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Preface 
 

This PhD thesis has been carried out at the Department of Pharmacy and Biotechnology, Alma 

Mater Studiorum-University of Bologna (Italy), under the supervision of Prof. Anna Minarini. 

The whole PhD thesis is devoted to the study of new naphthalene diimide derivatives for the 

treatment of cancer. 

This thesis describes four main projects: the first project is focused on the development of 

naphthalene diimide-polyamine conjugates with the aim of obtaining a selective delivery to 

the cancer cells, while the second one concerns the development of new MTDLs acting also as 

epigenetic modulators. The third project regards the synthesis of naphthalene diimide 

macrocyclic derivatives targeting the quadruplex structures, and the fourth one the 

development of trisubstituted naphthalene diimides for the treatment of pancreatic cancer. 

The thesis is organized in different chapters: the first chapter is a brief introduction about the 

physiopathological aspects and the current approaches for the treatment of cancer. Chapters 2, 

3 and 4 describe the main targets involved in cancer that constitute the drug discovery basis 

for the design of the new synthesized molecules.  

Chapter 5, 6, 7 and 8 contain the drug design approaches used in each project, the synthetic 

methods and the biological evaluation assays of the new synthesized compounds. Results and 

discussions section and experimental procedures are also reported. 
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Abstract 

 
Cancer is a multifactorial disease characterized by a very complex etiology and several 

biochemical targets have been recognized to play a fundamental role in its development. 

Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-

Target-Directed Ligand” (MTDL) approach. This new strategy stands on the assumption that a 

single molecule could hit several targets responsible for the onset and/or progression of the 

pathology. 

In particular, in cancer therapy, in the last years G-quadruplex structures and epigenetic 

enzymes have raised much interest as potential anticancer targets. 

Several agents acting on DNA are clinically used, but the severe deriving side effects limit 

their therapeutic application. G-quadruplex structures are DNA secondary structures that are 

located in key zones of human genome, such as oncogene promoters and telomeres. Targeting 

quadruplex structures could allow obtaining an anticancer therapy more free from side effects. 

On the other end, in the last years it has been proved that epigenetic modulation can control 

the expression of human genes, thus allowing the presence of different variants determining 

the disease. The epigenetic regulation of gene expressions plays a crucial role in 

carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes 

(HDACs) are related to tumor onset and progression, making them attractive candidate targets 

for new anticancer drugs and therapies. 

This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives 

endowed with anticancer activity, interacting with DNA together with other targets implicated 

in cancer development, such as HDACs. 

It has been proved that NDI derivatives display anticancer properties as intercalators and G-

quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of 

oncogene expression. 

NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the 

aim to provide potential MTDLs, in order to create molecules able simultaneously to interact 

with different targets involved in this pathology, specifically the G-quadruplex structures and 

HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. The 

most active compound among the polyamine derivatives, displayed antiproliferative activity in 

submicromolar range, the ability to bind duplex and quadruplex DNA, to inhibit Taq 

polymerase and topoisomerase, while the most promising in the hydroxamic acid series 

proved to be able to selectively induce HDAC inhibition in cancer cells. 

Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting 

profile of the disubstituted NDIs. These compounds proved the ability to induce a high and 

selective stabilization of the quadruplex structures, together with cytotoxic activities in the 

micromolar range. 

Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially 

effective against pancreatic adenocarcinoma. In order to improve the cellular uptake of the 

tetrasubstituted lead compound, one of the substituents in the bay position has been removed. 

The most interesting compound, which was able to interact with a wide range of G-quadruplex 

structures, showed antiproliferative activity in the low nanomolar range mainly in pancreatic 

and cancer cell lines and was tested in an in vivo model of human pancreatic adenocarcinoma, 

presenting an improved biological profile in comparison with that of the lead compound. 

In conclusion, all these studies may represent a promising starting point for the development 

of new interesting molecules useful for the treatment of cancer, underlining the versatility of 

the NDI scaffold. 
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Chapter 1. Introduction to cancer therapy 

 

Cancer is a term used for diseases characterized by out of control cell-growth: the principal 

feature of cancer is the rapid creation of abnormal cells able to grow beyond their usual 

boundaries, invading adjoining parts of the body and spreading to other organs. Cancer can 

develop in different tissues of the body and can have different forms, so there are more than a 

hundred distinct types of cancer differing substantially in their behavior and response to 

treatments. The incidence of this disease is different within the different genders: skin cancer 

is the most common type of malignancy for both men and women, the second most common 

type in men is prostate cancer, while in women is breast cancer. Not all cancer forms lead to 

death: during the most recent 5 years for which there are data (2004-2008), overall cancer 

incidence rates declined slightly in men (by 0.6% per year) and were stable in women, while 

cancer death rates decreased by 1.8% per year in men and by 1.6% per year in women.
1
 

Despite that, the number of global cancer deaths is projected to increase of 45% from 2007 to 

2030 (from 7.9 million to 11.5 million deaths), influenced in part by the increase in aging of 

the global population. 

Cancer, by definition, is a disease of genes. Throughout people's lives, cells are growing, 

dividing and replacing themselves. Many genes produce proteins that are involved in 

controlling the processes of cell growth and division. An alteration (called mutation) of DNA 

can disrupt these genes and produce faulty proteins; in this case the cell becomes abnormal 

and loses its restraints on growth. The abnormal cell begins to divide uncontrollably and 

eventually forms a new growth known as a "tumor" or neoplasm (medical term for cancer 

meaning "new growth"). There are two different types of tumor: 

 benign tumors, which can form in different part of the body but remain confined in the 

initial location. This type of tumors grows slowly and cannot invade other tissues. 

 malignant tumors (also called cancers), which are able to spread in other part of the body 

different from the original site (the primary tumor) in order to give origin to a secondary 

tumor, or metastases. Malignant cells are much “nimbler” than non-malignant ones, they can 

pass more easily through smaller gaps, as well as apply a much greater force on their 

environment compared to other cells, and through bloodstream or lymphatic channels can 

reach other tissues. These secondary tumors may grow, invade and damage nearby tissues, and 

spread again; this is why whereas benign tumors can usually be removed surgically, the spread 

of malignant tumors to distant body sites frequently makes them resistant to such localized 

treatment.
2
 

 

1.1 Cancer therapy 

In order to decrease the mortality rate due to cancer, in the last years a lot of efforts were spent 

in the research of new therapies, searching for treatments able to remove all or as much of the 

tumor as possible and to prevent the recurrence or spread of the primary tumor. While 

devising a treatment plan for cancer, the likelihood of curing the cancer has to be weighed 

against the possible side effects caused by the treatment itself. If the cancer is very aggressive 

and a cure is not possible, then the treatment should be aimed at relieving the symptoms and 

controlling the cancer as long as possible. There are different type of cancer treatments, 

depending on the type and the localization of the disease, the presence of metastases, the age 
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and the health of the patient. The major types of treatment are: surgery, radiation, 

chemotherapy, immunotherapy, hormone therapy, and bone-marrow transplantation. 

Among them, chemotherapy is the most common form of cancer treatment and involves the 

use of chemical entities capable to interfere with the cell division process, through the 

infliction of damages to DNA or proteins. After this treatment, cancer cells go through 

apoptosis (if the compound is cytotoxic) or stop their proliferation (if the compound is 

cytostatic). The majority of chemotherapeutic drugs can be classified into alkylating agents, 

antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and other antitumor 

agents. All of these drugs affect cell division or the synthesis and function of DNA in different 

ways. These treatments target any rapidly dividing cells and not necessarily just cancer cells, 

so chemotherapy brings a lot of side effects like nausea, vomiting, tiredness, pain and hair 

loss. 

A novel approach in the chemotherapy field is the molecular targeted therapy. Molecular 

targeted therapy represents an attempt to achieve antitumor effects by selectively targeting the 

differences in the biological features between normal and cancer cells or between normal and 

cancer tissues, providing a broader therapeutic window with less toxicity. An ideal molecular 

targeted therapeutic treatment should satisfy the following three pre-requisites: the treatment 

should be directed at the target, the treatment itself should have an antitumor effect and the 

antitumor effect should be explicable in terms of modification of the target. Molecular-

targeted agents now account for >70% of all anticancer agents currently under development. 

Further, the great majority of recent standard therapies for cancers of various organs include 

molecular-targeted therapies.
3
 There are multiple types of targeted therapies available, 

including monoclonal antibodies, tyrosine kinase inhibitors, and antisense inhibitors of growth 

factor receptors. Some targeted therapies block specific enzymes and growth factor receptors 

involved in cancer cell proliferation. These drugs are 

sometimes called signal transduction inhibitors. For 

example, Erlotinib (Tarceva) is used in the treatment of 

non-small lung cell cancer and it is an epidermal growth 

factor receptor inhibitor (EGFRi)
4
. 

A new approach for the treatment of diseases with 

complex etiology is the Multi-Target-Directed Ligand 

approach. Drug research was always addressed to the discovery of small molecules able to 

modulate the biological function of a single target (a protein or another macromolecule), 

thought to be fully responsible for a certain disease. The most important thing for a chemical 

entity to be developed as a drug was its selectivity towards a single target, and indeed, 

nowadays, many ligands endowed with outstanding in vitro selectivity are available. This 

paradigm is based on the assumption of the presence of a direct cause-effect relationship 

between the activity of a gene product and a particular phenotype. This one-molecule, one-

target paradigm brought to the discovery of some important drugs, and it will probably remain 

the principal approach for drug discovery in some fields.
5
 Drugs directed to single target might 

not always modify complex systems, even if they act in the way they are expected to proceed. 

It is very common in the cell to have ‘‘back-up’’ systems yielding the same effect such as 

gene expression, protein synthesis, receptors response, and protein degradation. Proteins and 

intermediates involved in these back-up systems can be completely different and therefore, 

drugs targeting primary pathways will have no effect over those back-up pathways, an effect 

known as redundancy.6 Complex disorders, such as cancer, cardiovascular disease, depression, 

and neurodegenerative diseases, arise from multiple molecular abnormalities and not from a 

single defect, so the use of target-directed drugs may not ensure that the effect will modify the 
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evolution of the illness. There are alternative ways to overcome the limitation due to the use of 

a single drug.
7
 It is possible to employ a multiple-medication therapy (MMT) (also referred to 

as a “cocktail” or “combination of drugs”) that is made up of two or three different drugs that 

combine different therapeutic mechanisms. This approach may be limited by the lack of 

compliance and the adverse reactions due to the interaction between different drugs. A second 

approach might be the use of a multiple-compound medication (MCM) (also referred to as a 

“single-pill drug combination”), which implies the incorporation of different drugs into the 

same formulation in order to simplify dosing regimens and improve patient compliance. 

Nowadays, designing a single drug molecule able to simultaneously and specifically interact 

with multiple targets is gaining major consideration in drug discovery. This approach is 

usually referred to as “polypharmacology” or "Multi Target Directed Ligand" strategy to 

distinguish the approach from combination therapy in which two or more drugs are typically 

used in combination (Figure 1.1). It is by now generally recognized that several approved 

drugs elicit their therapeutic effect through complex polypharmacology.
8
  

 

 

 

Figure 1.1. "One molecule, one target" paradigm vs MTDLs approach.
6 

 

This approach requires the use of a single chemical entity able to hit multiple targets; this 

therapy regimen provides a lot of advantages respect to the MMT or MCM strategies: 

o a single drug displays a more simple and predictable pharmacokinetic and safety profile. 

Indeed, considering the complexity of the ADMET profile, an MMT/MCM approach might be 

untenable for some molecules;  

o the combination of multiple entities can cause positive and negative synergistic effects, 

determining a limit in the use of some  combinations; 

o the insurgence of resistance is more probable towards separate molecular entities respect to 

a single one; 

o the administration of a single compound  guarantees the simultaneous presence of all the 

pharmacophoric groups in the tissue where the drug is supposed to work; 

o a MTDL regimen, simpler that a MMT or MCM one, limits the risk of drug-drug 

interactions, simplifies the regimen itself and increases the compliance;  

o further, in terms of pharmacokinetic and ADMET optimization, the clinical development of 

a drug able to hit multiple targets should not, in principle, be different from the development 

of any other single lead molecule.  

 

According to that, the development of MTDLs may offer an appealing and cost-effective 

complement or an alternative strategy for the treatment of complex diseases such as 
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neurodegenerative disorders or cancer, for which an effective cure is an urgent need.
9
 

Nevertheless, very few, among designed MTDLs, reached the market. A problem in the drug 

discovery process of MTDLs is that the different pharmacophores that made up the singular 

entity have to act with a similar potency on different targets, moreover designing multi-target 

drugs can be challenging for medicinal chemists, with current lead-discovery strategies often 

producing large, complex molecules with low ligand efficiency and poor oral bioavailability.
10

  

Polypharmacology is mostly relevant for diseases involving wide target networks and cellular 

pathways, such as cancer. Cancer cells present a transformed phenotype that allows them to 

proliferate uncontrollably. This abnormal cellular activity is due to the deregulation in the 

expression or activity of different proteins that cause a modification of the normal survival 

pathways. In this scenario, protein kinases play a very important role: these proteins belong to 

a family of over 500 members in humans and are involved in multiple cellular pathways and 

networks. An example of MTDL as anticancer agent is the clinically used tyrosine kinase 

inhibitors Lapatinib, that was rationally designed as a MTDL targeting EGFR and ErbB2.
11,

 
12

 

It shows good selectivity for these two kinases from a panel of 317 enzymes of the same 

family, thus it can be considered a MTDL in the purest form of the definition. 

 

1.2 Pancreatic adenocarcinoma 

Pancreatic ductal adenocarcinoma is the most common type of pancreatic cancer and is the 

most lethal kind of cancer, with a 5-year survival rate of only 5% and a survival expectation of 

6 months after the diagnosys.
13

 Despite decades of efforts, actually, a cure does not exist and 

also the causes of the disease remain mostly unknown, with only cigarette smoking showing 

some evidence to be linked to the pathology. For smokers, the risk is about 2.5 times higher 

than for non-smokers and it is correlated with the use and the time of exposure.
14

 Also the 

genetic factor plays an important role in the rise of the disease: individual with a pancreatic 

cancer family history have more probability to develop the tumor respect to people without 

affected family members.
15

 Tackling this devastating cancer has been a major challenge to the 

scientific and medical communities, in part due to its intense therapeutic resistance. 

The principal genetic mutations involved in the etiology happen in KRAS, BRCA2, PALB2, 

BRCA1, CDKN2A, TP53 and SMAD4 genes.
16

 Studies have highlighted that these genetic 

lesions are at the base of the development of pancreatic cancer, but it is not known how these 

mutations exactly contribute to the cancer evolution. 

Particularly, Kras mutations are found in advanced tumors and their presence is a hallmark of 

cancer progression. The activation of Kras oncogene, that is usually concomitant with the 

inactivation of the tumor suppressor gene CDKN2A, determines a wide range of cellular 

effects such as increasing levels of proliferation, survival and invasion through the activation 

of the autocrine EGFR signaling, that determines the stimulation of the phosphatidylinositol 3-

kinase (PI3K) pathway.
17

 The pancreatic tissue is also able to produce high levels of EGF 

family ligands and receptors.
18, 19

 In pancreatic cancer, Kras is usually mutated at a specific 

residue (the G12 residue) and this modification can alter the interaction site with GAPs 

(GTPase activating proteins), and therefore mutant proteins are GTP hydrolysis impaired, 

resulting in a constitutively active (GTP-bound) form of Kras. Kras mutations drive many 

metabolic alterations in this type of cancer, endowing it with a unique metabolism that allows 

the uncontrolled growth. Ras is able to promote autophagy and macropinocytosis in cancer 

cells, that are essential for tumor development because the cells are more efficient in recycling 

and scavenging molecules to promote their own survival.
20, 21

 Kras mutations appear to drive 

these mechanisms in the tumor, allowing tumor cells to adapt to environments where the 
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access to nutrients can be diminished. Kras is also able to increase the expression of the 

glucose transporter 1 (GLUT1), leading to increasing level of glucose and stimulating the 

anabolic glucose metabolism.
22

 

Germline mutations in CDKN2A tumor-suppressor gene, BRCA2, PALB2 and BRCA1 are 

associated with the increasing risk of pancreatic carcinoma. The CDKN2A modification is 

able to determine a loss of p16 protein with concomitant increasing level of cell 

proliferation.
23

 

The TP53 gene is responsible for the production of the p53 protein that controls the cellular 

responses to exogenous stimuli, such as DNA repair and apoptosis.
24

 If this gene is 

compromised, the cell loses the ability to control the proliferation and is more likely to 

become a cancer cell. 

Another important gene in the onset of pancreatic cancer is SMAD4 that encodes for a protein 

that participate in the transforming growth factor beta (TGFb) cell signaling pathway.
25

 

The genetic modifications causing this type of cancer are well studied, but little is known 

about their implication in the biological features of the disease. The aggressive behavior of the 

pathology is probably due to the alteration at the oncogene and tumor-suppressor gene levels, 

as well to the increased production of growth receptors and their correlated factors. Together, 

these events allow the cell to escape from the growing control mechanisms. 

Pancreatic cancer is classified using the American Joint Committee on Cancer (AJCC) system, 

which classifies the tumors based on their resectability. AJCC resectable stages are the stages I 

and II, while stage III is defined as borderline resectable. The advanced stage III and stage IV 

are defined unresectable. Stage I and II are usually treated with surgical resection and some 

therapy as help, resectable stage III tumors are treated with surgical resection after 

neoadjuvant therapy while unresectable stage III and stage IV neoplasms are treated with 

chemotherapy and are characterized by a low survival expectation.
26

 

The principal agent used for the treatment of the disease is Gemcitabine, used alone or in 

combination with other chemotherapeutic agents. A lot of drugs were tested in combination 

with Gemcitabine, without any significant improvement except for Erlotinib,
27

 an EGFR 

inhibitor, although this benefit is limited to the presence of the Kras mutation in the advanced 

cancer stages. Furthermore, the improved toxicity of the combination therapy has limited its 

use until now. Other possible combinations are 5-flurouracil (5-FU), Leucovorin, Irinotecan, 

and Oxaliplatin (a regimen referred to as Folfirinox) or the combination of Gemcitabine, 

Docetaxel and Capecitabine (a regimen referred to as GTX). 

The increasing understanding of the molecular biology of pancreatic cancer can open a new 

landscape of possibilities for the treatment of the disease with some misregulated proteins in 

the disease, such as Kras and EGF, representing potential targets. 

A common characteristic of almost all cancer cells is the up-regulation of hTERT, the catalytic 

component of the telomerase enzyme complex, contributing in this way to cell 

immortalization.  

In order to evaluate the importance of the telomerase activity for pancreatic cancer, a study of 

the genomic status of patients with pancreatic adenocarcinoma has been done and has showed 

that telomerase expression is low in the early phase of the disease, while the protein is more 

expressed in the late phases, when the cancer is able to give metastasis.
28

  

Telomerase is becoming a potential target for pancreatic cancer, and that has been confirmed 

by the use of antibodies targeting hTERT.
29
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Chapter 2. DNA as target: G-quadruplex structures 

 

DNA is the molecular target for many of the drugs that are used in cancer therapy, and is 

viewed as a non-specific target for cytotoxic agents. Anticancer agents targeting this 

macromolecule are some of the most effective agents in clinical use and have produced 

significant increases in the survival rate of patients, especially when used in combination with 

drugs acting through different mechanisms. A large percentage of chemotherapeutic anticancer 

drugs are compounds that interact with DNA directly or prevent the proper relaxation of DNA 

(through the inhibition of topoisomerases). In addition, DNA-targeting anticancer drugs 

continue to be developed, as evidenced by the recent approval of belotecan.
30

 Drugs active at 

the DNA level can be classified in four different groups: 

 alkylating agents, highly electrophilic compounds which react with nucleophiles to form 

strong covalent bonds. There are several nucleophilic groups in DNA, in particular the 7-

nitrogen of guanine. Drugs with two alkylating groups could therefore react with a guanine on 

each chain and cross-link the strands in order to prevent the unravelling during replication or 

transcription. Alternatively, the drug could link two guanine groups on the same chain, thus 

being attached like a limpet to the side of the DNA helix, masking a portion of DNA and 

blocking the access to the enzymes required for DNA function. Since alkylating agents are 

very reactive, they react with any good nucleophile and so they are not very selective; in fact 

they have the ability to alkylate proteins and other macromolecules as well as DNA. Eg, 

Mechlorethamine or Cisplatin; 

 intercalating agents are compounds capable of slipping between the layers of nucleic acid 

base pairs and disrupting the shape of the double helix. This disruption prevents replication 

and transcription. Drugs exploiting this mechanism should be flat in order to fit between the 

base pairs, so they must be aromatic or heteroaromatic. Some drugs prefer to approach the 

helix via the major groove, whereas others prefer access via the minor groove. Several 

antibiotics such as the antitumor agents Actinomycin D and Adriamycin operate by 

intercalating into the DNA; 

 antimetabolites are compounds able to interfere with DNA production and to stop cell 

division and the growth of tumors, these substances are often similar in structure to the 

metabolite they interfere with, such as the antifolates able to block with the synthesis of folic 

acid; 

 drugs interacting with protein-DNA complexes, for example Topoisomerase I and II (Topo 

I and II) poisons, such as Etoposide. 

 

2.1 DNA intercalation 

DNA intercalation consists in the insertion of a small ligand or fragment between two adjacent 

base pairs in the DNA strand, forming stable sandwich-like structures. As a result, 

intercalation leads to significant perturbations to the DNA double helix, causing the opening of 

a space between base pairs and the unwinding of the helical twist (Fig. 2.1).
31
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Figure 2.1 Mechanism of action of an intercalator.
32

 

 

The changes in the DNA structure disturb the biological functions, such as transcription, 

replication and the DNA repair processes. DNA intercalators are mostly polycyclic, aromatic, 

and planar compounds, indeed their intercalation can be considered as a specific case of 

aromatic stacking interactions, where the dispersion of energy plays an important role.
33

 

Intercalators can be divided into three main groups (Fig. 2.2): 
32

  

a) typical intercalators consisting of fused rings, e.g. 9-aminoacridine;
34,35

 

b) atypical intercalators, containing non fused ring systems, e.g. Chlorpheniramine;
 

c) bis-intercalators, molecules consisting of two intercalating heterocyclic moieties usually 

linked together with an alkyl chain. Linker can be based on different structural motifs like a 

polyamine, which is capable to create multiple hydrogen bonds with the DNA structure, as in 

elinafide. 

 

 

Figure 2.2 Example of the different class of intercalating agents. 

 

In the recent years, with the advent of new molecular targets such as kinases and cell surface 

receptors that can achieve selectivity for cancer cells, the interest in DNA-targeted drugs has 

decreased, even though they are still the mainstay of most treatment regimens.
36

 The first 

glimpse of a new era for DNA-targeted therapeutics came through the realization that 

telomeres can form four-stranded DNA structures that are termed G-quadruplex.
37

 

Intramolecular G-quadruplex are very interesting due to their potential formation in telomeres 
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and oncogene promoter regions, so they have recently emerged as a new class of novel 

molecular targets for anticancer drugs. 

 

2.2 G-quadruplex structures 

G-quadruplexes are four-stranded DNA secondary structures that deviate from the normal 

duplex form of DNA and occur in guanine-rich DNA sequences. The basic element of a G-

quadruplex is the G-quartet or G-tetrad, a substructure made up by four guanines connected by 

cyclic Hoogsteen hydrogen bonding (Fig.2.3). 

 

 

Figure 2.3. Structure of G-quartet, the basic unit of the G-quadruplex structures.
38

 

 

The crystal structure of a G-quadruplex shows that the G-quartet can be considered as an 

aromatic square whose dimensions are much larger than those of the base pair of the Watson-

Crick double DNA model and this difference constitutes the basis for the design of specific 

ligands.
39

 G-quartets are stacked one above the other to form four propellers G-quadruplex. 

These structures have a wider diversity and structural polymorphism respect to the double 

helix DNA; this polymorphism deriving mostly from the nature of the cycle, such as variations 

in the stoichiometry of the chain, the polarity, the angle of twist of glycosides, and the position 

of the rings connecting the filament of guanine. Furthermore, in physiological conditions, the 

presence of metal ions, molecules that interact with the DNA or molecular crowding 

conditions, can affect the topology of the G-quadruplex. The G-quadruplex can be made up by 

a single sequence of guanine that forms intramolecular interactions or by intermolecular 

association of two (dimeric) or four (tetrameric) separated strands. Even the arrangement of 

the filament, depending on the different variations of polarity, can give rise to structural 

polymorphism. For example, the polarities of the four strands in a G-quadruplex can be 

parallel, three parallel and one antiparallel, adjacent parallel, alternating or antiparallel, 

resulting in different conformations denominated as parallel and antiparallel G-quadruplex. 

Adjacent linked parallel strands require a connecting loop to link the bottom G-tetrad with the 

top G-tetrad, leading to propeller type loops; in parallel quadruplexes all the guanines have 

glycosidic angles in an anti conformation. Quadruplexes are designated as anti-parallel when 

at least one of the four strands is anti-parallel to the others and in these structure it is possible 

to have lateral or edge-wise loops join adjacent G-strands or diagonal loop joins opposite G-
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strands. Anti-parallel quadruplexes have both syn and anti guanines, arranged in a way that is 

particular for a given topology and for each different set of strand orientations, since different 

topologies have the four strands in differing positions relative to each other. Even the same 

sequence can assume different conformations depending on the environment (Fig. 2.4).
40

 

 

 

Figure 2.4. The structures observed for the intramolecular quadruplex formed by the human telomeric 

repeat sequence in different conditions:  solution structure in Na
+
, crystal structure in the presence of K

+ 

and solution structure in K
+
.
41

 

 

The sequence and the size of the rings play an important role in determining the topology of 

G-quadruplex. Moreover, the residues of the loop can give additional interactions, in fact they 

can form hydrogen bonds that can further stabilize (or destabilize) the structures and the 

folding of the G-quadruplex. A recent molecular dynamics simulation revealed that the 

sequences of the loops connecting the structures of the G-quadruplex represent the major 

contributors to the flexibility and may be potential binding sites for drugs.
26

 

G-quadruplex structures can coordinate cations such as K
+
 and Na

+
. The cavity between the 

four G-tetrads is well suited to coordinating cations of these dimensions because the two floors 

of the tetrads are surrounded by eight oxygen atoms characterized by a strong negative 

electrostatic potential and these origin a center of negative charge within the channel of the 

two tetrads in which the positive ion is well fitted.
42

 

The conformation of G-quadruplexes depends from all of these structural elements, as a 

consequence these secondary structures of DNA are characterized by a high degree of 

complexity. This complexity suggests that quadruplex might have a functional and regulatory 

significance for the cell, playing an important role in certain biological events, as many 

regulatory regions rich in guanine possess the potential to adopt the G-quadruplex 

conformation. The different possible G-quadruplex conformations provide numerous specific 

recognition sites for small molecules. As discussed above, it is evident that the area of the G-

quartets, the loop regions, the size of the grooves, the negative electrostatic potential of the 
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anionic skeleton and the central channel, as well as the flexibility and dynamics of the 

structure itself are critical elements that must be considered in order to improve the selectivity 

of the binding of potential drugs. Following, will be argued localization and function of G-

quadruplex structures in human DNA that give account of their importance as a target for the 

development of anticancer drugs.  

 

2.3 G-quadruplex location and functions 

The efforts spent for the structural characterization of G-quadruplexes are closely related to 

the fact that they are located in key regions of the human genome. These regions include the 

telomeres, regulatory elements as oncogene promoters, ribosomal DNA, minisatellites, the 

switch region for the immunoglobulin heavy chain and mutational hot spots.
43

 The main role 

of G-quadruplex may be the ability to "turn on" or "off" some physiological events through the 

regulation of gene transcription or telomere length. 

2.3.1 G-quadruplex in gene promoters 

G-quadruplexes are present in oncogene promoter regions and, due to this localization, are 

viewed as emerging therapeutic targets in oncology, both as through the stabilization or the 

repression of oncogenes. Many G-quadruplex gene promoters have physicochemical 

properties and structural characteristics that make them druggable and their complexity may 

allow achieving selectivity, as a consequence G-quadruplexes can be important therapeutic 

targets. The structure of gene promoter sequences was studied and it was discovered that it 

contains a continuous stretch of a G-quadruplex sequence with four or more G-tracts folded 

into an intramolecular G-quadruplex, but other conformations are possible, such as 

bimolecular G-quadruplexes.
44, 45

 G-quadruplex structures in gene promoters can be studied 

through NMR and crystallographic techniques, circular dichroism and chemical footprinting.
46

 

Quadruplex structures in promoters are constrained by the duplex nature of DNA so they have 

to compete with this most common structure; while the telomeric quadruplexes are easily 

formed because of the presence of the single-stranded DNA template at the 3′ end of human 

telomeres. 

 Intriguingly, bioinformatics show that the promoters of human oncogenes and regulatory 

genes (for example, transcription factors) are more likely than the average gene to contain 

quadruplex motifs, whereas these structures are less represented in the promoters of 

housekeeping and tumor suppressor genes.
48

 

 It is well known that supercoiling can influence the transcription either positively or 

negatively and quadruplex structures are considered a result of supercoiling induced stress 

during transcription, indeed their creation can compensate for the negative supercoiling.
49

 

These secondary structures of DNA can enhance or inhibit the transcription. The 

transcriptional event can be blocked if the quadruplex is on the template strand, blocking the 

access to polymerase; while it can be enhanced if the quadruplex is on the non-template 

strand, helping in this way the transcribed strand in a single strand conformation and 

facilitating the access to polymerase. Furthermore G-qudruplexes can bind proteins such as 

transcriptional enhancers or receptors, indirectly influencing the transcription (Fig. 2.5).
47
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Figure 2.5. Putative functional roles of G-quadruplex structures during transcription. 
47

 

 

- C-Myc. C-Myc is a regulator gene that codes for a transcription factor. The finding that 

human cancers frequently display altered expression of human c-Myc underscores the 

importance of this gene in causing human cancers. Significant progress has been made over 

the last two decades in our understanding of the function of c-Myc in normal cells and in 

cancer cells. This gene is highly regulated in normal cells and it is only expressed when cells 

actively divide, while cancer cells may express the gene in an uncontrolled way as the result of 

genetic aberrations. It is now well-established that the deregulated expression of c-Myc plays a 

significant role in human cancer development, it is overexpressed in a wide variety of human 

cancers with 80% of breast cancers, 70% of colon cancer, 90% of gynecological cancers, 50% 

of hepatocellular carcinomas and a variety of hematological tumors.
50

 The transcriptional 

regulation of c-Myc is mainly due to the nuclease hypersensitivity element (NHE)III1 of the c-

Myc promoter that controls 85–90% of c-Myc transcription and has been the subject of 

considerable research over the past two decades.
51

 The purine-rich strand of the NHEIII1 

sequence is a guanine-rich segment and because of this feature it can fold into a G-quadruplex 

structure which is in equilibrium with the double strand DNA.
52

 The protruding G-quadruplex 

structure and the I-motif formed on the opposite strand keep the two DNA strands separated 

and prevent the formation of the basal transcriptional complex. When this promoter region is 

in duplex form the transcription can be initiated.
53

 Specific G-A mutations that decrease the 

number of guanines in this region destabilizing the quadruplex structure, are known to 

enhance the transcription of c-Myc.
54

 Ligands able to stabilize the quadruplex form of the 

silencer element can decrease the oncogene overexpression and reduce its activity in the 

progress of the tumor, so a lot of efforts are spent in the research of c-Myc silencer element 

ligands.
55
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- C-Kit. The proto-oncogene c-Kit encodes for a 145-kDa transmembrane tyrosine kinase 

receptor (kit) that has the same structure of other tyrosine kinase receptors, and it is expressed 

in hematopoietic stem cells, mast cells, gametocytes and melanocytes; its overexpression can 

induce the development of cancer in these tissues; in particular it is a validated target in 

gastrointestinal stromal tumors (GIST).
56, 57

 The kit protein has become a major molecular 

target of focus for GIST therapy, as exemplified by the multitarget kinase inhibitors Imatinib 

(Glivec/Gleevec; Novartis) and, more recently, Sunitinib (Sutent; Pfizer).
58

 However, the 

onset of drug resistance makes it necessary to search a new approach for the treatment of this 

disease with a new generation of c-Kit inhibitors. It has been shown that the c-Kit promoter 

contains two G-quadruplex-forming sequences, positioned between -12 and -33 bp (c-kit1), 

and -64 and -83 bp (c-kit2).
59, 60

 The development of new c-Kit inhibitors different from TKis 

able to act at the transcriptional level rather than at the protein level could offer a lot of 

therapeutic advantages. 

- KRAS. KRAS gene encodes for the homonym protein that is a member of the small GTPase 

superfamily. The protein product of the normal KRAS gene performs an essential function in 

normal tissue signaling, and the mutation of KRAS gene that determines a single amino acid 

substitution is responsible for an activating mutation and is an essential step in the 

development of many cancers. The chronological order of the mutations is important in the 

impact of KRAS mutations in regard to colorectal cancer, with a primary KRAS mutation 

generally leading to a self-limiting hyperplastic or borderline lesion, but if occurring after a 

previous APC mutation, it often causes the progression to cancer.
61

 KRAS mutation is a 

genetic biomarker that allows to predict the patient's response to a given treatment. KRAS test 

is the first genetic test that allows to determine, at the time of diagnosis, the normal or mutated 

state of the gene encoding the protein KRAS in patients with colorectal cancer, and can be 

predictable about the response to a treatment with EGFRi. KRAS promoter contains a 

nuclease hypersensitive element (NHE) with a polypurine–polypyrimidine motif able to form 

a G-quadruplex suspected to be involved in transcription regulation.
62

 NHE, which is 

conserved both in human and mouse, is located upstream of the main transcription start site 

and controls most of the transcriptional activity of KRAS. The purine rich strand of the NHE 

forms a very stable G-quadruplex structure that is able to arrest DNA polymerase I in primer 

extension experiments. In the context of transcription, a G-quadruplex at NHE behaves as a 

repressor element. In fact, specific G-to-A or G-to-T mutations in the promoter abolishing the 

G-quadruplex structure result in an increase of the basal transcription activity, up to 4 times 

compared to the transcription of the wild type promoter. Moreover, the basal KRAS 

transcription in Panc-1 cells is strongly repressed when they are treated with TMPyP4, a 

cationic porphyrin that stabilizes G-quadruplex DNA, but not with TMPyP2 which does not 

bind to quadruplex DNA. 

- Bcl-2. Bcl-2 is a gene that is aberrantly overexpressed in a wide range of tumors and plays an 

important role in the control of cell proliferation. Bcl-2 is also involved in the 

chemotherapeutic response of the ill tissues, in fact its inhibition has proved to enhance the 

effect of chemotherapeutic drugs, leading to a decrease in the proliferation rate.63
 Bcl-2 can be 

defined as a proto-oncogene, because it is not able to promote cell proliferation, but it explains 

its activity by reducing the rate of cell death. Its broad expression in a variety of tumors, 

together with its function in the resistance to chemotherapy-induced apoptosis, makes Bcl-2 a 

rational target for anticancer therapy. 

Two main promoters are responsible for Bcl-2 expression: P1 is the major promoter and is a 

G-rich promoter located 1386−1423 base pairs upstream of the translation start site.
64

 This 
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promoter is also preceded by a 39 bp G-rich sequence able to form quadruplex structures. This 

region can be found 57-19 bp upstream the promoter region and is constituted by six runs of 3-

5 consecutive guanines, giving it the potential to assume 15 different intramolecular G-

quadruplex structures by combining differently the guanine rich tracts. Studies have 

demonstrated that the main adopted conformation is the one in which the quadruplex is formed 

on the central four G-runs, because of its higher stability respect to the other possible 

conformations. That structure is a three tetrad mixed parallel/antiparallel G-quadruplex with 

three loops of 1, 7, and 3 nt.
65

 More recent studies have also pointed out that the sequence can 

also assume another stable conformation, that is a parallel structure involving the four non 

successive G-runs I, II, IV and V. This structure contains also a 1nt loop and a 13nt loop. 

Parallel-stranded structures with two 1-nt loops and one variable-length middle loop are found 

to be prevalent in the G-quadruplex promoters; the length of the middle one can determine the 

overall structure and the potential ligand's recognition sites. The length of the middle loop is 

usually about 7 nt, the extraordinary 13 nt loop found in Bcl-2 suggests a different behaviour 

for this quadruplex structure. The presence of these two different folding quadruplexes in the 

Bcl-2 promoter is very interesting: both the structures could be important for the regulation. It 

is highly intriguing that both of them are able to regulate gene transcription, as different 

proteins preferably bind each G-quadruplex. Furthermore the two interchangeable G-

quadruplexes can be separately targeted with small molecules, allowing us to modulate in 

different ways the gene transcription.
66

 

Some well known G-quadruplex ligands, i.e. Telomestatin, TMPyP4 and Se2SAP (a synthetic, 

core-modified, expanded porphyrin) were used to test their ability to selectively target these 

different conformations of the G-rich sequence in the Bcl-2 promoter. While Telomestatin has 

not shown any selectivity, TMPyP4 and Se2SAP were able to selectively stabilize the parallel 

form and the mixed form respectively, demonstrating that is possible to target the different 

foldings of the sequence of the Bcl-2 promoter.
67

 This possibility might help to reach different 

biological activities. 

2.3.2 G-quadruplex and telomerase 

Linear DNA fragments are toxic to mammalian cells so many mechanisms such as 

degradation or reparation of the fragments, cell cycle arrest or death are used to deal with 

them. The natural ends of linear chromosomes resemble DNA breaks and their repair would 

lead to deleterious chromosome fusions and therefore has to be avoided. This is prevented 

thanks to the presence of telomeres, specialized ribonuclein proteins able to cap both ends of 

the chromosome. Telomeres are made up of long, repetitive TTAGGG sequences which 

extend for 9-15 kb in humans, associated with a variety of telomere-binding proteins known as 

shelterins.
68

 The repetitive and G-rich nature of telomeric DNA allows the ends of the 

chromosomes to form higher order DNA secondary structures, such as G‑quadruplexes that 

can help to regulate the replication of cells.
69

 The telomeres are fragile structure of DNA, in 

order to protect them the shelterin six proteins complex has evolved (Fig. 2.6). Three of its 

components bind in a sequence-specific manner to the TTAGGG repeats, specifically TRF1 

and TRF2 bind the duplex repeat regions and POT1 binds the single-stranded overhangs.
70

 

The other proteins bind the first three component of the shelterin through protein-protein 

interactions: RAP1 binds TRF2, TPP1 binds POT1, and TIN2 binds TRF1, TRF2, and TPP1 

simultaneously, thus playing an essential role in stabilizing the shelterin complex and linking 

the single- and double-stranded binding components of shelterin.
71

 Each shelterin has a 

particular role in telomere maintenance. TRF1 and TRF2 are constitutively present at 

telomeres and their proportion norms the telomere length: TRF1 has DNA remodelling 

activity and promote the efficient replication of telomeres.
72

 TRF2 primarily prevents end to 
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end telomere fusions and is associated with RAP1, which function is not well established.
73

 

POT1 contributes to telomere protection by binding single stranded telomeric DNA, it can 

displace the quadruplex structure in this site and "close" the end of the telomere. Its interaction 

with TPP1 is very important; in fact, this complex binds the single stranded DNA with a 

higher affinity compared to POT1 and TPP1 alone. Furthermore, an in vitro assay showed that 

the TPP1/POT1 complex enables the increasing in telomerase processivity.
74

 Taken together, 

the shelterin complex, despite consisting of only six proteins, has an immensely complex role 

in telomere length regulation, protection from enzymatic attack and recruitment of required 

enzymatic activities, and in the control of signaling cascades from the natural chromosome 

ends. 

 

 

Figure 2.6. The shelterin complex.
75

 

 

In addition to the shelterin complex, numerous other factors critically contribute to telomere 

integrity. The telomeric ribonucleoprotein complex (TeRRA) is a telomeric repeat-containing 

RNA, originated by the activity on the C-strand of RNA polymerase II and made up by 

UUAGGG containing transcripts.
76

 TeRRA displays a strong inverse correlation with 

telomerase activity, acting as a potent telomerase inhibitor.
77

  

In addition to avoiding the inappropriate reparation of single strand DNA, another function of 

telomeres is to prevent the loss of genetic information by providing a means for telomere-

length maintenance in replicating cells. Telomere length is maintained thanks to the 

telomerase enzyme, a reverse transcriptase complex that uses a short segment of its RNA 

subunit as a template to direct the addition of telomeric repeats onto chromosome ends. In 

somatic cells every cell division causes a loss of 100-200 bp of telomeric sequence, and 

because these cells lack of a high telomerase activity, they enter in a phase called replicative 

senescence. After few replications, the telomere becomes critically short and the cell 

undergoes to apoptosis, a form of cell death. This mechanism allows to check the replicative 

lifespan of individual cells and probably of some cellular compartments in organisms and acts 

as a tumor suppressive pathway preventing cells from becoming immortal.
78

 Telomerase is 

normally active in human stem/progenitor cells and germ-line cells, as well as in a subset of 

somatic cells (e.g., activated lymphocytes) but it is almost completely inactive in somatic 

cells. 

The telomerase enzyme is a ribonucleoprotein functioning as a reverse transcriptase and is the 

main positive regulator of telomere length. The particular property distinguishing telomerase 

from different RNA-dependent DNA polymerases is the use of a fixed region of special 

telomerase RNA as template for telomere elongation. This enzyme consists of two main 
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components, a telomere RNA component (hTR) and a telomere reverse transcriptase 

(hTERT).
79

 

The RNA component (hTR) of telomerase provides the template for the synthesis of the 

telomeric repeat, it derives from the activity of RNA polymerase II and is processed at its 3' 

end to produce a mature transcript of 451 nucleotides.
80

 The template used by the enzyme for 

telomere elongation lies near the 5' end of the molecule (nucleotides 46 to 53) and contains the 

code of the telomeric DNA sequence. Despite divergences of the primary sequences among 

telomerase RNAs, hTR has a conserved secondary structure within telomerase RNAs from a 

variety of vertebrate species, indicating an important role for RNA structure in telomerase 

function. A number of RNA binding proteins, that are species-specific proteins such as hGAR, 

dyskerin, hNOP10, hNHP2, hStau, L22, hnRNP C1/C1, La, and hTERT bind hTR and are 

involved in hTR stability, maturation, accumulation and in the functional assembly of the 

telomerase ribonucleoprotein complex.
81

 

The telomerase catalytic subunits (hTERT) are highly conserved in different species, but are 

very different than other reverse transcriptases and therefore form a distinct subgroup within 

the reverse transcriptase family.
82

 hTERT is different from other reverse transcriptase because 

of some different features: 

 

 all of the reverse transcriptase motifs are located in the C-terminal half of the proteins; 

 a conserved telomerase-specific region, termed the T motif, is located just N-terminal to 

the reverse transcriptase motifs; 

 a large N-terminal region contains conserved, functionally important domains. 

 

HTERT is made up by three distinct domains: an N-terminal extension, the RT domain and a 

C-terminal extension (CTE) (Fig.2.7). 

 

 

 
Figure 2.7. Structure of hTERT.

83
 

 

 

The N-terminus of hTERT consists of 400 amino acids, and may be divided into two 

functionally important domains: the telomerase essential N-terminal domain (TEN) and the 

telomerase RNA-binding domain (TRBD). The TRBD domain is able to bind hTR thanks to 

its RNA recognition motif,
84

 while the TEN domain ensures the maintenance of the binding 

with the single strand DNA during catalysis.
85

 Furthermore the TEN domain contains a DAT 

(dissociates activities of telomerase) region that directs telomerase to the telomeric substrate in 

cells and allows the correct location of the enzyme on the telomeric DNA.
86

 The RT domain of 

hTERT is the reverse transcriptase domain and is constituted by seven universally conserved 

RT motifs, whose mutations cause a complete loss of telomerase activity.
87

 The RT domain is 

organized in two sub-domains, the ‘fingers’ which comprise motifs 1 to A, and the ‘palm’, 

comprising motifs B’ to E.
64

 The fingers domain interacts with the nucleic acid substrate, 

while the palm domain contains the catalytic site.
88

 These two domains are linked with a 

‘primer grip’ region, which is implicated in the binding with the single stranded DNA, the RT 

domain also contains another region called ‘insertion in fingers’ domain (IFD), which is not 
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present in other transcriptase and is important in the stabilization of protein-protein 

interactions.
89

 The RT domain contains three critical amino acids that are critical for its 

polymerase activity: motifs A and C comprehend a conserved triad of aspartic acid residues.
90

 

The CTE region contains the "thumb" domain, not highly conserved among different species.
91

 

Telomerase, like all polymerase enzymes, use a two-metal mechanism to mediate the 

chemistry of nucleotide transfer and in the catalytic process an important role is accomplished 

by the Asp residues. There are essentially three catalysis steps in telomerase-mediated DNA 

synthesis: DNA binding and positioning, synthesis of the telomeric sequence to the end of the 

hTR template, and translocation and realignment of the catalytic site with the 3' end of the 

substrate (Fig. 2.8). 

 

 

 
 

Figure 2.8. Telomere synthesis by telomerase.
92

 

 

 

In this process, the TEN domain allows the correct binding of the DNA at the 5′ end of the 

substrate, while the "thumb" domain stabilizes the DNA/RNA hybrid, the "finger" and "palm" 

domains interact with the incoming deoxynucleotide triphosphates (dNTPs) and the correct 

position of 3' end in the active site is guaranteed by the E motif of the palm domain.
92

 As 

telomerase catalyses the addition of consecutive dNTPs to the free 3′ OH of its primer 

substrate, a constant number of base-paired nucleotides are maintained between the template 

region of hTR and the primer substrate. This means that, as dNTPs are added at the 3′end, 

base-pair interactions at the 5′ end are disrupted. Telomerase adds dNTPs until the 5′ end 

within hTR is reached, after this event the translocation of the enzyme occurs with the 

repositions near a new 3′end in the catalytic site, and the cycle of nucleotide addition and 
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translocation resumes. The incorporation of individual dNTPs by telomerase is called 

nucleotide addition processivity (or type I processivity). After the synthesis of the first repeat, 

telomerase can move onto the DNA substrate and re-align hTR in order to do a second 

synthesis of the six-nucleotide repeat, or dissociate from the substrate completely. This second 

event is called repeat addition processivity (RAP, or type II processivity) and this feature is 

different for telomerase among other reverse transcriptase.
93

 

In normal human cells, telomerase activity is highly regulated during development, and it is 

very low in somatic cells while is kept in some tissues, such as male germ cells, activated 

lymphocytes, and certain types of stem cell populations.
94

 Probably the high replication rate of 

these kind of cells justifies a special need for telomerase activity in order to maintain telomere 

length and genetic stability. 

Despite that, a lot of human diseases are linked to telomerase dysfunction: human dyskeratosis 

congenital is a multiple-systems disease resulting from proliferative deficiencies that affects 

tissues such as skin, gut, and bone marrow, all of which require constant renewal and are 

normally highly regenerative and it is due to mutations in either hTR or the telomerase RNA-

associated protein dyskerin.
95

 

In 1967 Hayflick & Moorhead discovered that cancer development is blocked by a natural 

mechanism, the replicative senescence and that every cell has a limited replication capacity.
96

 

This replicative capacity is linked to the age of the cells, thus indicating that every cell has a 

specific molecular mechanism able to limit its replicative life span. Particularly in somatic 

cells, every replication cycle is characterized by the loss of 100-200 bp at the telomere end and 

this process is unavoidable because of the lack of telomerase activity. Accordingly, after a 

defined number of replications (called Hayflick limit) the telomeres become critically short 

and the cell goes into replicative senescence, leading to activation of the apoptosis pathway. 

Replicative senescence is a way to avoid the immortalization and the onset of cancer.
78

 On the 

other hand it was showed that fibroblasts in which hTERT is introduced are able to prevent 

cell death and become immortal.
97

 

During normal human growth and development, telomerase activity is regulated to meet the 

proliferative demand of specific cellular functions while at the same time preserving 

proliferative barriers (senescence) against tumorigenesis. Telomerase is overexpress in 90% of 

tumor samples, demonstrating that telomerase activity is the cause for the escape of cells from 

the barriers to proliferation and for the immortalization of cells.
94

 By telomere elongation, the 

enzyme allows the cells to avoid replicative senescence and provides an unlimited replicative 

potential; hence, its inhibition in cancer cells leads to apoptotic death through telomeres 

shortening. 

Given its involvement in the onset of cancer, telomerase represents a compelling therapeutic 

target. Different strategies were studied in the past years to develop therapeutics against this 

target. 

The first approach used was the direct inhibition of the enzyme. This method can allow to 

achieve selectivity: as normal cells do not have telomerase activity, this strategy can affect 

cancer cells without severely affecting normal ones. This approach however presents several 

potential issues. The use of a telomerase inhibitor can damage telomerase positive high-

turnover cell populations, such as hematopoietic, bone marrow and stem cells.
98

 A second 

problem is that cancer cells treated with telomerase inhibitor can escape treatment through the 

activation of other pathways, e.g. ALT pathway. In this case, the treatment inducing telomere 

dysfunction might cause genomic changes and enhance the tumor evolution and progression, 

analogous to what is proposed to occur during early tumor development. In addition 

telomerase direct inhibition may affect differently on different types of tumors; for example in 

tumors characterized by long telomeres there may be a significant delay from treatment onset 
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to the induction of tumor proliferative inhibition. The only telomerase inhibitor in clinical 

trials is GRN163L, called Imetelstat, that is a 13-mer oligonucleotide N3'→P5' thio-

phosphoramidate lipid conjugate that is complementary to the template region of the human 

functional telomerase RNA (hTR) subunit. Imetelstat binds and blocks the active site of the 

enzyme acting as a competitive enzyme inhibitor.
99

 This drug is currently undergoing under 

phase I/II clinical trials alone and in combination with Paclitaxel and Bevacizumab for the 

treatment of different cancers.
100

 It was demonstrated that Imetelstat is able to remove cancer 

stem cells, that have a critical role in tumor progression and resistance, indicating that 

telomerase inhibitors could be very useful to treat this peculiar subset of cells.
101

 

Another approach against telomerase is the use of RNA interference to deplete hTR and 

hTERT, this approach gives a rapid response both in vitro and in vivo suggesting that the 

depletion of the telomerase ribonucleoproteins may abrogate a telomere-independent function 

of telomerase, but this hypothesis has not yet been proven. The limit of this kind of therapy is 

that the delivery of inhibitory RNAs to cancer cells is difficult to achieve.
102

 

Another possibility against telomerase is the use of Telomerase-Targeted Immunotherapy. 

Cancer immunotherapy consists in the use of the immune system to reject cancer. This can be 

obtained, either through immunization of the patient or through the administration of 

therapeutic antibodies as drugs, e.g. by administering a cancer vaccine. In the first case the 

patient's own immune system is trained to recognize tumor cells as targets to be destroyed, in 

the second case the patient's immune system is recruited to destroy tumor cells by the 

therapeutic antibodies. The principle limit to cancer immunotherapy is the heterogeneous 

expression of tumor antigen within a tumor and lack of antigens that can be widely used to 

target different tumors that is why telomerase that is highly expressed in many tumors, can be 

an optimal target for cancer immunotherapy. The most advanced TERT-directed vaccines are 

GemVax’s GV1001 and Geron’s GRNVAC1.
103,104

 

One of the principal approach to telomerase inhibition was the use of (mostly backbone 

modified) antisense oligonucleotides that are complementary to the 11-base-pair RNA 

template sequence.
105

 Under favorable circumstances, inhibition can be achieved at the 

nanomolar level. 

An additional method to achieve telomerase inhibition is the use of G-quadruplex ligands. The 

telomerase enzyme complex requires the telomeric DNA primer to be in a single stranded 

form for the effective hybridization to the RNA template to occur. Recently it was showed that 

potassium ions, by inducing the formation of quadruplexes, are able to inhibit the enzime.
106

 

Given the G-rich nature of the telomeric sequence, folding the telomeric repeats at and close to 

the 3′ end into a higher-order DNA structure is a way to block the activity of the enzime.
107

 

 

 

 
 

Figure 2.9. Telomerase inhibition being produced by folding of the end telomere primer strand into G-

quadruplex units.
87 



Chapter 2  DNA as target: G-quadruplex structures 

19 

 

Stabilization of G-quadruplexes at the single-stranded G-rich telomere overhang by G-

quadruplex ligands can displace telomere-binding proteins, including POT1, and can inhibit 

telomere elongation by telomerase, thereby causing rapid tumor growth inhibition both in vitro 

and in vivo. 

Furthermore, in this case lengthy telomere attrition is not necessarily a requirement for the 

onset of a biological response to quadruplex-binding ligands and this approach may be useful 

both in cells with short or long telomeres, though it was demonstrated that the shortest 

telomeres within a population are especially sensitive to these agents.
108

 However, a problem 

arises by the lack of specificity of G-quadruplex ligands, given that G-quadruplex structures 

are also present at many other genomic loci such as gene promoters. 

 

2.3.3 G-quadruplex ligands 

According to what previously stated, stabilization of quadruplex structure that are able to 

interfere with oncogene expression and to block telomerase activity by small molecules is 

emerging as a potential anticancer approach.
109

 The ligands can interact with G-quadruplex 

trough different binding mode: external stacking, intercalation, or groove binding (Fig. 2.10). 

However, the intercalation between G-tetrads inside the quadruplex is very difficult to 

achieve, since the G-quadruplex is an extremely stable and rigid structure, so the distortion of 

quadruplex integrity requires a very high energy cost.
110

 

 

 

Figure 2.10. Representations of ligand-G-quadruplex possible binding modes.
111

  

 

Although G-quadruplexes are characterized by a high polymorphism, in these structures some 

common features can be exploited to develop small molecules able to interact with them. One 

aspect common to all G-quadruplexes is the large planar surface of the terminal G-quartet, so 

the quadruplex-stabilization can occur through π- π interactions between the ligand and the 

external G-quartet. This binding mode (external stacking) has been thoroughly discussed since 

it allows to distinguish quadruplex structures compared to duplex DNA.
112

 An efficient G-

quadruplex ligand must have a large aromatic surface, much larger than a duplex binder to 

improve the aromatic-aromatic overlap and provide selectivity. Furthermore, the presence of 

cationic charges promotes the electrostatic interactions with the negatively charged 

biopolymer.  

Another binding mode is the intercalation, widely studied for duplex DNA. The intercalators 

fit between two pairs of axially contiguous bases in a conformation generally perpendicular to 

the axis of the helix. The structural requirement for this type of interaction is a planar 

geometry. However, these features alone are not sufficient to ensure high affinity and 

selectivity. Affinity and greater selectivity can be achieved in several ways, for example by 
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restricting access to the terminal G-quartet as a result of a steric hindrance imposed on it by 

the loop, or by exploiting the possibility of additional interactions with the negative 

electrostatic potential of the central channel and anion skeleton of the grooves and loops. 

Another chance to interact with the quadruplex structure is the groove binding mode. 

In order to achieve selectivity in the design of quadruplex ligands is important to consider the 

differences in these structures, both in the sequences of the loops and in the characteristics of 

the grooves. Unfortunately, this approach has not yet been undertaken in a systematic manner, 

mainly for the insufficiency of solid structural information. 

A lot of different classes of molecules have been developed that efficiently target G-

quadruplex DNA and, among them, macrocycles rapidly became popular.
113, 114

 They are 

particularly interesting for the interaction within G-quadruplex structures for two reasons: on 

one hand they show low affinity for DNA in duplex form, since for steric reasons have more 

difficulty to intercalate between base pairs, and on the other, in contrast, they adapt very well 

to stacking on the terminal G-quartet of the G-quadruplex that is a site accessible to large 

planar aromatic nuclei. 

 

- Antraquinone and fluorenone derivatives. The first found G-quadruplex ligand able to inhibit 

telomerase was the 2,6-disubstituted amminoalchilamidoantrachinone BSU-1051, a 

symmetrical molecule possessing an IC50 of 23 µM towards telomerase (Fig. 2.11).
115

 Later, in 

order to improve its activity, studies of structure-activity relationship (SAR) were performed 

for a wide range of antraquinones (AQ), obtaining the 1,4- 1,5- 1,8- 2,6- 2,7-disubstituted 

derivatives by modifying the substituents' position on the chromophore.
116, 117

 The AQ-DNA 

complex has been studied by molecular modeling and has emerged that the overlap of the 

ligand on the G-quartet through external stacking is plausible and that any flexible side chain 

can be positioned in the wider groove. To reduce the cytotoxicity caused by the redox cycles, 

the quinone moiety has been removed and a series of 2,7-fluorenones (FO) was synthesized 

(Fig. 2.11).
118

 
 

 

 
 

Figure 2.11. Structures of BSU-1051 and 2,7-AQ/FO. 

 

 

The most potent compound in this series (R2 = 1-(2-methyl)piperidinyl)) presents an IC50 of 12 

µM, with a 2-10 fold reduction in toxicity compared to the corresponding anthraquinone. In 

general among the FOs, the observed effect of the substituents on the telomerase inhibition is 

similar to the one reported for anthraquinones. The comparison between 2,7-disubstituted FOs 

and 2,7-disubstituted AQs demonstrates that FOs are slightly less active in inhibiting 
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telomerase, probably because they are less planar then AQs and their chromophore is more 

electron-poor, thus decreasing the stacking with the G-quadruplex structure. 

 

- Acridine derivatives. A library of 3,6-disubstituted acridinium salts was synthesized with the 

aim to investigate the importance of the introduction of a positive charge onto the aromatic 

planar chromophore (Fig. 2.12). In these molecules the protonated nitrogen atom might give 

additional interactions with the negative electrostatic potential of the channel between the 

stacked tetrads of G-quadruplexes.
119

 Compared to the 2,7-AQs, these compounds do not have 

a more pronounced ability to inhibit telomerase, probably because of the low basicity of the 

nitrogen atom in the ring and because the substituents have no electron-donor effect. Hence 

the electronic properties of the acridinine ring are similar to those of the anthraquinone 

fragment.
120

 In order to obtain more selective derivatives towards G-quadruplex DNA, a series 

of 3,6,9-trisubstituted acridine was designed (Fig. 2.12).
121

 

 

 

 

Figure 2.12. General structure of 3,6-bis-amidoacridinium and 3,6,9-bis-amidoacridinium salts.  

 

In this series the most interesting compounds are those with an aniline group in 9: for such 

molecules the two amide substituents are positioned in the two wider grooves, while the 

aniline moiety lies in a third groove.
94

 Moreover the latter substituent increases the basicity of 

the nitrogen atom of the aromatic ring. Through SPR and computational studies it was 

determined that 3,6,9-trisubstituted derivatives increase their inhibitory activity towards 

telomerase respect to the 3,6-disubstituted acridines, a direct result of a 30-40 times higher 

affinity for the G-quadruplex DNA compared to the duplex form DNA. 

 

 

 
 

Figure 2.13. Structure of BRACO-19 and RHPS4. 

 

 

Recently some members of the family of the 3,6,9-trisubstituted acridines with an IC50 in the 

range of 10-20 nM towards telomerase entered in preclinical studies.
122

 Particularly BRACO-
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19 showed significant telomerase inhibitory activity, with an IC50 value of 6.3 μM 

(Fig.2.13).
123

 In vitro it was able to inhibit cell growth at sub-cytotoxic concentrations in a 

number of cancer cell lines, to induce senescence, telomere shortening, telomere end-to-end 

fusions and displacement of the protein POT1 from telomeres of treated cells.
124, 125, 126, 127

  

In vivo, BRACO-19 has been evaluated in xenograft models of the vulvar carcinoma cell line 

A431 in combination with Paclitaxel, showing a major antitumor effect than paclitaxel alone. 

As single agent, BRACO-19 was tested in uterine carcinoma xenograft UXF1138L, showing 

high activity against early-stage tumors.
102

 Despite all its favorable characteristics, the major 

limitations of BRACO-19 are its lack of membrane permeability and a small therapeutic 

window. 

Another compound belonging to the acridine derivatives is RHPS4: this pentacyclic 

compound has been identified as a potent inhibitor of telomerase, with an IC50 value of 0.33 

µM (Fig.2.13). This compound inhibits proliferation of cells within 2-3 weeks at non-

cytotoxic concentrations.
128

 

 

- Chindoline derivatives. Molecular modeling studies and the SAR on the anthraquinone and 

acridine compounds previously described revealed that tricyclic systems are not expected to be 

sufficient to give good stacking interactions on the surface of the terminal G-quartet. 

Therefore, two classes of compounds with tetracyclic chromophores were designed. 

Among the benzo[b]naphtho[2,3-d]furanoid derivatives, the monosubstituted compound I has 

an IC50 of 7.0 µM (Fig. 2.14).
129

 

Among the chindoline derivatives, the disubstituted compounds show IC50 values in the range 

of 6-16 µM (Fig. 2.14).
130, 131

 It is interesting to note that the 11-monosubstituted compounds 

show a higher inhibitory activity towards telomerase than the disubstituted derivatives, with 

IC50 values between 0.44-12.3 µM (Fig. 2.14).
132, 133

 This can be explained considering that the 

electron-donor substituents in position 11 can increase the basicity of the nitrogen atom of the 

pyridine ring of quinoline, normally protonated at physiological pH. This results in an increase 

of the magnitude of electrostatic interactions between the protonated nitrogen of the 

chindoline derivatives and the negative electrostatic potential of the central canal of the G-

quadruplex. Recent studies have shown that these compounds are not only able to stabilize G-

quadruplexes, but also to induce their formation, for example in c-Myc.
134

 

 

 

 
 

Figure 2.14. Structure of I and general structure of mono and disubstituted chindoline. 
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- Quinacridine derivatives. As demonstrated with FRET assay, pentacyclic compounds such 

as quinacridine are able to stabilize G-quadruplexes. Five aromatic rings fused together in a 

non-linear arrangement constitute the chromophores of these compounds. These compounds 

have a good ability to bind G-quadruplexes, as evidenced by the increase in melting 

temperature ΔTm, to which is associated an increase in telomerase inhibition.  

 

 
 

Figure 2.15. Structure of II and III. 

 

 

For the two most active compounds of this series II and III the ΔTm is of 19.7 and 12.5 °C, 

while the IC50 values are 0.028 and 0.5 µM, respectively (Fig. 2.15).
135

 

More recently, a quinacridine-Pt hybrid compound (Pt-MPQ), made up by a monosubstituted 

quinacridine core and a group containing Pt, has been shown to interact with the G-quadruplex 

structures of DNA through a dual binding mode: stacking interaction mediated by the 

quinacridine fragment and covalent bond between Pt and bases (platination). PT-MPQ is the 

first prototype of the hybrid G-quadruplex ligand class (Fig. 2.16).
136

 

 

 

 
Figure 2.16. Structure of Pt-MPQ. 

 
 

 

- Perilene derivatives. In order to increase the size of the chromophore and improve the 

stacking interactions, a serie of perylene derivatives has been developed. Within this class a 

very promising compound is PIPER, that is able to induce and stabilize the formation of G-

quadruplexes in the promoter region of c-Myc , as well as to inhibit telomerase activity with 

an IC50 value in the low µM range (Fig. 2.17).
137

  

SAR studies have been made on this compound regarding both the amino side chains and the 

size of the central intercalating core. The chemical nature of the basic side chain and its pKa, 

its length and the position of the protonated nitrogen atoms influence the amount of 

electrostatic interactions with the phosphate groups in the grooves, thus the stability of the G-

quadruplex-ligand complex and the telomerase inhibition properties.
138
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Figure 2.17. Structure of PIPER. 

 

 

Particularly the size of the planar core has been widely studied and it was showed that 

compounds resulting from a decrease in the number of condensed aromatic rings such as 

naphthalene diimides are still able to interact with G-quadruplexes.  

 

- Naphthalene imides and diimides derivatives. The naphthalene diimides derivatives were 

developed starting from naphthalene imides (NI) compounds, among which the most 

important ones are Mitonafide and Amonafide (Fig. 2.18); these compounds show excellent 

antineoplastic activity due to their ability to intercalate into DNA, but they have not passed the 

phase II of clinical trials because of the important side effects associated with their 

administration.
138

 In order to overcome the toxicity of these compounds, their pharmacophore 

was modified, passing from NI to NDI compounds with a 1,4,5,8-tetracarboxynaphthalene 

diimide core. The prototype of this class of compounds is N-BDMPrNDI, which shows an 

increased capacity to intercalate between the bases of the duplex DNA and, for the first time, 

the ability to stabilize the triplex form of DNA (Fig. 2.18).
139

 

 

 

 
 

Figure 2.18. Structure of Mitonafide, Amonafide and N-BDMPrNDI. 

 

 

Since several years, my research group has been involved in the research of new G-quadruplex 

ligand based on a NDI scaffold. They developed a series of compounds bearing two basic 

polymethylene chains linked to the NDI core, the length of which has been the subject of SAR 

studies. In all the compounds of this series, the two nitrogen atoms of the linker are protonated 

at physiological pH, increasing the interaction with the DNA due to the formation of 

electrostatic bonds with the phosphate groups. The basicity of these nitrogen atoms is also 

increased by the 2-methoxybenzyl substituent present in all the derivatives. The more active 

compounds are IV and V, presenting a linker of two and three methylenes between the NDI 

core and the basic nitrogen atom respectively
 
(Fig. 2.19).

140, 141
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Figure 2.19 Structure of compound IV (n = 1) and V (n = 2). 

These compounds show an interesting antiproliferative activity in the µM range in several 

cancer cell lines, due to an effective interaction with the DNA, preferentially with the 

quadruplex respect to the duplex form, the activation of caspases, the accumulation of the p53 

protein, the downregulation of AKT, and ultimately to the inhibition of phosphorylation of 

ERK. Considering their wide range of activities, IV and V can be considered as Multi-Target-

Directed Ligands. The two lead compounds were the subject of SAR studies with the aim to 

evaluate the importance of the nature and the position of the substituent on the aromatic ring. 

It was found that derivative VI with side chains of three methylene groups and 2,3,4-

trimethoxybenzyl substituents is the most powerful compound within the series (Fig. 2.20).  

 

 

 
 

Figure 2.20. Structure of VI (n = 2). 

 

 

Many disubstituted NDIs have been screened for their ability to bind G-quadruplex, but all of 

them have showed poor selectivity for quadruplex versus duplex DNA. Starting from this 

consideration and with the aim to improve the selectivity for the quadruplex DNA, Neidle and 

coworkers developed more complex molecules, i.e. tri- and tetrasubstituted NDIs, by adding 

two more chains able to target the four grooves of the parallel telomeric G-quadruplex 

structures (Fig.2.21). The major complexity of these molecules allows also adding chemical 

variability in one single entity that can be exploited to discriminate between different 

quadruplexes. 

 

 

Figure 2.21. Molecular model of a tetrasubstituted NDI bound to a G-quadruplex structure.
142
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The ability of these derivatives to bind the quadruplex DNA was assessed through the FRET 

assay. The data obtained from that analysis showed that the tetrasubstituted NDIs have a 

higher capacity to stabilize the quadruplex DNA respect to the trisubstituted NDI, that are 

better than the disubstituted ones as well. The stability inducted depends on the nature of the 

different groups linked to the aromatic core: compounds bearing basic groups, due to their 

ability to interact with the phosphate groups of DNA, are more active than the others in the 

FRET assay. The tri- and tetrasubstituted derivatives are also more selective, in fact they bind 

the duplex DNA less than the disubstituted NDIs, and in particular the tetrasubstituted ones 

are more selective for the quadruplex structures than the trisubstituted, probably due to steric 

reasons.
143

 The initial hypothesis about the ability of these compounds to target the four loops 

of the quadruplex DNA was also supported by molecular modelling studies and by 

crystallographic analyses on several quadruplex-NDI complexes. To better understand the 

binding mode of NDIs, a tetrasubstituted derivative of this series has been co-crystallized with 

an intramolecular human telomeric 23-mer G-quadruplex DNA. As shown in Figure 2.22, the 

terminal G-tetrads are coordinated by one NDI core each while four NDI molecules coordinate 

the G-tetrads of two G-quadruplexes, and two NDI molecules display external interactions 

with the loops at the sides of the G-quadruplexes. 

 

 

 
 

Figure 2.22. The 23-mer crystal structure of the intramolecular quadruplex of the sequence 

d[TAGGG(TTAGGG)3] complexed with tetrasubstituted NDI ligand.
121

 

 

 

This kind of derivatives demonstrated the capacity to inhibit telomerase in the TRAP assay 

and a correlation has been proved between the FRET and the TRAP data: the compounds that 

are more active in the FRET are also the more active in vitro in inhibiting the telomerase 

activity. The interference with telomerase activity is also due to the possibility to displace the 

human protection of telomeres protein (POT1) from the single-stranded telomeric DNA 

overhang, that  is considered to be a consequence of quadruplex formation, induced by the 

NDI compounds.
144

 The cytotoxicity of this library is also very high; they reach nanomolar 

level in a wide range of cancer cell line, and are particularly active towards pancreatic cancer 

cytotypes. The intrinsic fluorescence of these compounds permitted to visualize them into the 

cell and, through confocal microscopy, it was shown that the derivatives are rapidly 

internalized into the cell and they localize exclusively in the nucleus, with a preference for the 

nucleolus that is connected to telomerase activity. Some of these molecules were also 

evaluated in vivo for their anticancer activity: they displayed significant antitumor activity in a 
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pancreatic cancer xenograft model, with a 50% reduction in tumor  volume on intraperitoneal 

administration.
145

 

Neidle and coworkers also used structure-based design methods to optimize the 

pharmacological properties of several analogues with four side-chains each terminating in an 

N-methyl-piperazine group. They noticed that compounds with di-N-methyl-piperazine and di-

morpholine end groups have superior (by up to 10-fold) cellular potency, especially against a 

panel of pancreatic and non-small-cell lung cancer cell lines. From this further study, they 

identified Endamine as a potent inhibitor of cell growth in pancreatic and lung cancer cell 

lines, with IC50 values against the chemo-resistant Panc1 cell line of 3 nM (Fig. 2.23). The 

study of the telomere elongation in presence of Endamine showed no change in mean telomere 

length, so it is possible to say that  inhibition of telomerase is not responsible for the 

antiproliferative activity of the compound that is indeed responsible for the change in the 

expression of a number of cellular stress/DNA damage response genes.
146

 

 

 

 
 

Figure 2.23. Structure of Endamine. 

 

 

-Telomestatin analogues. As previously explained, macrocyclic compounds are particularly 

interesting for the interaction with G-quadruplex structures. Telomestatin is a macrocyclic 

natural compound isolated for the first time in 2001 from Streptomyces anulatus, whose 

structure presents five oxazole rings, two methyloxazole rings and a thiazoline ring (Fig 

2.24).
147

 It has been extensively studied due to its outstanding selectivity for G-quadruplex and 

highly promising biological properties. 

 

 

            
 

Figure 2.24 Structure of Telomestatin and its binding mode with G-quartet. 
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The quadruplex overduplex-DNA selectivity of this compound was established via 

competitive FRET melting which is carried out in presence of competitive duplex DNA. In the 

presence of telomestatin, the increase in melting temperature is very large (ΔTm = 24 °C), and 

since this value is unaffected by the presence of up to 50 equivalents of competitive duplex 

DNA, telomestatin is one of the most selective G-quadruplex ligands. Telomestatin is also 

able to inhibit telomerase with an IC50 in the nanomolar range (IC50 = 5 nM).
148

 

The exceptional effectiveness in G-quadruplexes binding is attributable to the high 

hydrophobic nature of the molecule, which strengthens the stacking on the external G-quartet, 

and to the perfect adaptation of the shape of the molecule with the G-quartet, as demonstrated 

by computational studies (Fig. 2.23).
149

 

The reason at the base of telomestatin selectivity for cancer cell lines is not clear yet. 

Probably, this is due to the differences in plasmic membrane permeability between normal and 

cancer cells or to modifications in the shelterin complex. 

The complexity of telomestatin makes its synthesis a hard goal. For this reason, more 

synthetically accessible telomestatin analogs were synthesized: HXDV and S2A2-6OTD are 

hexaoxazole macrocyclic ligands obtained by the association of two symmetrical tri-oxazole 

fragments with an amino acidic bridge such as protected valine or serine (Fig. 2.25).
150,  151 

HXDV has been widely investigated and found to profoundly stabilize the telomeric G-

quadruplex structure by UV-melting assay (ΔTm = 24 °C), without any significant binding to 

duplex DNA. In order to avoid its solubility problems, various analogs of HXDV have been 

prepared by modifying the nature of the side chain and among these the most interesting 

derivative is HXDL, presenting two lysine residues (Fig. 2.25).
152

  

 

 

 
 

 

Figure 2.25. Structure of HXDV, S2A2-6OTD and HXDL. 
 

 

This compound is more affine and selective towards G-quadruplexes, probably due to the 

presence of the two primary amino groups of the leucine linker, protonated at physiological 

pH. These features determine an increase of the solubility in aqueous environment and confer 

the possibility of adding, besides the stacking interaction with the G-quartet, some electrostatic 

interactions with the negative charges of the phosphate groups of the DNA skeleton. 

 

- Porphyrin-like macrocycles. Along with neutral and cationic cyclic polyheteroarenes, 

cationic porphyrins are probably the most widely used macrocyclic G-quadruplex ligands. 

TMPyP4 (5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin) is a reference compound, 

representative of the family of the G-quadruplex ligands characterized by the porphyrin core 

(Fig. 2.26). Its ability to bind DNA was known for a long time, but its capacity to bind G-

quadruplexes was discovered approximately twenty years ago. 
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Figure 2.26. Structure of TMPyP4 and its binding mode to G-quartet.
130 

 

 

This tetracationic porphyrin has shown high affinity for G-quadruplex DNA (as proved 

through FRET melting assay, ΔTm = 17 °C), but it does not possess any kind of selectivity.
153

 

Despite this, it was particularly used as a tool to investigate its ability in downregulating the 

oncogene expression, due to quadruplex formation or induction (like c-myc, c-kit, and hTERT 

genes). 
54, 154, 155

 The binding mode between TMPyP4 and quadruplex structures have been 

widely studied in the last years. Interestingly, this compound displays various quadruplex-

interactions, ranging from intercalation between adjacent G-quartets, to the stacking on the 

external G-quartet, passing by a mode totally devoid of direct contacts with G-quartets and 

through the possibility of combining several binding modes during a single recognition 

process.
156, 157, 158

  

Given the known modulation of G-quadruplex structures by metal and the capacity of the 

porphyrin structures to coordinate metals in their internal cavity, TMPyP4 complexes with 

various metals have been developed. Among Pt (II), Cu (II), In (III), Zn (II), Co (II), Fe (III), 

Ni (II), Mn (III), Mg (II), and Pd (II) complexes, the most interesting resulted Mn-TMPyP4, 

displaying an affinity ten times higher for quadruplex DNA compared to the duplex DNA 

(Fig. 2.27).
54

 

 

 

 
 

Figure 2.27. Structure of Mn-TMPyP4. 

 

 

In this class of compounds, the nature of the side arms surrounding the porphyrin core is very 

important in order to achieve selectivity. Indeed, while the above mentioned Mn-TMPyP4 was 

able to interact with G-quadruplex 10 times faster than with duplex DNA, the shift of the N-

methylpyridinium moieties from the proximity of the porphyrin core gives a 10000-fold 

difference.
159

 This modification improves the electrostatic interactions with the quadruplex 

grooves, preventing at the same time the intercalation into DNA duplex. The same result was 
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obtained through the substitution of the N-methylpyridinium moieties with 

(trimethylammonium)methylphenol arms.
160

 

Despite these encouraging results, the development of TMPyP4 porphyrin derivatives has 

stopped. The difficulty of obtaining selectivity towards G-quadruplex structures and the 

evidences that tetrapyrrolic structures are not geometrically optimal for the interaction with the 

G-quartets have prompted to explore new structures. For example, compound 3,4-TMPyPz, 

deriving from the fusion of pyridinium groups directly to the porphyrin skeleton leads to a 

planar, electron-deficient and structurally frozen porfirazine structure, which allows an 

excellent overlap on the G-quartet (Fig. 2.27). 3,4-TMPyPz, both in complexed and not 

complexed form, shows a high affinity for G-quadruplexes. 

Structurally related to porfirazine, phthalocyanines present a benzene ring fused to the 

porphirin nucleus instead of the pyridine. Two compounds representatives of this class are 

ZnPc and ZnDIGP, with quaternary ammonium groups and guanidine fragments in the side 

chains, respectively (Fig. 2.28).
161, 162

 These compounds show improved affinity and 

selectivity through SPR studies and CDs. 

 

 

 
 

Figure 2.28. Structure of 3,4-TMPyPz, ZnPc and ZnDIGP. 

 

 

Another family of porphyrins is represented by Hemin and related compounds. Hemin is a 

Fe(III)-protoporphyrin IX, known to be the cofactor of Hemoglobin and Myoglobin (Fig. 

2.28).
163

 This compound binds tightly the quadruplex structures, but despite that, it has not 

been studied as a ligand, but rather as an investigative tool for G-quadruplex. In fact, the 

Hemin-G-quadruplex complex acquires the ability to catalyze the H2O2-mediated oxidation of 

certain precursors, such as luminol, useful to see where they form G-quadruplex in the human 

genome and then investigate the potential ligands. A porphyrin related to Hemin, NMM (N-

methylmesoporphyrin IX), is the only G-quadruplex macrocyclic ligand negatively charged, 
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thanks to the presence of two carboxyl groups deprotonated at physiological pH (Fig. 2.29). 

NMM is moderately affine to G-quadruplex, despite an excellent overlap in the G-quartet, but 

highly selective. Even NMM is mainly used as an investigative tool to evaluate the formation 

of G-quadruplex in vivo and to determine whether the sequences capable of forming G-

quadruplex identified through computational studies actually exist in that form in a cellular 

context. 

 

 

 

 
 

Figure 2.29. Structure of Hemin and NMM. 

 

 

- Polyammonium Cyclophane-Type macrocycles. The only two groups of molecules belonging 

to this category are the cyclo bis-intercalator family (CBI) and the neomycin-capped aromatic 

platforms. The CBI are made up of two aromatic chromophores linked through polyamine 

chains; because of the presence of protonated nitrogen atoms these molecules are less 

hydrophobic than the previously discussed macrocycles and are highly soluble. Only two 

compounds of this family have been tested towards G-quadruplex: BOQ1 and BisA (Fig. 

2.30). 

 

 

 
 

Figure 2.30. Structure of BOQ1 and BisA. 

 

 

BOQ1 is composed of two acridine rings bound with polyamine linkers, while BisA contains 

two quinacridine rings as aromatic scaffold.
164, 165

 This molecules bind the quadruplex DNA 

much stronger than their acyclic analogues and they both efficiently induce thermal 

stabilization of the human telomeric quadruplex (ΔTm = 28 °C and 15 °C, respectively), 

indicating that the size of the aromatic core is very important for the interaction. 



Chapter 2  DNA as target: G-quadruplex structures 

32 

 

The two compounds are also very selective towards quadruplex DNA and this feature may be 

due to their particular topology. While the macrocycles previously described have very planar 

and rigid conformation, CBIs show a particular arrangement, called semiclosed conformation, 

in which the two aromatic rings face each other in parallel planes.
125

 As a result, these 

molecules cannot bind duplex DNA: steric reasons and the restricted length of the linkers 

prevent the bis-intercalation between contiguous bases.
166

 The binding mode of BOQ1 has 

been long studied, for this molecule the semiclosed conformation occurs both in the free state 

and in the complex with quadruplex structure at telomeric ends (Fig. 2.31).
167

 

 

 

 
 

Figure 2.31. Structure of BOQ1 in the free state and during the molecular dynamic simulation between 

BOQ1 and the human telomeric quadruplex.
168

 
 

 

Other studies revealed that BOQ1 in this conformation interacts not only through π-π stacking 

with the G-quartets, but also H-bonding interactions between the linkers and the loop 

backbone occur to stabilize the complex. 

The promising results obtained with BOQ1 in terms of affinity and selectivity, have pushed 

the researchers to synthesize new series of analogous compounds, whose members differ in 

the nature and the number of aromatic nuclei, as well as in the nature and derivatization of 

spacer chains(Fig. 2.32).
169

  

 

 
                  2,7-NP / 2,7-A                         BisNP-1PY 

 
                                  BisNP-1FC                                          3,3 '-TrisBP 

 

Figure 2.32. Structure of 2,7-NP/2,7-A, BisNP-1PY, BisNP-1FC, 3,3 '-TrisBP. 
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In particular, the aromatic nucleus can be a naphthalene, anthracene, biphenyl, acridine, 

quinacridinine, phenazine and bipyridine or ferrocene ring. In the same molecule, two or three 

equal or diverse nuclei differently linked can be present. Chains spacer can be a polyamine 

presenting secondary or tertiary nitrogens, functionalized with side chains, and the nitrogen 

atoms of the chain can be replaced with oxygen or sulfur atoms. These series were subjected 

to screening using FRET techniques from which emerged four highly promising compounds 

2,7-NP/2,7-A, BisNP-1PY, BisNP-1FC, 3,3'-TrisBP endowed with an interesting biological 

profile (Fig. 2.32).
170

 

The second category of polyammonium cyclophane-type macrocycles are the neomycin-

capped macrocycles, in which the aminoglycoside neomycin is linked to three different planar 

cores, such as acridine, phenanthroline, and quinacridine. The most active molecule within this 

series is the quinacridine derivative NCQ, a highly flexible molecule that strongly binds the 

telomeric G-quadruplex, while showing low affinity for the duplex DNA (Fig 2.33).
171

 NCQ is 

selective for the intramolecular G-quadruplex conformations, such as the telomeric one, 

because they have numerous loops with which the fragment of Neomycin may establish strong 

and specific interactions with; these loops are instead absent in tetrameric G-quadruplexes. 

This strategy could be useful and innovative to develop selective ligands for the various G-

quadruplex forms. 

 

 

 
 

Figure 2.33. Structure of NCQ. 
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Chapter 3. Epigenetic and cancer 

 
In the cells, DNA can exist in various forms and these different conformations are closely 

related with the different phases of the cell cycle. The macromolecule is usually packaged as 

chromatin, that is a highly organized and dynamic protein-DNA complex whose roles are to 

reduce DNA volume, allow mitosis, control replication and transcription processes, and 

prevent DNA damage. The nucleosome, the basic unit of chromatin, is made up of a segment 

of DNA wound in sequence around eight histone proteins. The nucleosome core particle 

consists of an H3 and H4 tetramer and two H2A and H2B dimers, surrounded by 146 bp of 

DNA (Fig. 3.1).
172

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Structure of the nucleosome core particle consisting of histones H2A in red, H2B in grey, 

H3 in yellow and H4 in green, and DNA (http://malone.bioquant.uni-

heidelberg.de/methods/modeling/modeling.html). 

 

 

The organization of the DNA that is achieved by the nucleosome cannot fully explain the 

packaging of the nucleic acid observed in the cell nucleus. Further compaction of chromatin 

into the cell nucleus is necessary, but that is not well understood yet; it is known that a chain 

of nucleosomes can be arranged in a 30 nm fiber, depending on the presence of the H1 

histone.
173

 These fibers can create loops along a central protein in order to give euchromatin, 

the transcriptionally active form of DNA, while further compaction generates the 

transcriptionally inactive form heterochromatin. Local chromatin architecture is now generally 

recognized as an important factor in the regulation of gene expression.  

The term “epigenetic” literally means “in addition to changes in genetic sequence”. Epigenetic 

studies any process that alters gene expression without changing the DNA sequence, and leads 

to heritable modifications (although experiments show that some epigenetic changes can be 

reversed).
174

 Many types of epigenetic processes have been identified and some of them are 

natural in cells and lead to the expression only of the genes that are necessary for their own 

activity, while other genes are silenciated. However when epigenetic changes occur 

improperly, they can give origin to diseases. For example, epigenetic changes in histone 

acetylation cause lupus-like symptoms in mice, and that was confirmed by the fact that the 

treatment with the well known histone deacetylase inhibitor Trichostatin A can reverse these 

modifications.
175

 

http://en.wikipedia.org/wiki/Chromatin
http://en.wikipedia.org/wiki/Histone_H1
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Among all the research in the epigenetic field conducted so far, the most extensively studied 

disease is cancer and the evidence linking epigenetic processes with cancer is becoming 

“extremely compelling”. For a long time, cancer has been considered to be the result of a wide 

variety of genetic and genomic alterations, such as amplifications, translocations, deletions, 

and point mutations of proto-oncogenes and tumor suppressor genes (Fig. 3.2). 

 

 

 

 
 

Figure 3.2. The genetic model of cancer.
176

 

 

 

This picture presents, however, significant limitations: it remains unclear what is the engine at 

the base of the progressive stage, the role of the environment in the development of the 

pathology and the age and the long latency period that characterizes the majority of tumors.
177

 

Cancer can also be considered an epigenetic disease, since a tumor originates from an 

alteration of the genetic material, which leads to an increase of the cell turnover, to an 

alteration of the cellular functions and cell invasiveness. An alteration of the DNA structures 

that reduces or increases the accessibility to the transcription and translation of genes is 

configured as an epigenetic event that alters the cellular balance and leads to the disease. 

Epigenetic alterations are able to influence the penetrance of the variants of a particular gene, 

and can help to understand these issues. A gene, in fact, can have one or multiple variants 

determining the disease, but their expression is epigenetically controlled. It is becoming clear 

that gene expression regulated by epigenetic changes plays a crucial role in carcinogenesis. 

The epigenetic alterations are responsible for the uncontrolled growth of the tumor size. 

According to this epigenetic perspective, cancer develops in three stages (Fig. 3.3): 

 

• alteration of epigenetic progenitor cell, that is a stem cell not yet differentiated into a specific 

tissue. This alteration is caused by an aberrant regulation of a tumor progenitor gene; 

• mutation of proto-oncogenes and tumor suppressor genes that leads to the development of a 

benign tumor; 

• genetics and epigenetics instability responsible for the progression that results in the 

appearance of metastasis and drug resistance.
178
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Figure 3.3. Epigentic model of cancer.
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To date, a wide range of post-translational enzyme-catalyzed modifications have been 

reported, most of them affecting the N-terminal tail of histone, such as acetylation, 

methylation, ubiquination and sumoylation. Furthermore, ADP-ribosylation can occur to the 

residues of lysine and glutamate in the histone tail and also methylation of dinucleotides CpG 

in 5' position that leads to gene silencing. The two major post-translational histone 

modifications consist in the addition or removal of acetyl and methyl groups. 

Acetylation/deacetylation, methylation/demethylation are the two most studied epigenetic 

alterations regulated by a wide range of proteins. The presence of acetylated lysine in the 

histone tails gives the transcriptionally active euchromatin structure, while deacetylation of 

lysine residues is associated with heterochromatin and transcriptional gene silencing.
179

 

Methylated histones can positively or negatively affect transcription, according to the site 

affected and the degree of methylation. Until now DNA methylation, and in particular 

silencing of tumor-suppressor genes by promoter hypermethylation, has been the most widely 

studied epigenetic modification in human tumors.
180

 Lately another modification has been 

deeply studied, i.e. the acetylation of lysine residues of histones.  

Among the epigenetic enzymes, proteins such as histone acetyltransferase and histone 

methyltransferase, respectively responsible for the addition of acetyl and methyl groups, are 

called writers. Proteins that recognize and bind these groups are referred to as readers and they 

include bromodomines, cromodomines and etc. Most of the writers, in addition to the catalytic 

domain responsible for the epigenetic alterations, possess a reader domain that recognizes and 

binds modified histones or interacts with DNA and other proteins. Enzymes like lysine 

demethylases and histone deacetylases, responsible for the removal of methyl and acetyl 

groups, are called erasers.  

Readers, writers and erasers can lead to the onset of diseases like cancer through two different 

mechanisms: 

 

• alteration of gene expression and cellular determinants of the variants of the disease; 

• cooperation with other cellular proteins and with tissue-specific transcription factors 

sensitive to environmental stimuli. 

 

Since cancer is a disease with epigenetics bases, epigenetic enzymes are very important targets 

for the treatment of these diseases; among them HDAC and LSD1 are very promising.  
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3.1 HDAC: structure and functions 

HDACs are a family of evolutionarily conserved metalloproteases, able to catalyze the 

removal of acetyl groups from lysine residues of proteins such as histones.
181

 HDACs are 

classifies into four different classes according to their catalytic mechanism and domain 

organization. Class I, II and IV are Zinc-dependent enzymes, while class III are nicotinamide 

adenine dinucleotide (NAD) dependent amidohydrolases, these latter are also called sirtuins. 

The Zn dipendent HDACs require a single transition metal ion and the catalytic process 

proceeds through the polarization of the carbonyl substrate by Zn
2+

 coordination, which allows 

the general base-promoted nucleophilic attack of a water molecule also coordinated by the 

metal ion (Fig. 3.4).
182

 The Zn
2+

 is usually pentacoordinate, in HDACs’ catalytic site is 

coordinated by two water molecules, two aspartic acid residues and one histidine residue. The 

acetylated lysine can displace a water molecule and coordinate the Zn
2+

 ion, it also accepts a 

hydrogen bond from a tyrosine residue.
183

 This interaction promotes the nucleophilic attack by 

polarizing the carbonyl substrate. The H142 is very important in the catalytic process and is 

used as a base in this step, its basicity is increased thanks to the H-bond that it forms with the 

aspartate residues.
184

 The tetrahedral intermediate and its transition states are stabilized by 

coordination to Zn
2+

 and hydrogen bonds with Y306, H142, and H143. H143, lying near the 

leaving amino group of lysine, offers the proton that allows the collapse of the tetrahedral 

intermediate, serving as a general base- general acid catalyst. Lysine exits immediately from 

the catalytic site, while the acetate ion is slowly released, in fact it is initially coordinated by 

the metal ion.
185

 

 

 

Figure 3.4. Proposed mechanism of HDACs and HDAC-related enzymes.
186

 

 

The Zn-dependent HDACs differ in structure, enzymatic function, subcellular localization and 

expression patterns. 

Class I HDACs consists of HDAC 1, 2, 3 and 8 and are mainly present in nucleus. This class 

is characterized by a relative simple structure; they consist in the deacethylase domain and 

short N- and C-terminal extensions and display high enzymatic activity toward histone 
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substrates. HDAC 1, 2 and 3 are generally found in complexes with other proteins, while no 

complex has been shown for HDAC8. 

Class II HDACs can be divided into two different subtypes, depending on structure 

organization and sequence homology, HDAC IIa (consisting of HDAC 4, 5, 7 and 9) and 

HDAC IIb (consisting of HDAC 6 and 10). Class IIa HDACs present large N-terminal 

extensions with conserved binding sites for the transcription factor myocyte enhancer factor 2 

(meF2) and the chaperone protein 14-3-3, which render HDACs signal responsive. These 

enzymes go from the nucleus to the cytoplasm using the 14-3-3 shuttle, as a consequence of a 

phosporilation.
187

 The dissociation of class IIa HDACs from meF2 allows the HAT p300 to 

associate with meF2 via the HDAC docking site, thereby converting meF2 from a 

transcriptional repressor to a transcriptional activator.
188

 The HDAC IIa members are very 

localized in the organism: HDAC 5 and 9 are mainly present in muscles, heart and brain, 

HDAC 4 is usually localized in brain; while HDAC 7 is expressed in Lymphocyte T precursor 

and endothelial cells.
189, 190, 191

 Class IIa HDACs have mainly a repressor activity on 

transcription and that probably derives by their interaction with class I HDACs and other 

transcriptional repressor such as heterochromatin protein 1 (HP1) and C-terminal-binding 

protein (CTBP).
192, 193

 

Class IIb consists of two members: HDAC6, which deacetylates mainly cytoskeletal proteins 

such as tubulin, cortactin and chaperones; and HDAC10 that is still not well known.
194

  

Class IV is made up by one member, HDAC11. It is a special enzyme present in the nucleus of 

brain, heart, muscle, kidney and testis cells; this protein has an high homology with HDAC3 

and 8, in fact it is composed of a deacetylase domain and small N-and C-terminal 

extensions.
195

 

HDAC proteins are not alone in the cell, but associated with other proteins to give some 

complexes interacting with specific region of DNA through interaction with well defined 

DNA binding factors. There are different ways by which HDACs are recruited to gene 

promoters (Fig. 3.5).
196

  

 

 

 
 

Figure 3.5. Different ways by which HDACs are recruited to gene promoters.
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The first interaction studied was the one that provides the interaction of HDACs with 

methylated DNA via methyl-binding proteins (MBDs). One example is the link with MeCP2, 

an MBD that recruits HDAC-containing complexes to methylated gene promoters as a 

mechanism for gene-transcription repression.
197

 Deacetylases interact also with other 
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epigenetic enzymes, the methyltransferase proteins (DNMTs). HDACs interplay with DNMT1 

causing an higher level of acetylated forms of histone H3 and at the same time a lower level of 

the methylated forms of histone H3, thus indicating that changes in DNA methylation also 

cause changes in histone proteins due to direct interactions between the two different classes 

of epigenetic enzymes.
198

 Another DNMT protein linked to the deacetylase activity is 

DNMT3, interacting with HDAC2.
199

 HDACs also participate in gene expression regulation 

thanks to the connection with estrogen nuclear receptors (ERs) and suppress its transcriptional 

activity. The interaction of HDAC1 with ER- involves the activation function-2 (AF-2) 

domain, DNA-binding domain of ER- and other proteins such as DNMTs, and 

retinoblastoma protein Rb.
200

 

HDACs have a lot of substrates, not only the histones; as some studies have highlighted that 

these enzymes preceded the evolution of the histone proteins.
201

 There are many non histone-

proteins acting as substrates of this class of enzymes, such as transcription factors and 

regulators, chaperone proteins, structural proteins, signal transduction mediators, inflammation 

mediators, DNA repair enzymes (Fig. 3.6). 

 

 

 
 

Figure 3.6. Example of reversible lysine acetylation in diverse cellular processes.
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In these proteins acetylation may cause different responses: it can either increase or decrease 

the function or stability of the proteins, or affect protein-protein interactions.
203

 These HDAC 

substrates take part directly or indirectly in many biological processes that are involved in 

cellular cycle. As a consequence there is more than one mechanism by which HDACs function 

in cancer development. 

The transcriptional repression of tumor-suppressor genes due to the overexpression and the 

aberrant recruitment of HDACs to their promoter region are some of the main causes of tumor 

onset and progression. As example, the cyclin-dependent kinase inhibitor p21 is able to block 

the cell cycle and it is downregulated in many different tumors; in some of these, p21 is 

epigenetically inactivated by hypoacetylation of its promoter. The use of HDAC inhibitors 

causes the inhibition of tumor-cell growth and an increase in both the acetylation levels of the 

promoter and gene expression.
204

 The role of HDACs in cancer is not limited to their 
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deacetylase activity, but also to their role in the regulation of acetylation levels of non-histone 

proteins. The tumor suppressor protein p53 is a substrate of this class of epigenetic enzymes, 

and it is acetylated under stress conditions. When the protein is acetylated, these residues can 

overlap the ubiquitinated ones and cause the promotion of protein activation, influencing the 

cell cycle through the induction of checkpoints, the blockage of cellular division and of cell 

death.
205

 

The wide range of proteins and processes regulated by HDACs described above demonstrates 

that these proteins are key elements in the regulation of gene expression, differentiation, 

development and maintenance of cellular homeostasis. Thus, an abnormal expression of 

HDACs might play an active role in tumor onset and progression, and make them attractive 

candidate targets for new anticancer drugs and therapies. 

3.1.1 HDAC inhibitors: structure and functions 

Based on the considerations made, HDAC appears to be a very promising target for 

therapeutic interventions designed to reverse aberrant epigenetic states associated with cancer. 

In many types of cancer is found altered expression of HDAC.
206

 The HDACis do not cause 

direct damage to DNA, but the change of the conformation of chromatin exposes the DNA to 

cytotoxic agents that can cause breakage of the double helix. They have multiple biological 

effects as a result of the alteration of the acetylation pattern of both histone and non-histone 

proteins, and this wide range of biological events goes from growth cell arrest to terminal 

differentiation, angiogenesis and cell death (Fig. 3.7). Cell death can occur through apoptosis, 

through either the intrinsic or extrinsic pathway, or other mechanisms such as mitotic 

catastrophe, autophagy, senescence, reactive oxygen species (ROS) dependent death. 

 

 

 
 

Figure 3.7. Multiple HDACi-activated antitumor pathways.
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 Growth arrest. HDACIs can affect the gene expression either directly through interaction 

with gene promoters and indirectly. Particularly these compounds are able to induce the 

cyclin-dependent kinase (CDK) inhibitor p21, this effect does not result from the interaction 

with p53 or from the acetylation of histones located in the promoter region of the p21 gene.
207, 

204
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 Cell cycle arrest. The block of the cell cycle due to the administration of HDACIs occurs 

both in cancer and normal cells, the concentration of the compound is very important in order 

to determine in which phase of the cycle the arrest happens. G1 arrest derives from low 

concentration of HDACi, while higher levels of compound can give G1 or G2/M arrest.
208

 p21 

causes the arrest in G1 and G2 phase, mainly by the inhibition of CDKs that control G1 

progression and G1/S transition; but the G1 blockade may be due to the activity of HDACIs 

against CDKs, by inducing their inhibitors.
209

 

 Activation of the extrinsic apoptotic pathway. This mechanism of action is shown by 

HDACIs only in cancer cells and derives from the upregulation of the expression of death 

receptors and their ligands, such as Fas, tumor necrosis factor receptor 1 (TNFR-1), DR-3 and 

DR-6, TNF related apoptosis inducing ligand (TRAIL) ligand receptors (DR-4 and DR-5).
210, 

211
 The activation of the extrinsic pathway results in the activation of caspase 8 and 10 that 

leads to cell death. 

 Activation of the intrinsic apoptotic pathway. The intrinsic apoptotic pathway involves 

some proteins like SMAC, cytochrome c, IAF that cause the activation of the caspase cascade. 

This pathway is one of the main causes of HDACIs induced cell death. These compounds 

cause the release of cytochrome c and the activation of caspase-9. Moreover they alter the 

factors that mediate or regulate the intrinsic apoptosis pathway; for example, they cause Bid 

cleavage starting the intrinsic pathway, increase the expression of proapoptotic Bcl-2 proteins 

such as Bim, Bmf, Bax, Bak and Bik, downregulate antiapoptotic Bcl-2 proteins such Bcl-

2,Bcl-XL, Bcl-w and Mcl-1.
212

  

 Induction of mitotic catastrophe. Histone acetylation damages the structure and functions 

of the centromere, as well as the pericentric heterochromatin, leading to a decrease in the 

binding of proteins to heterochromatin. Newly synthesized chromatin is acetylated, HDACIs 

act by maintaining the acetylation levels, thus disrupting the structure and function of the 

centromere and the pericentric heterochromatin. The increasing acetylation given by HDACIs, 

moreover, increases the phosphorylation of histones and alters the functions of the proteins of 

the mitotic spindle checkpoint (BubR1, hBUB1, CENP-F and CENP-E). As a consequence, 

HDACIs cause cell arrest at prometaphase, followed by aberrant mitosis and mitotic 

catastrophe.
213

 

 Induction of autophagy. Another mechanism by which HDACIs induce cell death is 

autophagy. This membrane process regulates the delivery of cytoplasmic constituents to 

lysosomes for degradation and can be directly activated by p53. HDACIs are able to induce 

autophagy independently of caspases.
214

 

 Activation of ROS-induced cell death. HDACIs induce the accumulation of ROS in treated 

cells in a very short time (2 hours).
215

 The high level of this species leads to the disruption of 

mitochondria. HDACIs also increase the expression of the thioredoxin (Trx) binding protein-2 

(TBP2), thus decreasing the level of Trx, a ROS scavenger, only in cancer cells. 

 Inhibition of HDAC6. The specific inhibition of HDAC 6 or its down-regulation increases 

the accumulation of acetylated α-tubulin and cortactin, in association with inhibition of cell 

migration. The acetylation of HSP90 alters its function and chaperone proteins such as Akt, 

Bcr-Abl, c-Raf and Erb-2 can be poly-ubiquitinated and degraded by proteasomes associated 

with apoptosis.
216

 

 Induction of differentiation. HDACIs can act in synergy with retinoic acid to induce 

differentiation in numerous cell types, although the mechanisms involved have not been 

clarified yet. 

 Immunomodulatory effects. HDACIs can increase the immune response against the tumor 

mass, either acting directly on the malignant cells, in order to make them a more attractive 
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target for the immune system, either by altering the activity of immune cells and/or the 

production of cytokine. They cause, for example, an increased expression of proteins 

belonging to the major histocompatibility complex classes I and II and of CD40, CD80, CD86 

and intercellular adhesion molecule-1 (ICAM1). 

 Angiogenesis inhibition. HDACIs are able to block angiogenesis either by increasing the 

level of hypoxia inducible factors (HIF), either by reducing the expression of pro-angiogenic 

proteins. The expression of angiogenic genes is controlled by the transcription factors HIF1 

and HIF2. Hypoxia, a recurrent event in tumors, leads to activation of HIF and to the 

promotion of angiogenesis. This pathway can be stopped by the administration of HDACIs.
217

 

HDACIs inhibit also the angiogenesis by preventing the endothelial cells from responding to 

the angiogenic stimulus generated by vascular endothelial growth factor (VEGF). Thricostatin 

A (TSA) and Vorinostat (SAHA) inhibit VEGF-induced expression of VEGF receptors and 

neuropilin-1, as well as the induction of emaphorine III expression in endothelial cells.
218

 

 

In the recent years, a lot of synthetic molecules or natural products were identified as HDACi. 

In 2006, FDA approved Vorinostat for the treatment of cutaneous cell T lymphoma (CTCL) 

(http://www.fda.gov/cder/Offices/OODP/whats-new/vorinostat.htm) and, in 2009, Romidepsin 

was approved for the same disease, encouraging the development of new HDACIs. 

From a structural point of view, a general pharmacophoric model for an HDACi requires the 

presence of some specific features: a zinc binding group (ZBG), a hydrophobic linker or 

connecting unit and a recognition cap group (CAP) (Fig. 3.8). 

 

 

 
 

Figure 3.8. General structure of an hydroxamic acid based HDACi.
219

  

 

 

Based on crystallographic studies of hydroxamic acid based inhibitors with HDAC 4, HDAC 8 

and HDAC of an anaerobium bacterium (HDLP), it became evident that these structural motifs 

interact with three conserved regions in the active site (Fig. 3.9). The first recognition point for 

the inhibitor is the pocket that hosts the cation. As described before, Zn
2+

 facilitates the 

hydrolysis of the amide and is located on the bottom of the narrow catalytic pocket, it is 

pentacoordinated by two aspartic acids, a lysine residue and the remaining two bonds are 

provided by the substrate or by the inhibitor through its ZBG. The second zone of interaction 

is a hydrophobic channel, consisting of acetylated lysines, through which the inhibitor 

penetrates with the linker, and finally the third recognition site is constituted by the opening of 

the channel that contains a motif with a higher degree of diversity compared to the other two 

regions, that interacts with the hydrophobic CAP.  
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Figure 3.9. Binding mode of SAHA with the catalytic core of HDLP (A), HDAC8 (B) and the bacterial 

HDAC, HDAH (C).
220

 

 

 

Several HDACIs have been designed based on a rational approach, starting from the 

knowledge of the structure of the catalytic site and changing the single motifs that make up the 

molecule. 

HDACIs, according to their structure and to the nature of the ZBG, can be classified in four 

different groups: 

 

1. Hydroxamates 

2. Cyclic peptides 

3. Aliphatic acids 

4. Benzamides 

5. Electrophilic ketones 

 

1) Hydroxamates. Hydroxamate based compounds were among the first compounds to be 

identified as HDACIs, and these agents helped to define the pharmacophoric model for HDAC 

inhibitors. The bond with Zn
2+

, which is essential for the activity, takes place thanks to the 

hydroxamic acid moiety. This was confirmed by the fact that, by replacing the hydroxamic 

acid with a carboxylic acid, the molecule becomes completely inactive.
221

 Even methylation of 

the hydroxamic acid causes a drastic drop in activity, which suggests the rigidity of the active 

site. 

In 1990, TSA, one of the major exponent of this class, was identified from a natural product 

isolated from a Streptomyces hygroscopicus strain by Yoshida and coworkers (Fig. 3.10).
221

 It 

has a high activity, with a Ki against HDAC of 3.4 nM. 

 

 

 
 

Figure 3.10. Structure of TSA and SAHA. 
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After that, SAHA was reported by Breslow and co-workers and it was the first HDACi 

approved by the FDA.
222

 It showed an IC50 of about 1 nM and provided the binding mode 

model to the enzyme for this class of inhibitors (Fig. 3.11). 

 

 

 
 

Figure 3.11. Binding mode of SAHA.
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From these starting compounds, the optimal length of the linker between the hydroxamic acid 

moiety and the aromatic nucleus was evaluated: the compound with greater activity appears to 

be the one with a six-methylene chain. A shorter chain entails a considerable decline of 

activity, being not sufficient to bring the hydroxamic acid close enough to the ion to be able to 

chelate it. The capping group, instead, can be modified by introducing different aryl 

substituents, without varying the activity.  

A lot of studies were performed in order to understand the importance of the methyl-

substituted olefinic linker in TSA derivatives, and it was shown that the addition of a methyl 

group and two double bonds caused a 2.3- and 33-fold reduction in activity, respectively, 

relative to the linear alkyl compounds.
224

 

Among the inhibitors containing linear linker domain structures, Oxamflatin (Fig. 3.12), 

prepared by researchers at Shionogi Laboratories in 1996, is a potent inhibitor with an IC50 of 

15.7 nM.
225

 

Scriptaid was identified by Transcriptional High-Throughput Screening of a library of 16320 

compounds. It owns a five methylene aliphatic chain bound to a naphthalene imide ring, which 

acts as linker between the bulky terminal group and the hydroxamic acid. Also in this case, the 

importance of the length of the linker was confirmed by the inactivity of Nullscript, which is 

the Scriptaid analogue with a three methylene shorter chain (Fig. 3.12).
226
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Figure 3.12. Structure of Oxamplatin, Scriptaid and Nullscript. 

 

 

Taking Scriptaid as starting point and by modifying its capping group, a series of tricyclic 

derivatives was synthesized and among them, the most active one is compound VII, with an 

IC50 of 10 nM. Jung and coworkers also tried to improve SAHA activity through the synthesis 

of reverse amide SAHA derivatives of general structure VIII (Fig. 3.13). The benzene ring of 

SAHA was changed with substituted benzene rings, all the substituted derivatives show higher 

activity than the previous ones but that activity is not linked to the chemical features of the 

substituent.
227

 The corresponding carboxylic acids were also tested and found to be inactive. 

 

 

 
 
 

Figure 3.13. Structure of VIII, IX and X. 

 

 

SAHA derivatives were obtained also by substituting the benzene capping group of the 

precursor with heterocyclic rings. Among this series the most interesting compound is 

compound IX, presenting an indole group (IC50 = 14 nM) (Fig. 3.13).
228

 

Among the hydroxamate inhibitors containing cyclic linker domain substructures, the most 

famous is CBHA
 
(Fig. 3.14).

198
 CBHA demonstrated that is possible to introduce an aromatic 

ring in the linker maintaining the HDAC inhibitory activity. Starting from CBHA, some 

CBHA-Oxamflatin derivatives different for the nature and the length of the linker were 

synthesized; the most active are the compounds with a cinnamic X and hydrocinnamic XI 

linker respectively (Fig 3.14). This is probably due not only to the optimal length of the linker, 

but also to the geometries the compound can assume. The presence of the double bond does 



Chapter 3  Epigenetic and cancer 

46 

 

not influence the activity, while the substitution of the α-position of the hydroxamate chain 

and the methylation of the sulfonamide group cause a loss of activity.
229

. 

 

 

 
 

Figure 3.14. Structure of CBHA, X and XI. 

 

 

Other oxamplatin-CBHA derivatives were designed and CBHA-derived ureas, sulfonamides 

and sulfonanilides were produced.
230

 

Hydroxamic acids are the major class of HDACIs, they are endowed with a high activity (the 

most potent at nanomolar range) and many compounds are currently published both in patents 

and in literature. Hydroxamates are very interesting because they also have a great therapeutic 

potential, so that, some of them have been approved by FDA for the treatment of cancer. 

 

2) Cyclic peptides. Cyclic peptides are the more complex class of HDACIs. They conform to 

the pharmacophoric model for HDACIs and possess a macrocycle containing hydrophobic 

amino acids acting as capping group that interacts at the enzyme surface, an alkyl chain as 

linker and a functional group able to chelate metals. The macrocycle in these agents is 

arranged with a D-amino acid and a cyclic amino acid (Pro or Pip) flanking the amino acid 

bearing the linker moiety, which generates a constrained 12-membered cyclic structure with 

extensive internal hydrogen bonding. The configuration of the amino acid must be the D-

configuration, and it is the only case in which a strong association with the rim of the active 

site is obtained, thus allowing the linker to go through the groove of the enzyme.
231

 

These molecules can be divided in two subclasses: inhibitors bearing a (S)-2-amino-9,10-

epoxy-8-oxodecanoic acid (L-Aoe) moiety and inhibitors without the L-Aoe moiety. While 

these latter are reversible inhibitors, the cyclic peptides with L-Aoe moiety give an irreversible 

inhibition, but the binding mode of these compounds is not clear yet. It is possible that the 

interaction is either due to the formation of covalent bonds via nucleophilic attack of the 

reactive epoxy ketone in the active site or to the formation of non covalent interactions, not 

allowing the dissociation of the inhibitor from the active site.
232

 

The first inhibitors belonging to this class were discovered through a natural product screening 

including HC-toxins, Cyl-1/2, WF-3161, chlamydocin and trapoxins A and B, all belonging to 

the L-Aloe subgroup (Fig 3.15). 
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Figure 3.15. Structure of HC-toxins, Cyl-1/2, WF-3161, chlamydocin and trapoxins A and B.
233

 

 

 

In these compounds the epoxyketone moiety is essential in order to give an irreversible 

inhibition; the replacement of that group with other chemical functionalities leads to a 

decrease in the activity.
234

 These compounds are very interesting because, as well as showing a 

great inhibitory activity, they display a high selectivity: Chlamydocin, Cyl-2, trapoxin A and B 

show 640 to 57000-fold selectivity for HDAC1 versus HDAC6 with IC50 of 110 and 820pM 

respectively against HDAC1.
235

 

The other subgroup of HDACIs with a peptide structure is the one of the molecules without 

the L-Aoe functionality. Among them Apicidin, a fungal metabolite, contains an (S)-2-amino-

8-oxodecanyl side chain lacking of the epoxide functionality and acts as reversible HDACi. It 

has an IC50 = 1 nM, thus demonstrating that also the reversible inhibitor can be very powerful. 

In 2002, Apicidin analogs called Apicidin A, C, D1, D2 and D3 were isolated by Singh and 

coworkers (Fig. 3.16).
236

 From the inhibitory activity of these molecules emerged that the 

carbonyl moiety at C8 is very important for the HDAC inhibition, since its removal or 

reduction cause a high increase in the IC50 values.  

 

 
 

Figure 3.16. Structure of Apicidin, Apididin A, C, D1, D2, D3
 
and CHAP.

209
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That result conforms to the early observation by Colletti and coworkers who conducted SAR 

studies on the side chain of Apicidin. They found that the reduction of the keto group at C8 

position to alcohol or methylene, as well as the conversion to olefin or epoxide, results in the 

attenuation of the anti-HDAC activity of Apicidin. However, substitution of the ethyl ketone 

moiety of the Apicidin side chain with a hydroxamic acid, epimeric epoxide or hydroxyketone 

group allows to obtain analogs with improved HDAC activity respect to Apicidin.
237

 

Recently, a new group of cyclic peptides was obtained by substituting the epoxy ketone 

moiety of Trapoxine and derivatives with a metal binding group, i.e. a hydroxamic acid, to 

give the cyclic hydroxamic acid-containing peptides (CHAPs) (Fig. 3.14). All CHAPs are 

nanomolar HDAC inhibitors, particularly the chlamydocin-type CHAP possesses an IC50 = 

0.44 nM. While Chlamidocin displays a high selectivity for HDAC1 rather than HDAC6 (640-

5700 folds), the new molecule does not display the same trend (86 folds). Studies of the chain 

length between the macrocycle and the hydroxamic acid showed that the compounds that 

display the better activity are those with a five-methylene unit linker, respect to those with 

four- and seven-methylene unit linkers. In spite of their lower selectivity, all CHAPs are more 

drug-like than the parent compounds, in fact they have an improved half-life, due to the 

absence of the epoxy-ketone group.
235

 

Among the cyclic peptides HDACIs, the only one under clinical investigation is FK228, or 

Romidepsin, a naturally occurring depsipeptide isolated from Chromobacterium violaceum 

(Fig. 3.17).
238, 239

 FK228 possesses a bicyclic structure with four amino acids and a β-

hydroxyamide moiety, which made up a 16-membered lactone with a disulfide bridge. The 

binding mode of FK228 was deeply studied and from those studies has emerged that the 

disulphide bridge is reduced in vivo by the glutathione reductase and the deriving butenyl thiol 

group is able to chelate the Zn
2+

 in the active site of the enzyme.
235

 The presence of the thiol 

groups is crucial for HDAC inhibition, considering that the methylation of the two sulfhydryl 

groups leads to a high decrease of activity.  

 

 

 Figure 3.17. Structure of FK228
 
. 

 

 

Furthermore, the conformational restriction given by the macrocyle is also important: the 

cleavage of the macrocyclic ester bond to give a linear peptide results in the complete loss of 

activity. FK228 is more active for HDAC1 and 2 with an IC50 of 36 nM and 47 nM 

respectively. 

Cyclic peptides are very important HDACis either able of reversible and irreversible 

inhibition. These molecules have also helped in the understanding of the factors governing 

HDAC inhibitory activity and selectivity. Unfortunately, their druglikeness is poor, so a lot of 
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efforts have to be made in order to obtain inhibitors belonging to this class presenting an 

improved pharmacokinetic profile. 

 

3) Aliphatic acids. As a general trend, most carboxylates presenting very simple aliphatic 

chains possess very low HDAC inhibitory activity, mainly in the millimolar range; but despite 

the poor activity, they were studied for the treatment of cancer. The carboxylic acid moiety is 

thought to be a metal-binding group, although the involved inhibition mechanism is not 

clear.
219

 Some members of this class such as butyric acid (BA), phenylbutyric acid (PBA) and 

valproic acid (VPA) are in clinical trials for the treatment of cancer and spinal muscular 

atrophy (SMA) (Fig. 3.18). An advantage of these compounds is that, because of their 

common use as drugs, their toxicity has been extensively studied, thus allowing to shorten the 

time of the clinical trials.
240, 241

 

 

 

 
 

Figure 3.18. Structure of butyric acid, phenylbutyric acid and valproic acid and their derivatives XII, 

XIII and XIV. 

 
 

 

In order to improve the activity of carboxylic acid inhibitors, ameliorate their bioavailability 

and avoid metabolic degradation, some prodrugs such as XII, XIII and XIV were developed 

(Fig. 3.18). XIV is a molecule combining the structure of BA and all-trans retinoic acid, the 

two precursors are already used in association for the treatment of highly resistant 

promyelocytic leukemia.
242,243

 

 

4) Benzamides. The only group instead of the hydroxamic acid moiety that has allowed 

keeping the HDAC inhibitory activity so far is the benzanilide group. There are two 

hypothesized binding modes for the inhibition mechanism: the primary aniline group can form 

hydrogen bonds or other interactions with essential amino acids in the active site; 

alternatively, benzanilide can chelate Zn
2+

. The finding that removing the primary aniline or 

its acetylation gives inactive derivatives supports the first hypothesis. Normally benzamides 

are less powerful than the corresponding hydroxamic acids; but MS-275 and CI-994, the most 
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active representatives of this class, have proved to be very interesting HDACIs (Fig. 3.19).
244, 

245
  

 

 
 

 

Figure 3.19. Structure of MS-275 and CI-994. 

 

 

MS-275 is undergoing to clinical trials for the treatment of various cancers and inhibits class I 

HDACs, specifically the isoforms HDAC1 and HDAC3 with IC50 of 0.51 μM and 1.7 μM, 

respectively. Many SAR studies were performed on MS-275, from which emerged that 

substitution at the 3, 4, and 5 positions on the benzamide ring attenuates the activity because 

of steric hindrance. MS-275 inhibitory activity is associated with an increasing expression of 

p21 and accumulation of cells in G1 phase.
246

 

CI-994 derives from the acetylation of dinaline and shows cytostatic effect with concomitant 

accumulation of cells in G0/G1 phase, a reduction of S phase level and increased apoptosis. It 

has an IC50 of 0.57 µM and exerts antitumor activity against solid tumors. The exact 

mechanism by which the benzamides exert their antiproliferative effects has not been fully 

elucidated. Additional studies will be required in order to understand the mechanistic 

differences between the benzamide and hydroxamic acid classes with regard to HDAC 

inhibition. 

 

5) Electrophilic ketones. Recently, non-hydroxamate HDACIs containing electrophilic ketones 

such as trifluoromethyl ketones and α-keto amides, exemplified by trifluoromethyl ketone XV, 

have been reported (Fig. 3.20).
247

 The inhibitory activity is due to the hydrated form of the 

ketone, that is able to coordinated the metal ion; this mechanism of action was demonstrated 

for carboxypeptidase A, but is probably used with HDAC too.
248

 Compound XV has an IC50 of 

2.6 mM and due to its interesting biological activity, SAR studies were performed in order to 

increase its potency. The connection of the linker with the aromatic rings can be obtained both 

with an ether or amide junctions; while the most active compounds are those with a linker 

made up by five or six methylene units. Unsaturations, a small ring (either aromatic or 

saturated) or heteroatoms such as S and O are also tolerated in the linker. The 

trifuoromethylketone group cannot be substituted because is essential for the activity. All the 

compounds derived from XV act against HDAC1 and HDAC2 with a high activity, in the low 

micromolar/high nanomolar range. Their antiproliferative properties occur in vitro through 

histone hyperacetylation and overexpression of p21 gene. 

 

 
 

Figure 3.20. Structure of electrophilic ketone XV. 
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A limitation in the use of this class of molecules is due to their short half-life; in fact, they are 

fastly reduced to the corresponding alcohol. Despite that, these compounds retain high activity 

and in vivo efficacy, probably because also a brief exposure to HDAC inhibitors can induce a 

biological response. The interesting biological profile of the electrophilic ketone class leads to 

the search of new representatives with additional structural motifs deriving from other classes 

of HDACi. These efforts will allow finding optimal design parameters and tolerances and 

leading to the discovery of more stable molecules. 

3.1.2 HDAC inhibitors in combination therapy 

Cancer is a complex disease caused by insult to the normal genome and both genetic and 

epigenetic alterations are involved in tumor initiation and progression.
178

 As monotherapies, 

HDACIs have proved to be effective against some well defined leukemia types but there are 

increasing evidences that they cannot be used as single agents for the treatment of solid 

tumors.
249

 HDACIs have been used in combination with a lot of other anticancer agents, from 

cytotoxic drugs and irradiation to small molecule inhibitors of defined molecular cancer 

targets such as Topo II inhibitors, taxane, mitomycin and Imatinib.
250, 251, 252

 Although it is 

difficult to provide a molecular rationale for combining an HDACi with another agent, it is 

possible to hypothesize one for cytotoxic agents acting on DNA. These agents act when the 

cell is in the S phase of the cell cycle that is when the double helix is less compact and not 

wrapped by histones. The binding of cytotoxic drugs acting on DNA is favored when the 

macromolecule is in the acetylated form, so a HDAC inhibitors will offer improved access for 

cytotoxic agents to the target DNA/protein complex
 
through the decondensation of chromatin 

due to the increased level of acetylation of several histones (Fig. 3.21).
229  

 

 

 
 

Figure 3.21. Mechanism of action of drugs acting on DNA in the presence and absence of HDACi.
253

 

 

 

It is important that the treatment with HDACIs precedes or is simultaneous to the 

administration of the cytotoxic agent because it must make it more accessible to the drug and 

increase its potency. In addition to the synergistic effects, attributable to increased apoptotic 
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signals of both compounds, the traditional chemotherapy in combination with HDACIs 

increases its activity up to 10 times and the action is specific to cancer cells, without the 

involvement of healthy cells. 

There are many example of combination therapy between HDACIs and cytotoxic agents. 

Kurz and coworkers showed that the co-administration of Etoposide with sodium butyrate 

increased sensitivity of HL-60 myeloid leukemia or K562 erythroleukemia cells to etoposide-

induced DNA damage and cell death;
254

 also valproic acid can facilitate the cell cycle arrest 

and apoptosis if co-administered with this drug.
255

 The administration of TSA with Etoposide 

increases the apoptosis levels in non-small cell lung carcinoma (NSCLC) and hepatocellular 

carcinoma cells too.
256, 257

 

HDACIs increase the activity of melphalan, an alkylating agent belonging to the group of 

nitrogen mustards. Particularly its co-administration with Depsipeptide, Vorinostat and VPA 

leads to growth inhibition in multiple mieloma (MM) cells.
258, 259

 

It has also been found an increased anticancer effect of Cisplatin in combination with 

HDACIs. The synergistic action is due to the changes in chromatin structure, which make 

DNA more accessible to the covalent modifications, to the changes in DNA interaction with 

transcriptional regulators, to the decrease of GSH inducted by cisplatin.
260

 

Anthracyclines anticancer activity is enhanced by the co-administration with HDACIs. Several 

HDACis (i.e. TSA, VPA, Entinostat, Panobinostat, sodium butyrate, Vorinostat, Abexinostat) 

were shown to potentiate the effects of Doxorubicin in many cancer cell lines in  vitro, in vivo 

and in clinical trials. 

Because of the promising results found in preclinical studies utilizing HDAC in combination 

with other cytotoxic agent and in order to avoid the problems due to the co-administration of 

different drugs, it might be interesting to develop a MTDL; otherwise a single compound 

constructed by incorporation of HDACIs into other active agents. Because of the presence of 

large hydrophobic patches at the HDAC surface rim, it is conceivable that appropriate 

conjugation of the surface recognition group of a prototypical HDACi to other hydrophobic 

antitumor pharmacophores could furnish a new class of bifunctional agents. Guerrant et al., 

combining in one molecule SAHA and the fragment of the drug Daunorubicin, have realized 

an example of such MTDL design (Fig. 3.22).  

 

 

  
 

 

Figure 3.22. Structure of Daunomycin and the MTDL derivative XVI. 

 

 

On this basis, also conjugates of Daunomycin and triazolaryl-hydroxamic acid were designed, 

considering that triazole may facilitate the recognition by the enzyme. The biological tests 

have shown that these hybrid molecules lead to an inhibition of the proliferation of some 

cancer cell lines at micromolar concentrations, thus confirming the compatibility of HDACi 
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with the Topo II inhibitor. Although their IC50 values are lower than those of SAHA and 

Daunorubicin administered alone, the bifunctional molecules synthesized are very promising, 

because they allow avoiding the adverse effects due to the pharmacokinetics interaction of two 

drugs administered separately. The best results were obtained with compound XVI, whose 

cytotoxic activity is in the submicromolar range.
261
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Chapter 4. Polyamine and cancer 

 
 

Polyamines are basic natural compounds occurring in vivo as polycations. They are important 

cellular components with numerous functions, in particular cell growth. The polyamines 

physiologically present at the cellular level are the tetramine spermine, the triamine 

spermidine and the diamine putrescine (Fig. 4.1).  

 

 

 
 

Figure 4.1. Structure of naturally occurring polyamines: putrescine, spermidine and spermine. 

 

 

These molecules, positively charged at physiological pH, bind via ionic bonds and 

electrostatic interactions many negatively charged macromolecules such as nucleic acids, 

proteins, phospholipids and are able to modulate the activity of proteins and organelles. In 

particular, the charge distribution of spermine makes this polycation able to stabilize the DNA 

helix against thermal or radiation damage following the formation of bonds with the phosphate 

groups of the two strands of the macromolecule; spermine also favors the formation of DNA 

structures typical of mitosis which are characterized by a greater compactness. Thanks to their 

ability to establish links with DNA and modulate DNA-protein interaction, the polyamines are 

proposed as cell cycle modulators. 

The role of these macromolecules on cell replication has been widely studied and, starting 

from assessments carried out on cell cultures, it was shown that the concentration of 

polyamines varies in the different phases of the cell cycle. In particular, in correspondence of 

the transition phase G1/S, the intracellular concentration of putrescine increases, causing the 

exit of the cell from the G1 phase prior to the DNA synthesis and promotes the cell incoming 

in the phase of DNA replication (S). Furthermore, a decrease in polyamine concentration 

during the G1 phase leads to an increased concentration of the cell cycle inhibitor proteins 

p21, p27 and p53, which results in the block of the cell cycle. The considerable importance of 

polyamines in the processes involved in cell proliferation has made clear the involvement of 

these molecules in carcinogenesis.
262

 

 

4.1 Polyamine synthesis and transport 

The polyamines are critical factors for growth regulation, differentiation and cell death: they 

are present in concentrations in the µM range and their concentration is finely regulated by 

different control mechanisms, such as the synthesis of precursors of amino acids or uptake of 

the cell. In cells polyamines are synthesized from the amino acids L-arginine and L-

methionine via a series of six enzymatic reactions. Starting from arginine, the enzyme arginase 
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generates L-ornithine, precursor of putrescine, while for the biosynthesis of spermidine and 

spermine is critical methionine, which is capable of giving propyl-aminic groups (Fig. 4.2). 

The first enzyme involved in the synthesis of these molecules is the ornithine decarboxylase 

(ODC), which, following the decarboxylation of ornithine, allows to obtain putrescine. 

Subsequently enzymes spermine and spermidine synthase form respectively spermine and 

spermidine.
263

 The activity of these enzymes is strictly regulated by the availability of the 

substrate, i.e. the decarboxylated S-adenosylmethionine, which then serves as propyl-aminic 

group donor and is synthesized by the enzyme S-adenosylmethionine decarboxylase (SAM-

DC). The decarboxylases ODC and SAM-DC remain active for a very short time and are 

highly inducible and, thanks to that, the biosynthesis of polyamines is tightly regulated. 

Despite the synthesis of polyamines is a non-reversible process, the cell has developed a 

mechanism to prevent the accumulation of spermine and spermidine involving the 

spermine/spermidine N1-acetyltransferase enzyme. This enzyme is able to convert the 

spermine and spermidine in putrescine. The activity of this enzyme is usually very low but it 

may increase in response to accumulation of polyamines, for example, following exogenous 

administration. The enzyme uses acetyl-CoA as cofactor to give acetylated spermine and 

spermidine, which become substrates of N1-acetyl polyaminoxidase (PAO) that is responsible 

for the conversion of spermine previously in spermidine and then in putrescine.  

 

 
 

Figure 4.2. Synthesis and metabolism of natural polyamine.
263

 

 

 

Acetylation leads to the loss of the positive charges of polyamines; furthermore the acetylated 

form of the molecules are able to permeate the membrane more easily, thus facilitating their 

removal from the intracellular compartment. 

The metabolic pathway mediated by PAO leads to the formation of secondary products such 

as γ-aminobutyric acid, ammonia, 3-acetamidopropanale and hydrogen peroxide; which 

accumulation leads to programmed cell death because of their toxic properties. 
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The concentration of polyamines in cells is mainly due to their endogenous production, but 

also the transport between the inside and the outside of the cell contributes to their 

homeostasis. The process of influx of polyamines from the extracellular environment is done 

by the polyamine transporter system (PTS) in an energy-dependent manner. It is known that 

PTS acts in a time-, temperature-, concentration- dependent mode and that it is saturable. 

Although some cells have a single transport system for all the three major polyamines, most of 

the cells have two different types of carrier, one with affinity for putrescine, able to also 

transport the other polyamines and one for spermine and spermidine. The putrescine-PTS is a 

sodium dependent transporter, while the spermine/spermidine-PTS is sodium indipendent. 

Two different modes for the internalization of these macromolecules by the transporter have 

been hypothesized: the first model proposes that the polyamines are introduced into the cell 

through a receptor-mediated endocytosis after their binding to heparan sulphate on a molecule 

of glypican-1.
264

 The second hypothesis describes the need of a negative membrane potential 

in order to have the transport.
265

 The transport from inside to outside the cell instead is a 

process regulated by the state of cell growth, induced by the decrease of the rate of replication 

and inhibited by the opposite stimulus. 

Cancer cells have a high demand for polyamines to support their rapid growth and, being the 

endogenous synthesis inadequate to their needs, use the polyamine transporter to import them 

from the extracellular environment. In contrast, normal cells synthesize individually 

polyamines for their needs and have a relatively low level of activity of the transporter. As a 

consequence, the PTS turns out to be overexpressed in cancer cells and that is demonstrated by 

the fact that radiolabelled putrescine accumulates in brain tumors much more than in the 

surrounding normal brain parenchyma.
266

 More importantly, the PTS is promiscuous so it is 

able to transport various polyamine-like molecules. The differences in the level of transporter 

activity between normal and malignant cells provide a mechanism preferentially directing 

anti-cancer drugs (polyamine-drug conjugates) to cancer cells. The polyamine can be linked to 

the drug to provide a vector for delivery through the PTS, at the same time reducing the toxic 

effect on normal cells associated with conventional chemotherapy. In addition, the polyamine 

vector may increase the activity of cytotoxic drugs acting on DNA by increasing their binding 

due to the polyamine affinity for DNA.
267

 

That approach has not proved to be not so simple as thought, since, as mentioned before, the 

uptake of polyamines is regulated not only by the PTS but also from other transport systems 

and the different analogs can bind to different carriers.
268

 Moreover the cell itself possesses 

more systems responsible for the expulsion of these molecules from the cell, depending on the 

state of growth of the cell itself and therefore of its actual need. Unfortunately, although it has 

long been known that polyamines are essential in cancer and that their transporter is 

overexpressed in cancer cells, yet very little is known about the structure and functioning of 

the latter and the development of drugs that exploit PTS remains a hard goal. 

 

4.2 Polyamine-drug conjugates 

As previously stated, polyamines are able to interact with DNA by virtue of their charge 

distribution that allows the formation of ionic bonds with phosphates, and in particular are 

able to increase the stability of G-quadruplex structures. Thanks to those properties, 

polyamines have been used in the design of compounds with antitumor activity joined to other 

portions. The molecules obtained from this approach are internalized in tumor cells due to the 

presence of the PTS at the cell membrane level. Being PTS more expressed in the tumor cell 

types that strategy allows to decrease the side effects induced by the drugs in load of healthy 
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cells. One of the first synthesized compounds of this class was the Chlorambucil-spermidine 

conjugate developed by Cohen and coworkers (Fig. 4.3). Chlorambucil is a nitrogen mustard-

alkylating agent used for the treatment of some types of leukemia, but its use is strongly 

limited by the induction of hematological suppression. Its polyamine derivative enters into the 

cell through the PTS, in fact, its co-administration with difluoromethylornithine (DFMO), an 

inhibitor of polyamine synthesis, causes an increase of cytotoxicity of 35 fold respect to 

chlorambucil alone. In addition, the conjugate successfully competed with spermidine for 

uptake and the presence of the polyamine moiety determines an increase of the affinity 

towards the DNA of 10000 times.
269

 

 

 

 

Figure 4.3. Structure of Chlorambucil-spermidine conjugate. 

 

 

Later Phanstiel and coworkers created a series of polyamine-intercalator conjugates with the 

dual purpose of facilitating the entry of Topo II inhibitors via the PTS, and to increase the 

affinity of these agents for the DNA. Such compounds are made up by an aminoacridine 

(XXXVI and XXXVII) or anthracene (XXXVIII and XXXIX) nucleus, therefore able to 

intercalate, linked to the skeleton of the polyamine spermidine (Fig. 4.4).
270

 

 

 

 
 

Figure 4.4. Structure of aminoacridine- and antracene-polyamine conjugates. 

 

 

Further studies have led to affirm that the architecture itself of polyamines is toxic to the cell 

and the different scaffolds linked to them determine different cytotoxicity. In order to assess 

the importance of the polyamine structure, Phanstiel synthesized a series of anthracene 

conjugates in which the number of methylenes between the nitrogen atoms of natural 

polyamines was varied. The ability of such compounds to enter the cytoplasmic compartment 

via the PTS in comparison to the natural polyamines has been studied in a detailed manner 

together with their toxicity against tumor cells. Through cytotoxicity studies carried out on 

these compounds, it was found that triamine-conjugates have a greater toxicity and are more 
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internalized than tetramine-conjugates. From the study of the affinity of the different 

molecules for the PTS were obtained, however, lower Ki values for tetramines in competition 

experiments involving radiolabeled spermidine. Furthermore it was noted that the length of the 

methylene spacer between the amino groups has an important effect on the Ki values, with 

obvious preference by the carrier for the butyl spacer. It was possible to assume tetramines, 

having lower Ki values, should have been more toxic to malignant cells. Studies of IC50 give 

instead an opposite trend. Studies at the cellular level have shown that triamines bind the cell 

surface but are easily removed by means of washes because of their low affinity for the PTS. 

In contrast, the tetramine-conjugates with higher affinity (Ki in nM range) are irreversibly 

bound to the membrane and remain adherent to the cell surface even after several washings. 

Triamines, however, have a higher cytotoxicity because they are more internalized by tumor 

cells (low IC50 values). The internalization of polyamines was effectively studied by 

deconvolution microscopy: initially polyamines placed in contact with the cell surface bind the 

PTS and are subsequently subjected to endocytosis with the formation of vesicles rich in 

polyamines within the cell. Triamines have less affinity for the PTS than tetramines, so they 

can dissociate from the transporter and determine their toxic effects by acting in the 

cytoplasm, while the tetramines conjugates, tightly bound, can not do that.
271

 

A very successful polyamine-drug conjugate is F14152, an etoposide-spermine conjugate 

synthesized by Barret and coll (Fig. 4.5). This molecule presents all the researched properties 

for polyamine conjugates: increased cytotoxicity and DNA binding affinity than eEtoposide, 

uptake through PTS and in vivo reduced toxicity. F14152 was 8 time more cytotoxic than the 

parent compound, due to increased DNA affinity and to its higher concentration in cancer cells 

and, thanks to its optimal anticancer profile, the compound is now ongoing in clinical trials.
272

 

 

 

 

 
 

Figure 4.5. Structure of the Etoposide-spermine conjugate, F14152. 

 

 

The identification of the mammalian PTS will greatly help in the development of polyamine 

drug conjugates in the future. Currently, the evidence for their uptake via PTS is obtained 

indirectly and it cannot be established with safety that these conjugates used the PTS for their 

internalization.  

Despite the lack of knowledge about the structure of the transporter, some effective 

compounds like F14152 have been developed, thus allowing the identification of the structural 

requirements necessary for the use of the PTS. 

 

 



Chapter 5  NDI-polyamine conjugates as MTDLS 

59 

 

Chapter 5. Naphthalene diimide-polyamine conjugates as 

Multi-Target-Directed Ligands 

 

5.1 Drug design 

The design and synthesis of novel anticancer agents is one of the most active research fields in 

medicinal chemistry. Many efforts have been spent in the last decades in order to find new 

potential candidates for the treatment of this complex pathology but, despite those, the drugs 

that are currently used are characterized by a multitude of side effects deriving from their lack 

of selectivity for cancer cells. 

Particularly, one of the most important classes of cytotoxic agents is represented by molecules 

able to reversibly interact with DNA, since DNA is involved in cell proliferation and in the 

cancerogenetic process. Among them, intercalators constitute a large group: they are able to 

stabilize the double helix through the formation of non covalent bonds with adjacent base 

pairs. As a consequence, DNA cannot recognize associated proteins like transcription factors 

or polymerase, leading to replication problems and apoptosis. 

As previously highlighted, NDI derivatives are able to act as intercalators and they also have 

demonstrated their ability to stabilize higher order DNA secondary structures, such as triplex 

and quadruplex DNAs. 

Polyamines are naturally occurring compounds that, because of their protonation at 

physiological pH, are able to interact with the phosphate residues of the backbone of the DNA 

and are also involved in cell cycle regulation and apoptotic processes. It has been 

demonstrated that polyamines are able to interact with different biological counterparts, so that 

have been considered a "universal template" for the recognition of different targets.
273

  

Furthermore, polyamines have been studied to achieve the delivery of drugs through the PTS. 

Their structural diversity can be exploiting for the selective targeting, by varying their length, 

by inserting appropriate substituents and by varying the number of nitrogen atoms of the 

polyamine backbone. 

My research group has long been involved in the design and synthesis of anticancer 

compounds based on a NDI scaffold. After the studies conducted by the National Cancer 

Institute (NCI) on a panel of 60 cell lines  the most interesting compounds of our previous 

NDI series have proved to be V and its analogue VI in which the o-methoxy benzylic ring is 

replaced with the 2,3,4-trimethoxybenzylic one.  In particular the interesting biological profile 

of symmetric derivatives V and VI, which makes them promising MTDLs, 

has stimulated further research in this field. For this reason, these two NDI derivatives were 

chosen as lead compounds for the structural modifications subject of this project, whose aim 

was to synthesize polyamine-NDI asymmetric conjugates. This was accomplished by 

replacing one of the two side chains of V and VI with a polyamine chain in order to increase, 

on one hand, the selective cytotoxic activity towards cancer cells thanks to the interaction with 

G-quadruplex structures and secondly to obtain a selective delivery exploiting the natural PTS 

(Fig. 5.1). The derivatives 1-13 have been obtained by varying the number of nitrogen atoms 

and the methylene chain length between them. In order to assess the importance of the 

terminal primary amine function for the recognition by PTS, derivatives 2 and 9, in which 

primary amine is monomethylated to a secondary amine, and 13, lacking of the terminal 

nitrogen group, were synthesized. Finally, to evaluate the importance of the secondary amine 

function of the spermine chain for the cell internalization through the PTS and for the 
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quadruplex targeting profile, compound 11, in which the inner nitrogen atoms of spermine 

have been replaced with oxygen atoms, has been designed. 

 

 

Figure 5.1. Drug design of the NDI-polyamine conjugates. 

 

5.2 Methods 

5.2.1 Chemistry 

Compound 1-13 were synthesized according to Schemes 5.3 and 5.4. 

Intermediates 40 or 41 and the appropriate protected polyamines 23, 24, 27, 38, 39, 42-46, 18 

and ethylamine 58 were condensed with 1,4,5,8-naphthalenetetracarboxylic dianhydride 

(NTCDA) to give the intermediates 47-57, 59 and 60. The NDI intermediates were 

deprotected through acidic hydrolysis to give the final compounds 1-13. 

The diamines 40 and 41, 18 and 19 and the protected polyamines 28, 29 and 42-46 were 

prepared according to literature procedures.
141,  274,  275

 The protected polyamines 23, 24 and 27 

were prepared following the procedure reported in scheme 5.1. 
 

1,3-diaminopropane and 1,4-diaminobutane were selectively protected at one of the two basic 

functions using di-tert-butyl dicarbonate to give, respectively, the intermediates 18 and 19. 3-

amino-1-propanol and 4-amino-1-butanol were protected at the amino group as trifluoroacetic 

acid esters to give the intermediates 14 and 15, respectively. After activation of the hydroxyl 

group of 14 and 15 with tosyl chloride, the corresponding tosylates 16 and 17 were condensed 

with 18 or 19 to provide the derivatives 20, 21 and 22. The basic hydrolysis of 20 and 21 led 
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to the removal of the trifluoroacetate protecting group giving the intermediates 23 and 24. 22 

was further reacted with di-tert-butyl dicarbonate to obtain the protected polyamine 25, that 

underwent to condensation with 16 and then again to basic hydrolysis to afford 27. 

The protected polyamines 38 and 39 were obtained following the procedure reported in 

Scheme 5.2.  

Polyamine 28 and 29 protected on the secondary basic groups, were treated with benzaldehyde 

to afford the corresponding Schiff bases, reduced in situ with sodium borohydride to obtain 30 

and 31, respectively. The latter were protected at the primary amine function as trifluoroacetic 

acid esters obtaining 32 and 33 that were converted in 34 and 35 through methylation of the 

benzyl amino group. The basic hydrolysis of the trifluoroacetic esters followed by removal of 

the benzylic protecting group through catalytic hydrogenation, allowed to obtain compounds 

38 and 39. 

 

 

 

 

 

Scheme 5.1. (i) EtOCOCF3, r.t., 1 h; (ii) Tosyl chloride, Et3N, DIMAP, CH2Cl2, r.t., overnight; (iii) 

THF, r.t., 16 h; (iv) NaOH 40% p/p, MeOH, r.t., 16 h; (v) a) Boc2O, MeOH, r.t., 16 h; b) NaOH 40% 

p/p, r.t., 12 h. Boc = (CH3)3COCO- 
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Scheme 5.2. (i) a) Benzaldehyde, MeOH, reflux, 5 h, b) NaBH4, EtOH, r.t., 16 h; (ii) EtOCOCF3, NEt3, 

r.t., 16 h; (iii) MeI, Et3N, THF, r.t., 24 h; (iv) NaOH 40% p/p, MeOH, r.t., 16 h; (v) H2/Pd, MeOH, r.t., 5 

h. 

 

  

Scheme 5.3. (i) DMF, reflux, 3 h; (ii) HCl 3M, r.t., overnight. 
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Scheme 5.4. (i) DMF, reflux, 3h; (ii) HCl 3M, r.t., overnight for 12/ Et2O/HCl for 13. 

 

5.2.2 Biophysical Evaluation 

The G-quadruplex binding ability of compounds 1-13 was assessed by Fluorescence 

Resonance Energy Transfer (FRET) melting technique. Values are expressed as the melting 

temperature difference between the nucleotide with drug and the negative control (ΔTm). 

 

5.2.3 Biology 

Derivatives 1-13 were submitted to the Developmental Therapeutics Program (DTP) at 

National Cancer Institute (NCI) for evaluation of their antiproliferative activity against 60 

human cancer cell lines derived from nine human cancer cell types, grouped in sub-panel 

disease including leukemia, non-small-cell lung, colon, central nervous system, melanoma, 

ovarian, renal, prostate, and breast cancer cell lines. 

The derivatives were further tested to assess their ability to enter the cancer cells exploiting 

the PTS by evaluating the increase in the cytotoxic activity in presence of DFMO and 

aminoguanidine and for their ability to block Topo. 

 

5.2.4 Computational studies 

With the aim to investigate the binding mode of the most promisinng compounds 3, 7, 8, 11 

and V for duplex and G-quadruplex DNA, docking simulation were performed using the 

available crystallographic structures from the Protein Data Bank (PDB). 

 

5.3 Results and discussion 

As preliminary screening compounds 1-13 were submitted to the Developmental Therapeutics 

Program (DTP) at National Cancer Institute (NCI) for the evaluation of their anticancer 

activity against different cancer human cell lines, that have been grouped in disease sub-panels 

including leukemia, non-small-cell lung, colon, central nervous system, melanoma, ovarian, 

renal, prostate, and breast tumor cell lines. The compounds have been dissolved in dimethyl 

sulfoxide and evaluated at five concentrations at 10-fold dilution, the highest being 10
-4 

M. All 

the compounds were accepted except compound 6, due to its low cytotoxicity in a preliminary 

assay. The results relative to the most promising cell lines are showed in Table 5.1 and are 

expressed as the negative log of the molar concentration at three assay end points: the 50% 
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growth inhibitory power (pGI50), the cytostatic effect (pTGI = total growth inhibition) and the 

cytotoxic effect (pLC50).  
 

Table 5.1. Growth inhibition, cytostatic and cytotoxic activity of 1-5, 7-13 and V-VI in the 60-Cell 

Panel.  

 modes Leukemia 
(SR) 

NSCLC 
(NCI-

H522) 

Colon 
(COLO205) 

CNS 
(SF-

268) 

Melanoma 
(SK-MEL-5) 

Ovarian 
(OVCAR-

4) 

Renal 
(RXF393) 

Prostate 
(PC-3) 

Breast 
(MDA-

MB-468) 

 

1 

 

 pGI50 
 

7.49 

 

6.05 

 

6.37 

 

6.39 

 

6.28 

 

6.18 

 

6.64 

 

6.07 

 

6.24 

 pTGI 4.57 5.56 5.75 5.12 5.72 5.68 5.73 5.20 5.46 

  pLC50 <4 5.11 5.31  4.42 5.33 5.33 5.29 <4 4.78 

           

2  pGI50 6.57 5.91 6.30 5.99 5.96 6.18 5.72 5.80 6.00 

 pTGI 5.61 5.55 5.73 5.04 5.63 5.69 5.24 4.99 5.56 

  pLC50 <4 5.18 5.29 4.44 5.31 5.32 4.48 4.09 5.11 

           

3  pGI50 7.12 6.76 6.96 6.57 6.82 6.81 6.70 6.39 7.07 

 pTGI 5.94 6.46 6.61 5.98 6.54 6.50 6.06 5.32 6.66 

  pLC50 <4 6.15 6.27 5.18 6.27 6.20 5.47 4.17 6.30 

           

4  pGI50 6.57 5.87 6.69 5.95 6.77 6.78 6.28 5.61 6.79 

 pTGI <4 5.49 6.40 5.14 6.45 6.45 5.69 4.84 6.44 

  pLC50 <4 5.11 6.11 4.34 6.13 6.13 5.24 <4 6.09 

           

5  pGI50 6.05 5.91 5.65 5.67 5.80 6.33 5.78 5.23 6.34 

 pTGI 4.71 5.43 4.99 4.93 5.52 5.77 5.15 4.10 5.65 

  pLC50 <4 4.76 4.30 4.21 5.24 5.38 4.27 <4 5.06 

           

7  pGI50 6.43 6.75 6.81 6.53 6.81 6.78 6.45 6.30 6.88 

 pTGI 5.27 6.44 6.52 5.79 6.54 6.50 5.88 5.34 6.56 

  pLC50 <4 6.13 6.24 4.54 5.55 6.21 5.37 <4 6.24 

           

8 pGI50 5.88 5.81 6.71 6.02 6.27 5.99 5.87 5.62 6.81 

 pTGI 4.76 5.48 6.41 4.88 5.75 5.51 5.44 4.58 6.48 

  pLC50 <4 4.33 6.10 <4 4.80 5.03 5.00 <4 6.14 

           

9  pGI50 5.35 5.25 5.86 5.45 6.09 5.77 5.42 5.13 5.72 

 pTGI 4.36 4.56 5.09 4.35 5.52 5.04 4.71 4.35 4.93 

  pLC50 <4 4.00 4.43 <4 5.00 <4 4.17 <4 4.28 

           

10  pGI50 5.56 5.87 6.48 5.72 6.30 6.42 5.70 5.61 6.49 

 pTGI 4.79 5.36 5.90 5.01 5.73 5.81 5.03 5.10 5.86 

  pLC50 <4 4.58 5.36 4.07 5.36 5.33 4.30 4.25 5.16 

           

11  pGI50 6.46 5.86 6.60 5.87 6.55 6.62 6.09 5.86 6.59 

 pTGI 5.28 5.51 6.29 5.51 5.91 5.65 5.52 5.38 5.89 

  pLC50 <4 5.17 5.96 5.15 5.43 5.27 5.19 4.87 5.10 

           

12  pGI50 6.78 5.81 6.24 5.91 6.61 6.59 6.42 5.78 6.39 

 pTGI 6.20 5.52 5.74 5.43 6.15 5.97 5.83 5.38 5.78 

  pLC50 <4 5.23 5.32 4.88 5.59 5.47 5.40 4.95 5.28 

           

13  pGI50 6.30 6.32 6.70 5.91 6.75 6.82 6.02 5.97 6.35 

 pTGI 4.89 5.67 6.43 5.29 6.46 6.46 5.63 5.06 5.66 

  pLC50 <4 5.06 6.17 4.56 6.17 6.11 5.24 <4 4.96 

 

 

V  pGI50  6.58 6.83 6.85 6.46 6.79 6.90 6.81 6.69 6.80 

 pTGI 6.03 6.61 6.55 5.83 6.52 6.59 6.52 6.23 6.51 

  pLC50 <4 6.20 6.25 5.33 6.26 6.29 6.23 5.46 6.21 

           

VI  pGI50 6.78 7.11 7.45 6.93 7.10 7.25 7.09 7.05 7.09 

 pTGI 6.19 6.81 7.01 6.47 6.83 6.94 6.78 6.68 6.81 

  pLC50 4.30 6.50 6.66 5.72 6.56 6.62 6.47 6.30 6.50 
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The analysis of the results reported in Table 5.1, showed that the most cytotoxic compound is 

3, bearing the spermidine chain; 7, the spermine-like derivative, is the second most active 

compound, thus indicating a preference of the cancer cells for the natural polyamine carriers.  

In compound related to 3 and 7, the decrease of the number of methylenes between the inner 

nitrogen atoms, providing 1, 5 and 6, causes a decrease of the cytotoxic activity that is more 

pronounced in the spermine-like derivatives. The substituents on the aromatic ring are also 

able to influence the activity, in fact, compound 8, bearing a 2,3,4-trimethoxy substituent on 

the phenyl ring, is less active than the omologue 7; for that reason all the derivatives (except 8) 

contain an o-methoxy substituent.  

The methylation of the terminal nitrogen atom in 2 and 9 negatively influence the cytotoxicity 

of the NDI derivatives, probably because the presence of a terminal primary amine funcion is 

necessary for the PTS-mediated transport into the cell.  

Compound 11, in which the inner nitrogen atoms of spermine have been substituted with 

oxygen atoms in order to investigate their influence in the PTS-mediated internalization, 

shows a lower cytotoxic activity than the spermine derivative 7 but higher compared to the 

shorter derivatives 5 and 6. This finding allows to hypothesize that the presence of the 

secondary amine functions does not influence the delivery through the PTS or the existence of 

another mechanism of action/transport for the oxygen-containing derivative. This latter 

hypothesis is confirmed by the fact that also 12 that does not incorporate in its structure a 

basic nitrogen atom, is quite active towards all the cancer cell lines tested: this NDI derivative 

cannot use the PTS to gain into the cell, so another expedient to enter the cells must be used.  

All the synthesized derivatives do not show any selectivity towards a specific cancer cell line. 

All the compounds, including 6 not selected by the NCI, have been tested to evaluate their 

ability to exploit the PTS to enter into the cells. For that purpose, previously the IC50 towards 

HL60 leukemia cells after 24 h has been assessed. As it can be seen from table 5.2, the results 

obtained are in line with the ones obtained from the NCI screening.  

The most active compound is still 3, with a cytotoxicity similar to the one exhibited by the 

lead compound V.  

The same experiment has been repeated after pre-treatment of the cells with DFMO. DFMO is 

a polyamine synthesis inhibitor; therefore, the pre-treatment with DFMO leads to a decrease of 

the intercellular level of polyamines and increases the compounds' import from the external 

cellular environment. The results of the investigation are reported in table 5.2. Compounds 5-

8, bearing a tetramine group, exert more elevated cytotoxic activity against DFMO-treated 

cells with a decrease of IC50 values, unlike 3 and the reference compound. These results allow 

us to advance the hypothesis that PTS is involved in delivering 5-8 inside the cell and they are 

preferred by PTS instead of 3, suggesting that at least three cationic heads are needed to 

interact with the transporter. These results confirm the robustness of the rational drug design. 

To further validate the use of the PTS to gain into the cells, the same experiment was 

conducted in the presence of aminoguanidine, an inhibitor of the enzymes involved in the 

metabolism of natural polyamines (PAO). The results obtained are a little controversial. As 

reported in table 5.2, all the compounds except the lead compound V and the asymmetric NDI 

11, in which the inner nitrogen atoms are replaced with oxygen atoms, show a decrease in the 

cytotoxic activity in the presence of aminoguanidine. These results lead to the hypotesis that 

the polyamine chains are PAO substrates in the cell and that the cytotoxicity is due to the 

products deriving from their degradation. Compounds V and 11, bearing no polyamine 

carriers, are not substrates for the PAO; for that reason, their IC50 is not correlated to the 

presence of the aminoguanidine.  
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Table 5.2. Cytotoxic activity (mg/ml) of compounds 1-13 towards HL-60 cells (column 2), after pre-

treatment with DFMO (5 mM) (column 3) and after treatment with aminoguanidine (1 mM) (column 4). 

 

Compound HL-60 + DFMO (5mM) + AG (1mM) 

 

1 7.45 8.77 19.00 

2 n.d. n.d. n.d. 

3 2.64 2.67 37.50 

4 6.02 7.82 19.07 

5 16.14 9.00 (-45%) 26.17 

6 16.00 5.25 (-67%) 37.50 

7 5.60 3.67 (-35%) 23.17 

8 7.43 2.70 (-63%) 26.00 

9 n.d. n.d. n.d. 

10 n.d. n.d. n.d. 

11 4.84 4.58 4.90 

12 n.d. n.d. n.d. 

13 n.d. n.d. n.d. 

V 2.22 1.76 1.83 
 

 

We are currently waiting for compounds 2 and 9 to be tested: the results for these two 

derivatives should elucidate if the presence of a primary amine function is required to obtain 

the PTS recognition and further could give insight into the PAO-mediated catabolism. The 

terminal methyl group should avoid the PAO-mediated metabolism, so the IC50 for the 

derivatives should not change in presence of aminoguanidine. 

All the compounds have also been tested for their ability to bind G-quadruplex structures 

using the Fluorescence Resonance Energy Transfer (FRET) melting technique. G-quadruplex 

and duplex DNA recognition by the synthesized compounds was evaluated through 

fluorescence quenching melting assay using a G-quadruplex folded sequence based on the 

human telomeric sequence (G4) and a 18-bp random double stranded DNA (dsDNA), in order 

to assess their quadruplex binding activity and selectivity. The results obtained are reported in 

table 5.3. 

As emerged from figure 5.2, all the synthesized derivatives are able to significantly increase 

the tested Htel22 melting temperature in a concentration dependent manner. It emerged that 

the increment in the melting temperature was generally more intense for the G-quadruplex 

folded sequence than for the dsDNA template, thus indicating the presence of some kind of 

selectivity. However, on both substrates, the process appeared to reach saturation in the low 

micromolar range, which suggests a strong interaction with both DNA arrangements. 

The most efficient G-quadruplex binder is 3 that causes an increment in the quadruplex 

melting temperature of 24.26 ºC and 29.30 ºC at 1 and 2.5 µM concentrations, respectively. At 

the lower concentration the derivative proves also to be selective, in fact the increasing in the 

melting temperature of the double stranded DNA is only 2.33 ºC. The selectivity is lost by 

increasing the dose. It is very interesting to note that the oxigen containing derivative 11 is 

still able to bind the quadruplex sequence, probably thanks to the presence of the primary 

amine function, more efficiently compared to duplex DNA. The presence of the oxigen atoms 

is able to influence the binding mode of this derivative, allowing the compound to display a 

high selectivity for the quadruplex form. Compound 13 does not present a polyamine chain, as 

a consequence it does not present any quadruplex stabilizing activity, while the NDI 12, 
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possessing only a primary nitrogen atom, has a lower affinity for the quadruplex respect to the 

other polyamine conjugated NDIs, its behavior is very similar to the one displayed by 11.  

Table 5.3. Fluorescence quenching melting on dsDNA and G4 of compounds 1-13 and V-VI induced 

by 1 µM (black) and 2.5 µM (red) drug concentrations. Errors were 0.4 ºC. 

 

Compound Htel22 DsDNA 

1 4.44 / 13.26 2.04 / 6.98 

2 4.45/ 18.01 2.87 / 9.05 

3 24.26 / 29.30 2.33 / 12.19 

4 10.93 / 22.15 2.33 / 9.12 

5 5.88 / 22.00 1.81 / 10.42 

6 4.75 / 16.29 3.82 / 13.40 

7 2.49 / 21.40 1.21 / 6.70 

8 4.14 / 13.11 1.40 / 12.57 

9 9.79 / 26.06 7.92 / 17.12 

10 n.d. n.d. 

11 2.56 / 12.89 0.47 / 1.49 

12 5.80 / 11.38 2.64 / 6.71 

13 0.83 / 2.41 0.23 / 0.9 

V 15.50 7.70 

VI 20.50 8.40 

 

 

 
 

Figure 5.2. Variation of DNA (0.25 μM) thermal stability (ΔTm °C) produced by compounds 1-13 in 

50 mM potassium buffer, pH 7.4, evaluated by fluorescence quenching melting experiments. Heating 

rate 1 °C/min. at increasing concentration of the NDIs derivatives on G-quadruplex folded telomeric 

sequence. 

 

 

In general, it can be state that the trend showed is unusual: the introduction of additional 

charges does not increase the quadruplex binding affinity. The spermidine-derivatives 3 and 4 

are in fact more active than the tetramine-derived compounds, thus indicating that the presence 

of an additional cationic group does not influence the binding. Among the lead compounds V 

and VI, the presence of the 2,3,4-trimethoxy substituent on the aromatic ring positively 

influences both the duplex and quadruplex stabilization. This phenomenon is not displayed in 

the NDI-polyamine conjugate series: compound 7 is a stronger binder than 8, probably 
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because the presence of the polyamine chain is responsible for a different mode of interaction 

between the molecule and the DNAs. 

In addition to G-quadruplexes, double stranded DNA represents a confirmed target for NDI, 

that have proved to be responsible for the modulation of the activity of DNA processing 

enzymes, thanks to the formation of NDI-DNA complexes. Thus, agarose electrophoresis has 

been performed to assess the DNA binding and the potential influence on Topo activity of 

these compounds.  

The DNA binding activity was proved using the plasmid pBR322: the plasmid pBR322 results 

shifted in the gel by the presence of increasing concentrations of NDIs (Fig.5.3), proving the 

interaction of the ligands with the DNA; indeed, the binding causes a reduction of the net 

negative charge of the macromolecule and, eventually, an alteration of its hydrodynamic 

volumes. In particular, the derivative endowed with a major DNA-binding ability is 1, 

followed by 4, 3, V and finally VI respectively. Again the triamine derivatives has 

demonstrated to be not only the most cytotoxic derivatives and the best quadruplex binders but 

also the best DNA interacting agents, thus allowing to consider them the most interesting 

molecules within the series. 

 

 

            

                              C                      1                                 3                                4 

     

                                                               V                                  VI 

Figure 5.3. pBR322 DNA binding test: C (negative control) pBR322 alone and pBR322 incubated with 

1, 3, 4, V, VI at the concentrations of 1 (lane 1), 5 (lane 2), 10 (lane 3), 25 (lane 4), 50 (lane 5) and 100 

(lane 6) µM. 

 

 

The same compounds were used to verify the impairment of the ability of TAQ polymerase to 

duplicate a template. The efficiency in the interference respects perfectly the trend showed in 

the previous test. The concentrations inducing TAQ inhibition are reported in table 5.4. The 

new asymmetric derivatives are more active than the parent compounds V and VI towards the 

TAQ polimerase, thus confirming their ability to block the DNA replication, and compound 1 

proved to be the best one within the series. 
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Table 5.4. TAQ and topoisomerase inhibition induced by compounds 1, 3, 4, 7, 10, V and VI. 

 

 
 

 

 

Compounds 1, 3, 4, 7 and 10 and the lead compounds V and VI were also evaluated for the 

recombinant human DNA Topo IIα to verify whether they have any effect on its activity as 

Topo IIα inhibitors or poisons. Topo IIα is the target of widely used anticancer drugs (ie 

Etoposide, anthracyclines and Mitoxantrone), whose function is to avoid the DNA 

superhelical tension and knots, allowing replicative and transcriptional events. 

It is possible to distinguish two different classes of topoisomerase IIα inhibitors: the poisons, 

able to stabilize the covalent DNA topoisomerase IIα complex, and catalytic inhibitors, agents 

acting on any other steps in the catalytic cycle. 

In order to do this, after1 h incubation, the reaction mixture was added of 200 mM NaCl and 

0.1% sodium dodecyl sulphate (SDS): the high ionic strength allows to break potential DNA-

topoisomerase covalent adducts which would cause a reduction of the nucleic acid 

electrophoretic mobility, whereas the SDS remove the DNA-ligand interaction. As a result, 

variations on the electrophoretic run rely only on the activity of the enzyme before loading.  

When the substrate is the supercoiled form of pBR322, topoisomerase induces its relaxation 

and thus produces a form with a reduced electrophoretic mobility.  

Figure 5.4 shows that almost all the tested compounds interfere with topoisomerase activity in 

the low micromolar range, with 1 being the most effective and 3 the worst. That can be 

correlated to the higher quadruplex binding activity of 3. Taken in account the last result, it is 

possible to hypothesize a potential selective DNA recognition process. All the new derivatives 

are more potent than V and VI in inhibiting the enzyme, probably due to the improvement in 

the DNA binding properties. The same compounds were tested in the telomerase IIα poisoning 

assay, but none of them produced inhibition up to 100 µM concentration (data not showed). 
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Figure 5.4. Effect of compounds 1, 3, 4, V and VI on human topoisomerase IIα activity. 

 

With the aim to characterize the conformational profile and binding mode for duplex and 

quadruplex DNAs, compound 3, 7, 8, 11 and VI have been submitted to molecular modelling 

studies. Analysis of the ionization state showed that at pH 7.4 the form in which all the basic 

function are protonated was the most prevalent among all the ionizable states. Consequently, 

the conformational study has been carried out with these ionization forms by the Monte Carlo 

search. The docking simulations were performed using the available crystallographic 

structures from the Protein Data Bank (PDB). Docking models have been obtained with 

Autodock. 

The free energy of the energetically most stable conformers towards quadruplex DNA, whose 

probability to exist is higher than 10%, was evaluated and are reported in Table 5.5, where ΔG 

is the free energy of complexation, dElectr is the electrostatic term, dVdW is the Van der 

Waals term and dGB/SA is the Gibbs Born Surface Area solvatation term, all expressed in 

kcal/mol. 

 

Table 5.5. Details about the best pose of 3, 7, 8, 11 and VI against the G-quadruplex target. ΔG is the 

free energy of complexation, dElectr is the electrostatic term, dVdW is the Van der Waals term and 

dGB/SA is the Gibbs Born Surface Area solvatation term, all expressed in kcal/mol. 

 

 
 

 

 

All the compounds are able to stack on the external G-quartet, at the top or at the bottom of the 

structure. From the free energy results, the best ligand is 3, as reported also by the FRET 

assay. For the polyamine conjugates 3, 7 and 8, the most important term contributing to the 

stabilization is the electrostatic one that considers all the ionic interactions. From the results 

obtained it is possible to explain why the higher number of nitrogen atoms in 7 and 8 does not 

cause an increase in the quadruplex stabilization respect to 3. The deriving higher electrostatic 

contribution is balanced by the solvatation term, thus explaining why 3, whose solvatation 

term is a lot lower, is the best quadruplex ligand within the series. Compounds 11 and VI 
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possess a lower free energy term, thus their quadruplex stabilizing activity is lower respect to 

the polyamine conjugates. 

The molecular recognition obtained in the docking simulations of the ligand 3 with the G-

quadruplex DNA model is shown in Figure 5.5.  

 

 

 
 

Figure 5.5. 3D representation of the best intercalative pose of compound 3 within the quadruplex DNA. 

The ligand and the DNA are respectively displayed as polytube and wireframe models. Positive 

ionizable target nitrogens are shown as blue features. b) 2D ligand representation with the main 

interaction features with the DNA duplex model. The intermolecular hydrogen bonds are represented by 

green dotted vectors.  
 

 

In the complex the ligand fits the NDI core onto the DNA G-tetrads in top position by efficient 

end stacking interaction. All the ionized nitrogen atoms are able to donate hydrogen bonds, 

respectively to the phosphate groups of dG10, dG15 and dG21 (Fig. 5.5b). 

Compound 7 is able to bind the quadruplex DNA both at the top and the bottom position 

where the 2:1 stoichiometry results in a sort of “sandwich-type interaction”. The two binding 

modes have different features, as showed in figure 5.6. In this ternary complex the first bound 

ligand assumed a more relaxed conformation, fitting the NDI core onto the DNA G-tetrads in 

top position by efficient end stacking interaction. Only the benzylic nitrogen and the primary 

one are able to donate hydrogen bonds, respectively to the phosphate groups of dG19 and 

dG20 and dG22 (Fig. 5.6A). The second ligand recognized the G-tetrad in the bottom position 

by stacking of the NDI core, adapting itself in a semi-folded conformation (Fig. 5.6B). The 

side chains of this second ligand assumed a less extended conformation realizing different 

DNA interactions. In this case, only the secondary nitrogen atoms of the spermine chain 

establish hydrogen bonds with dG18 and dG17.  

 

 
 

A 
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Figure 5.6. 3D and 2D representation of the best intercalative pose of compound 7 within the 

quadruplex DNA at the top (A) and bottom (B) positions. 
 

 

 

The free energy of the energetically most stable conformers towards duplex DNA, whose 

probability to exist is higher than 10%, was evaluated and is reported in Table 5.6. Again all 

the polyamine conjugates are more effective in binding the DNA duplex in comparison to 

compound VI, being the electrostatic term the most important one. The latter is always 

balanced by a more important solvatation term. It is very interesting to note that the free 

energy for all the compounds towards duplex DNA is a lot higher respect to quadruplex DNA, 

thus confirming their optimal quadruplex targeting profile. Again, the more selective 

compound is 3, for which the difference in the free energy of complexation between 

quadruplex and duplex DNA is of 4.1 Kcal/mol, the highest one among the tested compounds. 

 

 

Table 5.6. Details about the best pose of 3, 7, 8, 11 and VI against the DNA-duplex target. ΔG is the 

free energy of complexation, dElectr is the electrostatic term, dVdW is the Van der Waals term and 

dGB/SA is the Gibbs Born Surface Area solvatation term, all expressed in kcal/mol. 

 

 
 
 

 

Within the series, compound 3 proved to be the most interesting one and was selected by NCI 

for in vivo studies, using the hollow fiber assay. First, the toxicity of the compound toward 

non tumored animal was assessed in order to define the concentration to use in the following 

study. Compound 3 shows no toxicity up to 6.25 mg/kg dose that can be defined as its 

Maximum Tolerated Dose. Taken that in consideration, the hollow fiber assay was performed 

B 



Chapter 5  NDI-polyamine conjugates as MTDLS 

73 

 

using a 2.4 mg/kg therapeutic intraperitoneal regimen on different tumors. In particular the 

cell lines used were: breast cancer (MDA-MB-231), non small cell lung cancer (NCI-H23, 

NCI-H522), colon cancer (SW-620, COLO205), melanoma (LOX IMVI, UACC-62, MDA-

MB-435), ovarian cancer (OVCAR-3, OVCAR-5) and CNS cancer (U251, SF-295). 

Unfortunately 3 did not reach the minimum score necessary for additional test, so it was not 

further investigated. 

 

5.4 Conclusion 

In this work it has been demonstrated that the insertion of a polyamine chain on the V and VI 

scaffold allows increasing the quadruplex targeting profile and to exploit the PTS to enter into 

cancer cells. In particular, compound 3, characterized by the spermidine chain and by 2-

methoxy group on the aromatic ring, was the most potent within the new series and showed an 

interesting biological profile. In fact, it displayed pGI50 values around 7, demonstrating the 

mantenance of the cytotoxic activity towards multiple cancer lines, comparable with those of 

the lead compound V. Nevertheless, the mechanism of action of 3 was distinct from the one 

proved for V. Indeed, 3 showed the ability to tightly bind quadruplex DNA with high 

selectivity for this higher arrangement, differently from the lead compound. The molecular 

modeling studies explained that the lower solvatation term for the complex is the reason why 

the compound is a better G-quadruplex binder than the spermine NDI derivatives. 

3 was able to inhibit Taq polymerase and topoisomerase; further studies aimed at veryfing 

wheter is responsible for the triggering of caspase cascade, downregulation of ERK 2 protein 

and to inhibition of ERKs phosphorylation, thus possessing the same biological profile of V 

are due to course. 

Unfortunately, 3 was not able to exploit the polyamine transporter for the cell internalization, 

differently from the spermine-like derivatives; the mechanism that allows the compound to get 

into the cell is now under investigation. 

These data, together with the fact that 3 was the only compound selected for the in vivo study 

by NCI, point out that the compound interacts with several targets involved in cancer 

development, therefore this study may represent a promising starting point for the 

development of new MTDLs hopefully useful for the cancer treatment. 

 

5.5 Experimental section 

5.5.1 Chemistry 

All the synthesized compounds have a purity of at least 95% determined by elemental 

analysis. Uncorrected melting points were taken in glass capillary tubes on a Buchi SMP-20 

apparatus. ESI-MS spectra were recorded on Perkin Elmer 297 and Waters ZQ 4000. 
1
H NMR 

and 
13

C NMR were recorded on Varian VRX 200 and 400 instruments. Chemical shifts are 

reported in parts per million (ppm) relative to peak of tetramethylsilane (TMS) and spin 

multiplicities are given as s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet) or 

m (multiplet). IR spectral data were consistent with the assigned structures. From all new 

compounds satisfactory elemental analyses were obtained, confirming  95% purity. 

Chromatographic separations were performed on silica gel columns by flash (Kieselgel 40, 

0.040 e 0.063 mm, Merck) column chromatography. Reactions were followed by thin layer 

chromatography (TLC) on Merck (0.25 mm) glass-packed precoated silica gel plates (60 

F254) and then visualized in an iodine chamber or with a UV lamp. 
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Compounds 1-13 were synthesized following the general procedure developed by our research 

group as follows (see scheme 5.1, 5.2, 5.3 and 5.4). 

General procedure for the synthesis of 40 and 41 

A mixture of the appropriate diamine (5 eq) and aldehyde (1 eq) in toluene was refluxed in a 

DeanStark apparatus for 5 h. Following solvent removal, the residue was taken up in EtOH, 

NaBH4 (8 eq) was added at 0 °C and the stirring was continued at r.t. for 16 h. The solvent was 

then removed and the residue was dissolved in CH2Cl2 and washed with brine. Removal of the 

dried solvent gave a residue that was purified by flash chromatography using as eluent a 

mixture of CH2Cl2/MeOH/33% aq. NH4OH 8/2/0.1, providing the desired product 40 and 41. 

N1-(2-methoxybenzyl)propane-1,3-diamine (40). Yellow oil; 56% yield;
 1

H NMR (200 

MHz, CDCl3) δ 1.65-1.67 (m, 2H), 2.03 (brs, 3H, exch D2O), 2.55 (t, 2H, J = 6.4 Hz), 2.63-

2.66 (m, 2H), 3.73 (s, 3H), 3.81(s, 2H), 6.90- 7.01(m, 2H), 7.09- 7.18 (m, 2H). 

N1-(2,3,4-trimethoxybenzyl)propane-1,3-diamine (41). Yellow oil; 66% yield;
 1

H NMR 

(200 MHz, CDCl3 ) δ 1.67- 1.71 (m, 2H), 2.04 (brs, 3H, exch D2O), 2.57 (t, 2H, J = 6.6 Hz), 

2.66- 2.69 (m, 2H), 3.77 (s, 9H), 3.86 (s, 2H), 7.05- 7.12 (m, 2H). 

 

General procedure for the synthesis of 47-57, 59 and 60 

A mixture of the appropriate diamine  40 or 41 (1 eq), 1,4,5,8-naphthalene-tetracarbocylic 

dianhydride (1 eq)  and the Boc-protected polyamine 23, 24, 27, 38, 39, 42-46, 18 or 58 (1 eq)  

in DMF  was refluxed for 2 h. After cooling down, removal of the solvent gave a residue that 

was purified by flash chromatography using as eluent a mixture of 

toluene/CH2Cl2/MeOH/33% aq. NH4OH 4/5/1/0.03 providing the desired products 47-57, 59 

and 60, respectively. 

tert-butyl(3-((tert-butoxycarbonyl)amino)propyl)(3-(7-(3-((2-methoxybenzyl)amino) 

propyl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-

yl)propyl)carbamate (47). Brown oil; 15% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.43 (s, 

18H), 1.62- 1.73 (m, 2H+1H exch D2O), 1.95- 2.01 (m, 4H), 2.71 (t, 2H, J = 6.4 Hz), 3.10- 

3.12 (m, 2H), 3.30- 3.34 (m, 4H), 3.77 (s, 2H), 3.83 (s, 3H), 3.88- 4.30 (m, 4H), 4.76 (brs, 1H, 

exch D2O), 6.83- 6.86 (t, 2H, J = 7.2 Hz), 7.17- 7.21 (m, 2H), 8.72- 8.26 (m, 4H). 

tert-butyl(3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo 

[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)(3-(methylamino)propyl)carbamate 

(48). Yellow oil; 16% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.42 (s, 9H), 1.96- 2.01 (m, 6H), 

2.59 (s, 3H), 2.73 (t, 2H, J = 6.8 Hz), 2.85- 2.88 (m, 2H), 3.23- 3.35 (m, 4H), 3.80 (s, 2H), 

3.82 (s, 3H), 4.17 (t, 2H, J = 7.6 Hz), 4.26 (t, 2H, J = 7.2 Hz), 6.81- 6.83 (m, 2H), 7.18- 7.24 

(m, 3H), 8.72 (s, 4H). 

tert-butyl (4-((3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-dihydro 

benzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)amino)butyl)carbamate (49). 

Yellow oil, 19% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.43 (s, 9H), 1.52- 1.56 (m, 4H), 1.95- 

2.02 (m, 4H), 2.06 (brs, 1H, exch D2O), 2.63- 2.67 (m, 6H), 2.71- 2.75 (m, 2H), 3.12 (brs, 1H, 

exch D2O), 3.79 (s, 2H), 3.84 (s, 3H), 4.29 (t, 4H, J = 7.0 Hz), 4.89 (brs, 1H, exch D2O), 6.84 

(t, 2H, J = 7.4 Hz), 7.19 (t, 2H, J = 6.8 Hz), 8.73 (d, 4H, J = 7.2 Hz);
 13

C NMR (100MHz, 

CDCl3) δ 27.16, 27.78, 28.15, 28.40, 29.65, 38.82, 39.03, 40.37, 46.44, 46.95, 48.96, 49.27, 

55.21, 78.92, 110.12, 120.27, 126.43, 126.62, 127.97, 128.13, 129.74, 130.86, 130.93, 156.01, 

157.54, 162.80, 162.88. 

tert-butyl (3-((4-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-dihydro 

benzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)butyl)amino)propyl)carbamate (50). 

Yellow oil; 15% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.42 (s, 9H), 1.64-1.73 (m, 4H), 1.78-
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1.85 (m, 2H), 1.95-2.02 (m, 2H), 2.3 (brs, 1H, exch D2O), 2.70-2.75 (m, 6H), 3.20-3.22 (m, 

2H), 3.79 (s, 2H), 3.84 (s, 3H), 4.22 (t, 2H, J = 7.6 Hz), 4.29 (t, 2H, J = 6.4 Hz), 5.15 (brs, 1H 

exch D2O), 6.84 (t, 2H, J = 7.2 Hz), 7.19 (t, 2H, J = 6.8 Hz), 8.73 (s, 4H). 
13

C NMR 

(100MHz, CDCl3) δ 25.72, 26.96, 28.16, 28.38, 29.51, 38.88, 39.03, 40.50, 46.44, 47.37, 

48.95, 49.14, 55.20, 78.99, 120.27, 126.46, 126.57, 128.00, 128.13, 129.74, 130.84, 130.88, 

156.19, 157.55, 162.80. 

tert-butyl (2-((tert-butoxycarbonyl)(2-((tert-butoxycarbonyl)amino)ethyl)amino)ethyl)(3-

(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (51). Brown oil; 

16% yield; NMR (200 MHz, CDCl3) δ 1.46 (s, 27H), 1.66 (brs, 1H, exch D2O), 1.89- 1.98 (m, 

6H), 2.69- 2.76 (t, 2H, J = 6.8 Hz), 2.88- 3.26 (m, 10H), 3.78 (s, 2H), 3.84 (s, 3H), 4.20-4.32 

(m, 4H), 5.12 (brs, 1H, exch D2O), 6.82 (t, 2H, J = 7.0 Hz), 7.17 (t, 2H, J = 6.3 Hz), 8.74 (s, 

4H). 

tert-butyl (3-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino) 

propyl)(3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (52). Brown oil; 

20% yield; NMR (400 MHz, CDCl3) δ 1.44 (s, 27H), 1.66-1.99 (m, 8H), 2.73 (t, 2H, J = 6.8 

Hz), 3.18-3.34 (m, 10H), 3.79 (s, 2H), 3.84 (s, 3H), 4.21 (t, 2H, J = 7.4 Hz), 4.29 (t, 2H, J = 7 

Hz), 6.85 (t, 2H, J = 7.4 Hz), 7.19 (t, 2H, J = 7Hz), 8.74 (s, 4H). 

tert-butyl (4-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino)butyl) 

(3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8] 

phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (53). Brown oil; 30% yield; ; 
1
H NMR 

(400 MHz, CDCl3) δ 1.26- 2.01 (m, 37H+1H exch D2O), 2.74 (t, 2H, J = 6.8 Hz), 3.09- 3.25 

(m, 10H), 3.81(s, 3H), 3.84 (s, 2H), 4.21(t, 2H, J = 7.2 Hz), 4.29 (t, 2H, J = 7.2 Hz), 5.16 (brs, 

1H, exch D2O), 6.85 (t, 2H, J = 7.6 Hz), 7.18-7.22 (m, 2H), 8.76 (s, 4H). 
13

CNMR (100MHz, 

CDCl3) δ 19.96, 25.68, 27.29, 28.08, 37.42, 38.66, 38.96, 43.78, 44.18, 44.94, 46.35, 46.66, 

48.88, 50.31, 55.16, 78.77, 79.37, 90.54, 107.02, 110.07, 120.22, 126.38, 126.53, 126.54, 

127.86, 128.10, 129.70, 130.79 130.84, 155.38, 157.49, 162.64, 162.72. 

tert-butyl (4-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino) 

butyl)(3-(1,3,6,8-tetraoxo-7-(3-((2,3,4-trimethoxybenzyl)amino)propyl)-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (54). Brown oil; 

16% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.43 (s, 27H), 1.45- 1.52 (m, 4H), 1.94- 1.99 (m, 

4H+1H exch D2O), 2.74 (t, 2H, J = 6.8 Hz), 3.08- 3.31 (m, 10H), 3.73 (s, 2H), 3.84 (s, 9H), 

4.21(t, 2H, J = 7.0 Hz), 4.29 (t, 2H, J = 7.2 Hz), 5.16 (brs, 1H, exch D2O), 6.57( d, 2H, J = 

8.4 Hz), 6.92 (d, 2H, J = 8.4 Hz), 8.74 (s, 4H). 
13

C NMR (100MHz, CDCl3) δ 25.69, 

28.23,28.40, 38.71, 39.04, 46.53, 48.56, 55.93, 60.68, 61.01, 79.38, 106.89, 123.93, 126.05, 

126.45, 126.62, 128.95, 130.85, 130.90, 142.04, 152.97, 152.69, 162.77. 

tert-butyl (4-((tert-butoxycarbonyl)(3-(methylamino)propyl)amino)butyl)(3-(7-(3-((2-

methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (55). Yellow 

oil; 23% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.43 (s, 18H), 1.48- 1.52 (m, 6H), 1.97- 2.01 

(m, 4H), 2.58 (s, 3H), 2.73 (t, 2H, J = 6.8), 2.77- 2.79 (t, 2H), 3.09- 3.27 (m, 8H), 3.80 (s, 2H), 

3.83 (m, 3H), 4.15- 4.19 (m, 2H), 4.28 (t, 2H, J = 6.8 Hz), 6.82- 6.86 (m, 2H), 7.17- 7.21 (m, 

2H), 8.74 (s, 4H). 

tert-butyl (4-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino) butyl) 

(3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn] 

[3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (56). Yellow oil; 23% yield; 
1
H 

NMR (400 MHz, CDCl3) δ 1.44-1.56 (m, 27H+6H), 2.04-2.08 (m, 4H), 2.74-2.81 (m, 6H), 
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3.15-3.18 (m, 8H), 3.85 (s, 2H), 3.87 (s, 3H), 4.30-4.32 (m, 4H), 6.84-6.91 (m, 2H), 7.19-7.28 

(m, 2H), 8.75 (s, 4H).  

tert-butyl (3-(4-(3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-

yl)propoxy)butoxy)propyl)carbamate (57).  Brown oil; 26% yield; 
1
H NMR (400 MHz, 

CDCl3) δ 1.41 (s, 9H), 1.53- 1.54 (m, 4H), 1.70- 1.72 (m, 2H), 1.89 (brs, 1H, exch D2O), 1.93- 

2.03 (m, 4H), 2.70 (t, 2H, J = 6.8 Hz), 3.17- 3.19 (m, 2H), 3.19- 3.33 (m, 2H), 3.34- 3.44 (m, 

4H), 3.54 (t, 2H, J = 6.0 Hz), 3.76 (s, 2H), 3.81 (s, 3H), 4.25- 4.31 (m, 4H), 4.99 (brs, 1H, 

exch D2O), 6.81 (t, 2H, J = 8.0 Hz), 7.16 (t, 2H, J = 6.2 Hz), 8.69 (s, 4H).
13

C NMR (100MHz, 

CDCl3) δ 26.36, 26.39, 28.22, 28.27, 28.41, 28.69, 38.68, 39.08, 46.52, 49.03, 55.20, 68.67, 

69.16, 70.60, 70.71, 77.36, 110.12, 120.27, 126.55, 126.59, 126.62, 128.06, 128.18, 129.67, 

130.82, 130.85,155.98, 157.60, 162.60, 162.84. 

tert-butyl (3-(7-(3-((2-methoxybenzyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (59). Yellow 

oil, 16% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.44(s, 9H), 1.94- 1.97 (m, 4H), 2.72 (t, 2H, J = 

7.0 Hz), 3.18- 3.19 (m, 2H), 3.77 (s, 2H), 3.82 (s, 3H), 4.29 (t, 4H, J = 6.2 Hz). 

2-ethyl-7-(3-((2-methoxybenzyl)amino)propyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (60). Brown solid; 24 % yield; ; 
1
H NMR (400 MHz, CDCl3) δ 1.35 

(t, 2H, J = 7.0 Hz), 1.98- 2.02 (m, 2H), 2.74 (t, 2H, J = 7.2 Hz), 3.81 (s, 2H), 3.83 (s, 3H), 

4.26- 4.28 (m, 4H), 6.82- 6.84  (m, 2H), 7.19- 7.20 (m, 2H), 8,73 (s, 4H). 

 

General procedure for the synthesis of 1-12 

A solution of 43-52 or 55 in MeOH and HCl 3M was stirred overnight at r.t. Following 

solvent removal, the residue was washed with Et2O. The resulting solid was filtered and dried 

to afford 1-12, respectively, as hydrochloride salt. 

2-(3-((3-aminopropyl)amino)propyl)-7-(3-((2-

methoxybenzyl)amino)propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone 

hydrocloride salt (1). Orange solid; quantitative yield; m.p. >250 °C; 
1
H NMR (400 MHz, 

D2O) δ 2.09-2.21 (m, 6H), 3.12-3.25 (m, 8H), 3.89 (s, 3H), 4.16-4-24 (m, 4H), 4.27 (s, 2H), 

6.87 (t, 1H, J = 7.4 Hz), 7.21 (d, 1H, J = 8.4 Hz), 7.28-7.33 (m, 2H), 8.42-8.48 (m, 4H); 
13

C 

NMR (100MHz, D2O) δ 23.70, 23.77, 24.29, 36.61, 36.68, 44.09, 44.725, 45.50, 55.58, 11.01, 

117.99, 120.69, 125.04, 125.21, 130.95, 131.60, 157.59, 162.97, 163.00; MS (ESI) m/z = 280 

(M+2H)
2+

. 

2-(3-((2-methoxybenzyl)amino)propyl)-7-(3-((3-(methylamino)propyl)amino) 

propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (2). Yellow 

solid, quantitative yield; m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 2.16- 2.19 (m, 6H), 2.76 

(s, 3H), 3.15- 3.25 (m, 8H), 3.89 (s, 3H), 4.20- 4.26 (m, 4H), 4.28 (m, 2H), 6.86 (t, 1H, J = 

7.4Hz), 7.02 (d, 1H, J = 8Hz), 7.30- 7.34 (m, 2H), 8.50-8.57 (m, 4H). 
13

C NMR (100MHz, 

D2O) δ 23.46, 23.98, 24.20, 32.76, 43.08, 43.99, 44.50, 45.44, 45.72, 46.67, 55.39, 63.51, 

111.06, 118.13, 120.76, 125.46, 125.60, 130.95, 131.56, 157.70, 163.59. MS (ESI) m/z = 287 

(M+2H)
2+

. 

2-(3-((4-aminobutyl)amino)propyl)-7-(3-((2-methoxybenzyl)amino)propyl)benzo 

[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (3). Brown solid; 

quantitative yield; m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 1.62- 1.67 (m, 4H), 2.00- 2.04 

(m, 4H), 2.91 (t, 2H, J = 7.0 Hz), 2.97- 3.01(m, 4H), 3.07 (t, 2H, J = 7.6 Hz), 3.74 (s, 3H), 

4.03- 4.10 (m, 4H), 4.13 (s, 2H), 6.69-6.73 (m, 1H), 6.87 (d, 1H, J = 7.6 Hz), 7.13- 7.19 (m, 

2H), 8.34- 8.37 (m, 4H); 
13

C NMR (100MHz, D2O) δ 22.70, 23.85, 23.96, 24.18, 37.60, 37.80, 
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38.76, 44.03, 45.25, 46.57, 46.98, 55.41, 110.10, 118.03, 120.70, 125.10, 125.17, 125.33, 

130.91, 131.53, 157.60, 163.16; MS (ESI) m/z = 287 (M+2H)
2+

. 

2-(4-((3-aminopropyl)amino)butyl)-7-(3-((2-methoxybenzyl)amino)propyl)benzo[lmn] 

[3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (4). Brown solid, quantitative 

yield, m.p. . >250 °C; 
1
H NMR (400 MHz, D2O) δ 1.84-1.85 (m, 4H), 2.12-2.15 (m, 2H), 

2.21-2.15 (m, 2H), 3.11-3.20 (m, 8H), 3.90 (s, 3H), 4.18-4.14 (m, 2H), 4.21 (t, 2H, J = 6.4Hz), 

4.30 (s, 2H), 6.87 (t, 1H, J = 7.4Hz), 7.03 (d, 1H, J = 8Hz), 7.29-7.35 (m, 2H), 8.49-8.50 (m, 

4H). 
13

C NMR (100MHz, D2O) δ 23.16, 23.71, 24.00, 24.18, 36.53, 37.62, 40.09, 44.04, 

44.47, 46.67, 47.29,  55.41, 111.07, 118.13, 120.76, 125.16, 125.49, 130.83, 130.94, 131.58, 

157.69, 163.20, 163.37; MS (ESI) m/z = 287 (M+2H)
2+

.  

2-(3-((2-((3-aminopropyl)amino)ethyl)amino)propyl)-7-(3-((2-methoxybenzyl)amino) 

propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (5). Orange 

solid, quantitative yield; m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 2.16- 2.22 (m, 6H), 3.11-

3.18 (m, 4H), 3.27-3.34 (m, 4H), 3.57 (s, 4H), 3.90 (s, 3H), 4.17 (t, 2H, J = 6.4 Hz), 4.21 (t, 

2H, J = 7.0 Hz), 4.28 (s, 2H), 6.87-6.89 (m, 1H), 7.01 (d, 1H, J =7.6 Hz), 7.30- 7.33 (m, 2H), 

8.38-8.44 (m, 4H); 
13

C NMR (100MHz, D2O) δ 23.66, 23.99, 24.23, 36.39, 37.57, 37.71, 

43.28, 43.31, 43.95, 45.08, 45.96, 46.65, 55.38, 111.07, 118.13, 120.77, 125.44, 125.64, 

131.01, 131.57, 157.17, 163.61; MS (ESI) m/z = 302 (M+2H)
2+

. 

2-(3-((3-((3-aminopropyl)amino)propyl)amino)propyl)-7-(3-((2-methoxybenzyl)amino) 

propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (6). Brown 

solid, quantitative yield; m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 2.09- 2.19 (m, 8H), 3.11- 

3.25 (m, 12H), 3.28 (s, 3H), 4.17-4.25 (m, 4H), 4.26 (s, 2H), 6.86 (t,1H, J = 7.4 Hz), 7.01 (d, 

1H, J = 8.4 Hz), 7.28- 7.32 (m, 2H), 8.45 (m, 4H). 
13

C NMR (100MHz, D2O) δ 22.58, 22.64, 

23.67, 23.98, 24.22, 36.45, 37.56, 43.99, 44.51, 44.56, 44.65, 45.49, 46.69, 55.39, 111.07, 

118.14, 120.77, 125.62, 130.99, 131.56, 157.71, 163.60; MS (ESI) m/z = 309 (M+2H)
2+

. 

2-(3-((4-((3-aminopropyl)amino)butyl)amino)propyl)-7-(3-((2-methoxybenzyl)amino) 

propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (7). Brown 

solid, quantitative yield; m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 1.82- 1.84 (m, 4H), 2.01-

2.22 (m, 6H), 3.11- 3.25 (m, 12H), 3.90 (s, 3H), 4.20- 4.29 (m, 4H), 4.29 (s, 2H), 6.87 (t, 1H, J 

= 7.0 Hz), 7.03 (d, 1H, J = 8.0 Hz), 7.29-7.34 (m, 2H), 8.54-8.60 (s, 4H); 
13

C NMR (100MHz, 

D2O) δ 22.80, 22.79, 23.71, 24.04, 24.26, 24.78, 34.56, 36.58, 36.67, 36.97, 37.67, 37.87, 

44.09, 44.53, 45.33, 46.58, 47.01, 55.49, 111.05, 118.08, 120.76, 125.08, 125.11, 125.16, 

125.31, 130.95, 131.60, 157.65, 163.11, 163.16, 163.27; MS (ESI) m/z = 315 (M+2H)
2+

. 

2-(3-((4-((3-aminopropyl)amino)butyl)amino)propyl)-7-(3-((2,3,4-trimethoxybenzyl) 

amino)propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (8). 

Brown solid, quantitative yield, m.p.>250 °C; 
1
H NMR (400 MHz, D2O) δ 1.82- 1.84 (m, 4H), 

2.11 (m, 6H), 3.10-3.21 (m, 12H), 3.69 (s, 3H), 3.74 (s, 3H), 3.81 (s, 3H), 4.18-4.23 (m, 4H), 

4.24 (s, 2H), 6.74 (d, 1H, J = 8.8 Hz), 7.12 (d, 1H, J = 8.8 Hz), 8.44 (m, 4H) ; 
13

C NMR 

(100MHz, D2O) δ 22.75, 23.68, 23.99, 24.22, 36.49, 37.57, 37.78, 43.71, 44.49, 45.31, 45.86, 

49.97, 60.75, 61.26, 107.98, 116.04, 125.45, 125.49, 125.65, 126.72, 130.96, 140.75, 151.76, 

154.43, 163.57, 163.59; MS (ESI) m/z = 345 (M+2H)
2+

. 

2-(3-((2-methoxybenzyl)amino)propyl)-7-(3-((4-((3-(methylamino)propyl) amino)butyl) 

amino)propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (9). 

Brown solid, quantitative yield, m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 1.81- 1.83 (m, 

4H), 2.10- 2.18 (m, 6H), 2.76 (s, 3H), 3.93- 3.25 (m, 10H), 3.90 (s, 3H), 4.22- 4.28 (m, 4H), 

4.29 (s, 2H), 6.86 (t, 1H, J = 7.2 Hz), 7.02 (d, 1H, J = 7.6 Hz), 7.26-7.34 (m, 2H), 8.66-8.72 

(m, 4H) ; 
13

C NMR (100 MHz, D2O) δ 22.44, 22.73, 22.75, 23.99, 24.21, 32.75, 44.02, 44.39, 

45.30, 45.71, 46.68, 46.97, 55.40, 111.07, 118.13, 120.77, 125.44, 125.59, 130.97, 131.57, 

157.70, 163.56; MS (ESI) m/z = 643 (M+H)
+
. 
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2-(3-((4-((4-aminobutyl)amino)butyl)amino)propyl)-7-(3-((2-methoxybenzyl)amino) 

propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (10). Brown solid, 

quantitative yield, m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 1.78-1.83 (m, 8H), 2.17 (m, 

4H), 3.06-3.19 (m, 12H), 3.89 (s, 3H), 4.10 (m, 4H), 4.27 (s, 2H), 6.82 (t, 1H, J = 7.2 Hz), 

6.96 (d, 1H, J = 8.4 Hz), 7.25-7.28 (m, 2H), 8.45-8.46 (m, 4H); 
13

C NMR (100MHz, D2O) δ 

20.72, 22.68, 22.77, 23.85, 24.23, 34.54, 38.78, 45.29, 46.62, 46.81, 48.90, 49.20, 125.29, 

125.46, 130.96, 157.63, 163.39. MS (ESI) m/z = 322 (M+2H)
2+

. 

2-(3-(4-(3-aminopropoxy)butoxy)propyl)-7-(3-((2-methoxybenzyl)amino)propyl) 

benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone hydrocloride (11). Orange solid, 

quantitative yield; m.p. . 189.6 °C; 
1
H NMR (400 MHz, D2O) δ 1.48- 1.89 (m, 4H), 1.89- 1.95 

(m, 4H), 1.99- 2.07 (m, 2H), 3.06 (t, 2H, J = 7.2 Hz), 3.12 (t, 2H, J = 8.0 Hz), 3.40- 3.48 (m, 

4H), 3.54- 3.61 (m, 4H), 3.89 (s, 3H), 4.09 (t, 2H, J = 6.4 Hz), 4.17 (t, 2H, J = 6.6 Hz), 4.28 

(s, 2H), 6.86 (t, 1H, J = 7.4 Hz), 7.01 ( d, 1H, J = 7.6 Hz), 7.29- 7.32 (m, 2H), 8.35-8.42 (m, 

4H) ; 
13

C NMR (100 MHz, D2O) δ 23.94, 25.22, 26.50, 26.99, 37.38, 43.96, 46.40, 55.40, 

67.51, 68.02, 70.21, 70.31, 110.91, 117.97, 120.59, 124.63, 124.92, 130.60, 130.78, 131.49, 

157.58, 162.29, 162.73; MS (ESI) m/z = 645 (M+H)
 +

. 

2-(3-aminopropyl)-7-(3-((2-methoxybenzyl)amino)propyl)benzo[lmn][3,8]phenanthroline 

-1,3,6,8(2H,7H)-tetraone hydrocloride (12). Yellow solid, quantitative yield, m.p. >250 °C; 
1
H NMR (400 MHz, D2O) δ 2.10- 2.16 (m, 4H). 3.08- 3.15 (m, 4H), 3.87 (m, 3H), 4.14- 4.22 

(m, 4H), 4.25 (s, 2H),  6.83 (t, 1H, J = 7.4 Hz), 6.99 (d, 2H, J = 8.4 Hz), 7.26-7.30 (m, 2H), 

8.44-8.49 (m, 4H); 
13

C NMR (100MHz, D2O) δ 23.96, 25.30, 37.21, 37.59, 37.60, 37.78, 

44.00, 46.55, 55.37, 110.96, 118.02, 120.68, 125.05, 125.13, 130.90, 131.51, 157.59, 163.14. 

MS (ESI) m/z = 501 (M+H)
+
. 

 

Synthesis of compound 13 

61 (115 mg, 0.243 mmol) was dissolved in the minimum amount of Et2O. Et2O saturated with 

HCl (1 ml) was slowly added to the solution and the precipitate was filtered and washed with 

Et2O (3 x 3 ml). 13 was obtained as a brown solid. 

2-ethyl-7-(3-((2-methoxybenzyl)amino)propyl)benzo[lmn][3,8]phenanthroline-1,3,6,8 

(2H,7H)-tetraone hydrocloride (13). Brown solid, quantitative yield, m.p.> >250 °C; 
1
H 

NMR (400 MHz, D2O) δ 1.12 (t, 3H, J = 7.2 Hz), 2.01- 2.05 (m, 4H), 3.00 (t, 2H, J = 7.4 Hz), 

3.75 (s, 3H), 3.84- 3.89 (m, 2H), 4.02 (t, 2H, J = 6.2 Hz), 4.13 (s, 2H), 6.73 (t, 1H, J = 7.4 

Hz), 6.87 (d, 1H, J = 8.4 Hz), 7.15- 7.19 (m, 2H), 8.15 (s, 4H). 
13

C NMR (100MHz, D2O) δ 

15.65, 26.74, 36.45, 45.51, 46.43, 54.77, 109.87, 117.37, 120.16, 123.79, 125.63, 130.25, 

130.98, 155.83, 160.16. MS (ESI) m/z = 472 (M+H)
 +

.  

 

General Procedure for the synthesis of 14 and 15 

To a cooled solution (0 °C) of the appropriate aminoalcohol (0.8 eq) was added dropwise 

ethyltrifluoroacetate (1 eq) and the resulting mixture was stirred at r.t. for 1 h. After the 

consumption of the starting material, the mixture was dried under vacuum and the product 

obtained was used without further purification. 

2,2,2-trifluoro-N-(3-hydroxypropyl)acetamide (14). Yellow oil, quantitative yield; 
1
H NMR 

(400 MHz, CDCl3) δ 1.70-1.78 (m, 2H), 3.18 (t, 2H, J = 5.1 Hz), 3.69 (brs, 1H, exch D2O), 

3.52 (t, 2H, J = 4.8 Hz), 8.74 (brs, 1H, exch D2O). 

2,2,2-trifluoro-N-(4-hydroxybutyl)acetamide (15). Yellow oil, quantitative yield; 
1
H NMR 

(200 MHz, CDCl3) δ 1.53-1.66 (m, 4H), 3.31 (t, 2H, J = 10.0 Hz), 3.65 (t, 2H, J = 7.2 Hz), 

3.79 (brs, 1H, exch D2O), 8.02 (brs, 1H, exch D2O). 
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General Procedure for the synthesis of 16 and 17 

To a cooled solution of 14/15 (1 eq) in CH2Cl2 were added NEt3 (2 eq), a catalytic amount of 

DMAP and tosyl chloride (1.2 eq). The reaction mixture was stirred at r.t. overnight. Removal 

of the dried solvent gave a residue that was purified by flash chromatography using as eluent a 

mixture of EtOAc/petroleum ether 6/3, providing the desired products 16 and 17. 

3-(2,2,2-trifluoroacetamido)propyl 4-methylbenzenesulfonate (16). Yellow solid, 55% 

yield; 
1
H NMR (400 MHz, CDCl3) δ 1.94-2.00 (m, 2H), 2.46 (s, 3H), 3.45-3.50 (m, 2H), 4.11 

(t, 2H, J = 5.6 Hz), 7.36-7.38 (m, 2H), 7.78-7.80 (m, 2H). 

4-(2,2,2-trifluoroacetamido)butyl 4-methylbenzenesulfonate (17). Yellow solid, 60% yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.60-1.71 (m, 4H), 2.38 (s, 3H), 3.24- 3.27 (m, 2H), 4.02 (t, 

2H, J = 6.8 Hz), 7.29-7.33 (m, 2H), 7.68- 7.63 (m, 2H). 

 

General Procedure for the synthesis of 18 and 19 

The appropriate diamine (10 eq) was dissolved in CH2Cl2, a solution of Boc2O (1 eq) was 

added slowly in 20 minutes. Stirring was continued for 16 h at r.t. Removal of the solvent gave 

residue that was dissolved in CH2Cl2 and washed with brine. The organic fraction was dried 

over Na2SO4 providing the desired products 18 and 19. 

tert-butyl (3-aminopropyl)carbamate (18). Yellow oil; 72% yield; 
1
H NMR (400 MHz, 

CDCl3) δ 1.40 (s, 9H), 1.80-1.85 (m, 2H) 2.00 (brs, 2H, exch D2O), 2.61-2.68 (m, 2H), 2.90-

2.98 (m, 2H), 5.90 (brs, 1H, exch D2O). 

tert-butyl (4-aminobutyl)carbamate (19). Yellow oil; 60% yield; 
1 

H NMR (400 MHz, 

CDCl3) δ 1.38 (s, 9H), 1.52-1.59 (m, 4H) 2.34 (brs, 2H, exch D2O), 2.72-2.79 (m, 2H), 3.19- 

3.24 (m, 2H), 5.95 (brs, 1H, exch D2O). 

 

General Procedure for the synthesis of 20-22 and 26 

To a cooled solution (0°C) of 16 or 17 (1 eq) in THF was added a solution of 18, 19 or 25 (1.5 

eq) in THF. The reaction mixture was stirred for 1 h at 0 °C and then for 16 h at r.t. Removal 

of the solvent gave a crude product that was purified by flash chromatography using as eluent 

a mixture of CH2Cl2/MeOH/33% aq. NH4OH 9/1/0.05, providing the desired products 20-22 

and 26. 

tert-butyl (4-((3-(2,2,2-trifluoroacetamido)propyl)amino)butyl)carbamate (20). Yellow 

oil, 35%yield; 
1
H NMR (400 MHz, CDCl3) δ 1.44 (s, 9H), 1.52-1.54 (m, 4H), 1.72-1.75 (m, 

2H), 2.62-2.65 (m, 2H), 2.82-2.85 (m, 2H), 3.11 (m, 2H), 3.46-3.49 (m, 2H). 
13

C NMR 

(100MHz, CDCl3) δ 27.10, 27.31, 28.00, 39.31, 40.23, 47.78, 48.79, 49.49, 78.66, 

111.51(CF3), 114.36 (CF3), 117.21 (CF3), 120.06 (CF3), 156.02 (COCF3), 156.13 (COCF3), 

156.43(COCF3), 156.79 (COCF3), 157.52. 

tert-butyl (3-((4-(2,2,2-trifluoroacetamido)butyl)amino)propyl)carbamate (21). Yellow 

oil, 47% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.41 (s, 9H), 1.54-1.68 (m, 6H), 2.64 (t, 4H, J = 

6.8 Hz), 3.07 (t, 2H, J = 6.4 Hz), 3.27-3.30 (m, 2H). 
13

C NMR (100MHz, CDCl3) δ 25.70, 

26.15, 26.43, 27.45, 28.77, 37.49, 39.06, 39.19, 78.53, 111.89 (CF3), 114.74 (CF3), 117.58 

(CF3), 120.43 (CF3), 156.96 (COCF3), 157,21 (COCF3), 157.32 (COCF3), 157.69 (COCF3), 

158.05. 

tert-butyl (4-((4-(2,2,2-trifluoroacetamido)butyl)amino)butyl)carbamate (22). Yellow oil, 

27% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.37 (s, 9H), 1.46-1.47 (m, 4H), 1.55-1.62 (m, 4H), 

2.56-2.63 (m, 4H), 3.05 (brs, 2H, exch D2O + m, 2H), 3.34- 3.26(m, 2H), 4.79 (brs, 1H, exch 

D2O). 

tert-butyl(4-((tert-butoxycarbonyl)amino)butyl)(4-((3-(2,2,2-trifluoroacetamido)propyl) 

amino) butyl)carbamate (26). Yellow oil, 27% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.40 (s, 
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18H), 1.46-1.56 (m, 8H), 1.62-1.63 (m, 2H), 1.79-1.80 (m, 2H), 2.93-2.94 (m, 2H), 3.09-3.10 

(m, 6H), 3.43-3.47 (m, 2H). 

General Procedure for the synthesis of 23 and 24 

To a stirred solution of 20 or 21 in MeOH was added slowly a solution of NaOH 40% p/p . 

The reaction mixture was allowed to stir at r.t. for 16 h. After removal of the solvent, the 

residual was taken up with CH2Cl2 and washed with brine. The organic layer was dried to 

obtain the desired products 23 and 24. 

tert-butyl (4-((3-aminopropyl)amino)butyl)carbamate (23). Yellow oil, 87% yield, 
1
H 

NMR (400 MHz, D2O ) δ 1.28 (s, 9H), 1.32- 1.35 (m, 4H), 1.44- 1.52 (m, 2H), 2.41- 2.52 (m, 

6H), 2.93- 2.94 (m, 2H). 

tert-butyl (3-((4-aminobutyl)amino)propyl)carbamate (24). Yellow oil, 64% yield; 
1
H 

NMR (400 MHz, D2O) δ 1.30 (s, 9H), 1.39-1.41 (m, 4H), 1.53-1.58 (m, 2H), 2.49-2.61 (m, 

6H), 2.97-2.99 (t, 2H, J = 6.8 Hz). 
13

C NMR (100MHz, D2O) δ 22.91, 23.52, 24.46, 25.60, 

27.36, 38.48, 44.78, 46.51, 80.79, 157,90. 

 

General Procedure for the synthesis of 25 and 27 

To a solution of 22 or 26 (1 eq) in MeOH was added a solution of Boc2O (1eq) in MeOH. The 

solution was stirred for 16 h at r.t., then NaOH 40% p/p was added. The stirring was continued 

for 12 h at r.t., then the solvent was removed and the residue obtained was purified by flash 

chromatography eluting with a mixture of CH2Cl2/MeOH/33% aq.NH4OH 9/1/0.1, to give the 

desire product 25 and 27. 

tert-butyl (4-aminobutyl)(4-((tert-butoxycarbonyl)amino)butyl)carbamate (25). Yellow 

oil, 51% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.41 (s, 18H), 1.52-1.53 (m, 6H), 2.18-2.20 (m, 

2H), 2.63-2.77 (m, 2H), 3.08-319 (m, 6H), 4.83 (brs, 1H, exch D2O). 

  tert-butyl(4-((3-aminopropyl)(tert-butoxycarbonyl)amino)butyl)(4 

((tertbutoxycarbonyl)amino)butyl)carbamate (27).  Yellow oil, 31% yield; 
1
H NMR (400 

MHz, CDCl3) δ 1.42-1.51 (m, 35H), 1.58-1.65 (m, 2H), 2.67-2.70 (t, 2H, J = 6.6 Hz), 3.09-

3.25 (m, 10H), 4.67 (brs, 1H, exch D2O). 

General Procedure for the synthesis of 30 and 31 

To a solution of 28 or 29 (5 eq) in toluene was added benzaldheyde (1 eq). The resulting 

mixture was refluxed for 5 h. The solvent was removed and the residue was taken up with 

ethanol. NaBH4 (3 eq) was added and the solution was stirred for 16 h at r.t. After evaporation 

of the solvent, the crude product was dissolved in CH2Cl2 and washed with brine (1x10 ml). 

The organic phase was dried over Na2SO4, evaporated and purified by flash chromatography 

using as eluent a mixture of CH2Cl2/MeOH/33% aq.NH4OH 9/1/0.1, providing the desired 

products 30/31. 

tert-butyl (3-aminopropyl)(3-(benzylamino)propyl)carbamate (30). Yellow oil; 80% yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.41 (s, 9H), 1.74- 1.77 (m, 4H), 2.61- 2.65  (m, 2H), 2.73- 

2.78 (m, 2H), 3.13 (brs, 3H, exch D20),  3.21- 3.27 (m, 4H), 3.81 (s, 2H), 7.29- 7.32 (m, 5H). 

tert-butyl (4-((3-aminopropyl)(tert-butoxycarbonyl)amino)butyl)(3-(benzylamino) 

propyl)carbamate (31). Yellow oil, quantitative yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.44 

(s, 18H), 1.62- 1.64 (m, 4H), 1.69- 1.78 (m, 4H), 2.59 (t, 2H, J = 6.8 Hz), 2.66 (t, 2H; J = 6.6 

Hz), 3.13- 3.22 (m, 8H), 3.75 (s, 2H), 7.27- 7.29 (m, 5H). 

 

General Procedure for the synthesis of 32 and 33 

To a stirred solution of 30 or 31 (1 eq) in MeOH, NEt3 (1 eq) and ethyltrifluoroacetate (1 eq) 

were added. The stirring was continued for 16 h at r.t. The solvent was removed and the crude 

product was purified purified by flash chromatography using as eluent a mixture of 
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CH2Cl2/MeOH/33% aq. NH4OH 9/1/0.05, providing the desired products 32 and 33, 

respectively. 

tert-butyl (3-(benzylamino)propyl)(3-(2,2,2-trifluoroacetamido)propyl)carbamate (32). 

Yellow oil, 72% yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.42 (s, 9H), 1.69- 1.73 (m, 4H), 2.61 

(t, 2H, J = 6.8 Hz), 3.18- 3.20 (m, 2H), 3.27- 3,29 (m, 4H), 3.76 (s, 2H), 7.29-7.31 (m, 5H). 

tert-butyl (3-(benzylamino)propyl)(4-((tert-butoxycarbonyl)(3-(2,2,2-trifluoroacetamido) 

propyl)amino)butyl)carbamate (33). Yellow oil, 92% yield; 
1
H NMR (400 MHz, CDCl3 ) δ 

1.44 (s, 18H), 1.46- 1.48 (m, 4H), 1.67- 1.70 (m, 4H), 2.62 (t, 2H, J = 7.0 Hz), 3.11- 3.14 (m, 

4H), 3.27- 3.31 (m, 4H), 3.78 (s, 2H), 7.30- 7.32 (m, 5H). 

 

General Procedure for the synthesis of 34 and 35 

To a stirred solution of 32 or 33 (1 eq) in THF, NEt3  (1 eq) and methyl iodide (1.5 eq) were 

added and the resulting mixture was stirred for 24 h at r.t. The solvent was removed under 

vacuum and the crude product was purified by flash chromatography using as eluent a mixture 

of CH2Cl2/MeOH/33% aq. NH4OH 9/1/0.04, providing the desired products 34 and 35, 

respectively. 

tert-butyl(3-(benzyl(methyl)amino)propyl)(3-(2,2,2-trifluoroacetamido)propyl) 

carbamate (34). Yellow oil, 66% yield; ; 
1
H NMR (400 MHz, CDCl3 ) δ 1.44 (s, 9H), 1.58- 

1.64 (m, 6H), 2.20 (s, 3H), 2.22- 2.23 (m, 2H), 3.26- 3.27 (m, 4H), 3.42 (s, 2H), 7.31- 7.33 (m, 

5H). 

tert-butyl (3-(benzyl(methyl)amino)propyl)(4-((tert-butoxycarbonyl)(3-(2,2,2-

trifluoroacetamido)propyl)amino)butyl)carbamate (35). Yellow oil, 30% yield; 
1
H NMR 

(400 MHz, CDCl3 ) δ 1.41 (s, 18H), 1.43- 1.46 (m, 4H), 1.65- 1.67 (m, 4H), 2.17 (s, 3H), 2.37- 

2.39 (m, 2H), 3.13- 3.15 (m, 6H), 3.26- 3.29 (m, 4H), 3.46 (s, 2H), 7.27- 7.29 (m, 5H). 

 

General Procedure for the synthesis of 36 and 37 

To a stirred solution of 34 or 35 in MeOH was added a solution of NaOH 40% p/p. The 

resulting mixture was allowed to stir for 16 h at r.t. After removal of the solvent, the residue 

was dissolved in CH2Cl2 and was washed with water. The organic layer was dried over 

Na2SO4, providing the desire products 36 and 37, respectively. 

tert-butyl (3-aminopropyl)(3-(benzyl(methyl)amino)propyl)carbamate (36). Yellow oil, 

88% yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.43 (s, 9H), 1.61- 1.64 (m, 2H), 1.71- 1.74 (m, 

2H), 1.75 (brs, 1H, exch D20), 2.16 (s, 3H), 2.34 (t, 2H, J = 7.2 Hz), 2.67 (t, 2H, J = 6.6 Hz), 

3.16- 3.19 (m, 4H), 3.46 (s, 2H), 7.28- 7.31 (m, 5H). 

tert-butyl (4-((3-aminopropyl)(tert-butoxycarbonyl)amino)butyl)(3-(benzyl(methyl) 

amino)propyl)carbamate (37). Yellow solid, 92 % yield; 
1
H NMR (400 MHz, CDCl3 ) δ 

1.41 (s, 18H), 1.45- 1.46 (m, 4H), 1.68- 1.71 (m, 4H), 2.15 (s, 3H), 2.33 (t, 2H, J = 6.0 

Hz),2.73- 2.75 (m, 2H), 3.00- 3.03 (m, 4H), 3.12- 3.15 (m, 4H), 3.44 (s, 2H), 7.21- 7.27 (m, 

5H). 

 

General Procedure for the synthesis of 38 and 39 

To a stirred solution of 36 or 37 dissolved in MeOH, the catalyst was added and the reaction 

mixture was stirred for 5 h at r.t. under H2 flow. After the consumption of the starting material, 

the solution was filtered in order to remove the catalyst and the solution was dried under 

vacuum. The crude product was purified by flash chromatography using as eluent a mixture of 

CH2Cl2/MeOH/33% aq. NH4OH 8/2/0.2, providing the desired products 38 and 39, 

respectively. 
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tert-butyl (3-aminopropyl)(3-(methylamino)propyl)carbamate (38). Yellow oil, 68% 

yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.40 (s, 9H), 1.61- 1.69 (m, 4H), 1.72 (brs, 1H, exch 

D2O), 2.38 (s, 3H), 2.56 (t, 2H, J = 6.6 Hz), 2.67 (t, 2H, J = 6.6 Hz), 3.16- 3.23 (m, 4H). 

tert-butyl(3-aminopropyl)(4-((tert-butoxycarbonyl)(3-(methylamino)propyl)amino) 

butyl)carbamate (39). Yellow oil, 76% yield; ; 
1
H NMR (400 MHz, CDCl3 ) δ 1.42 (s, 18H), 

1.45- 1.47 (m, 4H), 1.60- 1.63 (m, 2H), 1.64- 1.66 (m, 2H), 1.94 (brs, 3H, exch D20), 2.41(s, 

3H), 2.54- 2.56 (m, 2H), 2.66 (t, 2H, J = 6.6 Hz), 3.14- 3.22 (m, 8H). 

 

5.5.2 Biophysical Evaluation 

5.5.2.1 Fluorescence Resonance Energy Transfer (FRET) 

Fluorescence melting curves were determined in a Roche Light Cycler (lecc 470 nm, lemm 

520 nm) in LiP buffer (10 mM LiOH, 50 mM KCl, pH 7.4 with H3PO4). Increasing ligands 

concentrations were added to 0.25 mM final concentration of a labeled human telomeric 

sequence (50-Dabcyl-AGGGTTAGGGTTAGGGTTAGGGTFAM 30  Eurogentec, Belgium). 

Before scan acquisition the reaction mixture was first denatured and annealed. Then, samples 

were maintained at 30 ºC for 5 min before being slowly heated to 95 ºC (1 ºC/min) and 

annealed at a rate of 1 ºC/min. When double stranded DNA was used, dsUP (50-FAM-

ACTATTCCCGGGTAATGA) and dsDOWN (TCATTACCCGGGAATAGT-Dabcyl 30) 

were mixed at equimolar concentrations, heated to 95 ºC for 5 min, and then cooled to rt 

overnight before use. Recordings were taken during both the annealing and melting steps. Tm 

values were determined from the first derivatives of the melting profiles using the Roche Light 

Cycler software. Each curve was repeated at least three times and errors were 0.4 ºC. 

5.5.3 Biology 

5.5.3.1 Growth inhibitory activity 

The screening is a two-stage process, beginning with the evaluation of all compounds against 

the 60 cell lines at a single dose of 10 µM. The output from the single dose screen is reported 

as a mean graph and is available for analysis by the COMPARE program. Compounds which 

exhibit significant growth inhibition are evaluated against the 60 cell panel at five 

concentration levels.  

The human tumor cell lines of the cancer screening panel are grown in RPMI 1640 medium 

containing 5% fetal bovine serum and 2 mM L-glutamine. For a typical screening experiment, 

cells are inoculated into 96 well microtiter plates in 100 µL at plating densities ranging from 

5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell 

inoculation, the microtiter plates are incubated at 37° C, 5 % CO2, 95 % air and 100 % relative 

humidity for 24 h prior to addition of experimental drugs. 

After 24 h, two plates of each cell line are fixed in situ with TCA, to represent a measurement 

of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs 

are solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration 

and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate is 

thawed and diluted to twice the desired final maximum test concentration with complete 

medium containing 50 µg/ml Gentamicin. Additional four, 10-fold or ½ log serial dilutions are 

made to provide a total of five drug concentrations plus control. Aliquots of 100 µl of these 

different drug dilutions are added to the appropriate microtiter wells already containing 100 µl 

of medium, resulting in the required final drug concentrations. 
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Following drug addition, the plates are incubated for an additional 48 h at 37 °C, 5 % CO2, 95 

% air, and 100 % relative humidity. For adherent cells, the assay is terminated by the addition 

of cold TCA. Cells are fixed in situ by the gentle addition of 50 µl of cold 50 % (w/v) TCA 

(final concentration, 10 % TCA) and incubated for 60 minutes at 4 °C. The supernatant is 

discarded, and the plates are washed five times with tap water and air dried. Sulforhodamine B 

(SRB) solution (100 µl) at 0.4 % (w/v) in 1 % acetic acid is added to each well, and plates are 

incubated for 10 minutes at r.t. After staining, unbound dye is removed by washing five times 

with 1% acetic acid and the plates are air dried. Bound stain is subsequently solubilized with 

10 mM trizma base, and the absorbance is read on an automated plate reader at a wavelength 

of 515 nm. For suspension cells, the methodology is the same except that the assay is 

terminated by fixing settled cells at the bottom of the wells by gently adding 50 µl of 80% 

TCA (final concentration, 16% TCA). Using the seven absorbance measurements [time zero, 

(Tz), control growth, (C), and test growth in the presence of drug at the five concentration 

levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. 

Percentage growth inhibition is calculated as: 

[(Ti-Tz)/(C-Tz)] x 100 for concentrations for which Ti>/=Tz 

[(Ti-Tz)/Tz] x 100 for concentrations for which Ti<Tz. 

Three dose response parameters are calculated for each experimental agent. Growth inhibition 

of 50% (GI50) is calculated from [(Ti-Tz)/(C-Tz)] x 100 = 50, which is the drug concentration 

resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in 

control cells during the drug incubation. The drug concentration resulting in total growth 

inhibition (TGI) is calculated from Ti = Tz. The LC50 (concentration of drug resulting in a 

50% reduction in the measured protein at the end of the drug treatment as compared to that at 

the beginning) indicating a net loss of cells following treatment is calculated from [(Ti-Tz)/Tz] 

x 100 = -50. Values are calculated for each of these three parameters if the level of activity is 

reached; however, if the effect is not reached or is exceeded, the value for that parameter is 

expressed as greater or less than the maximum or minimum concentration tested. 

5.5.3.2 Hollow fiber assay 

A standard panel of 12 tumor cell lines are used for the routine hollow fiber screening of the in 

vitro actives. These include NCI-H23, NCI-H522, MDA-MB-231, MDA-MB-435, SW-620, 

COLO 205, LOX, UACC-62, OVCAR-3, OVCAR-5, U251 and SF-295. In addition, alternate 

lines can be used for specialized testing of compounds on a nonroutine basis. The cell lines are 

cultivated in RPMI-1640 containing 10% FBS and 2 mM glutamine. On the day preceeding 

hollow fiber preparation, the cells are given a supplementation of fresh medium to maintain 

log phase growth. For fiber preparation, the cells are harvested by standard trypsinization 

technique and resuspended at the desired cell density (2
-10

 x 10
6
 cells/ml). The cell suspension 

is flushed into 1 mm (internal diameter) polyvinylidene fluoride hollow fibers with a 

molecular weight exclusion of 500000 Da. The hollow fibers are heat-sealed at 2 cm intervals 

and the samples generated from these seals are placed into tissue culture medium and 

incubated at 37 ºC in 5% CO2 for 24 to 48 hours prior to implantation. A total of 3 different 

tumor lines are prepared for each experiment so that each mouse receives 3 intraperitoneal 

implants (1 of each tumor line) and 3 subcutaneous implants (1 of each tumor line). On the 

day of implantation, samples of each tumor cell line preparation are quantitated for viable cell 

mass by a stable endpoint MTT assay so that the time zero cell mass is known. Mice are 

treated with experimental agents starting on day 3 or 4 following fiber implantation and 

continuing daily for 4 days. Each agent is administered by intraperitoneal injection at 2 dose 

levels. The doses are based on the maximum tolerated dose (MTD) determined during prior 

acute toxicity testing. The fibers are collected from the mice on the day following the fourth 
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compound treatment and subjected to the stable endpoint MTT assay. The optical density of 

each sample is determined spectrophotometrically at 540 nm and the mean of each treatment 

group is calculated. The percent net growth for each cell line in each treatment group is 

calculated and compared to the percent net growth in the vehicle treated controls. A 50% or 

greater reduction in percent net growth in the treated samples compared to the vehicle control 

samples is considered a positive result. Each positive result is given a score of 2 and all of the 

scores are totaled for a given compound. The maximum possible score for an agent is 96 (12 

cell lines X 2 sites X 2 dose levels X 2 [score]). A compound is considered for xenograft 

testing if it has a combined ip + sc score of 20 or greater, a sc score of 8 or greater, or 

produces cell kill of any cell line at either dose level evaluated. This scoring system has been 

validated by DCTDC statisticians in CTEP to represent a level of detection expected to score 

current "standard" agents as active. 
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Chapter 6. An epigenetic-genetic approach: targeting 

HDAC with naphthalene diimide derivatives 

 

6.1 Drug design 

As described previously, one of the main targets for the development of new antitumor agents 

is the DNA and among the different class of drugs able to interact with this target, a very 

important one is the class of the intercalating agents. Among these, NDIs are able to interact 

with the DNA intercalating in double helix. The molecules characterized by this planar 

aromatic can recognize the DNA when it is in the form of a double helix and when it forms 

supramolecular aggregates as in the case of the G-quadruplex structures. My research group is 

engaged in the design and synthesis of new anticancer agents with NDI structure, able to 

stabilize the G-quadruplex DNA and block the action of the enzyme telomerase. In particular 

compound 3, designed as NDI-polyamine conjugate, is the one that showed the most 

interesting biological profile. 

Since cancer is a multifactorial disease, we tried to improve the activity of compound 3 

through the insertion of other functional groups endowed with antitumor activity, capable to 

interact with other targets involved in the pathology. Recently one of the target which has 

aroused considerable interest in cancer chemotherapy is HDAC. Numerous types of HDACIs 

are currently in clinical trials for the treatment of various forms of tumors and the FDA has 

approved the use of SAHA (Fig. 3.8) and of FK228 (Fig. 3.15)  for the treatment of cutaneous 

T-cell cancer. A very interesting HDACi is Scriptaid: this compound, which was identified 

through a High-Throughput Transcriptional Screening of a library of over 16 thousand 

compounds, contains a hydroxamic acid moiety distanced by a five methylene chain from the 

NI core (Fig 3.10). 

On this basis, we thought to synthesize compounds 1a-5a combining the main chemical 

features of compound 3 and Scriptaid (Fig. 6.1). These derivatives, characterized by different 

polyamine chains, were designed and synthesized with the goal of obtaining molecules 

capable of: 

 

 bind G-quadruplex DNA and inhibit the activity of telomerase; 

 inhibit HDAC; 

 selectively target cancer cells through interaction with the PTS. 

 

The rationale for the design of a single chemical entity able to simultaneously interact with 

DNA and with HDAC derived from studies conducted by different research groups. First, it 

must be considered that the deacetylated DNA is non-covalently associated with histone 

proteins; HDACIs, by inducing iperacetylation of histone proteins complexed with DNA, 

increase the accessibility of the DNA and consequently the antitumor activity of molecules 

capable of binding the macromolecule. A study by Marks et al. demonstrated that the 

administration of a HDACi (SAHA) before a Topo II inhibitor (Etoposide), potentiates the 

cytotoxic activity of the latter, through a synergistic effect not drug-specific.
257

 A second study 

has provided the rationale for combining in one molecule the hydroxamic acid moiety and the 

intercalating core. This study has shown that molecules derived from the fusion of a Topo II 

inhibitor (Daunomycin) and a HDACi (SAHA), are more active than the Topo II inhibitor 

alone, highlighting that it is not essential that the hydroxamic acid is administered before the 

drug acting on DNA, to exert its action.
258
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Figure 6.1 Drug design of compounds 1a-5a. 

 

 

As cancer results from a combination of epigenetic and genetic aberrations, a  combination of 

therapeutic approaches could be very useful. Thus, combining epigenetic pharmacophores 

with both conventional cytotoxic agent in one molecule might be an important clinical avenue 

to explore, combining an epigenetic-genetic approach within a singular molecular entity. 

The synthesized compounds 1a-5a have different polyamine chains: these differ both in the 

number of atoms of nitrogen and  in the number of methylene units separating them; with the 

aim to identify the correct molecular architecture for the interaction with the PTS, the DNA 

and the HDAC. Furthermore, the presence of various amino groups protonated at 

physiological pH can increase the affinity towards DNA and HDAC.  
 

 

6.2 Methods 

6.2.1 Chemistry 

Compounds 1a-5a were synthesized according to Scheme 6.1. 

The procedure for the preparation of the polyamine chains 42-45 and 27 has already been 

described in Chapter 5.  

The synthesized polyamines 42-45 and 27 were condensed with NTCDA and aminocaproic 

acid, thus obtaining the asymmetric derivatives 6a-11a in which the carboxylic function was 

transformed in a protected hydroxamic acid one using NH2OTHP. The final acid hydrolysis 

allowed the removal of all the protecting groups, leading to the formation of the final products 

1a-5a. 
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Scheme 6.1.  (i) DMF, reflux, 2 h; (ii) O-(Tetrahydro-2H-pyran-2-yl)hydroxylamine, EDCI, HOBT, 

CH2Cl2, r.t., 5 h; (iii) HCl 4M in dioxane, CH2Cl2, r.t., 5 h. 

 

6.2.2 Biophysical Evaluation 

The G-quadruplex binding ability of compounds 1a-5a was assessed by Fluorescence 

Resonance Energy Transfer (FRET) melting technique. Values are expressed as the melting 

temperature difference between the nucleotide with drug and the negative control (ΔTm). 

6.2.3 Biology   

Derivatives 1a-5a  were tested for their ability to inhibit HDAC in HL-60 leukemia cell line. 

Values are showed as the concentration required to the activity of the enzyme by 50% (IC50). 

The antiproliferative activity has been evaluated by the MTT short-term cytotoxicity assay. 

Values are showed as the concentration required to inhibit cell growth by 50% (IC50). 

The compounds HDAC inhibitory activity was also tested in an isoenzyme mixture, while the 

ability to increase the histone acetylation levels for 3a was investigated through Western 

Blotting. 

 

6.3 Results and discussion 

The prepared hydroxamic acids were examined for their HDAC inhibiting properties. For this 

purpose, the compounds were tested using a HDAC isoenzyme mixture purified from HeLa 

cervical carcinoma nuclei, containing at least HDAC isoenzymes 1, 2, 3, 5, and 8. Scriptaid 

was used as reference compound. 

The results reported in Table 6.1 show that all the NDI derivatives are better HDACIs 

compared to the lead compound Scriptaid. The most active compound within the serie proved 

to be 3a, a lower spermine derivative, but it is not possible to describe any trend for the 

inhibition properties linked to the nature of the polyamine chain. 
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Table 6.1. IC50 values towards a HDAC isoenzyme mixture of 1a-5a and Scriptaid.  

 

 
 

 

 

To further assess the HDAC inhibitory activity, the compounds were also tested using a 5 µM 

concentarion in a cell based assay, using a panel of cancer cell lines, with the aim to assess 

their inhibitory activity in a more complex sistem (Fig. 6.2). TSA was used as a reference 

compound. Again, all the synthesized compounds proved to be less active than TSA (used in a 

concentration of 0.2 µM because of its high cytotoxic activity) but more active than the lead 

compound Scriptaid. The compounds were not active towards MCF7 cells, so this cell line 

was excluded from further studies. Among the NDI derivatives, the best one proved again to 

be 3a, together with 5a, so the biological profile of the two compounds was further 

investigated. 

 

 

 
 

Figure 6.2. HDAC inhibitory activity of compounds 1a-5a (5 µM) in comparison with Scriptaid (5 µM) 

and TSA (0.2 µM).  

 

 

The antiproliferative activity of 3a and 5a was evaluated in all the cancer cell lines tested 

(except MCF7) using a concentration of 5 µM and including the polyamine conjugates in 

order to define if the introduction of the hydroxamic acid moiety causes any increase in the 

cytotoxic activity of the derivatives (Fig. 6.3). The hydroxamic acid containing NDIs were 

more active than the precursors; 
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The higher antiproliferative activity may be due to an additional mechanism of action for the 

new derivatives, i.e. HDAC inhibition, in addition to an increased DNA accessibility.   

 

 
 

Figure 6.3. Antiproliferative activity of compounds 3a and 5a in comparison with the homologous 

polyamine conjugates 6 and 10. The concentrations used for the assay was 5 µM. 

 

 

The assessment of the degree of the histone acetylation after treatment with compound 3a and 

Scriptaid, was done in U87 cancer cells and IMR90 lung cells in presence and absence of 

DFMO (Fig. 6.4). While Scriptaid is able to increase the acetylation level in all the cell lines, 

both in presence and absence of DFMO; compound 3a is able to target selectively the U87 

cells and the increase in the hystone acetylation level can be well seen only in presence of 

DFMO. This results clearly indicate that, differently from Scriptaid, the polyamine-

hydroxamic acid conjugate exerts its action selectively towards the cancer cells and, 

considering that their activity is higher in presence of DFMO, they can exploit the PTS to 

enter into the cells. 

 

 
 

Figure 6.4. Modification of histone acetylation level induced by 3a and Scriptaid and evaluation of the 

tubulin acetylation after the treatment with 3a and Scriptaid at 5 µM in U87 and IMR90 cell lines in 

presence and absence of 5 mM DFMO. 

 

 

 

All the compounds have also been tested for their ability to bind G-quadruplex structures 

using the Fluorescence Resonance Energy Transfer (FRET) melting technique. G-quadruplex 

and duplex DNA recognition of the synthesized compounds was evaluated by fluorescence 
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quenching melting assay using a G-quadruplex folded sequence based on the human telomeric 

sequence (G4) and a 18-bp random double stranded DNA (dsDNA), in order to assess their 

quadruplex binding activity and selectivity. The results obtained are reported in table 6.2. 

 

Table 6.2. Fluorescence quenching melting on dsDNA and G4 of compounds 1a-5a induced by 1 

(black) and 2.5 (red) µM drug concentrations. Errors were 0.4ºC. 

 

Compound Htel22 DsDNA 

1a 0.75 / 7.76 0.09 / 3.44 

2a 3.54 / 14.48 1.49 / 8.47 

3a 4.00 / 10.93 3.17 / 8.01 

4a 2.71 / 6.33 1.4 / 3.26 

5a 6.86 / 20.43 3.26 / 13.96 

 

 

 

The compounds proved to be quadruplex ligands as good as the polyamine-conjugate 

precursors (except the good quadruplex binder 3), thus indicating that the presence of the 

hydroxamic acid moiety does not influence the interaction with the DNA. Interestingly, the 

quadruplex targeting profile of the new derivatives follows the trend reported in the previous 

series: in the spermine-like derivatives, the quadruplex stabilization increases by lowering the 

number of the methylene groups within the inner nitrogen atoms. Among the NDI based 

HDACis, the best one proved to be 5a, the higher spermine omologue but unfortunately, all 

the compounds display a poor selectivity: all of them are able to bind the quadruplex and the 

duplex DNA almost at the same extent. 

All the synthesized derivatives are able to significantly increase the tested Htel22 melting 

temperature in a concentration dependent manner (Fig. 6.5). Using 5a on both substrates the 

process appeared to reach saturation in the low micromolar range, suggesting a strong 

interaction with both DNA arrangements. 

 

 

 
 

Figure 6.5. Variation of DNA (0.25 μM) thermal stability (ΔTm °C) produced by tested ligands in 50 

mM potassium buffer, pH 7.4, evaluated by fluorescence quenching melting experiments. Heating rate 1 

°C/min.  at increasing concentration of the NDIs derivatives on G-quadruplex folded telomeric 

sequence. 
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6.4 Conclusions 

This study allowed us to discover new MTDLs endowed with additional biological activities 

respect to the NDI-polyamine conjugates, i.e. the ability to inhibit HDAC enzymes, as 

potential anticancer agents. 

All the synthesized compounds displayed a HDAC inhibitory activity in the submicromolar 

range against a HDAC isoenzyme mixture, proving to possess a better biological profile than 

the lead compound Scriptaid. In particular, compounds 3a and 5a emerged as the most potent 

of the series, showing the ability to halve the HDAC activity in different cancer cell lines at 5 

µM concentration. 

Furthermore, 3a and 5a were able to induce higher growth inhibition levels in the same cancer 

cell lines respect to the homologous NDI-polyamine conjugates, thus underlying the presence 

of additional mechanisms responsible for the cytotoxic activity, probably linked to the HDAC 

inhibition properties. 

Moreover, the lower spermine derivative 3a caused a higher level of histone acetylation than 

the lead compound Scriptaid and it was found that it was responsible for the increase in 

histone acetylation selectively in cancer cells. This effect was more evident in presence of 

DFMO, thus indicating the ability of the derivative to target selectively the cancer cells by 

means of the PTS. 

All together, these data point out that 3a inhibits HDAC enzymes, thus increasing the 

anticancer potential of the NDI-based MTDLs. Further studies are currently going on in order 

to assess if the compounds display some kind of isoform selectivity and to further investigate 

other possible mechanisms of action, concurring to their cytotoxic activity. 

 

6.5 Experimental section 

6.5.1 Chemistry 

For the experimental procedures see Chapter 5.5.1. 

Compounds 1a- 5a were synthesized following the general procedure developed by our 

research group as follows (see scheme 6.1). 

General procedure for the synthesis of 1a-5a. 

To a cooled solution (0 °C) of the appropriate compound 29a/33a (1 eq) in CH2Cl2 (3 ml) was 

added dropwise HCl 4M in dioxane. The reaction mixture was  stirred for 5 h at r.t., and the 

precipitated formed was filtered under vacuum and was washed with  Et2O. The solid was 

dried to obtain 1a-5a, as hydrochloride salts. 

6-(7-(3-((3-aminopropyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)-N-hydroxyhexanamide  

hydrocloride (1a). Yellow solid: quantitative yield; mp >250 °C; 
1
H NMR (400 MHz, D2O) δ 

1.31-1.32 (m, 2H), 1.56-1.57 (m, 4H), 1.95-2.11 (m, 6H), 3.01 (t, 2H, J = 7.8 Hz), 3.07-3.14 

(m, 4H), 3.84 (t, 2H, J = 7.6 Hz), 4.09 (t, 2H, J = 6.2 Hz), 8.23-8.30 (m, 4H); 
13

C NMR (D2O, 

100 MHz): δ 27.10, 28.39, 29.33, 30.01, 47.17, 48.16, 76.78, 77.11, 77.43, 124.91, 125.05, 

125.15, 126.50, 126.66, 126.87, 140.56, 165.98; ESI-MS (m/z): 510 [M +H]
+
. 

6-(7-(3-((2-((3-aminopropyl)amino)ethyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)-N-hydroxyhexanamide 

hydrocloride (2a). Yellow solid: quantitative yield; mp >250 °C; 
1
H NMR (400 MHz, D2O) δ 

1.44-1.48 (m, 2H), 1.71-1.74 (m, 4H), 2.14-2.27 (m, 6H), 3.16 (t, 2H, J = 7.8 Hz), 3.28-3.36 

(m, 4H), 3.56 (s, 4H), 4.07 (m, 2H), 4.30 (m, 2H), 8.84-8.57 (m, 4H); 
13

C NMR (D2O, 100 
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MHz): δ 23.67, 24.25, 24.51, 25.58, 36.39, 43.11, 45.10, 45.98, 125.41, 125.61, 130.81, 

131.02, 142.82, 148.46, 163.30, 163.60; ESI-MS (m/z): 553 [M +H]
+
.  

6-(7-(3-((3-((3-aminopropyl)amino)propyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)-N-hydroxyhexanamide 

hydrocloride (3a): Yellow solid: quantitative yield; mp >250 °C; 
1
H NMR (400 MHz, D2O) δ 

1.46 (m, 2H), 1.73 (m, 4H), 2.13-2.25 (m, 8H), 3.12-3.27 (m, 10H), 4.09 (m, 2H), 4.29 (t, 2H, 

J = 6 Hz), 8.58-8.61 (m, 4H); 
13

C NMR (D2O, 100 MHz): δ 22.64, 23.38, 24.21, 24.52, 25.60, 

26.65, 36.45, 37.80, 40.65, 44.54, 44.66, 45.47, 124.89, 125.03, 125.16, 125.27, 130.71, 

130.94, 162.84, 163.17;   ESI-MS (m/z): 567 [M +H]
+
.  

6-(7-(3-((4-((3-aminopropyl)amino)butyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)-N-hydroxyhexanamide 

hydrocloride (4a). Yellow solid: quantitative yield; mp < 250°C; 
1
H NMR (400 MHz, D2O) δ 

1.43-1.47 (m, 2H), 1.69-1.74 (m, 4H), 1.85-1.86 (m, 4H), 2.11-2.28 (m, 6H), 3.12-3.29 (m, 

10H), 3.93-3.95 (m, 2H), 4.23 (t, 2H, J = 6.4 Hz), 8.29-8.32 (m, 2H), 8.38-8.41 (m, 2H); 
13

C 

NMR (D2O, 100 MHz): δ 22.81, 23.70, 23.90, 24.29, 24.64, 25.77, 26.79, 32.22, 33.55, 36.58, 

37.92, 40.59, 44.55, 45.34, 47.03, 124.57, 124.75, 124.94, 130.62, 130.88, 162.14, 162.24, 

162.68, 172.54, 177.89; ESI-MS (m/z): 581 [M +H]
+
.  

6-(7-(3-((4-((4-aminobutyl)amino)butyl)amino)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)-N-hydroxyhexanamide 

hydrocloride (5a). Yellow solid: quantitative yield; mp >250 °C; ; 
1
H NMR (400 MHz, D2O) 

δ 1.45-1.49 (m, 2H), 1.66-1.87 (m, 10H), 2.11-2.23 (m, 2H), 2.38-2.49 (m, 2H), 3.02-3.08 (m, 

4H), 3.11-3.24 (m, 6H), 3.35-3.36 (m, 2H), 4.01-4.13 (m, 2H), 4.24-4.37 (m, 2H), 8.59-8.70 

(m, 4H); 
13

C NMR (D2O, 100 MHz): δ 22.78, 23.54, 23.76, 24.37, 24.55, 25.61, 26.66, 32.10, 

33.42, 34.54, 36.97, 37.62, 40.74, 44.60, 45.00, 47.20, 124.20, 124.68, 124.89, 130.38, 130.77, 

162.02, 162.32, 162.74; ESI-MS (m/z): 595 [M +H]
+
. 

 

General synthesis of 6a-10a. 

To a solution of 42-45/27 (1 eq) in DMF (10 ml) were added NTCDA (1 eq) and 

aminocaproic acid (1 eq). The solution was refluxed at 160 °C for 2 h. The solvent was 

removed and the crude product was purified by gradient flash chromatography using as a 

eluent a mixture of EtOAc/petroleum ether 6/4 first and then CH2Cl2/MeOH 9.5/0.5, to give 

the desire product 6a/10a. 

6-(7-(3-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino)propyl)-

1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)hexanoic acid 

(6a). Yellow oil: 56% yield; 
1
H NMR (400 MHz, CDCl3) δ = 1.30-1.32 (m, 2H), 1.44 (s, 

18H), 1.64-1.73 (m, 6H), 2.01-2.18 (m, 2H), 2.41-2.42 (m, 2H), 3.08-3.09 (m, 2H), 3.36-3.38 

(m, 4H), 4.14-4.24 (m, 4H), 8.79 (s, 4H). 

6-(7-(9,12-bis(tert-butoxycarbonyl)-2,2-dimethyl-4-oxo-3-oxa-5,9,12-triazapentadecan-

15-yl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-

yl)hexanoic acid (7a). Yellow oil: 35% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.41-1.48 (m, 

27H), 1.66-1.76 (m, 8H), 1.95-1.97 (m, 2H), 2.33-2.36 (m, 2H), 3.06-3.07 (m, 2H), 3.20-3.29 

(m, 8H), 4.16-4.17 (m, 4H), 5.38 (brs, 1H, exch D2O),  8.70 (s, 4H). 

6-(7-(9,13-bis(tert-butoxycarbonyl)-2,2-dimethyl-4-oxo-3-oxa-5,9,13-triazahexadecan-16-

yl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)hexanoic 

acid (8a). Yellow oil: 25% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.38-1.39 (m, 29H), 1.62-

1.76 (m, 8H), 1.91-1.99 (m, 2H), 2.28-2.32 (m, 2H), 2.32-3.33 (m, 10H), 4.12-4.15 (t, 4H, J = 

6.6 Hz), 5.353 (brs, 1H, exch D2O), 8.67-8.68 (m, 4H). 

6-(7-(9,14-bis(tert-butoxycarbonyl)-2,2-dimethyl-4-oxo-3-oxa-5,9,14-triazaheptadecan-

17-yl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-
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yl)hexanoic acid (9a). Yellow oil: : 45% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.42 (s, 27H), 

1.44-1.50 (m, 6H), 1.69-1.82 (m, 6H), 1.96- 1.99 (m, 2H), 2.38-2.43 (m, 2H), 3.09-3.36 (m, 

10H), 4.21-4.19 (m, 4H), 5.38 (brs, 1H, exch D2O), 8.77 (s, 4H). 

6-(7-(10,15-bis(tert-butoxycarbonyl)-2,2-dimethyl-4-oxo-3-oxa-5,10,15-triazaoctadecan-

18-yl)-1,3,6,8-tetraoxo-7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-

yl)hexanoic acid (10a). Yellow oil: 25% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.24-1.29 (m, 

27H), 1.42-1.76 (m, 14H), 1.94-1.97 (m, 2H), 2.25-2.40 (m, 2H), 3.05-3.19 (m, 10H), 4.16-

4.23 (m, 4H), 4.67 (brs, 1H, exch D2O), 8.74 (s, 4H).    

 

General procedure for the synthesis of 11a-15a. 

Compound 6a-10a (1 eq) was dissolved in CH2Cl2 (10 ml) and EDCI (2eq), HOBT (1 eq) were 

added. After 1 h, O-(Tetrahydro-2H-pyran-2-yl)hydroxylamine (1.2 eq) was added and the 

resulting solution was stirred at r.t. for 5 h. The solvent was removed and the residue was 

purified by flash chromatography eluting with a mixture of EtOAc/petroleum ether 8/2, to give 

the desire product 11a/15a. 

tert-butyl (3-((tert-butoxycarbonyl)amino)propyl)(3-(1,3,6,8-tetraoxo-7-(6-oxo-6-

(((tetrahydro-2H-pyran-2-yl)oxy)amino)hexyl)-7,8-dihydrobenzo[lmn][3,8] 

phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (11a). Yellow oil: 71% yield; 
1
H NMR 

(400 MHz, CDCl3) δ 1.26-1.27 (m, 2H), 1.41 (m, 20H), 1.69-1.78 (m, 12H), 1.99-2.01 (m, 

2H), 3.05-3.07 (m, 2H), 3.30-3.34 (m, 4H), 3.61-3.66 (m, 1H), 3.95-3.98 (m, 1H), 4.15-4.21 

(m, 4H), 4.95-4.96 (m, 1H), 5.23 (brs, 1H, exch D2O), 8.73 (s, 4H).   

tert-butyl (2-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino) 

ethyl)(3-(1,3,6,8-tetraoxo-7-(6-oxo-6-(((tetrahydro-2H-pyran-2-yl)oxy)amino)hexyl)-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (12a).  Yellow 

oil: 89% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.45 (s, 27H),  1.51- 1.81 (m, 14H), 2.00-2.01 

(m, 2H), 2.18-2.19 (m, 2H), 3.11-3.12 (m, 2H), 3.33-3.34 (m, 8H), 3.62-3.67 (m, 1H), 3.95-

3.96 (m, 1H), 4.20-4.24 (t, 4H, J = 7.4 Hz), 4.95-4.96 (m, 1H), 8.77 (s, 4H).  

tert-butyl (3-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino) 

propyl)(3-(1,3,6,8-tetraoxo-7-(6-oxo-6-(((tetrahydro-2H-pyran-2-yl)oxy)amino)hexyl)-

7,8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (13a). 

Yellow oil: 55% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.38-1.47 (s, 27H + m, 2H), 1.53-1.76 

(m, 14H), 1.90-1.99 (m, 2H), 2.11-2.15 (m, 2H), 3.04-3.29 (m, 10H), 3.54-3.57 (m, 1H), 3.87-

3.89 (m, 1H), 4.09-4.17 (m, 4H), 4.87-4.88 (m, 1H), 8.68 (s, 4H). 

tert-butyl (4-((tert-butoxycarbonyl)(3-((tert-butoxycarbonyl)amino)propyl)amino) 

butyl)(3-(1,3,6,8-tetraoxo-7-(6-oxo-6-(((tetrahydro-2H-pyran-2-yl)oxy)amino)hexyl)-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (14a). Yellow 

oil: 64% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.38-1.61 (s, 27H + m, 11H), 1.67-1.74 (m, 

7H), 1.87-1.99 (m, 2H), 2.12-2.13 (m, 2H), 3.04-3.35 (m, 10H), 3.54-3.61 (m, 1H), 3.88-3.90 

(m, 1H), 4.12-4.86 (m, 4H), 4.87-4.88 (m, 1H), 5.25 (brs, 1H exch D2O), 8.69 (s, 4H). 

tert-butyl (4-((tert-butoxycarbonyl)(4-((tert-butoxycarbonyl)amino)butyl)amino) 

butyl)(3-(1,3,6,8-tetraoxo-7-(6-oxo-6-(((tetrahydro-2H-pyran-2-yl)oxy)amino)hexyl)-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)propyl)carbamate (15a). Yellow 

oil: : 51% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.41-1.56 (s, 27H + m, 16H), 1.74-1.77 (m, 

7H), 1.92-1.94 (m, 2H), 2.17-2.18 (m, 2H), 3.09-3.14 (m, 6H), 3.20-3.21 (m, 1H), 3.34-3.37 

(m, 2H), 3.90-3.93 (m, 1H), 4.17-4.19 (m, 4H), 4.90-4.91 (m, 1H), 8.73 (s, 4H). 
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6.5.2 Biophysical Evaluation 

6.5.2.1 Fluorescence Resonance Energy Transfer (FRET) 

The FRET experiments were conducted as freported in Chapter 5.5.2.1. 
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Chapter 7. Macrocyclic naphthalene diimide derivatives 

as potential G-quadruplex ligands  
 

7.1 Drug design 

In the previous chapters it has been highlighted that the design and synthesis of new anticancer 

agents is one of the most active areas in the pharmaceutical research field but that, despite the 

progress of knowledge on this disease, cancer remains one of the main causes of death 

worldwide. The development of new anticancer agents must necessarily take into account the 

problems of current drug therapies, first of all, the lack of an adequate selectivity of action, for 

which the drugs are not able to distinguish cancer cells from healthy ones determining the 

onset of numerous side effects. As described previously, one of the main targets for the 

development of new antitumor agents is the DNA and in this context different classes of 

molecules belonging to the category of intercalating agents have been designed.  

In the last years G-quadruplex structures have been identified and characterized, they proved 

to be an excellent target for a more innovative anticancer therapy, because of their localization 

in the telomeric ends and in the regulatory regions of several genes whose involvement in 

cancer is, to date, fully confirmed. G-quadruplexes are proposed, moreover, as discriminating 

elements between tumor cells and healthy cells, thereafter selective ligands towards these 

structures could have a potentially antitumor action free from side effects. For that reason in 

the last decades the search for selective G-quadruplex ligands has involved many researchers 

and has provided promising results. 

My research group have been engaged in the design and synthesis of new anticancer agents 

based on a naphthalene diimide structure since several years. Among the various molecules 

synthesized, the symmetric naphthalene diimide derivative V (Fig. 2.19) has shown the most 

interesting biological profile: it has a good cytotoxic activity against a panel of 60 cell lines in 

studies conducted at the National Cancer Institute (NCI) and, among different mechanism of 

actions demonstrated, it exploits its activity through the binding to the G-quadruplex DNA, 

even though its selectivity towards this target is not so high compared to duplex DNA. With 

the aim to improve its binding ability and its selectivity, we tried to include the NDI core into 

a macrocyclic structure. As extensively discussed in the previous chapters, macrocyclic 

structures are particularly interesting for the design of G-quadruplex ligands, despite the 

synthetic accessibility of these compounds limits their achievement. This class of compound is 

very interesting because, on one hand, they have low affinity for the duplex DNA and, on the 

other, they can interact optimally with the external G-quartet of G-quadruplexes. 

A very important feature for G-quadruplex binders is the aromaticity, that is essential in order 

to achieve high affinity for this secondary structure of DNA. Their aromatic surface has to be 

greater than a normal intercalator, in order to improve the stacking interactions with the large 

surface area characteristic of the G-quartet. However to increase the affinity and reach the 

selectivity towards the G-quadruplex at the expense of duplex DNA, additional interactions 

with the grooves are needed. For this purpose it is possible to exploit the electrostatic 

interactions between the positive charges of basic functions, protonated at physiological pH, 

and the phosphate groups of the DNA backbone. The presence of positive charges, in addition, 

contributes favorably to the water solubility of the compound, balancing the lipophilicity of 

the aromatic fragment.  

Among G-quadruplex ligands, a well known macrocyclic one is BOQ1 containing two 

quinacridine cores linked with polyamine chains (Fig. 2.29). BOQ1 is an example of how the 
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macrocyclization can be a useful strategy in the design of new quadruplex binders: the 

macrocyclic bis-quinacridine binds G-quadruplex in a stronger and more specific way than the 

opened monomer MOQ2 (F21T stabilization ΔTm: BOQ1 = 28 °C, MOQ2 = 10 °C).
171

 

Based on all these observations, the aim of this project was to design and synthesize the 

macrocyclic derivatives 1b-5b, by stiffening the structure of compound V into a macrocycle 

(Fig. 7.1). 

 

 

 
 

Figure 7.1. Drug design of compounds 1b-5b. 

 

 

In the design of the new derivatives we have considered two critical elements in order to 

optimize the interaction with G-quadruplex: the number of nitrogen atoms of the polyamine 

linker, that determines the number of interactions that can be established with the DNA 

backbone, and the length of the methylene chains between them, which define the size of the 

macrocycle. The series of macrocycles 1b-4b was obtained using spermine and nor-

spermidine as linkers and by varying the distance between the inner nitrogen atoms. 

Moreover, compound 5b was synthesized, where the two inner nitrogen atoms of the spermine 

linkers of 3b have been replaced with oxygen atoms, in order to assess the importance of the 

positive charges in the quadruplex-stabilization process and to define which is the driving 

force in the interaction. 
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7.2 Methods 

7.2.1 Chemistry 

Compound 1b-4b have been synthesized following the procedure reported in Scheme 7.1. 

The appropriate polyamines 6b-9b were protected at the secondary amine functions with di-

tertbutyl-dicarbonate to give the intermediates 10b-13b, following a literature procedure.
274

 

10b-13b underwent to the protection of one of the primary amine function as trifluroacetic 

amide, obtaining 14b-17b. The protected polyamines were then condensed with NTCDA to 

give the NDIs 18b-21b that, after the removal of the protecting group of the primary amine 

through basic hydrolysis, were reacted with terephthalaldehyde to give the corresponding 

Schiff bases. These latter were reduced using sodium borohydride to give the macrocyclic 

derivatives 26b-29b. The removal of the last protecting groups through acid hydrolysis 

allowed obtaining the desire final compounds 1b-4b as hydrocloride salts. 

 

 

 

 

Scheme 7.1. (i) a) CF3COOEt, MeOH, -78 °C, 30 min; b) Boc2O, MeOH, r.t., 16 h; c) NaOH 40%, 

H2O, r.t., 20 h; (ii) CF3COOEt, MeOH, r.t., 16 h; (iii) NTCDA, DMF, reflux, 2 h; (iv) K2CO3, MeOH, 

H2O, reflux, 2 h; (v) a) terephthalaldehyde, EtOH, r.t., 72 h; b) NaBH4, r.t., 16 h; (vi) HCl 3N, r.t., 16 h. 
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Compound 5b has been obtained as reported in Scheme 7.2.  

The appropriate polyamine was monoprotected using di-tertbutyl-dicarbonate to give 

intermediate 30b that was further condensed with NTCDA to give the NDI derivative 31b. 

The acid hydrolysis using HCl 3N allowed obtaining 32b with free primary amine functions. 

Intermediate 32b was reacted with terephthalaldehyde to give the Schiff base that, after 

reduction with sodium borohydride, led to the final compound 5b, that was then transformed 

in the corresponding hydrochloride salt in order to obtain a derivative easier to handle. 

 

 

 

Scheme 7.2. (i) Boc2O, CH2Cl2, r.t., 16 h; (ii) NTCDA, DMF, reflux, 2 h; (iii) HCl 3N, r.t., 16 h; (iv) a) 

terephtalaldehyde, EtOH, r.t., 72 h; b) NaBH4, r.t., 16 h. 

 

7.2.2 Biophysical Evaluation 

The G-quadruplex binding ability of compounds 1b-5b was assessed by Fluorescence 

Resonance Energy Transfer (FRET) melting technique. Values are expressed as the melting 

temperature difference between the nucleotide with the drug and the negative control (ΔTm). 

7.2.3 Biology 

All the synthesized derivatives were tested for in vitro antiproliferative activity in a panel of 

cancer cell lines. The antiproliferative activity has been evaluated by the Sulforhodamine B 

short-term cytotoxicity assay (SRB). Values are showed as the concentration required to 

inhibit cell growth by 50% (IC50). Telomerase inhibitory activities of 2 and 3 were determined 

using the TRAP-LIG assay, a modified telomere repeat amplification protocol that ensures that 

there is no carryover of ligand into the second PCR step of the assay.
123 
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7.2.4. Computational studies 

With the aim to investigate the binding mode of 2b and 5b for duplex and G-quadruplex 

DNA, docking simulation were performed using the available crystallographic structures from 

the Protein Data Bank (PDB). 

 

7.3 Results and discussion 

Compounds 1b-5b were firstly evaluated through Fluorescence Resonance Energy Transfer 

(FRET) melting technique in order to assess their ability to interact with G-quadruplex DNA 

and their selectivity for this kind of DNA vs duplex DNA compared to V. The quadruplex 

sequences used for the screening are F21T (telomeric) and the promoter region of c-kit2. 

Tloop is a DNA-duplex sequence used as control. The results are reported in table 7.1. 

With the exception of 5b, that was indeed designed as a “negative control”, all the spermine 

and norspermidine-like synthesized compounds have proved to be very good G-quadruplex 

ligands. All the Tm values are near 20 ºC at 1 µM or 2 µM concentrations. Compound V is a 

worse binder, with a Tm of only 9.9 ºC at 1 µM, thus demonstrating the validity of the 

rational basis of the project. 

 

 

Table 7.1. Tm values (C) for FRET analyses of compounds 1b-5b and V at 1 μM (black) and at 2 

μM (red) concentrations with a series of G-rich sequences: hTel (F21T), c-kit2, Tloop (duplex DNA). 

Esds are from triplicate measurements and average 0.3 C.  

 F21T c-kit2 Tloop 

1b 18.9/26.7 14.3/25 1.2/7.8 

2b 22.1/28.6 15.1/28 3.3/15.2 

3b 26.8/31.9 33.1/39.9 8.6/27 

4b 12.6/18.8 12.2/19.6 1.4/5.2 

5b 0.4/5 0/4.5 0.2/0.4 

V 9.9/17.3 7.4/19.6 2.2/8.4 

 

 

 

As a general trend, the quadruplex stabilization increases by increasing the number of charges, 

probably due to a stronger interaction with the DNA backbone. A very interesting point is that 

the open analogue V is not selective: it displays activity towards both duplex and quadruplex 

DNAs, with a selectivity index between F21T and Tloop of 4.5. The macrocyclic derivatives 

1b-4b are instead more selective for quadruplex DNA, interacting from 3- to 15-fold less with 

duplex DNA. The less selective compound is 3b, endowed with a selectivity index of only 3, 

but with a much promising binding activity towards G-quadruplex respect to V. In particular 

the best G-quadruplex ligands are 2b and 3b, with Tm values of 22.1 ºC and 26.8 ºC 

respectively at 1 µM, reaching 28.6 ºC and 31.9 ºC respectively at 2 µM. It is also worth 

notice that the Tm values obtained for those two compounds are very similar to the values 

reported in literature for BOQ1 (Tm = 28 ºC at 1 µM) and Tlomestatin (Tm = 22.8 ºC at 1 

µM), well known G-quadruplex binders. The reduction of the number of methylenes between 

the inner nitrogen atoms is correlated with a decreasing in the quadruplex binding activity. As 

already pointed out the Tm for 2b is lower than for 3b, furthermore compound 1b, with a 

linker made up only by two methylenes, proved to be the worst one in the spermine-like series 

but the derivative with the higher selectivity for quadruplex over duplex DNA. 
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Elimination of two nitrogen atoms from 3b leads to 4b which has far less affinity for G-

quadruplex (ΔTm = 12.6 °C at 1 µM) underlying the requirement of nitrogen atoms for the 

correct interaction with the target.  

We have designed compound 5b in order to assess the importance of the secondary basic 

functions for the interaction with the quadruplex DNA. From the results in Table 7.1, it is 

possible to state that the replacement of the inner nitrogens of 3b with oxygen atoms abolishes 

the DNA-binding ability (ΔTm = 0.4 °C at 1 µM): this finding suggests that 3b, likely due to 

its ionized state higher than 5b, can establish with the DNA stronger electrostatic interactions, 

this explaining why the latter derivative loses every kind of activity towards both quadruplex 

and duplex DNAs. 

As already mentioned, G-quadruplex binders are very interesting since they can hinder gene 

transcription by binding to the quadruplex sequences located in the promoter regions of human 

oncogenes. c-kit is an important oncogene encoding for tyrosine kinase receptor and 

represents an attractive target in the treatment of gastrointestinal tumors. Two quadruplex 

sequences (c-kit1 and c-kit2) in the kit promoter have been identified and, recently, 

Gunaratnam et al. have reported about a NDI-based derivative able to stabilize the kit2 

quadruplex with significantly higher ΔTm values than for the kit1. For this reason, we decide 

to evaluate also our NDI-based macrocycles towards the c-kit2 G-quadruplex sequence. 

With the exception of 5b, the stabilizing activity of the spermine and spermidine-like 

derivatives follows the same pattern observed for the telomeric sequence; 3b shows the 

highest stabilizing activity (ΔTm = 33.1 °C at 1 μM, ΔTm = 39.9 °C at 2 μM) while a linear 

decrease of the affinity is observed, again, by lowering the length of the chain between the two 

inner nitrogen atoms, eliminating one nitrogen atom from each side chain and replacing the 

nitrogen with oxygen atoms (5b, ΔTm = 0 °C at 1 μM). 

From the data obtained, the most interesting compound seems to be 2b, endowed with good 

binding properties and good selectivity, while 3b has proved to be the best ligand, even though 

is not a very selective one. 

As shown in Fig. 7.2, reporting the FRET melting curve for compound 2b with the F21T and 

c-kit2 quadruplex sequences at all the different concentrations tested (0.1-5 μM), it is possible 

to observe for both the targets a significant increase in the melting temperature, especially at 

higher concentration (4 and 5 μM). The compound is able to induce a ΔTm around 40°C, that 

is the maximum that can be detected by the assay, thus confirming its optimal quadruplex 

targeting profile.  

 
 

Figure 7.2. FRET melting curve for compound 2b at different ligand concentrations with A) h-tel F21T 

quadruplex sequence and B) c-kit2 promoter quadruplex sequences. 
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In order to investigate the validity of the FRET data in in vitro assay, we decided to evaluate 

the telomerase inhibitory activity of the compounds that exhibit a higher quadruplex 

stabilizing activity, for that reason the ability to inhibit telomerase of compounds 2b and 3b 

was assessed in MIAPaCa-2 cells, using the modified TRAP-LIG assay, a modified TRAP 

assay that assures that there is no carryover of the ligand during the PCR process and that is 

able to give more reliable results (Fig. 7.3). None of the compounds tested is active towards 

telomerase, in fact it is not possible to see any change in the products of telomerase-mediated 

telomere elongation up to 50 µM concentration of each compound. This finding agrees with 

the data reported by Neidle at al. that have demonstrated that some NDI derivatives lack of 

telomerase activity, despite their ability to induce a very high increase in the melting 

temperature of the telomeric sequence in the FRET assay. Taking into account that FRET 

melting studies prove the ability of these derivatives to induce G-quadruplex stabilization, it is 

very likely that the compounds act via poly-targeting of G-rich oncogene promoter regions, 

while telomerase does not seem to be the obvious target, as judged by the lack of change in the 

elongation product gel ladders. Further, the TRAP assay determines activity of telomerase 

from a cellular protein extract in vitro, and not telomerase activity in cells. Lowered 

telomerase activity may be the consequence of downregulation of hTERT expression through 

G-quadruplex stabilization in the promoter region of the hTERT gene. As a consequence long 

term growth inhibition study has to be performed in order to assess if the compounds are able 

to decrease telomerase activity in the cells by acting at the hTERT promoter level. 

 

 

 
                                p.c          1µM       5µM       10µM           15µM    25µM     50µM        n.c. 

 

Figure 7.3. Gel showing telomerase activity in MIAPaCa-2 cells treated with compounds 2b at 

increasing concentrations. Compound concentrations are indicated. n.c., negative control (line 8); p.c., 

positive control of untreated cells (with telomerase but no ligand, line 1), increasing concentrations 

from 1 µM to 50 µM (lines 2-7). 

 

Preliminary biological evaluation has been obtained by the SRB assay. The cell growth 

inhibition ability of all the macrocyclic derivatives and V has been assessed in a panel of 

cancer cell lines comprising: A549 (lung), MCF7 (breast), MIAPaca-2 (pancreatic), Panc1 

(pancreatic), ALT (alternative lengthening of telomeres cancer cells) and W138 (human 

fibroblast) (Table 7.2). 
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All the synthesized compounds display a promising cytotoxic activity in the submicromolar 

and nanomolar range; although none of them is as active as the lead compound V. 

Further, the cytotoxic activities seem to follow an inverse pattern compared with the result 

obtained in in vitro assays. In particular, taking into account the spermine- and spermidine-

derived compounds, the worst G-quadruplex stabilizing agent 4b is the most active in cell-

based assay showing an IC50 in submicrolar- or low micromolar range in all five cancer cell 

lines without showing any cell-type selectivity. On the other hand, the most active compound 

3b in in vitro assays is the less active in cell-based assays. 

 

 

Table 7.2. Short-term 96 h IC50 values (in μM) for compounds 1b-5b and V in a cancer cell line panel, 

comprising MCF7 (breast), A549 (lung cancer), MIAPaCa-2/Panc1 (pancreatic cancer), ALT 

(Alternative Lengthening of Telomeres) and WI38 (lung fibroblast) cell lines. Esds average 0.25 μM. 

 

 A549 MCF7 MIAPaca-2 Panc1 ALT WI38 

1b 5.21 5.47 0.747 1.02 3.26 6.09 

2b 4.61 19.13 8.62 8.20 >25 >25 

3b 10.4 >25 19.3 13.6 14.85 >25 

4b 0.951 0.834 0.389 0.386 1.00 1.29 

5b 0.488 1.178 1.01 0.627 1.09 2.86 

V 0.203 0.301 0.190 0.350 0.249 0.425 

 
 

 

From the results obtained it is possible to describe a general trend: within the macrocyclic 

derivatives the cytotoxic activity decreases by enhancing the molecular weight and the number 

of charges. We have hypothesized that this trend is due to the lower internalization into the 

cells of the heaviest compounds; in fact, thanks to Lipinski’s rules of five, it is well known 

that features like the molecular weight and the number of hydrogen bonding donors and 

acceptors can influence the pharmacokinetic profile of a drug. It is, indeed, well known that G-

quadruplex-binders do not present, in most of cases, favorable drug-like properties (i.e. 

molecular weight, etc). Further, highly charged molecules, such as polyamine-based 

compounds, have several difficulties to cross the cellular lipid bilayers. These derivatives may 

use an active polyamines transport system PTS to gain into the cells that has proved to be 

promiscuous, carrier-mediated, pH-dependent and saturable. Despite plenty of polyamine 

conjugates delivered through the PTS have been reported so far, it is hard to hypothesize that 

the structures of the new macrocycles fulfil the structural demands of the system because of 

their high molecular weight and the lack of primary basic functions. 

All the newly synthesized derivatives are less active than V towards all the cell lines tested but 

they are more selective for the cancer cell lines respect to the normal fibroblasts (WI38), 

which are severely affected by compound V with an IC50 of 425 nM. This effect does not seem 

to be due to the quadruplex over duplex DNA selectivity, in fact compound 5b, not endowed 

with any quadruplex binding activity, is one of the less cytotoxic compound towards the 

normal fibroblasts together with 1b. 

Among the macrocyclic series, compound 5b proved to be the most powerful one despite its 

almost absent DNA-binding activity: that can be due to the insurgence of multiple different 

mechanisms of action, while 4b is the most cytotoxic derivative between the spermine and 

spermidine-like series. 

More studies have to be performed in order to understand how our derivatives can get into the 

cell and their mechanisms of action. Indeed, polyamine-based compounds are able to interact 

with a multitude of biochemical targets and exert cytotoxic activity through several 
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mechanisms: macrocyclic-polyamines are reported to display toxic effects by, for instance, 

depleting cellular ATP and interfering with enzymes of involved in the polyamines 

biosynthetic pathway.  

With the aim to characterize the conformational profile and binding mode for duplex and 

quadruplex DNAs, compound 2b has been submitted to molecular modelling studies. Analysis 

of the ionization state showed that at pH 7.4 the tetracationic form, with two protonated 

secondary basic functions in each spermine chain, was the most prevalent among all the 

ionizable states. Consequently, the conformational study has been carried out with this 

ionization form. Firstly, the conformational degrees of freedom of 2b have been explored, in 

particular 3000 conformations were generated by means of the Monte Carlo method. The total 

number of conformers found within 5 kcal/mol above the global minimum was equal to 56. 

The plot reported in Fig. 7.3 shows the potential energy (kcal/mol) calculated for each 

conformer. 

 

 
Figure 7.3. Potential Energy scatter plot of the 56 conformers of compound 2b found in the 

conformational search. Non polar hydrogen atoms are omitted for clarity. 

 

The energetically most stable conformer of 2b, shown in Fig. 7.3, (Epotential = -238.672 

kcal/mol) has been submitted to docking calculations. Concerning the duplex DNA, the lowest 

energy binding conformation of 2b (ΔG = -27.18 kcal/mol ) was found to recognize the minor 

groove of the DNA (Fig. 7.4A). Our design strategy has proved to be correct: 2b is not capable 

of intercalating between the base pair of the duplex DNA because of steric reason. The steric 

hindrance of the spermine-like side chains, in fact, prevents the intercalation within the 

guanine-cytosine region and is mostly involved in electrostatic interactions with the negative 

counterpart of the phosphate backbone as reported graphically in the Poisson-Boltzmann 

electrostatic potential surface area (Fig. 7.4B). In addition, the formation of two H-bond 

interactions with the C5 residue contributes to the binding affinity. 
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Fig. 7.4. A) Binding mode of compound 2b against the duplex DNA and the involved hydrogen bond 

interactions. Compound 2b is represented as pink licorice while the duplex DNA in transparent gray 

ribbon. Hydrogen bonds are depicted as dashed black lines. B) The Poisson-Boltzmann electrostatic 

potential surface area computed using Maestro ver. 9.7, red and blue colours are respectively related to 

negative and positive areas.  

 

Surprisingly, in the case of the quadruplex DNA, although NDIs are well known to stack with 

the external G-quartets of the quadruplex structures, the most energetically stable (ΔG = -

63.69 kcal/mol) and populated (Boltzmann’s probability of distribution equal to 98.95%) 

binding conformation of 2b has been found to be into the groove, close to the G21-G3-G22 

residues (Fig. 7.5A). The presence of the protonated nitrogen atoms allows the electrostatic 

term to be the main driving force in the interaction. This observation is again supported 

graphically in Fig. 7.5B. These results indicate minor contributions of Van der Waals and H-

bond terms, always coherent toward a better G-quadruplex recognition. This binding mode 

allows us to explain the not excellent selectivity for quadruplex over duplex DNA: the groove 

binding is allowed in both the DNA structures, thereby preventing the exclusive interaction 

with the quadruplexes. 

 

Fig. 7.5.A) Docking best pose of compound 2b against quadruplex DNA and the involved hydrogen 

bond interactions. The compound b2 is represented as pink licorice while the quadruplex DNA in white 

ribbon. Hydrogen bonds are depicted as dashed black lines. B) The Poisson-Boltzmann electrostatic 

potential surface area computed using Maestro ver. 9.7. 

 

 

The same computational protocol has been used to model the interaction of 5b with the same 

sequences as shown in figure 7.6A and B. As it can be seen from the structure, in this case the 

binding is mainly guided by stacking interactions and by the formation of hydrogen bond with 
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the phosphate of the skeleton of the loop. As regard the duplex DNA, the steric hindrance 

again does not allow the intercalation within the base pairs and the interaction happens with 

the groove of the DNA, but in this case the presence of only two protonated nitrogen atoms 

prevents the onset of a strong connection. 
 

 

Figure 7.6. Docking best pose computed for compound 5b against A) G-quadruplex and B) duplex 

DNA. 

 
 

7.4 Conclusion 

In this work it has been demonstrated that the transformation of a linear structure into a 

macrocyclic one produces a great enhancement in quadruplex binding activity and selectivity. 

In particular compounds 2b and 3b proved the ability to induce a very high quadruplex 

stabilization with Tm values of  22.1 ºC and 26.8 ºC at 1 µM respectively. This makes them 

the best G-quadruplex binders within the series, with an affinity comparable to Telomestatin.  

The lack of quadruplex selectivity shown by the open derivative V strongly suggests that the 

macrocyclic structure is a minimal requirement for these NDI derivatives. The absence of 

quadruplex binding activity displayed by compound 5b indicates that also the presence of 

protonable basic functions is necessary for the interaction with the DNA, both in duplex and 

quadruplex form. 

Molecular modelling studies were performed and, coherently with experimental data, 

compound 2b was found to be highly selective in the G-quadruplex topology respect to 

duplex. A deeper evaluation of the non-covalent bond interactions, pointed out that the four 

protonated aliphatic secondary amine groups of the spermine-like side chains were the most 

involved part of the designed macrocyclic NDI in the quadruplex recognition. Hence, the 

electrostatic term resulted as the main driving force in the binding process although even H-

bond interactions can discriminate between the quadruplex/duplex selectivity. 

The cytotoxic activities of these derivatives displayed an unexpected trend, not correlated with 

the in vitro data. All the derivatives possessed a high cytotoxic activity in the submicro- and 

nanomolar range, but the most cytotoxic compounds are 1b and 5b, i.e. the worst quadruplex 

binders. We have hypothesized that is due to the lower internalization of the heavier and most 

protonated compounds into the cells. The smaller and less charged derivatives proved to be 

more active in inhibiting the growth of cancer cells, probably due to their better 

pharmacokinetic profiles. The druglikeness has always been an issue in the G-quadruplex 

ligand field and these results confirm that trend. The good in vitro and cellular activities 

suggest that appropriate modifications aiming at enhancing drug-like features should result in 

an enhanced biological activity. 
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7.5 Experimental section 

7.5.1 Chemistry 

For the experimental procedures see Chapter 5.5.1.  

Compounds 1b-5b were synthesized following the general procedure developed by our 

research group as follows (see scheme 7.1 and 7.2). 

General procedure for the synthesis of 1b-4b. 

To a cooled solution (0 °C) of the appropriate compound 26b-29b (1 eq) in MeOH was added 

dropwise HCl 3N. The reaction mixture was stirred at r.t. for 16 h, and then the solvent was 

removed in vacuum. The residue was taken up with H2O and washed three times with ether. 

The aqueous phase was evaporated in vacuum to obtain 1b-4b, as hydrochloride salts. 

(1b). Yellow solid: quantitative yield; mp >250 °C; 
1
H NMR (400 MHz, D2O) δ 2.12.- 2.28 

(m, 8H), 3.15- 3.29 (m, 12H), 3.47- 3.54 (m, 8H), 4.30 (s, 4H), 4.33 (t, 4H, J = 6 Hz), 7.54 (s, 

4H), 8.74 (s, 4H); 
13

C NMR (100MHz, D2O) δ 22.47, 24.49, 37.44, 42.57, 42.67, 43.39, 44.66, 

45.55, 50.36, 121.80, 126.76, 130.67, 131.16, 131.51, 164.13; MS (ESI) m/z = 683 (M+H)
+
. 

(2b). Yellow solid: quantitative yield; mp >250 °C; 
1
H NMR (400 MHz, D2O)) δ 2.11- 2.14 

(m, 8H), 2.17- 2.22 (m, 4H), 3.13- 3.20 (m, 20H), 4.30 (s, 4H), 4.32 (t, 4H, J = 6 Hz), 7.56 (s, 

4H), 8.74 (s, 4H); 13C NMR (100MHz, D2O) δ 22.37, 24.21, 37.30, 43.56, 44.26, 44.30, 

44.38, 45.06, 50.53, 126.16, 126.22, 130.72, 131.14, 131.73, 164.64; MS (ESI) m/z = 356 

(M+2H)
+2

. 

(3b). Yellow solid: 92% yield; mp > 250°C; 
1
H NMR (400 MHz, D2O) δ 1.76- 1.77 (m, 8H), 

2.07- 2.21 (m, 8H), 3.01- 3.26 (m, 20H), 4.29- 4.78 (m, 8H), 7.55 (s, 4H), 8.60 (s, 4H); 
13

C 

NMR (100MHz, D2O) δ 19.82, 22.34, 22.43, 24.40, 37.48, 43.56, 44.08, 44.95, 46.54, 50.41, 

53.66, 125.98, 130.68, 131.10, 131.63, 135.73, 164.41; MS (ESI) m/z = 370 (M+2H)+
2
. 

(4b). Yellow solid: quantitative yield; mp >250 °C; ; 
1
H NMR (400 MHz, D2O) δ 2.08- 2.20 

(m, 8H), 3.03- 3.22 (m, 12H), 4.24 (s, 4H), 4.35 (t, 4H, J = 5.8 Hz), 7.47 (s, 4H), 8.62 (s, 4H); 
13

C NMR (100MHz, D2O) δ 21.81, 24.09, 37.05, 43.83, 44.03, 44.19, 50.56, 125.75, 125.86, 

130.59, 131.19, 131.74, 164.16; MS (ESI) m/z = 597 (M+H)
+
. 

 

General procedure for the synthesis of 5b and 26b-29b. 

The appropriate precursor 32b and 22b-25b (1 eq) was dissolved in EtOH (10
4
 eq) and 3Å 

molecular sieves were added to the solution. A solution of terephthalaldehyde (1eq) in EtOH 

(10
4
 eq) was added dropwise within 72 h. Then NaBH4 (1eq) was added to the solution and the 

stirring was continued for 16 h at r.t. The solvent was evaporated, the residue was taken up 

with CH2Cl2 and washed with brine. The organic phase was dried and evaporated under 

vacuum, the residue was purified by flash chromatography eluting with a mixture of 

CH2Cl2/MeOH/33% aq.NH4OH  9/1/0.03 to give 5b and 26b-29b, respectively. 5b was then 

dissolved in Et2O and treated with Et2O saturated with HCl, in order to obtain 5b as 

dihydrocloride salt. 

(5b) Free base. Yellow solid: 23% yield; 
1
H NMR (200 MHz, CDCl3) δ 1.26- 1.31 (m, 8H), 

1.71- 1.77 (m, 4H), 2.01- 2.07 (m, 4H), 2.71 (t, 4H, J = 6 Hz), 2.83 (brs, 2H, exch D2O), 3.11- 

3.57 (m, 16H), 3.78 (s, 4H), 4.34 (t, 4H, J = 6 Hz), 7.29 (s, 4H), 8.71 (s, 4H). 

 (5b) Hydrochloride salt. Pink solid: quantitative yield; mp > 250°C; 
1
H NMR (400 MHz, 

D2O) δ 1.15- 1.18 (m, 8H), 1.86- 1.89 (m, 4H), 1.98- 2.01 (m, 4H), 3.06- 3.10 (m, 4H), 3.14- 

3.17 (m, 4H), 3.28- 3.31 (m, 4H), 3.40- 3.43 (m, 4H), 3.58- 3.61 (m, 4H), 3.20- 3.23 (m, 8H), 

7.51 (s, 4H), 8.40 (s, 4H);
 13

C NMR (100 MHz, D2O) δ 25.13, 25.21, 25.35, 26.78, 39.06, 

45.01, 50.06, 67.61, 68.99, 70.24, 70.31, 125.30, 125.51, 130.45, 131.06, 132.01, 163.30. MS 

(ESI) m/z 743 (M+H)
+
. 
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tetra-tert-butyl 11,13,16,18-tetraoxo-11,12,13,16,17,18-hexahydro-5,8,12,16,20,23-

hexaaza-1(2,7)-benzo[lmn][3,8]phenanthrolina-14(1,4)-benzenacyclo- hexacosaphane-

5,8,20,23-tetracarboxylate (26b). Yellow oil: 31% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.23- 

1.43 (m, 36H), 1.60 (brs, 2H, exch D2O), 1.69- 1.73 (m, 4H), 1.96- 1.99 (m, 4H), 2.56- 2.59 

(m, 4H), 3.23- 3.32 (m, 16H), 3.68 (s, 4H), 4.20 (t, 4H, J = 6 Hz), 7.17 (s, 4H), 8.57 (s, 4H). 

tetra-tert-butyl 11,13,16,18-tetraoxo-11,12,13,16,17,18-hexahydro-5,9,13,17,21,25-

hexaaza-1(2,7)-benzo[lmn][3,8]phenanthrolina-15(1,4)-benzenacycloocta cosaphane-

5,9,21,25-tetracarboxylate (27b). Yellow oil: 18% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.23- 

1.43 (m, 36H), 1.78- 1.97 (m, 12H), 2.69- 2.74 (m, 4H), 3.17- 3.31 (m, 16H), 3.80 (s, 4H), 

4.20 (t, 4H, J = 8 Hz), 7.37 (s, 4H), 8.64 (s, 4H). 

tetra-tert-butyl 11,13,16,18-tetraoxo-11,12,13,16,17,18-hexahydro-5,10,14,18,22,27-

hexaaza-1(2,7)-benzo[lmn][3,8]phenanthrolina-16(1,4)-benzenacyclo- triacontaphane-

5,10,22,27-tetracarboxylate (28b). Yellow oil: 34% yield; 
1
H NMR (400 MHz, CDCl3) δ 

1.36- 1.42 (m, 36H), 1.49- 1.57 (m, 8H), 1.81- 1.87 (m, 4H), 1.91-1.98 (m, 4H), 2.68- 2.71 (m, 

4H), 3.14- 3.28 (m, 16H), 3.81 (s, 4H), 4.19 (t, 4H, J = 6 Hz), 7.40 (s, 4H), 8.69 (s, 4H). 

di-tert-butyl 11,13,16,18-tetraoxo-11,12,13,16,17,18-hexahydro-5,9,13,17-tetraaza-1(2,7)-

benzo[lmn][3,8]phenanthrolina-11(1,4)-benzenacycloicosaphane-5,17-dicarboxylate 

(29b). Yellow oil: 26% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.39- 1.48 (m, 22H), 2.00- 2.03 

(m, 4H), 2.44- 2.49 (m, 4H), 3.14- 3.17 (m, 4H), 3.25- 3.29 (m, 4H), 4.09 (s, 4H), 4.27- 4.31 

(m, 4H), 6.94 (s, 4H), 8.71 (s, 4H). 

 

General procedure for the synthesis of 10b-13b. 

A solution of the appropriate polyamine 6b-9b (1 eq) in MeOH (30 ml) was cooled to -78 °C 

and ethyl trifluoroacetate (2 eq) was added dropwise within 30 minutes. The stirring solution 

was allowed to r.t. and a solution of Boc2O (2 eq for 6b-8b, 1 eq for 9b) in MeOH was added 

dropwise. The reaction mixture was stirred at r.t. for 16 h, then a solution of NaOH 40% was 

added and the stirring was continued for other 20 h. The solvent was evaporated under vacuum 

and the residue was taken up with H2O and extracted with CH2Cl2. The organix layers, dried 

and evaporated, were purified by flash chromatography eluting with a mixture of 

CH2Cl2/MeOH/33% aq.NH4OH 8/2/0.2 to give 10b-13b, respectively. 

di-tert-butyl ethane-1,2-diylbis((3-aminopropyl)carbamate) (10b). Yellow oil: 80% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.38 (s, 18H), 1.79-1.88 (m, 4H), 2.70-2.28 (m, 4H), 2.89- 2.96 

(m, 4H), 3.17 (s, 4H). 

di-tert-butyl propane-1,3-diylbis((3-aminopropyl)carbamate) (11b).Yellow oil: 87% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.42 (s, 18H), 1.70- 1.79 (m, 4H), 1.85- 1.92 (m, 2H), 2.50- 

2.61 (m, 4H), 2.96 (t, 4H, J = 7.4 Hz), 3.12- 3.18 (m, 4H). 

di-tert-butyl butane-1,4-diylbis((3-aminopropyl)carbamate) (12b). Yellow oil: 92% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.45- 1.47 (m, 18H), 1.48- 1.53 (m, 4H), 1.79- 1.85 (m, 4H), 

2.55- 2.63 (m, 4H), 3.01- 3.15 (m, 8H). 

tert-butyl bis(3-aminopropyl)carbamate (13b). Yellow oil: 90% yield; ; 
1
H NMR (400 

MHz, CDCl3) δ 1.38 (s, 9H), 1.79- 1.92 (m, 4H), 2.55- 2.63 (m, 4H), 3.01 (t, 4H, J = 7.2 Hz). 

 

General procedure for the synthesis of 14b-17b. 

The appropriate compound 10b-13b (3 eq) was dissolved in MeOH and ethyl trifluoroacetate 

(1 eq) was added dropwise. The solution was allowed to stir for 16 h at r.t., then the reaction 

mixture was evaporated and the residue was purified by flash chromatography eluting with a 

mixture of CH2Cl2/MeOH/33% aq.NH4OH 9/1/0.1 to give 14b-17b, respectively. 

tert-butyl (3-aminopropyl)(2-((tert-butoxycarbonyl)(3-(2,2,2-trifluoroacetamido) 

propyl)amino)ethyl)carbamate (14b). Yellow oil: 93% yield; 
1
H NMR (400 MHz, CDCl3) δ 
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1.42- 1.43 (s, 18H), 1.61- 1.68 (m, 4H), 1.77 (brs, 2H, exch D2O), 2.66 (t, 2H, J = 6 Hz), 3.23- 

3.26 (m, 10H), 8.12 (brs, 1H, exch D2O ). 

tert-butyl (3-aminopropyl)(3-((tert-butoxycarbonyl)(3-(2,2,2-trifluoroacetamido) 

propyl)amino)propyl)carbamate (15b). Yellow oil: 83% yield; 
1
H NMR (400 MHz, CDCl3) 

δ 1.44- 1.45 (s, 18H), 1.65- 1.76 (m, 6H), 1.94 (brs, 2H, exch D2O), 2.70 (t, 2H, J = 6 Hz), 

3.13- 3.19 (m, 4H), 3.29- 3.36 (m, 6H), 8.15 (brs, 1H, exch D2O). 

tert-butyl(3-aminopropyl)(4-((tert-butoxycarbonyl)(3-(2,2,2trifluoroacetamido) 

propyl)amino)butyl)carbamate (16b). Yellow oil: 74% yield; 
1
H NMR (200 MHz, CDCl3) δ 

1.34- 1.59 (s, 18 H), 1.60- 1.81 (m, 6H), 2.65- 2.85 (m, 2H), 2.86- 3.08 (m, 2H), 3.08- 3.40 

(m, 10H). 

tert-butyl (3-aminopropyl)(3-(2,2,2-trifluoroacetamido)propyl)carbamate (17b). Yellow 

oil: 98% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.41-1.44 (s, 9H), 1.63- 1.68 (m 4H), 1.75 (brs, 

2H, exch D2O), 3.20 (t, 2H, J = 6 Hz), 3.28- 3.29 (m, 4H), 3.42- 3.47 (m, 2H), 8.17 (brs, 1H, 

exch D2O). 

 

General procedure for the synthesis of 18b-21b and 31b. 

To a solution of 14b-17b and 31b (2 eq) in DMF was added NTCDA (1eq). The reaction 

mixture was refluxed for about 2 h, until the reagents were consumed. Following solvent 

removal, the residue was purified by flash chromatography eluting with a mixture of 

petroleum ether/EtOAc 5/5 to give the desire products 18b-21b and 31b, respectively. 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((2-((tert-butoxycarbonyl)(3-(2,2,2-trifluoroaceta- mido) 

propyl)amino)ethyl)carbamate) (18b). Brown oil: 16% yield; 
1
H NMR (400 MHz, CDCl3) δ 

1.41- 1.44 (m, 36H), 1.70- 1.76 (m, 4H), 1.97- 2.01 (m, 4H), 3.24- 3.31 (m, 20H), 4,18- 4.20 

(m, 4H), 8.74 (s, 4H). 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((3-((tert-butoxycarbonyl)(3-(2,2,2-trifluoroaceta- 

mido)propyl)amino)propyl)carbamate) (19b). Brown oil: 43% yield; 
1
H NMR (400 MHz, 

CDCl3) δ 1.30- 1.40 (m, 36H), 1.64- 1.69 (m, 4H), 1,71- 1.74 (m, 4H), 1.89- 1.94 (m, 4H), 

3.10- 3.25 (m, 20H), 4.12 (t, 4H, J = 8 Hz), 8.11 (brs, 2H), 8.66 (s, 4H). 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((4-((tert-butoxycarbonyl)(3-(2,2,2-trifluoroaceta- 

mido)propyl)amino)butyl)carbamate) (20b). Brown oil: 50% yield; 
1
H NMR (400 MHz, 

CDCl3) δ 1.24- 1.44 (m, 36H), 1.45- 1.51 (m, 8H), 1.67- 1.70 (m, 4H), 1.96- 1.99 (m, 4H), 

3.15- 3.18 (m, 4H), 3.24- 3.30 (m, 16H), 4.19- 4.21 (m, 4H), 8.74 (s, 4H). 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((3-(2,2,2-trifluoroacetamido)propyl)carbamate) 

(21b).Yellow oil: 47% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.44 (s, 18H), 1.74- 1.78 (m, 4H), 

1.96- 2.03 (m, 4H), 3.35- 3.37 (m, 12H), 4.20 (t, 4H, J = 8 Hz), 8.13 (brs, 2H), 8.76 (s, 4H). 

tert-butyl (2- (4- (3- (7- (2,2-dimethyl-4-oxo-3,9,14-trioxa-5-azaheptadecan-17-yl)-1,3,6,8-

tetraoxo-3,6,7,8-tetrahydrobenzo[lmn][3,8]phenanthrolin-2(1H)-yl) ropoxy) 

butoxy)ethyl)carbamate (31b). Brown oil: 90% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.41 (s, 

18H), 1.52- 1.54 (m, 4H), 1.69- 1.72 (m, 8H), 1.99- 2.03 (m, 4H), 3.17- 3.18 (m, 4H), 3.31- 

3.34 (m, 4H), 3.38- 3.44 (m, 8H), 3.52- 3.55 (m, 4H), 4.29 (t. 4H, J = 6 Hz), 4.90 ( brs, 2H, 

exch D2O), 8.71 (s, 4H). 

General procedure for the synthesis of 22b-25b. 

The appropriate compound 18b-21b (1 eq) was dissolved in a mixture of MeOH/H2O (10:1 

ratio) and to the resulting solution was added K2CO3 (10 eq). The reaction mixture was 

refluxed for 2 h, then the solvent was removed and the residue was taken up with H2O and 
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extracted with CH2Cl2. The organic phase was dried and evaporated in vacuum, the residue 

was purified by flash chromatography eluting with a mixture of CH2Cl2/MeOH/33% 

aq.NH4OH 8/2/0.2 to give 22b-25b, respectively. 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((2-((3-aminopropyl)(tert-butoxycarbonyl)amino) 

ethyl)carbamate) (22b). Brown oil: 44% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.49 (s, 36H), 

1.72- 1.90 (m, 4H), 1.96- 2.00 (m, 4H), 3.68- 3.87 (m, 4H), 3.32- 3.33 (m, 16H), 4.21- 4.25 

(m, 4H), 8.75 (s, 4H). 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((3-((3-aminopropyl)(tert-butoxycarbonyl)amino) 

propyl)carbamate) (23b). Brown oil: 63% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.42- 1.44 

(m, 36H), 1.79-1.81 (m, 8H), 1.96- 1.97 (m, 4H), 2.87- 2,94 (m, 4H), 3.16- 3.23 (m, 8H), 3.24- 

3.33 (m, 8H), 4. 20 (t, 4H, J = 8 Hz), 8.76 (s, 4H). 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((4-((3-aminopropyl)(tert-butoxycarbonyl) amino) 

butyl)carbamate) (24b). Brown oil: 61% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.37- 1.40 (m, 

36H), 1.44- 1.49 (m, 12H), 1.95- 2.01 (m, 4H), 2.93- 3.01 (m, 4H), 3.20- 3.51 (m, 16H), 4.18 

(m, 4H), 8.83 (s, 4H). 

di-tert-butyl ((1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-

diyl)bis(propane-3,1-diyl))bis((3-aminopropyl)carbamate) (25b). Yellow oil: 60% yield; 
1
H NMR (400 MHz, CDCl3) δ 1.42 (s, 18H), 1.62- 1.80 (m, 4H), 1.95- 1.99 (m, 4H), 2.77- 

2.80 (m, 4H), 3.13- 3.29 (m, 8H), 4.16- 4.21 (m, 4H), 8.72 (s, 4H). 

 

Synthesis of compound 30b 

The appropriate polyamine (10 eq) was dissolved in CH2Cl2,a solution of Boc2O (1 eq) in 

CH2Cl2 was added slowly dropwise. The reaction mixture was allowed to stir at r.t. for 16 h. 

The solvent was removed under vacuum, the residue was taken up with H2O and extracted 

with CH2Cl2. The organic phase was dried over Na2SO4 and evaporated to obtain the desire 

product 30b. 

tert-butyl (3-(4-(3-aminopropoxy)butoxy)propyl)carbamate (30b). Yellow oil: 93% yield; 
1
H NMR (400 MHz, CDCl3 ) δ 1.44 (s, 9H), 1.62-1.77 (m, 8H), 2.77- 2.81 (m, 2H), 3.20- 3.21 

(m, 2H), 3.40- 3.50 (m, 8H), 5.21 (brs, 1H, exch D20). 

 

Synthesis of compound 32b 

To a stirring solution of 30b (1 eq) in MeOH, HCl 3N was added dropwise at 0° C. The 

stirring was continued for 16 h. The solvent was removed, the residue was taken up with H2O 

and washed with Et2O; the aqueous phase was basified with NaOH and the resulting solution 

was extracted with CH2Cl2.  The organic phase was dried over Na2SO4 and dried to obtain the 

desire product 32b. 

tert-butyl (3-(4-(3-(7-(3-(4-(3-aminopropoxy)butoxy)propyl)-1,3,6,8-tetraoxo-7,8-

dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-

yl)propoxy)butoxy)propyl)carbamate (32b). Yellow oil: 88% yield; 
1
H NMR (400 MHz, 

CDCl3 ) δ 1.48- 1.51 (m, 8H), 1.71- 1.73 (m, 4H), 2.00- 2.03 (m, 4H), 2.81- 2.83 (m, 4H), 3.31 

(t, 4H, J = 5.8 Hz), 3.37 (t, 4H, J = 5.8 Hz), 3.44 (t, 4H, J = 6.4 Hz), 3.54 (m, 4H, J = 6.0 

Hz), 4.30 (t, 4H, J = 7.0 Hz), 8.74 (s, 4H). 
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7.5.2 Biophysical Evaluation 

7.5.2.1 Fluorescence Resonance Energy Transfer (FRET) 

The following oligonucleotide sequences, all purchased from Eurofins, were used: F21T: (5‟- 

FAM-GGG TTA GGG TTA GGG TTA GGG-TAMRA-3‟), c-kit2 (5‟-FAM-CCC GGG 

CGG GCG CGA GGG AGG GGA GG-TAMRA-3‟), T-Loop: (5‟-FAM-TAT AGC TATA 

TTT TTT TATA GCT ATA-TAMRA-3‟). TAMRA (6-carboxytetramethylrhodamine) is the 

acceptor fluorophore, and FAM (6-carboxyfluorescein) is the donor fluorophore. From 20 μM 

stock solutions, 400 nM solutions in FRET buffer (60 mM potassium cacodylate pH 7.4) were 

prepared. The nucleotides were annealed by heating the samples to 90 °C for 10 min and 

allowing them to cool down to RT within 4 h. 10 mM solutions of the compounds in deionised 

water were prepared and diluted to double of the required concentrations with FRET buffer. In 

RT-PCR 96 well plates (MJ Research, Waltham, MA), each well was loaded with 50 μL of 

nucleotide solution and 50 μL of drug solution. Drug concentrations of 0.1, 0.2, 0.5, 1, 2, 5 

and 10 μM were used, and every drug concentration was repeated 3 times. Measurements were 

made on a DNA Engine Opticon (MJ Research) with excitation at 450 – 495 nm and detection 

at 515 – 545 nm. The flourescence was read at intervals of 0.5 °C over the range 30 – 100 °C. 

Before each reading the temperature was held constant for 30 s. The raw data were processed 

using Origin (Version 7.0, OriginLab Corp.). The graphs were smoothed using a 10-point 

running average and normalized. The melting temperatures were obtained by determining the 

maxima of the first derivative of the smooth melting curves. The value ΔT is the melting 

temperature difference between the nucleotide with drug and the negative control. 

7.5.3 Biology 

7.5.3.1 Cell Culture 

The cell lines ALT, MCF7, A549, MIA-Paca-2, Panc-1 (European Collection of Cell Cultures) 

and WI38 (American Type Culture Collection) were maintained in monolayer culture in 75 

cm2 flasks (TPP, Switzerland) under a humidified 5 % CO2 atmosphere at 37 °C. For the cell 

line A549, the medium Dulbecco’s MEM (GIBCO 21969, Invitrogen, UK) supplemented with 

L-glutamine (2 mM, GIBCO 25030, Invitrogen, UK), essential amino acids (1 %, GIBCO 

11140, Invitrogen, UK), and foetal calf serum (10 %, S1810, Biosera, UK) was used. For 

MIAPa-Ca-2 and Panc-1, Dulbecco’s MEM, supplemented with L-glutamine (2 mM) and 

foetal calf serum (10 %) was used. The medium MEM (M2279, Sigma, UK) with added L-

glutamine (2 mM), essential amino acids (1 %) and foetal calf serum (10 %) was used for the 

cell lines WI38, MCF7 and ALT. To passage the cells, they were washed with PBS (GIBCO 

14040, Invitrogen, UK), treated with trypsine (GIBCO 25300, Invitrogen, UK), and re-seeded 

into fresh medium, resulting in an initial cell density of approximately 1x10
4
 cells/mL 

medium. Cells were counted using a Neubauer haemocytometer (Assistant, Germany) by 

microscopy or a MacsQuant flow cytometer (Miltenyi Biotech, Germany) on a suspension of 

cells obtained by washing with PBS, trypsinisation, centrifugation at 8 °C at 8000 rpm for 3 

minutes, and re-suspension in fresh medium. 

7.5.3.2 Sulforhodamine B (SRB) short-term cytotoxicity assay 

The cells were counted and diluted to the required concentration in 20 mL medium. For the 

cell lines A549, Panc-1 and MIA-Pa-Ca-2, 2000 cells with 160 μL media were seeded into 

each well of a 96 well plate (Nunc, Denmark). For WI38, 6000 cells per well, while for 

MCF7, 4000 cells per well were used due to their higher doubling time. After incubation for 

24 hours, the compounds to be tested, dissolved in 40 μL of medium, were added at different 
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concentrations, and the cells incubated for 96 hours. The medium was then removed and the 

cells fixed by incubation with TCA (10 %, Sigma-Aldrich, UK) in water for 30 min. After 

removal of the TCA, the cells were washed with deionised water 5 times and dried at 60 °C 

for 1 h. Cells were then incubated with SRB (80 μL, 0.4 % in 1 % acetic acid, Acros Organics, 

UK) for 15 min at r.t. The SRB was removed, the wells washed with 1 % acetic acid (200 μL), 

and dried at 60 °C for 1 h. Tris-base (100 μL, 10 mM, Acros Organics, UK) solution was 

added to each well, and the plates were gently shaken for 5 min. The absorbance at 540 nm 

was measured with a plate reader (Spectrostar Omega, BMG Labtech, Germany). The data 

were normalised to the value of 100 for the control experiment (untreated cells), and the IC50 

values were obtained by interpolation from a plot done with Origin (Version 7.0, OriginLab 

Corp.), as the concentration leading to an absorbance intensity of 50%. 

7.5.3.3 Telomerase repeat amplification protocol (TRAP) assay 

Pelleted cells were lysed in RIPA lysis buffer (1x) containing protease cocktail inhibitors, 

PMSF and sodium orthovanadate (Santa Cruz Biotechnology) according to manufacturer’s 

instruction. Total protein concentration was determined using the Pierce BCA protein assay kit 

according to manufacturer’s instructions. Protein extract from MIA-Pa-Ca-2 cells treated with 

the compound was incubated with master mix containing the TS forward primer (0.1 µg of 5'-

AAT CCG TCG AGC AGA GTT-3'), TRAP buffer (20 mM Tris-HCl [pH 8.3], 68 mM KCl, 

1.5 mM MgCl2, 1 mM EGTA, 0.05 % v/v Tween-20), bovine serum albumin (0.05 µg), and 

dNTPs (125 µM each), protein extract (1000 ng/sample) diluted in lysis buffer (10 mM Tris-

HCl, pH 7.5, 1 mM MgCl2, 1 mM EGTA, 0.5 % CHAPS, 10 % glycerol, 5 mM ß-

mercaptoethanol, 0.1 mM AEBSF). The telomerase elongation step was carried out for 10 min 

at 30 °C, followed by 94 °C for 5 min and a final maintenance of the mixture at 20 °C. 

Elongated products were purified using the QIAquick nucleotide purification kit (Qiagen) 

according to the manufacturer’s instructions. The purified samples were freeze-dried and then 

redissolved in PCR-grade water at r.t. prior to the amplification step. Purified telomerase 

extended samples were then subject to PCR amplification. For this, a second PCR master mix 

was prepared consisting of ACX reverse primer (1 µM, 5'-GCG CGG [CTTACC]3 CTA 

ACC-3'), TS forward primer (0.1 µg, 5'-AAT CCG TCG AGC AGA GTT-3'), TRAP buffer, 

BSA (5 µg), 0.5 mM dNTPs, and 2 U of TAQ polymerase (RedHot, ABgene, Surrey, UK). An 

aliquot of 10 µL of the master mix was added to the purified telomerase extended samples and 

amplified for 35 cycles of 94 °C for 30 s, at 61 °C for 1 min, and at 72 °C for 1 min. Samples 

were separated on a 12 % PAGE and visualised with SYBR green (Sigma Aldrich, UK) 

staining. Gels were quantified using a gel scanner and gene tool software (Sygene, Cambridge, 

UK). Intensity data were obtained by scanning and integrating the total intensity of each PCR 

product ladder in the denaturing gels. Drug treated samples were normalised against positive 

control containing untreated protein only. All samples were corrected for background by 

subtracting the fluorescence reading of the negative control. 

7.5.4 Molecular Modeling 

The molecular modeling studies were performed using different computational methods. The 

ionization state was analyzed by the LigPrep program ver. 2.9. The conformational analysis of 

compound 2 and 8 was performed by the Monte Carlo search as implemented in MacroModel, 

generating 3000 conformations and energy minimizing them by the AMBER* force field with 

the united atom notation and the GB/SA water salvation model. Docking experiments were 

carried out with Autodock 4.2 (AD4) software package. Full energy optimizations of DNA 

complexes with the compounds were carried out in the same conditions used for the 

conformational search of the isolated compounds. , docking calculations have been performed 
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using X-Ray experimental models of a 6 bp DNA duplex (PDB code: 1Z3F) complexed with 

the anticancer agent ellipticine, and the h-Tel sequence of the bimolecular quadruplex 

d(TAGGGTTAGGGT) (PDB code: 3CDM) co-crystallized with a tetrasubstituted 

naphthalene-diimide.
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Chapter 8. Trisubstituted naphthalene diimides as G-

quadruplex binding agents 

 

8.1 Drug design 

Pathways exhibiting differential activity in cancer cells compared to healthy cells are attractive 

targets for therapeutic intervention. Because of its overexpression in cancer cells, telomerase 

has been validated as an interesting target with the aim to obtain new anticancer entities 

endowed with as limited as possible side effects. As described before, one strategy to target 

telomere maintenance is the development of G-quadruplex ligands and, among different 

structures investigated until now, the NDI scaffold is very suitable for the design of new G-

quadruplex binders. This nucleus possesses a π-acidic core, able to perform π-π stacking 

interactions with the external G-tetrads and, when it is functionalized with four side chains 

bearing amine end groups, has the potential to interact with the grooves at the sides of the G-

quadruplexes, as demonstrated by X-ray crystallography. 

Neidle and coworkers described a series of tetrasubstituted NDIs with high affinity for human 

telomeric DNA, endowed with high potency for growth inhibition in a panel of cancer cell 

lines, concomitant with telomerase inhibition. Among them, the most promising compound is 

Endamine, a derivative containing two N-methyl-piperazine and two morpholine end group 

side arms, that has shown exceptional potency in a panel of pancreatic cancer cell lines, with 

IC50 values in the low nanomolar range. This compound has also been tested in in vivo models 

with very good results.  

Starting from these premises, the aim of this project was to synthesize new potent G-

quadruplex ligands with improved antiproliferative activity, better pharmacokinetics 

properties (according to Lipinski’s rule of five) and lower toxicity to normal cells than 

Endamine, in order to increase the uptake into the cells and limit the side effects.  

Lipinski's rule of five is used to predict the druglikeness or determine if a chemical compound 

with a certain pharmacological or biological activity has properties suitable to make it an oral 

drug. The rule describes molecular properties that have proved to be important for the ADME 

(absorption, distribution, metabolism and excretion) profile in the humans. Following 

Lipinski’s rules, a chemical compound can become a drug only if: 

 its molecular mass is less than 500 Daltons; 

 it does not contain more than 5 hydrogen bond donors; 

 it does not contain more than 10 hydrogen bond acceptors; 

 it has a LogP (octanol-water partition coefficient) lower than 5. 

Endamine does not comply some of the rules, mainly because of the presence of the side 

chains and large end groups that add weight to the NDI nucleus, leading to a molecular weight 

of 831 g/mol. Furthermore, Lipinski’s rules state that no more than 10H-bond acceptors and 

5H-bond donors should be present in a drug molecule. The amount of H-bond donors and H–

acceptors depends on the protonation state of the N-methyl-piperazine moieties, but in the best 

scenario of a single protonation of only one N-methyl-piperazine group, both requirements 

would not be obeyed in Endamine. Another requirement is an octanol/water partition 

coefficient logP below 5, sadly the hydrosolubility of the N-methylpiperazinyl compound is 

expected to be high. 

http://en.wikipedia.org/wiki/Druglikeness
http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Pharmacology
http://en.wikipedia.org/wiki/Biological_activity
http://en.wikipedia.org/wiki/Molecular_property
http://en.wikipedia.org/wiki/Partition_coefficient
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In order to solve these issues, we synthesized a series of trisubstituted NDIs starting from 

Endamine as lead compound (Fig. 8.1). From SAR studies done before, it is known that the 

two morpholine end-group as diimide side arms are very important for the quadruplex 

stabilization, so we decide to delete one of the two N-methyl-piperazine chains, in order to 

obtain trisubstituted NDIs. 

This kind of compounds retains in part the selectivity for quadruplex over duplex DNA and, 

thanks to this strategy, we are able to decrease the molecular weight, the number of hydrogen 

bond acceptors and the logP. All the synthesized compounds have a molecular weight around 

600 g/mol, and two or three H-bond acceptors less than the lead compound. In order to 

perform some SAR studies, the N-methyl-piperazine substituent in the bay position has been 

changed with other different basic groups, such as pyrrolidine, pyridine, morpholine, 

diethylamine and piperidine, and, considering that the length of the side chains determines 

how deeply the end groups can reach into the grooves, different lengths have been chosen to 

study the influence in the binding to the nucleic acid. With the aim to assess whether the 

presence of protonable end groups at the end of the side chains are essential for the activity of 

the NDI derivatives, compounds with phenol and tetrahydrofuran end groups, which are not 

likely to be protonated, were synthesised. 

 

 

 
 

Figure 8.1. Drug design of the trisubstituted-NDI derivatives. 
 

 

 

Apart for groove binding, the function of the end groups of the side chains of NDIs is to give 

the molecules drug-like features such as solubility and high cellular uptake. All the basic 

groups introduced on the bay position in this series, after protonation, feature high 

hydrosolubility which is a desired effect, as the compounds are required to function in an 

aqueous environment.  
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8.2 Methods 

8.2.1 Chemistry 

Compounds 1c-10c were synthesized according to Scheme 8.1. 

The 2-monobromonaphthalene-1,4,5,8-tetracarboxylic dianhydride 11c was obtained by 

reacting NTCDA with 5,5-dimethyldibromohidantoyn in sulphuric acid, to give intermediate 

11c. 

3-morpholinopropylamine was condensed with 11c in acetic acid to obtain the disubstituted 

naphthalene diimide 12c. 

Finally, such compound was treated with different amines in N-methylpyrrolidone (NMP) to 

obtain the final products 1c-10c. 

 

 

 

 

 

Scheme 8.1. (i) 5,5-dimethyl-1,3-dibromohydantoin, H2SO4, 80 
o
C, 72 h; (ii) 3-

morpholinopropylamine, acetic acid, microwave, 130 
o
C, 30 min; (iii) amine, NMP, microwave, 125 

o
C, 

30 min.for 1c-9c / amine, NEt3, NMP, microwave,  125 
o
C, 30 min. for 10c. 

 

8.2.2 Biophysical Evaluation 

The G-quadruplex binding ability of compounds 1c-10c was assessed by Fluorescence 

Resonance Energy Transfer (FRET) melting technique. Values are expressed as the melting 

temperature difference between the nucleotide with drug and the negative control (ΔTm).  
 

8.2.3 Biology 

Derivatives were tested for in vitro antiproliferative activity in a panel of cancer cell lines. The 

antiproliferative activity has been evaluated by the Sulforhodamine B short-term cytotoxicity 

assay (SRB). Values are showed as the concentration required to inhibit cell growth by 50% 

(IC50). The cytotoxic activity of 3c was also evaluated through long-term growth inhibition 

study, where a fixed number of cells is incubated with the ligand at sub-cytotoxic 

concentrations over several weeks, and the number of population doublings is monitored 
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compared to untreated cells. A decrease in cell growth is attributed to senescence caused by 

the compound and the senescence was evaluated using the senescence staining protocol. 

Telomerase activity was determined using the TRAP-LIG assay, a modified telomere repeat 

amplification protocol that ensures that there is no carryover of ligand into the second PCR 

step of the assay. 

Alteration in gene expression induced by 3c were investigated through immunoblotting while 

the cell localization was studied through confocal microscopy. 

Compound 3c was also tested to assess its microsomal metabolic stability compared to 

Verapamil, in order to determine its stability in the presence of human liver microsomes, and 

the plasma protein binding compared to Warfarin. 

8.2.4 In vivo studies 

Derivative 3c was tested for in vivo antiproliferative activity in CD1 nude mice carrying a 

subcutaneous xenograft of the pancreatic tumour cell line MIA PaCa-2 (5x10
6
 cells in the right 

flank) grown with Matrigel. The study was conducted in comparison to Endamine and 

Gemcitabine. The study, aside from determining the therapeutic potential of the drug 

compared to the lead compound and the main drug used for the treatment of pancreatic 

adenocarcinoma, allowed to determine roughly the time required for the localisation of 3c in 

the tumor by fluorescent imaging (IVIS) and to assess the expression of apoptosis markers 

(caspase 3 and Bcl-2 family proteins) by histology. 

First in vivo studies has required maximum tolerated dose (MTD) studies in order to assess 

whether the therapeutic window is wide enough for efficient inhibition of the target at non-

toxic compound concentrations. 

 

8.3 Results and discussion 

The present project required a process of the optimization of the reaction conditions for all the 

steps of the synthetic process. The previous synthetic route was conducted starting from 

NTCDA that was reacted with dibromoisocyanuric acid (DBI) leading to the mono- and 

dibromo NDAs key intermediates, followed by the introduction of the amine chains at the 

imide and bay positions, in the order. The synthesis proceeded without any purification until 

the last step, leading to a very complex mixture that needed to be purified at least twice with 

preparative HPLC to obtain the desire products in a very low yield (less than 10%) (see yield 

for compounds 1c-2c/4c-8c).
142

 The critical passage in the previously reported synthetic 

scheme was the preparation of monobrominated NDA precursor 11c, the criticality is due to 

the low solubility of 11c that does not allow any kind of purification at this stage and any 

evaluation of the amount of monobromo derivative obtained. Purification can be performed 

only after the N-N' imidation reaction, due to the great enhancement of solubility assured by 

the introduction of the basic morpholino side chains. Lately a paper was published suggesting 

the use of 5,5-dimethyl-1,3-dibromohydantoin (DBH) as a useful agent for the regioselective 

bromination of NTCDA,
276

 so we tried to apply this more efficient and convenient method to 

our synthesis in order to reach our purposes (Scheme 8.1). We performed the reaction using 

the procedure reported in literature, which involved first the treatment of NTCDA with DBH 

(0.55 eq) in H2SO4 at r.t. for 12 h. After crushing the reaction mixture into ice and filtering, the 

precipitate containing a mixture of nobromo-, mono- and dibrominated NDAs underwent to 

the N-N' imidation reaction with 3-morpholinopropyalmine (2 eq) in acetic acid at 125 ºC for 

30 minutes under microwave irradiation to give the NDI intermediates. The purification of the 

obtained reaction mixture allowed us to afford the monobrominated NDI 12c in 12% yield and 
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the dibrominated NDI in 3% yield. The main isolated product was the NDI without any 

bromine atom on the core, deriving from the unreacted starting material after the first step. 

The separation of the three products obtained, characterized by a very similar Rf, is very 

challenging but it has been achieved either through preparative HPLC, column 

chromatography or with the support of a Biotage apparatus.  

We tried to improve the reaction conditions by changing the equivalent of brominating agent, 

the reaction time and temperature of the first step and maintaining unchanged the conditions of 

the N-N' imidation reaction. The results of our investigation are reported in Table 8.1.  

 

 

Table 8.1. Reaction condition tested for the synthesis of intermediate 11c. All the reactions were carried 

out using conc. H2SO4 as solvent. 

DBH 
Reaction 

Conditions 

Yield % 
12c 

Yield % 
dibrominated 

NDI 

 

A) 0.55 equiv 

 

r.t., 12h 

 

12 

 

3 

B) 0.55  equiv r.t., 72h 16 5 

C) 0.55 equiv 80
o
, 24h 21 2 

D) 0.55 equiv 80
o
, 48h 26 5 

E) 0.55 equiv 80
o
, 72h 35 6 

F) 1.0  equiv 80
o
, 24h 28 13 

G) 1.0  equiv 80
o
, 48h 22 33 

H) 1.5  equiv 50
o
, 10h 26 25 

 

 

 

At first, we began the reaction conditions optimization process maintaining fixed the amount 

of brominating agent and increasing either the temperature and the reaction time: up to 72 h at 

r.t. yields of 16% for 12c and 5% for the dibrominated NDI were reached, with concomitant 

high amounts of the no-bromoderivative deriving from the unreacted NTCDA. With the aim to 

reduce the amount of unreacted NTCDA in the first step, the reaction temperature was 

increased up to 80 ºC. As reported in Table 8.1, the amount of the mono- and dibrominated 

NDIs obtained increases with the reaction time, from 21% to 35% and from 2% to 6% 

respectively. In this case, the amount of the non brominated NDI is lower than before (around 

20%) but that product was found together with other side products, including the partially 

opened ring one. In order to push higher the yield of the desired intermediate, the equivalent of 

brominating agent used were increased from 0.55 to 1 and finally to 1.5. The use of 1 

equivalent of DBH, after 24 h at 80 ºC, afforded 12c in 28% yield and the dibrominated NDI 

in 13% yield. Up to 48 h, the amount of the latter overcomes the one of 12c with a yield of 

33% versus 22%, respectively. Our last attempt has involved the use of 1.5 equivalents of 

DBH at 80 ºC for 10 h, leading to 26% yield for 12c, with the presence of a high ratio of side 

products. 

The best conditions to get the monobrominated intermediate 12c have proved to be the use of 

0.55 equivalent of brominating agent at 80 ºC for 72 h. Because of the complexity of the 

reaction mixture derived from our previous approach, there was no possibility to purify the 

final compounds using other methods than preparative HPLC. That procedure had to be 

repeated twice and only a little quantity of the crude mixture could be purified in a single 

purification because of the complications in the scale-up process, leading to a big loss of final 
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products and time. Thanks to the isolation of the intermediate 12c, the reaction mixture after 

the last reaction resulted a lot less complex, thus it was possible to purify 3c through column 

chromatography with a 75% yield. 

Compounds 1c-10c were firstly evaluated through Fluorescence Resonance Energy Transfer 

(FRET) melting technique in order to define their ability to stabilize G-quadruplex DNA.  The 

sequences used for the screening are F21T (telomeric), promoter region of HSP90A and 

HSP90B, promoter region of Kras and promoter region of Bcl-2. Tloop is a duplex DNA 

sequence used as control. We also ran FRET competition experiments in which the affinity for 

the telomeric sequence was evaluated in the presence of increasing concentrations of duplex 

DNA. Together, these experiments enabled us to assess the selectivity of the ligands for 

quadruplex versus duplex DNA. The results in Table 8.2 show that the compounds bearing a 

basic substituent on the planar core are the most active towards G-quadruplex structures. As it 

can be seen compounds 6c, 8c and 10c, bearing respectively a pyridine, a tetrahydrofuran and 

a phenol group, present lower stabilizing activities compared to the others in the FRET assay. 

All the other compounds are able to stabilize G-quadruplex DNA almost at the same extent, 

but they are worse binder considering the tetrasubstituted lead compound Endamine. NDI 

compounds with the same end group and different length of the side chains in the bay position 

(i.e, compound 1c and 2c, 3c and 5c) displayed differences in the stabilization of various G-

quadruplex sequences; that may be due to interactions of the side chains with different 

phosphates in the grooves of the G-quadruplexes. Generally it can be state that the 

stabilization of telomeric G-quadruplex DNA increases slightly by increasing the side chain 

length, while the stabilization of duplex DNA and G-quadruplexes induced in the Kras 

promoter is approximately the same or diminishes by increasing the length of the side chain. 

The trisubstituted NDIs produce high stabilization of Bcl-2 and Hsp90A promoters, thus 

suggesting possible mechanisms of action for these derivatives.  

All the compounds have proved a similar trend in the competition assay: the selectivity for the 

telomeric DNA is maintained up to 1:10, but when the concentration of the duplex DNA 

increase up to 100, the selectivity is lost. This can be explained by assuming that the target of 

the serie of the trisubstituted NDIs is not the telomeric DNA but one of the other oncogenic 

promoters. 

 

Table 8.2.: Tm values (C) for FRET analyses of compounds 1-10 and Endamine at 1μM 

concentrations with a series of G-rich sequences: hTel (F21T), Hsp90A, Hsp90B (Heat Shock Protein 

90), Kras21, Kras32, Bcl-2, Tloop (duplex DNA). Esds are from triplicate measurements and average 

0.3 C. Calf Thymus (CT) competition data is shown in % retention of Tm .(*) indicates concentration 

of 5μM instead of 1μM. 
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Preliminary biological evaluation has been obtained by the SRB assay. The cell growth 

inhibition ability of compounds 1c-10c has been assayed in a panel of cancer cell lines 

comprising: A549 (lung), MCF-7 (breast), MIA Paca2 (pancreatic), Panc1 (pancreatic), ALT 

(alternative lengthening of telomeres cancer cells) and WI38 (human fibroblast) (Table 8.3).  

All the compounds tested, except 10c, displayed sub-micromolar activity in all the cancer cell 

lines used. In particular, it is very important to underline that all the derivatives show some 

kind of selectivity: the citotoxicity is higher towards the pancreatic cancer cell lines Panc1 and 

MIA PaCa2. Even 10c, that is not endowed with high cytotoxic activity, has an IC50 of about 

200 nM towards the pancreatic cancer cell lines. 

 

 

Table 8.3. Short-term 96 hr IC50 values (in μM) for compounds 1c-10c and Endamine in a cancer cell 

line panel, comprising MCF7 (breast), A549 (lung cancer), MIA PaCa2/Panc1 (pancreatic cancer), ALT 

(Alternative Lengthening of Telomeres) and WI38 (lung fibroblast) cell lines. Esds average 0.25 μM. 

 A549 MCF7 MIAPaCa2 Panc1 ALT WI38 

1c 0.067 0.357 0.059 0.045 0.224 1.83 

2c 0.086 0.316 0.048 0.046 0.085 1.49 

3c 0.024 0.159 0.012 0.022 0.093 1.19 

4c 0.130 1.070 0.220 0.340 1.29 2.24 

5c 0.026 0.222 0.036 0.033 0.089 1.22 

6c 0.198 1.110 0.108 0.084 0.535 5.33 

7c 0.146 1.03 0.139 0.808 0.71 1.88 

8c 0.825 3.33 1.085 0.999 2.67 5.53 

9c 0.092 1.538 0.059 0.163 0.451 1.65 

10c 2.18 >25 0.206 0.220 10.874 17.65 

Endamine 0.019 0.070 0.011 0.003 0.063 0.230 

 

 

 

It is also important to notice that, differently from the lead compound Endamine, the 

selectivity of these compounds for the cancer cell lines is improved: their activity vs WI38 

cells, that are normal fibroblast, is much lower respect to the antiproliferative activity towards 

the cancer cells. The trisubstituted derivatives display more than 100 fold selectivity for these 

cell lines over the normal fibroblast cell line. Among the compounds, the best one proved to 

be 3c, with an IC50 of 12 and 22 nM vs MIAPaCa2 and Panc1 respectively. 

Considering that the most common mutation able to determine resistance to the current drug 

treatments in pancreatic cancer is the Kras mutation, all the derivatives were tested to assess 

their cytotoxicity against DT6606 and TB32047 mouse cancer cell lines together with 

Endamine and Gemcitabine. These two cytotipes own their unique features: more specifically 

DT6606 is a cancer cell line characterized by mutation in the Kras gene, while TB32047 is a 

cancer cell line with mutation in both Kras and p53 genes. The results of this investigation are 

reported in Table 8.4.  

All the compounds display a lower cytotoxic activity for the mouse cancer cells compared to 

the human ones. That can be related to the deep differences between the two cytotypes. 

Endamine still remains the most active molecule within the NDI derivatives, with an IC50 of 

310 and 295 nM and respectively for the two cancer cell lines. Gemcitabine proved to be very 

potent as well, with IC50 of 39 and 15 nM respectively. 

Except for the abnormal change in the activity of compound 4c, that in the normal cancer cell 

lines is not the most toxic derivative, from this study we obtained the usual trend, i.e. the 

pyrrolidine derivative 3c seems to be the more active towards the two new cancer cell lines 

tested. 
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Table 8.4. Short-term 96 hr IC50 values (in μM) for compounds 1c-10c and Endamine in DT6606 and 

TB32047 mouse cancer cell lines. Esds average 0.25 μM. 

Compound DT6606 TB32047 

1c 0.530 0.877 

2c 0.947 0.316 

3c 0.590 0.646 

4c 0.363 0.343 

5c 0.840 0.498 

6c 8.499 6.095 

7c 0.613 0.762 

8c 5.890 5.040 

9c 1.130 0.796 

10c >25 >25 

Endamine 0.310 0.295 

Gemcitabine 0.039 0.015 

 

 

 

In order to further investigate the biological activity of the most interesting derivative 3c, long 

term growth inhibition study was performed using the target compound and Gemcitabine as 

control in MIA Paca2 and TB32047 cancer cell lines at different sub-cytotoxic concentrations 

(Figure 8.2). Cellular response to cytotoxic agents is often different in long-term exposures 

where cells tend to circumvent the cytotoxicity assault by triggering alternative biochemical 

pathways leading to development of drug-resistance. Thus, it was important to compare both 

short-term and long-term studies.  

 

 

 

 
 

Figure 8.2. Long-term study: graphs representing the “population doubling” vs time, showing 3c and in 

comparison to Gemcitabine effects on MiaPaca2 and TB32047 cell lines. 
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In all cases, proliferation of treated cells is decreased compared to untreated cells; in most 

cases, a delayed growth inhibition is observed only after two weeks, which implies that 

senescence caused by the compound is in part of a replicative nature. In most cases, 

proliferation decreased further after the second and third week, which indicates induction of 

senescence caused by the NDIs, which can be both replicative and stress-induced. In the long-

term study using the human pancreatic cancer cell line MIA PaCa2, 3c produces a reduction in 

the population doubling at the end of four weeks. When the higher concentration of 3c (10 

nM) is applied to the cells, the population doubling at the end of the cycle is 19.28 compared 

to 23.94 in the vehicle control, corresponding to an inhibition of 19.5%. Even exposing the 

cells at lower concentrations of 3c (2.5 nM, 5 nM and 7.5 nM), cell growth decreases (PD = 

22.69; PD = 21.91; PD = 21.97), comparing to the vehicle control (PD = 23.94) at the end of 

four week treatment. However, the highest dose of 3c (10 nM) is the most effective. The 

Gemcitabine long term exposure at the highest concentration (10 nM) causes a population 

doubling of 19.06, corresponding to an inhibition of 20.4%. Also in this case the drug 

produces a decrease in cell growth using the lower concentrations (2.5 nM, 5 nM and 7.5 nM), 

with PD = 23.56; PD = 23.31; PD = 22.12 respectively. 

In the long-term study of mouse cancer cell line TB32047, the effects of 3c are very different 

depending on the concentration used: besides a reduction in the population doublings at the 

end of four weeks for all the concentrations tested, the long-term study shows a significant 

reduction in the number of cells treated with the highest concentrations (200 nM and 300 nM) 

after as little as seven days, that compromises the continuation of the study for these 

concentrations. Mouse cells treated with 3c at 200 nM and 300 nM show significant changes 

in the population and morphology: fewer cells observed in the flask as well as rounded shape, 

and floating (dead) cells with some other cells in light orange colour, unveiling an apoptosis 

state. For the cells underwent to a 150 nM treatment with 3c, the population doubling was 

16.99 comparing to 25.38 in the vehicle control, with an inhibition of 33.1%. The Gemcitabine 

effect for the higher concentration used (12.5 nM) causes a population doubling of 15.55, 

corresponding to an inhibition of 38.8% of the cell viability. 

MIA PaCa2 and TB32047 cells from long-term study were assessed for senescence at the end 

of each week of treatment with 3c and Gemcitabine. The trend showed in both cell lines 

incubated with 3c is the increment of the blue stain along with the increase in drug 

concentration (Fig. 8.3).  

Also the morphology of both cells lines changed during the incubation with 3c. The changes 

are more obvious in MiaPaCa2 cell line because of the features of this cancer cell line (as 

shown in the vehicle control) that presents rounded cells, making it possible to observe 

changes easily. The morphology of the cells incubated with drug became flattened and bigger 

in size and their ratio of nucleus to cytoplasm also increases, indicating senescence. 
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Figure 8.3. Top) Senescence-associated β-galactosidase (SA-βgal) activity in MiaPaCa2 cell line 

incubated with different concentrations of 3c, after 2 weeks of incubation. Untreated is the positive 

control for SA-βgal activity. With increment of drug concentration, the amount of cells with SA-βgal 

activity increases (200X magnification). Bottom) Effect of 3c on morphology of MiaPaCa2 cell line 

(4th week): untreated – no change observed; treated cells featured changes in shape and size, becoming 

flattened and bigger (200X magnification). 

 

 

The telomerase inhibitory activity all the trisubstituted NDIs was assessed in MIA PaCa2 

cells, using the modified TRAP-LIG assay (Fig. 8.4). No change in the products of telomerase-

mediated telomere elongation are apparent at up to 50 µM of each compound, indicating that 

all the final compounds lack of telomerase inhibitory activity, at least at the dosage levels 

producing growth inhibitory effects. 

 

 

 
                                       p.c       1 µM    5 µM    10 µM   15 µM   25 µM   50 µM   n.c. 

 

Figure 8.4. Gel showing telomerase activity in MIA PaCa2 cells treated with compounds 3c at 

increasing concentrations. Compound concentrations are indicated. Neg, negative control (n.c.); Pos, 

positive control of untreated cells (with telomerase but no ligand, p.c.). 
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These results are in agreement with the previous one obtained for Endamine, that showed no 

inhibition as well, but it is in contrast with the data reported for other tetrasubstituted NDIs. In 

view of the potent antiproliferative activity of compounds 1c-10c, their inactivity in the 

MIAPaCa2 cell line against telomerase at concentration levels that produce inhibition of 

cancer cell growth suggests a more complex mode of action in this line, probably involving 

the control of the transcription of the major human genes. 

Immunoblotting was used to verify if the most interesting compound 3c was able to modify 

the expression of specific proteins involved in cell cycle regulation. In particular, considering 

that Endamine has displayed activity towards Bcl-2, the same protein was used to test 3c. No 

decrement in the bands was found in the western blot gels, indicating that Bcl-2 is not the 

main target. Furthermore, epidermal growth factor receptor (EGFR) was also a protein of 

interest, since its overexpression is correlated with disease progression and resistance to 

chemotherapy. Thus, the same technique was applied to screen this protein. However, as 

shown in Fig. 8.5, the expression of EGFR was very similar at all time points, which can lead 

to some different conclusions: (i) until the time points tested, no significant change in the 

expression of EGFR was apparent, due to the fact that the drug needs more time to display its 

action; (ii) the concentration of 3c was not sufficient to induce changes in the expression of 

EGFR or (iii) the mechanism of action of 3c does not interfere with the expression of EGFR. 

 

                                                                  

Figure 8.5.  Western blots for EGFR protein in MIA paca2 cells (line 1), and  MIA paca2 cells 

incubated with 3c (20 nM) for 4 h (line2), 8 h (line 3), 16 h (line 4) and 24 h (line5).  

 

Assessment of cellular uptake and location of anticancer agents inside the cell can provide 

information on whether compounds are able to reach their targets. Drug candidates must be 

able to enter and be sustained in cells, and compounds exerting their actions through the 

stabilization of G-quadruplexes located in telomeres or in the promoter regions of genes must 

enter the nucleus, where chromosomes are located. NDI compounds have fluorescent 

properties, which can be used for their visualisation in cells by confocal microscopy.  

 

 

Figure 8.6. Cell uptake detection using confocal microscopy: 3c (red) is mainly localized in the nucleus 

(blue) after 60 minutes exposure at 25 nM. 
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Confocal microscopy images of MIAPaca-2 cells incubated with 3c at 25 nM concentration 

showed that the compound is taken up into cells and localize mainly in the nucleus after 60 

minutes (Fig. 8.6). 

Based on the previous observations, compound 3c was selected as the lead compound for the 

in vivo studies. Compound 3c and Endamine were tested in vivo using MIA Paca2 tumor 

transplant models in order to compare their efficacy. Gemcitabine was also included in the 

study and used as positive control, considering that is the drug mainly used for the treatment 

of pancreatic adenocarcinoma. 

As the first in vivo experiment of a novel compound, the MTD must be determined, which is 

stated in the units mg of compound per kg of body weight. With that purpose, the drug was 

administered to mice on a regular schedule at slowly increasing doses starting from a dose of 

10 mg/kg. When the toxic concentration is approached, animals show weight loss. For 

Endamine the MTD is 30mg/kg, while 3c has proved to be a safer compound, with a MTD of 

45mg/kg. This data allow to state that 3c is endowed with a much higher therapeutic window 

compared to the parent compound. The initial MTD study showed that for Endamine the safe 

therapeutic dose was 15mg/kg given as a single i.v. injection. In order to compare the results 

from the study this dose was used for the parent compound and also for 3c. A lower dose 

(10mg/kg) was also selected for compound 3c, in order to assess if the derivative was more 

active than Endamine, while for Gemcitabine the dose used was of 15mg/kg, as reported in 

literature. 

The study was carried on for 24 days in which the different groups underwent to a cycle of 

two intravenous injection per week. After 24 days the tumor growth inhibition rates of each 

group were calculated and the results are showed in Figure 8.7. 

 

 

 
Figure 8.7. Plot of the changes in averaged tumour volume during the therapeutic xenograft 

experiments using 3c, Endamine and Gemcitabine, for the control group of mice compared to groups 

dosed with 10 and 15 mg/kg respectively, administered twice weekly for 24 days in a pancreatic MIA 

PaCa2 xenograft model (8 injections). 

 

As deductible from the plot, all the drugs are active in the in vivo model, in fact the tumor 

growth rates in mice treated with 3c, Endamine and Gemcitabine were dramatically decreased. 

It is possible to state that the antitumor effect of 3c at a dose of 15mg/Kg is stronger compared 

to those expressed by Endamine and Gemcitabine at the same dose. Lowering the dose of the 
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trisubstituted derivative from 15mg/kg to 10mg/kg leads to a strong decreasing of the 

antitumor activity. Compound 3c is able to cause remission of the tumor and that makes it a 

possible drug candidate. 

After stopping the injections, the different groups were allowed to live in order to evaluate the 

presence of any long term effect caused by the drugs and to find out if the re-growth of 

tumours occurs. The mice not anymore dosed were observed for 42 additional days and the 

results of this prolonged study are reported (Fig. 8.8).  

After stopping the injection of the drugs, all the groups have shown a re-growth of the tumor 

mass, but this trend is more evident for groups treated with Endamine, Gemcitabine and 3c at 

the lower dose (10mg/kg). In mice treated with 3c at the higher dose, the tumor does not 

restart growing until 30 days after the last injection, thus indicating that the drug possesses 

some long term effect. From the results of the prolonged studies, 3c appears to be the best 

candidate for the treatment of the disease, taking ito account also its long term effects. After 

66 days all the mice belonging to the different groups were culled and the tumors were frozen. 

Treated and untreated samples of the tumors, as well as some non-tumour material, are 

currently undergoing to the histology studies.  

 

 

 
Figure 8.8. Plot of the changes in averaged tumour volume during the therapeutic xenograft 

experiments using 3c, Endamine and Gemcitabine, for the control group of mice compared to groups 

dosed with 10 and 15 mg/kg respectively, in a pancreatic MIA PaCa2 xenograft model after 66 days 

(injections stopped on day 24). 

 

The fluorescent properties of compound 3c and Endamine were utilised for in vivo 

fluorescence imaging. This technique is highly sensitive and has the advantage over confocal 

microscopy that no washing steps are involved which could rinse out the compound. The 

imaging method allows location of the fluorescent compounds in the animal, and in excised 

organs. 

Compound 3c and Endamine were visualised thanks to their fluorescence in animals treated at 

15mg/kg i.v. after 24 h. As it can be seen from figure 8.9, the in vivo imaging shows that both 

3c and Endamine localise in the tumor even though the tumor was better defined by this 

imaging modality with Endamine, whereas untreated animals only showed very low 
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autofluorescence. The fluorescence intensity is also maintained up to 72 h after the injection, 

thus indicating that both the molecules have a long period of retention in a living organism. 

 

 
 

Figure 8.9. In vivo spectral fluorescence imaging of compound 3c (A) and Endamine (B) 24 h after i.v. 

injection of 15mg/kg. 

 

 

The liver is the most important site of drug metabolism in the body, approximately 60% of 

marketed compounds are cleared by hepatic CYP-mediated metabolism. The assessment of the 

half life of a drug is very important to decide if the compound possesses a druglike 

pharmacokinetic profile. The evaluation of the metabolic profile of 3c was carried out using 

Verapamil, which is known to be quinckly metabolized by the human liver microsomes, as 

positive control. The microsome turnover and the amount of non metabolized compound were 

evaluated after 15, 30 and 60 minutes and the results of the investigation are reported in Fig. 

8.10. 

The results obtained attest that 3c is a quite stable drug, the microsomal turnover is less than 

40% after 60 minutes, much lower compared to the value obtained for Verapamil. The half life 

calculated for 3c is of 122.23 minutes. 

 

 

 

Figure 8.10. Human microsomal turnover of Verapamil and compound 3c and % of compound 

remaining in the blood stream at different times of Verapamil  and compound 3c.  
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The binding of a drug to plasma proteins is a major determinant of drug distribution, it has a 

very important effect on drug dynamics since only the free (unbound) drug interacts with the 

target. Also the halflife of a compound is strictly correlated with its protein binding activity, 

that does not have to be too long but either too short. The evaluation of plasma binding 

properties for 3c compared to Warfarin, a drug well known for its strong interaction with the 

proteins present in the plasma, has showed that only the 70% of the drug is bound to the 

latters, while the 30% of the compound is free. On the other hand Warfarin is present in 

99.64% in the bound form (Fig. 8.11).  

Many of the top 100 most prescribed drugs have greater than 98% protein binding, so the 

result obtained for compound 3c, even if not perfect, can be considered very promising. 

 

 
 

Figure 8.11. The plasma protein binding properties of 3c compared to Warfarin. 

 

8.4 Conclusion  

This project has involved the synthesis of Endamine-related compounds, in order to improve 

the pharmacokinetics and anticancer profile of the lead compound. In particular, it was 

demonstrated that the removal of one of the bay substituents did not cause a great loss of the 

cytotoxic activity in the members of the new serie. Compound 3c, bearing a pyrrolidine end-

group and a chain made up of two methylenes, proved to be the most potent compound, 

showing growth inhibition ability in a panel of cancer cell line, similar to the one proven by 

the parent compound Endamine. In particular, it was the most potent inhibitor of cell growth 

in MIAPaca2 and Panc1 pancreatic cancer cell lines, where it showed IC50 values of 12 and 22 

nM, respectively. Furthermore, compound 3c displayed an interesting biological profile 

characterized by a 100-fold selectivity for pancreatic cancer cells respect to normal fibroblasts.  

Compound 3c was also able to interact with the G-quadruplex formed in telomeres and 

oncogenic promoter regions at 1μM concentration with high ΔTm values, even if the loss of 

one basic chain caused a reduction of the G-quadruplex stabilizing activity respect to 

Endamine. The lack of quadruplex binding activity showed by compounds 6c, 8c and 10c in 

this series, strongly suggests that a basic group is a minimal requirement for the NDI 

derivatives. The results obtained from the competition assay suggest that the target of this 

compound was not the telomeric G-quadruplex DNA but more likely some quadruplex 

structures in the oncogenic promoters. This hypothesis was confirmed by the lack of activity 

of 3c towards telomerase through the telomerase repeat amplification protocol assay. 

Compounds 3c will be further investigated to better clarify its mechanism(s) of action. 
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The evaluation of the in vivo anticancer activity of 3c in a xenograft model of pancreatic 

cancer proved that 3c is more effective than Endamine and Gemcitabine for the treatment of 

the disease. The animals dosed with 3c displayed a block in the tumor growth and a 

regression, that persisted also after the interruption of the treatment thus indicating the 

presence of some long term effect. In vivo fluorescence imaging showed the ability of the 

compound to localize selectively in the tumor mass, moreover compound 3c presented a good 

miscrosomal stability and poor protein binding activity compared to most of the commercial 

drug, thus validating its good pharmacokinetic profile.  
All this features make compound 3c a good candidate for the treatment of pancreatic 

adenocarcinoma, that is still one of the most deadly form of cancer. 

 

8.5 Experimental section 

8.5.1 Chemistry 

All chemicals, reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, 

Lancaster Synthesis and Fluorochem (UK) and used without further purification. Solvents 

were supplied by VWR and Fisher scientific. Column chromatography was performed using 

BDH silica gel (BDH 153325P). HPLC analysis was carried out with a Gilson apparatus 

combining a 322 PUMP and an Agilent 1100 SERIES detector, using a C18 5μ (100 x 4.6 

mm) column (41622271 (W), YMC, Japan), at a flow of 1 mL/min. Preparative HPLC was 

carried out with a Gilson apparatus combining a 322 PUMP and a UV/VIS-155 detector with 

detection at 280 nm, using a C18 5μ (100 x 20 mm) column (201022272) (W), YMC, Japan, at 

a flow of 20 mL/min. Water and MeOH with 0.1 % formic acid were used as solvents for 

HPLC. For the purification of compounds 1c-3c, the following method was used: 100 % 

aqueous for 5 min after injection, gradually decreased to 60 % aqueous over 25 min. For 

compounds 12c, the following method was used: 100% aqueous for 2 min after injection, 

gradually decreased to 20% aqueous over 17 minutes. For the HPLC purity analysis of 

compounds 1c-3c, the method used was: 100 % aqueous for 5 min after injection, to 60 % 

aqueous over 18 min as well as 100 % aqueous for 5 min after injection, to 60 % aqueous over 

43 min. Purity for final compounds was greater than 95% (HPLC, 280 nm). NMR spectra 

were recorded at 400 MHz or 500 MHz on a Bruker spectrometer. NMR spectra were 

analyzed with MestReC 4.5.6.0 with chemical shifts using TMS as a standard (δ = 0 ppm). 

NMR multiplicity abbreviations are s (singlet), bs (broad singlet), d (doublet), t (triplet), q 

(quartet), 5q (quintet), and m (multiplet). Coupling constants J are reported as observed in 

Hertz (Hz). High Resolution Mass spectra (HRMS) were measured on a Micromass Q-TTOF 

Ultima Global tandem mass spectrometer run under electrospray ionisation (ESI), and 

processed using the MassLab 3.2 software. Compounds 1c-10c were prepared according to the 

optimized procedure reported in Scheme 8.1.  

 

Synthesis of compound 11c. 

Naphthalene dianhydride (0.150 g, 0.56 mmol) was slurried in H2SO4 (1.5 ml) and the 

suspension obtained was stirred for 5 min at r.t. to allow the complete dissolution. DBH was 

added slowly over a period of 1 h and the round bottom flask was tightly stopped to avoid the 

escape of bromine from the reaction mixture. The solution was stirred at 80 ºC for 72 h and 

then poured onto ice (30 ml). The yellow solid that formed was filtered, washed with water (2 

x 10 ml) and dried under vacuum, yielding 11c, that was used without further purification. 
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Synthesis of compound 12c.   

2-monobromonaphthalene-1,4,5,8-tetracarboxylic dianhydride 11c (0.58 mmol, 1 eq) and 3-

morpholinopropylamine (1.76 mmol, 2 eq) were suspended in acetic acid (3 ml). The reaction 

was performed under microwave irradiation at 125
 
ºC for 30 minutes. After having been 

cooled to rt the solvent was removed and purified through by preparative HPLC or column 

chromatography using as eluent a mixture of CH2Cl2/MeOH 96/4 to give the desire compound 

11c. 

4-bromo-2,7-bis(3-morpholinopropyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-

tetraone (12c).  Brown solid. 
1
H NMR (CDCl3) δ 1.95-1.97 9m, 4H), 2.40-2.43 (m, 8H), 2.52-

2.53 (m, 4H), 3.51-3.54 (m, 8H), 4.28-4.33 (q, 4H), 8.77 (d, 1H, J = 8 Hz), 8.82 (d, 1H, J = 

7.6 Hz), 8.935 (s, 1H). 
13

C NMR (100 MHz, CDCl3, TMS) δ 29.3, 29.7, 31.2, 38.1, 53.5, 56.4, 

56.5, 59.5, 66.9, 126.0, 126.1, 126.7, 126.9, 128.6, 130.6, 130.8, 131.6, 138.4, 161.1, 161.8, 

161.9, 162.5. HRMS (ES
+
) calculated C28H31BrN4O6 [M+H]

+
 600.1543. found: 600.1536. 

 

General procedure for the synthesis of 1c-9c.  

12c (1 eq), the appropriate amine (2 eq) and NMP were suspended in a microwave vessel. The 

tube was sealed with a rubber cup and heated to 125
 
ºC

 
for 30 minutes under microwave 

irradiation. After solvent removal, the crude mixture was purified by preparative HPLC or 

through column chromatography to give the desire product 1c-9c.  

4-((3-(4-methylpiperazin-1-yl)propyl)amino)-2,7-bis(3-

morpholinopropyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (1c). Red oil, 

yield 31% from 1-(3-aminopropyl)-4-methylpiperazine as starting material; purified through 

preparative HPLC; 
1
H NMR (400 MHz, CDCl3) δ 1.99- 2.09 (m, 6H), 2.62- 2.80 (m, 17H), 

3.01 (m, 8H), 3.68-3.76 (m, 10H), 4.20- 4.26 (m, 4H), 8.23 (s, 1H), 8.31 (d, 1H, J = 7.6 Hz), 

8.61 (d, 1H, J = 7.6 Hz), 10.16 (t, 1H, exch D20, J = 5.8 Hz). 
13

C NMR (100MHz, CDCl3) δ 

23.7, 23.9, 38.2, 38.8, 41.1, 43.3, 50.2, 52.5, 52.7, 53.1, 54.6, 55.7, 65.5, 65.7, 99.9, 119.4, 

119.8, 123.4, 124.6, 126.1, 127.9, 129.5, 131.4, 152.3, 163.0, 163.3, 166.0, 166.4. HRMS 

(ES
+
) calculated for (M+H)

+
 C36H49N7O6 676.3823, found 676.3825. 

4-((2-(4-methylpiperazin-1-yl)ethyl)amino)-2,7-bis(3-

morpholinopropyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (2c). Red oil, 

yield 12% from 2-(4-methylpiperazin-yl)ethylamine as starting material; purified through 

preparative HPLC; 
1
H NMR (400 MHz, CDCl3) δ 1.96-2.02 (m, 4H), 2.53-2.68 (m, 21H), 

3.03-3.05 (m, 4H), 3.62 (t, 4H, J = 4.6 Hz), 3.67-3.72 (m, 6H), 4.23-4.28 (m, 4H), 8.21 (s, 

1H), 8.34 (d, 1H, J = 7.6 Hz), 8.64 (d, 1H, J = 8 Hz), 10.28 (t, 1H, exch D20, J = 4.8 Hz); 
13

C 

NMR (100MHz, CDCl3) δ 24.0, 38.3, 39.1, 40.2, 43.7, 50.4, 52.9, 53.1, 53.6, 55.8, 56.0, 56.0, 

66.0, 66.3, 100.3, 119.5, 120.0, 123.6, 124.6, 126.3, 128.0, 129.5, 131.4, 152.1, 163.0, 163.1, 

163.3, 165.9. HRMS (ES
+
) calculated for (M+H)

+
 C35H47N7O6 662.3680, found 662.3666. 

2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-

yl)ethyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (3c). Red oil, 

yield 75% from 1-(3-aminoethyl)pyrrolidine as starting material; purified through column 

chromatography using as eluent a mixture of CH2Cl2/MeOH/34% aq. NH4OH 9.5/0.5/0.03; 
1
H 

NMR (400 MHz, CDCl3) δ 1.85-1.92 (m, 4h), 1.93-1.95 (m, 4H), 2.42-2.53 (m, 12H), 2.67-

2.68 (m, 4H), 2.93 (t, 2H, J = 6.6 Hz), 3.56 (t, 4H, J = 4.8 Hz), 3.61 (t, 4H, J = 4.6 Hz), 3.60-

3.73 (m, 2H), 4.23-4.29 (m, 4H), 8.21 (s, 1H), 8.32 (d, 1H, J =7.6Hz), 8.62 (d, 1H, J = 8 Hz), 

10.25 (t, 1H, exch D20, J = 4.2 Hz). 
13

CNMR (100MHz, CDCl3) δ 23.7, 24.4, 24.6, 38.7, 39.3, 

42.4, 53.5, 54.2, 54.7, 56.4, 56.5, 66.9, 66.9, 100.1, 119.3, 119.9, 123.6, 124.3, 126.1, 127.8, 

129.4, 131.2, 152.1, 163.0, 163.1, 163.4, 165.9. HRMS (ES
+
) calculated for (M+H)

+
 

C34H44N6O6 633.3389, found 633.3401. 
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2,7-bis(3-morpholinopropyl)-4-((2-(pyridin-2-

yl)ethyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (4c). Red oil, 

yield 20% from 2-(2-pyridinyl)ethanamine as starting material; purified through preparative 

HPLC; 
1
H NMR (400 MHz, CDCl3) δ 1.90-1.96 (m, 4H), 2.49-2.58 (m, 12H), 3.22 (t, 2H, J = 

7 Hz), 3.57 (t, 4H, J = 4.6 Hz), 3.62 (t, 4H, J = 4.6 Hz), 3.97-4.02 (m, 2H), 4.16-4.20 (m, 4H), 

7.11-7.15 (m, 1H), 7.29-7.27 (m, 1H), 7.57-7.61 (d, 1H, J = 7.8 Hz), 8.20 (s, 1H), 8.26 (d, 1H, 

J = 8 Hz), 8.56 (d, 2H, J = 8 Hz), 10.21 (t, 1H, exch D20, J = 5.6 Hz); 
13

C NMR (100MHz, 

CDCl3) δ 24.2, 37.7, 38.6, 39.2, 42.8, 53.1, 53.3, 56.2, 66.5, 66.5, 100.1, 119.8, 121.9, 123.5, 

123.6, 124.5, 126.2, 127.9, 129.5, 131.3, 136.8, 149.7, 151.9, 152.2, 157.8, 163.0, 163.1, 

163.4, 166.1. HRMS (ES
+
) calculated for (M+H)

+
 C35H40N6O6 641.3090, found 641.3088. 

2,7-bis(3-morpholinopropyl)-4-((4-(pyrrolidin-1-

yl)butyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (5c). Red oil, 

yield 15% from 4-(1-pyrrolidinyl)-1-butylamine as starting material; purified through 

preparative HPLC;
 1

H NMR (400 MHz, CDCl3) δ 1.94-2.11 (m, 12H), 2.59-2.77 (m, 12H), 

3.14 (t, 2H, J = 7.8 Hz), 3.28-3.29 (m, 4H), 3.63-3.70 (m, 6H), 3.76 (t, 4H, J = 4.6 Hz), 4.23-

4.27 (m, 4H), 8.17 (s, 1H), 8.34 (d, 1H, J = 8 Hz), 8.64 (d, 1H, J = 8 Hz), 10.10 (t, 1H, exch 

D20, J = 5.4 Hz); 
13

C NMR (100MHz, CDCl3) δ 23.2, 23.4, 23.7, 23.8, 26.7, 38.3, 38.9, 42.4, 

52.7, 52.8, 53.3, 54.7, 55.8, 55.9, 65.7, 65.9, 100.2, 119.5, 119.5, 123.6, 124.7, 126.3, 128.1, 

129.5, 131.4, 152.3, 162.9, 163.1, 163.4, 166.2. HRMS (ES
+
) calculated for (M+H)

+
 

C36H48N6O6 661.3713, found 661.3713. 

2,7-bis(3-morpholinopropyl)-4-((2-(piperidin-1-

yl)ethyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (6c). Red oil, 

yield 12% from 1-(2-aminoethyl)piperidine as starting material; purified through preparative 

HPLC; 
1
H NMR (400 MHz, CDCl3) δ 1.57-1.60 (m, 2H), 1.69-1.75 (m, 4H), 1.95-2.00 (m, 

4H), 2.51-2.68 (m, 16H), 2.87 (t, 2H, J = 6.4 Hz), 3.61 (t, 4H, J = 4.6 Hz), 3.67 (t, 4H, J = 4.6 

Hz), 3.76-3.80 (m, 2H), 4.22-4.28 (m, 4H), 8.18 (s, 1H), 8.31 (d, 1H, J = 7.6 Hz), 8.61 (d, 1H, 

J = 8 Hz), 10.24 (t, 1H, exch D20, J = 5 Hz); 
13

C NMR (100MHz, CDCl3) δ23.8, 24.2, 25.2, 

38.5, 39.2, 39.9, 53.1, 53.2, 54.3, 56.2, 56.8, 66.4, 66.5, 100.3, 199.5, 119.9, 123.6, 124.5, 

126.2, 127.9, 129.5, 131.2, 152.0, 162.9, 163.1, 163.4, 165.9. HRMS (ES
+
) calculated for 

(M+H)
+
 C35H46N6O6 647.3566, found 647.3557. 

4-((2-morpholinoethyl)amino)-2,7-bis(3-

morpholinopropyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (7c). Red oil, 

yield 7% from 4-(2-aminoethyl)morpholine as starting material; purified through column 

chromatography using as eluent a mixture of CH2Cl2/MeOH 9/1; 
1
H NMR (400 MHz, CDCl3) 

δ 1.92-1.96 (m, 4H), 2.42-45 (m, 8H), 2.49-2.54 (m, 4H), 2.59 (t, 4H, J = 4.4 Hz), 2.80 (t, 2H, 

J = 6 Hz), 3.56 (m, 4H, J = 4.4 Hz), 3.62 (t, 4H, J = 4.4 Hz), 3.66-3.70 (m, 2H), 3.78 (t, 4H, J 

= 4.4 Hz), 4.23-4.30 (m, 4H), 8.21 (s, 1H), 8.33 (d, 1H, J = 7.6 Hz), 8.64 (d, 1H, J = 8 Hz), 

10.34 (t, 1H, exch D20, J = 4.8 Hz); 
13

C NMR (100MHz, CDCl3) δ 24.4, 24.6, 38.7, 39.4, 

40.1, 53.5, 53.6, 56.4, 56.5, 56.8, 66.93, 66.96, 66.99, 100.3, 119.5, 120.0, 123.7, 124.5, 126.2, 

127.9, 129.5, 131.2, 152.1, 163.1, 163.5, 165.9. HRMS (ES
+
) calculated for (M+H)

+
 

C34H44N6O7 649.3376, found 649.3350. 

2,7-bis(3-morpholinopropyl)-4-(((tetrahydrofuran-2-

yl)methyl)amino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (8c). Red oil, 

yield 23% from tetrahydrofurfurylamine as starting material; purified through column 

chromatography using as eluent a mixture of CH2Cl2/MeOH 9.5/0.5; 
1
H NMR (400 MHz, 

CDCl3) δ 1.26-1.28 (m, 4H), 1.71-1.78 (m, 6H), 1.94-2.05 (m, 2H), 2.12-2.51 (m, 10H), 3.56-

3.57 (m, 4H), 3.62-3.64 (m, 4H), 3.74-3.78 (m, 1H), 3.84-3.87 (m, 1H), 3.97-4.00 (m, 1H), 

4.24-4.28 (m, 4H), 8.27 (s, 1H), 8.34 (d, 1H, J = 7.6 Hz), 8.65 (d, 1H, J = 7.6 Hz), 10.34 (t, 

1H, exch D20, J = 4.8 Hz); 
13

C NMR (100MHz, CDCl3) δ 24.4, 24.6, 25.9, 38.8, 39.4, 47.3, 
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53.6, 56.4, 56.5, 66.94, 66.97, 68.6, 100.2, 119.5, 120.0, 123.7, 124.5, 126.2, 127.9, 129.5, 

131.2, 152.5, 163.1, 163.4, 166.2. HRMS (ES
+
) calculated for (M+H)

+
 C33H41N5O7 620.3096, 

found 620.3084. 

4-((2-(dimethylamino)ethyl)amino)-2,7-bis(3-

morpholinopropyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (9c).  Red oil, 

yield 59% from N,N-dimethylenediamine as starting material; purified through column 

chromatography using as eluent a mixture of CH2Cl2/MeOH/34% aq. NH4OH 9.5/0.5/0.03; 
1
H 

NMR (400 MHz, CDCl3) δ 1.11 (t, 6H, J = 7 Hz), 1.46-1.47 (m, 4H), 1.90-2.53 (m, 12H), 

2.64-2.69 (m, 4H), 2.86 (t, 2H, J = 6.2 Hz), 3.56-3.57 (m, 4H), 3.61-3.65 (m, 6H), 4.23-4.30 

(m, 4H), 8.21 (s, 1H), 8.31 (d, 1H, J = 7.6 Hz), 8.62 (d, 1H, J = 8 Hz), 10.27 (t, 1H, exch D20, 

J = 5 Hz); 
13

C NMR (100MHz, CDCl3) δ 11.8, 24.4, 24.5, 38.6, 39.3, 47.1, 51.6, 53.5, 53.6, 

56.5, 66.9, 100.1, 119.4, 120.2, 123.7, 124.3, 126.1, 127.8, 129.6, 131.2, 152.1, 163.12, 

163.16, 163.5, 165.9. HRMS (ES
+
) calculated for (M+H)

+
 C34H46N6O6 635.3552, found 

635.3557. 

 

Synthesis of compound 10c. 

Compound 12c (1 eq), tyramine hydrocloride (2 eq), NEt3 (2 eq) and NMP were suspended in 

a microwave vessel. The tube was sealed with a rubber cup and heated to 130
 
ºC

 
for 30 

minutes under microwave irradiation. After solvent removal, the crude mixture was purified 

through column chromatography using as eluent a mixture of CH2Cl2/MeOH/34% aq. NH4OH 

9.5/0.5/0.02. 

4-((4-hydroxyphenethyl)amino)-2,7-bis(3-

morpholinopropyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (10c). Red oil, 

yield 37% from tyramine hydrocloride as starting material; 
1
H NMR (400 MHz, DMSO) δ 

1.75-1.82 (m, 4H), 2.31-2.43 (m, 12H), 2.91 (t, 2H, J = 6.6 Hz), 3.41-3.44 (m, 8H), 3.9-3.71 

(m, 2H), 4.02 (m, 4H), 6.72 (d, 2H, J = 8.4 Hz), 7.15 (d, 2H, J = 8 Hz), 7.84 (s, 1H), 8.02 (d, 

1H, J = 8 Hz), 8.30 (d, 1H, J = 8 Hz), 9.86 (brs, 1H, exch D20); 
13

C NMR (100MHz, CDCl3) δ 

29.9, 30.9, 38.4, 38.9, 44.5, 53.4, 53.5, 56.2, 56.4, 66.5, 66.7, 94.4, 100.1, 116.1, 119.4, 120.2, 

123.5, 124.5, 126.2, 129.0, 130.2, 131.3, 155.4, 162.9, 163.1, 163.5, 165.8. HRMS (ES
+
) 

calculated for (M+H)
+
 C36H41N5O7 656.3074, found 656.3084. 

 

8.5.2 Biophysical Evaluation 

8.5.2.1 Fluorescence Resonance Energy Transfer (FRET) 

The FRET experiments were conducted as reported in Chapter 7.5.2.1. 

The following oligonucleotide sequences, all purchased from Eurofins, were used: F21T: (5‟- 

FAM-GGG TTA GGG TTA GGG TTA GGG-TAMRA-3‟), HSP90a: (5‟-FAM- GGG-CCA 

AAG GGA AGG GGT GGG-TAMRA-3‟), HSP90b: (5‟-FAM-GGGCGG GCC AAA GGG 

AAG GGG-TAMRA-3‟), Kras21 (5‟- FAM-AGG GCG GTG TGG GAA GAG GGA- 

TAMRA-3‟), Kras32 (5‟-FAM -AGG GCG GTG TGG GAA GAG GGA AGA GGG GGA 

GG- TAMRA-3‟), Bcl-2 (5‟-FAM-GGG CGC GGG AGG AAG GGG GCG GG-TAMRA-

3‟), T-Loop: (5‟-FAM-TAT AGC TATA TTT TTT TATA GCT ATA-TAMRA-3‟).  

 

8.5.2 Biology 

8.5.2.1 Cell Culture 

Cell culturing was conducted using the condition reported in Chapter 7.5.2.1. 
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For cell lines DT6606 and TB32047 the medium Dulbeccos MEM (GIBCO 21969, Invitrogen, 

UK) supplemented with L-glutamine (2 mM, GIBCO 25030, Invitrogen, UK), essential amino 

acids (1 %, GIBCO 11140, Invitrogen, UK), and foetal calf serum (10 %, S1810, Biosera, UK) 

was used.  

8.5.2.2 Sulforhodamine B (SRB) short-term cytotoxicity assay 

The SRB assay was as reported in Chapter 8.5.2.2. 

For cell lines DT6606 and TB32047 4000cells per well were used.   

8.5.2.3 Long term growth inhibition study 

After counting, 3x10
4
 cells were seeded in 10 mL of medium containing the compound to be 

tested in a 75 cm
2
 flask and incubated for 7 days. The cells were then harvested and counted. 

3x10
4
 of the cells were re-seeded, and the process was repeated for another week. Population 

doublings were calculated using the formula 

Nf = N0 2
pd

 

pd = log(Nf/N0)/log2 

 

where N0 is the number of cells at the time of seeding (3x10
4
), Nf is the number of cells at the 

time of counting, and pd is the number of population doublings. 

 

8.5.2.4 Senescence staining 

Staining for senescene associated β-galactosidase was carried out following the protocol from 

the supplier (Cell Signaling Technology, Inc., Beverly, MA).1x10
5
 cells obtained from the 

long term studies were seeded in 35 mm 6-well plates (Nunc A/S) in 2 mL medium and 

incubated overnight. The medium was then removed, the cells washed, fixed with 

formaldehyde (2%) and glutaraldehyde (0.2%) in PBS for 15 min, and washed twice more. 1 

mL of a staining solution (citric acid/sodium phosphate (40 mM), pH 6.0, NaCl (0.15 M), 

MgCl2 (2 mM), potassium ferrocyanide (5 mM), potassium ferricyanide (5mM), 

X-gal (1mg/mL, 5-bromo-4-chloro-3-indolyl-βD-galactopyranoside)) was added to each well. 

The cells were incubated overnight and examined by light microscopy (magnification 200x) 

for the characteristic senescence-associated blue stain. 

8.5.2.5 Telomerase repeat amplification protocol (TRAP) assay 

The TRAp assay was conducted as reported in Chapter 7.5.3.3. 

8.5.2.6 Immunoblotting 

Total protein from samples was loaded onto pre-cast SDS-PAGE gels (Bio Rad) and 

transferred onto a nitrocellulose membrane (Invitrogen), and the membranes were probed with 

primary antibodies against bcl-2 and EGFR(Santa Cruz Biotechnology). Following incubation 

with the appropriate secondary antibodies, the membranes were visualised with the 

horseradish peroxidase luminescent visualisation system (National Diagnostics). 

8.5.2.7 Visualization of the compound through confocal microscopy 

MIA PaCa2 cells were grown on cover slips as for the cell uptake studies. After the cells had 

attached to the cover slips, they were incubated with the compouns (1 μM) and etoposide (30 

μM) for 24 h. They were then washed with PBS, and fixed with fomaldehyde (2 % in PBS) for 

10 min at r.t. Cells were permeabilised with triton x (0.1 % in PBS, Sigma Aldrich, UK) for 5 
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min at r.t., and washed with blocking buffer (3 % BSA, Sigma Aldrich, UK, and 0.05 % triton 

x in PBS). They were incubated with phospho-histone H2A.X (Ser139)(20E3) rabbit mAb 

alexa fluor 488 conjugate (1:67 dilution in PBS, 9719, Cell Signaling, USA) for 1 h and 

subsequently washed with PBS. Some samples were also incubated with DAPI (1:5000 

dilution of a 2 mg/mL solution in PBS, Sigma Aldrich, UK) for 5 min and washed with PBS. 

Cover slips were mounted as described in chapter 6.4.2, and analysed by confocal microscopy 

on a LSM 710 META confocal microscope (Zeiss, Germany) with a planapochromat 40 x /1.3 

Oil DIC M27 oil submersion lens. 6.6.2.2) Fluorescence in situ hybridisation (FISH) and 3D 

micr 

8.5.2.8 Microsomal metabolic stability 

Compound 3c (3 μM) was incubated with pooled liver microsomes. Test compound was 

incubated at 5 times points over the course of a 45 min experiment and the test compound was 

analysed by LC-MS/MS. Pooled human liver microsomes and pooled mouse liver 

microsomes, 0.1M phosphate buffer pH 7.4 and compound 3c were preincubated at 37° C 

prior to the addition of NADPH to initiate the reaction.. A control incubation is included for 

each compound tested where 0.1M phosphate buffer pH7.4 is added instead of NADPH. Two 

control compounds are included with each species. Compound 3c was incubated for 0, 5, 15, 

30 and 60 min. The control was incubated for 60 min only. The reaction was stopped by 

transferring 25 μL of incubate to 50 μL of MeOH at the appropriate time points. The 

terminated plates were centrifuged at 2500 rpm for 20 min at 4° C to precipitate the protein. 

Following protein precipitation, the supernatants were analysed using LC-MS/MS. 

8.5.2.9 Assessment of plasma binding properties 

Compound 3c (5 μM) was prepared both in 100% species specific plasma and buffer. The 

experiment was performed using equilibrium dialysis with the two compartments separated by 

a semi-permeable membrane (molecular weight cut off (MWCO) ~ 8000). The plasma 

solution was added to one side of the membrane in an equilibrium dialysis system while the 

buffer solution (PBS) was added to the other side. The system was allowed to reach 

equilibrium at 37 °C and incubated for 4 h. After incubation, samples from both plasma 

(bound) chamber and the buffer (free) chamber were taken and placed into separate 

microcentrifuge for analysis. The samples were matrix-matched. Acetonitrile containing 

internal standard was added to all samples. The samples were centrifuged and the supernatant 

was analysed by UHPLC-TOF MS for parent compound. Results are expressed as either % of 

free compound and % of bound compound. 

8.5.3 In vivo studies 

8.5.3.1 Determination of the maximum tolerated dose (MTD) 

Compound 3c was dissolved in saline and administered intravenous to the CD1 mice (n = 2). 

Body weight was recorded daily and the animals were observed for clinical symptoms. The 

starting dose of 10 μg/kg was increased step-wise in order to determine the MTD. 

8.5.3.2 Therapy study 

The CD1 mice used were inoculated with SC 5x10
6
 Mia Paca2 cells in the right flank 

(unsupplemented RPMI + Matrigel). After waiting for to establish subcutaneously (approx. 11 

days) and measuring the size of the tumours weekly until they reach a mean size of 0.05 cm
3
. 

At this stage of the development of the tumours, mice are ready to begin the therapy study. 
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Mice were re-grouped to to form five therapeutic groups constituted of eight mice each, 

carrying approximately 0.05 cm
3
 average of the tumour size per group. 

The following doses of Endamine, 3c and Gemcitabine were administered by IV. 

Group 1: 8 mice treated with 15 mg/Kg of Gemcitabine twice weekly dose. 

Group 2: 8 mice treated with 15 mg/Kg of Endamine twice weekly dose 

Group 3: 8 mice treated with 10 mg/Kg of 3c twice weekly dose. 

Group 4: 8 mice treated with 15 mg/Kg of 3c twice weekly dose. 

Group 5: 8 control mice treated with only saline twice weekly. 

The therapy study must be finished if tumours ulcerate; reach a size of 1.5 cm
3
 or a weight loss 

of 10-20% of the initial body weight is observed. 

8.5.3.3 Imaging studies 

Mice from groups A, B and C will be monitored to determine Endamine and 3 accumulation 

within the tumor in vivo by fluorescent imaging (IVIS) following drug injection at: 30min, 1h, 

2h, 4 h and 8 h then mice will be held till 24 h time point to be culled with the histology 

groups. 

Group A: 2 mice treated with 15 mg/Kg single dose of Endamine 

Group B: 2 mice treated with 10 mg/Kg single dose of 3c 

Group C: 2 mice treated with 15 mg/Kg single dose of 3c 

8.4.3.4 Histology study 

To assess apoptosis markers and their colocalisation with drugs (Endamine and 3c) mice of 

group A-D will be culled after 24 h and group E at 48 h time point following drugs’ injection. 

Tumors will be harvested and snap-frozen (N2 liquid). 10 µm sections will be cut from tumors 

and stained with anti-activated caspase3 and anti-BCL-2 family proteins. 

Liver, kidneys, heart, lungs, spleen, colon and brain will be harvested from mice of therapeutic 

groups (1 to 5) and snap-frozen for pathology analysis.  

Group A: 2 mice treated with 15 mg/Kg single dose of Endamine 

Group B: 2 mice treated with 10 mg/Kg single dose of 3c 

Group C: 2 mice treated with 15 mg/Kg single dose of 3c 

Group D: 2 control mice treated with saline only twice  
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Abbreviations 
ADMET: absorption, distribution, metabolism, excretion, toxicity 

ADP: adenosine diphospate 

AF-2: activation function-2 domain 

APC: Adenomatous Polyposis Coli  

AQ: antraquinone  

Asp: aspartic acid 

BA: butyric acid  

BP: base pair 

CAP: capping group  

CBI: cyclobisintercalator family   

CD: circular dichroism 

CDK: cyclin-dependent kinase  

CHAP: cyclic hydroxamic-acid containing peptide  

CTBP: C-terminal-binding protein 

CTCL: cutaneous cell T lymphoma  

DAT: dissociates activities of telomerase 

DFMO: difluoromthylornithine 

DNA: Deoxyribonucleic acid 

DNMT: methyltransferase protein 

dNTPs: deoxynucleotides triphosphates 

EGFRi: epiderma growth factor receptor inhibitor 

ER: estrogen nuclear receptor 

FAD: flavin-adenine dinucleotide 

FO: fluorenones 

FRET: Fluorescence resonance energy transfer 

GIST: gastrointestinal stromal tumours 

HAT: histone acetyltransferase 

HDAC: histone deacetylase 

HDACi: histone deacetylase inhibitor 

HIF: hypoxia inducible factors  

HP1: heterochromatin protein 1  

hTER: telomere reverse transcriptase  

hTR: telomere RNA component   

ICAM1: adhesion molecule-1 

IFD: ‘insertion in fingers’ domain 

KB: kilo base 

LSD: lysine demethylase 

MAO: monoamino oxidase 

MBDs: methyl-binding protein 

MCM: multiple-compound medication 

MM: multiple mieloma 

MMT: multiple-medication therapy 

MTDL: multi-target directed ligand 

NAD: nicotinamide adenine dinucleotide 

NCI: National Cancer Institute 

NDI: naphthalene diimides 

NHE: nuclease hypersensitivity element  
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NI: naphthalene imides 

NMR: nuclear magnetic resonance 

NSCLC: non-small cell lung carcinoma 

NTCDA: 1,4,5,8-Naphthalenetetracarboxylic dianhydride 

ODC: ornithine decarboxylase 

PAO: poliamminoossidase 

PAO: polyamino oxidase 

PAT: polyamine transporters 

PBA: phenylbutyric acid  

PTS: polyamine transport system 

RAP: repeat addition processivity 

ROS: reactive oxigen species   

r.t.: room temperature 

SAHA: Vorinostat   

SAM-DC: S-adenosylmethionine decarboxylase 

SAR : structure activity relationship 

SMA: spinal muscolar atrophy  

TBP2: TATA-binding protein 2 

TEN: essential N-terminal domain  

TeRRA: telomeric ribonucleoprotein complex 

TNFR-1: tumor necrosis factor receptor 1  

TRAIL: TNF related apoptosis inducing ligand  

TRBD: telomerase RNA-binding domain 

Trx: thioredoxin 

TSA: thricostatin A  

VEGF: vascular endothelial growth factor 

VPA: valproic acid   

ZBG: zinc binding group 

 

 

 

 

 

 

 

 

 



 

137 

 

Bibliography 

 

1. Siegel, R.; Naishadham, D.; A., J. CA: a cancer journal for clinicians 2012, 62, 10. 
2. Cooper M.G. The cell, a Molecular Approach 2000. 
3. N., S. Japanese journal of clinical oncology 2010, 40, 855. 
4. J.A., K.; M.P., F.; Z., L. Journal hematological oncology 2009, 2, 2. 
5. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; 
Melchiorre, C. Journal of  Medicinal Chemistry 2008, 51, 347. 
6. Hartman, J. L.; Garvik, B.; Hartwell, L. Science 2001, 291, 1001. 
7. Morphy, R.; Z., R. Journal of  Medicinal Chemistry 2005, 48, 6523. 
8. Rask-Andersen, M.; Almén, M. S.; Schiöth, H. B. Nat. Rev. Drug Discovery 2011, 10, 579. 
9. Kola, l. s. p. w. s. q. o. q. g. I.; Landis, J. Nature Review Drug Discovery 2004, 3, 711. 
10.Morphy, R.; Rankovic, Z. Drug Discovery Today 2007, 12, 156. 
11.Zhang, Y. M.; Cockerill, S.; Guntrip, S. B.; Rusnak, D.; Smith, K.; Vanderwall, D.; Wood, E.; 
Lackey, K. Bioorganic & Medicinal Chemistry Letters 2004, 14, 111. 
12.Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.; Campbell, B. T.; 
Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. 
J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.; Wodicka, L. M.; 
Zarrinkar, P. P. Nature Biotechnology 2008, 26, 127. 
13.Siegel, R.; Naishadham, J.; Jemal, A. Cancer statistics 2013, 63, 11. 
14.Hassan, M. M.; Bondy, M. L.; Wolff, R. A.; Abbruzzese, J. L.; Vauthey, J. N.; Pisters, P. W.; 
Evans, D. B.; Khan, R.; Chou, T. H.; Lenzi, R.; Jiao, L.; Li, D. Am J Gastroenterol 2007, 102, 2696. 
15.Hassan, M. M.; Bondy, M. L.; Wolff, R. A.; Abbruzzese, J. L.; Vauthey, J. N.; Pisters, P. W.; 
Evans, D. B.; Khan, R.; Chou, T. H.; Lenzi, R.; Jiao, L.; Li, D. Am J Gastroenterol. 2007, 102, 
2696. 
16.Jaffee, E. M.; Hruban, R. H.; Canto, M.; Kern, S. E. Cancer Cell 2002, 2, 25. 
17.Tersmette, A. C.; Petersen, G. M.; Offerhaus, G. J.; Falatko, F. C.; Brune, K. A.; Goggins, M.; 
Rozenblum, E.; Wilentz, R. E.; Yeo, C. J.; Cameron, J. L.; Kern, S. E.; Hruban, R. H. Clin Cancer 
Res. 2001, 7, 738. 
18.Korc, M.; Chandrasekar, B.; Yamanaka, Y.; Friess, H.; Buchier, M.; Beger, H. G. J Clin Invest 
1992, 90, 1352. 
19.Watanabe, M.; Nobuta, A.; Tanaka, J.; Asaka, M. Int J Cancer 1996, 67, 264. 
20.Yang, S. Genes Dev 2011, 25. 
21.Bar-Sagi, D. Science 1986, 233, 1061. 
22.Ying, H. Cell 2012, 149, 656. 
23.McWilliams, R. R.; Wieben, E. D.; Rabe, K. G.; Pedersen, K. S.; Wu, Y.; Sicotte, H.; G.M., P. 
Eur J Hum Genet. 2011, 19, 471. 
24.Jones, S.; Zhang, X.; Parsons, D.; Lin, J. C.; Leary R.J., A. P., Mankoo P., Carter H., Kamiyama 
H., Jimeno A., Hong S.M., Fu B., Lin M.T., Calhoun E.S., Kamiyama M., Walter K., Nikolskaya T., 
Nikolsky Y., Hartigan J., Smith D.R., Hidalgo M., Leach S.D., Klein A.P., Jaffee E.M., Goggins M., 
Maitra A., Iacobuzio-Donahue C., Eshleman J.R., Kern S.E., Hruban R.H., Karchin .R, 
Papadopoulos N., Parmigiani G., Vogelstein B., Velculescu V.E., Kinzler K.W. 
25.Massagué, J.; Blain, S. W.; Lo, R. S. Cell 2000, 103, 295. 
26.Tempero, M. A.; Arnoletti, J. P.; Behrman, S. W.; Ben-Josef, E.; Benson, A. B.; Casper, E. S.; 
Cohen, S. J.; Czito, B.; Ellenhorn, J. D.; Hawkins, W. G.; Herman, J.; Hoffman, J. P.; Ko, A.; 
Komanduri, S.; Koong, A.; Ma, W. W.; Malafa, M. P.; Merchant, N. B.; Mulvihill, S. J.; 
Muscarella, P.; Nakakura, E. K.; Obando, J.; Pitman, M. B.; Sasson, A. R.; Tally, A.; Thayer, S. 
P.; Whiting, S.; Wolff, R. A.; Wolpin, B. M.; Freedman-Cass, D. A.; Shead, D. A.; Networks, N. 
C. C. J Natl Compr Canc Netw 2012, 10, 703. 
27.Moore, M. J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J. R.; Gallinger, S.; Au, H. J.; 
Murawa, P.; Walde, D.; Wolff, R. A.; Campos, D.; Lim, R.; Ding, K.; Clark, G.; Voskoglou-



 

138 

 

Nomikos, T.; Ptasynski, M.; Parulekar, W.; Group, N. C. I. o. C. C. T. J Clin Oncol 2007, 25, 
1960. 
28.Shay, J. W.; Wright, W. E. Nat Rev Drug Discov 2006, 5, 577. 
29.Dodson, L. F.; Hawkins, W. G.; Goedegebuure, P. Immunotherapy 2011, 3, 517. 
30.Hegde, S.; Schmidt, M.; Doherty, A. Annual Report Medicinal Chemistry 2005, 40, 443. 
31.LERMAN, L. S. J Mol Biol 1961, 3, 18. 
32.Palchaudhuri, R.; Hergenrother, P. J. Curr Opin Biotechnol 2007, 18, 497. 
33.Li, S.; Cooper, V. R.; Thonhauser, T.; Lundqvist, B. I.; Langreth, D. C. J Phys Chem B 2009, 
113, 11166. 
34.Sebestík, J.; Hlavácek, J.; Stibor, I. Curr Protein Pept Sci 2007, 8, 471. 
35.Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.; Ferguson, 
D. M. J Med Chem 2008, 51, 179. 
36.Roche, V. F. Foye’s Principles of Medicinal Chemistry. 
37.Sen, D.; Gilbert, W. Nature 1988, 334, 364. 
38.Lipps, H. J.; Rhodes, D. Trends Cell Biol 2009, 19, 414. 
39.Wheelhouse, R. T.; Jennings, S. A.; Phillips, V. A.; Pletsas, D.; Murphy, P. M.; Garbett, N. C.; 
Chaires, J. B.; Jenkins, T. C. J Med Chem 2006, 49, 5187. 
40.Burge, S.; Parkinson, G. N.; Hazel, P.; Todd, A. K.; Neidle, S. Nucleic Acids Res 2006, 34, 
5402. 
41.Moon, I. K.; Jarstfer, M. B. Front Biosci 2007, 12, 4595. 
42.Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res 2005, 33, 2908. 
43.Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res 2007, 35, 406. 
44.Neidle, S. Curr Opin Struct Biol 2009, 19, 239. 
45.Shklover, J.; Weisman-Shomer, P.; Yafe, A.; Fry, M. Nucleic Acids Res 2010, 38, 2369. 
46.Qin, Y.; Hurley, L. H. Biochimie 2008, 90, 1149. 
47.Bochman, M. L.; Paeschke, K.; Zakian, V. A. Nat Rev Genet 2012, 13, 770. 
48.Eddy, J.; Maizels, N. Nucleic Acids Res 2006, 34, 3887. 
49.Sun, D.; Hurley, L. H. J Med Chem 2009, 52, 2863. 
50.&lt;st1:city w:st=&quot;on&quot;&gt;&lt;st1:place w:st=&quot;on&quot;&gt;Gardner, L.; 
Lee, L.; Dang, C. The c-Myc Oncogenic Transcription Factor, Encyclopedia of Cancer. 
51.Marcu, K. B.; Bossone, S. A.; Patel, A. J. Annu Rev Biochem 1992, 61, 809. 
52.Balasubramanian, S.; Hurley, L. H.; Neidle, S. Nat Rev Drug Discov 2011, 10, 261. 
53.Brooks, T. A.; Hurley, L. H. Nat Rev Cancer 2009, 9, 849. 
54.Grand, C. L.; Powell, T. J.; Nagle, R. B.; Bearss, D. J.; Tye, D.; Gleason-Guzman, M.; Hurley, 
L. H. Proc Natl Acad Sci U S A 2004, 101, 6140. 
55.Grand, C. L.; Han, H.; Muñoz, R. M.; Weitman, S.; Von Hoff, D. D.; Hurley, L. H.; Bearss, D. 
J. Mol Cancer Ther 2002, 1, 565. 
56.Vliagoftis, H.; Worobec, A. S.; Metcalfe, D. D. J Allergy Clin Immunol 1997, 100, 435. 
57.Sakurai, S.; Fukasawa, T.; Chong, J. M.; Tanaka, A.; Fukayama, M. Jpn J Cancer Res 1999, 
90, 1321. 
58.Tuveson, D. A.; Willis, N. A.; Jacks, T.; Griffin, J. D.; Singer, S.; Fletcher, C. D.; Fletcher, J. A.; 
Demetri, G. D. Oncogene 2001, 20, 5054. 
59.Rankin, S.; Reszka, A. P.; Huppert, J.; Zloh, M.; Parkinson, G. N.; Todd, A. K.; Ladame, S.; 
Balasubramanian, S.; Neidle, S. J Am Chem Soc 2005, 127, 10584. 
60.Fernando, H.; Reszka, A. P.; Huppert, J.; Ladame, S.; Rankin, S.; Venkitaraman, A. R.; 
Neidle, S.; Balasubramanian, S. Biochemistry 2006, 45, 7854. 
61.Vogelstein, B.; Kinzler, K. W. Nat Med 2004, 10, 789. 
62.Cogoi, S.; Xodo, L. E. Nucleic Acids Res 2006, 34, 2536. 
63.Desoize, B. Anticancer Res 1994, 14, 2291. 
64.Seto, M.; Jaeger, U.; Hockett, R. D.; Graninger, W.; Bennett, S.; Goldman, P.; Korsmeyer, S. 
J. EMBO J 1988, 7, 123. 
65.Dai, J.; Dexheimer, T. S.; Chen, D.; Carver, M.; Ambrus, A.; Jones, R. A.; Yang, D. J Am Chem 
Soc 2006, 128, 1096. 



 

139 

 

66.Agrawal, P.; Lin, C.; Mathad, R. I.; Carver, M.; Yang, D. J Am Chem Soc 2014, 136, 1750. 
67.Dexheimer, T. S.; Sun, D.; Hurley, L. H. J Am Chem Soc 2006, 128, 5404. 
68.Palm, W.; de Lange, T. Annu Rev Genet 2008, 42, 301. 
69.Oganesian, L.; Bryan, T. M. Bioessays 2007, 29, 155. 
70.Baumann, P.; Cech, T. R. Science 2001, 292, 1171. 
71.Li, B.; Oestreich, S.; de Lange, T. Cell 2000, 101, 471. 
72.Bianchi, A.; Smith, S.; Chong, L.; Elias, P.; de Lange, T. EMBO J 1997, 16, 1785. 
73.Celli, G. B.; de Lange, T. Nat Cell Biol 2005, 7, 712. 
74.Wang, F.; Podell, E. R.; Zaug, A. J.; Yang, Y.; Baciu, P.; Cech, T. R.; Lei, M. Nature 2007, 445, 
506. 
75.Vizlin-Hodzic, D.; Ryme, J.; Simonsson, S.; Simonsson, T. FASEB J 2009, 23, 2587. 
76.Luke, B.; Panza, A.; Redon, S.; Iglesias, N.; Li, Z.; Lingner, J. Mol Cell 2008, 32, 465. 
77.Redon, S.; Reichenbach, P.; Lingner, J. Nucleic Acids Res 2010, 38, 5797. 
78.Lundblad, V.; Szostak, J. W. Cell 1989, 57, 633. 
79.Shay, J. W.; Zou, Y.; Hiyama, E.; Wright, W. E. Hum Mol Genet 2001, 10, 677. 
80.Feng, J.; Funk, W. D.; Wang, S. S.; Weinrich, S. L.; Avilion, A. A.; Chiu, C. P.; Adams, R. R.; 
Chang, E.; Allsopp, R. C.; Yu, J. Science 1995, 269, 1236. 
81.Fu, D.; Collins, K. Mol Cell 2007, 28, 773. 
82.Nakamura, T. M.; Cech, T. R. Cell 1998, 92, 587. 
83.Hukezalie, K. R.; Wong, J. M. FEBS J 2013, 280, 3194. 
84.Lai, C. K.; Mitchell, J. R.; Collins, K. Mol Cell Biol 2001, 21, 990. 
85.Sealey, D. C.; Zheng, L.; Taboski, M. A.; Cruickshank, J.; Ikura, M.; Harrington, L. A. Nucleic 
Acids Res 2010, 38, 2019. 
86.Armbruster, B. N.; Etheridge, K. T.; Broccoli, D.; Counter, C. M. Mol Cell Biol 2003, 23, 
3237. 
87.Lingner, J.; Hughes, T. R.; Shevchenko, A.; Mann, M.; Lundblad, V.; Cech, T. R. Science 
1997, 276, 561. 
88.Joyce, C. M.; Steitz, T. A. Annu Rev Biochem 1994, 63, 777. 
89.Lue, N. F.; Lin, Y. C.; Mian, I. S. Mol Cell Biol 2003, 23, 8440. 
90.Harrington, L.; Zhou, W.; McPhail, T.; Oulton, R.; Yeung, D. S.; Mar, V.; Bass, M. B.; 
Robinson, M. O. Genes Dev 1997, 11, 3109. 
91.Gillis, A. J.; Schuller, A. P.; Skordalakes, E. Nature 2008, 455, 633. 
92.Mitchell, M.; Gillis, A.; Futahashi, M.; Fujiwara, H.; Skordalakes, E. Nat Struct Mol Biol 
2010, 17, 513. 
93.Lue, N. F. Bioessays 2004, 26, 955. 
94.Shay, J. W.; Bacchetti, S. Eur J Cancer 1997, 33, 787. 
95.Mitchell, J. R.; Wood, E.; Collins, K. Nature 1999, 402, 551. 
96.HAYFLICK, L.; MOORHEAD, P. S. Exp Cell Res 1961, 25, 585. 
97.Bodnar, A. G.; Ouellette, M.; Frolkis, M.; Holt, S. E.; Chiu, C. P.; Morin, G. B.; Harley, C. B.; 
Shay, J. W.; Lichtsteiner, S.; Wright, W. E. Science 1998, 279, 349. 
98.Yui, J.; Chiu, C. P.; Lansdorp, P. M. Blood 1998, 91, 3255. 
99.Asai, A.; Oshima, Y.; Yamamoto, Y.; Uochi, T. A.; Kusaka, H.; Akinaga, S.; Yamashita, Y.; 
Pongracz, K.; Pruzan, R.; Wunder, E.; Piatyszek, M.; Li, S.; Chin, A. C.; Harley, C. B.; Gryaznov, 
S. Cancer Res 2003, 63, 3931. 
100. Xu, Y.; He, K.; Goldkorn, A. Clin Adv Hematol Oncol 2011, 9, 442. 
101. Joseph, I.; Tressler, R.; Bassett, E.; Harley, C.; Buseman, C. M.; Pattamatta, P.; 
Wright, W. E.; Shay, J. W.; Go, N. F. Cancer Res 2010, 70, 9494. 
102. Li, S.; Rosenberg, J. E.; Donjacour, A. A.; Botchkina, I. L.; Hom, Y. K.; Cunha, G. R.; 
Blackburn, E. H. Cancer Res 2004, 64, 4833. 
103. Bernhardt, S. L.; Gjertsen, M. K.; Trachsel, S.; Møller, M.; Eriksen, J. A.; Meo, M.; 
Buanes, T.; Gaudernack, G. Br J Cancer 2006, 95, 1474. 
104. Harley, C. B. Nat Rev Cancer 2008, 8, 167. 
105. Pitts, A. E.; Corey, D. R. Proc Natl Acad Sci U S A 1998, 95, 11549. 



 

140 

 

106. Zahler, A. M.; Williamson, J. R.; Cech, T. R.; Prescott, D. M. Nature 1991, 350, 718. 
107. Neidle, S.; Parkinson, G. Nat Rev Drug Discov 2002, 1, 383. 
108. Hemann, M. T.; Strong, M. A.; Hao, L. Y.; Greider, C. W. Cell 2001, 107, 67. 
109. Neidle, S. FEBS J 2010, 277, 1118. 
110. Ou, T. M.; Lu, Y. J.; Tan, J. H.; Huang, Z. S.; Wong, K. Y.; Gu, L. Q. ChemMedChem 
2008, 3, 690. 
111. Collie, G. W.; Parkinson, G. N. Chem Soc Rev 2011, 40, 5867. 
112. Neidle, S.; Balasubramanian, S. Quadruplex Nucleic Acid; Cambridge: RSC 
publishing, 2006. 
113. Monchaud, D.; Teulade-Fichou, M. P. Org Biomol Chem 2008, 6, 627. 
114. Nielsen, M. C.; Ulven, T. Curr Med Chem 2010, 17, 3438. 
115. Sun, D.; Thompson, B.; Cathers, B. E.; Salazar, M.; Kerwin, S. M.; Trent, J. O.; 
Jenkins, T. C.; Neidle, S.; Hurley, L. H. J Med Chem 1997, 40, 2113. 
116. Perry, P. J.; Gowan, S. M.; Reszka, A. P.; Polucci, P.; Jenkins, T. C.; Kelland, L. R.; 
Neidle, S. J Med Chem 1998, 41, 3253. 
117. Perry, P. J.; Reszka, A. P.; Wood, A. A.; Read, M. A.; Gowan, S. M.; Dosanjh, H. S.; 
Trent, J. O.; Jenkins, T. C.; Kelland, L. R.; Neidle, S. J Med Chem 1998, 41, 4873. 
118. Perry, P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.; 
Kelland, L. R.; Neidle, S. J Med Chem 1999, 42, 2679. 
119. Read, M. A.; Wood, A. A.; Harrison, J. R.; Gowan, S. M.; Kelland, L. R.; Dosanjh, H. 
S.; Neidle, S. J Med Chem 1999, 42, 4538. 
120. Read, M.; Harrison, R. J.; Romagnoli, B.; Tanious, F. A.; Gowan, S. H.; Reszka, A. P.; 
Wilson, W. D.; Kelland, L. R.; Neidle, S. Proc Natl Acad Sci U S A 2001, 98, 4844. 
121. Harrison, R. J.; Cuesta, J.; Chessari, G.; Read, M. A.; Basra, S. K.; Reszka, A. P.; 
Morrell, J.; Gowan, S. M.; Incles, C. M.; Tanious, F. A.; Wilson, W. D.; Kelland, L. R.; Neidle, S. J 
Med Chem 2003, 46, 4463. 
122. Moore, M. J.; Schultes, C. M.; Cuesta, J.; Cuenca, F.; Gunaratnam, M.; Tanious, F. 
A.; Wilson, W. D.; Neidle, S. J Med Chem 2006, 49, 582. 
123. Reed, J.; Gunaratnam, M.; Beltran, M.; Reszka, A. P.; Vilar, R.; Neidle, S. Anal 
Biochem 2008, 380, 99. 
124. Gowan, S. M.; Harrison, J. R.; Patterson, L.; Valenti, M.; Read, M. A.; Neidle, S.; 
Kelland, L. R. Mol Pharmacol 2002, 61, 1154. 
125. Burger, A. M.; Dai, F.; Schultes, C. M.; Reszka, A. P.; Moore, M. J.; Double, J. A.; 
Neidle, S. Cancer Res 2005, 65, 1489. 
126. Incles, C. M.; Schultes, C. M.; Kempski, H.; Koehler, H.; Kelland, L. R.; Neidle, S. Mol 
Cancer Ther 2004, 3, 1201. 
127. Gunaratnam, M.; Greciano, O.; Martins, C.; Reszka, A. P.; Schultes, C. M.; Morjani, 
H.; Riou, J. F.; Neidle, S. Biochem Pharmacol 2007, 74, 679. 
128. Martins, C.; Gunaratnam, M.; Stuart, J.; Makwana, V.; Greciano, O.; Reszka, A. P.; 
Kelland, L. R.; Neidle, S. Bioorg Med Chem Lett 2007, 17, 2293. 
129. Perry, P. J.; Gowan, S. M.; Read, M. A.; Kelland, L. R.; Neidle, S. Anticancer Drug 
Des 1999, 14, 373. 
130. Caprio, V.; Guyen, B.; Opoku-Boahen, Y.; Mann, J.; Gowan, S. M.; Kelland, L. M.; 
Read, M. A.; Neidle, S. Bioorg Med Chem Lett 2000, 10, 2063. 
131. Guyen, B.; Schultes, C. M.; Hazel, P.; Mann, J.; Neidle, S. Org Biomol Chem 2004, 2, 
981. 
132. Zhou, J. M.; Zhu, X. F.; Lu, Y. J.; Deng, R.; Huang, Z. S.; Mei, Y. P.; Wang, Y.; Huang, 
W. L.; Liu, Z. C.; Gu, L. Q.; Zeng, Y. X. Oncogene 2006, 25, 503. 
133. Zhou, J. L.; Lu, Y. J.; Ou, T. M.; Zhou, J. M.; Huang, Z. S.; Zhu, X. F.; Du, C. J.; Bu, X. 
Z.; Ma, L.; Gu, L. Q.; Li, Y. M.; Chan, A. S. J Med Chem 2005, 48, 7315. 
134. Ou, T. M.; Lu, Y. J.; Zhang, C.; Huang, Z. S.; Wang, X. D.; Tan, J. H.; Chen, Y.; Ma, D. 
L.; Wong, K. Y.; Tang, J. C.; Chan, A. S.; Gu, L. Q. J Med Chem 2007, 50, 1465. 



 

141 

 

135. Mergny, J. L.; Lacroix, L.; Teulade-Fichou, M. P.; Hounsou, C.; Guittat, L.; Hoarau, 
M.; Arimondo, P. B.; Vigneron, J. P.; Lehn, J. M.; Riou, J. F.; Garestier, T.; Hélène, C. Proc Natl 
Acad Sci U S A 2001, 98, 3062. 
136. Bertrand, H.; Bombard, S.; Monchaud, D.; Teulade-Fichou, M. P. J Biol Inorg Chem 
2007, 12, 1003. 
137. Rangan, A.; Fedoroff, O. Y.; Hurley, L. H. J Biol Chem 2001, 276, 4640. 
138. Braña, M. F.; Castellano, J. M.; Roldán, C. M.; Santos, A.; Vázquez, D.; Jiménez, A. 
Cancer Chemother Pharmacol 1980, 4, 61. 
139. Liu, Z. R.; Hecker, K. H.; Rill, R. L. J Biomol Struct Dyn 1996, 14, 331. 
140. Tumiatti, V.; Milelli, A.; Minarini, A.; Micco, M.; Gasperi Campani, A.; Roncuzzi, L.; 
Baiocchi, D.; Marinello, J.; Capranico, G.; Zini, M.; Stefanelli, C.; Melchiorre, C. J Med Chem 
2009, 52, 7873. 
141. Milelli, A.; Tumiatti, V.; Micco, M.; Rosini, M.; Zuccari, G.; Raffaghello, L.; Bianchi, 
G.; Pistoia, V.; Fernando Díaz, J.; Pera, B.; Trigili, C.; Barasoain, I.; Musetti, C.; Toniolo, M.; 
Sissi, C.; Alcaro, S.; Moraca, F.; Zini, M.; Stefanelli, C.; Minarini, A. Eur J Med Chem 2012, 57, 
417. 
142. Cuenca, F.; Greciano, O.; Gunaratnam, M.; Haider, S.; Munnur, D.; Nanjunda, R.; 
Wilson, W. D.; Neidle, S. Bioorg Med Chem Lett 2008, 18, 1668. 
143. Parkinson, G. N.; Lee, M. P.; Neidle, S. Nature 2002, 417, 876. 
144. Hampel, S. M.; Sidibe, A.; Gunaratnam, M.; Riou, J. F.; Neidle, S. Bioorg Med Chem 
Lett 2010, 20, 6459. 
145. Gunaratnam, M.; de la Fuente, M.; Hampel, S. M.; Todd, A. K.; Reszka, A. P.; 
Schätzlein, A.; Neidle, S. Bioorg Med Chem 2011, 19, 7151. 
146. Mpima, S.; Ohnmacht, S. A.; Barletta, M.; Husby, J.; Pett, L. C.; Gunaratnam, M.; 
Hilton, S. T.; Neidle, S. Bioorg Med Chem 2013, 21, 6162. 
147. Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.; Yamada, Y.; Furihata, K.; 
Hayakawa, Y.; Seto, H. J Am Chem Soc 2001, 123, 1262. 
148. Kim, M. Y.; Vankayalapati, H.; Shin-Ya, K.; Wierzba, K.; Hurley, L. H. J Am Chem Soc 
2002, 124, 2098. 
149. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; 
Meng, E. C.; Ferrin, T. E. J Comput Chem 2004, 25, 1605. 
150. Minhas, G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J.; Rice, J. E. Bioorg Med Chem 
Lett 2006, 16, 3891. 
151. Barbieri, C. M.; Srinivasan, A. R.; Rzuczek, S. G.; Rice, J. E.; LaVoie, E. J.; Pilch, D. S. 
Nucleic Acids Res 2007, 35, 3272. 
152. Pilch, D. S.; Barbieri, C. M.; Rzuczek, S. G.; Lavoie, E. J.; Rice, J. E. Biochimie 2008, 
90, 1233. 
153. De Cian, A.; Guittat, L.; Shin-ya, K.; Riou, J. F.; Mergny, J. L. Nucleic Acids Symp Ser 
(Oxf) 2005, 235. 
154. Gunaratnam, M.; Swank, S.; Haider, S. M.; Galesa, K.; Reszka, A. P.; Beltran, M.; 
Cuenca, F.; Fletcher, J. A.; Neidle, S. J Med Chem 2009, 52, 3774. 
155. Palumbo, S. L.; Ebbinghaus, S. W.; Hurley, L. H. J Am Chem Soc 2009, 131, 10878. 
156. Wei, C.; Jia, G.; Yuan, J.; Feng, Z.; Li, C. Biochemistry 2006, 45, 6681. 
157. Phan, A. T.; Kuryavyi, V.; Gaw, H. Y.; Patel, D. J. Nat Chem Biol 2005, 1, 167. 
158. Parkinson, G. N.; Ghosh, R.; Neidle, S. Biochemistry 2007, 46, 2390. 
159. Dixon, I. M.; Lopez, F.; Tejera, A. M.; Estève, J. P.; Blasco, M. A.; Pratviel, G.; 
Meunier, B. J Am Chem Soc 2007, 129, 1502. 
160. Wang, P.; Ren, L.; He, H.; Liang, F.; Zhou, X.; Tan, Z. Chembiochem 2006, 7, 1155. 
161. Ren, L.; Zhang, A.; Huang, J.; Wang, P.; Weng, X.; Zhang, L.; Liang, F.; Tan, Z.; Zhou, 
X. Chembiochem 2007, 8, 775. 
162. Alzeer, J.; Vummidi, B. R.; Roth, P. J.; Luedtke, N. W. Angew Chem Int Ed Engl 
2009, 48, 9362. 
163. Li, Y.; Geyer, C. R.; Sen, D. Biochemistry 1996, 35, 6911. 



 

142 

 

164. Alberti, P.; Ren, J.; Teulade-Fichou, M. P.; Guittat, L.; Riou, J. F.; Chaires, J.; Hélène, 
C.; Vigneron, J. P.; Lehn, J. M.; Mergny, J. L. J Biomol Struct Dyn 2001, 19, 505. 
165. Hounsou, C.; Guittat, L.; Monchaud, D.; Jourdan, M.; Saettel, N.; Mergny, J. L.; 
Teulade-Fichou, M. P. ChemMedChem 2007, 2, 655. 
166. McGhee, J. D.; von Hippel, P. H. J Mol Biol 1974, 86, 469. 
167. Gabelica, V.; Baker, E. S.; Teulade-Fichou, M. P.; De Pauw, E.; Bowers, M. T. J Am 
Chem Soc 2007, 129, 895. 
168. Monchaud, D.; Granzhan, A.; Saettel, N.; Guédin, A.; Mergny, J. L.; Teulade-Fichou, 
M. P. J Nucleic Acids 2010, 2010. 
169. Bahr, M.; Gabelica, V.; Granzhan, A.; Teulade-Fichou, M. P.; Weinhold, E. Nucleic 
Acids Res 2008, 36, 5000. 
170. Granzhan, A.; Monchaud, D.; Saettel, N.; Guédin, A.; Mergny, J. L.; Teulade-Fichou, 
M. P. J Nucleic Acids 2010, 2010. 
171. Kaiser, M.; De Cian, A.; Sainlos, M.; Renner, C.; Mergny, J. L.; Teulade-Fichou, M. P. 
Org Biomol Chem 2006, 4, 1049. 
172. Albert, B. Essential Cell Biology; New York: Garland Science, 2009. 
173. Felsenfeld, G.; Groudine, M. Nature 2003, 421, 448. 
174. Bird, A. Nature 2007, 447, 396. 
175. Reilly, C. M.; Regna, N.; Mishra, N. Mol Med 2011, 17, 417. 
176. Feinberg, A. P.; Ohlsson, R.; Henikoff, S. Nat Rev Genet 2006, 7, 21. 
177. Bjornsson, H. T.; Fallin, M. D.; Feinberg, A. P. Trends Genet 2004, 20, 350. 
178. Jones, P. A.; Baylin, S. B. Cell 2007, 128, 683. 
179. Johnstone, R. W. Nat Rev Drug Discov 2002, 1, 287. 
180. Esteller, M. Oncogene 2002, 21, 5427. 
181. Zhang, Y.; Fang, H.; Jiao, J.; Xu, W. Curr Med Chem 2008, 15, 2840. 
182. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; 
Breslow, R.; Pavletich, N. P. Nature 1999, 401, 188. 
183. Dowling, D. P.; Gantt, S. L.; Gattis, S. G.; Fierke, C. A.; Christianson, D. W. 
Biochemistry 2008, 47, 13554. 
184. Vannini, A.; Volpari, C.; Gallinari, P.; Jones, P.; Mattu, M.; Carfí, A.; De Francesco, 
R.; Steinkühler, C.; Di Marco, S. EMBO Rep 2007, 8, 879. 
185. Nielsen, T. K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. J Mol Biol 
2005, 354, 107. 
186. Lombardi, P. M.; Cole, K. E.; Dowling, D. P.; Christianson, D. W. Curr Opin Struct 
Biol 2011, 21, 735. 
187. Passier, R.; Zeng, H.; Frey, N.; Naya, F. J.; Nicol, R. L.; McKinsey, T. A.; Overbeek, P.; 
Richardson, J. A.; Grant, S. R.; Olson, E. N. J Clin Invest 2000, 105, 1395. 
188. Lu, J.; McKinsey, T. A.; Zhang, C. L.; Olson, E. N. Mol Cell 2000, 6, 233. 
189. Zhang, C. L.; McKinsey, T. A.; Chang, S.; Antos, C. L.; Hill, J. A.; Olson, E. N. Cell 
2002, 110, 479. 
190. Chang, S.; McKinsey, T. A.; Zhang, C. L.; Richardson, J. A.; Hill, J. A.; Olson, E. N. 
Mol Cell Biol 2004, 24, 8467. 
191. Vega, R. B.; Matsuda, K.; Oh, J.; Barbosa, A. C.; Yang, X.; Meadows, E.; McAnally, J.; 
Pomajzl, C.; Shelton, J. M.; Richardson, J. A.; Karsenty, G.; Olson, E. N. Cell 2004, 119, 555. 
192. Fischle, W.; Dequiedt, F.; Hendzel, M. J.; Guenther, M. G.; Lazar, M. A.; Voelter, 
W.; Verdin, E. Mol Cell 2002, 9, 45. 
193. Zhang, C. L.; McKinsey, T. A.; Olson, E. N. Mol Cell Biol 2002, 22, 7302. 
194. Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; 
Wang, X. F.; Yao, T. P. Nature 2002, 417, 455. 
195. Gao, L.; Cueto, M. A.; Asselbergs, F.; Atadja, P. J Biol Chem 2002, 277, 25748. 
196. Ropero, S.; Esteller, M. Mol Oncol 2007, 1, 19. 
197. Jones, P. L.; Veenstra, G. J.; Wade, P. A.; Vermaak, D.; Kass, S. U.; Landsberger, N.; 
Strouboulis, J.; Wolffe, A. P. Nat Genet 1998, 19, 187. 



 

143 

 

198. Espada, J.; Ballestar, E.; Fraga, M. F.; Villar-Garea, A.; Juarranz, A.; Stockert, J. C.; 
Robertson, K. D.; Fuks, F.; Esteller, M. J Biol Chem 2004, 279, 37175. 
199. Bai, S.; Ghoshal, K.; Datta, J.; Majumder, S.; Yoon, S. O.; Jacob, S. T. Mol Cell Biol 
2005, 25, 751. 
200. Kawai, H.; Li, H.; Avraham, S.; Jiang, S.; Avraham, H. K. Int J Cancer 2003, 107, 353. 
201. Gregoretti, I. V.; Lee, Y. M.; Goodson, H. V. J Mol Biol 2004, 338, 17. 
202. Yang, X. J.; Seto, E. Oncogene 2007, 26, 5310. 
203. Glozak, M. A.; Sengupta, N.; Zhang, X.; Seto, E. Gene 2005, 363, 15. 
204. Gui, C. Y.; Ngo, L.; Xu, W. S.; Richon, V. M.; Marks, P. A. Proc Natl Acad Sci U S A 
2004, 101, 1241. 
205. Juan, L. J.; Shia, W. J.; Chen, M. H.; Yang, W. M.; Seto, E.; Lin, Y. S.; Wu, C. W. J Biol 
Chem 2000, 275, 20436. 
206. Francisco, R.; Pérez-Perarnau, A.; Cortés, C.; Gil, J.; Tauler, A.; Ambrosio, S. Cancer 
Lett 2012, 318, 42. 
207. Archer, S. Y.; Meng, S.; Shei, A.; Hodin, R. A. Proc Natl Acad Sci U S A 1998, 95, 
6791. 
208. Richon, V. M.; Sandhoff, T. W.; Rifkind, R. A.; Marks, P. A. Proc Natl Acad Sci U S A 
2000, 97, 10014. 
209. Hitomi, T.; Matsuzaki, Y.; Yokota, T.; Takaoka, Y.; Sakai, T. FEBS Lett 2003, 554, 
347. 
210. Nakata, S.; Yoshida, T.; Horinaka, M.; Shiraishi, T.; Wakada, M.; Sakai, T. Oncogene 
2004, 23, 6261. 
211. Ashkenazi, A. Nat Rev Cancer 2002, 2, 420. 
212. Zhang, X. D.; Gillespie, S. K.; Borrow, J. M.; Hersey, P. Mol Cancer Ther 2004, 3, 
425. 
213. Xu, W. S.; Perez, G.; Ngo, L.; Gui, C. Y.; Marks, P. A. Cancer Res 2005, 65, 7832. 
214. Shao, Y.; Gao, Z.; Marks, P. A.; Jiang, X. Proc Natl Acad Sci U S A 2004, 101, 18030. 
215. Ruefli, A. A.; Ausserlechner, M. J.; Bernhard, D.; Sutton, V. R.; Tainton, K. M.; 
Kofler, R.; Smyth, M. J.; Johnstone, R. W. Proc Natl Acad Sci U S A 2001, 98, 10833. 
216. Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; 
Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; Seto, E.; Bhalla, K. J Biol Chem 2005, 280, 26729. 
217. Liang, D.; Kong, X.; Sang, N. Cell Cycle 2006, 5, 2430. 
218. Deroanne, C. F.; Bonjean, K.; Servotte, S.; Devy, L.; Colige, A.; Clausse, N.; Blacher, 
S.; Verdin, E.; Foidart, J. M.; Nusgens, B. V.; Castronovo, V. Oncogene 2002, 21, 427. 
219. Bieliauskas, A. V.; Pflum, M. K. Chem Soc Rev 2008, 37, 1402. 
220. Bertrand, P. Eur J Med Chem 2010, 45, 2095. 
221. Yoshida, M.; Hoshikawa, Y.; Koseki, K.; Mori, K.; Beppu, T. J Antibiot (Tokyo) 1990, 
43, 1101. 
222. Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R. A.; Marks, 
P. A. Proc Natl Acad Sci U S A 1998, 95, 3003. 
223. Miller, T. A.; Witter, D. J.; Belvedere, S. J Med Chem 2003, 46, 5097. 
224. Van Ommeslaeghe, K.; Elaut, G.; Brecx, V.; Papeleu, P.; Iterbeke, K.; Geerlings, P.; 
Tourwé, D.; Rogiers, V. Bioorg Med Chem Lett 2003, 13, 1861. 
225. Kim, Y. B.; Lee, K. H.; Sugita, K.; Yoshida, M.; Horinouchi, S. Oncogene 1999, 18, 
2461. 
226. Su, G. H.; Sohn, T. A.; Ryu, B.; Kern, S. E. Cancer Res 2000, 60, 3137. 
227. Jung, M.; Brosch, G.; Kölle, D.; Scherf, H.; Gerhäuser, C.; Loidl, P. J Med Chem 
1999, 42, 4669. 
228. Dai, Y.; Guo, Y.; Curtin, M. L.; Li, J.; Pease, L. J.; Guo, J.; Marcotte, P. A.; Glaser, K. 
B.; Davidsen, S. K.; Michaelides, M. R. Bioorg Med Chem Lett 2003, 13, 3817. 
229. Lavoie, R.; Bouchain, G.; Frechette, S.; Woo, S. H.; Abou-Khalil, E.; Leit, S.; Fournel, 
M.; Yan, P. T.; Trachy-Bourget, M. C.; Beaulieu, C.; Li, Z.; Besterman, J.; Delorme, D. Bioorg 
Med Chem Lett 2001, 11, 2847. 



 

144 

 

230. Bouchain, G.; Leit, S.; Frechette, S.; Khalil, E. A.; Lavoie, R.; Moradei, O.; Woo, S. 
H.; Fournel, M.; Yan, P. T.; Kalita, A.; Trachy-Bourget, M. C.; Beaulieu, C.; Li, Z.; Robert, M. F.; 
MacLeod, A. R.; Besterman, J. M.; Delorme, D. J Med Chem 2003, 46, 820. 
231. Komatsu, Y.; Tomizaki, K. Y.; Tsukamoto, M.; Kato, T.; Nishino, N.; Sato, S.; Yamori, 
T.; Tsuruo, T.; Furumai, R.; Yoshida, M.; Horinouchi, S.; Hayashi, H. Cancer Res 2001, 61, 4459. 
232. Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T. J Biol Chem 1993, 268, 
22429. 
233. Mwakwari, S. C.; Patil, V.; Guerrant, W.; Oyelere, A. K. Curr Top Med Chem 2010, 
10, 1423. 
234. Closse, A.; Huguenin, R. Helv Chim Acta 1974, 57, 533. 
235. Furumai, R.; Komatsu, Y.; Nishino, N.; Khochbin, S.; Yoshida, M.; Horinouchi, S. 
Proc Natl Acad Sci U S A 2001, 98, 87. 
236. Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.; Dulski, P. M.; Crumley, T. M.; 
Allocco, J. J.; Cannova, C.; Meinke, P. T.; Colletti, S. L.; Bednarek, M. A.; Singh, S. B.; Goetz, M. 
A.; Dombrowski, A. W.; Polishook, J. D.; Schmatz, D. M. Proc Natl Acad Sci U S A 1996, 93, 
13143. 
237. Colletti, S. L.; Myers, R. W.; Darkin-Rattray, S. J.; Gurnett, A. M.; Dulski, P. M.; 
Galuska, S.; Allocco, J. J.; Ayer, M. B.; Li, C.; Lim, J.; Crumley, T. M.; Cannova, C.; Schmatz, D. 
M.; Wyvratt, M. J.; Fisher, M. H.; Meinke, P. T. Bioorg Med Chem Lett 2001, 11, 107. 
238. Sandor, V.; Bakke, S.; Robey, R. W.; Kang, M. H.; Blagosklonny, M. V.; Bender, J.; 
Brooks, R.; Piekarz, R. L.; Tucker, E.; Figg, W. D.; Chan, K. K.; Goldspiel, B.; Fojo, A. T.; 
Balcerzak, S. P.; Bates, S. E. Clin Cancer Res 2002, 8, 718. 
239. Shigematsu, N.; Ueda, H.; Takase, S.; Tanaka, H.; Yamamoto, K.; Tada, T. J Antibiot 
(Tokyo) 1994, 47, 311. 
240. Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O. H.; Schimpf, A.; Giavara, S.; 
Sleeman, J. P.; Lo Coco, F.; Nervi, C.; Pelicci, P. G.; Heinzel, T. EMBO J 2001, 20, 6969. 
241. Pearn, J. Lancet 1980, 1, 919. 
242. Warrell, R. P.; He, L. Z.; Richon, V.; Calleja, E.; Pandolfi, P. P. J Natl Cancer Inst 
1998, 90, 1621. 
243. Nudelman, A.; Rephaeli, A. J Med Chem 2000, 43, 2962. 
244. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito, A.; Mariko, Y.; Yamashita, T.; 
Nakanishi, O. J Med Chem 1999, 42, 3001. 
245. el-Beltagi, H. M.; Martens, A. C.; Lelieveld, P.; Haroun, E. A.; Hagenbeek, A. Cancer 
Res 1993, 53, 3008. 
246. Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T.; Suzuki, T.; 
Tsuruo, T.; Nakanishi, O. Proc Natl Acad Sci U S A 1999, 96, 4592. 
247. Frey, R. R.; Wada, C. K.; Garland, R. B.; Curtin, M. L.; Michaelides, M. R.; Li, J.; 
Pease, L. J.; Glaser, K. B.; Marcotte, P. A.; Bouska, J. J.; Murphy, S. S.; Davidsen, S. K. Bioorg 
Med Chem Lett 2002, 12, 3443. 
248. Christianson, D. W.; Lipscomb, W. N. J Am Chem Soc 1986, 108, 545. 
249. Lee, M. J.; Kim, Y. S.; Kummar, S.; Giaccone, G.; Trepel, J. B. Curr Opin Oncol 2008, 
20, 639. 
250. Marchion, D. C.; Bicaku, E.; Daud, A. I.; Richon, V.; Sullivan, D. M.; Munster, P. N. J 
Cell Biochem 2004, 92, 223. 
251. Friedmann, I.; Atmaca, A.; Chow, K. U.; Jäger, E.; Weidmann, E. J Chemother 2006, 
18, 415. 
252. Nimmanapalli, R.; Fuino, L.; Stobaugh, C.; Richon, V.; Bhalla, K. Blood 2003, 101, 
3236. 
253. Stiborová, M.; Eckschlager, T.; Poljaková, J.; Hraběta, J.; Adam, V.; Kizek, R.; Frei, E. 
Curr Med Chem 2012, 19, 4218. 
254. Kurz, E. U.; Wilson, S. E.; Leader, K. B.; Sampey, B. P.; Allan, W. P.; Yalowich, J. C.; 
Kroll, D. J. Mol Cancer Ther 2001, 1, 121. 
255. Valentini, A.; Gravina, P.; Federici, G.; Bernardini, S. Cancer Biol Ther 2007, 6, 185. 



 

145 

 

256. Hajji, N.; Wallenborg, K.; Vlachos, P.; Nyman, U.; Hermanson, O.; Joseph, B. 
Oncogene 2008, 27, 3134. 
257. Zhang, C. Z.; Zhang, H. T.; Chen, G. G.; Lai, P. B. Apoptosis 2011, 16, 683. 
258. Khan, S. B.; Maududi, T.; Barton, K.; Ayers, J.; Alkan, S. Br J Haematol 2004, 125, 
156. 
259. Kitazoe, K.; Abe, M.; Hiasa, M.; Oda, A.; Amou, H.; Harada, T.; Nakano, A.; 
Takeuchi, K.; Hashimoto, T.; Ozaki, S.; Matsumoto, T. Int J Hematol 2009, 89, 45. 
260. Shen, J.; Huang, C.; Jiang, L.; Gao, F.; Wang, Z.; Zhang, Y.; Bai, J.; Zhou, H.; Chen, Q. 
Biochem Pharmacol 2007, 73, 1901. 
261. Guerrant, W.; Patil, V.; Canzoneri, J. C.; Oyelere, A. K. J Med Chem 2012, 55, 1465. 
262. Bettuzzi, S.; Davalli, P.; Astancolle, S.; Pinna, C.; Roncaglia, R.; Boraldi, F.; Tiozzo, 
R.; Sharrard, M.; Corti, A. FEBS Lett 1999, 446, 18. 
263. Wallace, H. M.; Fraser, A. V.; Hughes, A. Biochem J 2003, 376, 1. 
264. Belting, M.; Mani, K.; Jönsson, M.; Cheng, F.; Sandgren, S.; Jonsson, S.; Ding, K.; 
Delcros, J. G.; Fransson, L. A. J Biol Chem 2003, 278, 47181. 
265. Soulet, D.; Gagnon, B.; Rivest, S.; Audette, M.; Poulin, R. J Biol Chem 2004, 279, 
49355. 
266. Volkow, N.; Goldman, S. S.; Flamm, E. S.; Cravioto, H.; Wolf, A. P.; Brodie, J. D. 
Science 1983, 221, 673. 
267. Dallavalle, S.; Giannini, G.; Alloatti, D.; Casati, A.; Marastoni, E.; Musso, L.; Merlini, 
L.; Morini, G.; Penco, S.; Pisano, C.; Tinelli, S.; De Cesare, M.; Beretta, G. L.; Zunino, F. J Med 
Chem 2006, 49, 5177. 
268. Wallace, H. M.; Keir, H. M. Biochim Biophys Acta 1981, 676, 25. 
269. Holley, J. L.; Mather, A.; Wheelhouse, R. T.; Cullis, P. M.; Hartley, J. A.; Bingham, J. 
P.; Cohen, G. M. Cancer Res 1992, 52, 4190. 
270. Phanstiel, O.; Price, H. L.; Wang, L.; Juusola, J.; Kline, M.; Shah, S. M. J Org Chem 
2000, 65, 7710. 
271. Wang, C.; Delcros, J. G.; Biggerstaff, J.; Phanstiel, O. J Med Chem 2003, 46, 2672. 
272. Barret, J. M.; Kruczynski, A.; Vispé, S.; Annereau, J. P.; Brel, V.; Guminski, Y.; 
Delcros, J. G.; Lansiaux, A.; Guilbaud, N.; Imbert, T.; Bailly, C. Cancer Res 2008, 68, 9845. 
273. Melchiorre, C.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V. J Med Chem 
2010, 53, 5906. 
274. Wellendorph, P.; Jaroszewski, J. W.; Hansen, S. H.; Franzyk, H. Eur J Med Chem 
2003, 38, 117. 
275. Morrell, A.; Placzek, M. S.; Steffen, J. D.; Antony, S.; Agama, K.; Pommier, Y.; 
Cushman, M. J Med Chem 2007, 50, 2040. 
276. Sasikumar, M.; Suseela, Y. V.; Govindaraju, T. Asian Journal of Organic Chemistry 
2013, 2, 779. 

 

 

 

 

 

 

 

 


