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SUMMARY

Introduction

Heart diseases are the leading cause of deatldwide, both for men and
women. However, the ionic mechanisms underlying many cardiac arrhythmias and
genetic disorders are not completely understood, thus leading to a limited efficacy
of the current available therapies and leaving many open questions forccardia
electrophysiologists.

On the other hand, experimental data availability is still a great issue in this field:
most of the experiments are performadvitro and/or using animal models (e.qg.
rabbit, dogand mouse), even when the final aim is to better exgathnd the
electrical behaviour oih vivo human heart either in physiological or pathological
conditions.

Computationamodellingconstitutes a primary tool in cardiac electrophysiology:
in silico simulations, based on thavailable experimental data, ay help to
understand the electrical properties of the heart and the ionic mechanisms
underlying a specific phenomenon. Once validated, mathematical models can be
used for making predictions and testing hypotheses, thus suggesting potential

therapeutic tagets.

Aims

This PhD thesis aims to apply computational cardiac modelling of human single
cell action potential (AP) to three clinicatenarig, in orderto gain new insights
into the ionic mechanisms involved in the electrophysiological chawtggervedn

vitro and/orin viva

1 The first context is blood electrolyte variations, which may occur in patients
due to different pathologies and/or therapies. In particular, we focused on
extracellular C& and its effect othe AP duration (APD).

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside



14 Summary

1 The second conté is haemodialysigHD) therapy in addition to blood
electrolyte variations, patients undergo a lot of other different changes during

HD, e.g. heart rate, cell volume, pghdsympathevagal balance.

1 The third context is human hypertrophic cardiomyopdth¢€M), a genetic
disorder characterised by an increased arrhythmic risk, and still lacking a
specific pharmacological treatment.

The general ainof this PhD thesis cathereforecbo e r ef erred to as f#AFr ol
Bedsi de @,to corelate single cell ettrophysiology withsome specific
clinical patient phenotyge by usingin silico techniques to highlight the
mechanisms more likely contributing to them at the ionic level

Methods

Many computational AP models published in literature, both atrial and
vertricular, have been considered during this thesis.s@models have been
modified when needed, to improve their suitability ¢pecific conditions not
originally taken into accounduring their development/validation. In particular, a
new hybridventricdar model has been developdyy, usingan existing onas basis

and changing part of isriginal formulation

All models provide a full description of the ionic currents and intracellular
dynamics underlying the cardiac cell APepresented by means ofdinary
differential equations solved by using a variable order solver, based on numerical
differentiation formulas. The models have been implemented mostly in Matlab
(Mathworks Inc.) and CHASTE (Cancer, Heart and Soft Tissue Environment,
University of Oxfad), an opersource software specifically developed for cardiac

modellingand based on™C.

In addition to the traditional single cetfiodellingtechniques, the population of
models (POMs) approach habeen considereih the lastSectionof the thesis:
instead of a single AP model, representative of the average cell behaviour,
simulations have been run on thousands of nsodelthe same timehence

representinghe effect of biological variability.

Elisa Passini
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Results Outline

Here below is a summary of the main resdtir the three differentonditions

investigated in this PhD thesis, each onestilated in a different Section:

 In Section | the effects of extracellular &a([Ca’"],) changes on th&uman
ventricular AP have been investigatesh increase of [G4, shortens AP and a
decrease of [C4], lengthens it. Both AP duration (APD) increase and decrease
are associated withlagherarrhythmic risk therefore this dependence has to be
considered in all theituationsin which [C&"], variations may occur. Howere
most of the AP models currently available in literaturendioreproduce properly

the effect of [C&], changes on AP.

V In Chapter 3 a new Markov model for the-type C&" current has been
proposed and i nt e-Rudg humah vantnidular ARthlke OO0 Ha
hybrid model well simulates theinverse APDB[C&'], dependence, not
reproducd by the original one. Itslevelopment has been driven by the
hypothesis that G&dependent inactivation is usually underestimated in AP
models our simulationsconfirmed the crucial role of this mechanism in
determining the APEIC& "], relationship Therefore, the hybrid modeanbe
applied to clinical conditions in which blood electrolyte concentrations
change overtimeto evaluae the correspondinghangesat the AP level and

potentialpro-arrhythmiceffects

V In Chapter 4, the hybrid modedescribed in Chapter Bas been used to
investigatethe impact ofblood electrolyte changes measured during-test
Bedrest isa groundbased experimenised tosimulateon Earththe effect of
microgravity on the human body, thus assessing the possibly increased
arrhythmic risk for astronauts during space flights. Simulation reisudtimgle
cells and 1D cablewere compared with ECG data analysis, providing
evidence of a biphasicand in repolarisation: RT intervals decrease during
bedrest and increase afterwards. The electrolyte concentrations have been
used as model inputs to simulate volunteer conditi@isre during,and after
bedrest. Smulated AP and pseudeCG were bothin agreement with the
recorded ECGsuggeshg that electrolyte variationgccurring during bedest

may be responsible for thepolarisation changesnd thus correlating the

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside
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electrophysiologicaphenotype with the modification at the cellular levighis
project has been done in collaboration wtiof. Enrico G Caiani Department
of Electronics, Information and Bioengineerjrigolitecnico di Milano, Italy
and the gperimental data have been acquirgdie European Space Agency
(ESA).

1 Section Il investpates the impact ohaemodialysis(HD) therapy on the

electrical activity of the hearfpcusing onthe electrolyte variations occurring
during a regular HD sessi@md evaluating the corresponding changes at cellular
level Here, human atrial AP models Jea been considered, since atrial
fibrillation (AF) incidence is high in endtage renal disease (ESRD) patients.

V Chapter 5 presentsa benchmarking of all the atrial AP models currently

available in literature, with respect to their suitability to the Hibtext. All
models have been tested for variations in cell volume, extracellular electrolyte
(K*, Ca and N4&) and acetylcholine concentration, computirgeaiof AP and
C&*-transientbiomarkers to compare simulation results with the expected
behaviour, bsed on literature review. Some models proved to be more
appropriate than others for sing&spects butall of them showed some
drawbacks Suggestionshave beergiven for thepotentialdevelopment of a
new atrial modelgexpectedo reproduce properly alhe HD-induced effects

on human atrial AP.

Chapter 6 illustrates the case study of &SRD patient showing recurring
paroxysmal AF during HD therapy. Experimental data, i.e. blood electrolyte
concentrations and heart rate, have been used to repriodiilbeo the patient
preHD and preAF conditions at cellular levelsing a modified version of

the Courtemanche atrial AP model, described in Chapter 5. By integrating
simulation results and clinical observations, we formulated ahypathess

about the medmisms involved in AF onset during HIAF episodes are
induced by the presence of a trigger (ectopic beats) that acts upon an acute
substrate induced by intdialytic electrolyte variations, especially *K
(increased AP depolarization time and shortendichary period), on the

background of autonomic nervous system changés project has been

Elisa Passini
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done in collaborations withi®onettaGenovesi, MD and Atonio Vincenti,

MD (Department of Health Sciences, University of Milano Bicocca, Italy).

V In Section Il (Chapter 7) the population of models (POMs) approach has
been used to studize electrical remodellingoccurring in humatypertrophic
cardiomyopathy KICM), in order to identify possible therapeutic targets for
this disease. The POMs approach accountsirftar- and intra subjecs
variability, which indeedseems tglay an important rolen HCM andwhich
cannot be taken into account when considering a single AP model,

representative of the average cellular behaviour.

V As first, a control (CTRL) population of models hasbeen built to
reproduce an experimental dataset of AP and’ Geansient (CaT)
biomarkers, acquired on human single cells fromonfailing non

hypertrophiccontrob.

V Then, a HCM population has been developed by applying to the CTRL
population the electrophysiological changes measured in diseased cells,
together with a few novel hypotheses based on literature review. The
simulated HCM biomarkers resulted to bein agreement withthe
experimental onesand the contribution afach singleelectrghysiological

changeo the global HCM phenotypeas been evaluated

V The occurrence of repolarisation abnormalities, e.g. early -after
depolarisations (EADs) and repolarisation failure (RF), has been
investigated in the HCM population and the ionic mectasi more likely

to be responsible for them have been identified.

V Since specific compounds are already availablel_ghe Nd current(Inal)
and the Na'/C&" exchanger (lcx) have been considereals potential
therapeutic targetsBoth ka. and kcx selectve blocks showed an anti
arrhythmic effectpartially reversing the HCM phenotype and suppressing
repolarisation abnormalities. Trewmbination of bothprovedto be even
more effective suggesting the simultaneous blocklgf. and kcx as a

successful amarrhythmic therapyn humanHCM.

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside
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V This project has been done asviaiting studentin the Department of
Computer Science, University of Oxfo(fJK), under the supervision of
Prof. BlancaRodriguez Alfonso BueneOrovio, PhD and Ana Mincholé,
PhD, and in ollaboration with Rffaele Coppini, MD and Hsabetta
Cerbai, MD (NeuroFarB®epartmentUniversity of Florence, Italy).

To summarize, the results presented in this thesis have improved the
understanding of the ionic mechanisms underlying electrophysialogroperties
related to arrhythmic risk inspecific clinical contexs, thus confirming
computationamodellingas a valuable tool in cardiac electrophysiology, especially
when fully integrated with experimental data

Elisa Passini
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SOMMARIO

Le malattie cardiche e ardiovascolarsonoad oggila causa principale di morte
nel mondo.Tuttavia, i meccanismi ionici responsabili di aritmie o di altre malattie
cardiache non sono ancora del tutto conosciuti: questo spesso porta a una minore o
mancata efficacia delle teraptualmente disponibili, e lascia numerose domande
aperte per gli elettrofisiologi. Inoltre, la difficolta di acquisizione dei dati
sperimentali rimane ancora uno dei problemi piu grandi in questo campo. Infatti la
maggior parte dei dati vengono raccaiti vitro e/o utilizzando modelli animali
come <coniglio, ratto o cane, sebbene |
completa comprensione del comportamento elettrico del caorieoe nel | 6 uo mo
in condizioni sia fisiologiche sia patologiche.

In quesb contesto, la modellistica computazionale costituisceuno strumento
indispensabile: infatti, le simulazioim silico permettono di superare, almeno in
parte, i limiti sperimentali, e di investigare i meccanismi ionici alla base di specifici
fenomeni a diersi livelli (singola cellula, tessuto, intero cuore). Una volta validati
sui dati sperimentali, i modelli matematici possono essere dunque utilizzati per fare
predizioni, testare ipotesi e valutare |

Lo sco di questa tesi di dottorato e stato quello di applicare tecniche di
modellistica matematica a problemi di elettrofisiologia cardiaca, in particolare
utilizzando modelli di potenziale dbéazio
{ Variazioni del livello dielettroliti (Na", K* e C&") nel sangue, che possono

verificarsi nei pazienti a causa di diverse patologie e/o terapiepassibili

conseguenze praritmiche. Sono state considerate particolarevariazioni di

Cd" e il loro effetto sulla durata del PAentricolare, aspetto solitamente

trascurato nei modelli a oggi disponibili. E stato sviluppato un nuovo modello di

PA, integrando una nuova formulazione per la corrente dii€an modello gia

esistente: il modello ibrido cosi ottenuto costituisce atramento importante

per esplorare i contesti clinici in cui le variazioni elettroliticpessono

verificarsi. Come esempio applicativo, sono stati analizzati dati sperimentali

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside
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raccol ti dal | 6Agenzia Spaziale Europea

aritmico per gli astronauti durante i voli nello spazio. Questo studio e stato svolto
in collaborazione con il Prof. Enrico CaiaDipartimento di Elettronica,

Informazione e Bioingegneria, Politecnico di Milano, &gl

Variazioni elettrofisiologiche chevvengono durante la terapia dialitica. In

guesto contesto non si modificano soltanto le concentrazioni elettrolitiche ma

anche | a frequenza cardi aca,-vagale.Dalo | u me
(FA)

moment o che | a fi br i lilleaza elevateenei pazientiial e
dialisi, sono stati considerati modelli di PA atriale, confrontando le loro
caratteristiche e la loro applicabilita in questo contesto. Come esempio, €& stato
analizzato il caso di una paziente che presentava FA parossistigaii seduta
dialitica. Questo studio e stato svolto in collaborazione con la Do8irsemetta
Genovesie il Dott. Antonio Vincenti, (Dipartimento di Scienze della Salute
Universitadegli Studi diMilano-Bicocca, Itai).

Cardiomiopatia ipertrofica (H®), una malattia genetica caratterizzata da un
alto rischio aritmicce causa principaldi morte cardia@a improvvisanei giovani

adulti (<35 anni). Per tener conto della variabilita biologica, che sembra avere un
ruolo determinante in questa patologia, retitto nella risposta individuale a un
possibile trattamento farmacologico, € stato utilizzato un nuovo approccio

computazionale: le popolazioni di modelli. Questo studio e stato svolto durante

(ES

cel
I

un periodo di ricerca al |dnpuet Screrce pr esso i

del |l 6Uni versit? di Oxford, sotto | a

Dott. Alfonso BueneOrovio, e la Dott.ssa Ana Mincholé.

| filo conduttore di guesta tesi
ADal | a Ce lnltueNam a aasojnRultizgli €cenari analizzati, lo scopo
principale & stato quello diorrelarei cambiamentielettrofisiologci a livello
cellulare con il fenotipo osservato a livello macroscopico nel pazienper
identificare i meccanismi ionici ché& contribuiscono e suggerire di conseguenza
possibili approcci farmacologici. I
dei model | i mat emat i ci come supporto

guando | Gna glipor vieree cutilinzad in sinergia con quelldn vitro.

Elisa Passini
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CHAPTER 1

Basic Concepts of the Electrical Activity of the

Heart and its Mathematical Modelling
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Introductioni Chapter 1 25

THE CARDIAC ELECTRICAL ACTIVITY

The heart is situated slightly to the left of the middle of the thorax, underneath
the sternum, between the lungs. Itsispported inside a structure known as the
pericardial sac, a double membrane structure containing a serous fluid to reduce

friction during heart contractions.

There are four major chambers in the heart: the larger, lower, thicker walled
chambers are theentricles, while the smaller, upper, thinner chambers are the atria.
The bottom of the ventricles is called the apex and their top part is known as the
base. Both the atria and the ventricles are separated into independent left and right
halves by the septwall. The function of the right atrium is to collect deoxygenated
blood from the body. After contraction of the atria, this blood is passed to the right
ventricle and pumped into the lungs (pulmonary circulation) to produce the gas
exchange between canb dioxide and oxygen. The-oxygenated blood from the
lungs is then collected in the left atrium, from where it moves to the left ventricle
which pumps it out to the body. Since the right ventricle only pumps blood through
the pulmonary circulation systeof the lungs, whilst the left ventricle pumps blood

to the rest of the body, the left ventricle is considerably thicker than the right.

Mechanical contraction of the heart is caused by the electrical activation of
myocardial cells. The electrical actii@at sequenceHigure 11, left side) of the
human heart starts at the sinoatrial node, located in the right atrium at the superior
vena cava. This node consists of specialized muscle cells which aexatdtory
pacemaker cells, able to generate an electrical impulse at a rate of about 70 per
minute. From the sinoatrial node, the wave of electrical activation propagates
throughout the atria, but cannot propagate directly across the annulus of separation
betweenthe atria and the ventricles. The atrioventricular node, located at the
boundary between the atria and ventricles, is the only conducting path from the atria
to the ventricles in a normal heart. Conduction velocity through the atrioventricular
node is congerably delayed in order to supply enough time to the atria to fill the
ventricles with blood before the beginning of their contraction. Propagation then
proceeds through a specialized conduction system, called the bundle of His. After a

short distancef iseparates into two bundle branches propagating along each side of

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside



26 Introductioni Chapter 1

the septum, constituting the left and right bundle brunches. Both branches then
continue to subdivide into a complex network of fibres called the Purkinje fibre
network, which spreads a@®the endocardial surface and into the esafiocardial
region of both ventricles. The fast conduction through the bundle branches and
Purkinje fibres causes the entire endocardium to be excited almost simultaneously,
although apical regions contract fieshd the basal regions are usually the latest to
be excited.

Atrial
muscle

Commaon
bundle

Bundle
branches

Purkinje
fibers

muzcle

I ! I I ! I 1
Time[ms] 0 100 200 300 400 500 GO0 70O

Figure 1.1: Electrophysiology of the heart. The different action potentials for each of the specialized
cells found in the heart, and their contribution to the tatigctrocardiogram waveform are shown
(modified fron1]).

Cardiac Action Potential and ECG

Cardiac muscle cells or myocytes are approximately flattened tubes, about 80
100em long in human ventricular tissue, with elliptic cross sections with a major
axis of 1620 em. They are arranged in discrete layers of fibres called sheets,
roughly parallel to the heart surfaces (epicardium and endocardium), with the fibre
axis continuaisly rotating counter clockwise from epicardium to endocardium in a

range of 100°120° as viewed from the top of epicardium. Each cardiac muscle cell

Elisa Passini
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Is bounded by a thin {3 nm) phospholipid membrane or sarcolemma. This
membrane encapsulates a small waduthat is known as the intracellular space,
whereas the extracellular or interstitial space is therefore defined as the space that
lies outside the sarcolemma. The membrane is heterogeneous, with numerous large,
complex proteins embedded within it, condmnto form small pores in the cell
membrane. Under most circumstances these pores are selectively permeable,
allowing the pass of only specific ions through the membrane and only under

certain conditions, reason why they are commonly called ion channels.

The main ions that are of interest in cardiac electrophysiology arekNaCa*
and Cl. At resting, the intracellular and extracellular concentrations of each ion are
substantially different. In principle, this difference on concentrations would produce
a chemical force that would make ions to flow down their concentration gradient to
crede a uniform distribution at both sides of the membrane. Nevertheless, different
ionic concentrations also imply a net electrical charge difference between both sides
of the membrane, what causes the establishment of an electrical gradient that acts to
oppose the chemical gradient, thus allowing inmad extracellular concentrations
to be different. Consequently, at rest the cell membrane maintains a net membrane
potential, which for cardiac muscle cells generally is betw86rand-80 mV, and

the cell nembrane is said to be in a polarized state.

However, under electrical excitation of the cell this electrochemical equilibrium
is broken: this allows ions to flow through those ion channels to which they are
permeable, if opened. Any positive increaseheftransmembrane potential towards
zero is therefore known as depolarization, while the term repolarization refers to the

returning of the cell to its negative resting state.

Small perturbations in the potential difference across the cell membrane produce
only a passive, linear response of the cardiac cell, followed by the returning of the
transmembrane potential towards its resting state. On the contrary, when a
sufficiently large stimulus is applied (i.e. able to rise the transmembrane potential
above tle threshold potential), an active, alimear response, known as the action

potential (AP) will be elicited.

Depending on the region of the heart, the cardiac AP may have different shapes

and properties Higure 11, right side): all these differences, together with the

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside
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particular activation sequence described above, are responsible for the
macroscopical electrical activity of the heart, as measured in the electrocardiogram
(ECG). In a conventional 12 lead ECG, teactrodes are placed on the patient's
limbs and on the surface of the chest. The overall magnitude of the heart's electrical
potential is then measured from twelve different angles and recorded over a period
of time. In this way, the overall magnitude adaection of the heart's electrical
depolarization is captured at each moment throughout the cardiac cycle. The graph
of voltage versus time produced by this fiomasive medical procedure, and
referred to as ECG, is characterised mainly by 3 waves: aa® watrial
depolarization), a QRS complex (ventricular depolarization) and a T wave

(ventricular repolarization).

Despite these differences in shape and properties, the cardiac AP it is mainly
characterised by 5 different phases, related to the opemismglof the different
ion channels (mainly NaC&* and K), as shown ifFigure 12:

 Phase O(upstroke) when the threshold is reached, there is a rapid influx’of Na
through the N& channels, creating the fast Naurrent (hs) who rise the

membrane potential up to positive values.

 Phase 1the N& channels close, while 'Kchannels open. Throughout the whole
action potential duration there are different ¢urrents that tend to bring the
transmembrane potential ddato its resting value. In this phase, the main
contribution is the one of the transient outwardckirrent, which causes a small

deflection in the membrane voltage, called

 Phase 2 the outward K currents are counteracted by the opening of' Ca
channel s, responsible for the dAplateau pha
decreases very slightly. The duration of this phase may vary from one cell to the

other, e.qg. it is very short in atrial cells and longer in ventricular ones.

 Phase 3when theC¥*c hannel s cl ose, the fArapido and i
K" currents (k and ks respectively) play the major role, bringing the

transmembrane potential back to its resting value.

1 Phase 4 the cell is in its resting state; the resting membrane paleist

depending mostly on the inward rectifying &urrent (k1).

Elisa Passini
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membrane potential (mV)
o

0 100 200 300
time (ms)

Figure 12: Representative action potential trace of a human ventricular endocardial cell.

Different cell types may have different ionic currents and formanati causing
the differences in shapes, e.g. ventricular vs atrial cells. An example is given in

Figure 13, by comparing atrial and ventricular cells.

1 1
2
OmV -} 2 20mVJ
0
0 3 3
4 4
- 4 100 ms 4 Current
Inward { ' ' INa
currents loas
Outward {_‘ 4 Iks
currents
T
IK1
—_h T P R Ve
— e mm Mem

Figure 1.3: Main differences beteen atrial (left) and ventricular (right) action potentials, with the
underlying ionic currents (modified frorf2]).
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Arrhythmias and prearrhythmic mechanisms

Sudden Cardiac Death (SCD) is a sudden, unexpected loss of heart function: the
heart stops beating and blood stops flowing to the brain and other vital organs,
causing death if not treated within minutes. Most SCD are caused by abnormal
heart rhyhms, calledarrhythmias, in which heart beat is too fast, too slow or

irregular: they are due to problems with the electrical conduction of the heart.

There are different types of arrhythmias: extra beats, either atrial or ventricular,
supraventricular thycardia, which include atrial flutter and atrial fibrillation,
ventricular arrhythmias, i.e. ventricular tachycardia or fibrillation, and brady
arrhythmias. Most arrhythmias can be effectively treated, by medications or

medical procedures, such as a paaker and surgery.

There are manypro-arrhythmic mechanismavhich make the heart more
vulnerable to arrhythmias. As an example, Figure 14 and Figure 15 APD

alternans ad afterdepolarisations (early, EADs and delayed DADSs) are shown.

V(mv)

T(ms)

Figure 1.4: Cardiac action potential traces showing APD alternans, i.e. a beat to beat variability in
the AP duration (modified frofi3]).

oOmVv

Reactivation
of L-type Ca
current

Intracellular
Ca2+ overload

50 mV

05s

Figure 15: Cardiac AP illustrating EAD and DAD mechanisms (modified fféh
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MODELLING THE CARDIAC ELECTRICAL
ACTIVITY

Equivalent Electric Circuit of the Membrane

The action potential (AP) represents a transient change of the transmembrane
voltage of the cell, and it is the result of all the ionic currents (mostly iKaand
Cc&™") flowing acros the membrane. Considering the equivalent electric circuit, the
membrane itself can be represented by a dielectric, with a capacitance of about

1pF/enf, and each ionic current can be represented by a redtgaré 16).

Extracellular

[le | Ina " [

I T S

VN —— VK____ VL o —

Intraceliular

Figure 1.6: Equivalent electric circuit of cell membrane.

The action potential of a single cell can be then reconstructed by solving the
following differential equation, wher&, represents the transmembrane voltage
the capacitance of the cell anhst the total current flowing, consisting of the sum of
all the different ionic currentdjg,) and the stimuls currents»), required from the

cell to reach the voltage threshold, thus developing a full actiom{imite

O 0 0 5 2
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The Hodgkin and Huxley formalism

The first AP mathematical model was developed by Alan Lloyd Hodgkin and
Andrew Huxley, in 1952[5], to explain the ionic mechanisms underlying the
initiation and propagation of neural APs in the squid giant axon. In 1963, they
received the Nobel Prize in Physiology or Medicine.

The HodgkinHuxley model was developed by performing a series of voltage
clamp experiments on giant squid axons, i.e. holding the memlicaa constant

voltage value, and measuring the corresponding current flow.
They identified three different contributions to the total current:
- Na' current
- K" current
- Leakage current (carried by unspecified ions)

The leakage current was formulated simgdya maximal conductance times the
corresponding driving force, while Nand K’ current formulations included also a

voltagedependent gating mechanism, regulating the channel opening/closing.
O Q B IV
O Q% Ju w
O MMo2w
Here, gNa = 120, gK = 36 and gL = 0.3 (mS7rare themaximal conductances
associated with the NaK" and leakage currents, respectively, E 115, k= 1 1 2
and E = 10.613 (mV) are the reversal potentials of each ion, according to the
Nernst equation and relative to the resting membrane potential. Gatiadplesm,
h andn are voltage dependent and their values (always between 0 and 1) describe
the probability for the channel to be in an open state. When their value is 0 the gate
is completely close and no current will flow, whereas when the value esdatk is

completely open. The leakage current does not have any gating mechanisnis, the K

current has only a gating variable, while the Narrent has two of them: therefore,
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the state of the Nagate relies on the product of both gating variable, amgwhen
they are both equal to 1 the gate is completely open.

Each gating variable is described by a differential equation:

Q¢ 5 . 1o
T~ €
Qo P
He r ga n dlarébknown as rates and are usually vokdgpendentFigure 17
shows the action poteat generated by the Hodgklduxley model, again relative

to the resting membrane potential, and the three gating variable traces over time.
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time (ms) time (ms)

Figure 1.7: Transmembrane potential generated by the Hodgkin and Huxley model
(left panel) and the corresponding gating variables over time (right panel).

From Hodgkin-Huxley to Cardiac Models

Starting from Hodgkin and Huxley, AP mathematical models have gained a
relevant role in the investigation of cellular electrophysiology. Their plessi
application to the heart has been soon realized and right from the beginning, cardiac
cell modelling allowed to gain insights by predicting phenomena which have been

later confirmed experimentally.

The earliest example consists in the pioneering wgrkdible, who modified the
HodgkingHuxley model to simulate Purkinje fibres in mammals, identifying the

energysaving properties of the inward rectifier potassium cur@nt

Due to the limited availability of human cardiomyocytes for experimental
research, most electrophysiological models had been formulated for animals

(mouse, guinea pig, rabbdpg, etc.). However, animal and human cardiomyocytes
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differ in major aspects, such as action potential shape and duration, range of normal
heart rates, action potential restitution and relative importance of ionic currents in
the action potential generafi. As all these factors may influence the mechanism of
arrhythmias initiation and dynamics, simulation results obtained with animal

models may prove inadequate to represent phenomena observed in human.

In recent years, more and more data on human ioniertts have been gathered
from human cardiomyocytes. In addition, by cloning techniques vottkgep
measurements of human ion channels have been acquired in heterologous cells. As
a consequence, new several models have been developed to describenheirig
the human cardiac action potential, an important step towards a wider application in
clinical practice.

In 2012, two comprehensive reviews of human atrial models have been
published,[7, 8], comparingthe different structure and ionic current formulations,
and discussing the differences in AP and'®@ansient biomarkers.

As for ventricular cells, there is not any comprehensive review which includes
the most recently published AP models. Therefor¢hennext chapter we present a

literature review of the current state of the art in human ventricular AP models.
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MODELS ON THE MARKET

Human ventricular cells modelling has begun in 1998 with a studiriepe and
Beuckelmanr9] (PB98), aimed at understanding the effects of electrophysiological
alterations in heart failure. They used the LRady model of ginea pig
ventricular myocyte$10] as basis, parameterized aneith available human data,
measured in normal and diseased myocytes.

The PB98 model has been the only one available until 2004, tmiwefurther
models of human ventricular cells were introduced lyey etal. [11]
(IW04) andTen Tusscheretal. [12] (TP04. Both these models provide a more
detailed description of ionic currents and fluxes, which reflectg msights in
channel function understanding as well as the availability of new measurements
from human cells and channels. The IW04 model describes the electrophysiology of
subepicardial cells (Epi), applying Markovian models for most chanhelsever,
this choice lead to a significant increase in complexity and hence computational
time required for simulation. In contrast, the TP04 model uses the common
HodgkinHuxley formulation for all currents, and in addition to Epi also considers
subendocardial (Bdo) and Midwall (M) cells. A comprehensive comparison of
PB98, TP04 and IW04 models, including ion currents, action potential morphology
and duration, rate adaptation and other properties, has been performed by Ten
Tusscher et al13]. A revisited version of TP04 has been psitd by the same
group in 2006[14] (TP06), including more details on intracefiulC&*-handling

and cell compartmentalisation.

Two years later, Buer@rovio et al.[15] performed a new comparison of these
models, proposing at the same time a minimal ventricular human model,
specifically designed to reproduce tisdaeel characteristicAn additional
comparison of the IW04 and TP04 models as been perfobyddiedereretal.

[16], highlighting their significant differences in terms of voltage, ionic currents and
concentrations during an action potent@ihoughboth models aim to represent the
same physiological systenthese differences can be partially explained by the

different experimental data which have been used to characterise them
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More recently (2010)a model of human ventricular AP has bgeoposed by
Grandiet al.[17] (GB10), using the rabbit model proposed by Shannon ¢t &l.
as basis, and includlj new formulations of ionic current densities and kinetics,
according to novel human experimental data. With respect to the TP06 model, the
GB10 shows a better steadtate AP response to frequency changes and to
potassium currentblockades. However, th&B10 model does not properly
reproduce £, restitution properties nor APD rate adaptation dynamics, as reported
by Carro et al[19]. Those drawbacks probably have been acquired from the rabbit
model used as basis, sincgSSrestitution and APD rate adaptation are notably
different in rabbit with respect to human. Indeed, in a meceview the GB10
model has been even referred to as a rearrangement of a rabbit model rather than a
real new human mod¢20]. In 2011, Carro et a[19] developed a refinement of
the GB10 model (CP11), to rectify these drawbacks. particular, they
reformulated the itype calcium current dynamics, in order to actelyareproduce
$1S; restitution and APD rate adaptation.

The most recent mo d e | of human ventricul ar
et al.[21] (OR11) in 2011. This model was developed and validated by @asing
extensive dataseincluding many preiously unpublished experimental data, from
more than 100 undiseased human hearts. Due to the extensive validation on these
new data, the authors claimed to have substantially increased human specific model
accuracy: in fact, the model was shown to repcedwseveral physiological
behaviours and drug blocks. Moreover, the effects 6f/Calmodulindependent

protein kinase Il (CaMKII) were incorporated as well.

In Table 21 the published models of human ventricuklectrophysiology
available in literature are listed, together with a-eahaustive reference to their
extensions and/or refinements. Indeamhrdiac computational modelling has
reached the stage in which many aoaf§bét he more
problems in previous models, as soon as new and better data become available and
modellers discover possible applications for which the published models are not
well-suited[20]. We chose to neglect minimal/reduced models, in which a single
mathematical process represents multiple channel properties, since they have been
developed mainly for multicellular simulations, while in this thesis we are mostly

using single cells.

Elisa Passini



Introductioni Chapter 2

39

Table 21: Computational models of humaentricular cell electrophysiology.

M I I itati Ref
Model ode Cell  Citations Comments ©
extensions types Scopus 2014 #
_ First human model, but
Priebe & .
largely based on animal
Beuckelmann n.s. 244 ) [9]
data. Formulations for
(PB98) 1998 -
normal and failing hearts
Seemann etal. Endo, Focus on regional
i 19 _ [22]
2003 M, Epi heterogeneity
lyer et al. Eni 130 11
(IW04) 2004 P! Joirt first human models [11]
prevalently based on
Ten Tusscher et Endo, ]
' 477 human data [12]
al. (TP04) 2004 M, Epi
Ten Tusscher More detail on
Endo, . .
et al. (TPO6) M. Eoi 217 intracellular calcium [14]
, Epi
2006 P handling
From TPO6, new
Fink et al. ) ]
Epi 40 formulations for IK1 and [23]
2008
HERG,
From TNNPO4, new ICalL
Grandi et al. Endo, 17 formulation to reproduce (24]
2009 M, Epi APD shortening with
increased [Ca]o
Grandi et al. Endo,
) 90 From Shannoet al.2004. [17]
(GB10) 2010 Epi
Carro et al. Endo, From Grandet al.2010
) 11 ) [19]
2011 Epi to study arrhythmias
Substantially increased
ObHar a Endo, i
) 96 humanspecific model [21]
(OR11) 2011 M, Epi

accurag from human date
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Upon consideration of all these models, a I

many different models of the same human vent

Unfortunately, the answer is not a simple one. In fact, eactlel has to be
evaluated in its specific context, i.e. the experimental data which have been
considered for its parameters identification and validation. Therefore, all the listed
models (even the oldest ones) may have their advantages as well as their
limitations, depending on the applications taken into account; i.e. a particular model
may reproduce correctly the effects of a specific currents blockade, but it may be
unsuitable for rate dependence analysis.

As an example, its worth noting that the med with more citations in literature
(based on Scopus Data, updated 31/12/2014) is TT04: in fact, even if quite old, this
model is still widely used, especially for multidimensional simulations, because it is
relatively good in variety of context and contgtionally much more efficient than
its updated version (TTO06) or the most recent models, as OR11 or GB10, which

includes a very detailed description of intracellular processes and compartments.

MODELS COMPARISON

Among all the models included ihable 21, we chose to compare the 6 ones
which have been more widely used: PB98, IW04, TT04, TT06, GB10 and OR11.

Action Potential Properties

All the considered models have been implemented in Matlab (Mathworks, Inc)
and paed at 1 Hz until steady state (500 s), i.e. intracellular concentratiofis (Na
Cd* and K) stable over time. The current stimulus has been set to 2 ms of
duration, with amplitude equal to twice the AP threshold for each model. Since
PB89 and |epddce diftererd tell types, and their AP shape is similar

to epicardial cells, we considered Epi cells only for all the models.

Simulated AP traces are shownHigure 21Errore. L'origine riferimento non
e stata trovata. Each model has been represented using a different colour, but all
the other model traces are shown in grey, to facilitate comparison. The high
variability of AP shapes and duration among the models &lyndependent on the

different data used to construct them. In fact, after fitting the model parameters on
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voltagec | a mp
AP data available

For each model a set of AP biomarkers has bm@luated: the results are

dat a,

current

conductances

compared infable 22 together with the time required for the simulations.
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2 2 2
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2 2 2
1] ] [+1]
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°o 2 K]
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Figure 2.1. Simulated AP traces for the six considered models.
Table 22: AP biomarkers comparison for the six considered models
PB98| W04 TPO4 TPO6 | GB10|OR11
RMP (mV)| -89.8| -90.7 -86.3 -86.0 | -81.4| -87.9
AP peak (mV)| 61.0 31.7 42.1 441 | 42.6 | 33.6
dVv/dtyax (VIs)| 422 210 355 365 384 | 205
APDsq (ms)| 298 278 232 268 232 | 184
APDgg (ms)| 418 319 266 299 287 | 229
NnODEs - 22 67 17 19 39 55
tsim (n.u.)| 1.18 4.36 1.00 1.04 | 1.83 | 2.42

RMP: resting membrane potentiaAP peak max AP voltagedV/diuax: max upstroke velocity;
APDso and APDgo: AP duration, computedt&0% and 90% of repolarizatiomODESs number of
ordinary differential equations in the modeky: time required to compute 500 s, normalised

according to the fastest model.
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As expected, the computational time is highly dependent on the number of
differential equations: it is therefore very easy to understand why TTO04 is still one
of the most used human ventricular AP model, even if not very recent. At the same
time, it is obvious how the large number of Markovian current models in W04
affect its compudtional performances.

Intracellular Compartments

Intracellular compartments and Caelease from the sarcoplasmic reticulum
(SR) were first introduced in cardiac models by DiFrancesco and Nable
indeed, their Purkinje cell model described intracellulaf* @namics in details,
by including separate pools for cytosolic, qanctional SR (NSR) and junctional
SR (JSR) C# concentrations. ater on, it has been acknowledged that both the
cellular and sweellular structure considerably shape the temporal evolution of
C&* concentration profiles.

However, model design in terms cellular compartmentalisation may be very
different from one modeio the other. Within human ventricular models, structure
ranges from the simplest approach, as in TP04 (cytosol and SR only), to the most
complex models with many different sesbmpartments (cytosol, junctional space,
subsarcolemma, NSR and JSR). In dabdi, most of the models also include
different C&* buffers for each compartment, especially the most recent ones, i.e.
GB10 and OR11.

Table 23 shows the main structural properties of the considered human
ventrcular models, e.g. the number and size of intracellular compartments and the

corresponding Ca buffers.

The main challenge of the compartmental approach is the lack of corresponding
distinct anatomical structures inside the cell. Thus, there is not ighstbaward
way of choosing the appropriate compartmentalization. This also explains the great

variability among the different models.
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Table 23: Main properties of the considered human ventricular AP models.

PB98 | W04 TPO4 TPO6 | GB10 | OR11
CYTO 21.45
25.84 16.40 25.85
SL 25.85 16.40 0.66
Cell JS 0.0012 0.0547 | 0.0178| 0.7603
Volumes
(pL) NSR 2.10 2.10 2.10
SR 1.09 1.09 1.16 —
JSR 0.18 0.16 0.18
TOT 28.13 | 28.10 | 1750 | 17.55 | 23.29 | 28.89
CMDN 0.05 0.05 0.02 0.05
CYTO| TRPN low 0.07 0.20 0.07
0.07 0.07
TRPN high 0.14 0.14
Calcium 0.15
Buffers BSR - - 0.02 0.05
(mM)
JS BSL low 0.40 0.13
- - 1.12
BSL high 0.05
SR CSON 10 15 10 10 2.6 10

The six compartments refer to: bulk myoplasm t€CYTO); network SRNSR); junctional SR
(JSR); junctional space JS); subsarcolemmal spaceSSL). The C&" buffers are: Calmodulin
(CMDN), Troponin TRPN), Calsequestrin GSQN, SR C&" buffers BSR); junctional and
sarcolemmal Ca2+ bufferg6L).

Extracellular and Intracellular Concentrations

Extracellular ionic concentrations are quite similar in all the considered models,
since they are the ones used for experimental recordings in single cells, often done
in standard conditions. As for intracellul@nic concentrations, the differences
between models are higher, especially when considerifigoBacentrations in the
different compartments. A summary of the extaad intra cellular concentrations
for every model is shown ifiable 24: . Extracellular concentrations are constant in
the models, while for intracellular concentrations the reported values are the

diastolic ones, after pacing the models for 500 s at 1 Hz.
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It is worth noticing that the GB10 mode$ ithe only one including ClI
concentrations, together with the “Cactivated Clcurrent and a background Cl
current. We ran a few simulations blocking this current, and actually its effect on
the AP is quite negligible, at least in physiological condsi In addition, in GB10

both intracellular K and Clare clamped to constant values.

Table 24: Extracellular and intracellular ionic concentrations for the considered models.

PB98 | IW04 | TPO4 | TPO6 | GB10 | OR11
[Na']o (mM) 138 138 140 140 140 140
Extracellular [K*To (MM) 4.0 4.0 5.4 5.4 5.4 5.4
Concentrations [ 1424, (mm) 20 | 20 | 20 | 20 | 18 | 18
[CI']o (MM) - - - - 150 -
[Na*]; (mM) 10.6 9.8 11.6 | 10.4 8.4 7
[K*i (mM) 140 125 140 140 | 120 144
[CaT1 (oM 86 130 o 85
C'Q:]Laecr’ft'r';{fgns [Cals (M) | 200 200 100
[Ca?,s (NM) 140 360 200 85
[Ca?]sr (MM) 2.5 0.3 0.2 3.7 0.6 1.6
[CI']i (mM) - - - - 15 -

[Y]o: extracellular concentration for Y; [Y] intracellular concentration for Y; SL:
sarcolanmal space; JS: junctional space; SR: sarcoplasmic reticulum.

* in GB10, [K']; and [CI] ; are clamped to constant values.

Membrane lonic Currents and C& subsystem

The main ionic currents are presents in all the considered moglgl&al, o,
lk1, Ik, lks, N& /K" pump (hak) and N&/C&* exchanger {lcx). However, there are
a few differences in the small currents (e.g. background ones), and ineGaed
channels/pumps distribution. To avoid unnecessary complexity, we will focus on

the difference®etween the three most recent models: TP06, GB10 and OR11.

A summary of ionic currents distribution is showrTiable 25, together with the
corresponding intracellular compartments in which they are distributetbrAonic

fluxes, the two connected compartments for each of them are shown.
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Table 25: lonic currents and fluxes with the corresponding intracellular compartments for
the six considered human ventricular AP models.

PB90 | IW04 | TTO4 | TT06 | GB10 OR11
11% JS
I'Na CYTO | CYTO | CYTO | CYTO 39% SL. CYTO
. I NaL - - - - - CYTO
Na" currents | 90% JS IS
CaNa - - . . 10% SL
11% JS
Inag | CYTO | CYTO | CYTO | CYTO 899 SL CYTO
0,
lca. | CYTO | cYTO | CYTO Js 90% JS Js
o4 10% SL
Ca” currents 11% IS
lcap | CYTO | CYTO | CYTO | CYTO 39% SL. CYTO
lto CYTO | CYTO | CYTO | CYTO CYTO CYTO
l1 CYTO | CYTO | CYTO | CYTO CYTO CYTO
I ks CYTO | CYTO | CYTO | CYTO CYTO CYTO
K™ currents Iks CYTO | CYTO | CYTO | CYTO CYTO CYTO
90% JS
| cak - CYTO - - 10% SL Js
11% JS
lkp - - CYTO | CYTO 39% SL. CYTO
lcis - - - - CYTO -
CI" currents | 11% JS
cica - - . i 89% SL i
11% JS
Inak | CYTO | cYTO | CYTO | CYTO 89% SL CYTO
20% JS
0,
Pumpsand | | | cvro | cvro | cvto | cvro et 35 | aow
Exchangers 0 CcYTO
11% JS
Inca - CYTO | CYTO | CYTO 89% SL CYTO
JSR<> [ JSR<> | SR> | SR<> JSR
Jrel | “cvT0 JS CYTO JS <>Js | ISR>IS
] NSR-> ] SR<> | SR<> JSR NSR->
SR leak | cYTO CYTO CYTO <> JS CYTO
Fluxes 3 CYTO | CYTO | CYTO | CYTO CYTO CYTO
up ->NSR | <>NSR| ->SR -> SR <> SR -> NSR
3 NSR <> | NSR <> ] ] ] NSR <>
tr JSR JSR JSR
I ] CYTO ] CYTO | CYTO/SL | CYTO
diffCa -] - SLIJS - g
Intracellular I ] ] ] ] CYTO/SL | CYTO
Fluxes difiNa SUIS | o3
Jaifx - - - - - g

As an example, in TP06 and OR11, all thg hctually flows into the JS. Even if

it is well know that most of the-type Ca chargls are located in the junctional

portion of the membrane, this seems to be a rather extreme choice. More

realistically in GB10, based on rat dg2®&], 90% of the channels are located in the

JS membrane and the remaining 10% in the cytoplasm.

Another difference is in thewtx distribution. It is still not completely clear if

Na'/Cd* exchanger proteins are located preferentially tufules[27] or have a
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more uniform difribution in the ventricular sarcolemnja8]. In GB10 the p\cx

channels areistributed evenly throughout the cell membrane (89% in the SL, 11%

in the JS), while in OR11 the fraction located in the JS is slightly higher (20%).

O6Hara et al. indicated this choice as nece:
rate dependence oftiacellular C&" peak[21]. It is worth noticing that all the ionic

currents were considered uniformly distributed throughout the cell membrane in the

GB10 model (89% in the SL, 11% in the JS), as suggested e.gnadfornl

mammalian cardiomyocyte9]. On the contrary, they were considered absent

from JS membrane in TP06 and OR11.

A visual comparison of TT06, GB10 and OREhpwing all the ionic currents,

fluxes and compartments for this three models, is givéiigare 22.

|c|c3 Iclh Ito IK1 IKr le

INaCa
0\ \
A > £) &) 3 / X m?
Vit L MM,
£ %
>4 )
)’
INaCa
oy ol
|NaK
CYTO SSL -
IpCa
Sz Jugrnat EF
N JdiffCa“ E ;
Inat

PECbee®

P T

ICaNa Ca CakK le INab ICab

I GPB10, ORd11 and TTO6 | ORd11 only | all except ORd11

LEGEND:
8 BN GPB10 and ORd11 GPB10only M all except GPB10

Figure 2.2: Visual comparison of the three most recent human ventricular modpkfpties, in
particular showing the distribution of each ionic current on the cell, and the ions diffusion (credit:
Caterina Passini).

It is worth noticing that, after this literature review has been completed (2013), a
new mathematical model have been I@ited for human ventricular cells by
AsakuraNoma[30], as well as a new papcomparing the behaviour of some of the

human ventricular models considered here in tissue, by Elshrif and 3i&fry
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A Novel Markov M odel of L-Type
Calcium Current to Explore

Inactivation Mechanisms

The content of this chapter has been published in:
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Abstract

Extracellular calcium concentration ([G4],) affects cardiac action potential
(AP): their inverse dependence has already been assessed in vivo and in vitro.

Both shortening and prolongation of AP are associated with an increased risk of
arrhythmias and €a**], variations may occur in many different contexts (e.g.
pathological hypo/hypecalcaemia, haemodialysis therapy, bedt experiments).

Computational modeling could provide a useful support to investigate this
phenomenon: however, [€3, dependencés not reproduced properly by most of
the commonly used human AP models

The aim of this study has been to modify one of the most recent human
ventricular cell model in order to improve its response to?[:achanges.

The original L-Type C&" current formiation has been replaced by a new
Markov model with 8 states and a cubical structure. The inverse dependence of
APD vs[Ca®'], has been achieved mainly by strengthening th&-Gependent
inactivation mechanism (CDI), with respect to the Voltdgpendenbne (VDI),
thus confirming that CDI plays an importan role in this context.

The modified model has been validated against the same experimental data used
for the original one, in order to verify its consistency, and it camthe used to
expl oreooiitnhesidfifcects of electrolyte unb
human cardiomyocytes.

INTRODUCTION

It is well know that extracellular calcium concentration §Q@ affects cardiac
action potential (AP): in fact, an increase of {gashortens APwhile [C& ],
decrease lengthens it, as observed in different spggiB§ e.g. guinea pigF{gure
3.1, panel A), and human atrial cB] (Figure 31, panel B). More recently, new
experimental data acquired in human ventricular cells confirmed this dependence
[7] (Figure 31, panel C). Finally, when considering consistency betwa&ion
potential duration (APD) changes and corrected QT interval (Qfc}jher

confirmingdata can be found in the literature, ¢83.(Figure 31, panel D).

Since both APD increase and decrease may lead to arrhythmia ongé, [Ca
dependency of repolarization may have important implication all clinical
contexts where electrolyte changes occur, e.g. haemodialgsimpy (HD),

pathological hypo/hypercalcemia, hedolwn bedrest experiments, etc.
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Figure 3.1: Experimental Data from literature showing the inverse dependence of APD ¥3Ca
A) guinea pig ventricular cells (modifieilom [2]); B) human atrial cells (modified frori6]); C)
human atrial cells (modified frof7]); D) QTc interval vs [C&], variations measured in different
patients during Heamodialysis theraphy (modified {8

From earlier studieg9], L-type C&" current (ka) Sseems the onenostly
responsible for the APICa’"], dependence. Two contrasting mechanisms are
involved: e.g. when [Gd], is higher, it increases theal driving force which, by
itself, would enhance the current and prolong the APD; on the other hand, a larger
lcaL increases its Gadependent inactivation (CDI) mechanism as well. Since the
final outcome is APD shortening, it is apparently CDI which plays the

overwhelmingrole. A summary of these two mechanisms is showkigare 32.

Driving

ﬂ TForce ) TICaL %
P ican, f

S ol |2 ¥

Figure 3.2: Schematic representation of the two mechanisms involved if@&1 , dependence.

APD
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However, many other ionic mechanisms are involved and this is why the APD
[C&’"], dependence is not completely understood. Computatimealeling may

help to investigate thishenomenoty analysing the single ionic currents involved.

However, most of the commonly used human ventricular AP models have been

developed considering a single fJa value and they are not able to reproduce
propely the effects of [C&], changes: often, their APDs wain an opposite way,
e. g. I n -Rudy@0] @0 iH the GranedBersmodels[11] (Figure 33).

360

=== (Q'Hara-Rudy model
330 1
=== Grandi-Bers model

210

188.6 1.2 1.8 2.4
[Ca]  (mM)

Figure 3.3: APD-[Ca?'], dependencenitwo of the most recent human ventricular AP models:
0O 6 H aRudy[10] (blue line) and GrandBers[11] (green line). APD has been computed at 90% of
repolarisation, after pacing the models at 1 Hz for 1 s.

The aim of this study has been to modiiy tmost recent human ventricular AP
mo d e | (ROdy,HEO]) & order to improve its APHCa], dependence
without altering modebehaviourin control condition, as similarly done for older

models in previous work$6, 9.

The proper dependence should be achieved by acting mainly onft€aihich
a newformulationis proposegstrengthening the €adependent inactivation (CDI)

with respect to the \dependent one (VDI).
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METHODS

T he O-®ibtlg magel of human ventricular myocyte (ORD]) was used as
basis. However, the-Type C&" currenthas been completed revisited: its original
HodgkinHuxley formulation has been replaced by a new Markov mdeigli(e

3.4), similar to the one used by Decleudy for canine epicardial cell$2].

*
| * 6 | *  CDI loop
If/ 2 % % 1
% 0 ! % Inactivation
c* a o) Rates:
18 A |4 = Keprs V
r
P :V I2 | 0" =Kep- O
rdown '1[/ 2 Y ! 0" =K., 0
% v % cpI
c a 0 g n "= Keprt 7]
ﬁ vDI1 IOOp KCDI= 10

Figure 3.4: Schematic representation of the new Markov model-Bjge C&" current:VDI and
CDI are represented as two separate loops, interconnectsgdmjfic up/down rates

This Markov model consists of two structurally identical lodpigire 35), each
including 4 transitions: activation (from C to O), fast inactivation (from O.)o |

slow inactivation (from to I;) and recovery (fromlto C).

Activation and recovery rates are exactly the same in the two loops; they have
been directly derived from the ORd time constant and steady state values of the
corresponding gating variables. As for fast and slowtivaiion, rates on the CDI

loop are 10 times faster than the ones in VDI loop.

All transition rates, eventhe ones onthe CDI loop, are actually Mlependent,
according to the hypothesis by Kim et[d3], where CDI was observed to function

simply as a faster VDI, activated by elevated'Ca

In fact, in this model CDI and VDI are implemented on two different lpops
interconnected by specific up/down rates, modulated Ky E€ancentration, by

means of the n gate, used to calculate tirdwn rates Eigure 36).
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Figure 3.5: VDI (blue) and CDI(pink) loops. Activation and recovery rates (black) are the same in
the two loops, while inactivation rates are 10 times faster in the CDI loop.
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Figure 3.6: VDI (blue) and CDI (pink) loops are interconnected by up/downdratelated to C&'
concentration by means of the n gate.

In the ORd model, the n gate represents the fraction of channels operating in
CDI mode, and it is the only state variable, among the ones involvegsin |

kinetics, which is directly dependent onracellular C&" concentration ([CA]).

The n formulation is based on the interaction betweeAJCand Calmodulin
(CaM) bound to kype C&'-channels Kigure 37): [C&']; binds to CaM,
constitutively attached to the-Type C&* channels (Kk. rates) and when 4 €a
ions are bound, the complex may activate CDIk(krates). The original equations
for the n gate has been preserved in the modified model, even if kinetic rates have

been slightly modified, in order to increaiss sensibility to [C&]; variations.
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n GATE:
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dt k.|.2+ 1+ k—1 l
k—2 ky1[Ca?T]ss

Figure 3.7: Simplified diagram of the n gate (modified frda0]), which depend on G4and it has
been used to computer the up/down rates between CDI/VDI loops.

In additionto lca formulation, other changes in €ehandling were needed to

refine the modified modeThese changes mostly addressed’ @éfusion, release

anduptakefrom the sarcoplasmic reticulum (SR)

Since experimental evidence is not clear aboit @avement inside the SR

[14], C&" diffusion inside the SR has been initially speedsd according to

[15]. Afterwards, we decided to simplify model structulegving only a
single compartment for the SR, instead of the separation between Network
SR (NSR) and Junctional SR (JSR);

10-fold increase of SERCA pump maximal current;
2-fold increase in Cd diffusion from subsarcolemmal space to cytoplasm;

1.2-fold increase of N4C&* exchanger maximal current

Model differential equations were implemented in Matlab (Mathworks Inc) and

solved with avariable order solver (odel5s), based on numerical differentiation

formulas [16]. Simulations were run with the original and modified models at

variable [C&'], in the clinically relevant range 6% mM. Pacing at 1 Hz was

maintained until steady state Afas reached (1000 s) and APD was measured as

the interval between AP upstroke and the 90% repolarization levelgghAPD

The modified modelequations, as implemented in the corresponding Matlab

function file, arencluded in Appendix A.
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RESULTS

Model Validaion

The modified model has been validated against most of the valtaggp and
currentclamp experimental data considered in the original ORd model, especially
the ones concerning:zd. dynamics. Different voltagelamp protocol have been
reproduced in saulations, and the modified model results was in agreement with

both the corresponding experimental data and the original ORd model.

|caL Steady state activation, inactivation and turves have been compared with
data from Magyar et aJ17] (Figure 38, Figure 39 andFigure 310 respectively).
The FV curve is slightly different from the experimental data, espegcialhen
considering positive voltage, even if it perfectly overlaps the one from the original
ORd model. This is related to the activation of the current, which indeed was not
modified.Recovery from inactivation has been evaluated using iRedPotocol,as
in Fulop et al[19] (Figure 311).

Steady State Activation

Normalized Gc:aL
o o o
+ o <o

o
L)

-30 20 10 0 10 20 30
Membrane Potential (mV)

Figure 3.8: Comparison of 4, steady state activation curves: original ORd model (blue line),

modified ORd model (pink line) and experimental data f{@8] (black squares).
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Steady State Inactivation
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Figure 3.9: Comparison of 4, steady state inactivation curves: original ORd model (blue line),
modified ORd model (pink line) and experimental data ff@8] (black squares).

I-V curve

Peak Currents (pA/pF)

-12°

30 20 -10 O 10 20 30 40 50 6C
Membrane Potential (mV)

Figure 3.10: Comparison ofd, I-V curves: original ORd model (blue line), modified ORd model
(pink line) and experimental data frofb8] (black squares). The original and modified ORd model
curves are almost identical, but different from the experimental data, especially for positive
potential. This is mostly related to the activation property of tiype C&" current.
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Recovery from Inactivation

Ratio of Peak Currents

0 25 50 75 100 125 15¢(
Interpulse Interval (ms)

Figure 3.11: Recovery from inactivation, evaluated using th&,Rprotocol: original ORd model
(blue line), modified ORd model (pink line) and experimental data fi®in(black squares). The
modified ORd model actually gets closer to the experimental data than the original one.
Experimental results of CDI blocks are agreement with the ones reported in
the ORd papef10], measured when considering “Banstead of C& current,
therefore in absence of CDI: in fackal inactivation is much slower than in
presence of both CDI and VDI. When blocking CDI, theioagjand modified ORd

models showthe same qualitative effedtiure 312).
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100¢ i.(ﬁj _HJ
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Figure 3.12 A) Experimental recording of Ga and B&" currents[10]: the latter, in
absence of CDmechanism, shows a much slower inactivat®nEffects of CDI block on

the L-Type C&" current for the original and modified ORd models (top and bottom panel,

respectively)both models show a slower inactivation, as expected.
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Finally, the APD restitudn curve, obtained by using &S protocol, is
qualitatively reproduced by the modified ORd mod&mulation results are even
more close to the experimental data then the ones obtained using the original ORd

modelFigure 313.

280 * *

vl
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260
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240

AFD %0 (ms)
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0 200 400 600 200 1000 1200 1400 1600 1800 20440
Diastolic Interval

Figure 3.13: Comparison of the;S; restitution curves: original ORd model (blue line), modified
ORd model (pink line) and experimental data f{a®] (black squares).

APD-[Ca®*"], dependence

When [C&'], was set to the control value (1.8 mM), the modified and the
original ORd models provided almost the same simulation resudise( 314, solid
lines): ionic currents and AP were very similar in shape and length. In the modified

model, ka during AP plateau had a lower amplitude, due to the increased CDI.

When [C&"], variations have been simulated, however, significant differences
were found in the two model results, both for AP agg (Figure 314, dashed and

dotted lines).

Elisa Passini



Section i Chapter 3 65

50 T 50

(mV)

\

-100 : -100
©, 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550

t(ms) t(ms)

o ™y
2 2
2 s o
= =
- )
- - L]
-2 Y 5
+
¢ ORd model: [Caz']0 =09mM \ New model: [Ca™"]_=0.9 mM
]
/ p ,
2 1 — ORd model: [Caz']0 =1.8mM ash —— New model: [Ca +]Q =1.8mM
2
! - - -ORd model: [Caz']0 =27 mM - = -New model: [Ca ']0 =27mM
So o 10 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550
t(ms) t(ms)

Figure 3.14: Simulation results for the original and modified ORd models, showing APs (top panels)
and k. (bottom panels) for different [¢§, concentrations. In control conditions ([E3.,=1.8

mM) the two model traces are quite similar, but when varying{lzahedr behave in two opposite
ways: the original model APD increases wi@a?'] ., while the modifiednodel APD decreases.

In the original ORd model, when [€% is set to high values, thiecrease in
driving force causes a largegal, which in turn lengthens AP. In the modified
model, instead, the increase in driving force is compensated by a higher CDI, and
the corresponding AP is shorter than in control. Only in the modified model the

inverse relationship between APD and{Qais reproduced correctlfF{gure 315).
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——0ORd model
— New model

06 09 12 15 18 21 24 27
2
[Ca™]_ (mM)

Figure 3.15. The APDB[Ca”], dependence for the original and modified ORd model: only the
latter iswell reproducing the inverse relationship between APD andGa

Qualitative comparison with Experimental Data

The modified ORd model can be used in all clinical contexts where electrolyte
variations occur, in order to assess a possible increased riaskhythmias for
patients. A typical case of study is haemodialysis therapy, where patients regularly

undergo relevant electrolyte changes (especialfy &ad K) in a few hours.

This kind of analysis had already been performed in a previous gldysing
experimental electrolyte data acquired during hemodialysis sessions as input of
another human ventricular AP modeD]. Considering consistency between APD
changes and QTc, simulation results had been compared with ECG data. The same
comparison has been performed using the modified ORd model presented in this

work, ard simulation results are shownFhigure 316..

Another possible application is heddwn bedrest experiments, used to
simulate microgravity effects on the cardiovascular system: duringest¢dlood
electrolyte concentrations changes over time, with possible impact on cardiac
repolarizationf21]. As an example, the next Chapter will present a simulation work

done by combing betkst data and the modified ORd model described above.
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Figure 3.16: Comparison of [C&], dependencefaneasured QTc interval duraticand
simulated APD (modifie@Rdmodel). Scatter plot and regression line show the significant
inverse correlation between QTc interval duration and serunf[Cehanges measured
during haemodialysis sessions (data fr¢8j). Simulated APD values were normalized to

the APD value obtaid at the average praialysisCa’* corcentration, i.e1.2 mM

DISCUSSION AND CONCLUSIONS

APD dependency on extracellular ‘C@oncentration has been analysed in the
most recently published human ventricular AP mathematical nip@klSince this
model does not reproduce properly theeirse APB[C& "], dependence, observed
both in vitro and in vivg6], some modifications have been implented, in order
to improve its response to [ER changes.

L-type C&" current has been replaced by a new Markov model, and CDI
mechanisms has been strengthened with respect to VDI. Both inactivatiessgsc

have been implemented as voltatgpendentthe former 10 times faster than the

latter: therefore, CDI in the modified model works simply as a faster VDI.

The modified model has been validated against ¢gheelxperimental data used

for the original one, in order to verify consistency between W@ inodels in

control conditions.
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Response to extracellular [ER in the 13mM range has been considered, and
the modified model succeeded in reproduce the proper variations on APD.

Since the modificatiors applied to the original ORd modalolved mosty lca.
CDI strengtheningit is suggested that this inactivation mechanism mayshbally

underestimated inomputationatardiac models.

The modified modehere describedhay be used to explore a variety of contexts
where electrolyte changes occur, e @eimodialysis sessions beaddown kedrest

experiments, in order to assess the possible arrhythmic risk for patients.

Limitations and Future Works

The modified ORd model has been validated on most of the experimental
protocols shown in the original ORdyper. However, there are many other aspects
that should be investigated more in details.

As an example, we considered only th&:Srotocol to assess rate dependence
properties in the modified model, while in the original ORd one they consider
different smulation protocols, checking also the changes occurring in every single
ionic current. In addition, in the original ORd model there is a lot of work showing
model results when considering different degreexdblbcks, showing earhafter

depolarisatioa (EADs) when blocking 85% of the current.

Therefore, future works will address a further validation of the modified models,

to check the consistency in all the aspects considered in the original one.

Finally, the modified model could be used in a popatabf models study like
the one described later on (Chapter 7), as an alternative to the original ORd model.
It would be very interesting to see how the changes i Garrent and Ca-
handling may affect the results, especially when consideringaphgthmic

mechanisms related to €asuch as EADs or DADSs.
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Extracellular Electrolyte Changes
During Head-Down Bed-Rest:

Effects on ActionPotential Duration

The content of this chapter has been published in:

Passini E Pellegrini A, Caiani E, Severi S.

Computational Analysis of HeadDown Bed Rest Effects
on Cardiac Action Potential Duration.

Computing in Cardiology, Vol. 40, 2013
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Abstract

Several episodes of ventricular arrhythmias have been reported during
spaceflights, and cardiovascular deconditioning induced by microgravity esgos
has already been assessed.

Strict HeadDown Bed Rest (HDBR) can be used to simulate microgravity effects
on the cardiovascular system. Therefore, it represents an invaluable opportunity to
study and analyse this phenomenon.

The aim of this work has be to evaluate the possible effect of blood electrolyte
changes induced by 21 days of HDBR on the electrical activity of the heart, by
using a computational model of human ventricular myocyte.

Simulation results point out a biphasic course of action ptiedtiration, which
shortened during HDBR and recovered after the end of it, accordingly with RT
interval measurements from ECG data analysis.

INTRODUCTION

It is well known that microgravity affects the cardiovascular system: indeed,
there are many effectassociated with spaceflights, e.g. reduction in plasma
volume, decrease in left ventricular mass and modifications of the autonomic
nervous system. Moreover, several episodes of cardiac arrhythmias and conduction
disorders have been reported during spadssions, such as Gemini and Apollo
[22, 23] and aboard space statid@d, 25]

However, the specific causes leading to this suggested increased risk of
arrhythmias have not been esty understood. To further explore this
phenomenon, grourdased experiments, such as strict Head Down Bed Rest
(HDBR), represent a great opportunity to analyse simulated microgravity effects on
cardiovascular system, by monitoring ECG signal and diffepntsiological
parameters over timg6]. In this context, computational modeling constitutes a
useful bol as well: in fact, changes observed experimentally may be tested in silico

in order to evaluate their possible impact on cardiac electrical activity.

The aim of this work has been to verify if the blood electrolyte variations
occurring during 21 days diDBR can be directly linked to the corresponding
changes observed in cardiac repolarization phase, by using a computational model
of human ventricular action potential (AP) and comparing simulation results with
ECG data analysis, PRE, during and POST-Hesdl
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METHODS

Bed-Rest Protocol

Experimental data were recorded during a-meidn (21 days) strict6®° Head
Down BedRest (HDBR) campaign held at the German Aerospace Center (DLR,
Koln, Germany) by the European Space Agency (ESA) from September 2011 to
April 2012.

Ten healthy subjects (aged-23 years) were enrolled for this study in a cross
over design, including a control and a countermeasure (CM) group, with a washout
period of about 1.5 months between the two HDBR sessions. Subjects in the CM
group eceived a daily supplementation of whey protein (0.6 g/kg body weight) and
potassium bicarbonate (KHGO90 mmol). In this study, our attention will be
focused on the CM group only. Each subject underwent a comprehensive medical
examination during the selgon process and provided written informed consent to
participate in this study, approved by the independent ethics committee

Aerztekammer Nordrhein, Duesseldorf, Germany.

The volunteers had to stap bed with their head down, at 6° below the
horizontaj for all the HDBR sessior-{gure 41). They may not stand up, unless a
research programme demands ahd must perform all daily activities in bed
including eating, showers asgdmetimes specifiexerciseln this way, theirbodies

start to adapt as if they were in spambere there is no gravity

Figure 4.1: During headdown beerest studies, volunteers have to stay in bed with their

head down, at 6° below the horizontal, for ak sxperiments session (copyright: ESA)
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Experimental Data Acquisition

ECG signals have been acquired using ahZ2HBigh resolution (sampling
frequency: 1000 Hz) t®ad Holter digital recorder (H12+, Mortara Instrument Inc,
Milwaukee, WI, USA). Acquisitionsvere performed 8 days before the beginning of
the test (PRE), after 5, 16 and 21 days of Headn Tilt (HDTs, HDT;6 and
HDT,; respectively) and 4 days after the end (POST).

The RR values <c¢l| as s i-$ciibeahd SuperERG software,a | r h
Mortara Instrument Inc, Milwaukee, WI, USA) have been considered and the night
period only (from 23:00 to 6:30) has been taken into account, in order to avoid

possible noise due to subject daily movement.

Selective beat averaging techniqa®, 27] was used to obtain averages of P
QRST complexes preceded by the same stable heart rate (cycle length from 900 to
1200 ms, 10 ms RR bins). Repolarization phase has been evaluated considering the
time distance from the QRS peak and thevdve end (RT interval).

Blood samples have been collected 7 days before the beginning of the test
(PRE), at HDTp and 5 days after the end (POST). Electrolyte concentrations
([Na'], [K'], [CIT and total [C&T]) were measured, together with many other
physiological parameters (e.g. cell volume, glucose, pH, etc.) which will not be
considered in this studySince no direct measurement of ionised?'Cavas

available, we chose stimatedt as half of th otal C&* concentration.

A schedule of the considered HDRBIRpochsand data acquisitions is r@pedin
Figure 42, showing the three different situations: PRE, HDT and POST.

PRE and POST data have been compared to the oneseaicquring HDBR
test, i.e. HDTs for ECG and HDT, for electrolyte concentrationssince
measurementhave beerrecordedin different HDT days. Of course, the HDBR
effects on HDTs should be much more pronounced than in hTherefore,
simulation resultsvhich are based on electrolyte concentrations may show smaller

electrophysiological changes, compared to the ones observed in the ECG data.

Finally, experimentalresultsshown in the next sectiomfer to only 8 subjects
out of 10, since one participalatit during the test and another one had some ECG

recording problems.
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PRE HDT5 HDT10 HDT16 HDT21 POST

W% HDBR

)
BF

i

day -8 Test 21 days s Test day+5

,ﬂ, ECG recording * HDBR: Head-Down Bed Rest

J, blood test * HDTn: Head-DownTilt, day n

Figure 4.2: Time course diagram of the 21 days Hé&xown BedRest (HDBR) campaign
considered in this study. The arrows indicate the epochs in whithtdter acquisition

and blood analysis have been performed.

Computational Modeling

The most recent human vent r-Rudw [1@)r mat he mat
has been used as basis for simulations. However, the original model is not able to
reproduce mperly the effects of extracellular €avariations on action potential
duration (APD). Therefore, as similarly dome previous works with different
models[6, 9], specific modifications were needed in order to reproduce the inverse
relationship between extracellular [¢eand APD. The original itype C&" current
formulation has been replaced by a new Markov model ard-dependent
inactivation has been strengthened. Other minor changes were need to preserve the
physiological properties of the whole cg¢R8]. The modified model has been

described in the details in the previous Chapter.

Extracellular electrolyte concentrations were considered in equilibrium with
blood and used as model inputs to simulate PRE, iniBiAd POST conditions, as

similarly done in a previous work for haemodialysis pati¢Bits

Elisa Passini



Section i Chapter 4 75

Single Cell Simulations

Model differential equations were implemented in Matlab (Mathworkg brad
solved with a variable order solver (odel5s), based on numerical diféti@mti
formulas [16]. Pacing at 1 Hz was maintained until a steady state AP was reached
and APD was measured as the interval between AP upstroke and the 90%

repolarization level (APE).

Multicellular simulations

One dimensional fiber (2 cm length) compob$y 100 endoand 100 epcardial
cells has been considered. Model equations have been translated into cellML
language using COR environmef#t9] and monodomain equations have been
solved withChaste Softwarg30, 31] considering an intracellular conductivity of
0.50 mS/cm.

PseudeECG signal has been computed as described by -Guwy [32]; RT
interval has been evaluated considering a slope inferior-tb\lls as T wave end.

RESULTS

Experimental data analysis

ECG analysis provided evidence of a biphasic trend in repolarizadn
interval considerably shorteneduring bedrest HDTi6) and tken completely
recovered at POST, reaching values even higher than inféfR&achconsidered

RR bin as shown irfrigure 43.

Since computational simulations have been run considering a cycle length of
1000 ms, wechose to compare simulation results with data friva RR bin
between 995 and 1005 midere, the RT interval changes were quite relevant, as
shown inFigure 44: -19 ms inHDT,gvSPRE and30 msPOSTvsHD T .

Non paametric Friedman and Wilcoxon tests were applied and significant
differences (p<0.001) were found for the three considered groups: PREg Biil
POST.
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Figure 4.3: Relationship between RR and RT interval. Wighet repregnts median and
25-75th percentiles for each RR bin in PRE, HPAhd POST conditions.
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: * %k 2} 3
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Figure 44: RT intervals for RR bin between 99605 ms in PRE, HD¥ and POST
conditions: the biphasic trend in repolarisation it is quitlear. Data are presented as
median(28-75").
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As for electrolyte concentrations, blo@#* concentration showed an opposite
trend compared to RT interval: increased during HDBR and then recovered at
POST , as shown ifrigure 45. Non parametric Wilcoxon test was applied and
differences resulted significant in HxyVsPRE and POSTvsHL{J(p<0.05).

26

—— . PRE +13%
2.33(2.28-2.39) mM

|

i o D,
£, HDT,,
5 2.36(2.33-2.44) mM )
23 o POST
H - 2.31(2.27-235)mM || _5 40
* p<0.05

22
PRE HDT,, POST

Figure 4.5: Blood C&" concentrations in PRE, HQand POST conditions: the bipsia
trend is opposite to the one found in the RT interval. Data are shown as melliZa{25

Relevantdifferences were found iblood K" concentration, even if there was a
lot of variability from one subject to the other, and sometimedfiations weren
an opposite direction. In average’, iicreased during HDBR and decreased at the

end of it,although not completely recovered at POST, as showigimre 46.

4.7

- - PRE +3.5%
4.25(4.08-4.39) mM

A )
=
£ HDT
3 | ‘ 4.40(4.24-4.59) mM )
4. | |
- - POST
4.33(4.18-4.46) mM || _1 6o/

38
PRE HDT,, POST

Figure 4.6: Blood G2* concentrations in PRE, HQFand POST conditions: the biphasic
trend is opposite to the one found in the RT interval. Data are shown as mebid@a{}5
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Changes in [N§ and [CI] were almost negligibl¢not shown)

A summary ofexperimental data salts is reported imTable 41, considering
only the 9951005 msbin for the RT interval data

Table 41: Experimental data in PRE, HDT and POST conditions. Since computational
simulaticns have been performed at 1Hz pacing, only the RT interval corresponding to the
9051005 ms RR bin are showbata are presented as Median(25t5th).

RT interval (ms) % changes
PRE 362.5(337.6882.5) -
HDT.s 343.5(335.3373.3) -5.24% vs PRE
POST 3735(351.5385.3) +8.73% vs HDTs
total [C&*](mM) % changes
PRE  2.33(2.282.39) -
HDT1o 2.36(2.332.44) +1.29% vs PRE
POST 2.31(2.272.35) -2.12% vs HDTo
[K*] (mM) % changes
PRE  4.25(4.084.39) -
HDT10 4.40(4.244.59) +3.53% vs PRE
POST  4.33(4.184.46) -1.59% vs HDTp

Computational Results

Single cell simulations were run separately for each of the subjects, setting the
extracellular electrolyte concentrations equal to the ones measured in PRk, HDT
and POST conditions.

Consistently with RT iterval, APD usually decreased during HDBR and
recovered at POST. Indeed, median variations were relatively sth@®%o HDT,o
vs PRE, +0.46% POST vs HR), but when considering individual subjects with
larger electrolyte variations, there were many stthije which concurrent changes
of C&* and K produced a greater effect. However, sometimes APD variations were
contrasting in different subjects, especially when considering POST vgoHBIT

the APD and electrolyte variations are showi able 42.
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Subject #3 is the one showing the most relevant changes, both i MOFPRE
(APDgp -20 ms) and POST vs HRQJ (APDgy +18 ms).The corresponding AP
traces are shown frigure 47.

Table 42: Simulation results in terms of APD for each subject during PRE, ;{Bid POST
conditions, together with the corresponding electrolyte variatibftgable changes are marked in

bold.

HDT 10 vSPRE POSTvsHDT 19
Subject @ [*Pa o 1% o ARL o [RPa o 1% o ARCL
#1 +1.66% +3.87% -3.0ms -6.94%  +6.70% +2.0 ms
#2 +0.43% +2.65% -3.2 ms -0.85% +2.35% -0.7 ms
#3 +3.64% +38.44% -20.0 ms -4.30% -15.76% +18.0 ms
#4 +1.75% +2.00% -4.8 ms -0.43% - 2.84% +0.8 ms
#5 +2.67% +3.21% 5.7 ms -0.43% +0.44% -0.4 ms
#6 -1.26% +1.77% 4.1 ms -4.66% -12.58% +10.1 ms
H#H7 +5.17% -2.78% -3.2ms -0.82% +0.48% -1.5ms
#8 +2.20% +2.63% -2.5ms -21.98% -4.88% +14.8 ms
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Figure 4.7: Simulated APrtaces for subject #3 in PRE, Hialand POST conditions.
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One dimensional simulations have been performed as first considering median
electrolyte variations only. PseudCG was computed and the simulated RT
interval varied in accordance both to single @D and measured RT interval (
1.70% HDTo vsPRE +0.75% POSWSHDT ).

PseudeECG was simulated also for the single subject presenting the higher
APD variations (#3): here the changes of RT interval were significantly larger (
12.45% HDTesPRE, +5.53%POSTvsHDT). His pseudeECG traces and T
wave in PRE, HDTp and POST conditions are showrFigure 48.

pseudoECG (mV)

0 50 100 150 200 250 300
t (ms)

Figure 4.8: PseudeECG for subject #3. Repolarization phase varied considgribthe
three different conditions: simulated RT interval highly decreased during HEERN{s
HDTvs PRE) and only partially recovered at the end of it (+14 ms POST vg}HDT

DISCUSSION AND CONCLUSIONS

Experimental data acquired from 8 subjects dy2d days of HDBR have been
presented and analysed, in order to assess the effects of simulated microgravity on

the cardiovascular system, and possibly clarify the underline mechanisms involved.

ECG recording showed a significant decreased of RT intelwdhg HDBR
with respect to PRE and POST conditions. Blood test provided the extent of

extracellular electrolytes variations, especiallyGad K.
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A computational model of human ventricular myocyte has been used to simulate
subject conditions PRE, POSand during HDBR, considering the corresponding
electrolyte concentrations as inputs. Simulations results showed small but consistent

changes in APD and simulated RT interval.

These findings support the hypothesis that electrolyte imbalances occurring
during HDBR may be linked to the electrical changes observed experimentally.

However, several additional mechanisms are affected by microgravity.
Therefore, for a more comprehensive computational analysis, other factors should

be considered in simulations.

Limitations and Future Developments

Simulations have been performed using electrolyte data acquired op,HDd
compared with ECG analysis from HRI 24-h Holter and blood samples collected
at the same day could lead to a more precise comparison. Mgremieed C3'
concentration has been estimated as half tot4l, Gmce no direct measurements

were available.

A new midterm HDBR campaign, involving one control and two CM groups,
has been recently completed by ESA. Experimental data, including do@idé

concentration, will be available for further investigations in the near future.
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CHAPTER 5

Human Atrial Cell Models to Analyse
Haemodialysisrelated Effects on Cardiac

Electrophysiology: Work in Progress

The content of this chapter has been published in:

Passhi E, Genovesi S, Severi S.

Human Atrial Cell Models to Analyse Haemodialysisrelated Effects on
Cardiac Electrophysiology: Work in Progress.

Computational and Mathematical Methods in Mediciel. 2014, 18 pp
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Abstract

During haemodialysis (HD) sessis, patients undergo significant alterations in
the extracellular environment, mostly concerning plasma electrolyte
concentrations, pH and volume, together with a modification of symjvatie
balance. All these changes may affect cardiac electrophysgiofmgssibly leading
to an increased arrhythmic risk: in particular, int@ialytic atrial fibrillation
incidence is really high.

Computationalmodelling may help to investigate the impact of Hé&ated
changes on atrial electrophysiology, exploring thefiflects on the action potential
(AP). However, many human atrial AP models are currently available, each one
with a peculiar structure and different current formulations. In addition, these
models have been developed using the standard electrolyte caiogrstiused for
experiments. Therefore, they may respond in a different way to the same
environmental changes.

After an overview of what has been done using the computational approach to
investigate the effect of HD therapy on cardiac electrophysioldgyaim of this
work has been to review the current state of the art in human atrial AP models, with
respect to their suitability in the HD context.

All the published human atrial AP models have been considered (Courtemanche
et al. 1998, Nygren et al. 1998laleckar et al. 2009, Koivumaki et al. 2011, Grandi
et al. 2011, Colman et al. 2013) and tested for extracellular electrolytes and volume
changes, as well as different acetylcholine concentrations.

Some models proved to be more appropriate than othkes wonsidering a
single modification, but finally all of them showed some drawbacks. Therefore,
there could be room for a new AP model, hopefully able to physiologically
reproduce all the HBErelated effects on the human atrial AP.

At the moment, works austill in progress in this specific field.

INTRODUCTION

In the last fifteen years, the increasing interest towards atrial electrophysiology
and atrial fibrillation (AF), together with a greater availability of experimental data,

led to remarkable develomnts in human atrial action potential (AP) mod&is5].

As a matter of fact, cardiac computationaddellingconstitutes an efficient tool
to investigate the ionic mechanisms involved at cell level, and has already been
used in a variety of clinical contexts, linking patient manifestations to the
underlying electrophysiological mechanisms, thus providing useful insights into
different atrial pathologies, including AF, especially whenever experimental

measurements were kiog or unavailablg6i 15].
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Haemodialysis (HD) therapy represents a unique model tintesto, in human,
the effects of sudden chargye plasma ionic concentrations and blood volume: in a
few hours, patients undergo significant plasma electrolytes variations, together with
a significant decrease in extracellular volume. In particular, the HD session causes
removal of excess Nand waer, the extent of which depends on the intigalytic
weight gain of the patientPlasmatic K concentration increases during the inter
dialytic interval, so that during all HD sessions its level must decrease, while Ca
variations might change dependimg the dialysate G& concentration and its
relationship with preHD plasma C# levels[16, 17].

These processes often lead to an increased arrhythmiforigtke patientpoth
during HD and in thénours following thetherapy. Indeed, the incidence of AF in
endstage renal disease patients is high: reported rates vary between 7% and 27%
[18, 19] and HD session may promote AF on@&, 21]

The aim of this work is as firstotbriefly review the literature concerning
applications of the computational approach to the study of the impact of HD therapy
on cardiac electrophysiologwfter that we compard all the currently available
human atrial AP models, focusing on their abilito reproduce the
electrophysiological changes typically induced by HD sessions, i.e. plasma

electrolytes and blood volume variations.

The 6 published human atrial models have been considered: Courterfiljnche
Nygren[2], Maleckar[3], Koivumaki[4], Grandi[5] and Colmar{6]. All models
have been tested for different concentrations of extracellular electrolytesqia
and K) and for cell volume changes. A set of AP and@ansient (CaT)
biomarkers has been considered to compare simulation results, e.g. AP duration
(APD), resting membrane potential (RMP), effective refractory period (ERP), CaT
duration (CaTD), etc.

In addition, since a modification of the sympattamal balance in favour of
vagal activity may occur during HD sessions in patients showing-diiigtic AF
episoded20], the acetylcholin@ctivated K current (kacn) has been added to all
models, and the effect of different acetylcholine concentrations has been considered

as well.

Elisa Passini



Section II- Chapter 5 93

CARDIAC CELL MODELLING
AND HAEMODIALYSIS

Computational models of casti AP have already been applied several times to
assess the acute effects of HD therapy on cardiomyocyte electrophysiology.

The first attempt in this context was the computational analysis of the heart rate
changes during H[R22i 24]. Since a reliable model of human sinoatrial node (SAN)
AP was lacking (as it is still today), these studies were based on a model of rabbit
SAN AP, considering the DiFrancesbimble mode[25, 26] as modified by Dokos
et al.[27]. Simulation results pointed out that changes of blo6d@&* and pH
produce large heart rate variations, showing how electralytiepH changes within
physiological range may have a remarkable impact on therpakmg rhythm,
independently of the autonomic outflow.

The computational approach has been also used to analyse KbwnGak’
changes during HD can alter ventricular repation and therefore AP duration
[28]. In this work, a model of human ventricular AP was considgt@dand model
predictions on AP prolongation were validated against a wide range of experimental
data, i.e. QT interval prolongation recorded during HD sessions. Simulation results
pointed out how computationahodellng of ventricular AP may be useful to
guantitatively predict the complex dependence of AP duration on simultaneous
changes in both Gaand K'. From this study, a modéhsed clinical indication was
inferred: C&" content in the dialysis bath should beigaed in order to prevent a
critical reduction of serum G§ especially in HD sessions with a risk of €A

hypokalaemia.

The same approach has been applied to atrial electrophysiology: a computational
model of human atrial AP has been used to confiran the intradialytic reduction
of plasma K level is associated with-Rave prolongatiorf30]. When comparing
the simulated atrial APs at the beginning and at the end of multiple HD sessions,
imposing in the model the extracellular electrolytmna@entrations and heart rate
equal to the experimental values measuredivo, simulation results showed an
increase in the time needed to depolarise and a reduction of the effective refractory
period (ERP), both occurring during HD. These two phenomiangresence of a

trigger, i.e. repeated premature atrial impulses, frequently induced by a HD session,
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might form the electrical substrate for intlalytic AF episodes onset. Consistent
results were also obtained when performing the same analysis inltiascale
model of the human atrium and considering a simulated BTG

More recently, we applied computational modelling of atrial cellular
electrophysiology to the individual case of a patient in which HD regularly induced
paroxysmal AF [20]. Simulation results provided evidence of a slower
depolarization and a shortenegfractory period in pré\F vs preHD conditions,
and these effects were enhanced when adding acetylcholine effect in simulation.
Starting from these findings, the possible mechanisms leading tediatygic AF
onset were reviewed and-rgerpreted, adescribed in th@extchapter. Notably, in
a subsequent study, Buiten et &R1], using the implantable cardioverter
defibrillator remote monitoring function, showed that HD is a trigger for AF
episodes. In particular, they showed that a lower concentratiof inftkke dialysis
bath is associated with a higher probability of AF episodes, as predicted by our

modetbased simulatioresults.

It is worth noting that in all these studies, model inputs were set using
experimentally measured quantities, i.e. plasma electrolyte concentrations and heart
rate. However, the actual vivo extracellular fluid is the interstitial fluid, rather
than the blood. Therefore, it could be questioned whether the plasma electrolyte
concentrations are a reliable estimate of the interstitial ones, even if this is usually
accepted. Indeed, the distribution of free ions between vascular and interstitial
comprtments has been reported to agree with Donnan theory, which predicts a

theoretical ratio between interstitial and plasma concentrations very clo$gZp 1

ATRIAL CELL MODELLING:
MATERIALS AND METHODS

Computational Models of Human Atrial AP

Stating from the first two human atrial cell models (Courtemaridfe Nygren
[2]), both published in 1998, four more have been released in the last few years
(Maleckar, 20093]; Koivumaki, 2011[4]; Grandi, 2011[5]; Colman 2013 [6]).

Hereatfter, the six models will be refed to using the initial letter of the first and
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last authors (i.eCN, NG, MT, KT, GB andCZ respectively). All models consist

of a set of ordinary differential equations, each one representing a specific dynamic
process occurring in the cell, and the nemlof equations is related to their
complexity: the first models are very simple compared to the most recent ones,
where a more detailed description of*Céandling and cell compartments is
included (see Tdé . 1). Moreover, the different parameters andic current
formulations lead to distinct AP morphologies and properties, e.g. AP duration
(APD), CaT duration (CaTD), etc.

Since 1998 several papers comparing atrial model performances have been
published, mainly concerning CN and NG models, which fanyryears have been
the only ones availabl@3i 39]. The two most recemeviews[38, 39]compared all
models except CZ, considering simulations from single cell to whole heart and
including both physiological and pathological conditions, thus assessing the current
state & the art in atrial computationahodelling Therefore, the comparison of the
peculiar properties of these atrial models exceeds the purpose of this work, which
rather aims to investigate the acute effects of HD therapy on atrial

electrophysiology.

The CNand NG models are almost based on the same human atrial data, and
they share most of the transmembrane ionic current formulations: however, CN is
developed from the guinea pig ventricular model by Luo and R4@ly while NG
is developed from the atrial rabbit model by Lindblad et[4l]. The main
differences between the two models are related fd-i@mdling and the CaT is
much shorter and with a larger amplitude in NG. As a result, their AP shapes are
quite different: a spikenddome AP forCN, and a more triangular one for NG (see

Figure 51, pink and blue traces).

The MT and KT models are subsequent extensions of NG: the main changes for
MT are new formulations for the transient outward) (&nd ultra-rapid delayed
rectifier (Ikur) currents, while the KT gives a much more detailed description of
Cd*-handling, especially concerning Caelease. The sarcoplasmic reticulum (SR)
is divided into 4 different compartments, including also a spatial mBina: as a
result, the CaT is slower compared to the previous model ones, but its duration is
increased (se€igure 52, purple trace). The GB model has been developed from

the ventricular model published by thense groug42]: most of the ionic current
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formulations have been preserved and adapted to experimental data acquired in
human atrial isolated cardiomyocyte. The ARjuste triangular shaped (s€g&gure

5.1, greerline), and the Cd handling is mosthyderived from the rabbit ventricular
model by Shannon et 4#3], again adpted to human atrial data. It is worth noting

that in this model the intracellular'Kkoncentration is kept constant.

The CZ model is the most recent one: it is based on CN, from which he inherited
all the ionic current formulations, except fas &nd ku, which come from MT.
Furthermore, the G4 handling has been modified using a structure for the SR
similar to the one used in KT, together with the corresponding formulation fr Ca
release and pumps. Conductances have been slightly tuned, to poeseigeency
with the original CN model.

In addition to the models listed above, a different version of the CN model has
been considered (from now on referred toCa¢*), slightly modified in order to
improve its long term stabilitj44, 45] This CN* model has been recently used to
investigate the specific case study of a HD patient which presestadent intra
dialytic AF mention above, and described in detailheéniextchapterf20].

Moreover, theKT model has been recently modified by the same authors,
improving model prediction in chronic AR4]. The changes involved mostly L
type C&" current (ka) formulation and this new version of the model (from now

on referredo asKT*) has been considered as well.

Finally, since this study is mainly focused on extracellular electrolyte changes,
the known dependence on extracellularfét both the inward and delayed rectifier

K" currents has been added to the atrial modeisywot already includgd6i 49].

Hereafter, each model will belentified by a specific colour (CN/CN*, pink;
NG, blue; MT, cyan; KT/KT*, purple; GB, green; CZ, red) and simulation results
for CN and KT will be shown only when a different behaviour with respect to their
updated versions (CN* and KT*) is found.

Simulaed APs and CaTs for all the considered models are shoWwigune 51
and Figure 52 respectively, to allow a quick visual comparison of their main

properties.
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Figure 5.1. Simulated AP traces for all the considered atrial models: each panel shows a specific
model AP with its reference colour; all the other model traces have been added in grey, to facilitate
the comparison.
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Figure 5.2: CaT traces for all the considered atrial models: the notable differences in timing and
amplitude are related to the corresponding different formulations 6f @éease from the SR.
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AP and CaT shapes are very different in each modelfaA as the CaTs are
concerned, experimental values of diastolic intracellula’* Gaoncentration
reported in literature span from 120 to 230 [B@i 52]: CN, KT, GB and CZ have
values in this range, whereas NG and MT compute lovastalic concentrations.
Measured CaT amplitudes range from 265 to 345[BM 51] and this is best
reproduced by CZ and KT. GB produces a slightly smaller CaT while CN, NG and
MT show much higher amplitudes. In addition, the CaT has been reported to decay
with a time constant of about 200 ms or even slo@#y 53} such a slow decay is
well reproduced by GB and CN only, while in all the other models is much faster.

Model differential equations have been implemented in Matlab (Mathworks Inc.)
and a variable order solver has bemsed to solve them (ode 1[58l]). Pacing was
simulated by a current pulse train (pulses of 3 ms, 1 Hz), maintained for 150 s, in
order to allow all the models to reach a proper steady state, i.e. intracellular
concentrations (Na C&* and K') stable over time.

Stimulus current (kim) amplitude was set to twice the AP threshold for all
models, as previously done [d06] (seeTable 51). When using this stimulus,
however, the GB model produces an AP quite different fronotieepublished in
the original GB paper: indeed, some of the biomarkers e.g. AP amplitude and
upstroke velocity are highly stimulusiependent in this model. Therefore, all
simulations with the GB model have been done using the stimulus amplitude
needed tgoreserve the original AP characteristics, which is about 6 times the AP

threshold and more close as current density to the ones used for the other models.

A summaryof all the consideredtrial models $ shown inTable 51, together
with some of their main structural properties, i.e. membrane capacitance,
intracellular volumes and compartmentalisation, amplitude used for the current
stimulus, the number of state variables (each one represented by an ordinary

differential equation) and the corresponding publication.
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Table 51: List of thehuman atrial AP models considered in this study sowie of theiproperties:

CN/CN* NG MT KT/KT* GB Ccz

Cm (pF) 100 50 50 50 110 100
CYTO 588 5.88 8.10  21.45 13.67

Cell SSL 13.67 0.12 0.12 - 0.66 -
Volumes JS - - 0.05 0.02 0.10
(pL) SR 1.21 0.44 0.44 0.18 1.16 0.27
whole cell  20.10 49.42 49.42 13.90 33.01 20.10
| stim (PA/PF) 15.0 19.6  19.2 18.8 19.5 12.0

# ODEs 21 29 30 43 62 39

Ref [1] [2] [3] [4, 14] [5] [6]
Year 1998 1998 2008 2011 2011 2013

Cm, membrane capacitanc&YTO, cytosol; SSL, subsarcolemmal space]S, junctional space;
SR, sarcoplasmic reticulumjgn, Stimulus current amplitudett ODEs number of differential

equations in the modeRef, reference paperyear. year in which the model was first published.

Simulation of the HD-induced effects

In order to investigate the reliability of each atrial model in reproducing the
effects of extracellular electrolyte changes possibly occurring duringudaregD
session, we performed a sensitivity analysis by varying the extracellular
concentrations ([N3,, [C& "], and [K']o) around the original model values (130
140 mM, 1.8 mM and 5.4 mM, respectively).

The explored ranges have been set according toéasured values reported in
literature for HD patients, extending them to include also possible outliers, as

described in details in the next Section.

At the beginning of the HD session the patient is overhydrated: for this reason,
2-3 litres (or evermore) of water are removed from his blood during the treatment.
Such a removal is compensated by water refilling from the interstitial fluid and
eventually from the intracellular compartment. How fluid accumulation during the

inter-dialytic period and flud removal during the HD session reflects into variations
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of intracellular volumes is actually not known in quantitative terms. Therefore, we

investigate the effects of a quite large range (x20%) of volume changes.

Finally, to explore the effect of vagatiraulation, we added the acetylcholine
activated K current (kacn) to all the models, according to the formulation used in
[5], and considering the changes induced 4% MM of acetytholine (ACh).

AP and CaT Biomarkers

In order tocompare simulation resultBom a qualitative point of view, we
computed a set AP biomarkersconsideringn particular the ones already used in
previous simulation works either to compare the diffeegnal AP model439] or
to evaluate the effects induced by electrolyte variations on atrial electrophysiology
[30]: action potential duration (APD) was measured as the interval between the AP
upstroke and the 90% of repolarization (AfdPresting membrane potential (RMP
was measured at the end of diastole; the AP upstroke duratiQy (#dé%s defined
as the time needed by membrane voltage to reach 0 mV, starting from the beginning
of the pacing pulsg0, 30} AP amplitude (ARny was measured as the difference
between the AP peak and RMP; mauim upstroke velocity (dV/gix) was
computed as the maximuderivative of membrane voltage over tichgring the AP
upstroke; the effective refractory period (ERP) was measured by simulatiiiga S
protocol: it has been defined as the longasSgsintervd which failed to elicit a $
AP of amplitude > 80% of the preceding AP [55].

A summary of all the considered ABiomarkers is shown irFigure 53,

considering the CN* model ARace as an example.

In addition, some CAtransient (CaT) biomarkers have been considered as well,
i.e. CaT duration (CaTD), measured at 90% of @kTay (CaTly), the time
needed to reach the CaT peak, starting from the beginning alithentstimulus
(CaTy) and the CaT amplitude (Cady. Finally, intracellular concentrations
([Ca®’;, [Na']; and [KT]) have ben monitored in all simulations anthe

corresponding values at the end of diastole have been considered for comparison.
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Figure 5.3: AP biomarkers considered to compare simulation results: AP duration at 90% of
repolarization (APLy); resting membrane potdat (RMP); AP upstroke duration (AR; AP
amplitude (ARnp; maximum upstroke velocity (dWdk); effective refractory period (ERP),
computed using &,5S, protocol and considering the longest S interval which failed to elicit a .S

AP of amplitude >80% of the corresponding 8P.

ATRIAL CELL MODELLING:
EFFECTS OF HD-RELATED CHANGES

Potassium Variations

In all the considered models the extracelluldrdéncentration ([K]o) is set to
the standard value used in the perfusion bath durkoipip expements, i.e. 5.4
mM. K* increases during the intélialytic interval and is removed during the HD
session: therefore, HD patients often show Mkadaemia at the beginning of the
therapy and hyp&alaemia at the end. In order to explore both clinical tmms,
we considered the range9BmM. The lower [K], value (3 mM) has been set
considering the experimental pddD measurements available in literature (e.g.
3.9+0.4[30], 3.6+0.6 mM[56]). The upper [K], value (9 mM) is actually a bit high
compared to the prelD measirements available (e.g. 4.9+0.5 mM[30], 5.3+0.9
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mM in [56]): we extended the range since there are clinical contexts, such as acute
ischemia, in which [K], can locally rise up to 9 mM or mo[&7].

The main effect of a [K, decrease should be a hyperpolarization of i c
membrane, due to a different Nernst potential fdriéhs. In addition, a [K,
decrease leads to a QT interval incref8d, a macrosgoic marker of prolonged
ventricular APD: therefore, a prolongation of atrial APD is expected as[9&}ll
On the contrary, ERP should decredS8, 59] since APD and ERP may be
funcoupl edo Whasexpevimentslly abservdd Ky Downar ef6h).

Finally, while slowed cardiac tissue conductivity is a vkelbwn effect of
severe hyperkalemia, in the range ofTKconcentrations usually measured in HD
patients, a positive dependence of conduction velocity dJy s been observed:
this phenomenon is known as supernormal conducf{i®ti 63]. Consistently, an
increase in PWd duringemodialysis, significantly correlated to” idecrease, has
been reported30]. In a previous simulation stud@0] we have shown how both
hypo- and hypetkalaemia can cause slowed cardiac tissue conductivity: in-hypo
kalaemia, the RMP isignificantly lower (hyperpolarized), and therefore the cell
needs more time to reach the membrane potential threshold for AP upstroke; in
hyperkalaemia, the RMP is significantly higher (depolarized) and, as a
consequence, Naurrent availability is deemased and the current is much smaller
than usual. In single cell simulations, a slow conduction can be associated to a
smaller upstroke velocity and to an increase in the time needed for the voltage to
rise toward the AP peak: AlPand dV/diax are then epected to show some kind

of U-shape dependence when considering the full,[Kange.

A summary of the AP biomarkers for all the differentJiKis shown inFigure
5.4. When some models fail to repolarise with IqK ], the corresponding

biomarkers have not been computed.

The models show quite different trends for some of the biomarkers, especially
APDgy and ERP igure 54, panel A and B). In NG, MT and KT*H{gure 54: blue,
cyan and purple traces), both the RMP and AFfi2have as expected: however,
these models fail to repolarise wher'[Kis set to low values, exhibiting early after

depolarisations (EADs, see ekKjgure 55).
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Figure 54: AP biomarkers vs [K, for all the considered models.

Indeed, a decrease in K leads to a reduction in the conductance of tie K
repolarising currents, i.exland ki, thus prolonging the APD: in these models this
effect seems to be over dimensioned, probably due to a low repolarisation reserve,
and therefore the membrane potential is not able to go back to its resting value. As
an example, irfFigure 55 are shown the AP traces corresponding to differefit,[K

levels for the NG model.

This is indeed a great limitation when aiming to apply these models to clinical
contexts, since normal plasmd Kvels are between 3.5 and 5 mdihd especially
critical for HD patients because they need to remove theckumulated during the
inter-dialytic period, primarily in the intracellular pool, and therefore they usually

end the HD session in hypg@laemia.

No significant changes have beebserved in these models for d\{gt and
APyq, while the ERP follows the APfas expected-inally, the ARmpis inversely
related to RMP.
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Figure 5.5: AP traces corresponding to different Tk, for the NG model. When decsiiag [K'],,
the RMP becomes lower and the APDncr eases, both as expected.
repolarise for [K'], values lower than 4 mM.

As for the GB model Kigure 54: green traces), APJ and RMP arequite
similar to NG, MT and KT*, but their trends change for low'JK the model
repolarises properly for all [Ko, but when considering values lower than 4mM the
RMP is higher (more depolarised) than expected: therefore A&idl ARmp are
affected acordingly. ARy and dV/disax show the expected-shape, related to a
reduced conduction for both low and highTK As for the ERP, in this model it is
always much longer than the corresponding APBven if it shows a similar
dependence on [f. In adlition, probably due to the high stimulus amplitude
needed to stimulate the GB model (as explained in the methods section), the ERP
could not be computed for most of the T when considering values below 4 mM
or above 6 mM, the SAP peak was never low¢han 80% of the corresponding, S

no matter how short the diastolic interval considered.
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As for the CN* and CZ modeld~igure 54: pink and red lines), they develop a
proper AP for all [K], and they both show\ery strong linear dependence of RMP
on [K']e: this dependence, by itself, should prolong the APD when decreasing
[K']o, since the membrane potential needs more time to repolarize and then
reaching its resting value.

However, in these models the AP phasghortens as well, so the overall AlgD
is almost constant, or even decreasing with]{Kin contrast with the expected
behaviour; this effect is even more pronounced when considering the ERP. As an
example, inFigure 56 the AP traces corresponding to differentJiKlevels for the
CN* model are shown.
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Figure 5.6: AP tracescorresponding to different [{, for the CN model. When decreasing'Ti
the RMP becomes lower as expected el APR, is almost constant.
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In these two models, the AR, is again inversely related to RMP, and both,AP

and dV/dtiax suggest a reduced conductivity in theJiKrange boundaries,

especially when considering high’K.

No significant changes weréound in CaT biomarkers and intracellular

concentrations, in any of the consideraddels Figure 57).
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Figure 5.7: CaT biomarkers (left) and diastolic intracellular ionic concentas (right) vs [K],

for all the considered atrial models.

Calcium Variations

In all the models the extracellular €aconcentration ([Cd],) is set to the

standard value used in the perfusion bath durirgavhp experiments, i.e. 1.8 mM,
which is quite fgh compared to the normal serum?Ceneasured in vivo (1.3
mM), as discussed in detail j64]. During a regular HD session, depending on the
dialysis bath concentration, serum?Cean either raise or decrease. Two previous

simulation studies explored the effects of {Gaon cardiac electrophysiology,
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considering the ranged mM [64, 65] However, serum CGais lower than 1 mM
in several patiets: reported priD concentrations are e.g. 1.18+0.09 mM30]
and 1.06+0.16 mM if28]. Therefore, we decided to extend the expdl range to
0.6-3 mM. A summary of the AP biomarkers for the different {Qais shown in
Figure 58.
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Figure 58: AP biomarkers vsGa’*], for all the considered model

The expecte effect of [C&'], increase is a significant decrease of AHB4,
66]: the increment in driving force enhance théype C&* current (ka) peak, but
at the same time the €adependent inactivatiomechanism is strengthened, thus

reducing the overalkl,. and therefore shortening the APD.

Even if the data showing this inverse relationship between APD aitl{@as
been recorded in ventricular cells, there are a few recordings confirming that the

trend is the same for human atrial c¢ig].
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Indeed, CN, NG MT, KT* and CZ models are able toroejpice this effect,
together with a consistent reduction of ERFy(re 58, panel A and B). Notably,
the original KT model shows an opposite trend for both &RIDd ERP, fixed in its
improved version, where preaely the ¢, formulation was changed. On the
contrary, GB proves to be not very stable to’[G;avariations: AP, and ERP
show a biphasic trend, both considerably increasing witAi'JC&om 0.6 to 2.5
mM, and then decreasing until 3 mM, value in wHiekDs appea(Figure 59).

RMP, ARympand ARq are almost constant in all modelsdure 58, panel C, D
and F). As for dV/diax, only GB, CN and CZ show a slight lineaepk&ndence
with [C&"], (Figure 58, panel E), related to the increase ef. Ipeak, which in
these models has a greater contribution to the AP phase 0.
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Figure 59: AP traces correspatiing to different [C&], for the GB model. When increasing
[Ca®"],, the APRy first highly increases and then decreases. For’[fa= 3 mM an EAD appears.
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As expected66], diastolic C&" increases with [Cd], for all the considered
models Figure 510, panel D), whereas auple of unexpected observations can be
made on the CaTs (not shown): CZ seems almost insensitive1d.[&zd GB fails
to produce a significant CaT for [E% lower than 1 mM, in which CaT becomes

really slow and almost negligible in amplitude.
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Figure 5.10 CaT biomarkers (left) and diastolic intracellular ionic concentrations (right) vs

[Ca*, for all the considered atrial models.

CaTampincreases with [C4], for all models Figure 510, panel C), in agreement
with [66], while CaT timing (Caf, e CaTDy) is not much affected by [€F,
(Figure 510, panel A and Band neither is [K]; (Figure 510, panel F).

On the contrary, [N%; is finely tuned by C&: the raise of [C&], increases the
outward N&/Ca&* exchanger current {tx), but the corresponding increase of
intracellular C&" contrasts this effect. At the same time, the*/K& pump

counteracts [Ng; variations, in both ways. As a result, [Jlaconentration is not
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much sensitive to [G4], in most of the modelsHfgure 510, panel E). However, in
CN and Cz, the direct effect of [E% on the kcx plays the major role and as a
consequence the [Nfadecrease slightly. In GB, instead, [N} increases, because
when [C&"], increases the inwardydx is highly strengthened, due to the sub
sarcolemmal space in which [€h locally increases considerably.

Unfortunately, there are no experimental data availabliterature on [N&;,
Incx or Na'/K* pump for different [C&], , either to confirm or deny these findings.

Sodium and Volume Variations

In all the considered models the extracellular Bancentration ([N§,) is set to
the standard value used in therfusion bath during Mlamp experiments, i.e. 130
mM for CN, GB and CZ, 140 mM for NG, MT and KT, in agreement with the
normal serum levels of 13545 mM. N4 variation during a regular HD session are
usually quite small (e.g. from 139.8+3.4 to 141.6x$1130], from 129/132 to
133/135 in20]) and we explored the 1260 mM range base on the corresponding
data available in literatuf@7, 68]

APDg and ERP slightly increase with [Na in all the models except GB, in
which they both stay constarfigure 511, panel A and B). RMP and APare
almost constant for all the adels: the first slightly increases with [Naand the
other slightly decreasebi@ure 511, panel D and F). In NG, MT and KT, dV/{gi
increase with [N§,, together with AP peak and therefore also,AfFigure 511,
panel E and C), while they donét wvary

No significant differences were found in CaT biomarkers nor intracellular
concentrations for any of the models, apart from aricats increase in [N% (not
shown). Finally, it is worth noting that in CZ and CN, [INaregularly shows a

stronger sensitivity to changes in extracellular concentrations.
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Figure 5.11: AP biomarkers vsNa'], for all the considered modsl

Volume effects have been evaluated by scaling the intracellular volumes of
+20%. The corresponding AP biomarkers variations are all negligible (not shown),
e.g. KT shows the maximum ARPchange: +22.5 ms on the whole range. The
CaTs beome slightly slower when the volume increases, but notable changes have
been found only in GB: CaTdpincreases of +104 ms on the whole volume range,
together with an increase of GgBnd a reduction of Caf, (Figure 512, panel A,

B and C). [C4T; also increases with volumia GB, while no other significant

changes occurr in intracellular concentratidrigire 512, panels D, E and F).

Unfortunately there are not exjiaental data on the effect of changes in Na

or volume on cardiac cells to either confirm or deny these findings.
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Figure 5.12. CaT biomarkers (left) and diastolic intracellular ionic concentrations (right) vs vs
volume %changes for all the considered models.

Acetylcholine effects

To analyse the effect of a possible increase in vagal activity, we simulated the
effects of acetylcholine in the 6 nM range, adding to all models the samed

formulation used if5].

The expected effect of an additional outwardckirrent is a more hyperpolarized
RMP, together with a shortening of APD and ERP. This has been confirmed by
experimental datpp9i 71] as well as by previoumodellingstudieq5, 72, 73]

When considering concentrations higher than 3 nM, all the considered models
show a significant decrease of both ApBnd ERP Figure 513, panel A and B).
In addition, the RMP is indeed hyperpolarised, especially in NG and Rjlre
5.13, panel D). The AR is inversely related to RMP changdsgure 513, panel
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F), whereas AR,, and dV/diuax keep almost constanFigure 513, panel C and
E): therefore, the overall conductivity is slowed down by ACh.

In fact, starting from a more hyperpozed potential and with no significant
changes in dV/diax, the cell needs more time to reach the threshold Jgr |
activation, to produce the upstroke. On the contrary, in GB both,Afhd
dV/dtyax increase with ACh, mostly due to a larger*Narrentfor lower RMP,
thus compensating this effect and limiting the theoreticalsAftrease and the

corresponding reduced conductivity.

Negligible effects were found in CaT biomarkers and intratliconcentrations

(not shown) when including acethylcoline.
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Figure 5.13: AP biomarkers vs ACh concentrations for all the considered models.
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DISCUSSION AND CONCLUSIONS

We have briefly pointed out that computational models of cardiac action
potential (AP) have been successfully applednvestigate HErelated effects on
the electrophysiology of different cardiac tissues (sinoatrial node, ventricle, atrium)
often leading to relevant interpretations of macroscopic observations made in

clinical ECG and/or useful suggestions about HD tneait personalisation.

However, all these studies have been performed by using cardiac cell models
that had been developed on the basismofitro experimental data, almost always
acquired wusing standard Tyrodedieushsol uti ons
correct to simulate the electrical activity of cardiac cells by imposing the same
conditions used in experimental protocols as far as the aim is a comparison with
vitro experimental data. On the contrary, it can be incorrect to use the sarantons
concentrations when the ultimate aim of simulations is the analysisvofo, and
therefore dynamical, conditionsuch as a HD session. Sometimes, this possible
cause of discrepancy has been mitigated by few changes to the original models, e.g.
introduction of the effect of extracellular pH on the*Nd pump activity in the
DiFrancesceNoble model of SAN cell[22], strengthening of thecd. Ca"

dependent inactivation in the Ten Tusscher model of human ventc(2a].

However, a systematic analysis of the applicability of cardiac cell models to
reproduce the specific conditions occurring during HD or, in general, when the
extracellular fluid composition changes, is still lackihg.the present papewe
addressed this kind of problem by focusing on human atrial cell models and on the
foll owing dcell environment o chanQes: extrac

Cc&* and N4), cell volume and acetylcholine.

We pointed out that several human dtndels are available, with significantly

different behaviour upon such environment changes.

Unfortunately, experimental data on human atrial cells induced by extracellular
concentrations changes are really rare in literature. This makes a stringent
guanttative comparison between simulations and experimental measurements not

possible for most of the considered electrophysiological properties.
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On the other hand, some qualitative behaviour is expected based on the overall
evaluation of: i) knowledge of pbipological mechanisms (e.g. the link between
membrane resting potential and Nerst potential); ii) in vitro data measured in
different cell types and species (d50, 64); iii) in vivo data on macroscopic ECG
markers known to be related to atrial cellular electrophysiology (e.g. PWd).

We found a majomproblem in the NG, MT and KT models: they all fail to
repolarize and to produce physiological APs wheti{i§ lower than 4 mM. This
makes these models not appropriate to simulate the cardiac impact of HD. Indeed,
the change in plasma [k is one of themore important and quantitatively large
effects of HD, since Kremoval is one of the treatment aims and thetldBd K],
is almost always much lower than 4 njB0, 56] Indeed, even in control condition
([K'lo = 5.4 mM), the repolarising Kcurrents (especiallyxl and ks) of these
models are quite tiny wimecompared to the ones of CN* or CZ, who repolarise
properly up to [K], = 3 mM (current peaks are about 10 times smaller). In the NG
paper the authors explicitly say that thedonductance has been reduced to fit AP
data and that this current has besgigned a very low densif®]. Therefore, an

increase oft may improve the performance thiese models for low [Ho.

The GB model exhibits several shortcomings as well. First of all, although it
produces a proper AP at all the tested]{Kt behaves nophysiologically when
[K']o is lower than 4 mM: the RMP depolarizes instead of hyperjeland, as a
consequence, the ARBPalso goes in the opposite way (shortening) and giidt
dramatically decreases. Moreover, the excessive sensitivity to the amplitude of the
stimulus current makes the computation of the ERP very unstable, leading to too
long ERP values or no ERP at all. Since also in GB the repolarisirauttents
(both kr and ks) are quite small in amplitude, increasing their magnitude may
improve the model stability for low [K, concentrations. Finally, the GB model
responds poorlyto [C&'], changes too: the ARP trend is opposite to what
observed in human atrial ce[84], i.e. instead of showing an inverse dependence,
it is increasing with [C&],, even displaying EADs for [, equal to 3 mM, and
the intracellular CZ transient is almost neexistent when [Cd], is lower than 1
mM. Therefore, the GB model turns out todmmpletely unsuitable to simulate the

HD conditions.
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As for the wrong dependency of APD on fa a possible solution should
address a modification of thetype C&" current, increasing the &adependent
inactivation with respect to the Voltagepenént one, in order to reduce the
overall current for higher Galevels, despite the increase in driving force. Indeed,
C&*-dependent inactivation seems to be underestimated in many AP rfétlels
and previousnodellingworks managed to reproduce the inverse ARE], just
by strengthening this mechani$éb, 74]

The CN* modelresponds properly to [, changes, at least from a qualitative
point of view. |t also reproduces wel |l t he
variations when [K],is increased (APD slightly decreases whereas ERP increases):
this was experimentally reportég Downar et al[60] when perfusing cardiac cells
with hyperkalaemic O0ischemic bloodd and int
changes in resting potential, which is known to affect, in turn, tHechannels. In
addition, simulation results for the CN* model predict a deereasintracellular
Na" when increasing [G4],: we are not aware of any available experimental data

to confirm/deny this observation, which could have relevant implications.

The CZ model exhibits a good stability, with none repolarization failure nor
EADs occurrence. However, it also has a few discrepancies with respect to the
expected behaviour: APD decreases witf§K while the opposite should happen
[28] and CaTkmpis insensitive to [C&], while in all the other models it increases

with it, in agreement with experimental data reporte®@j.

As for the quantification of cardiac sigdfects of HD therapy, overall
simulation results confirm that changes[i'], and [C&], are the ones mostly
affecting cellular electrophysiologf28, 30] whereas [N§, and volume seem to

have a minor impact.

A qualitative summary of the expected variations ifijji&nd [C&"], during HD
and of the corresponding biomarker changes is showralile 52 and Table 53
respectively, comparing experimental/computational data from the literature with

the simulations results of this study.
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Table 52: Qualitative summary of Hilnduced [K], variation onselectedAP biomarkers:

RMP APD ERP APy

N 7

[28, 0] [59,60] [30, 59]

Table 53: Qualitative summary of Hiinduced [C&'], variation on selected AP biomarkeasd
intracellular ionic concentrationsResults are shown for a €aincrease, but depending on the
[Ca®'] concentration in the dialysis bath, a decrease could occur as wighi opposite effects

APD ERP  CaTam [Ca®]i [Na';

[Ca™,
o N N S/ 5

[30, 64 66] [66]

CN
NG
MT
KT*

GB

Ccz

RMP: resting membrane potentiaAPD: AP duration; ERP: effective refractory periodAPud:
upstroke delay, inversely correlated with conduction velo@8T,,,; Ca**-transient amplitude;

black arrows:expected increase/decrease during HD, with the corresponding references,
green/light greenmoderate/large biomarker variation in the expecteédation;

red/light red moderate/large biomarker variation in the opposite direction.
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Simulation results of acetylcholine effect show a reduction of APD and ERP in
all the models, together with a more hyperpolarised RMP, in agreement with
experimental da and previousnodelling studies[5, 69 73]. In addition, all the
models except GB show a reduction in,ABuggesting a slower conductivity, also
consistent with the increased vulnerability to arrhythmias, such as AF, due to an
increased vagal activitp20, 70] However, there are hexperimental evidence to
confirm or deny this results, and a more detailed description of autonomic
regulation should be considered for future improwvetsein computational
modelling of acetylcholine effects.

Other HDrelated effects (e.g. acidosis correction) have not been addressed in
our analysis and are left to further investigations.

Finally, it is worth to remember that HD patients are first btisgmic patients:
this pathological condition (e.g. Auremic 1in
of cardiac cellular electrophysiology and should be incorporated into the models.
As a relevant example, dowagulation of the N4K" pump and high lels of
circulating N& pump inhibitor, have been reported in uremic patients compared to

individuals with normal renal function, by several investigaf@&s 80].

In conclusion, computationahodellingof human atrial cells constitutes a very
useful tool to investigate the electrophysiological changes occurring in patients
undergoing HD therapy. Nevertheless, it is always important to seleftlbatbe

specific model to use, depending on the particular aspect of interest.

Currently, CN* seems to be the more suitable human atrial model to analyse
HD-related effects on atrial electrophysiology, though it is the oldest one and,
therefore, it has less detailed descriptiaf several cellular mechanisms: this is

why this model has been chosen for the work presented in the next chapter.

Therefore, an additional model could be developed, trying to integrate and
reconcile the knowledge of cellularcasubcellular processes and their reactions to
changes in the extracellular environment, taking into account the possible

suggestions given above.

In this respect, workare still in progress in this specific field.
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CHAPTER 6

Recurrent Intradialytic Paroxysmal
Atrial Fibrillation: Hypotheses on Onset
Mechanisms Based on Clinical Data

and Computational Analysis

The content of this chapter has been published in:

Vincenti A, Passini E, Fabbrini P, Luise MC, Severi S, Genovesi G.

Recurrent intradialytic paroxysmal atrial fibrillation: hypotheses on
onset mechanisms based on clinical data and computational analysis.

Europace, vol. 16, no. 3, pp. 39894, Mar. 2014
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Abstract

Atrial fibrillation (AF) incidence is high in endtage real disease (ESRD)
patients, and haemodialysis (HD) session may induce paroxysnepisddes.

Structural atrium remodelling is common in ESRD patients, moreover, HD
session induces rapid plasma electrolytes and bleoldme changes, possibly
favouring arhythmia onset. Therefore, HD session represents a unique model to
study in vivo the mechanisms potentiatigucing paroxysmal AF episodes.

Here, we present the case report of a patient in which HD regularly induced
paroxysmal AF. In four consecutigesfons, heart rate variability analysis showed
a progressive reduction of low/high frequency ratio before the AF onset, suggesting
arelative increase in vagal activity. Moreover, all AF episodes were preceded by a
great increase of supraventricular ectojneats.

We appliedcomputational modelling of cardiac cellular electrophysiology to
these clinical findings, using plasma electrolyte concentrations and heartaate
simulate patient conditions at the beginning of HD session-Kiip¥ and right
before theAF onset (preAF), in a human atrial action potentiatodel.

Simulation results provided evidence of a slower depolarization and a shortened
refractory period in preAF vs. preHD, and these effectwere enhanced when
adding acetylcholine effect.

Paroxysnal AF episodes are induced by the presence of a trigger that acts upon
a favourablesubstrate on the background of autonomic nervous system changes
and in the described case report all these three elements were présating
from these findings, hereve review the possible mechanisms leading to
intradialytic AF onset.

INTRODUCTION

The prevalence of atrial fibrillation (AF) in patients with estdge renal disease
(ESRD) undergoing haemodialysis (HD) treatment is high. A recent review by
Zimmerman repded a mean prevalence of this type of arrhythmia of 11.6%, even
if within a wide range (547%) [18], presumably due to the different
methodologies of the studies takemoi consideration. Data from the United States
Renal Data System have shown an important increase in AF prevalence (from 3.5%
in 1992 to 10.7% in 2006) in HD patientsd]. Many of the risk factors that are
associated with Alare the same as those observed in people without ESRD, such as
age, the presence of hypertension, heart failure, ischaemic heart disease, and
cerebrovascular diseag8l]. Moreover, there are some arrhythmic risk factors
specific b HD patients, like sudden changes in blood volume and electrolytes

plasma level due to the HD session. Like in all other patients the presence of AF is

Computational Modelling of Cardiacl&ctrophysiology: from Cell to Bedside



122 Section Ili Chapter 6

associated with an increased mortality in patients on HD treatment ag8@jell
Episodes of AF induced by HD sessions are phenomena that have not been studied
very extensively so far, but are w&hown by nephrologists:ften they concern
episodes of paroxysmal AF which resolve spontaneously. Quite frequently these
episodes are interrupted by pharmacological interventions or electrical
cardioversion, when they cause any haemodynamic instability that does not allow
the competion of the HD session or when it is not possible to keep the patient in the
dialysis unit until spontaneous resolution of the episode. On the other hand, many of
the asymptomatic episodes are probably not recognized as AF. Starting from the
study of a epresentative case report and its clinical and computational analysis, this
review aims to define the mechanisms that may cause episodes of intradialytic AF.
In fact, AF episodes triggered by the session in HD patients, offer us a unique
occasion to studyhe characteristics of paroxysmal AF onset: an occasion that
cannot easily be found in other patients, whose AF episodes are much less
predictable and assessable.

CASE REPORT

Four consecutive HD sessions were analysed in -ge@Bold woman with
ESRD, in which HD regularly induced AF episodes that disappeared spontaneously
shortly after the end of the HD session. Informed consent was obtained from the

patient for the study.

Intradialytic Parameters

In all HD sessions, body weight loss, systolic, and digstarterial pressure
were monitored hourly. Plasma &, and C&" concentrations were measured at
the start and at the end of the treatment in Sessions #1 and #2, and hour by hour in

Sessions #3 and #4, used for computational analysis.

ElectrocardiogramAnalysis

A 24 h ECG was recorded from the start of each HD session. All recordings
were obtained using a threbannel Holter recorder, (Sorin Group Company). The

AF onset time was identified. Arrhythmias were examined during the whole
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recording time andexpressed as the number of supraventricular ectopic beats
(SVEBS), couples, or runs (more than three consecutive ectopic beats). The mean of
SVEBSs during the 30 min period before AF onset was compared with the mean of
all other 30 min periods of registrati. A signalaveraged Rvave recording was

done before and after an HD session in which AF episodes were not observed. P
wave duration (Pwd) was analysed by using a dedicated software decwethf

work by Stafford et al[83] (Sorin Group Company)

Heart Rate Variability

Spectral components of heart rate varigbi(HRV) were calculated by fast
Fourier transform over 256 s (1024 sampling points) epochs. The power spectral
components recommended by the Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysi¢dagy
were calculated: (i) very low frequency (VLF) from 0.00 to 0.04 Hz, (i) low
frequency (LF) from 0.04 to 0.15 Hz, (iii) high frequency (HF) from 0.15 to 0.4 Hz.
The total spectral power corresponds to the power of the whole spectrum from O to
1 Hz. Vey low frequency, LF, and HF power components were normalized

(normalized units) for total power and the LF/HF ratio was considered.

Statistical Analysis

The differences between the recorded variables during thellprand the pre
AF phases were analyse¢y b usi ng -&ét amll emalysis of variance for

repeated measures followed by Fisheroés

Results

Figure 4.1 shows the Holter ECG recordings during the four studied HD
sessions. In all sessions, the arrhythmia developed between the secondthind the
hour of treatment. The episodes always resolved spontaneously within 2 h from the
end of the HD session. The intradialytic plasma electrolyte changes (beginning vs.
end HD) were comparable during the studied sessions. In particular, a significant
reduction of plasma K+ (from 4.5£0.3 to 3.7+0.1 mM, p<0.05) and an increase of
plasma Ca2+ (from 1.08+0.1 to 1.29+0.1 mM, p<0.01) concentrations were

observed.
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HD Session #1: 15/02/2012 HD Session #2: 17/02/2012

HD Session #3: 20/02/2012 HD Session #4: 22/02/2012

=== HD Session: 8 a.m. -12 p.m.

SVEBs:  singles [l couples [l runs

Figure 6.1: ECGHolter recordings during four consecutive HD sessidBach session started at 8.00

a.m. and ended at 12.00 p.m. (white line): the patient regularly showed paroxysmal AF episodes,
triggered during the session and spontaneously terminated at its end. Supraventricular ectopic beats
(SVEBSs) occurrence is shovim the lower section of each panel: single ectopic beats (yellow),
couples (green), and runs (red) significantly increased in the minutes preceding AF onset.

During the HD sessions, the weight loss was 2.58+0.40 kg. Spectral analysis of
HRV at 30, 20, and0 min before the AF onset showed a progressive reduction of
LF (from 36.5£14.0 to 26.7£11.2 to 21.3£11.0 nu, p<0.01) with a consequent
decrease in the LF/HF ratio (from 0.79+0.5 to 0.51+0.3 to 0.39+0.2, p<0.05),

suggesting a relative increase in vagahpared with sympathetic activity.

All AF episodes were gceded by an increase afpsaventricular ectopic beats
SVEBs single (from 4.1+4.8 to 160.%97.5/30 min), couples (from Q.2 to
46.0t28.4/30 min) and runs (from Q.1 to 43.@23.7/30 min) as ampared with
the remaining observation period<Q.05). The duration of the sigraveraged P
wave, recorded in the same patient during a previous HD session in which no AF

occurred, increased from 171 ms before the treatment to 185 ms at the end.
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COMPUTATI ONAL ANALYSIS

Methods

The Courtemanche modgl] of human atrial action potential (AP) provided the
basis for simulations. It is not the most recent human atrial model, but it is the one
best suited to reproduce the lowef], and [K], levels occurring during HI64].

We modified the original model by including the knodependency okl and k.
currents on [K], [28], and improving its longerm stability [45], as already
described in Chapter.5Moreover, we added thexakn current, sensibleto
acetylcholine (ACh) concentration, as recently done by Grandi ef54l. These

have been the only changes to the Courtemanche formulation. Model differential
equations were impleemted in Matlab (Mathworks Inc.) and a variable order
solver, based on the numerical differentiation formulass wsed to solve them
(ode 15s)54]. Pacing was simulated by a current pulse train (pulses of 3 ms, 1 Hz)
with amplitude about twice the AP threshold: the stimulas maintained for 300

s, to reach steaestate conditioni.e. intracellular concentrations (NaC&" and

K™ stable over time.

We simulated patientds conditioHDy at
and right before the AF onset (pé-), by imposing the extracellular electrolyte
concentrations and average heart rate, as measured in vivo. Two consecutive HD
sessions (#3 and #4) were considered: electrolyte concentrations hour by hour were
measured and the value assigned to theAprecondition wa interpolated in

correspondence with AF onset.

Different biomarkers have been considered to quantitatively compare simulation
results: action potential duration (APD) was measured as the interval between the
AP upstroke and the 90% repolarization leuwgsting membrane potential was
measured at the end of diastole; the AP upstroke duratiog)(ABs quantified as
the time needed by membrane voltage to reach 0 mV, starting from the beginning of
the pacing pulsd30]; the effective refractory ped (ERP) was computed by
simulating a @ S, protocol, with $ and $ pulses of equal magnitude delivered at
various rates: ERP was then defined as the longé$, $hterval which failed to
elicit an S AP of amplitude<80% of the preceding:&\P [55].
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Results

Representative traces of simulated atrial APs at the beginnmigedfD session
and right before the AF onsehcluding also the ACh effect, are shownFigure
6.2A. For the two considered sessions (#3 and #4), we simulated three different
conditions preHD, beginning of the HD session; pAd-, just before the AF onset
preAF+ACh, just before the AF onset, including acetylcholine effect

B
=]

-~ 0
/
2p -2
|
1
! —40
H
.- T
- ! N
E ~:'20- E -80
- | ~
£ \ @ -100
> o &
i -120
i
,?Q_ -140 "
1 i
1 Y
i -160 " E
\ |
_g[‘)_‘ :
W B T 2 3 4 s
—_100 ™ time (ms)
0 100 200 300 400 500 600 700
time (ms)
40
20
|
0 i
|
\
\
~ 20
>
£
-
g 40
>
-60
-80 —— pre-AF
| - pre-AF + Ach 5nM

1
0 100 200 300 400 500 600

time (ms)

Figure 6.2; Simulated APs for thEID Session #3 (A). The changes in extracellular electrolytes and
heart rate leading to AF onset determine a mbypeipolarized resting potential which in turn

causes an increase of AP upstroke duration (B). The presence of ACh enhances these effects and
alsoreduces thé\PD considerably. Atrial myocyte response tbSgprotocol, considering a 300 ms

SIS interval (C). The peak elicited by,Stimulusin pre-HD conditions is remarkably smaller

(,80%) than the one elicited by @®). This difference becomes less pronounced when considering
pre-AF conditions and more so after adding ACh, suggesting that the ERP decreesetingly.

These differences are mostly due to the greatailability of sodium current at the more negative
potential reached in the pr&F conditions (E).
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The corresponding cycle length, extracellular iooncentratios, and ACh
concentration(model nputs) have beehisted in Table 1togetherwith all the
computed indicealreadydefined in the Methods Sectiowhich have beensed to
guantitatively estimate the differences between-Hide and preAF conditions

(model outputs)

Table 61: Case report computational analysis, simulation data and results

HD Session #3 HD Session #4
pre-HD pre-AF  pre-AF+ACh pre-HD pre-AF  preAF+ACh

Model inputs
[Na'], (mM) 132 135 135 129 133 133
[K ™o (MM) 4.6 35 35 4.6 3.8 3.8
[Ca*], (MM) 1.04 1.23 1.23 0.99 1.17 117
CL (ms) 1132 1124 1124 1132 1071 1071
ACh (nM) - - 5 - - 5

Model outputs

APD (ms) 302 306 269 301 304 271
RMP (mV) -85 91 -92 -85 -89 -90
AP (M) 3.30 3.80 3.84 3.32 3.64 3.69
ERP (ms) 308 294 254 307 291 261

pre-HD, beginning of the HD sessiopre-AF, just before the AF onsegpre-AF+ACh, just before
the AF onset, including acetylcholine effeCt;, cycle length (mean value computed on the last 30
sinusal beats before thAF onset); ACh, simulated acetylcholine concentratioAPD, action
potential duration at 90% of repolarisatio®MP, resting membrane potentiakP,4, AP upstroke

duration; ERP, effective refractory period.

K" removal during HDinduced membrane hyperpdigtion, especially in
Session #3 where [l reduction was more pronounced. ARignificantly raised
(15% and 10%, Sessions #3 and #4, respectively), since more time was needed for
the cell to reach the threshold, starting from a hyperpolarized restimgjtion
(Figure 62B). Effective refractory period shortening was also significashtc8%6
and-5.21%), while APD kept almost constant; in fact, J/ldecrease may have two
uncoupled effects on APD and ERGD].

As an example, ifrigure 62C, the APs obtained from Si S; interval of 300 ms
areshown(Session #3). Since the ERP in B condition is just above 300 ms,

the S stimulus falls within the refractory period and therefore the eligiteak
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results considerably smaller (<80%) with respect to theor&. In the préAF
condition instead, the ERP being shorter, thgp&ak is higherKigure 62D); this
difference is probably due to a greater avalilgbof sodium current at the more
negative potential reached in the #E conditions {69 pA/pF vs.-35 pA/pF, pre
AF vs. preHD, Figure 62E).

When considering both the pA& condition and ACh 5 nM, all the fetts
described above are enhanced (Tablerd AF+ACh): ERP decreased considerably
further €17.53% and-14.98%, Sessions #3 and #4,-pfe + ACh with respect to
pre-HD). Moreover, a significant reduction of APD occw®Q.64%6 and-9.93%).

INSIGHTS INTO THE MECHANISMS OF
INTRADIALYTIC ATRIAL FIBRILLATION

Cardiac Morphology in Patients on Haemodialysis Treatment

Patients with ESRD undergoing HD treatment show deteriorated cardiac
mor phology defined as o6uraemic cceofdi omyopath
fibrosis and changes in the microcirculatif@b]. Both studies basedn animal
models of renal failure and autopsy of uraemic patients have shown the presence of
reactive fibrosis (i.e. not due to tissue necrosis), which causes an increase in cardiac
mass and a reduction in the volume of the capillary circulation withen th
myocardium[86]. The pocess of fibrosis formation develops early at the onset of
renal failure[87], is associated with the HD duration, and appears to be independent

of the contemporaneous presence of hypertension and/or diabetes f8dlitus

It has been demonstrated that there are some mediators of cardiac fibrosis that
are triggered by uraemia and do not depend on both cardidecaat@nd posioad
changes. Among these mediators the ones most extensivelgdsaud oxidative
uraemic toxins, parathyroid hormone, hyperphosphataemia, and thei renin
angiotensinaldosterone system. Each of these factors act by means of specific and

complex pathways that may be related with one an¢8gr

Left atrial volume, as measured by echocardiographyrdwastlyemerged as a

predictor of death and cardiovascular event$iin patients[90, 91] beyond left
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ventricular massra systolic functionlt hasalso been shown that increased atrial
dimensions are associateith increasedAF prevalence in ESRDgpients[81, 92]

Electrolyte and volume changes during the haemodialysis session

Just before undergoing HD session, patients show extracellular volume
expansion, and Naand K overload, associated with metabolic acidosis. Plasmatic
C&* concentration, however, sias among patients. Haemodialysis treatment
achieves a correction of the electrolyte and volume alterations through mechanisms
of diffusion and/or convection, which allow the removal of electrolytes and toxins
from the blood as well as elimination of ligs.

The main purpose of therapeutic intervention by HD is restoring the right blood
volume by elimination of the excess Nand water, that has been accumulated by
the patient during the interdialytic interval. The level of ultrafiltration is constantly
adjusted to reach the patientsodé ideal
Plasmatic K concentrations increases during the interdialytic interval, mainly due
to ions leakage from the cells as compensatory mechanism for the metabolic
acidosis. The nepho | ogi st 6s <cl i ni cal concer’™n is
removal sufficient to avoid the development of hyperkalaemia before the next HD
session. Patients receive a certain amount of bicarbonates from the dialysis bath,

which is useful in thearrection of the uraemisnduced metabolic acidosis.

In conclusion, the HD scheme entails a nonphysiological condition due to the
intermittent character of the treatment and correction of the uramduaed
alterations. One single HD session causes raimoivexcess Naand water, sudden
changes in potassium levels (often associated with an increase in calcium levels),
and a complete or even excessive correction of the metabolic ad@8kisAll
these processes have important consequences on cardiovascular stability and

determine the arrhythmogenic effects of HD sessions.

P-wave and the haemodialysis session

Several investigators have studied the modifications in atrial depolanizatio
during the HD session, examining changes of tiveale on the surface ECG. The
studies present a few methodological differences, as some of them are based on 12

lead ECG registrations and others on high frequency electrocardiography recordings
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[signalaveraged ECG (SAECG)[83, H]. P-wave duration is considered an
expression of intratrial conduction velocity and its prolongation (particularly
when shown by SAECG) has been associated with a higher incidence of AF, both
paroxysmal and persistent, AF episodes after cardiac suageracute myocardial
infarction, and AF recurrences after electrical cardioverf€@6n99].

Other authors focus their attention oAvave dispersiorinstead another ECG
parameter considered to be a possible predictor of[A®]. The results of
investigations on Pwd changes HeE€lated are not univocal. Sewaérstudies,
performed both with 1-kad ECG[101, 102]and with SAECGE30, 103]show a
significant increase in Pwd at the end of tH2 session, whereas others describe no
Pwd change or even a reductid®4, 105] Two studies suggest that HD induces
an increase in Pwd only during the HD session itself and thaave return to basal
levels as soon as the patient is disconnected from the dialysis m§binel07]

As far as P wave dispersion is concerned, there is general agreement on its increase

during the posHD period,compared witlthe preHD one[101, 102]

There is difference of opinion on the variables that are associated with HD
related Pwd modifications. When looking at the electrolytes, it seems thatte
ion that is most tightly correlated with Pwd and its changes during the HD session.
An association between Pwd and plasniald<els at starf106] and end102] of
HD session has been described. Moreover, an inverse correlation betweéiDintra
plasmatic potassium changes and/&e modifications was fourjl@0, 103] Other
studies, however, did not finany relationship between levels or changes of K
plasma values and P04, 105, 107] Any possible associations betweew&ve
and other haematochemical variables (plasma concentrations’ofn@anesium,
phosphate, bicarbonate, and haemogloba)e been shown by data in literature to

be weak or absent.

Several authors have tried to reveal a relationship between the amount of liquids
removed during thélD sessior(i.e. thelevel of ultrafiltration) and the intradialytic
modifications in Pwd. Mdias [108, 109] suggests that the phemenon of
intradialytic Pwd prolongation is mediated by the alleviation of the fluid overload.
This hypothesis was confirmed both by Ozben and Shimada, who found that the
rate of removal of body fluid was an independent predictor of Pwd prolongation

duringHD [106, 107] Other authors anyway did not find any significant correlation
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between levels of intradialytic ultrafiltration and Pwd chang@8, 105] A
significant correlation has also been whobetween left atrial diameter dimension

and Pwd[30, 103] indicating an inuence of atrial dimensions on tkenduction
velocity of the electrical stimuli across the cardiac chambieallly, a significant
prolongation of basal Pwd in HD patients compared with a group of subjects with
normal renal function has been repor{@é83, 104] while preHD Pwd was not
higher in patients with ESRD comparedtiwthe control group in the study
performed by Severi et dBO0]. It should be notechowever, that in the latter study

the ESRD subjects had been on HD therapy for less than 6 months, whereas in the
other studieshis period wadonger.

As a matter of fact the duration of HD therapy has been associated with an
increase in Pwd by several authf¥83, 104, 107]In a propective study, in which
patients were followed from the start of renal replacement therapyHprewd
was already significantly increased after 1 year of treatrfiel@]. These data
suggest a role for renal replacement theragryg® in inducing an increase in the

intra-atrial conduction velocity in patients with ESRD.

Autonomous nervous system and the haemodialysis session

As discussed before, eadHD session causes a reduction in intravascular
volume, which may vary dependirg the dialysis technique used and the level of
ultrafiltration defined, according to
session may become a stimulus for the-fnessure baroreceptors, localized in the
large veins, in the pulmonary vessels, andhim right atrial and ventricular walls,
which could induce an activation of the sympathetic output, resulting in an
increased heart rafé11]. While several patients show this kind of response, other

pattens of response have been described as well.

The HD session may in fact be associated with phenomena such as hypotension
and bradycardia in a considerable proportion of cHsEY and with a reduction of
the LF and an increasd theHF component in the spectral analysis of heart rate
[113]. A reduction in heart rate has been described even in the absénce o
intradialytic hypotensive episoded14i 116]. Furthermore, hypotensiyarone
patients show a reduction in the LF/HF ratio #ated, even during thgessions

in which their haemodynamic profile is relatively stadl&7, 118]

Computational Modelling of Cardiacl&ctrophysiology: from Cell to Bedside



132 Section Ili Chapter 6

These observations mayggest that, at least in a certain proportion of patients,
the HD session is accompanied by a stimulation of the parasympathetic rather than
the sympathetic autonomic nervous system or by a displacement of the sympatho
vagal balance in favour of vagaltaity. It seems that this was the case in our
patient, in whom the LF component of HRV progressively diminished during the
phases preceding the arrhythmic episodes, with a consequent reduction in the
LF/HF ratio. Even if this concept has been challengd®, 120] LF/HF ratio is
widely accepted as a measure of cardiac sympadgal balancg121, 122] The
HF peak is generally considered to reflect cardiac parasympathetic nerve activity,
while the LF should be mostly due to the sympathetic component.

The reasons why vagal stimulation shoulduwoduring HD are not clear, but a
mechanism such as the activation of a Beziddisch reflex in response to blood
volume reduction could be hypothesized. The Bédziddsch reflex originates in
cardiac sensory receptors with rotyelinated vagal afferemqathways, principally
located in the left ventricle wall. Stimulation of these inhibitory cardiac receptors
increases parasympathetic activity and inhibits sympathetic activity. These effects
promote reflex bradycardia, vasodilation, and hypotension laaddflex can arise

from the underfilled left ventricle when the intracardiac volume decr¢éh28k

It has been described hddD has an arrhythmogenic effect. The majority of the
studies available in literature deal with the association between HD sessions and
ventricular arrhythmias[17, 124 126]. However, there areother works that
demonstrate an increase in frequency of HBrelated premature supraventricular
beats[17, 125] In our case report, the niver of premature supraventricular
impulses increased dramatically during the phases immediately pre@demuset
It is known that an increase in premature atrial impulses is present before
paroxysmal AF episodesnd this increase may have a role inggering such
episodes. The role of the autonomous nervous systemand of the vagal stimulation,

in particular, in the induction of AF in subjects without ESRD is well known.

The situation observed in our clinical case is probably not infrequent in HD
patieris. the HD session represents a uniqgue model to test in vivo, in human, the
acute effects of changes in plasma concentrations, and blood volume. It has been

known sincea long time that stimulation of the encephalic trunk shortens atrial
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refractoriness irm norhomogeneous way and that it causes the appearance of atrial
ectopic beats, both isolated anths, which magasilyinduceAF onses [127].

More recently, the existence of an 0int
heart has been taken into consideration, made up of large vessel receptors and
above all of the ganglionated plg)éP) on the epicardial surface of the atria, near
the pulmonary vein ostifl28, 129] The role of these structures is crucial in the
induction of many forms of Ovagal & par ox
that are caused by HD as Né&timulation of the GP, both pharmacologically with
mediators such as ACh and electrically, causes the appearance of focal firing from
the adjacent pulmonary veifis30i 136]. GP stimulation also reduces refractoriness
of the atrial cells, thereby rendering AF more easily inducible by premature ectopic
beats[137]. The importance of this mechanism, mediated by vagal stimulation of
the GP,in causing the onset of AF is confirmed by the fact that transcatheter
ablation of the pulmonary veins with electrical isolation turns out to be more

effective in suppressing arrhythmias if associated with GP abldti 138]

Administration of drugs that block vagal stimulation has also been shown to
suppress firing from the pulmonary veifis39], and to inhibit the appearance of
those AFs that are retatedi ¢cdO sut onwd @ u
system[140]. On the contrary, in this type of vagakdiated AF, traditional class
Ic or Il antiarrhythmic agents prove to be ineffective. Instead, these molecules have
been shown to be effective in preventing timsei of arrhythmia in models of AF
induced by repeated atrial stimulations, which allow longer periods of arrhythmia
and provoke electrophysiological changes that determine an electrical remodelling
of the atrial substratgd41].

In conclusion, thererae many similarities between 0
frequently seen in those forms which show no structural heart disease or only
O6mi nor & anatomical changes, and the Kkind
cases, the presence of vagal stimulatiprobably induces a reduction in
refractoriness and an increase in SVEBs, which act as triggers in the arrhythmia
onset [142]. The phenomenon seems to set in according to a probabilistic
mechanism: the more supraventricular premature impulses increase and atrial
refractoriness decreases, the higher becomes the chance of triggering an AF

episode.
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DISCUSSON AND CONCLUSIONS

The onset of paroxysmal AF episodes is induced by the presence of a trigger that
acts upon a favourable substrate on the background of autonomic nervous system
changes. In the described case report, all these three elements were(prggsnt
6.3). In fact, the HD session was associated with (i) an increase in SVEBSs right
before the AF onset, (i) an increase in Pwd, indicating a reduction ofaitrtah
conduction velocity, (iii) changes inxeacellular electrolyte concentrations, i.e.
increase of Cd and decrease of'Kand (iv) a reduction of the LF/HF ratio derived
from the spectral analysis of RR variability, suggesting an increase in the vagal

component of the autonomic balance.

The human atrial AP modelused to simulate patientds <co
slower depolarization phase before the AF onset, suggesting a reduction -of intra
atrial conduction velocity, together with a decrease of the ERP. These phenomena
were enhanced when addirgetactivity of KAChdependent channels to the model.

HD
session

7N\

plasma [K+] [ 11 Blood volume

| {" = 1— T

<« v ERp | +— Vagal Activation |__
I ! (Bezold-Jarisch reflex)
i

ACUTE SUBSTRATE
MODIFICATIONS ekl Uik,
I
| | |
| I
b 4

4=mm TRIGGER

—— Clinical findings —» «which leads to...»

Legend: Computational results == «confirmed by...»

Figure 6.3: Schematic diagram of the mechanisms involved in atrial onset dtutingessions. AF,
atrial fibrillation; HD, haemodialysis; CV, conduction velocity; ERP, difex refractory period;
Pwd, Rwave duration; SVEBs, supraventricular ectopic beats; LF/HF, low frequency/high
frequency ratio.
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By considering all the elements described above and relating them to data from
the literature, we can hypothesize that intradlial AF episodes may constitute a
kind of 60i n vi v enucetparbxysmal dofms dbfAE. Aw thig a |
phenomenon is not seen in all patients during HD, we must conclude that the HD
session acts as a triggering factor only in those subjects whusenacal
predisposition and characteristics of sympathgal balance may favour the onset
of arrhythmia.

If our hypothesis on the mechanism of arrhythmia triggering is correct, it would
be possible that prevalence and incidence of AF in HD patientsiginerthan
described in literature, particularly in asymptomatic patients whose arrhythmic
episodes might go unnoticed by the medical staff. It is difficult to find a way to
reduce the phenomenon. The demonstration that the slowing down of thatiiatra
conduction velocity induced by HD is inversely proportional to the extent of
changes in plasma potassium lej@d] would suggest to contain the intradialytic
shifts of this ion as much as possible, by changing potassium concentrations in the
dialysate and by trying to reduce piHb blood potassium level through diet and
use of resins. It is even more complicated to find tools to oppose any possible
increases in vagal tone related to the HD session. Theoretically, in patients suffering
from AF epsodes with the characteristics described above, transcatheter electrical
isolation of the pulmonary veins could be useful, either with or without ablation of
the GP. Anyway, before carrying out such a procedure, which undoubtedly affects
the pathophysiolagal mechanism of these forms of AF, its clinical risks and

benefits should be evaluated.
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CHAPTER 7

Pro-Arrhythmic Mechanismsand Potential
Therapeutic Targets inHuman

Hypertrophic Cardiomyopathy

The content of this chapter was partly published in:
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Late Sodium Current Inhibition Counteracts Pro-arrhythmic
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Abstract

Hypertrophic cardiomyopathy (HCM) is a genetic disorder characterised by
unexplained thickening of the left ventricle, inclglithe septum, and myofibre
disarray, and is the main cause of sudden cardiac death in young athletes. Usually
asymptomatic, it leads to diastolic dysfunction and increased arrhythmic risk.

However, due to the limited understanding of the cellular mechanism
underlying the disease, the causes are still unclear and a specific pharmacological
treatment is lacking. Potential prarrhythmic mechanisms may include increased
temporal and spatial variability in action potential duration (APD) as well as
repolarisaton abnormalities, such as early aftdepolarisations (EADS).

Recently, new experimental data assessed the electrophysiological profile of
human HCM, compared with control (CTRL): diseased cardiomyocytes are
characterised by prolonged action potential jAdhd C&*-transient (CaT), mostly
related to an increase of Late Naurrent (ka) and Ltype C&* current (kay),
together with a decrease of Kepolarising currents, and also changes in the'Ca
subsystem, i.e. decrease in SERCA punfp @atake (dp) and ryanodine receptors
ca’* release (), and increase of N@Ca'" exchanger current ().

The aim of this study has been to investigate the ionic mechanisms underlying
the electrical remodelling occurring in HCM, in order to identify potential
therapeutic targets, by using a new computational method: population of models.

Compared to traditional modelling techniques, in which a single AP model is
used to reproduce the average cellular behaviour, the population of models
approach accounts for interand intra- subjects variability. Therefore, it is
particularly appropriate to study HCM, since biological variability seems to play
an important role in this disease.

Based on this experimental dataset, we constructed two populations of human
cardiac AP mods, to reproduce CTRL and HCM phenotypes respectively, and to
account for biological variability.

We investigated in silico the contribution of each ionic mechanism to the
electrophysiological phenotype of the disease, dwaluatiy AP and CaT
biomarkers, when adding/restoring each remodelling elements, one at a time,
starting respectively from the CTRL/HCM population.

The simulated HCM phenotype was in agreement with the experimental
observations, showing prolonged AP and CaT compared to CTRL, togethemwi
increase in their variability. In addition, simulation results show that HCM
promotes EADs (16%), especially in models characterised by verylotodether
with hlgh InaL, lcaL and INex

Both selectiveNa. and cx block partially reversed the €M phenotype, and
reduced EADs occurrence. Their simultaneous block turned out to be even more
effective, suggesting the combination of both treatments as a potential anti
arrhythmic strategy in HCM.
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INTRODUCTION

Hypertrophic Cardiomyopathy

Hypertrophiccardiomyopathy (HCM) is the most common monogenic cardiac
disorder and the main cause of sudden cardiac death in young afhleteih a

reported prevalence of 1 in 500 worldwi@g.

Usually asymptomatic, it is characterised by an unexplained thickening
(hypertrophy) of the left ventricle, wi predominant involvement of the inter
ventricular septum, and sometime also of the right ventricle; other hallmark features
of the disease are myocyte disarray and fibrdsgufe 71).

CTRL HCM

Figure 7.1: Alterations in hypertrophic cardiomyopathy (HCM, right) compared to-diseased
control (CTRL, left): HCM promotes disarray and fibrosis, often resulting in hypertrophy, especially
in the left ventricle and in the intefentricular septum(white arrow), as shown on the cardiac
magnetic resonance images (modified f{@h).

Hypertrophic cardiomyopathy was defined
than 20 years ag@], when the first three disease genes to be identified were found

to encode components of the contractile apparatus of heart muscle. Mutations in
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nine genes encoding sarcomeric proteins have now been cogWnsimwn to
cause HCM. These mutations generally increase myofilament activation and result
In myocyte hypeicontractility and excessive energy use. Alterations in myocardial
energetics and in Gahandling, combined with stimulation of signalling pathway
promote myocyte growth with aberrant tissue architecture (i.e. myofibrillar disarray
and myocardial fibrosisj3]. In addition, the changes in €aandling confer a
predisposition to arrhythmig®] and may be implicated in diastolic dysfunction,

another trait of this disease.

At least two mechanisms explain how sarcomeric mutations altérb@nce
[3]. First, mutations affecting the thiflament regulatory proteins tropomyosin,
troponin T, and troponin | all enhance calcium sensitivity by increasing the affinity
of troponin C for calciunj6]: since troponin is the principal dynan@e’* buffer in
the sarcoplasm the increased affinity should elevafé [8aels during diastole.
Second, sarcomeric mutations increase the energy requirements of myosin ATPase.
Since the crosbridge cycle, which generates the contractile force of thecygo
accounts for about 70% of the cardiomyocyte ATP consumption, contractile
inefficiency could compromise the cell energefi¢s This would be expected to
compromise in turn the energgquiring transporters, e.g. NK* and SERCA

pumps, thus affecting intracellular concentrations (mainfy e C&".

More recently, new experimental data assessed the electrophysiological profile
of human HCM compared with neatiseased controls (CTRLU8], by highlighting
the subtle changes occurring at the molecular and cellular letas Wwad received

limited attention before, and are likely to play a crucial role in arrhythmias onset.

Diseased cardiomyocytes are characterised by prolonged action potential (AP)
and C&' transient (CaT), mostly depending on the increase of Lafechizent
(Ina) and L:type C&" current (ka), together with a decrease of Kepolarising
currents. N§C&* exchanger (NCX) activity is enhanced, while cellular*’ca
handling is impaired, i.e. SERCA uptake and ryanodine receptors (RyRs) release
are reducedAP prolongation leads to an increased occurrence of early after
depolarisations (EADSs), i.e. spontaneous depolarisation during the plateau phase,
often associated with t@pening of Ndor C&* channels, and considered a primary
electrophysiological triggr for ventricular arrhythmia$d]. Also, delayed after

depolarisations (DADs), occurring during the diastolic period and related to
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spontaneous Ghrelease, are more frequent in HCM thanCTRL, suggesting
additional arrhythmogenic mechanisms.

Intracellular C4&" concentration during diastole is significantly increased in
HCM, leading in turn to an enhanced?@ealmodulin kinase Il (CaMKIl) activity
and phosphorylation of its downstredargets. By slowing dowrc), inactivation
and increasingnh. amplitude, CaMKII contributes to APD prolongation and related
arrhythmias. The enhanceghl is responsible for intracellular Naverload, which
favours reverse over forward NCX mode, contiilhy to cytosolic C& overload
and further promoting CaMKII activation, thus setting up a vicious cif8le
Finally, an increased background Neurrent (kay) may contribute as well to
intracellular N& and C&" overload, as suggested for heart faillir@].

Despite its epidemiological relevance, HCM is largely an orphan condition
because it still lacks a diseasgecific pharmacological treatmdutl, 12] and this
is partly due to the limited understanding of the cellular mechanisms involved.
Therapeutic targets in HCM are likely to be most effective wlizected to the
molecular predeterminants of the HCM phenotype. As an example, the potential
implications of ks inhibition have been already shown: ranolazine at therapeutic
concentrations partially reverses the H&Zdated cellular abnormalities vigal
inhibition, with negligible effects in CTRI8]. Since many other ionic currents and
mechanisms are affected by this disease, a more detailed understanding of the
cellular processes underlying the HCM phenotype is definitely needed to highlight

other potential therapeutic targets and strategie

Computational cardiac modellingpnstitutes a valuable tool in this conteby
correlatingthe ion channel remodelling measured in human HCM cells with the
electrophysiological phengpe of the diseasan silico simulations may help to
understand th@onic mechanisms involvedt dhe cellular leveland to identify
possible therapeutic targets to reduce the arrhythmic risk in HCM patients
addition, biological variability is very high in HCM[8], andit is likely to play a
majorrole in characterising thandividual response tdrugtreatmetx thereforethe
population of models approa¢ROFs)is particularly appropriate to investigate this
disease since it accounts for variability, usually neglected in the traditional

modelling techniques
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Population of Models

The population of model{POMs) approach recently developed by the
University of Oxford (UK)[13i16], is a novel methodology in computational
cardiac AP modellinglnstead of a single AP model, repeatative of the average
cell behaviour, simulations are performed in thousands of models at the same time
(a population, indeed)all generated byarying some of the model parameters
around their nominal valueg&ach modl represents a different cell atite celtto-
cell differences account for both intemnd intra subject variability.

As an exampleFigure 72 shows different experimental APs (pink tracesl)
recorded from rabbit purkinje celldhe biologich variability, well represented
here, is neglectedvhen using a singld’urkinje AP modelto reproduce trse
experimental datae.g. theCorriasGilesRodriguez[17] (left panel, black tce),
while a population ofmodels (right paneblack tracesallows for a better coverage
of the experimental dataset

100 100

= Experimental AP data

= Simulated AP traces

membrane potential (mV)
>

membrane potential (mV)
[—]

n
=
'
n
>

-100 -100
0

200 400 0 200 400
time(ms) time(ms)

Figure 7.2: Experimental AP recordings (pink tracdsoth panelsfrom rabbit purkinje cells (data

by Jarssen Pharmaceutica). When considering only a single AP model (black trace, left panel), the
biological variability is completely neglected, while the population of modedeKltaces, right

panel) is able to better reproduce the experimental datasetifjgebétom[14]).

All the models in the population afe the same differential equations, bath
of them has dalifferent parameter seDepending on the purposd the study, the

number ofgeneratedmodels,the parameters to be varied, the scaling factors to

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside



158 Section Illi Chapter 7

apply to the nominal parameter values and thepdiag of the parameter space,
may be differentMore details about the POMs approach are gimefppendix BlL.

Aims

The aim of this work has been to investigate the electrophysiological phenotype
of human HCMusing the population of models approach, teocamt for the
biological variability. By integratng experimental data and computer simulatjons
we aimedto improve theunderstanmhg of the ionic mechanisms underlying the
electrical remodellingoccurring in this diseaseand also their individual
contribution to the dieaserelated arrhythmogenicity. The ultimate goal was
therefore to identify possible therapeutic targets and to test in simulations the
potential antiarrhythmic effects of their selective/combined block.

METHODS

Experimental Data

All the experimental data used in this work were collectedurycollaborators
from the University of FlorenceCpppini et al[8]), using human cardiomyocytes
from n=26 HCM patients, compared witm=8 nonfailing nonhypertrophic
controls (CTRL) HCM cardiomyocytes were hypertrophic, as indicated hy a

increased cell volume and capacitance compared with CTRL.

AP and CaTrecordings

Single cell patcttlamp measuremengsd intracellular C4 studies produced an
extensive set of AP and CaT biomarkers: é&dfation (APD),computed at 20%,
50% and 90% of regarisation (APD2o, APDsy and APDgo, respectively), AP
amplitude APamp), mean upstroke velocitydV/dtyean, computed as the mean
dVv/dt value during the upstroke phaseestingmembranepotential RMP), CaT
duration(CaTD),computed at 50% and 90% of Cd&cay CaTDso andCaTDg),
CaT time to peak GaTy), CaT amplitude QaTamp) and diastolic cd
concentration[Ca*]iD). A summary of all the AP and CaT biomarkeosisidered
in this studyis shown inFigure 73 and Figure 74. In addition, both early and

delayed aftedepolarisations frequencies were monitored in HCM and CTRL.
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Figure 7.3: Summary and description of the AP biomarkers considered irstinily AP duration
(APD), computed at 20%, 50% and 90% of repolarisation (APBPD;, and APQ,, respectively),
AP amplitude (AR.y), mean upstroke velocity (dW{ghn computed as the mean dV/dt value during
the upstroke ph&3, mean resting potentidRMP).

Figure 7.4: Summary and description of the CaT biomarkers considered in this &adyduration
(CaTD), computed at 50% and 90% of CaT decay (Ga&bd CaTDRg), CaT time to peak (Caj),
CaT amplitude (Cafy,) and diastolic C&* concentration [Ca’'];D).
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