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Introduction

In recent decades, Organic Thin Film Transistors (OTFTs) have focused lots of in-

terest due to their low cost, large area and flexible properties which have brought

them to be considered the building blocks of the future organic electronics(1–4). The

first OTFT was fabricated in 1986 utilizing a film of polythiophene as a semicon-

ducting layer (5). In 1989, Horowitz (6) reported the first OTFT employing a small

conjugated molecule (sexithiophene- 6T). Mobilities close to amorphous silicon’s one

have been obtained and a broad spectrum of novel semiconductors and new fabri-

cation techniques have led to a remarkable progress in performance of OTFTs(7).

The progress in understanding the physics behind OTFTs has been possible due to

advances in Ultra High Vacuum (UHV) growth, such as Organic Molecular Beam

Epitaxy (OMBE)(8), as a means to deposite organic thin films in a control manner

and with high chemical purity, and also to techniques such as X-ray reflectivity, low

energy electron diffraction (LEED) and Scanning Probe Microscopy (SPM) which

reveal the morphology of the thin film and provide evidences for the predictions of

growth theories. More specifically, in-situ and real time techniques have developed

as a powerful tool to get unprecedent insight into complex dynamic processes, that

cannot be unravelled by common ex-situ measurements(9,10).

Experimentally, devices based on the same organic material deposited in different

ways, i.e. by varying the deposition rate of the molecules, show different electrical

performance. As predicted theoretically, this is due to the speed and rate by which

charge carriers can be transported by hopping in organic thin films, transport that

depends on the molecular arrangement of the molecules.

This strongly suggests a correlation between the morphology of the organic

semiconductor and the performance of the OTFT. Several contributions on this

issue are present in literature. Among them, the CNR-ISMN group in Bologna,

have contributed with several publications ranging from the study of the activation-

diffusional energies for 6T (11,12), to the discovery of which layers mainly contribute

to charge transport in OFETs (13), to the result that the effective Debye length in

OTFTs depends on the multiscale morphology (14).
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Extensive works have been published on the correlation between morphology and

OTFTs performance (13,14) but still, a complete picture of the physics behind has

to be obtained. This is why we propose an in-situ real time SPM study of organic

semiconductor growth as an almost unprecedent experiment with the aim to fully

describe the morphological evolution of the ultra-thin film and find the relevant

morphological parameters affecting the OTFT electrical response.

For the case of 6T on silicon oxide, we have shown that the growth mechanism is

2D+3D, with a roughening transition (15) at the third layer. Then, we have fitted

the experimental data, i.e. the root mean square roughness, with a Distributed

Growth Model (DGM) (9,16) obtaining a good agreement. This shows that, to have

a full description of the growth mechanism, interlayer diffusion has to be taken

into account. Moreover, trying to estimate the Ehrlich-Schwoebel barrier (17,18), we

noticed the experimental temperature evolution of the growth exponent beta (19) to

have an opposite trend to the one expected, specifically a rapid roughening behaviour

(20). This is interpreted as the signature of a more complex growth dynamics, which

probably takes into account also upward molecules current (20) and/or downward

funneling (21). The desorption energy of 6T on silicon oxide, the diffusion energies

and fractal dimensions were also calculated.

Aiming to further investigate the very first steps of growth, i.e. the nucleation

centers, following (22), we tried to obtain an experimental definition of nucleation

center. To do this, we planned to perform Electrostatic Force Microscopy (EFM)

measurements on bare silicon oxide to image possible surface regions with different

surface potential, as expected in (22). Then, 6T molecules at very low coverage

(< 5%ML) are deposited. Such experiment aims to observe if the positions of the

nucleation centers are correlated with the electrostatic potential changes on the sub-

strate, as previously imaged by EFM.

Unfortunately, due to a technical problem in the z-piezo of the microscope, which

required the work of a specialist from Omicron NanoTechnology GmbH (23), stop-

ping the machine for few months, we were not able to complete this work which will

be finished in the next future. Although the experimental part of the work was not

achieved, we developed an original mathematical model to estimate theoretically

and more accurately than before, the capacitance of an EFM tip in front of a metal-

lic substrate. Analytical expression for this capacitance are important for a better

understanding of EFM images and the limit of resolution of an EFM microscope

(24,25). In the future, we aim to extend this EFM theoretical model, even in pres-

ence of thin film in between the EFM tip and the substrate(26), a work which will
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describe more accurately also the experimental definition of the nucleation center

concept presented above.

Finally, we also realized and finished two additional works. In the first, we

obtained Ultra High Vacuum (UHV) non contact Atomic Force Microscopy (AFM)

images of 6T flat lying molecules layer both on silicon oxide and on top of 6T islands.

This molecular configuration was already investigated by several techniques (27,28),

but still, at our knowledge, UHV AFM images clearly showing their existence were

lacking.

Moreover, we also performed ex-situ AFM imaging on a bilayer film composed of

pentacene (a p-type semiconductor) and C60 (an n-type semiconductor). The aim

was to relate the in-situ real time electrical characterization of the bilayer transistor

with the interface morphology of the heterojunction.
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Chapter 1

Organic thin film growth

1.1 Organic Molecular Beam Epitaxy

During the past decades, a huge progress has been made in growing ultra-thin

organic films and multilayer structures with a wide range of exciting properties.

Perhaps the most important advance has been the use of Ultra High Vacuum

(UHV) growth, sometimes referred to as Organic Molecular Beam Depo-

sition (OMBD), or Organic Molecular Beam Epitaxy (OMBE), as a means

to achieve, for the first time, both monolayer control over the growth of organic thin

films with extremely high chemical purity and structural precision.

When combined with the ability to perform in-situ high-resolution structural di-

agnostics of the films as they are being deposited, techniques such as OMBE have

provided an entirely new prospect for understanding many of the fundamental struc-

tural and optoelectronic properties of ultra-thin organic films systems.

The most common means for the OMBE growth of organic thin films is to use

an ultrahigh-vacuum apparatus. Typically growth occurs by the sublimation in a

background vacuum ranging from 10−7 to 10−11 mbar of a highly purified powder or

a melt of the organic source material from a temperature controlled oven or Knudsen

cell. The evaporant is collimated by passing through a series of orifices, after which

it is deposited on a substrate held perpendicular to the beam approximately 10-20

cm from the source. The flux of the molecular beam is controlled by a combination of

oven temperature as well as mechanical shutter which can switch the beam flux from

on to off. By sequentially shuttering the beam flux from more than one Knudsen

cell, multilayer structure consisting of alternating layers of different compounds can

be grown by this method. Growth rate is measured using a Quartz Crystal Balance

(QCB) which monitors the film thickness.

One significant advantage of using OMBE is that numerous in situ film diag-
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nostics can be employed both during and immediately after growth. Many growth

chambers are equipped with reflection high energy electron diffraction (RHEED)

allowing in-situ determination of the thin-film crystalline structure. Other diagnos-

tics include low-energy electron diffraction (LEED). Finally, many other vacuum

analysis techniques such as UHV STM, Auger electron spectroscopy, etc. have all

been employed in conjunction with OMBE.

Like for inorganic film growth theory (1,2), the two standard approaches in any

theoretical treatment of kinetics are to explain the system in terms of the ther-

modynamic driving forces, or in terms of the fundamental rate equations.

The rate equations can be further subdivided into an atomistic, or microscopic,

approach that accounts for individual molecules as they go through the various

processes (adsorption, desorption, diffusion, capture and release) or a phenomeno-

logical, or macroscopic, explanation that looks for correlations and the so called

scaling laws over large distances.

Figure 1.1: Typical processes happening at a surface: absorption, desorption, nu-

cleation, dissociation and (inter/intralayer) diffusion.

The dynamics of the first monolayer can be explained by calculating the

density of islands that consists of few molecules as they nucleate and evolve in

time. The results from SPM, LEEM, or Transmission Electron Microscopy (TEM)

can be used to understand the dynamics and compare with theory. Through the use

of classical nucleation theory, one can extract valuable information like the critical

cluster size and the energy of diffusion for a monomer.

To understand the film evolution over several monolayers, it helps to

consider the layer occupancies (or fractional coverages) of each layer, rather than
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the individual islands in each layer, because the details and experimental methods

become daunting otherwise. For instance, there have been attempts to extend the

rate equation approach to incorporate the subsequent layers, but with little success

due to the increased number of parameters needed to quantify the system. Com-

paring these theories with experimental data can yield information on the coverage

of each layer with time, the critical coverage for coalescence, the island shape, and

the presence and magnitude of an Ehrlich-Schwoebel barrier (3,4).

1.2 Characterization of the first layer morphology

The morphology of the surface is determined by the interplay between deposition,

desorption and diffusion of a flux Φ of molecules (molecules/(s · cm2); the latter

two phenomena can be described by energy values, Edes and Edif which one can

calculate experimentally.

1.2.1 Desorption

An effect competing with deposition is desorption which means that some atoms

deposited on the surface leave the surface itself. The desorption probability depends

on how strongly the atom is bounded to the crystal surface.

The usual procedure for measuring the lifetime of a deposited molecule or atom

is to measure the average time τ spent by the atom on the surface from deposition

to desorption. Often, it is found (5) τ to obey the Arrhenius law:

τ(T ) ∼ exp(Edes/kT ) (1.1)

From this equation, one can understand that the real value to be considered is

not the value of Edes but, instead, its relation with kT (which at RT is equal to

∼ 26meV ). Specifically, if we have Edes � kT we will have weak desorption, while,

on the other hand, if Edes � kT , we will have a strong desorption.

For our data analysis in Chapter 7 we will make use of an equivalent equation,

not related to τ but to the measured flux of molecules in case desorption can not be

neglected:

Φ(T ) ∼ exp(Edes/kT ) (1.2)

This expression relates the measured flux to the temperature T of the substrate. As

can be seen, if one increases T , the QCB will measure a decrease in the flux due to

desorption.
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1.2.2 Surface diffusion

In Molecular Beam Epitaxy (MBE) the deposited atoms diffuse on the crystal sur-

face, searching for the energetically most favourable position. Surface diffusion is an

activated process: for an atom on the surface, to diffuse to the next lattice position,

it must overcome the lattice potential existing between two neighbouring positions.

The average number of jumps in a unit time interval has an exponential temper-

ature dependence, given by the Arrhenius law (5):

N ∼ exp(−Edif
kT

) (1.3)

More often, the diffusion constant D (for admolecules on the substrate) is taken into

account. This parameter appears in Fick’s law (6) and the following relation holds

true for a square lattice:

D ∼ exp(−Edif
kT

) (1.4)

D is correlated with the average distance l between the point of adsorption and the

point of desorption (the diffusion length) by the following expression:

l =
√
Dτ ∼ exp(

Edes − Edif
2kT

) (1.5)

In Paragraph 1.2.4 the method which we will use to calculate Edif in Chapter 7 is

presented.

1.2.3 Thermodynamic driving forces

The relevant thermodynamic quantity concerning the formation of a new nucleus,

let’s say a j-cluster (an island made of j molecules), is the gain in free energy which

is given by (1):

∆G = −j∆µ+ j2/3X (1.6)

where ∆µ is the chemical potential difference (or supersaturation) while X is a

geometrical factor dependent on the system shape.

Depending on the shape of the crystal, the surface energy terms, and the super-

saturation, there exists a value of j for which the free energy is at maximum and

therefore the attachment of one more molecule will make the crystal sta-

ble. The size of the island corresponding to this maximum is known as the critical

island size, denoted by i∗.

This formalism has been continued by Verlaak (7) for the case of several im-

portant organic semiconductors (pentacene, tetracene and perylene) grown on inert

substrates. In (7), it is shown that:
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• no growth takes place if the supersaturation ∆µ is lower than zero

• only 3D growth will be observed if the supersaturation is (positive and) lower

than the critical value ∆µcr = Ψmol−mol − Ψmol−sub, where Ψmol−mol is the

strength of the interatomic interaction potential in the direction normal to

the surface and Ψmol−sub is the strength of the interaction potential between a

molecule and the substrate (Ψmol−sub = 0 for a perfectly inert substrate)

• 3D plus 2D growth will happen when ∆µcr < ∆µ < 2∆µcr

• there will be only 2D growth when, instead, ∆µ > 2∆µcr then, in a first

approximation (7), only growth conditions below the dotted lines will give rise

to continuous films

Figure 1.2: Growth modes for pentacene assuming a perfectly inert substrate

(Ψmol−sub = 0). Depending on substrate temperature and flux of molecules, dif-

ferent kinds of growth are possible.
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1.2.4 Atomistic rate equations

The classical nucleation theory (6) starts from rate equations for the island density

n1 for monomers and ns for islands with size s ≥ 2. Several assumption are

made in the beginning and the results will be influenced by them:

• the flux of molecules, Φ, is constant

• only the monomers can diffuse

• when one molecule meets another, they form an immobile cluster

• if one molecule meets an island, it sticks to its edge and becomes

immobile

• when an atom arrives on the top of an existing island it will continue

diffusing, eventually falling down if it reaches the edge of the island,

or, due to the Ehrlich-Schwoebel barrier, the atom may not leave

the upper terrace

• the aggregation process is irreversible, which means that it is not

considered the probability that a monomer can detach from the edge

of an island, or that a dimer can break

The rate Γs, which is the rate to form islands of size s+ 1 from islands of size s,

is given by (8):

Γs = σsDn1ns− γs+1ns+1 (1.7)

where σs is the capture number and γs is the rate at which monomers detach from an

island of size s. D is the surface diffusion constant for the monomers, see subsection

1.2.2.

The change of the monomer density, is given by (8):

dn1

dt
= Φ− n1

τ
− 2Γ1 −

∑
s≥2

Γs (1.8)

where τ is the residence time on the substrate of the molecules due to desorption.

Depending on whether desorption is strong or not we can distinguish two regimes:

• desorption is relevant: this is called incomplete condensation

regime. τ is small compare with n1 and so, the second term in Equation 1.8

cannot be ruled out
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• desorption is negligible: this is the complete condensation regime and is

often true for the growth conditions used in OTFT fabrication. The

residence time τ is big and the second term can be excluded.

Finally, the change of the island densities with size s is given by:

dns
dt

= Γs−1 − Γs (1.9)

The solution of this set of differential equations for n1 and ns, can be found in

(9). In Figure 1.3, a log-log plot of the densities of monomers (n1) and total stable

nuclei (n =
∑

s≥2 ns) is plotted versus the total coverage for a specific ratio R of the

diffusion constant and the rate:

R =
D

Φ
(1.10)

Figure 1.3: Comparison of the densities of monomers and stable nuclei as a function

of coverage showing the different growth regimes (9).

As can be seen, there are four distinct regions that correspond to a low

coverage (L), an intermediate region (I), an aggregation region (A) and
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a coalescence region (C). In the low coverage regime, there are few stable nu-

clei, but many monomers diffusing on the surface. In the intermediate region, the

island density and island size are increasing, which leads to a decreasing popula-

tion of monomers: monomers still nucleate new islands but also start aggregating

into existing ones. The aggregation regime represents the stage where the

number of stable nuclei remains constant: here there is no nucleation of

new islands leading to scaling relations for the islands size distribution

and island separation at different coverages. In the coalescence regime, the

number of islands begins to decrease as they merge, thus allowing monomers to

diffuse around on top of the first layer and increasing their density.

In the case of the aggregation region, previously described, the (total)

island density n =
∑

s≥2 ns can be written as

n ∼ θ
χ
i (R)−χexp[

E
′

kT
] (1.11)

which can be written also as:

n ∼ θ
χ
i (Φ)χexp[

E

kT
] (1.12)

Here, T refers to the temperature of the sample during growth, θ is the total cov-

erage, χ is the scaling exponent, typically dependent on the critical nucleus size i∗,

and E
′

and E are energies which depend on the desorption energy, the diffusion

energy and the binding energy of the critical cluster.

There are several behaviours to be underlined checking this expression:

• the formula takes the form of a scaling relation n ∼ R−χ, where D and Φ

represent the diffusion and deposition process, competing with each other. In

fact, the larger the flux, the less time the deposited molecules will have to

diffuse before meeting another molecule on the surface. Due to the scaling

relation, we expect to obtain a system similar to the original if we

change D and/or Φ, without changing R (5)

• Provided sufficient (SPM) data is available, a plot of ln(n) vs ln(Φ)

allows the extraction of the critical nucleus i∗ from the slope χ

• Plotting ln(n) vs (1/T), instead, one can extract again from the slope

the energy parameter E

Regarding the scaling exponent χ and E, the following Figure 1.4 shows all the

possibilities. The main observation is the dependence from the growth mechanism

(2D or 3D) and the disappearance of the desorption energy, called Ea in this table,
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in the case of complete condensation regime.

Figure 1.4: Regimes of condensation: complete and incomplete. Depending on the

scaling exponent, different energies dependence of the cluster density should be taken

into account.

To conclude, also the average island size is an important parameter. Being n the

total island density excluding monomers, the average island size is:

< s >=

∑
s≥2 sns∑
s≥2 ns

=
θ − n1

n
(1.13)

From this relation and Equation 1.11, we can deduce the relation of the average

island size with the flux of molecules:

< s >∼ Φ−χ (1.14)

which means that, due to a low flux of molecules, one has to expect bigger islands.

1.3 Characterization of multilayer

morphology

1.3.1 Rms roughness

As already said, when studying a multilayer morphology, it helps to consider the

layer occupancies with which, one can obtain the roughness parameter. To see this,

we first define the surface to be the set of particles in the aggregate that are highest

in each column. Then we can introduce:
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• the mean height of the surface h, is defined by

h(t) =
1

L

L∑
i=1

h(i, t) (1.15)

where h(i, t) is the height of column i at time t. From this one can define:

• the roughness of the surface, is defined by the root mean square (rms) fluc-

tuation in the height

σ(L, t) = [
1

L

L∑
i=1

(h(i, t)− h(t))2]1/2 (1.16)

A typical plot of the time evolution of the surface roughness has two regions

separated by a crossover time tc, see Figure 7.14:

Figure 1.5: Roughness (w) vs. time (t) plot. tx is the critical time tc.

• Initially, the rms increases as a power of time

σ(L, t) ∼ tβ t� tc (1.17)

The exponent β, which is called the growth exponent, characterizes the time

dependent dynamics of the roughening process.
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• The power law increase in rms does not continue indefinitely, but is followed

by a saturation regime during which the rms reaches a saturation value, σsat.

In Figure 1.6 four different curves correspond to the time evolution of the

rms obtained by simulating systems with four different system sizes L. As L

increases, the saturation rms increases as well, and the dependence also follows

a power law

σsat ∼ Lα t� tc (1.18)

The exponent α, called the roughness exponent, is a second critical expo-

nent that characterizes the rms of the saturated surface.

• The crossover time tc at which the interface crosses over the two previous

regimes, depends on the system size

tc ∼ Lz (1.19)

where z is called the dynamic exponent.

Figure 1.6: The roughness time evolution of different size L sample. Circles: L

small, triangles: L large.

1.3.2 Layer occupancies

The most fundamental information on the vertical structure is provided by the

distribution of coverages θj, also known as layer occupancies, for various layers j.
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By convention j = 0 denotes the top layer of the substrate (so θ0 = 0). The total

coverage or thickness (in monolayers 1) of the deposited film equals θ =
∑

j≥1 θj =

Ft, for deposition flux F , and deposition time t in the absence of desorption. It is

important to introduce the quantities, Pj, giving the exposed coverage of layer j,

or the fraction of surface atoms of height j. Also, we let σ denote the root mean

square (rms) roughness of the interface. Then one has:

Pj = θj − θj+1 (1.20)∑
j

Pj = 1 (1.21)

θ =
∑
j

jPj (1.22)

σ = [(j − θ)2Pj]
1/2 (1.23)

Two extremes of behaviour are as follows (see Figure 1.7):

Figure 1.7: Picture of the height profile and evolution of the rms for layer by layer

growth, quasi layer by layer growth and Poisson growth.

(i)Layer by layer growth. If θ = k + δθ, with k = 0, 1, 2, 3.., and 0 < δθ ≤ 1,

then the only non zero Pj are

Pk = 1− δθ and Pk+1 = δθ (1.24)

1a coverage of one Monolayer (1 ML) is defined as the amount of material needed to cover the

substrate with one layer of molecules having the backbone perpendicular to the surface
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soσ = [δθ(1−δθ)]1/2. Generally, all quantities vary periodically in this growth mode

with a period of 1ML.

(ii)Poisson growth. For models of deposition in a simple cubic geometry with on

top adsorption sites and no interlayer transport, the Pj are described by the Poisson

distribution

Pj = exp(−θ)θj/j! (1.25)

so σ = θ1/2. This growth mode is typically associated with low temperature deposi-

tion in the complete absence of thermal diffusion. It applies more generally for any

degree of intralayer diffusion (but no interlayer transport), and might apply during

the formation of mounds due to a large step edge barrier.

More generally, kinetic roughening during multilayer growth is described

by the behaviour

σ ∼ θβ (1.26)

where β is the kinetic roughening or growth exponent.

For quasi layer by layer growth, involving slow kinetic roughening, σ will

display damped oscillations about a slowly increasing time average curve. In these

cases, one might attempt to fit Pj by the quasi-adiabatic form:

Pj ∼ σ−1f [(j − θ)/σ] (1.27)

with ∫
f(y) dy = 1,

∫
y2f(y) dy = 1, and

∫
yf(y) dy = 0 (1.28)

where f gives the shape of the film height distribution. Often, f is assumed to be

Gaussian even if, for realistic growth models, non Gaussian behaviours are expected.

Regarding how to determine the layer occupancies, additional information about

the surface evolution is required. The most common approach is to construct a

deterministic, parameterized model for the evolution of coverages θn(t). Such models

take the form of coupled, differential equations:

dθn
dt

= f(kj, θ1, ..., θn−1, θn, θn+1, ..., t) (1.29)

where the function f represent the additional information imposed on the system,

and kj are some parameters typical of the system.

A large variety of models of this form have been developed over the last several

decades. It is convenient to categorize these models according to how much they

attempt to incorporate atom-level kinetics. Models by Kariotis (10), Trofimov (11)

and Koponen (12) draw explicitly on nucleation theory and include additional equa-

tions representing the adatom and island densities on each layer. The next simplest
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models, most notably those introduced by Cohen (13), do not explicitly attempt to

model atom-level kinetics, but approximate these kinetics in the upper form. For

example, the distributed growth model, see subsection 1.3.6, includes a mean

field representation of the step density of a layer as a function of the total cover-

age, which in turn controls the amount of downhill interlayer diffusion (13). Finally,

Braun (14) have developed a version which attempts, explicitly, to avoid modeling

atomistic kinetics. Rather, the equations are coupled via intermediate functions

chosen to be as simple as possible consistent with producing physically reasonable

results for the functions θn(t).

Depending on the model, roughness will evolve with time, or θTOT . Here we will

consider the following models (for simplicity, desorption will not be included):

• Perfect layer growth

• Non diffusive growth

• Diffusive growth

• Distributed growth

1.3.3 Perfect layer by layer growth

At one extreme every atom deposited goes into the topmost unfilled layer until that

layer is completed. In this case, until the first layer is full one has:

θ0 = 1, θ1 = t/τ, θn = 0 for n > 1 (1.30)

This gives a roughness of rms = [(t/τ)(1− t/τ)]1/2 which is periodic, zero when one

layer is completed, 50%ML when the coverage is half of each layer. Coverages and

roughness are plotted in the following figure:
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Figure 1.8: The coverages and rms roughness evolution with time corresponding to

a perfect layer by layer growth.

1.3.4 Non diffusive growth model

At the other extreme, once an atom impinges onto an exposed portion of a layer, the

adatom is confined to that layer. It is not allowed to cross a boundary defined by

a step edge. This model might approximately hold for growth at low temperature

or at high rates. After a cluster is formed, a smaller cluster could grow on top,

and than on top of that, until the surface becomes very rough. In this case, the

fundamental equation describing the growth mode is:

dθn
dt

= (1/τ)(θn−1 − θn) (1.31)

θ0 = 1 (1.32)

θn(0) = 0 (1.33)

Here, θn−1 − θn is the fraction of the area of the nth layer that is unfilled. This is a

birth-death model, since the growth on an unfilled layer is rapid, while the growth

of a nearly completed layer is slow. These equation can be solved in:

θn(t) = 1− e−t/τ
n−1∑
j=0

(t/τ)j

j!
(1.34)

In this model, where there is no inducement for layers to fill in, the surface becomes

progressively rougher with rms =
√
t/τ , as can be seen by the following figure.
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Figure 1.9: The coverages and rms roughness evolution with time corresponding to

a non diffusive growth.

1.3.5 Diffusive growth model

Adding the possibility that an atom can jump to a lower level gives models interme-

diate between perfect layer by layer growth and non diffusive growth. Schematically

the differential equation would be:

dθn
dt

= (1/τ)(θn−1 − θn) + jumps (n+ 1→ n)− jumps (n→ n− 1) (1.35)

A variety of models could be used for the last two terms. In keeping with the

birth-death approach, we assume a jump rate in going from, for example,

n + 1 to n, that is proportional to the product of the available space on

level n and the uncovered area on the level n+ 1. The reasoning is that once

an atom is covered it is not able to diffuse to an edge. Then eq. 1.3.5 becomes

dθn
dt

= (1/τ)(θn−1−θn)+k(θn+1−θn+2)(θn−1−θn)−k(θn−θn+1)(θn−2−θn−1) (1.36)
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k is the only parameter of the model. The coverages and rms roughness can be

evaluated numerically, subject to conditions θ0 = 1, θn = 0 and θ∞ = 0. The results

have a typical form like in Figure 1.3.5.

Figure 1.10: The coverages and rms roughness evolution with time corresponding

to a diffusive growth.

1.3.6 Distributed growth model (DGM)

In a second model for treating the transfer between layers, we explicitly take into

account the lateral structure in the plane by distributing adatoms among the layers

according to the number of reactive sites available, which means the free perimeter.

Of the (θn − θn+1)/τ atoms per unit time arriving on the top of the nth

layer, a fraction αn transfer to the nth layer and a fraction 1−αn remains

on top of the nth layer.
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Figure 1.11: Picture of the molecules fractions of the incident flux reaching the

(n + 1)th layer, the nth and the (n − 1)th. The step-barriers depict the Ehrlich-

Schwoebel barrier of each layer.

Eq.1.3.5 then becomes the set of coupled differential equations

dθn
dt

= (1/τ)(θn−1 − θn) +
αn
τ

(θn − θn+1)− αn−1

τ
(θn−1 − θn) (1.37)

subject to the initial conditions θ0 = 1, θn = 0 and θ∞ = 0.

These equations become non linear when we put the physics into the dependence

of the αn on coverages. A difference between this model and the diffusive one, is in

the number of layers that are in direct communication. For the diffusive model it is

five layers, whereas here it is just three.

Let us assume that the distribution of the incoming adatoms is according to

the number of reactive sites, such as step sites or cluster edges. Let dn(θn) be the

perimeter of the nth layer and

αn = An
dn(θn)

dn(θn) + dn+1(θn+1)
(1.38)

where αn=0 if dn=0, even if dn+1 = 0. An and dn are the free parameters of this

model. If A = 1 this model gives a perfect layer by layer growth and if A = 0 it gives

non diffusive growth. In this mean field approach there is considerable flexibility in

the model depending upon how the perimeter is related to the coverage.

Assuming that for a less than half filled surface there is a fixed number of cluster,

each with the same perimeter, and that for a more than half filled surface there is a
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fixed number of holes, each with the same perimeter, we could generally choose:

dn =

{
θp1n θn < θc

(1− θn)p2 θn > θc

with

θp1c = (1− θc)p2 (1.39)

as a matter of continuity, being θc the critical coverage at which coalescence happens.

The choice p1 = 1 corresponds to the maintenance of cluster size while the num-

ber increases, as illustrated in Figure 1.12

Figure 1.12: Schematic of the ideas underlying the distributed growth model. The

growth between panels a and b assumes no additional nucleation. The growth

between panels a and c assumes nucleation but no change in size. Panel d represents

the holes in an almost filled layer.
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1.4 Roughening transition and

Ehrlich-Schwoebel barrier

What happens if an atom diffuses on an island and approaches its edge from above?

The answer is that there is an additional potential barrier at the edge of the island

that the atom must pass to jump off. This barrier results in a probability of the

atom to be reflected that is higher than the one for it to jump down.

The microscopic origin of this energy barrier can be understood referring to Fig-

ure 1.13. For this we count the existing bonds an atom has before it jumps off. The

dotted atom in Figure 1.13 must break its bond with the atom on its left before

jumping down the step, but there is no atom on its right to help the diffusion pro-

cess in that direction. The resulting asymmetry in the lattice potential generates a

higher probability of moving to the left (being reflected) than to the right.

Figure 1.13: Cross-section of a monoatomic step in a surface and the lattice potential

associated with the diffusion of an atom over the step. Diffusing to the right, in the

intermediate position the atom has two bonds, but there is a missing bond to the

right. The absence of this bond generates a further increase in the lattice potential,

as shown in (d). In position (c) the atom forms three bonds with the neighbors,

corresponding to a deep minimum in the lattice potential.
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The difference between the step edge barrier and the diffusion energy Edif is nowa-

days called the Ehrlich-Schwoebel barrier (3,4), and like in inorganic epitaxy it

is considered the reason for mound formation in organic thin films.

Several methods have been found to estimate this barrier (15,16), among them

we will follow (16): here, the Distributed Growth Model (see Section 1.3.6) is used

to simulate the growth dynamics of the thin film. From this simulation, with a best

fit of the rms evolution vs. time, the probabilities of jump from the (n+ 1)th to the

nth layer are obtained. Since in our in-situ real time experiment we are in front of

a 2D+3D growth with a roughening transition at the third layer, then the idea is

to make the following guess for the probability p3 of jump from the top of the third

layer to third layer itself, p3 ∼ exp(−EES/kT ). From here the energy barrier EES

can be obtained.

1.5 Issues specific to organic thin film growth

While the considerations presented above apply to inorganic as well as organic thin

film systems, there are a few issues specific to organics, which can lead to quantita-

tively and qualitatively different growth behaviour.

• Organic molecules are extended objects and thus have internal de-

grees of freedom

(i) The orientational degrees of freedom which are not included in conven-

tional growth models can give rise to new phenomena, such as the change of

the molecular orientation during film growth. Also, even without considering

a transition during the growth, the distinction of lying-down and standing-up

films is only possible for molecular systems.

(ii) The vibrational degrees of freedom can have an impact on the interaction

with the surface as well as the diffusion behaviour.

• The interaction potential (molecule-molecule and molecule-substrate) is gen-

erally different from the case of atomic adsorbates, and van der Waals inter-

actions are more important

(i) The response to strain is generally different. Potentially, more strain can

be accommodated and in those systems, where the build up of strain leads

to a critical thickness (before the growth mode change), this thickness can be

greater for softer materials. The different softer interactions with the substrate

and the corrugation of the potential have also been discussed in terms of ’van

der Waals epitaxy’ and ’quasi-epitaxy’.
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• The size of the molecules and the associated unit cells are greater then that

of typical inorganic substrates

(i) The effective lateral variation of the potential is smeared out, i.e. aver-

aged over the size of the molecule, making the effective corrugation of the

substrate as experienced by the molecule generally weaker than for the atomic

adsorbates.

Generally, most of the above points directly or indirectly impact the interactions

and thus also the barriers experienced during diffusion. Thus, not only the static

structure, but also the growth dynamics exhibit differences compared to inorganic

systems.
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Chapter 2

Atomic Force Microscopy

Atomic Force Microscopy (AFM) is a technique that allows us to see and measure

surface structures with unprecedented resolution and accuracy. For example, ar-

rangement of individual atoms in a sample or structures of individual molecules

have been obtained by AFM (1). Very small images only 5 nm in size, showing only

40-50 individual atoms, can be collected to measure the crystallographic structure

of materials, or images of 100 micrometers can be measured, showing the shape of

tens of living cells at the same time (2–4). Because of this, since its invention in the

1980s AFM has come to be used in all fields of science such as chemistry, biology,

physics, material science, nanotechnology and more.

An AFM is rather different from other microscopes, because it does not form

an image by focusing light or electrons onto a surface, like an optical or electron

microscope. An AFM physically feels the sample’s surface with a sharp probe,

building up a map of the height of the sample’s surface.

It was not the first instrument to work in this way however. The predecessor of the

AFM was the stylus profiler, which used a sharp tip on the end of a small bar,

which was dragged along the sample surface. This profiler, for instance described

by Shmalz in 1929, utilized an optical lever to monitor the motion of the sharp

probe mounted at the end of a cantilever. A common problem with stylus profiler

was the possible bending of the probe from collision with surface features leading

to probe damage or sample damage. This is why, in 1971, Young demonstrated a

non-contact type of stylus profiler where the electron field emission current between

a sharp metal probe and a conductive sample is very dependent on the probe-sample

distance. The probe was mounted directly on a piezoelectric ceramic element which

was used to move the probe in the vertical direction above the surface. An electronic

feedback circuit was then used to drive the z-axis piezoelectric element and thus keep

the probe-sample distance at a fixed value. Then, with the x and y piezos, the probe
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was used to scan the surface in the horizontal dimensions. By monitoring the x-

y and z position of the probe, a 3D image of the surface was constructed. The

resolution of Young’s stylus profiler was limited by the instrument’s vibrations.

In 1981 Binnig and Rohrer, working at IBM, were able to improve the vibration

isolation of an instrument similar to Young’s stylus profiler such that they were

able to monitor electron tunneling instead of field emission between the tip and the

sample. This instrument was the first scanning tunneling microscopy (STM)

(5–7). The reason the STM was much more successful than the stylus profiler is that

electron tunneling is much more sensitive to tip-sample distance than field emission,

so the probe could be scanned very close to the surface. The results of these early

experiments were astonishing; Binnig and Rohrer were able to see individual silicon

atoms on a surface. Without the STM, attaining this kind of resolution required a

transmission electron microscope (TEM), which weighs thousands of kilograms and

fills a room. For the STM invention Binnig and Rohrer later shared the Nobel Prize

for physics in 1986. Although the STM was considered a fundamental advance-

ment for scientific research, it had limited applications, because it worked only on

electrically conductive samples. This immediately led the inventors to think about

an instrument that would be able to image not only metals and semiconductors,

but also insulating samples. In 1986 Binnig, Quate and Gerber published a paper

entitled ”Atomic Force Microscope” (8).

Figure 2.1: The first AFM instrument built by Binnig, Quate and Gerber in the

Science Museum, London.
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2.1 AFM instrumentation

We can draw the general design of an AFM like in Figure 2.2. Its working principle

can be explained as follow: the force transducer measures the force between the

probe and surface; the feedback controller keeps the force constant by controlling

the expansion of the z piezoelectric transducer. Maintaining the tip-sample force at

a set value effectively also maintains the tip-sample distance fixed. Then, the x-y

piezoelectric elements are used to scan the probe across the surface in a raster-like

pattern. The amount the z piezoelectric moves up and down to maintain

the tip-sample distance fixed is equal to the height topography, previous

calibration of the piezo. In this way, by monitoring the voltage applied to the z

piezo, a map of the surface shape, a height image, is measured.

Figure 2.2: General AFM block diagram.

To be more detailed and better understand the working principle of an AFM, let’s

start from its main components which are the microscope stage, the control

electronics and a computer.

• The microscope stage contains the x-y-z piezoelectric scanners (the mechanism

for moving the AFM tip relative to the sample in the x-y-z directions), a coarse

approach mechanism which can move the AFM scanner towards the sample,

the sample holder and a force sensor, to hold and monitor the AFM tip. Often,

there is an x-y positioning stage which is useful for positioning the feature for
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imaging under the probe and the stage is supported on a vibration isolation

platform to reduce noise.

• The control electronics usually takes the form of a large box interfaced to both

the microscope stage and the computer. The electronics are used to generate

the signals used to drive the scanner and any other motorized components in

the microscope stage. They also digitize the signals coming from the AFM

so that they can be displayed and recorded by the computer. The feedback

between the signals coming out and going back into the AFM stage is handled

by the control electronics, according to parameters set via the computer.

• Software in the computer is used by the operator to acquire and display AFM

images, in our case we used the software Matrix (9) by Omicron. The user

operates the software program, and the relevant acquisition parameters are

passed onto the control electronics box. The computer usually also contains

a separate program to process and analyse the images obtained, in our case

Gwyddion 2.37 (10), see Section 2.6.

2.1.1 The AFM stage

x-y-z scanners: Piezoelectric materials are electromechanical transducers that con-

vert electrical potential into mechanical motion. In other application they can also

be used in the opposite sense. Typically, the expansion coefficient for a single piezo-

electric device is on the order of 0.1 nm/V. Thus, if the voltage used to excite the

piezomaterial is 2 volts, then the material will expand approximately 0.2nm, which

is approximately the diameter of a single atom. It is the ability to accurately control

such tiny movement that makes piezoelectric materials so useful for AFM. Indeed,

they are used to control the motion of the probe as it is scanned across the sample

surface.

The most common types of piezoelectric materials in use for AFM scanners are

amorphous lead barium titanate or lead zirconate titanate. These ceramics may be

hard or soft; this affects how much they can expand, versus the applied voltage, as

well as the linearity of the relationship between applied voltage and expansion. Hard

ceramics have smaller coefficients of expansion, but are more linear. Soft ceramics

have more non-linearities and have greater expansion coefficients. After fabrication,

piezoelectric ceramics are polarized. Polarization can be lost by elevating the piezos

to a temperature above their critical temperature or by applying too high voltage.

Electronically, piezos act as capacitors and store charges on their surfaces. Capac-

itances of ceramics may be as large as 100 microfarads. The piezoelectric ceramic
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changes geometry such that the volume is preserved during extension (due to mass

conservation). One possible configuration is a disk which gets longer and narrower

when a voltage is applied. Another one is a tube, with electrodes on the inside and

outside. This configuration gives a lot of motion and is very rigid. Currently, the

tube scanner is the most widely used: it is very compact, allows very precise move-

ments especially at small scan ranges. It is also particularly convenient to engineer

an AFM with a tube scanner because there is a clear optical path down the centre

of the tube (like in the VT SPM microscope, see Chapter 5).

Figure 2.3: Graphical explanation of the working principle of a piezoelectric scanner.

Figure 2.4: Configuration of a common AFM tube scanner.

Ideally, the piezoelectric ceramics would expand and contract in direct proportion

to the driving voltage. Unfortunately, this is not the case, and all piezoelectric ma-

terials show non linear behaviour. They show two primary non-ideal behaviours:

hysteresis and creep. Hysteresis, derived from the word history, causes the ce-

ramic to tend to maintain the shape that it was in previously. As the ceramic is
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expanding, there is a negative shaped non-linearity, and as the material is contract-

ing, there is a positive shaped non-linearity. Hysteresis causes a bending distortion

in the images obtained, unless corrected. Creep occurs when the ceramic is sub-

jected to a sudden impulse such as a voltage step function, continuing to move in

the same direction as the offset, even after the voltage has stopped changing.

Figure 2.5: Intrinsic non linearity of a scanner.

Correcting the non-ideal behaviours of piezoelectric ceramics is essential to make

accurate AFM images. Due to the different ways the axes are operated- x and y

in a raster pattern, z moved by the feedback control- the required corrections are

different for the x-y axes and the z axis. Also, hysteresis and creep make it difficult

to scan the AFM very quickly, and maintain accuracy.

Coarse approach mechanism: An important challenge in AFM design is

making a motion control system that permits the approach of the probe to the

surface before scanning. This must be done such that the probe does not crash into

the surface and break. The problem is analogous to fly from the earth to the moon

in 60 seconds and stop 38 meters from the surface without overshooting or crashing.

In the AFM stage there are two separate motion generation mechanism in the z

axis: the first is a stepper-motor-drive mechanism with a dynamic range of a cen-

timeter and a resolution of a few microns. The stepper motor is typically driven

by an 80 turn per inch screw which can be attached to a motor to get an auto-

mated first-motion. The second motion generation mechanism is the already seen z

piezoelectric element which has a dynamic range of about 10 microns or less and a

resolution of less than 0.5 nm. While stepper motors have the range and speed to
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approach the surface from a great distance in a short time, they have neither the

resolution nor fast response time to put the tip into feedback safely. On the other

hand, the piezo driver is sensitive enough to safely go into feedback, but can only

move short distances.

Figure 2.6: Serie relationship between z motor, z scanner and the cantilever/tip

system.

Typically, probe approach is achieved with a woodpecker method (shown in Fig-

ure 2.7). In this method, the stepper motor is stepped a small increment, say 1

micron. Then the z piezo is extended 5 microns, of its maximum extension, to see

if the surface is detected. The z piezo is then retracted, the stepper motor extends

one more micron, so on and so on. A key component here is that when the probe

encounters the surface, the feedback is turned on immediately. In this way, the AFM

can approach the surface from several hundreds of microns, without risk of crashing

the tip.
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Figure 2.7: Woodpecker probe approach method.

Force sensor: The force between an AFM probe and a surface is measured with

a force transducer. They may be constructed that measure forces as low as 10pN,

this is a typical order of magnitude of forces occurring between tip and sample, but,

another reason for being able to detect such small forces is to protect the tip. If we

calculate, indeed, the pressure acting on the tip as the ratio of force by area, being

the contact area of some nm2, the force must be small enough to obtain reasonable

pressures.

With the advent of microfabricated cantilevers the optical lever AFM has be-

come the most widely used design for the force sensor in an AFM. The principle of

the optical lever is shown in Figure 2.8.

Figure 2.8: The optical lever sensor and an illustration of how the photodetector

detects vertical and horizontal bending of the cantilever.
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The lever consists of a laser focused to a spot on the back of a reflective cantilever;

the beam is then reflected onto a split photodetector, which measures the position

of the laser spot. The optical lever magnifies a small movement of the cantilever, to

create a large movement at the photodiode. The chief advantage of this system is

that it is highly sensitive to very small movements of the cantilever and it is quite

simple to build. The design of an optical lever AFM sensor has a laser beam re-

flected by the back side of a reflective cantilever onto a four-segment photodetector.

If a probe, mounted on the front side of the cantilever interacts with the surface,

the reflected light path will change. The force is then measured by monitoring the

change in light detected by the four quadrants of the photodetector. Specifically,

the difference in signal between the top two and bottom two segments, i.e. (A+B)-

(C+D) gives the vertical deflection (measured in volts or amps) and the difference

between the rightmost two segments and the leftmost two segments gives the lateral

deflection, i.e. (B+D)-(A+C).

The optical lever AFM force sensor requires alignment each time the probe is

changed. Typically, alignment is accomplished by first positioning the laser beam

onto the cantilever, and then confirming that the light is reflected onto the centre

of the photodetector by looking at the photodetector signal.

Figure 2.9: Designs for AFM with optical lever sensor. Left: the laser is scanned

with the cantilever. Right: the laser is fixed and the cantilever is scanned, a lens

keeps the laser light focused on the cantilever.
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2.1.2 AFM electronics

x-y rastern pattern: The AFM electronics drive the x-y scanners in a type of

raster pattern, as shown in Figure 2.10. The x scanner moves across the first line of

the scan and back. It then steps in the y direction to the second scan line, moves

across it and back, then to the third line, and so forth. AFM data are collected in

only one direction - commonly called the fast scan direction - to minimize line to

line registration errors that result from scanner hysteresis. The y direction is called

the slow scan direction. While the x scanner is moving across a scan line, the image

data are sampled digitally at equally spaced intervals. The spacing between the

data points is called the step size. The step size is determined by the full scan size

and the number of data points per line (pixels). The number of lines in a data set

usually equals the number of points per line. Thus, the ideal data set is comprised

of a square grid of measurements.

Figure 2.10: x-y scanners motion during data acquisition.

Feedback control: The reason an AFM is very sensitive is that feedback con-

trol is used to maintain a set force between the probe and the sample. The control

electronics take the signal from the force transducers, and use it to drive the piezo-

electrics so as to maintain the probe-sample distance, and thus the interaction force

at a set level. For instance, if the probe registers an increase in force, because while

scanning the tip encounters a particle on the surface, the feedback control causes
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the piezoelectrics to move the probe away from the surface. Conversely, if the force

transducers registers a decrease in force, the probe is moved towards the surface.

The type of feedback control used in AFM is called a proportional-integral-derivative

controller (PID).

2.1.3 AFM cantilever and tip

Cantilevers with a probe at their ends are considered disposable component of the

AFM. In principle, an AFM probe should last forever; however, in practice the probe

tip is often blunted when it touches a surface. The geometry of the probe is critical

to the quality of images measured with an AFM. All AFM images are a convolution

of probe geometry and surface. As an example, in Figure 2.11, if the probe cannot

reach the bottom of a surface pit, or track the sides of a particle, the image will not

indicate the correct geometry of the sample.

In order to make handling simple, the cantilevers are attached to a chip (or

substrate). By industry convention, these are normally 3.5 x 1.6 mm in size,

and about 0.5 mm thick. Figure 2.12 shows a cartoon of the design of a typical

chip/cantilever/probe system.

Figure 2.11: Comparison of image profiles obtained with a dull (left) or sharp (right)

probe on a concave feature (a pit) or a convex feature (a step).

AFM requires not only sharp tips, but also cantilevers with optimized spring con-

stant - lower than the spring constants between atoms in a solid, which are on the

order of 10N/m. The spring constant of a cantilever depends on its shape, its di-

mension and the material from which it is fabricated. The cantilevers are small,

generally between 50 and 300 microns long, 20-60 microns wide, and between 0.2

and 1 micron thick. V-shaped and rectangular shaped cantilevers are the two typical
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cantilever’s geometries.

Figure 2.12: Chip/cantilever/probe system.

Thicker and shorter cantilevers tend to be stiffer and have higher resonance fre-

quency, indeed for a rectangular cantilever, for example, it can be calculated the

spring constant to be k = Ewt3/4L3, where E is the Young modulus of the can-

tilever’s material and w, t and L are the width, thickness and length of the cantilever,

respectively.

AFM manufacturers offer microfabricated tips in three geometries: pyramidal, tetra-

hedral and conical. Conical tips can be made sharp, with high aspect ratios (the

ratio of tip length to tip width). Pyramidal tips have lower aspect ratios but they are

more durable. AFM tips are fabricated from silicon (Si) or silicon nitride (Si3N4).

The fabrication process is different for the two materials. Silicon conical tips are

made by etching into the silicon around a silicon dioxide cap.

Figure 2.13: Examples of cantilever’s shapes: V-shaped and rectangular ones
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The high aspect ratio of conical tips makes them suitable for imaging deep, nar-

row features but they may break more easily than the pyramidal or tetrahedral

geometries. Silicon also has the advantage that it can be doped, so that tips can

be made electrically conducting. Silicon nitride tips are fabricated by depositing a

layer of silicon nitride over an etched pit in a crystalline silicon surface, as illustrated

in Figure 2.14. This method produces the pyramidal or thetrahedral tip geometry.

The tips are broader than conical silicon tips making them less suitable for imaging

deep features. On the other hand, silicon nitride is a harder material than silicon,

which also makes silicon nitride tips more durable than silicon tips.

Figure 2.14: Fabrication procedure of a silicon nitride tip.

tip structure aspect- resonance cantilever AFM mode

geometry ratio frequency lenght

Si3N4 pyramidal durable low low long CM

tetrahedral

Si conical brittle high high short oscillating

mode

In Figure 2.15 one can find a typical datasheet of a NT-MDT (11) semicontact/non-

contact probe.
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Figure 2.15: NT-MDT typical probe with datasheet
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2.2 Interactions in AFM

Of the four fundamental forces in nature, the electromagnetic interaction is the one

most contributing to the deflection of an AFM cantilever, specifically, it is the so

called van der Waals force, a term which, incidentally, applies to any dipole-

dipole interaction: dispersion or London forces, Keesom forces and Debye forces.

London forces regard fluctuating dipoles and is the type of van der Waals force

which we will refer to, the second is an interaction between permanent dipoles (such

as the molecule CO) and Debye forces refer to dipoles induced by other atoms or

molecules that are charged or permanent dipoles. In the case of London forces, upon

bringing together two perfectly inert, spherical atoms, fluctuating electronic charge

distribution (i.e. instantaneous dipole moments) begin to exhibit correlations in

their orientations. The electron of one atom tend to repel the nearest electrons of

the other atom such that at any instant, a net dipole, on one atom induces a net

dipole on the other atom and vice versa. Averaged over time, there is a nonvanishing

correlation in the orientations of these dipoles. These correlating dipoles tend to

attract each other with a force that falls off as distance to the seventh power (which

means a sixth power in the potential). In order to complete the description of

London forces we have to think about what is contact at the atomic level. As is well

known, if we continue to push two atoms together, quantum mechanics ultimately

would resist the process due to the Pauli exclusion principle. A more common

and practical representation of this repulsive force gives a decrease with distance to

the thirteenth power (a twelfth power in the potential), which, once added to the

attractive London force described before, brings us to the so called Lennard-Jones

potential or ”6-12” potential, see Figure 2.16.

VLJ(r) = ε[(
σ

r
)6 + (

σ

r
)12] (2.1)

where ε is basically the depth of the potential well and σ is the finite distance at

which the potential is zero.

Force microscopy experiments usually deal with ensembles of atoms or molecules.

The net van der Waals force is the result of adding all the individual dipole interac-

tions between the tip and surface atoms. One of the most common approximation to

describe an AFM interface is the sphere-flat geometry. The tip-sample ensemble is

simulated by a sphere (tip) and a flat sample. Several studies have shown that this

geometry is a reasonable approximation to the tip-sample geometry. Long-range

attractive forces, for distances larger than a0 (the interatomic distance where sec-

ond derivative of the potential changes sign), are derived from the non-retarded van
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Figure 2.16: Distance dependence of Lennard-Jones potential.

der Waals energy for two atoms in vacuum. Assuming additivity, for a sphere-flat

geometry the van der Waals force is (12,13):

Fts(zc, z) = − HR

6(zc + z)2
(2.2)

where H is the Hamaker constant and R the tip radius. For convenience, the tip-

sample instantaneous separation D is calculated as the sum of the tip-sample rest

distance, zc, and the instantaneous tip position z (d = zc + z). The origin of the z

coordinate is the tip’s rest position.

For distances smaller than a0, instead, the repulsive force between the tip and the

sample is simulated by the indentation force derived from Hertz’s model (12,13):

Fts(zc, z) = −HR
6a2

0

+
4E
√
R

3− 3ν2
(a0 − z − zc)3/2 (2.3)

where E and ν are the Young’s modulus and Poisson’s coefficient of the sample,

respectively.

2.3 AFM modes

The range of available AFM modes is at the heart of modern AFM and makes it a

versatile, powerful tool. Initially the only mode available was contact mode and this

limited the types of samples that could be examined. Now there are a very large
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number of possible modes of operation of AFM. For example, in 1999, Friedbacher

et al. attempted to list the names of all the SPM modes and arrived at more than

50 terms (14). In this section we will describe just the main topographics and non

topographics ones.

A variety of topographic modes have developed with time, which can be divided

into those modes which measure the static deflection of the AFM cantilever and those

that measure the dynamic oscillation of the cantilever. The differences between the

modes lead not only to different experimental procedures, but to differences in the

information available and even to differences in the interpretation of the data.

Figure 2.17: Summary of some SPM-based techniques.

2.3.1 Contact mode

Contact mode AFM was the first mode developed for AFM. It is the simplest mode

conceptually, and was the basis for the development of the later modes. Contact

mode is capable of obtaining very high resolution images. It is also the fastest of

all the topographic modes, as the deflection of the cantilever leads directly to the

topography of the sample, so no summing of oscillation measurements is required

which can slow imaging.

In order to understand the way AFM modes work, it is necessary to use the so

called force-distance curves. A carton of a simple force-distance curve is shown in

Figure 2.18.
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Figure 2.18: Simplified force-distance curve showing contact scanning regime (re-

pulsive region). Right: illustration of probe bending in each regime: repulsive force

regime, zero deflection regime and attractive force regime.

Such a curve is calculated from a deflection-distance curve which is easily mea-

sured by monitoring the deflection of the cantilever as the piezo is used to move

the tip towards the sample. Considering the approach curve shown in Figure 2.18,

when the tip is far from the sample surface, the cantilever is considered to have

zero deflection; as the tip approaches the surface, it normally feels first an attractive

force, and a snap in occurs, as the tip becomes unstable and jumps into contact

with the surface. As the instrument continues to push the cantilever towards the

surface, the interaction moves into the repulsive regime. It is within the repulsive

regime that contact-mode imaging usually occurs, for example at the point labelled

set-point in Figure 2.18. This has the following important implications: as a result

of the repulsive force between the tip and the sample, the sample may be damaged,

the tip could also be damaged and as the tip and sample are constantly in contact

with each other as the tip moves along the sample, in addition to the normal force

they apply to each other, lateral forces are experienced by both probe and sample.

The basis of contact-mode AFM is that the microscope feedback sys-

tem acts to keep the cantilever deflection at a certain value determined

by the instrument operator. This point is known as the set-point. The

set-point is one of the important control parameters that the operator must adjust

to optimize imaging.

The imaging mode described so far is known as constant-force contact-mode

AFM. If the user turns off the feedback while imaging, then she is effectively using



2.3 AFM modes 49

constant-height contact-mode AFM. Because constant-force mode is by far the

most widely used mode, in general any reference to contact-mode AFM will mean

constant-force mode unless specified otherwise. In constant-height mode, with

no feedback active, the image signal comes entirely from cantilever de-

flection, rather than from the voltage applied to the z piezo (which would

be typically set at a constant value). Constant-height mode AFM does have some

specific applications: it can be useful in conditions where scanning is carried out so

fast that the feedback system cannot cope (15).

Figure 2.19: AFM image acquisition in constant force mode.

Figure 2.20: Scheme of constant height mode set up.

Contact mode AFM has a really wide range of potential applications. Probably

the best reason to use it is its high resolution. Some dynamics modes can also
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achieve extremely high resolution, but compared to, for example, tapping mode, the

resolution of contact mode is potentially extremely high. What keeps it from

being used more widely is that the applied normal force leads to a high

lateral force applied to the sample as well; this can lead to problems of

sample distortion, damage, or even removal from the substrate. More-

over, in ambient conditions, a capillary layer of water will form between

the tip and the surface. One effect of this is to strongly pull the AFM tip

onto the surface. In water these forces do not exist, so it is easier to image. For

this reason, and due to some complications of imaging in dynamic modes in liquids,

imaging in liquid is a strong point of contact mode.

Here we resume the main points of contact mode AFM:

• Contact mode AFM operates monitoring the change in cantilever deflection

with a photodiode detector

• A feedback loop maintains a constant deflection between the cantilever and the

sample by vertically moving the z scanner at each (x,y) data point to maintain

a set-point deflection

• By maintaining a constant cantilever deflection, the force between the tip and

the sample remains the same

• The force is calculated from Hooke’s law: F = -k*x where k is the spring

constant and x the cantilever deflection

• Force constants usually range from 0.01 to 1.0 N/m, resulting in forces ranging

from nN to µN in an ambient atmosphere

• The distance the z scanner moves vertically at each (x,y) data point is stored

by the computer to form the topographic image of the sample surface

• Operation can take place in ambient and liquid environments

• High scan speeds

• Capable of obtaining very high resolution images

• Lateral (shear) forces can distort features in the image

• The forces normal to the tip-sample interaction can be high in air due to

capillary forces from the adsorbed fluid (capillary) layer on the sample surface
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Figure 2.21: Scheme of contact mode AFM set up.

2.3.2 Oscillating modes

Oscillating or dynamic AFM methods offer three main advantages with

respect to static (contact) AFM. First, the tip motion is sensitive to both

forces and force gradients. Second, in contact AFM the tip sample in-

teraction is measured following the cantilever’s deflection. In dynamic

AFM the oscillation amplitude, the frequency, and the phase shift, as

well as the cantilever’s deflection, may be recorded. This opens several

channels for simultaneous data acquisition, each of them describing a dif-

ferent sample property. Third, dynamic AFM may substantially reduce

the sample damage.

There are now a large number of dynamic modes of operation, and even more

names for them. However, all of these modes are variations on a theme. The can-

tilever is oscillated, usually with an additional piezoelectric element, and typically at

its resonant frequency. When the oscillating probe approaches the sample surface,

the oscillation changes due to the interaction between the probe and the force field

from the sample. The effect is a damping of the cantilever oscillation, which leads to

a reduction in the frequency and amplitude of the oscillation. The oscillation is

monitored by the force transducer and the z scanner adjusts the z height

via the feedback loop to maintain the probe at a fixed distance from the

sample, just as in contact mode AFM. The only real difference between the var-

ious oscillating modes available are in the amplitude of the oscillation applied to
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the probe and the method used to detect the change in the oscillation. The choice

of small or large amplitude has a considerable practical effect, as is illustrated in

Figure 2.22. Using a small oscillation amplitude (denoted by the arrow A), it is

possible to maintain the cantilever in the attractive regime only. This technique

is sometimes known as non-contact AFM. This technique has some advantages

due to the low tip-sample forces involved. On the other hand, it can be seen that

if a large oscillation amplitude is applied, then the probe will move from being far

from the surface where there is no tip-sample interaction, through the attractive

regime, into the repulsive regime, and back, in each oscillation cycle (arrow B). This

technique involves large tip-sample forces, so can be more destructive, but is easier

to implement. This technique is known as tapping mode AFM.

Figure 2.22: Different operating regimes for oscillating AFM modes. A: with a

small amplitude of oscillation, the probe can be kept in the attractive regime (non

contact mode). B: with a larger oscillation the probe moves through non-interacting,

attractive and repulsive regimes, resulting in tapping mode.

Tapping mode

The fact that the tip-sample interaction moves through all three regimes has several

important implications:

• there is tip-sample repulsive interaction leading to the possibility of sample or

tip damage, however:

• due to the movement of the tip perpendicular to the surface, lateral forces are

almost eliminated
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• the tip passes through the contamination layer typically present in ambient

conditions

The second and the third point above explain the popularity of tapping

mode. The lateral forces which can cause great problems in contact mode AFM

do not affect tapping mode. On the other hand, the fundamental instability of non-

contact AFM in air (due to operation in the attractive regime and the presence of

the capillary layer, see next section) is overcome. Moreover, since the equilibrium

separation between tip and sample is smaller than the oscillation amplitude, the tip

strikes the sample once each cycle. Large amplitudes, up to 100 nm, provide the

cantilever with enough energy to overcome adhesion forces.

The operating principles of tapping mode can be described in the following way.

The probe is oscillated with a large amplitude, typically in the range of 1-100 nm

(16) and the feedback is usually based on amplitude signal. Often, in addition to

the amplitude signal, the delay in the phase of the probe oscillation with respect to

the drive signal is recorded. See subsection 2.4.1 for more detail.

The main points of tapping mode are:

Figure 2.23: Schematic representation of a tapping mode set up.
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• the cantilever is oscillated at its resonance frequency with an amplitude ranging

typically from 1 nm to 100 nm.

• the feedback loop maintains a constant oscillation amplitude

• the vertical position of the z scanner at each (x,y) data point in order to

maintain a constant set-point amplitude is stored by the computer to form

the topographic image of the sample surface

• by maintaining a constant oscillation amplitude, a constant tip-sample force

is kept constant

• operation can take place in ambient and liquid environments

• due to the movement of the tip perpendicular to the surface, lateral forces are

almost eliminated

• when imaging in air, the typical amplitude of the oscillation allows the tip to

contact the surface through the adsorbed fluid layer without getting stuck

Non-contact mode

To achieve non-contact AFM the tip must be close enough to the sample surface to

achieve high sensitivity, without passing into the repulsive regime used for contact

mode AFM. Indeed, as explained before, non-contact AFM is carried out in the

attractive regime (van der Waals force). By using a highly stiff cantilever (resonance

frequency between 300 kHz and 400 kHz) and monitoring the change in oscillation,

it is possible to maintain the cantilever very close to the surface without jumping to

the repulsive regime. It is possible to observe changes in the oscillation amplitude

and phase in this regime. See subsection 2.4.1 for more detail. As with all dynamic

modes of operation, scanning speed is usually lower than in contact mode. When

used in Ultra High Vacuum (UHV) conditions, frequency modulation is usually used.

See subsection 5.1.2. One of the limiting factors for non-contact mode in air is the

capillary layer present on the surface.

To wrap up, non-contact AFM is described by the following points:

• the cantilever is oscillated at a frequency slightly above the cantilever’s reso-

nance frequency typically with an amplitude of a few nanometers (<10 nm)
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• the cantilever’s resonance frequency is decreased by the van der Waals forces,

which extend from 1 nm to 10 nm above the adsorbed fluid layer. The de-

creasing in resonant frequency causes the amplitude of oscillation to decrease

• the feedback loop maintains a constant oscillation amplitude or frequency by

vertically moving the z scanner at each (x,y) data point until a set-point

amplitude or frequency is reached

• the distance the z scanner moves vertically at each (x,y) data point is stored

by the computer to form the topographic image of the sample surface

2.4 AFM theory

We treat the tip/cantilever system as an equivalent point mass m∗ attached to a

spring of stiffness k0, a simple harmonic oscillator swinging toward and away from

sample at its resonance frequency

ω0 =
√
k0/m∗ (2.4)

The force on the tip are the sum of the cantilever’s restoring force, Fcantilever and

the tip-sample interaction force Ftip−sample. The cantilever force is obviously given

by the Hooke’s law

Fcantilever = −k0(z − z0) (2.5)

where z − z0 is the tip displacement from the equilibrium position z0 (undeflected

cantilever state, zero force). For convenience, we take the zero of the z axis to be

corresponding to the point where Ftip−sample is zero. The tip-sample interaction

force is the one considered at the end of Section 2.2, a combination of relatively

weak attraction at longer distances and steep, strong repulsion at short distances.

Thus, we can say the total force acting on the tip-cantilever system to be

Ftotal = Fcantilever + Ftip−sample (2.6)

2.4.1 Damped, forced harmonic oscillator

When we come to oscillating modes AFM, the cantilever behaves as a driven har-

monic oscillator with damping. The driving signal is a sinusoidal force vibration

F = F0cos(ωt) applied to the base of the cantilever. The damping of a freely (no
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tip-surface forces, so far) oscillating cantilever is primarily due to the fluid medium,

air or liquid, equivalent to a damping coefficient b (i.e., a damping force proportional

to the velocity of the tip, F = −bv = −bż).

The mathematical description of a damped, driven harmonic oscillator is a clas-

sic undergraduate physics problem, solving Newton’s second law of motion. The

resulting linear, second order differential equation is:

mz̈ = F0cos(ωt)−
m∗ω0

Q
ż − k0z (2.7)

where the useful dimensionless parameter Q is the quality factor, given by

Q =
m∗ω0

b
(2.8)

It quantifies the sharpness of the resonance curve and, importantly, is inversely

related to the strength of damping. Its value can be approximately determined

from the ratio of resonance frequency divided by the full width of the amplitude

peak at ∼ 70% of its peak value.

The solution of 2.7 is made up of an initial transient term, which we will not

consider here, and a steady-state particular solution for the case of underdamped

motion (ω0 > b/2m∗, the relevant case for AFM). This solution describes the fre-

quency dependence of the amplitude and phase shift of the sinusoidal motion of the

tip relative to the driving wave, see Figure 2.24.

A =
AdriveQ√

( ω
ω0

)2 +Q2(1− ( ω
ω0

)2)2
(2.9)

φ = arctan[
ω
ω0

Q(1− ( ω
ω0

)2)
] (2.10)

where Adrive is the amplitude of the drive signal.

As can be seen, the frequency functional relations with amplitude and phase shift

are given by Lorentzian (similar to a Gaussian-shape) and arctangent functions,

respectively.

One can also notice that if we excite the cantilever at its resonance frequency ω0 the

oscillating amplitude will become

A = AdriveQ (2.11)

while the phase shift will reach the value of 90◦.



2.4 AFM theory 57

Figure 2.24: Frequency response of the amplitude of oscillation and of the phase

shift.

There is a peak in amplitude when the driving frequency ω is equal to

the resonance frequency ω0 of the cantilever.

Two important remarks should be done in conclusion and they deal with the

limitations of the forced harmonic oscillator with damping. Indeed:

• Equation 2.7 considers the cantilever tip system as a point mass

spring, which means that the higher flexural modes of the cantilever

are ignored. In Multifrequency AFM they are taken into account,

instead. For instance, in bimodal AFM, the cantilever is simultane-

ously excited by two driving forces which are tuned to match two of

the flexural eigenmodes of the cantilever, usually the first and the

second ones (17).

• in Equation 2.7 the Q factor is independent of tip sample separa-

tion, which means that changes in the hydrodynamic damping of

the cantilever during its motion are neglected. This is not always

true (18).

2.4.2 Dynamics of a weakly perturbed harmonic oscillator

Let us assume that the cantilever-tip system is oscillating under the influence of

tip surface forces (see Section 2.2). For small displacements with respect to the

equilibrium position of the cantilever, which we assume to be at z=0, the tip surface
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force can be expressed by a simple Taylor first order expansion:

Fts(z) ∼ F (0) + (
dFts
dz

)0z (2.12)

In this approximation, the gradient of the force is the relevant factor that influences

the tip motion. Then, being the gradient linear in z, the interaction can be char-

acterized by an effective spring constant kts = −(dFts/dz)0. By substituting the

last expression in the second Newton’s law, we recover the full equation of a driven

damped harmonic oscillator affected by an interaction force:

mz̈ = F0cos(ωt)− bż + Fts(0) + F
′

ts(0)z − k0z (2.13)

with an effective spring constant keff = k0 − F
′
ts(0) = k0 + kts. Then, the new

effective resonant frequency is obtained as ωeff =
√
keff/m∗ and the difference

∆ω = ωeff − ω0 can be approximated (kts << k0) by

∆ω ∼ ω0kts
2k0

(2.14)

which can be written also as:

∆ω

ω0

∼ −1

2

F
′
ts(0)

k0

(2.15)

The above equations shows that, whenever the interaction force can be approximated

by its linear term, the tip-cantilever system still behaves as an harmonic oscillator

with a shifted resonance frequency. Due to this, we can immediately write also the

phase shift which will resemble Equation 2.10:

φ = arctan[

ω
ωeff

Q(1− ( ω
ωeff

)2)
] (2.16)

This expression can be usefully developed further. Indeed, if we write it as:

φ = arctan[
ωωeff

Q(ω2
eff − ω2)

] (2.17)

then, making use of tg−1(x) + tg−1(1/x) = π/2, we can say:

φ =
π

2
− arctan[

Q(ω2
eff − ω2)

ωωeff
] (2.18)

Therefore, if now we set ∆Φ = Φ− π/2, one has:

∆φ = −arctan[
Q(ω2

eff − ω2)

ωωeff
] (2.19)
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Since ωeff ∼ ω ∼ ω0, then:

ω2
eff − ω2 ∼ 2ω0∆ω ∼ −ω2

0

F
′
ts

k0

(2.20)

where we have here made use of Equation 2.15. Inserting the last expression in

Equation 2.19, one has

∆φ = arctan[
Qω0

ωeff

F
′
ts

k0

] (2.21)

Finally, if we assume, as before, ωeff ∼ ω0, and we use the Taylor expansion

tg−1(x) ∼ x (since keff � k0), then we end up with

∆φ =
Q

k0

F
′

ts (2.22)

which is an important formula, widely used in the so called Phase-EFM.

Coming back to Equation 2.13, it is important to keep in mind the assumptions

behind it:

• the tip-surface forces induce a frequency shift and not an energy

transfer

• the force gradient was assumed independent of the separation be-

tween the tip and the surface

• F ′ts(0)� k0

Several experiments violate at least one of the above points. A quantitative dis-

cussion on the limitations of the harmonic approach to interpret dynamic AFM is

provided by Holscher (19).

The dependence of the amplitude on the excitation and effective resonant fre-

quencies provides the first mechanism to explain the dependence of the oscillation

amplitude with the strength of the interaction force, or in other words, with the

tip-surface distance.

Let us assume that the tip is excited at its resonance frequency; approaching the

tip toward the surface will modify the resonance frequency that in turn implies a

modification of the oscillation amplitude. The actual oscillation amplitude will be

given by the value of the new resonance curve at the excitation frequency of the

oscillator ω0. As a consequence, the new oscillation amplitude will be smaller than

the free amplitude (both for F
′
> 0 and F

′
< 0).
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Specifically, if we are dealing with an interaction region where F
′
> 0, then kts

will be negative inducing a smaller ωeff with respect to ω0. This, as shown in Figure

2.25, will cause a shift toward smaller frequencies of the resonance amplitude curve

and so the new oscillation amplitude correspondent to the resonance fre-

quency ω = ω0, will be reduced. Regarding the phase shift, a similar discussion

can be done, obtaining, as a result of the interaction, again a shift of the phase

resonance curve toward smaller frequencies. This effect, in this case, will set the

new phase shift to a bigger value than the 90◦ typical of a free oscillat-

ing cantilever. Opposite conclusion can be obtained if we consider the case F
′
< 0.

Figure 2.25: The effect of a weak interaction (attractive regime) on the amplitude

and phase resonance curve.

2.4.3 Phase shift: attractive and repulsive regimes

The previous analysis of the tip motion has been done referring to a weak linear

perturbation directly connected with the first derivative of the force between the

tip and the sample. If we make the assumption that the interaction under investi-

gation can be described by a Lennard-Jones potential, like in Section 2.2, then we

can introduce two regimes of interactions: the attractive and repulsive ones. The

attractive regime deals with F ′ > 0 and corresponds to the region where the force

is increasing; on the other hand, the repulsive regime corresponds to F ′ < 0 which

represents regions where the force is decreasing.

As already presented in 2.2, the real interaction between a non mono-atomic

tip and the sample is different from a pure Lennard-Jones interaction. If we now

make the assumption that the real interaction is described by the formulas 2.3 and

2.2, the attractive and repulsive regimes definition changes into a more appropriate

one dealing with the average force acting on the tip in a cycle. Indeed, Garcia (20)
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showed that an AFM operated in amplitude modulation feedback has two regimes

of operation. In the first, the attractive regime, a net attractive force dom-

inates the amplitude reduction while in the other, the repulsive regime, a

net repulsive force controls the cantilever dynamics. The operating regime is

defined to be attractive when the average force in one oscillation is negative. With

this definition both regimes may involve long range attractive forces as

well as short range repulsive forces. The transition between the two regimes

is reflected in the tapping mode parameters. To use amplitude curves to determine

experimentally the operating regime may be time consuming. The phase shift, in-

stead, allows to easily identify whether the operating regime is attractive

or repulsive.

In most situations, the amplitude decreases with the tip sample distance. How-

ever, a sharp jump in the amplitude curves has been reported by experiments and

simulations. This jump has been attributed to the beginning of the repulsive regime,

i.e. the oscillation switches from a purely non contact (long range attractive forces)

to tapping mode (attractive and repulsive). However, it is shown that a step like

discontinuity in the amplitude curve is not an exclusive characteristic of the non

contact to tapping mode transition. It can be due also to the existence of two

oscillation states.

Following Garcia’s work, the transition between the attractive and repulsive

regime may be smooth or step like, depending on free amplitude and material

properties. The combination of stiff materials and small free oscillation

amplitudes usually gives rise to discontinuities. In Figure 2.26, it is shown a

numerical simulation for silicon dioxide and a cantilever tip system with a resonance

frequency of 350 kHz, see20 for more detail. The following conclusion can be drawn:
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Figure 2.26: (a) Amplitude, (b) average force, (c) normalized contact time depen-

dence on tip sample separation for three free amplitudes: 10 nm (black points), 30

nm (white triangles) and 60 nm (continue black line). The four different interaction

regions (1), (2), (3) and (4) are explained in the text.

• Amplitude:

for the three different free amplitudes A0=10, 30 and 60 nm we have four

different regions, (1), (2), (3) and (4), as we approach the sample. First,

in region (1), there is a flat behaviour where the effect of attractive force

is negligible. Second, in part (2), the cantilever starts to feel the attractive

forces. This usually reduces the amplitude of oscillation. Third, there is a
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Figure 2.27: Amplitude plot as a function of the driving frequency. The free oscil-

lating case is plotted by a dotted line. (a) A0 =60nm. (b) A0= 10 nm. The arrows

indicate the direction of the frequency sweeps.

transition region (3) where the amplitude shows an increase. Fourth, after

the transition the amplitude decreases again in part (4). The shape of the

transition curve depends on the free amplitude. For 10 and 30 nm, indeed, a

step-like discontinuity is observed, while for 60 nm the transition is continuous.

In all the three studied cases, the amplitude curves by itself does not reveal if

its reduction is due to attractive interaction or repulsive, or a combination of

both.

• Average force:

In plot b of Figure 2.26, the average force experienced by the tip during a

symmetric cycle is plotted. For A0=10 nm, at large z, the average force is

negative (attractive). It increases in absolute value as z decreases until a
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Figure 2.28: Phase shift dependence on tip sample separation.

sudden change of sign is observed. From there on, the average force remains

positive (repulsive). A similar behaviour is observed for A0=30 nm. However,

for 60 nm the force shows a continuous change with z.

The comparison of the amplitude and average force, shows a correspondence

between the changes observed in the amplitude and in the the force curve.

The average force curves allow us to define two regime of operation,

attractive and repulsive.

• Frequency:

As can be seen by the amplitude-frequency plots, Figure 2.27, for small free

amplitudes two steady states for the amplitude are possible. A higher ampli-

tude state, that implies tip sample contact and a lower amplitude state, that

may or may not imply tip sample contact. The jump marks the transition be-

tween one state to the other. This is also known as the bistable behaviour.

The system will reach one state or the other depending on the starting con-

ditions. The bistability depends on the sample properties, free amplitude, tip

sample distance, and working frequency.

• Phase:

To use amplitude curves to determine experimentally the operating regime

may be impractical. As shown in Figure 2.28, the phase shift, instead,

allows to identify whether the operating regime is attractive or re-

pulsive without possible contradictions. The attractive regime is

characterized by phase shifts Φ > 90◦ while in the repulsive regime

Φ is always below 90◦.
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Experimentally, in order to have a good quality AFM image, it is impor-

tant to keep the tip always in the same regime, or attractive or repulsive,

and this can be understood visualizing the phase shift during the scan.

A phase shift always bigger or smaller than 90◦, in each scanned line, will

be the fingerprint of a good interaction between the tip and the surface

atoms. It is an established practice in SPM to attribute noisy or unstable

data to a contaminated or bad tip shape. Here we have seen that a non

linear dynamics analysis shows that in many cases noisy or unstable data

only reflect the intrinsic structure of the tip motion.

2.5 Measuring AFM images

Like all techniques, AFM requires some skill and practice to operate well. In this

section we discuss the procedures that can make measuring AFM images easier.

2.5.1 Scan conditions: contact mode

Once the probe and optical alignment are done, and the probe approach completed,

one has to start the image and optimize the scanning parameters for the best possi-

ble AFM image. Often, standard parameters are used initially for the approach, and

such numbers might be provided by the instrument’s manufacturer. However, these

value will rarely be suitable to obtain good images. That is why one needs a method

to optimize the scanning parameters which is, basically, an iterative method. The

parameters are changed one at a time, until the tip is properly following the surface.

It can be very useful to show both forward and backward scanning lines. Since they

measure almost the same parts of the sample the two height traces should coincide.

Large differences in the forward and backward lines are an immediate indication that

something is going wrong. The most common reason for these kind of problems is

that imaging parameters (gain, setpoint, scanning speed) are not yet optimized. In

Figure 2.29 the effect of different feedback settings on a simple sample are shown.

Before coming to the set of the best parameters for imaging, an important detail

has to be underlined. Since in contact mode AFM we are working with a constant

deflection of the cantilever due to a constant interaction with the substrate, a spe-

cific procedure has to be followed in order to have the maximum signal from the

photodiode during the scan. Indeed, if after the laser alignment we set a constant

deflection with the setpoint, during the whole imaging the laser spot will not be any-

more in the centre of the photodiode. This can decrease the quality of the image.

The way to overcome this problem is to centre the laser not in the middle of
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the photodetector but slightly down in order to compensate the constant

shift we will have in normal force during the scan.

The general procedure to use to adjust scanning parameters, instead, is as follows:

1. increase feedback gain step by step, observing for the start of feedback oscil-

lation

2. when feedback oscillation occurs, reduce the gain again, until it disappears.

The optimal value is the highest gain setting one can use without

adding feedback noise to the image

3. when gain is optimized, adjust the setpoint. Ideally, we would use the

minimum value to keep the probe on the surface, in order to reduce

probe wear

4. gain may need to be optimized again to account for the change in set-point

5. adjust scan speed if desired

6. gain and set-point may need adjusting once more to take into account of change

in scanning speed

Figure 2.29: The effect of different feedback settings on the height topography.
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2.5.2 Scan conditions: oscillating modes

Measuring images in oscillating modes is in general very similar to contact mode,

with just a few differences. Firstly a non contact/tapping probe is usually with

a much higher resonance frequency. One practical consideration, instead, is that

oscillating modes probes are even more fragile and easy to break than contact probes,

so more care must be taken with them.

The optical alignment procedure is identical to contact mode. When the align-

ment is achieved, the operating frequency must be selected. This is often done

automatically. Automated routines sweeps the oscillating frequency of the driving

piezo up and down over a fixed frequency range and displays the amplitude of oscilla-

tion at each point. Within this range, the cantilever’s oscillation should be visible as

a single, strong peak. The presence of multiple peaks in the frequency spec-

trum in unexpected positions, is an indication of a not ideal behaviour

of the cantilever. The probe could be damaged or not fixed correctly in

the probe holder. Once the peak is located, typically the user should zoom into

the relevant part of the frequency spectrum to visualize the peak more clearly. The

instrument often shows not only oscillation amplitude vs frequency, but also phase

shift (with respect to the driving piezo signal) vs frequency. The resonance fre-

quency represent the point at which the amplitude is maximum and the phase shift

is 90◦. A better explanation of the physics behind cantilever’s oscillation is given

in Section 2.4.1. An example of amplitude/frequency and phase shift/frequency are

shown in Figure 2.24.

Having selected the operating frequency, the amplitude of the driving piezo oscilla-

tion is adjusted to give the desired oscillation amplitude to the cantilever.

In most AFM systems, an amplitude setpoint is then chosen. For contact mode

AFM, the setpoint is a deflection value, which means that increasing the

setpoint leads to greater forces between the tip and the sample. How-

ever, for tapping mode, feedback is based on a decrease in amplitude, so

a lower setpoint means a greater tip-sample interaction force. Once the

oscillation frequency and amplitude setpoint are chosen, the approach can be made.

Having approached successfully, scanning and optimization of parameters are very

similar to contact mode.



68 Atomic Force Microscopy

2.6 AFM image processing and statistical analy-

sis by Gwyddion

Gwyddion open source software (10) is a multiplatform modular software for Scan-

ning Probe Microscopy (SPM) data processing and analysis. The functionality of

Gwyddion is described in its User guide, which can be downloaded from the Gwyd-

dion web site, and here we just want to give an overview about all the main tools

one can find in Gwyddion.

2.6.1 Processing AFM images

Data representing the morphology of a sample/AFM image are collected as a matrix

of points corresponding to z values in a square array. The purpose of processing an

AFM image is to make it easier to measure and observe the features on the measured

sample. However, processing steps always change the AFM data, so one must be

careful. This is why, if more than one image has to be processed and then

statistically analyzed/compared, the same processing procedure should

be followed.

For our images, the common processing procedure was the following:

• take the raw AFM image

• plane fitting

• remove scars

• correct lines

• 2:2 polynomial fitting

• remove features which are clearly errors (due to a fake tip-sample interaction

for instance) or which are clearly not desired (like crystals whenever one is

looking at the thin film phase of the organic semiconductor under investiga-

tion). This operation can be done selecting by threshold these bad features

(Data Process→ Grains→ Mark by threshold) and then removing them with

Data Process → Correct Data → Remove data under mask. Eventually, even

fake deep spikes can be present in the image; for these it is convenient to select

- invert height - option during the threshold selection and remove them with

the same previous procedure

• color range option
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• select all the important features on the substrate by threshold and execute a

plane fitting, a correct lines and a 2:2 polynomial fitting only on these marked

regions

• Data Process → Level→ Fix zero in order to select the lowest pixel of the

AFM image as the z=0 origin of the z axis

Levelling

Levelling is usually the first processing operation carried out on the data. AFM

images usually measure sample height. If the background in the image has consid-

erable tilt in it, the change in height of the background will mask the changes in

height associated with the sample. For example, imagine a 20µm x 20µm image

which contains some 50 nm nanoparticles which the user would like to examine. If

the substrate is tilted by only 1◦, the height change from one side to the other of

the substrate will be about 350 nm, enough to mask all the nanoparticles.

In addition to tilting in the image a common problem in AFM images is scanner

bow and this artefact leads to a curve in the image. There are a number of different

methods that can be used for image levelling, and these are discussed below.

• Fix zero (Data process → Level → Fix zero) :

The simplest module that is connected with data levelling is Fix zero that

simply sets the minimum height of the sample to zero

• Polynomial fitting:

a very common method for levelling AFM images is by polynomial fitting, or

line-by-line levelling. In this routine, each line in the image is fit to a polyno-

mial equation. Then, the polynomial shape is subtracted from the scan line.

Typically each horizontal line of the image is processed in this way, although

the process can also be carried ut on vertical lines. It is usually better to do

this horizontally, because the horizontal axis is usually the fast scan axis. The

order of the polynomial equation can vary from 0 to 3 or more, as shown in

the following table.

For many images, a first order fit will suffice. If scanner bow is present in

the image, a second order fit will usually be appropriate to remove the arte-

fact. Orders higher than third level are possible. It is worth noting that
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Figure 2.30: Effects of different polynomial levelling orders.

line-by-line fitting procedures are particularly prone to causing lev-

elling artefacts, and so feature exclusion is often required.

• Two-dimensional plane fitting:

this procedure tries to automatically fit a flat plane to the image, and subtracts

the best fit plane; it works well where the background is really flat, and does

not include any curvature or scanner bow. The automatic routine will usually

assume the whole image is to be fitted; this means that it can be subject

to errors as large height features will reduce the accuracy of the fit to the

background. Plane fitting does not introduce the kind of errors mentioned

above with the line-by-line fitting. It is therefore a rather conservative levelling

procedure, as although it is not very efficient with many images, it does not

introduce any errors.

• Three points fitting:

this procedure is similar to the previous one, but is a rather more manual

approach. In this method, the AFM user identifies three points on the image.

These points define a plane which is then subtracted from the image. The

advantage of this method over the automatic plane removal is that if the user

can distinguish the substrate from the sample features, he can ensure the three

points are on the substrate only, and this often leads to a better fit. However,

because a flat plane is fitted, it is still only suitable for images with no curva-

ture or scanner bow. It is particularly appropriate for samples with terraces.

An example, showing the effect of different levelling algorithms on an image

with a large terrace, is shown in the following figure:

• Exclusion of points from fit:

with the most common type of levelling, polynomial line fitting, the presence

of raised features on the substrate will cause a levelling artefact. This occurs
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Figure 2.31: Left: result of plane fitting to an image with two distinct levels. The

global plane fit does not give a good result, as it assumes the entire image to be on

the same plane. A global polynomial fit would not work well either. Right: result of

three points plane fitting using three points indicated by crosses in the left image.

The result is a much flatter background(see profiles).

because the algorithm fits the entire line, and sets it to the same level as all

the other lines in the image. Thus, where large features occur on a line, the

substrate becomes artificially lowered, and the image ends up with what look

like shadows behind any large features. This problem is easily overcome

by simply excluding the features from the fitting procedure.

Figure 2.32: Illustration of the positions the above options can be found on the

Gwyddion main window. From left to right: Polynomial fitting, Plane fitting, Three

points fitting.

Data correction

AFM images often contain errors, which typically result from unwanted interactions

of the tip with the sample, such as sample movement under the tip, or strong tip
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sample forces leading to vibration or streaking in the images. If it is not possible to

acquire a new image without the errors, the user may wish to remove them. This

can be achieved by specific routines in the AFM processing software. These sorts of

corrections should be used with great caution as the correction process will change

the data. For example, data that was subjected to error correction will exhibit lower

roughness values after treatment, and these values do not reflect the true roughness

of the surface.

• Remove spots:

The Remove spot tool can be used for removing very small parts of the image

that are considered a scanning error, dust particle or anything else that should

not be present in the data.

• Remove scars:

Scars (or stripes, strokes) are parts of the image that are corrupted by a very

common scanning error: local fault of the closed loop. Line defects are usually

parallel to the fast scanning axis in the image. This function will find and

remove these scars, using neighbourhood lines to fill in the gaps.

Figure 2.33: Illustration of the Remove scars tool. Left: original image. Right:

corrected image.

• Remove data under mask:

This function substitutes the data under the previously selected mask by the

solution of the Laplacian equation. The data values around the mask defines

the boundary conditions.
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• Line correction:

Profiles taken in the fast scanning direction (usually x axis) can be mutually

shifted by some amount or have slightly different slopes. The basic Line cor-

rection functions deal with this type of discrepancy. Several functions can

be used. One of the most common is the Median Difference Line Correction

(Data Process → Correct data → Median Difference Line Correction) which

shifts the lines so that the median of differences (between vertical neighbour

pixels) becomes zero. Therefore it better preserves large features while it is

more sensitive to completely bogus lines.

Figure 2.34: Positions of the above options on the Gwyddion main window. From

left to right: Remove spots, Remove scars, Remove data under mask, Line correction.

2.6.2 Analysing AFM images

Several ways can be followed in order to statistically characterize the morphology

of a sample analyzed by AFM. This should be done with a small number of quan-

tities, sampling independent, which means quantities that are intrinsic properties

of the surface. Two classes of quantities can be used to characterize a surface:

first order statistical quantities and second order statistical quantities. Roughness

and fractal dimension are examples of the first class, autocorrelation func-

tion (ACF), power spectra density function (PSDF) and height-height

correlation function (HHCF) are examples of the second class.

Here we will introduce only the first class parameters since they will be used in

Chapter 7 and not the others. Details on the second class quantities can be found

in standard text books.

Roughness

There are a number of different ways to measure roughness which are all listed in the

Gwyddion User guide. The most commonly used roughness parameter is the root
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mean square roughness (RMS), which means the standard deviation of the z

height probability distribution. Still, this is not a complete characterization of the

morphology of a sample since several height profiles can be found, quite different in

appearance, but with the same RMS. Skewness and kurtosis try to fill this gap,

even if other quantities can still be found to have more details on the topography.

Skewness is a measure of the asymmetry of the distribution of heights. Random vari-

ations in morphology will give rise to a skewness value of 0. Positive values indicate

the presence of height values considerably above the average, while negative values

indicate the presence of height values considerably below the average. Kurtosis,

instead, describes the peakedness of the distribution of height values. High kurtosis

means a small number of extreme heights (very high peaks or very low valleys),

while a lower, or negative, kurtosis value means many moderate height features.

Mathematically, skewness is the third moment of the height distribution, while,

kurtosis, the fourth.

In Gwyddion one can find all these height distribution parameters using the -

Statistical quantities tool -, see Figure 2.35, otherwise the - Calculate row/column

statistical functions - is available. Averaging on each row or column of the single

line RMS is typically done.

Figure 2.35: Statistical quantities tool (left) and Calculate row/column statistical

functions tool (right) on the Gwyddion main window.

Fractal dimension

Surfaces created by some technological processes are expected to have fractal prop-

erties (21). Fractal analysis of the AFM data usually concentrates on determining

the fractal dimension Df of a given surface, which is the basic quantity used for
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characterizing self-similar and self-affine objects.

Generally, the concept of fractal dimension can be explained in the following way.

Suppose that we have an object embedded in a space of Euclidean dimension De.

The volume V (l) of this object cabe measured by covering it with De-dimensional

spheres of radius l and volume going as lDe . Then, we need N(l) spheres to cover

the object and to measure its volume by means of spheres as:

V (l) = N(l)lDe (2.23)

Usually, the relation N(l) ∼ l−De is valid for changing the size l of the spheres used

as measures. However, it can happen that the relation N(l) ∼ l−Df where

Df < De is valid. Objects having this property are called fractals and

have fractal dimension Df .

Consequently, we can determine the fractal dimension as:

Df = lim
l→0

ln N(l)

ln (1/l)
(2.24)

In fact, many methods of fractal dimension determination are just an implementa-

tion of the above relation.

Within Gwyddion, there are different methods of fractal analysis implemented

by Data Process → Statistics → Fractal analysis. One of the most used is the cube

counting method.

Cube counting method: it is derived directly from a definition of box counting

fractal dimension. The algorithm is based on the following steps: a cubic lattice

with lattice constant l is superimposed on the z expanded surface. Initially l is set

as X/2 (where X is length of edge of the surface), resulting in a lattice of 2x2x2=8

cubes. Then N(l) is the number of all cubes that contain at least one pixel of the

image. The lattice constant l is then reduced stepwise by factor of 2 and the process

repeated until l is equal to the distance between two adjacent pixels. The slope of a

plot of log (N(l)) vs log (1/l) gives the fractal dimension Df directly.

Other three methods are available in Gwyddion to calculate the fractal dimen-

sion: Triangulation method, Variance method and Power spectrum method. Each

one typically gives a different fractal dimension value. A common practise is to take

the average between the four values.

In our case, for the fractal dimension calculation involved in the analysis of data

collected by in-situ real time AFM experiments (see Chapter 7), we did not used

Gwyddion as a reference software but fractalyse (22).

The method we followed to obtain the fractal dimension was:

• take the raw AFM image and process it by Gwyddion



76 Atomic Force Microscopy

• make a .jpg of it

• open the .jpg AFM image with ImageJ (23)

• make a 8-bit image out of it following the path Image → Type → 8-bit

• execute Image → Adjust → Threshold

• move the scale indicator in order to select in black only the AFM image’s

features under investigation. It is fundamental to have previously flatten the

AFM image, by Gwyddion, in the best way

• save the image in the .bmp or .tiff format. These are the ones that fractalyse

can deal with.

• open the .bmp or .tiff image with fractalyse

• follow Analyse → Box (if a box counting method is desired)

• in our case we decided to fit the plot always with a non linear func-

tion of this kind: y = a ∗ xd (see Avanced option)

Grain analysis

Another option in Gwyddion is the possibility to count the number of islands lying

on the substrate. Unfortunately, we did not find this Gwyddion tool very accurate

so we decided to shift to another software, ImageJ (23). Here we write the procedure

to be followed:

• open the raw .jpeg AFM image

• Image → Type → 8-bit

• Image → Adjust → Threshold

• select in black all the desired features on the white substrate

• Analyze → Analyze Particles

• select the pixel2 range within which ImageJ has to count all the black islands.

We arbitrarily decided for 9-Infinity range. This selection is a way to rule out

from the counting procedure all the noise which is out of that range

• select Show Outlines and mark (or not) the - Exclude on edges - option.

Depending on this, islands on the border of the AFM image will be excluded

or not. We made the decision to keep the islands on the border
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Chapter 3

α-Sexithiophene (6T)

α-Sexithiophene, also known as α-hexathiophene, α-hexathienyl or α-sexithienyl,

is an oligothiophene: conjugated organic molecules of different chain length with a

five membered sulphur containing aromatic compound as smallest unit. Its chemical

formula is C24H14S6. It has a melting temperature of 290◦C at normal condition,

its chain is typically 2.4 nm long and it belongs to the class of p-type organic semi-

conductor.

Figure 3.1: 6T molecule representation with its typical dimensions.

6T has been strongly studied as a first organic semiconductor for its rigid-rod

behaviour and its morphological properties which brought it to be used for the

first OFET employing a small conjugated molecule (1). Due to its peculiar self-

organization and transport properties it is considered a prototype for studying the

physics of molecular devices.
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It can be obtained as a pure material and processed as thin film in high vacuum

conditions. Its configuration, indeed, has two possible crystalline phases: the thin

film and the bulk one. Moulin etal. (2) saw that the thin film phase evolves with the

thickness of the thin film itself. Using X-ray diffraction, the dynamics of formation

was followed and the threshold of disappearance of the thin film phase (and the

correspondent appearance of the bulk phase), above 6 monolayers, was identified.

Indeed, it was found out that the phase that appears for thicknesses superior to 6

MLs (in HV and at a low rate of deposition) shows a periodicity of 2.248 nm which

is compatible with 6T molecules tilted by 23◦, as is expected for the bulk unit cell

proposed by Horowitz (3).

Moreover, as investigated by Servet etal. (4), the thin film phase strongly depends on

growth parameters. For instance, Biscarini (5) showed roughness scaling properties

of 6T thin films as a function of the temperature of the substrate.

Unlike the bulk phase, the thin film phase depends crucially on the underlying

substrate. On metal surfaces 6T adsorbs in a so called flat lying orientation with its

long molecular axis parallel to the surface, at least in the first layer that, however,

acts as a template for further growth. On dielectric surfaces, like silicon oxide,

the 6T molecules adsorb in a so called standing orientation with its long molecular

axis perpendicular or almost perpendicular to the substrate. Recently, flat lying

molecules have been observed also on silicon oxide by several techniques (6,7). See

Chapter 9 for more details on flat lying molecules.

3.1 Technical details

As written in its datasheet, 6T is not very dangerous but several precautions must

be followed when dealing with it, for instance when the crucible has to be refill. 6T

can give eye-irritation so proper glasses must be worn. Moreover, a protective mask,

gloves and a lab-coat should also be used. Thanks to experience, we can also say

that 6T appears as an orange-brown powder which, at the end of its life inside the

crucible, after lots of sublimations, tends to be more brown in colour.

Experimentally, the sublimation temperature depends on the amount of 6T inside

the crucible and on the crucible itself, since each one has its own heating set up.

With our instrumentation, we can report a sublimation temperature ranging from

210◦C when the crucible is completely filled, to 290◦C when it is almost empty. A

bad-behaving flux of molecules, maybe too high or too low, or not increasing with

the temperature in the common way, can be taken as a proof that the material inside

the crucible is finishing and the crucible must be refill.
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Sample preparation and methods

Native silicon oxide substrate (n-type, phosphorous doped, resistivity 1-10 Ωcm)

was manually cut from a wafer properly stocked to avoid any environmental con-

tamination. Then, it was directly put inside the Fast Entry Lock (FEL) of the VT

AFM (see Chapter 5) without any chemical treatment.

The substrate was glued to the sample holder with a silver paste in order to

have thermal contact even at high temperatures (< 180◦C). 30 minutes in air, as

drying time, are enough to have the substrate properly fixed on the sample holder.

During this time, we also put on top of the sample (slightly tilted) a petri in order

to partially cover it from dust.

Since small conjugated molecules can be deposited in a much more controlled

way than conjugated polymers, their morphology can be better characterized and

related to physical properties like grain size and molecular orientation. This is why,

for our experiments, alpha-sexithiophene (6T) was chosen as organic semiconductor.

Half gram of 6T powder was purchased from SIGMA-ALDRICH (product number:

594687) and half of the Organic Molecular Effusion (OME) cell’s crucible was fill

with 6T. 5 monolayers of alpha-sexithiophene were sublimated in Ultra High Vac-

uum (UHV, ∼ 10−9 mbar) using the OME cell described in Section 5.2, not more

than 5ML because of the starting of the bulk phase from there on (2). Before the

experiment, we followed an outgassing procedure of several hours up to 200◦C in

order to remove every kind of contaminant.

The typical heating ramp for the substrate, if needed, was chosen in the following

way, always waiting one hour after the proper temperature was reached (in order to

obtain an homogeneous heating of the whole substrate):

• T(sub)=50◦C:

a Low power was selected in the Temperature Controller-331 (Lake Shore).

This allowed to reach 50◦C in almost half an hour
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• T(sub)> 50◦C:

a Low power, in this case, was found not enough to reach 80◦C, 100◦C and

120◦C. Therefore, to have a slow heating of the substrate as well, we decided to

first select low power till 50◦C and then increase the power selecting a Medium

one till the correct temperature was reached (typically another half an hour)

The heating of the Knudsen cell, instead, was achieved with a Power Supply SM

7020-D (Delta Elektronika). A ramp of not more 1V/minute (see the manual of

the instrument) was followed from RT till the proper sublimation temperature was

reached. In order to have a smooth heating procedure, for each step, we waited 10

minutes at least to let the temperature stabilize. Since the sublimation temperature

was near 270◦C, depending on the amount of material in the crucible, we had to

perform ∼ 20 steps; this means that the heating procedure took almost 3 hours.

Regarding the cooling down procedure, instead, the manual declares a maximum

rate of −10V/min, and this threshold was respected choosing −5V/min.

The flux of molecules was focused on the substrate position thanks to a centering

rod, which, once positioned on the final part of OME cell, allowed to see where the

molecules reach. The instrument was not integrated with a Quartz Crystal

Balance (QCB). Indeed, the flux of molecules was too collimated to have both the

substrate and the QCB receiving the material. The only chance was to add to the

system a movable QCB, to put in between the flux and the substrate whenever the

deposition rate had to be read. Unfortunately, this was not possible, therefore the

flux was obtained by AFM, indeed, the time needed for each evaporation was read

from a timer and the correspondent coverage calculated from the AFM image by

Gwyddion (see Section 2.6).

Since each of the five different substrate temperature experiments had to be done at

the same flux of material, an important request to be able to calculate the desorption

at each substrate temperature, a calibration at RT was always done before each

experiment to obtain the proper sublimation temperature correspondent always to

the same low rate of few angstrom/minute. Previous results on desorption of 6T

(8) were used to get the proper time of deposition. Specifically, we followed this

procedure:

• at RT, at a tentative sublimation temperature of almost 250◦C, we obtained

4 minutes as the deposition time to have almost 25%ML (∼ 6A) of coverage,

which was the step-coverage we were looking for. This coverage-time relation

corresponds to a rate of ∼ 1A/min, the desired one, and it was taken as a

reference
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• since each experiment lasted several hours (see the final part of the para-

graph for a quantification), with continuous sublimation, each experiment de-

termined a change in the sublimation temperature for the next experiment.

This forced us to repeat a RT calibration before each experiment in order to

find always the proper sublimation temperature corresponding to the same

flux of few angstrom/minute

• a technical detail had to be faced regarding substrate temperature different

from RT. Indeed, due to desorption, an increased amount of AFM images

should have been done to reach a total coverage of 5ML. This would have

been a problem for two reasons: firstly, the duration of the whole experiment

would have increased too much, secondly, there would have been more risk

to dirty the tip without being able to conclude the experiment. This is why,

we decided to take into account the desorption changing the deposition time

and increasing it of an amount equal to the previously estimated percentage

of desorption (15% at 50◦C, 30% at 80◦C and 100◦C and 45% at 120◦C,8).

Our results, shown in Section 7.2, do agree with the desorption percentages

calculated in (8)

• a part for the first experiment, performed after a refill of the 6T cell, we did

not observe a relevant change in the 6T temperature during the experiment.

As already underlined, one experiment was typically 20 hours long, therefore

a change (increase) in the 6T sublimation temperature (to be understood by

a change in the coverage step measures by AFM images) could be expected.

This happened only for the RT experiment since, as noticed even in other

experiments, as soon as indeed a little increase in the power of the 6T cell had

to be achieved

The Microscope’s base pressure was in the range of 10−10mbar at RT (temper-

ature of the effusion cell). During depositions, due to an average temperature over

all the experiments of 260◦C, the pressure raised of one order of magnitude.

Non contact AFM technique was performed with Nanosensors AFM cantilever

(PPP-NCHR-50, n+-silicon, resistivity: 0.01-0.02 Ωcm) with typical resonance fre-

quency of 350kHz. Each 6x6µm2 AFM image was scanned at a frequency f =

0.33Hz (forward and backward scans), with 600 pixel (1pixel/10nm), therefore each

image took 30 minutes.

In conclusion, we can report that each experiment lasted almost 20 hours, indeed:

• ∼ 3 hours to heat the Knudsen cell to the proper sublimation temperature
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• ∼ 2 hours to heat the substrate and let the temperature stabilize

• ∼ 2 hours for the deposition (an average deposition time of 5 minutes for 20-25

depositions)

• ∼ 12 hours for the AFM images
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Chapter 5

In-situ AFM: VT AFM XA Series,

by Omicron

Following the Variable Temperature (VT) AFM XA Series User’s Guide & Service

Manual provided by Omicron, we describe the Variable Temperature AFM by Omi-

cron NanoTechnology which we used to perform the in-situ real time studies of 6T

growth presented in Chapter 7.

Figure 5.1: A front view of the VT AFM microscope.

This powerful microscope allows both AFM and STM mode and is provided of

cooling and heating facilities to cover a temperature ranging from 70 K to 500 K.

Two main parts can be seen in Figure 5.1, separated by a gate: the Fast Entry Lock
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(FEL) and the in-situ chamber. The FEL is the chamber used to communicate

with the ambient and it allows to extract or put old/new samples/SPM tips from

the instrument. Due to a primary pump and a turbo pump, the minimum vacuum

obtainable in this chamber is an HV. The in-situ chamber, preceded by an interme-

diate chamber, instead, can reach an UHV due to an ionic pump and a Titanium

Sublimation Pump (TSP).

The whole microscope is held up by an isolation frame whose aim is to isolate

the system from the environment, cutting external vibration sources which could

dramatically change the SPM measurements. The basement elements at the four

corners of the whole system are filled by sand to damp acoustic noise. Sand, in-

deed, is an excellent damping material, due to its granular structure, see Figure 5.2.

Moreover, thanks to air cushions it is possible to change the height and the inclina-

tion of the whole microscope in order to have it perfectly flat. This is, indeed, an

important request to optimize the work of the AFM stage inside the in-situ chamber.

Figure 5.2: A side view of the VT AFM microscope. The isolation frame isolates the

whole microscope from external vibrations. The two front air cushions are visible.
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5.1 In situ chamber

The in-situ chamber can be seen in Figure 5.3. On the bottom left, the Knudsen

cell is visible (see subsection 5.2), while in front one can see the deposition/AFM

chamber where molecules are deposited on the substrate and AFM scanning takes

place. The AFM stage is inside this chamber, see subsection 5.1.1.

Figure 5.3: The in-situ chamber. The Knudsen cell, on the bottom left part, and

the deposition/AFM chamber, in front, are clearly visible.

The heart of the in-situ chamber, where the in-situ (quasi) real time experiment

is performed, is shown in Figure 5.4. As one can see the substrate is placed upside-

down and the AFM tip can scan from the bottom. If we scan during deposition,

a true real time investigation, we would dirty the tip without being able

to conclude the experiment. To avoid shadow effects, then, a quasi real

time technique had to be followed. This simple technique is made up of two

steps: the deposition and the AFM scanning. In the first step, the deposition is

realized with the tip detached from the substrate. The tip should not be too far
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Figure 5.4: Picture of the hearth of the in-situ chamber.

and not too close to the sample. Not too close otherwise we would have the shadow

effect, not too far otherwise, after the deposition, we would not be able to approach

always the same exact zone. For our experiment, indeed, it is mandatory to scan

always the same region of the sample in order to probe, in-situ, the morphological

evolution of the same region of the ultra thin film. In our case, we experienced that

50 steps of detaching in the remote box, did not alter the scan region. These 50

steps are almost equal to 500 nm.

The second step, instead, is the AFM scanning which can be achieved in the standard

way.

Figure 5.5: The quasi real time technique procedure.
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5.1.1 AFM stage: technical description

A view of the AFM stage is shown in Figure 5.6:

Figure 5.6: Internal layout of the VT AFM showing the two stage vibration isola-

tion system, a magnification of the measurement stage, heating/cooling facility and

optical pathway for the compact AFM design.

Here one can find some relevant technical details:

• Spring suspension:

the microscope is equipped with a high quality vibration decoupling system

essential for high resolution scanning probe microscopy. Its base plate is sus-

pended by four soft springs which are protected by columns. Vibrations of

the suspension system are intercepted using a nearly non periodic eddy cur-

rent damping mechanism. For this the microscope base plate is surrounded

by a ring of copper plates which come down between permanent magnets.
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The spring suspension system can be blocked to allow tip or sam-

ple exchange, blocking is achieved using a push-pull motion (PPM)

feedthrough, see Figure 5.6. During every scan and deposition, in-

stead, it should be kept floating. By experience, indeed, we noticed

that the procedure to block the spring suspension system, during

an experiment, can shift the scanning zone of more than 5 µm which

is a common scan size. This means that if an in-situ real time SPM

experiment has to be carried on, always scanning the same zone, the

spring suspension system should not be closed after each scan and

then opened after the deposition because this would dramatically

change the scan region

• Scanner:

the microscope uses a single tube scanner with a z-resolution of better than

0.01 nm. Here one can find the specification:

Maximum voltages for x, y and z ± 130 V at T< 40◦C

Maximum scan range x,y nominal 10µm x 10µm

Maximum scan range z 1.5 µm

Piezo sensitivities x and y 18 nm/V

Piezo sensitivity z 10 nm/V

Piezo capacity 7.5 nF, including the cable in UHV

The shown scanner sensitivities are valid for atomic resolution dimensions

only.

• Coarse Motion Drive:

X travel ± 5 mm

Y travel ± 5 mm

Z travel 10 mm

Capacity 1.7 nF

5.1.2 Non contact mode AFM

All the AFM images achieved during the in situ real time experiments de-

scribed in Chapter 7 were obtained in UHV in non contact mode. In AFM

non contact mode, the feedback source is the force gradient measured as the
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frequency shift of the cantilever resonance. This frequency shift can be used

as feedback signal for a distance regulation z-loop.

In (1) one can find:

∆f

f0

∼ 1

2k0

√
4k0kTB

2πf0QA2
(5.1)

where B = FM detector bandwidth (∼ 2kHz) and A = cantilever oscillation

amplitude.

As the frequency resolution depends on the Q value, non contact AFM mode

is particularly interesting in vacuum. The pressure which can be obtained

by pumping the instrument with a turbo pump is sufficient to achieve high

enough Q values for a good frequency resolution.

Below one can find the AFM non contact mode function principle.

Regarding the feedback unit, the main part of Figure 5.7 is the df Detection unit

which uses an intermediate frequency method for frequency evaluation. Specifically:

• the df detection unit generates an output voltage:

df = -5 mV/Hz (fref - fcantilever - 455 kHz), where

fref = the reference frequency

fcantilever = the reference frequency of the sensor

• the software df meter shows the frequency deviation corresponding to this

voltage. For frequency deviations bigger than 1.5 kHz the frequency detector

can no longer work correctly

• in order to adjust df ∼ 0 for a non interacting cantilever, the reference fre-

quency must reach the value fref = fcantilever + 455 kHz. This is opera-

tionally done, in Matrix (2) before the approach of the tip to the

sample, with the option: Auto: ∆f → 0.
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Figure 5.7: VT AFM non contact mode function principle and scheme of the df

detection unit.

5.1.3 AFM tips, mounting and fabrication

In order to use cantilevers in UHV conditions, cantilevers must be mounted to

the Omicron glueing device using vacuum compatible epoxy cement. The proper

procedure is described in the VT AFM XA User’s Guide & Service Manual, provided

by Omicron, here we will report only the main points.

First the tip holder must be positioned on the Omicron glueing device (Figure

5.8). Then, the cantilever has to be roughly glued on the base of the tip holder with

epoxy cement. Before drying in the oven the epoxy, one has to put the cantilever ex-

actly in the proper place which is established by a crosshair on the Omicron glueing

device, see Figure 5.8. The precise positioning procedure using an optical micro-

scope guarantees that the laser hits properly the reflective backside of the cantilever

and that we obtain the maximal detector signal. Figure 5.8 further shows the des-

ignated grooving on the tip holder to be filled with UHV epoxy. Once this is done,

one can bake for 20 minutes inside an oven at 120◦ C the whole Omicron glueing
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device, in order, then, to put the tip holder immediately inside the microscope’s FEL.

Figure 5.8: (left) Omicron glueing device. (right) Tip positioning and glueing pro-

cedure.

5.2 Organic material effusion cell

The main purpose of the organic material effusion (OME) cell with integrated water

cooling (Dr. Eberl MBE-Komponenten GmbH, (3)) is the controlled evaporation or

sublimation of suitable materials from the crucible inside the cell within a vacuum

chamber under high or ultra-high vacuum conditions (pressures below 10−5mbar).

Technical description

The OME-cell is developed for accurate evaporation or sublimation of high vapour

pressure materials like small organics molecules. Therefore the OME-cell is opti-

mized for temperature operation from room temperature (RT) up to 300◦C.

The basic features of the OME-cell are shown in Figure 5.9:

As can be seen, a manual rotary (360◦) shutter feedthrough (8) can be used to

open or close a shutter plate (1). Very important are also connectors (5) for cooling

water supply. A picture of the crucible top orifice (2) is shown in Figure 5.10 where

one can see that the molecules exit the orifice with a typical angle of 5◦, which means

that, being the distance orifice-substrate 12 cm, more or less 1 cm of substrate can
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Figure 5.9: Main parts of the organic material effusion cell: (1) shutter plate, (2)

crucible top orifice, (3) heat reservoir with crucible and encapsulated heater inside,

(4) flange, (5) connectors for cooling water supply, (6) thermocouple connector, (7)

power connector, (8) manual rotary shutter feedthrough.

be covered by the flux of molecules. This, indeed, was the typical dimension of our

substrates.

Figure 5.10: Picture of the crucible top orifice with the typical distances involved.
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A schematic of the internal construction of the OME-cell, point number (3), is shown

in Figure 5.11. This OME cell can achieve a stable temperatures control. This con-

cept also involves a liquid metal used as a thermal conductor that provides direct

thermal connection between crucible and heat reservoir without isolating voids. This

excellent thermal contact also guarantees a very uniform temperature distribution

within the crucible.

Figure 5.11: Schematic of the internal part of the OME-cell.

5.3 In-situ experiment technical details

In order to perform our experiments in UHV we used the following pumps in serie:

• primary pump: from atmospheric pressure to ∼ 10−2mbar

• turbo pump: from ∼ 10−2mbar to ∼ 10−7mbar

• ionic pump: from ∼ 10−7mbar to ∼ 10−9mbar
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• titanium sublimation pump (TSP): from ∼ 10−9mbar to ∼ 10−10mbar

The base pressure during our experiments, inside the in-situ chamber, was 2x10−10mbar.

As underlined in the VT AFM manual, after switching on the laser we always

waited at least half an hour before scanning. These allows the laser to stabilize.

Each time we did an experiment at a substrate temperature different from RT,

we always waited at least one hour before scanning to let the sample-tip system

reach thermal equilibrium. Indeed, we waited with the AFM tip already close to

the substrate and ready to approach.

Moreover, each time we reached the proper sublimation temperature T, we

waited almost 20 minutes to let the temperature stabilize.

Here, one can find a basic guide to perform the whole experiment:

• the substrate was cut from the proper wafer and glued to the sample holder

waiting 30 minutes in order to let the paste get dry

• the substrate was put inside the FEL of the microscope, previously left in air

• the FEL was pump, firstly with a primary pump and then with a turbo pump

in serie, in order to reach a HV

• once the FEL has reached it minimum vacuum, usually 5x10−7mbar, the trans-

fer to the in-situ chamber of the sample can be done. (Since the base pressure

in the in-situ chamber is 10−10mbar the best vacuum in the FEL the minimum

pressure difference will be there). The transfer should be done with proper

care in order not to move the sample holder from its place

• once reached the in-situ chamber with the vacuum manipulator, with the wob-

ble stick one has to take the sample holder and place it in the proper place

in the AFM stage, see subsection 5.1.1. Also this transfer should be done

with great care and the sample holder should be positioned inside the AFM

stage proper place without pushing, but slightly moving the sample holder in

a ”zig-zag” way. This procedure should be followed also when unloading the

AFM stage place with the sample holder

• now one can do an approach of the cantilever to the sample by eye. The key

is to get as close as possible to the sample until the reflex of the tip can be

seen on the sample itself. The use of a light can help to see better the reflex
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Figure 5.12: ”Zig-zag” way to load and unload the sample holder from the AFM

stage place.

• the heating of the substrate can now be achieved, if needed, with the Power

Supply SM 7020-D (Delta Elektronika). The basic connections can be found

in Figure 5.13

Figure 5.13: Power Supply and the connections to the OME cell and the PID con-

troller.

• once the tip is close to the sample the electronic approach should be done with
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Matrix software. By experience, a gain of 25% and a set point of -35 Hz were

good choices to obtain the approach in few minutes. Rarely it happened the

approach not to be possible. Changing the sample region was always found

to be a good way to have the next approach properly done. Follow the VT

AFM XA User’s Guide & Service Manual to have more detail on the approach

procedure

• once the approach has been successfully done, one can center the laser onto

the cantilever using the remote box, until an Intensity (in Matrix) between 2.3

V and 2.5 V is reached

• now the oscillation amplitude of the cantilever’s driving force can be selected

in Matrix (A− vib parameter). Since we performed non contat AFM images,

we decided for a small voltage, specifically, always 0.1V

• as described in subsection 5.1.2, df → 0 should be pressed in Matrix

• finally, the scanning parameter can be selected: gain (typically 10%), set point

(typically -30 Hz), points (i.e. pixels), scan speed (the scanning time between

two consecutive pixels, typically 2000-2500-3000 µs) and scan range, in our

case, always 6x6 µm2, a good compromise between a nominal max

scan dimension of 10 µm, in reality 7 µm, and the need to have a

statistical number of 6T islands for each experiment

• now the AFM scan can be performed
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Ex-situ AFM: NT-MDT Smena

NT-MDT (4) Smena was the ex-situ AFM microscope used to perform the P5-C60

AFM images shown in Chapter 8.

Like the VT AFM microscope described in chapter 5, a spring isolation frame is

present to cut all the external noise which could affect the AFM scanning. Moreover,

an optical microscope is visible in Figure 6.1: this was used to properly align the

laser onto the cantilever and to scan specific parts of the sample which, by eyes, it

would not be possible to select.

6.1 Design

The general view of Smena Measurement Head (MH) is shown in Figure 6.2. Base

(1) is installed on three adjustable supports (2 a,b). The base accommodates a

scanner (3) with a probe holder (4), a tracking and detection device (5 a,b) and an

electronic circuit board (6). The cantilever is installed in the holder (4).

• Supports:

Adjustable height supports (2a,b) are used for setting up the horizontal and

height position of MH with regard to the analyzed sample. The tip and the

sample should be as much as possible perpendicular between them and this

is achieved manually selecting the three height supports. A too big tilting

angle between the tip and the sample can strongly affect the quality

of the AFM image. The rear support (2b) is used for approaching the probe
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Figure 6.1: The NT-MDT Smena Measurement Head, the spring isolation frame

and the optical microscope.

Figure 6.2: Main parts of the Smena Measurement Head.

to the sample by changing the inclination of the head. This is a 0.35 mm pitch

thread screw. Rotation of this screw by 1◦ results in changing the cantilever

vertical position with regard to the sample by 0.3 microns, this allows an easy



6.1 Design 101

manual approach of the probe

• Scanner:

The scanner is designed for the probe movement in direction x,y and z. It

consists of 2 concentric piezotubes, one of which is inserted into the other, the

tubes are connected at one end. The outer tube ensures the probe displacement

along axis z, the inner tube provides for movement in plane x-y. The free end

of the inner piezotube has the cantilever holder and scanning mirror attached

to it. This mirror is the primary sensing device of the cantilever laser tracking

system

• Cantilever holder:

This is a spring clamp. It also contains a piezodrive exciting the can-

tilever oscillations

• Tracking and detection device:

This device incorporates a laser with focusing lens, mirror system and a pho-

todetector with a magnifying glass, see Figure 6.3:

Figure 6.3: Tracking and detection device.

To conclude, here one can find the performance parameters of the NT-MDT

Smena Meassurement Head:

Scanning range 90x90x5 µm

Minimum scanning step 0.01 nm

Sample size unlimited

Overall dimension 115x130x100 mm

Weight 0.7 kg
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Chapter 7

In-situ real time AFM studies of

organic semiconductor growth on

silicon oxide

In-situ and real time techniques are increasingly getting accessible to the scientific

community and allow unprecedent insights into complex dynamic physical, chemi-

cal and biological processes that can not be simply unravelled by common ex-situ

measurements. Many technically relevant molecular scale systems, like, for exam-

ple, the growth of organic semiconductors by Organic Molecular Beam Deposition

(OMBD) in Ultra High Vacuum (UHV), are out of equilibrium processes that need

to be better understood in order to achieve a reproducible and reliable downscaling

of micro and nano electronic devices.

In-situ real time investigation methods that have been so far reported and were

applied to investigate dynamic processes involve X-ray scattering, AFM in liquid,

photoelectron spectroscopy, X-ray adsorption spectroscopy and electrical character-

ization of OFETs (1).

Surface sensitive diffraction techniques, for instance, provide reciprocal space in-

formation on structure, most often Fourier type transforms of adspecies pair corre-

lations for sub-monolayer systems, or height-height difference correlations for multi-

layer growth. An advantage of these techniques is that they can be performed in-situ

during deposition, they automatically provide statistical or ensemble averages over

large areas, and they probe both short and long range order.

Scanning Probe Microscopy (SPM) techniques applied to in-situ real time exper-

iments are of particular interest since they provide a real space insight into dynamic

processes at surfaces in localized areas down to the nanometer scale. Furthermore,

SPM techniques are complementary to the above mentioned in-situ real time tech-
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niques that average the measurements observable over larger areas.

The only SPM technique that has so far been applied to elucidate the dynamics

of growth phenomena in UHV uses a custom built STM (2) combined with Molecular

Beam Epitaxy (MBE), however the group’s investigations concentrate on the growth

of inorganic semiconductors.

So far, the most prominent example of a real space in-situ real time investigation on

the growth evolution of an organic semiconductor employed photoelectron emission

spectroscopy to study the growth of pentacene on silicon oxide (3).

The present work is to our knowledge the first in-situ real time AFM study of

the growth process of organic semiconductors during deposition.

7.1 Experimental details

The in-situ real time experiments were achieved using the VT AFM XA series mi-

croscope described in Chapter 5. This microscope is also equipped with an Organic

Molecular Effusion (OME) cell which allows depositions at a controllable rate of

molecules. The OME cell is described in Section 5.2. For all the details regarding

materials and methods, refer to Chapter 3.

The idea of the experiments is to perform, in a step-wise manner, depositions

of 6T on native silicon oxide at different substrate temperature in order to probe,

in-situ real time, the morphological evolution of the organic semiconductor and to

obtain temperature dependent morphological parameters, like desorption energy,

diffusion energy and the Ehrlich-Schwoebel barrier. The chosen temperatures are:

RT, 50◦C, 80◦C, 100◦C and 120◦C.

Experimentally, for each temperature, we deposited 5ML of 6T (not more oth-

erwise the 6T bulk phase would start (4)) in steps of almost 0.25 ML (∼ 6A). This

coverage step was chosen to have at least three-four clear images for each layer, an

important point to be able to have a significant number of measurements describing

the evolution of the morphology. After each deposition, following the quasi real time

microscopy technique described in Section 5.1, we achieved one non contact AFM

image (in UHV), obtaining, in the end, a movie of 20-25 AFM images of the same

region, showing the local morphological evolution of the ultra thin film from the

bare substrate, to the early stages of growth, to the percolation and then up to the

fifth layer.
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7.2 Results and data analysis

In Figure 7.1-7.2 and 7.3-7.4, we show the morphological evolution of the 6T ul-

trathin film at two extremes, 50◦C and 100◦C, up to the fourth layer (we did not

put RT and 120◦C degrees because, the first was characterized by a morphology

presenting crystals while, the second, by dewetting phenomena, see Section 7.16).

All the remaining AFM images can be checked as supporting online material:

https://www.dropbox.com/home/In-situ real time experiment

Figure 7.1: Morphological evolution of the 6T thin film on native silicon oxide at

50◦C. 1) bare substrate 2) 0.27ML 3) 0.48ML 4) 0.74ML 5) 0.92ML 6) 1.06ML 7)

1.30ML 8) 1.52ML 9) 1.72ML 10) 1.93ML 11) 2.12ML 12) 2.35ML
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Figure 7.2: Morphological evolution of the 6T thin film on native silicon oxide at

50◦C. 1) 2.35ML 2) 2.56ML 3) 2.76ML 4) 2.99ML 5) 3.17ML 6) 3.45ML 7) 3.62ML

8) 3.84ML
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Figure 7.3: Morphological evolution of the 6T thin film on native silicon oxide at

100◦C. 1) bare substrate 2) 0.22ML 3) 0.45ML 4) 0.68ML 5) 0.89ML 6) 1.08ML 7)

1.26ML 8) 1.46ML 9) 1.68ML 10) 1.96ML 11) 2.17ML 12) 2.36ML
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Figure 7.4: Morphological evolution of the 6T thin film on native silicon oxide at

100◦C. 1) 2.57ML 2) 2.92ML 3) 3.17ML 4) 3.38ML 5) 3.59ML 6) 3.79ML 7) 4.07ML

8) 4.26ML
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Several observation can be done:

1. in both cases, two distinct populations of 6T islands are clearly visible. One

distribution has a lower nucleation density but it is characterized by bigger

islands, the second one, instead, deals with a higher density population of

smaller islands. This effect is due to the shutter of the OME cell (see Section

5.2), which, when closed, actually does not completely close the cell allowing

a low flux of molecules to reach the substrate. These molecules are the one

forming the low density population of clusters (bigger in size), the other dis-

tribution of islands, instead, is the proper one obtained opening the shutter of

the OME cell. Following Section 1.2.4 again, this behaviour is in agreement

with thin film growth theory in the aggregation regime where, the average

island size < s >, is inversely related to the flux of molecules

2. at a first glance, the nucleation density is different in the two cases, bigger at

50◦C, smaller at 100◦C. This is in agreement with thin film growth theory in the

aggregation regime, where the nucleation density is related to the exponential

of 1/T (see Section 1.2.4)

3. in both cases, at 50◦C and 100◦C, the initial growth (viz. θ ≤ 2ML) is layer

by layer (Figures 7.1 and 7.3): indeed, the second layer coverage, when the

first one is completed, is almost negligible and the same holds true for the

third layer when the second one is going to be complete. In other words, the

nucleation of the second and third layers only starts when the previous layers

have been completed. This means that in this growth-thermodynamics condi-

tion, the supersaturation is bigger than two times the critical value ∆µcr, see

subsection 1.2.3. On the other hand, when we observe Figures 7.2 and 7.4, we

are in front of a 3D growth: the thin film appears clearly rougher. This is due

to a roughening transition (5) which is more pronounced at 100◦C where the

film is even more rougher than at 50◦C.

In conclusion, the total growth mechanism is 2D+3D with a roughening tran-

sition at the third layer

4. we notice a drop of the nucleation density from the first layer nucleation to

the second and third ones (always in the aggregation regime, i.e. θ ∼ 0.2ML).

This effect is due to the different nature of the nucleation substrate: silicon

oxide for the first layer, 6T for the second and third layer

5. a shape transition for 6T islands can be noticed comparing the one of 6T

islands on silicon oxide and the one of 6T islands onto 6T islands. The former
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is roundish while the latter is more dendritic or fractal (6)

6. another shape transition can be seen comparing the evolution of islands of

the same layer from small coverages up to coalescence and percolation. The

starting islands are always more dendritic then the final ones, which are more

roundish

7.2.1 Experimental desorption energy

As described in subsection 7.5, in case of desorption the relation between the total

measured flux and the substrate temperature is the following:

Φ(T ) ∼ exp(Edes/kT ) (7.1)

For the case of our experiments, five different fluxes can be measured, corresponding

to five different temperatures and this is enough to obtain a trend. If, indeed, we

plot ln(Φ(T ) vs. 1/T , the slope will be Edes/k, a value from which the desorption

energy can be extrapolated.

To start with, then, here on the left of Figure 7.5 we report the behaviour of the

total coverage with respect to deposition time, for the five experiments, from which

the fluxes can be obtained. As can be seen RT has the biggest flux of molecules,

due to no desorption, while the others, necessarily, yield a smaller flux, minimum for

120◦C. Regarding this last experiment, as will be shown in Section 7.16, dewetting

phenomena taking place from the first layer determined difficulties in estimated the

layer occupancies. This is why in the plot only the very first points have been taken

into account.

On the right of Figure 7.5, instead, the plot of lnΦ(T ) vs. 1/T is reported: from

the slope a desorption energy of Edes = (21 ± 5)meV is found. As an error bar on

the desorption energy the error on the linear fit has been considered.

This value is partially in agreement with the previous one (7), Edes = (52 ±
5)meV . The discrepancy (our calculation is half of that), maybe, is due to our 80◦C

and 100◦C experiments, which show a smaller flux of molecules at 80◦C instead

that at 100◦C. Also in the right plot of Figure 7.5, the 100◦C value seems to be

out of trend. We did not understand why this happened, anyway, the order of

magnitude of the two estimations, is the same, so we consider our value reasonable.

We also calculated the desorption energy without taking in to account the 100◦C

point, obtaining Edes = (24± 1)meV . As can be seen, the measure is more precise

but slightly bigger.
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Figure 7.5: (left) Total coverage monitored after each growth step vs. time. (right)

Desorption energy plot yielding, from the slope, Edes = (21± 5)meV .

7.2.2 Experimental growth energies

As can be seen by Figure 7.6, we want to compare the island density at (approxi-

mately, due to experimental reasons, i.e. absence of QCB) the same coverage but

different temperature of the substrate. In order to be in the aggregation regime we

select the AFM images referring to a coverage of ∼ 0.3ML. As described in subsec-

tion 1.2.4, since the flux of molecules was the same for each different experiment, a

plot of ln(n) vs. 1/T , yields the energy E driving the growth.

Figure 7.6: Different first layer island density for approximately the same coverage

but different substrate temperature. 1)RT, θ = 0.3ML 2)50◦C, θ = 0.27ML 3)80◦C,

θ = 0.28ML 4)100◦C, θ = 0.22ML

In Figure 7.7, all the measured island density are plot with respect to the substrate

temperature, left graph, while on the right the plot yielding the E1, the relevant

energy parameter for the first layer, is reported. From the slope one can obtain
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Figure 7.7: (left) Island density vs. temperature. A clear decrease is visible. (right)

ln(island density)vs.(1/T ) plot: the slope yields the energetic of the growth.

E1 = (548± 110)meV = (0.5± 0.1)eV , where the error bar is the one given by the

linear fit.

The same procedure applied to the second layer and the third layer (not the fourth

and the fifth due to 3D growth) gives: E2 = (430± 60)meV = (0.43± 0.06)eV and

E3 = (429± 105)meV = (0.4± 0.1)eV .

Once these energy values are known, it is possible to gain knowledge about the

diffusion energy. Indeed, if we make the hypothesis to be in the complete condensa-

tion regime of the aggregation’s one, where desorption is negligible (actually, this is

not true for our situation, since the desorption energy was calculated to be 21 meV.

However, since E is one full order of magnitude bigger, we can, as a first approxima-

tion, rule out the desorption contribution), then we can claim, see subsection 1.2.4:

E =
i∗Edif + Eb
i∗ + 2

(7.2)

which means

Edif =
i∗ + 2

i∗
E − 1

i∗
Eb (7.3)

From this expression, in this regime, once the critical nucleus size and the binding

energy of the critical cluster are known, the diffusion energy can be calculated.

Moreover, another observation regarding growth energies can be done, taking

into account how the island density change, at the same substrate temperature

and flux, when we focus on (approximately) the same coverage (in the aggregation

regime) but different layers. For instance, in Figure 7.8 it is shown the situation at

50◦C.

This change in the substrate will affect the binding energy Ei∗ (see subsection
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Figure 7.8: Change of the island density at (approximately) the same coverage,

the same flux and temperature (50◦C), but different layer: 1)1st monolayer: θ1 =

0.27ML 2)2nd monolayer θ2 = 0.30ML 3) 3rd monolayer θ3 = 0.33ML.

1.2.4). Specifically, if the density of 6T islands on silicon oxide is bigger than

the density of second layer 6T islands on the first monolayer, this means that the

Ei∗(SiOx − 6T ) > Ei∗(6T − 6T ). Since these energies are binding energies, they

are negative and this result is telling us that 6T-6T interaction is stronger than

SiOx-6T’s one, which is exactly what we are expecting (silicon oxide is an inert

substrate).

From the AFM images it can be also appreciated that the biggest change in the

island density regards the shift from image 1) to image 2), since here we are passing

from SiOx to 6T as substrates. On the other hand, the difference between image 2)

and 3) is quite negligible since the substrate is always the same.

Once the other relevant energies, like the diffusional one, are known, these binding

energies can be in principle calculated.

7.2.3 The Distributed Growth Model and the Ehrlich-Schwoebel

barrier

To get more physical information about the growth kinetics under investigation, we

fit the experimental data, i.e. the rms values, with a simple but powerful model,

the Distributed Growth Model (DGM), introduced by Cohen and coworkers (8) and

already used to study the growth dynamics of Ag (9), GaN (10) and pentacene

(11). As described in subsection 1.3.6, the DGM makes the hypothesis that, of the

(θn− θn+1)/τ atoms per unit time arriving on the top of the nth layer, a fraction αn

transfer down to the nth layer and a fraction 1−αn remains on top of the nth layer.

More specifically, in the DGM the downwards transfer (and not the upwards, which

is excluded), or interlayer diffusion, is taken into account assuming the probability

of jump αn related to the perimeters of the nth and (n+ 1)th layer. In other words,
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αn measures the rate at which molecules transfer down from the n+ 1th layer o the

nth one.

The procedure we followed for the fit was the following:

• calculate the rms from the experimental layer occupancies

• calculate theoretical occupancies θn

• calculate rms from theoretical occupancies using the formula σ2 =
∑∞

n=0(n−
θtot)

2(θn − θn+1)

• compare experimental and theoretical rms (fit)

• find the best fit, using as free parameters An and the perimeters

• once found the best fit, plot also the layer occupancies associated with that

best fit

We are now ready to show the result of the simulation in Figure 7.9.

Several observations can be done: first, there is a good agreement between the

experimental data, layer occupancies and rms, and the DGM best fit. This means

that the assumptions behind this model are the correct ones to describe the physics

driving this 2D+3D growth process. This was not obvious, other models, would not

be able to catch the main points of this kinetics. Since the main idea behind the

DGM, is the downwards transfer of molecules (in a distributed way, distributed with

respect to the perimeters), the result shown in Figure 7.9, underlines the importance

of this diffusive phenomena to describe the growth of 6T on silicon native oxide.

Moreover, using only one simple model (dependent on just two kinds of parameters,

An and dn), we are able to describe two different growth mechanism, 2D and 3D.

Regarding the roughening transition happening at the third layer, one can notice

that the oscillation behaviour of the rms actually holds true also for the third layer,

where a smoother oscillation can be seen mainly at low temperatures. This does

make sense, since we expect the transition from 2D to 3D growth to take place in

a smooth way, gradually yielding a power law trend of the rms. Notably, the DGM

is able to describe also this behaviour. This is due to the fact that, the probability

best fit parameters, An, have been chosen independent between each other, thus

giving the possibility to have different rms behaviours at each layer.
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Figure 7.9: Experimental data and best DGM fir for RT, 50◦C, 80◦C and 100◦C.

Actually, one aim of the DGM simulation was also to obtain the Ehrlich-Schwoebel

barrier. Following (11), indeed, it is possible to make the following assumption re-
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Figure 7.10: Figure 7.9 zoom of RT and 100◦C case. The arrows show how to claim

the 2D and 3D growth from the layer occupancies. Both the second and the third

layer start only when the previous ones have been completed. This does not hold

true for the fourth layer which starts before the third one has a layer occupancy of

1.

garding A3, i.e. the probability of a molecule to jump off the fourth layer and join

the third one:

A3 ∼ exp (−EES/kT ) (7.4)

This relation describes the existence of an energy barrier at the top of the third

layer which molecules can overcome due to thermal energy. Moreover, as expected,

it states that this probability increases with temperature.

As already seen, we were not able to calculate this value since, increasing tem-

perature, the system grows more into 3D, meaning that the probability to jump off
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the top of the third layer (where the roughening transition takes place) is decreasing

with time and not increasing.

In Figure 7.11, indeed, one can see the evolution with temperature of the calcu-

lated probability of jump (from the best fit of experimental rms)

Figure 7.11: Evolution with time of jump off probability. As can be seen the trend

is decreasing with temperature, a behaviour not in agreement with the classical

interpretation of the Ehrlich-Schwoebel barrier.

As expected, A1 is one for each temperature: the probability to jump off the second

layer to join the first one is equal to one. This is needed to have a 2D growth, which

is what we observe. Similar situation for A2: the values are slightly different from

one but still, one can see it as a sign of layer by layer growth.

From A3 onwards, instead, the probabilities starts to decrease: this is the signa-

ture of a roughening transition taking place at the third layer, see discussion above.

Moreover, one can also notice the probabilities for the fourth, fifth and sixth layer

being constant at fixed temperatures; this means that it is the third layer the real

transition layer between 2D and 3D growth.

7.2.4 2D+3D growth

As already noticed by the AFM images, the whole growth mechanism is 2D+3D

with a roughening transition at the third layer. This can be properly quantified
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by the layer occupancies for each substrate temperature. As can be seen in Figure

7.12, indeed, at each temperature, when the first layer occupancy is 1, the second

layer is just starting to nucleate, and when the second layer is complete the third

occupancy is almost negligible. This does not hold true, for the following layers:

for instance, when the third occupancy is 1, the fourth layer has already started to

nucleate, determining an increase in the roughness of the thin film. On the other

hand, the same conclusion can be drawn looking at the root mean square (rms)

roughness plot of the film. Indeed, for each temperature as well, the first two layers

are characterized by an oscillating behaviour, while from the third layer on, a clear

slope can be seen. This is in agreement with a 2D+3D growth: the oscillating

behaviour in the rms is the typical signature of a layer by layer (or 2D) growth

while, a power law trend of the rms (σ ∼ θβ) involves a 3D growth (6,12). One

can also notice that the two peaks of the oscillating behaviour are basically at half

monolayer, with a value equal to 0.5 ML, as well: this is exactly what one would

expect.

Moreover, looking better the rms (but the same conclusion can be obtained

considering the layer occupancies), one can see this 2D and 3D growth to be more

pronounced at higher substrate temperature. Indeed, the minimum of the rms are

lower at 100◦C with respect to RT, while, on the other hand, the slope of the rms

for the fourth and fifth layer is bigger at 100◦C, as well. The first observation is

completely in agreement with the previous work of Straub (7), which performed the

same kind of in-situ experiment up only to the third layer, see Figure 7.13.

Regarding the power law behaviour σ ∼ θβ, valid only during 3D growth, from

the experimental data, the beta values can be calculated by a power law fit. In Fig-

ure 7.14, the results can be seen for the four relevant substrate temperatures. The

trend is not what we were expecting. If an Ehrlich-Schwoebel barrier is present, a

higher temperature should increase the interlayer diffusion thus driving the growth

process towards a layer by layer growth, i.e. decreasing β. A part for the RT point,

which we will discuss later, the experimental observation is exactly the opposite:

temperature is driving the growth towards a more 3D morphology.

This is not the first observation of such a behaviour, also Ernst (13) and Mayer

(11) found a similar trend. Specifically, Ernst and coworkers analyze the homoepi-

taxial growth of Cu (100) finding a growth exponent β at 160K equal to 0.26 and at

200K equal to 0.56. As an explanation they report a previous suggestion of Kunkel

et al. (14), whose idea is that the Ehrlich-Schwoebel barrier becomes less effective

when islands become small (i.e. at low temperatures). In the work of Mayer, in-
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Figure 7.12: Experimental data for each temperature: layer occupancies (coloured

squares) and rms (black points. From these behaviours a 2D+3D growth can be

claimed.)
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Figure 7.13: Roughness and layer occupancies evolution up to the third layer (7).

The arrows clearly show the 2D growth mechanism to be sharper at 100◦C, where

one layer starts only when the previous has been completed. The fit line is the best

fit result by DGM

stead, pentacene is deposited on HTS and, using a Distributed Growth Model (see

subsection 1.3.6, the probability for downward diffusion at the third layer is calcu-

lated obtaining a decreasing behaviour with increasing temperature (i.e. more 3D

growth). The explanation, in this case, regards the existence (confirmed by AFM

images) of multimolecular steps which are not taken into account by the DGM

model, dealing only with one layer steps.

Our idea, does agree both with Mayer’s explanation and Ernst’s one, more specif-

ically, we think to be in front of a so called reentrant (12,14) layer by layer growth

(applied, this time, to organic materials and not metals) characterized by multi-

molecular steps (see the AFM images of Figure 7.4). In fact, high temperatures
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Figure 7.14: Growth exponent β values at the four different temperatures: RT,

50◦C, 80◦C and 100◦C.

are not the only situation favouring 2D growth, due to a higher probability for the

molecules to jump off and overcome the Ehrlich-Schwoebel barrier. It has been

observed also at low temperature (14), with, as already explained, the reduced is-

lands size and their irregular shape as a possible explanation for the behaviour. A

more clear description of why the Ehrlich-Schwoebel energy barrier should be less

important at low temperatures comes from Evans and coworkers (15), who recently

proposed downward funneling (16) as a possible smoothing effect at low temper-

atures.

Moreover, following (17), since our relevant beta values are bigger than 0.5 (the

random deposition limit (18)), we are in front of a rapid roughening behaviour,

which has already been observer for a number of systems (17,19,20). Since roughness

beyond the random deposition limit, i.e. 0.5, can occur only if matter is transported

to higher layers (17), this is in contradiction with the assumption of the Distributed

Growth Model. In this model, indeed, only downward interlayer diffusion is taken

into account. How to match these two different points of view, is still under investi-

gation. Surely, the DGM is able to capture the main behaviours of the growth of 6T

on silicon oxide but, at the same time, it is not able to give a complete description

of the physics. Probably it is oversimplified and generalizations need to be applied.

Regarding the RT point, we claim it to be not relevant. Probably, the small

AFM scan zone, 6µm x 6 mum (small if compared with typical x-ray experiments),
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can give an explanation for such a 3D growth which must be seen as an exception

due to local fluctuation of the morphology. In the next future we will repeat the

whole RT experiment to check such behaviour.

7.2.5 Morphology and fractal dimension

As already observed in Figure 7.1, 7.2, 7.3 and 7.4, there is a shape transition for the

6T islands, both at a fixed temperature, with coverage, and at different temperature

at a fixed coverage.

To quantify this effect, following (8), we calculate by Fractalyse (see subsection 2.6.2)

the fractal dimension of the islands to estimate how much dendritic or compact they

are. The result is shown in Figure 7.15.

As can be seen, at each fixed temperature, for the first two layers (from the third

on, due to 3D growth, it is quite complicated to obtain the fractal dimension)), an

oscillating behaviour is present. This underlines that islands with a fractal (den-

dritic) shape are more present in the initial stage of the formation of a layer, while,

towards the end, the shape become more compact (roundish). In the next future,

we aim to correlate this fractal dimension estimation of the islands’ shape, with the

beta behaviour found in Section 7.2.4. Indeed, as already pointed out, we think the

beta correlation with temperature of the substrate can be explained as a reentrant

layer by layer growth applied to organic material. This correlation, following (14),

can be ascribed to a less effective Ehrlich-Schwoebel barrier at low temperatures,

when the island density is higher and the shape is more fractal-like.

7.3 120◦C experiment

We report here also some AFM images (Figure 7.16 and 7.17) showing the morpho-

logical evolution of the thin film at a substrate temperature 120◦C.

While almost all the first monolayer evolves with time in a 2D growth, from there

on a different kind of morphology can be appreciate. The roughness of the film

increases but not following a standard 3D growth mechanism. Indeed, precise ge-

ometrical angles at the edges of some ”islands” can be observed, moreover, quite

often, one can notice that nucleation on upper layers starts from the edges, as if

molecules are moving upwards. These two phenomena are typically associate to

dewetting, and, indeed, we think that for 6T on SiOx at 120◦C, this is the case.
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Figure 7.15: (left) Morphology of 0.30ML and 0.94ML at RT. (right) Morphology

of 0.22ML and 0.89 ML at 100◦C. Plot of the fractal dimension vs. coverage at

different substrate temperature. An oscillating behaviour is clearly visible. Fractal

islands are more present at low temperatures and in the beginning of the monolayer

formation.

Since it is a different kind of growth we did not take this experiment into account

in our data analysis, even because, practically, it would have been quite difficult to

estimate with precision all the single layer occupancies.

Figure 7.16: Morphological evolution of almost the first two monolayers, at 120◦C.

As can be seen, the morphology of the second layer is irregular due to a starting

dewetting phenomena in the top right position of the AFM scan.
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Figure 7.17: Morphological evolution of the thin 6T film, at 120◦C, from the second

layer onwards. Two basic phenomena are observable: the formation of edges at

a specific geometrical angle and the upwards current of molecules from the edges.

These are dewetting phenomena peculiarities.
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Chapter 8

Electrostatic Force Microscopy

theoretical model

Electrostatic Force Microscopy (EFM) is a powerful tool to investigate the electric

properties of materials at the nanoscale (1). An AFM cantilever-tip system is biased

with respect to the substrate to detect and image the local electrostatic properties

of the substrate surface. Depending on the method of measurement, electrostatic

force techniques are known by a variety of names, including the generic electrostatic

force microscopy, scanning capacitance microscopy (2), Kelvin probe microscopy (3)

and possibly others.

EFM and its various implementations have been used to analyze different properties

of solid surfaces (4), the dielectric response of single molecules (5), the behaviour of

liquid samples (6), the formation of water nanobridges (7), till the recent Nanoscale

Capacitance Microscopy (NCM) which allows to quantify intrinsic properties of thin

dielectric films, including film thickness and dielectric constant (8).

Despite all the work done on EFM, still the picture is not complete. As demonstrated

by several works (9), the EFM images are strongly dependent on the geometrical

shape of the AFM tip: the truncated cone plus hemisphere geometry is, up to our

knowledge, the most studied configuration, due also to the agreement with experi-

mental data (10,11,8). However, a lack of this treatment is that it is not analytical

but numerical.

Looking for analytical formulations of the physics behind a typical EFM experi-

ments, we (re)propose an hyperboloidal geometry (12) for the tip and develop an

original mathematical model to obtain, in a more complete way, the capacitance of

the tip-metallic substrate system. We are working on an extension of the model

to the case of a thin film on the substrate and we think it could help also to have

a deeper understanding of the important concept of limit of resolution of an EFM
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microscope.

8.1 EFM technique

When a voltage V occurs between a tip and a sample, the electrostatic force F can

be written as (13):

F = |~F | = 1

2
V 2∂C(z)

∂z
(8.1)

where z is the tip sample distance.

Typically, EFM operations are made under room conditions in tapping mode on

the basis of a double pass method (14). During the first pass (scan), the surface

topography is acquired, then the tip is retracted from the surface by a constant

height Hlift, also called lift height. The tip is moved following the topographic

profile previously acquired in order to keep Hlift constant (second pass) and the

potential V is applied to the tip (while the sample is grounded). The lift height

is chosen higher than 10 nm to avoid van der Waals interactions that introduce

topographical artifacts. In the second pass, the free amplitude of the tip vibration

is reduced of δz due to the electrostatic force gradient. Such variation are small

enough to stay in the linear regime of the amplitude tip-sample distance.

From 8.1, we can say the force gradient to be related to the cantilever-tip-sample

capacitance C(z) by:

F
′
(z) = |∂F

∂z
| = 1

2
V 2∂

2C(z)

∂z2
(8.2)

As shown in Figure 8.2, during the first scan the average tip-sample distance is ap-

proximately equal to the amplitude (z1 ∼ δz1). During the second scan, the distance

is the sum of the first scan amplitude δz1 and the lift height Hlift (z2 ∼ δz1 +Hlift).

δz2 is the second scan amplitude.

There are two possibilities to detect the local electrostatic force gradient. The

first one is to measure directly the resonance frequency shift ∆f0 keeping the phase

shift constant. The second possibility is to measure the mechanical phase shift ∆Φ

at constant driving frequency. If we consider that the cantilever-tip-sample system

can be approximated by a spring mass system, the relationships between frequency

∆ω or phase shifts ∆Φ and force gradient, can be written as (see subsection 2.4.2)

∆ω

ω0

∼ − 1

2k0

F
′
(z) (8.3)

∆Φ ∼ −Q
k0

F
′
(z) (8.4)
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Figure 8.1: (a) The physical system under investigation, with the two main ca-

pacitances involved. (b) A magnification of the tip, showing the main geometrical

factors.

Figure 8.2: Principle of EFM microscopy using a double pass method. During the

first scan topography is acquired. The tip is then retracted and during the second

scan, a potential V is applied on the tip and the force gradient is detected.

As can be seen by all the previous expressions there is a strict correlation between

the detected force gradient and the (derivatives) of the capacitance of the system.

This is the reason for the strong tip-cantilever-sample capacitance modeling effort

which has been done in the past.
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8.2 Tip-sample capacitor: the hyperboloidal model

Several geometrical models have been used in the past to describe the EFM tip-

sample geometry (9): among all, the truncated cone plus an hemisphere in

front of an infinite plane (the sample) is the most studied one. Belaidi (9) used a

numerical method to evaluate the force-distance relation in this geometry. Hudlet,

(15) proposed an analytical approximation for the same force-distance relation

which is found to be in agreement with Belaidi up to 10%. More recently, several

EFM works (10,11,8), aiming to calculate the dielectric constant of thin dielectric

films, strongly referred to these numerical-(approximate) analytical results. Calcu-

lations have been done also for the cantilever-sample system, both in the case of a

metallic sample or a thin dielectric film (10,16) but here we will focus only on the

tip-metallic sample capacitance.

Looking for exact analytical calculations of this tip-substrate physical sys-

tem, we refer to another geometry, already introduced in the past (12), which fits

better the system.

In this view, the tip corresponds to an hyperboloidal surface, truncated some-

where up due to its finite dimension. Cartesian coordinates (x,y,z) are not directly

able to describe such a shape, so it is better to shift to an orthogonal as well set

of coordinates, the prolate spheroidal coordinates (ξ, η,Φ), where hyperboloids

are easily parameterized setting one of the coordinates (η) equal to a constant.

Moreover, even the other important equipotential surface, the sample, is identified

by the same coordinate η equal to zero.

Two definition of the prolate spheroidal coordinates are proposed in literature, the

one we choose is the following:

x = a
√

(ξ2 − 1)(1− η2)cosΦ (8.5)

y = a
√

(ξ2 − 1)(1− η2)sinΦ (8.6)

z = aξη (8.7)

with 1 ≤ ξ <∞, 0 ≤ η < 1, 0 ≤ Φ < 2π and a being the focus of the hyperboloidal

η=constant surfaces. These definitions are followed also by (17,18).

As can be seen by the figure, one of the advantages of this orthogonal set of co-

ordinates is that the tip is described by η=constant value, with small values of η

corresponding to dull tips while high values to sharp tips. In Cartesian coordinate

we would have been forced to deal with a more complicated quadratic expression.
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Figure 8.3: Tip-substrate system represented in prolate spheroidal coordinate.

We also here report the so called scale factors, useful in case of a change of coordi-

nates, from (x,y,z) to (ξ, η,Φ), inside an integral:

hξ = |∂~r
∂ξ
| = a

√
ξ2 − η2

ξ2 − 1
(8.8)

hη = |∂~r
∂η
| = a

√
ξ2 − η2

1− η2
(8.9)

hΦ = | ∂~r
∂Φ
| = a

√
(ξ2 − 1)(1− η2) (8.10)

More specifically: ∫
d~x =

∫
dx dy dz =

∫
hξhηhΦdξ dη dΦ (8.11)

Following (12,19 and20) we aim to obtain an exact (not approximate like for

Hudlet) analytical formula for the capacitance C between the tip and the substrate

system.

To calculate C0 = Q/V of the system, where V is the selected potential differ-

ence between the tip and the sample (connected to ground), we need to calculate
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Figure 8.4: A picture of the capacitor under investigation. In between the two plates

we suppose to have vacuum.

the charge Q accumulated on the tip. This is obtained by a surface integral of the

surface charge density which, instead, by the Coulomb theorem known from elec-

trostatics (13), is depending on the electric field evaluated on the surface of the tip.

The electric field is (-) the gradient of the electric potential so, in the end, what we

need is to solve the well known Laplace equation for the electric potential itself,

with known boundary conditions (Dirichlet problem). Between the tip and the sam-

ple we suppose to have vacuum (later we will face the problem with a dielectric in

between), then the starting point is:

∇2V = 0 (8.12)

V (tip) = V

V (sample) = 0

Some remarks should be done concerning the first boundary condition. If we refer to

η = η0 we are considering the whole infinite hyperboloidal surface which of course is

not the proper geometrical configuration of the real truncated tip (while, instead, the

sample can be considered as an infinite plane). More specifically then, the proper

Dirichlet problem for the Laplace equation should be referred to a tip truncated

somewhere up with a disk:

∇2V = 0 (8.13)

V (tip+ disk) = V

V (sample) = 0
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Unfortunately, solving this Laplace equation is not easy. Indeed, the first boundary

condition should be written in the following way V (A ∪B) = V with:

A = {(ξ, η,Φ)| η = η0, 1 ≤ ξ ≤ ξmax, 0 ≤ Φ < 2π} (8.14)

B = {(x, y, z)|x2 + y2 = r2
max, rmax = a

√
(ξ2
max − 1)(1− η2), z = aξmaxη0}

This mathematical problem is very hard to solve in a closed form, so we have to

shift to the previous -more easy to solve- Dirichlet problem dealing with an infinite

tip. Once we will have the solution we will try to impose the finiteness of

the tip with a cut off (in the charge integration).

Before this, another remark should be done: is the cut-off procedure after solving

the Laplace equation equivalent to solve the Laplace equation with the cut-off al-

ready inside the boundary conditions like in 8.14? The answer is no. This can be

understood taking into account the so called edge effects (or fringe effects). If we

let the tip be infinite, of course, the edge effects will not be part of the calculations

and when we will cut the tip, with a cut-off in the charge integration, they will not

be considered as well. Imposing the finiteness of the tip directly in the boundary

conditions of the Laplace equation, instead, is a way to describe also the edge effects

but, as already mentioned, this is a quite difficult mathematical problem. For the

sake of simplicity, we will rule out the edge effect problem, trying to directly solve

8.12.

Coming back to the Laplace equation, in Cartesian coordinates this famous equa-

tion is very well known, but in our case we need to solve it in prolate spheroidal

coordinates. In these coordinates the Laplace operator reads (we directly get rid of

Φ contributions due to rotational symmetry of the tip):

L(ξ,η) =
1

a2(ξ2 − η2)
[
∂

∂ξ
[(ξ2 − 1)

∂

∂ξ
] +

∂

∂η
[(1− η2)

∂

∂η
] (8.15)

If the Φ contribution can be excluded, less obvious, instead, is whether we can also

exclude the ξ coordinate part. If the tip was infinite, this coordinate would be

useless as a small calculation referred to the boundary condition can prove (even

if not in the most general way). Let’s suppose V depending only on η and ξ (Φ

has been excluded before). If we separate the two contributions in the standard

way: V (η, ξ) = v(η)u(ξ) then, referring to the first boundary condition we have

V (η0, ξ) = v(η0)u(ξ) = V . Being v(η0) a number we can conclude that u(ξ) =

V/v(η0) can not be a function of ξ. In other words, if the tip is supposed infinite,

and we use the separation of variables method, than the potential is a function

only of the η coordinate. This quick demonstration is not the most general one can

image, because it refers only to electric potential functions that can be written with
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the separation of variables which is not the whole class of solutions of the Laplace

equation. However, this is a quick way to show, at least theoretically, that when

the real truncated geometry of the tip is considered, even the η coordinate should

be taken into account in order to have the complete solution.

Coming to the solution of the Laplace equation, if by electrostatics we have

understood this equation to be the starting point, from now on, the problem will be

just mathematical.

If we look at 8.15, the operator has two separated contribution in ξ and η

and so, one could be tempted to solve this partial differential equation (PDE)

by separation of variables (a standard way to solve PDE, also used, for instance,

to solve Schroedinger’s equation in Cartesian coordinates for hydrogen-like atoms

(21)). However, the simple check of the first boundary conditions above, excludes

this possibility since the ξ contribution, u(ξ), would be constant, in reality. This

check, actually contradicts also some works present in literature where, with the

same boundary conditions, authors try to solve the Laplace equation in prolate

spheroidal coordinates by separation of variables (22).

Since we can not solve by separation of variables then we have two possibilities

left:

1. we look for another method to solve Laplace equation with those specific

boundary conditions

2. we simplify the Laplace operator ruling out one of the two ξ or η contributions

In the following section we will focus on the second possibility, while, in Section

8.4 we will take in consideration point number 1.

8.3 η contribution

8.3.1 The electric potential

Since the two most important surfaces in the physical system under investigation

are described by η = constant value, one can expect η to be the most relevant pa-

rameter in the Laplace operator. If we accept this assumption, we strongly simplify

the mathematical problem and with few calculations we can reach a result for the

capacitance of the system. Indeed, if we rule out the ξ part of the Laplace operator

8.15, keeping only the η contribution, then the Laplace equation becomes:

d

dη
[(1− η2)

d

dη
]V (η) = 0 (8.16)
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with V (η0) = V and V(0)=0 as boundary conditions (the tip is still infinite, so far).

This second order differential equation can be solved in different ways: if, for in-

stance, we call f(η) = V
′
(η) we shift to a first order differential equation which, by

indefinite integration, gives:

df

dη
(η) =

2η

1− η2
f(η) (8.17)

f(η) = A
1

1− η2
(8.18)

where A is an integration constant. Since f(η) = V
′
(η), now with another integra-

tion one can directly obtain:

V (η) =
A

2
ln(

1 + η

1− η
) +B (8.19)

where B is a second integration constant. Taking into account the boundary condi-

tions, we can now finally get the solution:

V (η) =
V

ln(1+η0
1−η0 )

ln(
1 + η

1− η
) = α ln(

1 + η

1− η
) (8.20)

where we have defined α = V/ln((1 + η0)/(1 − η0)). This solution is in agreement

with (17 12,23).

8.3.2 The capacitance

From the electric potential one can calculate the electric field between the tip and

the plane substrate. Being ~E = − ~∇V (η) we have to use the expression of the

gradient in prolate spheroidal coordinate, which is:

~∇ =
ξ̂

hξ

∂V

∂ξ
+

η̂

hη

∂V

∂η
(8.21)

where hξ and hη are the scale factors. The potential is a function only if η so the

gradient operator can be simplified and the electric field calculated as:

~E = −η̂ α
a

2√
(ξ2 − η2)(1− η2)

(8.22)

in agreement with (17).

Following Coulomb theorem known from electrostatics (13), we are now able to

obtain the surface charge density σ on the tip. Indeed, being the versor −η̂ the unit

vector normal to the tip:

σ = ε0 ~E(η0) · (−η̂) =
2αε0
a

1√
(ξ2 − η2

0)(1− η2
0)
> 0 (8.23)
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One can check that the highest surface charge density corresponds to ξ=1 which is

the point of the tip with the biggest curvature. This is in agreement with electro-

statics (13).

Now we are ready to calculate the charge Q on the surface of the tip. Without

taking into account the finite dimension of the tip the general ξ integration will be

over the whole ξ range, from 1 to ∞:

Q =

∫
Stip

σ dS =

∫ 2π

0

∫ ∞
1

σhξhΦ dξ dΦ (8.24)

this integration, obviously, gives an infinite result since if we have an infinite surface

of integration the charge on it will be infinite as well. The only way the get back

the real finite shape of the tip, is to introduce a cut off in the ξ integration. Calling

the cut off ξmax the result is Q = 4παε0a(ξmax − 1).

Now, finally, we can obtain the capacitance as:

C0 =
Q

V
=

4πε0a(ξmax − 1)

ln(1+η0
1−η0 )

(8.25)

which can be written also as:

C0 =
2πε0a(1− η2

0)

V
(ξmax − 1)V

′
(η0) (8.26)

Typical values of a, ξMAX and η0 are: 40nm, few units and 0.8, respectively. With

these it can be calculated that the order of magnitude of C0 is 10−18aF (attoFarad)

which is in total agreement with previous calculations referred to different geometries

(8,11).

In order to test this capacitance formula one could look for a parallel plate

capacitor limit. We notice that if we flatten the tip, letting η0 → 0, we should

approximate two flat surfaces one in front of the other, the flatten tip and the

sample. However, the tip is finite so we are not really approximating a parallel plate

capacitor: the limit capacitor will be the one made of a finite disk and a plane, a

geometry necessarily affected by edge effects. This is why we do not expect to have

a strict coincidence between the capacitance of the system with η0 → 0 and the very

well known formula C0 = ε0 S/d (with S =surface of the tip and d = tip-sample

distance) which is connected with two surfaces of the same (big) area.

Indeed, making use of first order Taylor expansions we obtain:

lim
η→0

C0 =
2πε0a(ξmax − 1)

η0

(8.27)

If, instead, we calculate the surface of the tip with respect to a general value of

η0, we flatten the tip η0 → 0 and we check the result for C0 = ε0S/h we have:

lim
η→0

(ε0
Stip
d

) =
πε0a(ξ2

max − 1)

η0

(8.28)
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The two formulas are quite similar but not equal. This is due to the edge effects:

in the last capacitance no fringe effects are present because we are referring to a

real parallel plate (disk) capacitor, while in the first formula there must be some

side contribution of the electric field line because we are dealing with a finite disk

in front of an infinite plate.

Evaluations of these edge effects are under investigation.

8.3.3 The phase and frequency shift

As described in Section 8.1, the main experimental parameters, ∆ω and ∆Φ are

correlated with the gradient of the force, which is, then, the physical value to be

calculated.

Making use of Equation 8.2, one has to calculate the second derivatives of the

previously investigated capacitance C0. This can be done, and taking into account

that η0 =
√
z/(z + r) and rmax =

√
zr(ξ2

max − 1) the result is (we report only ∆Φ

since ∆ω will be straightforward):

∆Φ ∼ Q

k0

(πε0V
2)[
−2r ln(ξmax)

z2
+ (1− 1

ξ4
max

)(
r

2(z + r)2
)] (8.29)

8.4 ξ contribution

We now come back to a second possibility to solve Laplace equation, i.e. trying to

solve it also taking into account the ξ contribution but without making use of the

separation of variables method (see Section 8.2). We can already expect a change

in the final capacitance value since new electric field lines are going to be taken into

account with the ξ contribution. The problem is to quantify this change.

8.4.1 The electric potential: Sturm-Liouville method

The mathematical problem we have to solve is again:

∇2V (ξ, η) = 0 (8.30)

V (ξ, η0) = V (8.31)

V (ξ, 0) = 0 (8.32)

where the Laplace operator, ∇2 = L, in prolate spheroidal coordinates, reads:

L(ξ,η) =
1

a2(ξ2 − η2)
[
∂

∂ξ
[(ξ2−1)

∂

∂ξ
]+

∂

∂η
[(1−η2)

∂

∂η
] =

1

a2(ξ2 − η2)
[Lξ +Lη] (8.33)
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The final Φ-term inside the laplacian has been ruled out for symmetry reason.

The key observation is that, if the first boundary condition was equal

to zero, we could see the laplace equation in prolate spheroidal coordi-

nates as a Sturm-Liouville equation (24). We can recover this request on the

boundary conditions by making the hypothesis that V (ξ, η) = Ψ(η)+u(ξ, η), where,

so far, Ψ(η) is a generic function of η with Ψ(η0) = V and Ψ(0) = 0 to fulfill the

request. Now, the problem can be written in the following way:

[Lξ + Lη][Ψ(η) + u(ξ, η)] = 0 (8.34)

If we choose, without losing generality, Ψ(η) in such a way that Lη[Ψ(η)] = 0, then

Ψ(η) has been already obtain in 8.20, i.e. Ψ(η) = V (η), and

L[u(ξ, η)] = 0 (8.35)

u(ξ, η0) = 0 (8.36)

u(ξ, 0) = 0 (8.37)

which has the proper boundary conditions. Moreover, since electrostatics is a linear

theory, the decomposition V (ξ, η) = V (η) + u(ξ, η) will propagate till the final

capacitance Ctot which we expect to be equal to the already calculated C0 (Equation

8.25) plus a ∆C to be estimated.

Since we make the reasonable assumption that all the relevant functions of η are

in L2([0, 1[), then we can use as an orthonormal basis of this space of function the

Sturm-Liouville eigenfunctions ΦSL
j (η), (24) with j=0,1,2,3.., such that they obey

the eigenvalue equation:

LηΦ
SL
j (η) = λSLj ΦSL

j (η) (8.38)

where the set of λSLj , j=0,1,2,3.., is the set of Sturm-Liouville eigenvalues, which can

be proven to be always positive (24).

This set of eigenfunction can be proved to be a complete orthonormal set of

functions for L2([0, 1[), which means:

< ΦSL
j (η)|ΦSL

k (η) >= δj,k (8.39)∑
j

|ΦSL
j (η) >< ΦSL

j (η)| = 1L2 (8.40)

where 1L2 is the identity operator in L2. Due to this, each function f(η) in this

space can be written as

f(η) =
∞∑
j=0

fjΦ
SL
j (η) =

∞∑
j=0

< ΦSL
j (η)|f(η) > ΦSL

j (η) (8.41)
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This holds true even for the u function of the potential and we can say:

u(ξ, η) = uξ(η) =
∞∑
j=0

cj(ξ)Φ
SL
j (η) =

∞∑
j=0

< ΦSL
j (η)|uξ(η) > ΦSL

j (η) (8.42)

Applying the Laplace operator one gets:

[Lξ + Lη]
∞∑
j=0

cj(ξ)Φ
SL
j (η) (8.43)∑

j

Lξ[cj(ξ)]Φ
SL
j (η) +

∑
j

cj(ξ)LηΦ
SL
j (η) = 0 (8.44)∑

j

Lξ[cj(ξ)]Φ
SL
j (η) +

∑
j

cj(ξ)λ
SL
j ΦSL

j (η) = 0 (8.45)

since 8.38 holds. Therefore, one is left with

Lξ[cj(ξ)] + λSLj cj(ξ) = 0 (8.46)

which, more explicitly, reads

[(ξ2 − 1)c
′

j(ξ)]
′
+ λSLj cj(ξ) = 0 (8.47)

This is a Legendre-like equation. Indeed, the general Legendre equation, for a

complex function f(z), z ∈ C, reads:

[(z2 − 1)f
′
(z)]

′ − ν(ν + 1)f(z) = 0 (8.48)

for each ν ∈ C and z ∈ C/ ] −∞, 1]. Therefore, in our case, since each eigenvalue

λSLj is real, we can claim ν(ν + 1) ∈ R which has the solution ν = −1/2 + iq, with

q a real number related to the eigenvalues by qj =
√
λSLj − 1/4. As we will see in

Section 8.5, a numerical treatment of the Sturm-Liouville equation provides all the

eigenvalues, which are found to be always greater than 1/4, so the last square root

is well defined.

Following (25), the general solution of this Legendre equation can now be written

as:

cj(ξ) = bjB
0
νj

(ξ) + djD
0
νj

(ξ) (8.49)

where the set of bj and dj are unknown constants, and νj = −1/2 + iqj.

Before coming to the determination of these constant, some detail on the Leg-

endre functions B0
νj

(ξ) and D0
νj

(ξ), which are called Legendre function of the first

and second kind, respectively. In (25) one can find integral representations:

B0
νj

(ξ) =

√
2

π
cosh πqj

∫ ∞
0

dx
cos qjx√
ξ + coshx

(8.50)

D0
νj

(ξ) =
1√
2

[

∫ π

0

dx
cosh qjx√
ξ − cosx

− i sinhπqj

∫ ∞
0

dx
e−iqjx√
ξ + coshx

] (8.51)
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While the B functions are real, the D functions are generally complex. This could

be a problem since we need real physical expressions.

A second check that one can do on the Legendre functions involves their be-

haviour at ξ → 1 and ξ →∞. In (25) one can find that:

lim
ξ→1

B0
νj

(ξ) = 1 (8.52)

lim
ξ→∞

B0
νj

(ξ) = 0 (8.53)

and

lim
ξ→1

D0
νj

(ξ) = ln(ξ − 1) (8.54)

lim
ξ→∞

D0
νj

(ξ) = 0 (8.55)

As can be seen only one behaviour is not well defined, i.e. ln(ξ − 1). Indeed,

in ξ = 1 this limit diverges. Due to this problem, two possibilities arise: or one

excludes the D Legendre functions giving as a motivation this bad behaving limit

or one keeps also these functions believing that the divergence will disappear in the

relevant physical expressions.

In the beginning, we tried with the second possibility: it would not be, indeed,

the first time for a divergence to disappear in the relevant physical formulas. Exam-

ples can be found even in electrostatics (13), if, for instance, the electric potential of

an infinite charged line is considered. By standard calculations even this potential

will present a divergence, but it will not propagate into the electric field (and so in

the capacitance, in our case). Being the Legendre equation a second order differen-

tial equation, one needs two boundary conditions to have a unique solution. The

first conditions we chose is related to the need to truncate somewhere the tip. So

far, indeed, the hyperboloidal surface have been considered infinite, an assumption,

which, of course, is not physically acceptable. An infinite surface would mean an

infinite charge and then an infinite amount of energy which is impossible. We decide

to cut the tip imposing that, from a specific ξmax outward, the potential V is zero.

This assumption, a Dirichlet boundary condition, introduces an approximation but

it seems a reasonable way to cut the problem since we expect the potential to de-

crease to zero as long as we get far from the tip.

As a second boundary condition, instead, we chose c
′
j(ξmax) = 0, which means that

we are not dealing with Dirichlet boundary conditions but Neumann’s ones. This

condition, impose an internal (ξ < ξmax) region independent from the external one,

and seemed to us a reasonable way to describe the system.

Unfortunately, after setting the boundary conditions, the solution of the problem
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gave us a final capacitance formula too big with respect to the expected order of

magnitude, 10−18F .

This is why, we decided, in the end, for the first option dealing only with B

Legendre function. Moreover, in this way, one reduces the problem since the only

coefficients to be calculated will be the bj.

So, let V (ξmax, η) = 0 be the first and unique boundary condition, as well. Then,

one can write

V (η) +
∑
j

[bjB
0
νj

(ξmax)]Φ
SL
j (η) = 0 (8.56)

Since V (η) ∈ L2([0, 1[), then we can decompose even this function by the Sturm-

Liouville eigenfunctions and write

V (η) =
∑
j

< ΦSL
j (η)|V (η) > ΦSL

j (η) (8.57)

Therefore we get

bjB
0
νj

(ξmax) = − < ΦSL
j (η)|V (η) > (8.58)

which means

bj =
− < ΦSL

j (η)|V (η) >

B0
νj

(ξmax)
(8.59)

Finally, we can write the electric potential as:

V (ξ, η) = V (η) + u(ξ, η) (8.60)

V (η) =
V

ln(1+η0
1−η0 )

ln (
1 + η

1− η
) (8.61)

u(ξ, η) =
∑
j

− < ΦSL
j (η)|V (η) >

B0
νj

(ξmax)
B0
νj

(ξ)ΦSL
j (η) (8.62)

8.4.2 The capacitance

Once the electric potential is found, one can obtain the capacitance of the capacitor

following standard electrostatics.

Firstly, the electric field can be calculated by the gradient in prolate spheroidal

coordinate:

~E = −~∇V = − ξ̂

hξ

∂V

∂ξ
− η̂

hη

∂V

∂η
= −ξ̂Eξ(ξ, η)− η̂Eη(ξ, η) (8.63)

where ξ̂ and η̂ are the coordinate unit vectors (versors).

Secondly, the charge density on the tip’s surface can be obtained by Coulomb’s

theorem

σ = ε0[ ~E · (−~η)]tip (8.64)
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where −η̂ is the outwards unit vector perpendicular to the surface of the tip.

Once the charge density σ is known, the total electric charge on the tip’s sur-

face can be calculated by integration on the tip’s surface S in prolate spheroidal

coordinates:

Q =

∫
S

σdS =

∫
σhξhΦdξdΦ (8.65)

and so the capacitance of the hyperboloidal capacitor is obtained as Ctot = Q/V .

All the calculation are straightforward so, here, we only report the capacitance

C:

Ctot = C0 + ∆C (8.66)

C0 =
2πε0a(1− η2

0)

V
(ξmax − 1)V

′
(η0) (8.67)

∆C =
2πε0a(1− η2

0)

V

∑
j

− < ΦSL
j (η)|V (η) >

B0
νj

(ξmax)
Φ
′SL
j (η0)

∫ ξmax

1

dξB0
νj

(ξ)

With a numerical integration, see section 8.6, setting V = 1, ∆C was estimated

to be equal to 1%. This is a small correction for the leading term and indeed this

was what we were expecting since already C0 is of the right experimental order of

magnitude (11,8). From these works (11,8), we can not say if such a correction is

measurable.

A final important remark on the bj. Due to their relation with the inverse of the

B0
νj

(ξmax), a question arises: does this expression diverge, i.e. does B0
νj

(ξmax) ever

vanish?

A plot of the function for several j gave us a positive answer: the function is strongly

oscillating and several zeros can be found in it. This is a critical point of our

treatment which we overcame in the following way: in the capacitance formula a

sum in j is present which, obviously, can not be numerical estimated due to its

infinite terms. A truncation is needed. Numerical plot of the final result with

respect to jmax, led us to assume only the first ten j-terms of the sum relevant, up

to a certain precision to be estimated. Since plots of Bj functions, showed us the

first zero to progressively decrease towards ξ = 1, as j is increased, we decided to

assume ξmax slightly smaller then the first zero of B0
ν10(ξ). Automatically, the range

1 < ξ < ξmax, will be well defined for each j < jmax.

8.4.3 The phase and frequency shift

From the total capacitance Ctot (Equation 8.66), we can calculate the phase shift

variation taking into account also the ξ contribution. Thanks to the linearity of

the theory, we expect it to be equal to the previous one (Equation 8.29) plus a
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contribution related to the Legendre functions and the Sturm-Liouville first deriva-

tives. In particular, the latter can not be obtained analytically but only numerically.

This calculus is not trivial and its numerical estimation is currently under investiga-

tion. This will allow us to achieve a complete formula for the phase shift variation

therefore, for the moment, we do not report it.

8.5 Sturm-Liouville numerical computation:

SLEIGN2

To numerically evaluate the capacitance of the system 8.66, we need the Sturm-

Liouville eigenvalues and eigenfunctions. These, can not be obtained explicitly with

an analytical formula, however, they can be calculated numerically by the Fortran

program SLEIGN2 (26 and references therein) that will be introduced just in its

main functions.

The general expression of a Sturm-Liouville differential equation for y(x) is:

−(p(x)y′)′ + q(x)y = λw(x)y (8.68)

where p(x), q(x) and w(x) are three general functions of x and lambda is an eigen-

value. Depending on them, to be specified by the user, lots of different dif-

ferential equations can be obtained, among them the Bessel equation (p(x) = −x,

q(x) = x − ν2/x, ν ∈ C,w(x) = 0) and the Legendre equation (p(x) = (1 − x2),

q(x) = ν(ν + 1) ν ∈ C,w(x) = 0).

After selecting the functions p, q and w, several specifications about the Sturm-

Liouville problem has to be answered. For instance, the kind of x interval (finite or

not), the kind of boundary conditions (Dirichlet, Neumann..) and, of course, if the

user is interested in getting a numerical evaluation of a specific eigenvalue or, maybe,

a numerical estimation of an eigenfunction with its relative plot. Estimations of all

the numerical errors are provided.

For our purposes, we chose:

• p(x)=1− x2

• q(x)=0

• w(x)=1

• x ∈ [0, 0.8], where x = η

• Dirichlet boundary conditions
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• all the mathematical requests were defined as - Regular -

• V=1 V

Here, one can find some relevant typical screenshots of the SLEIGN2 program:

Figure 8.5: SLEIGN2 screenshot asking for the kind of x range under investigation.

Figure 8.6: SLEIGN2 screenshot question about what the user would like to numer-

ically evaluate.
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Figure 8.7: SLEIGN2 screenshot asking for details on the boundary conditions.

8.6 Octave computation

To estimate the final capacitance expression 8.66, a numerical integration was done.

The Legendre B function integral formula, indeed, is not analytically solvable, there-

fore, numerical procedures are needed. For this we used Octave (27), an open source

software. We report here the main code lines to be implemented in Octave to per-

form the numerical double integration appearing in Equation 8.66.

a(1:10) = 0;

for j = 1:10;

for i = 0:10;

a(j) = a(j) + dblquad(@(x,y)(sqrt(2)/pi)*cosh(pi*q(j))*cos(q(j).*x)./sqrt(y+cosh(x)),

0+10*i,10+10*i,1,1.0004);

i++;

endfor;

j++;

endfor;

Some explanation about these code lines: the first line is setting an array a of
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ten values initially equal to zero. The first for-loop defines a loop of ten iterations:

these are the ten j-value Legendre B function to be integrated. As reported, indeed,

in the final part of section 8.4.2, we assume the j-sum to be properly approximated

by the first ten j-values. The second i-loop, instead, is a technical trick to be able to

perform the integration. Basically, a direct integration on the whole x-range (trun-

cated up to 100), indeed, would give to Octave a too difficult integral. This is due

to the highly oscillating behaviour of the B Legendre function. To overcome the

problem, therefore, we decided to split the x-range into ten parts (ten units long),

to be summed up in order to get the result of the integration from zero to 100.

The fourth code line is the main one since, due to the dblquad instruction, the nu-

merical integration is achieved. To be noticed, the final two fields inside the bracket

which define the extremes of integration.
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Chapter 9

Observation of flat-lying molecules

layer by AFM

When conjugated oligomers, like 6T, are deposited on chemically inert and flat

silicon oxide surfaces, firstly form stable nucleus of few molecules. Subsequently,

nucleus evolve as islands during the deposition and coalesce one each other to form

a continuous organic layer (1). The film growth is characterized by two contempo-

raneous molecular configurations: the upright configuration of the islands and the

flat-lying configuration in between of them (2).

During the film’s growth, these flat-lying molecules can affect islands coalescence in

two ways: if they remain flat, an empty space in between islands is created; oth-

erwise, if they are collected from islands, the interfacial disorder between islands is

increased (domain boundaries) (3).

To utilize these films in electronic and optoelectronic devices, the molecular

orientation with respect to the substrate is crucial: for Organic Light Emitting

Diodes (OLEDs) or solar cell applications, growth of the molecules should preferably

occur in a lying fashion. This allows for the charge carrier transport, which is

perpendicular to the molecule’s long axis, between the electrodes as is illustrated

in Figure 9.1. For OTFTs, instead, growth of standing molecules is desired on the

gate oxide between source and drain.

These flat lying molecules are observed in the case of sexithiophene sub-monolayer

films deposited on thermal silicon dioxide surfaces. Photoluminescence spectroscopy

(PS) has revealed crucial information on the molecular organization allowing to iden-

tify a significant population of domains made of 6T molecules lying flat in direct

contact with the substrate (4). PS has allowed for the first time to provide insight

into the initial growth stages of organic films in reason of the 6T J-aggregates formed

on thermal SiO2 (5). In 2011, these 6T flat-lying aggregates on thermal SiO2 have
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been directly imaged by Ultrasonic Force Microscopy (UFM) (6).

PS has failed to image flat-lying molecules on native SiOx. On the other side, re-

cently, SPM techniques such as Lateral Force Microscopy, Atomic Force Microscopy

(in tapping mode) proved to be a powerful tool to investigate the mechanical prop-

erties of the flat lying molecular layer on native silicon oxide, while, Ultrasonic Force

Microscopy, allowed a direct identification of it (2).

Towards an always more complete way to identify flat lying molecules layers, we

present in this chapter unprecedent (up to our knowledge) UHV non contact AFM

images of 6T flat lying molecules aggregates, both on thermal silicon oxide and on

top of 6T islands.

Figure 9.1: (left) Desired molecular orientation for OLEDs or organic solar cells.

(right) arrangement for an OTFT application.

9.1 Experimental details

The experiment was performed with the VT AFM microscope described in Chapter

5 in UHV (10−8mbar).

All the non contact AFM images were achieved with MikroMasch AFM can-

tilevers (NSC 35) with resonance frequency of 318 kHz.

The substrate was thermal silicon dioxide, with a thickness of 223 nm. Before

deposition it was not chemically treated: once a 1cm2 region was cut from a wafer

(p-type, 1-10 Ω · cm), properly stocked to avoid any environmental contamination,

then it was directly put inside the microscope FEL.

The heating procedure of the OME cell was done exactly in the way described

in Chapter 4.

∼ 30%ML of 6T was deposited on the substrate after a 4 minutes deposition.

This corresponds to a low rate of molecules Φ ∼ 1A/min. The substrate was kept

at RT.

The main microscopy details were the following:

• generator oscillation amplitude = 0.1 V
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• gain = 4%

• set point = -35 Hz

• pixel = 400

• scan rate = 0.33 Hz for standard images, up to 1.3 Hz for images with flat

lying aggregates

• scan size starting from 2µm x 2µm down to a minimum of 70nm x 70nm

9.2 Results

While performing a routine experiment (a RT calibration), we noticed the height of

the 6T islands to be close to 3 nm instead of the common 2.4 nm. This led us to

think about a flat lying molecules layer on top of standard up-right 6T molecules

deposited on the substrate.

In Figure 9.2, the first four images can be seen, starting from a scan size of 1µm

x 1µm, down to 200nm x 200nm. For image 1) and 3) the height profiles of three

and one islands, respectively, is reported in Figure 9.3. In Figure 9.4, instead, we

report a Gwyddion (see Section 2.6) step fit (Gwyddion→ Fit critical dimension→
Fit) of the first island (on the left) of the height profile shown on the right of Figure

9.3. As can be seen, the fit is evaluating the step to be (3.0 ± 0.2)nm, a value not

in agreement with the standard 2.4 nm height of 6T molecules.

Already in the image 4) some rod like features are visible both on the substrate

and on top of 6T island. To be sure not to be in front of an artifact we tilted the

scanning of 45 degrees obtaining image 1b) of Figure 9.5. As can be appreciated,

the whole image has rotated of 45 degrees, the 6T island together with the rod

like features. This can be taken as a strong sign that those features are not artifact.

Moreover, to see better the flat lying molecules layer and check if they down scale

with the image we achieved a zoom down to 160nm x160nm and 70nm x70nm,

obtaining images 2) and 3) of Figure 9.5. As can be seen, the features appear bigger

as it should be for real objects after zooming.
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Figure 9.2: 6T islands on thermal silicon oxide. 1)1µm x 1µm 2)Zoom of the central

part of the first image. Scan size: 700nm x 700nm 3)Zoom of the upper-right part

of the second image. Scan size: 400nm x 400nm 4)Zoom of image 3). Scan size:

200nm x 200nm

Figure 9.3: Height profiles of 6T islands of images 1) and 3) of Figure 9.2. The

threshold of 3 nm is quite close to the top of the islands.
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Figure 9.4: Step-like fit of the first island (from the left) of the height profile on the

right of Figure 9.3. The parameter h, giving the height of the step, is evaluated:

(3.0± 0.2)nm

9.3 Data analysis

Assuming we are in front of a flat lying layer, the question is now to check the typical

dimension of the rod like features. As a first step we achieve a height profile of a

specific zone of the image where four features can clearly be seen. These are visible

in Figure 9.6, where exactly four mounds in the height profile can be distinguished.

Deciding to take as a typical transverse dimension of each feature the average of the

distance between two consecutive height minimums in the height profile, we look for

the minimum, measure them and calculate the average. In Figure 9.7 the x position

of each minimum can be seen. From here an average (out of the four mounds)

ξ = (4.2± 0.9)nm can be calculated, with the discrepancy as the error bar since we

have a non statistical sample of measurements. We are far from the 2.4 nm typical

length of the 6T molecules but the chosen method is still quite rough.

Looking for a better evaluation of the typical transverse dimension of the flat

lying molecules we achieve a (horizontal direction) Power Spectrum Density Function

(PSDF) method (7,8), directly in Gwyddion with the option: Calculate

1Dstatisticalfunctions. To do this, we make use of all the images were the flat

lying molecules are clearly visible (image 1b), 2) and 3)), get the correspondent

correlation lengths and associate as a total error bar the discrepancy of the three

values.
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Figure 9.5: 1a)6T island on thermal silicon oxide. Scan size: 200nm x 200nm 1b)

45 degrees clockwise rotation of image 1a) showing the rod like features rotating as

well and confirming that we are not dealing with an artefact. Scan size: 200nm

x 200nm 2)Zoom of image 1b). Scan size: 160nm x 160nm 3)Zoom of image 2).

Scan size: 70nm x 70nm.

Since we are interested in the transverse typical length of the AFM image, we first

apply a plane subtraction, we fix the zero (see Section 2.6) and then rotate the image

in order to have the features under investigation perpendicular to the x axis.

In Figure 9.8, the PSDF plot is reported for image 3). Two main slopes are

visible and the k− vector (or wave number) at the intersection (shown on the right

screenshot) is roughly k = 2.08nm−1. The corresponding wave length, which we

interpret as a correlation length ξ or the typical dimension of the AFM image, is

then:

ξ =
2π

k
= 3.0nm (9.1)

For image 2) and 1b), instead, the wave numbers that we obtain following the

same procedure are k = 2.604nm−1 and k = 2.728nm−1, respectively. These corre-
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Figure 9.6: Image 3) of Figure 9.5 properly rotated (clockwise) in order to have

vertical rod like features. The dimension is 70nm x 70nm.

Figure 9.7: Height profile of four features selected in Figure 9.6 and associated

measured distances. An average of (4.2± 0.9)nm distance between two consecutive

minimums is found.

sponds to wave lengths of 2.4 nm and 2.3 nm.

Making the average and taking the discrepancy as error bar we can conclude, finally,
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that the main correlation length in the AFM images is:

ξ = (2.6± 0.4)nm (9.2)

which is in complete agreement with the standard 2.4 nm chain length of 6T

molecules.

Figure 9.8: Relevant part of the PSDF of figure 9.6. The two main slopes are visible

(left). Measured x and y position of the cross point between the two slopes (right).

To conclude, we have proven, after depositing 6T molecules on thermal silicon oxide

(223 nm) kept at RT, that (2.6 ± 0.4)nm wide features are present both on the

substrate and on top of 6T islands. Our idea is that these are flat lying molecules

aggregates where lots of single flat lying molecules are packed together to form long

rod like features.

Despite the AFM observation of flat lying molecules aggregates, still there are

several open questions:

• is the whole experiment reproducible?

• are these aggregates present also on native silicon dioxide?

• are these aggregates still present if we change the temperature of the substrate?

Regarding the first question, in the future, we will try to observe again this flat

lying molecules layer by non contact AFM in UHV. During the PhD period we
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tried several times without success. We guess the contribution of the (not known)

sharpness of the AFM tip can be a very relevant parameter affecting the possibility

to achieve such high resolution AFM images.

In the end of this section, we also report another experimental observation per-

haps related to a flat lying molecules layer.

During one of the trails to achieve the RT in-situ AFM experiment with the VT

AFM microscope, we obtained the peculiar 6T morphology images shown in Figure

9.9 and 9.10.

Figure 9.9: 6T AFM images showing the morphological evolution of a peculiar

topography: a border decoration plus a layer of molecules on the basal plane of each

island is present. In between them, a depletion zone. 1)0.7ML with inset of the

bottom central island 2)0.8 ML 3)0.9ML 4)1ML 5)1.1ML and 6)1.3ML
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Figure 9.10: Morphological evolution of 6T topography shown in Figure 9.9.

1)1.4ML 2)1.5ML 3)1.6ML 4)1.7ML 5)1.8ML 6)1.9ML 7)2.1ML and 8)2.2ML

The 1 cm2 substrate we used was cut from a wafer of native silicon oxide (boron

doped, p-type, 5-10 Ω · cm), properly stocked to avoid any environmental contami-
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nation. The experiment was achieved in UHV (2x10−9mbar). The AFM cantilever

had a resonance frequency of 330 kHz (Nanosensors), the scan size was 6µm x 6µm,

the scan frequency 0.3 Hz, the generator oscillation amplitude 0.1 V, the typical

gain 5% and the standard set point -45Hz.

Each deposition lasted four minutes and the typical coverage step was 0.1 ML cor-

responding to a low rate of deposition of ∼ 1A/min.

In the figures, showing the morphological evolution of the thin film, we report

the relevant topographies for our purposes, from 0.7ML up to 2.2ML. We are in

front of a standard layer by layer growth of 6T on native silicon oxide. In the first

image we are in the aggregation regime, while, in image 2), at 0.8 ML, the coales-

cence it taking place. In order to have percolation the image 4), at 1ML, has to be

considered. Then, after the first layer has been completed, the growth of the second

layer starts, again in a layer by layer way, even if a small coverage of the third layer

is already appeared before the second one has been completed (last images).

As clearly visible from the first image of Figure 9.9, each 6T island shows a

marked border decoration plus a layer of molecules covering the basal plane of the

island. A depleted zone appears in between such regions that can not be measured

by using the height profile because of the noise induced by the image size. Such

island decoration is promoted by 6T molecules deposited on its basal plane during

the film growth. This process appears in the sub-monolayer regime and it goes on

for every coverage, including islands coalescence and percolation. As qualitatively

observed in the inset of Figure 9.9, islands show a comparable colour contrast of the

two decorated regions (viz. same height).

Notably, the height of the islands is about 2nm which is lower than the expected

island height (2.4nm). The decoration effect disappears for the islands of the second

monolayer that are more dendritic than those of the first monolayer. On the other

hand, their height remains about 2nm. Moreover, there is no correlation between

the centre of the islands of the second monolayer with respect to the centre of the

first monolayer islands. This seems in agreement to the step edge effect (9), where

the island nucleation occurs in correspondence to higher edges of the first monolayer

islands. At a first glance, this is true for all islands of the second monolayer (see

Figure 9.9) therefore the existence of flat lying molecules on the borders promotes

their growth. Of course, this is an hypothesis not confirmed by data analysis, but

it seems reasonable.

Experimentally, we can associate these observations to the only one experimental

parameter that was changed, viz. the coverage steps. Indeed, all the AFM images
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performed during the in-situ quasi real time experiments (see Chapter 7), had 0.2ML

as a coverage step whereas, in this case, it was 0.1ML. New experiments are needed

for confirming such effect.

To conclude, we report a 6T topography on native silicon oxide which shows

higher edges on the 6T islands. We have not yet completely understood the origin

of this observation nor we had the possibility to repeat the experiment because it

was partially out of the thesis focus. In the next future, we will try to repeat the

whole experiment in order to see if this effect is reproducible both on native and

thermal silicon oxide, also changing the temperature of the substrate.
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Chapter 10

Ex-situ AFM imaging of

pentacene-C60 bilayer

In this work we elucidate the interplay between Charge Transfer (CT) and inter-

face morphology of the pentacene-C60 heterojunction. The experiment was carried

out using an in-situ real time electrical characterization technique which allows the

monitoring of electrical performance of a transistor during the growth of the organic

semiconductor. This gives us the possibility to relate growth phenomena to device

performances.

The work, carried out in my group, was collaborative and my contribution to

it has been to perform ex situ AFM imaging on the set of bilayer films and the

morphological analysis. The used AFM microscope is described in Chapter 6.

CT processes, such as electron-hole separation or recombination, occur at in-

terfaces between electron and hole transport layers in organic devices such as light

emitting diodes, photovoltaic cells (OPVs), light emitting transistors and ambipolar

field effect transistors (FET) (1–4).

The efficiency of CT depends on the alignment of the energy levels at the heterojunc-

tion, as well as on the molecular organization and the morphology of the interface.

In ambipolar FETs based on bilayer heterojuctions, the morphology of the bottom

layer determines the quality of the heterojunction interface and the charge trans-

port in these devices (5). Flat and continuous films in the first semiconducting layer

would produce a smooth heterojunction interface. Additional charge carriers accu-

mulated at the heterojunction can fill the trap states and thereby improve carrier

transport. In reality, the heterojunction is a rough fluctuating interface with lateral

correlation lengths.

In order to explore the role of morphology on CT at the heterojunction, we use

in-situ real time electrical characterization technique that enables us to measure
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the characteristics of an ambipolar transistor during the growth of the bilayer. As

model compounds for the bilayer we chose pentacene as p-type and fullerene (C60) as

n-type transporter, because their heterojunction forms a well-characterized donor-

acceptor pair. Theoretical studies address the role of molecular architecture (6,7),

interface geometry (8), polarization (9) and dipole formation due to electrostatic

interaction, however evidence from experimental results is still marginal.

Figure 10.1: Device layout and morphology of bilayer (a) Schematic diagram of

ambipolar C60/pentacene FET. The profile drawn in Figure 10.1c is displayed as

the envelope of C60 molecules (represented as circles). (b-e) AFM topographical

images at different C60 coverage on a 2 ML pentacene film: (b) 0.6 ML (0.5 nm)

(c) 1.2 ML (1 nm) (d) 3 ML (2.5 nm) and (e) 6 ML (5 nm).

Our goal has been to investigate how CT process is governed by the change in film
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thickness and morphology of the pentacene-C60 heterojunction. We sequentially

deposited films of pentacene and C60 with varying thicknesses, while probing in-

situ and at real time their electrical transport properties in the direction parallel

to the evolving interface. This enabled us to relate percolation of the p-type and

n-type charge transport paths, n- and p-type mobility and threshold voltage to film

thickness and morphology.

Ex situ AFM imaging was performed on a set of bilayers comprising a θ = 2ML

(3 nm) pentacene film at the bottom and a C60 film with θC60 increasing up to

12.5 ML (10 nm) on top. The morphological evolution is displayed in the AFM

micrographs shown in Figure 10.1.

Two distinct features appear: (i) C60 small grains decorate step edges around

pentacene islands, while (ii) larger C60 grains nucleate and grow on the basal plane

of the island. The latter exhibits lower areal density. The line profile in Figure

10.1a (extracted along the line drawn on the AFM image in Figure 10.1c) suggests

that C60 molecules are in intimate contact with pentacene at step edges. Figure

10.1b,c display the early stage of C60 growth on pentacene film: terrace edges are

decorated by strings of interconnected C60 grains ∼30-60 nm wide and 2.6 nm

(> 3ML) high, while C60 molecules nucleating on the basal plane form disc shape

grains with average diameter 40-80 nm and height 1.6 nm (2 ML). As θC60 increases

above 3 ML, the grains in the basal plane grow larger and coalesce into a connected

percolation network across the pentacene layer (Figure 10.1d,e).

Having known this morphological evolution of C60 on pentacene, our next step

has been to relate the growth phenomena to the electrical characteristics obtained

from the in situ real time electrical characterization. Figure 10.2 shows the evolu-

tion of electron current Ie in the C60 channel during the growth of C60 on 2 MLs of

Pentacene. In the beginning there is a slow rise in current during the initial growth

of C60 up to θC60 = 2ML. When θC60 > 2ML we see a very rapid increase in the

electron current. Looking at the AFM images, we can say that the initial rise in

the current is actually due to a quasi 1D percolation along the borders of pentacene

because at initial growth the C60 grains at the basal plane are disconnected. How-

ever, at θ > 2ML, the C60 grains on the basal plane form a 2D percolation network

(as we see also from the images from Figure 10.1d-e ) and this gives rise to the

rapid jump of the electron current. This interpretation has been confirmed using a

percolation theoretical model which we will not discuss here.

The main conclusion of this work is that we can clearly demonstrate a direct

relation between evolution of film growth on the channel of a transistor and its

electrical performances.
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Figure 10.2: Evolution of electron current during C60 growth on 2 ML of pentacene.



10.1 Bibliography 165

10.1 Bibliography

[1] P. Heremans, D. Cheyns and B. P. Rand. Acc. Chem. Res., 42, 1740 (2009)

[2] N. Koch. ChemPhysChem, 8, 1438 (2007)

[3] M. Muccini. Nat. Mater., 5, 605 (2006)

[4] A. Rao, M. Wilson, J. M. Hodgkiss, A. S. Sebastian, H. Bassler and R. H. Friend.

J. Am. Chem. Soc., 132, 12698 (2010)

[5] J. Wang, H. Wang, X. Yan, H. Huang and D. Yan. Appl. Phys. Lett., 87, 093507

(2005)

[6] L. Muccioli, G. D’Avino and C. Zannoni. Adv. Mater., 23, 4532 (2011)

[7] Y. T. Fu, C. Risko and J. L. Bredas. Adv. Mater., 25, 878 (2013)

[8] Y. Yi, V. Coropceanu and J. L. Bredas. J. Am. Chem. Soc., 131, 15777 (2009)

[9] E. F. Valeev, V. Coropceanu, D. A. da Silva Filho, S. Salman and J. L. Bredas.

J. Am. Chem. Soc., 128, 9882 (2006)



166 Ex-situ AFM imaging of pentacene-C60 bilayer



Conclusions

To conclude, during the PhD, we have focus on these two main works: an in-situ

real time AFM study of organic semiconductor thin film growth on silicon oxide and

an Electrostatic Force Microscopy (EFM) theoretical model. Regarding the first ex-

perimental issue, we have achieved an almost unprecedent in-situ real time AFM ex-

periment, showing the morphological evolution of alpha-sexithiophene, a benchmark

organic semiconductor, on native silicon oxide, a technologically relevant substrate.

We report a 2D+3D growth with a roughening transition at the third layer, followed

by a rapid roughening. From the AFM images at different substrate temperatures,

important morphological parameters like desorption energy, activation-diffusion en-

ergies and fractal dimension have been obtained. To have a deeper understanding of

the growth kinetics behind the evolution of the ultra thin film on the substrate, we

have simulated the growth with a distributed growth model. This model was able

to describe the 2D+3D growth, allowing us to conclude that the downward inter-

layer diffusion is relevant for this kind of growth dynamics. Moreover, due to some

discrepancies between the distributed growth model and the experimental data, we

suggest that also the upward interlayer current should be taken into account in or-

der to properly describe the evolution of the growth exponent beta with substrate

temperature.

On the other hand, the theoretical EFM model allowed us a better estimation

of the capacitance between an EFM tip and a metallic substrate. This parameter is

important to better understand EFM images, Phase-EFM images and to estimate

relevant parameters like the dielectric constant of thin films. In the next future, we

aim to generalize this EFM model also to the case of an organic ultra thin film in

between the EFM tip and the substrate. This could be important for a more precise

definition of nucleation center and resolution limit of an EFM microscope.

Moreover, two additional work have been concluded. The first regards UHV non

contact AFM images of flat lying molecules layer on thermal silicon oxide and on

top of 6T islands. This AFM experimental observation, to our knowledge, was still

lacking. The second work, elucidates the interplay between morphology and charge
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transport at the heterojunction between two relevant organic semiconductor like

pentacene and C60.
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