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INTRODUCTION 
 

In recent years, there has been considerable effort to apply ideas and techniques from statistical 

physics to other areas of science such as economic, finance, social science and biology. Explaining 

the social phase transition, modeling the collective animal behavior (like natural flocks of birds), 

and predicting the financial market trend and crisis are some well-known examples of these efforts 

(see Mantegna and Stanley 1999; Castellano et al. 2000; Bouchaud and Potters 2004; Levy 2005; 

Ballerini et al. 2008; Contucci et al. 2008; Stanley 2008; Bialek et al. 2012). In particular, such 

applications have been used recently to study immigration phenomenon (Contucci and Giardina 

2008; Barra et al 2014). It is notable to say that a particular political challenge of immigration is 

immigrant integration because the immigrant population changes a society’s population 

composition and also immigration and integration of immigrants is considered key in building a 

competitive and sustainable economy in the world’s leading economic regions (Niessen and 

Huddleston 2010; Castles and Miller 2009; European Commission 2011; IOM 2011; European 

Commission 2014; European Commission 2010; European Council 2010; Giovagnoli 2011; Canada 

Government 2012). For these reasons, the demand for political intervention rise accordingly 

(Castles and Miller 2009; European Commission 2011; IOM 2011; European Commission 2014), 

and consequently policies addressing the welcoming and the integration of immigrants are 

increasingly at the top of the policy agenda when policy makers try to tap the potential benefits of 

immigration (European Council 2010; Giovagnoli 2011; Canada Government 2012). Thus, 

policymakers need to be able to rely on theories and works generating strong predictions of the 

integration process, preferably early on in the immigration cycle (Contucci and Giardina 2008; 

Barra and Contucci 2010). A recent evidence, in a study inspired by ideas and techniques from 

statistical physics who make use of the concept of particle interaction have shown that while 

classical integration quantifiers, such as permanent and temporary jobs given to immigrants, grow 

proportionally to the immigrant density, newborns from mixed couples (one immigrant and one 
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native parent) and mixed marriages have a growth law proportional to the square root of the 

immigrant density (Barra et al 2014). The sociological theory used to identify and explain such 

differences draws on the Weberian notion of social action
 
(Weber 1978). When a choice with 

integration implications is induced by social action (social consensus and/or interaction) rather than 

by independent decisions (decision unaffected by others decisions) the square root growth law of 

the integration quantifier predominates over the linear growth law. This nontrivial explanation of 

the integration process is a useful tool if the goal is to formulate policies that regulate immigration. 

In what follows we perform a formal test of the theory’s forecast potential with the aim to facilitate 

political decision making in the area of immigration and immigrant integration. Our objectives are 

twofold: 1) for a given integration context, we set out to forecast which mechanism – social or 

individual – predominate in the integration process, and 2) once the growth law is determined, we 

establish if and to what extent the methodological framework lends itself also to forecast immigrant 

integration and generate precise and robust estimates of integration levels across time. 

To do so, the thesis is organized as follows: The first chapter provides a review of the literatures on 

mean field models which are the basis of formation of Barra et al’s theoretical approach. Those 

mean filed models that we study here are: “Curie-Weiss”, “Bipartite Curie-Weiss”, and “Monomer-

Dimer with attractive interaction” models. The literatures include explaining the computation of 

thermodynamic limit of the pressure for each model to achieve their consistency equations. One can 

say here is that the technique used to solve Curie-Weiss models is the same as one developed in the 

wider study of the mean field spin glasses by Guerra (2005) and also the solution of the monomer-

dimer one is obtained with the help of Heilmann-Lieb method for the pure hard-core interacting 

case (Heilmann and Lieb 1970; Heilmann and Lieb 1972). To be more effective in this task, in the 

second chapter we study the nature of the phase transition that occurs in each defined model with 

detailed plots of critical surface around their critical point. Depending on the type of each 

consistency equation, this numerical study is done by application of a suitable numerical root-

finding for computing zeros of the equation in order to build the shape of phase transition surface: 
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Brent-Dekker method for one population case (Brent 1973; Dekker 1969) and trust-region method 

for bipartite one (Conn et al 2000). The last chapter is dedicated to show an application of those 

models in socio-economic problems. More precisely, this chapter presents results on the forecasting 

ability of a recent finding by Barra et al (2014) where the behavior of integration quantifiers was 

analyzed and investigated with the mathematical models introduced in the first chapter. We show 

that not only such a method is able to identify the social mechanism that drives a particular 

integration process, but it also provides correct quantitative forecast of the process. By reducing 

uncertainties on how integration phenomena emerge and how they are likely to develop in response 

to increased migration levels in the future, our work provides a simple and effective tool for policy 

makers. 
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THE MEAN-FIELD MODELS 
 

In statistical mechanics, solving the physical models plays an important role in the study of phase 

transitions phenomena. However, achieving this purpose is quite hard to follow, but in some limited 

cases, in order to understand the basic features of such phenomena, the exact solution can be 

derived by using inventive methods such as mean-field theory. In those cases, the theoretical 

method tries to simplify the complex model to simpler one whose global behavior can be studied 

much easier, with the help of explicit and exact computations. Such global behavior can be then 

used to show which type of properties can be anticipated from the original model. This chapter 

explains how the theory applies for some well-known ferromagnetic models (i.e. the Curie-Weiss 

cases and Monomer-Dimer system with attractive interactions) in order to study their critical 

behaviors - so that such studies leads to be more effective in the next two chapters. 

 

The Curie-Weiss Model 
 

The idea of mean field theory first appeared in the work of Pierre Curie and Pierre Weiss when they 

explained a simple classical system that exhibits phase transition (Curie 1895; Weiss 1907). Pierre 

Weiss explained a simple classical system that exhibits phase transition based on the experimental 

observations carried out by Pierre Curie. Weiss studied the behavior of a set of magnetic moments 

interacting with their nearest neighbors. Their model, so-called Curie-Weiss model, as an exactly 

solvable ferromagnetic model helps us to study the properties of the thermodynamic functions very 

close to the critical temperature. In this section, we discuss the properties of the model in a rather 

detailed way including thermodynamic limit computation, and getting the consistency equation. 
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The Model 

 

To define the ferromagnetic Curie-Weiss model let us first consider an interacting system of   

particles whose Hamiltonian is given by: 

  ( )   
 

  
∑     

 
       ∑   

 
   ,   (1.1) 

where       is the spin of the particle  , the positive parameter   is interacting constant, and   

indicates the value of the external field. In addition, let us specify the magnetization of the 

configuration   as: 

  ( )  
 

 
∑   

 
   .     (1.2) 

Hence, the Hamiltonian per particle can be rewritten as: 

  ( )    ( (  ( ))),    (1.3) 

where 

 (  ( ))  
 

 
  ( )     ( ).   (1.4) 

Furthermore, for a generic observable  ( ), we define the Gibbs state as: 

  ( )  
∑   ( )    (   ( )) 

  
, 

where    indicates the partition function of the system: 

   ∑     (   ( )) .    (1.5) 

Thus, all these definitions allow us to obtain the pressure function per particle associated to the 

thermodynamic system by: 

   
 

 
   ∑     (   ( )) .   (1.6) 

Moreover, one can say here is that the pressure (1.6) generates the mean with respect to the Gibbs 

state    of the magnetization (1.2) as follow: 

〈  ( )〉  
   

  
.     (1.7) 
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The Thermodynamic Limit 

 

In statistical physics, the thermodynamic limit is a mathematical technique that denotes the limiting 

behavior of a physical system consisting of many particles. Many features of the macroscopic 

physical systems only emerge in this limit such as phase transitions and other critical phenomena. 

The question of existence of these thermodynamical limits poses lots of mathematical problems and 

consequently response to this question is rather complicated. In this section, we suggest a simple 

strategy based on the interpolation method to demonstrate the existence of the thermodynamic for 

the ferromagnetic Curie-Weiss model. Our strategy is independent from the exact solution and 

relies on the existence theory proved for mean field models by Bianchi et al (2004). For doing this, 

let us first consider an interacting system of   particles defined above and next divide it into two 

subsets    and    with |  |     and |  |     such that        . Therefore, in order to show 

that the model admits the thermodynamic limit of the pressure, we only need to express and prove 

the following proposition: 

Proposition 1.1. Let    ,    . The pressure per particle of the mean field ferromagnetic Curie-

Weiss model defined by Hamiltonian (1.3) admits the thermodynamic limit: 

        (   )   . 

Proof. Bianchi et al (2004) proved that for any mean-field model defined by its Hamiltonian    

and its relevant equilibrium state   , the thermodynamic limit of the model exists in the sense that: 

          ; if the condition 

  (  )    (   
    

)    (1.8) 

is verified for every partition of the set         into            and {        ⏟        
  

} with 

        and    
    

(        
),    

    
(          ). Hence, we can define the 

following partial magnetizations associated with the subsets    and    for the given mean field 

ferromagnetic Curie-Weiss model: 
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( )  

 

  
∑   

  
         (1.9) 

   
( )  

 

  
∑   

 
           (1.10) 

Therefore, we have the following equation: 

  ( )  
  

 
   

( )  
  

 
   

( ), 

so that 

      
    

   
 

 
(  

 ( )  
  

 
   

 ( )  
  

 
   

 ( ))    (1.11) 

and from (1.11), we get: 

  (      
    

)      ( (  ( ))  
  

 
 (   

( ))  
  

 
 (   

( ))) (1.12) 

such that the equation (1.12) and the convexity of the function   imply that 

  (      
    

)   . 

Thus, the condition (1.8) is verified and the proof is completed  . 

 

The Solution 

 

It is well-known that computing the upper and lower bounds for the thermodynamic limit of the 

pressure leads to obtain the exact solution of statistical-mechanics models. Relying on this 

procedure, we so begin, following (Contucci and Gallo 2008), by dividing the space of the 

configuration into a microstates partition of equal magnetization. Since the system has   spins, the 

magnetization can explicitly take     values. That is to say, such values can be shown as the 

elements of the set: 

  {      
 

  
     

 

  
  }.    (1.13) 

By defining the Kronecker delta     ̃, for every  ( ) we have ∑     ̃ ̃    , and by setting it 

inside the partition function (1.5) we can obtain: 
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   ∑   { (
 

 
  

     )}

 

 

 ∑ ∑      ̃    { (
 

 
  

     )} ̃   . 

At this point, one can see is that the delta function forces the equality     ̃ inside the sum. 

Thus, the equality   
      ̃   ̃  can be used in the sum: 

   ∑ ∑      ̃    { (
 

 
(    ̃   ̃ )     )} ̃   . 

To proceed, let us now omit the Kronecker delta by     so that: 

   ∑ ∑     { (
 

 
(    ̃   ̃ )     )} ̃   . 

We can exchange the order of the two summation symbols because both sums are finite: 

   ∑    {  
 

 
 ̃ } ̃     (     (  ̃   )) . 

Clearly, the total number of summands is     therefore we have that 

   (   )    ̃ ( ̃),      (1.14) 

where  ( ̃)     {  
 

 
 ̃ }    (     (  ̃   )) . Thus, we can obtain the following inequality: 

   
 

 
  ((   )    ̃ ( ̃))    (1.15) 

 
 

 
  (   )  

 

 
    ̃   ( ( ̃)).    (1.16) 

Since       
 

 
  (   )   , we get: 

          

   
     ̃      ( ̃)    (1.17) 

where 

      ( ̃)      
 

 
 ̃     (     (  ̃   ))   (1.18) 

In another side, to obtain the lower bound, it is enough to set the inequality   
      ̃   ̃  into 

the partition function (1.5) and then we have that: 
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  (   )  
 

 
     

 

 
  ∑   { (

 

 
  

     )}

 

 
 

 
  ∑   { (    ̃  

 

 
 ̃     )}

 

 
 

 
  (   {  

 

 
 ̃ }∑     (    ̃     ) 

 

)

  
 

 
 ̃  

 

 
  (       (  ̃   ) )   

 

 
 ̃         (    (  ̃   )) 

Now we can state the lower bound as follow: 

  (   )         ̃        ( ̃)    (1.19) 

where 

      ( ̃)   
 

 
 ̃         (    (  ̃   )).   (1.20) 

Finally, we can summarize these results in the following theorem: 

Theorem 1.1. Let     and    . For any given Hamiltonian in the form of (1.3), the 

thermodynamic limit exists in the sense: 

   
   

  (   )    

where   can be expressed as       ̃       ( ̃) or       ̃       ( ̃). Accordingly, the limit 

of the pressure as     is obtained by maximization of       ( ̃) or       ( ̃). Thus, 

differentiating       ( ̃) (or       ( ̃)) with respect to  ̃ leads to obtain the consistency equation 

of the model as follow: 

       ( ̃)

  ̃
   

 
       ( ̃)

  ̃
    ̃   

    (  ̃  )

    (  ̃  )
    ̃       (  ̃   )     (1.21) 

  ̃      (  ̃   )     (1.22) 
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The Bipartite Curie-Weiss Model 

 

This section explains the two populations mean field model as a generalization of the ferromagnetic 

Curie-Weiss model. In recent decades, there have been several attempts to introduce bipartite mean 

field models for description of physical phenomena such as the phase transition state of 

metamagnets, structure of the antiferromagnetic system, and the loss of gibbsianness for a lattice 

system where defined by Glauber dynamic (Motizuki 1959; Kincaid and Cohen 1975; Galam et al 

1998; Kulske and Le Ny 2007). In particular, such models have been recently applied for describing 

the large scale behavior of some socio-economic systems when interactions exist in the form of 

imitative decisions (Contucci and Ghirlanda 2008). Additionally, the non-interacting ones also were 

used in the basic idea of building the discrete choice theory by McFadden to predict the choice of 

some socio-economic agents (McFadden 2001). The interacting case of such theory was first 

suggested by Contucci and Ghirlanda (2008) and then extended by Barra et al (2014) to describe the 

integration of immigrants mechanism. This section first explains the existence of the 

thermodynamic limit of bipartite Curie-Weiss model proved by Gallo and Contucci (2008) in which 

an asymptotic sub-addittivity method were used analogous to one developed by Guerra (2005) in 

order to derive identities for the overlap distributions in the Sherrington and Kirkpatrick model. 

Following Fedele (2011), we then proceed by computing the self-consistency equation of the 

bipartite model using the technique proposed by Talagrand (2003). 

 

The Model 

 

Consider a set of   spin variables, and assume the partition of the set which is defined by two 

subsets of size    and    respectively with the term        . Now suppose that while the 

variable’s label of the first subset is            , the spins of the second one are in form of 

             . The particles interact via the Hamiltonian 
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  ( )   
 

  
∑        

 
      ∑     

 
   ,   (1.23) 

where       represents the spin of the particle  . Parameter     tunes the mutual interaction 

between particles   and   which specifies according to the following matrix: 

 

where the blocks     and     indicate the interaction between the particles within each of the two 

subsets and     shows the interaction between the particles of different subsets. In the blocks, we 

assume all the values    ,    , and     are positive. Similarly, the vector magnetic field    is 

assigned with values   and    depending on the subsets the particles belong to and specified by: 

 

Assume the joint distribution of a spin configuration   (       ) is given by the Boltzmann-

Gibbs measure as follow: 

          
    (   ( ))

  (   )
∏   (  )

 
       (1.24) 

where 

  (   )  ∫     (   ( ))∏   (  )
 
        (1.25) 

is the partition function of the system and the measure   is: 

  
 

 
( (   )   (   )), 

where the delta Dirac function  (    ) with      indicates the unit point mass with support at 

  . By definition of   each spin can take only one of the values          Now assume that the 

respective magnetizations of the two subsets are: 

  ( )  
 

  
∑  
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  ( )  
 

  
∑   

 

      

 

We name the relative size of the two subsets    
  

 
 and    

  

 
. Henceforth, assume that      

and        where        . The entire definitions together permits to simplify the 

Hamiltonian function in the following form: 

  ( )

 
  

 

 
       

    (   )        (   )     
         (   )      (1.26) 

Therefore, the mean field form of (1.26) can be written as: 

      (     )     (1.27) 

with a convex bounded function 

 (     )  
 

 
       

    (   )        (   )     
         (   )    . 

By defining   [
      

      
],   [

  

  
], the function   can be written in a compact way as 

 ( )  
 

 
〈 ̃   〉  〈 ̃  〉    (1.28) 

where the matrix  ̃           , the vector  ̃       , the matrix         √  √    , 

and 〈 〉 is scalar product. Indeed, since we need to find the value of 〈  ( )〉 and foremost we know 

very well that the main observable here is the average of the spin configuration   ( ), we consider 

the pressure function 

   
 

 
   ∑     (   ( ))    (1.29) 

which is capable of generating the averages of the magnetization with respect to the Gibbs state as: 

〈  ( )〉   
   

   
 (   )

   

   
    (1.30) 
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The Thermodynamic Limit 

 

To show that the thermodynamic limit of the model exists, we state and prove the following 

theorem. 

Theorem 1.2. Let              ,        , and        . The pressure per particle of the mean 

field ferromagnetic model defined by Hamiltonian (1.24) admits the thermodynamic limit: 

        (   )   . 

Proof. Let us first write our Hamiltonian    in the form 

     
( )

   
(  )

   
( )

    (1.31) 

where   
( )

 
 

 
   ∑               

,   
( )

 
 

 
   ∑               

,   
(  )

 
 

 
   ∑             

        

 with 

     and     . We then proceed by defining the model with a working Hamiltonian as 

 ̃   ̃ 
( )

  ̃ 
(  )

  ̃ 
( )

    (1.32) 

where 

 ̃ 
( )

     
 

    
∑               

, 

 ̃ 
( )

 (   )   
 

(   )   
∑               

, 

and 

 ̃ 
(  )

 
 

 
   ∑             

        

. 

From definition   
( )

 and using   
  

 
 we have that 

  
( )

 
    

 
   

 

    
∑     

          

 
 

 
   ∑     

        

 

 
    

  
    

 

    
∑     

          

      

     
 

    
∑               ⏟                

 ̃ 
( )

 (     
 

  (    )
∑               

     )⏟                          
 ( )

, 
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( )

  ̃ 
( )

  ( ). 

Similarly we can repeat the same computation for   
( )

 and   
(  )

 in terms of  ̃ 
( )

 and  ̃ 
(  )

 and it 

follows that 

    ̃   ( ).     (1.33) 

It implies that 

      
  

 
       

 ̃ 

 
.    (1.34) 

Using the following proposition one has that the both models    and  ̃  have the same 

thermodynamic limit (if any). 

Proposition 1.2. Define the Hamiltonian   , a bounded convex function    
  

 
, partition 

function   , and the pressure    for our mean field model and in the same way  ̃ ,  ̃  
 ̃ 

 
,  ̃  

and  ̃ . If 

   ‖     ̃ ‖     
          

 |  ( )    ̃ ( )|    

then 

|     ̃ |  ‖     ̃ ‖. 

Proof of proposition. 

     ̃  
 

 
   (  )  

 

 
   ( ̃ )  

 

 
   (

  

 ̃ 

) 

 
 

 
   (

∑    (   ( )) 

∑    (  ̃ ( )) 

)  
 

 
   (

∑    (   ( )) 

∑    (  (  ( )    )) 
) 

 
 

 
  (

∑    (   ( )) 

   (    )∑    (  (  ( ))) 

)  
 

 
  (   (   ))     ‖     ̃ ‖ 

      ̃  ‖     ̃ ‖. 

In analogous way, the inequality  ̃      ‖     ̃ ‖ can be obtained and consequently the 

following is hold: 
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|     ̃ |  ‖     ̃ ‖.    (1.35) 

End of proof of proposition. 

The proposition implies that 

      |     ̃ |        ‖     ̃ ‖   .   (1.36) 

From the definition  ̃ 
( )

 we have that  

  ( ̃ 
( )

)    (    
 

    
∑               

)      
(    )  

    
  (    )          (    ). 

In similar way, we can repeat the same computation for  ̃ 
( )

 and  ̃ 
(  )

 in the state   . Those 

computations together state that   ( ̃   ̃ 
( )

  ̃ 
( )

)    is hold for         which 

verifies the condition (1.8). It implies the existence of thermodynamic limit for the model of  ̃ , , 

and so for the model   . Hence, the proof of the theorem is completed. 

 

The Solution 

 

A main approach to obtain the exact solution of a mean field model is to drive the upper and lower 

bounds for its thermodynamic limit of the pressure. Thus, in this bipartite case, for obtaining the 

solution, following Fedele (2011) , the upper and lower bounds can be driven through the technique 

proposed by Talagrand (2003). To do so, first, the partition function of the system with respect to 

the Hamiltonian (1.26) can be written as 

  (   )  
 

  
∑     (   ( ))    

. 

where the space             is the space of all possible configuration  . We introduce the 

configuration of the spins of the set    with    where       and accordingly we can define the 

notation 

   
     {      

|   ( )    }    (1.37) 
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Let us now consider the mean filed Hamiltonian (1.27) with the function   which is given by 

(1.28). Thus, we can represent the partition function as 

  (   )  
 

  
∑∏   

    ( (
 

 
〈 ̃   〉  〈 ̃  〉))

 

    

 

where the sum extends over all the possible values of the random vector (  ( )   ( )). 

The following lemma proved by Fedele (2011) leads to obtain the bounds that we are interested in. 

Lemma 1.1. Consider the set              of all possible configuration   . Let    
 be a 

positive number defined by (1.37) the following inequality holds 

 

 

   

√  
    (    (   

))     
        (    (   

))  (1.38) 

where   is a constant and  

 ( )  
 

 
((   )   (   )  (   )   (   ))   (1.39) 

Using lemma 1.1 allows us to compute the upper and lower bounds for the partition function as 

 

 
∏

 

√  

    (    
 

 (̅ ))
 

   
   (   )  ∏ (    )    (    

 
 (̅ ))

 

   
 

where 

 (̅     )  
 

 
∑              

     ∑         
   ∑   

 
    (  )  (1.40) 

Accordingly, by taking the logarithm and dividing by  , we have the bounds for the pressure as 

 
 

 
(    

 

 
∑    (  )

 
   )       (̅ )    (   )  

 

 
(∑    (    ) 

   )       (̅ ). 

i.e. 

       
 

 
(    

   
       (   )        (   )   

 )        (   )     

 ( 
    

 
  (

    

 
)  

    

 
  (

    

 
))  (   ) ( 

    

 
   (

    

 
)  

    

 
   (

    

 
)) (1.41) 

It follows that the limit of the pressure as     can be computed by maximizing the function  .̅ 

As a result, differentiating of   ̅with respect to       leads to obtain the self-consistency equation 

of the bipartite model as follow: 
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{
        (       (   )        )

        (       (   )        )
   (1.42) 

As   is a positive define, another reliable way we can focus for obtaining the consistency equation is 

application of the Thompson method (Thompson 1988) when we compute the thermodynamic limit. 

Thus, recalling the mean-field Hamiltonian (1.27), its partition function (1.25) can be expressed as, 

  (   )  ∫     ( (
 

 
〈 ̃   〉  〈 ̃  〉))   ( )

  

 

where    is the distribution of the random vector (  ( )   ( )) on (   ∏   (  )
 
   ). Let us 

write the following identity which is valid for the positive define matrix  :  

   (
 

 
〈 ̃   〉)  √

     ̃

(  ) 
∫     ( 

 

 
〈 ̃   〉   〈   〉)  

  

 

Using the above identity allows us to rewrite the partition function as,  

  (   )  √
     ̃

(  ) 
 ∬    ( ( 

 

 
〈 ̃   〉  〈 ̃  〉  〈 ̃   〉))

  

   ( )   

 

 √
     ̃

(  ) 
 ∫     ( ( 

 

 
〈 ̃   〉))

  

∫     ( (〈 ̃   ̃  〉))

  

   ( )   

and since we have:  

∫     ( (〈 ̃   ̃  〉))

  

     

 

 ∫     (∑  

 

   

∑   

    

(∑          

 

   

))∏  (  )

      

 

 

 ∏∏ ∫     (    (∑          

 

   

))

     

 

   

  (  ) 
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By summing over the spins we can reformulate the partition function as, 

  (   )  √
     ̃

(  ) 
 ∫     ( ( ( )))

  

   

where  

 (     )   
 

 
∑            

 
      ∑   

 
      (     (∑   

 
           )) (1.43) 

Proposition 2.2.2 introduced and proved by Fedele 2011 states that for a given function (1.43) 

associated to a model defined by the Hamiltonian (1.27), if the reduced interaction matrix   is 

positive define and if   be a global maximum of the function  , then  

      
 

 
  (   (  ( )))     ( ).   (1.44) 

Using identity (1.44) into our thermodynamic limit implies that 

   
   

  (   )     
   

(
 

 
   (√

     ̃

(  ) 
))  

 

 
   ( ∫     ( ( ( )))

  

  ) 

    
 

 ( ) 

Finally, the same consistency equations (1.42) is given by differentiating of the function   (1.43) 

with respect to      . 

 

The Monomer-Dimer Model 
 

Any way to fully match the vertices of a finite graph   by non-overlapping dimers and monomers is 

called a monomer-dimer configuration. Based on such configuration, a monomer-dimer model with 

pure hard-core interaction can be defined by a probability corresponded to an exponential function 

of the number of dimers (or monomers). In particular these models were introduced to study the 

features of special molecules e.g. diatomic oxygen molecules and liquid mixtures with non-equal 

size of molecules. In the case of pure hard-core interactions, Heilmann and Lieb (1970 and 1972) 

proposed a rigorous proof of absence of phase transitions for both complete graph (the mean-field 
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case) and the regular lattices. According to Heilmann and Lieb (1979), on certain 2-dimensional 

regular lattices, if there are attractive interactions among dimers with the same orientation, then 

there exists a phase transition at low temperatures. Very recently, there has been a considerable 

attention in the study of the mean-field case of the model (Alberici et al 2014). Namely, Alberici et 

al (2014) states that such mean-field model belongs to the mean-field ferromagnetic universality 

class. This section gives a brief discussion on the ferromagnetic mean filed Monomer-Dimer model 

with interaction among monomers and dimers: The Heilmann-Lieb approach for the pure hard-core 

interacting case is used in order to calculate upper and lower bounds for the pressure and then the 

consistency equation of the model is obtained. 

 

The Model 

 

Consider a finite simple graph   (   ) built over a vertex   and edge set            |  

    . We define a dimer configuration     on the graph   as a set of pairwise non-incident 

edges (dimers): 

              . 

where the associated set of dimer-free vertices (monomers) is introduced by 

 ( )    ( )      |          . 

Assume    is the set of all possible dimer configurations on the graph  . For a given dimer 

configuration     we set for all    ,    : 

  ( )  {
        ( )
           

  and    ( )  {
        
           

  (1.45) 

The Hamiltonian of imitative monomer-dimer model on the graph   can be defined by assigning an 

imitation coefficient     and an external field     as   
         

  
     ∑        ∑  (     (    )(    ))    .  (1.46) 
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The choice of the Hamiltonian allows us to express a Gibbs measure on the space of configurations 

   as: 

  
    

    (   
   ( ))

  
              (1.47) 

where   
    ∑     (   

   ( ))    
 is the partition function of the model. The monomer density 

of the model is obtained by computing the derivative of the pressure per particle -   
    

  (   
   ) - with respect to  : 

  
    ∑

| ( )|

| |    
  

    
 

  

  
   

| |
   (1.48) 

As    , the model reduces to the one studied by Heilmann and Lieb (Heilmann and Lieb 1970; 

Heilmann and Lieb 1972). It is convenient to know that the reduced model is specified only by a 

topological interaction in which the hard-core constraint describes the space of states   . Despite 

the fact that the topological interaction exists, Heilmann and Lieb (Heilmann and Lieb 1970; 

Heilmann and Lieb 1972) proved the absence of phase transition for such model. By setting the 

parameter    , we can consider another type of interaction in the original model. That is, the state 

of a vertex has a significant influence on or determines the state of its neighbors pushing each other 

to behave in an analogous way. In this case, we need to consider a more general Hamiltonian than 

(1.46). Therefore, let us denote a monomer external field by  ( )   , a dimer eternal field by 

 ( )   , a monomer imitation coefficient by  ( )   , a dimer imitation coefficient by  ( )    

and a counter-imitation coefficient by  (  )    and introduce the Hamiltonian: 

 ̃ 
     ∑  ( )      ∑  ( )      ∑  ( )         ∑  ( )(    )(    )     

∑  (  )(  (    )  (    )  )    .   (1.49) 

Using the valid relation  | |  | ( )|  | | into the Hamiltonian (1.49) we have that: 

 ̃ 
        ∑         ∑            ∑    (    )(    )      (1.50) 
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where    
| |

 
     ( )   ( )  ⁄ ,     ( )   (  ), and      ( )   (  ). Let us now rewrite 

the Hamiltonian (1.50) using the relation ∑ (     )      | | when the graph   is regular of 

degree  : 

 ̃ 
       ∑        ∑  (     (    )(    ))       (1.51) 

where      (      ) ,   (      )  ⁄  and      (      )| |. 

From the last identity it is observable that when the general Hamiltonian (1.50) defined on a regular 

graph then it is equivalent to the Hamiltonian (1.46). Moreover one can see here is that the imitation 

coefficient     corresponds to the  ( )   ( )    (  ). 

At this point, Let us to define our imitative monomer-dimer model on the complete graph   

   (     ) with            and          |           . Accordingly, since the 

number of edges is of order   , we need to normalize the external field   and the imitation 

coefficient   for keeping the pressure of order  . Therefore, we can consider the Hamiltonian 

  
       

  , 

  
     ∑        

    ( )∑       
 ∑

 

 
(     (    )(    ))     

, (1.52) 

where the partition function   
    ∑     (   

   ( ))     
 and the monomer density   

    

∑
| ( )|

 
    (   

   ( ))     

  
   .  

 

The Thermodynamic Limit 

 

It is easy to verify that the relation  |   
|  |   

|  |  | is hold and since the graph    is 

regular of degree     we have that: 

∑ (     )     
 (   )|   

|. 

These identities help us to express the Hamiltonian (1.46) in the form: 
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  ( )   ) ∑   

    

 
 

 
( ∑   

    

)

 

 

The identity ∑       
     where   ( )  

|   
( )|

 
       allow us to rewrite the 

Hamiltonian in the mean-field form as: 

  
      (   

         )    (1.53) 

where    
 

 
  ( )     ,     

 

 
  ( )  

   

  
 , and consequently, the partition function of 

the system   
    leads to consider the pressure function per particle: 

           
   (  

   )

 
    (1.54) 

To show the existence of the thermodynamic limit of the pressure for the imitative monomer-dimer 

model as    , let us consider the Hamiltonian without imitation   
       : 

  
    ∑        

    ( )∑       
,   (1.55) 

with the partition function   
   ∑     (   

  ( ))     
 and the monomer density   

   

∑
| ( )|

 
    (   

  ( ))     

  
  . Proposition 6 proved by Alberici et al (2014) stats that for    , the 

pressure per particle of the monomer-dimer model on the complete graph defined by Hamiltonian 

(1.55) admits finite thermodynamic limit: 

      
   (  

  )

 
    ( )    (1.56) 

where     : 

   ( )   
   ( )

 
   ( ( ))   ,  (1.57) 

with 

 ( )  
 

 
(√            ).   (1.58) 

Using the Proposition 6 proved by Alberici et al (2014) and the Hamiltonian (1.53) allow us to 

propose the following theorem for showing the existence of the thermodynamic limit: 
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Theorem 1.3. Let     and    . The pressure per particle of the imitative monomer-dimer 

model on the complete graph defined by Hamiltonian (1.52) admits finite thermodynamic limit: 

      
   (  

   )

 
           ̃( )    (1.59) 

with 

 ̃( )       
 

 
     ((    )   )          (1.60) 

where    () is defined by (1.57). 

Proof. To prove the theorem we need to compute the lower and upper bounds of the pressure per 

particle as follow: 

[Lower Bound] Assume     and   ( )  
|   

( )|

 
       then (  ( )   )    follows 

that 

  ( )      ( )    . 

Using the last inequality with assumption     into the mean-field Hamiltonian (1.53) we observe 

that 

   
   ( )   (   ( )      ( )    )   ((      )  ( )        ) 

and for partition function as well: 

  
    ∑    (   

   )

 

 ∑    ( ((      )  ( )        ))

 

  

     ( )  
  ( ( )) 

where   ( )       
   

  
  and  ( )         . 

[Upper Bound]    takes     values which can be shown as the elements of the set    

   
 

 
     

 

 
   . The definition of the Kronecker delta      ( ) for every   ( ) in the form of 

∑      ( )  ( )   
  , writing  (  ( ) )     ( )   (    ( )    )     ( ) for any 

function  , and by using the mean-field Hamiltonian (1.53) we can say 

     ( )    (   
   ( ))       ( )    ( (   ( )      ( )    ))   
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      ( )    ( ((      )  ( )        )) 

and as a consequence we can obtain 

  
    ∑ ∑      ( )

  ( )    

   (   
   ( ))   

 ∑ ∑      ( )

  ( )    

   ( ((      )  ( )        ))   

 ∑∑   ( ((      )  ( )        ))

  

  

 ∑    ( )  
  ( ( ))

 

 (   )    
       

     ( )  
  ( ( )  

Now we can put together the bounds and found that 

   
       

     ( )  
  ( ( )    

    (   )    
       

     ( )  
  ( ( )  

We then proceed by taking the logarithm and dividing by  : 

   (    
       

     ( )  
  ( ( ) )

 
 

   (  
   )

 
 

  ((   )    
       

     ( )  
  ( ( ) )

 
 

  
  (  

   )

 
    

       
   ( )  

   (  
  ( ( )))

 
  

   (   )

    
→     

Since the pressure per particle   
   (  

  ( ))

 
 is a convex function, as     the convergence 

   (  
  ( ))

 
    ( ) is uniform in   on compact sets. On the other hand,   ( ) uniformly 

converges to  ( )       
 

 
  in   when    . Thus, one has that   ( )  

   (  
  ( ( )))

 
 

converges uniformly to  ( )     ( ( )) in   as     on compact sets. As a result we have 

   
       

   ( )  
   (  

  ( ( )))

 
 

   
→      

       
  ( )     ( ( ))  

and it concludes the proof:            
  (  

   )

 
             ̃( )  where  ̃( )   ( )  

   ( ( )).   
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The Solution 

 

Let us now consider the derivative of the function  ̃:  

  ̃( )

  
 

  ( )

  
 

    ( ( ))

  
. 

Using proposition 6 proved by Alberici et al (2014), we have that (   )    and as well: 

  ̃( )

  
 

 (     
 

 
 )

  
 

  ( )

  
 ( ( )). 

Therefore, 

  ̃( )

  
         ((    )   ).    (1.61) 

If we compute 
  ̃( )

  
   then we have the self-consistency equation of the model: 

   ((    )   )     (1.62) 

One observe that the function    ̃( ) attains its global maximum inside the interval       since 

for all      
  ̃( )

  
   and for all    

  ̃( )

  
  . Moreover, any global maximum point    of  ̃ 

is a critical point satisfies the equation (1.62). As mentioned earlier, since 
 

 
   (  

   (   )) is a 

convex function of  , as     it converges to     (   )   ̃(  (   )    ). If   (   ) be 

differentiable in   then we get: 

     

  
 

 

  
 ̃(  (   )    )  

  ̃(  )

  ⏟  
  

   

  
 

  ̃

  ⏟
 (   )   

  ((     )   )    . 
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STUDY OF THE PHASE TRANSITION SINGULAR SURFACE 
 

The theory of phase transition considers the transformation of a thermodynamic system from one 

phase or state to another. Such transformation occurs when there is a singularity in the free energy 

or one of its derivatives (Yeomans 1992). As presented in previous chapter, the mean-field theory 

gives us a simple and efficient tool to describe the ferromagnetic systems. A main goal of these 

attempts is to achieve an accurate description of magnetic and ferromagnetic materials that can 

predict the detailed atomic structure and associated phase transitions as a function of, for example, 

temperature, external field and etc (Yeomans 1992; Kochmanski et al 2013). Clearly, only with 

such knowledge one can understand the physical properties of these materials. In this way, for 

example, the solution of self-consistency equation associated with the system often helps us to 

study the phase transition phenomena with more details namely the location of the jump. Since, 

those equations are in the form of transcendental equations; we cannot solve them algebraically. 

Therefore, shaping the phase transition can be done numerically by relying on two ways: numerical 

maximization of the pressure function or numerical solution of the self-consistency equation. The 

first one could be performed by using an appropriate optimization technique to find the global 

maximums of the pressure
1
. On the other hand, the second one can be done by using a suitable 

numerical root-finding method to obtain the zeroes of implicit form of those equations. In this part 

of the study, depending on the type of each implicit form, we suggest an appropriate root-finding 

algorithm for finding these zeros in order to draw the shape of phase transition surface: the Brent-

                                                           
1 One of the best choices here is using Cutting Angle Method (CAM). CAM is a global search introduced based on the 

results in abstract convexity (Christodoulos, and Panos 2008). It was first proposed by Andramonov et. al. (1999) and 

extended by Rubinov (2000) for optimization of the increasing convex- along-rays functions and also developed by 

Seyedi (2010) to apply for minimization of variational problems (and in particular optimal control problems). As a 

special case, the CAM is a generalization of the Cutting Plane Method from convex minimization. It can be applied in a 

very broad class of non-convex global optimization problems in which the functions involved possess suitable 

generalized affine minorants (Rubinov 2000; Christodoulos and Panos 2008). 
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Dekker method (Dekker 1969; Brent 1973) for one population cases (Curie-Weiss case and 

monomer-dimer system), and the trust-region algorithm (Conn et al 2000) for bipartite Curie-Weiss 

model. We then summarize the result of numerical solutions in the phase transition diagram for each 

model to show the exact location of the jump. 

 

The Curie-Weiss Model 

 

Let us look at the Curie-Weiss model defined by mean field Hamiltonian (1.4) where its self-

consistency equation (1.22) obtained in the previous chapter. Since this equation cannot solve 

algebraically, we need to rely on a numerical approach which are designed either for numerical 

maximization of       ( ̃) (or       ( ̃)) or for numerical solution of mean-field equation (1.22). 

Indeed, the solutions of self-consistency equation (1.22) are the points of intersection between the 

curve   ( ̃)      (  ̃   ) and the line   ( ̃)   ̃. One can observe here is that for any 

positive value of  , if    , we have only one intersection point between these two functions which 

is nonzero (see the lower panels of figures 2.1). That is, as can be seen in the lower panel of the 

figure 2.2, when the equation (1.22) admits only one solution then the solution is a unique 

maximum for       ( ̃). On the other hand, for     we have two different cases: As can be seen 

in the upper left panel of the figure 2.1, if     then there is only one intersection point, the zero 

which is the unique maximum of the function        (see the upper left panels of figure 2.2). But 

when     we have two intersection points   ̃ , namely there are 2 maximums for        (see the 

upper right panels of figures 2.1 and 2.2).  
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Figure 2.1. The number of points of intersection between the red 

curve   ( ̃)      (  ̃   ) and the blue line   ( ̃)   ̃. 

 

 
Figure 2.2. The Curie-Weiss Critical points: The pressure function 

admits one peak except when the external field vanishes and the 

coupling constant becomes greater than its critical value     . 
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This detailed graphical approach can be simply converted into the problem of numerically finding 

the roots of the implicit function 

 ̃      (  ̃   )   .      (2.1) 

Finding the roots of this implicit equation could be numerically achieved by using the iteration 

method suggested by T. Dekker (Dekker 1969). The method is a kind of complicated root-finding 

algorithm that combines the bisection, secant, and inverse quadratic interpolation methods. 

Therefore, by taking   and   the groups of values for different values of solution  ̃, the plot of 

(   ) versus  ̃ gives typical information about the mechanism of phase transition and in particular 

the location of the jump. We summarized the result of this detailed procedure in the figure 2.3. 

 

 

Figure 2.3. 〈 〉 as function of   and   for one population Curie-Weiss case. 

 

Figure 2.3 shows that when   is different from zero there is no phase transition, but in the absence 

of field   we have totally different situation: 

   
   

  (   )  {
    

   ( )  
 

 
 ̃ 

     (     (  ̃ ))    
 

That is, the spontaneous magnetization  ̃  tends to zero as     . Thus, it follows that    the 

limit of the pressure is continuous and we have that: 

 

  
(    
   

  (   ))  {
    

 

 
 ̃ 
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and in the same way for the second derivative we can obtain: 

  

   
(        (   ))  {

    
 

 

  ̃ 
 

  
   

   (2.2) 

Since the value of  ̃  is very small when the value of   is very close to   from the left, the 

hyperbolic tangent of the equation (1.22) can be expanded by 

 ̃    ̃  
(  ̃ ) 

 
  ( ̃ 

 ) as        (2.3) 

Now we can divide the equation (2.3) by   ̃  because  ̃  is nonzero and so we have: 

 

 
   

(  ̃ ) 

 
  ( ̃ 

 )  as      

It implies that as     :  ̃  ( (  
 

 
))

 

 

 and consequently we can approximate the value of 

 

 

  ̃ 
 

  
 inside the identity (2.2) as: 

 

 

  ̃ 
 

  
 

 

    as   
 

 

 
 

Hence, the second derivative of the thermodynamic limit of the system is not continuous. Thus, as 

can be seen in figure 2.3, the Curie-Weiss model exhibits a phase transition of the second order for 

      and      . 
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The Bipartite Curie-Weiss Model 

 

This part is dedicated to numerical study of phase transition occurs in bipartite mean field Curie-

Weiss model. To do so, consider our bipartite model defined by its Hamiltonian (1.27) and the 

bipartite mean field equation (1.42). In this section we use different numerical method, so-called 

trust-region algorithm (Conn et al 2000) due to the fact that the equation (1.42) is a system of 

transcendental equations. 

To start our numerical study, we first invert the system (1.42) into the following form because 

     : 

{
   

 

(   )   
(      (  )        )

   
 

    
(      (  )  (   )     )

   (2.4) 

This reformulation lends itself to a graphic resolution. Therefore, let us consider the Cartesian 

coordinate system      and also define the following functions: 

  (  )  
 

(   )   
(      (  )        )

  (  )  
 

    
(      (  )  (   )     )

   (2.5) 

We then proceed by denoting    and    as the graph of two functions    and    respectively. One 

has that the intersections between    and  ̂  with respect to the line       are the solutions of the 

system (2.4) where  ̂  is the symmetrical curve of   . For more understanding, for instance, the 

classic visual representation of this numerical approach is presented in figure 2.4 when there is only 

one solution. 
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Figure 2.4. Graphic representation of the system (2.4) when there is a unique solution. The red and blue 

curves indicate    and  ̂  respectively when we assumed      . 

 

This graphical approach can be easily converted into numerically finding the roots of implicit form 

of the system (1.42). Obtaining these roots can be numerically achieved by using trust-region 

algorithm (Conn et al 2000). The results of this application are summarized in the figure 2.5. It is 

convenient to say that the system (1.42) has generally nine solutions and four of which are stable 

solutions corresponding to relative maxima of the pressure (for more details see (Gallo and 

Contucci 2008)). 

 

Figure 2.5. 〈 〉 as a function of   and    . In this numerical study we fixed 

                             and          . 
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Figure 2.5 displays the total average magnetization 〈 〉, which is the main quantity we study here, 

as a function of   and mutual interaction    . What we see here in our findings is, when the mutual 

interaction     is small enough, the magnetization   is smoothly varying in   from    to   . But, 

as can be seen in the figure 2.5, when the interaction parameter     crosses its critical value 

   
       (where         and          ), the magnetization exhibits a discontinuous 

transition in the absence of external magnetic field. One has that the value of    depends on 

parameters    ,    ,   , and   . This means that this critical value does not depends on parameter 

   . 

 

The Monomer-Dimer Model 

 

To complete the numerical study part, reconsider the mean-filed monomer-dimer model defined by 

its Hamiltonian (1.53). In this model, to identify the stationary points of function  ̃(     ) defined 

by (1.60) we first need to compute the first and second derivative of this function with respect to   

as follow: 

  ̃

  
(     )          ((    )   )   (2.6) 

   ̃

   
(     )      (  )   ((    )   )   (2.7) 

where the function   is defined by (1.58) and remember that (   )   . Since the value of   

ranges in the interval (   ), it implies to say that      and     there are: 

  ̃

  
(     )       (      and 

  ̃

  
(     )           ) (2.8) 

Thus, one observable here is that the function  ̃(     ) admits at least one maximum   

  (   )  (   ) which satisfies the following conditions: 

  ̃

  
(     )      i.e.      ((    )   )   (2.9) 

   ̃

   
(     )      i.e.     ((    )   )  

 

  
   (2.10) 



36 
 

 
 

The stationary points characterized by equation (2.9) cannot be solved algebraically. Therefore, we 

need to suggest a numerical approach to solve such transcendental equation. However, the 

properties and approximation of these values also can be identified and determined by studying the 

inequality (2.10). Let us now perform the same operations which were done for one population 

Curie-Weiss case. For doing this, consider the equation (2.9). We convert the graphical 

representation of numerical finding the intersections between the line      and the curve 

    ((    )   ) into numerically finding the roots of implicit form of equation (1.62): 

   ((    )   )=0     (2.11) 

Similar to Alberici et al (2014)’s findings, we observe that for rising   from 0 to its critical value   , 

the line    and the curve    has a unique intersection while the interacting coupling becomes 

greater that its critical value we have three different situations: 

- If   ( )      ( ), then there exist three intersections 

- If     ( ) or     ( ), then there are two intersections 

- And if     ( ) or     ( ), then there is only one intersection 

where 

  ( )    
 

 
   (  ( ))     (

 

 
   (  ( ))) for       

with 

  ( )  
 (

 

(  ) 
 

 

  
  ) (   )(  

 

  
)√

 

(  ) 
 

  

  
  

 

  

. 

We now proceed by using the Brent-Dekker method similar to one population Curie-Weiss case. In 

terms of numerical root finding, one has that there are multiple roots for equation (2.11) that we 

need to compute and evaluate, corresponding to the stability of the solutions. The methodology for 

obtaining the various roots    is numerically intensive. Hence, we divide the interval of 

magnetization-values into multiple sub-intervals in order to search for finding the multiple roots. In 

terms of programming, this becomes a complicated problem. But this can be controlled by a precise 
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description of initial points which are used for our iteration method (the Brent-Dekker method) in 

each subinterval. The results of this detailed work are summarized in the figure 2.6. 

 

Figure 2.6. 〈 〉 as function of   and   for Monomer-Dimer Model with attractive interactions. 

 

Figure 2.6 explains that the model exhibit a phase transition starting from         (where 

         ,         ) toward asymptote       . A main observable feature of this model, 

as can be seen in the figure 2.6, is that there exists an asymptotic wall when the phase transition 

occurs. These findings are agreed with the results of relevant research performed by Alberici et al 

(2014). 
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AN APPLICATION TO SOCIO-ECONOMICS PROBLEMS 
 

The research reported here addresses the problem of forecasting immigrant integration. The 

question we are concerned with is; if immigration rise by say 2 to 3 % would this affect the level of 

immigrant integration in the social system under study? If so, what is the effect magnitude? And 

finally, how precisely can we forecast it? To this end we develop and introduce a theoretical and 

mathematical forecasting framework. We expose the resulting model to exceptionally rich 

integration data from Spain. The empirical tests show that our model deliver precise forecasts of 

future immigrant integration levels, in multiple integration contexts, and for the entire timespan for 

which data is available. 

Uncovering ways to forecast integration is a potentially important task. The integration of 

immigrants is and has long been a political priority in countries receiving immigration (European 

Commission 2005; Penninx et al. 2008; Jacoby et al. 2013). For example, achieving a minimum of 

integration is considered a necessity, to avoid friction and conflict between immigrants and natives 

in the host society (Castles and Miller 2009; Niessen and Huddleston 2010; European Commission 

2011; IOM 2011; European Commission 2014). Furthermore, and perhaps most importantly, as the 

effects of low birth rates and aging populations are becoming manifest, high levels of immigrant 

integration or assimilation is considered by some of the world's leading economies key in building a 

competitive and sustainable economy for the future (European Commission 2010; European 

Council 2010; Giovagnoli 2011; Canada Government 2012). 

However, the capacity to formulate effective integration policies hinges on the availability of 

scientific theories and works generating strong predictions of how the integration phenomenon is 

likely to unfold with the passing of time, and in the face of changing levels of immigration. While 

there is a rich demographic, sociological and economic literature on individual integration outcomes 

(see, for example, Van Tubergen (2006) for a good overview of this literature), the problem of 
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forecasting the level of integrations in a society is largely ignored by past and contemporary 

research. Hence, by filling an important gap in the literature on immigrant integration, the research 

reported here constitutes a significant contribution to our knowledge about integration and 

integration phenomena. 

The chapter is organized as follows. First we introduce the integration concept we aim at 

forecasting. Thereafter we introduce the theoretical and mathematical model of the integration 

phenomena on which we base our forecasting method, followed by data description. Then we 

present the methodological procedure, produce the forecasts, and conduct the proper evaluation of 

these forecasts. Finally, we conclude with a brief discussion of the wider implications of our results. 

 

Immigrant Integration 

 

What is immigrant integration and what is it that we set out to forecast? Instead of engaging in the 

complex task of defining and operationalizing integration, we feel comfortable to adopt a pragmatic 

approach. For example, there is a consensus within and across demographic, sociological and 

economic disciplines that inter–marriage/inter–partnerships and immigrant labor force participation 

are core measures of social and socio–economic immigrant integration (see Gordon 1964; Alba and 

Nee 1997; Raijman and Tienda 1999; Van Tubergen 2006 for a more extensive discussions on the 

relevance of these integration quantifiers). Therefore, in the research reported here we set out to 

develop a quantitative forecasting model capable of predicting integration in the form of inter–

partnerships and immigrants labor market participation. More specifically, we have suitable data 

available for the following four integration quantifiers; 1) rate of inter–marriage between native and 

foreign born, 2) rate of newborns with one native and one foreign parent, 3) rate of indefinite labor 

contracts given to immigrants, and 4) rate of temporary labor contracts given to immigrants (see 
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further in the section Data Description below). The former are example of social integration 

quantifiers, while the latter are examples of so called socio–economic integration quantifiers. 

 

A Simple Model of a Complex Phenomenon 

 

Forecasting integration requires a reliable and efficient model of the integration phenomena. Past 

research has shown that both individual and contextual factors are important when explaining 

variation in immigrant integration outcomes (Van Tubergen and Maas 2007). For example, 

systematic differences in individual integration outcomes are often associated with age, sex, 

education, language proficiency, and other individual characteristics (Stevens and Swicegood 1987; 

Hwang et al. 1997; Cortina et al. 2008; Qian et al. 2012). Likewise, contextual factors, such as 

culture, ethnic–group–size, and local heterogeneity levels are influential when assessing inter–

marriage propensities and labor market participation across different groups (Blau et al. 1982; Blau 

et al. 1984; Portes and Zhou 1993; Qian et al. 2012). 

However, here our aim is not to forecast individual integration outcomes. Rather, we are interested 

in forecasting the trend in integration. That is, we are foremost concerned with the systemic 

evolution of integration quantifiers, in the presence of “noise” such as factors unique to individuals 

and their context.  

Forecasting the trend in integration calls for a different type of model than what we typically see in 

contemporary research articles on integration and assimilation. In recent years, there have been 

considerable efforts to apply ideas and techniques from statistical physics to other areas of science 

such as economic, finance, social science, and biology. Explaining the social phase transition, 

modeling collective animal behavior, like natural flocks of birds, and predicting trends and crisis in 

the financial markets are some well–known examples of this venture (see Mantegna and Stanley 
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1999; Castellano et al. 2000; Bouchaud and Potters 2004; Levy 2005; Ballerini et al. 2008; 

Contucci et al. 2008; Stanley 2008; Bialek et al. 2012). This genre of models has recently been used 

to study also migration and integration phenomenon (Contucci and Giardina 2008; Barra and 

Contucci 2010; Barra et al. 2014). 

Barra et al. (2014) have produced a theoretical framework of an immigrant–native system in which 

they successfully model the systemic integration process for social and socio–economic integration 

quantifiers as a function of immigrant density ( ).
2
 In this work, and using integration data from 

Spain, they showed that a complicating, but yet intriguing, factor when modeling integration as a 

function of  , is that while labor participation rates grow proportionally to immigrant density, the 

rates of inter–partnership have a growth law proportional to the square root of the immigrant 

density. 

The different growth processes have well accepted individual solutions. For example, in a two–

group system such as a society composed of immigrants and natives, there can be in–group or 

cross–group couplings. In other words the choice between, say, marrying or hiring an immigrant 

over a native is dichotomous. A natural candidate to describe the frequency of cross–group 

couplings in large populations is McFadden's Discrete Choice theory (McFadden 2001). A crucial 

assumption in the discrete choice theory is mutual independence between the involved random 

variables (Gallo et al. 2009). Consequently, McFadden's theory would predict linear growth in 

integration over immigrant density—  . And indeed, McFadden's theory works very well when 

assessing the level of labor market integration as a function of immigration density (Barra et al. 

2014). Hence, based on this finding it can be argued that the decisions of contracting an immigrant 

                                                           
2
 It should be noted that the causal relationship between immigrant group size and integration has received ample 

attention in Blau et al. 1982 and Blau et al. 1984. Blau et al’s findings are not contradictory to Barra et al. (2014) work, 

but complementary. However, in difference with Blau et al, Barra et al model the interaction component explicitly.  
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are made in a mutually independent fashion, regardless of how other actors have decided in this 

matter
3
. 

However, the square root growth in the rate of inter–partnerships suggests that the choice of partner 

is not well described by the classical discrete choice theory. A plausible source for this mismatch is 

that in difference to decisions in the labor market, inter–partnership decisions are not taken 

independently (Weber 1978; Barra et al. 2014). That is, the action of marrying an immigrant or 

having a child with an immigrant is a decision that is contingent of how others in the environment 

have acted or not acted in this context before the decision at hand (see also, for example, Kalmijn's 

(1998) discussion of social determinants in inter–marriage). Theories that relax the assumption of 

independence and cater to this type of social action and interaction, introduced by Brock and 

Durlauf (2001) and thereafter further developed (Contucci et al. 2008; Contucci and Giardina 2008; 

Gallo et al. 2009), predict a square root behavior of the probability of cross–group couplings. This 

finding is consistent with the growth law observed for the inter–partnership data by Barra et al 

(2014). That is, data suggest that social network activity induces the intensity of inter–partnerships. 

The novelty introduced by Barra et al. (2014), is a mathematical framework that makes it possible 

to model the two different growth processes in a unified manner. The proposed solution is a 

generalization of the monomer–dimer model with the addition of an imitative interacting social 

network component with random topology in agreement with the small world–scenario (Watts and 

Strogatz 1998). The resulting model reduces to the classical discrete choice theory with linear 

growth in situations when social action and interaction in the integration process is negligible, and 

                                                           
3
 Note that the absence of interaction in labor market participation couplings does not mean that social networks are 

irrelevant in the job market. What the data analysis suggests is simply that the propensity of hiring immigrants over 

natives is unaffected by whether other employers have or have not hired immigrants over natives before. Social 

networks are still likely to be determinant for the individuals’ chances of landing a job (see Granovetter 1974 on the 

latter). 
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to the square root behavior when such factors are prevailing (Barra et al, 2014). When confronted 

with empirical data the model provides an extraordinary fit across all integration quantifiers 

regardless of the a priori differences in the importance of social action and interaction discussed 

above
4
.  

Consequently, it can be shown that the level of integration in a society can be modeled 

mathematically as a function of immigrant density—   (Barra et al. 2014). Moreover, if the goal is 

to obtain estimates of the development of the general level of integration in a society as a function 

of   the model proposed by Barra et al. (2014) does a better job than the currently available 

alternatives. In what follows we will draw on this work as we develop a theoretical and quantitative 

framework to forecast integration as a function of immigrant density—  .  

 

The Barra et al’s Model. A Statistical Mechanical Aspect. 
 

To be more effective in this task, for example, let us explain the statistical mechanics model 

introduced by Barra’s et al (2014) for social integration quantifiers as follow. We assign to each 

person   its own likelihood to marry versus remaining single and for each couple (   ) too. In the 

same way, we assign to each person   its individual tendency to have children or not and also for 

each couple (   ). These individual and coupling phenomena are then described by individual 

random variables and couple random variables respectively. It is convenient here to say that the two 

observations in marriages and births are different: in newborns case, not only couples have this 

ability to have children but also each individual may have children with different partners even if 

they have not married. But, in contrast, the monogamy law restricts the marriage cases by not 

allowing each individual to belong to more than one single couple. 

                                                           
4
 See Barra et al. (2014) for a full account of the model, proofs, and empirical tests. 
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In mathematical aspect, all these rules convert into topological constraints in the configurational 

space (such as the hard-core interaction of monogamy), or probabilistic constraints (such as the 

concentration of children per couple around small integers). To do so, assume a given set of points 

       , and a set of links among the   points as a configuration of marriages   in which there is 

no points belong to more than one link. Denote singles and married couples by    and    

respectively. Additionally, we call the set of all marriage configurations  . Let us now define a 

system of configurations in which each configuration has a statistical weight and its partition 

function created on both individual and couple random variables. Assume    is the weight of the 

person   in the single state and      as the weight of the couple (   ) in the couple state, and also the 

partition function of the system is given by 

 ( )  ∑ ∏         (   )   
∏          , 

where the binary values            are the elements of acquaintance matrix of the population and 

indicate reciprocal knowledge among two individuals. In analogous way, we define a configuration 

of affiliations   as the set of links among our assumed   points in which the number of children 

(the links) for each couple (   ) is distributed according to a Poisson distribution   of given average 

 . We then denote the individuals without children and the couples with children by    

(undescended) and    (parents) respectively, and the set of all affiliations by  . Now, assume    is 

the weight of the person   in the undescended state and      as the weight of the child (   ) in the 

parental state, and also the partition function of the system is given by 

 ( )  ∑  ( )∏         (   )   
∏          . 

In this work, we take the random variables (       ) to be constant like the one assumed for the 

mean field models. Let us define the frequency as    
  

(  ⁄ )
 where    is the total number of links 

in the configuration  , and the expected value of the marriage frequency that can be calculated as 

     
∑   ∏         (   )   

∏          

∑ ∏         (   )   
∏          

, 
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where the average operation    is calculated on the acquaintance matrix ensemble. Analogously, 

for birth events, we define the frequency    
  

(  ⁄ )
 where    is the total number of links in the 

configuration   with its expected value: 

     
∑    ( )∏         (   )   

∏          

∑  ( )∏         (   )   
∏          

. 

At this point, we can create our two population system (Immigrant-Native system) in which the 

single variables    and    take only two values depending on which population the individual 

belong to and also the couple variables (     and     ) take only three values for the three cases 

(       ), (       ) and (       ). Let us now introduce the following mean-field 

Hamiltonian in order to include an imitative interaction (   ) between the two populations: 

 ( )     ∑                        (3.1) 

where 

   {
                                  
            

 

and in similar fashion, we define 

 ( )     ∑                        (3.2) 

where 

   {
                                        
            

 

One notes that here the configurations of   and   are uniquely determined by monomer-dimer 

configurations. The partition functions of two models are then given by: 

 ( )  ∑    ( ) ∏         (   )   
∏          , 

 ( )  ∑    ( ) ( )∏         (   )   
∏          . 

One notices here that the assumption of an exponential Hamiltonian deformation of the monomer-

dimer model is a working hypothesis to be tested against experimental data. Let us now define the 

frequency of mixed marriages as    
  

  
 where    is the number of mixed marriages in the 
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configuration  , and the expected value of the marriage frequency, that is, the probability of mixed 

marriages is 

  
(       )

   
∑      ( ) ∏         (   )   

∏          

∑    ( ) ∏         (   )   
∏          

,  (3.3) 

and for newborns with mixed parents we define the frequency as    
  

  
 where    is the number 

of children from mixed couples in the configuration  , and its probability is given by 

  
(       )

   
∑      ( ) ( )∏         (   )   

∏          

∑  ( )∏         (   )   
∏          

.  (3.4) 

Hereafter, for simplicity we use   instead of    and   , and   instead of   
(       )

 and   
(       )

. 

Recall the monomer dimer pressure      defined by (1.54). For the  , Barra et al (2014) found two 

different results: in the free regime that the monomer-dimer interaction dominates on the interaction 

  (      ), one found for the  ’s a   dependence of the type  ( )     (   ). On the other 

hand, in the imitative regime when the interaction   dominates on the monomer-dimer interaction 

(hard core or Poisson)       , they found a functional behavior of the type  ( )    √ (   ). 

In these two cases, the constants    and    depend only on the a priori probabilities of the monomer-

dimer interaction. 

 

Data Description 

 

To build and test our forecasting method, we analyzed a set of unique immigration data drawn from 

Spanish register data during the period 1999-2010. The significance of this data set is primarily 

because it was collected in a period when Spain hosted the majority of its immigrant population, 

and secondly, the fact that this data set contains information of undocumented immigrants who 

lacked residence permit in that period. The data set includes two types of information: social events 

and labor market. The data on social events, marriages and births were gathered from the local 

offices of Vital Records and Spain's National Statistical Agency (INE) in 735 municipalities which 
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received 85% of Spanish immigrants during the time interval of 1999 to 2008. This social data 

contain information such as the time of marriage, the place of birth, nationality and municipality of 

residence. The data on labor contracts which were recorded by Spain's Continuous Sample of 

Employment Histories in the period 2005-2010, consist of information about duration of each 

contract and its type: temporary or permanent. Social data were disclosed by the municipality of 

residence for areas with over 10,000 inhabitants, while the data related to labor market were 

disclosed only for areas with a population greater than 40,000. Primarily, from this data, we 

identified and extracted classical integration quantifiers on birth and marriage mixed events during 

1999-2008 – i.e., parents/partners born abroad. We refer to these quantifiers as social (immigrant 

integration) quantifiers. Next, we extracted information about the number of labor contracts – both 

temporary and permanent – signed by immigrants in the period of 2005-2010. We refer to these as 

socio-economic (immigrant integration) quantifiers. In our study, we define these quantifiers as a 

function of immigrant density,   
                    

                
      , in the form: 

   
                                                      

                                  
  (3.5) 

   
                                                      

                                  
  (3.6) 

   
                              

                        
     (3.7) 

   
                                                    

                       
  (3.8) 

 

Method and Results 

 

To prepare the data for analysis, we use the following algorithm: we begin by aggregating and 

cleansing the data in which the records should be checked for missing or incomplete data to avoid 

inaccuracy in our forecasting approach. After that, data on our quantifiers are organized into two 

datasets. The first contains information on our social integration quantifiers (see equation (3.7) and 
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(3.8)). The second set contains data on socio–economic quantifiers (see equation (3.5) and (3.6)). 

Next, for each data–set, we perform a detailed test of the methodology's forecast performance for 

increasing intervals of time: period 1 = (2000 to 2001), period 2 = (2000 to 2002), period 3 = (2000 

to 2003), etc. The objective is to forecast; 1) the growth law determining the integration process 

(i.e., establishing whether it is individual independent action or social action that drives the 

integration process) and 2) the level of integration in the system under study at different time 

intervals. More precisely, we set out to evaluate the quality of the forecasts in terms of 

promptness—how long is the waiting time before we can correctly identify the growth law for each 

integration process—accuracy—how well the prediction replicates the observed integration value—

and finally robustness—the forecasting ability of our model over the entire time span. 

Starting from data, we extract the growth law of each quantifier in terms of    (   )5. 

Hereupon, we create a data set for each quantifier per period by merging all the values of   with 

their corresponding integration quantifier values. We then order the data by increasing values of  , 

regardless of their corresponding space and time coordinates. We proceed by grouping the data into 

bins in terms of  ,
 6

 and finally we compute the averages
7
. In order to avoid noisy result, the number 

of bins is decided after detailed test of different width of bins. The results of these tests reveal that 5 

to 15 bins optimize 581–3471 entries on the socio–economic quantifier’s data–groups in defined 

successive intervals, whereas 8 to 30 bins optimize 2421–26546 entries for the datasets on social 

quantifiers in determined consecutive periods. Moreover, each bin on socio–economic quantifier 

                                                           
5
 The control parameter   tunes the total number of possible cross-link couplings between immigrant and native 

populations (see Barra et al. 2014). 

6
 For the binning criteria, we used and tested the constant information approach. In this approach, the width of the bin 

will vary over   and also there is a constant robustness quality across all bins (Barra et al. 2014). 

7 Since our quantifier values are in the shape of fraction, we compute the averages by using the method of global 

mediant. In the method, the averages are obtained by computing the ratio between the statistical average of nominators 

and the statistical average of denominators (see Barra et al. 2014). 
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represents the average values of 65–248 data versus 220–982 data for social indicators as time 

progresses (for more details see the tables 3.1, 3.2 and appendix A). 

Table 3.1. Binning and Goodness-of-fit statistics on socio-economic 

integration quantifiers, Spain 2005–2010. 
Permanent Jobs 

Period Total Data The number 

of bins 

Population 

in each bin 

     
       

  

1 581 5 116 1.507 0.9857 0.431 0.7971 

2 1165 11 106 1.555 0417.1 0.4658 048.17 

3 1684 12 140 1.569 0411.1 0.4896 048709 

4 2279 10 228 1.56 041711 0.4882 048..8 

5 2875 12 240 1.515 0411.7 0.5014 0487.5 

6 3471 14 248 1.515 0411.5 0.4988 0488.5 

Temporary Jobs 

Period Total Data The number 

of bins 

Population 

in each bin 

     
       

  

1 581 9 65 1.8 0.9264 0.4755 0.6574 

2 1165 12 97 1.818 0.9579 0.5376 0.6770 

3 1684 13 130 1.881 0.9596 0.5788 0.6772 

4 2279 11 207 1.887 0.9613 0.5895 0.6809 

5 2875 13 221 1.861 0.9699 0.6059 0.6976 

6 3471 15 231 1.843 0.9770 0.6098 0.7179 

 

Table 3.2. Binning and Goodness-of-fit statistics on social integration 

quantifiers, Spain 1998–2008. 
Mixed Marriages 

Period Total Data The number 

of bins 

Population 

in each bin 

     
       

  

1 2421 8 303 1.242 0.6997 0.3402 0.9767 

2 4885 11 444 1.329 0.8703 0.3725 0.9164 

3 7432 11 676 1.21 0.8591 0.3773 0.9373 

4 10039 13 772 1.077 0.8384 0.4007 0.9757 

5 12676 15 845 1.201 0.8539 0.4223 0.9816 

6 15334 18 852 1.162 0.7977 0.4502 0.9904 

7 18060 19 951 1.156 0.8076 0.4738 0.9882 

8 20835 23 906 1.228 0.8476 0.4865 0.9893 

9 23649 27 854 1.215 0.8512 0.5009 0.993 

10 26546 28 941 1.187 0.8583 0.5242 0.9931 

Newborns 

Period Total Data The number 

of bins 

Population 

in each bin 

     
       

  

1 2421 11 220 0.8164 0.9272 0.3099 0.9637 

2 4885 14 349 0.8595 0.9522 0.319 0.9615 

3 7432 18 411 0.8167 0.9469 0.3333 0.9616 

4 10039 19 523 0.7761 0.8874 0.3027 0.9772 

5 12676 21 582 0.8067 0.9008 0.3012 0.9778 

6 15334 23 659 0.7239 0.7857 0.2823 0.9731 

7 18060 27 667 0.6895 0.7746 0.2828 0.9794 

8 20835 30 690 0.6791 0.7826 0.2812 0.98 

9 23649 30 780 0.6702 0.7906 0.2809 0.9803 

10 26546 27 982 0.6484  0.8114 0.2831 0.9883 

 

The growth law of the integration process can then be expressed over the specified periods 

mathematically by using curve fitting tools over the obtained bins. The curve fitting process reveal 

that the data set on socio–economic quantifiers can be well predicted by linear model     while the 
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nonlinear model   √  successfully projects the social data–set across the analyzed time sequences. 

Hence our results agree with those reported by Barra et al. (2014). Thereafter, for simplicity of 

notation, we use   instead of both    and   . These findings shows that the values of coefficient   

recorded over the indicated periods converge to a fixed number  ̃ and determine a curve which 

holds the formula: 

 ( )   ̃ (     
 ),            (3.9) 

where    is referring to the final period and the  ̃ and   are parameter estimates describing the 

growth law using information from previous time periods (see tables 3.3 and 3.4). 

 

Table 3.3. Forecasting measures for socio-economic integration quantifiers, 

Spain 2005–2010. 
Permanent Jobs 

Period    ̃   

1 1.507 (1.410, 2.472) ------------------------ --------- 

2 1.555 (1.469, 1.642) 1.507 (1.410, 2.472)        

3 1.569 (1.501, 1.637)       (           )        

4 1.56 (1.49, 1.63)       (           )        

5 1.515 (1.468, 1.563)      (         )        

6 1.515 (1.476, 1.554)       (           )        

Temporary Jobs 

Period    ̃   

1 1.8 (1.514, 2.086) ------------------------ --------- 

2 1.818 (1.629, 2.007) 1.8 (1.514, 2.086)        

3 1.881 (1.66, 2.102) 1.818 (1.629, 2.007)        

4 1.887 (1.703, 2.071) 1.881 (1.66, 2.102)        

5 1.861 (1.732, 1.99) 1.887 (1.703, 2.071)        

6 1.843 (1.735, 1.951) 1.861 (1.732, 1.99)        
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Table 3.4. Forecasting measures for social integration quantifiers, Spain 

1998–2008. 
Mixed Marriages 

Period    ̃   

1 0.3402 (0.2973, 0.3831) --------------------------- --------------------------- 

2 0.3725 (0.3017, 0.4432)               

3 0.3773 (0.3214, 0.4333)       (             )        (             ) 

4 0.4007 (0.3644, 0.4369)        (             )        (            ) 

5 0.4223 (0.3927, 0.452)        (             )        (             ) 

6 0.4502 (0.4296, 0.4708)        (            ) 0.6267 (0.2191, 1.034) 

7 0.4738 (0.4509, 0.4967)        (             )        (           ) 

8 0.4865 (0.4647, 0.5084)       (             )        (            ) 

9 0.5009 (0.4835, 0.5183)        (             )         (            ) 

10 0.5242 (0.5066, 0.5418)        (             )       (            ) 

Newborns 

Period    ̃   

1 0.3099 (0.27, 0.3498) --------------------------- --------------------------- 

2 0.319 (0.2852, 0.3528)               

3 0.3333 (0.298, 0.3686)        (             )         (          ) 

4 0.3027 (0.2791, 0.3263)        (            )         

5 0.3012 (0.2794, 0.323)        (            )         

6 0.2823 (0.2611, 0.3036)        (             )       (             ) 

7 0.2828 (0.2659, 0.2997)        (             )        (              ) 

8 0.2812 (0.2657, 0.2967)        (             )        (              ) 

9 0.2809 (0.2655, 0.2963)        (             )        (               ) 

10 0.2831 (0.2704, 0.2958)        (             )        (              ) 

 

Based on this piece of evidence, we suggest the parameter  ̃ as a predictor to estimate the 

coefficient   of subsequent period. Thereafter, we insert the predictor of   into our models, and 

proceed by predicting the future outcomes. Our aim is to predict the quantifier values for new 

observations given their immigrant densities. It is worth noticing that in our approach, the value of 

each integration quantifier in the coming years also considers the new immigrants density    and 

thus the new value becomes   ( )    (  )            where   represents the extracted growth 

law function for each quantifier and      (    ). 

For instance, regarding equation (3.9), assuming that the reported values of " " through all these 

periods of time is a series of numbers, "  " will converge to the fixed numbers 0.5212 & 0.2821 for 

the mixed marriages and births with mixed parents quantifiers and numbers 1.515 & 1.861 for the 

quantifiers measuring the coefficient numbers of permanent and temporary jobs market 

respectively. Thus, if we use these "  ( )" values as the set of points that determines the curve for 

the four quantifiers, the following formulas apply: 
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   ( )   ̃  (   
  

   )  ̃                    

   ( )   ̃  (   
  

   )  ̃                    

   
( )   ̃  

(   
  

   )  ̃  
           

         

   
( )   ̃  

(   
  

   )  ̃  
           

        

where         . As a result, the values at convergence are introduced into our models for 

predicting future outcomes: 

  ( )                                        

  ( )                                       
 

  ( )        √                     

  ( )        √                                
 

The quality of the subsequent forecasts turns out to be prompt, accurate and robust. Figure 3.1 

illustrates how the goodness of fit of our forecasts changes as we progressively add information 

from subsequent time periods. As shown in the figure .41, this curve fitting exercise tells us the 

growth law that provides the best fit, when the entire set of data is considered, visibly delivers 

substantially better forecasts as early on as from period one. Even in the worst case scenario (see 

upper right panel in the figure 3.1) the forecast obtained by applying the square root growth law 

deliver more efficient estimates than the linear growth law already from period two and beyond. 

Thus, the predictability with respect to discerning the underlying mechanism for integration is 

prompt since the correct behavior emerges from the dataset as early as the first year, and no later 

than after two years. 
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Figure 3.1. Here each circular bullet displays the coefficient of determination computed for square–

root fitting   √  in the relevant period and each triangular bullet represents the analogous value 

recorded for linear model    . 

 

 

Figure 3.2 shows how the forecasted values  ̃ (grey points) based on past data match the values   

observed in the successive year. The match turns out to be very accurate. The Adjusted Mean 

Absolute Percentage Errors
8
 are within 1%. 

 

 

                                                           
8
 We used the Adjusted Mean Absolute Percentage Error which is a valid quantity to show the accuracy of the 

predictions: 

              
 

 
∑

|     |

(     )  ⁄
 
    where    and    are observed and forecasting values respectively (see Armstrong 

1985). 
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Figure 3.2. The black points represent the value of the coefficient   (for the suitable growth law 

identified in figure 3.1) obtained by real data collected up to the indicated year, grey points 

represent the forecasted value of the same coefficient obtained with the equation (3.9) – the 

Adjusted Mean Absolute Percentage Errors do are always under 1%. 

 

Figure 3.3, finally, analyzes the robustness of the forecasting ability with respect to identified 

models over the entire time span. The fit of the forecasted value vis–a–vis the observed value 

remain at an exceptionally high level also for large time intervals. The integration quantifiers 

exhibiting linear growth behavior are identified with high accuracy, with an    that never goes 

below .98 in the case of permanent contracts and .94 for temporary contracts. 9 As for the two 

quantifiers evolving like the square root, the lowest    is .91 for Mixed marriages, whereas in the 

case of newborns with mixed parents it is .95. 

 

                                                           
9
    indicates how well the observed outcomes are replicated by the statistical model. The measure ranges from 0 to 1 

such that the larger numbers representing better fits and also 1 indicates a perfect fit: 

     
∑ (     )

  
   

(    ̅) 
 

where         are the observed values,        are the forecasts, and  ̅ is the average of the data (Draper and Smith 

1998). 
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Figure 3.3. Forecasts by the equation (3.9) are tested by the    coefficient against real data at 

increasing time intervals.    never goes below .91 even for forecasts 9 years ahead. 

 

Concluding discussion 

 

The main objective of this work was to propose a quantitative method capable of elaborating 

precise forecasts of immigrant integration as a function of immigrant density. This objective has 

been accomplished. 

The forecasting ability of the proposed model turns out to be prompt, accurate and robust. 

Promptness is found since the applied method successfully determines and differentiates between 

integration processes sensitive to social interaction or not, at very early stages (maximum two time 

periods). Accuracy and Robustness is found since, once we have determined the growth law, our 

prediction algorithm provide very accurate forecasts over the entire time sequence. Hence, using 

this framework it is possible to estimate the future rate of, for example, inter–marriage, if the size of 

the immigrant population rise by say 2–3%. 

An important quality of our forecasting framework is that it is capable of uncovering the underlying 

mechanism driving the integration process—social interaction or independent decision making—at 
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an early stage in the immigration cycle. The capacity to foretell information of this type is by no 

means trivial since the two mechanisms are likely to demand different policy responses. For 

example, when integration grow linearly with immigrant density, as our labor participation 

indicators, effective policy responses should focus on problems such as access to labor markets, to 

improve integration, whereas integration induced by social action and interaction requires policies 

targeting the quality and intensity of interaction between immigrants and locals.  

Our findings are of particular value to governments and researchers engaged in formulating more 

effective and precise immigration and integration policies. It is also an excellent research tool for 

scholars interested in explaining individual integration outcomes since it unveils in a general but 

powerful way the presence or absence of social network effects in integration phenomena. 
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Appendix A 
 

 

Figure 4.1 Raw data and average behavior of permanent jobs quantifier in period 1. 
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Figure 4.2 Raw data and average behavior of permanent jobs quantifier in period 2. 
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Figure 4.3 Raw data and average behavior of permanent jobs quantifier in period 3. 
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Figure 4.4 Raw data and average behavior of permanent jobs quantifier in period 4. 
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Figure 4.5 Raw data and average behavior of permanent jobs quantifier in period 5. 
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Figure 4.6 Raw data and average behavior of permanent jobs quantifier in period 6. 
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Figure 4.7 Raw data and average behavior of temporary jobs quantifier in period 1. 
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Figure 4.8 Raw data and average behavior of temporary jobs quantifier in period 2. 
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Figure 4.9 Raw data and average behavior of temporary jobs quantifier in period 3. 
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Figure 4.10 Raw data and average behavior of temporary jobs quantifier in period 4. 
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Figure 4.11 Raw data and average behavior of temporary jobs quantifier in period 5. 
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Figure 4.12 Raw data and average behavior of temporary jobs quantifier in period 6. 
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Figure 4.13 Raw data and average behavior of mixed marriages quantifier in period 1. 
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Figure 4.14 Raw data and average behavior of mixed marriages quantifier in period 2. 
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Figure 4.15 Raw data and average behavior of mixed marriages quantifier in period 3. 
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Figure 4.16 Raw data and average behavior of mixed marriages quantifier in period 4. 
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Figure 4.17 Raw data and average behavior of mixed marriages quantifier in period 5. 
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Figure 4.18 Raw data and average behavior of mixed marriages quantifier in period 6. 
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Figure 4.19 Raw data and average behavior of mixed marriages quantifier in period 7. 
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Figure 4.20 Raw data and average behavior of mixed marriages quantifier in period 8. 
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Figure 4.21 Raw data and average behavior of mixed marriages quantifier in period 9. 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

 
 

 

Figure 4.22 Raw data and average behavior of mixed marriages quantifier in period 10. 
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Figure 4.23 Raw data and average behavior of newborns quantifier in period 1. 
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Figure 4.24 Raw data and average behavior of newborns quantifier in period 2. 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

 
 

 

Figure 4.25 Raw data and average behavior of newborns quantifier in period 3. 
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Figure 4.26 Raw data and average behavior of newborns quantifier in period 4. 
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Figure 4.27 Raw data and average behavior of newborns quantifier in period 5. 
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Figure 4.28 Raw data and average behavior of newborns quantifier in period 6. 
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Figure 4.29 Raw data and average behavior of newborns quantifier in period 7. 
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Figure 4.30 Raw data and average behavior of newborns quantifier in period 8. 
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Figure 4.31 Raw data and average behavior of newborns quantifier in period 9. 
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Figure 4.32 Raw data and average behavior of newborns quantifier in period 10. 

 

 

 

 

 

 

 

 

 

 

 

 


