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Introduction

This thesis deals with the mathematical properties of a class of statistical me-
chanics models describing the thermodynamic behaviour of the Disordered Spin
and Monomer-Dimer Systems. The rigorous results presented here concern the
properties of the so called Boltzmann-Gibbs probability measure in the (ther-
modynamic) limit of infinitely many particles. While for finitely many particles
all the expectations (moments) of the physical quantities display a smooth de-
pendence with respect to the external parameters (temperature, magnetic fields,
interaction strength) it is known that in the thermodynamic limit singularities
may appear and are related to the phase transitions observed experimentally.

The statistical mechanics of disordered models in particular describes physi-
cal systems where the interactions between the components are inhomogeneous
and can only be modelled statistically, namely considering random interac-
tions with suitable distribution. The Boltzmann-Gibbs measure which describes
them, the so called quenched state, is constructed by first fixing a realisation
of the disorder, computing all the quantities in the standard setting, and then
averaging in the disorder.

Spin systems and monomer-dimer systems are very different types of par-
ticles in physics. The first interact with external magnetic fields and mutual
magnetic forces while the second interact mostly via the repulsive part of van
der Waals force. This last in particular displays a divergence at small distances
and prevent particles to get close to each other. From the mathematical point

of view that is called hard-core interaction and is embedded in the statistical
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mechanics formalism not through the classical potential term but rather by the

algebraic restriction of the admissible configurations in the partition function.

The thesis, naturally split in two parts for each type of particle system, shows
nevertheless that in spite of the differences among the two types of models,
similar techniques can be used to study them and, most importantly, rigorous

proofs and sometimes exact solutions can be obtained for both of them.

In the first part of the work we will focus the attention on a class of Disor-
dered Spin Models, called Spin Glasses. They are the first and most intensively
studied disordered spin models and, in the last decades, have drawn a lot of at-
tention from the scientific community for two main reasons. First, they exhibits
in the thermodynamical limit a complex behavior which is able to describe var-
ious phenomenon belonging to many areas such as condensed matter, biology,
computer science, economics, etc. [111, 49 64, 10T [15, 18]. On other hand, in
the recent times, remarkable progress has been made in the rigorous mathemat-
ical of Mean Field Spin Glasses, in particular on the Sherringhton-Kirkpatrick
model. Let us briefly recall the state-of-the-art.

In the field of Statistical Mechanics, Mean Field models are often introduced
as a “solvable” version of the corresponding finite dimensional model. While
the latter encodes information on the topological structure and the physical
dimension of the system, the main feature of the mean field interaction is the
absence of an underlying spatial structure: all the components of the system
(resp. disordered system) interact with each other with same strength ( resp.
in distribution ). One can say that the model is invariant under permutation
( resp. in distribution) of the elementary objects on the system. However, for
Mean Field Spin Glasses, something unexpected happened. Indeed, it was soon
realized that the Sherringhton-Kirkpatrick model, introduced in 1975 [93] as a
mean field version of its finite dimensional counterpart, the Edward-Anderson

model [31], is far from being “easy” to solve.

In 1980’s Parisi [110] proposed a solution which required the introduction
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of completely new concepts and revealed a rich mathematical structure. Infor-
mally, the main content of the so called Parisi theory [15], can be split in four,
strictly related points :

i) Parisi Formula: the pressure can be represented as a variational problem
over the space of all the distribution functions on [0, 1] whose elements are called
order parameter.

ii) Replica Symmetry Breaking for low temperature the order parameter
solution of the Parisi Formula is non trivial ( in the sense of distributions).

iii) The order parameter which solve the Parisi formula represents the dis-
tribution of the overlap w.r.t. the limiting quenched measure.

i) Ultrametricity. The support of the joint distribution of the overlaps is
concentrated on an ultrametric space.

From the physical point of view parts i), iii), iv) have the following interpre-
tation: there exist a countable number of pure states organized in a hierarchical
structure.

The rigorous proof of the Parisi formula for the pressure, was completed only
thirty years later by Guerra [79] and Talagrand [119]. The result fully confirms
points i) and i7) however, 7i) and the ultrametric property iv) are in some
sense hidden inside the proof but don’t follow from it. These last two points are
strictly related to the the Aizenmann-Contucci [22] and the Ghirlanda-Guerra
identities [76]. Indeed, Panchenko [I08] recently proved that these identities
imply ultrametricity. This result combined with the Aizenmann-Simms-Starr
scheme [24] provides a new and more clear proof of the Parisi Formula and as
a byproduct, that i) and iv) hold generically ( the precise meaning of this
term will be explained in chapter 4 and should be understood as a for a slightly
perturbed Hamiltonian ).

This allows us to claim that the Parisi Theory is generically correct but a
natural question arises: is it also universal? Namely, can it describes, even

partially and with suitable modifications, also other kind of disordered models?
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The original contribution of the first part of this work is to show that the
range of validity of the Parisi Theory, in particular its mathematical counter-

part, is not confined to the SK model.

First, we consider a Multi-species version of the SK model called MSK model.
This is in some sense a way to break the permutational invariance in distribution
of the SK model, without losing the mean field nature, reducing it to a block
permutation invariance. The model is introduced in [41] where the authors show
in detail the construction of a multidimensional version of the Parisi Formula
and, under some convexity assumptions, a proof of the so called Guerra’s bound
for the pressure. The proof of the reverse bound was completed by Panchenko
in [I09] with the same strategy used for the SK model, but revealing a new
consequence of the Ghirlanda-Guerra identities and ultrametricity, the so called

sinchronization property.

We stress the fact that this result is important for the mathematical point of
view as well for the applications. Indeed, the solution is given in great generality,
namely for any arbitrary integer number of blocks. Thus, this makes the model
much more suitable for applications than the SK model and leaves an open door

to possible extensions of the result that will be discussed in chapter 3.

The MSK model belongs to the class of Mean Field models, but what about
the finite dimensional case? Is there some features of the Parisi theory that still

holds for Finite Dimensional Spin Glasses?

The most debated point concerns the number of their equilibrium state(s).
As pointed out by Newman and Stein [97], some conceptual difficulties arise even
in the precise definition of a pure thermodynamic state for disordered systems.
Some authors [95] believe that the main features of the mean field picture, like
the existence of an infinite number of equilibrium states and their ultrametric
structure, persist in the finite dimensional case, while others [71] argue, within
the droplet picture, that below the critical temperature just two pure phases

exist, connected by the global spin-flip symmetry. Both pictures are supported
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by a mixture of numerical simulations and theoretical considerations.

Our contribution [63] is a proof of the Aizenmann-Contucci and the Ghirlanda
Guerra identities for a large class of models including finite dimensional spin
glasses. Thus, the limiting distribution of the generalized overlap, by using
Panchenko’s Theorem, is generically ultrametric, where the meaning of gener-
ically is the same as before. We want to stress the fact this result is far to
being a complete answer to the original question, namely if the Parisi picture
holds also in the finite dimensional case: we have only proved iv), however part
i1) is the core of the question. Indeed, it’s still possible that the equilibrium
state satisfies the ultrametric condition v) trivially ( only with two pure states)
excluding the Replica Symmetry Breaking behavior ).

In the second part of the work we will consider two generalizations of the
classical Monomer-Dimer model: the first is with random activities while in the
second, in a non-random setting, we introduce an imitative interaction between

the components ( monomers and dimers).

The Monomer-Dimer model (MD model) was originally introduced [54) 113]
as statistical model for the absorption of diatomic molecules on a solid, thus
roughly speaking, dimers represent the molecules and monomer empty sites,
while the solid can be represented by a graph. Thus, by construction, a Monomer-
Dimer Model is a matching problem on graphs [7§].

In general, the main feature of any monomer-dimer system is the hard-core
interaction among the dimers. The physical interpretation is that two different
molecules cannot deposit on the same vertex, due to the repulsivity of the van
der Waals potential at short distance.

The first mathematical approach to the problem is due to Heilmann and Lieb
[86], [87] where they proved, among other results, that the hard-core interaction
is not enough to generate a phase transition basically for any “nice” graph.

Clearly, the hard-core interaction is not the only physical property of the

molecules-solid system, thus one can think to add other structures to the MD
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model that fill this gap.

In this part of the work we will address to the following question: what
happens if one adds to an MD model an attractive interaction or quenched

randomness in the parameters?

The first describes the attractive component of the Van der Waals potential
among monomers and dimers ( a different kind of interaction is also considered
in [88]). The original contribution of this part of the thesis is the solution and
a detailed analysis [28] of a Monomer-Dimer model with an uniform attractive
interaction ( IMD model) on the complete graph. In particular we prove that

the model belongs to the mean field universality class.

Beside the IMD model, we will consider a Monomer-Dimer model with ran-
dom activities ( RMD model) representing the absorption of an irregular solid
described in the quenched setting. Our original contribution [30] is a solution
of model on the complete graph with randomness in the monomer activities
and uniform dimeric one. The solution, as usual for mean field models, has to
be understood as a variational representation for the pressure that turn out to
be analytic in agreement with the result of Heilmann-Lieb. The case of ran-
dom dimeric weights is an important open question and is also related to the

following general consideration.

The spirit of these generalizations of the MD model is very close to the Spin
Glass setting. Indeed, one can think the IMD and the RMD models as a pre-
liminary step toward a Monomer-Dimer Glassy System, in other words a model
with a combination of random hard-core and random interaction between the
components. From this point of view, the RMD model play the role of a ran-
dom hard-core model while the IMD model is the simpler case of a deterministic
attractive interaction.

A concluding remark: besides the purely mathematical aspect, the result
presented here are interesting, in our opinion, at least for two reasons. First of

all, a full understanding of the mathematical structure underlying the physical
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behavior of the mean field systems seems to us to be a necessary prerequisite
to attack the finite dimensional counterpart. The second reason is that, as
we will briefly illustrate in the following, mean field models arise naturally in
many different contexts, ranging from combinatorial optimization problems and

theory of neural networks to social sciences and biology.

Layout of the thesis

This thesis is split into two main parts. The first (Chapter 1, 2, 3, 4) is on
Spin Glass models while the second is on Monomer Dimer models (Chapter 5,

6, 7).

e In Chapter 1, we give the mathematical background and the general for-
malism for Spin (Disordered) Models. Some applications to physical and math-
ematical problems are briefly discussed.

e In Chapter 2, we give a very short overview on some general aspects of
the theory of spin glasses, illustrating its physical origin. A section is dedicated
to the Sherrington-Kirkpatrick model which is of fundamental interest for the
work.

e In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick
model (MSK), we prove the existence of the thermodynamical limit and the
Guerra’s Bound for the quenched pressure together with a detailed analysis of
the annealed and the replica symmetric regime. The result is a multidimensional
generalization of the Parisi’s theory. Finally we briefly illustrate the strategy of

the Panchenko’s proof of the lower bound.

e In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-
Guerra identities for a wide class of Spin Glass models. As an example of

application, we discuss the role of these identities in the proof of the lower
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bound for the MSK model.

e In Chapter 5 we introduce the basic mathematical formalism of Monomer
Dimer models. We introduce a Gaussian representation of the partition function
that will be fundamental in the rest of the work.

e In Chapter 6, we introduce an interacting Monomer-Dimer model (IMD).
Its exact solution is derived and a detailed study of its analytical properties and
related physical quantities is performed.

e In Chapter 7, we introduce a quenched randomness in the monomer
Monomer Dimer model (RMD) and show that, under suitable conditions the
pressure is a self averaging quantity. The main result is that, if we consider

randomness only in the monomer activity, the model is exactly solvable.



Preliminaries

Let us start giving a quick overview on the general concepts behind the
statistical mechanics description of the thermal equilibrium of a system. We
want to stress the fact this preliminary introduction is formal and elementary,
the only purpose is to give a motivation and orientation to the non expert reader
then, a reader familiar with the subject can skip this section. A detailed and
advanced exposition can be found in the classical literature, see for example
[5, 1] for a mathematical perspective and [4] for a discussion closest to physics.

About 1870, Ludwig Boltzmann proposed that the laws of thermodynamics
should be derivable from mechanical first principles on the basis of the atomistic
theory of matter. Thermodynamics describes a physical system with few macro-
scopic parameters ( for example a gas with pressure, volume and temperature)
whereas, from the mechanical point of view, usually there is an huge number
of atoms ( typically 10?2 ) which interacts at the microscopical level. This con-
trast between the microscopic and the macroscopic level is the starting point
of Equilibrium Statistical Mechanics as developed by Maxwell, Boltzmann, and
Gibbs. The underlying basic ideas can be illustrated in a very general setting.

The aim is to describe and explains the macroscopic behavior of large sys-
tems in thermal equilibrium in terms of the microscopic interaction between
their very many constituents. Thus, we are interested to the behavior of the
objects when the number of the components goes to infinity. A rigorous defini-
tion of the this limiting procedure and convergence questions depends strongly

on the model consider, at this stage we suppose the system large but finite and
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refer this suitable procedure as thermodynamic limit or t.1..

Consider a large but finite set A which represent the components of a system.
Thus, a first vague notion of ¢.[. should be understood as the |A| — oo in a
suitable way. For each ¢ € A, let o; be a variable taking value in a set ¥ (to
fix the idea suppose a finite discrete set of real numbers ) which describes the
possible states of each component of the system, it is called single state space.
For example, in the case of a magnetic system, A consists of the sites of the
crystal lattice which is formed by the positions of the atoms and ¥ is the set of

all possible orientations of the magnetic moments of the atoms.

Having specified the sets A and X, we can describe a particular state of the
system or microscopic configuration by a suitable element o = (0;);ea of the

Al

product set XM We will denote by £4 C SIAl the set of allowed configurations,

called configuration space.

Is reasonable to suppose that the physical properties of the system are con-
sequence of the interaction among the components of the system. In the Sta-
tistical Mechanics language this interaction is specified by the Hamiltonian, a
function Hy : ¥y — R, which represent the energy associated to a microscopic

configuration o € .

The configuration space >, is huge, nevertheless the complexity of a micro-
scopic description of the system, i.e. in terms of a microscopic configuration
o, can be overcome by a probabilistic approach. In other words, the macro-
scopic determinism (thermodynamic) may be regarded as a consequence of a
suitable law of large numbers. According to this philosophy, it is not adequate
to describe the state of the system by a particular element o € ¥,. The sys-
tem’s state should rather be described considering the family o = (0;);ep as a
family of Y¥-valued random variables, or (if we pass to the joint distribution of
these random variables) by a probability measure Gy on 4. In this framework,
physical quantities are supposed to be represented by the expectation w.r.t. the

measure G, of suitable functions on the configurations space.
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[Q1]. Which kind of probability measure is suitable to describe a very large
physical system in thermal equilibrium?

Let us introduce the basic quantity on which is based the answer to [Q1].

Definition 0.0.1. For a given Hamiltonian Hy and for any 5 > 0, a real

parameter which represent up to a constant the inverse physical temperature,

the finite volume Gibbs measure Ga s a probability measure on ¥, defined as
o~ BHA(®)

QA(U) = T(@ (1)

for each o € ¥p. The normalization factor

ZA — Z e—BHA(U) (2)

TEXA

1s called partition function.

An informal answer to the question [(Q] is the following:

[A1]. When the system becomes very large, i.e. in the t.l., the probability
measure which describe the thermal equilibrium of a system is given by the t.1.
of Gibbs measure.

The rigorous formulation and justification of the previous answer is a long
story which is still far from being finished, we just mention the key words and
relative references: ergodic theory [1] and equivalence of ensembles [3]. In this
work we will focus on the mathematical analysis of the consequences of [A;]
rather than on its foundation.

Let us give an equivalent formulation of [A;], closest to thermodynamics.
According to the previous probabilistic description, let ;1 be a probability mea-
sure on >, which encode all the thermodynamic information of the system, not
necessarily at the thermal equilibrium. For example, the internal energy density

can be computed as

1
uali) = 7Bl (3)



CONTENTS

The previous relation is quite intuitive. The key step and less intuitive, is
the relation between the physical entropy and p first proposed by Boltzmann
and then explained by Gibbs. Setting the Boltzmann constant equal to 1 the

entropy density is given by

sa(p) = —E,[log p] (4)

The free energy density is given by the usual thermodynamic relation

1

Fali) = ualp) = Zsaln) (5)

If we impose now that the system is in thermal equilibrium, one can char-
acterize the Gibbs measure , in the following way:

Gibbs Variational Principle: when the system is at thermal equilibrium, the
probability that each state occurs are such as to minimize the free energy of the
system.

A simple computation show that the Gibbs measure is the unique mini-
mizer of fx (i) on the set of all probability measure on ¥,. Thus the free energy

at equilibrium becomes

fi = min £y () = —ﬁA, log Z, (6)

where Z, is the partition function [5.9|
Instead of the free energy, without any significant change, in this work we

will consider the following quantity:

Definition 0.0.2. The pressure density associated to an Hamiltonian is defined

as

P = ﬁlog Zy = —Bfa (7)

The "pressure” is a term used in Statistical Mechanics of Lattice Gases [6],

because of its analogy to the real physical concept of pressure for lattice gases.



CONTENTS

In the rest of the work we prefer deal with the pressure because the extra factor
—1/ in the free energy becomes a nuisance when taking derivatives.

The assumption [A;] is only the beginning of the game, since after it, a
natural question arises:

[Q2]. 1t is possible to give a rigourous formulation of the thermodynamic
limit of the Gibbs measures, study the properties of its limiting object and related
quantities?

There is a beautiful and rather general theory on the t.I. of the Gibbs
measure, know as Gibbs formalism or DLR states. A detailed exposition on
this subject can be found in the standard references [5l |6 2]. The present work
is on Mean Field models for which the previous theory is not directly applicable
and the questions related to the ¢.I. will be analyzed case by case.

As one expect, the limiting properties of the Gibbs measure depend strongly
on the considered model. This is the most exciting feature of Statistical Mechan-
ics, because, starting from a collection of interacting simples objects, after t.[.,
the resulting picture can be much less simple and describe complex phenomena
like phase transition and symmetry breaking [5).

In this work, for a given statistical mechanical model, we will try answer to
(@], in particular to the following aspects:

e Existence and properties of the thermodynamic limit of the pressure den-
sity.

e Existence and properties of the thermodynamic limit of the Gibbs measure.

We will consider models belonging to two distinct classes : Spin Models and
Monomer-Dimer Models. As will become clear, this preliminary division, is due

to the topological properties of their configuration spaces.



Chapter 1

Spin Models formalism

The first kind of statistical mechanical models studied in this work belong
to the classes of Disordered Spin Models on Graphs. The aim of this chapter is
to introduce the necessary mathematical background.

A statistical mechanical model can specified trough three basic objects:

e A finite set A which represent the components of the systems.

e The single state space ¥ and the configuration space ¥, which represent
our a priori knowledge of the properties of the components.

e The Hamiltonian function Hy : 35 — R which represent the energy of the
system trough the interaction between the components.

All the formalism developed in this chapter is for finite system ( finite A ), the
definition of thermodynamic limit and convergence questions are analysed case
by case in the next chapters. A first vague notion of ¢.I. should be understood
as the |[A] — oo in a suitable way.

First at all, in this work, except for chapter [4] we will consider interactions
involving only pair of components excluding the possibility of many components
interactions: in other words we deal with Models on Graphs. Thus, let us recall

the following basic definitions of graph theory.

Definition 1.0.3. Let A be a finite set, P/(f) ={ij={i,j}:i#j € A} the set

of unordered couples of different elements of A and consider a subset E2 C PA@).

1



The pair (A, E) := G is called finite graph with vertex set A and edge set E.

IfE= Pf) we denote the graph by K and refer to it as the complete graph
on A.

This works focuses on models on the complete graph however, they will be
introduced, without extra efforts, for a general graph G. The symbol G, unless
otherwise specified, always denotes a generic graph with vertex set A set and
edge set F/ which represent respectively the set of microscopic components and
the set of pair interacting components of a model. Even if is not treated in
detail during the work, often in the discussion we will refer also to another kind

of graph called lattice graph.

Definition 1.0.4. Consider an integer d, we call the lattice graph G4 := (Ag, E)
the finite graph with verter set A C Z¢ and E = {ij € P/(\2) i — gl = 1} where

7% is the d-dimensional integer lattice and |- |1 denotes the Ly norm in R

The respective terminology for statistical mechanics models is:

e Models on the complete graph: the choice of K, can be used to describe
systems with an high number of connections such as neural or social networks.
If no additional structures are present in A, the only important thing is its
cardinality, i.e. the number of components of the system that will be denoted
by an integer N. Thus, we simply take A=Ay :={1,...,N} and E = Ey :=
{ij i <j;i,j € Ay} , Ky denotes the corresponding complete graph.

e Lattice models: the choice of G4 and in particular Z? as underlying trans-
lation invariant structure is often used to describe physical models as crystals.
The condition |i — j|; = 1 identifies the nearest neighborhood vertices and we
say that the resulting interaction has a short range. In general one can choose
a real parameter R > 0 which tunes the range of the interaction replacing the

above condition with the weaker |i — j|; < R.

We mention that it’s also possible to consider G as a random graph. The
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simplest example is the Erdos - Rényi random graph: the edges are indepen-
dently present with identical probability. They will not be discussed in this
work, the interested reader may consult [67, 107, [96] for spin model on random

graph and [27] for monomer dimer models on random graphs.

1.1 Spin Models on Graphs

Let G = (A, E) be a finite graph. Each vertex ¢ € A is endowed with a
variable o; € 3 := {—1, 1} called spin.

Definition 1.1.1. A spin configuration is the family o := {0;}ien which rep-
resent a particular microscopic configuration of the system. The configuration
space is the product set X5 = {—1,4+1HA ie. the set of all possible spin

configurations.

The Hamiltonian which describe the interaction among the components is

then a spin-spin interaction.

Definition 1.1.2. A Spin Model on G = (A, E) is defined assigning to each

spin configuration o € ¥p an Hamiltonian function

Hg(O') = — Z Jijaigj - Z hiai (11)

ijEE ieA

where Jg = {Jij }ijer, and hy = {h;}iea are two families of real parameters.

Remark 1.1.3. The definition [1.1.3 is slightly redundant since, strictly speak-
ing, the choice of the graph G and the family of couplings Jg are not indepen-
dent. Indeed, since the value J;; = 0 is allowed, one can consider without loss
G = Ky. It’s easy to check that a spin model on an arbitrary graph G = (A, F)
with family of coupling Jg, coincide with a spin model on Ky with family of
coupling J' defined as Ji; = Jij if ij € E and zero otherwise. Despite this fact

we will use the above definition because, as we will show in the next, the graph
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G encodes in a compact way the topological properties while the couplings Jg

tune the strength of the interactions.

Example 1. The following models will be briefly discussed in chapter 2:

i) The nearest-neighborhood ferromagnetic Ising model in Z2 corresponds to
the choice G = Gy, J;; =J >0 for allij € E and h; = h € R for alli € A

ii) The Curie-Weiss model corresponds to the choice G = Ky, J;; = J >0
forallij € E and hy =h € R for alli € A

All the properties of the Hamiltonian are then encoded in the choice of the
graph G and the families Jg and hy that are called respectively couplings and
external fields. For any fixed such as choice, let us recall the basic objects of

interest.

Definition 1.1.4. Let 8 > 0 be a real parameter which represent up to a con-

stant the inverse physical temperature, the finite volume Gibbs measure Gg as-

sociated to the Hamiltonian , 18 a probability measure on Y defined as
o—BHa(0)

Go(o) == —Z. (1.2)

for each 0 € ¥). The normalization factor

Zg = Z e PHc() (1.3)

TEXA

1s called partition function.

NOTATION WARNING: Clearly the Hamiltonian, the Gibbs measure
all the related quantities that we are going to introduce, depend on the fixed
choice of the parameters Jg and hy and the inverse temperature 3. In order to
lighten the notation, we keep this dependance implicit in almost all situation.
However, the reader should always keep in mind this dependance.

One of the most important quantity beside the Gibbs measure is
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Definition 1.1.5. The pressure density associated to an Hamiltonian I8
defined as
1
pe = —— log Zg (1.4)
Al
In probabilistic terms, the pressure density, up to a non relevant normaliza-
tion, is the cumulant generating function of the variable —Hg w.r.t. the count-

ing measure on >, then its S-derivatives are the cumulants of —Hg w.r.t. the

Gibbs measure.

Definition 1.1.6. We call the finite volume Gibbs state wy the expectation
w.r.t. the Gibbs measure[1.9, i.e. for any bounded function f: ¥\ — R,

welf) = ZiG S e el f(g) (1.5)

gEXA

Thus, for example

Definition 1.1.7. The internal energy density is defined as

o WA(Hg) 8

— G/ 1.6
T T o
The ground state of the system is defined as
e = 1 min Hg(o) (1.7)
G |A| TEYA

The origin of the term ground state is due to the fact that 5 — oo correspond
to the zero temperature limit. Indeed one can prove that eg) = limg_, €g-
This relation furnishes a direct link with statistical mechanics and optimization

problems.

1.2 Disordered Spin Models

At this stage, the definition (1.1.2)) is rather general. However, depending on
the phenomenon to describe, we can make additional assumption on the graph

G and the parameters Jr and h, to construct particular spin models that
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capture the relevant properties of the phenomenon and allows a satisfactory
mathematical treatment. We have already anticipated that the main topic of
the work will be models on the complete graph, so let us introduce the basic
assumption on the parameters.

Let us suppose we don’t know exactly the values of the parameters Jg and
hx but only their statistical properties, in other words their distribution. It
would be interesting to try to understand what happen in the thermodynamic
limit for a “typical” choice of the parameters. One natural way to give this
question some meaning is to model the parameters as random variables and
translate the word typical into almost all realization. The physical motivations
behind the introduction of randomness on the parameters will be explained in
section 2.1l Here we introduce the mathematical framework.

Let Jg := {J;j}ijer and ha := {h;}icp be two families of random variables
defined in some standard probability space (Z,B,P) with expectation denoted

by E, n € = denotes a particular realization of the disorder.

Definition 1.2.1. A Disordered Spin Model on G is defined, for any realization

1, assigning to each spin configuration o € ¥p an Hamultonian function:

Hgy(o) ==Y Jij(noio; =Y hi(n)o; (1.8)
ijeE ieA

NOTATION WARNING: In the next chapters, we will consider particu-
lar Disordered Spin Models specifying the distribution of the random parameters,
then we will drop the explicit dependence on 1.

Since the Hamiltonian is a random variable, all the quantities related
to it include randomness. Thus, the description of the equilibrium properties of
a disordered system with a random Hamiltonian requires the introduction of a
new notion of equilibrium state. For a general discussion on this topic see [12]
and references therein. For our purpose, we can use the notion of finite volume

quenched state.
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Recall that, from the dynamical point of view [I], the use of the Gibbs
measure as equilibrium measure is based on the assumption that time averages
will converge to averages with respect to the Gibbs measures. In this case, we
deal two with kind of variables, the spins o € ¥, and the random variables in
(2, B,P). Thus a proper notion of equilibrium measure must be a measure on
the product space ¥4 X = taking into account the fact the equilibrium time-scales

of the spins and the random couplings can be different.

There are two notions conventionally used in the physics, which correspond

to opposite cases:

e Annealed state. This procedure corresponds to treating the random vari-
ables as dynamical variables on an equal footing with the spin variables, namely
they equilibrate on the same time-scale. More precisely, we consider the pair
(0,7m) as a ”generalized spin configuration” on 3, x = and apply the standard
notion of Gibbs measure[L.2]to the a priori product measure P(dn)u, (do), where

1 is the discrete measure on Yy, i.e. the sum over all spin configurations.

Much more interesting from the physical point of view is the opposite case,

which is the case considered from now on:

e (Quenched state. This procedures correspond to consider the time scale of
the spin variables relaxation much shorter than the time scale of the random
variables. Thus, we split the average into two steps, first one computes for
a fixed realization of the disorder n the average of the spins w.r.t. a Gibbs
measure G, on X, and then performs an average over the disorder n with P.

More precisely,

Definition 1.2.2. For a given realization n and for any 5 > 0, the finite volume
random Gibbs measure G, associated to the random Hamiltonian He, (1.8)

s a random probability measure on X5 defined as

6_5HG,77(U)

7 (1.9)

Gan(o) ==

)1
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for each o € ¥p. The normalization factor

Zay =Y e Man (1.10)

TEXA

18 a random variable called random partition function.

Definition 1.2.3. We call the finite volume random Gibbs state wy , the expec-
tation w.r.t. the random Gibbs measure [5.8 In particular, for any a bounded

function f ¥y — R

won(f) =Y Gaulo)f(o) (1.11)

TEXA

Notice that in general one can consider the average (1.11]) for measurable
functions f(o,n) on ¥, x =. However, functions which depends only on the
spin configurations will play an important role in the next chapters, hence we

restrict our attention to them introducing the following important generalization

of definition [[.2.2]

Definition 1.2.4. For any of n € N let us consider X}, the cartesian product of
n copies of Y called replicas. We call the finite volume replica-Gibbs state Qg

the expectation w.r.t. to gg?j; on X%, i.e. for any bounded function f: ¥} — R

Qa,(f) = Z Gan(ot) ... Gap(a™) flot, ... ™) (1.12)

(o,...,ocmeXR)

Clearly the specification of the number n is redundant since one can always
consider the previous product of an infinite number of copies without affect the

average of a function on X7.

Finally, averaging over the disorder, one obtains the quenched Gibbs state,

denoted

(e =EQcy(f) (1.13)
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Definition 1.2.5. The random pressure density associated to an random Hamil-
tonian @ is the random variable |[A|~'log Z¢,,. Averaging over the disorder

we obtain the quenched pressure density is

1
PG = WE log Z¢ (1.14)
The annealed pressure density
1
pa = I logE Z¢ , (1.15)

For random quantities as the random pressure defined [1.2.5] an important
property is the following.

Definition 1.2.6. Let (Xy)nen be a sequence of random variables. We say that
it is self-averaging iff
lim E(Xy —EXy)2=0 (1.16)

N—o0

Clearly the limit N — oo should be to be understood as the ¢.1., to fix the
idea simply think N = |A|. For all the random models considered in this work
we are able to prove that the random pressure density is self averaging, and
then converge in probability to its expectation, namely the t.[. of quenched
pressure density. Actually we can prove more, namely that the convergence is

P-almost surely.

1.3 Some examples of applications

The class of spin models on graphs defined in and its random version
[1.8] can be tough as a preliminary setting for a statistical mechanic description
of various systems. Some classical examples are listed below.

e Magnetic systems: Suppose you want to describe the thermal equilibrium
properties of magnetic solids. In principle, there are a lot of degrees of freedom

on the interactions, however as first approximation one can describe the physical
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properties of this system using a spin model on a graph defined in . Keep
in mind the general framework introduced above, let us take magnetic solid:
the components of the system are then the atoms. The finite set A labels the
atoms of solid and, for each ¢ € A, the spin o; represent the magnetic moment
of the atom indexed by ¢ that is quantized and can take only the two values +1
and 1. The graph G represent the molecular structure of the solid, namely the
atoms and their connections. If the solid has a crystal structure one can choose
G = Gy, the lattice graph in dimension d. The Hamiltonian represent
the magnetic energy of a configuration. In particular, the parameter J;; tunes
the magnetic interaction between the atoms ¢ and j and the parameter h; is an
external magnetic field acting on the atom i. In the random framework, the
physical meaning of a choice of a random Hamiltonian (1.8]) will be discussed
in detail in chapter 2.

e Absorption of monoatomic gas molecules: Consider a monoatomic gas
adsorbed on a solid material. A simple statistical mechanic model for this
system can be the following. The finite set A labels the allowed sites of the
solid, and, for each i € A, let us consider an occupancy number «; € {0, 1}
representing respectively an empty or an occupied site of the surface. This
is a rough approximation for hard-core repulsion between the absorbed gas
molecules. A microscopic configuration, i.e. a possible configuration of occupied
or empty sites, is then represented by an element o € {0, 1}/, As before, the
graph G represents the molecular structure of the solid, and in order to taking
account the crystal structure of the solid one can assume G = GG;. The energy
associated to a possible configuration of the system gas-surface is represented

by the following Hamiltonian
Hg<a) = Z JijOéiOéj — Z a; (117)
ijel h; €A
In particular, the parameter J;; tune the interaction between gas atoms on the

site 7 and 7 and the parameter h; is the chemical potential acting on the site 7.
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This model can be easy mapped into a spin model on G defined in [I.1.2]

Indeed, there exists a bijection between the two configurations spaces, namely

{0,150 & oe{-1,1}, 6,=20; -1 Vic A

By consequence, its easy to show that the two Hamiltonian differ by a non
relevant constant.

e Dean’s problem: This is a classical optimization problem. Because to the
lack of physical dimension it’s a good example of system that can be represented
as a model on the complete graph K. Anyway, in general, let us suppose we
have a network of people represented by a finite graph G and a collection of real
parameters J;; for ij € £, which describe how much people ¢ and j like or dislike
each other. Naturally, a positive parameter means that they like each other and
a negative parameter means that they dislike each other. However, unrealistic it
may seem, we will assume that the feeling is mutual. We will consider different
ways to divide the initial group into two subgroups, say A and B: it will be
convenient to describe them using vectors of +1 labels. Namely, for each 7 € A
we assign a spin variable o; with the following convention: if o; = 1(resp.
o; = —1) the people i belongs to the subgroup A(resp. B). Therefore a spin
configuration o := (0;);ep describe a possible partition and the configuration
space Yy := {—1, +1}A correspond to the 214! possible such partitions. For a

given configuration o, let us consider the following discomfort function:

Hg(O') = - Z Jijo-z’o-j (]_]_8)

ijeE
is a spin Hamiltonian at zero external field and in this context
can be tough as a measure of the discomfort(=energy) generated by the partition
0.
The Deans problem is to minimize the function over all configurations

0 € X, hence, in the Statistical Mechanical language, the problem is equivalent
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to find the ground state of the Hamiltonian.

The interpretation of this objective is clear, since minimizing the discom-
fort function means that we would like to keep positive interactions as much
as possible within the same groups and separate negative interactions into dif-
ferent groups. This optimization problem is in general NP-hard [37]. One of
the reasons is the presence of frustration, a property that will be analyzed in
section [2.1l The same problem in random setting is a random combinatorial

optimization problem.



Chapter 2

A short overview on Spin

Glasses

Spin Glasses has been introduced in theoretical physics quite recently. In
the 1970s, experiments on magnetic alloy metals like Fe, Mn and Cr weakly
diluted in metals as Au, Ag and Cu, showed a thermodynamic behavior not
compatible with the classical theory of ferromagnetism, such as peculiar dy-
namics properties reaching the equilibrium [65] [14].

In order to explain this phenomena, theoretical physicist (Edward and Ander-
son 1975, [31])introduced an Ising model with random interaction, know as FA
model, which represent the archetype of Spin Glasses.

To simplify the analytical treatment, Sherrington and Kirkpatrick (1975,
[93]) proposed a mean field version of the EA model, known as the SK model.
The resulting Mean Field theory, fully developed from the work of Parisi (1985,
[15]) , was based on an ansatz that has revealed a very rich mathematical struc-
ture. Only until recently some predictions of the above theory have received
a rigorous mathematical proofs: the exact solution of the model by Guerra
(2003, [79]) and Talagrand (2006, [I19]) and the Parisi’s ultrametric conjecture
by Panchenko (2010, [108]).

These results are based on the introduction of new investigative techniques

13
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and concepts, notably the interpolation method [79], the Aizenmann-Contucci
[22] and the Ghirlanda-Guerra identities [76] that will be the essential tools
used in the following chapters.

Despite these progress and the success in the applications, the underlying
mathematical structure is not fully understood thus, following Talagrand [18],
" Mean Field Spin Glasses are a challenge to mathematicians”.

Spin Glasses are one example of Disorder Models on Graphs introduced in
section [1.2] thus we refer to that section for the general mathematical framework.
In this chapter we give a short overview on the physical motivations behind the
introduction of randomness in spin models and in the last section we illustrate

the basic results on the SK model.

2.1  From Ising to EA model

Before introducing Spin Glass models, let us briefly recall the Ising model (
see [3], 6] for a complete account of the subject) emphasizing his main difference
with respect to its spin glass version, the Edwards-Anderson model.

This model has been introduced to give an explanation of the ferromagnetic
behavior of some kind of materials. These materials, after having been exposed
to an external magnetic field develop a magnetization with the same sign of the
field. When the field was then switched off, the materials showed two differ-
ent behaviours depending on the temperature at which the magnetization was
induced. If the temperature was below a critical value, the materials retained
a degree of magnetization, called spontaneous magnetization, whereas they was
not capable of doing this when the temperature was greater or equal to the
critical value. As temperature approached the critical value from below the
spontaneous magnetization vanished abruptly.

The problem is to described the magnetic properties of a crystal lattice in

dimension d.
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The setup of the model is the general one described in section [I.1] and in

particular in example [T}

Definition 2.1.1. The nearest-neighborhood ferromagnetic Ising model on Z<,

for any A C Z% is defined by the Hamiltonian function

Hy(o)=—J Z oi0j — hZai (2.1)

i,jEN:|i—j]1=1

where J > 0 and h € R.

The choice of the integer lattice Z? is motivated by translational invariance
of the physical crystal, while the nearest-neighborhood condition on the edge
set reflect the fact that the interactions vanish at long distances providing a
spatial structure to the model. The sign of the coupling J > 0 entail a ferro-
magnetic nature of the model in the following sense: the minimization over the
configuration space of the Hamiltonian forces the neighborhood spins to
be aligned.

This model represent a considerable simplification on the description of the
microscopic degrees of freedom of the original system: the state of an atom is
reduced to a variable taking only two values, all the complicated electromag-
netic (and quantum) interactions are replaced by a simple attraction between
nearest neighbours on the lattice. Despite this simplification, this model turn
out to be a paradigmatic model and decisive turn in the development of Sta-
tistical Mechanics in several ways. The most important one is that furnish a
mathematical explanation of the ferromagnetism and in particular of the phase
transition phenomenon [3]. A mathematical discussion of this aspect is out of
the scope of this work and we refer to the classical literature mentioned above.
Here we give an heuristic description of the physical behaviour.

For f — 0 ("infinite temperature”) the spin variables are independent un-
der the Gibbs measure associated to the Hamiltonian , so the model is

equivalent to a fair coin tossing.
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As soon as [ > 0 the probability distribution starts to favour configurations
with many neighbor pairs of aligned spins. This tendency becomes stronger and
stronger as  increases. The limit case is 8 — oo ("zero temperature” or ground
state) were a strong order in the model appear. In the case h = 0 , the model is
symmetric under interchange of the spin values —1 and +1, so that there is an
equal chance of having many pairs of plus spins or having many pairs of minus
spins. This dichotomy gives rise to the following interesting behavior. Suppose
that d > 2. If § is sufficiently small (i.e. in the high temperature regime), the
interaction is not strong enough to produce any order, and the t.[. of the Gibbs
measure is uniquely determined. In contrast, when f is sufficiently large (in the
low-temperature regime), the interaction becomes so strong that a strong range
order appears: the bias towards neighbor pairs of aligned spin then implies that
Gibbs measures prefer configurations with either a vast majority of plus spins or
a vast majority of minus spins, and this preference even survives in the infinite
volume limit. We say that the system thus undergoes a phase transition and

a spontaneous magnetization occur.

Despite his fundamental role, the ferromagnetic Ising model turn out to be
inappropriate to describe the magnetic behavior of solid alloys. In order to fill
this gap, theoretical physicists have constructed other kind of models taking
into account the presence of randomness and frustration in the system, which,

as we will see in the next, constitute the essentials ingredients of Spin Glasses.

e Randomness: Assume that we have a solid alloys made of a magnetic
transition metal impurities in noble metal hosts, say Fe and Au. Clearly, for
a given sample of the material, we don’t know the exact arrangement of the
impurities. However, one can hope there are physical properties that are in-
dependent of the sample. In order to formalize the previous claim, we model
the spatial inhomogeneity by introducing some probability distribution on the
space of possible realizations of the iron positions. As in ordinary statistical

mechanics, we expect that the sample-to-sample fluctuations go to zero in the
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limit of a large system. A quantity with this property is said to be self-averaging
[1.2.6] If we know that this property holds, then not only we can expect the same
results in experiments with different samples, but we can also expect that the
average of the disorder give the same result of the experiments. The positions
of the atoms are not the only degrees of freedom of the system, indeed iron
atoms have magnetic moments (spins), and we are interested in the magnetic
properties of the system. Thus we deal with two kind of averages, the spin and
random positions averages, which play a role in the thermal equilibrium. The
question is: they play the same role? The physical picture is the following. At
high temperatures the atoms quickly change places, so that we guess that both
the spin and the positions are free to take on values which minimize the energy
of the system. This situation correspond to the annealed average ( see section
2.

However, at low temperatures, the motion of atoms is strongly suppressed:
one says that the positions of the atoms are frozen. Strictly speaking, they are
not exactly frozen, but they have a dynamics which is many order of magnitudo
slower than the dynamics of the spins. Indeed, unlike the positions, the spins
are not frozen, and their behaviour could be described by a Gibbs measure.
This description correspond to the quenched average and is the right one
for the phenomena we want to describe.

In the example we have just illustrated, randomness is in the position of the
magnetic impurities. This situation does not turn out to be simple enough to
allow an analytical approach. Therefore, following Edwards and Anderson [31],
one usually considers models where the positions of the magnetic moments are
non-random and are placed on the sites of a lattice and disorder is in the family
of couplings.

Thus, keep in mind the general framework introduced in section let us

consider a disordered spin model the a lattice graph Gg-

Definition 2.1.2. ( EA model) The nearest-neighborhood Edward-Anderson
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model is defined, A C 7%, assigning to each spin configuration o a random
Hamiltonian function, called EA Hamiltonian, of the form
HA(O’) = — Z Jijaiaj - hZO'z (22)
li—jli=1 ieA
where the family of couplings Jy = {Ji;}ijer, are taken to be i.i.d. standard

gaussian random variables.

Thus, roughly speaking, the Hamiltonian of the EA model has the same form
of the Ising Hamiltonian , apart from the fundamental difference that, the
couplings J;; are gaussian random variables.

e Frustration: The choice of a symmetric distribution for the couplings has
a physical explanation: the impurity moments produce a magnetic polarization
of the host metal conduction electrons, which is positive at some distances and
negative at others. This simple fact has a deep consequence.

Let us start analyzing, at zero magnetic external field h, the ground state
of the Ising model, i.e. the spin configuration that minimize the Hamiltonian
function 2.1} Clearly, each spin-spin interaction term is minimized when the two
spins are parallel, ¢.e. 0;0; = +1 for all 7, j. There are two such configurations,
one with all spins equal 41, the other with spins —1, and they are connected
by the global spin-flip symmetry o; — —o; for each ¢ € A. It is also elementary
to check that any other configuration has a strictly higher energy. Therefore

the ground state can be completely determined by the symmetries of the system.

Conversely in the EA model, for a given realization of the random inter-
actions, some of them are of ferromagnetic character (i.e., they favor parallel
alignment of the spins) and others are anti-ferromagnetic. This is a key point:
we have random, competing interactions which produce frustration [121]. In-
deed, consider a triple ¢, j, k € A with J;;, J;x > 0 but J; < 0. The minimization
of the Hamiltonian enforce the following picture: o,0; = 1, 004, = 1, but un-

fortunately o;0r, = —1. The use of the term frustration can be easy understood
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if one think at interpretation of spin models in terms of the Dean’s problem
mentioned in chapter 1.

Informally, one can say that frustration is present when the Hamiltonian
cannot be written as a sum of individual terms which can all be minimized by a
single ground state configuration. Moreover the ground state of the system has
a high degeneracy, and different ground states are not connected to one another
by elementary symmetry transformations. The number of ground states in fact
grows very fast as the number of spins is increased.

The EA model, and in general finite dimensional Spin Glasses, though in a
sense of a simplification with respect the physical system, are still of formidable
difficulty problem to attack. To simplify the analytical treatment of the EA
model, Sherrington and Kirkpatrick [93] proposed a mean field version of the

EA model, known as the SK model that will be discussed in the next section.

2.2 The Sherrington-Kirkpatrick model

The common feature of Mean Field models is that any additional structure
for the graph G, as for example the spatial structure Z? for lattice models, is
considered in favour of a simpler setting: the graph G is now the complete graph
Ky with a vertex set Ay = {1,..., N}. This kind of models can be toughs in
two ways.

First, they can be viewed as a mean field approximation of the correspond-
ing model on the lattice because of the lacking of spatial dimensionality in the
interaction: all the microscopic components of the system are supposed to in-
teract with each other, irrespective of their physical distance. The fundamental
question of the connection between the mean field picture and the correspond-
ing short range version, at least when the space dimensionality or the range
of interactions is large, is well understood for instance, for non-random ferro-

magnetic systems, where it is well known [4, [3] that mean field theory gives
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a reasonable qualitative description of symmetry breaking and of the critical
point. After almost thirty years, the question of the connection between mean
field and realistic spin glass models is still to a great extent open and under
discussion. We will give a partial result on this direction in chapter [

On other hand, one can imagine to describe a system with an high number
of connections as for example a neural network, a network of people or a social
system. This last point of view is also closer to optimization problems (see
for example the Dean’s problem ( see section where the spatial structure
is irrelevant. In this case the picture where all components interact with each
other is not far from the original situation and hopefully the resulting model is

able to capture the relevant properties of the system.

2.2.1 A preliminary example: the Curie-Weiss model

Before introducing the SK model, we start with the prototype of mean field
models: the CurieWeiss model. It can be viewed as the mean field approxima-

tion of the Ising model (22.1]).

Remark 2.2.1. Let us give an heuristic argument which gives a meaning to the
term mean field approximation. Let us rewrite the Ising Hamiltonian mn
the equivalent form

H (o) :—JZai(Za]) —hZai (2.3)

ieA i ieA

where j ~ i <> |i — j|1 = 1 denote the set of nearest-neighborhood of the site i.
The term (Z]M. 0j> =: 7Ll is the effective field acting on the spin o;. The mean
field approximation is then to replace, for each 1 € A, the effective field E with

a site independent quantity, i.e. its mean value |[A|7' Y, ) 0.

All we need to do is to replace the nearest-neighbour pair interaction of
the Ising model ({2.1)), by another extreme choice: we assume that each spin

variable interacts with each other at any site of the lattice, irrespective of their
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distance. In this case, the actual structure of the lattice becomes irrelevant.
The only important thing is the number of spins that will be denoted by an
integer N thus, we may simply take A = Ay = {1,..., N}. The configuration
space becomes ¥y = Yy = {—1,+1}7.

The resulting model is a spin model on the complete graph Ky with constant

coupling J/N > 0 and external field h € R.

Definition 2.2.2. ( CW model) The Curie- Weiss model is defined assigning to

each spin configuration o the CW Hamiltonian function

Hy(o) = —% Z 0i0j — hZO’i (2.4)

1<i<j<N icA

The strength of the interaction should be chosen O(1/N), to avoid the pos-
sibility that the Hamiltonian takes on values larger than O(N). This request
is essential to ensure the existence of the thermodynamical limit which in this
case correspond to the limit of N — oco. Without loss one can considerer J = 1,
the general case by a simple rescaling of the paramaters.

A basic quantity, the so called order parameter of the model, is the empirical

magnetization.

Definition 2.2.3. For a given configuration o € ¥y the empirical magnetiza-

tion is defined as

my(o) == %Zai (2.5)

This is a macroscopic function in the sense that it depends on all spin
variables, and depends on each one of them very little. There is a rigorous
mathematical definition of macroscopic variable [2] but for our purpose we can
say that it is characterized by the fact in the thermodynamical limit its value
is not a affected by a change of finitely many spins.

The main consequence of working on the complete graph is the following
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Proposition 2.2.4. The CW Hamiltonian can be rewritten as a function

of a single macroscopic function, i.e. Hy(o) = N(%TTLN(U)Z + th(U)).

Thanks to previous property the model turn out to be solvable in the fol-

lowing sense.

Theorem 2.2.5. Let py = % log Zn be the pressure density of the Curie- Weiss
model, where Zy = ZUGEN e PHN(9) s the partition function associated to the

CW Hamiltonian (2.4). For m € [—1,1], let us define the function

m? m+1
(m) := B(hm + 7) + H(T) (2.6)

where H(x) = —zlogx — (1 — ) log(1l — z) is the binary entropy function.
Then, the thermodynamical limit of the pressure density exist and satisfy the

following

lim py = sup (m) (2.7)
N—o0 me[—1,1]

A proof of the previous results can be obtained in various way. A good
reference on the subject is [3] where, with large deviation techniques, an in-
terested reader can also find a detailed analysis of the thermodynamical limit
of the Gibbs measure. Let us briefly describe the behavior of the optimal m
determined by the r.h.s. of , which represents the limiting value of the
magnetization w.r.t. the Gibbs measure.

The stationary point(s) of 1(m) are solution(s) of the equation
m = tanh[5)m + h)]. (2.8)

If h # 0 and any 8 or < 1 ( high temperatures) and h = 0, ¥(m) has only
one global maximum, while for § > 1 has two local maxima. In particular, for
h = 0 the function 1 is symmetric, and so takes the same value at both maxima.
As a consequence, the magnetization as a function of the magnetic field, is not

unique at the value h = 0 (and only at this value). For h > 0, the maximizer
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is the positive solution of ([2.8)), while for negative h it is the negative solution.
Consequently, the magnetization has a jump discontinuity at h = 0: we say

that the CurieWeiss model exhibits a first-order phase transition.

2.2.2 The model

In the previous section we have seen that the Curie-Weiss model is the
mean field version of the Ising model . In the same spirit, one can think the
Sherrington-Kirkpatrick model as a mean field version of the Edward-Anderson
model . Despite the reasons for their original birth this model soon became
of fundamental importance in the analysis of complex systems thanks to their
immediate link to a class of optimization problems [106, [I01]. The simplest
example of such as problems is the Dean’s problem mentioned section [1.3

Applying the same considerations of the previous section, we consider a

disordered spin model on the complete graph Ky with Hamiltonian:

Definition 2.2.6. ( SK model) The Sherrington-Kirkpatrick model is defined
assigning a random Hamiltonian function of o, called SK Hamiltonian:
1
HN(O') ey — Z JijUin - hZO'Z (29)
VN 1<i,j<N ieA

the family of couplings Jy = {Jij}1<ij<n, are taken to be i.i.d. standard gaus-

stan random variables.

Remark 2.2.7. Strictly speaking, the edge set of the complete graph Ky is
Pl(iv) ={ij ={i,7} : 1 <i < j < N} then the sum in should be over
t < j. The choice of sum over all the possible pairs is for a convenience of
notation, the only difference is a factor of V/2, since the contribution of the
diagonal elements is negligible for large N and the sum of two i.i.d. standard
gaussian Gaussian random variables J;; + Jj; 1s equal in distribution to \/ﬁjij.

Notice also that, because of the normalization factor N ~3 in unlike
the CW model, the strength of the interaction is (’)(N%). As we will show in
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the next, this is the right normalization which ensure a well defined t.l. for the

pressure density and a properly scaled ground state.

It will be useful to introduce a different point of view on the SK model: one
can think the SK Hamiltonian ([2.9/as a Gaussian process indexed by the set Xy,
i.e. by the N-dimensional hypercube. In fact, Hy(o) is a centered Gaussian

random process which is fully characterized by its covariance function.

1

Definition 2.2.8. Given two configurations o', 0? € Ly, the covariance func-

tion of the SK Hamiltonian is

Cn(0,0%) := EHx (o) Hy(0?) = N(gn(a, %))’ (2.10)
where the function qi2 = qy(o',0?) == + Zfil olo? € [—1,1] is called the

overlap between the two configurations.

Notice that is the gaussian analogous of proposition for the
Curie-Weiss model. Moreover, on can also consider gaussian process on X with
covariance function depending on the overlap in a different way, i.e. Cy(c?, 0?) =
NE&(qa) for suitable functions €. A class of important examples are:

e p-spin models: &(x) = 2P, for any integer p > 1. These gaussian process
may be represented in a form similar to the SK Hamiltonian, except that the

two-spin interaction must be replaced by a p-spin interaction:

1
Hyp(o) = \/ﬁ Z Jir,ipOiy = Oy (2.11)

11 5eenylp

with J;, . ; are i.4.d. standard gaussian random variables

7ip
e mized p-spin models: £(x) = Zp>1 Bzmp, where the sequence of positive
real numbers (/3,),>1 is assumed to decrease fast enough to ensure the conver-

gence of the series for £(qi2). The corresponding spin Hamiltonian is:

Hy (o) == B,Hy,(0) (2.12)

p>1
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where Hy ), is a sequence of independent p-spin Hamiltonian ([2.11). The
Hamiltonian functions of the type plays a fundamental role in proof of
the Ghirlanda-Guerra identities ( see chapter [4)), since their covariance contains
informations about all the p-moments of the overlap.

We also notice that the overlap defined in is closely related to the
Hamming distance on Xy, where diamming(0', 02) := #{i < N : o} # o2}

Further important models can be obtained by other choices of metric on
Yn: the Random Energy Model (REM) [68, 18], the Generalized Random En-
ergy Model (GREM) [69, 51] and the Nonhierarchical GREM [47]. Despite
their fundamental importance in Spin Glass theory, these models will be not

presented in this work, an interested reader can consult the above references.

2.2.3 The Parisi Formula and related results

The most remarkable result on the SK model is a closed expression for the
t.l. of the pressure density expressed as variational problem know as Parisi’s

Formula. Let us specialize the general definitions for the SK model.

Definition 2.2.9.
Zy =Y e (2.13)

oEXN

is the random partition function associated to the SK Hamiltonian .
The random pressure density is the random variable N='log Zy. Averaging
on the disorder we obtain quenched pressure density,

1
DN = NE log Zn (2.14)

The variational problem for the quenched pressure density is given in terms

of a functional on a convex space of distributions functions.

Definition 2.2.10. Let M be the set of all discrete distribution functions
on [0,1]. We notice that they are nondecreasing piecewise constant, right-

continuous functions. Any x € My, called the functional order parameter, can
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=V,...,

.....

O=¢p<qg<---<¢g1<q¢g=1

O=mo<mq...<m, <myq = 1.

If we denote by 0(+) the right continuous Heaviside function, then

w(w) =Y (mp —m)0(u— q), u € [0,1] (2.15)

1=0
In other terms x(u) is the cumulative distribution function of a discrete r.v.
which take the value ¢, with probability m;.; — m;. Some authors [16] use a

different parametrization and m is replaced by ( given by the relation m;; = (.

Definition 2.2.11. For a given x € M, any inverse temperature B and exter-

nal field h, we call the Parisi functional

P(x) = P(h;x) =log2+ f(0,h;z) — 62/0 z(u)u du (2.16)

where f(0,h;x) = f(u,y) : [0,1] x R — R satisfies the Parisi’s PDE:

(5 (3)) =0 (217

with the boundary condition

f(1,y) = logcosh(y). (2.18)

The Parisi’s PDE ([2.17)) is non linear, however it has nice properties. First,
for any z € My, it can be solved recursively starting from the boundary condi-

tion. Indeed, suppose that x(u) is constant in a interval, let say [uq, up).

Proposition 2.2.12. For a given real numberm > 0 and f(u,y) : [ua, up] xR —

R let us consider the following PDE:

oo (Ghen()) - o
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with final condition
flup,y) = g(y). (2.20)

Then the solution 1s:

E z+/208(up — u ifm=20
Fluy) = 9(y + 2/28(wp — u)) f (2.21)

% log E exp (mg(y + 24/20(up — u))) if m # 0,

where E denotes expectation with respect to a standard Gaussian random

variable z.
The following result, due to Guerra [79], holds

Proposition 2.2.13. The function f(u,y;z) solution of 18 pointwise con-
tinuous in x w.r.t. the Li([0,1],du) norm. In fact, for any z,& € M, we

have

|, 5:2) — flu, g3 )] < B2 / 2(v) — £(v)|do (2.22)

Thus, proposition[2.2.13|implies that, f(u, y;z) and also the Parisi functional
(2.16)), can be extended continuously from M, to M, where M is the space of
all distribution functions on [0, 1].

We are ready to state the celebrated Parisi formula.

Theorem 2.2.14. (Parisi '85, Guerra 03, Talagrand '06)

log Z
lim = lim E O%VN = inf P(z), P— a.s. (2.23)

N—o0 N N—oco TEMy

where P(x) is the Parisi functional (2.16). Moreover the minimizer is

log Zn

unique.

Clearly the infimum is taken over r,m, ¢ defined in m
The formula was discovered by G. Parisi in [110] using a non rigorous ap-

proach called replica trick. It was later understood in [I5] that the solution
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conjectured by Parisi corresponded to a number of physical properties of the
Gibbs measure of the model, one of them being the ultrametricity of its sup-
port. The first important step toward the proof of the Parisi formula was the
Replica Symmetry Breaking interpolation scheme introduced by F. Guerra in
[79] which give the upper bound. The proof was completed by M. Talagrand
[19] showing how to control the remainder in the ¢.I. by developing a version of
Guerra’s interpolation for coupled systems. Actually, Talagrand’s proof applies,
with little modifications of the formula, to a p-spin model for even p. The
proof all p-spin models, and then for the mixed p-spin model .12 was given
by D. Panchenko in [16] with a different method based on the Aizenman-Sims-
Starr scheme [24] variational principle and the Ghirlanda-Guerra identities.
The uniqueness part was a longstanding open problem recently solved in [35].
In the next chapter we will consider in detail a generalization of the SK model
and multidimensional analogous of Theorem [2.2.14]

A discussion about the limiting Gibbs measure of the SK model is rather
delicate. The full Parisi picture contains also the following two points:

e The solution of the Parisi Formula [2.23] let say z, then represents the
limiting law of the overlap w.r.t. the quenched Gibbs measure, namely for any

bounded continuous function f, we should have

Jim (Fa))x = [ flua(an

— 00

where () is the quenched Gibbs measure defined in ([1.13)).

e The support of the joint limit law its ultrametric, namely given o', 0%, 0 €

N

lim <I<Q1,3 > min(q1,2,02,3))>1\/ =1

N—oo

The full picture has been rigorously proved [16] only for the mixed p-spin
model (2.12)). One can say that for the SK model the previous points holds

generically: we will discuss this aspect in more detail in chapter [4]



Chapter 3

A Multi-species SK model

Multi-species spin systems at different densities are often encountered in na-
ture. The bipartite case without disordered made its appearance since the work
on meta-magnets by Cohen and Kinkaid [56]. When several types of magnetic
particles like iron and manganese are diluted into a nonmagnetic metallic host
the Ruderman-Kittel-Kasuya-Yosida interactions generate a multi-species spin
glass phase [122]. The rich complex behaviour emerging from those physical
systems revealed to be useful in a variety of applications ranging from biol-
ogy to social sciences and several models were proposed and studied in the
mean field approximation without disorder [58, [57, [70] and with disorder as
well [43, [44] [45]. In this chapter we introduce and study a Multi-Species SK
model (MSK model) i.e. a disordered spin model on the complete graph com-
posed by vertex belonging to a finite number of different species. As for the
SK model 2.2.6] spin couples interact through a family of independent centered
gaussian random variable whose variances depends only on the species they be-
long to. In other words, we relax the assumption of i.i.d. random couplings.
Under some convexity assumption (see [39, [43] 45] for a similar conditions in
neural network theory) on the variances the ¢.I of the pressure density is given
by a multidimensional analogous of the Parisi formula, namely one can prove a

multidimensional analogous of Theorem [2.2.14] This is a multidimensional gen-

29
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eralization in a proper sense, namely when there is only one species we recover
the result for SK model.

This model and the related Parisi’s formula were first proposed by Barra,
Contucci, Mingione and Tantari in [41] where the authors, using a modification
of Guerra’s interpolation, showed that the formula gives an upper bound for the
pressure. The matching lower bound was proved by Panchenko in [I09] utilizing
a new multi-species version of the Ghirlanda-Guerra identities.

The chapter is almost entirely based on [41] and is organised as follows. In
the first section we introduce the MSK model and its basic properties. In section
2 we illustrate the main result, namely the related Parisi fomula. In section 3
we prove the existence of thermodynamic limit of the quenched pressure density
2.14] of the model. In section 4 we study the annealed region with the second
moment method, while section 5 the replica symmetric solution and shows that
at low temperatures it has a negative entropy. In section 6 we give a proof
of the upper bound for the pressure, namely the first part of the main result,
while in section 7 we explain the ideas behind the proof of the matching lower
bound obtained Panchenko [I09] based on a consequence of the Ghirlanda-

Guerra identities, the so called synchronization property (see section|[?]).

3.1 The model and the basic definitions

Let us consider a Disordered Spin Model on the complete graph Ky with
vertex set Ay = {1,..., N}. Suppose that the vertex can be divided in a finite
number S of different species labelled by a finite set S, so from now the term
species will refer to the elements of this set of cardinality S.

For each s € § consider a set AE\S,) C Ay such that

JAY = Aw, (3.1)

SES

ADAY =0,vs#tesS (3.2)
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and define
N =17, (3.3)

Clearly by definition we must have

> N® =N, (3.4)

seS

We consider a disordered spin model defined by a collection (o*)),cs of spin
variables, meaning that ai(s) = 41 for each Vs € S,i € Ag\s,).
The configuration space is denoted by ¥y and is composed by the family

of possible configurations o = (;);ca, Where o; = 058) if1 € AS\S,).

Definition 3.1.1. ( MSK model) The Multi-species Sherrington-Kirkpatrick
model is defined assigning to each spin configuration o a random Hamiltonian

function, called MSK Hamiltonian:

HN<O') = —\/LN Z Jijo-io-j7 (35)

where the J’s are independent centered gaussian r.v. such that
E(Ji;) =0, (3.6)

and

E(JijJuy) = 0id;p A2,1{0 € AYI1{5 € AP, (3.7)

for some family real numbers (AZ))spes and where 1{ -} denotes the indicator

function.

In other words the variance of the interaction between spins depends on the

belonging species.

Remark 3.1.2. The external field, for notation convenience, will be absorbed

in the Gibbs measure ( see eq. (3.16) below)



32 3.1. The model and the basic definitions

As for the SK model, one can think the MSK Hamiltonian (3.5 as a Gaus-
sian process indexed by the set Y. Given two configurations o,7 € ¥y, by

(3.6) and([3.38) the covariance matrix of the process is
Cn(o,7) NZA <ZJSTS))<ZUP) j(p)>. (3.8)
$,pES zEA<S JEAN (»)

To show explicitly the dependence trough the choice of the various relative

sizes N®) we can define for every s € S the relative density

. N ()
ald) = T (3.9)
and the relative overlap
(®) _ () () 310
dn (07 T) - N(s) R ( : )
ienly)

then the covariance matrix can be write in the form

=N Y ALayaley (o, 7)ay (0, 7). (3.11)

$,pES

It’s useful to introduce the vector notation of Appendix [7.2} from now on bold
letters denote vectors, and (,) the usual scalar product in R, where S is the

number of species. Thus (3.11) rewrites as
Cn(0,7) = N(qN, AqN>, (3.12)

where qy is called overlap vector and is defined as

qn = <q](5)(0, 7‘))865 (3.13)
while
A = (A%aVal), es (3.14)

is an S x S matrix. In other words the covariance matrix of the process can be

tough ad a quadratic form in R®.
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Example 2. For example, in the case of two species, namely S = {a, b}, the
covariance matriz qy s a 2-dimensional vector and A is a 2 X 2 matriz defined

by the entries

2 2
O‘N O‘N A O‘N O‘N Aab
(a) 2 (®) (b)) A2
AN aN Aab ay ayn Ay
It’s useful to define a normalized covariance matriz as

Cn(o,7)

N = (qN, AqN> (3.15)

en(o,T) =

The Gibbs measure extends the standard definition for disordered spin models

([T2:2),

o, e Hn (o)
Gn(o) = an l;)N (3.16)

where

ay(o,h) :=exp (Zh(s) Z 0(5)>, (3.17)

seS Al
and h := (h(®)),cs is a vector which represents an external magnetic field acting
in each species separately. Upon reflection, the presence of a family of non
negative weights ax in the random Gibbs measure produces no change in the
mathematical treatment of random Gibbs measure and related quantities. For

example the random partition function is

Iy = Z ay(o,h)e v @) (3.18)

oESN

Remark 3.1.3. Notice that, to lighten the notation, in the definition of the
Gibbs measure , and in the rest of this chapter, we do not write explicitly
the dependence on h. With the same aim, the physical inverse temperature [3,
which appears in the standard definition, in our case is set equal to 1 with no
loss of generality as it can be recovered in every moment simply by properly
rescaling of the variances Aﬁp. Let us briefly specialize for the MSK model, all

the general definitions for disordered spin models we refer to section to a
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more detailed explanation of them. Clearly when there is only one species, say

a we recover the SK model[2.2.4] for = Ag,.

In this case, the general definitions given in section become:
e (ibbs state
For every bounded function f : 35 — R we call the Gibbs state the following

Ir.v.

won(f)i= 3 Fo)Gn(o) (3.19)

oEXN

namely, the expectation w.r.t. the random Gibbs measure [3.16]

e replica-Gibbs state

For each n € N, let X% be the cartesian product of n copies of the config-
uration space Xy, and denote its elements by (o', ...,0™). For every bounded

function f : X% — R, we call the random replica-Gibbs state the following r.v.
Ov(f) = > floh...,0"Gx(0Y). .. Gr(o") (3.20)

namely the expectation w.r.t. the product measure Gy".
e (Quenched state

Averaging the disorder we obtain the quenched state,

(f)n =EQn(f). (3.21)

e Pressure
The random pressure density is the random variable N~=!log Zy,

averaging on the disorder we obtain the quenched pressure density

1
PN ‘= N]Elog ZN. (322)

3.2 The Parisi Formula for the MSK model

Let us introducing the basic object on which is based the variational repre-

sentation for the t.I. of py, namely the S-Parisi functional.
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The origin of the quantities that we are going to introduce can be easily
understood recalling the Guerra’s RSB interpolation [79] of the Sherringhton-
Kirpatrick model. By using a clever interpolation argument, the author showed
that the celebrated Parisi’s solution is an upper bound for pressure. The RSB
interpolation is defined through a nondecreasing, piecewise constant function
(see eq. (2.2.11)) which represents the order parameter of the model. One of
the key points of the proof, is that this function intrinsically defines an increasing
sequence (my);—o,. r, thus enabling the control of the sign of the derivative of
the interpolating functional. Following the same approach, in the multi-species

case we define:

Definition 3.2.1. Let M5 be a subset of all discrete distribution functions
on [0,1]5, i.e. nondecreasing piecewise constant, right-continuous functions,

defined as follow. For any integer r > 1, let us consider a sequence of points in

I €[0,1)°, with
.= =0,...,0 — < (S)> o
(a)i=o.... % $€8,1=0,....7 ( )

such that for each s € S, we have

0=g’ <g? < <qg” <=1

- r

Roughly speaking T' defines a path with r steps in [0, 1]° which is non decreasing
in each direction.

We consider a sequence m = (my)io,.. r+1 such that 0 = mg < my < ... <
m, < mpy1 = 1.

If we denote by 0(-) the right continuous Heaviside function, we define the x €

./\/lg, called functional order parameter as

r

w(w) =Y (miy —my) [T 00 — ) (3.24)

=0 seS

where u = (u'®)),es is vector in [0,1]°.
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The function = defines an S-dimensional shape, that in the case of S = 2,

looks like a ziggumtﬂ

Figure 3.1: An example of the function z(u) in the case of two species

For each s € S, let P, be the canonical projection operator on the s direction

in R® and for [ =0, ..., r, consider the following non decreasing sequences:
s) 2
Q" = WPS (AQZ) (3.25)
Qi = (QuAQZ) (3.26)

To complete the picture we need to introduce a transformed order parameter

T

ra(u) = (muer —m) [0t — Q) (3.27)

=0 seS

defined for u € X 5|0, Qﬁs)].

1Ziggurats are pyramid-like structures found in the ancient Mesopotamian valley and west-

ern Iranian plateau.
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Definition 3.2.2. For a given x € M3, any inverse temperature 3 and external

field h, we call the S-Parisi functional

Ps(x) :=log2+ Y _a(s)f*(0,h) — % > Q- Qi) (3.28)
=0

where, for each s € S, &) (u'®),y) is the solution of the following Parisi’s PDE

afe) 1926 1 (®) afe) 2
5u t 3 g T vl )( ay> —0 (3.29)

where xa(u'®)) is the marginal value of the transformed order parameter and

the boundary condition is
QP y) = log cosh(y). (3.30)

Clearly, for each f() solution of (3.29)), the analogous of (2.2.12)) and [2.2.13

hold.

Remark 3.2.3. We mention that it’s possible to rewrite the second term in

r.h.s. of as
%;ml(@—@ll) = %/f (u) Vu(u, Au) -du (3.31)

The integral is a line integral on an arbitrary path T in the plan u, starting

from O and ending in 1, such that all the points (q);=o....» belong to T', in other

words T C T
This representation can be useful for a continuous extension ( not proved)

of the space of the order parameters defined in [3.2.1.

The main result on the MSK model is the following multidimensional gen-

eralization of Theorem [2.2.14]

Theorem 3.2.4. If the matriz A is positive semi-definite and for each

s €S the limy_,o0 agf,) = a'®) exist, then

log Z log Z
lim 222N — im E OgNN = inf Pg(x), P— a.s.

N—oo N N—o0 a:eMg

where Pg(x) is the S-dimensional Parisi functional defined in (3.2.9).
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Before the proof of this theorem and the related results, let us start with
some comment on the previous statement. First, the infimum is taken over
r,m,I" defined The non-negativity assumption on the matrix A is in-
dependent of aﬁ’ and much more important, is a fundamental point in the
application of the interpolation method (see Appendix to prove the lower
bound. Basically, is the same reason that restricts the Talagrand’s proof [19]
to even p-spin models. The second assumption say that the ¢.I. is to be un-
derstood with constant, at least for NV large enough, relatives densities between
the species.

We notice that statement contain two non trivial hidden results, namely
the existence of the t.I. of the quenched pressure density and the almost surely
convergence of the random pressure density N ! log Zy to this limit. The almost
surely convergence of the pressure density is a classical result in Spin Glass
theory. Since is based on the concentration of gaussian measure [I7], it holds
for a large class of spin glass models, including the MSK model and we refer
to the above reference for the details. The existence of the t.I. of py will be
proved in the next section. We stress the fact that the ziggurat ansatz forces the
joint overlap distribution to have a very special structure. In [109], the author
proved that the previous bound is exact, showing that this structure in fact

encodes all the information of the model.

3.3 The existence of the thermodynamical limit

In this section we prove, under the assumptions of Theorem [3.2.4] the ex-
istence of the thermodynamic limit for the quenched pressure density
when, Vs € &, the limit N — oo of the relative densities ag\?) exist and
equal to some fixed a(®) € (0,1). In order to lighten the notation from now on

we denote the relative densities with their own limit a(®).
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Theorem 3.3.1. If the matriz A is positive semi-definite, then

ngn PN = SuPpNa

where the limit is taken at fized densities.

39

The strategy of the proof follows classical Guerra-Toninelli arguments. Let

us consider two non interacting and 7.7.d. copies of the original system defined by

the Hamiltonian (3.5]) of sizes respectively Ny, Ns. Clearly this implies that we

have to consider Vs € S the relative subsets AS{?E,AS{Z defined by the equations

B.3), 3.3), and such that
AU =AY
AY N Ags; = @,
IV
AN =
N® 4 Ngs) - N(s)‘

More explicitly, we can define, Vs € §, the following

AY =1{1,... N®},
AP =1{1,... NP,

AR = (N 11, N
Consider the following interpolating Hamiltonian

Hy(o,t) = ViHy (o) + V11 t(HNl(a) + HN2(0)>

where
HNl( § Uzgja
7, ]EANl
HNQ( E Uzo-jv

’L]EAN2

(3.32)
(3.33)
(3.34)

(3.35)

(3.36)

(3.37)
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and where Ji(jl) and Ji(f) are two independent families of centered gaussian de-

fined by

E(J TS0 = 6,00, A2 1{i € AR 11{j € AR}, (3.38)

ig “ilj
for each a € {1, 2}.

As usual we consider the interpolating pressure
Py(t) =Elog Zy(t) = Elog Y _ ay(o, h)e 1, (3.39)
whose boundaries values are

Py(1) = Py, (3.40)

PN(O) = f)N1 + PN27 (341)
since ZN = E]\h U EN2 and ZN1 N ZNQ = @

Proposition 3.3.2. Let us denote by Qn¢(-) the replica Gibbs state (3.20))
associated to the interpolating Hamiltonian (3.35)). The t-derivative of the in-

terpolating pressure is

%PN<t) = _gEQN,t (QN):
where
Qn(o,7) = (qN,AqN> — %(qu,AqM) — %(qNQ,AqNQ), (3.42)

and the vectors qu,,dn, are defined as in (3.13)).

Proof. The computation of the t-derivative works essentially in the same way

exploited in Proposition with the following identifications:
i—o0, a; —an(oh), U;— Hy(o), U; — Hpy, (o) + Hn,(0)

The key ingredient is that the diagonal term vanishes by the condition N =
N1+ Ns. m
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Combining the Fundamental Theorem of Calculus and the previous propo-

sition we have that
N 1
Py =Py, =Py, = =5 / dtIEQMt(QN). (3.43)
0
To finish the proof is sufficient to show that
Proposition 3.3.3. If the matriz A is positive semi-definite, then
Qn(o,7) <0 (3.44)
for every o, 7 and N.

Proof. First at all, we write some fundamental relations.
By definitions (3.10)), (3.32)), (3.33)), (3.34) we have that Vs € S the following
hold

N N N
NG (0,7 =3 007 =3 6l 1 3 70
i=1 i=1 NG 41
then
(s) (s)
(s) Ny (s) Ny (s)

qy (o, 7) = NG I (o,7) + NG I (0,7).
Now we observe that the condition of fixed relatives densities implies that

NY NP NN aON N
N& Ny, NON  a&) N N’

and in a similar fashion

N Na
N@& N’
then Vs € S the following holds
i (0,7) = a0, 7) + N2, 7). (3.45)
In vector notation we can write
Ny Ny

= — — . 3.46
an N qn; + N an, ( )
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It is easy to see that if A is a positive semi-definite, real, symmetric matrix,
hence the function

X — <x, AX)

defined for x € R® is convex and the conclusion follows straightforwardly from

the relation (3.46)). O

The last proposition, combined with equation (3.35]) gives immediately the
superaddivity property of the pressure. As a consequence, since the quenched
pressure density is bounded from the annealed one (see the next section), then

by Fekete’s lemma we get the statement of the theorem.

3.4 The annealed bound

As a first analysis we can study the annealed approximation for the pressure
and investigate in which case it is exact. Using Jensen inequality and the
concavity of the function = — log(z) we define the annealed approximation as
a bound, i.e.

1 1
DN = N]Elog Zn < NlogEZN = iy (3.47)

We can easily write p4 as

1 - lea 1 1 o,0 ]- N
ph = Nlog;Ee HN():NIOgZU:eQCN(,):Nlogza:e2(l,Al)

1
= log2+ 5(1, Al). (3.48)
We define the ergodic regime as the region of the phase space in which

.1 .1 1
lim N]Elog Zn = A}gréo N logEZy = p® = log 2 + 5(1, Al). (3.49)

N—oo

For this purpose a classic application of the Borel-Cantelli lemma imply that
it’s enough to investigate the second moment, hence checking when

E(Z%)
E*(Zn)

<C <o (3.50)
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for some constant C' € R, uniformly in N. Since

E(Z3%) = EZQ_HN(O')_HN(T) — ZG%]E(HN(U)-FHN(T)F (3.51)

o, T

— Z eN(LAL+(an,Aan)) EQ(ZN)Q_QN Z eNlan,Aan)

o,T o, T

and using the gauge transformation 7% — 7%,

E(Z%)
EQ( ZN — 2 QNZG mN AmN( )) — 2—]\7Z61\7(1111\1(7’),AIHN(’7'))7 (352)
where we define my(7) = <m§3)(7—)>ses7 with mgv)( ) = 7 2 ? Z-S.

det A > 0 we can linearize the quadratic form with a gaussian integration

E(Z%) B 2N
E2(Zy) B vdet A

1 - o [ V2N
= @g%(%A 'z) Hcoshm ) ( Z(S))

Az _1(an-1) Y VN emy ()

detA ) 27 s Nt
_ 1 [dz o~ 3(@A712) Yies N log cosh (25 =(*) (3.53)
det(A) 2

and, using the inequality log cosh(z) < % we obtain

E(Z% ) _ 1
F2 ZN /—det / 5_¢€ 2 (3.54)
where we have defined
A=A"1—2a" (3.55)

and the diagonal matrix a = diag({a®},cs). Thus we have just proved the

following

Theorem 3.4.1. In the convex region, defined as det A > 0, as soon as A
1s positive definite, the pressure of the model does coincide with the annealed
approxrimation, i.e.

1 1 1
p= lim N]Elog Zn = hm 1 logEZy = p” =log2 + 5(1, Al).  (3.56)

N—oo
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Remark 3.4.2. Note that such a region does exist and can be viewed as an high
temperature region. The two regions det A > 0 and A > 0 have a non-zero
measure intersection, because, while the first is a condition on the relative size
of the covariances, the latter is related to their absolute amplitude. Indeed once
fixed @ and A satisfying det A > 0, we can rescale all the covariances with a
parameter 3, which play the role of the inverse temperature of the system, i.e.
Ay — BAsy, Vs, s € S, leaving the relative sizes unaltered and the condition
det A > 0 is still satisfied, such that A — B7SA™' — 2! is positive definite

for 8 small enough [

3.5 The Replica Symmetric bound

In this section we show the simplest application of the RSB sum rule (
Theorem introduced in the next section). Namely we obtain the so called
RS bound.

The underlying idea is to compare the overlap vector with a trial vector,

Qtrial = (q(s)) . (3.57)

seS

We define the trial replica symmetric solution as

1
pRS(qtmal IOg 2 + Z a qtmal + = ((1 - qtrial)u A<1 - qtrial)>7 (358)

seS 2
where
2
p(s)(qmal) = /du(z) log cosh <\/m775 (Aqm-al>z + h(8)>7 (3.59)
and

z~N(0,1).

Setting r = 2, my = 0, mg = 1 and q; = Qi in Theorem we obtain
the following:

2Since A is positive definite then also A™'. Defining @ = max, a(®) and p the smallest

eigenvalue of A™!, then, for any non-null vector z, (z, Az) > (B %p—a)(z,2) > 0if B% < p/a.
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Proposition 3.5.1. The following sum rule holds

1 1
PN = Prs(Qtrial) — 5 / EQn ((CIN — Arial), A(dy — qmz))dt. (3.60)
0

Moreover, if the matrix A s positive semi-definite, then the following bound

holds

PN < Prs(Qtriat), (3.61)

whose optimization gives

pn < inf prs(Qeia)- (3.62)

Qtrial

The optimization of (3.62)) on g, gives a system of S coupled self consistent

equations, i.e. Vp € 8

S A, [ [ dnte)ant (\/ P A7) - q“’] —0, (363

seS

This system admits a unique solution as soon as det(A) # 0, thus whenever

det(A) > 0, prs(Qiriar) has a minimum in qy., = q satisfying Vs € S

0= [ttt ([ P(8%)2) = Pu@h,  (360)

als)
The last equalities can be easily checked thanks to the factorizability of the
one-body problem at t = 0. In other words, the value of qy.;o; minimizing the
overlap’ s fluctuations of the original model (at ¢ = 1) is just the overlap’s mean
of the interpolating one-body trial at ¢t = 0.

Let show now how the replica symmetric bound violate the entropy positivity
at low temperatures. Mirroring the scenario of the SK model, we can easily
check that the replica symmetric expression for the pressure is not the
exact solution of the model in the low temperature region by studying the

behavior of the entropy. We can define it as the non-negative quantity

N—o0

S(A) = Tim sy(A) = —%EZQN(J, A)log(G (0, A)), (3.65)
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where Gy (0, A) = Zy'(A)e Hx(@A) is the Gibbs measure ([3.16]). Notice that,
unlike before, we have write explicitly the dependance on the matrix A . Since

sn(A) = pn(A) — +(H(0))n, we can write

S(A) = p(A) VNI (3.66)

- ap(

Now we can define sgrs(A) = prs — %pRS(/\A)L\:l- We can easily show that
if the amplitude of the covariances is large enough, sgpg(A) is strictly negative.

Indeed, we have the following

Proposition 3.5.2. In the regime of large covariances (low temperatures), the

RS-entr opy 18 Sty thly negative, 1.€.
lim s BA) < O,
RS( )

for any choice of A with (det(A) > 0) and o, where § € R plays the role of

the inverse temperature.

Proof. Using its definition

0

srs(BA) = prs(BA,q) — 5PRS()\BA, q)|r=1-

We note that, using (3.64)), in the limit § — +o0, the optimized order parame-
ters @ — 1. Explicating the derivative it is easy to see that
2

Jim_ss(38) = tm ~2((1- @), AL~ ) <0

Finally we can state that the limit is strictly negative, using again (3.64]) and
noting that

Jim B0 =) = tim 6 [ dn(e) (1 v (3 757 (8a)2)
G,
ﬁR(Al)
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The existence of a negative RS-entropy regime is a clear signal that the
model is not always replica symmetric (certainly it is RS inside the annealed
region defined in Theorem but there exists a region in which the pressure
p(A) is strictly lower than its RS bound pgs(A). The region of validity of the

replica symmetric solution in the SK model is almost fully characterized in [18§].

3.6 The Broken Replica Symmetry upper bound

Keeping in mind the definition of the S-Parisi functional Ps(x) given in

section [3.2] the goal of this section is to prove the following relation:

Theorem 3.6.1.
1 1
py = Ps(x) — 5 Z(mz+1 - mz)/ dt<(QN —a), Aay — CIl)> . (3.67)
— 0 Nt
where (- )i+ 1S a quenched state associated to a suitable interpolating Hamil-
tonian.
Moreover if the matrix A is positive semi-definite we have the following

bound
DN S <@S(I)?

and the optimization gives

pn < inf Pg(z).
zeM

It is enough to show that (3.67) holds, then we have straightforward con-

clusions. The strategy is to apply the RSB interpolation scheme introduced in
Appendix

We define the interpolating Hamiltonian as
Hy(o,t) := VtHy(o) + V1=t Y  H\(o,q), (3.68)
=1

with

o.q) =Y Hy"(o!) q (3.69)

seS
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where Hy (o) is the original Hamiltonian and, for each [, Hj@(s)(a(s), q;) are two

independent one-body interaction Hamiltonian, defined as

s 1 1,(s) _(s)
HY (o), qy) \/_\/ ql—qz_l)) — > o (3.70)
al?) ieAly

where the J’s are Gaussian 1.i.d. r.v., independent of the other r.v., such that

for every [, s and ¢+ we have that

E(JF) =0 (3.71)

and

E(JX T = 508,060 (3.72)

i’

After simple computations, we get
E(Hzlv( (o9, ) H"™ (7)), QU)) = 0055 2N Py <A(QZ - CIl—1)>Ps (qN>
and then by the covariance matrix of the trial Hamiltonian becomes
E<H (0, QI)H (T, QZ/)> = 511/2N<(QZ - qlfl)quN>-

Keeping in mind Proposition [7.2.4] we introduce the RSB interpolation

scheme with the following identifications:
i — o0, a; — ayn(o,h), Uy — Hy(o), Bl — H\(o,q)

and we define the interpolating pressure as

pn(t) == %Elog Zo,N(t). (3.73)

It is easy to check that the boundary values of py(t) are

pn(1) = pw, (3.74)
pv(0) = log2+ Y ol f(0,n), (3.75)

seS
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where £ (u(®), h(*)) is the solution of the Parisi’s PDE ([3.29).

In order to apply the interpolation argument we have to compute the ¢t-derivative
of the interpolating pressure. A simple application of Proposition leads to
the following

o) 1 1 <
apN(t) =—3 (1, Al) ~3 ;(mm - mz)< (qN,AqN) - 2(QN7AQI> >N’l’t.
(3.76)
To finish the proof of the Theorem, simply add and subtract the term 5 > (my41—
my)Q; where @ = (ql, Aql> and observe that

T s

_%<17 A1> + % Z<ml+1 — ml)Ql = Z(ml+1(Ql - Ql)

1=0 =0

N —

The integral representation is given by the following

Proposition 3.6.2. The following representation holds

—%(1, Al) + % i(mzﬂ - mz)(Qz, qu) = —%/flu z(u) Vy <ua Au) ~du.

r

Proof. We can use the explicit definition of z(u) given in ({3.24)) to check that

T

(M1 — ml)/F Vau <u, Au) -du

=0

where I'; is the result of the action of the §’s on the path f, that is his component
between the points q; and 1. By the Gradient’s Theorem, the integral is path
independent and is equal to the increment of the potential function, that is the

desired result. ]

Finally, combining (3.74)), (3.75)), (3.76) and Proposition the proof of

(3.67) is a simple application of the fundamental theorem of calculus.
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3.7 The lower bound and the synchronization

In [109], Panchenko proved that in fact the upper bound given in the previous
section is exact showing that it is also a lower bound for the limiting pressure
of the MSK model. The strategy of the proof is similar to the one given in
[16] for SK model . In particular, it is based on the Aizenman-Sims-Starr
scheme [24] variational principle together with the Ghirlanda-Guerra identities
and related ultrametric property. In particular, the show that one can construct
a multi-species version of the previous these identities which imply the so-called
synchronization property [£.5.6, by consequence the overlap between different
species are strongly correlated. We suppose that the reader is familiar with these
concepts, otherwise a detailed description is given in Chapter 4| an references
therein. In this section we only sketch the main idea behind the Panchenko’s
proof and we refer to the original work for the details.

First of all, the reader should keep in mind all the quantities involved in the
construction of the S-Parisi functional P¢(x) 3.28] and the order parameter
T , namely the non decreasing sequences my, ql(s), Ql(s) and (); defined in
[B.:2.1] Tt’s possible to show that, for any choice of the above sequences, the
corresponding S-Parisi functional can be rewritten using the Derrida-Ruelle
Probability Cascades (usually denoted by RPC) [116], [16]. Here a sketch of the
construction.

For a given r > 1 and & := (ay,...,q;) € N, let (vq)aen be the random
weights of the RPC associated to the sequence m = (my);—1._, (see for example,
section 2.3 in [I6] for the definition). For each 1 < [ < r, let us denote by
a; = (a1, ...,0q) the first [ coordinates of .

For each s € S consider two independent gaussian process C*(a) and D(a)

indexed by e € N” with covariance matrix given by

EC*(a")C*(a?) = QU] (3.77)

alAa?

ED(a')D(a?) = Qo pa? (3.78)
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where a' Ao? :=min{0 <I'<rlof =af,...,a =of, a7, # aj,}.

We notice that QSB ro2 and Qqipq2 are random variable w.r.t. the RPC
random weights, taking values respectively in the sequences Ql(s) and Q).

Let o® ( don’t confuse it with the RPC weights) be the relative density of
the species s and suppose for the moment that is a rational number. Let us

consider a finite set of natural number I = |J,_¢ I, where I, are disjoint sets

seS
1|

such that for each s € S, ]

= a(®). For each s € S and i € I, let C;(x) a copy
of C*(a') and suppose that all these process are independent each others.
Now using the invariance properties of the RPC ( Theorem 2.9 in [I6]) one

can prove that

Pg(z) = ﬁ(Elog Z Vo) H 2 cosh(Cj(ar)) — Elog Z Vo) €xp( |I|D(a))>
aeN" <N aeNT
(3.79)

The connection between the previous representation of the S-Parisi func-
tional and the pressure of the MSK model is given by the so-called Aizenmann-
Sitmms-Starr scheme or cavity method.

Let us start observing that one can consider small changes of the relative
densities (ay)ses since they don’t affect both the pressure for large N and the
S-Parisi functional (see definition . Thus, without loss, we can assume
that all o, are rational: .

(s) — 28 3.80
ol = (350

for some integers k; < k, that is we suppose that N(s) = nks, and N = nk for
some integer n.
Let us recall the following statement contained in the Stoltz-Cesaro Theorem

[115]:

Lemma 3.7.1. Let (a,)n>1 and (by)n>1 be two sequences of real numbers. As-
sume that (by,)n>1 is strictly increasing and approaches +o0o. Then:

. . (7% . . Un+1 — An
liminf — > liminf ————
n—oo b, n—00 bn+1 — b,

(3.81)
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Let py be the pressure densities of the MSK model defined in (3.22)) and,
for a fixed k in (3.80)), we set

an, = ZElog Zi(+1) — Elog Zy;, b, = nk

§=0
with the convention Z; = 1. Applying the previous lemma we get the

following basic relation

1
liminf py > z lim inf Elog Zj (1) — Elog Zg, (3.82)
n—oo

N=oo

The r.h.s. of quantify the effect on the system of the addition of k
spins. This kind of argument in physics is called cavity method. The gain is
that the difference between Zy. and Zy can be rewritten as an expectation
w.r.t a suitable Gibbs measure.

First, let us consider the r.h.s. of for a fixed N = nk and consider a
partition [ of the k£ new spins, namely

I'={N+1,. . N+k}=|]JIL
s€S

into different species, so that || = k.

Using standard property of the gaussian process, one can write, up to terms

of order o(1)

Elog Zynt1)—Elog Zy, = Elog )y < H 2 cosh (zNﬂ»(a)—l—hi)) —Elog )y ( exp (yN(a))>
“ (3.83)
where for each s € S, h; = h*1{i € Ag\s,)} and 'y is the the random Gibbs
measure associated to the a slightly modified Hamiltonian H}; defined as
Hy(0) = 2y (o)
and Hy (o) is the original Hamiltonian of the MSK model defined in[3.5] The

quantities zx;(0) and yy (o) are gaussian process independent of each other and
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the randomness of HY, thus they are determined by their respective covariance
matrix. For any s € § and each ¢ € I,

2
EZNz ZNz = ZZA (p) ) = m/]){g(AQN) +O(N_1> (384)

peES

where qy is the overlap vector defined in m The process zy (o) is usually
called cavity field, while yy(o) is called fugacity and it is determined by
EyN =k Z AQ (p) (p)(o. T)qg\i)(o-’ T) = (CIN, AqN) + O(N_l)
s,peS
(3.85)
As usual, for [,I’ > 1 and each s € S, consider two spin configuration

ol, 0" € ¥y and let us consider the overlap matrix

RN = (RN, s, 1= <q§;>(gl,al’))”/>l. (3.86)

One can prove (Theorem 1.3 in [16]) that
Elog QY ( H 2 cosh (2, (0) + h1)> — Elog )y ( exp (yN(a)))
i€l

is a continuous functional of the distribution of the random array

RN = (Rff,’,(s) (3.87)

)l,l/>1,s€8

under the measure EQ.
The basic observation is that the r.h.s. of (3.79) and (3.83]) have the same
structure. Indeed, the S-Parisi functional is expressed, trough (3.83), as a

functional of the random array

Q= (QSZ)/\al’)l,l’21,seS (3.88)
(3.89)

In other words, ) is the analogous of the overlap array R and the RPC

random weights v, play the role of the random Gibbs measure. Since the r.h.s.
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of and are expressed by the same functional, it’s ”enough” to prove
that the, for large N, the distribution of Ry under E) can be approximated
by the distribution of () under v,, for a suitable RPC. This approximation imply
that

1
z lim inf Elog Zy(m41) — Elog Ziy, > Pg(x) > inf Pg(x)

n—oo

that together with (3.82), gives the desired lower bound for the pressure of the
MSK model.
The main issue in the proof is that, we have to understand the (joint) dis-

tribution of the overlap array RY. Let us start with following observation. For
(s)

aingl Comes from o' A @ which is the hierar-

all s € §, the randomness of )
chical address of the same RPC, then they are deterministic function of the
same random variable. Thus, the joint distribution of the array ), is uniquely

determined by the law of the entry:

P{Qf% = Ql(s)} =My — MYy (3.90)

forse Sand 1 =0,...r.

Upon reflection, one can realize that this strong correlation is the essence of
the particular structure of the order parameter . The point is that, roughly
speaking, since we want to use () to approximate Ry, we have to make sure that
Ry share the same property, namely that Rf?;’,(s) are deterministic functions of
a single random variable. This is precisely the content of the synchronization
property described in Theorem [4.5.6]

The main idea follows the line of the simpler case of the SK model. Namely,
we add some perturbation to the original Hamiltonian in a such a way that,
without effects on the t.I. of the pressure, we force the limiting law of R (
for each subsequences without assuming of the existence of the limit) to satisfy
the Multi-species Ghirlanda-Guerra identities|4.5.5/and allow us to use Theorem

4.5.6. Thus, let us consider the total overlap of the system
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Ry =Y R, (3.91)

SES

and the array

R = (Riy)irs1 (3.92)

then, by Theorem , for all s € S, there exist non-decreasing (1/as)-
Lipschitz functions L, such that R®) = L,(R) almost surely for all s € S and
all [,I’ > 1. Moreover R can be generated by a suitable RPC.

We would mention that there are several technical issues in the control of
the sequences involved in the proof, since basically, we don’t know the existence
of the limit and then we have to work with subsequences and approximation ar-
guments. An interested reader can consult the original work [I09] and reference

therein for the solution of this important part of the problem.
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Chapter 4

Factorization properties of Spin

Glasses

One the most important properties of Gaussian Spin Glasses is as set of iden-
tities which involves the t.I. of the quenched Gibbs measure called Ghirlanda-
Guerra identities|[76]. These follows from two general properties of Spin Glasses:
the Aizenman-Contucci stochastic stability [22] and the concentration of gaus-
sian measures [8]. In this chapter we give a proof of these identities for a large
class of models. The first section shows the underlying physical ideas, section
2 contains the main results and their proof. In section 3 we illustrate the deep
consequences of these identities which are essential in the proof of the lower

bound of the pressure for the MSK model given in section [3.7]

4.1 The concept of stability

Let us first illustrate the statistical physics ideas that we are following. The
factorization laws that we deal with can be understood as consequences of a
simple stability method. Stability in Statistical Mechanics works by identifying
a small (yet non-trivial) deformation of the system, prove that in the large

volume limit the perturbation vanishes and, by means of the linear response

57
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theory, compute the relations among observable quantities. This method leads
to interesting consequences and applications because it reduces the a priori
degrees of freedom of a theory. Following the ideas developed in [61] one starts
considering a deterministic spin glass glass model on a graph with vertex
set A ={1..., N} and generic Hamiltonian Hy. For any bounded function f
of spin configurations o € Xy let us denote by py the counting measure on Xy,

namely
pn(f) = %Zf(a), (4.1)

and defines the equilibrium state

pv (fe M)
S AL — 4.2
w,&N(f) [LN(G_/BHN) ( )
By considering the Hamiltonian per particle
Hy(o
(o) = T17) (43)

the classical perturbed state is defined by

—Ahpn
S = 2P, (1.4)

Since the perturbation amounts to a small change in the temperature

A
Wi () = sz () (4.5)
one has that, apart from isolated singularity points, in the thermodynamic limit

dw (f)
8,N

— 0. 4.6

) (4.6)

One may appreciate the content of the previous property by showing that it

implies, for the Curie-Weiss ferromagnetic model in zero magnetic field, the

relation

wp(01090304) = ws(o109)* . (4.7)

Hence, although the magnetization itself may fail to concentrate due to a spin-
flip symmetry breaking, the square of the magnetization does concentrate in

the thermodynamic limit.
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The previous approach leads to the concept of Stochastic Stability when ap-
plied, suitably adapted, to the spin glass phase. Consider, for smooth bounded

function f of n spin configurations, the quenched equilibrium state

>, flo)e PN
< f >3 N= E ( Z o—BHx(0) . (48)
Define the deformation as:
N < fe A >
S s e (4.9)

We observe that the previous deformation is, unlike in the classical case, not a

simple temperature shift. In fact:
E <za f(a)e—(BH/N)HN(o))

N _ >, e PN )
<f ZBNT S, e BH/NHN () ; (4.10)
E ( Zo- e*BHN(o') )

nevertheless, the system is still stable with respect to it in a sense that will be
made precise in the following sections and is essentially captured by saying that

apart from isolated singularity points, in the thermodynamic limit

d
o< f >/(3A73V—> 0. (4.11)

Moreover the previous stability property implies (by use of the integration by
parts techinque) that the following set of identities (Ghirlanda-Guerra), first
derived in [76], holds:

1
<fern >pn=— < f>pn<en >pn (4.12)

1 n
+ = E < fcij >8,N
nj:2 f 1j < B,N

where the term ¢ ,4; is the overlap between a spin configuration of the set
{1,2,...,n} and and external one that we enumerate as the (n + 1)-st, and ¢y ;
is the overlap between two generic spin configurations among the n’s.

The proof ideas can be easily summarized by the study of three quantities
and their differences which encode the fluctuation properties of the spin glass

system:

E [w(Hy)] . (4.13)
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E [w(Hy)?] | (4.14)
E [w(Hy)]” . (4.15)

The result is obtained by two bounds for constants 6%) and 65\2,) vanishing in the

N — oo limit:

e bound on averaged thermal fluctuations
E[w(H2) — w(Hy)?] <N (4.16)

obtained by stochastic Stochastic Stability method (see [22]) by showing
that the addition of an independent term of order one to the Hamiltonian

is equivalent to a small change in temperature of the entire system:

6HN(O') — BHN(O') + \/%FIN(O') (417)

ﬁ%\/ﬂ2+% (4.18)

e bound on disorder fluctuations

U =w(Hy) (4.19)

E(U?) —E(U)? <IN, (4.20)

which is the self averaging of internal energy and can be proved from self
averaging of pressure (with martingale methods [13] or concentration of

measures [18]).

In the following sections we show how to use the previous ideas to obtain a
stronger result, namely the validity of the previous properties in distribution

for quenched probability measure of the Hamiltonian covariance.
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4.2 Definitions and preliminary properties

The class of models we chose to work includes the most general spin glass in
d-dimension in the following sense. Physical particles in fact, beside interacting
in pairs have always higher order interactions, i.e. they interact in triples,
quadruples etc. (see [0]). Thus, during this section we leave the framework of
models o graphs in favour on a more general one.

Given a lattice in dimension d, for example Z? we consider, for each finite

set A C Z¢, an Hamiltonian of the form

Hy(o) = = > Jaxox. (4.21)

where ox =[], ¢ 0. and where all the random couplings J, x are independent
centered Gaussian random variables with E[J} y] = A3 y for some nonnegative
constants (Ax x)xca.

This class of models includes also all the Spin Glass model introduced in the

previous chapters.

Example 3. e The Edwards-Anderson model [EA]. The nearest neighborhood
interaction is a two-body (pair) interaction then, first at all, A?\yx = 0 unless
| X| = 2. Next, we take A} x = 1 if X = (n,n) and |nn| = 1 and zero otherwise.
e The Sherringhton-Kirkpatrick model [SK]. Although it is not a finite di-
mensional model it may still be embedded in Z setting |A| = N. Next we take
A% x = NV if [X| =2 and A} x = 0 otherwise.
o The Multi-species SK model [MSK]. The same as the SK model with the

suitable conditions on A%, y.

The thermodynamical properties of the previous models are encoded in nor-

malized covariance of the gaussian process.

1 1 )
calo,T) = WE[HA(U)HA(T)] = W);\AAXO’XT)(. (4.22)

We will often refer to this quantity also as generalized overlap.
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The condition for existence of the thermodynamic limit (in the sense of

Fisher) called “thermodynamic stability” is:

1
sup — Z Alx < e < oo, (4.23)

ACZ4 ’A‘ XCA
see [60), 13].
In order to introduce the necessary language to illustrate our results we start

by the following:

Lemma 4.2.1. Let ¢y and ¢, be two normalised covariances of Gaussian spin
glasses satisfying the condition of thermodynamaic stability. Then the same con-
dition is satisfied by the normalised covariance obtained through the operations

below:
o ) + c), entry-wise addition
o 22cy for each v € R, scalar multiplication
o cpCy, entry-wise multiplication.

Proof. We first observe that the three considered operations define new covari-
ances, in particular the last covariance is sometimes called the Schur product,
Hadamard product or Schur-Hadamard product and is semidefinite positive by
a lemma of Schur.

The conditions of thermodynamic stability for ¢y and ¢ are

supcp(o,0) < oo and  supcy(o,0) < o0,
A A

and immediately imply that
suplea (0, 0) + ¢y (e, 0)] < oo,
SlipJZQCA(O', o) < oo and
sup e (o, o)y (0,0) < 0.

A

The explicit inversion formula from the covariance to the Hamiltonian can be

seen from Chapter 2 of [13]. O
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The previous lemma says that the set of the thermodynamically stable co-
variances is closed under the three operations defined.

By the previous lemma, starting from the Hamiltonian we can al-
ways construct a thermodynamically stable Hamiltonian, that we call complete
Hamiltonian, defined by
Hy(o:8) =Y (Vo) P BHY (o), (4.24)

p>1
where Hl(xl)(a) = H)(0) is the Hamiltonian (4.21)) and each p-term in the sum

has a normalized covariance
P(o,7) = [ealo, 7P

and the family of parameters § = (/3,),>1 is such that 8, > 0 for every p and
fulfills the condition

Zﬁ;=5<oo

p>1

A simple computation shows that the complete Hamiltonian has a covariance

enlo,7) = (&) PBllenlo )]

p>1

and is thermodynamically stable with constant c.

Example 4. If one start with a simply one body random field, namely A = 1 if

| X | =1 and zero otherwise, thus applying the previous construction one obtains
the mized p-spin model (2.12)).

In order to facilitate the reader, let us briefly recall the general framework
for disorder spin systems introduced in section [1.2

Consider n copies of the configuration space whose elements are denoted by
ol,...,0" and, for every bounded function f : (¢',...,0") — R, we call the
random n-Gibbs state the following r.v.

Qup(f) = D flo'...,0MGas(c")...Grp(0™) (4.25)

ol,..,on
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where
exp(—Ha (0 3))
Yo exp(—Ha(o; B))

is the random Gibbs measure. In the previous formula the dependence on the

Grplo) == (4.26)

physical /3 is reabsorbed in the family of 3,’s.
We define the quenched Gibbs state as

(Fap :=EQp(f) (4.27)

4.3 Identities

Theorem 4.3.1. The model defined by equation satisfies with respect to
the covariance the following properties:

(1) It is stochastically stable in the strong sense, i.e for every power p € N

and for almost every (,, the following hold

A7 A8

lim <chp —2nfz +1+nn+1)fcﬁ+1n+2> —0, (4.28)
J#k

where for any number of replicas oM, 0@, ..., we denote by ¢k the quantity
ca(eW), 0™, and where we assume that f is a continuous function of all the

variables ¢y for 1 < j <k <n.

(11) It fulfills the Ghirlanda-Guerra identities (GG for short) in distribution,
i.e. the following identities are verified for every n > 2 and every function f of

(cj7k)?,k:1 as above, and every power p € N and for almost every 3.

n

1 1

Ah/HZld (fCZ+1,n+2>A, - n——l—l k:1<ch,n+1>A,5 - n——l—l <f>A,B<C€,2>A,ﬁ =0,
(4.29)

Moreover, let

p(B) == lim — logZexp ,3))]
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be the thermodynamical limit of the pressure.
If p(B) is differentiable in the [3, “direction” at the point B, = a then

(111) It is pointwise stochastically stable in the strong sense, i.e for every

power p € N and in each point B, = a, hold.

(1) It fulfills the Ghirlanda-Guerra identities in distribution pointwise, i.e
for every n > 2 and for every power p € N and in each point 5, = a, (4.29
holds.

Remark 4.3.2. we notice that since the function p(5) is convex in each B, then
it’s almost everywhere differentiable and then we have that (iv) = (ii), but in

the next sections we give an independent proof of (it).

Proof of Theorem 4.3.1 We fix an arbitrary p > 1 and to lighten the

notation we put:

By — @

> (Vo) FBH (o) — Ha(o)

k#p
(VO 7B HY (0) = Hi(0)
Then the Hamiltonian defined in (4.24)) becomes

Ha(038) — Ha(o;2) = Ha(o) + xH) (0)

To prove the theorem we recall a general result due to Panchenko [104]. Consider

a general Hamiltonian of the type
Hy(o32) = Hy(0) + xHj (o)

where x is a real parameter and the families (H (o)), and (H'(0)), are inde-

pendent jointly Gaussian families of centered r.v.s. of the type (4.21)). Suppose
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that the Hamiltonian are thermodynamically stable in the sense of (4.23)), that

is there exists a global constant ¢ such that

EHA(0)? < |Ale
EH,(0)? < |Ale (4.30)

Consider, the following basic quantities:
Zp(x) = Z exp(—Hy (o3 7))

pa(x) = ﬁ log Zx(x)

p(z) = Ali/(HZld Epa(x) (4.31)

Notice that existence of the limit in the last definition is ensured (see for exam-

ple [13]) by the conditions (4.30). We define Q4 ,( ) and ( )a, in the same way
as in (E23) and (2.

In the previous setting we have the following lemma:

Lemma 4.3.3. If we denote b/ (o) := ﬁ]—ll/\(a) the Hamiltonian density, then

we have that for every p1 < B

B2
lim <
A 74 B

R\ (o) — Qra (H(U)) ]> da =0 (4.32)

Aa

‘ B2 , ,
Jim, [ ([ro) = (o)

On other hand, if we assume that p(z) is differentiable at x = a, then

da = 4,
>A’a a=0 (4.33)

lim <‘h§\(0) — Qaa (h’(a)) (> —0 (4.34)

A 78 Aa

(o) = (ha(0))ra

Y NS
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It is easy to check by a simple integration-by-parts and a uniform norm
bound that the relations (4.32)), (4.33]), (4.34]), (4.35) implies the propositions
i),41),1ii),iv) of Theorem respectively. We notice that the propositions

i),11) are in almost every sense then in this case the proof of previous implica-

tion requires some elementary facts in measure theory which are explained in

Remark [4.4.4]

Proof of Lemma |4.3.3; The strategy of the proof is to control all terms
by the following estimation, which is essentially contained in Chapter 12 of [19].

Proposition 4.3.4. For every b > 0 we have that

(i) = ma ()}, < %A(r’b) 4 SEDy(a,b) (4.36)
<)QA,Q (h'(a>) — (H\(0))Aa >A7a < EDa(a,b) +EWa(a,b) (4.37)

where

Dy(2,0) := piy(z +b) — pi(v —b)
Wa(z,b) == %(IpA(fv+b)—EpA(fv+b)|+|pA(x—b)—EpA(x—b)|+|pA(fC>—EpA(fC>|>

Proof of Proposition [4.3.4, equation (4.37)): the function p,(z) is

convex. Thus for every b > 0 we have that

E(pA(x +b) — pA(x)>
b

pa(r +b) — pa(7)

paz) < < Wa(z,b)+ < Wa(z, b)+Ep) (z+b),

and then
Ph(x) — Ep)(z) < Wa(z,b) + Ep)(z + b) — Epjy () < Wa(,b) + EDy(2,0).

On other hand,
pa(z —b) + pa(x)

Ph(x) > —
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and then, after the same manipulations, we get
pa(z) = Epj(z) =2 =Wi(z,b) — ED(x,b)
Combining the two previous inequalities we obtain the following bound
P () — Ep) (2)] < Wa(z,b) + ED,(x,b) (4.38)
This bound give immediately , since

Jaa =B

The bound (4.36)) requires an extra work.

([0 (W) (B ()

Ph(a)—Eph(a)| ) < EWa(a,b)+EDx(a,b). ©

Proposition 4.3.5. Consider the quantity

Pa(x) = QA,x(

Pa(e®) = 1y (o))
then we have that
4 /!
V3 (x) < WPA(@
[ ()] < 8p)(z)

Proof of Proposition [4.3.5: During this proof we define for sake of sim-
plicity the quantity
Vii= By(0®) = Qe (M (0))

then we have that, for every [, m

Qe (V1) = W (Vin) = (V1) =0
O (Vi) = 0 (V) 0 (V) = 93, (V) =0
Ph() = A1 (1)
By Jensen’s inequality and the previous equations we can obtain the first

bound of the proposition, indeed

(@) < 0 (1) = 10®) ) = 20a((M - 13) ) < ki)
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The second bound follow easily by Cauchy-Schwarz inequality, indeed

[ ()] = I (

Ky (o) = By (0®)| (R (0) + 1y (0®) = 20 () ) ) <

A9

Vi Vol [Vi = Vo + Vo= Vil ) < 2/Al.(

)

<ol (V- 13)) s

The last proposition can be used to obtain

Proposition 4.3.6. Given b > 0 then

Q]EDA(CL, b)

Bl (w)] < /g +SEDs (0.1

Proof of Proposition 4.3.6: We observe that for t — b < y < x + b we

have
x+b
() — da )] / [ (0)|de
x—b

and then

[ (=) <2 [ wigona

The identity

2min) = [ untr [ (6a0) = a0

implies that

[¢a(x

dy‘

( A(@) = () ) dy]

and then Proposition [4.3.5] implies that

z+b
N / dy+8/ Pi(y)dy
[ale STNE L, AW

We can use the Jensen inequality in the first term of the r.h.s of the previous

relation to get

a@l <[y ([ shwan) v [ iay
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To conclude, we take the expectation and using again the Jensen inequality

and the obvious relation

x+b
/ Pi(y)dy = py(x +b) — pr(z — b)

—b

and the proof is complete.O

Proof of Proposition [4.3.4}, equation ([4.36]): To obtain (4.36]) we simply

observe that by Jensen inequality

<

and then by Proposition we get the desired result.O

Hy(o) = a((0))]), < ERa(a)

Aa

Now we are able to prove Lemma [4.3.3]
Proof of Lemma [4.3.3] We start to prove the equations (4.32)) and (4.34))
which give the stochastic stability.

First, using the convexity of the function ps(x) we can prove easily that

Dy(a,b) < %(m(a +2b) — pa(a +b) +pa(a — 2b) — pa(a — b)> (4.39)

It is easy to check that Ep(z) is bounded for every z, A and then for every
a,b, A we have that -
D
EDx(a,b) < 5 <o

. Then from (4.36]), using Fubini’s Theorem, we get the following bound: for

every b, f1 < B

!

and then

R\ (o) — Qn (h’(a)) ’> da < M\/%+ g [ Da(a,b)da

Aa B1
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I

(B2 — b B1) \/EJF SE(pA(Bz +b) — pa(Br 4 b) — pa(Ba — b) + pa(B1 — b))

M\(0) = 0 (1(0)) ) da<

Finally, we can use the limy o lim sup, »z« and the continuity of the function

z) to get (4.32).

To prove (4.34), we use the hypothesis of differentiability of the function
p(z) at the point x = a to get from (4.39)) the following

1
lim lim sup EDj(a, b) < hm < (a+2b) — p(a+b)+ pla—2b) —pla — b)) =0
(4.40)

and then we can bypass the intermediate integration to obtain from (4.36) the

following bound: for every a,b

<

Finally, we can use the limy o limsup, ~z« and relation (4.40) to get (4.32).

R\ (o) — Qaa (h’(a)>‘>A7 <1 iﬁ + 8ED, (a, b)

Now, we are able to prove the equations (4.33) and (4.35) which give the
G G-identities.

We already obtained the control of the quantity D, moreover a simple inspec-
tion shows that the quantity Wy (a,b) is strictly related to the self-averaging of
pa(x). Then it’s easy to check (see for example [60]) that the thermodynamic
stability condition ensures that there exists a finite quantity K(a,b,c)

which does not depend on A, such that:

1
blA|2

EWy(a,b) < K(a,b,c) (4.41)
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From (4.37) and (4.41)), we can obtain as before the following bound: for

every b, 51 < [

/;2 <‘QA’“ (h/(0)> — (W (0))na >A,ada <

E(PA(ﬁz +b) — pa(B1 + ) — pa(Ba — b) + pa(Br — b)) L E(B1. 520 0)

blA|2
where we have set K (831, 32,b,¢) := fﬁf K(a,b,c)da to lighten the notation.

Finally, we can use the lim; o limsup, »z« and the continuity of the function

p(x) to get (4.33).
Like in the previous case, the hypothesis of differentiability allow us to by-

pass the intermediate integration and then, from (4.37]), we have that, for every
a,b

<(QAva(h’<o>) — (W () a0

1
>A < EDa(a,b) + K(a,b,¢)——

b|A|2

Finally, we can use the limy_,olimsup, ~z« and relation (4.40) to get (4.33).0

4.4 Rate of convergence

We outline in this section a sharper version of a theorem that appears in
[19] and prove it with more elementary methods for the benefit of the reader,
following the approach developed in [22] [60].

As in Section 3, we consider
Ha(o;2) = Hp(o) +xH)(0),

where H) and H) are independent, and defined as in (2). The main theorem

in this section follows:
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Theorem 4.4.1. (a) Writing 'y = |A|7'H}, as before,

[

where ¢\ (o, d”) is defined to be |N| 7 |E[H} (o) H\(c")]|, and T, o max, - |c(o,0")].

2 =/
Az |A|

Hy(o) = Qe (W (0)

(b) For any z1 < x5

1 T2 N/Ty — 71 (E;\)B/zl
EHQxh’—h’ }d < 4 ,
— / o () = )] de < 4 (o ol + 2t ) o

(4.43)

4.4.1 Application: Distributional Stochastic Stability via

Perturbations

The quantitative version of the Ghirlanda-Guerra identities follows from

this.

Corollary 4.4.2. Suppose cy(o,0) = Ty for every o. Then for every non-
random function of n replicas, (IDXL) (oW, ... ™), with mazimum norm at most
1, we have the conditional expectation formula for one additional replica
O A Gl ) P8 .
i 2/ < T )
1 Az

=/
Ty — I CA

1 @2
= [ (R0 B0, o)) de?) + Rem
:BQ - xl x1 Az

for every pair 0 < x1 < o, where
n 1 |~y (oM, g®) dy(o,0
’Y[(\)(U(l)v""g(n)) B [Z A( red ) +< A(_’ )> ’
k=2 Az

and the remainder satisfies the bound

8 23/2

T / 2 2

where dp is a small parameter 65 = 1/(|A|ca).

4
512 R
AT e A

n|Rem| < (4.44)
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Proof. Let us define

R
Rem = / (<h’A(g<1>) (00, o)) = (), <<1>(A")(0(1)w-->0(n))>m> -

To — X7

By the triangle inequality and Cauchy-Schwarz, and the fact that H@&") lo <1,
we know that |ﬁe;1| is bounded by

1 T2 2
(5 ), )
T2 — 1 x1 Az

— B [|on 0 -

Ty — X1 Jqy
Using equations (4.42)) and (4.43]), this bound is at most @) (z; + x2)/2 times
the right hand side of 1) In other words, we have an upper bound on Rem

1/2

(o) = Qe (W (o)

plus

]dx.

which is at most @ (z1 + x2)/(2n) times the bound we claimed for Rem.

But Gaussian integration by parts implies that

n

G U CERN N ) S CNCER R S NN

Az
k=1

—nx <c’A(a(1), oty . (135\”)(0(1), . ,0(”))> :
Az

See for example Lemma for a similar calculation carried out in more detail.

A special case of this formula, obtained by setting ®™ = 1, also gives

— (W)ae = 2 [(cr(0,0)) e = (ch(0,0"))na] -

If we combine these two formulas, this allows one to rewrite Rem. If we assume
that ¢\ (0, o) is constant as a function of o, meaning there is a constant diagonal
covariance, then the k = 1 term of the first formula cancels with the ¢, (o, o) in

the second formula. Therefore, we get

o — x / 1 n+1
E=_ % / 2<|:CA(0-( Lo) o] g . ,0.<n>)> e de .
T Az

n(xe — x1) c\

Note that the measure z dz is %-d(mQ), writing the Riemann-Stieltjes differential

form d(2?) = 2z dz. Since

x2
/ d(2?) = 23 — 2% = (25 — 1) (21 + 29) ,



Chapter 4. Factorization properties of Spin Glasses 75

we also divide by an appropriate normalization %(:L‘l +x5) times ¢ /n to get the

bound for Rem from the bound on ﬁeE, which gives the result. m

As an application of this result, consider the following scenario. Suppose

that for each A, there is a given Hamiltonian H} with covariance
E[H} (o) Hi(o)] = [Alci(o,0"),

where we assume that ¢} (0, 0) = ¢} for all o, and we assume that ¢* = sup, ¢}
is finite, in order to satisfy thermodynamic stability.
By Lemma [4.2.1] we know that we may construct i.i.d. Gaussian centered

Hamiltonians H/(\p )(0'), for p=1,2,..., which are independent of H} and such
E[H (0)HY (o)) = |Al[h(o,0")]" .

For each ¢ > 0 and a real sequence * = (z1,xs,...) we define the perturbed

Hamiltonian
Lp
plet]p/?

Hy(o;@) = Hy(o)+ ) HY (o).

We denote by (---)5. the quenched multi-replica equilibrium measure with
respect to H§(o;x) and ¢y is a short notation for ¢} (o,0’). Then we may

prove the following corollary.

Corollary 4.4.3. Suppose that the sequence (e5) satisfies im|a|o0 [Al€} = 00.
Let X = (X1, Xs,...) be an IID sequence of random wvariables, each uniformly
distributed on [0, 1], all of which are independent of Hy and H/(xp) forp=1,2,...
and all A. Then for almost every choice of X we have stochastic stability in
distribution: for each n,p € {1,2,...},

n

: 1 1 n
IAlllinoo Iél(%(/ < <[cl’"+1]p T Z[Cl’k]p n <[cl’2]p>A,e,\X> o )> =0,
Aepa X

k=2

/
where maxgy,

satisfying || ™| < 1.

, is the mazimum over all non-random functions ®™ (cW, ... ™)
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Proof. In order to prove this, for a given p, we merely split up the Hamiltonian:

Hp(o;ex) = Ha(o) + xp,Hy(0) =: Ha(o;2,),

where
HA(U) - HA(O) + 6; k[E*]k/2 HA (0)7
k#p
and
H\(0) = ——— HP (o)
A plerpl2 A

With this definition, we have ¢, (0, 0’) = ;—Z [ch (0,0")]P but the constant prefac-
tor has been explicitly taken into consideration in Corollary [£.4.2|by normalizing
by @,. It does enter into the definition of the remainder in through the
small parameter which is

1 2
L.
[Alcy T exlA

oA

That is why we required |AleA — oo, because this guarantees dy — 0, as is

needed. O

Remark 4.4.4. Note that technically what we proved is that for any open inter-
val for x, in [0,1], if we average the distributional stochastic stability equation
over that interval, when integrated against the measure x dx, then we obtain

zero in the limit. On the other hand, the quantity in question is

< ([c’g(a“% ) R B AN ) R Y a’>1p>A,6AX) <I><“>>

n
k=2

and this is bounded for every x by 2[¢;\]P. Then by standard arguments from
measure theory, we may conclude that for almost every choice of x with respect
to the measure du(x) = 2vdr = d(z?), the quantity is also zero. But this
measure 1s equivalent to Lebesque measure in the sense that they are mutually
absolutely continuous with respect to each other. So the notions of measure zero

sets are the same.
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This means that letting X, be random, then for almost every X, we have
the stochastic stability formula for the pth power of the overlap. But, firstly, we
note that we may rigorously take an infinite number of 7.7.d. uniform random
variables X = (X3, Xs,...) by Kolmogorov’s principle, and secondly that the
measure is precisely the product measure for all the X,,’s. Therefore, knowing
that for each X, we have the stochastic stability condition for almost every X,
by definition, this means we have the stochastic stability condition for all p for

almost every X.

4.4.2 Proof of Theorem [4.4.1]

In the proof of Theorem we will condition on Hy (o) in order to elimi-
nate the need to consider it as random. But we will do this implicitly. If desired,
simply interpret all expectations as conditional expectations, conditioning on
Hy(o).

The proof will be obtained by combining several lemmas. First, we note

that by usual calculations as in elementary statistical mechanics,

d

%pA(x) = _QA,x(hZX)u (4.45)

as has been used already in Section 3. Moreover, by performing Gaussian

integration by parts, we may deduce this:

Lemma 4.4.5. For any x

d

—Elpa(z)] = —(h)ae =

dr <C;\ (07 J) + C;\ (0/7 OJ) - 20;\ (07 OJ)>A,$ : (446)

(GRS

Proof. Since A is finite, the derivative exists and we may write

d

%E[pz\(l')] = E[Q.(h})]

by using (4.45). Recall the definition of Q4 , as well as Gy, from equations
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- and (| . Then Wick’s rule gives

B0 ()] = E |3 (o) = }%n()a;x))]
N (o (o [ QOHAO)) exp (~Ha (o2 2)
— S Bl o)E| e

- Y Sl e | ST P (o)

Since Hp(o;x) = Hp(o) + xH) (o), this means (0/0H) (o)) exp(—Hx(o;2)) =
—xzexp(Hx(o)). Using this and the fact that E[h), (o) H} (¢")] = |A| 'E[H} (o) H)\ (0] =
0

c\(o,0’), this gives the result.
Corollary 4.4.6. For any x

() ael < 2fafcy

Proof. This follows from (4.46)) and a uniform bound using the definition ¢ o

max, . |ca(o, a’)|. O
With this, we can prove the first part of the theorem.

Proof. Proof of Theorem [4.4.1], part (a): Another statistical mechanics
calculation following (4.45)) is

%pA(l’) = |A|(Qae([PA]?) — Qe (hy)]?) -

So, integrating and taking expectations, we have

[E 0. ([t0) = . 600)[) | o = o 2 Blalo) )

Recall that (---)p, = E[Qa,(---)]. But by (4.46) and Corollary this leads
directly to (4.42)). O

x2

In order to obtain the proof of Theorem [4.4.1} part (b), we will use concen-

tration of measure. Our main goal will be to obtain a bound on the random
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fluctuations of the quantity Qu . (b)) — (Wy)a.. We start by quoting a result

which was proved in [77]:

_ |-77|\/ETA 2 4s
vVt >0, P <\pA(:v) E[pa(x)]| > —\/W t) <2 , a.s.,  (4.47)

where recall that ¢y was defined in the statement of Theorem [4.4.1] part (b).

We now claim that the following result may be proved using this and previous

results:

Lemma 4.4.7. For any x, and for any € > 0, we have

| < |$|+€m [ pA(x+ez)] dz.

VA

E HQAx (hy) = (ha) s

(4.48)

Proof. By (4.45) and Taylor’s theorem

—Quu(hy) = palzte) —pa@—¢) +1/ (dpA( )~ %(Hey)) dy

2¢ dx dx
_ palzte)—palr—¢
2e
! e (W)10(2) — 1r, (W) 10, (2) d?
+€/1 (/1 B (1)1 )2 R (W) 1oy(2) df;x(xﬂz)dz) d
_palzte) —palz—¢ e [ d*pa
- - +5 [ g B+ e az,

where we interchanged the order of integration and

z—1 for0<z<1,
9(z) =
1+2z for —-1<2<0.

For each z € [—1, 1], let us define the random variable

d2pA

Zz) = dx?

(x4 €z),

which is nonnegative. Let us also define
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Then we obtain

(Pa(z +€) = Efpa(z + )]) = (Pa(z =€) = El[pa(z — ¢)]

Qo (hy)—E[Qp 0 (R))] = 2¢

+Y.—E[Y].

We may use equation (4.47) and the general subset bound, P(AU B) < P(A) +
P(B), to obtain this:

/=
Qaz (W) —E[Qr. ()] < el +9viey t+Y,—E[Y,] with probability p > 1 — 4e "'/

/1Al

We have a similar statement for the lower bound. Therefore, again by the subset

bound,

p(‘% ARANE “”"“)ftw E[YH> < 8e™/2. (4.49)

B e/ |A
Recall that (hy)a . = E[Qa.(R}y)] by definition.

So, using the fact that for any integrable random variable X, E[X] <
J, (X > t)dt, we obtain

| < Elv. - B + 'x'“@/ Pt

E HQAJ: (hy) = (W)

(4.50)
But now note that
¢ [
Vo-EW] = [ o) (2 ~E(20) s,
which implies that
B -5l < § [ oGIE1Z0) - BIZEI =,
But since Z.(z) is nonnegative, almost surely, this means that
E[lZ(z) —E[Z(2)]l] < E[lZ(2)]] + [E[Z(2)]| = 2E[Z(2)] -
Combining this bound with (4.50) gives the desired inequality (4.48)). ]

With this, we can prove the remainder of the theorem.
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Proof. Proof of Theorem m part (b): For any z; < x9, integrating
(4.48)) and dividing by the length of the interval we obtain

1 o : : 2(|z 1| + |a| + 2¢)/2¢)
_ <
P /I1 E HQAJ: N <hA>A,xH dr < /71|

g;Qixl /11(1 — |z]) (/:21[3 {%(xjtez)} dm) ds |

(4.51)

_l_

But, by the fundamental theorem of calculus, (4.46) and Corollary

T2 dsz dpA 2
/xl E [ T3 (1:+ez)} de = E [%(I—l—ez)}

Y

1

so that

] /1<1—Izl) (/:2193[055?(“62)] dm) 1z < 2O /11(1—|z|)(|x1|+|x2|+26>dz,

To — 7 1 To — 1

Using this with (4.51)) gives the result

1 x2 / , \/ﬂ E/AE
_ < |
To9 — T1 /I1 E HQASE (h)y) <hA>A,x } dr < 2(|zq|+|x2|+2€) (6 = + P

(4.52)
Now we may optimize in € > 0. We choose ¢ = v/zy — x1/(¢y|A|)*/* to get the

desired result, equation (4.43)). O

4.5 Consequences of the GG identities

Since the Ghirlanda-Guerra identities are limiting properties of the overlap
w.r.t. the quenched Gibbs measure its convenient to introduce a mathematical
framework that allow us to describe these limiting properties.

Consider a general spin glass model with random Gibbs measure Gy .
For ,I’ > 1, consider two spin configuration o', c" € ¥, and let us consider
the matrix of

Ry = (CA(al, al’)) (4.53)

Lr>1
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where ¢, (0!, 0") is the generalized overlap.

Consider the law of Ry w.r.t the measure E€),, where (0, := gg@“’.

Notice that each entry of Rj belongs to the compact space [1,1]. Consider
the space of positive semi-definite symmetric matrix. This is a compact sep-
arable metric space when considered as a closed subset of [1,1]"*N equipped
with the product topology. By compactness arguments, the Borel probability
measures on this space form also a compact, separable and metric space when
equipped with the appropriate topology. This observation allow us to consider
the limit along subsequences of the law of Rj.

Clearly, by construction, R* is an infinite positive semi-definite symmet-
ric matrix which is invariant in law for permutation of finitely many indices.
This kind of random matrix are called Gram-de Finetti matriz and have a nice

representation ((see [32] or [16])) in terms of Hilbert spaces. Indeed,

Theorem 4.5.1. [(DovbyshSudakov)]
Let R = (RU/) be a Gram-de Finetti Matriz. Let H be an infinite
LU>1
dimensional separable Hilbert space. There exists a random probability measure

G on H X R* such that the array R is equal in distribution to

(hl yy a,5l71,> |

Lr>1
where, conditionally on G, (hy, a;);>1 s a sequence of i.i.d. random variables

with the distribution G and h - h' denotes the scalar product on H.

Roughly speaking we can say that any Gram-de Finetti matriz can be gen-
erated by sampling a vector of an infinite dimensional separable Hilbert space
‘H from a random Gibbs measure on H and looking at the matrix of scalar prod-
ucts. Basically, overlaps in spin glass models, are introduced in the same way,
i.e. sampling spins from the Gibbs measure as we can regard >, as a subset of
a Hilbert space. The theorem therefore identifies the analogous for for the limit

of the Gibbs measures.
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Thus, for any convergent subsequence, we can identify the asymptotic law
R, with a random probability measure in a Hilbert space using the represen-
tation theorem of Dovbysh and Sudakov.

Let G a random probability measure on a separable Hilbert space H. We
will denote by (0!);>; an i.i.d. sample from this measure, by € the average with
respect to G and by E the expectation with respect to the randomness of G.

l

Let ¢ := o' - 0" the scalar products( overlaps) in H and R = (c;y); > the

random matrix (Gram de Finetti).

Definition 4.5.2. We say that G satisfies the Ghirlanda-Guerra identities in
the distributional sense if for any n > 2, any bounded measurable function f of

the overlaps (c1 )i y<n and any bounded measurable function ¢ of one overlap,

the following hold:

B (Filern) = 2B (£)ER(v(10) + - B (fulen) (450

4.5.1 Panchenko’s Ultrametric Theorem
Let us start with the following

Definition 4.5.3. A random measure G is said to be ultrametric if the distri-

bution of (¢ )ir>1 satisfies

EQ <I <C1’2 2 min(cl,g, 62’3)>> =1 (455)
where I(A) is the indicator function of the event A.
A major new development in spin glass theory is Panchenko’s [108] proof that

the Ghirlanda-Guerra identities in the distributional sense imply ultrametricity.

The are also other important consequences [16] summarised in the following;:

Theorem 4.5.4. Let us denote by ¢ the distribution of Ry o under EQ2 and by
¢* = maxsupp(¢). Consider the law of R = (ci1)ir>, that is the random matric

(Gram de Finetti) of the scalar product(overlaps), under the measure EQ.
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Assume that G satisfies the Ghirlanda-Guerra identities in distributional
sense, then

i) Ri; =q" a.s.,Vi

ii) Rij >0 a.s.,Vi,j ( Talagrand’s positivity principle )

i) G is ultrametric in the sense of definition [{.5.5 (Panchenko’s ultra-

metricity)

We want to stress an important point now. It had been earlier known
that the Ghirlanda-Guerra identities, when combined with ultrametricity, imply
that the law of R is determined is uniquely by ¢ ([36, 19]. As a consequence,
it’s also possible to show (Theorem 2.17 of [16]) that, for any given (, the
the law of (R;;).r can be represented (weak approximated) by a Derrida-
Ruelle Cascade. The Derrida-Ruelle Cascades is a hierarchical point process
introduced by Ruelle [I16] and describes the limiting behavior of the GREM
model of Derrida [69]. Their relevance in Spin Glass theory, and in particular
in the SK model, was first emphasized by Bolthausen and Snzitman in [48]
where the authors give a beautiful representation of these process in terms of
coalescent process.

The link of Theorem with the results presented in this chapter is clear.
By Theorem [4.3.1] we can deduce that the asymptotic Gibbs measure of the
model defined in satisfies the condition for every power of the
covariance and, by the Stone-Weierstrass theorem, this suffices to ensure that
the Ghirlanda-Guerra identities hold in the distributional sense. More precisely

Theorem has two consequences. The proposition (iv) implies that

, 1 1 ¢
0 (1t0) = o) S st
(4.56)
The proposition (i) implies that this equation is true for almost every choice
of parameter 3 = (£,)72,. In both case, we can identify the asymptotic Gibbs

measure with a random probability measure in a Hilbert-space using the repre-
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sentation theorem of Dovbysh and Sudakov and the measure is ultrametric by

the Panchenko’s result.

Therefore, to summarize, for almost all the choice of the parameters:

e The complete Hamiltonian has an ultrametric Derrida-Ruelle quenched
equilibrium measure .

e By ([4.4.3), a general Hamiltonian (4.21)) can be suitably perturbed in or-

der to obtain an ultrametric Derrida-Ruelle quenched equilibrium measure.

4.5.2 A comment on Finite Dimensional Spin Glasses

In this chapter we have demonstrated the following point, which we feel
bears repeating. Panchenko has showed that stochastic stability implies the
ultrametric scenario [I08] (which does also include the possibility of trivial ul-
trametricity, where for any three replicas, the triangle formed by the intrinsic
overlaps may be equilateral always).

Panchenko’s proof uses a strong version of de Finetti’s theorem. But this
applies because of permutation invariance of the replicas, not the underlying
model. Indeed as we have shown, stochastic stability and its implications even
apply to the Edwards-Anderson model if it is perturbed by an arbitrarily small
inclusion of higher order interactions. Stochastic stability is a general tool,
which in principle may be applicable to any disordered model in statistical me-
chanics including short-ranged spin glasses. We mention that using the language
of metastates [25, [97] stochastic stability has been approached in [33] where
identities where proved everywhere in the parameters using periodic boundary
conditions and averaging over translations. It remains open to show that their
analogue of the link overlap coincides with the usual one which is what we used
here.

It is finally worth to stress that the addition of the higher orders interactions
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introduced in is done in order to obtain the identities in distribution and
not only in mean. The nature of those higher orders terms appear to be formally
similar to the p-spin interactions of the mean field case models. In particular
their interaction structure doesn’t decay with distance but it’s a sum normalised
with the volume. At the same time we notice that the core term is still a two
point interaction made of nearest neighbouring sites and as such, it retains the

topological information of the lattice dimension.

4.5.3 The synchronization property

In this section we show a consequence of the ultrametric property of Theorem
which is the corner stone of the Panchenko’s proof of the lower bound of
the MSK model described in section 3.7

As usual, let us consider an arbitrary Spin Glass model with Hamilto-
nian Hy (o), and quenched measure ES), as reference measure.

Let S a finite set of S = |S| elements, which labels different independent
gaussian process H\ () on Ty, where H{”(¢) is the Hamiltonian function of
an arbitrary gaussian Spin Glass [4.21] with normalized covariance matrix given

by

1 s s 4 s
WEHf\)(ol)H,(\)(JQ) = a,c® (0!, 0") = aycl’). (4.57)
align

Let us define a new Hamiltonian Hy (o) := Y ses H/(\S)(a) which, by con-

struction, has normalized covariance matrix given by

1~ |~ 9
WEHA(al)HA(a2) =Y au) = (4.58)

seS

We refer to cl(‘? as the overlap of the species s and to ¢;; as the total overlap.

We are interested to the limiting properties of joint the distribution of the
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arrays

Ba (Cl’l' LI>1,5€8 (4.59)

with respect to the measure [E€2,. As explained in the introduction of this
section, the representation Theorem and compactness arguments allow
us describe these limiting properties considering a random measure G on a
separable Hilbert space.

For any bounded measurable function ¢ of the entries c,(j2, consider the the

array
Qur = <Z5<(Cl(jz)ses> (4.60)

with respect the measure EQ := EG®> and let us denote by R™ = (cﬁ?) .
’ LlI'<n,seS

Definition 4.5.5. We say that G satisfies the Multi-species Ghirlanda-Guerra

identities if for any n > 2, any bounded measurable function f = f(R™) , the
following hold:

EQ(F(R)Q10e0) = SEQ(7(R))EQ(Qua) + L S Bo(1(R)01)
” (4.61)

These identities have a deep consequence in the joint distribution of the

array (4.59). In fact one can prove [109] the following:

Theorem 4.5.6. [Panchenko] For any array (4.59)) that satisfies (4.61)), there
exist non-decreasing (1/as)-Lipschitz functions Ly : [0,1] — [0,1] such that

cl(‘*"} = Ls(c i) almost surely for all s € S and all 1,1 > 1.

In this case we say that the array satisfies a synchronization property.
Indeed, the previous result implies that the joint distribution of the overlaps cl(sl?
for all species will be determined trivially by the array of the total overlap ¢,
so in some sense they they are synchronized. Moreover, the array ¢, satisfies

the usual Ghirlanda-Guerra identities and therbn , by [£.5.4] can be generated
using the Ruelle probability cascades.
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Chapter 5

Monomer-Dimer models

formalism

The second kind of statistical mechanical models studied in this work belong
to the class of Monomer-Dimer models on Graphs. The aim of this chapter,
mirroring chapter [I} is to introduce necessary mathematical background. More-
over section contain an alternative representation of the partition function
that will be fundamental in chapter 6 and provide an alternative proof a classical

result due to Heilmann-Lieb [86].

5.1 (Disordered) Monomer-Dimer models on

Graphs

From now on the symbol G denotes a generic graph the finite vertex A set
and edge set ¥ which represent respectively the set of microscopic components
and the set of pair interacting components of a model.

The fundamental difference between spin and monomer dimer models is the
topological properties of the configuration space. Indeed, the spin configuration

space X, is a product space but, as we will see in the next this is no longer true

89
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for dimer configurations.
Let us first introduce Monomer Dimer models on graphs in a pure proba-

bilistic setting.

Definition 5.1.1. Let G = (A, E) be a finite simple graph. A dimer config-
uration (or matching) on G is a set D of pairwise non-incident edges (called
dimers).

In other terms a dimer configuration D on G is a partition of a certain set

A C A into pairs belonging to E :

D = {{ir iz}, -, {ija-1, 910} }

with {iy,ia,... 94} = A and {is,ig1} € E;

(5.1)

The associated set of dimer-free vertices (called monomers) is denoted by M (D) :=
A\ A Denote by D¢ the space of all possible dimer configurations on the graph
G.

The condition of non incident edges is called hard-core interaction.

Definition 5.1.2. A Monomer-Dimer model on G is obtained by assigning a
monomer weight x; > 0 to each vertex ¢ € A, a dimer weight w;; > 0 to each

edge 15 € E and introducing the following probability measure on Yg :

1
(D) = 7 [Tws [[= vDe2e. (5.2)
)

ijeD  ieM(D
where Zg = ) peg. HijeD Wy HieM(D) x; 18 the normalizing factor. The family
of weights will be denoted by xp = (z;)iep and wg = (W;j)ijer

A pure Dimer model is Monomer-Dimer model with the choice x; = 0 for

each i € A.

The pure Dimer model is also called perfect weighted matching on G since
in this case the dimer configuration space represents the way of completely fill

the graph G with dimers.
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Notice that by definition the following relation hold
|M(D)|+2|D|=|A| VD € . (5.3)
The following remark is the analogous of [1.1.3]

Remark 5.1.3. Consider the complete graph Ky, with vertez set {1,..., N}
and edge set made of all possible pairs of vertices. Because of the lack of geomet-

ric structure the space of dimer configurations Iy = Pk, simplifies; precisely

D € Dy if and only if

D = {{ir,io}, ... {ija—1, 04} } with {iy,ia, ... ija} = A (5.4)

for a certain set of vertices A C {1,..., N}, and the monomer set associated to
D is M(D) ={1,...,N}\ A.

On the other hand any monomer-dimer model on a graph G = (A, E) with N
vertices can be thought as a monomer-dimer model on the complete graph K.
Indeed the measure g is equivalent to a measure uy = g, by setting w;; :== 0
for all pairs ij ¢ E . Precisely introducing these zero dimer weights it holds

IN = Zgy = Zag and

D) ifDeg
(D) = pa(D) if D € Yq |
0 ifDE.@N\.@G

It’s possible to define a monomer dimer model with the Gibbs formalism
introduced in the previous section, representing a dimer configuration D € Yg

and the associated M (D) trough occupancy variables on G.
Definition 5.1.4. For alli € A and e € E and D € D¢ let us define

1, ifie M(D) 1, ifeeD
a;(D) = and  a.(D) = . (5.5)

0, otherwise 0, otherwise
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Thus a dimer configuration D is represented by an element «(D) := (qe(D))ccr €
{0, 1}1EI. The point is that {a(D) : D € D¢} C {0, 1}/*l because of the hard-
core condition of non incident edges in definition [5.1.1} It’s easy to see that this

condition to the algebraic constraint:

Y ay(D) <1, VieA (5.6)

where i ~ j < ij € E. Clearly if we define {O,l}(‘f| = {a € {0,1}/F
1} hold} there exist a bijection Zg < {0, 1}LE‘.

Definition 5.1.5. A Monomer-Dimer model on G is defined assigning to each
dimer configuration D € D¢ an MD-Hamiltonian function
Hg(D) == hifay(D) = > hi™a;(D) (5.7)
ijeE ieA
where h'Y = {hS) iier, and Y = {h{™ }icn are two families of real parame-
ters.

We want to stress an important fact. The MD-Hamiltonian is formally very
similar to a spin Hamiltonian however the meaning is totally different.
The term h;jbij is NOT an interaction between the microscopic component ¢
and 7. The interaction between the site ¢ and j is a consequence of the hard-core

constraint on the dimer configuration space. The families A%y and h{" are both

external fields acting respectively on dimers and monomers.

Definition 5.1.6. Let 8 > 0 be a real parameter which represent up to a con-
stant the inverse physical temperature, the finite volume Gibbs measure Gg as-

sociated to the Hamiltonian , s a probability measure on Yg defined as

Go(D) = — 55)
A
for each D € Y. The normalization factor
Zg =Y e Mo (5.9)

DeDa
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18 called partition function.

The connection with the previous definition (/5.3)) is straightforward. Indeed
setting

(d) (m) .
Phi;” and z; = €’ one obtain pg = Ga(D) for each D € Y.

w;j = e

The extension to monomer-dimer models of the Gibbs state [1.1.6] and pres-
sure density definitions are obvious.

Moreover, mirroring the construction of a Disordered Spin Models (section
, a Disordered Monomer-Dimer model is a monomer-dimer model with ran-
dom parameters, namely h(Gd) and h{" are two families of random variables

defined in some auxiliary probability space. The definitions of random Gibbs

measure, quenched state and quenched pressure density are analogous.

5.1.1 Some examples of applications

As for Spin Models on Graphs, the class of Monomer Dimer models on
Graphs defined in , can be tough as a preliminary setting for a statistical
mechanic description of various systems. By construction they are used to
describe the systems with an hard-core constraint between pairs of components.
Here the analogous of the problems listed in section [1.3]

e Absorption of diatomic gas molecules: Consider a diatomic gas adsorbed
on a solid material. The finite set A labels the allowed sites of the solid, and G
its molecular structure. We will assume that the gas is diatomic, namely each
molecule of the gas is composed by two atoms (like the oxygen O,). Since the
chemical bonds inside the molecules do not break, we assume that two atoms
belonging to the same molecule of gas can only deposit on two neighbouring sites
of the graph. This is an hard core constraint between pair of sites so its natural
to put the model in a monomer dimer setting. Indeed, each arrangement of the
diatomic molecules on the graph is encoded in a vector a € {0, 1}1#l where E

is the edge set of the graph. But on the contrary not every element {0,1}”!
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represents an allowed arrangement, because of the constraint given by ,
in other words an allowed arrangement is a dimer configuration on G and the
monomers represents the empty sites.

The energy associated to a possible dimer configuration D is represented by
the MD Hamiltonian (5.7)). In particular, the parameter h;”j can be interpreted
as an effective potential due the solid, acting on the dimer in ij and h{™ the
tendency of the site ¢ to be occupied.

e Optimization problems: By definition the monomer dimer problem is a
weighed matching problem so, for example, it can be used to describe the fol-
lowing situation. Let us suppose we have a network of people represented by a
finite graph GG. We will consider different ways to divide the group into mar-
ried and single people. The monogamy constraint implies an individual can be
married at most one time, in other words an allowed arrangement is a dimer
configuration on GG and the monomers represents single.

The energy associated to such as arrangement is represented by the MD
Hamiltonian (5.7). In particular, the parameter h;;) can be interpreted as how
much people i wants be married with j and h™ as the tendency of people i to

be single.

5.2 The Gaussian representation

In this section we prove that the partition function of a generic MD model
on a graph G admits a representation in terms of moments of a gaussian vector

Without loss of generality we work with the partition function Zy on the

complete graph Ky ( see remark [5.1.3]

Proposition 5.2.1. (Gaussian representation) The partition function of any

monomer-dimer model on Ky vertices can be written as

Iy = Eg{ﬁ({i—kxi)] , (5.10)

i=1
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where & = (&1, ..., &N) is a Gaussian random vector with mean 0 and covariance
matric W = (wi;)i j=1,.. n. Here the diagonal entries w;; are arbitrary numbers,

chosen in such a way that W s a positive semi-definite matriz.

Proof. As already noticed the dimer configurations on the complete graph are

the partitions into pairs of all possible A C {1,..., N}, hence

ZN—Z wa szz Z Z HwUsz. (5.11)

De9n ijeD 1€Mpn (D) AC{1,..,N} P partition 45€P i€ Ac

of A into pairs
Now choose w;; for ¢ = 1,..., N such that the matrix W = (wj;); =1, n Is
positive semi—deﬁnitd] Then there exists an (eventually degenerate) Gaussian
vector &€ = (&1,...,&y) with mean 0 and covariance matrix W. And by the
Wick-Isserlis theorem (identity in the theorem (A1)

Eg{Hgil = > Jlws- (5.12)

€A P partition  jj€ P

of A into pairs

Substituting ((5.12)) into ((5.11]) one obtains
In = Eﬁ[ >, Il Hm] = Ez{H(fﬁxi)} : (5.13)

AC{1,..,N} i€A  i€cAc

]

Remark 5.2.2. In some sense, the Gaussian representation "factorize”
the hard-core constraints in the same way as the Hubbard-Stratonovich trans-
form decouples the two-body interactions in spin models. Indeed, consider a
generic partition function (assume without loss of generality the complete graph

and the inverse temperature equals 1):

; N N
Z]I\?mg — § ei<ic<j<n Jijoi0) o2z hidi E 03 Li<ij<n Jij0i05 o3y higi

ce{£1}N oe{+1}V

'For example one can choose w;; > Zj# wy; forevery i =1,..., N. W can be diagonalized
and has non-negative eigenvalues by the Gershgorin circle theorem, hence it is positive semi-

definite.
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where we set Jij = in and Jn > Z JZ]‘ In this way J = (Jij)i,jzl,...,N

j#i |
is a real positive semi-definite matrix, by Gershgorin circle theorem. Apply
the Hubbard-Stratonovich transform (namely compute the Gaussian moment

generating function) to obtain

N

Zyme o Y Be[eRmee] (mhh o By [H cosh(&] + hz->] ,
oce{F1}V i=1

where &' = (&, ..., &y) is a Gaussian random vector with mean 0 and covariance

matrix J.

As an application of the Gaussian representation we show that the well-
know Heilmann-Lieb recursion [86] for the partition function of monomer-dimer

models can be proved by means of a Gaussian integration by parts.

Proposition 5.2.3. (Heilmann-Lieb recursion) Let G = (A, E) be a finite sim-
ple graph and consider an MD model on G. Fixzi € A and look at its adjacent
vertices j ~ i, then it holds
ZG = I; ZG—i + Z Wi ZG—i—j . (514)
i
Here G —1i is the graph obtained from G deleting the vertex ¢ and all its incident
edges.

Proof using Gaussian integration by parts. Set N := |A|. Introduce zero dimer
weights wpr = 0 for the pairs hk ¢ FE, so that Zg = Zy (see remark .
Following proposition |5.2.1} introduce an N-dimensional Gaussian vector £ with
mean 0 and covariance matrix W. Then write the identity isolating the

vertex 1 :

Zg = Eg[ﬁ(«fk%—xk)} = EE{H(@H@] + E, {@- H({k—i-xk)] . (5.15)

k=1 ki ki

Now apply the Gaussian integration by parts (identity (Al]) in the theorem [A1])
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to the second term on the r.h.s. of (5.15):

Eq {si H(swsk} Z E¢[¢:;] Eg{ i 11 fwk} > w Es{ T (Getae)

k#i k#i jF#i k#i,j

(5.16)
Notice that summing over j # i in the r.h.s. of is equivalent to sum over
j ~ i, since by definition w;; = 0 if ij ¢ E. Substitute in :
ZG:xiEg{H§k+xk] waEg{H fk—i—xk)} : (5.17)
ki g k#i,j
To conclude observe that (§x)k-; is an (/N —1)-dimensional Gaussian vector with
mean 0 and covariance (wpy)p k2. Hence by proposition
Zg-i = E¢ [H(fk + xk)] - (5.18)
ki
And similarly

Za_i_j = Eg{ H({k%—xk)} . (5.19)

k#i,j
Substitute the identities ([5.18]), (5.19) into (5.17)) to obtain the identity ((5.14)).
[

5.3 The MD model on Ky with uniform weights

In this section we use the gaussian representation to compute the
pressure of the MD model of the complete graph with uniform weights. In
order to lighten the notation, in this section, we assume without loss the inverse
temperature § = 1. First let us illustrate some basic properties of the generic
MD model. Let G = (A, E) be a finite graph and Zg(x, w) the partition function

with generic monomeric weights = = (x;);ea and dimeric weights w = (w;;)ijer

Proposition 5.3.1. With bounded monomeric and dimeric weights x < x; <,

w, < w, the following bounds for the pressure hold:

log Z¢(z,w) |E| w
—_ — log (1+ = ).

logz <
Al

< logT +

.
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Moreover

Proposition 5.3.2. If uniform dimeric (resp. monomeric) weights are con-
sidered, i.e. w, = wy Ve € E (resp. x; = xo Vi € A), then it’s possible
to keep w = wy (resp. x = xo) fized and study only the dependence of the
model on x (resp. w) without loss of generality. Indeed, using the relation
IM(D)| +2|D| =|Al], it’s easy to check that

X

Ze(x,wo) = (wp) /2 ZA(W, 1) : (5.20)
Za(wo,w) = (z0)™ Z(1, (xw)2) . (5.21)

Let K be the complete graph over N vertices with vertex set Ey. Notice
|En| = N(N —1)/2.
We work with uniform weights w, = w and z; = x and we want log Zy = O(N).
For this purpose, looking to proposition [5.3.1] we have to choose x, w such that
w/z? = O(1/N). By [5.3.2 we can fix without loss of generality w = 1/N and
study
1

ZN°(x) == Zn(z, N) : (5.22)

Observe that the bounds of remark [5.3.1] become
log ZN° ()
N

N —1 1
logz < < logzx + log (1+ ) < logx+ﬁ.
x

Nz2

The Hamiltonian function corresponding to ZNP(z) is, setting z = e,

HNP(D, h) Z hoi(D) + log N Y a.(D), (5.23)

ecEN
On the complete graph it is possible to compute explicitly the pressure
density.

Proposition 5.3.1. Setting x = e" for h € R. The pressure per particle of
the monomer-dimer model on the complete graph defined by hamiltonian
admits finite thermodynamic limit:

. logZMD( ) _ _MD
3 J\}I—I&T =p"P(z) €R. (5.24)
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Furthermore the monomer density

(o) = s 3 PR expl—Hx (D)

DG@KN

admits thermodynamic limit:

= ]\}I_I};om]\[(l’) = g(z) €]0,1]. (5.25)
o) = -2 Liog—ge) = 1Y togge) e veer

(5.26)

g() = %(\/645—1—4625 _ %) VeeR. (5.27)

The first proof is due to Heilmann and Lieb [86] and is based on a recurrence
relation ([5.2.3)), a second one is based on a simple combinatorial argument [2§].

We notice also that is a particular case of a more general result given in chapter

@



100 5.3. The MD model on Ky with uniform weights



Chapter 6

A Monomer-Dimer model with

Imitation

Let us briefly recall what is a Monomer-Dimer model on a graph G ( see
section for a rigorous definition).

Each way to fully cover the vertices of a finite graph G by non-overlapping
dimers (molecules which occupy two adjacent vertices) and monomers (molecules
which occupy a single vertex) is called a monomer-dimer configuration. Let us
associate to each dimer and monomer a weight and consider an Hamiltonian
proportional to the weighted number of monomers and dimers: this defines a
Monomer-Dimer model on G .

Monomer dimer models (MD models) were proposed in ’30 to investigate
the properties of diatomic oxygen molecules deposited on tungsten [I13] or
to study liquid mixtures in which the molecules are unequal in size[73]. The
hard-core interaction accounts for the contact repulsion generated by the Pauli
principle. In order to account also for the attractive component of the Van der
Waals potential among monomers and dimers, one may consider an attractive
interaction[114, 52, 53] among particles occupying neighbouring sites (as it was
previously done for single atoms [72], [112]). More recently monomer-dimer mod-

els on diluted networks have attracted a considerable attention [126], 50, 27] and

101
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they have been applied, with the addition of a ferromagnetic imitative interac-

tion, also in social sciences [42].

The first mathematical approach to the problem is due to Heilmann and Lieb
[86], [87] where they proved the celebrated recursion relation for the partition
function and used it to locate its the complex zeros. As a byproduct they
show that, under general assumptions, the hard-core interaction is not enough
to generate a phase transition. Exact solutions are know for the model on the
complete graph, the 1-dimensional case [86] and on locally three like graphs
[27]. In two dimension, i.e. for planar graph, a solution for pure dimer model

was discovered independently by [92, 120].

In order to account also for the attractive component of the Van der Waals
potential among monomers and dimers, one may consider an attractive interac-
tion [114], 52] 53] among particles occupying neighbouring sites. If one includes
attractive interactions among dimers with the same orientation Heilmann-Lieb
proved [88] that on certain 2-dimensional regular lattices there is a phase tran-
sition: at low temperatures there is an orientational ordering, which is absent

at high temperatures.

Here, we consider a Monomer-Dimer model with an attractive interaction

called IMD model on the complete graph.

This chapter is entirely based on [28] and is organized as follow: in section[6.1]
we introduce the model and show that the monomer density, i.e. the expectation
value w.r.t. the Gibbs measure of the fraction of sites occupied by monomers,
is the order parameter of the model in the usual sense: the t.l. of the pressure

is expressed a one-dimensional variational principle in the monomer density.

In section [6.2] we prove that there is a phase transition between a high
monomer density phase and a high dimer density (i.e. low monomer density)

phase and we characterize this transition in details.
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6.1 The model and the main result

Let G = (A, E) be a finite simple graph and let us denote by % the dimer
configuration space on G defined in [5.1.1] Keep in mind its representation [5.1.4]
in terms of occupancy variables . We want modify the classical MD model
defined in the previous section introducing an imitative interaction among the
particles ( monomers and dimers). As in the spin models this interaction can
be represented , in the Hamiltonian formulation with the occupancy variables,

by a term tuned by a positive parameter J and connecting two o’s.

Definition 6.1.1. The Imitative Monomer-Dimer model ( IMD model) on G
is obtained by assigning an external field h € R and an imitation coefficient
J > 0 and then considering the hamiltonian HZ'™: ¢ — R,
HE™ o= =Y hoy — Y J (o + (1= ) (1 —ay)) - (6.1)
vEA wek
The choice of the hamiltonian naturally induces a Gibbs probability measure

on the space of configurations % :

HE(D) -

= 7 ep(—HE™(D)) VD€ g, (6.2)
G

where Zg'™ = 3, exp(—HE™ (D)) is the normalizing factor, called parti-
tion function. Its natural logarithm log Z5™ is called pressure.

The monomer density, that is the expected fraction of monomers on the graph,
can be obtained computing the derivative of the pressure per particle with re-

spect to h:

M (D)| d log Zg™
IMD MDYy — 076G 6.3
P PR o
G

We explicitly observe that taking J = 0 the model reduces to the usual
MD model 5.3} studied by Heilmann and Lieb [36, 87]. At J = 0 the model is
characterised only by a topological interaction, that is the hard-core constraint
which defines the space of states Zg. As proved by Heilmann and Lieb [8G6,

87] this interaction is not sufficient to originate a phase transition: when the
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thermodynamic limit of the normalized pressure exists, it has to be an analytic
function of the parameter h. Introducing the parameter J > 0 we consider
add another type of interaction: the state of a vertex conditions the state of its
neighbours, pushing each other to behave in the same way (imitative interaction

among sites, attractive interaction among similar particles).

Remark 6.1.2. At first sight it seems that a more general hamiltonian than
(6.1)) could be considered. Fix a monomer external field h™ € R, a dimer eter-
nal field Y € R, a monomer imitation coefficient J™ € R, a dimer imitation

coefficient J@ &€ R and a counter-imitation coefficient J™¥ € R and set:

HYP = — Z " o, — Z h? o, — Z J™ o, o — Z JY(1 = ay) (1 —ay) +

vEA eelR uwer welk (64)
— Z J (o (1= o) + (1 — ) @)
wek

Now it easy to check that the following two relations hold
ay (I =) +(1—ay)ay=—aya, — (1 —a,) (1 —a,) +1 (6.5)

and as a consequence the hamiltonian (6.4)) rewrites as

HE® = —C' => Woy =Y Jowa, — > J'(1-a)(1-a) (6.6)
veEA weE weE
with i/ = ™ — W /2 J = Jm — Jed g7 = J@ — Jmd and ¢ = |V|/2.
Now if the graph G is regular of degree r, also the following relation holds
Z (o, + ) =1 Card{ M (D), D € P} (6.7)
weE
and as a consequence the hamiltonian rewrites as
HE® = —C = hay — > J(owa,+ (1—a) (1 — ) (6.8)
vEA weE
withh=h +(J =J")r, J=(J'+J")/2 and C =C"+ (J" = J) |E|.
In conclusion this last identity shows that on any regular graph the general

hamiltonian (6.4) is in fact equivalent to the hamiltonian (6.1]); indeed they
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differ only by a constant which does not modify the probability measure (6.2)).
Moreover observe that the imitation condition J > 0 corresponds to J™ +J@ >

2],

In this chapter we study the IMD model on the complete graph, that is we
take G = Ky = (An, Ey) with Ay = {1,...,N} and Ey = {{u,v}|u,v €
Ay, u < v}.

Since the number of edges is of order N2, in order to keep the pressure of
order N we need to normalize the external field and the imitation coefficient.
Therefore we will consider the hamiltonian Hy'"™: Pk, — R,

HY® = — Z ha, + log N Z o — Z %(auav—k(l—au)(l—av)),

'L)GVN QGEN ”LL'UGEN

(6.9)

the partition function Z§'” =3, exp(—Hy'"(D)) and the monomer den-
N

) (D /
sity miyP = —Z}ém ZDe@KN | ]Sf )l exp(—HYP(D)).

The main result of this section is the following theorem, where in the limit

N — oo the model is solved in terms of a one-dimensional variational principle.

Theorem 6.1.3. Let h € R, J > 0. The pressure per particle of the imita-
tive monomer-dimer model on the complete graph defined by hamiltonian

admits finite thermodynamic limit:
log Zy"™

3 lim p™M eR. (6.10)
N—oo
This limit satisfies a variational principle:

PP = sup 5 (m) (6.11)

where the sup can be taken indifferently over m € [0,1] or m € R, and

1
p(m) = —Jm? + §J +p"°(2m—1)J+h) VmeR (6.12)
1—g(¢ 1 1—g(¢§

P = — 2 Dot —gte) = T2 toggle 1 veer

(6.13)

g() = %(\/645—1—4625—625) VEER. (6.14)
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Furthermore the function m — p(m) attains its mazimum in (at least) one

point m* €10, 1], which is a solution of the the consistency equation
m = g(2m—1)J+h). (6.15)

At each value of the parameters (h, J) such that h — m*(h, J) is differentiable,

the monomer density admaits thermodynamaic limit and precisely:

3 lim my® = m* €]0,1]. (6.16)

N—oo

This result relies on two main facts:

1) for J = 0, by proposition the thermodynamic limit of the pressure
per particle can be computed explicitly and turns out to be pM°(h) ;

2) for J > 0 the hamiltonian can be expressed as a quadratic form in
the hamiltonian with J = 0.

Therefore before proving the theorem we properly state and prove the second
result.

Given a dimer configuration D on the complete graph Ky, denote the frac-
tion of vertices covered by monomers by

|M(D)|

mN(D) = N

€[0,1].

On the complete graph the hamiltonian (6.1) admits a useful rewriting, which

shows that it depends on a dimer configuration D only via the quantity my (D).

Lemma 6.1.4.
HY® = =N (Jmy + bymy + cn) (6.17)

with by :z%logNth—J and cy = ——10gN+ J

Proof. Using the identity (6.7) (the complete graph is regular of degree N — 1),
the hamiltonian rewrites as

N N(N-1) J 1
HJI\l}/{D: ElogN_(T)N_(h+§lo N—1 ZO&U—Q— Zauav-

vEVN UUEEN
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Then on the complete graph it holds

2 ), = (ZQU)Q— > ay. (6.18)

uwweEN vEAN vEAN

Substituting in the previous expression one obtains

N N-1 1 J ?
HY® = S log N — ——J = (h+;logN —J) > o - ~ <Za)
’UGAN ’UEAN
and since ) ., a, = N my the identity (6.17) is proved. O

Now using proposition [5.3.1] and lemma [6.1.4f we are able to prove theorem
6.1.3, Our technique is the same used by Guerra[8(] to solve the ferromagnetic

Ising model on the complete graph.

Proof of Theorem [6.1.5. The proof is done providing a lower and an upper

bound for the pressure per particle.
[LowerBound] Fix m € R. As (my(D) — m)? > 0, clearly my(D)? >
2mmy(D) —m?. Hence by lemma [6.1.4] using the hypothesis J > 0,
—HR}/ID(D) = N(JmN(D)2 + bNmN(D) -+ CN) Z
> N ((2Jm+ by) my(D) — Jm? + cy)
thus
ZN® = exp(—HR(D)) > Y expN((2Jm + by) my(D) — Jm* + cy) =
D D
= N0 20 (€(m)

where yy(m) == —Jm?+ &L J and &(m) :=2Jm+h—J.
[UpperBound] my takes values in the set Ay := {0, «, ..., %, 1}. Clearly,
writing ¢ for the Kronecker delta, Y-, 4 O my(p) = 1 and F(my(D)?) dmmy () =

F(2mmpy(D) —m?) 0y my(py for any function F. Hence by lemma [6.1.4]

Ommy (D) €XP(—HN"T(D)) = Ommy(D) €XP N(Jmy(D)* +bymy(D) +cy) =

= Ommy(0) X N((2Jm +by)my(D) — Jm? + cy)



108 6.1. The model and the main result

thus
ZW =) D Sy exp(—HY(D)) =

D meAyn

=Y Y Gmmnoy XN ((2Jm +by)my(D) — Jm® +cy) <
D meApn

< Z Z exp N((2Jm+by)my(D) —Jm® +cy) =
meAy D

= Z eN v (m) ZN°(&(m)) < (N +1) sup {eNVN(m) ZP(&(m)) } .
meAn me(0,1]

Therefore putting together lower and upper bound we have found:

sup {eNM ZNP(E(m))} < ZR™ < (N+1) sup {N0™ Z3P(¢(m))} .
me0,1] me(0,1]

Then, taking the logarithm and dividing by N,

log ZP log ZXP (£(m)) log(N +1)
0 < — < > 0.
=y 7 bwlm) N ST N
log Z\P (h)

Now the pressure per particle h —

log ZMP (h)
N

X is a convex function, hence as

N — oo the convergence — pMP(h) of proposition |5.3.1] is uniform in

h on compact sets. Moreover yy(m) — y(m) := —Jm? + 3 J uniformly in m

as N — oo. Therefore

() + log ZJ“G]DV(fS(m))

> y(m) + p"*(¢(m))

N—oo

and the convergence is uniform in m on compact sets. As a consequence also

1 MD
oty + B0
me(0,1]

v {v(m) + p"®(&(m))} .

This concludes the proof of (6.10) and (6.11]).
It remains to prove (|6.15) and (6.16)). First of all observe that
op
a—(m) =-2Jm+2Jg(2m—-1)J+h),
m

since (pM°)" = g (see proposition |5.3.1]). It holds %(m) > (0 for all m < 0

and 22 (m) > 0 for all m > 1, therefore the function m +— p(m) attains its
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global maximum inside the interval ]0, 1[ and any global maximum point m* is
a critical point of p, i.e. satisfies equation (6.15)).
Now % log Z¥™ (h, J) is a convex function of h and, as shown before, it converges

top™P(h,J) = p(m*(h,J),h,J)as N — oco. Therefore, assuming that m*(h, J)

: : : : : mp _ 0 1 IMD
is differentiable in h, the monomer density my'” = 5 +-log Zy'® converges to

% p™P. Thus to prove 1} it suffices to compute this derivative:

o d N ) .
g = ap P () ) = s o m?) e+ an = g(@m=1) J+h) = m* .
~—~—
=0 — (pMD)
O

6.2 The properties of the solution

In this section we study the properties of the solution provided by theorem
[6.1.3] We divide the analysis in three subsections. In subsection [6.2.1] we study
all the stationary points of the function m — p(m,h,J). One of them will
be the global maximum point m* we are interested in since it represents the
monomer density. We provide their complete classification, regularity proper-
ties and asymptotic behaviour as functions of the parameters h and J. As a
byproduct in subsection [6.2.2] we are able to identify the region where there
exists a unique global maximum point m*. The resulting picture is the fol-
lowing: the function m* is single-valued and continuous on the plane (h,J)
with the exception of a curve I' that is implicitly defined, and moreover m* is
smooth outside I" union its endpoint (h,, J.). This curve play a crucial physical
role since it represents the coexistence of two different thermodynamic phases
and the point (h., J.) is the critical point of the system. In physical jargon we
say that a phase transition occur. In subsection [6.2.3| we compute the critical

exponents that characterizes the behaviour of m* near the critical point (h, J.).
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6.2.1 Analysis of the stationary points: classification,
regularity properties, asymptotic behaviour.

Let us identify the stationary points of the function p(m,h,J) defined by
(6.12). Remembering that (p*”)" = g, one computes

3_7]; (m,h,J) = =2Jm + 2J g((2m — 1)J + h) (6.19)
*p /
o (m,h,J) = =2J + (2J)> ¢'((2m — 1)J + h) (6.20)
Since 0 < g < 1, it follows that for every J >0, h € R
@—p(m,h,J) >0 Vme]—00,0], a—p(m,h,J) <0 Vme|[l,o0]. (6.21)

om om
Therefore p (-, h, J) attains its maximum in (at least) one point m = m*(h, J) €

10, 1], which satisfies

g—f; (m,h,J)=0 ie. m=g((2m—1)J+h), (6.22)
825( h,J) <0 ie. ¢((2m—1)J+h) <1 (6.23)
2 m,h,J) < re. g ((2m <57 .

The stationary points are characterized by equation , which can not be
explicitly solved. Anyway their properties and a rough approximation of their
values can be determined by studying inequality , which admits explicit
solution.
The next proposition displays the intervals of concavity/convexity of the

function m — p(m, h, J). Set

Jo = m ~ 1.4571 . (6.24)
Proposition 6.2.1. For 0 < J < J. and h € R

0?p

om?

(m,h,J) <0 VmeR.
For J>J.and h € R
825 <0 iff m < ¢pi(h,J) or m > ¢a(h,J)

(m,h,J) ,
om? >0 iff ¢u(h,J) <m < do(h,J)
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where fori=1,2

1 A 1
. = Z 4 loga, 2
(@ T =D TN C =5\ @p — a2+
a(J) = (2J) 2J - 277\ (2J) 2J ‘ (6.26)
2J

Observe that ¢1(h,J) < ¢a(h,J) for all h € R, J > J. and equality holds iff
J = J. (since ai(J.) = az(J.)).

Proof. Tt follows from the expression ((6.20]) through a direct computation done
in lemma [E1f of the Appendix, taking £ = (2m —1)J +h and ¢ = 55 . O

Using the previous proposition we can determine how many, of what kind

and where the stationary points of p (-, h, J) are.

Proposition 6.2.2 (Classification). The equation in'm has the following

properties:

1. If0 < J < J. and h € R, there exists only one solution m(h,J). It is the

mazimum point of p (-, h, J).

2. If J > J. and o(J) < h < y(J), then there exist three solutions
my(h, J), mo(h,J), ma(h, J). Moreover my(h,J) < ¢1(h,J) and ma(h, J) >
¢o(h, J) are two local mazimum points, while ¢1(h,J) < mg(h,J) <

¢o(h, J) is a local minimum point of p (-, h, J).

3. If J > J. and h > 1 (J), there exists only one solution my(h, J). More-
over ma(h, J) > ¢a(h, J) and it is the mazimum point of p (-, h,J).

4. If J > J. and h = ¢(J), there exist two solution my(h,J), ma(h,J).
Moreover my(h, J) = ¢1(h,J) is a point of inflection, while my(h,J) >
¢o(h, J) is the mazximum point of p (-, h, J).

5. If J > J. and h < (J), there exists only one solution my(h,J). More-
over my(h, J) < ¢1(h, J) and it is the mazimum point of p (-, h,J).
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6. If J > J. and h = 1y(J), there exist two solutions my(h,J), ma(h,J).
Moreover ma(h, J) = ¢a(h, J) is a point of inflection, while my(h,J) <
¢1(h, J) is the mazximum point of p (-, h, J).

Here ¢, ¢ are defined by , while fori=1,2 and J > J.

Gil) = J+ %logai(J) —2Jg(%logai(J)) | (6.27)

where a; and g are defined respectively by and . Observe that
Wo(J) < Yy (J) for all J > J. and equality holds iff J = J..

Proof. Fix h € R, J > 0 and to shorten the notation set G(m) := %(m, h,J),

observing it is a continuous (smooth) function.

e Suppose J < J.. By proposition G'(m) <0 for all m € R and equality
holds iff (J = J. and m = ¢1(h, J.) = ¢a(h, J.)). Hence G is strictly decreasing
on R. On the other hand by (6.21), G(m) < 0 for all m < 0 and G(m) > 0
for all m > 1. Therefore there exists a unique point m (m €0, 1[) such that
G(m) = 0.

e Suppose J > J.. By proposition [6.2.1, G is strictly decreasing for m <
¢1(h, J), strictly increasing for ¢(h,J) < m < ¢o(h,J) and again strictly
decreasing for m > ¢,(h, J). On the other hand by (6.21)), G(m.) > 0 for some
point my < ¢1(h,J) and G(m_) > 0 for some point m_ > ¢o(h, J). Therefore:

(3 (aunique) m; €] — 00, ¢1(h, J)] s.t. G(m1) =0) < G(¢1(h, J)) <0;
(3 (aunique) my € [@a(h, J),00[ s.t. G(mg) =0) < G(pa(h,J)) > 0;

(3 (aunique) mg € [p1(h, J), ¢a(h, J)] s.t. G(mg) =0) < G(p1(h,J)) <0, G(pa(h,J)) >0.

And now, using identity (6.19) and definitions (6.25)), (6.27))

Clen(h, 7)) <0 & g(2or(h )= 1T +h) < 6i(h,T) & h < ()

and similarly G(¢2(h, J)) (?) 0 < h (?) Pa(J).
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The first e allows to conclude in case 1., while the second e allows to conclude in

all the other cases. Notice that the nature of the stationary points of p (-, h, J)
9*p

is determined by the sign of the second derivative 7-5 studied in proposition
6.2.1 O

A special role is played by the point (h,, J.), where we set

~ —0.3441 (6.28)

e~ =

e = a(Je) = () = 3 log(2v/2 — 2) -

indeed in the next sub-sections it will turn out to be the critical point of the

system. It is also useful to define

me = gbl(hcv JC) = gb?(hw JC) =2- \/§ ~ 0.5857 ’ (629)

1
§or= (2me =Dt he = 5 log(2v/2 — 2) ~ —0.0941 . (6.30)

The computations are done observing that a;(J.) = as(J,) = 2v/2 — 2 and

o(log(2v2 ~2)) =2~ V2.

Remark 6.2.3. We notice that m, is the (unique) solution of equation ([6.22))
for h = h. and J = J., that is m(h., J.) = m.. Indeed a direct computation

using ((6.14)) shows

g((2me — 1) J. + he) = g(&) =me.

Observe that as a consequence m, is a solution of equation (6.22)) for all (h, .J)
such that h — h, = (1 —2m.)(J — J.).

In the next proposition we analyse the regularity of the solutions of equation

6.22).

Proposition 6.2.4 (Regularity properties). Consider the stationary points of
p(-,h,J) defined in proposition [6.2.9: m(h, J), mi(h,J), mo(h, J), ma(h,J)
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for suitable values of h,J. The functions

m(h,J) if 0<J<J., heR

pi(h, J) = , (6.31)
\ml(h,J) if J>Jd., h<uyy(J)
m(h,J) if 0<J<J., heR
pa(h, J) = , (6.32)
ma(h, J) if J > Je, h=a(J)

\

m(h,J) if 0<J<J.,, heR
pio(h, J) = (6.33)

mo(h, J) if J > Jo, va(J) < h <i(J)

have the following properties:
i) are continuous on the respective domains;
ii) are C* in the interior of the respective domains;

ii1) fori=0,1,2 and (h,J) in the interior of the domain of u;

0 a _

oh ' = M = ; — — (1= ) -

o, P ih ) o T) = i == (ilhy ), o J) = = i (1= i) 5
(6.34)

oh - 2 — i — 4J,ui (1 _ ,ui) ) 0.J - (Q,Uz 1) on (635)

Proof. i) First prove the continuity of u1. Observe that by propositions m,
0.2, 1k

o for (h,J)in Dy :=={(h, )| (0 < J < J.,, heR)or (J>J., h<y(J))},
w1 (h, J) is the only maximum point of p (-, h,J) on the interval [0, 1];

e for (h,J) in Dy := {(h,J)|J > J.,, h < 1(J)}, pa(h,J) is the only
maximum point of p (-, h, J) on the interval [0, ¢1(h, J)].

Hence by the Berge’s maximum theorem [102], continuity of the functions p

and ¢ implies continuity of the function p; on the sets Dy and Dy. As Dy and
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Dy are both closed subsets of R x R, , by the pasting lemma p; is continuous

on their union
DyUDy = {(h,J)|(0<J<J,heR)or (J>J,h<y(J]))}.

A similar argument proves the continuity of ps and puy.
it) Now prove the smoothness of y1, pa, o in the interior of their domains. Set
G(m,h,J) == 2L (m,h,J). As just seen m = py(h,J), pa(h,J), po(h, J) are
continuous solutions of

G(m,h,J)=0,
for values of h, J in the respective domains. Observe that G € C*(R xR x R})
and by propositions [6.2.1], it can happen

§<m7h7‘]):0 ,]2,]0,(m:¢1(h,¢])01"m:(b2<h,<]))
om N N
G(m,h,J)=0 G(m,h,J)=0
J2J07m2¢1<huj> J2J07m:¢2<hvj)
g or
h =41 (J) h = 1s(J)

m = py(h,J) can fall only within the first case, while m = ps(h,J) can fall
only within the second case. Therefore by the implicit function theorem [115]
H1, to, po are C'°° on the interior of the respective domains.

ii) Let ¢ = 0,1,2 and (h, J) in the interior of the domain of y;. Using (6.12),
(p¥P)" = g and the fact that p;(h, J) satisfies equation (6.22)), compute

O Opi

a ~ MD\/
_ O Opi - )

and similarly %ﬁ(ui, h,J) = pu?— ;.

Using the fact that pu;(h, J) satisfies equation ([6.22]) compute
a,ui d /
T g((2ui = 1)J+h) = ¢ (2 —1)J +h)) (1+2J
o  9(@Qu-1)J+h)
oh — 1-2J¢((2m —1)J+h)’

aﬂi)
oh
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oy _ Q0o (@oDIh) e that o = 2 (1— g) /(2
0J 1-27 g/ ((2ui-1)J+h) en observe that g 9(1=9)/(

g) (identity (E2]) in the Appendix), hence since p;(h, J) satisfies equation ((6.22))

and similarly

24 (1 — )
"(Qu; — 1)J+h) = —————=;
g ((2p —1)J + ) 2
substituting this in the previous identities concludes the proof. O

To end this subsection we study the asymptotic behaviour of the stationary

points of p (-, h, J) for large J.
Proposition 6.2.5 (Asymptotic behaviour). Consider the stationary points

mi(h, J), mo(h,J), ma(h,J) defined in proposition[6.2.9 for suitable values of
hJ.

i) For all fited h € R

1
mi(h, J) —— 0, ma(h,J) —— 1, mo(h,J) — = .
J—o0 J—00 J—ooo 2

i1) Moreover for all fived h € R

Tmy(hyJ) — 0, J(1—ma(h,J)) — 0.

J—00 J—o0

iii) And taking the sup and inf over h € [1o(J), Y1 (J)]

supmy(h,JJ) —— 0, infmg(h,J) —— 1.
h J—00 h J—o00

Proof. i) First observe from the definition (6.27) that 1o(J) — —o0, ¥1(J) —
oo as J — oo. Hence for any fixed h € R there exists J > 0 such that
o(J) < h < ap1(J) for all J > J. This means that the limits in the statement

make sense.

Now remind that by proposition [6.2.2] for J > J
m1<h, J) < gbl(h, J) < mo(h, J) < ¢2(h, J) < mg(h, J) .

Observe from the definition (6.25)) that ¢1(h,J) = 1, ¢a(h, J) — 1 as J — oc.

2

It follows immediately that also mg(h, J) = 3 as J — oo.
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Moreover definition (6.25) entails that J (5 —¢1(h, J)) = oo, J(¢a(h, J)—3) —
oo as J — oo. Exploit the fact that my(h,J) is a solution of equation (6.22)):

mi(h, J) = g((2mi(h,J) = 1) J+h) < g((2¢1(h,J) —1)J +h) =

= 9(~ 27 (5~ S ) +h) — 0.,

where also the facts that the function g is increasing and g(§) — 0 as £ - —o0
are used. Since m; takes values in ]0,1[, conclude that m(h,J) — 0 as
J — oo. Similarly it can be shown that may(h, J) — 1 as J — oc.

i1) Start observing that, by a standard computation from the definition ([6.14]),
€g(—¢) — 0 and & (1 — g(é)) — 0 as £ — +o0o. Then exploit the fact that,
for fixed h and J sufficiently large, m; = mq(h,J) is a solution of equation

(16.22):

Jmy = Jg((2m1 — 1)J—|—h) -
(1 =2my)J —h) g(— (1 =2my)J + h) N hg(—(1—2m;)J +h) 0

1—2m, 1—2m, Joe 1

using also that m; — 0 as J — oo by 4). Similarly it can be shown that
J(1—=ms) — 0 as J — oo.

ii1) Start observing that, by a standard computation from the definition (6.27)),
—J +1(J) — —o0 and J + 1o(J) — oo as J — oo. Then exploit the fact
that, for J > J. and h € [19(J), ¥1(J)], my = mq(h, J) is a solution of equation
6.22):

he?il?wl]ml = h;;&ﬂg((?ml —1)J+h) < g(@2mi —1)J+¢(J])) =
= g(2Jm1 — J+1/11(J))

— 0,
J—00

using also the facts that g is an increasing function, g(¢) — 0 as & — —oo, and

Jmy — 0as J — oo by 4). Similarly it can be shown that infj,cpy, 4, me — 1

as J — oo. O



118 6.2. The properties of the solution

6.2.2 The “wall”: existence and uniqueness, regularity

and asymptot

In the previous subsection we have studied all the solutions of equation
(6.22)), that is all the stationary points of m + p(m, h, J). One of them is the
point where the global maximum is attained and, because of theorem [6.1.3] we
are interested in this one.

Consider the points m, my, mg, ms defined in proposition and look for the

global maximum point of m +— p(m, h, J):

e for 0 < J < J.and h € R, m(h,J) is the only local maximum point,

hence it is the global maximum point;

e for J > J. and h < ¢o(J), my(h,J) is the only local maximum point,

hence it is the global maximum point;

e for J > J. and h > 11(J), ma(h,J) is the only local maximum point,

hence it is the global maximum point;

e for J > J, and ¥y(J) < h < 91(J), there are two local maximum points
my(h,J) < mo(h,J), hence at least one of them is the global maximum

point.

To answer which one is the global maximum point in the last case, we have to

investigate the sign of the following function
A(h,J) = ﬁ(mQ(h, J), h, J) —ﬁ(ml(h, J),h, J) (6.36)
for J > J. and o(J) < h < (J).

Proposition 6.2.6 (Existence and Uniqueness). For all J > J. there ezists a

unique h = y(J) € o(J), 1 (J)[ such that A(h,J) = 0. Moreover

<0 if J>J., ao(J) < h<~y(J)
A(h, J)

S0 i T e ) < h <))
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Proof. 1t is an application of the intermediate value theorem. Fix J > J.. It

suffices to observe that

i. A(¢a(J),J) <0, because for h = 15(.J) the only maximum point of the
function p (-, h, J) is my(h, J);

ii. A(@Dl(J), J) > 0, because for h = 1;(J) the only maximum point of the
function p (-, h, J) is ma(h, J);

iii. h +— A(h,J) is a continuous function, by continuity of p, m, mg (see

proposition [6.2.4));

iv. h = A(h,J) is strictly increasing; indeed it is C°° on ]ia(J),¥1(J)[ by
smoothness of p, my, ms (see proposition |6.2.4)) and, by formula (6.34)),

0A 0 _ 0 -
ﬁ(h’ J) = %p(mg(h, J), h, J) —%p(ml(h, J), h, J) =
= mg(h, J) —ml(h, J) > qbg(h, J) —qbl(h, J) > 0

for all h € | (J), 1 (J)]. -

Remark 6.2.7. By the previous results the global maximum point of m
p(m,h,J)is

p

m(h,J) if 0<J<.J,, heR

m*(h,J) =< my(h,J) if J>J., h<~(J) (6.37)

mo(h,J) if J>J., h>~(J)

\

where the function v is defined by proposition [6.2.6, Set also
[':= {(h’v J) | J>Je, h= 7(‘])} ) r=ru {(hca Jc)} : (638)

Notice that proposition [6.2.6| guarantees that there is only a curve I' in the

plane (h, J) where the global maximum point of m — p(m, h, J) is not unique.

Remark 6.2.8. The techniques developed in this work do not allow us to

conclude the existence of the monomer density on the wall. Nevertheless it
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is easy to show that, using Theorem [6.1.3] its limsup and liminf are included
between m; and ms. In the standard mean-field ferromagnetic model (Curie-
Weiss) the existence of the magnetization on the wall (h = 0) is achieved by

symmetry, a property that we do not have in the present case.

By proposition [6.2.4] it follows that the function m* is continuous on its
domain (R x R,) \ T and it is C* on (R x R,) \T'. The behaviour of m* at

the critical point (h., J.) will be investigated in the next subsection.

Now we investigate the main properties of the curve I', which we call “the

wall”. Extend the function v defined by proposition by

v(J) if J>J,
F(J) = . (6.39)
he if J=J.
Proposition 6.2.9 (Regularity properties). The function 7 is C* on |J., 00|

and (at least) C* on [J,,00[. In particular
Y(J) = 1=mi(v(J),J) —ma(y(J),J) VJ>Je,

and

F'(J) =1—-2m. = —(3-2v2) .

Proof. I. First prove that the function v € C*(].J,, >o]).
By proposition for all J > J., h = v(J) is the unique solution of equation

A(h, J) =0

where A is defined by (6.36]). Moreover 1o(J) < v(J) < ¥1(J). Observe that A
is C> on {(h,J)|J > J., ¥o(J) < h < 1(J)} by smoothness of p and my, mo
on this region (see proposition [6.2.4)). And furthermore, as shown in the proof

of proposition [6.2.6]

oA
o ()£ 0 (hJ) st h=n(J).
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Therefore by the implicit function theorem [I15] v € C*°(]J., o0[). Now

oA DA

MG TN =0 = 0= S AR T) = 5260, 1)) + 57 (0

= ) == 229 .

), J)

by formulae (6.34) 22 = ma — my and 28 = (m3 — ms) — (mf — my) ; therefore

V() = 1= (ma+ma) (v(J), ]) .

II. Now prove that the extended function 5 € C'([J,, 00]) .
First observe that 7 is continuous also in J., indeed:

Uo(J) < y(J) < () VI >J. = lim y(J)=he

J—Je+

by definition of h. (6.28) and continuity of 11, 5. Then observe that
Y(J) = 1= (mg+my) (v(J),J) —— 1—2m,

because m(he, J.) = m. (remark [6.2.3) and the functions p;, pe defined in
proposition are continuous. By an immediate application of the mean

value theorem, this proves that there exists 7'(J.) = 1 — 2m,. O
Proposition 6.2.10 (Asymptote). The function 5 has an asymptote, precisely

W(J) —>J_>OO o

Proof. I. Consider the function A defined by (6.36)). The first step is to prove

that A(h,J) — 0 as J — oo, h = —%. Use definitions 1) 1) and the
fact that for fixed h and J sufficiently large my = mq(h,J), ma = ma(h,J)

satisfy equation (6.22), in two different ways:

~ J 1-
p(my,h,J) = —Jm%—l—g— le —logg((2mq — 1)J +h) + (2my — 1)J + h,
1—
ﬁ(m%ha ']) = _Jm§+%_ 2m2

—logma+ (2mg —1)J + h .



122 6.2. The properties of the solution

Hence, reminding that m; — 0 and my — 1 as J — oo by proposition [6.2.5

part ),
A(ha J) = ﬁ(m%h’a ‘]) _ﬁ(mlaha J) =
1
= J(—=mj +2my + mi — 2my) +logg((2my — 1)J + h) + 5t o(1),

Set § := —m2 + 2my +m? — 2my and € := (2my; — 1)J + h and prove that in

general
J 6 +logg(€) = h; (6.40)
— 00
in particular it will follow that for h = —%
1
A - 3 J) ——0. (6.41)

Now proving (6.40) is equivalent to prove exp(Jd) g(§) — exp(h) as J — oc;
and using definition ((6.14))

s e s + 426 — e B \/62(J6+2§) 1 4e2(Jo+E) el0+2¢ o
9 = e 2 - 2 T O

because, since Jm; — 0 and J (1 —ms) — 0 as J — oo by proposition m
part i),
J6+26 = J(—(1—ma)>+mi—2my —1)+2h —— —o0,
J6+€&=J(—(1—me)>+mi)+h —— h.
I1. Remember that by definition of v in proposition [6.2.6

A(y(JI),J) =0 VJ>J.; (6.42)

hence using (6.41]) will not be hard to prove that v(J) — —1 as J — oo. Let
€ > 0. By (6.41) there exists .J, > J. such that

1 _
[A(=5 N <e V> (6.43)
Now by the mean value theorem for all J > J. and h € [1o(J), ¥1(J)],

1 , DA 1
At N=al=5 Nl = it ) I GO+ 3]
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Furthermore by identity (6.34)) and proposition m part iii)

0A
inf = )] = inf my —my) (+,J) >
W7 ()] } oh ( )‘ [¢2(J)7¢1(J)]( ? D )
> inf  mo(,J) — sup my(,,J) — 1.

W) (I)] [W2(J) 1 (J)] J—o0
Therefore there exist J such that
1
%
Choosing h = v(J) in (6.44)), by (6.42), one obtains that for all J >
max{.J, J.}

(AR, J) = A(==, J)] 2%\h+%| VJ>J, he [Wa(J),1(J)]. (6.44)

WJ)JF%{ < 2|A(y(J),J) = A(- %,J)\ < 2. 0

6.2.3 Ciritical exponents

As observed in remark the global maximum point m*(h, J) is a contin-
uous function on (R x R*) \ T, but it is smooth only outside the critical point
(he, J.). In this section we study the behaviour of the solutions of equation
(6.22) near the critical point, with particular interest in the function m*.

As usual the notation f = O(g) as © — =z, means that there exists a
neighbourhood U of 5 and a constant C' € R such that | f(z)| < C'|g(z)| for all
x € U. The notation f ~ g as & — x¢ means that f(z)/g(z) — 1 as x — xo.
Finally f = o(g) as © — xo means that f(x)/g(x) — 0 as z — xy.

We call critical exponent of a function f at a point zy the following limit

o 1081 () = fao)l

z—zo  log|x — x|

The main result of this section is the following:

Theorem 6.2.11. Consider the global mazimum point m*(h, J) of the function
m s p(m,h,J) defined by (6.19).

i) m* is continuous on (R x R,) ~ T and smooth on (R x R,) \ T, where

T =T U{(he, J.)} and the “wall” curve T is the graph of the function v
defined by proposition [6.2.6,
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ii) The critical exponents of m* at the critical point (he, J.) are:

log |t (), ) —me 1
— 1 _ —
P Tt log(J — J.) 2

along any curve h = 6(J) with § € C*([J.,|), §(J.) = he, §'(J,) =

1 —2m, (i.e. if the curve is tangent to the “wall” in the critical point);

o (). ) —md 1
J—Je 1og IJ - Jc| 3
— lim log |m*(h,d(h)) — m,| _ %

h—he log |h — he|

1
5
1
5

along any curve h = 6(J) with 6 € C*(Ry), §(J.) = he, 8'(J.) #1 —2m,
or along a curve J = 6(h) with 6 € C*(R), §(h.) = J., 8'(he) =0 (i.e. if

the curve is not tangent to the “wall” in the critical point).

ii) Denote by m*(h®,J) = limy e m*(W,J). The critical exponent of
m*(h*,J) and m*(h=,J) at the critical point (he,J.) along the “wall”
h =~(J) is still

8- 1 log [m*(v())*, J) —m| _ 1
Ry log(J — J.) 2
5 RGN —md 1
T Jet log(J — J.) 2

Proof. As observed in remark the global maximum point m* is expressed
piecewise using the two local maximum points pq, po and inherits their conti-
nuity properties outside I' and their regularity properties outside I'. Thus part
i) of the theorem is already proved by proposition [6.2.4]
The proof of the other parts of the theorem, regarding the behaviour of m* at
the critical point (h, J.), is long and rather technical, then we sketch only the
major points. For the benefit to the reader, the remaining parts of the proof
are given in Appendix B.

In the following proposition we find the fundamental equation characterizing

the behaviour of the solutions of equation (6.22)) near the critical point (A, J.).
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Proposition 6.2.12. Here for h € R, J > 0 let m = m(h,J) be any solution
of the consistency equation :

m=g((2m—1)J +h) .

Then m is continuous at (he, J.) and furthermore, setting & := (2m — 1)J + h,

it satisfies
(€=&) =R (J = Jo) (€= &) = hap(h, J) + O(( = &)') =0 (6.45)
as (h,J) = (he, J.), where we set iy = 3% (2 —m.), ks == 3% (2 —m,) and
p(h,J) :=h—he+ (2m. — 1)(J = J.) . (6.46)

Proof. I. First show that m is continuous at (h., J.). Exploit equation (6.22)

for m(h, J) and use continuity and monotonicity of g: as (h,J) — (he, J.)

limsupm(h, J) = limsup g((2m(h, J) — 1) J + h) = g((2limsupm(h, J) — 1) J. + he) ,

liminf m(h, J) = liminf g((2m(h, J) — 1) J + h) = g((2liminfm(h, J) — 1) J. + h,) .

Thus limsupm(h,J) and liminfm(h,J) are both solution of equation u =
g((2u +1)J. + hc). But this solution is unique by proposition , and it is
m. by remark Therefore

limsup m(h,J) = liminf m(h,J) = m..
(hyJ)=(he,Je) (hoJ )= (hesJe)

II. Make a Taylor expansion of the smooth function g at the point £, (see (6.14]),

(6.30)). By identities (E2), (E3), (E4) and since g(&.) = m, it is easy to find

1

6722 —my) (E—&)’+0((E-¢&)")  (6.47)

1
9(5) - mc+2_Jc(§_€c)_
as & = &. Now choose £ := (2m — 1)J + h. Then ¢(§) = m and
E—¢& = plh,J)+2J (m—m,), (6.48)

where p(h, J) := h—h.+ (2m.—1)(J — J.). Now (6.45) follows from (6.47). O
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Given the previous expansion, the proof of part i) of the theorem is
rather technical and it is contained in the proposition [F4| of the Appendix (and
in the other results of the Appendix B).

The part 4i) of the theorem describes the critical behaviour of the local
maximum points along curves of class C?. Notice that “the wall” 7 belongs
to C([J., 00[) N C*(]J.,o0[) by proposition [6.2.9, but we did not manage to
prove that it is C? up to J,. Anyway we are interested in the behaviour along
this coexistence curve, which separates two different phases of the system. This
is provided by part iii) of the theorem To prove it let start with the
following proposition, which is bases on corollary and lemma in the
Appendix.

Proposition 6.2.13. Consider the “wall” curve h = F(J) defined by
and proposition [6.2.0. There exist r > 0, C; < oo, Cy > 0 such that for all
J€lusJo+ 1]
H2(7(J)7J) — Me mc_ﬂl(ﬁ(’])v‘])
Cy < <0y, O,< <C
2= VJ—J. = 2= VJ—J, =

Proof. Observe that by definition, on the curve h = 7(J), J > J., both the

local maximum points u(h, J), pe(h, J) exist.

As ¥ € CY([J.,o0]) (see proposition [6.2.9)), the existence of the lower bound
Cs > 0 is guaranteed by corollary part 2).

Only the existence of an upper bound C; < oo has to be proven. Fix
J > J. and shorten the notation by m; = m;(5(J),J) = w:(y(J),J) and &; =
(2m; — 1) J + y(J) for i = 1,2. By proposition , &1, & satisfy equation
(6.45)). The Taylor expansion with Lagrange remainder of 7 is (see proposition

6.2.9)
Y(J) = he+ (1 =2m.) (J = J) +~"(J)(J = J.)?*, with J €]J,, J[;

notice v”(.J) (J — J.)? is not necessarily a O((J — J.)?), because we do not know

the behaviour of v as J — J., but for sure it is a o(J — J,.) as J — J..
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Thus (see identities (6.46)), (6.45)):

p(h, J) =~"(J)(J = Je)* and & — & =2J (mi—me) +7"(J) (J = Jo)’
and equation becomes:

(&= &) —r (T = Jo) (& — &) — w27"(J) (J = J)* + O((& — &)*) =0,

which entails

@ VD = IR (L o)+

(m; — mC)S -

+ O((m; —me)*) =0. (6.49)

Distinguish two cases.

1) I ~"(J) (J = J.)? = O((m; — me)*) (along a sequence), then (6.49) rewrites

(mi — me)® — ( 2’3)2 (J = Jo) (mi —me) + O((mi —me)*) =0, (6.50)

which, dividing by m; — m. and solving, gives

N[

VE1 3
hence m; —m. ~ \/k1/(2J) (J — J.)"/?, proving the result (along the sequence).

2) Now suppose (m; —m,)* = o(y"(J) (J —J.)?) (along a sequence), then (6.49)

rewrites

(me = me)! =z (= ) me = me) =750 (= Jof (14 (1)) =0

(6.51)
Claim A := (£)*> + (£)? < 0. Suppose by contradiction A > 0. Then the cubic

equation (6.51)) has only one real solution: for i = 1,2

. 3l 4 [rd\2 P\3
mi—mc:U++U7 WlthUi:€/—§:i:2(§) —|—(§) .

Observe that ¢ and p are written only in terms of J, so that uy + u_ at the

main order do not depend implicitly on m;. Therefore m; — m,. and my — m,.
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must have the same sign for every J > .J. small enough. But this contradicts
proposition [6.2.2] and lemma [F1 which ensures that in a right neighbourhood
of J.

Mo — Mg > ¢g —m. >0 while m; —m. < ¢pg—m. <0.

This proves A < 0. And now adapting to equation (6.51]) the step ii. of the
proof of corollary A < 0 entails (along the sequence)

m—m, = O((J - J.)?) .

This completes the proof of the proposition. O

To conclude the proof of the part i) of theorem [6.2.11] it suffices to have

the previous proposition and observe that

for all J > J., by proposition [6.2.6] and continuity of my, ms. O



Chapter 7

A Monomer Dimer model with

random weights

In this chapter we study an MD model on the complete graph with random-
ness in the monomer activities. The model describes, in the mean-field approx-
imation, the equilibrium properties of systems of diatomic molecules (see e.g.
[86], 87, 54]) depositing on a inhomogeneous lattice, where the inhomogeneity is
modeled introducing a probability measure on the space of possible realizations
of the site activity. From the probabilistic point of view model presented here is
a pair matching of the sites with random weight. The latter point of view fur-
nishes a direct link with Combinatorics and Computer Science, where the study
of monomer-dimer models applies to matching problems (see e.g. [78] for an
overview of matching problems). For a different way of introducing randomness
in monomer-dimer systems see [27], where a model on locally tree-like random
graphs is solved. The combinatorial problem of perfect matchings on random
graphs, already solved in [91], 50], corresponds the zero-temperature limit of the
latter monomer-dimer model.

The main result is the exact solution of the model with i.7.d. randomness on
the monomer activities x;’s. Precisely we prove that, under very general con-

ditions on the probability distribution, the ¢.[. of the random pressure density

129
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exists and converge almost surely to its quenched value. Moreover the t.[. of the
quenched pressure density is given by a one dimensional variational principle.
The pressure density turns out to be a smooth function of the dimer activity
w. The dimer density is therefore a smooth function of w too and it will be
described explicitely.

The problem, otherwise expected to be difficult due the hard-core interac-
tion, becomes accessible with the use of a Gaussian representation for
the partition function . In this representation, the integrand function presents
negative and singular contributions. However, a careful application of the Uni-
form Law of Large Numbers and the Laplace method lead to the solution of the
model.

In the present chapter the Heilmann-Lieb recursion is one of the main tools,
together with technical methods for martingales (like the Azuma’s inequality),
used to prove the self-averaging of the pressure density.

The chapter is entirely based on [30] and is organised as follows.

In the section [7.1| we the model and compute the t.[. pressure density in the-
orem [7.1.3and the dimer density in corollary [7.1.5 In the section [7.2] we show,
under suitable assumptions, that the free energy density of a monomer-dimer
model with independent random activities is self-averaging. The appendix col-
lects the main technical results used in this chapter, in order to facilitate the

reader.

7.1 The model and the main result

In this section we fix a uniform dimer weight on the complete graph, while
we choose i.7.d. random monomer weights. Under quite general integrability
hypothesis, we show that this model is exactly solvable and it does not present
a phase transition (in agreement with the general results by Heilmann and Lieb

36, 187]).
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Let w > 0. Let z; > 0,7 € N, be independent identically distributed random
variables. In order to keep the logarithm of the partition function of order N, a
normalization of the dimer weight as w/N is needed (see section[5.3)). Therefore
during all this section we will denote

Zy = > ()" I (7.1)

DeIn i€My (D)
pn will denote the corresponding Gibbs measure and ( - )y will be the expected
value with respect to puy. Notice that now the partition function is a random

variable and the Gibbs measure is a random measure.

Remark 7.1.1. Since the dimer weight is uniform, the Gaussian representation

of ([7.1)) simplifies:
N
Zy = E¢ [H(é + 131)} ; (7.2)

i=1

where £ is a 1-dimensional Gaussian random variable with mean 0 and variance
w/N.

Indeed by proposition m ZN = Eg[Hij\il(gi + xl)] where & = (&1,...,&n) is
an N-dimensional Gaussian random vector with mean 0 and constant covariance
matrixl] (w/N); j=1,..~ - It is easy to check that £ has the same joint distribution
of the constant random vector (&, ..., &). Therefore the identity follows.

Remark 7.1.2. Keeping in mind the remark one can observe the analogy
between the formula ((7.2)) and the partition function of the Curie-Weiss random
field model (see e.g. [118, 211, [117]), that is

N
Z](\J]urie-Weiss x E{/ |:H COSh(gl 4 h‘z)‘| (73)

i=1
where £ is a 1-dimensional Gaussian random variable with mean 0 and variance

J/N € R,.

Tt is important to notice that setting also the diagonal entries to w/N, the resulting
matrix is positive semi-definite: Zf\il Zjvzl(w/N) a5 = (w/N) (Zf\il ai)z > 0 for every

a € RN,
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By the way, we want to stress the fact that the Laplace method applies directly
to formula ([7.3), while the presence of negative and singular contributions in
(7.2) requires a supplementary work.

Let us rewrite ([7.2)) as an explicit integral in d¢:

N =

\/‘g% /Reéi? H(£+xi) de . (7.4)

Theorem 7.1.3. Let w > 0. Let x; > 0,7 € N be 1.1.d. random variables.

Denote by x a random variable distributed like x;; suppose that E [z] < co and

E,[(logz)?] < oco. Then:

1
3 Jim - By[log Zy] = ngg(ﬁ(é*) (7.5)
where
2
B(¢) = o +Eu[log(€ + )] VE>0. (7.6)

Furthermore the function ® attains its mazimum at a unique point £*. £* is the

only solution in [0,00[ of the fized point equation

¢ —Ex[ v ] (7.7)

&+

Thus the following bounds hold:

-E, E.[z]? + 4 —t ?+4wlP,(x <t
=]+ o + wVSup VP AR S 1) << \/@/\]Ex[gl.
T

2 >0 2
(7.8)

In consequence of the theorem [7.1.3]it is not hard to prove that the system
does not present a phase transition in the parameter w > 0. It is also easy to
compute the main macroscopic quantity of physical interest, that is the dimer
density, in terms of the positive solution £* of the fixed point equation ([7.7)).
Therefore we state the following two corollaries before starting to prove the

theorem.
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Corollary 7.1.4. In the hypothesis of the theorem consider the limiting
pressure density function p(w) = limy_e + Eg[log Zy(w)] for all w > 0.
Then p € C*(]0, 00 ) .

Proof. By the theorem p(w) = ®(w, &), where ®(w,§) = —£2/(2w) +
E.[log(§ + x)] and & = &*(w) is the only positive solution of the equation
F(w,&) =0 with F := E
F' is a smooth function on |0, 00| % ]0, 00[, because ® is smooth as it will be
proven in the lemma |7.1.6| In addition 8—F(w €*) # 0 for all w > 0, by the
lemma equation ([7.11])).
As a consequence, by the implicit function theorem (see e.g. [I15]), £* is a
smooth function of w € ]0, 0o[. Hence, by composition, also p(w) = (ID(w, & (w

)
is a smooth function of w €0, 0o . O

Corollary 7.1.5. In the hypothesis of the theorem the limiting dimer

density
) 1
d:= lim <E.[(|D])y]

can be computed as

L dr _ (€
d = 7.9
dw 2w (7.9)
Proof. Set py = ilog Zxn and perform the change of parameter w =: e”.

Clearly 4 15 = W 7, and it is easy to check that

dEw[pN]
ABelon] _ g (1)), ]

By the theorem and its corollary - «[PN] converges pointwise to a
smooth function p as N — oo for all values of h € R. A standard computation

shows that E,[py] is a convex function of h. Therefore

d Ez [pn] N @
dh N—oo dh
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Since p(h) = @(h,ﬁ*(h)), where ¢* is the critical point of ® and is a smooth

function of h, it is easy to compute
dp,,, 09 . od o A€
E(h) = %(’%5 ) + @—f(h,f )

0

()
dh< ) = 2eh

Now let us start to prove the theorem [7.1.3] The logic structure of the proof
is divided in three main parts. First we study the basic properties of the function
®. Then we use the uniform law of large numbers and other observations to
show that for large N the integrated function in can be well approximated
by eN®. Finally we will be able to exploit the Laplace’s method in order to

compute a lower and an upper bound for % E.[log Zn].

Lemma 7.1.6. ® is continuous on [0, 0o[, it is smooth on |0, 0o and the deriva-

tives can be taken inside the expectation. In particular for all &€ > 0 it holds

() = > +Ex[§j1} ; (7.10)
(€)= —% _E, [m} <0. (7.11)

As a consequence ® has exactly one critical point £ in |0, 00[, that is the equa-
tion (7.7) has exactly one solution in ]0,00[. £* is the only global maximum
point of ® on [0, 00| .

Proof. 1. First of all () is well-defined for all £ > 0. Indeed for £ > 0

—1 LllP’x
loglé 40y 4~ ST ELE) ;

1 1 1
>1-b >1-1el'(P,)

while for ¢ = 0, E,[|logz|] < E,[(logx)?]'/? < oo by the Hélder inequality.

® is continuous at & = 0 by monotone convergence: log(§+z) decreases to log x
as £ \( 0 and E,[log(¢ + z)] < 0.

Let now £ > 0 and let 0 > 0 such that £ — 0 > 0. The first derivative of ¢ at &
can be computed inside the expectation, obtaining , since the difference
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quotient of & +— log(¢ + z) satisfies the dominated convergence hypothesis.
Indeed for all &' €]§ —0,€ + 0

log(&' + x) — log(§ + )
&=< e §+ T Eeper €0

Now the second derivative of ® at & can be computed inside the expectation,

1 1 1
sup = < sup = < —— € LY(P,).

obtaining ([7.11]), since the difference quotient of £ = F — satisfies the dominated
convergence hypothesis. Indeed for all ' €] —§,& + 5 [

11
iz &ta

§—=¢

1 1 1
<sup~ < sup ==

eL'(P,).

<
~ = (¢ _ 52
feeen (E+2)*  geeen (€) (€-9)
This reasoning can be iterated up to the derivative of any order, since 1/ (E +

2 <1/(€) <1/(6—6)F e L(P,) for all € €]€ — 6,€ + 6] and all k> 1.

IT. In virtue of (7.11)) ® is a strictly convex function on ]0,00[. At the bound-
aries of this domain lime o4 ®'(€) = E,[z7] > 0 and limg 0, P'(£) = —00 < 0
by (|7.10)) and monotone converge. Therefore ® has exactly one critical point £*

in ]0,00[ and it is the only global maximum point of ®. O

Remark 7.1.7. Since £* satisfies the fixed point equation (7.7)), it is easy to
obtain the bounds ([7.8)) for £*. Since £* > 0 and = > 0,

w w ﬂ w w w
f‘Eﬂ”[é*w] g = sV f‘Ex[£*+x}§E“{x]'

Using the Jensen inequality,

—E,[z] + VE,[z]? + 4w
5 :

* w w * * _ *
§ Ex[ﬁ*—l—x} 25*—1—1@@[3:] = (€)Y HEEfr]-w >0 = &>

Finally, since £* + 2 > 0, it holds for all ¢ > 0

w

S*ZExL*lj—x} 2§*+th(x§t) = (P +&t—wP,(z2<t) >0 =

—t+ /2 +4wP,(z <)
5 :

= &>

Lemma 7.1.8. Define the random function

2

D(E) = —5—+ Z log|¢é + ;| VEER. (7.12)
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This function is defined also for negative values of & and it takes the value —oo

at the random points —x1,...,—xn. It is tmportant to observe that

Pn(—§) < Pn(§) VE>O. (7.13)
2. Let 0 < M < oo. Then for alle >0

Pm(vge[O,M] 1Dy (€) — (E)| <e> 1. (7.14)

N—oo

1. Let 0 <m < M < oo. Then there exists Ay, pr > 0 such that

N—o0

IP’:E(VSE[m, M] (I)N<—f) < (I)N(f) — Am,M) — 1. (715)

112. Let C' € R. Then there exists Mo > 0 such that

N—oo

Pm<V£€[MC,oo[ Oy(€) <C and Py(€) < gp({)) — 1; (7.16)

where @ is the following deterministic function

_ & 1
(&) = —ﬂ—i—logf%—g(]Ex[x]—i—l) VE>DO. (7.17)

Notice that ®n(£) — ®(€) = £ 3V log(¢ + ;) — E,[log(¢ + z)] for all
& > 0. Since the z;, i € N are i.i.d., the basic idea behind the lemma [7.1.8is to
approximate ®y with ® by the law of large numbers. But this approximation
is needed to hold at every & at the same time, hence a uniform law of large
numbers is required.
To prove the theorem it will be important to have found a good uniform
approximation near the global maximum point £* of ®. Far from &* instead
such a uniform approximation cannot hold: for example ® 5 diverges to —oo at
certain negative points, while, if the distribution of x is absolutely continuous
and satisfies some integrability hypothesis, it is possible to show that ®(&) =
—% + E,[log | + z|] is continuous on R. But fortunately, far from &£*, it will

be sufficient for our purposes to bound suitably ®, from above.
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Proof. i. For every x > 0 the function £ — log(§ + z) is continuous on [0, M]
compact. Moreover there is domination:
< log(M +z) € LY(P,)
log(§ + z) VEe[o,M].
> logz € L'(P,)
Therefore (7.14)) holds by the uniform weak law of large numbers (theorem |C1)).

ii. Clearly log(§+x) > log | —&+ x| for all £, x > 0. Furthermore an elementary

computation shows that for all £, 2,7 > 0

log(¢ +2) —log| —¢+a| > 7 & Z:;ifgx_ Zif
Therefore for all £ € [m, M] and all 7 > 0,
1 N
(€)= Oy (—€) = 5 D (log(§ + ) —log| — £+ i) >
=1
1 & e —1 e 41
> NZT“(eTHf << 67_15) > (118)

1 e" —1 e"+1
> — 1 M <z < .
_TNZ (eT—l—l _z_eT—1m>

Set I7, yr = [ el e+l m}. Now by the weak law of large numbers, for all

eT+1 7 eT—1
e>0
1N
IP’m(N 21 Wai € I, ) > Po(z eIl 5) — 5> — 1. (7.19)
Hence, using ([7.18) and (7.19)), for all 7, >0
]P{,,,(cI)N(g) —On(—€) > 7 (Po(w € 1], 4) — €)> = 1. (7.20)
—00

To conclude observe that I7, ,, /0,00 (which is the support of the distribu-
tion of z) as 7 ™\, 0. Hence there exists 7o > 0 such that P.(z € I,7,,) > 0.

Choose 0 < g9 < P,(z € I7 /) and set

>\m,M = Ty (Pz(ﬂf € [;;?,M) — 80) > 0.
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Then ([7.15) follows from ([7.20)).
iii. For all £ > 0 the following bound holds:

2 & % 1 o i
dy(E) = —%—i—N;log@—i—xi) = —%—i-logf—i—ﬁ;log(l%—?) <

2

¢ 11
< -5 4 -
< 2w+og€+§N;x

(7.21)

Now by the weak law of large numbers (no uniformity in £ is needed here), for

alle >0
| X
Hence, using ([7.21)) and (7.22)), for all 0 < e < 1
P, (vg>o dy(E) < go(g)) = 1. (7.23)
—00

Furthermore it holds ¢(§) — —oo as £ — oo. Hence for all C' € R there exists

Me > 0 such that

p(&)<C V&> M. (7.24)
In conclusion (7.16|) follows from ([7.23)) and ((7.24)). O

Lemma 7.1.9. There exists a constant Cy < oo such that
log Zy
EwK O%VN)} <C, VNeN. (7.25)

Proof. Since x — (logx)? is concave for # > e, the Jensen inequality can be

used as follows:
Ex[(log Zy)* 1(Zy > €)] = Eg[(log Zn)? | Zn > €] Po(Zy > €) <
< (logE[Zy | Zn > €] )’ Pu(Zn > ¢) =

Ex[Zn 1(Zy > €)]
- ( Po(Zy > ¢)

)2 Py(Zy > €) <

< 2(logE, [ZN])2 + 2 max (logp)?p .
pel0,1]

(7.26)
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Since the z;, ¢ € N are i.i.d. E,;[Zy] equals a deterministic partition function

with uniform weights. Hence it is easy to bound it as follows:

w)” |M(D| =il |En| ¢ N—2d
mln] = X () e <3 () () mer -
De9N
N w 5 |En| N N-1 w
~ B (14 BE?) < Bl e (S )
(7.27)
(here |Ey| = NW=1) denotes the number of edges in the complete graph over

N vertices). Therefore, substituting (|7 into ,

2
w
Y ) 4 2 max(l
2]Ex[x]2> + 2 max (logp)°p
(7.28)

It remains to deal with the case Zy < e. When 1 < Zy < e, it holds 0 <

E.[(log Zn)* 1(Zy > €)] < 2N? <logEx[x] +

log Zn < 1 hence trivially
E.[(log Zy)? 1(1 < Zy < €)] < Eg[(loge)* 1(1 < Zy <e)] < 1. (7.29)

When instead Zy < 1, it holds log Z < 0 hence we need a lower bound for Z.
For example, considering only the configuration with no dimers, Zy > Hl]\;l ;.

Therefore:

E.[(log Zn)* 1(Zy < 1)]

IN

Em{(logﬁxi)2l(ZN§1} < E, {(Zlogx” <

< NQ]EI[Ing}Q + NE,[(logz)?] .
(7.30)
In conclusion the lemma is proved splitting E [(log Zy)?] as E [(log Zy)? 1(Zx >

e)] + Ex[(log Zn)?1(1 < Zy < €)] + Eg[(log Zy)*1(Zy < 1)] and applying
the bounds ([7.28)), (7.29), (7.30)). O

Proof of the theorem[7.1.3. Tt remains to prove only the convergence ([7.5). Fix
C < ®&"). Fix 0 <m < Mg =: M < oo such that (7.16) holds and m <
& < M : it is possible to make such a choice thanks to the bounds ([7.8)) for
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€* proven in the remark Fix Ay =t A > 0 such that (7.15) holds. Let

€ > 0. Then consider the following random events depending on x1,...,zy

Ey. = {VEe[0,M] |®y(E) —@(&)| <}
EY = {VEe[m, M] On(—£) < Pn(E) — A}

= {VEe[M,00[ On(£) <C, Pn(§) < (&)}

and set En. := Ey . N EX N EY . It is convenient to split the expectation of

log Zn as follows:

E, {% log ZN] = E, {% log Z ]1(EN,E)1 + E, [% log Z ]1((EN,E)C)}
(7.31)
In the following we are going to see that in the limit N — oo the second term
on the r.h.s. of is negligible, while the first term can be computed using
the Laplace’s method.

By the lemma using the Holder inequality and the lemma [7.1.9]

'Ew [% 1ogZN]1((EN,8)C)] ‘ < Ew[(% 1ogZN)T/2 P, ((En.))"? — 0.

N—o0
(7.32)
[Upper bound] Using the Gaussian representation ([7.4), a simple upper bound
for Zy is
VN
Zy et + 2] d NENEO qe . (7.33
< = syl |5 @ = £ (733)

If the event Ey . holds true, remembering also the inequality (7.13]), then the
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following upper bound holds:

/eN‘PN(ﬁ) d¢ <
R

< Q/meN‘I)N(f) dé" +
0

M M o)

N @N©O-Y ge 4 2/ NN e <
M

eNoN(E) d¢ + /

m m

m M M [e'¢)
<9 / N@E©e) g 4 [ N@E©+e) ge 4 / N @O+ e 4 9 (V-D)C / 9 de —
0 m

m M

_ O(€N(max[0’m] <I>+€)) + eN(‘I)(f*)+5) \/%(1 "—0(1)) + O(eN(<I>(§*)+5—)\)) + O(GNC) ’

N—oo _N(I)//(g*)

(7.34)

the last step is obtained by applying the Laplace’s method (theorem to the
function ®, which by lemma [7.1.6| satisfies all the necessary hypothesis. Now

since maxp ) ®, ®(£*) — A and C are strictly smaller than ®(£*), it holds

) pe V2T

As a consequence of ([7.33)), (7.34)), (7.35)),

1 log N
NlOgZN ]I(EN,E) S (I)(f*>+8+0< ?V > s

where the O(IOZgVN ) is deterministic. Therefore for all ¢ > 0

1
lim sup B, Nlog Zn ]l(ENﬁ)} < O(E) 4. (7.36)

N—o0

[Lower bound] Observe that the product Hf\il (&+x;) is always positive for £ > 0,

while it is negative for some £ < 0. Hence using the Gaussian representation

(7.4), a lower bound for Zy is

N o LN o L,
s X (/ 2k Hlf+xi|d£—/ et H|§+xirds) =
0 i=1 —00 i=1

2mw

00 0
_ VN </ NN g _/ N B (E) d§>_
2mw 0 —00

(7.37)
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If the event Ey . holds true, remembering also the inequality (7.13]), then the

following lower bound holds:

/ N“PN(E) dé‘ / NCI)N dg >

M
NN gg / N de >
M

S [ eN@©-9 ge / N @@+ ge —

_ N@E)) vem (1+o(1) N (@(E) ) V2 (1+o(1))
Noeo —N®(¢7) ~No(g)

(7.38)

the last step is obtained by applying the Laplace’s method (theorem to the
function ®, which by lemma satisfies all the necessary hypothesis. Now
since ®(£%)+e— A < P({*) —eforall 0 < e < A, for such a choice of ¢ it holds

V2r

rh.s. of (7.38 eN@E)—e) Y2 7.39
) . G (7.30)

As a consequence of (7.37)), (7.38), (7.39), for all 0 <& < X

log N
o 2w U(Ew.) = (0(€) =+ 0(*5Y) ) 1(Bw)

where the O(IOIgVN ) is deterministic. Therefore, using also the lemma [7.1.8 for

all 0 < e < A

lim inf E, %ngNn(EN,g)} > lim inf <q>(§*)—g+o<1°gN )> P.(Ex.) = ®(&)—
—00

N

N—o0

(7.40)
In conclusion the convergence E,[+ log Zy] — ®(£*) as N — oo is proven by

considering (7.31)) for 0 < e < A, then letting N — oo exploiting (7.32),
(7.36)), (7.40), and finally letting ¢ — 0+. O

Remark 7.1.10. In the deterministic case, namely when the distribution of the
x;’s is a Dirac delta centred at a point z, the theorem and its corollary[7.1.5]

reproduce the results obtained in the Proposition 6 of [28] by a combinatorial
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computation. Indeed the fixed point equation ([7.7]) reduces to £* = f*%, whose

positive solution is

—z 4+ V244w

£ = 5
As a consequence, by (7.9)) the limiting dimer and monomer density are respec-
tively
¥ ()2 22 —zVr?+4w+ 2w Yy —2? + V2?2 + 4w
= = s m = — = .

2w 2w 2w

Moreover by ([7.5) and ((7.9) the limiting pressure can be written as

O (W \ _ 1. 2d
p—q)(ﬁ)——%—i-log(ﬁ —i—x)——d—ﬁlogz.

7.2 Concentration inequality for random monomer-
dimer models

In this section we prove that under quite general hypothesis an the pressure
of a random MD model with independent random weights satisfy an exponential
concentration inequality. In particular it will follows, by classical spin glass
arguments [I3], that the pressure is self averaging and the convergence of
the theorem can be strengthen as

1
P, - almost surely 3 lim —log Zy = sup®(¢) , (7.41)
N—oo N £>0

when in the hypothesis of the theorem [7.1.3]one substitutes E,[2] < oo, E,[(log )?] <
oo with the stronger E,[z] < oo, E,[z7!] < co.

Ingeneralletwgw >0,1<i1<j3<N,NeN and z; > 0,17 € N,
be independent random variables. Since the dimer weights may be allowed to
take the value 0 (or to be identically 0), we do not really know on which kind
of graph the model lives, on the contrary the framework is very general (for

example the complete graph is included, but also finite-dimensional lattices or

diluted random graphs are). This is why we allow a generic dependence of the
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dimer weights on NV, in case a normalisation is needed. During all this section

we will denote

Zn = Z H wgv) H T . (7.42)

Dey ijeD i€My (D)
Denote simply by E[-] the expectation with respect to all the weights and
assume that
sup sup E[wij)] = () <oo, supElr]=:Cy<oo, supE[z;']=:0C5<cc.
N 1<i<j<N ieN ieN
(7.43)
Clearly the pressure py := %log Zn is a random variable and it has finite

expectation, indeed

Y]

logni\il LTi = ZiNzl logz; > Zfil(lnta:;l) e LY(P)

< Zy-—-1 ELl(P>

N pn

The following theorem shows that in the limit N — oo the pressure py concen-
trates around its expectation, or in other terms it tends to become a determin-

istic quantity.

Theorem 7.2.1. Let w)’ >0,1<i<j<N,NeN, andx;>0,i€N, be
independent random variables that satisfy . Then for allt > 0, N € N,
q=1

t* N

P —E >t) <2 -
(lpv —E[pn]| > ) < eXp< TP o N

) + (a+bN)N™9  (7.44)
where a := 4 + 2C,C3 , b := 2C,C% . As a consequence, choosing q > 3,

lpny — Elpn]| = 0 P-almost surely . (7.45)
—00

(™)
ij
exponential rate of convergence instead of ([7.44)), but here we prefer to obtain

the result (7.45) with minimal assumptions.

If the random variables w;; ', x;, z; ' are bounded, then one could obtain an

Proof. Fix N € N. Set w; := (wggil),...,w%)) foralle =1,...,N — 1.
We consider the filtration of length 2N — 1 such that in the first NV steps the
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monomer weights x; are exposed, while in the last N — 1 steps the vectors w; of
dimer weights are exposed. Since py is a function of z1,...,zN, Wy, ..., wWN_1
and E[|py|] < oo, we may define the Doob martingale of py with respect to this
filtration

M; :=E[py|a1,...,2;] Vi=0,....N,

My ::E[pN‘xl,...,xN,wl,...,wi} Vi=1,...,N—1;

in particular it holds My = E[py] and Maoy_1 = pn.

Now we want to bound the increments | M; — M, ;| for everyi =1,...,2N—1, in
order to apply the Azuma’s inequality. By hypothesis 1, ..., xxn, wi, ..., wWNn_1
are stochastically independent, hence the conditional expectations are simply
M; = Eyir1 w[pn] for i =0,...,N and Myy; = Egini[py] fori=1,...,N — 1.

As a consequence it is easy to check that for i = 1,..., N it holds

|M; = M| < sup | pn (Xiz1, @i, X7 W) — By, [ oy (Xim1, @, X

X1, XL W

and for i =1,..., N — 1 it holds

|\ Myyi—Mpyyia| < sup ‘pN (X7 W1, W, Wi“)—Ewi [PN (X, W1, Wi, VNViH)” .

‘x’i—lvwi+1
(7.47)
Here we have adopted the following notation x := (z1,...,zx), X; := (1, ..., Tk),

x* = (11,...,2x) and similarly w = (wy,...,wy_1), Wi = (wy,..., W),

w* = (wy,...,wy); the symbols with a tilde denote a deterministic value

taken by the corresponding random quantity.

First fix ¢ = 1,..., N, fix the deterministic vectors X;_;, x**!, w and let

x}, x! be two independent random variables distributed as z;. Set

/

I S g+l
Py = pn (Xi-1, 7, X

) W) ) p/]<[ = pN(iifb .Z';I, )~<i+1’ W) .

To estimate the difference between py, pi, we use the Heilmann-Lieb recursion
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for the partition function of a monomer-dimer model (see [86] and the proposi-

tion [5.2.3)):

/ //

-1 N -
dy =l = Lrog 2 Ly A i i Pyt D Wi Pty
NOAN TN TRz TN o 7 + 23;11 Wi Z_j_; + Z;V:Hl Wi 7

IA
=|
<3
O]
RS
K&
+
—_
N———

(7.48)

here we denote by Z_;, Z_,_; the partitions function of the model over the ver-

tices {1,..., N}~{i}, {1,..., N}~{4, j} respectively, with weights x; 1, X', w;_, witl.

It is important (for the inequality in ((7.48])) to notice that these partition func-

tions do not depend on the weights x}, 7. In the same way one finds
/! / :E;/
Py — Py < 5 log prins ). (7.49)

Denote by E” the expectation with respect to the random variable 2 only.
Then the inequalities ((7.48)), (7.49) provide respectively the following random

bounds

1 ! 1
B = B ) S B Lo (% +1)] < Log (el +1)

(7.50)

1 xl 1
BIk] - s = B - oh] = B|plog (%4 1) | < o (Bln ) 1)

(7.51)

Choose ¢ > 0 and the previous inequalities provide a bound for |M; — M; 4|
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that holds true “with high probability”:

q (r49) / 1 q
P( |M; — M| > NIOgN < P sup ‘pN —E[pNH > —logN | <

X1, Xt W N

<P / ) 11 il N y , q 1 (7.50),(7.51])
= sup (pN [pND > N 8 + P sup (E[pN] —pN) > Zlog N <

% q, % W %1, %W N
<P —log x E ]+1)>—logN + P ilog(IE[aci]xfl—kl)>£logN =
- N N N ! N
L (7.52)
=P(1+2,E[z; | >N) + P14+ E[z;]z; >N ) <
gE{lmz :|Nq+E|:1+E[l‘Z] x; }N‘I§
< 2(1+CyC3) N7
here at the penultimate step we have used the Markov inequality.
Now instead fix i = 1,..., N — 1, fix the deterministic vectors w;_;, wi*!,

let w;, w; be two independent random vectors distributed as w; and leave the
vector of monomer weights x random (choose w;, w! independent of x too).

Reassign the notation previously used, setting now:

z—i—l) H—l) )

/L ~ /. ~
PN = pN<X7 Wi_1, 'I.U w y Py = pN<X7 Wi_1, 'lU W

To estimate the difference between p'y, pi, we use again the Heilmann-Lieb
recursion for the partition function (see [86] and the proposition [5.2.3)):

N
2 Zi + N Wi Zogei + S Wy Zmicy -
x; Z_; + Z lwﬂZ_] i + Z] W2y

N N
1 > wh. Z_i 1 W
Slog (1 4+ ST )~ Sog (1 5 ) <
¥ og( + P + log +j;1$i“fj< jem)—i | <

1 N w'..
< —log(1 L)
- N Og( + Z I’i.ﬁﬂj) ’
Jj=i+1

we have denoted by Z_;, Z_,_; the partitions function of the model over the ver-

1.z 1
PPy = los gy = ylos

IA

(7.53)

tices {1,..., N}~{i}, {1,..., N}\{4, j} respectively, with weights x; 1, x*1, w,_;, witl.
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It is important (for the first inequality in ([7.53))) to notice that these partition

functions do not depend on the weights w;, w!. In the same way one finds
N 1"
1 ws.
=y < =1 1 —2 ). b4
PN —PNn = NOg( +j§1 > (7.54)

Denote by E” the expectation with respect to the random vector w. only. Then

the inequalities ((7.53)), (7.54) provide respectively the following random bounds

7.54 Noow
N —E'pi] = E'[ply — pi] Nlog (1 + x;;) ) (7.55)
j=i+1 I
EH[ //] r_ ]E”[ ] 725 E/ 1 1 1+ iv: wglj <
PNl —Pn = —py] < N 08 R o
= (7.56)

IN

N
1 el YER I
N % (1 " Z i Tj )
Jj=i+1

Choose ¢ > 0 and the previous inequalities provide a bound for |[My;—My;_1]|

that holds true “with high probability”:

-
P(|MN+1 My yia| > —logN) P( sup ‘pN E"[py]| > —logN) <
N Wiq, W N
< ]P’( sup  (py — E"[py glogN < sup (E"[py] —py) > logN)
V~V¢,1,V~VH’1 N Wz 1, witl

IA
g
— I
+
M=
Sle
Q&S
V;
= .
=)
N———
+
g
o
+
[]=
szE
53:
Vi
=
=)
N———
IA
=
ot
-

<2(1+NCC3)N1

here at the penultimate step we have applied the Markov inequality.
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As an immediate consequence of (7.52)) and ((7.57)),

N (2(1+ CoCy) N79) + (N — 1) (2(1+ N C,C3) N™9) (7.58)

IN

< 2(2+4CC3+ C1C;N) N2,

Therefore by the extended Azuma’s inequality (theorem , for all ¢ > 0 it
holds

t? N
P(|My_1—M| >t) < 2 —— ————— | +2(24+CC3+CC5; N) N4
(|N1 0|_)_ exp(QQQZIOgZN)+(+23+13 )
(7.59)
and the proof of ([7.44]) is concluded. Choosing ¢ > 3 the r.h.s. of (7.44)) is
summable with respect to N € N, hence ((7.45)) follows by a standard application

of the Borel-Cantelli lemma. O
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Outlooks

In the present work I reported new results that I have obtained, trough
various collaborations, during my PhD course. The main field is the Statistical
Mechanics of Equilibrium, and they cover two main topics: Spin Glass models
(Chapters 1-4) and Monomer Dimer models (Chapters 1-7). Despite we gave
a complete answer to all questions raised, that is we founded a more or less
explicit representation of the limiting pressure and the Gibbs measure, several
related and important problems are still open. I would like to make a little bit
more explicit this aspect.

The main contribution of Chapter 3 is the development of a multidimensional
version of the Parisi Theory which describes the thermodynamical limit of the
Multi-species SK model. However, our results hold in a subset of the domain
of the parameters which satisfies a convexity condition: the mutual interaction
does not exceed a threshold where the strength of the off-diagonal terms prevails
on the inter-party interactions. I would be very interesting to extend the results
to the opposite case. The latter is intrinsically different because the model
approaches the Hopfield model for neural network, a well know longstanding
open problem in spin glass theory.

In Chapter 4 we developed a general framework for the study of the stability,
under suitable perturbations, of the limiting Gibbs measure. The framework is
general in the sense that covers a large class of spin glass models, including short
range interactions. This allow us to deduce, let say for the Edward Anderson

model, the ultrametric property of the limiting Gibbs measure under small

151
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perturbations. However, is still an open question if or not this ultrametric
structure gives non trivial information about the physical properties of the
system.

In Chapters 6 and 7 we introduce two modifications of the classical Monomer
Dimer model. The first one is obtained adding an imitative attraction among
the particles (monomer and dimer) while the second is characterized by the
quenched randomness on the activities. In both cases, we have shown that the
models are solvable in the complete graph. The natural next step would be to
study the previous models on a lattice, the difficulty of the mathematical treat-
ment presumably increases by several orders of magnitudo as well the interest
of possible results in this direction.

One can also think to mix the two previous features introducing a random
interaction among particles. In this way one can hope to obtain a glassy be-

havior, namely a kind of Monomer Dimer Glassy system.



Appendix

A. Wick’s Theorem

In this appendix we state the main technical results used in the paper. We

omit their proofs, that can be found in the literature.

Theorem A1 (Gaussian integration by parts; Wick-Isserlis formula). Let (&1, . ..

be a Gaussian random vector with mean 0 and positive semi-definite covariance
matriz C' = (¢ij)ij=1..n- Let f: R"™ — R be a differentiable function such
that E[|€1 f (&2, .., &)|] < 00 and E[|g (&, ... &)]] < oo forallj=2,... 0.
Then: .

of

E[& f(&, ..., &)] = Z Cle{a—@(fz,---@n)] : (A1)

Jj=2

As a consequence one can prove the following:

E[ﬁgz] = Y IT @i (A2)

P partition of i.jyeP
{1,..., n} into pairs { 7]}

The Gaussian integration by parts (Al]) can be found in [I7]. The Wick-
Isserlis formula (A2)) follows by (Al) using an induction argument; but it ap-
peared for the first time in [89].

B. Laplace method

Theorem B1 (Laplace’s method). Let ¢: [a,b] — R be a function of class C*.

Suppose that there exists xo € |a,b| such that

153
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i. ¢(xo) > @(x) for all x € [a,b] (i.e. xq is the only global maximum point

of );
it. ¢"(zg) <O0.
Then as n — 0o

b
/ @ dg = endlo) L (1+0(1)) . (B1)
a —n ¢ (o)

A formal proof of the Laplace’s method can be found in [66].

C. Probability estimation

Theorem C1 (uniform weak law of large numbers). Let X', © be metric spaces.
Let X;, i € N be i.1.d. random variables taking values in X. Let f: X x© —- R
be a function such that f(-,0) is measurable for all 0 € ©. Suppose that:

i. © is compact;
ii. P(f(Xu,") is continuousat ) =1 for all§ € O ;

ii. 3 F: X — [0,00] such that P(|f(X1,0)| < F(X1)) =1 for all 0 € © and
E[F(X)] < 00.

Then for all e > 0

IP’( sup
0cO

The uniform law of large number appeared in [00]. It is based on the (stan-

%Zf(Xi,G)—E[f(X,Q)]’ za) — 0. (C1)

A n—00
=1

dard) law of large numbers and on a compactness argument.

Theorem C2 (extension of the Azuma’s inequality). Let M = (M;);—,...

real martingale with respect to a filter. Suppose that there exist constants € > 0

and cq,...,c, < 0o such that

P(3i=1,...,nst |M;— M| >¢) < c.
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Then for allt >0

t2
— < S — .
P(|M, — My| > t) < 2 exp < TS C?> +e (C2)

The Azuma’s inequality is a useful tool in the martingale theory that allows
to obtain concentration results. Its usual formulation is given with ¢ = 0. The
extension with & > 0 can be found in [55]; but it can be proven also starting
from the usual formulation and introducing a suitable stopping time, following

the ideas in [123].

D. Interpolation method

Much of the recent progresses in the study of mean field spin glass models
is based on methods and arguments introduced by Guerra in a series of works
(see e.g. [79, [85), B4]), constituting the so called interpolation method. Beyond
the original works, the interested reader can found a detailed and complete
exposition with several applications of this method in [I7]. In order to present
a self-consistent exposition, hereafter we outline briefly the basic ideas.

Let N be an integer, and fori € I = {1,..., N}, let U; and U, be two families
of centered Gaussian random variables, independent each other, uniquely deter-
mined by the respective covariance matrices E(U,;U;) = C;; and E(ﬁlﬁj) = 6’”
We treat the set of indices ¢ as configuration space for some statistical mechan-
ics system. Let a; € RT for each i € I be an arbitrary (finite) weight. We define

the Hamiltonian interpolating function as the following random variable
Hz(t> = \/gU'Z —|— V 1 — tUZ,

where ¢ € [0, 1] is the real parameter used for interpolation.

Let us introduce also the so-called quenched measures. First, we define the
random partition function of the system as

Z(t) := Z ;e

i
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and the random Gibbs measure as

Then let F': (I x I) — R be an observable defined in the duplicated configu-

ration space, we define the quenched measure as

(F), = E(Qt(F)), (D1)
where

U(F) =) Gi(t)G;(t)Fy. (D2)

The measure §2; is called the duplicated random Gibbs measure.

Keeping in mind definition (D1]), it is possible to prove (see [17]) the following

Proposition 7.2.1. Consider the function
o(t) :=Elog Z(t) (D3)
then for its t-derivative the following expression holds
, 1
¢'(t) = §<Cu‘ — Cii)y — (D4)

The generalization to multi-partite systems requires only minor modifica-
tions. Suppose that the system is composed by a finite number S of species
indexed by s € S, then |S| = S. Consider a generic statistical mechanic system

as before and assume that:
- the configuration space is decomposed in a disjoint union I = J, s I (),

- the U’s are also decomposed in the following way

U= S U, (D5)

s,pES
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where Ui(SP ) is a family of gaussian r.v. such that the covariance matrix is of

the form

E(U}sp)U}S’p”) = A2 5,00,y O O (D6)

where C’fj‘?) is a covariance matrix defined on I x [(®),
Notice that the covariance matrix defined in is the Schur-Hadamard
product of the CZ-(;) and then is positive definite. The family of positive param-

eters (A2

2))spes tunes the interactions between the various species.

For a fixed couple (i, j) we can think at each C’i(;) as a component of a vector in
the space R® and then, thanks to (D5) and , the covariance matrix of the
entire system can be rewritten, with a little abuse of notation, as a quadratic

form in R®, namely as

Cy =Y chazc? = (c,ac), (D7)
s,pES
where C := (CZ(JS ))565 is a vector in R® and A is the real symmetric matrix

defined by the entries
A = (Aip)s,pGS‘

Suppose for simplicity that Ci(f) = /c for some ¢ € R for each i € I,s € S,
that is

where
]_ = (1>S€8

Under the assumption that an analogous decomposition holds for the U’s too,

then
Gy = =3 WA cw — (C AC) (DY)
8,pES
and
Cii = ¢(1, A1), (D10)

In the multipartite framework, by , Proposition becomes
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Proposition 7.2.2. Consider the functional defined in @, then for its t-

derivative the following holds
, 1 1 ~ .~
P(t) = (e~ DL A - ((CAC) - (C,AC),.  (DI)

In order to separate the contribution of the various species, let us introduce
the operator P, as the canonical projector in R¥.

For any s € S and for any vector u = (u(¥),cs in R¥, we have that
P (u) =l (D12)

Clearly, for two vectors u, v, the following relation holds
<u, Av> -7, <u> P, (Av) = 795<Au> P, <v) (D13)
sES sES

If we denote by (e;)ses the canonical basis of R, the canonical projection can

be expressed as a scalar product, that is
(1) = (e ) 11

Let us recall briefly the Guerra’s RSB scheme. Let U; be a family of cen-
tered Gaussian random variables uniquely determined by the covariance matrix
E(U;U;) = C;; and let us introduce the integer K, associated to the number of
levels of Replica Symmetry Breaking (RSB in the following). For each couple
(1,7) € {1,2,..., K} x I, let us introduce further the family of centered Gaussian
random variables B! independent from the U; and uniquely defined through the

covariances

E(B!B!) = oy BL,,

and point out that there is independence between different [, (" levels of symme-
try breaking.

Further, we need some preliminary definitions:
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For the average with respect to B! and U; we use the following notation

159

(D15)

(D16)

(D17)

We need also a sequence of non negative real numbers (mg, my, ..., mg, Mx11)

with mg = 0, mg.1 = 1 and we define recursively the following the random

variables

Zi(t) = Y wiexp(VIU; +VI—t Y B,

zZ™M = E(Z"),
zZ™M
" mEy

and the following modified Gibbs states,

)= wi(t) ﬁK,t:Qt(')a

£

ol
—
T~
-~ —~ —~ —~
N2
I

It = E(fl---fKﬁl,t(')) Vi=0,.., K.

, ) = EZ—H-'-EK<fl+1meWt(')) VZZO,...,K,
El+1...EK(flJrl...fKQt(')) Vl - 0, ceey

(D18)

(D19)
(D20)

Bearing in mind the previous definitions, it is possible to prove (see [79]) the

following

Proposition 7.2.3. Consider the function

@(t) = Eglog(Zo(t)),

then for its t-derivative the following relation holds

1 K

o1 _ _
p(t) = 5(Cii — BE) e, — = > (mpe —my)(Cij; — B,

2
1=0

RO _ Rl N\~ pr
where BY; =0 and B =) ,_, Bi;.

(D25)

(D26)
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We discuss now a generalization of the previous scheme for multipartite sys-
tems.
Let K be an integer and consider an arbitrary sequence of points I" :== (q);=1,..,
0,1]°. For each triple (,4,s) with 1 =1,2,...,K,i € I, s €S, let us introduce

the family of centered Gaussian random variables B,f’(s) independent from the

U; and uniquely defined through the covariances

E(B"®W B = 585,5”/735(Aul(r))738(6l) (D27)

2 J

where, for each value of [, the component of the vector C; = (51(2-)5687 are
covariance matrix defined on I® x I*) and wu;(T') is an arbitrary vector in R
which depends on the choice of the sequence I' .

Notice that (D27)) implies independence between two different 1), ') levels of
symmetry breaking of each s-species. For each [ = 1,2,..., K and 7 € I, we can

define the following family of random variables

Bl =Y Bv

seS

then by we have that

E(B!B!) = 6y (ul(f‘), Aél). (D28)
Suppose for simplicity that @(2 =1 for each [, 1, s, that is

E(B!B') = 6 (ul(F), A1>.
Let us introduce the following notations for the average with respect to B!, U;,

Fi() = /Hdu(Bf)(-) Vi=1,.., K, (D29)

du(B) = []duB™). (D30)
se€A

Ba() = [ T[auvo. (D31

E() = EOEZ...EK(-). (D32)

Hence, the multi-species analogous of the Proposition [7.2.3] is the following
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Proposition 7.2.4. Consider the functional
¢(t) = Eolog(Zo(t)), (D33)

then for its t-derivative the following relation holds

(w(0),a1) -

where B =0 and B' = S, (ul(F), Aél/).

[\.’)li—‘

Mw

o(t) = 1A1 ﬁ:mwrwmxngc) %¢

(D34)

=1

E. Properties of the function g

We study the main properties of the function g defined by (/6.14)), which are

often used in the following. Remind

9(§) = %(\/€4h+462h—62h) VheR.

Standard computations show that g is analyticon R, 0 < g < 1, limy,_,_ g(§) =

0, limy o g(§) = 1, g is strictly increasing, g is strictly convex on |—oo, w]
1og(2\2/§—2)7 oo, g(log(2\2/5—2)) — 22

Solving in h the equation g(§) = k for any fixed k£ €]0,1[, one finds the

and strictly concave on |

inverse function:
1 k2

2
2 %% )

g k) = Vk €]0,1]. (E1)

It is useful to write the derivatives of ¢ in terms of lower order derivatives of ¢

itself. For the first derivative, think g as (¢7)~! and exploit (EI)):

iy 1 _ 2k(1—k) _ 299 (1 —9(9)
IO G W sy 2-F oo 2-90®) D

Then for the second derivative, differentiate the rhs of (E2)) and substitute (E2))

itself in the expression:

29 g(1—g) 2¢9'(1—-2g)+ (¢')?
" 1-2 — . E
g 2_g( 9+, ) o (E3)
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The same for the third derivative: differentiate the rhs of (E3) and substitute

(E3)) itself in the expression:

1
=5y (29"(1—=2g+¢)—4(9) +g
9" (2—4g9+3g)—4(g)’
2—g '

Lemma E1. Forc¢> 6 —4v/2,

"

29 (1-29) + (9’)2) _

2= (E4)

g <c VEER.
F0r0<c§6—4\/§,

<c iff €< iloga_(c) or &> Llogay(c)

g'(¢) 7
>c iff $loga_(c) < & < 3 logay(c)
where
—(2+8—4) £ (2—c)Vc2—12c+4
ax(c) = :

de

Proof. Investigate for example the inequality ¢'(£) < ¢. By (E2]) clearly 0 <
g < 2, hence the inequality is trivially true for ¢ > 2 and false for ¢ < 0.
Using identity (E2|) one finds

d<c & 2¢°—(2+¢c)g+2c>0;

this is a second degree inequality in g with A = ¢? — 12¢ + 4.
If 6 — 42 < ¢ < 6 + 4/2, it is verified for any value of g.
If instead ¢ < 6 —4v/2 or ¢ > 6 + 4\/5, it is verified if and only if

24+c—c2—12c+ 4 2+ c+cZ2—12¢c+4
9(6) < i —s () o g(6)> ve —54(0).

For 0 < ¢ < 2, s4(c) € ]0,1] hence one can apply ¢!, which is strictly

increasing:

§<g ' (s-(c)) or £€>g ' (s:(c)) .
This concludes the proof because identity (E1]) and standard computations show
that

g H(sx(e)) = % log as(c) . O
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F. Critical exponents: technical proofs

Let us prove the results used in subsection to compute the critical

exponents.

Lemma F1. Consider the inflection points ¢1, ¢o of p defined by . Their
behaviour at the critical point (he,J.) along any curve § € C*([J,,00[), with
0(Je) = he, is

¢1(3(J), J) — me
VI —Jc Jdet J—Jc Tt

where C = v/2/(2J.) > 0.

Proof. For i = 1,2 and J > J. definition (6.25)), observing that (2m, — 1).J =
—he+ (2m. — 1) (J — J.) + &, gives

T(6:5(), 1) = me) = Sloga(]) — & — (5(7) — he) — (2me —1)(J — ).

Now the definition (|6.26)) may be rewritten as

Thus, exploiting log(x +y) = logx +log(1+y/z) = logz +y/z + O((y/z)?) as
y/x — 0, 5 logb(J.) = & and log b(J) differentiable at J = JL,

1 ~ 1logb(J) —logb(J.) 1c(J)
§1ogai(J)—£cf§ (J 7 (J—J.) F 5 0(J) VJ—Jc+0O(J—J)
= ; J—J.

To conclude put things together and use also ¢ differentiable at J.:

6:(0(J),J) —m.  Slogai(J)—&  6(J) = he

97 _ _ —@m, — DT = .
T—Jc N = @me—1)
1 ¢(J) s
i "7 — 43, 0
3F2b<J>+O(\/J Jo) s V2

Next corollary gives a first bound for the critical exponents.
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Corollary F2. Here for h € R, J > J. let m = m(h, J) be any solution of the

consistency equation .
1) There exist r1 > 0, Cy < oo such that for all (h,J) € B((he,J.),r1) with
J > J.

m —me| < Ci(|h—he|s +]J = JJ3) .

2) Assume that m pointwise coincides with one of the local maximum points my,
my (see proposition . There exist ro > 0, Cy > 0 such that for all (h,J) €
B((he, Je),r2) with J > J. and h = 6(J) for some & € C*([J., 00[), 6(J.) = he

Im—m.| > Co|J— J|7 .

Proof. 1) Set £ := (2m — 1)J + h. By proposition [6.2.12] ¢ satisfies equation
(6.45)), which can be treated as a third degree algebraic equation in § — &,

J/

(€= &) —ki (J = o) (€ = &) —rap(h, J) + O((§ = &)F) = 0.
h =:

-~

=:p q

p

Analyse the real solutions of this equation. Set A := (£)* + (£)* and observe

that (£)? > 0 while (£)* < 0 as we are assuming J > J,.

i. If A > 0, the only real solution of (6.45)) is
E—& =up+u_ with uy = —gi\Q/Z,
On the other hand

A>0 = (5)"=0((

NS

?) = a=0(d)).

Therefore, reminding also definition (6.46)),

ol

=
W=

)+O((‘]_Jc> )+O((§_§c) )7

hence & — & = O((h - h/c)%) + O((J — JC)%) because (€ — &)371 — 0 as
(R, J) = (he, Je) -

£-& = 0((2)") = o(th-h)
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1. If A =0 or A <0 there are respectively two or three distinct real solutions

of (6.45)) and, from their explicit form, it is immediate to see that they all satisfy
of D 1
e-= 0(3f-5) = o - 1Y),

Conclude that for any possible value of A,

Wl
W=

f_gc:O((h_hc) )+O(<J_Jc)

).

Now, as observed in (6.48)), £ —& = h — he + (2m. — 1)(J — J.) +2J (m —m,).
Therefore also m —m, = O((h — hc)%) +0O((J - Jc)%) , and this concludes the
proof of the first statement.

2) Now consider the two maximum points ms, ms. By proposition [6.2.2]
my < 1 < g2 <My
where ¢1, ¢ are the inflection points defined by (6.25)). Hence applying lemma

[F1] one finds:

mo — Me ¢2_mc me —1my mc_QbI

> C, > —>C7

as J — J.+ and h = §(J) with §(J.) = h. and ¢ differentiable in J.. And this

proves the second statement. O

The next lemma tells us in which region of the plane (h, J) a curve passing

through the point (A, J.) lies.

Lemma F3. Let § € C?([J., o0[) such that §(J.) = he, 8'(J.) =: . There exists
r > 0 such that for all J €]J., J. 4+ r|

o ifa=1-—2m., ¥s(J) <) <(J);
o ifa<1—2m,, §(J) <s(J);

o ifaa>1-—2m, §(J)>¢i(J).
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Proof. I. Observe that a;(J) is continuous for J > J. and smooth for J >
Je. Moreover ¢'(3loga;(J)) = 55 by definition and lemma , and
g(3loga;(J.)) = g(&) = m, by definition and remark . Then differ-
entiating definition at J > J.,
ai(J)

i

a;

1
) (} 2J g (2 log aZ(J)Z) 2 1—2m, .

~
=0

Ui(J) = 1-2g(5loga(1)) +

Hence an immediate application of the mean value theorem shows that for
i = 1,2 there exits ¥i(J.) =1 —2m,.
II. Differentiating definition (6.26)) at J > J,. shows that a}(J) — —o0, ay(J) —
400 as J — J.+, while a;(J) = 2v/2 — 2 as J — J,. Hence

a(J) 1 di(J) +oo fori=1

iy ] "
Vi) = =g GlosalI) T = T35 a@) o

—o0o0 fori=2

The result is provided comparing the first order Taylor expansions at J. with

Lagrange remainder of 11, 1 and 9. O]

The following proposition essentially contain the proof of part i) of theorem

6.2.11

Proposition F4. Let (h,J) — (he, J.) along a curve h = 6(J) with 6 €
C*(Ry), 6(J.) = he, §(J.) =: a or along a curve J = 6(h) with 6 € C*(R),
d(he) = Je, 0'(he) =0, then

(

—C(J—=J)2 ifh=6(J), a=1—2m, and J > J,

pa(h, J) =me ~ § Co(J=J)5  ifh=6(J), a <1—2m,

| Coc (h—= Do) if T =5(h)

(

C(J—J): ifh=0(J),a=1—2m.andJ > J,

pia(h, J) —me ~ ¢ Oy (J—J)3  if h=06(J), a>1—2m,

| Coo (h = he)s if J =6(h)
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where C' = ﬁ V3(2—-—m.), Cy = % ¢/3T.(2—m:)(2m.—1+0a), Cx =
ﬁ {/3J.(2 —m.). To complete the cases, along the line h = h.+ (1 —2m.)(J —
J.), when J < J,

wi(h, J) = po(h, J) = me.

Proof. Fix (h,J) on the curve given by the graph of 4 and in the rest of the
proof denote by m a solution of the consistency equation (6.22), i.e. m =
g((2m - 1)J + h). Furthermore when necessary m is assumed to be a local
maximum point of p. Set § := (2m—1)J + h. By proposition [6.2.12 £ —& — 0
as (h,J) = (he, J.) and it satisfies (6.45]). Solve this equation in the different

cases.
i) Suppose h = §(J) with @« = 1 — 2m,.. Hence h — h. = (1 —2m.)(J — J.) +

O((J = J.)?). Observe that by (6.46)),
p(h, J)=0((J = J.)*) and &—& =2J (m—me)+O((J = J)%) .
Hence equation becomes
(€=&)° = w1 (J = J) (€= &)+ O((J = J)*) + O((§ = &)') =0
Observe that if J > J, by corollary [F2] part 2),
(J = Je)? = O(€—&);
therefore when J > J, the previous equation rewrites
(€= —m(J=J)(E—E)+0(E-&)") =0.
This one simplifies in
=& o (E—&)—r(J—J)+O(((~E)°) =0,

giving £ = &, or, as we are assuming J > J.,

E—& =+ m (J—J)7+O((€—£&)2) .
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This entails

nlw

)

m—me, = :I:\g—_/;l (J — Jc)% +O((J = J.)*) + O((m — m,)

N

and dividing both sides by m — m,, since (m — m.)2 — 0, one finds

NG
iW(J_JC)

VI

m—me ~

(F1)

it) Suppose J = §(h) with &'(h.) = 0. Hence J — J. = O((h— h.)?). (6.46) and
(6.48) give

p(h,J) = h—hc—i—(’)((h—hc)Z) and &—-&.=2J (m—mc)+h—hc—|—(9((h—hc)2) .
Hence equation becomes
(6 - fc)3 — R2 (h - hc) + O((h - hc)2) + O((g - €C)4) =0.

giving

SV

§—& = Yra (h—h)3 +O((h—h)3) +O((6 - &)

This entails

).

N

w

m—me = \Z? (h— hc)% +O((h - hc)g) + O((m—m,)3)

and dividing both sides by m — m, since (m —m,)3 — 0, one finds

3 1
m—mg ~ \g?(h—hc)3. (F2)

iti) Suppose h = 6(.J) with o # 1—2m,. Hence h—h. = a (J—J.)+O((J—J.)?).
Observe that by (6.46]), (6.48))
p(h,J) = (a+2m.—1)(J — J.) + O((J — J.)?) ,

E—&=2J(m—m,)+ (a+2m.—1)(J—J.)+O((J - J.)%).
Hence equation ([6.45)) becomes

(g_gc)g —hR1 (J - Jc) (g_gc) —R2 (O./ + 2mc - 1) (‘] - Jc) + O((‘] - Jc)2) + O((f - §C)4) =0.
—_——

J/

-~

=:p =:q
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This third order equation has A := ()% 4 (£)® > 0 for |J — J| small enough,
indeed if J < J. then p > 0, while if J > J. then by corollary part 1)
(€~ €)' =0O((J = J.)3) = o(J — J.) hence

q=—ra(a+2m.—1)(J = J)+o(J—J.) =

() + () = Flat2m 12 (J = P (L +0(1) = 2 (J = )" > 0.
#0

Then, using Cardano’s formula for cubic equations: & — &, = uy + u_ with
3/ 4 q 2 P\3 q q p
= {2 @ @) = L ot

-6 = V=i +0(5]) =
= ra(at2me—1) (J = J)5 + O((J = J)3) + O((6 = &)3) + O((J — J)3) .

=

)i

This entails

B \3/@ (a+2m.—1)
N 2J

N
ol

(J = Jo)5 +O((J = J)2) + O((m —m,)

)

m — me

and dividing both sides by m — m,, since (m — mc)% — 0, one finds

/K2 (a0 +2m, — 1)
2J

(J = Jo)5 . (F3)

m— m,

Now by propositions [6.2.2} and lemma [F3] 1 and py are solutions of
the consistency equation (6.22)) defined near (h., J.) along the curves h = 6(J)

respectively with a < 1—2m,. and a > 1 —2m,.. Moreover for a = 1 — 2m, and

J > J. sufficiently small, by lemma [FT],
o —me > ¢g —me >0 while pu —m. <oy —m.<0.

These facts together with , , allow to conclude the proof. n
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