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Abstract 
 

Modern control systems are becoming more and more complex and control algorithms more and 

more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control 

(FTC) have gained central importance over the past decades, due to the increasing requirements of 

availability, cost efficiency, reliability and operating safety. 

This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and 

Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics 

and kinematics are described, along with the dynamic models of the actuators and main external 

disturbance sources. The considered ADCS is composed of an array of four redundant reaction 

wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate 

information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation 

(FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation 

of a novel diagnosis system is described. The system consists of a FDI module composed of 

properly organized model-based residual filters, exploiting the available input and output 

information for the detection and localization of an occurred fault. A proper fault mapping 

procedure and the nonlinear geometric approach are exploited to design residual filters explicitly 

decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The 

subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function 

neural networks, allows to obtain accurate fault estimations.  

Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault 

accommodation and guarantee the desired control performances. A standard sliding mode controller 

is implemented for attitude stabilization and control. Several simulation results are given to 

highlight the performances of the overall designed system in case of different types of faults 

affecting the ADCS actuators and sensors. 
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1 INTRODUCTION 

 

This chapter introduces the central themes this thesis deals with. First, the general aspects of fault 

diagnosis and fault tolerant control are introduced. Then, the main contributions and the 

organization of this thesis are outlined. 

 

1.1 Fault Diagnosis and Fault Tolerant Control 

Modern control systems are becoming more and more complex and control algorithms more and 

more sophisticated. Consequently, the requirements of availability, cost efficiency, reliability, 

operating safety and environmental protection are of major importance, not only for safety-critical 

systems, but also for many other advanced systems. For safety-critical systems, the consequences of 

faults can be extremely serious in terms of human mortality, environmental impact and economic 

loss. Therefore, there is a growing need for online supervision and fault diagnosis to increase the 

reliability of such safety-critical systems. Early indications concerning which faults are developing 

can help to avoid system breakdown, mission abortion and catastrophes. For systems which are not 

safety-critical, online fault diagnosis techniques can be used to improve system and cost efficiency, 

maintainability, availability and reliability. 

Since the early days of the development of automatic supervisory control, very significant attention 

to these safety and security issues were paid by academic researchers (Clark et al. 1975; Patton et 

al. 1989). This is especially the case in aeronautics and astronautics, which have stringent 

requirements on stability, performance and reliability. Heavy demands can be placed on an 

automatic system to help to avoid repetition of tragedies and/or critical economic loss. 

The causes leading to undesired system behaviours or unusual sensing behaviours are called faults, 

which are conceptually defined as unpermitted deviations of at least one characteristic property or 

parameter of the system from the acceptable/usual/standard operating conditions, as according to 

Isermann and Ballé (1997). As a consequence of each fault occurring during operations, failure is 

defined as the complete breakdown of a system component or function. It describes the situation 

that the system no longer performs the required function (Isermann and Ballé 1997). Faults 

occurring in actuators, sensors or other system components may lead to unsatisfactory performance 

or, even worse, instability. The monitoring system takes the responsibility of detecting and 

diagnosing unanticipated behaviours. This supervisory system is the so-called Fault Detection 

Isolation/Diagnosis (FDI/FDD) system. FDI/FDD systems should not only provide alarms when a 

malfunction occurs in the supervised system, but should also provide a classification and 

identification of the erroneous behaviour occurring during the entire system operation. Moreover, 

the FDI/FDD systems should provide information and reports to prevent further loss of system 

function. Generally speaking, FDD goes slightly further than FDI by including the possibility of 

estimating the effect of the fault and/or diagnosing the effect or severity of the fault. Hence, the 

term FDD also covers the capability of isolating or locating a fault. Subsequently, the 

operators/automatic control systems should be informed of the fault situations and proper actions 

should be taken to avoid total system breakdown and catastrophe (Patton et al. 1989). Hence, a 

reliable and affordable fault diagnosis system is very critical from safety and sustainability 

perspective and plays a significantly important role in many applications (Chen and Patton 1999).  

The traditional fault diagnosis approach localises the faults by making use of hardware redundancy 

(all system components are replicated, including actuators, sensors, computers to measure and/or 

control a particular variable). The location of a fault can be inferred using a majority voting scheme, 

where three or more redundant lanes of system hardware are used to provide the same function. 

However, the cost, complexity and volume of many modern system devices make the hardware 
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redundancy approach much less applicable in terms of maintenance and operational costs, weight 

restriction or even in terms of strictly regulated ecological requirements.  

An alternative to the use of redundant hardware is to develop systems that have analytical 

redundancy or functional redundancy based on the use of model-based information. Analytical 

redundancy effectively transforms the hardware redundancy into realisable software estimation 

problems. Redundant or additional/repeated estimates of the measured signals are used to derive 

estimates of other variables of the system without the use of additional measurement sensors  (Chen 

and Patton 1999). The only required information for the model-based FDI/FDD approach is the 

availability of a valid system model and the use of the measured inputs and outputs of the system 

being monitored. However, in order to achieve reliability and robustness, special methods must be 

used to ensure that the estimated variables are faithful replicas of the measured quantities. The 

expected outcomes from the model-based FDI/FDD approach are multiple symptoms (residuals or 

fault estimation signals) indicating the differences between nominal and faulty system status in a 

timely manner. 

Therefore, the increasing demands for system safety, reliability, maintainability and survivability in 

many application fields, including aeronautics and aerospace, has motivated and accelerated the 

development of different types of FDI/FDD approaches, and in particular several model-based 

strategies (Gertler 1998; Chen and Patton 1999; Blanke et al. 2006; Simani et al. 2003; Edwards et 

al. 2010; Isermann 2005, 2011; Ding 2013). In particular, the exploitation of model-based 

approaches is often strongly necessary for aeronautical and aerospace applications, in particular due 

to lack of space, cost and weight limitations in small aircrafts and spacecrafts, which make hard to 

implement multiple hardware redundancies. 

Additionally, these increasing demands from the supervised system for safety, reliability, 

availability, maintainability, survivability and sustainability motives also to develop Fault Tolerant 

Control (FTC) schemes with the capability of tolerating system malfunctions preventing loss of life, 

mitigating against hazards, and avoiding economic loss, etc. FTC is also expected to maintain 

desirable and robust performance and stability properties in the case of malfunctions in actuators, 

sensors or other system components (Patton 1997a, 1997b; Blanke et al. 2006). 

As a consequence, FDI/FDD information are certainly important in FTC, e.g. when the control 

system is reconfigured only subsequently to the detection of an occurred fault. If the location, fault 

onset time and severity of the fault are determined, from either an FDI residual signal or using 

estimates of a fault, then appropriate action can be taken to switch or reconfigure the control system 

either using on-line or off-line computed control laws corresponding to various potential fault 

scenarios. When the FTC system makes use of fault information for reconfiguration this is known 

as Active FTC (AFTC), whilst the alternative Passive FTC (PFTC) methods do not require fault 

diagnosis information and are thus based mainly on robust control ideas (Patton 1997a, 1997b). 

AFTC schemes are used to trigger specific control actions in real-time (based on fault information) 

to prevent plant damage as a consequence of malfunctions and ensure system availability and 

sustainability based on the use of redundancy (in either analytical or hardware forms). AFTC can 

also be used to ensure that the control system performance is not degraded when there is a loss of 

efficiency in closed-loop system components, i.e. corresponding to minor or incipient fault 

conditions (Patton 1997a, 1997b). 

Hence, in an AFTC mechanism, sufficient real-time fault information is required to accommodate 

to the effects of faults by a reconfiguration mechanism. The AFTC performance is strongly affected 

by the degree to which accurate fault information is available. Whilst residual-based FDI methods 

can provide a high degree of fault information accuracy, a preferable approach is to use on-line 

Fault Estimation (FE) signals that are designed to robustly reconstruct the time-variation of each 

occurred fault. The reconfiguration scheme in this case may use the FE signal to compensate for the 

fault in the closed-loop system. The more precisely the fault information is provided by on-line FE, 

the more successfully the AFTC system performs (Patton 1997a, 1997b; Zhang and Jiang 2008). 
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1.2 Thesis Contributions 

In the context of aerospace applications, this thesis deals with the FDI, FDD and FTC problems for 

a spacecraft attitude control application, in particular focusing on fault tolerant control and 

diagnosis of possible faults affecting the actuators and sensors of an Attitude Determination and 

Control System (ADCS) of a Low Earth Orbit (LEO) satellite. This dissertation aims to summarize 

and extend the results previously shown in (Baldi et al. 2010a, 2010b, 2012, 2013, 2014b, 2015). 

Differently from (Baldi et al. 2010a, 2010b, 2012, 2013, 2014b), this thesis extends the problem of 

fault diagnosis also to sensor faults, in addition to actuator faults only. 

A novel fault diagnosis and fault tolerant control scheme is developed for the detection, isolation, 

estimation and accommodation of possible faults affecting the control torques provided by reaction 

wheel actuators, flywheel spin rate measurements, attitude and angular velocity measurements 

provided by the sensors of the satellite ADCS. The proposed diagnosis scheme is based on the 

exploitation of a Fault Detection and Diagnosis (FDD) system which is composed of a Fault 

detection and Isolation (FDI) module and a Fault Estimation (FE) module. 

For simplicity, the overall ADCS can be considered to be composed by two parts: the Attitude 

Control System (ACS), consisting of the actuators and their dedicated flywheel spin rate sensors, 

and the Attitude Determination System (ADS), consisting of the satellite attitude and angular 

velocity sensors. 

In particular, the satellite ACS considered in this thesis is assumed to be composed of an array of 

four (redundant) reaction wheel actuators generating reaction torques for attitude control on the 

three axes of the satellite, and embedding also the actuator sensors measuring the flywheel spin 

rates. The four reaction wheels are arranged in a tetrahedral configuration. In practice, this 

configuration allows having an overall three-axis zero momentum bias even if the wheels run with a 

momentum bias. Moreover, the presence of a fourth redundant actuator allows to maintain the 

complete attitude controllability also in case of failure of one actuator. The overall ADCS is 

completed by the ADS, which is assumed to be composed of two star sensors and three rate gyro 

sensors for the determination of the spacecraft attitude and angular velocity, respectively. 

The designed FDI module is composed of a set of scalar model-based residual generators, which are 

organized in four independent banks of filters working in parallel, each of them specifically 

dedicated to the detection and isolation of possible faults affecting specific sets of components of 

the ADCS. The first two banks are specifically exploited for the detection and isolation of faults 

occurred in the actuators and their actuator sensors, i.e. in the actuator subsystems of the ACS. The 

other two banks are specifically exploited for the detection and isolation of faults occurred in the 

attitude and angular velocity sensors of the spacecraft, i.e. in the ADS. 

Moreover, considering the first couple of banks of residual filters for the detection and isolation of 

faults in the actuators and their actuator sensors, the first bank, called Residual Bank n.1 (RB1), will 

be referred from now on also as local. This is done because the designed local residual filters are 

based on the dynamic equations of the actuators, and thus rely only on local measurements of the 

spin rates of the actuator flywheels. Now, it is worth observing that the internal electrical models of 

actuators and sensors have been neglected in this thesis, i.e. no fault diagnosis is performed using 

local electrical measurements of current or voltage or other types of direct internal checks in the 

supervised system components. Only sensor measurements, which are intended and exploited for 

the overall attitude control purpose, are assumed to be available to the diagnosis system. The second 

bank of residual filters, called Residual Bank n.2 (RB2), will be referred from now on also as 

global. This is done because the designed global residual filters are based on both the dynamic and 

kinematic equations of the spacecraft model and the dynamic equations of the actuators, and thus 

rely also on global measurements of the spacecraft attitude and angular velocity in addition to the 

local flywheel spin rate measurements. These global residual filters result to be explicitly decoupled 

from the aerodynamic disturbance thanks to the application of the NonLinear Geometric Approach 

(NLGA) formally developed by De Persis and Isidori (2000, 2001). Due to the aerodynamic 

disturbance uncertainty in Low Earth Orbit satellites, this disturbance decoupling allows to obtain 

better diagnosis performances. In fact, it is unnecessary to take account of the uncertainty of 
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knowledge of the aerodynamic disturbance parameters in the selection of the residual thresholds, 

allowing the detection of smaller faults, and hence subsequently achieving better control 

performances. On the other hand, the design procedure of the local residual filters do not need to 

exploit the NLGA for disturbance decoupling since the exploited actuator dynamic equations, do 

not include exogenous disturbance uncertainties to be decoupled. The application of the NLGA is 

immediate and straightforward. 

The general procedure proposed by Mattone and De Luca (2006b) is used for modelling of the spin 

rate sensor faults in order to obtain a new spacecraft nonlinear dynamic model, which is affine with 

respect to both the actuator and sensor faults and suitable to the application of the NLGA. 

Considering the second couple of banks, called Residual Bank n.3 (RB3) and Residual Bank n.4 

(RB4) respectively, they are specifically exploited to detect and isolate faults occurred in the ADS, 

i.e. in the satellite attitude and angular velocity sensors. The design procedure of these residual 

filters again exploits the NLGA in order to obtain scalar residual filters sensitive only to possible 

faults affecting specific sets of sensors for fault isolation purpose. However, also in this case, the 

design procedure do not need to exploit the NLGA for disturbance decoupling since the exploited 

kinematic equations of the spacecraft model do not include exogenous disturbance uncertainties to 

be decoupled. The designed filters in these two banks are based on the same mathematical model 

equations, but each of them is fed by the same set of angular velocity measurements and a different 

attitude quaternion measurement vector provided by one of the two attitude sensors included in the 

ADS. The exploitation of a double redundancy of the attitude sensors is required since, in general, it 

would not be possible to distinguish between faults on an angular velocity sensor or attitude sensor 

with only a single attitude measurement available. 

The overall detection and isolation procedure for the considered actuator and sensor faults is carried 

out by exploiting a cross-check of all the generated residuals, by means of a proper decision logic 

and residual comparison scheme. In this context, the joint use the four banks of residual filters in 

the FDI system allows riding over the limitations of each bank of residual filters for the detection 

and isolation of faults in the supervised subsystems. 

In fact, for example, a FDI module effectively exploiting only the designed local filters of RB1 is 

not sufficient in order to guarantee the accurate detection and isolation of faults affecting the 

flywheel spin rate sensors or attitude control actuators. 

A FDI module exploiting only these local residual filters would be not able to discern if an occurred 

fault is affecting the actuated control torque or the corresponding flywheel spin rate sensor of a 

specific actuator subsystem (i.e. the system composed by the actuator itself and its corresponding 

flywheel spin rate sensor). In fact, the designed local residual filters can only isolate the generic 

faulty actuator subsystem, without specify which type of fault has occurred. The identification of 

the fault type can be achieved only by exploiting also the global filters of RB2. 

The overall FDD system is completed by a Fault Estimation (FE) module, which consists of a bank 

of adaptive observers exploited to obtain accurate and quick fault estimates. This bank of adaptive 

observers is based on a Radial Basis Function Neural Network (RBF-NN) (Buhmann 2003; Wang 

et al. 2011; Baldi et al. 2013, 2014a, 2015; Castaldi et al. 2014). The on-line learning capability of 

the Radial Basis Function Neural Network allows obtaining accurate adaptive estimates of the 

occurred faults. Moreover, the use of a Radial Basis Function Neural Network allows designing 

generalized fault estimation adaptive observers which do not need any a priori information about 

the fault internal model. The outputs of the fault estimation module (i.e. the fault estimates) are 

enabled once a fault is correctly detected and isolated by the previously designed FDI module. 

However, it is worth noting that all the fault estimation adaptive observers are active from the 

beginning of the simulation, and only the output of a specific estimation filter is enabled once a 

fault has been detected and correctly isolated, with the assumption of a single fault occurring at a 

time. In this way, no inconsistent fault estimates are provided by the FDD system. 

Finally, an Active Fault Tolerant Control (AFTC) system is realized by implementing a fault 

tolerant strategy, based on the information from the FDI/FDD system. 

In case of actuator faults, a fault accommodation scheme is exploited for soft faults, when the faulty 

actuator is yet operative but with a degraded performance, by exploiting the fault estimation 
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information from the FE module. On the contrary, a control reconfiguration scheme is used in case 

of hard actuator faults (i.e. total actuator failures), by excluding the effects of the faulted actuator in 

the system by exploiting the actuator redundancy and using the control inputs of the other actuators 

appropriately to maintain the complete attitude controllability. In this way, a Fault Detection, 

Isolation and Recovery (FDIR) scheme is realized, without directly exploiting any fault estimation 

information from the FE module. In case of sensor faults, a fault accommodation scheme is used by 

directly exploiting the fault estimation information from the FE module. 

The performances of the proposed fault diagnosis and fault tolerant control strategies have been 

evaluated when applied to a detailed nonlinear spacecraft attitude model taking account also of 

measurement noise, and exogenous disturbance signals. In particular, these exogenous disturbance 

terms are represented by aerodynamic and gravitational disturbances. However, as the gravitational 

disturbance model is almost perfectly known, the FDI robustness is achieved by exploiting an 

explicit disturbance decoupling method, based on the NLGA, applied only to the aerodynamic force 

term. This term represents the main source of uncertainty in the satellite dynamic model, mainly 

due to the lack of knowledge of the accurate values of air density and satellite drag coefficient. 

The quick and accurate detection, isolation and estimation of faults affecting both the attitude 

control actuators, the flywheel spin rate sensors and attitude and angular velocity sensors of the 

spacecraft results to be a key point in order to guarantee the desired attitude control performances 

through the subsequent fault accommodation in the proposed AFTC schemes. Several simulation 

results are given for different fault scenarios for both the actuators and sensors. The obtained results 

highlight that the proposed diagnosis scheme can deal with the most significant, generic types of 

faults. 

 

1.3 Thesis Outline 

The thesis is organised as follows. Chapter 2 provides a description of the nonlinear dynamic and 

kinematic models of a rigid spacecraft and of the considered external disturbance models. A 

description of the main reference frames and notations for attitude representation is also provided, 

and the actuators and sensors implemented in the considered spacecraft ADCS are described. 

Chapter 3 provides an overview of the FDI problem, together with the general description of the 

residual generation method and fault detection and isolation scheme. The sensor and actuator fault 

modelling method and NLGA for affine nonlinear systems, which are exploited for disturbance 

decoupling and fault detection, isolation and estimation, are illustrated. 

Chapter 4 illustrates the design and practical implementation of a complete FDI system for the 

spacecraft ADCS, consisting in four banks of residual generators decoupled from the external 

aerodynamic disturbance torque acting on the satellite, designed by exploiting the NLGA and the 

used fault modelling method. Moreover, the fault detection and isolation procedure, based on the 

cross-check of the provided diagnostic signals, is described along with the corresponding decision 

logic. Simulation results for FDI are given in case of sensor and actuator fault occurrence. It is 

highlighted how different types of faults can be accurately and promptly detected and isolated. 

Chapter 5 provides an overview of the FDD problem, together with a general description of the 

design method of the adaptive fault estimation filters for sensor and actuator faults. A description of 

the RBF-NN exploited by the estimation filters is also provided, along with the corresponding 

adaptive laws of the neural network output layer weights. 

Chapter 6 illustrates the design and practical implementation of the fault estimation filters of a 

complete FDD system for the considered spacecraft ADCS. The design of adaptive fault estimation 

filters based on the NLGA and RBF-NN and decoupled from the external aerodynamic disturbance 

torque is illustrated. Simulation results for FDD are given in case of sensor and actuator fault 

occurrence. It is highlighted how different types of faults can be accurately and promptly estimated. 

Chapter 7 provides an overview of the FTC problem, together with a general description of the 

different fault tolerant control approaches exploited in this thesis in case of fault occurrence. 
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Chapter 8 illustrates the practical implementation of different FTC schemes in the considered 

spacecraft ADCS. The implementation of a SMC is illustrated. Although this control method results 

to be in general robust to model uncertainties, external disturbances and even faults on the control 

inputs, essentially consisting in a PFTC in these cases, the exploitation of AFTC approaches allows 

to obtain better performances during transient phases and in case of sensor faults. Simulation results 

for FTC are given in case of sensor and actuator fault occurrence, in order to highlight the system 

capability to recover from faults and/or enhance its performances. Finally, concluding remarks are 

drawn in Chapter 9. 
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2 SPACECRAFT ATTITUDE DYNAMICS 

 

In general, the way that a spacecraft moves is described using orbit dynamics, which determines the 

position of the body along the orbital path, as well as attitude dynamics, which determines its 

orientation. In particular, since this thesis deals with the diagnosis of faults affecting the Attitude 

Determination and Control System (ADCS) of a spacecraft, this chapter focuses exclusively on the 

equations describing the attitude dynamics and kinematics of a rigid body. Attitude dynamics 

describes the orientation of a body in an orbit and can be explained using rotations. In addition, 

frames of reference and attitude rotations are discussed, along with environmental disturbance 

torques. This chapter concludes with information on the attitude determination and control system 

considered in the performed simulations. 

 

2.1 Reference Frames 

When examining attitude dynamics, it is important to describe the reference frames being used to 

give a basis for the rotations. Three main reference frames, or coordinate systems, are used in this 

thesis to describe the orientation, or attitude, of a spacecraft in orbit. These are iF , oF  and bF , the 

inertial, orbital, and body reference frames respectively (Wertz 1978; Wertz and Larson 1999). The 

formal definitions of these coordinate systems are given in the following subsections. 

 

2.1.1 Inertial Reference Frame iF  

The inertial reference frame is a fixed non-spinning frame that is commonly used for attitude 

applications. Usually, the ix  direction points from the focus of the orbit to the vernal equinox ♈, 

the iz  direction is in the orbital angular velocity direction, and iy  is perpendicular to ix  and iz . 

Vernal equinox is the point where the ecliptic crosses the Earth equator going from South to North 

on the first day of spring (i.e. the line from Earth's origin through the Sun on the first day of spring). 

Since a circular and equatorial Low Earth Orbit (LEO) is considered in this thesis, an Earth-Centred 

Inertial (ECI) coordinate system is used, in particular the geocentric equatorial coordinate system, 

which is a right-handed orthogonal coordinate system with origin located in the centre of the Earth, 

as shown in Fig. 2.1. In this reference frame, the iz  axis points through the geographic North Pole, 

or the axis of rotation of the Earth. The ix  axis is in the direction of the vernal equinox ♈, and the 

iy  direction is right-handed orthogonal. The Earth rotates with respect to the ECI coordinate 

system. It is common to use the geocentric equatorial coordinate system as the inertial reference 

frame for spacecraft control. The inertial frame is used as the reference to measure the attitude of 

the satellite with respect to the fixed stars. 

 

ix -axis pointing in the vernal equinox direction; 

iz -axis pointing upwards from the origin through the geographical North Pole; 

iy -axis completing the right hand system. 
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Figure 2.1 - Earth-centred inertial reference frame. 

 

2.1.2 Orbital Reference Frame oF  

The orbital reference frame is a right-handed orthogonal coordinate system with origin located at 

the centre of mass of the spacecraft, and the motion of the frame depends on the current position of 

the satellite in orbit. In this thesis, the satellite is assumed to move along an equatorial and circular 

orbit. The orbital reference frame is also referred to as Local Vertical Local Horizontal (LVLH) 

frame. This reference frame is non-inertial because of orbital acceleration and the rotation of the 

frame with respect to the ECI reference frame. The oz  axis of the orbital frame is in the direction 

from the spacecraft to the Earth centre (nadir pointing), oy  is the direction opposite to the normal of 

the orbital plane, and ox  is perpendicular to oy  and oz . Fig. 2.2 shows how the LVLH orbital frame 

is generally defined. In circular orbits, ox  corresponds to the direction of the spacecraft velocity 

along the orbital path. The three directions ox , oy , and oz  are also known as the roll, pitch, and yaw 

axes, respectively. The local orbital frame is used as the instantaneous reference to express the 

attitude of the satellite with respect to the Earth. 

 

ox -axis pointing in the direction of motion, tangential to the orbit; 

oz -axis pointing to the centre of the Earth (nadir; 

oy -axis completing the right-hand system. 

 

 
Figure 2.2 - Local Vertical Local Horizontal (LVLH) orbital reference frame. 

 

2.1.3 Body Reference Frame bF  

Similarly to the orbital reference frame, the body reference frame has its origin at the centre of mass 

of the spacecraft. This right-handed orthogonal frame is fixed in the rotating body, and therefore is 

non-inertial. The relative orientation between the inertial or orbital frame and the body frame is the 

basis of attitude dynamics and control. The body reference frame is assumed to be aligned with the 
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orbital reference frame in the nadir pointing condition of the satellite. Measurements taken by 

instruments on-board the satellite are often taken with respect to the body frame. Fig. 2.3 shows a 

comparison of the inertial, orbital and body frames. 

 

bx -axis pointing from the back to the front; 

bz -axis pointing from the top to the bottom; 

by -axis completing the right hand system. 

 

 
Figure 2.3 - Earth centred inertial, orbital and body reference frames. 

 

2.1.4 Principal Axis of Inertia 

Principal axes are a specific case of body-fixed reference frame. This right-handed orthogonal 

coordinate system has its origin at the centre of mass of the spacecraft, and it is oriented such that 

the moment of inertia tensor of the spacecraft is diagonal, whose nonzero elements are known as the 

principal moments of inertia. In particular, this is the body-fixed coordinate system actually 

exploited in this thesis for the description of the spacecraft attitude dynamics. 

 

2.2 Attitude Representations 

In aerospace applications, the term attitude refers to the orientation of a body-fixed orthogonal 

coordinate system with respect to another reference frame. The rotation matrix, Euler angles and 

quaternions are three different ways to represent the spacecraft attitude (Kaplan 1976; Wertz 1978; 

Hughes 1986; Sidi 1997; Egeland and Gravdahl 2002; Tewari 2007; Wie 2008). 

It is worth noting that the attitude can be described mathematically with a minimum of three 

independent parameters for a rigid body. However, the usage of only three parameters may result in 

singularities. Hence, depending on the applications, parameterizations with more than three 

elements are also considered. However, even if the number of parameters are more than three, the 

number of independent parameters are still three in all the representations, others being related 

through constraint equation. The following Tab. 2.1 offers a comparison of Euler angles, 

quaternions and rotation matrix, which are the primarily used attitude representations, along with 

the their main advantages and disadvantages. Other representations exist, apart from the ones listed 

below, such as Euler axis-angle, Gibbs vector and Rodriguez parameters. 
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Notation Advantages Disadvantages

Direction Cosine Matrix 

(DCM)
R

No singularities, ease of 

considering successive 

rotations

6 redundant parameters

Quaternion q̅=[q1,q2,q3,q4]
T

No singularities, ease of 

considering successive 

rotations

1 redundant parameter

Euler angles Θ=[φ,θ,ψ]T

No redundant 

parameters, physical 

interpretation

Singularities, 

trigonometric functions
 

Table 2.1 - Comparison of attitude representations. 

 

The three attitude representations listed above are related to each other. Proper equations relating 

the three different parameterizations and detailed comparisons can be found in Kaplan (1976), 

Wertz (1978), Hughes (1986), Sidi (1997), Egeland and Gravdahl (2002), Tewari (2007) and Wie 

(2008). 

 

2.2.1 Rotation Matrix 

The rotation matrix, also referred to as Direction Cosine Matrix (DCM), is a non-minimal 

description of the rigid body's orientation with only three degrees of freedom. The rotation matrix 

can be interpreted in three different ways: as a coordinate transformation matrix mapping a vector 

represented in one coordinate frame to another frame, as a rotation of a vector within the same 

frame and finally as a description of the mutual orientation between two frames. Hence, the attitude 

of a rigid body with respect to a reference frame can be described by a matrix R  representing the 

relative orientation between the two frames (Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997; 

Egeland and Gravdahl 2002; Tewari 2007; Wie 2008). 

The generic direction cosine matrix b

aR  is a transformation matrix which is composed of the 

direction cosine values between the initial coordinate system aF  and the target coordinate system 

bF , and describes the rotation from aF  to bF . Considering the base vectors of aF  given by the unit 

vectors ax , ay , az  and the base vectors of bF  given by the unit vectors bx , by , bz , the direction 

cosine matrix is defined as 

 

 

cos ( , ) cos ( , ) cos ( , )

cos ( , ) cos ( , ) cos ( , )

cos ( , ) cos ( , ) cos ( , )

a b a b a b a b a b a b

b

a a b a b a b a b a b a b

a b a b a b a b a b a b

x x y x z x x x y x z x

x y y y z y x y y y z y

x z y z z z x z y z z z

    
      
  
       

R






 

 

This rotation matrix is an element in a special orthogonal group of order three (3)SO : 

 

  3 3(3),   (3) | ,  is orthogonal and det( ) 1SO SO    R R R R R  

 

This means that rotation matrices have some useful properties: 

 

 

1

3

det( ) 1

T

T T

 

 



R R R

RR R R I

R

 

 

Since the dynamic model of the spacecraft incorporates several different coordinate frames, a way 

to convert a vector from one frame to another is needed. Exploiting the rotation matrix, the 
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relationships between vectors expressed in different reference frames are given by the coordinate 

transformations 

 

 
( )

b

b a a

a b T

a b b a b



 

v R v

v R v R v
 

 

where b

aR  is the rotation matrix describing the relative orientation of the generic frame aF  with 

respect to the reference frame bF , ( )a b T

b aR R  is the corresponding inverse transformation, av  is a 

vector expressed in aF , and bv  is the same vector expressed in bF . 

When creating the rotation matrix using Euler angles, described in the next subsection, it is possible 

to combine principal rotations. Each of these principal rotations represents a transformation of a 

coordinate system about one of its basis vectors with a generic rotation angle. These 

transformations are described by the following three elementary rotation matrices: 

 

 

1 0 0

( ) 0 cos sin

0 sin cos

x   

 

 
 
 
  

R  (2.1) 

 

 

cos 0 sin

( ) 0 1 0

sin 0 cos

y

 



 

 
 
 
  

R  (2.2) 

 

 

cos sin 0

( ) sin cos 0

0 0 1

z

 

  

 
  
 
  

R  (2.3) 

 

where the subscriptions x, y and z denotes the axis of the coordinate system the rotation angles  ,   

and   revolves about, respectively. 

A generic coordinate transformation matrix can be built from the composition of two or more 

consecutive rotations. In case of three consecutive rotations, for example, it can be defined as 

 

 d d c b

a c b aR R R R  (2.4) 

 

where the matrices b

aR , c

bR  and d

cR  represent three consecutive rotations and d

aR  is the overall 

coordinate transformation matrix to pass from the generic coordinate system aF  to the coordinate 

system dF . It is worth noting that the coordinate transformation matrix corresponding to a set of 

consecutive rotations about moving axes is obtained by pre-multiplying the different single rotation 

matrices, thus multiplying the elementary rotation matrices in Eq. (2.4) in the opposite order in 

which the rotations take place. 

Two notations commonly used to describe these coordinate transformations and parameterize the 

corresponding rotation matrices are the Euler angles and unit quaternion, as it will be shown in the 

following.  
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2.2.2 Euler Angles 

The Euler angles  
T

    , also referred to as the roll, pitch and yaw angles respectively, 

are commonly used to describe the motion of rigid bodies that moves freely, like spacecrafts 

(Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997; Egeland and Gravdahl 2002; Tewari 2007; 

Wie 2008). 

As already stated, the spacecraft attitude can be described by the rotation between the body-fixed 

reference frame and another reference frame. Since in this thesis a LEO Earth-pointing satellite is 

considered, it is convenient to define the satellite attitude as the rotation between the body-fixed 

reference frame and the orbital reference frame. On the contrary, for a satellite pointing a generic 

star of sky portion, it could be more convenient to define the satellite attitude with respect to the 

inertial frame. 

The rotation from the orbital reference frame to the body-fixed reference frame can be considered 

as a composite rotation, consisting for example of the following three elementary rotations, 

corresponding to Eqs. (2.1), (2.2) and (2.3), in the indicated order: 

 

1. a rotation about the ox -axis with roll angle   (Eq. (2.1)); 

2. a rotation about the current (rotated) y -axis with pitch angle   (Eq. (2.2)); 

3. a rotation about the current (rotated) z -axis with yaw angle   (Eq. (2.3)). 

 

This sequence is called X-Y-Z rotation axis sequence. Twelve different orders and combinations of 

the elementary rotations of Eqs. (2.1), (2.2) and (2.3) can be considered to represent the attitude of a 

spacecraft. The resulting orthogonal transformation matrix for the rotation sequence considered 

above becomes 

 

 ( ) ( ) ( )b b b b
o z y x o o oi j k      R R R R  (2.5) 

 

with ( )x R , ( )y R  and ( )z R  given by Eqs. (2.1), (2.2) and (2.3) respectively, which yields 

 

 

cos cos sin cos cos sin sin sin sin cos sin cos

( ) sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

b

o

           

           

    

  
     
 
  

R  (2.6) 

 

This matrix is also used for vector transformations from the orbital reference frame to the body-

fixed reference frame. Considering the inverse rotation from the body-fixed reference frame to the 

orbital reference frame, the resulting coordinate transformation matrix becomes 

 

 1( ) ( ) ( ) ( ) ( )o b b T T T T

b o o x y z    R R R R R R  (2.7) 

 

which yields 

 

 

cos cos sin cos sin

( ) sin cos cos sin sin cos cos sin sin sin cos sin

sin sin cos sin cos cos sin sin sin cos cos cos

o

b

    

           

           

 
     
 
   

R  (2.8) 

 

In the same way, two coordinate transformation matrices ( )b

i R  and ( )i

b R  can be defined, by 

considering the body-fixed and inertial coordinate systems as reference frames. In the following, to 

avoid misunderstandings, the subscripted Euler angles  
T

o o o o     will represent the 
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spacecraft attitude with respect to the orbital reference frame, whereas the subscripted Euler angles 

 
T

i i i i     will represent the spacecraft attitude with respect to the inertial reference frame. 

The Euler angles represent an intuitive representation for the attitude of an object in a three-

dimensional space. However, using Euler angles to describe the attitude kinematic may result in 

singularities for 
2


   , corresponding to the rotation matrix in Eq. (2.6) being singular (Kaplan 

1976; Wertz 1978; Hughes 1986; Sidi 1997; Egeland and Gravdahl 2002; Tewari 2007; Wie 2008). 

This singularity can be also shifted to different angles by changing the combination of elementary 

rotations, but the problem is always present in the mathematical description of the attitude and 

kinematics by using Euler angles. However, alternative notations, like the quaternions, can be used 

to avoid singularities. In fact, introducing a fourth parameter to represent the attitude can solve the 

problem. In this thesis, Euler angles will be used in the simulations only to best visualize the 

behaviour of the satellite and performance of the designed systems, due to their physical meanings.  

 

2.2.3 Unit Quaternion 

An alternative way to parameterize (3)SO  and describe the spacecraft attitude is through the use of 

quaternions. When the quaternion is expressed in a normalized form, i.e. with a unit quaternion, it is 

also referred to as Euler parameters (Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997; Egeland 

and Gravdahl 2002; Tewari 2007; Wie 2008). 

Unit quaternion provides a singularity-free representation of attitude kinematic, but the physical 

meaning of the quaternion is obscure and not as intuitive as Euler rotation angles. Moreover, 

quaternions provide a convenient product rule for successive rotations and a simple form of 

kinematic. Hence, this thesis exploits a unit quaternion notation to describe the spacecraft attitude 

dynamics and kinematics and to design the FDI and FDD systems. The construction of the unit 

quaternion arises from the observation that the rotation of coordinate systems can be uniquely 

described by a unit vector  1 2 3

T
e e ee  giving an fixed axis of rotation as well as its sense, and 

an angle of rotation  . The unit quaternion q  has four parameters defined as 

 

 

1 1

2 2

3 3

4

sin
2

sin
2

sin
2

cos
2

q e

q e

q e

q

















 (2.9) 

 

with unitary norm. Hence, the quaternion set q  is a vector of four parameters  1 2 3 4

T
q q q q  

defined as 

 

 1 2 3 4iq jq kq q   q  

 

where i , j  and k  are hyper imaginary numbers satisfying the conditions 
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2 2 2 1i j k

ij ji k

jk kj i

ki ik j

   

  

  

  

 

 

The overall quaternion vector q  can also be decomposed in a vector part,   3

1 2 3

T
q q q q  

and a scalar part 4q  . Thus the quaternion may be written as 

 

 

1

2

3 4

4

q

q

q q

q

 
 

        
 
 

q
q  (2.10) 

 

The conjugate q  of the attitude unit quaternion q , corresponding to the inverse rotation, is defined 

as 

 

 
4q


 

  
 

q
q  

 

The norm of quaternion q  is defined as 

 

 2 2 2 2

1 2 3 4 1q q q q     q qq  

 

Now, it is convenient to introduce the matrix notation for the vector cross product for two generic 

vectors, which is defined by ( )S u v u v , where ( )S u  is a vector skew-symmetric matrix defined 

as 

 

 

3 2

3 1

2 1

0

( ) ( ) ( ) 0

0

T

u u

S S S u u

u u

 
       
 
  

u u u  

 

with the following properties: 

 

 
2 2

( ) ( )

( ( )) ( )

( )

( ) ( )

T T

T

T

S S

S S

S

S S

 



 

 

x x

x x

x y x y

x y y x

 

 

Hence, defined the skew-symmetric matrix ( )S q  as 

 

 

3 2

3 1

2 1

0

( ) 0

0

q q

S q q

q q

 
  
 
  

q  
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the quaternion multiplication p q  of two unit quaternions p  and q  is defined as 

 

 
4 4

4 4

( )
T

p q S

p q

  
     

q p p q
r p q

p q
 (2.11) 

 

where also the resulting r  is a unit quaternion and the multiplication is not a commutative 

operation. If p  describes a first rotation and q  a second one, then r  describes the overall rotation. 

As a consequence, the attitude difference/error of the unit quaternion q  with respect to p  can be 

defined as 

 

 
4 4

4 4

( )
e T

p q S

p q


  

     

q p p q
q p q

p q
 (2.12) 

 

The coordinate transformation matrix in terms of the quaternion is defined as 

 

 2

4 3 4( ) ( ) 2 2 ( )T Tq q S   R q q q I qq q   (2.13) 

 

Therefore, the coordinate transformation matrix ( )b

oR q  from the orbital reference frame to the 

body-fixed reference frame is defined as 

 

 

2 2 2 2

1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2

1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2

1 3 2 4 2 3 1 4 1 2 3 4

2( ) 2( )

( ) 2( ) 2( )

2( ) 2( )

b b b b
o o o o

q q q q q q q q q q q q

i j k q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

           
       

R q  (2.14) 

 

where b

oi , b

oj  and b

ok  are the direction cosines (unit vectors) of the axes of the orbital frame 

projected on the coordinates of the body frame and parameterized by the quaternion q . This is the 

contrary rotation of the one defined by the attitude matrix ( )o

bR q , and it is used for vector 

transformations. Since the rotation matrices are orthogonal, it results that 

 

 

1

3

( ) ( ( )) ( ( ))

( )( ( )) ( ( )) ( )

o b T b

b o o

o o T o T o

b b b b

 

 

R q R q R q

R q R q R q R q I
 

 

Therefore, this gives that the coordinate transformation matrix ( )o

bR q  from the body-fixed 

reference frame to the orbital reference frame is defined as 

 

 

2 2 2 2

1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2

1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2

1 3 2 4 2 3 1 4 1 2 3 4

2( ) 2( )

( ) 2( ) 2( )

2( ) 2( )

To o o o
b b b b

q q q q q q q q q q q q

i j k q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

           
       

R q  (2.15) 

 

where o

bi , o

bj  and o

bk  are the direction cosines (unit vectors) of the axes of the body frame projected 

on the coordinates of the orbital frame and parameterized by the attitude quaternion q . This matrix 

describes the attitude of the satellite with respect to the orbital reference frame. Moreover, 

considering the definition of ( )R q  in Eq. (2.13), it results that 

 

 ( ) ( ) R q R q  
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Hence, the same attitude can be described by two quaternions q  and q , the first one given when 

the angle of rotation is  , the latter for the angle 2  . This implies that the unit quaternion 

inherently possesses a sign ambiguity. Considering the definition of Eq. (2.12) of the error unit 

quaternion, this ambiguity leads to having two choices, the attitude error of q  with respect to p  and 

the error of q  with respect to p , where one exhibits a geodesic rotation error ( p q ) while the 

other a non-geodesic rotation error (  p q ). 

Finally, quaternions provide simple methods for calculation of successive rotations. Let the 

quaternion b

aq  describing the rotation of the reference frame bF  in the reference frame aF  and the 

quaternion c

bq  describing the rotation of the reference frame cF  in the reference frame bF  be given. 

Then, the product quaternion in Eq. (2.11) provides an elegant method for calculation of the total 

transformation from the frame aF  to the frame cF : 

 

 ( )c b c

a a bq Q q q  

 

where 

 

 

4 3 2 1

3 4 1 2

2 1 4 3

1 2 3 4

( )

q q q q

q q q q

q q q q

q q q q

 
 
 
 
 
   

Q q  

 

In addition, q  can also be expressed in terms of ( )R q  as 

 

 

1 23 32

2 31 13

4

3 12 21

4

1

4

1
1 ( )

2

q R R

q R R
q

q R R

q tr

   
     
   

     

  

q

R

 

 

The algorithm to transform a set of attitude parameters from Euler angles to unit quaternion, or 

from unit quaternion to Euler angles can be found in (Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 

1997), exploiting the fact that ( ) ( ) R R q  to derive the conversion relations, where R  are the 

rotation matrices previously defined. 

Again, to avoid misunderstandings, the subscripted quaternion vector 1, 2, 3, 4,

T

o o o oo
q q q q   q  

will represent the spacecraft attitude with respect to the orbital reference frame, whereas the 

subscripted quaternion vector 1, 2, 3, 4,

T

i i i iq q q q   q  will represent the spacecraft attitude with 

respect to the inertial reference frame. 

 

2.3 Angular Velocity 

The angular velocity ω  is used to investigate the angular displacements that occur over time. 

Angular velocity is dependent on the frame of reference, and is expressed in this thesis with the 

notation c

abω , which defines the rotation rate of the frame aF  with respect to bF  as seen by cF . 

Angular velocities add, but only when they are in the same reference frame. For example, the 
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following relation between the relative angular velocities of the body-fixed, orbital and inertial 

reference frames is valid: 

 

 b b b

ib ob io ω ω ω  (2.16) 

 

where the resulting angular velocity is seen by the body frame, and b

ibω , b

obω  and b

ioω  are the 

angular velocity vectors of the satellite from body to inertial frame, from body to orbital frame and 

from orbit to inertial frame as seen in the body-fixed reference frame, respectively. 

When the angular velocities are expressed in different reference frames, however, it is necessary to 

perform transformations. For example, this is evident in the relation 

 

 b b o b i b b o

ib o ob i io ob o io   ω R ω R ω ω R ω  (2.17) 

 

where the resulting angular velocity is seen by the body frame, and o

obω , i

ioω  and o

ioω  are the 

angular velocity vectors of the satellite from body to orbital frame as seen in the orbital frame, from 

orbit to inertial frame as seen in the inertial frame and from orbit to inertial frame as seen in the 

orbital frame. Hence, considering the second part of Eq. (2.17), the following angular velocity 

vectors can be defined: 

 

 

, ,

, ,

, ,

0

                  

0

x i x o

b b o
y i y oib ob io o

z i z o

 

  

 

     
        
     
         

ω ω ω  (2.18) 

 

where o  is the angular velocity of the spacecraft orbit, and for a circular equatorial orbit is 

assumed constant and calculated from relation 

 

 2

3 3o

GM

R R


    (2.19) 

 

where R is the orbit radius (i.e. the distance from the centre of the Earth to the satellite's centre of 

gravity), which is constant for a circular orbit, G is Newton's specific gravity constant, M is the 

Earth mass and 14 3 23.986 10  m /s    is the Earth's gravitational coefficient. 

 

2.4 Equations of Motion 

The mathematical model of a satellite is described by nonlinear dynamic and kinematic differential 

equations of motion (Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997; Egeland and Gravdahl 

2002; Tewari 2007; Wie 2008). The dynamics relates torques acting on the satellite to the satellite 

angular velocity in the inertial reference frame. The kinematics provides integration of the angular 

velocity b

ibω  between the inertial and body-fixed reference frames, as seen in the body reference 

frame. The attitude is parameterized by four components of the quaternion 

1, 2, 3, 4,

T

i i i ii
q q q q   q  describing the rotation of the body-fixed frame in the inertial reference 

frame. 

 

2.4.1 Spacecraft Inertia Matrix 

The inertia matrix of the satellite is a constant real symmetric matrix given by 
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xx xy xz

yx yy yzsat

zx zy zz

I I I

I I I

I I I

  
    
   

Ι  (2.20) 

 

If the physical body has a mass symmetrically distributed about its axes, or assumed to be 

symmetrically distributed, the inertia matrix becomes diagonal: 

 

 

0 0

0 0

0 0

xx

sat yy

zz

I

I

I

 
 
 
  

Ι  (2.21) 

 

where xxI , yyI  and zzI  in Eqs. (2.20) and (2.21) are the moment of inertia about the body axes bx , 

by  and bz , and they are calculated by 

 

 

2 2

2 2

2 2

( )

( )

( )

xx
m

yy
m

zz
m

I y z dm

I x z dm

I x y dm

 

 

 







 

 

whereas the inertia products in Eq. (2.20) are defined as 

 

 

xy yx
m

xz zx
m

yz zy
m

I I xydm

I I xzdm

I I yzdm

 

 

 







 

The integrations are performed over the total mass of the body and x , y  and z  represent the 

components of the position vector of each particle of mass dm  with respect to the centre of mass of 

the body. The terms xxI , yyI  and zzI  are called principal moments of inertia when the matrix is 

diagonal, i.e. if the mass distribution is symmetric with respect to the (principal) axes of the body. 

The moments of inertia of a body about particular axes are measures of the distribution of the mass 

about those axes, and thus more they are small more the mass is concentrated. 

 

2.4.2 Dynamic Equations of Motion 

Some assumptions are made for the dynamic modelling of the satellite. For example, the satellite is 

assumed to act as a rigid body and behave as a point mass model for orbital dynamics. The 

dynamics of the satellite can be derived by using a Newton-Euler formulation for the rigid body 

(Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997; Egeland and Gravdahl 2002; Tewari 2007; 

Wie 2008), where the equations of motion are derived from the definition of angular momentum 

h= I . The overall angular momentum of a spacecraft changes according to the applied torques. 

This leads to the following model expressed in the body frame: 

 

 ( )b b b b

sat ib ib sat ib tot  I ω ω I ω T  (2.22) 

 

With a simpler notation, equation (2.22) becomes 
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 ( )b b b b

sat ib ib sat ib totS I ω ω I ω T  (2.23) 

 

where the cross product is written as a matrix operation using the skew-symmetric matrix  

 

 

, ,

, ,

, ,

0

0( )

0

z i y i

b
z i x iib

y i x i

S

 

 

 

 
 
 
  

ω  

 

The term b

totT  represents the total torques about the mass centre of the spacecraft. Eq. (2.22) 

represents the Euler equation of moment. Differentiating the Eq. (2.17) gives 

 

 ( )b b b b o

ib ob ob o ioS ω ω ω R ω  (2.24) 

 

and 

 

 ( )b b b b o

ob ib ob o ioS ω ω ω R ω  (2.25) 

 

using the skew-symmetric matrix  

 

 

, ,

, ,

, ,

0

0( )

0

z o y o

b
z o x oob

y o x o

S

 

 

 

 
 
 
  

ω  

 

Considering the variation of total angular moment of the body as the sum of control torques b

ctrlT  

allocated to control the satellite and external disturbance torques b

extT  acting on the satellite, Eq. 

(2.23) can be written as 

 

 ( )b b b b b

sat ib ib sat ib ctrl extS   I ω ω I ω T T  (2.26) 

 

where the total torque about the mass centre is broken up into two distinct terms: 

 

 b b b

tot ctrl ext T T T  (2.27) 

 

Solving the Eq. (2.26) for b

ibω  leads to 

 

 

,1 ,1

,2 ,21 1

,3 ,3

( ) ( )

( )( )
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zz yy ctrl ext

y z

xx xx

b b

ctrl extb b b b b xx zz
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yy yy

b b
yy xx ctrl ext

x y
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I I T T

I I

T TI I
S

I I

I I T T

I I

 

 

 

 

  
  
 
 
      
 
 

   
  

ω I ω I ω I T T  (2.28) 

 

when principal body axes are considered. These equations are known as Euler's equations of motion 

for the rigid body. 
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2.4.3 Kinematic Equations of Motion 

The kinematics of the spacecraft is derived by integrating the angular velocity of the satellite. It is 

used to describe the orientation of the satellite body frame with respect to another reference frame 

(Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997; Egeland and Gravdahl 2002; Tewari 2007; 

Wie 2008). The kinematic differential equation between the spacecraft angular velocity and the unit 

quaternion exploited in this dissertation are given by 
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,

3, 4, 1, 4, 3

,

4, 2, 1, 4,

,
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( )1 1
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q I q
q ω

q
 

 

or, with an alternative and more compact notation by defining the skew symmetric matrix ( )b

ib ω , 

as 

 

 
4,

1
( )

2

i b

i ib i

iq

 
   
 

q
q ω q  (2.29) 

with 
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0
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0
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z i x i y ib
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ω  

 

or, in an explicit way, as 
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1
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  

  

   

   

 (2.30) 

 

In particular, in Eq. (2.29) there are described the kinematic relations between the spacecraft 

angular velocity of the body-fixed frame with respect the inertial reference frame, expressed in the 

body frame, and the unit quaternion representing the body attitude with respect to the inertial 

reference frame, expressed in the body frame. 

In a similar way, the kinematic equations can be also written using the attitude and angular velocity 

of the body expressed with respect to the orbital reference frame. The conversion relations between 

the angular velocity of the body frame with respect to the orbital frame or inertial frame 

respectively, and expressed in the body frame, are defined as 
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where 
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and o  is the angular velocity of the spacecraft orbit. Therefore, by considering the satellite angular 

velocity and the attitude with respect to the orbital frame, Eq. (2.29) can be rewritten as 
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with, considering a circular equatorial orbit, 
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or, in an explicit way exploiting the relations of Eq. (2.31), written as 
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 (2.34) 

 

2.5 Environmental Disturbance Torques 

In order to design the attitude control system and fault diagnosis system, environmental disturbance 

torques usually acting on the spacecraft must be modelled sufficiently. The torques must be 

modelled as a function of time, spacecraft position and attitude so that they can be integrated to 

Euler’s equations and any other mathematical models. 
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Spacecraft in orbit encounter small disturbance torques from various environmental sources. These 

torques are either secular, which accumulate over time, or cyclic, which vary sinusoidal over an 

orbit. Both types are discussed in Kaplan (1976), Wertz (1978), Hughes (1986)  and Sidi (1997). 

Different environmental torques are more prevalent at different altitudes. The relationship between 

altitude and disturbance torque strength is shown in Fig. 2.4. 

 

 
Figure 2.4 - Comparison of Environmental Torques (adapted from Hughes 1986). 

 

In Low Earth Orbits (LEO) the dominant sources of environmental disturbance torques are the solar 

radiation pressure, aerodynamic drag and Earth's gravitational and magnetic fields. There are also 

internal torques primarily resulted from internal moving hardware, propellant leakage, thrust 

misalignment and so on. 

The solar radiation pressure is effective on attitude of the satellite for altitudes higher than 1000 km. 

The gravity gradient disturbance are most significant below 1000 km. Aerodynamic perturbations 

are most effective below 500 km and negligible over 1000 km altitudes. 

In this thesis, due to the altitude of the LEO satellite considered in the simulations (350 km), only 

gravity-gradient and aerodynamic torques are considered. Hence, the total torques, control torques 

and external disturbance torques are represented by 

 

 b b b b b b

tot ctrl ext ctrl gg aero    T T T T T T  (2.35) 

 

which are all expressed in the satellite body frame. 

 

2.5.1 Gravity-Gradient Torque 

Any non-symmetrical object in the orbit is affected by a gravitational torque because of the 

variation in the Earth’s gravitational force over the object. There are many mathematical models for 

gravity gradient torque (Kaplan 1976; Wertz 1978; Hughes 1986; Sidi 1997). The most common 

one is derived by assuming homogeneous mass distribution of the Earth. Since the gravitational 

force field varies with the inverse square of the distance from the Earth, there is a greater force on 

the portion of the spacecraft closer to the Earth. The gravity-gradient torque is constant for Earth-
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oriented spacecraft and cyclic for inertial oriented vehicles. It is mainly influenced by the moment 

of inertia of the spacecraft and the altitude of the orbit. The gravity-gradient torque b

ggT  can be 

modelled, according to Wertz (1978) and Sidi (1997), as 

 

 2

3

3
3 ( ) ( )b b b b b

gg o o sat o o sat ok k k k
R


   T I I  (2.36) 

 

where satI  is the inertia matrix of the spacecraft, b

ok  is the directional cosine from the matrix b

oR  

describing the attitude of the spacecraft with respect to the orbital reference frame and o  is the 

angular velocity of the satellite orbit, as already stated, and for a circular orbit it is assumed constant 

and calculated from relation 

 

 2

3 3o

GM

R R


    (2.37) 

 

where R is the orbit radius (i.e. the distance from the centre of the Earth to the satellite's centre of 

gravity), which is constant for a circular orbit, G is Newton's specific gravity constant, M is the 

Earth mass and 14 3 23.986 10  m /s    is the Earth's gravitational coefficient. Tab. 2.2 summarizes 

the physical properties of the Earth (Wertz 1978). 
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Table 2.2 - Physical properties of Earth (Wertz 1978). 

  

The unit vector b

ok  corresponds to the zenith, i.e. a unit vector in the body coordinate system along 

the line connecting the satellite centre of gravity and the Earth centre pointing away from the Earth: 
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Then, Eq. (2.36) becomes 
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2.5.2 Aerodynamic Torque 

This disturbance is most effective on satellites orbiting below 400-500 km. The drag force created 

by the air molecules interacting with satellite body produce a torque on the satellite, moreover 

reducing its velocity and resulting in a lower orbit for the satellite. 

An approximation of the satellite structure by a collection of simple geometrical figures has been 

assumed. In particular, in this thesis the considered satellite is assumed to be a simple rectangular 

cuboid, i.e. a regular parallelepiped with six rectangular faces. The aerodynamic force on each 

element, according to Wertz (1978) and Sidi (1997), is determined by integrating the following 

equation 

 

 21
ˆ ˆ( )

2
aero DdF C v n v dS    

 

where dS  is the surface element, n̂  is an outward normal to the surface, v̂  is the unit vector in the 

direction of translational velocity V , DC  is the drag coefficient, and   is the atmospheric density. 

The total aerodynamic torque is the vector sum of the torques acting on individual parts of the 

satellite 
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where ( )p gc c  is the vector from the spacecraft centre of mass gc  to the centre of pressure pc  of 

the i-th surface element. Hence, the aerodynamic disturbance torque can be modelled as 
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or explicitly as 
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where exposedS  is the area exposed to the aerodynamic flux and perpendicular to the unit vector v̂ , 

, , ,

T

pa x pa y pa zpa
c c cc      are the components of the displacement vector, i.e. the vector joining the 

centre of mass and the aerodynamic centre of pressure of the satellite, expressed in the body frame 

with origin in the centre of mass. The exposed area can be calculated by 
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where d, w and h are the depth ( bx -direction), width ( by -direction) and height ( bz -direction) of the 

satellite body respectively, expressed in the body frame. Since the satellite is assumed to be a 

rectangular cuboid with edges aligned with the principal axes of inertia, these coincide with the 

cuboid dimensions. 

Now, it is worth observing that, the design of the FDI/FDD systems will exploit an explicit 

decoupling only of the aerodynamic disturbance torque since the gravitational disturbance, even if it 

can produce torques at least one order of magnitude larger than other external torques, has a model 

which is almost perfectly known. Thus, the effect of the gravitational disturbance does not need to 

be decoupled. It is worth noting that, mainly due to the presence of the unknown terms   and DC , 

the term expos d

2

e

1

2
a DF V C S   in Eqs. (2.39) and (2.40) represents the main source of uncertainty 

from which the diagnostic signals provided by the designed residual generators will have to be 

decoupled. 

Tab. 2.3 summarizes the properties of the upper atmosphere of the Earth (Wertz 1978). The mean 

profiles between  25 and 500 km are from the COSPAR International Reference Atmosphere, CIRA 

72 (1972). Between 500 and 1000 km, the CIRA 72 profile for 1000 KT   was used to indicate 

the densities to be expected. The maximum and minimum values of air density between 100 and 

500 km were extracted from the  explanatory material in CIRA 72 and indicate the variation in 

densities  which can be obtained with the models. Sea level temperature and density are from U.S. 

Standard Atmosphere (1976). 

 

 
Table 2.3 - Upper atmosphere of the Earth (Wertz 1978). 
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2.5.3 Ignored Torques 

In addition to the environmental disturbances listed earlier, there are some sources that, due to their 

small size at the selected satellite altitude, are ignored in this dissertation. 

 

The gravity of the Moon: because the gravity of the Earth is dominant (it is closer and larger), the 

gravity of the Moon, and the tidal force created by the Earth-Moon system is ignored. 

 

Solar winds and pressure: the Sun's radiation of particles causes solar winds and pressure. Both 

the solar winds and pressure generate torques on the satellite. 

 

Satellite generated torques: the satellite generated torques are generated by different sources, such 

as the deployment of antennas or moving parts in the satellite and instruments on-board which 

generate residual magnetic fields that interact with the Earth's magnetic field. These torques are 

either short lived, or have a low magnitude, and can therefore be ignored. Other disturbance torques 

caused by moving parts in the satellite are also neglected. 

 

2.6 Attitude Determination and Control System 

The attitude (i.e. the orientation) of a spacecraft can be determined by describing the rotation 

between a spacecraft-fixed reference frame and a known reference frame. This description is 

accomplished by finding rotations between measured vectors and known quantities. 

Regarding the attitude sensors, there are many types of sensors available for observing the attitude 

and angular rates of a satellite. Common attitude sensors include Sun sensors, Earth sensors, 

magnetometers, star trackers, GPS and gyroscopes, and are described in Wertz (1978) and Sidi 

(1997). Gyroscopes are usually used also to measure the angular velocities of the spacecraft. 

Some form of attitude control is required to change the attitude of a spacecraft or keep it in a stable 

position. Three main types of attitude control are usually exploited in aerospace applications. These 

types of control include spin stabilization, three-axis control techniques, and passive control (Wertz 

1978; Sidi 1997; Wertz and Larson 1999). In this thesis an active three-axis control method is 

considered. 

Regarding the actuators for active attitude control, there are basically three main categories of 

actuators available to actively control a satellite. These are thrusters, wheels and magnetic coils. 

Three-axis control and stabilization wheels include reaction wheels, momentum wheels, and control 

moment gyros. Reactions wheels have a variable speed and a continuous and smooth control. 

Momentum wheels have a nonzero speed and provide angular momentum to the spacecraft. 

Momentum and reaction wheels are used in many spacecraft to allow an accurate pointing. Control 

moment gyros are fixed-speed gimballed wheels, but are not often used on small satellites because 

of their large weight. 

The Attitude Determination and Control System (ADCS) can be viewed as two separate 

subsystems: an Attitude Control System (ACS) (i.e. the control actuators and relative actuator 

sensors) and an Attitude Determination System (ADS) (i.e. the attitude and angular velocity 

sensors). 

The presence of four reaction wheels is considered in the ACS. The four reaction wheels are 

arranged in a tetrahedral configuration. This configuration allows to have an overall three-axis zero 

momentum bias even if the wheels run with a momentum bias. Moreover, the presence of a fourth 

redundant actuator allows to maintain the complete attitude controllability also in case of failure of 

one actuator. Finally, also the presence of flywheel spin rate sensors is assumed and the angular 

velocities of the actuator flywheels are assumed to be available also for diagnosis purpose. 

Both the control torques actuated by the reaction wheels and the satellite attitude and angular 

velocity measurements  and flywheel spin rate measurements can be affected by the occurrence of  

possible faults on the actuators and sensors.  
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The sensors assumed to be present on-board in the ADS are two star trackers, each providing a 

distinct attitude measurement (i.e., two distinct unit quaternions), and three distinct rate gyros, each 

of them providing a measurement of spacecraft angular rate about a specific body axis. The double 

hardware redundancy of the attitude sensors is exploited in the FDI scheme to correctly isolate an 

occurred fault affecting any of the attitude or angular rate sensors. It is worth observing that this 

double hardware redundancy anyway would be insufficient to correctly isolate a faulty attitude 

sensor directly by comparing the different attitude measurements by means of a voting scheme, but 

only to detect the occurrence of a possible fault. Therefore, in this thesis, the isolation of all faults is 

carried out by means of residual generators exploiting analytical redundancies. 

Multiple types of attitude determination sensors could be exploited, also in the context of sensor 

fusion, by combining different sensory data from several sources and resulting in information, 

which is more accurate, complete and dependable than it would be possible when these sources 

were used individually. However, in this thesis only star trackers and rate gyros are considered, 

measuring the spacecraft attitude and angular velocities respectively. 

 

2.6.1 Reaction Wheel 

Reaction wheels are effective active control elements. They are particularly good for variable spin 

rate control. Active control of spacecraft by using reaction wheels is a fast, flexible, precise way of 

attitude control and stabilization. On the other hand, it requires rapidly moving parts which implies 

problems of support and friction. In this dissertation, any effect of viscous and Coulomb friction is 

neglected and the reaction wheels are assumed to be ideal actuators.  

A reaction wheel is an electromechanical device composed of an electric motor that drives a rotor 

with significant inertia for the mass it has (i.e. a flywheel). The wheel can be accelerated (or 

decelerated) by the motor, which can be integrated in the wheel structure, and this acceleration is 

produced by a motor torque on the actuator wheel 

 

 w w wT I   

 

where wT  is the torque from the stator to the rotor of the wheel, wI  is the wheel inertia and w  is 

the angular acceleration produced by the motor. The torque on the wheel will generate a reactive 

torque, defined by Eq. (2.41), with opposite sign on the satellite body, which can be used to control 

the angular velocity of the satellite: 

 

 ctrl w w wT T I      (2.41) 

 

The applied motor torque is the same as the time derivative of the angular moment wh  of the wheel. 

Hence, for each reaction wheel, the following dynamic equation can be written: 

 

 w w w w ctrlh I T T     (2.42) 

 

and in a rotating body frame the total torque produced by a reaction wheel results to be 

 

 ,

b

b bw
w tot ib w

dh
T h

dt


 
   
 

 

 

This total torque includes also the gyroscopic effects of the coupling interaction between a spinning 

flywheel and the rotating satellite. Recalling the general Euler's moment equation (Wertz 1978; Sidi 

1997) defined as 
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 tot tot toth T h    

 

where 
1

N

tot i i

i

h I


  is the summation over all (N) parts within the satellite, the dynamic equations 

of Eq. (2.22) have to be written by considering also the contributions of the reaction wheels to the 

total angular momentum. Hence, with , , ,

Tb
w x w y w zw

h h h   h  representing the total angular 

momentum of the actuators seen in the satellite body coordinate system, the dynamic equations of 

Eq. (2.26) are rewritten as 

 

 ( )b b b b b

sat ib ib sat ib w ctrl ext     I ω ω I ω h T T  (2.43) 

 

or, with a simpler notation 

 

 ( )( )b b b b b

sat ib ib sat ib w ctrl extS    I ω ω I ω h T T  (2.44) 

 

where the cross product is written as a matrix operation using the skew-symmetric matrix  
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and the control torques about the centre of mass of the satellite actuated by reaction wheels and seen 

in the satellite body coordinate system are given as 

 

 b b

ctrl w T h  (2.45) 

 

which gives the rate of change of the total angular momentum from the wheels. Solving the Eq. 

(2.43) for b

ibω  leads to 
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 (2.46) 

 

Moreover, since in general the spinning axes of a reaction wheel could be not aligned with the 

satellite body coordinate system axes, the corresponding control torque of Eq. (2.45) seen in the 

satellite body frame must be defined by considering the actual (fixed) orientation of the actuator. 

The angular momentum vector of a reaction wheel, seen in the satellite body frame, is then needed, 

using a rotation from wheel coordinates to satellite body coordinates. The components of this 

angular momentum in the satellite body coordinate system correspond to the projection in the 

satellite body coordinate system of the angular momentum of the wheel along its axis of rotation. 

The projection is a column vector defined as 
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If the wheel assembly consists of several wheels, the directional cosines of the projections of each 

wheel are the columns of the configuration (direction) matrix for the wheels, such that 
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Abbreviated to vector form, this is 

 

 b

w w wh A h  (2.47) 

 

The matrix wA  has three rows and a number of columns equal to the number of reaction wheels in 

the satellite, in this case equal to four. The four reaction wheels are arranged in a tetrahedral 

configuration, as shown in Fig. 2.5. 

 

 
Figure 2.5 – Tetrahedral configuration of the satellite reaction wheels. 

 

This configuration allows having an overall three-axis zero momentum bias even if the wheels run 

with a momentum bias. Moreover, the presence of a fourth redundant actuator allows maintaining 

the complete attitude controllability on the three axes also in case of failure of one actuator. The 

configuration matrix of the actuators considered in this thesis is given by 

 

 

1 3 1 3 1 3 1 3

2 3 2 3 0 0

0 0 2 3 2 3

w

  
 

  
 

  

A  (2.48) 

 

Therefore, the overall control torques about the centre of mass of the satellite actuated by the four 

considered reaction wheels in the selected configuration and seen in the satellite body coordinate 

system are defined as 
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Finally, since sensors providing measurements of the spin rates of the four flywheels are assumed to 

be present in the actuator subsystems, thus the values of ,1 ,2 ,3 ,4

T

w w w ww
      ω  and of the 

angular momentums ,1 ,2 ,3 ,4

T

w w w ww w w
h h h h    h I ω  are available for diagnosis purpose, with 

the moment of inertia wI  of each wheel known. These actuator sensors could consist, for example, 

in incremental (relative) optical encoders mounted on the spin axes of the reaction wheels. 

Optical encoders consist of a spinning disc made of glass or plastic with transparent and opaque 

areas. This disk is connected with the spinning shaft or wheel. An absolute optical encoder has 

multiple code rings with various binary weightings which provide a data word representing the 

absolute position of the encoder within one revolution. A light source and photo detector array reads 

the optical pattern that results from the disc position at any one time.  

Differently, an incremental encoder works by providing two pulse outputs, called quadrature 

outputs due to their wave forms being 90 degrees out of phase, which provide no usable position 

information in their own right. Rather, an incremental rotary encoder provides cyclical outputs 

(only) when the encoder is rotated. It reports an incremental change in position of the encoder to an 

external counting electronics performing a pulse counting.  

The pulse signals are decoded to produce a count up pulse or a count down pulse. The rate of 

rotation can be measured by determining the time between pulses provided by the encoder. Hence, 

the output of incremental encoders provides information about the motion of the shaft, which is 

typically further processed by a controlling device, such as a microprocessor or microcontroller, 

into information such as speed, sense of direction and also position. Rotary encoders with a single 

output (i.e. pulsers) cannot be used to sense direction of motion. 

The sensor measurement can be modelled as the true flywheel spin rate with added noise. The 

measured spin rate wheelω  can be modelled as 

 

 ,wheel w w n ω ω ω  (2.50) 

 

where wω  is the actual flywheel spin rate, and ,w nω  is the additive measurement noise, modelled in 

this thesis by a Gaussian white noise with variance 

 

 
, ,

22

, ,
   for 1,2,3,4

w n iw n i
E i      

 

2.6.2 Star Tracker 

A star tracker is a light sensitive precision instrument, which determines the attitude of a satellite by 

observing stars with high precision and comparing with a library of constellations to determine the 

attitude of a spacecraft. The two major elements in a star tracker are a digital camera and processing 

unit. The star tracker observes the stars with the camera, and compares these observations (i.e. star 

light intensity and the relative positions) with an on-board star catalogue. This gives the angles 

between the observed star and a reference frame in the satellite. If only one star (or clusters of stars) 

is observed, this will only give an accurate information about the attitude in two dimensions. By 

observing at least two different remote stars (or cluster of stars) the star tracker can determine a 

well-defined three-axis attitude representation in the inertial reference frame. Star trackers are 

http://en.wikipedia.org/wiki/Data_word
http://en.wikipedia.org/wiki/Microprocessor
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accurate and work at any point in an orbit. The accuracy of the star tracker depends on the number 

of stars observed, the star catalogue used, the quality of the optic and the resolution in the digital 

camera. A typical star sensor used in space applications has an accuracy of a few arcseconds (fine 

pointing information). However, high accuracy star trackers are often massive, complex, and 

expensive. Searching the library of constellations is time-consuming, so for high accuracy and rapid 

response, star trackers are often used along with gyroscopes. 

The attitude sensor measurement can be modelled as the true attitude with added noise. Because of 

the required unity of the measured quaternion starq , a sensor model with additive noise is not 

directly applicable, and the star sensor can be modelled as 

 

 star n q q q  (2.51) 

 

where q  is the actual attitude, and nq  is the star sensor measurement noise, represented as Euler 

parameters. Let’s consider, for example, a generic attitude sensor with an assumed accuracy of 1 

arcsecond around all axis. Since the sensor model produces the attitude as a quaternion, it is 

convenient to represent the accuracy in the magnitude of the quaternion. By regarding the 

individual axis angles accuracies as an composite rotation, the accuracies may be represented as the 

unit quaternion aq  as 
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 (2.52) 

 

By using Eq. (2.52), the star sensor measurement noise can be modelled as 
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where the vector part nq  of the noise quaternion is modelled in this thesis by Gaussian white noise 

with variance 
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However, when using the measurement in attitude determination, it could be convenient to model 

the measurement noise as additive. Hence, the additive measurement noise starv  can be represented 

as 

 star n  v q q q  (2.53) 

 

It can be seen that, with the formulation of the attitude sensor model of Eq. (2.53), the measurement 

noise becomes scaled. The noise model and noise covariance can be represented on component 

form as 
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Concerning the attitude sensor faults, it is worth noting that, since each attitude sensor provides a 

complete quaternion vector measurement, in case of attitude sensor fault all the components of the 

measured quaternion vector could present differences from their fault-free values depending on the 

fault characteristics and actual spacecraft attitude. For this reason, it is not possible to consider a 

possible fault affecting an attitude sensor as a scalar fault term affecting a single quaternion vector 

component. In general, in case of attitude sensor fault, all the quaternion vector components can be 

affected by the occurred sensor fault. 

In fact, similarly to the model of the noisy quaternion vector described above, the attitude sensor 

fault can be modelled as the true attitude quaternion vector with additional fault terms. Because of 

the required unity of the measured quaternion starq , a sensor model with additive quaternion fault is 

not directly applicable, and the faulty output of the star sensor can be modelled as 

 

 star true f q q q  (2.54) 

 

where trueq  is the actual attitude, and fq  is the sensor fault vector, represented as Euler parameters. 

Hence, the equivalent additive physical fault 
starqF  can be represented as 

 

 
star star f star  qF q q q  (2.55) 

 

Therefore, considering both the presence of the measurement noise and sensor fault, the overall 

value of the measured quaternion is given by 

 

 ( )
measuredstar true f n  q q q q   (2.56) 

 

As already stated, since in this thesis a LEO Earth-pointing satellite is considered, it could be 

convenient to define the satellite attitude as the rotation between the body-fixed reference frame and 

the orbital reference frame. Moreover, Eqs. (2.38) and (2.40) of the external disturbance torques 

explicitly exploit the spacecraft attitude values with respect to the orbital reference frame. 

However, it is worth noting that star trackers actually provide attitude measurements with respect to 

the inertial reference frame of the fixed stars. Hence, a relation to convert these inertial 

measurements into corresponding attitude measurements with respect to the orbital reference frame 

is needed. Obviously, given an inertial spacecraft attitude, the corresponding orbital attitude 

depends also on the instantaneous orientation of the LVLH orbital reference frame in the inertial 

reference frame. If the satellite position along the orbit path is assumed to be known, it can be used 

to derive the orientation of the orbital reference frame with respect to the inertial reference frame, 

and consequently the spacecraft attitude with respect to the orbital frame. 

Considering an equatorial circular prograde (counter-clockwise) orbit, the satellite position along 

the orbit path can be derived simply by integrating the angular velocity o  of the satellite orbit with 

an assumed known initial orientation condition of the orbital reference frame with respect to the 

inertial one. At the initial time of the simulation, the orbital reference frame is assumed to have the 

ox -axis aligned with the inertial ix -axis, i.e. pointing in the vernal equinox direction. The oz -axis is 

assumed to be aligned with the inertial iy -axis, and the oy -axis completing the right-hand system is 
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assumed to be pointing in the opposite direction of the inertial iz -axis, i.e. in the direction 

antinormal to the orbital plane in the inertial reference frame. Hence, the orbital frame results to be 

initially rotated of / 2o    rad about the ix -axis. Therefore, the orbital frame orientation at each 

instant of simulation can be defined as 
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representing the combination of two consecutive rotations / 2o    rad about the ix -axis and 

o  rad about the rotated oy -axis, where the orbit position of the satellite in the inertial reference 

frame is defined by a rotation angle about the iz -axis given by 
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and, given attitude values with respect to the inertial frame, the spacecraft attitude with respect to 

the orbital frame can be derived by the relation 
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The dynamic and kinematic equations actually exploited for the design of the FDI/FDD systems are 

given by Eqs. (2.46) and (2.30). 

 

2.6.3 Rate Gyro 

A rate gyro is a type of gyroscope, which rather than indicating direction, indicates the rate of 

change of angle with time. If a gyro has only one gimbal ring, with consequently only one plane of 

freedom, it can be adapted for use as a rate gyro to measure a rate of angular movement. 

In general, a gyroscope is a device for measuring or maintaining orientation, based on the principles 

of angular momentum. Mechanical gyroscopes typically comprise a spinning wheel or disc in which 

the axle is free to assume any orientation. 

When mounted in (outer and inner) gimbals, which minimize external torque, the orientation of the 

spin axis remains nearly fixed, regardless of the mounting platform's motion. Therefore, they can be 

used to sense or measure the pitch, roll and yaw attitude angles in a spacecraft or aircraft. 

Gyroscopes based on other operating principles also exist, such as vibrating structure gyroscopes 

(including MEMS gyros), solid-state ring lasers, fiber optic gyroscopes, and the extremely sensitive 

quantum gyroscopes. These types of gyros operate on the principle of the Sagnac effect based on 

the interference of light which has passed through a coil of optical fiber or counter-propagating 

laser beams. 
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Rate gyros are used to measure the rates of rotation of the spacecraft around the sensor axes. If the 

sensor is aligned with a selected body-fixed frame, it provides measurements of the satellite angular 

rate around the body axis with respect the inertial reference frame. 

Gyroscopes can also determine the attitude by measuring and integrating the rate of rotation of the 

spacecraft. They are located internal to the spacecraft and work at all points in an orbit. Gyroscopes 

have a high accuracy for limited time intervals. Some disadvantages exist with gyroscopes. Since 

they measure a change instead of absolute attitude, gyroscopes must be used along with other 

attitude hardware to obtain full attitude measurements. They also are subject to drift, and since they 

have moving parts, there is more complexity. In this thesis, it is assumed that the three considered 

rate gyros provide only angular velocity information and not attitude information. 

In this case, the sensor measurement can be modelled as the true angular velocity with added noise. 

The measured angular velocity gyroω  can be modelled as 

 

 gyro n ω ω ω  (2.58) 

 

where ω  is the actual angular velocity, and nω  is the additive measurement noise, modelled in this 

thesis by a Gaussian white noise with variance 

 

 
,

22

,
   for 1,2,3

n in i
E i      

 

A sensor model with additive fault is also directly applicable for this sensor, and the faulty output of 

the rate gyro sensor can be modelled as 

 

 gyro true f ω ω ω  (2.59) 

 

where trueω  is the actual attitude, and 
gyrof  ωω F  is the sensor fault vector. Therefore, considering 

both the presence of the measurement noise and sensor fault, the overall value of the measured 

angular velocity vector is given by 

 

 
measuredgyro true f n  ω ω ω ω   (2.60) 
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3 MODEL-BASED FAULT DETECTION AND ISOLATION 

 

This chapter provides an overview of the FDI problem, together with the general description of the 

residual generation method and fault detection and isolation scheme. An exploited method for 

sensor and actuator fault modelling and the NLGA for affine nonlinear systems, which is exploited 

for disturbance decoupling and fault detection, isolation and estimation, are illustrated as well. 

Finally, an incremental procedure for the design of the residual filters is described considering to 

have modelled all the fault inputs in an affine form. This chapter aims to focus mainly on the FDI 

problem. However, many of the described aspects are in common with the FDD problem and the 

exploited methods can be used also for FDD.   

 

3.1 General Overview 

All the terminologies defined in this dissertation are based on information from the International 

Federation Automatic Control (IFAC) SAFEPROCESS Technical Committee and associate the 

updated literatures listed herein (Isermann and Ballé 1997; Chen and Patton 1999; Isermann 2006). 

A fault is defined as an unexpected  change of system function or, with an alternative definition, as 

a non permitted deviation of a characteristic property from the acceptable/usual/standard condition, 

which leads to the inability of the system to fulfil the intended purpose (Isermann 1984). However, 

a fault may not represent a physical failure or breakdown. Such a fault or malfunction prevents or 

disturbs the normal operation of an automatic system, thus causing an unacceptable degradation of 

the performance of the system or even leading to dangerous situations. Usually, the term fault 

denotes a malfunction, which may be tolerable at its present stage, whereas the term failure 

suggests a complete breakdown of a system component or function, i.e. a permanent interruption of 

a system's ability to perform a required function under specified operating conditions. A fault must 

be diagnosed as early as possible even if it is tolerable at its early stage, in order to prevent any 

serious consequences. 

A monitoring system which is used to detect faults and diagnose their location and significance in a 

system is called a fault diagnosis system (Frank 1990; Chen and Patton 1999). Such a system 

normally performs the following tasks: 

 

1. Fault detection: a binary decision is made, either that something has gone wrong or that 

everything is fine; 

2. Fault isolation: the location of the fault is determined, i.e. which sensor, actuator or system 

component has become faulty; 

3. Fault identification and fault estimation: the size and type of the fault is estimated. 

 

Fault detection represents the most important task for any practical system and isolation is almost 

equally important. On the other hand, fault identification may not be essential, whilst undoubtedly 

helpful, if no control reconfiguration and fault accommodation actions are involved. Hence, a fault 

diagnosis system is usually built to perform one or more functionalities as shown in Fig. 3.1. 
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Figure 3.1 - Topological illustration of fault diagnosis functional relationships (Sun 2013). 

 

The difference between the roles of Fault Detection and Isolation (FDI) and Fault Detection and 

Diagnosis (FDD) must be clear in order to avoid any confusion, since the terms isolation and 

identification share the same initials but correspond to different functional cases. FDI aims to locate 

and isolate the faulty components in the system. FDD, however, is intended to know the detailed 

attributes of detected faults, e.g. faults severity and the fault identification, i.e. the determination of 

fault location and strength, is required in FDD. Fault Estimation (FE) is functionally similar as Fault 

Identification (FI) but focuses on reconstruction of the fault signal using estimation-based methods 

(Ding 2013). In this chapter, the Fault Detection and Isolation (FDI) tasks are discussed, whilst the 

Fault Estimation (FE) will be explicitly discussed in Chapter 5. 

In practice, the most frequently used diagnosis method consists in monitoring the level (or trend) of 

a particular signal, and taking action when it reaches a given threshold value. However, even if this 

method of limit checking is simple to implement, it has serious drawbacks. Firstly, there is the 

possibility of false alarms in the event of noise, input variations and change of operating point. 

Secondly, a single fault could cause many system signals to exceed their limits and appear as 

multiple faults, making difficult to perform fault isolation. The use of consistency checking for a 

number of system signals can eliminate these problems and enhance the detection and isolation or 

fault diagnosis capability of a generic automated system. However, a mathematical model providing 

functional relationships among different system signals is required. 

In order to evaluate the inconsistency, some form of redundancy is required. A traditional approach 

to fault diagnosis in the wider application context is based on hardware (or physical/parallel) 

redundancy methods, which exploit multiple lanes of sensors, actuators, computers and software to 

measure and/or control a particular variable. Usually, a voting scheme is exploited in the hardware 

redundant system to decide if and when a fault has occurred and its likely location amongst 

redundant system components. However, the major problem of this approach consists in the 

required extra equipment, maintenance cost and additional space required to accommodate the 

hardware. In order to improve the system reliability but limit the cost, analytical (functional) 

redundancy can be exploited, using dissimilar measured values together to cross-check each other, 

rather than replicating each hardware individually. In this case, redundant analytical (or functional) 

relationships between various measured variables of the monitored process (e.g. inputs/outputs, 

outputs/outputs, inputs/inputs) are used (Beard 1971). No additional hardware components or 

sensors are required to realize the FDI algorithm, which can be implemented via software. A 

comparison between the analytical and hardware redundancy concepts is shown in Fig. 3.2. 
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Figure 3.2 - Comparison between FDI hardware redundancy and open-loop analytical (software) redundancy 

concepts (Sun 2013). 

 

No additional hardware faults are introduced into an analytical redundant scheme, because no extra 

hardware is required. Hence, analytical redundancy is potentially more reliable than hardware 

redundancy. In analytical redundancy schemes, the resulting difference generated from the 

consistency checking of different variables is called as a residual signal. This signal should be zero-

valued when the system is normal, and should diverge from zero when a fault occurs in the system. 

This property of the residual is used in fault diagnosis to determine whether or not faults have 

occurred. Analytical redundancy exploits a mathematical model of the monitored process, and is 

therefore referred as model-based approach. Normally, consistency checking is achieved through a 

comparison between a measured signal and its estimation, which is generated by an a priori known 

mathematical model of the considered system. The residual (fault indicator, diagnostic signal) gives 

the difference between these two signals, i.e. the measured and estimated ones (Frank 1990; Chen 

and Patton 1999). 

In general, many research studies have been devoted to the subject of FDI/FDD in which a 

mathematical model is used to realise the FDI/FDD function in real-time. A general overview of the 

FDD problem will be given with more details in Chapter 5. Several design methodologies for 

model-based FDI/FDD have been studied, which are substantially based on explicit and quantitative 

methods, i.e. observer-based methods, parameter estimation, parity space, as shown in Fig. 3.3 and 

introduced as follows:  

 

Observer based FDI/FDD: This technique has been developed under the framework of the well-

studied advanced control theory. This is regarded as an effective method for designing observers 

using efficient and reliable algorithms for data processing to reconstruct system variables. Beard 

(1971) and Clark (1978) started the pioneer work of this approach, and systematic design approach 

can be found in Chen and Patton (1999) and Ding (2013). In this approach, an observer is used to 

estimate the actual system outputs. The residuals/FE signals are then constructed via suitable 

functions of the output estimation error between the measured and estimated outputs. Explicit 

model-based FDI/FDD approaches are the most preferred and most studied (Willsky 1976; Clark 

1978; Isermann and Ballé 1997; Chen and Patton 1999; Patton et al. 2000; Isermann 2011; Ding 

2013). 

 

Parity equation based FDI/FDD: A straightforward model-based method of FDI is to use an 

input-output model with fixed structure and run it in parallel with the process, thereby forming an 

output error. In this approach, the residual signals are generated based upon consistency checking 
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(or parity checking) on system input and output data over a given time window (Chow and Willsky 

1984; Gertler 1998). Actually, once the design objectives are determined, the parity equation and 

observer based designs have some correspondence or equivalence under certain conditions, as 

residual generation methods (Gertler 1991; Patton and Chen 1991, 1994; Patton 1997a, 1997b; 

Hwang et al. 2010; Ding 2013). 

 

Parameter estimation based FDI/FDD: This approach is investigated in terms of system 

identification techniques (Isermann 1984, 2011; Isermann and Ballé 1997). The faults are reflected 

in the physical system parameters and then the idea of the fault detection is based on the 

comparison between online estimation of system parameters and the parameters of the fault-free 

reference model. In most practical cases, the process parameters are only partially known or are not 

known at all. If the basic model structure of the process is known, the process parameters can be 

determined with parameter estimation methods by measuring input and output signals. Parameters 

can be identified by non-recursive or recursive methods or numerical optimisation methods. As the 

system parameters are obtained, fault estimation can be achieved in some degree. 

 

 
Figure 3.3 - Classification of explicit and quantitative model-based FDI/FDD methods (Shi 2013). 

 

Since model-based FDI makes use of mathematical models of the supervised systems, accurate 

models are needed. However, a perfectly accurate and complete mathematical model of a physical 

system is never available. In fact, system parameters may vary with time in an uncertain manner, 

and characteristics of disturbances and noise are generally unknown, and thus not accurately 

modelled. Hence, there is always a mismatch between the actual process and its mathematical 

model even in case of no faults. Such discrepancies cause difficulties in FDI applications, in 

particular, since they act as sources of possible false alarms and missed alarms potentially 

corrupting the FDI system performance. The effect of modelling uncertainties, disturbances and 

noise is therefore the most crucial point in the model–based FDI concept and the solution to this 

problem is the key for its practical applicability. 

To overcome these problems, a model-based FDI scheme has to be made robust, i.e. insensitive or 

even invariant to modelling uncertainty, whilst without reducing the sensitivity to faults. In fact, a 

simple reduction of the sensitivity to modelling uncertainty sometimes does not solve the problem 

since the sensitivity reduction may be associated with a reduction of the sensitivity to faults (Frank 

1990; Gertler 1998; Chen and Patton 1999). Hence, a more meaningful formulation of the FDI 

problem is to increase insensitivity to modelling uncertainty in order to provide increasing fault 

sensitivity. Furthermore, the robustness as well as the sensitivity properties must be independent of 

the particular fault and disturbance mode. Using proper disturbance decoupling methods, it is 

possible to design residual signals which are not sensitive to uncertainties. In Section 3.6 it will be 

shown that, provided certain conditions can be met, complete decoupling of the residuals from 

disturbances can be achieved, whilst the sensitivity of the residual to faults is maintained. As the 

faults are also modelled in the form of external signals, this method additionally provides tools for 

the purpose of fault isolation. Fault isolation requires the decoupling of the effects of different faults 
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on the residual and this, in turn, allows for decisions on which fault or faults out of a given set of 

possible faults has actually occurred. 

Faults are detected by setting a (fixed or variable) threshold on a residual quantity generated from 

the difference between real measurements and estimates of them obtained using the mathematical 

model. A number of residual can be designed with each having special sensitivity to individual 

faults (or limited sets of faults) occurring in different locations in the system. The subsequent 

analysis of each residual, once the corresponding threshold is exceeded, then leads to fault isolation. 

The conceptual structure of a model-based fault diagnosis system consists of two main stages of 

residual generation and decision making, as firstly suggested in (Chow and Willsky 1980) and 

shown in Fig. 3.4. These two main stages are described as follows: 

 

1. Residual generation: A diagnostic signal (residual) indicating the occurrence of a fault is 

generated using available input and output information from the monitored system. This 

auxiliary signal is designed to reflect the onset of a possible fault in the analysed system and 

the inconsistency between the actual and expected behaviour of the system, and should be 

normally zero or close to zero when no fault is present. When the fault occurs the residual 

becomes distinguishably different from zero. This means that the residual is 

characteristically independent of system inputs and outputs in ideal conditions. The 

algorithm exploited to generate residuals is called a residual generator. Thus, residual 

generation is the procedure for extracting fault symptoms from the system, with the fault 

symptoms represented by the residual signal. The residual should carry only fault 

information, with a loss of fault information as small as possible; 

2. Decision-making: The residuals are analysed in order to determine the likelihood of faults, 

and a decision rule is then applied to determine if any fault is occurred. A decision process 

may consist of a simple threshold test on the instantaneous values or moving averages of the 

residuals, or methods of statistical decision theory. 

 

 
Figure 3.4 - Schematic description of model-based approach to FDI (Sun 2013). 

 

3.2 Residual Generators for Model-based FDI 

In practice, the most frequently used FDI approach consists in using information known a priori 

about the characteristics of certain signals. However, in this way, it is necessary to have a priori 

information about the characteristics of the signals and it is not possible to avoid dependence of 

these characteristics on operating states of the system, which are not known a priori and can change 

beforehand. In order to eliminate the shortcomings of the traditional methods, the modern model-

based approaches have introduced residuals, which are independent of the system operating state 
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and respond to faults in characteristic manners. In essence, residuals are quantities that represent the 

inconsistency between the actual system variables and the mathematical model. Based on the 

mathematical model, many invariant relations (dynamic or static) among different system variables 

can be derived, and any violation of these relations can be used as residuals (Chen and Patton 

1999). 

Therefore, the residual generation can be interpreted in terms of redundant signal structure, as 

shown in Fig. 3.5. In this structure, the system 1( , )F u y  generates an auxiliary (redundant) signal 

( )z t  which, together with ( )y t  generate the residual ( )r t  which satisfy the following relations in 

the fault-free case: 

 

 
1

2

( ) ( ( ), ( ))

( ) ( ( ), ( )) 0

z t F y t u t

r t F y t z t




 
 (3.1) 

 

for the fault-free case. When any fault occurs in system (fault-case), this invariant relation is 

violated and the residual diverge from zero. The simplest approach to residual generation is the use 

of system duplication, i.e. the system 1( ) ( )z t F u  is made identical to the original system model 

and has the same input signal as the system. In this case, the signal y  would not be required in the 

system block 1( )F u , which is then simply a system simulator (simulator-based FDI). The signal z  

is the simulated output of the system, and the residual is the difference between z  and y . The 

advantage of this method is its simplicity but, as a disadvantage, the stability of the simulator 

cannot be guaranteed when the system being monitored is unstable, as a consequence of the open-

loop system model in FDI (although it is under feedback control). 

 

 
Figure 3.5 - Redundant signal structure in residual generation. 

 

A direct extension to the simulator-based residual generation consists in replacing the simulator by 

an asymptotically stable output estimator (observer-based FDI), which requires both system input 

and output. In this case, the system 1( , )F u y  uses both signal u  and y  to generate an estimation of 

the output, and the system 2( , )F z y  can be defined as 2( , ) ( )F z y K y z   with K  as a static (or 

dynamic) weighting matrix of the estimation errors. 

From Fig. 3.6 it can be seen that the system model required in model-based FDI is the open-loop 

system model although the considered system is in the control loop. This is because the input and 

output information required in model-based FDI is related to the open-loop system. Hence, it is not 

necessary to consider the controller in the design of a fault diagnosis scheme. 

This is consistent with the separation principle in control theory because fault diagnosis can be 

broadly treated as an observation problem. Once the input to the actuators is available, the fault 

diagnosis problem is the same no matter how the system is working in open-loop or in closed-loop. 

When the actual input ( )u t  to the actuator is not available, the reference command ( )cu t  is used in 

FDI. Hence, the model involved is the relationship between the reference command ( )cu t  and the 

measured output ( )y t , i.e. the closed-loop model. In such cases, the controller plays an important 



3 MODEL-BASED FAULT DETECTION AND ISOLATION 43 

 

role in the design of diagnostic schemes. A robust controller may desensitize fault effects and make 

the diagnosis very difficult. 

 

 
Figure 3.6 - Fault diagnosis and control loop. 

 

A general fault ( )f t  can be detected by comparing the residual evaluation function ( ( ))J t t  with a 

(fixed or variable) threshold function ( )T t  according to the following test (Chen and Patton 1999): 

 

 
( ( )) ( )   for   ( ) 0

( ( )) ( )   for   ( ) 0

J r t T t f t

J r t T t f t

 


 
 (3.2) 

 

If the test is positive (i.e. the threshold is exceeded by the residual evaluation function) it can be 

hypothesized that a fault is likely. This test works especially well with fixed thresholds T  if the 

process operates approximately in steady-state and it reacts after relatively large feature, i.e. after 

either a large sudden or a long-lasting gradually increasing fault. These thresholds can be defined in 

many ways, on the basis of the chosen residual evaluation functions. In practice, if the residual 

signal is represented by a stochastic variable ( )r t , e.g. due to the presence of measurement noise, 

mean value and variance are computed as follows: 
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where r  and 2

r  are the normal values for the mean and variance of the fault–free residual, 

respectively. N  is the number of samples of the vector ( )r t . Therefore, the threshold test for FDI 

of Eq. (3.2) is rewritten as 

 

 
( )                    for   ( ) 0

( )    or   ( )     for   ( ) 0

r r

r r

r r t r f t

r t r r t r f t

 

 

    

    
 (3.3) 

 

i.e. the comparison of ( )r t  with respect to its statistical normal values. In order to separate normal 

from faulty behaviour, the tolerance parameter   (normally 3  ) is selected and properly tuned. 

Hence, by a proper choice of the parameter  , a good trade-off can be achieved between the 

maximisation of fault detection probability and the minimisation of false alarm probability. In 

practice, the threshold values depend on the residual error amount due to the measurements errors, 

the model approximations and the disturbance signals that are not completely decoupled. 
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3.3 Fault Isolability and Structured Residual Set 

The successful detection of an occurred fault is followed by the fault isolation procedure, which will 

distinguish (isolate) a particular fault from others. Whilst a single residual is sufficient to detect the 

occurrence of a fault, a set (or vector) of residuals is usually required for fault isolation. If a fault is 

distinguishable from other faults by exploiting a residual set, it can be said that this fault is isolable 

using this residual set. If the residual set can isolate all faults, it can be said that the residual set has 

the required isolability property (Chen and Patton 1999). 

One approach to fulfil the fault isolation task consists in designing a set of structured residuals. 

Each residual in the set is designed to be sensitive to a subset of faults, whilst remaining insensitive 

to the remaining faults. The residual set, which has the required sensitivity to specific faults and 

insensitivity to other faults, is known as structured residual set (Gertler 1991; Chen and Patton 

1999). The design procedure consists of two steps, the first step is to specify the sensitivity and 

insensitivity relationships between residuals and faults according to the assigned isolation task, and 

the second is to design a set of residual generators according to the desired sensitivity and 

insensitivity relationships. The exploitation of structured residual sets allows to simplify the 

diagnostic analysis to determining which of the residuals are non-zero. 

The threshold test may be performed separately for each residual, yielding a Boolean decision table, 

and the isolation task can be fulfilled using this table and a proper decision logic. 

In general, if all the possible faults ( ),   1,...,i ff t i n  are to be isolated, a residual set can be 

designed according to the following fault sensitivity conditions: 

 

 ( ) ( ( )),   1,...,i i fr t R f t i n   (3.4) 

 

where R  denotes a functional relation. This is called as a dedicated residual set, and it is shown in 

Fig. 3.7. 

 

 
Figure 3.7 - Structured dedicated residual set for three distinct faults. 

 

A simple threshold logic can be used to make decision about the occurrence of a specific fault by 

the logic decision according to 

 

 ( ) ( ) 0,   1,2,...,i i i fr t T f t i n     (3.5) 

 

where ,   1,...,i fT i n  are selected (fixed or adaptive) thresholds. This isolable residual structure is 

very simple and all faults can be detected simultaneously, however it is difficult to design in 

practice. Even when this structured residual set can be designed, there is normally no design 

freedom left to achieve other desirable performances such as robustness against modelling errors 
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(Wunnenberg 1990). A most commonly used and better scheme in designing the residual set is to 

make each residual sensitive to all but one fault, i.e. 
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 (3.6) 

 

This is defined as a generalized residual set, and it is shown in Fig. 3.8. If all residuals of the 

generalized residual set are generated using a bank of observers (observer-based residual 

generators), the structure is known as the generalized observer scheme (Frank 1987; Patton et al. 

1989). 

 

 
Figure 3.8 - Structured generalized residual set for three distinct faults. 

 

The isolation task can again be performed using simple threshold testing according to the following 

logic scheme 
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i i

i f
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 (3.7) 

 

3.4 Fault Classification 

In general, faults are events that can take place in different parts of the controlled system. In the 

FTC literature faults are usually classified according to different characteristics, i.e. faults location, 

fault type and time dependency. They can be classified according to their location of occurrence in 

the system, as also shown in Fig. 3.9, as follows (Edwards et al. 2010): 
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Figure 3.9 - Actuator fault, sensor fault and component faults (Sun 2013). 

 

Actuator faults: they represent partial or total (complete) loss of control action effectiveness. An 

example of a completely lost actuator is a stuck actuator that produces no (controllable) actuation 

regardless of the input applied to it. Total actuator faults (i.e. failures) can occur, for instance, as a 

result of a breakage (the sticking of mechanical components or damage in the drive system e.g. due 

to bearings, gear wear or friction, caused by changes from the design characteristics or complete 

failure), cut or burned wiring, short circuits, or the presence of a foreign body in the actuator. 

Partially failed actuators produce only a part of the normal (i.e. under nominal operating conditions) 

actuation. This can result, for example, from jamming or oscillation, increased resistance or a fall in 

the supply voltage. Duplicating the actuators in the system in order to achieve increased fault-

tolerance is often not an option due to their high prices and large size and mass. 

 

This type of faults includes the following categories: 

 

1. Lock-in-place: the actuator is stuck in a certain position/operating condition at an unknown 

time ft  and does not respond to subsequent commands: 

 

 ( ) ( ) const,   f fu t u t t t     

 

2. Failure: the actuator produces zero force and torque, i.e. it becomes ineffective: 

 

 ( ) 0,   fu t t t    

 

3. Loss of effectiveness: a decrease in the actuator gain that results in an actuated control input 

that is smaller than the commanded one: 

 

 ( ) ( ),   0 1,   c fu t k u t k t t       

 

      where ( )cu t  stands for the required actuation, i.e. the commanded control input. 

 

Sensor faults: these faults represent incorrect readings from the sensors that the system is equipped 

with. Sensor faults can also be subdivided into partial and total. Total sensor faults (i.e. failures) 

produce information that is not related to the value of the measured physical parameter. They can be 

due to broken communication wires (physical breakdown in a control loop) and loss of power. 

Partial sensor faults produce readings that are related to the measured signal in such a way that 

useful information could still be retrieved. This can, for instance, be an inaccurate calibration, a 

gain reduction (scaling error) so that a scaled version of the signal is measured, a biased 

measurement resulting in a (usually constant) offset in the reading, or increased noise (disturbance) 

in sensors. Due to their smaller sizes sensors can be duplicated in the system to increase fault 

tolerance. For instance, by using three sensors to measure the same variable one may consider it 

reliable enough to compare the readings from the sensors to detect faults in (one and only one) of 
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them. The so-called majority voting method can then be used to pinpoint the faulty sensor. This 

approach usually implies significant increases in the related costs. 

 

This type of faults includes the following categories: 

 

1. Lock-in-place: the sensor output is stuck at a certain value at an unknown time ft  and does 

not provide the current value of the measured variable: 

 

 ( ) ( ) const,   f fy t y t t t     

 

2. Failure: the sensor produces zero output, i.e. it becomes ineffective: 

 

 ( ) 0,   fy t t t    

 

3. Loss of effectiveness: a degradation of the measurement accuracy of the sensor: 

 

 ( ) ( ),   0 1,   m fy t k y t k t t       

 

      where ( )truey t  stands for the actual value of the measured variable. 

 

Component faults: these are faults in the components of the plant itself, i.e. all faults that cannot be 

categorized as sensor or actuator faults will be referred to as component faults. These faults 

represent dynamical variations in the physical parameters of the system, e.g. mass, aerodynamic 

coefficients, damping constant, etc., that are often due to structural damage. They often result in a 

change in the dynamical behaviour of the controlled system. Due to their diversity, component 

faults cover a very wide class of (unanticipated) situations, and as such are the most difficult ones to 

deal with. In this thesis, component faults are not considered, and the proposed fault diagnosis and 

fault tolerant control schemes deals only with actuator and sensor faults in a spacecraft attitude 

control system. 

 

Additionally, faults can be also classified according to their time dependency as abrupt, incipient 

and intermittent, as shown in Fig. 3.10 (Isermann and Ballé 1997; Edwards et al. 2010). 

 

 
Figure 3.10 - Abrupt fault, incipient fault and intermittent fault (Sun 2013). 

 

Abrupt faults: they occur instantaneously often as a result of hardware damage. These faults 

typically can be modelled as stepwise signals and can be represented by a sudden change in some 

actuator or sensor characteristic. Abrupt faults behave as variations that are faster than the nominal 

system dynamics, having a significant impact on the controlled system performance and/or stability. 

The effects of abrupt faults can be severe and hence the faults need to be detected and isolated 

quickly before they have an effect on system function and stability. However, they are relatively 

easy to diagnose. 
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Incipient faults: they represent slow parametric changes, often as a result of aging. They can be 

modelled by using ramp signals typically and represents an unexpected drift of the monitored 

signal. In contrast to an abrupt fault, an incipient fault (also known as a soft fault) has a very small 

but possibly slowly developing effect on the system and is very hard to detect and hence also to 

isolate. The incipient fault may not lead rapidly to serious consequence and be tolerable in their 

early stage, but may develop further in a continuous way into a more significant fault situation and 

hence must be detected and isolated (even identified) as quickly as possible to prevent system 

breakdown or any serious consequence if no prompt actions are taken. 

 

Intermittent faults: these are not permanent faults that appear and disappear repeatedly, for 

instance due to partially damaged wiring (a loose connection in an electronic system). 

 

Besides the aforementioned faults, there is another type of fault which is represented by a sinusoidal 

signal, known as an oscillatory fault. It can be considered as a type of incipient fault in terms of its 

time characteristics which behaves smoothly, not abruptly.  

 

Finally, with respect to the way faults are modelled, they can be classified as additive type and 

multiplicative type (Edwards et al. 2010), as shown in Fig. 3.11. In general, additive faults are 

particularly suitable for representing component faults in the system, while sensor and actuator 

faults are in practice most often multiplicative by nature. 

 

Additive faults: they behaves as an additional signal acting on the plant, for example, unexpected 

exogenous motion on an actuator. 

 

Multiplicative faults: these faults are represented by the product of a system variable with the fault 

itself. They can appear as parametric deviation within a process, i.e. it may cause changes in the 

system dynamics. 

 

 
Figure 3.11 - Additive fault and multiplicative fault (Sun 2013). 

 

It is worth noting that in this thesis, only additive fault representations are considered, due to the 

requirement of nonlinear system models affine both in the inputs and faults for the exploitation of 

the Nonlinear Geometric Approach (NLGA). Hence, multiplicative faults will be modelled in an 

equivalent but additive form. 

Concerning the mathematical representation of these multiplicative and additive faults, 

multiplicative modelling usually is mostly used to represent sensor and actuator faults. Actuator 

faults represent malfunctioning of the actuators of the system. For simplicity of notation, the 

explicit indication of time dependency of the fault signals is omitted in the next mathematical 

relations.  Such faults can be modelled as an abrupt or incipient change of the nominal 

(commanded) control action from u  to the actual faulty (actuated) control action 

 

 ( )( )u

f fu u I K u u     (3.8) 

 

where mu   is a (not necessarily constant) vector that cannot be manipulated, and where 
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  1 2
,   , ,...,

u uu u u
f im

K diag kk k k     

 

In this way, for example, 0u

ik   represents a total fault (i.e. a complete failure) of the i-th actuator 

of the system so that the control action coming from this i-th actuator becomes equal to the i-th 

element of the uncontrollable offset vector u , i.e. ,f i iu u . On the other hand, 1u

ik   implies that 

the i-th actuator operates normally, i.e. ,f i iu u . The quantities u

ik  can also take values in between 

0 and 1, making it possible to represent partial actuator faults.  

Similarly, sensor faults occurring in the system represent incorrect reading from the sensors, so that 

as a result the actual output of the system differs from the variable being measured. The effect of 

multiplicative sensor faults can be modelled in the following way 

 

 ( )( )y

f fy y I K y y     (3.9) 

 

where  py   is an offset vector, and 

 

  1 2 ,   , ,...,y yy y y

f ipK diag kk k k     

 

so that 0y

jk   represents a total fault of the k-th sensor, and 1y

kk   models the normal mode of 

operation of the k-th sensor. Partial faults are then modelled by taking  y

kk  in between 0 and 1. 

The multiplicative model is, usually, a natural way to model a wide variety of sensor and actuator 

faults, but cannot be used to represent more general component faults. Considering a generic input-

affine nonlinear system affected by multiplicative sensor and actuator faults, it results that 

 

 
0 , 0

1 1

( ) ( ) ( ) ( )( (1 ) )

( ) ( )

m m
u u

i f i i i i i i

i i

y y

f f f

x g x g x u g x g x k u k u

y K h x I K y

 


     


   

 
 (3.10) 

 

On the other hand, the additive faults representation is more general than the multiplicative one. In 

the system model uf , yf  are signals describing the faults on the system inputs and outputs 

(actuators and sensors). This representation may, in principle, be used to model a wide class of 

faults, including sensor, actuator, and component faults. 

Considering a generic input-affine nonlinear system affected by additive sensor and actuator faults, 

it results that 

 

 

0

1 1

1

( ) ( ) ( )

( ) ( )

i

k

m m

i i i u

i i

p

k y

k

x g x g x u l x f

y h x l x f

 




  



  


 


 (3.11) 

 

Actuator fault inputs and disturbances appear in the state dynamic equation and sensor faults in the 

output equation, respectively. However, using an additive fault representation in order to model 

faults such that they are equivalent to multiplicative faults  of Eqs. (3.8) and (3.9), often results in 

signals uf , yf  becoming related to one or more of the signals u , x  and y . Just for example, when 

using this additive fault representation to model a total fault in an actuator ( 0u

ik   and , 0f i iu u   
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in Eq. (3.8)) then in order to make the model of Eq. (3.11) with additive faults equivalent to the 

model of Eq. (3.10), a signal 
iu if u   is needed, making uf  dependent on u . Therefore, both 

sensor and actuator additive faults can be modelled in a general way as functions of time, state (or 

output) and input as 

 

 ( , , )f f t x u  (3.12) 

 

On the contrary, an advantage is, as already mentioned, that the additive representation can be used 

to model a more general class of faults than multiplicative ones. In addition, it is more suitable for 

the design of FDI/FDD schemes because the faults are represented by one signal rather than by 

changes in the dynamic model of the system, as is the case with the multiplicative representation. 

For that reason, the majority of FDI/FDD methods are focus on additive faults, as it will be shown 

for the NLGA (De Persis and Isidori 2001). 

 

3.5 Modelling of Faults for the Design of the FDI System 

A quite general state-space model for continuous-variable nonlinear system not affine in the states, 

inputs, faults and disturbances is given by 

 

 
( ) ( ( ), ( ), ( ), ( ))

( ) ( ( ), ( ), ( ), ( ))

x t g x t u t d t f t

y t h x t u t d t f t





 

 

with initial condition 0(0)x x . The NLGA and the FDI/FDD techniques used in the next sections 

and chapters of this dissertation (and several other model-based FDI/FDD methods) have been 

explicitly developed for nonlinear systems of the general form 

 

 
0

1 1 1

( ) ( ) ( ) ( )

( )

m s r

i i k k j j

i k j

x g x g x u l x f p x d

y h x

  


   


 

  
 (3.13) 

 

where the dynamics of the state nx  (as well as the expression of the output py ) are 

nonlinear in x , but affine in the control inputs ,  1,...,iu i m , in the additive fault inputs 

,  1,...,kf k s , and in the disturbances ,  1,...,jd j r . Furthermore, control inputs, fault inputs and 

disturbances explicitly appear only in the state dynamics and not in the output equation. However, 

no assumption on the form and/or parameters of the fault time behaviour is required, in general. 

As a consequence, FDI methods based on a model of the faulted process in the form of Eq. (3.13) 

are useful to deal with failures of hardware components (e.g., actuators and/or sensors) of any type 

and time behaviour, but not affecting the structure of the system dynamics (i.e., system faults are 

not easily treated). 

For nonlinear systems in the form of Eq. (3.13), differential-geometric conditions have been given 

in De Persis and Isidori (2001), that are necessary for the solution of the FDI problem with possibly 

concurrent faults. These conditions, however, are violated in many situations of practical interest, 

notably whenever the total number of fault inputs exceeds the dimension of the state space. Several 

ways have been proposed to relax the FDI problem for system of Eq. (3.13) (Mattone and De Luca 

2006a, 2006b), when it is not solvable in the original formulation of De Persis and Isidori (2001). 

One possibility is to introduce the additional assumption of no concurrency of faults, which results 

in much weaker necessary conditions for obtaining fault detection and isolation. 
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Considering a generic system possibly affected by faults affecting all the input signals 

,  1,...,iu i m , and on the output  measures ,  1,...,ky k p . 

Hence, the total number of faults possibly affecting the system is given by s m p  . When this 

number is larger than the dimension of the state space n , the necessary conditions for FDI given in 

De Persis and Isidori (2001) for possibly concurrent faults are certainly (and structurally) violated. 

Therefore, following the approach proposed by Mattone and De Luca (2006b), the FDI problem can 

be relaxed by assuming that at most one fault can affect the system at any time (non-concurring 

faults). 

In the next sections, all steps involved in the nonlinear design of a general fault detection and 

isolation scheme for multiple non-concurring actuator and state sensor faults will be presented. 

Hence, since the considered faults may affect all system inputs (actuators) and all available system 

outputs (state measurements), it is necessary to make some observations about the fault modelling 

for the design of the residual filters.  

 

3.5.1 Modelling of Actuator Faults 

Since the model of Eq. (3.13) is affine in the control inputs, actuator faults can be modelled in a 

straightforward manner through the fault input uf  defined as 

 

 u cf u u   (3.14) 

 

where cu  is the commanded control input and u  is the effectively actuated control input. Replacing 

the expression of Eq. (3.14) in the system state dynamics of Eq. (3.13) and neglecting for the 

moment the presence of disturbances, the system dynamics can be written as 

 

 0 ,

1 1

( ) ( ) ( )
i i

m m

i c i u u

i i

x g x g x u l x f
 

     (3.15) 

 

with ( ) ( )
iu il x g x . Eq. (3.15) includes the effects of all the actuator faults and is still affine in the 

(control and fault) inputs, thus, allowing the direct application of the nonlinear FDI methods 

illustrated in De Persis and Isidori (2001) and Mattone and De Luca (2006b). 

 

3.5.2 Modelling of Sensor Faults 

Focusing on the modelling of faults on the sensors providing measurements of the state variables 

,  1,...,kx k n , the most natural way to take into account the possible occurrence of a fault would be 

defining a measurement fault 
kxF   affecting the measurement of a generic k-th state variable kx  as 

the difference between the measured and real values of a state variable (i.e. 
kx k kF y x  ). 

However, this way of modelling would lead either to the appearance of the fault 
kxf  in the output 

equation 
kk k xy x F   or to a model that is generally nonlinear in the sensor fault inputs (if the 

states in the model equations are replaced by 
kk k xx y F  ). In this condition it would not be 

followed the structure of  (3.13) for the implementation of the NLGA in the design of the FDI 

residual filters described in the following subsections. 

However, by using the procedure described in Mattone and De Luca (2006b) to model the sensor 

fault class in the considered spacecraft model, it would results in model equations with the input 

affine structure of Eq. (3.13). 
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In particular, a generic fault 
kxF  on the output sensor of the k-th state variable can be described in 

an alternate way by a set of 1k   mathematical fault inputs ,  ( 1,..., )
kx i kf i   in place of the natural 

fault 
kxF . However, in this way the one-to-one correspondence between the physical event (fault of 

a sensing device) and its mathematical representation (sensor fault input) is lost. Whenever a 

physical sensor fault occurs (i.e. 0
kxF  ), all the associated mathematical fault inputs ,kx if  will 

become generally nonzero, although with different time behaviours and, in general, without a direct 

physical interpretation. The detection of an occurred single physical fault 
kxF  can be carried out by 

recognizing the occurrence of any (one or more) of the corresponding mathematical fault inputs 

,  ( 1,..., )
kx i kf i  . 

Considering the generic k-th sensor fault ( 1,...,k p ), the modelling procedure proposed in 

Mattone and De Luca (2006b) consists in the following steps: 

 

1. Look in the system model for all different (and, in general, nonlinear) expressions , ( , )k i x u  

involving kx  and such that the model is affine in , ( , )k i x u ; 

2. For each expression , ( , )k i x u , define the fault input ,, ,
( , ) ( , )

k k k
k ix i k ix y

x uf x u 


  , i.e. the 

error induced in the computation of , ( , )k i x u  by the use of the measured value ky  in place 

of the real value kx , and compute the corresponding fault vector field , ( )
kx il x . In this way, 

1k   faults are introduced. It is worth noting that, by definition, ,kx if  is only affected by a 

fault on the k-th state sensor (with the assumption of no concurrency of faults), and is zero 

whenever 0
kxF   (i.e. k kx y ). As a result of this modelling step, any occurrence of the 

expression , ( , )k i x u  in the system model can be replaced by , ,
( , )

kk k
k i x ix y

x u f


 , and the 

model results to be certainly affine in the fault input ,kx if . In this way, the right-hand side of 

Eq. (3.21) is only dependent on the variable ky  and not kx ; 

3. Define the further fault input ,k kx k kf y x   . The introduction of this additional fault input 

in the model allows writing also the left-hand side of the k-th system equation in terms of 

the new variable ky , with dynamics ,k kk k xy x f   . Thus, the fault vector field associated to 

,k kxf   is ,k kx kl I  , with kI  the k-th column of a n n  identity matrix; 

4. If, for two indices i, j, it can be written , ,( )
k kx i x jl x l  for some real function ( )x , then it 

can be set , , ,( )
k k kx j x j x if f x f   and eliminated ,kx if , whereas the vector field , ( )

kx jl x  

clearly remains the same. With a slight abuse of notation, the symbol k  can be still used to 

indicate the final number of mathematical fault inputs corresponding to the k-th state sensor 

fault. 

 

Therefore, when the outputs are taken as new state variables for the system dynamics, the general 

structure of Eq. (3.13) is recovered. The final model, including the effect of all (non-concurring) 

faults of actuators and state sensors, is then 

 

 0 , , ,

1 1 1 1

( ) ( ) ( ) ( )
k

i i k k

pm m

i c i u u x j x j

i i k j

y g y g y u l y f l y f


   

       (3.16) 

 

with the trivial output equation omitted. Eq. (3.16) models the faulted system, which is expressed in 

terms of the available commanded inputs cu  and measured outputs y , and is affine in all control 

and (unknown) fault inputs, as requested. In other words, any discrepancy between faultless and 
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faulted system dynamics is fully summarized within the introduced fault inputs. Model of Eq. (3.16) 

may be reordered and more compactly rewritten as 

 

 0 , , ,

1 1 1

( ) ( ) ( )
km s

i c i k j k j

i k j

y g y g y u l y f


  

     (3.17) 

 

 

where m  is the number of actuators (and actuator faults), p  is the total number of sensor 

measurements (and sensor faults), s m p   is the total number of (physical) actuator and sensor 

faults, with ,1 kk uf f  and 1k   for 1,...,k m , and , ,im i j x jf f   and m i i    for 1,...,i p . 

Finally, it is worth noting that input and measurement noise are not explicitly included in model of 

Eq. (3.17) used for FDI design. Indeed, it is rather intuitive (and can be formally proven) that these 

disturbances cannot be exactly distinguished from faults of the input actuators and state sensors. On 

the other hand, when these unmodelled disturbances are small enough, relevant faults can still be 

correctly isolated, in practice, by using suitable residual thresholds. 

 

3.6 Nonlinear Geometric Approach 

This section describes the general design methodology on which the residual generators for fault 

detection and isolation for nonlinear systems are based. This differential-geometric approach for 

nonlinear FDI problem, referred to as Nonlinear Geometric Approach (NLGA), was formally 

suggested by De Persis and Isidori (2000, 2001). It consists in finding changes of coordinates in the 

state space and in the output space, providing an observable quotient subsystem which, if it exists, 

is affected by a fault, but unaffected by disturbances and the other faults to be decoupled. In the 

following, necessary and sufficient conditions for the FDI problem to be solvable are given. A 

residual generator can be designed on the basis of the model of this observable subsystem. 

As previously stated, the problem of fault detection and isolation in dynamical systems is the 

problem of generating diagnostic signals sensitive to the occurrence of faults. Regarding a fault as 

an input acting on the system, a diagnostic signal must be able to detect its occurrence, as well as to 

isolate this particular input from all other inputs (disturbances, controls, other faults) affecting the 

system behaviour. 

One specific diagnostic signal (also called residual) must be generated per each fault to be detected, 

each diagnostic signal being sensitive only to one particular fault. Set in these terms, the problem of 

fault detection and isolation has very much the connotation of a problem of designing a system 

which, processing all available information about the plant, yields a non-interactive map between 

faults (viewed as inputs) and residuals (viewed as outputs). 

In general, in Massoumnia (1986) and Massoumnia et al. (1989) it was proven that a basic 

necessary and sufficient condition for the problem to be solvable is the existence of an 

unobservability subspace (a subspace that can be made unobservable via output-injection and 

output-reduction) leading to a quotient (observable) subsystem unaffected by all fault signals but 

one. The subspace in question can be determined in a straightforward manner, from the parameters 

that characterize the plant, by means of simple recursive algorithms which were introduced earlier 

by Willems and Commault (1981) to a similar purpose (disturbance decoupling, with internal 

stability, via measurement feedback). Once this subspace has been determined, if the test of the 

necessary and sufficient condition is passed, the simple construction of an asymptotic observer for 

the quotient subsystem above yields the desired filter. 

For the case of nonlinear systems, as shown in Isidori et al. (1981), to solve the problem of non-

interacting control, the fault detection and isolation problem was approached in differential 

geometric terms. Hence, the solution to this problem can be characterized in terms of properties of 

certain distributions, which can be considered as the nonlinear analogue of the unobservability 

subspaces. As in the case of linear systems, the problem is solvable only if one of such distributions 



54 3 MODEL-BASED FAULT DETECTION AND ISOLATION 

 

exists leading to a quotient system which is unaffected by all fault signals but one. Unobservability 

distributions can be computed by means of proper algorithms that extend to nonlinear systems those 

presented by Morse and Wonham (1970, 1971) and Willems and Commault (1981). Conversely, if 

such a distribution exists, it is possible to perform changes of coordinates (diffeomorphisms) in the 

state and in the output spaces which highlight a special internal structure and in particular the 

existence of a locally weakly observable subsystem, which is not affected by all fault signals but 

one. Once these changes of coordinates have been performed, the problem of designing a fault 

detection filter can be reduced to the design of an observer for the quotient subsystem. 

A nonlinear system model affine with respect to the control and fault inputs and the disturbances is 

considered in the following form: 

 

 
( ) ( ) ( ) ( )

( )

x n x g x u x f p x d

y h x

   



 (3.18) 

 

with initial conditions 0(0)x x , in which the state vector x  (an open subset of n ), ( ) pu t   

is the control input vector, ( )f t   is the fault, ( ) dd t   the disturbance vector (embedding also  

the faults to be decoupled), and my  the output vector, ( )n x , ( )l x , the columns of ( )g x  and 

( )p x  are smooth vector fields, ( )h x  is a smooth map and (0) 0f  , (0) 0h  .  

The three sets of components u , f , d  of the input of Eq. (3.18) correspond, respectively, to an 

input channel to be used for control purposes, to a fault signal whose occurrence has to be detected, 

and to a disturbance signal, whose components include actual disturbances as well as other fault 

signals from which the specific fault has to be isolated. Hence, the main problem is the design of a 

filter (hereinafter referred to as the residual generator), modelled by equations of the form 

 

 
ˆ ˆ ˆ ˆ ˆ( , ) ( , )

ˆ ˆ( , )

x n x y g x y u

r h x y

  




 (3.19) 

 

with state x̂   defined in a neighbourhood X̂  of the origin, inputs u , y  and output pr  with 

p p , in which ˆ ˆ( , )f x y , the m columns of ˆ ˆ( , )g x y  are smooth vector fields, ˆ ˆ( , )h x y  is a smooth 

mapping and ˆ(0,0) 0f  , ˆ(0,0) 0h  , such that the response ( )r   of the cascaded system 
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 (3.20) 

 

depends nontrivially on (i.e. is affected by) the input f , depends trivially on (i.e. is decoupled 

from) the inputs u  and d  and asymptotically converges to zero whenever f   is identically zero. In 

general, considering a nonlinear system affine in the inputs of the form 
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 (3.21) 

 

with state x   defined in a neighbourhood X of the origin, 0 1( ),  ( ),...,  ( )mg x g x g x  are smooth 

vector fields, ( )h x  is a smooth function and   the smallest codistribution invariant under 
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0 1,  ,...,  mg g g  which contains  span dh , the output of the system results to be decoupled from the 

generic input iu  if ig 

 , and affected by iu  if ig 

 . Hence, considering the extended system 
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 (3.22) 

 

resulting from the composition of the plant and filter models, in which 
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 (3.23) 

 

and looking for the smallest codistribution e

  containing  span dh  and invariant under 

,  0,...,e

ig i m  and all ,  1,...,e

ip i d , the output r of the system of Eq. (3.22)  depends nontrivially 

on the input f  if 

 

  e el


   (3.24) 

 

and depends trivially on the inputs ,  u d  when 0f   if 

 

    ,    for 1,...,    and   ,    for 1,...,e e e e

i ig i m p i d
 

        (3.25) 

 

Therefore, the local Nonlinear Fundamental Problem of Residual Generation (lNLFPRG) consists 

in finding, if possible, a (stable) residual generator capable of detecting the occurrence of a specific 

exogenous (and unmeasured) input, such that the codistribution e

  in Eq. (3.22) satisfies 

 

 

 

 

1 1
( ),...,  , ,...,  

( )

there is 0 sucht hat, if , then ( ) 0 for all 0 lim 0( )(0)

ee e e e

m d

ee

e
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span g g p p

span l

f t t r tx 











 

 

     

 (3.26) 

 

In the same way, in general, diagnostic filters can be designed to detect and isolate multiple 

concurrent faults 1,..., sf f , in case of a system of the form 

 

 1 1

( ) ( ) ( ) ( )

( )

m s

i i i i

i i

x n x g x u l x f p x d

y h x

 


   


 

 
 (3.27) 

 

Setting 1,...,i s , 

 

 1 1 1... ...i i i sp l l l l p   
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 1 1 1... ...i i i sd f f f f d   

 

and writing (3.27) as 

 

 1

( ) ( ) ( ) ( )

( )

m

i i i i

i

x n x g x u l x f p x d

y h x




   


 


 (3.28) 

 

Presuming that the residual generator 

 

 
ˆ ˆ ˆ ˆ ˆ( , ) ( , )

ˆ ˆ( , )

i i i i i

i i i

x n x y g x y u

r h x y

  




 (3.29) 

 

solves the lNLFPRG problem for the generation of the residual for the fault if , then the bank of 

residual generators 

 

 

1 1 1 1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ( , ) ( , )
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x n x y g x y u

x n x y g x y u

r h x y

r h x y

  





 



 

 

 (3.30) 

 

solves the problem of detecting and isolating each individual fault signal 1,..., sf f . Conversely, if 

there is a residual generator of the form 

 

 1 1 1

ˆ ˆ ˆ ˆ ˆ( , ) ( , )

ˆ ˆ( , )

...

ˆ ˆ( , )s s s

x n x y g x y u

r h x y

r h x y

  










 (3.31) 

 

such that in the cascaded system of Eqs. (3.27) and (3.31), for each i , the residual ir  is affected by 

the input if  and decoupled from the inputs u  and id  and asymptotically convergent to zero as ( )if   

is identically zero, then necessarily the filter 

 

 
ˆ ˆ ˆ ˆ ˆ( , ) ( , )

ˆ ˆ( , )i i

x n x y g x y u

r h x y

  




 (3.32) 

 

solves the lNLFPRG problem. 

Now, in order to illustrate the NLGA algorithms exploited for the design of residual generators, let 

consider the system of the form of Eq. (3.21), where 0( ) ( )g x n x  and  Ker dh  is the distribution 

annihilating the differentials of the rows of the mapping ( )h x , and a distribution   is said to be 

conditioned invariant ( ( , )h n  invariant) if it satisfies 
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  ,    for all 0,...,ig Ker dh i m       (3.33) 

 

Given an additional set of smooth vector fields 1( ),..., ( )dp x p x  (corresponding to the inputs to be 

decoupled), and once defined the distribution (decoupling matrix) 

 

  1,..., dP span p p  (3.34) 

 

it can be considered the non-decreasing sequence of distributions defined as follows 

 

 
 

0

1

0

,
m

k k i k

i

S P

S S g S Ker dh





    
 (3.35) 

 

where S  denotes the involutive closure of S . If it exist an integer * 0k   such that * 1 *k kS S   

(well-defined distribution) the recursive algorithm stops and the minimal conditioned invariant 

distribution * *

P

kS   is defined, which contains P  and results to be involutive and conditioned 

invariant. Moreover, any other involutive distribution   containing P and conditioned invariant 

satisfies *

P . A codistribution   is said to be conditioned invariant if it satisfies 

 

      for all 0,...,
igL span i mdh   (3.36) 

 

where  span dh  is the codistribution spanned by the differentials of the rows of the mapping ( )h x . 

If  Ker dh  is a smooth distribution and   is a smooth codistribution, then   satisfies 

(3.36). If *

P  is well-defined and nonsingular and  *

P Ker dh   is a smooth distribution, it can be 

asserted that  *

P


  is the maximal conditioned invariant codistribution which is locally spanned by 

exact differentials and contained in P . 

Considering again the system of Eq. (3.21) and given a fixed codistribution  , a non-decreasing 

sequence of codistributions can be defined as follows 

 

 

 

 

0

1

0

m

k gi k

i

Q span dh

Q L Q span dh



 

 
   

 


 (3.37) 

 

Supposing that all codistributions of this sequence are nonsingular, so that there is an integer 
* 1k n   such that *k kQ Q  for all *k k , the recursive algorithm stops and the codistribution 

*

*kQ   can be defined. It is convenient to use the notation  * . . .o c a    (where o.c.a. stands for 

observability codistribution algorithm) to stress the dependency on   of the codistribution 
*

*kQ  . 

Supposing that all codistributions of the generated sequence are nonsingular and let  * . . .o c a    

be defined as above, then 
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 

 

*

0

*

1

0

m

k gi k

i

Q span dh

Q L Q span dh



  

 
    

 


 (3.38) 

 

As a consequence  * *. . .o c a   . Moreover, if the codistribution   is conditioned invariant, so it 

is the codistribution * . Hence, a generic codistribution   is a observability codistribution for the 

system (3.21) if 

 

 
 

 

   for all 0,...,

. . .

igL span i mdh

o c a

 

 
 (3.39) 

 

Likewise,   is an unobservability distribution if its annihilator   is an observability 

codistribution. If   is a conditioned invariant distribution, then  . . .o c a   is an observability 

codistribution. 

If the recursive algorithm of Eq. (3.37) is initialized at  *

P


 , then   *. . . Po c a


  is by construction 

an observability codistribution contained in P . As a matter of fact,   *. . . Po c a


  is the largest 

codistribution having such property. The codistribution  . . .o c a   is the maximal (in the sense of 

codistribution inclusion) observability codistribution contained in  . If *

P  is well-defined and 

nonsingular, and  *

P Ker dh   is a smooth distribution, then   *. . . Po c a


  is the maximal (in the 

sense of codistribution inclusion) observability codistribution which is locally spanned by exact 

differentials and contained in P . 

Finally, considering again the system of Eq. (3.21) and the decoupling matrix  1,..., dP span p p , 

if     *

*( ) . . . . . .P

il x o c a o c a


 

    , the fault if  results to be detectable and a change of 

coordinates can be determined. Whenever the previous fault detectability condition is satisfied, 

there exists a surjection 1  and a function 1  which satisfy    *

1( )span dh span d h     and 

 *

1span d    respectively. Therefore, the functions ( )y  and ( )x  can be defined as 
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 (3.40) 

 

with 
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 (3.41) 
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where 2H  is a selection matrix (i.e. a matrix in which any row has all 0 entries but one, which is 

equal to 1). 1x  represents the measured part of the state which is affected by the fault if  and not 

affected by the other faults and disturbances id , 2x  and 3x  represent the measured and unmeasured 

parts of the state affected by the fault if  and the other inputs id  respectively.  In many cases 3x  is 

not present. The functions ( )y  and ( )x  are (local) diffeomorphisms at 0x X  and 
0 0( ) py h x  .  

Thus, in the new (local) coordinates defined above, the system of Eq. (3.18) can be described by the 

following relations (Benini et al. 2008): 

 

 

1 1 1 2 1 1 2 1 1 2 3

2 2 1 2 3 2 1 2 3

2 1 2 3 2 1 2 3

3 3 1 2 3 3 1 2 3
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y h x
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
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

  
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
 




 (3.42) 

 

with 1 1 2 3( , , )l x x x  not identically zero. If 2x  is identified with 2y  and viewed as an independent 

input, the 1x -subsystem can be singled out: 

 

 
1 1 1 2 1 1 2 1 1 2 3

1 1

( , ) ( , ) ( , , )

( )

x n x y g x y u l x y x f

y h x

   



 (3.43) 

 

state which is affected by the fault if  and not affected by the other faults and disturbances id  

(embedding both the other faults and disturbances). Therefore, in general, the NLGA residual 

generators for FDI can be designed by exploiting the properties of this quotient subsystem. 

 

3.7 Residual Generator Design 

The additional assumption of no concurrency of faults, made in Section 3.5 in order to consider also 

sensor faults, results into much weaker conditions for fault detectability and isolability than those 

given in De Persis and Isidori (2001) and described above. In particular, when each physical fault 

kF  is modelled by just one fault input with associated vector field, it has been shown that the 

necessary and sufficient condition for non-concurring FDI (under full state availability and absence 

of disturbances) is 

 

      ,   , ,   i kspan l span l i k i k    (3.44) 

 

Condition (3.44) guarantees that, for each couple of faults ,i kF F , a dynamic system (residual 

generator) can be found, whose output r  (residual) is certainly affected by just one of the two faults 

and not by the other, thus allowing the discrimination of the occurrence of one fault from another 

one. When each physical fault kF  is modelled by a set of always concurrent fault inputs, as in the 

case of Eq. (3.17), condition (3.44) can be easily extended, as described in Mattone and De Luca 

(2006a, 2006b), by observing that a residual is: 
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1. affected by kF , if it is affected by at least one of the associated fault inputs ,1 ,,...,
kk kf f  ; 

2. decoupled from kF , if it is not affected by any of the fault inputs ,1 ,,...,
kk kf f  . 

 

This leads to the following necessary and sufficient condition for detectability and isolability 

 

 

   

   

,

,

, , 1,...,  such that   

1,...,  such that   

k jk i

i hi k

lk i k j span P

OR

lh span P





     

  

 (3.45) 

 

where  ,1 ,,...,
ii ii

l lP span  and iP  denotes the involutive closure of iP , i.e. the closure of iP  under 

the Lie bracket operator. It is worth noting that, differently from Eq. (3.44), which is symmetric 

with respect to i  and k , the two conditions in the left-hand and right-hand sides of the OR operator 

in Eq. (3.45) may not hold at the same time. Thus, it may happen that a residual generator exists, 

that is affected by iF  and not by kF , but that any residual affected by kF  is necessarily also affected 

by iF . The fulfilment of the condition (3.45) of detectability and isolability implies that for any pair 

of faults iF  and kF , a residual exists that is affected by iF  or by kF , but not by both. Moreover, the 

fulfilment of this condition implies there exists a set R  of residuals such that each fault affects a 

different, nonempty subset of diagnostic signals within R . Under the assumption of full state 

measurability, the design of this set of residuals follows directly from Eq. (3.45), using the fault 

vector fields of model of Eq. (3.17). Essentially, condition (3.45) guarantees the existence, for any 

pair (i,k), of a suitable decoupling output function 1 1( )y y  , whose dynamics is affected, for 

example, by at least one of the fault inputs associated to iF , and decoupled from all fault inputs 

corresponding to kF . Then, a residual generator can be designed as a standard nonlinear observer 

with linear error dynamics (Isidori 1995). In particular, the dynamics of the state of this 

observer/residual generator is a copy of the nominal (faultless) dynamics of 1 1( )y y  , plus a 

correction term, i.e. the residual feedback, that makes the observation error/residual asymptotically 

converge to zero in the absence of faults. If the condition 

 

    ,1,...,  such that   i hi k
lh span P     (3.46) 

 

holds, since kP  is involutive by construction, dim( )kn P  independent functions 
k, dim( )

( )
kn P

y


 

certainly exist, such that their differentials ,1 k, dim( )
( ),..., ( )

kk n P
d y y 


 span the annihilating 

codistribution kP  (Isidori 1995), with 

 

 
,

0     1,..., dim( ), 
k j

k kj n P P
y


 


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
  (3.47) 

 

Moreover, from Eq. (3.45) it follows that 

 

   ,

, such that 01,..., dim( )
k l

i hk
l ln P

y


  


  (3.48)   

 

and a scalar output 1 , ( )s k ly y  can be determined, whose evolution is defined by 
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and, thus, is affected by the physical fault iF , in particular the associated fault input ,hif , and not 

affected by kF , since Eq. (3.47) holds for , , 1,...,k q kf q    in particular. The residual generator 

allowing to discriminate iF  from kF  is modelled as 
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  (3.50) 

 

with 0K  . This residual generator is structured as a nonlinear observer with scalar state   and 

linear error dynamics (Isidori 1995; Benini et al. 2008). The residual is characterized by the 

dynamics 
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p q p q

p q

r Kr K l y f

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      

 

of a linear, exponentially stable system driven by the set of all the fault inputs ,p qf  for which it 

holds 

 

 ,

, 0k l

p ql
y





  

 

By construction, the set of these fault inputs certainly includes ,hif , but does not include any fault 

input , , 1,...,k j kf j  , even if it may or not be affected by all the other faults. 

Now, in order to design the set R  of residual filters for the FDI, it could be more convenient to 

work with residual matrices, due to the possible large number of mathematical fault inputs 

associated to the physical faults (Mattone and De Luca 2006b). 

The Residual Matrix (RM) associated to the set  
r1 n,..., rR r  of rn  residuals is a binary matrix 

whose element RM( , )i j   is nonzero if and only if the physical fault iF  (or, equivalently, at least 

one of the associated fault inputs ,1 ,,...,
ii if f  ) affects residual jr R  . Therefore, a set of residuals 

solves the non-concurrent FDI problem if and only if 

 

 RM( ,:) 0     RM( ,: ) RM( ,: )     i,k, i ki k i      (3.51) 

 

where RM( ,:)i  denotes the i-th row of RM. The incremental procedure described in Mattone and 

De Luca (2006b) to build the columns of the residual matrix RM, which satisfies condition (3.51), 

can be summarized as follows: 

 

1. Initially, the first element 1r  of the residual set R  is designed, so that it discriminates the 

physical fault 1F  from 2F , and the corresponding residual matrix RM, consisting of a single 

column, is built. After this initial step, the first two rows of RM are different, but one of them 

is zero. 
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2. Then the element 2r  of the residual set is designed, so that the first two rows of the resulting 

residual matrix RM, now consisting of two columns, become nonzero. From now on, the first 

two rows of RM will certainly be different and nonzero for whatever selection of the 

remaining elements of the residual set. 

3. After the generic k-th step of the procedure, the first k rows of the current RM matrix are 

different and nonzero. Then, looking at rows from k+1 to the total number s m p   of 

physical faults possibly affecting the system, the first row being either zero, or equal to one of 

the above matrix rows (and, necessarily, only to one), is founded (if it exists). Consequently, 

the residual 1kr   to be added to the set is designed so as to introduce either a one element in 

the null row, or the element needed to make the two equal rows to be different. 

4. After a finite number of rn  steps, with 2log rs n s   , all the s rows of RM will certainly be 

different and nonzero, and the designed residuals will satisfy condition (3.51). 

 

Moreover, the procedure described above can be also extended to the case in which external 

disturbances to be decoupled are present. In this case, the disturbance term d  in the affine nonlinear 

model of Eq. (3.18) can be considered as a vector of additional and always concurrent fault inputs 

to which any designed residual filter has to be completely insensitive, i.e. all the designed residual 

filters have to be always not sensitive to all the inputs included in d . In this way, the total number 

of faults possibly affecting the system results to be ds m p n   , where dn  is the number of 

elements in the disturbance vector d . Now, the main difference in the design procedure of the 

residual filters consists in the determination of a residual matrix in which the rows corresponding to 

the disturbance terms to be decoupled are zero. 

If the condition (3.46) holds, where in this case  ,1 ,,..., ,
ii ii

l l pP span  , p  is the set of smooth 

vector fields corresponding to the concurring inputs to be always decoupled and iP  still denotes the 

involutive closure of iP . Therefore, any residual filter designed by means of the previously 

described incremental procedure and satisfying, for example, condition (3.46) for an extended 

distribution  ,1 ,,..., ,
ii ii

l l pP span   results to be decoupled from the disturbance vector d . Model 

(3.16) may be rewritten to include also the (always concurrent) disturbance inputs as 

 

 0 , , ,

1 1 1 1
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k dnm s

i c i k j k j q q
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y g y g y u l y f p y d

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       (3.52) 

 

where m  is the number of actuators (and actuator faults), p  is the total number of sensor 

measurements (and sensor faults), ds m p n    is the total number of (physical) actuator and 

sensor faults and disturbance inputs. 

 

 

 

 

 

 

 

 

 

 

 



 

63 

 

4 FDI IMPLEMENTATION IN THE SATELLITE ADCS 

 

This chapter illustrates the design and practical implementation of a complete FDI system for the 

considered spacecraft ADCS. The FDI system consists of four independent banks of residual 

generators, referred to as Residual Banks (RB)s from now on, working in parallel and designed by 

exploiting the NLGA and the previously described fault modelling procedure and decoupled from 

the external aerodynamic disturbance torque acting on the satellite. Subsequently, the fault detection 

and isolation procedure, based on the cross-check of the provided diagnostic signals, is described 

along with the corresponding decision logic. Simulation results for FDI are given in case of sensor 

and actuator fault occurrence. 

 

4.1 Mathematical Fault Inputs Associated to Physical Faults 

In order to design a set of residual generators for fault detection and isolation purpose, the 

previously described procedure for fault mapping is implemented and the mathematical fault inputs 

associated to each physical actuator and sensor fault are determined. Considering these associated 

fault inputs, the original nonlinear model can be rewritten in an affine form with respect to both the 

inputs and fault inputs, and the NLGA can be subsequently exploited in order to design proper 

residual filters, each of them sensitive only to a specific set of possible mathematical faults and not 

sensitive to the external aerodynamic disturbance. As a consequence, these designed residual filters 

provide diagnostic signals that can be exploited to realize an accurate fault isolation. 

For simplicity, from now on the nonlinear dynamic and kinematic model equations (2.46) and 

(2.33) of the spacecraft, and the dynamic equations (2.42) of the reaction wheels will be written 

with a different notation, by considering the following notations for actuated input vector 4u , 

commanded input vector 4

c u , state vector 11x  and output vector 15y : 

 

   ,1 ,2 ,3 ,41 2 3 4

TT

ctrl ctrl ctrl ctrlT T T Tu u u u    u  (4.1) 

 

   ,1 ,2 ,3 ,41 2 3 4

TT

c c c cc c c c c
T T T Tu u u u    u  (4.2) 
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w w w w x i y i z i o o o o true

x x x x x x x x x x x

q q q q      

 

   

x
 (4.3) 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

,1 ,2 ,3 ,4 , , , 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

T

T

w w w w x i y i z i star star star star star star star star measured

y y y y y y y y y y y y y y y

q q q q q q q q      

 

   

y
 (4.4) 

 

where 1 1,1 1,2 1,3 1,4[    ]T

star star star star star measuredq q q qq  and 2 2,1 2,2 2,3 2,4[    ]T

star star star star star measuredq q q qq  are the 

attitude measurements provided by the two considered attitude sensors, i.e. the two star trackers. 

The input vectors consist of the actuated (true) and commanded (nominal) control torques provided 

by the four reaction wheels in the tetrahedron configuration, respectively. The state vector consists 

of the value of the (true) spin rates of the actuator flywheels, the angular velocities of the satellite in 

the inertial reference frame along its body axes and the true attitude unit quaternion 

1, 2, 3, 4,

T

o o o oo
q q q q   q  in the orbital reference frame. All the states are assumed measurable, 
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or derivable by means of Eq. (2.57) from the sensor measurements, thus the output vector consists 

of the measured values of all the states provided by the considered sensors. 

With this notation, the differential equations (2.34), (2.42) and (2.46) of the spacecraft nonlinear 

model can be rewritten as follows. The dynamic equations (2.42) of the actuators are explicitly 

rewritten as 
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 (4.5) 

 

The dynamic equations (2.46) of the satellite attitude are explicitly rewritten as 
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 (4.6) 

 

Finally, the kinematic equations (2.34) of the satellite attitude are explicitly written as: 
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 (4.7) 

 

The output equations, considering also the presence of a second redundant attitude sensor, are 

defined as 

 

 

7

4

4

0

( ) 0

0

I

h I

I

 
  
 
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y x x  (4.8) 

 

Now, it is worth recalling that the attitude and angular velocity sensors considered in this thesis 

actually provide measurements of the satellite attitude and angular rates of the satellite with respect 

to the inertial reference frame. However, it is worth noting that, in order to maintain a unique 

notation for the state variables in the residual filter models, and simplify the definition of the 

associated mathematical fault inputs, the Eqs. (4.6) and (4.7) in this chapter have been rewritten 

considering the spacecraft quaternion vector defined with respect to the orbital frame as state 

variable of the dynamic model. The values of the corresponding output variables can be computed 

at each simulation instant by exploiting the actual sensor outputs for the spacecraft attitude provided 

by the two star trackers with respect to the inertial reference frame of the fixed stars in Eq. (2.57), 

with the position of the spacecraft along the orbit assumed to be exactly known. On the other hand, 

it is worth noting that the spacecraft angular velocity in the dynamic and kinematic equations (4.6) 

and (4.7) is still expressed with respect to the inertial reference frame. 

The different choice or the reference frame used to express the state variables has been made only 

to simplify the exposition of the design procedure. The residual filters practically implemented in 

Simulink are all exploiting the inertial sensor measurements and the assumed available measure of 

the satellite position o   along the orbit path given by Eq. (2.57) to derive the orbital attitude Euler 

parameters for the computation of the external disturbance torques. 

This is done since the models of the external disturbance torques in Eq. (2.46) are based on the 

values of the attitude variables with respect to the orbital reference frame. Hence, both the dynamic 

and kinematic equations of the spacecraft are written as functions of the orbital attitude of the 

satellite. The associated fault inputs and the designed filter models are essentially the same, apart 

the explicit definition of the orbital attitude variables as functions of the inertial ones, but in this 

way, the relations are simpler to be written. 

Finally, it is worth noting that this done only for the description of the FDI module. Instead, the 

design and description of the FE module, AFTC scheme and SMC controller in the following 

chapters will exploit the actual sensor measurements of attitude and angular velocity with respect to 

the inertial reference frame. 

Exploiting the modelling procedure described in Section 3.5 and proposed by Mattone and De Luca 

(2006b) for actuator and sensor faults, respectively, the following fault inputs can be defined for all 

the considered actuator and sensor faults. 

Considering the actuator faults, the physical and corresponding associated mathematical fault inputs 

are shown. The possible physical faults affecting the four reaction wheels of the ACS and the 

corresponding vector fields are defined as follows: 
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 (4.9) 

 

The possible physical and associated mathematical fault inputs, with the relative number of 

associated faults and the corresponding vector fields, for the sensors of the ACS measuring the spin 

rates of the actuators flywheels are defined, for each actuator subsystem, as follows: 

 

1. For the first reaction wheel sensor fault 
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 (4.10) 

 

2. For the second reaction wheel sensor fault 
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3. For the third reaction wheel sensor fault 
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4. For the fourth reaction wheel sensor fault 
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It is worth noting that in the previous relations the fault inputs ,ky if  associated to the k-th physical 

sensor fault 
kyF  use a subscript notation with “y” instead of “x” just to avoid any misinterpretation 

due to the presence of two redundant star tracker sensors measuring the same quaternion state 

vector. The possible physical and associated mathematical fault inputs, with the relative number of 

associated faults and the corresponding vector fields, for the sensors of the ADS measuring the 

satellite angular velocities with respect to each body axis are defined, for each rate gyro sensor, as 

follows: 

 

1. For the first spacecraft angular rate sensor fault 
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2. For the second spacecraft angular rate sensor fault 
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3. For the third spacecraft angular rate sensor fault 
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Finally, the possible physical and associated mathematical fault inputs, with the relative number of 

associated faults and the corresponding vector fields, for the sensors of the ADS measuring the 

satellite attitude in quaternion notation are defined as follows. In this case, since two distinct and 

redundant attitude sensors are assumed to be present, two distinct sets of mathematical faults are 

defined, one for each sensor output vector 1 1,1 1,2 1,3 1,4[    ]T

star star star star star measuredq q q qq  and 

2 2,1 2,2 2,3 2,4[    ]T

star star star star star measuredq q q qq , with respect to the same quaternion state vector 

1, 2, 3, 4,

T

o o o oo
q q q q   q . Moreover, associated fault inputs are defined for each component of 

the quaternion vector. 
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For the first attitude sensor, it can be defined: 
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3. The fault 
10 10 10yF y x   on the third quaternion parameter with 10 7   
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4. The fault 
11 11 11yF y x   on the fourth quaternion parameter with 11 7   
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with the corresponding vector fields of the associated faults for the four quaternion components 

defined as: 
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Similarly, for the second attitude sensor: 
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2. The fault 
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4. The fault 
15 15 11yF y x   on the first quaternion component with 15 7   
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with the corresponding vector fields of the associated faults for the four quaternion components 

defined as 

 

 

 

 

 

 

 

 

 

12

12

12

12

12

12

12

,1

,2

,3

,4

,5

,6

,7

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/ 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1/ 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1/ 2 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

T

x

T

x

T

x

T

x

T

x

T

x

T

x

l

l

l

l

l

l

l

 

 

 



 





 (4.29) 

 

 

 

 

 

 

 

 

 

13

13

13

13

13

13

13

,1

,2

,3

,4

,5

,6

,7

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/ 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1/ 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1/ 2 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

T

x

T

x

T

x

T

x

T

x

T

x

T

x

l

l

l

l

l

l

l

 

 

 

 







 (4.30) 

 

 

 

 

 

 

 

 

 

14

14

14

14

14

14

14

,1

,2

,3

,4

,5

,6

,7

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/ 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/ 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1/ 2 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

T

x

T

x

T

x

T

x

T

x

T

x

T

x

l

l

l

l

l

l

l

 

 

 



 





 (4.31) 

 

 

 

 

 

 

 

 

 

15

15

15

15

15

15

15

,1

,2

,3

,4

,5

,6

,7

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/ 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/ 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1/ 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

T

x

T

x

T

x

T

x

T

x

T

x

T

x

l

l

l

l

l

l

l

 

 

 

 

 

 



 (4.32) 



74  4 FDI IMPLEMENTATION IN THE SATELLITE ADCS 

 

Finally, since the gravitational disturbance model is almost perfectly known, the FDI robustness is 

achieved by exploiting an explicit disturbance decoupling based on the NLGA, applied only to the 

aerodynamic force term. This term represents the main source of uncertainty in the satellite 

dynamic model, mainly due to the lack of knowledge of the accurate values of air density and 

satellite drag coefficient. By considering the external aerodynamic disturbance as an additional and 

always concurrent fault input to be decoupled, with the corresponding vector field 
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a nonlinear model affine with respect to all the control inputs, fault inputs and disturbance can be 

defined, with the associated fault inputs defined above, in the form 
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and used in the incremental procedure described in Section 3.7 for the design of residual filters 

decoupled from the aerodynamic disturbance. Any discrepancy between the faultless and faulted 

system dynamics is fully summarized by means of the introduced mathematical fault inputs. 

 

4.2 Design of Aerodynamic Decoupled Residual Generators for FDI 

Considering the new affine model of Eq. (4.34) determined by exploiting the actuator and sensor 

fault modelling procedure, by following the incremental procedure illustrated in Section 3.7, it is 

possible to design a set of disturbance decoupled scalar NLGA residual filters and organise them in 

four banks of filters working in parallel. These banks of residual filters are referred to as RB1 (also 

defined as local filters), RB2 (also defined as global filters), RB3 and RB4. 

For different subsets of mathematical fault inputs it is possible to determine new scalar 1sx -

subsystems, with each subsystem affected only by a specific subset of mathematical fault inputs and 

decoupled from all the other mathematical fault inputs and the aerodynamic disturbance. Each of 

these newly defined scalar 1sx -subsystems can be modelled as follows: 
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and the corresponding scalar residual generators, written in filter form (Benini et al. 2008), are 

modelled as follows: 
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where the residual signal 1sr y    is characterized by the following dynamics: 
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Implementing the design procedure described in Section 3.7 for the definition of the set R  of 

residuals, it results that the residual matrix reported in Tab. 4.1 can be determined. This residual 

matrix describes the sensitivity of each of the designed residuals to all the possible physical faults 

that could affect either the attitude control inputs or the flywheel spin rate sensor measurements, 

spacecraft attitude and angular velocity sensor measurements. Each element of this matrix is equal 

to 1 if the residual is sensitive to the physical fault, or at least to one mathematical fault input 

associate with it, and equal to 0 is the residual is not sensitive to the physical fault or to any 

associated mathematical fault input. 

 

Residuals

Physical faults and 

aerodynamic disturbance
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27

Fu1=fTctr,1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fu2=fTctrl ,2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fu3=fTctrl ,3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fu4=fTctrl ,4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fy1=fωw,1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fy2=fωw,2 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fy3=fωw,3 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fy4=fωw,4 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fy5=fω,x 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

Fy6=fω,y 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1

Fy7=fω,z 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

Fy8=fq̅s tar1,1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Fy9=fq̅s tar1,2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Fy10=fq̅s tar1,3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Fy11=fq̅s tar1,4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Fy12=fq̅s tar2,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Fy13=fq̅s tar2,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Fy14=fq̅s tar2,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Fy14=fq̅s tar2,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

d=Faero 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RB1 RB2 RB3 RB4

 
Table 4.1 - Residual matrix/isolation logic from physical faults to residuals. 
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Moreover, it is worth noting that all the defined residuals results to be decoupled from the external 

aerodynamic disturbance term. From the last row of the residual matrix, it is clear that all the 

obtained residuals result to be explicitly decoupled from the external aerodynamic disturbance, thus 

allowing to avoid any risk of misleading fault detection and isolation due to uncertainties in the 

knowledge of the actual values of the disturbance parameters to be used in the model-based residual 

filter. The external aerodynamic disturbance is considered as an additional fault input from which 

all the designed residuals have to be decoupled. 

In particular, the following four sets of new scalar variables can be determined by using the 

described procedure, each of them sensitive only to a specific set of fault inputs, leading to the 

design of the corresponding banks of aerodynamic decoupled residual filters for FDI, organized in 

generalized schemes: 

 

Residual Bank RB1: 

The model equations of the four designed local residual filters composing RB1 result to be sensitive 

only to possible faults affecting the actuated control torques and the flywheel spin rate sensors. 

Each residual filter is designed for a specific actuator subsystem, and the generated diagnostic 

signal can be used to detect possible faults affecting either the actuated torque or the corresponding 

flywheel sensor measurement of the subsystem. The filters rely only on local measurements of the 

spin rates of the actuator flywheels. However, the exploitation of only these local residual filters 

does not permit the complete fault isolation, but only the isolation of the faulty actuator subsystem. 

It is not possible to distinguish the actual type of the occurred fault. The exploitation of the NLGA 

is not actually required, i.e. its application is straightforward, since each of the original dynamic 

equations (4.5) of the actuators, on which these filters are based, results to be already independent 

from any external disturbance and dedicated to a specific actuator subsystem. NLGA does not result 

to be practically exploitable for the complete isolation of specific faults in the actuator subsystems 

because there is no way to define coordinate transformations allowing to obtain new quotient 

subsystems which are unaffected by all faults but one. The four local scalar residual filters are: 

 

1. The residual filter designed from the scalar variable 1 ,1 ,1s wy  , with the residual 

1 1 ,1 111 ,s wr y        sensitive only to the two possible faults 
1 1 1 ,1 ,1u c ctrl cf u u T T     and 

1 ,4 1 1 ,1 ,1measured truex w wf y x      : 
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  (4.38) 

 

2. The residual filter designed from the scalar variable 1 ,2 ,2s wy  , with the residual 

2 1 ,2 222 ,s wr y        sensitive only to the two possible faults 
2 2 2 ,2 ,2u c ctrl cf u u T T     

and 
2 ,4 2 2 ,2 ,2measured truex w wf y x      : 
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  (4.39) 

 

3. The residual filter designed from the scalar variable 1 ,3 ,3s wy  , with the residual 

3 1 ,3 333 ,s wr y        sensitive only to the two possible faults 
3 3 3 ,3 ,3u c ctrl cf u u T T     

and 
3 ,4 3 3 ,3 ,3measured truex w wf y x      : 
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4. The residual filter designed from the scalar variable 1 ,4 ,4s wy  , with the residual 

4 1 ,4 444 ,s wr y        sensitive only to the two possible faults 
4 4 4 ,4 ,4u c ctrl cf u u T T     

and 
4 ,4 4 4 ,4 ,4measured truex w wf y x      : 

 

 

4
4 4 4

4 4,4

w

w

K r

r

u

I





 


  





  (4.41) 

 

The sensitivities of the residuals of RB1 to an occurred physical fault result to be independent from 

the attitude and manoeuvre condition of the satellite. 

 

Residual Bank RB2: 

The global residual filters are based on both the dynamic and kinematic equations (4.6) and (4.7) of 

the spacecraft model and the dynamic equations (4.5) of the actuators, and thus rely also on global 

measurements of the spacecraft attitude and angular velocity in addition to the local flywheel spin 

rate measurements. 

The model equations of the designed global residual filters composing RB2 result to be explicitly 

decoupled from the external aerodynamic disturbance and sensitive, in general, to all the possible 

faults affecting the flywheel spin rate sensors, spacecraft attitude and angular velocity sensors. 

Moreover, thanks to the way the new scalar quotient subsystems have been defined by means of the 

NLGA, all these global residuals result to be not sensitive also to any fault affecting the actuated 

control torques. Therefore, once a faulty actuator subsystem has been detected and isolated by 

means of the residual signals provided by RB1, the complete isolation of the faulty component in 

the actuator subsystem can be obtained by checking if one or more of the global residual filters 

provide a diagnostic signal exceeding its selected threshold. The realization of five independent 

residual filters improves the reliability of the detection and isolation scheme of an occurred physical 

fault for any attitude or manoeuvre condition or geometric configuration of the spacecraft. These 

global residual filters are essentially exploited in order to distinguish the actual type of the occurred 

fault in a faulty actuator subsystem isolated by means of the previously described residual filters of 

RB1. The exploitation of the NLGA is required since each of the original dynamic equations of the 

spacecraft, on which these filters are based, presents a torque contribution related to the external 

aerodynamic disturbance. The need to decouple the external aerodynamic disturbance does not 

allow to realize residual filters sensitive only to specific sensor or actuator faults, and hence they 

have been designed to be insensitive also to the control torque faults to realize a more efficient fault 

isolation. The mathematical models of the five global residual filters can be derived starting from 

the following scalar variables: 

 

1. The residual filter designed from the scalar variable 
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with the residual 5 1 ,5 5sr y   ; 

 

2. The residual filter designed from the scalar variable 
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with the residual 6 1 ,6 6sr y   ; 

 

3. The residual filter designed from the scalar variable 
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with the residual 7 1 ,7 7sr y   ; 

 

4. The residual filter designed from the scalar variable 
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with the residual 8 1 ,8 8sr y   ; 

 

5. The residual filter designed from the scalar variable 
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with the residual 9 1 ,9 9sr y   . 

 

These residual filters exploit the measurements 1 1,1 1,2 1,3 1,4[    ]T

star star star star star measuredq q q qq  provided by 

the first star tracker sensor. The explicit expressions of the designed residual filter models is in this 

instance omitted due to the high complexity of these filter models. However, they can be derived 

starting from the variable reported above. The designed filters result to be sensitive, in general, to 

all the faults except: 
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Residual Bank RB3: 

The model equations of the designed residual filters composing RB3 result to be sensitive only to 

possible faults affecting the spacecraft attitude and angular velocity sensors. 

In particular, thanks to the exploitation of the NLGA, each designed residual filter results to be 

sensitive to possible faults affecting the first star tracker sensor and a specific couple of rate gyro 

sensors. Concerning the attitude sensor faults, it is worth recalling that, in general, a fault occurring 

in a star tracker can affect all the quaternion vector components. Hence, it is not possible to design 

residual filters sensitive only to faults affecting a specific quaternion vector component and not 

sensitive to any fault in the other spacecraft ADCS sensors and quaternion vector components. For 

this reason, a hardware redundancy for the attitude sensors has been considered, and the 

exploitation of this redundancy allows the accurate isolation of faults occurred in the ADS of the 

spacecraft. In fact, it results to be not possible to distinguish between faults on an angular velocity 

sensor or attitude sensor with only a single attitude measurement available with certainty in all the 

attitude and manoeuvre conditions. 

Anyway, it is worth observing that the exploitation of the double redundancy of the attitude sensors 

would be insufficient to correctly isolate a faulty attitude sensor directly by comparing the different 

attitude measurements by means of a voting scheme, but only to detect the occurrence of a possible 

fault. Therefore, in this thesis, the isolation of all faults is carried out by means of residual 

generators exploiting analytical redundancies. 

Concerning the rate gyro sensors, once a fault has occurred, it is detected and exactly isolated 

thanks to the generalized organization of the designed residual filters. For each spacecraft rate gyro, 

three out of nine specific residual filters of RB3 results to be always insensitive to the 

corresponding rate gyro sensor fault, whereas at least two of the other six residuals results to exceed 

its selected threshold in any attitude and manoeuvre condition. Since each designed residual filter is 

sensitive to possible faults occurring on a specific couple of rate gyros, any healthy sensor can be 

accurately isolated by detecting the three related residual filters whose diagnostic signals 

simultaneously remain within their selected thresholds. Therefore, the actual faulty sensor is 

isolated by exclusion. The nine scalar residual filters are: 

 

1. The residual filter designed from the scalar variable 
2 2

1 ,10 1,1 1,2s star stary q q  , with the residual 

2 2
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  (4.42) 

 

2. The residual filter designed from the scalar variable 1 ,11 1,1 1,3 1,2 1,42( )s star star star stary q q q q  , with 

the residual 1,1 1,3 1,2 1,11 1 ,1 41 11 112( )star star star stars q qy qr q     sensitive only to the fault 

inputs associated to the sensors measuring ,x i , ,y i  and star1q : 
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3. The residual filter designed from the scalar variable 1 ,12 1,1 1,4 1,2 1,32( )s star star star stary q q q q  , 

with the residual 1,1 1,4 1,2 1,12 1 ,1 32 12 122( )star star star stars q qy qr q     sensitive only to the fault 

inputs associated to the sensors measuring ,x i , ,y i  and star1q : 
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  (4.44) 

 

 

4. The residual filter designed from the scalar variable 2 2

1 ,13 1,1 1,3s star stary q q  , with the residual 

2 2

1,1 1,313 1 ,13 13 13star stars q qr y     sensitive only to the fault inputs associated to the 

sensors measuring ,x i , ,z i  and star1q : 
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5. The residual filter designed from the scalar variable 1 ,14 1,1 1,4 1,2 1,32( )s star star star stary q q q q  , 

with the residual 1,1 1,4 1,2 1,14 1 ,1 34 14 142( )star star star stars q qy qr q     sensitive only to the fault 

inputs associated to the sensors measuring ,x i , ,z i  and star1q : 

 

 

2 2

, 1,1 1,2

z, 1,2 1,4 1,1 1,3

1,3 1,4 1,1 1,

14

14 14

14

2

1 14,1 1,4 1,2 1,3

(1 2 2 )

2 ( )

2 ( )

2( )

x i star star

i star star star star

o star star star star

star star star star

q q

q q q q

q q q Kq

q q q q

r

r 









    

  

 








  

  (4.46) 

 

6. The residual filter designed from the scalar variable 1 ,15 1,1 1,2 1,3 1,42( )s star star star stary q q q q  , 

with the residual 1,1 1,2 1,3 1,15 1 ,1 45 15 152( )star star star stars q qy qr q     sensitive only to the fault 

inputs associated to the sensors measuring ,x i , ,z i  and star1q : 

 

 

, 1,1 1,3 1,2 1,4

2 2

z, 1,2 1,3

1,2 1,3 1,1

15

15 15

15 1

1,4

1,1 1,2 1,3 1, 54

( )

(1 2 2 )

2 (

2

)

2( )

x i star star star star

i star star

o star star star star

star star star star

q q q q

q q

q q q Kq

q q q q

r

r 









   

   

 








  

  (4.47) 
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7. The residual filter designed from the scalar variable 2 2

1 ,16 1,2 1,3s star stary q q  , with the residual 

2 2

1,2 1,316 1 ,16 16 16star starsr y q q      sensitive only to the fault inputs associated to the 

sensors measuring ,y i , ,z i  and star1q : 
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  (4.48) 

 

8. The residual filter designed from the scalar variable 1 ,17 1,1 1,2 1,3 1,42( )s star star star stary q q q q  , 

with the residual 1,1 1,2 1,3 1,17 1 ,1 47 17 172( )star star star stars q qy qr q     sensitive only to the fault 

inputs associated to the sensors measuring ,y i , ,z i  and star1q : 
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  (4.49) 

 

9. The residual filter designed from the scalar variable 1 ,18 1,1 1,3 1,2 1,42( )s star star star stary q q q q  , 

with the residual 1,1 1,3 1,2 1,18 1 ,1 48 18 182( )star star star stars q qy qr q     sensitive only to the fault 

inputs associated to the sensors measuring ,y i , ,z i  and star1q : 
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  (4.50) 

 

It is worth recalling that these residual filters are actually sensitive to the fault vector 

star star f star  qF q q q  representing the additive form associated to the quaternion fault fq , and not 

the quaternion fault fq  itself. The fault vector 
starqF  can be estimated once the faulty attitude sensor 

has been isolated, by means of fault estimators. Moreover, the estimate of this vector can be directly 

used for fault accommodation. These residual filters exploit the measurements of 

1 1,1 1,2 1,3 1,4[    ]T

star star star star starq q q qq  provided by the first star tracker sensor. 

Moreover, looking at the model equations of these designed filters, it is possible to verify that if a 

fault affecting a generic rate gyro sensor occurs, at least one of the six sensitive residual filters will 

exceed its threshold if the fault size is generally large enough, for any attitude condition. Even if the 

angular velocity variables are multiplied by functions of the spacecraft attitude, it is impossible that 

all the attitude depending functions multiplying a specific angular velocity variable are 

simultaneously equal to or almost zero, thus reducing or nullifying the sensitivity of the generally 

sensitive residual signals to a specific physical fault affecting the rate gyro sensor measurement. 

In fact, the attitude depending functions multiplying the angular velocity variables correspond to the 

elements of the rotation matrix of Eq. (2.14), which is orthogonal by definition. In fact, recalling the 
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expression of the rotation matrix ( )b

oR q  representing the satellite attitude with respect to the orbital 

reference frame, defined as 
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and considering for example the angular velocity variable x,i , it can be seen that the attitude 

depending functions multiplying it in the mathematical models of the residual filters of RB3 are the 

six elements composing the last two rows of ( )b

oR q . Since the matrix is orthogonal, at least two 

elements of these six are nonzero in any attitude condition. Consequently, with the assumption of 

single fault at a time, at least two of the designed residual signals will present significant deviations 

from their nominal fault-free conditions. 

Therefore, the detection of any fault affecting a generic rate gyro sensor is guaranteed for any 

attitude condition. The faults affecting the quaternion vector are always detectable, for any attitude 

or manoeuvre condition, since at least the fault inputs associated to the time derivative of the 

component of the fault vector are not null when a fault occurs, also in a stationary attitude 

condition. The complete fault isolation is performed as already described, by cross-checking the 

nine residual signals and verifying if the diagnostic signals provided by RB4 have different or the 

same behaviours in order to distinguish the type of an occurred fault between quaternion and 

angular velocity faults. 

 

Residual Bank RB4: 

Similarly to the residual filters of RB3, the model equations of the designed residual filters 

composing RB4 result to be sensitive only to possible faults affecting the spacecraft attitude and 

angular velocity sensors. In particular, thanks to the exploitation of the NLGA, each designed 

residual filter results to be sensitive to possible faults affecting the second star tracker sensor and a 

specific couple of rate gyro sensors. The set of residual filters of RB4 results to be sensitive to faults 

affecting the second star tracker sensor, whereas RB3 results to be sensitive to faults affecting the 

first star tracker sensor. Therefore, the isolation of the faulty star tracker sensor is realized by 

checking the residual filter set whose diagnostic signals exceed their selected thresholds. With the 

assumption of a single fault occurring at a time, if the occurred fault affects an attitude sensor, only 

one or more of the diagnostic signals provided by a single specific set of residual filters between 

RB3 and RB4 should provide information about the occurred fault. On the other hand, since both 

RB3 and RB4 are fed with the same spacecraft angular velocity measurements, once a fault occurs 

in one of the spacecraft rate gyros, the residuals in both RB3 and RB4 have the same behaviour, and 

realize the fault isolation in the same way simultaneously. The models of these nine scalar residual 

filters are similar to the ones of RB3, with the only difference that the measurements 

2 2,1 2,2 2,3 2,4[    ]T

star star star star star measuredq q q qq  provided by the second star tracker sensor are exploited, 

and hence their explicit expressions are omitted for simplicity. The same general considerations 

about fault sensitivities made for RB3 are valid. 

 

1. The residual filter designed from the scalar variable 
2 2

1 ,19 2,1 2,2s star stary q q  , with the residual 

19 1 ,19 19sr y    sensitive only to the fault inputs associated to the sensors measuring ,x i , 

,y i  and star1q ; 

2. The residual filter designed from the scalar variable 1 ,20 2,1 2,3 2,2 2,42( )s star star star stary q q q q  , 

with the residual 20 1 ,20 20sr y    sensitive only to the fault inputs associated to the sensors 

measuring ,x i , ,y i  and star1q ; 
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3. The residual filter designed from the scalar variable 1 ,21 2,1 2,4 2,2 2,32( )s star star star stary q q q q  , 

with the residual 21 1 ,21 21sr y    sensitive only to the fault inputs associated to the sensors 

measuring ,x i , ,y i  and star1q ; 

4. The residual filter designed from the scalar variable 2 2

1 ,22 2,1 2,3s star stary q q  , with the residual 

22 1 ,22 22sr y    sensitive only to the fault inputs associated to the sensors measuring ,x i , 

,z i  and star1q ; 

5. The residual filter designed from the scalar variable 1 ,23 2,1 2,4 2,2 2,32( )s star star star stary q q q q  , 

with the residual 23 1 ,23 23sr y    sensitive only to the fault inputs associated to the sensors 

measuring ,x i , ,z i  and star1q ; 

6. The residual filter designed from the scalar variable 1 ,24 2,1 2,2 2,3 2,42( )s star star star stary q q q q  , 

with the residual 24 1 ,24 24sr y    sensitive only to the fault inputs associated to the sensors 

measuring ,x i , ,z i  and star1q ; 

7. The residual filter designed from the scalar variable 2 2

1 ,25 2,2 2,3s star stary q q  , with the residual 

25 1 ,25 25sr y    sensitive only to the fault inputs associated to the sensors measuring ,y i , 

,z i  and star1q ; 

8. The residual filter designed from the scalar variable 1 ,26 2,1 2,2 2,3 2,42( )s star star star stary q q q q  , 

with the residual 26 1 ,26 26sr y    sensitive only to the fault inputs associated to the sensors 

measuring ,y i , ,z i  and star1q ; 

9. The residual filter designed from the scalar variable 1 ,27 2,1 2,3 2,2 2,42( )s star star star stary q q q q  , 

with the residual 27 1 ,27 27sr y    sensitive only to the fault inputs associated to the sensors 

measuring ,y i , ,z i  and star1q . 

 

Tab. 4.2 summarize the new scalar variables determined by means of the NLGA and used to design 

the FDI scalar residual filters, as defined in the previous descriptions of the four banks of residual 

filters. 
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Table 4.2 - Defined NLGA scalar variables 

 

It is worth noting that RB1 and RB2 are the only banks of residual filters sensitive to any fault 

occurring on the actuator subsystems, i.e. in the ACS of the spacecraft, and RB1 allows the direct 

detection and isolation of the faulty subsystem. With the assumption of a single fault occurring at a 

time, the cross-checking of the diagnostic signals provided by these filters is sufficient to detect and 

isolate any possible fault affecting either the actuated control torques or the flywheel spin rate 

sensor measurements. The cross-checking also of the diagnostic signals provided by RB3 and RB4 

is not required if a fault is detected by RB1. On the other hand, the diagnostic signals provided by 

RB3 and RB4 results to be sensitive only to possible faults occurring on the spacecraft attitude and 

angular velocity sensors, i.e. in the ADS of the spacecraft. Again, with the assumption of a single 

fault occurring at a time, the cross-checking of the diagnostic signals provided by these filters is 

sufficient to detect and isolate any possible fault affecting either the star tracker measurements or 

the rate gyro measurements. The cross-checking also of the diagnostic signals provided by RB1 and 

RB2 is not required if a fault is detected by RB3 or RB4. Therefore, the detection and isolation of 

possible faults occurring in the ACS and ADS can be realized by considering these two couple of 

residual filter sets separately. However, the simultaneous cross-checking of all the provided 

diagnostic signals can improve the reliability of the fault detection and isolation scheme and avoid 

the risk of misleading detection and isolation results. 

 

4.3 Supervisor Decision Logic for Fault Isolation 

Obviously, if any residual signal diverges from its fault-free condition, a fault is surely present. A 

wrong detection and isolation of an occurred fault due to possible parametric uncertainties is 

prevented since the designed residual filters are decoupled from the aerodynamic disturbance. A 

more accurate analysis of the residuals is needed in order to correctly isolate the occurred fault. 

A proper decision logic is applied to correctly detect and isolate the occurrence of a fault affecting 

the actuated control torques, the flywheel spin rate sensors or the satellite attitude and angular 

velocity sensors. The joint use of four banks of residual filters requires the exploitation of a decision 

logic based on the cross-check of the diagnostic signals provided by all the distinct designed banks. 
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As already mentioned, each of the four residual filters of RB1 results to be sensitive only to the 

fault affecting a single specific actuator torque and to the fault affecting the corresponding flywheel 

spin rate sensor of the same actuator subsystem. These residual filters are based on the dynamic 

equations (4.5) of the actuators. Hence, each local residual filter of this bank is sensitive to all the 

possible faults affecting only a specific actuator subsystem of the spacecraft ACS. As a 

consequence, it is clear that the exploitation of only the local residual filters does not allow to 

realize a complete fault isolation for the actuator subsystems, since they does not permit to directly 

distinguish if the occurred fault is affecting the actuator torque or the corresponding actuator sensor 

measurement. 

Therefore, it is necessary to exploit also the five designed global residual filters of RB2 to obtain a 

complete fault isolation for the actuator subsystems. In fact, these global residual filters result to be 

sensitive in general to all the mathematical fault inputs associated to the sensors of the spacecraft 

ACS and ADS, i.e. the flywheel spin rate sensors and the spacecraft attitude and angular velocity 

sensors. These residual filters are based on both the dynamic equations (4.5) of the actuators, and 

the dynamic and kinematic equations (4.6) and (4.7) of the spacecraft. The exploitation of these two 

banks of residual filters allows the correct detection and isolation of both the actuator and actuator 

sensor faults. In case of actuator faults, only the generated local residuals of RB1 present deviations 

from their fault-free conditions, possibly leading the residuals to exceed selected thresholds. On the 

other hand, in case of faults on the flywheel spin rate sensors, also the generated global residuals of 

RB2 present in general deviations from their fault-free conditions, possibly leading the residuals to 

exceed selected thresholds. Hence, the cross-check of the residuals generated by these two banks of 

filters working in parallel allows both the detection of a fault occurred in a specific actuator 

subsystem of the ACS by exploiting the local residuals, and the correct discrimination of the actual 

type of fault by exploiting also the global residuals. 

On the contrary, the residual filters of RB3 and RB4 result to be sensitive only to the mathematical 

faults associated to the spacecraft attitude and angular velocity sensors. In fact, they are based only 

on the kinematic equations (4.7) of the spacecraft, which are not depending on the attitude control 

torques generated by the actuators and the corresponding flywheel spin rates. Hence, these two 

banks of residual filters can be exploited for the detection and isolation of faults on the sensors of 

the spacecraft ADS independently from the other two banks of residual filters, with the assumption 

of a single fault at a time. 

As already stated, the design of these two banks is based on the same mathematical models for the 

nine filters in each of them. Each bank of residual filters is fed by the same set of angular velocity 

measurements, since no redundancies for the satellite rate gyros are considered, and a different 

attitude quaternion measurement vector provided by one of the two attitude sensors considered in 

the ADS. The exploitation of a double redundancy of the attitude sensors is required since it would 

not be possible to distinguish between faults on an angular velocity sensor or attitude sensor with 

only a single attitude measurement available. In this way, all the possible spacecraft attitude and 

angular velocity sensor faults can be detected and properly isolated. 

Because of the residual filter design, the residuals of both RB3 and RB4 results to be sensitive in 

general to the faults affecting the rate gyro measurements. Since the residual filters are designed and 

organized in a generalized scheme, each designed residual filter results to be sensitive to faults 

possibly affecting a specific couple of spacecraft rate gyros, and insensitive to the fault possibly 

affecting the remaining spacecraft rate gyros. Moreover, the nine residual filters in RB3  are in 

general sensitive also to the mathematical fault inputs associated to the physical fault affecting the 

sensor measurement of the quaternion vector provided by the first attitude sensor. In the same way, 

the nine residual filters in RB4 are in general sensitive also to the mathematical fault inputs 

associated to the physical fault affecting the sensor measurement of the quaternion vector provided 

by the second attitude sensor. 

Hence, only the residuals of RB3 are sensitive to faults affecting the quaternion measurement from 

the first attitude sensor, whilst only the residuals of RB4 are sensitive to faults affecting the 

quaternion measurement from the second attitude sensor. 
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In case of fault in a spacecraft rate gyro, the sensitive residuals of both the RB3 and RB4 are 

sensitive in the same manner to the occurred fault, and present deviations from their nominal fault-

free conditions, possibly leading the residuals to exceed selected thresholds. The not sensitive 

residuals of both the banks does not present deviations from their fault-free conditions and does not 

exceed the relative selected thresholds. 

On the other hand, in case of faults on the first attitude sensor, only the generated residual signals of 

RB3 present in general deviations from their fault-free conditions, possibly leading the residuals to 

exceed selected thresholds. Finally, in case of faults on the second attitude sensor, only the 

generated residual signals of RB4 present in general deviations from their fault-free conditions, 

possibly leading the residuals to exceed selected thresholds. Hence, the cross-check of the residuals 

generated by these two banks of filters working in parallel allows both the detection and the correct 

discrimination of the actual sensor fault occurred in the ADS. 

As already stated, the residual matrix of Tab. 4.1 summarizes the sensitivities of the designed 

residual signals to each of the physical fault inputs. However, it is worth observing that the 

sensitivity to any specific physical fault of the designed residual filters in RB2, RB3 and RB4 

results to be depending on functions of the quaternion vector after the exploitation of the NLGA to 

decouple the aerodynamic disturbance and other faults. 

Finally, due to the possible presence of measurement noise, proper thresholds have to be selected 

for each generated residual signal in order to achieve the best performances in term of false alarm 

rate and missed fault detection rate. In practice, the value of these thresholds have been 

experimentally selected in the fault-free condition and for each residual signal separately. The 

selected threshold values guarantee a sufficient margin of safety with respect to the greatest residual 

values in the fault-free condition. In the performed simulations the thresholds have been selected 

according to the relation 

 

 const resT      

 

where res  is the standard deviation of the residual signal computed in a fault-free condition and   

represents a positive constant, selected equal to 6   in the performed simulations. The following 

Tab. 4.3 reports the selected values, assumed to be constant during the simulation, such as to keep 

the fault-free residuals safely under these thresholds. 

 

 

Residual Threshold Residual Threshold Residual Threshold

r1 17·10-3 r10 4,5·10-5 r19 4,5·10-5

r2 17·10-3 r11 4,6·10-5 r20 4,6·10-5

r3 17·10
-3 r12 3·10

-5 r21 3·10
-5

r4 17·10
-3 r13 3,8·10

-5 r22 3,8·10
-5

r14 4·10-5 r23 4·10-5

r15 1,6·10
-5 r24 1,6·10

-5

Residual Threshold r16 4,3·10
-5 r25 4,3·10

-5

r5 7,9·10-3 r17 4,4·10-5 r26 4,4·10-5

r6 3,7·10-3 r18 2,6·10-5 r27 2,6·10-5

r7 7,3·10
-3

r8 23·10
-3

r9 8,1·10-3

RB2

RB1 RB3 RB4

 
Table 4.3 - Selected threshold values for the designed residuals. 
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4.4 Simulation Results 

In order to show the performances brought by the application of the proposed FDI scheme when 

applied to the considered satellite attitude control system, the results achieved in the Matlab® and 

Simulink® environments are shown in the following subsections. 

It is assumed that the measurement noises affecting the satellite attitude sensors are modelled by 

stochastic processes with zero mean, and standard deviation equal to 51.4544 10  rad, or 3 arcsec. 

The noises affecting the satellite rotational speed sensors are modelled by stochastic processes with 

zero mean, and standard deviation equal to 51.4544 10  rad/s, or 3 arcsec/s. Concerning the 

flywheel spin rate sensors, their noises are modelled by stochastic processes with zero mean, and 

standard deviation equal to 0.1554 rad/s, or 1.5 rpm. 

A terrestrial mission with a circular orbit at an altitude of 350 km and null inclination, with a low 

Earth equatorial orbit radius 6728.140orbitR   km, the Earth mass of 245.9742 10EarthM    kg, and 

radius of 6378.140EarthR   km is considered. The satellite's body is modelled as a rectangular 

parallelepiped whose the principal dimensions (depth, width and height) are 0.6d   m, 2w   m, 

and 7.5h   m, [0.1   0.15  0.35]cpc    m is the aerodynamic torque displacement vector, while the 

inertia values are 330A  kg/m2, 280B   kg/m2, 60C   kg/m2. The reaction wheels maximal 

torque is set to 1.5 Nm. The atmosphere density is 11 36·10 kg / mmax    , the drag coefficient is 

2.2DC  , and the orbital velocity with respect to the atmosphere is 8187.63V   m/s for a prograde 

orbit (i.e. an orbit in the same direction of the Earth rotation), and   is equal to the Earth's 

gravitational constant, 13 3 239.86004418·10 m / s  . A flywheel moment of inertia J=0.005 kg/m2 

and initial flywheel spin rate values 0 [ 5.235  5.235  5.235  5.235]T

w     ω  rad/s (i.e. -50 rpm) 

for the three considered momentum wheels are assumed. A simulation time of 60 s with a sampling 

time of 0.1 s is considered. 

 

4.4.1 Considered fault scenarios: 

Twelve different fault scenarios are considered, concerning both the actuators and sensors in the 

ACS and ADS, with a single fault at a time starting at 10faultt   s. These considered scenarios aim 

to cover some quite general fault conditions, which can appear in real applications. The considered 

fault scenarios are modelled as additive fault functions as follows: 

 

1. Fault scenario n.1: step fault, constant bias on the actuated control torque ,2ctrlT : 
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2. Fault scenario n.2: sinusoidal fault on the actuated control torque ,2ctrlT : 
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3. Fault scenario n.3: rectangular pulse fault on the actuated control torque ,2ctrlT : 
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4. Fault scenario n.4: ramp fault on the actuated control torque ,2ctrlT : 
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5. Fault scenario n.5: failure of the actuator providing the actuated control torque ,2ctrlT : 
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6. Fault scenario n.6: step fault, constant bias on the measured flywheel spin rate ,3w : 
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7. Fault scenario n.7: sinusoidal fault on the measured flywheel spin rate ,3w : 
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8. Fault scenario n.8: failure of the sensor measuring the flywheel spin rate ,3w : 
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9. Fault scenario n.9: step fault, constant bias on the measured satellite angular velocity 1 : 
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10. Fault scenario n.10: lock-in-place fault, stuck measure of the satellite angular velocity 1 : 
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11. Fault scenario n.11: loss of effectiveness of the sensor measuring the angular velocity 1 : 
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12. Fault scenario n.11: constant quaternion vector fq  multiplying the true quaternion trueq : 
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In this last fault scenario, the equivalent additive fault vector 
starqF  is derived by Eq. (2.55), and 

hence it depends on the actual quaternion vector in each instant. The fault quaternion fq  

corresponds to a rotation of -180 arcsec, or -0.05 deg, around the bx -axis (roll axis). 

 

These fault scenarios can be divided on the basis of the affected subsystem of the satellite ADCS: 

 

1. Fault scenarios from n.1 to n.8 concern the occurrence of faults affecting the actuators and 

flywheel spin rate sensors composing the Attitude Control System (ACS) of the satellite; 

2. Fault scenarios from n.9 to n.12 concern the occurrence of faults affecting the attitude and 

angular velocity sensors composing the Attitude Determination System (ADS) of the 

satellite. 

 

Both abrupt and incipient faults are considered, affecting both satellite actuators and sensors. 

Moreover, in order to improve the significance and visibility of the considered faults, an attitude 

change manoeuvre is considered. The considered manoeuvre starts at 5mant   s from the initial 

attitude quaternion vector 0 [ 0.0570  0.3180  0.1663  0.9316]T q  to the final attitude quaternion 

vector [ 0.0367  0.2975  0.1774  0.9374]T q . If expressed as Euler angles, these vectors 

represent attitudes equal to 0 0 0[     ] [ 15  35  25]T T      deg and [     ] [ 12  33  25]T T      deg, 

respectively. 
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4.4.2 Detection and Isolation of Faults in the Satellite ACS 

Let us start considering the occurrence of faults affecting the actuators. In the first fault scenario, 

i.e. a step fault on the control torque ,2ctrlT , the occurred fault can be detected and isolated by 

exploiting the residual cross-checking procedure illustrated in Section 4.3. Figs. 4.1 and 4.2 show 

the disturbance decoupled diagnostic signals provided by the banks RB1 and RB2 of local and 

global residual filters, respectively. For all the fault scenarios related to the ACS, only the residuals 

of RB1 and RB2 are shown, since the fault detection and isolation can be realized by means of these 

two banks of residual filters. The residual filters of RB3 and RB4 are, by construction, not sensitive 

to any fault affecting the actuators or sensors of the ACS since they are based on the kinematic 

equations of the spacecraft model. The selected thresholds are depicted in red in the figures. After 

the fault occurrence, the local residual 2r  sensitive to the faults affecting the second actuator 

subsystem show a deviation from the initial fault-free condition and it exceeds the selected 

threshold. On the contrary, the other local residuals 1r , 3r  and 4r  do not exceed their thresholds, 

meaning that the first, third and fourth actuator subsystems are properly working. On the other 

hand, it can be seen that the global residuals 5r , 6r , 7r , 8r  and 9r , which are not sensitive to any 

fault affecting the attitude control inputs maintain values near to zero and do not exceed the selected 

thresholds. Hence, the threshold exceeding of only this specific local residual allows the isolation of 

the faulty actuator subsystem, whilst all the global residuals not exceeding their thresholds mean 

that the occurred fault in the second actuator subsystem is actually affecting the actuated control 

torque. 
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Figure 4.1 - Fault scenario n.1: local residuals of RB1 sensitive to fault inputs associated to physical actuator and 

flywheel spin rate sensor faults in case of step fault on the control input ,2ctrlT . 
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Figure 4.2 - Fault scenario n.1: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of step fault on the control input ,2ctrlT . 

 

A similar behaviour for both the global and local residual signals is shown in Figs. 4.3, 4.4, 4.5 and 

4.6 in case of the second and third fault scenarios, i.e. the sinusoidal and rectangular pulse faults 

affecting the attitude control input ,2ctrlT . Therefore, in both these scenarios the occurred fault can be 

detected and isolated by means of the described cross-checking procedure.  
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Figure 4.3 - Fault scenario n.2: local residuals of RB1 sensitive to fault inputs associated to physical actuator and 

flywheel spin rate sensor faults in case of sinusoidal fault on the control input ,2ctrlT . 



92  4 FDI IMPLEMENTATION IN THE SATELLITE ADCS 

 

0 10 20 30 40 50 60

-5

0

5

x 10
-3

r 5

0 10 20 30 40 50 60
-4

-2

0

2

4
x 10

-3

r 6

0 10 20 30 40 50 60

-5

0

5

x 10
-3

r 7

0 10 20 30 40 50 60

-0.02

0

0.02

r 8

0 10 20 30 40 50 60

-5

0

5

x 10
-3

r 9

Time (sec)

 
Figure 4.4 - Fault scenario n.2: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of sinusoidal fault on the control input ,2ctrlT . 
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Figure 4.5 - Fault scenario n.3: local residuals of RB1 sensitive to fault inputs associated to physical actuator and 

flywheel spin rate sensor faults in case of rectangular pulse fault on the control input ,2ctrlT . 
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Figure 4.6 - Fault scenario n.3: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of rectangular pulse fault on the control input ,2ctrlT . 

 

In these three considered fault scenarios, a prompt and accurate detection and isolation of the abrupt 

fault is realized, with detection times abundantly smaller than det 1t   s. On the other hand, in Figs. 

4.7 and 4.8, the occurrence of an incipient ramp fault is considered. Again, only the second local 

residual of RB1 presents a deviation from its fault-free condition, and it exceeds the selected 

threshold. However, the detection time is significantly larder due to the slow increasing of the 

occurred ramp fault, and thus of the sensitive residual. The fault is effectively detected at about 

det 30t   s. 
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Figure 4.7 - Fault scenario n.4: local residuals of RB1 sensitive to fault inputs associated to physical actuator and 

flywheel spin rate sensor faults in case of ramp fault on the control input ,2ctrlT . 
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Figure 4.8 - Fault scenario n.4: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of ramp fault on the control input ,2ctrlT . 

 

Finally, the total failure of the actuator providing the attitude control input ,2ctrlT  is considered. Figs. 

4.9 and 4.10 show the behaviour of the local and global residuals of RB1 and RB2 in case of failure 

of the second actuator. 

 
Figure 4.9 - Fault scenario n.5: local residuals of RB1 sensitive to fault inputs associated to physical actuator 

faults and corresponding flywheel spin rate sensor faults in case of failure of the second actuator. 
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Figure 4.10 - Fault scenario n.5: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of failure of the second actuator. 

 

Considering the occurrence of faults affecting the sensor measurement of ,3w , the occurred fault 

can be detected and isolated again by exploiting the residual cross-checking procedure illustrated in 

Section 4.3. Figs. 4.11 and 4.12 show the diagnostic signals provided by RB1 and RB2 respectively, 

in case of the sixth fault scenario, i.e. a step fault affecting the measurement of ,3w . Similarly to 

the case of actuator fault, after the occurrence of a fault in the third flywheel spin rate sensor, the 

local residual 3r  sensitive to the faults affecting the third actuator subsystem shows a deviation from 

the initial fault-free condition and it exceeds the selected thresholds. On the contrary, the other local 

residuals 1r , 2r  and 4r  do not exceed their thresholds, meaning that the first, second and fourth 

actuator subsystems are properly working. On the other hand, now it can be seen that now the 

global residuals 5r , 6r , 7r , 8r  and 9r , which are in general not sensitive only to faults affecting the 

control inputs, now exceed the selected thresholds. Hence, the threshold exceeding of this specific 

local residual allows the isolation of the faulty actuator subsystem, whereas the threshold exceeding 

of the global residuals means that the occurred fault in the third actuator subsystem is actually 

affecting the respective flywheel spin rate sensor. It is worth noting that the residuals result to be 

sensitive mainly to the mathematical fault input 
3 ,3 ,3 ,3measured truex w wf     associated with the time 

derivative of the occurred flywheel spin rate sensor fault. Hence, in case of constant fault (i.e. a step 

fault), the stabilizing residual feedback in the residual filter models cause the diagnostic signals to 

return to zero in a certain time after the fault occurrence, with a convergence speed depending on 

the value of the selected filter gains 0K  . 



96  4 FDI IMPLEMENTATION IN THE SATELLITE ADCS 

 

0 10 20 30 40 50 60

-0.01

0

0.01

r 1

0 10 20 30 40 50 60

-0.01

0

0.01

r 2

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

r 3

0 10 20 30 40 50 60

-0.01

0

0.01

r 4

Time (sec)

 
Figure 4.11 - Fault scenario n.6: local residuals of RB1 sensitive to fault inputs associated to physical actuator 

faults and corresponding flywheel spin rate sensor faults in case of step fault on the sensor output ,3measuredw . 
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Figure 4.12 - Fault scenario n.6: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of step fault on the sensor output ,3measuredw . 

 

Figs. 4.13, 4.14, 4.15 and 4.16 show the local and global residuals in case of the seventh and eighth 

fault scenarios, i.e. a sinusoidal fault and the total failure of the sensor providing the measurement 

of ,3w , respectively. 
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Figure 4.13 - Fault scenario n.7: local residuals of RB1 sensitive to fault inputs associated to physical actuator 

faults and corresponding flywheel spin rate sensor faults in case of sinusoidal fault on the sensor output 

,3measuredw . 
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Figure 4.14 - Fault scenario n.7: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator faults in case of sinusoidal fault on the sensor output ,3measuredw . 
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Figure 4.15 - Fault scenario n.8: local residuals of RB1 sensitive to fault inputs associated to physical actuator 

faults and corresponding flywheel spin rate sensor faults in case of failure of the sensor measuring ,3w . 
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Figure 4.16 - Fault scenario n.8: global residuals of RB2 not sensitive to any fault input associated to physical 

actuator torque faults. In this case, all the global residuals exceed the selected thresholds in case of  failure of the 

sensor measuring ,3w . 

 

4.4.3 Detection and Isolation of Faults in the Satellite ADS 

Now, considering the occurrence of faults affecting the sensors of the satellite ADS, the ninth fault 

scenario, i.e. a step fault on the sensor measurement of  ,x i , the occurred fault can be detected and 

isolated again by exploiting the residual cross-checking procedure illustrated in Section 4.3.  
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In this case, only the residuals provided by RB3 and RB4 are effectively exploited for the detection 

and isolation of faults affecting the sensors of the ADS. 

Figs. 4.17, 4.18 and 4.19 show the diagnostic signals provided by the residual filters of RB3. Each 

of the nine obtained residual signals results to be sensitive to faults affecting a specific couple of 

angular velocity sensors. Hence, organizing these signals in a generalized scheme, in each of these 

three figures the residual signals are grouped depending on the specific couple of angular velocity 

sensor faults they are sensitive to. The signals in Fig. 4.17 are sensitive to possible faults affecting 

the measurements of ,x i  and ,y i , the signals in Fig. 4.18 are sensitive to faults affecting the 

measurements of  ,x i  and ,z i , and finally, the signals of Fig. 4.19 are sensitive to faults affecting 

the measurements of ,y i  and ,z i . As it can be seen by exploiting the cross-check of these three 

subsets of signals, all the residual signals of Fig. 4.19 does not exceed their thresholds, thus 

meaning that the occurred fault is not affecting the measurements of ,y i  and ,z i , while the 

residuals in both Figs. 4.17 and 4.18 exceed their thresholds. As already stated, it can be proven that 

at least a residual signal of three exceeds its threshold in any attitude condition of the spacecraft if 

the actual sensor fault is not zero for each subset of three sensitive residuals. Hence, the detection 

and isolation of the fault occurred on the sensor measuring ,x i  can be easily achieved. 
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Figure 4.17 - Fault scenario n.9: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i , in case of step fault on the sensor output , measuredx i . 
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Figure 4.18 - Fault scenario n.9: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i , in case of step fault on the sensor output , measuredx i . 
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Figure 4.19 - Fault scenario n.9: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,y i  and ,z i , in case of step fault on the sensor output , measuredx i . 

 

Figs. 4.20, 4.21 and 4.22 show the same sets of residual signals but provided by the residual filters 

of RB4. Since the residual filters of these two banks are based on the same models and exploits the 

same set of angular velocity measurements, with the assumption of single fault, the combined cross-

check of the residuals of the two banks gives a confirmation of the correct fault isolation. In fact, in 

both RB3 and RB4 the corresponding signals have the same behaviours and each bank of diagnostic 

signals indicate the occurrence of a fault affecting the sensor measuring ,y i . 
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Figure 4.20 - Fault scenario n.9: residuals of RB4, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i , in case of step fault on the sensor output , measuredx i . 
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Figure 4.21 - Fault scenario n.9: residuals of RB4, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i , in case of step fault on the sensor output , measuredx i . 
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Figure 4.22 - Fault scenario n.9: residuals of RB4, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,y i  and ,z i , in case of step fault on the sensor output , measuredx i . 

 

Figs. 4.23, 4.24, 4.25, 4.26, 4.27 and 4.28 show the detection and isolation results provided by RB3 

in case of the tenth and eleventh fault scenarios, i.e. the lock-in-place (stuck) and loss-of-

effectiveness faults on the sensor measuring ,x i , respectively. The results provided by RB4 are 

similar, and hence omitted for simplicity. 
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Figure 4.23 - Fault scenario n.10: residuals of RB4, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i , in case of lock-in-place fault on the sensor output , measuredx i . 
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Figure 4.24 - Fault scenario n.10: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i , in case of lock-in-place fault on the sensor output , measuredx i . 

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

3

x 10
-5

r 1
6

0 10 20 30 40 50 60

-4

-2

0

2

4
x 10

-5

r 1
7

0 10 20 30 40 50 60

-4

-2

0

2

4

x 10
-5

r 1
8

Time (sec)

 
Figure 4.25 - Fault scenario n.10: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,y i  and ,z i , in case of lock-in-place fault on the sensor output , measuredx i . 
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Figure 4.26 - Fault scenario n.11: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i , in case of loss-of-effectiveness fault on the sensor output 

, measuredx i . 
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Figure 4.27 - Fault scenario n.11: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i , in case of loss-of-effectiveness fault on the sensor output 

, measuredx i . 
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Figure 4.28 - Fault scenario n.11: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,y i  and ,z i , in case of loss-of-effectiveness fault on the sensor output 

, measuredx i . 

 

Finally, considering the twelfth fault scenario, i.e. the additive fault 
1starqF  on the sensor 

measurement of 1starq , the occurred fault can be detected and isolated again by exploiting the 

residual cross-checking of the sets of nine diagnostic signals provided by the residual filters of the 

two banks RB3 and RB4. As it can be seen, Figs. 4.29, 4.30 and 4.31 show the diagnostic signals 

provided by RB3. These signals results to be sensitive to faults affecting the first attitude sensor. 

Hence, they exceed their thresholds because the nine residual filters of RB3 are sensitive to faults 

affecting the attitude measurements provided by the first attitude sensor only. 
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Figure 4.29 - Fault scenario n.12: residuals of RB3, sensitive to fault inputs associated to the physical faults on 

the sensor measuring ,x i , ,y i  and 1starq , in case of fault on the first measured attitude quaternion vector. 
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Figure 4.30 - Fault scenario n.12: residuals of RB3, sensitive to fault inputs associated to the physical faults on 

the sensor measuring ,x i , ,z i  and 1starq , in case of fault on the first measured attitude quaternion vector. 
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Figure 4.31 - Fault scenario n.12: residuals of RB3, sensitive to fault inputs associated to the physical faults on 

the sensor measuring ,y i , ,z i  and 1starq , in case of fault on the first measured attitude quaternion vector. 

 

On the contrary, Figs. 4.32, 4.33 and 4.34 show the diagnostic signals provided by RB4. These 

signals results to be not sensitive to faults affecting the first attitude sensor. Hence, they do not 

exceed their thresholds because the nine residual filters of RB4 are sensitive to faults affecting the 

attitude measurements provided by the second attitude sensor only. 
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Figure 4.32 - Fault scenario n.12: residuals of RB4, sensitive to fault inputs associated to the physical faults on 

the sensor measuring ,x i , ,y i  and 2starq , in case of fault on the first measured attitude quaternion vector. 
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Figure 4.33 - Fault scenario n.12: residuals of RB4, sensitive to fault inputs associated to the physical faults on 

the sensor measuring ,x i , ,z i  and 2starq , in case of fault on the first measured attitude quaternion vector. 
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Figure 4.34 - Fault scenario n.12: residuals of RB4, sensitive to fault inputs associated to the physical faults on 

the sensor measuring ,y i , ,z i  and 2starq , in case of fault on the first measured attitude quaternion vector. 

 

Therefore, from the comparison of these three sets of signals, it is clear that the first attitude sensor 

measuring 1starq  is affected by a fault. 
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5 FAULT DETECTION AND DIAGNOSIS 

 

This chapter provides an overview of the FDD problem, together with the general description of the 

adaptive fault estimation algorithm exploited in this thesis for the on-line accurate estimation of the 

occurred fault. The sensor and actuator faults are modelled by means of radial basis function neural 

networks, allowing designing generalized fault estimation adaptive observers, which do not need 

any a priori information about the fault internal model. The on-line learning capability of the radial 

basis function neural network allows obtaining accurate adaptive estimates of the occurred faults. 

 

5.1 General Overview 

In Chapter 3, the terms fault detection, fault isolation, and fault identification were introduced. As 

stated, fault detection is absolutely necessary for any practical application. Fault identification, on 

the other hand, whilst undoubtedly helpful, may not be essential if no controller redesign is 

involved. In Active Fault Tolerant Control (AFTC) however, the fault feature is one of the most 

critical information required for controller redesign (Patton 1997a; Zhang and Jiang 2008). Hence, 

the fault identification/estimation must be considered in an AFTC process, in which not only the 

fault alarm and location of the faults are required, but also the time response characteristic of each 

fault should be known. 

The term Fault Detection and Diagnosis (FDD) tends to be used totally in the aerospace flight 

control community, whereas the wider control-based fault diagnosis community tend to use the term 

Fault Detection and Isolation (FDI). However, it should be clear the difference between these two 

terms. In particular, FDI does not include fault reconstruction/estimation/identification and this 

should be reserved for the topic of FDD.  

A common purpose of the FDD functions is to serve either individually or in combination with 

others for the actuation of a particular fault accommodation scheme, to detect, isolate and estimate 

faults so that this information can be used in a fault accommodation scheme (AFTC) (Zhang and 

Jiang 2008). The FDD system provides descriptive information to reconstruct a fault in the form of 

a signal and notify the AFTC which accommodates the faults by adaptively controlling system 

dynamics or reconfiguring system structure. A real-time Fault Estimation (FE) function is 

nowadays regarded as a must-have feature as AFTC schemes require accurate fault information. In 

this thesis a FE approach is used to provide fault information for fault accommodation within AFTC 

schemes. 
The topic of FE has become well accepted in the control community based on various robust estimation 

approaches (Edwards et al. 2000; Jiang et al. 2004; Gao et al. 2007). If a fault can be perfectly (or 

accurately) estimated, all the information including type, size, location and time of occurring can be 

obtained. Fig. 5.1  shows the structure of FE-based FDD design, in which the FDD function often 

makes use of FE-based FDD design rather than residual-based FDI design. 

 



110   5 FAULT DETECTION AND DIAGNOSIS 

 

 
Figure 5.1 - Schematic description of model-based FDD method (Sun 2013). 

 

In general, the determination of accurate fault signal values has become an attractive subject since 

FE gives a more direct way to achieve the fault information (detection and isolation) than the 

alternative use of fault indicator or residual signals. The FE approach is a more direct way to obtain 

this information and the fault estimates can be used directly within some AFTC strategies, for 

example using fault-hiding and fault compensation (Blanke et al. 2006; Wu et al. 2006; Zhang 

2009; Ponsart et al. 2010; Nazari et al. 2013). The advantage of model based FDD is to make full 

use of the information of the process. Nevertheless, the FE problem is always accompanied by some 

estimation uncertainty, which can be minimized according to a suitable robustness performance. 

Thus, the performance would heavily depend on the accuracy of the system model, specifically for 

the quantitative model-based approaches. In other words, FE can be used to achieve fault detection, 

isolation and identification in one step instead of two or three steps, but it is essential that the 

robustness problem is solved correctly. 

Similarly to FDI problems, since it is not possible to obtain a perfect model as the systems are 

nonlinear in nature and there is often disturbance or system uncertainty, the mismatch between the 

mathematic model and real system may cause some problems and enough attention should be paid. 

For instance, the mismatch may cause false alarms and deteriorate the performance of the system to 

some extent that the FDD/FE system may even become totally useless. Therefore, it could be a key 

issue to design a robust FDD/FE system, which is insensitive to unknown inputs such as 

disturbances, noises and model uncertainty. 
Observer designs have received increasing attention in the literature due to the availability of powerful 

control theory tools. The principle underling observer design is used to estimates of the actual system 

output (Frank 1987). The output estimation error is obtained by comparing the estimated system outputs 

and their measured or expected values. Consequently, the residuals or FE signals are designed as a 

function of the output estimation error. 
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Figure 5.2 - Observer-based FDI/FDD schemes (Sun 2013). 

 

5.2 Fault Diagnosis Based on NLGA and Neural Networks 

In this section, the development of an adaptive fault estimation filter/observer for an affine 

nonlinear system, providing fault size estimation based on a neural network, is presented. 

Moreover, the uniformly ultimately boundedness property of the closed-loop system error of the 

fault estimator is formally proven. 

 

5.2.1 Radial Basis Function Neural Networks 

Radial Basis Function Neural Networks (RBF-NN)s are a type of feed-forward neural networks. 

They are used in a wide variety of contexts such as function approximation, pattern recognition, and 

time series prediction (Park and Sandberg 1991; Chen and Chen 1995; Buhmann 2003). Networks 

of this type have the universal approximation property. The standard RBF neural network consists 

of three layers: an input layer, a hidden layer with N  neurons, and an output layer. Fig. 5.3 shows a 

schematic representation of the RBF neural network. The number of the nodes in the input and 

output layers is decided by the research objects. The nodes in the input layer and output layer 

represent the vector from an input space and a desired network response, respectively. Through a 

defined learning algorithm, the error between the actual and desired response can be  minimized by 

optimization criterions. 

Each of the input nodes is connected to all the nodes or neurons in the hidden layer through unity 

weights (direct connections). While each of the hidden layer nodes is connected to the output node 

through some weights, for example, the i-th output node is connected with all the hidden layer 

nodes by ,1 ,( ),..., ( )( )
T

i i Ni
w t w tW t     , each neuron finds the distance, normally applying Euclidean 

norm, between the input and its centre and passes the resulting scalar through a nonlinearity. So,  as 

depicted in Fig. 5.3, the i-th output node of the RBF network can be expressed as follows: 

 

 ,

1

( )
N

i i k k k

k

y w x 


   (5.1) 

 

where 1 2[ , ,..., ]T

nx x x x  is an input value, n  is the number of input node, kc  is the centre of the k-

th RBF node in the hidden layer, 1,2,...,k N , and N  is the number of hidden nodes. 

kx  denotes Euclidean distance between k  and x , k is the nonlinear transfer function of the 
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k-th RBF node, ,i kw  is the weighting value between the k-th RBF node and the i-th output node and 

m  is the number of output nodes. 

 

 
Figure 5.3 - Schematic representation of RBF neural network. 

 

Eq. (5.1) reveals that the output of the network is computed as a weighted sum of the hidden layer 

outputs. The nonlinear output of the hidden layer is described as k , which is radial symmetrical. 

Different types of radial basis functions could be used, but the most common is the Gaussian 

function. In this thesis, the function chosen as activation function for the neural network is the 

Gaussian function, defined as follows: 

 

 

2

2
( ) exp k

k

k

x
x






 
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 
 (5.2) 

 

where k  and k  are the parameters of position and width of the k-th RBF node respectively. In 

fact, the activation function most commonly used for classification and regression problems is the 

Gaussian function, because it is continuous, differentiable, it provides a softer output and improves 

the interpolation capabilities. The general procedure to design an RBF neural network for functional 

approximation problem is shown below: 

 

1. Initialize number N  of the RBF nodes; 

2. Initialize position k  of the RBF nodes; 

3. Initialize the width k  of the RBF nodes; 

4. Calculate the optimum value for the weights ,i kw ; 

5. In case, it could be also possible to apply local search algorithms to adjust the parameters of 

the radial basis functions (i.e. the number, widths and positions of the RBF nodes and the 

corresponding weights) for self-organizing neural networks with adaptive procedures, in 

order to achieve the best estimation performances in any operative and fault condition. 

 

5.2.2 Adaptive RBF-NN Filter for Generic Fault Estimation 

The RBF Neural Network is exploited to model a generic fault function by means of Radial Basis 

Functions (RBF)s in adaptive fault estimation filters/observers (Wang et al. 2011; Baldi et al. 2013, 

2014a, 2015; Castaldi et al. 2014). The on-line learning capability of the Radial Basis Function 
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Neural Network allows obtaining accurate adaptive estimates of the occurred faults. Moreover, the 

use of a Radial Basis Function Neural Network allows designing generalized fault estimation 

adaptive observers which do not need any a priori information about the fault internal model. The 

generic scalar nonlinear model of the affine form  

 

 
( ) ( ) ( )

( )

x n x g x u x f

y h x
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


 (5.3) 

 

with initial condition 0(0)x x  is considered. For a sufficiently large number N  of hidden-layers 

neurons and if the system state x  takes on values in a sufficiently large compact set nX  , a 

weight matrix W  can be determined such that a continuous fault function f  is approximated by the 

RBF-NN and the generic fault function f  can be linearly parameterized, with a guaranteed finite 

model error *

me , as follows (Chen and Chen 1995): 
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 (5.4) 

 

where * NW   is an (unknown) optimal constant weight matrix, i.e. * 0W  , ( )x  is a known 

vector of basis functions of the form  1 2( ) ( ), ( ),..., ( )
T N

Nx x x x     , k  is k-th radial basis 

function and e  is an approximation error (residual error) between the actual fault function and its 

optimal RBF approximation, due to the number and type of the selected RBFs. 

The general model of an adaptive fault estimator, based on a RBF-NN for a system affine in the 

fault inputs as Eq. (5.3), can be defined as follows in a filter form (Benini et al. 2008): 
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 (5.5) 

 

or, in an alternative way, in an observer form (Benini et al. 2008): 
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where 0K   represents the filter/observer gain, which can be designed such that the residual 

generator of Eq. (5.5) is asymptotically stable with a good fault sensibility versus noise attenuation 

ratio. The unknown fault function f  is linearly parameterized in Eq. (5.5) by a RBF-NN: 

 

 ˆ ˆ ( )f W   (5.7) 

 

with the weight matrix ˆ NW   determined by the following adaptive weight update law: 

 

 ˆ ( )TW D    (5.8) 

 

where 0   is the learning ratio (positive fixed gain) and D  is a proper constant matrix such that 

the RBF-NN adaptive filter composed by Eq. (5.5) with the fault estimate of Eq. (5.7) and the 
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weight adaptive law of Eq. (5.8) is asymptotically stable and the fault estimate converges to the real 

fault value. The residual   which drives the adaptive law of the RBF weight matrix (and thus the 

behaviour of the fault estimate) returns to zero when the obtained fault estimate f̂  converges to the 

actual fault f , and consequently the weight adaptation stops. 

 

5.2.3 Estimation Error Boundedness 

The estimation error can be defined as the difference between the true exogenous disturbance and 

its estimation: 
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 (5.9) 

 

where the term ( ) ( ( ))W t x t  represents the adaptation error, i.e. the difference between the optimal 

and the estimated RBF approximation. The weight error vector is defined as ˆ( ) ( ) ( )W t W t W t  . 

The estimation error este  can be proven to be bounded (Castaldi et al. 2014). The origin of the 

system composed by the detection filter of Eq. (5.5) and the adaptive law of Eq. (5.8) is globally 

asymptotically stable (0-GAS) with respect to the input me  if there exist a matrix D  and a positive 

definite matrix P  such that 
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In fact, starting by defining the following function 
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its time derivative is hereafter obtained, considering an optimal constant weight matrix, as 
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If P D  and 0PK  , it follows that 

 

 2 0     0V PK       (5.11) 

 

The Lyapunov function derivative V  is only semi-definite negative, i.e. ( , ) 0V W   for 0   and 

0W  . This implies that only the filter error (residual)   goes to zero whilst W  can be finite and 

different from zero. The LaSalle's Principle can be applied to deduce that also ( )W t  goes to the 

origin if t  . Taken the bounded set 

 

  1( , ) | ( )N
C x W V x C         

 

such that 0V   for all Cx , defining CS   by 
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  | ( ) 0C
S x V x    

 

and with M  the largest invariant set in S , then, whenever 0 Cx  , all the trajectories starting from 

0x  approach to M  as t  . In this case the invariant set M  is composed by only one equilibrium 

point, that is the origin ( ,W) (0,0)  . 

Starting from the these results, it is straightforward to see that the estimation error is bounded. 

Thanks to the Local ISS property of the system (Sontag, Wang 1996), Lemma I.1) the weight error 

vector is bounded, i.e. there exist two functions   ( KL -class) and   ( K -class) such that 
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from which it results 
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6 FDD IMPLEMENTATION IN THE SATELLITE ADCS 

 

The overall satellite FDD system consists of the previously described FDI module and of a FE 

module, whose outputs (i.e. the fault estimates) are enabled only once an occurred fault has been 

accurately detected and isolated by the FDI module, i.e. the four banks of designed residual filters 

and the relative residual cross-checking procedure. This fault estimation module consists of thirteen 

independent adaptive fault estimators, each of them responsible of providing the estimate of a 

specific fault affecting one of the actuated attitude control torques or sensor measurements. 

These adaptive fault estimators are derived from the model equations (4.5) and (4.7), and from the 

derived residual filters and they are exploited in order to accurately estimate the size of the occurred 

faults, by exploiting Radial Basis Function Neural Networks (RBF-NN)s. As it will be shown, with 

the assumption of a single fault at a time, the use of these adaptive fault estimators allows obtaining 

very accurate fault estimates. 

This chapter presents the development of the nonlinear FE adaptive filters providing the estimation 

of the fault sizes. The information brought by the fault size estimations can be very useful for off-

line maintenance purposes and for on-line reconfiguration of the automatic control system. The 

proposed fault estimation algorithm is based on the NLGA and Radial Basis Function Neural 

Networks (RBF-NN)s. 

 

6.1 Design of Adaptive RBF-NN Filters for Fault Estimation in the 

Satellite ACS 

Thanks to the NLGA procedure, scalar 1sx -subsystems affine in the actuator fault inputs have been 

derived from the spacecraft nonlinear model in Chapter 4. Considering the components of the 

spacecraft ACS, the adaptive filters for the estimation of faults affecting the control torques 

,1 ,2 ,3 ,4

T

ctrl ctrl ctrl ctrlctrl
T T T T   T  are derived from the models of the local residual filters of RB1, 

which have been designed in Chapter 4. As previously stated, each of these local residual filters is 

sensitive only to faults affecting a single actuator subsystem, and hence a single control torque since 

they are based on the dynamic equations of the actuators. 

On the basis of the adaptive filter model of Eq. (5.5), the general model of Eq. (4.36) of these scalar 

local residual filters for the 1sx -subsystems can be modified, in order to obtain adaptive filters based 

on a RBF-NN for the estimation of faults affecting the attitude control inputs ctrlT , as follows: 
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 (6.1) 

 

where 0K   and the unknown fault function uf  affecting the control torque is linearly 

parameterized in Eq. (6.1) by a RBF-NN: 

 

 ˆ ˆ ( )f W   (6.2) 

 

with the weight vector ˆ NW   determined by the following adaptive weight update law: 

 

 ˆ ( ) ( )T TW D D        (6.3) 
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where 0   is the learning ratio, D is a proper constant value such that the RBF-NN adaptive filter 

with model defined by Eqs. (6.1), (6.2) and (6.3) is asymptotically stable. 

The selected value D of the adaptive filters should guarantee good convergence speeds of the fault 

estimates together with a sensitivity to the noise as low as possible. The residual   which drives the 

adaptive law of the RBF weight matrix (and thus the behaviour of the fault estimate) returns to zero 

when the obtained fault estimate ˆ
uf  converges to the actual actuator fault uf . 

The assumption of single fault occurring at a time and the exploitation of the local residual filter 

models allows to design RBF-NN adaptive fault estimation filters which directly provide the 

estimates ˆ
uf  of the possible faults u ctrl cf T T   affecting a specific actuated control torques. The 

output of the RBF-NN adaptive estimation filter is activated once the corresponding actuator fault 

has been isolated by the FDI module described in Chapter 4. 

Starting from Eqs. (4.5), (6.1), (6.2) and (6.3), it results that the models of the scalar adaptive 

estimation filters for faults affecting the four actuated attitude control torques considered in this 

thesis can be written as follows: 
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In particular, for the adaptive filters described above, N=11 Gaussian RBFs have been considered, 

with width 200k   and centres k  equally spaced between -200 rad/s and 200 rad/s (±1909 rpm). 

On the other hand, once a fault on one of the four flywheel spin rate sensors has been correctly 

detected and isolated by the FDI module, the output of the corresponding RBF-NN adaptive fault 

estimation filter is enabled. Again, the models of the four local residual filters of RB1 are exploited 

in order to design four distinct RBF-NN adaptive fault estimation filters. However, in this case 

these adaptive filters have not been designed exactly on the basis of the adaptive filter model of Eq. 

(5.5), but on the basis of a slightly modified version. 

This is made in order to allow the direct and accurate estimation ˆ
w

F  of the actual fault affecting the 

flywheel spin rate sensor. Therefore, the general model of Eq. (4.36) of the scalar local residual 

filters has been modified, in order to obtain adaptive filters for a direct sensor fault estimation based 

on a RBF-NN, as follows: 
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 (6.8) 

 

where the unknown fault function F̂  is linearly parameterized by a RBF-NN: 

 

 ˆ ˆ ( )F W   (6.9) 

 

with the weight vector ˆ NW   determined by the following adaptive law: 

 

 ˆ ( ) ( )T TW D D        (6.10) 

 

where 0   is the learning ratio, D is a proper constant value such that the RBF-NN adaptive filter 

defined by Eqs. (6.8), (6.9) and (6.10) is asymptotically. 

In this case, in Eq. (6.8) the filter model has been modified in a different way with respect to Eq. 

(5.5) in order to obtain RBF-NN adaptive fault estimation filters whose outputs directly provide 

accurate flywheel spin rate sensor fault estimates. In fact, in order to bring back to zero after the 

fault occurrence the residual   which drives the adaptive law of the RBF weight matrix (and thus 

the behaviour of the fault estimate), the estimation ˆ
w

F  of a sensor fault is directly added to the 

value of the state variable   of the filter in Eq. (6.8). In this way, it is obtained the output variable 

of the filter ˆ
w

y F    to be compared with the measured output of the real satellite system 

affected by the actual sensor fault 
w

F . When the obtained fault estimate ˆ
w

F  converges to the 

actual sensor fault 
w

F , the residual   returns to zero and the adaptation of the weights of the radial 

basis functions stops. 

Again, the assumption of single fault occurring at a time and the exploitation of the local residual 

filter models allows to design RBF-NN adaptive fault estimation filters which provide directly the 

estimates ˆ
w

F  of the possible faults 
w measured truew wF     affecting a specific flywheel spin rate 

sensor. In fact, each of the local residual filters of RB1 results to be sensitive also to the faults 

affecting a specific flywheel spin rate sensor (in addition to the faults affecting the corresponding 

actuated control torque) with unitary gain. 

Starting from Eqs. (4.5), (6.8), (6.9) and (6.10), it results that the models of the four scalar adaptive 

estimation filters for faults affecting the flywheel spin rate sensors can be written as follows: 
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The centres and widths of the Gaussian functions are assumed a priori and not time-varying since 

the inputs x  can assume values only in well-defined intervals on the basis of the models of the 

designed adaptive filters and characteristics of the system components. In particular, for the 

adaptive filters described above, N=11 Gaussian RBFs have been considered, with width 200k   

and centres k  equally spaced between -200 rad/s and 200 rad/s (±1909 rpm). 

 

6.2 Design of Adaptive RBF-NN Filters for Fault Estimation in the 

Satellite ADS 

Considering the sensors composing the ADS of the spacecraft, once a fault on one of the three 

spacecraft angular velocity sensors has been correctly detected and isolated by the FDI module, the 

output of the corresponding RBF-NN adaptive fault estimation filter is enabled. In this case, Eq. 

(4.7) can be properly exploited in order to design RBF-NN adaptive fault estimation filters. On the 

basis of the adaptive filter model of Eq. (5.5), adaptive estimation filters can be designed for the 

mathematical fault inputs associated to each angular velocity state variable comparing in the 
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kinematic equations of the model of Eq. (4.34) affine in the sensor fault inputs. With the assumption 

of single fault occurring at any time, each kinematic equation in the affine form of Eq. (4.34) with 

respect to all the fault inputs results to be including a single fault term related to each angular 

velocity measurement. Then, as the definitions of each associated mathematical fault input is 

known, the corresponding estimation of the actual sensor fault F̂  can be computed once any 

estimation ,
ˆ

kf  of a proper k-th associated mathematical fault input is available from an adaptive 

filter realized on the basis of the kinematic equations. 

Again, a generic adaptive filter based on a RBF-NN for the estimation of an k-th associated fault 

input can be derived on the basis of any kinematic equation, and modelled in filter form as follows: 
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where the unknown fault function f̂  is linearly parameterized by a RBF-NN: 

 

 ˆ ˆ ( )f W   (6.16) 

 

with the weight vector ˆ NW   determined by the following adaptive law: 

 

 ˆ ( ) ( )T TW D D        (6.17) 

 

where 0   is the learning ratio, D is a proper constant value such that the RBF-NN adaptive filter 

defined by Eqs. (6.15), (6.16) and (6.17) is asymptotically stable. 

For example, once a fault affecting the spacecraft angular velocity sensor measuring the satellite 

angular rate ,x i  in the inertial frame, the following adaptive estimation filter can be exploited to 

obtain an estimation of the associated mathematical fault input 
x, ,3 1,4 x, x,( )

i measured truestar i if q     of 

Eq. (4.14). 
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 (6.18) 

 

The corresponding estimation of the actual sensor fault 
,

ˆ
y i

F  can be computed once any estimation 

x, ,3
ˆ

i
f  is available, by using the relation 
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when 1,4 0starq  . If the spacecraft attitude is such that the quaternion parameter 1,4starq  is zero, in 

order to avoid a singularity in the computation of the actual fault estimation, a different kinematic 

equation and mathematical relation of a fault input associated to the detected and isolated actual 

sensor fault can be exploited in the estimation algorithm. For these adaptive filters, N=11 Gaussian 

RBFs have been considered, with width 1k   and centres k  equally spaced between -1 and 1. 

Finally, once a fault on one of the two star tracker attitude sensors has been correctly detected and 

isolated by the FDI module, the output of the corresponding RBF-NN adaptive fault estimation 

filter is enabled. In this case, however, Eq. (4.7) can be exploited in order to design a RBF-NN 

adaptive fault estimator for the overall additive fault vector starF  affecting the quaternion 

measurement of 
measuredstarq , as modelled in Eq. (2.55). Since this fault vector starF  is equivalent to fq  

but in an additive fault formulation, the corresponding fault estimation ˆ
starF  can be directly 

exploited in an AFTC scheme in order to correct the sensor measurement, i.e. compensate the 

sensor fault and recover an accurate measurement of the actual attitude quaternion vector  starq . 

In this case, the adaptive estimation filter exploits a residual generator model in observer form, and 

the residual and state vectors of the adaptive filter are vector defined in 4 . Hence, a generic 

adaptive estimator based on a RBF-NN for the estimation of the sensor fault can be derived as 

follows: 
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where the unknown fault vector 4F̂  is linearly parameterized by a RBF-NN: 

 

 ˆ ˆ ( )F W   (6.20) 

 

with the weight matrix 4ˆ NW   determined by the following adaptive law: 

 

 ˆ ( ) ( )T TW D D        (6.21) 

 

where 0   is the learning ratio, D is a proper constant matrix such that the RBF-NN adaptive 

filter defined by Eqs. (6.19), (6.20) and (6.21) is asymptotically stable. On the basis of the four 

kinematic equations (4.7), the following adaptive estimator in observer form can be exploited to 

obtain an estimation of the complete fault vector 
,1 ,2 ,3 ,4

ˆ ˆ ˆ ˆ ˆ, , ,
T

star star star star starF F F F   F : 
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For this adaptive estimator, N=11 Gaussian RBFs have been considered, with width 1k   and 

centres k  equally spaced between -1 and 1. 

 

6.3 Simulation Results 

The following figures show the fault estimation results obtained by using the designed adaptive 

fault estimation filters once the occurrence of the faults in the considered fault scenarios have been 

occurred, detected and correctly isolated. The figures highlight how the designed adaptive 

estimation filters can achieve an high estimation accuracy in each of the fault scenarios.  

 

6.3.1 Estimation of Faults in the Satellite ACS 

Let us start again considering the occurrence of faults affecting the actuators. In the first fault 

scenario, i.e. the step fault, Figure 6.1 shows the effect of the fault on the actuated control torque 

depicted in blue, with respect to the nominal commanded one depicted in black. The constant bias 

between the actuated ,2ctrlT  and commanded inputs ,2cT  is clearly visible. For the attitude control 

torque, the maximum saturation value has been set equal to , 0.75ctrl satT     Nm and depicted in red 

in the figure. 

Fig. 6.2 shows the fault estimation obtained by exploiting the designed adaptive fault estimation 

filters based on the RBF-NN. In this figure, the actual fault is depicted with a red line, whereas the 

fault estimation is depicted in blue. Moreover, the obtained fault estimation error is shown in Fig. 

6.3. It can be seen that the estimation error has a zero mean value, and it is bounded, except for the 

single error peak appearing at the instant of occurrence of the abrupt fault. 
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Figure 6.1 - Fault scenario n.1: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

step fault on the control input ,2ctrlT . 
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Figure 6.2 - Fault scenario n.1: true (red) and estimated (blue) step fault on the control input ,2ctrlT . 
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Figure 6.3 - Fault scenario n.1: estimation error for the step fault on the control input ,2ctrlT . 

 

Figs. 6.4, 6.5 and 6.6 show the same results in case of a sinusoidal fault, whereas Figs. 6.7, 6.8 and 

6.9 show the results in case of a rectangular pulse fault. Figs. 6.10, 6.11 and 6.12 show the obtained 

results in case of a ramp fault. In the step, rectangular pulse and ramp fault scenarios, the obtained 

estimations result to be highly accurate and characterized by small and bounded estimation errors 

mainly due to the measurement noise, with significant error peaks only in correspondence of abrupt 

variations of the fault functions to be estimated. In the sinusoidal fault scenario, the designed 

adaptive estimation filter results to be able to estimate quite accurately the actual sensor fault, with 

an estimation error characterized by a zero mean value and an oscillatory behaviour bounded 

between small values in comparison to the fault size, due to the time-varying fault signal to be 

estimated. 
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Figure 6.4 - Fault scenario n.2: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

sinusoidal fault on the control input ,2ctrlT . 
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Figure 6.5 - Fault scenario n.2: true (red) and estimated (blue) sinusoidal fault on the control input ,2ctrlT . 
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Figure 6.6 - Fault scenario n.2: estimation error for the sinusoidal fault on the control input ,2ctrlT . 
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Figure 6.7 - Fault scenario n.3: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

rectangular pulse fault on the control input ,2ctrlT . 
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Figure 6.8 - Fault scenario n.3: true (red) and estimated (blue) rectangular pulse fault on the control input ,2ctrlT . 
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Figure 6.9 - Fault scenario n.3: estimation error for the rectangular pulse fault on the control input ,2ctrlT . 
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Figure 6.10 - Fault scenario n.4: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

ramp fault on the control input ,2ctrlT . 
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Figure 6.11 - Fault scenario n.4: true (red) and estimated (blue) ramp fault on the control input ,2ctrlT . 
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Figure 6.12 - Fault scenario n.4: estimation error for the ramp fault on the control input ,2ctrlT . 

 

Finally, for the case of failure of the actuator providing the control torque ,2ctrlT , whose results are 

shown in Figs. 6.13, 6.14 and 6.15, the estimated fault represents the difference between the 

nominal control input commanded by the controller and the true actuated control torque, actually 

equal to zero. 
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Figure 6.13 - Fault scenario n.5: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

failure of the actuator providing the control input ,2ctrlT . 
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Figure 6.14 - Fault scenario n.5: true (red) and estimated (blue) fault corresponding to the failure of the actuator 

providing the control input ,2ctrlT . 
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Figure 6.15 - Fault scenario n.5: estimation error of the fault corresponding to the failure of the actuator 

providing the control input ,2ctrlT . 

 

Considering the occurrence of faults affecting the flywheel spin rate sensors, for the sixth fault 

scenario, i.e. the step fault affecting the measured spin rate ,3w  , Fig. 6.16 shows the effect of the 

fault on the sensor measurement, depicted in blue, with respect to the corresponding state variable 

depicted in black. The constant bias between the measured ,3measuredw  and the true value ,3w  is 

clearly visible after the fault occurrence. Fig. 6.17 shows the fault estimation obtained with the 

designed RBF-NN adaptive fault estimation filters and Fig. 6.18 shows the fault estimation error. 



132  6 FDD IMPLEMENTATION IN THE SATELLITE ADCS 

 

0 10 20 30 40 50 60

-100

0

100

200


w

,1
 [
rp

m
]

0 10 20 30 40 50 60

-300

-200

-100

0


w

,2
 [
rp

m
]

0 10 20 30 40 50 60

-100

0

100

200


w

,3
 [
rp

m
]

0 10 20 30 40 50 60

-100

0

100

200


w

,4
 [
rp

m
]

Time (sec)

 
Figure 6.16 - Fault scenario n.6: true (black) and measured (blue) flywheel spin rates w  in case of step fault on 

the sensor output ,3measuredw . 
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Figure 6.17 - Fault scenario n.6: true (red) and estimated (blue) step fault on the sensor output ,3measuredw . 
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Figure 6.18 - Fault scenario n.6: estimation error for the step fault on the sensor output ,3measuredw . 

 

Figs. 6.19, 6.20 and 6.21 show the results in case of a sinusoidal sensor fault. The designed adaptive 

estimation filter results to be able to estimate quite accurately the actual sensor fault, with an 

estimation error characterized by a zero mean value and an oscillatory behaviour bounded between 

small values in comparison to the fault size, due to the time-varying fault signal to be estimated. 
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Figure 6.19 - Fault scenario n.7: true (black) and measured (blue) flywheel spin rates w  in case of sinusoidal 

fault on the sensor output ,3measuredw . 
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Figure 6.20 - Fault scenario n.7: true (red) and estimated (blue) sinusoidal fault on the sensor output ,3measuredw . 
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Figure 6.21 - Fault scenario n.7: estimation error for the sinusoidal fault on the sensor output ,3measuredw . 

 

For the eighth fault scenario, whose results are shown in Figs. 6.22, 6.23 and 6.24, the estimated 

fault represents the difference between the true value of the state variable and the sensor 

measurement, actually equal to zero. Hence, the estimated fault results to correspond to the actual 

value of the state variable to be measured. Therefore, this estimation can be considered as the output 

of a software sensor. 
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Figure 6.22 - Fault scenario n.8: true (black) and measured (blue) flywheel spin rates w  in case of failure of the 

sensor measuring ,3w . 
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Figure 6.23 - Fault scenario n.8: true (red) and estimated (blue) fault corresponding to the failure of the sensor 

measuring ,3w . 
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Figure 6.24 - Fault scenario n.8: estimation error of the fault corresponding to the failure of the sensor 

measuring ,3measuredw . 

 

In all these three fault scenarios, the obtained estimations result to be highly accurate and 

characterized by small and bounded estimation errors due to the measurement noise, with 

significant error peaks only in correspondence of abrupt variations of the fault functions to be 

estimated. 

 

6.3.2 Estimation of Faults in the Satellite ADS 

Now, considering the occurrence of faults affecting the sensors of the satellite ADS, for the ninth 

fault scenario, i.e. the step fault affecting the measured angular velocity ,x i  , Fig. 6.25 shows the 

effect of the fault on the sensor measurement, depicted in blue, with respect to the corresponding 

state variable depicted in black. The constant bias between the measured , measuredx i  and the true value 

,x i  is clearly visible after the fault occurrence. Fig. 6.26 shows the fault estimation obtained by 

exploiting the designed adaptive fault estimation filters based on the RBF-NN. Moreover, the 

obtained fault estimation error is shown in Fig. 6.27. 
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Figure 6.25 - Fault scenario n.9: true (black) and measured (blue) satellite angular velocity   in case of step 

fault on the sensor output , measuredx i . 
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Figure 6.26 - Fault scenario n.9: true (red) and estimated (blue) step fault on the sensor output , measuredx i . 
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Figure 6.27 - Fault scenario n.9: estimation error for the step fault on the sensor output , measuredx i . 

 

Figs. 6.28, 6.29, 6.30, 6.31, 6.32 and 6.33 show the estimation results in case the tenth and eleventh 

sensor fault scenarios, i.e. a lock-in-place (stuck) of the sensor measurement ,x i  and sensor loss of 

effectiveness, respectively. In the lock-in-place fault scenario, the designed adaptive estimation 

filter results to be able to estimate quite accurately the actual sensor fault, with an estimation error 

characterized by a zero mean value and an oscillatory behaviour bounded between small values in 

comparison to the fault size, due to the time-varying fault signal to be estimated. 
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Figure 6.28 - Fault scenario n.10: true (black) and measured (blue) satellite angular velocity   in case of lock-

in-place fault on the sensor output , measuredx i . 
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Figure 6.29 - Fault scenario n.10: true (red) and estimated (blue) lock-in-place fault on the sensor output 

, measuredx i . 
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Figure 6.30 - Fault scenario n.10: estimation error for the lock-in-place fault on the sensor output , measuredx i . 
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Figure 6.31 - Fault scenario n.11: true (black) and measured (blue) satellite angular velocity   in case of loss-of-

effectiveness fault on the sensor output , measuredx i . 
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Figure 6.32 - Fault scenario n.11: true (red) and estimated (blue) loss-of-effectiveness fault on the sensor output 

, measuredx i . 
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Figure 6.33 - Fault scenario n.11: estimation error for the loss-of-effectiveness fault on the sensor output 

, measuredx i . 

 

Finally, considering the twelfth fault scenario, i.e. the additive fault 
1starqF   on the sensor 

measurement of 1starq , Figs. 6.34, 6.35 and 6.36 show the obtained estimation results and the 

estimation error of the additive quaternion fault vector 
1starqF . 
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Figure 6.34 - Fault scenario n.12: true (black) and measured (blue) attitude quaternion vector 1starq  in case of 

fault on the first attitude sensor output. 
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Figure 6.35 - Fault scenario n.12: true (red) and estimated (blue) additive fault vector associated to the physical 

fault on the sensor measuring the attitude quaternion vector 1starq . 
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Figure 6.36 - Fault scenario n.12: estimation error of the additive fault vector associated to the physical fault on 

the sensor measuring the attitude quaternion vector 1starq . 
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7 FAULT TOLERANT CONTROL 

 

This chapter provides a general overview of the FTC problem. A classification of the main 

approaches is presented, in particular focusing on the active fault tolerant methods, along with the 

definition of the main regions of operation. The general description of the active fault tolerant 

control methods exploited in this thesis is also provided.  

 

7.1 General Overview 

Modern complex systems rely on sophisticated control systems to meet increased performance and 

safety requirements. A conventional feedback control design for a complex system may result in an 

unsatisfactory performance, or even instability, in the event of malfunctions in system components. 

Actuators and sensors, for example, may be affected by partial or complete loss of effectiveness 

faults, as well as offsets and stuck-at faults during operation. These faults may degrade the system 

performance with respect to the nominal fault-free one or, in the worst case, end up with loss of 

stability. To overcome such weaknesses, new approaches to control system design have been 

developed in order to tolerate component malfunctions while maintaining desirable stability and 

performance properties in the presence of faults (Blanke et al. 2006; Noura et al. 2009; Edwards et 

al. 2010; Richter 2011; Zhang et al. 2009; Witczak 2014). 

This is particularly important for safety-critical systems, such as aircrafts, spacecrafts, nuclear 

power plants, and chemical plants processing hazardous materials. In such systems, the 

consequences of a minor fault in a system component can be catastrophic. Therefore, the demand 

on reliability, safety and fault tolerance is generally high. It is necessary to design control systems 

which are capable of tolerating potential faults in these systems in order to improve the reliability, 

availability, maintainability and survivability of the controlled system while providing a desirable 

performance. These types of control systems are often known as Fault Tolerant Control Systems 

(FTCS). More precisely, FTCS are control systems that possess the ability to accommodate 

component faults automatically. They are capable of maintaining overall system stability and 

acceptable performance (i.e. an acceptable degradation of system performance) in the event of such 

faults. In other words, a closed-loop control system, which can tolerate component malfunctions, 

while maintaining desirable performance and stability properties, is said to be a fault tolerant 

control system. 

The accommodation capability of a control system depends on many factors such as the severity of 

the failure, the robustness of the nominal system and the presence of mechanisms that introduce 

redundancy in actuators and/or sensors. Concerning the type of control reconfiguration to be 

adopted, it strongly depends on the fault severity. It can consider the complete shut-off of the faulty 

component if the occurred fault is severe, or it could limit to small reconfigurations of the control 

structure or controller in case of soft faults, aiming to preserve the required performances. 

Even though  a temporary degradation of the performance of the overall system is acceptable, the 

primary objective of FTC consists in maintaining the system operative for a sufficiently long 

interval such that a human operator or the automatic system itself are able to intervene and repair 

the damaged system or perform the necessary actions in order to avoid dangerous and more severe, 

or even irremediable, consequences. In Fig. 7.1, the following three main regions of system 

operation are shown: 

 

Region of required performance: the region in which the system satisfy the operation (mission 

objectives). The nominal controller maintains the system in this region, despite of the presence of 

disturbances and model uncertainties. Moreover, the system could remain in this region even in case 

of small faults; 
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Region of degraded performance: the region in which the fault takes the system to operate.  This 

region denotes the zone where the faulty system can remain without excessive risks. The FTC must 

be able to initiate recovery actions in order to take the system back to the region of required 

performance and prevent further degradations of performance; 

 

Region of unacceptable performance: this region of operation is to be avoided through the use of 

a FTCS. This region delimits also the danger zone of operation, where there is an high risk of 

failures and severe faults, and which should be always avoided. 

 

 
Figure 7.1 - Classification of the main regions of operation, based on FTC requirements (Blanke et al. 2006). 

 

Generally speaking, FTCS can be classified into two broad categories: Passive Fault Tolerant 

Control Systems (PFTCS) and Active Fault Tolerant Control Systems (AFTCS) (Blanke et al. 2006; 

Zhang and Jiang 2008). 

 

Passive Fault Tolerant Control (PFTC): in PFTC systems, the control law is fixed and does not 

change when a fault occurs. The control system is designed to be robust a priori against a set of 

limited (presumed) faults. A PFTC system is implemented with a constant feedback controller which is 

designed carefully using robust control techniques, with which the controller is designed such that the 

closed-loop system remains insensitive to system uncertainties and disturbances. When the effects 

of faults are similar to those of uncertainties or disturbance, it can be assured that the robust 

controller is insensitive to the faults. This approach requires neither FDD schemes nor controller 

reconfiguration, and is therefore computationally more attractive. Its applicability, however, is very 

restricted due to its serious disadvantages. 

One of disadvantages of PFTC is that sometimes the fault is not incipient and has significant effect 

on the performance of the system, or it is not possible to design a controller to be robust to set of 

faults. Hence, a fault estimation scheme is needed to detect and identify the fault. Hence, in order to 

achieve such robustness to faults, usually a very restricted subset of the possible faults can be 

considered, when the effects of faults are similar to those of modelling errors and disturbances. Thus, 

often only faults that have a small effect on the behaviour of the system can be treated in this way, 

i.e. the passive approach has only limited fault-tolerant capabilities. 

Since the control law is not changed when faults occur, the system is able to achieve its control 

goal, in general, only for objectives associated with a low level of performance (sometimes this is 

called the conservative approach). Moreover, achieving increased robustness to certain faults is only 

possible at the expense of decreased nominal performance. Since faults are effects that happen very 

rarely it is not reasonable to significantly degrade the fault-free performance of the system only to 

achieve some insensitivity to a restricted class of faults. 
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Active Fault Tolerant Control (AFTC): in general, an AFTC system reacts actively to faults and 

it is able to accommodate faults by reconfiguring the control actions so that the stability and 

acceptable performance of the entire system can be preserved. In certain circumstances, degraded 

performance may have to be accepted. Additionally, AFTC systems prevent faults in subsystems 

from developing into failures of the system. AFTC systems react to faults actively to recover or at 

least approximate the performance of the faulty system to the performance of the healthy system using 

the FDD results (Blanke et al. 2006; Zhang and Jiang 2008). 
In such control systems, the controller compensates for the impacts of the faults either by selecting 

a predesigned control law or by designing a new one on-line. To achieve a successful control 

system reconfiguration, both approaches rely heavily on real-time FDD schemes to provide the 

most up-to-date information about the true status of the system, by detecting and localizing the 

faults that eventually occur in the system. The estimated faults (if available) are subsequently 

passed to a Reconfiguration Mechanism (RM) that changes the parameters and/or the structure of 

the controller in order to achieve an acceptable post-fault system performance. 

When severe faults such as the complete failure of actuators or sensors breaks the control loops, it is 

necessary to use a different set of inputs or outputs for the control task. In these cases, in contrast to 

PFTC, AFTC consists of finding and implementing a new control structure in response to the 

occurrence of a severe fault. After selecting the new control configuration, new controller 

parameters would be found. The restructuring/redesign of controller is carried out automatically 

during the operation of the system, without needing any external intervention. 

Therefore, the main goal in a fault tolerant control system is to design a controller with a suitable 

structure to achieve stability and satisfactory performance, not only when all control components 

are functioning normally, but also in cases when there are malfunctions in sensors, actuators, or 

other system components. 

Due to their improved performance and their ability to deal with a wider class of faults, the active 

methods for FTC have gained much more attention in the literature than the passive ones. 
As shown in Fig. 7.3, on-line fault accommodation and on-line controller-reconfiguration are usually 

used in AFTC framework. The controllers of AFTC are generally variable in parameter or even 

structure. The key issues in AFTC include the design of (Zhang and Jiang 2008): 

 

1. A reconfigurable controller, which can be easily reconfigured; 

2. A FDD scheme which is sensitive to faults and robust to model uncertainty, operating 

condition variations and external disturbances, providing as precisely as possible the 

information about an occurred fault (time, type and magnitude; 

3. A controller reconfiguration mechanism, which compensates the fault-induced changes in 

the system and leads as closely as possible to the recovery of the pre-fault closed-loop 

system performance and stability in the presence of uncertainties, disturbances and time-

delays in FDD, within the given constraints of control inputs and system states; 

4. A command/reference governor. 

 

It should be noted that the inclusion of both a FDD module and a reconfigurable controller with its 

reconfiguration mechanism within the system structure is the main difference between the active 

and the passive FTC system. In Fig. 7.2, the architecture of an AFTC is depicted. 
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Figure 7.2 - Architecture of an active fault tolerant control (Blanke et al. 2006). 

 

These elements of the AFTC design are highlighted also in Fig. 7.3. In the FDD module, any fault in 

the system should be detected and isolated as quickly as possible, and fault functions and post-fault 

system models need to be estimated on-line in real-time. Based on the on-line information on the 

post-fault system model, the control should be automatically reconfigured to maintain stability, 

desired dynamic performance and steady-state performance. In addition, in order to ensure the 

closed-loop system to track a command input trajectory in the event of faults, a reconfigurable feed-

forward controller often needs to be synthesized. To avoid potential actuator saturation and to take 

into consideration the degraded performance after fault occurrence, in addition to a reconfigurable 

controller, a command/reference governor may also need to be designed to adjust command input or 

reference trajectory automatically. 

 

 
Figure 7.3 - Schematic structure of AFTC systems (Sun 2013). 

 

There are different classifications for active fault tolerant control methods in the literature. 

According to (Lunze and Richter 2008), active methods can be classified into four major groups: 

physical redundancy, learning control, projection-based methods and on-line automatic controller 

redesign methods, as shown in Fig. 7.4. The latter method is concerned with defining new controller 

parameters or control law, known as a reconfigurable controller. In the projection based method, a 

set of controller are designed in advance and the system switches automatically between them such 

that an acceptable degree of performance of the system at the presence of faults is preserved. In 

safety-critical applications, the actuators and sensors are duplicated. When a fault happens, a simple 

decision algorithm switches the controller from a faulty component to a healthy one. This fault 

tolerant control method is known as physical redundancy. In the learning control method, the 

classical control techniques are combined with learning control method. Basically, a fast 
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component, e.g. a Kalman filter, is used to estimate a changing condition quickly, then a slower 

learning component is employed to store previous knowledge to use it again in the future. 

 

 
Figure 7.4 - Classification of control reconfiguration methods (Lunze and Richter 2008). 

 

It is worth observing that, as already stated above, not only the parameters of the controllers need to 

be recalculated in the control redesign procedure, but also the structure of the new controllers might 

be changed (i.e. restructurable controller). This controller restructuring also uses alternative input 

and output signals in the new controller configuration. Afterwards, a new control law has to be 

designed on-line. The restructuring of the controller is necessary after occurrence of severe faults 

(i.e. complete component failures) that lead to serious changes of the plant behaviour. The necessity 

of control restructuring is apparent if actuator or sensor failures are contemplated. The total failure 

of these components leads to a breakdown of the control loop. Hence, a simple adaptation of the 

controller parameters to a new situation is no longer possible and hence alternative sensors or 

actuators have to be taken into account, preferably the ones that have similar interactions with the 

system and not being under the influence of a fault. Therefore, it is possible to design a new 

controller that satisfies the performance specification of the nominal system. This is possible only in 

case of presence of redundant actuators. From this point of view, the two principal ways of 

controller redesign can be differentiated as fault accommodation versus system reconfiguration 

(Blanke et al. 2006). 

 

7.2 Control Reconfiguration and Fault Accommodation 

Fault accommodation means to control the variables of interest in the faulty system, under the 

constraints associated with the faulty components. The control law is changed in response to fault, 

without switching off any system component. The sets of manipulated and measured signals remain 

unchanged and the control adjustment is limited to the controller dynamics. In fault 

accommodation, faulty components are still kept in operation thanks to an adapted control law. On 

the other hand, system reconfiguration means to switch off faulty components, and eventually 

switch on healthy redundant ones, and accordingly changing the control law so that controlling the 

resulting new system can achieve the control objectives under the set of constraints associated with 

the reconfigured system. Both the controller dynamics and the closed-loop structure, and possibly 
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also the reference signal, are changed. In system reconfiguration, faulty components are no longer 

employed (Blanke et al. 2006; Zhang and Jiang 2008). 

Hence, the main distinction between reconfigurable control and fault accommodation is that 

reconfigurable control includes modifications of the closed-loop signal structure, which are 

excluded in fault accommodation as shown in Figs. 7.5 and 7.6. In other words, the use of different 

input and output signals is allowed in reconfigurable control. Reconfiguration in fault-tolerant 

control exploits the presence of redundancy in the controlled system. Reconfigurable control is 

based on models of the fault-free and the faulty system, where the latter is provided by the fault 

diagnosis component or by self-diagnosing actuators and sensors. The model of the faulty plant 

must express all redundancies so that automatic reconfiguration methods are enabled to exploit 

them. 

Reconfigurable control must at least ensure that the reconfigured closed-loop system is stable in a 

suitable sense. Furthermore, it is desirable to recover the nominal closed-loop tracking and 

performance properties as far as possible. The exact recovery of these properties is typically 

possible only in the presence of physical redundancy in the system. In numerous technological 

systems, physical redundancy is not available due to its cost. The appearance of actuator faults 

typically turns the nominal system into an under-actuated system, whereas the nominal system may 

be either fully actuated or under-actuated. 

Generally speaking, the need for reconfigurable control arises whenever the controlled plant 

abruptly undergoes substantial structural changes. In the projection-based method, a set of 

controller are designed in advance (off-line) and the system switches automatically between them 

such that a sacrificed degree of performance of the system at the presence of faults are preserved. 

 

 
Figure 7.5 - Control reconfiguration (Blanke et al. 2006). 
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Figure 7.6 - Fault accommodation (Blanke et al. 2006). 

 

7.3 Reconfiguration Mechanism 

Under the FTC framework, once the FDI module indicates which sensor or actuator is faulty, the 

fault magnitude has been estimated by the FE module, a new control law will be set up in order to 

compensate for the fault effect on the system. As sensor and actuator faults have different effects on 

the system, the control law should be modified according to the nature of the fault, as shown is Fig. 

7.7. In this dissertation, only a single (sensor or actuator) fault is assumed to occur at a given time, 

because simultaneous faults can hardly be isolated. In many applications, the presence of multiple 

faults, either simultaneous or subsequent, is rare. 

Considering the occurrence of sensor faults, since they will not change the system dynamics, it is 

not necessary to redesign the controller to exclude the faulty sensor, if the faulty output can be 

corrected when a fault occurs. Therefore, the most commonly used approach is sensor fault masking 

using a software sensor (Wu et al. 2006; Zhang 2009), or equivalently using virtual sensors (Blanke 

et al. 2006; Ponsart et al. 2010; Nazari et al. 2013). The idea of the software or virtual sensor is to 

estimate the sensor fault or the real system outputs, and then feed the derived fault-free output 

signals to the controller, thereby decouple the effects of the faults in the feedback loop (Bennett 

1998; Blanke et al. 2006; Wu et al. 2006; Gao et al. 2007; Gao and Ding 2007; Rothenhagen and 

Fuchs 2009; Zhang 2009; Ponsart et al. 2010). The key issue of this strategy is the requirement of 

fast and accurate fault estimation, which should be robust to uncertainty and disturbances. The 

compensation law would be in the following additive form: 

 

 ,
ˆ( ) ( ) ( )

kk acc k xy t y t F t   

 

where , ( )k accy t  is the k-th accommodated sensor measurement, ( )ky t  is the corresponding sensor 

measurement in faulty condition and ˆ ( )
kxF t  is the fault estimate used to compensate for the impact 

of the actual sensor fault ( )
kxF t , as defined in Subection 3.5.2. In the normal or healthy condition, 

ˆ ( )
kxF t  is identical or close to zero. Once a sensor fault is detected, ˆ ( )

kxF t  should be suitable to 

compensate for the effect of the corresponding actual sensor fault. It is worth noting that this direct 

accommodation of an occurred sensor fault is valid also in case of failure of the sensor itself, and in 

this case the measurement estimation provided by the adaptive fault estimation filter will be 

equivalent to the output of an analytical virtual sensor measuring the same state variable through the 

adaptive estimation. This aspect remove the necessity of having two or more distinct sensors 
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performing the same operation or measurement in order to have a certain level of redundancy in 

case of fault occurrence. 

On the other hand, considering the occurrence of soft (i.e. not severe) actuator faults, the most used 

compensation law would be in the following additive form (Noura et al. 2000; Zhang and Jiang 

2008): 

 

 ˆ( ) ( ) ( )acc uu t u t f t   

 

where ( )accu t  is the accommodated control input, ( )u t  is the actuated input in faulty condition and 

ˆ ( )uf t  is the input term used to compensate for the impact of the actual fault ( )uf t , as defined in 

Subsection 3.5.1. In the normal or healthy condition, ˆ ( )uf t  is identical or close to zero. Once an 

actuator fault is detected, ˆ ( )uf t  should be suitable to compensate for the effect of the corresponding 

actual fault.  

However, in case of total loss of effectiveness of an actuator (i.e. an actuator failure), a control 

system reconfiguration is required in order to recover the loss of actuation using one or more 

redundant actuators (Patton 1997a; Blanke et al. 2006). Changes in the controller parameters may 

not be enough to accommodate the total loss of actuator function and the controller structure or 

controller strategy must be redesigned on-line. The restructure or redesign is often done off-line, so 

that pre-computed redundant control laws and hardware systems can be selected once an actuator is 

known to have failed. According to whether or not the reconfigurable controller is calculated on-

line, the AFTC can be classified according to whether a pre-calculated controller approach is used 

or whether the controller is designed on-line (Patton 1997a; Zhang and Jiang 2008). 
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8 FTC IMPLEMENTATION IN THE SATELLITE ADCS 

 

This chapter presents the implementation of an AFTC scheme for the active accommodation of an 

occurred sensor or (soft) actuator fault or for the controller reconfiguration in case of failure of an 

attitude control actuator, realized by exploiting the available fourth redundant actuator present in the 

ACS of the spacecraft. The implementation of a standard Sliding Mode Controller (SMC) for 

attitude stabilization and control is presented as well. 

 

8.1 Sliding Mode Control 

Attitude control exploits the measurements and a reference to calculate a torque demand that will 

make the measured state (either attitude or angular velocity) equal to the reference. Considering an 

attitude reference, the satellite body coordinate system and a target coordinate system will be 

aligned when zero rotation is needed to align the satellite body system with the axes of the target 

system. On the other hand, when an angular velocity reference has to be followed, the control 

torques should keep the error on the spacecraft angular velocity equal to zero. 

As already stated, the nominal Attitude Control System (ACS) is realized by considering the array 

of four redundant reaction wheels arranged in a tetrahedral configuration and implementing a 

simple Sliding Mode Control (SMC) in order to track a desired attitude reference (Young and Utkin 

1999; Jiang et al. 2004; Bastoszewicz and Zuk 2010; Ibrahim et al. 2012). 

Sliding mode control has been recognized as one of the efficient tools to design robust controllers 

for complex high-order nonlinear dynamic system operating under various conditions. The main 

advantages of SMC, as a Variable-Structure-Control (VSC) approach, are its fast dynamic response, 

robustness, simplicity in design and implementation. However, SMC presents a main drawback, the 

well known chattering phenomenon. 

Essentially, sliding mode control utilizes discontinuous feedback control laws to force the system 

state to reach, and subsequently to remain on, a specified surface within the state space (the so-

called sliding or switching surface). The system dynamic when confined to the sliding surface is 

described as an ideal sliding motion and represent the controlled system behaviour. 

The advantages of obtaining such a motion are twofold: firstly the system behaves as a system of 

reduced order with respect to the original plant; and secondly the movement on the sliding surface 

of the system is insensitive to a particular kind of perturbation and model uncertainties. This latter 

property of invariance towards so-called matched uncertainties is the most distinguish feature of 

sliding mode control and makes this methodology particular suitable to deal with uncertain 

nonlinear systems. However, matched uncertainties include only uncertainties (and hence faults) on 

the channels associated with the control inputs. Hence, SMC schemes inherently have Passive Fault 

Tolerant Control (PFTC) capabilities, but only in case of actuator faults. Therefore, in case of 

sensor faults, an alternative fault tolerant scheme needs to be exploited to guarantee the desired 

performances. The attitude dynamic equations of a rigid spacecraft are given by Eq. (2.46), which 

for simplicity can be written for control design purpose as 

 

 ( )f x bu d     (8.1) 

 

where 
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Moreover, since the gravitational disturbance torque is assumed to be exactly modelled in this 

thesis, the term b

ggT  could be considered directly in the term ( )f x , and the disturbance d  assumed 

consisting only of the aerodynamic disturbance torque. 

The quaternion error  4

T

e e eqq q , which denotes the relative attitude error from the desired 

reference frame to the body-fixed frame, is defined as 
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where  4

T

star star starqq q  describes the attitude measured by star sensors,  4

T

r r rqq q  

describes the desired target attitude. Since a LEO satellite is considered in this thesis, the satellite is 

requested to maintain a fixed attitude (either a nadir-pointing or a generic Earth-pointing attitude) 

with respect to the orbital frame. Hence, the two quaternions starq  and rq  describe the satellite 

attitude with respect to the orbital frame. On the other hand, in case a fixed inertial pointing (e.g. the 

pointing of a specific star) is needed, the two quaternions starq  and rq , and the kinematic equations 

should be expressed with respect to the inertial frame. 

The error eω  represents the difference between the actual angular velocity sω  of the spacecraft (i.e. 

the velocity measured by sensors expressed with respect to the orbital frame) and a desired 

reference (target) angular velocity rω , as follows: 

 

 e s r ω ω ω  (8.3) 

 

Considering a desired angular velocity rω  equal to zero for a three-axis stabilization at a constant 

desired attitude with respect to the orbital frame, it results that b

e s ob ω ω ω  and the error rate 

dynamic equation is the same as in Eqs. (2.46) and (8.1). For any given two groups of quaternion, 

the relative attitude error can be obtained by 
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Then, the error state vector ( , )e eq ω  is fed to the controller to compute the control signal command. 

The designed sliding mode controller aims to drive the attitude states ( , )s sq ω  from the initial state 

( (0), (0))s sq ω  to the desired states ( , )d dq ω  with the following assumptions: 
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1. The measures of the unit quaternion sq  and the body angular velocity sω  are available in 

the feedback control design; 

2. The initial angular velocity of the satellite is zero; 

3. The external disturbance vector d  is assumed to be bounded and to satisfy the condition 

max( ) dd t  . This assumption holds for the considered external disturbance torques (both 

the gravitational and aerodynamic ones) acting on a satellite. 

8.1.1 Sliding Surface Design 

The design of a sliding mode controller involves designing of a sliding surface that represents the 

desired stable dynamics and a control law that makes the designed sliding surface attractive 

(Young, Utkin 1999; Jiang et al. 2004; Bastoszewicz and Zuk 2010; Ibrahim et al. 2012). The phase 

trajectory of a sliding mode controller can be investigated in two parts, representing two modes of 

the system. The trajectory starting from a given initial condition off the sliding surface tend towards 

the sliding surface. This phase is known as reaching or hitting phase, and during this phase the 

system is sensitive to disturbances. When the hitting of the sliding surface occurs, the sliding phase 

starts, and during this phase the trajectories are insensitive to parameter variations and disturbances. 

A linear sliding surface has been defined for the considered spacecraft attitude control, defined in 

vector form as 

 

 e ec s ω q  (8.5) 

 

where c is a strictly positive real constant determining the slope of the sliding surface 

  3 1

1 2 3( )
T

t s s s  s , which divides the state space into two parts. 

As previously stated, the quaternion parameterization of the satellite attitude ( )e tq  and ( )e tq  

represent identical physical tracking error rotations. The former one gives the shortest angular 

distance to the sliding manifold, whilst the latter one gives the longest distance. A modification to 

the sliding surface can be implemented, like in Crassidis et al. (1999), to guarantee that the satellite 

will follow the shortest angular path to reach the sliding manifold, thus reducing the required 

amount of control torque. This modified sliding surface is defined as 

 

 4( )e e ec sgn q  s ω q  (8.6) 

 

with the sign term 4( )esgn q  used to drive the system to the desired trajectory in the shortest way.  

 

8.1.2 Control Law Design 

The sliding mode control law can be divided into two main parts (Young and Utkin 1999; Ibrahim 

et al. 2012):  

 

 ( ) ( ) ( )eq dt t t u u u  (8.7) 

 

The component 
4 1

1 2 3 4( )
T

eq eq eq eqeq
u u u ut    u  makes the sliding surface ( )s t  invariant 

( 0s  for 0s ) and it is calculated by setting the derivative s  to zero considering ( )ts  to be zero. 

The component   4 1

1 2 3 4( )
T

d d d d dt u u u u  u  is an extra control effort which forces the 

quaternion and angular velocity components to reach the sliding surface in a finite time despite of 

the presence of disturbances (attractive sliding surface with 0T s s ). This switching control law 
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( )d tu  is computed according to a discontinuous constant reaching law (Slotine and Li 1991; 

Bastoszewicz and Zuk 2010; Ibrahim et al. 2012) as 

 

 1( ( ))d SMCb sgn  u K s  (8.8) 

 

where SMCK  is a proper positive definite gain vector and 
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In order to compute the equivalent control law ( )eq tu , it is set 

 

 4( ) 0e e ec sgn q   s ω q  (8.9) 

 

and, by substituting Eq. (8.1) in Eq. (8.9), it results 

 

 1

4( ( ) )eq e eb f c sgn q   u q  (8.10) 

 

and, therefore 

 

 1

4( ( ) ( ))e e SMCb f c sgn q sgn s     u q K  (8.11) 

 

The control law of Eq. (8.11) has two design parameters ( , )SMCc K  that should be selected to 

provide stability and better performances. The slope c  of the sliding surface is selected such that 

the system is stable during the sliding mode. A large enough discontinuous signal ( )SMC sgn sK  is 

necessary to complete the reachability condition despite perturbations and disturbances, but as small 

as possible in order to limit the chattering phenomenon. According to the selected value of SMCK , 

the state trajectories will reach the sliding surface at different points with different reaching times, 

as shown in Fig. 8.1.  For small values, the state trajectories take more time and long path to reach. 

 

 
Figure 8.1 - Error phase-plane for different gain values (Ibrahim et al. 2012). 

 

8.1.3 Chattering Avoidance and Control Input Saturation 

The chattering phenomenon is generally perceived as motion which oscillates about the sliding 

manifold. Finite-frequency finite-amplitude oscillations are caused by an high-frequency switching 

of the sliding mode controller. A chattering control signal may cause possible damages to the 

actuators. A boundary layer method can be used to reduce the chattering. The basic idea is to 
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replace the sign function by a saturation function (Dal and Teodorescu 2011; Ibrahim et al. 2012), 

defined as 
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 (8.12) 

  

The larger the boundary layer width i  the smoother the control signal u  (the discontinuous control 

term du  is softened). However, it no longer drives the system to the origin, but only to within the 

chosen boundary layer instead. A very small thickness layer introduces again the chattering 

phenomenon. 

Finally, since the considered reaction wheels are characterized by maximal values of the control 

torques they can effectively actuate, a saturation of the commanded control torque is considered. 

Hence, it results that the actual commanded control inputs are defined as 
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 (8.13) 

 

8.1.4 Controller Stability in Nominal Condition 

Considering the sliding surface of Eq. (8.6) and the control law of Eq. (8.11), the system reaches to 

the sliding surface 0s  in finite time. In fact, considering for the reaching phase the candidate 

Lyapunov function 

 

 1

1

2

TV  s s  (8.14) 

 

with time derivative 

 

 1 ( sgn( ))T TV    s s s d K s  (8.15) 

 

the time derivative must be negative to make ( )ts  reach zero (attractive sliding surface, 0T s s ). 

This is obtained for maxSMC K d , i.e. the gain must be selected such that it compensate for the 

upper bound of the disturbance. 

Moreover, the trajectory in the error state-space that slides on the sliding surface can be shown to be 

asymptotically stable by using the Lyapunov's direct method. Considering the candidate Lyapunov 

function 

 

 2

1

2

T

e eV  q q  (8.16) 

 

and substituting (8.4) into (8.6), the following kinematic equation for ideal sliding motion on the 

sliding manifold ( 0s ) is obtained: 

 

 4 4

1 1
( )( ( ) )

2 2
e e e e eS eMCc q S sgn q     q q q K q  (8.17) 

 



156  8 FTC IMPLEMENTATION IN THE SATELLITE ADCS 

 

Substituting (8.17) into the time derivative of (8.16) leads to the expression 

 

 2 4

1 1 1

2 2 2

T T T T

e e e e e e e e eV c q     q q q q q q q q  (8.18) 

 

which is clearly negative if 0c  . Therefore, the attitude tracking error eq  tends to zero as t  , 

and since the motion is on the sliding surface defined by ( ) 0t s , it follows that also eω  tends to 

zero as t  . 

 

8.2 Simulation Results 

In the case of actuator and sensor fault or failure, a reconfiguration is exploited in order to 

reconfigure the system maintaining the nominal sliding mode controller and achieve a tolerable 

performance. The designed AFTC scheme contains a fault diagnosis block and a system 

reconfiguration block. First, the occurred fault is detected and isolated by means of the proposed 

bank of residual generators, then the isolated fault is estimated by means of dedicated adaptive fault 

estimation filters, and finally the system is reconfigured a proper way, as shown in the following 

simulation results. The following figures show the results obtained in each fault scenario by 

implementing the AFTC scheme. 

In order to present how the degraded performance of the attitude control system subject to a fault 

can be restored to a desired acceptable level, the simulation results obtained in the considered fault 

scenarios will be shown. In general, the comments that will be made on the basis of the analysis of 

the presented results are in general valid for all the possible fault scenarios. 

 

8.2.1 Controller Reconfiguration after Actuator Failure 

In case of occurrence of a severe actuator fault, i.e. an actuator failure, the direct fault 

accommodation could be no more possible due to the complete loss of effectiveness of the 

component. Hence, the exploitation of redundant actuators could be the only practical way to 

restore the nominal system performances or, at least, maintain an acceptable level of performance. 

With the assumption of only one fault occurring at a time, the redundancy of the actuators in the 

considered ACS configuration can be practically exploited in order to restore the degraded 

performances and guarantee the complete controllability of the satellite after the fault occurrence. 

Therefore, a system reconfiguration is performed, and only the remaining healthy actuators are 

exploited in order to control the satellite attitude. In case of failure of one of the four actuators, the 

actuator configuration matrix wA , i.e. the equation term b  used in the relations of the sliding mode 

controller of Eq. (8.11), is switched to another one in which the column corresponding to the failed 

actuator has all zero elements. In this way, only the other actuators are exploited for control 

allocation, i.e. for the distribution of the desired total control effort among a redundant set of 

actuators. 

The following matrices can be used in case of a specific actuator failure. The actuator configuration 

matrix ,0wA   corresponds to the nominal condition where all the actuators are properly working. On 

the other hand, each of the other matrices ,    1,...,4w iA i   corresponds to the condition of failure of 

the i-th actuator. 
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In case of failure of the second actuator, the attitude control system switches to the matrix ,2wA , and 

the failed actuator is excluded. In Fig. 8.2, it is shown the evolution of the commanded control 

input, depicted in black, and the actual evolution of the actuated control input, depicted in blue, in 

the case in which the initial nominal matrix ,0wA  is used. In this case, the failed actuator cannot 

satisfy the request of torque, and then the performances of the overall control system could result to 

be degraded. 
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Figure 8.2 - Fault scenario n.5: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

failure of the actuator providing the control input ,2ctrlT . 

 

After the fault detection, isolation and estimation, if it results that the estimated fault is equal to the 

commanded torque, it means that a failure has occurred. After the matrix switching, the failed line 

is excluded and only three actuators are exploited. Hence, the control allocation is varied. Fig. 8.3 

shows how the actuated and commanded control torques are modified. It can be seen that the 

commanded torque for the failed actuator is set equal to zero, and the other actuated torques are 

properly changed after the reconfiguration. Moreover, Fig. 8.4 shows that the local residual of RB1 

relative to the failed actuator presents a residual evolution that returns to zero after the exclusion of 

the failed control line, since also the corresponding commanded torque is set to zero and any 

discrepancy between the actual system and its model exploited by the residual filters is thus 

eliminated. 
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Figure 8.3 - Fault scenario n.5: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

failure of the actuator providing the control input ,2ctrlT . The second line is excluded from the control allocation. 
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Figure 8.4 - Fault scenario n.5: local residuals of RB1 in case of failure of the actuator providing the control 

input ,2ctrlT  and subsequent control reallocation. 

 

8.2.2 Fault Accommodation after Actuator and Sensor Faults in the Satellite ACS 

On the other hand, if a soft fault occurs, affecting either an actuator or a sensor of the ADCS, a fault 

accommodation approach can be exploited. As already described in Section 7.3, the simplest way to 

realize the fault accommodation is to exploit the fault estimation as a compensation term to correct 

the faulty input or output signal. 
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Considering, for example, the first fault scenario, i.e. the step fault affecting the attitude control 

input ,2ctrlT , Figs. 8.5 and 8.6 show the evolution of the commanded and actuated control inputs 

without and with fault accommodation. It can be seen that the fault accommodation allows 

obtaining an actuated control input equal to the required nominal one as if the fault had not 

happened, due to the compensation of the fault effect on the control input itself by means of the 

estimated fault. The fault accommodation allows to avoid the changing of all the control inputs after 

the fault occurrence caused by the sliding mode controller reacting to the fault occurrence, and 

recover the nominal control input evolution and system behaviour. 
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Figure 8.5 - Fault scenario n.1: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

step fault on the control input ,2ctrlT  and without fault accommodation. 
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Figure 8.6 - Fault scenario n.1: faulty (black) and accommodated (blue) actuated control inputs ctrlT  in case of 

step fault on the control input ,2ctrlT  and with fault accommodation. 
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After the accommodation, the performances of the control system are restored and the satellite can 

reach and maintain the desired attitude with respect to the orbital reference frame, as shown for 

example in Figs. 8.7 and 8.8. In particular, the effects of the fault occurrence and fault 

accommodation are clearly from these two figures evident for the yaw angle of the satellite with 

respect to the orbital reference frame. 
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Figure 8.7 – Fault scenario n.1: Euler angles evolution in case of step fault on the control input ,2ctrlT  and 

without fault accommodation. 
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Figure 8.8 – Fault scenario n.1: Euler angles evolution in case of step fault on the control input ,2ctrlT  and with 

fault accommodation. 

 

After the fault accommodation, even in this case the local residual of RB1 sensitive to the occurred 

fault returns to zero after an initial transient phase during which the fault is detected, isolated and 

the fault estimation is subsequently enabled. 
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Figure 8.9 - Fault scenario n.1: local residuals of RB1 in case of step fault on the attitude control input ,2ctrlT  and 

subsequent fault accommodation. 

 

For all the other considered scenarios concerning the occurrence of faults affecting a satellite 

actuator, very similar results can be obtained. Figs. 8.10 and 8.11 show the comparison between the 

commanded and actuated control inputs in case of occurrence of a sinusoidal fault and without and 

with fault accommodation, respectively. In case of fault accommodation, the effects of the occurred 

fault on the actuated control inputs are almost completely compensated, as shown in Fig. 8.11. Only 

a slight oscillation of the sensitive local residual of RB1 lasts in Fig. 8.12, because of the remaining 

fault effects due to the not null (but bounded) fault estimation error shown in Fig. 6.6 and the 

subsequent not perfect fault compensation. Anyway, the fault accommodation makes the residual 

sensitive to the occurred fault to return and remain within the selected thresholds. 
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Figure 8.10 - Fault scenario n.2: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

sinusoidal fault on the control input ,2ctrlT  and without fault accommodation. 
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Figure 8.11 - Fault scenario n.2: faulty (black) and accommodated (blue) actuated control inputs ctrlT  in case of 

sinusoidal fault on the control input ,2ctrlT  and with fault accommodation. 
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Figure 8.12 - Fault scenario n.2: local residuals of RB1 in case of sinusoidal fault on the attitude control input 

,2ctrlT  and subsequent fault accommodation. 

 

Figs. 8.13, 8.14 and 8.15 show results analogous to the case of the step actuator fault, but in case of 

a rectangular pulse fault affecting the second actuator. 
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Figure 8.13 - Fault scenario n.3: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

rectangular pulse fault on the control input ,2ctrlT  and without fault accommodation. 
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Figure 8.14 - Fault scenario n.3: faulty (black) and accommodated (blue) actuated control inputs ctrlT  in case of 

rectangular pulse fault on the control input ,2ctrlT  and with fault accommodation. 
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Figure 8.15 - Fault scenario n.3: local residuals of RB1 in case of rectangular pulse fault on the attitude control 

input ,2ctrlT  and subsequent fault accommodation. 

 

Finally, Figs. 8.16, 8.17 and 8.18 show similar results in case of occurrence of a ramp fault 

affecting the second actuator. As previously stated, a longer period of time is required to pass before 

being able to detect and isolate the occurred incipient fault, but after the fault detection, correct 

isolation and accurate estimation the fault is compensated and the local residual of RB1 sensitive to 

the occurred fault returns to zero. 
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Figure 8.16 - Fault scenario n.4: commanded (black) and actuated (blue) control inputs cT  and ctrlT  in case of 

ramp fault on the control input ,2ctrlT  and without fault accommodation. 
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Figure 8.17 - Fault scenario n.4: faulty (black) and accommodated (blue) actuated control inputs ctrlT  in case of 

ramp fault on the control input ,2ctrlT  and with fault accommodation. 
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Figure 8.18 - Fault scenario n.4: local residuals of RB1 in case of ramp fault on the attitude control input ,2ctrlT  

and subsequent fault accommodation. 

 

On the other hand, considering the occurrence of faults affecting the flywheel spin rate sensors of 

the ACS, Figs. 8.19, 8.20 and 8.21 show the results obtained in case of step fault affecting the 

sensor measuring ,3w . Figs. 8.19 and 8.20 show the comparison between the values of the actual 

unknown state variables and the corresponding measured flywheel spin rates without and with fault 

accommodation, respectively. As it can be seen, in Fig 8.19 it is evident the constant bias between 

the true and measured spin rate values after the fault occurrence, whereas Fig. 8.20 shows that the 

fault accommodation allows compensating this difference due to the fault presence. Fig. 8.21 shows 

that the local residual of RB1 sensitive to the occurred fault returns to zero after the fault 

accommodation. The global residuals of RB2 sensitive to the occurred fault present very similar 

behaviours, and they are omitted for the sake of simplicity. It is worth noting that, in case of step 

fault, the local residual of RB1 sensitive to the occurred fault returns to zero anyway, due to its 
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sensitivity only to the fault input associated to the time derivative of the physical step fault, as 

shown in Fig. 4.11. However, in this case the transient phase is significantly shorted due to the 

prompt fault compensation once the fault has been detected and correctly isolated, as shown in Fig. 

8.21. 
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Figure 8.19 - Fault scenario n.6: true (black) and measured (blue) flywheel spin rates w  in case of step fault on 

the sensor output ,3measuredw  and without fault accommodation. 
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Figure 8.20 - Fault scenario n.6: true (black) and measured (blue) flywheel spin rates w  in case of step fault on 

the sensor output ,3measuredw  and with fault accommodation. 
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Figure 8.21 - Fault scenario n.6: local residuals of RB1 in case of step fault on the sensor output ,3measuredw  and 

subsequent fault accommodation. 

 

Figs. 8.22, 8.23 and 8.24 show analogous results obtained in case of a sinusoidal fault affecting the 

sensor measuring ,3w . In case of fault accommodation, the effects of the occurred fault on the 

sensor measurement are almost completely compensated, as shown in Fig. 8.23. A small oscillation 

of the sensitive local residual of RB1 lasts in Fig. 8.24, because of the remaining fault effects due to 

the not null (but bounded) fault estimation error shown in Fig. 6.21 and the subsequent not perfect 

fault compensation. Anyway, the fault accommodation makes the residual sensitive to the occurred 

fault to remain bounded within small values, in comparison to the case without fault 

accommodation shown in Fig. 4.13. 
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Figure 8.22 - Fault scenario n.7: true (black) and measured (blue) flywheel spin rates w  in case of sinusoidal 

fault on the sensor output ,3measuredw  and without fault accommodation. 
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Figure 8.23 - Fault scenario n.7: true (black) and measured (blue) flywheel spin rates w  in case of sinusoidal 

fault on the sensor output ,3measuredw  and with fault accommodation. 
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Figure 8.24 - Fault scenario n.7: local residuals of RB1 in case of sinusoidal fault on the sensor output ,3measuredw  

and subsequent fault accommodation. 

 

Figs. 8.25, 8.26 and 8.27 show results relatively similar to the previous cases, but obtained in case 

of failure of the sensor measuring ,3w . In this case, the estimated fault results to correspond to the 

actual value of the state variable to be measured. Therefore, this estimation, and hence the 

corresponding accommodated sensor output, can be considered as the output of a software sensor. 
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Figure 8.25 - Fault scenario n.8: true (black) and measured (blue) flywheel spin rates w  in case of failure of the 

sensor providing the measurement of ,3w  and without fault accommodation. 

0 10 20 30 40 50 60

-100

0

100

200


w

,1
 [

rp
m

]

0 10 20 30 40 50 60

-300

-200

-100

0


w

,2
 [

rp
m

]

0 10 20 30 40 50 60

-100

0

100

200


w

,3
 [

rp
m

]

0 10 20 30 40 50 60

-100

0

100

200


w

,4
 [

rp
m

]

Time (sec)

 
Figure 8.26 - Fault scenario n.8: true (black) and measured (blue) flywheel spin rates w  in case of failure of the 

sensor providing the measurement of ,3w  and with fault accommodation. 
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Figure 8.27 - Fault scenario n.8: local residuals of RB1 in case of failure of the sensor providing the measurement 

of ,3w  and subsequent fault accommodation. 

 

8.2.3 Fault Accommodation after Sensor Faults in the Satellite ADS 

Now, considering the occurrence of faults affecting the sensors of the satellite ADS, Figs. 8.28, 

8.29, 8.30 and 8.31 show the results obtained in case of step fault affecting the sensor measuring 

,x i . Figs. 8.28 and 8.29 show the comparison between the values of the actual unknown state 

variables and the corresponding measured satellite angular velocities without and with fault 

accommodation, respectively. Again, in Fig 8.28 it is evident the constant bias between the true and 

measured angular velocity values after the fault occurrence, whereas Fig. 8.29 shows that the fault 

accommodation allows compensating this difference due to the fault presence. 
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Figure 8.28 - Fault scenario n.9: true (black) and measured (blue) satellite angular velocity   in case of step 

fault on the sensor output , measuredx i  and without fault accommodation. 
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Figure 8.29 - Fault scenario n.9: true (black) and measured (blue) satellite angular velocity   in case of step 

fault on the sensor output , measuredx i  and with fault accommodation. 

 

Figs. 8.30 and 8.31 show that the residuals of RB3 sensitive to the occurred fault returns to zero 

after the fault accommodation. The corresponding residuals of RB4 sensitive to the same occurred 

fault present identical behaviours, and they are omitted for the sake of simplicity. 
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Figure 8.30 - Fault scenario n.9: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i  in case of step fault on the sensor output , measuredx i  and with fault 

accommodation. 



172  8 FTC IMPLEMENTATION IN THE SATELLITE ADCS 

 

0 10 20 30 40 50 60

-15

-10

-5

0

5
x 10

-5

r 1
3

0 10 20 30 40 50 60

-4

-3

-2

-1

0

1

x 10
-5

r 1
4

0 10 20 30 40 50 60

-4

-2

0

2

4

6

8

10

x 10
-5

r 1
5

Time (sec)

 
Figure 8.31 - Fault scenario n.9: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i  in case of step fault on the sensor output , measuredx i  and with fault 

accommodation. 

 

Figs. 8.32, 8.33, 8.34 and 8.35 show analogous results obtained in case of a lock-in-place fault 

affecting the sensor measuring ,x i . In case of fault accommodation, the effects of the occurred 

fault on the sensor measurement are almost completely compensated, as shown in Fig. 8.33. 

Oscillations of the sensitive residuals of RB3 last in Figs. 8.34 and 8.35, because of the remaining 

fault effects due to the not null (but bounded) fault estimation error shown in Fig. 6.30 and the 

subsequent not perfect fault compensation. Anyway, the fault accommodation makes the residuals 

sensitive to the occurred fault to remain bounded between small values, in comparison to the case 

without fault accommodation shown in Figs. 4.23 and 4.24. 
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Figure 8.32 - Fault scenario n.10: true (black) and measured (blue) satellite angular velocity   in case of lock-

in-place fault on the sensor output , measuredx i  and without fault accommodation. 
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Figure 8.33 - Fault scenario n.10: true (black) and measured (blue) satellite angular velocity   in case of lock-

in-place fault on the sensor output , measuredx i  and with fault accommodation. 
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Figure 8.34 - Fault scenario n.10: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i  in case of lock-in-place fault on the sensor output , measuredx i  and 

with fault accommodation. 
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Figure 8.35 - Fault scenario n.10: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i  in case of lock-in-place fault on the sensor output , measuredx i  and 

with fault accommodation. 

 

Again, Figs. 8.36, 8.37, 8.38 and 8.39 show analogous results obtained in case of a loss-of-

effectiveness fault affecting the sensor measuring ,x i . 
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Figure 8.36 - Fault scenario n.11: true (black) and measured (blue) satellite angular velocity   in case of loss-of-

effectiveness fault on the sensor output , measuredx i  and without fault accommodation. 
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Figure 8.37 - Fault scenario n.11: true (black) and measured (blue) satellite angular velocity   in case of loss-of-

effectiveness fault on the sensor output , measuredx i  and with fault accommodation. 
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Figure 8.38 - Fault scenario n.11: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,y i  in case of loss-of-effectiveness fault on the sensor output , measuredx i  

and with fault accommodation. 



176  8 FTC IMPLEMENTATION IN THE SATELLITE ADCS 

 

0 10 20 30 40 50 60

-10

-5

0

5
x 10

-5

r 1
3

0 10 20 30 40 50 60

-2

-1

0

1

x 10
-5

r 1
4

0 10 20 30 40 50 60

-4

-2

0

2

4

6

8
x 10

-5

r 1
5

Time (sec)

 
Figure 8.39 - Fault scenario n.11: residuals of RB3, sensitive to fault inputs associated to the physical faults 

affecting the sensors measuring ,x i  and ,z i  in case of loss-of-effectiveness fault on the sensor output , measuredx i  

and with fault accommodation. 

 

Finally, Figs. 8.40, 8.41, 8.42 and 8.43 show analogous results obtained in case of an additive fault 

starqF  affecting the sensor measuring the attitude quaternion vector 1starq . In this case, all the 

residuals of RB3 are in general sensitive to the occurred fault. Again, all the residuals of RB3 

presenting deviations from their fault-free conditions due to the fault occurrence quickly return to 

zero after the fault accommodation. 
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Figure 8.40 - Fault scenario n.12: true (black) and measured (blue) attitude quaternion vector 1starq  in case of 

fault on the sensor output and without fault accommodation. 



8 FTC IMPLEMENTATION IN THE SATELLITE ADCS  177 

 

0 10 20 30 40 50 60
-0.705

-0.7

-0.695

-0.69

q
1

0 10 20 30 40 50 60

0.31

0.32

0.33

0.34

q
2

0 10 20 30 40 50 60

-0.1

-0.08

-0.06

q
3

0 10 20 30 40 50 60

0.62

0.63

0.64

q
4

Time (sec)

 
Figure 8.41 - Fault scenario n.12: true (black) and measured (blue) attitude quaternion vector 1starq  in case of 

fault on the sensor output and with fault accommodation. 

0 10 20 30 40 50 60

-5

-4

-3

-2

-1

0

x 10
-4

r 1
0

0 10 20 30 40 50 60

-4

-2

0

2

4

x 10
-5

r 1
1

0 10 20 30 40 50 60

-2

0

2

4

6

8

10

12

x 10
-5

r 1
2

Time (sec)

 
Figure 8.42 - Fault scenario n.12: first triad of residuals of RB3 in case of fault on the sensor measuring 1starq  

and subsequent fault accommodation. 
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Figure 8.43 - Fault scenario n.12: second triad of residuals of RB3 in case of fault on the sensor measuring 1starq  

and subsequent fault accommodation. 
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Figure 8.44 - Fault scenario n.12: last triad of residuals of RB3 in case of fault on the sensor measuring 1starq  

and subsequent fault accommodation. 
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9 CONCLUSION 

 

Modern control systems are becoming more and more complex and control algorithms more and 

more sophisticated. Consequently, fault detection and diagnosis and fault tolerant control have 

gained central importance over the past decades, due to the increasing requirements of availability, 

cost efficiency, reliability and operating safety. 

In the context of aerospace applications, this thesis dealt with the FDI, FDD and FTC problems for 

an attitude control application of a spacecraft, in particular focusing on fault tolerant control and 

diagnosis of possible faults affecting the actuators and sensors of an attitude determination and 

control system of a LEO satellite. This dissertation aimed to summarize and extend the results 

previously presented by the author, and extend the problem of fault diagnosis also to sensor faults, 

in addition to actuator faults only. 

A novel fault diagnosis and fault tolerant control scheme has been developed for the detection, 

isolation, estimation and accommodation of possible faults affecting the control torques provided by 

reaction wheel actuators, the flywheel spin rate measurements, attitude and angular velocity 

measurements provided by the sensors of the satellite ADCS. The proposed diagnosis scheme is 

based on the exploitation of a FDD system, which is composed of a FDI module and a FE module. 

The designed FDI module is composed of a set of scalar model-based residual generators, which 

have been organized in four independent banks of filters working in parallel, each of them 

specifically dedicated to the detection and isolation of possible faults affecting specific sets of 

components of the ADCS. 

The exploitation of such banks of residual filters allowed to realize a complete procedure for fault 

detection and isolation based on the exploitation only of sensor measurements that are intended and 

exploited for attitude control purpose, and in general always available to the diagnosis system. 

In this way, it is worth observing that the internal electrical models of actuators and sensors have 

been neglected in this thesis, i.e. no fault diagnosis has been performed using local electrical 

measurements of current or voltage or other types of direct internal checks in the supervised system 

components. This would permit to reduce the complexity of the fault diagnosis system thanks to the 

exploitation of sensors, which are always present in every satellite, avoiding the need for further 

integrated supervision and monitoring systems. 

Due to the aerodynamic disturbance uncertainty in LEO satellites, an explicit disturbance 

decoupling approach based on the NLGA allowed to design residual filters not affected by the 

aerodynamic parametric uncertainty. Moreover, a general procedure for modelling of the sensor 

faults in order to obtain a new spacecraft nonlinear dynamic model, which is affine with respect to 

both the actuator and sensor faults and suitable to the application of the NLGA has been exploited. 

The overall detection and isolation procedure for the considered actuator and sensor faults is carried 

out by exploiting a cross-check of all the generated residuals, by means of a proper decision logic 

and residual comparison scheme. In this context, the joint use the four banks of residual filters in 

the FDI system allowed riding over the limitations of each bank of residual filters for the detection 

and isolation of faults in the supervised subsystems. 

The overall FDD system have been completed by a FE module, which consists of a bank of 

adaptive observers exploited to obtain accurate and quick fault estimates. This bank of adaptive 

observers is based on RBF-NNs. The on-line learning capability of the Radial Basis Function 

Neural Network allowed obtaining accurate adaptive estimates of the occurred faults. Moreover, the 

use of a Radial Basis Function Neural Network allowed designing generalized fault estimation 

adaptive observers, which do not need any a priori information about the fault internal model. The 

outputs of the fault estimation module are enabled once a fault has been correctly detected and 

isolated by the previously designed FDI module. 

Finally, an AFTC system has been realized by implementing a fault tolerant strategy, based on the 

information from the FDI/FDD system. In case of actuator faults, a fault accommodation scheme 

has been exploited for soft faults, when the faulty actuator is yet operative but with a degraded 
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performance, by exploiting the fault estimation information from the FE module. On the contrary, a 

control reconfiguration scheme is used in case of hard actuator faults by excluding the effects of the 

faulted actuator in the system by exploiting the actuator redundancy and using the control inputs of 

the other actuators appropriately to maintain the complete attitude controllability. In this way, a 

FDIR scheme has been realized, without directly exploiting any fault estimation information from 

the FE module. In case of sensor faults, a fault accommodation scheme is used by directly 

exploiting the fault estimation information from the FE module. 

The performances of the proposed fault diagnosis and fault tolerant control strategies have been 

evaluated when applied to a detailed nonlinear spacecraft attitude model taking account also of 

measurement noise, and exogenous disturbance signals. In particular, these exogenous disturbance 

terms are represented by aerodynamic and gravitational disturbances. 

However, as the gravitational disturbance model is almost perfectly known, the FDI robustness has 

been achieved by exploiting an explicit disturbance decoupling method, based on the NLGA, 

applied only to the aerodynamic force term. This term represents the main source of uncertainty in 

the satellite dynamic model, mainly due to the lack of knowledge of the accurate values of air 

density and satellite drag coefficient. 

The capability of the designed system to perform a quick and accurate detection, isolation and 

estimation of faults affecting both the attitude control actuators, the flywheel spin rate sensors and 

attitude and angular velocity sensors of the spacecraft have been demonstrated. This results to be a 

key point in order to guarantee the desired attitude control performances through the subsequent 

fault accommodation in the proposed AFTC schemes. Several simulation results have been given 

for different fault scenarios for both the actuators and sensors. The obtained results have highlighted 

that the proposed diagnosis scheme can deal with the most significant, generic types of faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

181 

 

10 PUBLICATIONS 

Baldi, P., Blanke, M., Castaldi, P., Mimmo, N. and Simani, S. (2015). Combined geometric and 

neural network approach to generic fault diagnosis in satellite reaction wheels. Accepted 

to the 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical 

Processes - SAFEPROCESS 2015, Paris, France, 2-4 September 2015. 

Baldi, P., Castaldi, P. and Simani, S. (2010a). Fault diagnosis and control reconfiguration in Earth 

satellite model engines. Proceedings of the 9th UKACC International Conference on 

Control 2010, Coventry, UK, 7-10 September 2010, pp. 114-119. 

Baldi, P., Castaldi, P., Mimmo, N. and Simani, S. (2012). Aerodynamic decoupled FDI for 

frequency faults in earth satellite engines. Proceedings of the 8th IFAC Symposium on 

Fault Detection, Supervision and Safety of Technical Processes - SAFEPROCESS 2012, 

Mexico City, Mexico, 29-31 August 2012, vol. 8, no. 1, pp. 1095-1100. 

Baldi, P., Castaldi, P., Mimmo, N. and Simani, S. (2013). Satellite attitude active FTC based on 

geometric approach and RBF neural network. Proceedings of the 2nd International 

Conference on Control and Fault–Tolerant Systems - SysTol’13, Nice, France, 9-11 

October 2013, pp. 667-637. 

Baldi, P., Castaldi, P., Mimmo, N. and Simani, S. (2014a). Generic wind estimation and 

compensation based on NLGA and RBF–NN. 13th European Control Conference - 

ECC14, Strasbourg, France, 24-27 June 2014, pp. 1729-1734. 

Baldi, P., Castaldi, P., Mimmo, N. and Simani, S. (2014b). A new aerodynamic decoupled 

frequential FDIR methodology for satellite actuator faults. International Journal of 

Adaptive Control and Signal Processing, September 2014, vol. 28, no. 9, pp. 812-832. 

Baldi, P., Castaldi, P., Mimmo, N., A. Torre and Simani, S. (2011). A new longitudinal flight path 

control with adaptive wind shear estimation and compensation. Proceedings of the 2011 

50th IEEE Conference on Decision and Control and European Control Conference 

(CDC-ECC), Orlando, FL, USA, 12-15 December 2011, vol. 6, pp. 6852-6857. 

Baldi, P., Castaldi, P., Simani, S. and Bertoni, G. (2010b). Fault diagnosis and control 

reconfiguration for satellite reaction wheels. Proceedings of the Conference on Control 

and Fault Tolerant Systems - SysTol’10, Nice, France, 6-8 October 2010, pp. 143-148. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



182  10 PUBLICATIONS 

 

 

 

 

 

 

 

 

 

 



 

183 

 

11 BIBLIOGRAPHY 

Bastoszewicz, A. and Zuk, J. (2010). Sliding mode control - Basic concepts and current trends. 

IEEE International Symposium on Industrial Electronics (ISIE), 4-7 July 2010, pp. 

3772-3777.  

Beard, R.V. (1971). Failure accomodation in linear systems through self-reorganization. Ph.D. 

dissertation, Massachusetts Institute of Technology. 

Benini, M., Bonfè, M., Castaldi, P., Geri, W. and Simani, S. (2008). Design and analysis of robust 

fault diagnosis schemes for a simulated aircraft model. Journal of Control Science and 

Engineering, vol. 2008, 18 pages. 

Bennett, S. (1998). Model based methods for sensor fault-tolerant control of rail vehicle traction. 

Ph.D. dissertation, University of Hull, Kingston upon Hull, UK. 

Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-tolerant 

Control. Springer-Verlag Berlin Heidelberg, Germany. 

Buhmann, M.D. (2003). Radial Basis Functions: Theory and Implementations. Cambridge 

University Press. 

Castaldi, P., Mimmo, N., Naldi, R. and Marconi, L. (2014). Robust trajectory tracking for 

underactuated VTOL aerial vehicles: extended for adaptive disturbance compensation. 

Proceedings of the 19th IFAC World Congress, vol. 19, no. 1, pp. 3184-3189. 

Chen, J. and Patton, R.J. (1999). Robust Model-based Fault Diagnosis for Dynamic Systems. 

Kluwer Academic Publishing, Boston, Massachusetts, USA. 

Chen, T. and Chen, H. (1995). Approximation capability to functions of several variables, nonlinear 

functionals, and operators by radial basis function neural networks. IEEE Transactions 

on Neural Networks, vol. 6, no. 4, pp. 904-910. 

Chow, E. and Willsky, A.S. (1984). Analytical redundancy and the design of robust failure 

detection systems. IEEE Transactions on Automatic Control, vol. 29, no. 7, pp. 603-

614. 

Clark, R.N. (1978). Instrument fault detection. IEEE Transactions on Aerospace and Electronic 

Systems, vol. AES-14, no. 3, pp. 456-465. 

Clark, R.N., Fosth, D.C. and Walton, V.M. (1975). Detecting instrument malfunctions in control 

systems. IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 4, 

pp. 465-473. 

Crassidis, J.L., Vadali, S.R. and Markley, F.L. (1999). Optimal tracking of spacecraft using 

variable-structure control. Proceedings of the Flight Mechanics/Estimation Theory 

Symposium, NASA-Goddard Space Flight Center, Greenbelt, Maryland, USA, 

NASA/CP-1999-209235, pp. 201-214. 

Dal, M., Teodorescu, R. (2011). Sliding mode controller gain adaptation and chattering reduction 

techniques for DSP-based PM DC motor drives. Turkish Journal of Electrical 

Engineering & Computer Sciences, vol. 19, no. 4, pp. 531-549. 

De Persis, C. and Isidori, A. (2000). On the observability codistributions of a nonlinear system. 

Systems & Control Letters, vol. 40, no. 5, pp. 297-304. 

De Persis, C. and Isidori, A. (2001). A geometric approach to nonlinear fault detection and 

isolation. IEEE Transactions on Automatic Control, vol. 45, no. 6, pp. 853–865. 

Ding S.X. (2013). Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and 

Tools (2nd ed.). Springer-Verlag, London, UK. 

Edwards, C., Lombaerts, T. and Smaili, H. (2010). Fault Tolerant Flight Control: A Benchmark 

Challenge. Springer-Verlag Berlin Heidelberg, Germany. 

Edwards, C., Spurgeon, S. K. and Patton, R.J. (2000). Sliding mode observers for fault detection 

and isolation. Automatica, vol. 36, no. 4, pp. 541-553. 

Egeland, O. and Gravdahl, J.T. (2002). Modeling and Simulation for Automatic Control. Marine 

Cybernetics AS, Trondheim, Norway. 



184  11 BIBLIOGRAPHY 

 

Frank, P.M. (1987). Fault diagnosis in dynamic systems via state estimation - A survey. In S. 

Tzafestas, M. Singh and G. Schmidt (eds), System fault diagnostics, reliability and 

related knowledge-based approaches, Dordrecht, D. Reidel Press, pp. 35-98. 

Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based 

redundancy - A survey and some new results. Automatica, vol. 26, no. 3, pp. 459-474. 

Gao, Z.W. and Ding, S.X. (2007). Actuator fault robust estimation and fault-tolerant control for a 

class of nonlinear descriptor systems. Automatica, vol. 43, no. 5, pp. 912-920. 

Gao, Z.W., Ding, S.X. and Ma, Y. (2007). Robust fault estimation approach and its application in 

vehicle lateral dynamic systems. Optimal Control Applications and Methods, vol. 28, 

no. 3, pp. 143-156. 

Gertler, J. (1991). Analytical redundancy methods in fault detection and isolation. Proceedings of 

IFAC/IAMCS Symposium on SAFEPROCESS’91, Baden-Baden, vol. 1, pp. 9-21. 

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New 

York. 

Hughes, P.C. (1986). Spacecraft Attitude Dynamics. John Wiley & Sons Inc., New York. 

Hwang, I., Kim, S., Kim, Y. and Seah, C.E. (2010). A survey of fault detection, isolation, and 

reconfiguration methods. IEEE Transactions on Control Systems Technology, vol. 18, 

no. 3, pp. 636-653. 

Ibrahim, A.El-S., Tobal, A.M. and Sultan, M.A. (2012). Satellite attitude maneuver using sliding 

mode control under body angular velocity constraints. International Journal of 

Computer Applications, vol. 50, no. 13, pp. 41-46. 

Isermann, R. (1984). Process fault detection based on modeling and estimation methods - A survey. 

Automatica, vol. 20, no. 4, pp. 387-404. 

Isermann, R. (2005). Model-based fault detection and diagnosis - Status and applications. Annual 

Reviews in Control, vol. 29, no. 1, pp. 71-85. 

Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault 

Tolerance. Springer-Verlag Berlin Heidelberg, Germany. 

Isermann, R. (2011). Fault-Diagnosis Applications - Model-Based Condition Monitoring: 

Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems. Springer-

Verlag Berlin Heidelberg, Germany. 

Isermann, R. and Ballé, P. (1997). Trends in the application of model-based fault detection and 

diagnosis of technical processes. Control Engineering Practice, vol. 5, no. 5, pp. 709-

719. 

Isidori, A. (1995). Nonlinear Control Systems (3rd ed.). Springer-Verlag, London, UK. 

Isidori, A., Krener, A.J., Gori-Giorgi, C., Monaco, S. (1981). Nonlinear decoupling via feedback: a 

differential geometric approach. IEEE Transactions on Automatic Control, vol. AC-26, 

no. 2, pp. 331-345. 

Jiang, B., Staroswiecki, M. and Cocquempot, V. (2004). Fault estimation in nonlinear uncertain 

systems using robust/sliding-mode observers. IET Proceedings on Control Theory & 

Applications, vol. 151, no. 1, pp. 29-37. 

Kaplan, M.H (1976). Modern Spacecraft Dynamics and Control. John Wiley & Sons Inc., New 

York. 

Lunze, J. and Richter, J.H. (2008). Reconfigurable fault-tolerant control: a tutorial introduction. 

European Journal of Control, vol. 14, no. 5, pp. 359-386. 

Massoumnia, M.A. (1986). A geometric approach to the synthesis of failure detection filters. IEEE 

Transactions on Automatic Control, vol. AC-31, no. 9, pp. 839-846. 

Massoumnia, M.A., Verghese, G.C. and Willsky, A.S. (1989). Failure detection and identification. 

IEEE Transactions on Automatic Control, vol. AC-34, no. 3, 316-321. 

Mattone, R. and De Luca, A. (2006a). Relaxed fault detection and isolation: an application to a 

nonlinear case study. Automatica, vol. 42, no. 1, pp. 109–116. 

Mattone, R. and De Luca, A. (2006b). Nonlinear fault detection and isolation in a three-tank 

system. IEEE Transactions on Control System Technology, vol. 14, no. 6, pp. 1158-

1166. 



11 BIBLIOGRAPHY  185 

 

Morse, A.S. and Wonham, W.M. (1970). Decoupling and pole assignment by dynamic 

compensation. SIAM Journal on Control, vol. 8, no. 1, pp. 317-337. 

Morse, A.S. and Wonham, W.M. (1971). Status of noninteracting control. IEEE Transactions on 

Automatic Control, vol. AC-16, no. 6, pp. 568-581. 

Nazari, R., Seron, M.M. and De Doná, J.A. (2013). Fault-tolerant control of systems with convex 

polytopic linear parameter varying model uncertainty using virtual-sensor-based 

controller reconfiguration. Annual Reviews in Control, vol. 37, no. 1, pp. 146-153. 

Noura, H., Sauter, D., Hamelin, F. and Theilliol, D. (2000). Fault-tolerant control in dynamic 

systems: application to a winding machine. IEEE Control Systems, vol. 20, no. 1, pp. 

33-49. 

Noura, H., Theilliol, D., Ponsart, J. and Chamseddine, A. (2009). Fault-tolerant Control Systems: 

Design and Practical Applications. Springer-Verlag, London, UK. 

Park, J., Sandberg, I.W. (1991). Universal approximation using radial-basis-function networks. 

Neural Computation, vol. 3, no. 2, pp. 246 - 257. 

Patton, R.J. (1997a). Fault-tolerant control systems: the 1997 situation. Proceedings of the 3rd 

IFAC Symposium on SAFEPROCESS'97, Hull, vol. 2, pp. 1033-1054. 

Patton, R.J. (1997b). Robustness in model-based fault diagnosis: the 1995 situation. Annual 

Reviews in Control, vol. 21, pp. 103-123. 

Patton, R.J. and Chen, J. (1991). A re-examination of the relationship between parity space and 

observer-based approaches in fault diagnosis. European Journal of Diagnosis and 

Safety in Automation, vol. 1, no. 2, pp. 183-200. 

Patton, R.J. and Chen, J. (1994). A review of parity space approaches to fault diagnosis for 

aerospace systems. Journal of Guidance, Control & Dynamics, vol. 17, no. 2, pp. 278-

285. 

Patton, R.J., Frank, P.M. and Clark, R.N. (1989). Fault Diagnosis in Dynamic Systems: Theory and 

Application. Control Engineering Series, Prentice-Hall, New York. 

Patton, R.J., Frank, P.M. and Clark, R.N. (2000). Issues of fault diagnosis for dynamic systems. 

Springer-Verlag, London, UK. 

Ponsart, J.C., Theilliol, D. and Aubrun, C. (2010). Virtual sensors design for active fault tolerant 

control system applied to a winding machine. Control Engineering Practice, vol. 18, no. 

9, pp. 1037-1044. 

Richter, J.H. (2011). Reconfigurable Control of Nonlinear Dynamical Systems: A Fault-hiding 

Approach. Springer-Verlag Berlin Heidelberg, Germany. 

Rothenhagen, K. and Fuchs, F.W. (2009). Doubly fed induction generator model-based sensor fault 

detection and control loop reconfiguration. IEEE Transactions on Industrial 

Electronics, vol. 56, no. 10, pp. 4229-4238. 

Shi, F. (2013). Observer based active fault tolerant control of descriptor systems. Ph.D. 

dissertation, University of Hull. 

Sidi, M.J. (1997). Spacecraft Dynamics and Control: A Practical Engineering Approach. 

Cambridge University Press. 

Simani, S., Fantuzzi, C. and Patton, R.J. (2003). Model-based Fault Diagnosis in Dynamic Systems 

Using Identification Techniques. Springer-Verlag, London, UK. 

Slotine, J.J.E. and Li, W. (1991). Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ. 

Sontag, E.D. and Wang, Y. (1996). New characterizations of input-to-state stability. IEEE 

Transactions on Automatic Control, vol. 41, no. 9, pp. 1283-1294. 

Sun, X. (2013). Unknown input observer approaches to robust fault diagnosis. Ph.D. dissertation, 

University of Hull. 

Tewari, A. (2007). Atmospheric and Space Flight Dynamics: Modeling and Simulation with 

MATLAB and Simulink. Birkhäuser, Boston, Massachusetts, USA. 

Wang, Z., Shen, Y. and Zhang, X. (2011). Actuator fault detection and estimation for a class of 

nonlinear systems. 7th International Conference on Natural Computation (ICNC), 

Shanghai, China, 26-28 July 2011, vol. 1, pp. 535-539. 



186  11 BIBLIOGRAPHY 

 

Wertz, J.R. (1978). Spacecraft Attitude Determination and Control. D. Reidel Publishing Company, 

Dordrech, Netherlands. 

Wertz, J.R. and W.J. Larson (1999). Space Mission Analysis and Design (3rd ed.). Microcosm 

Press and Kluwer Academic Publishers. 

Wie, B., (2008). Space vehicle dynamics and control (2nd ed.). American Institute of Aeronautics 

and Astronautics. 

Willems, J.C. and Commault, C. (1981). Disturbance decoupling by measurement feedback with 

stability or pole placement. SIAM Journal on Control and Optimization, vol. 19, no. 4, 

pp. 490-504. 

Willsky, A. (1976). A survey of design methods for failure detection systems. Automatica, vol. 12, 

pp. 601-611. 

Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear 

Systems: Analytical and Soft Computing Approaches. Springer International Publishing. 

Wu, N.E., Thavamani, S., Zhang, Y. and Blanke, M. (2006). Sensor fault masking of a ship 

propulsion system. Control Engineering Practice, vol. 14, no. 11, pp. 1337-1345. 

Wunnenberg, J. (1990). Observer-based fault detection in dynamic systems. Ph.D. dissertation, 

University of Duisburg. 

Young, K.D. and Utkin, V.I. (1999). A control engineer’s guide to sliding mode control. IEEE 

Transactions on Control Systems Technology, vol. 7, no. 3, pp. 328-342. 

Zhang, H. (2009). Software sensors and their applications in bioprocess. Computational 

Intelligence Techniques for Bioprocess Modelling, Supervision and Control. Springer-

Verlag Berlin Heidelberg, Germany. 

Zhang, K., Jiang, B. and Shi, P. (2009). Fast fault estimation and accommodation for dynamical 

systems. IET Control Theory & Applications, vol. 3, no. 2, pp. 189-199. 

Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault–tolerant control 

systems. Annual Reviews in Control, vol. 32, no. 2, pp. 229–252. 

 

 

 

 

 

 

 

 

 

 

 

 

 


