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Chapter 1

Introduction

Programming languages theory, which has among its purposes to investigate the

logical foundations of computer science, �nds in λ calculus an optimal tool of analy-

sis. The λ calculus, which was invented in 1930 by A. Church as a formal system to

capture the computational power of functional theories, is in many senses considered

as the �rst programming language and is currently the main instrument to study

the properties of the class of higher order functional languages, namely those where

functions are permitted as values for procedures. In this work the lambda calculus

is used to investigate the issue of equivalence among programs from a formal point

of view.

Program equivalence is one of the fundamental notions in the theory of program-

ming languages. Studying the nature of program equivalence is not only interesting

from a purely foundational point of view, but can also be the �rst step towards de�n-

ing (semi)automatic techniques for program veri�cation, or for validating compiler

optimizations. The most widely accepted notion of equivalence among programs,

namely Morris's context equivalence [42], leans on the concept of observational be-

haviour: two programs are contextually equivalent if they may be exchanged for

one another in any possible larger program � which is precisely the de�nition of

context � without a�ecting its evaluation, hence the potentiality to converge. As a
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prerequisite, a well working relation to compare programs has indeed to be compat-

ible with the language, namely it should commute with its syntactic constructors

and it is relatively easy to show that context equivalence matches this condition.

Context equivalence relation is an e�ective tool to prove two programs not to be

equivalent, since this merely amounts to �nding one context which separates them.

On the other hand, proving two terms to be equivalent requires one to examine their

behaviour in every possible context.

Various ways to alleviate the burden of proving the quanti�cation over all con-

texts have been proposed in the literature. The proof of context equivalence can

be relieved for example by introducing the so called context lemmas, which have

the aim to reduce the class of contexts which are needed to show contextual equiv-

alence [41, 44]. Context lemmas ensure that the context equivalence between two

programs actually holds if they show to behave the same in a more restricted class

of contexts: thus the quanti�cation over all possible contexts, required in proving

context equivalence, is replaced by proving the equivalence of two programs on a

smaller class of them. Among the possible classes it is relevant that of contexts

which are Uses of Closed Instantiations : the equivalence of programs within this re-

stricted set of contexts � the so called evaluation contexts � is called CIU equivalence

and can be proved to coincide with the general context equivalence. Denotational

semantics methods di�er from those of operational semantics, where a program is

�gured as a sequence of computational steps, because they aim to make programs in-

dependent of the abstract machine by �nding a bijective relation between programs

and some mathematical structures easier to compare. Here two terms are consid-

ered equivalent if their semantics correspond to the same mathematical structure.

With logical relations [45], programs are compared by giving a family of relations

which connect contextually equivalent terms on the set of programs. More recently,

trace equivalence [17] has been considered as possible method of investigation: here

two programs are compared if they accept the same set of traces, a trace being a

sequence of actions that an external observer can perform on the system. We are

here especially interested in bisimilarity [1, 39], which is a technique of comparison
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among systems de�ned in a coinductive way and to its applications in the �elds of

probabilistic and quantum programming languages.

1.1 Coinduction and Bisimulation

It is well known that a set can be de�ned in an inductive way starting by the simpler

elements � usually included in the set by an axiom � and adding, with a sequence of

steps, the more complex ones thereby using inference rules from the premises to the

conclusions: a new element is added if it is somehow related to the old elements which

enjoy a property. The coinductive techniques, as duals of inductive ones [47, 48] ,

are used to build sets starting from a biggest one, where all elements are supposed

to be included � hence postulating that all of them belong to the set � and removing

those which don't ful�l the condition expressed by an inference rule, which is used

backward, namely from the conclusion toward the premises. Bisimilarity is one of the

most pervasive techniques for checking equivalence among procedures, it is based on

the idea that two processes are equivalent when they behave the same when they

interact with the external environment.

Among the various notions of bisimulation which are known to be amenable to

higher-order programs, the simplest one is certainly Abramsky's applicative bisim-

ulation [1, 25], in which terms are seen as interactive objects where the interaction

with their environment consists in taking input arguments or outputting observ-

able results. Remarkably, the concept of bisimulation is not univocal, since many

relations of bisimulation can be arranged on the same set of objects, therefore the

union of all the bisimulation relations is taken as well-founded comparison relation

among terms, and it is called bisimilarity. In deterministic languages, when used

as an equivalence relation among programs, bisimilarity has been proved to be a

very powerful tool, since it has been shown to have both the properties of sound-

ness (which means that it is included) and completeness (which is understood as

to include) with respect to the context equivalent relation (e.g. [44]). Applicative

bisimulation is therefore well-known to be fully-abstract, hence sound and complete,
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w.r.t. context equivalence when instantiated on plain, untyped, deterministic λ-

calculi [1, 4].

Even though the �rst attempts to extend the concept of bisimilarity toward non-

deterministic higher�order languages have been successfully accomplished since the

latest nineties [40], it is somehow underwhelming that in such nondeterministic

environments bisimilarity, even if it is sound with respect to context equivalence,

doesn't ful�ll the criterium to be fully abstract. When extended to probabilistic

systems [39], the notion of bisimilarity necessarily requires to de�ne a more sophis-

ticated topological structure as the Labelled Marcov Chains (LMC). Probability is

inserted into the λ calculus by means of a choice operator, which allows many pos-

sible paths in the calculation procedure and the LMC provides the way to manage

the set of possible transitions undergone by each program toward other ones when

some action of the system is performed. As for the assessment between context

equivalence and bisimilarity in probabilistic languages, the situation is more com-

plicated: while applicative bisimilarity is invariably a congruence, thus sound for

context equivalence, completeness generally fails [44, 40], even if some unexpected

positive results have recently been obtained on this subject [10, 54].

The previous theme of equivalence overlaps with linearity, which is the re-

quirement to use exactly once every variable declared in a program. Linearity in

computer language theory, especially in the presence of typed environments, is a

straight derivation of linear logic conceived by Girard as a re�nement of intuitionis-

tic logic [24]. Connections between linear logic and linear typed languages are given

by Curry�Howard correspondence: whatever type judgement �nds its analogous in

a logical statement. Does applicative bisimulation work well when the underlying

calculus has linear types? The question has been replied positively, but only for

deterministic λ-calculi [9, 8]. The soundness of the bisimulation in the frame of the

contextual equivalence relation, fails also for di�erent, sligtly complex, de�nitions

of bisimulation such as the environmental bisimulation [33, 49]. In this thesis, the

constraint of linearity is introduced from the very beginning, in view of the purpose

to extend the results obtained for the deterministic and probabilistic languages, to a
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quantum calculi where the impossibility to clone variables becomes a crucial bond.

This is the so called no cloning theorem which expresses the impossibility to create

a copy of a quantum state � speci�cally a qubit � without observing it and hence

destroying superposition [32, 22].

1.2 On Quantum Computation

The increasing credit paid to quantum languages is justi�able because of its poten-

tiality to overcome classical limits, improve the e�ciency and decrease the time of

computation by exploiting the parallelism intrinsically embedded in quantum me-

chanical processes, which allows to explore at the same time, with a certain proba-

bility, several computation paths. At a logical level, a quantum computer consists of

a set of operators, the so called quantum gates which are assigned to the elaboration

and manipulation of quantum data, stored in the computer memory in form of quan-

tum bits (qubit): thus a quantum algorithm is a sequence of quantum gates, but

since the qubits are physically comparable to vectors rather than to numbers, the

quantum gates act in a more complex way than their classic equivalent, by exploring

simultaneously, during the calculus, a plurality of possibilities. The structure of a

quantum algorithm is such that, during its execution, there are basically two kinds

of allowed operations: unitary transformations � which have as classical correspon-

dent the sequence of gate operations performed on the bits by classical circuits �

and the measurement, which is the observation of the �nal result.

Among the other quantum algorithms, we recall here Shor's algorithm [55] for the

factorization of natural numbers, that given an integer �nds its prime factors, and

Grover algorithm [28] to search an item in a list, which has improved the classical

one. The �rst one is mostly important because security protocols for the privacy

across the network communications, encrypt data exploiting the factorization of a

given number in primes to encode the sent data [46]. Shor's algorithm requires a

polynomial time in the size of the input number entailing an exponential speedup

with respect to the classical ones: indeed no classical algorithm is known that can
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factor an integer in polynomial time. Grover's algorithm gives a quadratic speedup.

Quantum computation is traditionally introduced at low level, presenting the

programs as an ordered series of quantum gates [43], or modelling it as a quantum

Turing Machine [20], where both data and control are treated as quantum systems,

writing them as a superposition of classical states. Parallely to these purely quantum

patterns, some attempts to build quantum programming languages endowing the

computation with a set of operational semantics rules have been done [53, 52].

There quantum variables as well classical ones, are permitted but they are controlled

and processed by classical devices and programs, represented by the terms of the

language. Thus various extensions of classical λ calculus have been used to give

the operational semantics rules for �rst�order quantum calculus [35, 34] in a typed

frame. These methods of analysis have been e�ciently summarized by the slogan

�quantum data, classical control� [50].

Whenever the analysis is limited to �rst order languages, quantum algorithms

and procedures may be compared as linear operators in a linear vector space [6],

claiming their equivalence if, by executing them on the �nite number of space basis

vectors they give the same result. Various other techniques for comparing terms of

a quantum language have been studied and adopted for higher order quantum lan-

guages, as denotational semantics and context equivalence [52]. In quantum environ-

ment too, the notion of context equivalence leans on the demand that two programs

have the same observational behaviour whenever they dived inside a whichever con-

text of an observable type. This means that the analysis is focused on �ground� types

contexts. The concept of quantum context equivalence is then compared with those

of bisimulation and denotational equivalence [52] and trace equivalence as well. On

the other hand, a number of notions of quantum bisimulation have been introduced

and studied as an e�cient means to compare quantum procedures in the framework

of process algebra [23, 21, 17] modelling the equivalence between procedures for the

communications and the concurrency in quantum systems.
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1.3 Contributions

The rest of this thesis is organized as follows: in the next chapter a simply typed,

purely deterministic and linear language called `ST λ is introduced, giving a set

of typing rules and a set of operational semantics rules, in a call�by�value reduc-

tion strategy. After having proved the normalization of this calculus, the notions

of context equivalence and applicative bisimulation are given: notice that context

equivalence is de�ned on a set of linear contexts, where indeed the marker must ap-

pear only once. Subsequently, the basics of applicative bisimulation are presented,

instantiated on `ST λ. Within this scope we show that, when instantiated on linear

λ-calculi, bisimulation is both sound and complete with respect to linear context

equivalence.

Afterwards, in chapter three, the language is enriched with a probabilistic choice

operator with the purpose of discussing the impact of probabilities to equivalences

and bisimilarity. Keeping the linearity hypothesis, a set of semantics rules is given

introducing the notion of probabilistic context equivalence for linear contexts. The

probabilistic variation on `ST λ is called `PST λ: hereby a de�nition of probabilistic

similarity is introduced, where newly added features in the language are shown to

correspond to mild variations in the underlying transitions system, which in presence

of probabilistic choice becomes a LMC. Exploiting Howe's techniques, the property

of compatibility for bisimilarity is shown to be valid also in probabilistic environ-

ment: the main contributions in this chapter are congruence results for applicative

bisimilarity in probabilistic linear λ-calculi, with soundness with respect to context

equivalence as an easy corollary.

In the last part, the `ST λ is extended introducing the syntactic elements and

operational tools to implement a quantum language. In particular we enrich the

former deterministic language with a set of unitary operators, which are a mathe-

matical representation of the quantum gates necessary for the implementation of the

quantum algorithms, with a measurement operator measi, antagonist with respect

to the operator new, which is entrusted to the creation of quantum variables. Each
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term of the quantum variation on `ST λ, dubbed `QST λ, always requires to be used

together with its quantum register, which keeps track of the position of variables,

that appear into the term as a linear superposition of �classical� con�gurations: this

is the notion of quantum closure, which is a pair built with the quantum register

as �rst component and the term as second one. Subsequently, we give a set of op-

erational rules for quantum closures, resorting to the results attained for the linear

probabilistic case and we introduce the notion of bisimilarity for `QST λ, showing

that it is a congruence. A �nal section of this part is devoted to the discussion about

full-abstraction with respect to quantum context equivalence.

We see this thesis as the �rst successful attempt to apply coinductive techniques

to quantum, higher-order calculi. The literature o�ers some ideas and results about

bisimulation and simulation in the context of quantum process algebras [23, 17, 14].

Deep relations between quantum computation and coalgebras have recently been

discovered [31]. None of the cited works, however, deals with higher-order functions,

this is the main novelty of this work [11, 36].



Chapter 2

Setting the Deterministic Framework

2.1 Linear λ-Calculi: A Minimal Core

In this section, a simple linear λ-calculus called `ST λ will be introduced, together

with the basics of its operational semantics. Terms and values are generated by the

following grammar:

e, f, g ::= v | ef | if e then f else g | let e be 〈x, x〉 in f | Ω;

v, u ::= x | tt | ff | λx.e | 〈v, u〉. (2.1)

Here tt and ff are the usual boolean constants, the term λx.e is the symbol for a

λ abstraction namely for the name of a generic function of argument x, whilst ef ,

said to be an application, represents a function which has the term f as argument,

if e then f else g is as usual the constructor for conditional choice, 〈v, u〉 � whose

components are values � is called a pair. `ST λ gives, however, the possibility to

built an arbitrary pair using the semantic equivalence

〈e, f〉 = λx.λ y.〈x, y〉ef. (2.2)

Observe the presence not only of abstractions and applications, but also of pairs,

and of basic constructions for booleans. Finally, terms include a constant Ω for

divergence. The symbol b is a metavariable for truth values, i.e. b stands for either

tt or ff.
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Terms of the language whether they are constants, variables or expressions, are

de�ned within the scope of a number greater than or equal to zero of distinct assign-

ments of the form x1 : A1, . . . xN : AN , where for each variable xi the corresponding

type Ai is declared: such a set of assignments is called a typing context or environ-

ment and generally denoted by Γ or ∆, or by another capital Greek letter. More

precisely, Γ may be seen as a partial function which assigns a type to each variable

which belongs to a given domain dom(Γ), which is a list of distinct variables of type

Ai = Γ(xi). By the notation Γ, y : B we mean the function obtained extending the

domain of Γ to the new variable y.

A typing judgement, or assignment, is a statement of the form

Γ ` e : A,

which means that in the typing context Γ it is possible to derive, applying the rule

of the language displayed in Table 2.1, the type of the term e to be A. A typing

judgement is assumed valid if it is derived applying exclusively these rules. The list

dom(Γ) is the set of the free variables of e, sometimes denoted by fv(e). A term is

said to be closed if it doesn't contain free variables, hence if fv(e) = ∅. A closed

term is also called a program. Since we need a way to enforce linearity, i.e., the fact

that functions use their arguments exactly once, we operate in the framework of a

linear type system whose language of types is the following:

A,B ::= bool | B( A | A⊗B. (2.3)

Y is the set of all types. Typing rules are standard, even if, since the linearity

constraint forces the same variable to appear exactly once, in the rules the domains

of typing contexts referring to di�erent subterms are disjoint. Rules are listed in

Figure 2.1: observe the presence of the same typing context in both branches of the

conditioned choice, in rule (tj − if ) . The set T `STλ
Γ,A contains all terms e such that

Γ ` e : A, T `STλ

∅,A is usually written as T `STλ
A . Notations like V`STλ

Γ,A or V`STλ
A are the

analogues for values of the corresponding notations for terms.

The divergence is treated apart with a special rule (tj − div). A term is called

divergent if, both, it doesn't belong to the set V`STλ and it can't reduce. The set of
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Type judgement rule Name

∅ ` b : bool (tj − con)

x : A ` x : A (tj − var)

Γ, x : A ` e : B

Γ ` λx.e : A( B
(tj − abs)

Γ ` e : A( B ∆ ` f : A

Γ,∆ ` ef : B
(tj − app)

Γ ` e : bool ∆ ` f : A ∆ ` g : A

Γ,∆ ` if e then f else g : A
(tj − if )

Γ ` e : A ∆ ` f : B

Γ,∆ ` 〈e, f〉 : A⊗B
(tj − pai)

Γ, x : X, y : Y ` e : A ∆ ` f : X ⊗ Y
Γ,∆ ` let f be 〈x, y〉 in e :

(tj − let)

Γ ` Ω : A
(tj − div)

Figure 2.1: Typing Rules: since we are in a linear language Γ and ∆ have disjoint

domains, as well as the variables x and y, appearing in rules (tj − abs) and (tj − let)

don't belong to dom(Γ) and dom(∆).

divergent terms is generated by the syntax tree

o ::= Ω | vo | oe | if o then e else e | let o be 〈x, y〉 in e. (2.4)

Following [8], we chose to characterize the divergence with the constant term Ω,

rather than through the standard notion of �xed point operator fixx.e. This choice

could be motivated by the sake of simplicity, since it reduces both the number of

semantics rules (see Figure 2.3) and the the number of cases which must be treated

in the proofs of the lemmas and theorems. Moreover, depicting the convergence

through a �xed point operator, requires to allow, in the last step, that a term does

not use a variables appearing in the typing context and this will force to give up
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to the linearity requirement. Endowing `ST λ with call-by-value small-step or big-

step semantics poses no signi�cant problem. With regard to small-step reduction

one formally introduces a binary relation →⊆ T `STλ
A × T `STλ

A between closed terms

of any type by the usual rule for β-reduction, the natural rule for the conditional

operator, and the following rule:

let 〈v, u〉 be 〈x, y〉 in e→ e{v/x, u/y}.

Terms are evaluated by mean of the call�by�value reduction strategy, de�ned by

structural induction as displayed in Figure 2.2. Similarly, one can de�ne a big-

Small step semantics rule Name

(λx.e)v → e{v/x} (appβ)

e1 → f

e1e2 → fe2

(appL)

e→ f

ve→ vf
(appR)

if tt then e1 else e2 → e1

(if − axtt)

if ff then e1 else e2 → e2

(if − axff)

e1 → f

if e1 then e2 else e3 → if f then e2 else e3

(if )

let 〈v, u〉 be 〈x, y〉 in e→ e{v/x, u/y}
(let − ax )

e1 → f

let e1 be 〈x, y〉 in e2 → let f be 〈x, y〉 in e2

(let)

Figure 2.2: Operational semantics rules of `ST λ.

step evaluation relation ⇓⊆ T `STλ
A × V`STλ

A , between closed terms and values by a

completely standard set of rules, shown in Table 2.3. Here the semantics of each
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term is fully determined by the knowledge of the semantics of its parts, where the

semantics of a term in this deterministic approach is intended to be the unique value

the term evaluates to. In Table 2.3 the big�step evaluation rules are displayed. A

Big step semantics rule Name

v ⇓ v (v ⇓)

e1 ⇓ λx.f e2 ⇓ u f{u/x} ⇓ v
e1e2 ⇓ v

(app ⇓)

e1 ⇓ tt e2 ⇓ v
(if e1 then e2 else e3) ⇓ v

(iftt ⇓)

e1 ⇓ ff e3 ⇓ v
(if e1 then e2 else e3) ⇓ v

(ifff ⇓)

e1 ⇓ 〈u1, u2〉 e2{u1/x, u2/y} ⇓ v
(let e1 be 〈x, y〉 in e2) ⇓ v

(let ⇓)

Figure 2.3: Big�step semantics of the language `ST λ.

program of a computing abstract machine �nds its correspondent on closed λ�terms

of the language � possibly nested � de�ned by the grammar (2.1). Moreover, the

control �ow of an abstract machine, namely the sequence of instructions as the data

entry and the operations on them, �nds its analogous in the derivation rules of

the operational semantics, listed in Figure 2.2. Thus the execution of a program is

simulated by a derivation tree built with the operational semantics of the language

itself.

As it has been remarked, linearity is a peculiar characteristic of `ST λ, entailing

that each variable appearing within the domain of each typing context is used in

the scope of the terms exactly once as in the following examples:

not = λx.if x then ff else tt

and = λx.λ y.if x then y else (if y then ff else ff)

or = λx.λ y.if x then (if y then tt else tt) else y (2.5)
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This is necessary in view to be able to exploit the language in a quantum com-

puting framework. The expressive power of the just-introduced calculus is rather

poor. Nonetheless, by virtue of the fact that every boolean formula can be written

in the conjunctive normal form, namely as a conjunction of disjunctions, it can be

proved that the language is complete for �rst-order computation over booleans, in

the following sense: for every function F : {tt, ff}n → {tt, ff}, there is a term

which computes F , i.e. a term eF such that eF 〈b1, . . . , bn〉 →∗ F (b1, . . . , bn) for every

b1, . . . , bn ∈ {tt, ff}n. Indeed, even if copying and erasing bits is not in principle

allowed, one could anyway encode, e.g., duplication as the following combinator

of type bool ( bool ⊗ bool: λx.if x then 〈tt, tt〉 else 〈ff, ff〉. Similarly, if

Γ ` e : A and x is a fresh variable, one can easily �nd a term weak x in e such that

Γ, x : bool ` weak x in e : A and weak b in e behaves like e for every b ∈ {ff, tt};
the term is de�ned as

weak x in e
def

= if x then e else e.

2.2 Normalization of Closed Terms.

We say a closed term to be in normal form when it can not reduce anymore. Intu-

itively it is clear that the idea of normal form of a term is tightly related with that

of value, as indeed the following lemma shows.

Lemma 2.1 (Progress). Every term that can not be reduced in an empty typing

context is either a value, thus it belongs to the set V`PSTλ, or it is a divergent term.

Proof. By induction on the structure of the terms of the set T `STλ . If e = tt,

e = ff, e = λx.f , there is nothing to prove since the term can not reduce and it is

indeed already a value. Besides, if e = Ω, it can't reduce by de�nition and it is a

divergence according to the de�nition (2.4) then there is nothin to prove.

−e = f1f2− Then we have the following derivation for the type judgement

∅ ` f1 : B( A ∅ ` f2 : B
(tj − app).

∅ ` f1f2 : A
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Now several possibilities can occur:

� if f1 is a value then

� if f2 = v is a value in turn then f1f2 can reduce by application of (appβ);

� if f2 = o is a divergence then also f1f2 is a divergence according to

de�nition (2.4);

� if f2 → g then applying (appR) one �nds f1f2 → f1g and the term reduces,

therefore it is not a value.

� if f1 = o is a divergence the the term itself is divergent according to (2.4);

� if f1 is not a value and neither a divergence, then by induction hypothesis the

reduction f1 → g can occur and by application of (appL) one �nds f1f2 → gf2,

therefore the term can not be a value. In each one of these cases which have

been examined, f1f2 can reduce, unless it is a divergence: thus it never can be

a value.

−e = (if f1 then f2 else f3)− Here the typing judgement has the derivation tree

∅ ` f1 : bool ∅ ` f2 : A ∅ ` f3 : A
(tj − if ).

∅ ` if f1 then f2 else f3 : A

Here three cases must be distinguished:

� if f1 is a value then, according to the typing judgement above, necessarily it

must be a boolean value: if f1 = tt the rule (if − ax tt) can be applied and we

get (if f1 then f2 else f3) → f2, while if f1 = ff, applying (if − ax ff) one

obtains (if f1 then f2 else f3) → f2;

� if f = o then the whole term is a divergence according to the de�nition (2.4);

� �nally if f1 is not a value and neither a divergence, then by induction hypoth-

esis f1 → g and the small step reduction rule (if ) tells us that the reduction

(if f1 then f2 else f3) → (if g then f2 else f3) occurs.
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Anyway, following the previous analysis (if f1 then f2 else f3) is a reducible term

or a divergence, thus it can't be a value.

−e = (let f1 be 〈x, y〉 in f2)− Then the derivation three for typing judgement is

∅ ` f1 : B ⊗ E x : B, z : E ` f2 : A
(tj − let).

∅ ` (let f1 be 〈x, y〉 in f2) : A

and the following three cases are possible:

� f1 is a value, whence the type inference says that it must be in the form

f1 = 〈v, u〉 and by application of the small step reduction rule (let − ax ) the

following reduction occurs (let f1 be 〈x, y〉 in f2) → f2{v/x, u/y}.

� f1 is a divergence and thus the whole term is.

� f1 is not a value neither a divergence and, recalling induction hypothesis we

get f1 → g, whence by application of (let) we have (let f1 be 〈x, y〉 in f2) →
(let g be 〈x, y〉 in f2).

Therefore also the term e = (let f1 be 〈x, y〉 in f2) is anyway a reducible or diver-

gent.

If a program can be put in normal form by a (�nite) sequence of reduction steps

we say that it normalizes. Since in nondeterministic languages a di�erent set of the

semantics rules can lead to a multiplicity of reduction paths, possibly evaluating to

di�erent values [7], two di�erent ways to normalize can be distinguished:

weak normalization A closed term ∅ ` e : A is weakly normalizable if at least a

reduction path exists which leads the term in normal form.

strong normalization e such that ∅ ` e : A is strong normalizable if every possible

reduction sequence terminates in a normal form with a �nite number of steps.

It is not particularly di�cult to show that in `ST λ every terms strongly normalizes:

the intuitive argument is that in every linear language every reduction step decreases

the size of terms involved. With the purpose to prove it, it is necessary to de�ne the
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e | e |

constants and variables x, c 1

λ abstractions λx.f | f | +1

applications f1f2 | f1 | + | f2 | +1

if if f1 then f2 else f3 | f1 | + max
(
| f2 |, | f3 |

)
let let f1 be 〈x, y〉 in f2 | f1 | + | f2 | +1

pairs 〈f1, f2〉 | f1 | + | f2 | +1

Figure 2.4: De�nition of size.

notion of size of a term: the size of e is denoted by | e | and recursively de�ned on

the structure of e itself with a set of rules shown in Figure 2.4. The notion of size

enters fully into the statement of the following substitution lemma.

Lemma 2.2 (Substitution). Let e ∈ T `STλ
Γ,A be a term such that Γ, z : E ` e : A and

let ∆ ` g : E be a valid type judgement, then the two following results are both valid:

2.2.1 I Γ,∆ ` e{g/z} : A

2.2.2 I | e{g/z} |=| e | + | g | −1

Proof. The proof is by induction on the structure of e.

If e ≡ c, due to the typing rules for the constants, necessarily dom(Γ) = ∅. Thus,

this case is impossible.

− e ≡ x−

2.2.1 we are under the hypothesis Γ, z : E ` x : A ∧ ∆ ` g : E. Since we are in a

linear framework, necessarily dom(Γ) = ∅ and z ≡ x, as well as E coincides

with A. Therefore it holds the relationship ∆ ` z{g/z} : A.
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2.2.2 Since here the type assignment is z : E ` x : A ∧ ∆ ` g : E, in this

case A and E must necessarily be the same type; moreover | e |= 1 and

| e{g/z} |=| g |= 1+ | g | −1 =| x | + | g | −1.

− e ≡ λx.f −

2.2.1 The hypothesis is Γ, z : E ` λx.f : B( A ∧ ∆ ` g : E and its �rst statement

may be derived only by the typing rule (tj − abs) of Table 2.1, whence we have

Γ, z : E, x : B ` f : A
(tj − abs).

Γ, z : E ` λx.f : B( A
(2.6)

On the premise of the previous rule (2.6) we can apply the induction hypoth-

esis, which is Γ, z : E, x : B ` f : A ∧ ∆ ` g : E ⇒ Γ, x : B,∆ ` f{g/z} : A.

Therefore, taking this result as a premise in (2.6) we can rewrite

Γ,∆, x : B ` f{g/z} : A
(tj − abs)

Γ,∆ ` λx.f{g/z} : B( A
, (2.7)

which proves the thesis.

2.2.2 By induction hypothesis | f{g/z} |=| f | + | g | −1, moreover, by de�nition

of size for λ�abstractions | λx.f{g/z} |=| f{g/z} | +1. Thus using inductive

hypothesis we have

| e{z/g} |=| λx.f{g/z} |=| f | + | g |=| λx.f | + | g | −1.

− e ≡ f1f2−

2.2.1 We write the hypothesis as Γ1,Γ2, z : E ` f1f2 : A and it has (tj − app) as last

rule. Since because of the linearity hypothesis, z belongs either to f1 or f2,

but not to both of them, we can suppose that z belongs to f1 without loosing

generality, so the rule becomes

Γ1, z : E ` f1 : B( A Γ2 ` f2 : B
(tj − app).

Γ1,Γ2, z : E ` f1f2 : A
(2.8)

Now the induction hypothesis on f1 gives Γ1, z : E ` f1 : A ∧ ∆ ` g : E ⇒
Γ1,∆ ` f1{g/z} : A and taking it as a premise in the rule (tj − app) we get

Γ1,∆ ` f1{g/z} : B( A Γ2 ` f2 : B
(tj − app)

Γ1,Γ2,∆ ` f1f2{g/z} : A

which is the thesis.
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2.2.2 For we are under the hypothesis of linearity, only one between f1 and f2 can

depend on the free variable z. Let suppose that f1 depends on z and f2 doesn't

contain it: by induction hypothesis | f1{g/x} |=| f1 | + | g | −1, then using

the de�nition of size for the application given in Figure 2.4 together with

induction hypothesis on f1 we �nd | e{z/g} |= | f1f2{g/z} |=| f1{g/z} | + |
f2 | +1 =| f1 | + | g | −1+ | f2 | +1 =| f1f2 | + | g | −1 .

− e ≡ (if f1 then f2 else f3) −

2.2.1 We start from the hypothesis Γ1,Γ2 ` (if f1 then f2 else f3) : A ∧ ∆ ` g : E

observing that the �rst part must have the rule (tj − if ) as last derivation in

the typing tree.

Supposing, without loss of generality, that z is a free variable of both of the

subterms f2 and f3, since by linearity it can't belong to both of the domains

of typing environments Γ1 and Γ2, we write

Γ1 ` f1 : bool Γ2, z : E ` f2 : A Γ2, z : E ` f3 : A
(tj − if ).

Γ1,Γ2, z : E ` (if f1 then f2 else f3) : A
(2.9)

On the subterms f2 and f3 the induction hypothesis can be applied. For

example for f3 we may write the statement: Γ2, z : E ` f3 : A ∧ ∆ ` g : E ⇒
Γ2,∆ ` f3{g/z} : A, thus inserting this result in the premises of (2.9) yields:

Γ1 ` f1 : bool Γ2,∆ ` f2{g/z} : A Γ2,∆ ` f3{g/z} : A
(tj − if ),

Γ1Γ2,∆ ` (if f1 then f2 else f3) {g/z} : A
(2.10)

as it must be proved.

2.2.2 Under hypothesis of linearity again we must choose which subterm of e should

depend on the variable x. Let us suppose that f1 is such a subterm and let us

apply the inductive hypothesis to f1 obtaining: | f1{g/x} |=| f1 | + | g | −1.

Thus the length is, by de�nition (Figure 2.4):

| (if f1 then f2 else f3) {g/z} |=| f1{g/z} | + max (| f2 |, | f3 |) =

| f1 | + | g | −1 + max (| f2 |, | f3 |) =| if f1 then f2 else f3 | + | g | −1

thus the statement (2.2.2), | e{g/z} | =| e | + | g | −1 has been proved.
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−e ≡ (let f1 be 〈x, y〉 in f2) −

2.2.1 The hypothesis is Γ1,Γ2, z : E ` (let f1 be 〈x, y〉 in f2) : A ∧ ∆ ` g : E. Sup-

posing, by linearity, that only f1 depends on z we write the typing judgement

referring us to Table 2.1

Γ1, z : E ` f1 : B ⊗B′ Γ2, x : B, y : B′ ` f2 : A
(tj − let),

Γ1,Γ2, z : E ` (let f1 be 〈x, y〉 in f2) : A
. (2.11)

and we apply the induction hypothesis to obtain Γ1, z : E ` f1 : B ⊗ B′ ∧
∆ ` g : E ⇒ Γ1,∆ ` f1{g/z} : B ⊗ B′. Thus taking this statement as a

premise in (2.11) we get:

Γ1,∆ ` f1{g/z} : B ⊗B′ Γ2, x : B, y : B′ ` f2 : A
(tj − let)

Γ1,Γ2,∆ ` (let f1 be 〈x, y〉 in f2) {g/z} : A
(2.12)

as it should have had to be proved.

2.2.2 Again we suppose that f1 is the only subterm depending on z, then by inductive

hypothesis | f1{g/z} |=| f1 | + | g | −1 and by de�nition of size for term of

this form we have

| (let f1 be 〈x, y〉 in f2) {g/z} |=| f1{g/z} | + | f2 | +1 =

| f1 | + | g | −1+ | f2 | +1 =| let f1 be 〈x, y〉 in f2 | + | g | −1.

and again one gets the statement (2.2.2), namely | e{g/z} |= | e | + | g | −1

which should have been proved.

The previous lemma enables us to prove the following result which is the base of

strong normalization in linear languages.

Lemma 2.3 (Determinism of one�step reduction operator and e�ect of reduction

on size of terms in `ST λ). If e ∈ T `STλ
A is such that e → h, then h is unique and

| h |<| e |.
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Proof. By induction on the structure of e and analysis of small�step semantics re-

duction rules.

By hypothesis e is not a value, then e 6= x, e 6= c, e 6= λx.f , e 6= 〈u1, u2〉; besides,
e is not a divergence, therefore it can reduce.

If e = f1f2 then we have some possibilities:

� f1 is not a value, then rule (appL) must be applied since we are in a leftmost

reduction framework. Thus f1 → g and f1f2 → gf2 which is unequivocally

de�ned. Besides since by induction hypothesis | g |<| f2 |, we have | h |=| g |
+ | f2 | +1 < | f1 | + | f2 | +1 =| e | and the statement is proved.

� f1 = v is a value and f2 is reducible. Then rule (appR) must be applied which

gives f2 → g and vf2 → vg as unique result of reduction. Moreover since by

induction hypothesis | g |<| f2 | we get | h |<| e |.

� f1f2 are both values, therefore by Lemma 2.1 they can not reduce. A simple

type analysis shows that the term f1 is a λ-abstraction, hence it has the struc-

ture f1 = λx.g, whence rule (appβ) will be applied to get f1f2 → g{f2/x} = h.

Let us point out that in a linear environment the variable x must appear ex-

actly once. Now the substitution Lemma 2.2 ensures that | h |= | g{f2/x} |=
| g | + | f2 | −1 = | λx.g | + | f2 | −2 =| f1f2 | −3 =| e | −3 <| e |

If e = (if f1 then f2 else f3) then there are two possibilities

� f1 is not a value, then we are in the scope of the rule (if) and e reduces

unequivocally to h = if g then f2 else f3 and since by induction hypothesis

| g |<| f1 |, we have | h |=| g | + max(| f2 |, | f3 |) <| f1 | + max(| f2 |, | f3 |
) =| e |.

� f1 is a value, and being a boolean constant it must be tt or ff. Supposing

f1 = tt we must apply (if − ax tt) obtaining e→ f2 and of course | h |=| f2 |
<| f1 | + max(| f2 |, | f3 |) =| e |. Analogous is the case f1 = ff.



22 Chapter 2. Setting the Deterministic Framework

If e = (let f1 be 〈x, y〉 in f2) again some cases must be distinguished with regard

whether f1 is a value or it is not.

� If f1 is not a value, then (let) have to be applied. In all these cases the form of

h is unequivocally determined and induction hypothesis grants that | h |<| e |.

� If f1 = 〈u1, u2〉 is a value then only rule (let−ax) may be applied thus obtaining

e → f2{u1/x, u2/y} and the form of h is determined. Invoking substitution

lemma here we have | h |=| f2 | + | f1 | −2 = | e | −3 <| e |.

This concludes the proof.

Theorem 2.1 (Strong normalization in linear case.). Each term e ∈ T `STλ has a

normal form.

Proof. By induction on the size of e. If the term is a value or a divergent term, then

it is irreducible and there is nothing to prove, otherwise Lemma 2.3 ensures that

e→ h with | h |<| e |. Under this assumption, by induction hypothesis there must

exist a normal form g such that h → . . . → g in at most N reduction steps, with

N <| h |, whence one gets M = N + 1 <| h | +1 ≤| e |. Besides, while the reduction
relation is deterministic, also the reduction sequence is uniquely determined.

Lemma 2.4 (Reduction is deterministic in `ST λ). If e ⇓ v then there exixts, unique,

a (�nite) sequence of one�step reductions such that e→ f → · · · → v

Proof. By induction on the structure of e.

−e = v− If e = x, e = c, e = λx.f , e = 〈e1, e2〉, there is nothing to prove since the

term is a value already.

−e = (λx.f)u− By application of (appβ) one get e → f{u/x} and we obtain the

thesis by linearity hypothesis (which ensures that the size of the reduced term is

less) and by induction hypothesis.
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−e = (λx.f)e2− Here, since by application of (app ⇓) we get e2 ⇓ v, the induction

hypothesis on the smaller subterm and and Theorem 2.1 tell us that for a �nite

number of one step reduction we must have e2 → g1 → g2 · · · → · · · → v, whence

by application of (appR)

e→ (λx.f)g1 → (λx.f)g2 → · · · → (λx.f)v, (2.13)

and we are reduced to the previous case.

−e = e1e2− Since the term must reduce, it is not a divergence, thus the application

of the rule (app ⇓) leads to the existence of a λ−abstraction such that e ⇓ λx.f , thus
induction hypothesis and Theorem 2.1 ensure for the existence of a �nite number

of one-step reductions such that e1 → g1 → g2 . . . → . . . → λx.f , whence, by

application of (appL)

e→ g1e2 → g2e2 . . .→ . . .→ (λx.f)e2, (2.14)

which bring us to previous case.

−e = if b then e2 else e3− Using the one�step reduction axioms (if − axtt) and

(if − axff), we �nd e→ e2 or e→ e3 depending on whether b = tt or b = ff. Then

we get thesis by induction hypothesis on the smaller terms e2 and e3.

−e = if e1 then e2 else e3− In this case, the rules (iftt ⇓) and (ifff ⇓) forecast, for

the smaller term e1, that e1 ⇓ tt or e1 ⇓ ff. Thus, applying the induction hypothesis
on e1 we get e → g1 → g2 → · · · → ·tt, or e → g1 → g2 → · · · → ·ff, whence, by
application of the rule (if ), we obtain

e→ if g1 then e2 else e3 → if g2 then e2 else e3 → · · · → if b then e2 else e3

(2.15)

and we �nd in the previous case.

−e = let 〈u1, u2〉 be 〈x, y〉 in e2− In this case, applying the rule (let), we �nd e →
e2{u1/x, u2/y} and we get the result by induction hypothesis.
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−e = let e1 be 〈x, y〉 in e2− Here we use the rule (let ⇓) and induction hipothesis,

which ensure that e1 ⇓ 〈u1, u2〉 in a �nite sequence of steps e1 → g1 . . . → 〈u1, u2〉.
Then the (let) rule for this term, forecast the unique path

e→ let g1 be 〈x, y〉 in e2 → let g2 be 〈x, y〉 in e2 → · · ·

→ let 〈u1, u2〉 be 〈x, y〉 in e3 (2.16)

and we are left within the previous case.

In the end of this section we show that the subject reduction, namely the property

to preserve the type under both reduction and evaluation, holds in `ST λ. The

following lemma will be proved:

Lemma 2.5 (Subject Reduction). If ∅ ` e : A, e → f , and e ⇓ v, then both

∅ ` f : A and ∅ ` v : A,

Proof. By analysis of small-step and big�step semantics rules with induction on the

structure of the terms.

If e = x, e = c, e = λx.g, e = 〈v, u〉 there is nothing to prove as e is already a value

and f ≡ v.

If e = g1g2 and Γ ` e : A, from (tj − app) we get ∆1 ` g1 : B( A and ∆2 ` g2 : B,

whence Γ ≡ ∆1∆2.

(⇓) Applying the evaluation rule (app⇓)
g1 ⇓ λx.h g2 ⇓ u h{u/x} ⇓ v

g1g2 ⇓ v
,

by induction hypothesis one obtains that u has the same type B of g2, while λx.h has

the arrow type of g1 whence ∆1, x : B ` h : A, therefore, by substitution lemma 2.2

we obtain that v has type A too.

(→) The induction hypothesis used on the rule (appL)
g1 → h

g1g2 → hg2

allows to

evince the type of h which is the same as g1, namely B ( A. Thus invoking

(tj − app) again we conclude that hg2 has the same type A of e. Similar conclusions

we get by the analysis of (appR) which must be used when g1 is a value and g2 is

not. In the last case g1 and g2 are both values, being g1 = λx.h and g2 = u, the
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type of g1g2 is preserved for the same argument used in (⇓) case, by application of

(appβ).

If e = (if g1 then g2 else g3) and Γ ` e : A, we may evince the structure of Γ

from the typing rule (tj − if ) since for some typing context ∆1 and ∆2 it holds

∆1 ` g1 : bool and ∆2 ` g2 : A, ∆2 ` g3 : A whence Γ ≡ ∆1,∆2.

(⇓) From (if tt ⇓) rule we infer
g1 ⇓ tt g2 ⇓ v

if g1 then g2 else g3 ⇓ v
whilst from the

(if ff ⇓) rule it comes
g1 ⇓ ff g3 ⇓ v

if g1 then g2 else g3 ⇓ v
, and since we may apply the

induction hypothesis to the premises we deduce that the type of v is A, as well as

the type of both g2 and g3. In both cases v has the same type A of e.

(→) Similar conclusions we get by the analysis of small�step reduction rules

(if tt) , (if ff) and (if ), whence we derive that, if e→ f , in all cases the type of f is

the same of e.

If e = (let g1 be 〈x, y〉 in g2) and Γ ` e : A, the typing judgement must be a

consequence of the application of typing rule (tj − let) and for some ∆1 and ∆2

typing contexts it holds ∆1 ` g1 : B ⊗ E and ∆2, x : B, y : E ` g2 : A, where

Γ ≡ ∆1,∆2.

(⇓) Applying rule (let⇓),
g1 ⇓ 〈u, ν〉 g2{u/x, ν/y} ⇓ v

let g1 be 〈x, y〉 in g2 ⇓ v
and using both the

substitution lemma and the induction hypothesis, we obtain that the type of the

term g2{u/x, ν/y} is indeed A; thus by induction hypothesis we conclude that the

type of v is A too, as it had to be proved.

(→) The type analysis of the terms f which appears in the statement and may

be the result of the application of (let), leads to the conclusion that it must have

the same type A of term e, taking into account the induction hypothesis that must

be used on the subterms of the premises. The analysis of rule (let − ax ) leads to the

same conclusion using the substitution lemma (2.2): here the term f is g2{v/x, u/y}.



26 Chapter 2. Setting the Deterministic Framework

2.3 Context Preorder

Now it is time to introduce the notion of equivalence among terms, always referring

to the elements of `ST λ: how could one capture the idea of equivalence for higher-

order languages like the one we are examining? The canonical answer goes back to

Morris, who proposed context equivalence (also known as observational equivalence)

as the right way to compare terms. Roughly, two terms are context equivalent i�

they behave the same when observed in any possible context, i.e. when tested against

any possible observer. Formally, a context is nothing more than a term with a single

occurrence of a special marker called the hole and denoted as [·]. The special feature
of operational contexts in a linear language as `ST λ, is that the marker must be

used exactly once, that's why it appears, e.g., in both the branches of a conditioned

choice. The contexts set, being part of the terms of the language, is recursively

de�ned by distinguishing the context which are values from the other ones:

V [·] ::= [·] | λx.C[·] | 〈V [·], u〉 | 〈u, V [·]〉, (2.17a)

C[·] ::= [·] | V [·] | fC[·] | C[·]f | if C[·] then f else g | if f then C[·] else D[·] |

| let f be 〈x, y〉 in C[·] | let C[·] be 〈x, y〉 in f. (2.17b)

Given a context C[·] and a term e, C[e] is the term obtained by �lling the single

occurrence of [·] in C[·] with e: the situation for the contexts appearing in syntax

tree (2.17b) is resumed in Figure 2.5. Among the elements of the syntax tree (2.17b)

those contexts which have boolean type are a particular class often de�ned in the

literature as ground contexts.

The typing rules for contexts, which are displayed, for `ST λ, in Figure 2.6,

while they provide a reliable way to correctly build contexts in a typing language,

are re�ned to specify, besides the type of the object which may be sheltered in

place of the hole, also if it must be a value or a generic term. Notice that, in

each rule of Figure 2.6, both the subscripts which appear immediately beside the

symbol `, can take the value e or v depending if the object which is typed is a

term or a value. A typing judgement for a context assumes generally the structure
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C[·] C[e]

[`v ·] v

[`e ·] e

λ x.C[`e ·] λx.C[e]

fC[`e ·] fC[e]

C[`e ·]f C[e]f

if C[`e ·] then f else g if C[e] then f else g

if f then C[`e ·] else D[`e ·] if f then C[e] else D[e]

let f be 〈x, y〉 in C[`e ·] let f be 〈x, y〉 in C[e]

let C[`e ·] be 〈x, y〉 in f let C[e] be 〈x, y〉 in f

〈V [`e ·], u〉 〈V [e], u〉

〈u, V [`e ·]〉 〈u, V [e]〉

Figure 2.5: Filling a linear context with a term.
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Γ `e C[∆ `e A] : B, which can be read informally as saying that whenever the term

e is such that ∆ ` e : A, it holds that Γ ` C[e] : B.

For subsequent uses, let here give the symbol CTXB (Γ ` A) which de�nes the

class of all (not necessarily ground) linear contexts such that ∅ ` C[Γ ` A] : B.

Type judgement context rule Name

Γ `v [Γ `v A] : A (tjc − axv)

Γ `e [Γ `e A] : A (tjc − axt)

Γ `v [Γ `v A] : A

Γ `e [Γ `e A] : A
(tjc − vt)

Γ, x : B `e C[Θ `e E] : A

Γ `v λx.C[Θ `e E] : B( A
(tjc − abs)

Γ `e C[Θ `e E] : B( A ∆ ` f : B

Γ,∆ `e C[Θ `e E]f : A
(tjc − appL)

Γ ` f : B( A ∆ `e C[Θ `e E] : B

Γ,∆ `e fC[Θ `e E] : A
(tjc − appR)

Γ `e C[Θ `e E] : bool ∆ ` f : A ∆ ` g : A

Γ,∆ `e if C[Θ `e E] then f else g : A
(tjc − ifL)

Γ ` f : bool ∆ `e C[Θ `e E] : A ∆ `e D[Θ `e E] : A

Γ,∆ `e if f then C[Θ `e E] else D[Θ `e E] : A
(tjc − ifR)

Γ `e C[Θ `e E] : B ⊗ F ∆, x : B, y : F ` f : A

Γ,∆ `e let C[Θ `e E] be 〈x, y〉 in f : A
(tjc − letL)

Γ ` f : B ⊗ F ∆, x : B, y : F `e C[Θ `e E] : A

Γ,∆ `e let f be 〈x, y〉 in C[Θ `e E] : A
(tjc − letR)

Γ `v V [Θ `e E] : A ∆ ` u : B

Γ,∆ `v 〈V [Θ `e E], u〉 : A⊗B
(tjc − paiL)

Γ ` u : A ∆ `v V [Θ `e E] : B

Γ,∆ `v 〈u, V [Θ `e E]〉 : A⊗B
(tjc − paiR)

Figure 2.6: Context typing rules for contexts in a typed language: in a linear

frame, typing context Γ,∆ have disjoint domains.
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Lemma 2.6 (On the �lled contexts). Given a context C[·] ∈ CTXA (∆ ` B) and a

term ∆ ` e : B then

Γ,∆ ` C[e] : A (2.18)

is a correct type judgement.

Proof. By induction on the structure of operational contexts, ∅ ` C[`B] : A.

If C[`B] = [`B] and ∆ ` e : B then necessarily A ≡ B and the typing judgement

(2.18) holds.

If C[`B] = λx.D[`B] the last rule in the typing judgement tree must be (tjc − abs)

whence we get Γ, x : F ` D[`B] : E, and hence A = F ( E. From the induction

hypothesis one gets Γ, x : F,∆ ` D[e] : E we immediately deduce the thesis from

the rule (tjc − abs), namely Γ,∆ ` λx.D[e] : F ( E.

If C[`B] = fD[`B] let us start from the hypothesis Γ1,Γ2 ` C[`B] : A which must

have been derived by (tjc − appR) to get the type judgements Γ1 ` f : E ( A and

Γ2 ` D[`B] : E. By induction hypothesis on the premises it follows Γ2,∆ ` D[e] : E

and therefore, by application of (tjc − appR) we get Γ1,Γ2,∆ ` fD[e] : A

If C[`B] = D[`B]f then the typing assertion Γ1,Γ2 ` D[`B]f : A must come

from the application of (tjc − appL) and then we deduce Γ1 ` D[`B] : E ( A

and Γ2 ` f : E. By induction hypothesis it can be derived the typing judgement

Γ1,∆ ` D[e] : E ( A, then from (tjc − appL) with this new premise, we get the

thesis Γ1,Γ2,∆ ` D[e]f : A.

If C[`B] = (if D[`B] then f else g), the type assertion must come from the

application of (tjc − ifL). Therefore it must hold that Γ1 ` D[`B] : bool and

Γ2 ` f : A, Γ2 ` g : A. By induction hypothesis we get the validity of the state-

ment Γ1,∆ ` D[e] : bool, whence immediately it follows the thesis Γ1,Γ2,∆ `
(if D[e] then f else g) : A by application of (tjc − ifL).

If C[`B] =
(
if f then D[`B] else G[`B]

)
then going back of one step in the type

derivation tree through (tjc − ifR) rule we get Γ1 ` f : bool and Γ2 ` D[`B] : A,

Γ2 ` G[`B] : A. Here we can rely on the double induction hypothesis Γ2 ` D[e] : A
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and Γ2 ` G[e] : A. Therefore whichever is the value the guard evaluates to, by

application of (tjc − ifR) we must deduce Γ1,Γ2,∆ ` (if f then D[e] else G[e]) : A

If C[`B] = (let D[`B] be 〈x, y〉 in f) the typing assertion comes necessarily from

(tjc − letL) and we get Γ1 ` D[`B] : E ⊗ F and Γ2, x : E, y : F ` f : A as valid

statements. Moreover the induction hypothesis ensures that Γ1,∆ ` D[e] : E ⊗ F
holds, and therefore applying (letL) the thesis Γ1,Γ2,∆ ` (let D[e] be 〈x, y〉 in f) :

A follows.

If C[`B] = (let f be 〈x, y〉 in D[`B]) going back through the rule (tjc − letR) we

get Γ1 ` f : E ⊗ F and Γ2, x : E, y : F ` D[`B] : A and exploiting inductive

hypothesis we �nd Γ2, x : E, y : F,∆ ` D[e] : A. With this premise, by applying

(tjc − letR) it follows immediately the thesis Γ1,Γ2,∆ ` (let f be 〈x, y〉 in D[e]) : A

If C[`B] = 〈V [`B], u〉 (and also for the symmetric con�guration) one must use

(tjc − pai) as last derivation rule thus obtaining Γ1 ` V [`B] : E and Γ2 ` u : F .

Therefore A = E ⊗ F and using induction we �nd Γ1,∆ ` V [e] : E, then by

(tjc − pai) with this premise one gets Γ1,Γ2,∆ ` 〈V [e], u〉 : A, which is what it had

to be proved. This concludes the proof.

We are now in a position to de�ne the context preorder: given two terms e and

f such that Γ ` e, f : A, we write e ≤Γ,A f i� for every context C[·] ∈ CTXB (Γ ` A),

C[e] ⇓ v ⇒ C[f ] ⇓ u, where v, u ∈ V`STλ
B . If e ≤Γ,A f and f ≤Γ,A e, then e and f

are said to be context equivalent, and we write e ≡Γ,A f . For our future purposes it

will be found useful to de�ne a function Obs : T Γ,A
`STλ

→ R on the terms set. In a

deterministic environment simply choose Obs(e) = 1 if e ⇓ v, Obs(e) = 0 in case

of divergent terms. Therefore, the previous relations may be restated as follows:

Γ ` e ≤Γ,A f : A i� ∀C[·] ∈ CTXB (Γ ` A) , Obs(C[e]) ≤ Obs(C[f ]) (2.19)

Γ ` e ≡Γ,A f : A i� ∀C[·] ∈ CTXB (Γ ` A) , Obs(C[e]) = Obs(C[f ]). (2.20)

What we have just de�ned, indeed, are two typed relations ≤ and ≡, that is to

say two families of relations indexed by contexts and types, i.e. ≤ is the family

{≤Γ,A}Γ,A, while ≡ is {≡Γ,A}Γ,A. If in the scheme above the type B is restricted
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so as to be bool, then the obtained relations are the ground context preorder and

ground context equivalence, respectively.

It can be easily proved that ≤Γ,A is a preorder � namely a re�exive and transitive

relation � on T Γ,A
`STλ

, and ≡Γ,A an equivalence relation likewise. Among the preorders

which can be de�ned over the terms of an higher order language, a particular interest

is given to those relations which are compatible with the constructors of the language.

A relation R in `ST λ is called compatible if it respects the following constraints

(c− 1) ∀x, x : A ` xRx : A (2.21a)

(c− 2) Γ, x : B ` eR h : A ⇒ Γ ` λx.eR λx.h : B( A (2.21b)

(c− 3) Γ ` eR h : B( A, ∆ ` f R ` : B ⇒ Γ,∆ ` ef Rh` : A (2.21c)

(c− 4) Γ ` eR h : bool, ∆ ` f R ` : A, ∆ ` g R a : A ⇒

Γ,∆ ` (if e then f else g)R (if h then ` else a) : A (2.21d)

(c− 5) Γ ` eR h : A⊗B, ∆, x : A, y : B ` f R ` : E ⇒

Γ,∆ ` (let e be 〈x, y〉 in f)R (let h be 〈x, y〉 in `) : E (2.21e)

(c− 6) Γ ` v Rw : A, ∆ ` uRυ : B ⇒ Γ,∆ ` 〈v, u〉R 〈w, υ〉 : A⊗B.
(2.21f)

A compatible preorder is said to be a precongruence, likewise a compatible equiv-

alence relation is called congruence. Thus a congruence is a re�exive, symmetric,

transitive and compatible relation. We are going to show that ≤Γ,A and ≡Γ,A are a

precongruence and a congruence respectively over the set T Γ,A
`STλ

, through the follow-

ing two lemmas.

Lemma 2.7 (Compatibility of context preorder). ≤Γ,A is a precongruence on T Γ,A
`STλ

(and ≡Γ,A a congruence likewise.)

Proof. By examination of every constructor of `ST λ, relying on the de�nition of

context preorder (2.19).

(c− 1) ∀x, x ≤x:A,A x this is obviously true as a special case of re�exivity of ≤Γ,A.
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(c− 2) e ≤Γ,x:E,A h ⇒ λx.e ≤Γ,E(A λx.h. From hypothesis we evince ∀C[·] ∈
CTXB (Γ, x : E ` A), C[e] ⇓ v ⇒ C[h] ⇓ w. Thus denoting by {xi}i∈I the set of vari-
ables such that {xi}i∈I = dom(Γ), for every generic context C ′[·]∈CTXB (Γ `E(A)

we set C[·] = C ′[λ {xi}i∈I .λ x.[·]]. In fact, the hypothesis e ≤Γ,x:E,A h entails C[e] ⇓ v
⇒ C[h] ⇓ u whence thesis λx.e ≤Γ,E(A λx.h.

(c− 3) (e1 ≤Γ1,E(A h1 ∧ e2 ≤Γ2,E h2) ⇒ e1e2 ≤Γ1Γ2,A h1h2.

The statement for these terms can be written as follows:

(∀C[·] ∈ CTXB (Γ1 ` E ( A) , ∀D[·] ∈ CTXB (Γ2 ` E)

Obs(C[e1]) ≤ Obs(C[h1]) ∧ Obs(D[e2]) ≤ Obs(D[h2])) ⇒

(∀C ′[·] ∈ CTXB (Γ ` A)Obs(C ′[e1e2]) ≤ Obs(C ′[h1h2])). (2.22)

The hypothesis of contextual preorder for the subterms of e and f , can be written

as ∀C[·] ∈ CTXB1 (Γ1 ` E ( A), C[e1] ⇓ v ⇒ C[h1] ⇓ u and ∀D[·] ∈ CTXB2 (Γ2 ` E),

D[e2] ⇓ ν ⇒ D[h2] ⇓ w. Thus for each generic context C ′[·] ∈ CTXB (Γ ` A), let us

denote by {xi}i∈I the set {xi}i∈I = dom(Γ1) ∪ dom(Γ2), choosing thereby C[·] =

C ′[λ {xi}i∈I .[`E(A]e2] ∈ CTXA (Γ1 ` E ( A) and D[·] = C ′[λ {xi}i∈I .h1[`E]] ∈
CTXA (Γ2 ` E).

Necessarily B1 = B2 = A, and since C[h1] = C ′[λ {xi}i∈I .h1e2] = D[e2], one gets

the chain C[e1] ⇓ v ⇒ C[h1] = D[e2] ⇓ u ⇒ D[h2] ⇓ w, whence the thesis, being

C[e1] = C ′[λ {xi}i∈I .e1e2] and D[h2] = C ′[λ {xi}i∈I .h1h2].

(c− 4) (e1 ≤Γ1,bool h1 ∧ e2 ≤Γ2,A h2 ∧ e3 ≤Γ2,A h3) ⇒ (if e1 then e2 else e3)

≤Γ1,Γ2,A (if h1 then h2 else e3).

Now by the hypotheses of context preorder between the subterms we know

that ∀C[·] ∈ CTXB1 (Γ1 ` bool), C[e1] ⇓ v1 ⇒ C[h1] ⇓ w1, and similarly ∀D ∈
CTXB2 (Γ2 ` A) , D[e2] ⇓ v2 ⇒ D[h2] ⇓ w2 and D[e3] ⇓ v3 ⇒ D[h3] ⇓ w3. Then, for

each C ′[·] ∈ CTXB (Γ ` A), considering the contexts

C[`bool] = C ′[λ {xi}i∈I .(if [`bool] then e2 else e3)]

D1[`B] = C ′[λ {xi}i∈I .(if h1 then [`B] else e3)]
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D2[`B] = C ′[λ {xi}i∈I .(if h1 then h2 else [`B])]

and B1 = B2 = B3 = A, where again we set {xi}i∈I = dom(Γ1)∪ dom(Γ2), we meet

the conditions C[h1] = D1[e2] and D1[h2] = D2[e3], thus we get the chain C[e1] ⇓ v
⇒ C[h1] = D1[e2] ⇓ u ⇒ D1[h2] = D2[e3] ⇓ ν ⇒ D2[h3] ⇓ w. Therefore we get the
thesis from the �rst and last term of the chain.

(c− 5) (e1 ≤Γ1,E⊗E′ h1 ∧ e2 ≤Γ2,x:E,y:E′,A h2) ⇒ (let e1 be 〈x, y〉 in e2) ≤Γ1,Γ2,A

(let h1 be 〈x, y〉 in h2) . Again using the hypothesis of context preorder for

subterms one gets ∀C[·] ∈ CTXB1 (Γ1 ` E ⊗ E ′), C[e1] ⇓ v ⇒ C[h1] ⇓ u and ∀D[·] ∈
CTXB2 (Γ2 ` A), D[e2] ⇓ ν ⇒ D[h2] ⇓ w.

Therefore let us take C[·] = C ′[λ {xi}i∈I .(let [`E⊗E′ ] be 〈x, y〉 in e2)] andD[·]=
C ′[λ {xi}i∈I .(let h1 be 〈x, y〉 in [`A])] which ful�ll the requirement C[h1] = D[e2].

Joining the premises together we get the chain C[e1] ⇓ v ⇒ C[h1] = D[e2] ⇓ u ⇒
D[h2] ⇓ ν, which is the thesis.

(c− 6) (v1 ≤Γ1,A w1 ∧ v2 ≤Γ2,E w2) ⇒ 〈v1, v2〉 ≤Γ1Γ2,A⊗E 〈w1, w2〉. Here, for any

C ′[·] ∈ CTXB (Γ ` A⊗ E), we set

C[·] = C ′[λ {xi}i∈I .〈[`A], v2〉] ∈ CTXA⊗E (Γ1 ` A)

D[·] = C ′[λ {xi}i∈I .〈w1, [`E]〉] ∈ CTXA⊗E (Γ2 ` E)

such that C[w1] = D[v2]. Thus using the hypothesis of preconguence for subterms

we have C ′[λ {xi}i∈I .〈v1, v2〉] = C[v1] ⇓ v ⇒ C[w1] = D[v2] ⇓ u ⇒ D[w2] =

C ′[λ {xi}i∈I .〈w1, w2〉] ⇓ ν, namely the thesis.

Lemma 2.8 (Context preorder and context equivalence behaviour with respect

to contexts). Context preorder and context equivalence likewise are compatible with

respect to a whatever context application to terms, namely they enjoy the properties

Γ ` e ≤Γ,A h : A ⇒ ∀C[`A] ∈ CTXB (Γ ` A), ∅ ` C[e] ≤∅,B C[h] : B and Γ ` e ≡Γ,A

h : A ⇒ ∀C[`A] ∈ CTXB (Γ ` A), ∅ ` C[e] ≡∅,B C[h] : B .

Proof. We treat the context preorder, the proof for context equivalence being anal-

ogous.
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The hypothesis Γ ` e ≤Γ,A h : A entails that ∀G[`A] ∈ CTXB (Γ ` A), Obs(G[e])

≤ Obs(G[h]), and following the de�nition the statement to be proved ∅ ` C[e] ≤∅,B
C[h] : B is equivalent to

∀D[`B] ∈ CTXE (∅ ` B) , Obs(D[C[e]]) ≤ Obs(D[C[h]]). (2.23)

Nevertheless for any D[`B] and C[`A], the new context GC,D[`A] may be chosen,

de�ned as GC,D[`A]
def

= D[C[`A]] which, since it belongs to CTXE (Γ ` A), complies

with hypothesis

2.4 Applicative Bisimilarity: De�nition and Prop-

erties

Context equivalence is universally accepted as the canonical notion of equivalence of

higher-order programs, being robust, and only relying on the underlying operational

semantics. Proving terms not context equivalent is relatively easy: ending up with

a single context separating the two terms su�ces. On the other hand, the universal

quanti�cation over all contexts makes proofs of equivalence hard.

A variety of techniques have been proposed to overcome this problem, among

them logical relations, adequate denotational models and context lemmas. As �rst

proposed by Abramsky [1], coinductive methodologies (and the bisimulation proof

method in particular) can be fruitfully employed. Abramsky's applicative bisim-

ulation is based on taking argument passing as the basic interaction mechanism:

what the environment can do with a λ-term is either evaluating it or passing it an

argument.

Among the various approaches which can be followed to delineate the concept

of (bi)simulation in the framework of a linear λ-calculus, here it has been decided

to present it on the top of a labelled transition system, with the purpose to make

easier to give its extension to probabilistic and quantum systems.

A labelled transition system (LTS in the following) is a triple L = (S ,L,N ),

where S is a set of states, L is a set of labels, and N is a subset of S × L×S .
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If for every s ∈ S and for every ` ∈ L there is at most one state t ∈ S with

(s, `, t) ∈ N , then L is said to be deterministic as it is indeed the case for `ST λ.

The theory of bisimulation for LTSs is very well-studied [48] and forms one of the

cornerstones of concurrency theory.

An applicative bisimulation relation can be thought as a bisimulation played on

an LTS de�ned on top of the λ-calculus `ST λ, where the S elements are terms

of `ST λ and the actions which label the transitions among states match the ways

which the environment may operate on them. Therefore (s, `, t) is permitted as an

element of N if a suitable action ` ∈ L exists, such that the external environment

fosters the transition from s to t. The set of possible actions which the environment

may accomplish on a state of `ST λ is shown in Figure 2.7, where the labels for

every action are listed with their meaning. Within the LTS, we distinguish between

external actions, namely those which entail an interaction of the system with the

environment, and the unique internal action labelled by eval , which is the evaluation

process of a program. More speci�cally, the LTSL`STλ
is de�ned as the tripleT `STλ ] V`STλ︸ ︷︷ ︸

S

, {aeval , att, aff, a@v, a⊗g, aYA , aŶA}︸ ︷︷ ︸
L

,N`STλ


where:

� T `STλ is the set of pairs ∪A∈Y(T `STλ
A ×{A}), and similarly for V`STλ . Observe

how any pair (v, A) appears twice as a state, once as an element of T `STλ and

another one as an element of V`STλ . Whenever necessary to avoid ambiguity,

the second instance will be denoted as (v̂, A). Similarly for the two copies of

any type A one �nds as labels.

� The label aeval models evaluation of terms, namely the only action internal to

the system, which doesn't have any e�ect for an external observer. Besides

it is the only action which the system can perform on a term, namely on an

element of the set T `STλ
A \ V`STλ

A , unless ask its type (aYA). The couple att,

aff represents the (only) way the system can interact with a boolean constant,
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Action Name Tern in N

Show the value of a

boolean:

att
(
(t̂t, bool), att, (t̂t, bool)

)

aff

(
(f̂f, bool), aff, (f̂f, bool)

)
Gives an argument to a

function type:

a@v

(
(λ̂ x.e, B( A), a@v, (e{v/x}, A)

)

Substitutes a pair into

an open term:

a⊗g

(
(〈̂v, u〉, A⊗B), a⊗g, (g{v/x, u/y}, E)

)

Exhibits the type of a

term:

aYA ((e, A), aYA , (e, A))

Exhibits the type of a

value:

aŶA

(
(v̂, A), aŶA , (v̂, A)

)

Evaluates the term: aeval P`PSTλ
((e, A), eval , (v̂, A)) .

Figure 2.7: Possible labelled actions of the LTS in `PST λ.

unless requesting for its type, which is asking to show its value. Finally the

actions a@v and a⊗g are the investigations that the system can accomplish on

a function type value and a pair value respectively: their meaning is shown in

Table 2.7.

� The relation N`STλ
contains all triples in the following forms:(

(λ̂ x.e, A( B), a@v, (e{v/x}, B)
) (

(f̂f, bool), aff, (f̂f, bool)
)

(
(〈̂v, u〉, A⊗B), a⊗g, (g{v/x, u/y}, E)

) (
(t̂t, bool), att, (t̂t, bool)

)
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((e, A), aYA , (e, A))
(

(v̂, A), aŶA , (v̂, A)
)

((e, A), aeval , (v̂, A))

where, in the last item, we of course assume that e ⇓ v.

As one can easily verify, the labelled transition system L`STλ
is deterministic. Be-

sides notice that, however, both are binary relations on states, i.e., on elements of

T `STλ ] V`STλ . Let us observe, however, that:

� Two pairs (e, A) and (f,B) can be put in relation only if A = B, because each

state makes its type public through a label. For similar reasons, states in the

form (v, A) and (û, B) cannot be in relation, not even if A = B.

� If (v,A) and (u,A) are in relation, then also (v̂, A) and (û, A) are in relation.

Conversely, if (v̂, A) and (û, A) are in a (bi)simulation relation R , then R ∪
{(v, A), (u,A)} is itself a (bi)simulation.

The de�nition of (bi)simulation over the terms of `ST λ is given in the standard

way, playing the (bi)simulation game on the top of the LTS; anyway we give it

explicitly, for closed terms of `ST λ, as a family of relations indexed on the types,

denoting the �rst one by SA and the second by BA , where we meant that A is the

type which the two terms that are on relation belong to.

It is given on the types and it distinguishes terms from values, starting from the

transitions of the generic LTS and instantiating them on the labels and the states

of our language N`STλ
which have been listed above.

� For boolean values the elements of N`STλ
containing the labels att and aff

are involved: therefore a relation Sbool is a simulation over boolean values if

∀v, w ∈ V`STλ
bool

∅ ` v Sboolw : bool⇒

∀b ∈ Vbool
`STλ

(
(v̂, bool), ab, (b̂, bool)

)
∈ N ⇒

(
(ŵ, bool), ab, (b̂, bool)

)
∈ N
(2.24)
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� The relation of simulation between (closed) functional values is given in its

applicative form, namely comparing the functions after they have been evalu-

ated with the same value as argument. Thus a relation SB(A is a simulation

on function values if ∀λx.e, λ x.h ∈ V`STλ
B(A,

∅ ` λx.eSB(A λx.h : B( A⇒

∀v ∈ V`STλ
B ,

(
(λ̂ x.e, B( A), a@v, (e{v/x}, A)

)
∈ N ⇒(

(λ̂ x.h,B( A), a@v, (h{v/x}, A)
)
∈ N ∧ e{v/x} SA h{v/x}. (2.25)

� For pair values the notion of simulation relies on the label a⊗g of the LTS:

∅ ` 〈v1, v2〉 SA⊗B 〈u1, u2〉 : A⊗B ⇒ ∀g ∈ T `STλ
x:A,y:B,E,(

(〈̂v1, v2〉, A⊗B), a⊗g, g{v1/x, v2/y}
)
∈ N ⇒(

( ̂〈u1, u2〉, A⊗B), a⊗g, g{u1/x, u2/y}
)
∈N∧ g{v1/x, v2/y}SEg{u1/x, u2/y}.

(2.26)

� With respect to terms, the label eval is used:

∅ ` eSA h : A⇒(
((e, A), aeval , (v̂, A)) ∈ N ⇒ ((h,A), aeval , (ŵ, A)) ∈ N ∧ ∅ ` v SAw : A

)
(2.27)

In the following some important property of (bi)simulations are shown: symbols Sim

and BiS stand for the set of all simulations and bisimulation respectively, among

terms which belong to T `STλ
A .

Lemma 2.9 (Identity relation is a bisimulation). The identity relation I is a sim-

ulation, therefore it is a bisimulation, being a symmetric relation I ∈ BiS.

Proof. The proof follows straightforward by the de�nition of (bi)simulation as a

family of relations indexed on types. The statement is proved in showing that

∀e ∈ T `STλ
A , Γ ` eBA (i)e : A, for some BA (i) ∈ BiS.
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−e ∈ V`STλ
bool − for boolean values, relying on the de�nition (2.9) we get the tautology

∀b ∈ V`STλ
bool

(
(ê, bool), ab, (b̂, bool)

)
∈ N ⇒

(
(ê, bool), ab, (b̂, bool)

)
∈ N ;

−e ∈ V`STλ
B(A− for λ�abstractions we resort (2.25) to obtain, ∀e ∈ T `STλ

A and ∀v ∈ VB

(
(λ̂ x.e, B( A), a@v, (e{v/x}, A)

)
∈ N ⇒(

(λ̂ x.e, B( A), a@v, (e{v/x}, A)
)
∈ N ∧ e{v/x} I Ae{v/x}.

which is again a tautology;

−e ∈ V`STλ
A⊗B− for vector type values, we get again a tautology, being that 〈v1, v2〉

I A⊗B 〈v1, v2〉 is equivalent to ∀g ∈ T `STλ
x:A,y:B,E g{v1/x, v2/y} I E g{v1/x, v2/y} which

is trivially true;

−e ∈ T `STλ
A \ V`STλ

A − in the end, for a term e ∈ T `STλ
A we have again a tautology

being ∀v ∈ VA ((e, A), aeval , (v̂, A)) ∈ N ⇒ ((e, A), aeval , (v̂, A)) ∈ N where v I Av.

Lemma 2.10 (One�step reduction is a (bi)simulation). The one�step reduction

relation (Figure 2.2) is a bisimulation (and, accordingly, the same holds for the

evaluation relation).

Proof. We enforce the induction hypothesis by de�ning a new relation on types

R A =→ ∪ I A such that →⊆ R A and by proving that since R A is a bisimulation,

also → enjoys the bisimulation property since it is included in R A. By de�nition a

pair (e, f), belongs to the relation if the condition below is respected

e, f ∈ T `STλ
A , (e, f) ∈ R A ⇔ (e→ f ∨ e I Af) . (2.28)

−e ∈ V`STλ
A − If e = v, then f = e = v and (e, f) ∈ R A, since (e, f) ∈ I A. Moreover

the simulation property is satis�ed, since

1. If ∅ ` e, f : bool then both e and f are tt or ff and ful�ll (2.24).
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2. If ∅ ` e, f : B ( A then both e and f are the same λ�abstraction and (2.25)

is satis�ed.

3. If ∅ ` e, f : A⊗B then both e and f are the same pair for previous Lemma 2.9

they are in a bisimulation relation.

−e ∈ T `STλ
A \ V`STλ

A − If e is not a value, then e ⇓ v and by Lemma 2.4, there will be

a sequence of one�step reduction such that e → f → . . . → v. Since the one step

reduction is deterministic, then necessarily also f ⇓ v: thus the relation

((e, A), aeval , (v̂, A)) ∈ N ⇒ ((f, A), aeval , (v̂, A)) ∈ N

holds, and since by de�nition (2.28) v R Av, this entails that eR Af , with R A ∈
Sim.

Lemma 2.11 (On the composition of simulation � and bisimulation as well � ). The

composition of two (possibly) di�erent simulations is a simulation itself. Namely if

SA (1), SA (2) ∈ Sim, ∀e, f, g such that eSA (1)f and f SA (2)g, we have eSA (3)g, with

SA (3) = SA (1) ◦ SA (2) element of Sim.

Proof. By inspection of the de�nition of simulation for di�erent types.

−e ∈ Vbool
`STλ
− For boolean, writing the hypotheses of the double simulation relation

according to the de�nition we get:

eSbool (1)f ⇒
(
(ê, bool), ab, (b̂, bool)

)
∈ N⇒

(
(f̂ , bool), ab, (b̂, bool)

)
∈ N (hp1)

f Sbool (2)g ⇒
(

(f̂ , bool), ab, (b̂, bool)
)
∈ N⇒

(
(ĝ, bool), ab, (b̂, bool)

)
∈ N (hp2)

whence it easily derivable the relation

(
(ê, bool), ab, (b̂, bool)

)
∈ N ⇒

(
(ĝ, bool), ab, (b̂, bool)

)
∈ N

which ensures that e(Sbool (1) ◦ Sbool (2))g.
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−e ∈ V`STλ
B(A− For function values, for every tern belonging to the set VB(A such that

λx.f SB(A (1) λx.g and λx.g SB(A (2) λx.h we have, by the de�nition(2.25), that

∀v ∈ VA both the conditions(
(λ̂ x.f , B( A), a@v, (f{v/x}, A)

)
∈ N ⇒(

(λ̂ x.g, B( A), a@v, (g{v/x}, A)
)
∈ N ∧ f{v/x} SA (1)g{v/x}(

(λ̂ x.g, B( A), a@v, (g{v/x}, A)
)
∈N ⇒(

(λ̂ x.h,B( A), a@v, (h{v/x}, A)
)
∈ N ∧ g{v/x} SA (2)h{v/x}

hold. Therefore it follows straightly the relation(
(λ̂ x.f , B( A), a@v, (f{v/x}, A)

)
⇒
(

(λ̂ x.h,B( A), a@v, (h{v/x}, A)
)

∧ f{v/x}(SA (1) ◦ SA (2))h{v/x} (2.29)

which entails λx.f(SB(A (1) ◦ SB(A (2))λx.h with SB(A (1) ◦ SB(A (2) ∈ Sim.

−e ∈ V`STλ
A⊗B− For each tern of values of vector type such that 〈v1, v2〉 SA⊗B (1) 〈u1, u2〉,

and 〈u1, u2〉 SA⊗B (2) 〈ν1, ν2〉 starting from the de�nition (2.26) one obtains the

relations ∀g ∈ T `STλ
x:A,y:B,E, g{v1/x, v2/y} SE (1) g{u1/x, u2/y} ∧ g{u1/x, u2/y} SE (2)

g{ν1/x, ν2/y}, which lead to the conclusion

g{v1/x, v2/y}(SA (1) ◦ SA (2))g{ν1/x, ν2/y}.

This last relation entails that SA⊗B (3) ∈ Sim.

−e ∈ T `STλ
A \ V`STλ

A − Here, given three terms such that eSA (1)f and f SA (2)g, re-

covering the de�nition (2.27 ), we get,

((e, A), aeval , (v̂, A)) ∈ N ⇒ ((f, A), aeval , (û, A)) ∈ N ∧ v SA (1)u

((f, A), aeval , (û, A)) ∈ N ⇒ ((g, A), aeval , (ν̂, A)) ∈ N ∧ uSA (2)ν.

From previous relation it follows

((e, A), aeval , (v̂, A)) ∈ N ⇒ ((g, A), aeval , (ν̂, A)) ∈ N ∧ v SA (1) ◦ SA (2)ν,

whence e(SA (1) ◦ SA (2))g, where (SA (1) ◦ SA (2)) = SA (3) ∈ Sim
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It should be evident at this point of the discussion, that starting by de�nitions

(2.24)�(2.27) many relations between terms of `ST λ can be built: namely given a

subset of T `STλ
A , there may generally exist multiple relations enjoying the simulation

properties. Symbols BiS and Sim have been thereby adopted to denote the whole

set of all possible simulations and bisimulations respectively, on T `STλ
A .

What about the union of every possible simulation? It is a simulation in turn,

since if every element of a set of relations has the simulation property, also every

union of elements of this set has the same property.

The union of every possible relation in Sim is the greatest element of Sim and

it is called similarity denoting it by �A . Analogously let attribute the name of

bisimilarity to the greater element in BiS using the symbol ∼A to denote it.

As a consequence, (bi)similarity can be seen as a relation on terms, indexed

by types. Thus bisimilarity is the greatest relation among terms symmetric and

featured by the properties (2.24), (2.25) and (2.26). Similarity as a relation among

closed terms without type distinction is denoted with �, as well as bisimilarity with

∼.

Theorem 2.2 (On the preorder induced by similarity relation). Similarity is a

preorder on the set of the terms and hence bisimilarity is an equivalence relation.

Proof. The re�exivity of similarity follows from the previously proved Lemma 2.9.

With regard to the transitivity, it has been proved with Lemma 2.11 that the

composition of two possibly di�erent simulations has again the simulation property.

Being similarity the union of every simulation, it contains every simulation relation,

namely it is the greatest one.

Given e, f, g ∈ T `STλ
A such that eSA (1)f and f SA (2)g, by de�nition of composi-

tion e(SA (1)◦ SA (2))g and it has been proved with Lemma 2.11 that (SA (1)◦ SA (2)) ∈
Sim. Moreover, by de�nition of similarity we have ∀e, f, g, (e, f) ∈ SA (1) ⇒
(e, f) ∈�A, (e, g) ∈ SA (2) ⇒ (f, g) ∈�A and (e, g) ∈ (SA (1) ◦ SA (2)) ⇒ (e, g) ∈�A,
which prove the transitivity of �A.
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For the same arguments bisimulation in `ST λ, which is symmetric being a union

of symmetric relations is an equivalence relation.

Example 2.1. An example of two distinct programs which can be proved bisimilar

are the following:

e = λx.λy.λz.and (xy) (or z tt); f = λx.λy.λz.x(or (and z ff) y);

where and and or are the boolean function de�ned, in `ST λ, by relations (2.5).

Both e and f can be given the type (bool ( bool) ( bool ( bool ( bool in

the empty context: besides, if b1, b2 ∈ V`STλ
bool and u ∈ V`STλ

bool(bool, both e(u)(b1)(b2)

and f(u)(b1)(b2) may be validated to evaluate to g{b1/x
′}, where u has been setted

to λx ′.g. In fact

e ((u)(b1)(b2))→ λ y.λ z.and (uy)(or z tt)(b1)(b2)→ λ z.and (ub1)(or z tt)(b2)→

and (ub1)(or b2 tt)→ and g{b1/x
′} tt→ g{b1/x

′};

f ((u)(b1)(b2))→ λ y.λ z.uor (and z ff) y(b1)(b2)→ λ z.u (or (and z ff)(b1)(b2)

→ u or (and b2 ff) (b1)→ u or ff b1 → g{b1/x
′}.

Thus e and f can be proved to be bisimilar just by giving a preorder de�ned as the

re�exive closure of

R e,f = {(e, f) , (e(ν), f(ν)) , (e(ν)(b), f(ν)(b)) , (e(ν)(b)(b′), f(ν)(b)(b ′)) , } (2.30)

where ν ∈ Vbool(bool and b, b ′ ∈ Vbool are generic values.

Another interesting example of terms which can be proved bisimilar are the term

e = if f then g else h and the term ` obtained from e by λ-abstracting all variables

which occur free in g (or, equivalently, in h), then applying the same variables to

the obtained term. �

Is it that bisimilarity is sound for (i.e., included in) context equivalence? And

how about the reverse inclusion? For a linear, deterministic λ-calculus like the one

we are describing, both questions have already been given a positive answer [17]. In

the next two sections, we will brie�y sketch how the correspondence can be proved.
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2.4.1 Open Extension of Applicative (Bi)similarity

In last section, two new relations among closed terms of `ST λ have been introduced

that have been proved to be respectively a preorder and an equivalence relation

(Theorem 2.2).

Nevertheless, this is only one among the requirements that a well�built relation

on terms is required to ful�ll, since the most desirable property for such a relation

is the compatibility, which prescribes that the relation commutes with the syntactic

operators of the language itself.

We exhibited the context equivalence, which �ts these features, as a good tool to

compare terms and programs by stating that two (or more) terms are contextually

equivalent if they behave the same way � or they can be interchanged also � in

whatever context.

The context here must be understood as a bigger program with an hole inside,

acting as a container for smaller ones. Thus, the notion of context equivalence meets

that of observational behaviour since two programs are thought to be equivalent if

they behave the same when they are embedded inside whatever bigger environment.

Unfortunately, as it has been remarked, this notion of context equivalence is not

easily exploitable because of the di�culty to deal with the quanti�cation over all

contexts. This is mainly the reason that the notion of bisimulation conceived in

the beginnings of eighties and strongly applied in theoretical computer science with

the works of Howe (1989) and Abramsky and Ong (1993) is now considered as one

reliable alternative to check the equality between programs.

To show that (bi)similarity is preserved by composing terms through the syn-

tactic constructors of the language, could prove to be a rather engaging challenge:

before accomplishing such a check, we should extend the notion of similarity so that

it could be possible to perform a comparison on both closed as well as open terms,

being the open terms those which are de�ned on a non�empty set of free variables.

This notion of (bi)similarity on open terms is known as open extension of applicative

(bi)similarity.
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Denoting by fv(e) the set of free variables of e, namely the domain of the context

Γ involved in the typing judgement Γ ` e : A, we de�ne the term e to be open if

fv(e) 6= ∅.
Given a typing context Γ such that dom(Γ) = {xi}i∈I 6= ∅, a Γ�closure for Γ is

nothing more than a set of suitable values {vi}i∈I whose types make possible the

substitutions {vi/xi}i∈I .
A pair of open terms Γ ` e, f : A which are typeable on the same context, is

similar on Γ whether every Γ�closure of the couple is similar, namely if they �t the

following requirement

∀ {vi}i∈I Γ�closure, e{vi/xi}i∈I �A h{vi/xi}i∈I . (2.31)

If (2.31) is satis�ed we will write e �Γ,A h. Likewise for bisimilarity.

Lemma 2.12 (Open simulations and bounded variables). (Bi)similarity is preserved

under linkage of a variable, namely

λ y.e �Γ,B(A λ y.h ⇔ e �Γ,y:B,A h (2.32)

Proof. It comes directly by the de�nition given for simulation on open terms, indeed

by de�nition of open simulation applied on e and h it follows:

Γ, y : B ` e �A h : A ⇒ ∀{vi}i∈I ∈ V`STλ

{⊗Ai}i∈I ,∀w ∈ V
`STλ
B

e{vi/xi, w/y}i∈I �A h{vi/xi, w/y}i∈I . (2.33)

Analogously, applying the same de�nition to λ y.e and λ y.h, we �nd

Γ ` λ y.e �B(A λ y.h : B( A ⇒

∀{vi}i∈I ∈ V`STλ

{⊗Ai}i∈I , λ y.e{vi/xi}i∈I �A λ y.h{vi/xi}. (2.34)

Finally, using the de�nition (2.25) for closed terms of function type we get

λ y.e{vi/xi}i∈I �B(A λ y.h{vi/xi}i∈I ⇒

∀w ∈ B, e{vi/xi, w/y}i∈I �A h{vi/xi, w/y}i∈I (2.35)

The result is obtained comparing the right hand sides of (2.33) and (2.35).
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2.5 Similarity is a Precongruence

Now it is time to analyze more thoroughly the problem whether similarity may be

a precongruence, recalling that a relation over the set T `STλ is a precongruence

whether it is a preorder (re�exive and transitive) and it is compatible, namely if it

respects properties of compatibility previously stated in points (2.21a)�(2.21f).

Lemma 2.13 (Compatibility entails re�exivity). Every relation among terms which

is compatible is also re�exive.

Proof. We prove it by induction on the structure of e.

−e = x− The relation x : A ` xRx : A is true because of (2.21a)

−e = λx.f− Since R is compatible then by induction hypothesis it is re�exive on

the smaller terms and x : A ` f R f : A. Therefore by compatibility (2.21b) we get

the thesis ∅ ` λx.f Rλx.f : B( A.

−e = f1f2− Here the (double) inductive hypothesis on the compatible R tells that

∅ ` f1Rf1 : B ( A and ∅ ` f2Rf2 : B, whence by compatibility thesis comes

∅ ` f1f2Rf1f2 : A.

−e = (if f1 then f2 else f3)− Here the induction hypothesis on the subterms of e

tells us that the relation is re�exive, being compatibele, whence it comes ∅ ` f1Rf1 :

bool, ∅ ` f2Rf2 : A ∅ ` f3Rf3 : A, then by compatibility of R we get eR e.

−e = (let f1 be 〈x, y〉 in f2)− the structure of the proof is analogous to that of pre-

vious cases.

Lemma 2.14. Any compatible relation satis�es the following conditions listed below:

(c− 3l) Γ ` eR h : B( A ∧ ∆ ` f : B ⇒ Γ,∆ ` ef Rhf : A (2.36a)

(c− 3r) Γ ` e : B( A ∧ ∆ ` f R ` : B ⇒ Γ,∆ ` ef R e` : A (2.36b)

(c− 5l) Γ ` eR h : E ⊗B ∧ ∆, x : E, y : B ` f : A ⇒

Γ,∆ ` (let e be 〈x, y〉 in f)R (let h be 〈x, y〉 in f) : A (2.36c)

(c− 5r) Γ ` e : E ⊗B ∧ ∆, x : E, y : B ` f R ` : A ⇒
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Γ,∆ ` (let e be 〈x, y〉 in f)R (let e be 〈x, y〉 in `) : A (2.36d)

Proof. Conditions (2.36a) and (2.36b) come from property (2.21c), and conditions

(2.36c) and (2.36d) can be derived from (2.21e) by re�exivity. Indeed it has been

proved (Lemma 2.13) that a compatible relation is also re�exive.

Lemma 2.15. In every transitive relation R properties (2.36a) and (2.36b) entail

(2.21c). Analogously (2.36c) and (2.36d) entail (2.21e)

Proof. Since ∀f ∈ T `STλ
B Γ,∆ ` ef Rhf : A by property (2.36a) and ∀h ∈ T `STλ

B(A

Γ,∆ ` hf Rh` : A by property (2.36b), then (2.21c) is true by transitivity.

Similar is the proof for (2.21e).

A natural way to prove that similarity is included in the context preorder, (and

thus that bisimilarity is included in context equivalence) consists of �rst showing that

similarity is a precongruence, that is to say a preorder relation which is compatible

with all the operators of the language.

2.5.1 A First Failure

A direct proof that similarity is compatible could be driven by induction on the

structure of e. In the following only closed terms are examined, with the purpose to

later extend these results to open ones.

−(2.21a)− x : A ` x �A x : A Since x is a variable, using the open extension for

similarity one gets x �A x ⇔ ∀v ∈ V`STλ
A , x{v/x} �A x{v/x}, which is true

(Lemma 2.9).

−(2.21b)− Property e �x:B,A h ⇒ λx.e �∅,B(A λx.h is a direct consequence of

Lemma 2.12.

−(2.21d)− Proving this property mean to show the validity of the following state-

ment: under the hypotheses e �∅,bool h, f �∅,A `, g �∅,A a, it holds the

property if e then f else g �∅,A if h then ` else a.
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� Let e ⇓ v, then by the hypothesis of similarity e �∅,bool h, it follows that
e and h will evaluate to the same boolean constant b. Let suppose that

b = tt, then further hypothesis f �∅,A ` ensures that f ⇓ u⇒ ` ⇓ w with

u �A w and by applying rule (if tt ⇓) one �nds (if e then f else g) ⇓ u
and (if g then h else a) ⇓ w, therefore let us rewrite (2.27) as

((if e then f else g, A), aeval , (û, A)) ∈ N ⇒

((if h then ` else a,A), aeval , (ŵ, A)) ∈ N ∧ u �A w

which is the thesis since condition (2.27) is matched. Similarly if b = ff

using the hypothesis g �∅,A a and the rule (if ff ⇓).

� If e is divergent, then the whole term (if e then f else g) diverges, which

ensures thesis.

−(2.21e)− Here the statement (2.21e) may be splitted in two di�erent parts: (2.36d)

and (2.36c) which whether both veri�ed allow to conclude that (2.21e) holds

by Lemma 2.15.

∀f ∈ T `STλ
A , e �A g ⇒ (let e be 〈x, y〉 in f) �A (let g be 〈x, y〉 in f)(2.36c)

∀e ∈ V`STλ
E⊗B , f �A h ⇒ (let e be 〈x, y〉 in f) �A (let e be 〈x, y〉 in h)(2.36d)

To prove (2.36d) just recall the de�nition of similarity (2.27).

� Supposing that e ⇓ 〈u1, u2〉, the hypothesis ∆, x : E, y : B ` f �A h : A

gives

((let e be 〈x, y〉 in f, A), aeval , (v̂, A)) ∈ N ⇒

((let e be 〈x, y〉 in h,A), aeval , (ŵ, A)) ∈ N ∧ v �A w, (2.37)

where v and w can be obtained resorting the rule (let ⇓) which gives us

f{u1/x, u2/y} ⇓ v and h{u1/x, u2/y} ⇓ w. Now we know by Lemma 2.10

that f{u1/x, u2/y} ∼A v and h{u1/x, u2/y} ∼A w, and by de�nition

(2.31) that f{u1/x, u2/y} �A h{u1/x, u2/y}.
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� If, instead, e is a divergence, this makes whole term (let e be 〈x, y〉 in f)

to diverge, proving the thesis.

This proves the �rst part of the thesis (2.36d). To prove (2.36c) one starts by

the hypothesis e �∅,E⊗B g.

� Supposing e ⇓ 〈v1, v2〉, the hypothesis of similarity ensures that g ⇓
〈ν1, ν2〉. Then one exploits the label a⊗f to obtain

∀f ∈ T `STλ
x:E,y:B,A, ((〈v1, v2〉, E ⊗B), a⊗f , (f{v1/x, v2/y}, A)) ∈ N ⇒

((〈w1, w2〉, E ⊗B), a⊗f , (f{ν1/x, ν2/y}, A)) ∈ N ∧

f{v1/x, v2/y} �A f{ν1/x, ν2/y}, (2.38)

which proves exactly the desired property.

� Besides, likewise for property (2.36d), the divergence of e implies that

also (let e be 〈x, y〉 in f) will diverge, making the thesis true.

Thus property (2.21e) has been proved.

−(2.21c)− To prove this property we should prove (2.36a) and (2.36b) and use

Lemma 2.15. The proof of (2.36a) starts from the hypothesis e �∅,B(A h.

� Supposing e ⇓ v and using de�nition of similarity (2.27) gives:

((e, A), aeval , (v̂, A)) ∈ N ⇒ ((h,A), aeval , (ŵ, A)) ∈ N ∧ v �B(A w,

thus, choosing v = λx.ē and w = λx.h̄ let us use (2.25) supposing f ⇓ u,
the last statement v �B(A w will be equivalent to

((λx.ē, B( A), a@u, (ē{u/x}, A)) ∈ N ⇒(
(λx.h̄, B( A), a@u, (h̄{u/x}, A)

)
∈ N ∧ ē{u/x} SA h̄{u/x},

this proves the thesis ∀f ∈ V`STλ
B , ef �∅,A hf since the last relation is

true by de�nition of simulation (2.25).
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� Otherwise, if e is a divergence, the term ef is divergent in turn and this

makes the thesis true.

This proved the �rst part (2.36a): now we would prove (2.36b), hence ∀e ∈
T `STλ
B(A , f SB ` ⇒ ef SA e`.

Thus from hypothesis f �∅,B `, one gets, by de�nition of similarity (2.27):

((f,B), aeval , (v̂, B)) ∈ N ⇒ ((`, B), aeval , (ŵ, B)) ∈ N ∧ v �B w.

Let us notice that in the more general case B = E ′ ( E is a function type.

Now supposing that e ⇓ λx.e, to prove (2.36b), namely ∀e ∈ T `STλ
B(A , ef �A

e`, requires to show that holds the following

e{v/x} �A e{w/x}. (2.39)

Indeed, by de�nition of simulation (2.25) for functions and by the relationship

ef �A e`, ∀e, we get:

((ef, A), aeval , (û, A)) ∈ N ⇒ ((e`, A), aeval , (ν̂, A)) ∈ N ∧ u �A ν, (2.40)

whence, provided that e{v/x} ⇓ u and e{w/x} ⇓ ν, the second condition of

(2.40) is equivalent to (2.39).

Unfortunately there is no chance to prove that similarity enjoys the subsitu-

tivity, namely that given υ �B υ′, ∀e ∈ T `STλ
x:B,A e{υ/x} �A e{υ′/x}. Since the

same argument can be repeated endless (υ, υ′ can be taken as λ-abstractions

in turn ), we get stuck because we can not terminate the chain.

−(2.21f)− In a similar way we get stuck in attempting to prove the property of

compatibility for pairs � namely v1 �A w1, v2 �B w2 ⇒ 〈v1, v2〉 �A⊗B 〈w1, w2〉
� which would be valid only in case that the substitutivity was a character-

istic ascribable to the similarity, entailing this way the relation 〈v1, v2〉 �A⊗B
〈w1, w2〉 ⇒ ∀g ∈ T `STλ

x:A,y:B,E g{v1/x, v2/y} �E g{w1/x, w2/y}.

This leaves open the problem whether similarity to be a precongruence or no.



Chapter 2. Setting the Deterministic Framework 51

2.6 Howe's Lifting

While proving that � is a preorder is relatively easy, the naive proof of compatibility

(i.e. the obvious induction) fails, because of application case. How can it be proved

that similarity is a compatible and therefore a precongruence? A nice way is due

to Howe [30], who proposed a powerful and reasonably robust proof based on so�

called precongruence candidates. Intuitively, the structure of Howe's method is the

following [44]:

1. First of all, one de�nes an operator (·)H on typed relations, in such a way that

whenever a typed relation R is a preorder, R H is a precongruence.

2. One then proves, under the condition that R is an equivalence relation, that

R is included in R H , and that R H is substitutive.

3. Finally, one proves that �H is itself an applicative simulation. This is the

so-called Key Lemma [44], de�nitely the most di�cult of the three steps.

Points 2 and 3 together imply that � and �H coincide. But by point 1, �H , thus
also �, are precongruences. In Figure 2.8, one can �nd the rules de�ning (·)H when

the underlying terms are those of `ST λ.

Lemma 2.16 ( 1O Compatibility of R H).

If R is re�exive then R H is compatible.

Proof. Let {en}n∈N and {hn}n∈N denote the smaller subterms which enter in the

syntax of two terms e and h. The statement which must be proved may be written

as: ∀e, h

∆1 ` e1R
Hh1 : A1 . . . . . . ∆N ` eN R HhN : AN ⇒ ∆1 · · ·∆N ` eR Hh : A

(2.41)

Using this notation it is possible to rewrite the generic Howe's relation as

∆1 ` e1R
Hh1 : A1

...

∆N ` eN R HhN : AN ∆1 . . .∆N ` hR b : A
.

∆1 . . .∆N ` e R H b : A

(2.42)
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Howe's rule Name

∅ ` cR b : A

∅ ` cRHb : A
(How1c)

x : A ` xR b : A

∅ ` xRHb : A
(How1v )

Γ, x : B ` eRHh : A Γ ` λx.hR b : B( A

Γ ` λx.eRHb : B( A
(How2 )

Γ ` eRHh : B( A ∆ ` f RH` : B Γ,∆ ` h`R b : A

Γ,∆ ` ef RHb : A
(How3 )

Γ ` eRHh : bool
∆ ` f RH` : A
∆ ` g RHa : A Γ,∆ ` (if h then ` else a)Rb : A

Γ,∆ ` (if e then f else g)RHb : A

(How4 )

Γ ` eRHh : X ⊗ Y
∆, x : X, y : Y ` f RH` : A Γ,∆ ` (let h be 〈x, y〉 in `)Rb : A

Γ,∆ ` (let e be 〈x, y〉 in f)RHb : A

(How5 )

Γ ` eRHh : A ∆ ` f RH` : B Γ,∆ ` 〈h, `〉Rb : A⊗B
Γ,∆ ` 〈e, f〉RHb : A⊗B

(How6 )

Figure 2.8: Howe's lifting for the terms of `ST λ.

Since by hypothesis R is re�exive, in ( 2.42) it is possible to take b = h which drives

immediately to the thesis.

Let point out as an immediate consequence of the previous Lemma 2.16, that if

R is a preorder, its Howe's lifting R H is a precongruence.

Lemma 2.17 ( 2O Inclusion). If R is re�exive and transitive, then it is contained

in R H .

Proof. The statement can be written as

∀e, b, Γ ` e R b : A⇒ Γ ` e R H b : A. (2.43)

and the property can be proved by induction on the structure of e.

I In the basic case, when e is a variable it is a consequence of the corresponding

Howe's rule (How1v), indeed
x : A ` xR b : A
x : A ` xR H b : A

.
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IWhen e is a more complex term, let us assume it is built with some constructors

of the language starting by simpler terms whose set is denoted by {en}n=1,...N such

that e = cnstr ({en}n∈N ), where cnstr stands for some syntactic constructor of the

language. Similarly let us write h = cnstr ({hn}n∈N ), being {hn}n∈N the subterms

of h.

By Lemma 2.16, it has been proved that the re�exivity of R entails the com-

patibility of R H , then R H is re�exive too, by Lemma 2.13, being a compatible

relation. Thus, considering the general Howe's rule

∆1 ` e1R
Hh1 : A1

...

∆N ` eN R HhN : AN ∆1 . . .∆N ` hR b : A

∆1 . . .∆N ` eR Hb : A

(2.44)

by the re�exivity of R H , we may write the N statements {∆n ` enR Hen : An}n∈N
and use these conditions as premises of (2.44) together with ∆1 . . .∆N ` eR b : A.

Considering the last premise of (2.44), this prove the statement since ∀e, b, Γ `
eR b : A⇒ Γ ` eR Hb : A, choosing Γ = ∆1 . . .∆N .

Lemma 2.18 (Pseudo transitivity of R H).

If R is transitive, then R H enjoys the pseudo�transitivity property expressed by the

following relation

∀e, f, h,
(
∆ ` e R H f : A ∧ ∆ ` f R h : A

)
⇒ ∆ ` e R H h : A. (2.45)

Proof. It is easy to justify this property, indeed if e = cnstr ({ei}i∈I), the �rst

sentence in the hypothesis must be the result of the application of some Howe's rule

with general form:

∆1 ` e1 R
H `1 : A1

...

∆N ` eN R H `N : AN ∆1 . . .∆N ` ` R f : A

∆1 . . .∆N︸ ︷︷ ︸
∆

` e R H f : A

(2.46)
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here we understood the same notation previously used, where {en}n=1...N is the set

of subterms of e and likewise for `.

Now using the second hypothesis of (2.45) together with the transitivity of R

we get ∆1 . . .∆N ` ` R f : A and ∆1 . . .∆N ` f R h : A ⇒ ∆1 . . .∆N ` ` R h : A,

whence taking this last result as a premise for the Howe's general rule, we obtain

the thesis as a consequence of the application of the rule (2.46):

∆1 ` e1 R
H `1 : A1

...

∆N ` eN R H `N : AN ∆1 . . .∆N ` ` R h : A

∆1 . . .∆N ` e R H h : A

(2.47)

Lemma 2.19 ( 2O Substitutivity of R H). If R is re�exive, transitive and closed

under substitution, then its Howe's lifting R H is substitutive. The property of sub-

stitutivity � which is the thesis � may be stated as

Γ, x : B ` eR Hh : A ∧ ∆ ` f R H` : B ⇒ Γ,∆ ` e{f/x}R Hh{`/x} : A. (2.48)

Proof. We prove it inductively, on the derivation of the generic term e.

−e = x− In the basic case e is a variable which may belong or not to dom(Γ).

In linear case x /∈ dom(Γ) and therefore e and f are the same type which is the

type of x and the statement to prove becomes

Γ, x : A ` xR Hh : A ∧ ∆ ` f RH` : A ⇒ Γ,∆ ` x{f/x}R Hh{`/x} : A, (2.49)

where the �rst type judgement in the hypothesis must be a consequence of the

application of rule (How1v) which has as premise Γ, x : A ` xRh : A

Now, recalling that R is closed under substitution, the previous judgement en-

tails that ∀` ∈ T `STλ
∆,A , Γ,∆ ` x{`/x}Rh{`/x} : A, and using this last result together

with the second hypothesis and the pseudo�transitivity of R H we get

∆ ` f R H` : A ∧ Γ,∆ ` `R h{`/x} : A ⇒ Γ,∆ ` f RHh{`/x} : A, (2.50)

which is the thesis in the statement (2.49).
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−e = cnstr ({en}n∈N )− Here the hypothesis Γ, x : B ` eR Hh : A in (2.48) must

be a consequence of a general Howe rule as

Γ1 ` e1R
Hg1 : A1

...

Γi, x : B ` eiR Hgi : Ai
...

ΓN ` eN R HgN : AN Γ1 . . .ΓN , x : B ` g Rh : A

Γ1 . . .ΓN , x : B ` eR Hh : A

(2.51)

where the usual notation has been followed, denoting by {ek}k=1,2..., {gk}k=1,2... the

subterms of e and g.

Using induction on the i-th term which, due to the linear hypothesis, is the only

one which can contain the x variable we will write

Γi, x : B ` eiR Hgi : Ai ∧ ∆ ` f R H` : B ⇒ Γi,∆ ` ei{f/x}R Hgi{`/x} : Ai.

(2.52)

Now let us use the property of R to be closed under substitution on the last premise

of (2.51)

Γ1 . . .ΓN , x : B ` g Rh : A ⇒ ∀` ∈ T `STλ
∆,A , Γ1 . . .ΓN ,∆ ` g{`/x}Rh{`/x} : A,

(2.53)

and use (2.52) and (2.53) as premises of a general Howe's rule (2.51)

Γ1 ` e1R
Hg1 : A1

...

Γi,∆ ` ei{f/x}R Hgi{`/x} : Ai
...

ΓN ` eN R HgN : AN Γ1 . . .ΓN ,∆ ` g{`/x}Rh{`/x} : A
,

Γ1 . . .ΓI ,∆ ` e{f/x}R Hg{`/x} : A
(2.54)

to get, as conclusion, the result which has to be proved.
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Lemma 2.20 (Key lemma: in `ST λ, �H ⊆�).
�H is a simulation.

Since the simulation relation is de�ned on types and on the top of the transition

element of a LTS, we claim more properly this property distinguishing between values

and terms, according to the following statements

∅ ` b�bool
Hb ′ : bool⇒ b = b ′ (2.55a)

∅ ` λx.f�B(AHλx.h : B( A⇒ ∀v ∈ V`STλ
B , ∅ ` f{v/x}�AHh{v/x} : A

(2.55b)

∅ ` 〈v1, v2〉�A⊗BH〈w1, w2〉 : A⊗B ⇒

∀g ∈ T `STλ
x:A,y:B,E, g{v1/x, v2/y}�EHg{w1/x, w2/y}

(2.55c)(
∅ ` e�AHh : A ∧ e ⇓ v

)
⇒
(
h ⇓ w ∧ ∅ ` v�AHw : A.

)
(2.55d)

Proof. We start by the analysis of the cases when the terms involved are values.

I If e = b and its type is bool, the statement to prove is (2.55a). The hypothesis

∅ ` b�bool
Hb ′ : bool is necessarily a consequence of rule (How1c), whose unique

premise is ∅ ` b �bool b′ : bool. Therefore with reference to the de�nition (2.24),

supposing b = tt it must be b′ = tt, too. The same holds for e = ff since

∀b ∈ Vbool
`STλ

,
(
(ê, bool), ab, (b̂, bool)

)
∈ N ⇒

(
(b̂′, bool), ab, (b̂, bool)

)
∈ N . This

proves the thesis b = b ′.

I If e = λx.f then the statement of the key lemma is (2.55b). The hypothesis

∅ ` λx.f�B(AHλx.h : B( A must have, as last rule (How2 ) as shown below

x : B ` f�AHg : A ∅ ` λx.g �B(A λx.h : B( A .
∅ ` λx.f�B(AHλx.h : B( A

(2.56)

The second premise of the last rule (2.56), namely ∅ ` λx.g �B(A λx.h : B (

A, which is a relation of similarity whose terms are arrow type value entails, by

de�nition (2.25), that

∀v ∈ V`STλ
B ,

(
(λ̂ x.g, B( A), a@v, (g{v/x}, A)

)
∈ N ⇒(

(λ̂ x.h,B( A), a@v, (h{v/x}, A)
)
∈ N ∧ g{v/x} �A h{v/x},
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which gives, ∀v ∈ V`STλ
B , ∅ ` g{v/x} �A h{v/x} : A. Putting together this last

result with the �rst premise of the rule (2.56) which is x : B ` f�AHg : A and using

both property of substitutivity (Lemma 2.19) and Lemma 2.18 we get the thesis:

∀v ∈ VB,
(
∅ ` f{v/x}�AHg{v/x} : A ∧ ∅ ` g{v/x} �A h{v/x} : A

)
⇒

⇒ ∀v ∈ VB, ∅ ` f{v/x}�AHh{v/x} : A. (2.57)

I Let be e = 〈v1, v2〉 so that the property to prove is (2.55c). Since the term involved

is a pair, then we are under the scope of rule (How6 ) and we have, as for the �rst

hypothesis

∅ ` v1�AHν1 : A

∅ ` v2�BHν2 : B ∅ ` 〈ν1, ν2〉 �A⊗B 〈w1, w2〉 : A⊗B
.

∅ ` 〈v1, v2〉�A⊗BH〈w1, w2〉 : A⊗B

(2.58)

Let us start from the last premise of (2.58) which is again a statement of similarity

whose �rst term is a value, being 〈ν1, ν2〉 �A⊗B 〈w1, w2〉. Starting from this hy-

pothesis and using the de�nition of simulation (2.26) for pairs values, we obtain the

following two results

∀g ∈ T `STλ
x:A,y:B,E

((〈ν1, ν2〉, A⊗B), a⊗g, (g{ν1/x, ν2/y}, E)) ∈ N ⇒

((〈w1, w2〉, A⊗B), a⊗g, (g{w1/x, w2/y}, E)) ∈ N ∧

g{ν1/x, ν2/y} �E g{w1/x, w2/y}. (2.59)

Besides the �rst two premises of (2.58), by the substitutivity (Lemma 2.19) entail

that ∀g ∈ T `STλ
x:A,y:B,Eg{v1/x, v2/y}�EHg{ν1/x, ν2/y}.

Now, using Lemma 2.18 we easily get the thesis since:

∀g ∈ T `STλ
x:A,y:B,E

g{v1/x, v2/y}�EHg{ν1/x, ν2/y} ∧ g{ν1/x, ν2/y} �E g{w1/x, w2/y} ⇒

⇒ g{v1/x, v2/y}�EHg{w1/x, w2/y}, (2.60)

which proves the thesis of the statement (2.55c).
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I Supposing to deal with a couple of terms ∅ ` e�AHh : A which are non values,

the statement to prove is (2.55d). Here we suppose the term e as built up by a set

of smaller subterms {en}n∈N writing e = cnstr ({en}n∈N ), denoting by cnstr some

generic syntactic constructor of the language.

If we look at the hypotheses of (2.55d) separately we must conclude that the �rst

one comes from a general Howe's rule as

∅ ` e1�A1
Hg1 : A1

...

∅ ` eN�ANHgN : AN ∅ ` g �A h : A

∅ ` e�AHh : A

(2.61)

where ∅ ` gk : Ak has the above discussed meanings and stands for a typing judje-

ment of a subterm of g.

The second hypothesis of (2.55d) must be consequence a generic big�step seman-

tics evaluation rule which may be resumed in the following way

e1 ⇓ u1

...

eN ⇓ uN [subst. rule({un}n∈N ) ⇓ v]
,

e ⇓ v

(2.62)

where the substitution rule subst. rule({un}n∈N ) is in brackets since it appears

only in the semantics rules of the constructors for terms let and application.

The proof is carried out by induction on the size of the big�step�semantics terms

appearing in (2.62), but in addiction we may write down the N inductive hypotheses

for the subterms of (2.61). Supposing that the N relations between the subterms

has the simulation property we get the relationships

(
en ⇓ un ∧ ∅ ` en�AnHgn : An

)
⇒

(
gn ⇓ νn ∧ ∅ ` un�AnHνn : An

)
∀n ∈ N .

(2.63)

Since new N values {νn}n∈N have been obtained as a result of the inductive hypoth-
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esis, applying the suitable evaluation rule, as in (2.62), we get

g1 ⇓ ν1

...

g1 ⇓ νN subst. rule({νk}k=1,2...) ⇓ ν
.

g ⇓ ν

(2.64)

Taking this last result together with the last premise of (2.61) and using de�nition

of simulation (2.27), one obtains

g ⇓ ν ∧ ∅ ` g �A h : A ⇒ (h ⇓ w ∧ ∅ ` ν �A w : A) , (2.65)

which proves the �rst statement of the thesis (2.55d).

As for the second statement, let us just recall that �AH is a compatible relation

and therefore, applying compatibility on (2.63) we �nd

{∅ ` un�AnHνn : An}n∈N ⇒ ∅ ` v�AHν : A, (2.66)

To complete the prove just remember the pseudo�transitivity of �AH which has

been proved in Lemma 2.18 and let us apply it to relations ( 2.66) and ( 2.65) which

give (
∅ ` v�AHν : A ∧ ∅ ` ν �A w : A

)
⇒ ∅ ` v�AHw : A. (2.67)

Proposition 2.1. As immediate results coming from Lemma 2.17 and from key

Lemma 2.20 follow the relations �A= �AH and ∼A= ∼AH .

Proof.

�A⊆ �AH by Lemma 2.17 and �AH ⊆�A by Lemma 2.20, thus �AH =�A

To show the validity of ∼= ∼H , one should make use of cosimilarity, the inverse of

similarity de�ned by the condition

∀e, h ∈ T `STλ
A , e �A h ⇔ h �opA e. (2.68)
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It is easy to check from its de�nition on LTS that ∼= � ∩ �op; likewise let de�ne
∼AH = �AH ∩ (�opA )H . Since Lemma 2.17 and 2.20 entail analogues results for

cosimilarity, we conclude that (�opA )H =�opA , whence it straight comes ∼A = ∼AH .

Thus �A enjoys all the properties of �AH , mainly it is therefore a compatible

relation, then it is a precongruence on the set T `STλ
A (similarly ∼A is a congruence

on T `STλ
A ).

2.7 Comparing Relations among Terms

An interesting question which could be asked is about the relationship between

similarity and context preorder (and analogously between bisimilarity and context

equivalence). To answer it, the following lemma is requested.

Lemma 2.21 (On a similarity behaviour with respect to contexts). Similarity re-

lation is compatible with the context, namely it satis�es the condition

∅ ` e �A h : A ⇒ ∀C ∈ CTXB (∅ ` A) , ∅ ` C[e] �B C[h] : B.

Proof. This property is an easy consequence of the compatibility of �A. It may be

proved by induction on the contexts structure.

−C[·] = [·] ∈ CTXA (∅ ` A)− gives the tautology ∅ ` e �A h : A ⇒ ∅ ` e �A h : A,

obviously true.

−C[·] = λx.D[·] ∈ CTXB (∅ ` A)− requires to show ∅ ` λx.D[e] �E(B λx.D[h] :

E ( B. Using induction hypothesis x : E ` D[e] �B D[h] : B, the property

comes to be an obvious result of application of (c− 2).

−C[·] = D[·]f ∈ CTXB (∅ ` A)− entails that one must prove ∅ ` D[e]f �B D[h]f :

B, with induction hypothesis ∅ ` D[e] �E(B D[h] : E ( B, where f has been

assumed to have type E. Here we should apply the rule (c− 3), keeping in

mind that ∀f, ∅ ` f �E f : E. The proof for the class of contexts C[·] = fD[·]
is alike the previous one, employing property (c− 3).
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−C[·] = (if D[·] then f else g) ∈ CTXB (∅ ` A)− Whether the context is in

this form we need to prove the statement ∅ ` (if D[e] then f else g) �B
(if D[h] then f else g) : B. This is an immediate result of inductive

hypothesis ∅ ` D[e] �bool D[h] : bool with relationships ∅ ` f �B f : B

and ∅ ` g �B g : B, provided that the property (c− 4) is granted. The

proof is similar, making use of (c− 4), for linear contexts belonging to set

C[·] = if f then D[·] else G[·].

−C[·] = (let D[·] be 〈x, y〉 in f)− and C[·] = (let f be 〈x, y〉 in D[·]) ask the

statements ∅ ` (let D[e] be 〈x, y〉 in f) �B (let D[h] be 〈x, y〉 in f) :

B and ∅ ` (let f be 〈x, y〉 in D[·]) �B (let f be 〈x, y〉 in D[h]) : B

to be proved. We prove the �rst one since they are very similar and both

make use of property (c− 5). Thus we should apply the induction hypothesis

∅ ` D[e] �E⊗E′ D[h] : E ⊗ E ′ and the re�exivity of �B on f , namely the

relationship x : E, y : E ′ ` f �B f : B, exploiting the property (c− 5), to get

the desired result.

−C[·] = 〈D[·], v〉− and C[·] = 〈v,D[·]〉. Contexts classes of this type are un-

der the domain of property (c− 6). Here the property to be shown is ∅ `
〈V [e], v〉 �B⊗E 〈V [h], v〉 : B ⊗ E and the similar one ∅ ` 〈v,D[e]〉 �B⊗E
〈v,D[h]〉 : B ⊗E. As for the �rst statement, the induction hypothesis tells us

that ∅ ` D[e] �B D[h] : B, whence immediately thesis comes using property

(c− 6) and re�exivity of �E. Similarly for the other case.

Theorem 2.3 (Soundness of (bi)similarity in `ST λ). In `ST λ, � is included in ≤,
thus ∼ is included in ≡.

Proof. The statement of the theorem requires to prove the implication ∅ ` e �A h :

A ⇒ ∅ ` e ≤A h : A, but following the de�nition of context preorder, the thesis

becomes ∀C[·] ∈ CTXB (∅ ` A) , Obs(C[e]) ≤ Obs(C[h]).
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By the previous Lemma 2.21, the hypothesis gives immediately the result ∀C[·] ∈
CTXB (∅ ` A), ∅ ` C[e] �B C[h] : B, which by de�nition of simulation will be

rewritten as

∀C ∈ CTXB (Γ ` A) ,

((C[e], B), aeval , (v̂, B)) ∈ N ⇒ ((C[h], B), aeval , (ŵ, B)) ∈ N ∧ v �B w. (2.69)

If the transition ((C[e], B), aeval , (v̂, B)) doesn't occur, then C[e] is divergent and

Obs(C[e]) = 0, otherwise Obs(C[e]) = 1, but then the relation (2.69) ensures that

the transition ((C[h], B), aeval , (v̂, B)) occurs and Obs(C[h]) = 1, too. Therefore

the hypothesis ∅ ` e �A h : A implies the relationship Obs(C[e]) ≤ Obs(C[h]),

which is the thesis.

Theorem 2.4 (Completeness of (bi)similarity in `ST λ). In `ST λ, ≤ has the simu-

lation property, thus in `ST λ ≡ is included in ∼.

Proof. Let us suppose we deal with closed terms so that we must show the truth of

the statement

e ≤∅,A h ⇒ e �∅,A h. (2.70)

If otherwise, we can always reduce to this case by application of property (2.21b)

x : B ` e ≤ h : A ⇒ ∅ ` λx.e ≤ λx.h : B( A (2.71)

Under the hypothesis of closed terms, let us show that the relation ≤A has the

applicative simulation property, hence

v ≤∅,bool w ⇒
(
((v̂, bool), ab, (v̂, bool)) ∈ N ⇒ ((ŵ, bool), ab, (ŵ, bool)) ∈ N

)
(2.72a)

λx.e ≤∅,B(A λx.h⇒
(
∀u ∈ V`STλ

B ,
(

(λ̂ x.e, B( A), a@u, (e{u/x}, A)
)
∈ N ⇒(

(λ̂ x.h,B( A), a@u, (h{u/x}, A)
)
∈ N ∧ e{u/x} ≤∅,A h{u/x}

)
(2.72b)
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〈v1, v2〉 ≤∅,A⊗B 〈w1, w2〉 ⇒ ∀g ∈ T `STλ
x:A,y:B,E,

((〈v1, v2, , 〉A⊗B), a⊗g, (g{v1/x, v2/y}, E)) ∈ N ⇒

⇒ ((〈w1, w2, , 〉A⊗B), a⊗g, (g{w1/x, w2/y}, E)) ∈ N

∧ g{v1/x, v2/y} ≤∅,E g{w1/x, w2/y} (2.72c)

e ≤∅,A h ⇒
(

((e, A), aeval , (v̂, A)) ∈ N ⇒ ((h,A), aeval , (ŵ, A)) ∈ N ∧ v ≤∅,A w
)

(2.72d)

If v and w are two boolean values in a preorder relation they have to be the same

constant, otherwise the context C[·] = if [·] then tt else Ω could separate them,

hence the relation (2.72a) follows immediately.

If λx.e ≤∅,B(A λx.h, we must show the implication ∀D[·] ∈ CTXE (∅ ` A), ∀u ∈
V`STλ
B , D[e{u/x}] ≤D[h{u/x}], starting by the premise ∀C[·] ∈ CTXE (∅ ` B( A) ,

Obs(C[λx.e]) ≤ Obs(C[λx.h]). With this purpose let prepare the class of contexts

Cu[·] = D[[·]u].

Thus exploiting the de�nition of context preorder (2.19) one �nds

∀u, ∀D[·] ∈ CTXE (∅ ` A) , Obs(D[(λx.e)u]) ≤ Obs(D[(λx.h)u]) (2.73)

and this is enough to ensure that the transition
(

(λ̂ x.h,B( A), a@u, (h{u/x}, A)
)

is allowed every time that
(

(λ̂ x.e, B( A), a@u, (e{u/x}, A)
)
is.

Since (λx.e)u ≡A e{u/x} and (λx.hu) ≡A h{u/x}, the condition (2.73) is

equivalent to Obs(D[e{u/x}]) ≤ Obs(D[h{u/x}]), the second statement of (2.72b),

namely e{u/x} ≤∅,A h{u/x}, is also proved.

If 〈v1, v2〉 ≤∅,A⊗B 〈w1, w2〉 the thesis is ∀g ∈ T `STλ
x:A,y:B,E, ∀D[·] ∈ CTXF (∅ ` E),

D[g{v1/x, v2/y}] ≤ D[g{w1/x, w2/y}], then we will preset the class of contexts

Cg[·] = let [·] be 〈x, y〉 in D[g] ∈ CTXF (∅ ` E) , with g ∈ T `STλ
x:A,y:B,E.

Since the hypothesis tells us that ∀C[·] ∈ CTXF (∅ ` A⊗B) , Obs(C[〈v1, v2〉]) ≤
Obs(C[〈w1, w2〉]), because of the structure of the contexts which have been chosen,
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this entails that

∀D[·] ∈ CTXF (∅ ` E)Obs(D[g{v1/x, v2/y}]) ≤ Obs(D[g{w1/x, w2/y}]),

which is the thesis.

If e ≤∅,A h with e, h ∈ T `STλ
A \ V`STλ

A , then one must exploit Lemma 2.10, namely

the relation ⇓⊆� which, under the hypothesis e ⇓ v and h ⇓ w ensures that v �A e
and h �A w. Thus since by Theorem 2.3 we know that �A⊆≤A, from hypothesis we

get the chain of relations v ≤A e ≤A h ≤A w, which brings back the proof towards

one of the previous cases.

Proposition 2.2. In `ST λ bisimulation is fully�abstract with context equivalence,

namely the two relations coincide.

Proof. Is a direct consequence of Theorem 2.3 and Theorem 2.4.



Chapter 3

Injecting Probabilistic Choice

The expressive power of `ST λ is rather limited, due to the presence of linearity.

Nevertheless, the calculus is complete for �rst-order computations over the �nite

domain of boolean values, as discussed previously. Rather than relaxing linearity, we

now modify `ST λ by endowing it with a form of probabilistic choice, thus obtaining

a new linear λ-calculus, called `PST λ, which is complete for probabilistic circuits.

The transition toward the probabilistic language is formally performed by enriching

`ST λ with a suitable choice operator denoted by ⊕. If f1, f2 ∈ T A are terms of

`ST λ, f1 ⊕ f2 is a composite term that can behave either like f1 or like f2. When

one component is selected the other is discarded, the choice being accomplished in

a probabilistic way. The choice operators, being possibly nested, take into account

the possibility to have many di�erent evolutions paths during the calculus.

In a nondeterministic environment, a term e = f1 ⊕ f2 obeys both the following

reduction rules:
f1 ⇓ v1

f1 ⊕ f2 ⇓ v1

and
f2 ⇓ v2

f1 ⊕ f2 ⇓ v2

, where it is understood that both

values v1 and v2 are possible. Nevertheless here we adopt a probabilistic point of

view, which is why every value must be supported by the probability which it has to

appear as a result of the evaluation process. We see `PST λ as an intermediate step

towards `QST λ, a quantum λ-calculus, where the structure of the language itself is

intrinsically probabilistic, since the system follows the quantum mechanics rules.

The set of the possible terms of the language, equipped with the new operator
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⊕, is fully described by the following bnf form, which comes directly from (2.1):

v, u ::= x | tt | ff | λx.e | 〈v, u〉

e, f, g ::= v | ef | if e then f else g | 〈v, u〉 | let e be 〈x, y〉 in f | e⊕ f | Ω.

(3.1)

The set Y of types is the same as the one of `ST λ, with the new following typing

rule
Γ ` e : A ∆ ` f : A

(tj − cho).
Γ,∆ ` e⊕ f : A

Since in a probabilistic framework we should suppose that at every step of reduc-

tion a single term evaluates to a distribution of terms, the evaluation operation is

introduced as a relation ⇓⊆ T ∅,A`PSTλ
×D `PSTλ

A between the sets of closed terms of type

A belonging to `PST λ and the one of distributions of values of type A in `PST λ.

The elements of D `PSTλ
A are actually subdistributions whose support is some �nite

subset of the set of values V`PSTλ
A , i.e., for each such E , we have E : V`PSTλ

A → R[0,1]

and
∑

v∈V`PSTλ
A

E (v) ≤ 1. If e ⇓ E , each result of the evaluation of e comes with a

probability, thus the notation E = {vpii }i∈I will often be used to denote the whole

set of element of E , each one with its probability.

Every subdistribution matches the condition
∑

i∈I pi ≤ 1, where the sum is

possibly lesser than 1 due to the presence of divergent paths of evaluation. For the

set {vi}i∈I , namely the support of E , the symbol Sup (E ) is used. In Figure 3.1

the rules for big-step semantics in `PST λ are given. If we take D `PSTλ
A as a symbol

which denotes the space of subdistribution whose support is a subset of T `PSTλ
A ,

the one�step reduction (→) and small�step reduction (⇒) operators in `PST λ are

binary relations → ⊆ T `PSTλ
A × D `PSTλ

A and ⇒ ⊆ T `PSTλ
A × D `PSTλ

A which satisfy

following general rules

v ⇒ {v1} (3.2a)

e→
{
f
qj
j

}
j∈J fj ⇒ Gj

.
e⇒

∑
j∈J qjGj

(3.2b)

Thoroughly, → is the smallest operator which ful�lls the whole set of rules given in

Table 3.2, while⇒ is the re�exive and transitive closure of→. For this probabilistic
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Big�step semantics rule Name

v ⇓ {v1} (v ⇓)℘

Ω ⇓ ∅ (Ω ⇓)℘

e ⇓ E f ⇓ F
{
`{u/x} ⇓ L(λx.`,u)

}
λx.`∈Sup(E ),u∈Sup(F )

ef ⇓
∑

λx.`∈Sup(E ),u∈Sup(F ) E (λx.`)F (u)L(λx.`,u)

(app ⇓)℘

e ⇓ E f ⇓ F g ⇓ G(
if e then f else g

)
⇓ E (tt)F + E (ff)G

(if ⇓)℘

e ⇓ E f ⇓ F

e⊕ f ⇓ 1
2
E + 1

2
F

(cho ⇓)℘

e ⇓ E {f{vi/x, ui/y} ⇓ Fi}〈vi,ui〉∈Sup(E )(
let e be 〈x, y〉 in f

)
⇓
∑
〈vi,ui〉∈Sup(E ) E (〈vi, ui〉)Fi

(let ⇓)℘

Figure 3.1: Big�step semantics of `PST λ.

language, a set of small�step operational semantics rules [38] may be provided,

similarly to what has been done for `ST λ (see Figure 2.2). This set of rules leads

a single term in a sequence, an element of D `PSTλ
A where every term occurs with

the same probability: one�step operational semantics rules for `PST λ are listed

in Figure 3.2. More generally, in `PST λ, the one�step reduction operator leads

subdistribution of terms in subdistribution of terms following the rule

em ∈ Sup (E ) em → {f
qj
j }j=1...J .

E → E \ {epmm } ∪ {f
qj ·pm
j }

(3.3)

Moreover, in `PST λ, big�step reduction relation between terms and distribution

of values, with the operational semantics given in Figure 3.1, enjoys the property

highlighted by the following lemma.

Lemma 3.1 (Uniqueness of semantics). For each term e ∈ T `PSTλ
A , there is a unique

distribution E such that e ⇓ E and, ∀v ∈ Sup (E ), | v |≤| e |
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One�step semantics rule Name

(λx.e)v → {e{v/x}1} (appβ)℘

e→ {f 1/N
n }n=1...N

eh→ {fnh1/N}n=1...N

(appL)℘

e→ {f 1/N
n }n=1...N

ve→ {vf 1/N
n }n=1...N

(appR)℘

if tt then h else `→ h (if − ax tt)℘

if ff then h else `→ ` (if − ax ff)℘

e→ {f 1/N
n }n=1...N

if e then h else `→ {(if fn then h else `)1/N}n=1...N

(if )℘

let 〈v, u〉 be 〈x, y〉 in e→ {e{v/x, u/y}1}
(let − ax )℘

e→ {f 1/N
n }n=1...N

let e be 〈x, y〉 in h→ {(let fn be 〈x, y〉 in h)1/N}n=1...N

(let)℘

e⊕ f → {e1/2, f 1/2}
(cho − ax )℘

Ω→ ∅
(div)℘

Figure 3.2: One-step reduction semantics rules of `PST λ. Rules are given in a

call�by�value leftmost reduction framework.

Proof. By structural induction of the generic term e ∈ T `PSTλ , examining evaluation

rules.

−e = v− If e = v, with v ∈ V`PSTλ there is nothing to prove, since by the evalua-

tion rule for values recalling the general rule (3.2a) one �nds E = {v1} which is the

subdistribution whose support is a set with a unique value. Besides the condition
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on the size is ful�lled being | e |=| v |

−e = f1f2− Using the induction hypothesis we �nd that there exist unique F1,

F2 such that f1 ⇓ F1, f2 ⇓ F2 and ∀λx.` ∈ Sup (F1), | λx.` |≤| f1 | as well as
∀u ∈ Sup (F2), | u |≤| f2 |. Thus, by the de�nition of size given in Table 2.4 and

by Lemma 2.2, whereas the language is linear it holds the relation ∀λ v.` ∈ sup F1,

∀u ∈ sup F2, | `{u/x} |<| λx.`u | ≤| f1f2 |. Therefore we can use the inductive

hypothesis also on `{f/x} and applying (app⇓)℘ we get

f1 ⇓ F1 f2 ⇓ F2

{
`{u/x} ⇓ G(λx.`,u)

}
λx.`∈Sup(F1),u∈Sup(F2)

f1f2 ⇓
∑

λx.`,u F1(λx.`)F2(u)G(λx.`,u)︸ ︷︷ ︸
E

, (3.4)

thus the distribution to which e evaluates, is indeed solely determined by the formula

E =
∑

λx.`∈sup F1,u∈sup F2
F1(λx.`)F2(u)G(λx.`,u).

−e = (if f1 then f2 else f3)− The induction hypothesis applied on the subterms

{fj}j∈J , allows to state that three distributions {Fj}j=1,2,3 exist unequivocally such

that {fj ⇓ Fj}j=1,2,3 and {∀uj ∈ sup Fj, | uj |≤| fj |}j=1,2,3. Therefore using induc-

tive hypothesis on the premises of the semantic rule (if ⇓)℘ we get

f1 ⇓ F1 f2 ⇓ F2 f3 ⇓ F3

if f1 then f2 else f3 ⇓ F1(tt)F2 + F1(ff)F3︸ ︷︷ ︸
E

. (3.5)

which gives us as distribution E = F1(tt)F2 +F1(ff)F3, determined by the values

of F2 and F3

−e = (let f1 be 〈x, y〉 in f2)− If we invoke as usual the inductive hypothesis we

get that f1 ⇓ F1, with F1 unequivocally determined, whose values ful�ll the condi-

tion | 〈u, ν〉 |≤| f1 | ∀〈u, ν〉 ∈ sup F1. Thus, by Lemma 2.2 we obtain the condition

∀〈u, ν〉 ∈ sup F1,

| f2{u/x, ν/y} |<| let 〈u, ν〉 be 〈x, y〉 in f2 |≤| let f1 be 〈x, y〉 in f2 |,

which allow to apply the inductive hypothesis to the premises of (let⇓)℘ writing

f1 ⇓ F1

{
f2{u/x, ν/y} ⇓ G〈u,ν〉

}
〈u,ν〉∈Sup(F1) ,(

let f1 be 〈x, y〉 in f2

)
⇓
∑
〈u,ν〉∈Sup(F1) F1(〈u, ν〉) · G〈u,ν〉︸ ︷︷ ︸

E

(3.6)
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whence the distribution E such that e ⇓ E is unequivocally determined.

−e = f1 ⊕ f2− Let write down the rule for choice operator (cho ⇓)℘:

f1 ⇓ F1 f2 ⇓ F2

f1 ⊕ f2 ⇓ 1
2

(F1 + F2)
, (3.7)

remarking that the existence and uniqueness of F1 and F2 such that ∀u1 ∈ sup F1,

| u1 |≤| f1 | and ∀u2 ∈ sup F2, | u2 |≤| f2 |, are determined by induction hypothesis

on the subterms f1, and f2. It follows that e = f1 ⊕ f2 ⇒ e ⇓ 1
2

(F1 + F2).

−e = 〈f1, f2〉− Here the distribution E is univocally determined by induction hy-

pothesis, being by induction f1 ⇓ F1, f2 ⇓ F2 and E = {〈uj, νj〉qj}j∈J , where
uj ∈ Sup (F1), νj ∈ Sup (F2).

If Γ ` e ⇓ E : A, then the unique E from Lemma 3.1 is called the semantics of

term e and is denoted simply as [e].

3.1 Probabilistic Context Preorder

Context equivalence is de�ned very similarly to `ST λ, the only di�erence being the

underlying notion of observation, which in `ST λ takes the form of convergence, and

in `PST λ becomes the probability of convergence.

The set of possible linear contexts in `PST λ is indeed obtained by the bnf form

(2.17b) by simply adding the term C[·]⊕D[·], being therefore

V [·] ::=[`v ·] | λx.C[·] | 〈V [·], u〉 | 〈u, V [·]〉 (3.8)

C[·] ::=[`e ·] | V [·] | if C[·] then f else g | if f then C[·] else D[·] |

fC[·] | C[·]f | let f be 〈x, y〉 in C[·] | let C[·] be 〈x, y〉 in f | C[·]⊕D[·].
(3.9)

Nevertheless, to properly give the context preorder in a linear probabilistic envi-

ronment, requires to adapt the already given de�nition of the function Obs to the

new probabilistic environment. Therefore here the function Obs : T `PSTλ
Γ,A → R is
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de�ned as Obs(e) =
∑
[e] 1. The de�nitions of contextual preorder and contextual

equivalence are left unchanged with respect to deterministic `ST λ (2.19, 2.20), with

the exception that the class of possible contexts can be built with the syntactic tree

given in ( 3.9). We have

e ≤Γ,A h ⇔ ∀C[·] ∈ CTXB (Γ ` A) , Obs(C[e]) ≤ Obs(C[h]) (3.10a)

e ≡Γ,A h ⇔ ∀C[·] ∈ CTXB (Γ ` A) , Obs(C[e]) = Obs(C[h]). (3.10b)

It is easy to show that the probabilistic context relation is a preorder as a mere

consequence of re�exivity and transitivity of ≤.

We shall denote by CTXA (∆ ` B) the collection of all possible (not necessarily

ground) context such that ∅ ` C[∆ ` B] : A.

Lemma 3.2 (Probabilistic context preorder and context equivalence basic prop-

erty). Probabilistic context preorder is a precongruence over T `PSTλ
Γ,A , and probabilis-

tic context equivalence a congruence likewise.

Proof. It is analogous to that of Lemma 2.7: only we add to the other cases the proof

for property (c− 7): (e1 ≤Γ1,A h1 ∧ e2 ≤Γ2,A h2) ⇒ e1 ⊕ e2 ≤Γ1Γ2,A h1 ⊕ h2. For

this operator we set the contexts as C[·] = C ′[λ {xi}i∈I .[`A]⊕ e2] ∈ CTXA (Γ1 ` A)

and D[·] = C ′[λ {xi}i∈I .h1 ⊕ [`A]] ∈ CTXA (Γ2 ` A) where where C ′[·] is a generic

context, {xi}i∈I stands for dom(Γ1) ∪ dom(Γ2). Being C[h1] = D[e2] we get the

chain e1 ⊕ e2 ≤Γ1Γ2,A e1 ⊕ h2 ≤Γ1Γ2,A h1 ⊕ h2, which gives thesis by transitivity of

≤Γ1Γ2,A.

Lemma 3.3 (Probabilistic context preorder and probabilistic context equivalence

behaviour with respect to contexts). Probabilistic context preorder and context equiv-

alence are compatible with respect to whatever context application to terms, therefore

∀e, h,∀C[·] ∈ CTXB (Γ ` A) , e ≤Γ,A h ⇒ C[e] ≤∅,B C[h]. (3.11)

1
∑

[e], is a shorter form which stands for
∑

v∈Sup
(
[e]

) [e](v).
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Proof. The proof is alike that one which has been given in deterministic case with

Lemma 2.8. Hypothesis entails as a consequence ∀D[·] ∈ CTXB (Γ ` A),Obs(D[e]) ≤
Obs(D[h]), while thesis requires that

∀G[·] ∈ CTXE (∅ ` B) , Obs(G[C[e]]) ≤ Obs(G[C[h]]),

thus simply let choose D[·] = G[C[·]] ∈ CTXE (Γ ` A).

3.1.1 Probabilistic Simulation

Would it be possible to de�ne applicative bisimilarity for `PST λ similarly to what

we have done for `ST λ? The �rst obstacle towards this goal is the dynamics of

`PST λ, which is not deterministic but rather probabilistic, and thus cannot �t into

an LTS, which traditionally describes a deterministic behaviour.

In the literature, however, various notions of probabilistic bisimulation have been

introduced, and it turns out that the earliest and simplest one, due to Larsen and

Skou [39], is su�cient for our purposes.

A labelled Markov chain (LMC in the following) is a triple (S ,L,P), where S

and L denote a set of states and of labelled action respectively, as in the de�nition

of a LTS, while P is a transition probability matrix, i.e., a function from S ×L×S

to R[0,1]. The set of labels for our state system is the same as the `ST λ LTS and it

has already been discussed in Figure 2.7. Besides, to unburden formulas, here we

adopt this notation: P(s, `,X), when X ⊆ S , stands for
∑

t∈X P(s, `, t) .

Since in a probabilistic environment s ∈ S , when undergoing an action labelled

` will evolve with a certain probability to t, P (s, `, t) just expresses the probability

of occurrence of this event. For every s and for every `, P(s, `,S ) respects the con-

straint to be equal or lesser than 1: as usual values strictly less than one correspond

to the possibility of divergent systems.

Given such a LMC M , a preorder R on S is said to be a simulation i� for

every subset X of S , it holds that

P(s, `,X) ≤ P(t, `, R (X)) (3.12)
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where R (X) is a subset of S de�ned be the following condition:

R (X) = {s ∈ S | ∃t ∈ X, tR s}. (3.13)

An equivalence relation R on S is said to be a bisimulation on M i� whenever

(s, t) ∈ R , it holds that

P(s, `, E) = P(t, `, E) (3.14)

for every equivalence class E of S modulo R .

Since the states of LMC are no more than the terms of the language, it should

be remarked that the way that the environment can interact with them strongly

depends on their type, thus becomes crucial the necessity to exhibit it. This is the

reason that in the elements of the probability transition function, the type appears

every time with both values and terms.

Implementing a labelled Markov chain (LMC), denoted by M`PSTλ
, on the prob-

abilistic language requires to choose the tern (S ,L,P) as shown just below

S = T `PSTλ ] V`PSTλ , (3.15a)

L = {aeval , att, aff, a@u, a⊗h, aYA , aŶA}, (3.15b)

P = P`PSTλ
. (3.15c)

Let us recall that T `STλ is a set of pairs ∪A∈Y(T `STλ
A ×{A}), and similarly for V`STλ .

The notation, used in L`STλ
, to distinguish the couple (v, A) where v appears as

a term from the couple (v̂, A) where v plays role of a value has been conserved

identically. Beside, the function P`PSTλ
assumes the following values:

P`PSTλ

(
(λ̂ x.e, A( B), a@v, (e{v/x}, B)

)
= 1;

P`PSTλ
((e, A), aeval , (v̂, A)) = [e](v);

P`PSTλ

(
(〈̂v, u〉, A⊗B), a⊗e, (e{v/x, u/y}, E)

)
= 1;

P`PSTλ

(
(t̂t, bool), att, (t̂t, bool)

)
= 1; P`PSTλ

(
(f̂f, bool), aff, (f̂f, bool)

)
= 1;

P`PSTλ
((e, A), aYA , (e, A)) = 1; P`PSTλ

(
(v̂, A), aŶA , (v̂, A)

)
= 1,
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and it has value 0 in all the other cases. It is easy to realize that P`PSTλ
can indeed

be seen as the natural generalization of N`STλ
: on states in the form (v̂, A), the

function either returns 0 or 1, while in correspondence to states like (e, A) and the

label eval , it behaves in a genuinely probabilistic way. Probabilistic (bi)simulation,

despite the endeavor required to de�ne it, preserves all fundamental properties of

its deterministic sibling.

The de�nition of (bi) simulation as a relation indexed on types is given consid-

ering the proper elements of transition matrix P`PSTλ
, depending on whether the

terms involved in the relation are values or they aren't

� For boolean values the only possible transition is a check on the value itself,

therefore if the preorder Sbool is a simulation over the set of boolean values:

∅ ` eSbool h : bool ⇒ ∀b ∈ V`PSTλ
bool

P`PSTλ

(
(ê, bool), ab, (b̂, bool)

)
≤ P`PSTλ

(
(ĥ, bool), ab, (b̂, bool)

)
. (3.16)

� For function values, the usual de�nition of applicative simulation is traced out,

thus if the preorder SB(A is a simulation on V`PSTλ
B(A then

∅ ` λx.eSB(A λx.h : B( A ⇒ ∀v ∈ V`PSTλ
B ,P`PSTλ

(
(λ̂ x.e, B( A),

a@v, (e{v/x}, A)) ≤ P`PSTλ

(
(λ̂ x.h,B( A), a@v, (SA (e{v/x}), A)

)
.

(3.17)

� For pairs, the de�nition relies on the proper transition matrix elements, being

∅ ` 〈v1, v2〉 SA⊗B 〈u1, u2〉 : A⊗B ⇒ ∀g ∈ T `STλ
x:A,y:B,E,

P`PSTλ

(
(〈̂v1, v2〉, A⊗B), a⊗g, (g{v1/x, v2/y}, E)

)
≤

P`PSTλ

(
( ̂〈u1, u2〉, A⊗B), a⊗g, (SE (g{v1/x, v2/y}), E)

)
. (3.18)

� For terms the simulation relation is determined as a probability to evaluate to

a set of values, hence its probabilistic nature is recovered:
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∅ ` eSA h : A ⇒ ∀X ∈ VA,

P`PSTλ
((e, A), aeval , (X,A)) ≤ P`PSTλ

((h,A), aeval , (SA (X), A)) . (3.19)

Most of the (bi)simulation properties are shared also by its probabilistic extension.

Lemma 3.4. Every probabilistic bisimulation is also a probabilistic simulation.

Proof. If BA is a probabilistic bisimulation and (e, h) ∈ BA , then the property

∀`, ∀ E ⊆ VA/BA , P`PSTλ
((e, A), `, (E, A)) = P`PSTλ

((h,A), `, (E, A)) (3.20)

holds, with VA/BA quotient set of VA modulo BA . To show that BA has the

simulation property, the relation

∀X ⊆ VA, P`PSTλ
((e, A), `, (X,A)) ≤ P`PSTλ

((h,A), `, (BA (X), A)) (3.21)

has to be proved. Let {Ej}j∈J be the set of equivalence classes generated by BA on

VA. If in relationship (3.20) we set X = Ej for some j ∈ J then the property comes

immediately, being a consequence of the inclusion =⊆≤, since SA (En) = En.

Otherwise let write the subset X in the form X = ∪i∈IXi, where Xi = X ∩ Ei

and I ⊆ J ; so that

∀X ⊆ VA, P`PSTλ
((e, A), `, (∪i∈I(Xi), A)) =

∑
i∈I

P`PSTλ
((h,A), `, (Xi, A)) ≤

≤
∑
i∈I

P`PSTλ
((h,A), `, (Ei, A)) = P`PSTλ

((h,A), `, (∪i∈IEi, A)),

(3.22)

and the property is proved since SA (X) = SA (∪i∈I(Xi)) = ∪i∈I(Ei). S op is also a

probabilistic simulation as a consequence of symmetric property of R and the fact,

just proved, that R is a probabilistic simulation.

Lemma 3.5. A symmetric relation which is a probabilistic simulation is a proba-

bilistic bisimulation.
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Proof. It has to be shown that if a relation ŜA is a simulation and it enjoys the

property ∀e, h ∈ T `PSTλ
A (e, h) ∈ ŜA ⇔ (h, e) ∈ ŜA , then it holds ∅ ` eBA h : A

with ŜA = BA bisimulation.

If e, h ∈ V`PSTλ
A , then we set e = v and h = w rewriting hypothesis as

P`PSTλ
((v̂, A), `, (û, A)) ≤ P`PSTλ

((ŵ, A), `, (ν̂, A)) ∧

P`PSTλ
((ŵ, A), `, (ν̂, A)) ≤ P`PSTλ

((v̂, A), `, (û, A)) (3.23)

where the label ` ∈ L depends on the type A. Since in all these cases the relation is

anyway deterministic, from (3.23) it follows immediately the equality

P`PSTλ
((v̂, A), `, (û, A)) = P`PSTλ

((ŵ, A), `, (ν̂, A)) ,

which proofs the thesis.

If e, h ∈ T `PSTλ
A \V`PSTλ

A , then let us remark that the relation ŜA being a symmetric

preorder is an equivalence relation. If E ∈ {Em}m∈M is a generic equivalence class

belonging to the quotient set V`PSTλ
A / ŜA we may rewrite hypothesis as

∀E, F ⊆ V`STλ
A , P`PSTλ

((e, A), aeval , (E, A)) ≤ P`PSTλ

(
(h,A), aeval , ( ŜA (E), A)

)
∧

P`PSTλ
((h,A), aeval , (F, A)) ≤ P`PSTλ

(
(e, A), aeval , ( ŜA (F), A)

)
. (3.24)

Now let us recall that, by de�nition

ŜA (E) = {v ∈ V`PSTλ
A | ∃u ∈ E, u ŜA v} = E,

since v, u both belong to the same equivalence class; similarly ŜA (F) = F.

Using this result and setting, in (3.24), E = F one �nds immediately

P`PSTλ
((e, A), aeval , (E, A)) = P`PSTλ

((h,A), aeval , (E, A)) ,

which completes the proof.
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3.2 From Applicative Simulation towards Applica-

tive Bisimilarity

Following the deterministic procedure, it should be desirable that starting from

the de�nition of probabilistic simulation and probabilistic bisimulation, one could

upgrade to the more general concepts of similarity and bisimilarity, simply taking

the union of all possible simulation and bisimulation respectively.

Nevertheless the way to carry out this process in the probabilistic pattern is more

complex due to the slightly di�erent de�nition of simulation and bisimulation which

is given in this scheme, where transitivity property is embedded in the de�nition

itself so that it is not possible assume that the union of all possible simulations is

necessarily a simulation itself, and analogously for bisimulation, as we will see just

below.

Indeed, a simulation was de�ned as a preorder relation which enjoys the gen-

eral property (3.12) and a bisimulation as an equivalence relation which enjoys the

property (3.14). Hereafter, in a probabilistic environment, a relation which has

the property (3.12) but not necessarily is a preorder will be referred as a pseudo�

simulation; analogously we will call pseudo�bisimulation a relation which has the

property (3.14) but it is not necessarily an equivalence relation.

Hence we use the symbol [pse]Sim to denote the set whose elements are the

probabilistic pseudo�simulation, namely the relations among the elements of the set

of states S which have the property (3.12); similarly with [pse]BiS we will denote

the set of all possible probabilistic pseudo�bisimulations.

The following lemma will show that the sets de�ned above are closed by compo-

sition, therefore that taking two or more element of [pse]Sim ( [pse]BiS respectively)

and composing them one obtains an element of [pse]Sim ( [pse]BiS) in turn. It �nds

its analogous in Lemma 2.11, valid in the deterministic framework.

Lemma 3.6 (Pseudo-(bi)simulation set is closed under composition.). S (1) ∈ Sim

and S (2) ∈ Sim ⇒ S (1) ◦ S (2) ∈ [pse] Sim (and analogously for [pse]BiS).
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Proof. Exploiting the de�nition of composition between relation we write the hy-

pothesis as sS (1)t and tS (2)r, namely

∀X, Y ⊆ S , P (s, `,X) ≤ P
(
t, `, S (1)(X)

)
∧ P (t, `, Y ) ≤ P

(
Y, `, S (2)(Y )

)
,

(3.25)

recalling that, by de�nition S (i)(X) = {s ∈ S | ∃t ∈ X, tS (i)s}i=1,2 and likewise

for { S (i)(Y )}i=1,2.

For any X, let set Y = S (1)(X), thus (3.25) becomes

∀X ⊆ S , P (s, `,X) ≤ P
(
t, `, S (1)(X)

)
∧

P
(
t, `, S (1)(X)

)
≤ P

(
r, `, S (2)

(
S (1)(X)

))
(3.26)

whence

∀X ⊆ S , P (s, `,X) ≤ P
(
r, `, S (2)

(
S (1)(X)

))
. (3.27)

We are left to rewrite in a simpler way the set S (2)
(
S (1)(X)

)
. Using the de�nition

we get

S (2)
(
S (1)(X)

)
=
{
r ∈ S | ∃s ∈ X ∧ t ∈ S (1)(X), sS (1)t ∧ tS (2)r

}
, (3.28)

namely S (2)
(
S (1)(X)

)
≡
(
S (1) ◦ S (2)

)
(X), which is properly the condition stating

that S (1) ◦ S (2) ∈ [pse] Sim.

The sets [pse]Sim and [pse]BiS seem to be the better candidates to describe the

collection of all probabilistic simulation (and bisimulation respectively) although

the transitivity of their elements is not ensured (but re�exivity is!). Transitivity is,

indeed, a characteristic required in the de�nition itself of both probabilistic similarity

as well as probabilistic bisimilarity.

In order to overcome this hurdle it is necessary to introduce the concept of

transitive closure of a set: given a relation R � let choose it as a relation on a

subset of S � its transitive closure R + is the relation inductively de�ned from R

by the following two rules

sR t
sR +t

(tc − 1 )
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sR +t t R +r
sR +r

(tc − 2 )

where s, t, r ∈ S ; thus R + is a preorder induced by R on the set S . The transitive

closure preserves fundamental properties of relation above all compatibility and

closure under substitution, as the following lemmas state.

Lemma 3.7 (On the compatibility). If R is compatible then so is R +.

Proof. By induction on the structure of the terms involved in the relation, examinig

the rules (tc − 1 ) and (tc − 2 ).

Given e, h ∈ T `PSTλ
A which are supposed to be built with some constructor of the

language by �nite set of subterms {fi}i∈I and {`i}i∈I such that e = cnstr ({fn}n∈N )

and h = cnstr ({`n}n∈N ), the statement requires to prove that

∀n ∈ N , ∆n ` fnR +`n : Bn ⇒ Γ ` eR +h : A. (3.29)

• Let suppose that for every n the set of relations appearing in (3.29) hypothesis,

namely ∆n ` fnR +`n : Bn all are a consequence of the application of (tc − 1 ), then

∀n the condition ∆n ` fnR `n : Bn is matched. Since by hypothesis R is compatible

with the rule of the language, the previous set of relations entails that ∅ ` eR h : A.

Thus applying (tc − 1 ) we get the thesis (3.29).

• Let now suppose that ∀n 6= j the relations (3.29) all have (tc − 1 ) as last rule,

except for a unique subterm fj such that the condition ∆j ` fj R
+`j : Bj is a

consequence of (tc − 2 ). Therefore it must exist a certain gj such that

∆j ` fj R +gj : Bj ∆j ` gj R +`j : Bj
(tc − 2 ),

∆j ` fj R +`j : Bj

(3.30)

Now the induction hypothesis, entailing that R + is compatible on smaller terms

since R is, can be used. Denoting by g the term built with the operator cnstr with

subterms f1, . . . gj, . . . fN and using (tc − 1 ) for pairs belonging to the set N \ {j}
one gets

∀n 6= j,∆n ` fnR +`n : Bn ∧ ∆j ` gj R +`j : Bj ⇒ Γ ` g R +h : A. (3.31)
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Moreover recalling that R is compatible, and thus re�exive � see Lemma 2.13 � we

can write also by inductive hypothesis, which ensures that R + is compatible on

smaller terms R as it is, that

∀n 6= j,∆n ` fnR +fn : Bn ∧ ∆j ` fj R +gj : Bj ⇒ Γ ` eR +g : A. (3.32)

Now, applying to the conclusion of (3.31) and (3.32) the rule (tc − 2 ) we �nd

Γ ` eR +g : A Γ ` g R +h : A
(tc − 2 ).

Γ ` eR +h : A
(3.33)

• We will apply the same arguments to the cases where there are two (or more) pairs

of subterms (fj1 , gj1), (fj2 , gj2) . . . . . . whose relation is consequence of the application

of (tc − 2 ) as last rule.

• Finally let us consider the case where all the terms have as the last rule (tc − 2 ),

whence the set of relations

∀n ∈ N , ∆n ` fnR +gn : Bn ∆n ` gnR +gn : Bn (tc − 2 )
∆n ` fnR +`n : Bn

(3.34)

whence, by induction hypothesis on the premises of (3.34), we easily get

Γ ` eR +g : A ∧ Γ ` g R +h : A, (3.35)

where, of course, g = cnstr ({gn}n∈N ). We �nd the thesis applying (tc − 2 ) with

premises (3.35).

Lemma 3.8 (If a relation is closed under value substitution, so is its transitive

closure). If R is closed under substitution then so it is R +, namely(
Γ, x : B ` eR h : A ∧ v ∈ V`PSTλ

B ⇒ Γ ` e{v/x}Rh{v/x} : A
)
⇒(

Γ, x : B ` eR +h : A ∧ v ∈ V`PSTλ
B ⇒ Γ ` e{v/x}R +h{v/x} : A

)
(3.36)

Proof. The proof is by induction on the derivation of the relation Γ, x : B ` eR +h :

A.
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S

s S

`

X

S (1)

t S

`

Y = S (1)(X)

r S

`

Z = S (2)(Y ) =
= S (2)(S (1)(X))

S (2)

Y = S (1)(X) = {t ∈ S | ∃s ∈ X, sS (1)t}

Z = S (2)(Y ) = {r ∈ S | ∃t ∈ Y | tS (2)r}

Figure 3.3: Graphical idea of two probabilistic simulations composition: in a sys-

tem whose states belong to a set denoted by S , a state s ∈ S may evolve to a

whichever set of states X ⊆ S . If s S (1) t, being S (1) a simulation relation, then

the evolution of t goes on towards a set Y = S (1)(X). As a useful remark, let notice

that since S (1) is a simulation, it is re�exive and then ∀X, X ⊆ S (1)(X). If t is, in

turn related to r by mean of a di�erent simulation S (2), then the latter will evolve

towards a set of the states Z = S (2)(Y ) = S (2)
(
S (1)(X)

)
.

The following step in our path consists in enlarging the above mentioned sets of

pseudo�simulations and pseudo�bisimulations in order to obtain new relations that,

enjoying transitivity, are good candidates for a de�nition of probabilistic similarity

and bisimilarity.These relations, formerly denoted as [pse]Sim and [pse]BiS, have al-

ready been proved to be closed under composition: now we are going to show that
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they are closed with respect to a generic union of elements.

Namely, if R
(n)
A and R

(m)
A both belong to [pse]Sim also their union belongs to

it, and the same holds for [pse]BiS likewise: the elements of [pse]Sim and [pse]BiS

indeed, are not required to be transitive relations, the main problem to extend this

topics to transitive relations being that a whatever union of transitive relation is not

generally a transitive relation, while the union of relations preserves the properties

of re�exivity and simmetry.

As worthwhile remark, let observe that every possible relation written as
⋃
n∈N

BA (n), with BA (n) ∈ [pse] BiS ∀n is re�exive and symmetric, whereas every pseudo�

bisimulation is a re�exive and symmetric relation and a whatever union of re�exive

and symmetric relations is in turn re�exive and symmetric. Hence
⋃
n∈N BA (n) has

good right to belong to [pse]BiS.

For what has been discussed until now, the relations de�ned by the symmetric

and transitive closures of a union of every element of [pse]Sim and [pse]BiS seem to

be good candidates to obtain a good de�nition of similarity and bisimilarity.

Lemma 3.9 (Transitive union of a collection of probabilistic pseudo simulations

and pseudo bisimulations). The transitive closure

SA + =

{⋃
i

R (i) | R (i) ∈ [pse] Sim

}+

, and

BA + =

{⋃
i

R (i) | R (i) ∈ [pse] BiS

}+

of the union of every possible relations which belong to Sim and BiS are simulation

and bisimulation respectively.

Proof. Being SA + transitive by de�nition, and re�exive as union of re�exive rela-

tions, it is necessarily a preorder: thus we should only show that it has the pseudo�

simulation property, namely Γ ` eSA +f : A⇒

∀`, ∀X ⊆ T `PSTλ
A , P`PSTλ

((e, A), `, (X,A)) ≤ P`PSTλ

(
(f, A), `, (SA +(X), A)

)
.

(3.37)
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If (e, f) ∈ SA +, then since the relation is a union of simulation, there are N ≥ 1

elements of Sim and N − 1 intermediate terms such that eSA (1)g1 ∧ g1 SA (2)g2 ∧
· · · ∧ gN−1 SA (N)f .

Hence, the same relation between e and f can be rewritten, by de�nition of com-

position, as e
(
SA (1) ◦ SA (2) ◦ · · · ◦ SA (N)

)
f . Now, using the previous Lemma 3.6,

hence the property of closure under composition we �nd immediately

(
SA (1) ◦ SA (2) ◦ · · · ◦ SA (N)

)
∈ [pse] Sim.

Analogously the relation BA +, as transitive closure of the union of all possible

pseudo�bisimulations, is by de�nition transitive but it is also re�exive and symmet-

ric, since an arbitrary union of elements of [pse] BA which are re�exive and symmetric

relations, is a re�exive and symmetric relation in turn: thus BA + is an equivalence

relation on the terms space T `PSTλ
A .

Using the same procedure we evince that ∀e, h ∈ T `PSTλ
A such that ∅ ` eBA +h :

A, there are M elements of [pse]BiS, such that eBA (1)g1 ∧ g1 BA (2)g2 ∧ · · · ∧ gM−1

BA (M), therefore one gets the result (e, h) ∈ BA (1) ◦ · · · ◦ BA (M), where the relation

BA (1) ◦ BA (M) is an element of BiS by Lemma 3.6.

Thus, let us resume the important results that have been found with Lemma 3.9

and Lemma 3.6 in the following:

Proposition 3.1. The transitive closure SA + of the union of every possible prob-

abilistic pseudo�simulation is a probabilistic simulation and the transitive closure

BA + of the union of a every possible probabilistic pseudo�bisimulation is a proba-

bilistic bisimulation.

Probabilistic similarity and probabilistic bisimilarity have similar de�nitions.

As for probabilistic similarity one sets it as the union

�A=

{⋃
i

R (i) | R (i) ∈ Sim

}
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of all possible simulations and probabilistic bisimilarity likewise is

∼A=

{⋃
i

R (i) | R (i) ∈ BiS

}
,

understanding the meaning of the sets Sim = {R A | R A is a probabilistic simula-

tion onT `PSTλ
A } and BiS = {R A | R A is a probabilistic bisimulation onT `PSTλ

A }.

However, as already pointed out, a generic union of preorders is not necessarily

a preorder, and the same holds for a generic union of equivalence relations which

is not perforce an equivalence relation, since the transitivity is not saved when the

union is taken.

This entails that about �A and ∼A, symbols which denote similarity and bisimi-

larity as in deterministic `ST λ, as a matter of fact we currently can't say yet whether

�A is a preorder and then a simulation itself and ∼A an equivalence relation and

thus a bisimulation. This is proved by the lemma below.

Lemma 3.10 (Probabilistic similarity and bisimilarity). ∼A is an equivalence rela-

tion over T `PSTλ
A and, likewise, �A is a preorder over T `PSTλ

A .

Proof. Indeed ∼A⊆ BA + since the second relation is the transitive closure of the

�rst, and ∼A⊇ BA + since the second one is a bisimulation itself and, by de�nition

∼A contains all possible bisimulations.

Thus ∼ A = BA + and ∼ inherits all the properties of BA +, then it is an

equivalence relation. Similarly �A is a preorder on T `PSTλ
A .

Lemma 3.11. Probabilistic similarity � and co-similarity �op satisfy to the relation
∼=� ∩ �op.

Proof. The statement can be proved showing both the inclusions ∼⊆ (� ∩ �op) and
(� ∩ �op) ⊆∼.

• ∼⊆ (� ∩ �op): for previous Lemma 3.4, which holds for every simulation,

therefore for similarity too, we have ∼⊆� and ∼⊆�op, whence ∼⊆ (� ∩ �op) comes

immediately.
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• (� ∩ �op) ⊆∼: the relation � ∩ �op is necessarily an equivalence relation,

being the symmetric intersection of two relations which are preorders by de�nition.

Let E be an element of its quotient set: since the intersection of two similarity is

a similarity in turn, the following condition must hold, if ∅ ` e(�A ∩ �opA )h : A

∀E ⊆ VA, P`PSTλ
((e, A), `, (E, A)) ≤ P`PSTλ

((h,A), `, ((�A ∩ �opA )(E), A))

where, by de�nition (�A ∩ �opA )(E) = {h ⊆ T `PSTλ | ∃e ∈ E, ∅ ` (e �A h ∧ e �opA)

h : A}. Since both �A and �opA are re�exive, E ⊆ (�A ∩ �opA )(E); then let us de�ne

E′ = (�A ∩ �opA )(E) \ E.
Following the de�nition above, an element f ∈ E′ is such that ∃e ∈ E, e �A f

∧ e �opA f ∧f /∈ E. Nevertheless, since as already remarked (�A ∩ �opA ) is an

equivalence relation, the �rst two conditions entail that f ∈ E, indeed it is in the

same equivalence class of e and the the third condition leads to a contradiction, so

that necessarily E′ ≡ ∅ and E = (�A ∩ �opA )(E), proving then the condition:

∀E ⊆ VA, P`PSTλ
((e, A), `, (E, A)) = P`PSTλ

((h,A), `, (E, A)),

which is the thesis.

3.3 Probabilistic Applicative Similarity is a Precon-

gruence

With respect to `ST λ, the simulation and bisimulation relations, and their largest

analogous, namely similarity and bisimilarity, can be given by just instantiating the

general scheme described above to the speci�c LMC modeling terms of `PST λ and

their dynamics, which has been done in de�nitions (3.16) � (3.19).

All these turn out to be relations on closed terms, but as for `ST λ, they can be

turned into proper typed relations just by the usual extension to open terms (2.31).

The question now is: are the just introduced coinductive methodologies sound

with respect to context equivalence? And is it that the proof of precongruence for

similarity from Section 2.5 can be applied here? The answer is positive, but some
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e�ort is needed [37, 12] . Above all, we are supposed to enhance the applicative

similarity relation with a set of Howe's rules, which are identical to those already

given for deterministic language (Figure 2.8) to which we must add a new rule for

the constructor ⊕ which is written down just below

.
Γ ` eR Hh : A ∆ ` f R H` : A Γ,∆ ` h⊕ `R b : A

Γ,∆ ` e⊕ f RHb : A

The proofs of the properties of Howe's relation such as

� compatibility of �H (Lemma 2.16)

� �⊆ �H (Lemma 2.17)

� substitutivity of �H (Lemma 2.19)

� pseudo�transitivity of �H (Lemma 2.18)

hold identically in probabilistic and deterministic scheme (as well as in quantum

one). Nevertheless, the probabilistic nature of this systems makes it harder to prove

the key lemma, namely the simulation property of �H .

Indeed we have a double hindrance given both from the de�nition of probabilistic

(bi)similarity which requires to extend through the symmetric and transitive closure

of a relation all properties already proved and, above all, from the greater di�culty

that the proof of key lemma entails in a probabilistic system.

In particular we are required to prove that the transitive closure of Howe's lifting

of a general relation R , enjoys all the properties of compatibility, substitutivity and

closure under substitution that R H itself has. This will be exploited obviously with

similarity.

Anyway we start by facing the problem to show that Howe's lifting of the prob-

abilistic similarity relation is itself a probabilistic simulation.

Lemma 3.12. Probabilistic key lemma: Howe's extension of probabilistic similarity

has the probabilistic simulation relation property.

Therefore Howe's extension of probabilistic similarity is included in similarity itself
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which is, by de�nition, the greatest simulation. As a corollary of �AH ⊆�A, we �nd
the analogous result ∼AH ⊆∼A.

Proof. As it has been done in deterministic environment (relationships 3.16 �3.19),

according to the de�nition of probabilistic simulation we split the proof distinguish-

ing between values and terms according to the following statement:

∅ ` e�bool
Hh : bool ⇒ ∀b ∈ V`PSTλ

bool ,

P`PSTλ

(
(ê, bool), ab, (b̂, bool)

)
≤ P`PSTλ

(
(ĥ, bool), ab, (�bool

H(b̂), bool)
)

(3.38a)

∅ ` λx.f�B(AHλx.` : B( A ⇒ ∀v ∈ V`PSTλ
B , ∀X ∈ V`PSTλ

A ,

P`PSTλ

(
(λ̂ x.f , B( A), a@v, (X,A)

)
≤

≤ P`PSTλ

(
(λ̂ x.`, B( A), a@v, (�B(AH(X), A)

)
(3.38b)

∅ ` 〈v1, v2〉�A⊗BH〈w1, w2〉 : A⊗B ⇒ ∀g ∈ T `PSTλ
x:A,y:B,E

P`PSTλ

(
(〈̂v1, v2〉, A⊗B), a⊗g, (g{v1/x, v2/y}, E)

)
≤

≤ P`PSTλ

(
( ̂〈w1, w2〉, A⊗B), a⊗g,�E (g{v1/x, v2/y}, E)

)
(3.38c)

(
∅ ` e�AHh : A ∧ e ⇓ E

)
⇒

(
h ⇓H ∧ ∀X ∈ V`PSTλ

A ,

P`PSTλ
((e, A), aeval , (X,A)) ≤ P`PSTλ

(
(h,A), aeval , (�AH(X), A)

))
(3.38d)

We have to prove the lemma for values and for terms, according to the di�erent

de�nition of similarity.

♦ If ∅ ` e�bool
Hh : bool are boolean values we must prove the statement (3.38a).

Since the relation ∅ ` e�bool
Hh : bool must be a consequence of (How1v),

which has, as a unique premise ∅ ` e �bool h : bool, we �nd the thesis

as a result of the de�nition (3.16). Indeed, if e 6= b the left�hand side of
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(3.38a) is zero and the inequality is obviously true; otherwise e = b and from

∅ ` e �bool h : bool it follows h ∈�bool (b) ⊆ �bool
H(b). In this case both

sides of (3.38a) are equal to one.

♦ If the value is a λ�abstraction e = λx.f , then we should prove the property

(3.38b), originating from de�nition (3.17).

The hypothesis ∅ ` λx.f�B(AHλx.` : B ( A, is an immediate consequence

of Howe's rule for lambda abstractions (How2 )

x : B ` f�AHg : A ∅ ` λx.g �B(A λx.` : B( A ,
∅ ` λx.f�B(AHλx.` : B( A

(3.39)

Since Howe's relation is compatible, from the �rst premise of (3.39), it follows

the relation λx.f�B(AHλx.g. Moreover the second premise of (3.39) entails,

by de�nition of probabilistic similarity (3.17), the relation ∀v ∈ V`PSTλ
B , `{v/x}

∈ �A (g{v/x}) or, equivalently,

λx.` ∈�B(A (λx.g). (3.40)

Now let us apply the induction hypothesis on the smaller terms in the premises

of (3.39), entailing that

λx.f�B(AHλx.g ⇒ λx.g ∈ �B(AH(λx.f), (3.41)

as it is shown in Figure 3.4. Joining the results (3.40) and (3.41) we get that

λx.` ∈ �B(A
(
�B(AH(λx.f)

)
. Notice that the result given in Lemma 2.17,

implies that �B(A ⊆ �B(AH , thus necessarily �B(A
(
�B(AH(λx.f)

)
=

�B(AH(λx.f). Then we conclude that

λx.` ∈ �B(AH (λx.f) , hence ∀v ∈ V`PSTλ
B `{v/x}�AH(f{v/x}) (3.42)

and this result can be seen also a consequence of the pseudo�transitivity prop-

erty of probabilistic Howe's lifting (Lemma 2.18).

Thus for any generic X ⊆ V`PSTλ
A , if f{v/x} /∈ X the inequality (3.38b) neces-

sarily holds because the left�hand side of (3.38b) is equal to zero. Otherwise

f{v/x} ∈ X and by previous arguments λx.` ∈ �B(AH (λx.f), whence we

get f{v/x} ∈ �AH(`{v/x}), and both sides of ( 3.38b) are equal to one.
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�AH(λx.f)λx.f
•

�AH(λx.f)

λx.f
•

λx.g
•

�A(λx.g)
λx.g
•

�A(λx.g)

λx.g
•

λx.`
•

�A
(�
A
H (λ

x.
f)

)

Figure 3.4: Graphical representation of the terms λx.f , λx.g and λx.` involved in

Howe's relation and of theirs �evolutes� under the relations�AH and�A respectively,

namely the sets �AH(λx.f) and �A (λx.g). The cone �A (λx.f) contains λx.g

according to the relation λx.f�AHλx.g. Moreover λx.` ∈�A (λx.g), according to

the relation λx.g �A λx.`: hence λx.` ∈ �A
(
�AH(λx.f)

)
. However, since it has

been proved that �A⊆ �AH , then λx.` ∈ �AH(λx.f).

♦ We conclude the prove of the key lemma for valued terms considering the case

e = 〈v1, v2〉, referring us to the statement (3.38c).

Here derivation tree for the hypothesis must terminate with the Howe's rule

for pair, namely

∅ ` v1�AHu1 : A

∅ ` v2�AHu2 : B ∅ ` 〈u1, u2〉 �A⊗B 〈w1, w2〉 : A⊗B
(How6 ).

∅ ` 〈v1, v2〉�A⊗BH〈w1, w2〉 : A⊗B
(3.43)

By compatibility of Howe's relation, from the �rst two premises of (3.43) we

get

〈v1, v2〉�A⊗BH〈u1, u2〉, (3.44)

whence by induction hypothesis it immediately follows, ∀g ∈ T `PSTλ
x:A,y:B,E
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P`PSTλ

(
(〈̂v1, v2〉, A⊗B), a⊗g, (g{v1/x, v2/y}, E)

)
≤

≤ P`PSTλ

(
( ̂〈u1, u2〉, A⊗B), a⊗g,�EH(g{v1/x, v2/y}, E)

)
(3.45)

and by de�nition of probabilistic similarity to the second premise of (3.43) one

�nds, ∀g ∈ T `PSTλ
x:A,y:B,E:

P`PSTλ

(
( ̂〈u1, u2〉, A⊗B), a⊗g, (g{u1/x, u2/y}, E)

)
≤

≤ P`PSTλ

(
( ̂〈w1, w2〉, A⊗B), a⊗g,�E (g{u1/x, u2/y}, E)

)
(3.46)

Thus, from (3.46) and from (3.45) respectively, it follwows that

∀g ∈ T `PSTλ
x:A,y:B,E, g{w1/x, w2/y} ∈ �E(g{u1/x, u2/y})

∀g ∈ T `PSTλ
x:A,y:B,E, g{u1/x, u2/y} ∈ �EH(g{v1/x, v2/y}), (3.47)

whence, since by Lemma 2.17 we know that �E⊆ �EH , we �nd ∀g ∈ T `PSTλ
x:A,y:B,E,

g{w1/x, w2/y} ∈ �EH (g{v1/x, v2/y}). This is the required relation since it

ensure that the thesis (3.38c) is ful�lled, namely

P`PSTλ

(
(〈̂v1, v2〉, A⊗B), a⊗g, (g{v1/x, v2/y}, E)

)
≤

≤ P`PSTλ

(
( ̂〈w1, w2〉, A⊗B), a⊗g,�E (g{v1/x, v2/y}, E)

)
(3.48)

♦ If e = f1f2 is an application term we write hypothesis as ∅ ` f1f2�AHh : A ∧
f1f2 ⇓ E and the statement of the key lemma takes the form(
∅ ` f1f2�AHh : A ∧ e ⇓ E

)
⇒
(
h ⇓ [h] ∧ ∀W ⊆ V`PSTλ

A ,

P`PSTλ
((f1f2, A), aeval , (W,A)) ≤ P`PSTλ

(
(h,A), aeval , (�AH(W ), A)

))
.

(3.49)

Lemma 3.1 and the big�step evaluation rule for applications suggest the nature

of f1f2 semantics [e], which will be denoted by E :

f1 ⇓ F1 f2 ⇓ F2 bi{νn/x} ⇓ Fi,n|λx.bi∈Sup(F1),νn∈Sup(F2) .
f1f2 ⇓

∑
λx.bi∈Sup(F1),νn∈Sup(F2) F1(λx.bi)F2(νn)Fi,n︸ ︷︷ ︸

E

(3.50)
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Since the hypothesis is a consequence of the Howe's rule for applications

∅ ` f2�BHg2 : B

∅ ` f1�B(AHg1 : B( A ∅ ` g1g2 �A h : A
,

∅ ` f1f2�AHh : A

(3.51)

we may apply a double inductive hypothesis to the smaller terms f1 and f2,

obtaining(
∅ ` f1�B(AHg1 : B( A ∧ f1 ⇓ F1

)
⇒(

g1 ⇓ G1 ∧ ∀X ⊆ V`PSTλ
B(A , P`PSTλ

((f1, B( A), aeval , (X,B( A)) ≤

P`PSTλ

(
(g1, B( A), aeval , (�B(AH(X), B( A)

))
(
∅ ` f2�BHg2 : B ∧ f2 ⇓ F2

)
⇒
(
g2 ⇓ G2 ∧ ∀Y ⊆ V`PSTλ

B ,

∧ P`PSTλ
((f2, B), aeval , (Y,B)) ≤ P`PSTλ

(
(g2, B), aeval , (�BH(Y ), B)

))
(3.52)

Referring to the �rst two premises of (3.51), let us take g1 ⇓ G1 and g2 ⇓ G2,

noticing that, due to (3.52), G1 and G2 are not empty distributions unless F1

and F2 are.

The reduction rule for application unfolds us the proper form of the distribu-

tion G to which g1g2 evaluates:

g1 ⇓ G1 g2 ⇓ G2 bi{νj/x} ⇓ Gij|λx.bi∈Sup(G1),νj∈Sup(G2)
(app ⇓)℘.

g1g2 ⇓
∑

λx.bi∈Sup(G1),νj∈Sup(G2) G1(λx.bi)G2(νj)Gij︸ ︷︷ ︸
G

(3.53)

The existence of the semantics of g1g2, together with the similarity relation

(see (3.51)) between g1g2 and h, allow to conclude that h ⇓ [h], as the thesis
requires. Now let us look at [f1f2] and [g1g2] using the same symbols already

introduced in equations (3.50) and (3.53) with the aim to compare them. Here

we are under the scope of the disentangling lemma (see [11] for further details)
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which ensures for the existence of two sets of numbers {rvi,v′}i∈I and {suj ,u′}j∈J
such that the following inequalities hold

∀vi, F1(vi) ≤
∑
∀v′∈�B(A

H(vi)
rvi,v′ ∧

∑
i∈I rvi,v′ ≤ G1(v ′)

∀uj, F2(uj) ≤
∑
∀u′∈�BH(uj)

suj ,u′ ∧
∑

j∈J suj ,u′ ≤ G2(u′).
(3.54)

With reference to the induction hypothesis (3.52), let us set vi ∈ X ⊆ V`STλ
B(A

and uj ∈ Y ⊆ V`STλ
B : since by de�nition v ′ ∈ �B(AH(X) and u ′ ∈ �BH(Y ),

by substitutivity (see Lemma 2.19), supposing vi = λx.bi and v
′ = λx.b ′, we

get

∀vi ∈ X, ∀uj ∈ Y, ∀ v ′ ∈ �B(A (X)H , ∀u ′ ∈ �B (Y )Hbi{uj/x}�AHb ′{u ′/x},

and since the same relation holds also when the evaluation rules have been

applied we get Fij�AHGv′,u′ .

Using (3.54) and the last remarks one obtains the following inequality, which

holds for any w ∈ W ⊆ V`PSTλ
A

E (w) =
∑

vi∈X,uj∈Y F1(vi)F2(uj)Fij(w) ≤
∑

vi∈X, v′∈�B(A
H(vi)

uj∈Y,u′∈�B(A
H(uj)

rvi,v′suj ,u′ ·

·Gv′,u′
(
�AH(w)

)
≤
∑

v′∈X ′,u′∈Y ′ G1(v ′)G2(u ′)Gv ′,u ′
(
�AH(w)

)
≤∑

v′∈Sup(G1),u′∈Sup(G2) G1(v ′)G2(u ′)Gv ′,u ′
(
�AH(w)

)
= G (�AH(w)).

(3.55)

where, to unburden the formulas the notations X⊆V`PSTλ
B(A ⇒ X ′ =�B(AH(X)

=
⋃n
i=1�B(AH(vi) and Y ⊆ V`PSTλ

B ⇒ Y ′ = �BH(Y ) =
⋃m
j=1�BH(uj) have

been introduced.

Finally, recalling the de�nitions given for E and G in (3.50) and (3.53) respec-

tively, we can rewrite (3.55) as

∀W ∈ V`PSTλ
A [e](W ) ≤ G

(
�AH(W )

)
= [g]

(
�AH(W )

)
. (3.56)

Moreover, the last premise of the rule (3.51), namely the more familiar prob-

abilistic similarity relation ∅ ` g1g2 �A h : A, denoting by H the semantics
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of h implies that

∀Z⊆V`PSTλ
A , [g](Z)=G (Z)≤H (�A (Z))≤H

(
�AH(Z)

)
=[h]

(
�AH(Z)

)
,

(3.57)

where for the last inequality of (3.57) the property �H ⊆�, which has been

stated in Lemma 2.17, has used.

To complete the prove just choose the inequalities (3.56) and (3.57) setting

Z = �AH(W ) and recalling the relation ∀W , �AH
(
�AH(W )

)
= �AH(W ).

♦ If e = f1⊕f2, e = if f1 then f2 else f3, then let us write e = cnstr ({fn}n∈N )

where cnstr is some syntactic constructor and {fn}n∈N are subterms of e.

Hence we write the hypothesis as ∅ ` cnstr ({fn}n∈N )�AHh : A ∧ e ⇓ E

and the statement which has to be proved by induction on the size of terms

involved in big�step semantics rule is again (3.38d). We may refer to the thesis

in (3.38d) by rewriting it in a more appropriate form

h ⇓H ∧ ∀X ⊆ V`PSTλ
A , P`PSTλ

((cnstr ({fn}n∈N ) , A), aeval , (X,A)) ≤
P`PSTλ

(
(h,A), aeval , (�AH(X), A)

)
,

(3.58)

and a suitable (big�step) semantics evaluation rule will allow us to �nd the

proper form of [e] which will be denoted by E

{fn}n∈N ⇓ {Fn}n∈N ,
cnstr ({fn}n∈N ) ⇓ E ({Fn}n∈N )

(3.59)

where by writing E ({Fn}n∈N ) we understood that E is some function of the

subterms distributions En. Hereby the hypothesis must be read as a conse-

quence of general Howe's rule, namely:

∅ ` f1�A1
Hg1 : A1

...
...

∅ ` fN�ANHgN : AN ∅ ` cnstr ({gn}n∈N ) �A h : A
(Howgen).

∅ ` cnstr ({fn}n∈N )�AHh : A
(3.60)

Now from the �rst N premises of (3.60), N new inductive hypotheses follow,

which may be written as: ∀n ∈ N ,
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∅ ` fn�AnHgn : An ⇒
(
gn ⇓ Gn ∧ ∀Xn ⊆ V`PSTλ

A ,

P`PSTλ
((fn, An), aeval , (Xn, An)) ≤ P`PSTλ

(
(gn, An), aeval , (�AH(Xn), An)

)
,

(3.61)

which allow to build the distribution G , semantics of cnstr ({gn}n∈N ) through

a suitable big�step�semantis rule, as it is shown below:

{gn}n∈N ⇓ {Gn}n∈N ,
cnstr ({gn}n∈N ) ⇓ G ({Gn}n∈N )

(3.62)

and since cnstr ({gn}n∈N ) has a semantics G and through (3.60) we see that

it is related to h by a similarity relation, we must conclude that

h ⇓H ∧ ∀W ⊆ V`PSTλ
A , [g](W ) ≤ [h](�A (W )). (3.63)

By compatibility of �AH , starting from �rst N premises of (3.60) one can

deduce ∅ ` cnstr ({fn}n∈N )�AHcnstr ({gn}n∈N ) : A, and since to this term

we can apply the induction hypothesis we �nd

∅ ` cnstr ({fn}n∈N )�AHcnstr ({gn}n∈N ) : A ⇒

⇒ ∀X ⊆ V`PSTλ
A , E (X) ≤ G (�AH(X)). (3.64)

Now let us simply rewrite the last statement making use of the semantics of

the terms as

∀X ⊆ V`PSTλ
A , [e](X) ≤ [g](�AH(X)). (3.65)

Thus the thesis is a consequence of (3.65) and of (3.63) if for each X we

set W = �AH(X), since using the property �A⊆ �AH we obtain the re-

sult �A (W ) =�A
(
�AH(X)

)
= �AH(X), whence ∀X ⊆ V`PSTλ

A , [e](X) ≤
[h](�AH(X)).

♦ Taking e = (let f1 be 〈x, y〉 in f2) leads to the statement(
∅ `(let f1 be 〈x, y〉 in f2)�AHh : A ∧ e ⇓ E

)
⇒
(
h ⇓H ∧ ∀W ⊆ V`PSTλ

A ,

P`PSTλ
((e, A), aeval , (W,A)) ≤ P`PSTλ

(
(h,A), aeval , (�AH(W ), A)

))
. (3.66)



Chapter 3. Injecting Probabilistic Choice 95

and hypothesis comes to be a consequence of the following Howe's rule

x : B, y : E ` f2�AHg2 : A

∅ ` f1�B⊗EHg1 : B ⊗ E ∅ ` let g1 be 〈x, y〉 in g2 �A h : A
.

∅ ` let f1 be 〈x, y〉 in f2�AHh : A
(3.67)

The semantics rule for terms of this type briefs us about the form of [e] as

functions their subterms semantics

f1 ⇓ F1 f2{v/x, u/y} ⇓ F〈v,u〉
∣∣
〈v,u〉∈Sup(F1)

(let ⇓)℘
let f1 be 〈x, y〉 in f2 ⇓

∑
〈v,u〉∈Sup(F1) F1(〈v, u〉)F〈v,u〉︸ ︷︷ ︸

E

(3.68)

and the double induction hypothesis which stems from the �rst two premises of

equation (3.67), introduce to the semantics of the subterms g1 and g2. Writing

induction hypothesis for open terms such as f2 and g2 requires to use the

de�nition of open extension for applicative bisimulation, as in the following:

•
(
∅ ` f1�B⊗EHg1 : B ⊗ E ∧ f1 ⇓ F1

)
⇒(

g1 ⇓ G1 ∧ ∀X ⊆ V`PSTλ
B⊗E P`PSTλ

((f1, B ⊗ E), aeval , (X,B ⊗ E)) ≤

P`PSTλ
((g1, B ⊗ E), aeval , (�B⊗E (X), B ⊗ E))

)
(3.69)

•
(
x : B, y : E ` f2�AHg2 : A ∧ ∀〈v, u〉 ∈ V`PSTλ

B⊗E , f2{v/x, u/y} ⇓ F〈v,u〉
)
⇒(

∀〈v, u〉 ∈ V`PSTλ
B⊗E g2{v/x, u/y} ⇓ G〈v,u〉 ∧ ∀Z ∈ V`PSTλ

A

P`PSTλ
((f2{v/x, u/y}, A), aeval , (Z,A)) ≤

P`PSTλ

(
(g2{v/x, u/y}, A), aeval , (�AH(Z), A)

))
(3.70)

whence

g1 ⇓ G1 g2{v/x, u/y} ⇓ G〈v,u〉
∣∣
〈v,u〉∈Sup(G1)

(app ⇓)℘.
let g1 be 〈x, y〉 in g2 ⇓

∑
〈v,u〉∈Sup(G1) G1(〈v, u〉)G〈v,u〉︸ ︷︷ ︸

G

(3.71)

After it has been obtained how (let g1 be 〈x, y〉 in g2) ⇓ G , starting from

hypothesis of similarity supplied by the last premise of (3.67) one �nds the
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condition

h ⇓ [h] ∧ ∀W ∈ T `PSTλ
A [g](W ) ≤ [h] (�A (W )) (3.72)

To end the proof of this item of key Lemma requires to compare the distri-

bution E , G and H , which appear as result in formulae (3.68) and (3.71)

and to this purpose let notice that, due to the proof of substitutivity given in

Lemma 2.19, we get

x : B, y : E ` f2�AHg2 : A⇒ ∀〈v, u〉∈V`PSTλ
B⊗E , f2{v/x, u/y}�AHg2{v/x, u/y},

(3.73)

thus referring to the rule (3.67) and to the symbols used in (3.68), it may

be derived that ∀〈v, u〉, ∀W, F〈v,u〉(W ) ≤ G〈v,u〉(�AH(W )). Therefore we will

write

∀Z ⊆ V`PSTλ
A E (Z) =

∑
〈v,u〉∈Sup(F1)

F1(〈v, u〉)F〈v,u〉(Z) ≤

≤
∑

〈v,u〉∈�B⊗EH(Sup(F1))

G1(〈u,w〉)G〈v,u〉(�AH(Z)) =

∑
〈v,ν〉∈{�B⊗EH(Sup(F1))∩Sup(G1)}

G1(〈u,w〉)G〈v,u〉(�AH(Z)) ≤

≤
∑

〈v,u〉∈Sup(G1)

G1(〈u,w〉)G〈v,u〉(�AH(Z)) = G (�AH(Z)). (3.74)

Taking (3.72) and (3.74) and setting ∀Z, W = �AH(Z) we �nd the thesis.

Being for Lemma 2.17 �A⊆ �AH we write

∀Z ⊆ V`PSTλ
A [e](Z) = E (Z) ≤ G (�AH(Z)) = [g](�AH(Z)) ≤ [h](�AH(Z)).

(3.75)

3.3.1 On the transitive closure properties

Even though �AH is bigger (or equal) than �A by lemma (2.17), being it a prob-

abilistic relation it is not ensured to be a similarity, since a probabilistic similarity

must be by de�nition a transitive relation.
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Thus the transitive closure (�AH)
+
should be rather considered, to be sure to

really deal with the bigger probabilistic simulation.Afterward it should be shown

that it �ts, in turn, all the properties that �H has. Many properties have already

been proved somewhere in previous sections, hence the results are resumed in the

following Table 3.5 where, beside to each property is featured the section where

corresponding lemma appears.

Property Reference

R closed under terms sub-

stitution

⇒ R + closed for terms sub-

stitution

Lemma 3.8

R compatible ⇒ R + compatible Lemma 3.7

R closed under terms sub-

stitution

⇒ R H substitutive Lemma 2.19

R transitive ⇒ R H pseudo�transitive Lemma 2.18

R ⊆ R H Lemma 2.17

R re�exive ⇒ R H compatible Lemma 2.16

R H compatible ⇒ R H re�exive Lemma 2.13

Figure 3.5: Reference Table for the proved properties about Howe's lifting and

about transitive closure of a relation R .

Proposition 3.2. (�AH)
+
is compatible.

Proof. Since �A re�exive
lemma(2.16)

=⇒ �AH is compatible
lemma(3.7)

=⇒ (�AH)
+
is compati-

ble.
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Proposition 3.3. (�AH)
+
is transitive.

Proof. by de�nition of transitive closure.

Proposition 3.4. (�AH)
+
is re�exive.

Proof. Since �A re�exive
Lemma 2.16

=⇒ �AH is compatible
Lemma 2.13

=⇒ �AH re�exive (and

compatible)
Lemma 3.7

=⇒ (�AH)
+
is compatible and hence re�exive.

Proposition 3.5. (�AH)
+
is a precongruence.

Proof. This is a consequence of the previous Proposition 3.2, Proposition 3.4 and

Proposition 3.3.

Proposition 3.6. (�AH)
+
is closed under substitution.

Proof. Since �A is closed under substitution
Lemma 2.19

=⇒ �AH is substitutive (and hence

closed under substitution)
Lemma 3.8

=⇒ (�AH)
+
is also closed under substitution as �A

is.

Proposition 3.7. �A⊆ (�AH)
+
.

Proof. Since �A⊆ �AH ⊆ (�AH)
+
by Lemma 2.17 and from the de�nition of tran-

sitive closure.

Lemma 3.13. �AH ⊆�A ⇒ (�AH)
+ ⊆�A Therefore, provided that � according

to the probabilistic key Lemma 3.12 � Howe's lifting has the probabilistic similarity

behaviour, also its transitive closure has the same property.

Proof. This statement has to be proved in both cases whether e, h are values or

generic terms.
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e, h,∈ V`PSTλ
bool − The statement to prove is:

e(�bool
H)

+
h ⇒ ∀b ∈ {tt, ff},

P`PSTλ

(
(ê, bool), ab, (b̂, bool)

)
≤ P`PSTλ

(
(h, bool), ab,

(
(�bool

H)
+

(b), bool
))

.

(3.76)

If ê 6= b the statement (3.76) is obviously true (the left�hand side is zero), otherwise

let us recall that since e(�bool
H)

+
h, then by de�nition h ∈ (�bool

H)
+

(e) and being

e = b, we must conclude that both terms of (3.76) are equal to 1.

e, h ∈ V`PSTλ
B(A − whence the thesis

λx.f(�B(AH)
+
λx.`⇒

(
∀X ⊆ T `PSTλ

A P`PSTλ

(
(λ̂ x.f , A), a@v, (X,A)

)
≤

P`PSTλ

(
(λ̂ x.`, A), a@v,

(
(�B(AH)

+
(X), A

)))
(3.77)

Given the value of v ∈ V`PSTλ
B , if we choose the set X in a way that f{v/x} /∈ X,

the inequality (3.77) is obviously true (since its left�hand size is zero), otherwise if

the hypothesis λ̂ x.f(�B(AH)
+
λ̂ x.` is a consequence of the rule (tc − 1 ), we get

the relation λ̂ x.f�B(AH λ̂ x.`, which gives λx.` ∈ �B(AH (λx.f), entailing the

thesis, since �B(AH ⊆ (�B(AH)
+
. Otherwise, if the hypothesis is a consequence

of the rule (tc − 2 ), then for some value λx.g we must have that λx.f�B(AHλx.g
∧ λx.g�B(AHλx.`, whence λx.` ∈ �B(AH (λx.g) ∧ λx.g ∈ �B(AH (λx.f) and

these relations together ensure that λx.` ∈ �B(AH (λx.f). This proves the inequal-

ity (3.77) because, by de�nition of transitive closure, �B(AH ⊆ (�B(AH)
+
.

e, h ∈ V`PSTλ
A⊗B − entails the thesis:

〈v1, v2〉(�A⊗BH)
+〈w1, w2〉 ⇒ ∀g ∈ T `PSTλ

x:A,y,B,E

P`PSTλ

(
(〈̂v1, v2〉, A⊗B), a⊗g, (g{v1/x, v2/y}, E)

)
≤

≤ P`PSTλ

(
( ̂〈w1, w2〉, A⊗B), a⊗g,

(
(�EH)

+
(g{v1/x, v2/y}), E

))
. (3.78)

If the hypothesis comes from (tc − 1 ) then thesis is a consequesce of Lemma 3.12,

otherwise there is a pair 〈ν1, ν2〉, such that 〈v1, v2〉 (�A⊗BH)
+ 〈ν1, ν2〉 and 〈ν1, ν2〉
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(�A⊗BH)
+ 〈w1, w2〉 then, applying induction hypothesis, yields the conditions ∀g ∈

T `PSTλ
x:A,y,B,E

P`PSTλ

(
(〈̂v1, v2〉, A⊗B), a⊗g, (g{v1/x, v2/y}, E)

)
≤

≤ P`PSTλ

(
(〈̂ν1, ν2〉, A⊗B), a⊗g,

(
(�EH)

+
(g{v1/x, v2/y}), E

))
(3.79)

P`PSTλ

(
(〈̂ν1, ν2〉, A⊗B), a⊗g, (g{ν1/x, ν2/y}, E)

)
≤

≤ P`PSTλ

(
( ̂〈w1, w2〉, A⊗B), a⊗g,

(
(�EH)

+
(g{ν1/x, ν2/y}), E

))
, (3.80)

whence we can obtain the two relations g{ν1/x, ν2/y} ∈ (�EH)
+

(g{v1/x, v2/y}) and
g{w1/x, w2/y} ∈ (�EH)

+
(g{ν1/x, ν2/y}).

Since ∀X ∈ T `STλ
E , (�EH)

+
(

(�EH)
+

(X)
)

= (�EH)
+

(X), the thesis follows

from these last two relations.

e, h ∈ T `PSTλ
A − Here as usual we enforce the induction hypothesis, twhich makes

the statement to be

e(�AH)
+
h ∧ e ⇓ [e]⇒

(
h ⇓ [h] ∧ ∀X ⊆ V`PSTλ

A P`PSTλ
((e,X), aeval , (X,A)) ≤

P`PSTλ

(
(h,X), aeval , (�AH

+
(X), A)

))
. (3.81)

We have therefore two cases:

I the hypothesis e(�AH)
+
h is a consequence of (tc − 1 ), whence e�AHh must

hold, and as a consequence of the probabilistic key lemma (3.12) we obtain

both the statements e ⇓ [e] and

∀X ⊆ V`PSTλ
A ,

P`PSTλ
((e, A), aeval , (X,A)) ≤ P`PSTλ

(
(h,A), aeval , (�AH(X), A)

)
. (3.82)

Moreover, considering that by de�nition of transitive closure, ∀X, �AH(X) ⊆
(�AH)

+
(X), we get immediately the thesis applying this inequality to (3.82).
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I The hypothesis e(�AH)
+
h is a consequence of (tc − 2 ), then for some g we

have e(�AH)
+
g ∧ g(�AH)

+
h. Thus, by inductive hypothesis applied on both

terms, we write

g ⇓ [g] ∧ ∀X ⊆ V`PSTλ
A , P`PSTλ

((e, A), aeval , (X,A)) ≤

P`PSTλ

(
(g, A), aeval , ((�AH)

+
(X), A)

)
h ⇓ [h] ∧ ∀Y ⊆ V`PSTλ

A , P`PSTλ
((g, A), aeval , (Y,A)) ≤

P`PSTλ

(
(h,A), aeval , ((�AH)

+
(X), A)

)
(3.83)

then let just take Y = �AH(X) in the second equation (3.83)and let us recall

that (�AH)
+
(

(�AH)
+
)

(X) = (�AH)
+

(X), to get the thesis.

3.4 Soundness and Completeness within the Prob-

abilistic Environment

Finally the most important feature that a relation among terms must match is to

be consonant with the most classical relation of context equivalence. This means

that whatever pair of term which are bisimilar must be context equivalent too.

This condition is shown by following Lemma.

Lemma 3.14 (On a probabilistic similarity behaviour with respect to contexts).

Likewise in deterministic case, the probabilistic similarity relation is compatible with

the context, namely it satis�es the condition

∅ ` e �A h : A ⇒ ∀C[·] ∈ CTXB (∅ ` A) , ∅ ` C[e] �B C[h] : B.

Proof. Based on the compatibility of applicative similarity, it was given for deter-

ministic case � see Lemma 2.21.

Theorem 3.1. In `PST λ, � is included in ≤, thus ∼ is included in ≡.
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Proof. Likewise in deterministic case, one has to prove that ∅ ` e �A h : A ⇒
∅ ` e ≤A h : A, but following the de�nition of context preorder, the thesis becomes

∀C[·] ∈ CTXB (∅ ` A) , Obs(C[e]) ≤ Obs(C[h]). With respect to the deterministic

case, were the analogous of the above Lemma 3.14 allows to write ∅ ` C[e] �B C[h] :

B, only the de�nition of similarity and that of context preorder are di�erent.

Indeed, here the sentence ∅ ` C[e] �B C[h] : B is translated in the language of

LMC as

∀X ⊆ VB, P`PSTλ
((C[e], B), aeval , (X,B)) ≤ P`PSTλ

((C[h], B), aeval , (�B (X), B)) ,

(3.84)

where the set X can be chosen so that Sup (C[e]) ⊆ X and Sup (C[h]) ⊆ X.

Now it is enough to recall the meaning ascribed to these matrix elements in

the probabilistic environment as well as the de�nition given in (3.10a) to conclude,

at once ∅ ` e �A h : A ⇒ ∀C[·] ∈ CTXB (∅ ` A) , ∅ ` C[e] �B C[h] : B ⇒
Obs(C[e]) ≤ Obs(C[h]).

In the deterministic calculus `ST λ, bisimilarity not only is included into context

equivalence, but coincides with it (and, analogously, similarity coincides with the

context preorder). This can also be proved, e.g., by observing that in L`STλ
, bisim-

ilarity coincides with trace equivalence, and each linear test,namely each trace, can

be implemented by a context. This result is not surprising since it has already been

obtained in similar settings elsewhere [8].

But how about `ST λ? Actually, there is a little hope to prove full�abstraction be-

tween context equivalence and bisimilarity in a linear setting, if probabilistic choice

is present. Indeed, as shown by van Breugel et al. [56], probabilistic bisimilarity can

be characterized by a notion of test equivalence where tests can be conjuctive, i.e.,

they can be in the form t = 〈s, p〉, and t succeeds if both s and p succeed. Imple-

menting conjuctive tests, thus, requires copying the tested term, which is impossible

in a linear setting. Indeed, it is easy to �nd a counterexample to full�abstraction

already in `PST λ. Consider the following two terms, both of which can be given
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type bool( bool in `PST λ:

e = λx.weak x in (tt⊕ Ω) f = (λx.weak x in tt)⊕ (λx.weak x in Ω).

The two terms are not bisimilar, simply because tt and Ω are not bisimilar, and thus

also λx.weak x in tt and λx.weak x in Ω cannot be bisimilar. However, through

trace equivalence relation, they can be proved to be context equivalent: indeed there

is no way to discriminate between them by way of a linear context (see [11] for more

details).
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Chapter 4

Quantum Language

Although quantum computing has been historically studied at the hardware level

[43], since it has been described in terms of quantum gates, neglecting �ow control,

in recent years an increasing consideration has been paid in deepening the knowledge

of quantum languages also in terms of �ow control [50]: in most of these models the

inner logical gates, the �ow control as well as the whole system with its mechanical

parts are purely quantum systems which, since such they are, must be seen as

superposition of many classical states. As an example, in the quantum Turing

machine the tape and the position of the head itself are assumed to be superposition

of several states. Nevertheless, in our analysis the quantum computation occurs

through a classical program, with an ordinary set of instructions and control devices

which are connected to quantum gates: this situation is usually depicted by quoting

the sentence �quantum data, classical control�. Linear λ-calculi with classical control

and quantum data have been introduced and studied both from an operational and

from a semantical point of view [51, 52].

In a quantum calculus, linearity is a necessary constraint because of the well

known impossibility of copying an unknown system in a quantum, microscopical

state [32]. Besides, the other important feature, which is driven by the quantum

nature of the storage devices, is the need to keep track of the position of each variable

inside the quantum register � denoted in the following by Q � which compels to give

together with the term some more information, with respect to the classical case,



106 Chapter 4. Quantum Language

on the quantum variables which it depends on.

Generally speaking, a quantum system in a bound state is, mathematically, a

vector of a �nite�dimensional complex Hilbert space H({~vn}n∈N ): this entails that a

quantum microscopic system is described as a linear superposition of the set {~vn}n∈N
of basis vectors of the H({~vn}n∈N ), with complex coe�cients determined by the

boundary conditions. Here the set N is not necessarily a proper subset of the

integer numbers Z and the squared modulus of a complex coe�cient corresponding

to a given basis vector in the linear combination, gives the probability that after a

measurement, the system lies in this particular basis vector.

The Dirac notation became the standard in quantum mechanics because of its

conciseness and versatility in representing the vectors of Hilbert's space. A generic

vector is written as a ket � symbol |α〉 � linear superposition of the basis kets

{|vn〉}n∈N , following the usual notation |α〉 =
∑

n∈N αn|vn〉 with αn complex num-

bers.

The Hilbert's space of kets has a dual correspondant, consisting of all linear

functionals on the kets's space whose generic element, called bra, is denoted by the

symbol 〈α|. In addition to the operations of sum and product for a number, there

are two other operations de�ned on the elements of the Hilbert's space, namely

� the scalar product 〈α|β〉 between two vectors |α〉 and |β〉 of Hilbert's space,
enjoing the usual property 〈α|β〉= 〈β|α〉?;

� the tensor product |α〉 ⊗ |β〉 which increases the dimension of the former

Hilbert's spaces to which |α〉 and |β〉 belong.

A whichever linear operator of the Hilbert's space can always be written using vectors

which belong to the Hilbert space and its dual, namely it can be put in the form

|α〉〈β|.
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4.1 On Quantum Data

The atomic unit for computation in quantum devices is the qubit, which is tra-

ditionally represented [43] as a mathematical object which may assume both the

classical values tt and ff. Since in quantum scheme a qubit can't be separated

from the quantum register Q in which it is stored, we will represent, for all practical

purposes, this last one as vector of the Hilbert's space, in writing, according with

the Dirac's notation

Q = αtt|r ← tt〉+ αff|r ← ff〉, (4.1)

where Q is a linear superposition of the couple of basis vectors |r ← tt〉 and |r ← ff〉
with complex coe�cients αtt and αff, and r is a quantum variable name for the

qubit.

De�nitionally, one can think of quantum λ-calculi as a classical one, in which

ordinary � classical � terms have access to the quantum register, which models

quantum data. A quantum register Q on the set of quantum variablesQ is patterned

through a generalisation of the equation (4.1). Thus, it is mathematically described

by a an element of a �nite-dimensional Hilbert space whose computational basis is

the set SB(Q) of all maps from Q to {tt, ff} which attribute to each element ri of

the quantum variables set a boolean value which is hypothetically stored in the i-th

qubit of Q.

Using the Dirac's notation, any element of this basis, a ket of Hilbert's space,

takes the form

|r1 ← b1, · · · , rN ← bN〉, (4.2)

where Q = {r1, . . . , rN} and b1, . . . , bN ∈ {tt, ff}. It is worth remarking that the

order of the variables in the expression above is not essential, i.e., the con�gura-

tions |r1 ← b1, · · · , rN ← bN〉 and |rσ(1) ← bσ(1), · · · , rσ(N) ← bσ(N)〉 correspond to

the same quantum register whenever σ is a permutation.

Quantum mechanics laws describe the state of a system as a linear superposition



108 Chapter 4. Quantum Language

of basis vectors whence elements of this Hilbert space, called H(Q), are in the form

Q =
∑

η∈SB(Q)

αη|η〉, (4.3)

where the index of the sum belongs to SB(Q), the space of all possible maps from

the quantum variables set Q to boolean values, which are in number of 2|Q|.

The complex numbers αη ∈ C are the so-called amplitudes, and must satisfy the

normalization condition
∑

η∈SB(Q) |αη|2 = 1. If η ∈ SB(Q) and r is a variable not

necessarily in Q, then η{r ← b} stands for the substitution which coincides with η

except on r where it equals b.

The interaction of a quantum register with the outer environment can create or

destroy quantum bits increasing or decreasing the dimension of Q. This shaping of

the quantum register is mathematically described making use of some operators:

� The probability operator PRrb : H(Q) → R[0,1] gives the probability to obtain

b ∈ {tt, ff} as a result of the measurement of r ∈ Q in the input register:

PRrb(Q) =
∑

η{r←b}

|αη|2, (4.4)

where the sum is over the 2|Q|−1�th dimensional set of those η such that the

quantum variable r has the boolean value b.

� If r 6∈ Q, then the projection operator MSrb : H(Q∪{r})→ H(Q) measures the

variable r, stored in the input register, destroying the corresponding qubit.

More precisely MSrtt(Q) and MSrff(Q) give as a result the quantum register

con�guration corresponding to a measure of the variable r, when the result of

the variable measurement is tt or ff, respectively:

MSrb(Q) = [PRrb(Q)]−
1
2

∑
η

αη{r←b}|η〉, (4.5)

where Q is as in (4.3). A measurement of the variable r makes the quantum

register collapsing over one between the new following states, both instances

of (4.5):

Qtt = [PRrtt(Q)]−
1
2

∑
η

αη{r←tt}|η〉, Qff = [PRrff(Q)]−
1
2

∑
η

αη{r←ff}|η〉.



Chapter 4. Quantum Language 109

� If r 6∈ Q, then the operator NWrb : H(Q) → H(Q ∪ {r}) creates a new qubit,

accessible through the variable name r, and increases by one the dimension of

the quantum register.

Qubits can not only be created and measured, but their value can also be modi�ed

by applying unitary operators to them. Given any such n-ary operator U , and any

sequence of distinct variables r1, . . . , rn (where ri ∈ Q for every 1 ≤ i ≤ n), one can

build a unitary operator Ur1,...,rn on H(Q).

In the end we note that after a measurement all the αη must rearrange in order

that the new amplitudes α′ can meet again the bound
∑

η∈SB(Q) |α′η|2 = 1, hence

they are related to the old ones by the equality α′η{r←b} =
αη√

PRrb(Q)
.

4.1.1 The Language

We can obtain the quantum language `QST λ as an extension of basic `ST λ. The

grammar of `ST λ is enhanced by expanding the set T `STλ in the following way:

v, u ::= x | tt | ff | λx.e | 〈v, u〉 | r (4.6)

e ::=v | ef | if e then f else g | let e be 〈x, y〉 in f | U (v) |

measn (v) | new (v) | cmp (v, v) , (4.7)

where r ranges over an in�nite set of quantum variables, and U ranges over a �nite

set of unitary transformations (each with an arity a(U)) and n is a natural num-

ber. Terms new (v), measn (v), and U (v) enrich the language `ST λ: new(v) takes as

argument a boolean constant and returns (a quantum variable pointing to) a qubit

of the same value, increasing this way the dimension of the quantum register. The

measurement operator measn (v) measures the n-th quantum bit in a quantum regis-

ter, therefore decreasing its dimension. Moreover, U(v) is a formal way to represent

a quantum gate, namely an atomic quantum algorithm which operates on a set of

variables leaving unaltered the sum of probability amplitudes in a Hilbert's space

spanned by the quantum variables set itself. If n is a positive natural number, the
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expression 〈r1, . . . , rn〉, called a quantum variable sequence, is syntactic sugar for the

following term:

〈r1〉 = r1;

〈r1, . . . , rn+1〉 = 〈〈r1, . . . , rn〉, rn+1〉.

Quantum variable sequences are denoted with metavariables like V,W. Given a

quantum variable sequence V = 〈r1, . . . , rn〉 and m such that 1 ≤ m ≤ n, the

expression Vm indicates 〈r1, . . . , rm−1, rm+1, . . . , rn〉. Given two quantum variable

sequences V = 〈r1, . . . , rn〉 and W = 〈s1, . . . , sm〉, the expression V ·W is sometime

used to indicate 〈r1, . . . , rn, s1, . . . , sm〉. The length n of a quantum variable sequence

V = 〈r1, . . . , rn〉 is denoted as | V |. The binary operator cmp, takes as arguments

two quantum variable sequences V, W and gives V ·W as a result.

This language is similar to that presented in [29], and it di�ers from the quantum

language introduced by Selinger and Valiron [51] in this sense: that the quantum

closures syntactically allowed in this language, whose terms can be typed using

the typing rules 4.1, do not generally have entangled variables, being the quantum

register of a term cnstr ({en}n∈N ) the tensor product of the quantum register of

each subterm. The quantum entanglement is treated apart introducing the syntactic

construct cmp ((, v)u), which can create sequences of qubits which are allowed for the

entanglement. Speci�cally, in a pair of type qbit⊗qbit, each one the components of

the pair, can access only to its own part of the quantum register, while this doesn't

happen in a term of type qbit2.

This choice is motivated by the di�culty to correctly implement the general

structure of the Howe's rules in the quantum environment if the subterms don't

have unentangled subregisters.

The class of types needs to be sligthly extended with a new base type called qbitn

valid for quantum registers, namely for quantum variables and quantum variable

sequences, thus

Y ::= bool | qbitn | B( A | A⊗B. (4.8)
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Type judgement quantum closure rule Name

` [∅, b] : bool (tjQ − con)

x : A ` [∅, x] : A (tjQ − var)

Q ∈ H({r1 . . . rn})
` [Q, 〈r1, . . . , rn〉] : qbitn

(tjQ − ser)

Γ, x : A ` [Q, e] : B

Γ ` [Q, λ x.e] : A( B
(tjQ − abs)

Γ ` [Q, e] : B( A ∆ ` [U , f ] : B

Γ,∆ ` [Q ⊗U , ef ] : A
(tjQ − app)

Γ ` [Q, e] : bool ∆ ` [U , f ] : A ∆ ` [U , g] : A

Γ,∆ ` [Q ⊗U , if e then f else g] : A
(tjQ − if )

Γ ` [Q, v] : A ∆ ` [U , u] : B

Γ,∆ ` [Q ⊗U , 〈v, u〉] : A⊗B
(tjQ − pai)

Γ ` [Q, e] : E ⊗ F ∆, x : A, y : B ` [U , f ] : A

Γ,∆ ` [Q ⊗U , let e be 〈x, y〉 in f ] : A
(tjQ − let)

Γ ` [Q, v] : bool

Γ ` [Q, new (v)] : qbit
(tjQ − new)

Γ ` [Q, v] : qbita(U)

Γ ` [Q, U (v)] : qbita(U)
(tjQ − uni)

Γ ` [Q, v] : qbit1

Γ ` [Q, meas1 (v)] : bool
(tjQ −mea)

Γ ` [Q, v] : qbitn+1 1 ≤ m ≤ n
Γ ` [Q, measm (v)] : qbitn ⊗ bool

(tjQ −mea)

Γ ` [Q, v] : qbitn ∆ ` [U , u] : qbitm

Γ ` [Q ⊗U , cmp (v, u)] : qbitn+m
(tjQ − cmp)

` [∅,Ω] : A (tjQ − div)

Figure 4.1: Typing rules in `QST λ: the symbol ∅ denotes the empty quantum

register.

Since terms only make sense, computationally, only if they are coupled with a quan-

tum register, it is necessary to give the de�nition of quantum closure which is an

element (Q, e) of the set H(Q) × T `QSTλ
Γ,A , where Q is a suitable set of quantum
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variables, such that dom(Γ)∩Q = ∅. We use the notation [Q, e] to denote a generic

quantum closure. In Figure 4.1 the system of typing rules for [Q, e] within the

language `QST λ is given. Among the set of the quantum closures, two subsets are

particulary meaningful, namely the total quantum closures, which ful�ll the condi-

tion Q ∈ H(Q), where Q is precisely the set of free quantum varables of e and the

closed quantum closures, such that dom(Γ) = Q = ∅.

A total and closed quantum closure is called a quantum program of `QST λ.

To correctly extend Howe's techniques to the quantum environment, we need to

avoid that, in the closures of the language `QST λ, the quantum variables belonging

to parts of the quantum register which refer to di�erent subterms mix up, giving

rise to the so called quantum entanglement. The only exception to this general

rule occurs through the use of the special operator cmp (V,W), which implements

the operation of quantum entanglement between two quantum sequences. This

strong separation inherent to the quantum registers belonging to di�erent subterms

is highlighted through the set of typing rules listed in Figure 4.1.

The semantics of `QST λ is a binary relation on quantum closures: analogously

to what has been made for `PST λ, small step reduction operator→ and the big step

evaluation operator ⇓ are given as relations between the set of quantum closures �

which must be correctly typed using a derivation tree based on the rules given in

Figure 4.1 � and the set of quantum closures distributions. In Figures 4.2 and 4.3,

we display the one�step semantics and big�step semantics for `QST λ. Symbols as

T [QC] `QSTλ
A and V [QC] `QSTλ

A , will be employed to denote the extensions of TA and VA
to the quantum closures set.

In `QST λ, the property of substitutivity for the relation R implies the full�lle-

ment of the following condition between pairs of quantum closures

Γ, x : B ` [Q, e] R [W , g] : A ∧ ∆ ` [U , f ] R [R, h] : B ⇒

Γ,∆ ` [Q ⊗U , e{f/x}] R [W ⊗R, g{h/x}] : A; (4.9)

The the following Lemma 4.1 shows how to deal with the substitutions between

quantum closures.
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One�step semantics rule Name

[Q, (λx.e)v]→ {[Q, e{v/x}]1} (appβ)Q

[Q, e]→ {[Qi, vi]
pi}i∈I

[Q ⊗U , ef ]→ {[Qi ⊗U , vif ]pi}i∈I
(appL)Q

[Q, f ]→ {[Qi, `i]
pi}i∈I

[Q ⊗U , vf ]→ {[Qi ⊗U , v`i]
pi}i∈I

(appR)Q

[Q, if tt then f else g]→ {[Q, f ]1} (if − ax tt)Q

[Q, if ff then f else g]→ {[Q, g]1} (if − ax ff)Q

[Q, e]→ {[Qi, hi]
pi}i∈I

[Q ⊗U , if e then f else g]→ {[Qi ⊗U , if hi then f else g]pi}i∈I
(if )Q

[Q, let 〈v, u〉 be 〈x, y〉 in f ]→ {[Q, f{v/x, u/y}]1} (let − ax )Q

[Q, e]→ {[Qi, hi]
pi}i∈I

[Q ⊗U , let e be 〈x, y〉 in g]→ {[Qi ⊗U , let hi be 〈x, y〉 in g]pi}i∈I
(let)Q

1 ≤ m ≤ n

[Q, measm (V)]→ {[MSrff(Q), 〈Vm, ff〉]PR
r
ff(Q) , [MSrtt(Q), 〈Vm, tt〉]PR

r
tt(Q)}

(mea)Q

[Q, cmp (V,W)]→ {[Q,V ·W]1} (cmp)Q

[Q, new(b)]→ {[NWrb(Q), r]1} (new)Q

[Q, U 〈r1, . . . rn〉]→ {[Ur1,...rnQ, 〈r1, . . . rn〉]1}
(uni)Q

[Q,Ω]→ ∅ (div)Q

Figure 4.2: One�step semantics of `QST λ.

Lemma 4.1 (Substitutivity in `QST λ). If [Q, e]∈T [QC] `QSTλ
Γ,z:E,A and [U , u]∈V [QC] `QSTλ

∆,E

are two quantum closures, correctly typeable through the rules of Figure 4.4, then it

holds that

Γ,∆ ` [Q ⊗U , e{u/x}] : A. (4.10)



114 Chapter 4. Quantum Language

Proof. The proof is by induction on the structure of e, examining the typing rules

of �gure Figure 4.4.

The cases ∅ ` [∅, b] : bool and ∅ ` [Q, 〈r1 . . . , rn〉] : qbitn are impossible since here

the context lacks and there aren't free variables.

If [Q, e] = [∅, x], then from linearity it follows that Γ = ∅, A = B and x = z. Thus

the relation ∆ ` [∅ ⊗U , x{u/x}] : A is true since it is equivalent to the hypothesis

∆ ` [U , u] : A

If [Q, e] = [Q, λ x.f ] we must prove the assertion

Γ, z : E ` [Q, λ x.f ] : B( A∧ ` [U , u] : E ⇒

Γ ` [Q ⊗U , λ x.f{u/z}] : B( A. (4.11)

Since the �rst hypothesis is a consequence of a (tj − abs)Q rule of Figure 4.4 whose

premise is Γ, x : B, z : E ` [Q, f ] : A, the induction hypothesis on the open term

[Q, f ] gives immediately Γ, x : B ` [Q, f{u/z}] : A. Thus we can take this type

judgement as the premise fo the rule (tj − abs)Q, getting the desired result.

If [Q, e] = [Q, new (v)], then we must prove that

Γ, z :E ` [Q, new (v)] : qbit1 ∧ ` [U , u] :E ⇒

Γ ` [Q ⊗U , new (v{u/z})] : qbit1. (4.12)

Using the typing rule (tj − new)Q in Figure 4.4, we �nd that the �rst hypothesis

in (4.12) is a consequence of the premise Γ ` [Q, v] : bool, over which we can

apply the induction hypothesis, which gives Γ ` [Q, v{u/z}] : bool. This result can

be taken of premise for the rule (tj − new)Q leading to the thesis. The cases ∅ `
[Q, meas (v)] : bool, ∅ ` [Q, measm (v)] : qbitn⊗ bool and ∅ ` [Q, U (v)] : qbita(U)

are similar to [Q, new (v)] and λx.f .

If [Q, e] = [Q, cnstr ({fn}n∈N )], where cnstr is some binary o ternary constructor

of the language, the statement to prove is

Γ, z : E ` [Q, cnstr (f1 . . . fN)1...N ] : A∧ ` [U , u] : E ⇒
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Γ ` [Q ⊗U , cnstr ((f1 . . . fN){v/z})1...N ] : A. (4.13)

The �rst typing judgement is the result of the application of a general typing rule

as

Γ1 ` [Q1, f1] : A1 . . .Γj, z : E ` [Qj, fj] : Aj . . .ΓN ` [QN , fN ] : AN ` [U , u] : E

Γ, z : E `
[
Q, cnstr (f1 . . . fj . . . fN)

]
: A

(4.14)

where Q = Q1 ⊗ . . .⊗QN and, due to the linearity of `QST λ, only one among

the smaller terms f1 . . . fN owns z as free variable within its typing context. Thus

exploiting the induction hypothesis on this term, which is fj, we �nd

Γj, z : E ` [Qj, fj] : Aj ∧ ` [U , u] : E ⇒ Γj ` [Qj ⊗U , fj{u/z}] : Aj, (4.15)

and taking the conclusion of the implication (4.15) as premise in (4.14), gives the

thesis (4.13).

Lemma 4.2 (Subject reduction in `QST λ). If a quantum closure ` [Q, e] : A

evaluates to a distribution [Q, e] ⇓ {[Qi, vi]
pi}i∈I, then it holds, ∀i ∈ I, the type

judgement ` [Qi, vi] : A.

Proof.

If the quantum closure is ` [∅, b] : bool or x : A ` [∅, x] : A or ` [Q, 〈r1 . . . rn〉] :

qbitn or ` [Q, λ x.e] : B ( A, then using the reduction rule (val ⇓)Q we obtain a

distribution with a unique value, which is the quantum closure that we start from.

Thus the thesis coincides with the hypothesis.

If the quantum closure is Γ ` [Q, new (v)] : qbit1 then the type of the unique value

distribution follows from the structure of the function new(v) and by the rule (new ⇓
)Q. The same remark we must do for quantum closures such as Γ ` [Q, measm (V)] :

qbitn ⊗ bool, Γ ` [Q, U (v)] : qbita(U), Γ ` [Q, cmp (v, u)] : qbitn+m, since the

correspondent big�step reduction rules (mea ⇓)Q, (uni ⇓)Q and (cmp ⇓)Q ensure

that the type of these terms do not change during the evaluation.
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Big�step semantics rule Name

[Q, v] ⇓ {[Q, v]1} (val ⇓)Q

r fresh variable

[Q, new(b)] ⇓ {[NWrb(Q), r]1} (new ⇓)Q

[Q, U〈r1 . . . rm〉] ⇓ {[Ur1...rmQ, 〈r1 . . . rm〉]1}
(uni ⇓)Q

[Q, cmp (V,W)] ⇓ {[Q,V ·W]1} (cmp ⇓)Q

1 ≤ m ≤ n

[Q, measm (V)] ⇓ {[MSrff(Q), 〈Vm, ff〉]PR
r
ff(Q) , [MSrtt(Q), 〈Vm, tt〉]PR

r
tt(Q)}

(mea ⇓)Q

[Q, e] ⇓ {[Qi, λ x.hi]
pi}i∈I

[Qi ⊗U , f ] ⇓ {[Qi ⊗Uj, uj]
qj}j∈J [Qi ⊗Uj, hi{uj/x}] ⇓ Ei,j

[Q ⊗U , ef ] ⇓
∑

i,j pi · qj · Ei,j

(app ⇓)Q

[Q, e] ⇓ {[Qff, ff]pff , [Qtt, tt]ptt}
[Qtt ⊗U , f ] ⇓ {[Utt ⊗Ui, vi]

pi}i∈I
[Qff ⊗U , g] ⇓ {[Qff ⊗Uj, vj]

qj}j∈J
[Q ⊗U , if e then f else g] ⇓ {[Qtt ⊗Ui, vi]

ptt·pi}i∈I + {[Qtt ⊗Uj, uj]
ptt·qj}j∈J

(if ⇓)Q

[Q, e] ⇓ {[Qi, 〈vi, ui〉]pi}i∈I ∀i, [Qi ⊗U , f{vi/x, ui/y}] ⇓ Ei
[Q ⊗U , let e be 〈x, y〉 in f ] ⇓

∑
i pi · Ei

(let ⇓)Q

[Q,Ω] ⇓ ∅ (div ⇓)Q

Figure 4.3: Big�step semantics of `QST λ.

If Γ ` [U ⊗W , fg] : A and [U ⊗W , fg] ⇓ {[Ui ⊗Wj, vi,j,n]pi·qj ·rn}i∈I,j∈J ,n∈N then

we must show that the type judgement

∀i ∈ I,∀j ∈ J ,∀n ∈ N ,Γ ` [Ui ⊗Wj, vi,j,n] : A (4.16)

is valid. The �rst hypothesis is a type judgement which, for the rule (tj − app)Q has

premises

Γ ` [U , f ] : B( A ∧ ∅ ` [W , g] : B (4.17)

while the second hypothesis comes from the (app ⇓)Q rule, which has three premises

[U , f ] ⇓ {[Ui, λ x.hi]
pi}i∈I ∧ ∀i, [Ui ⊗W , g] ⇓ {[Ui ⊗Wj, uj]

qj}j∈J

∧ [Ui ⊗Wj, hi{uj/x}] ⇓ {[Ui ⊗Wj, vi,j,n]rn}n∈N . (4.18)
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The induction hypothesis on the smaller terms in relation (4.17), entails the following

type judgements which hold for the distributions of (4.18):

Γ ` [U , f ] : B( A ∧ [U , f ] ⇓{[Ui, λ x.hi]
pi}i∈I

⇒ ∀i ∈ I, Γ ` [Ui, λ x.hi] : B( A (4.19a)

∅ ` [W , g] : B ∧ , [Ui ⊗W , g] ⇓{[Ui ⊗Wj, uj]
qj}j∈J

⇒ ∀j ∈ J , ∅ ` [Ui ⊗Wj, uj] : B. (4.19b)

and since the relation (4.19a) derives from a type judgement rule (tj − abs)Q, we

have

∀i ∈ I, Γ, x : B ` [Ui, hi] : A. (4.20)

Thus, using Lemma 4.1 on the statements (4.20) and (4.19b) one �nds

∀i ∈ I, ∀j ∈ J , Γ, x : B ` [Ui, hi] : A ∧ ∅ ` [Ui ⊗Wj, uj] : B ⇒

Γ ` [Ui ⊗Wj, hi{uj/x}] : A. (4.21)

With this last result, applying induction hypothesis to the last term of (4.18) we get

the thesis, since

Γ ` [Ui ⊗Wj, hi{uj/x}] : A ∧ [Ui ⊗Wj, hi{uj/x}] ⇓ {[Ui ⊗Wj, vi,j,n]rn}n∈N

⇒ ∀i ∈ I,∀j ∈ J ,∀n ∈ N , Γ ` [Ui ⊗Wj, vi,j,n] : A. (4.22)

If Γ ` [U ⊗W , if f then g else h] : A ∧ [U ⊗W , if f then g else h] ⇓
{[Utt ⊗Wi, νi]

pi·qtt , [Uff ⊗Wj, wj]
pj ·qff}i∈I,j∈J then we should prove the validity

of the type judgements ∀i ∈ I,∀j ∈ J , Γ ` [Utt ⊗Wi, νi] : A, Γ ` [Uff ⊗Wj, wj] :

A. Since the �rst hypothesis is a type judgement coming from the rule (tj − if )Q

which has premises

Γ1 ` [U , f ] : bool ∧ Γ2 ` [W , g] : A ∧ Γ2 ` [W , h] : A (4.23)

while the second hypothesis in the if statement, derives from the (if ⇓)Q rule, with

premises
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[U , f ] ⇓ {[Utt, tt]qtt , [Uff, ff]qff} ∧ ∀i ∈ I, [Utt ⊗W , g] ⇓ {[Utt ⊗Wi, νi]
pj}i∈I

∧ ∀j ∈ J , [Uff ⊗W , h] ⇓ {[Uff ⊗Wj, wj]
pj}j∈J . (4.24)

Here, the induction hypothesis on the smaller terms in relation (4.23), leads directly

to the following type judgements which hold for the distributions of (4.24):

Γ1 ` [U , f ] : bool ∧ [U , f ] ⇓ {[Utt, tt]qtt , [Uff, ff]qff}

⇒ Γ1 ` [Utt ⊗W , tt] : bool,Γ1 ` [Uff ⊗W , ff] : bool (4.25a)

Γ2 ` [W , g] : A ∧ ∀i ∈ I, [Utt ⊗W , g] ⇓ {[Utt ⊗Wi, νi]
pj}i∈I

⇒ ∀i ∈ I, Γ2 ` [Utt ⊗Wi, νi] : A (4.25b)

Γ2 ` [W , h] : A ∧ ∀j ∈ J , [Uff ⊗W , h] ⇓ {[Uff ⊗Wj, wj]
pj}j∈J

⇒ ∀j ∈ J , Γ2 ` [Uff ⊗Wj, wj] : A, (4.25c)

which is the thesis.

If Γ ` [U ⊗W , let f be 〈x, y〉 in g] : A and [U ⊗W , let f be 〈x, y〉 in g] ⇓
{[Ui ⊗Wj, vi,j]

piqj}i∈I,j∈J then we must show the goodness of the type judgement

∀i ∈ I,∀j ∈ J ,Γ ` [Ui ⊗Wj, vi,j] : A. (4.26)

The �rst hypothesis is a type judgement which, for the rule (tj − let)Q has premises

∅ ` [U , f ] : E ⊗ F ∧ Γ, x : E, y : F ` [W , g] : A (4.27)

while the second hypothesis comes from the (let ⇓)Q rule, whose premises are

[U , f ] ⇓ {[Ui, 〈ui, νi〉]pi}i∈I ∧

∀i ∈ I, [Ui ⊗W , g{ui/x, νi/y}] ⇓ {[Ui ⊗Wj, vi,j]
qj}j∈J . (4.28)

The substitution Lemma 4.1 ensures on the validity of the type judgement

∀i ∈ I, Γ, x : E, y : F ` [W , g]A : ∧∅ ` [Ui, 〈ui, νi〉] : E ⊗ F ⇒

Γ ` [Ui ⊗W , g{ui/x, νi/y}] : A. (4.29)
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Thus, through the induction hypothesis on the smaller terms of (4.27) which is in

the form:

∅ ` [U , f ] : E ⊗ F ∧ [U , f ] ⇓{[Ui, 〈ui, νi〉]pi}i∈I

⇒ ∀i ∈ I, ∅ ` [Ui, 〈ui, νj〉] : E ⊗ F (4.30a)

Γ ` [Ui ⊗W , g{ui/x, νi/y}] : A ∧ [Ui ⊗W , g{ui/x, νi/y}] ⇓ {[Ui ⊗Wj, vi,j]
qj}j∈J

⇒ ∀j ∈ J , Γ ` [Ui ⊗Wj, vi,j] : A, (4.30b)

we get the thesis.

4.2 Quantum Context Equivalence

In supplying the notion of equivalence between quantum programs, we must consider

that quantum closures are precisely what we want to compare in `QST λ.

In order to give a de�nition of context preorder and context equivalence in a

quantum language, it shall be necessary to supply each context with its own quantum

register: with this purpose, we start giving, for the moment, the grammar necessary

to build a term context ∆ ` C[Γ ` A] : B in `QST λ distinguishing, as usual, the

quantum contexts which are terms, from those which are values and denoted, by

V [·].

V [·] ::= [·] | λx.C[·] | 〈V [·], u〉 | 〈u, V [·]〉, (4.31a)

C[·] ::= [·] | fC[·] | C[·]f | if C[·] then f else g | if f then C[·] else D[·] |

| let f be 〈x, y〉 in C[·] | let C[·] be 〈x, y〉 in f | new (V [·]) |

| measn (V [·]) | U (V [·]) | cmp (V [·],V) | cmp (V, V [·]) . (4.31b)

Remarkably, the holes belonging to the quantum term contexts, can host both a

quantum closure or a single quantum term depending on their structure, which is

examined in Figure 4.4, where the typing rules for context closures are given.

A context (quantum) closure is a quantum closure [U , C[·]] whose second com-

ponent is a context: the quantum register U of the context closure, stores every free
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quantum variable of the context C[·], which is the second component of the context

quantum closure, recursively produced by the syntax tree (4.31a,4.31b). Sometimes

the symbol CU [`A] will be used for a short form of [U , C[`A]]: this context closure

requires to be �lled with a quantum closure such that Γ ` [Q, e] : A. We will give

signi�cance to the writing CU [Γ ` [Q, e] : A] imposing the equivalence

[U , C[Γ ` [Q, e] : A]]
def≡ [U ⊗Q, C[e]] , (4.32)

where ⊗ is the operator of tensor product between Hilbert's spaces of the quantum

registers variables .

Since they must be employed to build a context preorder, the context closures

that will be used shall be both total and closed: thoroughly, if C[·] is a context and

Q is the set of its free quantum variables, then the quantum register of the context

closure [U , C[·]] is such that U ∈ H(Q).

Similarly to what has been done with the deterministic and probabilistic lan-

guages, we will �x a symbol to identify the context closures that may be employed

in the de�nition of quantum context equivalence and context preorder, which are

those belonging to the set QCTXB (Γ ` A), denoting the total context closures with

type B, being by de�nition

QCTXB (Γ ` A) = {[U , C[·]] | Q : qbit ` C[Γ ` A] : B,U ∈ H(Q)}. (4.33)

A function Obs : T [QC] `QSTλ
Γ,A → R, is also built likewise in `ST λ, as the sum of

probabilities that the quantum closure [Q, e] ∈ T [QC] `QSTλ
Γ,A evaluates to whatever

element of the set V [QC] `QSTλ
Γ,A . Namely we de�ne

Obs([Q, e]) =
∑
[W ,v]

[[Q, e]]([W , v]) =
∑

[[Q, e]], (4.34)

denoting by [[Q, e]] the probability distribution corresponding to the semantics of

[Q, e]. Likewise in probabilistic case, the relation of context preorder is linked to

the notion of observational behaviour of the terms involved in the relation, which

can be �tested� in whatever context , thus we �x
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[Q, e] ≤Γ,A [R, h]⇒ ∀ [U , C[·]] ∈ QCTXB (Γ ` A) ,

Obs([U ⊗Q, C[e]]) ≤ Obs([U ⊗R, C[h]]), (4.35)

where the symbols ⊗ stands again for the operator of tensor product between the

Hilbert's space of the two quantum systems Q and U . As in deterministic and

probabilistic languages, the relation of context preorder that we have just de�ned

is a preorder, being re�exive and transitive. Since we would like that it is a pre-

conguence in `QST λ, we must give the list of compatibility rules namely a new series

of conditions similar to (2.21a�2.21f), listed for the deterministic `ST λ language.

(c− 1)Q ∀x, x : A ` [∅, x] R [∅, x] : A A ∈ Y`QSTλ
,

∀r,∀Q ∈ H({r}), ∅ ` [Q, r] R [Q, r] : qbit (4.36a)

(c− 2)Q Γ, x : B ` [Q, e] R [R, h] : A ⇒ Γ ` [Q, λ x.e] R [R, λ x.h] : B( A

(4.36b)

(c− 3)Q Γ ` [Q, e] R [W , g] : B( A ∧ ∆ ` [U , f ] R [R, h] : B ⇒

⇒ Γ,∆ ` [Q ⊗U , ef ] R [W ⊗R, gh] : A (4.36c)

(c− 4)Q

Γ ` [Q, e] R [R, h] : bool ∧∆ ` [U , f ] R [S , `] : A ∧∆ ` [W , `] R [V , a] : A⇒

Γ,∆ ` ([Q⊗U ⊗W , if e then f else g])R ([R⊗S ⊗V , if h then ` else a]) : A

(4.36d)

(c− 5)Q Γ ` [Q, e] R [R, h] : B ⊗ E ∧ ∆, x : B, y, E ` [U , f ] R [R, h] : A ⇒

⇒ Γ,∆ ` ([Q ⊗U , let e be 〈x, y〉 in f ])R ([W ⊗R, let g be 〈x, y〉 in h]) : A

(4.36e)

(c− 6)Q Γ ` [Q, v] R [W , ν] : A ∧ ∆ ` [U , u] R [R, w] : B ⇒

⇒ Γ,∆ ` [Q ⊗U , 〈v, u〉] R [W ⊗R, 〈ν, w〉] : A⊗B
(4.36f)

(c− c)Q Γ ` [Q, v] R [W , ν] : A ∧ ∆ ` [U , u] R [R, w] : B ⇒

⇒ Γ,∆ ` [Q ⊗U , cmp (v, u)] R [W ⊗R, cmp (u,w)] : qbitn+m (4.36g)

(c− n)Q Γ ` [Q, v] R [R, w] : bool⇒ Γ ` [Q, new (v)] R [R, new (w)] : qbit
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(4.36h)

(c−m)Q Γ ` [Q, v] R [R, w] : qbitn+1 ⇒

Γ ` [Q, measn (v)] R [R, measn (w)] : qbitn ⊗ bool (4.36i)

(c− u)Q Γ ` [Q, v] R [R, w] :⇒ Γ ` [Q, U (v)] R [R, U (w)] : qbita(U) (4.36j)

Lemma 4.3 (Quantum context preorder behaviour with respect to contexts). If two

quantum closures are in quantum context preorder relation, the relation is preserved

whether they are embedded in a whatever context closures. This may be stated with

the entailment

[Q, e] ≤Γ,A [R, h] ⇒ (∀ [U , C[·]] ∈ QCTXB (Γ ` A) ,

[U ⊗Q, C[e]] ≤B [U ⊗R, C[h]]) (4.37)

Proof. The hypothesis implies the ful�llment of the condition

∀ [W , D[·]] ∈ QCTXB (Γ ` A) , [W ⊗Q, D[e]] ≤B [W ⊗R, D[h]] , (4.38)

while the thesis requires that

∀ [S , G[·]] ∈ QCTXE (∅ ` B) , [S ⊗U ⊗Q, G[C[e]]] ≤E [S ⊗U ⊗R, G[C[h]]] ,

(4.39)

is veri�ed. But, provided to have taken W = S ⊗U and D[`A ·] = G[C[`A ·]], as
well B = E, the condition (4.39) reduces to (4.38). This proves the thesis, entailing

the compatibility of the quantum context preorder relation in `QST λ.

4.2.1 Applicative Bisimilarity in `QST λ

Would it be possible to have a notion of bisimilarity for `QST λ? What is the

underlying �Markov Chain�? It turns out that LMC as introduced in Section 3.2

are su�cient, but we need to be careful. In particular, states of the LMC are not

terms, but quantum closures, of which there are in principle nondenumerably many.

However, since we are only interested in quantum closures which can be obtained
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Type judgement context closure rule Name

Γ `v [∅, [Γ `v A]] : A (tjcQ − axv)

Γ `e [∅, [Γ `e A]] : A (tjcQ − axt)

Γ `v [∅, [Γ `v A]] : A

Γ `e [∅, [Γ `e A]] : A
(tjcQ − vt)

Γ, x : B `e [Q, C[Θ `e E]] : A

Γ `v [Q, λ x.C[Θ `e E]] : B( A
(tjcQ − abs)

Γ `e [Q, C[Θ `e E]] : B( A ∆ ` [U , f ] : B

Γ `e [Q ⊗U , C[Θ `e E]f ] : A
(tjcQ − appL)

Γ ` [U , f ] : B( A ∆ `e [Q, C[Θ `e E]] : B

Γ `e [Q ⊗U , fC[Θ `e E]] : A
(tjcQ − appR)

Γ `e [Q, C[Θ `e E]] : bool ∆ ` [U , f ] : A ∆ ` [U , g] : A

Γ,∆ `e [Q ⊗U , if C[Θ `e E] then f else g] : A
(tjcQ − ifL)

Γ ` [Q, e] : bool ∆ `e [U , C[Θ `e E]] : A ∆ `e [U , D[Θ `e E]] : A

Γ,∆ `e [Q ⊗U , if e then C[Θ `e E] else D[Θ `e E]] : A
(tjcQ − ifR)

Γ `v [Q, V [Θ `e E]] : A ∆ ` [U , u] : B

Γ,∆ `v [Q ⊗U , 〈V [Θ `e E], u〉] : A⊗B
(tjcQ − paiL)

Γ ` [Q, v] : A ∆ `v [U , V [Θ `e E]] : B

Γ,∆ `v [Q ⊗U , 〈v, V [Θ `e E]〉] : A⊗B
(tjcQ − paiR)

Γ `e [Q, C[Θ `e E]] : B ⊗ F ∆, x : B, y : F ` [U , f ] : A

Γ,∆ `e [Q ⊗U , let C[Θ `e E] be 〈x, y〉 in f ] : A
(tjcQ − letL)

Γ ` [Q, f ] : B ⊗ F ∆, x : B, y : F `e [U , C[Θ `e E]] : A

Γ,∆ `e [Q ⊗U , let f be 〈x, y〉 in C[Θ `e E]] : A
(tjcQ − letR)

Γ `v [Q, V [Θ `e E]] : bool

Γ `v [Q, new (V [Θ `e E])] : bool
(tjcQ − new)

Γ `v [Q, V [Θ `e E]] : qbita(U)

Γ `v [Q, U (V [Θ `e E])] : qbita(U)
(tjcQ − uni)

Γ `v [Q, V [Θ `e E]] : qbit1

Γ `v [Q, meas1 (V [Θ `e E])] : bool
(tjcQ −mea)

Γ `v [Q, V [Θ `e E]] : qbitn+1 1 ≤ m ≤ n

Γ `v [Q, measm (V [Θ `e E])] : qbitn ⊗ bool
(tjQ −mea)

Γ `v [Q, V [Θ `e E]] : qbitn ∆ ` [U , u] : qbitm

Γ,∆ `v [Q ⊗U , cmp (V [Θ `e E], u)]qbitn+m
(tjcQ − cmpL)

Γ ` [Q, v] : qbitn ∆ `v [U , V [Θ `e E]] : qbitm

Γ,∆ `v [Q ⊗U , cmp (v, V [Θ `e E])]qbitn+m
(tjcQ − cmpR)

Figure 4.4: Context typing rules for contexts closures.
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(in a �nite number of evaluation steps) from closures having an empty quantum

register, this is not a problem: we simply take states as those closures, which we

dub constructible. M`QSTλ
can be built similarly to M`PSTλ

, where (constructible)

quantum closures take the place of terms. Hence we set

S = T [QC] `QSTλ ] V [QC] `QSTλ (4.40a)

L = {aeval , att, aff, a@[W ,ν], a⊗[W ,g], aYA , aŶA , aQ[W ,r]} (4.40b)

P = P`QSTλ
. (4.40c)

where T [QC] `QSTλ
Γ,A = {[Q, e] | e ∈ T `QSTλ

Γ,A } and T [QC] `QSTλ
Γ,A is the set of pairs ([Q, e], A).

Analogous meaning, just for values must be assigned to V [QC] `QSTλ
A and V [QC] `QSTλ

A =

V [QC] `QSTλ
A × YA. The non zero elements of the function P`QSTλ

are de�ned as

follows:

P`QSTλ

(
(t̂t, bool), att, (t̂t, bool)

)
= 1;

P`QSTλ

(
(f̂f, bool), aff, (f̂f, bool)

)
= 1;

P`QSTλ

(
( ̂[Q, λ x.e], B( A), a@[W ,v], ([Q ⊗W , e{v/x}] , A)

)
= 1;

P`QSTλ

(
([̂Q,V], qbitn), aQ[W ,g], ([Q ⊗W , g{V/x}] , E)

)
= 1;

P`QSTλ

(
( ̂[Q, 〈v, u〉], A⊗B), a⊗[W ,g], ([Q ⊗W , g{v/x, u/y}] , E)

)
= 1;

P`QSTλ
(([Q, e] , A), aYA , ([Q, e] , A)) = 1;

P`QSTλ

(
([̂Q, e], A), aŶA , ([̂Q, e], A)

)
= 1;

P`QSTλ

(
([Q, e] , A), aeval , ([̂U , v], A)

)
= [[Q, e]] ([U , v]) .

Please notice the presence of a new label for the qubits aQ[W ,g] which models the

action of giving the qubit as an argument for the open term [W , g].

The simulation relation here is given on the set of the quantum closures,T [QC]̀ QSTλ
Γ,A

using the suitable transition elements for each type and by distinguishing term by

values. The full set of labelled actions for M`QSTλ
is presented in
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Action Label(s)

Show the value of a boolean: att, aff

Gives a quantum closure as argument to a function type: a@[U ,u]

Substitutes a pair into the second component of a quantum

closure :

a⊗[U ,f ]

Substitutes the quantum variable s resident in the quantum

register U in the open quantum closure [W , g]

aQ[W ,g]

Exhibits the type of a value: aŶA

Exhibits the type of a term: aYA

Evaluates a quantum closure [Q, e] aeval

Figure 4.5: The action allowed in M`QSTλ
.

� For quantum closures belonging to the set V [QC] `QSTλ
bool , the quantum context

is only formally involved in the de�nition, which is identical to the proba-

bilistic one (3.16), provided that the following identity has been settled, that

[∅, e] coincides with e, where ∅ is the notation for empty quantum register.

Sbool is a simulation for boolean quantum closures if the following condition

is accomplished

∀ [∅, b] ∈ V`QSTλ
bool ,P`QSTλ

(
(̂[∅, e], bool), ab, ([̂∅, b], bool)

)
≤

P`QSTλ

(
([̂∅, h], bool), ab, ([̂∅, b], bool)

)
. (4.41)

� For function values the condition of simulation between quantum closures in-

volves, as usual, the action labelled by the subsitution of a value:



126 Chapter 4. Quantum Language

∅ ` [Q, λ x.e] SB(A [R, λ x.h] : B( A ⇒ ∀ [W , v] ∈ V [QC] `QSTλ
B ,

P`QSTλ

(
( ̂[Q, λ x.e], B( A), a@[W ,v], ([Q ⊗W , e{v/x}] , A)

)
≤

P`QSTλ

(
( ̂[R, λ x.h], B( A), a@[W ,v], (SA ([Q ⊗W , e{v/x}]) , A)

)
. (4.42)

� For pairs, also in a quantum environment, the de�nition of simulation shall

rely on the tag a⊗[W ,g] whose argument is here a quantum closure:

∅ ` [Q, 〈v1, v2〉] SA⊗B [R, 〈w1, w2〉] : A⊗B ⇒ ∀ [W , g] ∈ T [QC] `QSTλ
x:A,y:B;E

P`QSTλ

(
( ̂[Q, 〈v1, v2〉], A⊗B), a⊗[W ,g], ([Q ⊗W , g{v1/x, v2/y}] , E)

)
≤

P`QSTλ

(
( ̂[Q, 〈w1, w2〉], A⊗B), a⊗[W ,g], (SE ([Q ⊗W , g{v1/x, v2/y}]) , E)

)
(4.43)

� To compare quantum variable sequences we need the elements of transition

matrix labelled by aQ[W ,g], being g an open term of the quantum language,

namely g ∈ T [QC]x:qbit;E
`QSTλ

:

∅ ` [Q,V] Sqbitn [R, h] : qbitn, ⇒ ∀ [W , g] ∈ T [QC] `QSTλ
x:qbitn;E(

P`QSTλ

(
([̂Q,V], qbitn), aQ[W ,g], ([Q ⊗W , g{V/x}] , A)

)
≤ P`QSTλ

(
([̂R, h], qbitn), aQ[W ,g], (SA ([Q ⊗W , g{V/x}]) , A)

))
(4.44)

� For terms the de�nition of simulation is similar to the probabilistic case, taking

into account that the domain of distributions is a subset of V [QC] `QSTλ
A , rather

than V`QSTλ
A :

∅ ` [Q, e] SA [R, h] : A ⇒ ∀X ∈ V [QC] `QSTλ
A ,

P`QSTλ
(([Q, e] , A), aeval , (X,A)) ≤ P`QSTλ

(([R, h] , A), aeval , (SA (X), A)) .

(4.45)

Once we have a LMC, it is easy to apply the same de�nitional scheme we have

seen for `PST λ, and obtain a notion of applicative (bi)similarity: indeed properties
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proved in Lemma 3.9, Lemma 3.10 and Proposition 3.1, relying on the de�nition of

transitive closure remain unaltered also in quantum environment, whence we must

conclude that the transitive closure of the union of all possible simulations and

bisimulations, being a simulation and a bisimulation in turn on the set T [QC] `QSTλ

of quantum closures of `QST λ, play the role of quantum similarity and bisimilarity

respectively.

Howe's extension of the applicative (bi)simulation for `QST λ is equally neces-

sary because here too we must face the same di�culties that have been raised in

deterministic and probabilistic languages, concerning the proof of compatibility for

the simulation relation.

Here Howe's rules, listed in Figure 4.6, involve the quantum terms of the lan-

guage as well as the deterministic ones and they are given as a relation between

quantum closures. The full set of Howe's rules for `QST λ in Figure 4.6, resumes

in a unique instance the case of complex terms, built up with smaller subterms

through a syntactic constructor, cnstr. In `QST λ, Howe's relation enjoys the same

properties of compatibility, pseudo-transitivity and substitutivity, that have been

proved in deterministic case. We show these properties on the whole set of quantum

closures typed with the rules provided in Figure (4.1). The property R ⊆ R H

stated in Lemma 2.17 holds unchanged, being independent of the terms.

Lemma 4.4 (Compatibility of R H in `QST λ).

If R is re�exive then R H is compatible on the quantum closures of `QST λ.

Proof. Starting from the re�exivity of R we want to prove the statement

Γ1 ` [Q1, e1] R H [R1, h1] : A1 . . .ΓN ` [QN , eN ] R H [RN , hN ] : AN ⇒

Γ `
[
Q, cnstr

(
{en}n∈{1...N}

)]
R H

[
R, cnstr

(
{hn}n∈{1...N}

)]
: A (4.46)

being cnstr a whatever constructor of `QST λ, Q = Q1⊗. . .⊗QN , likewise R. Since

the basic case is a tautology, being founded on Howe's rules (Howva1 )Q, (Howva2 )Q,
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Howe's rule Name

∅ ` [Q, b] �bool [R, h] : bool

∅ ` [Q, b]�bool
H [R, h] : bool

(Howcon)Q

x : A ` [Q, x] �A [R, h] : A

x : A ` [Q, x]�AH [R, h] : A
(Howva1 )Q

∅ ` [Q,V] �qbiti [R, h] : qbiti

∅ ` [Q,V]�qbiti
H [R, h] : qbiti

(Howva2 )Q

∆, x : B ` [Q, e]�AH [W , g] : A ∆ ` [W , λ x.g] �B(A [R, h] : B( A

∆ ` [Q, λ x.e]�B(AH [R, λ x.h] : B( A
(Howabs)Q

∆ ` [Q, v]�bool
H [W , ν] : bool ∆ ` [W , new (ν)] �qbit1 [R, h] : qbit1

∆ ` [Q, new (v)]�qbit1
H [R, h] : qbit1

(Hownew)Q

∆ ` [Q, v]�qbit1
H [W , ν] : qbit1 ∆ ` [W , meas1 (ν)] �bool [R, h] : bool

∆ ` [Q, meas1 (v)]�bool
H [R, h] : bool

(Howme1 )Q

∆ ` [Q, v]�qbitn+1
H [W , ν] : qbitn+1 ∆ ` [W , measm (ν)] � [R, h] : qbitn ⊗ bool

∆ ` [Q, measm (v)]�bool
H [R, h] : qbitn ⊗ bool

(Howmen)Q

∆ ` [Q, v]�qbit⊗n
H [W , ν] : qbita(U) ∆ ` [W , U (ν)] �qbita(U) [R, h] : qbita(U)

∆ ` [Q, U (v)]�qbit⊗n
H [R, h] : qbita(U)

(Howuni)Q
∆1 ` [Q1, e1]�A1

H [W1, g1] : A1

...
...

...
...

∆N ` [QN , eN ]�ANH [WN , gN ] : AN
∆1, . . .∆N ` [W1 ⊗ . . .⊗WN , cnstr ({gn}n∈N )] �A [R, h] : A

∆1, . . . ,∆N ` [Q1 ⊗ . . .⊗QN , cnstr ({en}n∈N )]�AH [R, h] : A

(Howgen)Q

Figure 4.6: Howe's relation enhancement in quantum environment.

we analyse the rule (Howgen)Q which we quote below

Γ1 ` [Q1, e1] R H [W1, g1] : A1

...
...

ΓN ` [QN , eN ] R H [WN , gN ] : AN Γ `
[
W , cnstr

(
{gn}n∈{1...N

)]
R [R, h] : A

,
Γ` [Q, e] R H [R, h] : A

(4.47)

being as usual W = W1⊗ . . .⊗WN . Since by hypothesis R is re�exive, in ( 4.47) it
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is possible that
[
W , cnstr

(
{gn}n∈{1...N

)]
= [R, h]. This gives the thesis.

Lemma 4.5 (Pseudo transitivity of R H).

If R is transitive, then R H enjoys the pseudo�transitivity on the set of quantum,

closures of `QST λ, namely

∀ [Q, e] , [f,U ] , [R, h] ,
(
∆ ` [Q, e] R H [U , f ] : A ∧ ∆ ` [U , f ] R [R, h] : A

)
⇒ ∆ ` [Q, e] R H [R, h] : A. (4.48)

Proof. Considering the �rst hypothesis as a consequence of (Howgen)Q we �nd:

∆1 ` [Q1, e1] R H [W1, g1] : A1

...
...

∆N ` [QN , eN ] R H [WN , gN ] :AN ∆ `
[
W , cnstr

(
{gn}n∈{1...N}

)]
R [U , f ] : A

∆ ` [Q, e] R H [U , f ] :A
(4.49)

From the last hypothesis of the previous relation (4.49) and the second hypothesis

of (4.48) by transitivity of R we get the result

(
∆ `

[
W , cnstr

(
{gn}n∈{1...N}

)]
R [U , f ] : A ∧∆ ` [U , f ] R [R, h] : A

)
⇒

∆ `
[
W , cnstr

(
{gn}n∈{1...N}

)]
R [R, h] : A (4.50)

which may be taken as last premise for Howe's general rule (4.49) to get

∆1 ` [Q1, e1] R H [W1, g1] : A1

...
...

∆N ` [QN , eN ] R H [WN , gN ] :AN ∆ `
[
W , cnstr

(
{gn}n∈{1...N}

)]
R [R, h] : A

∆ ` [Q, e] R H [R, h] : A
(4.51)

which is the thesis.

Lemma 4.6 (Howe's relation substitutivity for quantum closures). If R is a transi-

tive and closed under subsitution relation on the set of quantum closures T [QC] `QSTλ
A ,

then R H is substitutive.
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Proof. Let us prove the quantum substitutivity property (4.9) for Howe's lifting

R H , assuming that R is transitive and closed under substitution. The proof is by

induction on the structure of the quantum closure [Q, e], examining Howe's rules 4.6

− [Q, e] = [Q, x]− Here the statement is

Γ, x : B ` [∅, x] R H [W , g] : A ∧ ∆ ` [U , f ] R H [R, h] : A⇒

Γ,∆ ` [U , f ] R H [W ⊗R, g{h/x}] : A (4.52)

where, for the the linearity of `QST λ, x /∈ dom(Γ), thus necessarily B = A. The

�rst hypothesis in (4.52), is necessarily a consequence of (Howv1 )Q, then it holds the

relation Γ ` [∅, x] R [W , g] : A, and the closure under subsitution of R entails that

∀∆ ` [R, h] : A, the relation

Γ,∆ ` [R, h] R [W ⊗R, g{h/x}] : A. (4.53)

Thus, the thesis follows from both the second hypothesis in (4.52) and relation

(4.53), by pseudo�transitivity of Howe's relation.

− [Q, e] = [Q, cnstr ({en}n∈N )]− , where cnstr (e1 . . . eN) is a whatever construc-

tor of the language. This case, requires to resort to (Howgen)Q rule to prove the

property (4.9) with R = R H . Starting from the �rst hypothesis, namely Γ, x : B `
[Q, cnstr ({en}n∈N )] R H [W , g] : A and going back of a step in the derivation tree

we obtain the following set of relations, in the linearity hypothesis

Γ1 ` [Q1, e1] R H [S1, `1] : A1

...
...

Γj, x : B ` [Qj, ej] R
H [Sj, `j] : Aj

...
...

ΓN ` [QN , eN ] R H [SN , `N ] : AN Γ, x : B ` [S , cnstr ({`n}n∈N )] R [W , g] : A

Γ, x : B ` [Q, cnstr ({en}n∈N )] R H [W , g] : A
(4.54)

where Q = Q1⊗· · ·⊗QN and S = S1⊗· · ·⊗SN . By linearity, the variable x must

appear only once, namely in the j�th premise. Applying the induction hypothesis

(of substitutivity) on the smallest j�th term, one gets the relation
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Γj, x : B ` [Qj, ej] R
H [Sj, `j] : Aj ∧ ∆ ` [U , f ] R H [R, h] : B ⇒

Γj,∆ ` [Qj ⊗U , ej{f/x}] R H [Sj ⊗R, `j{h/x}] : Aj (4.55)

likewise, applying the property of closure by substitution to the last premise in

(4.54), we get

Γ,x : B `
[
S , cnstr (`1 . . . , `j . . . `N)

]
R [W , g] : A ⇒

Γ `
[
S ⊗R, cnstr (`1 . . . , `j{h/x} . . . `N)

]
R [W ⊗R, g{h/x}] : A. (4.56)

Finally, to get the result and prove the general statement, we use (4.55) and (4.56)

as premises of the (Howgen)Q rule, being.

Γ1 ` [Q1, e1] R H [S1, `1] : A1

...
...

...

Γj,∆ ` [Qj ⊗U , ej{f/x}] R H [Sj ⊗R, `j{h/x}] : Aj
...

...
...

ΓN ` [QN , eN ] R H [SN , `N ] :AN

Γ,∆ ` [S ⊗R, cnstr (`1, `2 . . . `{h/x} . . . `N)] R [W ⊗R, g{h/x}] : A

Γ, x : B ` [Q ⊗U , e{f/x}] R H [W ⊗R, g{h/x}] : A
(4.57)

which is the thesis.

Lemma 4.7 (Quantum key lemma). Howe's extension of similarity between quan-

tum closures � denoted by the symbol �H � has the simulation property.

Indeed we will show, for each couple of quantum closures ∅ ` [Q, e] : A, ∅ `
[R, h] : A ∈ T [QC] `QSTλ

A the more general property

∅ ` [∅, e]�bool
H [∅, h] : bool⇒

∀b ∈ V`PSTλ
bool ,P`QSTλ

( (̂[∅, e], bool), ab, ( ̂[∅, b], bool) ) ≤

≤ P`QSTλ

(
([̂∅, h], bool), ab, (�bool

H( ̂[∅, b]), bool)
)

(4.58a)
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∅ ` [Q,V]�qbitn
H [R, h] : qbitn ⇒

∀ [W , g] ∈ T [QC] `QSTλ
s:qbitn,E , P`QSTλ

(
([̂Q,V], qbitn), aQ[W ,g], ([Q ⊗W , g{V/s}] , E)

)
≤

≤ P`QSTλ

(
([̂R, h], qbit), aQ[W ,g], (�gH([Q ⊗W , g{V/s}]), E)

)
(4.58b)

∅ ` [Q, λ x.f ]�B(AH [R, λ x.h] : B( A⇒ ∀ [U , v] ∈ T [QC] `QSTλ
B ,

P`QSTλ

(
( ̂[Q, λ x.f ], B( A), a@[U ,v], ([Q ⊗U , f{v/x}] , A)

)
≤

≤ P`QSTλ

(
( ̂[R, λ x.h], B( A), a@[U ,v], (�AH([R ⊗U , f{v/x}]), A)

)
(4.58c)

∅ ` [Q, 〈v1, v2〉]�A⊗BH [R, 〈w1, w2〉] : A⊗B ⇒ ∀ [W , g] ∈ T [QC] `QSTλ
x:A,y:B;E

P`QSTλ

(
( ̂[Q, 〈v1, v2〉], A⊗B), a⊗[W ,g], ([Q ⊗W , g{v1/x, v2/y}] , E)

)
≤

P`QSTλ

(
( ̂[R, 〈w1, w2〉], A⊗B), a⊗[W ,g], (�EH ([R ⊗W , g{v1/x, v2/y}]) , E)

)
(4.58d)

∅ ` [Q, e] �A [R, h] : A ∧ [Q, e] ⇓ {[Qi, vi]
pi}i∈I ⇒

⇒
(

[R, h] ⇓ {[Rm, wm]qm}m∈M ∧ ∀X ∈ V [QC] `QSTλ
A ,

P`QSTλ
(([Q, e] , A), aeval , (X,A)) ≤ P`QSTλ

(
([R, h] , A), aeval , (�AH(X), A)

))
(4.58e)

Proof. We carry out the proof by induction on the big�step-reduction rules of `QST λ

� If e = b is a boolean constant, the quantum register is not involved in the

de�nition of similarity, which is identical to that given in the probabilistic

environment (3.38a). Indeed, if ∅ denote the empty quantum register, we can

always set the identity [∅, b] = b. To become familiar with quantum closures

notation we formally write the statement as

∅ ` [∅, e]�bool
H [∅, h] : bool⇒, ∀b ∈ V`STλ

bool

P`QSTλ

(
(̂[∅, e], bool), ab, ([̂∅, b], bool)

)
≤
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P`QSTλ

(
([̂∅, h], bool), ab, ([̂∅, b], bool)

)
. (4.59)

The proof is the same as in probabilistic case (3.38a).

� If e = V, the statement to prove is (4.58b). Under this condition the hy-

pothesis ∅ ` [Q,V]�qbitn
H [R, h] : qbitn has, as last rule, (Howva2 )Q from

Figure 4.6. Thus ∅ ` [Q,V] �qbitn [R, h] : qbitn holds and, by de�nition

of simulation for quantum variables (4.44), ∀ [W , g] ∈ T [QC] `QSTλ
s:qbitn,E , [R, h] ∈

�E ([Q ⊗W , g{V/s}]).

Therefore, recalling that, by Lemma 2.17, � ⊆ �H , we have

[R, h] ∈�E ([Q ⊗W , g{V/s}]) ⊆ �EH ([Q ⊗W , g{V/s}]) (4.60)

which is the thesis.

� If e = λx.f , the statement (4.58c) must be proved and hypothesis

∅ ` [Q, λ x.f ]�B(AH [R, λ x.h] : B( A (4.61)

hypothesis must have (Howabs)Q as last rule � see Figure 4.6. Thus, the fol-

lowing premises hold

(abs : 1 )− x : B ` [Q, f ]�AH [W , g] : A

(abs : 2 )− ∅ ` [W , λ x.g] �B(A [R, h] : B( A.

From (abs : 1 ), by compatibility of�B(AH it can be derived that ∅ ` [Q, λ x.f ]

�B(AH [W , λ x.g] : B( A, which has as a consequence the result [W , λ x.g] ∈
�B(AH ([Q, λ x.f ]).

Furthermore from the properties of Howe's relation (Lemma 2.17), it follows

that �B(A ([Q, λ x.f ]) ⊆ �B(AH ([Q, λ x.f ]), whence the property

�B(A
(
�B(AH

)
⊆ �B(AH .

By latter argument, using (abs : 2 ) we �nd [R, h] ∈�B(A ([W , λ x.g]) ⊆
�B(AH ([W , λ x.g]) ⊆ �B(AH ([Q, λ x.f ]). Since f{v/x} is a single term,

for each X ⊆ T [QC] `QSTλ
A there are two possibilities:
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I [Q ⊗U , f{v/x}] /∈ X ⊆ T [QC] `QSTλ
A that entails thesis, since the left�hand�

side of (4.58c) is zero.

I [Q ⊗U , f{v/x}] ∈ X whence, recalling that we showed [R, h] ∈ �B(AH

([Q, λ x.f ]), implies that both of the terms of the inequality (4.58c) are equal

to one.

� e = 〈v1, v2〉 =Here we should prove the statement in form (4.58d) knowing

that hypothesis

∅ ` [Q, 〈v1, v2〉]�A⊗BH [R, 〈w1, w2〉] : A⊗B, (4.62)

with Q = Q1⊗Q2, is a consequence of a (Howgen)Q rule for pairs as it is shown

just below

(pair : 1 )− ∅ ` [Q1, v1]�AH [W1, ν1] : A, ∅ ` [Q2, v2]�BH [W2, ν2] : B

(pair : 2 )− ∅ ` [W1 ⊗W2, 〈ν1, ν2〉] �A⊗B [R, 〈w1, w2〉] : A⊗B.

Statement (pair : 1 ) entails, by compatibility of Howe's relation, that

[Q1 ⊗Q2, 〈v1, v2〉]�A⊗BH [W1 ⊗W2, 〈ν1, ν2〉] ,

thus, being W = W1 ⊗W2, by de�nition of Howe's relation, we have ∀ [U , f ]

∈ T [QC] `QSTλ
x:A,y:B;E

P`QSTλ

(
( ̂[Q, 〈v1, v2〉], A⊗B), a⊗[U ,f ], ([Q ⊗U , f{v1/x, v2/y}] , E)

)
≤

P`QSTλ

(
( ̂[W , 〈ν1, ν2〉], A⊗B), a⊗[U ,f ],(�EH ([Q ⊗U , f{v1/x, v2/y}]) , E)

)
.

(4.63)

Moreover, using on (pair : 2 ) the de�nition of simulation we get ∀ [U , f ] ∈
T [QC] `QSTλ
x:A,y:B;E

P`QSTλ

(
( ̂[W , 〈ν1, ν2〉], A⊗B), a⊗[U ,f ], ([W ⊗U , f{ν1/x, ν2/y}] , E)

)
≤

P`QSTλ

(
( ̂[R, 〈w1, w2〉], A⊗B), a⊗[U ,f ], (�E ([W ⊗U , f{ν1/x, ν2/y}]) , E)

)
.

(4.64)
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Joining the relations (4.63) and (4.64) one has, ∀ [U , f ] ∈ T [QC] `QSTλ
x:A,y:B;E ,

[W ⊗U , f{ν1/x, ν2/y}] ∈ �EH ([Q ⊗U , f{v1/x, v2/y}])

[R ⊗U , 〈w1, w2〉] ∈�E ([W ⊗U , f{ν1/x, ν2/y}]) (4.65)

whence considering the property of Howe relation �⊆ �H (Lemma 2.17) can

be derived that

[R ⊗U , 〈w1, w2〉] ∈ �EH ([Q ⊗U , f{v1/x, v2/y}]) ,

which is the thesis.

� If e = measm (v) the statement to be proved is

∅ ` [Q, measm (v)]�qbitn⊗bool
H [R, h] : qbitn⊗bool ∧ [Q, measm (v)] ⇓ E ⇒(

[R, h] ⇓H ∧ ∀X ⊆ V [QC] `QSTλ
qbitn⊗bool,

P`QSTλ
(([Q, measm (v)] , bool), aeval , (X, bool))

≤ P`QSTλ

(
([R, h] , bool), aeval , (�AH(X), bool)

))
(4.66)

being, by the rule (mea ⇓)Q,

E = {[MSvff(Q), 〈Vm, tt〉]PR
v
tt(Q) , [MSvtt(Q), 〈Vm, ff〉]PR

v
ff(Q)}.

Since the �rst part of the hypothesis is consequence of the rule (Howmen)Q, it

stems from the premises

(mea : 1 )− v : qbit, ν : qbit ` [Q, v]�qbitn+1
H [W , ν] : qbitn+1

(mea : 2 )− ∅ ` [W , measm (ν)] �qbitn⊗bool [R, h] : qbitn ⊗ bool

From the premise (mea : 1 ) it follows, by compatibility of �qbit
H , the relation

∅ ` [Q, measm (v)]�qbitn⊗bool
H [W , measm (ν)] : qbitn ⊗ bool, thus applying

induction hypothesis on the the steps of big�steps semantics rule one obtains

[W , measm (ν)] ⇓ G ∧ ∀X ∈ V [QC] `QSTλ
qbitn⊗bool,
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P`QSTλ
(([Q, measm (v)] , qbit), aeval , (X, bool)) =

= PRvX(Q) ≤ PRν�qbitn⊗boolH(X)(W ) =

= P`QSTλ

(
([W , measm (ν)] , qbit), aeval , (�qbitn⊗bool

H(X), bool)
)
, (4.67)

where G = {[MSvtt(Q), 〈Vm, tt〉]PR
v
tt(Q) , [MSvff(Q), 〈Vm, ff〉]PR

v
ff(Q)} and PRvX(Q)

=
∑

b∈X PRvb(Q). Whereas from (mea : 2 ) by de�nition of similarity we derive

the inequality

∀Y ∈ V [QC] `QSTλ
qbitn⊗bool,

P`QSTλ
(([W , measm (ν)] , qbitn ⊗ bool), aeval , (Y, qbit

n ⊗ bool))=PRνY (W )≤

PRh�qbitn⊗bool(Y )(R) = P`QSTλ
(([R, h] , qbit), aeval , (�bool (Y ), bool)) , (4.68)

Setting Y = �bool
H(X) the following chain of inequalities stems

E (X) = PRvX(Q) ≤ PRν�qbitn⊗bool
H(X)(W ) ≤ PRν�qbitn⊗bool(�qbitn⊗bool

H(X))(R) =

= H (�qbitn⊗bool
(
�qbitn⊗bool

H(X)
)
). (4.69)

If Sup (E ) ∩ X = ∅ then the inequality (4.66) is necessarily true, otherwise

from (4.69) it follows that ∀X ∈ V [QC] `QSTλ
qbitn⊗bool, E (X) ≤ H (�qbitn⊗bool

H(X)),

namely the thesis.

� If e = new (v) the statement of the key lemma will be

∅ ` [Q, new (v)]�qbit
H [R, h] : qbit ∧ [Q, new (v)] ⇓ E ⇒

(
[R, h] ⇓H ∧

∀X ⊆ V [QC] `QSTλ
qbit ,P`QSTλ

(([Q, new (v)] , bool), aeval , (X, bool))

≤ P`QSTλ

(
([R, h] , bool), aeval , (�AH(X), bool)

)
(4.70)

where, from (new ⇓)Q we know the semantics of the quantum closure [Q, e]

to have the structure E = {[NWrv(Q), r]1}. Going back through the derivation

tree we found that the hypotesys must come from the following premises

(new : 1 )− ∅ ` [Q, v]�bool
H [W , ν] : bool

(new : 2 )− ∆ ` [W , new (ν)] �qbit [R, h] : qbit.
(4.71)
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The hypothesis (new : 1 ), via the application of the compatibility of Howe's

relation (Lemma 2.16) gives us the result

∅ ` [Q, new (v)]�bool
H [W , new (ν)] : bool (4.72)

and imposing on (4.72) the induction hypothesis we get

∅ ` [Q, new (v)]�bool
H [W , new (ν)] : bool ∧ [Q, new (v)] ⇓ {[NWrv(Q), r]1} ⇒

[W , new (ν)] ⇓ G ∧ ∀X ∈ V [QC] `QSTλ
bool E (X) ≤ G (�bool

H(X)), (4.73)

where the semantics G is the one-value set {[NWsν(W ), s]1}. Moreover, from

(new : 2 ), by the de�nition of similarity we may write

∀Y ∈ V [QC] `QSTλ
qbit ,G (Y ) ≤H (�qbit (Y )), (4.74)

whence, if we take Y = �qbit
H(X), joining the inequalities (4.73) and (4.74)

yields

∀X ∈ V [QC] `QSTλ
qbit ,E (X) ≤ G (�qbit

H(X)) ≤H (�qbit (�qbit
H(X))). (4.75)

Considering that Lemma 2.17 entails � (�H) = �H , two possibilities may

arise:

� if [NWrv(Q), r] /∈ X, then the thesis (4.70) necessarily holds;

� if [NWrv(Q), r] ∈ X, then every the term in (4.75) is equal to 1 and the

thesis (4.70) is ful�lled, likewise.

� If e = U (v) we must prove the statement

(
Γ ` [Q, U (v)]�qbita(U)

H [R, h] : qbita(U) ∧ [Q, U (v)] ⇓ E
)
⇒(

[R, h] ⇓H ∧ ∀X ∈ V [QC] `QSTλ

qbita(U) ,E (X) ≤H
(
�qbita(U)

H(X)
))
, (4.76)

where from rule (uni ⇓)Q we know that E has the structure E =
{

[UvQ, v]1
}
.

Here the (�rst sentence of the) thesis comes from the premises

(uni : 1 )− Γ ` [Q, v]�qbita(U)
H [W , ν] : qbita(U)

(uni : 2 )− ∅ ` [W , U (ν)] �qbita(U) [R, h] : qbita(U).
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From (uni : 1 ), applying induction hypothesis one gets the condition ∀ [U , f ]

∈ T [QC] `QSTλ

Γ,x:qbita(U),A
[Q ⊗U , f{v/x}] �AH [W ⊗U , f{ν/x}]. Given that, from

(4.76) [Q, U (v)] ⇓ E , taking [U , f ] = [∅, U ], yields

[W , U (ν)] ⇓ G ∧ ∀X ∈ V [QC] `QSTλ

qbita(U) ,E (X) ≤ G (�qbita(U)
H(X)), (4.77)

being � from evaluation rule (uni ⇓)Q � G =
{

[UνW , ν]1
}
. Moreover (uni : 2 )

entails, by de�nition of similarity, that

∀Y ∈ V [QC] `QSTλ

qbita(U) ,G (Y ) ≤H (�qbita(U) (Y )), (4.78)

having denoted by H the semantics of [R, h]. Now, taking Y = �qbita(U)
H(X)

and joyning (4.77) and (4.78) gives the chain

∀X ∈ V [QC] `QSTλ

qbita(U) ,E (X) ≤ G (�qbita(U)
H(X)) ≤H (�qbita(U) (�qbita(U)

H(X))),

(4.79)

which is the thesis, since by Lemma 2.17 we know that ∀X, �A (�AH(X))=

�AH(X).

Precisely, two cases may occur for any X:

� [UQ, v] /∈ X, which makes (4.79) necessarily true.

� [UQ, v] ∈ X which entails all the terms in (4.79) are equal to one, and

h ⇓
{

[UhR, h]1
}
, with [UhR, h] ∈ �qbita(U)

H(X).

� If e = cmp (v1, v2), the statement of key lemma is(
∅ ` [Q, cmp (v1, v2)]�qbitn+m

H [R, h] : qbitn+m ∧ [Q, cmp (v1, v2)] ⇓ E

)
⇒(

[R, h] ⇓H ∧ ∀X ∈ V [QC] `QSTλ

qbitn+m
,E (X) ≤H (�qbitn+m

H(X))

)
, (4.80)

being, for rule (cmp ⇓)Q, E = {[Q, v1 · v2]1}.

The �rst hypothesis results as an application of the (Howgen) and it has

premises

(cmp : 1 )− ∅ ` [Q1, v1]�qbitn
H [W1, ν1] : qbitn,

∅ ` [Q2, v2]�qbitm
H [W2, ν2] : qbitm

(cmp : 2 )− ∅ ` [W1 ⊗W2, cmp (ν1, ν2)] �qbitn [R, h] : qbitn+m,

(4.81)
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while the second hypothesis has not premises, coming from the rule (cmp ⇓)Q.

Starting from the hypothesis (cmp : 1 ) we may apply the induction on the

subterms, which yields the semantics of [W1 ⊗W2, cmp (ν1, ν2)] in the form

G = [W1 ⊗W2, ν1 · ν2]. The same hypothesis, recalling the compatibility of

Howe's lifting, gives the relationship

∅ ` [Q1 ⊗Q2, cmp (v1, v2)]�qbitn+m
H [W1 ⊗W2, cmp (ν1, ν2)] : qbitn+m.

(4.82)

Relation 4.82, still from induction hypothesis, gives

∀X ∈ V [QC] qbitn+m

, E (X) ≤ G (�qbitn+m
H(X)). (4.83)

From (cmp : 2 ), by de�nition of similarity in quantum framework, it follows

∀Y ∈ V [QC] qbitn+m

, G (Y ) ≤H (�qbit (Y )), (4.84)

where [R, h] ⇓H . Now taking Y = �qbitn+m
H(X), from (4.82) and (4.84) we

have the inequalities chain

∀X ∈ V [QC] qbitn+m

, E (X) ≤ G (�qbitn+m
H(X))≤H (�qbitn+m

(
�qbitn+m

H(X)
)
),

(4.85)

which gives the thesis (4.80), since by Lemma 2.17, ∀X,�qbitn+m

(
�qbitn+m

H(X)
)

is equal to �qbitn+m
H(X).

� If e = if f1 then f2 else f2, to reduce the size of the formula involved

we will write e as cnstr ({fj}j∈J ) where cnstr represents a generic syntactic

constructor. Then we should prove the statement in form (4.58e), which is

equivalent to show the following property

∅ ` [Q ⊗U , cnstr ({fj}j∈J )]�AH [R, h] : A∧ [Q ⊗U , cnstr ({fj}j∈J )]⇓E

⇒
(
∀X ⊆ V [QC] `QSTλ

A ,P`QSTλ
(([Q ⊗U , cnstr ({fj}j∈J )] , A), aeval , (X,A))

≤ P`QSTλ

(
([R, h] , A), aeval , (�AH(X), A)

))
(4.86)
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The semantics E in (4.86), is de�ned by the big�step reduction (if ⇓)Q that

we quote just below

[Q, f1] ⇓ F1 [Qtt ⊗U , f3] ⇓ F3 [Qff ⊗U , f2] ⇓ F2

[Q ⊗U , if f1 then f2 else f3] ⇓ F1(tt)F2 + F1(ff)F3

,

where F3 = {[Qtt ⊗Ui, vi]
pi}i∈I , F2 = {[Qff ⊗Uj, uj]

qj}j∈J for conditional

choice terms.

Referring us to Figure 4.6, we claim that the �rst hypothesis in the statement

(4.86) must have (Howgen)Q as last rule. This one has a set of premises for

each subterm of e plus a general rule stated in (gen : 2 )

(gen : 1 )− ∅ ` [Q, f1]�bool
H [S , g1] : bool

∅ ` [U , fj]�AH [W , gj] : A j = 2, 3

(gen : 2 )− ∅ ` [S ⊗W , cnstr ({gj}j∈J )] �A [R, h] : A.

(4.87)

Therefore by induction hypothesis to subterms of (gen : 1 ) we have

(
∅ ` [Q, f1]�bool

H [S , g1] : bool ∧ [Q, f1] ⇓ F1

)
⇒(

[S , g1] ⇓ G1 ∧ ∀X ⊆ V [QC] `QSTλ
bool , P`QSTλ

(([Q, f1] , A), aeval , (X, bool)) ≤

P`QSTλ

(
([S , g1] , bool), aeval , (�bool

H(X), bool)
))

(4.88)

∀j ∈ {2, 3},
(
∅ ` [U , fj]�AH [W , gj] : A ∧ [U , fj] ⇓ Fj

)
⇒(

[W , gj] ⇓ Gj ∧ ∀Xj ⊆ V [QC] `QSTλ
A , P`QSTλ

(([U , fj] , A), aeval , (Xj, A)) ≤

P`QSTλ

(
([W , gj] , A), aeval , (�AH(Xj), A)

))
(4.89)

As well as by induction on the size of big�step semantics, we may apply a suit-

able reduction rule whose premises are [S , g1] ⇓ G1 and ([W , gj] ⇓ Gj)j∈{2,3},

to get the semantics G such that [S ⊗W , cnstr ({gj}j∈J )] ⇓ G .

Now, using the de�nition of similarity on (gen : 2 ), imposing V = S ⊗ W ,

lead us to the following inequality
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(∅ ` [V , cnstr ({gj}j∈J )] �A [R, h] : A ∧ [V , cnstr ({gj}j∈J )] ⇓ G ) ⇒

( [R, h] ⇓H ∧ ∀Y ⊆ V [QC] `QSTλ
A , P`QSTλ

(([V , cnstr ({gj}j∈J )] , A),aeval,(Y,A))

≤ P`QSTλ
(([R, h] , A), aeval , (�A (Y ), A)) ) (4.90)

Moreover, since the relation �H is compatible, by Lemma 4.4, the premises

(gen : 1 ) entail as a further consequence that

∅ ` [Q, e]�AH [V , cnstr ({gj}j∈J )] : A,

namely the inequality

∀Z ⊆ V [QC] `QSTλ
A , P`QSTλ

(([Q, e] , A), aeval , (Z,A)) ≤

≤ P`QSTλ

(
([W , cnstr ({gj}j∈J )] , A), aeval , (�AH(Z), A)

)
(4.91)

We reach the thesis (4.86) applying the pseudo�transitivity (Lemma 4.5) to the

relationships (4.91) and (4.90) setting, for each Z ⊆ V [QC] `QSTλ
A , Y = �AH(Z)

and recalling the relation �A (�AH(Z)) = �AH(Z) as direct consequence of

Lemma 2.17.

� If e = f1f2, we list the statement as(
∅ ` [Q ⊗U , f1f2]�AH [R, h] : A ∧ f1f2 ⇓ E

)
⇒(

[R, h] ⇓H ∧ ∀X ⊆ V [QC] `QSTλ
A , P`QSTλ

(([Q ⊗U , f1f2] , A), aeval , (X,A)) ≤

≤ P`QSTλ

(
([R, h] , A), aeval , (�AH(X), A)

))
(4.92)

where

E =
∑

[Qj ,λ x.`j ]∈Sup(F1),[Qj⊗Un,νn]∈Sup(F2) F1([Qj, λ x.`j])F2([Qj ⊗Un, νn])Fj,n

as a result of the application of the big step reduction rule for applications

in the quantum framework (app ⇓)Q. Recalling that �rst hypothesis must be

consequence of a (Howgen)Q rule, we know that it has been derived by the
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following premises

(app : 1 )− ∅ ` [Q, f1]�B(AH [S , g1] : B( A, ∅ ` [U , f2]�BH [V , g2] : B,

(app : 2 )− ∅ ` [S ⊗ V , g1g2] �A [R, h] : A.

(4.93)

Thus we write induction hypotheses on the subterms of (app : 1 ) in (4.93) as

•
(
∅ ` [Q, f1]�B(AH [S , g1] : B( A ∧ [Q, f1] ⇓ F1

)
⇒
(

[S , g1] ⇓ G1 ∧

∀XA ⊆ V [QC] `QSTλ
B(A , P`QSTλ

(([Q, f1] , B( A), aeval , (XA, B( A)) ≤

≤ P`QSTλ

(
([U , g1] , B( A), aeval , (�B(AH(XA), B( A)

))
(4.94)

where we set F1 = {[Qi, λ x.`i]
pi}i∈I and G1 = {[Sj, λ x.bj]

qj}j∈J .

•
(
∅ ` [U , f2]�BH [V , g2] : B ∧ [U , f2] ⇓ F2

)
⇒

(
[V , g2] ⇓ G2

∧ ∀XB ⊆ V [QC] `QSTλ
B ,P`QSTλ

(([U , f2] , B), aeval , (XB, B)) ≤

≤ P`QSTλ

(
([V , g2] , B), aeval , (�BH(XB), B)

))
(4.95)

with F2 = {[Un, νn]pn}n∈N and G2 = {[Vm, wm]qm}m∈M.

By induction hypotheses, using the big�step semantics rule for application one

builds the semantics of term g1g2 de�ned as

G =
∑

[Sj ,λ x.bj ]∈Sup(G1),[Vm,wm]∈Sup(G2) G1([Sj, λ x.bj])G2([Vm, wm])Gj,m,

provided to have settled that bj{wm/x} ⇓ Gj,m.

With regard to relations (4.94) and (4.95), it should be remarked that

XA = {[Qi, λ x.`i]}i∈I ⇒ �B(AH(XA) = ∪i∈I
(
�B(AH([Qi, λ x.`i])

)
(4.96)

XB = {[Un, νj]}n∈N ⇒ �BH(XB) = ∪n∈N
(
�BH([Un, νn])

)
, (4.97)

then from now on, we adopt the notation X ′A = ∪i∈I
(
�B(AH([Qi, λ x.`i])

)
and X ′B = ∪n∈N�BH([Un, νn]).
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The disentangling lemma [11] ensures us that for every set pair XA and XB

there are collections {rXA1 . . . rXAN }, {s
XB
1 . . . sXBN } of real numbers depending

on XA and XB respectively, such that

• ∀XA ⊆ V [QC] `QSTλ
B(A , F1(XA) ≤

∑
[Sj ,λ x.`j ]∈X ′A

rXAi ≤ G1(X ′A)

• ∀XB ⊆ V [QC] `QSTλ
B , F2(XB) ≤

∑
[Vm,νm]∈X ′B

s
Xi
B

j ≤ G2(X ′B)
(4.98)

Moreover, the induction hypothesis (4.95), is employed to compare the dis-

tributions Fi,n and Gj,m involved in turn into the de�nitions of E and G

respectively: to this purpose, we use the substitutivity of �AH , which has

been proved with Lemma 4.6, on the smallest terms of [Q ⊗U , f1f2] and

[S ⊗ V , g1g2], to get the following relation, which is ful�lled ∀ [Qi, λ x.`j]

∈ Sup (F1), ∀ [Un, νn] ∈ Sup (F2), ∀ [Sj, λ x.bj] ∈ Sup (G1), ∀ [Vm, wm] ∈
Sup (G2):

[Qi, λ x.`i]�B(AH [Sj, λ x.bj] ∧ [Un, νn]�BH [Vm, wm]⇒

⇒ [Qi ⊗Un, `i{νn/x}]�AH [Sj ⊗ Vm, bj{wm/x}] ⇒ Fi,n�AHGj,m. (4.99)

Putting together the inequalities (4.98), (4.99) we get

∀X ∈ V [QC] `QSTλ
A , E (X) =

∑
[Sj ,λ x.`j]∈XA
[Vm,wm]∈XB

F1(XA)F2(XB)Fi,n(X) ≤∑
[Sj ,λ x.`j]∈XA
[Vm,wm]∈XB

rXAj sXBm Gj,m
(
�AH(X)

)
≤ G1(X ′A)G2(X ′B)Gj,m

(
�AH(X)

)
≤ G1(Sup (G1))G2(Sup (G2))Gj,m

(
�AH(X)

)
= G

(
�AH(X)

)
.

(4.100)

We come back now to the premise (app : 2 ) in (4.93); denoting by H the se-

mantics of h and exploiting both of the de�nition of similarity and the property

�A⊆ �AH we must conclude that

∀Y ∈ V [QC] `QSTλ
A , G (Y ) ≤H (�A (Y )) ≤H

(
�AH(Y )

)
. (4.101)

Thesis comes joining this last statement (4.101) with (4.100) and setting Y =

�AH(X), thus concluding the proof.
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� If e = let f1 be 〈x, y〉 in f2 the statement(
∅ ` [Q ⊗U , let f1 be 〈x, y〉 in f2]�AH [R, h] : A ∧

let f1 be 〈x, y〉 in f2 ⇓ E

)
⇒
(

[R, h] ⇓H ∧ ∀X ⊆ V [QC] `QSTλ
A ,

P`QSTλ
(([Q ⊗U , let f1 be 〈x, y〉 in f2] , A), aeval , (X,A)) ≤

P`QSTλ

(
([R, h] , A), aeval , (�AH(X), A)

))
(4.102)

should be proved, where the semantics E of the term is obtained via the

application of the corresponding big�step semantics rule (let ⇓)Q, which states

f1 ⇓ F1 = {[Qi, 〈vi, ui〉]pi}i∈I [Qi ⊗U , f2{vi/x, ui/y}] ⇓ F ′
i .

[Q ⊗U , let f1 be 〈x, y〉 in f2] ⇓ E =
∑

i∈I pi ·F ′
i

(4.103)

The �rst statement of the hypothesis originates from the premises

(let : 1 )− ∅ ` [Q, f1]�E⊗BH [S , g1] : E ⊗B,
x : E, y : B ` [U , f2]�AH [V , g2] : A,

(let : 2 )− ∅ ` [S ⊗ V , let g1 be 〈x, y〉 in g2] �A [R, h] : A.

(4.104)

And by induction on the dimensions of term involved in the big�step evaluation

rule we �nd(
∅ ` [Q, f1]�E⊗BH [S , g1] : E ⊗B ∧ [Q, f1] ⇓ F1

)
⇒
(

[S , g1] ⇓ G1 ∧

∧ ∀X ⊆ V [QC] `QSTλ
E⊗B , P`QSTλ

(([Q, f1] , E ⊗B), aeval , (X,E ⊗B)) ≤

≤ P`QSTλ

(
([S , g1] , E ⊗B), aeval , (�B⊗EH(X), B ⊗ E)

))
, (4.105)

with F1 = {[Qi, 〈vi, ui〉]pi}i∈I , G1 = {[Sj, 〈νj, wj〉]qj}j∈J .

Moreover, using open extension of applicative bisimulation and induction hy-

pothesis yields

x : E, y : B ` [U , f2]�AH [V , g2] : A ⇒ ∀ [Wn, 〈vn, un〉] ∈ V [QC] `QSTλ
E⊗B ,

∀Y ∈ V [QC] `QSTλ
A P`QSTλ

(([Q ⊗Wn, f2{vn/x, un/y}] , A), aeval , (Y,A)) ≤
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≤ P`QSTλ

(
([S ⊗Wn, g2{vn/x, un/y}] , A), aeval , (�AH(Y ), A)

)
. (4.106)

The previous induction hypothesis (4.106) uses the distribution G1 and the set

of distributions {G ′j }j∈J whose generic element G ′j is the result of the evalua-

tion of the quantum clusure [S ⊗Wj, g2{vj/x, uj/y}]. This allows to write ex-
plicitly the structure of the distribution G to which the term letg1be 〈x,y〉 ing2

evaluates, being G =
∑

[Qi,〈νi,wi〉]∈Sup(G1) G1([Wj, 〈νj, wj〉]) · G ′j whence, starting

from hypothesis of similarity contained on the second condition of (4.104) one

�nds(
∅ ` [S ⊗ V , let g1 be 〈x, y〉 in g2] �A [R, h] : A∧

[S ⊗ V , let g1 be 〈x, y〉 in g2] ⇓ G

)
⇒
(

[R, h] ⇓H ∧ ∀Z ⊆ V [QC] `QSTλ
A ,

G (Z) ≤H (�A (Z))

)
. (4.107)

Now we own all the elements to compare the semantics E , F and G : indeed

the �rst point of induction hypothesis (4.106) ensures that ∀X ⊆ V [QC] `QSTλ
E⊗B ,

F1(X) ≤ G (�E⊗BH(X)) and the second points together with substitution

property (Lemma 4.6) suggest us that ∀〈vi, ui〉 ∈ V`PSTλ
E⊗A , ∀Y ⊆ V [QC] `QSTλ

A ,

F ′
i (Y ) ≤ G ′i (�AH(Y )), thus

∀W ⊆ V [QC] `QSTλ
A , E (W ) =

∑
[Qi,〈vi,ui〉]∈X F1([Qi, 〈vi, ui〉])F ′

i (W ) ≤∑
[Qi,〈vi,ui〉]∈�E⊗BH(X) G1([Qi, 〈vi, ui〉])G ′i (�EH(W )) ≤ G (�AH(W )).

(4.108)

Now recall the last result (4.108) ∀W ⊆ V [QC] `QSTλ
A , E (W ) ≤ G (�EH(W ))

and let us join it with (4.107), namely ∀Z ⊆ V [QC] `QSTλ
A , G (Z) ≤ H (�A (Z))

simply setting ∀W,Z = �AH(W ), to obtain ∀W ⊆ T [QC] `QSTλ
A , E (W ) ≤

G (�EH(W )) ≤ H
(
�A (�AH(W ))

)
. The thesis is proved, since we resort to

the well known relation �A⊆ �AH (Lemma 2.17), which entails that ∀W,
�A (�AH(W )) = �AH(W )
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By carrying in quantum environment all the properties already stated in Propo-

sition 3.2 and following, until Proposition 3.7, we are reassured about the re�ex-

ivity, transitivity and closure under substitution of the relation (�H)
+
on the set

T [QC] `QSTλ . Finally, also Lemma 3.13 is still valid since it is proved basing only on

the properties of the relation (�H)
+
, telling us that the transitive closure of Howe's

extension of similarity has the simulation relation property � as we just proved that

the simulation on `QST λ owns it � thus it is a simulation in turn. From here it

follows the

Theorem 4.1. In `QST λ, � is included in ≤, thus ∼ is included in ≡.

Example 4.1. An interesting pair of terms which can be proved bisimilar are the

following two:

e = λx.if meas1 (x) then ff else tt; f = λx.meas1 (XU(x));

where XU is the unitary operator which �ips the value of a qubit. From the deriva-

tion rules we get

x : qbit ` x : qbit

x : qbit ` meas1 (x) : bool ∅ ` tt : bool ∅ ` ff : bool

x : qbit ` if meas1 (x) then tt else ff : bool

∅ ` λx.if meas1 (x) then ff else tt : qbit( bool

x : qbit ` x : qbit

x : qbit ` U (x) : qbit

x : qbit ` meas1 (U (x)) : bool

∅ ` λx.meas1 (U (x)) : qbit( bool

Whence, by de�nition (4.42)

eBqbit(bool f ⇒ ∀ [U , v] ∈ V [QC] `QSTλ
qbit

[U , if meas1{v/x} then ff else tt] Bbool [XUU , meas1{v/x}] ,

and both these terms evalutate to the same distribution, namely {ttPRvff(U ), ffPR
v
tt(U )}.
�
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4.3 On Full-Abstraction

Given the strong analogies between the probabilistic and quantum version of `ST λ,

there is a little hope to recover full abstraction for bisimulation in the environment

of the context equivalence for `QST λ, since we didn't obtain it for `PST λ. Indeed

we can build a couple of terms, modelling them on the example given in `ST λ, which

are not bisimilar for the same reason, but can be proved to be context equivalent

using trace equivalence techniques. Consider, in `QST λ, the terms

e = if meas1 (r) then (λx.tt) else (λx.Ω) (4.109)

f = λx.if meas1 (r) then tt else ff (4.110)

equiped by the same quantum register, which can be taken, e.g., in the form

Q =
1√
2

(|r ← tt〉+ |r ← ff〉) .

The terms have both type bool ( bool, and by analogy with the example

that we gave in `ST λ, we claim that the quantum closures [Q, e] and [Q, f ] are not

bisimilar since they evolve under th action of the same labelled Marcov chain M`QSTλ

to a di�erent distribution of values. On the other hand, being trace equivalent, they

are also context equivalent.

Rececently, an attempt to overcome this problem and recover completeness also

in the quantum language has been done, [18] giving a new notion of bisimilarity

based on the distributions rather than on the terms.

What one may hope to get is full-abstraction for extensions of the considered

calculi in which duplication is reintroduced, although in a controlled way. This has

been recently done in a probabilistic setting by Crubillé and Dal Lago [10], and is

the topic of current investigations by the authors for a quantum calculus in the style

of `QST λ.
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4.4 Conclusions

In the literature, various attempts have been made, to endow quantum languages

with a denotational semantic. Many of them exploit the game theory methods,

which has been formerly implemented [3] in PCF , where the types of PCF are

interpreted as games and the terms of language as game strategies.

Abramsky and Coecke [2] developed a pattern where the terms, the techniques

and also the typical algorithms of quantum computing, such as the quantum tele-

portation protocols, are interpreted using categories theory. They focused their

analysis on quantum information protocols, describing phenomena such as quantum

teleportation and entanglement swapping, through the use of compact and closed

categories, and formalized the superposition as well as the uncertainty intrinsically

embedded in the measurement processes which characterize the systems of qubits,

with a biproduct structure.

Delbecque [15, 16] developed a model closest to that we deal: based on the

calculus conceived by Selinger and Valiron, he conducts its analysis on the �rst-

order non linear languages and he presents a typed lambda calculus in which the

typical structures of the quantum calculation are represented using the concepts of

the game theory [13] for the probabilistic calculation. In this scheme, the quantum

states and the quantum operations are represented as strategies of a game. The

aim is to build a denotational semantics for the language terms, which nevertheless

apparently doesn't take into account the in�uence of the quantum register on the

behavior of the language objects.

Also Hasuo and Hoshino [29], based on the paradigm Selinger and Valiron of the

quantum language with classic controls, give a denotational semantic for a quantum

lambda caluculus. They use the category theory in order to equip the quantum

calculus with a denotational semantics, with the purpose to foster the development

of a tool for the analysis of the correctness for algorithms and protocols of quantum

communications, which are often uniuntuitive. Whithin their analysis, employing

the concept of monads [5] for structuring the branching, they also overcome the
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hypothesis of linearity by introducing the mode !, for deletion and duplication of

variables.

Another interesting, but complementary research branch focuses on the fascinat-

ing topic to implement a quantum functional language in giving a set of instruction

for the creation and the manipulation of quantum data, building this way a tool

to write the quantum algorithms, which have been presented untill now in term of

quantum gates, as a sequence of instructions. Despite that this language [26, 27] is

provided with an operational semantic, the authors have not dealt with the problem

of the equivalence between terms.

Nevertheless, here we have shown a method to extend Abramsky's applicative

bisimulation to a linear λ−calculi, adapting the Howe's techinque, expressly though

for higher�order languages, to a simple grammar endowed with probabilistic choice

and quantum data.

For the sake of simplicity, we have deliberately kept the considered calculi as

simple as possible. We believe, however, that many extensions would be harmless.

This includes, as an example, generalizing types to recursive types which, although

in�nitary in nature, can be dealt with very easily in a coinductive setting. Adding a

form of controlled duplication requires more care, e.g. in presence of quantum data

(which cannot be duplicated).

As a future perspective, we are also working for exploring another strengthened

technique for comparison among terms, namely the trace equivalence, with the pur-

pose to show that for quantum `QST λ, trace equivalence coincides with context

equivalence [19].
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