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English Abstract

This thesis concerns the statistical analysis of open quantum systems,
that is, systems that are in interaction with an external quantum system,
often called the environment. Speci�cally, the aim is to develop inferential
techniques to extract the maximum information from an open quantum sys-
tem subject to an external and non-stationary perturbation. The thesis is
composed of three paper.

In the �rst paper, a generalization of the explicit-duration hidden Markov
models (EDHMM) which takes into account the presence of sparse data is
presented. Introducing a kernel estimator in the estimation procedure in-
creases the accuracy of the estimates, and thus allows one to obtain a more
reliable information about the evolution of the unobservable system. A gen-
eralization of the Viterbi algorithm to EDHMM, used to reconstruct the
hidden chain, is developed. The �nite sample properties of our formulation
are assessed through an extensive simulation study.

In the second paper, we develop a Markov Chain Monte Carlo (MCMC)
procedure for estimating the EDHMM. We improve the �exibility of our for-
mulation by adopting a Bayesian model selection procedure which allows one
to avoid a direct speci�cation of the number of states of the hidden chain.
Motivated by the presence of sparsity, we make use of a non-parametric es-
timator to obtain more accurate estimates of the model parameters. The
formulation presented turns out to be straightforward to implement, robust
against the under�ow problem and provides accurate estimates of the pa-
rameters. A comparative analysis with the EM-based method is also carried
out.

In the third paper, an extension of the Cramér-Rao inequality for quan-
tum discrete parameter models is derived. The latter are models in which
the parameter space is restricted to a �nite set of points. The extension pre-
sented sets the ultimate accuracy of an estimator, and determines a discrete
counterpart of the quantum Fisher information. This is particularly useful
in many experiments in which the parameters can assume only few di�erent
values: for example, the direction which the magnetic �eld points to. We
also provide an illustration related to a quantum optics problem.
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Italian Abstract

Lo scopo della tesi è sviluppare metodi inferenziali in sistemi quantis-
tici aperti, ovvero, quei sistemi che interagiscono con un sistema quantistico
esterno chiamato ambiente. In particolare, lo scopo è quello di estrarre la
massima informazione da un sistema quantistico aperto soggetto ad una per-
tursbazione non stazionaria. La tesi si compone di tre articoli.

Nel primo articolo viene presentata una generalizzazione dei modelli
explicit-duration HMM che tiene conto della presenza di dati sparsi (ovvero,
mancanza di infomazione nei piccoli campioni). L'introduzione di uno sti-
matore kernel migliora considerevolmente l'accuratezza delle stime e per-
mette di ottenere un'informazione a�dabile sull'evoluzione del sistema non
osservabile. Inoltre, al �ne di rocostruire l'evoluzione del sistema nascosto,
viene presentata una generalizzazione dell'algoritmo di Viterbi per i modelli
EDHMM.

Nel secondo articolo viene sviluppata una procedura Monte Carlo Markov
Chain (MCMC) per la stima dei modelli EDHMM. La �essibilità della proce-
dura di stima viene aumentata adottando un metodo di selezione del modello
in ottica Bayesiana, il quale permette di non speci�care a priori il numero
degli stati della catena nascosta. L'introduzione di uno stimatore non para-
metrico, motivata dalla presenza di dati sparsi, permette di ottenere stime dei
parametri del modello più precise. Il modello presentato risulta essere facile
ed intuitivo da implementare, robusto rispetto al problema dell'under�ow e
fornisce stime dei parametri accurate.

Nel terzo articolo viene sviluppata una estensione della disuguaglianza di
Cramér-Rao per modelli quantistici a parametri discreti, ovvero quei modelli
il cui spazio parametrico è ristretto ad un insieme �nito di punti. L'estensione
presentata determina la minima varianza ottenibile da uno stimatore e for-
nisce una controparte discreta dell'informazione quantistica di Fisher. Essa
trova applicazione negli esperimenti in cui i parametri possono assumere
soltanto pochi valori: ad esempio, la direzione del campo magnetico. Inoltre,
viene presentata un'illustrazione relativa ad un modello di ottica quantistica.
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1 Introduction

According to the von Neumann projection postulate
(Von Neumann (1955)), describing the e�ects of a measurement on a quan-
tum system, a quantum measurement induces a discontinuous stochastic
change in the state of the measured system, the so-called wave function col-
lapse. The latter implies that, when a particular measurement is performed,
the future results of the same measurement on the same system are �xed,
preventing to obtain further information from the same system.

In recent years, the �rst quantum technologies are emerging due to the
experimental advances that allow the researchers to perform repeated mea-
surements on the same quantum system. The novelty lies in the possibility
to control and measure a quantum system without causing the collapse of
the wave function. This has been possible thanks to the development of a
new measurement technique, the indirect or generalized measurement (Davies
(1976); Kraus et al. (1983)).

The latter is realized by coupling a quantum system to a �meter�, i.e.
an auxiliary quantum system, and then measuring the meter. This implies
that no direct perturbation a�ects the system. Here, the di�erence between
classical and quantum mechanics emerges: in fact, in classical systems, the
e�ect of the measurement on the system can be neglected; on the other hand,
in quantum systems, measurement always causes an e�ect on the system,
even if carried out "indirectly".

In the context of generalized measurement, the central role is played by
open quantum systems, that is, systems that interacts with an external quan-
tum system, often called the environment. Indeed, since the interaction with
the environment is typically continuous, it is possible to monitor the environ-
ment so as to realize a continuous generalized measurement on the system.
(Wiseman and Milburn (2009), Nielsen and Chuang (2010)). Open quantum
systems �nd wide applications in many �elds such as quantum measure-
ment theory, quantum optics, quantum statistical mechanics and quantum
computing (Breuer and Petruccione (2002); Attal et al. (2006); Carmichael
(2009)).

This thesis deals with the problem of extracting the maximum infor-
mation form an open quantum system. Speci�cally, the aim is to develop
inferential techniques to provide a statistical analysis of an open quantum
system subject to an external and non-stationary perturbation.
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The work can be divided into two main parts.

1. In the �rst part we develop a physical model (experimental set-up)
which could be a useful and versatile tool to address a broad variety
of physical and statistical problems. (The model was developed in col-
laboration with Prof. Klaus Mølmer at Aarhus University, Denmark)

2. In the second part, inferential methods based on discrete time non sta-
tionary HMM are developed with the aim of analyzing and extracting
the maximum information from the experimental design. Theoretical
results on the asymptotic e�ciency in discrete parameters models are
also derived.

The experimental setting designed in the �rst part of the thesis can be
thought of as a modi�cation of the model presented by Nobel Laureate Serge
Haroche (Guerlin et al. (2007)), where the gradual collapse of the wave func-
tion induced by repeated measurements has been observed experimentally
for the �rst time.

The model can be brie�y sketched as follows. A two-level atom (system
A) is driven by an external and non-homogeneous force causing a change
in its oscillation frequency. Two-level atoms (system B, also called ancilla
systems), are sent through the system A and let weakly interact with it. The
objective is to reconstruct the system A evolution through the measurement
of the systems B, which reveal only partial information about the system
A. Basically, the external force leads to a time-dependent evolution of the
transition rate among the states of system A.

The experimental setting just presented can be nested in the framework
of Hidden Semi-Markov Models (HSMM), since the measurement results on
the B are governed by the current state of the (hidden) system A, which, in
turn, is driven by a semi-Markov evolution process.

The second part of the thesis deals with the modeling and the estimation
of the non-stationary evolution of the quantum system through an extension
of a particular class of HSMM, the explicit-duration HMM.

We present a more general class of models in which the state of the hidden
system is driven by an external force modeled as a non-stationary Markov
chain. This implies that the transition probabilities from one state to the
others are time-dependent. Moreover, due to the propagation of the wave
functions, the so-called emission probabilities are time-dependent as well.
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We introduce a non-parametric kernel estimator which allows one to con-
siderably improve the accuracy of the estimates and then to obtain a more
reliable information about the unobservable process in the presence of spar-
sity (especially for short observation sequences).

From a di�erent perspective, one could be interested in estimating the
value of the oscillation frequency of the system. As a matter of fact, since
the external force acting on the system is represented by a �nite state semi-
Markov chain, each state of the chain can be thought of as a di�erent value for
the oscillation frequency of the atom. Basically, the physical theory provides
us with additional information which leads to a restriction of the parameter
space. We derive an extension of the quantum Cramér-Rao bound for dis-
crete parameter models which provides the lower bound on the variance of
an estimator and determines a discrete counterpart of the quantum Fisher
information.

1.1 Summary and main contributions of the thesis

The thesis is organized in three papers.
Paper A is concerned with the problem of extracting the maximum in-

formation from open quantum systems. This �nds applications in quan-
tum computing and high-precision measurements. Speci�cally, we present
an extension of the explicit-duration HMM formulation in which the hid-
den process is a non-stationary Markov chain with time-dependent emission
probabilities and non-parametric state duration distributions.

Despite being a very �exible solution, the non-parametric speci�cation
of the duration, based on the sample relative frequencies, may require very
long series of observations. To overcome this problem, we introduce a non-
parametric kernel estimator for discrete distributions in the iterative step
of the (estimation) Forward-Backward algorithm. Smoothing methods for
discrete data, indeed, are proven to be optimal in the mean summed squared
error (MSSE) sense in the presence of sparsity (Hall and Titterington (1987)),
as it is the case in the experimental setup considered in this paper.

Furthermore, in order to obtain the optimal state sequence of the hidden
chain associated with the given observations, we develop a generalization of
the Viterbi algorithm for the explicit-duration HMM which is also robust
against the so-called under�ow problem.

The �nite sample properties of our formulation are assessed through an
extensive Monte Carlo study. All the simulations were carried out using an
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optimized C++ code that takes advantage of parallel computing. The results
of the simulation show that our formulation outperform the standard one
both in the ability to reconstruct the hidden chain and in the accuracy of the
estimates. It is remarkable that the introduction of the kernel estimator pro-
vides an improvement in the accuracy of the estimates for all the parameters,
even for long observation sequences.

We also found that the performance of the model strongly depends on
the type of measurement carried out. Since in our experiment the quantum
measurement has only two outputs, the model is able to obtain a good �t up
to �ve chain states, beyond which the accuracy of the estimates decreases. It
is worth to remark that a chain with �ve states is far beyond the number of
states in commonly applied models, which usually consider only one state.

One of the main limitations of HSMM consists in the prior speci�cation of
the number of states for the hidden chain, which has to be known. In order
to overcome this problem, we adopt a Bayesian perspective and employ a
model selection procedure which allows one to compare models with di�erent
number of chain states.

In Paper B, we develop a Markov Chain Monte Carlo (MCMC) sampling
scheme for estimating the explicit-duration hidden Markov models and we
make use of a Bayesian model selection procedure (Congdon (2006)) which
allows one to avoid a prior speci�cation of the number of states. Specif-
ically, the procedure uses a Monte Carlo approximation based on indepen-
dent MCMC sampling to produce posterior model probabilities and compares
di�erent models using Bayes factor estimates.

We provide both parametric and non-parametric speci�cation for the
state duration distributions. In the non-parametric speci�cation, motivated
by the presence of sparse data (lack of information), we make use of the
kernel estimator for discrete distribution introduced in Paper A. This choice
provides a signi�cant improvement in the precision of the estimates for all
the parameters, in particular for the transition probabilities.

As an application, we discuss an explicit-duration HMM characteriza-
tion of a two-level open quantum system subject to an external and non-
homogeneous perturbation causing a change in the oscillation frequency.

By means of an extensive Monte Carlo study, we show that our formula-
tion is straightforward to implement, robust against the under�ow problem
and provides an accurate reconstruction of the hidden evolution with precise
estimates of the parameters. The comparison of the two procedures, pre-
sented in these two papers, shows that for short observation sequences the
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EM-based method o�ers better performance, while for medium and long se-
quences the Bayesian setup provides estimates less variable and more precise.

The third paper contains some theoretical results in the �eld of quan-
tum Fisher information. Speci�cally, in Paper C we develop an extension
of the Cramér-Rao inequality for quantum discrete parameter models. Ba-
sically, in our setup the parameter space is an enumerable set of values,
Θ = {θ1, θ2, . . . , θn}, representing di�erent oscillation frequencies for the sys-
tem. We prove that the extension presented sets the ultimate accuracy of
an estimator, and determines a discrete counterpart of the quantum Fisher
information. This is particularly useful in many experiments in which the
parameters can assume only few di�erent values: for example, the direction
which the magnetic �eld points to. We also provide an illustration related
to a quantum optics problem.

Main contributions of the thesis

In summary, the main contributions of the thesis, besides the speci�cation
of the experimental setup, are:

� the generalization of the Viterbi algorithm for an extension of explicit-
duration HMM

� an e�cient and optimal (MMSE) non-parametric kernel estimator for
discrete distributions in the case of sparse data

� the development of a new MCMC-based method for estimating the
explicit-duration HMM

� A Bayesian model selection procedure based on posterior probabilities

� the extension of Cramér-Rao inequality for quantum discrete parameter
models
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1.2 Basic concepts of Quantum Mechanics

This section introduces the basic concepts of quantum statistics that will
be used in the thesis. In particular, we shall consider only �nite dimensional
quantum systems. For more detail on quantum statistical inference and quan-
tum probability, the reader is referred to Helstrom (1976), Holevo (1982) and
Barndor�-Nielsen et al. (2003), while Wang (2012) and Gill (2001) provide
a statistics-oriented introduction to quantum computation and quantum in-
formation.

1.2.1 States and evolution

Let us consider the Hilbert space of k-dimensional complex vectors,H = Ck, endowed with the inner product ⟨⋅, ⋅⟩. The state of a �nite dimen-
sional quantum system can be characterized by an Hermitian, nonnegative
and trace-one matrix ρ, called density matrix. If ρ has rank 1, the state is
called a pure state and it can be alternatively represented as a unit vector
in H. Using the Dirac's bra-ket notation, a pure state is denoted by ∣ψ⟩ or
ρ = ∣ψ⟩ ⟨ψ∣, where ∣⋅⟩ and ⟨⋅∣ represent column and row vectors, respectively.

One of the purely quantum phenomena is the quantum superposition.
The latter can be explained referring to the property of linearity of the
Schröedinger equation. Basically, like waves in classical physics, any (com-
plex) linear combination of states results in another well-de�ned quantum
state but, when the a measurement is performed, only one of the �compos-
ing� states can be observed, randomly. Probably the most known thought
experiment linked to superposition is the so-called Schröedinger's cat, in
which a cat may be simultaneously both alive and dead, as a result of a
random subatomic event that may or may not occur.

A quantum system is completely described by its state and the evolution.
The latter follows two principles: a deterministic, unitary evolution given by
the Schröedinger equation, and a stochastic, discontinuous evolution repre-
sented by the measurement of an observable.

1.2.2 Parametric quantum model

We assume that the state of the system depends on an unknown param-
eter θ which is the object of our inferential problem. Then, a parametric
quantum model {ρ(θ), M; θ ∈ Θ ⊆Rk} is de�ned by i) the state of the quan-
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tum system, ρ(θ), which depends on θ and ii) the measurement M to be
performed on the system.

A measurement, M, is mathematically described by a collection of Her-
mitian non-negative matrices m(x) indexed by the possible outcomes x of
the measure. They also must add up to the identity matrix I.

Let us consider pure states, that is ∣ψ(θ)⟩. The probability distribution
of a random variable X, describing the outcome of the measurement M on
the system in state ∣ψ(θ)⟩, is given by the trace rule,

PX(⋅, θ) = tr{M(⋅) ∣ψ(θ)⟩ ⟨ψ(θ)∣}.
Measuring the system will alter its state, causing the so-called wave func-
tion collapse. The latter implies that when a particular measurement is
performed, the future results of the same measurement on the same system,
are �xed, preventing to obtain further information from the same system.
Speci�cally, the state of the system after applying the measurement M and
conditional on observing the outcome x1 is given by

m(x1) ∣ψ(θ)⟩
tr{m(x1) ∣ψ(θ)⟩ ⟨ψ(θ)∣}

This procedure is known as the von Neumann projection postulate and
describes the e�ect of a measurement on a system. In our work, we exploit
the advantages of the indirect measurement which allows repeated measures
on the same quantum system.

1.2.3 Generalized measurements

The generalized measurement in an open quantum framework consists of
two steps: the system is coupled to a meter-system (the probe) and then a
measurement on the probe is performed, avoiding a direct perturbation of
the system. More formally, let us consider an auxiliary meter-system in a
state ∣0⟩, with orthonormal basis {∣x⟩ ∣x ∈X}, where X is the set of possible
measurement results, and ∣ψ(θ)⟩, the state of the system studied.

The initial state of the two systems is ∣ψ(θ)⟩ ⊗ ∣0⟩. In order to measure
some properties of ∣ψ(θ)⟩ the two systems must interact and the state of the
�composite� system is

U ∣ψ(θ)⟩ ⊗ ∣0⟩
where U = ∑x,x′∈X Ux,x′ ⊗ ∣x⟩ ⟨x′∣ is the unitary operator induced by the in-
teraction. After the interaction, the two systems became entangled, that is,

12



�correlated�. Entanglement is a quantum phenomenon which creates a cor-
relation between two systems and allows to obtain information about ∣ψ(θ)⟩
measuring only the auxiliary system.

In order to avoid a direct perturbation of the system, a measurement
operator that acts only on the auxiliary system is applied to the composite
system. The new state of the system will change accordingly to the measure-
ment result obtained. For example, let us assume that the measurement on
the auxiliary system is resulted to be x1, leaving it in state ∣x1⟩. This means
that the measurement operator 1⊗ ∣x1⟩ ⟨x1∣ is applied to the composite sys-
tem, (1⊗ ∣x1⟩ ⟨x1∣)U ∣ψ(θ)⟩ ⊗ ∣0⟩ = Ux1,0 ∣ψ(θ)⟩ ⊗ ∣x1⟩
leaving the system studied in the unnormalized state Ux1,0 ∣ψ(θ)⟩. The prob-
ability to obtain the result x1 is P (x1) = tr{Ux1,0 ∣ψ(θ)⟩ ⟨ψ(θ)∣U∗x1,0

}. The
two systems are no longer entangled and the interaction with a new auxil-
iary system can be implemented in order to acquire more information on the
system evolution.
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Abstract

This paper is concerned with the problem of extracting the maximum in-
formation from an open quantum system subject to an external and non-
stationary perturbation. An extension of the explicit-duration HMM formu-
lation in which the hidden process is a non-stationary Markov chain with
time-dependent emission probabilities and nonparametric state duration dis-
tributions. A non-parametric kernel estimator for discrete data is introduced
in the estimation procedure, in order to improve the estimates accuracy in
presence of sparse data. A generalization of the Viterbi algorithm for the
explicit-duration HMM which is robust against the under�ow problem is de-
veloped. We investigate the �nite sample properties of our formulation in a
Monte Carlo study and show that our model outperform the standard one
even for long observation sequences. We also show that our formulation can
reliably reconstruct the hidden process with few information.



1 Introduction

In recent years, the experimental advances in the �eld of quantum me-
chanics have allowed physicists to perform repeated measurements on the
same quantum system, namely trapped atoms and molecules (Kirchmair
et al. (2009); Kubanek et al. (2009)), optical cavities (Gleyzes et al. (2007);
Goggin et al. (2011)) and superconducting systems (Palacios-Laloy et al.
(2010); Vijay et al. (2011); Hatridge et al. (2013)). The novelty lies in the
development of the indirect (generalized) measurement which avoids the so-
called wave-function collapse by extending the measurement process to an
auxiliary meter-system and then performing the measure only on the latter
(Wiseman and Milburn (2009), Nielsen and Chuang (2010)). Such procedure
involves (at least) two systems which are called open quantum systems since
they can interact and exchange information.

Open quantum systems are the key tool in developing the new quantum
technologies, for example quantum computers, quantum sensing and quan-
tum secure communication, since any real quantum system behaves as an
open system due to the extreme di�culty to isolate it from its environment.

This paper is motivated by a quantum physical problem, that is, extract-
ing the maximum information from an open quantum system subject to an
external and non-stationary perturbation causing a change in the oscillation
frequency. The relevance of the quantum experiment is connected with the
possibility to track and control quantum systems which undergo complex
non-homogeneous evolution, with possible application to quantum feedback
control, high-precision measurement and quantum computing (Ramakrishna
and Rabitz (1996); Wiseman and Milburn (2009); Dong and Petersen (2010)).

The theoretical background which lies behind the experimental setting
considered in the paper can be envisaged in the class of explicit-duration
hidden Markov models (EDHMM). As a matter of fact, the conventional
HMM, based on the Markovian short-memory assumption, cannot capture
the non-stationary dynamics of the system.

Here, we present an extension of the explicit-duration HMM formulation
in which the hidden process is a non-stationary Markov chain with time-
dependent emission probabilities and nonparametric state duration distribu-
tions. The standard estimation procedure in the non parametric setup is
based on the cell proportion estimator, i.e. the sample relative frequency.
This choice, although improving �exibility, inevitably increases the dimen-
sion of the parameter set making di�cult to obtain reliable information unless
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very long observation sequences are considered. This high dimensional set-
ting results in sparse multinomial table where the cell proportion (maximum
likelihood) estimator is neither consistent nor a "good" estimator of the true
discrete duration distribution. A smoothed estimator is thus derived, based
on a discrete kernel function, which highly improves the estimation and is
shown to be consistent and computationally e�cient, according to the theory
of sparse asymptotics (Fienberg and Holland (1973); Bishop et al. (1975)), for
multinomial data (Aitchison and Aitken (1976); Titterington (1980); Wang
and Van Ryzin (1981); Simono� (1983), Hall and Titterington (1987)).

A generalization of the Viterbi algorithm, used to reconstruct the hid-
den dynamics is developed. The latter turns out to be robust against the
under�ow problem.

There are three main contributions in this article. First, to the best of
our knowledge, this is the �rst attempt to provide an accurate statistical
description of an open quantum system subject to a complex dynamics using
the explicit-duration HMM formulation. Second, we take into account the
presence of sparse data (lack of information) by introducing a non-parametric
kernel estimator for discrete distribution in the estimation procedure. Third,
we propose an extension of the Viterbi algorithm for the explicit-duration
HMM which is also robust against the so-called under�ow problem.

The remainder of the paper is organized as follows. Section 1.1 reviews
the basics of quantum mechanics and Section 2 presents the experimental
setup. The explicit duration HMM are discussed in section 3. Sections 4
address the estimation issues, including the kernel estimator and the gen-
eralized Viterbi algorithm. Section 5 presents the results the Monte Carlo
study and concludes the paper in Section 6.

1.1 Basic concepts of Quantum Mechanics

This section introduces the basic concepts of quantum statistics that will
be used in the paper. In particular, we shall consider only �nite dimensional
quantum systems. For more detail on quantum statistical inference and quan-
tum probability, the reader is referred to Helstrom (1976), Holevo (1982) and
Barndor�-Nielsen et al. (2003), while Wang (2012) and Gill (2001) provide
a statistics-oriented introduction to quantum computation and quantum in-
formation.
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1.1.1 States and evolution

Let us consider the Hilbert space of k-dimensional complex vectors,H = Ck, endowed with the inner product ⟨⋅, ⋅⟩. The state of a �nite dimen-
sional quantum system can be characterized by an Hermitian, nonnegative
and trace-one matrix ρ, called density matrix. If ρ has rank 1, the state is
called a pure state and it can be alternatively represented as a unit vector
in H. Using the Dirac's bra-ket notation, a pure state is denoted by ∣ψ⟩ or
ρ = ∣ψ⟩ ⟨ψ∣, where ∣⋅⟩ and ⟨⋅∣ represent column and row vectors, respectively.

One of the purely quantum phenomena is the quantum superposition.
The latter can be explained referring to the property of linearity of the
Schröedinger equation. Basically, like waves in classical physics, any (com-
plex) linear combination of states results in another well-de�ned quantum
state but, when the a measurement is performed, only one of the �compos-
ing� states can be observed, randomly. Probably the most known thought
experiment linked to superposition is the so-called Schröedinger's cat, in
which a cat may be simultaneously both alive and dead, as a result of a
random subatomic event that may or may not occur.

A quantum system is completely described by its state and the evolution.
The latter follows two principles: a deterministic, unitary evolution given by
the Schröedinger equation, and a stochastic, discontinuous evolution repre-
sented by the measurement of an observable.

1.1.2 Parametric quantum model

We assume that the state of the system depends on an unknown param-
eter θ which is the object of our inferential problem. Then, a parametric
quantum model {ρ(θ), M; θ ∈ Θ ⊆Rk} is de�ned by i) the state of the quan-
tum system, ρ(θ), which depends on θ and ii) the measurement M to be
performed on the system.

A measurement, M, is mathematically described by a collection of Her-
mitian non-negative matrices m(x) indexed by the possible outcomes x of
the measure. They also must add up to the identity matrix I.

Let us consider pure states, that is ∣ψ(θ)⟩. The probability distribution
of a random variable X, describing the outcome of the measurement M on
the system in state ∣ψ(θ)⟩, is given by the trace rule,

PX(⋅, θ) = tr{M(⋅) ∣ψ(θ)⟩ ⟨ψ(θ)∣}.
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Measuring the system will alter its state, causing the so-called wave func-
tion collapse. The latter implies that when a particular measurement is
performed, the future results of the same measurement on the same system,
are �xed, preventing to obtain further information from the same system.
Speci�cally, the state of the system after applying the measurement M and
conditional on observing the outcome x1 is given by

m(x1) ∣ψ(θ)⟩
tr{m(x1) ∣ψ(θ)⟩ ⟨ψ(θ)∣}

This procedure is known as the von Neumann projection postulate and
describes the e�ect of a measurement on a system. In our work, we exploit
the advantages of the indirect measurement which allows repeated measures
on the same quantum system.

1.1.3 Generalized measurements

The generalized measurement in an open quantum framework consists of
two steps: the system is coupled to a meter-system (the probe) and then a
measurement on the probe is performed, avoiding a direct perturbation of
the system. More formally, let us consider an auxiliary meter-system in a
state ∣0⟩, with orthonormal basis {∣x⟩ ∣x ∈X}, where X is the set of possible
measurement results, and ∣ψ(θ)⟩, the state of the system studied.

The initial state of the two systems is ∣ψ(θ)⟩ ⊗ ∣0⟩. In order to measure
some properties of ∣ψ(θ)⟩ the two systems must interact and the state of the
�composite� system is

U ∣ψ(θ)⟩ ⊗ ∣0⟩
where U = ∑x,x′∈X Ux,x′ ⊗ ∣x⟩ ⟨x′∣ is the unitary operator induced by the in-
teraction. After the interaction, the two systems became entangled, that is,
�correlated�. Entanglement is a quantum phenomenon which creates a cor-
relation between two systems and allows to obtain information about ∣ψ(θ)⟩
measuring only the auxiliary system.

In order to avoid a direct perturbation of the system, a measurement
operator that acts only on the auxiliary system is applied to the composite
system. The new state of the system will change accordingly to the measure-
ment result obtained. For example, let us assume that the measurement on
the auxiliary system is resulted to be x1, leaving it in state ∣x1⟩. This means
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that the measurement operator 1⊗ ∣x1⟩ ⟨x1∣ is applied to the composite sys-
tem, (1⊗ ∣x1⟩ ⟨x1∣)U ∣ψ(θ)⟩ ⊗ ∣0⟩ = Ux1,0 ∣ψ(θ)⟩ ⊗ ∣x1⟩
leaving the system studied in the unnormalized state Ux1,0 ∣ψ(θ)⟩. The prob-
ability to obtain the result x1 is P (x1) = tr{Ux1,0 ∣ψ(θ)⟩ ⟨ψ(θ)∣U∗

x1,0
}. The

two systems are no longer entangled and the interaction with a new auxil-
iary system can be implemented in order to acquire more information on the
system evolution. In the next section the experimental setup developed is
presented.

2 Quantum experiment

We design an experimental setup that can be thought of as a modi�ca-
tion of the one presented by Nobel Laureate Serge Haroche (Guerlin et al.
(2007)), in which the gradual step-by-step `state collapse' caused by repeated
measurements is experimentally observed for the �rst time.

Here, a two-level atom (system A), initialized in a superposition state, is
driven by an external and non-homogeneous force causing a change in the
Rabi frequency. The latter represents the characteristic angular frequency
of the atom corresponding to the oscillation between the two levels, caused
by the time evolution. Two-level atoms (system B, also called ancilla, meter
or probe systems), initialized in a superposition state, are sent through the
system A and weakly interact with it. Then, a projection measurement
on each B system is performed, thus avoiding a direct perturbation of the
system A. The projection measurement of the ancilla systems causes a non-
projective `weak' disturbance of the system A, in�uencing its quantum state.

The experimental set up introduced so far can be nested in the framework
of hidden semi-Markov models (HSMM), since the measurement results on
the B are governed by the current (hidden) state of the system A, which, in
turn, is driven by a semi-Markov evolution process. Speci�cally, the transi-
tion probabilities form one state to another depend on the state duration, and
thus they are time varying. The emission probabilities are time-dependent
as well, due to the propagation of the wave function at di�erent frequency
values. Basically, the external force, characterized as a semi-Markov chain,
a�ects the evolution of oscillation frequency of the system, making it time
dependent.
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Our purpose is to keep track of the evolution of system A and to estimate
the state of the chain (the value of the Rabi frequency) at each time-step
through measurements on the ancillas B, which reveal only partial informa-
tion about the system A.

The model can be sketched as follows. Let us consider a semi-Markov
chain with n states S = {ω1, . . . , ωn} representing the Rabi frequencies of the
system and two output symbols `0' and `1', representing the measurement
results. The quantum system A under study is initialized in a (known)
superposition state

∣ΨA(ωi)⟩t0 = at0(ωi) ∣0A⟩ + bt0(ωi) ∣1A⟩
where we stress the dependency of the A state on the value of ωi ∈ S. Fur-
thermore, a, b are complex numbers satisfying ∣a(ωi)∣2 + ∣b(ωi)∣2 = 1, ∣Ψ⟩ ∈ H2

represents a unit vector in the two dimensional complex Hilbert space and{∣0A⟩ , ∣1A⟩} denotes an orthonormal basis for the two dimensional vector
space. In the rest of the paper, we will suppress the dependence of α and β
on ωi and we will maintain it only in the quantum state( in order to avoid
a too cumbersome notation). The ancilla system is initially in the state∣ΨB⟩ ∈ H2, with orthonormal basis {∣vB⟩ ; v ∈ V} where V = {0,1} is the
set of all possible measurement outcome. The initial state of the composite
system is ∣ΨA(ωi)t0⟩ ⊗ ∣ΨB⟩ and belongs to H = H2 ⊗H2. When the interac-
tion between the systems takes place, the system A and the meter become
correlated, and the subsequent entangled state reads

∣ΨAB(ωi)⟩t1 = αt1 ∣0A⟩ ⊗ ∣Ψ0
B⟩ + βt1 ∣1A⟩ ⊗ ∣Ψ1

B⟩= αt1 ∣0A⟩ ⊗ (√p ∣0B⟩ +√q ∣1B⟩) + βt1 ∣1A⟩ ⊗ (√q ∣0B⟩ +√p ∣1B⟩)
where p+q = 1, representing the ability to distinguish between the two states.
Then, the ancilla system is measured and the result `0' is obtained with
probability

Pt1(B = 0 ∣ ∣ΨAB(ωi)⟩t1) = ∣αt1√p∣2 + ∣βt1√q∣2 (1)

This quantity represents the probability to obtain the output value `0' con-
ditional on the system dynamics up to time t1 and then on the ωi value
which governs the evolution of the system A. In the HMM framework, such
quantity can be viewed as the emission probability, at time t1, of symbol
`0' when the system is in state ωi, that is Pt1(B = 0 ∣ωi). Furthermore, it
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is important to note that this probability is time-varying, since, depending
on the ωi driving the system dynamics at time t1, the probability to observe
each output can change. The measurement resulting in the output `0' leaves
the system A in the (unnormalized) state

∣ΨA(ωi ∣B = 0)⟩ = αt1√p ∣0A⟩ + βt1√q ∣1A⟩ ,
where we explicitly indicate that the state is conditional on the previous
result on the B system. Instead, the measurement result `1' is obtained with
probability

Pt1(B = 1 ∣ ∣ΨAB(ωi)⟩t1) = ∣αt1√q∣2 + ∣βt1√p∣2 (2)

and the (unnormalized) A state is

∣ΨA(ωi ∣B = 1)⟩ = αt1√q ∣0A⟩ + βt1√p ∣1A⟩ .
From equations (1) and (2) it can be seen that the quantities p and q represent
the ability to distinguish between the states and then they can be thought of
as a measurement e�ectiveness. In the following section, we shall introduce
the general HSMM, and the Explicit-duration HMM.

3 EDHMM with time varying emission proba-

bilities

HSMM are extensions of the HMM in which each state has a di�erent
duration time (sojourn) modeled by a random variable that takes integer
values in the set D = {1,2, . . . ,D}. Based on hypotheses on the dependence
structure of the chain and the duration of each state, the general HSMM
reduces to speci�c models, such as, for instance, explicit-duration HMM,
where the duration is assumed to be dependent on the current state and
independent to the previous state (Rabiner (1989), Mitchell and Jamieson
(1993)) and variable-transition HMM, where the state transition is dependent
on the state duration (Ramesh and Wilpon (1992a), Krishnamurthy et al.
(1991), for a complete review of HSMM see Yu (2010))

The earliest formulation of HSMM dates back to Ferguson (1980), who
was the �rst to formalize the HSMM, which he called �variable duration
HMM�. Since then, HSMM have been largely studied due to their applica-
tions in a wide variety of �elds. In particular, Barbu and Limnios (2006)
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and Barbu and Limnios (2009) proved consistency and asymptotic normal-
ity for nonparametric maximum likelihood estimators, Johnson and Willsky
(2013) introduced the explicit-duration Hierarchical Dirichlet Process HSMM
in a nonparametric Bayesian setting and Squire and Levinson (2005) propose
a recursive maximum-likelihood algorithm for online estimation. Recently,
Melnyk and Banerjee (2014) introduced a spectral algorithm for inference in
HSMM and Bietti et al. (2015) presented an incremental EM algorithm for
online parameters estimation. Besides, HSMM have been successfully ap-
plied in many areas among which, �nancial time series modeling (Bulla and
Bulla (2006)), recognition of human genes in DNA (Haussler and Eeckman
(1996)), handwritten word recognition (Kundu et al. (1997)), protein struc-
ture prediction (Schmidler et al. (2000)) and for determining duration and
timing of up-down state in neocortical neurons (McFarland et al. (2011)).

The improvement of HSMM with respect to conventional HMM lies in
the explicit speci�cation of the duration of each state, in contrast to the
implicit duration (geometric or exponential) in the HMM. Hence, a HSMM is
a discrete-time, �nite-state non homogeneous Markov chain observed through
a �nite set of transition densities indexed by the states of the semi-Markov
chain.

This paper is concerned with the class of explicit-duration hidden Markov
models (EDHMM). More formally, an EDHMM is characterized by the fol-
lowing quantities:

� {Xt}t∈N the non stationary Markov chain on S = {1,2, . . . ,M} the set
of M states, where X1∶T = {X1, . . . ,XT} denotes the state sequence up
to time T . Here, S corresponds to the set of the Rabi frequencies for
the system, that is, S = {ω1, . . . , ω5};

� A = {ai(j,d)}i,j=1,...,M, d=1,...,D the set of transition probabilities from state
i to state j with duration d,

ai(j,d2) = aijpj(d2), (3)

where
aij = P (Xt+1 = j ∣Xt = i), 1 ≤ i, j ≤M ; (4)

the transition probability from state i to state j, with null self-transition
probability, aij = 0, and

pj(d) = P (Xt+1 ∶ t+d] = j ∣X[t+1 = j), 1 ≤ j ≤M, 1 ≤ d ≤D
8



the probability that state j has a duration d, starting from time t + 1
until t + d;

� {Yt}t∈N the sequence of conditionally independent random variables onV = {v1, . . . , vK}, representing the observed signal. In particular, Yt has
a conditional distribution which depends on the chain only through
its current value Xt, and V is the set of K measurement outputs per
state.Here, for each state there are two output symbols `0' and `1',
representing the results of the quantum measurement;

� B = {bj(Yt = vk)}j=1,...,M, k=1,...,K the set of emission probabilities,

bj(Yt = vk) = P (Yt = vk ∣Xt = j), 1 ≤ j ≤M, 1 ≤ k ≤K (5)

representing the probability to observe the value Yt = vk when Xt =
j. In our experiment the emission probabilities (1) and (2) are time-
dependent and are obtained by propagating the wave-function;

� Π = {πi}i=1,...,M the initial state distribution, where

πi = P (X1 = i), 1 ≤ i ≤M.

The set of model parameters is de�ned by

λ = (A,B,Π).
In the following section, we shall address the estimation issues, starting

from the Forward-Backward algorithm to the re-estimation of the model
parameters.

4 Estimation

State and parameter estimation of HMM is based on the well-known
Baum-Welch or Forward-Backward (FB) algorithm, developed in the seminal
work of Baum, Petrie, Soules and Weiss (Baum et al. (1970)) and primarily
based on the so called forward and backward variables, α and β, respectively.

One of the most severe issues in practical implementations of the FB
algorithm is the numerical under�ow, caused by the exponential decay of
the joint probability of the observations, as the sample size increases. For
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the conventional HMM, this problem can be circumvented by rescaling the
Forward-Backward variables, α and β. However, there exists no such pro-
cedure for HSMM. As an alternative, we make use of a modi�ed version of
the FB algorithm, due to Yu and Kobayashi (2006), where new forward and
backward variables are de�ned conditionally on the observations. The result-
ing algorithm is computationally e�cient and does not su�er of the under�ow
problem.

4.1 Modi�ed Forward-Backward Recursion

In this section, the modi�ed FB algorithm used in this paper is presented.
The latter de�nes an estimation procedure for HSMM which is robust against
the under�ow problem, and does not increase the computational complexity
of the standard procedure.

Let αt∣k(i, d) be the forward variable de�ned by

αt∣k(i, d) = P (Xt = i, τt = d ∣Y1∶k, λ)
where Y1∶k denotes the observation sequence from time 1 to k, and k = t− 1, t
or T , indicates the �predicted�, ��ltered� and �smoothed� probability respec-
tively. Furthermore, τt denotes the remaining sojourn time of the current
state Xt. Let us also de�ne the modi�ed emission probabilities b⋆i (Yt), as the
ratio of the �ltered probability αt∣t(i, d) over the predicted one αt∣t−1(i, d),

b⋆i (Yt) = αt∣t(i, d)
αt∣t−1(i, d) = bi(Yt = vk)

P (Yt ∣Y1∶t−1) (6)

where P (Yt ∣Y1∶t−1) is the one-step ahead prediction of the observation. This
can be obtained by

P (Yt ∣Y1∶t−1) = M∑
i=1

D∑
d=1αt∣t−1(i, d)bi(Yt) =

M∑
i=1 γt∣t−1(i)bi(Yt)

where γt∣k(i) = ∑dαt∣k(i, d) is the marginal probability distribution of Xt

which also represents the predicted, �ltered or smoothed conditional proba-
bility of state Xt given the observed sequence Y1∶k. The likelihood function
for the entire sequence of observations is obtained using the the one-step
ahead predictions P (Yt ∣Y1∶t−1) as follows:

L(λ) = P (y1∶T ∣λ) = T∏
t=1 P (Yt ∣Y1∶t−1).
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For convenience in the forward recursion, we introduce two additional
variables: the conditional probability of state i ending at time t given the
whole observation sequence Y1∶t,

Et(i) = P (Xt = i, τt = 1 ∣Y1∶t, λ) = αt∣t−1(i,1)b⋆i (Yt, )
and the conditional probability of state i starting at time t + 1 given Y1∶t,

St(i) = P (τt = 1,Xt+1 = i ∣Y1∶t, λ) = ∑
j

Et(j)aji.
To obtain the smoothed estimates, let βt(i, d) be the backward variable

de�ned as the ratio between the smoothed probability αt∣T (i, d) and the pre-
dicted one αt∣t−1(i, d), that is

βt(i, d) = P (Xt = i, τt = d ∣Y1∶T , λ)
P (Xt = i, τt = d ∣Y1∶t−1, λ) = P (Yt∶T ∣Xt = i, τt = d ∣Y1∶T , λ)

P (Yt∶T ∣Y1∶t−1, λ) .

As for the forward recursion, we de�ne two more variables that are sym-
metric to St(i) and Et(j) and will be used in the backward recursion

E⋆t (i) = P (Yt∶T ∣Xt = i, τt−1 = 1 ∣Y1∶T , λ)
P (Yt∶T ∣Y1∶t−1, λ) = ∑

d

pi(d)βt(i, d),
and

S⋆t (i) = P (Yt∶T ∣Xt−1 = i, τt−1 = 1 ∣Y1∶T , λ)
P (Yt∶T ∣Y1∶t−1, λ) = ∑

j

aijE⋆t (j).
The modi�ed forward-backward algorithm for explicit-duration HMM can

be implemented as follows:

i) the forward recursion becomes

αt∣t−a(i, d) = St−1(i)pi(d) + b⋆i (Yt−1)αt−1∣t−2(i, d + 1) (7)

with initial condition α1∣0(i, d) = πipi(d);
ii) the backward recursion is

βt(i, d) = { S⋆t+1(i)b⋆i (Yt) d = 1
βt+1(i, d − 1)b⋆i (Yt) d > 1

(8)

with initial condition βT (i, d) = b⋆i (YT ) ∀d ∈ D.
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We conclude this section by de�ning two more variables which will enter
in the re-estimation step of the algorithm: the smoothed probability that
state i starts at time t and lasts for d time units:

Dt∣T (i, d) = P (τt−1 = 1,Xt = i, τt = d ∣Y1∶T , λ) = St−1(i)pi(d)βt(i, d) (9)

and the smoothed probability that a transition from state i to j occurs at
time t:

Tt∣T (i, j) = P (Xt−1 = i, τt−1 = 1,Xt = j ∣Y1∶T , λ) = Et−1(i)aijE⋆t−1(j). (10)

4.1.1 Parameter re-estimation

So far, we have assumed that the set of model parameters λ is known.
When λ is unknown, an iterative procedure which maximises the probability
of the given observation sequence, P (Y1∶T ∣λ), is commonly adopted, with
initial values that are either randomly selected or uniformly distributed. The
model parameters are estimated and then re-estimated until the likelihood is
locally maximized.

Speci�cally, the smoothed probabilities in equations (9) and (10) are used
to re-estimate the parameters as follows:

âij = T∑
t=2
Tt∣T (i, j)
Ka

whereKa = ∑j≠i∑Tt=2 Tt∣T (i, j) is the normalizing constant such that∑j âij = 1∀i,
p̂i(d) = T∑

t=2
Dt∣T (i, d)

Kp

with Kp = ∑Dd=1∑Tt=2Dt∣T (i, d) and ∑d p̂i(d) = 1∀i,
π̂i = γ1∣T (i)

Kπ

where Kπ = ∑i γ1∣T (i) and ∑i π̂i = 1. The term γ1∣T (i) can be obtained with
the following backward recursion:

γt−1∣T (i) = γt∣T (i) + Et−1(i)S⋆t (i) − St−1(i)E⋆t (i).
12



The static emission probabilities may be obtained by

b̂i(Yt = vk) = T∑
t=1
γt∣T (i)δ(Yt, vk)

Kb

withKb = ∑vk ∑Tt=1 γt∣T (i)δ(Yt, Yt = vk) such that ∑k b̂i(vk) = 1, and δ(Yt, vk) =
1 if Yt = vk, and zero otherwise.

In the next section, we shall deal with the estimation of the duration
distribution.

4.2 Estimation of the duration distribution

One of the novelties of this paper is the introduction of a non-parametric
kernel estimator for the discrete distribution of the duration in the iterative
step of the estimation algorithm. Speci�cally, we shall consider an estimator
of the form

p̂i(d) = h∑
j−d=−hK((j − d)/h)pi(j) (11)

where pi(j) = nij

ni
is the sample relative frequency, h and d are positive integer,

h + 1 < d < D − (h − 1), and K(t) is a discrete kernel, that is a non negative,
symmetric function of t which adds up to one.

The relevance of the contribution lies in the fact that smoothing methods
for discrete data are optimal in the mean summed squared error (MSSE)
sense in the case of sparsity (Hall and Titterington (1987)), as it is the
case of the experiment considered in this paper. In fact, the cell proportion
estimator pi = ni

n (the MLE for a multinomial distribution) traditionally
used in the probability mass function estimation is a consistent estimator of
pi(d) only when the sample size becomes large compared with the number
of cells (Fienberg and Holland (1973); Simono� (1983); Simono� (2012)). In
the case when the number of cells is close to or greater than the number
of observations, which results in a sparse table with many small or zero cell
counts, the cell proportion estimator pi is inconsistent and provides estimates
characterized by roughness and multimodality. Smoothing methods based on
kernel estimators have been proved to be e�ective for sparse multinomial data
(Aitchison and Aitken (1976); Titterington (1980); Wang and Van Ryzin
(1981); Simono� (1983)). Besides, Hall and Titterington (1987) proved the
optimality of kernel estimators for sparse multinomial data in the framework
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of sparse asymptotic earlier introduced by Fienberg and Holland (1973) and
Bishop et al. (1975).

Using a kernel smoother requires that the shape and the bandwidth of
the kernel function are selected. As far as the kernel function is concerned,
we have chosen the discrete version the Epanechnikov kernel, which belongs
to the class of the kernels generated as Beta distributions and has optimal
asymptotic properties for continuous smoothing, in the sense that it min-
imises the asymptotic integrated mean square error (AMISE), (Wand and
Jones (1994)).

In practice, we have a discrete quadratic kernel K(t) = at2 + b, where t
takes value in a discrete set, which is a common choice in kernel smoothing
as it represents a good compromise between �tting ad smoothing. (Marron
and Wand (1992); Simono� (2012)). Actually, we use the quadratic kernel
formulation of Rajagopalan and Lall (1995), with minor corrections, who
derive the value of the normalising constants a and b both in the interior and
in the boundaries. These value must be selected in order for the kernel to add
up to one, ∑tK(t) = 1, and satisfy the properties of symmetry K(t) =K(t),
positivity, K(t) > 0 within the bandwidth, and unbiasedness ∑tK(t)t = 1.
For the interior region, i.e. for h + 1 < d < D − h − 1, the parameters a and b
are

a = 3h(1 − 4h2) , b = −a.
At the boundaries, i.e. for 1 < d < h+ 1 and d >D −h− 1, a and b become

a = −D
2h(h + d)( E4h3 − CD

12h3(h + d))
−1
, b = (1 − aC

6h2
)(h + d)−1

where

C = h(h + 1)(2h + 1) + (d − 2)(d − 1)(2h − 3) (12)

D = −h(h + 1) + (d − 2)(d − 1) (13)

E = (−h(h + 1))2 + ((d − 2)(d − 1))2. (14)

If the kernel has a limited impact on the estimation, the bandwidth is a
crucial parameter. In the context of sparse asymptotics, Hall and Tittering-
ton (1987) have shown the optimality of the least cross validation criterion
(LSCV) in terms of rate of convergence.
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Hence, the optimal h is found by minimizing the LSCV function de�ned
as

LSCV (h) = D∑
d=1(p̂i(d))2 −

2

D

D∑
d=1 p̂/i(d)di (15)

where p̂/i(d) represents the estimate of pi(d) without the i-th's contribute.
In the next section we shall discuss the reconstruction of the optimal state

sequence of th ehidden chain, namely the Viterbi algorithm.

4.3 State reconstruction

One of the main results of this paper consists in the extension of the
Viterbi algorithm for explicit-duration HMM. The latter turns out to be
robust against the under�ow problem. Viterbi algorithm is a dynamic pro-
gramming algorithm which �nds the single best state sequence maximizing
P (X1∶T ∣Y1∶T , λ), taking also into account the probabilities of occurrence of
states. Some modi�ed versions of this algorithm for HSMM have been pro-
posed (Yu (2010)). Speci�cally, Chen et al. (1995) propose a modi�ed algo-
rithm for continuous density variable-duration HMM, Ramesh and Wilpon
(1992b) use the Viterbi algorithm for modeling state duration in inhomoge-
neous HMM, Mitchell et al. (1995) introduce a new recursion which reduces
the complexity of the estimation procedure.

The algorithm can be sketched as follows. Let δt(j, d) be the forward
variable for the extended Viterbi algorithm de�ned by

δt(j, d)= max
X1∶t−dP (X1∶t−d,X[t−d+1∶t] = j, Y1∶t ∣λ) (16)

for 1 ≤ t ≤ T, j ∈ S, d ∈ D. Here δt(j, d) denotes the probability of the best
partial state sequence which ends at time t in state j with duration d. In the
explicit-duration HMM, equation (16) reads

δt(j, d) = max
i∈S/{j},d1∈D{δt−d(i, d1)aijpj(d)b⋆j (Yt−d+1∶t)} (17)

where b⋆j (Yt−d+1∶t) = ∏t
τ=t−d+1 b⋆j (Yτ) due to the assumption of conditional inde-

pendence of outputs given the state of the system. The algorithm is initialized
as follows:

δ1(j,1) = πjpj(1)b⋆j (Y1) ∀j ∈ S, d = 1

δ1(j, d) = 0 ∀j ∈ S, d > 1
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Hence, δt(j, d) can be recursively obtained by

δt(j,1) = max
d1∈D,i∈S/{j}{δt−1(i, d1)aijpj(1)}b⋆j (Yt), d = 1 (18)

δt(j, d) = max
d1∈D,i∈S/{j}{δt−d(i, d1)aijpj(d)}b⋆j (Yt−d+1∶t), d > 1. (19)

Moreover, for t ≤D and d = t (19) reduces to
δt(j, d) = πjpj(d)b⋆j (Yt−d+1∶t).

For backtracking the optimal state sequence, we keep track of the arguments
which maximize equations (18) and (19) de�ning two variables as follows:

Ψ(t, j) = arg max
i∈S/{j} {δt−d(i, ω = ∆t(j, i))aij},

which records the state selected by δt(j, d) that ends at time t − d, and
∆(t, j, i) = arg max

ω∈D {δt−d(i, ω)aij}
which records its duration. The probability of the best state sequence is
given by

P ∗ = max
i∈S {δT (i, η(i))}

where
η(i) = arg max

d∈D {δT (i, d)}, ∀i ∈ S
The best path is obtained by �nding the last state which maximizes the
likelihood, that is

x̃T = arg max
i∈S,d∈D δT (i, d).

Hence, by letting d̃ = η(x̃T ), t = T and z = d̃, the sequence can be tracked
back as follows:

x̃[t−d̃+1 ∶ t] = x̃t

x̃t−d̃ = Ψ(t − d̃ + 1, x̃t)
z = ∆(t − d̃ + 1, x̃t, x̃t−d̃)
t = t − d̃, d̃ = z

until the �rst state x̃1 is obtained. In the following, to investigate the esti-
mation performance of our formulation, a simulation study is carried out.
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5 Monte Carlo study

5.1 Design of the simulation study

To validate the �nite samples properties of the ED-HMM model intro-
duced above, a Monte Carlo study is carried out. Let us remind that the aim
is to to characterize the behavior of an open quantum system subject to an
external force by using only the partial information obtained by measuring
a set of ancillary systems.

The observed signal Y1∶T is a binary sequence obtained by measuring the
systems B. It is characterized as a discrete-time random process driven by
an underlying (hidden) semi-Markov chain represented by the evolution of
system A.

The hidden chain is composed ofM = 5 states corresponding to 5 di�erent
frequency values in the range (0, π2 ), that is S = {ω1 = 0.003, ω2 = 0.4, ω3 =
0.85, ω4 = 1.17, ω5 = 1.55}. The model's ability to correctly characterise the
hidden states strongly depends on the type of measurement performed. Since
the output is a binary time series, our simulations show that the model is
able to obtain a good �t up to 5 chain states, beyond which the accuracy of
the estimates decreases. It is worth to remark that the value M = 5 is far
beyond the one found in commonly applied models, which usually consider
only one frequency value.

The truncation value D, representing the maximum number of consecu-
tive time steps in the same state, is set to 120. The choice of the D value
can be a crucial aspect. On the one hand, choosing a small value of D does
not allow the model to be �exible enough to capture the full dependence
structure of the chain. On the other hand, a large value of D can cause a
curse of dimensionality that makes the estimation process impractical. From
a practical point of view, the choice of the maximum D can be done by a
grid search over several values of D. We have have �xed a large value of D,
that is D = 120, in that the simulations were carried out using an optimized
code that takes advantage of parallel computing and is not time consuming.

The initial values for the transition probabilities A and the initial state
distribution Π are assumed to be either uniformly distributed or randomly
selected. The �nal results are found to be robust in terms of the choice of
the initial condition. The emission probabilities are obtained by propagating
the wave function at each frequency ωi: this represents a point of strength
in the estimation/re-estimation procedure (see Rabiner (1989)), in that they
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do not enter in the estimation algorithm. The latter is based on the non
parametric kernel estimator described in section 4.2

Five di�erent sample sizes are considered: T = 300, 500, 2000, 5000,
20000. The number of Monte Carlo replications is set to 5000 for each sample
size.

In the �rst step of the simulation, we generate the semi-Markov chain
representing the time evolution of the Rabi frequencies. The duration of each
state is modeled using a zero-truncated Poisson distribution with probability
mass function given by

pi(d) = θdi(eθi − 1)d!
i = 1,2, . . . ,5

where d ∈ D and for each state ωi we set a di�erent θi: 33, 41, 25, 53 and
38 respectively. The transition matrix used to simulate the hidden chain is
shown in Table 1.

1 2 3 4 5
1 0.0 0.1 0.3 0.1 0.5
2 0.3 0.0 0.1 0.4 0.2
3 0.1 0.1 0.0 0.6 0.2
4 0.2 0.3 0.1 0.0 0.4
5 0.2 0.1 0.5 0.2 0.0

Table 1: transition matrix used to simulate the semi-Markov chain

In what follows, the results of the experiment are presented.

5.2 Simulation results

Table 2 shows the estimated initial distributions with the non parametric
kernel estimator (w NKE) and without it (w/o NKE). Figure 1 is a graphical
representation of the case when T = 300. As it can be seen, for T up to 2000,
the improvement in the estimated initial distribution is evident, especially
for small sample sizes.
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T State 1 State 2 State 3 State 4 State 5

True values .4 .2 .1 .1 .2

w NKE

300 .3761 .1964 .1158 .1126 .1991

500 .3773 .1927 .1203 .1111 .1985

2000 .3832 .1874 .1151 .1189 .1953

5000 .3787 .1967 .1133 .1171 .1939

20000 .3702 .1879 .1179 .1197 .2042

w/o NKE

300 .2893 .2481 .1715 .1153 .1755

500 .3202 .2351 .1485 .1091 .1871

2000 .3451 .2211 .1263 .1140 .1932

5000 .3457 .2297 .1192 .1145 .1907

20000 .3467 .2123 .1232 .1139 .2038

Table 2: Simulation results I: initial distribution

Figure 1: Initial distribution, T = 300

Table 3 presents Monte Carlo averages and standard errors for the pa-
rameter estimates. Speci�cally, the table shows: the percentage of states
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correctly reconstructed using Viterbi algorithm, the sum of the absolute dif-
ference between the true value and the estimated one for the transition matrix
and the percentage of bias in the estimated expected values for the duration
distribution.

The percentage of states that are correctly reconstructed is uniformly
higher when using the NKE, which gives an increase of about 2% w.r.t the
standard formulation. Besides, the Monte Carlo standard errors are lower,
which indicates an improvement in the precision of the estimates. For what
concerns the transition matrix, we use, as a measure of goodness of �t, the
sum of the absolute di�erence between the true value and the estimated one.
The latter is always lower when the NKE is used, but the estimates shows
some variability for small sample sizes such as T = 300 and T = 500. As
regards for the state duration distributions, the NKE provides a reduction
in the bias of the estimated expected values with only few exceptions, while
the estimates variability turns out to be always lower.

One of the drawbacks of HSMM is that they require long sequences of
observations to be correctly estimated, especially for complex models where
the parameter space is high-dimensional. The result of the simulation show
that, in presence of sparsity, our formulation outperforms the standard one,
based on the cell proportion estimator, already for T = 300 and T = 500.
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Parameter T w NKE w/o NKE

Mean MC SE Mean MC SE

Viterbi

300 .8270 .1005 .7960 .1088

500 .8376 .0822 .8163 .0851

2000 .8743 .0401 .8515 .0429

5000 .8948 .0211 .8709 .0249

20000 .9082 .0092 .8958 .0107

Trans. matrix

300 5.8249 .8755 6.1230 .8058

500 5.0385 .8364 5.1691 .8295

2000 2.6564 .5680 2.8687 .6255

5000 1.6792 .3609 1.9083 .4427

20000 .9156 .2228 1.1011 .3584

Bias State 1

300 -.2654 .2769 -.3055 .3006

500 -.1079 .2697 -.1183 .3106

2000 -.0434 .0944 -.0424 .1167

5000 -.0401 .0547 -.0367 .0710

20000 -.0368 .0254 -.0311 .0317

Bias State 2

300 -.3767 .3250 -.4313 .3908

500 -.1909 .3147 -.2319 .3451

2000 -.1252 .1683 -.1378 .1914

5000 -.1325 .1218 -.1385 .1636

20000 -.1570 .0813 -.2032 .1508

Bias State 3

300 -.0334 .5184 -.1189 .5819

500 .1518 .4654 .1353 .5101

2000 .0473 .1798 .0698 .2251

5000 .0051 .0903 .0234 .1211

20000 -.0129 .0396 .0101 .0495

Bias State 4

300 -.2125 .2900 -.2556 .3198

500 -.0623 .2015 -.0791 .2184

2000 -.0314 .0892 -.0345 .1005

5000 -.0311 .0546 -.0312 .0561

20000 -.0241 .0258 -.0180 .0397

Bias State 5

300 -.1373 .2701 -.1631 .3047

500 -.0308 .1753 -.0275 .1918

2000 -.0201 .0738 -.0161 .0891

5000 -.0224 .1005 -.0201 .1088

20000 -.0191 .0203 -.0131 .0248

Table 3: Simulation results II: Viterbi estimates, transition matrix and du-
ration distributions
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6 Concluding remarks

This paper was concerned with the problem of extracting the maximum
information from an open quantum system subject to an external and non-
stationary perturbation. We have presented a generalization of the explicit-
duration Hidden Markov Models (EDHMM) which takes into account the
presence of sparse data. Introducing a kernel estimator in the estimation
procedure increases considerably the accuracy of the estimates, allowing to
obtain a more reliable information about the evolution of the unobservable
system.

A generalization of the Viterbi algorithm to the extension of EDHMM,
used to reconstruct the hidden chain, was developed. By means of an ex-
tensive Monte Carlo study, we showed that our formulation outperform the
standard one both in the precision and in the variability of the estimates. We
also found that our model can accurately tracks the hidden dynamic even
for short observation sequences, which is a major improvement w.r.t. the
standard formulation.
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7 Appendix

Additional results

In this appendix we present some additional simulation results. Specif-
ically, Figure 2 shows the estimated initial distribution with and without
the NKE for all the sample size analyzed. In Figure 3, the density of the
percentage of correctly reconstructed states using Viterbi algorithm are re-
ported; Figure 4 shows the Monte Carlo distribution of the goodness of �t
measure used for the transition matrix.

Figure 2: Initial distribution for T = 500, 2000, 5000 and 20000
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Figure 3: Viterbi estimates, percentage of states correctly reconstructed
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Figure 4: Transition matrix, sum of the absolute di�erence between the true
value and the estimated one
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Abstract

A Markov chain Monte Carlo (MCMC) sampling scheme for estimating the
explicit-duration hidden Markov models is developed. The procedure is
straightforward to implement and robust against the under�ow problem. Mo-
tivated by the presence of sparse data (lack of information), we make use of a
kernel estimator for discrete data for estimating the state duration distribu-
tion. This choice provides a signi�cant improvement in the precision of the
estimates for all the parameters, in particular for the transition probabilities.
One of the main limitations of HSMM consists in the prior speci�cation of
the number of states for the hidden chain, which has to be known. In order
to make our formulation more �exible, we employ a Bayesian model selec-
tion procedure (Congdon (2006)), which enables to avoid a prior speci�cation
of the number of states. As an application, we discuss an explicit-duration
HMM characterization of a two-level open quantum system subject to an ex-
ternal and non-homogeneous perturbation causing a change in the oscillation
frequency. We investigate the �nite samples properties of our formulation by
means of an extensive Monte Carlo study.



1 Introduction

Hidden Markov models (HMM) are statistical models in which the hidden
stochastic process is a M-state Markov process {Xt}t∈T , indexed by a discrete
time set T , with transition probabilities P (Xt+1 = j ∣Xt = i) = aij 1 ≤ i, j ≤
M , observed through a stochastic process {Yt}t∈T representing the measured
signal. Since {Xt}t∈T is not directly observable, parameter estimation and
inference have to be based only on the observed signal.

HMM have become a fundamental technique for modeling weakly de-
pendent sequences of random variables, receiving considerable attention due
to their great �exibility and ability to model a wide variety of phenomena.
For this reasons, in the last decades, HMM have been largely studied by
statisticians, engineers and information theorists. In particular, Bickel et al.
(1998), Douc et al. (2001), Jensen and Petersen (1999), proved consistency
and asymptotic normality of the maximum likelihood estimator for the pa-
rameters, Rydén (1994), Leroux (1992) and Rydén (1995) provided the iden-
ti�ability conditions for of a general HMM and Ito et al. (1992) addressed
the identi�ability of deterministic functions of non-stationary Markov chains
(see also Rabiner (1989); Ephraim and Merhav (2002); Cappe et al. (2007)
for a comprehensive treatment)

However, one of the major weaknesses of HMM is the in�exibility in mod-
eling state duration, which is geometric distributed by construction. This
drawback can be avoided by extending the conventional HMM to a more
general class of models known as hidden semi-Markov models (HSMM), or
non-stationary HMM, which enable an explicit speci�cation of the state du-
ration distribution. The HSMM formulation allows to capture the statistical
properties of the hidden system dynamics, including short and medium-range
dependence structures, which go beyond the Markovian short-memory as-
sumption implied by the standard HMM.

In this paper we present a Markov chain Monte Carlo (MCMC) estimation
of a particular class of HSMM called explicit-duration hidden Markov models
(Yu (2010), Mitchell and Jamieson (1993), Rabiner (1989)).

As an application, we discuss an HSMM characterization of a two-level
open quantum system subject to an external and non-homogeneous perturba-
tion causing a change in the oscillation frequency. Furthermore, we will treat
both parametric and non-parametric speci�cations. A non parametric frame-
work allows the model to be more �exible: it does not require the explicit
speci�cation of the state duration distribution, not always available to exper-

1



imentalists. However, it requires a much longer observation sequence than
the one needed by a parametric assumption and involves a greater number
of parameters in the estimation algorithm. For this reason, we make use of a
non-parametric kernel estimator for discrete distribution which improve the
accuracy of the estimates in presence of lack of information (sparsity). We
also employ a Bayesian model selection procedure based on posterior models
probability (Congdon (2006)) which allows one to avoid a prior speci�cation
of the number of states in the hidden chain.

The main contributions of the paper are the extension of the MCMC
method for the estimation of the HSMM, and its application for tracking the
dynamics of an open quantum systems which undergoes an external time-
dependent perturbation. Moreover, by introducing a kernel estimator in the
MCMC procedure in order to improve the estimates accuracy in presence of
sparse data.

HSMM are generally treated from a non-Bayesian perspective in the lit-
erature, estimated using an approximate maximum-likelihood procedure (es-
pecially with the Expectation-Maximization algorithm). To the best of our
knowledge, few has been done for the Bayesian estimation of non-stationary
HMM. Johnson and Willsky (2013) introduced the explicit-duration Hierar-
chical Dirichlet Process HSMM and develop two Gibbs sampling algorithms,
the weak limit and direct assignment samplers. In Djuric and Chun (2002),
the authors provide an MCMC-based estimation method for HSMM with
a parametric speci�cation of the state duration distribution using a di�er-
ent formulation for the semi-Markov chain. However, such formulation is
computationally demanding and it also su�ers the under-�ow problem. The
formulation presented in our work is �exible, straightforward to implement,
it does not su�er the under�ow problem and provides an excellent accuracy
in the estimation of the hidden dynamics.

The remainder of the paper is organized as follows. Section 2 introduces
the explicit-duration HMM and the main contributions, namely the MCMC
procedure and the kernel estimator used. Section 3 presents the experimental
setup analyzed and the results of the Monte Carlo study. Section 4 concludes
the paper.
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2 Explicit-Duration HMM

HSMM are discrete-time, �nite-state non-stationary Markov chains ob-
served through �nite set of transition densities indexed by the states of the
chains. While in the conventional HMM each state has a geometric (or ex-
ponential) duration by construction, in the HSMM the state duration can be
explicitly modeled by a random variable that takes integer values in the setD = {1,2, . . . ,D}.

Since the pioneering work of Ferguson (Ferguson (1980)) in which the au-
thor presented the �variable duration HMM�, HSMM have been largely stud-
ied and applied to many di�erent �elds. In particular, Barbu and Limnios
(2006) and Barbu and Limnios (2009) proved consistency and asymptotic
normality for nonparametric maximum likelihood estimators, Squire and
Levinson (2005) and Bietti et al. (2015) propose recursive maximum-likelihood
algorithm and incremental EM algorithm for online estimation and Melnyk
and Banerjee (2014) introduced a spectral algorithm for inference in HSMM.

HSMM have been successfully applied in many areas among which, �nan-
cial time series modeling (Bulla and Bulla (2006)), handwritten word recog-
nition (Kundu et al. (1997)), recognition of human genes in DNA (Haussler
and Eeckman (1996)), protein structure prediction (Schmidler et al. (2000))
and for determining duration and timing of up-down state in neocortical
neurons (McFarland et al. (2011)).

This paper is concerned with the class of explicit-duration hidden Markov
models (EDHMM). More formally, an EDHMM is de�ned by

� {Xt}t∈N the non stationary Markov chain on S = {1,2, . . . ,M} the set
of M states, where X1∶T = {X1, . . . ,XT} denotes the state sequence up
to time T ;

� A = {ai(j,d)}i,j=1,...,M, d=1,...,D the set of transition probability from state
i to state j with duration d,

ai(j,d2) = aijpj(d2),
where

aij = P (Xt+1 = j ∣Xt = i), 1 ≤ i, j ≤M ;

the transition probability from state i to state j, with null self-transition
probability, aij = 0, and

pj(d) = P (Xt+1 ∶ t+d] = j ∣X[t+1 = j), 1 ≤ j ≤M, 1 ≤ d ≤D
3



the probability that state j has a duration d, starting from time t + 1
until t + d;

� {Yt}t∈N the sequence of conditionally independent random variables onV = {v1, . . . , vK}, representing the observed signal. Speci�cally, Yt has
a conditional distribution which depends on the chain only through its
current value Xt. Moreover, V is the set of K measurement results
per state, corresponding to the physical output of the system being
observed;

� B = {bj(Yt = vk)}j=1,...,M, k=1,...,K the set of emission probabilities,

bj(Yt = vk) = P (Yt = vk ∣Xt = j), 1 ≤ j ≤M, 1 ≤ k ≤K
representing the probability to observe the value Yt = vk when Xt = j;

� Π = {πi}i=1,...,M the initial state distribution, where

πi = P (X1 = i), 1 ≤ i ≤M.

The set of model parameters is de�ned by

λ = (A,B,Π).
In the following section, the estimation procedure developed is introduced.

2.1 Estimation

The inference is carried out with Gibbs samplers when possible and
Metropolis-Hastings steps within a MCMC sampling scheme. More speci�-
cally, when the state duration distribution is assumed to be parametric, the
Metropolis-Hastings algorithm is used for sampling from the posterior distri-
bution. On the other hand, if the state duration is treated non-parametrically
a Gibbs sampling approach is used.

2.1.1 Speci�cation of the Priors

The �rst step consists in the prior speci�cation for the unknown param-
eters. All the chosen priors are non-informative. We will discuss �rst the
non-parametric speci�cation for the state duration and then the parametric
one.
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If we cannot specify any functional form for the state duration, the ap-
proach used is completely non parametric. Since the likelihood functions of
the initial state probabilities, the state transition probabilities, and the state
duration distributions are modeled by multinomial distributions, the stan-
dard priors are the multivariate Dirichlet distributions. This implies that
the posterior densities of the parameters will be Dirichlet distributed as well.
More speci�cally:

� the prior for initial state distribution Π = {πi}, 1 ≤ i ≤M is the multi-
variate Dirichlet distribution of dimension M − 1

Π ∼ Di(α1, . . . , αM);
� for a given state i, the prior for the transition probabilities
Ai = {ai1, . . . , ai(i−1), ai(i+1), . . . , aiM}, 1 ≤ j ≤ M, i ≠ j is the multi-
variate Dirichlet distribution of dimension M − 2

Ai ∼ Di(γ1, . . . , γM−1);
� for a given state i, the prior for the emission probabilities
Bi = {bi(v1), . . . , bi(vK)}, 1 ≤ i ≤M is the multivariate Dirichlet distri-
bution of dimension K − 1

Bi ∼ Di(ε1, . . . , εK−1);
� for each state, the prior for the state duration distribution pi(d) is the
multivariate Dirichlet distribution of dimension D − 1

pi(d) ∼ Di(η1, . . . , ηD)
where D represents the maximum number of time units in the same
system state.

For the parametric speci�cation of the state duration distribution, we
choose the zero-truncated Poisson, whose probability mass function reads

pi(d) = θdi(eθi − 1)d!
(1)

where i = 1,2, . . . ,M and d ∈ D = {1, . . . ,D}. Since (1) does not belong to
the conjugate distributions, a Metropolis-Hastings approach must be used.
In particular, we choose a uniform distributed prior for the parameter θ.

In the next section the MCMC estimation algorithm will be presented.
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2.2 Gibbs Sampling

Once the priors are chosen, the Gibbs sampling procedure can be imple-
mented as follows. At iteration k of the algorithm:

� draw Π(k) form the (M−1)-dimensional Dirichlet distribution according
to

Π ∼ Di(α1 + δ(k−1)X1,1
, . . . , αM + δ(k−1)X1,M

)
where δ

(k−1)
X1,i

= 1 if X
(k−1)
1 = i and zero otherwise;

� draw A
(k)
i for i = 1, . . . ,M from the (M − 2)-dimensional Dirichlet dis-

tribution as follows

Ai ∼ Di(γ1 + n(k−1)
i1 , . . . , γM−1 + n(k−1)

i(M−1))
where n

(k−1)
ij is the number of transition from state i to state j at

iteration k − 1;

� draw pi(d)(k) for i = 1, . . . ,M from the (D − 1)-dimensional Dirichlet
distribution

pi(d) ∼ Di(η1 + n(k−1)
i1 , . . . , ηD + n(k−1)

iD )
where n

(k−1)
id represent the number of times state i has lasted d time

units at iteration k − 1;

� draw B
(k)
i for i = 1, . . . ,M from the (K − 1)-dimensional Dirichlet dis-

tribution
Bi ∼ Di(ε1 + n(k−1)

i1 , . . . , εK−1 + n(k−1)
i(K−1))

where n
(k−1)
i(K−1) is the number of measurement output vk in state i;

� draw X
(k)
t according to

Xt ∼ P(Xt ∣X(k)
t−1 , dX(k)t−1 ,X

(k−1)
t+1 , d

X
(k−1)
t+1 , λ(k), Yt)

where d
X
(k)
t−1 and dX(k−1)t+1 indicate the duration of state Xt−1 and Xt+1 at

iteration k and k −1, respectively. Furthermore, λ(k) represents the set
of model parameter obtained at iteration k.

In the next section, we shall deal with the estimation of the duration
distribution.
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2.3 Estimation of the duration distribution

One of the novelties of this paper is the introduction of a non-parametric
kernel estimator for the discrete distribution of the duration in the iterative
step of the estimation algorithm. Speci�cally, we shall consider an estimator
of the form

p̂i(d) = h∑
j−d=−hK((j − d)/h)pi(j)

where pi(j) = nij

ni
is the sample relative frequency, h and d are positive integer,

h + 1 < d < D − (h − 1), and K(t) is a discrete kernel, that is a non negative,
symmetric function of t which adds up to one.

The relevance of the contribution lies in the fact that smoothing methods
for discrete data are optimal in the mean summed squared error (MSSE)
sense in the case of sparsity (Hall and Titterington (1987)), as it is the
case of the experiment considered in this paper. In fact, the cell proportion
estimator pi = ni

n (the MLE for a multinomial distribution) traditionally
used in the probability mass function estimation is a consistent estimator of
pi(d) only when the sample size becomes large compared with the number
of cells (Fienberg and Holland (1973); Simono� (1983); Simono� (2012)). In
the case when the number of cells is close to or greater than the number
of observations, which results in a sparse table with many small or zero cell
counts, the cell proportion estimator pi is inconsistent and provides estimates
characterized by roughness and multimodality. Smoothing methods based on
kernel estimators have been proved to be e�ective for sparse multinomial data
(Aitchison and Aitken (1976); Titterington (1980); Wang and Van Ryzin
(1981); Simono� (1983)). Besides, Hall and Titterington (1987) proved the
optimality of kernel estimators for sparse multinomial data in the framework
of sparse asymptotic earlier introduced by Fienberg and Holland (1973) and
Bishop et al. (1975).

Using a kernel smoother requires that the shape and the bandwidth of
the kernel function are selected. As far as the kernel function is concerned,
we have chosen the discrete version the Epanechnikov kernel, which belongs
to the class of the kernels generated as Beta distributions and has optimal
asymptotic properties for continuous smoothing, in the sense that it min-
imises the asymptotic integrated mean square error (AMISE), (Wand and
Jones (1994)).

In practice, we have a discrete quadratic kernel K(t) = at2 + b, where t
takes value in a discrete set, which is a common choice in kernel smoothing
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as it represents a good compromise between �tting ad smoothing. (Marron
and Wand (1992); Simono� (2012)). Actually, we use the quadratic kernel
formulation of Rajagopalan and Lall (1995), with minor corrections, who
derive the value of the normalising constants a and b both in the interior and
in the boundaries. These value must be selected in order for the kernel to add
up to one, ∑tK(t) = 1, and satisfy the properties of symmetry K(t) =K(t),
positivity, K(t) > 0 within the bandwidth, and unbiasedness ∑tK(t)t = 1.
For the interior region, i.e. for h + 1 < d < D − h − 1, the parameters a and b
are

a = 3h(1 − 4h2) , b = −a.
At the boundaries, i.e. for 1 < d < h+ 1 and d >D −h− 1, a and b become

a = −D
2h(h + d)( E4h3 − CD

12h3(h + d))
−1
, b = (1 − aC

6h2
)(h + d)−1

where

C = h(h + 1)(2h + 1) + (d − 2)(d − 1)(2h − 3)
D = −h(h + 1) + (d − 2)(d − 1)
E = (−h(h + 1))2 + ((d − 2)(d − 1))2.

If the kernel has a limited impact on the estimation, the bandwidth is a
crucial parameter. In the context of sparse asymptotics, Hall and Tittering-
ton (1987) have shown the optimality of the least cross validation criterion
(LSCV) in terms of rate of convergence.

Hence, the optimal h is found by minimizing the LSCV function de�ned
as

LSCV (h) = D∑
d=1(p̂i(d))2 −

2

D

D∑
d=1 p̂/i(d)di

where p̂/i(d) represents the estimate of pi(d) without the i-th's contribute.
In the next section, the �nite sample properties of the formulation intro-

duced are investigated through a Monte Carlo study.

3 Simulation study

To validate the �nite samples properties of the ED-HMM model intro-
duced above, a Monte Carlo study is carried out. The simulation is concerned
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with an HSMM characterization of a two-level open quantum system subject
to an external and non-homogeneous perturbation causing a change in the
oscillation frequency. The description of the experimental setup is reported
in the next section.

3.1 Quantum experiment

We design an experimental setup that can be thought of as a modi�ca-
tion of the one presented by Nobel Laureate Serge Haroche (Guerlin et al.
(2007)). In the latter, from an initial state exhibiting quantum uncertainty
in the measured observable, the system is gradually projected into a state
in which this observable becomes precisely known, that is, the step-by-step
`state collapse' caused by repeated soft measurements is experimentally ob-
served for the �rst time.

Here, a two-level atom (system A) is driven by an external and
non-homogeneous force causing a change in the Rabi frequency. The latter
represents the characteristic angular frequency of the atom corresponding to
the oscillation between the two levels, caused by the time evolution. Two-
level atoms (system B, also called ancilla) are sent through the system A
and weakly interact with it. Then, a projection measurement on each B
system is performed, thus avoiding a direct perturbation of the system A.
The projection measurement of the ancilla systems causes a non-projective
`weak' disturbance of the system A, in�uencing its quantum state.

The experimental set up introduced so far can be nested in the framework
of hidden semi-Markov models (HSMM), since the measurement results on
the B are governed by the current (hidden) state of the system A, which, in
turn, is driven by a semi-Markov evolution process. Speci�cally, the transi-
tion probabilities form one state to another depend on the state duration, and
thus they are time varying. The emission probabilities are time-dependent
as well, due to the propagation of the wave function at di�erent frequency
values.

Our purpose is to keep track of the evolution of system A and to estimate
the state of the chain (the value of the Rabi frequency) at each time-step
through measurements on the ancillas B, which reveal only partial informa-
tion about the system A.

The model can be sketched as follows. Let us consider a semi-Markov
chain with n states S = {ω1, . . . , ωn} representing the Rabi frequencies of the
system and two output symbols `0' and `1', representing the measurement
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results. The quantum system A is initialized in a (known) superposition
state ∣ΨA(ωi)⟩t0 = at0(ωi) ∣0A⟩ + bt0(ωi) ∣1A⟩
where we stress the dependency of the A state on the value of ωi ∈ S. Fur-
thermore, a, b are complex numbers satisfying ∣a(ωi)∣2 + ∣b(ωi)∣2 = 1, ∣Ψ⟩ ∈ H2

represents a unit vector in the two dimensional complex Hilbert space and{∣0A⟩ , ∣1A⟩} denotes an orthonormal basis for the two dimensional vector
space. In the rest of the paper, we will suppress the dependence of α and β
on ωi and we will maintain it only in the quantum state. The ancilla system
is initially in the state ∣ΨB⟩ ∈ H2, with orthonormal basis {∣vB⟩ ; v ∈ V} whereV = {0,1} is the set of all possible measurement outcome. The initial state
of the composite system is ∣ΨA(ωi)t0⟩ ⊗ ∣ΨB⟩ and belongs to H = H2 ⊗ H2.
When the interaction between the systems takes place, the system A and the
meter become correlated, and the subsequent entangled state reads

∣ΨAB(ωi)⟩t1 = αt1 ∣0A⟩ ⊗ ∣Ψ0
B⟩ + βt1 ∣1A⟩ ⊗ ∣Ψ1

B⟩= αt1 ∣0A⟩ ⊗ (√p ∣0B⟩ +√q ∣1B⟩) + βt1 ∣1A⟩ ⊗ (√q ∣0B⟩ +√p ∣1B⟩)
where p+q = 1, representing the ability to distinguish between the two states.
Then, the ancilla system is measured and the result `0' is obtained with
probability

Pt1(B = 0 ∣ ∣ΨAB(ωi)⟩t1) = ∣αt1√p∣2 + ∣βt1√q∣2 (2)

This quantity represents the probability to obtain the output value `0' con-
ditional on the system dynamics up to time t1 and then on the ωi value
which governs the evolution of the system A. In the HMM framework, such
quantity can be viewed as the emission probability, at time t1, of symbol
`0' when the system is in state ωi, that is Pt1(B = 0 ∣ωi). Furthermore, it
is important to note that this probability is time-varying, since, depending
on the ωi driving the system dynamics at time t1, the probability to observe
each output can change. The measurement resulting in the output `0' leaves
the system A in the (unnormalized) state

∣ΨA(ωi ∣B = 0)⟩ = αt1√p ∣0A⟩ + βt1√q ∣1A⟩ ,
where we explicitly indicate that the state is conditional on the previous
result on the B system. Instead, the measurement result `1' is obtained with
probability

Pt1(B = 1 ∣ ∣ΨAB(ωi)⟩t1) = ∣αt1√q∣2 + ∣βt1√p∣2 (3)
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and the (unnormalized) A state is

∣ΨA(ωi ∣B = 1)⟩ = αt1√q ∣0A⟩ + βt1√p ∣1A⟩ .
From equations (2) and (3) it can be seen that the quantities p and q represent
the ability to distinguish between the states and then they can be thought
of as a measurement e�ectiveness.

3.2 Design of the Monte Carlo study

The simulation setting is the same as in Chapter 2.
The observed signal Y1∶T is a binary sequence obtained by measuring the

systems B. It is characterized as a discrete-time random process driven by
an underlying (hidden) semi-Markov chain represented by the evolution of
system A.

The hidden chain is composed ofM = 5 states corresponding to 5 di�erent
frequency values in the range (0, π2 ), that is S = {ω1 = 0.003, ω2 = 0.4, ω3 =
0.85, ω4 = 1.17, ω5 = 1.55}. The model's ability to correctly characterize the
hidden states strongly depends on the type of measurement performed. Since
the output is a binary time series, our simulations show that the model is
able to obtain a good �t up to 5 chain states, beyond which the accuracy of
the estimates decreases. It is worth to remark that the value M = 5 is far
beyond the one found in commonly applied models, which usually consider
only one frequency value.

The truncation value D, representing the maximum number of consecu-
tive time steps in the same state, is set to D = 150 for T = 300, D = 250
for T = 500, D = 1000 for T = 2000 and D = 2500 for T = 5000,20000. It is
worth mentioning that in the present formulation, the choice of D does not
directly a�ect the computational complexity of the algorithm, as the number
of calculations is linear in D. This represents an improvement of our formu-
lation with respect to standard non-Bayesian estimation method based on
the Expectation-Maximization algorithm. In fact, in the latter, the computa-
tional complexity is a quadratic function of D, that is O(M2+MD+MD2)T ,
and then a large value of D can cause a curse of dimensionality that makes
the estimation procedure unfeasible.

The emission probabilities are obtained by propagating the wave function
at each frequency ωi: this represents a point of strength in the estimation/re-
estimation procedure (see Rabiner (1989)), in that they do not enter in the

11



estimation algorithm. Moreover, the latter is based on the non paramet-
ric kernel estimator described in section 2.3. The initial state sequence is
randomly generated.

Five di�erent sample sizes are considered: T = 300, 500, 2000, 5000,
20000. The number of Monte Carlo replications is set to 1000 for each sample
size.

In the �rst step of the simulation, we generate the semi-Markov chain
representing the time evolution of the Rabi frequencies. The duration of each
state is modeled using a zero-truncated Poisson distribution with probability
mass function given by

pi(d) = θdi(eθi − 1)d!
i = 1,2, . . . ,5

where d ∈ D and for each state ωi we set a di�erent θi: 33, 41, 25, 53 and
38 respectively. The transition matrix used to simulate the hidden chain is
shown in Table 1.

1 2 3 4 5
1 0.0 0.1 0.3 0.1 0.5
2 0.3 0.0 0.1 0.4 0.2
3 0.1 0.1 0.0 0.6 0.2
4 0.2 0.3 0.1 0.0 0.4
5 0.2 0.1 0.5 0.2 0.0

Table 1: transition matrix used to simulate the semi-Markov chain

In what follows, the results of the experiment are presented.

3.3 Simulation results

Table 2 shows the estimated initial distributions with the non parametric
kernel estimator (w NKE) and without it (w/o NKE). As it can be seen,
for T up to 2000, the improvement in the estimated initial distribution is
evident, especially for small sample sizes.
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T State 1 State 2 State 3 State 4 State 5

True values .4 .2 .1 .1 .2

w NKE

300 .2916 .2977 .0805 .1112 .2188

500 .3713 .2415 .0908 .097 .1991

2000 .4058 .1914 .1137 .1005 .2083

5000 .3874 .1925 .1067 .0905 .2226

20000 .3799 .2106 .0941 .1058 .2213

w/o NKE

300 .6590 .2389 .0706 .0270 .0042

500 .1608 .2093 .0881 .1857 .3559

2000 .3369 .1983 .0907 .1429 .2111

5000 .3599 .1808 .0978 .1471 .2141

20000 .3822 .1921 .1019 .1199 .2037

Table 2: Simulation results I: initial distribution

In Table 3, Monte Carlo averages and standard errors for the model pa-
rameters are presented. In particular, the percentage of the hidden chain
correctly reconstructed, the sum of the absolute di�erence between the true
value and the estimated one for the transition matrix and the percentage
of bias in the estimated expected values for the duration distribution are
reported.

The percentage of correctly reconstructed states is always higher using
NKE, which increases up to 94.8%. The di�erences between the two formu-
lations remains stable for all the sample sizes and is about 4%. The standard
errors are lower with NKE, especially for small samples, indicating an im-
provement in the precision of the estimates in presence of lack of information.
Regarding the transition matrix, the goodness of �t measure used ( the sum
of the absolute di�erence between the true value and the estimated one) is
always lower using NKE especially for T = 300,500. The variability of the
estimates for the transition matrix using NKE decreases considerably and
it is always about 35% lower than without the kernel estimator. For what
concerns the bias in the state duration distributions, using NKE provides an
improvement in the accuracy of the estimates with only few exceptions in
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particular for T = 300, while the estimates variability turns out to be always
lower.

The simulation shows that our formulation provides accurate estimates
and is able to correctly reconstruct the evolution of the hidden process even
for small sample sizes. This represents a point of strength of our formula-
tion, since usually HSMM need long observation sequences in order to obtain
reliable estimates, in particular for complex models with high dimensional
parameter space.
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Parameter T w NKE w/o NKE

Mean MC SE Mean MC SE

Recon. states

300 .8003 .1075 .7696 .1781

500 .8286 .0953 .7839 .1218

2000 .8958 .0468 .8537 .0665

5000 .9166 .0252 .8793 .0389

20000 .9482 .0146 .9099 .0246

Trans. matrix

300 2.6165 .4438 3.7294 .6746

500 2.6172 .3931 3.4160 .5985

2000 2.4439 .3605 2.8129 .4646

5000 2.1666 .2704 2.6670 .3829

20000 2.0737 .2038 2.4149 .3584

Bias State 1

300 -.3323 .3880 -.3055 .4441

500 -.1639 .3533 -.2177 .4017

2000 -.0391 .1030 -.1142 .1887

5000 -.0431 .0299 -.0863 .0903

20000 -.0429 .0300 -.0522 .0531

Bias State 2

300 -.2315 .2536 -.3413 .3382

500 -.1729 .2014 -.2856 .3125

2000 -.1137 .1080 -.1197 .2112

5000 -.1346 .0325 -.1171 .0914

20000 -.1448 .0285 -.1321 .0815

Bias State 3

300 -.1771 .2633 -.1573 .2911

500 -.1127 .1915 -.1156 .2372

2000 -.1355 .1017 -.1044 .1513

5000 -.0392 .0333 -.0871 .0583

20000 -.0370 .0304 -.0513 .0477

Bias State 4

300 -.2237 .2206 -.2777 .2423

500 -.1311 .1467 -.1946 .2003

2000 -.0262 .0929 -.0993 .1447

5000 -.0289 .0316 -.0711 .0763

20000 -.0288 .0294 -.0407 .0516

Bias State 5

300 -.1522 .2413 -.1507 .2635

500 -.0396 .1748 -.0992 .2121

2000 -.0363 .0783 -.0849 .1237

5000 -.0328 .0216 -.0622 .0686

20000 -.0303 .0227 -.0456 .0582

Table 3: Simulation results II: States reconstruction, transition matrix and
duration distributions
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In order to make our formulation more �exible, we employ a Bayesian
model selection procedure proposed by Congdon (2006) which produces pos-
terior model probabilities and allows one to calculate Bayes factor estimates.
The procedure uses a Monte Carlo approximation based on independent
MCMC sampling of two or more di�erent models. Here, we present the re-
sult for the comparison between two models which assume di�erent number
of states for the chain:

� M1 in which we assume 5 states;

� M2 in which 6 states are assumed.

Table 4 shows the logarithm of the Bayes Factor, log(BF12), ofM1 versus
M2 for all the sample sizes analyzed.

T 300 500 2000 5000 20000

log(BF12) 2.01 2.37 4.29 5.87 7.01

Table 4: Logarithm of the Bayes Factor, M1 versus M2

For all the sample sizes, the log(BF12) are in favor of M1, which assumes
the correct number of chain states, with strong or very strong evidence. The
value of the Bayes factor increases with the sample size, meaning that with
more information the procedure's ability to chose the correct model increases.

3.4 Comparison with the EM method

In this section, we compare the formulation presented in this paper with
the one introduced in Paper A.

For what concerns the ability to reconstruct the hidden dynamics, the
model presented in Paper A performs better for short observation sequences,
while for medium and long sequences, the Bayesian setup provides more
reliable estimates with the same variability. Regarding the bias in the dura-
tion distributions, the two formulation show di�erent patterns. The MCMC
method with NKE shows estimates with less variability but higher bias in
the estimated expected value. The EM formulation in Paper A, instead, pro-
vides estimates more accurate but with higher variability. The estimation
of the transition matrix for small samples constitutes one of the strength of
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the MCMC formulation. As matter of fact, the value of the goodness of �t
measure for T = 300,500 is about one half of the one in the EM formula-
tion, and the SE are uniformly lower for all the sample sizes. For longer
sequences, instead, the EM based method o�ers a more accurate estimates
of the transition matrix. Finally, the two formulation performs both well
in estimating the initial state distribution, with the MCMC method which
increases considerably the precision using the kernel estimator.

4 Conclusions

A MCMC method for estimating explicit duration HMM was presented.
The formulation is �exible, provides accurate estimates of the parameters
and takes into account the presence of sparsity. Speci�cally, by introducing
a kernel estimator for discrete data in the estimation procedure we obtained
a considerable improvement in the precision and a reduction in the variability
of the estimates, in particular for the transition probabilities. We improved
the �exibility of our formulation by adopting a Bayesian model selection
procedure which allows one to avoid a direct speci�cation of the number of
states of the hidden chain.

The estimation performances of the formulation proposed were investi-
gated by means of an extensive Monte Carlo study. The results showed
that, even for small sample sizes, our model exhibited an excellent ability to
reconstruct the hidden dynamics and to estimate accurately all the model
parameters.
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4.1 Appendix

Additional results

Here, we present some additional simulation results. In particular, Figure
1 shows the estimated initial distribution with and without the NKE for all
the sample size simulated. In Figure 2, the density of the percentage of
correctly reconstructed states are reported, and in Figure 3 the Monte Carlo
distribution of the goodness of �t measure used for the transition matrix are
plotted.

Figure 1: Initial distribution
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Figure 2: Viterbi estimates, percentage of states correctly reconstructed
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Figure 3: Transition matrix, sum of the absolute di�erence between the true
value and the estimated one
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Abstract

We derive an extension of the Cramér-Rao inequality for discrete parameter
models in quantum measurement. The extension sets the lower bound on
the variance of an estimator and determines a discrete counterpart of the
quantum Fisher information. This formulation �nds application in exper-
iments in which the parameters can assume only few values: for example,
the direction which the magnetic �eld points to, or an atom whose possible
oscillation frequencies belong to a �nite set of values. We also provide an
illustration concerning a quantum optics problem.



1 Introduction

Discrete parameters models are statistical models in which the parameter
space is restricted to an enumerable set of points, that is Θ = {θ1, θ2, . . . , θn}.
Statistical inference when the parameter space is reduced to a lattice was �rst
considered by Hammersley (1950) in which the author was mainly concerned
with a Normal distribution with known variance and unknown integer mean.
In Khan (1973, 1978, 2000, 2003) the general admissibility conditions for
the mean estimator proposed by Hammersley (1950) are investigated. Cox
and Hinkley (1974) discuss the construction of con�dence intervals, LaM-
otte (2008) treats su�ciency and minimal su�ciency for models in which the
parameter space and the sample space are both �nite. Teunissen (2007) ex-
tends the theory of minimum mean squared error prediction by introducing
new classes of predictors based on the principle of equivariance. Recently,
Choirat et al. (2012) discuss consistency, asymptotic distribution theory, in-
formation inequalities and their relations with e�ciency and supere�ciency
for a general class of m-estimators in a discrete parameters setting.

On the side of applications, Baram (1978); Baram and Sandell Jr (1978b,a)
highlight the relevance of discrete parameter models in signal processing by
deriving the conditions for consistently selecting among a �nite set of station-
ary Gaussian models and obtaining bounds on the performance of the esti-
mators. Moreover, from an information theory perspective, Poor and Verdu
(1995) derive a lower bound on the probability of error in multi-hypothesis
testing and Kanaya et al. (1995) studies the asymptotic relation between the
posterior entropy and the MAP error probability.

This paper is concerned with discrete parameters models in quantum
measurement. Speci�cally, we derive an extension of the Cramér-Rao bound
for such models and we provide an illustration concerning a quantum optics
problem. The extension sets the ultimate accuracy of an estimator, and
determines a discrete counterpart of the quantum Fisher information. This
�nds application in many experiments in which the parameters can assume
only few di�erent values: for example, the direction which the magnetic �eld
points to, or an atom whose possible oscillation frequencies belong to a �nite
set of values.

The remainder of the paper is organized as follows. Section 1.1 and 1.2
introduce to quantum measurements. Section 2 presents our main contribu-
tion, the extended Cramér-Rao bound. In section 3 an illustration is provided
and Section 4 concludes the paper.
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1.1 Quantum Measurement

Let (M,A , P0) be a quantum probability space, where M is the set of
quantum measurement outcomes, A a σ-algebra on M and P0 ∶ A → R the
reference measure on M . The reference measure, P0, has no physical mean-
ing and can be viewed as the measure-theoretic formulation of Wiseman's
ostensible probability (Wiseman (1996)).

We restrict our attention to �nite dimensional quantum systems. For
such systems, the state, ρ0, can be represented by a non-negative complex
matrix of trace 1, the density matrix. Let also O be a quantum measurement
operator, that is, a map fromA to the set of bounded operators on the system
Hilbert space, H,O ∶ A → B(H), which is normalized as follows,

∫
M
dP 0(m)O(m)�O(m) = I ≡ E0[O�O].

Since quantum measurement translates a quantum uncertainty in a clas-
sical uncertainty (Gammelmark (2013)), once the measurement operators
are de�ned, a classical statistical inference problem is de�ned (Barndor�-
Nielsen et al. (2003)). This can be done de�ning a classical probability space(M,A , P ), where P ∶ A → R is a new probability measure assigning proba-
bility to possible quantum measurement outcomes,

P (B) = ∫
B
dP 0(m)Tr(O(m)�O(m)ρ0). (1)

Let∏(B) = ∫B dP 0(m)O�O be the map fromM to B(H) which represents
the positive operator valued measure POVM associated with the measurement
operator O (Holevo (2011)). Recalling the previous de�nition of P , we can
write P (B) = Tr[∏(B)ρ0]. The last step consists in de�ning a random
variable on M as the unnormalized quantum state conditional on outcome
m:

ρ̃ ∣m = O(m)ρ0O(m)� (2)

and the normalized quantum state

ρ ∣m = O(m)ρ0O(m)�
Tr(O(m)ρ0O(m)�)

From (2) it can be seen that ρ̃ ∣m is a linear function of ρ0 and allow one
to restate (1) as follows:
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P (B) = ∫
B
dP 0(m)Tr(ρ̃ ∣m) ∀B ∈ A

Therefore, Tr(ρ̃ ∣m) is the Radon-Nikodym derivative of P with respect to
P0:

dP

dP0

(m) = Tr(ρ̃ ∣m)
With this formulation it is possible to express expectation w.r.t. P in terms
of P0, i.e. Ep[X] = Ep0[Tr(ρ̃)X] and, most importantly, Tr(ρ̃ ∣m) can be
thought of as the probability density for measurement result m.

1.2 Measurement Processes

The theory so far delineated can be extended to time-dependent (re-
peated) measurements. Let I = {1, . . . ,N} be the set of times for N sequen-
tial measurements and m an N -dimensional vector representing the time-
dependent sequence of outputs. Following the same reasoning as before, the
measurement result at time t ∈ I, mt, is a map m ∶ I ×M → R which can be
thought of as a random variable on M .

In the repeated measurements framework, it is crucial to de�ne the �l-
tration Ft of a stochastic process. Loosely speaking, Ft is the σ-algebra
generated by ms for s ≤ t and can be viewed as the history of m up to, and
including, t.

The stochastic evolution of a quantum state from time t0 to t1 is described
by a stochastic operator O(t1, t0) with the semi-group property O(t1, t0) =
O(t1, s)O(s, t0) for t0 ≤ s ≤ t1. The operator O(t1, t0) is a Ft-measurable
random variable such that EP0[O(t1, t0)�O(t1, t0)∣Ft0] = I

The normalization condition is a statement about the Markovian nature
of quantum measurements and it also implies that O�

tOt is a martingale w.r.t.
the �ltration Ft and the reference probability measure P0, since for s < t

EP0[O(s)�O(s)∣Ft] = EP0[O�
tO(s, t)�O(s, t)Ot∣Ft] = O�

tOt

Moreover, as in the case of a single measurement, Tr[ρ̃T ] = Tr[OTρ0O
�
T ] is

the Radon-Nikodym derivative of P w.r.t. P0. The martingale property of
Ot implies that the process Lt = Tr[ρ̃t] = Tr[Otρ0O

�
t ] is also a martingale and

represents a well-de�ned generalization of the likelihood for the observation
sequence (Gammelmark and Mølmer (2013)).
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Finally, let ρ0 be the state at time t0 = 0, then,

ρ̃t∣m = Otρ0O
�
t

and

ρt∣m = Otρ0O
�
t

Tr(Otρ0O
�
t)

represent the normalized and un-normalized conditional quantum state in re-
peated measurement. In the next section we shall derive our main result, the
extended Cramér-Rao inequality for discrete parameter models in quantum
measurement.

2 Discrete parameter models and quantummea-

surement

In this section we develop an extension of the Cramér-Rao inequality
for discrete parameter models in quantum measurement. Let us remind
that in our set-up the parameter space is an enumerable set of values Θ ={θ1, θ2, . . . , θn}. Particular attention must be paid in treating the derivatives
of the likelihood function with respect to the parameter, since the likelihood
is no longer a continuous function w.r.t. the parameter values. Moreover,
the restriction imposed on the parameter space can make di�erentiation in-
admissible since θ + dθ may not belong to the speci�ed parameter set Θ
(Hammersley (1950)). For this reason, instead of derivatives we shall con-
sider di�erences of the likelihood function for di�erent parameter values. In
the following we shall present our main result and provide an application for
which an analytical solution is possible.
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2.1 Extended Cramér-Rao bound

Our main result concerns the lower bound of the variance of an estimator
θ̂ in discrete parameter models in quantum measurement.

Theorem: Let (Ω,A , P ) be a classical probability space based on the
quantum probability space (Ω,A , P0), and Tr[ρ̃T ] = Tr[OTρ0O

�
T ] the Radon-

Nikodym derivative of P w.r.t. P0 representing the density of the obser-
vations. Then, for θ ∈ Θ, θ ≠ θ0 the lower bound on the variance for the
estimator θ̂ is

V[θ̂] ≥ max
θ≠θ0

(θ − θ0)2∫Ω

Tr(ρ̃T ∣ θ)2
Tr(ρ̃T ∣ θ0) dP0 − 1

(3)

where V[θ̂] is the of θ̂, and

∫
Ω

Tr(ρ̃T ∣ θ)2

Tr(ρ̃T ∣ θ0) dP0 − 1

is the discrete counterpart of the quantum Fisher information in discrete
parameter models.

Proof. Since Tr[ρ̃T ] = Tr[OTρ0O
�
T ], the Radon-Nikodym derivative of P

w.r.t. P0, represents the density of the observations,

∫
M
Tr(ρ̃T ∣ θ)dP0 = ∫

M

dP

dP0

dP0 = 1 (4)

Let θ̂ be the estimator of the parameter θ which governs the dynamics of the
quantum system. Its expected value and variance are,

Ep[θ̂] = a = θ + b(θ) = ∫
M
θ̂ dP = ∫

M
θ̂Tr(ρ̃T ∣ θ)dP0

Vp[θ̂] = ∫
M
(θ̂ − θ)2 Tr(ρ̃T ∣ θ)dP0

where b(θ) = Ep[θ̂] − θ is the bias of θ̂. Let θ0 ∈ Θ be the true but unknown
parameter value and consider any two values θ1, θ2 ∈ Θ. From (4) we get:

∫
M
[Tr(ρ̃T ∣ θ1) −Tr(ρ̃T ∣ θ2)]dP0 = 0. (5)
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The di�erence between the two values in (5) can be thought of as the
equivalent of the derivatives in the discrete parameter space.
Multiplying (5) by θ̂:

∫
M
θ̂ [Tr(ρ̃T ∣ θ1) −Tr(ρ̃T ∣ θ2)]dP0 = (a1 − a2) (6)

Multiplying (5) by a2 and subtracting from (6):

(a1 − a2) = ∫
M
(θ̂ − a2) [Tr(ρ̃T ∣ θ1) −Tr(ρ̃T ∣ θ2)]dP0 (7)

= ∫
M
(θ̂ −m2) [Tr(ρ̃T ∣ θ2)]1/2][Tr(ρ̃T ∣ θ1) −Tr(ρ̃T ∣ θ2)]

Tr(ρ̃T ∣ θ2)]1/2 dP0

Then, applying the Cauchy−Schwarz inequality we get:

V[θ̂ ∣θ0 = θ2] ≥ (a1 − a2)2∫M [Tr(ρ̃T ∣ θ1)−Tr(ρ̃T ∣ θ2)]2
Tr(ρ̃T ∣ θ2)] dP0

(8)

The denominator of the previous expression can be restated as:

[Tr(ρ̃T ∣ θ1) −Tr(ρ̃T ∣ θ2)]2

Tr(ρ̃T ∣ θ2)] = [Tr(ρ̃T ∣ θ1)]2

Tr(ρ̃T ∣ θ2)] − 2Tr(ρ̃T ∣ θ1) +Tr(ρ̃T ∣ θ2) (9)

Integrating (9) over M gives −2 and +1, for the second and third term,
respectively. Since the reasoning followed so far holds for all values in Θ, we
can rewrite (8) as follows:

V[θ̂] ≥max
θ≠θ0

(θ − θ0)2∫M Tr(ρ̃T ∣ θ)2

Tr(ρ̃T ∣ θ0) dP0 − 1

(10)

Where we allow θ to vary over the whole parametric space Θ except for
θ0, and we consider unbiased estimator in the numerator. Equation (10)
represents the extension of the Cramér-Rao inequality to the case of discrete
parameter models in quantum measurement. The formula for the multidi-
mensional vector of parameters can be derived in the same fashion.
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3 Application

In this section we provide an illustration of the result obtained in the pre-
vious section. In Nielsen and Mølmer (2008) the authors describe a quantum
system with di�erent photon-number states, enumerated by n, coupled to
the probe �eld. The measurement modi�es the probability distribution over
the n-states. Here, Cn(t) = Cn(0) exp (−rnŷ − r2

nt/2) is the time dependent
probability assigned to n which, in our context, can be interpreted as the
probability of parameter θi that has to be estimated by the probing. To
avoid possible confusion with notation, we replace the index n with i, so the
previous formula reads:

Cθi(t) = Cθi(0) exp (−riŷ − r2
i t/2) i = 0,2, . . . , n (11)

where Θ = {θi}i=0,...,n, and n+1 is the total number of points in the parameter
space.

The probing is Quantum Non Demolition (QND), meaning that the prob-
abilities are updated at each time-step without disturbing the system dynam-
ics. Hence, the probabilities at time t are function of ŷ, the total integrated
noisy current, which has di�erent means for di�erent θi.

Assuming that the true value θ0 ∈ Θ, the probability distribution for the
integrated noisy current is Gaussian, and leads to a close form for the inte-
grand in (10). Indeed, the probability to observe a quantum state for which
the integrated current ŷ assumes the value y is described by the following
probability density:

Pρt = n∑
i=0

Cθi(0)√
2πt

exp(−(y + rit)2

2t
) (12)

where we consider the sum of the joint probabilities for observing each value
of θi and the noisy current.

We are interested in the reversal of this problem. In particular, we want
to calculate the integral in (10) which, basically, compares two di�erent prob-
abilities:

� the numerator, which corresponds to the square of the probability for
observing the quantum state ρ̃T given that the driving parameter is θi,
with i = 1, . . . , n;

� the denominator, which is the probability to observe ρ̃T given the true
parameter value θ0.
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Thus, in (12) instead of consider all the addends, we pick out only one sum-
mand at time. This is due to the fact that we already have the data and we
want to know which θ has generated them. Let us restate the integral in (10)
in a more tractable form:

∫
M

Tr(ρ̃T ∣ θi)2

Tr(ρ̃T ∣ θ0) dP0 − 1 =∫
R

[Cθi(0)√
2πt

exp (− (y+rit)2
2t )]2

Cθ0(0)√
2πt

exp (− (y+r0t)2
2t ) dy − 1 (13)

It is easy to see that both the numerator and the denominator in (13) are
proportional to a Gaussian distribution with variance t and mean −rit or−r0t, and the latter is exactly the object of our inferential problem. Now,
considering the integrand in the right hand side of (13) and taking the square,
we get:

Cθi(0)2
2πt exp (− (y+rit)2

t )
Cθ0(0)√

2πt
exp (− (y+r0t)2

2t ) = Cθi(0)2

Cθ0(0)√2πt
exp [−y2

2t
− t2

2t
(2r2

i − r2
0) − 2yt

2t
(2ri − r0)]

completing the square inside the brackets with ±t2(2ri − r0)2

Cθi(0)2

Cθ0(0) exp [− t2
2t

(2r2
i − r2

0)] exp [ t2
2t

(2ri − r0)2] 1√
2πt

exp [− 1

2t
(y + t(2ri − r0))2]

integrating the previous equation over the real line,

Cθi(0)2

Cθ0(0) exp [− t2
2t

(2r2
i − r2

0)] exp [ t2
2t

(2ri − r0)2]
since ∫R e− 1

2t (y+t(2ri−r0))2√
2πt

dy = 1. Finally, rearranging terms, the denominator in

(10) reads:

Cθi(0)2

Cθ0(0) exp [t(ri − r0)2] − 1 (14)

We now need to de�ne an (unbiased) estimator for the parameter. In this
regard, it is reasonable to assume that the di�erences in the mean of the
integrated signal are of the form ri = r0 + α, where α is a non zero integer
and r0 is the true but unknown value. Using the previous notation, that is
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θ̂ for the estimator and θi for the parametr values, we get θi = θ0 + α. Then
(10) reads:

V[θ̂] ≥max
θi≠θ0

(θi − θ0)2

Cθi(0)2

Cθ0(0) exp [t(θi − θ0)2] − 1

=max
α≠0

Cθ0(0)α2

Cθi(0)2 exp [tα2] − 1
(15)

Since the previous expression reaches its maximum when α tends to 0:

lim
α→0

Cθ0(0)α2

Cθi(0)2 exp [tα2] − 1
= Cθ0(0)2α

Cθi(0)2 t2α exp [tα2] = Cθ0(0)
Cθi(0)2t

(16)

The last term in (16) represents the lower bound for the variance of the mean
estimator θ̂ which is linearly dependent on t.

4 Conclusions

We have derived an extension of the Cramér-Rao bound for quantum
discrete parameter models, that is, models in which the parameter space is
restricted to a �nite set of points. We have proved that the extension sets
the lower bound on the variance of an estimator, and determines a discrete
counterpart of the quantum Fisher information. We have also provided an
illustration concerning a quantum optics problem.

9



References

Baram, Y., 1978: A su�cient condition for consistent discrimination between
stationary gaussian models. Automatic Control, IEEE Transactions on,
23, 958�960.

Baram, Y. and N. R. Sandell Jr, 1978a: Consistent estimation on �nite
parameter sets with application to linear systems identi�cation. Automatic
Control, IEEE Transactions on, 23, 451�454.

Baram, Y. and N. R. Sandell Jr, 1978b: An information theoretic approach to
dynamical systems modeling and identi�cation. Automatic Control, IEEE
Transactions on, 23, 61�66.

Barndor�-Nielsen, O. E., R. D. Gill, and P. E. Jupp, 2003: On quantum sta-
tistical inference. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 65, 775�804.

Choirat, C., R. Seri, et al., 2012: Estimation in discrete parameter models.
Statistical Science, 27, 278�293.

Cox, D. and D. Hinkley, 1974: Theoretical statistics chapman and hall, lon-
don. See Also.

Gammelmark, S., 2013: E�cient parametric inference, estimation and simu-
lation of open quantum systems, Ph.D. thesis, Aarhus UniversitetAarhus
University, Science and TechnologyScience and Technology, Institut for
Fysik og AstronomiDepartment of Physics and Astronomy.

Gammelmark, S. and K. Mølmer, 2013: Bayesian parameter inference from
continuously monitored quantum systems. Physical Review A, 87, 032115.

Hammersley, J., 1950: On estimating restricted parameters. Journal of the
Royal Statistical Society. Series B (Methodological), 12, 192�240.

Holevo, A. S., 2011: Probabilistic and statistical aspects of quantum theory,
vol. 1, Springer Science & Business Media.

Kanaya, F. et al., 1995: The asymptotics of posterior entropy and error
probability for bayesian estimation. Information Theory, IEEE Transac-
tions on, 41, 1988�1992.

10



Khan, R. A., 1973: On some properties of hammersley's estimator of an
integer mean. The Annals of Statistics, 756�762.

Khan, R. A., 1978: A note on the admissibility of hammersley's estimator of
an integer mean. The Canadian Journal of Statistics/La Revue Canadienne
de Statistique, 113�119.

Khan, R. A., 2000: A note on hammersley's estimator of an integer mean.
Journal of Statistical Planning and Inference, 88, 37�45.

Khan, R. A., 2003: A note on hammersley's inequality for estimating the nor-
mal integer mean. International Journal of Mathematics and Mathematical
Sciences, 2003, 2147�2156.

LaMotte, L. R., 2008: Su�ciency in �nite parameter and sample spaces. The
American Statistician, 62, 211�215.

Nielsen, A. E. and K. Mølmer, 2008: Stochastic master equation for a probed
system in a cavity. Physical Review A, 77, 052111.

Poor, V. H. and S. Verdu, 1995: A lower bound on the probability of error in
multihypothesis testing. Information Theory, IEEE Transactions on, 41,
1992�1994.

Teunissen, P., 2007: Best prediction in linear models with mixed integer/real
unknowns: theory and application. Journal of Geodesy, 81, 759�780.

Wiseman, H., 1996: Quantum trajectories and quantum measurement the-
ory. Quantum and Semiclassical Optics: Journal of the European Optical
Society Part B, 8, 205.

11


	Introduction
	Summary and main contributions of the thesis
	Basic concepts of Quantum Mechanics
	States and evolution
	Parametric quantum model
	Generalized measurements


	Paper A
	Paper B
	Paper C

