 +

SNR

dXi
2

)
(4.4)

where SNR is a reference signal to noise ratio value of the RSMD at a distance equal to 1 m and

dXi is the distance between the RSMD and the ith node. We have considered for simplicity a no
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fading-affected channel; this simplification does not affect the operating principles of the framework.

Furthermore, we assume a uniform distribution of the available bandwidth among all the nXi nodes.

TRSMD can be defined as the sum of the time spent to perform locally part of the task, Tl,

plus the time spent to transmit data to the clouds, Ttr, plus the time spent during the idle period,

Tid, waiting for the computation performed outside and the results transmitted back. In this case

we assume that the transmission time is mostly due to the access network, because the backbone

network data rate is much higher. Hence, we can write:

TRSMD = Tl + Ttr + Tid (4.5)

Tl can be evaluated as the ratio between the fraction of operation computed locally, α0O (where α0

is the percentage of operations O computed locally), and the computing speed of the RSMD, fl:

Tl = O
α0

fl
(4.6)

Ttr is the sum of the transferring times towards each node, corresponding to the ratio between the

amount of transferred data βXiD (where βXi is the percentage of transferred data D to the ith node),

and the throughput of the node, ηXi. Thus we can write:

Ttr = D

(
M∑
i=1

βHNi

ηHNi
+

N∑
i=1

βCLi

ηCLi
+

K∑
i=1

βMDi

ηMDi

)
(4.7)

Tid depends on the starting time and the duration of the offloaded computations. Since each CCI

is able to compute it own task independently and simultaneously with the other CCIs, and since

an offloaded computation cannot begin until all the data needed for performing it are provided, Tid

would be optimized.

We consider for simplicity the worst case for Tid, i.e., the maximum value among every duration

of the offloaded computations. Furthermore, by defining as fCLi and fMDi the computing speed

of the ith cloudlet and the ith SMD, respectively, and fCC the computing speed of the centralized

cloud, and considering αXi the precentage of computed operations O within the ith node, Tid can

be written as:

Tid = O arg max
i=1,...,M
j=1,...,N
k=1,...,K

{
αHNi

fCC
,
αCLj

fCLj
,
αMDk

fMDk

}
(4.8)

ERSMD can be defined as the sum of the energy spent to perform locally part of the task, El, plus

the energy spent to transmit data to the clouds, Etr, plus the energy spent during the idle period,

Eid, waiting for the computation performed outside and the results transmitted back:

ERSMD = El + Etr + Eid (4.9)
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El is obtained by multiplying the RSMD’s local computation power consumption, Pl, by the time

consumed for computing locally the application:

El = Pl
α0O

fl
(4.10)

Etr is determined by the power consumption of the RSMD for transmitting, Ptr, multiplied by the

transferring time. Thus we can write:

Etr = PtrD ·

(
M∑
i=1

βHNi

ηHNi
+

N∑
i=1

βCLi

ηCLi
+

K∑
i=1

βMDi

ηMDi

)
(4.11)

Eid corresponds to the idle time Tid, thus, taking into account the same considerations used for Tid,

we can write the following:

Eid = PidO arg max
i=1,...,M
j=1,...,N
k=1,...,K

{
αHNi

fCC
,
αCLj

fCLj
,
αMDk

fMDk

}
(4.12)

Thus, the optimization model consists in finding the values αXi and βXi that minimize 4.2, by

taking into account the relationships defined in Equation 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11,

and 4.12. The model constraints are derived from the observation that the sum of the offloaded

fractions must be equal to 1, thus the optimization problem becomes:

minimize
αXi,βXi

{
wE

ERSMD(αXi, βXi)

Eo
+ wT

TRSMD(αXi, βXi)

To

}
(4.13a)

s.t. α0 +

M∑
i=1

αHNi +

N∑
i=1

αCLi +

K∑
i=1

αMDi = 1 (4.13b)

M∑
i=1

βHNi +

N∑
i=1

βCLi +

K∑
i=1

βMDi = 1 (4.13c)

The obtained minimization problem cannot easy solved, so that, in the following section, we will

resort to a sub-optimal solution based on a clusterization approach.

4.4 Cluster based optimization

The idea is to divide the urban area in subareas having range r; each SMD can share resources

only with the other SMDs, cloudlets, and HetNet access points placed in the same subarea. This

approach, even if sub-optimal, can simplify the problem by reducing the amount of concurrent

devices that are involved in the computation offloading. This means, on the other hand, that we

have to select the most appropriate cluster size.
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If we define with Mr, Nr and Kr, the number of HetNet access points, cloudlets and SMDs,

respectively, within the cluster having range r, it is possible to write the transferring time needed

by a single RSMD as:

Ttr,r = D

(
Mr∑
i=1

βHNi

ηHNi
+

Nr∑
i=1

βCLi

ηCLi
+

Kr∑
i=1

βMDi

ηMDi

)
(4.14)

Let us suppose that among the Kr SMDs within a cluster, K̄r ≤ Kr have an active task to

be computed that can be offloaded to the surrounding nodes. Without going into the details of a

scheduling algorithm to be used by the cluster based SMDs, we suppose that the Apps are computed

by all the SMDs that act as a pool of resources, by exploiting a RAN as a Service (RANaaS) cloud

model [48]. In this case it is possible to calculate the overall transferring time as:

T tot
tr,r =

K̄r∑
j=0

Mr∑
i=1

DjβHNi

ηHNi
+

K̄r∑
j=0

Nr∑
i=1

DjβCLi

ηCLi
+

∑K̄r

j=0

∑Kr

i=1DjβMDi∑Kr

i=1 ηMDi

(4.15)

where Dj is the amount of App data requested by the jth RSMD. Similarly, it is possible to write

the overall energy needed by the K̄r nodes for offloading the task as:

Etot
tr,r =

K̄r∑
j=0

Mr∑
i=1

Ptr,jDjβHNi

ηHNi
+

K̄r∑
j=0

Nr∑
i=1

Ptr,jDjβCLi

ηCLi
+

∑K̄r

j=0

∑Kr

i=1 Ptr,jDjβMDi∑Kr

i=1 ηMDi

(4.16)

From (4.15) and (4.16), it is possible to observe that the transferring time related to the of-

floading within the SMDs cluster is proportional to the square of the number of the SMDs, i.e.,

Ttr,r, Etr,r ∝ K2
r , whereas it is linearly proportional to the number of SMDs in case only the cen-

tralized cloud or the cloudlets are used, i.e., Ttr,r, Etr,r ∝ Kr; hence, it is possible to state that there

is an optimal number of devices Ko
r within a cluster such that, for Kr ≤ Ko

r the offloading towards

the centralized cloud is the optimal solution, whereas for Kr > Ko
r the best performance is obtained

for the distributed cloud. This means that the cluster size affects the optimization problem.

Since the numbers of SMDs affect primarily the transferring time and energy consumption,

we focus our attention on their behavior, without focusing on the idle and local time and energy

consumption. Hence, the optimization problem in (4.13), can be rewritten as:

minimize
r

{
wE

Etot
tr,r(r)

Eo
+ wT

T tot
tr,r(r)

To

}
(4.17)

where the aim is to minimize the linear combination of latency and energy consumption by selecting

the cluster size ro that contains the optimal number of devices Ko
r : this corresponds to estimate

the density of the surrounding nodes and select the cluster size by comparing their amount with the

optimal number. It is worth to be noticed that the density estimation of a distributed network has
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been studied in the literature by resorting to specific algorithms, such as in [49]. Hence, for a given

scenario, once estimated the SMDs density, it is possible to set the cluster size based on Ko
r .

Once set the cluster size, with respect to the offloading problem, if Kr ≤ Ko
r , it is convenient

to set
∑Mr

i=1 αHNi = 1 and
∑Mr

i=1 βHNi=1, that corresponds to a complete offloading towards the

centralized cloud, whereas it is better to perform the offloading towards the nodes in the cluster for

Kr > Ko
r . In this case we consider αCLi = βCLi and αMDi = βMDi for every node of the distributed

cloud, since it is reasonable that the amount of processed data is proportional to the computation

load; furthermore, we choose αCLi and αMDi s.t. αCLi/fCLi = αMDi/fMDi for every node, since this

is the value that minimize Equation 4.8 and, hence, Equation 4.5.

4.5 Numerical Results

In order to prove the effectiveness of the proposed approach, we resort to a typical scenario for an

Intelligent Transportation System (ITS) proposed by Yu et al. [20], composed by the three-layered

hierarchical cloud architecture for vehicular networks where the SMDs exploit cloud resources and

services in an environment composed by vehicular clouds (i.e., the distributed topology), a set of

roadside cloudlets, and a centralized cloud (see Fig. 4.1).

Figure 4.1: Realtime navigation with computation resource sharing, connection with the centralized
cloud, the nearest cloudlet and near vehicles
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All the devices are supposed to be connected for improving transportation safety, relieve traffic

congestion, reduce air pollution and enhance comfort of driving. The selected real-time application,

unlike a traditional navigation - which only provides static geographic maps - could be able to offer

dynamic three-dimensional maps and adaptively optimize routes based on traffic data mining. Thus,

the computational time requirement is of utmost importance. On the other hand, considering that

the great part of the involved mobile devices can be recharged directly from the cars in which they are

placed, they do not need a restrictive energy consumption requirement. Due to these considerations,

we focused the optimization problem for this scenario on a sub-optimal solution minimizing TRSMD,

i.e. we consider the weight coefficients wE = 0 and wT = 1 and we assumed that all the devices

are requesting the same application. Also the storage requirement could be neglected, while we

established that the number of operations O to be executed is equal to 106 flops and the amount of

exchanged data D by each App is equal to 0.5 Mbit.

In our scenario we considered a linear road 1000 m long with the presence of one centralized

cloud with a computation rate fCC equal to 103 Gflops, obtained by an Amazon EC2 Cluster GPU

instance, through a unique Proxim Tsunami MP 8250 Base Station Unit 4G placed in the middle

of the road (at point 500), with a channel capacity equal to 300 Mbps.

A set of four roadside units are the cloudlets evenly positioned at the relative positions of 125,

375, 625, 875 m respectively. Every cloudlet is a compute-box using Nvidia GT520 GPUs with a

computing capability fcl equal to 150 Gflops [50]. The offered throughput of the cloudlet ηcl is

40 Mbps (considering one LTE cloudlet-devices link), with a coverage range rcl equal to 250 m, so

that each cloudlet covers only a limited part of the road.

The SMDs are placed along the route with a uniform distribution, simulating a road where

a fluent traffic is present. The SMD computational speed fdev is equal to 10 Gflops, while their

offered throughput ηdev is equal to 10 Mbps - considering to use the IEEE 802.11p vehicle-to-vehicle

standard - and a reference SNR equal to 30 dB. We considered also, for the energy evaluation, the

parameters of an HP iPAQ PDA with Pl equal to 0.9 W, Pid equal to 0.3 W, Ptr equal to 1.3 W.

We have chosen different cases for partitioning the subareas of the distributed clouds, with ranges

equal to 250 m, 50 m, 25 m, and 10 m, where every SMD can share resources with the other SMDs

placed in the same subarea.

In Figure 4.2 the performance in terms of average latency for an increasing number of SMDs by

comparing the total offloading towards the centralized cloud and the distributed clouds is depicted.

Four possible clusterizations for the distributed cloud infrastructure are considered; furthermore

the total offloading to the nearest cloudlet is also considered. These are compared with the local

computation as a benchmark. Moreover, the optimal solution is reported, where the range is selected

based on the SMD density.

It is possible to see that by varying the number of SMDs inside the considered area, the most

efficient CCIs, to which is convenient to offload, change. In particular for a low density of SMDs
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Figure 4.2: Average latency vs the number of RSMDs, in a fluent traffic scenario
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it is convenient to offload towards the centralized cloud, corresponding to set the cluster range to

infinity, while the cloudlets are convenient just over. This is because in case of low density the

SMDs are isolated and, moreover, their communications through the eNodeB -i.e., centralized cloud

or cloudlets- have a limited intra-system interference. However, when the number of SMDs increases

it is possible to see that the use of the distributed cloud become more convenient, with the cluster

size reducing with the increasing of the SMDs. The optimal solution allows to select the best cluster

range based on different density situations by approaching always the best cluster size. It is worth

to be noticed that the optimal number of SMDs Ko
r , in this case, is equal to 50.

In Figure 4.3 the average energy consumption is depicted by considering a variable number of

SMDs, and considering the same cluster sizes as in Figure 4.2. Even if the energy issue does not

affect the operations of this particular scenario, where all SMDs are supposed to have unlimited

energy since reloaded by the cars’ resources, we can consider this issue from an echo-friendly point

of view. Comparing the trends of the consumed average energy in the various cases, it is undeniable

that the clusterization allows to reduce the consumed energy in case of high traffic scenarios as

those present in a smart city environment, and the optimal solution allows to select for different

populations the best cluster size, and offloading policy.
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Finally, in Figure 4.4 the performance in terms of throughput is shown by comparing the dis-

tributed cloud infrastructure with 10 m of range, the total offloading toward the central cloud and

the nearest cloudlet and the optimal solution. It is possible to note that the distributed offloading

technique outperform the other techniques, except in case of low density of the nodes.

4.6 Conclusions

In this chapter an optimization model for supporting the computation offloading in the UMCC is

conceived in a particular IoT scenario, where the objects, consisting of different CCIs, can interact

through different types of wireless connections, for creating a distributed computing environment.

The distributed computing resource allocation results to be a complex problem due to the presence

of several devices and possible wireless connections, thus, we resort to decreasing its complexity by

considering a clustering approach for the resource sharing, observing that the use of cluster offloading

is useful especially for high density SMD distribution. The numerical results, based on a scenario

performing a real-time navigation application of with computation resource sharing, confirm the

advantages of the clusterization especially in dense scenarios.



PART III

OPTIMIZATION CONSIDERING A

COMMUNITY OF DEVICES

In a typical smart city ecosystem, where a great affluence of mobile devices try to perform applica-

tions at the same time, a competition for allocating remote resources occurs, becoming a potential

cause of delay and energy consumption. In such a large-scale and dynamic system, relevant op-

timization challenges concerning the operational assignment of computation offloading become a

community issue. Most of these challenges are related to the minimization of the necessary time

and energy employed for satisfying the mobile users’ requests.

In this part of the thesis the problem of CA in a UMCC framework is analized, considering the

system as a community, thinking about the improvement of the collective performance and not only

the one of a single device. In chapter 5 three different methods for solving the offloading-related

CA problem are compared: the first leads to the optimal solution, but it requires the complete

information about the final position of the requesting devices and, therefore, cannot be used in a

realistic scenario with online demands. The other two get sub-optimal solutions, but allow connecting

each device on the fly –as new requests appear. The first of these two online algorithms is based

on a greedy heuristic which chooses ’the best’ network node for each single device –selfish behavior.

The second one is a probabilistic algorithm that makes use of biased-randomization techniques [51]

in order to enhance the quality of the solution from a social or collective point of view.

The content of the following chapter was extracted from publications [P2] and [P4].
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CHAPTER 5
A Social-Aware Biased-Randomized Algo-

rithm for UMCC

5.1 Introduction

In this chapter the UMCC is exploited for accomplishing applications in a cooperative way while

satisfying the QoS requirements for the citizens involved. By taking into account all users in the as-

signment process, the proposed biased-randomized algorithm allows to enhance social-aware perfor-

mance as compared with the greedy approach while, at the same time, it allows for online allocation

of resources.

Although the computation offloading can significantly increase data processing capability for

the single mobile users, it is challenging to achieve an efficient coordination among the entire set of

requesting devices when the environment is particularly crowded. In fact, the computation offloading

entails data transmission among the devices and the cloud, to make the operation possible. If a

great number of users utilize the same wireless resource to delegate computation to the cloud, this

operation can affect the efficiency of the access node, since its channel capacity has to be shared

among all the devices, causing a reduction of the throughput experienced by each user. This can

lead to a crucial use of energy and time spent for data transmission, making not convenient the

offloading operation [41].

In this paper we present a probabilistic method that makes use of biased-randomization tech-

niques to solve the CA problem, i.e. to select, among the available access nodes, the one that

increases the system efficiency. This method is compared with the global optimization solution,

that is shown to be unacceptable from a point of view of time computation, and with a greedy

algorithm [52], that instead implement a selfish behavior in allocating the resources to the users. All

the three techniques –the probabilistic, the greedy and the optimal– are based on the definition of
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a proper cost function that takes into account the different requirements and characteristics of the

considered UMCC framework. We will consider, for our example and calculation, the throughput,

the energy consumption, and the delay as those parameters that drives the optimal allocation of the

resources to be offloaded.

The novel proposed algorithm improves the solutions and is easy to implement in real time,

thus outperforming by far the solutions provided by the heuristic approach. The underlying biased

randomization techniques [51] introduces some degree of randomness using a skewed probability

distribution and reaching a solution nearer to the optimal without the need of knowing all the

SMDs’ positions.

As it will be illustrated in the numerical results, the use of the biased-randomized approach

allows to easily enhance the quality of the solutions generated by the original heuristic in different

dimensions when considering social or collective performance. It is important to notice that if a

uniform probability distribution would be used instead of a skewed one, this improvement would very

rarely occur since the logic behind the constructive heuristic would be destroyed and, accordingly,

the process would be random but not correctly oriented.

In the context of combinatorial optimization problems, constructive heuristics use an iterative

process in order to construct a ‘good’ and feasible solution. Examples of these heuristics are the

savings procedure for the Vehicle Routing Problem [53], the NEH procedure for the Flow-Shop

Problem [54], or the Path Scanning procedure for the Arc Routing Problem [55]. In all these

heuristics, a ‘priority’ list of potential movements is traversed during the iterative process. At each

iteration, the next constructive movement is selected from this list, which is sorted according to some

criteria. The criteria employed to sort the list depends upon the specific optimization problem being

considered. Therefore, a constructive heuristic is nothing more than an iterative greedy procedure,

which constructs a feasible ‘good’ solution to the problem at hand by selecting, at each iteration, the

‘best’ option from a list, sorted according to some logical criterion. Notice that this is a deterministic

process, since once the criterion has been defined, it provides a unique order for the list of potential

movements. Of course, if we randomize the order in which the elements of the list are selected, then

a different output is likely to occur each time the entire procedure is executed. However, a uniform

randomization of that list will basically destroy the logic behind the greedy behavior of the heuristic

and, therefore, the output of the randomized algorithm is unlikely to provide a good solution.

5.2 Problem Description

The environment consists of an urban area with a pervasive wireless coverage, where several mobile

devices are interacting with a centralized cloud infrastructure and request for services from a remote

data center. In order to connect the SMDs to the cloud, the presence of different types of RATs

that compose the basic elements of the HetNet has been considered. The SMDs can connect to the
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Figure 5.1: The reference scenario with different node types in HetNet used by SMDs for offloading
applications to UMCC

cloud, as shown in Figure 5.1, by using the reachable RATs. The selection will depend upon the

distance to the RATs as well as on other features that will be detailed below.

The existence of different RATs allows cloud computing systems to complement the resource-

constrained mobile devices. In effect, storage and computing tasks can be completed in the cloud,

where the appropriate technology is selected among a variety of options. Different strategies can

be carried out in order to enhance the network capacity, such as: deployment of relays, distributed

antennas, and small cellular base stations (e.g. macrocells, picocells, femtocells), etc. These deploy-

ments have occurred indoors, in residential homes and offices, as well as outdoors, in amusement

parks and busy intersections.

These new network deployments are typically comprised by a mix of low-power nodes underlying

the conventional homogeneous macrocell network. By deploying additional small cells within the

local-area range and bringing the network closer to users, they can significantly boost the overall
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network capacity through a better spatial resource reuse. Inspired by the attractive features and the

potential advantages of HetNets, their development have gained much momentum in the wireless

industry and research communities during the past few years.

The goal of the system and of every SMDs, indeed, is to choose and exploit effectively the different

available RATs for transmitting the application data and for offloading towards the cloud. However,

if this operation is not convenient, the application can be computed locally by the requesting SMD.

The analized approaches to solve a collective CA problem are based on a cost function related to

the number and the localization of the SMDs. The first approach is the optimization of the cost

function, considering a relation among the different measures involved, but it can only be used once

the position and requests of all the SMDs is known –i.e., it cannot be used for online allocation of

resources. Thus, this approach assumes that all users’ requests are processed at the same time –or,

alternatively, that the allocation decision is postponed until all requests have been received–, which

in practice might require customers to wait for their requests to be served.

The second approach adopts a heuristic method that makes use of a ‘greedy’ behavior consisting

on the selection of the ‘best next step’ from a list of potential constructive movements [52], allowing

to find a good solution on the fly, so that every SMD can connect to the proper cell without waiting

for all the other SMDs taking place in the environment.

The third, finally, is a novel algorithm that makes use of biased-randomization techniques [51]

to improve the results obtained with the second.

In the heuristic described for the second algorithm, each agent tries to make the choice that

maximizes his/her individual utility function. However, this might lead to sub-optimal solutions

from a collective or social point of view, since individual decisions do not take into account a global

perspective.

In this context, the main idea behind our third approach is to introduce a slight modification in

the greedy constructive behavior. This is done so that the constructive process is still based on the

heuristic logic but, at the same time, some degree of randomness is introduced. This random effect

is generated throughout the use of a skewed probability distribution: at each step of the constructive

process, each potential movement receives a probability of being selected. This measure is higher as

more ‘promising’ is the movement.

In the following of this section the various components of the UMCC described in chapter 1 are

recalled emphasizing the dependency from the parameters that play a role in the used algorithms.

Centralized Cloud

The cloud entity Ccc is characterized by its own computation speed, fcc. The storage availability

of Ccc can be considered infinite, and thus it does not represent a constraint in the interaction with



5.2. PROBLEM DESCRIPTION 67

the SMDs. Hence, for the centralized cloud it is possible to write:

Ccc = Ccc(fcc) (5.1)

HetNet nodes

The wireless HetNet infrastructure is composed of some RAT nodes, each of them characterized by

different features:

• Channel Capacity BW: the nominal bandwidth of a certain communication technology that is

available for the requesting connecting devices;

• n: the number of devices connected to the RAT;

• posRAT (x, y): the position in which the RAT is located.

Hence, for the a generic RAT it is possible to write:

RAT = RAT(BW, n, posRAT(x, y)) (5.2)

Applications

Even if every SMD of the system can simultaneously request the computation offloading of one

or more applications, we focus on a scenario where each SMD demand is restricted to a single

application, which is characterized by the number of operations to be executed, O, and the amount

of data to be exchanged, D. This simplification does not prevent the generalization of the system,

since the general case in which a user requests several applications at a given time can be seen

as an aggregation of several single-application requests. Hence, it is possible to express a generic

application App as:

App = App(O,D) (5.3)

SMDs

Each SMD is characterized by the following features which influence the performance of the compu-

tation offloading:

• Ptr: the power consumed by the SMD to transmit data to the node

• Pl: the power consumed by the SMD for local computation

• Pid: the power consumed by the SMD in waiting mode while the computation in performed

in the cloud

• fmd: the speed to perform the computation locally
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• SNR: the SNR of the device

• posmd(x, y): the position in which the SMD is located.

Hence, for a generic smart mobile device SMD:

SMD = SMD(Ptr, Pl, Pid, fmd,SNR, posmd(x, y)) (5.4)

Given these entities, with the respective features, and defining di,j as the distance between the i-th

RAT to the j-th SMD, we can resort the Shannon formula for the throughput Si,j delivered by the

i-th RAT to the j-th SMD, where k is an attenuation coefficient for the signal propagation:

di,j = |posRAT,i(x, y)− posmd,j(x, y)| (5.5)

Si,j =
BWi

ni
log2

{
1 + SNRje

−kdi,j
}

(5.6)

In case of computation offloading, Equation 5.6 affects both the measures we are considering for

evaluating the QoS:

• the energy consumed by the j-th SMD, i.e.: the sum of the energy spent in transmitting the

application data plus the energy consumed while the application is computed on the cloud

server;

• the time required to accomplish the application, i.e.: the sum of the time spent in transmitting

the application data plus the time for computation on the cloud server.

Considering an overall number of N devices and a total number of M HetNet nodes, the energy

and the time spent by the j-th SMD for offloading towards the i-th RAT are, respectively:

Ei,j =
Ptr iD

Si,j
+
Pid iO

fcc
i = 1, 2, . . . ,M ; j = 1, 2, . . . , N ; (5.7)

Ti,j =
D

Si,j
+

O

fcc
i = 1, 2, . . . ,M ; j = 1, 2, . . . , N ; (5.8)

On the other hand, in case of local computation executed by the j-th SMD, the energy and the time

consumed by the SMD are, respectively:

E0,j =
Pl j O

fmd j
j = 1, 2, . . . , N ; (5.9)

T0,j =
O

fmd j
j = 1, 2, . . . , N ; (5.10)

where the 0 index represents a fictitious node related to this operation.
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The SMD requesting to compute an application App evaluates if the computation offloading is

convenient and which is the RAT to be used. The decision aims at minimizing the energy con-

sumption of the user requesting the service as well as the execution time required to accomplish the

application. Therefore, the decision is ‘selfish’ in the sense that it does not take into account the

current and future needs of other users.

We consider, instead, to optimize the global energy consumption, assuming an environment where

the devices of the set N = {1, 2, · · · , j, · · · ,N} are requesting to offload an application using the

nodes of the set M = {0, 1, 2, · · · , i, · · · ,M}, where the 0-th element represents the fictitious node

related to the local computation.

Defining xi,j as a binary variable that indicates whether SMDj is assigned to RATi or not, and

yj as another binary variable to account for SMDj computing locally its application, it is possible

to write the energy consumed by SMDj when offloading towards RATi (Equation 5.7) by exploiting

Equation 5.6

Ei,j = xi,j

(
Ptr jD

BWi

ni
log2 {1 + SNRje−kdi,j}

+
Pid jO

fcc

)
+ yj

(
Pl j O

fmd j

)
(5.11)

xi,j =

1 if SMDj is assigned to RATi,

0 otherwise.

yj =

1 if SMDj computes App locally,

0 otherwise.

where ni is the number of SMDs connected to RATi, i.e. ni =
∑
l∈N xi,l.

Rearranging the constant terms and the variable terms it is possible to write:

Ei,j = xi,j

{
Ktr
i,j

∑
l∈N

xi,l +Kid
j

}
+ yjE0,j (5.12)

The constant part for offloading due to the transmission is computed asKtr
i,j =

Ptr jD

BWilog2{1+SNRje
−kdi,j}

plus the constant part Kid
j =

Pid j O
fcc

. Therefore the optimization model can be expressed as:

min
x,y

Z =
∑
i∈M
j∈N

xi,j

{
Ktr
i,j

∑
l∈N

xi,l +Kid
j

}
+
∑
j∈N

yjE0,j (5.13a)

s.t.
∑
i∈M

xi,j + yj = 1 j ∈ N (5.13b)

xi,j , yj ∈ {0, 1} i ∈M j ∈ N ; (5.13c)
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The objective function (Equation 5.13a) minimizes the overall energy spent, while ensuring that

all devices are either assigned to a RAT or leaving the computations to be done locally (Equa-

tion 5.13b).

5.3 Optimal and Heuristic Solutions

In this section different methods to solve the optimization model are presented. A first approach

is to use an off-the-shelf commercial solver, but for real large-size instances it requires unsuitable

computation times. Moreover, since we take into account mobile SMDs, thus their position changes

in time, the cell association has to be computed often. Therefore, given that the assignation of

the SMDs to the RAT nodes has to be done in a very short time, we analyze several heuristic

procedures. We focus on a novel Algorithm 4 based on biased randomization strategy, that is

proposed to improve the quality of the solution from a social or collective point of view, enhancing a

previously proposed greedy Algorithm 3. To evaluate their effectiveness we use the optimal solution

presented in subsection 5.3.1, that can only be applied ex-post, once all the SMD requests have been

revealed. This optimal solution is found using the procedure of Algorithm 2. In particular, since the

global optimization needs to know the position and the requests of all the SMDs, it cannot be used

for online allocation of resources. Thus, this approach assumes that all users’ requests are processed

at the same time –or, alternatively, that the allocation decision is postponed until all requests have

been received–, which in practice might require customers to wait for their requests to be served.

On the other hand, the heuristic method making use of a ‘greedy’ behavior, consisting on the

selection of the ‘best next step’ from a list of potential constructive movements [52], allows to find a

good solution in real time, so that every SMD can connect to the proper cell without waiting for all

the other SMDs taking place in the environment. But with this heuristic, each agent tries to make

the choice that maximizes his/her individual utility function, so that this might lead to sub-optimal

solutions from a collective or social point of view, since individual decisions do not take into account

a global perspective.

5.3.1 Optimal Solution

The previous objective function shown in Equation 5.13 can be seen as an application of the

Quadratic Semi-Assignment Problem (QSAP) which is NP-hard [56]. A first approach to find the

solution is to use the global optimizer Baron [57]. The Branch-And-Reduce Optimization Navigator

derives its name from its combining constraint propagation, interval analysis, and duality in its

reduce arsenal with advanced branch-and-bound optimization concepts.

Note that the QSAP not only needs to know the position of all SMDs requests before assigning

them to an antenna, but also it takes a time longer than the needed to serve quickly the SMDs, as

shown in section 5.4. Therefore, the optimal resolver can be taken only as reference, to compare fast
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heuristics (which can do the assignation dynamically or with a wait-and-go) with an optimal, ideal

solution. Algorithm 2 shows the method to find the optimal ex-post solution.

Algorithm 2 Optimal Solution

Inputs:
M = {1, 2, · · · ,M} // M number of RAT nodes
N = {1, 2, · · · , N} // N number of SMDs
RATi = RAT(BWi, ni, posRAT,i(x, y)) i ∈M
SMDj = SMD(Ptr,j, Pl,j, Pid,j, fmd,j,SNRj, posmd,j(x, y)) j ∈ N
App = App(O,D)

Output:
A // assignment vector
Initialization :
Compute constants Ktr

i,j and Kid
j

Solve model (??) → x∗i,j , y
∗
j

for j = 1 to N do
if y∗j == 1 then
A← A0

else
for i = 1 to M do

if (x∗i,j == 1) then
A← Ai

end if
end for

end if
end for

5.3.2 The Greedy Heuristic

In this sub-section, we recall a heuristic algorithm used to solve the CA problem following a greedy

behavior. It has been used also in chapter 3, to resolve the CA problem in the case discussed above,

considering a user-satisfaction based utility function. If the offloading operation is advantageous

with respect to the local computation, the CA scheme leads to select the ‘best’ next node from the

list of the available ones. The requests of the SMDs appear in time sequence, and the cost function

is evaluated on the basis of the current situation, i.e., considering only the previously appeared

SMDs. If the offloading cost is less than the cost for the local computation, the SMD will connect

to the node which minimizes the cost function, otherwise it will compute the application without

connecting. The selection of the i-th node for connecting the j-th SMD modifies the values of the

throughput Si,k and consequently of the energy Ei,k for the SMDs already connected with the same

node, i.e., for k = 1, 2, . . . , j − 1. Thus, this strategy, reported in Algorithm 3, does not take into

account any forecast of future connections, leading to a sub-optimization due to the randomness of

the requests.
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Algorithm 3 Greedy Cell Association Heuristic

Inputs:
M = {0, 1, 2, · · · ,M} // M number of RAT nodes
N = {1, 2, · · · , N} // N number of SMDs
RATi = RAT(BWi, ni, posRAT,i(cx, cy)) i ∈M \ {0}
App = App(O,D)

Output:
X = (xi,j)
Y = (yj)
Initialization :
RATi.n← 0 ∀i ∈M \ {0}
xi,j ← 0 ∀i ∈M ∀j ∈ N
yj ← 0 ∀j ∈ N
for j = 1 to N do

SMDj = SMD(Ptr,j, Pl,j, Pid,j, fmd,j,SNRj , posmd,j(cx, cy))
RATi.n← RATi.n+ 1 ∀i ∈M \ {0}
calculate Ei,j ∀i ∈M
choose xi,j yj s.t. Ei,j = min{ El,j; l ∈M}
RATl.n← RATl.n− 1 ∀l ∈M s.t. xl,j 6= 1
X ← xi,j
Y ← yj

end for

5.3.3 Biased-randomized Algorithm

Making use of biased-randomization techniques [51], the proposed probabilistic algorithm is able to

find near-optimal solutions in real time, thus outperforming by far the solutions provided by the

heuristic approach. The main idea behind our novel approach is to introduce a slight modification

in the greedy constructive behavior. This is done in such a way that the constructive process is still

based on the heuristic logic but, at the same time, a certain degree of randomness is introduced.

This random effect is generated throughout the use of a skewed probability distribution: at each

step of the constructive process, each potential movement receives a probability of being selected,

being this probability higher for the more promising movements.

As it will be illustrated in the numerical results, the use of the biased-randomized approach

allows to easily enhance the quality of the solutions generated by the original heuristic in different

dimensions when considering social or collective performance, reaching a solution nearer to the

optimal, without the need to know all the SMDs’ positions.

Also, it is important to notice that if a uniform probability distribution would be used instead

of a skewed one, this improvement would very rarely occur since the logic behind the constructive

heuristic would be destroyed and, accordingly, the process would be random but not correctly

oriented.

To avoid losing the logic behind the heuristic, GRASP meta-heuristics [58] proposes to consider
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Figure 5.2: Scheme of the biased-randomization approach.

a restricted list of candidates –i.e., a sub-list including just some of the most promising movements,

that is, the ones at the top of the list–, and then apply a uniform randomization in the order the

elements of that restricted list are selected. This way, a deterministic procedure is transformed into

a randomized algorithm –which can be encapsulated into a multi-start process–, while most of the

logic or common sense behind the original heuristic is still respected.

The proposed biased-randomization approach goes one step further, and instead of restricting

the list of candidates, it assigns different probabilities of being selected to each potential movement

in the sorted list. In this way, the elements at the top of the list receive more probabilities of being

selected than those at the bottom of the list, but potentially all elements could be selected. Notice

that by doing so, we are not only avoiding the issue of selecting the proper size of the restricted

list, but we also guarantee that the probabilities of being selected are always proportional to the

position of each element in the list. As a result, each time the randomized algorithm is executed, a

new probabilistic solution is obtained (Figure 5.2). Some of these solutions will improve the original

one provided by the base heuristic and, moreover, the proposed approach allows to offer alternative

solutions to choose from, each of them with different properties.

Focusing on our specific problem, the biased-randomization algorithm for the cell association

consists of a skewed criteria based on the same cost function utilized for the greedy heuristic, i.e.,
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the SMD’s energy consumption for computing the application. When a SMD request occurs, the

cost function Ei,j is evaluated for every possible RAT node (considering also the fictitious node 0

related to the local computation).

The values are sorted in a way so that the probabilities of being selected depend not only on

the cost function Ei,j, but also on the distances di,j of the device from the RAT nodes and on the

number of devices ni that potentially can be connected to each RAT node.

In fact, on the basis of the greedy algorithm, a SMD far from all the RAT nodes, but occurred

before any other, is associated to a RAT because the cost function value of the offloading is less

than the cost function for the local computation. Instead, due to the high probability that another

SMD closer to this RAT occurs, the local computation could be a better choice, giving place to the

connection of the second closer SMD. To improve the cell association, the criteria for sorting the

list of choices takes into account the product di,j ·Ei,j, with i ∈ {0} ∪M, instead of Ei,j. The value

of d0,j is adjusted empirically and depends on the overall number of SMDs which are expected to

interact in the system. We selected a value d0,j depending on the overall number of SMDs which

are supposed to interact in the system. The value of d0,j has been evaluated observing the optimal

solution given by 5.3.1 in the post-analysis, i.e., when all the SMD positions are already known.

This strategy is reported in Algorithm Algorithm 4.

Algorithm 4 Biased-randomization Algorithm

Inputs:
M = {0, 1, 2, · · · ,M} // M number of RAT nodes
N = {1, 2, · · · , N} // N number of SMDs
RATi = RAT(BWi, ni, posRAT,i(cx, cy)) i ∈M \ {0}
App = App(O,D)

Output:
X = (xi,j)
Y = (yj)
Initialization :
d0,j ← d0

RATi.n← ni ∀i ∈M \ {0}
xi,j ← 0 ∀i ∈M ∀j ∈ N
yj ← 0 ∀j ∈ N
for j = 1 to N do

SMDj = SMD(Ptr,j, Pl,j, Pid,j, fmd,j,SNRj, posmd,j(cx, cy))
calculate di,j ;Ei,j ∀i ∈M
calculate E0,j // energy for local computation
sort di,j ∗ Ei,j ascending ∀i ∈M
choose xi,j yj s.t. Ea,j = geoinv( Ei,j; i ∈M)
X ← xi,j
Y ← yj

end for
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5.4 Numerical Results

We considered a deployment area similar to that of the previous chapters, i.e. an extension of

1000m2, where one LTE eNodeB with channel capacity equal to 100 MHz is positioned at point

(500, 500) and three WiFi access points with channel capacities equal to 22 MHz are positioned at

point (0, 0), (500, 999) and (1000, 0). Each of them is supposed to cover the entire area and we

considered an attenuation coefficient for the propagation k equal to 10−3. Furthermore, similarly

to [52], the capacity constraints on the antennas is not considered, assuming there is no limitation

on the number of customers.

The SMDs are placed in the deployment area according to a uniform distribution. In particular,

we have chosen a controlled random number generation of type Mersenne Twister with seed equal

to 1. The values of fmd, Pid, Ptr, Pl, and SNR are specific parameters of the mobile devices. We

considered the values of an HP iPAQ PDA with a 400 MHz Intel XScale processor (fmd = 400 MHz)

and the following values: Pl = 0.9W , Pid = 0.3W , Ptr = 1.3W , and SNR = 1000. Regarding the

cloud server, we suppose a computation speed fcs = 106 MHz [32]. We have chosen an application

which is accomplished through a number of operation O = 107 and, if offloaded, needs a data transfer

D = 104 bits.

We have compared the cell association configurations resulting from the greedy heuristic, the

biased-randomization algorithm, and the Baron solution. The no-connections configuration (all

the SMDs compute local) and the nearest-node configuration (each SMD connected to the closest

RAT) are also taken into account for comparison. The throughput, the energy consumed by the

SMDs and the time employed for accomplishing the application are evaluated and observed for each

configuration, considering an increasing number of SMDs involved in the system, in particular 500,

1000, 2000, and 5000.

Table 5.1, Table 5.2, and Table 5.3 show, respectively, the results related to the throughput, the

energy, and the time. The ex-post solution has been computed with Baron under the Neos server
1. The QSAP model is implemented with the mathematical modeling language General Algebraic

Modeling System (GAMS). The other methods have been implemented in Matlab.

5.5 Analisys of Results

The results of Table 5.1, Table 5.2, and Table 5.3 show that the biased-randomized algorithm clearly

improves the cell association configuration with respect to the greedy heuristic. These improvements

are: 2.24% in throughput, 14.30% in energy consumption, and 0.42% in computation time.

Also, the average energy and time values provided by the randomized algorithm, which only

requires some milliseconds to compute, are quite similar to the solutions provided by Baron, which

1http://www.neos-server.org

http://www.neos-server.org
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is stopped after 1,000 seconds of computation. The results are visually compared in Figure 5.3

and in 5.4a, where we can see that the trends of average throughput are very similar, practically

overlapped, in the three cases of interest, i.e. the greedy heuristic, the biased randomized algorithm,

and the Baron ex-post configuration. This means that the capacity of the RAT nodes is well-exploited

in all the three cases considered. In Figure 5.3 the average throughput values are visualized in a

different scale to make possible the comparison of the three algorithms.
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Figure 5.3: Comparison of the average throughput

Considering the average energy consumed by a SMD to perform the application, which is the

objective function to minimize, Figure 5.4b shows that the biased-randomized algorithm clearly

outperforms the greedy heuristic. The same observation can be inferred from Figure 5.4c in relation
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to the average time that a device needs to accomplish the application. Both the average energy

and the time values are very close to the respective Baron configuration average energy and time

values, thus the biased randomized algorithm can be exploited by the SMDs to reach a near-optimal

configuration in real time while the solution seen from a collective point of view minimizes the overall

energy consumption. This is useful for offloading applications which need a fast cell association

decision, for example when the users are in movement and the configuration must be updated very

often.
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Figure 5.4: Average performance in terms of throughput, energy consumption and latency for a
variable number of devices

Comparing the different configurations of the devices placed in the observed area, reported in

Figure 5.5, Figure 5.6, Figure 5.7 and Figure 5.8 for a total number of SMD equal to 500, 1000,
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2000 and 5000 respectively, we can note that the case referring to the biased-randomized algorithm

is very similar to the ex-post optimal solution, where the SMDs connected to the same RAT are

clustered in the neighborhood of the RAT.
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Figure 5.5: Cell Association in case of 500 SMDs. Every color indicates that the SMD id connected
to the RAT marked with the same color.

5.6 Conclusions

In this chapter we presented different strategies for efficient cell association in pervasive wireless

environments. In particular, we proposed an original probabilistic algorithm that allows to consider a
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Figure 5.6: Cell Association in case of 1000 SMDs. Every color indicates that the SMD id connected
to the RAT marked with the same color.
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Figure 5.7: Cell Association in case of 2000 SMDs. Every color indicates that the SMD id connected
to the RAT marked with the same color.
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Figure 5.8: Cell Association in case of 5000 SMDs. Every color indicates that the SMD id connected
to the RAT marked with the same color.
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more global point of view –instead of just an individual one– during the real-time resource allocation.

Thus, the mobile communication system is managed in a cooperative way, considering the QoS of

the entire population of mobile users. This vision could be adopted for the provision of services in

a smart city, improving performance and well-being of the community through a social use of the

UMCC framework. Our approach is based on the use of biased-randomization techniques, which

have been used in the past to solve similar combinatorial optimization problems in the fields of

logistics, transportation, and production. This work extends their use to the field of smart cities

and mobile telecommunications. Some numerical experiments contribute to illustrate the potential

of the proposed approach.
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CHAPTER 6
Conclusion and future works

6.1 Final Conclusions

The actual realization of the vision of smart cities is an exciting perspective with the potential of

bringing tremendous improvements to our society, thanks to novel pervasive services assisting us in

every aspect of our lives.

While the increasingly deep integration of ICT services in the physical world has been the main

enabling factor motivating this vision, we believe that the intelligent and efficient exploitation of the

infrastructures will be the key to its success.

Our contribution has proposed an original solution approach for dealing with common resources

that need an optimization for the distribution among users.

We hope that our work was successful in proposing general and simple solution principles that

can be used fruitfully as starting points for new research efforts toward the realization of future large

scale smart pervasive environments. Finally, let us note that, while the scope of our research was

focused on the specific application scenario of smart city environments, we believe that most of the

presented results can be easily and successfully used in other scenarios with similar requirements

of efficient and scalable distribution, such as the management of large scale telecommunication

infrastructures or smart grids deployments.

6.2 Directions for Future Works

Cities around the globe are beginning to build out new digital services such as smart lighting,

traffic, waste management and data analytics to reduce costs, tap new sources of revenue, create

new innovation business districts and improve the overall quality of urban life. Integrated IoT and

MCC applications enabling the creation of smart environments such as smart cities need to be able

87
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to combine services offered by multiple stakeholders and scale to support a large number of users

in a reliable and decentralized manner. They deal with constraints such as access devices or data

sources with limited power and unreliable connectivity. The UMCC needs to be enhanced to support

a seamless execution of applications harnessing capabilities of multiple dynamic and heterogeneous

resources to meet quality of service requirements of diverse users.

The management of distributes mobile platform resources need further investigation. This thesis

is a starting point for a user-centric model that requires additional heterogeneity: i.e. customized

needs and different QoS levels. For example, some users could not have problem of battery charge

whereas others could need to save energy (i.e. SMD having a low-battery-level status). Thus, the

clusterization debated in chapter 4 needs to be deeply investigated.

A further point of invetigation is the study of SMDs in motion, for analyzing the time evolution

of the system: in chapter 5 the approach on the fly assigns a RAT node to a SMD every time a

request occurs, but, since it depends on the position of the devices, the CA needs a time optimization

subordinate to the speed of the devices.

In addition, considering an operational research perspective, the CA assignation in the UMCC

can be seen as a stochastic allocation of resources, in particular an assignation of the SMDs to the

available RATs, as shown in Figure 6.1.

Figure 6.1: Allocation of mobile devices with random positions to RATs

In fact, being mobile, the position of the devices change over time, and it is possible to assume

that the position of each device in a future target time can be characterized by two random variables,

describing the x and y location, respectively as shown in Figure 6.2.

It will also be assumed that the expected value of each random variable will be given by the

current position of the respective device. Assuming that the expected value of each random variable
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Figure 6.2: Random position of the devices in a target time

will be given by the current position of the respective device, it is possible to model this scenario

as a Facility Location Problem (FLP) with stochastic assignment costs - i.e. a combination of

different factors, such as time-based costs and energy-based costs, random variables proportional

to the Euclidean distance between the device and the RAT node. It is worth to note that the

RATs capacity could be considered either as virtually unlimited or not, thus leading to two different

problems: the Uncapacitated FLP and the Capacitated FLP, respectively. One way to deal with

these stochastic FLPs would be to use a simheuristic approach [59] i.e., a combination between a

fast metaheuristic - able to quickly generate several good or promising solutions for the deterministic

version of the FLP - and a fast simulation process able to estimate the expected cost associated to a

given deterministic solution when it is used for the stochastic scenario. The main goal of this future

work will be to minimize the expected costs of the assignment process. The simulation, however,

could also provide insights on the robustness of each promising solution, enriching a risk analysis

investigation.
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