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Introduction

This thesis deals with the mathematical properties of a class of statistical me-

chanics models describing the thermodynamic behaviour of the Disordered Spin

and Monomer-Dimer Systems. The rigorous results presented here concern the

properties of the so called Boltzmann-Gibbs probability measure in the (ther-

modynamic) limit of infinitely many particles. While for finitely many particles

all the expectations (moments) of the physical quantities display a smooth de-

pendence with respect to the external parameters (temperature, magnetic fields,

interaction strength) it is known that in the thermodynamic limit singularities

may appear and are related to the phase transitions observed experimentally.

The statistical mechanics of disordered models in particular describes physi-

cal systems where the interactions between the components are inhomogeneous

and can only be modelled statistically, namely considering random interac-

tions with suitable distribution. The Boltzmann-Gibbs measure which describes

them, the so called quenched state, is constructed by first fixing a realisation

of the disorder, computing all the quantities in the standard setting, and then

averaging in the disorder.

Spin systems and monomer-dimer systems are very different types of par-

ticles in physics. The first interact with external magnetic fields and mutual

magnetic forces while the second interact mostly via the repulsive part of van

der Waals force. This last in particular displays a divergence at small distances

and prevent particles to get close to each other. From the mathematical point

of view that is called hard-core interaction and is embedded in the statistical
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mechanics formalism not through the classical potential term but rather by the

algebraic restriction of the admissible configurations in the partition function.

The thesis, naturally split in two parts for each type of particle system, shows

nevertheless that in spite of the differences among the two types of models,

similar techniques can be used to study them and, most importantly, rigorous

proofs and sometimes exact solutions can be obtained for both of them.

In the first part of the work we will focus the attention on a class of Disor-

dered Spin Models, called Spin Glasses. They are the first and most intensively

studied disordered spin models and, in the last decades, have drawn a lot of at-

tention from the scientific community for two main reasons. First, they exhibits

in the thermodynamical limit a complex behavior which is able to describe var-

ious phenomenon belonging to many areas such as condensed matter, biology,

computer science, economics, etc. [11, 49, 64, 101, 15, 18]. On other hand, in

the recent times, remarkable progress has been made in the rigorous mathemat-

ical of Mean Field Spin Glasses, in particular on the Sherringhton-Kirkpatrick

model. Let us briefly recall the state-of-the-art.

In the field of Statistical Mechanics, Mean Field models are often introduced

as a “solvable” version of the corresponding finite dimensional model. While

the latter encodes information on the topological structure and the physical

dimension of the system, the main feature of the mean field interaction is the

absence of an underlying spatial structure: all the components of the system

(resp. disordered system) interact with each other with same strength ( resp.

in distribution ). One can say that the model is invariant under permutation

( resp. in distribution) of the elementary objects on the system. However, for

Mean Field Spin Glasses, something unexpected happened. Indeed, it was soon

realized that the Sherringhton-Kirkpatrick model, introduced in 1975 [93] as a

mean field version of its finite dimensional counterpart, the Edward-Anderson

model [31], is far from being “easy” to solve.

In 1980’s Parisi [110] proposed a solution which required the introduction
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of completely new concepts and revealed a rich mathematical structure. Infor-

mally, the main content of the so called Parisi theory [15], can be split in four,

strictly related points :

i) Parisi Formula: the pressure can be represented as a variational problem

over the space of all the distribution functions on [0, 1] whose elements are called

order parameter.

ii) Replica Symmetry Breaking for low temperature the order parameter

solution of the Parisi Formula is non trivial ( in the sense of distributions).

iii) The order parameter which solve the Parisi formula represents the dis-

tribution of the overlap w.r.t. the limiting quenched measure.

iv) Ultrametricity. The support of the joint distribution of the overlaps is

concentrated on an ultrametric space.

From the physical point of view parts ii), iii), iv) have the following interpre-

tation: there exist a countable number of pure states organized in a hierarchical

structure.

The rigorous proof of the Parisi formula for the pressure, was completed only

thirty years later by Guerra [79] and Talagrand [119]. The result fully confirms

points i) and ii) however, iii) and the ultrametric property iv) are in some

sense hidden inside the proof but don’t follow from it. These last two points are

strictly related to the the Aizenmann-Contucci [22] and the Ghirlanda-Guerra

identities [76]. Indeed, Panchenko [108] recently proved that these identities

imply ultrametricity. This result combined with the Aizenmann-Simms-Starr

scheme [24] provides a new and more clear proof of the Parisi Formula and as

a byproduct, that iii) and iv) hold generically ( the precise meaning of this

term will be explained in chapter 4 and should be understood as a for a slightly

perturbed Hamiltonian ).

This allows us to claim that the Parisi Theory is generically correct but a

natural question arises: is it also universal? Namely, can it describes, even

partially and with suitable modifications, also other kind of disordered models?
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The original contribution of the first part of this work is to show that the

range of validity of the Parisi Theory, in particular its mathematical counter-

part, is not confined to the SK model.

First, we consider a Multi-species version of the SK model called MSK model.

This is in some sense a way to break the permutational invariance in distribution

of the SK model, without losing the mean field nature, reducing it to a block

permutation invariance. The model is introduced in [41] where the authors show

in detail the construction of a multidimensional version of the Parisi Formula

and, under some convexity assumptions, a proof of the so called Guerra’s bound

for the pressure. The proof of the reverse bound was completed by Panchenko

in [109] with the same strategy used for the SK model, but revealing a new

consequence of the Ghirlanda-Guerra identities and ultrametricity, the so called

sinchronization property.

We stress the fact that this result is important for the mathematical point of

view as well for the applications. Indeed, the solution is given in great generality,

namely for any arbitrary integer number of blocks. Thus, this makes the model

much more suitable for applications than the SK model and leaves an open door

to possible extensions of the result that will be discussed in chapter 3.

The MSK model belongs to the class of Mean Field models, but what about

the finite dimensional case? Is there some features of the Parisi theory that still

holds for Finite Dimensional Spin Glasses?

The most debated point concerns the number of their equilibrium state(s).

As pointed out by Newman and Stein [97], some conceptual difficulties arise even

in the precise definition of a pure thermodynamic state for disordered systems.

Some authors [95] believe that the main features of the mean field picture, like

the existence of an infinite number of equilibrium states and their ultrametric

structure, persist in the finite dimensional case, while others [71] argue, within

the droplet picture, that below the critical temperature just two pure phases

exist, connected by the global spin-flip symmetry. Both pictures are supported
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by a mixture of numerical simulations and theoretical considerations.

Our contribution [63] is a proof of the Aizenmann-Contucci and the Ghirlanda

Guerra identities for a large class of models including finite dimensional spin

glasses. Thus, the limiting distribution of the generalized overlap, by using

Panchenko’s Theorem, is generically ultrametric, where the meaning of gener-

ically is the same as before. We want to stress the fact this result is far to

being a complete answer to the original question, namely if the Parisi picture

holds also in the finite dimensional case: we have only proved iv), however part

ii) is the core of the question. Indeed, it’s still possible that the equilibrium

state satisfies the ultrametric condition iv) trivially ( only with two pure states)

excluding the Replica Symmetry Breaking behavior ii).

In the second part of the work we will consider two generalizations of the

classical Monomer-Dimer model: the first is with random activities while in the

second, in a non-random setting, we introduce an imitative interaction between

the components ( monomers and dimers).

The Monomer-Dimer model (MD model) was originally introduced [54, 113]

as statistical model for the absorption of diatomic molecules on a solid, thus

roughly speaking, dimers represent the molecules and monomer empty sites,

while the solid can be represented by a graph. Thus, by construction, a Monomer-

Dimer Model is a matching problem on graphs [78].

In general, the main feature of any monomer-dimer system is the hard-core

interaction among the dimers. The physical interpretation is that two different

molecules cannot deposit on the same vertex, due to the repulsivity of the van

der Waals potential at short distance.

The first mathematical approach to the problem is due to Heilmann and Lieb

[86, 87] where they proved, among other results, that the hard-core interaction

is not enough to generate a phase transition basically for any “nice” graph.

Clearly, the hard-core interaction is not the only physical property of the

molecules-solid system, thus one can think to add other structures to the MD
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model that fill this gap.

In this part of the work we will address to the following question: what

happens if one adds to an MD model an attractive interaction or quenched

randomness in the parameters?

The first describes the attractive component of the Van der Waals potential

among monomers and dimers ( a different kind of interaction is also considered

in [88]). The original contribution of this part of the thesis is the solution and

a detailed analysis [28] of a Monomer-Dimer model with an uniform attractive

interaction ( IMD model) on the complete graph. In particular we prove that

the model belongs to the mean field universality class.

Beside the IMD model, we will consider a Monomer-Dimer model with ran-

dom activities ( RMD model) representing the absorption of an irregular solid

described in the quenched setting. Our original contribution [30] is a solution

of model on the complete graph with randomness in the monomer activities

and uniform dimeric one. The solution, as usual for mean field models, has to

be understood as a variational representation for the pressure that turn out to

be analytic in agreement with the result of Heilmann-Lieb. The case of ran-

dom dimeric weights is an important open question and is also related to the

following general consideration.

The spirit of these generalizations of the MD model is very close to the Spin

Glass setting. Indeed, one can think the IMD and the RMD models as a pre-

liminary step toward a Monomer-Dimer Glassy System, in other words a model

with a combination of random hard-core and random interaction between the

components. From this point of view, the RMD model play the role of a ran-

dom hard-core model while the IMD model is the simpler case of a deterministic

attractive interaction.

A concluding remark: besides the purely mathematical aspect, the result

presented here are interesting, in our opinion, at least for two reasons. First of

all, a full understanding of the mathematical structure underlying the physical
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behavior of the mean field systems seems to us to be a necessary prerequisite

to attack the finite dimensional counterpart. The second reason is that, as

we will briefly illustrate in the following, mean field models arise naturally in

many different contexts, ranging from combinatorial optimization problems and

theory of neural networks to social sciences and biology.

Layout of the thesis

This thesis is split into two main parts. The first (Chapter 1, 2, 3, 4) is on

Spin Glass models while the second is on Monomer Dimer models (Chapter 5,

6, 7).

• In Chapter 1, we give the mathematical background and the general for-

malism for Spin (Disordered) Models. Some applications to physical and math-

ematical problems are briefly discussed.

• In Chapter 2, we give a very short overview on some general aspects of

the theory of spin glasses, illustrating its physical origin. A section is dedicated

to the Sherrington-Kirkpatrick model which is of fundamental interest for the

work.

• In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick

model (MSK), we prove the existence of the thermodynamical limit and the

Guerra’s Bound for the quenched pressure together with a detailed analysis of

the annealed and the replica symmetric regime. The result is a multidimensional

generalization of the Parisi’s theory. Finally we briefly illustrate the strategy of

the Panchenko’s proof of the lower bound.

• In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-

Guerra identities for a wide class of Spin Glass models. As an example of

application, we discuss the role of these identities in the proof of the lower
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bound for the MSK model.

• In Chapter 5 we introduce the basic mathematical formalism of Monomer

Dimer models. We introduce a Gaussian representation of the partition function

that will be fundamental in the rest of the work.

• In Chapter 6, we introduce an interacting Monomer-Dimer model (IMD).

Its exact solution is derived and a detailed study of its analytical properties and

related physical quantities is performed.

• In Chapter 7, we introduce a quenched randomness in the monomer

Monomer Dimer model (RMD) and show that, under suitable conditions the

pressure is a self averaging quantity. The main result is that, if we consider

randomness only in the monomer activity, the model is exactly solvable.



Preliminaries

Let us start giving a quick overview on the general concepts behind the

statistical mechanics description of the thermal equilibrium of a system. We

want to stress the fact this preliminary introduction is formal and elementary,

the only purpose is to give a motivation and orientation to the non expert reader

then, a reader familiar with the subject can skip this section. A detailed and

advanced exposition can be found in the classical literature, see for example

[5, 1] for a mathematical perspective and [4] for a discussion closest to physics.

About 1870, Ludwig Boltzmann proposed that the laws of thermodynamics

should be derivable from mechanical first principles on the basis of the atomistic

theory of matter. Thermodynamics describes a physical system with few macro-

scopic parameters ( for example a gas with pressure, volume and temperature)

whereas, from the mechanical point of view, usually there is an huge number

of atoms ( typically 1023 ) which interacts at the microscopical level. This con-

trast between the microscopic and the macroscopic level is the starting point

of Equilibrium Statistical Mechanics as developed by Maxwell, Boltzmann, and

Gibbs. The underlying basic ideas can be illustrated in a very general setting.

The aim is to describe and explains the macroscopic behavior of large sys-

tems in thermal equilibrium in terms of the microscopic interaction between

their very many constituents. Thus, we are interested to the behavior of the

objects when the number of the components goes to infinity. A rigorous defini-

tion of the this limiting procedure and convergence questions depends strongly

on the model consider, at this stage we suppose the system large but finite and
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refer this suitable procedure as thermodynamic limit or t.l..

Consider a large but finite set Λ which represent the components of a system.

Thus, a first vague notion of t.l. should be understood as the |Λ| → ∞ in a

suitable way. For each i ∈ Λ, let σi be a variable taking value in a set Σ (to

fix the idea suppose a finite discrete set of real numbers ) which describes the

possible states of each component of the system, it is called single state space.

For example, in the case of a magnetic system, Λ consists of the sites of the

crystal lattice which is formed by the positions of the atoms and Σ is the set of

all possible orientations of the magnetic moments of the atoms.

Having specified the sets Λ and Σ, we can describe a particular state of the

system or microscopic configuration by a suitable element σ = (σi)i∈Λ of the

product set Σ|Λ|. We will denote by ΣΛ ⊆ Σ|Λ|, the set of allowed configurations,

called configuration space.

Is reasonable to suppose that the physical properties of the system are con-

sequence of the interaction among the components of the system. In the Sta-

tistical Mechanics language this interaction is specified by the Hamiltonian, a

function HΛ : ΣΛ → R, which represent the energy associated to a microscopic

configuration σ ∈ ΣΛ.

The configuration space ΣΛ is huge, nevertheless the complexity of a micro-

scopic description of the system, i.e. in terms of a microscopic configuration

σ, can be overcome by a probabilistic approach. In other words, the macro-

scopic determinism (thermodynamic) may be regarded as a consequence of a

suitable law of large numbers. According to this philosophy, it is not adequate

to describe the state of the system by a particular element σ ∈ ΣΛ. The sys-

tem’s state should rather be described considering the family σ = (σi)i∈Λ as a

family of Σ-valued random variables, or (if we pass to the joint distribution of

these random variables) by a probability measure GΛ on ΣΛ. In this framework,

physical quantities are supposed to be represented by the expectation w.r.t. the

measure GΛ of suitable functions on the configurations space.
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[Q1]. Which kind of probability measure is suitable to describe a very large

physical system in thermal equilibrium?

Let us introduce the basic quantity on which is based the answer to [Q1].

Definition 0.0.1. For a given Hamiltonian HΛ and for any β ≥ 0, a real

parameter which represent up to a constant the inverse physical temperature,

the finite volume Gibbs measure GΛ is a probability measure on ΣΛ defined as

GΛ(σ) :=
e−βHΛ(σ)

ZΛ(β)
(1)

for each σ ∈ ΣΛ. The normalization factor

ZΛ :=
∑
σ∈ΣΛ

e−βHΛ(σ) (2)

is called partition function.

An informal answer to the question [Q1] is the following:

[A1]. When the system becomes very large, i.e. in the t.l., the probability

measure which describe the thermal equilibrium of a system is given by the t.l.

of Gibbs measure.

The rigorous formulation and justification of the previous answer is a long

story which is still far from being finished, we just mention the key words and

relative references: ergodic theory [1] and equivalence of ensembles [3]. In this

work we will focus on the mathematical analysis of the consequences of [A1]

rather than on its foundation.

Let us give an equivalent formulation of [A1], closest to thermodynamics.

According to the previous probabilistic description, let µ be a probability mea-

sure on ΣΛ which encode all the thermodynamic information of the system, not

necessarily at the thermal equilibrium. For example, the internal energy density

can be computed as

uΛ(µ) =
1

|Λ|
Eµ[HΛ] (3)
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The previous relation is quite intuitive. The key step and less intuitive, is

the relation between the physical entropy and µ first proposed by Boltzmann

and then explained by Gibbs. Setting the Boltzmann constant equal to 1 the

entropy density is given by

sΛ(µ) = −Eµ[log µ] (4)

The free energy density is given by the usual thermodynamic relation

fΛ(µ) = uΛ(µ)− 1

β
sΛ(µ) (5)

If we impose now that the system is in thermal equilibrium, one can char-

acterize the Gibbs measure (1), in the following way:

Gibbs Variational Principle: when the system is at thermal equilibrium, the

probability that each state occurs are such as to minimize the free energy of the

system.

A simple computation show that the Gibbs measure (1) is the unique mini-

mizer of fΛ(µ) on the set of all probability measure on ΣΛ. Thus the free energy

at equilibrium becomes

fΛ := min
µ
fΛ(µ) = − 1

β|Λ|
logZΛ (6)

where ZΛ is the partition function 5.9.

Instead of the free energy, without any significant change, in this work we

will consider the following quantity:

Definition 0.0.2. The pressure density associated to an Hamiltonian is defined

as

pΛ :=
1

|Λ|
logZΛ = −βfΛ (7)

The ”pressure” is a term used in Statistical Mechanics of Lattice Gases [6],

because of its analogy to the real physical concept of pressure for lattice gases.
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In the rest of the work we prefer deal with the pressure because the extra factor

−1/β in the free energy becomes a nuisance when taking derivatives.

The assumption [A1] is only the beginning of the game, since after it, a

natural question arises:

[Q2]. It is possible to give a rigourous formulation of the thermodynamic

limit of the Gibbs measures, study the properties of its limiting object and related

quantities?

There is a beautiful and rather general theory on the t.l. of the Gibbs

measure, know as Gibbs formalism or DLR states. A detailed exposition on

this subject can be found in the standard references [5, 6, 2]. The present work

is on Mean Field models for which the previous theory is not directly applicable

and the questions related to the t.l. will be analyzed case by case.

As one expect, the limiting properties of the Gibbs measure depend strongly

on the considered model. This is the most exciting feature of Statistical Mechan-

ics, because, starting from a collection of interacting simples objects, after t.l.,

the resulting picture can be much less simple and describe complex phenomena

like phase transition and symmetry breaking [5].

In this work, for a given statistical mechanical model, we will try answer to

[Q2], in particular to the following aspects:

• Existence and properties of the thermodynamic limit of the pressure den-

sity.

• Existence and properties of the thermodynamic limit of the Gibbs measure.

We will consider models belonging to two distinct classes : Spin Models and

Monomer-Dimer Models. As will become clear, this preliminary division, is due

to the topological properties of their configuration spaces.



Chapter 1

Spin Models formalism

The first kind of statistical mechanical models studied in this work belong

to the classes of Disordered Spin Models on Graphs. The aim of this chapter is

to introduce the necessary mathematical background.

A statistical mechanical model can specified trough three basic objects:

• A finite set Λ which represent the components of the systems.

• The single state space Σ and the configuration space ΣΛ which represent

our a priori knowledge of the properties of the components.

• The Hamiltonian function HΛ : ΣΛ → R which represent the energy of the

system trough the interaction between the components.

All the formalism developed in this chapter is for finite system ( finite Λ ), the

definition of thermodynamic limit and convergence questions are analysed case

by case in the next chapters. A first vague notion of t.l. should be understood

as the |Λ| → ∞ in a suitable way.

First at all, in this work, except for chapter 4, we will consider interactions

involving only pair of components excluding the possibility of many components

interactions: in other words we deal with Models on Graphs. Thus, let us recall

the following basic definitions of graph theory.

Definition 1.0.3. Let Λ be a finite set, P
(2)
Λ := {ij ≡ {i, j} : i 6= j ∈ Λ} the set

of unordered couples of different elements of Λ and consider a subset E ⊆ P
(2)
Λ .

1



2

The pair (Λ, E) := G is called finite graph with vertex set Λ and edge set E.

If E ≡ P
(2)
Λ we denote the graph by KΛ and refer to it as the complete graph

on Λ.

This works focuses on models on the complete graph however, they will be

introduced, without extra efforts, for a general graph G. The symbol G, unless

otherwise specified, always denotes a generic graph with vertex set Λ set and

edge set E which represent respectively the set of microscopic components and

the set of pair interacting components of a model. Even if is not treated in

detail during the work, often in the discussion we will refer also to another kind

of graph called lattice graph.

Definition 1.0.4. Consider an integer d, we call the lattice graph Gd := (Λd, E)

the finite graph with vertex set Λ ⊂ Zd and E ≡ {ij ∈ P (2)
Λ : |i− j|1 = 1} where

Zd is the d-dimensional integer lattice and | · |1 denotes the L1 norm in Rd.

The respective terminology for statistical mechanics models is:

• Models on the complete graph: the choice of KΛ can be used to describe

systems with an high number of connections such as neural or social networks.

If no additional structures are present in Λ, the only important thing is its

cardinality, i.e. the number of components of the system that will be denoted

by an integer N . Thus, we simply take Λ ≡ ΛN := {1, . . . , N} and E ≡ EN :=

{ij : i < j; i, j ∈ ΛN} , KN denotes the corresponding complete graph.

• Lattice models : the choice of Gd and in particular Zd as underlying trans-

lation invariant structure is often used to describe physical models as crystals.

The condition |i − j|1 = 1 identifies the nearest neighborhood vertices and we

say that the resulting interaction has a short range. In general one can choose

a real parameter R > 0 which tunes the range of the interaction replacing the

above condition with the weaker |i− j|1 ≤ R.

We mention that it’s also possible to consider G as a random graph. The
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simplest example is the Erdös - Rényi random graph: the edges are indepen-

dently present with identical probability. They will not be discussed in this

work, the interested reader may consult [67, 107, 96] for spin model on random

graph and [27] for monomer dimer models on random graphs.

1.1 Spin Models on Graphs

Let G = (Λ, E) be a finite graph. Each vertex i ∈ Λ is endowed with a

variable σi ∈ Σ := {−1, 1} called spin.

Definition 1.1.1. A spin configuration is the family σ := {σi}i∈Λ which rep-

resent a particular microscopic configuration of the system. The configuration

space is the product set ΣΛ := {−1,+1}|Λ|, i.e. the set of all possible spin

configurations.

The Hamiltonian which describe the interaction among the components is

then a spin-spin interaction.

Definition 1.1.2. A Spin Model on G = (Λ, E) is defined assigning to each

spin configuration σ ∈ ΣΛ an Hamiltonian function

HG(σ) = −
∑
ij∈E

Jijσiσj −
∑
i∈Λ

hiσi (1.1)

where JE := {Jij}ij∈E, and hΛ := {hi}i∈Λ are two families of real parameters.

Remark 1.1.3. The definition 1.1.2 is slightly redundant since, strictly speak-

ing, the choice of the graph G and the family of couplings JE are not indepen-

dent. Indeed, since the value Jij = 0 is allowed, one can consider without loss

G ≡ KΛ. It’s easy to check that a spin model on an arbitrary graph G = (Λ, E)

with family of coupling JE, coincide with a spin model on KΛ with family of

coupling J ′ defined as J ′ij = Jij if ij ∈ E and zero otherwise. Despite this fact

we will use the above definition because, as we will show in the next, the graph
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G encodes in a compact way the topological properties while the couplings JE

tune the strength of the interactions.

Example 1. The following models will be briefly discussed in chapter 2:

i) The nearest-neighborhood ferromagnetic Ising model in Zd corresponds to

the choice G = Gd, Jij = J > 0 for all ij ∈ E and hi = h ∈ R for all i ∈ Λ

ii) The Curie-Weiss model corresponds to the choice G = KN , Jij = J > 0

for all ij ∈ E and hi = h ∈ R for all i ∈ Λ

All the properties of the Hamiltonian are then encoded in the choice of the

graph G and the families JE and hΛ that are called respectively couplings and

external fields. For any fixed such as choice, let us recall the basic objects of

interest.

Definition 1.1.4. Let β ≥ 0 be a real parameter which represent up to a con-

stant the inverse physical temperature, the finite volume Gibbs measure GG as-

sociated to the Hamiltonian (1.1), is a probability measure on ΣΛ defined as

GG(σ) :=
e−βHG(σ)

ZG
(1.2)

for each σ ∈ ΣΛ. The normalization factor

ZG :=
∑
σ∈ΣΛ

e−βHG(σ) (1.3)

is called partition function.

NOTATION WARNING: Clearly the Hamiltonian, the Gibbs measure

all the related quantities that we are going to introduce, depend on the fixed

choice of the parameters JE and hΛ and the inverse temperature β. In order to

lighten the notation, we keep this dependance implicit in almost all situation.

However, the reader should always keep in mind this dependance.

One of the most important quantity beside the Gibbs measure is
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Definition 1.1.5. The pressure density associated to an Hamiltonian (1.1) is

defined as

pG :=
1

|Λ|
logZG (1.4)

In probabilistic terms, the pressure density, up to a non relevant normaliza-

tion, is the cumulant generating function of the variable −HG w.r.t. the count-

ing measure on ΣΛ, then its β-derivatives are the cumulants of −HG w.r.t. the

Gibbs measure.

Definition 1.1.6. We call the finite volume Gibbs state ωΛ the expectation

w.r.t. the Gibbs measure 1.2, i.e. for any bounded function f : ΣΛ → R,

ωG(f) :=
1

ZG

∑
σ∈ΣΛ

e−βHG(σ)f(σ) (1.5)

Thus, for example

Definition 1.1.7. The internal energy density is defined as

eG :=
ωΛ(HG)

|Λ|
= − ∂

∂β
pG (1.6)

The ground state of the system is defined as

e
(0)
G :=

1

|Λ|
min
σ∈ΣΛ

HG(σ) (1.7)

The origin of the term ground state is due to the fact that β →∞ correspond

to the zero temperature limit. Indeed one can prove that e
(0)
G = limβ→∞ eG.

This relation furnishes a direct link with statistical mechanics and optimization

problems.

1.2 Disordered Spin Models

At this stage, the definition (1.1.2) is rather general. However, depending on

the phenomenon to describe, we can make additional assumption on the graph

G and the parameters JE and hΛ to construct particular spin models that
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capture the relevant properties of the phenomenon and allows a satisfactory

mathematical treatment. We have already anticipated that the main topic of

the work will be models on the complete graph, so let us introduce the basic

assumption on the parameters.

Let us suppose we don’t know exactly the values of the parameters JE and

hΛ but only their statistical properties, in other words their distribution. It

would be interesting to try to understand what happen in the thermodynamic

limit for a “typical” choice of the parameters. One natural way to give this

question some meaning is to model the parameters as random variables and

translate the word typical into almost all realization. The physical motivations

behind the introduction of randomness on the parameters will be explained in

section 2.1. Here we introduce the mathematical framework.

Let JE := {Jij}ij∈E and hΛ := {hi}i∈Λ be two families of random variables

defined in some standard probability space (Ξ,B,P) with expectation denoted

by E, η ∈ Ξ denotes a particular realization of the disorder.

Definition 1.2.1. A Disordered Spin Model on G is defined, for any realization

η, assigning to each spin configuration σ ∈ ΣΛ an Hamiltonian function:

HG,η(σ) = −
∑
ij∈E

Jij(η)σiσj −
∑
i∈Λ

hi(η)σi (1.8)

NOTATION WARNING: In the next chapters, we will consider particu-

lar Disordered Spin Models specifying the distribution of the random parameters,

then we will drop the explicit dependence on η.

Since the Hamiltonian (1.8) is a random variable, all the quantities related

to it include randomness. Thus, the description of the equilibrium properties of

a disordered system with a random Hamiltonian requires the introduction of a

new notion of equilibrium state. For a general discussion on this topic see [12]

and references therein. For our purpose, we can use the notion of finite volume

quenched state.
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Recall that, from the dynamical point of view [1], the use of the Gibbs

measure as equilibrium measure is based on the assumption that time averages

will converge to averages with respect to the Gibbs measures. In this case, we

deal two with kind of variables, the spins σ ∈ ΣΛ and the random variables in

(Ξ,B,P). Thus a proper notion of equilibrium measure must be a measure on

the product space ΣΛ×Ξ taking into account the fact the equilibrium time-scales

of the spins and the random couplings can be different.

There are two notions conventionally used in the physics, which correspond

to opposite cases:

• Annealed state. This procedure corresponds to treating the random vari-

ables as dynamical variables on an equal footing with the spin variables, namely

they equilibrate on the same time-scale. More precisely, we consider the pair

(σ, η) as a ”generalized spin configuration” on ΣΛ × Ξ and apply the standard

notion of Gibbs measure 1.2 to the a priori product measure P(dη)µΛ(dσ), where

µΛ is the discrete measure on ΣΛ, i.e. the sum over all spin configurations.

Much more interesting from the physical point of view is the opposite case,

which is the case considered from now on:

• Quenched state. This procedures correspond to consider the time scale of

the spin variables relaxation much shorter than the time scale of the random

variables. Thus, we split the average into two steps, first one computes for

a fixed realization of the disorder η the average of the spins w.r.t. a Gibbs

measure GG,η on ΣΛ, and then performs an average over the disorder η with P.

More precisely,

Definition 1.2.2. For a given realization η and for any β ≥ 0, the finite volume

random Gibbs measure GG,η associated to the random Hamiltonian HG,η (1.8)

is a random probability measure on ΣΛ defined as

GG,η(σ) :=
e−βHG,η(σ)

ZG,η
(1.9)
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for each σ ∈ ΣΛ. The normalization factor

ZG,η :=
∑
σ∈ΣΛ

e−βHG,η(σ) (1.10)

is a random variable called random partition function.

Definition 1.2.3. We call the finite volume random Gibbs state ωΛ,η the expec-

tation w.r.t. the random Gibbs measure 5.8. In particular, for any a bounded

function f : ΣΛ → R

ωG,η(f) :=
∑
σ∈ΣΛ

GG,η(σ)f(σ) (1.11)

Notice that in general one can consider the average (1.11) for measurable

functions f(σ, η) on ΣΛ × Ξ. However, functions which depends only on the

spin configurations will play an important role in the next chapters, hence we

restrict our attention to them introducing the following important generalization

of definition 1.2.2.

Definition 1.2.4. For any of n ∈ N let us consider Σn
Λ, the cartesian product of

n copies of ΣΛ called replicas. We call the finite volume replica-Gibbs state ΩG,η

the expectation w.r.t. to G⊗nG,η on Σn
Λ, i.e. for any bounded function f : Σn

Λ → R

ΩG,η(f) :=
∑

(σ1,...,σn∈ΣnΛ)

GΛ,η(σ
1) . . .GG,η(σn)f(σ1, . . . , σn) (1.12)

Clearly the specification of the number n is redundant since one can always

consider the previous product of an infinite number of copies without affect the

average of a function on Σn
Λ.

Finally, averaging over the disorder, one obtains the quenched Gibbs state,

denoted

〈f〉G := EΩG,η(f) (1.13)
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Definition 1.2.5. The random pressure density associated to an random Hamil-

tonian (1.8) is the random variable |Λ|−1 logZG,η. Averaging over the disorder

we obtain the quenched pressure density is

pG :=
1

|Λ|
E logZG,η (1.14)

The annealed pressure density

pAG :=
1

|Λ|
logEZG,η (1.15)

For random quantities as the random pressure defined 1.2.5, an important

property is the following.

Definition 1.2.6. Let (XN)n∈N be a sequence of random variables. We say that

it is self-averaging iff

lim
N→∞

E (XN − EXN)2 = 0 (1.16)

Clearly the limit N → ∞ should be to be understood as the t.l., to fix the

idea simply think N ≡ |Λ|. For all the random models considered in this work

we are able to prove that the random pressure density is self averaging, and

then converge in probability to its expectation, namely the t.l. of quenched

pressure density. Actually we can prove more, namely that the convergence is

P-almost surely.

1.3 Some examples of applications

The class of spin models on graphs defined in (1.1.2) and its random version

1.8, can be tough as a preliminary setting for a statistical mechanic description

of various systems. Some classical examples are listed below.

• Magnetic systems : Suppose you want to describe the thermal equilibrium

properties of magnetic solids. In principle, there are a lot of degrees of freedom

on the interactions, however as first approximation one can describe the physical
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properties of this system using a spin model on a graph defined in (1.1.2). Keep

in mind the general framework introduced above, let us take magnetic solid:

the components of the system are then the atoms. The finite set Λ labels the

atoms of solid and, for each i ∈ Λ, the spin σi represent the magnetic moment

of the atom indexed by i that is quantized and can take only the two values +1

and 1. The graph G represent the molecular structure of the solid, namely the

atoms and their connections. If the solid has a crystal structure one can choose

G ≡ Gd, the lattice graph in dimension d. The Hamiltonian (1.1) represent

the magnetic energy of a configuration. In particular, the parameter Jij tunes

the magnetic interaction between the atoms i and j and the parameter hi is an

external magnetic field acting on the atom i. In the random framework, the

physical meaning of a choice of a random Hamiltonian (1.8) will be discussed

in detail in chapter 2.

• Absorption of monoatomic gas molecules : Consider a monoatomic gas

adsorbed on a solid material. A simple statistical mechanic model for this

system can be the following. The finite set Λ labels the allowed sites of the

solid, and, for each i ∈ Λ, let us consider an occupancy number αi ∈ {0, 1}

representing respectively an empty or an occupied site of the surface. This

is a rough approximation for hard-core repulsion between the absorbed gas

molecules. A microscopic configuration, i.e. a possible configuration of occupied

or empty sites, is then represented by an element α ∈ {0, 1}|Λ|. As before, the

graph G represents the molecular structure of the solid, and in order to taking

account the crystal structure of the solid one can assume G ≡ Gd. The energy

associated to a possible configuration of the system gas-surface is represented

by the following Hamiltonian

HG(α) := −
∑
ij∈E

Jijαiαj −
∑
hi∈Λ

αi (1.17)

In particular, the parameter Jij tune the interaction between gas atoms on the

site i and j and the parameter hi is the chemical potential acting on the site i.
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This model can be easy mapped into a spin model on G defined in 1.1.2.

Indeed, there exists a bijection between the two configurations spaces, namely

{0, 1}|Λ| 3 α ↔ σ ∈ {−1, 1}|Λ| , σi = 2αi − 1 ∀ i ∈ Λ

By consequence, its easy to show that the two Hamiltonian differ by a non

relevant constant.

• Dean’s problem: This is a classical optimization problem. Because to the

lack of physical dimension it’s a good example of system that can be represented

as a model on the complete graph KN . Anyway, in general, let us suppose we

have a network of people represented by a finite graph G and a collection of real

parameters Jij for ij ∈ E, which describe how much people i and j like or dislike

each other. Naturally, a positive parameter means that they like each other and

a negative parameter means that they dislike each other. However, unrealistic it

may seem, we will assume that the feeling is mutual. We will consider different

ways to divide the initial group into two subgroups, say A and B: it will be

convenient to describe them using vectors of ±1 labels. Namely, for each i ∈ Λ

we assign a spin variable σi with the following convention: if σi = 1(resp.

σi = −1) the people i belongs to the subgroup A(resp. B). Therefore a spin

configuration σ := (σi)i∈Λ describe a possible partition and the configuration

space ΣΛ := {−1,+1}|Λ| correspond to the 2|Λ| possible such partitions. For a

given configuration σ, let us consider the following discomfort function:

HG(σ) := −
∑
ij∈E

Jijσiσj (1.18)

(1.18) is a spin Hamiltonian (1.1) at zero external field and in this context

can be tough as a measure of the discomfort(=energy) generated by the partition

σ.

The Deans problem is to minimize the function (1.18) over all configurations

σ ∈ ΣΛ, hence, in the Statistical Mechanical language, the problem is equivalent
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to find the ground state (1.7) of the Hamiltonian.

The interpretation of this objective is clear, since minimizing the discom-

fort function means that we would like to keep positive interactions as much

as possible within the same groups and separate negative interactions into dif-

ferent groups. This optimization problem is in general NP-hard [37]. One of

the reasons is the presence of frustration, a property that will be analyzed in

section 2.1. The same problem in random setting is a random combinatorial

optimization problem.



Chapter 2

A short overview on Spin

Glasses

Spin Glasses has been introduced in theoretical physics quite recently. In

the 1970s, experiments on magnetic alloy metals like Fe, Mn and Cr weakly

diluted in metals as Au, Ag and Cu, showed a thermodynamic behavior not

compatible with the classical theory of ferromagnetism, such as peculiar dy-

namics properties reaching the equilibrium [65, 14].

In order to explain this phenomena, theoretical physicist (Edward and Ander-

son 1975, [31])introduced an Ising model with random interaction, know as EA

model, which represent the archetype of Spin Glasses.

To simplify the analytical treatment, Sherrington and Kirkpatrick (1975,

[93]) proposed a mean field version of the EA model, known as the SK model.

The resulting Mean Field theory, fully developed from the work of Parisi (1985,

[15]) , was based on an ansatz that has revealed a very rich mathematical struc-

ture. Only until recently some predictions of the above theory have received

a rigorous mathematical proofs: the exact solution of the model by Guerra

(2003, [79]) and Talagrand (2006, [119]) and the Parisi’s ultrametric conjecture

by Panchenko (2010, [108]).

These results are based on the introduction of new investigative techniques

13
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and concepts, notably the interpolation method [79], the Aizenmann-Contucci

[22] and the Ghirlanda-Guerra identities [76] that will be the essential tools

used in the following chapters.

Despite these progress and the success in the applications, the underlying

mathematical structure is not fully understood thus, following Talagrand [18],

”Mean Field Spin Glasses are a challenge to mathematicians”.

Spin Glasses are one example of Disorder Models on Graphs introduced in

section 1.2 thus we refer to that section for the general mathematical framework.

In this chapter we give a short overview on the physical motivations behind the

introduction of randomness in spin models and in the last section we illustrate

the basic results on the SK model.

2.1 From Ising to EA model

Before introducing Spin Glass models, let us briefly recall the Ising model (

see [3, 6] for a complete account of the subject) emphasizing his main difference

with respect to its spin glass version, the Edwards-Anderson model.

This model has been introduced to give an explanation of the ferromagnetic

behavior of some kind of materials. These materials, after having been exposed

to an external magnetic field develop a magnetization with the same sign of the

field. When the field was then switched off, the materials showed two differ-

ent behaviours depending on the temperature at which the magnetization was

induced. If the temperature was below a critical value, the materials retained

a degree of magnetization, called spontaneous magnetization, whereas they was

not capable of doing this when the temperature was greater or equal to the

critical value. As temperature approached the critical value from below the

spontaneous magnetization vanished abruptly.

The problem is to described the magnetic properties of a crystal lattice in

dimension d.
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The setup of the model is the general one described in section 1.1 and in

particular in example 1.

Definition 2.1.1. The nearest-neighborhood ferromagnetic Ising model on Zd,

for any Λ ⊂ Zd is defined by the Hamiltonian function

HΛ(σ) = −J
∑

i,j∈Λ:|i−j|1=1

σiσj − h
∑
∈Λ

σi (2.1)

where J > 0 and h ∈ R.

The choice of the integer lattice Zd is motivated by translational invariance

of the physical crystal, while the nearest-neighborhood condition on the edge

set reflect the fact that the interactions vanish at long distances providing a

spatial structure to the model. The sign of the coupling J > 0 entail a ferro-

magnetic nature of the model in the following sense: the minimization over the

configuration space of the Hamiltonian (2.1) forces the neighborhood spins to

be aligned.

This model represent a considerable simplification on the description of the

microscopic degrees of freedom of the original system: the state of an atom is

reduced to a variable taking only two values, all the complicated electromag-

netic (and quantum) interactions are replaced by a simple attraction between

nearest neighbours on the lattice. Despite this simplification, this model turn

out to be a paradigmatic model and decisive turn in the development of Sta-

tistical Mechanics in several ways. The most important one is that furnish a

mathematical explanation of the ferromagnetism and in particular of the phase

transition phenomenon [3]. A mathematical discussion of this aspect is out of

the scope of this work and we refer to the classical literature mentioned above.

Here we give an heuristic description of the physical behaviour.

For β → 0 (”infinite temperature”) the spin variables are independent un-

der the Gibbs measure associated to the Hamiltonian (2.1), so the model is

equivalent to a fair coin tossing.
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As soon as β > 0 the probability distribution starts to favour configurations

with many neighbor pairs of aligned spins. This tendency becomes stronger and

stronger as β increases. The limit case is β →∞ (”zero temperature” or ground

state) were a strong order in the model appear. In the case h = 0 , the model is

symmetric under interchange of the spin values −1 and +1, so that there is an

equal chance of having many pairs of plus spins or having many pairs of minus

spins. This dichotomy gives rise to the following interesting behavior. Suppose

that d ≥ 2. If β is sufficiently small (i.e. in the high temperature regime), the

interaction is not strong enough to produce any order, and the t.l. of the Gibbs

measure is uniquely determined. In contrast, when β is sufficiently large (in the

low-temperature regime), the interaction becomes so strong that a strong range

order appears: the bias towards neighbor pairs of aligned spin then implies that

Gibbs measures prefer configurations with either a vast majority of plus spins or

a vast majority of minus spins, and this preference even survives in the infinite

volume limit. We say that the system thus undergoes a phase transition and

a spontaneous magnetization occur.

Despite his fundamental role, the ferromagnetic Ising model turn out to be

inappropriate to describe the magnetic behavior of solid alloys. In order to fill

this gap, theoretical physicists have constructed other kind of models taking

into account the presence of randomness and frustration in the system, which,

as we will see in the next, constitute the essentials ingredients of Spin Glasses.

• Randomness : Assume that we have a solid alloys made of a magnetic

transition metal impurities in noble metal hosts, say Fe and Au. Clearly, for

a given sample of the material, we don’t know the exact arrangement of the

impurities. However, one can hope there are physical properties that are in-

dependent of the sample. In order to formalize the previous claim, we model

the spatial inhomogeneity by introducing some probability distribution on the

space of possible realizations of the iron positions. As in ordinary statistical

mechanics, we expect that the sample-to-sample fluctuations go to zero in the
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limit of a large system. A quantity with this property is said to be self-averaging

1.2.6. If we know that this property holds, then not only we can expect the same

results in experiments with different samples, but we can also expect that the

average of the disorder give the same result of the experiments. The positions

of the atoms are not the only degrees of freedom of the system, indeed iron

atoms have magnetic moments (spins), and we are interested in the magnetic

properties of the system. Thus we deal with two kind of averages, the spin and

random positions averages, which play a role in the thermal equilibrium. The

question is: they play the same role? The physical picture is the following. At

high temperatures the atoms quickly change places, so that we guess that both

the spin and the positions are free to take on values which minimize the energy

of the system. This situation correspond to the annealed average ( see section

1.2).

However, at low temperatures, the motion of atoms is strongly suppressed:

one says that the positions of the atoms are frozen. Strictly speaking, they are

not exactly frozen, but they have a dynamics which is many order of magnitudo

slower than the dynamics of the spins. Indeed, unlike the positions, the spins

are not frozen, and their behaviour could be described by a Gibbs measure.

This description correspond to the quenched average (1.13) and is the right one

for the phenomena we want to describe.

In the example we have just illustrated, randomness is in the position of the

magnetic impurities. This situation does not turn out to be simple enough to

allow an analytical approach. Therefore, following Edwards and Anderson [31],

one usually considers models where the positions of the magnetic moments are

non-random and are placed on the sites of a lattice and disorder is in the family

of couplings.

Thus, keep in mind the general framework introduced in section 1.2, let us

consider a disordered spin model the a lattice graph Gd-

Definition 2.1.2. ( EA model) The nearest-neighborhood Edward-Anderson
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model is defined, Λ ⊂ Zd, assigning to each spin configuration σ a random

Hamiltonian function, called EA Hamiltonian, of the form

HΛ(σ) = −
∑
|i−j|1=1

Jijσiσj − h
∑
i∈Λ

σi (2.2)

where the family of couplings JΛ = {Jij}i,j∈E, are taken to be i.i.d. standard

gaussian random variables.

Thus, roughly speaking, the Hamiltonian of the EA model has the same form

of the Ising Hamiltonian (2.1), apart from the fundamental difference that, the

couplings Jij are gaussian random variables.

• Frustration: The choice of a symmetric distribution for the couplings has

a physical explanation: the impurity moments produce a magnetic polarization

of the host metal conduction electrons, which is positive at some distances and

negative at others. This simple fact has a deep consequence.

Let us start analyzing, at zero magnetic external field h, the ground state

of the Ising model, i.e. the spin configuration that minimize the Hamiltonian

function 2.1. Clearly, each spin-spin interaction term is minimized when the two

spins are parallel, i.e. σiσj = +1 for all i, j. There are two such configurations,

one with all spins equal +1, the other with spins −1, and they are connected

by the global spin-flip symmetry σi → −σi for each i ∈ Λ. It is also elementary

to check that any other configuration has a strictly higher energy. Therefore

the ground state can be completely determined by the symmetries of the system.

Conversely in the EA model, for a given realization of the random inter-

actions, some of them are of ferromagnetic character (i.e., they favor parallel

alignment of the spins) and others are anti-ferromagnetic. This is a key point:

we have random, competing interactions which produce frustration [121]. In-

deed, consider a triple i, j, k ∈ Λ with Jij, Jjk > 0 but Jik < 0. The minimization

of the Hamiltonian enforce the following picture: σiσj = 1, σjσk = 1, but un-

fortunately σiσk = −1. The use of the term frustration can be easy understood
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if one think at interpretation of spin models in terms of the Dean’s problem

mentioned in chapter 1.

Informally, one can say that frustration is present when the Hamiltonian

cannot be written as a sum of individual terms which can all be minimized by a

single ground state configuration. Moreover the ground state of the system has

a high degeneracy, and different ground states are not connected to one another

by elementary symmetry transformations. The number of ground states in fact

grows very fast as the number of spins is increased.

The EA model, and in general finite dimensional Spin Glasses, though in a

sense of a simplification with respect the physical system, are still of formidable

difficulty problem to attack. To simplify the analytical treatment of the EA

model, Sherrington and Kirkpatrick [93] proposed a mean field version of the

EA model, known as the SK model that will be discussed in the next section.

2.2 The Sherrington-Kirkpatrick model

The common feature of Mean Field models is that any additional structure

for the graph G, as for example the spatial structure Zd for lattice models, is

considered in favour of a simpler setting: the graph G is now the complete graph

KN with a vertex set ΛN = {1, . . . , N}. This kind of models can be toughs in

two ways.

First, they can be viewed as a mean field approximation of the correspond-

ing model on the lattice because of the lacking of spatial dimensionality in the

interaction: all the microscopic components of the system are supposed to in-

teract with each other, irrespective of their physical distance. The fundamental

question of the connection between the mean field picture and the correspond-

ing short range version, at least when the space dimensionality or the range

of interactions is large, is well understood for instance, for non-random ferro-

magnetic systems, where it is well known [4, 3] that mean field theory gives
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a reasonable qualitative description of symmetry breaking and of the critical

point. After almost thirty years, the question of the connection between mean

field and realistic spin glass models is still to a great extent open and under

discussion. We will give a partial result on this direction in chapter 4.

On other hand, one can imagine to describe a system with an high number

of connections as for example a neural network, a network of people or a social

system. This last point of view is also closer to optimization problems (see

for example the Dean’s problem ( see section 1.3) where the spatial structure

is irrelevant. In this case the picture where all components interact with each

other is not far from the original situation and hopefully the resulting model is

able to capture the relevant properties of the system.

2.2.1 A preliminary example: the Curie-Weiss model

Before introducing the SK model, we start with the prototype of mean field

models: the CurieWeiss model. It can be viewed as the mean field approxima-

tion of the Ising model (2.1).

Remark 2.2.1. Let us give an heuristic argument which gives a meaning to the

term mean field approximation. Let us rewrite the Ising Hamiltonian (2.1) in

the equivalent form

HΛ(σ) = −J
∑
i∈Λ

σi

(∑
j∼i

σj

)
− h

∑
i∈Λ

σi (2.3)

where j ∼ i ↔ |i− j|1 = 1 denote the set of nearest-neighborhood of the site i.

The term
(∑

j∼i σj

)
=: h̃i is the effective field acting on the spin σi. The mean

field approximation is then to replace, for each i ∈ Λ, the effective field h̃i with

a site independent quantity, i.e. its mean value |Λ|−1
∑

i∈Λ σi.

All we need to do is to replace the nearest-neighbour pair interaction of

the Ising model (2.1), by another extreme choice: we assume that each spin

variable interacts with each other at any site of the lattice, irrespective of their
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distance. In this case, the actual structure of the lattice becomes irrelevant.

The only important thing is the number of spins that will be denoted by an

integer N thus, we may simply take Λ ≡ ΛN = {1, . . . , N}. The configuration

space becomes ΣΛ ≡ ΣN = {−1,+1}N .

The resulting model is a spin model on the complete graph KN with constant

coupling J/N > 0 and external field h ∈ R.

Definition 2.2.2. ( CW model) The Curie-Weiss model is defined assigning to

each spin configuration σ the CW Hamiltonian function

HN(σ) = − J
N

∑
1≤i<j≤N

σiσj − h
∑
i∈Λ

σi (2.4)

The strength of the interaction should be chosen O(1/N), to avoid the pos-

sibility that the Hamiltonian takes on values larger than O(N). This request

is essential to ensure the existence of the thermodynamical limit which in this

case correspond to the limit of N →∞. Without loss one can considerer J = 1,

the general case by a simple rescaling of the paramaters.

A basic quantity, the so called order parameter of the model, is the empirical

magnetization.

Definition 2.2.3. For a given configuration σ ∈ ΣN the empirical magnetiza-

tion is defined as

mN(σ) :=
1

N

N∑
i=1

σi (2.5)

This is a macroscopic function in the sense that it depends on all spin

variables, and depends on each one of them very little. There is a rigorous

mathematical definition of macroscopic variable [2] but for our purpose we can

say that it is characterized by the fact in the thermodynamical limit its value

is not a affected by a change of finitely many spins.

The main consequence of working on the complete graph is the following
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Proposition 2.2.4. The CW Hamiltonian (2.4) can be rewritten as a function

of a single macroscopic function, i.e. HN(σ) = N
(

1
2
mN(σ)2 + hmN(σ)

)
.

Thanks to previous property the model turn out to be solvable in the fol-

lowing sense.

Theorem 2.2.5. Let pN := 1
N

logZN be the pressure density of the Curie-Weiss

model, where ZN :=
∑

σ∈ΣN
e−βHN (σ) is the partition function associated to the

CW Hamiltonian (2.4). For m ∈ [−1, 1], let us define the function

ψ(m) := β(hm+
m2

2
) +H(

m+ 1

2
) (2.6)

where H(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

Then, the thermodynamical limit of the pressure density exist and satisfy the

following

lim
N→∞

pN = sup
m∈[−1,1]

ψ(m) (2.7)

A proof of the previous results can be obtained in various way. A good

reference on the subject is [3] where, with large deviation techniques, an in-

terested reader can also find a detailed analysis of the thermodynamical limit

of the Gibbs measure. Let us briefly describe the behavior of the optimal m

determined by the r.h.s. of (2.7), which represents the limiting value of the

magnetization w.r.t. the Gibbs measure.

The stationary point(s) of ψ(m) are solution(s) of the equation

m = tanh[β)m+ h)]. (2.8)

If h 6= 0 and any β or β ≤ 1 ( high temperatures) and h = 0, ψ(m) has only

one global maximum, while for β > 1 has two local maxima. In particular, for

h = 0 the function ψ is symmetric, and so takes the same value at both maxima.

As a consequence, the magnetization as a function of the magnetic field, is not

unique at the value h = 0 (and only at this value). For h > 0, the maximizer
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is the positive solution of (2.8), while for negative h it is the negative solution.

Consequently, the magnetization has a jump discontinuity at h = 0: we say

that the CurieWeiss model exhibits a first-order phase transition.

2.2.2 The model

In the previous section we have seen that the Curie-Weiss model (2.4) is the

mean field version of the Ising model (2.1). In the same spirit, one can think the

Sherrington-Kirkpatrick model as a mean field version of the Edward-Anderson

model (2.2). Despite the reasons for their original birth this model soon became

of fundamental importance in the analysis of complex systems thanks to their

immediate link to a class of optimization problems [106, 101]. The simplest

example of such as problems is the Dean’s problem mentioned section 1.3.

Applying the same considerations of the previous section, we consider a

disordered spin model on the complete graph KN with Hamiltonian:

Definition 2.2.6. ( SK model) The Sherrington-Kirkpatrick model is defined

assigning a random Hamiltonian function of σ, called SK Hamiltonian:

HN(σ) = − 1√
N

∑
1≤i,j≤N

Jijσiσj − h
∑
i∈Λ

σi (2.9)

the family of couplings JN = {Jij}1≤i,j≤N , are taken to be i.i.d. standard gaus-

sian random variables.

Remark 2.2.7. Strictly speaking, the edge set of the complete graph KN is

P
(2)
ΛN

= {ij ≡ {i, j} : 1 ≤ i < j ≤ N} then the sum in (2.9) should be over

i < j. The choice of sum over all the possible pairs is for a convenience of

notation, the only difference is a factor of
√

2, since the contribution of the

diagonal elements is negligible for large N and the sum of two i.i.d. standard

gaussian Gaussian random variables Jij + Jji is equal in distribution to
√

2Jij.

Notice also that, because of the normalization factor N−
1
2 in (2.9, unlike

the CW model, the strength of the interaction is O(N
3
2 ). As we will show in
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the next, this is the right normalization which ensure a well defined t.l. for the

pressure density and a properly scaled ground state.

It will be useful to introduce a different point of view on the SK model: one

can think the SK Hamiltonian (2.9 as a Gaussian process indexed by the set ΣN ,

i.e. by the N -dimensional hypercube. In fact, HN(σ) is a centered Gaussian

random process which is fully characterized by its covariance function.

Definition 2.2.8. Given two configurations σ1, σ2 ∈ ΣN , the covariance func-

tion of the SK Hamiltonian is

CN(σ1, σ2) := EHN(σ1)HN(σ2) = N
(
qN(σ1, σ2)

)2
(2.10)

where the function q12 ≡ qN(σ1, σ2) := 1
N

∑N
i=1 σ

1
i σ

2
i ∈ [−1, 1] is called the

overlap between the two configurations.

Notice that (2.10) is the gaussian analogous of proposition 2.2.4 for the

Curie-Weiss model. Moreover, on can also consider gaussian process on ΣN with

covariance function depending on the overlap in a different way, i.e. CN(σ1, σ2) =

Nξ(q12) for suitable functions ξ. A class of important examples are:

• p-spin models : ξ(x) = xp, for any integer p ≥ 1. These gaussian process

may be represented in a form similar to the SK Hamiltonian, except that the

two-spin interaction must be replaced by a p-spin interaction:

HN,p(σ) :=
1√
Np−1

∑
i1,...,ip

Ji1,...,ipσi1 · · ·σip (2.11)

with Ji1,...,ip are i.i.d. standard gaussian random variables

• mixed p-spin models : ξ(x) =
∑

p≥1 β
2
px

p, where the sequence of positive

real numbers (βp)p≥1 is assumed to decrease fast enough to ensure the conver-

gence of the series for ξ(q12). The corresponding spin Hamiltonian is:

Hmix
N (σ) :=

∑
p≥1

βpHN,p(σ) (2.12)
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where HN,p is a sequence of independent p-spin Hamiltonian (2.11). The

Hamiltonian functions of the type (2.12) plays a fundamental role in proof of

the Ghirlanda-Guerra identities ( see chapter 4), since their covariance contains

informations about all the p-moments of the overlap.

We also notice that the overlap defined in 2.2.8 is closely related to the

Hamming distance on ΣN , where dHamming(σ
1, σ2) := #{i ≤ N : σ1

i 6= σ2
i }.

Further important models can be obtained by other choices of metric on

ΣN : the Random Energy Model (REM) [68, 18], the Generalized Random En-

ergy Model (GREM) [69, 51] and the Nonhierarchical GREM [47]. Despite

their fundamental importance in Spin Glass theory, these models will be not

presented in this work, an interested reader can consult the above references.

2.2.3 The Parisi Formula and related results

The most remarkable result on the SK model is a closed expression for the

t.l. of the pressure density expressed as variational problem know as Parisi’s

Formula. Let us specialize the general definitions 1.2.5 for the SK model.

Definition 2.2.9.

ZN :=
∑
σ∈ΣN

e−βHN (σ) (2.13)

is the random partition function associated to the SK Hamiltonian (2.9).

The random pressure density is the random variable N−1 logZN . Averaging

on the disorder we obtain quenched pressure density,

pN :=
1

N
E logZN (2.14)

The variational problem for the quenched pressure density is given in terms

of a functional on a convex space of distributions functions.

Definition 2.2.10. Let Md be the set of all discrete distribution functions

on [0, 1]. We notice that they are nondecreasing piecewise constant, right-

continuous functions. Any x ∈ Md, called the functional order parameter, can
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be parameterized with an integer number r ≥ 1 and two sequences q := (ql)l=0,...,r

and m := (ml)l=0,...,r+1 such that

0 = q0 ≤ q1 ≤ · · · ≤ qr−1 ≤ qr = 1

0 = m0 < m1 . . . < mr < mr+1 = 1.

If we denote by θ(·) the right continuous Heaviside function, then

x(u) :=
K∑
l=0

(ml+1 −ml)θ(u− ql), u ∈ [0, 1] (2.15)

In other terms x(u) is the cumulative distribution function of a discrete r.v.

which take the value ql with probability ml+1 − ml. Some authors [16] use a

different parametrization and m is replaced by ζ given by the relation ml+1 = ζl.

Definition 2.2.11. For a given x ∈Md, any inverse temperature β and exter-

nal field h, we call the Parisi functional

P(x) ≡P(h;x) := log 2 + f(0, h;x)− β2

∫ 1

0

x(u)u du (2.16)

where f(0, h;x) ≡ f(u, y) : [0, 1]× R→ R satisfies the Parisi’s PDE:

∂f

∂u
+ β2

(∂2f

∂y2
+ x(u)

(∂f
∂y

)2)
= 0 (2.17)

with the boundary condition

f(1, y) = log cosh(y). (2.18)

The Parisi’s PDE (2.17) is non linear, however it has nice properties. First,

for any x ∈Md, it can be solved recursively starting from the boundary condi-

tion. Indeed, suppose that x(u) is constant in a interval, let say [ua, ub].

Proposition 2.2.12. For a given real number m ≥ 0 and f(u, y) : [ua, ub]×R→

R let us consider the following PDE:

∂f

∂u
+ β2

(∂2f

∂u2
+m

(∂f
∂u

)2)
= 0 (2.19)
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with final condition

f(ub, y) = g(y). (2.20)

Then the solution is:

f(ub, y) =

Eg(y + z
√

2β(ub − u)) if m = 0

1
m

logE exp
(
mg(y + z

√
2β(ub − u))

)
if m 6= 0,

(2.21)

where E denotes expectation with respect to a standard Gaussian random

variable z.

The following result, due to Guerra [79], holds

Proposition 2.2.13. The function f(u, y;x) solution of 2.17 is pointwise con-

tinuous in x w.r.t. the L1([0, 1], du) norm. In fact, for any x, x̃ ∈ Md we

have

|f(u, y;x)− f(u, y; x̃)| ≤ β2

∫ 1

u

|x(v)− x̃(v)|dv (2.22)

Thus, proposition 2.2.13 implies that, f(u, y;x) and also the Parisi functional

(2.16), can be extended continuously from Md to M, where M is the space of

all distribution functions on [0, 1].

We are ready to state the celebrated Parisi formula.

Theorem 2.2.14. (Parisi ’85, Guerra ’03, Talagrand ’06)

lim
N→∞

logZN
N

= lim
N→∞

E
logZN
N

= inf
x∈Md

P(x), P− a.s. (2.23)

where P(x) is the Parisi functional (2.16). Moreover the minimizer is

unique.

Clearly the infimum is taken over r,m, q defined in 2.15.

The formula was discovered by G. Parisi in [110] using a non rigorous ap-

proach called replica trick. It was later understood in [15] that the solution
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conjectured by Parisi corresponded to a number of physical properties of the

Gibbs measure of the model, one of them being the ultrametricity of its sup-

port. The first important step toward the proof of the Parisi formula was the

Replica Symmetry Breaking interpolation scheme introduced by F. Guerra in

[79] which give the upper bound. The proof was completed by M. Talagrand

[19] showing how to control the remainder in the t.l. by developing a version of

Guerra’s interpolation for coupled systems. Actually, Talagrand’s proof applies,

with little modifications of the formula, to a p-spin model (2.11) for even p. The

proof all p-spin models, and then for the mixed p-spin model 2.12, was given

by D. Panchenko in [16] with a different method based on the Aizenman-Sims-

Starr scheme [24] variational principle and the Ghirlanda-Guerra identities.

The uniqueness part was a longstanding open problem recently solved in [35].

In the next chapter we will consider in detail a generalization of the SK model

and multidimensional analogous of Theorem 2.2.14.

A discussion about the limiting Gibbs measure of the SK model is rather

delicate. The full Parisi picture contains also the following two points:

• The solution of the Parisi Formula 2.23, let say x, then represents the

limiting law of the overlap w.r.t. the quenched Gibbs measure, namely for any

bounded continuous function f , we should have

lim
N→∞

〈f(q12)〉N =

∫
f(u)x(du)

where 〈 〉N is the quenched Gibbs measure defined in (1.13).

• The support of the joint limit law its ultrametric, namely given σ1, σ2, σ3 ∈

ΣN

lim
N→∞

〈I
(
q1,3 ≥ min(q1,2, c2,3)

)
〉N = 1

The full picture has been rigorously proved [16] only for the mixed p-spin

model (2.12). One can say that for the SK model the previous points holds

generically : we will discuss this aspect in more detail in chapter 4.
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A Multi-species SK model

Multi-species spin systems at different densities are often encountered in na-

ture. The bipartite case without disordered made its appearance since the work

on meta-magnets by Cohen and Kinkaid [56]. When several types of magnetic

particles like iron and manganese are diluted into a nonmagnetic metallic host

the Ruderman-Kittel-Kasuya-Yosida interactions generate a multi-species spin

glass phase [122]. The rich complex behaviour emerging from those physical

systems revealed to be useful in a variety of applications ranging from biol-

ogy to social sciences and several models were proposed and studied in the

mean field approximation without disorder [58, 57, 70] and with disorder as

well [43, 44, 45]. In this chapter we introduce and study a Multi-Species SK

model (MSK model) i.e. a disordered spin model on the complete graph com-

posed by vertex belonging to a finite number of different species. As for the

SK model 2.2.6, spin couples interact through a family of independent centered

gaussian random variable whose variances depends only on the species they be-

long to. In other words, we relax the assumption of i.i.d. random couplings.

Under some convexity assumption (see [39, 43, 45] for a similar conditions in

neural network theory) on the variances the t.l of the pressure density is given

by a multidimensional analogous of the Parisi formula, namely one can prove a

multidimensional analogous of Theorem 2.2.14. This is a multidimensional gen-

29
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eralization in a proper sense, namely when there is only one species we recover

the result for SK model.

This model and the related Parisi’s formula were first proposed by Barra,

Contucci, Mingione and Tantari in [41] where the authors, using a modification

of Guerra’s interpolation, showed that the formula gives an upper bound for the

pressure. The matching lower bound was proved by Panchenko in [109] utilizing

a new multi-species version of the Ghirlanda-Guerra identities.

The chapter is almost entirely based on [41] and is organised as follows. In

the first section we introduce the MSK model and its basic properties. In section

2 we illustrate the main result, namely the related Parisi fomula. In section 3

we prove the existence of thermodynamic limit of the quenched pressure density

2.14 of the model. In section 4 we study the annealed region with the second

moment method, while section 5 the replica symmetric solution and shows that

at low temperatures it has a negative entropy. In section 6 we give a proof

of the upper bound for the pressure, namely the first part of the main result,

while in section 7 we explain the ideas behind the proof of the matching lower

bound obtained Panchenko [109] based on a consequence of the Ghirlanda-

Guerra identities, the so called synchronization property (see section[?]).

3.1 The model and the basic definitions

Let us consider a Disordered Spin Model on the complete graph KN with

vertex set ΛN = {1, . . . , N}. Suppose that the vertex can be divided in a finite

number S of different species labelled by a finite set S, so from now the term

species will refer to the elements of this set of cardinality S.

For each s ∈ S consider a set Λ
(s)
N ⊂ ΛN such that

⋃
s∈S

Λ
(s)
N = ΛN , (3.1)

Λ
(p)
N

⋂
Λ

(s)
N = ∅, ∀ s 6= t ∈ S (3.2)
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and define

N (s) := |Λ(s)
N |, (3.3)

Clearly by definition we must have

∑
s∈S

N (s) = N. (3.4)

We consider a disordered spin model defined by a collection (σ(s))s∈S of spin

variables, meaning that σ
(s)
i = ±1 for each ∀s ∈ S, i ∈ Λ

(s)
N .

The configuration space is denoted by ΣN and is composed by the family

of possible configurations σ = (σi)i∈ΛN where σi ≡ σ
(s)
i if i ∈ Λ

(s)
N .

Definition 3.1.1. ( MSK model) The Multi-species Sherrington-Kirkpatrick

model is defined assigning to each spin configuration σ a random Hamiltonian

function, called MSK Hamiltonian:

HN(σ) := − 1√
N

∑
i,j∈ΛN

Jijσiσj, (3.5)

where the J ’s are independent centered gaussian r.v. such that

E(Jij) = 0, (3.6)

and

E(JijJi′j′) = δii′δjj′∆
2
sp1{i ∈ Λ

(s)
N }1{j ∈ Λ

(p)
N }, (3.7)

for some family real numbers (∆2
sp)s,p∈S and where 1{ · } denotes the indicator

function.

In other words the variance of the interaction between spins depends on the

belonging species.

Remark 3.1.2. The external field, for notation convenience, will be absorbed

in the Gibbs measure ( see eq. (3.16) below)
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As for the SK model, one can think the MSK Hamiltonian (3.5) as a Gaus-

sian process indexed by the set ΣN . Given two configurations σ, τ ∈ ΣN , by

(3.6) and(3.38) the covariance matrix of the process is

CN(σ, τ) =
1

N

∑
s,p∈S

∆2
sp

( ∑
i∈Λ

(s)
N

σ
(s)
i τ

(s)
i

)( ∑
j∈Λ

(p)
N

σ
(p)
j τ

(p)
j

)
. (3.8)

To show explicitly the dependence trough the choice of the various relative

sizes N (s) we can define for every s ∈ S the relative density

α
(s)
N :=

N (s)

N
, (3.9)

and the relative overlap

q
(s)
N (σ, τ) =

1

N (s)

∑
i∈Λ

(s)
N

σ
(s)
i τ

(s)
i , (3.10)

then the covariance matrix can be write in the form

CN(σ, τ) = N
∑
s,p∈S

∆2
spα

(s)
N α

(p)
N q

(s)
N (σ, τ)q

(p)
N (σ, τ). (3.11)

It’s useful to introduce the vector notation of Appendix 7.2: from now on bold

letters denote vectors, and ( , ) the usual scalar product in RS, where S is the

number of species. Thus (3.11) rewrites as

CN(σ, τ) = N
(
qN ,∆qN

)
, (3.12)

where qN is called overlap vector and is defined as

qN :=
(
q

(s)
N (σ, τ)

)
s∈S

(3.13)

while

∆ := (∆2
spα

(s)
N α

(p)
N )s,p∈S (3.14)

is an S × S matrix. In other words the covariance matrix of the process can be

tough ad a quadratic form in RS.
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Example 2. For example, in the case of two species, namely S = {a, b}, the

covariance matrix qN is a 2-dimensional vector and ∆ is a 2×2 matrix defined

by the entries

α(a)
N α

(a)
N ∆2

aa α
(a)
N α

(b)
N ∆2

ab

α
(a)
N α

(b)
N ∆2

ab α
(b)
N α

(b)
N ∆2

bb


It’s useful to define a normalized covariance matrix as

cN(σ, τ) :=
CN(σ, τ)

N
=
(
qN ,∆qN

)
(3.15)

The Gibbs measure extends the standard definition for disordered spin models

(1.2.2),

GN(σ) :=
aN(σ,h)e−HN (σ)

ZN
(3.16)

where

aN(σ,h) := exp
(∑
s∈S

h(s)
∑
i∈Λ

(s)
N

σ(s)
)
, (3.17)

and h := (h(s))s∈S is a vector which represents an external magnetic field acting

in each species separately. Upon reflection, the presence of a family of non

negative weights aN in the random Gibbs measure produces no change in the

mathematical treatment of random Gibbs measure and related quantities. For

example the random partition function is

ZN :=
∑
σ∈ΣN

aN(σ,h)e−HN (σ), (3.18)

Remark 3.1.3. Notice that, to lighten the notation, in the definition of the

Gibbs measure (3.16), and in the rest of this chapter, we do not write explicitly

the dependence on h. With the same aim, the physical inverse temperature β,

which appears in the standard definition, in our case is set equal to 1 with no

loss of generality as it can be recovered in every moment simply by properly

rescaling of the variances ∆2
sp. Let us briefly specialize for the MSK model, all

the general definitions for disordered spin models we refer to section 1.2 to a
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more detailed explanation of them. Clearly when there is only one species, say

a we recover the SK model 2.2.6 for β = ∆aa.

In this case, the general definitions given in section 1.2 become:

• Gibbs state

For every bounded function f : ΣN → R we call the Gibbs state the following

r.v.

ωN(f) :=
∑
σ∈ΣN

f(σ)GN(σ) (3.19)

namely, the expectation w.r.t. the random Gibbs measure 3.16.

• replica-Gibbs state

For each n ∈ N, let Σn
N be the cartesian product of n copies of the config-

uration space ΣN , and denote its elements by (σ1, . . . , σn). For every bounded

function f : Σn
N → R, we call the random replica-Gibbs state the following r.v.

ΩN(f) :=
∑

(σ1,...,σn)∈ΣnN

f(σ1, . . . , σn)GN(σ1) . . .GN(σn) (3.20)

namely the expectation w.r.t. the product measure G⊗nN .

• Quenched state

Averaging the disorder we obtain the quenched state,

〈f〉N := EΩN(f). (3.21)

• Pressure

The random pressure density is the random variable N−1 logZN ,

averaging on the disorder we obtain the quenched pressure density

pN :=
1

N
E logZN . (3.22)

3.2 The Parisi Formula for the MSK model

Let us introducing the basic object on which is based the variational repre-

sentation for the t.l. of pN , namely the S-Parisi functional.
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The origin of the quantities that we are going to introduce can be easily

understood recalling the Guerra’s RSB interpolation [79] of the Sherringhton-

Kirpatrick model. By using a clever interpolation argument, the author showed

that the celebrated Parisi’s solution is an upper bound for pressure. The RSB

interpolation is defined through a nondecreasing, piecewise constant function

(see eq. (2.2.11)) which represents the order parameter of the model. One of

the key points of the proof, is that this function intrinsically defines an increasing

sequence (ml)l=0,...,r, thus enabling the control of the sign of the derivative of

the interpolating functional. Following the same approach, in the multi-species

case we define:

Definition 3.2.1. Let MS
d be a subset of all discrete distribution functions

on [0, 1]S, i.e. nondecreasing piecewise constant, right-continuous functions,

defined as follow. For any integer r ≥ 1, let us consider a sequence of points in

Γ ∈ [0, 1]S, with

Γ := (ql)l=0,...,r =
(
q

(s)
l

)
s∈S,l=0,...,r

(3.23)

such that for each s ∈ S, we have

0 = q
(s)
0 ≤ q

(s)
1 ≤ · · · ≤ q

(s)
r−1 ≤ q(s)

r = 1.

Roughly speaking Γ defines a path with r steps in [0, 1]S which is non decreasing

in each direction.

We consider a sequence m = (ml)l=0,...,r+1 such that 0 = m0 < m1 < . . . <

mr < mr+1 = 1.

If we denote by θ(·) the right continuous Heaviside function, we define the x ∈

MS
d , called functional order parameter as

x(u) :=
r∑
l=0

(ml+1 −ml)
∏
s∈S

θ(u(s) − q(s)
l ) (3.24)

where u = (u(s))s∈S is vector in [0, 1]S.



36 3.2. The Parisi Formula for the MSK model

The function x defines an S-dimensional shape, that in the case of S = 2,

looks like a ziggurat.1

Figure 3.1: An example of the function x(u) in the case of two species

For each s ∈ S, let Ps be the canonical projection operator on the s direction

in RS and for l = 0, . . . , r, consider the following non decreasing sequences:

Q
(s)
l :=

2

α(s)
Ps
(
∆ql

)
(3.25)

Ql :=
(
ql,∆ql

)
(3.26)

To complete the picture we need to introduce a transformed order parameter

x∆(u) :=
r∑
l=0

(ml+1 −ml)
∏
s∈S

θ(u(s) −Q(s)
l ) (3.27)

defined for u ∈ ×s∈S [0, Q
(s)
r ].

1Ziggurats are pyramid-like structures found in the ancient Mesopotamian valley and west-

ern Iranian plateau.
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Definition 3.2.2. For a given x ∈MS
d , any inverse temperature β and external

field h, we call the S-Parisi functional

PS(x) := log 2 +
∑
s∈S

α(s)f (s)(0, h(s))− 1

2

r∑
l=0

ml(Ql −Ql−1) (3.28)

where, for each s ∈ S, f (s)(u(s), y) is the solution of the following Parisi’s PDE

∂f (s)

∂u(s)
+

1

2

∂2f (s)

∂y2
+

1

2
x∆(u(s))

(∂f (s)

∂y

)2

= 0 (3.29)

where x∆(u(s)) is the marginal value of the transformed order parameter and

the boundary condition is

f (s)(Q(s)
r , y) = log cosh(y). (3.30)

Clearly, for each f (s) solution of (3.29), the analogous of (2.2.12) and 2.2.13

hold.

Remark 3.2.3. We mention that it’s possible to rewrite the second term in

r.h.s. of (3.30) as

1

2

r∑
l=0

ml(Ql −Ql−1) =
1

2

∫
Γ̃

x(u) ∇u

(
u,∆u

)
· du (3.31)

The integral is a line integral on an arbitrary path Γ̃ in the plan u, starting

from 0 and ending in 1, such that all the points (ql)l=0,...,r belong to Γ, in other

words Γ ⊂ Γ̃.

This representation can be useful for a continuous extension ( not proved)

of the space of the order parameters defined in 3.2.1.

The main result on the MSK model is the following multidimensional gen-

eralization of Theorem 2.2.14.

Theorem 3.2.4. If the matrix ∆ (3.14) is positive semi-definite and for each

s ∈ S the limN→∞ α
(s)
N = α(s) exist, then

lim
N→∞

logZN
N

= lim
N→∞

E
logZN
N

= inf
x∈MS

d

PS(x), P− a.s.

where PS(x) is the S-dimensional Parisi functional defined in (3.2.2).
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Before the proof of this theorem and the related results, let us start with

some comment on the previous statement. First, the infimum is taken over

r,m,Γ defined 3.2.1. The non-negativity assumption on the matrix ∆ is in-

dependent of α
(s)
N and much more important, is a fundamental point in the

application of the interpolation method (see Appendix 7.2) to prove the lower

bound. Basically, is the same reason that restricts the Talagrand’s proof [19]

to even p-spin models. The second assumption say that the t.l. is to be un-

derstood with constant, at least for N large enough, relatives densities between

the species.

We notice that statement 3.2.4 contain two non trivial hidden results, namely

the existence of the t.l. of the quenched pressure density and the almost surely

convergence of the random pressure densityN−1 logZN to this limit. The almost

surely convergence of the pressure density is a classical result in Spin Glass

theory. Since is based on the concentration of gaussian measure [17], it holds

for a large class of spin glass models, including the MSK model and we refer

to the above reference for the details. The existence of the t.l. of pN will be

proved in the next section. We stress the fact that the ziggurat ansatz forces the

joint overlap distribution to have a very special structure. In [109], the author

proved that the previous bound is exact, showing that this structure in fact

encodes all the information of the model.

3.3 The existence of the thermodynamical limit

In this section we prove, under the assumptions of Theorem 3.2.4, the ex-

istence of the thermodynamic limit for the quenched pressure density (3.22)

when, ∀s ∈ S, the limit N →∞ of the relative densities α
(s)
N (3.9) exist and

equal to some fixed α(s) ∈ (0, 1). In order to lighten the notation from now on

we denote the relative densities with their own limit α(s).
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Theorem 3.3.1. If the matrix ∆ is positive semi-definite, then

lim
N→∞

pN = sup
N
pN ,

where the limit is taken at fixed densities.

The strategy of the proof follows classical Guerra-Toninelli arguments. Let

us consider two non interacting and i.i.d. copies of the original system defined by

the Hamiltonian (3.5) of sizes respectively N1, N2. Clearly this implies that we

have to consider ∀s ∈ S the relative subsets Λ
(s)
N1
,Λ

(s)
N2

defined by the equations

(3.1), (3.3), (3.4) and such that

Λ
(s)
N1
∪ Λ

(s)
N2

= Λ
(s)
N ,

Λ
(s)
N1
∩ Λ

(s)
N2

= ∅,

|Λ(s)
N1
| = N

(s)
1 ,

|Λ(s)
N2
| = N

(s)
2 ,

N
(s)
1 +N

(s)
2 = N (s).

More explicitly, we can define, ∀s ∈ S, the following

Λ
(s)
N = {1, . . . , N (s)}, (3.32)

Λ
(s)
N1

= {1, . . . , N (s)
1 }, (3.33)

Λ
(s)
N2

= {N (s)
1 + 1, . . . , N (s)}. (3.34)

Consider the following interpolating Hamiltonian

HN(σ, t) =
√
tHN(σ) +

√
1− t

(
HN1(σ) +HN2(σ)

)
(3.35)

where

HN1(σ) = − 1√
N1

∑
i,j∈ΛN1

J
(1)
ij σiσj, (3.36)

HN2(σ) = − 1√
N2

∑
i,j∈ΛN2

J
(2)
ij σiσj, (3.37)
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and where J
(1)
ij and J

(2)
ij are two independent families of centered gaussian de-

fined by

E(J
(a)
ij J

(a)
i′j′) = δii′δjj′∆

2
sp1{i ∈ Λ

(s)
Na
}1{j ∈ Λ

(p)
Na
}, (3.38)

for each a ∈ {1, 2}.

As usual we consider the interpolating pressure

PN(t) = E logZN(t) = E log
∑
σ

aN(σ,h)e−HN (σ,t), (3.39)

whose boundaries values are

PN(1) ≡ PN , (3.40)

PN(0) ≡ PN1 + PN2 , (3.41)

since ΣN = ΣN1 ∪ ΣN2 and ΣN1 ∩ ΣN2 = ∅.

Proposition 3.3.2. Let us denote by ΩN,t( · ) the replica Gibbs state (3.20)

associated to the interpolating Hamiltonian (3.35). The t-derivative of the in-

terpolating pressure is

∂

∂t
PN(t) = −N

2
EΩN,t

(
QN

)
,

where

QN(σ, τ) :=
(
qN ,∆qN

)
− N1

N

(
qN1 ,∆qN1

)
− N2

N

(
qN2 ,∆qN2

)
, (3.42)

and the vectors qN1 ,qN2 are defined as in (3.13).

Proof. The computation of the t-derivative works essentially in the same way

exploited in Proposition 7.2.2 with the following identifications:

i→ σ, ai → aN(σ,h), Ui → HN(σ), Ũi → HN1(σ) +HN2(σ)

The key ingredient is that the diagonal term vanishes by the condition N =

N1 +N2.
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Combining the Fundamental Theorem of Calculus and the previous propo-

sition we have that

PN − PN1 − PN2 = −N
2

∫ 1

0

dtEΩN,t

(
QN

)
. (3.43)

To finish the proof is sufficient to show that

Proposition 3.3.3. If the matrix ∆ is positive semi-definite, then

QN(σ, τ) ≤ 0 (3.44)

for every σ, τ and N .

Proof. First at all, we write some fundamental relations.

By definitions (3.10), (3.32), (3.33), (3.34) we have that ∀s ∈ S the following

hold

N (s)q
(s)
N (σ, τ) =

N(s)∑
i=1

σ
(s)
i τ

(s)
i =

N
(s)
1∑
i=1

σ
(s)
i τ

(s)
i +

N(s)∑
N(s)+1

σ
(s)
i τ

(s)
i

then

q
(s)
N (σ, τ) =

N
(s)
1

N (s)
q

(s)
N1

(σ, τ) +
N

(s)
2

N (s)
q

(s)
N2

(σ, τ).

Now we observe that the condition of fixed relatives densities implies that

N
(s)
1

N (s)
=
N

(s)
1

N1

N

N (s)

N1

N
=
α(s)

α(s)

N1

N
=
N1

N
,

and in a similar fashion
N

(s)
2

N (s)
=
N2

N
,

then ∀s ∈ S the following holds

q
(s)
N (σ, τ) =

N1

N
q

(s)
N1

(σ, τ) +
N2

N
q

(s)
N2

(σ, τ). (3.45)

In vector notation we can write

qN =
N1

N
qN1 +

N2

N
qN2 . (3.46)
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It is easy to see that if ∆ is a positive semi-definite, real, symmetric matrix,

hence the function

x→
(
x,∆x

)
defined for x ∈ RS is convex and the conclusion follows straightforwardly from

the relation (3.46).

The last proposition, combined with equation (3.35) gives immediately the

superaddivity property of the pressure. As a consequence, since the quenched

pressure density is bounded from the annealed one (see the next section), then

by Fekete’s lemma we get the statement of the theorem.

3.4 The annealed bound

As a first analysis we can study the annealed approximation for the pressure

and investigate in which case it is exact. Using Jensen inequality and the

concavity of the function x → log(x) we define the annealed approximation as

a bound, i.e.

pN =
1

N
E logZN ≤

1

N
logEZN = pAN . (3.47)

We can easily write pAN as

pAN =
1

N
log
∑
σ

Ee−HN (σ) =
1

N
log
∑
σ

e
1
2
CN (σ,σ) =

1

N
log
∑
σ

e
N
2

(1,∆1)

= log 2 +
1

2
(1,∆1). (3.48)

We define the ergodic regime as the region of the phase space in which

lim
N→∞

1

N
E logZN = lim

N→∞

1

N
logEZN = pA = log 2 +

1

2
(1,∆1). (3.49)

For this purpose a classic application of the Borel-Cantelli lemma imply that

it’s enough to investigate the second moment, hence checking when

E(Z2
N)

E2(ZN)
≤ C <∞ (3.50)
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for some constant C ∈ R, uniformly in N . Since

E(Z2
N) = E

∑
σ,τ

e−HN (σ)−HN (τ) =
∑
σ,τ

e
1
2
E(HN (σ)+HN (τ))2

(3.51)

=
∑
σ,τ

eN((1,∆1)+(qN ,∆qN )) = E2(ZN)2−2N
∑
σ,τ

eN(qN ,∆qN )

and using the gauge transformation τ
(s)
i → σ

(s)
i τ

(s)
i ,

E(Z2
N)

E2(ZN)
= 2−2N

∑
σ,τ

eN(mN (τ),∆mN (τ)) = 2−N
∑
τ

eN(mN (τ),∆mN (τ)), (3.52)

where we define mN(τ) =
(
m

(s)
N (τ)

)
s∈S

, with m
(s)
N (τ) = 1

N(s)

∑N(s)

i=1 τ
(s)
i . If

det ∆ > 0 we can linearize the quadratic form with a gaussian integration

E(Z2
N)

E2(ZN)
=

2−N√
det ∆

∫
dz

2π
e−

1
2

(z,∆−1z)
∑
τ

e
√

2N(mN (τ),z)

=
1√

det ∆

∫
dz

2π
e−

1
2

(z,∆−1z)
∏
s∈S

coshN
(s)

(√
2N

N (s)
z(s)

)

=
1√

det(∆)

∫
dz

2π
e−

1
2

(z,∆−1z)e
∑
s∈S N

(s) log cosh
(√

2N

N(s)
z(s)

)
(3.53)

and, using the inequality log cosh(x) ≤ x2

2
, we obtain

E(Z2
N)

E2(ZN)
≤ 1√

det(∆)

∫
dz

2π
e−

1
2

(z,∆̂z), (3.54)

where we have defined

∆̂ = ∆−1 − 2α−1 (3.55)

and the diagonal matrix α = diag({α(s)}s∈S). Thus we have just proved the

following

Theorem 3.4.1. In the convex region, defined as det ∆ > 0, as soon as ∆̂

is positive definite, the pressure of the model does coincide with the annealed

approximation, i.e.

p = lim
N→∞

1

N
E logZN = lim

N→∞

1

N
logEZN = pA = log 2 +

1

2
(1,∆1). (3.56)
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Remark 3.4.2. Note that such a region does exist and can be viewed as an high

temperature region. The two regions det ∆ > 0 and ∆̂ > 0 have a non-zero

measure intersection, because, while the first is a condition on the relative size

of the covariances, the latter is related to their absolute amplitude. Indeed once

fixed α and ∆ satisfying det ∆ > 0, we can rescale all the covariances with a

parameter β, which play the role of the inverse temperature of the system, i.e.

∆ss′ → β∆ss′ , ∀s, s′ ∈ S, leaving the relative sizes unaltered and the condition

det ∆ > 0 is still satisfied, such that ∆̂ → β−S∆−1 − 2α−1 is positive definite

for β small enough 2.

3.5 The Replica Symmetric bound

In this section we show the simplest application of the RSB sum rule (

Theorem 3.6.1 introduced in the next section). Namely we obtain the so called

RS bound.

The underlying idea is to compare the overlap vector (3.13) with a trial vector,

qtrial :=
(
q(s)
)
s∈S

. (3.57)

We define the trial replica symmetric solution as

pRS(qtrial) := log 2 +
∑
s∈S

α(s)p(s)(qtrial) +
1

2

(
(1− qtrial),∆(1− qtrial)

)
, (3.58)

where

p(s)(qtrial) :=

∫
dµ(z) log cosh

(√ 2

α(s)
Ps
(
∆qtrial

)
z + h(s)

)
, (3.59)

and

z ∼ N (0, 1).

Setting r = 2, m1 = 0, m2 = 1 and q1 = qtrial in Theorem 3.6.1 we obtain

the following:

2Since ∆ is positive definite then also ∆−1. Defining a = maxs α
(s) and ρ the smallest

eigenvalue of ∆−1, then, for any non-null vector z, (z, ∆̂z) ≥ (β−Sρ−a)(z, z) > 0 if βS < ρ/a.
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Proposition 3.5.1. The following sum rule holds

pN = pRS(qtrial)−
1

2

∫ 1

0

EΩN,t

(
(qN − qtrial),∆(qN − qtrial)

)
dt. (3.60)

Moreover, if the matrix ∆ is positive semi-definite, then the following bound

holds

pN ≤ pRS(qtrial), (3.61)

whose optimization gives

pN ≤ inf
qtrial

pRS(qtrial). (3.62)

The optimization of (3.62) on qtrial, gives a system of S coupled self consistent

equations, i.e. ∀p ∈ S

∑
s∈S

∆ps

[∫
dµ(z) tanh2

(√ 2

α(s)
Ps(∆qtrial)z

)
− q(s)

]
= 0, (3.63)

This system admits a unique solution as soon as det(∆) 6= 0, thus whenever

det(∆) > 0, pRS(qtrial) has a minimum in qtrial = q̄ satisfying ∀s ∈ S

q̄(s) =

∫
dµ(z) tanh2

(√ 2

α(s)
Ps(∆q̄)z

)
= 〈Ps(q)〉t=0 (3.64)

The last equalities can be easily checked thanks to the factorizability of the

one-body problem at t = 0. In other words, the value of qtrial minimizing the

overlap’ s fluctuations of the original model (at t = 1) is just the overlap’s mean

of the interpolating one-body trial at t = 0.

Let show now how the replica symmetric bound violate the entropy positivity

at low temperatures. Mirroring the scenario of the SK model, we can easily

check that the replica symmetric expression for the pressure (3.62) is not the

exact solution of the model in the low temperature region by studying the

behavior of the entropy. We can define it as the non-negative quantity

s(∆) = lim
N→∞

sN(∆) = − 1

N
E
∑
σ

GN(σ,∆) log(GN(σ,∆)), (3.65)
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where GN(σ,∆) = Z−1
N (∆)e−HN (σ,∆) is the Gibbs measure (3.16). Notice that,

unlike before, we have write explicitly the dependance on the matrix ∆ . Since

sN(∆) = pN(∆)− 1
N
〈H(σ)〉N , we can write

s(∆) = p(∆)− d

dλ
p(λ∆)|λ=1. (3.66)

Now we can define sRS(∆) = pRS − d
dλ
pRS(λ∆)|λ=1. We can easily show that

if the amplitude of the covariances is large enough, sRS(∆) is strictly negative.

Indeed, we have the following

Proposition 3.5.2. In the regime of large covariances (low temperatures), the

RS-entropy is strictly negative, i.e.

lim
β→+∞

sRS(β∆) < 0,

for any choice of ∆ with (det(∆) > 0) and α, where β ∈ R+ plays the role of

the inverse temperature.

Proof. Using its definition

sRS(β∆) = pRS(β∆, q̄)− ∂

∂λ
pRS(λβ∆, q̄)|λ=1.

We note that, using (3.64), in the limit β → +∞, the optimized order parame-

ters q̄→ 1. Explicating the derivative it is easy to see that

lim
β→+∞

sRS(β∆) = lim
β→+∞

−β
2

2
((1− q̄),∆(1− q̄)) ≤ 0

Finally we can state that the limit is strictly negative, using again (3.64) and

noting that

lim
β→+∞

β(1− q̄(s)) = lim
β→+∞

β

∫
dµ(z)

(
1− tanh2

(
β

√
2

α(s)
Ps
(
∆q̄
)
z
))

=

∫
dµ(z)|z|√

2
α(s)Ps

(
∆1
) > 0.
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The existence of a negative RS-entropy regime is a clear signal that the

model is not always replica symmetric (certainly it is RS inside the annealed

region defined in Theorem 3.4.1) but there exists a region in which the pressure

p(∆) is strictly lower than its RS bound pRS(∆). The region of validity of the

replica symmetric solution in the SK model is almost fully characterized in [18].

3.6 The Broken Replica Symmetry upper bound

Keeping in mind the definition of the S-Parisi functional PS(x) given in

section 3.2, the goal of this section is to prove the following relation:

Theorem 3.6.1.

pN = PS(x)− 1

2

r∑
l=0

(ml+1 −ml)

∫ 1

0

dt
〈

(qN − ql),∆(qN − ql)
〉
N,l,t

. (3.67)

where 〈 · 〉N,l,t is a quenched state associated to a suitable interpolating Hamil-

tonian.

Moreover if the matrix ∆ is positive semi-definite we have the following

bound

pN ≤PS(x),

and the optimization gives

pN ≤ inf
x∈MS

d

PS(x).

It is enough to show that (3.67) holds, then we have straightforward con-

clusions. The strategy is to apply the RSB interpolation scheme introduced in

Appendix 7.2.

We define the interpolating Hamiltonian as

HN(σ, t) :=
√
tHN(σ) +

√
1− t

r∑
l=1

H l
N(σ,ql), (3.68)

with

H l
N(σ,ql) :=

∑
s∈S

H
l,(s)
N (σ(s),ql), (3.69)
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where HN(σ) is the original Hamiltonian and, for each l, H
l,(s)
N (σ(s),ql) are two

independent one-body interaction Hamiltonian, defined as

H
l,(s)
N (σ(s),ql) := −

√
2

√
Ps
(
∆(ql − ql−1)

) 1√
α(s)

∑
i∈Λ

(s)
N

J
l,(s)
i σ

(s)
i (3.70)

where the J ’s are Gaussian i.i.d. r.v., independent of the other r.v., such that

for every l, s and i we have that

E(J
l,(s)
i ) = 0 (3.71)

and

E(J
l,(s)
i J

l′,(s′)
i′ ) = δll′δss′δii′ . (3.72)

After simple computations, we get

E
(
H
l,(s)
N (σ(s),ql)H

l′,(s′)
N (τ (s′),ql)

)
= δll′δss′2NPs

(
∆(ql − ql−1)

)
Ps
(
qN

)
and then by (D13) the covariance matrix of the trial Hamiltonian becomes

E
(
H l
N(σ,ql)H

l′

N(τ,ql′)
)

= δll′2N
(

(ql − ql−1),∆qN

)
.

Keeping in mind Proposition 7.2.4, we introduce the RSB interpolation

scheme with the following identifications:

i→ σ, ai → aN(σ,h), Ui → HN(σ), Bl
i → H l

N(σ,ql)

and we define the interpolating pressure as

pN(t) :=
1

N
E logZ0,N(t). (3.73)

It is easy to check that the boundary values of pN(t) are

pN(1) = pN , (3.74)

pN(0) = log 2 +
∑
s∈S

α(s)f (s)(0, h(s)), (3.75)
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where f (s)(u(s), h(s)) is the solution of the Parisi’s PDE (3.29).

In order to apply the interpolation argument we have to compute the t-derivative

of the interpolating pressure. A simple application of Proposition 7.2.4 leads to

the following

∂

∂t
pN(t) = −1

2

(
1,∆1

)
− 1

2

r∑
l=0

(ml+1 −ml)
〈(

qN ,∆qN

)
− 2
(
qN ,∆ql

)〉
N,l,t

.

(3.76)

To finish the proof of the Theorem, simply add and subtract the term 1
2

∑r
l=0(ml+1−

ml)Ql where Ql =
(
ql,∆ql

)
and observe that

−1

2

(
1,∆1

)
+

1

2

r∑
l=0

(ml+1 −ml)Ql =
1

2

r∑
l=0

(ml+1(Ql −Ql)

The integral representation is given by the following

Proposition 3.6.2. The following representation holds

−1

2

(
1,∆1

)
+

1

2

r∑
l=0

(ml+1−ml)
(
ql,∆ql

)
= −1

2

∫
Γ̃

du x(u) ∇u

(
u,∆u

)
· du.

Proof. We can use the explicit definition of x(u) given in (3.24) to check that

−1

2

∫
Γ̃

x(u) ∇u

(
u,∆u

)
· du = −1

2

r∑
l=0

(ml+1 −ml)

∫
Γl

∇u

(
u,∆u

)
· du

where Γl is the result of the action of the θ’s on the path Γ̃, that is his component

between the points ql and 1. By the Gradient’s Theorem, the integral is path

independent and is equal to the increment of the potential function, that is the

desired result.

Finally, combining (3.74), (3.75), (3.76) and Proposition 3.6.2, the proof of

(3.67) is a simple application of the fundamental theorem of calculus.
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3.7 The lower bound and the synchronization

In [109], Panchenko proved that in fact the upper bound given in the previous

section is exact showing that it is also a lower bound for the limiting pressure

of the MSK model. The strategy of the proof is similar to the one given in

[16] for SK model . In particular, it is based on the Aizenman-Sims-Starr

scheme [24] variational principle together with the Ghirlanda-Guerra identities

and related ultrametric property. In particular, the show that one can construct

a multi-species version of the previous these identities which imply the so-called

synchronization property 4.5.6, by consequence the overlap between different

species are strongly correlated. We suppose that the reader is familiar with these

concepts, otherwise a detailed description is given in Chapter 4 an references

therein. In this section we only sketch the main idea behind the Panchenko’s

proof and we refer to the original work for the details.

First of all, the reader should keep in mind all the quantities involved in the

construction of the S-Parisi functional PS(x) 3.28, and the order parameter

x (3.24), namely the non decreasing sequences ml, q
(s)
l , Q

(s)
l and Ql defined in

3.2.1. It’s possible to show that, for any choice of the above sequences, the

corresponding S-Parisi functional can be rewritten using the Derrida-Ruelle

Probability Cascades (usually denoted by RPC) [116, 16]. Here a sketch of the

construction.

For a given r ≥ 1 and α := (α1, . . . , αr) ∈ Nr, let (να)α∈Nr be the random

weights of the RPC associated to the sequence m = (ml)l=1,...,r (see for example,

section 2.3 in [16] for the definition). For each 1 ≤ l ≤ r, let us denote by

αl = (α1, . . . , αl) the first l coordinates of α.

For each s ∈ S consider two independent gaussian process Cs(α) and D(α)

indexed by α ∈ Nr with covariance matrix given by

ECs(α1)Cs(α2) = Q
(s)

α1∧α2 (3.77)

ED(α1)D(α2) = Qα1∧α2 (3.78)
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where α1 ∧α2 := min{0 ≤ l′ ≤ r |α1
l = α2

l′ , . . . ,α
1
l = α2

l′ ,α
1
l+1 6= α2

l′+1}.

We notice that Q
(s)

α1∧α2 and Qα1∧α2 are random variable w.r.t. the RPC

random weights, taking values respectively in the sequences Q
(s)
l and Ql.

Let α(s) ( don’t confuse it with the RPC weights) be the relative density of

the species s and suppose for the moment that is a rational number. Let us

consider a finite set of natural number I =
⋃
s∈S Is, where Is are disjoint sets

such that for each s ∈ S, |Is||I| = α(s). For each s ∈ S and i ∈ Is let Ci(α) a copy

of Cs(α1) and suppose that all these process are independent each others.

Now using the invariance properties of the RPC ( Theorem 2.9 in [16]) one

can prove that

PS(x) =
1

|I|

(
E log

∑
α∈Nr

να)
∏
i≤N

2 cosh(Ci(α))− E log
∑
α∈Nr

να) exp(
√
|I|D(α))

)
(3.79)

The connection between the previous representation of the S-Parisi func-

tional and the pressure of the MSK model is given by the so-called Aizenmann-

Simms-Starr scheme or cavity method.

Let us start observing that one can consider small changes of the relative

densities (αs)s∈S since they don’t affect both the pressure for large N and the

S-Parisi functional (see definition 3.2.2). Thus, without loss, we can assume

that all αs are rational:

α(s) =
ks
k

(3.80)

for some integers ks ≤ k, that is we suppose that N(s) = nks and N = nk for

some integer n.

Let us recall the following statement contained in the Stoltz-Cesaro Theorem

[115]:

Lemma 3.7.1. Let (an)n≥1 and (bn)n≥1 be two sequences of real numbers. As-

sume that (bn)n≥1 is strictly increasing and approaches +∞. Then:

lim inf
n→∞

an
bn
≥ lim inf

n→∞

an+1 − an
bn+1 − bn

(3.81)
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Let pN be the pressure densities of the MSK model defined in (3.22) and,

for a fixed k in (3.80), we set

an ≡
n∑
j=0

E logZk(j+1) − E logZkj, bn ≡ nk

with the convention Z0 = 1. Applying the previous lemma we get the

following basic relation

lim inf
N→∞

pN ≥
1

k
lim inf
n→∞

E logZk(n+1) − E logZkn (3.82)

The r.h.s. of (3.82) quantify the effect on the system of the addition of k

spins. This kind of argument in physics is called cavity method. The gain is

that the difference between ZN+k and ZN can be rewritten as an expectation

w.r.t a suitable Gibbs measure.

First, let us consider the r.h.s. of (3.82) for a fixed N = nk and consider a

partition I of the k new spins, namely

I := {N + 1, ..., N + k} =
⋃
s∈S

Is

into different species, so that |Is| = ks.

Using standard property of the gaussian process, one can write, up to terms

of order o(1)

E logZk(n+1)−E logZkn = E log Ω′N

(∏
i∈I

2 cosh
(
zN,i(σ)+hi

))
−E log Ω′N

(
exp

(
yN(σ)

))
(3.83)

where for each s ∈ S, hi ≡ hs1{i ∈ Λ
(s)
N } and Ω′N is the the random Gibbs

measure (3.16) associated to the a slightly modified Hamiltonian H ′N defined as

H ′N(σ) =

√
N√

N + k
HN(σ)

and HN(σ) is the original Hamiltonian of the MSK model defined in 3.5. The

quantities zN,i(σ) and yN(σ) are gaussian process independent of each other and
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the randomness of H ′N , thus they are determined by their respective covariance

matrix. For any s ∈ S and each i ∈ Is,

EzN,i(σ)zN,i(τ) = 2
∑
p∈S

∆2
spα

(p)q
(p)
N (σ, τ) =

2

α(s)
Ps
(
∆qN

)
+O(N−1) (3.84)

where qN is the overlap vector defined in 3.13. The process zN,i(σ) is usually

called cavity field, while yN(σ) is called fugacity and it is determined by

EyN(σ)yN(τ) = k
∑
s,p∈S

∆2
spα

(s)α(p) q(p)(σ, τ)q
(s)
N (σ, τ) = (qN ,∆qN

)
+O(N−1)

(3.85)

As usual, for l, l′ ≥ 1 and each s ∈ S, consider two spin configuration

σl, σl
′ ∈ ΣN and let us consider the overlap matrix

RN,(s) = (R
N,(s)
l,l′ )l,l′≥1 :=

(
q

(s)
N (σl, σl

′
)
)
l,l′≥1

. (3.86)

One can prove (Theorem 1.3 in [16]) that

E log Ω′N

(∏
i∈I

2 cosh
(
zN,i(σ) + hi

))
− E log Ω′N

(
exp

(
yN(σ)

))
is a continuous functional of the distribution of the random array

RN =
(
R
N,(s)
l,l′

)
l,l′≥1,s∈S

(3.87)

under the measure EΩ′N .

The basic observation is that the r.h.s. of (3.79) and (3.83) have the same

structure. Indeed, the S-Parisi functional is expressed, trough (3.83), as a

functional of the random array

Q =
(
Q

(s)

αl∧αl′
)
l,l′≥1,s∈S (3.88)

(3.89)

In other words, Q is the analogous of the overlap array RN and the RPC

random weights να play the role of the random Gibbs measure. Since the r.h.s.
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of (3.79) and (3.83) are expressed by the same functional, it’s ”enough” to prove

that the, for large N , the distribution of RN under EΩ′N can be approximated

by the distribution of Q under να for a suitable RPC. This approximation imply

that

1

k
lim inf
n→∞

E logZk(n+1) − E logZkn ≥PS(x) ≥ inf
x

PS(x)

that together with (3.82), gives the desired lower bound for the pressure of the

MSK model.

The main issue in the proof is that, we have to understand the (joint) dis-

tribution of the overlap array RN . Let us start with following observation. For

all s ∈ S, the randomness of Q
(s)

αl∧αl′ comes from αl ∧αl which is the hierar-

chical address of the same RPC, then they are deterministic function of the

same random variable. Thus, the joint distribution of the array Ql,l′ is uniquely

determined by the law of the entry:

P{Q(s)
1,2 = Q

(s)
l } = ml+1 −ml (3.90)

for s ∈ S and l = 0, . . . r.

Upon reflection, one can realize that this strong correlation is the essence of

the particular structure of the order parameter (3.24). The point is that, roughly

speaking, since we want to use Q to approximate RN , we have to make sure that

RN share the same property, namely that R
N,(s)
l,l′ are deterministic functions of

a single random variable. This is precisely the content of the synchronization

property described in Theorem 4.5.6.

The main idea follows the line of the simpler case of the SK model. Namely,

we add some perturbation to the original Hamiltonian in a such a way that,

without effects on the t.l. of the pressure, we force the limiting law of RN,(s), (

for each subsequences without assuming of the existence of the limit) to satisfy

the Multi-species Ghirlanda-Guerra identities 4.5.5 and allow us to use Theorem

4.5.6. Thus, let us consider the total overlap of the system



Chapter 3. A Multi-species SK model 55

R̃l,l′ =
∑
s∈S

R
(s)
l,l′ . (3.91)

and the array

R̃ = (R̃l,l′)l,l′≥1 (3.92)

then, by Theorem 4.5.6, for all s ∈ S, there exist non-decreasing (1/αs)-

Lipschitz functions Ls such that R(s) = Ls(R̃) almost surely for all s ∈ S and

all l, l′ ≥ 1. Moreover R̃ can be generated by a suitable RPC.

We would mention that there are several technical issues in the control of

the sequences involved in the proof, since basically, we don’t know the existence

of the limit and then we have to work with subsequences and approximation ar-

guments. An interested reader can consult the original work [109] and reference

therein for the solution of this important part of the problem.
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Chapter 4

Factorization properties of Spin

Glasses

One the most important properties of Gaussian Spin Glasses is as set of iden-

tities which involves the t.l. of the quenched Gibbs measure called Ghirlanda-

Guerra identities [76]. These follows from two general properties of Spin Glasses:

the Aizenman-Contucci stochastic stability [22] and the concentration of gaus-

sian measures [8]. In this chapter we give a proof of these identities for a large

class of models. The first section shows the underlying physical ideas, section

2 contains the main results and their proof. In section 3 we illustrate the deep

consequences of these identities which are essential in the proof of the lower

bound of the pressure for the MSK model given in section 3.7.

4.1 The concept of stability

Let us first illustrate the statistical physics ideas that we are following. The

factorization laws that we deal with can be understood as consequences of a

simple stability method. Stability in Statistical Mechanics works by identifying

a small (yet non-trivial) deformation of the system, prove that in the large

volume limit the perturbation vanishes and, by means of the linear response

57
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theory, compute the relations among observable quantities. This method leads

to interesting consequences and applications because it reduces the a priori

degrees of freedom of a theory. Following the ideas developed in [61] one starts

considering a deterministic spin glass glass model on a graph (1.1.2) with vertex

set Λ = {1 . . . , N} and generic Hamiltonian HN . For any bounded function f

of spin configurations σ ∈ ΣN let us denote by µN the counting measure on ΣN ,

namely

µN(f) =
1

2N

∑
σ

f(σ), (4.1)

and defines the equilibrium state

ωβ,N(f) =
µN(fe−βHN )

µN(e−βHN )
. (4.2)

By considering the Hamiltonian per particle

hN(σ) =
HN(σ)

N
(4.3)

the classical perturbed state is defined by

ω
(λ)
β,N(f) =

ωβ,N(fe−λhN )

ωβ,N(e−λhN )
. (4.4)

Since the perturbation amounts to a small change in the temperature

ω
(λ)
β,N(f) = ωβ+ λ

N
,N(f) (4.5)

one has that, apart from isolated singularity points, in the thermodynamic limit

dω
(λ)
β,N(f)

dλ
→ 0. (4.6)

One may appreciate the content of the previous property by showing that it

implies, for the Curie-Weiss ferromagnetic model in zero magnetic field, the

relation

ωβ(σ1σ2σ3σ4) = ωβ(σ1σ2)2 . (4.7)

Hence, although the magnetization itself may fail to concentrate due to a spin-

flip symmetry breaking, the square of the magnetization does concentrate in

the thermodynamic limit.
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The previous approach leads to the concept of Stochastic Stability when ap-

plied, suitably adapted, to the spin glass phase. Consider, for smooth bounded

function f of n spin configurations, the quenched equilibrium state

< f >β,N= E
(∑

σ f(σ)e−βHN (σ)∑
σ e
−βHN (σ)

)
. (4.8)

Define the deformation as:

< f >
(λ)
β,N=

< fe−λhN >

< e−λhN >
. (4.9)

We observe that the previous deformation is, unlike in the classical case, not a

simple temperature shift. In fact:

< f >
(λ)
β,N=

E
(∑

σ f(σ)e−(β+λ/N)HN (σ)∑
σ e
−βHN (σ)

)
E
(∑

σ e
−(β+λ/N)HN (σ)∑
σ e
−βHN (σ)

) ; (4.10)

nevertheless, the system is still stable with respect to it in a sense that will be

made precise in the following sections and is essentially captured by saying that

apart from isolated singularity points, in the thermodynamic limit

d

dλ
< f >

(λ)
β,N→ 0 . (4.11)

Moreover the previous stability property implies (by use of the integration by

parts techinque) that the following set of identities (Ghirlanda-Guerra), first

derived in [76], holds:

< fc1,n+1 >β,N=
1

n
< f >β,N< c12 >β,N + (4.12)

+
1

n

n∑
j=2

< fc1,j >β,N ,

where the term c1,n+1 is the overlap between a spin configuration of the set

{1, 2, ..., n} and and external one that we enumerate as the (n+ 1)-st, and c1,j

is the overlap between two generic spin configurations among the n’s.

The proof ideas can be easily summarized by the study of three quantities

and their differences which encode the fluctuation properties of the spin glass

system:

E
[
ω(H2

N)
]
, (4.13)
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E
[
ω(HN)2

]
, (4.14)

E [ω(HN)]2 . (4.15)

The result is obtained by two bounds for constants ε
(1)
N and ε

(2)
N vanishing in the

N →∞ limit:

• bound on averaged thermal fluctuations

E
[
ω(H2

N)− ω(HN)2
]
≤ ε

(1)
N N (4.16)

obtained by stochastic Stochastic Stability method (see [22]) by showing

that the addition of an independent term of order one to the Hamiltonian

is equivalent to a small change in temperature of the entire system:

βHN(σ)→ βHN(σ) +

√
λ

N
H̃N(σ) (4.17)

β →
√
β2 +

λ

N
(4.18)

• bound on disorder fluctuations

U = ω(HN) (4.19)

E(U2)− E(U)2 ≤ ε
(2)
N N , (4.20)

which is the self averaging of internal energy and can be proved from self

averaging of pressure (with martingale methods [13] or concentration of

measures [18]).

In the following sections we show how to use the previous ideas to obtain a

stronger result, namely the validity of the previous properties in distribution

for quenched probability measure of the Hamiltonian covariance.
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4.2 Definitions and preliminary properties

The class of models we chose to work includes the most general spin glass in

d-dimension in the following sense. Physical particles in fact, beside interacting

in pairs have always higher order interactions, i.e. they interact in triples,

quadruples etc. (see [5]). Thus, during this section we leave the framework of

models o graphs in favour on a more general one.

Given a lattice in dimension d, for example Zd we consider, for each finite

set Λ ⊂ Zd, an Hamiltonian of the form

HΛ(σ) = −
∑
X⊆Λ

JΛ,XσX , (4.21)

where σX =
∏

x∈X σx and where all the random couplings JΛ,X are independent

centered Gaussian random variables with E[J2
Λ,X ] = ∆2

Λ,X for some nonnegative

constants (∆Λ,X)X⊆Λ.

This class of models includes also all the Spin Glass model introduced in the

previous chapters.

Example 3. • The Edwards-Anderson model [EA]. The nearest neighborhood

interaction is a two-body (pair) interaction then, first at all, ∆2
Λ,X = 0 unless

|X| = 2. Next, we take ∆2
Λ,X = 1 if X = (n, n) and |nn| = 1 and zero otherwise.

• The Sherringhton-Kirkpatrick model [SK]. Although it is not a finite di-

mensional model it may still be embedded in Z setting |Λ| = N . Next we take

∆2
N,X = N1 if |X| = 2 and ∆2

N,X = 0 otherwise.

• The Multi-species SK model [MSK]. The same as the SK model with the

suitable conditions on ∆2
N,X .

The thermodynamical properties of the previous models are encoded in nor-

malized covariance of the gaussian process.

cΛ(σ, τ) =
1

|Λ|
E[HΛ(σ)HΛ(τ)] =

1

|Λ|
∑
X⊆Λ

∆2
Λ,XσXτX . (4.22)

We will often refer to this quantity also as generalized overlap.
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The condition for existence of the thermodynamic limit (in the sense of

Fisher) called “thermodynamic stability” is:

sup
Λ⊆Zd

1

|Λ|
∑
X⊆Λ

∆2
Λ,X ≤ c < ∞ , (4.23)

see [60, 13].

In order to introduce the necessary language to illustrate our results we start

by the following:

Lemma 4.2.1. Let cΛ and c′Λ be two normalised covariances of Gaussian spin

glasses satisfying the condition of thermodynamic stability. Then the same con-

dition is satisfied by the normalised covariance obtained through the operations

below:

• cΛ + c′Λ, entry-wise addition

• x2cΛ for each x ∈ R, scalar multiplication

• cΛc
′
Λ, entry-wise multiplication.

Proof. We first observe that the three considered operations define new covari-

ances, in particular the last covariance is sometimes called the Schur product,

Hadamard product or Schur-Hadamard product and is semidefinite positive by

a lemma of Schur.

The conditions of thermodynamic stability for cΛ and c′Λ are

sup
Λ
cΛ(σ, σ) < ∞ and sup

Λ
c′Λ(σ, σ) <∞ ,

and immediately imply that

sup
Λ

[cΛ(σ, σ) + c′Λ(σ, σ)] < ∞ ,

sup
Λ
x2cΛ(σ, σ) < ∞ and

sup
Λ
cΛ(σ, σ)c′Λ(σ, σ) < ∞ .

The explicit inversion formula from the covariance to the Hamiltonian can be

seen from Chapter 2 of [13].
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The previous lemma says that the set of the thermodynamically stable co-

variances is closed under the three operations defined.

By the previous lemma, starting from the Hamiltonian (4.21) we can al-

ways construct a thermodynamically stable Hamiltonian, that we call complete

Hamiltonian, defined by

H̄Λ(σ; β) :=
∑
p≥1

(
√
c)−pβpH

(p)
Λ (σ), (4.24)

where H
(1)
Λ (σ) ≡ HΛ(σ) is the Hamiltonian (4.21) and each p-term in the sum

has a normalized covariance

c
(p)
Λ (σ, τ) = [cΛ(σ, τ)]p

and the family of parameters β = (βp)p≥1 is such that βp > 0 for every p and

fulfills the condition ∑
p≥1

β2
p = c <∞

A simple computation shows that the complete Hamiltonian has a covariance

c̄Λ(σ, τ) =
∑
p≥1

(c)−pβ2
p [cΛ(σ, τ)]p

and is thermodynamically stable with constant c̄.

Example 4. If one start with a simply one body random field, namely ∆2
Λ = 1 if

|X| = 1 and zero otherwise, thus applying the previous construction one obtains

the mixed p-spin model (2.12).

In order to facilitate the reader, let us briefly recall the general framework

for disorder spin systems introduced in section 1.2.

Consider n copies of the configuration space whose elements are denoted by

σ1, . . . , σn and, for every bounded function f : (σ1, . . . , σn) → R, we call the

random n-Gibbs state the following r.v.

ΩΛ,β(f) :=
∑

σ1,...,σn

f(σ1, . . . , σn)GΛ,β(σ1) . . .GΛ,β(σn) (4.25)
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where

GΛ,β(σ) :=
exp(−H̄Λ(σ; β))∑
σ exp(−H̄Λ(σ; β))

(4.26)

is the random Gibbs measure. In the previous formula the dependence on the

physical β is reabsorbed in the family of βp’s.

We define the quenched Gibbs state as

〈f〉Λ,β := EΩΛ,β(f) (4.27)

4.3 Identities

Theorem 4.3.1. The model defined by equation (4.24) satisfies with respect to

the covariance (4.22) the following properties:

(i) It is stochastically stable in the strong sense, i.e for every power p ∈ N

and for almost every βp, the following hold

lim
Λ↗Zd

〈 n∑
j,k=1
j 6=k

fcpj,k − 2nf
n∑
k=1

cpk,n+1 + n(n+ 1)fcpn+1,n+2

〉
Λ,β

= 0 , (4.28)

where for any number of replicas σ(1), σ(2), . . . , we denote by cj,k the quantity

cΛ(σ(j), σ(k)), and where we assume that f is a continuous function of all the

variables cj,k for 1 ≤ j < k ≤ n.

(ii) It fulfills the Ghirlanda-Guerra identities (GG for short) in distribution,

i.e. the following identities are verified for every n ≥ 2 and every function f of

(cj,k)
n
j,k=1 as above, and every power p ∈ N and for almost every βp.

lim
Λ↗Zd

[
〈fcpn+1,n+2〉Λ,β −

1

n+ 1

n∑
k=1

〈fcpk,n+1〉Λ,β −
1

n+ 1
〈f〉Λ,β〈cp1,2〉Λ,β

]
= 0 ,

(4.29)

Moreover, let

p̄(β) := lim
Λ↗Zd

1

|Λ|
E[log

∑
σ

exp(−H̄Λ(σ, β))]
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be the thermodynamical limit of the pressure.

If p̄(β) is differentiable in the βp ”direction” at the point βp = a then

(iii) It is pointwise stochastically stable in the strong sense, i.e for every

power p ∈ N and in each point βp = a, (4.28) hold.

(iv) It fulfills the Ghirlanda-Guerra identities in distribution pointwise, i.e

for every n ≥ 2 and for every power p ∈ N and in each point βp = a, (4.29)

holds.

Remark 4.3.2. we notice that since the function p(β) is convex in each βp then

it’s almost everywhere differentiable and then we have that (iv) ⇒ (ii), but in

the next sections we give an independent proof of (ii).

Proof of Theorem 4.3.1: We fix an arbitrary p ≥ 1 and to lighten the

notation we put:

βp → x∑
k 6=p

(
√
c)−kβkH

(k)
Λ (σ)→ HΛ(σ)

(
√
c)−pβpH

(p)
Λ (σ)→ H ′Λ(σ)

Then the Hamiltonian defined in (4.24) becomes

H̄Λ(σ; β)→ HΛ(σ;x) = HΛ(σ) + xH ′Λ(σ)

To prove the theorem we recall a general result due to Panchenko [104]. Consider

a general Hamiltonian of the type

HΛ(σ;x) = HΛ(σ) + xH ′Λ(σ)

where x is a real parameter and the families (H(σ))σ and (H ′(σ))σ are inde-

pendent jointly Gaussian families of centered r.v.s. of the type (4.21). Suppose
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that the Hamiltonian are thermodynamically stable in the sense of (4.23), that

is there exists a global constant c such that

EHΛ(σ)2 ≤ |Λ|c

EH ′Λ(σ)2 ≤ |Λ|c (4.30)

Consider, the following basic quantities:

ZΛ(x) :=
∑
σ

exp(−HΛ(σ;x))

pΛ(x) :=
1

|Λ|
logZΛ(x)

p(x) := lim
Λ↗Zd

EpΛ(x) (4.31)

Notice that existence of the limit in the last definition is ensured (see for exam-

ple [13]) by the conditions (4.30). We define ΩΛ,x( ) and 〈 〉Λ,x in the same way

as in (4.25) and (4.27).

In the previous setting we have the following lemma:

Lemma 4.3.3. If we denote h′Λ(σ) := 1
|Λ|H

′
Λ(σ) the Hamiltonian density, then

we have that for every β1 < β2

lim
Λ↗Zd

∫ β2

β1

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a
da = 0 (4.32)

lim
Λ↗Zd

∫ β2

β1

〈∣∣∣h′Λ(σ)− 〈h′Λ(σ)〉Λ,a
∣∣∣〉

Λ,a
da = 0 (4.33)

On other hand, if we assume that p(x) is differentiable at x = a, then

lim
Λ↗Zd

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a

= 0 (4.34)

lim
Λ↗Zd

〈∣∣∣h′Λ(σ)− 〈h′Λ(σ)〉Λ,a
∣∣∣〉

Λ,a
= 0 (4.35)
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It is easy to check by a simple integration-by-parts and a uniform norm

bound that the relations (4.32), (4.33), (4.34), (4.35) implies the propositions

i), ii), iii), iv) of Theorem 4.3.1, respectively. We notice that the propositions

i), ii) are in almost every sense then in this case the proof of previous implica-

tion requires some elementary facts in measure theory which are explained in

Remark 4.4.4.

Proof of Lemma 4.3.3: The strategy of the proof is to control all terms

by the following estimation, which is essentially contained in Chapter 12 of [19].

Proposition 4.3.4. For every b > 0 we have that

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a
≤

√
2EDΛ(a, b)

b|Λ|
+ 8EDΛ(a, b) (4.36)

〈∣∣∣ΩΛ,a

(
h′(σ)

)
− 〈h′Λ(σ)〉Λ,a

∣∣∣〉
Λ,a
≤ EDΛ(a, b) + EWΛ(a, b) (4.37)

where

DΛ(x, b) := p′Λ(x+ b)− p′Λ(x− b)

WΛ(x, b) :=
1

b

(
|pΛ(x+b)−EpΛ(x+b)|+|pΛ(x−b)−EpΛ(x−b)|+|pΛ(x)−EpΛ(x)|

)
Proof of Proposition 4.3.4, equation (4.37): the function pΛ(x) is

convex. Thus for every b > 0 we have that

p′Λ(x) ≤ pΛ(x+ b)− pΛ(x)

b
≤ WΛ(x, b)+

E
(
pΛ(x+ b)− pΛ(x)

)
b

≤ WΛ(x, b)+Ep′Λ(x+b) ,

and then

p′Λ(x)− Ep′Λ(x) ≤ WΛ(x, b) + Ep′Λ(x+ b)− Ep′Λ(x) ≤ WΛ(x, b) + EDΛ(x, b) .

On other hand,

p′Λ(x) ≥ −pΛ(x− b) + pΛ(x)

b
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and then, after the same manipulations, we get

p′Λ(x)− Ep′Λ(x) ≥ −WΛ(x, b)− EDΛ(x, b)

Combining the two previous inequalities we obtain the following bound

|p′Λ(x)− Ep′Λ(x)| ≤ WΛ(x, b) + EDΛ(x, b) (4.38)

This bound give immediately (4.37), since〈∣∣∣ΩΛ,a

(
h′(σ)

)
−〈h′Λ(σ)〉Λ,a

∣∣∣〉
Λ,a

= E
(∣∣∣p′Λ(a)−Ep′Λ(a)

∣∣∣) ≤ EWΛ(a, b)+EDΛ(a, b) . 2

The bound (4.36) requires an extra work.

Proposition 4.3.5. Consider the quantity

ψΛ(x) := ΩΛ,x

(∣∣∣h′Λ(σ(1))− h′Λ(σ(2))
∣∣∣)

then we have that

ψ2
Λ(x) ≤ 4

|Λ|
p′′Λ(x)

|ψ′Λ(x)| ≤ 8p′′Λ(x)

Proof of Proposition 4.3.5: During this proof we define for sake of sim-

plicity the quantity

Vl := h′Λ(σ(l))− ΩΛ,x

(
h′Λ(σ)

)
then we have that, for every l,m

ΩΛ,x

(
Vl

)
= ΩΛ,x

(
Vm

)
= ΩΛ,x

(
V1

)
= 0

ΩΛ,x

(
VlVm

)
= ΩΛ,x

(
Vl

)
ΩΛ,x

(
Vm

)
= Ω2

Λ,x

(
V1

)
= 0

p′′Λ(x) = |Λ|ΩΛ,x

(
V 2

1

)
By Jensen’s inequality and the previous equations we can obtain the first

bound of the proposition, indeed

ψ2
Λ(x) ≤ ΩΛ,x

((
h′Λ(σ(1))− h′Λ(σ(2))

)2)
= ΩΛ,x

((
V1 − V2

)2)
≤ 4

|Λ|
p′′Λ(x)
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The second bound follow easily by Cauchy-Schwarz inequality, indeed

|ψ′Λ(x)| = |Λ|ΩΛ,x

(∣∣∣h′Λ(σ(1))− h′Λ(σ(2))
∣∣∣(h′Λ(σ(1)) + h′Λ(σ(2))− 2h′Λ(σ(3))

))
≤

|Λ|ΩΛ,x

(∣∣∣V1 − V2

∣∣∣ · ∣∣∣V1 − V3 + V2 − V3

∣∣∣) ≤ 2|Λ|ΩΛ,x

(∣∣∣V1 − V2

∣∣∣∣∣∣V1 − V3

∣∣∣)
≤ 2|Λ|ΩΛ,x

((
V1 − V2

)2)
≤ 8p′′Λ(x)2

The last proposition can be used to obtain

Proposition 4.3.6. Given b > 0 then

E|ψΛ(x)| ≤

√
2EDΛ(a, b)

b|Λ|
+ 8EDΛ(a, b)

Proof of Proposition 4.3.6: We observe that for x − b ≤ y ≤ x + b we

have

|ψΛ(x)− ψΛ(y)|
∫ x+b

x−b
|ψ′Λ(t)|dt

and then ∣∣∣ ∫ x+b

x−b

(
ψΛ(x)− ψΛ(y)

)
dy
∣∣∣ ≤ 2b

∫ x+b

x−b
|ψ′Λ(t)|dt

The identity

2bψΛ(x) =

∫ x+b

x−b
ψΛ(y)dy +

∫ x+b

x−b

(
ψΛ(x)− ψΛ(y)

)
dy

implies that

|ψΛ(x)| = 1

2b

∣∣∣ ∫ x+b

x−b
ψΛ(y)dy

∣∣∣+
1

2b

∣∣∣ ∫ x+b

x−b

(
ψΛ(x)− ψΛ(y)

)
dy
∣∣∣

and then Proposition 4.3.5 implies that

|ψΛ(x)| ≤ 1

b|Λ| 12

∫ x+b

x−b

√
p′′Λ(y)dy + 8

∫ x+b

x−b
p′′Λ(y)dy

We can use the Jensen inequality in the first term of the r.h.s of the previous

relation to get

|ψΛ(x)| ≤

√
2

b|Λ|

(∫ x+b

x−b
p′′Λ(y)dy

) 1
2

+ 8

∫ x+b

x−b
p′′Λ(y)dy
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To conclude, we take the expectation and using again the Jensen inequality

and the obvious relation∫ x+b

x−b
p′′Λ(y)dy = p′Λ(x+ b)− p′Λ(x− b)

and the proof is complete.2

Proof of Proposition 4.3.4, equation (4.36): To obtain (4.36) we simply

observe that by Jensen inequality

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a
≤ E|ψΛ(a)|

and then by Proposition 4.3.6 we get the desired result.2

Now we are able to prove Lemma 4.3.3.

Proof of Lemma 4.3.3: We start to prove the equations (4.32) and (4.34)

which give the stochastic stability.

First, using the convexity of the function pΛ(x) we can prove easily that

DΛ(a, b) ≤ 1

b

(
pΛ(a+ 2b)− pΛ(a+ b) + pΛ(a− 2b)− pΛ(a− b)

)
(4.39)

It is easy to check that EpΛ(x) is bounded for every x,Λ and then for every

a, b,Λ we have that

EDΛ(a, b) ≤ D̄

b
<∞ .

. Then from (4.36), using Fubini’s Theorem, we get the following bound: for

every b, β1 < β2

∫ β2

β1

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a
da ≤ (β2 − β1)

b

√
2D̄

|Λ|
+ 8E

∫ β2

β1

DΛ(a, b)da

and then
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∫ β2

β1

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a
da ≤

(β2 − β1)

b

√
2D̄

|Λ|
+ 8E

(
pΛ(β2 + b)− pΛ(β1 + b)− pΛ(β2 − b) + pΛ(β1 − b)

)
Finally, we can use the limb→0 lim supΛ↗Zd and the continuity of the function

p(x) to get (4.32).

To prove (4.34), we use the hypothesis of differentiability of the function

p(x) at the point x = a to get from (4.39) the following

lim
b→0

lim sup
Λ↗Zd

EDΛ(a, b) ≤ lim
b→0

1

b

(
p(a+ 2b)− p(a+ b) + p(a− 2b)− p(a− b)

)
= 0

(4.40)

and then we can bypass the intermediate integration to obtain from (4.36) the

following bound: for every a, b

〈∣∣∣h′Λ(σ)− ΩΛ,a

(
h′(σ)

)∣∣∣〉
Λ,a
≤ 1

b

√
2D̄

|Λ|
+ 8EDΛ(a, b)

Finally, we can use the limb→0 lim supΛ↗Zd and relation (4.40) to get (4.32).

Now, we are able to prove the equations (4.33) and (4.35) which give the

GG-identities.

We already obtained the control of the quantity D, moreover a simple inspec-

tion shows that the quantity WΛ(a, b) is strictly related to the self-averaging of

pΛ(x). Then it’s easy to check (see for example [60]) that the thermodynamic

stability condition (4.30) ensures that there exists a finite quantity K(a, b, c)

which does not depend on Λ, such that:

EWΛ(a, b) ≤ K(a, b, c)
1

b|Λ| 12
(4.41)
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From (4.37) and (4.41), we can obtain as before the following bound: for

every b, β1 < β2

∫ β2

β1

〈∣∣∣ΩΛ,a

(
h′(σ)

)
− 〈h′Λ(σ)〉Λ,a

∣∣∣〉
Λ,a
da ≤

E
(
pΛ(β2 + b)− pΛ(β1 + b)− pΛ(β2 − b) + pΛ(β1 − b)

)
+
K(β1, β2, b, c)

b|Λ| 12

where we have set K(β1, β2, b, c) :=
∫ β2

β1
K(a, b, c)da to lighten the notation.

Finally, we can use the limb→0 lim supΛ↗Zd and the continuity of the function

p(x) to get (4.33).

Like in the previous case, the hypothesis of differentiability allow us to by-

pass the intermediate integration and then, from (4.37), we have that, for every

a, b

〈∣∣∣ΩΛ,a

(
h′(σ)

)
− 〈h′Λ(σ)〉Λ,a

∣∣∣〉
Λ,a
≤ EDΛ(a, b) +K(a, b, c)

1

b|Λ| 12

Finally, we can use the limb→0 lim supΛ↗Zd and relation (4.40) to get (4.33).2

4.4 Rate of convergence

We outline in this section a sharper version of a theorem that appears in

[19] and prove it with more elementary methods for the benefit of the reader,

following the approach developed in [22, 60].

As in Section 3, we consider

HΛ(σ;x) = HΛ(σ) + xH ′Λ(σ) ,

where HΛ and H ′Λ are independent, and defined as in (2). The main theorem

in this section follows:
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Theorem 4.4.1. (a) Writing h′Λ = |Λ|−1H ′Λ, as before,∫ x2

x1

〈∣∣∣h′Λ(σ)− ΩΛ,x

(
h′Λ(σ)

)∣∣∣2〉
Λ,x

dx ≤ 2(|x1|+ |x2|)c′Λ
|Λ|

, (4.42)

where c′Λ(σ, σ′) is defined to be |Λ|−1|E[H ′Λ(σ)H ′Λ(σ′)]|, and c′Λ
def
:= maxσ,σ′ |c′Λ(σ, σ′)|.

(b) For any x1 < x2

1

x2 − x1

∫ x2

x1

E
[∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x

∣∣∣] dx ≤ 4

(
|x1|+ |x2|+

2
√
x2 − x1

(c′Λ|Λ|)1/4

)
(c′Λ)3/4

√
x2 − x1 |Λ|1/4

.

(4.43)

4.4.1 Application: Distributional Stochastic Stability via

Perturbations

The quantitative version of the Ghirlanda-Guerra identities follows from

this.

Corollary 4.4.2. Suppose cΛ(σ, σ) = c′Λ for every σ. Then for every non-

random function of n replicas, Φ
(n)
Λ (σ(1), . . . , σ(n)), with maximum norm at most

1, we have the conditional expectation formula for one additional replica

1

x2
2 − x2

1

∫ x2

x1

〈
c′Λ(σ(1), σ(n+1))

c′Λ
Φ(n)(σ(1), . . . , σ(n))

〉
Λ,x

d(x2)

=
1

x2
2 − x2

1

∫ x2

x1

〈
γ

(n)
Λ (σ(1), . . . , σ(n))Φ(n)(σ(1), . . . , σ(n))

〉
Λ,x

d(x2) + Rem

for every pair 0 ≤ x1 < x2, where

γ
(n)
Λ (σ(1), . . . , σ(n)) =

1

n

[
n∑
k=2

c′Λ(σ(1), σ(k))

c′Λ
+

〈
c′Λ(σ, σ′)

c′Λ

〉
Λ,x

]
,

and the remainder satisfies the bound

n |Rem| ≤

[
8

x1 + x2

+
23/2√
x2

2 − x2
1

]
δ

1/2
Λ +

4√
x2 − x1

δ
1/4
Λ , (4.44)

where δΛ is a small parameter δΛ = 1/(|Λ|cΛ).
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Proof. Let us define

R̂em =
1

x2 − x1

∫ x2

x1

(〈
h′Λ(σ(1)) · Φ(n)

Λ (σ(1), . . . , σ(n))
〉

Λ,x
− 〈h′Λ〉Λ,x

〈
Φ

(n)
Λ (σ(1), . . . , σ(n))

〉
Λ,x

)
dx .

By the triangle inequality and Cauchy-Schwarz, and the fact that ‖Φ(n)
Λ ‖∞ ≤ 1,

we know that |R̂em| is bounded by(
1

x2 − x1

∫ x2

x1

〈∣∣∣h′Λ(σ)− ΩΛ,x

(
h′Λ(σ)

)∣∣∣2〉
Λ,x

dx

)1/2

plus
1

x2 − x1

∫ x2

x1

E
[∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x

∣∣∣] dx .
Using equations (4.42) and (4.43), this bound is at most c′Λ(x1 + x2)/2 times

the right hand side of (4.44). In other words, we have an upper bound on R̂em

which is at most c′Λ(x1 + x2)/(2n) times the bound we claimed for Rem.

But Gaussian integration by parts implies that

−
〈
h′Λ(σ(1))Φ

(n)
Λ (σ(1), . . . , σ(n))

〉
Λ,x

= x
n∑
k=1

〈
c′Λ(σ(1), σ(k)) · Φ(n)

Λ (σ(1), . . . , σ(n))
〉

Λ,x

− nx
〈
c′Λ(σ(1), σ(n+1)) · Φ(n)

Λ (σ(1), . . . , σ(n))
〉

Λ,x
.

See for example Lemma 4.4.5 for a similar calculation carried out in more detail.

A special case of this formula, obtained by setting Φ(n) ≡ 1, also gives

−〈h′Λ〉Λ,x = x [〈c′Λ(σ, σ)〉Λ,x − 〈c′Λ(σ, σ′)〉Λ,x] .

If we combine these two formulas, this allows one to rewrite R̂em. If we assume

that c′Λ(σ, σ) is constant as a function of σ, meaning there is a constant diagonal

covariance, then the k = 1 term of the first formula cancels with the c′Λ(σ, σ) in

the second formula. Therefore, we get

R̂em =
c′Λ

n(x2 − x1)

∫ x2

x1

〈[
c′Λ(σ(1), σ(n+1))

c′Λ
− γ(n)

Λ (σ(1), . . . , σ(n))

]
· Φ(n)(σ(1), · · · , σ(n))

〉
Λ,x

x dx .

Note that the measure x dx is 1
2
·d(x2), writing the Riemann-Stieltjes differential

form d(x2) = 2x dx. Since∫ x2

x1

d(x2) = x2
2 − x2

1 = (x2 − x1)(x1 + x2) ,
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we also divide by an appropriate normalization 1
2
(x1 +x2) times c′Λ/n to get the

bound for Rem from the bound on R̂em, which gives the result.

As an application of this result, consider the following scenario. Suppose

that for each Λ, there is a given Hamiltonian H∗Λ with covariance

E[H∗Λ(σ)H∗Λ(σ′)] = |Λ|c∗Λ(σ, σ′) ,

where we assume that c∗Λ(σ, σ) = c∗Λ for all σ, and we assume that c∗ = supΛ c
∗
Λ

is finite, in order to satisfy thermodynamic stability.

By Lemma 4.2.1 we know that we may construct i.i.d. Gaussian centered

Hamiltonians H
(p)
Λ (σ), for p = 1, 2, . . . , which are independent of H∗Λ and such

E[H
(p)
Λ (σ)H

(p)
Λ (σ′)] = |Λ| [c∗Λ(σ, σ′)]

p
.

For each ε > 0 and a real sequence x = (x1, x2, . . . ) we define the perturbed

Hamiltonian

HΛ(σ;x) = H∗Λ(σ) +
∞∑
p=1

xp
p[c∗]p/2

H
(p)
Λ (σ) .

We denote by 〈· · · 〉Λ,x the quenched multi-replica equilibrium measure with

respect to Hε
Λ(σ;x) and cl,l′ is a short notation for c∗Λ(σ, σ′). Then we may

prove the following corollary.

Corollary 4.4.3. Suppose that the sequence (εΛ) satisfies lim|Λ|→∞ |Λ|ε2Λ =∞.

Let X = (X1, X2, . . . ) be an IID sequence of random variables, each uniformly

distributed on [0, 1], all of which are independent of H∗Λ and H
(p)
Λ for p = 1, 2, . . .

and all Λ. Then for almost every choice of X we have stochastic stability in

distribution: for each n, p ∈ {1, 2, . . . },

lim
|Λ|→∞

max
Φ(n)

′

〈(
[c1,n+1]p − 1

n

n∑
k=2

[c1,k]
p − 1

n
〈[c1,2]p〉Λ,εΛX

)
Φ(n)

〉
Λ,εΛX

= 0 ,

where max′
Φ(n) is the maximum over all non-random functions Φ(n)(σ(1), . . . , σ(n))

satisfying ‖Φ(n)‖ ≤ 1.
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Proof. In order to prove this, for a given p, we merely split up the Hamiltonian:

HΛ(σ; εx) = HΛ(σ) + xpH
′
Λ(σ) =: HΛ(σ;xp) ,

where

HΛ(σ) = H∗Λ(σ) + ε
∞∑
k=1
k 6=p

xk
k[c∗]k/2

H
(k)
Λ (σ) ,

and

H ′Λ(σ) =
ε

p[c∗]p/2
H

(p)
Λ (σ) .

With this definition, we have c′Λ(σ, σ′) = ε2

p2 [c∗Λ(σ, σ′)]p but the constant prefac-

tor has been explicitly taken into consideration in Corollary 4.4.2 by normalizing

by c′Λ. It does enter into the definition of the remainder in (4.44) through the

small parameter which is

δΛ =
1

|Λ|c′Λ
≤ p2

ε2Λ|Λ
.

That is why we required |Λ|ε2Λ → ∞, because this guarantees δΛ → 0, as is

needed.

Remark 4.4.4. Note that technically what we proved is that for any open inter-

val for xp in [0, 1], if we average the distributional stochastic stability equation

over that interval, when integrated against the measure x dx, then we obtain

zero in the limit. On the other hand, the quantity in question is〈(
[c∗Λ(σ(1), σ(n+1))]p − 1

n

n∑
k=2

[c∗Λ(σ(1), σ(k))]p − 1

n
〈[c∗Λ(σ, σ′)]p〉Λ,εΛX

)
Φ(n)

〉
Λ,εΛX

and this is bounded for every x by 2[c∗Λ]p. Then by standard arguments from

measure theory, we may conclude that for almost every choice of x with respect

to the measure dµ(x) = 2x dx = d(x2), the quantity is also zero. But this

measure is equivalent to Lebesgue measure in the sense that they are mutually

absolutely continuous with respect to each other. So the notions of measure zero

sets are the same.
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This means that letting Xp be random, then for almost every Xp we have

the stochastic stability formula for the pth power of the overlap. But, firstly, we

note that we may rigorously take an infinite number of i.i.d. uniform random

variables X = (X1, X2, . . . ) by Kolmogorov’s principle, and secondly that the

measure is precisely the product measure for all the Xp’s. Therefore, knowing

that for each Xp we have the stochastic stability condition for almost every Xp,

by definition, this means we have the stochastic stability condition for all p for

almost every X.

4.4.2 Proof of Theorem 4.4.1

In the proof of Theorem 4.4.1 we will condition on HΛ(σ) in order to elimi-

nate the need to consider it as random. But we will do this implicitly. If desired,

simply interpret all expectations as conditional expectations, conditioning on

HΛ(σ).

The proof will be obtained by combining several lemmas. First, we note

that by usual calculations as in elementary statistical mechanics,

d

dx
pΛ(x) = −ΩΛ,x(h

′
Λ) , (4.45)

as has been used already in Section 3. Moreover, by performing Gaussian

integration by parts, we may deduce this:

Lemma 4.4.5. For any x

d

dx
E[pΛ(x)] = −〈h′Λ〉Λ,x =

x

2
〈c′Λ (σ, σ) + c′Λ (σ′, σ′)− 2c′Λ (σ, σ′)〉Λ,x . (4.46)

Proof. Since Λ is finite, the derivative exists and we may write

d

dx
E[pΛ(x)] = E[ΩΛ,x(h

′
Λ)]

by using (4.45). Recall the definition of ΩΛ,x as well as GΛ,x from equations
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(4.25), (4.26) and (4.27). Then Wick’s rule gives

E[ΩΛ,x(h
′
Λ)] = E

[∑
σ

h′Λ(σ)
exp (−HΛ(σ;x))

ZΛ(x)

]

=
∑
σ

E[h′Λ(s)H ′Λ(σ)]E
[

(∂/∂H ′Λ(σ)) exp (−HΛ(σ;x))

ZΛ(x)

]
−
∑
σ

∑
σ′

E[h′Λ(σ)H ′Λ(σ′)]E
[

exp(−HΛ(σ;x))

ZΛ(x)2
· ∂

∂H ′Λ(σ′)
exp(−HΛ(σ′;x))

]
,

Since HΛ(σ;x) = HΛ(σ) + xH ′Λ(σ), this means (∂/∂H ′Λ(σ)) exp(−HΛ(σ;x)) =

−x exp(HΛ(σ)). Using this and the fact that E[h′Λ(σ)H ′Λ(σ′)] = |Λ|−1E[H ′Λ(σ)H ′Λ(σ′)] =

c′Λ(σ, σ′), this gives the result.

Corollary 4.4.6. For any x

|〈h′Λ〉Λ,x| ≤ 2|x|c′Λ .

Proof. This follows from (4.46) and a uniform bound using the definition c′Λ
def
:=

maxσ,σ′ |cΛ(σ, σ′)|.

With this, we can prove the first part of the theorem.

Proof. Proof of Theorem 4.4.1, part (a): Another statistical mechanics

calculation following (4.45) is

d2

dx2
pΛ(x) = |Λ|(ΩΛ,x([h

′
Λ]2)− [ΩΛ,x(h

′
Λ)]2) .

So, integrating and taking expectations, we have∫ x2

x1

E
[
ΩΛ,x

(∣∣∣h′Λ(σ)− ΩΛ,x

(
h′Λ(σ)

)∣∣∣2)] dx =
1

|Λ|
· d
dx

E[pΛ(x)]

∣∣∣∣x2

x1

.

Recall that 〈· · · 〉Λ,x = E[ΩΛ,x(· · · )]. But by (4.46) and Corollary 4.4.6 this leads

directly to (4.42).

In order to obtain the proof of Theorem 4.4.1, part (b), we will use concen-

tration of measure. Our main goal will be to obtain a bound on the random
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fluctuations of the quantity ΩΛ,x (h′Λ) − 〈h′Λ〉Λ,x. We start by quoting a result

which was proved in [77]:

∀t > 0 , P

(
|pΛ(x)− E[pΛ(x)]| ≥

|x|
√
c′Λ√
|Λ|

t

)
≤ 2e−t

2/2 , a.s., (4.47)

where recall that c′Λ was defined in the statement of Theorem 4.4.1, part (b).

We now claim that the following result may be proved using this and previous

results:

Lemma 4.4.7. For any x, and for any ε > 0, we have

E
[∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x

∣∣∣] ≤ 4(|x|+ ε)
√

2c′Λ

ε
√
π|Λ|

+ε

∫ 1

−1

(1−|z|)E
[
d2pΛ

dx2
(x+ εz)

]
dz .

(4.48)

Proof. By (4.45) and Taylor’s theorem

−ΩΛ,x(h
′
Λ) =

pΛ(x+ ε)− pΛ(x− ε)
2ε

+
1

2

∫ 1

−1

(
dpΛ

dx
(x)− dpΛ

dx
(x+ εy)

)
dy

=
pΛ(x+ ε)− pΛ(x− ε)

2ε

+ ε

∫ 1

−1

(∫ 1

−1

1R−(y)1(y,0)(z)− 1R+(y)1(0,y)(z)

2
· d

2pΛ

dx2
(x+ εz) dz

)
dy

=
pΛ(x+ ε)− pΛ(x− ε)

2ε
+
ε

2

∫ 1

−1

g(z)
d2pΛ

dx2
(x+ εz) dz ,

where we interchanged the order of integration and

g(z) =

z − 1 for 0 < z < 1,

1 + z for −1 < z < 0.

For each z ∈ [−1, 1], let us define the random variable

Zε(z) =
d2pΛ

dx2
(x+ εz) ,

which is nonnegative. Let us also define

Yε =
ε

2

∫ 1

−1

g(z)Zε(z) dz .
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Then we obtain

ΩΛ,x(h
′
Λ)−E[ΩΛ,x(h

′
Λ)] =

(pΛ(x+ ε)− E[pΛ(x+ ε)])− (pΛ(x− ε)− E[pΛ(x− ε)]
2ε

+Yε−E[Yε] .

We may use equation (4.47) and the general subset bound, P(A∪B) ≤ P(A) +

P(B), to obtain this:

ΩΛ,x (h′Λ)−E[ΩΛ,x(h
′
Λ)] ≤

(|x|+ ε)
√
c′Λ

ε
√
|Λ|

t+Yε−E[Yε] with probability p ≥ 1− 4e−t
2/2.

We have a similar statement for the lower bound. Therefore, again by the subset

bound,

P

(∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x
∣∣∣ ≥ (|x|+ ε)

√
c′Λ

ε
√
|Λ|

t+ |Yε − E[Yε]|

)
≤ 8e−t

2/2 . (4.49)

Recall that 〈h′Λ〉Λ,x = E[ΩΛ,x(h
′
Λ)] by definition.

So, using the fact that for any integrable random variable X, E[X] ≤∫∞
0

P(X ≥ t) dt, we obtain

E
[∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x

∣∣∣] ≤ E [|Yε − E[Yε]|] +
8(|x|+ ε)

√
c′Λ

ε
√
|Λ|

∫ ∞
0

e−t
2/2 dt .

(4.50)

But now note that

Yε − E[Yε] =
ε

2

∫ 1

−1

g(z) (Zε(z)− E [Zε(z)]) dz ,

which implies that

E [|Yε − E[Yε]|] ≤
ε

2

∫ 1

−1

|g(z)|E [|Zε(z)− E [Zε(z)]|] dz .

But since Zε(z) is nonnegative, almost surely, this means that

E [|Zε(z)− E [Zε(z)]|] ≤ E [|Zε(z)|] + |E [Zε(z)]| = 2E [Zε(z)] .

Combining this bound with (4.50) gives the desired inequality (4.48).

With this, we can prove the remainder of the theorem.
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Proof. Proof of Theorem 4.4.1, part (b): For any x1 < x2, integrating

(4.48) and dividing by the length of the interval we obtain

1

x2 − x1

∫ x2

x1

E
[∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x

∣∣∣] dx ≤ 2(|x1|+ |x2|+ 2ε)
√

2c′Λ

ε
√
π|Λ|

+
ε

x2 − x1

∫ 1

−1

(1− |z|)
(∫ x2

x1

E
[
d2pΛ

dx2
(x+ εz)

]
dx

)
dz .

(4.51)

But, by the fundamental theorem of calculus, (4.46) and Corollary 4.4.6∫ x2

x1

E
[
d2pΛ

dx2
(x+ εz)

]
dx = E

[
dpΛ

dx
(x+ εz)

] ∣∣∣∣∣
x2

x1

,

so that

ε

x2 − x1

∫ 1

−1

(1−|z|)
(∫ x2

x1

E
[
d2pΛ

dx2
(x+ εz)

]
dx

)
dz ≤ 2c′Λε

x2 − x1

∫ 1

−1

(1−|z|)(|x1|+|x2|+2ε) dz .

Using this with (4.51) gives the result

1

x2 − x1

∫ x2

x1

E
[∣∣∣ΩΛ,x (h′Λ)− 〈h′Λ〉Λ,x

∣∣∣] dx ≤ 2(|x1|+|x2|+2ε)

( √
2c′Λ

ε
√
π|Λ|

+
c′Λε

x2 − x1

)
.

(4.52)

Now we may optimize in ε > 0. We choose ε =
√
x2 − x1/(c

′
Λ|Λ|)1/4 to get the

desired result, equation (4.43).

4.5 Consequences of the GG identities

Since the Ghirlanda-Guerra identities are limiting properties of the overlap

w.r.t. the quenched Gibbs measure its convenient to introduce a mathematical

framework that allow us to describe these limiting properties.

Consider a general spin glass model (4.21) with random Gibbs measure GΛ.

For l, l′ ≥ 1 , consider two spin configuration σl, σl
′ ∈ ΣΛ and let us consider

the matrix of

RΛ =
(
cΛ(σl, σl

′
)
)
l,l′≥1

. (4.53)
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where cΛ(σl, σl
′
) is the generalized overlap.

Consider the law of RΛ w.r.t the measure EΩΛ, where ΩΛ := G⊗∞Λ .

Notice that each entry of RΛ belongs to the compact space [1, 1]. Consider

the space of positive semi-definite symmetric matrix. This is a compact sep-

arable metric space when considered as a closed subset of [1, 1]N×N equipped

with the product topology. By compactness arguments, the Borel probability

measures on this space form also a compact, separable and metric space when

equipped with the appropriate topology. This observation allow us to consider

the limit along subsequences of the law of RΛ.

Clearly, by construction, RΛ is an infinite positive semi-definite symmet-

ric matrix which is invariant in law for permutation of finitely many indices.

This kind of random matrix are called Gram-de Finetti matrix and have a nice

representation ((see [32] or [16])) in terms of Hilbert spaces. Indeed,

Theorem 4.5.1. [(DovbyshSudakov)]

Let R = (Rl,l′

)
l,l′≥1

be a Gram-de Finetti Matrix. Let H be an infinite

dimensional separable Hilbert space. There exists a random probability measure

G on H×R+ such that the array R is equal in distribution to

(
hl · h′l + alδl,l′

)
l,l′≥1

where, conditionally on G, (hl, al)l≥1 is a sequence of i.i.d. random variables

with the distribution G and h · h′ denotes the scalar product on H.

Roughly speaking we can say that any Gram-de Finetti matrix can be gen-

erated by sampling a vector of an infinite dimensional separable Hilbert space

H from a random Gibbs measure on H and looking at the matrix of scalar prod-

ucts. Basically, overlaps in spin glass models, are introduced in the same way,

i.e. sampling spins from the Gibbs measure as we can regard ΣΛ as a subset of

a Hilbert space. The theorem therefore identifies the analogous for for the limit

of the Gibbs measures.
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Thus, for any convergent subsequence, we can identify the asymptotic law

RΛ, with a random probability measure in a Hilbert space using the represen-

tation theorem of Dovbysh and Sudakov.

Let G a random probability measure on a separable Hilbert space H. We

will denote by (σl)l≥1 an i.i.d. sample from this measure, by Ω the average with

respect to G∞ and by E the expectation with respect to the randomness of G.

Let cl,l′ := σl · σl′ the scalar products( overlaps) in H and R = (cl,l′)l,l′≥ the

random matrix (Gram de Finetti).

Definition 4.5.2. We say that G satisfies the Ghirlanda-Guerra identities in

the distributional sense if for any n ≥ 2, any bounded measurable function f of

the overlaps (cl,l′)l,l′≤n and any bounded measurable function ψ of one overlap,

the following hold:

EΩ
(
fψ(c1,n+1)

)
=

1

n
EΩ
(
f
)
EΩ
(
ψ(c1,2)

)
+

1

n

n∑
l=2

EΩ
(
fψ(c1,l)

)
(4.54)

4.5.1 Panchenko’s Ultrametric Theorem

Let us start with the following

Definition 4.5.3. A random measure G is said to be ultrametric if the distri-

bution of (cl,l′)l,l′≥1 satisfies

EΩ
(
I
(
c1,2 ≥ min(c1,3, c2,3)

))
= 1 (4.55)

where I(A) is the indicator function of the event A.

A major new development in spin glass theory is Panchenko’s [108] proof that

the Ghirlanda-Guerra identities in the distributional sense imply ultrametricity.

The are also other important consequences [16] summarised in the following:

Theorem 4.5.4. Let us denote by ζ the distribution of R1,2 under EΩ and by

q∗ = max supp(ζ). Consider the law of R = (cl,l′)l,l′≥, that is the random matrix

(Gram de Finetti) of the scalar product(overlaps), under the measure EΩ.
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Assume that G satisfies the Ghirlanda-Guerra identities in distributional

sense, then

i) Ri,i = q∗ a.s., ∀ i

ii) Rij ≥ 0 a.s.,∀ i, j ( Talagrand’s positivity principle )

iii) G is ultrametric in the sense of definition 4.5.3. (Panchenko’s ultra-

metricity)

We want to stress an important point now. It had been earlier known

that the Ghirlanda-Guerra identities, when combined with ultrametricity, imply

that the law of R is determined is uniquely by ζ ([36, 19]. As a consequence,

it’s also possible to show (Theorem 2.17 of [16]) that, for any given ζ, the

the law of (Rl,l′)l 6=l′ can be represented (weak approximated) by a Derrida-

Ruelle Cascade. The Derrida-Ruelle Cascades is a hierarchical point process

introduced by Ruelle [116] and describes the limiting behavior of the GREM

model of Derrida [69]. Their relevance in Spin Glass theory, and in particular

in the SK model, was first emphasized by Bolthausen and Snzitman in [48]

where the authors give a beautiful representation of these process in terms of

coalescent process.

The link of Theorem 4.5.4 with the results presented in this chapter is clear.

By Theorem 4.3.1, we can deduce that the asymptotic Gibbs measure of the

model defined in (4.24) satisfies the condition (4.54) for every power of the

covariance and, by the Stone-Weierstrass theorem, this suffices to ensure that

the Ghirlanda-Guerra identities hold in the distributional sense. More precisely

Theorem 4.3.1 has two consequences. The proposition (iv) implies that

lim
Λ↗Zd

EΩΛ,β

(
fψ(c1,2)

)
=

1

n
EΩΛ,β

(
f
)
EΩΛ,β

(
ψ(c1,2)

)
+

1

n

n∑
l=2

EΩΛ,β

(
fψ(c1,l)

)
(4.56)

The proposition (ii) implies that this equation is true for almost every choice

of parameter β = (βp)
∞
p=1. In both case, we can identify the asymptotic Gibbs

measure with a random probability measure in a Hilbert-space using the repre-
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sentation theorem of Dovbysh and Sudakov and the measure is ultrametric by

the Panchenko’s result.

Therefore, to summarize, for almost all the choice of the parameters:

• The complete Hamiltonian(4.24) has an ultrametric Derrida-Ruelle quenched

equilibrium measure .

• By (4.4.3), a general Hamiltonian (4.21) can be suitably perturbed in or-

der to obtain an ultrametric Derrida-Ruelle quenched equilibrium measure.

4.5.2 A comment on Finite Dimensional Spin Glasses

In this chapter we have demonstrated the following point, which we feel

bears repeating. Panchenko has showed that stochastic stability implies the

ultrametric scenario [108] (which does also include the possibility of trivial ul-

trametricity, where for any three replicas, the triangle formed by the intrinsic

overlaps may be equilateral always).

Panchenko’s proof uses a strong version of de Finetti’s theorem. But this

applies because of permutation invariance of the replicas, not the underlying

model. Indeed as we have shown, stochastic stability and its implications even

apply to the Edwards-Anderson model if it is perturbed by an arbitrarily small

inclusion of higher order interactions. Stochastic stability is a general tool,

which in principle may be applicable to any disordered model in statistical me-

chanics including short-ranged spin glasses. We mention that using the language

of metastates [25, 97] stochastic stability has been approached in [33] where

identities where proved everywhere in the parameters using periodic boundary

conditions and averaging over translations. It remains open to show that their

analogue of the link overlap coincides with the usual one which is what we used

here.

It is finally worth to stress that the addition of the higher orders interactions
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introduced in (4.24) is done in order to obtain the identities in distribution and

not only in mean. The nature of those higher orders terms appear to be formally

similar to the p-spin interactions of the mean field case models. In particular

their interaction structure doesn’t decay with distance but it’s a sum normalised

with the volume. At the same time we notice that the core term is still a two

point interaction made of nearest neighbouring sites and as such, it retains the

topological information of the lattice dimension.

4.5.3 The synchronization property

In this section we show a consequence of the ultrametric property of Theorem

4.5.4 which is the corner stone of the Panchenko’s proof of the lower bound of

the MSK model described in section 3.7.

As usual, let us consider an arbitrary Spin Glass model 4.21 with Hamilto-

nian HΛ(σ), and quenched measure EΩΛ as reference measure.

Let S a finite set of S = |S| elements, which labels different independent

gaussian process H
(s)
Λ (σ) on ΣΛ, where H

(s)
Λ (σ) is the Hamiltonian function of

an arbitrary gaussian Spin Glass 4.21 with normalized covariance matrix given

by

1

|Λ|
EH(s)

Λ (σ1)H
(s)
Λ (σ2) = αsc

(s)(σl, σl
′
) ≡ αsc

(s)
l,l′ . (4.57)

align

Let us define a new Hamiltonian H̃Λ(σ) :=
∑

s∈S H
(s)
Λ (σ) which, by con-

struction, has normalized covariance matrix given by

1

|Λ|
EH̃Λ(σ1)H̃Λ(σ2) =

∑
s∈S

αsc
(s)
l,l′ =: c̃l,l′ . (4.58)

We refer to c
(s)
l,l′ as the overlap of the species s and to c̃l,l′ as the total overlap.

We are interested to the limiting properties of joint the distribution of the
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arrays

RΛ =
(
c

(s)
l,l′

)
l,l′≥1,s∈S

(4.59)

with respect to the measure EΩΛ. As explained in the introduction of this

section, the representation Theorem 4.5.1 and compactness arguments allow

us describe these limiting properties considering a random measure G on a

separable Hilbert space.

For any bounded measurable function φ of the entries c
(s)
l,l′ , consider the the

array

Ql,l′ = φ
((
c

(s)
l,l′

)
s∈S

)
(4.60)

with respect the measure EΩ := EG⊗∞ and let us denote byR(n) =
(
c

(s)
l,l′

)
l,l′≤n,s∈S

.

Definition 4.5.5. We say that G satisfies the Multi-species Ghirlanda-Guerra

identities if for any n ≥ 2, any bounded measurable function f = f(Rn) , the

following hold:

EΩ
(
f(R(n))Q1,n+1)

)
=

1

n
EΩ
(
f(R(n))

)
EΩ
(
Q1,2

)
+

1

n

n∑
l=2

EΩ
(
f(R(n))Q1,l

)
(4.61)

These identities have a deep consequence in the joint distribution of the

array (4.59). In fact one can prove [109] the following:

Theorem 4.5.6. [Panchenko] For any array (4.59) that satisfies (4.61), there

exist non-decreasing (1/αs)-Lipschitz functions Ls : [0, 1] → [0, 1] such that

c
(s)
l,l′ = Ls(c̃l,l′) almost surely for all s ∈ S and all l, l′ ≥ 1.

In this case we say that the array (4.59) satisfies a synchronization property.

Indeed, the previous result implies that the joint distribution of the overlaps c
(s)
l,l′

for all species will be determined trivially by the array of the total overlap c̃l,l′ ,

so in some sense they they are synchronized. Moreover, the array c̃l,l′ satisfies

the usual Ghirlanda-Guerra identities and therbn , by 4.5.4, can be generated

using the Ruelle probability cascades.
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Chapter 5

Monomer-Dimer models

formalism

The second kind of statistical mechanical models studied in this work belong

to the class of Monomer-Dimer models on Graphs. The aim of this chapter,

mirroring chapter 1, is to introduce necessary mathematical background. More-

over section 5.2 contain an alternative representation of the partition function

that will be fundamental in chapter 6 and provide an alternative proof a classical

result due to Heilmann-Lieb [86].

5.1 (Disordered) Monomer-Dimer models on

Graphs

From now on the symbol G denotes a generic graph the finite vertex Λ set

and edge set E which represent respectively the set of microscopic components

and the set of pair interacting components of a model.

The fundamental difference between spin and monomer dimer models is the

topological properties of the configuration space. Indeed, the spin configuration

space ΣΛ is a product space but, as we will see in the next this is no longer true

89



90 5.1. (Disordered) Monomer-Dimer models on Graphs

for dimer configurations.

Let us first introduce Monomer Dimer models on graphs in a pure proba-

bilistic setting.

Definition 5.1.1. Let G = (Λ, E) be a finite simple graph. A dimer config-

uration (or matching) on G is a set D of pairwise non-incident edges (called

dimers).

In other terms a dimer configuration D on G is a partition of a certain set

A ⊆ Λ into pairs belonging to E :

D =
{
{i1, i2}, . . . , {i|A|−1, i|A|}

}
with {i1, i2, . . . , i|A|} = A and {is, is+1} ∈ E ;

(5.1)

The associated set of dimer-free vertices (called monomers) is denoted by M(D) :=

Λ \A Denote by DG the space of all possible dimer configurations on the graph

G.

The condition of non incident edges is called hard-core interaction.

Definition 5.1.2. A Monomer-Dimer model on G is obtained by assigning a

monomer weight xi > 0 to each vertex i ∈ Λ, a dimer weight wij ≥ 0 to each

edge ij ∈ E and introducing the following probability measure on DG :

µG(D) :=
1

ZΛ

∏
ij∈D

wij
∏

i∈M(D)

xi ∀D ∈ DG , (5.2)

where ZG :=
∑

D∈DG

∏
ij∈D wij

∏
i∈M(D) xi is the normalizing factor. The family

of weights will be denoted by xΛ := (xi)i∈Λ and wE := (wij)ij∈E

A pure Dimer model is Monomer-Dimer model with the choice xi = 0 for

each i ∈ Λ.

The pure Dimer model is also called perfect weighted matching on G since

in this case the dimer configuration space represents the way of completely fill

the graph G with dimers.
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Notice that by definition the following relation hold

|M(D)|+ 2 |D| = |Λ| ∀D ∈ DG. (5.3)

The following remark is the analogous of 1.1.3.

Remark 5.1.3. Consider the complete graph KN , with vertex set {1, . . . , N}

and edge set made of all possible pairs of vertices. Because of the lack of geomet-

ric structure the space of dimer configurations DN ≡ DKN simplifies; precisely

D ∈ DN if and only if

D =
{
{i1, i2}, . . . , {i|A|−1, i|A|}

}
with {i1, i2, . . . , i|A|} = A (5.4)

for a certain set of vertices A ⊆ {1, . . . , N}, and the monomer set associated to

D is M(D) = {1, . . . , N} \ A.

On the other hand any monomer-dimer model on a graph G = (Λ, E) with N

vertices can be thought as a monomer-dimer model on the complete graph KN .

Indeed the measure µG is equivalent to a measure µN ≡ µKN by setting wij := 0

for all pairs ij /∈ E . Precisely introducing these zero dimer weights it holds

ZN ≡ ZKN = ZG and

µN(D) =

µG(D) if D ∈ DG

0 if D ∈ DN \DG

.

It’s possible to define a monomer dimer model with the Gibbs formalism

introduced in the previous section, representing a dimer configuration D ∈ DG

and the associated M(D) trough occupancy variables on G.

Definition 5.1.4. For all i ∈ Λ and e ∈ E and D ∈ DG let us define

αi(D) :=

1 , if i ∈M(D)

0 , otherwise

and αe(D) :=

1 , if e ∈ D

0 , otherwise

. (5.5)
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Thus a dimer configurationD is represented by an element α(D) := (αe(D))e∈E ∈

{0, 1}|E|. The point is that {α(D) : D ∈ DG} ⊂ {0, 1}|E| because of the hard-

core condition of non incident edges in definition 5.1.1. It’s easy to see that this

condition to the algebraic constraint:

∑
i∼j

αij(D) ≤ 1, ∀i ∈ Λ (5.6)

where i ∼ j ⇔ ij ∈ E. Clearly if we define {0, 1}|E|d := {α ∈ {0, 1}|E| :

(5.6) hold} there exist a bijection DG ↔ {0, 1}|E|d .

Definition 5.1.5. A Monomer-Dimer model on G is defined assigning to each

dimer configuration D ∈ DG an MD-Hamiltonian function

HG(D) = −
∑
ij∈E

h(d)

ij αij(D)−
∑
i∈Λ

h(m)

i αi(D) (5.7)

where h(d)

E := {h(d)

ij }ij∈E, and h(m)

Λ := {h(m)

i }i∈Λ are two families of real parame-

ters.

We want to stress an important fact. The MD-Hamiltonian is formally very

similar to a spin Hamiltonian (1.8) however the meaning is totally different.

The term h(d)

ij αij is NOT an interaction between the microscopic component i

and j. The interaction between the site i and j is a consequence of the hard-core

constraint on the dimer configuration space. The families h(d)

E and h(m)

Λ are both

external fields acting respectively on dimers and monomers.

Definition 5.1.6. Let β ≥ 0 be a real parameter which represent up to a con-

stant the inverse physical temperature, the finite volume Gibbs measure GG as-

sociated to the Hamiltonian (5.7), is a probability measure on DG defined as

GG(D) :=
e−βHG(D)

ZΛ

(5.8)

for each D ∈ DG. The normalization factor

ZG :=
∑
D∈DG

e−βHG(D) (5.9)
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is called partition function.

The connection with the previous definition (5.3) is straightforward. Indeed

setting

wij ≡ eβh
(d)
ij and xi ≡ eβh

(m)
i one obtain µG ≡ GG(D) for each D ∈ DG.

The extension to monomer-dimer models of the Gibbs state 1.1.6 and pres-

sure density (1.4) definitions are obvious.

Moreover, mirroring the construction of a Disordered Spin Models (section

1.2), a Disordered Monomer-Dimer model is a monomer-dimer model with ran-

dom parameters, namely h(d)

G and h(m)

Λ are two families of random variables

defined in some auxiliary probability space. The definitions of random Gibbs

measure, quenched state and quenched pressure density are analogous.

5.1.1 Some examples of applications

As for Spin Models on Graphs, the class of Monomer Dimer models on

Graphs defined in (5.1.5), can be tough as a preliminary setting for a statistical

mechanic description of various systems. By construction they are used to

describe the systems with an hard-core constraint between pairs of components.

Here the analogous of the problems listed in section 1.3.

• Absorption of diatomic gas molecules : Consider a diatomic gas adsorbed

on a solid material. The finite set Λ labels the allowed sites of the solid, and G

its molecular structure. We will assume that the gas is diatomic, namely each

molecule of the gas is composed by two atoms (like the oxygen O2). Since the

chemical bonds inside the molecules do not break, we assume that two atoms

belonging to the same molecule of gas can only deposit on two neighbouring sites

of the graph. This is an hard core constraint between pair of sites so its natural

to put the model in a monomer dimer setting. Indeed, each arrangement of the

diatomic molecules on the graph is encoded in a vector α ∈ {0, 1}|E|, where E

is the edge set of the graph. But on the contrary not every element {0, 1}|E|
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represents an allowed arrangement, because of the constraint given by (5.6),

in other words an allowed arrangement is a dimer configuration on G and the

monomers represents the empty sites.

The energy associated to a possible dimer configuration D is represented by

the MD Hamiltonian (5.7). In particular, the parameter h(d)

i j can be interpreted

as an effective potential due the solid, acting on the dimer in ij and h(m)

i the

tendency of the site i to be occupied.

• Optimization problems : By definition the monomer dimer problem is a

weighed matching problem so, for example, it can be used to describe the fol-

lowing situation. Let us suppose we have a network of people represented by a

finite graph G. We will consider different ways to divide the group into mar-

ried and single people. The monogamy constraint implies an individual can be

married at most one time, in other words an allowed arrangement is a dimer

configuration on G and the monomers represents single.

The energy associated to such as arrangement is represented by the MD

Hamiltonian (5.7). In particular, the parameter h(d)

ij can be interpreted as how

much people i wants be married with j and h(m)

i as the tendency of people i to

be single.

5.2 The Gaussian representation

In this section we prove that the partition function of a generic MD model

on a graph G admits a representation in terms of moments of a gaussian vector

. Without loss of generality we work with the partition function ZN on the

complete graph KN ( see remark 5.1.3.

Proposition 5.2.1. (Gaussian representation) The partition function of any

monomer-dimer model on KN vertices can be written as

ZN = Eξ
[ N∏
i=1

(ξi + xi)

]
, (5.10)



Chapter 5. Monomer-Dimer models formalism 95

where ξ = (ξ1, . . . , ξN) is a Gaussian random vector with mean 0 and covariance

matrix W = (wij)i,j=1,...,N . Here the diagonal entries wii are arbitrary numbers,

chosen in such a way that W is a positive semi-definite matrix.

Proof. As already noticed the dimer configurations on the complete graph are

the partitions into pairs of all possible A ⊆ {1, . . . , N}, hence

ZN =
∑
D∈DN

∏
ij∈D

wij
∏

i∈MN (D)

xi =
∑

A⊆{1,...,N}

∑
P partition

of A into pairs

∏
ij∈P

wij
∏
i∈Ac

xi . (5.11)

Now choose wii for i = 1, . . . , N such that the matrix W = (wij)i,j=1,...,N is

positive semi-definite1. Then there exists an (eventually degenerate) Gaussian

vector ξ = (ξ1, . . . , ξN) with mean 0 and covariance matrix W . And by the

Wick-Isserlis theorem (identity (A2) in the theorem A1)

Eξ
[∏
i∈A

ξi

]
=

∑
P partition

of A into pairs

∏
ij∈P

wij . (5.12)

Substituting (5.12) into (5.11) one obtains

ZN = Eξ
[ ∑
A⊆{1,...,N}

∏
i∈A

ξi
∏
i∈Ac

xi

]
= Eξ

[ N∏
i=1

(ξi + xi)

]
. (5.13)

Remark 5.2.2. In some sense, the Gaussian representation (5.10) ”factorize”

the hard-core constraints in the same way as the Hubbard-Stratonovich trans-

form decouples the two-body interactions in spin models. Indeed, consider a

generic partition function (assume without loss of generality the complete graph

and the inverse temperature equals 1):

ZIsing
N =

∑
σ∈{±1}N

e
∑

1≤i<j≤N Jijσiσj e
∑N
i=1 hiσi ∝

∑
σ∈{±1}N

e
1
2

∑
1≤i,j≤N Jijσiσj e

∑N
i=1 hiσi ,

1For example one can choose wii ≥
∑

j 6=i wij for every i = 1, . . . , N . W can be diagonalized

and has non-negative eigenvalues by the Gershgorin circle theorem, hence it is positive semi-

definite.
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where we set Jij = Jji and Jii ≥
∑

j 6=i |Jij|. In this way J = (Jij)i,j=1,...,N

is a real positive semi-definite matrix, by Gershgorin circle theorem. Apply

the Hubbard-Stratonovich transform (namely compute the Gaussian moment

generating function) to obtain

ZIsing
N ∝

∑
σ∈{±1}N

Eξ′
[
e
∑N
i=1 ξiσi

]
e
∑N
i=1 hiσi ∝ Eξ′

[ N∏
i=1

cosh(ξ′i + hi)

]
,

where ξ′ = (ξ′1, . . . , ξ
′
N) is a Gaussian random vector with mean 0 and covariance

matrix J .

As an application of the Gaussian representation we show that the well-

know Heilmann-Lieb recursion [86] for the partition function of monomer-dimer

models can be proved by means of a Gaussian integration by parts.

Proposition 5.2.3. (Heilmann-Lieb recursion) Let G = (Λ, E) be a finite sim-

ple graph and consider an MD model on G. Fix i ∈ Λ and look at its adjacent

vertices j ∼ i, then it holds

ZG = xi ZG−i +
∑
j∼i

wij ZG−i−j . (5.14)

Here G− i is the graph obtained from G deleting the vertex i and all its incident

edges.

Proof using Gaussian integration by parts. Set N := |Λ|. Introduce zero dimer

weights whk = 0 for the pairs hk /∈ E, so that ZG = ZN (see remark 5.1.3).

Following proposition 5.2.1, introduce an N -dimensional Gaussian vector ξ with

mean 0 and covariance matrix W . Then write the identity (5.10) isolating the

vertex i :

ZG = Eξ
[ N∏
k=1

(ξk +xk)

]
= xi Eξ

[∏
k 6=i

(ξk +xk)

]
+ Eξ

[
ξi
∏
k 6=i

(ξk +xk)

]
. (5.15)

Now apply the Gaussian integration by parts (identity (A1) in the theorem A1)
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to the second term on the r.h.s. of (5.15):

Eξ
[
ξi
∏
k 6=i

(ξk+xk)

]
=

N∑
j=1

Eξ[ξiξj] Eξ
[
∂

∂ξj

∏
k 6=i

(ξk+xk)

]
=
∑
j 6=i

wij Eξ
[ ∏
k 6=i,j

(ξk+xk)

]
.

(5.16)

Notice that summing over j 6= i in the r.h.s. of (5.16) is equivalent to sum over

j ∼ i, since by definition wij = 0 if ij /∈ E. Substitute (5.16) in (5.15):

ZG = xi Eξ
[∏
k 6=i

(ξk + xk)

]
+
∑
j∼i

wij Eξ
[ ∏
k 6=i,j

(ξk + xk)

]
. (5.17)

To conclude observe that (ξk)k 6=i is an (N−1)-dimensional Gaussian vector with

mean 0 and covariance (whk)h,k 6=i. Hence by proposition 5.2.1

ZG−i = Eξ
[∏
k 6=i

(ξk + xk)

]
. (5.18)

And similarly

ZG−i−j = Eξ
[ ∏
k 6=i,j

(ξk + xk)

]
. (5.19)

Substitute the identities (5.18), (5.19) into (5.17) to obtain the identity (5.14).

5.3 The MD model on KN with uniform weights

In this section we use the gaussian representation (5.2.1) to compute the

pressure of the MD model of the complete graph with uniform weights. In

order to lighten the notation, in this section, we assume without loss the inverse

temperature β = 1. First let us illustrate some basic properties of the generic

MD model. Let G = (Λ, E) be a finite graph and ZG(x,w) the partition function

with generic monomeric weights x = (xi)i∈Λ and dimeric weights w = (wij)ij∈E

Proposition 5.3.1. With bounded monomeric and dimeric weights x ≤ xi ≤ x,

we ≤ w, the following bounds for the pressure hold:

log x ≤ logZG(x,w)

|Λ|
≤ log x+

|E|
|Λ|

log
(
1 +

w

x2

)
.
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Moreover

Proposition 5.3.2. If uniform dimeric (resp. monomeric) weights are con-

sidered, i.e. we ≡ w0 ∀e ∈ E (resp. xi ≡ x0 ∀i ∈ Λ), then it’s possible

to keep w = w0 (resp. x = x0) fixed and study only the dependence of the

model on x (resp. w) without loss of generality. Indeed, using the relation

|M(D)|+ 2 |D| = |Λ| , it’s easy to check that

ZG(x,w0) = (w0)|Λ|/2 ZΛ

( x

(w0)1/2
, 1
)

; (5.20)

ZG(x0, w) = (x0)|Λ| Z
(
1 ,

w

(x0)2

)
. (5.21)

Let KN be the complete graph over N vertices with vertex set EN . Notice

|EN | = N(N − 1)/2.

We work with uniform weights we ≡ w and xi ≡ x and we want logZN = O(N).

For this purpose, looking to proposition 5.3.1, we have to choose x, w such that

w/x2 = O(1/N). By 5.3.2 we can fix without loss of generality w = 1/N and

study

ZMD

N (x) := ZN
(
x ,

1

N

)
, (5.22)

Observe that the bounds of remark 5.3.1 become

log x ≤ logZMD
N (x)

N
≤ log x+

N − 1

2
log
(
1 +

1

Nx2

)
≤ log x+

1

2x2
.

The Hamiltonian function corresponding to ZMD
N (x) is, setting x = eh,

HMD

N (D, h) := −
N∑
i=1

hαi(D) + logN
∑
e∈EN

αe(D) , (5.23)

On the complete graph it is possible to compute explicitly the pressure

density.

Proposition 5.3.1. Setting x = eh for h ∈ R. The pressure per particle of

the monomer-dimer model on the complete graph defined by hamiltonian (5.23)

admits finite thermodynamic limit:

∃ lim
N→∞

logZMD
N (x)

N
= pMD(x) ∈ R . (5.24)
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Furthermore the monomer density

mN(x) :=
1

ZMD
N (x)

∑
D∈DKN

|M(D)|
N

exp(−HN(D, x))

admits thermodynamic limit:

∃ lim
N→∞

mN(x) = g(x) ∈ ]0, 1[ . (5.25)

pMD(ξ) := − 1− g(ξ)

2
− 1

2
log(1− g(ξ)) = −1− g(ξ)

2
− log g(ξ) + ξ ∀ ξ ∈ R

(5.26)

g(ξ) :=
1

2
(
√
e4ξ + 4 e2ξ − e2ξ) ∀ ξ ∈ R . (5.27)

The first proof is due to Heilmann and Lieb [86] and is based on a recurrence

relation (5.2.3), a second one is based on a simple combinatorial argument [28].

We notice also that is a particular case of a more general result given in chapter

7.
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Chapter 6

A Monomer-Dimer model with

Imitation

Let us briefly recall what is a Monomer-Dimer model on a graph G ( see

section 5.1 for a rigorous definition).

Each way to fully cover the vertices of a finite graph G by non-overlapping

dimers (molecules which occupy two adjacent vertices) and monomers (molecules

which occupy a single vertex) is called a monomer-dimer configuration. Let us

associate to each dimer and monomer a weight and consider an Hamiltonian

proportional to the weighted number of monomers and dimers: this defines a

Monomer-Dimer model on G .

Monomer dimer models (MD models) were proposed in ’30 to investigate

the properties of diatomic oxygen molecules deposited on tungsten [113] or

to study liquid mixtures in which the molecules are unequal in size[73]. The

hard-core interaction accounts for the contact repulsion generated by the Pauli

principle. In order to account also for the attractive component of the Van der

Waals potential among monomers and dimers, one may consider an attractive

interaction[114, 52, 53] among particles occupying neighbouring sites (as it was

previously done for single atoms [72, 112]). More recently monomer-dimer mod-

els on diluted networks have attracted a considerable attention [126, 50, 27] and

101
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they have been applied, with the addition of a ferromagnetic imitative interac-

tion, also in social sciences [42].

The first mathematical approach to the problem is due to Heilmann and Lieb

[86, 87] where they proved the celebrated recursion relation for the partition

function 5.2.3 and used it to locate its the complex zeros. As a byproduct they

show that, under general assumptions, the hard-core interaction is not enough

to generate a phase transition. Exact solutions are know for the model on the

complete graph, the 1-dimensional case [86] and on locally three like graphs

[27]. In two dimension, i.e. for planar graph, a solution for pure dimer model

was discovered independently by [92, 120].

In order to account also for the attractive component of the Van der Waals

potential among monomers and dimers, one may consider an attractive interac-

tion [114, 52, 53] among particles occupying neighbouring sites. If one includes

attractive interactions among dimers with the same orientation Heilmann-Lieb

proved [88] that on certain 2-dimensional regular lattices there is a phase tran-

sition: at low temperatures there is an orientational ordering, which is absent

at high temperatures.

Here, we consider a Monomer-Dimer model with an attractive interaction

called IMD model on the complete graph.

This chapter is entirely based on [28] and is organized as follow: in section 6.1

we introduce the model and show that the monomer density, i.e. the expectation

value w.r.t. the Gibbs measure of the fraction of sites occupied by monomers,

is the order parameter of the model in the usual sense: the t.l. of the pressure

is expressed a one-dimensional variational principle in the monomer density.

In section 6.2 we prove that there is a phase transition between a high

monomer density phase and a high dimer density (i.e. low monomer density)

phase and we characterize this transition in details.
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6.1 The model and the main result

Let G = (Λ, E) be a finite simple graph and let us denote by DG the dimer

configuration space on G defined in 5.1.1. Keep in mind its representation 5.1.4

in terms of occupancy variables α. We want modify the classical MD model

defined in the previous section introducing an imitative interaction among the

particles ( monomers and dimers). As in the spin models this interaction can

be represented , in the Hamiltonian formulation with the occupancy variables,

by a term tuned by a positive parameter J and connecting two α′s.

Definition 6.1.1. The Imitative Monomer-Dimer model ( IMD model) on G

is obtained by assigning an external field h ∈ R and an imitation coefficient

J ≥ 0 and then considering the hamiltonian H IMD
G : DG → R ,

H IMD

G := −
∑
v∈Λ

hαv −
∑
uv∈E

J
(
αu αv + (1− αu) (1− αv)

)
. (6.1)

The choice of the hamiltonian naturally induces a Gibbs probability measure

on the space of configurations DG :

µIMD

G (D) :=
1

Z IMD
G

exp(−H IMD

G (D)) ∀D ∈ DG , (6.2)

where Z IMD
G :=

∑
D∈DG

exp(−H IMD
G (D)) is the normalizing factor, called parti-

tion function. Its natural logarithm logZ IMD
G is called pressure.

The monomer density, that is the expected fraction of monomers on the graph,

can be obtained computing the derivative of the pressure per particle with re-

spect to h :

mIMD

G :=
∑
D∈DG

|M(D)|
|V |

µMD

G (D) =
∂

∂h

logZ IMD
G

|V |
. (6.3)

We explicitly observe that taking J = 0 the model reduces to the usual

MD model 5.3, studied by Heilmann and Lieb [86, 87]. At J = 0 the model is

characterised only by a topological interaction, that is the hard-core constraint

which defines the space of states DG. As proved by Heilmann and Lieb [86,

87] this interaction is not sufficient to originate a phase transition: when the
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thermodynamic limit of the normalized pressure exists, it has to be an analytic

function of the parameter h. Introducing the parameter J ≥ 0 we consider

add another type of interaction: the state of a vertex conditions the state of its

neighbours, pushing each other to behave in the same way (imitative interaction

among sites, attractive interaction among similar particles).

Remark 6.1.2. At first sight it seems that a more general hamiltonian than

(6.1) could be considered. Fix a monomer external field h(m) ∈ R, a dimer eter-

nal field h(d) ∈ R, a monomer imitation coefficient J (m) ∈ R, a dimer imitation

coefficient J (d) ∈ R and a counter-imitation coefficient J (md) ∈ R and set:

H̃ IMD

G := −
∑
v∈Λ

h(m) αv −
∑
e∈E

h(d) αe −
∑
uv∈E

J (m) αu αv −
∑
uv∈E

J (d) (1− αu) (1− αv) +

−
∑
uv∈E

J (md)
(
αu (1− αv) + (1− αu)αv

)
.

(6.4)

Now it easy to check that the following two relations hold

αu (1− αv) + (1− αu)αv = −αu αv − (1− αu) (1− αv) + 1 (6.5)

and as a consequence the hamiltonian (6.4) rewrites as

H̃ IMD

G = −C ′ −
∑
v∈Λ

h′ αv −
∑
uv∈E

J ′ αu αv −
∑
uv∈E

J ′′ (1− αu) (1− αv) (6.6)

with h′ = h(m) − h(d)/2 , J ′ = J (m) − J (md) , J ′′ = J (d) − J (md) and C ′ = |V |/2 .

Now if the graph G is regular of degree r, also the following relation holds∑
uv∈E

(αu + αv) = rCard{M(D), D ∈ DG} (6.7)

and as a consequence the hamiltonian (6.6) rewrites as

H̃ IMD

G = −C −
∑
v∈Λ

hαv −
∑
uv∈E

J
(
αu αv + (1− αu) (1− αv)

)
(6.8)

with h = h′ + (J ′ − J ′′) r , J = (J ′ + J ′′)/2 and C = C ′ + (J ′′ − J ′) |E| .

In conclusion this last identity shows that on any regular graph the general

hamiltonian (6.4) is in fact equivalent to the hamiltonian (6.1); indeed they
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differ only by a constant which does not modify the probability measure (6.2).

Moreover observe that the imitation condition J ≥ 0 corresponds to J (m)+J (d) ≥

2J (md) .

In this chapter we study the IMD model on the complete graph, that is we

take G = KN = (ΛN , EN) with ΛN = {1, . . . , N} and EN = {{u, v} |u, v ∈

ΛN , u < v}.

Since the number of edges is of order N2, in order to keep the pressure of

order N we need to normalize the external field and the imitation coefficient.

Therefore we will consider the hamiltonian H IMD
N : DKN → R ,

H IMD

N := −
∑
v∈VN

hαv + logN
∑
e∈EN

αe −
∑
uv∈EN

J

N

(
αu αv + (1− αu) (1− αv)

)
,

(6.9)

the partition function Z IMD
N :=

∑
D∈DKN

exp(−H IMD
N (D)) and the monomer den-

sity mIMD
N := 1

ZIMD
N

∑
D∈DKN

|M (D)|
N

exp(−H IMD
N (D)) .

The main result of this section is the following theorem, where in the limit

N →∞ the model is solved in terms of a one-dimensional variational principle.

Theorem 6.1.3. Let h ∈ R, J ≥ 0. The pressure per particle of the imita-

tive monomer-dimer model on the complete graph defined by hamiltonian (6.9)

admits finite thermodynamic limit:

∃ lim
N→∞

logZ IMD
N

N
=: pIMD ∈ R . (6.10)

This limit satisfies a variational principle:

pIMD = sup
m

p̃ (m) (6.11)

where the sup can be taken indifferently over m ∈ [0, 1] or m ∈ R, and

p̃ (m) := −J m2 +
1

2
J + pMD

(
(2m− 1) J + h

)
∀m ∈ R (6.12)

pMD(ξ) := − 1− g(ξ)

2
− 1

2
log(1− g(ξ)) = −1− g(ξ)

2
− log g(ξ) + ξ ∀ ξ ∈ R

(6.13)

g(ξ) :=
1

2
(
√
e4ξ + 4 e2ξ − e2ξ) ∀ ξ ∈ R . (6.14)



106 6.1. The model and the main result

Furthermore the function m 7→ p̃ (m) attains its maximum in (at least) one

point m∗ ∈ ]0, 1[ , which is a solution of the the consistency equation

m = g
(
(2m− 1) J + h

)
. (6.15)

At each value of the parameters (h, J) such that h 7→ m∗(h, J) is differentiable,

the monomer density admits thermodynamic limit and precisely:

∃ lim
N→∞

mIMD

N = m∗ ∈ ]0, 1[ . (6.16)

This result relies on two main facts:

1) for J = 0, by proposition 5.3.1 the thermodynamic limit of the pressure

per particle can be computed explicitly and turns out to be pMD(h) ;

2) for J > 0 the hamiltonian (6.9) can be expressed as a quadratic form in

the hamiltonian with J = 0.

Therefore before proving the theorem we properly state and prove the second

result.

Given a dimer configuration D on the complete graph KN , denote the frac-

tion of vertices covered by monomers by

mN(D) :=
|M(D)|
N

∈ [0, 1] .

On the complete graph the hamiltonian (6.1) admits a useful rewriting, which

shows that it depends on a dimer configuration D only via the quantity mN(D).

Lemma 6.1.4.

H IMD

N = −N
(
J m2

N + bN mN + cN
)

(6.17)

with bN := 1
2

logN + h− J and cN := −1
2

logN + N−1
2N

J .

Proof. Using the identity (6.7) (the complete graph is regular of degree N − 1),

the hamiltonian (6.9) rewrites as

H IMD

N =
N

2
logN−N(N−1)

2

J

N
−
(
h+

1

2
logN−(N−1)

J

N

) ∑
v∈VN

αv− 2
J

N

∑
uv∈EN

αuαv .
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Then on the complete graph it holds

2
∑
uv∈EN

αuαv =

(∑
v∈ΛN

αv

)2

−
∑
v∈ΛN

αv . (6.18)

Substituting in the previous expression one obtains

H IMD

N =
N

2
logN − N−1

2
J −

(
h+

1

2
logN − J

) ∑
v∈ΛN

αv −
J

N

(∑
v∈ΛN

αv

)2

and since
∑

v∈ΛN
αv = N mN the identity (6.17) is proved.

Now using proposition 5.3.1 and lemma 6.1.4 we are able to prove theorem

6.1.3. Our technique is the same used by Guerra[80] to solve the ferromagnetic

Ising model on the complete graph.

Proof of Theorem 6.1.3. The proof is done providing a lower and an upper

bound for the pressure per particle.

[LowerBound] Fix m ∈ R. As
(
mN(D) − m)2 ≥ 0, clearly mN(D)2 ≥

2mmN(D)−m2. Hence by lemma 6.1.4, using the hypothesis J ≥ 0,

−H IMD

N (D) = N
(
J mN(D)2 + bN mN(D) + cN

)
≥

≥ N
(
(2J m+ bN)mN(D) − J m2 + cN

)
thus

Z IMD

N =
∑
D

exp(−H IMD

N (D)) ≥
∑
D

expN
(
(2J m+ bN)mN(D)− J m2 + cN

)
=

= eN γN (m) ZMD

N

(
ξ(m)

)
where γN(m) := −J m2 + N−1

2N
J and ξ(m) := 2J m+ h− J .

[UpperBound] mN takes values in the set AN := {0, 1
N
, . . . , N−1

N
, 1}. Clearly,

writing δ for the Kronecker delta,
∑

m∈AN δm,mN (D) = 1 and F (mN(D)2) δm,mN (D) =

F (2mmN(D)−m2) δm,mN (D) for any function F . Hence by lemma 6.1.4,

δm,mN (D) exp(−H IMD

N (D)) = δm,mN (D) expN(J mN(D)2 + bN mN(D) + cN) =

= δm,mN (D) expN
(
(2J m+ bN)mN(D) − J m2 + cN

)
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thus

Z IMD

N =
∑
D

∑
m∈AN

δm,mN (D) exp(−H IMD

N (D)) =

=
∑
D

∑
m∈AN

δm,mN (D) expN
(
(2J m+ bN)mN(D) − J m2 + cN

)
≤

≤
∑
m∈AN

∑
D

expN
(
(2J m+ bN)mN(D) − J m2 + cN

)
=

=
∑
m∈AN

eN γN (m) ZMD

N

(
ξ(m)

)
≤ (N + 1) sup

m∈[0,1]

{
eN γN (m) ZMD

N

(
ξ(m)

)}
.

Therefore putting together lower and upper bound we have found:

sup
m∈[0,1]

{
eN γN (m) ZMD

N

(
ξ(m)

)}
≤ Z IMD

N ≤ (N + 1) sup
m∈[0,1]

{
eN γN (m) ZMD

N

(
ξ(m)

)}
.

Then, taking the logarithm and dividing by N ,

0 ≤ logZ IMD
N

N
− sup

m∈[0,1]

{
γN(m) +

logZMD
N

(
ξ(m)

)
N

}
≤ log(N + 1)

N
−−−→
N→∞

0 .

Now the pressure per particle h 7→ logZMD
N (h)

N
is a convex function, hence as

N → ∞ the convergence
logZMD

N (h)

N
→ pMD(h) of proposition 5.3.1 is uniform in

h on compact sets. Moreover γN(m) → γ(m) := −J m2 + 1
2
J uniformly in m

as N →∞. Therefore

γN(m) +
logZMD

N

(
ξ(m)

)
N

−−−→
N→∞

γ(m) + pMD
(
ξ(m)

)
and the convergence is uniform in m on compact sets. As a consequence also

sup
m∈[0,1]

{
γN(m) +

logZMD
N

(
ξ(m)

)
N

}
−−−→
N→∞

sup
m∈[0,1]

{
γ(m) + pMD

(
ξ(m)

)}
.

This concludes the proof of (6.10) and (6.11).

It remains to prove (6.15) and (6.16). First of all observe that

∂p̃

∂m
(m) = −2J m+ 2J g

(
(2m− 1) J + h

)
,

since (pMD)′ = g (see proposition 5.3.1). It holds ∂p̃
∂m

(m) > 0 for all m ≤ 0

and ∂p̃
∂m

(m) > 0 for all m ≥ 1, therefore the function m 7→ p̃ (m) attains its
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global maximum inside the interval ]0, 1[ and any global maximum point m∗ is

a critical point of p̃ , i.e. satisfies equation (6.15).

Now 1
N

logZ IMD
N (h, J) is a convex function of h and, as shown before, it converges

to pIMD(h, J) = p̃ (m∗(h, J), h, J) as N →∞. Therefore, assuming that m∗(h, J)

is differentiable in h, the monomer density mIMD
N = ∂

∂h
1
N

logZ IMD
N converges to

∂
∂h
pIMD. Thus to prove (6.16) it suffices to compute this derivative:

∂pIMD

∂h
=

d

dh
p̃
(
m∗(h, J), h, J

)
=

∂p̃

∂m
(m∗)︸ ︷︷ ︸

= 0

∂m∗

∂h
+
∂p̃

∂h︸︷︷︸
= (pMD)′

= g
(
(2m∗−1) J+h

)
= m∗ .

6.2 The properties of the solution

In this section we study the properties of the solution provided by theorem

6.1.3. We divide the analysis in three subsections. In subsection 6.2.1 we study

all the stationary points of the function m 7→ p̃ (m,h, J). One of them will

be the global maximum point m∗ we are interested in since it represents the

monomer density. We provide their complete classification, regularity proper-

ties and asymptotic behaviour as functions of the parameters h and J . As a

byproduct in subsection 6.2.2 we are able to identify the region where there

exists a unique global maximum point m∗. The resulting picture is the fol-

lowing: the function m∗ is single-valued and continuous on the plane (h, J)

with the exception of a curve Γ that is implicitly defined, and moreover m∗ is

smooth outside Γ union its endpoint (hc, Jc). This curve play a crucial physical

role since it represents the coexistence of two different thermodynamic phases

and the point (hc, Jc) is the critical point of the system. In physical jargon we

say that a phase transition occur. In subsection 6.2.3 we compute the critical

exponents that characterizes the behaviour of m∗ near the critical point (hc, Jc).
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6.2.1 Analysis of the stationary points: classification,

regularity properties, asymptotic behaviour.

Let us identify the stationary points of the function p̃ (m,h, J) defined by

(6.12). Remembering that (pMD)′ = g, one computes

∂p̃

∂m
(m,h, J) = −2J m + 2J g

(
(2m− 1)J + h

)
(6.19)

∂2p̃

∂m2
(m,h, J) = −2J + (2J)2 g′

(
(2m− 1)J + h

)
(6.20)

Since 0 < g < 1, it follows that for every J > 0, h ∈ R

∂p̃

∂m
(m,h, J) > 0 ∀m ∈ ]−∞, 0] ,

∂p̃

∂m
(m,h, J) < 0 ∀m ∈ [1,∞[ . (6.21)

Therefore p̃ (· , h, J) attains its maximum in (at least) one point m = m∗(h, J) ∈

]0, 1[ , which satisfies

∂p̃

∂m
(m,h, J) = 0 i.e. m = g

(
(2m− 1)J + h

)
, (6.22)

∂2p̃

∂m2
(m,h, J) ≤ 0 i.e. g′

(
(2m− 1)J + h

)
≤ 1

2J
. (6.23)

The stationary points are characterized by equation (6.22), which can not be

explicitly solved. Anyway their properties and a rough approximation of their

values can be determined by studying inequality (6.23), which admits explicit

solution.

The next proposition displays the intervals of concavity/convexity of the

function m 7→ p̃ (m,h, J). Set

Jc :=
1

4 (3− 2
√

2)
≈ 1.4571 . (6.24)

Proposition 6.2.1. For 0 < J < Jc and h ∈ R

∂2p̃

∂m2
(m,h, J) < 0 ∀m ∈ R .

For J ≥ Jc and h ∈ R

∂2p̃

∂m2
(m,h, J)


< 0 iff m < φ1(h, J) or m > φ2(h, J)

> 0 iff φ1(h, J) < m < φ2(h, J)

,
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where for i = 1, 2

φi(h, J) :=
1

2
− h

2J
+

1

4J
log ai(J) , (6.25)

ai(J) :=
−( 1

(2J)2 + 8
2J
− 4) + (−1)i (2− 1

2J
)
√

1
(2J)2 − 12

2J
+ 4

4
2J

. (6.26)

Observe that φ1(h, J) ≤ φ2(h, J) for all h ∈ R, J ≥ Jc and equality holds iff

J = Jc (since a1(Jc) = a2(Jc)).

Proof. It follows from the expression (6.20) through a direct computation done

in lemma E1 of the Appendix, taking ξ = (2m− 1)J + h and c = 1
2J

.

Using the previous proposition we can determine how many, of what kind

and where the stationary points of p̃ (· , h, J) are.

Proposition 6.2.2 (Classification). The equation (6.22) in m has the following

properties:

1. If 0 < J ≤ Jc and h ∈ R, there exists only one solution m(h, J). It is the

maximum point of p̃ (· , h, J).

2. If J > Jc and ψ2(J) < h < ψ1(J), then there exist three solutions

m1(h, J), m0(h, J), m2(h, J). Moreover m1(h, J) < φ1(h, J) and m2(h, J) >

φ2(h, J) are two local maximum points, while φ1(h, J) < m0(h, J) <

φ2(h, J) is a local minimum point of p̃ (· , h, J).

3. If J > Jc and h > ψ1(J), there exists only one solution m2(h, J). More-

over m2(h, J) > φ2(h, J) and it is the maximum point of p̃ (· , h, J).

4. If J > Jc and h = ψ1(J), there exist two solution m1(h, J), m2(h, J) .

Moreover m1(h, J) = φ1(h, J) is a point of inflection, while m2(h, J) >

φ2(h, J) is the maximum point of p̃ (· , h, J).

5. If J > Jc and h < ψ2(J), there exists only one solution m1(h, J). More-

over m1(h, J) < φ1(h, J) and it is the maximum point of p̃ (· , h, J).
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6. If J > Jc and h = ψ2(J), there exist two solutions m1(h, J), m2(h, J) .

Moreover m2(h, J) = φ2(h, J) is a point of inflection, while m1(h, J) <

φ1(h, J) is the maximum point of p̃ (· , h, J).

Here φ1, φ2 are defined by (6.25), while for i = 1, 2 and J ≥ Jc

ψi(J) := J +
1

2
log ai(J)− 2J g

(1

2
log ai(J)

)
, (6.27)

where ai and g are defined respectively by (6.26) and (6.14). Observe that

ψ2(J) ≤ ψ1(J) for all J ≥ Jc and equality holds iff J = Jc.

Proof. Fix h ∈ R, J > 0 and to shorten the notation set G(m) := ∂p̃
∂m

(m,h, J),

observing it is a continuous (smooth) function.

• Suppose J ≤ Jc. By proposition 6.2.1, G′(m) ≤ 0 for all m ∈ R and equality

holds iff (J = Jc and m = φ1(h, Jc) = φ2(h, Jc) ). Hence G is strictly decreasing

on R. On the other hand by (6.21), G(m) < 0 for all m ≤ 0 and G(m) > 0

for all m ≥ 1. Therefore there exists a unique point m (m ∈ ]0, 1[ ) such that

G(m) = 0.

• Suppose J > Jc. By proposition 6.2.1, G is strictly decreasing for m ≤

φ1(h, J), strictly increasing for φ1(h, J) ≤ m ≤ φ2(h, J) and again strictly

decreasing for m ≥ φ2(h, J). On the other hand by (6.21), G(m+) > 0 for some

point m+ < φ1(h, J) and G(m−) > 0 for some point m− > φ2(h, J). Therefore:

(∃ (a unique) m1 ∈ ]−∞, φ1(h, J)] s.t. G(m1) = 0 ) ⇔ G(φ1(h, J)) ≤ 0 ;

(∃ (a unique) m2 ∈ [φ2(h, J),∞[ s.t. G(m2) = 0 ) ⇔ G(φ2(h, J)) ≥ 0 ;

(∃ (a unique) m0 ∈ [φ1(h, J), φ2(h, J)] s.t. G(m0) = 0 ) ⇔ G(φ1(h, J)) ≤ 0 , G(φ2(h, J)) ≥ 0 .

And now, using identity (6.19) and definitions (6.25), (6.27)

G(φ1(h, J)) <
(=)

0 ⇔ g
(
(2φ1(h, J)− 1)J + h

)
<
(=)

φ1(h, J) ⇔ h <
(=)

ψ1(J)

and similarly G(φ2(h, J)) >
(=)

0 ⇔ h >
(=)

ψ2(J) .
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The first • allows to conclude in case 1., while the second • allows to conclude in

all the other cases. Notice that the nature of the stationary points of p̃ (· , h, J)

is determined by the sign of the second derivative ∂2p̃
∂m2 studied in proposition

6.2.1.

A special role is played by the point (hc, Jc), where we set

hc := ψ1(Jc) = ψ2(Jc) =
1

2
log(2

√
2− 2)− 1

4
≈ −0.3441 , (6.28)

indeed in the next sub-sections it will turn out to be the critical point of the

system. It is also useful to define

mc := φ1(hc, Jc) = φ2(hc, Jc) = 2−
√

2 ≈ 0.5857 , (6.29)

ξc := (2mc − 1)Jc + hc =
1

2
log(2

√
2− 2) ≈ −0.0941 . (6.30)

The computations are done observing that a1(Jc) = a2(Jc) = 2
√

2 − 2 and

g(1
2

log(2
√

2− 2)) = 2−
√

2.

Remark 6.2.3. We notice that mc is the (unique) solution of equation (6.22)

for h = hc and J = Jc, that is m(hc, Jc) = mc. Indeed a direct computation

using (6.14) shows

g
(
(2mc − 1)Jc + hc

)
= g

(
ξc
)

= mc.

Observe that as a consequence mc is a solution of equation (6.22) for all (h, J)

such that h− hc = (1− 2mc)(J − Jc).

In the next proposition we analyse the regularity of the solutions of equation

(6.22).

Proposition 6.2.4 (Regularity properties). Consider the stationary points of

p̃ (· , h, J) defined in proposition 6.2.2: m(h, J), m1(h, J), m0(h, J), m2(h, J)
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for suitable values of h, J . The functions

µ1(h, J) :=

m(h, J) if 0 < J ≤ Jc , h ∈ R

m1(h, J) if J > Jc , h ≤ ψ1(J)

, (6.31)

µ2(h, J) :=

m(h, J) if 0 < J ≤ Jc , h ∈ R

m2(h, J) if J > Jc , h ≥ ψ2(J)

, (6.32)

µ0(h, J) :=

m(h, J) if 0 < J ≤ Jc , h ∈ R

m0(h, J) if J > Jc , ψ2(J) ≤ h ≤ ψ1(J)

(6.33)

have the following properties:

i) are continuous on the respective domains;

ii) are C∞ in the interior of the respective domains;

iii) for i = 0, 1, 2 and (h, J) in the interior of the domain of µi

∂

∂h
p̃ (µi(h, J), h, J) = µi ,

∂

∂J
p̃ (µi(h, J), h, J) = −µi (1− µi) ;

(6.34)

∂µi
∂h

=
2µi (1− µi)

2− µi − 4J µi (1− µi)
,

∂µi
∂J

= (2µi − 1)
∂µi
∂h

. (6.35)

Proof. i) First prove the continuity of µ1. Observe that by propositions 6.2.2,

6.2.1:

• for (h, J) in D1 := {(h, J) | (0 < J ≤ Jc, h ∈ R) or (J > Jc, h ≤ ψ2(J))} ,

µ1(h, J) is the only maximum point of p̃ (· , h, J) on the interval [0, 1] ;

• for (h, J) in D2 := {(h, J) | J ≥ Jc, h ≤ ψ1(J)} , µ1(h, J) is the only

maximum point of p̃ (· , h, J) on the interval [0, φ1(h, J)] .

Hence by the Berge’s maximum theorem [102], continuity of the functions p̃

and φ1 implies continuity of the function µ1 on the sets D1 and D2. As D1 and
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D2 are both closed subsets of R × R+, by the pasting lemma µ1 is continuous

on their union

D1 ∪D2 = {(h, J) | (0 < J ≤ Jc, h ∈ R) or (J > Jc, h ≤ ψ1(J))} .

A similar argument proves the continuity of µ2 and µ0.

ii) Now prove the smoothness of µ1, µ2, µ0 in the interior of their domains. Set

G(m,h, J) := ∂p̃
∂m

(m,h, J). As just seen m = µ1(h, J), µ2(h, J), µ0(h, J) are

continuous solutions of

G(m,h, J) = 0 ,

for values of h, J in the respective domains. Observe that G ∈ C∞(R×R×R+)

and by propositions 6.2.1, 6.2.2 it can happen
∂G

∂m
(m,h, J) = 0

G(m,h, J) = 0

⇔


J ≥ Jc , (m = φ1(h, J) or m = φ2(h, J))

G(m,h, J) = 0

⇔

⇔


J ≥ Jc, m = φ1(h, J)

h = ψ1(J)

or


J ≥ Jc, m = φ2(h, J)

h = ψ2(J)

.

m = µ1(h, J) can fall only within the first case, while m = µ2(h, J) can fall

only within the second case. Therefore by the implicit function theorem [115]

µ1, µ2, µ0 are C∞ on the interior of the respective domains.

iii) Let i = 0, 1, 2 and (h, J) in the interior of the domain of µi. Using (6.12),

(pMD)′ = g and the fact that µi(h, J) satisfies equation (6.22), compute

∂

∂h
p̃ (µi, h, J) = −2J

∂µi
∂h

+ (pMD)′
(
(2µi − 1)J + h

)
(2J

∂µi
∂h

+ 1)

= −2J
∂µi
∂h

+ µi (2J
∂µi
∂h

+ 1) = µi ;

and similarly ∂
∂J
p̃ (µi, h, J) = µ2

i − µi .

Using the fact that µi(h, J) satisfies equation (6.22) compute

∂µi
∂h

=
∂

∂h
g
(
(2µi − 1)J + h

)
= g′

(
(2µi − 1)J + h)

)
(1 + 2J

∂µi
∂h

)

⇒ ∂µi
∂h

=
g′
(
(2µi − 1)J + h

)
1− 2J g′

(
(2µi − 1)J + h

) ;
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and similarly ∂µi
∂J

=
(2µi−1) g′

(
(2µi−1)J+h

)
1−2J g′

(
(2µi−1)J+h

) . Then observe that g′ = 2 g (1−g)/(2−

g) (identity (E2) in the Appendix), hence since µi(h, J) satisfies equation (6.22)

g′
(
(2µi − 1)J + h

)
=

2µi (1− µi)
2− µi

;

substituting this in the previous identities concludes the proof.

To end this subsection we study the asymptotic behaviour of the stationary

points of p̃ (· , h, J) for large J .

Proposition 6.2.5 (Asymptotic behaviour). Consider the stationary points

m1(h, J), m0(h, J), m2(h, J) defined in proposition 6.2.2 for suitable values of

h, J .

i) For all fixed h ∈ R

m1(h, J) −−−→
J→∞

0 , m2(h, J) −−−→
J→∞

1 , m0(h, J) −−−→
J→∞

1

2
.

ii) Moreover for all fixed h ∈ R

J m1(h, J) −−−→
J→∞

0 , J (1−m2(h, J)) −−−→
J→∞

0 .

iii) And taking the sup and inf over h ∈ [ψ2(J), ψ1(J)]

sup
h
m1(h, J) −−−→

J→∞
0 , inf

h
m2(h, J) −−−→

J→∞
1 .

Proof. i) First observe from the definition (6.27) that ψ2(J) → −∞, ψ1(J) →

∞ as J → ∞. Hence for any fixed h ∈ R there exists J̄ > 0 such that

ψ2(J) < h < ψ1(J) for all J > J̄ . This means that the limits in the statement

make sense.

Now remind that by proposition 6.2.2, for J > J̄

m1(h, J) < φ1(h, J) < m0(h, J) < φ2(h, J) < m2(h, J) .

Observe from the definition (6.25) that φ1(h, J)→ 1
2

, φ2(h, J)→ 1
2

as J →∞.

It follows immediately that also m0(h, J)→ 1
2

as J →∞.
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Moreover definition (6.25) entails that J
(

1
2
−φ1(h, J)

)
→∞ , J

(
φ2(h, J)− 1

2

)
→

∞ as J →∞. Exploit the fact that m1(h, J) is a solution of equation (6.22):

m1(h, J) = g
(
(2m1(h, J)− 1) J + h

)
≤ g

(
(2φ1(h, J)− 1) J + h

)
=

= g
(
− 2J (

1

2
− φ1(h, J)) + h

)
−−−→
J→∞

0 ,

where also the facts that the function g is increasing and g(ξ)→ 0 as ξ → −∞

are used. Since m1 takes values in ]0, 1[, conclude that m1(h, J) −→ 0 as

J →∞. Similarly it can be shown that m2(h, J) −→ 1 as J →∞.

ii) Start observing that, by a standard computation from the definition (6.14),

ξ g(−ξ) −→ 0 and ξ
(
1 − g(ξ)

)
−→ 0 as ξ → +∞. Then exploit the fact that,

for fixed h and J sufficiently large, m1 = m1(h, J) is a solution of equation

(6.22):

J m1 = J g
(
(2m1 − 1)J + h

)
=

=

(
(1− 2m1)J − h

)
g
(
− (1− 2m1)J + h

)
1− 2m1

+
h g
(
− (1− 2m1)J + h

)
1− 2m1

−−−→
J→∞

0

1
+
h 0

1
= 0 ,

using also that m1 → 0 as J → ∞ by i). Similarly it can be shown that

J (1−m2) −→ 0 as J →∞.

iii) Start observing that, by a standard computation from the definition (6.27),

−J + ψ1(J) −→ −∞ and J + ψ2(J) −→ ∞ as J → ∞. Then exploit the fact

that, for J > Jc and h ∈ [ψ2(J), ψ1(J)], m1 = m1(h, J) is a solution of equation

(6.22):

sup
h∈[ψ2,ψ1]

m1 = sup
h∈[ψ2,ψ1]

g
(
(2m1 − 1)J + h

)
≤ g

(
(2m1 − 1)J + ψ1(J)

)
=

= g
(
2J m1 − J + ψ1(J)

)
−−−→
J→∞

0 ,

using also the facts that g is an increasing function, g(ξ)→ 0 as ξ → −∞, and

J m1 → 0 as J →∞ by ii). Similarly it can be shown that infh∈[ψ2,ψ1] m2 −→ 1

as J →∞.
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6.2.2 The “wall”: existence and uniqueness, regularity

and asymptot

In the previous subsection we have studied all the solutions of equation

(6.22), that is all the stationary points of m 7→ p̃ (m,h, J). One of them is the

point where the global maximum is attained and, because of theorem 6.1.3, we

are interested in this one.

Consider the points m, m1, m0, m2 defined in proposition 6.2.2 and look for the

global maximum point of m 7→ p̃ (m,h, J):

• for 0 < J < Jc and h ∈ R, m(h, J) is the only local maximum point,

hence it is the global maximum point;

• for J > Jc and h ≤ ψ2(J), m1(h, J) is the only local maximum point,

hence it is the global maximum point;

• for J > Jc and h ≥ ψ1(J), m2(h, J) is the only local maximum point,

hence it is the global maximum point;

• for J > Jc and ψ2(J) < h < ψ1(J), there are two local maximum points

m1(h, J) < m2(h, J), hence at least one of them is the global maximum

point.

To answer which one is the global maximum point in the last case, we have to

investigate the sign of the following function

∆(h, J) := p̃
(
m2(h, J), h, J

)
− p̃

(
m1(h, J), h, J

)
(6.36)

for J > Jc and ψ2(J) ≤ h ≤ ψ1(J) .

Proposition 6.2.6 (Existence and Uniqueness). For all J > Jc there exists a

unique h = γ(J) ∈ ]ψ2(J), ψ1(J)[ such that ∆(h, J) = 0. Moreover

∆(h, J)


< 0 if J > Jc, ψ2(J) ≤ h < γ(J)

> 0 if J > Jc, γ(J) < h ≤ ψ1(J)

.
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Proof. It is an application of the intermediate value theorem. Fix J > Jc. It

suffices to observe that

i. ∆
(
ψ2(J), J

)
< 0, because for h = ψ2(J) the only maximum point of the

function p̃ (· , h, J) is m1(h, J);

ii. ∆
(
ψ1(J), J

)
> 0, because for h = ψ1(J) the only maximum point of the

function p̃ (· , h, J) is m2(h, J);

iii. h 7→ ∆(h, J) is a continuous function, by continuity of p̃ , m1, m2 (see

proposition 6.2.4);

iv. h 7→ ∆(h, J) is strictly increasing; indeed it is C∞ on ]ψ2(J), ψ1(J)[ by

smoothness of p̃ , m1, m2 (see proposition 6.2.4) and, by formula (6.34),

∂∆

∂h
(h, J) =

∂

∂h
p̃
(
m2(h, J), h, J

)
− ∂

∂h
p̃
(
m1(h, J), h, J

)
=

= m2(h, J)−m1(h, J) > φ2(h, J)− φ1(h, J) > 0

for all h ∈ ]ψ2(J), ψ1(J)[ .

Remark 6.2.7. By the previous results the global maximum point of m 7→

p̃ (m,h, J) is

m∗(h, J) :=


m(h, J) if 0 < J ≤ Jc , h ∈ R

m1(h, J) if J > Jc , h < γ(J)

m2(h, J) if J > Jc , h > γ(J)

(6.37)

where the function γ is defined by proposition 6.2.6. Set also

Γ := {(h, J) | J > Jc, h = γ(J)} , Γ := Γ ∪ {(hc, Jc)} . (6.38)

Notice that proposition 6.2.6 guarantees that there is only a curve Γ in the

plane (h, J) where the global maximum point of m 7→ p̃ (m,h, J) is not unique.

Remark 6.2.8. The techniques developed in this work do not allow us to

conclude the existence of the monomer density on the wall. Nevertheless it
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is easy to show that, using Theorem 6.1.3, its limsup and liminf are included

between m1 and m2. In the standard mean-field ferromagnetic model (Curie-

Weiss) the existence of the magnetization on the wall (h = 0) is achieved by

symmetry, a property that we do not have in the present case.

By proposition 6.2.4 it follows that the function m∗ is continuous on its

domain (R× R+) r Γ and it is C∞ on (R× R+) r Γ . The behaviour of m∗ at

the critical point (hc, Jc) will be investigated in the next subsection.

Now we investigate the main properties of the curve Γ, which we call “the

wall”. Extend the function γ defined by proposition 6.2.6 by

γ(J) :=

 γ(J) if J > Jc

hc if J = Jc

. (6.39)

Proposition 6.2.9 (Regularity properties). The function γ is C∞ on ]Jc,∞[

and (at least) C1 on [Jc,∞[. In particular

γ′(J) = 1−m1

(
γ(J), J

)
−m2

(
γ(J), J

)
∀ J > Jc ,

and

γ ′(Jc) = 1− 2mc = −(3− 2
√

2) .

Proof. I. First prove that the function γ ∈ C∞( ]Jc,∞[ ).

By proposition 6.2.6 for all J > Jc, h = γ(J) is the unique solution of equation

∆(h, J) = 0

where ∆ is defined by (6.36). Moreover ψ2(J) < γ(J) < ψ1(J). Observe that ∆

is C∞ on {(h, J) | J > Jc, ψ2(J) < h < ψ1(J)} by smoothness of p̃ and m1, m2

on this region (see proposition 6.2.4). And furthermore, as shown in the proof

of proposition 6.2.6,

∂∆

∂h
(h, J) 6= 0 ∀ (h, J) s.t. h = γ(J) .



Chapter 6. A Monomer-Dimer model with Imitation 121

Therefore by the implicit function theorem [115] γ ∈ C∞( ]Jc,∞[ ). Now

∆(γ(J), J)) ≡ 0 ⇒ 0 =
d

dJ
∆(γ(J), J) =

∂∆

∂h
(γ(J), J) γ′(J) +

∂∆

∂J
(γ(J), J)

⇒ γ′(J) = − ∂∆

∂J

/ ∂∆

∂h
(γ(J), J) ;

by formulae (6.34) ∂∆
∂h

= m2 −m1 and ∂∆
∂J

= (m2
2 −m2)− (m2

1 −m1) ; therefore

γ′(J) = 1− (m2 +m1) (γ(J), J) .

II. Now prove that the extended function γ ∈ C1([Jc,∞[) .

First observe that γ is continuous also in Jc, indeed:

ψ2(J) < γ(J) < ψ1(J) ∀ J > Jc ⇒ lim
J→Jc+

γ(J) = hc

by definition of hc (6.28) and continuity of ψ1, ψ2. Then observe that

γ′(J) = 1− (m2 +m1) (γ(J), J) −−−−→
J→Jc+

1− 2mc

because m(hc, Jc) = mc (remark 6.2.3) and the functions µ1, µ2 defined in

proposition 6.2.4 are continuous. By an immediate application of the mean

value theorem, this proves that there exists γ ′(Jc) = 1− 2mc.

Proposition 6.2.10 (Asymptote). The function γ has an asymptote, precisely

γ(J) −−−→
J→∞

−1

2
.

Proof. I. Consider the function ∆ defined by (6.36). The first step is to prove

that ∆(h, J) −→ 0 as J → ∞, h = −1
2

. Use definitions (6.12), (6.13) and the

fact that for fixed h and J sufficiently large m1 = m1(h, J), m2 = m2(h, J)

satisfy equation (6.22), in two different ways:

p̃ (m1, h, J) = −J m2
1 +

J

2
− 1−m1

2
− log g

(
(2m1 − 1)J + h

)
+ (2m1 − 1)J + h ,

p̃ (m2, h, J) = −J m2
2 +

J

2
− 1−m2

2
− logm2 + (2m2 − 1)J + h .
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Hence, reminding that m1 → 0 and m2 → 1 as J → ∞ by proposition 6.2.5

part i),

∆(h, J) = p̃ (m2, h, J)− p̃ (m1, h, J) =

= J (−m2
2 + 2m2 +m2

1 − 2m1) + log g
(
(2m1 − 1)J + h

)
+

1

2
+ o(1) ,

Set δ := −m2
2 + 2m2 + m2

1 − 2m1 and ξ := (2m1 − 1)J + h and prove that in

general

J δ + log g(ξ) −−−→
J→∞

h ; (6.40)

in particular it will follow that for h = −1
2

∆
(
− 1

2
, J
)
−−−→
J→∞

0 . (6.41)

Now proving (6.40) is equivalent to prove exp(Jδ) g(ξ) −→ exp(h) as J → ∞;

and using definition (6.14)

eJδ g(ξ) = eJδ
√
e4ξ + 4e2ξ − e2ξ

2
=

√
e2(Jδ+2ξ) + 4e2(Jδ+ξ) − eJδ+2ξ

2
−−−→
J→∞

eh ,

because, since J m1 → 0 and J (1 −m2) → 0 as J → ∞ by proposition 6.2.5

part ii),

Jδ + 2ξ = J
(
− (1−m2)2 +m2

1 − 2m1 − 1
)

+ 2h −−−→
J→∞

−∞ ,

Jδ + ξ = J
(
− (1−m2)2 +m2

1

)
+ h −−−→

J→∞
h .

II. Remember that by definition of γ in proposition 6.2.6

∆
(
γ(J), J

)
= 0 ∀ J > Jc ; (6.42)

hence using (6.41) will not be hard to prove that γ(J) −→ −1
2

as J →∞. Let

ε > 0. By (6.41) there exists J̄ε > Jc such that∣∣∆(− 1

2
, J
)∣∣ < ε ∀ J > J̄ε . (6.43)

Now by the mean value theorem for all J > Jc and h ∈ [ψ2(J), ψ1(J)],∣∣∆(h, J)−∆
(
− 1

2
, J
)∣∣ ≥ inf

[ψ2(J),ψ1(J)]

∣∣∂∆

∂h
(· , J)

∣∣ ∣∣h+
1

2

∣∣ .
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Furthermore by identity (6.34) and proposition 6.2.5 part iii)

inf
[ψ2(J),ψ1(J)]

∣∣∂∆

∂h
(· , J)

∣∣ = inf
[ψ2(J),ψ1(J)]

(m2 −m1) (· , J) ≥

≥ inf
[ψ2(J),ψ1(J)]

m2(·, J) − sup
[ψ2(J),ψ1(J)]

m1 (·, J) −−−→
J→∞

1 .

Therefore there exist J̄ such that∣∣∆(h, J)−∆
(
− 1

2
, J
)∣∣ ≥ 1

2

∣∣h+
1

2

∣∣ ∀ J > J̄, h∈ [ψ2(J), ψ1(J)] . (6.44)

Choosing h = γ(J) in (6.44), by (6.42), (6.43) one obtains that for all J >

max{J̄ , J̄ε} ∣∣γ(J) +
1

2

∣∣ ≤ 2
∣∣∆(γ(J), J)−∆

(
− 1

2
, J
)∣∣ < 2ε .

6.2.3 Critical exponents

As observed in remark 6.2.7 the global maximum point m∗(h, J) is a contin-

uous function on (R×R+) r Γ, but it is smooth only outside the critical point

(hc, Jc). In this section we study the behaviour of the solutions of equation

(6.22) near the critical point, with particular interest in the function m∗.

As usual the notation f = O(g) as x → x0 means that there exists a

neighbourhood U of x0 and a constant C ∈ R such that |f(x)| ≤ C |g(x)| for all

x ∈ U . The notation f ∼ g as x→ x0 means that f(x)/g(x) −→ 1 as x→ x0.

Finally f = o(g) as x→ x0 means that f(x)/g(x) −→ 0 as x→ x0.

We call critical exponent of a function f at a point x0 the following limit

lim
x→x0

log |f(x)− f(x0)|
log |x− x0|

.

The main result of this section is the following:

Theorem 6.2.11. Consider the global maximum point m∗(h, J) of the function

m 7→ p̃ (m,h, J) defined by (6.12).

i) m∗ is continuous on (R × R+) r Γ and smooth on (R × R+) r Γ, where

Γ = Γ ∪ {(hc, Jc)} and the “wall” curve Γ is the graph of the function γ

defined by proposition 6.2.6.
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ii) The critical exponents of m∗ at the critical point (hc, Jc) are:

β = lim
J→Jc+

log |m∗(δ(J), J)−mc|
log(J − Jc)

=
1

2

along any curve h = δ(J) with δ ∈ C2([Jc,∞[), δ(Jc) = hc, δ
′(Jc) =

1− 2mc (i.e. if the curve is tangent to the “wall” in the critical point);

1

δ
= lim

J→Jc

log |m∗(δ(J), J)−mc|
log |J − Jc|

=
1

3

1

δ
= lim

h→hc

log |m∗(h, δ(h))−mc|
log |h− hc|

=
1

3

along any curve h = δ(J) with δ ∈ C2(R+), δ(Jc) = hc, δ
′(Jc) 6= 1− 2mc

or along a curve J = δ(h) with δ ∈ C2(R), δ(hc) = Jc, δ
′(hc) = 0 (i.e. if

the curve is not tangent to the “wall” in the critical point).

iii) Denote by m∗(h±, J) := limh′→h±m
∗(h′, J). The critical exponent of

m∗(h+, J) and m∗(h−, J) at the critical point (hc, Jc) along the “wall”

h = γ(J) is still

β = lim
J→Jc+

log |m∗(γ(J)+, J)−mc|
log(J − Jc)

=
1

2

β = lim
J→Jc+

log |m∗(γ(J)−, J)−mc|
log(J − Jc)

=
1

2

Proof. As observed in remark 6.2.7, the global maximum point m∗ is expressed

piecewise using the two local maximum points µ1, µ2 and inherits their conti-

nuity properties outside Γ and their regularity properties outside Γ. Thus part

i) of the theorem is already proved by proposition 6.2.4.

The proof of the other parts of the theorem, regarding the behaviour of m∗ at

the critical point (hc, Jc), is long and rather technical, then we sketch only the

major points. For the benefit to the reader, the remaining parts of the proof

are given in Appendix B.

In the following proposition we find the fundamental equation characterizing

the behaviour of the solutions of equation (6.22) near the critical point (hc, Jc).
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Proposition 6.2.12. Here for h ∈ R, J > 0 let m = m(h, J) be any solution

of the consistency equation (6.22):

m = g
(
(2m− 1)J + h

)
.

Then m is continuous at (hc, Jc) and furthermore, setting ξ := (2m− 1)J + h,

it satisfies

(ξ − ξc)3 − κ1 (J − Jc) (ξ − ξc)− κ2 ρ(h, J) +O
(
(ξ − ξc)4

)
= 0 (6.45)

as (h, J)→ (hc, Jc), where we set κ1 := 3 Jc
J

(2−mc), κ2 := 3 J2
c

J
(2−mc) and

ρ(h, J) := h− hc + (2mc − 1)(J − Jc) . (6.46)

Proof. I. First show that m is continuous at (hc, Jc). Exploit equation (6.22)

for m(h, J) and use continuity and monotonicity of g: as (h, J)→ (hc, Jc)

lim supm(h, J) = lim sup g
(
(2m(h, J)− 1) J + h

)
= g
(
(2 lim supm(h, J)− 1) Jc + hc

)
,

lim inf m(h, J) = lim inf g
(
(2m(h, J)− 1) J + h

)
= g
(
(2 lim inf m(h, J)− 1) Jc + hc

)
.

Thus lim supm(h, J) and lim inf m(h, J) are both solution of equation µ =

g
(
(2µ + 1)Jc + hc

)
. But this solution is unique by proposition 6.2.2, and it is

mc by remark 6.2.3. Therefore

lim sup
(h,J)→(hc,Jc)

m(h, J) = lim inf
(h,J)→(hc,Jc)

m(h, J) = mc .

II. Make a Taylor expansion of the smooth function g at the point ξc (see (6.14),

(6.30)). By identities (E2), (E3), (E4) and since g(ξc) = mc it is easy to find

g(ξ) = mc +
1

2Jc
(ξ − ξc)−

1

6J2
c (2−mc)

(ξ − ξc)3 +O
(
(ξ − ξc)4

)
(6.47)

as ξ → ξc. Now choose ξ := (2m− 1)J + h. Then g(ξ) = m and

ξ − ξc = ρ(h, J) + 2J (m−mc) , (6.48)

where ρ(h, J) := h−hc+(2mc−1)(J−Jc). Now (6.45) follows from (6.47).
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Given the previous expansion, the proof of part ii) of the theorem 6.2.11 is

rather technical and it is contained in the proposition F4 of the Appendix (and

in the other results of the Appendix B).

The part ii) of the theorem describes the critical behaviour of the local

maximum points along curves of class C2. Notice that “the wall” γ belongs

to C1([Jc,∞[) ∩ C∞(]Jc,∞[) by proposition 6.2.9, but we did not manage to

prove that it is C2 up to Jc. Anyway we are interested in the behaviour along

this coexistence curve, which separates two different phases of the system. This

is provided by part iii) of the theorem 6.2.11. To prove it let start with the

following proposition, which is bases on corollary F2 and lemma F1 in the

Appendix.

Proposition 6.2.13. Consider the “wall” curve h = γ(J) defined by (6.39)

and proposition 6.2.6. There exist r > 0, C1 < ∞, C2 > 0 such that for all

J ∈ ]Jc, Jc + r[ .

C2 ≤
µ2(γ(J), J)−mc√

J − Jc
≤ C1 , C2 ≤

mc − µ1(γ(J), J)√
J − Jc

≤ C1

Proof. Observe that by definition, on the curve h = γ(J), J ≥ Jc, both the

local maximum points µ1(h, J), µ2(h, J) exist.

As γ ∈ C1([Jc,∞[) (see proposition 6.2.9), the existence of the lower bound

C2 > 0 is guaranteed by corollary F2 part 2).

Only the existence of an upper bound C1 < ∞ has to be proven. Fix

J > Jc and shorten the notation by mi = mi(γ(J), J) = µi(γ(J), J) and ξi :=

(2mi − 1) J + γ(J) for i = 1, 2. By proposition 6.2.12, ξ1, ξ2 satisfy equation

(6.45). The Taylor expansion with Lagrange remainder of γ is (see proposition

6.2.9)

γ(J) = hc + (1− 2mc) (J − Jc) + γ′′(J̄) (J − Jc)2 , with J̄ ∈ ]Jc, J [ ;

notice γ′′(J̄) (J−Jc)2 is not necessarily a O
(
(J−Jc)2

)
, because we do not know

the behaviour of γ′′ as J → Jc, but for sure it is a o(J − Jc) as J → Jc.
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Thus (see identities (6.46), (6.48)):

ρ(h, J) = γ′′(J̄) (J − Jc)2 and ξi − ξc = 2J (mi −mc) + γ′′(J̄) (J − Jc)2

and equation (6.45) becomes:

(ξi − ξc)3 − κ1 (J − Jc) (ξi − ξc)− κ2 γ
′′(J̄) (J − Jc)2 +O

(
(ξi − ξc)4

)
= 0 ,

which entails

(mi −mc)
3 − κ1

(2J)2
(J − Jc) (mi −mc)−

κ2

(2J)3
γ′′(J̄) (J − Jc)2 (1 + o(1))+

+O
(
(mi −mc)

4
)

= 0 . (6.49)

Distinguish two cases.

1) If γ′′(J̄) (J − Jc)2 = O
(
(mi −mc)

4
)

(along a sequence), then (6.49) rewrites

(mi −mc)
3 − κ1

(2J)2
(J − Jc) (mi −mc) +O

(
(mi −mc)

4
)

= 0 , (6.50)

which, dividing by mi −mc and solving, gives

mi −mc = ±
√
κ1

2J
(J − Jc)

1
2 +O

(
(mi −mc)

3
2

)
;

hence mi−mc ∼
√
κ1/(2J) (J −Jc)1/2, proving the result (along the sequence).

2) Now suppose (mi−mc)
4 = o

(
γ′′(J̄) (J−Jc)2

)
(along a sequence), then (6.49)

rewrites

(mi −mc)
3− κ1

(2J)2
(J − Jc)︸ ︷︷ ︸

=: p

(mi −mc)−
κ2

(2J)3
γ′′(J̄) (J − Jc)2 (1 + o(1))︸ ︷︷ ︸

=: q

= 0 .

(6.51)

Claim ∆ := ( q
2
)2 + (p

3
)3 ≤ 0. Suppose by contradiction ∆ > 0. Then the cubic

equation (6.51) has only one real solution: for i = 1, 2

mi −mc = u+ + u− with u± =
3

√
−q

2
± 2

√(q
2

)2
+
(p

3

)3
.

Observe that q and p are written only in terms of J , so that u+ + u− at the

main order do not depend implicitly on mi. Therefore m1 −mc and m2 −mc
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must have the same sign for every J > Jc small enough. But this contradicts

proposition 6.2.2 and lemma F1, which ensures that in a right neighbourhood

of Jc

m2 −mc > φ2 −mc > 0 while m1 −mc < φ2 −mc < 0 .

This proves ∆ ≤ 0. And now adapting to equation (6.51) the step ii. of the

proof of corollary F2, ∆ ≤ 0 entails (along the sequence)

m−mc = O
(
(J − Jc)

1
2

)
.

This completes the proof of the proposition.

To conclude the proof of the part iii) of theorem 6.2.11, it suffices to have

the previous proposition and observe that

m∗(γ(J)+, J) = m2(γ(J), J) , m∗(γ(J)−, J) = m1(γ(J), J)

for all J > Jc, by proposition 6.2.6 and continuity of m1, m2.



Chapter 7

A Monomer Dimer model with

random weights

In this chapter we study an MD model on the complete graph with random-

ness in the monomer activities. The model describes, in the mean-field approx-

imation, the equilibrium properties of systems of diatomic molecules (see e.g.

[86, 87, 54]) depositing on a inhomogeneous lattice, where the inhomogeneity is

modeled introducing a probability measure on the space of possible realizations

of the site activity. From the probabilistic point of view model presented here is

a pair matching of the sites with random weight. The latter point of view fur-

nishes a direct link with Combinatorics and Computer Science, where the study

of monomer-dimer models applies to matching problems (see e.g. [78] for an

overview of matching problems). For a different way of introducing randomness

in monomer-dimer systems see [27], where a model on locally tree-like random

graphs is solved. The combinatorial problem of perfect matchings on random

graphs, already solved in [91, 50], corresponds the zero-temperature limit of the

latter monomer-dimer model.

The main result is the exact solution of the model with i.i.d. randomness on

the monomer activities xi’s. Precisely we prove that, under very general con-

ditions on the probability distribution, the t.l. of the random pressure density

129
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exists and converge almost surely to its quenched value. Moreover the t.l. of the

quenched pressure density is given by a one dimensional variational principle.

The pressure density turns out to be a smooth function of the dimer activity

w. The dimer density is therefore a smooth function of w too and it will be

described explicitely.

The problem, otherwise expected to be difficult due the hard-core interac-

tion, becomes accessible with the use of a Gaussian representation 5.2.1 for

the partition function . In this representation, the integrand function presents

negative and singular contributions. However, a careful application of the Uni-

form Law of Large Numbers and the Laplace method lead to the solution of the

model.

In the present chapter the Heilmann-Lieb recursion is one of the main tools,

together with technical methods for martingales (like the Azuma’s inequality),

used to prove the self-averaging of the pressure density.

The chapter is entirely based on [30] and is organised as follows.

In the section 7.1 we the model and compute the t.l. pressure density in the-

orem 7.1.3 and the dimer density in corollary 7.1.5. In the section 7.2 we show,

under suitable assumptions, that the free energy density of a monomer-dimer

model with independent random activities is self-averaging. The appendix col-

lects the main technical results used in this chapter, in order to facilitate the

reader.

7.1 The model and the main result

In this section we fix a uniform dimer weight on the complete graph, while

we choose i.i.d. random monomer weights. Under quite general integrability

hypothesis, we show that this model is exactly solvable and it does not present

a phase transition (in agreement with the general results by Heilmann and Lieb

[86, 87]).
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Let w > 0. Let xi > 0, i ∈ N, be independent identically distributed random

variables. In order to keep the logarithm of the partition function of order N , a

normalization of the dimer weight as w/N is needed (see section 5.3). Therefore

during all this section we will denote

ZN =
∑
D∈DN

( w
N

)|D| ∏
i∈MN (D)

xi . (7.1)

µN will denote the corresponding Gibbs measure and 〈 · 〉N will be the expected

value with respect to µN . Notice that now the partition function is a random

variable and the Gibbs measure is a random measure.

Remark 7.1.1. Since the dimer weight is uniform, the Gaussian representation

of (7.1) simplifies:

ZN = Eξ
[ N∏
i=1

(ξ + xi)

]
, (7.2)

where ξ is a 1-dimensional Gaussian random variable with mean 0 and variance

w/N .

Indeed by proposition 5.2.1, ZN = Eξ
[∏N

i=1(ξi + xi)
]

where ξ = (ξ1, . . . , ξN) is

an N -dimensional Gaussian random vector with mean 0 and constant covariance

matrix1 (w/N)i,j=1,...,N . It is easy to check that ξ has the same joint distribution

of the constant random vector (ξ, . . . , ξ). Therefore the identity (7.2) follows.

Remark 7.1.2. Keeping in mind the remark 5.2.2, one can observe the analogy

between the formula (7.2) and the partition function of the Curie-Weiss random

field model (see e.g. [118, 21, 117]), that is

ZCurie-Weiss
N ∝ Eξ′

[ N∏
i=1

cosh(ξ′ + hi)

]
(7.3)

where ξ′ is a 1-dimensional Gaussian random variable with mean 0 and variance

J/N ∈ R+.

1It is important to notice that setting also the diagonal entries to w/N , the resulting

matrix is positive semi-definite:
∑N

i=1

∑N
j=1(w/N)αiαj = (w/N)

(∑N
i=1 αi

)2 ≥ 0 for every

α ∈ RN .
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By the way, we want to stress the fact that the Laplace method applies directly

to formula (7.3), while the presence of negative and singular contributions in

(7.2) requires a supplementary work.

Let us rewrite (7.2) as an explicit integral in dξ:

ZN =

√
N√

2πw

∫
R
e−

N
2w

ξ2
N∏
i=1

(ξ + xi) dξ . (7.4)

Theorem 7.1.3. Let w > 0. Let xi > 0, i ∈ N be i.i.d. random variables.

Denote by x a random variable distributed like xi; suppose that Ex[x] <∞ and

Ex[(log x)2] <∞. Then:

∃ lim
N→∞

1

N
Ex[ logZN ] = sup

ξ≥0
Φ(ξ) (7.5)

where

Φ(ξ) := − ξ2

2w
+ Ex[ log(ξ + x)] ∀ ξ ≥ 0 . (7.6)

Furthermore the function Φ attains its maximum at a unique point ξ∗. ξ∗ is the

only solution in [0,∞[ of the fixed point equation

ξ∗ = Ex
[

w

ξ∗ + x

]
. (7.7)

Thus the following bounds hold:

−Ex[x] +
√
Ex[x]2 + 4w

2
∨ sup

t>0

−t+
√
t2 + 4w Px(x ≤ t)

2
≤ ξ∗ ≤

√
w∧Ex

[
w

x

]
.

(7.8)

In consequence of the theorem 7.1.3 it is not hard to prove that the system

does not present a phase transition in the parameter w > 0. It is also easy to

compute the main macroscopic quantity of physical interest, that is the dimer

density, in terms of the positive solution ξ∗ of the fixed point equation (7.7).

Therefore we state the following two corollaries before starting to prove the

theorem.
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Corollary 7.1.4. In the hypothesis of the theorem 7.1.3, consider the limiting

pressure density function p(w) := limN→∞
1
N
Ex
[

logZN(w)
]

for all w > 0 .

Then p ∈ C∞
(

]0,∞[
)

.

Proof. By the theorem 7.1.3 p(w) = Φ(w, ξ∗), where Φ(w, ξ) = −ξ2/(2w) +

Ex[ log(ξ + x)] and ξ∗ = ξ∗(w) is the only positive solution of the equation

F (w, ξ) = 0 with F := ∂Φ
∂ξ

.

F is a smooth function on ]0,∞[× ]0,∞[ , because Φ is smooth as it will be

proven in the lemma 7.1.6. In addition ∂F
∂ξ

(w, ξ∗) 6= 0 for all w > 0, by the

lemma 7.1.6 equation (7.11).

As a consequence, by the implicit function theorem (see e.g. [115]), ξ∗ is a

smooth function of w ∈ ]0,∞[ . Hence, by composition, also p(w) = Φ
(
w, ξ∗(w)

)
is a smooth function of w ∈ ]0,∞[ .

Corollary 7.1.5. In the hypothesis of the theorem 7.1.3, the limiting dimer

density

d := lim
N→∞

1

N
Ex
[〈
|D|
〉
N

]
can be computed as

d = w
d p

dw
=

(ξ∗)2

2w
. (7.9)

Proof. Set pN := 1
N

logZN and perform the change of parameter w =: eh.

Clearly d
dh

= w d
dw

and it is easy to check that

dEx[pN ]

dh
= Ex

[〈
|D|
〉
N

]
.

By the theorem 7.1.3 and its corollary 7.1.4, Ex[pN ] converges pointwise to a

smooth function p as N →∞ for all values of h ∈ R. A standard computation

shows that Ex[pN ] is a convex function of h. Therefore

dEx[pN ]

dh
−−−→
N→∞

d p

dh
.
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Since p(h) = Φ
(
h, ξ∗(h)

)
, where ξ∗ is the critical point of Φ and is a smooth

function of h, it is easy to compute

d p

dh
(h) =

∂Φ

∂h
(h, ξ∗) +

∂Φ

∂ξ
(h, ξ∗)︸ ︷︷ ︸
= 0

dξ∗

dh
(h) =

(ξ∗)2

2 eh
.

Now let us start to prove the theorem 7.1.3. The logic structure of the proof

is divided in three main parts. First we study the basic properties of the function

Φ. Then we use the uniform law of large numbers and other observations to

show that for large N the integrated function in (7.4) can be well approximated

by eNΦ. Finally we will be able to exploit the Laplace’s method in order to

compute a lower and an upper bound for 1
N
Ex[ logZN ] .

Lemma 7.1.6. Φ is continuous on [0,∞[ , it is smooth on ]0,∞[ and the deriva-

tives can be taken inside the expectation. In particular for all ξ > 0 it holds

Φ′(ξ) = − ξ
w

+ Ex
[

1

ξ + x

]
; (7.10)

Φ′′(ξ) = − 1

w
− Ex

[
1

(ξ + x)2

]
< 0 . (7.11)

As a consequence Φ has exactly one critical point ξ∗ in ]0,∞[ , that is the equa-

tion (7.7) has exactly one solution in ]0,∞[ . ξ∗ is the only global maximum

point of Φ on [0,∞[ .

Proof. I. First of all Φ(ξ) is well-defined for all ξ ≥ 0. Indeed for ξ > 0

log(ξ + x)

≤ ξ + x− 1 ∈ L1(Px)

≥ 1− 1
ξ+x
≥ 1− 1

ξ
∈ L1(Px)

;

while for ξ = 0, Ex[|log x|] ≤ Ex[(log x)2]1/2 <∞ by the Hölder inequality.

Φ is continuous at ξ = 0 by monotone convergence: log(ξ+x) decreases to log x

as ξ ↘ 0 and Ex[ log(ξ + x)] <∞ .

Let now ξ > 0 and let δ > 0 such that ξ − δ > 0. The first derivative of Φ at ξ

can be computed inside the expectation, obtaining (7.10), since the difference
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quotient of ξ 7→ log(ξ + x) satisfies the dominated convergence hypothesis.

Indeed for all ξ′ ∈ ]ξ − δ, ξ + δ[∣∣∣∣ log(ξ′ + x)− log(ξ + x)

ξ′ − ξ

∣∣∣∣ ≤ sup
ξ̃∈[ξ,ξ′]

1

ξ̃ + x
≤ sup

ξ̃∈[ξ,ξ′]

1

ξ̃
≤ 1

ξ − δ
∈ L1(Px) .

Now the second derivative of Φ at ξ can be computed inside the expectation,

obtaining (7.11), since the difference quotient of ξ 7→ 1
ξ+x

satisfies the dominated

convergence hypothesis. Indeed for all ξ′ ∈ ]ξ − δ, ξ + δ[∣∣∣∣ 1
ξ′+x
− 1

ξ+x

ξ′ − ξ

∣∣∣∣ ≤ sup
ξ̃∈[ξ,ξ′]

1

(ξ̃ + x)2
≤ sup

ξ̃∈[ξ,ξ′]

1(
ξ̃
)2 ≤

1

(ξ − δ)2
∈ L1(Px) .

This reasoning can be iterated up to the derivative of any order, since 1/
(
ξ̃ +

x
)k ≤ 1/

(
ξ̃
)k ≤ 1/(ξ − δ)k ∈ L1(Px) for all ξ̃ ∈ ]ξ − δ, ξ + δ[ and all k ≥ 1 .

II. In virtue of (7.11) Φ is a strictly convex function on ]0,∞[ . At the bound-

aries of this domain limξ→0+ Φ′(ξ) = Ex[x−1] > 0 and limξ→∞Φ′(ξ) = −∞ < 0

by (7.10) and monotone converge. Therefore Φ has exactly one critical point ξ∗

in ]0,∞[ and it is the only global maximum point of Φ.

Remark 7.1.7. Since ξ∗ satisfies the fixed point equation (7.7), it is easy to

obtain the bounds (7.8) for ξ∗. Since ξ∗ > 0 and x > 0,

ξ∗ = Ex
[

w

ξ∗ + x

]
≤ w

ξ∗
⇒ ξ∗ ≤

√
w ; ξ∗ = Ex

[
w

ξ∗ + x

]
≤ Ex

[
w

x

]
.

Using the Jensen inequality,

ξ∗ = Ex
[

w

ξ∗ + x

]
≥ w

ξ∗ + Ex[x]
⇒ (ξ∗)2+ξ∗ Ex[x]−w ≥ 0 ⇒ ξ∗ ≥

−Ex[x] +
√

Ex[x]2 + 4w

2
.

Finally, since ξ∗ + x > 0, it holds for all t > 0

ξ∗ = Ex
[

w

ξ∗ + x

]
≥ w

ξ∗ + t
Px(x ≤ t) ⇒ (ξ∗)2 + ξ∗ t− w Px(x ≤ t) ≥ 0 ⇒

⇒ ξ∗ ≥
−t+

√
t2 + 4w Px(x ≤ t)

2
.

Lemma 7.1.8. Define the random function

ΦN(ξ) := − ξ2

2w
+

1

N

N∑
i=1

log |ξ + xi| ∀ ξ ∈ R . (7.12)
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This function is defined also for negative values of ξ and it takes the value −∞

at the random points −x1, . . . ,−xN . It is important to observe that

ΦN(−ξ) < ΦN(ξ) ∀ ξ > 0 . (7.13)

i. Let 0 < M <∞. Then for all ε > 0

Px
(
∀ ξ∈ [0,M ] |ΦN(ξ)− Φ(ξ)| < ε

)
−−−→
N→∞

1 . (7.14)

ii. Let 0 < m < M <∞. Then there exists λm,M > 0 such that

Px
(
∀ ξ∈ [m,M ] ΦN(−ξ) < ΦN(ξ)− λm,M

)
−−−→
N→∞

1 . (7.15)

iii. Let C ∈ R. Then there exists MC > 0 such that

Px
(
∀ ξ∈ [MC ,∞[ ΦN(ξ) < C and ΦN(ξ) < ϕ(ξ)

)
−−−→
N→∞

1 ; (7.16)

where ϕ is the following deterministic function

ϕ(ξ) := − ξ2

2w
+ log ξ +

1

ξ
(Ex[x] + 1) ∀ ξ > 0 . (7.17)

Notice that ΦN(ξ) − Φ(ξ) = 1
N

∑N
i=1 log(ξ + xi) − Ex[ log(ξ + x)] for all

ξ > 0. Since the xi, i ∈ N are i.i.d., the basic idea behind the lemma 7.1.8 is to

approximate ΦN with Φ by the law of large numbers. But this approximation

is needed to hold at every ξ at the same time, hence a uniform law of large

numbers is required.

To prove the theorem 7.1.3 it will be important to have found a good uniform

approximation near the global maximum point ξ∗ of Φ. Far from ξ∗ instead

such a uniform approximation cannot hold: for example ΦN diverges to −∞ at

certain negative points, while, if the distribution of x is absolutely continuous

and satisfies some integrability hypothesis, it is possible to show that Φ(ξ) =

− ξ2

2w
+ Ex[ log |ξ + x|] is continuous on R. But fortunately, far from ξ∗, it will

be sufficient for our purposes to bound suitably ΦN from above.
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Proof. i. For every x > 0 the function ξ 7→ log(ξ + x) is continuous on [0,M ]

compact. Moreover there is domination:

log(ξ + x)


≤ log(M + x) ∈ L1(Px)

≥ log x ∈ L1(Px)
∀ ξ ∈ [0,M ] .

Therefore (7.14) holds by the uniform weak law of large numbers (theorem C1).

ii. Clearly log(ξ+x) > log |−ξ+x| for all ξ, x > 0. Furthermore an elementary

computation shows that for all ξ, x, τ > 0

log(ξ + x)− log | − ξ + x| ≥ τ ⇔ eτ − 1

eτ + 1
ξ ≤ x ≤ eτ + 1

eτ − 1
ξ .

Therefore for all ξ ∈ [m,M ] and all τ > 0,

ΦN(ξ)− ΦN(−ξ) =
1

N

N∑
i=1

(
log(ξ + xi)− log | − ξ + xi|

)
≥

≥ 1

N

N∑
i=1

τ 1

(
eτ − 1

eτ + 1
ξ ≤ xi ≤

eτ + 1

eτ − 1
ξ

)
≥

≥ τ
1

N

N∑
i=1

1

(
eτ − 1

eτ + 1
M ≤ xi ≤

eτ + 1

eτ − 1
m

)
.

(7.18)

Set Iτm,M :=
[
eτ−1
eτ+1

M , e
τ+1
eτ−1

m
]
. Now by the weak law of large numbers, for all

ε > 0

Px
(

1

N

N∑
i=1

1
(
xi ∈ Iτm,M

)
> Px

(
x ∈ Iτm,M

)
− ε
)
−−−→
N→∞

1 . (7.19)

Hence, using (7.18) and (7.19), for all τ, ε > 0

Px
(

ΦN(ξ)− ΦN(−ξ) > τ
(
Px(x ∈ Iτm,M)− ε

))
−−−→
N→∞

1 . (7.20)

To conclude observe that Iτm,M ↗ ]0,∞[ (which is the support of the distribu-

tion of x) as τ ↘ 0 . Hence there exists τ0 > 0 such that Px(x ∈ Iτ0m,M) > 0.

Choose 0 < ε0 < Px(x ∈ Iτ0m,M) and set

λm,M := τ0

(
Px(x ∈ Iτ0m,M)− ε0

)
> 0 .
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Then (7.15) follows from (7.20).

iii. For all ξ > 0 the following bound holds:

ΦN(ξ) = − ξ2

2w
+

1

N

N∑
i=1

log(ξ + xi) = − ξ2

2w
+ log ξ +

1

N

N∑
i=1

log
(
1 +

xi
ξ

)
≤

≤ − ξ2

2w
+ log ξ +

1

ξ

1

N

N∑
i=1

xi .

(7.21)

Now by the weak law of large numbers (no uniformity in ξ is needed here), for

all ε > 0

Px
(

1

N

N∑
i=1

xi < Ex[x] + ε

)
−−−→
N→∞

1 . (7.22)

Hence, using (7.21) and (7.22), for all 0 < ε < 1

Px
(
∀ ξ>0 ΦN(ξ) < ϕ(ξ)

)
−−−→
N→∞

1 . (7.23)

Furthermore it holds ϕ(ξ)→ −∞ as ξ →∞ . Hence for all C ∈ R there exists

MC > 0 such that

ϕ(ξ) < C ∀ ξ > MC . (7.24)

In conclusion (7.16) follows from (7.23) and (7.24).

Lemma 7.1.9. There exists a constant C0 <∞ such that

Ex
[(

logZN
N

)2 ]
≤ C0 ∀N ∈ N . (7.25)

Proof. Since x 7→ (log x)2 is concave for x ≥ e, the Jensen inequality can be

used as follows:

Ex
[
(logZN)2 1(ZN ≥ e)

]
= Ex

[
(logZN)2

∣∣ZN ≥ e
]
Px(ZN ≥ e) ≤

≤
(

logEx
[
ZN
∣∣ZN ≥ e

] )2 Px(ZN ≥ e) =

=

(
log

Ex
[
ZN 1(ZN ≥ e)

]
Px(ZN ≥ e)

)2

Px(ZN ≥ e) ≤

≤ 2
(

logEx
[
ZN
])2

+ 2 max
p∈[0,1]

(log p)2 p .

(7.26)
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Since the xi, i ∈ N are i.i.d. Ex[ZN ] equals a deterministic partition function

with uniform weights. Hence it is easy to bound it as follows:

Ex
[
ZN
]

=
∑
D∈DN

(
w

N

)|D|
Ex[x]|M(D)| ≤

|EN |∑
d=0

(
|EN |
d

)(
w

N

)d
Ex[x]N−2d =

= Ex[x]N
(

1 +
w

N
Ex[x]−2

)|EN |
≤ Ex[x]N exp

(
N − 1

2

w

Ex[x]2

)
(7.27)

(here |EN | = N(N−1)
2

denotes the number of edges in the complete graph over

N vertices). Therefore, substituting (7.27) into (7.26),

Ex
[
(logZN)2 1(ZN ≥ e)

]
≤ 2N2

(
logEx[x] +

w

2Ex[x]2

)2

+ 2 max
p∈[0,1]

(log p)2 p .

(7.28)

It remains to deal with the case ZN < e . When 1 < ZN < e, it holds 0 <

logZN < 1 hence trivially

Ex
[
(logZN)2 1(1 < ZN < e)

]
≤ Ex

[
(log e)2 1(1 < ZN < e)

]
≤ 1 . (7.29)

When instead ZN ≤ 1, it holds logZN ≤ 0 hence we need a lower bound for ZN .

For example, considering only the configuration with no dimers, ZN ≥
∏N

i=1 xi .

Therefore:

Ex
[
(logZN)2 1(ZN ≤ 1)

]
≤ Ex

[(
log

N∏
i=1

xi

)2

1(ZN ≤ 1)

]
≤ Ex

[( N∑
i=1

log xi

)2 ]
≤

≤ N2 Ex
[

log x
]2

+ N Ex
[
(log x)2

]
.

(7.30)

In conclusion the lemma is proved splitting Ex
[
(logZN)2

]
as Ex

[
(logZN)2 1(ZN ≥

e)
]

+ Ex
[
(logZN)2 1(1 < ZN < e)

]
+ Ex

[
(logZN)2 1(ZN ≤ 1)

]
and applying

the bounds (7.28), (7.29), (7.30).

Proof of the theorem 7.1.3. It remains to prove only the convergence (7.5). Fix

C < Φ(ξ∗) . Fix 0 < m < MC =: M < ∞ such that (7.16) holds and m <

ξ∗ < M : it is possible to make such a choice thanks to the bounds (7.8) for
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ξ∗ proven in the remark 7.1.7. Fix λm,M =: λ > 0 such that (7.15) holds. Let

ε > 0. Then consider the following random events depending on x1, . . . , xN

E1
N,ε := { ∀ ξ∈ [0,M ] |ΦN(ξ)− Φ(ξ)| < ε }

E2
N := { ∀ ξ∈ [m,M ] ΦN(−ξ) < ΦN(ξ)− λ }

E3
N := { ∀ ξ∈ [M,∞[ ΦN(ξ) < C , ΦN(ξ) < ϕ(ξ) }

and set EN,ε := E1
N,ε ∩ E2

N ∩ E3
N . It is convenient to split the expectation of

logZN as follows:

Ex
[

1

N
logZN

]
= Ex

[
1

N
logZN 1

(
EN,ε

)]
+ Ex

[
1

N
logZN 1

(
(EN,ε)

c
)]
.

(7.31)

In the following we are going to see that in the limit N →∞ the second term

on the r.h.s. of (7.31) is negligible, while the first term can be computed using

the Laplace’s method.

By the lemma 7.1.8, using the Hölder inequality and the lemma 7.1.9,

∣∣∣∣Ex[ 1

N
logZN 1

(
(EN,ε)

c
)] ∣∣∣∣ ≤ Ex

[(
1

N
logZN

)2 ]1/2

Px
(
(EN,ε)

c
)1/2 −−−→

N→∞
0 .

(7.32)

[Upper bound ] Using the Gaussian representation (7.4), a simple upper bound

for ZN is

ZN ≤
√
N√

2πw

∫
R
e−

N
2w

ξ2
N∏
i=1

|ξ + xi| dξ =

√
N√

2πw

∫
R
eN ΦN (ξ) dξ . (7.33)

If the event EN,ε holds true, remembering also the inequality (7.13), then the
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following upper bound holds:∫
R
eN ΦN (ξ) dξ ≤

≤ 2

∫ m

0

eN ΦN (ξ) dξ +

∫ M

m

eN ΦN (ξ) dξ +

∫ M

m

eN (ΦN (ξ)−λ) dξ + 2

∫ ∞
M

eN ΦN (ξ) dξ ≤

≤ 2

∫ m

0

eN (Φ(ξ)+ε) dξ +

∫ M

m

eN (Φ(ξ)+ε) dξ +

∫ M

m

eN (Φ(ξ)+ε−λ) dξ + 2 e(N−1)C

∫ ∞
M

eϕ(ξ) dξ =

=
N→∞

O
(
eN (max[0,m] Φ+ε)

)
+ eN (Φ(ξ∗)+ε)

√
2π (1 + o(1))√
−N Φ′′(ξ∗)

+ O
(
eN (Φ(ξ∗)+ε−λ)

)
+ O

(
eN C

)
;

(7.34)

the last step is obtained by applying the Laplace’s method (theorem B1) to the

function Φ, which by lemma 7.1.6 satisfies all the necessary hypothesis. Now

since max[0,m] Φ , Φ(ξ∗)− λ and C are strictly smaller than Φ(ξ∗), it holds

r.h.s. of (7.34) ∼
N→∞

eN (Φ(ξ∗)+ε)

√
2π√

−N Φ′′(ξ∗)
. (7.35)

As a consequence of (7.33), (7.34), (7.35),

1

N
logZN 1(EN,ε) ≤ Φ(ξ∗) + ε+O

(
logN

N

)
,

where the O( logN
N

) is deterministic. Therefore for all ε > 0

lim sup
N→∞

Ex
[

1

N
logZN 1(EN,ε)

]
≤ Φ(ξ∗) + ε . (7.36)

[Lower bound ] Observe that the product
∏N

i=1(ξ+xi) is always positive for ξ ≥ 0,

while it is negative for some ξ < 0. Hence using the Gaussian representation

(7.4), a lower bound for ZN is

ZN ≥
√
N√

2πw

(∫ ∞
0

e−
N
2w

ξ2
N∏
i=1

|ξ + xi| dξ −
∫ 0

−∞
e−

N
2w

ξ2
N∏
i=1

|ξ + xi| dξ
)

=

=

√
N√

2πw

(∫ ∞
0

eN ΦN (ξ) dξ −
∫ 0

−∞
eN ΦN (ξ) dξ

)
.

(7.37)
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If the event EN,ε holds true, remembering also the inequality (7.13), then the

following lower bound holds:∫ ∞
0

eN ΦN (ξ) dξ −
∫ 0

−∞
eN ΦN (ξ) dξ ≥

≥
∫ M

m

eN ΦN (ξ) dξ −
∫ M

m

eN (ΦN (ξ)−λ) dξ ≥

≥
∫ M

m

eN (Φ(ξ)−ε) dξ −
∫ M

m

eN (Φ(ξ)+ε−λ) dξ =

=
N→∞

eN (Φ(ξ∗)−ε)
√

2π (1 + o(1))√
−N Φ′′(ξ∗)

− eN (Φ(ξ∗)+ε−λ)

√
2π (1 + o(1))√
−N Φ′′(ξ∗)

;

(7.38)

the last step is obtained by applying the Laplace’s method (theorem B1) to the

function Φ, which by lemma 7.1.6 satisfies all the necessary hypothesis. Now

since Φ(ξ∗)+ε−λ < Φ(ξ∗)−ε for all 0 < ε < 1
2
λ , for such a choice of ε it holds

r.h.s. of (7.38) ∼
N→∞

eN (Φ(ξ∗)−ε)
√

2π√
−N Φ′′(ξ∗)

. (7.39)

As a consequence of (7.37), (7.38), (7.39), for all 0 < ε < 1
2
λ

1

N
logZN 1(EN,ε) ≥

(
Φ(ξ∗)− ε+O

(
logN

N

))
1(EN,ε) ,

where the O( logN
N

) is deterministic. Therefore, using also the lemma 7.1.8, for

all 0 < ε < 1
2
λ

lim inf
N→∞

Ex
[

1

N
logZN 1(EN,ε)

]
≥ lim inf

N→∞

(
Φ(ξ∗)−ε+O

(
logN

N

))
Px(EN,ε) = Φ(ξ∗)−ε .

(7.40)

In conclusion the convergence Ex[ 1
N

logZN ] → Φ(ξ∗) as N → ∞ is proven by

considering (7.31) for 0 < ε < 1
2
λ , then letting N → ∞ exploiting (7.32),

(7.36), (7.40), and finally letting ε→ 0+.

Remark 7.1.10. In the deterministic case, namely when the distribution of the

xi’s is a Dirac delta centred at a point x, the theorem 7.1.3 and its corollary 7.1.5

reproduce the results obtained in the Proposition 6 of [28] by a combinatorial
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computation. Indeed the fixed point equation (7.7) reduces to ξ∗ = w
ξ∗+x

, whose

positive solution is

ξ∗ =
−x+

√
x2 + 4w

2
.

As a consequence, by (7.9) the limiting dimer and monomer density are respec-

tively

d =
(ξ∗)2

2w
=
x2 − x

√
x2 + 4w + 2w

2w
, m = 1− 2 d =

−x2 + x
√
x2 + 4w

2w
.

Moreover by (7.5) and (7.9) the limiting pressure can be written as

p = Φ(ξ∗) = −(ξ∗)2

2w
+ log(ξ∗ + x) = −d− 1

2
log

2 d

w
.

7.2 Concentration inequality for random monomer-

dimer models

In this section we prove that under quite general hypothesis an the pressure

of a random MD model with independent random weights satisfy an exponential

concentration inequality. In particular it will follows, by classical spin glass

arguments [13], that the pressure is self averaging and the convergence (7.5) of

the theorem 7.1.3 can be strengthen as

Px - almost surely ∃ lim
N→∞

1

N
logZN = sup

ξ≥0
Φ(ξ) , (7.41)

when in the hypothesis of the theorem 7.1.3 one substitutes Ex[x] <∞, Ex[(log x)2] <

∞ with the stronger Ex[x] <∞, Ex[x−1] <∞ .

In general let w
(N)
ij ≥ 0 , 1 ≤ i < j ≤ N , N ∈ N, and xi > 0 , i ∈ N,

be independent random variables. Since the dimer weights may be allowed to

take the value 0 (or to be identically 0), we do not really know on which kind

of graph the model lives, on the contrary the framework is very general (for

example the complete graph is included, but also finite-dimensional lattices or

diluted random graphs are). This is why we allow a generic dependence of the
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dimer weights on N , in case a normalisation is needed. During all this section

we will denote

ZN :=
∑
D∈DN

∏
ij∈D

w
(N)
ij

∏
i∈MN (D)

xi . (7.42)

Denote simply by E[ · ] the expectation with respect to all the weights and

assume that

sup
N

sup
1≤i<j≤N

E[w
(N)
ij ] =: C1 <∞ , sup

i∈N
E[xi] =: C2 <∞ , sup

i∈N
E[x−1

i ] =: C3 <∞ .

(7.43)

Clearly the pressure pN := 1
N

logZN is a random variable and it has finite

expectation, indeed

N pN

≥ log
∏N

i=1 xi =
∑N

i=1 log xi ≥
∑N

i=1(1 + x−1
i ) ∈ L1(P)

≤ ZN − 1 ∈ L1(P)

.

The following theorem shows that in the limit N →∞ the pressure pN concen-

trates around its expectation, or in other terms it tends to become a determin-

istic quantity.

Theorem 7.2.1. Let w
(N)
ij ≥ 0 , 1 ≤ i < j ≤ N , N ∈ N, and xi > 0 , i ∈ N, be

independent random variables that satisfy (7.43). Then for all t > 0, N ∈ N,

q ≥ 1

P
(
|pN − E[pN ]| ≥ t

)
≤ 2 exp

(
− t2N

4 q2 log2N

)
+ (a+ bN)N1−q , (7.44)

where a := 4 + 2C2C3 , b := 2C1C
2
3 . As a consequence, choosing q > 3,

|pN − E[pN ]| −−−→
N→∞

0 P-almost surely . (7.45)

If the random variables w
(N)
ij , xi, x

−1
i are bounded, then one could obtain an

exponential rate of convergence instead of (7.44), but here we prefer to obtain

the result (7.45) with minimal assumptions.

Proof. Fix N ∈ N. Set wi :=
(
w

(N)
i(i+1), . . . , w

(N)
iN

)
for all i = 1, . . . , N − 1 .

We consider the filtration of length 2N − 1 such that in the first N steps the
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monomer weights xi are exposed, while in the last N − 1 steps the vectors wi of

dimer weights are exposed. Since pN is a function of x1, . . . , xN , w1, . . . , wN−1

and E[|pN |] <∞, we may define the Doob martingale of pN with respect to this

filtration

Mi := E
[
pN
∣∣x1, . . . , xi

]
∀ i = 0, . . . , N ,

MN+i := E
[
pN
∣∣x1, . . . , xN , w1, . . . , wi

]
∀ i = 1, . . . , N − 1 ;

in particular it holds M0 = E[ pN ] and M2N−1 = pN .

Now we want to bound the increments |Mi−Mi−1| for every i = 1, . . . , 2N−1, in

order to apply the Azuma’s inequality. By hypothesis x1, . . . , xN , w1, . . . , wN−1

are stochastically independent, hence the conditional expectations are simply

Mi = Exi+1,w[pN ] for i = 0, . . . , N and MN+i = Ewi+1 [pN ] for i = 1, . . . , N − 1 .

As a consequence it is easy to check that for i = 1, . . . , N it holds

|Mi−Mi−1| ≤ sup
x̃i−1, x̃i+1, w̃

∣∣ pN(x̃i−1, xi, x̃i+1, w̃
)
−Exi

[
pN
(
x̃i−1, xi, x̃i+1, w̃

)]∣∣
(7.46)

and for i = 1, . . . , N − 1 it holds

|MN+i−MN+i−1| ≤ sup
w̃i−1, w̃i+1

∣∣ pN(x, w̃i−1, wi, w̃i+1
)
−Ewi

[
pN
(
x, w̃i−1, wi, w̃i+1

)]∣∣ .
(7.47)

Here we have adopted the following notation x := (x1, . . . , xN), xk := (x1, . . . , xk),

xk := (xk, . . . , xN) and similarly w := (w1, . . . , wN−1), wk := (w1, . . . , wk),

wk := (wk, . . . , wN); the symbols with a tilde denote a deterministic value

taken by the corresponding random quantity.

First fix i = 1, . . . , N , fix the deterministic vectors x̃i−1, x̃i+1, w̃ and let

x′i, x
′′
i be two independent random variables distributed as xi. Set

p′N := pN
(
x̃i−1, x

′
i, x̃i+1, w̃

)
, p′′N := pN

(
x̃i−1, x

′′
i , x̃i+1, w̃

)
.

To estimate the difference between p′N , p
′′
N we use the Heilmann-Lieb recursion
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for the partition function of a monomer-dimer model (see [86] and the proposi-

tion 5.2.3):

p′N − p′′N =
1

N
log

Z ′N
Z ′′N

=
1

N
log

x′i Z−i +
∑i−1

j=1 w̃ji Z−j−i +
∑N

j=i+1 w̃ij Z−i−j

x′′i Z−i +
∑i−1

j=1 w̃ji Z−j−i +
∑N

j=i+1 w̃ij Z−i−j
≤

≤ 1

N
log

(
x′i
x′′i

+ 1

)
;

(7.48)

here we denote by Z−i, Z−i−j the partitions function of the model over the ver-

tices {1, . . . , N}r{i}, {1, . . . , N}r{i, j} respectively, with weights x̃i−1, x̃i+1, w̃i−1, w̃i+1.

It is important (for the inequality in (7.48)) to notice that these partition func-

tions do not depend on the weights x′i, x
′′
i . In the same way one finds

p′′N − p′N ≤
1

N
log

(
x′′i
x′i

+ 1

)
. (7.49)

Denote by E′′ the expectation with respect to the random variable x′′i only.

Then the inequalities (7.48), (7.49) provide respectively the following random

bounds

p′N − E[p′′N ] = E′′[p′N − p′′N ]
(7.48)

≤ E′′
[

1

N
log

(
x′i
x′′i

+ 1

)]
≤ 1

N
log
(
x′i E[x−1

i ] + 1
)

;

(7.50)

E[p′′N ]− p′N = E′′[p′′N − p′N ]
(7.49)

≤ E′′
[

1

N
log

(
x′′i
x′i

+ 1

)]
≤ 1

N
log
(
E[xi] (x′i)

−1 + 1
)
.

(7.51)

Choose q > 0 and the previous inequalities provide a bound for |Mi −Mi−1|
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that holds true “with high probability”:

P
(
|Mi −Mi−1| >

q

N
logN

)
(7.46)

≤ P
(

sup
x̃i−1, x̃i+1, w̃

∣∣p′N − E[p′′N ]
∣∣ > q

N
logN

)
≤

≤ P
(

sup
x̃i−1, x̃i+1, w̃

(
p′N − E[p′′N ]

)
>

q

N
logN

)
+ P

(
sup

x̃i−1, x̃i+1, w̃

(
E[p′′N ]− p′N

)
>

q

N
logN

)
(7.50),(7.51)

≤

≤ P
(

1

N
log
(
xi E[x−1

i ] + 1
)
>

q

N
logN

)
+ P

(
1

N
log
(
E[xi]x

−1
i + 1

)
>

q

N
logN

)
=

= P
(

1 + xi E[x−1
i ] > N q

)
+ P

(
1 + E[xi]x

−1
i > N q

)
≤

≤ E
[
1 + xi E[x−1

i ]

]
N−q + E

[
1 + E[xi]x

−1
i

]
N−q ≤

≤ 2 (1 + C2C3)N−q ;

(7.52)

here at the penultimate step we have used the Markov inequality.

Now instead fix i = 1, . . . , N − 1, fix the deterministic vectors w̃i−1, w̃i+1,

let w′i, w
′′
i be two independent random vectors distributed as wi and leave the

vector of monomer weights x random (choose w′i, w
′′
i independent of x too).

Reassign the notation previously used, setting now:

p′N := pN
(
x, w̃i−1, w

′
i, w̃i+1

)
, p′′N := pN

(
x, w̃i−1, w

′′
i , w̃i+1

)
.

To estimate the difference between p′N , p
′′
N we use again the Heilmann-Lieb

recursion for the partition function (see [86] and the proposition 5.2.3):

p′N − p′′N =
1

N
log

Z ′N
Z ′′N

=
1

N
log

xi Z−i +
∑i−1

j=1 w̃ji Z−j−i +
∑N

j=i+1w
′
ij Z−i−j

xi Z−i +
∑i−1

j=1 w̃ji Z−j−i +
∑N

j=i+1w
′′
ij Z−i−j

≤

≤ 1

N
log

(
1 +

∑N
j=i+1w

′
ij Z−i−j

xi Z−i

)
=

1

N
log

(
1 +

N∑
j=i+1

w′ij
xi xj

〈1j∈M〉−i
)
≤

≤ 1

N
log

(
1 +

N∑
j=i+1

w′ij
xi xj

)
;

(7.53)

we have denoted by Z−i, Z−i−j the partitions function of the model over the ver-

tices {1, . . . , N}r{i}, {1, . . . , N}r{i, j} respectively, with weights xi−1, xi+1, w̃i−1, w̃i+1.
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It is important (for the first inequality in (7.53)) to notice that these partition

functions do not depend on the weights w′i, w
′′
i . In the same way one finds

p′′N − p′N ≤
1

N
log

(
1 +

N∑
j=i+1

w′′ij
xi xj

)
. (7.54)

Denote by E′′ the expectation with respect to the random vector w′′i only. Then

the inequalities (7.53), (7.54) provide respectively the following random bounds

p′N − E′′[p′′N ] = E′′[p′N − p′′N ]
(7.54)

≤ 1

N
log

(
1 +

N∑
j=i+1

w′ij
xi xj

)
; (7.55)

E′′[p′′N ]− p′N = E′′[p′′N − p′N ]
(7.55)

≤ E′′
[

1

N
log

(
1 +

N∑
j=i+1

w′′ij
xi xj

)]
≤

≤ 1

N
log

(
1 +

N∑
j=i+1

E[wij]

xi xj

)
.

(7.56)

Choose q > 0 and the previous inequalities provide a bound for |MN+i−MN+i−1|

that holds true “with high probability”:

P
(
|MN+i −MN+i−1| >

q

N
logN

)
(7.47)

≤ P
(

sup
w̃i−1, w̃i+1

∣∣p′N − E′′[p′′N ]
∣∣ > q

N
logN

)
≤

≤ P
(

sup
w̃i−1, w̃i+1

(
p′N − E′′[p′′N ]

)
>

q

N
logN

)
+ P

(
sup

w̃i−1, w̃i+1

(
E′′[p′′N ]− p′N

)
>

q

N
logN

)
(7.54),(7.55)

≤

≤ P
(

1

N
log
(
1 +

N∑
j=i+1

wij
xi xj

)
>

q

N
logN

)
+ P

(
1

N
log
(
1 +

N∑
j=i+1

E[wij]

xi xj

)
>

q

N
logN

)
=

≤ P
(

1 +
N∑

j=i+1

wij
xi xj

> N q

)
+ P

(
1 +

N∑
j=i+1

E[wij]

xi xj
> N q

)
≤

≤ E
[

1 +
N∑

j=i+1

wij
xi xj

]
N−q + E

[
1 +

N∑
j=i+1

E[wij]

xi xj

]
N−q ≤

≤ 2 (1 +N C1C
2
3)N−q ;

(7.57)

here at the penultimate step we have applied the Markov inequality.
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As an immediate consequence of (7.52) and (7.57),

P
(
∃ i = 1, . . . , 2N − 1 s.t. |Mi −Mi−1| >

q

N
logN

)
≤

≤ N
(
2 (1 + C2C3)N−q

)
+ (N − 1)

(
2 (1 +N C1C

2
3)N−q

)
≤ 2

(
2 + C2C3 + C1C

2
3 N
)
N1−q .

(7.58)

Therefore by the extended Azuma’s inequality (theorem C2), for all t > 0 it

holds

P
(
|MN−1−M0| ≥ t

)
≤ 2 exp

(
− t

2

2

N

2 q2 log2N

)
+ 2

(
2+C2C3+C1C

2
3 N
)
N1−q

(7.59)

and the proof of (7.44) is concluded. Choosing q > 3 the r.h.s. of (7.44) is

summable with respect to N ∈ N, hence (7.45) follows by a standard application

of the Borel-Cantelli lemma.
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Outlooks

In the present work I reported new results that I have obtained, trough

various collaborations, during my PhD course. The main field is the Statistical

Mechanics of Equilibrium, and they cover two main topics: Spin Glass models

(Chapters 1-4) and Monomer Dimer models (Chapters 1-7). Despite we gave

a complete answer to all questions raised, that is we founded a more or less

explicit representation of the limiting pressure and the Gibbs measure, several

related and important problems are still open. I would like to make a little bit

more explicit this aspect.

The main contribution of Chapter 3 is the development of a multidimensional

version of the Parisi Theory which describes the thermodynamical limit of the

Multi-species SK model. However, our results hold in a subset of the domain

of the parameters which satisfies a convexity condition: the mutual interaction

does not exceed a threshold where the strength of the off-diagonal terms prevails

on the inter-party interactions. I would be very interesting to extend the results

to the opposite case. The latter is intrinsically different because the model

approaches the Hopfield model for neural network, a well know longstanding

open problem in spin glass theory.

In Chapter 4 we developed a general framework for the study of the stability,

under suitable perturbations, of the limiting Gibbs measure. The framework is

general in the sense that covers a large class of spin glass models, including short

range interactions. This allow us to deduce, let say for the Edward Anderson

model, the ultrametric property of the limiting Gibbs measure under small

151
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perturbations. However, is still an open question if or not this ultrametric

structure gives non trivial information about the physical properties of the

system.

In Chapters 6 and 7 we introduce two modifications of the classical Monomer

Dimer model. The first one is obtained adding an imitative attraction among

the particles (monomer and dimer) while the second is characterized by the

quenched randomness on the activities. In both cases, we have shown that the

models are solvable in the complete graph. The natural next step would be to

study the previous models on a lattice, the difficulty of the mathematical treat-

ment presumably increases by several orders of magnitudo as well the interest

of possible results in this direction.

One can also think to mix the two previous features introducing a random

interaction among particles. In this way one can hope to obtain a glassy be-

havior, namely a kind of Monomer Dimer Glassy system.



Appendix

A. Wick’s Theorem

In this appendix we state the main technical results used in the paper. We

omit their proofs, that can be found in the literature.

Theorem A1 (Gaussian integration by parts; Wick-Isserlis formula). Let (ξ1, . . . , ξn)

be a Gaussian random vector with mean 0 and positive semi-definite covariance

matrix C = (cij)i,j=1,...,n . Let f : Rn−1 → R be a differentiable function such

that E
[∣∣ξ1 f(ξ2, . . . , ξn)

∣∣] <∞ and E
[∣∣ ∂f
∂ξj

(ξ2, . . . , ξn)
∣∣] <∞ for all j = 2, . . . , n.

Then:

E
[
ξ1 f(ξ2, . . . , ξn)

]
=

n∑
j=2

c1j E
[
∂f

∂ξj
(ξ2, . . . , ξn)

]
. (A1)

As a consequence one can prove the following:

E
[ n∏
i=1

ξi

]
=

∑
P partition of

{1,...,n} into pairs

∏
{i,j}∈P

cij . (A2)

The Gaussian integration by parts (A1) can be found in [17]. The Wick-

Isserlis formula (A2) follows by (A1) using an induction argument; but it ap-

peared for the first time in [89].

B. Laplace method

Theorem B1 (Laplace’s method). Let φ : [a, b]→ R be a function of class C2.

Suppose that there exists x0 ∈ ]a, b[ such that

153



154 7.2. Concentration inequality for random monomer-dimer models

i. φ(x0) > φ(x) for all x ∈ [a, b] (i.e. x0 is the only global maximum point

of φ);

ii. φ′′(x0) < 0 .

Then as n→∞∫ b

a

enφ(x) dx = enφ(x0)

√
2π√

−nφ′′(x0)

(
1 + o(1)

)
. (B1)

A formal proof of the Laplace’s method can be found in [66].

C. Probability estimation

Theorem C1 (uniform weak law of large numbers). Let X , Θ be metric spaces.

Let Xi, i ∈ N be i.i.d. random variables taking values in X . Let f : X ×Θ→ R

be a function such that f(·, θ) is measurable for all θ ∈ Θ. Suppose that:

i. Θ is compact;

ii. P
(
f(X1, ·) is continuous at θ

)
= 1 for all θ ∈ Θ ;

iii. ∃ F : X → [0,∞] such that P
(
|f(X1, θ)| ≤ F (X1)

)
= 1 for all θ ∈ Θ and

E[F (X1)] <∞ .

Then for all ε > 0

P
(

sup
θ∈Θ

∣∣∣∣ 1

n

n∑
i=1

f(Xi, θ)− E[f(X, θ)]

∣∣∣∣ ≥ ε

)
−−−→
n→∞

0 . (C1)

The uniform law of large number appeared in [90]. It is based on the (stan-

dard) law of large numbers and on a compactness argument.

Theorem C2 (extension of the Azuma’s inequality). Let M = (Mi)i=0,...,n be a

real martingale with respect to a filter. Suppose that there exist constants ε > 0

and c1, . . . , cn <∞ such that

P
(
∃ i = 1, . . . , n s.t. |Mi −Mi−1| > ci

)
≤ ε .



Chapter 7. A Monomer Dimer model with random weights 155

Then for all t > 0

P
(
|Mn −M0| > t

)
≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
+ ε . (C2)

The Azuma’s inequality is a useful tool in the martingale theory that allows

to obtain concentration results. Its usual formulation is given with ε = 0. The

extension with ε > 0 can be found in [55]; but it can be proven also starting

from the usual formulation and introducing a suitable stopping time, following

the ideas in [123].

D. Interpolation method

Much of the recent progresses in the study of mean field spin glass models

is based on methods and arguments introduced by Guerra in a series of works

(see e.g. [79, 85, 84]), constituting the so called interpolation method. Beyond

the original works, the interested reader can found a detailed and complete

exposition with several applications of this method in [17]. In order to present

a self-consistent exposition, hereafter we outline briefly the basic ideas.

Let N be an integer, and for i ∈ I = {1, ..., N}, let Ui and Ũi be two families

of centered Gaussian random variables, independent each other, uniquely deter-

mined by the respective covariance matrices E(UiUj) = Cij and E(ŨiŨj) = C̃ij.

We treat the set of indices i as configuration space for some statistical mechan-

ics system. Let ai ∈ R+ for each i ∈ I be an arbitrary (finite) weight. We define

the Hamiltonian interpolating function as the following random variable

Hi(t) :=
√
tUi +

√
1− tŨi,

where t ∈ [0, 1] is the real parameter used for interpolation.

Let us introduce also the so-called quenched measures. First, we define the

random partition function of the system as

Z(t) :=
∑
i

aie
Hi(t),
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and the random Gibbs measure as

Gi(t) :=
aie

Hi(t)

Z(t)
.

Then let F : (I × I) −→ R be an observable defined in the duplicated configu-

ration space, we define the quenched measure as

〈F 〉t := E
(

Ωt(F )
)
, (D1)

where

Ωt(F ) :=
∑
i,j

Gi(t)Gj(t)Fij. (D2)

The measure Ωt is called the duplicated random Gibbs measure.

Keeping in mind definition (D1), it is possible to prove (see [17]) the following

Proposition 7.2.1. Consider the function

ϕ(t) := E logZ(t) (D3)

then for its t-derivative the following expression holds

ϕ′(t) =
1

2
〈Cii − C̃ii〉t −

1

2
〈Cij − C̃ij〉t. (D4)

The generalization to multi-partite systems requires only minor modifica-

tions. Suppose that the system is composed by a finite number S of species

indexed by s ∈ S, then |S| = S. Consider a generic statistical mechanic system

as before and assume that:

- the configuration space is decomposed in a disjoint union I =
⋃
s∈S I

(s),

- the U ’s are also decomposed in the following way

Ui =
∑
s,p∈S

U
(sp)
i , (D5)
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where U
(sp)
i is a family of gaussian r.v. such that the covariance matrix is of

the form

E(U
(sp)
i U

(s′p′)
j ) = ∆2

spδss′δpp′C
(s)
ij C

(p)
ij (D6)

where C
(s)
ij is a covariance matrix defined on I(s) × I(s).

Notice that the covariance matrix defined in (D6) is the Schur-Hadamard

product of the C
(s)
ij and then is positive definite. The family of positive param-

eters (∆2
sp)s,p∈S tunes the interactions between the various species.

For a fixed couple (i, j) we can think at each C
(s)
ij as a component of a vector in

the space RS and then, thanks to (D5) and (D6), the covariance matrix of the

entire system can be rewritten, with a little abuse of notation, as a quadratic

form in RS, namely as

Cij = E(UiUj) =
∑
s,p∈S

C
(s)
ij ∆2

spC
(p)
ij =

(
C,∆C

)
, (D7)

where C := (C
(s)
ij )s∈S is a vector in RS and ∆ is the real symmetric matrix

defined by the entries

∆ := (∆2
sp)s,p∈S .

Suppose for simplicity that C
(s)
ii =

√
c for some c ∈ R+ for each i ∈ I, s ∈ S,

that is

Cii = c(1,∆1), (D8)

where

1 := (1)s∈S .

Under the assumption that an analogous decomposition holds for the Ũ ’s too,

then

C̃ij = E(ŨiŨj) =
∑
s,p∈S

C̃
(s)
ij ∆2

spC̃
(p)
ij =

(
C̃,∆C̃

)
, (D9)

and

C̃ii = c̃(1,∆1). (D10)

In the multipartite framework, by (D7,D8,D9,D10), Proposition 7.2.1 becomes
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Proposition 7.2.2. Consider the functional defined in (D3), then for its t-

derivative the following holds

ϕ′(t) =
1

2
(c− c̃)(1,∆1)− 1

2
〈(C,∆C)− (C̃,∆C̃)〉t. (D11)

In order to separate the contribution of the various species, let us introduce

the operator Ps as the canonical projector in RS.

For any s ∈ S and for any vector u = (u(s))s∈S in RS, we have that

Ps
(
u
)

:= u(s). (D12)

Clearly, for two vectors u,v, the following relation holds

(
u,∆v

)
=
∑
s∈S

Ps
(
u
)
Ps
(
∆v
)

=
∑
s∈S

Ps
(
∆u
)
Ps
(
v
)
. (D13)

If we denote by (es)s∈S the canonical basis of RS, the canonical projection can

be expressed as a scalar product, that is

Ps
(
u
)

= (es,u). (D14)

Let us recall briefly the Guerra’s RSB scheme. Let Ui be a family of cen-

tered Gaussian random variables uniquely determined by the covariance matrix

E(UiUj) = Cij and let us introduce the integer K, associated to the number of

levels of Replica Symmetry Breaking (RSB in the following). For each couple

(l, i) ∈ {1, 2, ..., K}×I, let us introduce further the family of centered Gaussian

random variables Bl
i independent from the Ui and uniquely defined through the

covariances

E(Bl
iB

l′

j ) = δll′B̃
l
ij,

and point out that there is independence between different l, l′ levels of symme-

try breaking.

Further, we need some preliminary definitions:
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For the average with respect to Bl
i and Ui we use the following notation

El(·) =

∫ ∏
i

dµ(Bl
i)(·), ∀l = 1, ..., K, (D15)

E0(·) =

∫ ∏
i

dµ(Ui)(·), (D16)

E(·) = E0E1...EK(·). (D17)

We need also a sequence of non negative real numbers (m0,m1, ...,mK ,mK+1)

with m0 = 0, mK+1 = 1 and we define recursively the following the random

variables

ZK(t) :=
∑
i

ωi exp (
√
tUi +

√
1− t

K∑
l=1

Bl
i), (D18)

Zml
l−1 := El(Zml

l ), (D19)

fl :=
Zml
l

El(Zml
l )

, (D20)

and the following modified Gibbs states,

ω̃K,t(·) := ωt(·) Ω̃K,t = Ωt(·), (D21)

ω̃l,t(·) := El+1...EK(fl+1...fKωt(·)) ∀l = 0, ..., K, (D22)

Ω̃l,t(·) := El+1...EK(fl+1...fKΩt(·)) ∀l = 0, ..., K, (D23)

〈·〉l,t := E(f1...fKΩ̃l,t(·)) ∀l = 0, ..., K. (D24)

Bearing in mind the previous definitions, it is possible to prove (see [79]) the

following

Proposition 7.2.3. Consider the function

ϕ(t) = E0 log(Z0(t)), (D25)

then for its t-derivative the following relation holds

ϕ′(t) =
1

2
〈Cii − B̂K

ii 〉K,t −
1

2

K∑
l=0

(ml+1 −ml)〈Cij − B̂l
ij〉l,t (D26)

where B̂0
ij = 0 and B̂l

ij =
∑l

l′=1 B̃
l′
ij.
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We discuss now a generalization of the previous scheme for multipartite sys-

tems.

LetK be an integer and consider an arbitrary sequence of points Γ := (ql)l=1,...,K ∈

[0, 1]S. For each triple (l, i, s) with l = 1, 2, ..., K, i ∈ I, s ∈ S, let us introduce

the family of centered Gaussian random variables B
l,(s)
i independent from the

Ui and uniquely defined through the covariances

E(B
l,(s)
i B

l′,(s′)
j ) = δss′δll′Ps

(
∆ul(Γ)

)
Ps
(
C̃l

)
(D27)

where, for each value of l, the component of the vector C̃l = (C̃
(s)
l,ij)s∈S , are

covariance matrix defined on I(s) × I(s) and ul(Γ) is an arbitrary vector in RS

which depends on the choice of the sequence Γ .

Notice that (D27) implies independence between two different l(s), l′(s) levels of

symmetry breaking of each s-species. For each l = 1, 2, ..., K and i ∈ I, we can

define the following family of random variables

Bl
i :=

∑
s∈S

B
l,(s)
i

then by (D13) we have that

E(Bl
iB

l′

j ) = δll′
(
ul(Γ),∆C̃l

)
. (D28)

Suppose for simplicity that C̃
(s)
l,ii = 1 for each l, i, s, that is

E(Bl
iB

l′

i ) = δll′
(
ul(Γ),∆1

)
.

Let us introduce the following notations for the average with respect to Bl
i, Ui,

El(·) =

∫ ∏
i

dµ(Bl
i)(·) ∀l = 1, ..., K, (D29)

dµ(Bl
i) =

∏
s∈A

dµ(B
l,(s)
i ), (D30)

E0(·) =

∫ ∏
i

dµ(Ui)(·), (D31)

E(·) = E0E1...EK(·). (D32)

Hence, the multi-species analogous of the Proposition 7.2.3, is the following



Chapter 7. A Monomer Dimer model with random weights 161

Proposition 7.2.4. Consider the functional

ϕ(t) = E0 log(Z0(t)), (D33)

then for its t-derivative the following relation holds

ϕ′(t) =
1

2
(1,∆1)−

K∑
l=1

(
ul(Γ),∆1

)
− 1

2

K∑
l=0

(ml+1 −ml)〈
(
C,∆C

)
− B̂l〉

l,t

(D34)

where B̂0 = 0 and B̂l =
∑l

l′=1

(
ul(Γ),∆C̃l′

)
.

E. Properties of the function g

We study the main properties of the function g defined by (6.14), which are

often used in the following. Remind

g(ξ) =
1

2
(
√
e4h + 4 e2h − e2h) ∀h ∈ R .

Standard computations show that g is analytic on R, 0 < g < 1, limh→−∞ g(ξ) =

0, limh→∞ g(ξ) = 1, g is strictly increasing, g is strictly convex on ]−∞, log(2
√

2−2)
2

]

and strictly concave on [ log(2
√

2−2)
2

,∞[ , g( log(2
√

2−2)
2

) = 2−
√

2.

Solving in h the equation g(ξ) = k for any fixed k ∈ ]0, 1[ , one finds the

inverse function:

g−1(k) =
1

2
log

k2

1− k
∀k ∈ ]0, 1[ . (E1)

It is useful to write the derivatives of g in terms of lower order derivatives of g

itself. For the first derivative, think g as (g−1)−1 and exploit (E1):

g′(h) =
1

(g−1)′(k)
∣∣k=g(ξ)

=
2 k (1− k)

2− k
∣∣k=g(ξ)

=
2 g(ξ) (1− g(ξ))

2− g(ξ)
(E2)

Then for the second derivative, differentiate the rhs of (E2) and substitute (E2)

itself in the expression:

g′′ =
2 g′

2− g
(
1− 2 g +

g (1− g)

2− g
)

=
2 g′ (1− 2 g) + (g′)2

2− g
. (E3)
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The same for the third derivative: differentiate the rhs of (E3) and substitute

(E3) itself in the expression:

g′′′ =
1

2− g
(
2 g′′(1− 2 g + g′)− 4 (g′)2 + g′

2 g′ (1− 2 g) + (g′)2

2− g
)

=

=
g′′ (2− 4 g + 3 g′)− 4 (g′)2

2− g
.

(E4)

Lemma E1. For c > 6− 4
√

2 ,

g′(ξ) < c ∀ ξ ∈ R .

For 0 < c ≤ 6− 4
√

2 ,

g′(ξ)


< c iff ξ < 1

2
logα−(c) or ξ > 1

2
logα+(c)

> c iff 1
2

logα−(c) < ξ < 1
2

logα+(c)

,

where

α±(c) :=
−(c2 + 8c− 4) ± (2− c)

√
c2 − 12c+ 4

4 c
.

Proof. Investigate for example the inequality g′(ξ) < c. By (E2) clearly 0 <

g′ < 2, hence the inequality is trivially true for c ≥ 2 and false for c ≤ 0.

Using identity (E2) one finds

g′ < c ⇔ 2 g2 − (2 + c) g + 2c > 0 ;

this is a second degree inequality in g with ∆ = c2 − 12c+ 4.

If 6− 4
√

2 < c < 6 + 4
√

2, it is verified for any value of g.

If instead c ≤ 6− 4
√

2 or c ≥ 6 + 4
√

2, it is verified if and only if

g(ξ) <
2 + c−

√
c2 − 12c+ 4

4
=: s−(c) or g(ξ) >

2 + c+
√
c2 − 12c+ 4

4
=: s+(c) .

For 0 < c < 2, s±(c) ∈ ]0, 1[ hence one can apply g−1, which is strictly

increasing:

ξ < g−1(s−(c)) or ξ > g−1(s+(c)) .

This concludes the proof because identity (E1) and standard computations show

that

g−1(s±(c)) =
1

2
logα±(c) .



Chapter 7. A Monomer Dimer model with random weights 163

F. Critical exponents: technical proofs

Let us prove the results used in subsection 6.2.3 to compute the critical

exponents.

Lemma F1. Consider the inflection points φ1, φ2 of p̃ defined by (6.25). Their

behaviour at the critical point (hc, Jc) along any curve δ ∈ C1([Jc,∞[), with

δ(Jc) = hc, is

φ1(δ(J), J)−mc√
J − Jc

−−−−→
J→Jc+

−C ,
φ2(δ(J), J)−mc√

J − Jc
−−−−→
J→Jc+

C .

where C = 4
√

2/(2Jc) > 0.

Proof. For i = 1, 2 and J ≥ Jc definition (6.25), observing that (2mc − 1)J =

−hc + (2mc − 1) (J − Jc) + ξc , gives

2J
(
φi(δ(J), J)−mc

)
=

1

2
log ai(J)− ξc − (δ(J)− hc)− (2mc − 1)(J − Jc) .

Now the definition (6.26) may be rewritten as

ai(J) = (2J − 2− 1

8J
)︸ ︷︷ ︸

=: b(J)

∓ 4 (
1

2
− 1

8J
)

√
J − 3−2

√
2

4︸ ︷︷ ︸
=: c(J)

√
J − Jc .

Thus, exploiting log(x+ y) = log x+ log(1 + y/x) = log x+ y/x+O((y/x)2) as

y/x→ 0, 1
2

log b(Jc) = ξc and log b(J) differentiable at J = Jc,

1

2
log ai(J)− ξc =

1

2

log b(J)− log b(Jc)

(J − Jc)
(J − Jc) ∓

1

2

c(J)

b(J)

√
J − Jc +O(J − Jc)

= ∓ 1

2

c(J)

b(J)

√
J − Jc +O(J − Jc) .

To conclude put things together and use also δ differentiable at Jc:

2J
φi(δ(J), J)−mc√

J − Jc
=

1
2

log ai(J)− ξc√
J − Jc

− δ(J)− hc√
J − Jc

− (2mc − 1)
√
J − Jc

= ∓1

2

c(J)

b(J)
+O(

√
J − Jc ) −−−−→

J→Jc+
± 4
√

2 .

Next corollary gives a first bound for the critical exponents.
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Corollary F2. Here for h ∈ R, J > Jc let m = m(h, J) be any solution of the

consistency equation (6.22).

1) There exist r1 > 0, C1 < ∞ such that for all (h, J) ∈ B
(
(hc, Jc), r1

)
with

J > Jc

|m−mc| ≤ C1

(
|h− hc|

1
3 + |J − Jc|

1
3

)
.

2) Assume that m pointwise coincides with one of the local maximum points m1,

m2 (see proposition 6.2.2). There exist r2 > 0, C2 > 0 such that for all (h, J) ∈

B
(
(hc, Jc), r2

)
with J > Jc and h = δ(J) for some δ ∈ C1([Jc,∞[), δ(Jc) = hc

|m−mc| ≥ C2 |J − Jc|
1
2 .

Proof. 1) Set ξ := (2m − 1)J + h. By proposition 6.2.12, ξ satisfies equation

(6.45), which can be treated as a third degree algebraic equation in ξ − ξc:

(ξ − ξc)3−κ1 (J − Jc)︸ ︷︷ ︸
=: p

(ξ − ξc)−κ2 ρ(h, J) +O
(
(ξ − ξc)4

)︸ ︷︷ ︸
=: q

= 0 .

Analyse the real solutions of this equation. Set ∆ := ( q
2
)2 + (p

3
)3 and observe

that ( q
2
)2 > 0 while (p

3
)3 < 0 as we are assuming J > Jc.

i. If ∆ > 0, the only real solution of (6.45) is

ξ − ξc = u+ + u− with u± = 3

√
−q

2
± 2
√

∆ .

On the other hand

∆ > 0 ⇒
(p

3

)3
= O

((q
2

)2) ⇒ ∆ = O
((q

2

)2)
.

Therefore, reminding also definition (6.46),

ξ − ξc = O
((q

2

) 1
3
)

= O
(
(h− hc)

1
3

)
+O

(
(J − Jc)

1
3

)
+O

(
(ξ − ξc)

4
3

)
,

hence ξ − ξc = O
(
(h − hc)

1
3

)
+ O

(
(J − Jc)

1
3

)
because (ξ − ξc)

4
3
−1 → 0 as

(h, J)→ (hc, Jc) .
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ii. If ∆ = 0 or ∆ < 0 there are respectively two or three distinct real solutions

of (6.45) and, from their explicit form, it is immediate to see that they all satisfy

ξ − ξc = O
(

2

√
−p

3

)
= O

(
(J − Jc)

1
2

)
.

Conclude that for any possible value of ∆,

ξ − ξc = O
(
(h− hc)

1
3

)
+O

(
(J − Jc)

1
3

)
.

Now, as observed in (6.48), ξ − ξc = h− hc + (2mc − 1)(J − Jc) + 2J (m−mc).

Therefore also m−mc = O
(
(h− hc)

1
3

)
+O

(
(J − Jc)

1
3

)
, and this concludes the

proof of the first statement.

2) Now consider the two maximum points m1, m2. By proposition 6.2.2

m1 < φ1 < φ2 < m2

where φ1, φ2 are the inflection points defined by (6.25). Hence applying lemma

F1 one finds:

m2 −mc√
J − Jc

>
φ2 −mc√
J − Jc

−→ C ,
mc −m1√
J − Jc

>
mc − φ1√
J − Jc

−→ C ,

as J → Jc+ and h = δ(J) with δ(Jc) = hc and δ differentiable in Jc. And this

proves the second statement.

The next lemma tells us in which region of the plane (h, J) a curve passing

through the point (hc, Jc) lies.

Lemma F3. Let δ ∈ C2([Jc,∞[) such that δ(Jc) = hc, δ
′(Jc) =: α. There exists

r > 0 such that for all J ∈ ]Jc, Jc + r[

• if α = 1− 2mc, ψ2(J) < δ(J) < ψ1(J) ;

• if α < 1− 2mc, δ(J) < ψ2(J) ;

• if α > 1− 2mc, δ(J) > ψ1(J) .
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Proof. I. Observe that ai(J) is continuous for J ≥ Jc and smooth for J >

Jc. Moreover g′(1
2

log ai(J)) = 1
2J

by definition (6.26) and lemma E1, and

g(1
2

log ai(Jc)) = g(ξc) = mc by definition (6.30) and remark 6.2.3. Then differ-

entiating definition (6.27) at J > Jc,

ψ′i(J) = 1−2 g(
1

2
log ai(J))+

1

2

a′i(J)

ai(J)

(
1− 2J g′(

1

2
log ai(J))︸ ︷︷ ︸

= 0

)
−−−→
J→Jc

1−2mc .

Hence an immediate application of the mean value theorem shows that for

i = 1, 2 there exits ψ′i(Jc) = 1− 2mc .

II. Differentiating definition (6.26) at J > Jc shows that a′1(J)→ −∞, a′2(J)→

+∞ as J → Jc+, while ai(J)→ 2
√

2− 2 as J → Jc. Hence

ψ′′i (J) = − g′(1

2
log ai(J))

a′i(J)

ai(J)
= − 1

2J

a′i(J)

ai(J)
−−−−→
J→Jc+

+∞ for i = 1

−∞ for i = 2

.

The result is provided comparing the first order Taylor expansions at Jc with

Lagrange remainder of ψ1, ψ2 and δ.

The following proposition essentially contain the proof of part ii) of theorem

6.2.11.

Proposition F4. Let (h, J) → (hc, Jc) along a curve h = δ(J) with δ ∈

C2(R+), δ(Jc) = hc, δ
′(Jc) =: α or along a curve J = δ(h) with δ ∈ C2(R),

δ(hc) = Jc, δ
′(hc) = 0, then

µ1(h, J)−mc ∼


−C (J − Jc)

1
2 if h = δ(J), α = 1− 2mc and J > Jc

Cα (J − Jc)
1
3 if h = δ(J), α < 1− 2mc

C∞ (h− hc)
1
3 if J = δ(h)

µ2(h, J)−mc ∼


C (J − Jc)

1
2 if h = δ(J), α = 1− 2mc and J > Jc

Cα (J − Jc)
1
3 if h = δ(J), α > 1− 2mc

C∞ (h− hc)
1
3 if J = δ(h)
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where C = 1
2Jc

√
3(2−mc) , Cα = 1

2Jc
3

√
3
2
Jc(2−mc)(2mc − 1 + α) , C∞ =

1
2Jc

3
√

3Jc(2−mc) . To complete the cases, along the line h = hc+(1−2mc)(J−

Jc), when J ≤ Jc

µ1(h, J) = µ2(h, J) = mc.

Proof. Fix (h, J) on the curve given by the graph of δ and in the rest of the

proof denote by m a solution of the consistency equation (6.22), i.e. m =

g
(
(2m − 1)J + h

)
. Furthermore when necessary m is assumed to be a local

maximum point of p̃ . Set ξ := (2m−1)J+h. By proposition 6.2.12, ξ−ξc → 0

as (h, J) → (hc, Jc) and it satisfies (6.45). Solve this equation in the different

cases.

i) Suppose h = δ(J) with α = 1 − 2mc. Hence h − hc = (1 − 2mc)(J − Jc) +

O
(
(J − Jc)2

)
. Observe that by (6.46), (6.48)

ρ(h, J) = O
(
(J − Jc)2

)
and ξ − ξc = 2J (m−mc) +O

(
(J − Jc)2

)
.

Hence equation (6.45) becomes

(ξ − ξc)3 − κ1 (J − Jc) (ξ − ξc) +O
(
(J − Jc)2

)
+O

(
(ξ − ξc)4

)
= 0 .

Observe that if J > Jc by corollary F2 part 2),

(J − Jc)
1
2 = O(ξ − ξc) ;

therefore when J > Jc the previous equation rewrites

(ξ − ξc)3 − κ1 (J − Jc) (ξ − ξc) +O
(
(ξ − ξc)4

)
= 0 .

This one simplifies in

ξ = ξc or (ξ − ξc)2 − κ1 (J − Jc) +O
(
(ξ − ξc)3

)
= 0 ,

giving ξ = ξc or, as we are assuming J > Jc,

ξ − ξc = ±
√
κ1 (J − Jc)

1
2 +O

(
(ξ − ξc)

3
2

)
.
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This entails

m−mc = ±
√
κ1

2J
(J − Jc)

1
2 +O

(
(J − Jc)2

)
+O

(
(m−mc)

3
2

)
and dividing both sides by m−mc, since (m−mc)

1
2 → 0, one finds

m−mc ∼ ±
√
κ1

2J
(J − Jc)

1
2 . (F1)

ii) Suppose J = δ(h) with δ′(hc) = 0. Hence J − Jc = O
(
(h−hc)2

)
. (6.46) and

(6.48) give

ρ(h, J) = h−hc+O
(
(h−hc)2

)
and ξ−ξc = 2J (m−mc)+h−hc+O

(
(h−hc)2

)
.

Hence equation (6.45) becomes

(ξ − ξc)3 − κ2 (h− hc) +O
(
(h− hc)2

)
+O

(
(ξ − ξc)4

)
= 0 .

giving

ξ − ξc = 3
√
κ2 (h− hc)

1
3 +O

(
(h− hc)

2
3

)
+O

(
(ξ − ξc)

4
3

)
.

This entails

m−mc =
3
√
κ2

2J
(h− hc)

1
3 +O

(
(h− hc)

2
3

)
+O

(
(m−mc)

4
3

)
and dividing both sides by m−mc, since (m−mc)

1
3 → 0, one finds

m−mc ∼
3
√
κ2

2J
(h− hc)

1
3 . (F2)

iii) Suppose h = δ(J) with α 6= 1−2mc. Hence h−hc = α (J−Jc)+O
(
(J−Jc)2

)
.

Observe that by (6.46), (6.48)

ρ(h, J) = (α + 2mc − 1)(J − Jc) +O
(
(J − Jc)2

)
,

ξ − ξc = 2J (m−mc) + (α + 2mc − 1)(J − Jc) +O
(
(J − Jc)2

)
.

Hence equation (6.45) becomes

(ξ−ξc)3−κ1 (J − Jc)︸ ︷︷ ︸
=: p

(ξ−ξc)−κ2 (α + 2mc − 1) (J − Jc) +O
(
(J − Jc)2

)
+O

(
(ξ − ξc)4

)︸ ︷︷ ︸
=: q

= 0 .
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This third order equation has ∆ := ( q
2
)2 + (p

3
)3 > 0 for |J − Jc| small enough,

indeed if J < Jc then p > 0, while if J > Jc then by corollary F2 part 1)

(ξ − ξc)4 = O
(
(J − Jc)

4
3

)
= o(J − Jc) hence

q = −κ2 (α + 2mc − 1) (J − Jc) + o
(
J − Jc

)
⇒(q

2

)2
+
(p

3

)3
=

κ2
2

4
(α + 2mc − 1︸ ︷︷ ︸

6= 0

)2 (J − Jc)2 (1 + o(1))− κ3
1

27
(J − Jc)3 > 0 .

Then, using Cardano’s formula for cubic equations: ξ − ξc = u+ + u− with

u± =
3

√
−q

2
± 2

√(q
2

)2
+
(p

3

)3
= 3

√
−q

2
±
∣∣q
2
| +O

(∣∣p
3

∣∣ 1
2
)

;

hence

ξ − ξc = 3
√
−q +O

(∣∣p
3

∣∣ 1
2
)

=

= 3
√
κ2 (α + 2mc − 1) (J − Jc)

1
3 +O

(
(J − Jc)

2
3

)
+O

(
(ξ − ξc)

4
3

)
+O

(
(J − Jc)

1
2

)
.

This entails

m−mc =
3
√
κ2 (α + 2mc − 1)

2J
(J − Jc)

1
3 +O

(
(J − Jc)

1
2

)
+O

(
(m−mc)

4
3

)
and dividing both sides by m−mc, since (m−mc)

1
2 → 0, one finds

m−mc ∼
3
√
κ2 (α + 2mc − 1)

2J
(J − Jc)

1
3 . (F3)

Now by propositions 6.2.2, 6.2.4 and lemma F3, µ1 and µ2 are solutions of

the consistency equation (6.22) defined near (hc, Jc) along the curves h = δ(J)

respectively with α ≤ 1− 2mc and α ≥ 1− 2mc. Moreover for α = 1− 2mc and

J > Jc sufficiently small, by lemma F1,

µ2 −mc > φ2 −mc > 0 while µ1 −mc < φ1 −mc < 0 .

These facts together with (F1), (F2), (F3) allow to conclude the proof.
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