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Abstract

This work considers the reconstruction of strong gravitational lenses from their
observed effects on the light distribution of background sources. After reviewing
the formalism of gravitational lensing and the most common and relevant lens
models, new analytical results on the elliptical power law lens are presented, in-
cluding new expressions for the deflection, potential, shear and magnification,
which naturally lead to a fast numerical scheme for practical calculation.

The main part of the thesis investigates lens reconstruction with extended
sources by means of the forward reconstruction method, in which the lenses and
sources are given by parametric models. The numerical realities of the problem
make it necessary to find targeted optimisations for the forward method, in order
tomake it feasible for general applications tomodern, high resolution images. The
result of these optimisations is presented in the Lensed algorithm. Subsequently,
a number of tests for general forward reconstruction methods are created to de-
couple the influence of sourced from lens reconstructions, in order to objectively
demonstrate the constraining power of the reconstruction.

The final chapters on lens reconstruction contain two sample applications of
the forward method. One is the analysis of images from a strong lensing survey.
Such surveys today contain ∼ 100 strong lenses, and much larger sample sizes
are expected in the future, making it necessary to quickly and reliably analyse
catalogues of lenses with a fixed model. The second application deals with the
opposite situation of a single observation that is to be confronted with different
lens models, where the forward method allows for natural model-building. This
is demonstrated using an example reconstruction of the “Cosmic Horseshoe”.

An appendix presents an independent work on the use of weak gravitational
lensing to investigate theories of modified gravity which exhibit screening in the
non-linear regime of structure formation.
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Forward reconstruction of strong
lensing observations
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1 Introduction

Thenotion that gravity should act on light as well as matter is an old one, and goes
as far back as Newton’s Opticks. The Newtonian deflection of light rays passing
close by or emanating from amassive body was calculated privately by Cavendish
as early as 1784, and published by von Soldner in 1804 [115, 117]. It was Einstein
himself who in 1915, upon completion of his theory of general relativity, realised
that theNewtonian value of the deflection of a light ray near the sun is only half the
value predicted by general relativity. When the twice-as-large deflection of light
rays grazing the sun was indeed observed a short time afterwards by Eddington
during the May 29, 1919 solar eclipse [31, 116], it was a spectacular verification of
the newborn theory and made worldwide headlines. This observation was not
only the first of many subsequent successful confirmations of general relativity,
but at the same time the first observational use of the tool that would eventually
become known as gravitational lensing.

A century later, gravitational lensing is a tried and true method of astronomy
and astrophysics. The general subject of lensing theory and applications is today
broadly categorised into three parts [87]. Strong lensing acts mainly on the scale of
galaxies and galaxy clusters, and it’s distinctive feature is the non-linear deflection
of the background distribution of light, leading to the signature multiple images,
arcs and rings. Weak lensing is observed on cluster and cosmological scales. It
is a small effect in the linear regime that subtly aligns background galaxies with
intervening matter, and the distribution of the latter can be extracted statistically
from the observed distribution of light. Finally,microlensing involves the dynamic
variation of flux when compact objects pass in front of background sources on
scales too small to be resolved.

The focus of this thesis is mainly strong gravitational lensing, specifically the
reconstruction of lens systems from observations of galaxy-galaxy lensing events.
The details of the matter distribution in these systems lead to implications for
a wide range of fundamental topics such as dark matter-dark matter and dark
matter-baryon interactions, the mass of the dark matter particle, constraints on
possible modifications of the theory of gravity, as well as astrophysical questions
such as how baryons segregate from dark matter and how the efficiency of star
formation depends on the dark matter distribution. Furthermore, strong lenses
now allow astronomers to detect some of the most distant objects ever observed
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and study galaxy formation at the cosmic dawn.
In addition to the scientific challenges of finding and observing lenses, the

reconstruction of strong lenses has increasingly become a numerical problem.
While the targets of previous lensing observations were often point-like QSOs or
galaxies with low resolution, there is an ever-growing availability of observations
with resolved features. Such observations contain a large amount of information
about the invisible distribution ofmatter within the lens, andmay soon lead to the
systematic direct detection of dark matter substructure in galaxies [111]. Future
surveys such as the Dark Energy Survey (DES), Large Synoptic Survey Telescope
(LSST), and Euclid are expected to increase the population of known strong lenses
by ∼1000, ∼100.000 and ∼150.000, respectively [28]. Investigating such enormous
numbers of systems requires a dramatically changed approach to reconstructions,
which today often involve manual modelling of the individual observations [11],
a process that is already quickly becoming infeasible. Moreover, reconstruction
methods currently in use require considerable computational efforts, especially
when the detail in the observation is high. This is perhaps most evident in the
abundance of reconstructions of low resolution data, but conspicuous absence of
the same for publicly available, high resolution, space-based observations from
the Hubble Space Telescope (HST).

The outline of the thesis is as follows. Chapter 2 introduces the formalism
of gravitational lensing that is used throughout the text. Chapter 3 presents the
standard lens models that are used in the following work. Chapter 4 contains
the detailed derivation of an elliptical lens model following a power law profile.
Chapter 5 then develops the method of forward lens reconstruction from the
ground up. Chapter 6 demonstrates the necessary techniques used in a fast and
accurate implementation of the forwardmethod, which is provided in the Lensed
algorithm. In Chapter 7, this implementation and the forward method in general
are rigorously tested and their usefulness for practical applications demonstrated.
Finally, in Chapter 8 and Chapter 9, the Lensed algorithm is used in two real-
world settings, first to reconstruct a set of observations from a lens survey with a
commonmodel, and secondly to analyse a single high resolution observationwith
competing lens models. The results of the thesis are summarised in Chapter 10,
and a brief outlook on possible next steps is given.

In addition to the effort in the reconstruction of strong lenses, this thesis also
contains in an appendix a small contribution to cosmological investigations with
weak lensing. This cosmological probe has been embraced as a powerful test of
gravitational physics on large scales. It supplies complementary information to
probes of the matter density field through spectroscopic and photometric galaxy
redshift surveys and, in principle, should be insensitive to galaxy bias. Current
measurements of weak lensing on large scales are not yet competitive with other
cosmological probes, but the future looks promising with upcoming surveys such
as Euclid [85], LSST [45], WFIRST [97] and SKA [22].

As in the case of strong lensing, new computational solutions will be needed to
extract the wealth of information contained in the eventually available data. The
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specific problem demonstrated here is an investigation of screening, which is a
common feature in a number of proposed theories of modified gravity [51]. These
theories offer a possible approach to explaining the observational evidence for
cosmic acceleration by introducing modifications to general relativity in regions
of low density, low acceleration, or on large scales. A number of models have been
proposed [26], and the idea that there may be a gravitational solution to the dark
energy problem has led to a renewed scrutiny of the fundamental properties of
gravity. This thesis describes the algorithms that can be used to produce lensed
maps in cosmologies with screening and are the starting point for developing a
concerted and comprehensive search for signatures of screening in observations
of weak lensing.
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2 Gravitational lensing

2.1 The deflection of light by matter

The formalism of gravitational lensing treats the propagation of light in the limit
of geometrical optics, meaning that light rays travel in straight lines until they
are eventually deflected by a gravitational lens. This is a simplification of the full
framework of general relativity, in which light follows the curvature of spacetime
on null geodesics of the metric. The approximation is valid where gravitation is
weak enough to be linearised. Then it is possible to separate the equations into a
smooth background metric, in the following always assumed to be a flat ΛCDM
cosmology, and any number of perturbationswhich act as deflectors or lenses. The
simplest such deflector is a point mass M; its deflection is given by the classical
deflection formula of general relativity,

λ = 4GM
c2 R

(2.1)

for a light ray passing at a distance R. Due to the linearity of the equations, this
fundamental result is all that is necessary to calculate the deflection even for an
arbitrary distribution of matter.

Notation. Two-dimensional vectors denoting positions or displacements on a
flat sky are set in bold, e.g. x = (x1, x2) and Σ(x) = Σ(x1, x2). Three-dimensional
positional vectors have their third component along the line of sight explicitly
appended, e.g. (x , z) = (x1, x2, z) and ρ(x , z) = ρ(x1, x2, z). General matrices are
set in upright letters, A = Q Λ Q−1. Matrices acting on positional vectors are bold
and upright, y = A x. Lengths are written in upper case for physical coordinates,
e.g. R = 10 kpc, and in lower case for angular coordinates, e.g. r = 10 arcsec.

The deflection of light by a mass distribution. Assuming that gravity is linear,
the deflection of light rays due to an extended mass distribution ρ(X , Z) can be
partitioned into deflections from infinitesimal masses dM = ρ(X , Z)dV located
at the three-dimensional positions (X , Z) = (X1, X2, Z). When a ray travelling
parallel to the Z-axis at (X , Z) passes themass dM located at (X′, Z), the resulting
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deflection (2.1) is

dλ = 4G ρ(X′, Z)dV
c2

X − X′

∣X − X′∣2
. (2.2)

However, after this infinitesimal deflection, the light ray is no longer travelling
parallel to the Z-axis. In order to make the following calculations possible, the
Born approximation is used, in which this effect is neglected due to the smallness
of the deflections in the linear regime of gravity. The total deflection due to the
mass distribution can then be calculated by first integrating, for a fixed position X
of the light ray, over the location X′ of masses in a single plane of constant Z, and
subsequently over all such planes from the origin of the ray to the observer.1 The
result is given by the integral

λ(X) = 4G
c2 ∬ d2X′ dZ′ ρ(X′, Z) X − X′

∣X − X′∣2
. (2.3)

The integration of themass density ρ(X , Z) along the line of sight Z can be carried
out independently and contained in the definition of a surface mass density

Σ(X) = ∫ dZ ρ(X , Z) . (2.4)

The deflection angle2 can therefore bewritten entirely in terms of two-dimensional
quantities

λ(X) = 4G
c2 ∫ d2X′ Σ(X′) X − X′

∣X − X′∣2
, (2.5)

and the three-dimensional details of the matter distribution have been absorbed
completely. It is noted that two approximations were used in the derivation of this
result, first the linearity of gravity, and secondly the thin lens approximation that
light continues to travel in the original direction while being deflected. There are
situations in which these approximations break down and whichmust be handled
differently [86]. When the formalism of gravitational lensing is applied to the
reconstruction of strong lenses, as is done in this work, these assumptions are
very well fulfilled.

2.2 The lens equation

The thin lens approximation requires thematter distribution to be localisedwithin
a line-of-sight region that is small with respect to the total light travel distance.

1For the Born approximation to be valid, all planes outside of a small region should be empty.
2This deflection angle is the physical deflection angle, denoted here and in the following by λ.

Other common notation is α̂ with a hat [86, 87]. This can however lead to confusionwith the scaled
deflection angle α, which will be introduced shortly.
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X
Y

X′ A
λ λ

observer DL DLS DS

image/lens plane source plane

Figure 2.1: Geometry of a two-plane gravitational lens. Light rays from origin Y
on the source plane arrive at observed position X on the image plane, where they
are deflected by an angle λ towards the observer.

Since the deflection properties are determined by the projected two-dimensional
surface mass density (2.4), a deflector is described as a lens plane perpendicular
to the line of sight. Any number of lens planes can be employed in the description
of a physical system [78], but for lens reconstruction, generally only the two-plane
system is of practical interest. It consists of a source plane, which contains the
surface brightness distribution of the background sources before lensing, and a
single lens plane, called the image plane, as it describes the flat skywhich is actually
observed.

Figure 2.1 shows the geometry of such a two-plane lens system. In the thin lens
approximation, a light ray travels from its originY on the source plane to X on the
image plane. There, the gravitational pull of the lens changes the direction of the
ray by the deflection angle λ towards the observer, so that X becomes the apparent
origin of the ray on the image plane. The angular diameter distances to the lens
plane, source plane, and between the planes are DL, DS , and DLS , respectively.

Lens equation. Given a two-plane lens system as shown, it is possible to find the
originY of a light ray from its observed position X and the deflection angle λ. The
projection of X from image plane to source plane is

X′ = DS
DL

X . (2.6)
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For a sufficiently small deflection angle λ, the projection onto the source plane is

A = DLS λ . (2.7)

The simple relation Y + A = X′ can therefore be rearranged into the lens equation

Y = DS
DL

X − DLS λ(X) , (2.8)

where the dependency of the deflection angle λ on X has been made explicit. The
source plane position Y is therefore a function of the observed position X on the
image plane, and can be calculated if λ(X) is known.

The scaled deflection angle. There is a remaining dependency on the angular
diameter distances DL, DS and DLS in the lens equation, which can be removed
in order tomake the problem purely geometrical. Introducing angular positions x
and y on the image and source plane defined by

DL x = X , DS y = Y (2.9)

into the lens equation and dividing both sides by DS yields

y = x − DLS
DS

λ(DL x) , (2.10)

where the scaling of the image plane position has cancelled out. This suggests the
definition of the scaled deflection angle

α(x) = DLS
DS

λ(DL x) (2.11)

to contain the remaining dependency onDLS andDS The lens equation can hence
be written entirely in angular coordinates as

y = x − α(x) , (2.12)

where the dependency on DLS and DS has apparently been removed.

Dimensionless quantities. Of course, the dependency on the angular diameter
distances is so far only hidden inside the scaled deflection angle. Inserting the
integral form (2.5) of the physical deflection angle λ into definition (2.11) reveals
the physical relation between the scaled deflection angle α and the surface mass
density Σ as

α(x) = DLS
DS

4G
c2 ∫ d2X′ Σ(X′) DL x − X′

∣DL x − X′∣2
. (2.13)
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By transforming the integral to angular coordinates DL x′ = X′, this can further
be simplified to

α(x) = 1
π ∫

d2x′ κ(x′) x − x′

∣x − x′∣2
, (2.14)

where the dimensionless surface mass density or convergence was introduced as

κ(x) = 4πG
c2

DL DLS
DS

Σ(DL x) . (2.15)

The additional factor of π is a natural choice: this will be seen shortly from the
Poisson equation for lensing, as well as later in the calculation of κ for circularly
symmetric lenses. The definition of κ is often written as the ratio

κ(x) = Σ(DL x)
Σcr

(2.16)

of surface mass density Σ and the critical surface mass density

Σcr =
c2

4πG
DS

DL DLS
, (2.17)

which emphasises the fact that κ is dimensionless. Lenses with Σ > Σcr, κ > 1 are
“strong” and can produce multiple images and other phenomena, which will be
listed shortly.

The quantities α and κ are generally preferable in lens reconstruction due to
their dimensionless nature. With these definitions, is possible to build a model of
the lens that is independent of the angular diameter distances DL, DS and DLS ,
which might not be available for a given observation. If physical quantities such
as the mass of a lens are required, they can be calculated from the dimensionless
results through the appropriate equations, e.g. (2.16). Therefore, unless explicitly
stated otherwise, “deflection angle” and “surface mass density” in the following
will always refer to α and κ, respectively.

2.3 Deflection potential and Poisson equation

The integral (2.14) for the deflection angle α is that of a classical two-dimensional
force field, where the surface mass density κ plays the role of a charge density.
Since the rotation of the deflection field vanishes identically,

∇× α ≡ 0 , (2.18)

if follows that there exists a function ψ, called the potential, so that the deflection
angle is the gradient

α(x) = ∇ψ(x) . (2.19)
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A suitable potential function can be constructed directly by inserting identity

x − x′

∣x − x′∣2
= ∇ log ∣x − x′∣ (2.20)

into integral (2.14), where the gradient operator ∇ acts on x alone, and changing
the order of integration and differentiation, resulting in

α(x) = 1
π
∇∫ d2x′ κ(x′) log ∣x − x′∣ . (2.21)

This implies that the deflection potential is given by

ψ(x) = 1
π ∫

d2x′ κ(x′) log ∣x − x′∣ , (2.22)

and the relation α = ∇ψ is fulfilled by construction.

Poisson equation. In keeping with the field theory analogy, the potential ψ can
further be related directly to the surface mass density κ (i.e. the charge) through
a differential equation. Applying the two-dimensional Laplacian ∇2 = ∂2

1 + ∂2
2 to

both sides of equation (2.22) for the potential ψ, and changing again the order of
differentiation and integration, results in

∇2ψ(x) = 1
π ∫

d2x′ κ(x′)∇2 log ∣x − x′∣ . (2.23)

Because (2π)−1 log ∣x∣ is the Green’s function of the two-dimensional Laplacian,
the Dirac delta function

∇2 log ∣x − x′∣ = 2π δ(x − x′) (2.24)

can be used to resolve the integral. The result is the Poisson equation

∇2ψ(x) = 2κ(x) (2.25)

of gravitational lensing.

2.4 Convergence, shear and magnification

In order to understand the local transformation of images of lensed sources, it is
possible to linearise lens equation (2.12) at a given point y0 = y(x0). The result
can be written as

y = y0 +A (x − x0) , (2.26)

where themagnification matrix A is the Jacobian of the transformation y(x)

A = ( 1 −ψ,11 −ψ,12
−ψ,12 1 −ψ,22

) (2.27)

given in terms of derivatives of the deflection potential ∇ψ = α.
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Convergence and shear. ThemagnificationmatrixA is more commonly written
in the form

A = ( 1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

) , (2.28)

which uses the traditional lensing quantities of convergence

κ(x) = 1
2
(ψ,11(x) +ψ,22(x)) (2.29)

and the two components of the shear

γ1(x) =
1
2
(ψ,11(x) −ψ,22(x)) ,

γ2(x) = ψ,12(x) .
(2.30)

The convergence κ is identical to the surface mass density, and definition (2.29) is
merely a reformulation of Poisson equation (2.25).

Complex shear. Due to the peculiar transformation of the shear under rotations
of the coordinate system, it is often advantageous to use the complex shear

γ = γ1 + iγ2 = ∣γ∣ ei 2θγ (2.31)

with magnitude ∣γ∣ and orientation θγ instead of the two components γ1 and γ2 to
characterise a lens. This formmakes it clear that the shear is not a two-dimensional
vector but a polar, which changes its angle twice as fast as a vector under rotations
of the coordinate system. Relations

∣γ∣2 = γ2
1 + γ2

2 , θγ =
1
2
arctan(γ1, γ2) (2.32)

for the individual components follow directly from the definition.

Magnification. From the linearised lens equation (2.26), it follows that a source
subtending a small area dA in the image plane subtends an area dA′ = ∣detA∣dA
in the source plane. This leads to the definition of themagnification

µ = detA−1 (2.33)

as the inverse of the determinant of the magnification matrix. Explicit calculation
of the determinant shows that the magnification is given by the combination

µ = 1
(1 − κ)2 − ∣γ∣2

(2.34)

of convergence κ and shear γ. The magnification is one of the most important
lensing quantities: Not only does it describe the increased luminosity of a lensed
source with finite size, it also governs many of the phenomena associated with
strong lensing, which will now be investigated.
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2.5 Multiple images and strong lensing

The interesting regime for lens reconstruction is that of strong lensing. When a
source plane position y admits more than one solution x for lens equation (2.12),
there will bemultiple images of the same source plane regions on the image plane.
The appearance and distribution of multiple images is governed by the critical
structure of the lens, which treats the emergence and disappearance of solutions of
the lens equation over the image plane. Many properties of gravitational lenses can
be understood from the study of their critical structure [79], which is a fascinating
subject in itself, even though only a few basic results will be used here. Particular
examples of critical structures can be found in the lens models of Chapter 3.

Critical lines. On the image plane, a lens can produce smooth critical lines on
which the Jacobian detA of the magnification matrix and therefore the inverse
magnification (2.33) vanishes,

µ−1 = (1 − κ)2 − ∣γ∣2 = 0 . (2.35)

This leads to a nominally infinite magnification of images on the critical line in
theory, although the approximations of gravitational lensing break down and the
physical magnification remains finite. Nevertheless, very high magnifications can
occur near the critical lines of real lenses, as observed in phenomena such as bright
arcs and Einstein rings.

Caustics. Thecritical lines correspond to caustics on the source plane, which can
be found bymapping the smooth lines through lens equation (2.12). The resulting
lines are not necessary smooth, but can develop cusps and folds. The number of
images a source produces depends on its position relative to the caustics of the
lens; sources outside of the caustic structure are singly-imaged, and every time a
caustic is crossed, the number of images increases or decreases by two.3

3Exceptions are situations of high symmetry such as circular sources, where two of the images
can be degenerate.
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3 Lens models

3.1 The building blocks of lenses

The reconstructionmethod introduced shortly requires a parametricmodel of the
lens. A number of commonly used models for galaxy-scale lenses are described
here, giving a brief summary of their lensing properties. The present selection
of lenses closely mirrors the Lensed software for lens reconstruction [102, 103],
which is developed in the coming chapters. This list is by no means exhaustive,
andmany other models are readily found in the literature [49, 86, 87]. Most of the
lens models follow a given profile with circular or elliptical symmetry, for which
the deflection, shear, magnification and critical structure can often be worked out
analytically. The existence of closed-form expressions for at least the deflection
is an immense advantage for the intended application in lens reconstruction, as
any other form of numerical calculation is likely too slow to be practically useful.
An exception to this rule are lenses for which quickly converging series have been
developed, such as the elliptical power law profile lens examined in Chapter 4.

Coordinate transformation. Without loss of generality, the following models
assume a coordinate system where the lens is located at the origin. Similarly, for
the elliptical models, the coordinate system is rotated so that the major axis of the
profile coincides with the x1-axis of the coordinate system. This can always be
achieved by a suitable coordinate transformation

x ↦ x′ = R
(−θL) (x − xL) , (3.1)

whereR
(−θL) is the inverse rotation matrix for the position angle θL, and xL is the

lens position. When using the lens models in a practical application, the world
coordinates can be quickly transformed to “lens coordinates” before calculating
the desired lensing quantity.

3.2 The point mass

The dimensionless surface mass density (2.15) of the point mass can be written as

κ(x) = π r2
E δ(x) , (3.2)
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where δ(x) is the Dirac delta function, and rE is the Einstein radius of the lens,
which is related to its mass m by

rE =
√

4Gm
c2

DLS
DL DS

. (3.3)

This radius —which here is given in angular coordinates, i.e. the Einstein angle—
corresponds to a length

RE = DL rE =
√

4Gm
c2

DL DLS
DS

(3.4)

in physical coordinates.

Deflection. Inserting the surface mass density (3.2) into integral (2.14) for the
scaled deflection angle yields

α(x) = r2
E

x
∣x∣2

. (3.5)

as the deflection angle of the point mass.

Potential. Thepotential (2.22) of the pointmass can either be integrated directly,

ψ(x) = r2
E log ∣x∣ , (3.6)

or alternatively be found by inserting x/∣x∣2 = ∇ log ∣x∣ into α as has been done
when the deflection potential was first derived.

Shear. The two components of the shear (2.30) for the point mass lens are

γ1(x) = −r2
E
x2
1 − x2

2
∣x∣4

, γ2(x) = −r2
E

2 x1 x2

∣x∣4
, (3.7)

and the associated complex shear (2.31) is

γ(r, θ) = −
r2
E

r2 ei 2θ , (3.8)

where r and θ are polar coordinates.

Magnification, critical structure. With the convergence (3.2) and shear (3.8)
known, the magnification (2.34) of the point mass is

µ−1(x) = 1 −
r4E
∣x∣4

, (3.9)
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For the magnification of the point mass lens, condition (2.35) for a critical line is

µ−1(xcr) = 0 ⇐⇒ ∣xcr∣ = rE . (3.10)

The critical line is therefore a circle around the centre of the lens with (angular)
radius rE as expected. The caustic structure of the lens can be determined by using
lens equation (2.12), i.e.

y = x − α(x) = x − r2
E

x
∣x∣2

, (3.11)

to map the critical line ∣xcr∣ = rE to the corresponding caustic ycr on the source
plane. The result is, for any choice of xcr,

ycr = y(xcr) = 0 , (3.12)

and hence the caustic collapses to a point at the origin.

3.3 Isothermal profiles

One of themost commonly encountered and physicallymotivated parametric lens
models are those of the family of isothermal profiles. The three-dimensional mass
density of such lenses follows an inverse-square law ρ ∝ r−2, and the simplest
such form results in the surface mass density profile

κ(r) = 1
2
b
r
, (3.13)

where r is the radius and b is the scale length of the isothermal profile. Since the
density has circular symmetry and formally diverges for r → 0, the profile (3.13) is
called a singular isothermal sphere (SIS). The singularity at the origin can be fixed
by introducing a softening scale or core radius s as

κ(r) = 1
2

b√
r2 + s2

, (3.14)

and the resulting profile, still circularly symmetric but no longer diverging, is
called a non-singular isothermal sphere (NSIS). For more realistic models, density
profiles can be made elliptical by stretching the x1-coordinate by a factor of 1/q,
so that the isodensity contours are ellipses with an axis ratio of q. The results are
the singular isothermal ellipsoid (SIE) with density profile

κ(x) = 1
2

b
√

q2 x2
1 + x2

2

, (3.15)

which diverges near the origin, and the non-singular isothermal ellipsoid (NSIE)

κ(x) = 1
2

b
√

q2 (x2
1 + s2) + x2

2

. (3.16)

The lensing properties of elliptical lenses are investigated in detail in Chapter 4.
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Deflection. It is noted that all othermembers of the isothermal family are special
cases of the NSIE, obtained as the limits s → 0 to go from non-singular to singular,
and q → 0 to go from ellipsoid to sphere. Hence, it suffices to find the deflection
of the NSIE, which is [48, 50, 54]

α1(x) =
b√

1 − q2
arctan

⎛
⎝
x1
√

1 − q2

ξ + s
⎞
⎠
,

α2(x) =
b√

1 − q2
arctanh

⎛
⎝
x2
√

1 − q2

ξ + q2 s
⎞
⎠

.

(3.17)

where ξ =
√

q2 (x2
1 + s2) + x2

2 . The SIE deflection follows by simply setting s = 0
in the above expressions. For the NSIS, the limit q → 0 yields a deflection

α(x) = b x√
∣x∣2 + s2 + s

, (3.18)

and the SIS follows once more by setting s = 0.

Potential. The deflection potential (2.22) for the NSIE profile is given by

ψ = x1 α1 + x2 α2 − b s log{(ξ + s)2 + (1 − q2) x2
1} , (3.19)

from which the special cases SIE, NSIS and SIS follow as before. In particular, the
potential of the SIE is

ψ = x1 α2 + x2 α2 , (3.20)

which will prove useful for the case of a general power law.

Magnification, critical structure. The magnification of the NSIE is given by

µ−1 = 1 − b
ξ
− b
ξ

b s
(ξ + s)2 + (1 − q2) x2

1
. (3.21)

For the SIE, this simplifies to

µ−1 = 1 − b
ξ
= 1 − 2κ . (3.22)

It is clear that the isocontours of the SIE are at the same time contours of constant
magnification. The critical line (2.35) is given by the κ = 1/2 isodensity contour,
whichmakes it the ellipse with semi-minor axis b. The scale length b can therefore
reasonably be considered the Einstein radius of the SIE (and of course SIS) model.
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Fixed mass parameterisation. Instead of using the scale length b (which is the
Einstein radius of the lens), the SIE can be parameterised by the scale length bSIS
of a SIS containing the same mass within the critical line. The relationship is the
following. The dimensionless mass enclosed in the critical line of the SIE is

m = 2π
q ∫

b

0
dR R κ(R) = π b2

q
. (3.23)

The dependency of the mass on b and q implies that in order to keep the mass of
the model fixed under changes of the ellipticity, the length b has to scale as q1/2.
By introducing the parameter

bSIS =
b
√q

(3.24)

the dependency of the mass on q is eliminated. The parameter bSIS is, as the name
implies, the Einstein radius of a SIS (q = 1) with the same mass m. This definition
has a simple geometrical interpretation: instead of the semi-minor axis b of the
critical line, the new parameter uses the geometric mean b/√q of the semi-minor
axis b and semi-major axis b/q. This parameterisation is widely used in practice,
for example in the applications of Chapter 8 and 9.

3.4 Navarro, Frenk andWhite profiles

Based on numerical simulations, Navarro, Frenk and White found a “universal”
density profile [69]

ρ(r) = ρs
(r/rs) (1 + r/rs)2

(3.25)

for darkmatter halos, where ρs is the density normalisation and rs is a scale radius.
The corresponding surface mass density of this model is [7]

κ(r) = 2κs
1 −F(r/rs)
(r/rs)2 − 1

, (3.26)

where κs = ρs rs/Σcr is a normalising constant and the function F is defined as

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
√

x2−1
arctan

√
x2 − 1, x > 1,

1
√

1−x2 arctanh
√

1 − x2, x < 1,
1, x = 1.

(3.27)

The Navarro, Frenk and White (NFW) lens is frequently used to model the dark
matter halo of galaxies. Similar to SIE and NSIE, the NFW profile is sometimes
made elliptical using transform r ↦

√
q2 x2

2 + x2
2 . However, the resulting elliptical

lens is difficult to treat analytically, and usually used in combination with fully
numerical methods.
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3.5 Mass sheets

Lenses with constant surface mass densities κ(x) = κ0, so-calledmass sheets, play
an important role in the theory of gravitational lenses. They feature the simple
deflection and potential

α(x) = κ0 x , ψ(x) = κ0
2
∣x∣2 , (3.28)

and this seemingly innocent mass model would be entirely uninteresting were it
not for themass sheet transform [33, 41], which has far-reaching consequences for
lens modelling as a whole.

Themass sheet transform. Assuming that a good reconstruction κ of the mass
distribution of a lens system has been found, a mass sheet κ0 = 1− t is added to it,
and the original κ is scaled by t, so that

κt(x) = t κ(x) + (1 − t) . (3.29)

is a family of mass models related to κ. One might ask how well the observation
is reconstructed by any of the mass models κt . The deflection of the new model is

αt(x) = t α(x) + (1 − t) x , (3.30)

and inserting this into lens equation (2.12), one finds

y = x − αt(x) = t (x − α(x)) ⇐⇒ y/t = x − α(x) . (3.31)

It follows that the deflection of the whole family of mass models κt is equivalent
modulo an overall scaling of the source plane by a factor of t. Because such a
scaling is unobservable, there is no way to distinguish any two members of the
family of mass models.

The mass sheet transform and parametric models. The mass sheet transform
represents a severe limitation to the possibility of ever reconstructing generalmass
distributions in a well-constrained way. However, the problem is somewhat alle-
viated when parametric models are used for the reconstruction. If the mass dis-
tribution κ follows a given profile, e.g. the SIE profile, the mass sheet transform
κ+κ0 generally no longer follows that profile, e.g. κ+κ0 is no longer a SIE. Hence,
by restricting the reconstruction to parametric lenses, the mass sheet transform
no longer applies [30], since the family of equivalent lens models κt is generally
restricted to the single member following the chosen profile.

3.6 External shear

In reconstructions, it is often necessary to consider the immediate environment
of the lens system, as objects are rarely isolated enough to not feel the influence of
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a nearby deflector. As long as the mass distributions do not physically overlap, a
nearby object cannot contribute convergence κ to the deflection of light. However,
it can contribute an external shear γ. Using the magnification matrix (2.28), the
deflection of a lens component with κ = 0, γ ≠ 0 is given to first order by thematrix
product

α(x) = ( γ1 γ2
γ2 −γ1

) x = γ ( cos(2θγ) sin(2θγ)
sin(2θγ) − cos(2θγ)

) x . (3.32)

Lens components of external shear are frequently used in the reconstruction of
observations, and can be found e.g. in Chapter 9.
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4 The elliptical power law profile lens
The contents of this chapter have been published as N. Tessore and R. B. Metcalf,
The elliptical power law profile lens, A&A 580 (Aug. 2015) A79, arXiv: 1507.01819.

4.1 Elliptical lenses

Thestrong lensing reconstructions presented here require an approximation of the
lens system by a parametric model. The initial model for a lens system is often a
spherically symmetric mass distribution ρ(x , z) in three dimensions, which leads
to a circularly symmetric surface mass density κ(x) = κ(r) on the lens plane.
Many of the classical lenses fall into this category, such as isothermal spheres or the
Navarro, Frenk and White profile [7, 69]. Because of the high level of symmetry,
the lensing properties of circularly symmetric lenses can usually be worked out
analytically. On the other hand, these lenses can hardly be believed to offer a
realistic description of the real mass distributions, even when external shear is
considered in order to break some level of symmetry.

Thenext step in approximating real lens systems is therefore to turn the known
lenses with spherical symmetry into ellipsoids by rescaling an arbitrary axis of
either the surfacemass density or the deflection potential, fixing the other through
thePoisson equation [48]. Choice of an elliptical potential—often called a pseudo-
ellipticalmodel— simplifies the problem, because other lensing quantities such as
shear, deflection, and convergence can all be expressed in terms of derivatives of
the potential, thus eliminating the need to solve complicated integrals. However,
this approach can lead to unrealistic and unphysical surface mass densities with
peanut-shaped isodensity contours or negative values. These problems become
more acute as the ellipticity increases, and the approach is generally unsuited for
axis ratios below q ≈ 0.5 [48].

More realistic lens models might therefore be created from elliptical surface
mass densities. The properties of elliptical lenses were first described by Bourassa,
Kantowski and Norton [15] and Bourassa and Kantowski [14], who introduced a
complex formalism of gravitational lensing to simplify the necessary calculations.
The expressions for the two-dimensional real deflection angle were later derived
by Schramm [89]. However, due to the loss of symmetry, it is often no longer
possible to find the properties of elliptical lenses analytically. Notable exceptions
are the singular and nonsingular isothermal ellipsoids described by Kassiola and
Kovner [48] and then fully analysed by Kormann, Schneider and Bartelmann [54]

http://dx.doi.org/10.1051/0004-6361/201526773
http://arxiv.org/abs/1507.01819
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using the complex formalism. The results, which are beautiful, simple closed-
form solutions, are widely applicable and the workhorse of lens reconstruction
today. Despite the success of this model, current high resolution observations can
often benefit from additional flexibility in the assumed lens profile, and no equally
well-established elliptical lens with a simple mathematical form and numerical
implementation is available.

Elliptical profiles. In order to turn a circularly symmetric κ(r) into an elliptical
surface mass density, the x1-axis is stretched by a factor of 1/q, where 0 < q ≤ 1
is a constant parameter of the elliptical profile. It is clear that after this operation,
the formerly circular isodensity contours r = const have indeed become ellipses
with semi-major axis r/q, semi-minor axis r, and axis ratio q. Hence the elliptical
surface mass density κ(R) results from the simple substitution

κ(r) ↦ κ(R), (4.1)

where R is the elliptical radius defined by

R =
√

q2x2
1 + x2

2 , (4.2)

i.e. the semi-minor axis of the ellipse passing through x1, x2. The corresponding
elliptical angle defined by1

φ = arctan(qx1, x2) (4.3)

is the polar angle of position x1, x2 in the original circular symmetry. The inverse
coordinate transformation from elliptical coordinates (R, φ) back to the physical
coordinates (x1, x2) is

x1 = R/q cos(φ) ,
x2 = R sin(φ) ,

(4.4)

where R and φ are limited to R > 0 and φ ∈ [0, 2π), respectively. The elliptical
symmetry of the surface mass density κ(R) is contained entirely in the choice of
coordinates, and the form of the distribution remains unchanged.

Thecomplex formulationof lensing. Whenworkingwith elliptical surfacemass
distributions, it is most natural to work in the complex formulation of lensing for
spheroidal mass distributions [14, 15, 17, 48, 54, 89]. Lens equation (2.12) in com-
plex notation is

z′ = z − α(z) , (4.5)
1This definition uses the two-argument inverse tangent arctan(x1 , x2), which respects the

quadrant of x1 , x2 to return the correct angle.
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where the two-dimensional vector quantities are replaced by the corresponding
complex coordinate z = x1 + i x2 and the complex deflection angle α = α1 + i α2.
The complex deflection angle α follows from its two-dimensional definition (2.14)
via the substitution x ↦ z, ∣x∣2 ↦ z z∗ as

α∗(z) = 1
π ∫

dz′
κ(z′)
z − z′

, (4.6)

where the asterisk in α∗ denotes complex conjugation of the overall expression.
The usual deflection potential becomes the real part of a complex potential ψ(z),
which is related to the complex deflection angle α(z) through the use ofWirtinger
derivatives [54, 89]

α∗(z) = 2
∂
∂z

ψ(z) . (4.7)

Similar relations can also be found for the second derivatives of the potential,
namely the complex shear γ = γ1 + iγ2, given by

γ∗(z) = ∂
∂z

α∗(z) , (4.8)

and the convergence κ, given by

κ(z) = ∂
∂z∗

α∗(z) . (4.9)

Since the latter expression must recover the surface mass density identically, it
serves as a direct check for the correctness of calculations.

Deflection of an elliptical lens. The complex deflection angle for an elliptical,
homoeoidal mass distribution was given by Bourassa, Kantowski and Norton [15]
and Bourassa and Kantowski [14]. Using the elliptical radius R defined in (4.2),
the deflection angle of an elliptical surface mass density κ(R) is

α∗(z) = 2
√
z2

z ∫
R(z)

0
dR′

κ(R′)R′√
q2 z2 − (1 − q2)R′2

, (4.10)

where R(z) is the semi-minor axis of the ellipse passing through point z. The
factor in front of the integral is due to Bray [17]; it ensures the correct sign of the
deflection in all quadrants of the complex plane. From the complex deflection
angle (4.10) and the set of equations (4.7)–(4.9), all lens properties of an elliptical
lens can now be derived.
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4.2 Lens properties

Thedimensionless surfacemass density κ (i.e. the convergence) of a lens following
a power law profile with circular symmetry is [32, 87]

κ(r) = 2 − t
2
(b

r
)

t
, (4.11)

where 0 < t < 2 is the slope of the profile, b > 0 is the scale length and r > 0 is
the distance from the centre of the mass distribution. Such a profile arises from a
spherically symmetric three-dimensional mass distribution ρ(r) ∝ (b/r)t+1. The
power law profile lens is a versatile model; it contains as special cases the singular
isothermal sphere for t = 1, the point mass for t = 2, and approximations of the
central region of the Navarro, Frenk andWhite [69] andMoore et al. [65] profiles
for t = 0 and t = 1/2, respectively. Applying the transformation (4.1) to the circular
profile (4.11) yields the elliptical surface mass density

κ(R) = 2 − t
2
( b

R
)

t
(4.12)

of the elliptical power law profile lens. Numerical recipes exist for the nonsingular
variant of this model [6, 23, 88], but a more general analysis leads to a number of
new results [104], which are presented here.

Deflection. Inserting the elliptical power law profile (4.12) into integral (4.10),
the complex deflection angle can be calculated explicitly as

α∗(z) = 2 − t
q

bt

z ∫
R(z)

0
dR′ R′1−t (1 − 1 − q2

q2
R′2

z2 )
−1/2

= 2 − t
2q

b2

z
( b

R(z)
)

t−2

∫
1

0
dξ ξ−t/2 (1 − 1 − q2

q2
R(z)2

z2 ξ)
−1/2

= 1
q
b2

z
( b

R(z)
)

t−2

2F1 (12 , 1 −
t
2 ; 2 − t

2 ; 1−q2

q2
R(z)2

z2 ) ,

(4.13)

where the change of variable R′ → ξ = R′2/R(z)2 was used in the first step, and
the integral representation of theGaussian hypergeometric function 2F1(a, b; c; z)
was used in the second step. Because its parameters are related as c = a + b + 1/2,
there is a quadratic transformation of the hypergeometric function [68, 72], and
the complex deflection angle can further be simplified to

α∗(R, φ) = 2 b
1 + q

( b
R
)

t−1
e−iφ 2F1 (1, t

2 ; 2 − t
2 ;−1−q

1+q e−i 2φ) , (4.14)
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where transformation (4.4) was applied to the complex coordinate z = x1 + i x2.
For reference, the complex deflection angle before complex conjugation is

α(R, φ) = 2 b
1 + q

( b
R
)

t−1
eiφ 2F1 (1, t

2 ; 2 − t
2 ;−1−q

1+q ei 2φ) . (4.15)

This result is a beautiful factorisation of deflection α into its (elliptical) radial and
angular parts; a fact that will be exploited shortly for quick numerical calculations,
despite the fact that the deflection contains a hypergeometric function.

Deflection potential. Taking inspiration from the deflection potential (3.20) of
the singular isothermal ellipsoid, one finds that a potential solving equation (4.7)
for complex deflection (4.14) is given by

ψ(z) = 1
2 − t

z α∗(z) + z∗ α(z)
2

. (4.16)

The familiarity is more obvious in real coordinates, where the potential becomes

ψ = x1 α1 + x2 α2

2 − t
. (4.17)

It is clear that this potential can be calculated at very low cost if the deflection
angle α has already been found. Checking the result is tedious; one possibility
is first substituting e−iφ = (qx1 − i x2)/R and e−i 2φ = (qx1 − i x2)/(qx1 + i x2) in
deflection (4.14) and subsequently expressing the Wirtinger derivative in (4.7) as
∂/∂z = (∂/∂x1 − i ∂/∂x2)/2 in terms of real coordinates.

The complex potential (4.16) has no imaginary component, since the second
factor z α∗ + z∗ α = 2 Re(z α∗) is evidently real. In its coordinate form (4.17), the
potential can therefore be taken to be the real deflection potential (2.22) for which
relation α = ∇ψ holds [89]. Figure 4.1 shows the potential for various settings of
the power law slope t and axis ratio q. It has been noted that the potential is
always “rounder” (i.e. less eccentric) than the surface mass density, and this effect
is clearly visible.

Shear. Calculating the shear from the deflection as theWirtinger derivative (4.8)
is straightforward, and results in

γ∗(z) = −κ(z) z
∗

z
+ (1 − t) α

∗(z)
z

. (4.18)

For use in computations, the shear is more easily expressed in terms of elliptical
coordinates R and φ as

γ(R, φ) = − ei 2φ κ(R) + (1 − t) eiφ α(R, φ)
R

, (4.19)
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Figure 4.1: Isocontours of the potentialψ (black) and surfacemass density κ (grey)
for an elliptical power law profile lens in physical coordinates x1,2. For illustration
purposes, the contour levels are equally spaced along the diagonals. The slope of
the power law profile varies from t = 0.25 (left) to t = 1.75 (right) in steps of 0.5.
The axis ratio varies from q = 0.8 (top) to q = 0.2 (bottom) in steps of 0.2.
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once again recalling the singular isothermal ellipsoid (t = 1). Because the complex
deflection angle α from expression (4.15) contains itself a factor of eiφ, it follows
that the shear is — as expected— not a vector but instead a polar for the elliptical
angle φ. Similar to the potential, the shear is readily calculated once the surface
mass density κ and complex deflection angle α are known.

Magnification and critical structure. With shear γ and convergence κ known,
it is now possible to find the (inverse) magnification µ−1 = (1 − κ)2 − ∣γ∣2 of the
elliptical power law profile lens, which is

µ−1 = 1 − 2κ + (1 − t)2κ
x1 α1 + x2 α2

r2 − (1 − t)2 ∣α∣
2

r2 . (4.20)

Here r denotes the physical radius r2 = x2
1 + x2

2 . Using expression (4.20), it is
possible to determine the critical lines µ−1 = 0 and corresponding caustics of the
lens. Because the resulting equations contain the hypergeometric function, their
solutions are found numerically. The critical lines and caustics for a number of
settings of the power law slope t and axis ratio q are shown in Figure 4.2.

4.3 Special cases

In order to check the presented solutions for the deflection (4.15), potential (4.16),
shear (4.18), and magnification (4.20), it is useful to compare the expressions to
known special cases of the power law slope t.

Singular isothermal ellipsoid. The singular isothermal ellipsoid is a power law
profile lens with slope t = 1. The hypergeometric function can be simplified in
this case, yielding the complex deflection angle in physical coordinates

α(x) = 2b√
1 − q2

arctan
⎛
⎝

√
1 − q
√

1 + q

√
qx1 + i x2√
qx1 − i x2

⎞
⎠

. (4.21)

Taking the real and imaginary part and using the sum formula for the inverse
tangent reduces the expression to the commonly used form shown in Chapter 3.3.
Equivalence of the results for potential ψ = x1 α1 + x2 α2, shear γ = −κ z∗/z, and
magnification µ−1 = 1 − 2κ is trivially checked by setting t = 1 in the respective
expressions.

Point mass. The limit t → 2 takes the power law profile into a point mass lens.
The hypergeometric function of the deflection exists in the limit, resulting in the
complex deflection angle

α(x) = b2 (x1 + i x2)
q r2 . (4.22)
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Figure 4.2: The critical lines (black) and caustics (grey) of the elliptical power law
profile lens. In the case of a slope t > 1, the second pseudo-caustic (dashed) is
the cut separating regions of single and multiple images. Also shown is an ellipse
with semi-minor axis equal to the scale length b and axis ratio q (red, dotted). For
the purpose of illustration, b decreases as√q. The slope of the power law profile
varies from t = 0.25 (left) to t = 1.75 (right) in steps of 0.5. The axis ratio varies
from q = 0.8 (top) to q = 0.2 (bottom) in steps of 0.2.
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As expected for a point mass, the deflection is always circularly symmetric (note
r instead of R), although the axis ratio q appears in the form of a normalising
constant, making the Einstein radius of the lens rE = b q−1/2. The potential (4.16)
cannot be evaluated in the limit t → 2, but both the shear γ = −b2/(qr2) ei 2θ and
the magnification µ−1 = 1 − b4/(q2r4) are readily calculated and agree with the
expressions of Chapter 3.2 for a point mass with the modified Einstein radius.

Uniform critical mass sheet. The final case of interest is the uniform critical
mass sheet κ ≡ 1 in the limit t → 0. In this case, the deflection becomes

α(R, φ) = 2
1 + q

R eiφ , (4.23)

which has a clearly unphysical dependency on φ, as the surfacemass density κ has
circular symmetry. However, the same result (4.23) is obtained if κ ≡ 1 is inserted
into deflection (4.10) directly. The problematic result is hence a limitation of the
formalism for elliptical mass distributions [14], and not of the elliptical power law
profile lens.

4.4 Numerical evaluation

The deflection angle (4.15) is at the heart of the elliptical power law profile lens,
as the potential (4.16) and shear (4.18) can all be expressed in terms of it. It is
thus necessary to find a fast method for evaluating the contained hypergeometric
function to make this a useful model for the purposes of numerical simulation
and modeling. For this, it is useful to separate the radial and angular parts of the
complex deflection angle (4.15), which becomes

α(R, φ) = 2 b
1 + q

( b
R
)

t−1
ω(φ) . (4.24)

The angular dependency of α is contained in the function

ω(φ) = eiφ 2F1 (1, t
2 ; 2 − t

2 ;− f ei 2φ) , (4.25)

where f = 1−q
1+q is the second flattening of an ellipse with axis ratio q. Because

the axis ratio is limited to values 0 < q ≤ 1, the range of f is 0 ≤ f < 1, and it
follows that the hypergeometric function in expression (4.25) has a convergent
series representation

ω(φ) =
∞

∑
n=0

Γ(2 − t
2) Γ(n +

t
2)

Γ( t
2) Γ(n + 2 − t

2)
(− f )n ei (2n+1)φ . (4.26)

This, on the other hand, is nothing but a Fourier-type series

ω(φ) =
∞

∑
n=0

an ei (2n+1)φ (4.27)
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Figure 4.3: Absolute value of the series coefficients an for the elliptical power law
profile lens. Shown are graphs for different values t = 0.5 (dotted), t = 1.0 (solid),
and t = 1.5 (dashed) of the power law slope and axis ratios from q = 0.8 (bottom)
to q = 0.2 (top) in steps of 0.2.

containing only positive and odd terms 2n + 1, with coefficients given by

an =
Γ(2 − t

2) Γ(n +
t
2)

Γ( t
2) Γ(n + 2 − t

2)
(− f )n . (4.28)

Since this is a hypergeometric series, the ratio of two subsequent series coefficients
is simple,

an
an−1

= − f 2n − (2 − t)
2n + (2 − t)

. (4.29)

It is clear that the magnitude of the series terms drops off almost geometrically,
with an asymptotic rate of f . This behaviour is shown in Figure 4.3 for various
settings of the power law slope t and axis ratio q.

Iterative calculation. The ratio (4.29) can be used to iteratively calculate the
terms of series (4.27). Introducing symbols for the summands as

ω =
∞

∑
n=0

Ωn , (4.30)
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the n’th term Ωn is related to the previous one as

Ωn = − f
2n − (2 − t)
2n + (2 − t)

ei 2φ Ωn−1 . (4.31)

This expression reduces the calculation of the deflection to (complex) addition
andmultiplication. Because the computation is iterative, it can be continued easily
until the desired precision or accuracy in the deflection is reached.

Instead of the numerical scheme given by equations (4.30) and (4.31), it can
be advantageous to forego the use of complex numbers, particularly in computer
implementations. Just as the two-dimensional deflection angle α is given by the
real and imaginary components of the complex deflection angle α, the complex
angular dependency ω can be expressed as a two-dimensional vector ω in the real
formulation. Expanding the exponential in Fourier series (4.27) into its real and
imaginary parts, the components of ω can be written as the individual series

ω1(φ) =
∞

∑
n=0

an cos ((2n + 1)φ) ,

ω2(φ) =
∞

∑
n=0

an sin ((2n + 1)φ) .
(4.32)

Just as in the complex case, the real components of the deflection angle can be
calculated iteratively. Writing

ω1 =
∞

∑
n=0

Ωn,1 ,

ω2 =
∞

∑
n=0

Ωn,2 ,
(4.33)

relations for the respective n’th terms can be found by understanding the complex
product ei 2φ Ωn−1 in expression (4.31) as the matrix multiplication

Ωn = − f
2n − (2 − t)
2n + (2 − t)

R2φ Ωn−1 (4.34)

in two dimensions, where R2φ is the rotation matrix. In components, this is

Ωn,1 = − f
2n − (2 − t)
2n + (2 − t)

(cos(2φ)Ωn−1,1 − sin(2φ)Ωn−1,2) ,

Ωn,2 = − f
2n − (2 − t)
2n + (2 − t)

(sin(2φ)Ωn−1,1 + cos(2φ)Ωn−1,2) .
(4.35)

This prescription can make evaluation of the deflection suitably fast to use the
elliptical power law profile lens for ray tracing in lens reconstruction algorithms
such as the one presented in the following, where a large number of calculations
is performed.
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Practical parameterisation. As in the analogous case of the singular isothermal
ellipsoid (Chapter 3.3), practical use of the elliptical power law lens benefits from a
slightly different definition of the scale length. By construction, the dimensionless
mass contained in the region bounded by the elliptical radius R = b is the same
as (3.23) for the singular isothermal ellipsoid,2

m = 2π
q ∫

b

0
dR R κ(R) = π b2

q
. (4.36)

As before, the scale length b can be transformed to a different parameter

b ↦ bSIS =
b
√q

(4.37)

for practical applications, so that themass m depends on the parameter bSIS alone.
The change of parameterisation reduces possible correlations between parameters
of the lens, as the new scale length bSIS is only weakly dependent on axis ratio q
and power law slope t in lens reconstructions. This is clearly visible in the results
of Chapter 9.

2The scale length b is however not the Einstein radius of the elliptical power law profile lens, as
Figure 4.2 clearly shows.
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5 Forward lens reconstruction

5.1 Reconstruction with extended images

Any lens reconstruction constrains the deflecting mass distribution through the
requirement thatmultiply-imaged pointsmust trace back to the same source plane
location, and through the relative magnifications of the individual images. When
the observation contains multiple extended images of the background sources, the
lens is not only constrained by data at discrete points, but over continuous regions.
Observations of gravitational lensing with large, extended sources such as those
shown in Figure 5.1 therefore contain a wealth of information that would not be
accessible for unresolved sources. On the other hand, the increased precisionwith
which the lens can be constrained alsomakes it necessary to find new tools for the
reconstruction. It is clear from the beginning that the task is made more difficult
by the abundance of information within a single image, but that there are great
scientific rewards for any method that reliably reconstructs these observations.

The forward and inverse problem. The reconstruction of resolved gravitational
lenses is commonly approached in one of two different but related ways [58]: as
the forward problem of creating amodel of the lens system— lenses and sources—
that approximates the observed image, or as the inverse problem of finding a lens
model which deconstructs the observation into a self-consistent and physically
viable image of the source. Many successful applications have been published for
both the forward [5, 11, 70, 77] and the inversemethod [29, 52, 71, 100, 110, 113, 114].
In practice, the forward and inverse method are generally dissimilar, and each has
its own particular set of strengths and weaknesses, which are summarised here.
On the other hand, in the last section of this chapter it will be briefly shown how
both methods are fundamentally related.

Lens reconstruction as an inverse problem. In lens reconstruction, the inverse
problem refers to the process of “de-lensing” a given observation into a surface
brightness distribution on the source plane. When lensed, this source must then
reproduce once again the observed image. Such a lens inversion is generally made
possible by the linear nature of the surface brightness mapping from source to
image plane. If this process is combined with some sort of regularisation for the
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(a) CSWA 1 (b) CSWA 2 (c) SDSS J0900+2234

Figure 5.1: Examples of observations of strong gravitational lensing with resolved
sources. The large arcs contain information to constrain the gravitational lenses
producing these images. Objects with CSWA identifier are listed in the Cambridge
and Sloan Survey ofWide Arcs in the Sky (CASSOWARY) catalogue of large strong
lenses, which is available online [20] and contains many of these spectacular
lenses.
Image credit: (a) ESA/Hubble & NASA, (b) NASA & ESA, (c) ESA/Hubble & NASA,

recovered source (i.e. requiring its values to adhere to certain physicallymotivated
conditions), the inverse method can be used for lens reconstruction [52, 113]. The
lens is constrained by optimisation of a merit function that weighs, for the given
lens model, the quality of the reconstructed observation against the regularity of
the source. Because the inversion is a linear operation, the procedure corresponds
to the inversion of a matrix which maps the recovered source to the image pixels
of the observation [114].

In practise, many different flavours of the inverse method exist, differentiated
by their choice of source and regularisation. Examples include pixelated sources
with a maximum entropy constraint [113] or linear regularisation [114], as well
as adaptively refined source grids with implicit [29, 71] or explicit regularisation
[71]. Other methods extend these approaches to a fully Bayesian analysis where
the regularisation itself is a nuisance parameter [100, 110].

The large number of existing variants indicates that one of the biggest strengths
of the inverse method — the great flexibility in the model — is at the same time
one of its principal challenges. Just as there are no good universal source models
that encompass all possible galaxy morphologies, it is similarly difficult to find a
reasonable universal source regularisation. There is also a strong interdependence
between the regularisation and the source representation, and possible systematic
effects need to be carefully taken into account [101]. Similarly, in the Bayesian
methods that marginalise over the parameters of the regularisation, it is necessary
to find reasonable prior probabilities for these parameters, and make sure that
the choice does not influence the results [100]. Furthermore, it can be difficult to
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interpret the reconstructed sources, whichmight contain artefacts due to the noise
in the observation. Sometimes, a final step of the analysis includes the fitting of an
analytical source profile to the results. In this case, the desired results could have
been found with the forward reconstruction straight away and in a more robust
fashion.

Lens reconstruction as a forward problem. The forward lens reconstruction of
observations attempts to create a model of a gravitational lens system, including
lensed sources, that can reproduce an observation as well as possible. This implies
that the method goes through the usual steps of a fitting procedure.

1. Define a model of the physical system, i.e. lenses and sources.

2. Simulate the model to obtain an expected image of the observation.

3. Compare the expectation to the data.

4. Change the model according to the result.

The strengths of the forward method are its simplicity and the great amount of
control over the model. Because the individual lens and source components are
usually described by parametric models with a physical basis, results are robust
and relatively easy to interpret. A further advantage is the direct control over all
aspects of the model, which makes forward reconstruction the method of choice
whenever a specific model is to be tested against observations. Despite its basic
simplicity, the forward method presents a number of challenges. A practical issue
is that of computational complexity, as the reconstruction of a given lens system
requires a large number of simulations for different parameter settings, each of
which is a complex computational task. Fortunately, there are ways to mitigate
the numerical burden, which are presented in Chapter 6. A more fundamental
issue is that of insufficient source models. To date, there are no models that can
realistically reproduce galaxies with complex visible substructure, and in light of
the morphological variations that are observed in nature, it is doubtful that there
will ever be sufficient parametric models. However, Chapter 7 will show that the
forwardmethod for lens reconstructionworks well with simple parametric source
components even if the observation is complex, and that it allows for a robust
estimation of the parameters of these source models.

5.2 Definition of a model

The model of a gravitational lens is, at least for the purpose of reconstruction,
entirely determined by its predicted surface brightness distribution

f (x) = fF(x) + fS(y(x)) , (5.1)
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where fF(x) is the foreground surface brightness distribution on the image plane,
which is undeflected, and fS(y) is the background surface brightness distribution
on the source plane, which is deflected according to the lens equation for y(x). It
follows that there are three parts to the definition of a model for the lens system:

• the deflection angle α(x) necessary to find source plane position y(x),

• the foreground surface brightness fF(x), and

• the background surface brightness fS(y).

These are the fundamental constituents of amodel for any two-plane lens system.1

Lens components. The forwardmethod is most successful in the simulation and
reconstruction of galaxy-scale lenses that can be reasonably well described by a
composite model of parametric lenses. Such a model consists of a number NL of
lens components, for example those presented in Chapter 3. Since gravitational
lensing assumes linearity in the deflection from the start, the total deflection angle
on the image plane is the sum

α(x) =
NL

∑
i=1

α i(x) (5.2)

of deflections α i contributed by the individual components. In theory, there is no
limit to the number of components that can be combined in this way, and most
reconstruction use one or more lens components together with an external shear.

Nonparametric lensmodels. It is also possible tomodel the lens using the pixels
of a discretised mass distribution κ or deflection potential ψ. Such nonparametric
models2 arewell established in cluster reconstructions and lens inversion, but have
not been widely adopted for the forward method. This might be in part due to the
increased complexity of the reconstruction. It is often not feasible to reconstruct
the large number of (non)parameters — pixels — of the lens, and at the same
time the source model, in a full simulation. Furthermore, a nonparametric lens
ideally requires a nonparametric source, in order to not limit the reconstruction
by insufficient detail in the source model. However, it is shown in Section 5.7 that
a discretised source model naturally leads to the inverse method, and is therefore
rarely useful in a forward reconstruction scenario.

1When more lensing planes are to be modelled, the situation remains unchanged. Each of the
planes i = 0, 1, . . . requires specification of its surface brightness f i(x i) and deflection field α i(x i),
where the deflection α0 is fixed to zero for the image plane.

2Thesemodels contain of course a large number of parameters in the form of pixels and would
more realistically be called ultraparametricmodels.
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Surface brightness distributions. A given source model contains a number NF
and NS of foreground and background components, with the respective surface
brightness distributions

fF(x) =
NF

∑
i=1

fFi(x) , (5.3)

fS(y) =
NS

∑
i=1

fSi(y) . (5.4)

Each component fFi(x), fSi(y) is given by a parametric source model such as
those presented in Section 5.3. Just as in the case of galaxy reconstructionswithout
lensing, sources usually require a moderate number of components [75, 76], and
it will be shown in the applications of Chapter 9 how the number of sources might
influence the lens reconstruction.

5.3 Source models

As mentioned before, the forwardmethod usually works with parametric sources.
The reason is that a nonparametric source model such as a discretised surface
brightness function quickly turns the forward method into an inverse method,
which in practice requires a very different technical treatment. This is explicitly
shown in Section 5.7. Hence only parametric sources will be considered in what
follows. Nevertheless, a great amount of freedom in the possible models can be
achieved with expansions in basis sets, which are treated below.

Parametric profiles. The most common model for sources such as galaxies is a
parametric profile S(R), where R is some measure of distance from the centre of
the object. Suchmodels assume a unrealistically high degree of symmetry, but are
on the other hand easy to define and implement. Profiles used in the components
of galaxy images are normally assumed to have elliptical symmetry [75, 76], and
hence R is the elliptical radius (cf. Chapter 4.1)

R(x′) =
√

q2 x′21 + x′22 (5.5)

of a source with axis ratio q. The coordinate system (x′1, x′2) of the source can be
rotated by the position angle θS with respect to the coordinate system (x1, x2) of
the observation. Assuming that its centre is located at xS , the surface brightness
distribution of an elliptical source with profile S(R) is

fS(x) = S(R(Rot
(−θS) (x − xS))) . (5.6)

where Rot
(−θS) is the rotationmatrix performing the (opposite) coordinate system

rotation for position angle θS . The resulting isophotes of such a source, drawn
schematically in Figure 5.2, are ellipses with semi-major axis R/q, semi-minor
axis R, and orientation θS with respect to the x1-axis of the world coordinates.
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a =
R/q

b =
R

θS
xS x1

x2

Figure 5.2: Example of an isophote of an elliptical source profile with axis ratio
q. The ellipse is rotated by the position angle θS with respect to the coordinate
system. The elliptical radius R corresponds to the semi-minor axis b of the ellipse,
while the semi-major axis a is scaled by the inverse of q.

The Sérsic profile. The Sérsic R1/n law is the prototypical profile for parametric
sources [42, 90, 91]. It is given by the exponential

S(R) = S0 exp
⎧⎪⎪⎨⎪⎪⎩
−b ( R

Reff
)
1/n⎫⎪⎪⎬⎪⎪⎭

(5.7)

with a R1/n dependency, and the inverse power n > 0 is called the Sérsic index of
the profile. The scale length Reff is chosen as the half-light radius of the profile, so
that the luminosity

Leff =
2π
q ∫

Reff

0
dR R S(R) = 2π

q
R2
eff S0

n
b2n (Γ(2n) − Γ(2n, b)) (5.8)

within radius Reff is half the total luminosity

L∞ =
2π
q ∫

∞

0
dR R S(R) = 2π

q
R2
eff S0

n
b2n Γ(2n) , (5.9)

where Γ(z) and Γ(a, z) denote the gamma function and the incomplete gamma
function, respectively, and the extra factor of q from the elliptical profile was taken
into account. The constant b ensures the relation 2 Leff = L∞ and is therefore
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implicitly defined by

Γ(2n, b) = 1
2
Γ(2n) . (5.10)

Instead of solving this equation numerically for each value of n — which can be
quite often if n is a parameter of the reconstruction — a suitable approximation
can be used [21, 24, 25], for example

b ≈ 1.9992n − 0.3271 (5.11)

in the range 0.5 ≤ n ≲ 8. Finally, the normalisation S0 of the profile is related to
the total luminosity via

S0 =
L∞

π R2
eff/q

b2n

Γ(2n + 1)
. (5.12)

The total luminosity is usually a parameter of the source and given in terms of its
magnitude

magS =magref − 2.5 log10(L∞) (5.13)

relative to some reference system. With this, the profile is now fully determined
by the seven parameters for position x1, x2, effective radius Reff , Sérsic index n,
magnitude magS , axis ratio q and position angle θ.

The Sérsic profile is a versatile model, and it contains many of the classical
galaxy profiles as special cases, such as Gaussian profiles (n = 1/2), exponential
profiles (t = 1) and de Vaucouleurs [118] profiles (n = 4). For this reason, Sérsic
profiles are the standard components in the parametric decomposition of galaxy
images [75, 76], and have a long and successful history in lens reconstruction.

Sources from sets of basis functions. Surface brightness functions, are maps
from the real planeR2 to the real numbersR, and as such, they can be decomposed
into a suitable set of basis functions. These are families of functions Un(x) for
which any given function f (x) can be written as the linear combination

f (x) = ∑
n
an Un(x) , (5.14)

where the numbers an are the coefficients of the expansion. These coefficients are
found by projecting the function f onto the basis functions Un,

an = ∫ d2x w(x) f (x)U∗n(x) , (5.15)

where w is a weighting function and U∗n is the complex conjugate.3 If the basis is
orthonormal, then the projection of Um onto Un vanishes unless m = n,

∫ d2x w(x)Um(x)U∗n (x) = δmn , (5.16)
3The basis functions can be complex even though the functions f are not.
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in which case the individual coefficients an are said to be independent.
If the function f (x) is a surface brightness distribution, a limited number of

terms from expansion (5.14) can be used as the approximation of an arbitrarily
detailed f in lens reconstructions. In this case, the set of coefficients an can be
understood as the parameters of a semi-parametric sourcemodel. The similarity of
such amodel to a realistic source depends highly on the set of basis functions. The
particular task of reproducing galaxies from astronomical images resulted in the
creation of Shapelet basis functions, which form a complete and orthonormal set
of functions suitable for the extraction andmanipulation of galaxy images [82, 83].
Shapelets allow the recreation of realistic sources with relatively few parameters
[62], and computer codes are available for the extraction of Shapelet coefficients
from existing observations [61].

Sky components. Observations often contain a diffuse overall distribution of
light, the so-called sky background, whichmust be included in the reconstruction.
The simplest model for a sky component is a flat surface brightness distribution,
which is either a constant value or a fixed gradient with respect to the x1,2 axes.
Adding such a sky component as a free component to the model is a good idea
even when the diffuse background has been subtracted in a preprocessing step.
The distinction between sky and signal is difficult, and over- or underestimation
of the subtracted light can significantly influence the results of the reconstruction.

Units of the surface brightness. To prevent the explicit conversion of units, it
will always be assumed that the surface brightness of a source is given in suitable
units for a direct comparison with data, e.g. counts per second. This can be done
by specifying the magnitude of simulated sources relative to the zeropoint of the
instrument. By definition, a source with magnitude equal to the zeropoint magzp
has a detection rate of one count per second. For the same instrument, a source
with magnitude magS has an observed count rate of

magS = −2.5 log10(total counts/second) +magzp , (5.17)

and the luminosity of a source in units of the instrument is

total counts/second = 10−0.4 (magS−magzp) . (5.18)

By specifying only the relative magnitude ∆mag = magS −magzp of sources, the
reconstruction can remain entirely ignorant of instrument details.

5.4 Simulation of the lens system

Once the surface brightness and deflection of the lens system are specified, it is
possible to simulate the expected image under the given model. The predicted
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flux mi of the model registered at pixel i of the detector is given by the integral

mi = ∫A i
d2x f (x) = ∫A i

d2x { fF(x) + fS(y(x))} (5.19)

of the combined foreground and background surface brightness fF(x) and fS(y)
over the pixel area Ai . The index i is a two-dimensional multi-index (i1, i2) of
integers that identifies a location on the pixel grid, and can be manipulated as any
integer vector. While the calculation of the expected pixel values for a model is
easy to write down in the form (5.19), the evaluation of such an integral is not
as easy to perform in practice, and overcoming the computational burden of this
integration is one of the main points of Chapter 6.

Point-spread function. Image degradation due to the instrument and ambient
conditions can be taken into account using a point-spread function (PSF). The
PSF is a convolution kernel p that represents the observed image of a point-like
source at the origin, so that the apparent surface brightness f ∗(x) of a physical
distribution f can be expressed as

f ∗(x) = ∫ d2x′ p(x − x′) f (x′) = ∫ d2r p(−r) f (x + r) . (5.20)

The PSF of an observation is usually provided in one of two ways: Either as the
parameters of an idealised analytical profile, e.g. a Gaussian, or in discretised form
as a zero-centred (2w1 + 1) × (2w2 + 1) array of values4

pi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pw1 ,−w2 ⋯ pw1 ,0 ⋯ pw1 ,w2

⋮ ⋮ ⋮
p0,−w2 ⋯ p0,0 ⋯ p0,w2

⋮ ⋮ ⋮
p−w1 ,−w2 ⋯ p−w1 ,0 ⋯ p−w1 ,w2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Instead of using the convolved surface brightness (5.20) in the integration of the
pixel flux (5.19), it is common (and in the second case necessary) to first calculate
the pixel values mi normally and then apply the PSF by discrete convolution

m∗i =
w
∑
j=−w

p− jmi+ j , (5.21)

where the summation is carried out independently for each component of the
multi-index.

To prevent separate notation in calculations with and without PSF, the flux
will in the following always be denoted mi , even when the result was convolved
with the PSF as in equation (5.21). This is possible because all further calculations
only depend on the final model image mi , and not on details of its calculation. It
should be clear that mi has to be replaced with m∗i when the image degradation
due to a PSF is to be considered.

4Here i = (i1 , i2) ∈ N ×N is still a multi-index.
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Figure 5.3: Image creation for a 5×5 pixel image with a PSF at twice the resolution.
The integrated flux is calculated for each subpixel and the PSF is applied by discrete
convolution (red). The subpixels for an image pixel are then added (blue) to give
the expected image at data resolution.

Subsampled PSFs. The PSF for an instrument can be more highly resolved than
the observations, for example when discretising an analytical or empirical profile.
In this case, non-degraded pixel fluxes mi have to be calculated on a subpixel grid
at PSF resolution, so that the discrete convolution can be executed. Assuming that
the subpixel grid evenly divides the pixel grid, the flux in all subpixels of pixel i
is added to give the flux m∗i after image degradation. This process is illustrated in
Figure 5.3 for a twice-subsampled PSF.

5.5 Model evaluation

In order to evaluate how closely the chosen model resembles the observed lens
system, it is necessary to compare the simulated pixel values mi and the actual
data di of the observation. To perform such a comparison, a scale must be found
with which the difference di − mi can be weighed. Given that the observation,
i.e. the detection of incoming photons by the instrument, in itself is a random
process, such a scale is provided as the covariance matrix Σ of the pixel values,
which intuitively expresses how much any single measurement of values can be
trusted. Here it is assumed here that the covariance matrix Σ is provided with the
observation. This is usually not the case, and Chapter 6.3 contains a recipe for
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generating Σ from the data.

Image likelihood. The random nature of observations turns the comparison of
model prediction and available data into a matter of probabilities. To see that
the simulated values mi are suitable for such a statistical comparison, one should
recall that the theoretical flux is precisely defined as the expectation value

E[di] = mi (assuming the given model is the true one) (5.22)

of the values di measured in an actual observation. Combining the two sets of
model and data values mi and di into the respective n-vectors m = (m1, . . . ,mn)
and d = (d1, . . . , dn), the difference d −m and the n × n covariance matrix Σ can
be used to define the image likelihood

P(d ∣ m) = (2π det Σ)−n/2 exp{−1
2
(d −m)T Σ−1 (d −m)} (5.23)

of observing data d assuming a model that predicts m as the mean pixel values.
Using a Gaussian likelihood such as (5.23) implicitly assumes the central limit
theorem, bywhich the real distribution of the data becomes approximately normal
for large photon counts. In practice, this assumption should always hold in lens
reconstruction due to the contribution of flux from foreground sources (including
the sky) and long exposures, even if the signal of the lensed images itself is weak.

Quality of the reconstruction. In practical applications, it is often desirable to
find a general indicator for quality of a reconstruction. This is usually achieved
with the χ2 summary statistic. Understanding the vector d of data values as a
multivariate random variable with mean given by the vector m of model values,
and using the covariance matrix Σ, the χ2 value is defined as the vector–matrix–
vector contraction

χ2 = (d −m)T Σ−1 (d −m) . (5.24)

Intuitively, this uses the covariance matrix to weigh the difference of observation
andmodel in each pixel. Wheremodel and data agree, these differences should on
average be equal to one standard deviation. Consequently, given that the image
contains n pixels, a value χ2 ≈ n indicates a successful reconstruction. This holds
as long as the covariance matrix is non-degenerate. The number n is known as
the degrees of freedom of the reconstruction. Realistically, every model parameter
reduces the degrees of freedom, so that

(degrees of freedom) = n − (number of parameters). (5.25)

However, because the number of pixels is usually vastly greater than the number
of parameters, this distinction is of little practical significance. It should be noted
that the image likelihood (5.23) can be written in terms of χ2 as

P(d ∣ m) = (2π det Σ)−n/2 exp{−1
2
χ2} , (5.26)
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and the image quality is thus a natural byproduct of the likelihood evaluation.

5.6 Parameter estimation

Once image likelihood (5.23) is determined, it becomes possible to explore the
parameter space of the assumed model. The set of parameters will be denoted
collectively as ξ = {ξ1, ξ2, . . . }. Through integral (5.19), the predicted pixel values
m of the model are implicitly functions m(ξ) of the parameter values, since both
the surface brightness f and the deflection angle α depend on them. It is therefore
possible to identify image likelihood (5.23) with the likelihood

P(d ∣ ξ) ≡ P(d ∣ m(ξ)) (5.27)

of observing data d for the given parameters ξ of the chosen model. Through
Bayes’ theorem, the parameter likelihood can be transformed into the posterior
probability

P(ξ ∣ d) = P(d ∣ ξ) P(ξ)
P(d)

(5.28)

of the parameter values ξ after observation of the data d, where P(ξ) is the prior
probability of the parameters values before the data was available. Such a prior
could e.g. be a normal distribution for the lens position around the centroid of
the observed foreground light distribution, or an empirical distribution for the
profile given to background sources which was taken from the literature. It is
generally important to pick non-informative priors that do not unduly influence
the posterior distribution of the parameters, so that the results are determined
largely by the information from the reconstruction.

Evidence. The remaining term P(d) in posterior (5.28) is called the evidence of
the assumed model. It is the marginal distribution

P(d) = ∫ dξ1 dξ2⋯ P(d ∣ ξ) P(ξ) (5.29)

of likelihood and prior over the whole parameter space, giving the normalising
constant in the definition of the posterior probability. For any given model of
lenses and sources, the evidence is a global, parameter-independent value that
quantifies, as the name suggests, the confidence in the model to be responsible
for the observed data. It can be used to objectively compare different models that
reconstruct the same observation [47]. Because the evidence is a constant, many
algorithms that sample posterior (5.28) do not require its knowledge. This is true
in particular for the class ofMarkov chainMonte Carlo (MCMC) samplers, which
today are the prevalent method of exploring posterior distributions.
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Parameter inference. The information of the observation about the assumed
model is contained in posterior (5.28), which describes the distribution of likely
parameter values within the parameter space of the model. Quantities of interest
for the individual parameters, such as mean values and confidence intervals, can
all be extracted from it in the usual ways. It must be noted that the posteriors
in lens reconstructions are generally complicated. The principal cause is the high
number of dimensions for any sufficiently developed model of the lens system,
which increases the complexity of sampling enormously. Other reasons that arise
naturally in lens reconstructions are more subtle. When an observation contains
multiple images of one source, the lens model might be unable to reproduce all
of the images equally well at the same time. Instead, different sets of parameter
values might result in good reconstructions of different images, and the result is a
multi-modal posterior distribution of the parameters. The posterior also features
many intrinsic degeneracies between parameter values. For example, background
source parameters such as the position and magnitude are only seen through the
effects of lensing, and thus depend crucially on the deflection and magnification
of the lens. It is clear that the exploration of the parameter space is not an easy
task, and any practical implementationmust be prepared to handle complications
such as those mentioned here.

5.7 Relation to the inverse method

In practice, the forward and inverse methods of lens reconstruction are not very
similar. Applications of forward reconstruction are mainly concerned with fast
image synthesis and the simulation of physical models, while lens inversion is
usually focussed on quick inversion of large matrices and optimisation of many
parameters. However, in a theoretical framework, there is a clear correspondence
between the forward and inverse methods, which is briefly shown below.

Forward to inverse method. Instead of the source models from Section 5.3 that
follow some specific profile or expansion, a generic discretised source is used. The
surface brightness function of such a source can be written in the general form

fS(y) =
m
∑
j=1

s j χ j(y) , (5.30)

where m is the number of source grid cells, the numbers s j ∈ {s1, . . . , sm} are the
discrete surface brightness values, and the functions χ j are the indicator functions
(also known as characteristic functions) of the source grid cells,

χ j(y) =
⎧⎪⎪⎨⎪⎪⎩

1 if y is in source grid cell j,
0 otherwise.

(5.31)
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If such a discrete source is inserted into integral (5.19) for the expected flux in a
pixel, the result is

mi =
m
∑
j=1

s j ∫A i
d2x χ j(y(x)) . (5.32)

The sum in this expression can be understood as a matrix–vector multiplication

mi =
m
∑
j=1

Li j s j (5.33)

of the source vector s = (s1, . . . , sm) and a lens matrix L with coefficients

Li j = ∫A i
d2x χ j(y(x)) . (5.34)

Defining the image vector m = (m1, . . . ,mn), the mapping from source values to
image pixels can be written as the matrix product

m = L s . (5.35)

This is precisely the usual formalismof semi-linear lens inversion [101, 114]. Source
parameters of the forward method have become the pixel values of a discretised
source plane. In order to constrain the lens, the discretised source cannot be
left entirely free, and the required prior distribution on the possible values of the
source grid cells corresponds to the regularisation normally used in lens inversion
methods.

Inverse to forward method. An intuitive correspondence between the inverse
and forward method arises when a delta function prior

P(s j) = δ(s j − ν j) (5.36)

is used for the regularisation of the value s j of a source grid cell B j. Given a source
model such as those in Section 5.3 for the background source, the value ν j allowed
by the prior is calculated as the integral

ν j = ∫B j
d2y fS(y) (5.37)

of the surface brightness fS(y) over source grid cell B j. It is clear that this choice
of prior only permits a discretised version of the background source model, so
that the inverse method then depends on the parameters of the source model in
the usual way of the forward method.
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6 The Lensed algorithm
The following chapters have been submitted as N. Tessore, F. Bellagamba and R.
B. Metcalf, Lensed: a code for the forward reconstruction of lenses and sources from
strong lensing observations, preprint (May 2015), arXiv: 1505.07674.

6.1 Rationale of the implementation

Lens reconstruction with the forward method, as presented in Chapter 5, could
be summarised in the following algorithmic form.

1. Start with an image of observed pixel values di and covariance matrix Σ. If
no variance is provided, generate it from the data.

2. Build a model of the lens and sources, using the parameters ξ with prior
probabilities P(ξ).

3. Pick a set of parameters ξ from the prior P(ξ).

4. For the chosen parameters, calculate the expected pixel values mi using
(5.19).

5. Calculate likelihood P(d ∣ ξ) of the model using (5.23).

6. Calculate the posterior probability P(ξ ∣ d) using likelihood P(d ∣ ξ) and
prior P(ξ).

7. Repeat steps (iii) – (vi) until the parameter space is sufficiently sampled.

Even though the algorithm in this form is conceptually simple, there has so far
been no general purpose standard implementation. The forward reconstruction
of lenses is mainly a computational challenge, and the existing implementations
generally treat the individual requirements of the task they are written to perform.
By identifying the key challenges that an implementation faces, one can find a
solution that goes beyond the immediately necessary and thus arrive at a generic
code for the forward reconstruction of lenses.

http://arxiv.org/abs/1505.07674
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Numerical simulation. The first problem is step (iv) of the schematic algorithm
laid out above. A precise calculation of the expected pixel values (5.19) of the
model requires a full ray tracing simulation over the whole field of view of the
observed lens system. With modern space-based observations of galaxy-galaxy
lensing events, the number of pixels that have to be calculated in this way routinely
ranges from 10.000 on the low end to far beyond 100.000, making each numerical
simulation of the image costly. As every set of tested parameter values requires a
separate simulation, many thousands of these simulations are necessary for one
reconstruction. While ways exist to reduce the cost of computation, mainly by a
more approximate simulation, there is a natural limit to the amount of time one
can save in the calculation before themethod breaks down. Thenecessary increase
in performance to make the forward reconstruction feasible must therefore come
from elsewhere. One major opportunity for optimisation is parallelisation: It is
shown below that the nature of the problem allows for a nearly perfectly parallel
computation of the results, and this fact, along with the rise of GPU computing,
allow the forward reconstruction to be tackled in a massively parallel way even on
normal workstation machines.

Sampling of the parameter space. The second problem of the forward method
is the sampling of the parameter space, which is step (vii) of the above algorithm.
It was mentioned in Chapter 5.6 how the parameter space of a lens model might
contain multiple regions with good solutions, as in the case where not all multiple
images of a source can be reproduced well at the same time, but different sets of
parameter values each recover some of the images. In order to explore the whole
parameter space of these multi-modal problems, which are common in strong
lensing, an algorithm must be able to move away from “good” parameter values
and into uncharted territory. This rules out a standard parameter optimisation
approach for reconstruction, and instead requires a thorough sampling of the full
posterior distribution. The task is rendered difficult by the usually large number
of dimensions, as well as the intrinsic degeneracies of the problem. For example,
swapping the major and minor axis of a nearly-circular ellipsoidal lens requires
a ±90○ change in the position angle, even though both settings lead to physically
similar results. Some correlations are intrinsic to surface brightness distributions
of sources, e.g. between the position, ellipticity, and position angle. Others arise
from gravitational lensing, where observed features of an image can be attributed
to both the light deflection by the lens and the intrinsic shape of the background
source. Many strategies exist to improve the sampling of the parameter space, and
are crucial for an efficient implementation of the forward method.

The Lensed algorithm. Due to the difficulties outlined here, it is clear that the
forward method for lens reconstruction is as much, and perhaps even more so, a
technical challenge for practical computations as it is a theoretical or scientific one,
and the rest of this chapter provides a number of possible solutions that should
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help overcome some of the common obstacles which any implementation of the
forward method faces. All of these techniques have been implemented in the
Lensed algorithm for lens reconstruction [103], which is open-source code and
publicly available [102]. The guiding principles in the development of Lensed
have been the correctness of the simulation and the robustness of the results. Great
care has been taken to avoid cutting computational corners, and focus instead on
solutions that attack the forward problem as generally as possible. The result of
this effort is a massively parallel algorithm for ray tracing and image comparison
that outsources the bulk of the numerical burden to amodern graphics processing
unit (GPU). GPUs are by design well-suited to perform geometric calculations
in two dimensions, and the choice of computing platform provides the required
performance for the reconstruction of the highly resolved data available today
from space-based observations. Device code for parallel execution is written in
OpenCL (a dialect of C), to ensure compatibility with all commonly used GPUs
and also preserve the ability to compute on traditional parallel CPU architectures
when necessary or desirable.1 The chosen computational framework offers the
additional benefit that new source and lens models can be implemented quickly
— often in a matter of minutes — once their deflection or surface brightness are
given in a suitable form for computations, without the need to alter or recompile
existing code. This enables the quick development of made-to-measure models
for individual reconstructions and numerical experiments in lens reconstructions
that complete in hours instead of days. Finally, the setup of the physical system,
as well as the program configuration itself, can be done entirely with a single file.

6.2 Numerical simulation

The expected pixel values (5.19) must be calculated by integration of the observed
surface brightness f (x) over the area Ai of each pixel. In real applications, such
an integration has to be performed numerically, approximating the integral by a
weighted sum

mi ≈
N
∑
k=1

wk f (xk) (6.1)

ofN sample values of the integrand function f . Theweightswk and points xk ∈ Ai
are prescribed by some rule for numerical integration. The choice of integration
rule determines the quality and speed of the approximation: generally speaking,
integration rules with a higher number N of points are more accurate but slower
to evaluate.

Integration rules. The simplest estimate of the flux integral evaluates the surface
brightness function at only one point ai at the centre of a pixel. The result is used

1An introduction to the OpenCL parallel programming standard was given by Stone, Gohara
and Guochun Shi [99].
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as the mean value and multiplied with the pixel area Ai to give mi ≈ Ai f (ai)
as a crude estimate of the pixel value. More accurate results can be obtained by
using a regular grid of sampling points [86]. When the pixel is subdivided into
N × N cells with sampling points at their centres, the numerical integration uses
the midpoint rule in two-dimensions. This “poor man’s ray tracing” technique
is common in practice and can deliver good results [60]. It is also possible to
position the sampling points at the vertices of the grid. In this case, the result is
the trapezoidal rule with (N + 1) × (N + 1) points. Many more rules exist, such
as carefully constructed quadrature rules that give exact results for functions up
to some given order, or adaptive integration schemes that refine the integration
until a desired accuracy is achieved, and a large amount of research and expertise
is dedicated to the topic of numerical integration [57, 80]. In Chapter 7.5, different
integration rules are evaluated in the context of a realistic reconstruction.

Error estimation. In order to check the accuracy and precision of the numerical
approximation, the error ∆mi of the integral is usually estimated by computing
a second value m′i from a coarser integration rule with N ′ < N weights w′k′ and
points x′k′ . The error estimate is given by the difference

∆mi = Ami − Bm′i =
N
∑
k=1

Awk f (xk) −
N ′

∑
k′=1

Bw′k′ f (x
′

k′) (6.2)

of the two approximations, where A and B are specific multipliers for the rule
that extrapolate the true error from the two evaluations. If the points x′k′ of the
secondary rule are a subset of the points xk of the primary integration rule, the
error estimate can be computed directly from a single sum

∆mi =
N
∑
k=1

ek f (xk) (6.3)

using the error weights e1, . . . , eN , which combine the different weights at the
common points as

ek =
⎧⎪⎪⎨⎪⎪⎩

Awk − Bw
′

k′ if there is k′ ∈ {1, . . . ,N ′} with x′k′ = xk ,
Awk else.

(6.4)

For a pair of integration rules with this property, the error of the integration can be
estimated without any additional evaluations of the function f (x), and therefore
at little computational cost. While not strictly necessary for the reconstruction of
gravitational lenses, it is nevertheless good practice to check that the absolute and
relative errors of the numerical integration are reasonably small, and a map of the
per-pixel integration error can be provided by Lensed.
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6.3 Variance estimation

In the common case where an observation does not come with an independent
estimate of the covariance between the observed values, the covariance matrix Σ
must be estimated from the data d itself. The basic assumption, here and in the
following, is that each pixel value is independently observed, i.e. that the number
of counts registered in one pixel does not depend on the counts for any other pixel.
The reason for this assumption is twofold. First, there are the practical necessities
of estimating the variance, a task which is rendered exceedingly complex if there
are inter-pixel correlations to be taken into account. The second, and arguably
more important reason is that the approximation leads to a significant reduction
in the computational burden of the image comparison. For independent pixels,
the covariance matrix Σ is diagonal,

Σ = diag(σ1, . . . , σn) (6.5)

and the χ2-term (5.24) that appears in the calculation of image likelihood (5.23)
reduces to the simpler sum

χ2 =
n
∑
i=1

(di −mi)2

σ2
i

. (6.6)

The assumption of independence between pixels is not very far from the truth.
Effects such as image degradation by the PSF happen before the counts for a given
pixel are registered, and even though they influence the expected flux that arrives
at the detector, they do not correlate the actual measurements of the pixel values.
However, correlations between pixels can be (and most certainly are) introduced
by the instrument electronics or data reduction techniques such as drizzling [38].
The assumption is therefore that these correlations are small, and that the variance
for each pixel is enough to describe the statistics of the observation adequately.

Poisson variance estimation. When the observed signal is sufficiently strong,
the per-pixel variance can be estimated from the Poisson statistics of the photon
flux. The total photon counts ki for each pixel are

ki = gi (di + bi) , (6.7)

where gi is an effective gain and bi is an eventual offset that was subtracted from
the input data. The effective gain is the conversion factor from the data units to
photon counts; for example, given an observation in detector units per unit time,
the effective gain is

gi = (electronic gain) × (exposure time) . (6.8)

The offset bi is any constant that has been subtracted from the pixel values; this
is often the estimated sky background. Assuming that the photons arrive at the
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detector with some fixed rate given by the physical system under observation, the
counts ki follow a Poisson distribution

ki ∼ Pois(λi) (6.9)

with parameter λi . The value of λi is estimated from the observation as λi =̂ ki .
The variance of the pixel counts ki follows from the Poisson distribution,

Var[ki] = λi =̂ ki = gi (di + bi) . (6.10)

Hence the variance σ2
i of the pixel values di can be found by rearranging (6.7) as

di = g−1i ki − bi , (6.11)

and calculating the variance of the individual terms

σ2
i = Var[di] = g−2

i Var[ki] =̂ g−1i (di + bi) . (6.12)

This is the estimator of the variance in case no such estimate was provided by the
observation.

Observations with low signal. When the signal from astronomical sources is
low, the simple Poissonmodel of the pixel distribution is no longer valid, and other
processes become significant, such as noise due to the read-out process. These are
not considered in the statistical variance described above and are more difficult to
estimate. Determining the noise level directly from the data, e.g. from the RMS
values of empty patches of sky, depends highly on the data processing pipeline
and can easily bias the reconstruction. In this case, a more careful preparation of
the variance map is necessary, so that the particulars of the observation can be
correctly taken into account.

6.4 Sampling the parameter space

For a practical application, it is almost always infeasible to explore the posterior
distribution (5.28) with a classic MCMCmethod, due to the high dimensionality
of typical models and the usually strong correlations between individual model
parameters. A recent alternative to traditional MCMC samplers is the Nested
Sampling algorithm [94, 95]. Lensed uses the MultiNest library [35–37], which
is an implementation and extension of the Nested Sampling algorithm that is well
suited for working with the 10 < n < 50 parameters, multiple modes, and strong
correlations that typically arise in strong lensing reconstructions. In addition to
finding the posterior distribution of the parameters, MultiNest also calculates
the evidence (5.29), which is a notoriously difficult problem in numerical Bayesian
statistics.
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Sampling with MultiNest. For any given problem, MultiNest requires the
logarithm of likelihood (5.27) of the parameter values, which is

logP(d ∣ ξ) =
m
∑
i=1
−1

2
{(di −mi)2

σ2
i

+ log(2π σ2
i )} . (6.13)

Since the variance σ2
i is fixed for the reconstruction, the second term amounts

to an overall normalisation that has no bearing on the results and thus can be
dropped. The calculations are then performed with the simplified log-likelihood

loglike(d ∣ ξ) = −1
2

n
∑
i=1

wi (di − Li)2 , (6.14)

where the weights wi = 1/σ2
i were introduced as the inverse of the variance. The

advantage of theweightswi over the variance σ2
i is that a pixel can easily bemasked

by setting its weight to zero. It should further be noted that (6.14) now amounts
to the χ2 term (6.6), which is used to summarise the ability of the given parameter
values ξ to reconstruct the observed data.

Sampling settings. Nested samplers, and MultiNest in particular, offer many
settings that can be tweaked to find the right balance between thoroughness and
speed of the sampling for a given task. Within Lensed, these are set to reasonable
defaults which work well in typical situations, with a slightly larger emphasis on
speed. As in every numerical provlem, it is unfortunately difficult to find values
that work perfectly in all cases. It is generally a good idea to consider the details
of the MultiNest algorithm and try other combinations of parameters which
work better for the specific problem at hand [35–37]. This can lead to significant
improvements in speed, quality, or occasionally both.

6.5 Parallel computation

Reconstructions of CSWA 1, one of the largest galaxy-scale lenses, fromHST data
require the simulation and comparison of approximately 500 × 500 pixel images.
Assuming the 16-point integration rule from Section 6.2, a total of 4 × 106 rays
have to be traced from image plane to source plane for each simulation of the
model. Every ray requires evaluation of the deflection for all lens components,
and evaluation of the surface brightness function for all of the foreground and
background source components. After the rays for a pixel have been added, and a
possible PSF has been applied, every resulting pixel value has to be subsequently
compared to the observation, using the provided covariance matrix. It is clear
that the computational cost is one of the main issues in any implementation of the
forward method.
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Ray tracing. Even though the number of required ray tracing calculations is very
large, their particular properties show huge potential for optimisation. This is
based on the following observation. Once the model of the lens system is defined
and its parameters are set, the calculations for any ray — i.e. the deflection and
surface brightness evaluations – are entirely independent. Such “embarrassingly
parallel” problems [64] can be perfectly parallelised with minimal changes to the
computation. In this case, it is only necessary to initially distribute the model,
parameter values and ray positions to all processors, because no inter-process
communication is required at all during the ray tracing. Furthermore, if all rays
for a single pixel are assigned to the same processor,2 the numerical integration
can be performed locally, thereby rendering the entire simulation of the image
perfectly parallel. Not counting the initial overhead for constructing the model
and possible subsequent updates of the parameter values, the performance of the
simulation should increase linearly with the number of processors.

Point spread function. Thesituation is not as ideal for the application of a PSF to
the simulated image. For the application of a PSF via discrete convolution (5.21),
the results for any individual pixel are in principle independent of the convolution
of other pixels. However, the computation requires pixel values in a PSF-sized
neighbourhood around each pixel. Therefore, if not all of the simulated image
is available at once (e.g. when not all pixels have been simulated yet, or because
of distributed memory), the image must be partitioned into rectangular blocks
which are to be processed independently. Pixels in the interior of the block will
then have neighbouring values available, but pixels near the border still require
values outside the block itself. It is thus necessary to make a larger portion of
the simulation available to each block, with half the size of the PSF as “padding”.
Intuitively, larger block sizes correspond to less relative overhead in the number of
required pixels, which might require less communication between processes and
hence less overhead in the computation. Once these requirements are fulfilled,
each block can be convolved in parallel. If the number of blocks remains larger
than the number of processing units, and the reading overhead per block is small,
parallelisation of the direct convolution can still offer near-linear performance
improvement over individual convolution of the pixels.

Image comparison. Thecomparison of simulated image andobservation is done
by the image likelihood (5.23), which is effectively the calculation of the value of χ2

as defined in (5.24). Even though the required operations themselves are simple,
the large number of terms to be computedmeans that a significant amount of time
might be spent on the comparison, and it is worthwhile to perform it in parallel. It
is assumed that the relevant fixed parts of the comparison, i.e. data and covariance
matrix, are initially distributed to all processing units. If the covariance matrix is

2This does not affect parallellisation as long as there are more pixels than processors.
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diagonal, as assumed, the evaluation of the χ2 term (5.24) reduces to the sum

χ2 =
n
∑
i=1

(di −mi)2

σ2
i

. (6.15)

Computation of the sum can be split into two parts. First, the terms (di −mi)2/σ2
i

can be evaluated independently for each pixel. Depending on their number (i.e.
the number of pixels), parallelisation of this step can lead to some improvement in
performance even though the operations are primitive, especially when the values
of the pixels are already distributed to the processing units fromprior calculations.
Secondly, the sum has to be reduced to a single value. While it is certainly possible
to perform the summation in parallel [9], this step is not as good a candidate for
parallelisation and might not offer any gain over serial summation, in particular
when communication of the individual terms to a single processor is fast.
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7 Testing the forward method

7.1 Testing reconstructions with mock data

Before an implementation of the forward method such as Lensed can be used
in applications, it is necessary to carefully assess its performance in a controlled
setting under realistic conditions. This serves first and foremost to make sure the
implementation works as intended. These tests of verification are internal to the
implementation, and help identify bugs and other technical issues.1 For example,
the recovery of source parameters can be tested on observations without lensing,
and the results compared to known codes such as Galfit [75, 76]. This can be
done for both real and mock observations, so that the performance of the code
in reconstructing real source can be compared to current methods [70]. Testing
the lensing features in a sandbox environment is more tricky: A possibility is the
generation of images with well-aligned lens and source configurations for which
analytical results are available, and check that the results contain the expected
phenomena of Einstein rings or multiple images (Chapter 2.5 and 3).

The constraining power of the forward method. A different and scientifically
more interesting kind of test concerns itself with the validation of the forward
method. Although the forward problem laid out in Chapter 5 is well defined and
understood, it is nonetheless not a priori clear how well a model of a lens system
can be constrained by it, evenwith a perfect algorithm. Degeneracies can arise not
only due to physical mechanisms such as the mass sheet degeneracy, which does
not apply when the lens model follows a fixed functional form [30], but rather
intrinsically when there is either too much freedom in the problem to recover
any meaningful results, or so little freedom that results are never found. Hence
it is necessary to carefully characterise the ability of any reconstruction method
to constrain the models it is given, and in the following a number of tests for this
task are developed and applied.

1Every program has bugs. And every program can be shortened. Therefore, as the saying
goes, any program can be reduced to a single line that does not work. — UNIX and Linux System
Administration Handbook
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Figure 7.1: Sample mock observations of strong lenses. The lensed background
sources use parametric Sérsic profiles (top) and observed galaxies decomposed
into a shapelet basis (bottom) and are prepared as observation ensembles with
randomised parameters. Images are HST-like with realistic noise and PSF and a
side length of 6 arcsec. The lens is a singular isothermal ellipsoid located at the
centre of the image, with Einstein radius rL = 1.3624 arcsec, axis ratio qL = 0.75,
and position angle θL = 45○. The foreground galaxy follows a semi-randomised
de Vaucouleurs profile.

Mock data pipeline. For the following tests, mock observations are generated
which realistically reproduce a space-based observation of the lensing system.
Particularly, the images simulate aHST-like configuration of the virtual telescope
for a 2000 second exposure in the F814W band. A typical PSFmadewith TinyTim
is used for image synthesis and reconstruction [56, 105]. The resulting images have
a size of 120×120 pixels at a resolution of 0.05 arcsec/px, giving a total side length
of 6 arcsec. Realistic mock observations can be realised with existing packages
such as Glamer, a gravitational lensing simulator [63, 78]. The choice of space-
based mock observations is due to the fact that the parameter space of detailed,
high resolution images is generally more difficult to sample in a reconstruction.
Ground-based observations of similarly-sized lenses contain fewer pixels, a larger
PSF, and higher noise levels, which leads to a smoother likelihood with broader
maxima that is easier to sample. Hence, if the method is able to reconstruct lenses
in highly-resolved space-based observations, it is likewise expected to perform
well on less detailed data (although the results will naturally be less precise).
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7.2 The influence of lensed sources

The most important characteristic of a lens reconstruction algorithm must be its
ability to actually constrain the parameters of the lens models it is given. This is
not as straightforward a task as it may seem, because the reconstruction of any lens
system depends crucially on the information provided by the lensed background
sources. On one hand it is clear that if there are no visible signs of strong lensing in
the observation, perhaps due to a grave misalignment between lens and source,
then it will be impossible to constrain any lens parameters at all. On the other
hand, a perfect alignment of an extended source and e.g. a circularly symmetric
lenswill illuminate thewhole critical line, and the resulting Einstein ring allows an
easy fixing of all lens parameters. Most real lens systems are of course somewhere
in between these two extremes, and the degree to which they can be reconstructed
will depend crucially on the particulars of the source. Hence it is clear that any
test which strives to objectively quantify the reconstructive power of the forward
methodmust somehow isolate the influence of the source on the results for lenses.

Marginalising the influence of sources. The desired source-independent test of
lens reconstruction can be developed in analogy to the usual rules of probabilities.
Denoting the true parameter values of the lens in a mock observation by ξ0, the
constraining power of the chosen lens reconstruction method is encoded in the
probability P(ξ ∣ ξ0) of recovering any set of lens parameters ξ. Because the results
of a single reconstruction depend quite strongly on the configuration ν0 of the
lensed sources, only the distribution P(ξ ∣ ξ0, ν0) can actually be observed. The
desired distribution is related to the observable one through a marginalisation

P(ξ ∣ ξ0) = ∫ dν0 P(ξ ∣ ξ0, ν0) P(ν0) (7.1)

over all possible source configurations, which are distributed according to P(ν0).
The same concept of marginalising over source configurations can be turned into
an experimental setup to disentangle the influence of the source from the lens
reconstruction. For a given lens system, an ensemble of mock observations is
prepared as follows. In each observation, the source parameters ν0 are randomly
drawn according to some distribution P(ν0), while the lens is being kept fixed.
Each observation is subsequently reconstructed on its own, resulting in one value
of P(ξ ∣ ξ0, ν0). In the end, the posterior distributions of the lens parameters are
combined from all individual realisations of the source. This process is analogous
to aMonte Carlo integration of themarginalisation (7.1), and the final result is the
desired posterior distribution P(ξ ∣ ξ0) that truthfully represents the constraining
power of the method, where the influence on the source is eliminated.

Creating ensembles of observations. The required ensembles of observations
can be created in the following way. As noted, the parameters of lens model to be
investigated are fixed over the whole set of observations. In order to restrict the
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(a) source plane (b) image plane

Figure 7.2: Distribution of the position of sources in an observation ensemble.
The sources are randomly located within a disk that circumscribes the caustic of
the lens (left). Also shown is the approximate resulting distribution of observed
images, which forms an annulus containing the critical line (right).

sample of observations to reasonable candidates for strong lensing, the sources
are positioned uniformly inside a disk circumscribing the caustic of the lens, as
shown in Figure 7.2. The remaining source parameters are distributed “naturally”,
e.g. uniformly between 0○ and 180○ for the position angle. The resulting images
contain a good representation of the naturally occurring phenomena in strong
lensing and cover a wide range of the lens systems for which the forward method
was intended, withmultiple images, arclets, large arcs, rings and crosses all readily
found in the sample.

7.3 Reconstruction of lenses

With the testing procedure established, the constraining power of a code such as
Lensed with respect to known lens parameters is now investigated. In total, two
different tests are performed that involve a different kind of background source.
The first uses mock data generated with and reconstructed by a parametric Sérsic
model. This test represents the ideal situation in which the lens system can be
modelled exactly, and therefore puts an absolute upper limit on the ability of the
reconstruction method to recover the parameters of the lens. The ideal situation
is subsequently relaxed in a second test where the mock data is generated from
Shapelet sources, but the reconstruction is still performed with a single Sérsic
component. The results can demonstrate the robustness — or lack thereof — of
the reconstructed lens parameters when the background sources are not described
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perfectly by the assumed model. For each test, a set of 100 mock observations is
prepared with a fixed lens model, detailed below, where sources are randomised
as described above.

Lensmodel. The lens is a central singular isothermal ellipsoid (Chapter 3.3)with
fixed parameters Einstein radius rL = 1.3624 arcsec, axis ratio qL = 0.75, and
position angle θL = 45○ between the major axis and x-axis. Assuming typical lens
and source redshifts of zL = 0.2 and zS = 1.0, the Einstein radius corresponds to
a velocity dispersion of σv = 250 km s−1 for the isothermal ellipsoid. Co-centred
with the mass distribution is a 16.5 mag foreground galaxy. Based on the majority
of current galaxy-scale lensing observations, this is reasonably assumed to be an
early-type object, which is well parameterised by a de Vaucouleurs profile [118].
The effective radius of the light profile is fixed at rH = 2 arcsec, or about 1.5 Einstein
radii, which is a realistic ratio for typical lensing galaxies [96]. Other parameter
values are randomly assigned for each image, using an axis ratio qH between 0.6
and 0.9, and major axis angle θH between 25○ and 65○, in order to maintain a
certain alignment between the respective light and mass profiles. A number of
sample images are shown in Figure 7.1.

Constraints from an exact model. The first test is the reconstruction of a lens
system which can be modelled exactly. Because the reconstruction is not limited
by insufficient knowledge of the model, this exercise provides an upper bound on
the constraining power of the method. Given that the aim here is not to create a
realisticmodel, but rather one that can be recovered perfectly, the generatedmock
observations can contain only a single background component, which follows a
parametric Sérsic profile (Chapter 5.3). Each image uses a different realisation of
uniformly random source parameters, with Sérsic index nS between 0.5 and 8.0,
effective radius rS between 0.1 and 0.4 arcsec, axis ratio qS between 0.1 and unity,
and position angle θS between 0○ and 180○. The range for the effective radius is
compatible with observational results [92], while the ranges for other parameters
allow for a very general set of possible source configurations. The magnitude of
the background galaxies before lensing is 23 mag in each case.

The ensemble of observations is subsequently reconstructed with the forward
method, using an SIE lens model where all parameters are left free. This was done
using the Lensed algorithm. In most cases, the recovered maximum-likelihood
lens parameters are very close to the input values. Possible outliers are usually
those with a generally unsuccessful reconstruction (χ2/dof > 4), indicating a
likely insufficient sampling of the parameter space that terminated before the true
maximum-likelihood region was found. Since the reconstruction with a MCMC
sampler or related method (Chapter 6.4) involves a degree of randomness, such
behaviour is occasionally expected, and the high value of χ2/dof and can used to
detect these cases. Further analysis of the offending cases with a more thorough
sampling of the parameter space (e.g. increased number of live points for nested
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Figure 7.3: Posterior distributions of the lens parameters using an exact (red) and
inexact (blue) model for the background sources. Shown are the position xL, yL,
Einstein radius rL, axis ratio qL, and position angle θL of a singular isothermal
ellipsoid. Input parameter values are indicated by a vertical line (black). Results
are marginalised over ensembles of observations with randomised sources, see
text. The analysis was performed using the Lensed algorithm on HST-like mock
observations [103].

parameter input value exact source model inexact source model

xL [arcsec] 0 −0.0000±0.0020 −0.001±0.011
yL [arcsec] 0 0.0005±0.0021 −0.001±0.013
rL [arcsec] 1.36235 1.36205±0.00080 1.3619±0.0059
qL 0.75 0.7499±0.0026 0.750±0.016
θL [deg] 45 44.97±0.20 45.2±1.7

Table 7.1: Results of the reconstruction of mock images using an exact and inexact
model for the background sources. Shown are the parameters for position xL, yL,
Einstein radius rL, axis ratio qL, and position angle θL. The quoted values are
the sample mean and standard deviation of the marginal distribution over 100
randomised realisations of the lens system, as shown in Figure 7.3
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samplers, or reduced tolerance) usually aligns the results with the rest of the set,
and the outliers do not represent a true problem for the forward reconstruction
method.

The recovered distributions of the lens parameters, marginalised over other
parameters and over the ensemble of source realisations, are shown in Figure 7.3.
No systematic bias is apparent in the outcome, and the results are distributed
tightly around the true values. This is substantiated in Table 7.1, which contains
the samplemean and standard deviation of themarginalised lens parameters. The
accuracy of the results, i.e. the distance of the reconstructed mean from the true
value, is remarkably high. Theprecision of the results, i.e. howmuch the recovered
values are scattered about their common mean, is excellent as well: The position,
Einstein radius, axis ratio, and orientation are constrained far below the pixel,
percent, and degree level, respectively.

This basic test validates the forward method and implementation choices for
lens reconstruction as presented so far, in a scenariowhere themodel is completely
known. Lens parameters are recovered almost identically and without apparent
systematic biases, at a precision far below the model uncertainties in observations
of real lens systems.

Constraints from an inexact model. So far, the model used for reconstruction
agreed with the model used in the generation of the data, resulting in very tight
constraints on the lens parameters. It is expected that these are loosened once
the lensed background sources no longer correspond perfectly to the assumed
model. To this end, a second ensemble of images is created, in which background
sources do not follow an analytical profile, but are based on Shapelets instead
(Chapter 5.3). The sources are randomly extracted from a catalogue of observed
galaxies in the Hubble Ultra Deep Field [27] and subsequently decomposed into a
Shapelet basis. For the virtual observations, only galaxies with a redshift between
0.8 and 1.5 are selected, to ensure a sample of galaxy shapes consistent with an
assumed source redshift of zS = 1.0. Galaxies that were observed with low S/N are
filtered out by a cut in apparent magnitude at 27 mag. Each object is appropriately
rescaled to have a magnitude of 23 mag before lensing and the same apparent size
it would have had at redshift zS = 1.0.

Thenew ensemble ofmock observations is reconstructedwith the samemodel
as before, i.e. a singular isothermal ellipsoid and a de Vaucouleurs foreground
galaxy, and a background galaxy following a Sérsic profile. However, the images
now contain a realistic variety of shapes and structure in the lensed background
sources that cannot be modelled exactly. The impact on the ability to recover lens
parameters can be seen in the results of a reconstruction using Lensed, shown in
Figure 7.3. The loss in precision due to the inexact nature of the model is clearly
visible in the widened distributions for the recovered lens parameters. Still, the
resulting distributions are remarkably symmetric and centred on the true values.
The accuracy of the results, i.e. the difference of the recovered mean and the true
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input value, over the whole sample of 100 reconstructions is quoted in Table 7.1; it
remains far below the respective scales of one pixel, percent, or degree for all lens
parameters. Even though the standard deviation of the individual parameters has
increased five- to tenfold over the exact case, the precision is still excellent, with
constraints on the position and Einstein radius at the intrapixel level, the axis ratio
at the per cent scale, and the orientation correct to within two degrees.

This second test concludes the validation of the forward method to constrain
lens parameters even when it is not possible to model the lensed galaxies exactly.
Shapelet sources in this test are diffuse, usually with multiple peaks and troughs
in the brightness distribution, and are generally only poorly fit by a single Sérsic
component. Nevertheless, using the forward reconstructionmethod, it is possible
to constrain the parameters of the given lens model to a very high degree. Because
the reconstruction of real observations is expected to be limited first and foremost
by model uncertainty due to an insufficient description of the mass distribution,
the loss in constraining power from imperfectly modelled sources is insignificant
in comparison. The reconstruction of lens parameters from real observations is
therefore limited neither fundamentally nor by the proposed implementation of
the forward method.

7.4 Reconstruction of lensed sources

There are many applications in which a gravitational lens is only the telescope
through which a faint, distant high-redshift source can be observed [5, 60, 70].
For these cases, the reconstructions of the source becomes as important as the
reconstruction of the lens, and bothmust be performed at the same time. While it
was shown in Section 7.3 that lens reconstruction is robust even when the sources
are not characterised perfectly by their assumedmodel, the same is not necessarily
true for the reconstruction of source parameters under the influence of lensing,
and this question merits further testing of the forward method.

Source parameters from an exact model. Again, the first step is to validate that
the forwardmethod is able to reconstruct source parameters given an exactmodel.
For this, the same ensemble of observations as before can be used, if instead of the
parameters ξ themselves the error of the reconstruction ∆ξ = ξ− ξ0 is considered,
so that all realisations have a common expectation value E[∆ξ] = 0. The results
of such an analysis are shown in Figure 7.4, and a summary is given in Table 7.2.
Photometric precision in this case of an exact model is 0.07 mag at the 2σ level,
and the effective radius rS of the sources is constrained to 12% precision at the
2σ level. The least constrained parameter is the Sérsic index nS , with a relative
uncertainty of 10% at the 2σ level due to the general difficulty of recovering highly
peaked sources (i.e. those with nS > 2). Finally, the position angle θS is very well
reconstructed when the source is clearly elliptical, up to axis ratios of qS ≈ 0.85,
while for almost circular sources, the position angle is naturally unconstrained.
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Overall, the forward method can reliably find the parameters of parametric
sources which have been distorted by an unknown lens that is simultaneously
reconstructed. This is perhaps not a great surprise, but it is still a good validation
of the fact that degeneracies and correlations between lens and source model do
not impede the forward method’s ability of recovering source parameters. The
next step must now test whether this remains true if the sources are no longer
described perfectly by the model used for their reconstruction.

Source parameters from an inexact model. The problem in the reconstruction
of lensed sources is gauging whether the lensing in itself influences the recovered
parameters. In reconstructions that use e.g. a Sérsic model for the lensed sources,
it might be that the reconstruction finds systematically different Sérsic indices due
to the interactions of the deflection and the source profile. It must therefore be
tested whether or not the reconstruction of a non-parametric surface brightness
distribution is the same when done in front of or — theoretically — behind the
lens, i.e. whether the source reconstruction is invariant under lensing. The main
difficulty of this test is the absence of input parameters which can intrinsically
be compared to the lens results. The first step is therefore necessarily finding the
“input” parameters of each individual source in the assumed Sérsic model. This
is unfortunately not as easy as taking the deflector out of the lens system, because
the resulting unmagnified sources would be unrealistically small and faint for a
direct reconstruction. For an objective comparison, both the total luminosity and
the effective resolution of the non-lensed sources have to be increased until they
are equivalent to their lensed counterparts. This can be achieved using a uniform
magnification that has the same total magnification ∣µ∣tot as in the case of lensing.
In practice, the luminosity and the area of the sources are multiplied by ∣µ∣tot.
Equivalently, their magnitude is increased by −2.5 log10(∣µ∣tot), and each source
is scaled by a factor of

√
∣µ∣tot. These relations can also be used to quickly find

the value of ∣µ∣tot from the lensed images: It is the ratio of total luminosity of the
lensed sources (without noise) and the input luminosity before lensing.

Once the equivalent Sérsic parameters of the non-parametric sources have
been found, the recovered and expected parameters can be compared as in the
case of parametric sources. The resulting marginal distributions are shown in
Figure 7.4. While the shape (position xS , yS , axis ratio qS , position angle θS)
and the luminosity (magnitude magS) of the sources are less constrained with
respect to the fully parametric case, the contraints on the Sérsic profile (effective
radius rS and Sérsic index nS) remain practically unchanged. This is substantiated
in Table 7.2, which shows only a minor increase in variance for these parameters.

This final validation of the forward reconstruction method has shown it to
allow for a robust parameterisation of sources under the effect of strong lensing.
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Figure 7.4: Posterior distributions of the source parameters using an exact (red)
and inexact (blue) model for the background sources. Shown are the errors of the
reconstruction ∆ = (recovered)−(input) for the recovered position xS , yS , effective
radius rS , magnitude magS , Sérsic index nS , axis ratio qS , and position angle θS of
the lensed sources, which are modelled in both cases with a Sérsic profile. Input
parameters for the inexact sources were found as explained in the text. Results
were obtained using the Lensed algorithm on HST-like mock observations. The
results aremarginalised over ensembles of observations with randomised sources,
see text.

parameter exact source model inexact source model

∆xS [arcsec] −0.0000±0.0010 −0.002±0.027
∆yS [arcsec] 0.0001±0.0011 −0.002±0.029
∆rS [arcsec] 0.003±0.019 0.008±0.034
∆magS 0.003±0.033 0.03±0.19
∆nS 0.01±0.25 0.07±0.25
∆qS 0.0009±0.0085 −0.005±0.046
∆θL [deg] −1±14 1±15

Table 7.2: Constraining power of the forwardmethod for the parameters of lensed
background sources. Shown are results for the errors ∆ in the recovery, which are
expected to vanish. The corresponding distributions are shown in Figure 7.4.
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7.5 Choice of integration rule

To conclude the set of tests, it is briefly investigated how the results presented here
are influenced by the choice of integration rule for the simulation of the model
(Chapter 6.2). As mentioned, any implementations of the forward method has to
select a suitable integration rule that is sufficiently fast and sufficiently accurate.
The latter part is important as errors in the calculation of the expected imagemust
be small enough not to degrade the results of the lens reconstruction. On the
other hand, there is no need to waste time on a perfect integration when it can be
shown that this does not improve the quality of the results. As usual in numerics,
experimentation and testing is required to find the right choice for the task at
hand, and an example is shown here.

Comparison of different rules. The tests of this chapter can be repeated using
different integration rules, in order to observe their influence on the recovered
parameters. The results of such an experiment using the exact test set is shown in
Figure 7.5. The evaluated integration rules are

• point – a single point at the centre of each pixel,

• sub2 – 2 × 2 subsampling of the pixels,

• sub4 – 4 × 4 subsampling of the pixels,

• g3k7 – Gauß–Kronrod quadrature rule [57, 74] with 7 × 7 points,

• g5k11 – Gauß–Kronrod quadrature rule with 11 × 11 points, and

• g7k15 – Gauß–Kronrod quadrature rule with 15 × 15 points,

Themodel parameters for the lens are position xL , yL, scale radius rL, axis ratio qL
and position angle PAL, while the source has position xS , yS , effective radius rS ,
magnitude magS , Sérsic index nS , axis ratio qS , and position angle θS . The results
show a clear convergence of the results for the Gauß–Kronrod rules, while 4 × 4
subsampling has similar accuracy when only the lens parameters are considered.
Given the substantially lower number of points (16 instead of ≥ 49), one concludes
that 4 × 4 subsampling is the integration rule of choice for lens reconstruction, at
least for HST-like data using a realistic PSF at the same resolution. When source
parameters are required, one of the Gauß–Kronrod rules might be preferable in
order to not bias the results. Similar tests can be performed when investigating
other kinds of observations, in order to determine the optimal integration rule to
use in each case.
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Figure 7.5: Comparison of lens reconstruction results for different integration
rules. Shown are the mean and standard deviations for the errors ∆ over the
sample of 100 reconstructions as a function of the chosen integration rule. For
a list of the integration rules tested see text.



68

8 Application: Strong lensing surveys

8.1 Analysis of lens surveys

A major application for the parametric reconstruction of lenses are lens surveys
that observe a large number of candidate lens systemswith comparable properties.
Naturally, the output of such a surveymust be analysed. When there are hundreds
of systems to be investigated — and possibly thousands for the next generation of
surveys [28]— it becomes necessary to create a robust reconstruction pipeline that
can handle the enormous amount of data. The forward method presented here is
a natural candidate for this procedure, as it allows for the prescription of a well-
defined, physically motivated lens and source model for the reconstruction. This
is crucial in an application where not every result can be inspected manually, as
the recovered parameters do not need additional interpretation and can quickly
be checked for unrealistic or otherwise “strange” results indicating problematic
reconstructions. Furthermore, the results from a large catalogue of lenses can
lead to new insights about the distribution of the model parameters, which in
turn allows for a deeper understanding about the physical nature of the observed
systems.

The Sloan Lens ACS survey. An example of a large survey of strong lenses is
the Sloan Lens ACS (SLACS) project [3, 4, 10–12, 19, 39, 40, 53, 70, 93, 106–109].
The survey performed space-based follow-up observations withHST of ∼100 lens
candidates which were identified through ground-based SDSS spectroscopy. The
final SLACS catalogue [3] contains 85 confirmed lenses and 13 likely ones. Among
the major results of the survey is the analysis of the lens population showing that
the radial mass density profile is inconsistent with a light-traces-mass model, and
instead appears to be approximately isothermal. The main analysis of the lenses
was performed with a method similar to the one presented here, which will now
be compared in detail.

8.2 Comparative reconstruction

The SLACS lenses were originally analysed by Bolton et al. [11] using a variant of
the forward method. Multiple preprocessing steps carefully removed foreground
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objects, including the lensing galaxy, from the observation. The cleaned images
were subsequently modelled using a singular isothermal ellipsoid positioned at
the centre of the estimated foreground light distribution, and a background source
containing a number of Gaussian or Sérsic components as necessary to obtain a
good fit. Initial parameters of the model were found manually, and subsequently
optimised by the Levenberg-Marquardt algorithm as implemented in the MPFIT
routine of the IDL software package [66, 67]. The list of reconstructed model
parameters, as well as model images and their residuals, is available [11].

In order to show the feasibility of the analysis of real data with the forward
method as presented here and implemented in Lensed, a small sample of lenses
from the SLACS catalogue is reexamined. Specifically, the first 8 observations of
HST proposal 10886 [13] that are available on the Hubble Legacy Archive [44]
are considered. This choice of sample observations is completely arbitrary but
interesting, as it contains 7 systems previouslymodelled byBolton et al. [11], which
are used for comparison, and one system not modelled in the original analysis
due to the presence of a companion to the lens galaxy, which highlights the power
of the Lensed algorithm. Each observation is taken from the F814W band and
contains 4 combined, cleaned and aligned exposures with a total exposure time
of ∼2100 seconds. The full list of observations can be found in Table 8.1.

Reconstruction method. The base model for this analysis consists of a Sérsic
component for the foreground galaxy, a singular isothermal ellipsoid lens, and
a Sérsic component for the background galaxy. Instead of removing foreground
objects in a preprocessing step, their model is reconstructed together with the
rest of the observation. As in the original analysis, additional Sérsic components
are added to the foreground or background sources until the reconstruction is
satisfactory. For this process, a model is considered detailed enough if there are
no longer any systematic differences between observation and reconstruction. In
practice, this choice leads to only one or two components for each visible object.
For amore competitive analysis, onemight choose the number and distribution of
source components by some objective criterion [18, 19]. The available data is sky-
subtracted, and because this process depends critically on the distinction between
galaxy light and sky light, a flat sky component is added to account for possible
uncertainties. Since the original reconstruction [11] forced the centre of the mass
distribution to coincide with the centre of the foreground object for all lenses, the
same assumption is used here for the sake of comparison. It is noted that such
a restriction is not necessary for Lensed in order to recover robust lens models,
as demonstrated in Chapter 7. Other parameters are left unconstrained. Visible
but unrelated objects close to the lens are excluded from the analysis by suitably
masking the uninteresting regions.
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8.3 Reconstruction results

The results of the reconstruction of the 8 sample observations from the SLACS
survey are given in Table 8.1. Apart from the lens parameters, the table lists the
number of source components used for foreground and background galaxies, as
well as the results of the original SLACS analysis. The two reconstructions efforts
are in good agreement. The reconstructed images are shown in Figure 8.1. As seen
from the images, Lensed is able to model all observed lensing events, regardless
of complexity, signal-to-noise of the background images or overlap between the
different sources. Some lens systems require particular care due to their peculiar
properties; they are briefly described below, in order to show the capabilities of
the algorithm and possible strategies for modelling non-trivial systems.

SDSS J0808+4706. This system was not modelled in the SLACS results due to
the presence of a close-by companion to the main lensing galaxy. The system was
qualitatively investigated as an example of a multi-component lens system, but
without reconstruction [73]. With Lensed, two independent SIE components are
used to model the main lensing galaxy and its companion. For the sources, two
Sérsic components are used for the light distribution of the main lensing galaxy,
one Sérsic component is used for the companion, and two Sérsic components for
the background source. In total, the model has 35 free parameters, which is the
highest number among the models of this chapter. Despite the complexity of the
system, Lensed was able to explore the posterior distribution of the parameters,
shown in Figure 8.2, and obtain reasonable results for the model. Of particular
interest is the strong anti-correlation of the Einstein radii of the two lenses; this
would not have been evident in a maximum-likelihood reconstruction method.

SDSS J0822+2652. The initial model allows for a very accurate reconstruction
of the bright arc on the right, but the residuals clearly show a circular structure
around the central galaxy. As this could be the signature of a second background
component, one is added to the model, as in the original analysis [11]. The result
is a significant improvement in the evidence of the reconstruction (∆ log ev ≈ 800,
Chapter 5.6). Quoted here are the results from this second model, although the
possibility exists that the residuals in the first analysis are not due to a second
background component but instead to a mismatch between the light profile for
the central galaxy and the model. If this is the case, the favoured model is much
more elliptical, with a recovered axis ratio of qL = 0.6285 ± 0.0089.

Image plane priors for source positions. In the case of SDSS J0728+3835 and
SDSS J0841+3824, the foreground galaxy is not well enough reconstructed by
one or two Sérsic components to reduce the significance of its residuals below
that of the lensing signal. Therefore, with a completely free prior distribution for
the position, the background source may be placed on top of the central galaxy to
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make up for the insufficiencies of the foreground model. This can be prevented
by a better modelling of the foreground galaxy. However, a simple and efficient
method is to use image plane priors for the background source positions. Instead
of defining the prior distribution on the source plane, one can define a prior on the
image plane for the position at which one of the images of the source is required
to appear. Drawing from such a distribution is done in a straightforward way by
first sampling a position on the image plane, mapping it to the source plane, and
assigning it to the source. This is a “prior” in the true sense of the definition, as
it uses an observer’s prior knowledge regarding the apparent position of an image
for the distribution of possible source positions. The use of image plane priors
reduces the correlations between lens and source parameters, as a source normally
has to be repositioned any time the lens is updated to make the observed images
appear once againwhere they are observed. At the same time, the parameter space
volume of the source position is dramatically reduced, as the observed position is
well constrained from the start.

Summary. The reconstructions of this section show that the forward method as
implemented in Lensed is able to obtain robust and meaningful results from the
analysis of real data, where uncertainties are much more severe than in tests on
mock data (Chapter 7). The algorithm reliably reconstructs foreground sources,
the deflecting lens, and lensed background sources at the same time. As in the case
of mock data, no informative priors were used, and the analysis was, apart from
the model choices described above, fully automatic. Intervention was required
only due to inherent difficulties in the identification of lensing signatures, such as
the circular residual in SDSS J0822+2652 and the poor counter-image in SDSS

J0841+3824. These are peculiar cases that inevitably require some decision made
by the modeller on the interpretation of the lensing event. In all cases in which
there are clear signs of multiple images of the background source, Lensed is able
to appropriately disentangle them from the light of the host galaxy, even in cases
such as SDSS J0330-0020 and SDSS J0903+4116 in which there is significant
overlap between the foreground and background light distributions.

Errors. It should be clarified that the errors given in this analysis are of a purely
statistical nature, and correspond to real uncertainties only in the ideal case in
which the model used for lenses and sources offers a correct description of these
objects. In the analysis of real data, this may not be true, and a change of model
influences the recovered parameters possibly far beyond the errors quoted, which
characterise the width of the distributions within a fixedmodel. Thus, if onewants
to interpret the quoted values in an extensive way, an additional empirical error of
the order of a few percent should be considered, as done in other works [11, 96].
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(a) SDSS J0029-0055

(b) SDSS J0252+0039

(c) SDSS J0330-0020

(d) SDSS J0728+3835

Figure 8.1: Reconstructions of SLACS observations from the F814W band. Each
figure shows (left to right) the original observation, the maximum-likelihood
model from Lensed, the lensed images of the background source only, and the
residuals. Images are 5 arcsec by side, north up and east left. The scale ranges
from −0.25X (white) to X (black), where X is set to the 97th percentile value of
the recovered model for the first and second image, and the 99th percentile value
of the lensed background source for the third and fourth image. This matches the
figures of Bolton et al. [11]. Overlays show masked regions (red) or image plane
priors (green) if used during the reconstruction.
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(e) SDSS J0808+4706

(f) SDSS J0822+2652

(g) SDSS J0841+3824

(h) SDSS J0903+4116

Figure 8.1: Continued.
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Figure 8.2: Lens parameter constraints for themodel of SDSS J0808+4706, which
contains a galaxy and a close-by companion. The galaxies are modelled as SIEs at
the same redshift. The model contains a total of 35 free parameters, including the
foreground and background source components. The plot shows the marginal
posterior distributions for the lens parameters, with contours and dashed lines
indicating the 68%, 95%, and 99% confidence regions, respectively.
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9 Application: Flexible lens modelling

9.1 Modelling individual lenses

Instead of finding the distribution of parameters for a single model over many
observations, the forward reconstruction method is also uniquely adapted for the
analysis of a single observations with multiple competing models. Composition
of individual lens and source components allows for a great amount of control
over the model and the reconstruction, which in turn leads to greater confidence
in the results with respect to non-parametric, free-form models. Since a modern
implementation of the forward method such as Lensed, which incorporates all of
the optimisations presented in this work, performs a complex reconstruction in a
matter of hours—and oftenminutes— the process is fast enough to allow the user
to play with many different models in a short amount of time, and thus explore
the lens system more thoroughly than possible with a method that takes several
days for each reconstruction. This often leads to an intuitive understanding of the
lens system and the individual multiple images of the background source, which
appear, disappear or move as components are added or removed from the model.
Finally, the particular implementation of Lensed has the additional benefit that
new lens models can be developed quickly — often in a matter of minutes — and
added without any changes to the algorithm or even recompilation. This makes
it possible to quickly design specific lens models for a single observation, instead
of having to rely on the default selection that comes with the implementation. All
of these features will now be demonstrated in a sample analysis of a particular
gravitational lens system.

The Cosmic Horseshoe. The spectacular gravitational lens shown in Figure 9.1
is known as the “Cosmic Horseshoe”. First discovered [8] in ground-based data
from SDSS Data Release 5 as SDSS J1148+1930, the lens system features a nearly
complete Einstein ring (≈ 300○) with a very large diameter (≈ 10”). Spectroscopy
revealed the redshifts of lens and source to be 0.444 and 2.379, respectively, and
the measured velocity dispersion σv > 400 km/s made the Cosmic Horseshoe “the
most massive galaxy lens hitherto discovered” [8]. As CSWA 1, the lens systemwas
one of the founding entries in the CASSOWARY catalogue [20]. The lens system
was later observed byHST under proposal 11602 [2], and high resolution images in
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Figure 9.1: The “Cosmic Horseshoe” CSWA 1 as observed byHST. The lens system
consists of a z = 0.444 luminous red galaxy in the foreground lensing a z = 2.379
star-forming background galaxy, creating an almost perfect Einstein ring (≈ 300○)
with a very large diameter (≈ 10′′). With a spectroscopically measured velocity
dispersion of σv = 430 ± 50 km/s, this is the most massive galaxy lens observed.
The colour image is a composition of the optical B (blue), optical V (green) and
infrared I (red) bands from Hubble’s Wide Field Camera 3.
Image credit: ESA/Hubble & NASA
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the F475W, F606W and F814W bands are freely available from theHubble Legacy
Archive [44].

Existing models. The Cosmic Horseshoe has been analysed with a diverse set
of astronomical tools. Although the discovery by Belokurov et al. [8] does not
include a reconstruction, the reported velocity dispersion σv = 430 ± 50 km/s can
be used to construct an equivalent singular isothermal sphere (SIS) model. This is
useful for an independent comparison of the subsequent lens modelling efforts. A
follow-up observation byDye et al. [30] using data obtainedwith the IsaacNewton
Telescope (INT) contains the comparative reconstruction of the obtained datawith
three different models — singular isothermal ellipsoid (SIE), Navarro, Frenk and
White (NFW), and elliptical power law (EPL) — each with and without external
shear. Instead of the forward method, the reconstruction uses lens inversion with
an adaptive source grid [29, 114]. Hence this set of results allows for an external
check of the forward method across reconstruction methods. There have been
a number of subsequent spectroscopic investigations of the Cosmic Horseshoe’s
high-redshift background source1 [43, 46, 59, 81, 84, 98]. Spiniello et al. [98] and
Agnello, Auger and Evans [1] give estimates for the slope of a power law mass
density profile, which can be compared to results from lens modelling. The only
further direct lens reconstruction of the Cosmic Horseshoe, among a number of
other CASSOWARY lenses, was performed by Kostrzewa-Rutkowska et al. [55]
using the original SDSS data and a SIEmodel. They remark that the low quality of
the data did not allow for the estimation of the slope of an EPLmodel. It is curious
that there does not appear to be a single reconstruction to date which utilises the
high resolution follow-up observations done by HST.

The existing results are compiled in Table 9.1. For comparison purposes, all
parameters have been converted to the definitions of Chapter 3 and 4. Some of the
results require a non-trivial transformation of the reported constraints to the new
definitions. This is done by sampling a large number of parameter values from
an independent set of normal distributions with the given mean and standard
deviation in each parameter, performing the transformation, and then computing
the statistics of the updated results. It should be noted that this ignores possible
correlations in the original distributions of the parameter values, which might
alter some of the error bounds.

Methodology. In the following, a number of different reconstructions of the
Cosmic Horseshoe are presented. Each reconstruction is performed using the
Lensed algorithm with default settings [103]. The data is aHST observation from
proposal 11602 [2] in the F475W band, which consists of six exposures with a total
exposure time of 5454 seconds. Images were obtained from the Hubble Legacy
Archive [44], which provides cleaned, drizzled and aligned science products. The
resolution of the data is ∼ 0.04 arcsec/pixel. From the large field of view, a region

1Which was subsequently found to be at a slightly larger redshift of z ≈ 2.381.
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Figure 9.2: HST observation of CSWA 1 in the F475W band, with north up and
east left. Shown is a 470×470 pixel (18.6×18.6 arcsec) region centred on the lens
system and used for reconstruction. The image consists of 6 exposures with a total
exposure time of 5454 seconds.
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of 470 × 470 pixels (18.6 × 18.6 arcsec) centred on the lens system is selected for
reconstruction. The resulting input is shown in Figure 9.2. A variance map for
the image is generated by Lensed. No pixels in the selected region are masked or
otherwise excluded.

Lens and foreground models. This reconstruction uses two lens models: the
singular isothermal ellipsoid lens (SIE, Chapter 3) and the elliptical power law
lens (EPL, Chapter 4). It shall be noted that the former is a special case of the
latter, and corresponds to a fixed slope t = 1. For each model, an external shear
component might be added to the reconstruction. Non-informative and uniform
priors are used for all parameters.

The central foreground galaxy is modelled in all cases by a parametric source
containing a single Sérsic component. A further flat sky component is added to the
foreground to account for diffuse light. For both foreground sources (the central
galaxy and the flat sky), the priors of the parameters are non-informative uniform
distributions over the whole range of sensible values.

Background sourcemodels. In contrast to the reconstruction by Dye et al. [30],
the background source is a parametric model in this analysis using the forward
method. For a qualitative investigation of the effect of the number of background
components on the results, each of the lens models is subsequently reconstructed
using 1, 2 and 4 individual Sérsic components. The source positions are uniformly
distributed within regions that correspond to their eventual image positions, but
which are nevertheless large enough to be considered non-informative priors. All
other parameters are left free as usual.

9.2 Singular isothermal models

The reconstruction of the Cosmic Horseshoe CSWA 1 using a singular isothermal
ellipsoid, with and without external shear, and different numbers of background
Sérsic components, is shown in Figure 9.3. The SIE model is a reliably good fit to
the observation, and in no case did the reconstruction fail. The model with only
one background source component (Figure 9.3a, b) produces a smooth model of
the Cosmic Horseshoe that is very similar in appearance to the original SDSS and
INT observations. The results in this case, shown in Table 9.2, are therefore in
good agreement with existing values from low-resolution data [30, 55]. Going
to models that contain background source substructure in the form of additional
Sérsic components, the higher resolution of the data has a clear differentiating
effect on models with and without shear.

The effect of external shear on multiple components. If more components are
added to the background source model, the external shear has a visible effect on
the reconstructed images. With two components (SIE + 2 Sérsic, Figure 9.3c, d),
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(a) SIE + 1 Sérsic

(b) SIE + γ + 1 Sérsic

Figure 9.3: Singular isothermal ellipsoid (SIE) models of CSWA 1. Shown are the
maximum-likelihood reconstructions and residuals for models without and with
shear (+ γ) and different numbers n of Sérsic components (+ n Sérsic) of the lensed
background source. All images use the same scale. The residual images show
overcompensation of the model in blue, and uncompensated light in red.



9.2 Singular isothermal models 83

(c) SIE + 2 Sérsic

(d) SIE + γ + 2 Sérsic

Figure 9.3: Continued.
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(e) SIE + 4 Sérsic

(f) SIE + γ + 4 Sérsic

Figure 9.3: Continued.
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the shear allows for the correct reproduction of the curvature over much of the
observed arc. It also correctly localises the second lane of the ring on the right,
which goes too far down in the reconstruction without shear, and does not show
the observed peak in the surface brightness distribution. This correction of the
right-hand arc results in the correct reconstruction of the compact counter-image
on the bottom left, which is only correctly reproduced with shear. All of these
effects are clearly discernible in the residual images.

For four source components, the observed effect is similar (SIE + 4 Sérsic,
Figure 9.3e, f). The two small and compact images on the bottom left are now
correctly placed even without shear, but the residuals show that their counter-
images on the right-hand arc do not correctly reproduce the surface brightness
distribution of the observation, in particular regarding the location of the two
maxima. By adding shear, the situation is remedied in the same way as before.

That the shear has a definite and significant impact on the reconstruction is
represented well in the results of Table 9.2, as the magnitude γ of the shear with
multiple source components is twice as big as in the case of a single background
component, but almost unchanged between 2 and 4 Sérsic components, and here
the orientation agrees to within 5○ as well.

Additional background source components. In reconstructions with external
shear (SIE + γ), the subsequent addition of background components to the model
beautifully highlights the constructive nature of the forward method. Each new
source component resolves one of the multiple images in the observation, and
eachmodel results in a progressively better reconstruction (Figure 9.3b, d, f). This
direct, step-by-step reconstruction of the observed image, in combination with
the accompanying convergence of the lens parameters, is a good validation of the
results and the forward method in general.

9.3 Power law models

Theelliptical power law (Chapter 4)models of the CosmicHorseshoe show a clear
preference for less-than-isothermal slopes (Table 9.2), in disagreement with the
original reconstruction [30]. Even in the case of a model with no background
source substructure and no shear (EPL + 1 Sérsic, Figure 9.4a), the combination
of power law slope t ≈ 0.67 and axis ratio q ≈ 0.89 reconstructs the curvature of
the ring much better than the equivalent SIE model (SIE + 1 Sérsic, Figure 9.3a).
There is also tension between lens reconstruction and results for the power law
slope obtained by Spiniello et al. [98] and Agnello, Auger and Evans [1], and only
the simplest model of EPL + 1 Sérsic is anywhere near agreement. As soon as the
background source contains resolved substructure, much flatter than isothermal
profiles with t ≲ 0.5 are preferred.
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(a) EPL + 1 Sérsic

(b) EPL + γ + 1 Sérsic

Figure 9.4: Elliptical power law profile (EPL) models of CSWA 1. Shown are the
maximum-likelihood reconstructions and residuals for models without and with
shear (+ γ) and different numbers n of Sérsic components (+ n Sérsic) of the lensed
background source. All images use the same scale. The residual images show
overcompensation of the model in blue, and uncompensated light in red.
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(c) EPL + 2 Sérsic

(d) EPL + γ + 2 Sérsic

Figure 9.4: Continued.
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(e) EPL + 4 Sérsic

(f) EPL + γ + 4 Sérsic

Figure 9.4: Continued.
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The interplay of shear and power law slope. The results of Table 9.2 show that
models with external shear feature a systematically lower slope of the power law,
even though themagnitude of the shear is comparable to that of the respective SIE
models. However, a significant difference is found in the direction of the shear. For
a future analysis of the results, it will be necessary to investigate the environment
of the Cosmic Horseshoe and identify realistic sources of external shear. This
can subsequently be incorporated into a prior distribution on the direction of the
shear, and will hopefully align the results of separate models more closely than in
this demonstration.

9.4 Summary of the results

The results of all reconstructions performed here are listed in Table 9.2. They
demonstrate the power of the forward reconstruction method to model complex
lenses with a relatively small number of simple lens and source components, even
for highly-resolved data which contains a lot of difficult to reproduce substructure
in the surface brightness distribution. The results further show that this amount
of detail in the data can be necessary: Dye et al. [30] noted that external shear
was curiouslymissing from the reconstruction, since the observed Einstein ring is
practically circular. With more resolved observations fromHST, this is no longer
the case, and the former result can be understood as a sort of degeneracy between
the ellipticity of the lens and the external shear, which here is broken as soon as
substructure is added to the background source.

A final reconstruction of the Cosmic Horseshoe is shown in Figure 9.5. The
model consists of an EPL lens and 6 Sérsic components for the lensed background
source, for a total of 56 free parameters. With this model, all of the visible source
substructure of the Cosmic Horseshoe is reproduced, including the faint inner
lane of the right-hand arc. At the same time, the recovered lens parameters are
not significantly different from the same reconstructionwith 4 Sérsic components,
and it is reasonable to assume that the result truthfully represents the best model
of the Cosmic Horseshoe to date.
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Sé

rs
ic

5.
07

39
±
0.
00
09

(1
)

0.
85

18
±
0.
00

15
21

.8
1±

0.
21

0.
05

65
±
0.
00
03

−1
4.

62
±
0.

26

SI
E

4
Sé

rs
ic

5.
10

34
±
0.
00
03

(1
)

0.
76

68
±
0.
00
04

51
.3
4±

0.
03

—
—

SI
E
+
γ

4
Sé
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Figure 9.5: The final reconstruction of the Cosmic Horseshoe CSWA 1. The model
consists of an EPL lens and 6 Sérsic components for the lensed background source.
In this reconstruction, all of the major details of the observation are reproduced.
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10 Conclusion

This thesis has developed the forwardmethod for lens reconstruction and applied
it to a number of select problems. The forward method, presented in Chapter 5,
offers conceptual simplicity in the creation of models for observations of strong
lenses and allows for a clear interpretation of the results of a reconstruction for
both lenses and sources. It is furthermore a uniquely adapted tool for testing new
analytical models of lenses and — eventually — sources at higher redshifts than
otherwise accessible.

There are however a number of challenges that must be overcome before any
implementation of this reconstructionmethod can be realised. The first lies in the
simulation of the lens model, which is the numerical integration of the surface
brightness distribution for each observed pixel, and therefore a computationally
intensive task, especially in modern space-based observations of large arcs with
high resolution. Secondly, the parameter space of the combined lens and source
model is usually high-dimensional andmoderately to highly degenerate, making a
straightforward sampling very difficult. Chapter 6 contains a number of solutions
to the most severe of these problems as implemented in the Lensed algorithm,
but which are generally applicable and useful for any implementation of a lensing
pipeline. By carefully rewriting the necessary calculations in a massively parallel
fashion, it is possible to harness the multiprocessing capabilities of modern GPUs
andmaximise the efficiency of the lens reconstruction code. The resulting increase
in computational speed allows for a precise simulation of the expected image of
a model, even using numerical quadrature for each individual pixel, and still test
thousands of individual parameter settings per second. Combining the fast and
accurate simulation with a modern library for Bayesian analysis makes it possible
to achieve a true sampling of the system’s parameter space in reasonable time.

Chapter 7 contains the tests performed to ensure that the forwardmethod, and
Lensed in particular, is working as expected. This is done by analysing a fixed lens
model in an ensemble of 100 mock images containing randomised sources. By
recovering lens parameters in a setting where the mock data can be reconstructed
exactly, it is possible to show that themethod has no intrinsic biases. This remains
true after generating mock observations with more complex background sources
based on real galaxies, which therefore cannot be modelled exactly. Subsequent
analysis shows that the lens parameters are still very well constrained, to a degree
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far beyond the uncertainties that arise from the modelling of the systems. Thus it
is demonstrated that in lens reconstruction applications, the quality of the results
is not limited by either the forward method or the particular algorithm used for
the reconstruction.

A further set of tests shows that the forward method is also uniquely adapted
for studying the properties of lensed background sources. Repeating the above
tests, this time with focus on the source parameters, it could be shown that the
results are nearly invariant under the influence of the lens. This means that sources
return the same set of parameters when reconstructed through a lens as if they had
been observed directly, but with the effective magnification that the lens provides.

The implementation of the forward method in Lensed is used to analyse a
number of real observations in Chapter 8. The data originates from the SLACS
survey [10, 11] and has been previously analysed there with a similar method. This
is an opportunity to compare different implementations of the forward method,
highlight possible differences and their origins, and verify that the techniques
presented here lead to acceptable results. Overall, the results agree very well with
the previously published ones. At the same time, this experiment showcases how
Lensed can be used in practise.

In a second application, Lensed is used in Chapter 9 to analyse the “Cosmic
Horseshoe” CSWA 1. This is a spectacular, almost complete Einstein ring (∼300○)
with large diameter (∼10”), and one of the most massive galaxies observed. Using
models and the reconstruction method presented here, it was possible to show
that the high resolution data fromHST contains information about the lens model
and its environment (in the form of shear) which has not been accessible in earlier
reconstructions with different methods. The final result of this application is an
impressive reconstruction that reproduces even small details of the observation
with only a handful of simple, parametric models.

Future applications. It will be interesting to extend the example demonstrations
given here to a full analysis. In the first case, one of the major SLACS results
is that the mass density profile across the population of lenses is approximately
isothermal. This could be verified with moderate effort using Lensed and the
elliptical power law profile lens presented here. In the second case of the “Cosmic
Horseshoe”, a careful analysis of the environment of the galaxy can provide a prior
constraint on the admissible external shear of the lens model. If, once the shear
is realistically constrained, the resulting power law slope remains considerably
flatter than isothermal, i.e. t < 1 or even t < 0.5, this could be a powerful indicator
of a possible dark, flat component to the lens.

Extension of the method. There are a number of conceivable extensions to the
forward method in its current form. One such extension the treatment of multi-
plane lensing [78], and the Lensed algorithm in particular was designed with this
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goal in mind. This would be useful for gravitational lens systems which contain
images from sources at different redshifts, such as the so-called “Jackpot” lens [40].

Another possible extension is the simultaneous reconstruction of observations
inmultiple bands, similar to the GalfitM [112] extension to Galfit [75, 76]. This
can possibly lead to drastically improved constraints, as the information content of
the reconstruction is multiplied, and help in the resolution of possible deficiencies
or degeneracies in the data of a single band. The difficulty here is not so much the
lensing, which is the same, but ameaningful relation of the sourcemodels between
the bands.

Given the speed and robustness of the implementation, it is also conceivable
that a code like Lensed can be useful in a lens finding scenario [16]. Here many
candidate lens systems would be analysed with a fixed lens model, and flagged as
soon as the reconstructions finds tangible indicators for a deflecting mass.

Finally, it is possible to implement specialised treatment for lensing by galaxy
clusters, the images of which are commonly much larger in size than those of
galaxy-galaxy lensing events. This is a new frontier for the forwardmethod of lens
reconstruction, and the different context provides new and unique opportunities
for further optimisation.
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A Weak lensing of large scale structure in
the presence of screening

The contents this chapter have been published as N. Tessore et al., Weak lensing of
large scale structure in the presence of screening, J. Cosmology Astropart. Phys. 10
(Oct. 2015) 36, arXiv: 1508.04011.

A.1 Introduction

Apossible approach to explaining the observational evidence for cosmic accelera-
tion is that general relativity is modified in regions of low density, low acceleration
or, simply, on large scales. A number of models have been proposed [16], and the
idea that there may be a gravitational solution to the dark energy problem has led
to a renewed scrutiny of the fundamental properties of gravity. The hope is that,
in the very least, a better understanding of general relativity will emerge from cur-
rent and future cosmological observations.

A common feature in a number of modified theories of gravity is that there is
some form of screening [31]. Precision tests [5, 64] indicate that general relativity
is at least an excellent effective theory for describing gravitational physics locally
or in regions of moderately high density and curvature. This means that, in any
modification of the theory, the nature of gravity must depend on its environment
and that deviations from general relativity are absent (or screened) in regions in
which it has been well tested. Current proposals involve the chameleon [32, 41],
symmetron [25, 44, 48] or Vainshtein [62] mechanism, all of which lead to par-
ticular features in the gravitational potential.

A key characteristic of the various screeningmechanisms [25, 32, 62] currently
being considered is that they are fundamentally non-linear. While they might
have an effect in regimes where density perturbations are still in the linear re-
gime, their full effect comes into play in the non-linear regime of gravitational
collapse. This means that, in order to fully understand the effect of screening in
universes which closely resemble our own, it must be possible tomodel non-linear
structure formation not only accurately but also efficiently. There has been sub-
stantial progress in numerically modelling the quasi-linear and non-linear regime
of structure formation using adapted N-body codes [37, 39, 49, 68], and codes are
now beginning to reach the level of accuracy required for what has been dubbed
“precision cosmology”. Such accuracy is at the expense of highly intensive com-

http://dx.doi.org/10.1088/1475-7516/2015/10/036
http://arxiv.org/abs/1508.04011
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puter algorithms which focus on specific models and hence on a reduced subset
of the full parameter space that needs to be explored. Winther and Ferreira [65]
have therefore recently advocated the development of approximate algorithms to
explore a broader range of parameter space at the expense of accuracy.

With a modified N-body code it is then possible to study the observational
consequences of gravitational screening by generating a wide suite of simulations
which in turn can be used to design future surveys. Converting such simulations
into mock surveys is a crucial step in optimising the scientific returns of cosmo-
logical experiments such as Euclid [51], LSST [29], WFIRST [57] and SKA [15].

One particular cosmological probe— theweak lensing of galaxies by interven-
ing gravitational potentials — has been heralded as a particularly powerful test of
gravitational physics on large scales. It should supply complementary informa-
tion to probes of the matter density field through spectroscopic and photometric
galaxy redshift surveys and, in principle, will be insensitive to galaxy bias. Current
measurements of weak lensing on large scales are not yet competitive with other
cosmological probes, but the future looks promising with the surveys mentioned
above.

This chapter describes the algorithms that can be used to produce lensing
maps in cosmologies with screening. The modified gravity simulations are real-
ised with the code described in [39] and for lensing, the Glamer pipeline [40,
47] is used. The methods proposed here are the starting point for developing a
concerted and comprehensive search for signatures of screening in observations
of weak lensing. This work complements a larger effort by many groups [18, 23,
28, 40, 47, 50].

The outline of this chapter is as follows. Section A.2 briefly summarises the
theoretical frameworkwith a particular and systematic focus on the differentmech-
anisms for gravitational screening and how they can be parametrised. Section A.3
describes themodifiedN-body algorithmwhich produces the density field, aswell
as the lensing pipeline consisting of MapSim and Glamer. Section A.4 presents
the results of a suite of simulations, focusing on maps and a few of the main one-
point and two-point statistics. Finally, Section A.5 discusses the results as well as
the limitations and future applications of this approach.

A.2 Theory

Scalar-tensor theories

This chapter will focus on scalar-tensor theories of modified gravity that display
some form of screening mechanism. These are contained in the general Lag-
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rangian1

L = R
2
M2

Pl + Lϕ(ϕ, ∂ϕ, ∂∂ϕ) + Lm(A2(ϕ)gµν ,ψm), (A.1)

whereM2
Pl ≡ (8πG)

−1 andψm are thematter-fields. Matter is coupled to the scalar
field via the effective metric

g̃µν = A2(ϕ)gµν , (A.2)

and therefore moves on geodesics of the g̃µν metric. In the Einstein frame, where
gravity is described by general relativity, this implies the existence of a fifth-force;
for a test mass in the non-relativistic limit the force is given by

Fϕ = ∇ logA(ϕ). (A.3)

The key to a successful modified gravity model is a way of evading the stringent
constraints from local gravity experiments and at the same time giving rise to
interesting astrophysical and cosmological signatures. One such way is through
what is commonly called a “screening mechanism”, and below a short review is
given of the different screening mechanisms investigated here.

Screening mechanisms

To see how screening can emerge in a scalar tensor theory, the general scalar field
Lagrangian (A.1) is expanded to quadratic order about a given field value ϕ0

Lquadratic = Xµν(ϕ0)∂µδϕ∂νδϕ +m2(ϕ0)δϕ2 + β(ϕ0)δϕ
MPl

ρm , (A.4)

where m(ϕ0) =
√
d2V(ϕ0)/dϕ2 is the (local) value of the scalar field mass, V(ϕ)

is the potential for ϕ, and β = d logA
dϕ MPl is the (local) coupling strength of the fifth-

force. The value 2β2 = 1 corresponds to a force with the strength of gravity. The
fifth-force on a test mass, from a source of mass M, can schematically be written
in the form

Fϕ ≃
GM
r2

2β2(ϕ0)√
∣Xµν(ϕ0)∣

e−m(ϕ0)r . (A.5)

Now two different regions A and B of space-time are considered, where ϕ0 = ϕA
and ϕ0 = ϕB /= ϕA. From the quadratic Lagrangian (A.4) it follows that there
are at least three ways in which some form of screening can emerge. One way
to reduce the effect of the fifth-force (in region B compared to A) is by having a

1 f (R) gravity requires a conformal transformation gµν → gµνA2
(ϕ) with A(ϕ) = e

βϕ
MPl and

β = 1/
√

6 to be brought into this form [12].
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large local mass m(ϕB) ≫ m(ϕA) which implies a very short interaction range
(the chameleon mechanism). If the matter coupling β(ϕB) ≪ β(ϕA), the fifth-
force will also be suppressed (the symmetron mechanism). Lastly, the condition
∣Xµν(ϕB)∣ ≫ ∣Xµν(ϕA)∣ leads, after canonical normalisation, to aweakenedmatter
source and therefore also a weakened fifth-force (the Vainshtein mechanism).

It should be noted that this simplified description does not tell the whole story;
added to these effects there can be (and is) additional screening which can only
be studied by considering the full non-linear dynamics of the scalar field.

Chameleon mechanism The chameleon mechanism [32, 41] can be found in
models defined by the Lagrangian

Lϕ =
1
2
(∇ϕ)2 +V(ϕ). (A.6)

The Klein-Gordon equation for the scalar field reads

◻ϕ +Veff,ϕ = 0. (A.7)

In the presence ofmatter sources, the dynamics of ϕ are determined by an effective
potential which, for non-relativistic matter, is given by

Veff = V(ϕ) +
A(ϕ)ρm
MPl

. (A.8)

Too see how screening works in detail, one can consider a static and spherically
symmetric object of density ρ0 and radius R embedded in a background of density
ρenv. The approximate solution to the Klein-Gordon equation [32] in this case
leads to a fifth-force given by

Fϕ ≃ 2β2 ∆R
R

GM
r2 e−menvr , (A.9)

where menv =
√
Veff ,ϕϕ(ϕenv) is the mass of the scalar field in the background,

β = MPl
d logA
dϕ is the coupling strength (which is constant in the chameleonmodel)

and

∆R
R
=min{1, ∣ϕ0 − ϕenv∣

2βMPlΦN
} (A.10)

is the so-called thin-shell screening factor where ΦN is the Newtonian potential
of the object and the subscript “0” or “env” refers to quantities at the centre or in
the environment of the object, respectively. The larger the Newtonian potential
becomes, the smaller ∆R

R is, and the fifth-force is screened. On top of this, and in
dense environments, the term ∣ϕ0 − ϕenv∣ also becomes small (and menv becomes
large), giving rise to an environmental screening effect, i.e. an object that is not
screened on its own can be screened if it is in a very dense environment. This
environmental dependence has many interesting consequences [52, 67, 70].
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Symmetron mechanism The original symmetron model [25] is defined by the
same Lagrangian as for the chameleon, where

V(ϕ) = −1
2
µ2ϕ2 + 1

4
λϕ4, (A.11)

A(ϕ) = 1 + 1
2

ϕ2

M2 → β(ϕ) = ϕMPl
M2 , (A.12)

and where µ,M , λ are model parameters. The effective potential in the presence
of matter sources is given by

Veff(ϕ) =
1
2
( ρm
µ2M2 − 1) µ2ϕ2 + 1

4
λϕ4. (A.13)

The symmetron mechanism is similar to the chameleon mechanism, except that
the coupling β is now field dependent, leading to an additional screening effect.
If the local density satisfies ρm > µ2M2, the effective potential has a minimum at
ϕ = 0, and the field will reside near it. Since the coupling is proportional to ϕ, the
effective matter coupling is suppressed in high density regions, and the fifth-force
is additionally screened.

The same screening conditions (A.9)–(A.10) as for the chameleon also apply
to the symmetron, but now β = β(ϕenv) is not a constant anymore.

Vainshtein mechanism The Vainshtein mechanism [62] is responsible for the
viability of massive gravity, but it can be present in other theories, most notably
the Galileons [42] and the DGP model [21]. Instead of the original DGP model,
a toy model is used with the same fifth-force, thus having the correct Vainshtein
screening, but a ΛCDM background instead. This is known as the normal branch
DGP model, where dark energy is added in the form of a cosmological constant
[22]. The field equation for the scalar field, which is the so-called brane-bending
mode in the DGP model, reads

◻ϕ + r2
c

3βDGP(a)a2 ((◻ϕ)2 − (∇µ∇νϕ)2) = 8πGa2

3βDGP
δρm , (A.14)

where rc is the so-called cross-over scale and a is the scale parameter of the back-
ground metric. In the original DGP model, rc dictates at what length-scales grav-
ity becomes 5D and βDGP(a) = 1 + 2rcH(a) (1 + Ḣ

3H2 ). For static spherical sym-
metric configurations, the field equation reduces to

1
r2

d
dr
[r2 dϕ

dr
] + 2r2

c
3βDGP(a)

d
dr

⎡⎢⎢⎢⎢⎣
r (dϕ

dr
)

2⎤⎥⎥⎥⎥⎦
= 8πGδρm

3βDGP(a)
. (A.15)

This equation can be integrated to yield

dϕ
rdr
+ 2r2

c
3βDGP(a)a2 (

dϕ
rdr
)

2

= 2a2

3βDGP(a)
GM
r3 , (A.16)
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which results in the fifth-force on a test-mass being

Fϕ =
GM
r2

1
3βDGP(a)

2
⎡⎢⎢⎢⎣

√
1 + (rV /r)3 − 1
(rV /r)3

⎤⎥⎥⎥⎦
, (A.17)

where rV = ( 16GM
9β2

DGP
r2
c)

1/3
is the so-called Vainshtein radius. The screening mech-

anism works so that the fifth-force is screened at distances smaller than the Vain-
shtein radius (r ≪ rV ). As opposed to the chameleon and symmetron screening
mechanisms, where the mass-term gives the fifth-force at finite range, gravity in
this case is modified on the largest scales: Fϕ ≃ GM

r2
1

3βDGP(a) for r ≫ rV .

Linear perturbations in modified gravity

The evolution of linear matter density perturbations in the relevant models can be
written in the general form [11]

δ̈m + 2Hδ̇m =
3
2
Ωm(a)H2δm

Geff(k, a)
G

, (A.18)

whereGeff(k, a) is the effective gravitational constant in Fourier space. In the case
Geff(k, a) = G the equation governing the evolution of density perturbations in
ΛCDM is recovered. For the chameleon and symmetron mechanism [11]

Geff(k, a)
G

= 1 + 2β2(a)k2

k2 + a2m(a)2
, (A.19)

where β(a) andm(a) are the respective coupling andmass of the scalar field along
the cosmological attractor solutions. The form of this equation can be understood
as the ratio of the Fourier transforms of the fifth-force potential and Newtonian
gravitational potential, F[∇2ΦN +∇2 logA]/F[∇2ΦN] = 1 + 2β2(a) k2

k2+m2a2 .
For large scales k/a ≪ 1

m(a) , it follows that Geff(k,a)
G ≈ 1, in which case the

ΛCDM evolution is recovered. On the other hand, on small scales k/a ≫ 1/m(a)
it follows that Geff(k,a)

G = 1 + 2β2(a), and gravity is modified. For the symmetron,
relevant expressions are

m(a) = 1
λϕ

√
1 − (assb/a)3, (A.20)

β(a) = β0
√

1 − (assb/a)3, (A.21)

where λϕ = 1
√

2µ is the range of the symmetron field at z = 0, β0 = µMPl
√

λM2 is the

coupling strength relative to gravity and assb = (
3H2

0M2
PlΩm

M2µ2 )
1/3

is the scale-factor
at which the modifications of gravity become noticeable.
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For the Hu-Sawicky f (R) model [27], which is one of the simulated models,
the relevant expressions are

m(a) =
H0
√

Ωm + 4ΩΛ√
(n + 1)∣ fR0∣

(Ωma−3 + 4ΩΛ

Ωm + 4ΩΛ
)
n/2+1

, (A.22)

β(a) = 1√
6
, (A.23)

where n and ∣ fR0∣ are model parameters. In the following, only the case where the
primordial power spectrum index is n = 1 will be considered. The DGP model
used here corresponds to taking

m(a) = 0, (A.24)

β(a) = 1√
6βDGP(a)

. (A.25)

Note that, since m(a) = 0, there is no scale (or k) dependence in Geff(a).
Another way to look at these models is within the γ, µ parameterisation [1],

where the metric potentials are given by ∇2Ψ = 4πGa2µδρm and Φ = γΨ. It
follows that

µ = m2(a)a2 + (1 + 2β2(a))k2

m2(a)a2 + k2 , (A.26)

γ = m2(a)a2 + (1 − 2β2(a))k2

m2(a)a2 + (1 + 2β2(a))k2 . (A.27)

For the symmetron and f (R) gravity theories, the two functions interpolate the
fixed values µ = γ = 1 for large scales k/a ≪ m(a) and µ = 1 + 2β2(a) and
γ = 1 − 4β2

(a)
1+2β2(a) for small scales k/a ≫ m(a). On the other hand, the DGP-like

model has µ = 1+2β2(a) and γ = 1− 4β2
(a)

1+2β2(a) for all k, so gravity is modified even
on the largest scales.

The linear theory is useful for obtaining a qualitative understanding of the
signatures to expect, but it neglects an important part of the model’s behaviour,
namely the screening mechanism. N-body simulations of modified gravity mod-
els, such as the ones considered here, have shown that the predictions of linear
perturbation theory become inaccurate as soon as the evolution of the density per-
turbations starts to deviate from ΛCDM [3, 9, 10, 19, 35, 53]. Therefore, N-body
simulations are needed to obtain accurate predictions for the non-linear evolution
of these models .

Gravitational lensing in modified gravity

Gravitational lensing is determined by the so-called lensing potential Φ+ = Φ+Ψ
2 .

For the modified gravity models considered here, there is no difference to the
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Newtonian potential. This can most easily be seen from the γ, µ parameterisation
mentioned in the previous section, which gives expression

Φ+ =
(1 + γ)µ

2
ΦN , (A.28)

where ∇2ΦN = 4πGa2δρm is the Newtonian potential, i.e. the same equation as
in ΛCDM.

When (1 + γ)µ = 2, as is the case for the particular modified gravity theories
studied here, lensing itself is not modified. The differences in lensing with respect
to ΛCDM are encoded in the differences in the matter distribution caused by the
modifications of gravity during the process of gravitational collapse. Modified
gravity models where lensing itself is modified [3] can also be studied within the
following numerical framework, but this is left for future work.

A.3 Simulations

Gravitational N-body code

The simulations of this chapter have been performed using the ISIS code [39]
which is an adaptation of themulti-purposeN-body code RAMSES [61] for modi-
fied gravity. TheDGPmodel has been implemented following the description laid
out in [35].

Standard N-body simulations of darkmatter are evolved using only two equa-
tions. First, the gravitational potential is calculated (after having used the location
of the N-body particles to calculate the density field) using the Poisson equation

∇2ΦN = 4πGa2(ρm − ρm), (A.29)

and the particles are then evolved using the geodesic equation

ẍ + 2Hẋ = −∇ΦN . (A.30)

When going to the modified gravity models, the only change (as long as the back-
ground is close to ΛCDM) is that the fifth-force must be included. This adds a
term Fϕ from (A.3) to the right hand side of the geodesic equation. The expres-
sion for the force terms and the corresponding field equations that are solved in
the N-body code can be found below. Solving these highly non-linear differential
equations is the most challenging and time-consuming part of modified gravity
simulations.2 All models simulated here have been simulated before; and more
information and details about the implementation of the scalar field solver and
modified gravity simulations in general can be found in the literature [37, 39].

2See [68] for a comparison of different codes used to simulate modified gravity. The code used
here was found to compare very well (to percent accuracy) with other high-resolution codes deep
into the non-linear regime.
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model type parameters

F5 f (R) ∣ fR0∣ = 10−5, n = 1
F6 f (R) ∣ fR0∣ = 10−6, n = 1
Symm. A symmetron λϕ = 1.0 Mpc/h, aSSB = 0.50, β0 = 1.0
Symm. B symmetron λϕ = 1.0 Mpc/h, aSSB = 0.33, β0 = 1.0
DGP, r = 1.2 DGP rcH0 = 1.2
DGP, r = 5.6 DGP rcH0 = 5.6

Table A.1: The modified gravity models which are used for N-body simulations.
The background cosmology in each simulation is a standard ΛCDM cosmology
with Ωm = 0.271, ΩΛ = 0.729, h = 0.703, ns = 0.966 and σ8 = 0.8.

The code was also part in a recent code comparison project for modified gravity
N-body codes [68] and it was found to agree to the ∼ 1% level deep into the non-
linear regime (k ∼ 5 h/Mpc) with similar codes for the models simulated for this
work.

The simulations performed all start from the same initial conditions and are
run with N = 5123 particles in a box of size B0 = 250.0 Mpc/h and with a ΛCDM
cosmology given by Ωm = 0.271, ΩΛ = 0.729, h = 0.703, ns = 0.966 and σ8 =
0.8. For each simulation, output of the particles for the lensing analysis is done at
redshifts z = 0.000, 0.046, 0.111, 0.176, 0.244, 0.333, 0.422, 0.538, 0.660, 0.818,
1.000, 1.250, 1.500, 1.750, and 1.981.

The simulated modified gravity models are the Hu-Sawicky f (R) model, the
symmetron model, and the normal branch DGP model. Table A.1 lists the para-
meters used in the simulations.3 Thebackground evolution in eachmodified grav-
ity simulation corresponds to ΛCDM, allowing for the direct comparison of the
effect of the fifth-force (and the corresponding screening mechanism).

Field equations. For completeness, the field equations solved in the N-body
code for the different modified gravity models are presented here. In the equa-
tions, the quasi-static approximation has been applied [7, 38, 43, 66]. The equa-
tion of motion for particles in the N-body simulations can be written in the form

ẍ + 2Hẋ = −∇ΦN − Fϕ , (A.31)

where ∇2ΦN = 4πGa2(ρm − ρm) is the Newtonian potential and Fϕ is the fifth-
force.

3With the chosen parameters, the DGPmodel with rcH0 = 1.2 (rcH0 = 5.6) has the same value
of σ8 as the f (R)model with fR0 = 10−5 ( fR0 = 10−5).
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f (R) For the Hu-Sawicky f (R)model it follows that

Fϕ = −
1
2
∇ fR , (A.32)

where the scalar field fR is determined by

∇2 fR = −ΩmH2
0a

2 (ρm
ρm
− 1)+a2H2

0Ωm

⎡⎢⎢⎢⎢⎣
(1 + 4

ΩΛ

Ωm
)( fR0

fR
)
n+1
− a−3 − 4

ΩΛ

Ωm

⎤⎥⎥⎥⎥⎦
.

(A.33)

Symmetron For the symmetron model it follows that

Fϕ =
6Ωm(H0λϕ)2β2

0

a3
ssb

χ∇χ, (A.34)

where the scalar field χ is determined by

∇2χ = a2

aλ2
ϕ
(
a3

ssbρm
a3ρm

χ − χ + χ3) . (A.35)

DGP For the DGP model it follows that

Fϕ =
1
2
∇ϕ, (A.36)

where the scalar field ϕ is determined by

∇2ϕ + r2
c

3βDGP(a)a2 ((∇
2ϕ)2 − (∇i∇ jϕ)2) =

H2
0

aβDGP

δρm
ρm

. (A.37)

Lensing pipeline

Light passing through an inhomogeneous matter field is deflected by the interven-
ing large-scale structure. This effect, called cosmic shear, promises to be a powerful
probe of cosmology. As long as Ψ = Φ holds for the gravitational potential, the
cosmic deflection potential for a light cone out to comoving distance χ is given by
[20, 55]

ψ(θ) = 2
c2 ∫

χ

0

DA(χ − χ′)
DA(χ)DA(χ′)

Φ(DA(χ′) θ , χ′)dχ′ , (A.38)

where DA is the comoving angular diameter distance. The deflection potential is
sourced by an effective dimensionless surface mass density

κ(θ) =
3H2

0Ωm
2c2 ∫

χ

0

DA(χ′)DA(χ − χ′)
DA(χ)

δ(DA(χ′) θ , χ′)
a(χ′)

dχ′ , (A.39)
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Figure A.1: Comparison of a 1.85deg×1.25deg field of view of the convergence
κ in ΛCDM and the modified gravity models, using a source redshift zs = 2. All
four panels show the same light cone extracted from the respective simulations.
The convergencemaps were simulated with the Glamer pipeline for gravitational
lensing.

where δ is the matter density contrast ∆ρ/ρ.
Extracting lensing quantities from simulations using (A.38) and (A.39) is cum-

bersome and numerically intensive, as each calculation and each desired source
redshift involves raytracing through the simulation volume. Instead, weak lens-
ing by the large-scale structure is simulated using the multi-plane approach of the
Glamer lensing pipeline [40, 47]. An observed light cone is first segmented in the
radial direction into a number of slices, and the three-dimensional mass distribu-
tion in each slice is projected onto a plane at the mean comoving distance of that
slice. The resulting two-dimensional surface mass density maps κi , i = 1, 2, . . .
serve as lensing planes for Glamer, which traces the propagation of light from
plane to plane using the deflection angle

α i = ∇ψi (A.40)

and the Poisson equation [47]

∇2ψi = 2κi (A.41)
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Figure A.2: Light cone construction withMapSim for the ΛCDM simulation. The
simulation box size is B0 = 250 Mpc/h. The dark shaded area is the light cone,
growing to a transverse comoving size equal to the box size B0. The mass distri-
bution in each of the individual light cone segments is projected onto a lensing
plane at the centre of the segment (dashed line). The regions above the light cone
indicate the simulation snapshots used to construct each segment. The regions
below the light cone indicate groups of segments that have been randomised in
the same way.

which relates the surface mass density κi to the Laplacian of the deflection poten-
tial ∇2ψi on each plane. Having thus constructed the lensing simulation, one is
free to place a source plane at any redshift inside the light cone (i.e. a delta dis-
tribution of source redshifts), and calculate maps of lensing quantities such as the
convergence κ or the shear γ for an observer at redshift zero. Sample convergence
maps for the ΛCDM, f (R), symmetron, and DGP simulations are shown in Fig-
ure A.1.

The construction of light cones from simulations and the projection of the
mass distribution onto individual planes is done by the MapSim tool [23] in a
single step. Each light cone is constructed up to redshift zmax = 2.0, which is thus
the highest source redshift available for the lensing maps. The field of view of the
light cone is a square with a side length of 3.85deg, which is the angle subtended
by the simulation box size B0 at redshift zmax, giving a total area of 14.82deg2.

Figure A.2 shows the schematic construction of a light cone for the ΛCDM
simulation. It is clear that for lower redshifts, much of the simulation box volume
is unused. Randomisation of the box volume through rotation and translation
offers a way to extract multiple light cones from a single simulation [30], where
each of the light cones ends up with a random portion of the simulation box.

MapSim constructs a light cone by randomly picking an origin and orienta-
tion of the box volume, defining zero comoving distance and the direction of the
line of sight. Increasing the comoving distance, particles in the field of view are
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mapped into the light cone, making use of the periodic boundary conditions of
the simulation box. This continues until the comoving distance is amultiple of the
simulation box size B0, changing snapshots as they become a better fit for current
redshift. The process is repeated, starting from the randomisation, until the whole
light cone has been constructed.

Using the technique laid out above, ten randomised light cones are extracted
from each of the simulations and gravitational lensing of the contained large scale
structure is simulated. Lensing maps of the convergence fields κ are then created
for source redshifts zS = 0.5, 1.0, 1.5, 2.0. These maps have a size of 2048 × 2048
pixels for the aforementioned field of view of 3.85deg×3.85deg, resulting in an
angular resolution of 6.77 arcsec per pixel. It is noted that since the simulation
box fills the whole field of view at z = 2.0, the same large-scale structure is present
in each light cone for the higher redshift slices. It is thus expected that the sample
variance is underestimated with increasing redshift.

A.4 Results

Matter power spectrum

The matter power spectrum is defined via

⟨δm(k)δm(q)⟩ = (2π)3δ(3)(k + q)P(k), (A.42)

where δm(k) is Fourier transform of the density field δm(x) ≡ ρm(x)/ρm −1. The
matter power spectrum is calculated for all of the simulations using PowMes [17].
The power spectra obtained agree well with previous N-body simulations of the
same models [10, 19, 35, 37, 39, 45, 49], and serve as a good cross-check for the
validity of the results. Also computed are both the linear predictions (A.18), and
the halofit [56] predictions for the non-linear power spectrum usingMGCAMB
[26]. This latter code is a modified gravity modification of the Boltzmann-code
CAMB [34] and uses the improved fitting formula (designed for ΛCDM) of [59]
to get better agreement with simulations on small scales. The fractional difference
of the matter power spectrumwith respect to ΛCDM as a function of redshift can
be seen in Figure A.3 for the f (R), symmetron, and DGP models, respectively.

Before the results are discussed in more detail, it shall be noted that, overall,
the results confirm the qualitative features discussed in Section A.2. For f (R) and
the symmetronmodel, it can be seen that the power spectrum approaches ΛCDM
on large scales, while for DGP there are modifications on all scales. Furthermore,
comparing the full simulation results with the predictions of linear theory shows
the effect of screening: linear theory greatly overestimates the amount of cluster-
ing on small scales. This confirms the point made above: non-linear effects are
crucial for accurately modelling the effects of gravitational screening and meth-
ods such as those presented in this chapter, play an essential role. The halofit
predictions will be discussed in more detail below.
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Figure A.3: The fractional difference in thematter power spectrumwith respect to
ΛCDM for the f (R), symmetron, and DGP models. The thin dotted lines shows
the linear perturbation theory and the dashed lines shows thehalofit predictions
(using the halofit fitting function of MGCAMB for f (R)).
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f (R) For thismodel,modifications to gravity boost structure formation on small
scales. Furthermore, one finds that P(k) ≃ P(k)ΛCDM for scales k ≲ 0.05 h/Mpc
and over all times. The effects are stronger in the F5 model than in the F6 model
and this is due to the larger range (A.22) of the fifth-force in the former simu-
lation. For the F5 (F6) model it can be seen that the matter power spectrum is
enhanced by up to ≈ 25% (≈ 2–5%) at z = 0 for non-linear scales k ∼ 1–10 h/Mpc.
At z = 2 the deviations from ΛCDM are below 5% and 1% for all scales in the
F5 and F6 model respectively. At earlier times the modifications are even smaller
and thus, for these models, modifications to gravity only have a potentially ob-
servable impact on structure formation at late times, z ≲ 2. The main reason for
this is that the range (A.22) of the scalar field decreases rapidly as one approaches
higher redshifts. Comparing the results of linear perturbation theory with the
simulated results, it is clear that the amount of clustering is greatly overestimated
in linear theory. For example, at k = 1 h/Mpc and z = 0, linear theory predicts a
modification of ≈ 50% in the F5 model whereas the actual result is closer to ≈ 20%.

Symmetron Modifications of gravity in the symmetron model follow the same
pattern as in f (R) gravity, where structure formation is boosted on small scales.
The effects are stronger in the B model than in the A model. The reason for this
is the smaller value of assb in the former simulation, which means that the fifth-
force has been active for a longer period of cosmic time. The fifth-force is not in
operation before the time of symmetry breaking a = assb and consequently the
power spectrum is the same as in ΛCDM for earlier times a < assb. For the A
(B) model, one sees that the matter power spectrum is enhanced by up to ≈ 15%
(≈ 5%) at z = 0 for non-linear scales k ∼ 1–10 h/Mpc. Linear theory is an even
worse fit to the simulation results in the symmetron model than in f (R) gravity.
At k = 1 h/Mpc at z = 0 one finds an ≈ 2% modification for the B model whereas
linear theory predicts almost 20%. This larger deviation can be attributed to the
stronger screening mechanism in the symmetron model, i.e. the fact that β ∝ ϕ
leads to additional screening on small scales (and high density regions) where ϕ
is clustered close to ϕ = 0.

DGP Contrary to the two models discussed above, gravity is modified on all
scales in the DGP model. At z = 0 one finds that structure formation in the
rcH0 = 1.2 (= 5.6) model is enhanced by ≈ 12% (≈ 3%). Going to earlier times
the modifications become smaller and, at z = 2, are less than ≈ 4% and ≈ 1% in
the two models, respectively. Since βDGP increases with increasing rc one expects
that a larger rc leads to stronger modifications, and this is indeed the case in the
results. On highly non-linear scales k ≳ 5 h/Mpc, deviations in the power spec-
trum are seen to drop for both simulations and at k = 10 h/Mpc they are very
close to the ΛCDM prediction. This is due to the Vainshtein mechanism being in
play and reducing the effects of the fifth-force on the small-scale structure form-
ation. It can also be seen that for the two chosen models for the simulation, the
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relative difference ∆P/PΛCDM has a similar shape at all three redshifts depicted in
Figure A.3, while the amplitude is markedly different.

Convergence power spectrum

Similar to the power spectrum (A.42), the convergence power spectrum Cℓ is
formally defined by

⟨κ̂(ℓ)κ̂(ℓ′)⟩ = (2π)2 δ(2)(ℓ + ℓ′)Cℓ , (A.43)

where ℓ denotes the angular mode. The convergence power spectrum is an im-
portant cosmological probe, as it can be related to the evolution history of the
universe via Limber’s approximation through

Cl(zs) =
9Ω2

mH4
0

4 ∫
zs

0
dz

g2(z)(1 + z)2

χ2(z)H(z)
P(k = l/r(z), z) (A.44)

where P(k, z) is the matter power spectrum at redshift z and g(z) is the lens-
ing weight. For a single source plane at z = zs one has g(z) = χ(z)(χ(z) −
χ(zs))/χ(zs) where χ(z) is the co-moving distance. This is a powerful combina-
tion of many cosmological quantities which can help break degeneracies arising
in other probes. The convergence power spectrum is also directly related to all
observed quadratic statistics of cosmic shear measurements, and might soon be
measured directly [24, 33].

In order to estimate the power spectrum from the simulated convergencemaps,
one uses

Cℓ =
1
A
⟨∣κ̂(ℓ)∣2⟩ , (A.45)

where κ̂ is the Fourier transform of the convergence field, and the averaging is
done over the angle of vector ℓ. In practice, κ̂ is calculated via a Fast Fourier
Transform of the convergence maps (after zero-padding to mitigate boundary ef-
fects), and performing the averaging in bins of ∆ℓ with logarithmic spacing. By
calculating the convergence power spectrum separately for each simulated light
cone, one arrives at a sample of results which further give a handle on the sample
variance of the results. The estimated power spectra for the respective f (R), sym-
metron, and DGP models are shown in Figure A.4.

To estimate up to which ℓ the results are trustworthy, the relative contribu-
tion to Cℓ coming from different ranges of co-moving modes of the matter power
spectrum is computed. The result can be seen in Figure A.5. The simulations
performed here have a particle Nyquist frequency of kNy ≃ 6.5 h/Mpc. Fixed-
grid simulations with different box sizes usually start to deviate from each other
for modes larger than k ∼ kNy/4–kNy/2, resulting in kmax ∼ 2–3 h/Mpc and
ℓmax ∼ 2000–3000. However, the simulations have adaptive refinements, which
means that the effective Nyquist frequency is much larger and a rough estimate
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Figure A.4: Dimensionless convergence power spectra ℓ(ℓ + 1)Cℓ for the f (R),
symmetron, and DGP simulations at source plane redshifts zS = 0.5, 1.0, 1.5, 2.0
(bottom to top). Shown are the 1σ error bars over the sample of realisations. Also
shown are the predictions obtained fromhalofit (thick) and, in the case of f (R),
mghalofit (thin).
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P(k, z) = 0 for k values outside the range indicated in the plot. The source is here
at z = 1.0.

from the refinement structure gives a factor 5–10 at z = 0.0. From this it follows
one can trust the Cℓ spectra up to ℓmax ∼ 104. For the largest source redshift
zs = 2.0 this ℓmax value is probably too large due to the lack of refinement at early
times. The minimum ℓ-value one can study is fixed by the simulation box size
B0 = 250 Mpc/h, corresponding to values of kmin = 0.025 h/Mpc and ℓmin ∼ 100
(Figure A.5).

Evolution of the convergence power spectrum

At first, the redshift evolution of the non-linear power spectrum will be invest-
igated4 in the screened models relative to a reference ΛCDM simulation (Fig-
ure A.6). The reason for this is twofold: First, as noted before, one expects a loss
of power in the high z, high ℓ regime due to the lack of refinement of the simula-
tions at early times. However, this loss of power is consistent among the different
simulations, which all evolved with the same refinement settings. Although deep

4See [54] for a discussion on the effect of modified gravity on the weak lensing convergence
power spectrum at linear scales.
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Figure A.6: Left: Dimensionless convergence power spectrum ℓ(ℓ + 1)Cℓ for the
ΛCDM simulation at source plane redshifts zS = 0.5, 1.0, 1.5, 2.0 (bottom to top).
Shown are the 1σ error bars over the sample of realisations. Also shown is the pre-
diction obtained fromhalofit. Right:Difference between the ΛCDM simulation
and predictions from CAMB.

in the non-linear regime, and the effect of resolutionmay be different for different
models, one still expects that the power ratio Cℓ/CΛCDM

ℓ with respect to ΛCDM
will be close to the true value over the full range up to ℓmax ∼ 104 and indicative
of the differences one might find at higher resolution. Another reason for invest-
igating the power ratio is of a more physical nature. If Cℓ/CΛCDM

ℓ is constant in
both redshift z and mode ℓ, it is in principle indistinguishable from ΛCDM with
a different normalisation of the power spectrum. If Cℓ/CΛCDM

ℓ only depends on z
(and not ℓ), it might also be indistinguishable from ΛCDMwith a different back-
ground history. Thus a robust signature of modified gravity requires an evolution
in both redshift and scale.

To robustly estimate Cℓ/CΛCDM
ℓ at a given redshift, the convergence power

spectraCℓ andCΛCDM
ℓ are calculated for the same light cone taken froma screened

model and the ΛCDM simulation. Given that all simulations start from the same
initial conditions, both power spectra trace the evolution of the same patch of the
universe, and the ratio Cℓ/CΛCDM

ℓ is an estimator with much of the influence of
cosmic variance taken out. Only after the individual ratios Cℓ/CΛCDM

ℓ have been
calculated in this way are also themean and variance over the sample of light cones
calculated. The results for the ratio Cℓ/CΛCDM

ℓ can be seen in Figure A.7 for the
respective f (R), symmetron, and DGP models. As intended, the sample variance
has been greatly reduced, especially in the region of intermediate ℓ. Below the
results will be discussed in more details for the three types of models individually.

f (R) The convergence power spectrum in f (R) shows the same qualitative be-
haviour as thematter power spectrum. On large scales (ℓ ≲ O(100)) the fractional
difference w.r.t. ΛCDM is close to zero whereas for small angular scales there are
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Figure A.7: The fractional difference in the convergence power spectra for the
f (R), symmetron, and DGP simulations with respect to ΛCDM for four source
redshifts. Also shown are the predictions obtained from halofit.
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large deviations. In the F6 model the deviation from ΛCDM is consistent (ignor-
ing the error bars) with zero for all source redshifts and ℓ ≲ 103 whereas for the
F5 model there is a non-zero deviation for all ℓ ≳ 102. The ratio Cℓ/CΛCDM

ℓ in-
creases for both models with the angular scale and at l ∼ 104 there is a ≈ 20− 30%
(≈ 5 − 10%) signal for the F5 (F6) model, depending on source redshift.

Symmetron For the symmetron simulations, the same trend as for f (R) is seen
in the convergence power spectrum, but with some important differences. The
fractional difference w.r.t. ΛCDMgrowswith ℓ and for l ∼ 104 there is a ≈ 2–5% (≈
20–30%) deviation for the A (B) model depending on source redshift. As opposed
to the f (R)model, the modifications of gravity are completely absent for a < assb
for the symmetron. It is only close to the present time that the fifth-force has had
time to produce a significant difference in the matter power spectrum and thus,
for the simulation with assb = 0.5, light from high redshift sources propagates
mostly through a ΛCDM universe. Because of this, the Cℓ’s for the A model are
very close to ΛCDM at z = 2.0. As the source redshift moves closer to the present,
moremodifications to large-scale structure appear, and therefore larger deviations
in the convergence power spectrum.

DGP In the DGPmodel, gravity is modified even on the largest scales and there
is a corresponding deviation at small values of ℓ down to the linear regime. The
fractional difference w.r.t. ΛCDM on large scales is found to be of similar order
as in the matter power spectrum over the range 0 < z < 2. For the rcH0 = 1.2
(rcH0 = 5.6) model there is a ≈ 10–15% (≈ 5–10%) deviation depending on source
redshift. The deviation is, within the given error bars, fairly ℓ-independent, but
there is in fact a slight drop-off of the signal for large ℓ that is consistent with
the results found in the matter power spectrum (Figure A.3). Contrary to the
symmetron and f (R)models, there is a redshift-dependency of the signal that is
close to a pure scaling of the amplitude.

Semi-analytical predictions

One can try and approximate the non-linear effects using semi-analytic methods
such as e.g. halofit that perform well in the context of ΛCDM. These power
spectra, generated through a modified version of halofit, can give better agree-
ment with the N-body simulations than linear theory, but even here the predic-
tions for somemodels (andmodel parameters) can also be very poor. This is to be
expected as there is no screening included in the formalism and the halofit pre-
diction is a function of the linear P(k, a) only. Nevertheless, for specific models,
it is possible to obtain good approximations. There do exist other approaches for
predicting the non-linear matter power spectrum (or equivalently ∆P/PΛCDM)
than halofit which might do better [8], but halofit is the most widely used
method to obtain non-linear predictions for the matter power spectrum. Below
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the ability of halofit to predict both the matter and convergence power spectra
for the three models is discussed.

f (R) For f (R) gravity, Figure A.3 shows that the linear predictions are a poor
match to the simulation results for the matter power spectrum and this also holds
for the convergence power spectrum. The halofit code5 is able to improve sig-
nificantly on this. For the F5 model, the halofit predictions for the convergence
power spectrum (Figure A.4, Figure A.7) are roughly within the error bars for
most of the ℓ-range considered here. Much of this good agreement can be attrib-
uted to the model-specific fitting formula used in MGCAMB to correct halofit.
This fitting formula is a 40 parameter fit to f (R) simulations, hence the good level
of agreement is not surprising. For the F6 model, which is more strongly screened,
there is a larger deviation for the low redshift sources and for ℓ = 103–104 halofit
predicts a ≈ 10% signal whereas the simulations shows only ≈ 5%.

Symmetron For the symmetron there does not exist a fitting formula for the
non-linear P(k) to be used in halofit. In the bottom panel of Fig. A.3, it is
clear that halofit gives a very poor fit for the matter power spectrum. It under-
estimates the power for scales k ≲ 0.5 h/Mpc and overestimates the power for
k ≳ 0.5 h/Mpc. However when using these results to compute the convergence
power spectrum, see Figure A.4, A.7, there is a good agreement for the Amodel
whereas the halofit predictions show the largest deviations from the simulation
results. This is a coincidence that comes from the process of integrating the mat-
ter power spectrum (A.44) to compute Cℓ, for which the over-/underestimation
of the power gets averaged out. For the Bmodel, there is a larger deviation for the
low redshift sources, just as for f (R) above, and for ℓ = 103–104 halofit predicts
a ≈ 50% signal whereas the simulations show only ≈ 10%.

DGP For the DGP model, the halofit predictions are fairly good for both the
matter power spectrum and the convergence power spectrum. The main reason
for this is that the linear power spectrum is a much better (but far from good
enough) approximation to the non-linear power spectrum than it is in the other
two models considered here.

In general, the halofit predictions are able to capture the signal, at least qualitat-
ively. However, there is a big difference for the model parameters when screening
is largest. This illustrates how hard it is to accurately predict the signal of these
models on deep non-linear scales, and more elaborate methods are needed to get
the necessary accuracy to constrain these models using data from future weak-
lensing surveys in the deep non-linear regime.

5halofit in this subsection refers to the modified version provided with MGCAMB [69].
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A.5 Discussion

This chapter investigated the weak lensing signatures of modified gravity theories
that have a screening mechanism in the deep non-linear regime. High-resolution
N-body simulations of modified gravity models have been performed which were
selected to cover the most common screening mechanisms discussed in the liter-
ature. The output of the simulations was then processed by MapSim, which ex-
tracts randomised light cones from simulation snapshots, collapsing all particles
within a given light cone onto a number of planes suitable for lensing. These light
cones contain the large-scale structure of the modified gravity theories and, us-
ing the Glamer lensing pipeline, realistic convergence maps as observed by weak
lensing were created.

An analysis of the convergence power spectrum in screened theories of mod-
ified gravity was performed in two steps: First, the convergence power spectrum
Cℓ was extracted directly from the Fourier transform of the generated conver-
gence maps. The results for ΛCDM are in good agreement with semi-analytical
predictions up to ℓ ≳ 103, as well as previous studies. For higher values of ℓ, there
is a loss in power which can be attributed to resolution effects, while the lower
values of ℓ have a large uncertainty due to the variance within the limited sample
size. To combat these effects, the convergence power spectrum Cℓ/CΛCDM

ℓ was
extracted relative to a ΛCDM reference simulation for each individual light cone
before averaging over realisations. Since all simulations start from the same initial
conditions, this procedure reduces the influence of randomness by only consid-
ering the relative increase in power between theories of gravity. The effects of a
loss of power due to limited resolution are then mitigated and the final result is a
clear indicator of the signal one can expect when searching for the deviations of
screened theories from ΛCDM.

For the particular modified gravity models simulated here — f (R) gravity,
the symmetron and the normal branch DGP model — parameters were selected
which are close to the limits that are set by local gravity experiments. For these
parameters, deviations of up to ≈ 50%were found in the convergence power spec-
trum in the deep non-linear regime ℓ ∼ 104. The scale (ℓ) and source redshift de-
pendence of the signal for these models is such that they cannot be mimicked by
a ΛCDMmodel with a different value of Ωm/σ8, which is promising for detecting
this signal in future weak lensing surveys. However the deep non-linear regime is
also where baryonic effects6 and the effects of neutrinos on the power spectrum
are non-negligible. These effects can be highly degenerate with themodified grav-
ity signal [2], and amore detailed study is required to quantify these degeneracies.

The simulation results for thematter and convergence power spectra were also
compared to the predictions of linear perturbation theory and those found from
applying the halofit prescription. Performing modified gravity simulations is
computationally expensive, so having an accurate prescription for predicting the

6See e.g. [63] for a study of baryonic effects on the convergence power spectrum.
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modified gravity signal in the non-linear regime is of great value. It was found that
linear perturbation theory (meaning the prediction for the ratio PMG/PΛCDM is
calculated in linear theory) is a very bad approximation to the simulation results in
almost all cases. This is not surprising since linear theory does not take screening
into account. The same can be said for halofit, although it is still able to do
much better than linear theory. Nevertheless, the halofit predictions are still not
good enough for precision cosmology; one can use detailed fitting formulas such
as the one found in the MG-halofit code for f (R) gravity, but even there the
predictions can be off by as much as ∼ 5–10%. Unfortunately there is no universal
fitting formula with this last approach and one needs to proceed on a model by
model basis; this is clearly unfeasible if one wishes to explores extensive swathes
of parameter space.

This work is a first step in laying down the tools for a thorough analysis of
the effects of screening in weak lensing. To proceed, a number of steps can be
envisioned. For a start, more efficient methods for generating the realisations of
the density field must be developed (one approach has been advocated in [65]).
Indeed, multiple realisations will be needed to pin down the fine details that will
allow to distinguish between models, and an efficient scan of model parameter
space is essential to be able to place reliable constraints on screening parameters
themselves.

With such a tool in hand, there will be a need to develop robust analytical
methods (in the spirit of a modified halofit) which can be incorporated in a
likelihood of up and coming data. In particular, with the tools developed here, it
is now possible to calibrate the weak-lensing observables of the 3-D simulations
with any analytical model which is choosen. An integral part of this step will be
the extension of the pipeline to theories where there is non-trivial gravitational
slip (unlike the cases considered here). This will involve modifying the lensing
pipeline itself to include the modified integral of the gravitational potentials.

Finally, it will be possible to focus on specific structure and go beyond the basic
statistics looked at here. As has been shown in [6, 58, 71], voids are a promising
arena; gravity will be unscreened and one expects stronger signatures of modified
gravity in such a setting [4, 13, 14, 36, 46].
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