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1 Introduction

Small-scale dynamic stochastic general equilibrium models developed

within the New Keynesian tradition (henceforth NK-DSGE models), have

been treated as the benchmark of much of the monetary policy literature,

given their ability to explain the impact of monetary policy on output, in-

�ation and �nancial markets. Despite possessing attractive theoretical prop-

erties, such as the capability of featuring potential structural sources of en-

dogenous persistence that can account for the inertia in the data such as

external habit persistence, implicit indexation, adjustment costs of invest-

ment, etc. (Christiano, Eichembaum and Evans, 2005; Smets and Wouters,

2003), these models are typically rejected when compared with vector au-

toregressions (VAR) and have di¢ culties in generating su¢ cient endogenous

persistence to match the persistence observed in the data. The empirical

reliability of this class of models is still unclear and an increasing strand

of the literature has become to put into question its usefulness in empirical

modeling, see e.g. Pesaran and Smith (2011).

From the econometric point of view, DSGE models are interpreted as

inherently misspeci�ed systems (An and Schorfheide, 2007; Del Negro and

Schorfheide, 2009; Canova and Ferroni, 2012) and are usually treated as

restricted but parametrically incomplete representations of the data. The

restrictions NK-DSGE place on VARs can be classi�ed into two categories: (i)

highly nonlinear cross-equation restrictions (CER) which the system places
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on its unique stable reduced form solution and which can be potentially used

to recover estimates of the structural parameters; (ii) constraints on the lag

VAR order which a¤ect the state-space representation of the solution when

some of the endogenous variables are not directly observable.

As regards (i) the problem is less apparent in a Bayesian framework.

The recent frequentist literature suggests that the highly nonlinear nature

of the CER may falsely led one to reject the structural model, when tested

against the data, when asymptotic critical values are used in samples of

lengths typically available to macroeconomists, especially when the variables

are highly persistent, see e.g. Bekaert and Hodrick (2001), Cho and Moreno

(2006), Li (2007), Fanelli (2008), Fanelli and Palomba (2011) and Bårdsen

and Fanelli (2013). As regards (ii), Ravenna (2007), Fernández-Villaverde et

al. (2007), Franchi and Vidotto (2013) and Franchi and Paruolo (2014) have

provided the assumptions needed for a �nite order VAR representation of

a DSGE equilibrium model to exist. The coe¢ cients of this VAR depend

on the structural parameters through the CER (Komunjer and NG (2011),

Iskrev (2010)). It usually happens that the constraints that the NK-DSGE

model places on the VAR lag order are at odds with the dynamic features

and persistence observed in quarterly (monthly) time series, inducing the

omission of relevant propagation mechanisms that may characterize the data.

In this paper, we devote attention to the inherent omitted dynamics is-

sue that characterizes the class of NK-DSGE models. We argue that the
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rational expectations paradigm may limit considerably the possibility of re-

producing the actual autocorrelation structure of the data. Cole and Milani

(2014) underline the [...failure of New Keynesian models under the rational

expectations hypothesis to account for the dynamic interactions between ob-

served macroeconomic expectations and macroeconomic realizations...]. Our

idea is that in a world in which the data generating process is unknown and

characterized by heterogeneous information sets, rational expectations are

impossible to observe; multivariate time series models like VAR models can

be regarded as �boundedly rational�predictors �in the spirit�of rational ex-

pectations, see Branch (2004). As is known, the �standard�alternative to

the rational expectations hypothesis in the literature is the adaptive learning

hypothesis. Under adaptive learning, agents form their beliefs using forecast

models with possibly time-varying coe¢ cients and recursive updating rules

through which they converge to an equilibrium can be achieved in the limit,

see Evans and Honkapohja (2003) and references therein. Althought adap-

tive learning induces more persistence in the data (Branch and Evans 2006;

Milani 2007; Chevillon et al. 2010) and permits a substantial statistical re-

laxation of the CER (Fanelli and Palomba 2011) compared to the rational

expectations paradigm, the omitted dynamic issue is not solved within this

paradigm.

We propose addressing the econometric analysis of NK-DSGE models

under an alternative view which can be regarded as a an �intermediate�po-
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sition between rational expecations and learning, namely an adapted version

of the quasi-rational expectations (QRE) hypothesis introduced by Nerlove

et al.(1979), Nelson and Blessler (1992), Nerlove and Fornari (1998) and Holt

and McKenzie (2003). The extreme form of QRE simply replaces expecta-

tional variables appearing in structural equations with their values calculated

from the �best �tting�reduced form model for them. However, since QRE

are suited for exogenous, and not endogenous variables, we adapt the con-

ventional concept to the speci�c framework of NK-DGSE models. The idea

to apply the concept of Quasi-Rational to DSGE models is �rstly proposed

by Fanelli (2009).

We de�ne the QR-NK-DSGE model as a linear rational expectations

model derived from the baseline structural speci�cation, such that its stable

reduced form solution has the same lag structure as the state space (VAR)

which �ts the data optimally. This means that once a state space (VAR) is

�tted to the observed time series, the QR-NK-DSGE model is obtained from

the baseline structural speci�cation by adding a number of auxiliary lags of

the endogenous variables such that the implied unique stable solution, if it

exists, corresponds to a restricted counterpart of the state space (VAR). The

additional auxiliary parameters re�ect the distance between actual agents�

expectations and rational expectations. The number of lags characteriz-

ing the QR-NK-DSGE model is not arbitrary but depends explicity on the

agent�s forecast model. Other approaches, related to ours, have been sug-
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gested in the literature to improve the data adequacy of dynamic macro

models based on RE. For instance, Kozicki and Tinsley (1999), Rudebusch

(2002a, 2002b) and Fuhrer and Rudebusch (2004), introduce �additional�dy-

namics and auxiliary parameters in the system they estimate, in recognition

of the observed length of real world contracts, adjustment costs, delays in

information �ows and decision lags, see also Lindé (2005). In our setup, the

additional auxiliary parameters estimated under QRE are motivated by the

need of having a reduced form model solution consistent with the agents�

statistical model. Compared to Curdia and Reis (2010), the advantage of

using QR-NK-DSGE model in empirical analysis is that the zero restrictions

in (ii) are automatically relaxed and therefore the risk of omitting relevant

propagation mechanisms is under control. Clearly, there is no guarantee that

the CER of type (i) are automatically ful�lled under QRE.

This paper is organized as follows. Section 1.1 introduces the Quasi Ra-

tional Expectations idea. In Section 1.2 is presented the reference model for

our analysis. Section 2 discuss the case where all the endogenous variables

are observed and Section 3 the case when one or more endogenous variables

are unobserved. Section 5 presents two di¤erent applications based on the

US Economy in the observeable and unobservable case. Some conclusions

complete the paper.
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1.1 Quasi Rational Expectations

Since the pioneristic work of Muth (1961), the main method to treat agents�

expectations is the rational expectation (RE) hypothesis. Expectations have

always played a central role in monetary policy because �uctuations in real

activity and in�ation are in large part driven by expectations about future

demand, in�ation and monetary and �scal policy. Under this hypothesis,

it is assumed that the agents know the Data Generating Process up to the

unknown parameters. This approach has several limits, analyzed by Cole

and Milani (2014) and Pesaran (1987): [...RE is not the way to modelling

anything other than the steady state, because its informational assumption

are too �strong�...]. The princinpal reason for the failure of this approach is

that the econometrician may fail to specify the behavioral model and the

information available to the agents correctly. An alternative method which

attempts to relax the �basic�assumptions under RE is the Quasi Rational

Expectations (QRE) hypothesis, discussed in Nerlove and Fornari (1998).1

Following this approach, expectations are computed using the best �tting

time series Autoregressive Integrated Moving Average (ARIMA) model for

the variables. We focus on the following simple model

xt = 
fEtxt+1 + 
bxt�1 + "t; "t � WN (0; 1) ; t = 1; :::T (1)

1The idea is originally proposed by Nerlove et al. (1979)
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where the variable xt is an observable scalar generated by a covariance sta-

tionary process, Etxt+1 = E (xt+1jFt) is the expectation operator conditional

on the information set Ft and "t is a scalar white noise process with variance

1, called structural (or fundamental) disturbance, or also structural shock.

We called the model in eq. (1) �structural model�. The structural parame-

ters are 
f > 0,
b > 0 and are collected in � =
�

f ; 
b

�0
: Assuming that


f + 
b < 1 the unique stable RE solution of the eq. (1) is given by the

Autoregressive process of order one (AR(1))

xt = #xt�1 +  "t; t = 1; :::T (2)

where # = # (�) and  =  (�) are reduced form parameters that depend

nonlinearly on �:These coe¢ cients are subject to the cross equation restric-

tions


f#
2 � #+ 
b = 0 and  =

�
1� 
f#

��1
Under RE the data generating process belongs to the class of the mdels

described by eq. (2) :

Imagine now that the �best �tting�time series model for xt is given by

an AR (p) process with p � 2 and the DGP belongs to this class of models.

Under this assumption, RE are not valid in the sense that the solution of

model (1) is misspeci�ed because it omits p � 1 relevant lags. Therefore

RE solution omits some propagation mechanisms present in the DGP. This
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problem is anlyzed in detail in Section 2.1. One way to achieve such a result

is suggested by Curdia and Reis (2010), they model the structure of "t using

any time series process. Our idea, based on QRE, consists in rectifying

the dynamic speci�cation of the structural model such that its solution is

consistent with the �best �tting�time series model for the data. Consider

for example the case where the �best �tting� statistic model for xt is an

AR(p = 2)

xt = #1xt�1 + #2xt�2 + "t; "t � WN
�
0; �2"

�
; t = 1; :::T (3)

where the autoregressive coe¢ cient associated with the second lag, #2, is such

that #2 6= 0: We call the model in eq. (3) the �agents�statistical model (or

forecast) model. The parameters of the statistical model are � = (#1; #2; �2")
0.

Compared to the reduced form solution in eq. (2), the AR(2) model in eq.

(3) involves an additional lag of the variable xt: For the econometrician, the

best forecast of xt+1 conditional on the information set available at time t is

E (xt+1jxt;xt�1; :::; x1) = #1xt + #2xt�1, not E (xt+1jxt;xt�1; :::; x1) = #1xt.

Our goal is to �nd a reduced form solution whose number of lags is the

same as in the �best �tting�model. One way to impose that eq. (3) is the

solution of the structural model is to rede�ne the model in eq. (1) by the

following pseudo structural model

xt = 
fEtxt+1 + 
bxt�1 + �2xt�2 + "t; "t � WN (0; 1) ; t = 1; :::T

11



where the parameter �2 is an auxiliary parameter not derived from economic

theory whose role is to �ll up the gap between the theory and the dynamic of

the data. Even if this parameter has no econimic meanig it is relevant in the

estimation of the structural paramenters
�

f ; 
b

�
: Indeed the solution of the

new pseudo structural model is an AR (2) in eq. (3) where the coe¢ cients

#1; #2 and �2" are non linear function of the structural parameters and the

auxiliary one (�2) through the following CER


f
�
#21 + #2

�
� #1 + 
b = 0 (4)


f (#1#2)� #2 + �2 = 0 (5)

�2" =
�
1� 
f#1

��2
(6)

We can potentially use the CER in eq.s (4)� (6) to recover the structural

parameters. Compared to the model in eq. (2) in this case the dynamics of

the system is consistent with the dynamic structure of the data.

1.2 Reference Model

We focus our analysis on the model proposed by Benati and Surico (2009).

This model is used in several econometric analysis (Bardsen, and Fanelli,

12



2014) and it contains both forward and backward looking components:

~yt = $fEt~yt+1 + (1�$f )~yt�1 � �(it � Et�t+1) + �y;t (7)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + %~yt + ��;t (8)

it = �rit�1 + (1� �r)(���t + �y~yt) + �i;t (9)

where

�x;t = �x�x;t�1+"x;t , �1 < �x < 1 , "x;t � WN(0; �2x) , x = ~y; �; i: (10)

The variables ~yt = yt � ypt , �t, and it stand for the output gap (yt is

output and ypt the natural rate of output), in�ation, and the nominal interest

rate, respectively; $f is the weight of the forward-looking component in the

intertemporal IS curve; � is price setters�extent of indexation to past in�a-

tion; � is households�intertemporal elasticity of substitution; � is a discount

factor which is assumed to be �xed at the value � = 0:99; % is the slope of the

Phillips curve; �r, ��, and �y are the interest rate smoothing coe¢ cient, the

long-run coe¢ cient on in�ation, and that on the output gap in the monetary

policy rule, respectively; �nally, �~y;t, ��;t and �i;t in eq. (10) are the mutu-

ally independent, autoregressive of order one and disturbances "~y;t, "�;t and

"i;t are the structural (fundamental) shocks with variances �2x, x = ~y; �;R.

This or similar small-scale models have successfully been employed to con-

duct empirical analysis concerning the U.S. economy. Clarida et al. (2000)
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and Lubik and Schorfheide (2004) have investigated the in�uence of system-

atic monetary policy over the U.S. macroeconomic dynamics; Boivin and

Giannoni (2006), Benati and Surico (2009) have replicated the U.S. Great

Moderation, while Castelnuovo and Fanelli (2014) have tested the determi-

nacy/indeterminacy properties of the implied equilibria using identi�cation-

robust methods. Referring to the notation used in eq. (16), system (7)� (9)

can be obtained by

�0 =

266664
1 0 �

�% 1 0

�(1� �r)�y �(1� �r)�� 1

377775 ; �f =

266664
$f � 0

0 �
1+��

0

0 0 0

377775 (11)

�b =

266664
(1�$f ) 0 0

0 �
1+��

0

0 0 �r

377775 (12)

We consider two di¤erent cases:

1. The vector Zt = [~yt; �t; it] is assumed to be completely observed (Sec-

tion 2 ). In this case the reduced form solution of this model is a

VAR.

2. The variable ypt (~yt = yt � ypt ) is assumed to be unobserved (Section 3)

and it follows a random-walk process
�
ypt = ypt�1 + � y;t

�
. In this case it

is necessary a measurement equation to complete the system (7)� (9):

14



Under the random-walk assumption the measurement equation is the

following (the derivation in Appendix A)

�yt = �~yt + � y;t (13)

�t = �t (14)

it = it (15)

where� is the di¤erence operator and � y;t is a measurement error. Di¤er-

ently from the previous case here the reduced form solution is a state-space

model.
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2 Observable variables: VAR representation

Let Zt = (Z1;t; Z2;t; � � � ; Zn;t)0 be a n� 1 vector of endogenous variables and

assume that the structural form of the NK-DSGE model is given

�0Zt = �fEtZt+1 + �bZt�1 + �t (16)

where, �i = �i(�), i = 0; b; f are n� n whose elements depend on the vector

of structural parameters �, �t is a n�1 vector which is assumed to be adapted

to the sigma-�eld Ft, where Ft represents the agents�information set at time

t and EtZt+1 = E(Zt+1 j Ft).

The vector of structural parameters � is a n� � 1 vector; the matrix �0 is

non-singular, while �f and �b can be singular and �b possibly zero. When a

direct link between the process generating �t and a set of �forcing variables�

is not provided by the theory, a typical completion of system (16) is obtained

through the autoregressive speci�cation

�t = R�t�1 + "t (17)

where R is a n�n diagonal stable matrix (i.e. with its eigenvalues - diagonal

elements - inside the unit disk), and "t is a fundamental white noise term

with covariance matrix �". The assumption that the structural shocks are

autocorrelated is common in the literature but is not generally derived from
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�rst-principles. Curdia and Reis (2010) model �t using an arbitrary time

series model in order to capture the dynamics of the system.

There exists many solution methods available in the literature through

which a reduced form solution of system (16)� (17) can be computed under

the rational expectations hypothesis, see among other Binder and Pesaran,

(1995), Klein (2000) and Sims (2002). Remarkably, di¤erent solution meth-

ods can give rise to di¤erent representations. Assuming that a unique solution

of the system exists, one way to express the reduced form solution associated

with system (16)� (17) is the VAR system

Zt = ~�1Zt�1 + ~�2Zt�2 + ~�dis"t (18)

where ~�1 = ~�1(�), ~�2 = ~�2(�) and ~�dis = ~�dis(�) depend nonlinearly on �

through the CER (Appendix B)

(�0 +R�f ) ~�1 � �f
�
~�21 +

~�2

�
� (�b +R�0) = 0n�n (19)

(�0 +R�f ) ~�2 � �f ~�1 ~�2 +R�b = 0n�n (20)

(�0 � �f ~�1)�1 = ~�dis: (21)

The matrix

~� =

264 ~�1 ~�2

In 0n�n

375
which solves eq.s (19) � (20) must be real and stable for the solution to
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be stable (asymptotically stationary). It can be proved (Castelnuovo and

Fanelli, 2014) that the stability of the matrix �(�) = (�0+R�f ��f ~�1)�1�f

is su¢ cient for uniqueness (determinacy).2

2.1 The ommitted dynamics issue

Given the NK-DSGE system (16) � (17), the reduced form model in eq.

(18) and the CER in eq.s (19) � (21), the structural parameters � can be

estimated either in classical context through �limited-�or �full-information�

methods, see e.g. Ruge-Murcia (2007) and Fukaµc and Pagan (2009) or via

Bayesian methods, see among many other An and Schorfheide (2007).

With classical �full-information�methods, one maximizes the likelihood

function of the VAR system (18) subject to one of various approximations of

the CER. For instance, one can maximize the likelihood function of the VAR

in eq. (18) subject to the restrictions in eq.s (19)� (21) as in e.g. Cho and

Moreno (2006) and B·ardsen and Fanelli (2014). These procedures, however,

can fail to deliver consistent estimates of � because of the misspeci�cation of

the VAR in eq. (18) with respect to the data, i.e. the possible omission of

relevant lags.

Aside from the Bayesian solution suggested by Del Negro et al. (2007)

and Del Negro and Schorfheide (2004) consisting in relaxing the strength

2The solution is not unique (i.e. there are multiple stable solutions) if ~� has eigenvalues
inside the unit disk but the matrix �(�) has eigenvalues outside the unit disk, see Binder
and Pesaran (1995), Section 2.3.
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of the CER by using prior distributions for �, classical approaches to cope

with the poor dynamic structure implied by system (16) � (17) include the

introduction of �additional�dynamics in eq. (16) to account for real-word

recognition, processing, adjustment costs and time-to-build lags as in Kozicki

and Tinsley (1999), Rudebusch (2002a, 2002b) and Fuhrer and Rudebusch

(2004) Lindé (2005, Section 5) and Jondeau and Le Bihan (2008), or the

manipulation of the shock structure of �t in eq. (17) as in e.g. Smets and

Wouters (2003, 2007) and Cúrdia and Reis (2010).

In this paper, with the term �dynamics misspeci�cation�we have in mind

the situation in which the solution that captures the dynamics and persis-

tence of Zt satisfactorily involves more lags than the determinate reduced

form solution associated with the NK-DSGE model in eq.s (18); see Consolo

et al. (2009). A formalized de�nition is provided below.

To see how the postulated time series structure of the structural distur-

bance �t is related to the dynamics of the NK-DSGE model, notice that

when in eq. (17) R 6= 0n�n, the reduced form in eq. (18) can be written

as a (stable) constrained VAR of order two. Similarly, if �t in eq. (17) is

speci�ed as an autoregressive of order two, the implied determinate reduced

form equilibrium of the NK-DSGE can be written as a constrained VAR of

order three, and so forth.

Consider now an econometrician who observes Z1; Z2; :::; ZT . Assume the

econometrician �nds that the �best �tting�forecast model for Zt is given by
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the VAR process

Zt = A1Zt�1 + � � �+ AkZt�k + Adis"t (22)

where k � 3, Ai, i = 1; :::; k are n � n matrices of coe¢ cients, �t is a white

noise process with covariance matrix �� <1 and Adis is a n� n matrix. It

can be recognized that under Assumption 1, the matching between the VAR

coe¢ cients in eq. (22) and the reduced form coe¢ cients of the NK-DSGE

model is given by

A1 = ~�1; (23)

A2 = ~�2 (24)

Aj = ~�j = 0n�n; j = 3; 4; :::; k (25)

Adis = ~�dis (26)

where ~�1and ~�2 are de�ned in eq.s (19) � (21). There are two types of

restrictions involved in eq.s (23)� (26): (i) the constraints in eq.s (23)� (24)

and in eq. (26) which map the structural parameters in � into the VAR

coe¢ cients (the Ais and Adis); (ii) the zero restrictions in eq. (25) (and

in eq. (24) when R = 0n�n) which reduce the VAR lag order from k to 2

(to 1 when R = 0n�n). Hence, there exists a discrepancy between the zero

restrictions of the type (ii) and the idea that the VAR with lag order k � 2

�ts the data optimally. This means the agents�best �tting model can not
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be regarded as the reduced form solution of the NK-DSGE model in eq.s

(16) � (17), unless the time series structure of �t is adapted ad hoc. This

observation leads to the following de�nition.

De�nition 1 [Omitted dynamics] If the DGP belongs to the class of VAR

models in eq. (22) ; the NK-DSGEmodel summarized in eq.s (16)�(17)

entails an �omitted dynamics issue�when the CER on the unique stable

solution give rise to a set of zero-restrictions of the type in eq. (25)

that reduces the lag order of the �best-�tting�VAR for Zt.

We de�ne the QR-NK-DSGE model as a dynamic counterpart of the

NK-DSGE speci�cation in eq.s (16) � (17) which circumvents the omitted

dynamics issue of De�nition 1. The solution of QR-NK-DSGE model has

the same dynamics structure as the �best �tting�model for Zt: A formal

de�nition will be given next.

2.2 The QR-NK-DSGE model

We have now all the ingredients to describe what we call QR-NK-DSGE

model. Consider the VAR for Zt

Zt = A1Zt�1 + � � �+ AkZt�k + �t, �t � WN(0,��), t = 1; :::; T (27)

where Aj, j = 1; :::; k are n�n matrices of parameters and �t is a n�1 white

noise process with covariance matrix �"; Z0, Z�1, ..., Z1�k are �xed.
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We consider the following assumptions:

Assumption 1 [Agents�forecast model] System (27) is the agents�fore-

cast model and is such that Ak 6= 0p�p, k � 3.

Assumption 2 [Stationarity] The roots, s, of det[A(s)] = 0 are such that

j s j> 1, where A(L) = Ip�
Pk

j=1AjL
j is the characteristic polynomial,

and L is lag operator.3

Assumption 3 [Population parameters invariance] The parameters in

(A1; � � � ; Ak;�") do not vary over time.

Assumption 1 plays a crucial role, it maintains that any model restriction

which reduces the VAR lag order generates the omitted dynamics issue of

De�nition 1. It is worth noting that in the jargon of the adaptive learning

literature Assumption 1 might be re-stated by observing that the agents�

Perceived Law of Motion is a VAR model for Zt not necessarily restricted to

be a Minimum State Variable solution, see e.g. Milani (2007). Assumption

2 rules out the occurrences of unit roots and explosive roots. However is

possible to extend the analysis to the case of unit roots. Assumption 3 pos-

tulates time invariant parameters and guarantees that the mapping between

the reduced form and the structural parameters is continuous. This hypoth-

esis can be opportunely relaxed, provided the estimation of the structural

3In Appenx D a brief discussion if this assumption is not valid.
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model is carried out over �stable� sub-samples.4 Assumption 3 is at odds

with the adaptive learning hypothesis in which the (population) parameters

of the perceived law of motion - the agents�beliefs - are generally treated as

time-varying coe¢ cients which are updated recursively as new information

become available.

We propose the econometric analysis of small-scale DSGE models based

on the QRE hypothesis. We look for a speci�cation which reconciles the

�best�time series approximation of the data, given by the VAR in eq. (27),

with the dynamic structure implied the DSGE model, without disregarding

the nature of the CER that the latter imposes on the former.

De�nition 2 [QR-DSGE Model] Under Assumptions 1-3 and the set of

CER on the VAR in eq. (27); we de�ne QR-NK-DSGE the pseudo-

structural model de�ned by

�0Zt = �fEtZt+1 + �bZt�1 +
k�1X
j=2

�jZt�jIfk�3g + �t (28)

�t = R�t�1 + "t; "t � WN (0;�") (29)

where If�g is the indicator function, �j, j = 2; :::; k�1 is a n�n matrix

containing additional parameters and "t is a white noise process with

variance �":

4Many authors have shown evidence in DSGE models of the US economy of parameter
instability across sample periods, especially in correspondence of changes in monetary
policy regimes. Misspeci�cation tests for structural instability play a crucial role in applied
research. See also Juselius and Franchi (2007).
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The matrices �j can be diagonal or not, but the number of non-zero el-

ements should not be too large to avoid the over-parameterization of the

system. The number of matrices �js is not arbitrary but is associated

with the lag order of the best �tting V AR for the data in eq. (27). Let

� be the vector collecting the auxiliary parameters contained in the matrices

�j, j = 2; :::; k � 1 and �� = (�0; �0)0 the vector containing all (structural

and auxiliary) parameters associated with the pseudo-structural form in eq.s

(28)� (29). Di¤erently from Kozicki and Tinsley (1999), Rudebusch (2002a,

2002b), Fuhrer and Rudebusch (2004), the non-zero elements in �j are not

derived from the economic theory. We call the model pseudo-structural in

the sense that the matrices �js don�t have a speci�c ecnomic meanig but

their role is to �ll the mismatch between the NK-DSGE equilibrium and the

time series approximation of the data. Under Assumptions 1-3, if a unique

reduced form solution for the model in eq. (28) exists, it is given by the

VAR in eq. (27) with coe¢ cients and disturbances subject to the restric-

tions Aj = ~�j, j = 1; :::; k, �t = ~�dis"t, respectively, where the matrices ~�j

and ~�dis are determined computing the eq. (16) under QRE, the CER are

24



(Appendix C)

(�0 +R�f ) ~�1 � �f
�
~�21 +

~�2

�
� (�b +R�0) = 0n�n (30)

(�0 +R�f ) ~�2 � �f
�
~�1 ~�2 + ~�3

�
� (�2 �R�b) = 0n�n

(�0 +R�f ) ~�3 � �f
�
~�1 ~�3 + ~�4

�
� (�3 �R�2) = 0n�n

...

(�0 +R�f ) ~�k � �f ~�1 ~�k +R�k�1 = 0n�n

(�0 � �f ~�1)�1 = ~�dis (31)

The solution is stable if the matrix �A is stable (all the eigenvalues less

than 1) where the matrix �A is the restricted compact matrix of the solution

�A =

266666664

~�1 ~�2 � � � ~�k

In 0n�n � � � 0n�n
...

. . .
...

...

0n�n 0n�n In 0n�n

377777775
:

25



3 Unobservable variables: state-space repre-

sentation

In this section we extend the analysis of the QR-NK-DSGE model to the case

where one or more endogenous variables of the system are unobserved. The

solution of the model is the same as in eq. (18), a V AR (2) for endogenous

variables Zt (the number of the V AR lags is determinated by eq. (17)). Dif-

ferently from section 2, in this case the vector Zt is not completely observed

hence the V AR (2) solution leads to a state space (or VARMA) model of the

following form

264 Zt

Zt�1

375
xt

=

264 ~�1 ~�2

In 0n�n

375
A(�)

264 Zt�1

Zt�2

375
xt�1

+

264 ~�dis

0n�n

375
S(�)

"t (32)

yt = Hxt +N� t (33)

where yt = (y1;t; y2;t; � � � ; ym;t)0 is the m � 1 vector of observable variables

and � t is a n� � 1 vector of the measurement errors. Eq. (32) is the state

equation and eq. (33) is the measurement equation. The matrices ~�1 =

~�1(�), ~�2 = ~�2(�) and ~�dis = ~�dis(�) depend nonlinearly on � through the

26



CER (Appendix B)

(�0 +R�f ) ~�1 � �f
�
~�21 +

~�2

�
� (�b +R�0) = 0n�n (34)

(�0 +R�f ) ~�2 � �f ~�1 ~�2 +R�b = 0n�n

(�0 � �f ~�1)�1 = ~�dis: (35)

By substituting eq. (32) into eq. (33) and using some algebra one obtains

the representation

xt = A(�)xt�1 + S(�)"t

yt = H (A(�)xt�1 + S(�)"t) +N� t

= HA(�)xt�1 +HS(�)"t +N� t

Now de�ning �t =
�
"t � t

�0
and rearraging terms the system above

becomes

xt = A(�)xt�1 +B(�)�t (36)

yt = C (�)xt�1 +D (�) �t (37)

where

B(�)
2n�(n+n� )

=

�
S(�) 02n�n�

�
; C (�)
m�2n

= HA(�); D (�)
m�(n+n� )

=

�
HS(�) N

�
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The System (36) � (37) de�nes the so-called �A, B, C (and D�s)�repre-

sentation of our NK-DSGE model, see Fernandez-Villaverde et al. (2007),

Ravenna (2007) and Franchi and Paruolo (2012). In this case the identi-

�cation issue is an important challenge, see among other Komijer and Ng

(2011) and Guerron-Quintana et al (2013). The authors developed a set of

rank condions using the matrices A,B,C and D in the eq.s (36)� (37).

3.1 The Kalman �lter approach

The Kalman Filter (henceforth KF) is a useful tool, proposed by Kalman

(1960), for evaluating the likelihood function in State Space models. Consider

a standard State Space model (as in eq. (32)� (33)):

State Equation : xt = Axt�1 + S"t (38)

Measurement Equation : yt = Hxt +N� t (39)

where xt is a n � 1 vector of endogenous variables and yt is a m � 1 vector

of the observable. In presence of unobservable components a possible way to

compute the likelihood of the system in eq.s (38)� (39) is the KF. Starting

with initial values for x0 � N
�
x0j0; P0j0

�
and assuming normality for the
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error terms:

"t � N (0; Q) (40)

� t � N (0; R) (41)

is possbile to compute the likelihood function. The KF is a recursive algo-

rithm composed by two steps: forecasting and updating. The forecasting

step starts with the initial value x0j0 and using eq. (38) derives the values for

x1j0 = Ax0j0 and V ar
�
x1j0 j x0j0

�
= P1j0 = AP0j0A

0+SQS 0. Using eq. (39) is

possible to obtain the values y1j0 = Hx1j0 +N and V1j0 = HP1j0H
0 +NRN 0,

where Vtjt�1 = V ar (yt j y1:::yt�1; �). At this point, the updating step starts.

Normality in eq.s (40)� (41) leads to a Gaussian process so the distribution

of x and y is given by:

264 y1

x1

375 � N

0B@
264 y1j0

x1j0

375 ;
264 V1j0 HP1j0

P1j0H
0 P1j0

375
1CA

hence, from the property of the multivariate normal distribution x and P are

equal to

x1j1 = x1j0 + P 01j0H
0V �1
1j0
�
y1 � y1j0

�
(42)

P1j1 = P1j0 � P 01j0H
0V �1
1j0 HP1j0 (43)
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It is now necessary to repeat the forecasting and updating step for t = 2:::T

and the likelihood function is given by

L (y j �) =
TY
t=1

(2�)�
m
2

��Vtjt�1��� 1
2 exp

�
�1
2

�
yt � ytjt�1

�0
V �1
tjt�1

�
yt � ytjt�1

��
(44)

3.1.1 Kalman Smoother

If the kalman �lter is a tool to compute the likelihood function in presence

of unobservable components, Kalman Smoother (heceforth KS) is a tool to

correct the values of the unobservable variables xt after the computation of

the KF. Starting from the last values obtained in the KF procedure xtjT

and PtjT , KS corrects all the values for the unobservable variables. The

algorithm starts from the observation T �1 (obviously the last value will not

be corrected because it contains already the whole information and this values

are xT jT , PT jT obtained in the eq.s (42)�(43)) and proceedes backwards until

the �rst observation, so for each t = (T � 1) ; : : : ; 1 the value for the state

and for the variance is given by

xtjT = xtjt + P
0

tjtA
0P�1t+1jt

�
xt+1jT � xt+1jt

�
(45)

PtjT = Ptjt � P
0

tjtA
0P�1t+1jt

�
Pt+1jt � Pt+1jT

�
P�1t+1jtAP

0

tjt (46)

where xt+1jt = Axtjt and Pt+1jt = APtjtA
0 + SQS 0:
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3.2 The omitted dynamic issue

The state space system in eq.s (36)� (37) summarizes the determinate equi-

librium associated with the NK-DSGE model under RE, and collapses to a

V AR for Zt when yt = Zt: Provided � is locally identi�able, the state space

model in eq.s (36)� (37) can be taken to the data using di¤erent estimation

methods, see e.g. Ruge-Murcia (2007), DeJong and Dave (2007), Fukaµc and

Pagan (2009) and Bårdsen and Fanelli (2014). These procedures, however,

can fail to deliver consistent estimates of � when the omitted dynamics issue

occurs, see e.g. Jondeau and Le Bihan (2008).

To characterize the omitted dynamic issue, assume that the agents��best

�tting�model for the data can be represented by the state space system

266666664

Zt

Zt�1
...

Zt�k+1

377777775
x�t

=

266666664

A1 A2 � � � Ak

In 0n�n � � � 0n�n
...

. . . . . .
...

0n�n � � � In 0n�n

377777775
A�

266666664

Zt�1

Zt�2
...

Zt�k

377777775
x�t�1

+

266666664

Adis

0n�n

0n�n

0n�n

377777775
S�

�t(47)

yt = Hx�t +N� t (48)

where Aj, j = 1; :::; k are n � n matrices of parameters �t is a n � 1 white

noise process with covariance matrix ��. By setting �t = Adis"t, with Adis a

n � n matrix, it can be recognized that under Assumption 1, the matching

between the state-space coe¢ cients in eq.s (47)� (48) and the reduced form
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coe¢ cients of the NK-DSGE in eq.s (32)� (33) is given by

A1 = ~�1;

A2 = ~�2

Aj = ~�j = 0n�n; j = 3; 4; :::; k (49)

Adis = ~�dis

Where ~�1, ~�2 and ~�dis are subjected to the CER in eq.s (19)� (20):We

de�ne the QR-NK-DSGE model as a dynamic counterpart of the NK-DSGE

speci�cation which circumvents the omitted dynamics issue of De�nition 1

in eq. (49).

3.3 The QR-NK-DSGE model

Consider now that the �best �tting�state-space model for the data is given

in eq.s (47)� (48) and the Assumptions 1-3 are still valid the Quasi-Rational

�pseudo-structural form�is given by

�0Zt = �fEtZt+1 + �bZt�1 +

k�1X
j=2

�jZt�jIfk�3g + �t (50)

�t = R�t�1 + "t; "t � WN (0;�") (51)

where If�g is the indicator function, �j, j = 2; :::; k � 1 is a n � n matrix

containing additional parameters and "t is a white noise process with variance
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�":When k � 2 (k is the number of lags in the best �tting statistical model in

eq.s (47)�(48)) the pseudo structural form collapses to the NK-DSGE model

under RE. To fully understand the nature of the system in eq.s (50)� (51),

observe that k � 3, its i-th Euler equation reads

Zi;t = 
0i;0Z
�
i;t + 
0i;fEtZt+1 + 
0i;bZt�1 +

 
k�1X
j=2

�i;jZi;t�j

!
+ �i;t

�i;t = Ri�i;t�1 + "i;t; i = 1; :::; n:

In this equation, the (n � 1) � 1 vector Z�i;t denotes Zt with its i-th entry

suppressed, the (n� 1)� 1 vector 
i;0 collects the structural parameters that

enter the i-th row of �0, the n�1 vector 
i;f collects the structural parameters

that enter the i-th row of �f , the n � 1 vector 
i;b contains the structural

parameters that enter the i-th row of �b, �i;j is the i-th diagonal element of

�j, j = 1; :::; k�1 and, �nally, �i;t and "i;t are the i-th elements of the vectors

�t and "t, respectively, where the autoregressive parameter -1 < Ri < 1 is

the i-th diagonal component of R.

Let � be the vector collecting the auxiliary parameters contained in the

matrices �, j = 2; :::; k� 1 and �� = (�0; �0)0 the vector containing all (struc-

tural and auxiliary) parameters associated with the pseudo-structural form

in eq.s (50)�(51). Under Assumptions 1-3, if a unique reduced form solution

for the model in eq.s (50)�(51) exists, it is given by the state-space model in

eq.s (47)� (48) with coe¢ cients and disturbances subject to the restrictions
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Aj = ~�j, j = 1; :::; k, Adis = ~�dis and ~�j;j = 1; :::; k and ~�dis full�l the CER

(Appendix C)

(�0 +R�f ) ~�1 � �f
�
~�21 + ~�2

�
� (�b +R�0) = 0n�n (52)

(�0 +R�f ) ~�2 � �f
�
~�1 ~�2 + ~�3

�
� (�2 �R�b) = 0n�n

(�0 +R�f ) ~�3 � �f
�
~�1 ~�3 + ~�4

�
� (�3 �R�2) = 0n�n

...

(�0 +R�f ) ~�k � �f ~�1 ~�k +R�k�1 = 0n�n

(�0 � �f ~�1)�1 = ~�dis (53)

the solution is stable if the matrix �A is stable (all the eigenvalues less than

1), where the matrix �A is the restricted compact matrix of the solution

�A =

266666664

~�1 ~�2 � � � ~�k

In 0n�n � � � 0n�n
...

. . .
...

...

0n�n 0n�n In 0n�n

377777775
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4 Estimation procedure

The econometrics analysis of the NK-DSGE model based on QRE can be

based on the following two steps:

Step 1 Fit the statistical model to the data and use available information cri-

teria or likelihood-ratio tests to determine the lag lenght k that �ts the

data optimally. The statistical model is eq. (27) if Zt is completely

observable or eq.s (47) � (48) if one or more component in Zt are not

observed. This can be done by estimating the VAR or the state space

model with the maximum likelihood approach. In the observable case,

given the following �best �tting model�

Zt = �A �Zt�1 + �t, �t � WN(0,��) , t = 1; :::; T

where �A = [A1;:::; Ak] and �Zt�1 = [ �Zt�1; :::; �Zt�k]
0; the log-likelihood

(given � the vector of parameters) is the following

lnL(Z j �) = �nT
2
log (2�)� T

2
log (j��j) (54)

�1
2

TX
t=1

��
Zt � �A �Zt�1

�0
��1�

�
Zt � �A �Zt�1

��
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In the unobservable case the �best statistical model�is given

266666664

Zt

Zt�1
...

Zt�k+1

377777775
x�t

=

266666664

A1 A2 � � � Ak

In 0n�n � � � 0n�n
...

. . . . . .
...

0n�n � � � In 0n�n

377777775
A�

266666664

Zt�1

Zt�2
...

Zt�k

377777775
x�t�1

+

266666664

Adis

0n�n

0n�n

0n�n

377777775
S�

�t

yt = Hx�t +N� t

and the log-likelihood is computed by the Kalman Filter procedure in

Section (3:1) and is

lnL(Z j �) = �mT
2
log (2�)

T

+
X
t=1

�
�1
2
log
���Vtjt�1���� 1

2

�
yt � ytjt�1

�0
V �1
tjt�1

�
yt � ytjt�1

��
(55)

where V �1
tjt�1 and ytjt�1 are computed during the Kalman Filter algo-

rithm and � is the vector of parameters. In this case the speci�c

procedure we use to �nd a global maximum is the simulated anneal-

ing/genetic algorithm of Andreasen (2010). For each estimated model,

we check whether the minimality (controllability and observability) and

local identi�cation conditions discussed in Komunjer and Ng (2011) are

satis�ed in correspondence of the maximum likelihood estimation.

Step 2 Given k, estimate �� = (�0; �0)0 from the statistical model (eq. (27) in

the observable case and eq.s (47)�(48) in the unobservable case) under
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a numerical approximation of the CER in eq.s (30) � (31) or in eq.s

(52)�(53). This can be done by using a bayesian algorithm sketched in

Section 4.1 or the algorithm of Andreasen (2010) described in Section

4.2.

4.1 Bayesian approach

Given a set of priors for the parameters in �� is given (p(��)), the posterior

distribution is computed using an Markov Chain Monte Carlo (MCMC) algo-

rithm as the Random-Walk Metropolis (RWM). The sketch of this algorithm

is the following (see Del Negro and Schorfheide (2012) or An and Schorfheide

(2007) for more details).

Algorithm 1 RWM

1. Use a numerical optimization routine to maximize the log posterior,

which up to constant is given by lnL(Z j ��) + ln p(��), where the term

L(Z j ��) indicate del log-likelihood and p(��) is the joint prior. Denote

the posterior mode by ~�:

2. Let ~� the inverse of the (negative) Hessian computed at the posterior

mode ~�; which can be computed numerically.

3. Draw ��(0) from N
�
~�; ~�

�
or directly specify a starting value.

4. For j = 1; :::;W : draw # from the proposal distribution N
�
��(j�1); c2 ~�

�
:

The new candidate parameter vector # is accepted
�
��(j) = #

�
with
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probability min f1; r
�
��(j); # j Y

�
g and rejected

�
��(j) = ��(j�1)

�
oth-

erwise. Here: r
�
��(j); # j Y

�
= L(Y j��)p(��)

L(Y j��(j�1))p(��(j�1)) .The choiche of the

costant c is an important issue in bayesian estimation, usually this pa-

rameter is chosen to reach an acceptance ratio close to 20% (acceptance

ratio is given dividing the number of accepted candidates for the total

number of iterations).

5. The posterior distribution of �� is given by the set of accepted ��(j); j =

1:::;W:

To compare the models in a Bayesian approach we use two standard

criteria commonly used in the Bayesian model comparison framework: De-

viance Information Criterion (DIC) and Predictive Model Choice Criterion

(PMCC). DIC is a generalization of the AIC and BIC criteria used in MCMC

algorithms. This indicator is de�ned by

DIC = 2 � �D �D
�
��
�

where �� is the expected value of ��, D
�
��
�
= �2 log

�
L(Z j ��)

�
and �D =

E [D (��)]. The lowest DIC is associated with the best model.

PMCC proposed by Gelfand and Gosh (1998) is de�ned

PMCC =
nX
i=1

(�i � Zi)
2 +

nX
i=1

�2i

38



where �i = E (Zrep;i j Z), �2i = V ar (Zrep;i j Z) and Zrep is the posterior

predictive distribution. Similarly to the DIC, the model with lower PMCC

is preferred.

4.2 Frequentist approach

A possible method which can be used to �nd the global maximum of the like-

lihood for DSGE models is the algorithm developed by Hansen et al. (2005)

and recently applied to the context of DSGE models by Andreasen (2010),

called CMA-ES. Andreasen shows that with ten structural parameters, this

routine �nds the global optimum in the 95% of cases (di¤erent initial values)

and with 20 and 35 parameters the routine �nds the global optimum in 85%

and 71% of cases respectively. Before applying this procedure to the data,

we run a Monte Carlo simulation study to envisage how the Andreasen�s

algorithm works in our setup. Two di¤erent simulations are proposed: one

for the RE case and one for the QRE case. Table 1 reports the results of

the simulation in the RE case. The model is proposed in Section 1.2, con-

sidering Zt not completely completely observed and the �true�values of the

parameters (reported in the �rst column of Table 4.2) are taken by Benati

and Surico (2009)
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Table 1. Monte Carlo (RE)
True parameters mean(std:err)
$f = 0:744 0:736(0:107)
� = 0:124 0:132(0:061)
� = 0:059 0:058(0:046)
% = 0:044 0:047(0:035)
�r = 0:834 0:822(0:067)
�� = 1:749 1:956(1:001)
�y = 1:146 1:355(0:587)
�y = 0:796 0:776(0:137)
�� = 0:418 0:406(0:117)
�i = 0:404 0:407(0:157)
�2
y
= 0:055 0:066(0:054)

�2� = 0:391 0:040(0:138)
�2i = 0:492 0:523(0:155)
�2
�y
= 0:250 0:271(0:273)

LR (� = 0:05); rejection rate = 6:3%
M = 150; T = 100

Notes: M is the number of simulations and T is the sample size. In brachets the
Monte Carlo standard errors. The LR test is computed between the DSGE
and the unrestricted State Space.

In the �rst column of Table 4.2 there are the true parameters and in the

second column the mean over the M = 150 simulations. The data for the

Monte Carlo simulation study are generated under the �true model�given by

the eq.s (32) � (33) where ~�1; ~�2 and ~�dis are computed using Binder and

Pesaran (1995) method. For each simulation (di¤erent data) we estimate

the model in eq.s (32) � (33) subject to the CER in eq.s (34) � (35) and

the unrestricted model in eq.s (47) � (48) with k = 2: For each case then

we compare, through a LR test (with � = 0:05), this two models and the

rejection rate is the percentage of the whole simulation study for which we
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reject the null model (the model in eq.s (32)-(33) subject to the CER is

nested to the unrestricted model in eq.s (47) � (48)). The likelihood ratio

test (LR) is given by

LR = �2
�
log
�
Likelihoodnull

�
� log

�
Likelihoodalternative

��
and is asymptotically distribuited as a �2(qalternative�qnull) where qalternative and

qnull are the free parameters in the alternative model and null model.

Table 4.2 reports the results of the Monte Carlo simulation study in the

QRE case. The �true�values of the parameters in the �rst column are selected

in such a way that an unique and stable solution exist.
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Table 2. Monte Carlo (QRE)
True parameters mean(std:err)
$f = 0:744 0:593(0:211)
� = 0:124 0:126(0:046)
� = 0:059 0:061(0:029)
% = 0:044 0:055(0:028)
�r = 0:834 0:834(0:085)
�� = 2:200 2:918(1:649)
�y = 1:150 1:096(0:592)
�y = 0:796 0:617(0:251)
�� = 0:418 0:394(0:107)
�i = 0:404 0:376(0:143)
�1;2 = 0:060 �0:009(0:127)
�2;2 = �0:500 �0:509(0:169)
�3;2 = 0:100 0:070(0:124)
�2
y
= 0:055 0:043(0:034)

�2� = 0:391 0:368(0:058)
�2i = 0:492 0:478(0:079)
�2
�y
= 0:250 0:061(0:044)

LR (� = 5%); rejection rate = 6:4%
M = 50; T = 100

Notes: M is the number of simulations and T is the sample size. In bracket the
Monte Carlo standard errors. The LR test is computed between the DSGE
and the unrestricted State Space.

In both simulations the results are quite good: the mean among the sim-

ulations is very close to the true values for each parameters and the rejection

rate is similar to the nominal value (� = 5%) : The only problematic parame-

ter is �1;2. The di¤erence between the true value (0:060) and the estimated

one (�0:009) is probably due to the small sample size.
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In addition to the LK test for the model comparison in the frequentist

case we also use the standard information criteria.

Akaike = �2 log (Likelihood) + 2q

Hannan�Quinn = �2 log (Likelihood) + 2q log (log (T ))

Schwarz = �2 log (Likelihood) + q log (T )

where q is the number of parameters and T is the sample size.
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5 Empirical applications

5.1 Observable case

In this section we estimate a QR-NK-DSGE model for the US economy as-

suming that the vector Zt = [~yt; �t; it]
0 is completely observed. The output

gap series ~yt is given by the di¤erence between real GDP (yt) and potential

output proxied by Congressional Budget O¢ ce (CBO) �output gap�series.

The in�ation rate �t is measured by the log of the quarterly changes in the

GDP de�ator and it is the short-term nominal interest rate.

Figure1. Time Series
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As common for quarterly data, the discount factor parameter � is �xed

to 0.99 (corresponding to an annual discount rate of approximately 4%).

We focus on the model discussed in Section 1.2 and drop out the period

before the Volcker stabilization (1979) and after the recent �nancial crysis

(2008:Q4) from the analysis. In this period, the macroeconomic literature

has documented a dramatic fall in the variances of the main macroeconomic

indicators, which has been termed the �Great Moderation�. McConnell and

Perez-Quiros (2000) identify 1984:Q1 as the break-date of the variance of

the U.S. real GDP, so we consider the period 1984:Q2-2008:Q3 (T = 98).

According to the analyses in Castelnuovo and Fanelli (2014), it is possible

to reject the occurence of sunspot-driven equilibria and not to reject the

occurence of a model�s solution consistent with the unique equilibrium in

that period. The �best-�tting�statistical model for Zt is a V AR with k = 3

lags

Zt = A1Zt�1 + A2Zt�2 + A3Zt�3 + �t; �t � WNN (0;��) (56)

Table 3 summerizes the criteria for the lag lenght selection. The likelihood

for the unrestricted model is the one in eq. (54) and it is computed for the

lags k = 1; :::; 6. For the lag length selection we consider the likelihood ratio

test and the standard information criteria (we select kmax = 6 because 6 lags

are enough to capture the dynamics in the data)
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Table 3. Lag lenght selection
lag Likelihood LR p-value Akaike Hannan-Quinn Schwartz
1 27:08 158:45 < 0:001 �30:16 �17:67 0:73
2 55:23 102:14 < 0:001 �68:47 �46:70 �14:61
3 86:82 38:98 0:063� �113:63� �82:67� �37:01�
4 94:34 23:93 0:157 �110:67 �70:61 �11:49
5 100:32 11:98 0:214 �104:65 �55:55 16:93
6 106:31 � � �98:61 �40:59 45:13

Notes: the log-likelihood is maximized using the standard economitrician analy-
sis for VAR models. The LR tests are computed by comparing the log-
likelihoods obtained with k=2,...,6 lags and the log-likelihood obtained with
k=6 lags. Asterisks denote the optimallag selected by the test/criterion.
The sample is 1984:Q2-2008:Q3 and the model is described in eq. (56).

Given the results in Table 3, we select k = 3 as the optimal lag. Indeed

each information criterion and the LR test select k = 3. From De�nition 2,

the QR-NK-DSGE model is given by the system

�0Zt = �fEtZt+1 + �bZt�1 + �2Zt�2 + �t (57)

�t = R�t�1 + "t; "t � WN (0;�")

where

�2 =

266664
�1;2 0 0

0 �2;2 0

0 0 �3;2

377775 ; R =
266664
�y 0 0

0 �� 0

0 0 �i

377775 :
The CER in this case are summarized in eq. (30) � (31). The vector of

structural parameters, including the auxiliary ones, is �� = (�; �0)0; where

� = (�;$f ; �; �; %; �r; ��; �y)
0; � = (�1;2; �2;2; �3;2)

0. The pseudo-structural
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equations are

~yt = $fEt~yt+1 + (1�$f )~yt�1 � �(it � Et�t+1) + �1;2~yt�2 + �y;t (58)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + %~yt + �2;2�t�2 + ��;t (59)

it = �rit�1 + (1� �r)(���t + �y~yt) + �3;2it�2 + �i;t (60)

�x;t = R�x;t�1 + "t; "t � WN (0;�") ; x = ~y; �; i: (61)

The Step 2 of the estimation procedure summarized in Section 4 requires

estimating �� = (�; �0)0 from the model in eq. (56) by imposing the CER

Aj = ~�j, j = 1; 2; 3, �� = ~��, where

(�0 +R�f ) ~�1 � �f
�
~�21 + ~�2

�
� (�b +R�0) = 03�3 (62)

(�0 +R�f ) ~�2 � �f
�
~�1 ~�2 + ~�3

�
� (�2 �R�b) = 03�3

(�0 +R�f ) ~�3 � �f
�
~�1 ~�3

�
+R�2 = 03�3

~�� = ~�0dis�"
~�dis; (�0 � �f ~�1)�1 = ~�dis (63)

In the empirical analysis we compare the QRE-NK-DSGE model with the

standard NK counterpart model under RE, that is the model obtained with

�2 = 03�3: The CER for the NK model under RE in eq.s (19)� (21).
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5.1.1 Bayesian estimation

Table 4 summarizes the priors for the QR-NK-DSGE model. The priors for

the structural parameters � are taken from Benati and Surico (2009) while

the priors for additional parameters � are centered on Rational Expectation

solution. This means that for all of the �s parameters, the prior distribution

speci�ed is a N (0; 0:25) :5

Table 4. Priors
Parameter Density Mode Standard Deviation

� Inverse Gamma 0:06 0:04
$f Beta 0:25 0:20
� Beta 0:75 0:20
% Gamma 0:05 0:01
�r Beta 0:75 0:20
�� Gamma 1:00 0:50
�y Gamma 0:15 0:25
�y Beta 0:25 0:20
�� Beta 0:25 0:20
�i Beta 0:25 0:20
�2y Inverse Gamma 0:10 0:25
�2� Inverse Gamma 0:50 0:50
�2i Inverse Gamma 0:25 0:25
�i;j Normal 0 0:25

Notes: the priors are taken by Benati and Surico (2009) except for the auxiliary
parameters that are centered in the RE hypothesis with mean 0 and variance
su¢ cient small to ensure the stability of the solution companion matrix.

The posteriors, reported in Table 5, are coputed using a standard Random-

Walk Metropolis (RWM) proposed in Section 4.1. Analyzing the di¤erence

5The di¤erence in the prior distribution of � with respect to Benati and Surico (2009)
is only a matter of speci�cation and the property that if X � Gamma (k; �) then 1

X �
InverseGamma

�
k; ��1

�
48



between the posteriors in the RE and in QRE we can notice that $f has a

posterior mean equal to 0:453 with a 90% credible set of [0:343; 0:602] in the

RE model while it has a posterior mean equal to 0:843 with a credible set

of [0:721; 0:939] in QRE. This aspect indicates the higher weight attribuited

to the �rst lag in the RE model in the intertemporal IS curve (eq. (7)).

Indeed (1�$f ) is equal to 1� 0:453 = 0:547 in the model based on RE and

equal to 1� 0:843 = 0:157 in the model based on the QRE. Looking now at

�1;2; the coe¢ cient related to the second lag in the intertemporal IS curve

(eq. (7)), we can see that it has mean equal to 0:256 with a credible set

[0:127; 0:382] that re�ects the weight attributited at the �rst lag in the RE

model (0:547) is actually divided in 0:157 for the �rst lag and 0:256 for the

second lag in QRE. Another important di¤erence is related to the coe¢ cient

�� whose mean is 0:119 with a 90% credible set equal to [0:101; 0:153] under

RE and 0:800 with a 90% credible set equal [0:671; 0:908] under QRE. The

higer value of the autoregressive persistence parameter in the QRE model

is mitigated by the coe¢ cient �2;2 = �0:721; the parameter related to the

second lag in the New Keynesian Phillips curve (eq. (59))
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Table 5. Posteriors
Posterior RE Posterior QRE

Parameters Mean[5%; 95%] Mean[5%; 95%]
� 0:185[0:158; 0:199] 0:186[0:159; 0:199]
$f 0:453[0:343; 0:602] 0:843[0:721; 0:939]
� 0:058[0:037; 0:091] 0:061[0:037; 0:094]
% 0:039[0:028; 0:053] 0:054[0:038; 0:071]
�r 0:756[0:675; 0:827] 0:744[0:659; 0:815]
�� 1:907[1:906; 1:908] 1:839[1:661; 2:087]
�y 0:775[0:382; 1:277] 1:112[0:778; 1:445]
�y 0:439[0:266; 0:605] 0:825[0:713; 0:903]
�� 0:119[0:101; 0:153] 0:800[0:671; 0:908]
�i 0:592[0:272; 0:815] 0:832[0:748; 0:902]
�2y 0:073[0:047; 0:106] 0:135[0:103; 0:173]
�2� 0:245[0:202; 0:297] 0:247[0:204; 0:297]
�2i 0:117[0:096; 0:142] 0:121[0:099; 0:146]
�1;2 � 0:256[0:127; 0:382]
�2;2 � �0:721[�0:957;�0:470]
�3;2 � 0:174[0:012; 0:369]

Notes: the posteriors are obtained using a Random-Walk Metropolis (RWM)
algorithm. The posteriors satisfy the standard convergence criteria and the
acceptance ratio is 21.47% for the RE and 27.04% for the QRE. The sample
is 1984:Q2-2008:Q3 and the model is described in eq.s (58)-(61).

In Table 6 we report the DIC (Deviance Information Criterion) and

PMCC (Predictive Model Choice Criterion) criteria described in Section 4.1.

These criteria stress the better time series performance of the QRE with re-

spet to the RE. Indeed in both cases, the DIV and PMCC of the model under

QRE are less (79:79 vs 113:52 for the Predictive Model Choice Criteria and

107:72 vs 212:97 for Deviance Information Criteria).

50



Table 6. Goodness of �t
DIC PMCC

RE 212.97 113.52
QRE 107.72 79.17

Notes: Deviance Information Criterion (DIC) and Predictive Model Chioce Cri-
teria (PMCC) proposed in Section 4.1. The sample is 1984:Q2-2008:Q3 and
the model is described in eq.s (58)-(61).

Finally, Figure 2 plots the Impulse Response Functions (IRFs) in the

two di¤erent formulations. The IRFs under RE have a relatively standard

pattern, in the sense that they are similar to the IRFs documented in Benati

and Surico (2009). The IRFs computed based on QR-NK model are similar,

the main di¤erence is the response of the in�ation given an in�ation shock,

which re�ect the already discussed role of the �2;2 coe¢ cient.

Figure 2. Impulse Response Functions

Notes: Impulse Response Functions are computed under RE and QRE expecta-
tions. In the �rst column the responses to an aggregate demad shock, in the
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second column the responses to in�ation shock and in the last column the
responses to a monetary policy shock. The sample is 1984:Q2-2008:Q3 and
the model is described in eq.s (58)-(61).

The last analysis is the comparison between prior and posterior distribu-

tions. Figure 3 reports the graphs.

Figure 3. Priors and Posteriors

Rational

Quasi-Rational
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5.1.2 Frequentist estimation

In this section we estimate and evaluate the QR-NK model with a frequentist

estimation using the algorithm proposed in Section 4.2. Table 7 reports the

estimated parameters and Table 8 some goodness of �t criteria.

Table 7. Estimations
Parameters RE(std:err:) QRE(std:err:)

� 0:200(0:182) 0:200(0:057)
$f 0:708(0:078) 0:848(0:384)
� 0:035(0:190) 0:035(0:012)
% 0:025(0:012) 0:025(0:008)
�r 0:889(0:057) 0:961(0:286)
�� 1:650(1:157) 2:532(0:871)
�y 0:419(0:201) 1:021(0:518)
�y 0:857(0:044) 0:969(0:076)
�� 0:710(0:074) 0:839(0:302)
�i 0:489(0:098) 0:611(0:374)
�2y 0:152(0:032) 0:166(0:056)
�2� 0:043(0:010) 0:060(0:058)
�2i 0:010(0:002) 0:007(0:006)
�1;2 � 0:086(0:031)
�2;2 � �0:545(0:286)
�3;2 � �0:054(0:018)

Notes: The log-likelihood is maximized by a Kalman-�ltering approach and the
simulated-annealing/genetic algorithm of Andreasen (2010), using the fol-
lowing bounds for the parameters: [0.010-0.200] for �; [0.100-0.999] for $f

; [0.035-0.100] for �; [0.025-8] for %; [0.001-0.999] for �r; [0.001-1.500] for
�y; [1.650-5.500] for ��; [0.001-0.999] for �y, �� and �i, and leaving all
remaining parameters (including the auxiliary parameters �i;j; i = 1; 2; 3
and j = 2 collected in the vector � ) free on condition that model�s solu-
tion uniqueness and stability is satis�ed. Di¤erent initial values have been
used for �� = (�0; �0)

0
converging always to the same maximum. Standard

errors in parentheses [have been calculated from the Hessian matrix using
hessian function in matlab]. The sample is 1984:Q2-2008:Q3 and the model
is described in eq.s (58)-(61).
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At �rst glance, we notice that the auxiliary parameters � =
�
�1;2; �2;2; �3;2

�0
=

dg (�2) estimated under QRE, reported in the second coloum of Table 7, are

all signi�cant. The main di¤erences characterize the coe¢ cients of the Tay-

lor rule. In practical the coe¢ cient �� indicating the long-run response of

the Central Bank to in�ation, is equal to 1.650 in the model under RE and

to 2.532 in the model estimated under QRE. Analyzing �y; the long-run re-

sponse of the Central Bank to output gap, we can observe that this coe¢ cient

is equal to 0.419 under RE and to 1.021 under QRE. The higher value of this

two parameters indicate an higher reaction of the monetary policy to the

in�ation and to the output gap.

Table 8. Goodness of �t
RE QRE

Likelihood 30:88 59:11
Akaike �35:77 �86:22�

Hannan-Quinn �22:18 �69:63�
Schwart �2:16 �45:19�
LR(RE vs QRE)=40.46, p-value<0.0001

LR(CER under RE)=32.70, p-value<0.0001
LR(CER under QRE)=55.42, p-value<0.0001

Notes: the LR(RE vs QRE) is computed comparing the log-likelihood obtained
with RE and the log-likelihood with QRE. The LR(CER under RE) is com-
puted comparing the log-likelihood with RE and the log-likelihood with un-
restricted VAR(2). The LR(CER under QRE) is computed comparing the
log-likelihoods with QRE and the log-likelihood with unrestricted VAR(3).
Akaike, Hannan-Quinn and Schwarz criteria are described in Section 4.1.
Asterisks denote the optimal lag selection according to the information cri-
terion. The sample is 1984:Q2-2008:Q3 and the model is described in eq.s
(58)-(61).
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The likelihood ratio test and the goodness of �t criteria in Table 8 show

the better time series performance of the model under QRE. All chosen cri-

teria select QRE as the optimum model, �35:77 vs �86:22 for Akaike crite-

rion, �22:18 vs �69:63 for Hannan and Quinn criterion and �2:16 vs �45:19

for Schwarz criterion. Also the LR test reject the null model (RE) with a

p� value < 0:0001 (in this case the LR(RE vs QRE) � �3). In Figure 4 the

IRFs are plotted for the two cases. The main di¤erences are shown by the

responses of the ountput gap and of the in�ation to a monetary policy shock.

In this two cases QRE and RE report an opposite response.

Figure 4. Impulse Response Functions

Notes: Impulse Response Functions are computed under RE and QRE expecta-
tions. In the �rst column the responses to an aggregate demad shock, in the
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second column the responses to in�ation shock and in the last column the
responses to a monetary policy shock. The sample is 1984:Q2-2008:Q3 and
the model is described in eq.s (58)-(61).

5.2 Unobservable case

In this section we estimate the QR-NK-DSGE model for the case where the

variable ~yt is assumed to be not directly unobservable. The reference model

is proposed in Section 1.2, case B. Di¤erently from the previous case now the

vector of observed variables is Yt = [�yt; �t; it]
0 and the measurement system

is in eq.s (13)� (15) :

Figure 5. Time Series
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As in the previous application, the discount factor parameter � is �xed to

0.99 (corresponding to an annual discount rate of approximately 4%). Again,

we drop out from the analysis the period before the Volcker stabilization

(1979) and after the �nancial crisis (2008:Q4) and we focus on the period

1984:Q2-2008:Q3 (T = 98). As described in Section 3 the representation of a

DSGE in this case is a state space model as in eq.s (32)� (33). In this case,

the �best �tting�model for Yt is based on k = 4 lags

s:e: :

266666664

Zt

Zt�1
...

Zt�k+1

377777775
=

266666664

A1 A2 A3 A4

I3 03�3 03�3 03�3

03�3 I3 03�3 03�3

03�3 03�3 I3 03�3

377777775

266666664

Zt�1

Zt�2
...

Zt�k

377777775
+

266666664

Adis

0n�n

0n�n

0n�n

377777775
�t (64)

m:e: :

266664
�yt

�t

it

377775 =
266664
1 0 0 �1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

377775

266666664

Zt

Zt�1
...

Zt�k+1

377777775
+

266664
1

0

0

377775 � y;t(65)

Where Ai; i = 1; :::; 4; dis are 3� 3 matrices whose only restriction is to ful-

�l the minimality (controllability and observability) and local identi�cation

conditions discussed in Komunjer and Ng (2011). Table 9 reports the in-

formation criteria for lag the length selection. The LR test selects k = 4

lags while the information criteria choose di¤erent dynamics: Akaike selects
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k = 5 lags, Hannan and Quinn k = 2 lags Schwarz k = 2 lags

Table 9. Lag lenght selection
lag Likelihood LR p-value Akaike Hannan-Quinn Schwarz
2 151:42 74:71 < 0:0001 �240:84 �208:57� �161:03�
3 161:08 55:40 0:001 �242:15 �200:69 �139:58
4 176:99 23:57 0:167� �255:98 �205:42 �130:84
5 186:44 4:68 0:861 �256:87� �197:29 �109:36
6 188:78 � � �243:55 �175:04 �73:87

Notes: the log-likelihood is maximized by a Kalman-�ltering approach and the
simulated-annealing/genetic algorithm of Andreasen�s (2010). The LR tests
are computed by comparing the log-likelihoods obtained with k = 2; :::; 6 =
k lags and the log-likelihood obtained with k = 6 lags. Asterisks denote the
optimal lag selected by the test/criterion. The sample is 1984:Q2-2008:Q3
and the model is described in eq.s (64)-(65).

Following the indication of the LR test we choose k = 4 lags. Given

k = 4, from De�nition 2 the QR-NK-DSGE pseudo structural model is

�0Zt = �fEtZt+1 + �bZt�1 + �2Zt�2 + �3Zt�3 + �t

�t = R�t�1 + "t; "t � WN (0;�")

where the matrices �0;�f and �b are described in eq.s (11)� (12) and

�2 =

266664
�1;2 0 0

0 �2;2 0

0 0 �3;2

377775 ;�2 =
266664
�1;3 0 0

0 �2;3 0

0 0 �3;3

377775 ; R =
266664
�y 0 0

0 �� 0

0 0 �i

377775 :

58



In detail, the pseudo-structural model is given by

~yt = $fEt~yt+1 + (1�$f )~yt�1 � �(it � Et�t+1) + �1;2~yt�2 + �1;3~yt�3 + �y;t(66)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + %~yt + �2;2�t�2 + �2;3�t�3 + ��;t

it = �rit�1 + (1� �r)(���t + �y~yt) + �3;2it�2 + �3;3it�3 + �i;t

�xt = R�xt�1 + "x;t; "x;t � WN
�
0; �2x

�
; x = ~y; �; i (67)

and the measurement equation in eq.s (13)� (15) takes the form

266664
�yt

�t

it

377775 =
266664
1 0 0 �1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

377775

2666666666666666666666666666666666664

~yt

�t

it

~yt�1

�t�1

it�1

~yt�2

�t�2

it�2

~yt�2

�t�2

it�2

3777777777777777777777777777777777775

+

266664
1

0

0

377775 � y;t:

(68)
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The Step 2 of the estimation procedure summarized in Section 4 requires

estimating �� = (�0; �0)0 from the model in eq.s (64) � (65) by imposing the

CER Aj = ~�j, j = 1; 2; 3; 4 and �� = ~��, where

(�0 +R�f ) ~�1 � �f
�
~�21 +

~�2

�
� (�b +R�0) = 03�3 (69)

(�0 +R�f ) ~�2 � �f
�
~�1 ~�2 + ~�3

�
� (�2 �R�b) = 03�3

(�0 +R�f ) ~�3 � �f
�
~�1 ~�3 + ~�4

�
� (�3 �R�2) = 03�3

(�0 +R�f ) ~�4 � �f ~�1 ~�4 +R�3 = 03�3

~�� = ~�0dis�"
~�dis; (�0 � �f ~�1)�1 = ~�dis (70)

The counterpart NK model under RE is given by

�0Zt = �fEtZt+1 + �bZt�1 + �t

�t = R�t�1 + "t; "t � WN (0;�")

where

R =

266664
�y 0 0

0 �� 0

0 0 �i

377775 :
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with the follow measurement equation

266664
�yt

�t

it

377775 =
266664
1 0 0 �1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

377775

2666666666666664

~yt

�t

it

~yt�1

�t�1

it�1

3777777777777775
+

266664
1

0

0

377775 � y;t: (71)

The CER for the standard NK model are summarized in eq.s (34)�(35) (the

CER are the same as in the system (69)� (70) with �2 = �3 = 03�3).

5.2.1 Bayesian estimation

Table 10 summerizes the priors used for the QR-NK-DSGE model. As for

the observable case, the priors for the truly structural parameters � are taken

from Benati and Surico (2009), while the priors for the additional parameters

� are centered in Rational Expectation solution. Hence for all �i;j, it is used

a N (0; 0:25) distribution. For the variance of the measurement error, �2� ; the

prior is the same as for �2y.
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Table 10. Priors
Parameter Density Mode Standard Deviation

� Inverse Gamma 0:06 0:04
$f Beta 0:25 0:20
� Beta 0:75 0:20
% Gamma 0:05 0:01
�r Beta 0:75 0:20
�� Gamma 1:00 0:50
�y Gamma 0:15 0:25
�y Beta 0:25 0:20
�� Beta 0:25 0:20
�i Beta 0:25 0:20
�2y Inverse Gamma 0:25 0:25
�2� Inverse Gamma 0:50 0:50
�2i Inverse Gamma 0:25 0:25
�2� Inverse Gamma 0:25 0:25
�i;j Normal 0 0:25

Notes: the priors are taken by Benati and Surico (2009) except for the auxiliary
parameters that are centered in the RE hypothesis with mean 0 and variance
su¢ cient small to ensure the stability of the solution companion matrix.

The posteriors, reported in Table 11, are computed using a standard

Random-Walk Metropolis (RWM) discussed in Section 4.1. Analyzing the

posterios it�s possible to observe that the main di¤erences are in the coe¢ ents

of the monetary policy rule �� and �y: In particoular ��; the long-run re-

sponse of the Central Bank to in�ation, switches from 2:107 with 90% credible

set of [1:682; 3:043] under RE to 1:801 with a credible set [1:658; 2:120] under

QRE. The parameter �y; the long-run response of the Central Bank to the

output gap, passes from 0:449 with a credible set [0:116; 0:805] under RE to

1:054 with a credible set [0:167; 1:478] under QRE. The di¤erence in this two
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parameters indicates that the additional lags in the structural model shrink

the gap between the response of Central Bank to in�ation and the response

of Central Bank to the output gap. Another di¤erence is given by the coef-

�cient �� = 0:484 with a credible set [0:175; 0:771] under RE and 0:783 with

a credible set [0:637; 0:903] under QRE. This di¤erence is explained by the

coe¢ cient �2;2 = �0:638 with a credible set [�0:913;�0:370] that mitigates

the higher value of �� in QRE with respect to RE.

Table 11. Posteriors
Posterior RE Posterior QRE

Parameters Mean[5%; 95%] Mean[5%; 95%]
� 0:183[0:156; 0:199] 0:185[0:158; 0:199]
$f 0:136[0:102; 0:200] 0:829[0:649; 0:951]
� 0:056[0:036; 0:088] 0:062[0:037; 0:093]
% 0:053[0:038; 0:072] 0:053[0:038:0:071]
�r 0:783[0:682; 0:870] 0:733[0:584; 0:902]
�� 2:107[1:682; 3:043] 1:801[1:658; 2:120]
�y 0:449[0:116; 0:805] 1:054[0:167; 1:478]
�y 0:529[0:341; 0:714] 0:845[0:681; 0:952]
�� 0:484[0:175; 0:771] 0:783[0:637; 0:903]
�i 0:470[0:204; 0:717] 0:641[0:233; 0:916]
�2y 0:041[0:030; 0:054] 0:047[0:034; 0:063]
�2� 0:232[0:193; 0:278] 0:249[0:204; 0:301]
�2i 0:112[0:092; 0:135] 0:115[0:094; 0:139]
�2� 0:048[0:035; 0:063] 0:054[0:039; 0:073]
�1;2 � �0:082[�0:364; 0:209]
�2;2 � �0:638[�0:913;�0:370]
�3;2 � 0:125[�0:176; 0:439]
�1;3 � 0:011[�0:249; 0:263]
�2;3 � �0:247[�0:538; 0:055]
�3;3 � �0:053[�0:307; 0:213]

Notes: the posteriors are obtained using a Random-Walk Metropolis (RWM) al-
gorithm. The posteriors satisfy the standard convergence criteria and the
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acceptance ratio is 22.94% for the RE and 36.79% for the QRE. The sam-
ple is 1984:Q2-2008:Q3 and the model is described in eq.s (66)-(67) with
measurement equation in eq. (68).

The DIC criterion in Table 12 shows the better time series performance

of the QR-NK-DSGE model compared to RE model.

Table 12. Goodness of Fit
DIC

RE 42.41
QRE 3.26

Notes: Deviance Information Criterion (DIC) proposed in Section 4.1. The sam-
ple is 1984:Q2-2008:Q3 and the model is described in eq.s (66)-(67) with
measurement equation in eq. (68).

In Figure 6 we plot the IRFs for RE and QRE. The IRFs under RE and

QRE are very similar.

Figure 6. Impulse Response Functions
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Notes: Impulse Response Functions are computed under RE and QRE expecta-
tions. In the �rst column the responses to an aggregate demad shock, in the
second column the responses to in�ation shock and in the last column the
responses to a monetary policy shock. The sample is 1984:Q2-2008:Q3 and
the model is described in eq.s (66)-(67) with measurement equation in eq.
(68).

Figure 7 reports the comparison between prior and posterior distributions

Figure 7. Priors and Posteriors

Rational

Quasi-Rational
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5.2.2 Frequentist estimation

The estimations in Table 13 are obtained using the algorithm in Section 4.2.

Table 13. Estimations
Parameters RE(std:err:) QRE(std:err:)

� 0:010(0:057) 0:079(0:055)
$f 0:572(0:062) 0:269(0:207)
� 0:035(0:230) 0:035(0:039)
% 0:041(0:121) 0:027(0:043)
�r 0:908(0:054) 0:889(0:034)
�� 1:650(0:974) 1:650(0:803)
�y 0:336(0:963) 1:500(0:248)
�y 0:908(0:034) 0:801(0:190)
�� 0:100(0:342) 0:775(0:082)
�i 0:539(0:080) 0:192(0:157)
�2y 0:001(0:001) 0:006(0:002)
�2� 0:025(0:003) 0:053(0:010)
�2i 0:011(0:002) 0:006(0:001)
�2� 0:045(0:009) 0:031(0:006)
�1;2 � �0:061(0:191)
�2;2 � �0:444(0:176)
�3;2 � 0:057(0:061)
�1;3 � 0:047(0:016)
�2;3 � 0:065(0:131)
�3;3 � �0:192(0:058)

Notes: The log-likelihood is maximized by a Kalman-�ltering approach and the
simulated-annealing/genetic algorithm of Andreasen (2010), using the fol-
lowing bounds for the parameters: [0.010-0.200] for �; [0.100-0.999] for $f

; [0.035-0.100] for �; [0.025-8] for %; [0.001-0.999] for �r; [0.001-1.500] for
�y; [1.650-5.500] for ��; [0.001-0.999] for �y, �� and �i, and leaving all
remaining parameters (including the auxiliary parameters �i;j; i = 1; 2; 3
and j = 2 collected in the vector � ) free on condition that model�s solu-
tion uniqueness and stability is satis�ed. Di¤erent initial values have been
used for �� = (�0; �0)

0
converging always to the same maximum. Standard

errors in parentheses [have been calculated from the Hessian matrix using
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hessian function in matlab].The sample is 1984:Q2-2008:Q3 and the model
is described in eq.s (66)-(67) with measurement equation in eq. (68).

We notice at �rst that the auxiliary parameters �2;2; �1;3 and �3;3 esti-

mated under QRE in the second coloum of Table 13 are statistically signi�-

cant. This is a �rst evidence in support of QRE. Secondly, the main di¤er-

ences in the estimations regard the parameters of the New-Keynesian Phillips

Curve (henceforth NK-PC, eq. (8)). The parameter %, the slope of the NK-

PC, is quite larger under RE relative QRE (0:041 to 0:027) indicating a more

�at-sloped NK-PC under QRE. Another di¤ence is in the autoregressive per-

sistence parameter, ��, that is 0:100 under RE and 0:775 under QRE. This

sharp di¤erence can be explained by the additional lag �2;2 = �0:444(0:176)

of the NK-PC. The last di¤erence we want to underline is the parameter �y,

the long-run coe¢ cient on the output gap in the monetary policy rule, that

goes from 0:336(0:963) in the RE model to 1:500(0:248) in the QRE model

indicating an higher reaction of the policy rate to movements in the output

gap.

Table 14. Goodness of �t
RE QRE

Likelihood 115:09 129:78
Akaike �202:18 �219:58�

Hannan-Quinn �187:54 �198:66�
Schwarz �165:99 �167:87�
LR(RE vs QRE)=29.40, p-value<0.0001

LR(CER under RE)=72.66, p-value<0.0001
LR(CER under QRE)=94.40, p-value<0.0001
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Notes: the LR(RE vs QRE) is computed comparing the log-likelihood obtained
with RE and the log-likelihood with QRE. The LR(CER under RE) is com-
puted comparing the log-likelihood with RE and the log-likelihood with un-
restricted state-space with 2 lags. The LR(CER under QRE) is computed
comparing the log-likelihoods with QRE and the log-likelihood with unre-
stricted state-space with 4 lags. Akaike, Hannan-Quinn and Schwarz criteria
are described in Section 4.1. Asterisks denote the optimal lag selection ac-
cording to the information criterion. The sample is 1984:Q2-2008:Q3 and
the model is described in eq.s (66)-(67) with measurement equation in eq.
(68).

From Table 14 we can notice that according to each criterion the selected

model is the QRE, �219:58 vs �202:18 for the Akaike criterion, �2198:66

vs �187:54 for the Hannan-Quinn criterion and �167:88 vs �165:99 for the

Schwarz criterion. Also the likelihood ratio test strongly select the QRE.

Figure 8 shows the Impulse Response Functions. The responses under RE

hypothesis are quite standard and in line with the ones porposed in Benati

and Surico (2009). On the other hand the IRFs in the QRE model show

more persistent but there are no big di¤erences between the shape of the

IRFs in the two di¤erent models.
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Figure 8. Impulse Response Functions

Notes: Impulse Response Functions are computed under RE and QRE expecta-
tions. In the �rst column the responses to an aggregate demad shock, in the
second column the responses to in�ation shock and in the last column the
responses to a monetary policy shock. The sample is 1984:Q2-2008:Q3 and
the model is described in eq.s (66)-(67) with measurement equation in eq.
(68).
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6 Conclusion

The poor time-series performance of this class of models, which dominate the

New Keynesian macroeconomic tradition, is generally ascribed to the tight

nature of the restrictions these models impose on state-space/VAR represen-

tation for the data. The restrictions NK-DSGE place on state-space/VAR

models can be classi�ed into two categories: (i) highly nonlinear cross-

equation restrictions (CER) which the system places on its unique stable

reduced form solution and which can be potentially used to recover esti-

mates of the structural parameters; (ii) constraints on the lag order of the

reduced form solution. This work �nd a possible solutions to (ii) type of

misspeci�cation.

To try to solve this problem, a growing literature attempts to �take DSGE

models to the data�. In this work we focus on small-scale NK-DSGE models

used in monetary policy and business cycle analysis on quarterly data and

propose a solution that allows one to reconcile the gap between the predic-

tions of theory and the autocorrelation structure of the data.

Under RE, the reduced form solution of NK-DSGE models gives also rise

to (implicit) zero restrictions that a¤ect the actual autocorrelation structure

of the data. To avoid the misspeci�cation that typically a¤ects these models,

the probabilistic structure of the data has been usually completed manipulat-

ing arbitrarily the shock structure of the model or using prior distributions

for the parameters, with the possibility of relaxing the CER. This idea of
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selecting rich processes for the error terms is very common in literature but

it is completely aribtrary and it is in contrast with models (DSGE) based on

strong economic principles. With this work we de�ne a data-driven process

able to de�ne the �true�dynamic of the data and use that information to

de�ne a pseudo-structural model whose reduced form solution capture the

whole dynamics in the data. We adapt the dynamic speci�cation of the

NK-DSGE model such that the CER does not include zero restrictions. A

central role in this work is taken by the �best �tting� unrestricted model

for the data as driver for dynamic speci�cation. We denote our approach

Quasi-Rational Expectations because while not renouncing to the concept of

model-consistent expectations, the starting point of our analysis is a model

for the data, not the structural form: the estimable structural form is ob-

tained in a second step such that there does not exist any mismatch between

the autocorrelation structure featured by the two models. In this way we

can circumvent the omitted dynamics issue embodied by NK-DSGE models.

Quasi Rational DSGE is de�ned as a linear rational expectations model de-

rived from the baseline structural speci�cation, such that its stable reduced

form solution has the same lag structure as the state space (VAR) which

�ts the data optimally. The advantage in this framework is that one does

not need to dismiss a-priori the theoretical foundations upon which DSGE

models are built on but at the same time it is possible to model the business

cycle facts by relaxing the tight assumption that apart from structural para-
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meters the agents (as well as the econometrician) know the underlying data

generating process.

In this research we analyze the observable and unobservable case and for

each application we propose both bayesian and frequentist estimation. In this

way we cover a very wide range of possibilities under which DSGE models

are usually analyzed. In literature the debate on using proxies for unobserv-

able components or computing these variables from the system is still open

hence in this work we de�ne the pseudo-structural QR-NK-DSGE model for

the two di¤erent cases. Also the debate between Bayesian and frequentis

estimation is still open even if in the recent year the bayesian applications in

DSGE framework occupy most of the scienti�c papers. However, the last case

analyzed in the thesis (presence of unobservable components and frequentist

estimation) is the most challenging. Indeed in this case identi�cation and op-

timization problems need be solved. Identi�cation issue is a very challenging

aspect in DSGE evaluation because e proper investigation of this problem

requires a clari�cation on the relationship existing between DSGE models

and state-space/VAR representations for the observed variables.

Anyway, applications to the US economy provide reliable estimates of

the structural parameters and show a better time series performance of the

QR-NK-DSGE with respect to the standard NK-DSGE model in all case

considered.
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8 Appendix

8.1 Appendix A

Derivation of the Measurement Equation. Given ~yt = yt� ypt and the

assumption that ypt follows a Random Walk process

ypt = ypt�1 + � y;t; � y;t � WN
�
0; �2�

�
(72)

then

~yt = yt � ypt

~yt = yt � ypt + ~yt�1 � ~yt�1

~yt � ~yt�1 = yt � ypt �
�
yt�1 � ypt�1

�
�yt = �~yt + ypt � ypt�1

now under the assumption in eq. (72) we obtain

�yt = �~yt + � y;t;
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8.2 Appendix B

CER under Rational Expectations hypothesis. Given the structural

model in eq.s (16)� (17)

�0Zt = �fEtZt+1 + �bZt�1 + �t (73)

�t = R�t�1 + "t (74)

Substituting eq. (74) in qe. (73) the model become

�0Zt = �fEtZt+1 + �bZt�1 +R�t�1 + "t

�0Zt = �fEtZt+1 + �bZt�1 +R (�0Zt�1 � �f (Zt � �t)� �bZt�2) + "t

(�0 +R�f )Zt = �fEtZt+1 + (�b +R�0)Zt�1 �R�bZt�2 +R�f�t + "t

��0 _Zt = ��fEt _Zt+1 + ��b _Zt�1 + �"t

��0 =

264 �0 +R�f 0n�n

0n�n In

375 ; ��f
264 �f 0n�n

0n�n 0n�n

375
��b =

264 �b +R�0 �R�b

In 0n�n

375 ; �"t =
264 "t +R�f�t

0n�n

375 :
Now the CER are given by (see Castelnuovo and Fanelli, 2014)

��f �A
2 � ��0 �A+ ��b = 0kn�kn
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where �A is the restricted companion matrix of the reduced solution

�A =

264 ~�1 ~�2

In 0n�n

375
hence the CER become264 �f 0n�n

0n�n 0n�n

375
0B@
264 ~�1 ~�2

In 0n�n

375
264 ~�1 ~�2

In 0n�n

375
1CA

�

264 �0 +R�f 0n�n

0n�n In

375
264 ~�1 ~�2

In 0n�n

375+
264 �b +R�0 �R�b

In 0n�n

375 =
264 0n�n 0n�n

0n�n 0n�n

375
8><>: (�0 +R�f ) ~�1 � �f

�
~�21 + ~�2

�
� (�b +R�0) = 0n�n

(�0 +R�f ) ~�2 � �f ~�1 ~�2 +R�b = 0n�n

8.3 Appendix C

CER under Quasi-Rational Expectations paradigm. Given the struc-

tural model in eq.s (28)� (29)

�0Zt = �fEtZt+1 + �bZt�1 +

 
k�1X
j=2

�jZt�j

!
Ifk�3g + ��t (75)

��t = R��t�1 + "t (76)
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Substituting eq. (76) in qe. (75) and using some algebra the model become

��0 _Zt = ��fEt _Zt+1 + ��b _Zt�1 + �"t

��0 =

2666666666664

�0 +R�f 0n�n 0n�n � � � 0n�n

0n�n In 0n�n � � � 0n�n

0n�n 0n�n In
. . . 0n�n

...
...

. . . . . .
...

0n�n 0n�n � � � � � � In

3777777777775
; ��f =

2666666666664

�f 0n�n 0n�n � � � 0n�n

0n�n 0n�n 0n�n � � � 0n�n

0n�n 0n�n 0n�n
. . . 0n�n

...
...

. . . . . .
...

0n�n 0n�n 0n�n � � � 0n�n

3777777777775

��b =

2666666666664

�b +R�0 �2 �R�b �3 �R�2 � � � �R�k�1

In 0n�n 0n�n � � � 0n�n

0n�n In 0n�n � � � 0n�n
...

. . . . . . . . .
...

0n�n 0n�n 0n�n In 0n�n

3777777777775
; �"t =

2666666666664

"t +R�f�t

0n�n

0n�n
...

0n�n

3777777777775
:

Now the CER are given by (see Castelnuovo and Fanelli, 2014)

��f �A
2 � ��0 �A+ ��b = 0kn�kn
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where �A is the restricted companion matrix of the reduced solution

�A =

266666664

~�1 ~�2 � � � ~�k

In 0n�n � � � 0n�n
...

. . . . . .
...

0n�n 0n�n In 0n�n

377777775
hence the CER become

8>>>>>>>>>>><>>>>>>>>>>>:

(�0 +R�f ) ~�1 � �f
�
~�21 +

~�2

�
� (�b +R�0) = 0n�n

(�0 +R�f ) ~�2 � �f
�
~�1 ~�2 + ~�3

�
� (�2 �R�b) = 0n�n

(�0 +R�f ) ~�3 � �f
�
~�1 ~�3 + ~�4

�
� (�3 �R�2) = 0n�n

...

(�0 +R�f ) ~�k � �f ~�1 ~�k +R�k�1 = 0n�n

8.4 Appendix D

Non-stationary case. In this Appendix we extend the analysis of the

QR-NK-DSGE model to the situation in which Assumption 2 is replaced

with:

Assumption 2�The characteristic equation det[�(s)] = 0 has p � r roots

equal to s = 1, 0 < r < p and the remaining roots are such that

j s j> 1:
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The time series upon which DSGEmodels are estimated are typically con-

structed as (or are thought of as being) deviations from steady state values.

In the case of variables such as output, these are mostly log deviations from

a steady state path while, for variables such as interest rates and in�ation,

they are level deviations from a constant steady state rate. As is known, re-

moving constants does not ensure stationarity if the persistence of the time

series is governed by a unit root, see Cogley (2001), Juselius and Franchi

(2007), Gorodnichenko and Ng (2011), Dees et al. (2008) and Fukaµc and

Pagan (2009). Moreover, treating mistakenly nonstationary as stationary

processes may �aw standard inferential procedures, see Johansen (2006), Li

(2007), Fanelli (2008) and Fanelli and Palomba (2010). As pointed in Fanelli

(2009) this Section shows how the QR-NK-DSGE model can be transormed,

under a set of restrictions and without loss of information, to account for

the cointegration restrictions which approximate the observed time series,

improving on Kapetanios et al. (2007) and Fukaµc and Pagan (2009).

Assumption 2�implies that Zt generated in eq.(27) is integrated of order

one (I(1)). The system can be represented in Vector Error Correction (VEC)

form

�Zt = ��0Zt�1 + �Wt�1 + �t , �t � WN(0,��) , t = 1; :::; T (77)

where � and � are p � r matrices of full rank r respectively, and ��0 =

�(Ip � �kj=1Aj), � = [�1 : �2 : ::: : �k�1], �i = ��kj=i+1Aj, i = 1; :::; k � 1
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and Wt�1 = (�Z
0
t�1, �Z

0
t�2; :::;�Z

0
t�k+1)

0, see Johansen (1996). For � = �0,

where �0 represents an identi�ed version of the cointegration relations, the

elements in �00Zt capture the stationary linear combinations of the variables

in Zt. Turning on the model presented in Section 1.2, if the output gap

yt is the only stationary variable in Zt = (yt; �t; it)
0, then r = 1 and �0 =

(1; 0; 0)0; if also the ex-post real interest rate is stationary, then r = 2 and

�0 = (�01 : �02), where �01 = (1; 0; 0)0 and �02 = (0;�1; 1)0 and a single

common stochastic trend drives the system. Once the cointegration rank r

has been determined from the data (Cavaliere et al., 2012) and the hypothesis

� = �0 tested and not rejected, it is possible to de�ne the p� 1 (triangular)

vector

Yt :=

0B@ �00Zt

� 0�Zt

1CA r � 1

(p� r)� 1
(78)

where � is a p�(p�r) selection matrix such that det(� 0�0?) 6= 0 and �0? is the

orthogonal complement of �0 (Johansen, 1996). In the �rst example above,

Yt = (yt;��t;�it)
0 is obtained from eq.(78) with �0 = (1; 0; 0)

0, � = (e2 : e3),

e02 = (0; 1; 0), e
0
3 = (0; 0; 1); in the second example, Yt = (yt; it � �t;��t)

0 is

obtained with �0 = (�01 : �02) and � = e2, respectively. To represent the

stationary reduced-form solution associated with the QR-NK-DSGE model,

the structural equations can be reparameterized in terms of Yt, i.e. such that

only the error correction terms and the �rst di¤erence of the variables are

involved, see Fukaµc and Pagan (2009, Section 4.1, Strategy A). To do this,
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we re-write eq:(78) as

Yt = P�0;�Zt , P�0;� =

264 �00

� 0�

375 (79)

where � = (1 � L) and P�0;� is a p � p non-singular matrix; then we use

Zt = P�1�0;�Yt in system (28) and re-arrange the equations, obtaining

�y0Yt = �yfEtYt+1 + �
y
bYt�1 +

k�1X
j=2

�jYt�jIfk�3g + �yt (80)

�yt = R�yt�1 + "yt ; "yt � WN (0;�"y) (81)

In system (80)� (81), which can be regarded as the error-correcting counter-

part of the QRE-NK-DSGEwith I(1) cointegrated time series, the superscript

�y�remarks that other than being formulated in terms of Yt, the parameters

of the QR-NK-DSGE model accounts for all restrictions on �0 and �
� that en-

sure a balanced system. The estimation of the QR-NK-DSGE with I(1) coin-

tegrated variables model can be carried out as follows. If the over-identifying

restrictions characterizing �0 are not rejected, the corresponding (Q)ML es-

timate b�0 can be used in place of �0 in eq.(78) and treated as the �true�value
due to the super-consistency result (Johansen, 1996). The (Q)ML estimate

of the vector of structural parameters ��y can be obtained by applying the

estimation algorithm described in Section 4.2 to system (80)� (81) :
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