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1. Introduction 

1.1 Biomaterials 

The American National Institute of Health defined and described biomaterials as “any substance or 

combination of substances, other than drugs, synthetic or natural in origin, which can be used for 

any period of time, which augments or replaces partially or totally any tissue, organ or function of 

the body, in order to maintain or improve the quality of life of the individual”.
1
  

Biomaterials of natural and synthetic origin are used in biomedicine and in tissue engineering in 

order to fabricate medical devices as implants, porous scaffolds, membranes and carriers for 

bioactive molecules. Biomaterials-based medical devices promote the replacement and the 

functional restoration to tissues or constituents into a living body that was deteriorated due to a 

disease, trauma or aging.
2
 The most important applications of biomaterials in various medical 

devices are summarized in table 1. Accordingly, the fundamental features of biomaterials intended 

for medical devices can be summarized as: non-immunogenicity, biocompatibility, biofunctionality, 

controllable biodegradability, structural integrity and mechanical flexibility.
1-3 

Some biomaterials 

can also be resorbable by incorporation into surrounding tissue. Biomaterials can be described and 

classified depending on their properties, clinical application and basic structure. Four categories of 

biomaterials have been identified based on structure, bonding and inherent features: ceramics, 

metals, polymers and composites.
2,3 

Pure metals and alloys are inert materials selected 

exclusively to fabricate load-bearing implants (pins, screws, plates, prostheses) due to their 

excellent electrical and thermal conductivity, mechanical strength, corrosion resistance and 

reasonable costs. Ceramics are polycrystalline materials characterized by hardness, brittleness, 

mechanical strength, stiffness, low density, corrosion resistance. Although ceramics find large 

application in dentistry, orthopedics and as medical sensors, these biomaterials are less used in 

respect to metals and polymers due to plastic deformation and sensitivity to cracks and other 

defects. 

Polymers are the best studied biomaterials in biomedical science and their application in medical 

devices was developed through an evolutionary process. The advantage of using polymers is mainly 

easy manufacturing of raw material into products of the desired shape. Polymers have unique 

features such as good biocompatibility, mechanical flexibility and strength, lightweight, several 

chemical compositions with different chemo-physical properties.  

In the last decades, the need to improve chemo-physical and mechanical properties of biomaterials 

led to the development of processing and fabrication of biocomposite materials, that are generated 
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by adding metals and/or ceramics, as filler or reinforcement, into a polymeric matrix and/or in 

polymeric fibres. Biocomposite materials applied in biomedicine are targeted mainly for drug/gene 

delivery, tissue engineering and cosmetic orthodontics. Biocomposite materials are innovative and  

multifunctional materials and display better properties than single components.
2
 

 

 

Table 1. Main applications of biomaterials in medical devices.
2 
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1.2 Polymeric Biomaterials 

Currently, new strategies of processing are investigated and required in order to fabricate new 

medical devices and innovative matrices for drug delivery in specific sites whitin the body.
4 

Among 

different classes of biomaterials, utilization of polymers has greatly impacted the advancement of 

modern biomedicine thanks to two relevant features: 1) non-toxicity of their degradation products 

that can be eliminated from the body via natural metabolic pathways;
5-7

 2) several opportunities to 

chemically and structurally modify polymers,
8-10 

with the aim to improve their thermal stability, 

solubility, biodegradability and mechanical behaviour. 

The wide range of biomedical field application includes the use of polymers as excipients in 

cosmetic and pharmaceutical formulations,
11,12 

as well advanced biomedical device for innovative 

diagnostic and therapeutic applications.
13-15 

Polymers are classified based on their natural 

(biopolymers) or synthetic origin. The main origin of synthetic polymers are the non-renewable 

petroleum resources; whereas, biopolymers are produced from renewable resources (animals, 

plants). Several naturally derived polymers offer many advantages compared with synthetic 

polymers: excellent biocompatibility, biological activity considering that most of them are present 

in tissues of living organisms, easy manufacturing that can be exploited to generate biocomposite 

materials, optimal biodegradability due to the action of enzymes into living organisms. 

Biopolymers used as biomaterials are biological macromolecules belonging to classes of 

polysaccharides and proteins. 

 

1.2.1 Polysaccharide biopolymers  

Polysaccharide biopolymers used in biomedical applications are classified based on their animal 

and vegetable origin. The most commonly used and developed are chitosan, cellulose, starch and 

alginate. Chitosan is derived from a partial alkaline N-deacetylation process of the chitin which is 

another polymeric polysaccharide used as biomaterial
16,17

 and extracted from the shells of crabs, 

shrimp, crawfish and insects. The degree (30-100% depending on the kind of preparation) of 

deacetylation of chitin determines the ratio of glucosamine that affects crystallinity, surface energy 

and enzymatic degradation rate of polymeric chains into chitosan. The rigid and compact crystalline 

structure of chitosan is sustained through strong intra- and intermolecular hydrogen bonding that 

makes it soluble only in few dilute acid solutions. Many derivatives, largely employed in 

biomedical fields,
18

 are produced by chemical modification of the fundamental skeleton of chitin 

and chitosan. Starch is a polysaccharide from vegetal sources extracted from potatoes, corn, wheat 

and rice. The structure of starch is composed of amylose, a linear and crystalline polymer, and 
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amylopectine, a branched and amorphous polymer with different ratios depending on the vegetable 

source. Biodegradability and mechanical behaviour are due to different amounts of amylose and 

amylopectine,
19 

specifically the major amylose content increases the elongation and strength.
20 

Enzymatic degradation of starch is achieved from amylases and glucosidases that attack α-1,4 and 

α-1,6 links, respectively. Starch-based composites, known as thermoplastic starch, are used as 

substitutes for synthetic polymers.
21

 The water insolubility, brittleness and mechanical flexibility of 

starch can be improved by using two different approaches: 1) chemical modification by 

acetylation
22

 that produces starch acetate; 2) by blending starch with synthetic biodegradable 

polymers.
23,24

 Cellulose is another polysaccharide produced by plants and composed of linear and 

very long macromolecular chains of one repeating unit of cellobiose. The crystalline composition 

cellulose is infusible and insoluble in all organic solvents.
25 

Cellulose is degraded via enzymatic 

oxidation with peroxidase secreted by fungi or bacteria.  

Cellulose has to be chemically modified for processing. The most important derivatives of 

cellulose, produced following the functionalization of hydroxyl groups, are ethers, esters and 

acetals. Different degrees of substitution influence mechanical properties and biodegradation of 

cellulose derivatives.
26,27 

Alginic acid or alginate is a polysaccharide extracted from brown algae. 

Alginate is a non-branched, binary copolymer composed of β-D-mannuronic acid monomer linked 

to α-L-guluronic acid monomer, through a 1,4-glycoside linkage in different ratios depending on 

different sources. Alginic acid is capable to form gels in the presence of counterions as divalent 

cations, such as Ca
2+

. This feature permits the encapsulation of various components such as drugs 

and growth factors. These alginate-based hydrogels can be employed as scaffolds for tissue 

engineering, as delivery vehicles for drugs and as model extracellular matrices for basic biological 

studies.
28 

Hyaluronan is a linear polysaccharide widely present in several animal species. 

Hyaluronan polysaccharide polymer has a very high molecular weight; it is formed by repetitive 

units of disaccharide constituted of N-acetylclucosamine and β-glucuronic acid and exhibits a 

stereochemical structure characterized by an asymmetric distribution of hydrophobic and  

hydrophilic chains. Hyaluronan is distributed in many tissues of the animal body, in particular in the 

skin, the umbilical cord and the semen, where it carries out important chemo-physical and 

mechanical functions due to its capacity to retain water.
29

 Biodegradation of hyaluronan occurs by 

enzymatic reactions of endoglycosidases called hyaluronidases present in different tissues and cells. 

Products, such as oligo and polysaccharides, resulting from biodegradation of hyaluronan, are not 

toxic and have many relevant biological properties.
30 

Hyaluronan, thanks to its high hydration 
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capacity and viscoelasticity, is used as biomaterial in order to fabricate medical devices and drug 

delivery systems for applications in ophthalmology, articular pathologies and esthetical medicine.
31

 

 

1.2.2 Proteins biopolymers 

Proteins show a large versatility for biomedical applications
6
 for their chemical composition, that is 

suitable to be functionalized and structurally modified in order to have specific functional 

properties. Of note, many proteins that are capable of forming films, following a casting process of 

solution, display in some case a mechanical behaviour comparable to those of films produced by 

synthetic polymers. Recently, the fabrication of biodegradable and multifunctional protein-protein 

structural composites is emerging in biomedical science with the aim of finding innovative 

functional properties to improve in vivo and in vitro studies targeted to explain the impact of 

biomaterials on cell and tissue functions.
32

 Human serum albumin (HAS) is the most abundant 

protein in blood plasma (ca. 60% of the total protein). HAS is a helicoidal protein (66.5 kDa) 

constituted of 585 aminoacids assembled into domains (I, II, and III) characterized by similar 

structures and each is formed by two subdomains (A and B). HAS can exist in two protein 

conformations depending on whether it is assembled with fatty acids.
33 

The main functions of HAS 

in the body are the regulation of colloid osmotic pressure, the binding and transport of molecules 

which conduct antioxidant and anti-inflammatory actions in the organism.
34

Application of HSA in 

biomedicine is especially intended to realize drug carriers and drug delivery systems thanks to its 

capacity to interact and encapsulate a variety of bioactive molecules, in particular insoluble ligands 

such as fatty acids and porphyrins.
35,36

 The nature of interaction between HAS and biomolecules or 

drugs influences their pharmacokinetics and pharmacodynamics. The ability of HAS to bind 

porphyrins has recently allowed, recently, to employ this protein for photodynamic therapy and 

potential oxygen carrier.
37 

Collagen is a fibrous protein from animal sources and it represents the major component of 

connective tissues of skin and bones. Polypeptide chains of collagen protein are composed mostly 

of glycine, proline, hydroxyproline and lysine aminoacidic residues. As consequence of different 

self-assembling and combinations between polypeptide chains, twenty-nine different types of 

collagen are formed and currently characterized.
38

 The optimal standard type of collagen, mostly 

used for tissue regeneration, is type I collagen that can be extracted from various animal sources 

including bovine skin and tendons, porcine skin and rat tail.
39,40

 Collagen is denatured and/or 

chemo-physically degraded in order to produce gelatine. Gelatine is a water-soluble protein with 

high molecular weight composed of 19 aminoacids. Gelatine water-solution is processed in films 
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characterized by mechanical and barrier properties correlated to amino acidic composition. 

Physical, mechanical and water vapour barrier properties of films are improved by adding gelatine 

solution to a variety of biopolymers as soy protein, oils, fatty acids and certain polysaccharides.
41,42

 

Collagen and gelatine are degraded by proteases through hydrolysis of the amide function.
6
 

Keratins are fibrous proteins produced in epithelial cells in higher vertebrates and in humans. 

Keratin filaments form the cytoskeleton and their functions are mechanical and protective, indeed 

they are particularly abundant in epithelia exposed to considerable mechanical stress such as 

keratinized epidermis and corneous layer of skin. Keratins proteins show chemical, mechanical and 

thermal stability, low sensitivity towards attacking of common proteolytic enzymes thanks to high 

concentration of intermolecular and intramolecular disulfide bonds formed by oxidation of amino 

acid cysteine residues.
43

 Keratins are classified in soft and hard based on their amino acid 

composition, secondary structures and function. Feather and wool waste are the largest source of 

keratins destined for use in both industrial environment and in biomaterials research. Over the past 

three decades keratins proteins have been considered in the development of biomaterials used in 

biomedicine for drug delivery and tissue engineering.
44 

Silk fibroins (SF) are natural proteins produced from different species of arthropods, such as 

spiders, scorpions, silkworms, mites and bees.
45 

Silks are synthesized into insect’s glands and 

produced as fibre or filaments through a spinning process. Silkworm silks are more commercially 

produced and largely employed in textile industries than spider silks for following reasons: a) the 

higher yield of fibre that is 600–1500 m from a single silk cocoon, while only ~137 m and ~12 m 

from the ampullate gland of a spider and spider web, respectively; b) better mechanical properties 

(strength, elasticity and flexibility), c) silkworm fibres show excellent biocompatibility and 

biodegradability and are FDA-approved, indeed they are used for decades as suture in surgery.
45-47 

Recently, the knowledge and development of innovative chemical water-based extraction and 

purification processes
46

 promoted biomedical application of silkworm fibroin enable to process in 

various others formats, such as hydrogels, porous scaffolds, micro-nanoparticles.
45

 

 

1.3 Silkworm silk fibroin from Bombyx mori 

Silk fibroin based biomaterials are commonly fabricated from proteins of the domesticated 

silkworm Bombyx mori (B. mori) (figure 1A) that is the largest producer of silk fibres. At the end of 

larval stages, silkworm generates silk fibre in the form of cocoon (figure 1B) following a spinning 

process. The amount of fibre in a single cocoon is 600-1500 m.
47 

The fibre of the cocoon consists of 

two protein components, fibroin and sericin (figure 1B), originally synthesized in silkworm 
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posterior and middle glands, respectively.
48

 Fibroin is the major component of the cocoon and 

forms the filament core; the sericin, a water-soluble protein, cements the fibroin fibres like a glue 

into a cocoon. 
 

Silk fibroin (figure 1C) is essentially a fibrous and structural protein, characterized by long-range 

ordered molecular secondary structures formed by a heavy (H) and a light (L) chain connected 

through disulfide linkages at C terminus;
49 

the amino acid composition of fibroin chains is made by 

12 repetitive domains in the form of clustered oligopeptides Gly-Ala-Gly-Ala-Gly-Ser, [Gly-Ala]n-

Gly-Tyr, and [Gly-Val]n-Gly-Ala (n ), separated by 11 amorphous regions composed of Gly-Ala-

Gly-Ser and Gly-Ala-Gly-Ala-Gly-Ser. The H chain, more rich of hydrophobic amino acid residues, 

has a high molecular weight (≈ 350 kDa) and is a essentially amphiphilic alternating copolymer 

block with amorphous regions. The L chain (MW≈ 26 kDa) is more hydrophilic characterized by 

higher contents of Glu and Asp residues. The structural hierarchy of hydrophobic and copolymer 

blocks in B. mori SF displays unique self-assembly capability enabling to obtain substrates with 

exceptional chemo-physical, biological and mechanical features making silk fibroin a promising 

and first choice material suitable for innovative bio-technological applications.
50 
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Figure 1. A) Domesticated silkworm Bombyx mori (Mulberry specie). B) Composition of Bombyx cocoon: fibroin fibre 

core, coated with sericin layer (Image from http://allthingscensored.blogspot.it/2012/04.html). C) Scheme of fibroin 

structure and repetitive amino acidic sequence. 

 

Silk gland is the organ of the silk worm where the Native silk fibroin (NSF)  is synthesized, 

assembled and spun during the last instar larvae (figure 2). Silk gland is divided in three parts: 

anterior, middle and posterior (figure 2A). The biggest part is the middle that is subdivided in five 

portions. In the last instar larvae, the silk gland constitutes almost the total amount of the larval 

body weight (figure 2B).  

The silk fibroin is synthesized in the silkworm posterior gland, where it is present as hydrogel-like 

material at a polymer concentration of ca.12 wt %. The second silk protein, sericin, is produced and 

accumulated in the B. mori middle gland. When fibroin moves into middle gland, a series of 

processes occurs by determining the formation of a gel-like material. Exactly, a sericin layer 

surrounds fibroin and protein concentration increases (ca. 26 wt %) following water-evaporation 

through epithelial cells. Successively, the gel-like material moves forward to the anterior gland 
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(figure 2A) where protein concentration becomes ca. 30 wt % causing a sol-gel transition. The latter 

is finally spun by the silkworm at V larval stage (figure 2B) with a spinning rate of 360-80 mm/m to 

generate the silk cocoon (figure 2C).
51 

Silk fibroin generated in the silkworm gland is called Native Silk Fibroin (NSF).
 
Structural, chemo-

physical, mechanical and rheological properties of NSF solution have been well characterized 

thanks to the development of extraction methods directly from B. mori glands.
48,51-53 

NSF solution is 

employed for production of silk-based biomaterials by using eco-friendly methods.
54

 

However, low extraction yield combined with laborious and time consuming procedures to obtain 

native silk fibroin from silkworm glands has pushed research into more effective and efficient 

methods to obtain silk fibroin solution. 

  

Figure 2. A) Silk gland of the silkworm B. mori; silk gland is divided in three parts: anterior, middle and posterior. B) 

Silkworm B. mori at V larval stage: dashed square indicates the region of the larval body occupied by silk gland. C) 

Silkworm insect captured during early phase of spinning to produce the silk cocoon (Image by Maryann Frazier) 

 

In 2011, Rockwood et al. developed a completely water-based and organic solvent-free method of 

reverse engineering for extraction and purification of SF from native fibres of B. mori cocoons 

(figure 3),to obtain the so called Regenerated Silk Fibroin (RSF).
46 
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Figure 3. A-C) Main steps of extraction and purification processes of silk fibroin from cocoon: degumming in 

alkaline solution for removing sericin from fibres of cocoon (A), solubilisation of silk fibroin fibre in a concentrated 

LiBr solution (B), purification by dialysis in water of silk solution (C). D) Pure Regenerated Silk Fibroin (RSF) water-

solution. 

 

RSF water-solution is a pure protein solution with high chemical and physical stability when stored 

at low temperature (ca. 4°C) in order to slow down the mechanisms of sol-gel transition;
55,56 

in 

addition RSF solution can be processed as water-insoluble films and freeze-dried powder to be 

stored for a long time.
57 

It is remarkable that the obtained RSF enables solution processability that is compatible with 

implementation in industrial environment to convert RSF solution in different formats (figure 4). 

Another important feature of the process is the complete elimination of the sericin component, that 

is known to be responsible of immunological and inflammatory response when remaining as residue 

in the silk fibre. In aqueous environment of RSF solution, different self-assembly mechanisms of 

polypeptide chains lead to the formation of defined protein structures: a) the crystallizable sub-

domain sequence generates β-strands and 3-strand β-sheets secondary structures, extending over 20 

nm, that interact with amorphous structures (random-coils and α-helix) through intramolecular 

interactions (hydrophobic, physical, hydrogen bonding);
58 

b) intermolecular interactions of heavy 

chain form spherical micelles where hydrophobic crystallizable regions are surrounded by a shell 

consisting of amorphous sequences and –N and –C terminal domains.
59 

A series of conditions and external stimuli, such as fibroin concentration,
60

 pH value, ion strength,
61 

treatments with organic solvents, temperature,
55,56,62

 shear force, mechanical stress
63

 and 

electromagnetic field,
64

 can modify the behaviour of the fibroin chains in the water-environment by 

determining the formation of physical intermicellar and interglobular crosslinks and an increase of 

β-sheets structures.
59 
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When RSF water-solution is undergo to one of condition above mentioned, SF heavy chain can 

assume three different conformations: 1) silk I, corresponding to conformation present in the 

middle gland in pre-spinning, is meta-stable and water-soluble, consisting of α-helix, random-coils 

and β-turns secondary structures;
65

 2) silk II, rich in β-sheet (antiparallel and distorted) and β-turns 

structures, is the water-insoluble crystal form of the spun SF fibres;
66

 3) silk III is a 3-fold extended 

helix formed at air-water interface.
67

 

 

 

1.3.1 RSF-based biomaterials  

RSF water-solution is a versatile material that offers many possibilities for processing of SF in new 

material formats destined for biomedical and technological applications.
50,68,69 

The manipulation of different self-assembly phenomena of fibroin chains in aqueous environment 

offers control points for the development of silk-based biomaterials and/or pharmaceutical 

formulations. Indeed, by using a wide variety of fabrication techniques (figure 4), RSF water-

solution can be converted in silk formats biomaterials such as films, hydrogels, electro-spun and 

wet-spun fibres, porous 3D scaffolds, micro/nanoparticles (figure 4).
70 

Regenerated silk-based 

biomaterials display mechanical behaviour (flexibility or rigidity), chemical properties 

(hydrophobicity or hydrophilicity), time and ways of degradation in physiological conditions 

depending on different silk conformations generated during the processing of RSF water-solution.
46

 

Another advantage of SF for application in biomedicine is due to its amino acid sequence that offers 

opportunities for chemical modification. A wide variety of chemical groups, such as amines, 

alcohols, phenols, carboxyl groups, and thiols have been explored as potential reactive side groups 

for the chemical functionalization of SF. In literature, the chemical derivatization of carboxylic acid 

side groups from aspartic and glutamic acids, with primary amines of peptides such as the RGD 

(arginylglycylaspartic acid) sequence in order to promote cell adhesion is reported.
71

 Tyrosine 

residues also were modified with a variety of functional groups,
58,72,73 

with the aim to change 

hydrophilicity and charge of fibroin chains and to improve the interaction of the protein with drugs.  
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Figure 4. Scheme of different techniques used for processing of RSF water-solution and their respective products. 
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The applications of silk in biomedical science include four categories (table 2): 1) drug delivery 

systems (DDS),
50,70 

2) tissue engineering,
68,74 

3) implantable devices,
75

 4) biocompatible platforms 

for in vitro molecular/functional studies of cell cultures.
13,14

 

 

  

Table 2. Summary of applications of different silk material formats. 
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2. Aim  

Naturally derived polymers are traditionally defined as materials intended for biomedical science 

application. However, some biopolymers can substitute inorganic and plastic materials in 

technological devices and, at same time, modify modern manufacturing rendering it more 

sustainable.  

To this aim, an important challenge is to identify a biopolymer capable of maintaining chemo-

physical properties suitable to satisfy the requirements of current technology and appropriate to 

realize a convenient and cost-competitive supply chain.  

In this context, SF offers several opportunities as technological material
76,77 

because it is 

distinguished from other biopolymers thanks to relevant features, including mechanical 

flexibility,
78,79

 optical transparency in the UV-visible range
80-81

 and controllable water-solubility.
79

  

Among different SF formats, film has recently found increasing applications in the electronic,  

optoelectronic, optic and photonic field.  

In particular, recent results of the laboratories where I developed my PhD thesis and conducted 

research (laboratory for bio-organic interface at Institute for the Study of Nanostructured Materials, 

ISMN, and at Institute of Organic Synthesis and Photoreactivity, ISOF, CNR Bologna), in 

collaboration with the group of David Kaplan at Tufts University demonstrated and confirmed that 

SF film can be integrated as an efficient gate dielectric, with a high mobility value, in organic field-

effect transistors (OFETs) and into organic light-emitting transistors (OLETs).
82,83 

Moreover, the 

group showed that SF film is also very attractive for photonic applications. Toffanin et al. 

demonstrated that a thin-film obtained by blending RSF water-solution with Stilbene (STB) organic 

dye, is able of lasing action once deposited on top of an one-dimensional photonic structure.
84

 

Moreover, silk fibroin films are suitable substrates for adhesion and growth of primary glial cells 

and dorsal root ganglion neurons. Importantly by ad-hoc doping of silk films, growth factors can be 

delivered in vitro and functional properties of cultured cells can be modified and controlled.
13,14

 

These important results pave the way towards the development of multifunctional silk-based 

optoelectronic and photonic devices, which in perspective can be made fully biocompatible or  

eventually bioresorbable, for innovative biomedical formulation and device for diagnostic and 

therapeutic purpouses. The organic solvent-free nature of the procedure and the simplified approach 

for device fabrication could open the view for eco-sustainable manufacturing of biomedical devices. 

However, to achieve this challenging goal, an adequate and controlled preparation of the core 

protein is required and the different steps of the value chain should be controlled. Moreover, 
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innovation should be promoted for processes aiming at tailoring the properties of silk fibroin 

substrates to fully exploit the variety and versatility of this peculiar material platform. 

In this context the activity of my PhD research program can be summarized in the following 

objectives:  

1) to define and standardize the process of extraction and purification of the RSF water-solution and 

production of SF films as silk-based biomaterials produced in loco at CNR-IBIMET (Institute of 

Biometeorology);
85,86

 

2) fabrication and physical-chemical characterization of two-dimensional substrates (films) of 

fibroin;
85,86

 

3) to apply different methods of manufacturing approaches with chemical and/or physical 

preparation of the films of fibroin; 

4) to define the properties of innovative silk fibroin films nanocomposite;
79,87

 

5) to study and define innovative methods of functionalization of the silk fibroin solution and films. 

 

All the activities were developed thanks to the collaboration with a broad team of researchers and 

research directors of three different institutes CNR Bologna: IBIMET, ISOF and ISMN and the 

Laboratory of high technology Network of Emilia Romagna MIST E-R. 
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3. Materials and Methods 

3.1 Silkworm rearing 

Silkworm culture was performed in Institute IBIMET of CNR Bologna and the procedures are 

reported in the literature.
80,85,86 

The insect breeding started from eggs belonging to the germplasm 

collection of the CRA-API (CRA, Honey bee and Silkworm Research Unit, Padua), which also 

provided an artficial diet. The strain chosen for the experiment was the polyhybrid with white oval 

cocoons. Silkworm were reared in plastic boxes, with different size proportional to the larvae age, 

placed in a Thermo stabilized (25±1°C) room with controlled relative humidity (RH > 85%) and 

photoperiod (12h light:12h dark).
88,89

 During the whole larval stages the insects were fed ‘‘ad 

libitum’’ with artificial diet until the last days of the fifth instar before the spinning of the cocoons. 

The preparation of artificial diet was performed in order to avoid the alteration of contained 

nutrients as much as possible. 

3.2 Extraction of Native silk fibroin 

The extraction of native fibroin from silk glands was developed and performed in IBIMET by 

Camilla Chieco. Native silk fibroin (NSF) was extracted from the glands of 5th instar larvae before 

spinning; the fibroin extraction from the middle division of silk gland (MSG) was performed 

according to Hossain et al.
51 

with a partially modified protocol, while the posterior parts of the 

gland (PSG) were treated according to Mandal and Kundu.
90

 In brief, the entire silk glands were 

pulled out from the abdominal side of the worm and the middle part was separated from the 

posterior part. The middle glands were washed in deionized water and the surrounding epithelium 

was gently removed; the glands were immersed in 3 mL of distilled water to remove most of the 

insoluble sericin protein. After 6 h the water was removed and other 3 mL of distilled water were 

added and the solution was maintained at 5°C until the total dissolution of fibroin; then the solution 

was collected in a Falcon tube and stored in a refrigerator. The posterior glands were washed with 

distilled water to remove traces of sericin and placed into a beaker containing 3 mL of distilled 

water; the glandular tubes were cut in small pieces and gentle shaking for 1 h, then kept in 

refrigerator overnight. After one day, the protein released from the glandular tissues was collected 

in a Falcon tube and stored in a refrigerator.  
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3.3 Extraction of Regenerated silk fibroin 

RSF water-solutions were extracted from the B. mori cocoons (CNR-IBIMET, Bologna) produced 

by silkworms fed as reported in section 3.1. The protocol for extraction and purification of silk 

fibroin was performed and standardized in ISOF institute of CNR Bologna according to the 

procedures described in literature.
46 

Specifically, the cocoons were degummed in a boiling 0.02 M 

Na2CO3 (Sigma-Aldrich, St Louis, MO) solution for 45 min to obtain SF fibres that were then 

rinsed three times in Milli-Q water and dissolved in a 9.3 M LiBr solution at 60°C (4-6 h). The SF 

solutions were subsequently dialyzed (dialysis membranes, MWCO 3500) against distilled water for 

48 h and centrifuged to obtain the pure regenerated SF solutions (ca. 6-8 w/v%). The RSF water-

solutions were stored at 4°C. 

3.4 Fabrication of SF-based biomaterials films 

SF films were fabricated by different methods (figure 8) . 

1) Drop-casting and slow-drying (DC), an exact volume of silk solution (NSF and RSF) was casted 

on a glass and/or polydimethylsiloxane (PDMS) support and then dried under a sterile hood at 

room temperature (figure 8A). 

2) Drop-casting and dried in oven (DO): an exact volume of SF water-solution was casted on a 

glass or PMMA support and then dried in oven at 50°C (figure 8B). 

3) Vertical deposition (VD): SF water-solution was deposited on glass substrate by vertical 

deposition in a oven at 50°C (figure 8C). 

4) MeOH treatment: films obtained by DC approach were immersed in methanol for 1 h in order to 

induce protein conformation transition (figure 8D). 

 

Preparation of hybrid silk fibroin nanocomposite films.  

An organic-inorganic hybrid SF-hydrotalcites (SF-HTlc) nanocomposite (figure 13)
 
was achieved 

according to the protocol published in reference 79. Briefly, RSF water-solution was mixed with a 

colloidal aqueous dispersion of HTlc nanoparticles (synthesis is described in the literature).
79 

SF-

HTlc nanocomposite films were made by using the DC approach. Specifically, films with a 

thickness of around 20 μm (measured by a profilometer KLA Tencor P6) were obtained by casting 

a drop (160 μL) of SF-HTlc water-solution on 19 mm diameter glass coverslips; while and 

successively drying it for 4 h in a sterile hood. Free-standing hybrid films were produced by casting 

various aliquots of SF-HTlc solutions on a support/mold of PDMS.  
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Nanostructured silk fibroin–single walled carbon nanotubes (SF-SWCNT) films were prepared 

according to the protocol published in reference 87. Briefly a polystyrene mono-disperse beads (PB) 

solution (synthesized as previously reported)
91-93

 was mixed with a SWCNTs (supplied by Yangtze 

Nanomaterials Co, Shanghai, PRC) water-suspension in order to have blend aqueous solution (PB = 

0.5 mg mL
-1

 and SWCNTs = 0.1 mg mL
-1

); PB-SWCNTs blend solution was deposited on glass 

microscope slides by VD approach; 2) 200 µL of a RSF water-solution (0.1 w/v%) were dropped on 

the PB-SWCNT template (formed on glass microscope slides) and 3) dried under hood at room 

temperature; 4) PB beads were removed from the SF-SWCNT bio-composite films by submerging 

the samples in limonene (p-mentha-1,8-diene) for 48 h used as solvent of the PB; 5) the samples 

were rinsed in ethanol to quickly remove limonene adsorbed (figure 17). 

 

3.5 Silk fibroin Biodoping  

According to literature,
94,95 

RhB was mixed into the artificial diet at a concentration of 0.05 wt%. 

Three groups of the white strain (polihybrid with oval cocoons), each composed of twenty last 

instar larvae were placed in a separated box and fed with the RhB-doped diet starting from the 3rd 

(group A), 4th (group B) and 5th (group C) day of the 5th instar until the silkworm starts spinning 

the cocoon. In this way, we obtained different add-eat time cocoons of 72, 48 and 24 hours, 

respectively. In the same manner, three groups of 5th instar larvae of the same strains were 

separated and fed with non-doped artificial diet and used as the control.  

 

3.6 Silk fibroin Silylation 

A hydrophobic fluorophore ester ended oligothiophene (T3)
96 

was dissolved in APTES (final conc. 

0.025 M) (figure 26A-B). After sonication (15 min) this solution was added to RSF water-solution 

and stirred for 1 h on a tube rotator. In this way a SF-APTES-T3 blend was formed with following 

concentrations: SF 4 w/v%, APTES-T3 0.5% v/v and T3 1.25·10
-4

 mmol. Finally, purification by 

size exclusion chromatography (SEC, Sephadex G25 desalting column), using DI water as eluent, 

was performed (figure 26C). 

 

3.7 Chemo-physical investigations  

SDS-Page. SDS-PAGE protein extraction was performed as follows: silk cocoons were fractioned 

into small pieces and homogenizated with 100 μL of lysis buffer (50 mM TRIS-HCl, pH 7.4, 100 
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mM NaCl, 1 mM PMSF, 1 mM EDTA, 5 mM Iodacetamide, 1% Triton X-100, 0.5% Sodium 

dodecysulphate, 1% β-mercaptoethanol and Urea 8M). The extract was sonicated for 10 minutes in 

20 seconds intervals every 2 minutes and pelletted for 30 minutes at 12000 rpm. The supernatant 

was collected and used to determine the protein content using the Bradford method. Samples were 

kept at 50°C or 90°C for 10 minutes and 50 μg of lysates were separated by 8-16% TGX Any-Kd 

gradient gel (Biorad).  

 

Nuclear magnetic resonance (NMR) characterisation. The NMR spectra were recorded on a 

Varian spectrometer operating at 400 MHz (1H) and 100.5 MHz (13C). RSF solutions were first 

lyophilized to remove water and re-dissolved in D2O. 

 

Fourier Transform Infrared (FT-IR) spectroscopy. The Mid IR (400–4000 cm
-1

) absorption 

measurements were carried out in a Bruker IFS-88 FT-IR interferometer at 4 cm
-1

 resolution 

averaging over 512 scans in order to improve the signal to noise ratio. Absorption spectra have been 

performed on thin silk fibroin films casted on infrared transparent substrates (KBr single crystals). 

The curve fitting of overlapping bands of the infrared spectra covering the amide I and II regions 

(1500–1700 cm
-1

) were performed by using the Levenberg–Marquardt algorithm implemented in 

the OPUS 2.0 software for IFS-88 hardware control and spectral processing. 

 

Attenuated total reflection (ATR) FT-IR spectroscopy. ATR spectra of free-standing silk films 

were performed by means of a FT-IR Bruker Vertex 70 interferometer equipped with a diamond 

crystal single reflection Platinum ATR accessory. Free-standing silk films were obtained by casting 

an aliquot of silk solutions on support/mold of polydimethylsiloxane (PDMS), left dried, and piled 

off from the PDMS substrate. The curve-fitting of overlapping bands of the infrared spectra 

covering the amide I and II regions (1500–1700 cm
-1

) were performed by using the Levenberg–

Marquardt algorithm implemented in the OPUS 2.0 software. 

 

Raman spectroscopy. Raman analysis of SF-SWCNT samples was performed using a Renishaw 

1000 micro-Raman system exciting at 632.8 nm (HeNe laser) and 488.0 nm (Ar + laser). The laser 

beam was focused through an 80x objective to a spot of approximately 1 mm. To avoid the local 

heating of the film in the laser spot during the analysis, the laser power density was maintained at a 

lower value than 10 kW cm
-2

. 
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UV-VIS optical analysis. A Jasco V-550 UV-VIS spectrophotometer was used in order to obtain 

the UV-VIS absorption spectra from the protein solutions and the percentage transmittance from the 

SF films. These were prepared by casting a 40 mL aliquot of silk solution on a quartz substrate 

(area of 1.44 cm
2
), and it was then left to dry in a sterile hood. The thickness of the films was 

measured by a profilometer KLA Tencor P-6 and a result of around 20 mm was obtained.  

The fluorescence properties of the SF solutions and films were collected by using a Spex 1934D 

phosphorimeter.  

 

Thermal analysis. The thermal properties of the silk films were measured in a DSC (Differential 

Scanning Calorimetry) Instrument (METTLER TOLEDO) under a dry nitrogen gas flow of 70 ml 

min
-1

. The samples were heated at 2°C min
-1 

from 35 to 350°C. Thermogravimetric analyses (TGA) 

on different silk films, previously conditioned at 75°C of relative humidity (RH) using saturated 

solution of NaCl, were performed in air up to 700°C (temperature ramp of 2°C min
-1

) by a 

STA1500 system equipped with a simultaneous thermal analyzer. 

 

Silk films degradation and dissolution assay. For degradation test, silk films were incubated at 

37°C in a 3 mL solution of 1 mg mL
−1

 protease XIV (Protease from Streptomyces griseus Type 

XIV, ≥3.5 units/mg solid, Sigma) in phosphate buffer saline (PBS) at pH 7.4. Each solution 

contained an approximately equivalent mass (50 ± 2 mg) of silk films (thickness ∼60 μm). 

Solutions were replenished with enzyme and collected daily. At designated time points, groups of 

samples were rinsed in distilled water and prepared for mass balance. Samples were dehydrated in 

an oven at 50°C for 2 h. Following removal from the oven, the samples were weighed and returned 

to a new solution with fresh enzyme. Percent weight loss over time was determined. Each 

experiment was performed in triplicates. For dissolution experiment films were incubated at 37°C 

in a 3 mL solution of PBS at pH 7.4. The next steps follow the degradation procedure reported 

above. 

 

Atomic force microscope (AFM). Atomic force microscope (AFM) topographical images were 

collected using an NT-MDT solver scanning probe microscope in tapping mode.  

 

Contact angle measurement (CA). The wettability of the SF films (formed on glass substrate) was 

investigated by measuring the cellular medium contact angles on the silk samples by the static 
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sessile drop method and using a Digidrop GBX Model DS. For each film at least four drops were 

measured.  

 

Mechanical tests. Stress-strain mechanical tests were carried out using a Zwick Roell Z1.0 testing 

machine with a 200 N static load cell. The Young’s modulus (the slope of the stress−strain curve in 

the elastic deformation region), stress at break (the tensile stress at the breaking point of the 

specimen), and elongation at break (the percentage increase in length that occurs before the sample 

breaks) were measured on rectangle shaped film stripes, obtained using a cutting machine, length, 

and width of which were 50 and 5 mm, respectively. The thickness of the film stripe, determined 

with an uncertainty of 1 μm, was in the range of 35–40 μm. An initial grip separation of 10.000 ± 

0.002 mm and a crosshead speed of 15 mm min
−1

 were used. At least four replicate film stripes 

were analyzed. The data were elaborated by the TestXpert V11.0 Master software. The area under 

the stress-strain curves was used to calculate the modulus of toughness, which is a measure of the 

energy that a sample can absorb before it breaks. 

 

Scanning Electronic Microscopy (SEM). The elemental analysis of metals of SF-HTlc 

nanocomposite films was conducted with a scanning electron microscope (SEM, ZEISS LEO 1530 

FEG) fitted with an EDS detector.  

 

3.8 Biocompatibility studies 

DRG cell culture preparation. DRG neurons from post natal p8–p18 rats (Spraugue Dawley) were 

dissected and dissociated by enzymatic digestion as described previously.
14

 An equal amount of cell 

suspension was dropped onto nSF/SWCNT and nSF substrates and placed in a 37°C, 5% CO2 

incubator. Cells were maintained in Dulbecco’s Modified Eagles Medium (DMEM), Gibco, and 

10% Fetal Bovine Serum (FBS) was added in the presence of 50 ng mL
-1 

Nerve Growth Factor 

(NGF), and 1.5 mg mL
-1 

cytosine b-D-arabinofuranoside, (AraC, Sigma) to reduce glial cell 

expression. 

Primary cultures of Dorsal Root Ganglion were prepared at the Department of Human and General 

Physiology of University of Bologna, UNIBO. All the procedures to prepare the cultures as well as 

those necessary to handle the animals before and after the cell culture preparations have been 

performed according to the approved procedures by the Ethical Committee for Animal 

Experimentation of the University of Bologna. 
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Cell viability assay and imaging. Cell cultures were characterized after several days in vitro 

(DIV), using the fluorescein diacetate assay and optical imaging with a Nikon Eclipse Ti inverted 

microscope equipped with a 20x objective and CoolSNAP EZ CCD camera. Images presented are 

representative of 4 different cell culture preparations. Results were analyzed using one-way analysis 

of variance (ANOVA) or the Independent Student t-test. Data are reported as the mean ± standard 

error (SE) from at least three separate experiments. A statistically significant difference is reported 

if p < 0.05 or less. 
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4. Results and discussions 

The implementation of my research program involved four major research activities whose results 

are in line with the objective of my PhD research program and they have been documented by 12 

scientific articles published in major peer reviewed international journals (see publication list, 

section 6). The most important obtained results I contributed are reported in the following four 

different subchapters. 

4.1 Standardization of extraction and purification process of regenerated silk fibroin solution. 

4.2 Fabrication and chemo-physical characterization of two-dimensional substrates (films) of 

fibroin.  

4.3 Properties of innovative multifunctional silk fibroin films nanocomposite. 

4.4 Innovative methods of functionalization of the silk fibroin solution and films: Silk fibroin 

Biodoping and Silylation. 

 

4.1. Standardization of extraction and purification process of regenerated silk 

fibroin solution 

Technology intended for biomedical applications requires adequate extraction and preparation of 

the core protein, control of primary and secondary structure of the extracted protein as well as a 

detailed control of chemo-physical and biocompatibility properties assessment of SF substrates. In 

this view, my first research aim was to establish in loco an efficient and optimal method for 

extraction and purification of SF from cocoon. 

Different methodologies for fibroin extraction were tested and developed in the recent years. 

Notably, Kaplan and colleagues
46

 have developed a method to produce an aqueous RSF solution, 

extracted from silk cocoons, avoiding the application of strong organic solvent. We follow the 

Kaplan's protocol and the products of every single step were monitored and analyzed to optimize 

and standardize the process. 
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Figure 5. Illustration of the major steps of extraction and purification process with their corresponding 

products. A) Degumming process of silk cocoons into alkaline solution at 100°C for 45 min (left panel) and obtained 

fibroin fibre (right panel). B) Fibre dissolution in concentrated LiBr solution at 60°C for 4-6 h (left panel) and achieved 

concentrated fibroin solution (right panel). C) Purification steps: dialyses in water (left panel) and centrifugation; 

diluted and purified RSF water-solution (right panel). 

 

Two output parameters were monitored during the procedure of RSF extraction and purification: the 

% of weight loss of the dried fibre after the degumming procedure and the concentration of the 

obtained RSF at the end of the extraction procedure. We found that boiling the cocoons for 45 min 

was the optimal time with an average loss in weight at 27.24 ± 1.56% (n = 24 extractions) which 

was in line with the data reported in literature.
97

 

The average final concentration of regenerated fibroin in the aqueous solution was 7.13 ± 0.57 

w/v% (n of extractions = 24), which is a value in line with those obtained with previously reported 

protocols.
46

 

Since it was demonstrated that increasing the degumming time degraded silk fibroin causing the 

decrease of the molecular weight,
98

 investigation on extracted-protein degradation as a function of 

the implemented extraction protocol, SDS–PAGE analysis was performed
99 

on both the regenerated 

and native fibroin water-solutions obtained according to the protocols reported in Materials and 

Methods section. We observed (figure 6A) a band close to 350 kDa that is a value in good 
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agreement with the expected homogeneous silk fibroin composition, in particular, this protein 

fraction corresponds to the heavy protein chain.
99 

Amino-acidic composition of regenerated silk was explored by NMR analysis. The 
1
H NMR 

spectrum of RSF in deuterated water (figure 6B), recorded at room temperature, confirmed that the 

samples, obtained by our procedure, are pure and the amino-acids composition we identified 

(Alanine (Ala), Glycine (Gly), Serine (Ser), Tyrosine (Tyr), Valine (Val) and Phenylalanine (Phe) 

(figure 6B) is in accordance with previous literature reports.
100,101 

 

Figure 6. A) SDS-PAGE analysis of protein components in RSF water-solution dissolved in standard sample buffer. 

MW: molecular weight markers. B) 
1
H NMR spectrum of RSF in deuterated water.  

 

SF molecular conformation and protein secondary structures were investigated in the structure of 

silk fibroin films, prepared by DC method, through FT-IR spectroscopy in the amide regions (1200-

1800 cm
-1

).  

In film obtained from RSF water-solution, in the amide I region a strong peak appears at 1655 cm
-1 

corresponding to silk I structure (figure 7A, red line). In the amide II region, peaks are observed at 

1535 cm
-1

 (silk I) and at 1515 cm
-1

 (silk II), while in the amide III region, a peak appears at 1240 

cm
-1

.
102 

These data indicate that the conformational structure of the protein in RSF films resembles 

those previously reported for films prepared with drop-casting and slow-drying method process, in 

which there is a dominance of the silk I structure (random coils and alpha-helices) compared to the 

silk II.
14 
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We also explored and compared the properties of NSF solution, extracted in laboratories of 

IBIMET according to the method reported in Materials and Methods section. The comparative 

analyses of FT-IR spectra performed on NSF and RSF films (figure 7A) revealed that in NSF 

(figure 7A, black line), together with the bands assigned to silk I conformation, some typical peaks 

at 1621 cm
-1

 and 1228 cm
-1

 (β-sheet structures), generally attributed to silk II confomation
102 

are 

observed. These results are in line with those previously reported indicating a more crystalline state 

of SF protein is present in NSF compared to RSF.
103 

 

  

Figure 7. FT-IR spectra of NSF and RSF (black and red trace respectively). 

 

4.2 Fabrication and chemo-physical characterization of two-dimensional 

substrates (films) of fibroin 

Self-assembly of fibroin chains in water is a crucial point for fabrication of silk-based biomaterials 

intended for biomedical and technological applications. In this context, we processed RSF water-

solution in films by exploring different approaches that are described in Materials and Methods 

section and summarized in figure 8. The chemo-physical properties of the silk films obtained by 

different methods are next analyzed and compared. 
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Figure 8. Scheme of different approaches employed for fabrication of SF-based biomaterials films: A) drop-

casting and slow-drying (DC), B) drop-casting and dried in oven (T 50°C) (DO), C) vertical deposition in oven (T 

50°C) (VD), D) drop-casting and slow-drying with treatment in MeOH (films are immersed in the organic solvent for 1 

h). 

 

Vertical Deposition is a micro-fluidic method that exploits the steady-state unidirectional 

convective assembling of fine particles onto a hydrophilic substrate immersed in the aqueous 

suspension under controlled temperature.
104 

The deposition of particles on the substrate depends on 

the movement of particles suspended in the thin liquid film at the meniscus of the suspension.
105 

It 

has been hypothesized that both lateral capillary force (i.e. attractive force between the particles) 

and the surface tension are involved in the movement of particles from the water surface to the 

deposit and the influence of these forces on the final fibroin structure cannot be excluded. RSF is a 

micellar solution,
59

 we investigated the “vertical deposition” (VD) method that can be applied to 

deposit micelles of fibroin into two-dimensional arrays.
104,105 

 

As a comparison, further silk films were prepared by using different approach: 1) drop-casting and 

slow drying (DC) where silk solution was casted on substrates (glass and PDMS) and dried at room 

temperature; 2) dried in oven (DO) where protein solution was casted on substrates (glass and 

PDMS) and dried at same temperature of VD process; 3) treatment in MeOH, films obtained by DC 

method were immersed in MeOH to induce protein conformational changes.
60,62 

The effect of different self-assembly mechanisms that occurred for film formation were investigated 

by analysing following features of RSF in films: a) optical transparency recorded in UV-VIS 

region; b) protein conformational characteristics (FT-IR spectroscopy and thermal analyses, DSC 

and TGA); c) biodegradation and dissolution rate in aqueous environment (in protease solution and 

in DMEM cell culture medium, respectively); d) morphological properties (AFM); e) wettability 

and surface energy (contact angle measurements); f) mechanical behaviour (stress-stain test). 
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Silk film optical and conformational properties. UV-VIS transmission spectra of RSF films 

obtained with the different methods are reported in figure 9A. All the mentioned methods are able 

to obtain highly transparent (up to 95%) in the visible region (300-800 nm) with a clear consistent 

decrease under 277 nm as a result of protein absorbance. The small difference of the absorption at 

277 nm for the different samples is due to the non-homogeneous thickness of the films which is 

strictly related to the approaches used for film fabrication. Conformational properties of fibroin 

processed in different films were determined by FT-IR spectroscopy and thermal analysis (DSC and 

TGA). As shown in figure 9B, in all types of SF films the following infrared absorptions appeared: 

the 1648-1654 cm
-1

 and 1535-1542 cm
-1

 regions are assigned to silk I conformation (random 

coil);
102,106 

and the 1515 cm
-1

 band, due to C-C stretching of the aromatic ring and C-H bending of 

tyrosine residues in the side chains,
106 

corresponding to silk II conformation. Differently, only the 

infrared spectra of SF-VD and SF-DC/MeOH films (figure 9B, blue and green line, respectively) 

displayed the typical peaks attributed to silk II conformation: at 1700 cm
-1

 (β-sheets intermolecular) 

and 1628 cm
-1

 (β-sheets intramolecular) in the amide I region; moreover, in the amide III beside the 

β-sheets band the signal for pure turn structure at 1265 cm
-1

 was observed.
106

 These results indicate 

that drop-casting followed by water evaporation in oven at 50°C (DO method) does not change 

substantially the silk protein conformation; indeed, the infrared spectra of SF-DC and SF-DO films 

(figure 9B, black and red line, respectively) are quite similar with a slight increase of the band at 

1515 cm
-1 

(silk II conformation); on the other hand, the VD process led to changes in the self-

assembling of polypeptide chains in SF-VD films comparable to those observed for SF-DC/MeOH 

films. The presence of silk II conformation in SF films treated in MeOH is in agreement with 

literature data.
60,62

 

In figure 9C, standard DSC curves of silk films are reported. All samples showed an endothermic 

peak between 50 and 100°C that can be assigned to the loss of adsorbed water. The SF-DC and SF-

DO samples (figure 9C, black and red line, respectively), in contrast to the other ones, showed a 

non-isothermal crystallization peak at around 213°C due to the transition of unstable non-crystal 

structures (random coils and α-helices) to β-sheet in agreement with data reported in the 

literature.
107,108

 After reaching the crystallization temperature, the films started to degrade with an 

endothermic peak at around 257°C. In the SF-DO sample this peak appears broader than in SF-DC 

film, indicating a probable coexistence of diverse silk crystalline structures with different 

degradation temperatures. Indeed, FT-IR data indicated besides the predominance of the silk I 

structure a slight increment of the band at 1515 cm
-1

 related to the silk II conformation (figure 9B, 

red line).  
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The endothermic peak (~ 50°C) of SF-DC/MeOH film, related to the loss of adsorbed water 

decreased in intensity and shifted to lower temperatures, implying that the silk film became 

hydrophobic absorbing a lower amount of water (figure 9C, green line). As expected, the 

crystallization peak disappeared because of the formation of β-sheet structures before thermal 

treatment; on the other hand, the degradation peak increased to 264°C, suggesting a higher thermal 

stability in comparison to the soluble SF-DC and SF-DO samples. For the SF-VD sample a similar 

thermal behaviour was observed until 250°C (figure 9C, blue line). After this temperature a relevant 

difference is observed: two degradation peaks appears at 266°C and 287°C. Both are higher 

compared to the previous ones and can be related to the stability induced by β-sheets structures. 

Given that the stability of the protein is related to its crystalline degree, probably the vertical 

deposition method induces the formation of a more stable crystalline structure of silk.  

According to the FT-IR results, the crystal structure of SF-DC and SF-DO samples was mainly 

composed of silk I, while SF-VD and SF-DC/MeOH had a higher β-sheet content.  

Given that silk I crystals degraded around 250°C and silk II (β-sheet) around 260°C, the increase of 

these degradation peaks for SF-VD and SF-DC/MeOH samples indicate a greater stability 

compared to the other films, in agreement with the dissolution and biodegradation results following 

reported.  

Finally, TGA data of the different SF samples conditioned at relative humidity of 75% confirmed 

weaker water–silk interactions following the increase in silk II content (figure 9D). In fact, 

compared with the soluble drop casted silk film dried at room temperature (figure 9D, black line), 

the water content decreases from 10.9% to 10.4%, 8.8% and 7.9% for SF-DO (red line), SF-

DC/MeOH (green line), and SF-VD (blue line) samples, respectively; SF-DC and SF-DO samples, 

characterized by a similar secondary structure (random coil and α-helix) shows a comparable 

weight loss, instead for the SF-DC/MeOH and SF-VD samples the water content decreases because 

of the predominance of β-sheet structures. 
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Figure 9. Optical and conformational properties of different RSF films: SF-DC (black line), SF-DO (red line), SF-

VD (blue line) and SF-DC/MeOH (green line). Specifically, A) optical transparency of silk films recorded in UV-VIS 

range (300-800 nm); B) FT-IR vibration absorption spectra collected in amide regions (1200-1800 cm
-1

), thermal 

profiles obtained by DSC (C) and TGA (D) analysis. 

 

Silk film biodegradation and dissolution profiles. Several studies
109 

have demonstrated that the 

degradation time of various silk-based biomaterials forms can be controlled by the content of silk II 

structures. For this reason we tested the resistance towards enzymatic degradation (protease XIV 

solution) and the rate of dissolution in aqueous DMEM medium of fibroin assembled in different 

films. Biodegradation experiments were performed incubating RSF films at 37°C with protease 

XIV solution for 15 days. The rate of degradation was calculated through the loss of weight of 

fibroin in the films. The results, reported in figure 10A, confirmed a correlation between the content 

of silk I and silk II structures and the rate of degradation. Indeed, SF-DC and SF-DO films (figure 

10A, black and red line, respectively) characterized by the predominance of silk I water-soluble 

structures lost both ~90% of initial weight after 24 h of incubation. On the other hand, the SF-VD 
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and SF-DC/MeOH films (figure 10A, blue and green line, respectively), characterized by silk II 

water-insoluble conformation, showed a lower rate of degradation compared to SF-DC and SF-DO 

samples. In particular, SF-DC/MeOH film displayed a weight loss of ~70%, ~85% and ~90% after 

24 h, 48 h and one week respectively, whereas the SF-VD film showed the lowest rate of 

degradation losing ~20% after 48 h, ~30% after one week and ~70% after 15 days.  

Dissolution profiles, according to biodegradation data, highlighted that the fibroin conformations 

affected solubility of protein assembled in various films. As shown in figure 10B, SF-DC (black 

line) and SF-VD (blue line) films revealed the highest and the lowest rate of dissolution in DMEM 

medium, respectively. Indeed, after 6 h of incubation in DMEM the dissolved percentage of fibroin 

films was ~95% for SF-DC and < 10% for SF-VD; moreover, for the latter the maximum weight 

loss was ~20% after 15 days. Regarding the SF-DO and SF-DC/MeOH films (figure 10B, red and 

green line, respectively), they showed intermediate dissolution profiles in DMEM medium; SF-DO 

film lost ~70% of weight after 6 h, then a plateau is observed, while SF-DC/MeOH film displayed a 

lower dissolution rate losing <50% of weight after 6 h and ~55% after 15 days of incubation. It is 

noteworthy that by increasing the silk II structures, the dissolved silk fibroin amount decreased. The 

different behaviour in DMEM and in presence of protease of the SF-VD and SF-DC/MeOH films, 

despite the similar infrared spectra, could be due to the different morphology properties of silk after 

the different film fabrication. 

Notably, by subtracting the weight loss values correlated to dissolution profiles (figure 10B) to 

those of biodegradation assay (figure 10A) we achieved just enzymatic effect on the silk films 

degradation process (figure 10C). The results displayed (figure 10C) an increase of protease action 

corresponding to decrease of dissolution rate of silk film. Indeed, enzymatic degradation effect was 

lowest (almost zero) and greatest for water-soluble SF-DC (black line) and water-insoluble SF-VD 

(blue line) films. An intermediate protease effect for SF-DO and SF-DC/MeOH films (red and 

green line, respectively) was obtained, however it was correlated to major content of silk II 

structures. 
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Figure 10. Biodegradation and dissolution profiles of RSF films: SF-DC (black line), SF-DO (red line), SF-VD 

(blue line) and SF-DC/MeOH (green line). Specifically, A) biodegradation rate of silk films incubated in protease XIV 

solution at 37°C; B) dissolution time of silk films maintained in aqueous DMEM medium at 37°C; C) enzymatic effect 

profile on different silk films. 

 

Silk film surface properties and morphological characterization. Attachment and proliferation 

of cells and tissue biomaterials are dependent upon the surface properties such as topography, nano-

roughness and the hydrophobicity/hydrophilicity ratio. Atomic force microscopy (AFM) is a 

powerful tool to obtain with nanometer spatial resolution direct information about the morphology 

of a film. AFM images of the various RSF films (figure 11) were collected in order to detect the 

morphological differences induced by the different approaches used for films fabrication. The 

sample SF-DC with a secondary structure of the random coil type showed the smoother surface 

with an average roughness of about 2 nm (figure 11A). The morphology of this film recalls that 

observed for RSF films obtained using the same drop-casting and slow-drying method.
110

 

Differently, the SF-VD film (figure 11C), showing the increased content in β-sheet and the higher 

hydrophobicity, is the one with the greater roughness (~51 nm), however, the grainy morphology is 

similar to that of the SF-DC sample. The films treated with methanol (SF-DC/MeOH) and dried in 
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the oven (SF-DO) showed intermediate roughness values (~29 nm and ~15 nm, respectively) with a 

completely different morphology (figure 11B and 11D, respectively). In particular, the SF-DO film 

is characterized by little holes and small aggregates of protein; in this case, the drying process at 

50°C does not affect the conformational structure of the protein that is similar to that of SF-DC 

sample (silk I conformation) but influences the morphology of the SF film surface. At the end, the 

SF-DC/MeOH sample shows a morphology totally different to that of the SF-VD film with the 

same secondary structure (β-sheet type); indeed, the surface presents the highest degree of 

molecular aggregation suggesting that methanol treatment could promote a more packed protein 

structure (increase of crystallinity index).
110 

The different morphology and features of the four 

analyzed films are probably due to the different molecular motion of the protein induced by the 

different conditions of water evaporation used for films preparation. 

 

Figure 11. AFM topographical images of RSF films obtained using different methods: A) SF-DC untreated 

(RMS~3.13 nm) and B) treated in MeOH (RMS~23.35 nm) films, C) SF-VD (RMS~12.37 nm) and D) SF-DO 

(RMS~11.4nm) films. 

 

Recent studies demonstrated that surface modifications of SF films can be used to enable controlled 

adsorption of proteins and regulated cell-proliferation.
111

 In this view, DMEM medium contact 



36 

 

 

measurements were performed in order to investigate the surface properties of different RSF films. 

As reported in table 3, the SF-DC film (figure 12A) showed a low value of contact angle (~ 39.1°) 

attributed to a major hydrophilicity of the surface. The increase of contact angle value for the SF-

DO, SF-DC/MeOH and SF-VD films (~ 45.9°, ~ 53.9° and ~65.8°, respectively) indicated instead 

an increase of hydrophobicity of the different SF substrates (figure 12B-D), especially with regard 

to the SF-VD sample (figure 12D). The hydrophilicity/hydrophobicity of a surface is related to its 

wettability; therefore the hydrophobicity increased, while the wetting of samples decreased. This is 

correlated to the different dissolution profiles observed for the SF films (see table 3 and figure 

10B). In fact, the most hydrophobic SF-VD film is the one that dissolves and degrades more slowly 

differently to the more hydrophilic SF-DC film. 

 

Table 3. Contact angle (CA) values for a DMEM medium droplet (1 mL) spreading on surface of different RSF 

films. 

 

 

Figure 12. Contact angle measurements of RSF films. Shapes of a DMEM medium droplet (1 mL) on the surface of 

RSF films prepared on glass substrate by different methods: A) DC, B) DO, C) DC/MeOH and D) VD. 

 

Silk film mechanical properties. Flexibility and robustness of silk films were analyzed by stress-

stain tests. As reported in table 4, the value of tensile modulus of different RSF films increases as a 

consequence of an increase in β-sheets content, indicating a mechanical stability due to the major 

amount of physical cross-links between fibroin chains. These results show that the mechanical 

properties of silk films can be controlled by different processing approaches. 
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Table 4. Mechanical properties of silk film prepared by different processes. 

 

We demonstrated that water-insoluble and stable silk films, with high content of silk II structures, 

can be fabricated by the Vertical Deposition method avoiding the use of organic solvent. 

Biodegradability of silk films fabricated by VD process can pave the way to formation of new 

protein-based biomaterials used in a wide range of biomedical applications, including drug delivery. 

 

4.3 Properties of innovative multifunctional silk fibroin nanocomposite films 

Bio-nanocomposites are organic-inorganic hybrid nanostructured materials with synergistic 

properties arising from the combination of biopolymers and inorganic components. The 

multifunctionalities of bio-nanocomposites make them very attractive for applications in different 

fields including packaging, catalysis, optics, electronics, biomedicine, tissue engineering and drug 

delivery.
112-114

 Inorganic fillers such as silica, titania, zirconia, apatite, carbon nanotubes, or metal 

nanoparticles have been utilized as reinforcing agents in order to improve properties of silk 

films.
115,116 

With the aim to include additional functionalities to silk fibroin and to modulate its 

mechanical and biofunctional properties, during the second year of my PhD we developed and 

characterized two innovative silk fibroin nanocomposites: SF-Hydrotalcyte and SF-Single Walled 

Carbon Nanotubes. Results have been published in references 79 and 87, respectively. A summary 

of the results that I contributed to reach these goals are reported below. 

 

4.3.1 SF-Hydrotalcyte bionanocomposite
 

Hydrotalcite-like compounds (HTlc) or layered double hydroxide (LDHs) are an important layered 

matrix represented by the general formula [M(II)1−xM(III)x(OH)2]
x+

[A
n−

x/n] mH2O where M(II) is a 

divalent cation such as Mg, Ni, Zn, Cu, or Co, M(III) is a trivalent cation such as Al, Cr, Fe, or Ga, 
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and An
−
 is an anion of charge n.

117 
HTlc are the only example of layered solids with positively 

charged layers and exchangeable interlayer anions to maintain charge neutrality. The interlayer 

anions can be exchanged by other inorganic, metallorganic, or organic anions and by 

biomolecules.
118 

HTlc thanks to low toxicity and good biocompatibility are used in biological and 

pharmaceutical fields for controlled storage and release of active species intercalated in layered 

materials. Because of their tunable layered charge density and chemical composition HTlc can be 

used in nanocomposite for drug release.
119

 

In this context, a SF-HTlc composite was fabricated by using a completely water-based process (see 

Materials and Methods, section 3.4 and figure 13A) and its properties were widely investigated; our 

studies are reported in the literature
79

 and the main results are discussed below. 

HTlc nanoplatelets having the formula [Zn0.72Al0.28(OH)2]
- 
Br0.28 0.69 H2O were synthesized in the 

form of colloidal aqueous dispersion according to published methods.
120

 TEM and AFM studies 

revealed that the product of synthesis were nanoparticles whose dimensions are 150−200 nm in 

width and 20−30 nm in hight.
120 

The zeta potential of HTlc colloidal dispersion in water (pH 7.0) 

was +50 mV.48. 

 

Figure 13. A) Schematic representation of the manufacturing of SF-HTlc hybrid water-solution and films. B) Pictures 

of a transparent, free-standing and flexible SF-HTlc bionanocomposite film. 

 

Free-standing and flexible hybrid films (figure 13B) were processed from environmentally friendly 

aqueous solutions. We first prepared bio-nanocomposite by mixing the RSF solution and colloidal 

nanoparticles aqueous dispersion in different percentages (wt/wt%). The SF-HTlc film was 

prepared from the hybrid dispersion by DC method (details in Material and Methods section and in 

references 79). The resulting film was optically transparent and displayed enhanced mechanical 

properties with respect to bare SF.
79 
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FT-IR experiments were carried out in order to investigate the structural properties of silk protein 

after incorporation of HTlc nanoparticles. Spectral features of the HTlc and silk samples (figure 

14A and 14B), observed in the 400−3800 cm
−1

 frequency range, recall those reported for other 

conventional hydrotalcite
121 

and regenerated SF film prepared by DC method. Figure 14A shows 

that amide I (1655 cm
−1

), amide II (1535 cm
−1

) and amide III (1240 cm
−1

) bands, corresponding to 

the SF-HTlc nanocomposites, match well with those observed in pure protein films, suggesting an 

unaltered protein structure after incorporation of HTlc nanoparticles. Furthermore, the band 

positions are mainly indicative of the water-soluble silk I conformation that is typical of SF films 

obtained by the same DC process. FT-IR spectra recorded for SF-HTlc hybrid films show together 

with the bands assigned to the silk protein other signals in the 3250−3500 cm
−1

 and below 1000 

cm
−1

 regions, characteristic of these layered materials (figure 14B).  

A high-frequency shift (612 cm
−1

) of the band at 601 cm
−1

 is detected in SF-HTlc nanocomposites 

which is almost independent from the hydrotalcite content. The observed blue shift (up to 10 cm
−1

) 

could be ascribed to the existence of interactions between the protein and hydroxyl groups of HTlc 

layers. It is possible that OH groups of HTlc form hydrogen bonding with C=O and NH groups of 

silk fibroin aminoacids. 

 

 

Figure 14. FT-IR spectra of pure SF film (black line), HTlc nanoparticles in powder form (cyan line), and SF-HTlc 

hybrid films recorded in the 1200−1800 cm
−1

 region (A) and 400−1000 cm
−1

 region (B). The inset of (B) shows the 

bands relative to the 3000−3800 cm
−1

 region.  
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The dispersion degree of the HTlc nanoparticles into the silk matrix and the morphology of the 

nanocomposite films have been investigated by optical microscopy, AFM and SEM-EDS 

analyses.
79

 

The elemental mappings of Zn and Al in silk hybrid films containing two different percentages of 

HTlc (SF-HTlc0.6 and SF-HTlc3.6 samples) were obtained by a SEM-EDS technique and are 

presented in figure 15. The density of each element is indicated by the relative brightness and 

colour intensity and corresponds with its composition within the samples (figure 15A−C middle and 

right panels). Overall, these two elements exhibit an homogeneous distribution of density both on 

the surface (figure 15A-B) and in the entire thickness (figure 15C) of the hybrid composites under 

examination (SF-HTlc3.6). It can be observed that increasing the weight percentage of HTlc in the 

composites, the relative densities of Al
3+

 and Zn
2+

 change accordingly. Summarizing optical 

microscopy, AFM,
79

 and SEM images indicated a homogeneous integration of the HTlc 

nanoplatelets into the silk matrix.  

 

Figure 15. SEM images and the corresponding EDS images of Zn and Al elements in samples SF HTlc0.6 (A), SF-

HTlc3.6 (B), and in the section of SF-HTlc3.6 (C). It is interesting to note that the thickness of the sample SF-HTlc3.6 

measured by SEM (∼18 μm) is similar to that measured by profilometer.
79 
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Biodegradation of fibroin in SF-HTlc composite films. Figure 16A shows the in vitro 

degradation of pure SF and SF-HTlc hybrid films incubated at 37°C with protease XIV solution 

(1mg/mL in PBS). The rate of degradation was calculated through the loss of weight of fibroin in 

the films. The SF film shows a rapid weight loss of ∼90% after 1 day of exposure to protease that is 

almost complete after 2 days of incubation; the same weight loss is observed for SF-HTlc0.6 sample 

indicating that a small amount of HTlc nanoparticles does not affect the degradation process of SF. 

Differently, the SF-HTlc1.2 and SFHTlc1.8 nanocomposites show a particular trend: after 1 day of 

incubation a weight loss of only 40−60% is observed and the 80% of loss is reached after 4 days. 

This finding suggests that HTlc nanoparticles in a particular range of concentration have the ability 

to protect SF from enzyme attack. On the other hand, the behavior of SF-HTlc3.6 sample recalls 

that of the pure SF film.  

As previously (section 4.2) discussed and illustrated, silk fibroin is susceptible to biological 

degradation by proteolytic enzymes; the rate and extent of degradation may be highly variable 

depending on the structural and morphological features of the polymer (fiber, film, sponge) and the 

processing conditions. The β-sheet structure (silk II conformation) is considered to be a critical 

factor that stabilized SF in aqueous environments. Because the secondary structures of SF do not 

change in SF-HTlc nanocomposite (see figure 14A), the results here reported suggest that the 

increased protease resistance of SF is due to the excellent dispersion of HTlc nanocrystals in the silk 

matrix. The dispersed platelets could potentially cover the access of the protease to its binding sites, 

acting as a physical barrier to protease attack. 

 

Dissolution of HTlc in SF-HTlc composite films. It is known that hydrotalcite-type materials are 

basic compounds that rapidly dissolve in acidic media.
117 

Figure 16B shows the dissolution profiles 

in phosphate buffer at pH 3.0 of HTlc, pure SF and SF-HTlc1.8 nanocomposite films, chosen 

because it was in the range of SF-HTlc nanocomposites with enhanced mechanical properties.
79

 

HTlc film shows 100% of weight loss almost instantaneously, while SF and SF-HTlc1.8 hybrid 

films exhibit a much slower and comparable dissolution process. After 3 h of incubation, only a 

7−10% of weight is lost reaching the 20−30% in 2 days, indicating a good stability of the SF and 

SF-HTlc1.8 films in acidic medium. These results demonstrated the protective effect of SF by 

detrimental interaction of HTlc with harsh acidic pH environment. 

Collectively, our results demonstrated that a mutual benefit effect on the stability of both organic 

and inorganic components was observed in the nanocomposites. SF-HTlc displayed limited 
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dissolution of hydrotalcite in acidic medium, enhanced mechanical properties and higher protease 

resistance of silk protein. These data are very attractive for applications in biomedicine and in 

innovative drug delivery formulations. 

 

Figure 16. A) Enzymatic degradation profiles of pure SF film (black line) and SF-HTlc nanocomposites. Regenerated 

SF and SF-HTlc hybrid films were cultivated in protease XIV solution. B) Dissolution profiles of pure SF film (black 

line), SF-HTlc1.8 hybrid film (green line) and pristine HTlc film (cyan line) in phosphate buffer at pH 3.0.  

 

4.3.2 Nanostructured silk fibroin–single walled carbon nanotubes composite 

Single Walled Carbon Nanotubes (SWCNTs) represent the most appealing class among conductive 

nano-materials for biomedical applications.
122 

They have unique physical and chemical properties, 

which enable the development of high capacitance, low-resistance nanostructured electrodes, that 

are potentially useful for cell interfacing and modulating cell activity i.e. for neural prosthetics.
123

 

In this context we generated a conductive
87

 nanostructured (n) SF–SWCNTs film by using the same 

fabrication method applied in order to produce three-dimensional (3D) ordered structures of 

interconnected submicrometric pores of SWCNTs. 

The structural, electrical, conformational, mechanical properties and the biocompatibility with 

primary dorsal root ganglion neuronal cells (DRG) of the SF-SWCNTs nanocomposite film were 

investigated. Results of our studies have been published in reference 87 and summarized below. 

We assembled SWCNTs in periodic structures by using polystyrene beads (PB), which acted as 

both carriers and a sacrificial template. These structures were then infiltrated by RSF water-

solution. This preparation method is extremely versatile and allows us to tune the periodicity of the 

SF–SWCNT porous structure by controlling the templating bead diameter.
93 

We used the 

microfluidic VD method to deposit the template made of SWCNTs on 415±10 nm sized PB.
 
A 
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defined volume of RSF water-solution was infiltrated into the template by DC approach. Afterwards 

the PB templates were dissolved by a gentle solvent treatment. 

 

Figure 17. Fabrication scheme of porous hybrid films of nSF–SWCNT: (1) VD of the PB and SWCNTs; (2 and 3) 

SF infiltration into the ordered PB–SWCNT structure by DC; (4) template removal by solvent treatment; (5) final 

hybrid nSF–SWCNT composite after rinsing in ethanol. 

 

Morphological characteristics. SEM imaging revealed a 3D geometrically controlled structure of 

nSF–SWCNT composites (figure 18A). The inverse structures resulted in nanostructured hybrid 

films of SWCNTs completely embedded in SF with an average thickness of around 1 mm. The 

films had regular pores of 315 ±40 nm in diameter, assembled in a close packing array (figure 18A). 

The pores were completely 3-dimensionally interconnected by windows of 90 nm. 

 

Fibroin conformation in nSF-SWCNTs composite film. The SF conformation was investigated 

by IR spectroscopy, within the range 1700–1200 cm
-1

, for both bare nanostructured SF (nSF) and 

the nSF–SWCNT composite (figure 18B). In the IR spectrum of nSF–SWCNT none of the 

observed peaks can be attributed to the nanotubes because the IR absorption cross section is much 

smaller for the SWCNTs than for nSF. SF-SWCNTs composite film (figure 18B, red line) shows 

the typical signals of the silk I structure and match well with the spectrum of a non-nanostructured 

SF film. Specifically, the amide I band appeared as a strong peak at 1655 cm
-1

, corresponding to the 

silk I structure; in the amide II region, peaks are observed at 1535 cm
-1

 (silk I) and 1517 cm
-1

 (silk 

II); in the amide III region a peak at 1240 cm
-1

, generally assigned to random coil-structures, is 

observed. 

These data indicate that the conformational structure of the protein is not modified in the nSF–

SWCNT composite with respect to nSF and the dominance of the silk I structure (random coils and 

α-helices) over silk II (β-sheets) is maintained after all of the preparation processes that nSF goes 

through. 
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Structural properties of SWCNT in nSF-SWCNTs composite film. The Raman scattering 

spectra collected for the nSF–SWCNT films (figure 18C-D) are dominated by the SWCNT 

scattering, exciting at both 488 nm in the blue and 632.8 nm in the red. No significant differences 

were observed among the spectra collected for the nSWCNT and nSF–SWCNT substrates. Minimal 

differences were detected in the relative intensities of the RBM, D, G, G0 modes; these variations 

are related to the distribution of different nanotubes in both samples and not to the presence of SF. 

The Raman scattering for nSF at both of these excitation wavelengths is very weak and all of the 

peaks are in the same regions as the peaks attributed to SWCNTs (the spectra of SF in figure 18C-D 

were carried out on a very thick film compared to nSF–SWCNTs and further reduced in intensity 

compared to the spectra of the other compounds). The presence of a broad band around 2900 cm
-1

 

in the spectra of nSWCNTs (probably due to the C–H bonds formed on the nanotubes during the 

cleaning and solubilization processes), does neither allow to clearly identify the Raman spectra of 

nSF–SWCNTs nor the most intense Raman peaks for SF (C–H stretching at 2940 cm
-1

). 
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Figure 18. A) SEM micrographs of a nSF–SWCNT porous film at different magnifications. B) Infrared spectra of nSF–

SWCNT and nSF films deposited on a glass substrate. C-D) Raman spectra of nSF–SWCNT, nSWCNT and SF exciting 

at 632.8 nm (C) and at 488 nm (D). 

 

Biocompatibility with primary DRG neurons. Biocompatibility is an essential feature to be 

carefully evaluated and considered as an advanced function of a novel engineered 

bionanocomposite. A biocompatible nanocomposite could be potentially used to promote and guide 

neurite outgrowth, as well as to stimulate functional recovery of injured neurons, representing a 

crucial tool in neuronal regenerative medicine and nerve repair.
124

 

We evaluated the biocompatibility of the nSF–SWCNT substrate by culturing primary rat DRG 

neurons on nSF–SWCNTs and on nSF for several days. We chose to use cultures of dissociated rat 

DRG neurons as it is a validated in vitro model to determine the regenerative outgrowth capabilities 

of individual neurons of the PNS. The DRG cell culture behaviour on bare non-nanostructured SF 

has been fully characterized morphologically, immunologically and functionally in our previous 

work, thus it is a good benchmark control.
14 
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Neural cell viability and neurite outgrowth were analyzed by optical microscopy with Fluorescein 

Diacetate (FDA) assay and by fluorescent microscopy (figure 19A). A histogram plot of the mean 

FDA-positive cell n
o
/area reveals that the viability of the conductive nSF–SWCNT substrate is 

comparable to that of nSF (figure 19B). 

Additionally, the mean neurite length of the DRG neurons grown on the nSF–SWCNT 

nanocomposite, after 3 DIV and 10 DIV is also comparable to that of nSF (figure 19B). These 

results suggest that the cells grown on the nanocomposite mostly directly interact with the substrate 

at the nSF/cell interface, rather than with the SWCNTs, potentially reducing the biocompatibility 

issues related to SWCNTs.
125

 

Collectively, these data show that the nSF–SWCNT nanocomposite is a permissive neuron interface 

that enables DRG neuron adhesion and differentiation in vitro. 

 

Figure 19. Biocompatibility of the nSF–SWCNT nanocomposite. A) Histogram plot of the number of FDA positive 

cells/area counted in cell culture preparations grown on nSF–SWCNTs (gray bars), and nSF (white bars), after 3 and 6 

days in vitro (DIV). B) Histogram plot showing the neurite length measured of neurons grown on nSF–SWCNTs (gray 

bars) and nSF (white bars), after 3 and 10 days in vitro (DIV). 

 

4.4 Innovative methods of functionalization of silk fibroin solution and films  

In order to widen the potential of B. mori RSF and its applicability,
70,75,126 

different doping methods 

of silk solution, water chemical tailoring approaches relying on site specific covalent 

modification
72,73

 and supramolecular non-covalent interaction have been proposed.
79,87

 However, 

some chemical and physical post-processing treatments of SF could damage/denature the protein, 

modifying completely its primary properties and in turn the properties of the films. Independent 

from the approach, mild and water compatible procedures as well as water soluble reagents are 
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required in order to effectively perform protein doping and to prevent SF denaturation or 

detrimental structural changes. 

In this context, during the third year of my PhD, we developed two innovative doping methods of 

functionalization of the silk fibroin solution and films: 1) Biodoping and 2) Silylation. 

Regarding biodoping, the results of our studies are published in reference 80 and are illustrated 

below. 

 

4.4.1 Biodoping of silk fibroin fibres, solutions and films. 

Recently, a series of fluorescent dyes have successfully been incorporated in silk fibres by the 

addition of colorant compounds to the silkworm diet. In particular, Tansil et al.
 94,95

 mixed 

Rhodamine B (RhB) into mulberry powder at different concentrations to make modified feed for the 

silkworms at the third day of the fifth instar. They showed that successful formation of pink and 

luminescent (under UV irradiation) cocoons and silk threads could be obtained with different 

intensity in colour and luminescence depending on the concentration of RhB in the diet. The body 

of the silkworms and the fibres assumed a pink colour and the biodistribution study of xenobiotic in 

B. mori revealed an uptake of RhB in the native fibroin solution of the prothoracic gland.
 94,95

 

However, possible effects of extraction and preparation on chemo-physical properties of the RSF 

solution and films from the modified diet cocoon were not investigated. Considering that several 

passages of the extraction and purification processes could compromise efficient inclusion of the 

doping molecules in the final silk-based substrates, we characterized the chemo-physical properties 

of RSF solutions and films extracted from the cocoon obtained by the RhB-modified diet (RhB-md) 

method.
80 

The first step of our study was to feed a polyhybrid strain of B. mori (figure 20A) with 

RhB according to the protocol of Tansil et al.
 94,95 

In particular, RhB was mixed into the artificial powder diet at a concentration of 0.05 wt% to make 

a modified feed that was then fed to silkworms starting from the third day of the fifth instar (figure 

20B). To monitor the correlation of RhB inclusion in the cocoon with the time of exposure to the 

diet, 3 groups of white strains, each composed of twenty last instar larvae, were placed in a 

separated box and fed with the modified diet starting from the third, fourth and fifth day of the fifth 

instar, respectively, until the silkworms started spinning the cocoon. In this way, we obtained 

different add-eat time cocoon of 24, 48 and 72 hours (figure 20D-F). 

The silkworms fifth larval stage takes about six days; thus, to obtain a different exposure time to the 

dye, the doped diet was administered on different days from the last molting, from the third, fourth 

and fifth day until the silkworm starts to spin the cocoon. In the same manner, three groups of the 
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same strains fifth instar larvae were separated and fed with the same diet, except for the addition of 

RhB powder, and white cocoons were used as a control (figure 20C). 

According to the observation of Tansil et al.,
 94,95

 the body of the worm fed with the RhB-modified 

diet, became coloured after 2–3 h following RhB diet consumption. Aside from the colour, no 

difference (i.e. morphology and weight) was observed between the coloured and white cocoons that 

were produced by the silkworms consuming normal non modified feed.  

 

 

Figure 20. A-B) Larvae of B. mori domesticated on standard diet (A) and doped diet with RhB (B). C) Cocoons from 

silkworms of B. mori fed with no doped diet. D-F) Natural coloured cocoons from silkworms fed with diet containing 

dye. Different rose shades due to time of exposure of larvae to diet (24, 48, 72 hours) 

 

Coloured and white cocoons are degummed as previously described (see section 4.1). After the 

degumming procedure, the resulting RhB-md-SF fibres (figure 21A, right panels) were coloured 

with respect to those obtained from white cocoon (figure 21A, left panel) and displayed different 

shades of violet depending on the exposure time of the worms to the RhB-modified diet. The same 

gradient difference in colour from the white, 24h, 48h and 72h RhB-modified diet cocoon was 

evident when RSF fibres were melted in LiBr (figure 21B) and after the purification procedure 

(dialyses and centrifugation) (figure 21C), by indicating that both degummed silk fibre and 

regenerated silk solution retain the doping agent. 
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Figure 21. A) Degummed silk fibres obtained from white and RhB-modified diet cocoons (reported in figure 20C-F). 

B) SF solubilized in LiBr solution. C) RSF solutions extracted from white and RhB-modified diet fibres. 

 

Chemo-physical properties of biodoped silk fibroin solution and films. The main aim of these 

studies was to analyse the chemo-physical properties of RSF solutions and films obtained from 24h, 

48h and 72h RhB-modified diet cocoon to explore the suitability of the modified diet method for the 

biomanufacturing of silk-based optically active substrates in opto-electronic devices. First, we 

investigated the UV-VIS optical properties of the RSF solutions obtained from white (figure 20C) 

and coloured cocoons feed for 24h, 48h and 72 h RhB-modified diet (figure 20D-F).  

Figure 22 shows the UV-VIS absorption spectra of white and RhB-md-SF solutions obtained in the 

300–800 nm range. All RhB-md-SF water-solutions displayed two main features in UV-VIS 

absorption spectra: a shoulder at 325 nm (figure 22A), and a more pronounced peak at 546 nm 

(figure 22A-B), whereas for the white SF solution, only the absorbance at 325 nm appeared. The 

absorbance at 325 nm could be attributed to a small percentage of β-sheets structures.
51

 The 

absorbance at 546 nm, associated with the chromophore group of RhB,
127

 increased gradually from 

RhB-md-SF 24h to RhB-md-SF 72h. In particular, the intensity values were almost proportional to 

the feeding time (24 > 48 > 72 hours) (figure 22C). When a white SF solution was doped with RhB 

(RhB-d-SF), it displayed the maximum absorbance at 557 (figure 22D). Therefore, the results of the 
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UV-VIS absorption of the RhB-md-SF solutions displayed the features of RhB. However, we 

observed that RhB has a slightly different optical behaviour depending upon the solvent. 

 

Figure 22. A-B) UV-VIS absorption spectra of RSF water-solutions collected in the 300–800 (A) and 450–650 nm 

regions (B). C) Maximal UV-VIS ABS values versus time (24, 48, 72 hours) of exposure of larvae to diet containing 

RhB. D) UV-VIS absorption spectra in the 300–800 nm region of RhB-doped SF (RhB-d-SF) at different 

concentrations of dye (0.448 mg L
-1

; 0.224 mg L
-1

; 0.112 mg L
-1

). 

 

RhB-md-SF and RhB-d-SF water-solutions were excited at 295 nm (figure 23A-B) and 325 nm 

(figure 23C-D) to evaluate the behaviour of the amino acid residues.
128

 Upon excitation at 295 nm 

(figure 23A-B), all fluorescence spectra displayed a wide band at 350 nm, attributed to emission of 

Trp residues that are much more exposed to bulk water.
129,130 

When RhB-md-SF solutions were 

excited at 325 nm (figure 23C-D), fluorescence spectra were characterized mainly by two features: 

a broad structured emission with maxima at 400 and 415 nm (typical of the singly ionized di-

tyrosine chromophore and oxidized tryptophan)
131 

and a peak at 568 nm of increasing intensity from 

RhB-md-SF 48h to RhB-md-SF 72h. The latter peak was almost undetectable in the RhB-md-SF 

24h. When excited at 325 nm, the white SF fluorescence spectrum displayed only the two bands at 

400 and 415 nm (figure 23C). The emission profiles of RhB-d-SF samples, recorded by exciting at 
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the same wavelength (325 nm), were comparable to those of natural coloured samples. Indeed, the 

broad band (400–415 nm) and the emission of dye were still present, although the latter was shifted 

from 568 nm to 575 nm (figure 23D).
 
 However, the presence of these species (di-tyrosine and 

oxidized tryptophan) in RSF water-solutions could be derived from the treatments that the protein 

chains are subjected to during the various phases of extraction and purification of fibroin from the 

cocoons.  

 

Figure 23. Emission profiles of white, natural coloured RSF water-solutions and RhB-doped SF solutions recorded by 

exciting at 295 nm (A-B) and 325 nm (C-D). 

 

In order to examine the fluorescence features of RhB in the different systems, we excited the 

various solutions of RhB at 546 nm. In all cases, the spectra were recorded from 550 nm to 750 nm. 

When the RhB-md-SF solutions were excited at 546 nm (figure 24A), the fluorescence spectra 

displayed the maximum intensity at 568 nm. Similar to the UV-VIS absorption, the intensity of 

emission also increased from RhB-md-SF 24h to RhB-md-SF 72h. As expected, no emission was 

observed when exiting the SF water-solution at 546 nm. On other hand, RhB-doped SF (figure 24B) 

solutions displayed the maximum emissions at 573 nm. Fluorescence bands of RhB-d-SF solutions 

were of greater intensity than those of RhB-md-SF samples. 
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Figure 24. Emission profiles recorded by exciting at 546 nm natural coloured RSF water-solutions (A) and RhB-doped 

SF solutions (B). 

 

Chemo-physical and conformational properties of the RSF films, realized by the DC approach, were 

investigated to verify their suitability for use as substrates in optical and photonic devices.  

As shown in figure 25B, the SF films made by the white and RhB-md-SF 24h solutions were 

completely optically transparent (up to 95%) in the visible region (300–800 nm) with a clear 

consistent decrease under 277 nm as a result of protein absorbance. On the other hand, the RhB-md-

SF 48h and RhB-md-SF 72h films showed a small loss in transparency around 550 nm, due to RhB 

absorption. 

FT-IR analysis in the amide spectral regions (1200-1800 cm
-1

) was performed to assign silk 

conformation to fibroin in silk films prepared by DC method from white and RhB-md-SF solutions 

(figure 25C). The IR spectra of all RhB-md samples does not show any relevant differences 

compared to the white SF films (figure 25C), indicating that the presence of RhB does not influence 

the self-assembling of fibroin chains during the film formation. The vibration peaks recorded for all 

SF samples were in agreement with the data previously described for films prepared by the same 

DC method, and confirm that SF film self-assembly properties were not modified by the diet-

doping method. 
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Figure 25. A) Natural coloured fibroin film obtained from RhB-md-SF 72h solution and prepared by DC method. B) 

Transmittance properties of white and natural coloured RSF films recorded from 250 to 800 nm. C) IR-FT spectra of 

white and natural coloured RSF films collected in the amide regions (1200–1800 cm
-1

). 

 

The same paradigm applied to SF solutions was used for all SF films in order to collect 

fluorescence profiles. By excitation at 325 nm and at 546 nm, we did not observe any difference in 

the spectral features of the RhB-md-SF solutions (figure 23C-D) and films (figure 26C-D). When 

exciting at 295 nm, we observed the emission of Trp residues at 330 nm, which some authors 

assigned to Trp residues enabled to give H-bonded exciplexes
130

 (figure 26A). The fluorescence 

spectra of RhB-d-SF films were obtained also by excitation at 295 nm, 325 nm and 546 nm (figure 

26B, 26D and 26F, respectively). The samples showed protein luminescence features comparable to 

those of RhB-md-SF films, in particular for the excitation at 295 nm where the peak at 330 nm 

appeared (figure 26B). On the other hand, the signal of the dye was different for the emission 

wavelength (573 nm instead of 568 nm) and the form of the curve (figure 26F). This could be 

associated with a different assembling or bonding of molecules when the RhB is dispersed in white 

SF solutions. 
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Figure 26. Emission profiles of fibroin films obtained from white, natural coloured SF and RhB doped SF solutions. 

The fluorescence spectra were recorded by exciting at: 295 nm (A and B), 325 nm (C and D), 546 nm (E and F). Fibroin 

films were prepared by the DC approach on quartz substrates. 

 

This work demonstrated that biodoping method is suitable for the biomanufacturing of doped and 

optically active silk solutions and films. The RhB-md-SF solutions and films showed UV-VIS and 

fluorescent features typical for the presence of RhB. Moreover RhB-md-SF films were optically 

transparent and protein self-assembly properties were not modified. 
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4.4.2 Chemical functionalization of silk fibroin via silylation 

SF contains serine, threonine, aspartic and glutamic acid, and tyrosine that can all be targeted and 

modified exploiting known organic synthesis procedures such as carbodiimide coupling or OH 

grafting.
132 

On this line, here we report a novel approach for chemically modified SF even with 

hydrophobic molecules relying on the use of APTES, a common silylating agent exploited also for 

the formation of self-assembled monolayer,
133 

which acts as solvent, carrier in water and grafting 

agent simultaneously. A fluorescent ester ended oligothiophene (T3) was used as model 

hydrophobic system for monitoring the process trough fluorescence detection.  

 

Synthesis of SF-APTES-T3 composite. The proposed synthetic approach is depicted in figure 

27A-B and widely described in Materials and Methods section. T3 was dissolved in APTES (final 

conc. 0.025 M), this solution was sonicated and then added to RSF water-solution. As-made blend 

SF-APTES-T3 solution was stirred for 1h on a tube rotator and finally purified by size exclusion 

chromatography (SEC, Sephadex G25 desalting column) by using DI water as eluent. Figure 26C 

shows the image of the elution under UV lamp illumination.  

A single fluorescent band can be clearly distinguished along the column and no fluorescent residues 

at the column edge are observed. This evidence indicates the formation of a stable, water soluble 

SF-APTES-T3 complex. Accordingly, when dichlorometane (CH2Cl2) was added to an eluted 

fraction, fluorescence was observed only in the water phase (figure 26D, right panel). In contrast to 

a control experiment, as shown by the figure 26E, the fluorescence of the APTES-T3 adduct in 

absence of SF is observed in both water and organic phases (figure 26E, right panel).  
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Figure 26. A) synthetic route for APTES mediated SF chemical modification and B) sketch of the procedure. C) Image 

under UV illumination of the elution of SF-APTES-T3 through SEC by using water as eluent. D) SF-APTES-T3 in 

water after addition of CH2Cl2, the fluorescence remains in the water phase. E) T3 dissolved in APTES after addition of 

CH2Cl2 and water, fluorescence is observed from both phases. 
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Chemo-physical properties of SF-APTES-T3 composite. The possibility of covalent bond 

formation through APTES promoted silylation
134

 of SF hydroxyl residues was investigated by 
1
H-

NMR experiments
135 

 in comparison to unmodified SF. A SEC eluted fraction (figure 27A) of SF-

APTES-T3 (1 mL) was casted on PDMS flat surface and dried to give a free-standing SF-APTES-T3 

film (figure 27B-C) that was then dissolved in D2O. The spectrum (figure 27D) shows the same 

fingerprint of unmodified SF (figure 27E) and the signals of the CH2 groups of APTES (marked 

with asterisks in figure 27D) that appeared as resolved and sharp signals, this suggesting that 

APTES (hydrolytically unstable, in water t1/2 = 8h at 25°C, pH 7) did not polymerize neither after 

slow dehydration.  
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Figure 27. A) images under UV lamp illumination of the fractions eluted by SEC. B-C) SF-APTES-T3 free-standing 

film under normal (B) and UV (C) light illumination. D) 
1
H-NMR spectrum of SF-APTES-T3 film portion dissolved  in 

D2O and E) spectrum of SF film under the same experimental conditions. Asterisks in spectrum D) indicate the CH2 

signals of APTES.  

 

Interestingly, the SF-APTES-T3 film (figure 28A, orange curve) preserved the same optical 

transparency of pure SF film (black line) in visible range. Photoluminescence spectra of the new 

silk composite solution and film are shown in figure 28B. A blue greenish fluorescence was 

observed by emission spectroscopy (figure 28B, orange curve) and ascribed to the T3 moiety, as 

confirmed by the overlap with the PL spectrum of T3 in SF-APTES water-solution (figure 28B, blue 

curve). 

ATR FT-IR) was performed to investigate SF secondary structures in SF-APTES-T3 film (figure 

28C). In the amide I region, spectra of SF and SF-APTES-T3 samples show typical vibration peaks 

attributed to silk I conformation (random coils/extended chains) between 1640-1645 cm
-1

. In amide 

II region, spectra of SF and SF-APTES-T3 show the same peak of silk I conformation at 1538 cm
-1

 

but a strong shift to 1517 cm
-1

 (silk II) is observed for SF-APTES-T3. In amide III region, a peak at 

1233 cm
-1

 of silk II conformation is observed only for SF-APTES-T3. Therefore collectively, ATR 

spectroscopy shows that APTES-T3 does not change self-assembling of fibroin, indeed infrared 

spectra are overlapping in amide regions; a small conformational change (in amide II and III 

regions) is observed for SF-APTES-T3. Interestingly, spectrum (figure 28D) of SF films doped by 

T3 dissolved in DMSO and prepared under the same conditions display vibration properties of silk 

II conformation due to β-sheet secondary structures (1623 cm
-1

 and 1700 cm
-1

). Collectively these 

results indicated that SF-APTES-T3 is not altering the SF β-sheet contents and secondary structures, 

while SF doped with DMSO (used as solvent for adding T3 to RSF water-solution at the same 

%v/v) affects SF conformational properties. 
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Figure 28. A) Optical transparency of SF-APTES-T3 (orange curve) and SF (black curve) films. B) Emission spectra of 

SF-APTES-T3 film (orange curves) and of T3 in SF-APTES water-solution at the same concentration (blue curve). λexc 

= 400 nm. C) ATR FT-IR spectra of SF (black curve) and SF-APTES-T3 (orange curve) films. D) The same spectra are 

reported together to ATR FT-IR spectrum of a silk film obtained from DMSO-T3 doped SF solution (red line). All silk 

films were made by the same DC method. 

 

Finally, stress-strain mechanical tests were carried out to study the mechanical properties of SF-

APTES-T3 composite. Table 5 shows that the Young’s modulus and the Ultimate Tensile Strength 

(UTS) of SF-APTES-T3 increase with respect to those of SF (30% and 60% increase, respectively), 

confirming a cooperative intermolecular interaction between SF chains due to APTES-T3. As result 

of this cooperation SF chains are packed tightly, resulting in an increase of rigidity of the 

composite. 
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Table 5. Mechanical Properties of SF-APTES-T3 with respect to SF. 

 

In conclusion, we have reported a method for chemically modifying B. mori regenerated SF based 

on the use of APTES which acts as a bifunctional linker of an hydrophobic molecule, solvent and 

reinforcing agent simultaneously. Remarkably, SF-APTES-T3 shows synergetic filmability and 

transparency of silk, combined with enhanced robustness imparted by APTES and fluorescence 

properties of T3. These results highlight the potential of the proposed approach for fabricating 

multifunctional SF-APTES biocomposites grafted by any other hydrophobic molecule such as 

fluorescent dyes and drugs. 

 

 

5. Conclusions 

The results obtained during my PhD research activity confirmed that silk fibroin is a versatile 

biomaterial that can be prepared in various silk-based forms. In particular, we standardized 

production, extraction and purification of regenerated silk film, to control its chemo-physical 

properties, biocompatibility, mechanical and biodegradation behaviour to respond the demand for 

innovation in biomedical application and pharmaceutical formulations.  

In this context we also identified different methods and approaches to tailor and improve features of 

pure silk films to target and broad its exploitation possibilities. The novel synthesized and 

fabricated silk fibroin nanocomposites displayed synergy effect with improved properties with 

respect to the single component in terms of mechanical strength, resistance to biodegradation, 

biocompatibility.  

We also designed and optimized chemical strategies to obtain silk fibroin composite. Two step 

water based chemical modification via silylation was demonstrated to be suitable for obtaining silk-

sililated film substrates with define chemo-physical features. Finally, we demonstrated that the 

process to fabricate doped silk film by taking advantage of cocoon chemical factory can be realized, 

controlled and optimized for biomedical and pharmaceutical application. Because of the large-scale 
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cultivation of silkworms for the textile industry, there are abundant and reasonable sources for this 

natural polymer. Applicability of the proposed concepts and optimized methods obtained from the 

results of my PhD thesis could set the scene for the use of silk as innovative technological 

substrates and encourage application, ideas and research avenues that follow greener methods for 

sustainable chemistry in biopharmaceutical applications. However, process up-scale, that would 

determine exploitation and attractiveness for industrial application is still challenging and would 

require further development of the presented results in future studies.  
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