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Introduction

This PhD thesis describes topics of network theory along three main themes.

In Ch. 1 a general introduction to network ensembles is given, and the relations

with “standard” equilibrium statistical mechanics are described. The canoni-

cal ensembles of networks, i.e. ensembles where some selected constraints are

satisfied on average, provide answers to questions such as: how many networks

satisfy the considered constraints, and how these constraints affect more complex

observables and behaviours. Moreover, the entropy measure for the canonical en-

semble is fundamental for the computation of the probability marginals and its

interpretation has been exploited for relevant applications. In particular, net-

work entropy, corresponding to the logarithm of the number of typical graphs

in the considered ensemble, has been the starting point for further studies on

biological networks integrated with different types of omics data. We modelled

the statistical properties of the integrated PPI-signalling-mRNA expression net-

works in different cases (i.e. cancer studies and ageing studies) interpreting the

network entropy measure as the extent of the parameter space allowed to the

cell, in terms of cell phenotypes or clonality. The major results of this chapter

have been reported in two papers: the first one is Menichetti and Remondini

(2015) and the second one is currently under submission.
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Multilayer networks and, in particular, multiplex networks (in which different

networks share the same nodes) are the main topic of Ch. 2. Multilayer networks

were introduced to evaluate and quantify the correlations between interdepen-

dent networks or, moreover, to throughly describe also a single network in which

different kinds of interaction are represented. For example, in biological systems,

gene, protein and metabolite networks have strong correlations and interdepen-

dencies that cannot be fully pictured in terms of single graphs. In this chapter a

fully description of the main observables related to multiplex networks is given.

We consider the formalism of multilinks in order to fully characterise link over-

lap in maximum-entropy multiplex ensembles. We showed some real examples

in which relevant information could be uncovered only by considering the mul-

tiplex nature of the given system. The first presented case is APS, i.e. citation

and collaborations networks from different journals of the American Physical So-

ciety. We built different types of duplex networks and thank to the multilink

observables we discovered some relevant patterns in the citation-collaboration

behaviours. The second example is a biological duplex network: starting from

a case-control study on colorectal cancer, one layer is related to normal sam-

ples, while the other one to cancer samples. Also in this situation, multilinks

highlight significant differences and nontrivial similarities between healthy and

cancer biological processes. Moreover, on this particular duplex, we tested our

null models and the related algorithms. The results in this chapter are described

in Menichetti et al. (2014a) and Menichetti et al. (2014b).

The last chapter is completely dedicated to control theory and its relation with

network theory. Control theory has a wide range of applications, from drug

discovery to the study of biomass flows, or furthermore, to the description of
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dynamical process in the brain. We define the controllability of a network as

the possibility to drive its dynamical state to any desired state by applying dif-

ferent external signals only to a subset of nodes defined as driver nodes. In

this chapter, the main concepts and calculations of this theory are presented,

and a short introduction to cavity method / belief propagation is given. More-

over, we characterise how the structural controllability of a network is affected

by the fraction of low in-degree and low out-degree nodes. Finally, we present

a novel approach to the controllability of multiplex networks since, in the last

years, large attention has been given to the dynamics taking place on multiplex

networks but no studies consider their controllability. We studied the case in

which the driver nodes are forced to be the same in each layer. As expected, a

multiplex network is more demanding in terms of controllability than the situ-

ation in which each layer is considered separately. Anyway, the introduction of

some correlations in the low degree nodes can reduce this gap. Moreover, in the

case of Poisson duplex networks, small variations of the average degree can cause

discontinuities in the number of driver nodes. In this chapter we collected all the

preliminary theoretical work needed to fully characterise real data. These results

are described in two papers, the first one is Menichetti et al. (2014c) while the

second one, related to multiplex controllability, is in progress.

In summary, this thesis provides a thoroughly theoretical background in network

theory and shows novel applications to real problems and data.
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1 Network Ensembles

1.1 Introduction to network ensembles

Equilibrium statistical mechanics provides a general framework for the devel-

opment of null models in network theory. Modelling, as always, helps us in the

understanding of the important features characterising the network structure and

the interplay with processes that take place on it (e.g. the flow of traffic on the

Internet, the spread of a disease over a social network). Dynamical processes are

affected by the phenomenological quantities characterising the underlying net-

work (Park and Newman, 2004). In particular, the study of community structures

and motifs has become very popular both in social systems and omics studies

(e.g. KEGG pathways).

Are these higher order characteristics explainable in terms of low level features

such as the degree sequence of our network or are they additional structural pat-

terns? In statistical mechanics the essential concept of ensemble is defined as

a large number of copies of a system (sometimes an infinity), considered all at

once, each of which represents a possible state in which the real system might be

in (microstate). Also in network theory, ensemble models are those that do not

focus on a single network, but consider a probability distribution over many pos-
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1 Network Ensembles

sible networks. Moreover, in network ensembles with specified constraints, all the

other features become completely random. We define these network ensembles

randomised: for a given real network, different randomised networks ensembles

can be generated, depending on the structural characteristics of the network we

want to consider as constraints (Bianconi, 2009). These ensembles have been

introduced and systematically used as reference to identify non-random patterns

in real network and to reveal how a typical graph with given properties looks

like (Squartini and Garlaschelli, 2011; Hartmann and Weigt, 2005).

An observed real network is then considered just as a single realisation of a larger

statistical ensemble gathering all the possible realisations compatible with some

defined features. Mathematically speaking, a statistical ensemble of networks can

be defined as a set of graphs G where, for each graph G ∈ G a probability P (G)

is defined. We are mainly interested in the so-called maximum-entropy graph

ensembles with given constraints. The concept of entropy shows up naturally in

many different situations and theories, starting from the first probabilistic inter-

pretation of thermodynamic entropy given by Ludwig Boltzmann, and becoming

a key-concept of information theory and hypothesis testing over large deviations

(Greven et al., 2003). From the point of view of statistical mechanics, given a

set of macroscopic variables, entropy gives us a measure of the spreading out of

probability over different possible microscopic states.

The method of the maximisation of network entropy with given constraints pro-

vides {P (G)} and the analytical expression for the marginal probabilities {pij}

(probability of having a link between node i and node j). Expected values of

quantities of interest can be calculated analytically, without sampling the con-

figuration space as in the huge time-consuming local rewiring algorithm (micro-
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1 Network Ensembles

canonical approach). We can distinguish, then, the main properties explained by

the given constraints from those more non-trivial. In Squartini and Garlaschelli

(2011) a comparison among the main procedures of randomisation for real net-

works is presented.

Once calculated {P (G)}, the related entropy value can be interpreted as a mea-

sure of the level of organisation and order. A real network is characterised by

a collection of features that we want to investigate with our models. If we want

to assess the role of these structural features a useful recipe is considering a sub-

sequent series of randomised networks ensembles, with an increasing number of

structural constraints shared with the real network. The entropy value of these

network ensembles decreases with the addition of more constraints. Furthermore,

we can evaluate how selective a particular constraint is if it produces a significant

difference in the subsequent entropy values (Bianconi, 2009).

In the following we present an introduction to the main topic of exponential

random graph models or so-called canonical network ensembles and some hints

of the micro-canonical network ensembles.

1.1.1 Exponential random graph models

We talk of exponential random graph when we consider the distribution over

a specified set of graphs that maximises the entropy with given constraints. It is

literally the analogue of the Boltzmann distribution of a physical system over its

microstates at finite temperature (Park and Newman, 2004). Like all maximum

entropy ensembles, it gives the best prediction of an unknown quantity, given a

set of enforced constraints (Jaynes, 1957; Cover and Thomas, 2006).

6



1 Network Ensembles

In this introduction to the subject, for the sake of simplicity, we consider just

undirected simple graphs (at most a single edge between any pair of vertices),

without self-loops.

Let’s consider a set G of graphs with the same number of nodes N . We call G a

graph in our set of graphs and define P (G) as the probability of that graph within

our ensemble. Each graph G is identified by the so-called adjacency matrix {aij},

where each aij could be 0 (event no link) or 1 (event link). The sum over all the

graphs G of the ensemble G is then

∑
G

=
∑
{aij}

=
∏
i<j

1∑
aij=0

(1.1)

P (G) is chosen such that the expectation value of each our observables {Oi}

is equal to its observed value. The best choice of probability distribution, as

previously explained, is given by the maximisation of the Gibbs entropy.

S = −
∑
G∈G

P (G) log(P (G)) (1.2)

subject to the constraints

∑
G

P (G)Oi(G) = 〈Oi〉 (1.3)

∑
G

P (G) = 1 (1.4)

where Oi(G) is the value of Oi in the graph G.

For this kind of maximisation problem with constraints, we introduce the La-
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1 Network Ensembles

grangian multipliers α, {λi} and we solve the following equation

∂

∂P (G)

S + α

1−
∑
G

P (G)
 +

∑
i

λi

〈Oi〉 −
∑
G

P (G)Oi(G)
 = 0 (1.5)

for all graphs G. This leads to the solution

P (G) = e−H(G)

Z
(1.6)

where H(G) is the graph Hamiltonian, defined as H(G) = ∑
i λioi(G), and Z is

the partition function, defined as Z = eα+1 = ∑
G e
−H(G). Following the path

given by the conventional statistical mechanics we introduce the free energy as

F = − logZ. If we substitute in Eq. 1.2 the probability distribution given by

Eq. 1.6, we obtain

S(G) = 〈H(G)〉+ logZ = 〈H(G)〉 − F (1.7)

This equation looks familiar and similar to the physical equation F = U − TS

(even if the true parallelism is with the gran canonical ensemble).

We consider now one of the most popular ensembles, the conjugate-canonical

ensemble of the so-called configuration model. This is one of most important

model used in network theory because it encodes the main topological notions

of a real network. It specifies only local constraints, namely, the degree ki (the

number of incident edges) of each vertex (i = 1, ..., N). The Hamiltonian for this

model expresses the constraints upon the degrees

H =
∑
i

λiki (1.8)

8



1 Network Ensembles

Using the formalism of the adjacency matrix, each ki is equal to ki = ∑
j 6=i aij. H

then becomes H = ∑
ij λiaij = ∑

i<j(λi+λj)aij. The computation of the partition

function is

Z =
∑
{aij}

exp
−∑

i<j

(λi + λj)aij
 (1.9)

=
∏
i<j

(
1 + e−(λi+λj)

)
=

∏
i<j

Zij (1.10)

The probability P (G) of a graph in this ensemble can be written as

P (G) = e−
∑
i<j(λi+λj)aij∏

i<j

(
1 + e−(λi+λj)

) (1.11)

and the free energy is

F = −
∑
i<j

log
(
1 + e−(λi+λj)

)
(1.12)

The probability pij of a link i, j is

pij = 〈aij〉 >= ∂F

∂(λi + λj)
= 1
eλi+λj + 1 = e−(λi+λj)

1 + e−(λi+λj)
(1.13)

In this ensemble these marginal probabilities show some natural correlations

given by the degree sequence, i.e. pij 6= f(λi)f(λj) (Bianconi, 2009).

Equations 1.10, 1.12 and 1.13 recall a physical grand canonical ensemble where

edges become particles and pairs of vertices are single-particle states. The par-

tition function Z can be expressed as the productory of N(N − 1)/2 single-

particle state partition functions Zij. The exponential random graph models

are generally called canonical network ensembles because in network theory we

mainly consider the distinction between soft and hard constraints. We define

microcanonical network ensembles by imposing a set of hard constraints that

9



1 Network Ensembles

must be satisfied by each network in the ensemble, while canonical network en-

sembles are considered those who satisfy soft constraints, i.e., the constraints are

satisfied on average.

Using an approach more similar to the physical gran canonical ensemble, the

partition function Z can be expressed as

Z =
∑
{aij}

exp
eµL−∑

i

λiki

 =
∑
{aij}

exp
µ∑

i<j

aij −
∑
i<j

(λi + λj)aij


=
∏
i<j

(
1 + eµ−(λi+λj)

)
(1.14)

where L express the number of edges in the network. In this formalism Z plays

the role of gran partition function and the previous free energy F can be con-

sidered as gran potential. Usually, the chemical potential µ is not considered

explicitly since it can be considered as an additional constant in the hamiltonian

(Garlaschelli and Loffredo, 2006).

Following the usual parallelism, the link probability pij behaves like the average

occupation number of a specific single-particle state. Moreover, Eq. 1.13 re-

calls the Fermi-Dirac distribution: simple graphs have each single-particle state

occupied at most by one particle, according to the Pauli exclusion principle.

Therefore, simple graphs have many similarities with systems of non-interacting

fermions (Park and Newman, 2004).

For the sake of completeness, we make a small reference to weighted networks.

We consider the situation where the weight of a link aij can take only integer val-

ues. This is not a very restrictive constraint since any finite network with weights

of the links taking rational numbers can be easily reduced to a network of integer

weights (Bianconi, 2009). These integer values can be considered as an arbitrary

10



1 Network Ensembles

number of unitary links between any pair of nodes. Weighted networks have a

correspondence with Bose-Einstein gas. Fixing on average a specific strenght

sequence we obtain

Z =
∏
i<j

( 1
1− e−(λi+λj)

)
(1.15)

wij = 〈aij〉 = 1
eλi+λj − 1 = e−(λi+λj)

1− e−(λi+λj)
(1.16)

pij = 〈θ(aij)〉 = e−(λi+λj) (1.17)

πij(aij) = 〈δ(aij)〉 = e−(λi+λj)aij(1− e−(λi+λj)) (1.18)

P (G) =
∏
i<j

πij(aij) (1.19)

where wij is usually called average weight and is the expected number of unitary

links between nodes i and j, and πij(aij) is the probability of having weight aij

between nodes i and j with pij = ∑
aij 6=0 πij(aij).

We present now another useful approach for canonical ensembles, especially con-

sidered in our biological models. The main role here is played by the marginals

pij, the probability of having a link between node i and node j. Each undirected

simple graph G, belonging to a canonical ensemble, is described by its probability

distribution P (G), defined by its adjacency matrix {aij}

P (G) =
∏
i<j

p
aij
ij (1− pij)1−aij (1.20)

where a link between nodes i and j is present with probability pij, otherwise

absent with probability (1 − pij). Considering Eq. 1.11 and Eq. 1.13 this

equality appears straight clear. The matrix elements appear as independent and

uncorrelated random parameters. Defining the log-likelihood function as L =

11



1 Network Ensembles

− log (P (G)), entropy S becomes nothing more than the average log-likelihood

over the probability distributions of the marginals

S = 〈L〉 = −
∑
i<j

pij log pij −
∑
i<j

(1− pij) log(1− pij) (1.21)

The entropy of a canonical ensemble is considered as the logarithm of the number

of typical networks and it takes exactly the form of a Shannon entropy (Anand

and Bianconi, 2009).

In the same way we previously computed P (G) we now maximise S with some

constraints in order to find {pij}. The two expression of entropy in Eq. 1.2

and 1.21 are exactly equivalent. This can be proved performing the following

calculation

S = −
∑
{aij}

∏
i<j

p
aij
ij (1− pij)1−aij log

∏
k<l

paklkl (1− pkl)1−akl


= −
∑
i<j

pij log pij −
∑
i<j

(1− pij) log(1− pij)

We suppose that our ensemble is subjected to κ = 1...M structural constraints,

i.e.

fk({pij}) = Fκ (1.22)

where fk({pij}) is a constraint function on the probability matrix fk({pij}).

The link probabilities are provided by the maximisation of the Shannon entropy

subjected to our constraints. The marginal probabilities pij are given as the

solution to the system of equations

∂

∂pij

{
S +

M∑
κ=1

λκ(Fκ − fκ({pij}))
}

= 0 (1.23)

12



1 Network Ensembles

For the configuration ensemble we have N constraints given by

ki =
∑
j 6=i
pij (1.24)

In order to calculate pij we introduce the function

F ∗ = −
∑
i<j

pij log pij −
∑
i<j

(1− pij) log(1− pij) +
∑
i

λi

ki −∑
j

pij

 (1.25)

and we impose
∂F ∗

∂pij
= log 1− pij

pij
− (λi + λj) = 0 (1.26)

The marginal probabilities result

pij = e−(λi+λj)

1 + e−(λi+λj)
= zizj

1 + zizj
(1.27)

with the variables zi = e−λi, which are commonly referred to as hidden variables.

The probabilities in Eq. 1.27 and Eq. 1.13 are exactly equivalent.

Lastly, we make a few considerations about microcanonical network ensembles.

These ensembles are composed by all those networks which satisfy exactly the

constraints. Following the approach presented in Bianconi (2009) one may in-

troduce a partition function Z that counts the number of networks which fulfil

the requirments. The main equations for undirected simple networks in the con-

figuration model are

Z =
∑
{aij}

N∏
i=1

δ

∑
j

aij − ki
 exp

∑
i<j

hijaij

 (1.28)

Σ = 1
N

logZ|hij=0 ∀(i,j) (1.29)

13



1 Network Ensembles

where Σ is defined as entropy per node (Bianconi, 2009). As long as we consider

network ensembles with an extensive number of constraints the microcanonical

entropy per node Σ and the canonical entropy per node S/N are not equal

in the thermodynamic limit (Anand and Bianconi, 2009, 2010). In both the

situations if two graphs satisfy in the same way the constraints they will have

equal probabilities (i.e. P (G1) = P (G2)). Anyway, the microcanonical ensemble

defines a null probability for all those graphs in which the constraints are not

matched exactly, while for the canonical ensemble all possible graphs can occur

(constraints on the average values). From this perspective canonical ensembles

are more robust to errors in the original data: the true graph will never appear

in a microcanonical model based on the observed and biased data (Squartini and

Garlaschelli, 2011). If we consider the uncertainty affecting biological data the

canonical approach should be the best one.

1.2 Biological applications of network entropy

Biological systems can be seen as complex systems that translate genomic in-

formation into phenotypes Pagel and Pomiankowski (2008); De Las Rivas and

Fontanillo (2010). A useful approach is to describe these systems as networks,

with the system elements (eg. genes, proteins) as nodes, and the relation-

ships between them (eg. transcription or protein-protein interaction) as edges

(Barabasi and Oltvai, 2004; Alm and Arkin, 2003). An important class of bio-

logical networks comprises the protein-protein interaction networks (PPI, Vidal

et al. (2011); Cerami et al. (2011); Szklarczyk et al. (2011)): edges in these net-

works describe interactions between proteins that are part of the same physical

14



1 Network Ensembles

complex or post-translational modifications mediating signal transduction flows.

Networks of interacting proteins can be thought as characterizing the cell pheno-

types given their genetic and transcriptomic profile. These and other interactions

are also encoded into functional pathways, such as signalling and metabolic path-

ways, as are mapped for example in KEGG database (Kyoto Encyclopaedia of

Genes and Genomes, www.genome.jp/KEGG). In our study we are interested

in the integration between the transcriptomic and the interactomic data, thus

the statistical properties of integrated PPI-signalling-mRNA expression networks

seem to be good observables to investigate systemic pathologies such as cancer

and ageing (Teschendorff and Severini, 2010; Barea and Bonatto, 2009). This

approach can be more informative than analyzing gene expression data on its

own. Indeed, integrative PPI-mRNA expression studies have helped to tease

out relevant patterns of expression variation in the contextual framework of sig-

nalling pathways and protein complexes (Pagel and Pomiankowski, 2008; West

et al., 2012; van Wieringen and van der Vaart, 2011).

Using the tools presented in Sec. 1.1 we have the chance to build up a thorough

biological network model. Thanks to some suitable constraints encoding the most

relevant network features, we can evaluate the information content of biological

structures, and moreover, we can apply specific methods for time-dependent and

time-independent data (Anand and Bianconi, 2010; Bianconi et al., 2009).

Our approach relies on the theory of network ensembles with given topology

(encoded in the degree sequence) and metrics (represented by distance between

values assigned to the nodes): the PPI-signalling structure is embedded in the

network topology, while mRNA expression data define the values assigned to the

nodes.
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We studied two biological phenomena that encode different landscapes of cel-

lular perturbation, namely cancer and ageing in humans, and whose datasets

were characterized by a different experimental design (case-control studies and a

time series built on samples of different age). Network entropy approach offers a

new perspective to the study of such phenomena, highlighting a more systemic

behaviour of the cell beyond single-element analysis, but nonetheless it can be

applied at several scales, from a whole-cell point of view (the full network) to

single biological pathways characterising the main cell processes like metabolism

and signalling (subnetworks defined by a priori biological knowledge), up to single

nodes (genes/proteins in the network).

1.2.1 Omics Data

PPI-signalling network

In order to define a network in which the nodes (namely proteins, measured by

their mRNA transcription profile) could be adequately annotated both in terms

of their biological function and their potential interactions, we considered only

the genes that were annotated both in KEGG database and in PathwayCommons

(www.pathwaycommons.org) PPI network.

We started considering the protein-protein interaction network extracted from

the Pathway Commons database regarding Homo Sapiens proteins. The initial

PPI network contained 11604 nodes and 420601 links: after self-interaction and

redundant annotation removal we obtained a giant component of 11394 nodes

and 420516 links. Since we used different gene expression datasets on different

microarray platforms, we considered the intersection of the PPI protein IDs with
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the gene annotations of each microarray platform, considering only the genes

that had also a known annotation in the KEGG database. In this way, each

network could be further divided considering nodes annotated into each single

KEGG pathway.

This procedure produced different networks for each considered platform, with

a number of nodes ranging from 2000 to 3000.

Cancer datasets

The analysis has been performed onto four datasets by downloading the nor-

malised data from GEO Omnibus (www.ncbi.nlm.nih.gov/geo).

The first dataset (referred to as “Colon”, GEO accession number GSE4183 (Gy-

orffy et al., 2009)) is composed by 8 normal colon biopsies and 15 colorectal

cancer samples.

The second dataset is related to Ewing’s sarcoma (“Ewing” dataset, GEO acces-

sion number GSE12102 Scotlandi et al. (2009)), consisting of 30 primary and 7

metastatic tumour samples. Other two dataset refer to breast cancer samples:

in the first we have primary tumour specimens that developed metastasis or not

(97 and 28 samples respectively, referred to as “Met”, GEO accession number

GSE2990 Sotiriou et al. (2006); Loi et al. (2007)), while in the second there are

primary tumour biopsies that relapsed or not (107 and 179 samples respectively,

referred to as “REL”, GEO accession number GSE2034 Wang et al. (2005)).

Colon and Ewing datasets are both profiled with the Affymetrix U133 plus 2

microarray platform, and the intersection with the PPI network and the KEGG

database resulted in a network with 2835 nodes.
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Rel and Met datasets are both profiled with the Affymetrix U133 A microarray

platform, and the intersection with the PPI network and the KEGG database

resulted in the a network of 2618 nodes.

In each dataset, a restricted gene list (and a corresponding reduced network)

was obtained by performing a Student’s T test for uncoupled samples over the two

groups in which each dataset is divided into. The main purpose of this selection

is to evaluate the behaviour of the network entropy measure for a subset of nodes

that significantly behave differently in the two groups, as compared to the full

set of available nodes in the network.

For the Colon dataset we applied a P < 0.05 significance threshold plus

Benjamini-Hochberg post-hoc correction, obtaining a subnetwork of 312 nodes.

For the Ewing and the Breast datasets we only applied a P < 0.05 significance

threshold, obtaining a network with 136 nodes for Ewing, 151 and 313 nodes for

Met and Rel datasets respectively, since almost no genes would have passed the

post-hoc correction. This is probably due to the fact that in these datasets the

differences between groups are less pronounced than in a normal-cancer compar-

ison, as described in the related papers from which the data were collected.

Since we can calculate the network entropy value for each sample, we obtain

23 entropy values for Colon, 37 for Ewing, 125 for Met and 286 for Rel datasets,

both for the full network (that will be used for single-node entropy calculation,

as described below) and the 5% significance gene selection.

In order to estimate significant differences between the groups, as a typical case-

control study design, since the null distribution of network entropy values is not

known in advance for arbitrary networks, we performed nonparametric Wilcoxon
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rank sum tests between the entropy values for each group.

Ageing dataset

We considered a cross-sectional study (time series) of 25 whole-genome expres-

sion profiles of T lymphocytes extracted from healthy males of ages spanning

typical adult human lifespan (from 25 to 97 years, see Remondini et al. (2010)

for further details). This dataset is naturally divided into 5 age groups: A) 25-34

y (mean = 29.6 y); B) 43-46 y (mean = 44 y); C) 55-62 y (mean = 58.2 y); D)

70-79 y (mean = 74.2 y); E) 92-97 y (mean = 94.4 y).

The gene expression dataset (obtained through a custom array, see Remondini

et al. (2010)) after processing is composed by 13103 probes x 25 age samples.

The intersection with the giant component of Pathway Commons data and the

KEGG database results in a PPI network of 1976 nodes, used for single-node en-

tropy analysis. A restricted gene list was obtained by performing a 1-way Anova

over the age groups, in order to look for genes significantly changing expression

profile in time. With a P < 0.05 significance threshold plus Benjamini-Hochberg

post-hoc correction we obtained a subnetwork of 217 nodes. We applied the

same significance threshold considered in the original paper in order to compare

the results obtained by gene expression analysis and the results obtained by this

network entropy approach.

We obtained 25 network entropy values (one for each sample) both for the

whole network and for the 5% significance gene selection. Also in this case we

applied nonparametric test for network entropy comparisons, namely Kruskal-

Wallis test over the 5 age groups, to define a subgroup of genes significantly

changing expression profile over the whole time series, and Wilcoxon rank sum
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test for comparison between any two groups.

1.2.2 Modelling biological networks: the role of network

entropy

Based on the formalism developed in Sec. 1.1.1 , we apply the concept of

entropy of network ensembles to a real biological situation. In our case study,

each sample can be described by a network of N nodes (adjacency matrix {aij})

and by an additional distance matrix {daij} (where the label a identifies the con-

sidered sample). The first set of observables is related to the network topological

structure, and is given by the degree sequence of the PPI network, namely the

N -dimensional vector of the connectivity degree of each node: {ki}, i = 1, . . . , N ,

with ki = ∑
j 6=i aij. Since we consider a network (and calculate an entropy value)

for each sample, these topological constraints are equal for all the samples1. The

second set of observables is related to the distance values of the network, ex-

pressing metric relations between nodes: assigning to the nodes of each sample

the values of mRNA expression of the corresponding genes in the selected mi-

croarray gai (with index i ranging over all the nodes and index a ranging over all

the samples of the dataset), we define daij as the euclidean distance of the gene

expression values, i.e.

daij =
√

(gai − gaj )2 = |gai − gaj | (1.30)

We collect all these values into an histogram with Nb bins, with a number of bins

equal to the square root of the number of nodes in the network: Nb =
√
N (a

1Measured on the same microarray platform.
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reasonable choice considering the sparsity of the PPI network and of its subsets).

For each couple of genes we have a particular distance value but not necessarily

a link in the PPI network. The second set of network observables refers to the

number of the PPI links whose distance values fall in a given bin. For each

distance bin we count the number of these PPI links related to it and we fix

them on average. We remark that this set of observables is specific for each

sample, being related to its expression profile.

The entropy of network ensembles follows from Eq. 1.21, where as previously

defined, pij represents the probability of having a link between node i and node

j. In a generic graph of this ensemble, a link aij is present with probability pij,

otherwise absent with probability (1− pij).

We define the spatial ensemble as an ensemble of network obtained by enforcing

the constraints on the degree sequence {ki} and on the number Bl of PPI links

belonging to each distance bin, dij ∈ Il, described by the following equations:

ki =
N∑
j

pij; i = 1, ..., N (1.31)

Bl =
N∑
i<j

χl(dij)pij; l = 1, ..., Nb (1.32)

where N is the number of nodes in the network, Nb is the number of bins con-

sidered for the empirical distribution of distances, and χl is the characteristic

function of each bin of width (∆d)l: χl(x) = 1 if x ∈ [dl, dl + (∆d)l], χl(x) = 0

otherwise.

The probability matrix {pij} is obtained by the constrained maximization of the

entropy function (Eq. 1.23), as described in the following equation:
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∂

∂pij

S +
N∑
i

λi

ki −∑
j

pij

 +
Nb∑
l

gl

Bl −
N∑
i<j

χl(dij)pij
 = 0

where λi and gl are the the Lagrangian multipliers related to our constraints.

For each (i, j) the resulting marginal probability is

pij =
Nb∑
l

χl(dij)
e−(λi+λj+gl)

1 + e−(λi+λj+gl)
=

Nb∑
l

χl(dij)
zizjWl

1 + zizjWl
(1.33)

where zi = e−λi, Wl = e−gl, commonly known as hidden variables, are functions

of the Lagrangian multipliers λi and gl. If we consider only the constraints on

the degree sequence stated in Eq. 1.31 we come back to the so called configura-

tion ensemble that was fully explained in the previous section. The number of

constraints for the configuration ensemble is N , while for the spatial ensemble

it is N + Nb. The additional Lagrangian multipliers {Wl} contain information

about gene expression profiles, modulating the probability pij of having a link

between node i and node j with a given expression difference dij. We remark

that a significant difference between the network entropy calculated in the spatial

and configuration ensembles reflects the relevance of the information encoded in

the gene expression data, as will be the case for all of our analyses. In particular,

what matters is how this genetic information is filtered by the PPI network.

The canonical ensemble deriving from a real instance gives an entropy value that

is considered as the logarithm of the number of “typical” networks in this ensem-

ble, given the constraints to be satisfied on average by each network belonging

to the ensemble (Anand and Bianconi, 2009).

Considering the link probabilities pij obtained for the full PPI network, it is
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also possible to define a single-node entropy-like measure (in analogy with the

Shannon entropy) for the i-th node. Since pij ≥ 0 ∀(i, j), and since the relation
∑
j 6=i pij = ki is enforced for each node i, we can define an entropy-like measure

Si as follows:

Si = −
∑
j

p′ij log p′ij p′ij = pij
ki

(1.34)

Given the single node entropy values {Si} for each sample, we checked by a non-

parametric Wilcoxon rank sum test for significant differences at a single node

level between the groups of our datasets. Since we know the KEGG annotation

for each gene of our network, we also performed a functional analysis of specific

biochemical pathways, based on enrichment analysis of pathways by genes sig-

nificantly changing their single-node entropy value Si. In this way the entropy

analysis could be scaled from the full PPI network to single-node and single-

pathway level.

Taking advantage of the a priori biological knowledge available from the KEGG

database, we remark that it is indeed possible to obtain several subnetworks of the

initial PPI network: at a first level, the genes annotated in the PPI can be divided

into 6 functional groups, that can be further subdivided into 42 metapathways,

and again into 191 KEGG biological pathways (see Fig. 1.3). We decided to

apply our analysis at the pathway level, in order to gain more information on

the single known biological mechanisms described into the KEGG database.

For the calculation of the entropy values, the link probabilities pij and the

Lagrangian multipliers, we developed an iterative algorithm: given a random

starting guess for the value of the lagrangian multipliers {zi} and {Wl}, the pij

values are calculated according to Eq. 1.33. These values are then substituted in

the constraint equations 1.31 and 1.32 for the updating of the lagrangian multipli-
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Table 1.1: Cancer datasets: median values of the network entropy groups S1 and
S2 as pictured in Fig. 1.1(a), in a typical case-control design. With
pW we consider the p-value given by the Wilcoxon ran sum test.

S1 S2 Size pW

Colon 13.0349 13.0680 312 4.35 ·10−4

Ewing 8.8057 8.7569 136 0.0023
Met 9.9483 9.9159 151 4.12 ·10−4

Rel 15.4700 15.4664 313 0.0197

ers. The process is repeated upon convergence. We checked by random sampling

that the application of the iterative algorithm for different initial guesses leads

to the same final entropy values (since under these constraints it is a convex

function that admits an unique maximum). The threshold for the convergence

of the algorithm was set to 10−5, and we remark that every significant change

in entropy values was at least of a order of magnitude higher, thus the chosen

precision is not affecting our results. This algorithm is available in Matlab code.

1.2.3 Results

Network entropy

The first analysis consisted in comparing the entropy values for the samples

belonging to the different classes (see Figure 1.1). For the Colon dataset (Fig.

1.1, Panel a) we see a significant increase of network entropy S between normal

and cancer samples (P = 0.00043) when considering the selection of genes which

expression profile differed between normal and cancer samples. At a full-network

level, the same trend is observed, but the result is weakly non significant (P =

0.057) We interpret this result as an increase in cell deregulation when passing

from normal to cancer cell, reflected in a higher “phenotypic space” available,

since many regulation mechanisms (eg. related to cell cycle, apoptosis or DNA
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(a) (b)

(c) (d)

Figure 1.1: Boxplots for the network entropy values in the studied cancer
databases. Panel a: colon cancer, normal vs. cancer samples. In
this case cancer samples have a significantly higher entropy. Fig-
ure b, c, d: Ewing sarcoma, metastatic and relapsing breast cancer
databases, respectively. In b, c, d cases a primary tumour samples are
compared with tumour samples that relapsed or developed metastasis
during disease progression. In these cases entropy has a significantly
higher value in the primary tumour groups.

repair) are lost in a cancer cell (Hanahan and Weinberg, 2000).

If we consider single-node entropy, we find 665 genes (over 2835) with a signifi-

cant difference between normal and cancer samples (see supplementary file). The

single genes with highest significance are involved in known cancer-related path-

ways, such as “WNT”, “MAPK”, “Notch” and “Cell communication” pathways.

The role of the genes which single-node entropy is differing significantly between

normal and cancer samples can be better understood at a KEGG pathway level:
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Figure 1.2: Boxplots for the network entropy values in the studied ageing
database. Successfully aged people have a significantly lower en-
tropy. We show the results for the Kruskal-Wallis test over the five
age groups and for the Wilcoxon rank sum test for each pair of groups
in Tab. 1.2.

an analysis based on the hypergeometric distribution (i.e. counting the num-

ber of genes with significant differences in single-node entropy for a particular

pathway, given the total number of significant variations in the whole network)

shows that 25 (over 191) pathways are significantly enriched (P < 0.05), among

which “Oxidative phosphorylation”, “Focal adhesion”, “TCA cycle”, “Cell com-

munication”, “Apoptosis”, “Cell adhesion molecules” with a clear involvement in

cancer progression both at a signalling and at a metabolic level (Hanahan and

Weinberg, 2000).

For the other class of comparisons, between primary and secondary cancers
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(metastatic or relapsing) we find instead a significant decrease in network en-

tropy (P = 0.014 for the Ewing dataset, P=0.00041 for MET dataset, P=0.02

for the REL dataset). In this case, the change from a primary cancer to a

metastatic or relapsing state implies an evolutionary selection, since some spe-

cific steps need to occur, e.g. regarding epythelial-to-mesenchymal transition

mechanisms (Brabletz and Brabletz, 2010) or adaptation to pharmacoresistance,

or clonal selection induced by therapy. The reduction in “phenotypic” space is

thus a measure of this phenomenon. In the Ewing dataset, 142 genes have a

significant difference in single-node entropy Si (P < 0.05) between primary and

metastatic samples, involved in many pathways, with a large majority of lipid

metabolism pathway. A significance analysis at KEGG pathway level produces 33

significantly enriched pathways, such as “Glycolysis/Gluconeogenesis”, “Pentose

phosphate”, “Galactose metabolism”, “Glycosphingolipid biosynthesis”, but also

“Cell communication”, “Focal adhesion” and “ECM-receptor interaction” that

might be involved in metastatic processes such as cell migration. In the MET

dataset, 342 genes have a significant difference in single-node entropy. Even if

the cell type is different (primary breast cancer) many pathways are the same

as for the Ewing dataset, in particular related to the lipid metabolism. Func-

tional analysis highlights 48 enriched pathways, among which “Glycolysis/Glu-

coneogenesis”, “Galactose metabolism”, “Glycosphingolipid biosynthesis” as for

Ewing dataset, and also pathways such as “Cell adhesion molecules” that can

be again related to metastatic progression. For the REL dataset, 331 genes had

a significant difference in single-node entropy, and 23 pathways were function-

ally enriched with a P<0.05. Among these pathways, some of them are related

to metabolism (“Ether lipid biosynthesis”, “Biosynthesis of steroids”, “Pyrim-
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Table 1.2: Ageing dataset: in the upper part of the table we show the median
values for the five network entropy age groups as pictured in Fig. 1.2.
With pK we consider the p-value given by the Kruskal-Wallis test
over the five age groups. In the lower table we show the results for
the Wilcoxon rank sum test for each pair of groups.

S1 S2 S3 S4 S5 pK

11.4249 11.4331 11.4497 11.4495 11.3972 0.0028

pW group 1 group 2 group 3 group 4 group 5

group 1 0.5476 0.0952 0.0079 0.0079
group 2 0.4206 0.1508 0.0079
group 3 1 0.0079
group 4 0.0079

idine metabolism”), but also to specific functions such as “RNA polymerase”,

“DNA polymerase”, “Proteasome”, “Cell adhesion molecules” and “Metabolism

of xenobiotics by cytochrome P450”.

We remark that the pathways involved in a change in entropy, as shown above,

are very different from the pathways that can be obtained by an identical func-

tional analysis performed on genes with a significant change in gene expression

(thus related to gene up or downregulation) reflecting the different information

encoded in network entropy at whole-cell and single-node level (data not shown).

For the Ageing dataset, we exploited the time series design by applying a

Kruskal-Wallis test over the age groups, in order to evaluate significant changes

in network entropy over the whole life span. The trend for the five groups was

significantly different (P=0.0028, see Fig. 1.2). In particular, among the 5 age

groups a multiple testing by ranksum revealed that only the oldest age group

showed a significantly different behaviour, with a lower Network Entropy than

the other age groups. The last age group is related to successfully ageing people,
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Table 1.3: Pathway analysis: number of significant genes and pathways based
on the single node entropy variations. For the genes we applied a
Wilcoxon rank sum test in the usual case-control setup. For the
pathways we performed an enrichment analysis, highlighting those
paths enriched by genes significantly changing their single-node en-
tropy value.

Significant genes Significant pathways

Colon 665 25
Ewing 142 33
Met 342 48
Rel 331 23
Ageing 290 16

since their age is larger than average life expectancy, thus it represents a very

selected group from an epidemiologic point of view. Its different value in network

entropy could be explained in two ways, that our data do not allow to distinguish:

first, the successfully ageing group represents a selection, in terms of phenotype,

over the human population. Thus the reduced entropy highlights their peculiar

expression profile. As a second hypothesis, the oldest group shows a smaller plas-

ticity in terms of the possible phenotypic profiles that the cells can assume. This

aspect can be related to the “frail” phenotype (Ferrucci et al., 2008; Fried et al.,

2004), for which old people are less capable of adaptation, both from a psycholog-

ical and from a physical point of view. For the single-node entropy and functional

enrichment analysis we considered a comparison between the youngest and the

oldest age group, representing the two extremes of our time series: a rank sum

test found 290 (over 1976) genes with a significant difference in Si (P < 0.05).

The KEGG pathways mostly enriched by significant genes are in part related to

the specific cell type, ie lymphocytes (”T cell receptor signalling”, ”B cell receptor

signalling”, ”hematopoietic cell lineage”), metabolic pathways (”Androgen and

estrogen metabolism”, ”Biotin metabolism”, ’Histidine metabolism”), and path-

29



1 Network Ensembles

ways involved in cellular degradation/production machinery (”Proteasome”), in

particular at the nucleolar level, such as ”Ribosome” and ”DNA polymerase”

that are known to be altered during ageing (Bellavista et al., 2014; Lempiainen

and Shore, 2009)

1.3 Conclusions

In this chapter we have introduced the main concepts of Statistical Mechanics

of network ensembles. As expected, there are strong analogies with the usual sta-

tistical physics, especially considering the parallelism with fermionic and bosonic

distributions (in the unweighted and weighted network cases respectively). On

the other hand, the same formalism can be easily interpreted from the point of

view of Information theory.

This approach define correct and unbiased null models of networks, giving the

chance to quantify which network features are peculiar to the studied system and

which are simply due to randomness.

Moreover, we have shown how this approach provides observables for real data,

such as the measure of network entropy that we applied to omics data, in a typ-

ical setup of Systems Biology.

In the presented biological study the measure of network entropy successfully

integrates the topological information encoded in the protein interaction net-

work with gene expression profiling. This measure is introduced to characterise

different levels of cellular perturbation, namely the comparison between healthy

and cancer samples, primary and metastatic cancer samples, and a time series

of healthy samples with different ages across the whole human lifespan. This
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measure estimates the number of networks that satisfy given constraints, in our

case the degree sequence of the protein network and the distribution of the link

distances as given by the difference in expression between genes, and can be inter-

preted as the extent of the “parameter space” allowed to the cell in a given state

in terms of gene expression plasticity, or also in terms of different cell phenotypes

(in terms of cell clonality for the case of cancer).

Different case studies help to clarify this interpretation. Regarding the compar-

ison between healthy and cancer cells, we observe an increase of network entropy,

possibly due to a larger deregulation of the biological mechanisms and functions

involved or to an increase in cell phenotypical diversity. When we consider pri-

mary and metastatic (or relapsing) samples, network entropy shows a significant

decrease instead, reflecting the canalisation or the evolution (in terms of clonal

extent or gene expression profile) necessary to achieve this specific state. In a

time series of ageing people, we see a sharp decrease of network entropy for the

successful ageing group (with an age larger than typical life expectancy) that

could also in this case represent a sort of selection of specific ageing phenotypes.

The formalism allows to define a measure of entropy at different scales, from

single gene to biological pathways, that highlights how the changes in entropy

are specific for the biological function and the experimental design (case-control,

cell-type) considered. This method provides a different perspective on the analy-

sis of gene expression data, integrating single-gene expression measurements and

functional relationships between genes due to biological functions inside the cell.

The entropy measure S seems an observable sensitive enough to evaluate the

effect of physiological perturbations such as the changes occurring during the

cellular ageing process, and also the differences between cancer subtypes before
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the progression to metastatic and relapsing phenotypes. The statistical signifi-

cance of S resulted independent on network properties, such as the number of

nodes, and increased when a selected subset was considered, thus reflecting the

biological relevance of the data used.

We were able to scale the analysis at different levels based on a priori biological

knowledge (as obtained from KEGG database) so to apply the analysis to specific

biological functions and pathways.

The approach can be generalised to other systems as well, considering dif-

ferent networks for the topological constraints, like transcription or metabolic

networks, different high-throughput observables, for example methylation states

or metabolic compounds, and finally considering different metrics, like correlation

or mutual information, to define the weights of the network.
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Figure 1.3: KEGG database: the genes annotated in the PPI can be grouped
following KEGG into 6 functional groups, further subdivided into 42
metapathways, and finally into 191 pathways (data not shown)
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2 Multilayer networks and

multiplex networks

2.1 Introduction to multilayer networks and

multiplex networks

Network theory investigates the global topology and structural patterns of the

interactions among the constituent elements of a number of complex systems

including social groups, infrastructure and technological systems, the brain and

biological networks (Albert and Barabási, 2002; Newman, 2003; Boccaletti et al.,

2006; Fortunato, 2010). Over the last fifteen years, a large body of literature has

attempted to disentangle noise and stochasticity from non-random patterns and

mechanisms, in an attempt to gain a better understanding of how these systems

function and evolve. Further advances in the study of complex systems has

clarified that in order to understand the complexity of a large variety of systems

is not enough to consider single networks, but it is necessary to describe the

complex set of interactions between different networks by adopting the framework

of multilayer networks. Multilayer networks are formed by a set M of layers

constituted by single networks, and by interlinks connecting the nodes in the
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Figure 2.1: A representation of a generic multilayer network M = (G, C) com-
posed by two graphs: G1 and G2. The interlayer connections are in
red while the intralayer connections are in green for graph G1 and
in blue for graph G2. The adjacency matrix of the related projection
network proj(M) = (XM, EM) is displayed in the lower-right corner.
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different layers. Formally, a multilayer graph is described by a pairM = (G, C)

where G = {Gα; α ∈ {1, ...,M}} is a set of graphs Gα = (Xα, Eα) (called

layers) and by

C = {Eαβ ⊆ Xα ×Xβ;α, β ∈ {1, ...,M}, α 6= β}

defining the set of interconnections between nodes of differentGα andGβ (α 6= β).

The elements of Eαβ (α 6= β) are called interlayer connections (see Fig. 2.1, red

edges) while the elements of each Eα are called intralayer connections (see Fig.

2.1, green edges for graph G1 and blue edges for graph G2). We denote by

Xα = {xα1 , ..., xαNα} the set of nodes of the layer Gα and by Aα = {aαij} ∈ RNα×Nα.

Furthermore, associated with Eαβ we define a similar adjacency matrix Aαβ =

{aαβij } ∈ RNα×Nβ . The projection network proj(M) = (XM, EM), related to the

multilayerM, is given by

XM = ∪Mα=1Xα EM =
(
∪Mα=1Eα

)
∪
(
∪Mα,β=1,α 6=βEαβ

)

Its adjacency matrix is indicated as ĀM (see Fig. 2.1). In biological fields there

are many interesting examples well modelled by multilayer networks. For exam-

ple, the biological functionality of the cells can be described by a multilayer net-

work involving at least metabolic, protein interaction and transcription network

layers. Moreover, the so-called systems medicine seems naturally embedded in

a multilayer network (see Fig. 2.2). The definition of systems medicine has been

forged with the introduction of complex network methodology in biomedicine:

it involves a systemic view of the organism where the various elements build-

ing living beings are considered in their interplay. Systems medicine looks at
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multilayer networks as possible tools for combining the characterisation of the

main constituents of the cell: genes, proteins and metabolites. Up to now, many

different complex networks have been studied, e.g. gene-gene coexpression net-

works, protein-protein interaction networks, metabolite-metabolite coexpression

network. Each one has been considered separately, not including the strong

correlations and interdependencies with the other complex networks. The repre-

sentation of the cell, and moreover of the living being, as interdependent layers

may give a new insight about the appearance of systemic pathological conditions.

Furthermore, focusing on the interdependencies among genes and proteins, we

can build a multilayer network encoding both experimental setup (coexpression

matrices from experimental profiles) and annotated reactions (protein-protein in-

teraction network, Recon X). This structure naturally pictures the gene control

upon the production of proteins, turning into catalysers of the metabolic reac-

tions. Furthermore, a multivariate statistics and an integrated clustering can be

performed.

Multilayer networks can be distinguished in multiplex networks (Szell et al., 2010;

Cardillo et al., 2013; Nicosia and Latora, 2014; Donges et al., 2009) and interact-

ing networks of networks (Gao et al., 2012; Bianconi and Dorogovtsev, 2014). In

interacting networks of networks the nodes in the different layers represent dif-

ferent elements of the system. For example, in the cell, metabolites, proteins and

transcription factors remain distinct biological entities. In a multiplex network,

instead, the same set of nodes formsM networks, one in each layer corresponding

to different types of interactions. Examples of multiplex networks include:

• social networks: the same individuals can be connected through different

types of social ties originating from friendship, collaboration, or family
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Figure 2.2: Systems medicine: a multilayer network point of view

relationships (Szell et al., 2010)

• air transportation networks: different airports can be connected through

flights of different companies (Cardillo et al., 2013; Nicosia and Latora,

2014)

• brain networks: different regions can be seen as connected by the func-

tional and structural neural networks (Bullmore and Sporns, 2009; Castel-

lani et al., 2014)

Most of the studies so far conducted on multiplex networks have been con-

cerned with the empirical analysis of a wide range of systems (Szell et al., 2010;

Cardillo et al., 2013; Donges et al., 2009; Morris and Barthelemy, 2012), the
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modeling of their underlying structures (Battiston et al., 2014; Halu et al., 2013;

Mucha et al., 2010), and the description of new critical phenomena and processes

occurring on them (Buldyrev et al., 2010; Baxter et al., 2012; Gómez et al., 2013;

Brummitt et al., 2012). In particular it has been found that multiplex networks

encode in their structure important correlations: we can distinguish for example

between degree correlations (Min et al., 2014; Nicosia et al., 2014) determining

whether a hub in a network is also an hub in another network, overlap determin-

ing to what extent any two nodes of the network are linked in several networks

at the same time (Szell et al., 2010; Cardillo et al., 2013; Bianconi, 2013; Halu

et al., 2014), or pairwise activity correlations measuring if the presence of a node

in one network is correlated with the presence of another node in the same net-

work (Nicosia and Latora, 2014). Many multiplex networks are also weighted, i.e.

the links between the nodes not only are distinguished by the type of interaction

linking the nodes, but also by the intensity of these interactions.

Despite this growing interest in multiplex networks, a fundamental question still

remains largely unanswered: what is the advantage of a full-fledged analysis of

complex systems that takes all their interacting layers into account, over more

traditional studies that represent such systems as single networks with only one

layer? To answer this question, one should demonstrate that novel and relevant

information can be uncovered only by taking the multiplex nature of complex

systems directly into account, and would instead remain undetected if individ-

ual layers were analysed in isolation. In the following, an attempt is made to

offer a possible solution to this problem within the context of weighted multiplex

networks, presenting two data-sets from the real world:

American Physical Society (APS) citation and collaborations networks from
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different journals of the American Physical Society

Gene-gene duplex two gene-gene networks extracted using the gene expression

of a pool of cancer patients and a pool of healthy subjects respectively for

each layer

The results show how in these systems it is possible that the weights of the links

are correlated with the pattern of overlap observed between the links of differ-

ent layers. It is therefore very important, as previously explained in Ch. 1, to

propose maximum-entropy multiplex ensembles with given constraints (Park

and Newman, 2004; Bianconi, 2008; Bianconi et al., 2008; Anand and Bianconi,

2009; Annibale et al., 2009; Squartini et al., 2011; Garlaschelli, 2009; Squartini

and Garlaschelli, 2011; Garlaschelli and Loffredo, 2009; Sagarra et al., 2013, 2014;

Del Genio et al., 2010; Zlatic et al., 2009): these models can be used to generate

multiplex networks with different types of correlations. These models, on one

side can be used to simulate dynamical processes on different multiplex network

topologies, on the other side, similarly to what happens for single networks, their

entropy (Bianconi, 2008; Bianconi et al., 2008) can be used to evaluate the infor-

mation content of some of their properties (see Sec. 1.2, Bianconi et al. (2009)).

Here we provide the theoretical framework to generate null models for multiplex

networks, using the combined tools of canonical network models (exponential

random graphs) and the recently introduced concept (Bianconi, 2013) of multi-

links, that is able to distinguish between different patterns of overlap of the links

in the multiplex network.

This chapter is structured as follows: in Sec. 2.2 we give a general introduction

to the main observables characterising multiplex networks; in Sec. 2.3 we present

a large series of null models for uncorrelated and correlated multiplex networks,
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both unweighted and weighted; in Sec. 2.4 we analyse two real datasets, i.e. the

American Physical Society dataset and a biological case study.

2.2 Measures on multiplex networks

In a large variety of cases real multiplex networks show a significant overlap of

the links through different layers, meaning that the number of links present at the

same time in two layers or more is not negligible with respect to the total number

of links in the different layers. This is one of the most important kind of correla-

tion that we observe in multiplex networks, along with the deriving correlation

in the node connectivity pattern through different layers. Social communications

and interactions offer a natural landscape for this kind of correlation: we usually

communicate with our friends in different ways, i.e. by phone-calls, by e-mail,

by instant messaging. These means of communications are nothing more than

different layers, different graphs with same nodes. If we pick , for example, the

layer of phone calls and the layer of instant messaging, it is very likely to observe

a high link overlap, and moreover, a non-trivial local overlap of links related to a

given node. One way to fully characterised the link overlap is by the introduction

of the so-called multilinks. The multilink formalism was introduced in Bianconi

(2013) for unweighted multiplex networks. In this section we present the more

general approach for weighted multiplex networks and we give a comparison with

the usual single-layer measures. We define all the observables for weighted mul-

tiplex, considering the unweighted situation as a particular case.

A weighted multiplex is formed by N nodes connected by M weighted networks

Gα, with α = 1, . . . ,M . A multiplex can be represented as ~G = (G1, G2, . . . , Gα, . . . GM)
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where each network Gα is fully described by the weighted adjacency matrix of

elements aαij, with aαij > 0 if there is a link of weight aαij between node i and node

j in layer α, otherwise we have aαij = 0.

As previously explained in Ch. 1, in order to simplify the treatment of the

weighted multiplex, we suppose that the weight of the link between any pair of

nodes (i, j), aαij can only assume integer values. This is a legitimate assumption

because in a large number of weighted multiplexes the weights of the links can be

considered as multiples of a minimal weight. Moreover, for the sake of simplic-

ity we consider only networks without tadpoles and with a symmetric adjacency

matrix {aαij}, i.e. undirected networks. The generalisation of our approach to

directed multiplex networks is straightforward.

Since each layer of the multiplex is a weighted network, we can introduce the

so-called total strength, Sα that takes into account the total weight of the links

in layer α. The expression for Sα is

Sα =
∑
i<j

aαij. (2.1)

The total number of links Lα for a specific layer α is strictly related to Eq. 2.1,

and is given by

Lα =
∑
i<j

θ(aαij). (2.2)

2.2.1 Single-layer observables

Each single layer α of the multiplex network is a weighted network (Barrat

et al., 2004; Almaas et al., 2004): for each layer we can characterise the topo-
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logical quantities (such as the degree distribution) but also the heterogeneous

interactions between the nodes. Interesting weights-topology correlations are

usually a signature of the given network. These correlations can be revealed by

measuring the following three quantities:

• the degree kαi of a node i in layer α,

• the strength sαi of node i in layer α;

• the inverse participation ratio Y α
i of node i in layer α.

These quantities can be expressed in terms of the adjacency matrix elements

respectively as

kαi =
∑
j 6=i
θ(aαij), (2.3)

where the function θ(x) = 1 if x > 0 otherwise θ(x) = 0;

sαi =
∑
j 6=i
aαij, (2.4)

and

Y α
i =

∑
j 6=i

aαij
sαi

2

. (2.5)

Moreover here we introduce for further convenience the quantity uαi

uαi = Y α
i (sαi )2 =

∑
j 6=i

(
aαij

)2
, (2.6)
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which indicates the sum of the squares of the weights incident to a node. Similarly

to what happens for single networks (Barrat et al., 2004; Almaas et al., 2004), in

any given layer α, the strength sαi of a node indicates the sum of the weights of the

links of node i in layer α, while the inverse participation ratio Y α
i indicates how

unevenly the weights of the links of node i in layer α are distributed. The inverse

of Y α
i has a range between 1 and kαi . The extremes of the interval correspond

respectively to an uniform weight distribution across the links of the node i in the

layer α, i.e. aαij = sαi /k
α
i , that means (Y α

i )−1 = kαi , and to the opposite situation,

i.e. (Y α
i )−1 ≈ 1, when one particular link of the node i has a prevailing weight,

i.e. aαir � aαij for every j 6= r. In these terms Y α
i characterises the effective

number of links of node i in layer α.

It is a standard procedure in network theory to evaluate the averages of the

strength and the partition ratio of the weights of the links conditioning on the

degree of the node. In a multiplex, we will then consider the following quantities

sα(k) = 〈sαi δ(kαi , k)〉 = 1
Nα
k

∑
i

sαi δ(kαi , k)

Yα(k) = 〈Y α
i δ(kαi , k)〉 = 1

Nα
k

∑
i

Yi,αδ(kαi , k) (2.7)

where Nα
k indicates the number of nodes of degree k in layer α. When considering

sαk , similarly to what happens in general on single networks, we can expect a

scaling of the type

sα(k) ∝ kβα, (2.8)

with βα ≥ 1. We can distinguish Barrat et al. (2004) between two main scenarios

depending on the value of the exponent. For βα = 1 the average strength of
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nodes of degree k increases linearly with k. This means that the average weight

of the links incident to a node does not depend on the degree of the node, at

least if we consider only distinguishable links ( for a treatment of the case of

undistinguishable links see Sagarra et al. (2013, 2014)). For βα > 1 hubs tend

to have in average links with greater weight than low connectivity nodes. In a

multiplex, we might have that the weights in the different layers are distributed

differently. Therefore we might observe in some layers a superlinear growth of the

sα(k) with the degree in that layer, while in other layers we can observe a linear

dependence of the strengths on the degree. When considering single weighted

networks it has been observed that in many cases the inverse participation ratio

scales as an inverse power-law of the degree of the node (Almaas et al., 2004).

In the multiplex scenario, this would imply

Yα(k) ∝ 1
kλα

, (2.9)

where the exponent λα ≤ 1 might change from one layer to another layer. The

exponent λα = 1 indicates that all the weights incident to any node are equal,

while the exponent λα = 0 would imply the opposite scenario where for every

node, one of the weights incident to them is significantly higher than the other

weights.

2.2.2 Total overlap and total weighted overlap of the

multiplex networks

In order to characterise the overlap existing between the links of the multiplex

networks, we define the total overlap Oα,α′ between layer α and layer α′ as the
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Figure 2.3: Schematic view of a duplex (multiplex formed by two networks) where
any pair of nodes is linked by a different multilink ~m.
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total number of pair of nodes (i, j) connected both in layer α and in layer α′, i.e.,

Oα,α′ =
∑
i<j

θ(aαij)θ(aα
′

ij ), (2.10)

where θ(x) = 1 if x > 1 and θ(x) = 0 otherwise. This definition can be extended

to weighted multiplex networks by defining the total weighted overlap O(w)α,α′

between layer α and layer α′ as

O(w),α,α′ =
∑
i<j

min
 wα

ij

wα
max

wα′
ij

wα′
max

 , (2.11)

where wα
max is the maximal weight in layer α.

2.2.3 Multilink observables

It has been recently shown (Bianconi, 2013) that multilinks are the most natu-

ral way to describe and generate multiplex networks with overlap of the links. We

say that two nodes are connected by a multilink ~m = (m1,m2, . . . ,mα, . . . ,mM)

with mα = 0, 1 if they are connected in every layer α such that mα = 1 and not

connected in every layer α where mα = 0. In figure 2.3 we show an example of

a multiplex formed by two layers where each pair of node is linked by a given

multilink. In order to indicate if a mutlilink ~m is present or not between two

given nodes i and j we can introduce a multiadjacency matrix A~m with elements

A~m
ij equal to 1 if there is a multilink ~m between node i and node j and zero

otherwise.

In terms of the weighted adjacency matrices aα of the multiplex the elements A~m
ij
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of the multiadjacency matrix A~m are given by

A~m
ij =

M∏
α=1

[θ(aαij)mα + (1− θ(aαij))(1−mα)] (2.12)

where θ(x) = 1 if x > 0, otherwise θ(x) = 0. The multilink ~m = ~0 between two

nodes represents the situation in which in all the layers of the multiplex the two

nodes are not directly linked.

The multiadjacency matrices are 2M but there are only 2M − 1 independent

multiadjacency matrices because the normalisation condition

∑
~m

A~m
ij = 1, (2.13)

is satisfied for any pair of nodes (i, j). Furthermore, since the multiadjacency

matrices have elements A~m
ij = 0, 1, the above condition implies that between any

pair of nodes (i, j) there can be only one multilink ~m. We indicate the type of

this multilink as

~m = ~mij = (θ(a1
ij), θ(a2

ij), . . . , θ(aαij), . . . , θ(aMij )), (2.14)

where θ(x) = 1 if x > 0 and otherwise θ(x) = 0. The multilink ~m is characterised

by the overlap multiplicity ν(~m) = ∑
αmα indicating that the multilink ~m links

two pair of nodes by ν(~m) links. Using the multiadjacency matrices it is possible

to define the multidegree ~m, k ~mi of node i, given by

k ~mi =
∑
j 6=i
A~m
ij , (2.15)
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indicating how many multilinks ~m are connected to node i. Consider for example

the social multiplex network where people interact by two means of communi-

cation (mobile-phone, email). The multidegree k(1,1)
i indicates the number of

friends of node i that communicate with node i both by email and mobile phone,

k
(1,0)
i indicates the number of friends of node i that only communicate with node

i by mobile-phone and k(0,1)
i indicates the number of friends of node i that only

communicate with node i by email. Moreover, we define also the more global

L~m, i.e. the total number of multilinks ~m

L~m =
∑
i<j

A~m
ij , (2.16)

For a given weighted multiplex network we can study the relation between weights

and multilinks introducing, at first, the total multistrength ~m, S ~m
α in a layer α

such that mα > 0 as

S ~m
α =

∑
i<j

aαijA
~m
ij . (2.17)

Given a particular multilink ~m, this quantity indicates the total weight in layer

α of multilinks ~m and it is properly defined whenever mα > 0. The number of

total multistrengths ~m that we can define in a multiplex of M layers is given by

K = M2M−1. In fact we have that the total multistrength S ~m
α is non-trivial only

for multilinks ~m where mα = 1, while for the remaining layers β the value of mβ

can be either zero or one.

Moreover we can define the multistrength ~m, s~mi,α of node i in layer α such that
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mα > 0, as

s~mi,α =
∑
j 6=i
aαijA

~m
ij (2.18)

and the inverse multi participation ratio ~m, Y ~m
i,α of node i in layer α such that

mα > 0 as

Y ~m
i,α =

∑
j 6=i

 aαijA
~m
ij∑

r aαirA
~m
ir

2

. (2.19)

Using the same argument used to evaluate the number of total multistrengths ~m,

it is easy to prove that the number of local multistrength ~m and the number of

multi participation ratio ~m are given by NM2M−1. Moreover here we introduce

uα,~mi , the sum of the squares of the weights incident to a node i in layer α and

belonging to a certain type of multilink, as

u~mi,α = Y ~m
i,α(s~mi,α)2 =

∑
j 6=i

(
aαijA

~m
ij

)2
. (2.20)

In multiplex weighted networks, it was found that multistrengths and inverse

multi partition ratio can have a different scaling behavior depending on the type

of multilink. In fact the average quantities

s~mα (k ~m) =
〈
sα,~mi δ(k ~mi , k ~m)

〉
Y ~m
α (k ~m) =

〈
Y α,~m
i δ(kα,~mi , k ~m)

〉
(2.21)
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are expected to scale like

s~mα (k ~m) ∝ (k ~m)βα,~m,

Y ~m
α (k ~m) ∝ (k ~m)−λα,~m (2.22)

with βα,~m ≥ 1 and positive λα,~m ≤ 1. The significance dependence of these ex-

ponents as a function of the multilink type ~m, i.e. on the presence of a certain

pattern of overlap or absence of it, indicates the rich interplay between the topol-

ogy of the weighted networks and their weights. For example in the CoCi-PRE

duplex described in Sec. 2.4.1, formed by authors of PRE that in one layer are

connected by collaborations and on the other layer are connected by citations of

each other work, the weight-topology correlation is revealed by the different ex-

ponent of the multistrength in the citation network calculated either in presence

of the overlap of the links in the two layers on in absence of it. This reveals the

tendency of scientific authors of PRE to cite more the scientists of high multi-

degree that are their co-authors than the scientists with the same multidegree

that are not their co-authors. These correlations between weights and overlap

patterns are a very general type of correlation likely to exist in large set of mul-

tiplex dataset with significant overlap of the links. It is therefore very important

to be able to construct null models for multiplex networks with the desired level

of correlations between weights and overlap of the links, i.e. with given weighted

properties of the multilinks.
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2.2.4 Overlap multiplicity ν

Using multilinks ~m can be numerically viable only for weighted multiplex net-

works with a number M of layers such that M � log(N). As long as this con-

dition is not met, it is more efficient to study the properties of the ν-multilinks.

The ν−multilinks are only characterised by their overlap multiplicity ν, i.e. the

ν-multilinks are all the multilinks that connects two nodes of the multiplex with

ν links in ν different layers. Therefore in a multiplex social networks, where

the layers correspond to the means of communication between two people, node

i and node j are linked by a ν-multilink if they can communicate by a maxi-

mum of ν means of communication, independently on the identity of these. For

example two people that communicate in Twitter and Facebook are linked by a

ν-multilink with ν = 2, and the same is true for two people interacting by mobile

phone and email.

We can therefore define the ν-multiadjacency matrices Aν with elements Aν
ij =

0, 1 given by

Aν
ij =

∑
~m|ν(~m)=ν

A~m
ij (2.23)

=
∑

~m|ν(~m)=ν

M∏
α=1

[θ(aαij)mα + (1− θ(aαij))(1−mα)],

and ν = 0, 1, 2 . . . ,M . The ν-adjacency matrices are not all independent, since

between any two nodes there can be just one type of ν-mutlilink, i.e.

M∑
ν=0

Aν
ij = 1. (2.24)

Therefore we can consider as independent variables only the ν-adjacency matrices
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corresponding to the non trivial ν-multilinks with ν = 1, 2 . . . ,M . Moreover we

call with νij the type of ν-multilink connecting node i with node j, i.e. we have

Aνij

ij = 1 (2.25)

for all pairs of nodes (i, j). The number of distinct and non trivial ν-multilinks

with ν 6= 0 is given by M , hence the ν-properties of the networks are only

polynomial with M while the full mutlilink properties are growing exponentially

with M . Modelling networks with given ν-mutlilinks properties is therefore con-

venient when considering multiplex networks with large number of layers M .

Given the definition of ν-multiadjacency matrices it is straightforward to define

the ν-multidegree kνi of node i, given by

kνi =
N∑
j=1

Aν
ij (2.26)

indicating the number of neighbors of node i that are connected to node i by a

ν-multilink, with ν = 0, 1, 2 . . . ,M . The total number of ν-multilinks is trivially

given by

Lν =
∑
i<j

Aν
ij (2.27)

If we consider the weighted properties of the ν-multilink for a given layer α, we

can define the ν-total strength Sνα, the ν-multistrength sequence {sνi,α}and the
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ν-inverse multi participation ratio
{
Y ν
i,α

}
, as in the following,

Sνα =
∑
i<j

aαijA
ν
ij (2.28)

sνi,α =
∑
j 6=i
aαijA

ν
ij

Y ν
i,α =

∑
j 6=i

 aαijA
ν
ij∑

r aαirA
ν
ir

2

. (2.29)

Moreover, we can introduce the quantities uα,νi , indicating the sum of the

squares of the weights incident to a node i in layer α and belonging to a certain

type of ν-multilink, as

uνi,α = Y ν
i,α(sνi,α)2 =

∑
j 6=i

(
aαijA

ν
ij

)2
. (2.30)

Similarly to what described in the previous paragraph, we can evaluate the cor-

relations between the weights and the pattern of overlap between the links by

measuring the exponents βα,ν and ξα,ν, determining the scaling

sνα(kν) ∝ (kν)βα,ν ,

Y ν
α (kν) ∝ (kν)−ξα,ν (2.31)

of the average quantities sνα(kν) and Y ν
α (kν) given by

sνα(kν) = 〈sα,νi δ(kνi , kν)〉

Y ν
α (kν) = 〈Y α,ν

i δ(kα,νi , kν)〉 . (2.32)
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2.3 Canonical weighted multiplexes ensembles or

exponential weighted multiplexes

Null models for weighted multiplex networks can be constructed using the

formalism of canonical network ensembles also known as exponential random

graphs (Park and Newman, 2004; Anand and Bianconi, 2009; Squartini et al.,

2011). These ensembles of networks generate the least biased set of networks

satisfying a set of constraint on average. In fact, these ensembles are derived by

a maximal entropy approach conditioned to a series of structural constraints. The

entropy of these ensembles and of the correspondent microcanonical ensembles

enforcing the corresponding hard constraints (Bianconi, 2008; Bianconi et al.,

2009), can be used to quantify the level of information encoded in the structural

constraints that are imposed to the networks. In Bianconi (2013); Halu et al.

(2014) this approach was taken to model simple multiplex networks. Here we

show how this framework can be applied to model weighted multiplex networks.

A weighted multiplex ensemble is defined once the probability P (~G) of any pos-

sible weighted multiplex is given. We can build a canonical multiplex ensemble

by maximizing the entropy S of the ensemble given by

S = −
∑
~G

P (~G) logP (~G) (2.33)

under the condition that the soft constraints we want to impose are satisfied. We

assume to have K of such constraints determined by the conditions

∑
~G

P (~G)Fµ(~G) = Cµ (2.34)
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for µ = 1, 2 . . . , K, where Fµ(~G) determines one of the structural constraints

that we want to impose to the multiplex. Therefore, the maximal-entropy multi-

plex ensemble satisfying the constraints given by Eqs. 2.34 is the solution of the

following system of equations

∂

∂P (~G)

S − K∑
µ=1

λµ
∑
~G

Fµ(~G)P (~G)− Λ
∑
~G

P (~G)
 = 0, (2.35)

where the Lagrangian multiplier Λ enforces the normalisation of the P (~G) prob-

ability distribution, and the Lagrangian multiplier λµ enforces the constraint µ.

Therefore we get that the probability of a multiplex P (~G) in a canonical multi-

plex ensemble is given by

P (~G) = 1
Z

exp
−∑

µ
λµFµ(~G)

 (2.36)

where the normalisation constant Z = exp(1+Λ) is called the “partition function”

of the canonical multiplex ensemble and is fixed by the normalisation condition

on P (~G). The values of the Lagrangian multipliers λµ are determined by im-

posing the constraints given by Eq. 2.34, assuming for the probability P (~G) the

structural form given by Eq. 2.36. From the definition of the partition function

Z and Eq. 2.36, it can be easily shown that the Lagrangian multipliers λµ can

be expressed as the solutions of the following set of equations,

Cµ = −∂ logZ
∂λµ

. (2.37)

We call the entropy S of the canonical multiplex ensemble the Shannon entropy

of the ensemble.
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Further on, we can define the marginal probability for a specific value of the

element aαij as

παij(aαij = w) =
∑
~G

P (~G)δ(aαij, w) (2.38)

where δ(x, y) stands for the Kronecker delta. The marginal probabilities παij(aαij)

sum up to one
∞∑

aαij=0
πij(aαij) = 1 (2.39)

We can compute also the average weight 〈aαij〉 between node i and node j that is

〈
aαij

〉
=

∑
~G

P (~G)aαij =
∞∑

aαij=0
aαijπij(aαij) (2.40)

In the layer α a link between two nodes i and j exists with probability pαij,

that is related with all the possible weights different from zero

pαij =
∑
~G

P (~G)θ(aαij) =
∞∑

aαij 6=0
παij(aαij). (2.41)

2.3.1 Uncorrelated and correlated canonical multiplex

ensembles

The multiplex ensembles can be distinguished between uncorrelated and corre-

lated multiplex ensembles. For uncorrelated multiplex ensembles, the probability

of a multiplex P (~G) is factorizable into the probability Pα(Gα) of each single net-

work Gα at layer α, i.e.

P (~G) =
M∏
α=1

Pα(Gα). (2.42)
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Therefore, the entropy S of any uncorrelated multiplex ensemble given by Eq.

2.33 with P (~G) given by Eq. 2.42 is additive in the number of layers, i.e.

S =
M∑
α=1
Sα = −

M∑
α=1

∑
Gα
Pα(Gα) logPα(Gα) (2.43)

As a consequence of these relations, when each constraint depends on a single

network Gα in a layer α the resulting multiplex ensemble is uncorrelated.

Example of these types of constraints are the total strengths Sα in each layer α,

the strength sαi of the generic node i in layer α, or the degree kαi of the node i in

layer α.

In these ensembles of multiplex networks we have that the presence of a link in

a layer α is uncorrelated with the presence of a link between the same two nodes

in a layer β 6= α. Therefore we have

〈
aαija

β
ij

〉
=
〈
aαij

〉 〈
aβij

〉
. (2.44)

In correlated multiplex networks, instead the probability of a multiplex does not

factorize into the probabilities of the single networks that constitute the multiplex

network. We have in this case

P (~G) 6=
M∏
α=1

Pα(Gα). (2.45)

and as a consequence of this there is at least a pair of nodes (i, j) and layers α, β

such that the weights of the links connecting node i and node j is layer α and
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layer β are correlated, i.e.

〈
aαija

β
ij

〉
6=
〈
aαij

〉 〈
aβij

〉
. (2.46)

Example of constraints that generate correlated multiplex ensembles are con-

straints on the multidegree sequence or the multistrength sequence.

In the following we provide many examples of uncorrelated and correlated mul-

tiplex network ensemble. In particular, the first section (Sec. 2.3.2) is com-

pletely dedicated to unweighted multiplex ensembles, a necessary precondition

to weighted multiplex network ensembles.

2.3.2 Unweighted multiplex

We summarise here the main results related to unweighted multiplex ensem-

bles. Only for this section we consider N nodes connected by M unweighted

networks Gα. Each network Gα is fully described by its adjacency matrix of

elements aαij, with aαij = 1 if there is a link between node i and node j in layer α,

otherwise we have aαij = 0.

Examples of uncorrelated unweighted multiplex ensembles

Multiplex ensembles with given expected total number of links in each

layer

As a first example of uncorrelated multiplex, we consider the case in which we

fix the average number of links in each layer α to be equal to Lα. We have

K = M constraints in the system, indicated with a label α = 1, 2, . . . ,M . These
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constraints are given by

∑
~G

Fα(~G)P (~G) =
∑
~G

∑
i<j

aαij

P (~G) = Lα. (2.47)

The probability distribution of a multiplex in this ensemble is given by Eq. 2.36

that reads in this case,

P (~G) = 1
Z

exp
− M∑

α=1
κα

∑
i<j

aαij

 , (2.48)

where the partition function Z can be expressed explicitly as

Z =
∑
~G

exp
− M∑

α=1
κα

∑
i<j

aαij

 (2.49)

=
M∏
α=1

[(
1 + e−κα

)(N2 )
]
.

The Lagrangian multipliers κα defining the probability of the multiplex P (~G),

are fixed by the conditions

Lα = −∂logZ
∂κα

=
N

2

 e−κα

1 + e−κα
. (2.50)

For unweighted multiplex network the probability of having a link between node

i and node j in layer α, pαij, is simply equal to
〈
aαij

〉
, i.e.,

pαij = pα = Lα(
N
2
) = e−κα

1 + e−κα
(2.51)
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Fixed {pαij}, the probability of a multiplex in this ensemble follows Eq. 2.42, and

is given by

P (~G) =
M∏
α=1

∏
i<j

(pαij)a
α
ij(1− pαij)1−aαij (2.52)

=
M∏
α=1

(pα)`α(1− pα)(
N
2 )−`α (2.53)

in agreement with Eq. 2.41 that we have previously met in Ch. 1. With `α we

express the desired number of links for each layer α. The last expression properly

normalises if we take into account the multiplicity of a generic graph with given

`α, i.e.

∑
{aαij}

M∏
α=1

∏
i<j

(pαij)a
α
ij(1− pαij)1−aαij =

∑
{`α}

M∏
α=1

N(N − 1)/2
`α

(pα)`α(1− pα)(
N
2 )−`α = 1

(2.54)

In this uncorrelated ensemble the probability P (~G) is nothing more than the pro-

ductory ofM binomial probability distributions. The entropy S of this canonical

multiplex ensemble is given by Eq. 2.33 that can be rearranged in

S = −
M∑
α=1

∑
i<j

pαij log pαij + (1− pαij) log (1− pαij) (2.55)

Using the marginals pαij given by Eq. 2.51 we simplify the previous formula as

S = −
N

2

 M∑
α=1

[pα log pα + (1− pα) log (1− pα)] (2.56)

If the number of layers M is finite, applying the Stirling’s approximation in the

large N limit we get

S =
M∑
α=1

log
N(N − 1)/2

Lα

 . (2.57)
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where Eq. 2.51 was used.

It is instructive to calculate the average global overlap
〈
Oα,α′

〉
between two layers

α and α′, following from Eq. 2.10. The computation easily gives

〈
Oα,α′

〉
=

∑
i<j

pαijp
α′

ij

=
N

2

pαpα′

= 2LαLα′

N(N − 1) (2.58)

As expected for uncorrelated multiplex ensembles
〈
aαija

α′
ij

〉
=

〈
aαij

〉 〈
aα
′

ij

〉
. More-

over, if Lα = O(N) ∀α = 1, 2, ...,M then
〈
Oα,α′

〉
is a finite number in the large

network limit and so, the overlap of links in this limit becomes a totally negligi-

ble phenomena:
〈
Oα,α′

〉
is in fact much smaller than both Lα and Lα′ (Bianconi,

2013).

Multiplex ensemble with expected degree sequence in each layer

As possible constraints we can consider the expected degree sequence {kαi } for

each layer α. The number of constraints in this case is K = M × N , indicated

with a label α = 1, 2, . . . ,M . These constraints are given by

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i
aαij

P (~G) = kαi (2.59)

The probability of a multiplex P (~G) is given by Eq. 2.36 that in this case can

be written as

P (~G) = 1
Z

exp
− M∑

α=1

∑
i

µi,α
∑
j 6=i
aαij

 (2.60)
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where the partition function Z can be expressed explicitly as

Z =
∑
~G

exp
− M∑

α=1

∑
i

µi,α
∑
j 6=i
aαij

 (2.61)

=
M∏
α=1

∏
i<j

(1 + e−(µi,α+µj,α)) (2.62)

and the Lagrangian multipliers µi,α are fixed by the condition

kαi = −∂logZ
∂µi,α

=
∑
j 6=i

e−(µi,α+µj,α)

1 + e−(µi,α+µj,α) . (2.63)

The probability of having a link between node i and node j in layer α, pαij,reads

pαij =
〈
aαij

〉
= e−(µi,α+µj,α)

1 + e−(µi,α+µj,α) (2.64)

The probability of a given multiplex P (~G) and the related entropy S follow,

respectively, from Eq. 2.52 and Eq. 2.55, substituting Eq. 2.64.

Examples of correlated unweighted multiplex ensembles

Multiplex ensemble with given expected total number of multilinks ~m

We consider a correlated multiplex ensemble, in which we fix the total number

of multilinks ~m, given by L~m. The number of possible constraints is equal to

K = 2M−1 because, as previously mentioned, the number of different multilinks

is 2M but only 2M − 1 are independent thank to the normalisation condition.

These constraints are given by

∑
~G

F ~m(~G)P (~G) =
∑
~G

∑
i<j

A~m
ij

P (~G) = L~m, (2.65)
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where the multiadjacency matrix element A~m
ij is defined in Eq. 2.12, and for the

particular case of an unweighted multiplex turns into

A~m
ij =

M∏
α=1

[aαijmα + (1− aαij)(1−mα)] (2.66)

The canonical probability P (~G) of a multiplex in the ensembles is given by the

general expression given in Eq. 2.36 that in this case becomes

P (~G) = 1
Z

exp
− ∑

~m6=~0
κ~m

∑
i<j

A~m
ij

 (2.67)

where the partition function Z is given by

Z = Z(N2 ) (2.68)

where

Z = 1 +
∑
~m6=~0

e−κ
~m (2.69)

The Lagrangian multipliers κ~m (~m 6= ~0) are fixed by the conditions

− ∂logZ
∂κ~m

= L~m, (2.70)

which yields

L~m =
N

2

 e−κ
~m

1 + ∑
~m6=~0 e

−κ~m =
N

2

 〈A~m
ij

〉
(2.71)
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The probability of a multilink ~m between node i and node j is p~mij =
〈
A~m
ij

〉
and

in this ensemble it is independent on the pair of nodes (i, j), i.e. p~mij = p~m and

p~m = e−κ
~m

1 + ∑
~m6=~0 e

−κ~m = L~m(
N
2
) (2.72)

The particular case ~m = ~0 depends on the other multilinks, namely,

p
~0 = 1−

∑
~m6=~0

p~mij = 1
Z

(2.73)

L
~0 =

N
2

− ∑
~m6=~0

L~m =
N

2

p~0 (2.74)

Fixed {p~mij}, the probability of a multiplex P (~G) can be rearranged as a function

of the marginal probabilities p~mij , i.e.

P (~G) =
∏
i<j

∏
~m

(p~mij )A
~m
ij (2.75)

=
∏
~m

(p~m)`~m (2.76)

where {`~m} is the desired set of total multilink. The last expression correctly

satisfies the normalisation condition if we consider the right multiplicity of a

generic state with a given sequence of {`~m}, i.e.

∑
{aαij}

∏
i<j

∏
~m

(p~mij )A
~m
ij =

∑
{`~m}

N(N − 1)/2∏
~m `~m!

∏
~m

(p~m)`~m = 1 (2.77)

like a proper multinomial probability distribution.

Finally, the entropy S of this ensemble can be calculated starting from its defi-
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nition Eq. 2.33 as a function of the probability marginals p~mij , i.e.

S = −
∑
i<j

∑
~m

p~mij log p~mij (2.78)

= −
N

2

∑
~m

p~m log p~m (2.79)

where p~m is given by Eq. 2.72. If the number of layers M is finite, we finally get

(Stirling’s approximation in the large N limit)

S = log N(N − 1)/2∏
~m(L~m!) (2.80)

where Eq. 2.72 was used. We can now evaluate the average global overlap〈
Oα,α′

〉
from Eq. 2.10 for a comparison with the results for uncorrelated multiplex

ensembles (Eq. 2.58). We get

〈
Oα,α′

〉
=

∑
~m|mα=mα′=1

∑
i<j

p~mij (2.81)

and for the particular case of a duplex we have only one possible situation, i.e.

〈O〉 = L11 =
N

2

p11 (2.82)

This quantity can be significant even for sparse networks. Assuming L11, L01 and

L10 to be proportional to N implies an overlap not irrelevant (Bianconi, 2013).

Multiplex ensemble with given expected total number of ν-multilinks

In presence of many layers M we can consider as constraints the average total

number of ν-multilinks Lν with ν = 1, 2, . . . ,M . With respect to the previ-
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ous case, now the number of constraints is sensibly reduced and is given by M

constraints, i.e.,

∑
~G

F ν(~G)P (~G) =
∑
~G

∑
i<j

Aν
ij

P (~G) = Lν, (2.83)

where Aν
ij is defined by Eq. 2.23. The canonical probability P (~G) of a multiplex

in the ensembles follows from the general expression given in Eq. 2.36 that in

this case becomes

P (~G) = 1
Z

exp
− M∑

ν=1
ων

∑
i<j

Aν
ij

 (2.84)

where the partition function Z is given by

Z = Z(N2 ) (2.85)

where

Z = 1 +
M∑
ν=1

M
ν

e−ων (2.86)

The Lagrangian multipliers ων (ν 6= 0), are fixed by the conditions

− ∂logZ
∂ων

= Lν, (2.87)

which yields

Lν =
N

2

 1
Z

M
ν

e−ων (2.88)
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The probability of having a ν-multilink pνij in this ensemble is independent on

the pair of nodes (i, j), namely

pν =
〈
Aν
ij

〉
= Lν(

N
2
) = 1
Z

M
ν

e−ων (2.89)

We can even consider the probability of a given multilink ~m (independent on the

pair of nodes (i, j) too)

p~m =
〈
A~m
ij

〉
= 1
Z
e−ω

ν(~m) = pν(~m)(
M
ν(~m)

) (2.90)

where, for a given ~m, ν(~m) = ∑
αmα.

The particular case for ν = 0 depends on the other ν−multilinks, i.e.

p0 = 1−
M∑
ν=1

pνij = 1
Z

(2.91)

L0 =
N

2

− M∑
ν=1

Lν =
N

2

p0 (2.92)

The probability of a multiplex P (~G) can be rearranged as a function of the

marginal probabilities pν, i.e.

P (~G) =
∏
i<j

M∏
ν=0

 pνij(
M
ν

)

Aνij

(2.93)

=
M∏
ν=0

 pν(
M
ν

)

`ν

(2.94)

where {`ν} is the desired sequence of ν-multilinks. The last expression correctly

satisfies the normalisation condition if we take into account the multiplicity of a
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generic state with a given sequence of {Lν}

∑
{aαij}

∏
i<j

M∏
ν=0

 pνij(
M
ν

)

Aνij

=
∑
{`ν}

N(N − 1)/2∏
ν `ν!

 M∏
ν=0

M
ν

`ν
 M∏
ν=0

 pν(
M
ν

)

`ν

(2.95)

The previous multiplicity tells us that not only we choose in how many ways the

ν-multilinks are distributed across the couples of nodes, but for each ν-multilink

we have
(
M
ν

)
multilinks ~mν(~m)=ν that can be represented, i.e. different patterns

of link activities that correspond to the same overlap multiplicity.

Starting from Eq. 2.33 the entropy S of this ensemble can be calculated as a

function of the probability marginals pνij, i.e.

S = −
∑
i<j

M∑
ν=0

pνij log(pνij) +
∑
i<j

M∑
ν=0

pνij log
M
ν

 (2.96)

= −
N

2

 M∑
ν=0

pν log(pν) +
N

2

 M∑
ν=0

pν log
M
ν

 (2.97)

When M is finite we can always approximate the last expression thank to the

Stirling’s Approximation, i.e.

S = log


(
N
2
)
!∏M

ν=0 L
ν!

M∏
ν=0

M
ν

Lν
 (2.98)

where Eq. 2.89 was considered.

Multiplex ensemble with given expected multidegree sequence

Here we consider another level of coarse-graining for the multiplex network and

we study correlated unweighted multiplex in which we fix the average multidegree
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sequence k ~mi for each node i, for a given multilink ~m. Following the previous line

of reasoning, we can express N × (2M − 1) constraints.

These constraints are given by

∑
~G

F ~m
i (~G)P (~G) =

∑
~G

∑
j 6=i
A~m
ij

P (~G) = k ~mi , (2.99)

with i = 1, . . . , N and ~m = (m1,m2, . . . ,mβ, . . . ,mM) with mβ = 0, 1. The

canonical probability P (~G) of the multiplex in the ensemble is

P (~G) = 1
Z

exp
− ∑

~m6=~0

∑
i

µ~mi
∑
j 6=i
A~m
ij



= 1
Z

∏
i<j

exp
− ∑

~m6=~0
(µ~mi + µ~mj )A~m

ij

 , (2.100)

where the partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij (2.101)

where

Zij = 1 +
∑
~m6=~0

e−(µ~mi +µ~mj ) (2.102)

The Lagrangian multipliers µ~mi (~m 6= ~0) are fixed by the conditions

− ∂logZ
∂µ~mi

= k ~mi =
∑
j 6=i

〈
A~m
ij

〉
, (2.103)

The probability of a multilink ~m between node i and node j is p~mij =
〈
A~m
ij

〉
and
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it is given by

p~mij = e−(µ~mi +µ~mj )

1 + ∑
~m6=~0 e

−(µ~mi +µ~mj ) (2.104)

As previously, the measures related to ~m = ~0 depend on the other multilinks,

namely,

p
~0
ij = 1−

∑
~m6=~0

p~mij = 1
Zij

(2.105)

k
~0
i = N − 1−

∑
~m6=~0

k ~mi (2.106)

The probability of given multiplex in this ensemble P (~G) and the related entropy

value S follow from Eq. 2.75 and Eq. 2.78.

Multiplex ensemble with given expected ν-multidegree sequence

Considering now the ν−multilinks we convert the previous model into a new

one, i.e. we fix the given expected ν-multidegree sequence, with a number of

constraints equal to M ×N :

∑
~G

F ν
i (~G)P (~G) =

∑
~G

∑
j 6=i
Aν
ij

P (~G) = kνi , (2.107)

The canonical probability P (~G) of the multiplex in the ensembles reads

P (~G) = 1
Z

exp
−∑

i<j

M∑
ν=1

(ωνi + ωνj )Aν
ij

 (2.108)

where the partition function Z is given by

Z =
∏
i<j

Zij (2.109)
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where

Zij = 1 +
M∑
ν=1

M
ν

e−(ωνi +ωνj ) (2.110)

The Lagrangian multipliers ωνi (ν 6= 0), are fixed by the conditions

− ∂logZ
∂ωνi

= kνi =
∑
j 6=i

〈
Aν
ij

〉
(2.111)

The probability of a ν−multilink between node i and node j is pνij =
〈
Aν
ij

〉
and

it is given by

pνij =
〈
Aν
ij

〉
= 1
Zij

M
ν

e−(ωνi +ωνj ) (2.112)

The probability of a given multilink ~m between node i and node j

p~mij =
〈
A~m
ij

〉
= 1
Zij

e−(ωνi +ωνj ) =
p
ν(~m)
ij(
M
ν

) (2.113)

Finally, the probability of a given multiplex P (~G) and the consequent entropy

value S follow from Eqs. 2.93, 2.96.

2.3.3 Weighted multiplex

We present now the most useful null models for weighted multiplex networks,

both uncorrelated and correlated. We start considering examples related to the

measure of total strength (a proper warm-up) and then we show the main cal-

culations for those ensembles that enforce in the same time constraints on the

strength sequence and on the degree sequence. For the analysis of real data

these ensembles are quite essential to study weight-topology correlations. For
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additional examples of weighted multiplex ensembles see Sec. 4.2.

In Sec. 2.3.3, 2.4.2 we illustrate a null model with given expected multide-

gree sequence {k ~mi } and given expected multistrength sequence {s~mi,α} applied to

biological data.

Examples of uncorrelated weighted multiplex ensembles

Multiplex ensembles with given expected total strength in each layer

As a first example of uncorrelated weighted multiplex, we consider the case in

which we fix the average strength in each layer α to be equal to Sα. In this case

we haveK = M constraints in the system, indicated with a label α = 1, 2, . . . ,M .

These constraints are given by

∑
~G

Fα(~G)P (~G) =
∑
~G

∑
i<j

aαij

P (~G) = Sα. (2.114)

The probability distribution of a multiplex in this ensemble is given by Eq. 2.36

that reads in this case,

P (~G) = 1
Z

exp
− M∑

α=1
λα

∑
i<j

aαij

 , (2.115)

where the partition function Z can be expressed explicitly as

Z =
∑
~G

exp
− M∑

α=1
λα

∑
i<j

aαij

 (2.116)

=
M∏
α=1

( 1
1− e−λα

)(N2 )
 .
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The Lagrangian multipliers λα defining the probability of the multiplex P (~G),

are fixed by the conditions

Sα = −∂logZ
∂λα

=
N

2

 e−λα

1− e−λα . (2.117)

Finally the average weight
〈
aαij

〉
can be evaluated from Eq. 2.40 and is given by

〈
aαij

〉
= Sα(

N
2
) , (2.118)

that is equivalent to say Sα = ∑
i<j

〈
aαij

〉
.

From Eq. 2.38 we write the marginal probabilities π(aαij) in this specific multiplex

ensemble as

παij(aαij) = e−λαa
α
ij(1− e−λα). (2.119)

Moreover, from Eq. 2.41 the probability pαij of having a positive weight aαij > 0

of the link between node i and node j in layer α is independent on the pair of

nodes (i, j), i.e. pαij = pα and is given by

pα = e−λα. (2.120)

We observe that we can write the Eq. 2.36 in terms of marginal probabilities

παij(aαij), namely

P (~G) =
M∏
α=1

∏
i<j

παij(aαij). (2.121)

Therefore the entropy S of this canonical multiplex ensemble is given by Eq. 2.33
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and in this special case can be written as

S = −
M∑
α=1

∑
i<j

∞∑
aαij=0

παij(aαij) log(παij(aαij)). (2.122)

Using the marginals παij(aαij) given by Eqs. 2.119 and Eq. 2.117 the entropy

can be rearranged as

S =
M∑
α=1

N
2

 + Sα

 log
N

2

 + Sα


−Sα logSα −

N
2

 log
N

2

 (2.123)

If the number of layers M is finite, applying the Stirling’s approximation in the

large N limit we get

S =
M∑
α=1

log


(
N
2
)

+ Sα(
N
2
)


 . (2.124)

Multiplex ensembles with given expected strength sequence and degree

sequence in each layer

We fix the expected strength sαi and the expected degree kαi of every node i, in

each layer α. We have K = M×2N constraints in the system. These constraints

are given by

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i
aαij

P (~G) = sαi

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i
θ(aαij)

P (~G) = kαi , (2.125)

with α = 1, 2, . . . ,M . We introduce the Lagrangian multipliers λi,α for the first

set of N ·M constraints and the Lagrangian multipliers ωi,α for the second set

of N · M constraints. Therefore, the probability P (~G) of a multiplex in this
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ensemble, of general expression given by Eq. 2.36, in this specific example is

given by

P (~G) = 1
Z

exp
− M∑

α=1

∑
i

λi,α
∑
j 6=i
aαij −

M∑
α=1

∑
i

ωi,α
∑
j 6=i
θ(aαij)



where the partition function Z can be expressed explicitly as

Z =
∑
~G

exp
− M∑

α=1

∑
i

∑
j 6=i

(
λi,αa

α
ij + ωi,αθ(aαij)

)
=

M∏
α=1

∏
i<j

1 + e−(ωi,α+ωj,α)−(λi,α+λj,α)

1− e−(λi,α+λj,α)

 , (2.126)

and the Lagrangian multipliers are fixed by the conditions

sαi = −∂logZ
∂λi,α

kαi = −∂logZ
∂ωi,α

(2.127)

The average weight of the link (i, j) in layer α, i.e.
〈
aαij

〉
, is given by Eq. 2.40

that in this case reads

〈
aαij

〉
= e−(ωi,α+ωj,α)+(λi,α+λj,α)

(eλi,α+λj,α − 1)(e−(ωi,α+ωj,α) + eλi,α+λj,α − 1) (2.128)

From Eq. 2.38 we write the marginal probabilities παij(aαij) for this specific en-

semble that is given by

παij(aαij) = e−(λi,α+λj,α)aαij−(ωi,α+ωj,α)θ(aαij)(1− e−(λi,α+λj,α))
1 + e−(λi,α+λj,α)(e−(ωi,α+ωj,α) − 1) . (2.129)

Moreover, from Eq. 2.41 the probability pαij that the link (i, j) in layer α has
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weight different from zero is given by

pαij = e−(ωi,α+ωi,α)

e−(ωi,α+ωj,α) + eλi,α+λj,α − 1 (2.130)

The probability of a multiplex in this ensemble is given by Eq. 2.121 with the

marginals παij(aαij) given by Eq. 2.129. The entropy S of this canonical multiplex

ensemble is given by Eq. 2.122.

Examples of correlated weighted multiplex ensembles

Multiplex ensembles with given expected total multistrength S ~m
α

Here we consider a correlated weighted multiplex ensemble, in which we fix the

total multistrength ~m, given by S ~m
α for a layer α such that mα = 1. Since the

number of the possible multistrengths ~m in layer α are given by M · 2M−1, this

gives a number of constraints that is equal to K = M · 2M−1. These constraints

are given by ∑
~G

F ~m
α (~G)P (~G) =

∑
~G

∑
i<j

A~m
ija

α
ij

P (~G) = S ~m
α , (2.131)

where the multiadjacency matrix element A~m
ij is defined in Eq. 2.12. The canon-

ical probability P (~G) of the multiplex in the ensembles is given by the general

expression given in Eq. 2.36 that in this case becomes

P (~G) = 1
Z

exp
− ∑

~m6=~0

M∑
α=1

λ~mα
∑
i<j

A~m
ija

α
ij

 (2.132)

where the partition function Z is given by

Z = Z(N2 ) (2.133)
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where

Z =
∑
~m

M∏
α=1

 e−λ
~m
α

1− e−λ~mα


mα

(2.134)

Without loss of generality, if mα = 0 we put λ~mα = 1/2. We can do this because

the probability of a multiplex does not depend on any of these values, and we

need to define them only for simplifying the notation. The Lagrangian multipliers

λ~mα with mα = 1, are fixed by the conditions

− ∂logZ
∂λ~mα

= S ~m
α , (2.135)

which yields

S ~m
α =

N
2

 1
Z

( 1
1− e−λ~mα

) M∏
β=1

 e−λ
~m
β

1− e−λ~mβ


mβ

. (2.136)

We now indicate with ~aij the vector (a1
ij, a

2
ij, . . . , a

α
ij, . . . , a

M
ij ). The probability

of a multiplex P (~G) can be rewritten as

P (~G) =
∏
i<j

πij(~aij), (2.137)

with

πij(~aij) = e−
∑
α=1,M λ~m

ij

α aαij

Z
, (2.138)

where ~mij = (mij
1 , . . . ,m

ij
α , . . . ,m

ij
m) with mij

α = θ(aαij). With πij(~aij) we define,

for a position ij, the probability of a particular sequence of weights on the layers.
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The normalization condition is fulfilled

∑
~aij

πij(~aij) = 1. (2.139)

Further on we can compute the average weight of the link ij on the multilink ~m,

in the layer α

〈
aαijA

~m
ij

〉
=
∑
~G

aαijA
~m
ijP (~G) =

∑
~aij

aαijA
~m
ijπij(~aij). (2.140)

Using Eq. 2.138 for the explicit expression of π(~aij) and comparing the results

with Eq. 2.136 it is easy to show that

〈
aαijA

~m
ij

〉
= S ~m

α(
N
2
) . (2.141)

The probability of a multilink ~m between node i and node j, p~mij =
〈
A~m
ij

〉
in this

ensemble is independent on the pair of nodes (i, j). Therefore we have p~mij = p~m

with

p~m =
∏M
α=1

(
e−λ

~m
α

1−e−λ~mα

)mα

Z
, (2.142)

where the normalization condition is fulfilled, namely,

∑
~m

p~mij = 1. (2.143)

Moreover, the relationship between p~mij and the probabilities πij(~aij) is

∑
~aij

A~m
ijπij(~aij) = p~mij . (2.144)
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Finally, the probability of a multiplex P (~G) is given by Eq. 2.137 and the

entropy S of this ensemble can be calculated starting from its definition Eq.

2.33, giving

S = −∑
i<j

∑
~aij πij(~aij) log πij(~aij). (2.145)

Multiplex ensembles with given expected ν-total strength Sνα
In presence of many layers M we can consider as constraints the average ν-total

strength Sνα with ν = 1, 2, . . . ,M . With respect to the case with fixed total

average multistrength , the number of constraints is dramatically reduced and is

given by M 2 constraints

∑
~G

F ν
α(~G)P (~G) =

∑
~G

∑
i<j

aαijA
ν
ij

P (~G) = Sνα. (2.146)

The probability P (~G) of the multiplex network, is therefore given in terms ofM 2

Lagrangian multipliers λνα, i.e.

P (~G) = 1
Z

exp
− M∑

ν=1

M∑
α=1

λνα
∑
i<j

Aν
ija

α
ij

 (2.147)

where the partition function Z is given by Z = Z(N2 ) with

Z =
M∑
ν=0

∑
~m|ν(~m)=ν

M∏
α=1

 e−λ
ν
α

1− e−λνα

mα

. (2.148)

The Lagrangian multipliers λνα are fixed fixed by the constraints Eq.2.147 that

can be also expressed as

− ∂logZ
∂λνα

= Sνα. (2.149)
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The probability P (~G) of the multiplex network is given by Eq. 2.137 and the

entropy of the ensemble takes the simple expression given by Eq. 2.145 where

πij(~aij) is given by

πij(~aij) = e−
∑M
α=1 λ

νij

α aαij

Z
. (2.150)

Finally the probability pν of a ν-multilink between any two nodes of the mul-

tiplex network is given by

pν = 1
Z

M∏
α=1

 e−λ
ν
α

1− e−λνα

mα

, (2.151)

while we have that the average weight of a ν mutlilink is given by

〈
aαijA

ν
ij

〉
= Sνα(

N
2
) = 1
Z

( 1
1− e−λνα

)
×

×
∑

~m|ν(~m)=ν
mα

M∏
β=1

 e−λ
ν
β

1− e−λνβ

mβ

. (2.152)

Multiplex ensembles with given expected multidegree sequence {k ~mi } and

given expected multistrength sequence {s~mi,α}

In many applications it is important to consider the weighted multiplex net-

works in which we fix at the same time the average multidegree sequence k ~mi and

the average multistrength sequence s~mi,α. The number of independent constraints

is therefore K = (2M − 1) ·N + (2M−1) ·M ·N .
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In particular, the constraints we are imposing are the following,

∑
~G

F ~m
i,α(~G)P (~G) =

∑
~G

∑
j 6=i
A~m
ija

α
ij

P (~G) = s~mi,α

∑
~G

F ~m
i (~G)P (~G) =

∑
~G

∑
j 6=i
A~m
ij

P (~G) = k ~mi . (2.153)

The canonical probability P (~G) of the multiplex in the ensemble becomes

P (~G) = 1
Z

exp
− ∑

~m6=~0

∑
i

∑
j 6=i

ω ~mi A~m
ij +

M∑
α=1

λ~mi,αA
~m
ija

α
ij




= 1
Z

exp
−∑

i<j

∑
~m6=~0

(ω ~mi + ω ~mj )A~m
ij

×

× exp
−∑

i<j

∑
~m6=~0

M∑
α=1

(λ~mi,α + λ~mj,α)A~m
ija

α
ij

 (2.154)

The partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij (2.155)

where Zij is given by

Zij = 1 +
∑
~m6=~0

e−(ω ~mi +ω ~mj )
M∏
α=1

 e−(λ~mi,α+λ~mj,α)

1− e−(λ~mi,α+λ~mj,α)


mα

(2.156)

The Lagrangian multipliers are fixed by the conditions

−∂logZ
∂λ~mi,α

= s~mi,α =
∑
j 6=i

〈
aαijA

~m
ij

〉
,

−∂logZ
∂ω ~mi

= k ~mi =
∑
j 6=i

〈
A~m
ij

〉
. (2.157)
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We can calculate the probability of a vector ~aij = (a1
ij, a

2
ij . . . , a

M
ij ) characterizing

the weights of the links between node i and node j in all the layers, getting

πij(~aij) = e−(ω ~miji +ω ~mijj )

Zij
e−

∑
α=1,M (λ~miji,α +λ~mijj,α )aαij (2.158)

Further on we can compute the average weight of the link ij on the multilink

~m, in the layer α and the probability of a multilink ~m between node i and node

j, p~mij =
〈
A~m
ij

〉
, respectively,

〈
aαijA

~m
ij

〉
= e−(ω ~mi +ω ~mj )

Zij

 1
1− e−(λ~mi,α+λ~mj,α)

×
×

M∏
β=1

 e−(λ~mi,β+λ~mj,β)

1− e−(λ~mi,β+λ~mj,β)


mβ

(2.159)

p~mij = e−(ω ~mi +ω ~mj )

Zij

M∏
α=1

 e−(λ~mi,α+λ~mj,α)

1− e−(λ~mi,α+λ~mj,α)


mα

(2.160)

Finally, the probability P (~G) of a multiplex network ~G in this ensemble is

given by Eq. 2.137 and the entropy of the ensemble takes the simple expression

given by Eq. 2.145, with the marginal probabilities from Eq. 2.158

Multiplex ensembles with given expected ν-multidegree sequence {kνi } and

expected ν-multistrength sequence {sνi,α}

In a multiplex networks formed by many layers, an efficient way to consider

both topological and weighted properties of the multilayer structure is to con-

struct multiplex networks with given expected ν-multidegree sequence {kνi } and

expected ν-multistrength sequence {sνi,α}. The N ·M · (M + 1) constraints are
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given by

∑
~G

F ν
i,α(~G)P (~G) =

∑
~G

∑
j 6=i
aαijA

ν
ij

P (~G) = sνi,α

∑
~G

F ν
i (~G)P (~G) =

∑
~G

∑
j 6=i
Aν
ij

P (~G) = kνi , (2.161)

with i = 1, 2, . . . , N , α = 1, 2, . . .M and ν = 1, 2, . . . ,M . The canonical prob-

ability P (~G) of the multiplex in this ensemble can be expressed in terms of the

Lagrangian multipliers λνj,α and ωνi , i.e.

P (~G) = 1
Z

exp
−∑

i<j

M∑
ν=1

(ωνi + ωνj )Aν
ij

× (2.162)

× exp
−∑

i<j

M∑
ν=1

M∑
α=1

(λνi,α + λνj,α)Aν
ija

α
ij

 ,

where the partition function Z is given by

Z =
∏
i<j

Zij, (2.163)

with

Zij = 1 +
M∑
ν=1

e−(ωνi +ωνj ) ∑
~m|ν(~m)=ν

M∏
α=1

 e−(λνi,α+λνj,α)

1− e−(λνi,α+λνj,α)

mα

(2.164)

The Lagrangian multipliers are fixed by the conditions Eq. 2.161 that can be

also written in terms of the partial derivatives of the partition function as

− ∂logZ
∂λνi,α

= sνi,α =
∑
j 6=i

〈
aαijA

ν
ij

〉
,

−∂logZ
∂ωνi

= kνi =
∑
j 6=i

〈
Aν
ij

〉
. (2.165)

As in the previous cases, the probability P (~G) of a multiplex network ~G is given
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by Eq. 2.137. The entropy of this ensemble takes the same expression given by

Eq. 2.145 with πij(~aij) given by

πij(~aij) = e−(ωνiji +ωνijj )

Zij
e−

∑
α=1,M (λνiji,α+λνijj,α)aαij (2.166)

The probability pνij that the node i and the node j are linked by a ν-multilink

is given by

pνij = e−(ωνi +ωνj )

Zij
∑

~m|ν(~m)=ν

M∏
α=1

 e−(λνi,α+λνj,α)

1− e−(λνi,α+λνj,α)

mα

(2.167)

Finally, the average weight of the link aαij belonging to a ν-multilink is given by

〈
aαijA

ν
ij

〉
= e−(ωνi +ωνj )

Zij

( 1
1− e−(λνi,α+λνj,α)

)
× (2.168)

×
∑

~m|ν(~m)=ν
mα

M∏
β=1

 e−(λνi,β+λνj,β)

1− e−(λνi,β+λνj,β)

mβ

Sampling multiplex ensembles with given expected multidegree sequence

{k ~mi } and given expected multistrength sequence {s~mi,α}

Here we want to discuss how the theoretical framework described in the previ-
ous section can be used to generate weighted multiplex networks sampled from a
multiplex network ensemble. We have chosen to focus specifically on the case of
a multiplex network ensemble in which the given expected multidegree sequence
{k ~mi } and the given expected multistrength sequence {s~mi,α} are constrained, but
the framework we outline here of this case can be easily extended to the other
ensembles discussed in the previous section. Given Eqs. 2.160, 2.158, the proba-
bility πij(~aij) can be expressed as a function of the probability p~mij of a multilink
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~m between node i and node j, namely

πij(~aij) = p~m
ij

ij

M∏
α=1

([
e−(λ~miji,α +λ~mijj,α )

]aαij−1 [
1− e−(λ~miji,α +λ~mijj,α )

])mijα
(2.169)

The productory in Eq. 2.169 is the conditional probability of the multiweight

~aij, given the multilink ~mij. The new expression for πij(~aij) suggests a way for

sampling networks from the distribution given by Eq. 2.137, with πij(~aij) given

by Eq. 2.169. In fact for sampling a multiplex network from this particular

ensemble , we draw a multilink ~m with probability p~mij for each couple of nodes

i and j. Subsequently, given a particular multilink, whenever mα = 1 we draw

the additional weight aαij − 1 from a geometric distribution with parameter 1 −

e−(λ~miji,α +λ~mijj,α ) and aαij ≥ 1.

Following Eqs. 2.157 we wrote a Matlab code that produces the Lagrangian

multipliers and calculates the entropy value of the ensemble. The algorithm runs

until it finds convergence with precision 10−4 (this value can be always improved).

2.4 Weighted real data

Just as with single networks, links between nodes may have a different weight,

reflecting their intensity, capacity, duration, intimacy or exchange of services

(Granovetter, 1973). The role played by the weights in the functioning of many

networks, and especially the relative benefits of weak and strong ties in social

networks, have been the subject of a longstanding debate (Granovetter, 1973;

Onnela et al., 2007; Karsai et al., 2014). Moreover, it has been shown that,

in single networks, the weights can be distributed in a heterogeneous way, as
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a result of the non-trivial effects that the structural properties of the networks

have on them (Barrat et al., 2004; Barthelemy et al., 2003; Almaas et al., 2004;

Serrano et al., 2009). In particular, correlations between weights and structural

properties of single networks can be uncovered by the analysis of strength-degree

correlations (Barrat et al., 2004) and by the distribution of the weights of the

links incident upon the same node Almaas et al. (2004). To characterize weighted

networks, it is common practice to measure the following quantities: i) the av-

erage strength of nodes of degree k, i.e. s = s(k), describing how weights are

distributed in the network; and ii) the average inverse participation ratio of the

weights of the links incident upon nodes of degree k, i.e. Y = Y (k), describing

how weights are distributed across the links incident upon nodes of degree k.

Here we show that these two quantities do not capture the full breadth of the

information encoded in multiplex networks. Indeed, a full-fledged analysis of the

properties of multiplex networks is needed that takes the multiple interacting

and co-evolving layers simultaneously into account.

In particular, in the following section different multiplex networks have been

extracted from the APS dataset in order to investigate the correlation between

the weights of the links and the overlap of the links in different layers. In the

multiplex networks formed by the PRE authors in which the scientists are linked

if they collaborated with each other and if they cite each other, has been shown

to display a statistical significant difference between the way scientists cite their

collaborators and the way scientists cite non-collaborators. This result shows

that in this as in other systems it is possible that the weights of the links are

correlated with the pattern of overlap observed between the links of different

layers.
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2.4.1 APS dataset

To provide empirical evidence that weighted properties of multilinks are fun-

damental for properly assessing weighted multiplex networks, we focus on the

networks of the authors of papers published in the journals of the American

Physical Society (APS), and analyse the scientific collaboration network and the

citation network connecting the same authors. These networks are intrinsically

weighted since any two scientists can co-author more than one paper and can

cite each other’s work several times. A large number of studies have analysed

similar bibliometric datasets drawing upon network theory (Redner, 1998; Park

and Newman, 2004; Newman, 2001; Radicchi et al., 2009, 2008). Unlike these

studies, here we investigate the APS bibliometric dataset using the framework

of multiplex networks that allows us to explore novel properties of the collabo-

ration and citation networks. In particular, we show that multistrength and the

inverse multiparticipation ratio enable new relevant information to be extracted

from the APS dataset and that this information extends beyond what is encoded

in the strength and inverse participation ratio of single layers. Finally, based

on the entropy of multiplex ensembles, we propose an indicator Ξ to evaluate

the additional amount of information that can be extracted from the weighted

properties of multilinks in multiplex networks over the information encoded in

the properties of their individual layers analysed separately.

Empirical evidence of weighted properties of multilinks

In this section, we will draw on the measures introduced above and provide

empirical evidence that, in weighted multiplex networks, weights can be corre-

lated with the multiplex structure in a non-trivial way. To this end, we analyze
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the bibliographic dataset that includes all articles published in the APS journals

(i.e., Physical Review Letters, Physical Review, and Reviews of Modern Physics)

from 1893 to 2009. Of these articles, the dataset includes their citations as well

as the authors. Here, we restrict our study only to articles published either in

Physical Review Letters (PRL) or in Physical Review E (PRE) and written by

ten or fewer authors, np ≤ 10. We constructed multiplex networks in which the

nodes are the authors and links between them have a two-fold nature: scientific

collaborations with weights defined as in Newman (2001) (see Sec. 4.1 ), and

citations with weights indicating how many times author i cited author j.

In particular, we created the following two duplex networks (i.e. multiplex

networks with M = 2):

1. CoCo-PRL/PRE: collaborations among PRL and PRE authors. The

nodes of this multiplex network are the authors with articles published

both in PRL and PRE (i.e., 16, 207 authors). These nodes are connected

in layer 1 through weighted undirected links indicating the strength of their

collaboration in PRL (i.e., co-authorship of PRL articles). The same nodes

are connected in layer 2 through weighted undirected links indicating the

strength of their collaboration in PRE (i.e., co-authorship of PRE articles).

2. CoCi-PRE: collaborations among PRE authors and citations to PRE ar-

ticles. The nodes of this multiplex network are the authors of articles pub-

lished in PRE (i.e., 35, 205 authors). These nodes are connected in layer 1

through weighted undirected links indicating the strength of their collab-

oration in PRE (i.e., co-authorship of PRE articles). The same nodes are

connected in layer 2 through weighted directed links indicating how many

times an author (with articles in PRE) cited another author’s work, where
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citations are limited to those made to PRE articles.

Both these multiplex networks show a significant overlap of links and a signifi-

cant correlation between degrees of nodes as captured by the Pearson correlation

coefficient ρ (see Sec. 4.1). This finding supports the hypothesis that the two

layers in each of the multiplex networks are correlated. That is, the existence

of a link between two authors in one layer is correlated with the existence of a

link between the same authors in the other layer. Moreover, the multidegrees

of the multiplex networks are broadly distributed, and the hubs in the scientific

collaboration network tend to be also the hubs in the citation network (see Sec.

4.1).

In the case of the CoCo–PRL/PRE network, multilinks ~m = (1, 0), ~m = (0, 1)

and ~m = (1, 1) refer to collaborations only in PRL, only in PRE, and in both

PRL and PRE, respectively. Moreover, to distinguish between the weights used

when evaluating multistrength, we have α = PRL or α = PRE. Results indicate

that multistrength and the inverse multiparticipation ratio behave according to

Eq. 2.22 (see Fig. 2.4). The difference between exponents β~m,PRL for ~m = (1, 0)

and ~m = (1, 1) is not statistically significant. Nevertheless, there is a statistically

significant difference between the average weights of multilinks (1, 0) and (1, 1)

in the PRL layer. As to the inverse multiparticipation ratio, there is a significant

variation in the exponents, λ(1,0),PRL = 0.84±0.03 and λ(1,1),PRL = 0.74±0.05 (see

Fig. 2.4, bottom left panel). This suggests that the weights of the collaborative

links between co-authors of both PRL and PRE articles are distributed more

heterogeneously than the weights of collaborative links between co-authors of

articles published only in PRL (see Sec. 4.1 for details on the statistical tests).

Similar results were found for multistrengths evaluated in the PRE layer (see
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Fig. 2.4, right panels).

These findings clearly indicate that the partial analysis of individual layers

would fail to uncover the fact that the average weight of the link between authors

that collaborated both on PRL and PRE articles is significantly larger than the

average weight of the link between authors that collaborated only on articles

published in one journal. Moreover, the difference in functional behaviour of the

multipartition ratio across layers could not be captured if layers were analysed

separately.

In the case of the CoCi-PRE network, there are even more significant differ-

ences between the properties of the multilinks than in the previous network. In

the CoCi-PRE network the functional behaviour of multistrength also depends

on the type of multilink. Figure 2.5 shows the average multistrength in the CoCi-

PRE network. To distinguish between the weights used to measure multistrength,

we have layer α = col, which refers to the collaboration network constructed on

PRE articles, and layer α = cit, which refers to the citation network between

PRE articles, where a distinction is also made between incoming (in) and outgo-

ing (out) links. First, in the scientific collaboration network, exponents β~m,col are

not statistically different, but the average weight of multilink (1, 1) is larger than

the average weight of multilinks (1, 0), in and (1, 0)out. Moreover, exponents

λ(1,0),col,in and λ(1,0),col,out are larger than exponents λ(1,1),col,in, λ(1,1),col,out, indicat-

ing that the weights of authors’ collaborative links with other cited/citing authors

are distributed more heterogeneously than the weights of authors’ collaborative

links with other authors with whom there are no links in the citation network.

Second, in the citation network multistrengths follow a distinct functional be-

haviour depending on the different type of multilink, and are characterised by
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different β~m,cit,in/out exponents. In fact the fitted values of these exponents are

given by β(1,1)cit,,in = 1.30±0.07, β(1,1),cit,out = 1.32±0.08, β(0,1,)cit,in = 1.11±0.01,

and β(0,1),cit,out = 1.10± 0.02. This implies that, on average, highly cited authors

are cited by their co-authors to a much greater extent than is the case with

poorly cited authors. A similar, though much weaker effect was also found for

the citations connecting authors that are not collaborators. Furthermore, in the

citation layer the inverse multiparticipation ratio for multilink (1, 1) is always

larger than the inverse multiparticipation ratio for multilinks (1, 0) and (0, 1)

(see Sec. 4.1 for details on the statistical test). Finally, when single layers were

analysed separately, we found βcol = 1.03 ± 0.04 in the collaboration network,

and βcit,in = 1.13 ± 0.02 and βcit,out = 1.14 ± 0.03 in the citation network. This

indicates that in the citation network strength grows super-linearly as a function

of degree, i.e., weights are not distributed uniformly. Nevertheless, correlations

between weights and types of multilinks cannot be captured if the two individual

layers are studied separately.

Assessing the informational content of weighted multilinks

Recent research on single networks has shown that the entropy of network en-

sembles provides a very powerful tool for quantifying their complexity (Park and

Newman, 2004; Johnson et al., 2010; Bianconi et al., 2009). Here, we propose

a theoretical framework based on the entropy of multiplex ensembles for assess-

ing the amount of information encoded in the weighted properties of multilinks.

Multiplex weighted network ensembles can be defined as the set of all weighted

multiplex networks satisfying a given set of constraints, such as the expected de-

gree sequence and the expected strength sequence in every layer of the multiplex
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network, or the expected multidegree sequence and the expected multistrength

sequence. As we showed in the previous sections, a set of constraints imposed

upon the multiplex network ensemble uniquely determines the probability P (~G)

of the multiplex networks in the ensemble. The entropy S of the multiplex en-

semble follows from Eq. 2.33 and it indicates the logarithm of the typical number

of multiplex networks in the ensemble. The smaller the entropy, the larger the

amount of information stored in the constraints imposed on the network. The

entropy can be regarded as an unbiased way to evaluate the informational value

of these constraints.

In order to gauge the information encoded in a weighted multiplex network

with respect to a null model, we define the indicator Ψ, which quantifies how

much information is carried by the weight distributions of a weighted multiplex

ensemble. In particular, Ψ compares the entropy of a weighted multiplex ensem-

ble S with the entropy of a weighted multiplex ensemble in which the weights

are distributed homogeneously. Therefore, Ψ can be defined as

Ψ = |S − 〈S〉π(w)|
〈(δS)2〉π(w)

, (2.170)

where 〈(δS)2〉π(w) is the standard deviation, and the average 〈. . .〉π(w) is cal-

culated over multiplex networks with the same structural properties but with

weights distributed homogeneously. In particular, when the weight distribution

is randomized, the multiplex networks are constrained in such a way that each

link must have a minimal weight (i.e., wij ≥ 1), while the remaining of the total

weight is distributed randomly over the links. In all the considered network en-

sembles we have assumed that the weights of the links can only take values that
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are multiple of a minimal weight. This assumption is by no means a limitation of

this approach because for every finite network, there is always a minimal weight

in the network such that this hypothesis is verified.

In order to evaluate the amount of information encoded in the weight of links

in single layers and compare it to the information supplied by multistrength, we

consider the following undirected multiplex ensembles:

• Correlated weighted multiplex ensemble. In this ensemble, we fix the ex-

pected multidegree sequence {k ~mi }, and we set the expected multistrength

sequence {s~m,αi } to be

s~m,αi = c~m,α(k ~m,α)λ~m,α (2.171)

for every layer α. We call Ψcorr the Ψ calculated from this ensemble.

• Uncorrelated weighted multiplex ensemble. In this ensemble, we set the

expected degree kαi of every node i in every layer α = 1, 2 to be equal

to the sum of the multidegrees (with mα = 1) in the correlated weighted

multiplex ensemble. We set the expected strengths sαi of every node i in

every layer α to be equal to the sum of the multistrengths of node i in

layer α in the correlated weighted multiplex ensemble. We call Ψcorr the Ψ

calculated from this ensemble.

In the correlated weighted multiplex ensemble the properties of the multilinks

are accounted for, while in the uncorrelated weighted multiplex ensemble the

different layers of the multiplex networks are analysed separately (see see Sec.

4.1 for the details). Finally, to quantify the additional amount of information

carried by the correlated multiplex ensemble with respect to the uncorrelated
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multiplex ensemble, we define the indicator Ξ as

Ξ = Ψcorr

Ψuncorr
. (2.172)

As an example of a possible application of the indicator Ξ, we focus on a case

inspired by the CoCi-PRE multiplex network, where we consider different expo-

nents β~m,α,in/out for different multilinks. First, we created the correlated multiplex

ensemble with power-law multidegree distributions P (k ~m) = C(k ~m)−γ~m with ex-

ponents γ(1,m2) = 2.6 for m2 = 0, 1 and γ(0,1),(in/out) = 1.9 (where for multidegree

(0, 1) we imposed a structural cut-off). Multistrengths satisfy Eq. 4.11, with

c~m,α = 1 and β(1,m2),1 = 1, for m2 = 0, 1; β(1,1),2 = 1.3, and β(0,1),2 = 1.1. Second,

for the second layer, we created the uncorrelated version of the multiplex ensem-

ble which is characterized by a super-linear dependence of the average strength

on the degree of the nodes. We then measured Ψ as a function of network size

N for these different ensembles. Numerically, the average 〈. . .〉π(w) was evalu-

ated from 100 randomizations. Figure 2.6 shows that Ψ increases with network

size N as a power law, and that Ξ fluctuates around an average value of 1.256.

These findings indicate that a significant amount of information is contained in

multistrength and cannot be extracted from individual layers separately. Simi-

lar results, not shown here, were obtained with a correlated weighted multiplex

ensemble characterized by non-trivial inverse multiparticipation ratios.

2.4.2 Gene-Gene Duplex

In this section we analyse a dataset of gene expression profiles from human

cancer and healthy subjects, using the framework of multilayer networks. For
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this analysis, we construct a duplex based on whole-genome gene expression data,

as taken from Geo Omnibus Database (NCBI (2014), GSE4183 dataset). We

have already met this dataset in Sec. 1.2.1 and we referred to it as “Colon”.

From this dataset, a subset of 2835 genes was chosen, known to have a clear

biological role (i.e. belonging to known functional pathways as annotated in the

KEGG database KEGG (2014)) and with potential interactions between each

other (as annotated in PathwayCommons Protein-Protein Interaction network

database, Commons (2014)). In one layer, the network is reconstructed from

gene expression correlation of NN = 8 normal colon samples, while in the other

layerNC = 15 cancer samples are considered. We define as eαij the gene expression

value for layer α (normal N or cancer C), in which i is the gene index (ranging

from 1 to 2835) and j refers to the sample (ranging from 1 to 8 for normal samples

dataset, and from 1 to 15 for cancer samples dataset).

Nonparametric Kendall’s τ is used in order to evaluate the correlation between

genes, and in each layer a network is obtained by a thresholding on the absolute

value of τ that keeps about ≈ 10% of the possible links (τ1 = 0.5 and τ2 = 0.4

for normal and cancer samples respectively).

We also associate a weight aαij to each duplex link, obtained from gene expression

values of the normal and cancer groups. We calculate the average value over all

samples for each gene in both layers, namely,

〈eαi 〉 = 1
Nα

Nα∑
k=1

eαik (2.173)
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with α = N,C and define the weights on each layer as the absolute difference

between all gene couples

aαij = |〈eαi 〉 − 〈eαj 〉| ∀i, j = 1, . . . , 2835. (2.174)

The weights have been discretized as follows: given the minimum and maximum

over all values of aαij (from the union of cancer and normal samples distance

matrices), we performed a uniform binning with 100 bins in this interval, thus

obtaining 100 possible values for the weights aαij. This duplex encodes in its

topology all the connections among those genes with highly correlated or anti-

correlated gene expression profiles. Moreover, the weight distribution describes

their distances in terms of mean gene expression values. These kinds of informa-

tion are essentially different: for example, two genes can be highly correlated in

their trends across the samples but one could be much more expressed than the

other one.

We can integrate different aspects of gene expression data sets thanks to network

approaches, and furthermore, we can investigate different experimental setups

thanks to multiplex networks tools. The analysis of the multiplex network we

have constructed, formed by one layer for the normal samples and one layer for

those patients with colorectal cancer, can help us understand if there is a back-

bone of highly correlated genes that are conserved after the onset of the cancer

disease. Moreover, we can characterise all the interactions that are specific for

the two conditions.

In order to understand how the weights of the links in a selected layer are re-

lated to different multilinks we consider the distributions {s~mi,α/k ~mi }, i.e. for each
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node we calculate the average weight of its interactions, classified according to the

multilinks. In Fig. 2.9 we show these distributions, for a given layer α = 1, 2 and

a given multilink ~m. In both layers, the distribution of average weights related

to multilink (1, 1) is significantly different from that one of the specific layer (i.e.

multilink (1, 0) or (0, 1)), with a lower mean value and median of the distribu-

tion. For layer 1, we compared the distributions {s(1,1)
i,1 /k

(1,1)
i } and {s(1,0)

i,1 /k
(1,0)
i }

using a Wilcoxon rank sum test, a nonparametric test for equality of population

medians. The p-value is highly significant (3.88 · 10−22) and the two mean values

are, respectively,
〈
{s(1,1)

i,1 /k
(1,1)
i }

〉
= 19.36 and

〈
{s(1,0)

i,1 /k
(1,0)
i }

〉
= 20.92. For layer

2, the layer related to cancer samples, the rank sum test is always significant

but with a less dramatic p-value (5.23 · 10−8). The mean values for this layer are

respectively
〈
{s(1,1)

i,2 /k
(1,1)
i }

〉
= 19.54 and

〈
{s(0,1)

i,2 /k
(0,1)
i }

〉
= 20.46.

We studied the relation between the weights of the set of overlapping links,

{a(1,1)
ij,1 } and {a(1,1)

ij,2 }. A linear fitting shows that these weights are almost iden-

tical, with a relation a
(1,1)
ij,2 = 0.94 · a(1,1)

ij,1 + 3.30 (R2 = 0.92). This result is not

trivial, since genes could be correlated (preserving the links) but expressed in

a different way (i.e. with different weights) in healthy and cancer samples, and

highlights the existence of a backbone of genes (and related biological processes)

that are conserved during the disease progression, possibly due to their funda-

mental functional role.

The main goal here is the creation of a null model for such a multiplex real

instance, in order to provide an example of possible application of the theoret-

ical framework here developed to model real datasets. In order to generate a
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null model, we will construct a network ensemble with given multidegree se-

quence and multistrength sequence and generate multiplex networks out of this

ensemble with the desired structural properties. Sampling multiplex networks

from their ensembles will offer the opportunity of comparing our real biological

structure with some compatible instances. Moreover, the entropy measure gives

us the logarithm of the number of “typical” duplex networks in the ensemble,

a value that can be used to compare different experimental setups and clinical

conditions, evaluating what is the level of information encoded in the selected

structural properties of biological networks.

Comparison between the null model and the biological case study

We compare now the structural properties of our biological case study with

the networks with the same multidegree sequence and multistrength sequence

generated by sampling the corresponding multiplex network ensemble. Starting

from our biological duplex network described in section 2.4.2, at first we cal-

culated the Lagrangian multipliers needed for {p~mij} and {πij(~aij)}, secondly we

generated 100 different duplex networks. We checked the average values and

fluctuations across our 100 duplexes. In Fig. 2.7 we compare the behavior of

the average values across the duplexes with the related real values, the assumed

fixed average values of the canonical ensemble. We found that the multidegrees

and the multistrengths are equal in average to the constrained values showing

that the multiplex network framework is able to reproduce well these properties.

Nevertheless from sample to sample the individual structural properties of the

nodes (their multidegrees and their multistrengths) might fluctuate. In Figure
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2.8 we investigate the role of the fluctuations by plotting the histogram of the

z-scores of values of the multidegrees or of the multistrengths for single nodes,

in the layer 2 of the duplex networks, the cancer layer. These distributions are

calculated over the 100 multiplex networks sampled by this ensemble.

2.5 Conclusions

In this chapter we gave an exhaustive description of multilayer networks, and

in particular, of multiplex networks. The main observables and the related null

models are displayed. To study the correlations generated by the overlap of the

links in different layers we use the multilink-formalism. For the particular case of

weighted multiplex networks , we have shown that significant correlations across

layers are present, and moreover, that weights are closely correlated with the

multiplex network structure. Thank to the introduced observables we proved

that many properties of multiplex networks cannot be reduced and predicted

by the measures obtained on single layers. These weighted multiplex proper-

ties capture the crucial role played by multilinks in the distribution of weights,

i.e., the extent to which there is a link connecting each pair of nodes in every

layer of the multiplex network. To illustrate these findings we presented two

datasets. In the first one we analysed the weighted properties of multilinks in

two multiplex networks constructed by combining the co-authorship and cita-

tion networks involving the authors included in the APS dataset. Based on the

entropy of multiplex ensembles, we developed a theoretical framework for evalu-

ating the information encoded in weighted multiplex networks, and proposed the

indicator Ψ for quantifying the information that can be extracted from a given
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dataset with respect to a null model in which weights are randomly distributed

across links. Finally, we proposed a new indicator Ξ that can be used to evaluate

the additional amount of information that the weighted properties of multilinks

provide over the information contained in the properties of single layers.

The second dataset is related to omics studies, i.e. gene expression profiles of

healthy people and subjects affected by CRC. We showed that multiplex observ-

ables highlight significant differences and nontrivial similarities between biologi-

cal processes in healthy and cancer cells in this gene expression profiling dataset.

Moreover, we tested the performance of our null models on this particular dataset.
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Figure 2.4: Average multistrength and average inverse multiparticipation ratio
versus multidegree in the CoCo-PRE/PRL multiplex network. The
average multistrengths and the average inverse multiparticipation ra-
tios are fitted by a power-law distribution of the type described in
Eq. 4.8 (fitted distributions are here indicated by black dashed lines).
Statistical tests for the collaboration network of PRL suggest that
the exponents β~m,1 defined in Eq. 4.8 are the same, while exponents
λ~m,PRL are significantly different. Similar results can be obtained for
the exponents in the PRE collaboration layer. Nevertheless, multi-
strengths s(1,1),α are always larger than multistrengths s(1,0),PRL and
s(0,1),PRE, when multistrengths are calculated over the same number
of multilinks, i.e., k(1,1) = k(1,0) = k(0,1) (see Sec. 4.1 for the statistical
test on this hypothesis).
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Figure 2.5: Properties of multilinks in the weighted CoCi-PRE multiplex net-
work. In the case of the collaboration network, the distributions of
multistrengths versus multidegrees always have the same exponent,
but the average weight of multilinks (1, 1) is larger than the aver-
age weight of multilinks (1, 0). Moreover, the exponents λ(1,0),col,in,
λ(1,0),col,out are larger than exponents λ(1,1),col,in, λ(1,1),col,out. In the case
of the citation layer, both the incoming multistrengths and the outgo-
ing multistrengths have a functional behavior that varies depending
on the type of multilink. Conversely, the average inverse multipar-
ticipation ratio in the citation layer does not show any significant
change of behavior when compared across different multilinks.
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Figure 2.6: (A) Value of the indicator Ψ defined in Eq. 2.170 indicating the
amount of information carried by the correlated and the uncorre-
lated multiplex ensembles of N nodes with respect to a null model in
which the weights are distributed uniformly over the multiplex net-
work. (B) Value of the indicator Ξ defined in Eq. 2.172 indicating
the additional amount of information encoded in the properties of
multilinks in the correlated multiplex ensemble with respect to the
corresponding uncorrelated multiplex ensemble. The solid line refers
to the average value of Ξ over the different multiplex network sizes.
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Figure 2.7: Comparison of the real values of multistrength and multidegree se-
quence with their related average values calculated over 100 instances.
Angular brackets (〈. . .〉) indicate the real values (the fixed average
values of the canonical ensemble), while overbar ( ¯. . .) defines the av-
erage measure over the 100 duplexes. Considering the relative er-
ror between the real values and the average values for each node,
∆Ei = (x̄i−〈xi〉)/〈xi〉 i = 1, . . . , 2, 835, the average absolute relative
error 〈|∆E|〉, over all nodes for each measure, ranges from a mini-
mum of 0.5% to a maximum of 2.4%. In the last panel we display
the distribution of the 100 measures of the overlap between the two
layers (in the real duplex this value was 109, 056 links). The red line
is a Gaussian distribution with the same mean and variance as the
empirical distribution.
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Figure 2.9: Biological case study: we display the distributions {s~mi,α/k ~mi }, i.e. the
average weight of each node’s interactions, classified according to the
multilinks.
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3.1 Introduction to control theory

Control theory is a well known branch of engineering with applications to a

large number of disciplines ranging from medicine and drug discovery (Csermely

et al., 2013), to the characterisation of dynamical processes in the brain (Bullmore

and Sporns, 2009; Bonifazi et al., 2009; Power et al., 2011), or the evaluation of

risk in financial markets (Delpini et al., 2013). Control theory is even involved

in the study of biomass flows in ecological systems. A dynamical system is

considered controllable if, given a designed choice of inputs, it can be driven

from any initial state to any chosen final state in finite time. The dynamical

rules are embedded in a network representing the interactions of the different

components of the system. The question of control placement (Ruths and Ruths,

2014), namely, which nodes to control with external inputs in order to achieve

the controllability for the entire system, has many fall-outs in practical studies

of dynamical networks. In the typical EEG experimental design for instance,

electrodes can be used to stimulate brain voxels. In this brain model each node

is a cortical voxel, and its state is given by the level of excitation at a specific point

in time. The correlation in the EEG signals usually determines if one brain region
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is connected to another. For social sciences the mapping of sentiment or opinion

towards a particular subject is of great interest: considering people as nodes

and their relationships as edges (friendship, influence, authority) is possible to

map the opinion spreading over the population. The key-role of some influential

individuals is again matter of control placement and of particular appealing for

advertising (Ruths and Ruths, 2014).

In general, the dynamical information and the topological features are not always

available and well integrated and this is the main difficulty in dealing with control

theory. The interplay between network structure and its related controllability

has been recently analysed in the crucial papers (Liu et al., 2011, 2012). Topology

plays a fundamental role in affecting dynamical processes on a given network and

it seems as well playing a key role in network controllability.

3.2 Definition of controllability and structural

controllability of a network

Controllability studies the relationship between the state of a given system and

its inputs (Iglesias and Ingalls, 2009). We start considering the simplest picture,

a given system well described by canonical linear time-invariant dynamics. Many

real systems are better represented by nonlinear dynamics but we consider the

linear approach as a natural prerequisite of the nonlinear controllability problem.

Consider the system

dx(t)
dt

= Ax +Bu, (3.1)
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in which each element of the vector x(t), namely, xi(t) with i = 1, 2, . . . , N ,

represents the state of node i at time t. This vector is therefore called the state

vector. A good example is given by gene regulatory network where each xi(t)

gives the transcription factor concentration of gene i at time t. The matrix A is

a N ×N (asymmetric) matrix defined as the state matrix of the system. It en-

codes the directed weighted relation of each couple of system component and the

element aij is associated with the link (j → i) on a directed network G(A). Al-

ways considering a gene regulatory network, the interaction can be both positive

(excitatory) or negative (inhibitory). Whenever all the links have unit strength

the state matrix A becomes the transpose of the adjacency matrix of G(A) .

B is a N×M matrix, so-called input matrix, defining which nodes are controlled

by the outside (M ≤ N). The M external signals are indicated by the vector

u(t) of elements uα and α = 1, 2 . . .M . A system is controllable if the control

input u(t) is able to drive the state x(t) from any initial condition x0(t0) ∈ RN

to a final configuration x1(t1) ∈ RN(Iglesias and Ingalls, 2009).

We define as driver nodes ND those controlled nodes which do not share input

signals and whose control determines the dynamics of the system. The main

goal is the identification of the minimal set of driver nodes which guarantees full

controllability.

For any given realisation of A and B, the dynamical system is controllable if it

satisfies Kalman’s controllability rank condition, i.e. the controllability matrix

C = (B,AB,A2B, . . . , AN−1B) is full rank (rank(C)=N). For a simple example

of controllability see Fig. 3.1.

In addition to the fact that the verification of Kalman’s condition can be com-

putationally very demanding for large systems, in most real systems the notion
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Figure 3.1: Controllability of a small system: the linear dynamics of Eq. 3.1 is
defined by matrix A (state matrix) and by matrix B (input matrix).
The system is controlled by two inputs u = (u1(t), u2(t))t and the
input signals are displayed in blue. The controllability matrix C =
(B,AB,A2B) has rank 3, meaning that Kalman’s controllability rank
condition is satisfied. Link directions follow the transpose of matrix
A. Maximummatching links (a31) and matched nodes (X3) are shown
in red. Empty nodes are unmatched but connecting them to input
signals yields full control of the system.

of exact controllability is unusable since the entries of A and B are not perfectly

known. As an alternative, if we assume that the non-zero matrix elements of A

and B are free parameters, we can consider the concept of structural controlla-

bility (Lin, 1974). The system is structurally controllable if for any choice of the

free parameters in A and B, except for a variety of zero Lebesgue measure in
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the parameter space, C is full rank (Lin, 1974). Since structural controllability

only distinguishes between zero and non-zero entries of the matrices A and B, a

given directed network is structurally controllable if it is possible to determine

the input nodes (i.e. the position of the non-zero entries of the matrix B) in a

way to control the dynamics described by any realisation of the matrix A with

the same non-zero elements, except for atypical realisations of zero measure. A

network is therefore structurally controlled by identifying the minimum number

of driver nodes.

In his seminal work, Lin defined the corresponding network analog of the linear

system 3.1, the so-called control-augmented graph G(A,B), formed by adding

control nodes to the original network G(A) (one for each control input). His

fundamental result states that a linear system (A,B) is structurally controllable

if and only G(A,B) is spanned by cacti. A cactus is the key structure of Lin’s

Structural Controllability Theorem and it is composed by elementary substruc-

tures, namely, (see Fig. 3.2)

Stem → elementary path starting from an input vertex or control node called

root and ending in a terminal vertex called top

Bud → elementary cycle with an additional edge e called distinguished edge

of the bud (it ends but not begins in a vertex of the cycle)

U− rooted factorial connection → union of vertex-disjoint stems and

elementary cycles spanning G(A,B)

A cactus is then composed by a main stem with some buds attached only by their

distinguished edges (no distinguished edge starts at the top of the main stem).

Finally, “a cacti is a set of vertex-disjoint cacti” (Liu et al., 2011). Removing
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any edge from the cacti breaks the controllability of the system. This structure

is therefore minimal and is equivalent to the irreducibility condition on [A,B]

(Ruths and Ruths, 2014).

Liu et al. (2011), starting from Lin’s Structural Controllability Theorem, mapped

the problem of finding the minimal set of driver nodes into a maximum matching

problem. The so-called “Minimum Input Theorem” identifies the driver nodes

with the unmatched nodes. In most cases the structure of B is not known a priori,

this means that, once studied G(A), a suitable choice of input connections can

guarantee the controllability of the system. Applying the maximum matching

algorithm we gather the set of disjoint simple paths and loops that maximally

cover G(A). We connect a single input to each unmatched node, building then a

spanning cacti of G(A,B). Whenever a cycle does not have a distinguished edge

connecting it to a stem, we build a new bud taking one of the input nodes and

connecting it to any node of the cycle (no further input nodes are needed). For

further explanations see Fig. 3.2.

3.2.1 Matching, Maximum Matching and Perfect Matching

For an undirected network a matching is defined as a set of edges without

common vertices. A node is considered matched if it is incident to an edge in the

matching, otherwise it is called unmatched. We have a “maximum matching”

whenever a matching reaches the maximum cardinality, while we define “perfect

matching” a matching which matches all the nodes in the graph. These defi-

nitions naturally apply to bipartite networks where the famous Hopcroft-Karp

algorithm finds the maximum matching in O(
√
V E) with V the number of nodes

and E the number of edges.
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Figure 3.2: Control-augmented graph G(A,B): input vertices and links are
marked in blue and in this particular system we have three control
nodes driving three stems, namely, (u1, 1, 3, 4, 5, 6), (u2, 2) and (u3, 7).
Moreover, we have two loops, (12, 13, 14, 15, 16, 17) and (8, 9, 10, 11).
Loop (8−9−10−11) has its distinguished edge (4, 8), forming together
a bud. Loop (12, 13, 14, 15, 16, 17) does not have a distinguished edge
so we connect it to input u1, building another bud. The U-rooted
factorial connection is composed by: (u1, 1, 3, 4, 5, 6), (u2, 2), (u3, 7),
(12, 13, 14, 15, 16, 17), (8, 9, 10, 11). The spanning cacti is composed
by one main cactus given by (u1, 1, 3, 4, 5, 6), (4, 8), (u1, 17) and
(12, 13, 14, 15, 16, 17). The cactus (u2, 2) and the other cactus (u3, 7)
are simply stems. Red edges belong to one the possible maximum
matching of G(A). We can appreciate how this algorithm finds a
set of disjoint paths and circles covering G(A): no two edges share
a common starting node or a common ending node. Red nodes are
defined as matched while empty nodes 1, 2, and 7 are defined as
unmatched. Each control node is then associated to one unmatched
node (Ruths and Ruths, 2014).
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In directed networks the definition of matching considers the existence of start-

ing vertices and ending vertices. Therefore in this version of matching no two

edges share a common starting or ending vertex. A node is matched whenever is

pointed by an edge in the matching, otherwise, it is unmatched (see Fig. 3.1 and

Fig. 3.2). The maximum matching of a directed network G(A) can be computed

always with the Hopcroft-Karp algorithm (Hopcroft and Karp, 1973), consider-

ing a bipartite version of the initial network. The new bipartite graph is created

with twice the number of nodes of the original network: the nodes are divided in

two groups, the first group V + = {v+
1 , ..., v

+
N} is composed by the original vertices

seen as out-vertices, while in the second group V − = {v−1 , ..., v−N} we collect the

in-vertices. The original edges are then translated in new links starting from V +

and ending in V −, in other words, an edge (v+
i , v

−
j ) corresponds to the link i→ j

in G(A) (Liu et al., 2011).

The peculiarity of directed matching is that its edges form elementary paths and

circles. In elementary paths every node is matched except the first one, while in

circles all nodes are matched, giving then an example of perfect matching (see

Fig. 3.2). These features gave the chance to map Lin’s Structural Controllabil-

ity Theorem into the matching problem on directed networks. Once obtained

the maximum matching for the given network we can connect an input to each

unmatched node.

3.2.2 Real networks and null models

In Liu et al. (2011) a set of different kinds of real networks was analysed and

for each one the density of driver nodes was obtained applying the maximum

matching algorithm. One of the main findings regards the role of hubs in the
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controllability of a given network. The fraction of driver nodes is significantly

higher among nodes with low degree than among hubs. Moreover, in all the cases

the average degree of driver nodes 〈kD〉 is either importantly smaller than or com-

parable to the average degree of the network 〈k〉 (where 〈k〉 = 2 〈kin〉 = 2 〈kout〉).

Randomisation enlightens the interplay between topological features and control-

lability (see Ch. 1). A full randomisation procedure keeps the number of nodes

N and the number of links L unchanged. This procedure turns the real network

into a directed Erdos-Renyi random network. The results displayed in Liu et al.

(2011) indicate how a full randomisation removes the topological features that

are related to controllability. On the other hand, a degree-preserving randomisa-

tion that keeps both the kin and the kout for each node (Maslov, 2014) does not

modify in a significant way the original number of driver nodes ND. The joint

degree distribution P (kin, kout) seems to strongly characterise the controllability

of the underlying network. So fixed P (kin, kout) the real network is just a given

instance of a more general ensemble of networks (see Ch. 1). Analytical methods

such as the cavity method give us the chance to calculate the average density of

driver nodes nD over all network instances compatible with the given P (kin, kout).

3.3 Cavity method and Belief Propagation: a short

introduction

In this section the essential prerequisites of statistical mechanics for the analy-

sis of the matching problem on directed networks are presented. In the following

sections a similar formalism for the computation of the number of driver nodes,

using belief propagation and population dynamics, will be covered.
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3.3.1 Disordered systems

Among the methods for disordered systems replica method and cavity method

are the most common. In particular, given the context of this thesis we are

interested to the latter. An example of disordered system is given by the Ising

model on a random graph, a version of the spin glass problem in the dilute

case. We consider a random graph G = (V,E) drawn from of the ensemble

of Erdos-Renyi networks with N nodes and average degree c (Hartmann and

Weigt, 2005). The vertices are labelled as V = {1, 2, ..., N} and we assume that

the edges are drawn independently with probability p = c/N . The matrix J

becomes the adjacency matrix of G and its elements are

Jij =


1 if {ij} ∈ E

0 if {ij} /∈ E

The probability of a given graph belonging to the ensemble reflects the indepen-

dence of different edges and can be written as

P (J) =
∏
i<j

[(1− p)δ(Jij) + pδ(Jij − 1)] (3.2)

The Hamiltonian is given by (Hartmann and Weigt, 2005)

HJ(σ1, ..., σN) = −
∑
i<j

Jijσiσj (3.3)
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where the spins are expressed with the popular notation σi = ±1, i = 1, ..., N .

Eq. 3.3 is characterised by the microscopic configuration C = {σi} and by the

quenched disorder J . Quenched disorder means practically that the disorder is

fixed and it is not subject to thermal fluctuations (Zagordi, 2007). In physical

terms this means that the time scale characterising changes in the interactions

is much longer than that one regarding changes in the dynamical variables.

Eq. 3.3 and the related free energy density depend on a specific realisation of

the disorder (matrix J), i.e.

fJ = − 1
βN

logZJ (3.4)

where N is the system size and ZJ is the realisation-dependent partition func-

tion. Anyway, from physical considerations the typical features of a disordered

system do not change going from realisation to realisation (Zagordi, 2007). This

selfaverageness property explains how, for large systems, the studied properties

do not depend on the given instance of J , i.e.

f∞(β) = lim
N→∞

fJ(β,N) (3.5)

Furthermore, the mean value of a self averaging quantity over the disorder, such

as the free energy density, is well defined and corresponds with the thermody-

namic limit:

f = lim
N→∞

1
βN
〈logZJ〉J = f∞(β) (3.6)

This means that f should have small fluctuations (of the order of 1/N), a typical

situation in case of short range interactions (Zagordi, 2007).
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Quenched average and annealed average

The so-called quenched average is given by

f = 〈fJ〉J =
∫
dJP (J)FJ = − 1

βN

∫
dJP (J) logZJ (3.7)

Integrating the logarithm of the partition function shows many difficulties and the

famous replica trick was developed to avoid this issue (in this short introduction

we are not presenting the replica method). Another possible average is the so-

called annealed average, namely,

− 1
βN

log
∫
dJP (J)ZJ (3.8)

where we calculate the logarithm of 〈ZJ〉J . This kind of approximation often

leads to wrong results (Zagordi, 2007).

Cavity method

The cavity method (or Bethe-Peierls approximation) is a useful approach to

improve the classic mean-field approximation. In the usual mean-field the de-

grees of freedom of a single spin are treated exactly while all the other variables

are replaced by their average values (Nishimori and Ortiz, 2010). In the cavity

method the configuration of nearest neighbours of a given spin are considered

with no approximation and all the spins beyond those neighbours are approx-

imated by their mean values. The neighbouring spins then feel effective fields

that express the influence of spins beyond them.
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This method is characterised by the locality of the dependencies among its vari-

ables and this is a common feature of many other inference problems. This

common trait belongs especially to the so-called graphical models: Bayesian net-

works, Markov random fields and factor graphs. With these graphical models

we can easily represent systems of Ising spins or constraint satisfaction problems

(e.g. random XOR-SAT), that are indeed related. For a general introduction to

graphical models and belief propagation we refer to Yedidia et al. (2001). Belief

propagation or BP is an efficient local message passing algorithm for the resolu-

tion of inference problems represented by graphical models. Moreover, it can only

converge to a fixed point that is also a stationary point of of the Bethe approxi-

mation of free energy. The main purpose of the BP algorithm is the computing of

marginal probabilities or beliefs, at least approximately (when the graph has no

loops the algorithm is exact), in a time growing linearly with the number of nodes

in the system and not exponentially (Yedidia et al., 2001). The same algorithm,

named in different ways, has been repeatedly rediscovered in a large variety of

scientific fields: the forward-backward algorithm, the Viterbi algorithm, iterative

decoding algorithms for Gallager codes and turbocodes, Pearl’s belief algorithm

for Bayesian network, the Kalman filter, and finally, the transfer-matrix approach

in physics (Yedidia et al., 2001).

Unlike the replica method, the cavity method gives results both for the quenched

average and the single graph. The results on a single instance are fundamental

for the parallelism with message passing algorithms. For the considered exam-

ple, i.e. Ising spins on a random graph, the two methods give exactly the same

results (replica symmetric regime).

The main and fundamental assumption of this method is the locally tree-like
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structure of the underlying graph defined by J , meaning that almost all loops

are of length O(logN) and therefore, in the thermodynamic limit, they go to

infinity.

For the sake of simplicity we consider then a tree-graph. This kind of structure

allows the calculation of the partition function via an iterative scheme (Hartmann

and Weigt, 2005). Selecting an arbitrary node i we introduce the restricted par-

tition function Zi(σi), i.e.,

Zi(σi) =
∑

{σk,k 6=i}
eβ
∑
l<m Jlmσlσm (3.9)

where the spin σi is fixed to +1 or −1 and Z = Zi(1) + Zi(−1). The subtrees

that are rooted in the neighbours j of i are independent and disconnected if we

remove vertex i and all its links. Eq. 3.9 can be then rewritten as a function

of the restricted partition functions Zj→i(σj) of the subtrees above i (Hartmann

and Weigt, 2005), namely,

Zi(σi) =
∑

{σj ,j∈N(i)}
eβσi

∑
j∈N(i) σj

∏
j∈N(i)

Zj→i(σj)

=
∏

j∈N(i)

∑
σj
eβσiσjZj→i(σj) (3.10)

where N(i) defines the neighbourhood of node i. Recursively, Zj→i(σj) depends

on the subtrees above vertex j, i.e.,

Zj→i(σj) =
∑

{σk,k∈N(j)\i}
eβσj

∑
k∈N(j)\i σk

∏
k∈N(j)\i

Zk→j(σk)

=
∏

k∈N(j)\i

∑
σk
eβσjσkZk→j(σk) (3.11)

In Yedidia et al. (2001) the authors give an example of belief propagation
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Factor Graph 

mi→ j

mj→i

ma→ j

mj→a

mi→a

ma→i

Figure 3.3: Ising model on a random graph: representation of a single couple
of spins i and j in two different graphical models. For pairwise
Markov random fields each spin is a node variable (circle) with possi-
ble states ± 1. Each link is associated with a compatibility function
ψij(σi, σj) = eβJijσiσj . The factor graph introduces instead a function
node a (square) representing fa(σi, σj) = eβJijσiσj .

implemented on pairwise Markov random fields (MRF’s). The main result that

we want to mention about MRF’s is that they can reproduce our problem of Ising

spins on a network. Each spin variable is seen as a node variable with possible

states ±1. Each edge (i, j) is associated with a compatibility function ψij(σi, σj)

through the expression logψij(σi, σj) = βJijσiσj (see Fig. 3.3). The overall joint
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probability of the pairwise Markov random fields is

p({σi}) = 1
Z

∏
(i,j)∈E

ψij(σi, σj) (3.12)

that is equivalent to the usual Boltzmann probability distribution. For the BP

algorithm implemented on our graph two main definitions are introduced, the

belief p(σi) and the message update rule, i.e.,

p(σi) = K
∏

j∈N(i)
mj→i(σi) (3.13)

mj→i(σi) =
∑
σj
ψij(σi, σj)

∏
k∈N(j)\i

mk→j(σj) (3.14)

These last equations are connected to Eq. 3.10 and Eq. 3.11 if we consider

mj→i =
∑
σj
eβσiσjZj→i(σj) (3.15)

and p(σi) = Zi(σi)/Z (the normalisation constant is then K = 1/Z).

The introduction of the cavity fields hj→i simplifies the hierarchy of Eqs. 3.10,

3.11. They are defined as

hj→i = 1
2β log Zj→i(+1)

Zj→i(−1) = 1
2β

∑
k∈N(j)\i

log cosh β(hk→j + 1)
cosh β(hk→j − 1) (3.16)

In a similar way the local effective field is defined as

hi = 1
2β log Zi(+1)

Zi(−1) = 1
2β

∑
j∈N(i)

log cosh β(hj→i + 1)
cosh β(hj→i − 1) (3.17)

The interpretation of cavity fields and of the effective field is easier if we con-
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= + + … 

Figure 3.4: Graphical solution of the cavity-field distribution (see Eq. 3.26): a
given cavity field is generated from the cavity fields of k neighbours,
where k is the so-called excess degree and follows the nearest neigh-
bour degree distribution. Following a generic link in a given direction,
its associated cavity field (square, on the left) is defined considering
all the possible contributions from the cavity fields (squares, on the
right) acting on the spin (circle) at its “ending vertex” (from the right
to the left, the ending vertex has excess degree equal to 0, 1, 2)

sider the marginal probabilities p(σi) and pj→i(σj)

p(σi) = Zi(σi)
Z

= eβhiσi

2 cosh βhi
(3.18)

pj→i(σj) = Zj→i(σj)
Zj→i(1) + Zj→i(−1) = eβhj→iσj

2 cosh βhj→i
(3.19)

Eq. 3.18 tells us that spin i behaves like a single spin in an external field hi.
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The same scenario leads to Zi(σi) = Aeβhiσi with A a positive constant, and to

the usual expression for local magnetisation given by mi = tanh βhi. Similar

arguments work for Eq. 3.19 where now the global effect on spin j is considered

without its neighbour i and Zj→i(σj) = Beβhj→iσj with B a positive constant.

It is convenient to introduce also the joint probability distribution for spin i and

j, p(σi, σj)σj. Following Yedidia et al. (2001) we get

p(σi, σj) = Kψij(σi, σj)
∏

k∈N(i)\j
mk→i(σi)

∏
l∈N(j)\i

ml→j(σj)

= 1
Z
eβσiσjZi→j(σi)Zj→i(σj)

= (Zi→j(1) + Zi→j(−1))(Zj→i(1) + Zj→i(−1))
Z

eβσiσjpi→j(σi)pj→i(σj)

= (2B1 cosh βhi→j)(2B2 cosh βhj→i)
Z

eβσiσj
eβhi→jσi

2 cosh βhi→j
eβhj→iσj

2 cosh βhj→i

= B1B2e
βσiσjeβhi→jσieβhj→iσj

Zi→j(1)(∑σj e
βσjZj→i(σj)) + Zi→j(−1)(∑σj e

−βσjZj→i(σj))

= eβσiσjeβhi→jσieβhj→iσj∑
σi,σj e

βσiσjeβhi→jσieβhj→iσj
(3.20)

where we considered Zi→j(σi) = B1e
βhi→jσi and Zj→i(σj) = B2e

βhj→iσj . This joint

probability distribution p(σi, σj) is properly normalised and satisfies p(σi) =
∑
σj p(σi, σj). Moreover, we can calculate the total joint probability distribution

p({σ}) as a function of {p(σi)} and {p(σi, σj)}, i.e.

p({σ}) =
∏

(i,j)∈E p(σi, σj)∏
i p(σi)ki−1 (3.21)

where ki is the number of neighbours of spin i. This computation is exact when-

ever the graph has no loops and it becomes equivalent to the usual Boltzmann
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probability distribution for a given configuration {σ}, i.e,

p({σ}) = 1
Z
e−βHJ(σ1,...,σN ) (3.22)

Solving Eq. 3.21 the correct normalisation constant 1/Z is obtained considering

Z2|E|−N

Z |E|
= Z2(N−1)−N

Z(N−1) (3.23)

where 2|E| −N = ∑
i ki − 1 and |E| = N − 1 (we consider a tree-graph).

Whenever we deal with random graphs locally tree-like the factorisation of the

restricted partition function Zi(σi) in subtrees is not correct ( see Eq. 3.10).

Anyway, Zi(σi) depends on the joint partition function ZN(i)|i({σj}), where {σj}

are all the neighbours of node i, with i removed from the network (Hartmann

and Weigt, 2005). The cavity graph Gi has origins from the initial graph G

where node i and its incident links have been removed. The requested locally

tree-like structure helps us: given a graph where almost all loops have length

of O(logN), in Gi the neighbours N(i) become really distant from each other

and they can be considered practically uncorrelated whenever N � 1. The joint

marginal distribution of these spins then factorises.

The field equations Eq. 3.16 and Eq. 3.17 determine a self-consistent system and

they are solved in a similar way to the various massage passing algorithms. In

practice, for a given graph, starting with some initial conditions for {hj→i}, for

each link (i, j), for each direction of the edge, we iterate Eq. 3.16 till convergence.

Once obtained all the {hj→i}, thank to Eq. 3.17 we calculate the effective fields

{hi} and then the physical behaviour of our system becomes fully characterised.

We have just given the basic tools to solve our problem for a particular graph
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= + + … 

Figure 3.5: Graphical solution of the physical effective-field distribution (see Eq.
3.27): an effective field is generated from the cavity fields of all its
neighbours k, where k follows the usual degree distribution P (k). The
light-red square represents the effective field acting on a generic spin
(circle), while the dark-red squares are the cavity fields, considered
in all their possible contributions to the given spin (from the right to
the left, the considered node has degree equal to 0, 1, 2).

(associated with a given J) of the ensemble. First of all, we introduce the cavity-

field probability distribution as

Pcav(h) = 1
cN

∑
{i,j}∈E

[δ(h− hi→j) + δ(h− hj→i)] (3.24)

where each edge gives two contributes to the fields (Hartmann and Weigt, 2005).

We can see Eq. 3.24 as the normalised histogram over all cavity fields. Moreover,
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also an effective− field distribution can be considered, namely,

P (h) = 1
N

∑
i∈V

δ(h− hi) (3.25)

In the thermodynamic limit both the cavity-field distribution and the effective-

field distribution can be determined by self-consistent equations, given the equiv-

alence of every links in a random graph. How can we write down these equa-

tions? Thank to their graphical representation in Fig. 3.4 and in Fig. 3.5. This

method is similar to the usual procedure considered in network theory for the

computation of the giant component for uncorrelated random networks with the

generating functions.

Let’s start with the computation of the cavity fields: a generic hj→i depends on

the cavity fields {hk→j} of k neighbours, where k follows the nearest neighbour

probability distribution, or equivalently, k can be considered as the excess de-

gree of node j with respect to edge (i, j) (Hartmann and Weigt, 2005). These

arguments lead to

Pcav(h) =
∞∑
k=1

kP (k)
〈k〉

∫ k−1∏
i=1

dhiPcav(hi)δ
h− 1

2β
k−1∑
i=1

log cosh β(hi + 1)
cosh β(hi − 1)


=

∞∑
k=0

(k + 1)P (k + 1)
〈k〉

∫ k∏
i=1

dhiPcav(hi)δ
h− 1

2β
k∑
i=1

log cosh β(hi + 1)
cosh β(hi − 1)


=

∞∑
k=0

e−c
ck

k!
∫ k∏
i=1

dhiPcav(hi)δ
h− 1

2β
k∑
i=1

log cosh β(hi + 1)
cosh β(hi − 1)

 (3.26)

For P (h) the contributes come from all the neighbours of the considered node,
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meaning that the we need to consider the usual degree distribution P (k), namely,

P (h) =
∞∑
k=0

P (k)
∫ k∏
i=1

dhiPcav(hi)δ
h− 1

2β
k∑
i=1

log cosh β(hi + 1)
cosh β(hi − 1)


=

∞∑
k=0

e−c
ck

k!
∫ k∏
i=1

dhiPcav(hi)δ
h− 1

2β
k∑
i=1

log cosh β(hi + 1)
cosh β(hi − 1)

 (3.27)

For the characteristics of the Poissonian degree distribution Pcav(h) = P (h),

even if the fields on single vertices do not coincide. These equations give an

iterative recipe for the estimate of P (h) and the solution follows a fixed-point

procedure. In particular, for 0 < T < Tc (where Tc is a critical temperature,

average-degree dependent, above which the model behaves as a paramagnet), we

can go ahead just numerically using a very popular algorithm called population-

dynamics (Hartmann and Weigt, 2005). We start considering a large population

{h1, ..., hM} of M � 1 fields, representing the field-distribution and firstly ini-

tialised randomly. We then run the algorithm that iteratively replaces some fields

inside the population, until convergence. The following pseudo-code represents

the main path of the population dynamics:

do

draw k from a Poisson distribution e−cck/k!

select randomly k + 1 indices i, i1, ..., ik ∈ {1, ...,M}

replace holdi with hnewi = 1
2β
∑k
l=1 log cosh β(hil+1)

cosh β(hil−1)

while not converged

return (h1, ..., hM)

The convergence of this algorithm means that the statistical properties of the

population (especially its histogram) become constant up to negligible fluctua-
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tions.

We give now an example of the computation a global quantity such as energy.

Energy can be calculated for a single network or it can be considered as the

energy density for the network ensemble.

For a single instance we have

〈HJ〉T = −
∑
i<j

Jij 〈σiσj〉T

= −
∑
i<j

Jij

∑
σi,σj σiσje

βσiσjeβhi→jσieβhj→iσj∑
σi,σj e

βσiσjeβhi→jσieβhj→iσj
(3.28)

where Eq. 3.20 has been used. Averaging over the graph ensemble we obtain the

energy density, i.e.

e = 〈〈HJ〉T 〉J
N

= −c2
∫
dh1dh2Pcav(h1)Pcav(h2)

∑
σ1,σ2 σ1σ2e

βσ1σ2eβh1σ1 eβh2σ2∑
σ1,σ2 e

βσ1σ2eβh1σ1 eβh2σ2

(3.29)

3.3.2 Belief propagation on factor graphs

Another variant of the belief propagation algorithm is implemented over the

previously mentioned factor graphs. A factor graph is one of the possible graphi-

cal models together with Bayesian networks and pairwise Markov random fields.

A factor graph is essentially a bipartite graph containing two types of nodes

called function nodes (set F ) and variable nodes (set V ). In the previous section

we mentioned pairwise Markov random fields where there is just a single type of

nodes, i.e. variable nodes, and each connection between a pair of nodes defines

a compatibility function. The main feature of all these graphical models is the

factorisation of the overall joint probability (see Eq. 3.12). For factor graphs the
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joint probability reads

p(x) ∝
∏
a∈F

fa(xa) (3.30)

where xa represents the vector of variable nodes in the neighbourhood of function

node a, in one of the possible configurations of their given states, i.e. xa contains

the arguments of function a. Two kinds of nodes need two different types of mes-

sages running over the factor graphs, differently from pairwise Markov random

fields where we updated just one type of message. These messages are formally

defined as

variable node v → function node a

mv→a(xv) =
∏

b∈N(v)\a
mb→v(xv) (3.31)

function node b→ variable node v

mb→v(xv) =
∑

xb\xv
fb(xb)

∏
t∈N(b)\v

mt→b(xt) (3.32)

where for xv we denote one of the possible states of variable node v and ∑
xb\xv

means summing over the states of all the neighbours of b except node v.

We define then two marginal distributions for each kind of nodes:

variable node

p(xv) ∝
∏

a∈N(v)
ma→v(xv) (3.33)

function node

p(xa) ∝ fa(xa)
∏

v∈N(a)
mv→a(xv) (3.34)
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The factor graph gives an alternative representation of the Ising model on a ran-

dom graph. Each interaction term becomes a function node and it is represented

by a square vertex, while each spin is represented by a circular variable node (see

Fig. 3.3). In this model every function node has degree two, i.e. each function

node is associated with just one link and connected only to two variable nodes.

Let’s consider the situation pictured in Fig. 3.3. Combining Eq. 3.31 with Eq.

3.32 we find

mi→a(σi) =
∏

b∈N(i)\a

∑
σk
eβσiσkmk→b(σk) (3.35)

where with σk we denote one of the spins connected to σi in the real graph. On

the factor graph this spin σk is linked to σi through a generic function node b.

We modify b ∈ N(i)\a in k ∈ N(i)\j obtaining

mi→a(σi) =
∏

k∈N(i)\j

∑
σk
eβσiσkmk→b(σk) (3.36)

(3.37)

This last equation is equivalent to Zi→j(σi) (see Eq. 3.11). Finally, we use Eq.

3.34 to evaluate p(σi, σj) (see Eq. 3.20), namely,

p(σi, σj) ∝ eβσiσjmi→a(σi)mj→a(σj) (3.38)

in agreement with Eq. 3.20.
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3.4 The BP approach to the maximum matching

problem

The maximum matching problem

The maximum matching problem can be treated by statistical mechanics tech-

niques (Liu et al., 2011; Zdeborová and Mézard, 2006; Altarelli et al., 2011;

Mézard and Parisi, 2001; Martin et al., 2001; Hartmann and Weigt, 2005) such

as the cavity method. As previously introduced, a matching M of a directed

graph is a set of directed edges without common start or end vertices, and it is

maximum when it contains the maximum possible number of edges. The problem

of finding a maximum matching of a directed graph can be cast on a statistical

mechanics problem, by introducing variables sij ∈ {1, 0} on each directed link

from node i to node j, indicating whether the directed link is in M (sij = 1) or

not (sij = 0). The configurations of variables {sij} have to satisfy the following

matching condition,

∑
j∈∂+i

sij ≤ 1,
∑
j∈∂−i

sji ≤ 1, (3.39)

where ∂−i indicates the set of nodes j that point to node i in the directed network,

and ∂+i indicates the set of nodes j that are pointed by node i (see Fig. 3.6).

If these constraints are satisfied each node i of the network has at most one

in-coming link that is matched, (i.e. one neighbour j ∈ ∂−i such that sji = 1)

and at most one outgoing link (one neighbour j ∈ ∂+i such that sij = 1) that is
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matched. Moreover the variables {sij} should minimise the energy function

E = 2
N∑
i=1

1−
∑
j∈∂−i

sji


=

N∑
i=1

1−
∑
j∈∂−i

sji

 +
N∑
i=1

1−
∑
j∈∂+i

sij


= 2ND (3.40)

= 2(N − |M |) (3.41)

where ND is the number of unmatched nodes in the network and this number

also determines the minimum number of driver nodes required to fully control

the network. |M | is the cardinality of the matching M and is also equal to the

number of matched nodes: each one of these nodes is associated to an ending

vertex of a matched link. Moreover, we remark

N∑
i=1

∑
j∈∂−i

sji =
N∑
i=1

∑
j∈∂+i

sij = |M | (3.42)

The β →∞ limit corresponds to the ground state, in other words the situation

in which the matching is maximum and the number of driver nodes is minimum.

We aim at finding the distribution P ({sij}) given by

P ({sij}) = e−βE

Z

N∏
i=1

θ

1−
∑
j∈∂+i

sij


×

N∏
i=1

θ

1−
∑
j∈∂−i

sji

 (3.43)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0 and where Z is the normalization

constant, that corresponds to the partition function of the statistical mechanics

problem. In particular our goal is to find this distribution in the limit β → ∞
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i 

∂
+
i

∂
−
i

sij ≤ 1
j∈∂+i
∑

s ji ≤ 1
j∈∂−i
∑

Figure 3.6: Once fixed node i we define two sets: the first one is ∂−i and it
gathers all those nodes pointing to node i; the second one is ∂+i
and it indicates all those nodes pointed by node i. To each link
we associate a variable sij or sji depending on the direction of the
considered edge. For instance, let’s consider a generic link i→ j: the
related variable sij is 1 if i→ j belongs to the matching, 0 otherwise.

in order to characterise the optimal (i.e. the maximum-sized) matching in the

network. The free-energy density of the problem f(β) is defined as

βNf(β) = − lnZ, (3.44)

and the energy of the problem is therefore given by

E = ∂[βNf(β)]
∂β

. (3.45)
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3.4.1 The BP equations

The distribution P ({sij}) on a locally tree-like network can be solved by the

BP message passing method by finding the messages that nearby nodes sent

to each other. In Zdeborová and Mézard (2006) the problem of matching in

undirected random networks was solved using a factor graph: each node of the

original network becomes a function node and each link is represented by a vari-

able node. This representation is easily explained: the matching variables (i.e

sij) are associated with the links of network but the constraint functions (simi-

lar to Eqs. 3.39) and the Boltzmann factor work in the neighbourhood of each

original node.

Moreover, a generic link ` = (i, j) has always degree 2, meaning that it has a con-

nection only with function node i and function node j, and no further constraints

are applied to this variable node. For this link then, the outgoing message to

function node j is equivalent to the incoming message from function node i i.e.

m`→j(s`) = mi→`(s`) (see Eq. 3.31). The formalism used in Zdeborová and

Mézard (2006) is then rearranged in messages running only between couples of

function nodes, i.e. for node i and j we get mi→j(sij) and mj→i(sij).

For the particular case of directed graphs we distinguish between messages going

in the direction of the link, mi→j(sij), and messages going in the opposite direc-

tion of the link, m̂i→j(sji). Moreover, as explained by Eqs. 3.39, the neighbour-

hood of each node ∂i is divided in ∂+i and ∂−i. We are going to use normalised

messages as in the custom, i.e. Pi→j(sij) and P̂i→j(sji). Following directly from
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Eqs. 3.31, 3.32, the BP equations for these messages read

Pi→j(sij) = 1
Di→j

∑
{sik}|k∈∂+i\j

θ

1−
∑

k∈∂+i

sik


× exp

−β
1−

∑
k∈∂+i

sik


×

∏
k∈∂+i\j

P̂k→i(sik),

P̂i→j(sji) = 1
D̂i→j

∑
{ski}|k∈∂−i\j

θ

1−
∑

k∈∂−i
ski


× exp

−β
1−

∑
k∈∂−i

ski


×

∏
k∈∂−i\j

Pk→i(ski), (3.46)

where Di→j and D̂i→j are normalisation constants. At function node i for mes-

sages Pi→j(sij) we apply the function

f+
i (s{ik}, k ∈ ∂+i) = θ

1−
∑

k∈∂+i

sik

 exp
−β

1−
∑

k∈∂+i

sik

 (3.47)

while for messages P̂i→j(sji) we consider the function

f−i (s{ki}, k ∈ ∂−i) = θ

1−
∑

k∈∂−i
ski

 exp
−β

1−
∑

k∈∂−i
ski

 (3.48)

Similarly to Eqs. 3.16, 3.19, the messages {Pi→j(sij), P̂i→j(sji)} can be parametrised

by the cavity fields hi→j and ĥi→j defined by

Pi→j(1)
Pi→j(0) = eβhi→j P̂i→j(1)

P̂i→j(0) = eβĥi→j (3.49)
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and, thank to the normalisation condition, rearranged in

Pi→j(sij) = eβhi→jsij

1 + eβhi→j
= eβhi→jsijPi→j(0) (3.50)

P̂i→j(sji) = eβĥi→jsji

1 + eβĥi→j
= eβĥi→jsjiP̂i→j(0) (3.51)

In terms of the cavity fields, Eqs. 3.46 reduce to the following set of equations,

hi→j = −1
β

log
e−β +

∑
k∈∂+i\j

eβĥk→i

 ,
ĥi→j = −1

β
log

e−β +
∑

k∈∂−i\j
eβhk→i

 . (3.52)

that were first derived in Liu et al. (2011) for this problem. These last equations

follow from Eqs. 3.46 introducing Eqs 3.50, 3.51, namely

Pi→j(0) = 1
Di→j

e−β +
∑

k∈∂+i\j
eβĥk→i

 ∏
k∈∂+i\j

P̂k→i(0)

Pi→j(1) = 1
Di→j

∏
k∈∂+i\j

P̂k→i(0)

P̂i→j(0) = 1
D̂i→j

e−β +
∑

k∈∂−i\j
eβhk→i

 ∏
k∈∂−i\j

Pk→i(0)

P̂i→j(1) = 1
D̂i→j

∏
k∈∂−i\j

Pk→i(0)

and finally considering Eqs. 3.49.

In the Bethe approximation, in a similar way to Eq. 3.21, the probability distri-

bution P ({sij}) is given by

PBethe({sij}) =
N∏
i=1

Pi(Si)
 ∏
<i,j>

Pij(sij)
−1

(3.53)
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where Pi(Si) and Pij(sij) are the marginal distribution over the nodes and the

links of the network, that can be computed in terms of the cavity messages

Pi→j(sij), P̂i→j(sji), or equivalently in terms of the cavity fields hi→j and ĥi→j. In

particular, Si = (s{ik}, k ∈ ∂+i)∪ (s{ki}, k ∈ ∂−i) and Pi(Si) follows the marginal

distribution for function nodes (see Eq. 3.34). The variable node sij follows

instead the marginal probability given by Eq. 3.33. The marginal probabilities

read

Pi(Si) = e
−β[(1−

∑
k∈∂+i

sik)+(1−
∑
k∈∂−i

ski)]

Ci
(3.54)

×θ
1−

∑
k∈∂+i

sik

 θ
1−

∑
k∈∂−i

ski


×

∏
k∈∂+i

P̂k→i(sik)
∏

k∈∂−i
Pk→i(ski)

Pij(sij) = 1
Cij
Pi→j(sij)P̂j→i(sij) (3.55)

where Ci and Cij are normalization constant given by

Ci =
e−β +

∑
k∈∂+i

eβĥk→i
e−β +

∑
k∈∂−i

eβhk→i


×
∏

k∈∂+i

P̂k→i(0)
∏

k∈∂−i
Pk→i(0) (3.56)

Cij = (1 + eβ(hi→j+ĥj→i))Pi→j(0)P̂j→i(0). (3.57)
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3.4.2 Free energy and energy of the problem

The free energy of the problem can be found by evaluating the Gibbs free

energy FGibbs given by

βFGibbs =
∑
{sij}

P ({sij}) log
 P ({sij})
e−βEψ({sij})

 (3.58)

This function assumes its minimal value − logZ when P ({sij}) = P ({sij})B =

e−βEψ({sij})/Z, where ψ({sij}) indicates the constraints

ψ({sij}) =
N∏
i=1

θ
1−

∑
j∈∂+i

sij

 θ
1−

∑
j∈∂−i

sji

 . (3.59)

and P ({sij})B is the classical Boltzmann’s law. From the point of view of In-

formation theory, minimising the Gibbs free energy is equivalent to evaluate the

minimum of a Kullback-Leiber distance between P ({sij})B and a trial distribu-

tion P ({sij}), i.e.

D(P ({sij})||P ({sij})B) =
∑
{sij}

P ({sij}) log P ({sij})
P ({sij})B

(3.60)

In Bethe approximation, in a situation of in which our graph is singly connected,

we can use Eq. 3.53, and the related Eqs. 3.54, 3.55. The fixed-point solutions

of the BP equations 3.46, when the graph has no loops, determine the exact

marginal probabilities. We express then P ({sij})B in terms of Eq. 3.53, that

implies

Z =
∏
i Ci∏

<i,j> Cij
(3.61)

140



3 Control Theory

From the previous equations we can write the Gibbs free energy as

βFBethe =
∑
<i,j>

log(Cij)−
N∑
i=1

log(Ci). (3.62)

Inserting Eqs. 3.56, 3.57 into 3.62, we obtain the free energy of this matching

problem, given by Liu et al. (2011), i.e.

βNf(β) = −
N∑
i=1

e−β +
∑

k∈∂+i

eβĥk→i


−
N∑
i=1

e−β +
∑

k∈∂−i
eβhk→i


+

∑
<i,j>

ln
(
1 + eβ(hi→j+ĥj→i)

)
. (3.63)

Using Eq.3.45 we get the energy

E =
N∑
i=1

e−β − ∑
k∈∂+i ĥk→ie

βĥk→i

e−β + ∑
k∈∂+i e

βĥk→i


+

N∑
i=1

e−β − ∑
k∈∂−i hk→ie

βhk→i

e−β + ∑
k∈∂−i e

βhk→i


+

∑
<i,j>

(hi→j + ĥj→i)eβ(hi→j+ĥj→i)

1 + eβ(hi→j+ĥj→i)
. (3.64)

3.4.3 The β →∞ limit

In the β → ∞ limit, the energy of a maximum matching can be written as

follows

E = −
N∑
i=1

max
[
−1,max

k∈∂+i
ĥk→i

]
−

N∑
j=1

max
[
−1,max

k∈∂−i
hk→i

]

+
∑
<i,j>

max
[
0, hi→j + ĥj→i

]
(3.65)
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in which for each directed link (i, j) the cavity fields {hi→j, ĥi→j} satisfy the

zero-temperature Belief Propagation equations, also known as Max-Sum (MS)

equations,

hi→j = −max
[
−1, max

k∈∂+i\j
ĥk→i

]
, (3.66a)

ĥi→j = −max
[
−1, max

k∈∂−i\j
hk→i

]
, (3.66b)

where in these equations when node i has only one outgoing link pointing to

node j, i.e. |∂+i| = 1 we assume hi→j = 1; similarly, when node i has only

one incoming link coming from node j, i.e. |∂−i| = 1 we assume ĥi→j = 1. In

the infinite size limit, the MS equations are closed for cavity fields with support

either on {−1, 1} or on {−1, 0, 1} (Zdeborová and Mézard, 2006; Liu et al.,

2011; Altarelli et al., 2011). When multiple solutions coexist, the dynamically

stable solutions of minimum energy are the correct solutions of the maximum

matching problem. As previously explained, the fields are sent in the same

direction hi→j or in the opposite direction ĥi→j of the links and indicate the

following messages (Zdeborová and Mézard, 2006): hi→j = ĥi→j = 1 indicates

match me, hi→j = ĥi→j = −1 indicates do not match me, finally hi→j = ĥi→j = 0

indicates do what you want.

3.4.4 BP/MS Equations in an ensemble of random networks

with given degree distribution

Eq. 3.64 holds on a single directed graph. We can go further and calculate

the average energy density over an ensemble of networks with given P (kin, kout).

This situation is similar to the previous one related to the Ising model on random
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graphs (see Sec. 3.3.1). The self-consistent equations in this case read

P(h) =
∞∑

kin=0

∞∑
kout=1

kout
〈kout〉

P (kin, kout)
∫ kout−1∏

i

dĥiP̂(ĥi)δ
h+ 1

β
log

e−β +
kout−1∑

i

eβĥi


=
∞∑

kout=1

kout
〈kout〉

P (kout)
∫ kout−1∏

i

dĥiP̂(ĥi)δ
h+ 1

β
log

e−β +
kout−1∑

i

eβĥi


P̂(ĥ) =
∞∑

kin=1

∞∑
kout=0

kin
〈kin〉

P (kin, kout)
∫ kin−1∏

i

dhiP(hi)δ
ĥ+ 1

β
log

e−β +
kin−1∑
i

eβhi


=
∞∑

kin=1

kin
〈kin〉

P (kin)
∫ kin−1∏

i

dhiP(ĥi)δ
ĥ+ 1

β
log

e−β +
kin−1∑
i

eβhi


These equations are solved numerically by the algorithm of population dynamics,

with a philosophy similar to Sec. 3.3.1. In the limit β →∞ in which we look for

the optimal matching we have that these distributions can be written as a sum

of three delta functions, i.e.

P(h) = w1δ(h− 1) + w2δ(h+ 1) + w3δ(h)

P̂(ĥ) = ŵ1δ(ĥ− 1) + ŵ2δ(ĥ+ 1) + ŵ3δ(ĥ), (3.67)

where the variables {w1, w2, w3} and the variables {ŵ1, ŵ2, ŵ3} must satisfy the

following normalisation conditions, w1 + w2 + w3 = 1 and ŵ1 + ŵ2 + ŵ3 = 1.

The MS equations 3.66 can be written as equations for the set of probabilities
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{w}, {ŵ} obtaining

w1 =
∑
k

k

〈k〉out
P out(k)(ŵ2)k−1

w2 =
∑
k

k

〈k〉out
P out(k)

[
1− (1− ŵ1)k−1]

ŵ1 =
∑
k

k

〈k〉in
P in(k)(w2)k−1

ŵ2 =
∑
k

k

〈k〉in
P in(k)

[
1− (1− w1)k−1] , (3.68)

with w3 = 1 − w1 − w2 and ŵ3 = 1 − ŵ1 − ŵ2. Moreover, the energy given by

Eq. 3.64 in the β →∞ can be expressed in terms of the distributions {wi} and

{ŵi} obtaining,

E

N
=

∑
k

P out(k)
{
(ŵ2)k −

[
1− (1− ŵ1)k

]}
∑
k

P in(k)
{
(w2)k −

[
1− (1− w1)k

]}
+〈k〉in [ŵ1(1− w2) + w1(1− ŵ2)] . (3.69)

In other words, the fraction of driver nodes nD = E/(2N) in the network can

be simply expressed in terms of the distributions {wi} and {ŵi}. Eqs. 3.68 can

have multiple solutions for the variables {wi} and {ŵi}. In order to select the

correct solution of the matching problem one should ensure that the following

three conditions are satisfied.

i) The sets {wi} and {ŵi} must indicate two probability distributions;

ii) The solution should be stable: The solution of the system of Eqs. 3.68 should

be stable under small perturbation of the values of the distributions {wi} and

{ŵi}.

iii) Find the optimal stable solution: If the system of Eqs. 3.68 has more than
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one solution that satisfies both conditions i) and ii), in order to find the optimal

matching one should select the solution with lowest energy E (when T = 0 the

message passing algorithm could give spurious solutions; we verified the agree-

ment of the results given by the Hopcroft-Karp algorithm with the stable solu-

tions with lowest energy).

3.5 Controllability and minimal degrees

Liu et al. (2011) characterise in detail the set of driver nodes for real networks

and for ensembles of networks with given in-degree and out-degree distribution.

By analysing scale-free networks with minimum in-degree and minimum out-

degree equal to 1 they have found that the smaller is the power-law exponent

γ of the degree distribution, the larger is the fraction of driver nodes in the

network. This result has prompted the authors of Liu et al. (2011) to say that the

higher is the heterogeneity of the degree distribution, the less controllable is the

network. In this section we explore the role of low in-degree and low out-degree

nodes in the controllability of networks. In the following, we show how changing

the fraction of nodes with in-degree and out-degree less than 3, conditions the

number of driver nodes of a network in a dramatic way. In particular, if the

minimum in-degree and the minimum out-degree of a network are both greater

than 2 then any network, independently on the level of heterogeneity of the degree

distribution, is fully controllable by an infinitesimal fraction of nodes. Therefore

the heterogeneity of the network is not the only element determining the number

of driver nodes in the network and that this number is very sensible on the

fraction of low in-degree low out-degree nodes of the network. This result allows
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us to propose a method to improve the controllability of networks by decreasing

the density of nodes with in-degree and out-degree less than 3, adding links to

the network.

3.5.1 Sufficient condition for the full controllability of

networks

Let us now show that for any network topology if the in-degree and the out-

degree of the network is greater than 2 the fraction of driver nodes is zero. First

we observe that the configuration in which all fields are zero , i.e. hi→j = ĥi→j =

0, is an allowed solution of the Eqs. 3.66a, 3.66b as soon as the minimum in-degree

and minimum out-degree equal to 1. In fact if a node has in-degree 1 this link

must be matched, and a similar situation occurs for the nodes with out-degree 1,

generating a set of hard constraints incompatible with the configuration in which

all the fields are zero, while if the minimum in-degree or out-degree of the network

is greater than 1, all the nodes can be matched in a variety of ways therefore all

the fields can be equal to zero. This solution corresponds to a fraction of driver

nodes nD = 0 if the minimum in-degree and the minimum out-degree are greater

than 1. This solution is also stable if, when we change a single field from zero to

a value different from zero, the perturbation does not propagate in the network.

Suppose that ĥk→i is changed, say, from 0 to 1, meaning that the message is

match me, then all the nodes j ∈ ∂+i neighbor of i and different from k receive

a message do not match me. But if all the nodes j have more than 2 incoming

links, also if the link (j, k) is not matched they can still send to their incoming

neighbors the messages do what you want since there are different ways in which

the matching can be achieved and they do not have to impose to any of their
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Figure 3.7: Heat map representing the density of driver nodes nD as a function
of the parameters P (1) and P (2) for networks of N = 106 nodes with
degree distribution given by Eq. 3.71 and γ = 2.1 (left), 3.1 (right).
The density nD is obtained by numerically solving the BP/MS equa-
tions for an ensemble of networks with given degree distribution. The
region in which P (1) + P (2) > 1 is non-physical.

other links to be matched. Therefore the perturbation does not propagate in the

network. A similar argument holds for a change of the field hk→i to 1 which does

not propagate if the out-degree of the network is greater than 2. This stability

argument shows that for every tree-like network for which the BP/MS equations

are valid, if the in-degree and the out-degree of the network is greater than 2 then

the density of driver nodes is nD = 0. Note that this a sufficient condition for

the stability of the nD = 0 solution but more stringent conditions are discussed

in the following for networks with given degree distribution.
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3.5.2 Conditions for the full controllability of random

networks

In the following we focus on ensembles of random networks with given in-

degree and out-degree distribution P in(k) and P out(k). In this case, it is possible

to write the BP/MS equations and the energy in terms of the probabilities wi ∈

[0, 1] and ŵi ∈ [0, 1] with i = 1, 2, 3 that the cavity fields hi→j and ĥi→j are

respectively given by {1,−1, 0}. From the BP/MS equations of the matching

problem on random networks with given degree distribution, we found that the

solution nD = 0 is allowed if and only if P in/out(0) = P in/out(1) = 0. The

replica-symmetric cavity equations are supposed to give the correct solution to

the maximum matching problem if no instabilities take place. By analysing the

stability condition of the BP/MS equations, we find that the stability conditions

for this solution in an ensemble of networks with given in-degree and out-degree

sequence, are

P out(2) < 〈k〉in2

2〈k(k − 1)〉in
, P in(2) < 〈k〉in2

2〈k(k − 1)〉out
. (3.70)

In particular when the minimum in-degree and the minimum out-degree of scale-

free networks are both greater than 2, i.e. P in/out(0) = P in/out(1) = P in/out(2) =

0, the fraction of driver nodes is zero in the thermodynamic limit, for any choice

of the degree distribution with this property. By changing the minimum in-

degree and minimum out-degree of the network the number of driver nodes can

change dramatically, independently of the tail of the degree distribution and the

level of degree heterogeneity.

In order to use the above calculation to estimate the role of low-degree nodes on
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Figure 3.8: Phase diagram of the density of driver nodes nD as a function of
the parameters γ and P (2) for networks of N = 106 nodes with
degree distribution given by Eq. (3.71 and P (1) = 0. The density
nD is obtained by numerically solving the BP/MS equations for an
ensemble of networks with given degree distribution. The solid lines
indicate the stability lines for N = 106, the dotted lines indicate the
stability lines in the limit N →∞.
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the fate of the zero-energy solution in finite networks, we consider uncorrelated

random graphs with the following power-law degree distribution

P in(k) = P out(k) =



P (1) if k = 1

P (2) if k = 2

Ck−γ if k ∈ [3, K]

(3.71)

with C a constant determined by normalization and maximum degree

K = min(
√
N, {[1− P (1)− P (2)]N}1/(γ−1)) γ > 2

K = min(N 1/γ, {[1− P (1)− P (2)]N}1/(γ−1)) γ ∈ (1, 2]

that is the minimum between the structural cutoff (Boguñá et al., 2004; Seyed-

Allaei et al., 2006) of the network and the natural cutoff of the degree distribution.

These networks can be generated numerically using the configuration model. As

long as P (1) = P (2) = 0, the density of driver nodes goes to zero (nD → 0)

for any exponent γ > 1. More generally, the density nD of driver nodes changes

dramatically as a function of P (1) and P (2) as shown by the heat map in Fig. 3.7

for γ = 2.1, 3.1. Moreover, in Fig. 3.8, we plot the phase diagram for P (1) = 0

indicating the region where the solution nD = 0 is stable both for a finite network

of N = 106 nodes (white solid line) and for N → ∞ (white dotted line). Note

that, for γ ∈ (2, 3], stability line converges quite slowly to zero in the infinite size

limit.

A confirmation of the validity of this scenario is reported in Fig. 3.9 from a

direct comparison of the theoretical results in the ensemble of networks with given

degree distribution, with those obtained by the BP algorithm or by computing
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Figure 3.9: Density of driver nodes nD as a function of P (2) for in-degree and
out-degree distributions as in Eq. 3.71 with P (1) = 0 and γ = 2.3.
The fraction of driver nodes computed with the BP/MS algorithm on
a network of N = 104 nodes (averaged over 50 network realizations)
is compared with the exact results obtained using the Hopcroft-Karp
algorithm for maximum matching (Hopcroft and Karp, 1973) and
with the theoretical expectation for the density nD in an ensemble of
random networks with the same degree distribution.

explicitly the maximum matching using the Hopcroft-Karp algorithm (Hopcroft

and Karp, 1973) finding very good agreement. Fig. 3.9 also shows that nD

vanishes by decreasing P (2). From our numerical results (see Sec. 4.3.2), in the

region in which the solution nD = 0 is stable and we are far from the stability

transition, both algorithms give a zero number of driver nodes ND = 0, meaning

that all the nodes are matched, and therefore a single external input can be used

to control the network.
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3.5.3 Improving the controllability of a network

These results suggest a simple and very effective way to improve the control-

lability of a network, by decreasing the fraction of nodes with in-degree and

out-degree equal to 0, 1 and 2. Starting from a network with given degree dis-

tribution, we first add links starting from any node of out-degree equal to 0 (if

present in the network) and randomly attached to any other node of the net-

work, or starting from any random node of the network and ending to nodes of

in-degree 0. When there are no more nodes with in-degree or out-degree equal

to 0, we repeat the process of random addition of links to nodes with in-degree

or out-degree equal to 1 and 2. At the end of the process the minimum in-degree

of the network and the minimum out-degree is equal to 3.

Fig. 3.10A shows the reduction in the fraction of driver nodes nD(∆L) com-

pared to the original one nD(0) due to the addition of a fraction ∆L/L0 of directed

links to a network with pure power-law degree distribution and structural cutoff.

It is clear that by lowering the ratio of low in-degree and low out-degree nodes

it is possible to reach full controllability of the network. However this can be

costly, since for a given network the number of links that need to be added can

be a significant fraction of the initial number of links. Nevertheless, by means

of this link-addition process, the number of driver nodes decreases steadily and,

for example, in the case considered in Fig. 3.10 the number of driver nodes is

decreased by 50% just by adding a 12% of links. Finally we have measured how

other properties of the network change during this procedure, observing that the

clustering coefficient does not change significantly while the average distance de-

creases. In Sec.4.3.3 we give an example in which this procedure is much more

efficient: we consider a network with the previous number of nodes and initial
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Figure 3.10: Fraction of driver nodes nD(∆L)/nD(0) (panel A), average cluster-
ing coefficient 〈C〉 and average distance 〈l〉 (panel B) of the network
as a function of the fraction of added links to low degree nodes.
The results are obtained from the BP/MS algorithm. The initial
network is a power-law network with in-degree distribution equal to
the out-degree distribution, N = 104 nodes, and power-law expo-
nent γ = 2.3. The symbol ∆L indicates the number of added links
to the network, whereas L0 indicates the initial number of links of
the network.

average degree, but with the degree distributions with a power-law exponent

γ = 3. Note that this procedure can also be applied to networks with other

degree distributions as Poisson networks (Sec 4.3.5).
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3.6 Controllability of multiplex networks

In this section our purpose is the extension of the concept of structural con-

trollability to multiplex networks, thoroughly described in Ch. 2. This section

describes the preliminary theoretical work requested for the data analysis that

we are currently designing.

A multiplex network ~G = (G1, G2, . . . GK) is formed by K networks Gα =

(Vα, Eα) with α = 1, 2, . . . , K describing how the N nodes of the vertex set

Vα interact in each of the layers. We indicate by (i, α) with i = 1, 2 . . . N the

nodes in the set Vα with α = 1, 2, . . . , K and we call replica nodes the nodes

(i, α) with fixed value of i and different value of α. Our goal is to find the min-

imal number of driver nodes that need to be stimulated by independent signals

in order to drive the dynamical state of the multiplex network to any desired

state. Moreover, we impose that the independent external signals are applied

only to replica nodes (see Fig. 3.11). This design seems particularly interesting

especially regarding a possible integration of different types of brain networks.

For example, for the same white-matter/grey-matter interface partition we can

have data of diffusion MRI, the so-called “structural brain”, and data coming

from the analysis of functional MRI, also known as “functional brain”.

3.6.1 The structural controllability of a multiplex network

We consider a multiplex networks in which every node i = 1, 2, . . . , N has a

replica node in each layer and every layer is formed by a directed network between

the corresponding replica nodes. We assume that each replica node can have a

different dynamical state and can send different signals in the different networks
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Figure 3.11: Controllability of a duplex network: in the two layers we force the
driver nodes (white nodes) to be the same. Red links define the
matching in each layer.

(each layers is characterised by a different dynamical process). In this case the

controllability of the layers can be treated by control theory methods used for

single layer taken in isolation. Looking back to the definitions of Sec. 3.2, for

each network Gα = (V α, Eα) associated with layer α the dynamical state can be

controlled by applying Mα independent signals to the driver nodes, according to
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the equation

dxα(t)
dt

= Aαxα +Bαuα, (3.72)

in which the vector xα(t), of elements xαi (t) with i = 1, 2, . . . , N , represents the

dynamical state of the network in layer α, Aα is the N ×N state matrix of layer

α, and Bα is the N ×Mα input matrix describing the interaction between the

replica nodes of the layers and Mα ≤ N external signals, indicated by the vector

uα(t) of elements uαµ and µ = 1, 2 . . .Mα. Each layer of the multiplex networks

can be structurally controlled by identifying a minimum number of driver nodes.

Here we make the assumption that in the multiplex network, the driver nodes

must be the same in the different layers supervising the entire multiplex network

at the same time. For the sake of simplicity, we consider a multiplex network

formed by two layers. Finding the driver nodes of the duplex network, can be

mapped to a matching problem where

• every node has at most one matched incoming link

• every node has at most one matched outgoing link

• any two replica nodes either have no matched incoming links on each layer

or have one matched incoming link in each layer

This problem can be studied by statistical mechanics tools on ensemble of

duplex networks and on single duplex network realisations by the use of the cavity

method and the Belief Propagation algorithm providing the minimal number of

driver nodes.
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3.6.2 Mapping to a constraint Maximum Matching Problem

We consider a duplex network with layers α = 1, 2. We impose that the driver

nodes in the two networks are replica nodes and we minimise the number of

driver nodes in the multiplex network. In order to build an algorithm able to

find the driver nodes in the multiplex satisfying our constraint we consider the

variables sαij = 1, 0 indicating respectively if the directed link from node (i, α) to

node (j, α) in layer α = 1, 2 is matched or not.

In the two layer of the multiplex we want to have a matching, i.e. the following

constraints must always be satisfied.

∑
j∈∂α+i

sαij ≤ 1,
∑
j∈∂α−i

sαji ≤ 1. (3.73)

In addition, we have the following constraints

∑
j∈∂[1]

− i

s
[1]
ji =

∑
j∈∂[2]

− i

s
[2]
ji . (3.74)

These condition impose that each node has either two unmatched replicas or two

matched replicas in the two networks of the duplex. We consider the energy of

the problem E(β) given by

E(β) =
∑
α

∑
i

1−
∑
j∈∂α−i

sαji


=

∑
α

∑
i

Eα
i , (3.75)
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considering now

Eα
i = 1−

∑
j∈∂α+i

sαij. (3.76)

3.6.3 BP Equations

In Sec. 3.4 we gave the general formalism of the cavity method for the matching

problem over single directed graph and the related generalisation to an ensemble

of networks. The Boltzmann distribution P ({sij}) for this problem is given by

P ({sij}) = e−βE

Z

∏
α

N∏
i=1

θ

1−
∑
j∈∂α+i

sαij


×
∏
α

N∏
i=1

θ

1−
∑
j∈∂α−i

sαji



×δ

 ∑
i∈∂[1]
− j

s
[1]
ij ,

∑
i∈∂[2]
− j

s
[2]
ij

 . (3.77)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0 , δ(x) is the Kronecker delta,

and where Z is the usual partition function of the statistical mechanics prob-

lem. Subsequently, we perform the limit β → ∞ in order to characterise the

maximum-sized matching in the two layers, enforcing Eqs. 3.73, 3.74. The dis-

tribution P ({sij}) on a locally tree-like network can be solved by the BP message

passing method by finding the messages that nearby nodes sent to each other.

In particular we distinguish between messages that in layer α are going in the

direction of the link, P α
i→j(sij), and the messages that in layer α are going in the

opposite direction of the link, P̂ α
i→j(sji). We have then four types of messages

and their BP equations are
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P
[1]
i→j(s

[1]
ij ) = 1

D[1]
i→j

∑
{s[1]
ik }|k∈∂

[1]
+ i\j

∑
{s[2]
ik }|k∈∂

[2]
+ i

θ
1−

∑
k∈∂[1]

+ i

s
[1]
ik



θ

1−
∑

k∈∂[2]
+ i

s
[2]
ik

 exp

−β
1−

∑
k∈∂[1]

+ i

s
[1]
ik


 exp

−β
1−

∑
k∈∂[2]

+ i

s
[2]
ik




∏
k∈∂[1]

+ i\j
P̂

[1]
k→i(s

[1]
ik )

∏
k∈∂[2]

+ i

P̂
[2]
k→i(s

[2]
ik )

 ,

P
[2]
i→j(s

[2]
ij ) = 1

D[2]
i→j

∑
{s[2]
ik }|k∈∂

[2]
+ i\j

∑
{s[1]
ik }|k∈∂

[1]
+ i

θ
1−

∑
k∈∂[2]

+ i

s
[2]
ik



θ

1−
∑

k∈∂[1]
+ i

s
[1]
ik

 exp

−β
1−

∑
k∈∂[2]

+ i

s
[2]
ik


 exp

−β
1−

∑
k∈∂[1]

+ i

s
[1]
ik




∏
k∈∂[2]

+ i\j
P̂

[2]
k→i(s

[2]
ik )

∏
k∈∂[1]

+ i

P̂
[1]
k→i(s

[1]
ik )

 ,

P̂
[1]
i→j(s

[1]
ji ) = 1

D̂[1]
i→j

∑
{s[1]
ki }|k∈∂

[1]
− i\j

∑
{s[2]
ki }|k∈∂

[2]
− i

θ
1−

∑
k∈∂[1]

− i

s
[1]
ki



×θ

1−
∑

k∈∂[2]
− i

s
[2]
ki

 δ
 ∑
i∈∂[1]
− j

s
[1]
ij ,

∑
i∈∂[2]
− j

s
[2]
ij



×
∏

k∈∂[1]
− i\j

P
[1]
k→i(s

[1]
ki )

∏
k∈∂[2]

− i

P
[2]
k→i(s

[2]
ki )

 ,

P̂
[2]
i→j(s

[2]
ji ) = 1

D̂[2]
i→j

∑
{s[2]
ki }|k∈∂

[2]
− \j

θ
1−

∑
k∈∂[2]

− i

s
[2]
ki



×
∑

{s[1]
ki }|k∈∂

[1]
− i

θ
1−

∑
k∈∂[1]

− i

s
[1]
ki

 δ
 ∑
i∈∂[1]
− j

s
[1]
ij ,

∑
i∈∂[2]
− j

s
[2]
ij



×
∏

k∈∂[2]
− i\j

P
[2]
k→i(s

[2]
ki )

∏
k∈∂[1]

− i

P
[1]
k→i(s

[1]
ki )


 (3.78)
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where Dαi→j and D̂αi→j are normalisation constants. Similarly to Eqs. 3.49 pre-

viously defined for a single network, the messages {P α
i→j(sαij), P̂ α

i→j(sαji)} can be

parametrised by the cavity fields hi→j and ĥi→j, defined by

Pαi→j(1)
Pαi→j(0) = eβh

α
i→j

P̂αi→j(1)
P̂αi→j(0) = eβĥ

α
i→j (3.79)

and rearranged in

P α
i→j(sαij) = eβh

α
i→js

α
ij

1 + eβh
α
i→j

= eβh
α
i→js

α
ijP α

i→j(0) (3.80)

P̂ α
i→j(sαji) = eβĥ

α
i→js

α
ji

1 + eβĥ
α
i→j

= eβĥ
α
i→js

α
jiP̂ α

i→j(0) (3.81)

In terms of the cavity fields, Eqs. 3.78 reduce to the following set of equations,

hαi→j = −1
β

log
e−β +

∑
k∈∂α+i\j

eβĥ
α
k→i

 ,

ĥ
[1]
i→j = −1

β
log

 1∑
k∈∂[2]

− i
eβh

[2]
k→i

+
∑

k∈∂[1]
− i\j

eβh
[1]
k→i

 ,

ĥ
[2]
i→j = −1

β
log

 1∑
k∈∂[1]

− i
eβh

[1]
k→j

+
∑

k∈∂[2]
− i\j

eβh
[2]
k→i

 ,
(3.82)

These last equations are derived with the usual recipe: they follow from Eqs.
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3.78 introducing Eqs 3.80, 3.81, i.e.

P
[1]
i→j(0) = 1

D[1]
i→j

e−β +
∑

k∈∂+i[1]\j
eβĥ

[1]
k→i

 ∏
k∈∂+i[1]\j

P̂
[1]
k→i(0)

×
e−β +

∑
k∈∂+i[2]\j

eβĥ
[2]
k→i

 ∏
k∈∂+i[2]\j

P̂
[2]
k→i(0)

P
[1]
i→j(1) = 1

D[1]
i→j

∏
k∈∂+i[1]\j

P̂
[1]
k→i(0)

e−β +
∑

k∈∂+i[2]\j
eβĥ

[2]
k→i

 ∏
k∈∂+i[2]\j

P̂
[2]
k→i(0)

P
[2]
i→j(0) = 1

D[2]
i→j

e−β +
∑

k∈∂+i[2]\j
eβĥ

[2]
k→i

 ∏
k∈∂+i[2]\j

P̂
[2]
k→i(0)

×
e−β +

∑
k∈∂+i[1]\j

eβĥ
[1]
k→i

 ∏
k∈∂+i[1]\j

P̂
[1]
k→i(0)

P
[2]
i→j(1) = 1

D[2]
i→j

∏
k∈∂+i[2]\j

P̂
[1]
k→i(0)

e−β +
∑

k∈∂+i[1]\j
eβĥ

[1]
k→i

 ∏
k∈∂+i[1]\j

P̂
[1]
k→i(0)

P̂
[1]
i→j(0) = 1

D̂[1]
i→j

1 +
∑

k∈∂−i[1]\j
eβh

[1]
k→i

∑
k∈∂−i[2]

eβh
[2]
k→i

 ∏
k∈∂−i[1]\j

P
[1]
k→i(0)

∏
k∈∂−i[2]

P
[2]
k→i(0)

P̂
[1]
i→j(1) = 1

D̂[1]
i→j

∑
k∈∂−i[2]

eβh
[2]
k→i

∏
k∈∂−i[1]\j

P
[1]
k→i(0)

∏
k∈∂−i[2]

P
[2]
k→i(0)

P̂
[2]
i→j(0) = 1

D̂[2]
i→j

1 +
∑

k∈∂−i[2]\j
eβh

[2]
k→i

∑
k∈∂−i[1]

eβh
[1]
k→i

 ∏
k∈∂−i[2]\j

P
[2]
k→i(0)

∏
k∈∂−i[1]

P
[1]
k→i(0)

P̂
[2]
i→j(1) = 1

D̂[2]
i→j

∑
k∈∂−i[1]

eβh
[1]
k→i

∏
k∈∂−i[2]\j

P
[2]
k→i(0)

∏
k∈∂−i[1]

P
[1]
k→i(0)

and finally considering Eqs. 3.79. The equations for P α
i→j(sαij) clearly factorise in

two terms, one for each layer.

For our model the Bethe approximation of the probability distribution P ({sij})

reads

P duplex
Bethe ({sij}[1], {sij}[2]) =

∏N
i=1 Pi(S

[1],+
i )Pi(S [2],+

i )Pi(S [1],−
i , S

[2],−
i )(∏

<i,j> Pij(s[1]
ij )Pij(s[2]

ij )
) (3.83)
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where Pi(S [α],+
i ) is the marginal distribution over node i considering everything

that is pointed by i in layer α, while Pi(S [1],−
i , S

[2],−
i ) is the marginal distribution

for node i taking into account everything that points to i in both layers. Finally,

Pij(sαij) is the usual marginal distribution over link (i, j) in layer α. The explicit

expressions for these marginal probabilities read

Pi(S [α],+
i ) = 1

C+,α
i

exp

−β
1−

∑
k∈∂[α]

+ i

s
[α]
ik


θ

1−
∑

k∈∂α+i
sαik

 ∏
k∈∂+i[α]

P̂
[α]
k→i(s

[α]
ik )

Pi(S [1],−
i , S

[2],−
i ) = 1

C−i
θ

1−
∑

j∈∂[1]
− i

s
[1]
ji

 θ
1−

∑
j∈∂[2]

− i

s
[2]
ji

 δ
 ∑
i∈∂[1]
− j

s
[1]
ij ,

∑
i∈∂[2]
− j

s
[2]
ij


×

∏
k∈∂−i[1]

P
[1]
k→i(s

[1]
ki )

∏
k∈∂−i[2]

P
[2]
k→i(s

[2]
ki )

Pij(sαij) = 1
Cαij
P α
i→j(sαij)P̂ α

j→i(sαij) (3.84)

where C+,α
i , C−i , and Cαij are normalisation constant given by

C+,α
i =

e−β +
∑

k∈∂+iα
eβĥ

α
k→i

 ∏
k∈∂+iα

P̂ α
k→i(0)

C−i =
1 +

∑
k∈∂−i[1]

eβh
[1]
k→i

∑
k∈∂−i[2]

eβh
[2]
k→i

 ∏
k∈∂−i[1]

P
[1]
k→i(0)

∏
k∈∂−i[2]

P
[2]
k→i(0)

Cαij = (1 + eβ(hαi→j+ĥαj→i))P α
i→j(0)P̂ α

j→i(0). (3.85)

The free energy βF = − logZ is then computed following the expression of

the partition function Z by means of the normalisation constants, namely

Z =
∏
i C+,[1]

i C+,[2]
i C−i∏

〈i,j〉 C
[1]
ij C

[2]
ij

(3.86)
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The free energy reads

− βF =
∑
α

N∑
i=1

ln
e−β +

∑
k∈∂α+i

eβĥ
α
k→i




+
∑

i=1,N
ln
1 +

∑
k∈∂A−i

eβh
A
k→i

∑
k′∈∂B− i

eβh
B
k′→i


−
∑
α

∑
<i,j>α

ln
(
1 + eβ(hαi→j+ĥαj→i)

)
, (3.87)

Finally, the energy E = ∂βF
∂β of the model is given by

E =
∑
α

N∑
i=1

e−β −
∑
k∈∂α+i ĥ

α
k→ie

βĥαk→i

1 + ∑
k∈∂α+i e

βĥαk→i



−
N∑
i=1

∑
k∈∂[1]

− i
h

[1]
k→ie

βh
[1]
k→i

∑
k′∈∂[2]

− i
eβh

[2]
k′→i

1 + ∑
k∈∂[1]

− i
eβh

[1]
k→i

∑
k′∈∂[2]

− i
eβh

[2]
k′→i

−
N∑
i=1

∑
k∈∂[1]

− i
h

[1]
k→ie

βh
[1]
k→i

∑
k′∈∂[2]

− i
h

[2]
k′→ie

βh
[2]
k′→i

1 + ∑
k∈∂[1]

− i
eβh

[1]
k→i

∑
k′∈∂[2]

− i
eβh

[2]
k′→i

+
∑
α

∑
<i,j>α

(hαi→j + ĥαj→i)eβ(hαi→j+ĥαj→i)

1 + eβ(hαi→j+ĥαj→i)
. (3.88)

In the limit β → ∞ the BP or (Max-Sum) equations determining the values of

these fields are given by

hαi→j = −max
{
−1, max

k∈∂+i\j
ĥαk→i

}

ĥ
[1]
i→j = −max

 max
k∈∂[1]

− i\j
h

[1]
k→i,min

0, max
k∈∂[2]

− j
h

[2]
k→i




ĥ
[2]
i→j = −max

 max
k∈∂[2]

− i\j
h

[2]
k→i,min

0, max
k∈∂[1]

− j
h

[1]
k→i


 . (3.89)

These equations close on the set of values {−1, 0, 1} for the fields hαi→j and ĥαi→j.
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The energy E can also be expressed in terms of the fields and is given by

E = −
∑
α

N∑
i=1

max
[
−1,max

k∈∂α+i
ĥαk→i

]

−
N∑
i=1

max
0, max

k∈∂[1]
− i
h

[1]
k→i + max

k∈∂[2]
− i
h

[2]
k→i


+
∑
α

∑
<i,j>

max
[
0, hαi→j + ĥαj→i

]
(3.90)

3.6.4 The limit β →∞

The derivation of Pα(hα) and P̂α(ĥα) for β finite is pretty similar to the pro-

cedures exposed in Sec. 3.4.4. The distribution of the fields over this ensemble

of networks for β →∞ is given by

Pα(hα) = wα
1 δ(hα − 1) + wα

2 δ(hα + 1) + wα
3 δ(hα),

P̂α(ĥα) = ŵα
1 δ(ĥα − 1) + ŵα

2 δ(ĥα + 1) + ŵα
3 δ(ĥα), (3.91)

where the probabilities w1, w2, w3 are normalized w1 + w2 + w3 = 1 as well as

the probabilities ŵ1, ŵ2, ŵ3 that satisfy ŵ1 + ŵ2 + ŵ3 = 1. The BP equations

can be written as equations for the set of probabilities {w[1]}, {ŵ[1]}, {w[2]}, {ŵ[2]}

obtaining
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wα
1 =

∑
kα

kα
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2
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1 − ŵα
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〈k[1]〉in
P in(k[1], k[2])

1− (1− w[1]
1 )k[1]−1 + (1− w[1]

1 )k[1]−1
(
w

[2]
2

)k[2]


ŵ
[2]
1 =

∑
k[1],k[2]

k[2]

〈k[2]〉in
P in(k[1], k[2])

(
w

[2]
2

)k[2]−1 [
1− (1− w[1]

1 )k[1]
]

ŵ
[2]
2 =

∑
k[1],k[2]

k[2]

〈k[2]〉in
P in(k[1], k[2])

1− (1− w[2]
1 )k[2]−1 + (1− w[2]

1 )k[2]−1
(
w

[1]
2

)k[1]


(3.92)

Finally, the energy density in this limit becomes

nD = E

N
=
∑
α

∑
k

P out
α (kα)

{
(ŵα

2 )k
α

−
[
1− (1− ŵα

1 )kα
]}

−
∑

k[1],k[2]
P in(k[1], k[2])[1− (1− w[1]

1 )k[1]][1− (w[2]
2 )k[2]]

−
∑

k[1],k[2]
P in(k[1], k[2])[1− (1− w[2]

1 )k[2]][1− (w[1]
2 )k[1]]

+
∑
α
〈kα〉in [ŵα

1 (1− wα
2 ) + wα

1 (1− ŵα
2 )] (3.93)
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3.6.5 Controllability of uncorrelated multiplex networks with

given in-degree and out-degree distribution

Let us consider the case of uncorrelated duplex networks in which the degree

of the same node in different layers are uncorrelated and there is no significant

overlap of the links. In this case each layer is formed by a network built using

the configuration model. If we define the generating functions,

Gα,in
0 (z) =

∑
k

P in
α (k)zk,

Gα,in
1 (z) =

∑
k

k

〈kα〉
P in
α (k)zk−1,

Gα,out
0 (z) =

∑
k

P out
α (k)zk,

Gα,out
1 (z) =

∑
k

k

〈kα〉
P out
α (k)zk−1, (3.94)

with α = 1, 2, then the BP equations can be rewritten in terms of the probabili-

ties {wα
i }i=1,2,3 and {ŵα

i }i=1,2,3. By means of these generating functions the BP

equation read as in the following
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wα
1 = Gα,out

1 (ŵα
2 ),

wα
2 =

[
1−Gα,out

1 (1− ŵα
1 )
]
,

wα
3 = 1− wα

1 − wα
2 ,

ŵα
3 = 1− ŵα

1 − ŵα
2 ,

ŵ
[1]
1 = G

[1],in
1 (w[1]

2 )
[
1−G[2],in

0 (1− w[2]
1 )

]
,

ŵ
[1]
2 = 1−G[1],in

1 (1− w[1]
1 )

(
1−G[2],in

0 (w[2]
2 )

)
,

ŵ
[2]
1 = G

[2],in
1 (w[2]

2 )
[
1−G[1],in

0 (1− w[1]
1 )

]
,

ŵ
[2]
2 = 1−G[2],in

1 (1− w[2]
1 )

(
1−G[1],in

0 (w[1]
2 )

)
(3.95)

It follows that the density of driver nodes can be rearranged as

nD =
∑
α

{
Gα,out

0 (ŵα
2 )−

[
1−Gα,out

0 (1− ŵα
1 )
]}

−
{
[1−G[1],in

0 (1− w[1]
1 )][1−G[2],in

0 (w[2]
2 )]

+[1−G[2],in
0 (1− w[2]

1 )][1−G[1],in
0 (w[1]

2 )]
}

+
∑
α
〈kα〉in [ŵα

1 (1− wα
2 ) + wα

1 (1− ŵα
2 )] . (3.96)

3.6.6 Phase transition in the controllability of Poisson

multiplex networks

We consider now the case of two Poisson networks with the same in/out average

degree in the two layers. The average in/out degree in the different layers is called
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Figure 3.12: Fraction nD = E/N of driver nodes in a Poisson duplex network
with

〈
k[1]

〉
in

=
〈
k[1]

〉
out

=
〈
k[2]

〉
in

=
〈
k[2]

〉
out

= c, plotted as a func-
tion of the average degree c. The red line is the numerical solution
of Eqs. 3.99 - 3.100. The points indicate the average BP results
obtained over 5 single realisations of the Poisson duplex networks
with average degree c and N = 104. For every point corresponding
to the average BP result, the error bar indicates the interval of one
standard deviation from the mean.
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Figure 3.13: Values of the probabilities {wi}i=1,2,3 and {ŵi}i=1,2,3 for a Poisson
duplex network with

〈
k[1]

〉
in

=
〈
k[1]

〉
out

=
〈
k[2]

〉
in

=
〈
k[2]

〉
out

= c,
plotted as a function of the average degree c. These probabilities
are calculated directly from BP results obtained over 5 single reali-
sations of these duplex networks with average degree c and N = 104.

169



3 Control Theory

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

w

1

w
2

c = 3.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

w

1

w
2

c = 3.22233

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

w

1

w
2

c = 3.3

Figure 3.14: Two directed Poisson networks with the same in/out average degree
in the two layers equal to c and the same driver nodes: plotting Eq.
3.99 and Eq. 3.100 we show a phase transition for c = 3.22.

c. In other words, we have
〈
k[1]

〉
in

=
〈
k[1]

〉
out

=
〈
k[2]

〉
in

=
〈
k[2]

〉
out

= c. In this

case we might assume w[1]
i = w

[2]
i and ŵ

[1]
i = ŵ

[2]
i and then, the BP equations

become

w1 = e−c(1−ŵ2),

w2 =
[
1− e−cŵ1

]
,

w3 = 1− w1 − w2,

ŵ3 = 1− ŵ1 − ŵ2,

ŵ1 = e−c(1−w2) [1− e−cw1
]
,

ŵ2 =
[
1− e−cw1 + e−cw1e−c(1−w2)] .

(3.97)
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Figure 3.15: Phase diagram of the Poisson duplex network with average degrees〈
k[1]

〉
in

=
〈
k[1]

〉
out

= z1 and
〈
k[2]

〉
in

=
〈
k[2]

〉
out

= z2. The colour
code indicates the density of driver nodes nD = E/N in the duplex
network.
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The density of driver nodes is given in this case by

nD = 2
[
e−c(1−ŵ2) − 1 + e−cŵ1

]
− 2[1− e−cw1][1− e−c(1−w2)]

+ 2c [ŵ1(1− w2) + w1(1− ŵ2)] . (3.98)

We can further simplify the BP equations considering only

ŵ1 = e−ce
−cŵ1

[
1− e−ce−c(1−ŵ2)

]
, (3.99)

ŵ2 =
[
1− e−ce−c(1−ŵ2) + e−ce

−c(1−ŵ2)
e−ce

−cŵ1
]
, (3.100)

0 ≤ ŵ1 + ŵ2 ≤ 1

From the solution of these equations it is possible to find out a phase transition

occurring at c = c? where the number of driver nodes nD of the network has a

discontinuity (see Fig. 3.12). The value of the average degree c? at which this

discontinuity occurs, can be found by imposing that the two curves of the plane

ŵ1, ŵ2 given by

ŵ1 = h1(ŵ1, ŵ2) = e−ce
−cŵ1

[
1− e−ce−c(1−ŵ2)

]
(3.101)

ŵ2 = h2(ŵ1, ŵ2) =
[
1− e−ce−c(1−ŵ2) + e−ce

−c(1−ŵ2)
e−ce

−cŵ1
]

(3.102)

(3.103)

for c = c? are tangent to each other at their interception. This point is found by
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imposing that the Eqs. 3.101− 3.102 are satisfied together with the equation

|J | = 0, (3.104)

with J indicating the Jacobian of the system of equations ŵ1 = h1(ŵ1, ŵ2) and

ŵ2 = h2(ŵ1, ŵ2) given by

J =

 1− ∂h1(ŵ1,ŵ2)
∂ŵ1

∂h1(ŵ1,ŵ2)
∂ŵ2

∂h2(ŵ1,ŵ2)
∂ŵ1

1− ∂h2(ŵ1,ŵ2)
∂ŵ2

 .

Imposing that the three Eqs. 3.101− 3.102− 3.104 are simultaneously satisfied,

the solution c? = 3.222326106 is found (see Fig. 3.14). For c < c? we observe

that w3 = ŵ3 = 0. For c > c? we observe a discontinuity in both w3 and ŵ3.

Finally for c > c? since the functions h1(ŵ1, ŵ2) and h2(ŵ1, ŵ2) are analytic, we

observe a singularity of the type

w3 − w?
3 ∝ (c− c?)1/2

ŵ3 − ŵ?
3 ∝ −(c− c?)1/2, (3.105)

showing that this transition has the order parameters w3 and ŵ3 and that is

hybrid (see Fig. 3.13). In fact taking the variations of the Eqs. 3.101 − 3.102

with respect to a change in the value of the average degree c around the value

c = c?, and expanding these equations up to the second order, one observes that

each of the variations δŵ1 = ŵ1 − ŵ?
1 and δŵ2 = ŵ2 − ŵ?

2 are both proportional

to
√
δc = (c − c?)1/2. A similar argument applies to δw1 and δw2. Therefore

the maximum matching problem on multilayer networks can display an hybrid

transition in the case of a duplex formed by two Poisson networks. This hybrid
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phase transition with a square root singularity is in the same universality class

of the emergence of the mutually connected component in multiplex networks

(Buldyrev et al., 2010; Baxter et al., 2012; Boccaletti et al., 2014). We guess

it can indicates that multilayer networks can display an increased fragility to

random damage with respect to single layers, and that abrupt discontinuities

in the number of driver nodes can results for a small change in the multiplex

network topology. Moreover, we considered also duplex networks formed by two

Poisson networks with different average degree, i.e. with
〈
k[1]

〉
in

=
〈
k[1]

〉
out

= z1

and
〈
k[2]

〉
in

=
〈
k[2]

〉
out

= z2 we solved numerically the BP equations in this case.

The phase diagram is shown in Figure 3.8

3.6.7 Dependence on the correlation between low in-degree

and out-degree nodes in the different layers

As we previously showed in Sec. 3.5, the number of low in-degree nodes and

out-degree nodes is able to modulate the number of driver nodes in single layers.

In fact, if the minimum in-degree and out degree are both greater than 2 then

the network is fully controllable. These results derive from stability considera-

tion of the BP equations. Also when considering the multiplex controllability,

and solving the corresponding BP equations, it is important to make stability

considerations in the same way we previously explained for a single network.

We evaluated the criterion for nD = 0 also in this case and we found that the
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stability conditions read

2
〈
k[1](k[1] − 1)

〉
in

〈k[1]〉in
P out

[1] (2)
〈k[1]〉out

< 1

2
〈
k[2](k[2] − 1)

〉
in

〈k[2]〉in
P out

[2] (2)
〈k[2]〉out

< 1. (3.106)

When P in
[1](k) = P out

[1] (k) = P in
[2](k) = P out

[2] (k) = P (k) we have just one stability

criterion for this particular solution and it reads

P (2) < 〈k〉2

2 〈k(k − 1)〉 . (3.107)

recovering the result for a single network with P in(k) = P out(k) (for further

details about the calculations see Sec. 4.4.1).

We made a comparison between the results of Sec. 3.5 regarding the phase di-

agram presented in Fig. 3.8 for power law networks with minimum degree 2, and

the same situation for a duplex network (P in
[1](k) = P out

[1] (k) = P in
[2](k) = P out

[2] (k) =

P (k)). In Fig. 3.16 on the left, we present the results for a duplex network and

on the right, we display the results for two single networks, controlled separately.

As expected, the stability criterion works in the same way for the two systems

but the number of driver nodes needed to control a duplex network is higher.

Controlling a duplex network is then definitely more demanding. In order to

investigate further this situation and the role of low degree nodes in determining

the controllability of a network we consider now correlated duplex networks in

which nodes of low degree in one layer are also likely to be nodes of low degree

in the other layer. As showed, when such degree correlations are absent, the

number of driver nodes of a duplex is always higher then the sum of driver nodes
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Figure 3.16: On the left: phase diagram of the density of driver nodes nD as
a function of the parameters γ and P (2) for duplex networks of
N = 106 nodes with degree distribution given by Eq. 3.71 and
P (1) = 0. On the right: phase diagram of the density of driver
nodes nD as a function of the parameters γ and P (2) for two separate
networks of N = 106 nodes with degree distribution given by Eq.
3.71 and P (1) = 0.
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in the two layers. But how does this difference change if the low degree nodes of

one layer are also the low degree nodes of the other layer? Looking back to Eqs.

3.92, 3.93 we introduce correlations modulating P in(k[1], k[2]). For low-degree

correlations we define P in(k[1], k[2]) as

P in(k[1], k[2]) =



pδk[2],k[1]P (k[1]) + (1− p)P (k[1])P (k[2]), if k[1] ≤ 2

(1− p)P (k[1])P (k[2]), if k[1] > 2 k[2] ≤ 2

pP (k[2])
C P (k[1]) + (1− p)P (k[1])P (k[2]), if k[1] > 2 k[2] > 2

where C = 1−∑k≤2 P (k) and we consider in particular P (k[1]) = P (k[2]) = P (k).

The probability p modulates the balance between the correlated scenario and

the classical uncorrelated situation. We studied also a total-degree- correlation,

namely, a degree correlation over the total range of the degree distributions in

the two layers. This total degree correlation is defined as

P in(k[1], k[2]) = pδk[2],k[1]P (k[1]) + (1− p)P (k[1])P (k[2])

where the probability p plays the same role and again, P (k[1]) = P (k[2]) =

P (k). For further computations regarding the density of driver nodes for these

correlated duplex networks see Sec. 4.4.2.

We consider at first the analytical solutions for a duplex formed by two Poisson

networks with the same average degree c. Varying the low-degree correlation

thank to p we change the profile of the density of driver nodes. In Fig. 3.17

with p = 0 we recover the previous trend for uncorrelated duplex networks. The

more we increase p the lower the density of driver nodes becomes and the smaller
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the discontinuity gap appears. Anyway, we never reach the profile given by two

separated poisson networks (the black dashed line in comparison with the grey

line for p = 1).

Moreover, we validated the scenario of low-degree correlations and total-degree

correlations thank to BP simulations. In Fig. 3.18 and Fig. 3.19, we consider,

respectively, directed poisson networks with increasing average degree c (N =

104) and power law networks with γ = 2.1, ...3 (directed power law networks

with kinmin = koutmin = 1 and structural cutoff kinmax = koutmax =
√
N 〈k〉in/out with

N = 104). Furthermore, we consider the total-degree correlation for p = 1,

i.e. the situation in which the replica nodes in the two layers have exactly the

same degree. In addition to a good agreement between analytical results and BP

simulations we found that no significant improvement on the number of driver

nodes can be made by correlating also the nodes with in degree greater than 2.

This result highlights once more the importance of low degree nodes also for the

controllability of multiplex networks.

3.7 Conclusion

In this chapter we gave a general introduction to control theory and we showed

how network theory plays a major role in the so-called structural controllability.

Moreover we presented the cavity method in some of its different versions. Using

these tools we have shown how the structural controllability of a network depends

strongly on the fraction of low in-degree and low out-degree nodes. For any

uncorrelated directed network with given in-degree and out-degree distribution,

the minimum fraction of driver nodes is zero, i.e. nD = 0, if the in-degrees and
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Figure 3.17: Low-degree correlation for a duplex network composed by two Pois-
son networks with the same average degree c: we display the density
of the driver nodes nD as function of c and p. The result for two
separated Poisson networks is shown in black (dashed curve) while
the situation of uncorrelated layers is shown in red.
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Figure 3.18: Poisson duplex networks: BP results and comparison with the ana-
lytical results for low-degree (ld) and total-degree (td) correlations.
We considered networks with N = 104 and each point is the average
over 5 BP simulations.
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Figure 3.19: Powerlaw duplex networks with structural cutoff: BP results and
comparison with the analytical results for low-degree (ld) and total-
degree (td) correlations. We considered networks with N = 104 and
each point is the average over 20 BP simulations.
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the out-degrees of all nodes are both greater than 2. For the relevant class of

networks with power-law degree distribution, the number of driver nodes can

change dramatically by changing the fraction of nodes with in-degree and out-

degree equal to 1 or 2. Moreover, we extended the formalism of control theory

to multiplex networks, introducing a novel approach: we have characterised the

controllability of multiplex networks in which the driver nodes are forced to be

the same in each layer. As expected, the multiplex network controllability is more

demanding than the controllability of single layers and it is possible to observe

discontinuity in the number of driver nodes as a function of the multiplex network

topology, as in the case a a multiplex network formed by two Poisson networks.

Finally, the introduction of structural correlations in the multiplex networks

affecting the low-degrees can reduce the number of driver nodes requested.
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4.1 APS dataset

We gather here the major details and statistics regarding the APS dataset

and the related multiplex networks. For further images picturing the degree

and multidegree distributions, and moreover, the relations between single-layer

observables, we refer to Menichetti et al. (2014a) and its supplementary.

4.1.1 The two datasets

We have considered the American Physical Society (APS) research data that

is organised into two main datasets:

• Article metadata: for each article the metadata includes DOI, journal, vol-

ume, issue, first page and last page, article id and number of pages, title,

authors, affiliations, publication history, PACS codes, table of contents,

heading, article type, and copyright information.

• Citing article pairs: this dataset consists of pairs of APS articles that cite

each other. Each pair is represented by a pair of DOIs. The first id cites

the second id.
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In the APS metadata an author is usually identified by given name, middle name,

and surname. In different articles, the same author can appear with his/her full

name or with his/her initials. To deal with this issue, we decided to identify

a specific author with the initials of his/her given name and middle name and

with his/her full surname. We restricted our analysis to the article metadata

and citing article pairs that relate only to PRL and PRE. The total number of

PRL articles is 95, 516 and the total number of PRL authors is 117, 412. The

total number of PRE articles is 35, 944 and the total number of PRE authors is

36, 171. The number of authors that published both in PRE and PRL is equal

to 17, 470.

Among the papers published in PRE and PRL, we focused our study only on

those containing a number of authors np ≤ 10. This excludes most of the exper-

imental high-energy collaborations that are typically characterised by a number

of authors of a different order of magnitude. We decided to place such a cut-off

to the maximum number of authors allowed per paper to avoid biases due to very

large publications. Given the cut-off, our study thus becomes limited to 35, 766

PRE articles (99.5 %) and 35, 205 PRE authors (97.3 %) on the one hand, and

89, 245 PRL articles (93.4 %) and 92, 436 PRL authors (78.7 %) on the other.

The intersection of these two datasets includes 16, 207 authors (i.e., 92.8 % of

the previous intersection).

We analysed two types of interaction between APS authors: scientific collab-

orations and citations, with weights defined as follows.
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• Collaborations: two authors are connected if they co-authored at least one

paper. The collaborative interaction between author i and author j is

defined as in Newman (2001), Barrat et al. (2004), i.e., the undirected

adjacency matrix element aij is given by

aij =
∑
p∈I

=
δpi δ

p
j

np − 1 i 6= j (4.1)

aii = 0, (4.2)

where the index p indicates an article in the dataset I, np indicates the

number of authors of article p and δpi = 1 if node i is an author of article

p, and δpi = 0 otherwise. The resulting network is undirected and without

self-loops.

• Citations: two authors are connected by a directed link if one author cites

the other one. In this case, the element aij of the directed adjacency matrix

indicating how many times node i cites node j is given by

aij =
∑

p,p′∈I
δpi δ

p′

j bp,p′, (4.3)

where bp,p′ = 1 if article p cites article p′, and bp,p′ = 0 otherwise. Moreover

δpi is defined as above and indicates whether i is author of article p (δpi = 1)

or not (δpi = 0). The resulting network is directed and with self-loops.

We constructed the following two duplex networks:

1. CoCo-PRL/PRE: collaborations among PRL and PRE authors. The

nodes of this multiplex network are the authors who published articles

both in PRL and PRE (i.e., 16, 207 authors). These nodes are connected
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in layer 1 through weighted undirected links indicating the strength of their

collaboration in PRL (i.e., co-authorship of PRL articles). The same nodes

are connected in layer 2 through weighted undirected links indicating the

strength of their collaborations in PRE (i.e., co-authorship of PRE articles).

2. CoCi-PRE: collaborations among PRE authors and citations to PRE ar-

ticles. The nodes of this multiplex network are the authors of articles pub-

lished in PRE (i.e., 35, 205 authors). These nodes are connected in layer 1

through weighted undirected links indicating the strength of their collab-

oration in PRE (i.e., co-authorship of PRE articles). The same nodes are

connected in layer 2 through weighted directed links indicating how many

times an author (with articles in PRE) cited another author’s work, where

citations are limited to those made to PRE articles.

4.1.2 Total overlap and total weighted overlap of the

multiplex networks

In order to characterise the overlap existing between the links of the multiplex

networks, we consider the total overlap Oα,α′ between layer α and layer α′ and

its related total weighted overlap O(w)α,α′ defined, respectively in Eqs. 2.10, 2.11.

Table 4.1 reports details on the total overlap and total weighted overlap, and in-

deed shows that our multiplex networks are characterized by a significant overlap

of links.
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Table 4.1: Total overlap and total weighted overlap in the CoCo-PRL/PRE and
CoCi-PRE multiplex networks.

Dataset Layer Total overlap % Total weighted overlap %

CoCo-PRL/PRE PRL 35.75 28.35

CoCo-PRL/PRE PRE 39.10 33.84

CoCi-PRE coll 39.51 14.24

CoCi-PRE cit 12.64 20.76

Table 4.2: Kendall τ coefficient measuring the correlations between the degrees
in the different layers and the strengths in the different layers in the
CoCi-PRE multiplex network.

τ k1 kin2 kout2 τ s1 sin2 sout2

k1 1 0.36 0.37 s1 1 0.53 0.53

kin2 0.36 1 0.38 sin2 0.53 1 0.41

kout2 0.37 0.38 1 sout2 0.53 0.41 1

Table 4.3: Kendall τ coefficient measuring the correlations between the degrees
in the different layers and the strengths in the different layers in the
CoCo-PRL/PRE multiplex network.

τ k1 k2 τ s1 s2

k1 1 0.44 s1 1 0.37

k2 0.44 1 s2 0.37 1
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4.1.3 Degree and multidegree distribution of the two

multiplex networks

The nodes i = 1, 2 . . . , N of the multiplex networks have degrees k1
i in layer 1

and k2
i in layer 2. Moreover, we can define the multidegree k ~mi of a generic node

i as the sum of the multilinks ~m incident on it. We observe that, since we always

have

k
~0
i = (N − 1)−

∑
~m6=0

k ~mi , (4.4)

we can therefore restrict the analysis to multidegrees ~m 6= ~0. The degree and

multidegree for both the CoCo-PRL/PRE and the CoCi-PRE multiplex networks

are characterised by broad distributions. Moreover, in both duplex networks, the

degrees each author has in the two layers are positively correlated, as indicated

by the Kendall correlation coefficient between degrees (See Tables 4.2, 4.3 ).

Finally, also multidegrees in the multiplex networks are correlated, as indicated

by their Kendall coefficients (See Tables 4.4, 4.5). This correlation coefficient

are calculated both for degree and multidegrees. In what follows, we give the

definition in the case of two degree sequences. The extension to multidegree

sequences is straightforward.

The Kendall’s τ correlation coefficient between the degree sequences {kαi } and

{kβi } in the two layers α and β is a measure that takes into account the sequence

of ranks {xαi } and {xβi }. A pair of nodes i and j are concordant if their ranks

have the same order in the two sequences,.i.e., (xαi −xαj )(xβi −x
β
j ) > 0; otherwise,

they are discordant. The Kendall’s τ is defined in terms of the number nc of
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concordant pairs and the number nd of discordant pairs, and is given by

τ = nc − nd√
(n0 − n1)(n0 − n2)

, (4.5)

where n0 = 1/2N(N − 1) and the terms n1 and n2 account for the degeneracy of

the ranks and are given by

n1 = 1
2
∑
n
un(un − 1),

n2 = 1
2
∑
n
vn(vn − 1), (4.6)

where we call un the number of nodes in the nth tied group of the degree sequence

{kα}, and we call vn the number of nodes in the nth tied group of the degree

sequence {kβ}.

Table 4.4: Kendall’s τ coefficient measuring the correlations between multide-
grees in the CoCi-PRE multiplex network.

τ kin11 kout11 kin10 kout10 kin01 kout01

kin11 1 0.63 -0.06 0.13 0.54 0.39

kout11 0.63 1 0.12 -0.02 0.39 0.49

kin10 -0.06 0.12 1 0.68 0.03 0.12

kout10 0.13 -0.02 0.68 1 0.13 0.09

kin01 0.54 0.39 0.03 0.13 1 0.34

kout01 0.39 0.49 0.12 0.09 0.34 1
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Table 4.5: Kendall’s τ coefficient measuring the correlations between multide-
grees in the CoCo-PRL/PRE multiplex network.

τ k11 k10 k01

k11 1 0.13 0.13

k10 0.13 1 0.23

k01 0.13 0.23 1

4.1.4 Weighted network properties of single layers

Here we report the weighted network properties of the single layers of our

multiplex networks. In general, the average strength sαk of nodes with degree k

in layer α and the average inverse participation ratio Y α
k of nodes with degree k

in layer α are described by the functional behaviour

sαk ∝ kβα,

Y α
k ∝

1
kλα

. (4.7)

We have considered both the CoCo-PRL/PRE dataset and the CoCi-PRE dataset

and fitted sαk and Y α
k according to this expected power-law behaviour.

The exponents shown in Table 4.6 and Table 4.7 have been computed with

the method “regression”, function of Matlab MathWorks (2015). This function

performs a multiple linear regression, and for each coefficient gives the 95% con-

fidence interval. In the tables, we show also the coefficient of determination R2

indicating how well the power-law trend fits the data.

As shown by Table 4.6, the CoCo-PRL/PRE multiplex network is charac-
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Table 4.6: CoCo-PRL/PRE multiplex network: power-law exponents λα and βα
determining the functional behaviour for the average strength sαk of
nodes with degree k and the average inverse participation ratio Y α

k ,
with α corresponding to the collaboration layer in PRL or in PRE.

layer α βα R2 λα R2

PRL 1 0.96 ± 0.04 0.96 0.84±0.03 0.97

PRE 2 1.01 ± 0.05 0.96 0.80± 0.05 0.94

Table 4.7: CoCi-PRE multiplex network: power-law exponents λα and βα deter-
mining the functional behaviour for the average strength sαk of nodes
with degree k and the average inverse participation ratio Y α

k , with
α corresponding to the collaboration layer or to the citation layer,
both for PRE. For the citation layer, we consider separately the in-
behaviour and the out-behaviour.

layer α βα R2 λα R2

Co 1 1.03 ± 0.04 0.96 0.79±0.04 0.94

Ciin 2,in 1.13 ± 0.02 0.98 0.72± 0.03 0.85

Ciout 2,out 1.14 ± 0.03 0.97 0.70± 0.04 0.83

terized by a linear behavior of average strength as a function of the degree of

nodes. Table 4.7 shows that the CoCi-PRE multiplex network is characterized

by a linear behavior of average strength as a function of the degree of nodes in

the collaboration network, and by a super-linear behavior in the citation network.
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4.1.5 Statistical analysis of the properties of multilinks in the

CoCo-PRL/PRE multiplex network

In this subsection, we discuss in detail the results of our statistical analysis of

the properties of multilinks in the CoCo-PRL/PRE multiplex network. In par-

ticular, we focus on the average multistrength of nodes with a given multidegree,

i.e., s~m,α(k ~m) =
〈
s~m,αi δ(k ~mi , k ~m)

〉
, and the average inverse multiparticipation ra-

tio of nodes with a given multidegree, i.e., Y ~m,α(k ~m) =
〈
Y ~m,α
i δ(k ~mi , k ~m)

〉
. These

quantities are expected to scale as

s~m,α(k ~m) = eq
~m,α(k ~m)β~m,α

Y ~m,α(k ~m) = ep
~m,α 1

(k ~m)λ~m,α , (4.8)

with exponents β~m,α ≥ 1 and λ~m,α ≤ 1. We have computed these exponents

with the method “regression”, function of Matlab MathWorks (2015) This func-

tion performs a multiple linear regression, and for each coefficient gives the 95%

confidence interval. We have also computed the coefficient of determination R2

indicating how well the power-law trend fits the data. For a complete list of the

exponents characterizing multistrength and the inverse multiparticipation ratio,

see Table 4.8. In what follows, we will label the PRL collaboration layer as α = 1

and the PRE collaboration layer as α = 2 .
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Statistical analysis of the average multistrengths in the CoCo-PRL/PRE

multiplex network

In the CoCo-PRL/PRE multiplex network, the fitted exponents β~m,1 for mul-

tilinks ~m = (1, 1) and ~m = (1, 0) and the fitted proportionality constants in

Eq. 4.8 are not significantly different. However, we can perform a paired samples

Student’s t-test to show how the average multistrength per fixed multidegree

s~m,α(k ~m) is significantly higher for multilinks (1, 1) than multilinks (1, 0). We

have identified pairs of average multistrength s(1,1),1(k(1,1)) and s(1,0),1
k (k(1,0)), cor-

responding to the same multidegree value k(1,1) = k(1,0) = k. The paired samples

Student’s t-test returns a test decision for the null hypothesis that the values

log
(
s(1,1),1(k)/s(1,0),1(k)

)
come from a normal distribution with mean zero and

variance from the data. In our case, the null hypothesis is rejected with a p-

value equal to 2.90 · 10−16. Furthermore,
〈
log

(
s(1,1),1(k)/s(1,0),1(k)

)〉
is equal to

0.53. This analysis suggests that for a particular value of degree k the related

s(1,1),1(k) is higher than s(1,0),1(k), and the two average multistrengths satisfy the

relation s(1,1),1(k) ≈ e0.53s(1,0),1(k). Similar results were obtained in the case of

the multistrengths on the second layer indicating the collaboration network on

PRE articles. The null hypothesis is rejected with a p-value equal to 8.98 ·10−15,

and
〈
log

(
s(1,1),2(k)/s(0,1),2(k)

)〉
is equal to 0.57.

Statistical analysis of the average inverse multiparticipation ratio in the

CoCo-PRL/PRE multiplex network

In the PRL layer the fitted exponents λ~m,α are significantly different. The

weights regarding multilinks (1, 1) are distributed more heterogeneously than

the weights regarding multilinks (1, 0). A similar situation is found also in the
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PRE layer. The paired Student’s t-test is also useful to understand the prop-

erties of the average inverse multiparticipation ratio. In addition to the fit-

ted exponents, we can perform a t-test as we did previously considering now

Y ~m,α(k ~m). This test underlines how the inverse multiparticipation ratios regard-

ing multilinks (1,1) are significantly higher than those regarding multilinks (1,0)

or (0,1). In the case Y (1,1),1(k) vs Y (1,0),1(k), the t-test gives a p-value equal

to 0.002 and an average value
〈
log

(
Y (1,1),1(k)/Y (1,0),1(k)

)〉
= 0.11. In the case

Y (1,1),2 vs Y (0,1),2(k), the p-value is equal to 6.64 · 10−6, and the average value is〈
log

(
Y (1,1),2(k)/Y (0,1),2(k)

)〉
= 0.19.

Table 4.8: CoCo-PRL/PRE multiplex network: power-law exponents λ~m and β~m
and parameters p~m, q~m determining the functional behavior for aver-
age multistrength of nodes with a given multidegree, s~m,α(k ~m), and
for average inverse multiparticipation ratio of nodes with a given mul-
tidegree, Y ~m,α(k ~m), with α corresponding to the collaboration layer in
PRL (1) or in PRE (2). The value of the determination coefficient R2

for the power-law fits is also reported.

~m, α β~m q~m R2 λ~m p~m R2

(1,1), 1 1.06 ± 0.09 -0.51 ± 0.26 0.94 0.74±0.05 -0.09 ± 0.16 0.95

(1,0), 1 0.97 ± 0.03 -0.78 ± 0.10 0.99 0.84± 0.03 0.06 ± 0.12 0.97

(1,1), 2 1.09 ± 0.10 -0.40 ± 0.29 0.93 0.73± 0.06 -0.10 ± 0.19 0.93

(0,1), 2 1.00 ± 0.04 -0.71 ± 0.14 0.98 0.84± 0.05 0.04 ± 0.16 0.95
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4.1.6 Statistical analysis of the properties of multilinks in the

CoCi-PRE multiplex network

We analyzed the average multistrength of nodes with a given multidegree,

i.e., s~m,α,(in/out)(k ~m(in/out)) =
〈
s
~m,α,(in/out)
i δ(k ~m,(in/out)i , k ~m,(in/out))

〉
, and the av-

erage inverse multiparticipation ratio of nodes with a given multidegree, i.e.,

Y ~m,α,(in/out)(k ~m,(in/out)) =
〈
Y
~m,α,(in/out)
i δ(k ~m,(in/out)i , k ~m,(in/out))

〉
, where a distinc-

tion was made between incoming and outgoing links in the citation layer. These

quantities are expected to scale as

s~m,1,(in,out)(k ~m,(in,out)) = eq
~m,(in,out),1(k ~m,(in/out))β~m,1,(in/out)

s~m,2,(in/out)(k ~m,(in/out)) = eq
~m,2,(in/out)(k ~m,(in/out))β~m,2,(in/out)

Y ~m,1,(in/out)(k ~m,(in/out)) = ep
~m,1,(in/out) 1

(k ~m,(in/out))λ~m,1,(in/out)

Y ~m,2,(in/out)(k ~m,(in/out)) = ep
~m,2,(in/out) 1

(k ~m,(in/out))λ~m,2,(in/out) , (4.9)

with exponents β~m,α,(in/out) ≥ 1 and λ~m,α,(in/out) ≤ 1. We have computed these

exponents with the method “regression”, function of Matlab MathWorks (2015)

This function performs a multiple linear regression, and for each coefficient gives

the 95% confidence interval. We have also computed the coefficient of determina-

tion R2 indicating how well the power-law trend fits the data. The complete list

of the exponents and the multiplication constants characterising multistrength

and the inverse multiparticipation ratio can be found in Table 4.9 together with

the corresponding values of R2. In what follows we will label the PRE collabo-

ration layer as α = 1 and the PRE citation layer as α = 2.
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The statistical analysis of the average multistrengths in the CoCi-PRE

multiplex network

In the CoCi-PRE multiplex network, we can perform, at first, a statisti-

cal analysis of the multistrengths in the collaboration layer. The fitted ex-

ponents β(1,1),1,in, β(1,1),1,out, β(1,0),1,in and β(1,0),1,out are not significantly differ-

ent. Conversely, the fitted intercepts of the log-log plot, regarding multilinks

(1, 1), (in/out) are significantly different from the intercept for multilinks (1, 0), (in/out).

From a paired samples Student’s t-test, in the same way as we did for the

average multistrengths in the CoCo-PRL/PRE multiplex network, we obtained

that both s(1,1),1,in(k) and s(1,1),1,out(k) are significantly higher than s(1,0),1,in(k)

and s(1,0),1,out(k). In the case s(1,1),1,in(k) vs s(1,0),1,in(k), we have a p-value equal

to 1.91 ·10−35 and an average value
〈
log

(
s(1,1),1,in(k)/s(1,0),1,in(k)

)〉
= 0.78. In the

case s(1,1),1,out(k) vs s(1,0),1,out(k), we have a p-value equal to 9.93 · 10−30 and an

average value
〈
log

(
s(1,1),1,out(k)/s(1,0),1,out(k)

)〉
= 0.80.

Based on the fitted parameters and the Student’s t-test, the data suggest that

both multidegrees for multilinks (1, 1) and multilinks (1, 0) have a linear relation

with their own multistrengths in the collaboration layer, and that multistrengths

(1,1) are related to multistrengths (1,0) by a multiplicative constant. In the

citation layer, the fitted exponents β~m,in/out indicate a super-linear scaling, and

are significantly different (see Table 4.9).

The statistical analysis of the inverse multiparticipation ratio in the

CoCi-PRE multiplex network

For the collaboration layer, comparing λ(1,1),1,in with λ(1,0),1,in, and λ(1,1),1,out

with λ(1,0),1,out, the confidence intervals of these fitted exponents do not over-
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lap for a narrow window. Performing the t-test as usual, we found that the

inverse multiparticipation ratio for multilinks (1, 1) is always larger than the in-

verse multiparticipation ratio for multilinks (1, 0). In the case Y (1,1),1,in(k) vs

Y (1,0),1,in(k), the t-test gives a p-value equal to 3.70 · 10−17 and an average value〈
log

(
Y (1,1),1,in(k)/Y (1,0),1,in(k)

)〉
= 0.39. In the case Y (1,1),1,out vs Y (1,0),1,out(k),

the p-value is equal to 5.48·10−19 and the average value is
〈
log

(
Y (1,1),1,out(k)/Y (1,0),1,out(k)

)〉
=

0.33.

In the in− and out−citation layers, the fitted exponents λ~m,2,(in/out) regarding

multilinks (1, 1) are not significantly different from those regarding multilinks

(0, 1). Nevertheless, the paired Student’s t-test shows how the inverse multipar-

ticipation ratio for multilinks (1, 1) is always larger than the inverse multipartici-

pation ratio for multilinks (0, 1). In the case Y (1,1),2,in(k) vs Y (0,1),2,in(k), the t-test

gives a p-value equal to 7.60·10−21 and an average value
〈
log

(
Y (1,1),2,in(k)/Y (0,1),2,in(k)

)〉
=

0.34. In the case Y (1,1),2,out(k) vs Y (0,1),2,out(k), the p-value is equal to 1.12 · 10−15

and the average value is
〈
log

(
Y (1,1),2,out(k)/Y (0,1),2,out(k)

)〉
= 0.34.

4.1.7 Ψ and Ξ

As an example of a possible application of the indicators Ψ and Ξ, we analyze

a case inspired by the CoCi-PRE multiplex network. Due to the numerical

limitations of the programs that are able to evaluate the entropy of multiplex

ensembles, we perform a finite-size analysis of the indicators Ψ and Ξ as a function

of the size of the multiplex network N = 128, 256, . . . , 2048. In particular, we

consider the following undirected multiplex ensembles:

• Correlated weighted multiplex ensemble. First, we create the correlated

multiplex ensemble with power-law expected multidegree distributions with
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Table 4.9: CoCi-PRE multiplex network: power-law exponents λα and βα and pa-
rameters p~m, q~m determining the functional behavior for the average
multistrength of nodes with a given multidegree s~m,α,(in/out)(k ~m(in/out))
and the average inverse multiparticipation ratio of nodes with a given
multidegree, Y ~m,α,(in/out)(k ~m,(in,out)), with α corresponding to the col-
laboration layer (1) or to the citation layer (2), both for PRE. The
coefficient of determination R2 determining the quality of the power-
law fit is also reported

~m, α, in/out β~m q~m R2 λ~m p~m R2

(1,1), 1, in 1.02 ± 0.04 -0.33 ± 0.15 0.97 0.76±0.05 -0.03 ± 0.16 0.94

(1,1), 1, out 1.05 ± 0.04 -0.38 ± 0.14 0.98 0.77±0.05 -0.03 ± 0.17 0.94

(1,0), 1, in 0.98 ± 0.05 -0.97 ± 0.17 0.96 0.88± 0.03 -0.03 ± 0.09 0.99

(1,0), 1, out 0.97 ± 0.05 -0.95 ± 0.16 0.97 0.90± 0.02 0.00 ± 0.06 0.99

(1,1), 2, in 1.30 ± 0.07 0.47 ± 0.25 0.95 0.73± 0.05 -0.17 ± 0.16 0.94

(1,1), 2, out 1.32 ± 0.08 0.45 ± 0.26 0.95 0.74± 0.04 -0.50 ± 0.20 0.80

(0,1), 2, in 1.11 ± 0.01 -0.01 ± 0.07 0.99 0.75± 0.05 -0.12 ± 0.16 0.95

(0,1), 2, out 1.10 ± 0.02 0.06 ± 0.09 0.98 0.69± 0.05 -0.62 ± 0.22 0.77

exponents γ(1,m2) = 2.6 for m2 = 0, 1 and γ(0,1) = 1.9 (for multidegree (0, 1)

we impose a structural cut-off). In particular, in order to avoid the effects of

fluctuations in the expected multidegree sequence, we rank the multidegrees

as r = 1, 2, . . . N , and take the sequence in which the multidegree k ~mr of

rank r is defined by

r

N
=
∫ K
k ~mr
P (k ~m)dk ~m, (4.10)
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where we take the maximal cut-off K = N 1/γ ~m for γ ~m > 2 and K =√
〈k ~m〉N for γ ~m < 2. Note that this is possible because the expected

multidegrees are real values. Moreover, the expected multistrengths are

assumed to satisfy

s~m,αi = c~m,1(k ~m,α)λ~m,α, (4.11)

with c~m,α = 1, β(1,m2),1 = 1 for m2 = 0, 1, β(1,1),2 = 1.3, and β(0,1),2 = 1.1.

• Uncorrelated weighted multiplex ensemble. In this ensemble, we set the

expected degree kαi of every node i in every layer α = 1, 2 to be equal

to the sum of the expected multidegrees (with mα = 1) in the correlated

weighted multiplex ensemble. Moreover, we set the expected strengths sαi
of every node i in every layer α to be equal to the sum of the expected

multistrengths of node i in layer α in the correlated weighted multiplex

ensemble.

We measure the indicator Ψ that compares the entropy of a weighted multiplex

ensemble S with the entropy of a weighted multiplex ensemble in which weights

are distributed homogeneously. Therefore, Ψ can be defined as

Ψ = |S − 〈S〉π(w)|
〈(δS)2〉π(w)

, (4.12)

where the average 〈. . .〉π(w) is calculated over multiplex networks with the same

structural properties but with weights distributed homogeneously. In particular,

when the weight distribution is randomized, the multiplex networks are con-

strained in such a way that each link must have a minimal weight (i.e. wij > 1),
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Figure 4.1: The P (S) distribution in the null models for correlated and uncorre-
lated multiplex ensembles in which the weights are distributed uni-
formly over the links of the multiplex network. The P (S) distri-
butions are calculated over 100 randomizations of the weights for
multiplex networks of N = 1024 and N = 2048 nodes.
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Figure 4.2: The mean 〈S〉 and variance σS as a function of the system size N for
the null models of correlated and uncorrelated multiplex ensembles
in which the weights are distributed uniformly over the links of the
multiplex network. The solid lines indicate the fit of the data in
which we assume 〈S〉 = aN logN and σS = b

√
N .
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while the remaining of the total weight is distributed randomly across links.

When numerically evaluating 〈. . .〉π(w), we obtain the average over 100 weight

randomizations.

The distribution P (S) of the entropy S calculated over these randomizations,

both for the uncorrelated weighted multiplex ensemble and for the correlated

weighted multiplex ensemble, is shown in Fig. 4.1. In both cases, we observe a

distribution that can be fitted by a Gaussian function with mean and variance

scaling as 〈S〉 ∝ N logN and 〈(δS)2〉π(w) ∝
√
N (See Fig. 4.2). We call Ψcorr the

indicator Ψ calculated on the correlated multiplex ensemble and indicate with

Ψcorr the indicator Ψ calculated on the corresponding uncorrelated multiplex

ensemble. Finally, to quantify the additional amount of information carried by

the correlated multiplex ensemble with respect to the uncorrelated multiplex

ensemble, we measure the indicator Ξ as

Ξ = Ψcorr

Ψuncorr
. (4.13)

The finite-size scaling of Ψcorr,Ψcorr and Ξ are shown in Fig. 4 in the manuscript.

4.2 Weighted multiplex ensembles

4.2.1 Examples of uncorrelated weighted multiplex networks

Multiplex ensembles with given expected strength sequence in each layer

We consider here the multiplex ensemble in which we fix the expected strength

sαi of every node i, in each layer α. We have K = M ·N constraints in the system
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indicated with a label α = 1, 2, . . . ,M . These constraints are given by

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i
aαij

P (~G) = sαi (4.14)

The probability of a multiplex P (~G) is given by Eq.(2.36) that in this case can

be written as

P (~G) = 1
Z

exp
− M∑

α=1

∑
i

λi,α
∑
j 6=i
aαij

 (4.15)

where the partition function Z can be expressed explicitly as

Z = ∑
~G exp

[
−∑M

α=1
∑
i λi,α

∑
j 6=i a

α
ij

]
= ∏M

α=1
∏
i<j

[
1− e−(λi,α+λj,α)

]−1
, (4.16)

and the Lagrangian multipliers λi,α are fixed by the condition

sαi = −∂logZ
∂λi,α

=
∑
j 6=i

e−(λi,α+λj,α)

1− e−(λi,α+λj,α) . (4.17)

The average weight
〈
aαij

〉
given by Eq. (2.40) can be calculated explicitly as a

function of the Lagrangian multipliers, giving

〈
aαij

〉
= e−(λi,α+λj,α)

1− e−(λi,α+λj,α) , (4.18)

which implies, together with Eq. (4.17), sαi = ∑
j 6=i

〈
aαij

〉
.

From Eq. (2.38) we write the marginal probabilities παij(aαij) for specific weight

aαij as

παij(aαij) = e−(λi,α+λj,α)aαij(1− e−(λi,α+λj,α)), (4.19)
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i.e. the weight of a link is distributed exponentially, with a mean that depends

both on the pair of linked nodes (i, j) and on the layer α. Moreover, from Eq.

(2.41) we can evaluate the probability pαij of having a weight different from zero

that is given by

pαij = e−(λi,α+λj,α). (4.20)

Finally the the probability of a multiplex in this ensemble is given by Eq. (2.121)

with the marginals παij(aαij) given by Eq. (4.19). Therefore the entropy S of this

canonical multiplex ensemble is given by Eq. (2.122) with the marginals παij(aαij)

given by Eq. (4.19)

Multiplex ensembles with given expected strength sequence, given expected

degree sequence and given expected sequences {uαi } in each layer

The last example of uncorrelated multiplex that we will consider is the one in

which we fix the expected strength sαi , the expected degree kαi and the expected

uαi of every node i in each layer α. We have K = M × 3N constraints in the

system. These constraints are given by

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i
aαij

P (~G) = sαi

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i
θ(aαij)

P (~G) = kαi

∑
~G

Fi,α(~G)P (~G) =
∑
~G

∑
j 6=i

(aαij)2
P (~G) = uαi

(4.21)
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with α = 1, 2, . . . ,M . We introduce the Lagrangian multipliers λi,α for the first

set of N ×M constraints, the Lagrangian multipliers ωi,α for the second set of

N×M constraints and the Lagrangian multipliers zi,α for the third set of N×M

constraints. Therefore, the probability P (~G) of a multiplex in this ensemble, of

general expression given by Eq. (2.36), in this specific example is given by

P (~G) = 1
Z

exp
− M∑

α=1

∑
i

λi,α
∑
j 6=i
aαij

−
M∑
α=1

∑
i

ωi,α
∑
j 6=i
θ(aαij)−

M∑
α=1

∑
i

zi,α
∑
j 6=i

(aαij)2


If we define as Iαij the series

Iαij =
Sα∑
aαij=1

exp
[
−(λi,α + λj,α)aαij − (zi,α + zj,α)(aαij)2] , (4.22)

where Sα = ∑N
i=1 s

α
i . The sum Iαij is convergent when (zi,α + zj,α) > 0, the

partition function Z can be expressed as

Z =
M∏
α=1

∏
i<j

[
1 + e−(ωi,α+ωj,α)Iαij

]
(4.23)

The Lagrangian multipliers are fixed by the conditions

−∂logZ
∂λi,α

= sαi

−∂logZ
∂ωi,α

= kαi

−∂logZ
∂zi,α

= uαi (4.24)

The average weight of the link (i, j) in layer α, i.e.
〈
aαij

〉
, is given by Eq. (2.40)
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that in this case reads

〈
aαij

〉
= e−(ωi,α+ωj,α)[

1 + e−(ωi,α+ωj,α)Iαij
] ×

×
 Sα∑
aαij=1

aαij exp
(
−(λi,α + λj,α)aαij − (zi,α + zj,α)(aαij)2)

From Eq. (2.38) we write the marginal probabilities παij(aαij) for this specific

ensemble that is given by

παij(aαij) = e−(λi,α+λj,α)aαij−(ωi,α+ωj,α)θ(aαij)−(zi,α+zj,α)(aαij)2[
1 + e−(ωi,α+ωj,α)Iαij

] (4.25)

Moreover, from Eq. (2.41) the probability pαij that the link (i, j) in layer α has

weight different from zero is given by

pαij =
e−(ωi,α+ωj,α)Iαij[

1 + e−(ωi,α+ωj,α)Iαij
] (4.26)

The probability of a multiplex in this ensemble is given by Eq. (2.121) with

the marginals παij(aαij) given by Eq. (4.25) while the entropy S of this canonical

multiplex ensemble is given by Eq. (2.122) with the marginals παij(aαij) given by

Eq. (4.25)

4.2.2 Examples of correlated weighted multiplex networks

Multiplex ensembles with given expected multistrength sequence {s~mi,α}

We study here a correlated weighted multiplex ensemble in which we fix the

average strength sequence s~mi,α for each node i, in each layer α such that mα = 1,

for a given multilink ~m. Following the previous line of reasoning, we can express
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properly just N ·M · 2M−1 constraints.

These constraints are given by

∑
~G

F ~m
i,α(~G)P (~G) =

∑
~G

∑
j 6=i
A~m
ija

α
ij

P (~G) = s~mi,α, (4.27)

with i = 1, . . . , N , ~m = (m1,m2, . . . ,mβ, . . . ,mM) with mβ = 0, 1 and finally

α = 1, . . . ,M with the condition mα = 1. The canonical probability P (~G) of the

multiplex in the ensemble is

P (~G) = 1
Z

exp
− ∑

~m6=~0

M∑
α=1

∑
i

λ~mi,α
∑
j 6=i
A~m
ija

α
ij



= 1
Z

∏
i<j

exp
− ∑

~m6=~0

M∑
α=1

(λ~mi,α + λ~mj,α)A~m
ija

α
ij

 , (4.28)

where the partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij (4.29)

where

Zij =
∑
~m

M∏
α=1

 e−(λ~mi,α+λ~mj,α)

1− e−(λ~mi,α+λ~mj,α)


mα

, (4.30)

The Lagrangian multipliers λ~mi,α, with α such that mα = 1, are fixed by the

conditions

− ∂logZ
∂λ~mi,α

= s~mi,α =
∑
j 6=i

〈
aαijA

~m
ij

〉
, (4.31)
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where
〈
aαijA

~m
ij

〉
is the average weight of the link between nodei and node j on the

multilink ~m, in the layer α. This quantity can be computed as

〈
aαijA

~m
ij

〉
= 1
Zij

 1
1− e−(λ~mi,α+λ~mj,α)

 M∏
β=1

 e−(λ~mi,β+λ~mj,β)

1− e−(λ~mi,β+λ~mj,β)


mβ

.

We can calculate the probability of a vector ~aij = (a1
ij, a

2
ij . . . , a

M
ij ) characterizing

the weights of the links between node i and node j in all the layers, getting

πij(~aij) = 1
Zij

e−
∑
α=1,M (λ~miji,α +λ~mijj,α )aαij . (4.32)

These probabilities satisfy the normalisation condition given by Eq. (2.139). The

probability p~mij of a multilink ~m between the node i and the node j is given by

p~mij =
〈
A~m
ij

〉
= 1
Zij

M∏
α=1

 e−(λ~mi,α+λ~mj,α)

1− e−(λ~mi,α+λ~mj,α)


mα

, (4.33)

where these probabilities satisfy the normalisation condition given by Eq. (2.143)

and are related to the probabilities π ~mij (~aij) given by Eq. (4.32), by Eq. (2.144).

Probability P (~G) and entropy S follow Eqs. (2.137), (2.145) respectively.

Multiplex ensembles with given expected ν-multistrength sequence {sνi,α}

In the case in which one wants to describe multiplex networks with many

layers M , one can consider to fix the average ν-multistrength sequence {sνi,α}

with i = 1, 2 . . . , N and ν = 1, 2, . . . ,M . Therefore, the number of constraints of
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the previous example is reduced to just N ·M 2 soft constraints given by

∑
~G

F ν
i,α(~G)P (~G) =

∑
~G

∑
j 6=i
aαijA

ν
ij

P (~G) = sνi,α. (4.34)

In this case, the probability P (~G) of a multiplex network ~G in this ensemble is

expressed in terms of the N ×M 2 Lagrangian multipliers λνi,α and is given by

P (~G) = 1
Z

exp
−∑

i<j

M∑
ν=1

M∑
α=1

(λνi,α + λνj,α)Aν
ija

α
ij

 ,

where the partition function Z can be expressed as

Z =
∏
i<j

Zij (4.35)

with

Zij =
M∑
ν=0

∑
~m|ν(~m)=ν

M∏
α=1

 e−(λνi,α+λνj,α)

1− e−(λνi,α+λνj,α)

mα

. (4.36)

The Lagrangian multipliers are fixed by the conditions in Eq. (4.34), or

equivalently by

− ∂logZ
∂λνi,α

= sνi,α =
∑
j 6=i

〈
aαijA

ν
ij

〉
. (4.37)

The probability P (~G) of a multiplex network ~G in this ensemble is given by

Eq. (2.137) and the entropy of the ensemble takes the simple expression given

by Eq. (2.145) where πij(~aij) is given by

πij(~aij) = 1
Zij

e−
∑
α=1,M (λνiji,α+λνijj,α)aαij . (4.38)

Finally, the probability pνij that the node i and the node j are linked by a ν-
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multilink is given by

pνij = 1
Zij

∑
~m|ν(~m)=ν

M∏
α=1

 e−(λνi,α+λνj,α)

1− e−(λνi,α+λνj,α)

mα

, (4.39)

while the average weight of the link aαij belonging to a ν-multilink is given by

〈
aαijA

ν
ij

〉
= 1
Zij

( 1
1− e−(λνi,α+λνj,α)

)
×

×
∑

~m|ν(~m)=ν
mα

M∏
β=1

 e−(λνi,β+λνj,β)

1− e−(λνi,β+λνj,β)

mβ

. (4.40)

Multiplex ensembles with given expected multidegree sequence {k ~mi }, given

expected multistrength sequence {s~mi,α} and given expected sequence {u~mi,α}

As a fourth case of correlated weighted multiplex ensemble, we consider the case

in which we fix the average multidegree k ~mi of node i, for each node i = 1, . . . , N ,

for ~m 6= ~0. Moreover, for each node i in layer α we impose the average multi-

strength s~mi,α and the second moment of the weights incident to it and belonging

to a multilink ~m, i.e. u~mi,α. The number of independent constraints is therefore

K = (2M − 1) ·N + 2M ·M ·N .

In particular, the constraints we are imposing are the following,

∑
~G

F ~m
i,α(~G)P (~G) =

∑
~G

∑
j 6=i
A~m
ija

α
ij

P (~G) = s~mi,α

∑
~G

F ~m
i (~G)P (~G) =

∑
~G

∑
j 6=i
A~m
ij

P (~G) = k ~mi

∑
~G

F ~m
i,α(~G)P (~G) =

∑
~G

∑
j 6=i

(A~m
ija

α
ij)2

P (~G) = u~mi,α (4.41)
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The canonical probability P (~G) of the multiplex in the ensembles is

P (~G) = 1
Z

exp
−∑

i<j

∑
~m6=~0

(ω ~mi + ω ~mj )A~m
ij

× (4.42)

× exp
−∑

i<j

∑
~m6=~0

M∑
α=1

(λ~mi,α + λ~mj,α)A~m
ija

α
ij



× exp
−∑

i<j

∑
~m6=~0

M∑
α=1

(z ~mi,α + z ~mj,α)A~m
ij (aαij)2



The partition function Z can be expressed explicitly as

Z =
∏
i<j

Zij

=
∏
i<j

1 +
∑
~m6=~0

e−(ω ~mi +ω ~mj )
M∏
α=1

(
I ~m,αij

)mα

 (4.43)

where I ~m,αij is given by

I ~m,αij =
S ~m,α∑
aαij=1

exp
[
−(λ~mi,α + λ~mj,α)aαij − (z ~mi,α + z ~mj,α)(aαij)2] ,

where S ~m,α = ∑N
i=1 s

~m
i,α. The Lagrangian multipliers are fixed by the conditions

−∂logZ
∂λ~mi,α

= s~mi,α =
∑
j 6=i

〈
aαijA

~m
ij

〉
,

−∂logZ
∂ω ~mi

= k ~mi =
∑
j 6=i

〈
A~m
ij

〉
,

−∂logZ
∂z ~mi,α

= u~mi,α =
∑
j 6=i

〈
(aαij)2A~m

ij

〉
(4.44)

The average weight
〈
aαijA

~m
ij

〉
of the multilink ~m between nodes i and j in the

layer α and the probability p~mij of a multilink ~m between node i and node j are
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given respectively by

〈
aαijA

~m
ij

〉
= −e

−(ω ~mi +ω ~mj )

Zij

 ∂I ~m,αij

∂(λ~mi,α + λ~mj,α)

×
×

M∏
β 6=α

(
I ~m,βij

)mβ

p~mij = e−(ω ~mi +ω ~mj )

Zij

M∏
α=1

(
I ~m,αij

)mα

(4.45)

The probability of a specific multiweight ~aij in the between the nodes (i, j) is

πij(~aij) = e−(ω ~miji +ω ~mijj )

Zij
e−

∑
α=1,M (λ~miji,α +λ~mijj,α )aαij ×

× e−
∑
α=1,M (z ~miji,α +z ~mijj,α )(aαij)2 (4.46)

As previously, probability P (~G) and entropy S follow Eqs. (2.137), (2.145) re-

spectively.

4.3 Controllability and minimal degrees

4.3.1 Stability condition

Here we consider the stability of the replica-symmetric solution of Eqs. (3.68)

(see e.g. Montanari and Ricci-Tersenghi (2003); Rivoire et al. (2003); Castel-

lani et al. (2005); Lucibello and Ricci-Tersenghi (2014) for discussions on the

RS stability). The replica symmetry assumes that all cavity fields have the

same distributions P(h) and P̂(ĥ), that in the zero temperature limit can be

parametrized by mixtures of delta functions. If we relax such assumption, we

have to enlarge the functional space by considering distributions Q[P ] and Q̂[P̂ ]
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of cavity field distributions. There are two ways in which the replica-symmetric

solution can be recovered in this enlarged functional space: 1) Q[P ] = δ[P −P∗]

with P∗(h) = ∑
αwαδ(h−hα), and 2) Q[P ] = ∑

αwαδ[P−δ(h−hα)]. For the sake

of simplicity in this thesis we are going to show just the first approach. In this

situation, the replica symmetric solution can become unstable towards a func-

tional Q with non-zero variance and this corresponds to the dynamical instability

of the solutions under iteration of the Eqs. (3.68). In other words, the instability

means that the distribution of cavity fields does not actually concentrate around

discrete values, therefore the corresponding solution is not reachable from any

finite temperature. In order to evaluate this type of instability we compute the

Jacobian of the system of Eqs. (3.68) and impose that all its eigenvalues have

modulus less than one. The 6× 6 Jacobian matrix reads

J =



0 0 0 0 G′1,out(ŵ2) 0

0 0 0 G′1,out(1− ŵ1) 0 0

−1 −1 0 0 0 0

0 G′1,in(w2) 0 0 0 0

G′1,in(1− w1) 0 0 0 0 0

0 0 0 −1 −1 0



. (4.47)
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where

G1,in(x) =
∑
k

k

〈k〉in
P in(k)xk−1

G′1,in(x) =
∑
k

k(k − 1)
〈k〉in

P in(k)xk−2

G1,out(x) =
∑
k

k

〈k〉out
P out(k)xk−1

G′1,out(x) =
∑
k

k(k − 1)
〈k〉out

P out(k)xk−2, (4.48)

with 〈k〉in = 〈k〉out. Two eigenvalues are zero, the other four have degenerate

modulus, therefore the stability conditions are

G′1,in(1− w1)G′1,out(ŵ2) < 1,

G′1,out(1− ŵ1)G′1,in(w2) < 1. (4.49)

By considering the zero-energy solution w1 = w2 = ŵ1 = ŵ2 = 0 and w3 = ŵ3 =

1, emerging for P in(1) = P out(1) = 0, the stability criteria implies the condition

Eq. 3.70 that we rewrite here for convenience,

P out(2) < 〈k〉in2

2〈k(k − 1)〉in
, P in(2) < 〈k〉in2

2〈k(k − 1)〉out
. (4.50)

Notice that for P in(1) = P out(1) = 0 there is also the zero energy solution

w1 = 0, w2 = 1, ŵ1 = 1, ŵ2 = 0 and the symmetric solution w1 = 1, w2 = 0, ŵ1 =

0, ŵ2 = 1. The first solution is stable when the stability conditions given by

Eqs. (4.59) are satisfied, i.e. when

G′1,in(1)G′1,out(0) = 〈k(k − 1)〉in
〈k〉in

2P out(2)
〈k〉out

< 1, (4.51)
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the second solution is stable when the following condition is satisfied

G′1,in(0)G′1,out(1) = 〈k(k − 1)〉out
〈k〉out

2P in(2)
〈k〉in

< 1. (4.52)

Therefore, when P in(k) = P out(k), these solutions are stable under the same

conditions in which the solution w1 = w2 = ŵ1 = ŵ2 = 0 is stable, and all these

solutions correspond to the same value of the energy density E/N = 0.

4.3.2 Number of driver nodes

The BP equations solving the maximum matching problem on a random net-

work ensemble are expected to give the correct value for density of driver nodes

in the limit of large networks N →∞. In particular, in the region in which BP

predicts a zero fraction of driver nodes nD, the BP algorithm does not guarantee

that the exact number of driver nodes is zero, i.e. ND = 0. Nevertheless in our

simulations, by running the Hopcroft-Karp algorithm (Hopcroft and Karp, 1973)

on finite networks in the region where BP predicts a zero fraction of driver nodes,

i.e. nD = 0, we have always found that, as soon as we are sufficiently far from

the boundary of the region defined by the stability conditions, the networks have

a number of driver nodes equal to zero, i.e. ND = 0. In Fig. 4.3 we show the

histogram of the results obtained by the Hopcroft-Karp algorithm corresponding

to the points of Fig. 3.9 with predicted zero fraction, i.e. nD = 0 of driver nodes.
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Figure 4.3: Histograms showing the number of network realisations that, out of
a total of 50 realisations, show a certain number of driver nodes ND

in the region of phase space in which BP predicts zero fraction of
driver nodes nD = 0. The different histograms are displayed as a
function of P (2) for in-degree and out-degree distributions as in Eq.
3.71 of the main text with P (1) = 0 and γ = 2.3. The size of the
networks is of N = 104. The histogram refers to the exact matching
algorithm by Hopcroft and Karp (1973). As long as we are far from
the stability conditions P (2) = 0.181947, these results show that the
expected number of driver nodes is consistent with ND = 0.

4.3.3 Improving the controllability of scale-free networks

In the Sec. 3.5.3 we gave an example of a power-law network with in-degree

distribution equal to out-degree distribution, N = 104 nodes, and power-law

exponent γ = 2.3. We showed that in this particular case our recipe was quite

demanding in terms of fraction of links needed to reach the full controllability

of the network. Nevertheless, if we keep the same initial average degree and we

consider the degree distributions with a power-law exponent γ = 3, implying
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Figure 4.4: Fraction of driver nodes nD(∆L)/nD(0) (panel A) average cluster-
ing coefficient 〈C〉 and average distance 〈l〉 (panel B) of the network
as a function of the fraction of added links to low degree nodes.
The results are obtained solving the MS equations. The initial net-
work is a power-law network with in-degree distribution equal to out-
degree distribution, N = 104 nodes, and power-law exponent γ = 3.
The symbol ∆L indicates the number of added links to the network,
whereas L0 indicates the initial number of links of the network.

that we start from a minimum in-degree and our-degree equal to 2, the fraction

of links for the full controllability drops to 13% (see Fig. 4.4).

4.3.4 Poisson networks

In Sec. 3.5.2 we have assessed the role of low-degree nodes in the controllability

of networks, especially considering uncorrelated random graphs with power-law

degree distribution. We consider now Poisson networks with the following degree

distribution
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P in(k) = P out(k) =



P (1) if k = 1

P (2) if k = 2

C λk

k! if k ∈ [3,∞]

(4.53)

with C a constant determined by normalization. We especially focus on the situa-

tion in which P (1) = 0 and the stability condition for the solution {w1, w2, w3} =

{0, 0, 1}, {ŵ1, ŵ2, ŵ3} = {0, 0, 1} reads

P (2) ≤ 〈k〉2

2(〈k2〉 − 〈k〉) (4.54)

where 〈k〉 and 〈k2〉 can be easily expressed as

〈k〉 = 2P (2) + (1− P (2)) λ(eλ − 1− λ)
eλ − 1− λ− λ2/2 (4.55)

〈
k2〉 = 4P (2) + (1− P (2))e

λ(λ+ λ2)− λ− 2λ2

eλ − 1− λ− λ2/2 (4.56)

In Fig. 4.5 we show the phase diagram pointing out the fraction of driver

nodes nD as a function of the parameters λ and P (2). The dark grey area

defines the region where the zero-energy solution is stable, hence the network

has an infinitesimal fraction of driver nodes (nD = 0). Outside this region, the

minimum fraction of driver nodes necessary for a full network control is displayed

(lowest stable solution of the MS equations).
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Figure 4.5: Phase diagram indicating the density of driver nodes nD (indicated
according to the color code on the left) as a function of the parameters
λ and P (2) for networks of nodes with degree distribution given by
Eq. (4.53) and P (1) = 0. The density of driver nodes is obtained by
numerically solving Eqs. (3.68). The solid line indicates the stability
line.

4.3.5 Improving the controllability of Poisson networks

In Sec. 3.5.2 we have described an algorithm that can improve the controlla-

bility of networks by adding links to it and reducing the number of nodes with

in-degree and out-degree smaller than 3. While in Sec. 3.5.2 we show that such

algorithm can be used to improve the controllability of scale-free networks, here

we show that the same algorithm can be used to improve the controllability also
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Figure 4.6: Fraction of driver nodes nD(∆L)/nD(0)(panel A) average clustering
coefficient 〈C〉 and efficiency E (panel B) of the network as a func-
tion of the fraction of added links to low degree nodes. The results
are obtained solving the MS equations with the Belief Propagation
algorithm. The initial network is a Poisson network with in-degree
distribution equal to out degree distribution, N = 104 nodes, and
average degree c = 4. The symbol ∆L indicates the number of added
links to the network, whereas L0 indicates the initial number of links
of the network. The links are added to low degree nodes in the follow-
ing way. First links are added to nodes of in-degree and out-degree
0, then links are added to nodes of in-degree and out-degree 1, and
finally to nodes of in-degree and out-degree 2. This strategy can be
used to increase the controllability of networks.

of Poisson networks. In fact this approach can be applied to networks with any

type of degree distribution. In Figure 4.6 we display the fraction nD(∆L) of

driver nodes when we add ∆L links in the network divided by its initial value

nD(0) where the network has a Poisson degree distribution and average degree
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c = 4. We note that in this case the fraction of links that need to be added to

have full controllability is of the order of 5%. Here we have chosen to display the

efficiency E instead of the average distance 〈l〉 because the network, specially at

the beginning, is not fully connected.

When P in(1) = P out(1) = 0 the displayed network has P in(2) = P out(2) ≈ 0.21

and it becomes fully controllable.

4.4 Controllability of multiplex networks

4.4.1 Stability condition

We compute here the Jacobian of the system of Eqs. (3.95) and impose that

all its eigenvalues have modulus less than one. We avoid to consider wα
3 and ŵα

3

because they influence only the number of null eigenvalues (4 eigenvalues upon

12). The 12× 12 Jacobian matrix becomes 8× 8 and it reads

J =



0 0 0 G
[1],out,′
1 (ŵ[1]

2 )

0 0 G
[1],out,′
1 (1− ŵ[1]

1 ) 0

0 G
[1],in,′
1 (w[1]

2 )(1−G[2],in
0 (1− w[2]

1 )) 0 0

G
[1],in,′
1 (1− w[1]

1 )(1−G[2],in
0 (w[2]

2 )) 0 0 0

0 0 0 0

0 0 0 0

G
[2],in
1 (w[2]

2 ) 〈k〉[1],inG
[1],in
1 (1− w[1]

1 ) 0 0 0

0 G
[2],in
1 (1− w[2]

1 ) 〈k〉[1],inG
[1],in
1 (w[1]

2 ) 0 0

...
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...

0 0 0 0

0 0 0 0

G
[1],in
1 (w[1]

2 ) 〈k〉[2],inG
[2],in
1 (1− w[2]

1 ) 0 0 0

0 G
[1],in
1 (1− w[1]

1 ) 〈k〉[2],inG
[2],in
1 (w[2]

2 ) 0 0

0 0 0 G
[2],out,′
1 (ŵ[2]

2 )

0 0 G
[2],out,′
1 (1− ŵ[2]

1 ) 0

0 G
[2],in,′
1 (w[2]

2 )(1−G[1],in
0 (1− w[1]

1 )) 0 0

G
[2],in,′
1 (1− w[2]

1 )(1−G[1],in
0 (w[1]

2 )) 0 0 0



where, in similar way to Sec 4.3.1, we define

Gα,in
0 (x) =

∑
k

P in
α (k)xk

Gα,out
0 (x) =

∑
k

P out
α (k)xk

Gα,in
1 (x) =

∑
k

k

〈kα〉in
P in
α (k)xk−1

Gα,in,′
1 (x) =

∑
k

k(k − 1)
〈kα〉in

P in
α (k)xk−2

Gα,out
1 (x) =

∑
k

k

〈kα〉out
P out
α (k)xk−1

Gα,out,′
1 (x) =

∑
k

k(k − 1)
〈kα〉out

P out
α (k)xk−2, (4.57)

Considering in particular the solution wα
1 = ŵα

1 = wα
2 = ŵα

2 = 0 and wα
3 = ŵα

3 =
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1, emerging for P in
α (1) = P out

α (1) = 0 the Jacobian matrix changes in

J =



0 0 0 2P out[1] (2)
〈k[1]〉out 0 0 0 0

0 0 〈k
[1](k[1]−1)〉

out

〈k[1]〉out 0 0 0 0 0

0 0 0 0 0 0 0 0
〈k[1](k[1]−1)〉

in

〈k[1]〉in 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2P out[2] (2)
〈k[2]〉out

0 0 0 0 0 0 〈k
[2](k[2]−1)〉

out

〈k[2]〉out 0

0 0 0 0 0 0 0 0

0 0 0 0 〈k[2](k[2]−1)〉
in

〈k[2]〉in 0 0 0


(4.58)

Four eigenvalues are zero, the other four have degenerate modulus, therefore the

stability conditions are

2
〈
k[1](k[1] − 1)

〉
in

〈k[1]〉in
P out

[1] (2)
〈k[1]〉out

< 1

2
〈
k[2](k[2] − 1)

〉
in

〈k[2]〉in
P out

[2] (2)
〈k[2]〉out

< 1. (4.59)

When P in
[1](k) = P out

[1] (k) = P in
[2](k) = P out

[2] (k) we have just one stability criterion

for this particular solution and it reads

P (2) < 〈k〉2

2 〈k(k − 1)〉 (4.60)

4.4.2 Correlations

We give here the calculations for the density of driver nodes when degree

correlations between the two layer are introduced (see Sec. 3.6.7).
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Low-degree correlation

We introduce in Eq. 3.92 and Eq. 3.93 the joint probability

P in(k[1], k[2]) =



pδk[2],k[1]P (k[1]) + (1− p)P (k[1])P (k[2]), if k[1] ≤ 2

(1− p)P (k[1])P (k[2]), if k[1] > 2 k[2] ≤ 2

pP (k[2])
C P (k[1]) + (1− p)P (k[1])P (k[2]), if k[1] > 2 k[2] > 2

where C = 1− ∑
k≤2 P (k). For simplicity’s sake we consider P (k[1]) = P (k[2]) =

P (k). The probability p modulates the strength of the correlation. The modified

equations in 3.92 become

ŵ1 = p

P (1)
〈k〉

w1 + 2P (2)
〈k〉

w2(1− (1− w1)2) + (G1(w2)−
P (1)
〈k〉

−2P (2)
〈k〉

w2)(1−Gt
0(1− w1))

 + (1− p)G1(w2) [1−G0(1− w1)]

ŵ2 = p

P (1)
〈k〉

w2 + 2P (2)
〈k〉

(w1 + w2
2(1− w1)) + 1− P (1)

〈k〉
− 2P (2)
〈k〉

−(G1(1− w1)−
P (1)
〈k〉
− 2P (2)
〈k〉

(1− w1))(1−Gt
0(w2))


+ (1− p) [1−G1(1− w1) +G1(1− w1)G0 (w2)] (4.61)

where Gt
0(x) = ∑

k≥3
P (k)
C xk.

Finally, Eq. 3.93 is modified in

nD = 2 {G0 (ŵ2)− [1−G0(1− ŵ1)]}+ 2〈k〉 [ŵ1(1− w2) + w1(1− ŵ2)]

− 2(1− p) {[1−G0(1− w1)][1−G0(w2)]}

− 2p
{
P (1)w1(1− w2) + P (2)(1− (1− w1)2)(1− w2

2)+

C(1−Gt
0(1− w1))(1−Gt

0(w2))
}

(4.62)
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Total correlation

We introduce in Eq. 3.92 and Eq. 3.93 the joint probability

P in(k[1], k[2]) = pδk[2],k[1]P (k[1]) + (1 − p)P (k[1])P (k[2]) For simplicity’s sake we

consider P (k[1]) = P (k[2]) = P (k). The probability p modulates the strength of

the correlation. The modified equations in 3.92 becomes

ŵ1 = p [G1(w2)− (1− w1)G1(w2(1− w1))]

+ (1− p)G1(w2) [1−G0(1− w1)]

ŵ2 = p [1−G1(1− w1) + w2G1(w2(1− w1))]

+ (1− p) [1−G1(1− w1) +G1(1− w1)G0 (w2)] (4.63)

Finally, Eq. 3.93 is modified in

nD = 2 {G0 (ŵ2)− [1−G0(1− ŵ1)]}+ 2〈k〉 [ŵ1(1− w2) + w1(1− ŵ2)]

− 2(1− p) {[1−G0(1− w1)][1−G0(w2)]}

− 2p {1−G0(1− w1)−G0(w2) +G0(w2(1− w1))} (4.64)
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