
Alma Mater Studiorum - University of Bologna

ARCES - Advanced Research Center on Electronic Systems

for Information and Communication Technologies E.De Castro

Dottorato di Ricerca in

Tecnologie dell’Informazione

XXVII CICLO

Settore Concorsuale di afferenza: 09/E3

Settore Scientifico disciplinare ING-INF /01

Methodologies for Synthesizable
Programmable Devices based on Multi-Stage

Switching Networks

Candidato: Relatori:
Matteo Cuppini Prof. Eleonora Franchi Scarselli

Prof. Roberto Guerrieri

Dott. Ing. Claudio Mucci

Coordinatore Dottorato:

Prof. Claudio Fiegna

Esame finale anno: 2015

Contents

Introduction 1

1 Programmable Logic Devices 5

1.1 SPLD . 6

1.2 CPLD . 8

1.3 FPGA . 8

1.3.1 FPGA Architecture . 9

1.3.2 FPGA Software Flow 12

2 Multi-Stage Switching Networks 17

2.1 Non-blocking Interconnection Networks 19

2.2 MSSN Architecture . 21

2.2.1 Topology . 22

2.2.2 Software Support . 25

2.3 MSSN Routing . 34

2.3.1 Routing Strategy . 36

2.3.2 Routing Algorithm . 37

2.4 MSSN Architectural Analysis 41

2.4.1 Radix-2 1024+1024 MSSN 42

2.4.2 Radix-4 1024+1024 MSSN 45

2.4.3 Comparison between radix-2 and radix-4 architectures 49

3 Embedded FPGA Soft-Core Template 56

3.1 eFPGA Architecture . 57

3.2 eFPGA CAD Flow Support 62

3.2.1 Placement Algorithm 64

3.2.2 Routing Algorithm . 67

iii

iv CONTENTS

3.2.3 Perl Scripts . 69

4 eFPGA for CMOS 73

4.1 Implementation Results . 73

4.2 Design-Space Exploration . 78

4.3 Application-Aware Analysis 83

4.4 Computational Density Analysis 86

5 eFPGA for Smart Power 89

5.1 Implementation Results . 91

5.2 Application Analysis . 94

5.2.1 Sigma-Delta Modulation 96

5.2.2 Power Management 98

5.2.3 Motion Control . 100

Conclusions 102

Bibliography 104

List of Figures

1.1 PROM diagram . 6

1.2 PAL diagram . 7

1.3 PLA diagram . 7

1.4 CPLD example . 8

1.5 Example of island-style (a) and hierarchical (b) FPGA 9

1.6 Bidirectional (a) and unidirectional (b) wires 11

1.7 Example of CLB (a) and BLE (b) internal architecture 12

1.8 FPGA design flow overview 13

2.1 Functional view of an interconnection network 17

2.2 Example of a 6x4 crossbar . 19

2.3 The general structure of a Multi-Stage Switching Network . 20

2.4 A m, n, r Clos network . 20

2.5 A Benes network built from a Clos network 21

2.6 A 8-input butterfly network 22

2.7 MSSN architecture guideline - network doubled on the hor-

izontal direction . 23

2.8 MSSN architecture guideline - network doubled on the ver-

tical direction . 23

2.9 An 8-input Benes back-to-back butterfly like network 24

2.10 Folded MSSN supporting U-turn bypass 25

2.11 Bypass enhancement on a flat MSSN: U-Switch architectural

overview . 26

2.12 Hierarchy-aware 2D layout of butterfly MSSN 27

2.13 MSSN parameters for software tool 27

2.14 Basic structure of the algorithm 28

v

vi LIST OF FIGURES

2.15 Pseudo-code of the function used to build the MSSN Re-

source Graph . 29

2.16 C-language description of the Resource Graph struct 29

2.17 C-language description of the Switch struct 30

2.18 Example of internal connectivity on a 4x3 switch 30

2.19 C-language description of the Wire struct 31

2.20 Example of different connection configurations 33

2.21 Pseudo-code of the function used to check MSSN Resource

Graph connectivity . 34

2.22 A 16-inputs/16-outputs mixed radix MSSN 34

2.23 A 12-inputs/12-outputs mixed radix MSSN 35

2.24 A 20-inputs/20-outputs mixed radix MSSN 35

2.25 Routing strategy structure . 36

2.26 Pseudo-code of the routing algorithm (a) and its internal func-

tions (b)(c) . 38

2.27 Routing paths represented as list of pointers (a) organized as

binary tree in a Path Container 39

2.28 Implementation frequency versus area - 1024+1024 radix-2

MSSN post-synthesis results 43

2.29 1024+1024 radix-2 Flat MSSN versus Half-bypassed: effec-

tive frequency vs. area . 44

2.30 1024+1024 radix-2 Flat MSSN versus Fully-bypassed: effec-

tive frequency vs. area . 44

2.31 1024+1024 radix-2 Flat MSSN versus Half-bypassed: compu-

tational density vs. area . 45

2.32 1024+1024 radix-2 Flat MSSN versus Fully-bypassed: com-

putational density vs. area . 45

2.33 A 16+16 I/Os Benes butterfly-like network featuring radix-4

switches . 46

2.34 Implementation frequency versus area - 1024+1024 radix-4

MSSN post-synthesis results 47

2.35 1024+1024 radix-4 Flat MSSN versus Half-bypassed: effec-

tive frequency vs. area . 48

2.36 1024+1024 radix-4 Flat MSSN versus Fully-bypassed: effec-

tive frequency vs. area . 49

LIST OF FIGURES vii

2.37 1024+1024 radix-4 Flat MSSN versus Half-bypassed: compu-

tational density vs. area . 49

2.38 1024+1024 radix-4 Flat MSSN versus Fully-bypassed: com-

putational density vs. area . 50

2.39 Structure of a 2x2 switch (a) and a 4x4 switch (b) expressed

in terms of equivalent MUX2:1 51

2.40 Example of connectivity in a 16+16 I/Os fully bypassed radix-

2 MSSN . 52

2.41 Example of connectivity in a 16+16 I/Os fully bypassed radix-

4 MSSN . 52

2.42 Delay associated to the distance between two I/Os on a 1024+1024

half-bypassed (a) and fully-bypassed (b) MSSN - HVTSVTLVT

max-speed implementations 54

2.43 Delay associated to the distance between two I/Os on a 1024+1024

half-bypassed (a) and fully-bypassed (b) MSSN - SVT-only

iso-area implementations . 55

3.1 Baseline template architecture 57

3.2 CLB description . 59

3.3 Schematic of a fracturable LUT block 60

3.4 Schematic of a 12x10 crossbar 60

3.5 Bitcell matrix organization . 61

3.6 Uncommitted device timing loop (a) broken configuring CLB

Flip-Flops (b) . 62

3.7 CAD Flow Overview . 63

3.8 Example of bounding box on a 2D placement grid 64

3.9 CLB distance on an MSSN . 65

3.10 CLB column linearization of a 2D CLB placement 65

3.11 CLB connection through a MSSN represented as a binary-tree 66

3.12 Placement comparison . 67

3.13 Different I/O pads location 68

3.14 Routing algorithm flow . 69

3.15 Perl scripts flow . 70

3.16 Example of .blif expansion (a) and placement (.place) com-

paction . 71

viii LIST OF FIGURES

3.17 Flat configuration bitstream cut according to an 8-bit wide

data path . 71

3.18 Different length of a net in a flat and a bypassed MSSN . . . 72

4.1 eFPGA featuring 16 CLBs and a 256 points MSSN 74

4.2 CMOS 65nm floorplan of a 16 CLBs eFPGA 76

4.3 eFPGA featuring 64 CLBs and a 1024 points MSSN 77

4.4 Area and frequency design space - 16 CLBs flat MSSN version 79

4.5 Area and frequency design space - 16 CLBs fully-bypassed

MSSN version . 80

4.6 Area and frequency design space - 64 CLBs flat MSSN version 81

4.7 Area and frequency design space - 64 CLBs fully-bypassed

MSSN version . 83

4.8 Effective working frequency gain 85

4.9 Flat MSSN versus Fully-bypassed: frequency vs. area 86

4.10 Flat MSSN versus Fully-bypassed: computational density

vs. area . 87

5.1 Smart Power device overview 89

5.2 A Smart Power IC showing reprogrammability enhancement 90

5.3 eFPGA featuring 16 CLBs and a 256 points MSSN 92

5.4 BCD9s 0.11 µm floorplan of a 16 CLBs eFPGA 93

5.5 Sigma-Delta modulator . 97

5.6 Effective working frequency and resource usage of a set of

Σ − ∆ modulators . 97

5.7 Block diagram of the single-source power management IC . 99

5.8 Block diagram of the multi-source power management IC . 99

5.9 Block diagram of a cascade of power sequencers 100

5.10 Open-loop motor control . 100

List of Tables

2.1 CMOS 65nm 1024+1024 radix-2 MSSN post-synthesis sum-

mary - Min Area . 42

2.2 CMOS 65nm 1024+1024 radix-2 MSSN post-synthesis sum-

mary - Max Speed . 42

2.3 CMOS 65nm 1024+1024 radix-4 MSSN post-synthesis sum-

mary - Min Area . 47

2.4 CMOS 65nm 1024+1024 radix-4 MSSN post-synthesis sum-

mary - Max Speed . 47

2.5 1024+1024 I/Os radix-4 versus radix-2: area increase 51

4.1 CMOS 65nm SVT 16 CLBs Flat MSSN eFPGA post-synthesis

summary . 75

4.2 CMOS 65nm SVT 16 CLBs Fully-bypassed MSSN eFPGA post-

synthesis summary . 75

4.3 16 CLBs eFPGA comparison: fully bypassed versus flat MSSN 75

4.4 CMOS 65nm SVT 64 CLBs Flat MSSN eFPGA post-synthesis

summary . 77

4.5 CMOS 65nm SVT 64 CLBs Fully-bypassed MSSN eFPGA post-

synthesis summary . 78

4.6 64 CLBs eFPGA comparison: fully bypassed versus flat MSSN 78

4.7 CMOS 65nm SVT 16 CLBs SVT reference case 79

4.8 Leakage power design space summary: maximum values in

the 16 CLBs flat MSSN . 80

4.9 Leakage power design space summary: minimum values in

the 16 CLBs flat MSSN . 80

4.10 CMOS 65nm SVT 64 CLBs SVT - iso-frequency reference cases 81

ix

x LIST OF TABLES

4.11 Leakage power design space summary: maximum values in

the 64 CLBs flat MSSN . 82

4.12 Leakage power design space summary: minimum values in

the 64 CLBs flat MSSN . 82

5.1 BCD9s 0.11 µm 16 CLBs Flat MSSN eFPGA post-synthesis

summary . 92

5.2 BCD9s 0.11 µm 16 CLBs Flat MSSN eFPGA post-synthesis

summary . 92

5.3 16 CLBs eFPGA comparison: fully bypassed versus flat MSSN 93

5.4 Post-synthesis implementation of the target applications -

BCD9s standard cells flow . 95

5.5 LUT mapping results - 16 CLBs flat MSSN eFPGA 95

5.6 eFPGA mapping results - 16 CLBs flat MSSN eFPGA 96

5.7 Resource usage and effective working frequency - 16 CLBs

flat MSSN eFPGA . 96

Introduction

One of the reasons of System on Chips (SoCs) success is their capability

to couple performance and miniaturization with time-to-market. Typically

the design of a SoC follows implementation approaches based on Standard-

Cells: such approach allows designers to select the most appropriate tech-

nology flavours for a given application in order to find the best trade-off

among speed, area and power. In addition, in a Standard-Cell based flow

the availability of a rich portfolio of libraries allows the designer to ex-

plore quite easily different implementation scenarios, including libraries

with different transistor thresholds (Vt) to balance speed and leakage, or

libraries for high-density design, to balance area and speed. This design

style ensures time-to-market and risk-reduction inheriting its robustness

by the pre-verification and re-use of cells and IPs.

Usually a SoC features a processor-based environment enhanced with

a set of accelerators and I/O peripherals. Flexibility and upgradability are

precious features that can represent an added value for a SoC in terms

of market width and cost reduction, and are typically ensured adopting

Application Specific Standard Processors (ASSPs) and Digital Signal Pro-

cessors (DSPs) whereas performance requirements allow designers to plan

software-programmable solutions. So far, SoC market improves flexibility

through the increase of processor-based computation, be it on the proces-

sor core (e.g. adopting multicore processors) or be it on the acceleration

domains (e.g. by parallel architectures based on GPU-like structures).

The potentialities offered by these solutions are nowadays enlarged thanks

to the opportunities offered by the scaling of silicon technology, that allows

designers to integrate a growing amount of functionalities on the same

area. As a consequence, the rise of non-recurring engineering (NRE) costs

associated with complexity becomes a major factor in SoC design, limiting

1

2 Introduction

both scaling opportunities and the flexibility advantages offered by the in-

tegration of more complex computational units. Among NRE costs, one

factor that is steadily growing is the cost of masks [1], which makes it eco-

nomically sustainable to produce devices in advanced technologies only

for high-volume or high-value markets [2]. Hence the adoption of design

strategies able to reduce such costs and preserve high performance rep-

resents a challenge. IP-reuse strategies are a common approach to reliev-

ing design and verification costs by re-utilization of pre-designed and pre-

verified synthesizable IPs. This allows designers to optimize - in terms of

area, speed and power - the actual implementation of the IP for the specific

target, at the same time ensuring goo time-to-market and risk-mitigation.

The introduction of embedded programmable elements can represent

an appealing solution, able both to guarantee the desired flexibility and

upgradabilty and to widen the SoC market, enlarging its application sce-

nario or extending its lifetime. In both cases, the reprogrammability allows

one to spread NRE costs over a growing number of products. Such results

can be achieved for example through an intense amount of processor-based

computations, whether based on simple processors, multi-core processors

or domain-specific processing units like DSP and GPU structures.

An alternative option can be represented by the adoption of field pro-

grammable devices in the form of embedded FPGA (eFPGA) cores, solu-

tion that can provide bit-level optimization for those applications which

benefits from synthesis. Lots of time has been devoted in the literature to

showing the computational advantage of eFPGA in terms of GOPS/mm2

over processors and DSPs [3]. Nonetheless the potential benefits intro-

duced by such an approach are hampered by several well-known disad-

vantages that have historically restricted use of them on the market. The

biggest drawback is the performance penalties and area overhead intro-

duced by FPGA technology which should be considered at least one order

of magnitude more than standard cell ASIC implementation. To overcome

this, many FPGAs - especially the high-end solutions - are integrating many

hard-macros (multipliers, high-performance processors, high-speed inter-

faces..) with the aim to become more effective thanks to hardening. This

research of effectiveness involves also the embedded world, so that embed-

ded FPGA cores, to be appealing, must represent a small and effective part

Introduction 3

of the overall device and provide real added value for some specific aspect

of the system.

In this scenario this thesis - granted by STMicroelectronics - proposes

a design methodology for a synthesizable programmable device designed

to be embedded in a SoC. Usually programmable logic cores are offered

as hard macros of fixed size, optimized through custom layout for general

purpose applications. Soft-core eFPGA approaches have been introduced

in several works [4][5][6][7], on account of the straightforward advantages

of integration (e.g. pin position, technology flavours), flexibility (e.g. size,

DSP-block budget) and portability through technology nodes. Instead of

focusing on the ”computational” aspects of flexibility (size, DSP-Memory

blocks), in this thesis a soft-core embedded FPGA (eFPGA) is presented and

analyzed in terms of the opportunities given by a fully synthesizable ap-

proach, following an implementation flow based on Standard-Cell method-

ology.

A key point of the proposed eFPGA template is that it adopts a Multi-

Stage Switching Network (MSSN) as the foundation of the programmable

interconnects. This can avoid, or at least limit, the need for custom circuit

design also in the network, since it can be efficiently synthesized and opti-

mized through a standard cell based implementation flow, while it ensures

a congestion-free network topology, thanks to the intrinsic properties of

some specific MSSNs.

As presented in [8] and [9], the evaluation of the flexibility potentiali-

ties of the eFPGA has been performed using different technology libraries

through a design space exploration in terms of area-speed-leakage trade-

offs, enabled by the full synthesizability of the template. Since the most

relevant disadvantage of the adopted soft approach, compared to a hard

core, is represented by a performance overhead increase, the eFPGA anal-

ysis has been made targeting small area budgets. The generation of the

configuration bitstream has been obtained thanks to the implementation of

a custom CAD flow environment, and has allowed functional verification

and performance evaluation through an application-aware analysis.

The rest of this work is organized as follows. Chapter 1 provides an

overview of the state-of-the-art of the Programmable Logic Devices, with

particular focus on the FPGAs, for which both architectural and CAD sup-

4 Introduction

port aspects have been taken into consideration. Chapter 2 describes the

implemented Multi Stage Switching Network: after an introduction on the

state-of-the-art of this kind of interconnects, the architecture of the MSSN

is described both in terms of topology and dedicated software support, re-

alized using C-language. The custom software support is also able to real-

ize routing, implementing an algorithm that follows a precise strategy: as

explained in a dedicated section of Chapter 2, routing choices heavily in-

fluence the performance of the network. The chapter ends with an analysis

of a particular case of Multi Stage Switching Network. Chapter 3 presents

the realized eFPGA soft-core template, describing how its architecture can

provide synthesizability, flexibility and portability features; next to this, a

custom CAD flow support has been realized, and is presented in the end

of the chapter. Chapter 4 and 5 contain the demonstration of the described

eFPGA features: to do so, the eFPGA has been implemented using two dif-

ferent standard cells libraries (CMOS65nm and BCD9s0.11µm). For each

the results are analyzed, thanks also to the utilization of the custom CAD

flow support, and the conclusions are drawn in the final chapter.

Chapter 1

Programmable Logic Devices

A Programmable Logic Device (PLD) is a particular kind of electronic com-

ponent with reconfigurability and reprogrammability features. Thanks to

its structure, typically made of configurable logic and flip-flops linked to-

gether, a PLD can be configured by the user in order to perform differ-

ent functions. The possibility of programming (and often re-programming)

this kind of device introduces several advantages if compared to fixed logic

devices (e.g. ASICs), mainly in terms of costs reduction for low volume

applications. Designing with a PLD requires indeed less time, hence ”non-

recurring engineering” (NRE) costs reduction and shorter time-to-market,

together with risk reduction thanks to the availability, in some cases, of

changes on-the-field. On the other hand a PLD pays in terms of perfor-

mances if compared to an ASIC, with considerable area overhead and speed

reduction, and results to be appealing only for low-volume markets. De-

pending on their characteristics, programmable logic devices can be classi-

fied as:

• Simple Programmable Logic Devices (SPLD)

• Complex Programmable Logic Devices (CPLD)

• Field Programmable Gate Arrays (FPGA)

Even though featuring different characteristics, all programmable logic de-

vices are united by their architecture, composed of computational logic and

routing interconnections. Another common point is represented by the

need of a dedicated software environment able to develop, simulate and

test a design that is going to be mapped into the device.

5

6 Programmable Logic Devices

1.1 SPLD

As the most simple typology of programmable logic devices, SPLDs are

typically built with an array of AND gates (AND-array) and an array of

OR gates (OR-array). This kind of devices are hence characterized by two

different levels of synthesis, and in many cases are enhanced with sequen-

tial logic elements (e.g. Flip-Flops) able to store the outputs. There are three

fundamentals types of SPLD:

• PROM (Programmable Read Only Memories)

• PAL (Programmable Array Logic)

• PLA (Programmable Logic Array)

that differ between them in the placement of the programmable connec-

tions in the AND-OR arrays, as described in the following.

PROM

A programmable read-only memory (ROM) can be used to create arbitrary

combinational logic functions of a number of inputs. As depicted in figure

1.1 the input lines to the AND array - used to generate all the midterms of

the input signals - are hard-wired, while the output lines to the OR array are

programmable. The utilization of a PROM as programmable device intro-

duces penalties in terms of high power consumption, frequency reduction

and problems related to asynchronous logic transitions (glitch propagation)

in case of completely combinational architectures.

Figure 1.1: PROM diagram

1.1 SPLD 7

PAL

In a programmable array logic (PAL) both internal connections and OR ar-

ray are fixed, while the AND array can be programmed to generate a subset

of the combinations of the inputs, the outputs, or their complement (figure

1.2). As only part of the device is programmable, a PAL is easy to program,

but its architecture limits the design to simple state machines and simple

combinational circuits.

Figure 1.2: PAL diagram

PLA

A PLA has two sets of programmable planes, the AND and the OR array

(figure 1.3), so that a larger number of logic functions can be synthesized

in the form of sum of products and, in some cases, products of sums. The

available programmability of both planes increases the complexity of the

design (up to 1K equivalent gates), paying in terms of costs (need for more

sophisticated tools) and speed performances, but on the other hand allow-

ing the implementation of any function up to a product term limit.

Figure 1.3: PLA diagram

8 Programmable Logic Devices

1.2 CPLD

Going up with the total amount of logic available, a complex programmable

logic device (CPLD) is a macrocell which contains a bunch of simple PLD

blocks whose inputs and outputs are connected together by a global inter-

connection matrix, as depicted in figure 1.4. Thanks to its structure, a CPLD

Figure 1.4: CPLD example

offers two levels of programmability, hence multi-level synthesis: each PLD

block can be indeed programmed, as well as the interconnections between

them. One of the advantages of such kind of device is that it features a

non-volatile configuration memory (like its SPLD predecessors), so that it

can function immediately on system start-up without the need of an exter-

nal configuration memory. The increased amount of logic available - up

to 10K gates - together with their predictable timing characteristics make

CPLDs suitable for control applications, signal conditioning or simple data

processing.

1.3 FPGA

Together with CPLDs, field programmable gate arrays (FPGA) are nowa-

days the most used programmable devices, since they offer high amount

of logic (more than 1 million equivalent gates) together with the most fea-

tures and the highest performances between all the programmable logic

devices. For their ability to realize approximately any kind of complex dig-

ital circuit or system, FPGAs are historically compared to ASICs design,

with respect to which they are able to offer flexibility advantages on the

1.3 FPGA 9

same time paying in terms of area, speed and power performances. As for

the less evolved programmable logic devices previously described, FPGAs

can be characterized according two essential technologies: architecture and

computer-aided design (CAD) tools that must be employed to create the

design.

Since this thesis proposes and analyzes an FPGA, and in particular an

embedded FPGA, a more detailed overview of both architecture and CAD

aspects is presented.

1.3.1 FPGA Architecture

An FPGA can be described as composed of an array of computational logic

blocks (CLBs) of potentially different types connected using a programmable

routing fabric, that is also typically used to connect I/O blocks to make off-

chip connections [10].

Routing plays a significant role in the overall efficiency of an FPGA ar-

chitecture, since it heavily influences area performances (with an overhead

up to ≈ 80− 90% of the overall design) and is responsible for the efficiency

of the connections. The macroscopic arrangement of routing resources is

commonly called global routing, while the microscopic details regarding

wires or switches are known as detailed routing.

The most common FPGA global routing architectures can be character-

ized as either island-style or hierarchical.

Figure 1.5: Example of island-style (a) and hierarchical (b) FPGA

10 Programmable Logic Devices

Figure 1.5 (a) shows an example of traditional island-style architecture:

the CLBs are organized in a 2D grid, and can be seen as ”islands” in a sea

of programmable routing interconnects. Detailed routing in island-style ar-

chitectures offers a large number of options, such as the possibility of vary

the width of the routing channels (the space between logic blocks) or the

length of the wires used to realize connections (the so called segmented

routing) so as to reduce delays and obtain better layout optimizations. For

their general-purposeness island-style architectures are the most used in

commercial FPGAs, but when locality of connections becomes a major fac-

tor in a design hierarchical solutions represent the best choice. In a hi-

erarchical arrangement (figure 1.5 (b)) the logic blocks are organized into

distinct clusters, so that connections between CLBs belonging to the same

group can be made using wire segments at the lowest level of the hierar-

chy - obtaining faster paths - while connecting distant clusters requires the

traversal of one or more levels of the hierarchy. The main drawback - and

also the reason why island-style architectures are usually preferred - is that

design mapping can become an issue, in cases where the distribution of the

design wire length does not matches the hierarchy of the FPGA architec-

ture.

As regards detailed routing, a relevant case of study in FPGA design

regards the type of switch used to realize connections [10]. As a matter

of fact in both architectural solutions interconnect wire crossing are han-

dled using different kinds of switch boxes (red dots in figure 1.5), able to

connect routing tracks. These routing switches are typically made by a col-

lection of elementary logic blocks such as pass-transistors, buffers or multi-

plexers, that according to their structure can connect bidirectional or unidi-

rectional wires. Historically FPGA developers adopted bidirectional rout-

ing segments interconnected through pass-transistors or tri-state buffers

[11]: an example of two back-to-back tri-state drivers used as bidirectional

switches is shown in figure 1.6 (a). As the requirements of the applications

have grown in complexity, research has been done to overcome the issues -

speed and area - associated both with bit-level programmability and with

routing congestion. Hence bidirectional segmented routing requiring pass-

transistors or tri-state drivers has been replaced by unidirectional routing

and multiplexers (figure 1.6 (b)), bringing area and delay improvements as

1.3 FPGA 11

Figure 1.6: Bidirectional (a) and unidirectional (b) wires

shown by experimental results [12].

Computational logic blocks (CLBs) are the basic element of an FPGA,

since they are responsible for basic computation and storage for a target ap-

plication design. The architecture of a logic block can vary in a wide spec-

trum of choices: depending on the required functionalities and area-speed-

power performances, a CLB can be made of simple transistors, NAND

gates, interconnection of multiplexers, lookup tables (LUTs) or PAL-style

wide input gates [10]. The best trade-off - and the solution adopted by

most FPGA vendors - between too fine-grained and too coarse-grained so-

lutions is represented by the utilization of LUT-based CLBs. In such cases

a CLB is internally organized in a set of clusters, called basic logic elements

(BLEs), the number of which typically varies from 4 to 10. As depicted in

figure 1.7 (b) each BLE contains a k-inputs LUT, a Flip-Flop and a multi-

plexer that allows to select between combinational and sequential output.

Many different works have explored the impact of LUT size on speed and

area performances, showing that the best trade-off can be obtained with a

number of LUT inputs between 4 and 6 [10]. In addition, in many modern

FPGA designs a set of specific purpose hard blocks (e.g. multipliers, adders

or DSPs) can be introduced into BLE clusters with the aim to increase de-

sign potentialities.

12 Programmable Logic Devices

Figure 1.7: Example of CLB (a) and BLE (b) internal architecture

1.3.2 FPGA Software Flow

A key element that involves FPGA architecture research and heavily in-

fluences the quality of a design implementation is the development of a

Computer Aided Design (CAD) tool able to map target applications into

the FPGA. Not only the generation of the configuration bitstream is per-

formed thanks to the CAD environment, but also any FPGA architectural

exploration is highly dependent on the quality and level of freedom the

tools provide to designers and researchers.

As shown in figure 1.8, a typical FPGA software flow takes as input the

VHDL/Verilog Hardware Description Language (HDL) description of the

target application design and passes it through a set of intermediate steps

all the way down to configuration bitstream. As the CAD flow needs to be

aware of the characteristics of the target FPGA, other inputs to the design

flow typically include design constraints and the description of the device.

An overview of the steps listed in figure 1.8 is given in the following part

of this section.

1.3 FPGA 13

Figure 1.8: FPGA design flow overview

Logic Synthesis

Logic synthesis transforms an HDL description (VHDL or Verilog) into

a set of boolean gates and Flip-Flops netlist, transforming the Register-

Transfer-Level (RTL) description of a design into a hierarchical boolean

network [13]. RTL elaboration includes the identification of datapath op-

erations, such as additions, multiplications, register files and/or memory

blocks, and control logic, which are elaborated into finite-state machines

(FSM) and/or generic boolean networks. The significance of this opera-

tions is further increased by the fact that nowadays most of the modern

FPGAs have specified architectural supports for datapath operations, such

as adders with dedicated carry look ahead structures and embedded mul-

tipliers. An architecture-independent optimization of both datapath and

control logic operations is also performed using techniques such as con-

stant propagation or operation sharing for the datapath, and FSM mini-

mization and retiming for the control logic operations. This step is usually

14 Programmable Logic Devices

technology independent with no FPGA specific optimization done to the

logic.

Technology Mapping

Generally speaking a technology mapping operation transforms a technol-

ogy independent logic network into gates implemented with a technology

library. In the FPGA flow, the logic network is the circuit description of

Boolean logic gates given by the synthesis step, and the library of cells

is composed of LUTs, Flip-Flops and the on-chip dedicated blocks (e.g.

adders, multipliers).

Packing

As described in the previous paragraph, LUTs, Flip-Flops and specific pur-

pose hard blocks are organized in BLEs. The operation of grouping BLEs

into logic blocks (CLBs) that can be mapped directly to a logic element

(CLB) of an FPGA is called packing. There are three different approaches

that a packing algorithm can follow, namely top-down, depth-optimal and

bottom-up [14]. Bottom-up approaches partition the BLEs into clusters

taking into account one of them at a time, creating groups according to

an attraction function that tries to minimize a specific parameter (e.g. the

number of shared nets between blocks). Depth-optimal solutions attempt

to minimize delay at the expense of logic duplication, while top-down

approaches partition the logic block clusters by successively subdividing

the network or by iteratively moving BLEs between parts [14]. Thanks to

their fast runtimes and reasonable timing delays achievable bottom-up ap-

proaches are the most used in FPGA CAD tools.

Placement

Placement step has a significant impact on performance and routability,

since it is responsible for the logic blocks location on the FPGA. Typically a

placement engine tries to minimize a parameter (e.g. a cost function) using

a specific kind of algorithm. According to its optimization goal, a place-

ment cost function can minimize the required wiring (wirelength-driven

placement), balance wire density across the FPGA (routability-driven place-

1.3 FPGA 15

ment) or maximize circuit speed (timing-driven placement). The three ma-

jor algorithms used in FPGA placers are min-cut (partitioning-based), ana-

lytic and simulated annealing based [13].

Routing

Since in a programmable logic device, and in particular in an FPGA, rout-

ing interconnects represent a significant part of the overall design (up to

≈ 80− 90%), thus influencing also speed and power performances, routing

step can be defined as the most important in FPGA design. As for ASIC

designs, an FPGA routing step tries to successfully connect all signal nets -

listed in a netlist file - of a design according to specified timing constraints.

The main difference is that in an FPGA the available resources are fixed,

since prefabricated, so that achieving high percentage of routability is more

challenging. A routing engine must hence be aware of the properties of the

target FPGA architecture, both in terms of global and detailed routing, and

like placement step is based on a particular algorithm able to realize con-

nections and minimize resource utilization. Another important measure of

the quality produced by an FPGA routing algorithm is the critical path de-

lay, that can be defined as the maximum delay of a combinational path in

the netlist. The maximum frequency at which a netlist can be clocked has

an inverse relationship with the critical path delay, thus larger critical path

delays slow down the speed of a design.

Bistream generation

As final step of the flow, it takes as input the mapping, placement and rout-

ing information and generates the bitstream to program the configuration

cells of LUTs, routing, I/Os and hard blocks to implement the mapped ap-

plication on the target FPGA.

Since focused on the development of a programmable logic device, this

chapter has proposed a brief overview of the available PLDs with special

glance to FPGA architectures, the specific target of this thesis. As high-

lighted, routing in an FPGA represents a key point both from the archi-

16 Programmable Logic Devices

tectural and the performance evaluation point of view: for this reason in

this thesis a hierarchical approach is proposed. The innovation of the pre-

sented work is the utilization of Multi-Stage Switching Networks as foun-

dation of the programmable interconnects. The next chapter will provide

an overview of this kind of network, from the state of the art to the partic-

ular topology adopted.

Chapter 2

Multi-Stage Switching

Networks

Nowadays digital systems realize the communication between their sub-

systems (e.g. logic and memories) using interconnection networks, that can

be defined as programmable systems that transport data between terminals

[15] (figure 2.1).

Figure 2.1: Functional view of an interconnection network

Switching Networks are a particular kind of interconnection networks

that finds its origins in the communication industry, where simple switches

were first implemented as electromechanical assemblies in telephone switch-

ing offices in the early 1900s. With the growth of computer industry, appli-

cations for switching networks within high-performance computing ma-

chines have become more frequent, thanks to their ability to handle circuit

requests that are a permutation of its terminals (inputs and outputs), lead-

ing to the introduction of more evolved network topologies such as Multi-

Stage switching networks (MSSN).

A number of general surveys of interconnection networks have been

17

18 Multi-Stage Switching Networks

published [16] [17], where many different kind of MSSN have been classi-

fied according to their topology, defined as the static arrangement of chan-

nels and nodes, or their routing properties, defined as the ability to effect

connections between input ports and output ports.

Multi-Stage Switching Networks can be further classified according to

their blocking characteristic. More precisely, a network can be classified

as non-blocking if it can realize any connection between an input and an

output regardless the connections already established across the network,

or blocking if it cannot handle all the connectivity requests [15].

A distinction has to be made between the non-blocking networks. A net-

work is strictly non-blocking if any permutation can be set up incrementally,

one circuit at a time, without the need to reroute (or rearrange) any of the

connections that are already set up. In contrast, a network is rearrangeably

non-blocking if it can route connections for arbitrary permutations, but in-

cremental construction of a permutation can require rearranging some of

the early connections to permit later circuits to be set up.

All of the above definitions can be applied for unicast traffic (one input

connected to one output), multicast traffic (one input connected to several

outputs) or broadcast traffic (one input to all outputs).

The goal of the research work in the field of interconnection networks

proposed in this thesis has been to find an application of this kind of inter-

connects to the routing of an embedded programmable device. For that, the

analysis of the state of the art has focused on rearrangeably non-blocking

networks for multicast traffic, with special glance to architectures able to

guarantee a small area overhead for a number of connections (i.e. net-

work I/Os) that for an embedded PLD can reach some thousands of points.

An brief survey of non-blocking networks is given in the following sec-

tion; then the proposed rearrangeably non-blocking - for multicast traf-

fic - Multi Stage Switching Network is described in details, both in terms

of topology and routing algorithm. A key point of the MSSN, together

with its connectivity properties, is represented by its fully synthesizabil-

ity and optimizability through a standard cell based implementation flow,

feature that makes the network suitable for its utilization in an embedded

programmable device. At last, the final paragraph of the chapter presents

an architectural analysis of different kinds of MSSNs, both in terms of fre-

2.1 Non-blocking Interconnection Networks 19

quency and computational density performances.

2.1 Non-blocking Interconnection Networks

A crossbar network, or crossbar switch, is the most simple strictly non-

blocking interconnect since it is able to realize any kind of I/Os permuta-

tion without intermediate stages. An n ×m crossbar can connect n inputs

to m outputs thanks to n×m crosspoints realized with simple switches, as

shown in figure 2.2. Thanks to its architecture a crossbar network is strictly

non-blocking for both unicast and multicast traffic, since any unconnected

output can be connected to any input by simply closing the switch connect-

ing the input and the output lines. The main drawbacks of a crossbar are

costs and scalability: although economical in small configurations, the cost

of a square n× n crossbar increases indeed as n2.

Figure 2.2: Example of a 6x4 crossbar

Multi-Stage Switching Networks (MSSN) were born to overcome the

crossbars scalability issues. As shown in figure 2.3, a MSSN can be seen

as constructed from stages of identical crossbar switching elements of low

degree. Intermediate stages (also called levels) are connected together by

an interconnection pattern of links, sometimes referred to as a permutation

network but also called a shuffle. The routing properties of a MSSN are

heavily determined both by the dimensions of its switching elements and

by the pattern of interconnection links.

A Clos network [15] [18] is a symmetric three stage network character-

ized by a triple (m, n, r), where m is the number of middle stage switches,

20 Multi-Stage Switching Networks

Figure 2.3: The general structure of a Multi-Stage Switching Network

n the number of input (output) ports on each input (output) switch, and r

is the number of input and output switches (figure 2.4). The I/O switches

can be thought of as moving the traffic horizontally to and from the vertical

middle switches, while the middle switches move the traffic vertically from

a horizontal input switch to a horizontal output switch. Clos networks

with any odd number of stages can be derived recursively by replacing the

switches of the middle stage with three-stage Clos networks. As regards

Figure 2.4: A m, n, r Clos network

unicast traffic, a Clos network is strictly non-blocking if the condition

m ≥ 2n− 1 (2.1)

holds. Routing multicast traffic is instead an harder problem, since more

2.2 MSSN Architecture 21

middle switches are required [15], resulting in a considerable area increase

for high values (i.e. ≥ 100) of n.

The Benes network is a special case of the Clos network constructed

from 2x2 switches (figure 2.5). These networks are notable because their

architecture results to be rearrangeable non-blocking for unicast traffic if

[19]

m ≥ n (2.2)

and they require the minimum number of crosspoints to connect N (with

N = r × n) input ports: O(NlogN). Moreover both the symmetry and the

modularity of the architecture, built using only one typology of switch, can

represent an advantage from the design implementation point of view.

Figure 2.5: A Benes network built from a Clos network

With the aim to combine the advantages provided by all the described

topologies, the architectural choice carried out in this thesis will be pre-

sented in the next sections. Since the performances of a network are deter-

mined both by its architecture and by its routing algorithm [15], a section

will be dedicated to each of these aspects.

2.2 MSSN Architecture

The architecture of the MSSN has been chosen combining both a theoret-

ical aspect - state of the art analysis - and a practical one - architectural

exploration - obtained through the implementation of a software support.

For that, this section first provides a topological description of the chosen

MSSN, then describes the developed custom software environment.

22 Multi-Stage Switching Networks

2.2.1 Topology

The chosen architecture was built starting from an 2x2 switches architecture

featuring butterfly-like [15] interconnection links between stages: figure 2.6

shows an 8-input example of such network.

Figure 2.6: A 8-input butterfly network

Butterfly topology has been chosen since able to guarantee the mini-

mum number of stages, hence low latency and complexity: for an N-input

network with switches of degree k (also called radix-k switches) the num-

ber of stages is H = logkN . Besides such attractive feature, a basic but-

terfly network presents two main drawbacks. The first is related to the

logarithmic structure of the network: for a network with radix-k switches

the number of I/Os is constrained to be a power of k in size. The second

regards blocking features: due to its asymmetric, low-latency structure, a

baseline butterfly network has no path diversity, since there is exactly one

route from each source node (input) to each destination node (output). This

implies that non-blocking feature cannot be guaranteed for multicast traf-

fic.

This problem can be addressed by adding extra stages to the butter-

fly [15], with the aim to obtain a symmetric Benes topology. For that, as

shown in figure 2.7, the baseline N-inputs network (a) has been doubled

on the horizontal direction with a specular inverse butterfly network. In

this operation, the last stage of the baseline and the first stage of the in-

verse network have been fused together, creating a central common stage

(b).

The resulting network has then been duplicated on the vertical direc-

tion, obtaining stages with 2x number of switches (c). With the aim to

further improve path diversity - hence to reduce blocking probability -

and maintain the same I/O multiplicity (N) two stages featuring 1-input

2.2 MSSN Architecture 23

Figure 2.7: MSSN architecture guideline - network doubled on the horizon-
tal direction

switches have been added at the I/O extremes of the network (figure 2.8).

Figure 2.8: MSSN architecture guideline - network doubled on the vertical
direction

The obtained Benes back-to-back butterfly-like MSSN is shown in figure

2.9, where the central fused stage and the added I/O stages are highlighted.

With this topology, an N-input (and N-output) network with 2x2 switches

24 Multi-Stage Switching Networks

Figure 2.9: An 8-input Benes back-to-back butterfly like network

features

M = 2 ∗ log2N + 1 (2.3)

stages, with N switch block per stage, resulting in aO(N logN) complexity,

and is shown to be rearrangeably non-blocking for multicast connections

[15]. In this particular architecture, in which an improved path diversity

has been obtained increasing the number of resources available, latency

represents the most critical point. For that, together with the fact that but-

terfly networks cannot exploit traffic locality [20], an alternative hierarchy-

aware folded version has been devised and proposed during the research

work.

Thanks to its symmetry properties, the flat MSSN (figure 2.9) can be

folded at the central stage: this enhancement highlights an intrinsic hier-

archical structure that can be exploited through a set of dedicated connec-

tions to form ”U-turns”. As depicted in figure 2.10, a set of U-turn bypasses

placed at each stage of the folded network allows each groupHi to define a

non-blocking sub-network, still butterfly-based, thus bypassing the upper

level of the hierarchy.

The enhancement provided by this kind of MSSN can easily improve

routing performances, resulting in faster paths for local connections, with-

out affecting the non-blocking properties ensured by the network topol-

ogy. This is due to the fact that U-turns are realized by adding extra pins,

dedicated logic and independent configuration bits to each switch module,

2.2 MSSN Architecture 25

Figure 2.10: Folded MSSN supporting U-turn bypass

thus extending the number of available connections and routing paths of

the original rearrangeably non-blocking MSSN. As shown in figure 2.11 us-

ing a flat view of the MSSN, U-turns act as bypasses, bridging non-adjacent

stages thanks to the addition of an independent 2:1 multiplexer at the source

switch and an extra input pin to each multiplexer on the target switch.

This area increase merits consideration: for that, the area-frequency

trade-off on some bypass-enhanced MSSN architectures will be analyzed

more in details in the final paragraph of this chapter.

Going back to FPGA scenario, this kind of MSSN can find its application

on hierarchical designs, such as the hierarchical FPGA depicted in figure 1.5

(b): an example of correspondence of the hierarchical groupsHi on a FPGA

2D hierarchical layout is shown in figure 2.12.

2.2.2 Software Support

The software environment developed to support MSSN architectural ex-

ploration has been written completely using C language. The goal of such

tool is to simulate the target topology in order to dump a register-transfer-

level (RTL) MSSN description in Verilog language and to implement the

structure on which the routing algorithm will then try to perform I/O con-

nections. Given the complexity of the target architectures, in which the

number of inputs and outputs - hence the complexity - can easily reach

26 Multi-Stage Switching Networks

Figure 2.11: Bypass enhancement on a flat MSSN: U-Switch architectural
overview

high values, the algorithm has been written exploiting the dynamic alloca-

tion of pointers, technique that has allowed to reduce memory usage and

execution time.

Going into details, the tool exploits the modularity features of a MSSN.

As a matter of fact, a network like the one depicted in figure 2.13 can be

seen as based on programmable switches connected together through wires:

these ”resources” are organized in columns (stages) and rows to define a

Resource Graph. Thanks to the flexible structure of the tool, switches and

wires of different stages can have different characteristics, thus allowing

not only the simulation of a basic Benes butterfly-like MSSN (figure 2.9),

but also any possible architectural variation in terms of intra-stage connec-

tivity (e.g. U-turn enhancements of figure 2.11) or switch parameters (e.g

creating non-homogeneous architectures with switches of different radix).

2.2 MSSN Architecture 27

Figure 2.12: Hierarchy-aware 2D layout of butterfly MSSN

Figure 2.13: MSSN parameters for software tool

As a further added value, MSSN parameters are read from an external Con-

figuration File so that architectural modifications can be performed without

software changes.

The basic structure of the algorithm is described in figure 2.14: as first

step a function load parameters reads the description of the target MSSN

features from a Configuration File, that contains (figure 2.13):

28 Multi-Stage Switching Networks

Figure 2.14: Basic structure of the algorithm

• Number of MSSN inputs and outputs (N);

• Number of MSSN stages (also called levels) (M);

• Number of switch types;

• Description of each switch type (e.g. A, B, C ..) ;

• Switch distribution: for each level a switch type is assigned;

• Connection configuration: wires interconnection pattern for each level.

Subsequently, thanks to the build resource graph function (figure 2.15),

the algorithm creates and allocates a Resource Graph struct pointer with N

inputs, N outputs and M levels (step1). In an homogeneous MSSN (i.e. all

made of same radix-k switches) this values are strictly related so that N

must be a power of k, and

M = 2 ∗ logkN + 1 (2.4)

As specified before, the parametric structure of the tool also allows the cre-

ation of non-homogeneous networks in which switches featuring different

radix can be associated to each level of the network; some example and a

more detailed analysis of such architectures will be given at the end of this

chapter.

Figure 2.16 shows in details the Resource Graph struct: it contains a set

of parameters derived from the number of I/Os (i.e. number of rows, I/O

wires, internal wires), and the arrays of switch structs and wire structs that

will be used to build the network. Also the allocation of such arrays de-

pends from N, M and the maximum value of k (figure 2.15-step1).

2.2 MSSN Architecture 29

Figure 2.15: Pseudo-code of the function used to build the MSSN Resource
Graph

Figure 2.16: C-language description of the Resource Graph struct

Switch struct pointers are built using a create switch function (figure 2.15-

step2) with attributes that will be used both during architecture construc-

tion and routing algorithm. In this procedure, as shown in figure 2.17, to

30 Multi-Stage Switching Networks

each n-inputs m-outputs switch is assigned a name (SW row col), that de-

pends on the position in terms of row (R) and column (C) coordinates. A

Figure 2.17: C-language description of the Switch struct

switch struct also contains a booleanm×n connectivity matrix (out connections),

that defines the allowed internal connections. As an example, according

to the matrix depicted in figure 2.18, out 0 can be connected only to in 1

(the only ’1’ on the first row), out 1 can be connected to all the inputs and

out 2 only to in 2 and in 3. This matrix can be used during routing oper-

ation to simulate switch depopulation or to deviate traffic through specific

routes. Other struct parameters are fixed or used attributes, that will be set

during routing operations. Finally inside each n ×m switch struct pointer,

to perform future connections, n input wire struct pointers and m output

wire struct pointers are allocated (figure 2.17).

Figure 2.18: Example of internal connectivity on a 4x3 switch

As shown in figure 2.19, also wire struct pointers (built using a cre-

2.2 MSSN Architecture 31

ate wire function - figure 2.15-step2) are characterized by name, row (R),

column (C), used and fixed parameters; unlike switch structs, a wire can have

a weight - wire weight, used to condition routing algorithm - an owner - the

path that crosses - and a fanout parameter. This kind of struct features only

1 input switch struct pointer and f (with f = fanout) output switch struct

pointers to realize connections from (or to) the output (or the input) port of

a switch (out sw port and in sw port).

Figure 2.19: C-language description of the Wire struct

Once switch and wire pointers arrays have been created, for each level

and for each row the algorithm performs connections by pointing each wire

input to the corresponding switch output with a simple linear for cycle (fig-

ure 2.15-step3). The most elaborate step regards the connection between a

wire output and its target switch input. Two kind of connections are sup-

ported: regular (butterfly-like) and irregular (e.g. U-turn bypasses). For

each connection - hence for each wire output - two specific functions (com-

pute R and compute C) calculate rows and columns coordinates (target R

32 Multi-Stage Switching Networks

and target C) of the target switch, essentially using two formulas:Row = β ×
[
(y + vj × span) %α+ (int) yα × α

]
+ (1 − β) × (y + vj)

Column = x+ hj − 1

(2.5)

where (see figure 2.20)

• β : boolean variable, = 1 for regular connections, = 0 for irregular

connections;

• x, y : starting row and column coordinates;

• vj , hj : vertical and horizontal offset;

• span : value for cross (not straight) connections, used to build a butterfly-

like structure (span values shall be a power of 2 of a power of 4, de-

pending on the architecture required);

• α : = span × base, where base can be 2 or 4, used for regular connec-

tions.

are the parameters associated to each MSSN level, specified in the Config-

uration File; in this operation also the wire weight parameter - that will be

used to steer routing operations - is also assigned to each wire. Figure 2.20

shows several examples of different possible configurations, including an

example of multiple fanout wire (f = 2, bold wire of level 3).

As next step (figure 2.14) a check resource graph function is used to con-

trol the internal connectivity (figure 2.21): to do so switches (step1) and

wires (step2) inputs and outputs are scanned, checking if the port is floating

(i.e. = NULL) or connected. After a successful result of the check resource graph

function, the verilog RTL description of the MSSN can be dumped (dump resource graph).

Besides the software solution, another methodology allows checking the ar-

chitecture correctness: thanks to the utilization of a graphic tool (GraphViz)

it is possible to create an image of the MSSN starting from a .dot file, this

also dumped by a C-function. Figures 2.22 and 2.23 show two examples of

graphs obtained with such a technique.

As anticipated before the tool is also able to build architectures featur-

ing mix of regular heterogeneous levels, hence made of switches with dif-

ferent radix. Figure 2.22 shows an example of 16-inputs+16-outputs MSSN

2.2 MSSN Architecture 33

Figure 2.20: Example of different connection configurations

made with a mix of radix-2/radix-4 levels: in these networks the number

of levels of the first half and their radix are obtained with the factorization

of the number of I/Os (e.g. 16 = 2 x 4 x 2). The mixed-radix solutions can

be also implemented including non-power-of-two elements, provided they

are prime numbers, increasing the flexibility in terms of number of inputs

and outputs. As examples of this kind of architectures, figure 2.23 and fig-

ure 2.24 show two mixed-radix MSSN, featuring respectively 12-inputs+12-

outputs (12 = 2 x 3 x 2) and 20-inputs+20-outputs (20 = 2 x 5 x 2). In the

final paragraph of this chapter two MSSN featuring regular architectures

and switches with different radix (2x and 4x respectively) will be analyzed

and compared, with the aim to determine pros and cons of both choices.

34 Multi-Stage Switching Networks

Figure 2.21: Pseudo-code of the function used to check MSSN Resource
Graph connectivity

Figure 2.22: A 16-inputs/16-outputs mixed radix MSSN

2.3 MSSN Routing

Routing involves selecting a path from a source node (input) to a destina-

tion node (output): in MSSNs, routing choices heavily influence the perfor-

2.3 MSSN Routing 35

Figure 2.23: A 12-inputs/12-outputs mixed radix MSSN

Figure 2.24: A 20-inputs/20-outputs mixed radix MSSN

mance of the network. As a matter of fact, whereas the topology determines

the ideal performance of a network, routing can determine how much of

36 Multi-Stage Switching Networks

this potential is realized [15]. In order to better analyze and explain the

chosen routing technique, two different aspects have been analyzed: the

routing strategy, which controls the operations, and the routing algorithm,

the core function with which connections are actually performed.

2.3.1 Routing Strategy

Figure 2.25 shows the summary of the adopted routing strategy. Given a

MSSN topology, hence a Resource Graph, the list of the connections (nets)

to be realized is contained in a Netlist File, where each net is defined by

4 parameters: name, used to identify each connection, source, target, input

and output to be connected, and net weight, a parameter used to determine

routing order. Multicast connections are handled so that multi-fanout nets

are split into a set of single-fanout nets that will be routed independently.

Figure 2.25: Routing strategy structure

The first step is therefore a sorting operation of the nets to be routed:

2.3 MSSN Routing 37

owing to rearrangeably non-blocking characteristic of the network, this

step can heavily affect interconnect performance. Going into details, nets

are sorted in order of cost (Net cost), a parameter calculated - and updated

- as:

Net cost = Path cost+ γ ∗ (net weight× criticality) (2.6)

where γ and net weight are constants defined by the user, criticality is a pa-

rameter initially set to 1 and Path cost is the sum of the wire weights of the

crossed wires (see section 2.3.2).

Once the nets have been sorted, a routing function tries to realize all the

connections in the Netlist, resulting in successful or unsuccessful attempts.

At the end of the routing function, hence of the Netlist, a function checks

routing results: if all the nets have been routed, the goal has been achieved.

Otherwise, if there are unrouted nets, their cost is updated in order to put

the most critical connection at the top of the netlist during next sorting op-

eration. To do so, in 2.6 their criticality parameter is increased by 1, and the

obtained routing results are removed with a reset operation. The process

goes on until there are unrouted nets or the number of iterations reaches

an iteration limit, a parameter set by the user. Next section will describe in

details routing step, the core algorithm of this process.

2.3.2 Routing Algorithm

The Resource Graph that represents the MSSN can be seen as a weighted

graph, since during building operation (figure 2.15) a weight (wire weight)

is associated to each wire: exploiting this feature, the routing algorithm

has been developed as a Pathfinder-like algorithm based on Dijkstra’s al-

gorithm for weighted graphs [21]. As for the code developed to support

MSSN architecture generation, the C-based routing algorithm has been re-

alized using dynamic pointers allocation.

Each net listed on the Netlist File is at first (step1 in figure 2.26) memo-

rized in a Net descriptor struct pointer, that contains:

• Net name - used to identify each connection;

• Source, target - input and output to be connected;

• Net weight, criticality, net cost - parameters used to determine routing

38 Multi-Stage Switching Networks

Figure 2.26: Pseudo-code of the routing algorithm (a) and its internal func-
tions (b)(c)

order (equation 2.6);

• Route - the condition of a net: UNROUTED (connection not realized,

initial condition), ROUTED (connection realized) or FIXED (routed

and not-to-be-removed).

and, since the performed connections (Paths) will be memorized as a list of

resources, a Path container struct pointer is allocated.

The second step (step2) of the algorithm represents the core of the pro-

cess: following the routing strategy, nets are sorted according to their up-

dated cost (update and sort nets) and for each of them a runner function

tries to realize the connections. To do so, starting from the input wire cor-

responding to the source of a net, runner algorithm (figure 2.26 (b)) tries

to reach the requested output (the target of a net) running on resources

(switches and wires) with a recursive function (run function in figure 2.26

(c)) and taking all possible ways.

During this process a keep path function tracks the crossed resources,

building a list of switch or wire pointers (figure 2.27 (a)): since potentially

there is more than a way to connect a source to a target, as shown in figure

2.27 (b) this list can be seen as a tree with an head (the starting input),

branches (the connections) and leafs (wires and switches).

Runner also has to manage obstacles during its route, such as:

2.3 MSSN Routing 39

Figure 2.27: Routing paths represented as list of pointers (a) organized as
binary tree in a Path Container

• resources used by another driver: wires belonging to a connection

coming from a different source (the owner parameter described in sec-

tion 2.2.2);

• disabled wires: a function can disable, and enable, any wire inside

the network;

• wrong outputs: output wires not corresponding to the target.

When an obstacle is reached and runner can’t walk anymore on that

way, the corresponding branch is interrupted and immediately erased (clean path

function) from the Path container: such real-time deallocation of pointers al-

lows considerable memory saving.

While ”‘running”’ the cost of a path is calculated according to the wire weight

assigned (by the user, in the Configuration File) to each wire, so that:

Path cost =
∑

Wire weight (2.7)

40 Multi-Stage Switching Networks

In order to improve the convergence toward a final solution wire weights are

assigned to guide the algorithm to follow an as-straight-as-possible policy:

in particular, in a regular butterfly-like MSSN, bypasses and straight paths

are cheaper than diagonal paths. Once the target has been reached the first

time, a reference variable (MIN COST) is updated with Path Cost value and

the cost becomes a virtual ”obstacle”: when looking for other ways, if

Current cost >
∑

MIN COST (2.8)

current path will certainly be more expensive than the one with minimum

cost and runner will not proceed any more on that way. As for the other

obstacles, the pointers corresponding to the discarded branch are immedi-

ately deallocated.

After a path has been chosen, a function checks the correctness of the

route walking backwards from the target to the source (check path backwards

in figure 2.26 (b)) so that only one route can be taken, and the used resources

are marked as used by an owner (the name of the net) so that they will not

be available for path coming from different sources (config switch and wire

in figure 2.26 (b)).

For each net the algorithm stops when all possible ways have been trav-

eled: the corresponding net is set as UNROUTED or ROUTED depending

on the result. An optional function also allows the user to set ROUTED

nets as FIXED, so as they will not be removed from the Path container in

case of another routing iteration. At the end of the netlist, a check unrouted

function determines whether the iteration has to stop or not.

The final step (step3) of the routing process involves an optimization

of the network configuration: since the MSSN has been designed to realize

the internal connection in an embedded programmable device, the unused

MSSN resources (switches and wires) should be configured so as to reduce

as much as possible the MSSN power consumption. To do so, thanks to

the optimize switch configuration function, internal switches are configured

so as to connect unused outputs (not contained in the Netlist File) to unused

inputs: in this way the potential switching activity of the MSSN can be re-

duced, thanks to the propagation of constant (coming from unused inputs)

values. Finally, a dump bitstream function scans all the MSSN resources and

dumps the configuration bitstream.

2.4 MSSN Architectural Analysis 41

2.4 MSSN Architectural Analysis

This paragraph provides an evaluation of the U-turn bypasses, with the

aim to find the best trade-off between the area penalties - introduced by

the addition of logic in the U-switches (figure 2.11) - and the advantages on

frequency performances.

To do so, a distinction has to be made between implementation fre-

quency and effective working frequency. The first one is related to the full-

latency of the MSSN; the second one takes into account bypasses, which can

provide faster paths for near I/O points, and thus depends on the locality of

the required connections. Since different I/Os connections configurations

imply different levels of bypass exploitations - hence different advantages

on the effective frequency performances - in this analysis 4 ranges of fre-

quency gain have been taken into consideration: a 0% gain - corresponding

to a non-exploitation of any of the bypass connections - a 20%, 40% and

60% frequency gain. Such values are in-line with reality, since taken from

some application-aware analysis (such as the one provided in paragraph

4.4).

With these premises, the U-turn bypasses evaluation has been performed

on two different 1024+1024 I/Os MSSNs, featuring architectures with 2-

inputs/2-outputs switches (radix-2) and 4-inputs/4-outputs switches (radix-

4) respectively. For each one, a set of synthesis trials were performed us-

ing Synopsys Design Compiler Graphical tool [22] with STMicroelectronics

CMOS 65mn LP 1.10V standard cells libraries. Since CMOS 65nm tech-

nology features standard cells libraries characterized by transistors with 3

different MOSFET threshold voltage Vt (High, Standard and Low Voltage

Threshold - HVT, SVT, LVT), two different mix of standard cells were taken

into consideration: a standard area-optimized SVT-only and an high-speed

HVT+SVT+LVT mix. Target implementation frequency was the time-to-fly

between a primary input and a primary output, since the configuration

pins of the switch blocks were excluded from the timing analysis though

the set false path command.

Finally, a comparison of the two topologies is provided, in order to de-

termine the best MSSN radix.

42 Multi-Stage Switching Networks

2.4.1 Radix-2 1024+1024 MSSN

The first architecture is hence a 1024+1024 I/Os MSSN featuring 2-inputs/2-

outputs (2x2) switches. The structure of a flat version of such network is

exactly like the one reported in figure 2.9, and according to equation 2.3 it

features 21 stages, of which:

• the input stage is composed of 1024 1-input/2-output (1x2) switches;

• the middle stages features 1024 2x2 switches;

• the output stage has 1024 2x1 switches

Starting from a flat version, the U-turn bypasses were applied so as to re-

alize two different MSSNs: a fully-bypassed one, with bypasses on each

MSSN stage, and an half-bypassed network, with bypasses only on odd

stages. Post-synthesis results for all three versions are shown in tables

2.1 and 2.2, with two different implementations optimized per area or per

speed.

Min Area Flat MSSN Half-bypassed Fully-bypassed
Area [mm2] 0.20 0.34 0.40

Impl. Frequency [MHz] 200 200 180
Cells Mix SVT

Table 2.1: CMOS 65nm 1024+1024 radix-2 MSSN post-synthesis summary
- Min Area

Max Speed Flat MSSN Half-bypassed Fully-bypassed
Area [mm2] 0.80 0.89 1.01

Impl. Frequency [MHz] 480 445 395
Cells Mix HVTSVTLVT

Table 2.2: CMOS 65nm 1024+1024 radix-2 MSSN post-synthesis summary
- Max Speed

Each MSSN architecture was then implemented varying the target fre-

quency between the min-area and the max-speed values.

The obtained results are reported for the iso-area values in figure 2.28,

with the implementation frequency on the vertical axis and the obtained

area on the horizontal axis, showing similar trends for all three architec-

tures; the switch between the SVT-only and the HVT-SVT-LVT implemen-

tations is highlighted with the orange line.

2.4 MSSN Architectural Analysis 43

Figure 2.28: Implementation frequency versus area - 1024+1024 radix-2
MSSN post-synthesis results

Moreover, in order to better analyze the area-frequency trade-off, a com-

putational density analysis of both the half-bypassed and the fully-bypassed

architecture was performed, taking into account designs with same area

and different implementation frequency: as anticipated, 4 different levels

of bypass exploitation were assumed (i.e. 0%, 20%, 40% and 60% frequency

gain achievable).

The results for the half-bypassed architecture analysis are reported in

figure 2.29, showing that for low area budget (< 0.34 mm2) the flat ar-

chitecture is able to guarantee operating frequencies higher than the half-

bypassed one with a frequency gain of 40%. The half-bypassed architec-

ture becomes advantageous for area budgets > 0.44 mm2, since even with

a minimum frequency gain (> 20%) the operating frequencies achievable

are higher than that of the flat MSSN, allowing one to attain values beyond

700 MHz when area occupancy is not a constraint.

Figure 2.30 shows the same analysis relative to the fully-bypassed archi-

tecture: in this configuration the bypass-enhancements become advanta-

geous only when high-frequency (> 450 MHz) performances are required,

while for area budgets < 0.8 mm2 the flat MSSN is able to guarantee better

speed performances. Compared to the half-bypassed solution, this archi-

tecture allows reaching lower frequencies, with values that do not exceed

650 MHz.

44 Multi-Stage Switching Networks

Figure 2.29: 1024+1024 radix-2 Flat MSSN versus Half-bypassed: effective
frequency vs. area

Figure 2.30: 1024+1024 radix-2 Flat MSSN versus Fully-bypassed: effective
frequency vs. area

Computational efficiency has been analyzed in figure 2.31 for the half-

bypassed and figure 2.32 for the fully-bypassed: the frequency/area ra-

tio was taken as a figure of merit, which is proportional to the through-

put/area ratio.

Figures 2.31 and 2.32 show that in all three MSSN styles frequency/area

ratio has its maximum value for low area implementations, with a decreas-

ing trend that tends to saturate for area values > 0.6 mm2: this means that,

even when forcing the implementation frequency, the computational den-

sity values follow a predictable trend.

2.4 MSSN Architectural Analysis 45

Figure 2.31: 1024+1024 radix-2 Flat MSSN versus Half-bypassed: computa-
tional density vs. area

Figure 2.32: 1024+1024 radix-2 Flat MSSN versus Fully-bypassed: compu-
tational density vs. area

2.4.2 Radix-4 1024+1024 MSSN

Thanks to the parametric structure of the MSSN tool it was possible to re-

alize a 1024+1024 MSSN featuring 4-inputs/4-outputs switches (4x4). Fol-

lowing the MSSN building rules described in paragraph 2.2.2, and accord-

ing to equation 2.4, the number of stages M of a radix-4 MSSN with N

inputs/outputs is:

M = 2 ∗ log4N + 1 (2.9)

46 Multi-Stage Switching Networks

resulting in a 11 stages MSSN. Moreover, since during the network dou-

bling operation (figure 2.8) the input pins of the switches of the input stage

are halved - in this case resulting in 2-inputs switches - each stage is com-

posed of 512 rows. Hence the MSSN features:

• the input stage composed of 512 2-input/4-output (2x4) switches;

• the middle stages featuring 512 4x4 switches;

• the output stage with 512 4x2 switches.

as shown in figure 2.33, where an example of 16+16 radix-4 MSSN is shown.

Figure 2.33: A 16+16 I/Os Benes butterfly-like network featuring radix-4
switches

As for the previous radix-2 MSSN (section 2.4.1), three different archi-

tectures were implemented: a flat MSSN, a fully-bypassed and an half-

bypassed (with U-turn bypasses only on odd stages). Post-synthesis results

are shown in tables 2.3 and 2.4, with two different implementations opti-

mized per speed or per area

Again, a set of synthesis trials were performed varying the implemen-

tation frequency between the values in tables 2.3 and 2.4, obtaining the

results reported in figure 2.34, where the switch between the SVT-only and

2.4 MSSN Architectural Analysis 47

Min Area Flat MSSN Half-bypassed Fully-bypassed
Area [mm2] 0.27 0.33 0.49

Frequency [MHz] 200 200 200
Cells Mix SVT

Table 2.3: CMOS 65nm 1024+1024 radix-4 MSSN post-synthesis summary
- Min Area

Max Speed Flat MSSN Half-bypassed Fully-bypassed
Area [mm2] 0.89 0.90 1.1

Frequency [MHz] 405 365 367
Cells Mix HVTSVTLVT

Table 2.4: CMOS 65nm 1024+1024 radix-4 MSSN post-synthesis summary
- Max Speed

the HVT-SVT-LVT implementations is highlighted with the orange line. As

for the radix-2 implementations, the three MSSN versions follow the same

growing trend; as can be observed, the fully-bypassed architecture (red

line) can reach lowest frequencies, with a gap from the other two topologies

deeper than the radix-2 case.

Figure 2.34: Implementation frequency versus area - 1024+1024 radix-4
MSSN post-synthesis results

The computational density analysis of both fully- and half-bypassed ar-

chitectures was again performed considering 4 levels of bypass exploitation

(i.e. able to guarantee a frequency gain of 0%, 20%, 40% and 60% respec-

tively). The results of the half-bypassed architecture (figure 2.35) show that

for configurations able to guarantee a frequency gain > 20% this structure

48 Multi-Stage Switching Networks

is always more advantageous than the flat one.

Figure 2.35: 1024+1024 radix-4 Flat MSSN versus Half-bypassed: effective
frequency vs. area

Figure 2.36 shows the effective frequency analysis for the fully-bypassed

MSSN: in this case the advantages provided by the introduction of the U-

turn bypasses become evident only when high frequency (> 400 MHz) per-

formances are required at the expense of an increased area occupancy. For

low area budgets (< 0.89 mm2), indeed, the flat topology can guarantee

frequencies comparable to that of a fully-bypassed MSSN with a 40% fre-

quency gain.

Computational efficiency has been analyzed in figure 2.37 for the half-

bypassed and figure 2.38 for the fully-bypassed: the frequency/area ra-

tio was taken as a figure of merit, which is proportional to the through-

put/area ratio.

Figures 2.37 and 2.38 show that in all three MSSN styles frequency/area

ratio has its maximum value for low area implementations, with a decreas-

ing trend that tends to saturate for area values> 0.89mm2: this means that,

also in the radix-4 case, even when forcing the implementation frequency

the computational density values follow a predictable trend.

Next paragraph will provide a comparison between the radix-2 and the

radix-4 architectures, both in terms of area and ability to exploit the advan-

tages provided by the U-turn bypasses.

2.4 MSSN Architectural Analysis 49

Figure 2.36: 1024+1024 radix-4 Flat MSSN versus Fully-bypassed: effective
frequency vs. area

Figure 2.37: 1024+1024 radix-4 Flat MSSN versus Half-bypassed: computa-
tional density vs. area

2.4.3 Comparison between radix-2 and radix-4 architectures

The first aspect that has to be taken into consideration is related to the area

occupancy of the two different topologies: to do so, an evaluation of the

complexity of each architecture - in its flat version - in terms of equivalent

MUX2:1 has been performed.

In an homogeneous (i.e. stages realized with the same switches) M

stages MSSN, with K switches per stage, the total number of equivalent

50 Multi-Stage Switching Networks

Figure 2.38: 1024+1024 radix-4 Flat MSSN versus Fully-bypassed: compu-
tational density vs. area

MUX2:1 (MSSNeq mux) can be expressed as:

MSSNeq mux = (M − 1) ∗K ∗ SWeq mux (2.10)

where SWeq mux is the number of MUX2:1 used to realize a switch block,

and the (M-1) factor is due to the fact that the input stage of a MSSN (figure

2.9 and 2.33) can be realized without any Multiplexer.

According to that, assuming a 2-inputs/2-outputs (2x2) switch as com-

posed of 2 MUX2:1 (figure 2.39(a)), the radix-2 MSSN (21 stages, accord-

ing to equation 2.3) features ≈41k equivalent MUX2:1. On the other side,

in the the radix-4 MSSN (11 stages, equation 2.9) the 4-inputs/4-outputs

(4x4) switches can be seen as made of 4 MUX4:1 - each equivalent to 3

MUX2:1 (figure 2.39(b)) - so that the total number of equivalent MUX2:1 re-

sults ≈58k, a +40% increase with respect to the radix-2 solution. Such value

is confirmed by the area values of the Flat MSSN min-area implementations

reported in tables 2.1 and 2.3, since the area values vary from 0.20 mm2 to

0.27 mm2, a +35% increase.

Table 2.5 shows the comparisons between all the other implementa-

tions (reported in tables 2.1, 2.2, 2.3 and 2.4), both in minimum area and

in maximum speed configurations. Results show that the radix-4 topol-

ogy introduces significant area penalties only in the Flat and in the Fully-

bypassed min-area cases (+35% and +22% respectively), penalties that are

2.4 MSSN Architectural Analysis 51

Figure 2.39: Structure of a 2x2 switch (a) and a 4x4 switch (b) expressed in
terms of equivalent MUX2:1

significantly mitigated by the synthesis tool optimizations in the other cases

(<11%).

Flat MSSN Half-bypassed Fully-bypassed
Min Area 35% 6% 22%

Max Speed 11% 1% 9%

Table 2.5: 1024+1024 I/Os radix-4 versus radix-2: area increase

Given the area penalties introduced by the radix-4 topology, and since

in all the topologies both the half-bypassed and the fully-bypassed archi-

tectures can provide advantages in terms of working frequency, an analysis

of the trade-off between area occupancy and opportunities offered by the

U-turn bypasses in both radix-2 and radix-4 MSSN has been realized.

As a matter of fact in a regular topology - like the ones taken into consid-

eration - an increase of the number of switch blocks I/Os (MSSN radix) im-

plies a different pattern of connections between the internal MSSN stages,

resulting in a different number of stages that have to be crossed to connect

two MSSN I/Os, in case of U-turn bypasses exploitation.

As an example, as shown in figure 2.40 and 2.41, the number of stages

that have to be crossed in a 16+16 I/Os radix-2 folded MSSN to connect

IN 0 with IN 7 is 3, while in the 16+16 I/Os radix-4 folded MSSN only 1

stage has to be crossed.

According to that, the half-bypassed and the fully-bypassed version of

52 Multi-Stage Switching Networks

Figure 2.40: Example of connectivity in a 16+16 I/Os fully bypassed radix-2
MSSN

Figure 2.41: Example of connectivity in a 16+16 I/Os fully bypassed radix-4
MSSN

a 1024+1024 I/Os radix-2 and a 1024+1024 I/Os radix-4 MSSNs have been

compared, analyzing the number of stages - hence the delay - required to

connect two MSSN I/Os placed at different distance. To do so, a set of both

2.4 MSSN Architectural Analysis 53

max-speed HVT-SVT-LVT and a iso-area SVT-only trials have been consid-

ered: for each, the delay associated to a MSSN stage (Tstage) has been cal-

culated dividing the implementation period (TMSSN) by the total number

of stages introducing significant delay (M − 1), so that:

Tstage =
TMSSN

(M − 1)
(2.11)

Figures 2.42 and 2.43 report the delay associated to the distance of two

MSSN I/Os that have to be connected. As can be seen observing the hor-

izontal axes, in the radix-2 architecture the distance (DIST) achievable

through each stage (m) is:

DIST (m) = 2m (2.12)

while in the radix-4 architecture:

DIST (m) = 2 ∗ 4m (2.13)

where the 2-factor is due to fact that each input/output switch is connected

to 2 primary inputs/outputs.

The obtained results show that in the HVT-SVT-LVT max-speed (figure

2.42) half- and fully-bypassed implementations the radix-2 MSSN (light

blue line) results faster - less delay - only when the required distance be-

tween points is great (>64 and >512 respectively). The same behaviour

has been obtained in the SVT-only iso-area (figure 2.43(b)) comparison of

fully-bypassed architectures, where the radix-4 (red dots) offers faster con-

nectivity for local (distance <256 points) connections.

Finally, the the iso-area half-bypassed trials (figures 2.43(b)) show that

the radix-4 MSSN results always faster than the radix-2, allowing to reach

the same distance between points in faster time. This means that, in case

of U-switch enhanced MSSNs and local connectivity, the radix-4 topology

can provide better performances than a radix-2, choice that remains on the

other side the best solution in terms of area occupancy.

54 Multi-Stage Switching Networks

This chapter has provided an overview of Multi-Stage Switching Networks

oriented towards the description - and the performance analysis - of the

custom topology chosen to realize routing on an embedded programmable

device. Next chapter will describe in details such device, an embedded

FPGA, from a state-of-the art analysis to the description of its features,

highlighting the advantages provided by the adoption of a MSSN to realize

routing.

Figure 2.42: Delay associated to the distance between two I/Os on a
1024+1024 half-bypassed (a) and fully-bypassed (b) MSSN - HVTSVTLVT
max-speed implementations

2.4 MSSN Architectural Analysis 55

Figure 2.43: Delay associated to the distance between two I/Os on a
1024+1024 half-bypassed (a) and fully-bypassed (b) MSSN - SVT-only iso-
area implementations

Chapter 3

Embedded FPGA Soft-Core

Template

An embedded FPGA is the target device chosen to put in practice and val-

idate the design methodology presented in this thesis work. Thanks to its

particular structure, as anticipated in the introduction, the target eFPGA

template features three main characteristics: synthesizability, portability to

different technology nodes and flexibility in terms of adaptability to differ-

ent application-specific needs.

Since designed to be embedded in a more complex system (e.g. a SoC),

synthesizability - hence a soft-core approach - represents the first and most

important attribute, crucial to obtain the other two. Such feature has been

obtained thanks to the eFPGA particular architecture, that will be described

in this chapter, chosen targeting small area budget (up to some tens of

equivalent KGates) and enhanced by the utilization of a Multi-Stage Switch-

ing Network to realize routing. The fully synthesizability has enabled the

possibility to synthesize and optimize the eFPGA template through a stan-

dard cell based implementation flow, thus proving its flexibility in terms of

portability to different technology nodes. As will be presented in chapters

4 and 5, this feature has allowed the implementation of the device on two

technologies with very different characteristics: CMOS 65nm and BCD9s

0.11µm. Within each of the two types of implementation, the synthesizabil-

ity has also ensured wide flexibility in terms of area-speed-leakage trade-

offs, thanks to potential exploitation of all the technology flavours avail-

able. Hence for each technology, as shown in the relative chapter (4 and

56

3.1 eFPGA Architecture 57

5 respectively), the wide design space available has demonstrated the op-

timizability of the device for different application-specific needs, further

strengthening its suitability for embedding in a SoC.

This chapter describes the chosen soft-core eFPGA template, presenting

both its architecture - starting from a brief overview of similar solutions in

industry and academics - and its custom CAD support, realized relying on

VTR [23] environment and compatible with MSSN features.

3.1 eFPGA Architecture

The baseline architecture is shown in figure 3.1: the global routing features

a hierarchical arrangement, since the logic blocks (CLBs) are connected

through a butterfly-based MSSN. Thanks the parametric structure of the

template, the designer can set the total number of CLBs, the number of

primary I/Os, the dimension and the optional enhancements (e.g. U-turn

bypasses) of the MSSN, that represents the key point of the overall archi-

tecture.

Figure 3.1: Baseline template architecture

Looking at the state-of-the-art, some examples of application of hier-

archical interconnects on FPGAs can be found. Abound Logic (former

M2000) is the most notable example of a company that provided embed-

ded FPGA: their architecture features a hierarchical interconnect with local

crossbars based on Clos networks, ensuring local connectivity with non-

blocking properties [24]. Other examples of hierarchical networks have

been proposed by Leopard Logic [25] and, more recently, by UCLA [26]

58 Embedded FPGA Soft-Core Template

which adopts an MSSN based on Benes/Butterfly topology in an huge

(2048 equivalent look-up-tables) FPGA. As regards the embedded - hence

small and effective - world, the concept of embedded FPGA has never had

any wide success in industry, resulting in a lack of a fairly extensive lit-

erature: this thesis work was designed precisely to fill such gap. Going

into details, the proposed MSSN features the back-to-back butterfly-like

architecture described in section 2.2.1: the flexibility of its software sup-

port (section 2.2.2) allows any architectural variation in terms of number of

I/Os, switch blocks characteristics and internal connectivity (e.g. bypass

enhancements). The utilization of a MSSN for an eFPGA interconnect, and

especially for a soft-core eFPGA, provides some advantages:

• The blocking properties of the network are well defined and pre-

dictable in terms of topology, thus simplifying routability analysis.

Such feature acquires greater importance in the particular eFPGA

application framework, where the internal connections are statically

configured: as a consequence a rearrangeable non-blocking MSSN

is equivalent to a fully non-blocking structure and makes the device

congestion-free.

• The adaptation of the eFPGA (size scaling, number of I/Os, ..) for

specific needs can be achieved by the designer without specific back-

ground on eFPGA design, leveraging MSSN congestion-free prop-

erty.

• The modularity of the network (based on the regular replication of

small basic switch-modules) enables a truly effective soft-core ap-

proach. Each switch block can be implemented by standard cells or

optimized at circuit level as a single coarse-grained cell, without af-

fecting the whole eFPGA synthesizability properties.

The CLB model has been chosen from an analysis of the architectural so-

lutions available in VTR [23], an open-source tool for FPGAs: the resulting

scheme, depicted in 3.2, represents an effective trade-off between complex-

ity and general-purposeness, with good balancing between number of pins

and computational resources. Taking up the structure proposed in section

1.3.1, figure 1.7, each CLB features:

3.1 eFPGA Architecture 59

Figure 3.2: CLB description

• 13 inputs (12 + Carry-in) and 13 outputs (12 + Carry-out);

• 3 independent BLE blocks, each one containing two LUT blocks (A

and B in figure 3.3), that can be both used to form a LUT 6:1 or frac-

tured down to 2 LUT 4:2; this is obtained thanks to a selection logic

driven by 3 configuration bits (LUT Type), that produces 4 outputs.

Each output is hence followed by a flip-flop which can be bypassed

using a multiplexer;

• 3 12x10 input crossbars, used to connect LUT blocks to main inputs,

resulting in partial sharing among blocks: as depicted in figure 3.4

these 12x10 small interconnection networks are realized using 10 12:1

multiplexers, and can be configured using 40 bits. This simple ar-

chitecture has been chosen as it requires less area than an equivalent

12x10 Multi-Stage Switching Network: MSSNs indeed result to be ef-

ficient for higher dimensions (i.e. I/O multiplicity beyond hundred

of points);

• A small/simple generic DSP block, sharing inputs and outputs with

some LUT blocks.

To preserve a fully-synthesizable soft-core approach, configuration bit-

cells and logic are implemented with simple latches, logically organized

in small local square matrices. Hence for each CLB and for each MSSN

60 Embedded FPGA Soft-Core Template

Figure 3.3: Schematic of a fracturable LUT block

Figure 3.4: Schematic of a 12x10 crossbar

level there is a dedicated bitcell matrix configured by 2 scan-chains (one

for data words and one for rows write-enables, as depicted in figure 3.5).

Compared with a global memory organization, this solution pays a small

increase in the total number of flip-flops, but allows shorter and faster con-

figuration paths. In addition, it alleviates global routing congestion during

3.1 eFPGA Architecture 61

implementation.

Figure 3.5: Bitcell matrix organization

To make the template fully synthesizable (and place-and-route imple-

mentable), some guidelines have been adopted:

• Bitcell write-enables are driven by clock-gating cells, where the con-

figuration clock is enabled by a scan-chain write-enable (figure 3.5).

The configuration sub-system clock is mostly asynchronous with re-

spect to the functional clock driving the CLB flip-flops, since config-

uration is performed in quasi-static way.

• Uncommitted interconnects and CLBs with potentially combinational

outputs cause a combinational feedback, resulting in timing loop (fig-

ure 3.6 (a)). This condition is peculiar to the uncommitted device

since all the bitcells can be either 0 or 1. To break the timing loop, dur-

ing implementation all CLBs are forced to be sequential (e.g. through

set case analysis or set disable timing constraints on the output multi-

plexers, as shown in figure 3.6 (b)). The interconnect itself is loop-free

by construction, since it features a topology described by an oriented

graph.

62 Embedded FPGA Soft-Core Template

Figure 3.6: Uncommitted device timing loop (a) broken configuring CLB
Flip-Flops (b)

3.2 eFPGA CAD Flow Support

To generate the bitstream to configure the eFPGA, a complete CAD flow

support has been implemented, leveraging on the availability of a state-

of-the-art open-source VTR [23] environment. The structure of the flow

follows the typical structure of an FPGA CAD tool (section 1.3.2), and is

shown in figure 3.7. Starting from a behavioural RTL description of the

function to map into the eFPGA, VTR flow provides logical synthesis and

physical LUT mapping, namely the synthesis, packing and place-and-route

steps. Since in VTR standard version these steps target bi-dimensional ar-

rays interconnected through segmented routing, some modification was

required to support the particular eFPGA architecture.

The standard front-end flow - properly configured in terms of CLB fea-

tures - has been adopted for logical synthesis (ODIN-II [27] tool) and physi-

cal LUT mapping (ABC [28] tool) steps. The resulting .blif Logic file with the

LUT functional description is then processed by the packing step (AAPack

[29]), able to produce a .net Hierarchy file.

Before these, as shown in figure 3.7, a simple (optional) pre-synthesis

step has been added to overcome syntax limitation of ODIN-II: based on

3.2 eFPGA CAD Flow Support 63

Figure 3.7: CAD Flow Overview

Synopsys Design Compiler tool [22] it maps the input RTL into a mini-

malistic technology-independent library with AND, OR, NOT and Flip-

Flop functionalities. The resulting structural Verilog is syntactically full-

compatible with ODIN-II through a set of custom scripts (DC2ODIN in

figure 3.7).

As regards the place-and-route steps (based on VPR [23]), since the

peculiarity of the eFPGA interconnection network requires MSSN-aware

routing, the placement tool has been modified and the routing step re-

placed by a custom one, able to support MSSN, as detailed in the following

sections.

Finally a set of ”hand-crafted” Perl scripts have been implemented to

allow for elaboration of the files generated during the synthesis, packing,

64 Embedded FPGA Soft-Core Template

placement and routing steps: such scripts are able to produce both the eF-

PGA configuration bitstream and a set of critical path analysis files useful

to evaluate routing performances. A section will be dedicated to a more

detailed description of these scripts.

3.2.1 Placement Algorithm

As anticipated in section 1.3.2, the placement is responsible for logic block

locations on the eFPGA, the aim being to reduce the total wire-length of

all nets in the circuit (possibly adjusted with timing-driven optimization).

The VPR placement engine is based on simulated annealing [23] [30] with

a clear separation between the optimization algorithm (annealing) and the

cost function to be optimized (in the simplest case, the total wire-length).

To implement an MSSN-aware placement, the cost function has been mod-

ified, for both path-driven and timing-driven analysis.

Natively, like most placement engines, VPR estimates the wire length

as proportional to the bounding box surrounding the source and sinks of

the nets, a well-accepted approximation. In particular the cost of a net is

Figure 3.8: Example of bounding box on a 2D placement grid

defined as equal to the Half Perimeter Wire-Length (HPWL), so that (figure

3.8):

Net cost = ∆x+ ∆y (3.1)

and the total wire-length W for a given placement configuration featuring

3.2 eFPGA CAD Flow Support 65

N nets is:

W =
N∑
k=1

Net cost(k) (3.2)

While this metric works properly for 2D placement of ASIC and/or

FPGA (possibly adjusted with timing- and congestion-aware parameters),

for an MSSN it provides a placement that is far from optimum.

Figure 3.9: CLB distance on an MSSN

Figure 3.10: CLB column linearization of a 2D CLB placement

As shown in figure 3.9 and 3.10, on a MSSN-based eFPGA the distance

between two CLBs (CLB m and CLB n) cannot be calculated under 2D met-

66 Embedded FPGA Soft-Core Template

rics (like HPWL) since the distance depends on the relative position on the

graph and not on the 2D arrangement of the CLBs. A 2D hierarchical ar-

rangement (like the one shown in section 2.2.1, figure 2.12) can be obtained

thanks to ordering CLBs by columns, with an orderly correspondence be-

tween the 2D placement grid (figure 3.10) and the position of the CLBs in

the logarithmic network (figure 3.9).

Figure 3.11: CLB connection through a MSSN represented as a binary-tree

As described in section 2.3.2, the particular MSSN structure can be rep-

resented by an n-ary tree (in case of radix-2 switches, a binary tree) and

the cost to a net connecting two or more points is roughly proportional to

the height of the minimum-cone (figure 3.11) that subtends all the points

(source and sinks). That height corresponds to a hierarchical stage Hi of

the MSSN.

Defining Smin the minimum stage subtending all the points of the kth

net, the total wire-length W for a given placement configuration featuring

N nets is:

W =

k=1∑
N

2 ∗ Smin(k) (3.3)

where the 2 factor derives from the forward and backwards folded paths.

To obtain a timing-driven cost function, since the delay associated with

3.2 eFPGA CAD Flow Support 67

each MSSN stage can be roughly determined, the total cost becomes:

Wtime =

k=1∑
N

2 ∗
Smin(k)∑
i=1

αi (3.4)

where αi represents the delay associated with each stageHi crossed toward

Smin. This function is very similar to the previous one and since αi coeffi-

cients are at first approximation equal or smoothly different, timing-driven

and path-driven algorithms provide very similar results. In addition, since

the network provide congestion-free, no adjustment is required to take into

account congestion hot-spots, thus simplifying the overall cost function.

Figure 3.12: Placement comparison

To give an example, figure 3.12 shows a comparison between two place-

ments, the first one realized with a standard 2D HPWL and the other one

with the MSSN-specific cost function. In both cases, I/O pads are posi-

tioned only on the right perimeter of the device, position that corresponds

to the rightmost side of the MSSN I/Os (see figures 3.9 and 3.10): further

software modifications allow indeed the user to select both a standard I/O

location (whole perimeter) and a customized one (left-only, right-only and

left-right sides), as shown in figure 3.13.

3.2.2 Routing Algorithm

As shown in the CAD flow summary graph (figure 3.7), the VTR standard

routing tool has been replaced by a tool dedicated to MSSN-based struc-

68 Embedded FPGA Soft-Core Template

Figure 3.13: Different I/O pads location

tures. The structure of the developed C software tool can be seen as di-

vided in two main steps, as shown in figure 3.14, called Build MSSN and a

Route on MSSN respectively.

The Build MSSN algorithm has been described in details in section 2.2.2:

it takes as its input a .xml Architecture file containing the description of the

desired MSSN and gives as its output a Resource Graph representing the

MSSN, essentially made of switch blocks connected through wires.

The MSSN Resource Graph is then taken as an input by the following

step, Route on MSSN: as detailed in section 2.3.2, this routing algorithm

also needs a .txt Netlist file - in this case provided by the VTR placement

step - containing the description of the internal eFPGA connection to be

performed.

Finally, in case of successful routing operation, the custom router pro-

vides the RTL description of the MSSN and its configuration bitstream, to-

gether with statistical information relative to the wirelength distribution.

3.2 eFPGA CAD Flow Support 69

Figure 3.14: Routing algorithm flow

3.2.3 Perl Scripts

As final step, since packing, placement and routing results come from dif-

ferent tools, a set of Perl scripts has been build up to elaborate the het-

erogeneous files produced during each intermediate step and provide the

eFPGA configuration bistream.

As shown in figure 3.15, three different scripts are initially used to work

out the Logic, Hierarchy and Placement File respectively:

• Expand Blif is able to expand the original .blif file, in which the LUT

(.names) descriptions are expressed in a compact way (figure 3.16 (a)),

in order to obtain the complete configuration bitstream for each LUT;

• Adapt Net is used as ’beautifier’ for the .net file, that contains a ver-

bose CLB list, producing a ’Perl-compatible’ hierarchical file contain-

ing CLB informations;

• Compact P lace is an optional step that analyzes the .place file fill-

ing any hole in the placement (due to some approximation related to

70 Embedded FPGA Soft-Core Template

Figure 3.15: Perl scripts flow

the customization of the placement function), according to a MSSN-

aware column linearization of the 2D placement (figure 3.16 (b)).

Hence a more complex script (Mix net and blif in figure 3.15) is used to

cross the information contained in these three files (e.g. synchronizing for

example the LUT descriptions contained in the .blif with that in the .net

CLBs hierarchy) producing three homogeneous versions of the Logic, Hier-

archy and Placement File, and the CLB configuration bitstream. The latter

is then processed, together with the MSSN bistream given by the custom

routing tool, by a Filter script, that cuts the bitstream according to the re-

quired parallelism (in figure 3.17, the bistream is cut so as to be compatible

with an 8-bit wide memory data width). In addition an optional ’verbose’

option allows the dump of a set of files containing several informations

regarding the performed steps.

Another script (Analyze critical path in figure 3.15) has been implemented

3.2 eFPGA CAD Flow Support 71

Figure 3.16: Example of .blif expansion (a) and placement (.place) com-
paction

Figure 3.17: Flat configuration bitstream cut according to an 8-bit wide data
path

for the evaluation of the benefits of any MSSN architectural enhancement

(e.g. bypass) on the eFPGA working frequency: in particular the improve-

ments in terms of critical path length are evaluated. The analysis takes as

input:

• an Hop File (.txt), produced by the router, containing the length of

each internal eFPGA connection, expressed in terms of MSSN stages

crossed (hops): such length will be the full MSSN latency in case of a

flat (see section 2.2.1) architecture, or a smaller value in case of any

72 Embedded FPGA Soft-Core Template

bypass enhancement (figure 3.18);

• a Critical path F ile (.txt), given by VTR after placement step, with

the list of the nets in the critical path;

• the Placement F ile (.place), used to check the correspondence be-

tween the name of a net and its position on the MSSN I/Os (hence on

the placement grid).

Figure 3.18: Different length of a net in a flat and a bypassed MSSN

The script elaborates the received data and gives as output the length (num-

ber of hops) of the critical path, comparing it with a flat MSSN solution, in

which the length of each net is predictable and equal to the total number

of MSSN stages; in addition the statistical information related to the wire-

length distribution are provided.

Chapter 4

eFPGA for CMOS

This chapter continues the eFPGA analysis: as described at the begin of

chapter 3, the proposed template features synthesizability, portability to dif-

ferent technology nodes and flexibility, expressed in terms of optimizability

for different application needs. With the aim to demonstrate these char-

acteristics and realize a functional verification, as first the design has been

implemented targeting STMicroelectronics CMOS 65nm LP 1.10V technol-

ogy.

Leveraging on the availability of a rich portfolio of CMOS libraries - that

include for example standard cells with different transistor thresholds (Vt)

- three different analysis has been performed: a design-space exploration,

an application-aware quantitative analysis of such design space and a dis-

cussion on the computational density achievable by different configuration

of the MSSN for a fixed area budget. These aspects are fundamentals since

they prove the effectiveness of the soft-core approach for integration on

SoCs with different needs and specifications: for that, after the results of

the implementations, a paragraph will be dedicated to each analysis.

4.1 Implementation Results

This section shows the results of the implementation trials of the soft-core

eFPGA template. As descripted before, thanks to the parametric structure,

the designer can set the total number of CLBs, the number of primary I/Os,

the dimension of the MSSN used and its optional enhancements (e.g. fully,

partially or not bypassed by U-turns).

73

74 eFPGA for CMOS

For that, in order to obtain a more complete analysis, two test-cases

have been analyzed, featuring 16 CLBs and 64 CLBs respectively; for each,

two different versions of the MSSN have been adopted, a flat (i.e. without

any bypasses) and a fully-bypassed one (i.e. with U-turn connections on

each stage, see section 2.2).

The first test-case is hence composed by 16 CLBs (figure 4.1), corre-

sponding to ≈ 1K equivalent gates (192 LUT 4:1), each one featuring the

architecture descripted in figure 3.2, without the dedicated DSP block and

carry-chain; routing is realized with a 256+256 I/Os radix-2 MSSN. Since

butterfly topology features power-of-two multiplicity, 192+192 pins are re-

quired for CLB connections (16 CLBs × 12 I/Os), while the remaining 64+64

I/Os are used for primary eFPGA I/Os.

Figure 4.1: eFPGA featuring 16 CLBs and a 256 points MSSN

Synthesis was performed using the Synopsys Design Compiler Graph-

ical tool [22] choosing standard cells with a standard Vt (SVT - Standard

Voltage Threshold). Synthesis was thus performed with a real floorplan

and physical coarse placement to quickly estimate parasitics on wires, as

well as potential congestion issues, thus improving the correlation with re-

spect to the place-and-route phase. Target implementation frequency is the

time-to-fly between two CLBs configured with synchronous outputs; thus

timing constraints refer to the longest paths of the uncommitted device

crossing the full MSSN. As an educated guess, I/Os were constrained with

a delay of ≈ 1/3 the target clock period.

Post-synthesis results of both a flat and a fully-bypassed version are

shown in tables 4.1 and 4.2 respectively, with two different implementa-

4.1 Implementation Results 75

tions optimized per area and speed, showing quite different figures of merit.

In both architectures, the MSSN contribution over the total area is ≈ 50%,

while the bitcells overhead both on the MSSN area and on the total area

redoubles when synthesis is optimized per area, rising from ≈ 25% to ≈
50-60%.

Flat MSSN
Max Speed Min Area

Area [mm2] 0.4 0.19
Frequency [MHz] 250 100

Leakage [µW] 499 165
% Bitcells on total area 23.5% 47.6%

% MSSN area 55.5% 47.9%
% Bitcells on MSSN area 25% 59.2%

Table 4.1: CMOS 65nm SVT 16 CLBs Flat MSSN eFPGA post-synthesis
summary

Fully-bypassed MSSN
Max Speed Min Area

Area [mm2] 0.55 0.27
Frequency [MHz] 224 100

Leakage [µW] 665 233
% Bitcells on total area 23.4% 46.7%

% MSSN area 66.1% 60.6%
% Bitcells on MSSN area 25.7% 55.9%

Table 4.2: CMOS 65nm SVT 16 CLBs Fully-bypassed MSSN eFPGA post-
synthesis summary

Table 4.3 shows the area and leakage increase due to the full bypass en-

hancement, in both maximum speed and minimum area, showing area and

leakage penalties of ≈ +40% without significant implementation frequency

reduction (-10%).

Fully-bypassed versus Flat MSSN
Max Speed Min Area

Area [mm2] 37.5% 42.1%
Frequency [MHz] -10.4% -

Leakage [µW] 33.2% 41.2%

Table 4.3: 16 CLBs eFPGA comparison: fully bypassed versus flat MSSN

Place-and-route was done using Cadence Encounter [31], closing in all

76 eFPGA for CMOS

cases the design without timing or DRC (Design Rule Check) violations

and obtaining area and power comparable to post-synthesis results. More-

over, as anticipated, since the main purpose of our analysis was to verify

feasibility and functionality of the approach, no particular optimizations or

guidelines were adopted throughout the flow, resulting in a kind of ”worst-

case” analysis. The only guideline that has been considered is that place-

and-route has been performed with a hierarchical netlist, in order to allow

a placement optimization oriented to block connectivity. As a result, in the

layout shown in figure 4.2 the CLB blocks are kept as islands in the design,

while bitcells are spread over the whole floorplan.

Figure 4.2: CMOS 65nm floorplan of a 16 CLBs eFPGA

Finally, back-annotated simulations were carried out to verify the func-

tionality, thus verifying the constraints applied to break timing loops (see

section 3.2).

To make the analysis more in line with potential real-application needs,

also a test-case featuring 64 CLBs (figure 4.3) has been taken into consider-

ation: in this case logic blocks were connected by a radix-2 MSSN featuring

1024+1024 I/Os with and without bypass enhancement, with 768+768 (64

CLBs x 12 I/Os) pins dedicated to CLBs connections and 256+256 for eF-

PGA primary I/Os.

Post-synthesis results, obtained following the same guidelines adopted

4.1 Implementation Results 77

Figure 4.3: eFPGA featuring 64 CLBs and a 1024 points MSSN

in the 16 CLBs eFPGA, are shown in tables 4.4 and 4.5, for a design featur-

ing a flat MSSN and a fully-bypassed MSSN respectively. In such cases the

percentage of bitcells area both on MSSN and eFPGA areas do not present

variations, if compared with the values of the 16 CLBs design, while the

MSSN contribution over the total area rises up to ≈ 70%. As shown in ta-

ble 4.6 both the area overhead and the leakage penalties introduced by the

bypass enhancement result in line with the values obtained with a 16 CLBs

eFPGA, achieving values around 40%, while a small decrease in terms of

implementation frequency (down to -17%) can be observed when the de-

sign is optimized per speed.

Flat MSSN
Max Speed Min Area

Area [mm2] 1.54 0.85
Frequency [MHz] 180 83

Leakage [µW] 1808 777
% Bitcells on total area 24.5% 51.4%

% MSSN area 60.2% 55.0%
% Bitcells on MSSN area 30.0% 58.0%

Table 4.4: CMOS 65nm SVT 64 CLBs Flat MSSN eFPGA post-synthesis
summary

78 eFPGA for CMOS

Fully-bypassed MSSN
Max Speed Min Area

Area [mm2] 2.11 1.22
Frequency [MHz] 149 66

Leakage [µW] 2482 1064
% Bitcells on total area 28.9% 51.0%

% MSSN area 70.0% 67.4%
% Bitcells on MSSN area 32.1% 56.6%

Table 4.5: CMOS 65nm SVT 64 CLBs Fully-bypassed MSSN eFPGA post-
synthesis summary

Fully-bypassed versus Flat MSSN
Max Speed Min Area

Area [mm2] 37.0% 43.5%
Frequency [MHz] -17.2% -

Leakage [µW] 37.2% 36.9%

Table 4.6: 64 CLBs eFPGA comparison: fully bypassed versus flat MSSN

4.2 Design-Space Exploration

This section will show that leveraging on the technology options avail-

able in CMOS technology it is possible to optimize the soft-core eFPGA

for quite different area-speed-leakage trade-offs. As a matter of fact STMi-

croelectronics CMOS 65nm LP technology features standard cells libraries

characterized by transistors with 3 different MOSFET threshold voltage Vt
(High, Standard and Low Voltage Threshold - HVT, SVT, LVT): exploiting

this availability, as first a 16 CLBs test-case featuring a flat MSSN has been

analyzed.

The reference implementation was the SVT-only one described in table

4.7, and starting from this reference a comparison has been performed with

respect to implementations featuring different cell mixes:

• HVT-only, to minimize leakage;

• HVT+SVT, a near-to-SVT option to reduce leakage without signifi-

cant performance penalties;

• HVT+SVT+LVT, for high speed applications.

Each test-case was implemented varying the target frequency up to its tech-

nology limit, following the same methodology as described in section 4.1.

4.2 Design-Space Exploration 79

Flat MSSN Fully-bypassed MSSN %
Area [mm2] 0.38 0.47 23.7%

Frequency [MHz] 234 200 -14.5%
Leakage [µW] 457 552 20.8%

% Bitcells on total area 24.1% 14.5% -
% MSSN area 53.2% 63.4% 19.2%

% Bitcells on MSSN area 27.2% 30.9% 13.6%

Table 4.7: CMOS 65nm SVT 16 CLBs SVT reference case

Each trial had area and leakage values minimized by constraints and I/Os

were constrained with a delay of ≈ 1/3 the target clock period. The fea-

sibility of the implementation was verified in some relevant case through

complete place-and-route flow, analyzing the results at signoff level in or-

der to evaluate the correlation.

Figure 4.4: Area and frequency design space - 16 CLBs flat MSSN version

Figure 4.4 shows the achieved design space in terms of area and fre-

quency ranges. For example, HVT-only designs show an area ranging

from -6% to +43% compared to SVT reference, while the corresponding

frequency range decreases from -42% to -29,2%.

Tables 4.8 and 4.9 show the minimum and maximum leakage values for

the various implementations, reporting the correspondent Vt-mix. Com-

pared to the SVT design, leakage power decreases by one order of mag-

nitude with the HVT-only low-speed solution (from -87% to -91%) or in-

creases up to 400% leveraging high-speed cells utilization, choice that al-

80 eFPGA for CMOS

Vt Max Leak
% cells

HVT SVT LVT
H -87.1% 100% - -

H,S 57.1% 17% 82% -
H,S,L 396.8% 17% 26% 56%

Table 4.8: Leakage power design space summary: maximum values in the
16 CLBs flat MSSN

Vt Min Leak
% cells

HVT SVT LVT
H -91.9% 100% - -

H,S -1.5% 30% 69% -
H,S,L 46.8% 35% 53% 11%

Table 4.9: Leakage power design space summary: minimum values in the
16 CLBs flat MSSN

lows to reach a frequency speed-up up to 22% together with area penalties

that vary from +5% to +40% (figure 4.4).

The bypass-enhanced version of the same 16 CLBs eFPGA was also

evaluated, taking as reference case the SVT-only implementation described

in table 4.7: compared to the flat MSSN reference case, it features small

variations in terms of implementation frequency (-14%), area occupancy

(+23.7%) and leakage (+20%), together with a rise in the MSSN contribu-

tion over the total area (+19%). As for the flat version, also in the by-

Figure 4.5: Area and frequency design space - 16 CLBs fully-bypassed
MSSN version

4.2 Design-Space Exploration 81

pass architecture the design-space available (figure 4.5) results significant,

mainly in terms of implementation frequency variation, that can vary from

the -30%/-39% values of the HVT-only low-speed configuration up to the

+5%/+22% of the fastest HVT-SVT-LVT solution. The area range results

smaller with respect to the one obtained in the flat MSSN design space,

with variations between +17% of the HVTSVT case and -17% of the HVT

solution.

Following the same methodology, a 64 CLBs eFPGA was also taken into

consideration: the reference implementations were the iso-frequency (125

MHz) one described in table 4.10, both for a flat and a fully-bypassed MSSN

version. In this case the area and leakage increase due to the bypass en-

hancement were +50% and +43% respectively, together with a +19% growth

in the MSSN area contribution.

Flat MSSN Fully-bypassed MSSN %
Area [mm2] 1.2 1.8 50%

Frequency [MHz] 125 125 -
Leakage [mW] 1.4 2.0 43%
% MSSN area 59.8% 71.2% 19%

Table 4.10: CMOS 65nm SVT 64 CLBs SVT - iso-frequency reference cases

Figure 4.6: Area and frequency design space - 64 CLBs flat MSSN version

Figure 4.6 shows the variation of results in terms of area and speed

achieved during the exploration, thus proving the existence of a quite wide

design space also in this larger test-case. As an example, low-leakage HVT-

82 eFPGA for CMOS

only designs show an area range of ±25% compared to SVT reference,

while the frequency range decreases from -17% to -49%. In the opposite

case, with an HVT-SVT-LVT mix, the area can range from +15% to +34%,

while the frequency can speed-up to ≈60% leveraging on LVT cell utiliza-

tion, and paying in terms of power. Tables 4.11 and 4.12 show the details

of the leakage variations for the various Vt-mixes: a decrease of one order

of magnitude (from -86% to -90%) can be obtained in the HVT-only solu-

tion while, like in the smallest 16 CLBs test case, high-speed HVT-SVT-LVT

implementations cause significant leakage penalties (from a minimum of

+136% to a maximum of +400%).

Vt Max Leak
% cells

HVT SVT LVT
H -86.5% 100% - -

H,S -25.7% 55% 45% -
H,S,L 399.8% 17% 33% 50%

Table 4.11: Leakage power design space summary: maximum values in the
64 CLBs flat MSSN

Vt Min Leak
% cells

HVT SVT LVT
H -90.7% 100% - -

H,S -66.1% 72% 28% -
H,S,L 136.7% 51% 24% 25%

Table 4.12: Leakage power design space summary: minimum values in the
64 CLBs flat MSSN

The design-space exploration results of a 64 CLBs fully-bypassed MSSN

resulted consistent with that of the flat MSSN version, and are shown in

figure 4.7.

Compared to an SVT design, the obtained results are then in line with

the values obtained for the 16 CLBs eFPGA, showing the scalability of the

soft-core approach. From the various implementations of the 64 CLBs soft-

core eFPGA was derived that the delay in crossing a flat 1024+1024 I/Os

MSSN is only ≈1.5 that of the combinational CLB, since the CLB has a lots

of synthesized multiplexers on the critical path, as required for implemen-

tation of the input crossbars (figure 3.4).

Since bypass enhancements are proven to cause penalties (see tables 4.6,

4.3 Application-Aware Analysis 83

Figure 4.7: Area and frequency design space - 64 CLBs fully-bypassed
MSSN version

4.7, 4.10), mainly due to the increased complexity of the switches support-

ing U-turn connections, next section will provide an analysis of the possible

benefits of such enhancements on critical-path delay reduction in some tar-

get applications.

4.3 Application-Aware Analysis

While previous paragraph showed physical-only metrics, this paragraph

provides an application-aware analysis considering different benchmarks

mapped on the flat and on the fully-bypassed 64 CLBs implementations

of table 4.10. Whereas for flat-MSSN eFPGA architecture the application

frequency depends simply on the number of combinational CLBs in the

critical path (since the network delay is mostly constant and equal to full-

latency of the MSSN), in a bypass-enhanced MSSN eFPGA the effective

working frequency depends on the exploitation of the bypass, and thus on

the ability of the CAD flow to exploit the locality of the connections.

The place-and-route flow presented in section 3.2 allowed the imple-

mentation of a design aware of the real hierarchy of an MSSN eFPGA, thus

optimizing the placement to exploit the locality. To perform an application-

aware analysis, a set of benchmarks were used for performance evaluation.

Such benchmarks were derived from MCNC (Microelectronics Center of

North Carolina) circuits, already used in many FPGA analyses [32], [33],

84 eFPGA for CMOS

plus some additional hand-made designs, that allowed a more detailed

analysis of certain arithmetic and logic designs (2 Multipliers, 2 Finite Im-

pulse Response filters, 2 Fibonacci Linear Feedback Shift-Registers and an

Adder).

For each test-case the total delay associated with the critical path was

evaluated, composed of NCLB combinational CLBs and NL MSSN stages

crossed, informations provided by the custom CAD tool in the Critical Path

Analysis Files. Exploiting such informations, the critical path length was

hence be expressed as:

Critical pathdelay = NCLB × γ +NL × ρ (4.1)

where γ was the normalized CLB delay (γ = 0.22) and ρ the normalized

delay associated with a single MSSN level (ρ = 0.018). As a normaliza-

tion factor was adopted the target implementation period, observing that

on average the values achieved are more or less the same for all implemen-

tations.

The obtained values are related to the MSSN-on-CLB delay ratio of ≈1.5

anticipated in the previous paragraph: in aM stages (withM=21 according

to equation 2.3) such ratio results indeed:

MSSN delay

CLB delay
=

(M − 1) × ρ

γ
=

20 × 0.018

0.22
= 1.6̄3 (4.2)

where the (M − 1) factor is due to the fact that the 1x2 input switches (fig-

ure 2.9) can be considered as empty switches, hence introducing negligible

delay.

The histogram in figure 4.8 shows the difference in terms of normalized

critical path delay between a flat and a bypass-enhanced version, referring

to devices featuring the same implementation frequency. Benchmarks are

ordered from left to right by the number of CLBs used. As shown by the

%Total Gain line, bypass exploitation results in an effective working fre-

quency gain from ≈20% to 60%. Crossing graphs on figure 4.8, it should

be observed that gain factors >20% were obtained for benchmarks with

combinational paths featuring different levels of critical path depth (repre-

sented by the #LUT on crit path line) from ≈60 down to less than 10 LUTs.

This implies that bypass advantages are available in most of the applica-

4.3 Application-Aware Analysis 85

Figure 4.8: Effective working frequency gain

tions, with different levels of effectiveness which is in some way related to

the application topology (locality, pipelining, ...).

One additional note: as previously observed in the full-flat approach,

the weight of the CLBs is highly significant, since the ratio between MSSN

and CLB delay is ≈1.5x. On optimizing the CLB slightly at circuit level, for

example with optimized multiplexing structures for the crossbar or for the

LUT, the benefit of the bypassed MSSN will be greater, thus increasing the

overall performance. This kind of optimization does not change the over-

all fully-synthesizable approach, since it can be performed using tristate

buffers or special multiplexers at a local level, where the performance can

be estimated accurately. In this way the overall MSSN is again optimized

in place-and-route step, where the tool can globally optimize the imple-

mentation, considering transitions, capacitances, on-chip variation and so

on.

86 eFPGA for CMOS

4.4 Computational Density Analysis

As demonstrated in the previous section, the area increase introduced by a

full-bypass enhancement in a 64 CLB eFPGA can be repaid with an effective

working frequency gain that varies from ≈20% to ≈60%, depending on the

target application.

In order to better analyze this area-frequency trade-off, in this section a

detailed computational density analysis is proposed: to do so, eFPGA im-

plementations with the same area and different implementation frequency

have been taken into account, considering the different technology options

available (paragraph 4.2).

Such analysis was realized following the same methodology used for

the MSSN architectural evaluations presented in paragraph 2.4. Hence in

figure 4.9 for each area value the application frequency of a flat MSSN eF-

PGA was reported and compared to that achievable by a fully-bypassed

eFPGA assuming different levels of bypass exploitation (i.e. 0%, 20%, 40%

and 60%, according to the range of the gain on the effective frequency re-

trieved from figure 4.8).

Figure 4.9: Flat MSSN versus Fully-bypassed: frequency vs. area

Figure 4.9 shows that for low-area budget (<1.75 mm2) a flat archi-

tecture is able to guarantee frequency-on-field even higher than a fully-

bypassed one with an application able to achieve a 60% gain thanks to

the bypass exploitation. The advantage of a fully-bypassed MSSN eFPGA

becomes straightforward when high performance is required: for an area

4.4 Computational Density Analysis 87

budget>2.1mm2 applications gaining>40% thanks to bypass exploitation

(G 40%) allows one to attain effective frequencies beyond 200 MHz.

Computational efficiency has been analyzed in figure 4.10. The fre-

quency/area ratio was taken as a figure of merit, which is proportional

to the throughput/area ratio and is application-independent.

Figure 4.10: Flat MSSN versus Fully-bypassed: computational density vs.
area

Hence in figure 4.10 the frequency values of figure 4.9 have been nor-

malized with respect to the correspondent area values (horizontal axis):

the obtained results show that both in flat and in bypassed MSSN styles

frequency/area ratio has a growing trend for low area values, with a peak

near to the physical implementation limit of each architecture. In the by-

passed eFPGA this ratio roughly saturates for area values >1.75 mm2. This

means that, even when forcing the implementation frequency, the compu-

tational density is not significantly impacted.

One further detail: the small reduction of the frequency/area ratio both

in the flat (from 1.5 mm2 to 1.75 mm2) and in the bypass-enhanced (from

2.1 mm2 to 2.4 mm2) eFPGA is due to the introduction of LVT cells in the

design. As a matter of fact below that threshold both solutions were im-

plemented with SVT-only cells, since HVT and HVT-SVT designs feature

worst frequency performances at the same area values. As regards HVT-

SVT-LVT designs, the utilization of Low Voltage Threshold standard cells

was implemented with a smoothly different synthesis approach, in which

LVT libraries were introduced after a first, preliminary, HVT-SVT only im-

88 eFPGA for CMOS

plementation (incremental synthesis).

Chapter 5

eFPGA for Smart Power

This chapter carries on the analysis of the eFPGA portability and flexibility

features: as anticipated, the portability of the device to different technology

nodes was proven realizing implementations on STMicroelectronics BCD9s

technology [34], within which an analysis of the design space available al-

lowed the evaluation of the flexibility of the template.

BCD is a family of Smart Power processes that combine Bipolar, CMOS

and DMOS transistors, thus proving the marriage of three fundamental

functions (figure 5.1): power devices and their drive circuits, sensing/protection

and conditioning analog circuits, and digital logic. DMOS transistors are

responsible for the first function, since they can handle high-voltage and/or

high-currents working in fast switching conditions. Sensors together with

local feedbacks for protection and analog signal conditioning are typically

accomplished using high-performance bipolar circuits. CMOS digital con-

trol is responsible for the interaction among all those components.

Figure 5.1: Smart Power device overview

89

90 eFPGA for Smart Power

BCD technology has been chosen for two main reasons:

• compared to the commercially available leading CMOS nodes, state-

of-the-art BCD technology features very different characteristics, such

as metal stacks with few layers (typically 3-4) and 3-4x wider transis-

tor’s pitch: a possible compatibility with this technology would hence

further strengthen the portability features of the soft-core template;

• despite still focused toward power and analog worlds, Smart Power

technologies are nowadays trying to exploit technology scaling im-

plementing systems featuring complex digital logic, thus answering

the demand for smarter devices: this need of more than smart devices

is hence challenging the usage of programmable hardware on BCD

world, as shown in figure 5.2.

Figure 5.2: A Smart Power IC showing reprogrammability enhancement

The Smart Power world is thus demanding ”intelligence” to improve

efficiency. As an example, customized policies are used to improve power

conversion efficiency on LED light drivers or solar panels grid [35]. On the

application side this scenario is very similar to that of the introduction of

reconfigurable devices, proposed on the CMOS world to couple compu-

tational efficiency, hardware programmability and NRE costs reduction of

ASICs, as descripted in the Introduction of this thesis work.

Moving from the CMOS implementations and analyzes performed in

chapter 4 to the BCD world, two preliminary points merits considerations:

• Smart Power ICs are dominated by analog and power IPs, which typ-

ically define the floorplan of the chip and the shape of the region re-

5.1 Implementation Results 91

served to digital logic;

• analog and power applications typically require low complexity dig-

ital logic (in the order of KGates) and low operating frequencies (up

to few tens of MHz).

For that, the eFPGA paradigm can be exploited on this application scenario

and the soft-core approach appears well suited to allow the IPs to accom-

plish specific implementation needs.

In this chapter, after an evaluation of the design-space obtained through

BCD9s implementation trials, a set of benchmarking applications has been

selected to show the potential of the eFPGA programmable solution on dif-

ferent smart power fields: signal modulation, motion control and power

management.

5.1 Implementation Results

The soft-core eFPGA has been implemented on STM BCD9s, a 0.11 µm tech-

nology with 4 metal layers at 1.55V. The metal stack available in BCD9s may

harden the implementation of programmable devices, which are tradition-

ally routing hungry: this required limiting the size of the template.

For that, the test-case considered is composed of 16 CLBs (192 LUT 4:1),

corresponding to ≈1K equivalent gates, choice which seems to fit anyhow

the needs of this kind of applications. The resulting interconnect is hence

a 256+256 I/Os radix-2 MSSN, with 192+192 I/O pins dedicated to CLB

connections (16 CLBs x 12 I/Os each), and 64+64 I/Os used as primary

eFPGA I/Os (figure 5.3).

The resulting device has been synthesized for either area or speed op-

timization using Synopsys Design Compiler, and results are reported in

table 5.1. Again, implementation target frequency reported is referred to

the time-to-fly between two CLBs configured with synchronous output. As

for the CMOS implementations described in section 4.1, two MSSN topolo-

gies have been evaluated: a flat MSSN and a MSSN with complete bypass

structure to realize a fully-hierarchical network.

In the latter, as shown in table 5.3, the complexity introduced by the

U-switches implies an increase in terms of area (+14% and +31% in max-

speed and min-area configurations respectively) lower than that obtained

92 eFPGA for Smart Power

Figure 5.3: eFPGA featuring 16 CLBs and a 256 points MSSN

Flat MSSN
Max Speed Min Area %

Area [mm2] 1.17 1.76 53.9%
Frequency [MHz] 100 50 100%

Leakage [µW] 401 170 135.9%
% Bitcells on total area 28.4% 43.8% -35.2%

% MSSN area 52.8% 46.4% 13.8%
% Bitcells on MSSN area 32.5% 56.4% -42.8%

Table 5.1: BCD9s 0.11 µm 16 CLBs Flat MSSN eFPGA post-synthesis sum-
mary

Fully-bypassed MSSN
Max Speed Min Area %

Area [mm2] 1.34 1 34.0%
Frequency [MHz] 86 50 72.0%

Leakage [µW] 402 232 73.3%
% Bitcells on total area 34.7% 45.5% -23.7%

% MSSN area 59.1% 57.5% 2.8%
% Bitcells on MSSN area 42.4% 56.8% -25.4%

Table 5.2: BCD9s 0.11 µm 16 CLBs Flat MSSN eFPGA post-synthesis sum-
mary

in CMOS implementations; as regards leakage and frequency, the only sig-

nificant variation can be seen comparing the minimum area configurations

(+36%).

Even though BCD9s technology does not features as many technology

flavours as CMOS 65nm (the different Vt mixes as described in chapter 4),

tables 5.1 and 5.2 highlight a quite different scenario when optimizing the

device per speed or per area, thus revealing a possible design-space for

5.1 Implementation Results 93

Fully-bypassed versus Flat MSSN
Max Speed Min Area

Area [mm2] 14.5% 31.5%
Frequency [MHz] -14% -

Leakage [µW] 0.25% 36.4%

Table 5.3: 16 CLBs eFPGA comparison: fully bypassed versus flat MSSN

application-specific optimizations. As a matter of fact, within both the two

topologies - flat or bypassed - there is a variation in terms of area (+53% in

the first and +34% in the latter), frequency (100% and 72% increase respec-

tively) and leakage (+135% and +73%). As regards the area occupied by the

MSSN, the obtained results - between 46% and 59% - prove substantially in

line with CMOS implementations, resulting lower than the typical values

for reprogrammable devices.

Figure 5.4: BCD9s 0.11 µm floorplan of a 16 CLBs eFPGA

Place-and-route steps were realized in a couple of relevant cases using

Cadence Encounter, following the same ”worst-case” approach adopted

in the previous CMOS implementations, without any violations being re-

ported: the obtained results are comparable with the post-synthesis ones

(average 5% area increase). Figure 5.4 shows the resulting layout: com-

pared to the CMOS version (depicted in figure 4.2), it shows a different

94 eFPGA for Smart Power

placement of the 16 CLBs, due to the different routing impact which heav-

ily affects cell distribution during automatic placement.

The feasibility of the device on the target technology was hence verified,

proving the portability across different technology nodes.

5.2 Application Analysis

This section presents the results of benchmarking activity carried out map-

ping on the eFPGA a set of representative smart power applications, show-

ing the advantages provided by reconfigurability. For each one, given the

maximum working frequency obtained in the previous section - both in

max-speed and min-area configuration - an estimation of the effective op-

erating frequency has been made taking into account the number of combi-

national CLBs in the critical path, information obtained thanks to the CAD

flow support presented in section 3.2.

Even though the bypass-enhancement on MSSN can provide benefits

in terms of effective working frequency (even up to +50%, depending on

target application), a flat MSSN eFPGA was taken into consideration (table

5.1). As a matter of fact this kind of solution, in which the network delay

is mostly constant and equal to the full-latency of the MSSN network, has

been found to be able to fulfill the target performance requirements.

Table 5.4 shows the characterization of the chosen applications. For

each of them synthesis trials have been implemented using BCD9s stan-

dard cells flows, obtaining the area values (Areaapp) reported in the first

column of the table. Starting from these area values, and given the area

of a NAND gate (10.09 µm2), the dimension of each application has been

determined in terms of BCD equivalent gates (App Eq.Gates, right column

in table 5.4), so that:

App Eq.Gates =
Areaapp

AreaNAND
(5.1)

Each application was then mapped on the 16 CLB eFPGA, thanks to

the CAD flow support. The results of the LUT mapping steps are reported

in table 5.5. As depicted, besides the LUT sizes available in the CLB ar-

chitecture (figure 3.2, LUT6:1, LUT5:1 and LUT4:1), in the mapping opera-

5.2 Application Analysis 95

BCD9s Area [µm2] BCD9s Equivalent Gates
SigmaDelta 1327 131.5

Piezo Control 242 24.0
9 Ch. Pz. Control 2446 242.4
Power Sequencer 1642 162.7
Stepper Full 2 Ph. 1829 181.3
Stepper Full 1 Ph. 1827 181.1

Stepper Half 1972 195.4

Table 5.4: Post-synthesis implementation of the target applications - BCD9s
standard cells flow

tion VTR tool also uses LUTs of smaller size (LUT2:1 and LUT3:1): in these

cases, however, a whole LUT4:1 will be employed, being the smallest size

available on the logic block. In the Eq.LUT4:1 column of table 5.6 is re-

LUT2:1 LUT3:1 LUT4:1 LUT5:1 LUT6:1
SigmaDelta 3 11 6 3 9

Piezo Control 6 0 1 0 1
9 Ch. Pz. Control 4 3 14 13 17
Power Sequencer 4 2 5 4 17
Stepper Full 2 Ph. 2 6 6 9 9
Stepper Full 1 Ph. 2 6 6 7 11

Stepper Half 3 7 6 7 12

Table 5.5: LUT mapping results - 16 CLBs flat MSSN eFPGA

ported the total number of LUTs used for each application, expressed as

equivalent LUT4:1 and calculated considering a LUT5:1 as 2×LUT4:1 and

a LUT6:1 as 4×LUT4:1. According to these values, since in the 16 CLBs eF-

PGA 192 4:1 LUTs are available, the percentage of equivalent 4:1 LUTs used

was then calculated for each application (%LUT used column in table 5.6).

The obtained values were also used, together with the App Eq.Gates results

of table 5.4, to estimate the total eFPGA computational efficiency, expressed

in BCD9s equivalent gates dimensions (eFPGA Eq.Gates), so that:

eFPGA Eq.Gates =
App Eq.Gates

%LUT used
∗ 100 (5.2)

As shown in the right column of table 5.6, according to these estimations

the 16 CLBs flat MSSN eFPGA corresponds on average to ≈4K BCD9s

equivalent gates: such value can be seen as the maximum complexity (ex-

96 eFPGA for Smart Power

pressed in BCD9s equivalent gates) allowed for an application that has to

be mapped on the eFPGA.

Eq. LUT4:1 % LUT Used eFPGA Eq. Gates
SigmaDelta 62 32.3% 407.3

Piezo Control 11 5.7% 418.6
9 Ch. Pz. Control 115 59.9% 404.7
Power Sequencer 87 45.3% 359.1
Stepper Full 2 Ph. 68 35.4% 511.8
Stepper Full 1 Ph. 72 37.5% 482.9

Stepper Half 78 40.6% 481.1

Table 5.6: eFPGA mapping results - 16 CLBs flat MSSN eFPGA

Beside the total amount of logic (equivalent LUT4:1) required, table 5.7

shows the total number of CLB used, given after the packing operation.

Such values are expected to be aligned, since both related to resource uti-

lization; the noticeable difference is due to the optimizations performed by

packing and placement steps in the implementation flow.

#CLB #LUT Crit. Path
Freq. [MHz]

Max Speed Min Area
SigmaDelta 8 62 9 17 11

Piezo Control 2 11 2 76 50
9 Ch. Pz. Control 15 115 4 38 25
Power Sequencer 9 87 6 25 16
Stepper Full 2 Ph. 8 59 5 30 20
Stepper Full 1 Ph. 9 72 4 38 25

Stepper Half 9 78 5 30 20

Table 5.7: Resource usage and effective working frequency - 16 CLBs flat
MSSN eFPGA

5.2.1 Sigma-Delta Modulation

As first test-case, a second-order multi-bit Σ−∆ modulator has been taken

from [36], where it is used to create control signals for a Digital Pulse Width

Modulation (DPWM) in a high-frequency DC-DC converter. Typically, multi-

bit feature is used to provide high effective DPWM resolution and noise

reduction, introducing on the other side low switching frequencies. In [36],

a second order architecture is chosen since it allows achieving working fre-

5.2 Application Analysis 97

quencies exceeding 10 MHz even though a high resolution (10 bits) signal

is taken as input.

Figure 5.5: Sigma-Delta modulator

As depicted in figure 5.5, a 4 bit output signal is used to drive the core

DPWM, and a 6 bit truncation error is processed internally through a set

of delay flip-flops, a 2x multiplexer (7 bit logic shifter) and two adders.

Mapping results reported in figure 5.6 show that the performances typi-

Figure 5.6: Effective working frequency and resource usage of a set of Σ−∆
modulators

cally requested in terms of effective frequency - beyond 10 MHz - are sat-

isfied both in max speed mode (17 MHz) and in min area configuration (11

MHz). Resources utilization values, both in terms of number of CLBs (8)

98 eFPGA for Smart Power

and equivalent LUT 4:1 (62 on 192 available), prove the existence of con-

siderable margins for possible enhancements. For that, a set of different

modulators architectures were mapped in order to show how the variation

of input and output bits (and consequently of the internal error feedback)

can lead to significant different performances both in terms of resource us-

age - percentage of CLBs used - and effective working frequency (both in

max speed and min area). Figure 5.6 shows that a reduction of the modula-

tor dimensions (with respect to the reference case of figure 5.5) down to 6

inputs and 2 outputs allows reaching working frequencies up to 25 MHz,

together with low area occupancy (25% - 4 CLBs). On the other side more

complex architectures - e.g. featuring up to 16 input bits and 6 output bits -

can be mapped with a resource usage beyond 90% (15 CLBs). This config-

uration, in which the working frequency is between 10 MHz and 20 MHz,

represents an upper limit for the chosen eFPGA template, since further in-

crement of resolution bits does not fit the 16 CLBs.

5.2.2 Power Management

Digital control in power management applications is typically realized in

the form of a Finite State Machine (FSM): this approach allows generating

signals in order to coordinate all the components of the system.

In this scenario, as first benchmark the control logic for a nano-power

management IC for piezoelectric energy harvesting applications [37] has

been mapped on the eFPGA. The architecture of the system is shown in

figure 5.7: a FSM featuring 4 internal states is used to step over the different

phases of an energy extraction cycle through the communication with the

piezo input stage and the AC-DC conversion stage. As shown in table 5.7,

effective working frequencies between 50 and 76 MHz can be achieved,

together with a low computational logic usage (2 CLBs and 11 LUTs).

The flexibility introduced implementing such kind of control using a re-

configurable device can allow changing system specifications on-the-field,

for example varying the number of internal states or modifying their be-

haviour. Since one of the typical challenges in power management applica-

tions is represented by the interaction between many voltage sources, the

previous control logic was adapted for a multi-source energy harvester IC

[38]. Here, thanks to the addition of more than 20 internal states (figure 5.8),

5.2 Application Analysis 99

Figure 5.7: Block diagram of the single-source power management IC

the control logic act as arbiter to manage up to 9 different AC-DC channels

(e.g. piezoelectric transducers) . As shown in table 5.7, this enhancement

Figure 5.8: Block diagram of the multi-source power management IC

implies a significant increase both in terms of number of CLBs (15) and

equivalent LUTs (115), while the frequency decreased down to 25 and 38

MHz, for respectively area-optimized and speed-optimized devices.

As additional benchmark, still in the field of power management, a dig-

ital power sequencer slice taken from [39] has been mapped, featuring 9 in-

ternal FSM states. As depicted in figure 5.9, power sequencers are used in

cascade to handle power up and down order of multiple supply voltages,

with the aim, for example, to coordinate all the components of an audio

system. Mapping results of a single slice are reported in table 5.7, showing

a range of target frequency between 16 and 25 MHz, together with a re-

source utilization of ≈50% (9 CLBs and 87 LUTs). Since power sequencers

performances are strictly dependent on the slow response timing of the

power supplies (typically up to hundreds of µseconds, hence tens of KHz),

the obtained frequencies values plenty satisfy typical speed requirements.

100 eFPGA for Smart Power

Figure 5.9: Block diagram of a cascade of power sequencers

5.2.3 Motion Control

Even in the field of motion control a digital controller able to handle exter-

nal requests or driving internal signals is typically required. As shown in

figure 5.10, such controllers are pure digital logic devices, based on FSMs

typically used to describe system functionalities.

Figure 5.10: Open-loop motor control

As an example of motor control, the code of a stepper motor driver has

been taken from [39]. Stepper motors are a kind of electric motor that can

be driven both in open and closed loop, requiring a quite simple driving

circuitry. The control mapped on the eFPGA is able to control any standard

4-wires open-loop stepper motor with an internal FSM featuring 4 states,

using a Two-Phase Full Step excitation mode. Since most of the steppers are

designed for fine resolution at low-speeds, the typical working frequency

5.2 Application Analysis 101

of this kind of devices rarely exceed few dozen of MHz. Table 5.7 shows

that frequencies between 20 and 30 MHz can be reached, depending on the

required optimization.

As for the Σ − ∆ modulator, the total amount of logic required is less

than 50%. This means that several enhancements - e.g. wiring configura-

tion, physical size, internal timeout resolution or number of internal steps

- can be eventually added to improve performances.

As an example two further topologies of stepper motor control were

implemented changing the excitation mode - hence the internal FSM states

- obtaining a One-Phase Full Step and a Half Step configuration. Table 5.7

shows that such changes imply an increase in terms of both CLBs used

(beyond 50%) and number of equivalent LUTs (72 and 78 respectively), to-

gether with a small improvement in terms of working frequency in One

Phase configuration (up to 38 MHz).

Conclusions

In this thesis a soft-core eFPGA template has been presented, as a partic-

ular test-case for a more general model of synthesizable embedded pro-

grammable logic device. The key point of the proposed design was the

adoption of a Multi-Stage Switching Network (MSSN) as the foundation

for the routing structure: featuring butterfly topology, such network has al-

lowed to work with a predictable congestion-free solution. This has repre-

sented an added value for the soft-core design, ensuring that modifications

of the eFPGA (e.g. I/Os and CLBs number and their internal structure) did

not impact on connectivity properties. As an added value, the particular

modular structure of the designed MSSN - made of simple switch blocks

organized in stages - ensured its synthesizability, further strengthening the

soft-core features of the overall device.

Thanks to its symmetry properties, two different versions of the MSSN

were proposed: a basic flat and a folded bypass-enhanced one, realized

thanks to the addition of particular U-turn connections to the MSSN switch

blocks. In the latter, the exploitation of the hierarchical features of the

MSSN allowed the achievement of faster connectivity - hence higher work-

ing frequencies - at the expense of a restrained area increase. This area-

frequency trade-off was analyzed, taking into account MSSNs featuring

different bypass-enhanced topologies (i.e. flat, folded fully-bypassed and

folded half-bypassed) and different radix (i.e. switch blocks dimensions).

Results highlighted that the best architectural choice was application-dependent,

since related to the characteristics (e.g. number of connections and their lo-

cality features) of the required connectivity: this further strengthened the

parametric flexible structure of the adopted MSSN, designed thanks to the

realization of a custom C-language based software support. Such dedicated

tool was then integrated in a more complete eFPGA CAD flow support, re-

102

Conclusions 103

alized leveraging on the availability of VTR open source tool for FPGAs,

thus making it MSSN-aware.

In order to prove the portability across different technologies, the eF-

PGA template was then implemented in STMicroelectronics CMOS65nm

and BCD9s 0.11µm. Both technologies showed the existence of a signif-

icant design space, exploitable to optimize the eFPGA on very different

application scenarios.

In CMOS 65nm, the design space exploration was realized targeting

two different eFPGA dimensions: a 16 and a 64 CLBs respectively. In the

first test-case the obtained results highlighted that the area could vary up

to +40% with respect to a reference design implemented using SVT-only

standard cells, while the speed range was between -40% to +20% leverag-

ing on high-speed LVT cells. In the larger eFPGA, area could vary from

-25% to +35% and frequency from -50% to +57%, always with respect to

an SVT-only reference design and exploiting the availability of LVT stan-

dard cells. In both cases, on the other hand, it was possible to save up to

+90% of leakage power consumption thanks to the utilization of HVT cells.

The performed CMOS synthesis trials were also used for an analysis of the

computational density of the device: results showed that the advantage of

a fully-bypassed MSSN eFPGA became significant when the area budget

did not represent a constraint, allowing an effective frequency improve-

ment of 30-50% depending on bypass exploitation. On the contrary a flat

MSSN architecture was able to guarantee the best frequency-on-field for

low-area budget or applications in which the bypass exploitation resulted

lower than 20%.

As regards the implementations targeting BCD9s 0.11µm, the design

space analysis was realized only on a 16 CLBs eFPGA, size that resulted

to best fit the size of typical BCD Smart Power applications. Even though

this technology featured only 4 metal layers, the analysis proved the exis-

tence of a significant design space. According to different optimizations,

in a flat MSSN eFPGA area, frequency and leakage presented variations of

50%, 100% and 130% respectively, values that resulted slightly smaller in a

design featuring a fully-bypassed MSSN (+30%, 72% and 73%). In order to

complete the analysis, the application scenario was analyzed benchmark-

ing the device with a set of significant smart power applications: results

104 Conclusions

obtained proved the feasibility of the approach, which allowed matching

typical performance requirements. For each target application was also

highlighted how the flexibility provided by the usage of a reconfigurable

support could be exploited to provide added values to end-user applica-

tions.

Bibliography

[1] Man-Ho Ho, Yan-Qing Ai, TC-P Chau, Steve CL Yuen, Chiu-Sing

Choy, Philip HW Leong, and Kong-Pang Pun. Architecture and design

flow for a highly efficient structured asic. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 21(3):424–433, 2013.

[2] Davide Rossi, Claudio Mucci, Matteo Pizzotti, Luca Perugini, Roberto

Canegallo, and Roberto Guerrieri. Multicore signal processing plat-

form with heterogeneous configurable hardware accelerators. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2013.

[3] André DeHon. The density advantage of configurable computing.

Computer, 33(4):41–49, 2000.

[4] Steven JE Wilton, Noha Kafafi, James CH Wu, Kimberly A Bozman,

Victor O Aken’Ova, and Resve Saleh. Design considerations for soft

embedded programmable logic cores. Solid-State Circuits, IEEE Journal

of, 40(2):485–497, 2005.

[5] Menta. Embedded programmable logic. http :

//www.menta.fr/efpga core ip.html, 2014.

[6] Ketan Padalia, Ryan Fung, Mark Bourgeault, Aaron Egier, and

Jonathan Rose. Automatic transistor and physical design of fpga

tiles from an architectural specification. In Proceedings of the 2003

ACM/SIGDA eleventh international symposium on Field programmable

gate arrays, pages 164–172. ACM, 2003.

[7] Alexander Brant and Guy GF Lemieux. Zuma: An open fpga over-

lay architecture. In Field-Programmable Custom Computing Machines

(FCCM), 2012 IEEE 20th Annual International Symposium on, pages 93–

96. IEEE, 2012.

105

106 BIBLIOGRAPHY

[8] Matteo Cuppini, Eleonora Franchi Scarselli, and Claudio Mucci.

Design-space exploration of an efpga soft-core based on multi-stages

switching networks. In Ph. D. Research in Microelectronics and Electron-

ics (PRIME), 2013 9th Conference on, pages 133–136. IEEE, 2013.

[9] Matteo Cuppini, Eleonora Franchi Scarselli, Claudio Mucci, and

Roberto Canegallo. Soft-core efpga for smart power applications.

In System-on-Chip (SoC), 2014 International Symposium on, pages 1–4.

IEEE, 2014.

[10] Ian Kuon, Russell Tessier, and Jonathan Rose. Fpga architecture: Sur-

vey and challenges. Foundations and Trends in Electronic Design Automa-

tion, 2(2):135–253, 2008.

[11] Guy Lemieux and David Lewis. Circuit design of routing switches.

In Proceedings of the 2002 ACM/SIGDA tenth international symposium on

Field-programmable gate arrays, pages 19–28. ACM, 2002.

[12] Guy Lemieux, Edmund Lee, Marvin Tom, and Anthony Yu. Di-

rectional and single-driver wires in fpga interconnect. In Field-

Programmable Technology, 2004. Proceedings. 2004 IEEE International

Conference on, pages 41–48. IEEE, 2004.

[13] Deming Chen, Jason Cong, and Peichen Pan. Fpga design automa-

tion: A survey. Foundations and Trends in Electronic Design Automation,

1(3):139–169, 2006.

[14] Umer Farooq, Zied Marrakchi, and Habib Mehrez. Tree-Based Hetero-

geneous FPGA Architectures. Springer, 2012.

[15] William James Dally and Brian Patrick Towles. Principles and practices

of interconnection networks. Elsevier, 2004.

[16] Robert J McMillen. A survey of interconnection networks. In Broad-

band switching, pages 146–154. IEEE Computer Society Press, 1991.

[17] Tse-yun Feng. A survey of interconnection networks. Computer,

14(12):12–27, 1981.

[18] Charles Clos. A study of non-blocking switching networks. Bell System

Technical Journal, 32(2):406–424, 1953.

BIBLIOGRAPHY 107

[19] VE Beneš. On rearrangeable three-stage connecting networks. Bell

System Technical Journal, 41(5):1481–1492, 1962.

[20] John Kim, William J Dally, and Dennis Abts. Flattened butterfly: a

cost-efficient topology for high-radix networks. ACM SIGARCH Com-

puter Architecture News, 35(2):126–137, 2007.

[21] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network

flows: theory, algorithms, and applications. 1993.

[22] Synopsys. Design compiler tool in graphical mode.

http://www.synopsys.com, 2014.

[23] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goed-

ers, Andrew Somerville, Kenneth B Kent, Peter Jamieson, and Jason

Anderson. The vtr project: architecture and cad for fpgas from verilog

to routing. In Proceedings of the ACM/SIGDA international symposium

on Field Programmable Gate Arrays, pages 77–86. ACM, 2012.

[24] Frederic Reblewski and Olivier LePape. Reconfigurable integrated cir-

cuit with a scalable architecture, July 15 2003. US Patent 6,594,810.

[25] Dale Wong. Interconnection network for a field programmable gate

array, February 17 2004. US Patent 6,693,456.

[26] Cheng C Wang, Fang-Li Yuan, Henry Chen, and D Markovic. A 1.1

gops/mw fpga chip with hierarchical interconnect fabric. In VLSI Cir-

cuits (VLSIC), 2011 Symposium on, pages 136–137. IEEE, 2011.

[27] Peter Jamieson, Kenneth B Kent, Farnaz Gharibian, and Lesley Shan-

non. Odin ii-an open-source verilog hdl synthesis tool for cad re-

search. In Field-Programmable Custom Computing Machines (FCCM),

2010 18th IEEE Annual International Symposium on, pages 149–156.

IEEE, 2010.

[28] A Mishchenko et al. Abc: A system for sequential synthesis and veri-

fication. URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[29] Jason Luu, Jason Helge Anderson, and Jonathan Scott Rose. Architec-

ture description and packing for logic blocks with hierarchy, modes

108 BIBLIOGRAPHY

and complex interconnect. In Proceedings of the 19th ACM/SIGDA in-

ternational symposium on Field programmable gate arrays, pages 227–236.

ACM, 2011.

[30] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architec-

ture and CAD for deep-submicron FPGAs. Kluwer Academic Publishers,

1999.

[31] Cadence. Encounter digital implementation systems.

http://www.cadence.com, 2014.

[32] David Grant, Chris Wang, and Guy GF Lemieux. A cad framework

for malibu: an fpga with time-multiplexed coarse-grained elements.

In Proceedings of the 19th ACM/SIGDA international symposium on Field

programmable gate arrays, pages 123–132. ACM, 2011.

[33] VC Aken’Ova, Guy Lemieux, and Resve Saleh. An improved” soft” ef-

pga design and implementation strategy. In Custom Integrated Circuits

Conference, 2005. Proceedings of the IEEE 2005, pages 179–182. IEEE,

2005.

[34] B Murari, F Bertotti, and GA VIGNOLA. Smart power ics, 1996.

[35] Datasheet STLUX385A. Digital controller for power and lighting con-

version. http://www.st.com, 2014.

[36] Zdravko Lukic, Nabeel Rahman, and Aleksandar Prodic. Multibit σ–

pwm digital controller ic for dc–dc converters operating at switching

frequencies beyond 10 mhz. Power Electronics, IEEE Transactions on,

22(5):1693–1707, 2007.

[37] M Dini, M Filippi, M Tartagni, and A Romani. A nano-power power

management ic for piezoelectric energy harvesting applications. In Ph.

D. Research in Microelectronics and Electronics (PRIME), 2013 9th Confer-

ence on, pages 269–272. IEEE, 2013.

[38] M Dini, M Filippi, A Romani, V Bottarel, G Ricotti, and M Tartagni.

A nano-power energy harvesting ic for arrays of piezoelectric trans-

ducers. In SPIE Microtechnologies, pages 87631O–87631O. International

Society for Optics and Photonics, 2013.

BIBLIOGRAPHY 109

[39] Open Cores. website. http://www.opencores.org, 2014.

	Introduction
	Programmable Logic Devices
	SPLD
	CPLD
	FPGA
	FPGA Architecture
	FPGA Software Flow

	Multi-Stage Switching Networks
	Non-blocking Interconnection Networks
	MSSN Architecture
	Topology
	Software Support

	MSSN Routing
	Routing Strategy
	Routing Algorithm

	MSSN Architectural Analysis
	Radix-2 1024+1024 MSSN
	Radix-4 1024+1024 MSSN
	Comparison between radix-2 and radix-4 architectures

	Embedded FPGA Soft-Core Template
	eFPGA Architecture
	eFPGA CAD Flow Support
	Placement Algorithm
	Routing Algorithm
	Perl Scripts

	eFPGA for CMOS
	Implementation Results
	Design-Space Exploration
	Application-Aware Analysis
	Computational Density Analysis

	eFPGA for Smart Power
	Implementation Results
	Application Analysis
	Sigma-Delta Modulation
	Power Management
	Motion Control

	Conclusions
	Bibliography

