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“It is a truth universally acknowledged, 

 that a single cell in possession of a good membrane,  

must be in want of a model…” 

Adapted from Pride & Prejudice,  

by Jane Austen 

  



 

  



Table of Contents                                                                                                                                 9 

 

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside 

TABLE OF CONTENTS 

 

TABLE OF CONTENTS .................................................................. 9 

SUMMARY ..................................................................................... 13 

SOMMARIO ................................................................................... 19 

INTRODUCTION........................................................................... 21 

CHAPTER 1 

Basic Concepts of the Electrical Activity of the Heart and its 

Mathematical Modelling ............................................................................... 23 

THE CARDIAC ELECTRICAL ACTIVITY .......................................... 25 

MODELLING THE CARDIAC ELECTRICAL ACTIVITY................... 31 

CHAPTER 2 

Human Ventricular Action Potential Models:  a Literature 

Review ........................................................................................................... 35 

MODELS ON THE MARKET ................................................................ 37 

MODELS COMPARISON ...................................................................... 40 

References ...................................................................................................... 47 

SECTION I 

Extracellular Calcium and Action Potential Duration: 

the Fine Balance between L-Type Calcium Current 

Inactivation Mechanisms 51 



10                                                                                                                                 Table of Contents 

 

Elisa Passini 

CHAPTER 3 

A Novel Markov Model of L-Type  Calcium Current to 

Explore  Inactivation Mechanisms ............................................................... 53 

Abstract................................................................................................... 55 

INTRODUCTION .................................................................................. 55 

METHODS ............................................................................................. 58 

RESULTS ............................................................................................... 61 

DISCUSSION AND CONCLUSIONS .................................................... 67 

CHAPTER 4 

Extracellular Electrolyte Changes  During Head-Down Bed-

Rest:  Effects on Action Potential Duration ................................................. 69 

Abstract................................................................................................... 71 

INTRODUCTION .................................................................................. 71 

METHODS ............................................................................................. 72 

RESULTS ............................................................................................... 75 

DISCUSSION AND CONCLUSIONS .................................................... 80 

References ..................................................................................................... 83 

SECTION II 

Haemodialysis Therapy Impact  on Cardiac 

Electrophysiology 87 

CHAPTER 5 

Human Atrial Cell Models to Analyse Haemodialysis-related 

Effects on Cardiac Electrophysiology: Work in Progress ........................... 89 

Abstract................................................................................................... 91 

INTRODUCTION .................................................................................. 91 

CARDIAC CELL MODELLING  AND HAEMODIALYSIS ................. 93 

ATRIAL CELL MODELLING:  MATERIALS AND 

METHODS ............................................................................................. 94 

ATRIAL CELL MODELLING:  EFFECTS OF HD-

RELATED CHANGES ......................................................................... 101 



Table of Contents                                                                                                                                 11 

 

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside 

DISCUSSION AND CONCLUSIONS .................................................. 114 

CHAPTER 6 

Recurrent Intradialytic Paroxysmal Atrial Fibrillation: 

Hypotheses on Onset Mechanisms Based on Clinical Data and 

Computational Analysis.............................................................................. 119 

Abstract ................................................................................................. 121 

INTRODUCTION ................................................................................. 121 

CASE REPORT .................................................................................... 122 

COMPUTATIONAL ANALYSIS ......................................................... 125 

INSIGHTS INTO THE MECHANISMS OF 

INTRADIALYTIC ATRIAL FIBRILLATION ..................................... 128 

DISCUSSION AND CONCLUSIONS .................................................. 134 

References ................................................................................................... 137 

SECTION III 

Computational Modelling of Human Hypertrophic 

Cardiomyopathy ........................................................................... 149 

CHAPTER 7 

Pro-Arrhythmic Mechanisms and Potential Therapeutic 

Targets in Human Hypertrophic Cardiomyopathy ................................... 151 

Abstract ................................................................................................. 153 

INTRODUCTION ................................................................................. 154 

METHODS ........................................................................................... 158 

RESULTS ............................................................................................. 166 

CONCLUSIONS ................................................................................... 195 

References ................................................................................................... 197 

GENERAL CONCLUSIONS ....................................................... 199 

APPENDIX A ................................................................................ 207 



12                                                                                                                                 Table of Contents 

 

Elisa Passini 

APPENDIX B ................................................................................ 223 

LIST OF PUBLICATIONS .......................................................... 245 

RINGRAZIAMENTI .................................................................... 247 

ACKNOWLEDGEMENTS .......................................................... 249 

 

 



Summary                                                                                                                                              13 

 

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside 

SUMMARY  

Introduction 

Heart diseases are the leading cause of death worldwide, both for men and 

women. However, the ionic mechanisms underlying many cardiac arrhythmias and 

genetic disorders are not completely understood, thus leading to a limited efficacy 

of the current available therapies and leaving many open questions for cardiac 

electrophysiologists. 

On the other hand, experimental data availability is still a great issue in this field: 

most of the experiments are performed in vitro and/or using animal models (e.g. 

rabbit, dog and mouse), even when the final aim is to better understand the 

electrical behaviour of in vivo human heart either in physiological or pathological 

conditions.  

Computational modelling constitutes a primary tool in cardiac electrophysiology: 

in silico simulations, based on the available experimental data, may help to 

understand the electrical properties of the heart and the ionic mechanisms 

underlying a specific phenomenon. Once validated, mathematical models can be 

used for making predictions and testing hypotheses, thus suggesting potential 

therapeutic targets.  

Aims 

This PhD thesis aims to apply computational cardiac modelling of human single 

cell action potential (AP) to three clinical scenarios, in order to gain new insights 

into the ionic mechanisms involved in the electrophysiological changes observed in 

vitro and/or in vivo: 

 The first context is blood electrolyte variations, which may occur in patients 

due to different pathologies and/or therapies. In particular, we focused on 

extracellular Ca
2+

 and its effect on the AP duration (APD). 
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 The second context is haemodialysis (HD) therapy: in addition to blood 

electrolyte variations, patients undergo a lot of other different changes during 

HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. 

 The third context is human hypertrophic cardiomyopathy (HCM), a genetic 

disorder characterised by an increased arrhythmic risk, and still lacking a 

specific pharmacological treatment. 

The general aim of this PhD thesis can therefore be referred to as “From Cell to 

Bedside”, meaning to correlate single cell electrophysiology with some specific 

clinical patient phenotypes, by using in silico techniques to highlight the 

mechanisms more likely contributing to them at the ionic level. 

Methods 

Many computational AP models published in literature, both atrial and 

ventricular, have been considered during this thesis. These models have been 

modified when needed, to improve their suitability to specific conditions, not 

originally taken into account during their development/validation. In particular, a 

new hybrid ventricular model has been developed, by using an existing one as basis 

and changing part of its original formulation. 

All models provide a full description of the ionic currents and intracellular 

dynamics underlying the cardiac cell AP, represented by means of ordinary 

differential equations solved by using a variable order solver, based on numerical 

differentiation formulas. The models have been implemented mostly in Matlab 

(Mathworks Inc.) and CHASTE (Cancer, Heart and Soft Tissue Environment, 

University of Oxford), an open-source software specifically developed for cardiac 

modelling and based on C
++

.  

In addition to the traditional single cell modelling techniques, the population of 

models (POMs) approach has been considered in the last Section of the thesis: 

instead of a single AP model, representative of the average cell behaviour, 

simulations have been run on thousands of models at the same time, hence 

representing the effect of biological variability. 
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Results Outline 

Here below is a summary of the main results for the three different conditions 

investigated in this PhD thesis, each one illustrated in a different Section: 

 In Section I the effects of extracellular Ca
2+

 ([Ca
2+

]o) changes on the human 

ventricular AP have been investigated: an increase of [Ca
2+

]o shortens AP and a 

decrease of [Ca
2+

]o lengthens it. Both AP duration (APD) increase and decrease 

are associated with a higher arrhythmic risk; therefore this dependence has to be 

considered in all the situations in which [Ca
2+

]o variations may occur. However, 

most of the AP models currently available in literature do not reproduce properly 

the effect of [Ca
2+

]o changes on AP. 

 In Chapter 3 a new Markov model for the L-type Ca
2+

 current has been 

proposed and integrated into the O’Hara-Rudy human ventricular AP: this 

hybrid model well simulates the inverse APD-[Ca
2+

]o dependence, not 

reproduced by the original one. Its development has been driven by the 

hypothesis that Ca
2+

-dependent inactivation is usually underestimated in AP 

models: our simulations confirmed the crucial role of this mechanism in 

determining the APD-[Ca
2+

]o relationship. Therefore, the hybrid model can be 

applied to clinical conditions in which blood electrolyte concentrations 

change overtime, to evaluate the corresponding changes at the AP level and 

potential pro-arrhythmic effects. 

 In Chapter 4, the hybrid model described in Chapter 3 has been used to 

investigate the impact of blood electrolyte changes measured during bed-rest. 

Bed-rest is a ground-based experiment used to simulate on Earth the effect of 

microgravity on the human body, thus assessing the possibly increased 

arrhythmic risk for astronauts during space flights. Simulation results in single 

cells and 1D cable were compared with ECG data analysis, providing 

evidence of a biphasic trend in repolarisation: RT intervals decrease during 

bed-rest and increase afterwards. The electrolyte concentrations have been 

used as model inputs to simulate volunteer conditions before, during, and after 

bed-rest. Simulated AP and pseudo-ECG were both in agreement with the 

recorded ECG, suggesting that electrolyte variations occurring during bed-rest 

may be responsible for the repolarisation changes, and thus correlating the 
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electrophysiological phenotype with the modification at the cellular level. This 

project has been done in collaboration with Prof. Enrico G Caiani (Department 

of Electronics, Information and Bioengineering, Politecnico di Milano, Italy) 

and the experimental data have been acquired by the European Space Agency 

(ESA). 

 Section II investigates the impact of haemodialysis (HD) therapy on the 

electrical activity of the heart, focusing on the electrolyte variations occurring 

during a regular HD session and evaluating the corresponding changes at cellular 

level. Here, human atrial AP models have been considered, since atrial 

fibrillation (AF) incidence is high in end-stage renal disease (ESRD) patients.  

 Chapter 5 presents a benchmarking of all the atrial AP models currently 

available in literature, with respect to their suitability to the HD context. All 

models have been tested for variations in cell volume, extracellular electrolyte 

(K
+
, Ca

+
 and Na

+
) and acetylcholine concentration, computing a set of AP and 

Ca
2+

-transient biomarkers to compare simulation results with the expected 

behaviour, based on literature review. Some models proved to be more 

appropriate than others for single aspects, butall of them showed some 

drawbacks. Suggestions have been given for the potential development of a 

new atrial model, expected to reproduce properly all the HD-induced effects 

on human atrial AP. 

 Chapter 6 illustrates the case study of an ESRD patient showing recurring 

paroxysmal AF during HD therapy. Experimental data, i.e. blood electrolyte 

concentrations and heart rate, have been used to reproduce in silico the patient 

pre-HD and pre-AF conditions at cellular level, using a modified version of 

the Courtemanche atrial AP model, described in Chapter 5. By integrating 

simulation results and clinical observations, we formulated a new hypothesis 

about the mechanisms involved in AF onset during HD: AF episodes are 

induced by the presence of a trigger (ectopic beats) that acts upon an acute 

substrate induced by intra-dialytic electrolyte variations, especially K
+
 

(increased AP depolarization time and shortened refractory period), on the 

background of autonomic nervous system changes. This project has been 
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done in collaborations with Simonetta Genovesi, MD and Antonio Vincenti, 

MD (Department of Health Sciences, University of Milano Bicocca, Italy).  

 In Section III (Chapter 7) the population of models (POMs) approach has 

been used to study the electrical remodelling occurring in human hypertrophic 

cardiomyopathy (HCM), in order to identify possible therapeutic targets for 

this disease. The POMs approach accounts for inter- and intra- subjects 

variability, which indeed seems to play an important role in HCM and which 

cannot be taken into account when considering a single AP model, 

representative of the average cellular behaviour.  

 As first, a control (CTRL) population of models has been built to 

reproduce an experimental dataset of AP and Ca
2+

 transient (CaT) 

biomarkers, acquired on human single cells from non-failing non-

hypertrophic controls. 

 Then, a HCM population has been developed by applying to the CTRL 

population the electrophysiological changes measured in diseased cells, 

together with a few novel hypotheses based on literature review. The 

simulated HCM biomarkers resulted to be in agreement with the 

experimental ones, and the contribution of each single electrophysiological 

change to the global HCM phenotype has been evaluated.  

 The occurrence of repolarisation abnormalities, e.g. early after-

depolarisations (EADs) and repolarisation failure (RF), has been 

investigated in the HCM population and the ionic mechanisms more likely 

to be responsible for them have been identified. 

 Since specific compounds are already available, the Late Na
+
 current (INaL) 

and the Na
+
/Ca

2+
 exchanger (INCX) have been considered as potential 

therapeutic targets. Both INaL and INCX selective blocks showed an anti-

arrhythmic effect, partially reversing the HCM phenotype and suppressing 

repolarisation abnormalities. The combination of both proved to be even 

more effective, suggesting the simultaneous block of INaL and INCX as a 

successful anti-arrhythmic therapy in human HCM. 
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 This project has been done as a visiting student in the Department of 

Computer Science, University of Oxford (UK), under the supervision of 

Prof. Blanca Rodriguez, Alfonso Bueno-Orovio, PhD and Ana Mincholé, 

PhD, and in collaboration with Raffaele Coppini, MD and Elisabetta 

Cerbai, MD (NeuroFarBa Department, University of Florence, Italy).  

To summarize, the results presented in this thesis have improved the 

understanding of the ionic mechanisms underlying electrophysiological properties 

related to arrhythmic risk in specific clinical contexts, thus confirming 

computational modelling as a valuable tool in cardiac electrophysiology, especially 

when fully integrated with experimental data. 
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SOMMARIO  

Le malattie cardiache e cardiovascolari sono ad oggi la causa principale di morte 

nel mondo. Tuttavia, i meccanismi ionici responsabili di aritmie o di altre malattie 

cardiache non sono ancora del tutto conosciuti: questo spesso porta a una minore o 

mancata efficacia delle terapie attualmente disponibili, e lascia numerose domande 

aperte per gli elettrofisiologi. Inoltre, la difficoltà di acquisizione dei dati 

sperimentali rimane ancora uno dei problemi più grandi in questo campo. Infatti la 

maggior parte dei dati vengono raccolti in vitro e/o utilizzando modelli animali 

come coniglio, ratto o cane, sebbene l’obiettivo ultimo sia quello di una più 

completa comprensione del comportamento elettrico del cuore in vivo e nell’uomo, 

in condizioni sia fisiologiche sia patologiche. 

In questo contesto, la modellistica computazionale costituisceuno strumento 

indispensabile: infatti, le simulazioni in silico permettono di superare, almeno in 

parte, i limiti sperimentali, e di investigare i meccanismi ionici alla base di specifici 

fenomeni a diversi livelli (singola cellula, tessuto, intero cuore). Una volta validati 

sui dati sperimentali, i modelli matematici possono essere dunque utilizzati per fare 

predizioni, testare ipotesi e valutare l’efficacia di eventuali interventi farmacologici.  

Lo scopo di questa tesi di dottorato è stato quello di applicare tecniche di 

modellistica matematica a problemi di elettrofisiologia cardiaca, in particolare 

utilizzando modelli di potenziale d’azione (PA) umano in tre diversi contesti: 

 Variazioni del livello di elettroliti (Na
+
, K

+
 e Ca

2+
) nel sangue, che possono 

verificarsi nei pazienti a causa di diverse patologie e/o terapie, con possibili 

conseguenze pro-aritmiche. Sono state considerate in particolare variazioni di 

Ca
2+

 e il loro effetto sulla durata del PA ventricolare, aspetto solitamente 

trascurato nei modelli a oggi disponibili. È stato sviluppato un nuovo modello di 

PA, integrando una nuova formulazione per la corrente di Ca
2+ 

in un modello già 

esistente: il modello ibrido così ottenuto costituisce uno strumento importante 

per esplorare i contesti clinici in cui le variazioni elettrolitiche possono 

verificarsi. Come esempio applicativo, sono stati analizzati dati sperimentali 
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raccolti dall’Agenzia Spaziale Europea (ESA) per valutare l’eventuale rischio 

aritmico per gli astronauti durante i voli nello spazio. Questo studio è stato svolto 

in collaborazione con il Prof. Enrico Caiani (Dipartimento di Elettronica, 

Informazione e Bioingegneria, Politecnico di Milano, Italia). 

 Variazioni elettrofisiologiche che avvengono durante la terapia dialitica. In 

questo contesto non si modificano soltanto le concentrazioni elettrolitiche ma 

anche la frequenza cardiaca, il volume cellulare e l’attività simpato-vagale. Dal 

momento che la fibrillazione atriale (FA) ha un’incidenza elevata nei pazienti in 

dialisi, sono stati considerati modelli di PA atriale, confrontando le loro 

caratteristiche e la loro applicabilità in questo contesto. Come esempio, è stato 

analizzato il caso di una paziente che presentava FA parossistica in ogni seduta 

dialitica. Questo studio è stato svolto in collaborazione con la Dott.ssa Simonetta 

Genovesi e il Dott. Antonio Vincenti, (Dipartimento di Scienze della Salute, 

Università degli Studi di Milano-Bicocca, Italia). 

 Cardiomiopatia ipertrofica (HCM), una malattia genetica caratterizzata da un 

alto rischio aritmico e causa principale di morte cardiaca improvvisa nei giovani 

adulti (<35 anni). Per tener conto della variabilità biologica, che sembra avere un 

ruolo determinante in questa patologia, soprattutto nella risposta individuale a un 

possibile trattamento farmacologico, è stato utilizzato un nuovo approccio 

computazionale: le popolazioni di modelli. Questo studio è stato svolto durante 

un periodo di ricerca all’estero presso il Dipartimento di Computer Science 

dell’Università di Oxford, sotto la supervisione della Prof. Blanca Rodriguez, il 

Dott. Alfonso Bueno-Orovio, e la Dott.ssa Ana Mincholé. 

Il filo conduttore di questa tesi può quindi essere riassunto dall’espressione 

“Dalla Cellula al Paziente”. Non a caso, in tutti gli scenari analizzati, lo scopo 

principale è stato quello di correlare i cambiamenti elettrofisiologici a livello 

cellulare con il fenotipo osservato a livello macroscopico nel paziente, per 

identificare i meccanismi ionici che vi contribuiscono e suggerire di conseguenza 

possibili approcci farmacologici. I risultati ottenuti hanno confermato l’importanza 

dei modelli matematici come supporto all’elettrofisiologia cardiaca, specialmente 

quando l’approccio in silico viene utilizzato in sinergia con quello in vitro.
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THE CARDIAC ELECTRICAL ACTIVITY 

The heart is situated slightly to the left of the middle of the thorax, underneath 

the sternum, between the lungs. It is supported inside a structure known as the 

pericardial sac, a double membrane structure containing a serous fluid to reduce 

friction during heart contractions.  

There are four major chambers in the heart: the larger, lower, thicker walled 

chambers are the ventricles, while the smaller, upper, thinner chambers are the atria. 

The bottom of the ventricles is called the apex and their top part is known as the 

base. Both the atria and the ventricles are separated into independent left and right 

halves by the septal wall. The function of the right atrium is to collect deoxygenated 

blood from the body. After contraction of the atria, this blood is passed to the right 

ventricle and pumped into the lungs (pulmonary circulation) to produce the gas 

exchange between carbon dioxide and oxygen. The re-oxygenated blood from the 

lungs is then collected in the left atrium, from where it moves to the left ventricle 

which pumps it out to the body. Since the right ventricle only pumps blood through 

the pulmonary circulation system of the lungs, whilst the left ventricle pumps blood 

to the rest of the body, the left ventricle is considerably thicker than the right. 

Mechanical contraction of the heart is caused by the electrical activation of 

myocardial cells. The electrical activation sequence (Figure 1.1, left side) of the 

human heart starts at the sinoatrial node, located in the right atrium at the superior 

vena cava. This node consists of specialized muscle cells which are self-excitatory, 

pacemaker cells, able to generate an electrical impulse at a rate of about 70 per 

minute. From the sinoatrial node, the wave of electrical activation propagates 

throughout the atria, but cannot propagate directly across the annulus of separation 

between the atria and the ventricles. The atrioventricular node, located at the 

boundary between the atria and ventricles, is the only conducting path from the atria 

to the ventricles in a normal heart. Conduction velocity through the atrioventricular 

node is considerably delayed in order to supply enough time to the atria to fill the 

ventricles with blood before the beginning of their contraction. Propagation then 

proceeds through a specialized conduction system, called the bundle of His. After a 

short distance, it separates into two bundle branches propagating along each side of 
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the septum, constituting the left and right bundle brunches. Both branches then 

continue to subdivide into a complex network of fibres called the Purkinje fibre 

network, which spreads across the endocardial surface and into the sub-endocardial 

region of both ventricles. The fast conduction through the bundle branches and 

Purkinje fibres causes the entire endocardium to be excited almost simultaneously, 

although apical regions contract first and the basal regions are usually the latest to 

be excited. 

 

Figure 1.1: Electrophysiology of the heart. The different action potentials for each of the specialized 

cells found in the heart, and their contribution to the total electrocardiogram waveform are shown 
(modified from [1]). 

Cardiac Action Potential and ECG 

Cardiac muscle cells or myocytes are approximately flattened tubes, about 80-

100 μm long in human ventricular tissue, with elliptic cross sections with a major 

axis of 10-20 μm. They are arranged in discrete layers of fibres called sheets, 

roughly parallel to the heart surfaces (epicardium and endocardium), with the fibre 

axis continuously rotating counter clockwise from epicardium to endocardium in a 

range of 100°-120° as viewed from the top of epicardium. Each cardiac muscle cell 
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is bounded by a thin (5-7 nm) phospholipid membrane or sarcolemma. This 

membrane encapsulates a small volume that is known as the intracellular space, 

whereas the extracellular or interstitial space is therefore defined as the space that 

lies outside the sarcolemma. The membrane is heterogeneous, with numerous large, 

complex proteins embedded within it, combined to form small pores in the cell 

membrane. Under most circumstances these pores are selectively permeable, 

allowing the pass of only specific ions through the membrane and only under 

certain conditions, reason why they are commonly called ion channels. 

The main ions that are of interest in cardiac electrophysiology are Na
+
, K

+
, Ca

2+
 

and Cl
−
. At resting, the intracellular and extracellular concentrations of each ion are 

substantially different. In principle, this difference on concentrations would produce 

a chemical force that would make ions to flow down their concentration gradient to 

create a uniform distribution at both sides of the membrane. Nevertheless, different 

ionic concentrations also imply a net electrical charge difference between both sides 

of the membrane, what causes the establishment of an electrical gradient that acts to 

oppose the chemical gradient, thus allowing intra- and extracellular concentrations 

to be different. Consequently, at rest the cell membrane maintains a net membrane 

potential, which for cardiac muscle cells generally is between -90 and -80 mV, and 

the cell membrane is said to be in a polarized state.  

However, under electrical excitation of the cell this electrochemical equilibrium 

is broken: this allows ions to flow through those ion channels to which they are 

permeable, if opened. Any positive increase of the transmembrane potential towards 

zero is therefore known as depolarization, while the term repolarization refers to the 

returning of the cell to its negative resting state.  

Small perturbations in the potential difference across the cell membrane produce 

only a passive, linear response of the cardiac cell, followed by the returning of the 

transmembrane potential towards its resting state. On the contrary, when a 

sufficiently large stimulus is applied (i.e. able to rise the transmembrane potential 

above the threshold potential), an active, non-linear response, known as the action 

potential (AP) will be elicited.  

Depending on the region of the heart, the cardiac AP may have different shapes 

and properties (Figure 1.1, right side): all these differences, together with the 
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particular activation sequence described above, are responsible for the 

macroscopical electrical activity of the heart, as measured in the electrocardiogram 

(ECG). In a conventional 12 lead ECG, ten electrodes are placed on the patient's 

limbs and on the surface of the chest. The overall magnitude of the heart's electrical 

potential is then measured from twelve different angles and recorded over a period 

of time. In this way, the overall magnitude and direction of the heart's electrical 

depolarization is captured at each moment throughout the cardiac cycle. The graph 

of voltage versus time produced by this non-invasive medical procedure, and 

referred to as ECG, is characterised mainly by 3 waves: a P wave (atrial 

depolarization), a QRS complex (ventricular depolarization) and a T wave 

(ventricular repolarization). 

Despite these differences in shape and properties, the cardiac AP it is mainly 

characterised by 5 different phases, related to the opening/closing of the different 

ion channels (mainly Na
+
, Ca

2+
 and K

+
), as shown in Figure 1.2: 

 Phase 0 (upstroke) when the threshold is reached, there is a rapid influx of Na
+ 

through the Na
+
 channels, creating the fast Na

+
 current (INa) who rise the 

membrane potential up to positive values. 

 Phase 1: the Na
+
 channels close, while K

+
 channels open. Throughout the whole 

action potential duration there are different K
+
 currents that tend to bring the 

transmembrane potential back to its resting value. In this phase, the main 

contribution is the one of the transient outward K
+
 current, which causes a small 

deflection in the membrane voltage, called “notch”. 

 Phase 2: the outward K
+
 currents are counteracted by the opening of Ca

2+
 

channels, responsible for the “plateau phase”, in which the membrane potential 

decreases very slightly. The duration of this phase may vary from one cell to the 

other, e.g. it is very short in atrial cells and longer in ventricular ones. 

 Phase 3: when the Ca
2+

 channels close, the “rapid” and “slow” delayed rectifier 

K
+
 currents (IKr and IKs respectively) play the major role, bringing the 

transmembrane potential back to its resting value. 

 Phase 4: the cell is in its resting state; the resting membrane potential is 

depending mostly on the inward rectifying K
+
 current (IK1). 
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Figure 1.2: Representative action potential trace of a human ventricular endocardial cell. 

Different cell types may have different ionic currents and formulations, causing 

the differences in shapes, e.g. ventricular vs atrial cells. An example is given in 

Figure 1.3, by comparing atrial and ventricular cells. 

 

Figure 1.3: Main differences between atrial (left) and ventricular (right) action potentials, with the 

underlying ionic currents (modified from  [2]). 
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Arrhythmias and pro-arrhythmic mechanisms 

Sudden Cardiac Death (SCD) is a sudden, unexpected loss of heart function: the 

heart stops beating and blood stops flowing to the brain and other vital organs, 

causing death if not treated within minutes. Most SCD are caused by abnormal 

heart rhythms, called arrhythmias, in which heart beat is too fast, too slow or 

irregular: they are due to problems with the electrical conduction of the heart.  

There are different types of arrhythmias: extra beats, either atrial or ventricular, 

supraventricular tachycardia, which include atrial flutter and atrial fibrillation, 

ventricular arrhythmias, i.e. ventricular tachycardia or fibrillation, and brady-

arrhythmias. Most arrhythmias can be effectively treated, by medications or 

medical procedures, such as a pacemaker and surgery. 

There are many pro-arrhythmic mechanisms which make the heart more 

vulnerable to arrhythmias. As an example, in Figure 1.4 and Figure 1.5 APD 

alternans and after-depolarisations (early, EADs and delayed DADs) are shown. 

 

Figure 1.4: Cardiac action potential traces showing APD alternans, i.e. a beat to beat variability in 

the AP duration (modified from [3]).  

 

Figure 1.5: Cardiac AP illustrating EAD and DAD mechanisms (modified from [4]).  
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MODELLING THE CARDIAC ELECTRICAL 

ACTIVITY 

Equivalent Electric Circuit of the Membrane 

The action potential (AP) represents a transient change of the transmembrane 

voltage of the cell, and it is the result of all the ionic currents (mostly Na
+
, K

+
 and 

Ca
2+

) flowing across the membrane. Considering the equivalent electric circuit, the 

membrane itself can be represented by a dielectric, with a capacitance of about 

1µF/cm
2
, and each ionic current can be represented by a resistor (Figure 1.6). 

 
Figure 1.6: Equivalent electric circuit of cell membrane. 

 
The action potential of a single cell can be then reconstructed by solving the 

following differential equation, where Vm represents the transmembrane voltage, Cm 

the capacitance of the cell and Itot the total current flowing, consisting of the sum of 

all the different ionic currents (Iion) and the stimuls current (IStim), required from the 

cell to reach the voltage threshold, thus developing a full action potential.
 

 
𝐼𝑡𝑜𝑡 = 𝐼𝑖𝑜𝑛 + 𝐼𝑆𝑡𝑖𝑚 =  𝐶𝑚 ∙

𝑑𝑉𝑚

𝑑𝑡
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The Hodgkin and Huxley formalism 

The first AP mathematical model was developed by Alan Lloyd Hodgkin and 

Andrew Huxley, in 1952 [5], to explain the ionic mechanisms underlying the 

initiation and propagation of neural APs in the squid giant axon. In 1963, they 

received the Nobel Prize in Physiology or Medicine. 

The Hodgkin-Huxley model was developed by performing a series of voltage 

clamp experiments on giant squid axons, i.e. holding the membrane to a constant 

voltage value, and measuring the corresponding current flow. 

They identified three different contributions to the total current: 

- Na
+
 current 

- K
+
 current 

- Leakage current (carried by unspecified ions) 

The leakage current was formulated simply as a maximal conductance times the 

corresponding driving force, while Na
+
 and K

+
 current formulations included also a 

voltage-dependent gating mechanism, regulating the channel opening/closing. 

 

 

 

Here, gNa = 120, gK = 36 and gL = 0.3 (mS/cm
2
) are the maximal conductances 

associated with the Na
+
, K

+
 and leakage currents, respectively. ENa = 115, EK = −12 

and EL = 10.613 (mV) are the reversal potentials of each ion, according to the 

Nernst equation and relative to the resting membrane potential. Gating variables m, 

h and n are voltage dependent and their values (always between 0 and 1) describe 

the probability for the channel to be in an open state. When their value is 0 the gate 

is completely close and no current will flow, whereas when the value is 1 the gate is 

completely open. The leakage current does not have any gating mechanisms, the K
+
 

current has only a gating variable, while the Na
+
 current has two of them: therefore, 

𝐼𝑁𝑎 =  𝑔𝑁𝑎 ∙ 𝑚3 ∙ ℎ ∙ (𝑉𝑚 − 𝑉𝑁𝑎) 

𝐼𝐾 =  𝑔𝐾 ∙ 𝑛4 ∙ (𝑉𝑚 − 𝑉𝐾) 

𝐼𝐿 =  𝑔𝐿 ∙ (𝑉𝑚 − 𝑉𝐿) 
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the state of the Na
+
 gate relies on the product of both gating variable, and only when 

they are both equal to 1 the gate is completely open. 

Each gating variable is described by a differential equation: 

 

Here, αn and βn are known as rates and are usually voltage-dependent. Figure 1.7 

shows the action potential generated by the Hodgkin-Huxley model, again relative 

to the resting membrane potential, and the three gating variable traces over time. 

 

Figure 1.7: Transmembrane potential generated by the Hodgkin and Huxley model 

(left panel) and the corresponding gating variables over time (right panel). 

From Hodgkin-Huxley to Cardiac Models 

Starting from Hodgkin and Huxley, AP mathematical models have gained a 

relevant role in the investigation of cellular electrophysiology. Their possible 

application to the heart has been soon realized and right from the beginning, cardiac 

cell modelling allowed to gain insights by predicting phenomena which have been 

later confirmed experimentally. 

The earliest example consists in the pioneering work by Noble, who modified the 

Hodgking-Huxley model to simulate Purkinje fibres in mammals, identifying the 

energy-saving properties of the inward rectifier potassium current [6]. 

Due to the limited availability of human cardiomyocytes for experimental 

research, most electrophysiological models had been formulated for animals 

(mouse, guinea pig, rabbit, dog, etc.). However, animal and human cardiomyocytes 

𝑑𝑛 

𝑑𝑡
= 𝛼𝑛 ∙ (1 − 𝑛) − 𝛽𝑛 ∙ 𝑛 



34                                                                                                                     Introduction – Chapter 1 

Elisa Passini 

differ in major aspects, such as action potential shape and duration, range of normal 

heart rates, action potential restitution and relative importance of ionic currents in 

the action potential generation. As all these factors may influence the mechanism of 

arrhythmias initiation and dynamics, simulation results obtained with animal 

models may prove inadequate to represent phenomena observed in human. 

In recent years, more and more data on human ionic currents have been gathered 

from human cardiomyocytes. In addition, by cloning techniques voltage-clamp 

measurements of human ion channels have been acquired in heterologous cells. As 

a consequence, new several models have been developed to describe the origins of 

the human cardiac action potential, an important step towards a wider application in 

clinical practice. 

In 2012, two comprehensive reviews of human atrial models have been 

published, [7, 8], comparing the different structure and ionic current formulations, 

and discussing the differences in AP and Ca
2+

 transient biomarkers. 

As for ventricular cells, there is not any comprehensive review which includes 

the most recently published AP models. Therefore, in the next chapter we present a 

literature review of the current state of the art in human ventricular AP models. 
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MODELS ON THE MARKET  

Human ventricular cells modelling has begun in 1998 with a study by Priebe and 

Beuckelmann [9] (PB98), aimed at understanding the effects of electrophysiological 

alterations in heart failure. They used the Luo–Rudy model of guinea pig 

ventricular myocytes [10] as basis, parameterized anew with available human data, 

measured in normal and diseased myocytes. 

The PB98 model has been the only one available until 2004, when two further 

models of human ventricular cells were introduced by Iyer et al. [11] 

(IW04) and Ten Tusscher et al. [12] (TP04). Both these models provide a more 

detailed description of ionic currents and fluxes, which reflects new insights in 

channel function understanding as well as the availability of new measurements 

from human cells and channels. The IW04 model describes the electrophysiology of 

sub-epicardial cells (Epi), applying Markovian models for most channels: however, 

this choice lead to a significant increase in complexity and hence computational 

time required for simulation. In contrast, the TP04 model uses the common 

Hodgkin-Huxley formulation for all currents, and in addition to Epi also considers 

sub-endocardial (Endo) and Midwall (M) cells. A comprehensive comparison of 

PB98, TP04 and IW04 models, including ion currents, action potential morphology 

and duration, rate adaptation and other properties, has been performed by Ten 

Tusscher et al. [13]. A revisited version of TP04 has been published by the same 

group in 2006 [14] (TP06), including more details on intracellular Ca
2+

-handling 

and cell compartmentalisation.  

Two years later, Bueno-Orovio et al. [15] performed a new comparison of these 

models, proposing at the same time a minimal ventricular human model, 

specifically designed to reproduce tissue-level characteristics. An additional 

comparison of the IW04 and TP04 models as been performed by Niederer et al. 

[16], highlighting their significant differences in terms of voltage, ionic currents and 

concentrations during an action potential, although both models aim to represent the 

same physiological system. These differences can be partially explained by the 

different experimental data which have been used to characterise them. 
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More recently (2010), a model of human ventricular AP has been proposed by 

Grandi et al. [17] (GB10), using the rabbit model proposed by Shannon et al. [18] 

as basis, and including new formulations of ionic current densities and kinetics, 

according to novel human experimental data. With respect to the TP06 model, the 

GB10 shows a better steady-state AP response to frequency changes and to 

potassium current blockades. However, the GB10 model does not properly 

reproduce S1S2 restitution properties nor APD rate adaptation dynamics, as reported 

by Carro et al. [19]. Those drawbacks probably have been acquired from the rabbit 

model used as basis, since S1S2 restitution and APD rate adaptation are notably 

different in rabbit with respect to human. Indeed, in a recent review the GB10 

model  has been even referred to as a rearrangement of a rabbit model rather than a 

real new human model [20].  In 2011, Carro et al. [19] developed a refinement of 

the GB10 model (CP11), to rectify these drawbacks. In particular, they 

reformulated the L-type calcium current dynamics, in order to accurately reproduce 

S1S2 restitution and APD rate adaptation. 

The most recent model of human ventricular cell has been proposed by O’Hara 

et al. [21] (OR11) in 2011. This model was developed and validated by using an 

extensive dataset, including many previously unpublished experimental data, from 

more than 100 undiseased human hearts. Due to the extensive validation on these 

new data, the authors claimed to have substantially increased human specific model 

accuracy: in fact, the model was shown to reproduce several physiological 

behaviours and drug blocks. Moreover, the effects of Ca
2+

/Calmodulin-dependent 

protein kinase II (CaMKII) were incorporated as well.  

In Table 2.1 the published models of human ventricular electrophysiology 

available in literature are listed, together with a non-exhaustive reference to their 

extensions and/or refinements. Indeed, cardiac computational modelling has 

reached the stage in which many of the more recent works are focused on ‘fixing’ 

problems in previous models, as soon as new and better data become available and 

modellers discover possible applications for which the published models are not 

well-suited [20]. We chose to neglect minimal/reduced models, in which a single 

mathematical process represents multiple channel properties, since they have been 

developed mainly for multicellular simulations, while in this thesis we are mostly 

using single cells.  
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Table 2.1: Computational models of human ventricular cell electrophysiology. 

Model 
Model 

extensions 

Cell 

types 
Citations 
Scopus 2014 

Comments 
Ref 

# 

Priebe & 

Beuckelmann 

(PB98) 1998 

 n.s. 244 

First human model, but 

largely based on animal 

data. Formulations for 

normal and failing hearts.  

 [9] 

 
Seemann et al. 

2003 

Endo, 

M, Epi 
19 

Focus on regional 

heterogeneity 
 [22] 

Iyer et al. 

(IW04) 2004 
 Epi 130 

Joint first human models 

prevalently based on 

human data.  

 [11] 

Ten Tusscher et 

al. (TP04) 2004 
 

Endo, 

M, Epi 
477  [12] 

 

Ten Tusscher 

et al. (TP06) 

2006 

Endo, 

M, Epi 
217 

More detail on 

intracellular calcium 

handling 

 [14] 

 
Fink et al. 

2008 
Epi 40 

From TP06, new 

formulations for IK1 and 

HERG, 

 [23] 

 
Grandi et al. 

2009 

Endo, 

M, Epi 
17 

From TNNP04, new ICaL 

formulation to reproduce  

APD shortening with 

increased [Ca]o 

 [24] 

      

Grandi et al.  

(GB10) 2010 
 

Endo, 

Epi 
90 From Shannon et al. 2004.  [17] 

 
Carro et al. 

2011 

Endo, 

Epi 
11 

From Grandi et al. 2010 

to study arrhythmias 
 [19] 

O’Hara et al. 

(OR11) 2011 
 

Endo, 

M, Epi 
96 

Substantially increased 

human-specific model 

accuracy from human data 

 [21] 
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Upon consideration of all these models, a legitimate question could be: “Why so 

many different models of the same human ventricular cell? Which one is the best?”. 

Unfortunately, the answer is not a simple one. In fact, each model has to be 

evaluated in its specific context, i.e. the experimental data which have been 

considered for its parameters identification and validation. Therefore, all the listed 

models (even the oldest ones) may have their advantages as well as their 

limitations, depending on the applications taken into account; i.e. a particular model 

may reproduce correctly the effects of a specific currents blockade, but it may be 

unsuitable for rate dependence analysis.  

As an example, it is worth noting that the model with more citations in literature 

(based on Scopus Data, updated 31/12/2014) is TT04: in fact, even if quite old, this 

model is still widely used, especially for multidimensional simulations, because it is 

relatively good in variety of context and computationally much more efficient than 

its updated version (TT06) or the most recent models, as OR11 or GB10, which 

includes a very detailed description of intracellular processes and compartments. 

MODELS COMPARISON 

Among all the models included in Table 2.1, we chose to compare the 6 ones 

which have been more widely used: PB98, IW04, TT04, TT06, GB10 and OR11. 

Action Potential Properties 

All the considered models have been implemented in Matlab (Mathworks, Inc) 

and paced at 1 Hz until steady state (500 s), i.e. intracellular concentrations (Na
+
, 

Ca
2+

 and K
+
) stable over time. The current stimulus has been set to 2 ms of 

duration, with amplitude equal to twice the AP threshold for each model. Since 

PB89 and IW04 don’t reproduce different cell types, and their AP shape is similar 

to epicardial cells, we considered Epi cells only for all the models. 

Simulated AP traces are shown in Figure 2.1Errore. L'origine riferimento non 

è stata trovata.. Each model has been represented using a different colour, but all 

the other model traces are shown in grey, to facilitate comparison. The high 

variability of AP shapes and duration among the models is mostly dependent on the 

different data used to construct them. In fact, after fitting the model parameters on 
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voltage-clamp data, current conductances are often “manually” adjusted to fit the 

AP data available.  

For each model a set of AP biomarkers has been evaluated: the results are 

compared in Table 2.2 together with the time required for the simulations. 

 

Figure 2.1: Simulated AP traces for the six considered models. 

Table 2.2: AP biomarkers comparison for the six considered models 

 
PB98 IW04 TP04 TP06 GB10 OR11  

RMP (mV) -89.8 -90.7 -86.3 -86.0 -81.4 -87.9 

AP peak (mV) 61.0 31.7 42.1 44.1 42.6 33.6 

dV/dtMAX (V/s) 422 210 355 365 384 205 

APD50 (ms) 298 278 232 268 232 184 

APD90 (ms) 418 319 266 299 287 229 

nODEs - 22 67 17 19 39 55 

tSIM (n.u.) 1.18 4.36 1.00 1.04 1.83 2.42 

RMP: resting membrane potential; AP peak: max AP voltage; dV/dtMAX: max upstroke velocity; 

APD50 and APD90: AP duration, computed at 50% and 90% of repolarization; nODEs: number of 

ordinary differential equations in the model; tSIM: time required to compute 500 s, normalised 

according to the fastest model. 
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As expected, the computational time is highly dependent on the number of 

differential equations: it is therefore very easy to understand why TT04 is still one 

of the most used human ventricular AP model, even if not very recent. At the same 

time, it is obvious how the large number of Markovian current models in IW04 

affect its computational performances. 

Intracellular Compartments 

Intracellular compartments and Ca
2+

 release from the sarcoplasmic reticulum 

(SR) were first introduced in cardiac models by DiFrancesco and Noble [25]: 

indeed, their Purkinje cell model described intracellular Ca
2+

 dynamics in details, 

by including separate pools for cytosolic, non-junctional SR (NSR) and junctional 

SR (JSR) Ca
2+

 concentrations. Later on, it has been acknowledged that both the 

cellular and sub-cellular structure considerably shape the temporal evolution of 

Ca
2+ 

concentration profiles.  

However, model design in terms cellular compartmentalisation may be very 

different from one model to the other. Within human ventricular models, structure 

ranges from the simplest approach, as in TP04 (cytosol and SR only), to the most 

complex models with many different sub-compartments (cytosol, junctional space, 

sub-sarcolemma, NSR and JSR). In addition, most of the models also include 

different Ca
2+

 buffers for each compartment, especially the most recent ones, i.e. 

GB10 and OR11.  

Table 2.3 shows the main structural properties of the considered human 

ventricular models, e.g. the number and size of intracellular compartments and the 

corresponding Ca
2+

 buffers. 

The main challenge of the compartmental approach is the lack of corresponding 

distinct anatomical structures inside the cell. Thus, there is not a straightforward 

way of choosing the appropriate compartmentalization. This also explains the great 

variability among the different models.  
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Table 2.3: Main properties of the considered human ventricular AP models. 

 

PB98 IW04 TP04 TP06 GB10 OR11 

Cell 

Volumes 

(pL) 

CYTO 

25.85 

25.84 

16.40 

16.40 

21.45 

25.85 

SL 0.66 

JS 0.0012 0.0547 0.0178 0.7603 

SR 

NSR 2.10 2.10 

1.09 1.09 1.16 

2.10 

JSR 0.18 0.16 0.18 

TOT 28.13 28.10 17.50 17.55 23.29 28.89 

Calcium 

Buffers 

(mM) 

CYTO 

CMDN 0.05 0.05 

0.15 

0.20 

0.02 0.05 

TRPN low 

0.07 

0.07 0.07 

0.07 

TRPN high 0.14 0.14 

JS 

BSR - - 

0.40 

0.02 0.05 

BSL low 

- - 

0.13 

1.12 

BSL high 0.05 

SR CSQN 10 15 10 10 2.6 10 

The six compartments refer to: bulk myoplasm (cytosol, CYTO); network SR (NSR); junctional SR 

(JSR); junctional space (JS); sub-sarcolemmal space (SSL). The Ca2+ buffers are: Calmodulin 

(CMDN), Troponin (TRPN), Calsequestrin (CSQN), SR Ca2+ buffers (BSR); junctional and 

sarcolemmal Ca2+ buffers (BSL). 

Extracellular and Intracellular Concentrations 

Extracellular ionic concentrations are quite similar in all the considered models, 

since they are the ones used for experimental recordings in single cells, often done 

in standard conditions. As for intracellular ionic concentrations, the differences 

between models are higher, especially when considering Ca
2+

 concentrations in the 

different compartments. A summary of the extra- and intra- cellular concentrations 

for every model is shown in Table 2.4: . Extracellular concentrations are constant in 

the models, while for intracellular concentrations the reported values are the 

diastolic ones, after pacing the models for 500 s at 1 Hz. 
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It is worth noticing that the GB10 model is the only one including Cl
-
 

concentrations, together with the Ca
2+

 activated Cl
-
 current and a background Cl

-
 

current. We ran a few simulations blocking this current, and actually its effect on 

the AP is quite negligible, at least in physiological conditions. In addition, in GB10 

both intracellular K
+
 and Cl

-
 are clamped to constant values. 

Table 2.4: Extracellular and intracellular ionic concentrations for the considered models. 

 
PB98 IW04 TP04 TP06 GB10 OR11 

Extracellular 

Concentrations 

[Na
+
]o (mM) 138 138 140 140 140 140 

[K
+
]o (mM) 4.0 4.0 5.4 5.4 5.4 5.4 

[Ca
2+

]o (mM) 2.0 2.0 2.0 2.0 1.8 1.8 

[Cl
-
]o (mM) - - - - 150 - 

Intracellular 

Concentrations 

[Na
+
]i (mM) 10.6 9.8 11.6 10.4 8.4 7 

[K
+
]i (mM) 140 125 140 140 120* 144 

[Ca
2+

]i (nM) 

200 
86 

200 
130 

87 
85 

[Ca
2+

]SL (nM) 100 

[Ca
2+

]JS (nM) 140 360 200 85 

[Ca
2+

]SR (mM) 2.5 0.3 0.2 3.7 0.6 1.6 

[Cl
-
]i (mM) - - - - 15* - 

[Y]o: extracellular concentration for Y; [Y]i: intracellular concentration for Y; SL: 

sarcolemmal space; JS: junctional space; SR: sarcoplasmic reticulum. 

* in GB10, [K
+
]i and [Cl

-
] i are clamped to constant values. 

Membrane Ionic Currents and Ca
2+

 subsystem 

The main ionic currents are presents in all the considered models: INa, ICaL, Ito, 

IK1, IKr, IKs, Na
+
/K

+
 pump (INaK) and Na

+
/Ca

2+
 exchanger (INCX). However, there are 

a few differences in the small currents (e.g. background ones), and in Ca
2+

 related 

channels/pumps distribution. To avoid unnecessary complexity, we will focus on 

the differences between the three most recent models: TP06, GB10 and OR11. 

A summary of ionic currents distribution is shown in Table 2.5, together with the 

corresponding intracellular compartments in which they are distributed. As for ionic 

fluxes, the two connected compartments for each of them are shown. 
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Table 2.5: Ionic currents and fluxes with the corresponding intracellular compartments for 

the six considered human ventricular AP models. 

 PB90 IW04 TT04 TT06 GB10 OR11 

Na
+
 currents 

INa CYTO CYTO CYTO CYTO 
11% JS 
89% SL 

CYTO 

INaL - - - - - CYTO 

ICaNa - - - - 
90% JS 
10% SL 

JS 

INaB CYTO CYTO CYTO CYTO 
11% JS 
89% SL 

CYTO 

Ca
2+

 currents 
ICaL CYTO CYTO CYTO JS 

90% JS 

10% SL 
JS 

ICab CYTO CYTO CYTO CYTO 
11% JS 
89% SL 

CYTO 

K
+
 currents 

Ito CYTO CYTO CYTO CYTO CYTO CYTO 

IK1 CYTO CYTO CYTO CYTO CYTO CYTO 

IKr CYTO CYTO CYTO CYTO CYTO CYTO 

IKs CYTO CYTO CYTO CYTO CYTO CYTO 

ICaK - CYTO - - 
90% JS 

10% SL 
JS 

IKp - - CYTO CYTO 
11% JS 
89% SL 

CYTO 

Cl
-
 currents 

IClB - - - - CYTO - 

IClCa - - - - 
11% JS 
89% SL 

- 

Pumps and 

Exchangers 

INaK CYTO CYTO CYTO CYTO 
11% JS 
89% SL 

CYTO 

INCX CYTO CYTO CYTO CYTO 
11% JS 
89% SL 

20% JS 
89% 

CYTO 

IpCa - CYTO CYTO CYTO 
11% JS 
89% SL 

CYTO 

SR 

Fluxes 

Jrel 
JSR <-> 
CYTO 

JSR <-> 
JS 

SR -> 
CYTO 

SR <-> 
JS 

JSR  
<-> JS 

JSR -> JS 

Jleak 
NSR -> 

CYTO 
- 

SR <-> 

CYTO 

SR <-> 

CYTO 

JSR  

<-> JS 

NSR -> 

CYTO 

Jup 
CYTO  
-> NSR 

CYTO  
<-> NSR 

CYTO  
-> SR 

CYTO  
-> SR 

CYTO  
<-> SR 

CYTO  
-> NSR 

Jtr 
NSR <-> 

JSR 
NSR <-> 

JSR 
- - - 

NSR <-> 
JSR 

Intracellular 

Fluxes 

JdiffCa - 
CYTO  

˂-˃ JS 
- 

CYTO  

˂-˃ JS 

CYTO/SL 

SL/JS 

CYTO  

˂-˃ JS 

JdiffNa - - - - 
CYTO/SL 

SL/JS 
CYTO  
˂-˃ JS 

JdiffK - - - - - 
CYTO 
˂-˃ JS 

As an example, in TP06 and OR11, all the ICaL actually flows into the JS. Even if 

it is well know that most of the L-type Ca channels are located in the junctional 

portion of the membrane, this seems to be a rather extreme choice. More 

realistically in GB10, based on rat data [26], 90% of the channels are located in the 

JS membrane and the remaining 10% in the cytoplasm.  

Another difference is in the INCX distribution. It is still not completely clear if 

Na
+
/Ca

2+
 exchanger proteins are located preferentially in T-tubules [27] or have a 
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more uniform distribution in the ventricular sarcolemma [28]. In GB10 the INCX 

channels are distributed evenly throughout the cell membrane (89% in the SL, 11% 

in the JS), while in OR11 the fraction located in the JS is slightly higher (20%). 

O’Hara et al. indicated this choice as necessary in order to correctly reproduce the 

rate dependence of intracellular Ca
2+

 peak [21]. It is worth noticing that all the ionic 

currents were considered uniformly distributed throughout the cell membrane in the 

GB10 model (89% in the SL, 11% in the JS), as suggested e.g. for INaK in 

mammalian cardiomyocytes [29]. On the contrary, they were considered absent 

from JS membrane in TP06 and OR11. 

A visual comparison of TT06, GB10 and OR11, showing all the ionic currents, 

fluxes and compartments for this three models, is given in Figure 2.2. 

 
Figure 2.2: Visual comparison of the three most recent human ventricular model properties, in 

particular showing the distribution of each ionic current on the cell, and the ions diffusion (credit: 

Caterina Passini). 

It is worth noticing that, after this literature review has been completed (2013), a 

new mathematical model have been published for human ventricular cells by 

Asakura-Noma [30], as well as a new paper comparing the behaviour of some of the 

human ventricular models considered here in tissue, by Elshrif and Cherry [31]. 
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Abstract 

Extracellular calcium concentration ([Ca
2+

]o) affects cardiac action potential 

(AP): their inverse dependence has already been assessed in vivo and in vitro. 

Both shortening and prolongation of AP are associated with an increased risk of 

arrhythmias and [Ca
2+

]o variations may occur in many different contexts (e.g. 

pathological hypo/hyper-calcaemia, haemodialysis therapy, bed-rest experiments). 

Computational modeling could provide a useful support to investigate this 

phenomenon: however, [Ca
2+

]o dependence is not reproduced properly by most of 

the commonly used human AP models 

The aim of this study has been to modify one of the most recent human 

ventricular cell model in order to improve its response to [Ca
2+

]o changes. 

The original L-Type Ca
2+

 current formulation has been replaced by a new 

Markov model with 8 states and a cubical structure. The inverse dependence of 

APD vs [Ca
2+

]o has been achieved mainly by strengthening the Ca
2+

-dependent 

inactivation mechanism (CDI), with respect to the Voltage-dependent one (VDI), 

thus confirming that CDI plays an importan role in this context. 

The modified model has been validated against the same experimental data used 

for the original one, in order to verify its consistency, and it can then be used to 

explore “in silico” the effects of electrolyte unbalances on the electrical activity of 

human cardiomyocytes. 

INTRODUCTION 

It is well know that extracellular calcium concentration ([Ca
2+

]o) affects cardiac 

action potential (AP): in fact, an increase of [Ca
2+

]o shortens AP while [Ca
2+

]o 

decrease lengthens it, as observed in different species [1–5], e.g. guinea pig (Figure 

3.1, panel A), and human atrial cell [6] (Figure 3.1, panel B). More recently, new 

experimental data acquired in human ventricular cells confirmed this dependence 

[7] (Figure 3.1, panel C). Finally, when considering consistency between action 

potential duration (APD) changes and corrected QT interval (QTc), further 

confirming data can be found in the literature, e.g. [8] (Figure 3.1, panel D). 

Since both APD increase and decrease may lead to arrhythmia onset, [Ca
2+

]o 

dependency of repolarization may have important implications in all clinical 

contexts where electrolyte changes occur, e.g. haemodialysis therapy (HD), 

pathological hypo/hypercalcemia, head-down bed-rest experiments, etc.  
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Figure 3.1: Experimental Data from literature showing the inverse dependence of APD vs [Ca2+]o: 

A) guinea pig ventricular cells (modified from [2]); B) human atrial cells (modified from [6]); C) 

human atrial cells (modified from [7]); D) QTc interval vs [Ca2+]o variations measured in different 

patients during Heamodialysis theraphy (modified from [8]). 

From earlier studies [9], L-type Ca
2+

 current (ICaL) seems the one mostly 

responsible for the APD-[Ca
2+

]o dependence. Two contrasting mechanisms are 

involved: e.g. when [Ca
2+

]o is higher, it increases the ICaL driving force which, by 

itself, would enhance the current and prolong the APD; on the other hand, a larger 

ICaL increases its Ca
2+

-dependent inactivation (CDI) mechanism as well. Since the 

final outcome is APD shortening, it is apparently CDI which plays the 

overwhelming role. A summary of these two mechanisms is shown in Figure 3.2.  

 

Figure 3.2: Schematic representation of the two mechanisms involved in APD-[Ca2+]o dependence. 
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However, many other ionic mechanisms are involved and this is why the APD-

[Ca
2+

]o dependence is not completely understood. Computational modeling may 

help to investigate this phenomenon by analysing the single ionic currents involved. 

However, most of the commonly used human ventricular AP models have been 

developed considering a single [Ca
2+

]o value, and they are not able to reproduce 

properly the effects of [Ca
2+

]o changes: often, their APDs vary in an opposite way, 

e.g. in the O’Hara-Rudy [10] and in the Grandi-Bers models [11] (Figure 3.3). 

 

Figure 3.3: APD-[Ca2+]o dependence in two of the most recent human ventricular AP models: 

O’Hara-Rudy [10] (blue line) and Grandi-Bers [11] (green line). APD has been computed at 90% of 

repolarisation, after pacing the models at 1 Hz for 1 s. 

The aim of this study has been to modify the most recent human ventricular AP 

model (O’Hara-Rudy, [10]) in order to improve its APD-[Ca
2+

]o dependence 

without altering model behaviour in control condition, as similarly done for older 

models in previous works  [6, 9]. 

The proper dependence should be achieved by acting mainly on ICaL, for which 

a new formulation is proposed, strengthening the Ca
2+

-dependent inactivation (CDI) 

with respect to the V-dependent one (VDI). 
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METHODS 

The O’Hara-Rudy model of human ventricular myocyte (ORd, [10]) was used as 

basis. However, the L-Type Ca
2+

 current has been completed revisited: its original 

Hodgkin-Huxley formulation has been replaced by a new Markov model (Figure 

3.4), similar to the one used by Decker-Rudy for canine epicardial cells [12]. 

 

Figure 3.4: Schematic representation of the new Markov model of L-Type Ca2+ current:VDI and 

CDI are represented as two separate loops, interconnected by specific up/down rates 

This Markov model consists of two structurally identical loops (Figure 3.5), each 

including 4 transitions: activation (from C to O), fast inactivation (from O to I1), 

slow inactivation (from I1 to I2) and recovery (from I2 to C).  

Activation and recovery rates are exactly the same in the two loops; they have 

been directly derived from the ORd time constant and steady state values of the 

corresponding gating variables. As for fast and slow inactivation, rates on the CDI 

loop are 10 times faster than the ones in VDI loop.  

All transition  rates, even  the ones on  the CDI  loop, are actually V-dependent, 

according to the hypothesis by Kim et al. [13], where CDI was observed to function 

simply as a faster VDI, activated by elevated Ca
2+

.  

In fact, in this model CDI and VDI are implemented on two different loops, 

interconnected by specific up/down rates, modulated by Ca
2+

 concentration, by 

means of the n gate, used to calculate the rup/rdown rates (Figure 3.6). 
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Figure 3.5: VDI (blue) and CDI (pink) loops. Activation and recovery rates (black) are the same in 

the two loops, while inactivation rates are 10 times faster in the CDI loop.  

  

Figure 3.6: VDI (blue) and CDI (pink) loops are interconnected by up/down rated, related to Ca2+ 

concentration by means of the n gate.  

In the ORd model, the n gate represents the fraction of channels operating in 

CDI mode, and it is the only state variable, among the ones involved in ICaL 

kinetics, which is directly dependent on intracellular Ca
2+

 concentration ([Ca
2+

]i).  

The n formulation is based on the interaction between [Ca
2+

]i and Calmodulin 

(CaM) bound to L-type Ca
2+

-channels (Figure 3.7): [Ca
2+

]i binds to CaM, 

constitutively attached to the L-Type Ca
2+

 channels (k1/k-1 rates) and when 4 Ca
2+

 

ions are bound, the complex may activate CDI (k2/k-2 rates). The original equations 

for the n gate has been preserved in the modified model, even if kinetic rates have 

been slightly modified, in order to increase its sensibility to [Ca
2+

]i variations.   
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Figure 3.7: Simplified diagram of the n gate (modified from  [10]), which depend on Ca2+ and it has 

been used to computer the up/down rates between CDI/VDI loops. 

 

In addition to ICaL formulation, other changes in Ca
2+

-handling were needed to 

refine the modified model. These changes mostly addressed Ca
2+

 diffusion, release 

and uptake from the sarcoplasmic reticulum (SR): 

- Since experimental evidence is not clear about Ca
2+

 movement inside the SR 

[14], Ca
2+

 diffusion inside the SR has been initially speeded  up, according to 

[15]. Afterwards, we decided to simplify model structure, leaving only a 

single compartment for the SR, instead of the separation between Network 

SR (NSR) and Junctional SR (JSR);  

- 10-fold increase of SERCA pump maximal current; 

- 2-fold increase in Ca
2+

 diffusion from sub-sarcolemmal space to cytoplasm; 

- 1.2-fold increase of Na
+
/Ca

2+
 exchanger maximal current 

Model differential equations were implemented in Matlab (Mathworks Inc) and 

solved with a variable order solver (ode15s), based on numerical differentiation 

formulas [16]. Simulations were run with the original and modified models at 

variable [Ca
2+

]o in the clinically relevant range 0.6-3 mM. Pacing at 1 Hz was 

maintained until steady state AP was reached (1000 s) and APD was measured as 

the interval between AP upstroke and the 90% repolarization level (APD90). 

The modified model equations, as implemented in the corresponding Matlab 

function file, are included in Appendix A. 
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RESULTS 

Model Validation 

The modified model has been validated against most of the voltage-clamp and 

current-clamp experimental data considered in the original ORd model, especially 

the ones concerning ICaL dynamics. Different voltage-clamp protocol have been 

reproduced in simulations, and the modified model results was in agreement with 

both the corresponding experimental data and the original ORd model.  

ICaL steady state activation, inactivation and I-V curves have been compared with 

data from Magyar et al. [17] (Figure 3.8, Figure 3.9 and Figure 3.10 respectively). 

The I-V curve is slightly different from the experimental data, especially when 

considering positive voltage, even if it perfectly overlaps the one from the original 

ORd model. This is related to the activation of the current, which indeed was not 

modified. Recovery from inactivation has been evaluated using the P1P2 protocol, as 

in Fulop et al. [19] (Figure 3.11).  

 

Figure 3.8: Comparison of ICaL steady state activation curves: original ORd model (blue line), 

modified ORd model (pink line) and experimental data from  [18] (black squares). 
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Figure 3.9: Comparison of ICaL steady state inactivation curves: original ORd model (blue line), 

modified ORd model (pink line) and experimental data from  [18] (black squares). 

 

 

 

Figure 3.10: Comparison of ICaL I-V curves: original ORd model (blue line), modified ORd model 

(pink line) and experimental data from [18] (black squares). The original and modified ORd model 

curves are almost identical, but different from the experimental data, especially for positive 

potential. This is mostly related to the activation property of the L-type Ca2+ current. 
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Figure 3.11: Recovery from inactivation, evaluated using the P1P2 protocol: original ORd model 

(blue line), modified ORd model (pink line) and experimental data from [19] (black squares). The 

modified ORd model actually gets closer to the experimental data than the original one. 

Experimental results of CDI blocks are in agreement with the ones reported in 

the ORd paper [10], measured when considering Ba
2+

 instead of Ca
2+

 current, 

therefore in absence of CDI: in fact, ICaL inactivation is much slower than in 

presence of both CDI and VDI. When blocking CDI, the original and modified ORd 

models  show the same qualitative effect (Figure 3.12). 

 

Figure 3.12: A) Experimental recording of Ca
2+

 and Ba
2+

 currents [10]: the latter, in 

absence of CDI mechanism, shows a much slower inactivation; B) Effects of CDI block on 

the L-Type Ca
2+

 current for the original and modified ORd models (top and bottom panel, 

respectively): both models show a slower inactivation, as expected. 
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Finally, the APD restitution curve, obtained by using a S1S2 protocol, is 

qualitatively reproduced by the modified ORd model. Simulation results are even 

more close to the experimental data then the ones obtained using the original ORd 

model Figure 3.13. 

 

Figure 3.13: Comparison of the S1S2 restitution curves: original ORd model (blue line), modified 

ORd model (pink line) and experimental data from [10] (black squares). 

 

APD-[Ca
2+

]o dependence 

When [Ca
2+

]o was set to the control value (1.8 mM), the modified and the 

original ORd models provided almost the same simulation results (Figure 3.14, solid 

lines): ionic currents and AP were very similar in shape and length. In the modified 

model, ICaL during AP plateau had a lower amplitude, due to the increased CDI.  

When [Ca
2+

]o variations have been simulated, however, significant differences 

were found in the two model results, both for AP and ICaL (Figure 3.14, dashed and 

dotted lines).  
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Figure 3.14: Simulation results for the original and modified ORd models, showing APs (top panels) 

and ICaL (bottom panels) for different [Ca2+]o concentrations. In control conditions ([Ca2+]o=1.8 

mM) the two model traces are quite similar, but when varying [Ca2+]o their behave in two opposite 

ways: the original model APD increases with [Ca2+]o, while the modified model APD decreases. 

 

In the original ORd model, when [Ca
2+

]o is set to high values, the increase in 

driving force causes a larger ICaL, which in turn lengthens AP. In the modified 

model, instead, the increase in driving force is compensated by a higher CDI, and 

the corresponding AP is shorter than in control. Only in the modified model the 

inverse relationship between APD and [Ca
2+

]o is reproduced correctly (Figure 3.15).  
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Figure 3.15: The APD-[Ca2+]o dependence for the original and modified ORd model: only the 

latter is well reproducing the inverse relationship between APD and [Ca2+]o. 

Qualitative comparison with Experimental Data 

The modified ORd model can be used in all clinical contexts where electrolyte 

variations occur, in order to assess a possible increased risk of arrhythmias for 

patients. A typical case of study is haemodialysis therapy, where patients regularly 

undergo relevant electrolyte changes (especially Ca
2+

 and K
+
) in a few hours.  

This kind of analysis had already been performed in a previous study [8], using 

experimental electrolyte data acquired during hemodialysis sessions as input of 

another human ventricular AP model [20]. Considering consistency between APD 

changes and QTc, simulation results had been compared with ECG data. The same 

comparison has been performed using the modified ORd model presented in this 

work, and simulation results are shown in Figure 3.16..  

Another possible application is head-down bed-rest experiments, used to 

simulate microgravity effects on the cardiovascular system: during bed-rest blood 

electrolyte concentrations changes over time, with possible impact on cardiac 

repolarization [21]. As an example, the next Chapter will present a simulation work 

done by combing bed-rest data and the modified ORd model described above. 
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Figure 3.16: Comparison of [Ca
2+

]o dependence of measured QTc interval duration and 

simulated APD (modified ORd model). Scatter plot and regression line show the significant 

inverse correlation between QTc interval duration and serum [Ca
2+

] changes measured 

during haemodialysis sessions (data from [8]). Simulated APD values were normalized to 

the APD value obtained at the average pre-dialysis Ca
2+ 

concentration, i.e. 1.2 mM 

DISCUSSION AND CONCLUSIONS 

APD dependency on extracellular Ca
2+

 concentration has been analysed in the 

most recently published human ventricular AP mathematical model [10]. Since this 

model does not reproduce properly the inverse APD-[Ca
2+

]o dependence, observed 

both in vitro and in vivo [6], some modifications have been implemented, in order 

to improve its response to [Ca
2+

]o changes. 

L-type Ca
2+

 current has been replaced by a new Markov model, and CDI 

mechanisms has been strengthened with respect to VDI. Both inactivation processes 

have been implemented as voltage-dependent, the former 10 times faster than the 

latter: therefore, CDI in the modified model works simply as a faster VDI. 

The modified model has been validated against the ICaL experimental data used 

for the original one, in order to verify consistency between the two models in 

control conditions.  
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Response to extracellular [Ca
2+

]o in the 1-3mM range has been considered, and 

the modified model succeeded in reproduce the proper variations on APD. 

Since the modifications applied to the original ORd model involved mostly ICaL 

CDI strengthening, it is suggested that this inactivation mechanism may be usually 

underestimated in computational cardiac models. 

The modified model here described may be used to explore a variety of contexts 

where electrolyte changes occur, e.g. haemodialysis sessions or head-down bed-rest 

experiments, in order to assess the possible arrhythmic risk for patients.  

Limitations and Future Works 

The modified ORd model has been validated on most of the experimental 

protocols shown in the original ORd paper. However, there are many other aspects 

that should be investigated more in details. 

As an example, we considered only the S1S2 protocol to assess rate dependence 

properties in the modified model, while in the original ORd one they consider 

different simulation protocols, checking also the changes occurring in every single 

ionic current. In addition, in the original ORd model there is a lot of work showing 

model results when considering different degrees of IKr blocks, showing early-after 

depolarisations (EADs) when blocking 85% of the current. 

Therefore, future works will address a further validation of the modified models, 

to check the consistency in all the aspects considered in the original one. 

Finally, the modified model could be used in a population of models study like 

the one described later on (Chapter 7), as an alternative to the original ORd model. 

It would be very interesting to see how the changes in Ca
2+

 current and Ca
2+

-

handling may affect the results, especially when considering pro-arrhythmic 

mechanisms related to Ca
2+

, such as EADs or DADs. 
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Abstract 

Several episodes of ventricular arrhythmias have been reported during 

spaceflights, and cardiovascular deconditioning induced by microgravity exposure 

has already been assessed.  

Strict Head-Down Bed Rest (HDBR) can be used to simulate microgravity effects 

on the cardiovascular system. Therefore, it represents an invaluable opportunity to 

study and analyse this phenomenon. 

The aim of this work has been to evaluate the possible effect of blood electrolyte 

changes induced by 21 days of HDBR on the electrical activity of the heart, by 

using a computational model of human ventricular myocyte. 

Simulation results point out a biphasic course of action potential duration, which 

shortened during HDBR and recovered after the end of it, accordingly with RT 

interval measurements from ECG data analysis. 

INTRODUCTION 

It is well known that microgravity affects the cardiovascular system: indeed, 

there are many effects associated with spaceflights, e.g. reduction in plasma 

volume, decrease in left ventricular mass and modifications of the autonomic 

nervous system. Moreover, several episodes of cardiac arrhythmias and conduction 

disorders have been reported during space missions, such as Gemini and Apollo 

[22, 23], and aboard space stations [24, 25].  

However, the specific causes leading to this suggested increased risk of 

arrhythmias have not been entirely understood. To further explore this 

phenomenon, ground-based experiments, such as strict Head Down Bed Rest 

(HDBR), represent a great opportunity to analyse simulated microgravity effects on 

cardiovascular system, by monitoring ECG signal and different physiological 

parameters over time [26]. In this context, computational modeling constitutes a 

useful tool as well: in fact, changes observed experimentally may be tested in silico 

in order to evaluate their possible impact on cardiac electrical activity. 

The aim of this work has been to verify if the blood electrolyte variations 

occurring during 21 days of HDBR can be directly linked to the corresponding 

changes observed in cardiac repolarization phase, by using a computational model 

of human ventricular action potential (AP) and comparing simulation results with 

ECG data analysis, PRE, during and POST bed-rest. 
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METHODS 

Bed-Rest Protocol 

Experimental data were recorded during a mid-term (21 days) strict -6º Head-

Down Bed-Rest (HDBR) campaign held at the German Aerospace Center (DLR, 

Koln, Germany) by the European Space Agency (ESA) from September 2011 to 

April 2012.  

Ten healthy subjects (aged 23-42 years)  were enrolled for this study in a cross-

over design, including a control and a countermeasure (CM) group, with a washout 

period of about 1.5 months between the two HDBR sessions. Subjects in the CM 

group received a daily supplementation of whey protein (0.6 g/kg body weight) and 

potassium bicarbonate (KHCO3, 90 mmol). In this study, our attention will be 

focused on the CM group only. Each subject underwent a comprehensive medical 

examination during the selection process and provided written informed consent to 

participate in this study, approved by the independent ethics committee 

Aerztekammer Nordrhein, Duesseldorf, Germany.  

The volunteers had to stay in bed with their head down, at 6° below the 

horizontal, for all the HDBR session (Figure 4.1). They may not stand up, unless a 

research programme demands it, and must perform all daily activities in bed 

including eating, showers and sometimes specific exercise. In this way, their bodies 

start to adapt as if they were in space, where there is no gravity. 

 

Figure 4.1: During head-down bed-rest studies, volunteers have to stay in bed with their 

head down, at 6° below the horizontal, for all the experiments session (copyright: ESA) 
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Experimental Data Acquisition 

ECG signals have been acquired using a 24-h high resolution (sampling 

frequency: 1000 Hz) 12-lead Holter digital recorder (H12+, Mortara Instrument Inc, 

Milwaukee, WI, USA). Acquisitions were performed 8 days before the beginning of 

the test (PRE), after 5, 16 and 21 days of Head-Down Tilt (HDT5, HDT16 and 

HDT21 respectively) and 4 days after the end (POST). 

The RR values classified as “sinusal rhythm” (H-scribe and SuperECG software, 

Mortara Instrument Inc, Milwaukee, WI, USA) have been considered and the night 

period only (from 23:00 to 6:30) has been taken into account, in order to avoid 

possible noise due to subject daily movement.  

Selective beat averaging technique [26, 27] was used to obtain averages of P-

QRS-T complexes preceded by the same stable heart rate (cycle length from 900 to 

1200 ms, 10 ms RR bins). Repolarization phase has been evaluated considering the 

time distance from the QRS peak and the T-wave end (RT interval). 

Blood samples have been collected 7 days before the beginning of the test 

(PRE), at HDT10 and 5 days after the end (POST). Electrolyte concentrations 

([Na
+
], [K

+
], [Cl

-
] and total [Ca

2+
]) were measured, together with many other 

physiological parameters (e.g. cell volume, glucose, pH, etc.) which will not be 

considered in this study. Since no direct measurement of ionised Ca
2+

 was 

available, we chose to estimated it as half of th total Ca
2+

 concentration. 

A schedule of the considered HDBR epochs and data acquisitions is reported in 

Figure 4.2, showing the three different situations: PRE, HDT and POST.  

PRE and POST data have been compared to the ones acquired during HDBR 

test, i.e. HDT16 for ECG and HDT10 for electrolyte concentrations, since 

measurements have been recorded in different HDT days. Of course, the HDBR 

effects on HDT16 should be much more pronounced than in HDT10: therefore, 

simulation results which are based on electrolyte concentrations may show smaller 

electrophysiological changes, compared to the ones observed in the ECG data.  

Finally, experimental results shown in the next section refer to only 8 subjects 

out of 10, since one participant left during the test and another one had some ECG 

recording problems.  
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Figure 4.2: Time course diagram of the 21 days Head-Down Bed-Rest (HDBR) campaign 

considered in this study. The arrows indicate the epochs in which 24-h Holter acquisition 

and blood analysis have been performed. 

Computational Modeling 

The most recent human ventricular mathematical model (O’Hara-Rudy,  [10]) 

has been used as basis for simulations. However, the original model is not able to 

reproduce properly the effects of extracellular Ca
2+

 variations on action potential 

duration (APD). Therefore, as similarly done in previous works with different 

models [6, 9], specific modifications were needed in order to reproduce the inverse 

relationship between extracellular [Ca
2+

] and APD. The original L-type Ca
2+

 current 

formulation has been replaced by a new Markov model and Ca
2+

-dependent 

inactivation has been strengthened. Other minor changes were need to preserve the 

physiological properties of the whole cell [28]. The modified model has been 

described in the details in the previous Chapter. 

Extracellular electrolyte concentrations were considered in equilibrium with 

blood and used as model inputs to simulate PRE, HDT10 and POST conditions, as 

similarly done in a previous work for haemodialysis patients [8].  
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Single Cell Simulations 

Model differential equations were implemented in Matlab (Mathworks Inc.) and 

solved with a variable order solver (ode15s), based on numerical differentiation 

formulas  [16]. Pacing at 1 Hz was maintained until a steady state AP was reached 

and APD was measured as the interval between AP upstroke and the 90% 

repolarization level (APD90). 

Multicellular simulations 

One dimensional fiber (2 cm length) composed by 100 endo- and 100 epi-cardial 

cells has been considered. Model equations have been translated into cellML 

language using COR environment [29] and monodomain equations have been 

solved with Chaste Software [30, 31], considering an intracellular conductivity of 

0.50 mS/cm.  

Pseudo-ECG signal has been computed as described by Gima-Rudy [32]; RT 

interval has been evaluated considering a slope inferior to 1e-4 V/s as T wave end.  

RESULTS 

Experimental data analysis 

ECG analysis provided evidence of a biphasic trend in repolarization: RT 

interval considerably shortened during bed-rest (HDT16) and then completely 

recovered at POST, reaching values even higher than in PRE for each considered 

RR bin, as shown in Figure 4.3. 

Since computational simulations have been run considering a cycle length of 

1000 ms, we chose to compare simulation results with data from the RR bin 

between 995 and 1005 ms. Here, the RT interval changes were quite relevant, as 

shown in Figure 4.4: -19 ms in HDT16vsPRE and -30 ms POSTvsHDT16 .  

Non parametric Friedman and Wilcoxon tests were applied and significant 

differences (p<0.001) were found for the three considered groups: PRE, HDT16 and 

POST.  
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Figure 4.3: Relationship between RR and RT interval. Wisker-plot represents median and 

25-75th percentiles for each RR bin in PRE, HDT16 and POST conditions. 

 

Figure 4.4: RT intervals for RR bin between 995-1005 ms in PRE, HDT16 and POST 

conditions: the biphasic trend in repolarisation it is quite clear. Data are presented as 

median(25
th

-75
th

). 
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As for electrolyte concentrations, blood Ca
2+

 concentration showed an opposite 

trend compared to RT interval: it increased during HDBR and then recovered at 

POST , as shown in Figure 4.5. Non parametric Wilcoxon test was applied and 

differences resulted significant in HDT10vsPRE and POSTvsHDT10 (p<0.05).  

 

Figure 4.5: Blood Ca
2+

 concentrations in PRE, HDT10 and POST conditions: the biphasic 

trend is opposite to the one found in the RT interval. Data are shown as median(25
th
-75

th
). 

Relevant differences were found in blood K
+
 concentration, even if there was a 

lot of variability from one subject to the other, and sometime K
+ 

variations were in 

an opposite direction. In average, K
+
 increased during HDBR and decreased at the 

end of it, although not completely recovered at POST, as shown in Figure 4.6.  

 

Figure 4.6: Blood Ca
2+

 concentrations in PRE, HDT10 and POST conditions: the biphasic 

trend is opposite to the one found in the RT interval. Data are shown as median(25
th
-75

th
). 
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Changes in [Na
+
] and [Cl

-
] were almost negligible (not shown).  

A summary of experimental data results is reported in Table 4.1, considering 

only the 995-1005 ms bin for the RT interval data.  

Table 4.1: Experimental data in PRE, HDT and POST conditions. Since computational 

simulations have been performed at 1Hz pacing, only the RT interval corresponding to the 

905-1005 ms RR bin are shown. Data are presented as Median(25th-75th). 

 RT interval (ms) % changes 

PRE 362.5(337.0-382.5) - 

HDT16 343.5(335.3-373.3)  -5.24% vs PRE 

POST 373.5(351.5-385.3) +8.73% vs HDT16 

 total [Ca
2+

](mM) % changes 

PRE 2.33(2.28-2.39) - 

HDT10 2.36(2.33-2.44) +1.29% vs PRE 

POST 2.31(2.27-2.35)  -2.12% vs HDT10 

 [K
+
] (mM) % changes 

PRE 4.25(4.08-4.39) - 

HDT10 4.40(4.24-4.59) +3.53% vs PRE 

POST 4.33(4.18-4.46)  -1.59% vs HDT10 

Computational Results 

Single cell simulations were run separately for each of the subjects, setting the 

extracellular electrolyte concentrations equal to the ones measured in PRE, HDT10 

and POST conditions.  

Consistently with RT interval, APD usually decreased during HDBR and 

recovered at POST. Indeed, median variations were relatively small (-1.22% HDT10 

vs PRE, +0.46% POST vs HDT10), but when considering individual subjects with 

larger electrolyte variations, there were many subject in which concurrent changes 

of Ca
2+

 and K
+
 produced a greater effect. However, sometimes APD variations were 

contrasting in different subjects, especially when considering POST vs HDT10. All 

the APD and electrolyte variations are shown in Table 4.2. 
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Subject #3 is the one showing the most relevant changes, both in HDT10 vs PRE 

(APD90 -20 ms) and POST vs HDT10 (APD90 +18 ms). The corresponding AP 

traces are shown in Figure 4.7. 

Table 4.2: Simulation results in terms of APD for each subject during PRE, HDT10 and POST 

conditions, together with the corresponding electrolyte variations. Notable changes are marked in 

bold. 

 HDT10 vs PRE  POST vs HDT10 

Subject Δ [Ca
2+

]% Δ [K
+
]% Δ APD90  Δ [Ca

2+
]% Δ [K

+
]% Δ APD90 

#1 +1.66% +3.87% -3.0 ms 
 

-6.94% +6.70% +2.0 ms 

#2 +0.43% +2.65% -3.2 ms  -0.85% +2.35% -0.7 ms 

#3 +3.64% +38.44% -20.0 ms 
 

-4.30% -15.76% +18.0 ms 

#4 +1.75% +2.00% -4.8 ms 
 

-0.43% - 2.84% +0.8 ms 

#5 +2.67% +3.21% -5.7 ms  -0.43% +0.44% -0.4 ms 

#6 -1.26% +1.77% -4.1 ms 
 

-4.66% -12.58% +10.1 ms 

#7 +5.17% -2.78% -3.2 ms  -0.82% +0.48% -1.5 ms 

#8 +2.20% +2.63% -2.5 ms  
-21.98% - 4.88% +14.8 ms 

 

Figure 4.7: Simulated AP traces for subject #3 in PRE, HDT10 and POST conditions. 
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One dimensional simulations have been performed as first considering median 

electrolyte variations only. Pseudo-ECG was computed and the simulated RT 

interval varied in accordance both to single cell APD and measured RT interval (-

1.70% HDT10 vs PRE, +0.75% POST vs HDT10).  

Pseudo-ECG was simulated also for the single subject presenting the higher 

APD variations (#3): here the changes of RT interval were significantly larger (-

12.45% HDT10vsPRE, +5.53% POSTvsHDT10). His pseudo-ECG traces and T 

wave in PRE, HDT10 and POST conditions are shown in Figure 4.8. 

 

Figure 4.8: Pseudo-ECG for subject #3. Repolarization phase varied considerably in the 

three different conditions: simulated RT interval highly decreased during HDBR (-36 ms 

HDT10 vs PRE) and only partially recovered at the end of it (+14 ms POST vs HDT10). 

DISCUSSION AND CONCLUSIONS 

Experimental data acquired from 8 subjects during 21 days of HDBR have been 

presented and analysed, in order to assess the effects of simulated microgravity on 

the cardiovascular system, and possibly clarify the underline mechanisms involved.  

ECG recording  showed a significant decreased of RT interval during HDBR 

with respect to PRE and POST conditions. Blood test provided the extent of 

extracellular electrolytes variations, especially Ca
2+

 and K
+
. 
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A computational model of human ventricular myocyte has been used to simulate 

subject conditions PRE, POST and during HDBR, considering the corresponding 

electrolyte concentrations as inputs. Simulations results showed small but consistent 

changes in APD and simulated RT interval. 

These findings support the hypothesis that electrolyte imbalances occurring 

during HDBR may be linked to the electrical changes observed experimentally.  

However, several additional mechanisms are affected by microgravity. 

Therefore, for a more comprehensive computational analysis, other factors should 

be considered in simulations. 

Limitations and Future Developments 

Simulations have been performed using electrolyte data acquired on HDT10, and 

compared with ECG analysis from HDT16. 24-h Holter and blood samples collected 

at the same day could lead to a more precise comparison. Moreover, ionized Ca
2+

 

concentration has been estimated as half total Ca
2+

, since no direct measurements 

were available.  

A new mid-term HDBR campaign, involving one control and two CM groups, 

has been recently completed by ESA. Experimental data, including ionized Ca
2+

 

concentration, will be available for further investigations in the near future.   
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Abstract 

During haemodialysis (HD) sessions, patients undergo significant alterations in 

the extracellular environment, mostly concerning plasma electrolyte 

concentrations, pH and volume, together with a modification of sympatho-vagal 

balance. All these changes may affect cardiac electrophysiology, possibly leading 

to an increased arrhythmic risk: in particular, intra-dialytic atrial fibrillation 

incidence is really high.  

Computational modelling may help to investigate the impact of HD-related 

changes on atrial electrophysiology, exploring their effects on the action potential 

(AP). However, many human atrial AP models are currently available, each one 

with a peculiar structure and different current formulations. In addition, these 

models have been developed using the standard electrolyte concentrations used for 

experiments. Therefore, they may respond in a different way to the same 

environmental changes.  

After an overview of what has been done using the computational approach to 

investigate the effect of HD therapy on cardiac electrophysiology, the aim of this 

work has been to review the current state of the art in human atrial AP models, with 

respect to their suitability in the HD context.  

All the published human atrial AP models have been considered (Courtemanche 

et al. 1998, Nygren et al. 1998, Maleckar et al. 2009, Koivumaki et al. 2011, Grandi 

et al. 2011, Colman et al. 2013) and tested for extracellular electrolytes and volume 

changes, as well as different acetylcholine concentrations.  

Some models proved to be more appropriate than others when considering a 

single modification, but finally all of them showed some drawbacks. Therefore, 

there could be room for a new AP model, hopefully able to physiologically 

reproduce all the HD-related effects on the human atrial AP.  

At the moment, works are still in progress in this specific field. 

INTRODUCTION 

In the last fifteen years, the increasing interest towards atrial electrophysiology 

and atrial fibrillation (AF), together with a greater availability of experimental data, 

led to remarkable developments in human atrial action potential (AP) models [1–6].  

As a matter of fact, cardiac computational modelling constitutes an efficient tool 

to investigate the ionic mechanisms involved at cell level, and has already been 

used in a variety of clinical contexts, linking patient manifestations to the 

underlying electrophysiological mechanisms, thus providing useful insights into 

different atrial pathologies, including AF, especially whenever experimental 

measurements were lacking or unavailable [6–15]. 
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Haemodialysis (HD) therapy represents a unique model to test in vivo, in human, 

the effects of sudden changes in plasma ionic concentrations and blood volume: in a 

few hours, patients undergo significant plasma electrolytes variations, together with 

a significant decrease in extracellular volume. In particular, the  HD session causes 

removal of excess Na
+
 and water, the extent of which depends on the inter-dialytic 

weight gain of the patient. Plasmatic K
+
 concentration increases during the inter-

dialytic interval, so that during all HD sessions its level must decrease, while Ca
2+

 

variations might change depending on the dialysate Ca
2+

 concentration and its 

relationship with pre-HD plasma Ca
2+

 levels [16, 17].  

These processes often lead to an increased arrhythmic risk for the patient, both 

during HD and in the hours following the therapy. Indeed, the incidence of AF in 

end-stage renal disease patients is high: reported rates vary between 7% and 27% 

[18, 19], and HD session may promote AF onset [20, 21]. 

The aim of this work is as first to briefly review the literature concerning 

applications of the computational approach to the study of the impact of HD therapy 

on cardiac electrophysiology. After that, we compared all the currently available 

human atrial AP models, focusing on their ability to reproduce the 

electrophysiological changes typically induced by HD sessions, i.e. plasma 

electrolytes and blood volume variations.  

The 6 published human atrial models have been considered: Courtemanche [1], 

Nygren [2], Maleckar [3], Koivumaki [4], Grandi [5] and Colman [6]. All models 

have been tested for different concentrations of extracellular electrolytes (Na
+
, Ca

2+
 

and K
+
) and for cell volume changes. A set of AP and Ca

2+
-transient (CaT) 

biomarkers has been considered to compare simulation results, e.g. AP duration 

(APD), resting membrane potential (RMP), effective refractory period (ERP), CaT 

duration (CaTD), etc.  

In addition, since a modification of the sympatho-vagal balance in favour of 

vagal activity may occur during HD sessions in patients showing intra-dialytic AF 

episodes [20], the acetylcholine-activated K
+
 current (IKACh) has been added to all 

models, and the effect of different acetylcholine concentrations has been considered 

as well. 
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CARDIAC CELL MODELLING  

AND HAEMODIALYSIS 

Computational models of cardiac AP have already been applied several times to 

assess the acute effects of HD therapy on cardiomyocyte electrophysiology. 

The first attempt in this context was the computational analysis of the heart rate 

changes during HD [22–24]. Since a reliable model of human sinoatrial node (SAN) 

AP was lacking (as it is still today), these studies were based on a model of rabbit 

SAN AP, considering the DiFrancesco-Noble model [25, 26], as modified by Dokos 

et al. [27]. Simulation results pointed out that changes of blood K
+
, Ca

2+
 and pH 

produce large heart rate variations, showing how electrolyte and pH changes within 

physiological range may have a remarkable impact on the pace-making rhythm, 

independently of the autonomic outflow.  

The computational approach has been also used to analyse how Ca
2+

 and K
+
 

changes during HD can alter ventricular repolarization and therefore AP duration 

[28]. In this work, a model of human ventricular AP was considered [29] and model 

predictions on AP prolongation were validated against a wide range of experimental 

data, i.e. QT interval prolongation recorded during HD sessions. Simulation results 

pointed out how computational modelling of ventricular AP may be useful to 

quantitatively predict the complex dependence of AP duration on simultaneous 

changes in both Ca
2+

 and K
+
. From this study, a model-based clinical indication was 

inferred: Ca
2+

 content in the dialysis bath should be designed in order to prevent a 

critical reduction of serum Ca
2+

, especially in HD sessions with a risk of end-HD 

hypokalaemia.  

The same approach has been applied to atrial electrophysiology: a computational 

model of human atrial AP has been used to confirm that the intra-dialytic reduction 

of plasma K
+
 level is associated with P-wave prolongation [30]. When comparing 

the simulated atrial APs at the beginning and at the end of multiple HD sessions, 

imposing in the model the extracellular electrolyte concentrations and heart rate 

equal to the experimental values measured in vivo, simulation results showed an 

increase in the time needed to depolarise and a reduction of the effective refractory 

period (ERP), both occurring during HD. These two phenomena, in presence of a 

trigger, i.e. repeated premature atrial impulses, frequently induced by a HD session, 
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might form the electrical substrate for intra-dialytic AF episodes onset. Consistent 

results were also obtained when performing the same analysis in a multi-scale 

model of the human atrium and considering a simulated ECG [31]. 

More recently, we applied computational modelling of atrial cellular 

electrophysiology to the individual case of a patient in which HD regularly induced 

paroxysmal AF [20]. Simulation results provided evidence of a slower 

depolarization and a shortened refractory period in pre-AF vs pre-HD conditions, 

and these effects were enhanced when adding acetylcholine effect in simulation. 

Starting from these findings, the possible mechanisms leading to intra-dialytic AF 

onset were reviewed and re-interpreted, as described in the next chapter. Notably, in 

a subsequent study, Buiten et al. [21], using the implantable cardioverter 

defibrillator remote monitoring function, showed that HD is a trigger for AF 

episodes. In particular, they showed that a lower concentration of K
+
 in the dialysis 

bath is associated with a higher probability of AF episodes, as predicted by our 

model-based simulation results. 

It is worth noting that in all these studies, model inputs were set using 

experimentally measured quantities, i.e. plasma electrolyte concentrations and heart 

rate. However, the actual in vivo extracellular fluid is the interstitial fluid, rather 

than the blood. Therefore, it could be questioned whether the plasma electrolyte 

concentrations are a reliable estimate of the interstitial ones, even if this is usually 

accepted. Indeed, the distribution of free ions between vascular and interstitial 

compartments has been reported to agree with Donnan theory, which predicts a 

theoretical ratio between interstitial and plasma concentrations very close to 1 [32].  

ATRIAL CELL MODELLING:  

MATERIALS AND METHODS 

Computational Models of Human Atrial AP  

Starting from the first two human atrial cell models (Courtemanche [1];  Nygren  

[2]), both published in 1998, four more have been released in the last few years 

(Maleckar, 2009 [3]; Koivumaki, 2011 [4]; Grandi, 2011 [5]; Colman 2013  [6]). 

Hereafter, the six models will be referred to using the initial letter of the first and 
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last authors (i.e. CN, NG, MT, KT, GB and CZ respectively). All models consist 

of a set of ordinary differential equations, each one representing a specific dynamic 

process occurring in the cell, and the number of equations is related to their 

complexity: the first models are very simple compared to the most recent ones, 

where a more detailed description of Ca
2+

 handling and cell compartments is 

included (see Table . 1). Moreover, the different parameters and ionic current 

formulations lead to distinct AP morphologies and properties, e.g. AP duration 

(APD), CaT duration (CaTD), etc. 

Since 1998 several papers comparing atrial model performances have been 

published, mainly concerning CN and NG models, which for many years have been 

the only ones available [33–39]. The two most recent reviews [38, 39] compared all 

models except CZ, considering simulations from single cell to whole heart and 

including both physiological and pathological conditions, thus assessing the current 

state of the art in atrial computational modelling. Therefore, the comparison of the 

peculiar properties of these atrial models exceeds the purpose of this work, which 

rather aims to investigate the acute effects of HD therapy on atrial 

electrophysiology.  

The CN and NG models are almost based on the same human atrial data, and 

they share most of the transmembrane ionic current formulations: however, CN is 

developed from the guinea pig ventricular model by Luo and Rudy [40], while NG 

is developed from the atrial rabbit model by Lindblad et al. [41]. The main 

differences between the two models are related to Ca
2+

-handling and the CaT is 

much shorter and with a larger amplitude in NG. As a result, their AP shapes are 

quite different: a spike-and-dome AP for CN, and a more triangular one for NG (see 

Figure 5.1, pink and blue traces).  

The MT and KT models are subsequent extensions of NG: the main changes for 

MT are new formulations for the transient outward (Ito) and ultra-rapid delayed 

rectifier (IKur) currents, while the KT gives a much more detailed description of 

Ca
2+

-handling, especially concerning Ca
2+

 release. The sarcoplasmic reticulum (SR) 

is divided into 4 different compartments, including also a spatial dimension: as a 

result, the CaT is slower compared to the previous model ones, but its duration is 

increased (see Figure 5.2, purple trace). The GB model has been developed from 

the ventricular model published by the same group [42]: most of the ionic current 
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formulations have been preserved and adapted to experimental data acquired in 

human atrial isolated cardiomyocyte. The AP is quite triangular shaped (see Figure 

5.1, green line), and the Ca
2+

 handling is mostly derived from the rabbit ventricular 

model by Shannon et al. [43], again adapted to human atrial data. It is worth noting 

that in this model the intracellular K
+
 concentration is kept constant. 

The CZ model is the most recent one: it is based on CN, from which he inherited 

all the ionic current formulations, except for Ito and IKur, which come from MT. 

Furthermore, the Ca
2+

 handling has been modified using a structure for the SR 

similar to the one used in KT, together with the corresponding formulation for Ca
2+

 

release and pumps. Conductances have been slightly tuned, to preserve consistency 

with the original CN model. 

In addition to the models listed above, a different version of the CN model has 

been considered (from now on referred to as CN*), slightly modified in order to 

improve its long term stability [44, 45]. This CN* model has been recently used to 

investigate the specific case study of a HD patient which presented recurrent intra-

dialytic AF mention above, and described in details in the next chapter [20]. 

Moreover, the KT model has been recently modified by the same authors, 

improving model prediction in chronic AF [14]. The changes involved mostly L-

type Ca
2+

 current (ICaL) formulation and this new version of the model (from now 

on referred to as KT*) has been considered as well.  

Finally, since this study is mainly focused on extracellular electrolyte changes, 

the known dependence on extracellular K
+
 for both the inward and delayed rectifier 

K
+
 currents has been added to the atrial models, when not already included [46–49]. 

Hereafter, each model will be identified by a specific colour (CN/CN*, pink; 

NG, blue; MT, cyan; KT/KT*, purple; GB, green; CZ, red) and simulation results 

for CN and KT will be shown only when a different behaviour with respect to their 

updated versions (CN* and KT*) is found.  

Simulated APs and CaTs for all the considered models are shown in Figure 5.1 

and Figure 5.2 respectively, to allow a quick visual comparison of their main 

properties.  
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Figure 5.1: Simulated AP traces for all the considered atrial models: each panel shows a specific 

model AP with its reference colour; all the other model traces have been added in grey, to facilitate 

the comparison. 

 

Figure 5.2: CaT traces for all the considered atrial models: the notable differences in timing and 
amplitude are related to the corresponding different formulations of Ca2+ release from the SR. 
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AP and CaT shapes are very different in each model. As far as the CaTs are 

concerned, experimental values of diastolic intracellular Ca
2+

 concentration 

reported in literature span from 120 to 230 nM [50–52]: CN, KT, GB and CZ have 

values in this range, whereas NG and MT compute lower diastolic concentrations. 

Measured CaT amplitudes range from 265 to 345 nM [50, 51] and this is best 

reproduced by CZ and KT. GB produces a slightly smaller CaT while CN, NG and 

MT show much higher amplitudes. In addition, the CaT has been reported to decay 

with a time constant of about 200 ms or even slower [51, 53]: such a slow decay is 

well reproduced by GB and CN only, while in all the other models is much faster. 

Model differential equations have been implemented in Matlab (Mathworks Inc.) 

and a variable order solver has been used to solve them (ode 15s [54]). Pacing was 

simulated by a current pulse train (pulses of 3 ms, 1 Hz), maintained for 150 s, in 

order to allow all the models to reach a proper steady state, i.e. intracellular 

concentrations (Na
+
, Ca

2+
 and K

+
) stable over time.  

Stimulus current (IStim) amplitude was set to twice the AP threshold for all 

models, as previously done in [106] (see Table 5.1). When using this stimulus, 

however, the GB model produces an AP quite different from the one published in 

the original GB paper: indeed, some of the biomarkers e.g. AP amplitude and 

upstroke velocity, are highly stimulus-dependent in this model. Therefore, all 

simulations with the GB model have been done using the stimulus amplitude 

needed to preserve the original AP characteristics, which is about 6 times the AP 

threshold and more close as current density to the ones used for the other models.  

A summary of all the considered atrial models is shown in Table 5.1, together 

with some of their main structural properties, i.e. membrane capacitance, 

intracellular volumes and compartmentalisation, amplitude used for the current 

stimulus, the number of state variables (each one represented by an ordinary 

differential equation) and the corresponding publication.   
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Table 5.1: List of the human atrial AP models considered in this study and some of their properties: 

 
CN/CN* NG MT KT/KT* GB CZ 

Cm (pF) 100 50 50 50 110 100 

Cell 

Volumes 

(pL) 

CYTO 

13.67 

5.88 5.88 8.10 21.45 13.67 

SSL 0.12 0.12 - 0.66 - 

JS - - 0.05 0.02 0.10 

SR 1.21 0.44 0.44 0.18 1.16 0.27 

whole cell 20.10 49.42 49.42 13.90 33.01 20.10 

Istim (pA/pF) 15.0 19.6 19.2 18.8 19.5 12.0 

# ODEs 21 29 30 43 62 39 

Ref  [1]  [2]  [3]  [4, 14]  [5]  [6] 

Year 1998 1998 2008 2011 2011 2013 

Cm, membrane capacitance; CYTO, cytosol; SSL, sub-sarcolemmal space; JS, junctional space; 

SR, sarcoplasmic reticulum; Istim, stimulus current amplitude; # ODEs, number of differential 

equations in the model; Ref, reference paper; Year. year in which the model was first published. 

Simulation of the HD-induced effects 

In order to investigate the reliability of each atrial model in reproducing the 

effects of extracellular electrolyte changes possibly occurring during a regular HD 

session, we performed a sensitivity analysis by varying the extracellular 

concentrations ([Na
+
]o, [Ca

2+
]o and [K

+
]o) around the original model values (130-

140 mM, 1.8 mM and 5.4 mM, respectively).  

The explored ranges have been set according to the measured values reported in 

literature for HD patients, extending them to include also possible outliers, as 

described in details in the next Section.   

 At the beginning of the HD session the patient is overhydrated: for this reason, 

2-3 litres (or even more) of water are removed from his blood during the treatment. 

Such a removal is compensated by water refilling from the interstitial fluid and 

eventually from the intracellular compartment. How fluid accumulation during the 

inter-dialytic period and fluid removal during the HD session reflects into variations 
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of intracellular volumes is actually not known in quantitative terms. Therefore, we 

investigate the effects of a quite large range (±20%) of volume changes.  

Finally, to explore the effect of vagal stimulation, we added the acetylcholine-

activated K
+
 current (IKACh) to all the models, according to the formulation used in 

[5], and considering the changes induced by 0-15 nM of acetylcholine (ACh). 

AP and CaT Biomarkers  

In order to compare simulation results from a qualitative point of view, we 

computed a set of AP biomarkers, considering in particular the ones already used in 

previous simulation works either to compare the different atrial AP models [39] or 

to evaluate the effects induced by electrolyte variations on atrial electrophysiology 

[30]: action potential duration (APD) was measured as the interval between the AP 

upstroke and the 90% of repolarization (APD90); resting membrane potential (RMP) 

was measured at the end of diastole; the AP upstroke duration (APud) was defined 

as the time needed by membrane voltage to reach 0 mV, starting from the beginning 

of the pacing pulse [20, 30]; AP amplitude (APamp) was measured as the difference 

between the AP peak and RMP; maximum upstroke velocity (dV/dtMAX) was 

computed as the maximum derivative of membrane voltage over time during the AP 

upstroke; the effective refractory period (ERP) was measured by simulating a S1–S2 

protocol: it has been defined as the longest S1–S2 interval which failed to elicit a S2 

AP of amplitude > 80% of the preceding S1 AP [55].  

A summary of all the considered AP biomarkers is shown in Figure 5.3, 

considering the CN* model AP trace as an example. 

In addition, some Ca
2+

 transient (CaT) biomarkers have been considered as well, 

i.e. CaT duration (CaTD), measured at 90% of CaT decay (CaTD90), the time 

needed to reach the CaT peak, starting from the beginning of the current stimulus 

(CaTttp) and the CaT amplitude (CaTamp). Finally, intracellular concentrations 

([Ca
2+

]i, [Na
+
]i and [K

+
]i) have been monitored in all simulations and the 

corresponding values at the end of diastole have been considered for comparison. 
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Figure 5.3: AP biomarkers considered to compare simulation results: AP duration at 90% of 

repolarization (APD90); resting membrane potential (RMP); AP upstroke duration (APud); AP 

amplitude (APamp); maximum upstroke velocity (dV/dtMAX); effective refractory period (ERP), 
computed using a S1–S2 protocol and considering the longest S1–S2 interval which failed to elicit a S2 

AP of amplitude > 80% of the corresponding S1 AP.  

ATRIAL CELL MODELLING:  

EFFECTS OF HD-RELATED CHANGES 

Potassium Variations 

In all the considered models the extracellular K
+
 concentration ([K

+
]o) is set to 

the standard value used in the perfusion bath during V-clamp experiments, i.e. 5.4 

mM. K
+
 increases during the inter-dialytic interval and is removed during the HD 

session: therefore, HD patients often show hyper-kalaemia at the beginning of the 

therapy and hypo-kalaemia at the end. In order to explore both clinical conditions, 

we considered the range 3-9 mM. The lower [K
+
]o  value (3 mM) has been set 

considering the experimental post-HD measurements available in literature (e.g. 

3.9±0.4 [30], 3.6±0.6 mM [56]). The upper [K
+
]o value (9 mM) is actually a bit high 

compared to the pre-HD measurements available (e.g. 4.9±0.5 mM in [30], 5.3±0.9 
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mM in [56]): we extended the range since there are clinical contexts, such as acute 

ischemia, in which [K
+
]o can locally rise up to 9 mM or more [57]. 

The main effect of a [K
+
]o decrease should be a hyperpolarization of the cell 

membrane, due to a different Nernst potential for K
+
 ions. In addition, a [K

+
]o 

decrease leads to a QT interval increase [28], a macroscopic marker of prolonged 

ventricular APD: therefore, a prolongation of atrial APD is expected as well [58]. 

On the contrary, ERP should decrease [58, 59], since APD and ERP may be 

“uncoupled” when varying [K
+
]o, as experimentally observed by Downar et al. [60]. 

Finally, while slowed cardiac tissue conductivity is a well-known effect of 

severe hyperkalemia, in the range of [K
+
]o concentrations usually measured in HD 

patients, a positive dependence of conduction velocity on [K
+
]o has been observed: 

this phenomenon is known as supernormal conduction  [61–63]. Consistently, an 

increase in PWd during hemodialysis, significantly correlated to K
+
 decrease, has 

been reported [30]. In a previous simulation study [30] we have shown how both 

hypo- and hyper-kalaemia can cause slowed cardiac tissue conductivity: in hypo-

kalaemia, the RMP is significantly lower (hyperpolarized), and therefore the cell 

needs more time to reach the membrane potential threshold for AP upstroke; in 

hyper-kalaemia, the RMP is significantly higher (depolarized) and, as a 

consequence, Na
+
 current availability is decreased and the current is much smaller 

than usual. In single cell simulations, a slow conduction can be associated to a 

smaller upstroke velocity and to an increase in the time needed for the voltage to 

rise toward the AP peak: APud and dV/dtMAX are then expected to show some kind 

of U-shape dependence when considering the full [K
+
]o range.  

A summary of the AP biomarkers for all the different [K
+
]o is shown in Figure 

5.4. When some models fail to repolarise with low [K
+
]o, the corresponding 

biomarkers have not been computed. 

The models show quite different trends for some of the biomarkers, especially 

APD90 and ERP (Figure 5.4, panel A and B). In NG, MT and KT* (Figure 5.4: blue, 

cyan and purple traces), both the RMP and APD90 behave as expected: however, 

these models fail to repolarise when [K
+
]o is set to low values, exhibiting early after 

depolarisations (EADs, see e.g. Figure 5.5).  
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Figure 5.4: AP biomarkers vs [K+]o for all the considered models. 

Indeed, a decrease in [K
+
]o leads to a reduction in the conductance of the K

+
 

repolarising currents, i.e. IKr and IK1, thus prolonging the APD: in these models this 

effect seems to be over dimensioned, probably due to a low repolarisation reserve, 

and therefore the membrane potential is not able to go back to its resting value. As 

an example, in Figure 5.5 are shown the AP traces corresponding to different [K
+
]o 

levels for the NG model. 

This is indeed a great limitation when aiming to apply these models to clinical 

contexts, since normal plasma K
+
 levels are between 3.5 and 5 mM, and especially 

critical for HD patients because they need to remove the K
+
 accumulated during the 

inter-dialytic period, primarily in the intracellular pool, and therefore they usually 

end the HD session in hypo-kalaemia. 

No significant changes have been observed in these models for dV/dtMAX  and 

APud, while the ERP follows the APD90 as expected. Finally, the APamp is inversely 

related to RMP. 
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Figure 5.5: AP traces corresponding to different [K+]o for the NG model. When decreasing [K+]o, 

the RMP becomes lower and the APD90 increases, both as expected. However, the model doesn’t 
repolarise for [K+]o values lower than 4 mM. 

As for the GB model (Figure 5.4: green traces), APD90 and RMP are quite 

similar to NG, MT and KT*, but their trends change for low [K
+
]o: the model 

repolarises properly for all [K
+
]o, but when considering values lower than 4mM the 

RMP is higher (more depolarised) than expected: therefore, APD90 and APamp are 

affected accordingly. APud  and dV/dtMAX show the expected U-shape, related to a 

reduced conduction for both low and high [K
+
]o. As for the ERP, in this model it is 

always much longer than the corresponding APD90, even if it shows a similar 

dependence on [K
+
]o. In addition, probably due to the high stimulus amplitude 

needed to stimulate the GB model (as explained in the methods section), the ERP 

could not be computed for most of the [K
+
]o: when considering values below 4 mM 

or above 6 mM, the S2 AP peak was never lower than 80% of the corresponding S1, 

no matter how short the diastolic interval considered.
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As for the CN* and CZ models (Figure 5.4: pink and red lines), they develop a 

proper AP for all [K
+
]o and they both show a very strong linear dependence of RMP 

on [K
+
]o: this dependence, by itself, should prolong the APD when decreasing 

[K
+
]o, since the membrane potential needs more time to repolarize and then 

reaching its resting value.  

However, in these models the AP phase 2 shortens as well, so the overall APD90 

is almost constant, or even decreasing with [K
+
]o, in contrast with the expected 

behaviour; this effect is even more pronounced when considering the ERP. As an 

example, in Figure 5.6 the AP traces corresponding to different [K
+
]o levels for the 

CN* model are shown. 

 

Figure 5.6: AP traces corresponding to different [K+]o for the CN model. When decreasing [K+]o, 

the RMP becomes lower as expected, but the APD90 is almost constant. 
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In these two models, the APamp is again inversely related to RMP, and both APud 

and dV/dtMAX suggest a reduced conductivity in the [K
+
]o range boundaries, 

especially when considering high [K
+
]o.  

No significant changes were found in CaT biomarkers and intracellular 

concentrations, in any of the considered models (Figure 5.7). 

 

Figure 5.7: CaT biomarkers (left) and diastolic intracellular ionic concentrations (right) vs [K+]o 

for all the considered atrial models. 

Calcium Variations 

In all the models the extracellular Ca
2+

 concentration ([Ca
2+

]o) is set to the 

standard value used in the perfusion bath during V-clamp experiments, i.e. 1.8 mM, 

which is quite high compared to the normal serum Ca
2+

 measured in vivo (1-1.3 

mM), as discussed in detail in [64]. During a regular HD session, depending on the 

dialysis bath concentration, serum Ca
2+

 can either raise or decrease. Two previous 

simulation studies explored the effects of [Ca
2+

]o on cardiac electrophysiology, 
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considering the range 1-3 mM  [64, 65]. However, serum Ca
2+

 is lower than 1 mM 

in several patients: reported pre-HD concentrations are e.g. 1.18±0.09 mM in [30] 

and 1.06±0.16 mM in [28]. Therefore, we decided to extend the explored range to 

0.6-3 mM. A summary of the AP biomarkers for the different [Ca
2+

]o is shown in 

Figure 5.8. 

 

Figure 5.8: AP biomarkers vs [Ca2+]o for all the considered models. 

The expected effect of [Ca
2+

]o increase is a significant decrease of APD  [64, 

66]: the increment in driving force enhance the L-type Ca
2+

 current (ICaL) peak, but 

at the same time the Ca
2+

-dependent inactivation mechanism is strengthened, thus 

reducing the overall ICaL and therefore shortening the APD.  

Even if the data showing this inverse relationship between APD and [Ca
2+

]o has 

been recorded in ventricular cells, there are a few recordings confirming that the 

trend is the same for human atrial cells [64].  
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Indeed, CN, NG MT, KT* and CZ models are able to reproduce this effect, 

together with a consistent reduction of ERP (Figure 5.8, panel A and B). Notably, 

the original KT model shows an opposite trend for both APD90 and ERP, fixed in its 

improved version, where precisely the ICaL formulation was changed. On the 

contrary, GB proves to be not very stable to [Ca
2+

]o variations: APD90 and ERP 

show a biphasic trend, both considerably increasing with [Ca
2+

]o from 0.6 to 2.5 

mM, and then decreasing until 3 mM, value in which EADs appear (Figure 5.9).  

RMP, APamp and APud are almost constant in all models (Figure 5.8, panel C, D 

and F). As for dV/dtMAX, only GB, CN and CZ show a slight linear dependence 

with [Ca
2+

]o (Figure 5.8, panel E), related to the increase of ICaL peak, which in 

these models has a greater contribution to the AP phase 0.  

 

Figure 5.9: AP traces corresponding to different [Ca2+]o for the GB model. When increasing 

[Ca2+]o, the APD90 first highly increases and then decreases. For [Ca2+]o  = 3 mM an EAD appears. 
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As expected [66], diastolic Ca
2+

 increases with [Ca
2+

]o for all the considered 

models (Figure 5.10, panel D), whereas a couple of unexpected observations can be 

made on the CaTs (not shown): CZ seems almost insensitive to [Ca
2+

]o and GB fails 

to produce a significant CaT for [Ca
2+

]o lower than 1 mM, in which CaT becomes 

really slow and almost negligible in amplitude.  

 

Figure 5.10: CaT biomarkers (left) and diastolic intracellular ionic concentrations (right) vs 

[Ca2+]o for all the considered atrial models. 

CaTamp increases with [Ca
2+

]o for all models (Figure 5.10, panel C), in agreement 

with [66], while CaT timing (CaTttp e CaTD90) is not much affected by [Ca
2+

]o  

(Figure 5.10, panel A and B), and neither is [K
+
]i (Figure 5.10, panel F). 

On the contrary, [Na
+
]i is finely tuned by Ca

2+
: the raise of [Ca

2+
]o increases the 

outward Na
+
/Ca

2+
 exchanger current (INCX), but the corresponding increase of 

intracellular Ca
2+

 contrasts this effect. At the same time, the Na
+
/K

+
 pump 

counteracts [Na
+
]i variations, in both ways. As a result, [Na

+
]i concentration is not 
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much sensitive to [Ca
2+

]o in most of the models (Figure 5.10, panel E). However, in 

CN and CZ, the direct effect of [Ca
2+

]o on the INCX plays the major role and as a 

consequence the [Na
+
]i decreases slightly. In GB, instead, [Na

+
]i increases, because 

when [Ca
2+

]o increases the inward INCX is highly strengthened, due to the sub-

sarcolemmal space in which [Ca
2+

]i locally increases considerably.  

Unfortunately, there are no experimental data available in literature on [Na
+
]i, 

INCX or Na
+
/K

+
 pump for different [Ca

2+
]o , either to confirm or deny these findings. 

Sodium and Volume Variations 

In all the considered models the extracellular Na
+
 concentration ([Na

+
]o) is set to 

the standard value used in the perfusion bath during V-clamp experiments, i.e. 130 

mM for CN, GB and CZ, 140 mM for NG, MT and KT, in agreement with the 

normal serum levels of 135-145 mM. Na
+
 variation during a regular HD session are 

usually quite small (e.g. from 139.8±3.4 to 141.6±3.1 in [30], from 129/132 to 

133/135 in [20]) and we explored the 120-150 mM range base on the corresponding 

data available in literature [67, 68]. 

APD90 and ERP slightly increase with [Na
+
]o in all the models except GB, in 

which they both stay constant (Figure 5.11, panel A and B). RMP and APud are 

almost constant for all the models: the first slightly increases with [Na
+
]o and the 

other slightly decreases (Figure 5.11, panel D and F). In NG, MT and KT, dV/dtMAX 

increase with [Na
+
]o, together with AP peak and therefore also APamp (Figure 5.11, 

panel E and C), while they don’t vary in the other models, i.e. CN, CZ and GB. 

No significant differences were found in CaT biomarkers nor intracellular 

concentrations for any of the models, apart from an obvious increase in [Na
+
]i (not 

shown). Finally, it is worth noting that in CZ and CN, [Na
+
]i regularly shows a 

stronger sensitivity to changes in extracellular concentrations.  
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Figure 5.11: AP biomarkers vs [Na+]o for all the considered models. 

Volume effects have been evaluated by scaling the intracellular volumes of 

±20%. The corresponding AP biomarkers variations are all negligible (not shown), 

e.g. KT shows the maximum APD90 change: +22.5 ms on the whole range. The 

CaTs become slightly slower when the volume increases, but notable changes have 

been found only in GB: CaTD90 increases of +104 ms on the whole volume range, 

together with an increase of CaTttp and a reduction of CaTamp (Figure 5.12, panel A, 

B and C). [Ca
2+

]i also increases with volume in GB, while no other significant 

changes occurr in intracellular concentrations (Figure 5.12, panels D, E and F).  

Unfortunately there are not experimental data on the effect of changes in [Na
+
]o 

or volume on cardiac cells to either confirm or deny these findings. 
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Figure 5.12: CaT biomarkers (left) and diastolic intracellular ionic concentrations (right) vs vs 

volume % changes for all the considered models. 

Acetylcholine effects 

To analyse the effect of a possible increase in vagal activity, we simulated the 

effects of acetylcholine in the 0-15 nM range, adding to all models the same IKACh 

formulation used in [5].  

The expected effect of an additional outward K
+
 current is a more hyperpolarized 

RMP, together with a shortening of APD and ERP. This has been confirmed by 

experimental data [69–71] as well as by previous modelling studies [5, 72, 73].  

When considering concentrations higher than 3 nM, all  the considered models 

show a significant decrease of both APD90 and ERP  (Figure 5.13, panel A and B). 

In addition, the RMP is indeed hyperpolarised, especially in NG and MT (Figure 

5.13, panel D). The APud is inversely related to RMP changes (Figure 5.13, panel 
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F), whereas APamp  and dV/dtMAX keep almost constant (Figure 5.13, panel C and 

E): therefore, the overall conductivity is slowed down by ACh.  

In fact, starting from a more hyperpolarized potential and with no significant 

changes in dV/dtMAX, the cell needs more time to reach the threshold for INa 

activation, to produce the upstroke. On the contrary, in GB both APamp and 

dV/dtMAX increase with ACh, mostly due to a larger Na
+
 current for lower RMP, 

thus compensating this effect and limiting the theoretical APud increase and the 

corresponding reduced conductivity.  

Negligible effects were found in CaT biomarkers and intracellular concentrations 

(not shown) when including acethylcoline. 

 

Figure 5.13: AP biomarkers vs ACh concentrations for all the considered models. 
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DISCUSSION AND CONCLUSIONS 

We have briefly pointed out that computational models of cardiac action 

potential (AP) have been successfully applied to investigate HD-related effects on 

the electrophysiology of different cardiac tissues (sinoatrial node, ventricle, atrium) 

often leading to relevant interpretations of macroscopic observations made in 

clinical ECG and/or useful suggestions about HD treatment personalisation.  

However, all these studies have been performed by using cardiac cell models 

that had been developed on the basis of in vitro experimental data, almost always 

acquired using standard Tyrode’s solutions as extracellular fluid. It is obviously 

correct to simulate the electrical activity of cardiac cells by imposing the same 

conditions used in experimental protocols as far as the aim is a comparison with in 

vitro experimental data. On the contrary, it can be incorrect to use the same constant 

concentrations when the ultimate aim of simulations is the analysis of in vivo, and 

therefore dynamical, conditions, such as a HD session. Sometimes, this possible 

cause of discrepancy has been mitigated by few changes to the original models, e.g. 

introduction of the effect of extracellular pH on the Na
+
/K

+
 pump activity in the 

DiFrancesco-Noble model of SAN cell [22], strengthening of the ICaL Ca
2+-

dependent inactivation in the Ten Tusscher model of human ventricular A [28].  

However, a systematic analysis of the applicability of cardiac cell models to 

reproduce the specific conditions occurring during HD or, in general, when the 

extracellular fluid composition changes, is still lacking. In the present paper, we 

addressed this kind of problem by focusing on human atrial cell models and on the 

following “cell environment” changes: extracellular electrolyte concentrations (K
+
, 

Ca
2+

 and Na
+
), cell volume and acetylcholine.  

We pointed out that several human atrial models are available, with significantly 

different behaviour upon such environment changes. 

Unfortunately, experimental data on human atrial cells induced by extracellular 

concentrations changes are really rare in literature. This makes a stringent 

quantitative comparison between simulations and experimental measurements not 

possible for most of the considered electrophysiological properties.  
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On the other hand, some qualitative behaviour is expected based on the overall 

evaluation of: i) knowledge of physiological mechanisms (e.g. the link between 

membrane resting potential and Nerst K
+
 potential); ii) in vitro data measured in 

different cell types and species (e.g. [50, 64]); iii) in vivo data on macroscopic ECG 

markers known to be related to atrial cellular electrophysiology (e.g. PWd). 

We found a major problem in the NG, MT and KT models: they all fail to 

repolarize and to produce physiological APs when [K
+
]o is lower than 4 mM. This 

makes these models not appropriate to simulate the cardiac impact of HD. Indeed, 

the change in plasma [K
+
]o is one of the more important and quantitatively large 

effects of HD, since K
+
 removal is one of the treatment aims and the end-HD [K

+
]o 

is almost always much lower than 4 mM [30, 56]. Indeed, even in control condition 

([K
+
]o = 5.4 mM), the repolarising K

+
 currents (especially IKr and IKs) of these 

models are quite tiny when compared to the ones of CN* or CZ, who repolarise 

properly up to [K
+
]o = 3 mM (current peaks are about 10 times smaller). In the NG 

paper the authors explicitly say that the IKr conductance has been reduced to fit AP 

data and that this current has been assigned a very low density [2]. Therefore, an 

increase of it may improve the performance of these models for low [K
+
]o.  

The GB model exhibits several shortcomings as well. First of all, although it 

produces a proper AP at all the tested [K
+
]o, it behaves non-physiologically when 

[K
+
]o is lower than 4 mM: the RMP depolarizes instead of hyperpolarize and, as a 

consequence, the APD90 also goes in the opposite way (shortening) and dV/dtMAX 

dramatically decreases. Moreover, the excessive sensitivity to the amplitude of the 

stimulus current makes the computation of the ERP very unstable, leading to too 

long ERP values or no ERP at all. Since also in GB the repolarising K
+
 currents 

(both IKr and IKs) are quite small in amplitude, increasing their magnitude may 

improve the model stability for low [K
+
]o concentrations. Finally, the GB model 

responds poorly to [Ca
2+

]o changes too: the APD90 trend is opposite to what 

observed in human atrial cells [64], i.e. instead of showing an inverse dependence, 

it is increasing with [Ca
2+

]o, even displaying EADs for [Ca
2+

]o equal to 3 mM, and 

the intracellular Ca
2+ 

transient is almost non-existent when [Ca
2+

]o is lower than 1 

mM. Therefore, the GB model turns out to be completely unsuitable to simulate the 

HD conditions.  
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As for the wrong dependency of APD on [Ca
2+

]o a possible solution should 

address a modification of the L-type Ca
2+

 current, increasing the Ca
2+

-dependent 

inactivation with respect to the Voltage-dependent one, in order to reduce the 

overall current for higher Ca
2+

 levels, despite the increase in driving force. Indeed, 

Ca
2+

-dependent inactivation seems to be underestimated in many AP models [64], 

and previous modelling works managed to reproduce the inverse APD-[Ca
2+

]o just 

by strengthening this mechanism [65, 74].  

The CN* model responds properly to [K
+
]o changes, at least from a qualitative 

point of view. It also reproduces well the “uncoupling” between APD and ERP 

variations when [K
+
]o is increased (APD slightly decreases whereas ERP increases): 

this was experimentally reported by Downar et al. [60] when perfusing cardiac cells 

with hyperkalaemic ‘ischemic blood’ and interpreted as a secondary effect to 

changes in resting potential, which is known to affect, in turn, the Na
+
 channels. In 

addition, simulation results for the CN* model predict a decrease in intracellular 

Na
+
 when increasing [Ca

2+
]o: we are not aware of any available experimental data 

to confirm/deny this observation, which could have relevant implications.   

The CZ model exhibits a good stability, with none repolarization failure nor 

EADs occurrence. However, it also has a few discrepancies with respect to the 

expected behaviour:  APD decreases with [K
+
]o , while the opposite should happen 

[28] and CaTamp is insensitive to [Ca
2+

]o while in all the other models it increases 

with it, in agreement with experimental data reported in [66]. 

As for the quantification of cardiac side-effects of HD therapy, overall 

simulation results confirm that changes in [K
+
]o and [Ca

2+
]o are the ones mostly 

affecting cellular electrophysiology [28, 30], whereas [Na
+
]o and volume seem to 

have a minor impact.  

A qualitative summary of the expected variations in [K
+
]o and [Ca

2+
]o during HD 

and of the corresponding biomarker changes is shown in Table 5.2 and Table 5.3 

respectively, comparing experimental/computational data from the literature with 

the simulations results of this study. 
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Table 5.2: Qualitative summary of HD-induced [K+]o variation on selected AP biomarkers: 

[K
+
]o 

RMP APD ERP APud 

 
   

 [28, 60]  [59, 60]  [30, 59] 

CN - + - + 

NG - + + - 

MT - + + - 

KT* - + + - 

GB - + + - 

CZ - - - + 

Table 5.3: Qualitative summary of HD-induced [Ca2+]o variation on selected AP biomarkers and 

intracellular ionic concentrations. Results are shown for a Ca2+ increase, but depending on the 

[Ca2+] concentration in the dialysis bath, a decrease could occur as well, with opposite effects. 

[Ca
2+

]o 
APD ERP CaTamp [Ca

2+
]i [Na

+
]i 

    

? 
 [30, 64–66]  [66] 

CN - - + + - 

NG - - + + = 

MT - - + + = 

KT* - - + + = 

GB + + + + + 

CZ - - = + - 

 

RMP: resting membrane potential; APD: AP duration; ERP: effective refractory period; APud: 

upstroke delay, inversely correlated with conduction velocity; CaTamp: Ca2+-transient amplitude; 

black arrows: expected increase/decrease during HD, with the corresponding references, 

green/light green: moderate/large biomarker variation in the expected direction;  

red/light red: moderate/large biomarker variation in the opposite direction. 
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Simulation results of acetylcholine effect show a reduction of APD and ERP in 

all the models, together with a more hyperpolarised RMP, in agreement with 

experimental data and previous modelling studies [5, 69–73]. In addition, all the 

models except GB show a reduction in APud, suggesting a slower conductivity, also 

consistent with the increased vulnerability to arrhythmias, such as AF, due to an 

increased vagal activity [20, 70]. However, there are not experimental evidence to 

confirm or deny this results, and a more detailed description of autonomic 

regulation should be considered for future improvements in computational 

modelling of acetylcholine effects.  

Other HD-related effects (e.g. acidosis correction) have not been addressed in 

our analysis and are left to further investigations.  

Finally, it is worth to remember that HD patients are first of all uremic patients: 

this pathological condition (e.g. “uremic intoxication”) can also affect some aspects 

of cardiac cellular electrophysiology and should be incorporated into the models. 

As a relevant example, down-regulation of the Na
+
/K

+
 pump and high levels of 

circulating Na
+
 pump inhibitor, have been reported in uremic patients compared to 

individuals with normal renal function, by several investigators [75–80]. 

In conclusion, computational modelling of human atrial cells constitutes a very 

useful tool to investigate the electrophysiological changes occurring in patients 

undergoing HD therapy. Nevertheless, it is always important to select carefully the 

specific model to use, depending on the particular aspect of interest.  

Currently, CN* seems to be the more suitable human atrial model to analyse 

HD-related effects on atrial electrophysiology, though it is the oldest one and, 

therefore, it has a less detailed description of several cellular mechanisms: this is 

why this model has been chosen for the work presented in the next chapter. 

Therefore, an additional model could be developed, trying to integrate and 

reconcile the knowledge of cellular and sub-cellular processes and their reactions to 

changes in the extracellular environment, taking into account the possible 

suggestions given above.  

In this respect, works are still in progress in this specific field. 
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Abstract 

Atrial fibrillation (AF) incidence is high in end-stage renal disease (ESRD) 

patients, and haemodialysis (HD) session may induce paroxysmal AF episodes.  

Structural atrium remodelling is common in ESRD patients, moreover, HD 

session induces rapid plasma electrolytes and blood volume changes, possibly 

favouring arrhythmia onset. Therefore, HD session represents a unique model to 

study in vivo the mechanisms potentially inducing paroxysmal AF episodes.  

Here, we present the case report of a patient in which HD regularly induced 

paroxysmal AF. In four consecutive sessions, heart rate variability analysis showed 

a progressive reduction of low/high frequency ratio before the AF onset, suggesting 

a relative increase in vagal activity. Moreover, all AF episodes were preceded by a 

great increase of supraventricular ectopic beats.  

We applied computational modelling of cardiac cellular electrophysiology to 

these clinical findings, using plasma electrolyte concentrations and heart rate to 

simulate patient conditions at the beginning of HD session (pre-HD) and right 

before the AF onset (pre-AF), in a human atrial action potential model.  

Simulation results provided evidence of a slower depolarization and a shortened 

refractory period in pre-AF vs. pre-HD, and these effects were enhanced when 

adding acetylcholine effect.  

Paroxysmal AF episodes are induced by the presence of a trigger that acts upon 

a favourable substrate on the background of autonomic nervous system changes 

and in the described case report all these three elements were present. Starting 

from these findings, here we review the possible mechanisms leading to 

intradialytic AF onset. 

INTRODUCTION 

The prevalence of atrial fibrillation (AF) in patients with end-stage renal disease 

(ESRD) undergoing haemodialysis (HD) treatment is high. A recent review by 

Zimmerman reported a mean prevalence of this type of arrhythmia of 11.6%, even 

if within a wide range (5.4–27%) [18], presumably due to the different 

methodologies of the studies taken into consideration. Data from the United States 

Renal Data System have shown an important increase in AF prevalence (from 3.5% 

in 1992 to 10.7% in 2006) in HD patients [19]. Many of the risk factors that are 

associated with AF are the same as those observed in people without ESRD, such as 

age, the presence of hypertension, heart failure, ischaemic heart disease, and 

cerebrovascular disease [81]. Moreover, there are some arrhythmic risk factors 

specific to HD patients, like sudden changes in blood volume and electrolytes 

plasma level due to the HD session. Like in all other patients the presence of AF is 
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associated with an increased mortality in patients on HD treatment as well [82]. 

Episodes of AF induced by HD sessions are phenomena that have not been studied 

very extensively so far, but are well-known by nephrologists: often they concern 

episodes of paroxysmal AF which resolve spontaneously. Quite frequently these 

episodes are interrupted by pharmacological interventions or electrical 

cardioversion, when they cause any haemodynamic instability that does not allow 

the completion of the HD session or when it is not possible to keep the patient in the 

dialysis unit until spontaneous resolution of the episode. On the other hand, many of 

the asymptomatic episodes are probably not recognized as AF. Starting from the 

study of a representative case report and its clinical and computational analysis, this 

review aims to define the mechanisms that may cause episodes of intradialytic AF. 

In fact, AF episodes triggered by the session in HD patients, offer us a unique 

occasion to study the characteristics of paroxysmal AF onset: an occasion that 

cannot easily be found in other patients, whose AF episodes are much less 

predictable and assessable. 

CASE REPORT 

Four consecutive HD sessions were analysed in a 73-year-old woman with 

ESRD, in which HD regularly induced AF episodes that disappeared spontaneously 

shortly after the end of the HD session. Informed consent was obtained from the 

patient for the study. 

Intradialytic Parameters 

In all HD sessions, body weight loss, systolic, and diastolic arterial pressure 

were monitored hourly. Plasma Na
+
, K

+
, and Ca

2+
 concentrations were measured at 

the start and at the end of the treatment in Sessions #1 and #2, and hour by hour in 

Sessions #3 and #4, used for computational analysis. 

Electrocardiogram Analysis 

A 24 h ECG was recorded from the start of each HD session. All recordings 

were obtained using a three-channel Holter recorder, (Sorin Group Company). The 

AF onset time was identified. Arrhythmias were examined during the whole 
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recording time and expressed as the number of supraventricular ectopic beats 

(SVEBs), couples, or runs (more than three consecutive ectopic beats). The mean of 

SVEBs during the 30 min period before AF onset was compared with the mean of 

all other 30 min periods of registration. A signal-averaged P-wave recording was 

done before and after an HD session in which AF episodes were not observed. P-

wave duration (Pwd) was analysed by using a dedicated software derived from the 

work by Stafford et al.  [83] (Sorin Group Company). 

Heart Rate Variability 

Spectral components of heart rate variability (HRV) were calculated by fast 

Fourier transform over 256 s (1024 sampling points) epochs. The power spectral 

components recommended by the Task Force of the European Society of 

Cardiology and the North American Society of Pacing and Electrophysiology [84] 

were calculated: (i) very low frequency (VLF) from 0.00 to 0.04 Hz, (ii) low 

frequency (LF) from 0.04 to 0.15 Hz, (iii) high frequency (HF) from 0.15 to 0.4 Hz. 

The total spectral power corresponds to the power of the whole spectrum from 0 to 

1 Hz. Very low frequency, LF, and HF power components were normalized 

(normalized units) for total power and the LF/HF ratio was considered.  

Statistical Analysis 

The differences between the recorded variables during the pre-HD and the pre-

AF phases were analysed by using Student’s t-test and analysis of variance for 

repeated measures followed by Fisher’s test.  

Results 

Figure 4.1 shows the Holter ECG recordings during the four studied HD 

sessions. In all sessions, the arrhythmia developed between the second and the third 

hour of treatment. The episodes always resolved spontaneously within 2 h from the 

end of the HD session. The intradialytic plasma electrolyte changes (beginning vs. 

end HD) were comparable during the studied sessions. In particular, a significant 

reduction of plasma K+ (from 4.5±0.3 to 3.7±0.1 mM, p<0.05) and an increase of 

plasma Ca2+ (from 1.08±0.1 to 1.29±0.1 mM, p<0.01) concentrations were 

observed. 
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Figure 6.1: ECG Holter recordings during four consecutive HD sessions. Each session started at 8.00 
a.m. and ended at 12.00 p.m. (white line): the patient regularly showed paroxysmal AF episodes, 

triggered during the session and spontaneously terminated at its end. Supraventricular ectopic beats 

(SVEBs) occurrence is shown in the lower section of each panel: single ectopic beats (yellow), 

couples (green), and runs (red) significantly increased in the minutes preceding AF onset. 

During the HD sessions, the weight loss was 2.58±0.40 kg. Spectral analysis of 

HRV at 30, 20, and 10 min before the AF onset showed a progressive reduction of 

LF (from 36.5±14.0 to 26.7±11.2 to 21.3±11.0 nu, p<0.01) with a consequent 

decrease in the LF/HF ratio (from 0.79±0.5 to 0.51±0.3 to 0.39±0.2, p<0.05), 

suggesting a relative increase in vagal compared with sympathetic activity. 

All AF episodes were preceded by an increase of supraventricular ectopic beats 

SVEBs: single (from 4.1±4.8 to 160.5±97.5/30 min), couples (from 0.2±0.2 to 

46.0±28.4/30 min) and runs (from 0.2±0.1 to 43.0±23.7/30 min) as compared with 

the remaining observation period (p<0.05). The duration of the signal-averaged P-

wave, recorded in the same patient during a previous HD session in which no AF 

occurred, increased from 171 ms before the treatment to 185 ms at the end. 
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COMPUTATIONAL ANALYSIS 

Methods 

The Courtemanche model [1] of human atrial action potential (AP) provided the 

basis for simulations. It is not the most recent human atrial model, but it is the one 

best suited to reproduce the low [Ca
2+

]o and [K
+
]o levels occurring during HD [64]. 

We modified the original model by including the known dependency of IK1 and IKr 

currents on [K
+
]o [28], and improving its long-term stability [45], as already 

described in Chapter 5. Moreover, we added the IKACh current, sensible to 

acetylcholine (ACh) concentration, as recently done by Grandi et al.  [5]. These 

have been the only changes to the Courtemanche formulation. Model differential 

equations were implemented in Matlab (Mathworks Inc.) and a variable order 

solver, based on the numerical differentiation formulas, was used to solve them 

(ode 15s) [54]. Pacing was simulated by a current pulse train (pulses of 3 ms, 1 Hz) 

with amplitude about twice the AP threshold: the stimulus was maintained for 300 

s, to reach steady-state condition, i.e. intracellular concentrations (Na
+
, Ca

2+
 and 

K
+
) stable over time. 

We simulated patient’s conditions at the beginning of the HD session (pre-HD) 

and right before the AF onset (pre-AF), by imposing the extracellular electrolyte 

concentrations and average heart rate, as measured in vivo. Two consecutive HD 

sessions (#3 and #4) were considered: electrolyte concentrations hour by hour were 

measured and the value assigned to the pre-AF condition was interpolated in 

correspondence with AF onset.  

Different biomarkers have been considered to quantitatively compare simulation 

results: action potential duration (APD) was measured as the interval between the 

AP upstroke and the 90% repolarization level; resting membrane potential was 

measured at the end of diastole; the AP upstroke duration (APud) was quantified as 

the time needed by membrane voltage to reach 0 mV, starting from the beginning of 

the pacing pulse [30]; the effective refractory period (ERP) was computed by 

simulating a S1–S2 protocol, with S1 and S2 pulses of equal magnitude delivered at 

various rates: ERP was then defined as the longest S1–S2 interval which failed to 

elicit an S2 AP of amplitude <80% of the preceding S1 AP [55].  
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Results 

Representative traces of simulated atrial APs at the beginning of one HD session 

and right before the AF onset, including also the ACh effect, are shown in Figure 

6.2A. For the two considered sessions (#3 and #4), we simulated three different 

conditions: pre-HD, beginning of the HD session; pre-AF, just before the AF onset; 

pre-AF+ACh, just before the AF onset, including acetylcholine effect.  

 

 

Figure 6.2: Simulated APs for the HD Session #3 (A). The changes in extracellular electrolytes and 

heart rate leading to AF onset determine a more hyperpolarized resting potential which in turn 

causes an increase of AP upstroke duration (B). The presence of ACh enhances these effects and 

also reduces the APD considerably. Atrial myocyte response to S1–S2 protocol, considering a 300 ms 

S1–S2 interval (C). The peak elicited by S2 stimulus in pre-HD conditions is remarkably smaller 

(,80%) than the one elicited by S1 (D). This difference becomes less pronounced when considering 

pre-AF conditions and more so after adding ACh, suggesting that the ERP decreases accordingly. 

These differences are mostly due to the greater availability of sodium current at the more negative 

potential reached in the pre-AF conditions (E). 
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The corresponding cycle length, extracellular ion concentrations, and ACh 

concentration (model inputs) have been listed in Table 1, together with all the 

computed indices already defined in the Methods Section, which have been used to 

quantitatively estimate the differences between pre-HD and pre-AF conditions 

(model outputs).  

Table 6.1: Case report computational analysis, simulation data and results 

  
HD Session #3 

 
HD Session #4 

  
pre-HD pre-AF pre-AF+ACh 

 
pre-HD pre-AF pre-AF+ACh 

Model inputs 

        
[Na

+
]o (mM) 

 
132 135 135 

 
129 133 133 

[K
+
]o (mM) 

 
4.6 3.5 3.5 

 
4.6 3.8 3.8 

[Ca
2+

]o (mM) 
 

1.04 1.23 1.23 
 

0.99 1.17 1.17 

CL (ms) 
 

1132 1124 1124 
 

1132 1071 1071 

ACh (nM) 
 

- - 5 
 

- - 5 

Model outputs 

        
APD (ms) 

 
302 306 269 

 
301 304 271 

RMP (mV) 
 

-85 -91 -92 
 

-85 -89 -90 

APud (ms) 
 

3.30 3.80 3.84 
 

3.32 3.64 3.69 

ERP (ms) 
 

308 294 254 
 

307 291 261 

pre-HD, beginning of the HD session; pre-AF, just before the AF onset; pre-AF+ACh, just before 

the AF onset, including acetylcholine effect; CL, cycle length (mean value computed on the last 30 

sinusal beats before the AF onset); ACh, simulated acetylcholine concentration; APD, action 

potential duration at 90% of repolarisation; RMP, resting membrane potential; APud, AP upstroke 

duration; ERP, effective refractory period. 

K
+
 removal during HD induced membrane hyperpolarization, especially in 

Session #3 where [K
+
]o reduction was more pronounced. APud significantly raised 

(15% and 10%, Sessions #3 and #4, respectively), since more time was needed for 

the cell to reach the threshold, starting from a hyperpolarized resting condition 

(Figure 6.2B). Effective refractory period shortening was also significant (-4.55% 

and -5.21%), while APD kept almost constant; in fact, [K]o decrease may have two 

uncoupled effects on APD and ERP [60]. 

As an example, in Figure 6.2C, the APs obtained from a S1–S2 interval of 300 ms 

are shown (Session #3). Since the ERP in pre-HD condition is just above 300 ms, 

the S2 stimulus falls within the refractory period and therefore the elicited peak 
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results considerably smaller (<80%) with respect to the S1 one. In the pre-AF 

condition instead, the ERP being shorter, the S2 peak is higher (Figure 6.2D); this 

difference is probably due to a greater availability of sodium current at the more 

negative potential reached in the pre-AF conditions (-69 pA/pF vs. -35 pA/pF, pre-

AF vs. pre-HD, Figure 6.2E). 

When considering both the pre-AF condition and ACh 5 nM, all the effects 

described above are enhanced (Table 1, pre-AF+ACh): ERP decreased considerably 

further (-17.53% and -14.98%, Sessions #3 and #4, pre-AF + ACh with respect to 

pre-HD). Moreover, a significant reduction of APD occurs (-10.64% and -9.93%). 

INSIGHTS INTO THE MECHANISMS OF 

INTRADIALYTIC ATRIAL FIBRILLATION  

Cardiac Morphology in Patients on Haemodialysis Treatment 

Patients with ESRD undergoing HD treatment show deteriorated cardiac 

morphology defined as ‘uraemic cardiomyopathy’, characterized by the presence of 

fibrosis and changes in the microcirculation [85]. Both studies based on animal 

models of renal failure and autopsy of uraemic patients have shown the presence of 

reactive fibrosis (i.e. not due to tissue necrosis), which causes an increase in cardiac 

mass and a reduction in the volume of the capillary circulation within the 

myocardium [86]. The process of fibrosis formation develops early at the onset of 

renal failure [87], is associated with the HD duration, and appears to be independent 

of the contemporaneous presence of hypertension and/or diabetes mellitus [88].  

It has been demonstrated that there are some mediators of cardiac fibrosis that 

are triggered by uraemia and do not depend on both cardiac pre-load and post-load 

changes. Among these mediators the ones most extensively studied are oxidative 

uraemic toxins, parathyroid hormone, hyperphosphataemia, and the renin–

angiotensin–aldosterone system. Each of these factors act by means of specific and 

complex pathways that may be related with one another [89]. 

Left atrial volume, as measured by echocardiography, has recently emerged as a 

predictor of death and cardiovascular events in HD patients [90, 91] beyond left 
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ventricular mass and systolic function. It has also been shown that increased atrial 

dimensions are associated with increased AF prevalence in ESRD patients [81, 92]. 

Electrolyte and volume changes during the haemodialysis session  

Just before undergoing HD session, patients show extracellular volume 

expansion, and Na
+
 and K

+
 overload, associated with metabolic acidosis. Plasmatic 

Ca
2+

 concentration, however, varies among patients. Haemodialysis treatment 

achieves a correction of the electrolyte and volume alterations through mechanisms 

of diffusion and/or convection, which allow the removal of electrolytes and toxins 

from the blood as well as elimination of liquids.  

The main purpose of therapeutic intervention by HD is restoring the right blood 

volume by elimination of the excess Na
+
 and water, that has been accumulated by 

the patient during the interdialytic interval. The level of ultrafiltration is constantly 

adjusted to reach the patients’ ideal dry weight at the end of the HD session. 

Plasmatic K
+
 concentrations increases during the interdialytic interval, mainly due 

to ions leakage from the cells as compensatory mechanism for the metabolic 

acidosis. The nephrologist’s clinical concern is to obtain a level of intradialytic K
+
 

removal sufficient to avoid the development of hyperkalaemia before the next HD 

session. Patients receive a certain amount of bicarbonates from the dialysis bath, 

which is useful in the correction of the uraemia-induced metabolic acidosis.  

In conclusion, the HD scheme entails a nonphysiological condition due to the 

intermittent character of the treatment and correction of the uraemia-induced 

alterations. One single HD session causes removal of excess Na
+
 and water, sudden 

changes in potassium levels (often associated with an increase in calcium levels), 

and a complete or even excessive correction of the metabolic acidosis [93]. All 

these processes have important consequences on cardiovascular stability and 

determine the arrhythmogenic effects of HD sessions.  

P-wave and the haemodialysis session 

Several investigators have studied the modifications in atrial depolarization 

during the HD session, examining changes of the P-wave on the surface ECG. The 

studies present a few methodological differences, as some of them are based on 12-

lead ECG registrations and others on high frequency electrocardiography recordings 
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[signal-averaged ECG (SAECG)] [83, 94]. P-wave duration is considered an 

expression of intra-atrial conduction velocity and its prolongation (particularly 

when shown by SAECG) has been associated with a higher incidence of AF, both 

paroxysmal and persistent, AF episodes after cardiac surgery and acute myocardial 

infarction, and AF recurrences after electrical cardioversion [95–99].  

Other authors focus their attention on P-wave dispersion instead, another ECG 

parameter considered to be a possible predictor of AF [100]. The results of 

investigations on Pwd changes HD-related are not univocal. Several studies, 

performed both with 12-lead ECG [101, 102] and with SAECG [30, 103] show a 

significant increase in Pwd at the end of the HD session, whereas others describe no 

Pwd change or even a reduction [104, 105]. Two studies suggest that HD induces 

an increase in Pwd only during the HD session itself and that P-wave return to basal 

levels as soon as the patient is disconnected from the dialysis machine [106, 107]. 

As far as P wave dispersion is concerned, there is general agreement on its increase 

during the post-HD period, compared with the pre-HD one [101, 102].  

There is difference of opinion on the variables that are associated with HD-

related Pwd modifications. When looking at the electrolytes, it seems that K
+
 is the 

ion that is most tightly correlated with Pwd and its changes during the HD session. 

An association between Pwd and plasma K
+
 levels at start [106] and end [102] of 

HD session has been described. Moreover, an inverse correlation between intra-HD 

plasmatic potassium changes and P-wave modifications was found [30, 103]. Other 

studies, however, did not find any relationship between levels or changes of K
+
 

plasma values and Pwd [104, 105, 107]. Any possible associations between P-wave 

and other haematochemical variables (plasma concentrations of Ca
2+

, magnesium, 

phosphate, bicarbonate, and haemoglobin) have been shown by data in literature to 

be weak or absent.  

Several authors have tried to reveal a relationship between the amount of liquids 

removed during the HD session (i.e. the level of ultrafiltration) and the intradialytic 

modifications in Pwd. Madias [108, 109] suggests that the phenomenon of 

intradialytic Pwd prolongation is mediated by the alleviation of the fluid overload. 

This hypothesis was confirmed both by Ozben and Shimada, who found that the 

rate of removal of body fluid was an independent predictor of Pwd prolongation 

during HD [106, 107]. Other authors anyway did not find any significant correlation 
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between levels of intradialytic ultrafiltration and Pwd changes [30, 105]. A 

significant correlation has also been shown between left atrial diameter dimension 

and Pwd [30, 103], indicating an influence of atrial dimensions on the conduction 

velocity of the electrical stimuli across the cardiac chamber. Finally, a significant 

prolongation of basal Pwd in HD patients compared with a group of subjects with 

normal renal function has been reported [103, 104], while pre-HD Pwd was not 

higher in patients with ESRD compared with the control group in the study 

performed by Severi et al. [30]. It should be noted, however, that in the latter study 

the ESRD subjects had been on HD therapy for less than 6 months, whereas in the 

other studies this period was longer.  

As a matter of fact the duration of HD therapy has been associated with an 

increase in Pwd by several authors [103, 104, 107]. In a prospective study, in which 

patients were followed from the start of renal replacement therapy, pre-HD Pwd 

was already significantly increased after 1 year of treatment [110]. These data 

suggest a role for renal replacement therapy per se in inducing an increase in the 

intra-atrial conduction velocity in patients with ESRD. 

Autonomous nervous system and the haemodialysis session  

As discussed before, each HD session causes a reduction in intravascular 

volume, which may vary depending on the dialysis technique used and the level of 

ultrafiltration defined, according to patient’s needs. As a consequence, the HD 

session may become a stimulus for the low-pressure baroreceptors, localized in the 

large veins, in the pulmonary vessels, and in the right atrial and ventricular walls, 

which could induce an activation of the sympathetic output, resulting in an 

increased heart rate [111]. While several patients show this kind of response, other 

patterns of response have been described as well.  

The HD session may in fact be associated with phenomena such as hypotension 

and bradycardia in a considerable proportion of cases [112] and with a reduction of 

the LF and an increase of theHF component in the spectral analysis of heart rate 

[113]. A reduction in heart rate has been described even in the absence of 

intradialytic hypotensive episodes [114–116]. Furthermore, hypotensive-prone 

patients show a reduction in the LF/HF ratio HD-related, even during the sessions 

in which their haemodynamic profile is relatively stable [117, 118].  
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These observations may suggest that, at least in a certain proportion of patients, 

the HD session is accompanied by a stimulation of the parasympathetic rather than 

the sympathetic autonomic nervous system or by a displacement of the sympatho-

vagal balance in favour of vagal activity. It seems that this was the case in our 

patient, in whom the LF component of HRV progressively diminished during the 

phases preceding the arrhythmic episodes, with a consequent reduction in the 

LF/HF ratio. Even if this concept has been challenged [119, 120], LF/HF ratio is 

widely accepted as a measure of cardiac sympatho-vagal balance [121, 122]. The 

HF peak is generally considered to reflect cardiac parasympathetic nerve activity, 

while the LF should be mostly due to the sympathetic component.  

The reasons why vagal stimulation should occur during HD are not clear, but a 

mechanism such as the activation of a Bezold–Jarisch reflex in response to blood 

volume reduction could be hypothesized. The Bezold–Jarisch reflex originates in 

cardiac sensory receptors with non-myelinated vagal afferent pathways, principally 

located in the left ventricle wall. Stimulation of these inhibitory cardiac receptors 

increases parasympathetic activity and inhibits sympathetic activity. These  effects 

promote reflex bradycardia, vasodilation, and hypotension and this reflex can arise 

from the underfilled left ventricle when the intracardiac volume decreases [123].  

It has been described how HD has an arrhythmogenic effect. The majority of the 

studies available in literature deal with the association between HD sessions and 

ventricular arrhythmias [17, 124–126]. However, there are other works that 

demonstrate an increase in the frequency of HD-related premature supraventricular 

beats [17, 125]. In our case report, the number of premature supraventricular 

impulses increased dramatically during the phases immediately preceding AF onset. 

It is known that an increase in premature atrial impulses is present before 

paroxysmal AF episodes, and this increase may have a role in triggering such 

episodes. The role of the autonomous nervous systemand of the vagal stimulation, 

in particular, in the induction of AF in subjects without ESRD is well known.  

The situation observed in our clinical case is probably not infrequent in HD 

patients: the HD session represents a unique model to test in vivo, in human, the 

acute effects of changes in plasma concentrations, and blood volume. It has been 

known since a long time that stimulation of the encephalic trunk shortens atrial 



Section II – Chapter 6                                                                                                                        133 

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside 

refractoriness in a non-homogeneous way and that it causes the appearance of atrial 

ectopic beats, both isolated and runs, which may easily induce AF onsets [127].  

More recently, the existence of an ‘intrinsic’ autonomous nervous system of the 

heart has been taken into consideration, made up of large vessel receptors and 

above all of the ganglionated plexi (GP) on the epicardial surface of the atria, near 

the pulmonary vein ostia [128, 129]. The role of these structures is crucial in the 

induction of many forms of ‘vagal’ paroxysmal AF and maybe of the forms of AF 

that are caused by HD as well. Stimulation of the GP, both pharmacologically with 

mediators such as ACh and electrically, causes the appearance of focal firing from 

the adjacent pulmonary veins [130–136]. GP stimulation also reduces refractoriness 

of the atrial cells, thereby rendering AF more easily inducible by premature ectopic 

beats [137]. The importance of this mechanism, mediated by vagal stimulation of 

the GP, in causing the onset of AF is confirmed by the fact that transcatheter 

ablation of the pulmonary veins with electrical isolation turns out to be more 

effective in suppressing arrhythmias if associated with GP ablation [137, 138].  

Administration of drugs that block vagal stimulation has also been shown to 

suppress firing from the pulmonary veins [139], and to inhibit the appearance of 

those AFs that are related to stimulation of the ‘intrinsic’ autonomous nervous 

system [140]. On the contrary, in this type of vagal-mediated AF, traditional class 

Ic or III antiarrhythmic agents prove to be ineffective. Instead, these molecules have 

been shown to be effective in preventing the onset of arrhythmia in models of AF 

induced by repeated atrial stimulations, which allow longer periods of arrhythmia 

and provoke electrophysiological changes that determine an electrical remodelling 

of the atrial substrate [141].  

In conclusion, there are many similarities between ‘vagal’ paroxysmal AF, very 

frequently seen in those forms which show no structural heart disease or only 

‘minor’ anatomical changes, and the kind of AF provoked by HD sessions; in both 

cases, the presence of vagal stimulation probably induces a reduction in 

refractoriness and an increase in SVEBs, which act as triggers in the arrhythmia 

onset [142]. The phenomenon seems to set in according to a probabilistic 

mechanism: the more supraventricular premature impulses increase and atrial 

refractoriness decreases, the higher becomes the chance of triggering an AF 

episode. 
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DISCUSSION AND CONCLUSIONS 

The onset of paroxysmal AF episodes is induced by the presence of a trigger that 

acts upon a favourable substrate on the background of autonomic nervous system 

changes. In the described case report, all these three elements were present (Figure 

6.3). In fact, the HD session was associated with (i) an increase in SVEBs right  

before the AF onset, (ii) an increase in Pwd, indicating a reduction of intra-atrial 

conduction velocity, (iii) changes in extracellular electrolyte concentrations, i.e. 

increase of Ca
2+

 and decrease of K
+
, and (iv) a reduction of the LF/HF ratio derived 

from the spectral analysis of RR variability, suggesting an increase in the vagal 

component of the autonomic balance. 

 The human atrial AP model used to simulate patient’s conditions showed a 

slower depolarization phase before the AF onset, suggesting a reduction of intra-

atrial conduction velocity, together with a decrease of the ERP. These phenomena 

were enhanced when adding the activity of KACh-dependent channels to the model.  

 

Figure 6.3: Schematic diagram of the mechanisms involved in atrial onset during HD sessions. AF, 

atrial fibrillation; HD, haemodialysis; CV, conduction velocity; ERP, effective refractory period; 

Pwd, P-wave duration; SVEBs, supraventricular ectopic beats; LF/HF, low frequency/high 

frequency ratio. 
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By considering all the elements described above and relating them to data from 

the literature, we can hypothesize that intradialytic AF episodes may constitute a 

kind of ‘in vivo’ model of the vagal-induced paroxysmal forms of AF. As this 

phenomenon is not seen in all patients during HD, we must conclude that the HD 

session acts as a triggering factor only in those subjects whose anatomical 

predisposition and characteristics of sympatho-vagal balance may favour the onset 

of arrhythmia. 

If our hypothesis on the mechanism of arrhythmia triggering is correct, it would 

be possible that prevalence and incidence of AF in HD patients are higher than 

described in literature, particularly in asymptomatic patients whose arrhythmic 

episodes might go unnoticed by the medical staff. It is difficult to find a way to 

reduce the phenomenon. The demonstration that the slowing down of the intra-atrial 

conduction velocity induced by HD is inversely proportional to the extent of 

changes in plasma potassium level [30] would suggest to contain the intradialytic 

shifts of this ion as much as possible, by changing potassium concentrations in the 

dialysate and by trying to reduce pre-HD blood potassium level through diet and 

use of resins. It is even more complicated to find tools to oppose any possible 

increases in vagal tone related to the HD session. Theoretically, in patients suffering 

from AF episodes with the characteristics described above, transcatheter electrical 

isolation of the pulmonary veins could be useful, either with or without ablation of 

the GP. Anyway, before carrying out such a procedure, which undoubtedly affects 

the pathophysiological mechanism of these forms of AF, its clinical risks and 

benefits should be evaluated.  
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Abstract 

Hypertrophic cardiomyopathy (HCM) is a genetic disorder characterised by 

unexplained thickening of the left ventricle, including the septum, and myofibre 

disarray, and is the main cause of sudden cardiac death in young athletes. Usually 

asymptomatic, it leads to diastolic dysfunction and increased arrhythmic risk. 

However, due to the limited understanding of the cellular mechanisms 

underlying the disease, the causes are still unclear and a specific pharmacological 

treatment is lacking. Potential pro-arrhythmic mechanisms may include increased 

temporal and spatial variability in action potential duration (APD) as well as 

repolarisation abnormalities, such as early after-depolarisations (EADs). 

Recently, new experimental data assessed the electrophysiological profile of 

human HCM, compared with control (CTRL): diseased cardiomyocytes are 

characterised by prolonged action potential (AP) and Ca
2+

-transient (CaT), mostly 

related to an increase of Late Na
+
 current (INaL) and L-type Ca

2+
 current (ICaL), 

together with a decrease of K
+
 repolarising currents, and also changes in the Ca

2+
 

subsystem, i.e. decrease in SERCA pump Ca
2+

 uptake (Jup) and ryanodine receptors 

Ca
2+

 release (Jrel), and increase of Na
+
/Ca

+
 exchanger current (INCX). 

The aim of this study has been to investigate the ionic mechanisms underlying 

the electrical remodelling occurring in HCM, in order to identify potential 

therapeutic targets, by using a new computational method: population of models. 

Compared to traditional modelling techniques, in which a single AP model is 

used to reproduce the average cellular behaviour, the population of models 

approach accounts for inter- and intra- subjects variability. Therefore, it is 

particularly appropriate to study HCM, since biological variability seems to play 

an important role in this disease. 

Based on this experimental dataset, we constructed two populations of human 

cardiac AP models, to reproduce CTRL and HCM phenotypes respectively, and to 

account for biological variability.  

We investigated in silico the contribution of each ionic mechanism to the 

electrophysiological phenotype of the disease, by evaluating AP and CaT 

biomarkers, when adding/restoring each remodelling elements, one at a time, 

starting respectively from the CTRL/HCM population. 

The simulated HCM phenotype was in agreement with the experimental 

observations, showing prolonged AP and CaT compared to CTRL, together with an 

increase in their variability. In addition, simulation results show that HCM 

promotes EADs (16%), especially in models characterised by very low IKr, together 

with high INaL, ICaL and INCX.  

Both selective INaL and INCX block partially reversed the HCM phenotype, and 

reduced EADs occurrence. Their simultaneous block turned out to be even more 

effective, suggesting the combination of both treatments as a potential anti-

arrhythmic strategy in HCM. 
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INTRODUCTION 

Hypertrophic Cardiomyopathy 

Hypertrophic cardiomyopathy (HCM) is the most common monogenic cardiac 

disorder and the main cause of sudden cardiac death in young athletes [1], with a 

reported prevalence of 1 in 500 worldwide [2].  

Usually asymptomatic, it is characterised by an unexplained thickening 

(hypertrophy) of the left ventricle, with predominant involvement of the inter-

ventricular septum, and sometime also of the right ventricle; other hallmark features 

of the disease are myocyte disarray and fibrosis (Figure 7.1). 

 

Figure 7.1: Alterations in hypertrophic cardiomyopathy (HCM, right) compared to non-diseased 

control (CTRL, left): HCM promotes disarray and fibrosis, often resulting in hypertrophy, especially 

in the left ventricle and in the inter-ventricular septum (white arrow), as shown on the cardiac 
magnetic resonance images (modified from [3]). 

Hypertrophic cardiomyopathy was defined a “disease of the sarcomere” more 

than 20 years ago [4], when the first three disease genes to be identified were found 

to encode components of the contractile apparatus of heart muscle. Mutations in 
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nine genes encoding sarcomeric proteins have now been convincingly shown to 

cause HCM. These mutations generally increase myofilament activation and result 

in myocyte hyper-contractility and excessive energy use. Alterations in myocardial 

energetics and in Ca
2+

-handling, combined with stimulation of signalling pathways, 

promote myocyte growth with aberrant tissue architecture (i.e. myofibrillar disarray 

and myocardial fibrosis) [3]. In addition, the changes in Ca
2+

-handling confer a 

predisposition to arrhythmias [5] and may be implicated in diastolic dysfunction, 

another trait of this disease.  

At least two mechanisms explain how sarcomeric mutations alter Ca
2+

 balance 

[3]. First, mutations affecting the thin-filament regulatory proteins tropomyosin, 

troponin T, and troponin I all enhance calcium sensitivity by increasing the affinity 

of troponin C for calcium [6]: since troponin is the principal dynamic Ca
2+

 buffer in 

the sarcoplasm the increased affinity should elevate Ca
2+

 levels during diastole. 

Second, sarcomeric mutations increase the energy requirements of myosin ATPase. 

Since the cross-bridge cycle, which generates the contractile force of the myocyte, 

accounts for about 70% of the cardiomyocyte ATP consumption, contractile 

inefficiency could compromise the cell energetics [7]. This would be expected to 

compromise in turn the energy-requiring transporters, e.g. Na
+
/K

+
 and SERCA 

pumps, thus affecting intracellular concentrations (mainly Na
+
 and Ca

2+
). 

More recently, new experimental data assessed the electrophysiological profile 

of human HCM compared with non-diseased controls (CTRL) [8], by highlighting 

the subtle changes occurring at the molecular and cellular levels which had received 

limited attention before, and are likely to play a crucial role in arrhythmias onset.  

Diseased cardiomyocytes are characterised by prolonged action potential (AP) 

and Ca
2+

 transient (CaT), mostly depending on the increase of Late Na
+
 current 

(INaL) and L-type Ca
2+

 current (ICaL), together with a decrease of K
+
 repolarising 

currents. Na
+
/Ca

2+
 exchanger (NCX) activity is enhanced, while cellular Ca

2+
-

handling is impaired, i.e. SERCA uptake and ryanodine receptors (RyRs) release 

are reduced. AP prolongation leads to an increased occurrence of early after-

depolarisations (EADs), i.e. spontaneous depolarisation during the plateau phase, 

often associated with re-opening of Na
+
 or Ca

2+
 channels, and considered a primary 

electrophysiological trigger for ventricular arrhythmias [9]. Also, delayed after-

depolarisations (DADs), occurring during the diastolic period and related to 
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spontaneous Ca
2+

 release, are more frequent in HCM than in CTRL, suggesting 

additional arrhythmogenic mechanisms.  

Intracellular Ca
2+

 concentration during diastole is significantly increased in 

HCM, leading in turn to an enhanced Ca
2+

/calmodulin kinase II (CaMKII) activity 

and phosphorylation of its downstream targets. By slowing down ICaL inactivation 

and increasing INaL amplitude, CaMKII contributes to APD prolongation and related 

arrhythmias. The enhanced INaL is responsible for intracellular Na
+
 overload, which 

favours reverse over forward NCX mode, contributing to cytosolic Ca
2+

 overload 

and further promoting CaMKII activation, thus setting up a vicious circle [8]. 

Finally, an increased background Na
+
 current (INab) may contribute as well to 

intracellular Na
+
 and Ca

2+
 overload, as suggested for heart failure [10]. 

Despite its epidemiological relevance, HCM is largely an orphan condition 

because it still lacks a disease-specific pharmacological treatment [11, 12], and this 

is partly due to the limited understanding of the cellular mechanisms involved. 

Therapeutic targets in HCM are likely to be most effective when directed to the 

molecular predeterminants of the HCM phenotype. As an example, the potential 

implications of INaL inhibition have been already shown: ranolazine at therapeutic 

concentrations partially reverses the HCM-related cellular abnormalities via INaL 

inhibition, with negligible effects in CTRL [8]. Since many other ionic currents and 

mechanisms are affected by this disease, a more detailed understanding of the 

cellular processes underlying the HCM phenotype is definitely needed to highlight 

other potential therapeutic targets and strategies.  

Computational cardiac modelling constitutes a valuable tool in this context: by 

correlating the ion channel remodelling measured in human HCM cells with the 

electrophysiological phenotype of the disease, in silico simulations may help to 

understand the ionic mechanisms involved at the cellular level and to identify 

possible therapeutic targets to reduce the arrhythmic risk in HCM patients. In 

addition, biological variability is very high in HCM [8], and it is likely to play a 

major role in characterising the individual response to drug treatment: therefore, the 

population of models approach (POFs) is particularly appropriate to investigate this 

disease, since it accounts for variability, usually neglected in the traditional 

modelling techniques. 
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Population of Models 

The population of models (POMs) approach, recently developed by the 

University of Oxford (UK) [13–16], is a novel methodology in computational 

cardiac AP modelling. Instead of a single AP model, representative of the average 

cell behaviour, simulations are performed in thousands of models at the same time 

(a population, indeed), all generated by varying some of the model parameters 

around their nominal values. Each model represents a different cell and the cell-to-

cell differences account for both inter- and intra- subject variability.  

As an example, Figure 7.2 shows different experimental APs (pink traces) all 

recorded from rabbit purkinje cells. The biological variability, well represented 

here, is neglected when using a single Purkinje AP model to reproduce these 

experimental data, e.g. the Corrias-Giles-Rodriguez [17] (left panel, black trace), 

while a population of models (right panel, black traces) allows for a better coverage 

of the experimental dataset. 

 

Figure 7.2: Experimental AP recordings (pink traces, both panels) from rabbit purkinje cells (data 

by Janssen Pharmaceutica). When considering only a single AP model (black trace, left panel), the 

biological variability is completely neglected, while the population of models (black traces, right 

panel) is able to better reproduce the experimental dataset (modified from [14]).  

All the models in the population share the same differential equations, but each 

of them has a different parameter set. Depending on the purpose of the study, the 

number of generated models, the parameters to be varied, the scaling factors to 
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apply to the nominal parameter values and the sampling of the parameter space, 

may be different. More details about the POMs approach are given in Appendix B1. 

Aims 

The aim of this work has been to investigate the electrophysiological phenotype 

of human HCM using the population of models approach, to account for the 

biological variability. By integrating experimental data and computer simulations, 

we aimed to improve the understanding of the ionic mechanisms underlying the 

electrical remodelling occurring in this disease, and also their individual 

contribution to the disease-related arrhythmogenicity. The ultimate goal was 

therefore to identify possible therapeutic targets and to test in simulations the 

potential anti-arrhythmic effects of their selective/combined block.   

METHODS 

Experimental Data 

All the experimental data used in this work were collected by our collaborators 

from the University of Florence (Coppini et al. [8]), using human cardiomyocytes 

from n=26 HCM patients, compared with n=8 non-failing non-hypertrophic 

controls (CTRL). HCM cardiomyocytes were hypertrophic, as indicated by an 

increased cell volume and capacitance compared with CTRL. 

AP and CaT recordings 

Single cell patch-clamp measurements and intracellular Ca
2+

 studies produced an 

extensive set of AP and CaT biomarkers: AP duration (APD), computed at 20%, 

50% and 90% of repolarisation (APD20, APD50 and APD90, respectively), AP 

amplitude (APamp), mean upstroke velocity (dV/dtMEAN, computed as the mean 

dV/dt value during the upstroke phase), resting membrane potential (RMP), CaT 

duration (CaTD), computed at 50% and 90% of CaT decay (CaTD50 and CaTD90), 

CaT time to peak (CaTttp), CaT amplitude (CaTamp) and diastolic Ca
2+

 

concentration ([Ca
2+

]iD). A summary of all the AP and CaT biomarkers considered 

in this study is shown in Figure 7.3 and Figure 7.4. In addition, both early and 

delayed after-depolarisations frequencies were monitored in HCM and CTRL. 
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Figure 7.3: Summary and description of the AP biomarkers considered in this study: AP duration 

(APD), computed at 20%, 50% and 90% of repolarisation (APD20, APD50 and APD90, respectively), 

AP amplitude (APamp), mean upstroke velocity (dV/dtMEAN, computed as the mean dV/dt value during 

the upstroke phase), mean resting potential (RMP). 

 

Figure 7.4: Summary and description of the CaT biomarkers considered in this study: CaT duration 

(CaTD), computed at 50% and 90% of CaT decay (CaTD50 and CaTD90), CaT time to peak (CaTttp), 

CaT amplitude (CaTamp) and diastolic Ca2+ concentration ([Ca2+]iD). 
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Experimental data have been acquired at three different stimulation frequencies 

(0.2, 0.5 and 1 Hz) and results were consistent. In this study, only experiments 

recorded at 1 Hz have been preliminary considered, because low frequencies 

simulations are computationally more expensive. 

Voltage-Clamp experiments 

Voltage clamp experiments were also performed for different ionic currents: late 

component of Na
+ 

current (INaL), L-type Ca
2+

 current (ICaL), transient outward K
+
 

current (Ito) and in the inward rectifier K
+
 current (IK1).  

Protein and mRNA expression 

Protein and mRNA expressions were analysed, in order to quantify the changes 

occurring in the main ionic current subunits. In addition to all the currents already 

considered for Voltage-Clamp (INa, ICaL, Ito and IK1), data have been acquired for the 

rapid and slow delayed rectifier K
+
 currents (IKr and IKs), Na

+
/Ca

2+
 exchanger 

(NCX), SERCA pump and ryanodine receptors (RyRs).  

INaL inhibition 

The effect of 10 µM of Ranolazine, a selective INaL inhibitor [18], have been 

evaluated to assess the role of this current, highly increased in HCM compared to 

CTRL. All the AP and CaT biomarkers have been measured 3 min after drug 

exposure and repeated 5 min after washout, both for HCM and CTRL cells, and 

together with INaL Voltage-Clamp recordings. 

Baseline Model 

As baseline to build the population, we used the endocardial version of the 

human ventricular AP model published by O’Hara-Rudy in 2011 (ORd [19]): it is 

the most recent human ventricular AP model and it has been developed and 

extensively validated on experimental data acquired in small tissue preparations 

from more than 100 undiseased human hearts.  

A schematic representation of this model, showing all its ionic currents, 

pumps/exchangers, buffers, fluxes and compartments is shown in Figure 7.5. 
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Figure 7.5: Schematic representation of the ORd model, showing all its ionic currents, 

pumps/exchangers, buffers, fluxes and compartments [19]. 

However, a few changes have been required to the original model, in order to 

better reproduce the experimental CTRL data considered in this study: the maximal 

conductance of the transient outward K
+
 current (Ito) has been increased 2.5 times, 

based on the corresponding experimental Ito I-V curve; intra- and extra-cellular 

ionic concentrations have been set as in the AP experimental recordings; since the 

resting membrane potential in the experiments was about 10 mV higher than the 

one of the ORd model, and the K
+
 equilibrium potential was different from the one 

resulting from the Nernst equation, using the experimental K
+
 concentrations, we 

fixed the K
+ 

equilibrium potential to the one measured for the IK1 I-V curve. 

In addition, the fast Na
+
 current (INa) inactivation gates have been modified, to 

fix a well-known problem concerning the INa in the ORd model, which prevent 

propagation in 2D or 3D tissue when considering hyperkalaemia. 

Finally, the current stimulus duration has been extended to 1 ms, and the current 

stimulus amplitude has been set to twice the AP threshold, to allow a larger 

integration step to solve the model ODEs. All the changes to the original ORd 

model mentioned above are discussed in details in Appendix B2. 
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The CTRL population 

An initial population of 30,000 models was developed, starting from the baseline 

model and varying a total of 11 parameters, including the maximal conductances of 

the main ionic currents/pumps/exchangers characterising the human ventricular AP. 

These parameters were probabilistically sampled in the [0-200%] range, with 

respect to their baseline parameter values, using the Latin Hypercube Sampling 

(LHS) [20]. The list of all the parameters which have been varied, together with 

their original value in the ORd model, is shown in Table 7.1. 

Table 7.1: List and description of all the parameters scaled to build the CTRL population: 

# Parameter Description Original Value 

1 gKr max conductance of rapid delayed rectifier K+ current (IKr) 0.046 mS/μF 

2 gKs max conductance  of slow delayed rectifier K+ current (IKs) 0.0034 mS/μF 

3 gK1 max conductance of inward rectifier K+ current  (IK1)  0.1908 mS/μF 

4 gto max conductance of transient outward K+ current  (Ito) 0.02 mS/μF 

5 PCa permeability of L-type Ca2+ channel (ICaL current) 0.0001 1/s 

6 gNaL max conductance of Late Na+ current (INaL) 0.0075 mS/μF 

7 gNa max conductance Fast Na+ current (INa) 75 mS/μF 

8 gNCX max current of Na+/Ca2+ exchanger (INCX) 0.0008 μA/μF 

9 PNaK max conductance of Na+/K+ pump (INaK) 30 mS/μF 

10 SF_Jrel scaling factor for Ca2+ release, via ryanodine receptors (Jrel) 1 nu * 

11 SF_Jup scaling factor for Ca2+ uptake, via SERCA pump (Jup)  1 nu * 

* In the ORd model, Jrel and Jup do not have any parameter to represent their max conductances. 

Therefore, SF_Jrel and SF_Jup were added to the original formulations, to scale both currents in the 

selected range, and to allow these currents to vary in the CTRL population models. 

Hereafter, all the variables listed above will be referred to using their 

corresponding scaling factors, i.e. SF_IKr, SF_IKs, SF_IK1, SF_Ito, SF_ICaL, SF_INaL, 

SF_INa, SF_INCX, SF_INaK, SF_Jrel and SF_Jup. All these variables will be ranging 

from 0 to 2, according to the [0-200%] range used to build the CTRL population. 
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Population results will be often presented using boxplots of these scaling factors, 

in order to highlight the currents whose densities are particularly high/low with 

respect to the baseline model (in which all the scaling factors are equal to one). On 

each box, the central mark is the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered 

outliers, and outliers are plotted individually. To compute statistical significance,  

two-sample t-test (function ttest2 in Matlab) has been used for samples comparison. 

When considering a special subgroup of models (e.g. all the models showing 

EADs), a scaling factor distributed only in a small portion of the whole [0-200%] 

range may imply an important role played by its corresponding current in that 

special subgroup. In the initial population, all the scaling factors have a similar 

distribution, and they cover the whole range from 0 to 2, where 1 indicates that the 

corresponding ionic current is unaltered from the baseline model, while big/small 

scaling factors correspond to its up/down regulation. Therefore, for the initial 

population, all the scaling factor boxplots will be equally distributed (Figure 7.6). 

 

Figure 7.6: Scaling factors distribution in the initial population of 30,000 models. Parameters have 

been probabilistically sampled with LHS in the [0-200%] range with respect to their original value. 
They span from 0 to 2, where 1 indicates that the corresponding ionic current is unaltered from the 

baseline model, while big/small scaling factors correspond to its up/down regulation. 
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After running simulations for the initial 30,000 models, a calibration process is 

required, in order to select only the ones fully in agreement with the experimental 

data described in the corresponding Methods section. Examples of this calibration 

process are shown in Figure 7.7, considering only 2 AP/CaT biomarkers at a time. 

Calibration ranges (thick black lines) are defined considering the minimum and 

maximum values of the experimental data (light blue squares), except outliers (dark 

grey squares). Models whose biomarkers are within these ranges are accepted (blue 

dots), while the other ones are discarded (light grey dots). The baseline model is 

shown as a white diamond. This calibration is repeated for all the AP and CaT 

biomarkers available, and only the models satisfying all the considered constraints 

at the same time are included in the final CTRL population. 

 

Figure 7.7: Two examples of the CTRL calibration process, considering two AP and two CaT 

biomarkers: experimental data/outliers (light blue/dark grey dots); calibration ranges (thick black 

lines); accepted/discarded models (blue/light grey dots); baseline model (white diamond). Models 

satisfying the single AP or CaT constraints are selected in every step, and only the ones which 
satisfy all of them at the same time are included in the final CTRL population. 

The HCM population 

The HCM population was built from the CTRL one, by applying the electrical 

remodelling experimentally found in HCM ventricular myocytes [8], as described in 

the Experimental Data Methods section. All the ionic currents have been modified 

by up- or down- regulating the corresponding conductance. Based on V-clamp 

experiments, we included an increase of INaL (+165%) and ICaL (+30%), and a 

decrease of Ito (-70%) and IK1 (-30%), together with an increase of ICaL inactivation 

slow and fast time constants (+20% and 30%, respectively). In addition, 

experimental data on mRNA expressions were used to modulate the K
+
 repolarizing 
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currents (IKr, -45% and IKs, -60%), SERCA pump (Jup, -15%), RyRs release (Jrel, -

15%) and Na
+
/Ca

2+
 exchanger (INCX, +25%). Finally, we increased cell volume 

(+90%) and, based on literature review, we included an increased affinity of 

Troponin for Ca
2+

 (TRPNmax, +50%) [6], a reduction of Na
+
/K

+
 pump (INaK, -30%) 

[21] and an increase of background Na
+
 current (INab, +165% as for INaL) [10].  

All the changes listed above have been tested in the baseline model first, and 

then extended to the whole CTRL population, in order to build the HCM one. 

Simulation Details 

All models were paced at 1 Hz until steady state (500 s). For every model, the 

last ten AP and CaT traces were saved and used to compute an average set of AP 

and CaT biomarkers, as done in the experiments. All numerical simulations and 

biomarkers evaluation were performed with the open source cardiac software 

Chaste [22], using a CellML [23] implementation of the ORd model, modified as 

described in the CTRL population methods section. Post-processing of AP and CaT 

traces, together with data analysis, were performed in Matlab (Mathworks, Inc.). 

INaL and INCX inhibition 

The effects of INaL and INCX inhibition have been tested in simulation by reducing 

the corresponding maximal conductance by 60% and 30%, respectively, in both the 

CTRL and HCM populations. INaL block percentage has been set accordingly to 

experimental data acquired in presence of Ranolazine 10 µM [8], also used to 

compare simulation results. Since no experimental data were available for INCX, we 

tried different block percentages and we finally chose 30% because many models, 

both CTRL and HCM, were not repolarising properly for higher block values. 

Repolarisation Abnormalities 

All the 10 saved APs have been checked for repolarisation abnormalities. The 

AP traces not able to repolarise properly during the diastole (Vm > -65 mV) or 

showing a positive derivative of voltage over time after the AP peak (150 ms) have 

been selected as abnormal. Repolarisation abnormalities were divided in: short 

EADs (when the model repolarised before 1000 ms), long EADs (when the model 

was able to repolarise, but it required more than 1000 ms) and repolarization 

failures (RF), when the model was not going back to its resting potential. 
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RESULTS 

The CTRL population 

As a result of the calibration process, only 2,254 models out of the initial 30,000 

were accepted in the final CTRL population. The calibration was based on the 

experimental data presented in the corresponding Methods section, and it was 

divided into two steps.  

As first step, all the models in which Chaste failed to compute AP and CaT 

biomarkers were discarded (1897 models, about 6% of the population). These are 

models which often fail to repolarise: therefore, the software is not able to find the 

reference points needed to compute AP and CaT biomarkers. As expected, these 

models are usually characterised by a very low IKr when compared to the baseline 

model, but other mechanisms are involved too, e.g. low IKs and IK1, high ICaL and 

INCX and low INaK. Figure 7.8 shows the scaling factors distribution for these 

rejected models, using a boxplot for each parameter varied in the population. 

 

Figure 7.8: Scaling factor boxplots for the models in which Chaste was unable to compute the AP 
and CaT biomarkers. Among other ionic mechanisms, these models are characterised by a very low 

IKr and a high ICaL, compared to the baseline model: therefore they often fail to repolarise  

(* p<0.01,* p<0.001,*** p<0.0001, compared to all the initial population of 30,000). 
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To highlight potential correlations between the scaling factors of these rejected 

models, Figure 7.9 shows all the 2-by-2 combinations of each scaling factor against 

the other ones. Each grey dot corresponds to a different model, and it is quite 

interesting to see how these models are distributed in the scaling factors space, e.g. 

almost all the models have a very small SF_IKr (from 0 to 0.5) while only a few of 

them have a low SF_ICaL, in agreement with the results shown in Figure 7.8. 

 

Figure 7.9: 2-by-2 plots of the scaling factors space, for the AP models in which Chaste was unable 

to compute the AP and CaT biomarkers. This representations highlights scaling factor distributions, 

e.g. almost all the models have a very small SF_IKr while only a few of them have a low SF_ICaL. 

As second step, calibration ranges based on the minimum and maximal 

experimental data for the AP and CaT biomarkers were considered: only the models 

satisfying all the experimental constraints at the same time were included in the 

final CTRL population, for a total amount of 2,254 models out of the 28,104 

remaining after the previous calibration step. 

As shown in Table 7.2, the major constraints for the population were the ones 

defined by the CaT biomarkers, especially CaTttp and CaTamp, while most of the 

simulated AP biomarkers were within the corresponding experimental ranges. 
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[Ca
2+

]iD was not considered in the calibration process because the model values 

were completely out of range with respect to the experimental data: since [Ca
2+

]iD 

has been computed by converting a fluorescence signal, with poor quantitative 

reliability, we used this biomarker only to compare HCM vs CTRL, and we didn’t 

consider its numerical value per se.  

Table 7.2: Number of models satisfying the single/combined AP and CaT biomarker constraints.  

 Biomarkers 
Models satisfying the single/combined 

biomarker constraints 

All AP 

Biomarkers 

APD20 23,306 

22,725 

17,551 

APD50 26,231 

APD90 26,618 

RMP 27,994 - 

dV/dtMEAN 22,207 - 

APamp 27,163 - 

All CaT 

Biomarkers 

CaTD50 16,663 
15,048 

  3,509 
CaTD90 18,086 

CaTttp   7,104 - 

CaTamp   4,558 - 

[Ca
2+

]iD 11,626 not included in the final population 

Final Calibration 2,254 

Figure 7.10 shows the accepted/discarded models distribution for the CTRL 

population, considering 2-by-2 plots of the biomarkers space, together with the 

experimental data and the corresponding calibration ranges. As for AP biomarkers 

(top half), APD90 is plotted against all the other ones, while for CaT biomarkers 

(bottom half) CaTD90 is plotted vs all the other ones. Since [Ca
2+

]iD was not 

considered in the calibration, its experimental ranges are marked with a dotted line. 

Representative AP and CaT traces of both accepted and discarded models in the 

CTRL population are shown in Figure 7.11 and Figure 7.12. 

Finally, the scaling factors distribution in the CTRL population is shown as both   

boxplots and 2-by-2 plots in Figure 7.13 and Figure 7.14, respectively. Compared to 

the initial population, the accepted models have a slightly higher IKr, INa and Jup. 
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Figure 7.10: Calibration process of the CTRL population, showing how the accepted/discarded 

model biomarkers. The models included in the population are the ones in agreement with the 

experiments and their corresponding calibration ranges, defined considering the minimum and 

maximum experimental value. [Ca2+]iD has not been considered in the calibration process. 
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Figure 7.11: Representative AP traces of accepted/discarded (blue/grey lines) models in the CTRL population. 
The baseline model AP is shown in white. 

 

Figure 7.12: Representative CaT traces of accepted/discarded (blue/grey lines) models in the CTRL population. 
The baseline model CaT is shown in white. 
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Figure 7.13: Scaling factor boxplots for the CTRL population. Compared to the initial population, 
the accepted models have a slightly higher IKr, INa and Jup (* p<0.01,* p<0.001,*** p<0.0001). 

 

Figure 7.14: 2-by-2 plots of the scaling factors space for the models in the CTRL population. 
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Table 7.3 reports the average AP and CaT biomarker values in the CTRL 

population, compared with the corresponding experiments (both data are shown as 

mean±stdTD). As already evident from Figure 7.10, the calibrated CTRL 

population well represents the experimental data ranges (apart from [Ca
2+

]iD). 

Table 7.3: Comparison of the AP and CaT biomarkers computed from the experimental 

CTRL data and the ones from the experimentally-calibrated population of models. 

AP Biomarkers in CTRL CaT Biomarkers in CTRL 

 Experiments 
(n = 24) 

Models  
( n = 2,254) 

 
Experiments 

(n = 12) 
Models  

(n = 2,254) 

APD20 115±40 ms 117±29 ms CaTD50 175±89 ms 187±43 ms 

APD50 230±77 ms 212±58 ms CaTD90 364±161 ms 492±86 ms 

APD90 354±117 ms 285±91 ms CaTttp 50±10 ms 50±8 ms 

APamp 110±9 mV 118±6 mV CaTamp 351±72 mV 359±84 mV 

RMP -77.6±3.5 mV -77.9±0.5 mV [Ca
2+

]iD 140±32 nM 81±23 nM 

dV/dtMEAN 24±8 V/s 32±8 V/s [Na
+
]i N.A. 7.1±1.7 mM 

An additional comparison between the CTRL population and experimental 

biomarkers is shown in Figure 7.15. Statistical significance is not shown because p-

values were all very small due to the high difference in sample sizes (n=12/24 cells 

vs n=2,254 models), even when the values were very close one another. 

Finally, to determine correlations between the properties of individual ionic 

currents, represented by the corresponding scaling factors, and the AP and CaT 

biomarkers, we used partial correlation method [24]. We chose to use partial 

correlation over other correlation measures because partial correlation controls for 

the effects of one or more additional variables when looking for correlations 

between two quantities, which is particularly important here, given that our models 

are generated by varying multiple parameters simultaneously. Partial correlation 

coefficients span from -1 to +1, where -1 indicates a strong negative correlation 

between the two considered variables, and +1 a strong positive one. Results are 

shown in Figure 7.16: as expected, K
+
 repolarising currents are negatively 

correlated with APDs, while INaL and ICaL are positively correlated with it. Jup and 

Jrel have a strong influence on CaT, and both dV/dtMEAN and APamp are positively 

correlated with INa. 
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Figure 7.15: Comparison of the AP and CaT biomarkers between the CTRL population (blue 

boxplot) and the experiments (black boxplots): on each box, the central mark is the median, the 

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data 

points not considered outliers, and outliers are plotted individually (light grey crosses). The 

experimental data have been superimposed to their boxplot (light blue squares), as well as the 

experimental outlier (dark grey squares), not considered for the calibration process. The 

experimental data and their variability are well reproduced by the CTRL population for all the 

biomarkers, apart from [Ca2+]iD which is lower in most of the models. 
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Figure 7.16: Partial correlation coefficients to highlight the potential correlations between each of 

the parameters varied in the CTRL population and the corresponding model biomarkers. As 

expected, K+ repolarising currents are negatively correlated with APDs, while INaL and ICaL are 
positively correlated with it. Jup and Jrel have a strong influence on CaT, and both dV/dtMEAN and 

APamp are positively correlated with INa.  

The HCM population 

In agreement with experiments, all the APDs were significantly longer in HCM 

than in CTRL (e.g. APD90 458±109 vs 285±91 ms). Moreover, the HCM population 

showed an increased CaTD, smaller CaTamp and higher [Ca
2+

]iD, all consistent with 

experiments. From a qualitative point of view, the simulated HCM phenotype is 

fully in agreement with the experimental data, even if the quantitative variations are 

sometimes different. 

The full list of AP and CaT biomarkers in the HCM experimental data and in the 

corresponding POMs is shown in Table 7.4, followed by a quantitative comparison 

between HCM and CTRL, both for experiments and POMs (Table 7.5). It is worth 

noticing that only the models with normal APs (i.e. not showing any repolarisation 

abnormalities) have been considered to compute the reported values. 
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Table 7.4: Comparison of the AP and CaT biomarkers computed from the experimental 

HCM data and the ones computed from the HCM population of models (data are presented 
as mean±std). 

AP Biomarkers in HCM CaT Biomarkers in HCM 

 
Experiments 

(n = 57) 
Models  

( n = 1,894) 
 

Experiments 
(n = 19) 

Models  
(n = 1,894) 

APD20 298±123 ms 165±26 ms CaTD50 329±121 ms 287±76 ms 

APD50 428±170 ms 321±58 ms CaTD90 602±174 ms 677±86 ms 

APD90 578±217 ms 458±109 ms CaTttp 116±36 ms 60±12 ms 

APamp 111±11 mV 120±5 mV CaTamp 292±63 mV 282±104 mV 

RMP -77.2±7.8 mV -77.3±1.0 mV [Ca
2+

]iD 222±81 nM 100±28 nM 

dV/dtMEAN 21±3 V/s 24±6 V/s [Na
+
]i N. A. 8.1±1.7 mM 

Table 7.5: Comparison of HCM vs CTRL for both experiments and POMs (data are 
presented as mean±std) 

AP Biomarkers in HCM vs CTRL CaT Biomarkers in HCM vs CTRL 

 Experiments Models  Experiments Models 

APD20 +159% (***) +40% CaTD50 +88% (**) +53% 

APD50 +86% (***) +52% CaTD90 +66% (**) +38% 

APD90 +63% (***) +61% CaTttp +131% (***) +19% 

APamp +2.0% +1.8% CaTamp -17% -22% 

RMP -0.6% -0.7% [Ca
2+

]iD +58% (*) +24% 

dVdtMEAN -11% -25% [Na
+
]i N. A. +14% 

* p<0.01, ** p<0.001, *** p<0.0001 (statistical significance not shown for POMs, since 

all p values were really small due to the high number of models) 

To better show the HCM population and its variability, both in comparison with 

the CTRL one and the experimental data, alternative representations are shown in 

Figure 7.17 and Figure 7.18, considering 2-by-2 plots of the AP and CaT 

biomarkers space and boxplots. In addition, some representative AP, CaT, INaL and 

ICaL traces are shown in Figure 7.19, Figure 7.20, Figure 7.21 and Figure 7.22 

respectively. 
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Figure 7.17: Visual representation of the HCM POMs in the biomarkers space, compared to CTRL. 

The POMs is able to reproduce quite well the HCM phenotype from a qualitative point of view, even 

if with respect to the corresponding experimental data, HCM models have a shorter APD20 and a 

shorter CaTttp.  
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Figure 7.18: Comparison of the AP and CaT biomarkers between the HCM population (pink 

boxplots) and the experiments (black boxplot): on each box, the central mark is the median, the 

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data 

points not considered outliers, and outliers are plotted individually (light grey crosses). The 

experimental data have been superimposed to their boxplot (light pink squares), as well as the 

experimental outlier (purple squares). The experimental data and their variability is well 
reproduced by the HCM population for most of the biomarkers, apart from APD20 and CaTttp, both 

shorter in the models, and [Ca2+]iD, already out of range in the CTRL population. 
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Figure 7.19: Representative AP traces from the HCM POMs (pink lines), compared with the 

corresponding CTRL ones (blue lines). The baseline CTRL model and its correspondent HCM 

version are shown in white and black, respectively. 

 
Figure 7.20: Representative CaT traces from the HCM POMs (pink lines), compared with the 
corresponding CTRL ones (blue lines). The baseline CTRL model and its correspondent HCM 

version are shown in white and black, respectively. 
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Figure 7.21: Representative INaL traces from the HCM POMs (pink lines), compared with the 

corresponding CTRL ones (blue lines). The baseline CTRL model and its correspondent HCM 

version are shown in white and black, respectively. 

 

Figure 7.22: Representative ICaL traces from the HCM POMs (pink lines), compared with the 

corresponding CTRL ones (blue lines). The baseline CTRL model and its correspondent HCM 

version are shown in white and black, respectively. 
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As already done for the CTRL population, we computed the partial correlation 

coefficients to verify the effect of the electrical remodelling occurring in HCM on 

the correlations between ionic currents and AP and/or CaT biomarkers. Partial 

correlation results are shown in Figure 7.23, with the same colour code used for 

Figure 7.16. Compared to CTRL, in the HCM population INaL (highly increased in 

HCM) has a much stronger effect on APDs, while IK1 and Ito (both reduced in 

HCM) have a lighter effect on RMP, dV/dtMEAN and APamp. As for CaT biomarkers, 

Jrel and Jup seem to have a stronger effect on CaTD, together with INCX and INaK. 

 

Figure 7.23: Partial correlation coefficients to highlight the potential correlations between each of 

the parameters varied in the HCM population and the corresponding model biomarkers. Compared 

to CTRL (Figure 7.16) the currents which are increased in HCM have a bigger effects on 
biomarkers (e.g. INaL on APDs), while the ones which are reduced have lower impact. 

Finally, a comprehensive comparison of HCM vs CTRL, considering all the AP 

and CaT biomarkers, and showing both POMs and experimental data, is given in 

Figure 7.24. The simulated HCM phenotype well reproduces the experimental 

dataset and its variability, although there are some qualitative differences, which 

may be related to intrinsic characteristics of the baseline model used to build the 

CTRL population or to choice of parameters varied to build the population. 
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Figure 7.24: Visual comparison of HCM vs CTRL, showing both POMs and experimental data. For 

each of the 11 AP and CaT biomarkers, the boxplots represent POMs values, while the experiments 

are shown individually as small squares. The colour legend is the same used for the entire Results 
chapter: CTRL is blue (light blue for data) and HCM is pink (light pink for data). The simulated 

HCM phenotype well reproduces the experimental dataset and its variability, although there are 

some qualitative differences: the APD20 increase in HCM vs CTRL is much higher in the 

experimental data than in the POMs. The same happens for CaTttp and [Ca2+]iD, already out of 

range in the CTRL population. Some of these limitations may be overcome by slightly tuning the 

electrical remodelling considered to build the HCM population, starting from the CTRL one (e.g. 

[Ca2+]iD),while other are more related to the baseline model and the population design, e.g. the 

increase in CaTttp cannot be achieved by acting on current conductances only. 
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Repolarisation Abnormalities 

Repolarisation abnormalities have been found in 360 HCM models out of 2,254 

(16%), and they have been classified as described in the Methods section, i.e. 

short/long EADs and repolarisation failure (RF). Their relative occurrence, together 

with a representative trace for each type, is shown in Figure 7.25. 

 

Figure 7.25: Occurrence of repolarisation abnormalities in the HCM population, classified 

in three different types: short/long EADs and RF. For each type, a representative trace is 
shown, in agreement with the colour legend (green, pink and grey respectively). 

To better understand the ionic mechanisms underlying these repolarisation 

abnormalities, scaling factor boxplots for each of the subgroups have been 

compared: normal APs (Figure 7.26), short EADs (Figure 7.27), long EADs (Figure 

7.28) and RF (Figure 7.29). 
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Figure 7.26: Scaling factor boxplots of the HCM models having a normal AP, i.e. not showing any 

repolarisation abnormality. As for the CTRL population, these models have a slightly higher IKr, INa 

and Jup (* p<0.01,* p<0.001, *** p<0.0001 compared to the initial parameter distribution). 

 

Figure 7.27: Scaling factor boxplots of the HCM models showing short EADs, compared to the ones 

with a regular AP (* p<0.01,* p<0.001,*** p<0.0001). These models are characterised by low IKr, 

high ICaL and INaL, slightly high INCX and low Jup.  
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Figure 7.28: Scaling factor boxplots of the HCM models showing long EADs, compared to the ones 

with a regular AP (* p<0.01,* p<0.001,*** p<0.0001). These models are characterised by low IKr, 

high ICaL and INaL, very high INCX and lower Jrel. 

 

Figure 7.29: Scaling factor boxplots of the HCM models showing RF, compared to the ones with a 

regular AP (* p<0.01,* p<0.001,*** p<0.0001). These models are characterised by a very low IKr, 

high ICaL, INa and INCX and low Jrel. 
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Therefore, the ionic mechanism who seems to play the major role in 

repolarisation abnormalities is IKr: the smaller its scaling factor, and therefore the 

current density, the more severe the EADs, up to RF. In addition, short and long 

EADs are often characterised by a high INaL and ICaL, both contributing toward an 

additional increase of APDs, and also an increased activity of NCX.  

The link between low scaling factors for IKr and repolarisation abnormalities is 

even more evident when considering 2-by-2 plots of the scaling factors space, 

comparing the EADs/RF subgroups with the normal APs one (Figure 7.30, Figure 

7.31 and Figure 7.32 for short EADs, long EADs and RF, respectively). 

In the different subgroups, the models are always clustered in the bottom half of 

the SF_IKr range, with values decreasing from short/long EADs to RF. Additional 

correlations between other ionic mechanisms (INaL, ICaL and INCX) is emerging as 

well, e.g. many of the models showing short EADs have both INaL and ICaL up-

regulated at the same time. 

 

Figure 7.30: 2-by-2 plots of the scaling factors space for the HCM models showing short EADs 

(green dots), compared the ones with normal APs (black dots). 
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Figure 7.31: 2-by-2 plots of the scaling factors space for the HCM models showing long EADs (pink 

dots), compared the ones with normal APs (black dots). 

 

Figure 7.32: 2-by-2 plots of the scaling factors space for the HCM models showing RF (grey dots), 

compared the ones with normal APs (black dots). 
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In order to highlight the main ionic currents who seems to play a role in 

repolarisation abnormalities, the corresponding scaling factor boxplots have been 

compared in Figure 7.33, considering their distribution in the different subgroups: 

normal HCM APs, short/long EADs and repolarisation failure.  

All these subgroups are characterised by a very low IKr: indeed, this current is the 

main contributor to APD prolongation in HCM.  Most of the models show a high 

ICaL, further increasing the APD. INaL is higher in the subgroups showing short/long 

EADs. INCX is increased in all the subgroup, but especially in long EADs and RF. 

This analysis provided the basis to identify possible anti-arrhythmic therapies in 

HCM, which will be discussed in the Ionic Current Block section below. 

 

Figure 7.33: Boxplots comparison of the scaling factors for the ionic currents who seems to be 

involved in repolarisation abnormalities in HCM (***p<0.0001, with respect to normal HCM APs). 

The reduced IKr density seems to play the major role in determining repolarisation abnormalities: 

the lower its scaling factor range, the more severe they are. Also, a high ICaL, further increasing the 

APD, is present in all the subgroups. The INaL density is higher in the subgroups showing EADs, 

while the INCX is increased mostly in long EADs and RF subgroups. 
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Ionic Mechanisms contribution to the HCM Phenotype 

In order to analyse the contribution of every single ionic mechanisms to the 

global HCM phenotype, we ran some additional simulations. 

As first, starting from the CTRL POMs, we introduced the HCM remodelling 

mechanisms, one at a time, and we evaluated their impact on the considered AP and 

CaT biomarkers (Figure 7.34). As expected, IKr and INaL are contributing to APD 

prolongation, while ICaL, INCX, Jup and TRPNmax have a high effect on CaT. 

 

Figure 7.34: Summary of the contribution of each ionic mechanism to the global HCM phenotype. 

Starting from the CTRL POMs, the single remodelling mechanisms have been included individually, 

and their effect on AP and CaT biomarkers has been evaluated. Numerical values represent the % 

changes induced by each mechanism on the corresponding biomarker, with respect to CTRL POMs. 

As second, starting from the HCM POMs, we restored the HCM remodelling 

mechanisms, one at a time, and we evaluated their impact on the considered AP and 

CaT biomarkers (Figure 7.35). As expected, IKr and INaL are contributing to APD 

prolongation, while ICaL, INCX, Jup and TRPNmax have a high effect on CaT. 

In both simulation series, we monitored the occurrence of short/long EADs and 

RFs, and results are shown in Figure 7.36: the numerical values represent the % 

changes in EADs/RF occurrence compared to CTRL (left panel) or HCM (right 

panel), depending on weather the mechanisms where individually added or restored. 
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Figure 7.35: Summary of the contribution of each ionic mechanism to the global HCM phenotype. 

Starting from the HCM POMs, the single remodelling mechanisms have been restored individually, 

and their effect on AP and CaT biomarkers has been evaluated. Numerical values represent the % 

change induced by each mechanism on the corresponding biomarker, with respect to HCM POMs. 

 

Figure 7.36: EADs/RF occurrence changes when adding a single remodelling mechanisms to the 

CTRL POMs (left panel) or restoring it in the HCM POMs (right panel). 



190                                                                                                                       Section III – Chapter 7 

Elisa Passini 

Ionic Current Blocks 

Based on the ionic mechanisms identified as relevant in the HCM models 

showing repolarisation abnormalities, we investigated in silico the effects of INaL 

and INCX blocks (-60% and -30%, respectively), since specific compounds are 

already available for these currents. The currents have been blocked both 

individually and simultaneously, and the effects have been evaluated on AP and 

CaT biomarkers, and repolarisation abnormalities occurrence. As a comparison, 

current blocks have been applied also to the CTRL models. Simulations results for 

selective INaL block have been compared with experimental data acquired with 

Ranolazine 10 µM, while no experiments are available for INCX block. 

A summary of current block effects on AP and CaT biomarkers is shown in 

Table 7.6 and Table 7.7, for CTRL and HCM respectively. Only the HCM models 

that didn’t show repolarisation abnormalities in any of the simulation settings were 

considered to compute the numerical values, presented as mean±std. 

Table 7.6: Summary of current block effects for CTRL (experimental data and POMs). 

CTRL AP  

biomarkers 

INaL block INCX block Both blocks 

Experiments 
(n = 10) 

Models  
(n = 2,254) 

Models 
(n = 2,254) 

Models 
(n = 2,254) 

APD20 (ms) 87±46 -6.0% 112±29 -5% 116±27 -2% 110±27 -6% 

APD50 (ms) 175±73 -5.2% 202±55 -5% 204±55 -4% 194±52 -8% 

APD90 (ms) 261±115 -8.3% 273±86 -4% 276±87 -3% 263±82 -7% 

APamp (mV) 109±11 +0.1% 118±6 +0.0% 118±6 +0.5% 119±6 +0.2% 

RMP (mV) -82±8 +0.7% -78±1 +0.1% -78±0.5 +0.1% -78±0.5 +0.1% 

dV/dt (V/s) 29±12 +0.6% 33±8 +1.2% 32±7 -0.0% 33±7 +2% 

CTRL CaT  

biomarkers 

INaL block INCX block Both blocks 

Experiments 
(n = 12) 

Models  
(n = 2,254) 

Models 
(n = 2,254) 

Models 
(n = 2,254) 

CaTD50 (ms) N.A. 190±43 +1% 160±35 -15% 161±35 -14% 

CaTD90 (ms) N.A. 492±84 +0.1% 446±76 -9% 446±75 -9% 

CaTttp (ms) N.A. 51±11 +2% 45±14 -11% 45±11 -10% 

CaTamp (nM) N.A. 344±82 -4% 538±144 +50% 519±139 +44% 

[Ca
2+

]iD (nM) N.A. 80±23 -1% 91±25 +12% 90±26 +12% 

[Na
+
]i (mM) N.A. 7.0±1.7 -2% 7.0±1.7 -1% 6.9±1.6 -3% 
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Table 7.7: Summary of current block effects for HCM (experimental data and POMs). 

HCM AP  

biomarkers 

INaL block INCX block Both blocks 

Experiments 
(n = 26) 

Models  
( n = 1,891) 

Models 
( n = 1,891) 

Models 
( n = 1,891) 

APD20 (ms) 251±124 -18% 152±25 -7% 162±26 -1% 150±23 -9% 

APD50 (ms) 350±164 -20% 294±53 -8% 308±60 -3% 282±51 -12% 

APD90 (ms) 536±190 -19% 419±101 -8% 440±110 -4% 402±97 -12% 

APamp (mV) 106±12 -3% 120±5 +0.5% 120±8 +0.3% 121±5 +0.7% 

RMP (mV) -82±8 +3% -78±2 +0.7% -77±5 +0.2% -78±2 +0.9% 

dV/dt (V/s) 21±3 -5% 25±6 +3% 25±6 +4% 26±6 +7% 

HCM CaT  

biomarkers 

INaL block INCX block Both blocks 

Experiments 
(n = 25) 

Models  
( n = 1,891) 

Models 
( n = 1,891) 

Models 
( n = 1,891) 

CaTD50 280±95 -18% 293±72 +3% 245±65 -14% 252±60 -12% 

CaTD90 501±129 -19%* 670±80 -1% 635±91 -6% 629±76 -7% 

CaTttp 100±30 -15% 62±12 +3% 53±18 -11% 55±11 -9% 

CaTamp 231±52 -28%** 259±90 -8% 387±137 +38% 360±115 +28% 

[Ca
2+

]iD 163±50 -28%* 99±28 -1% 109±31 +9% 108±30 +9% 

[Na
+
]i N.A. 7.9±1.6 -3% 8.0±1.7 -2% 7.7±1.6 -5% 

Considering the AP biomarkers, results of INaL block are qualitatively similar 

between models and experiments, both in HCM and CTRL. All the APDs are 

reduced when blocking INaL, and the effect is stronger in HCM where this current 

plays a major role. INCX alone doesn’t affect much the AP biomarkers, but the 

variations are in the same direction, so that the APD shortening increases when 

blocking both currents at the same time.  

As for CaT biomarkers, Ranolazine seems to affect them in the experiments 

much more than what blocking INaL does in models: probably a more detailed 

simulation of Ranolazine should consider its effect on other ionic currents as well 

(e.g. IKr and ICaL) [25]. However, we are not interested in simulating Ranolazine but 

rather a very selective INaL block, since hopefully more specific compounds will be 

available soon [26]. As for INCX block, it reduces CaTD both in CTRL and HCM, 

while increasing CaTamp and [Ca
2+

]iD. The same effects are shown when 

considering INCX in association with INaL block. Both CaTD and CaTamp variations 

are contrasting the changes induced by HCM remodelling, while the increase in 

[Ca
2+

]iD, already higher in HCM, may be a drawback of blocking the exchanger. 
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We also analysed how the repolarisation abnormalities occurrence changed when 

considering current blocks. Both selective INaL and INCX blocks had a strong anti-

arrhythmic effect in HCM, reducing especially short/long EADs. The simultaneous 

block of both currents proved to be even more successful, suppressing all the short 

EADs and 83% of the long ones. RF occurrence was reduced as well, but in a minor 

percentage. The distribution of repolarisation abnormalities in HCM with and 

without current blocks is shown in Figure 7.37.  

It is worth noticing that about 20% of short/long EADs (33 models) were not 

suppressed by INaL nor INCX selective block, while they disappeared when 

considering the simultaneous block of both currents. A representative trace of a 

HCM model in this subgroup is shown in Figure 7.38. 

Actually, the number of models in each subgroup is not enough to have a full 

comprehension of the current block effect on repolarisation abnormalities, since 

models can change subgroup: e.g. some of long EADs which appear in the 

population with INaL block were RF in the HCM population and not long EADs not 

suppressed by the considered block. Therefore, a full description of EADs/RF 

distribution is shown in Table 7.8. In addition, an alternative visual representation is 

given in Figure 7.39, using Circos, a software package for visualizing data and 

information in a circular layout [27], which is ideal for exploring relationships 

between objects or subgroups. 

 

Figure 7.37: Repolarisation abnormalities occurrence in the HCM population, and the relative 

changes induced by current blocks. The values refer to the number of models in each subgroup.  
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Figure 7.38: Representative AP traces of a HCM model showing long EAD, before and after adding 

in simulation the different current blocks. Both selective blocks failed to suppress the EAD, while the 

simultaneous INaL and INCX block proved to be successful. This happened in 33 HCM models. 

Table 7.8: Detailed description of repolarisation abnormalities changes in HCM when considering 

the different current blocks. The percentage in bold shows the fraction of models in which the 

repolarisation abnormalities was successfully suppressed, leading to a normal HCM APs. 

HCM population 
HCM + 

INaL block 

HCM + 

INCX block 

HCM + 

both blocks 

short 

EADs 

38 

 

normal 

APs 

37 

(97%) 

normal 

APs 

27 

(71%) 

normal 

APs 

38 

(100%) 
short 

EADs 
1 

short 

EADs 
9 

short 

EADs 
- 

long 
EADs 

- 
long 

EADs 
2 

long 
EADs 

- 

RF - RF - RF - 

long 

EADs 

118 

 

normal 

APs 

60 

(51%) 

normal 

APs 

30 

(25%) 

normal 

APs 

98 

(83%) 
short 

EADs 
15 

short 

EADs 
18 

short 

EADs 
2 

long 

EADs 
35 

long 

EADs 
68 

long 

EADs 
17 

RF 8 RF 2 RF 1 

RF 
204 

 

normal 

APs 

13 

(6%) 

normal 

APs 

10 

(5%) 

normal 

APs 

31 

(15%) 
short 
EADs 

1 
short 
EADs 

- 
short 
EADs 

1 

long 

EADs 
23 

long 

EADs 
30 

long 

EADs 
24 

RF 167 RF 164 RF 148 
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Figure 7.39: Circos plots to represent repolarisation abnormalities distribution in the HCM 

population. Every plot shows the number of models for each subgroup, before and after adding the 

current block, together with the incoming and outgoing fluxes from one subgroup to all the other 

ones. Considering e.g. the pink section in the top plot: when including INaL block, many long EADs 

disappear (they go into normal HCM APs subgroup), some of them become short EADs and some 

other just remain long EADs. A few models change from long EADs to RF, instead. In addition, 
there is an incoming flux of models from the RF subgroup, which have now become long EADs. The 

same apply to all the other subgroups and for all the considered ionic current blocks  [27]. 
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CONCLUSIONS 

The population of model approach has been used to reproduce experimental data 

acquired from healthy (CTRL) and diseased (HCM) human single cells. Starting 

from the baseline AP model, an initial population has been generated, by varying 11 

parameters probabilistically sampled in the [0%-200%] range, with respect to their 

original values. This initial population have been calibrated using the experimental 

data, i.e. by including only the models fully in agreement with a set of AP and CaT 

biomarkers: the final CTRL population consists of 2,254 models. 

Starting from the CTRL population, we built the corresponding HCM one, by 

applying the electrical remodelling observed in experiments. Most of the main ionic 

currents have been modified according to voltage-clamp and protein expression 

data. In addition, we made three novel hypotheses, based on a literature review on 

HCM: an increased affinity of TRPN for Ca
2+

, which is likely to elevate Ca
2+

 levels 

during diastole [3], a reduced maximal current of the Na
+
/K

+
 pump, due to energy 

depletion, which would be expected to compromise the regulation of energy-

requiring transporters [7, 12], and an increase of the background Na
+
 current, likely 

to be involved in the process of intracellular Ca
2+

 accumulation as well, by means 

of an increase in intracellular Na
+
 and the consequent increase of Na

+
/Ca

2+
 

exchanger current [10].  

The simulated HCM phenotype was found qualitatively in agreement with the 

HCM experimental data, e.g. HCM population showed increased AP and CaT 

durations, reduced upstroke velocity and high intracellular Ca
2+

 concentration 

during diastole.  

The contribution of each remodelling element has been investigated, by running 

two additional sets of simulations. As first, starting from the CTRL population, we 

introduced each remodelling mechanism, one at a time. Then, starting from the 

HCM population, we restored each one of them, again one at a time. In each of 

these stages, we evaluated the considered set of AP and CaT biomarkers.  

About 16% of the HCM population showed EADs or repolarization failures. By 

analysing the population parameters, we pointed out the ionic mechanisms more 

likely underlying these repolarisation abnormalities, i.e. a very low IKr, high ICaL, 

INaL and INCX. 
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Since specific compounds are already available for INaL and INCX, we investigated 

in simulation the effects occurring when blocking these currents. Both INaL and INCX 

blocks proved to have an anti-arrhythmic effect in HCM, partially reversing the 

HCM remodelling. In particular, their simultaneous block is suggested as an 

effective anti-arrhythmic therapy to suppress repolarisation abnormalities in HCM. 

ICaL block has not been included up to now, since most of the compounds currently 

blocking this current are also reducing IKr, which is already compromised in HCM.  

In conclusions, this study confirmed the population of models as a valid 

approach to include biological variability in computational modelling, especially 

when considering potential therapeutic targets and drug blocks. The HCM 

phenotype has been reproduced by using experimental data together with some 

novel hypotheses based on literature, thus highlighting the ionic mechanisms more 

likely to be involved in the electrical remodelling observed in this disease. In 

addition, current block results about the simultaneous block of INaL and INCX may 

constitute the basis for a new set of experiments, in order to check if model 

predictions are actually verified in single cells.  

Future works will address the analysis of other pro-arrhythmic mechanisms, e.g. 

APD alternans and DADs, and the evaluation of other potential therapeutic targets, 

e.g. ICaL. In addition, it would be interesting to replicate the same study considering 

a different AP model as baseline to build the population, to verify how much these 

results are dependent on the considered model. In particular, since Ca
2+

 handling 

seems to play a major role in HCM and the O’Hara-Rudy ventricular AP model has 

been used as baseline to generate the population of models considered in this study, 

it would be interesting to replicate it with the hybrid model introduced in Chapter 3, 

where the Ca
2+

 subsystem has been partly revisited. 

Finally, some additional work has already been done: since most of the models 

showing repolarisation abnormalities, and especially RF, were characterised by a 

very low IKr, we repeated part of this study considering a new population of models, 

in which the same parameters have been varied in a reduced range ([50-150%], with 

respect to their original values). Results for the new population are consistent with 

the ones presented here, and RF occurrence is much lower in the population (0.5% 

compared to 9%). Some of the Figures/Tables presented in this chapter have been 

reproduced for the new population, and they have been included in Appendix B3.  
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“For over half a century now, computational models have been used in synergy 

with experimental techniques to improve our understanding of the heart in health 

and disease. The contributions of computational modelling in cardiac physiology 

are numerous and the methodology is now well established within the cardiac basic 

science community. Currently, one of the challenges that the scientific community is 

facing is its translation to research closer to the bedside, through investigating the 

pathological states of the human heart and improving diagnosis and therapy”. 

from “Computational cardiac electrophysiology is ready for prime time” 

S Severi, B Rodriguez and A Zaza, Europace 2014 

The research discussed in this thesis aims to contribute to this translation, 

focusing in particular on human cardiac action potential (AP) models. Definitely, 

there are still a lot of challenges to be solved before these models may be fully 

useful in translational research and clinical practice.  

Here, some of these challenges have been faced: 

 To extend models applicability, in order to reproduce in vivo more than 

in vitro conditions. As a relevant example, we investigated what happens 

when extracellular Ca
2+

 is set to the values measured in the interstitial 

fluid instead of the ones used for Tyrods’e solutions and how its 

variations affect the cardiac AP (Section I, Chapter 3 and Chapter 4). 

 To find clinical contexts in which it is possible to compare macroscopic 

measures with simulation results, in order to better understand the 

correlation between the ionic mechanisms involved at a single cell level 

and the clinical patient phenotype. As a relevant example, we considered 

haemodialysis therapy (Section II, Chapter 5 and Chapter 6). 

 To include biological variability in computational modelling, in order to 

extend model predictions to a population level, instead of considering 

results referring only to the average cell behaviour. As a relevant 

example, we considered hypertrophic cardiomyopathy (HCM), where 

variability seems to play a major role, especially when considering 

patient response to drugs (Section III, Chapter 7). 

All these aspects have been investigated by using human cardiac AP models, and 

each one is discussed in details in a separate Section of this thesis. Every chapter 

has its own detailed conclusions at the end: therefore, here is only a brief summary 

of the main objectives achieved, together with a description of future works. 
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As discussed in Chapter 3, a new Markov model for the L-type Ca
2+

 current has 

been developed and integrated into the most recently published human ventricular 

AP model (O’Hara-Rudy, 2011), to improve its response to extracellular Ca
2+

 

([Ca
2+

]o) variations. The design of the new current model has been based on the 

hypothesis that Ca
2+

-dependent inactivation is actually a fast voltage-dependent 

gating mechanism, activated when there is a high Ca
2+

 concentration in the cell, and 

also assuming that this inactivation is underestimated in most of the human cardiac 

AP models currently available. Based on these assumptions, the new hybrid model 

is indeed able to reproduce the inverse dependence experimentally observed 

between AP duration (APD) and [Ca
2+

]o, not properly reproduced in the original 

O’Hara-Rudy one. The hybrid model has already been validated against a wide 

range of experimental data, to check its consistency with the original one. Once 

fully validated, it will constitute a great tool to explore those clinical contexts in 

which electrolyte variations may occur, to evaluate the corresponding changes in 

cardiac electrophysiology, and to assess the possibly increased arrhythmic risk.  

As future works, we are planning a more comprehensive analysis of electrolyte 

variations (considering also extracellular Na
+
 and K

+
) and the evaluation of their 

combined effects on a set of AP and Ca
2+

 transient (CaT) biomarkers, taking into 

account also potential pro-arrhythmic mechanisms, such as APD alternans and 

early/delayed after-depolarisations (EADs/DADs). 

As an example, in Chapter 4 the hybrid model has been used to analyse 

experimental data acquired during a bed-rest campaign organised by the European 

Space Agency, to assess the possibly increased arrhythmic risk for astronauts 

during space flights, due to microgravity exposure. Single cell and 1D simulation 

results were in agreement with ECG data analysis, providing evidence of a biphasic 

change in repolarisation occurring during bed-rest. Moreover, simulations 

supported a causal relation between the observed QT prolongation and the changes 

in electrolytes occurring during bed-rest. Unfortunately, the variability was really 

high among the volunteers and data acquisitions have been performed only a few 

times in the whole campaign: therefore, additional data are required to have a more 

accurate analysis. A new bed-rest experiment has been recently completed by ESA 

and new experimental data are expected to be available for further investigations in 

the near future.  
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In Chapter 5 and Chapter 6, the haemodialysis (HD) therapy effects on cardiac 

AP have been investigated in end-stage renal disease (ESRD) patients, taking into 

account changes in extracellular electrolyte concentrations, heart rate and cell 

volume, together with the effect of different acetylcholine concentrations. Here, 

human atrial AP models have been considered, since atrial fibrillation (AF) 

incidence is high in ESRD patients.  

The case report of a patient showing recurring paroxysmal AF during HD 

therapy has been used to speculate on intra-dialytic AF onset mechanisms, by 

combining experimental data, ECG analysis and computational simulations 

(Chapter 6). The HD therapy induces a slowdown in conduction velocity and a 

decrease of the refractory period, thus producing a vulnerable acute substrate which, 

in presence of a trigger (e.g. ectopic beats), may lead to AF.  

The model used to analyse the patient data has been chosen after benchmarking 

all the available atrial AP models, with respect to their suitability to the HD context 

(Chapter 5).  

Since none of the considered models was fully able to reproduce all the HD-

induced effects on human atrial AP, future works will address specific changes in 

the most recent atrial models, in order to improve their performance in HD-related 

conditions. In addition, a similar benchmark of human ventricular models may be 

useful to explore the pro-arrhythmic mechanisms potentially induced by HD in 

ventricular cells. 

Finally, Chapter 7 shows an example of the population of models approach, 

used to investigate the electrical remodelling occurring in human HCM, based on 

experiments acquired in human single cells. The ionic mechanisms underlying the 

electrical remodelling and their contribution to the HCM phenotype have been 

evaluated, based on the experimental data available and new original hypotheses. 

Late Na
+
 current (INaL) and Na

+
/Ca

2+
 exchanger (INCX), both up-regulated in HCM, 

have been identified as potential therapeutic targets in this disease. Since 

compounds to block these currents are already available on the market, both INaL 

and INCX inhibitions have been tested in the HCM population of models, evaluating 

the occurrence of pro-arrhythmic mechanisms, such as EADs and repolarisation 

failure. Simulation results showed that both current blocks have a positive effect, 

partially reversing the HCM phenotype and reducing repolarisation abnormalities 
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occurrence. In particular, the combined block of both INaL and INCX is suggested as 

an effective anti-arrhythmic strategy in human HCM. 

Future works will address the analysis of other pro-arrhythmic mechanisms, e.g. 

APD alternans and DADs, and the evaluation of other potential therapeutic targets, 

e.g. ICaL. In addition, since the O’Hara-Rudy ventricular AP model has been used as 

baseline to generate the population of models considered in this study, it would be 

very interesting to see how model dependent are these results, by reproducing the 

same study with a different model as baseline. In particular, since Ca
2+

 handling 

plays a big role in HCM, it would be worth considering the hybrid model 

introduced in Chapter 3, where the Ca
2+

 subsystem has been partly revisited. 

As general conclusions, a few observations can be made: 

 The currently published AP models, both atrial and ventricular, still have 

some open issues, especially when applied to contexts different from those 

considered for their development and validation. An accurate description of 

the cellular electrophysiology is particularly crucial to avoid 

misinterpretations when model are needed for predictions. 

 Biological variability plays a major role in cardiac electrophysiology and it 

cannot be ignored in computational modelling. The population of models 

approach proved to be a valid tool to account for it, providing the means to 

investigate pro-arrhythmic mechanisms or drug action in a probabilistic way: 

e.g. % of EADs occurrence in HCM. 

 Nowadays, models allow to investigate and understand very specific clinical 

situations, such as the patient-specific response to a therapy (e.g. the patient 

with paroxysmal AF during HD), or the effect of current blockers in a cell 

population. This is particularly relevant for drug action studies, for which the 

importance of in silico techniques is increasing year by year. The US Food 

and Drug administration, recently announced a new paradigm for the 

evaluation of new molecular entities: “the comprehensive in-vitro pro-

arrhythmia assay” (Sager et al. “Rechanneling the cardiac pro-arrhythmia 

safety paradigm: a meeting report from the Cardiac Safety Research 

Consortium”, Am. Heart J. 2014), in which the integration of ion 

channel/drug interaction data into in silico models of human ventricular 
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electrophysiology is proposed, to predict and evaluate the corresponding 

changes in the human AP. 

From all these observations, the need for a close link between experimental data 

and computational models clearly emerges. In fact, in vivo observations, in vitro 

experiments and in silico predictions have to be combined together to gain new 

insights into cardiac electrophysiology, linking ionic mechanisms to clinical patient 

phenotypes both in physiological and pathological conditions, thus improving 

patient diagnosis and treatment. 
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This Appendix includes part of the Matlab code used to generate the results 

presented in Chapter 3 and Chapter 4: 

1. Modified ORd model: Matlab function file modORd.m 

2. Script with the model parameters: file modORd_par.m 

3. Script to run the model: file modORd_main.m 

1. Modified ORd model: Matlab function file modORd.m 

function output = modORd(t,X,varargin)  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% O'Hara-Rudy Human Ventricular Model (2011) 

% 

% Original Matlab file from: 

% http://rudylab.wustl.edu/research/cell/code/AllCodes.html 

%  

% Related Journal Paper 

% http://www.ncbi.nlm.nih.gov/pubmed/21637795 

% 

% * Structure & ICaL modified by Ely (Last Update: Jan 2014) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

global kCDI cPCa cVss cVsr cJup bJdiff bGncx bGKr k1r_down... 

jncass_n jncass_s jncass_d jncass_k...  % jca 

tau_nca Kmn_nca k2n_nca km2n_nca...     % nca 

dss_n dss_k dss_s dss_d taud_k taud_k1 taud_k2 taud_s1 taud_s2... % d 

jss_n jss_s jss_d jss_k tj_max tj_min tj_media tj_sd... % j 

f1ss_n f1ss_s f1ss_d f1ss_k...  % f1 

tf1_kk tf1_n tf1_k tf1_k1 tf1_k2 tf1_s1 tf1_s2 tf1_d1 tf1_d2... % tf1 

tf2_kk tf2_n tf2_k tf2_k1 tf2_k2 tf2_s1 tf2_s2 tf2_d1 tf2_d2... % tf2 

a2_rel n_rel s_rel exp_rel ntau1_rel ntau2_rel n2_rel % RyRs 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Optional Inputs: 

% (Default values *) 

% 1) flag_ode:  

%    - flag_ode=0  -> "computed variables" output 

%    - flag_ode=1* -> dX output 

% 2) celltype: 

%    - celltype=0* -> endo 

%    - celltype=1  -> epi 

%    - celltype=2  -> M 

% 3) pstim: stimulation protocol and parameters 

%    - pstim=1*             -> I-clamp, single beat 

%    - pstim=[2 CL] -> I-clamp, multiple beats with CL as input 

%    - pstim=[3 vclamp] -> Ely V-clamp, single V-step 

%    - pstim=[4 vclamp] -> Grandi-Bers 2010 V-clamp, single V-step 

% 4) Extracellular Ionic Concentrations [cCao cNao cKo] mM: 

%    default values: Cao = 1.8mM*; Nao = 140mM*; cKo  = 5.4mM* 

%    - if length=1 -> [cCao] only 

%    - if length=2 -> [cCao cNao] 

%    - if length=3 -> [cCao cNao cKo] 

% 5) bn: % of ICaL CDI block (VDI-only ICaL) 

%    - bn=1* -> no CDI block 

%    - bn=0  -> CDI total block 

% 6) Ib: currents block -> [0-1] for each current/flux (11 total): 

%    Ib=[bINa bINaL bIto bICaL bIKr bIKs bIK1 bINaCa bINaK bJup bJrel]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Optional Inputs setting: 

% Set default values for optional inputs 

cEx0 = [1.8, 140.0, 5.4]; 

Ib0 = ones(11,1); 

ki_cost0 = 0; 

optargs = {1,0,1,cEx0,1,Ib0,ki_cost0}; 

% skip any new inputs, if empty 

newVals = cellfun(@(x) ~isempty(x), varargin); 

% overwrite inputs specified in varargin 

optargs(newVals) = varargin(newVals); 

% [optargs{1:length(varargin)}] = varargin{:}; 

[flag_ode, celltype, pstim, cEx, bn, Ib,ki_cost]=optargs{:}; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% State Variables 

% -> Membrane Potential V 

v = X(1); 

% -> Ionic Concentrations 

nai = X(2);     nass = X(3);   

if ki_cost==0;  

ki  = X(4);     kss  = X(5);     

else 

ki  = ki_cost;  kss  = ki_cost;    

end    

cai = X(6);     cass = X(7);    casr = X(9); 

% -> INa gv 

m = X(10);     hf  = X(11);   hs = X(12); 

j = X(13);     hsp = X(14);   jp = X(15); 

% -> INaL gv 

mL = X(16);    hL = X(17);    hLp = X(18); 

% -> Ito gv 

a  = X(19);    iF  = X(20);   iS  = X(21); 

ap = X(22);    iFp = X(23);   iSp = X(24); 

% -> ICaL gv 

% d     ff      fs    

% fcaf  fcas    jca   

% nca   ffp     fcafp 

% -> IKr 

xrf = X(34);   xrs = X(35); 

% -> IKs 

xs1 = X(36);   xs2 = X(37); 

% -> IK1 

xk1 = X(38); 

% -> Fluxes 

Jrelnp = X(39); Jrelp = X(40); 

% -> CaMKt 

CaMKt = X(41); 

% -> ICaL Markov 

I1k  = X(42);   I2k  = X(43);   Ck  = X(44); 

I1kp = X(45);   I2kp = X(46);   Ckp = X(47); 

I1Cak  = X(48); I2Cak  = X(49); CCak  = X(50); 

I1Cakp = X(51); I2Cakp = X(52); CCakp = X(53); 

Ok = X(26);     Okp = X(27); 

jnca = X(54);   nca  = bn*X(31); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Extracellular Ionic Concentrations [mM] 

if length(cEx)==1 

    nao = cEx0(2);   %[Na]o mM 

    cao = cEx;     %[Ca]o mM 

    ko  = cEx0(3);     %[K]o  mM 

elseif length(cEx)==2 

    nao = cEx(2);  %[Na]o mM 

    cao = cEx(1);  %[Ca]o mM 

    ko  = cEx0(3);     %[K]o  mM 

elseif length(cEx)==3 

    nao = cEx(2);  %[Na]o mM 

    cao = cEx(1);  %[Ca]o mM 

    ko  = cEx(3);  %[K]o  mM 

else 

    error('Extracellular Concentrations Error!!!'); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Physical Constants: 

R = 8314.0;   % J/kmol/K 

T = 310.0;    % K 

F = 96485.0;  % C/mol 

vffrt = v*F*F/(R*T); 

vfrt  = v*F/(R*T); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Cell Geometry (approxymate by a cylinder of length L and radius r) 

L = 0.01;                         % cm 

rad = 0.0011;                     % cm 

vcell = 1000*pi*rad^2*L;          % 38e-6 uL 

% Geometric Area 

Ageo = 2*pi*rad^2 + 2*pi*rad*L;   % cm^2 

% Capacitive Area 

Acap = 2*Ageo;                    % cm^2 

% Compartment Volumes (4) 

vmyo = 0.68*vcell;                % uL 

vnsr = 0.0552*vcell;              % uL 
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vjsr = 0.0048*vcell;              % uL 

vsr = cVsr*(vnsr+vjsr);           % uL 

vss  = cVss*0.02*vcell;           % uL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% CaMK Constants 

KmCaMK = 0.15;  aCaMK  = 0.05;  bCaMK  = 0.00068; 

CaMKo  = 0.05;  KmCaM  = 0.0015; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% update CaMK -> X(41) 

CaMKb = CaMKo*(1.0-CaMKt) / (1.0+KmCaM/cass); 

CaMKa = CaMKb+CaMKt; 

dCaMKt = aCaMK*CaMKb*(CaMKb+CaMKt) - bCaMK*CaMKt; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Reversal Potentials 

ENa  = (R*T/F)*log(nao/nai); 

EK   = (R*T/F)*log(ko/ki); 

PKNa = 0.01833; 

EKs  = (R*T/F)*log((ko+PKNa*nao)/(ki+PKNa*nai)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% INa current 

mss=1.0/(1.0+exp((-(v+39.57))/9.871)); 

tm=1.0/(6.765*exp((v+11.64)/34.77)+8.552*exp(-(v+77.42)/5.955)); 

dm=(mss-m)/tm; 

hss=1.0/(1+exp((v+82.90)/6.086)); 

thf=1.0/(1.432e-5*exp(-(v+1.196)/6.285)+6.149*exp((v+0.5096)/20.27)); 

ths=1.0/(0.009794*exp(-(v+17.95)/28.05)+0.3343*exp((v+5.730)/56.66)); 

Ahf=0.99; 

Ahs=1.0-Ahf; 

dhf=(hss-hf)/thf; 

dhs=(hss-hs)/ths; 

h=Ahf*hf+Ahs*hs; 

jss=hss; 

tj=2.038+1.0/(0.02136*exp(-(v+100.6)/8.281)+0.3052*exp((v+0.9941)/38.45)); 

dj=(jss-j)/tj; 

hssp=1.0/(1+exp((v+89.1)/6.086)); 

thsp=3.0*ths; 

dhsp=(hssp-hsp)/thsp; 

hp=Ahf*hf+Ahs*hsp; 

tjp=1.46*tj; 

djp=(jss-jp)/tjp; 

GNa=75; 

fINap=(1.0/(1.0+KmCaMK/CaMKa)); 

INa=Ib(1)*GNa*(v-ENa)*m^3.0*((1.0-fINap)*h*j+fINap*hp*jp); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% INaL current 

mLss=1.0/(1.0+exp((-(v+42.85))/5.264)); 

tmL=tm; 

dmL=(mLss-mL)/tmL; 

hLss=1.0/(1.0+exp((v+87.61)/7.488)); 

thL=200.0; 

dhL=(hLss-hL)/thL; 

hLssp=1.0/(1.0+exp((v+93.81)/7.488)); 

thLp=3.0*thL; 

dhLp=(hLssp-hLp)/thLp; 

GNaL=0.0075; 

if celltype==1 

    GNaL=GNaL*0.6; 

end 

fINaLp=(1.0/(1.0+KmCaMK/CaMKa)); 

INaL=Ib(2)*GNaL*(v-ENa)*mL*((1.0-fINaLp)*hL+fINaLp*hLp); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Ito current 

ass=1.0/(1.0+exp((-(v-14.34))/14.82)); 

ta=1.0515 / (1.0/(1.2089*(1.0+exp(-(v-18.4099)/29.3814)))+... 

                     3.5/(1.0+exp((v+100.0)/29.3814))); 

da=(ass-a)/ta; 

iss=1.0/(1.0+exp((v+43.94)/5.711)); 

if celltype==1 

    delta_epi=1.0-(0.95/(1.0+exp((v+70.0)/5.0))); 

else 

    delta_epi=1.0; 

end 

tiF=4.562+1/(0.3933*exp((-(v+100.0))/100.0)+0.08004*exp((v+50.0)/16.59)); 

tiS=23.62+1/(0.001416*exp((-(v+96.52))/59.05)+... 

             1.780e-8*exp((v+114.1)/8.079)); 

tiF=tiF*delta_epi; 

tiS=tiS*delta_epi; 
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AiF=1.0/(1.0+exp((v-213.6)/151.2)); 

AiS=1.0-AiF; 

diF=(iss-iF)/tiF; 

diS=(iss-iS)/tiS; 

i=AiF*iF+AiS*iS; 

assp=1.0/(1.0+exp((-(v-24.34))/14.82)); 

dap=(assp-ap)/ta; 

dti_develop=1.354+1.0e-4/(exp((v-167.4)/15.89)+exp(-(v-12.23)/0.2154)); 

dti_recover=1.0-0.5/(1.0+exp((v+70.0)/20.0)); 

tiFp=dti_develop*dti_recover*tiF; 

tiSp=dti_develop*dti_recover*tiS; 

diFp=(iss-iFp)/tiFp; 

diSp=(iss-iSp)/tiSp; 

ip=AiF*iFp+AiS*iSp; 

Gto=0.02; 

if celltype==1 

    Gto=Gto*4.0; 

elseif celltype==2 

    Gto=Gto*4.0; 

end 

fItop=(1.0/(1.0+KmCaMK/CaMKa)); 

Ito=Ib(3)*Gto*(v-EK)*((1.0-fItop)*a*i+fItop*ap*ip); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% ICaL, ICaNa, ICaK current section 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% -> p vs np ICaL 

fICaLp=(1.0/(1.0+KmCaMK/CaMKa)); 

% -> up/down rates 

r_down = bn*(k1r_down); 

r_up = bn*(r_down*nca/(1-nca)); 

% n gate -> CDI vs VDI 

jncass = jncass_n/(1.0+exp((v+jncass_s)/jncass_d))+jncass_k; 

tjnca  = tau_nca; 

djnca  =(jncass-jnca)/tjnca; 

Kmn  = Kmn_nca; 

k2n  = k2n_nca; 

km2n = km2n_nca*jnca; 

anca=1/(k2n/km2n+(1.0+Kmn/cass)^4.0); 

dnca=bn*(anca*k2n-nca*km2n); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Activation (d) rates: alpha/beta 

% dss = 1.0/(1.0+exp((-(v+3.940))/4.230)); 

% td  = 0.6+1.0/(exp(-0.05*(v+6.0))+exp(0.09*(v+14.0))); 

dss = dss_n/(1.0+exp((-(v+dss_s))/dss_d))+dss_k; 

td  = (taud_k+1.0/( exp(taud_k1*(v+taud_s1))+exp(taud_k2*(v+taud_s2))) ); 

alpha = dss/td; 

beta = (1-dss) / td; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Recovery (j) rates: psi/omega 

jcass_new= jss_n/(1.0+exp((v+jss_s)/jss_d)) + jss_k; 

jcass_VD = jcass_new;   jcass_CD = jcass_new; 

jcass_VDp = jcass_new;  jcass_CDp = jcass_new; 

tjca_new = tj_min + tj_max*exp(-(v-tj_media)^2/(2*tj_sd^2)); 

tjca_VD = tjca_new;     tjca_VDp = tjca_new; 

tjca_CD = tjca_new;     tjca_CDp = tjca_new; 

psi_VD=jcass_VD/tjca_VD;    psi_VDp=jcass_VDp/tjca_VDp; 

psi_CD=jcass_CD/tjca_CD;    psi_CDp=jcass_CDp/tjca_CDp; 

omega_VD=(1-jcass_VD)/tjca_VD;  omega_VDp=(1-jcass_VDp)/tjca_VDp; 

omega_CD=(1-jcass_CD)/tjca_CD;  omega_CDp=(1-jcass_CDp)/tjca_CDp; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Fact Inactivation (f1) rates: gamma/delta 

% f1ss  = 1.0 / (1.0+exp((v+19.58)/3.696)); 

% tff   = 7.0 + 1.0/(0.0045*exp(-(v+20.0)/10.0)+0.0045*exp((v+20.0)/10.0)); 

% tfcaf = 7.0 + 1.0/(0.04*exp(-(v-4.0)/7.0)+0.04*exp((v-4.0)/7.0)); 

f1ss_0 = f1ss_n / (1.0+exp((v+f1ss_s)/f1ss_d)) + f1ss_k; 

tf1_0   = tf1_kk*(tf1_k + tf1_n./ (tf1_k1*exp((v+tf1_s1)/tf1_d1)+... 

                                   tf1_k2*exp((v+tf1_s2)/tf1_d2))); 

ktaup = 2.5; 

gamma_VD  = (1-f1ss_0)/ tf1_0;          

delta_VD  =    f1ss_0 / tf1_0;     

gamma_VDp  = gamma_VD/ktaup;          

delta_VDp  = delta_VD/ktaup;     

gamma_CD=gamma_VD*kCDI;     delta_CD=delta_VD*kCDI; 

gamma_CDp=gamma_VDp*kCDI;   delta_CDp=delta_VDp*kCDI; 

tf1_VD = 1/(gamma_VD+delta_VD); 

tf1_CD = 1/(gamma_CD+delta_CD); 

f1ss_VD = gamma_VD / (gamma_VD+delta_VD); 
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f1ss_CD = gamma_CD / (gamma_CD+delta_CD); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Slow Inactivation (f2) rates: gamma/delta 

% fss=1.0/(1.0+exp((v+19.58)/3.696)); 

% tfs=1000.0+1.0/(0.000035*exp(-(v+5.0)/4.0)+0.000035*exp((v+5.0)/6.0)); 

% tfcas=100.0+1.0/(0.00012*exp(-v/3.0)+0.00012*exp(v/7.0)); 

tf2_VD   = tf2_kk*(tf2_k + tf2_n./ (tf2_k1*exp((v+tf2_s1)/tf2_d1)+... 

                                     tf2_k2*exp((v+tf2_s2)/tf2_d2))); 

tf2_CD = tf2_VD/kCDI; 

tf2_VDp = tf2_VD*ktaup; 

tf2_CDp = tf2_VD/kCDI*ktaup; 

% Reversibility 

theta_VD = alpha*gamma_VD*psi_VD/tf2_VD/... 

            (alpha*gamma_VD*psi_VD+beta*delta_VD*omega_VD); 

theta_CD = alpha*gamma_CD*psi_CD/tf2_CD/... 

            (alpha*gamma_CD*psi_CD+beta*delta_CD*omega_CD); 

theta_VDp = alpha*gamma_VDp*psi_VDp/tf2_VDp/... 

            (alpha*gamma_VDp*psi_VDp+beta*delta_VDp*omega_VDp); 

theta_CDp = alpha*gamma_CDp*psi_CDp/tf2_CDp/... 

            (alpha*gamma_CDp*psi_CDp+beta*delta_CDp*omega_CDp); 

eta_VD=1/tf2_VD - theta_VD; 

eta_VDp=1/tf2_VDp - theta_VDp; 

eta_CD=1/tf2_CD - theta_CD; 

eta_CDp=1/tf2_CDp - theta_CDp; 

tf2_VD = 1/(eta_VD+theta_VD); 

tf2_CD = 1/(eta_CD+theta_CD); 

f2ss_VD=eta_VD/(eta_VD+theta_VD); 

f2ss_CD=eta_CD/(eta_CD+theta_CD); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Driving Forces 

PhiCaL=4.0*vffrt*(cass*exp(2.0*vfrt)-0.341*cao)/(exp(2.0*vfrt)-1.0); 

PhiCaNa=1.0*vffrt*(0.75*nass*exp(1.0*vfrt)-0.75*nao)/(exp(1.0*vfrt)-1.0); 

PhiCaK=1.0*vffrt*(0.75*kss*exp(1.0*vfrt)-0.75*ko)/(exp(1.0*vfrt)-1.0); 

PCa=0.0001*cPCa; 

if celltype==1 

    PCa=PCa*1.2; 

elseif celltype==2 

    PCa=PCa*2.5; 

end 

PCap=1.1*PCa; 

PCaNa=0.00125*PCa; 

PCaK=3.574e-4*PCa; 

PCaNap=0.00125*PCap; 

PCaKp=3.574e-4*PCap; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Markov Model: VDI states 

OCak = 1-CCak-I1Cak-I2Cak-Ck-I1k-I2k-Ok; 

OCakp = 1-CCakp-I1Cakp-I2Cakp-Ckp-I1kp-I2kp-Okp; 

dOk =  alpha*Ck        + delta_VD*I1k    - (beta+gamma_VD)*Ok      - r_up*Ok + 

r_down*OCak; 

dI2k = eta_VD*I1k      + omega_VD*Ck     - (theta_VD+psi_VD)*I2k   - r_up*I2k + 

r_down*I2Cak; 

dI1k = theta_VD*I2k    + gamma_VD*Ok     - (eta_VD+delta_VD)*I1k   - r_up*I1k + 

r_down*I1Cak; 

dCk  = beta*Ok         + psi_VD*I2k      - (omega_VD+alpha)*Ck     - r_up*Ck + 

r_down*CCak; 

dOkp = alpha*Ckp       + delta_VDp*I1kp  - (beta+gamma_VDp)*Okp    - r_up*Okp + 

r_down*OCakp; 

dI2kp = eta_VDp*I1kp    + omega_VDp*Ckp   - (theta_VDp+psi_VDp)*I2kp - r_up*I2kp + 

r_down*I2Cakp; 

dI1kp = theta_VDp*I2kp  + gamma_VDp*Okp   - (eta_VDp+delta_VDp)*I1kp - r_up*I1kp + 

r_down*I1Cakp; 

dCkp  = beta*Okp       + psi_VDp*I2kp    - (omega_VDp+alpha)*Ckp   - r_up*Ckp + 

r_down*CCakp;  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> Markov Model: CDI states 

dI2Cak = eta_CD*I1Cak     + omega_CD*CCak   - (theta_CD+psi_CD)*I2Cak + r_up*I2k - 

r_down*I2Cak; 

dI1Cak = theta_CD*I2Cak   + gamma_CD*OCak   - (eta_CD+delta_CD)*I1Cak + r_up*I1k - 

r_down*I1Cak; 

dCCak  = beta*OCak     + psi_CD*I2Cak    - (omega_CD+alpha)*CCak + r_up*Ck - 

r_down*CCak; 

dI2Cakp = eta_CDp*I1Cakp   + omega_CDp*CCakp - (theta_CDp+psi_CDp)*I2Cakp + 

r_up*I2kp - r_down*I2Cakp; 

dI1Cakp = theta_CDp*I2Cakp + gamma_CDp*OCakp - (eta_CDp+delta_CDp)*I1Cakp + 

r_up*I1kp - r_down*I1Cakp; 
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dCCakp  = beta*OCakp   + psi_CDp*I2Cakp  - (omega_CDp+alpha)*CCakp + r_up*Ckp - 

r_down*CCakp; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% -> ICaL ICaNa ICaK currents 

ICaL_VD   = Ib(4) * PCa    * PhiCaL  * Ok; 

ICaL_VDp  = Ib(4) * PCap   * PhiCaL  * Okp; 

ICaL_CD   = Ib(4) * PCa    * PhiCaL  * OCak; 

ICaL_CDp  = Ib(4) * PCap   * PhiCaL  * OCakp; 

ICaNa_VD  = Ib(4) * PCaNa  * PhiCaNa * Ok; 

ICaNa_VDp = Ib(4) * PCaNap * PhiCaNa * Okp; 

ICaNa_CD  = Ib(4) * PCaNa  * PhiCaNa * OCak; 

ICaNa_CDp = Ib(4) * PCaNap * PhiCaNa * OCakp; 

ICaK_VD   = Ib(4) * PCaK   * PhiCaK  * Ok; 

ICaK_VDp  = Ib(4) * PCaKp  * PhiCaK  * Okp; 

ICaK_CD   = Ib(4) * PCaK   * PhiCaK  * OCak; 

ICaK_CDp  = Ib(4) * PCaKp  * PhiCaK  * OCakp; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% ICaL VD vs CD & ICaL p vs np 

ICaLnp = ICaL_VD  + ICaL_CD; 

ICaLp  = ICaL_VDp + ICaL_CDp; 

ICaLVD = ICaL_VD*(1-fICaLp)  + ICaL_VDp*fICaLp; 

ICaLCD = ICaL_CD*(1-fICaLp)  + ICaL_CDp*fICaLp; 

  

ICaNanp = ICaNa_VD  + ICaNa_CD; 

ICaNap  = ICaNa_VDp + ICaNa_CDp; 

ICaKnp = ICaK_VD  + ICaK_CD; 

ICaKp  = ICaK_VDp + ICaK_CDp; 

  

ICaL  = ICaLp*fICaLp + ICaLnp*(1-fICaLp); 

ICaNa = ICaNap*fICaLp + ICaNanp*(1-fICaLp); 

ICaK  = ICaKp*fICaLp + ICaKnp*(1-fICaLp); 

  

% ICaL "experimental conductance" 

gICaL = ICaL/PhiCaL; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% IKr current 

xrss=1.0/(1.0+exp((-(v+8.337))/6.789)); 

txrf=12.98+1.0/(0.3652*exp((v-31.66)/3.869)+... 

            4.123e-5*exp((-(v-47.78))/20.38)); 

txrs=1.865+1.0/(0.06629*exp((v-34.70)/7.355)+... 

            1.128e-5*exp((-(v-29.74))/25.94)); 

Axrf=1.0/(1.0+exp((v+54.81)/38.21)); 

Axrs=1.0-Axrf; 

dxrf=(xrss-xrf)/txrf; 

dxrs=(xrss-xrs)/txrs; 

xr=Axrf*xrf+Axrs*xrs; 

rkr=1.0/(1.0+exp((v+55.0)/75.0))*1.0/(1.0+exp((v-10.0)/30.0)); 

GKr=0.046*bGKr; 

if celltype==1 

    GKr=GKr*1.3; 

elseif celltype==2 

    GKr=GKr*0.8; 

end 

IKr=Ib(5)*GKr*sqrt(ko/5.4)*xr*rkr*(v-EK); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% IKs current 

xs1ss=1.0/(1.0+exp((-(v+11.60))/8.932)); 

txs1=817.3+1.0/(2.326e-4*exp((v+48.28)/17.80)+... 

                0.001292*exp((-(v+210.0))/230.0)); 

dxs1=(xs1ss-xs1)/txs1; 

xs2ss=xs1ss; 

txs2=1.0/(0.01*exp((v-50.0)/20.0)+0.0193*exp((-(v+66.54))/31.0)); 

dxs2=(xs2ss-xs2)/txs2; 

KsCa=1.0+0.6/(1.0+(3.8e-5/cai)^1.4); 

GKs=0.0034; 

if celltype==1 

    GKs=GKs*1.4; 

end 

IKs=Ib(6)*GKs*KsCa*xs1*xs2*(v-EKs); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% IK1 current 

xk1ss=1.0/(1.0+exp(-(v+2.5538*ko+144.59)/(1.5692*ko+3.8115))); 

txk1=122.2/(exp((-(v+127.2))/20.36)+exp((v+236.8)/69.33)); 

dxk1=(xk1ss-xk1)/txk1; 

rk1=1.0/(1.0+exp((v+105.8-2.6*ko)/9.493)); 

GK1=0.1908; 
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if celltype==1 

    GK1=GK1*1.2; 

elseif celltype==2 

    GK1=GK1*1.3; 

end 

IK1=Ib(7)*GK1*sqrt(ko)*rk1*xk1*(v-EK); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% INaCa current (i + SS) 

kna1=15.0;      kna2=5.0;       kna3=88.12;     kasymm=12.5; 

wna=6.0e4;      wca=6.0e4;      wnaca=5.0e3;    KmCaAct=150.0e-6; 

kcaon=1.5e6;    kcaoff=5.0e3;   qna=0.5224;     qca=0.1670; 

zna=1.0;        Gncx=0.0008*bGncx;    zca=2.0; 

if celltype==1 

    Gncx=Gncx*1.1; 

elseif celltype==2 

    Gncx=Gncx*1.4; 

end 

% INaCa_i current 

hca=exp((qca*v*F)/(R*T));       hna=exp((qna*v*F)/(R*T)); 

h1=1+nai/kna3*(1+hna);          h2=(nai*hna)/(kna3*h1); 

h3=1.0/h1;                      h4=1.0+nai/kna1*(1+nai/kna2); 

h5=nai*nai/(h4*kna1*kna2);      h6=1.0/h4; 

h7=1.0+nao/kna3*(1.0+1.0/hna);  h8=nao/(kna3*hna*h7); 

h9=1.0/h7;                      h10=kasymm+1.0+nao/kna1*(1.0+nao/kna2); 

h11=nao*nao/(h10*kna1*kna2);    h12=1.0/h10; 

k1=h12*cao*kcaon;   k2=kcaoff;        k3p=h9*wca;     k3pp=h8*wnaca;       

k3=k3p+k3pp;        k4p=h3*wca/hca;   k4pp=h2*wnaca;  k4=k4p+k4pp; 

k5=kcaoff;          k6=h6*cai*kcaon;  k7=h5*h2*wna;   k8=h8*h11*wna; 

x1=k2*k4*(k7+k6)+k5*k7*(k2+k3); x2=k1*k7*(k4+k5)+k4*k6*(k1+k8); 

x3=k1*k3*(k7+k6)+k8*k6*(k2+k3); x4=k2*k8*(k4+k5)+k3*k5*(k1+k8); 

E1=x1/(x1+x2+x3+x4);    E2=x2/(x1+x2+x3+x4); 

E3=x3/(x1+x2+x3+x4);    E4=x4/(x1+x2+x3+x4); 

allo=1.0/(1.0+(KmCaAct/cai)^2.0);    

JncxNa=3.0*(E4*k7-E1*k8)+E3*k4pp-E2*k3pp;    

JncxCa=E2*k2-E1*k1; 

% 

INaCa_i=Ib(8)*0.8*Gncx*allo*(zna*JncxNa+zca*JncxCa); 

% INaCa_ss current 

h1=1+nass/kna3*(1+hna);         h2=(nass*hna)/(kna3*h1); 

h3=1.0/h1;                      h4=1.0+nass/kna1*(1+nass/kna2); 

h5=nass*nass/(h4*kna1*kna2);    h6=1.0/h4; 

h7=1.0+nao/kna3*(1.0+1.0/hna);  h8=nao/(kna3*hna*h7); 

h9=1.0/h7;                      h10=kasymm+1.0+nao/kna1*(1+nao/kna2); 

h11=nao*nao/(h10*kna1*kna2);    h12=1.0/h10; 

k1=h12*cao*kcaon;   k2=kcaoff;      k3p=h9*wca;     k3pp=h8*wnaca; 

k3=k3p+k3pp;        k4p=h3*wca/hca; k4pp=h2*wnaca;  k4=k4p+k4pp; 

k5=kcaoff;          k6=h6*cass*kcaon;   k7=h5*h2*wna;   k8=h8*h11*wna; 

x1=k2*k4*(k7+k6)+k5*k7*(k2+k3);     x2=k1*k7*(k4+k5)+k4*k6*(k1+k8); 

x3=k1*k3*(k7+k6)+k8*k6*(k2+k3);     x4=k2*k8*(k4+k5)+k3*k5*(k1+k8); 

E1=x1/(x1+x2+x3+x4);    E2=x2/(x1+x2+x3+x4); 

E3=x3/(x1+x2+x3+x4);    E4=x4/(x1+x2+x3+x4); 

allo=1.0/(1.0+(KmCaAct/cass)^2.0); 

JncxNa=3.0*(E4*k7-E1*k8)+E3*k4pp-E2*k3pp; 

JncxCa=E2*k2-E1*k1; 

% 

INaCa_ss=Ib(8)*0.2*Gncx*allo*(zna*JncxNa+zca*JncxCa); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% INaK current 

k1p=949.5;      k1m=182.4;      k2p=687.2;      k2m=39.4; 

k3p=1899.0;     k3m=79300.0;    k4p=639.0;      k4m=40.0; 

Knai0=9.073;    Knao0=27.78;    delta2=-0.1550;   

Knai=Knai0*exp((delta2*v*F)/(3.0*R*T)); 

Knao=Knao0*exp(((1.0-delta2)*v*F)/(3.0*R*T)); 

Kki=0.5;            Kko=0.3582;     MgADP=0.05;     MgATP=9.8; 

Kmgatp=1.698e-7;    H=1.0e-7;       eP=4.2;         Khp=1.698e-7;    

Knap=224.0;         Kxkur=292.0; 

P=eP/(1.0+H/Khp+nai/Knap+ki/Kxkur); 

a1=(k1p*(nai/Knai)^3.0)/((1.0+nai/Knai)^3.0+(1.0+ki/Kki)^2.0-1.0); 

b1=k1m*MgADP; 

a2=k2p; 

b2=(k2m*(nao/Knao)^3.0)/((1.0+nao/Knao)^3.0+(1.0+ko/Kko)^2.0-1.0); 

a3=(k3p*(ko/Kko)^2.0)/((1.0+nao/Knao)^3.0+(1.0+ko/Kko)^2.0-1.0); 

b3=(k3m*P*H)/(1.0+MgATP/Kmgatp); 

a4=(k4p*MgATP/Kmgatp)/(1.0+MgATP/Kmgatp); 

b4=(k4m*(ki/Kki)^2.0)/((1.0+nai/Knai)^3.0+(1.0+ki/Kki)^2.0-1.0); 

x1=a4*a1*a2+b2*b4*b3+a2*b4*b3+b3*a1*a2; 

x2=b2*b1*b4+a1*a2*a3+a3*b1*b4+a2*a3*b4; 
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x3=a2*a3*a4+b3*b2*b1+b2*b1*a4+a3*a4*b1; 

x4=b4*b3*b2+a3*a4*a1+b2*a4*a1+b3*b2*a1; 

E1=x1/(x1+x2+x3+x4);    E2=x2/(x1+x2+x3+x4); 

E3=x3/(x1+x2+x3+x4);    E4=x4/(x1+x2+x3+x4); 

zk=1.0;   JnakNa=3.0*(E1*a3-E2*b3);   JnakK=2.0*(E4*b1-E3*a1);    Pnak=30; 

if celltype==1 

    Pnak=Pnak*0.9; 

elseif celltype==2 

    Pnak=Pnak*0.7; 

end 

INaK=Ib(9)*Pnak*(zna*JnakNa+zk*JnakK); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Background currents: IKb, INab, ICab 

% IKb current 

xkb = 1.0 / (1.0+exp(-(v-14.48)/18.34));     

GKb = 0.003; 

if celltype==1 

    GKb = GKb*0.6; 

end 

IKb = GKb*xkb*(v-EK); 

% INab current 

PNab = 3.75e-10; 

INab = PNab*vffrt*(nai*exp(vfrt)-nao)/(exp(vfrt)-1.0); 

% ICab current 

PCab = 2.5e-8; 

ICab = PCab*4.0*vffrt*(cai*exp(2.0*vfrt)-0.341*cao)/(exp(2.0*vfrt)-1.0); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% IpCa current 

GpCa = 0.0005; 

IpCa = GpCa*cai/(0.0005+cai); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Simulation Procotols 

switch pstim(1) 

    case 1 

    % 1 - Current_Clamp -> Single Istim current 

        amp = -80.0;       

        duration = 0.5; 

        if t <= duration 

            Istim = amp; 

        else 

            Istim = 0.0; 

        end 

        % update V -> X(1) 

        dv = - (INa+INaL+Ito+ICaL+ICaNa+ICaK+IKr+IKs+IK1+... 

                INaCa_i+INaCa_ss+INaK+INab+IKb+IpCa+ICab+Istim); 

    case 2 

    % 2 - Current_Clamp -> Istim current with fixed CL 

        CL = pstim(2); 

        amp = -80.0;       

        duration = 0.5; 

        trem = rem(t,CL); 

        if trem <= duration 

            Istim = amp; 

        else 

            Istim = 0.0; 

        end         

        % update V -> X(1) 

        dv = - (INa+INaL+Ito+ICaL+ICaNa+ICaK+IKr+IKs+IK1+... 

                INaCa_i+INaCa_ss+INaK+INab+IKb+IpCa+ICab+Istim); 

    case 3 

    % 3 - Voltage_Clamp (by Ely), with single Vclamp-step 

        Istim = 0; 

    % update V -> X(1) 

        dv = 0; 

    case 4 

    % 4 - Voltage_Clamp (as in Grandi-Bers 2010), with single Vclamp-step 

    Rclamp=0.02; 

    Istim = (v-pstim(2))/Rclamp; 

    % update V -> X(1) 

    dv = - (INa+INaL+Ito+ICaL+ICaNa+ICaK+IKr+IKs+IK1+... 

            INaCa_i+INaCa_ss+INaK+INab+IKb+IpCa+ICab+Istim); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Diffusion Fluxes 

JdiffNa = (nass-nai) /2.0; 

JdiffK  = (kss-ki)   /2.0; 

Jdiff   = (cass-cai) *bJdiff/0.2; 



Appendix A                                                                                                                                         217 

Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% RyRs CICR from JSR 

bt=4.75;        a_rel=a2_rel*0.5*bt;    

Jrel_inf=a_rel*(-ICaL)/(n2_rel+(n_rel/(casr+s_rel))^exp_rel); 

if celltype==2 

    Jrel_inf=Jrel_inf*1.7; 

end 

tau_rel=ntau1_rel*bt/(1.0+ntau2_rel/casr); 

if tau_rel<0.001 

   tau_rel=0.001;  

end 

dJrelnp=(Jrel_inf-Jrelnp)/tau_rel; 

  

btp=1.25*bt;    a_relp=a2_rel*0.5*btp;  

Jrel_infp=a_relp*(-ICaL)/(n2_rel+(n_rel/(casr+s_rel))^exp_rel); 

if celltype==2 

    Jrel_infp=Jrel_infp*1.7; 

end 

tau_relp=ntau1_rel*btp/(1.0+ntau2_rel/casr); 

if tau_relp<0.001 

   tau_relp=0.001;  

end 

dJrelp=(Jrel_infp-Jrelp)/tau_relp; 

fJrelp=(1.0/(1.0+KmCaMK/CaMKa)); 

Jrel=Ib(11)*((1.0-fJrelp)*Jrelnp+fJrelp*Jrelp); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Ca2+ Uptake Flux 

Jupnp=0.004375*cai/(cai+0.00092); 

Jupp=2.75*0.004375*cai/(cai+0.00092-0.00017); %provare a cambiare la parentesi 

if celltype==1                               %(cai + 0.00092-0.00017) 

    Jupnp=Jupnp*1.3; 

    Jupp=Jupp*1.3; 

end 

fJupp=(1.0/(1.0+KmCaMK/CaMKa)); 

Jleak=0.0039375*casr/15.0; 

Jup = cJup*Ib(10)*((1.0-fJupp)*Jupnp+fJupp*Jupp-Jleak); 

Vmax_SRCaP = 1.0*5.3114e-3;  % [mM/msec] (286 umol/L cytosol/sec) 

Kmf = 0.246e-3;          % [mM] default 

Kmr = 1.7;               % [mM]L cytosol 

hillSRCaP = 1.787;       % [mM] 

Jup2=Vmax_SRCaP*((cai/Kmf)^hillSRCaP-(casr/Kmr)^hillSRCaP)... 

    /(1+(cai/Kmf)^hillSRCaP+(casr/Kmr)^hillSRCaP); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Calcium Buffer Constants 

cmdnmax=0.05; 

if celltype==1 

    cmdnmax=cmdnmax*1.3; 

end 

kmcmdn=0.00238;     trpnmax=0.07;   kmtrpn=0.0005; 

BSRmax=0.047;       KmBSR=0.00087; 

BSLmax=1.124;       KmBSL=0.0087; 

csqnmax=10.0;       kmcsqn=0.8; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% update [Na+]i, [K+]i and [Ca2+]i 

% -> [Na] 

dnai=-(INa+INaL+3.0*INaCa_i+3.0*INaK+INab)*Acap/(F*vmyo)+JdiffNa*vss/vmyo; 

dnass=-(ICaNa+3.0*INaCa_ss)*Acap/(F*vss)-JdiffNa; 

% -> [K] 

if ki_cost==0 

dki=-(Ito+IKr+IKs+IK1+IKb+Istim-2.0*INaK)*Acap/(F*vmyo)+JdiffK*vss/vmyo; 

dkss=-(ICaK)*Acap/(F*vss)-JdiffK; 

else 

dki=0; 

dkss=0; 

end 

% -> [Ca] 

Bcai   = 1.0 / (1.0+cmdnmax*kmcmdn/(kmcmdn+cai)^2.0 +... 

                    trpnmax*kmtrpn/(kmtrpn+cai)^2.0); 

dcai   = Bcai*(-(IpCa+ICab-2.0*INaCa_i)*Acap/(2.0*F*vmyo) -... 

                    Jup*vsr/vmyo+Jdiff*vss/vmyo); 

Bcass  = 1.0/(1.0+BSRmax*KmBSR/(KmBSR+cass)^2.0 +... 

                  BSLmax*KmBSL/(KmBSL+cass)^2.0); 

dcass  =  Bcass*(-(ICaL-2.0*INaCa_ss)*Acap/(2.0*F*vss) +... 

                    Jrel*vsr/vss-Jdiff); 

Bcasr = 1.0/(1.0+csqnmax*kmcsqn/(kmcsqn+casr)^2.0); 

dcasr = Bcasr*(Jup-Jrel); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%% Output Computation 

% When flag==1 -> dX 

if flag_ode==1 

    output=[dv      dnai    dnass   dki     dkss...     %   1 

            dcai    dcass   0       dcasr   dm...       %   2 

            dhf     dhs     dj      dhsp    djp...      %   3 

            dmL     dhL     dhLp    da      diF...      %   4 

            diS     dap     diFp    diSp    0 ...       %   5  

            dOk     dOkp    0       0       0 ...       %   6 

            dnca    0       0       dxrf    dxrs...     %   7 

            dxs1    dxs2    dxk1    dJrelnp dJrelp...   %   8      

            dCaMKt  dI1k    dI2k    dCk     dI1kp...    %   9 

            dI2kp   dCkp    dI1Cak  dI2Cak  dCCak...    %  10 

            dI1Cakp dI2Cakp dCCakp  djnca   ]';         %  11 

% When flag==0 -> Computed Variables: currents, concentrations and fluxes 

else 

    output=[INa       INaL     Ito       ICaL       IKr...      %  1 

            IKs       IK1      INaCa_i   INaCa_ss   INaK...     %  2 

            IKb       INab     ICab      IpCa       Jdiff...    %  3 

            JdiffNa   JdiffK   Jup       Jleak      0...        %  4 

            Jrel      CaMKa    Istim     ICaK       ICaNa...    %  5 

            fICaLp    PhiCaL   Kmn       k2n        km2n...     %  6 

            Jup       Jup2     anca      r_up       dss...      %  7     

            r_up      r_down   eta_VDp   eta_CDp    td...       %  8 

            tjca_VD   tf1_VD   tf2_VD    tf1_CD     tf2_CD...   %  9 

            alpha     beta     theta_VDp theta_CDp  omega_VD... % 10 

            omega_VDp omega_CD omega_CDp psi_VD     psi_VDp...  % 11 

            psi_CD    psi_CDp  gamma_VD  gamma_VDp  gamma_CD... % 12 

            gamma_CDp delta_VD delta_VDp delta_CD   delta_CDp...% 13 

            eta_VD    eta_CD   theta_VD  theta_CD   f1ss_VD...  % 14            

            f1ss_CD   f2ss_VD  f2ss_CD   jcass_VD   jcass_CD... % 15 

            tjca_VD   tjca_CD  jcass_VDp jcass_CDp  gICaL...    % 16 

            ICaLVD    ICaLCD   ICaLp     ICaLnp     OCak...     % 17 

            ICaL_VDp ICaL_CDp ICaL_VD    ICaL_CD    OCakp]';    % 18 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% END FILE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

2. Script with the model parameters: file modORd_par.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Global parameters for the modified ORd model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

global kCDI cPCa cVss cVsr cJup bJdiff bGncx bGKr k1r_down... 

jncass_n jncass_s jncass_d jncass_k...  % jca 

tau_nca Kmn_nca k2n_nca km2n_nca...     % nca 

dss_n dss_k dss_s dss_d taud_k taud_k1 taud_k2 taud_s1 taud_s2... % d 

jss_n jss_s jss_d jss_k tj_max tj_min tj_media tj_sd... % j 

f1ss_n f1ss_s f1ss_d f1ss_k...  % f1 

tf1_kk tf1_n tf1_k tf1_k1 tf1_k2 tf1_s1 tf1_s2 tf1_d1 tf1_d2... % tf1 

tf2_kk tf2_n tf2_k tf2_k1 tf2_k2 tf2_s1 tf2_s2 tf2_d1 tf2_d2... % tf2 

a2_rel n_rel s_rel exp_rel ntau1_rel ntau2_rel n2_rel % RyRs 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% CDI vs VDI 

kCDI = 10; 

%% r_up & down 

k1r_up = 3;     k2r_up = 6e-3;      k1r_down = 1e-1; 

%% nca & jnca 

tau_nca = 1;        

Kmn_nca = 0.025;   

k2n_nca  = 1000;   

km2n_nca = 1*150; 

jncass_n = 1; 

jncass_s = 19.58+25; 

jncass_d = 3.696; 

jncass_k = 0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Activation d -> steady state 

dss_n = 1; 

dss_s = 3.940; 

dss_d = 4.230; 

dss_k = 0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Activation d -> tau 
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taud_k = 0.6; 

taud_k1 = -0.05; 

taud_s1 = 6; 

taud_k2 = 0.09; 

taud_s2 = 14; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Recovery j -> steady state 

jss_n = 1; 

jss_s = 19.58; 

jss_d = 3.696; 

jss_k = 0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Recovery j -> tau 

tj_min = 35; 

tj_max = 350; 

tj_media = -20; 

tj_sd = 10; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Fast Inactivation f1 -> tau 

tf1_kk = 1;         % scaling factor 

tf1_k  = 70;        % basal value 

tf1_n  = 1.2;       % num 

% - (v-vm) 

tf1_k1 = 0.0045;    % scaling factor 

tf1_s1 = 20;        % shift   

tf1_d1 = -50;       % den 

% + (v-vm) 

tf1_k2 = 0.0045;    % scaling factor 

tf1_s2 = 30;        % shift  

tf1_d2 = 10;        % den 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Fast Inactivation f1 -> f1ss 

f1ss_n=0.8;         % num 

f1ss_s=19.58;       % shift 

f1ss_d=3.696;       % den 

f1ss_k=0.2;         % basal value 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Slow Inactivation f2 -> tau 

tf2_kk = 1;         % scaling factor 

tf2_k  = 100;       % basal value 

tf2_n  = 0;         % num 

% - (v-vm) 

tf2_k1 = 0.0035;    % scaling factor 

tf2_s1 = 5;         % shift   

tf2_d1 = -84;       % den 

% +(v-vm) 

tf2_k2 = 0.0035;    % scaling factor 

tf2_s2 = 5;         % shift  

tf2_d2 = 4;         % den   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Slow Inactivation f2 -> f2ss 

% 

% ***reversibility*** 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% RyRs parameters 

a2_rel = 1; 

n_rel = 1.5; 

n2_rel = 1; 

s_rel = 0; 

exp_rel = 8; 

ntau1_rel = 1; 

ntau2_rel = 0.0123; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Other Variables 

bGKr = 1;       % IKr scaling 

bGncx = 1.2;    % INCX scaling 

cPCa = 0.9;     % ICaL scaling 

bJdiff=2;       % Jdiff Ca2+ scaling 

cJup = 10;      % Jup Ca2+ scaling 

cVss = 1;       % SS volume scaling 

cVsr=0.95;      % SR volume scaling 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% END FILE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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3. Script to run the model: file modORd_main.m 

clear all; close all; clc; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Main Settings: 

nb = 1000;   % number of beats to run             

BCL = 1000;  % basic cycle length (ms)          

ODEstep = 1; % max time step (ms)  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Parameters cyBCLe 

AP_model = @modORd;    % AP file function model 

file_pars = 'modORd_par';   % ICaL parameters 

run(file_pars); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Initial Conditions: 

% Original ORd state variables: 

v=-87;      nai=7;      nass=nai;       ki=145;         kss=ki; 

cai=1.0e-4; cass=cai;   casr=1.2;      m=0;            hf=1; 

hs=1;       j=1;            hsp=1;      jp=1;           mL=0; 

hL=1;       hLp=1;          a=0;        iF=1;           iS=1; 

ap=0;       iFp=1;          iSp=1;      nca=0;          xrf=0; 

xrs=0;      xs1=0;          xs2=0;      xk1=1;           

Jrelnp=0;   Jrelp=0;        CaMKt=0;    jrec=1; 

% Modified ORd model NEW state variables: 

I1k=0;      I2k=0;      Ck=1;          

I1kp=0;     I2kp=0;     Ckp=1;          

I1Cak=0;    I2Cak=0;    CCak=0;          

I1Cakp=0;   I2Cakp=0;   CCakp=0;          

% Initial Conditions vector: 

% N.B. the old gating variables for ICaL have been set to 0  

CI = [  v       nai     nass    ki      kss... 

        cai     cass    0       casr    m...  

        hf      hs      j       hsp     jp...  

        mL      hL      hLp     a       iF... 

        iS      ap      iFp     iSp     0 ... 

        0       0       0       0       0 ... 

        nca     0       0       xrf     xrs... 

        xs1     xs2     xk1     Jrelnp  Jrelp... 

        CaMKt   I1k     I2k     Ck      I1kp... 

        I2kp    Ckp     I1Cak   I2Cak   CCak ... 

        I1Cakp  I2Cakp  CCakp   jrec    ]'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Simulations: 

input_args ={}; % see model file for input details 

options=odeset('MaxStep',ODEstep); 

y0 = CI; 

for n=1:nb 

        [time,y] = ode15s(AP_model,[0 BCL],y0,options,input_args{:}); 

        fprintf('Beat %i of %i\n',n,nb); 

        y0 = y(end,:);    

end 

y0_SS = y(end,:);    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Computed variables recovery: 

input_args{1}=0; % see model file for input details  

lCVs=size(feval(AP_model,time(1),y(1,:),input_args{:}),1); 

CVs = zeros(length(time),lCVs); 

for j=1:length(time) 

    CVs(j,:)=feval(AP_model,time(j),y(j,:),input_args{:}); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% AP plot: 

figure('Name','Report');  

subplot(2,1,1); 

plot(time,y(:,1),'m'); 

title('Action Potential'); 

xlabel('time (ms)'); ylabel('membrane voltage (mV)'); 

subplot(2,1,2); 

title('L-type Ca^{2+} current');  

plot(time,CVs(:,4),'m'); 

xlabel('time (ms)'); ylabel('I_{CaL} (uA/uF)'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% END FILE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Figure A.1 shows representative plot reproduced by using the Matlab code 

above. The hybrid model has been paced for 1000 s at 1 Hz, and action potential 

and L-type Ca
2+

 current traces have been displayed. 

 

Figure A.1: Action Potential and L-type Ca2+ current traces for the hybrid model described in 

Chapter 3 and Chapter 4. This figure has been obtained by running in Matlab the script given in 

Appendix A3, who in turn recalls the model and the corresponding parameter files. 
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1. The Population of Models Approach 

The population of models (POMs) approach, recently developed by the 

Computational Cardiovascular Science group (Department of Computer Science, 

University of Oxford, UK) and already applied to different contexts [1–4], is a 

novel methodology in computational cardiac AP modelling. It provides the means 

to explore the effects of biological variability, usually neglected when using the 

traditional modelling techniques. Each individual may have a different response to 

disease and drug action, and biological variability is the key to understand why.  

Instead of considering a single AP model, representative of the average cell 

behaviour, simulations are performed in thousands of models at the same time (a 

population, indeed), all generated by varying some of the model parameters around 

their nominal values. Each model represents a different cell (of the same cell-type) 

and the cell-to-cell differences account for both inter- and/or intra- subject 

variability. It is worth noticing that the population is calibrated considering 

experimental data, either original or from literature (i.e. only the models in 

agreement with these data are “accepted” in the final population). 

As an example, Figure 7.2Errore. L'origine riferimento non è stata trovata. 

shows different experimental APs (pink traces), all recorded from the same cell 

type, i.e. rabbit purkinje cells (data by Janssen Pharmaceutica). The biological 

variability is well represented here: although overall similar, every cell has quite a 

distinct AP, and the differences are especially evident in the repolarisation phase, 

leading to a wide range of AP durations (from about 200 to 400 ms). All this 

information is actually lost when using a single Purkinje AP model to reproduce 

these experimental data, e.g. the Corrias-Giles-Rodriguez (left panel, black trace) 

[5]. Even if this single model well represents the average cell behaviour, a 

population of models (right panel, black traces) allow for a better coverage of the 

experimental dataset, well reproducing cell-to-cell variability. 

All the models in the population share the same differential equations, but each 

of them has a different parameters set. Indeed, the main hypothesis behind the 

POMs methodology is that all the cells of the same type (e.g. human ventricular 

endo- or epi- cardiac cells) share the same structure (ion channels, pumps, 

exchangers, etc.) and variability may be mostly related to differences in the density 
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of channels for each cell, leading to different ionic currents and in turn to different 

APs. Therefore, most of the biological variability observed should be reproduced by 

varying the maximal conductances of the main ionic currents, related to channel 

density in the cells. It would be definitely interesting to analyse also variability in 

current kinetics, e.g. varying the time constants of gating variable, but up to know 

we have modified ionic current densities only by acting on conductances. 

 

Figure B.1: Experimental AP recordings (pink traces, both panels) from rabbit purkinje cells (data 

by Janssen Pharmaceutica). When considering only a single AP model (black trace, left panel), the 

biological variability is completely neglected, while the population of models (black traces, right 

panel) is able to better reproduce the experimental dataset (modified from [2]).  

Depending on the purpose of the study, the number of generated models, the 

parameters to be varied, the scaling factors to apply to the nominal parameter values 

and the sampling of the parameter sets, may be different. 

In theory, the bigger the population, the more reliable the results: of course, the 

limitation here is mainly due to the computational costs. It is worth starting with a 

small population (about 10,000 models) and then increase the size (up to 30,000 or 

100,000 or more) if the accepted models resulting from the calibration process are 

not enough to properly evaluate the results. 

As for the parameters to vary, all the ones that may play a role in the study 

should be considered for the population, e.g. INaL in HCM. At the same time, 

varying too many parameters definitely increases complexity, especially when 

trying to analyse/classify simulation results, e.g. to identify the main ionic 

mechanisms involved in a specific phenomenon.  
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Parameter ranges also need to be chosen carefully. The wider the range, the more 

the models in the population deviate from the original AP model, and sometimes 

they are not even showing a regular AP. The commonly used range is [0-200%], i.e. 

±100% with respect to the original parameter values. This implies that there may be 

models included in the population having some currents with a very low (close to 

zero) density, as long as other currents compensate for them, allowing for a 

physiological AP. These models may represent pathological conditions, and 

therefore they can provide valuable insights, especially when evaluating in silico 

the effect of specific current blockers. However, to explore variability in healthy 

controls without including “extreme” pathological conditions, the parameter range 

can be reduced to [50%-150%], i.e. ±50% with respect to the original parameter 

values, or even less than that (±30%, ±10%). Sometimes, it may be worth to extend 

the upper limit e.g. up to 300% or more, to represent a pathological condition in 

which some currents are highly over-expressed. However, as shown in Figure B.2, 

the AP is much more sensitive to parameter scaling towards the lower values (from 

0 to 100% of the original values) than towards the lower ones.  

 

Figure B.2: Effect of parameters scaling on simulated AP: 9 major current conductances of the 

O’Hara-Rudy model [6] have been simultaneously modified from 0 to 10 times their original value, 
with a 0.1 step. Step-by-step changes are remarkable when considering low scaling factors (from 0 

to 4) while the AP changes very little for high scaling factors (Britton et al. unpublished). 
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Finally, the different parameter sets have to be probabilistically sampled in the 

parameter space. The methods which has been used up to now is Latin hypercube 

sampling, developed by McKay in 1979 [7]. It consists of a generalisation of the 

Latin square, i.e. a 𝑛 × 𝑛 matrix filled with different symbols, each one occurring 

exactly once in each row and exactly once in each column: each sample is the only 

one in each axis-aligned hyper-plane containing it. Recently, two papers have been 

published, estimating the coverage of parameter space for POMs when using Latin 

hypercube sampling [8, 9].  

It is worth notice than we don’t claim to sample the whole parameter space: we 

rather aim to explore the chosen range for each of the parameters varied in the 

population. The goodness of the sampling is therefore evaluated when comparing 

the simulations results and the experimental data, by the ability of the POMs to 

capture the biological variability observed. 

Once the parameters and their relative ranges have been fixed, the initial 

simulations may be run, using the same baseline AP model with all the sampled 

parameter sets. Simulated AP traces have to be compared with the experimental 

data available, usually considering a set of AP or CaT biomarkers: only the models 

whose biomarkers satisfy all the experimental constraints will be included in the 

final population, while the other ones will be discarded.  

This process (“experimentally-based calibration”) may considerably reduce the 

size of the initial population. It is important to have enough models left (a few 

hundreds) to analyse simulation results using statistic tools. When too many models 

are discarded, it is worth to re-build the population from the beginning, changing 

the parameters and/or their ranges. Also, it is always very important to check that 

the baseline model is not too far from the average behaviour of the cells in the 

considered experimental dataset: if so, some small modifications to the original 

model may be required before building the population. 

A schematic representation of the POMs approach is given in Figure B.3, 

considering a hypothetic four-dimensional parameter space: simulations are run for 

the same model with many parameter sets, each of them resulting in a different 

biomarkers set. Only the models fully in agreement with the experimental data are 

selected in the final population, while the other ones are discarded. 
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Figure B.3: Simple representation of the population of models technique: simulations are run for 

the same model with many parameter sets, each of them resulting in a different AP and a 

corresponding set of biomarkers. Only the models whose biomarkers fall within experimental ranges 
(black lines) are selected in the final population (black dots/squares) while the other ones are 

discarded (grey dots/squares). To clarify the links between panels, three models have been 

highlighted with colours. 
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2. The Baseline Model 

As baseline model to build the CTRL and HCM population, we used the O’Hara-

Rudy model (ORd [6]), published in 2011.  

However, a few changes have been required to the original model, in order to 

better reproduce the experimental CTRL data, and to fix a well-known problem 

concerning the INa inactivation gates, which prevent propagation in 2D or 3D tissue 

when considering hyperkalaemia. 

Fast Na
+
 Current Formulation 

Inactivation gates for the fast Na
+
 current (INa), “h” and “j”, are partially closed 

at normal resting membrane potentials in the ORd model. This was the result of 

using Sakakibara et al. [10] nonfailing human ventricular INa data (17° C), corrected 

for temperature using Nagatomo et al. [11] HEK-expressed hH1 data and also for 

the time after patch-clamp beginning using Hanck & Sheets data [12]. This is 

ultimately why the maximum conductance was set to 75 mS/μF, substantially larger 

than in other models, but there are no independent human INa data available to 

determine whether the temperature/time corrections applied were in fact accurate.  

With hyperkalaemia, “h” and “j” gates are further closed as resting membrane 

potential depolarises through the steep portion of the steady state inactivation 

curves. In single cells, this reduces the action potential upstroke velocity within the 

physiological range. However, in 2D or 3D simulations, where the cells experience 

a large electrical load, it might cause conduction block at lower levels of 

hyperkalaemia than observed experimentally. 

The solution suggested by the authors was to replace the INa formulation in the 

original ORd model with the one from ten Tusscher et al. [13] (TT04). Here, INa 

steady state inactivation curves are based on Nagatomo et al. [11] data extrapolated 

to 37° C, but not corrected for time after patch-clamp beginning. The resulting 

inactivation curves are about 10 mV depolarised compared to ORd, and therefore 

less sensitive to resting membrane voltage elevation under hyperkalemic conditions.  

Even if we were planning to use the population of models only at single cell 

level, we decided to modify the INa as first thing, to save possible problems with 

future works on 2D or 3D tissues. We didn’t follow completely the authors’ 
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suggestion, because the Ten Tusscher formulation is quite complicated and not al 

all immediate to understand, while the ORd one follows the Hodgkin and Huxley 

formalisms. Moreover, we were interested in the phosphorylation of the INa current, 

considered in the ORd formulation only.  

Since the propagation problem is ultimately due to the steady state formulation 

of  “h” and “j” gates, which share the same sigmoidal function, we changed their 

V½ and slope to get them as close as possible to the ones in Ten Tusscher et al. 

[13], using the Matlab (Mathworks Inc.) built-in function fminsearch, based on the 

Nelder-Mead Simplex Method [14]. As for the phosporilated gates, we just applied 

a -6.2 mV shift in V½, as already done in the original ORd model, based on the 

work by Wagner et al. [15].  

Here below, the three different hss formulations are shown and the corresponding 

plots are compared in Figure B.4. 

ℎ𝑂𝑅𝑑 = 𝑗𝑂𝑅𝑑 =  
1

1 + 𝑒
𝑣+82.9

6.09

   

ℎ𝑇𝑇04 = 𝑗𝑇𝑇04 =  
1

(1 + 𝑒
𝑣+71.6

7.43 )2

   

ℎ𝑜𝑝𝑡 = 𝑗𝑜𝑝𝑡 =  
1

1 + 𝑒
𝑣+78.5

6.22

   

 

Figure B.4: Comparison of Fast Na+ current inactivation gates for ORd, TT04 and the baseline 

model used to build the population of models. 
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After changing the two inactivation curves, we checked the consistency of the 

modified ORd model with the original one, pacing the model at 1 Hz until steady 

state (about 1000 s). The new formulation leads to an increased Na
+
 current which, 

over time, produces some discrepancy with the original ORd model. Therefore, we 

reduced the maximal INa conductance in the modified model, to match the original 

one in steady state conditions (scaling factor 0.66). 

Ionic Concentrations 

To match the experimental data, we set the intra- and extra- cellular ionic 

concentration to the ones used in the experiments for the AP and CaT recording: 

 Extracellular concentrations: 

 Na
+
  = 132 mM  (140 mM in ORd) 

 K
+
    = 5.4 mM 

 Ca
2+

 = 1.8 mM 

 

 Intracellular concentrations: 

 Na
+
  no changes  (7 mM) 

 K
+
    = 140 mM (145 mM in ORd) 

 Ca
2+

 no changes (1e-4 mM) 

  

The only exception is the extracellular K
+
 concentrations ([K

+
]o), which was 4 

mM in the experiments. In fact, the ORd model uses [K
+
]o 5.4 mM even if it has 

been built using experiments recorded with [K
+
]o 4 mM, as in our data. Therefore, 

we decided to keep its original value in our simulations. 

New Current Stimulus 

In the original ORd model, the stimulus is set to a current pulse of amplitude -80 

uA/uF and duration 0.5 ms. When pacing for more than one cycle length, however, 

the minimum time step has to be equal/smaller than the duration of the current 

stimulus; otherwise, there are chances of the model missing the upstroke. Since we 

were planning to use 1 ms as max time step, to reduce simulation time, we 

increased the stimulus duration to 1 ms. We changed the stimulus amplitude 

accordingly, considering twice the AP threshold: the new current stimulus 

amplitude is therefore -53 uA/uF.  
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Ito I-V Curve 

We compared the experimental I-V curve for Ito and the one obtained for the 

modified model. When normalised, the two curves are quite similar. However, the 

experimental CTRL data seem to have a much higher Ito than the original ORd 

model. Therefore, to match the experimental data, we increased the maximal Ito 

conductance of 2.5 fold. As a supporting experimental evidence, the CTRL cells in 

the experiments show a pronounced notch, which is not present in the original ORd 

endocardial model, and usually related to Ito. 

K
+
 Equilibrium Potential 

When we compared the measured I-V curve of IK1 with the one obtained for the 

model, following the same voltage-clamp protocol, we immediately found out that 

the reversal potential of K
+
 was quite different between model and experiments. In 

fact the cell RMP, mostly dependent on IK1 is more depolarised in the ORd model. 

As first, we tried to match the RMP acting on intra- and extra-cellular K
+
 

concentrations, but this lead to values which were too far from the ones actually 

used into the experimental solutions. Therefore, we decided to use a fixed 

equilibrium potential for K
+
, instead of using Nernst equation, to match the 

experimental data. 

Once modified the K
+
 equilibrium potential, other small changes were needed to 

preserve consistency with the original ORd model. In particular, the activation 

cuves for INa, INaL and IK1 have been shifted by the difference between the old and 

the new K
+
 reversal potential (-9.2 mV). 

To verify that this change had not any major drawback, we actually generated 

two populations of models for the CTRL dataset, one with and one without the new 

RMP. Simulation results were qualitatively similar in terms of number of models 

and AP and CaT and biomarkers, so we chose to continue using the population with 

the modified RMP, since a more depolarized membrane potential may have an 

impact on pro-arrhythmic mechanisms occurrence. 
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3. Additional Results 

The following pages show the simulation results obtained considering an 

additional population of models, in which the parameters have been varied in a 

smaller range, i.e. [50-150%], with respect to their original value.  

There are no models discarded from the initial population before the 

experimentally-based calibration, i.e. models in which Chasted failed to compute 

AP and CaT biomarkers (about 2,000 in the previous one). Since the variability is 

reduced, more models are in agreement with the experimental data. Accepted CTRL 

models in this population are 9,124, compared to the 2,254 of the previous one. 

Simulation results are consistent with the ones presented in Chapter 7, especially 

when considering the current block effects on repolarization abnormalities 

occurrence. In general, RF occurrence is significantly reduced in this new 

population, while short/long EADs are present in the same fraction (Figure B.5). 

Indeed, many of the models showing RF in the previous population, as well as 

short/long EADs, were characterized by very low IKr scaling factors, which is this 

population is limited from [50-150%] compared to the original values. 

 

Figure B.5: Comparison of the two different HCM population, generated varying 11 paramenters in 

the [0-200%] (left) or [50-150%] (right) range, with respect to their original values. 

 

Hereafter, a few Tables/Figures from Chapter 7 have been reproduced for the 

new population. Labels and numbers are unaltered, to facilitate the comparison. 
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Figure 7.11 (B): Representative AP traces of accepted/discarded (blue/grey lines) models in the 

CTRL population. The baseline model AP is shown in white. 

 

 

Figure 7.12 (B): Representative CaT traces of accepted/discarded (blue/grey lines) models in the 

CTRL population. The baseline model CaT is shown in white. 
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Figure 7.19 (B): Representative AP traces from the HCM POMs (pink lines), compared with the 

corresponding CTRL ones (blue lines). The baseline CTRL model and its correspondent HCM 

version are shown in white and black, respectively. 

 
 

Figure 7.20 (B): Representative CaT traces from the HCM POMs (pink lines), compared with the 

corresponding CTRL ones (blue lines). The baseline CTRL model and its correspondent HCM 

version are shown in white and black, respectively. 
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Figure 7.26 (B): Scaling factor boxplots of the HCM models having a normal AP, i.e. not showing 

any repolarisation abnormality. These models have a slightly higher IKr and Jup. 

 

Figure 7.27 (B): Scaling factor boxplots of the HCM models showing short EADs, compared to the 

ones with a regular AP. These models are characterised by low IKr, high ICaL, INaL and INCX.  
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Figure 7.28 (B): Scaling factor boxplots of the HCM models showing long EADs, compared to the 

ones with a regular AP. These models are characterised by low IKr, high ICaL and INaL, very high INCX. 

 

Figure 7.29 (B): Scaling factor boxplots of the HCM models showing RF, compared to the ones with 

a regular AP. These models are characterised by a very low IKr, high ICaL, INa and INCX and low INaK. 
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Figure 7.37 (B): Repolarisation abnormalities occurrence in the HCM population, and the relative 

changes induced by current blocks. The values refer to the number of models in each subgroup.  

 

Table 7.8 (B): Detailed description of repolarisation abnormalities changes in HCM when 

considering the different current blocks. The percentage in bold shows the fraction of models in 

which the repolarisation abnormalities was successfully suppressed, leading to a normal HCM APs. 

HCM population 
HCM + 

INaL block 

HCM + 

INCX block 

HCM + 

both blocks 

short 

EADs 

141 

 

normal 

APs 

136 

(96%) 

normal 

APs 

119 

(84%) 

normal 

APs 

140 

(99%) 
short 
EADs 

2 
short 
EADs 

16 
short 
EADs 

- 

long 

EADs 
3 

long 

EADs 
6 

long 

EADs 
1 

RF - RF - RF - 

long 

EADs 

419 

 

normal 

APs 

257 

(61%) 

normal 

APs 

177 

(42%) 

normal 

APs 

393 

(94%) 
short 
EADs 

29 
short 
EADs 

42 
short 
EADs 

7 

long 

EADs 
127 

long 

EADs 
200 

long 

EADs 
19 

RF 6 RF - RF - 

RF 
42 

 

normal 

APs 

- 

 (0%) 

normal 

APs 

- 

 (0%) 

normal 

APs 

11 

(26%) 
short 

EADs 
- 

short 

EADs 
- 

short 

EADs 
4 

long 

EADs 
23 

long 

EADs 
30 

long 

EADs 
17 

RF 19 RF 10 RF 10 
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Figure 7.39 (B): Circos plots to represent repolarisation abnormalities distribution in the HCM 

population. Every plot shows the number of models for each subgroup, before and after adding the 

current block, together with the incoming and outgoing fluxes from one subgroup to all the other 

ones. Considering e.g. the pink section in the top plot: when including INaL block, many long EADs 

disappear (they go into normal HCM APs subgroup), some of them become short EADs and some 

other just remain long EADs. A few models change from long EADs to RF, instead. In addition, 
there is an incoming flux of models from the RF subgroup, which have now become long EADs. The 

same apply to all the other subgroups and for all the considered ionic current blocks  [16]. 
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