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S U M M A R Y

The topic of this work concerns nonparametric permutation-
based methods aiming to find a ranking (stochastic ordering) of
a given set of groups (populations), gathering together informa-
tion from multiple variables under more than one experimental
designs.

The problem of ranking populations arises in several fields
of science from the need of comparing G > 2 given groups or
treatments when the main goal is to find an order while taking
into account several aspects.

As it can be imagined, this problem is not only of theoretical
interest but it also has a recognised relevance in several fields,
such as industrial experiments or behavioural sciences, and this
is reflected by the vast literature on the topic, although some-
times the problem is associated with different keywords such
as: “stochastic ordering”, “ranking”, “construction of compos-
ite indices” etc., or even “ranking probabilities” outside of the
strictly-speaking statistical literature.

The properties of the proposed method are empirically evalu-
ated by means of an extensive simulation study, where several
aspects of interest are let to vary within a reasonable practical
range. These aspects comprise: sample size, number of vari-
ables, number of groups, and distribution of noise/error.

The flexibility of the approach lies mainly in the several avail-
able choices for the test-statistic and in the different types of ex-
perimental design that can be analysed. This render the method
able to be tailored to the specific problem and the to nature of
the data at hand.

To perform the analyses an R package called SOUP (Stochastic
Ordering Using Permutation) has been written and it is avail-
able on CRAN.
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1 I N T R O D U C T I O N

The topic of this work concerns nonparametric permutation-
based methods aiming to find a ranking (stochastic ordering)
of a given set of groups (populations), gathering together infor-
mation from multiple variables.

The problem of ranking populations arises from the need of
comparing G > 2 given groups or treatments when the main
goal is to find an order while taking into account several as-
pects. As it can be imagined, this problem is not only of theo-
retical interest but it also has a recognised relevance in several
fields, such as industrial experiments or behavioural sciences,
and this is reflected by the vast literature on the topic, although
sometimes the problem is associated with different keywords
such as: “stochastic ordering”, “ranking”, “construction of com-
posite indices” etc..

The properties of the proposed method are empirically evalu-
ated by means of an extensive simulation study, where several
aspects of interest are let to vary within a reasonable practical
range. These aspects comprise: sample size, number of vari-
ables, number of groups, and distribution of noise/error. The
flexibility of the approach lies mainly in the several available
choices of test-statistic that can be used, this render the method
able to be tailored to the specific problem and to the nature of
the data at hand.

Very often, when ordering a set of groups or treatments the
research aim is focused on evaluating their performances from
a multivariate point of view, that is, in connection with more
than one aspect (dimension, variables) and/or under several
conditions (stratification).

The merging of information coming from several variables is
performed through the NPC methodology (Pesarin and Salmaso,
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introduction

2010b), that preserves the dependence structure among vari-
ables in a nonparametric fashion (w.r.t. the underlying distri-
bution), and hence lets the experimenter free from modelling
it. Mahalanobis distance was considered as a reference but it is
worth noting that it can be applied only when the number of
variables does not exceed the sample size whereas NPC works
variable-by-variable and, under certain conditions, enjoys the
property of finite-sample consistency (see Pesarin and Salmaso,
2010a).

Historically, the problems of statistical inference were basi-
cally formulated as those of estimation or testing of hypotheses.
This formulation, however, does not exactly suit the objectives
of an experimenter in many situations when he is faced with
the problem of comparing several populations. These are gen-
erally the populations of the responses to certain “treatments”.
In all these problems, we have G > 2 groups and each popula-
tion is characterized by the value of a parameter θ, which may
denote, for example, the average of some meaningful variables
for a variety of treatments. Indeed, in many practical settings,
when comparing systems or groups, we are interested simul-
taneously in two or more characteristics of each component or
individual, so our observations are vector-valued and the com-
ponents of the vector observations may be referred to correlated
random variables.

In these scenarios, the problem can be complicated and some
methodological and practical issues arise: standardization, mul-
tivariate structure of data, accuracy of partial indicators, dis-
tance with respect to a target, stratification in presence of con-
founding factors etc.

The classical approach in all the preceding situations is to test
the hypothesis of homogeneity of the parameters: H0 : θ1 =

· · · = θG where θ1, . . . , θG are the values of the parameter θ
for these populations. In the general setting θs are functionals,
i.e. functions of all parameters defining the involved distribu-
tions. With clear meaning of the symbols, θi =

∫
Ωi
θ(X)dFi(X),

where Fi(X) is the c.d.f. and Ωi is the sample space of the i-
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th group. If the populations are assumed to be normal with
means θ1, . . . , θk, and a common variance σ2, then the test can
be carried out by using the one-way analysis of variance tech-
nique. In cases of other distributions for which θ may denote a
different measure, one can develop a test of the null hypothesis
H0 using the Neyman-Pearson theory. Such tests have been de-
veloped for various situations and many of these are available
in the statistical literature.

It should, however, be recognized that a satisfactory solution
to any statistical inference problem depends on the goal of the
experiment. In this sense, the classical tests of homogeneity
cannot provide a satisfactory solution for these problems be-
cause the goal of the experimenter is to identify the variety
with the largest average (most effective product, most effective
educational system, most effective drug, and so on) rather than
just to accept or reject the homogeneity hypothesis. Indeed,
when the homogeneity test is carried out and its result is signif-
icant, the experimenter faces some real problems: he could use
, for example, the method of least significant differences, based
on t-tests, to detect differences between θs and thus to choose
the “best” population. Nevertheless this method is at best indi-
rect and less efficient, because it lacks protection in terms of a
guaranteed probability against selecting a wrong population as
“best”.

Furthermore, although in general one may define a partial
order relationship (reflexive, antisymmetric, and transitive rela-
tionship where not all elements are comparable) on the set of
multivariate normal distributions, defining a real-valued func-
tion θi of the parameters µi (usual mean), and Σi (variance-
covariance matrix), and use the θi to rank the populations,
when distribution are substantially different, and particularly
when the assumption of multivariate normal distribution is not
realistic (quite often in practical situations), these function θi
has to be constructed carefully and possibly using different
methods.
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The present work builds upon my Master Thesis (Mattiello,
2010) that has been already successfully applied in at least two
situations: the main one was in the field of product bench-
marking of industrial experiments regarding detergents, anal-
yses performed on a daily basis (see Arboretti Giancristofaro
et al., 2010); the second one was comparing the effectiveness of
two media on a target audience by means of questionnaires (see
Mattiello et al., 2012).

1.1 literature review

Looking at the literature, under the keywords “Stochastic Or-
der” or “Ranking”, few but extensive works can be found. For
example, the book of Gupta and Panchapakesan (2002) presents
various approaches to ordering and ranking several popula-
tions under different approaches, here the problem of multi-
ple comparisons related to ranking is treated from a theoretical
point of view and lots of conditions and properties are exami-
nated.

Shaked and Shanthikumar (2007), instead, describes and anal-
yses the properties of several concepts of univariate and mul-
tivariate stochastic orders and orderings while still keeping a
highly theoretical level.

These works treat a great number of procedures focusing on
theoretical aspects such as:

• defining ranking rules that respect a given probability of
correct selection

• providing formulas for choosing the minimum sample size
such that this probability is attained,

• selecting the best subset within a population

• comparing the differences between selecting only the best
group or the best together with the second-best group,

4



1.2 on the chapters that follow

• defining and studying the properties of several concepts of
stochastic order from the univariate and multivariate point
of view.

They do not provide, though, practical algorithms that can
be directly applied in real situations where the sample size has
been already fixed, like observational studies, and they deal
with the problem of multiple comparisons by asking the ex-
perimenter to define beforehand a meaningful indicator (test-
statistic) that will heavily influence the subsequent inference.
For example, there is no clear indication on how to deal with in-
formation from pairwise multiple comparisons especially from
the multivariate point of view.

The approach presented in this work falls under the same
framework of Basso et al. (2009) but instead of analysing the
properties of several test statistics and stochastic orders we will
try to give a kind of a general algorithm that can be used with
several test statistics and when the main research goal is to
order the treatments or groups from the “best” to the “worst”.
The reader interested in this topic and framework can surely
benefit also from the reading of Finos et al. (2008, 2007).

The main contribution of this work is contained in the third
chapter where the main algorithm is described. Pairwise com-
parisons between groups are here exploited in such a way that,
after the NonParametric Combination has been applied, it is
possible to build a square matrix filled with p-values that can
be used to test the correspondent pairwise hypotheses about
the relative ordering of each group w.r.t. to the others. Sub-
sequently, these rejections/non-rejections are used to come up
with the final estimated ordering sequence, by means of a rank-
ing rule stemming from round-robin sport tournaments.

1.2 on the chapters that follow

The present thesis work is organized as follows:

5



introduction

the second chapter is a brief review on the basic aspects
and concepts of univariate and multivariate permutation
tests.

in the third chapter the core algorithm is described together
with the various available features.

the fourth chapter is devoted to the simulation study in
which the method is empirically tested under various con-
ditions and different settings.

the fifth chapter presents a real case study coming from
the field of early-stage drug development, it is a microarry
experiment in which the expression level of several genes
is measured under different conditions (administeration
of several drugs/compounds).

chapter six discusses the main features of the proposed method
and suggests some further developments.

6



2 T H E P E R M U TAT I O N
A P P R OA C H

Most of univariate statistical problems can be effectively solved
with standard parametric or nonparametric methods although,
in relatively mild conditions, their permutation counterparts
are generally asymptotically as good as the best parametric
ones. Moreover, there are a number of parametric tests the
distributional behavior of which is only known asymptotically,
while permutation methods are essentially of a nonparametri-
cally exact nature in a conditional context. Thus, for most sam-
ple sizes in real applications, the relative lack of efficiency of
permutation solutions may be sometimes compensated by the
lack of approximation of parametric asymptotic counterparts.

Another aspect that is worth to point out is that even when
responses are normally distributed, if there are too many nui-
sance parameters to estimate, the consequent reduction of de-
grees of freedom can makes the estimates inaccurate and so
making preferable the permutation solution. Moreover, para-
metric methods often require some assumptions that are satis-
fied (and/or that is possible to check) in a very little number
of applicational situations such as: homoscedasticity, normality
and random sampling. This can lead the consequent inferences
to be, when not improper, necessarily approximated.

In fact, parametric methods involve a modeling approach
and generally require for a set of stringent assumptions, which
are often quite unrealistic, unjustified or even too much ad hoc
for specific inferential analysis, so that they may be more con-
nected with the availability of methods than with reality. On
the other hand, nonparametric approaches try to keep as less
assumptions as possible, avoiding those which are difficult to
justify or to interpret, and possibly without excessive loss of
inferential efficiency. Thus, they are based on more realistic
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foundations for statistical inference especially of observational
studies and in general when experimental conditions are not
systematically designed or clearly known.

This is not to claim the superiority of one approach over the
other (that would be indefensible), but just to address some
features of the parametric approach that makes the permuta-
tion (and conditional) approach more desirable in some situ-
ations. It seems much more reasonable to consider the two
approaches complementary rather than mutually exclusive; this
is why permutations approaches should be part of the toolbox
of any statistician.

On one side, a wide range of inferential problems can be cor-
rectly and effectively solved within a permutation framework.
Many complex multivariate problems that are common in areas
such as: agriculture, biology, clinical trials, experimental de-
sign, genetics, pharmacology, psychology, and quality control,
are difficult or even impossible to face outside the conditional
context and in particular outside the Nonparametric Combina-
tion Methodology.

On the other side though, there are very important fami-
lies of inferential problems which cannot be dealt with and/or
solved in a permutation framework; some examples are: uncon-
ditional parametric estimation and testing, nonparametric ker-
nel estimation, problems within statistical decision approach,
and even most of the modelling frameworks. In addition, the
traditional Bayesian inference also lies outside the permutation
approach.

The key assumption that marks the applicability or not of the
permutation approach is the exchangeability condition, at least
under the null hypothesis, that will be described in the next
section. But also in case too few observations are available,
the permutation approach suffers from heavy approximations,
although some power can be retrieved by switching to e.g. ro-
tations instead of permutations (Langsrud, 2005), at the cost of
losing the property of distribution invariance.

8



2.1 exchangeability

Sections that follow, and definitions therein, are summarised
parts of the book Pesarin and Salmaso (2010b) (where these
concepts are treated in a much deeper manner), functional to
the problem being described in this work, and they are needed
to give a theoretical background to the main algorithm.

2.1 exchangeability

For most problems of hypothesis testing, the observed data
set x = {x1, . . . , xn} is usually obtained by a symbolic exper-
iment performed n times on a population variable X, which
takes values in the sample space X. Of course, when a data
set is observed at its x value, it is presumed that a sampling
experiment on a given underlying population has already been
performed and the resulting sampling distribution is related to
the parent population distribution, which is often denoted by
P (see , for a deeper introduction).

Usually for the aim of analysis, the data set x is generally
partitioned into groups or samples, according to the so-called
treatment levels of the experiment.

Note that the observed data set x is always a set of suffi-
cient statistics in H0 for whatever underlying distribution. To
see this let us assume that H0 is true and all members of a
nonparametric family P of non-degenerate and distinct distri-
butions are dominated by one dominating measure “ξ”. For
a general testing problem, in the null hypothesis (H0), which
usually assumes that data come from only one (with respect to
groups) unknown population distribution P, the whole set of
observed data x is considered to be a random sample, taking
values on a sample space Xn, where x is one observation of the
n-dimensional sampling variable X(n) and where this random
sample does not necessarily have independent and identically
distributed (i.i.d.) components. Furthermore, let us denote by
fP the density of P with respect to ξ, by f(n)P (x) the density of
the sampling variable X(n), and by x the data set. As the iden-
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tity f(n)P (x) = f(n)P (x) · 1 is true for all x ∈ Xn, except for points
such that f(n)P (x) = 0, due to the well-known factorization the-
orem any data set x is therefore a sufficient set of statistics for
whatever P ∈ P.

Definition 2.1.1 (Nonparametric Family of Distributions). A fam-
ily of distributions P is said to be nonparametric when the parameter
θ, belongs to a non-finite-dimensional parameter space Θ, such that
there is not a one-to-one relationship between Θ and P, in the sense
that each member of P can not be identified by only one member of Θ,
and vice versa.

This definition includes families of distributions which are
either unspecified or specified except for an infinite number
of unknown parameters. All nonparametric families P which
are of interest in permutation analysis are assumed to be suffi-
ciently rich in a way that, if x and x′ are any two points of X,
then x 6= x′ implies fP(x) 6= fP(x′) for at least one P ∈ P, except
for points with null density. Note that the fact that the family P

is said to be nonparametric essentially depends on the knowl-
edge we assume about it. For example, when we assume that
the underlying family P contains all continuous distributions,
then the data set x is complete minimal sufficient.

By sufficiency, likelihood and conditionality principles of inference,
given a sample point x, if x∗ ∈ Xn is such that the likelihood
ratio
f
(n)
P (x)/f(n)P (x∗) = ρ(x, x∗) is not dependent on fP for whatever
P ∈ P, then x and x∗ are said to contain essentially the same
amount of information with respect to P, so that they are equivalent
for inferential purposes. The set of points which are equivalent
to x, with respect to contained information, is called the orbit
associated with x, and hereafter will be denoted by Xn/x, so that
Xn/x = {x∗ : ρ(x, x∗) is fP-independent}.

It should also be noted that, when data are obtained by ran-
dom sampling with i.i.d. observations, so that f(n)P (x) =

∏n
i=1 fP(xi),

then the orbit Xn/x associated with x contains all permutations
of x and, in this framework, the likelihood ratio satisfies the
equation ρ(x, x∗) = 1.

10



2.1 exchangeability

The same conclusion is reached if f(n)P (x) is assumed to be
invariant with respect to permutations of the arguments of x,
i.e. the elements (x1, . . . , xn). This happens when the assump-
tion of independence for observable data is replaced by that of
exchangeability.

Definition 2.1.2 (Exchangeability). Data are said to be exchange-
able if f(n)P (x1, . . . , xn) = f(n)P (xu∗1 , . . . , xu∗n), where (u∗1, . . . ,u

∗
n) is

any permutation of (1, . . . ,n).

Note that, in the context of permutation tests, this concept of
exchangeability is often referred to as the exchangeability of the
observed data with respect to groups. Orbits Xn/x are also called
permutation sample spaces . It is important to note that orbits Xn/x
associated with data sets x ∈ Xn always contain a finite number
of points, as n is finite.

Roughly speaking, permutation tests are conditional statisti-
cal procedures, where conditioning is with respect to the orbit
Xn/x associated with the observed data set x. Thus, Xn/x plays the
role of reference set for the conditional inference (see Lehmann and
Romano (2005)). In this way, in the null hypothesis and assum-
ing exchangeability, the conditional probability distribution of
a generic point x† ∈ Xn/x, for whatever underlying population
distribution P ∈ P, is

(2.1.1)

Pr
{

x∗ = x†|Xn/x

}
=

∑
x∗=x† f

(n)
P (x∗) · dξn∑

x∗∈Xn
/x
f
(n)
P (x∗) · dξn

=
#
[
x∗ = x†, x∗ ∈ Xn/x

]
#
[
x∗ ∈ Xn

/x

] ,

which is P-independent. Of course, if there is only one point
in Xn/x whose coordinates coincide with those of x†, i.e. if there
are no ties in the data set, and if permutations correspond to
permutations of the arguments, then this conditional probabil-
ity becomes 1/n!. Thus, Pr

{
x∗ = x†|Xn/x

}
is uniform on Xn/x for

all P ∈ P.

These statements allow permutation inferences to be invari-
ant with respect to P in H0. Some authors, emphasizing this
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invariance property of permutation distribution in H0, prefer
to give them the name of invariant tests. However, due to this
invariance property, permutation tests are distribution-free and
nonparametric.

As a consequence, in the alternative hypothesis H1, condi-
tional probability shows quite different behavior and in partic-
ular it may depend on P. In order to illustrate this in a simple
way, let us consider, for instance, a two-sample problem where
f
(n1)
P1

and f(n2)P2
are the densities,relative to the same dominating

measure ξ, of two sampling distributions related to two pop-
ulations P1 and P2, which are assumed to differ at least in a
set of positive probability. Suppose also that x1 and x2 are the
two separate and independent data sets with sample sizes n1
and n2, respectively. Hence, the likelihood associated with the
pooled data set is f(n)P (x) = f

(n1)
P1

(x1) · f
(n2)
P2

(x2), and from the
sufficiency principle it follows that the data set partitioned into
two groups, (x1; x2), is now the set of sufficient statistics. In fact,
by joint invariance of the likelihood ratio with respect to both
fP1 and fP2 , the orbit of x is (Xn1

/x1
,Xn2

/x2
), where X

n1
/x1

and X
n2
/x2

are partial orbits associated with x1 and x2, respectively. This
implies that, conditionally, no datum from x1 can be exchanged
with any other from x2 because in H1 permutations are allowed
only within groups, separately.

Consequently, when we are able to find statistics which are
sensitive to the differences of two distributions, we can have a
procedure for constructing permutation tests. Of course, when
constructing permutation tests, one should also take into con-
sideration the physical meaning of treatment effects, so that
resulting inferential conclusions have clear interpretations.

Although the concept of conditioning for permutation tests is
properly related to the formal conditioning with respect to orbit
Xn/x, hereafter we shall generally adopt a simplified expression
for this concept by stating that permutation tests are inferential
procedures which are conditional with respect to the observed data set
x. In fact, once x is known and the exchangeability condition is
assumed in H0, Xn/x remains completely determined by x.
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2.2 permutation testing principle

The act of conditioning on a set of sufficient statistics in H0,
and the assumption of exchangeability with respect to groups for
observed data, make permutation tests independent of the un-
derlying likelihood model related to P. As a consequence, P
may be unknown or unspecified, either in some of its parame-
ters or in its analytic form. This can be specified as follows:

Definition 2.2.1 (Permutation Testing Principle). If two experi-
ments, taking values on the same sample space Xn and respectively
with underlying distributions P1 and P2, both members of P, give the
same data set x, then the two inferences conditional on x and obtained
using the same test statistic must be the same, provided that the ex-
changeability of data with respect to groups is satisfied in the null
hypothesis. Consequently, if two experiments, with underlying distri-
butions P1 and P2, give respectively x1 and x2, and x1 6= x2, then the
two conditional inferences may be different.

One of the most important features of the permutation testing
principle occurs in multivariate problems, when solved through
nonparametric combination methods . For this kind of prob-
lems, especially when they are complex and in very mild con-
ditions, it is not necessary to specify or to model the structure
of dependence relations for the variables in the underlying pop-
ulation distribution, so that analysis becomes feasible.

However, the conditioning on sufficient statistics provides
permutation tests with good general properties. One of these
is that, when exchangeability is satisfied in the null hypothe-
sis, permutation tests are always exact procedures. One more
and very important property is that their (non-randomized)
conditional rejection regions are similar or α-invariant, in the
sense of Scheffé (1943a), and Scheffé (1943b). The latter essen-
tially means that if data come from continuous distributions,
so that the probability of finding ties in the data set is zero,
the rejection probability in H0 is invariant with respect to ob-
served data set x, for almost all x ∈ Xn. Thus, conditional
rejection regions are similar to the unconditional region. When

13
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data come from non-continuous distributions, unless referring
to randomized tests the similarity property is only asymptoti-
cally attained. Moreover, if the stochastic dominance condition
is satisfied in H1, permutation tests are conditionally unbiased
procedures, since the rejection probability of any test T , for all
data sets x ∈ Xn, satisfies the relation

(2.2.1) Pr {λ (x(δ)) 6 α|x} =Wα (x(δ)) > α

where λ (x(δ)) indicates the p-value and Wα (x(δ)) the condi-
tional power of T on x with fixed treatment effect δ and signifi-
cance level α.

For this reason, permutation inferences are proper with ob-
servational data which sometimes are called non-experimental
, and with well-designed sampling procedures. However, we
must note that well-designed sampling procedures are quite
rare even in most experimental problems. For instance, if we
want to investigate the effects of a drug on rats, the units to be
treated are usually not randomly chosen from the population
of all rats, but are selected in some way among those avail-
able in a laboratory and are randomly assigned to the established
treatment levels. The same occurs in most clinical trials, in
which some of the patients present in a hospital are randomly
assigned to one of the pre-established treatment levels.

In one sense, the concept of random sampling is rarely achieved
in real applications because, for various reasons, real samples
are commonly obtained by procedures affected by selection-
bias. This implies that most of the forms of unconditional infer-
ences usually associated with parametric tests, being based on
the concept of random sampling, are rarely applicable in real
situations. Additionally, due to the similarity and unbiased-
ness properties, permutation solutions allow for relaxation of
most of the common assumptions needed by parametric coun-
terparts, such as the existence of mean values and variances,
and the homoscedasticity of responses in the alternative hy-
pothesis.
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Within the assumption of exchangeability in the null hypoth-
esis, permutation conditional inferences always have a clear in-
terpretation, whereas their weak unconditional extensions to
the underlying parent population should be carried out and in-
terpreted carefully. These extensions and associated interpreta-
tions are generally easy and correct when data are collected by
well-designed random sampling techniques from a given pop-
ulation. Of course, if they are collected by selection-bias proce-
dures, unconditional extensions may sometimes be ambiguous
and misleading, although they are generally proper and correct
for parent populations with respect to which actual data may
be considered as a random sample.

Moreover, when exchangeability may be assumed in H0, ref-
erence null distributions of permutation tests always exist, be-
cause (at least in principle), they are obtained by considering all
permutations of available data. In addition, permutation com-
parisons of means do not require homoscedasticity in the alter-
native, provided that underlying c.d.f.s are ordered, so that they
do not intersect each other. For these reasons, on the one hand,
permutation inferences generally have a natural interpretation
and, on the other, ordinary parametric tests are considered to
be rarely applicable to real problems.

2.3 conditional vs. unconditional
inference

Unconditional parametric testing methods can be available,
appropriate and effective when:

1. data-sets are obtained by well-defined random sampling
procedures on well-specified parent populations;

2. population distributions (the likelihood models) for responses
are well-defined;
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3. with respect to all nuisance entities, well-defined likeli-
hood models are provided with either boundedly com-
plete estimates in H0 or at least with invariant statistics;

4. at least asymptotically, null sampling distributions of suit-
able test statistics do not depend on any unknown entity.

Just as there are circumstances in which unconditional paramet-
ric testing procedures may be proper from the point of view
of interpretation of related inferential results, so there are oth-
ers in which they may become improper or even impossible.
Conversely, there are circumstances in which conditional test-
ing procedures may become appropriate and sometimes unique
reasonable way. For example:

1. Distributional models are not well-specified.

2. Distributional models, although well-specified, depend on
too many nuisance parameters.

3. Asymptotic null sampling distributions depend on unknown
entities.

4. Sampling data come from finite populations or sample
sizes are smaller than the number of parameters (or re-
sponse variables).

5. In multivariate problems and in view of particular infer-
ences, component variables have different degrees of im-
portance.

6. Data sets are obtained by ill-specified selection-bias proce-
dures

7. Treatment effects are presumed to act possibly on more
than one aspect (a functional or pseudo-parameter), so
that multi-aspect testing methods are of interest for infer-
ential purposes.

Moreover, we could decide to adopt conditional testing infer-
ences, not only when unconditional inference is not possible,
but also when we are more interested in the actually observed
data set than to the population model.
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2.4 computational aspect

When sample sizes are not small, direct calculations are prac-
tically impossible because of the cardinality of associated per-
mutation sample spaces Xn/x that quickly grows with n . More-
over, the approximation of such distributions by means of asymp-
totic arguments is not always appropriate, unless sample sizes
are very large, because their dependence on x makes it difficult
to express and to check the conditions needed to evaluate the
degree of approximation in practical cases.

For practical reasons, in order to obtain appropriate and re-
liable evaluations of the permutation distributions involved is
preferable to use a Monte Carlo procedures via conditional sim-
ulation for two reasons: 1) computing all possible permutations
become rapidly very expensive from a computational point of
view; 2) when drawing block diagrams of conditional simula-
tion algorithms, one is forced to clarify the meaning and struc-
ture of all steps in the analysis. In addition, the usefulness of
nonparametric combination methods is due to the fact that they
allow to reduce the order of complexity of most analyses. In
fact, they are applicable when a problem may be broken down
into a set of partial sub-problems, each admitting a proper per-
mutation solution.

It must be emphasized that conditional simulations are made
using without-replacement resampling algorithms on the given
data set, and so they are substantially different from the well-
known bootstrap techniques that rely on the plug-in principle for
the empirical cumulative distribution function.

In a conditional simulation, in order to consider random per-
mutations, resampling replicates are done without-replacement
on the given data set, considered as playing the role of a fi-
nite population. Hence, they correspond to a random sampling
from the space of data permutations associated with the given
data set. Of course, these conditional simulation procedures
provide statistical estimates of desired permutation distributions,
the accuracy of which depends on the number of replicates.
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However, is important to remember that this kind of approxi-
mation is substantially closer to a statistical estimation than to
a numerical evaluation.

2.5 permutation test: definition

In order to define a permutation test, let X be one data set of
size n, T : Rn → R1 a test statistic, S all values of the related
permutation support T(X) =

{
T∗ = T(X∗) : X∗ ∈ X/X

}
induced

by (T , X) and ordered in a non-decreasing way, T∗(1) 6 T∗(2) 6

. . . 6 T∗(S); for any given α ∈ (0, 1), Tα(X) = Tα = T∗(Sα) defines
the permutation critical α-value associated with the pair (T , X);
the number Sα = b(1−α) · Sc, the integer part of (1−α) · S, de-
fines how many permutation values T∗ are less than the critical
one.

Note that permutation critical values Tα depend on X/X and
thus are defined assuming the null hypothesis is true with the
data set X. In other words, the critical values for a permutation
test satisfy
Tα = Tα(X) = Tα(X†), ∀X† ∈ X/X, because the orbits of equiva-
lent points associated with X and X† are such that X/X = X

/X† .
As a consequence, for all α ∈ (0, 1), Tα are fixed values within
support T(X), but they generally vary as X, varies in X.

Hence the structure of a (non-randomized) permutation test-
ing (see Pesarin and Salmaso (2010b)) can be defined as follows:

(2.5.1) φ =

{
1 if T

obs
> Tα,

0 if T
obs
< Tα,

where T
obs

represent the observed value of T on the dataset
X and for which the associated type I error rate or attainable α-
value are defined in the permutation support ST = {h/S, h = 1, 2, . . . ,S}
of FT (t|X), which is a discrete set whose cardinality depends on
n, that is, not all possible desired values are available. We will
hereafter refer to this kind of testing.
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2.6 nonparametric combination

The method of NonParametric Combination (or NPC) of a fi-
nite number of dependent permutation tests is a general tool for
multivariate testing problems. It is useful when a set of quite
mild conditions holds and when, as in many D-dimensional
problems for continuous or categorical variables, one single ap-
propriate overall test statistic T ÷RD → R1 is available.

In testing complex hypotheses, when the interest is on many
different aspects, or when many response variables are involved,
it is convenient first to process data using a finite set of K > 1
different partial tests (note that the number K of sub-problems
is not necessarily equal to the dimensionality p of responses)
that can be used in marginal or separate inferences, possibly
after adjustment for multiplicity. On the other hand, if they
are jointly considered they provide information on a global hy-
pothesis, which is eventually the actual objective of most of the
multivariate testing problems.

In the great number of situations it is unreasonable to as-
sume a complete independence among these partial tests be-
cause they are functions of the same data set X and the com-
ponent variables in X are generally not independent. More-
over, the underlying dependence relations among partial tests
are rarely known except for some quite simple situations, and
even when they are known they are often too difficult to cope
with. Therefore, this combination must be done nonparamet-
rically with respect to the underlying dependence relations, in
this way there is no more the need to model the dependence
relations among responses, aspect that is particularly relevant
in many contexts.

2.6.1 Introduction to NPC

In order to illustrate the NPC a let us refer to the balanced
one-way MANOVA layout, that is, we consider aD-dimensional

a hereafter we refer to NonParametric Combination in this way
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data set
Y = {Yk, k = 1, . . . ,G} =

{
Yjk, k = 1, . . . ,G, j = 1, . . . ,D

}
=

=
{
Yijk, i = 1, . . . ,G, j = 1, . . . ,D, i = 1, . . . ,n

}
where the im-

plicit assumption is that a family P of non-degenerate distribu-
tions exists, so the data set consists of G > 2 samples or groups
of size n each, groups are presumed to be related to G levels
of a treatment and Yk are considered i.i.d. observations from
Pk ∈ P, k = 1, . . . ,G (i.e. exchangeability may generally be
enough, in place of independence). Of course this simple bal-
anced design case can be complicated by the inclusion of covari-
ates and/or by considering unbalanced designs (different sample
sizes), but that is outside the scope of this introduction.

Let the (global) null hypothesis refer to equality of multivari-
ate distributions of responses on G groups:

(2.6.1) H0 : {P1 = · · · = PG} =
{

Y1
d
= . . .

d
= YG

}
,

and let us suppose that either H0 and H1 may be properly and
equivalently broken down into a finite set of sub-hypotheses
H0c and H1c, c = 1, . . . ,C, each appropriate for a partial aspect
of interest. Therefore, H0 is true if all the H0c are jointly true,
i.e. if H0c =

⋂C
c=1 H0c is true and, in the same way, H0 is not

true if at least one of the null sub-hypotheses H0c is not true,
i.e. H1 =

⋃C
c=1 H1c. This imply that (under H0) the D-variate

data vectors of Y are exchangeable with respect to G groups;
it is worth noting that in this work, as we are interested in
determining locations from a multivariate point of view, C is
equal to D.

2.6.2 Partial Tests Characterization

There are two principal side assumptions that are required to
the set of partial test statistics T = {Tc, c = 1, . . . ,C} and useful
for nonparametric combination:
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(i) all permutation partial tests Tc are marginally unbiased
and significant for large values, so that they are stochasti-
cally larger in H1c than in H0c.

(ii) all permutation partial tests are consistent, i.e.
Pr {Tc > Tcα|H1c} → 1, ∀α > 0, c = 1, . . . ,C, as n → ∞,
where Tcα, is the α-level critical value of Tc and is assumed
to be finite.

2.6.3 Combining Functions Characterization

A combining function is a function applied to p-values associ-
ated with partial tests, b that summarizes the information from
these tests, nonparametrically with respect to the underlying
dependence among terms. Hence the nonparametric combina-
tion of the second-order test is obtained with:

T ′ = ψ(λ1, . . . , λC)

A generic combining function ψ : (0, 1)C → R1, chosen from
a class Ψ, of combining function has to satisfy the following
requirements:

1. A combining function ψ must be non-increasing in each
argument: ψ(λ1 . . . , λc, . . . λC) > ψ(. . . , λ′c, . . . ) if λc < λ′c,
c ∈ {1, . . . ,C}.

2. ψ must be continuous in all C arguments, in that small
variations in any subset of arguments imply a small varia-
tion in the ψ-index;

3. Every combining function ψ must attain its supremum
value ψ̄, possibly not finite, even when only one argument
attains zero: ψ(. . . , λc, . . . )→ ψ̄ if λc → 0, c ∈ {c, . . . ,C} .

4. ∀α > 0, the critical value of every ψ is assumed to be finite
and strictly smaller than the supremum value: T ′α < ψ̄.

b note that, in this context, partial tests are permutationally equivalent to their

p-values: Tc
π
= Pr

{
T∗c > T

obs
c |X

}
= λc, c = 1, . . . ,C
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Note that these properties define a class Ψ of combining func-
tions that contains for example:

• Fisher’s: T ′ = −2
∑C
c=1 log pc, 0 6 T ′ 6 +∞;

• Tippett’s: T ′ = minc pC, 0 6 T ′ 6 1;

• Liptak’s: T ′ =
∑C
c=1Φ

−1(1− pc), where Φ is the standard
normal cumulative distribution function, 0 6 T ′ 6 +∞.

After obtaining the statistics of the second-order test T ′ the
global p-value will be simply obtain with:

(2.6.2) λG =
1

B

B∑
b=1

I
{
T ′∗b > T ′

}
.

We refer to Pesarin and Salmaso (2010b) for further details
about theory and applications of perumation tests and Nonpa-
rametric Combination Methodology.

2.6.4 Finite Sample Consistency

Another important feature of the NPC Methodology is the
Finite-Sample Consistency (FSC), a property that can be de-
scribed in the following simple manner. Under certain condi-
tions, if the sample size is kept fixed and the number of vari-
ables increases, we have that the rejection rate (conditional and
unconditional) of the combined test T converges to 1.

This means that if the null hypothesis is not true and we
keep on adding informative variables to the dataset, the NPC-
combined test is guaranteed to reject the null from a certain
point onwards.

This characteristic is really important for our purposes as
well as for applications, because often it is not possible to gather
more samples in order to increase n but it may be feasible (al-
though expensive) to measure more variables on the same set
of samples.
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The main conditions under which FSC is valid are the fol-
lowing, explained from the one-sided two-sample test point of
view for simplicity.

(i) T is any associative test statistic for one-sided hypotheses;

(ii) sample sizes (n1,n2) are fixed and finite;

(iii) the observed data set is X(δ) = Z1+ δ, Z2, where (Z1, Z2) ∈
Xn are i.i.d real random deviates with parent distribution
PZ and δ = (δ1, . . . , δn1)

> is the vector of nonnegative fixed
effects;

(iv) δ diverges according to a monotonic sequence {δν,ν > 1},
which elements are such that δν 6 δω with ν < ω.

Note that all these conditions are fullfilled for the NPC-based
test statistics considered in this work.

2.7 iterated npc

The NPC relies on the chosen combining function and al-
though it is independent from the underlying distribution, each
combining function leads to different rejection regions and hence
slightly different overall p-value. This does not pose a prob-
lem from the asymptotic point of view, due to their consistency
under the alternative hypothesis (Pesarin and Salmaso, 2010b),
but may be still useful to try to reduce the influence of the
finite-sample behaviour of the specific combining function.

Indeed, each combining function has its own properties and
is more suitable in some situations rather than others. For ex-
ample Tippett’s solution is desirable (in terms of good power
behaviour) if we think that only one or few, but not all, sub-
alternatives are true; Liptak’s one is better if we expect that
possibly all sub-alternatives are true; Fisher’s behaviour instead
lies between these two hence is desirable when no clear struc-
ture of the sub-alternatives is expected.

23



the permutation approach

In order to “average-out” the effect of the specific combining
function adopted we will make use of an iterated strategy that
will be henceforth referred to as: Iterated Nonparametric Combi-
nation. The steps of this iterated approach are as follows.

1. Choose which combining functions are to be used in the
process, in the following we will consider the case of 3
functions: e.g. Fisher’s, Liptak’s (normal CDF), and Tip-
pett’s (min p-value).c

2. Combine the partial tests with each of the combining func-
tions, obtaining three vectors of test statistic suitable for
the global test.

3. Transform the three test statistics vectors in permutation p-
values (separately from each other), obtaining the p-values
distribution of the global test coming from the three func-
tions.

4. Combine these three vectors as if they were partial tests,
again with each one of the chosen combining function.

5. Repeat steps 3 and 4 until convergence of the observed
p-values.

Of course we will need a stop criteria that measures the con-
vergence of the observed p-values, we can check either if all ob-
served p-values are “close enough” to the ones in the previous
step or just check if they are close to each other at the current
step. In any case, from preliminary simulations it seems that
convergence is reached really quickly (2 to 4 steps). Another
aspect important to remember is that permutation p-values de-
pend on the cardinality of the permutation space, hence even
in the case of successful convergence, p-values are allowed to
vary between each other of maximum 1/C where C =

∣∣∣Xn/x

∣∣∣, i.e.
the cardinality of the permutation space.

c Note that, although in this way we greatly reduced the dependence of the
results from the specific combining function, the set of chosen combining
function still influences the final result. Thus different sets can still lead to
different results.
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2.7.1 Stopping Rule

There are currently 4 kinds of stopping rule implemented in
the package, the algorithm stops when the condition does not
hold anymore; here ε = δ/C, where δ is the desired tolerance
and ε is the minimum attainable one.

“abs”: based on the absolute differences between two subse-
quent iterations, hereafter named respectively p′i and p′′i
(current iteration), with expression maxi

∣∣p′i − p′′i ∣∣ > ε, i =
1, 2, 3;

“edf”: based on the empirical distribution function of the p-
values, |p̄′ − p̄′′| > 2

√
εp̄′(1− p̄′), it is similar to a t-test;

“norm2”: simply the euclidean distance between two contigu-
ous iterations, hence ‖p′i − p′′i ‖2;

“ssq”: the Sum of Squared differences of the p-values with

their mean in the current iteration,
√∑3

i=1(p
′′
i − p̄

′′)2 > ε
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3 C O R E A LG O R I T H M

As mentioned in the introduction, the problem of stochastic
ordering arises from the need of a realistic formulation allow-
ing to compare G > 2 given populations (possibly multivariate)
with the goal of ranking them.

In this situation the goal we wish to achieve, in terms of in-
ferential analysis, is not only to determine whether the popu-
lations are equivalent against the alternative that they are dif-
ferent, but also which hypotheses are rejected and which are
not because we need to quantify the relative preference of each
population w.r.t. the others. Using these measures we would
finally determine an order among these populations (groups or
treatments in practical terms) and rank them from the “best” to
the “worst”.

3.1 formalization of the problem

In order to introduce the main concepts, let us start from a
simple MANOVA model with a minimum set of assumptions
as in 2.6.1 on page 19.

Let then Y be the multivariate numeric variable related to
the D-variate response of any experiment of interest and let
us assume, without loss of generality, that high values of each
marginal univariate component correspond to better performance
and therefore to a higher degree of preference.

The experimental design of interest is defined by the compar-
ison of G groups or treatments with respect to D different vari-
ables where n replications of a single experiment are performed
by a random assignment of statistical units to treatments (or
groups).
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The G-group multivariate statistical model (with fixed or ran-
dom effects) can then be represented as follows:

(3.1.1)
Yik = µk + εik, εik ∼ IID(0,Σ)

i = 1, ...,n; k = 1, . . . ,G.

Where here n represents the number of replications; index k
is related to treatments with D-variate mean effect equal to µk;
and εik is a D-variate random term of experimental errors with
zero mean and covariance matrix Σ. Here, for the sake of sim-
plicity, we consider the balanced design in which all groups
have the same number of samples, therefore n, otherwise we
should have used nk,k = 1, . . . ,G, but the method is clearly
applicable also in case of unbalanced design. The only assump-
tion needed here is that µk <∞ ∀ k.

Since the focus of this work is on stochastic ordering and pair-
wise comparisons we first need to define what is meant with
these terms, we will follow the simpler structures in Shaked
and Shanthikumar (2007).

In particular, to define the multivariate stochastic order we will
start from the usual definition of univariate stochastic order.

Definition 3.1.1 (Univariate Stochastic Order). Following the usual
stochastic order definition, we would say that group k is stochasti-
cally smaller than and not equal to group h in the j-th component
variable if

(3.1.2)
FYjk(x) = Pr

{
Yjk 6 x

}
> Pr

{
Yjh 6 x

}
= FYjh(x)

∀x ∈ U, and Yjk
d
6= Yjh

where U ∈ R is a non-empty measurable set for which the strict

inequality holds, and A
d
6= B is the usual inequality in distribution,

i.e. FA 6= FB, for n → ∞. Note that R can be substituted with N

or Z in case of ordinal variable. This relationship will be indicated as

Yjk
st
� Yjh.
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We will assess this by means of the corresponding set of hy-
pothesis:

(3.1.3) Hj
0(k,h) : Yjk

d
= Yjh vs. H

j
1(k,h) : Yjk

st
� Yjh,

which will be referred to as univariate pairwise hypotheses.

The concept of Multivariate Stochastic Order that will be used,
instead, is the most simple generalisation of the univariate one:
as soon as at least one component variable is considered stochas-
tically larger (smaller), meaning the rejection of the correspon-
dent null hypothesis, the D-dimensional variable will be con-
sidered stochastically larger (smaller) as well. More formally:

Definition 3.1.2 (Multivariate Stochastic Order). The D-dimen-
sional random variable Yh is said to be stochastically larger than
and not equal to Yk if, in the following setting, the null hypothesis
is rejected in favour of the alternative:

(3.1.4)

HG0(k,h) : Yk
d
= Yh ⇔

D⋂
j=1

{
Yjk

d
= Yjh

}

HG1(k,h) : Yk
st
�Yh ⇔

D⋃
j=1

{
Fjk > Fjh

}
,

where the equivalence between the two sides of the double-
implication symbol, under certain conditions, has been proven
in Basso et al. (2009), which we refer to for further details.

The former definition defines the concept of multivariate sto-
chastic order by means of the univariate (marginal) ones but
for our purposes another equivalent definition is more suitable
becuase it involves a generic map performing a dimensionality
reduction.

Definition 3.1.3 (ψ-Stochastic Order). TheD-dimensional random
variable Yh is said to be stochastically larger than Yk if we have that:

(3.1.5) E [ψ(Yk)] < E [ψ(Yh)] , for any ψ : RD 7→ R
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provided that all expectations exist and ψ(·) is non-decreasing in any
of its arguments.

Note that the choice of the functions ψ(·) in the previous
definition is particularly sensitive as it represents the way in
which the data dimensionality is reduced. Yet if we employ
as ψ(·) any combining function equipped with the properties
defined in the previous chapter, it is easy to see that the def-
inition holds. In particular, given that we will make use of
directional test statistics that are significant for large values (i.e.
assume large values under the alternative), there will be a di-
rect (although not necessarily linear) relationship between the
univariate test statistics, arguments of the combining function,
and the expected value of the combination.

Of course it is often unfeasible and undesirable to prove 3.1.3
for all increasing functions, hence we will rely on the first defini-
tion 3.1.2 as soon as the thesis of the second is verified.

Note also that the two definitions do not exclude the situation
in which some component variables are under the alternative
in one direction and at the same time some other variables are
active in the other direction. This is not undesirable, as we will
see in the following sections, because the other direction will
be dealt with as well before arriving to the final ordering.

3.2 the test statistic

The core element and smallest building block of the method
that will be described hereafter is the test statistic for the uni-
variate pairwise comparison, the choice of which can be related
to the problem at hand and to the nature of the data being anal-
ysed.

In general the test statistic T related to the pairwise hypothe-
sis (k,h) for the j-th variable will be of the form:

(3.2.1)
Tj(k,h) = T

(
yjk, yjh

)
, with T : R2n 7→ R;

j = 1, . . . d; k 6= h; k,h = 1, . . . G
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where R can be substituted with Z or N depending on the
kind of data at hand, i.e. ordinal or continuous data. The main
feature that this test statistic needs to have is to be sensitivive
for large values against the null hypothesis.

Note that, as we refer to the model in Equation (3.1.1), test
statistics presented henceforward are testing the relative location-
shift rather than focussing on the whole distribution as would
suggest the definitions given in the previous section. This is
also the reason why in Chapter 4 we can define the true rank-
ing by defining the group means.

In particular, at the moment the following tests statistics are
coded in the R package that will be used for the MonteCarlo
simulation, they are divided depending on the possible kind of
data they can treat and according to the experimental design
they are suited to analyse.

3.2.1 Test Statistics for Continuous Data

Hereafter are presented the test statistics that are already im-
plemented in the R package SOUP, suitable for continuous data.
We assume in the following that all variables that are taken into
account are of the same type hence, in this case, they can all be
considered continuous.

Modified Hotelling’s T2

This first example is a slightly modified version of the well-
known Hotelling T2 statistic for two sample comparisons, in
which the covariance matrix of the quadratic form composing
the statistic is the pooled one computed using all data, instead
of just the two groups involved. We adjusted the statistic in
order to compute the parametric p-values, i.e. we can use as ref-
erence distribution, under the null hypotesis, both the Fisher’s
F and the permutation one. Note that this kind of statistic
can be used only with the simple experimental design in which
there are no covariates apart from the one containing the labels
of groups.
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The expression of the test statistics is the following.

(3.2.2)

T̂ H
(h,k) = c ·

n2

2n

(
yh − yk

)> · Ŵ−1 ·
(
yh − yk

)
c =

nG−D− 1

DG(n− 1)
, h 6= k, h,k = 1, . . . ,G

Ŵ =
1

G(n− 1)

nG∑
i=1

(yi − y) · (yi − y)>

T̂ H
hk ∼FD,nG−D−1 under HG0(k,h)

Where c is the correction factor that relates T̂H
hk to the F dis-

tribution, and Ŵ is simply the pooled covariance matrix under
the global null hypothesis in which all data come from the same
distribution.

Of course the test statistic just defined is unsigned so it is
not suitable to test directional alternatives. To this aim we will
make use of an additional step, matching each component vari-
able to its direction. This step consists in the following sub-
steps:

1. For each pairwise comparison, compute the following sign
s(h,k) : = sign

{(
yh − yk

)> Ŵ−1/2 1D

}
, where Ŵ−1/2 is the

Cholesky decomposition of the inverse of Ŵ and 1D is the
D-dimensional vector of all ones.a

2. If asymptotic p-values are to be used, compute them w.r.t.
the reference distribution, then complement to one any
p-value with positive s(h,k). On the other hand, if permu-
tation p-values are to be used, match the sign of each pair-
wise comparison s(h,k) with the corresponding test statis-
tic.

In this way we obtain a signed version of the Hotelling’s T2

test statistic for pairwise comparison of multiple groups, the
sign of which relies on a squared-root version of the same test
statistic.

a Note that Ŵ−1/2 is needed for computing the signs, as it weights variables
according to their covariance matrix.
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Means Difference And t-Test

Another test statistic that can be used with continuous data
is simply the pairwise difference of the group means, hence in
formula:

(3.2.3)

T̂ md
j(k,h) = yih − yik =

1

n

∑
i∈h
yih −

1

n

∑
i∈k
yik, h,k = 1, . . . ,G

where here the statistic is computed for each variable separately
as it refers to the set of univariate hypotheses in Equation (3.1.3)
on page 29, and this will be the case for most of the ones pro-
posed in this work.

Or we can also use its scaled version, the two-sample t-test,
where the σ̂2 in the denominator is the residual deviance com-
ing from the fit of a one-way ANOVA model on that variable
and it is assumed equal in the two samples:

(3.2.4) T̂ t
j(k,h) =

yih − yik√
σ̂2
(
1
n + 1

n

) , h,k = 1, . . . ,G

With the homoscedasticity and normality assumptions, the statis-
tic follows a Student-t distribution with G · (n− 1) degrees of
freedom, under the null; this will be used to compute the para-
metric p-values.

Note that these two test statistics can be used also in presence
of a categorical covariate with S categories, hence in case of
a stratified design, although in this situation they have to be
treated differently. Indeed, for the first one it is enough to keep
the pairwise difference of means separated for each level of
the categorical covariate (stratum), and then sum them together
afterwards. For the second one instead, a two-way ANOVA has
to be fitted in order to get the estimate of the residual variance
σ̂2, and also the degrees of freedom for the Student-t reference
distribution has to be changed to G · (n− 1) − S.
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linear interaction A practical option, available for both
these test statistic, can be useful for certain applications: if we
expect the levels of the stratifying variable to be informative,
like e.g. in case of number of cycles in a engineering stress-test,
we can remove the linear effect of the covariate by dividing each
observation by his startum level. The analysis is then carried
out in the same way as before, as it safer to assume that the lin-
ear effect is not the only one present, yet this simple operation
can benefit the analysis in case we have that information.

Linear Regression Based

This test statistic is specifically designed for the stratified
analysis in which a categorical covariate is present and the ex-
perimenter expects a possibly nonlinear relationship between
each one of the response variables and the stratifying covariate.

The need for this kind of test statistic comes from a spe-
cific class of industrial experiments in which secondary per-
formances of washing machine detergents are tested. Primary
performances measure the ability of the product in removing
various kinds of soils, whereas secondary performances assess
the ability of the detergent in e.g. “keeping the fabric white”
or more generally “maintaining the colours of the fabric as
they are” (colour fading, colour transfer), or again “avoiding
calcium deposits on the heating resistances of the washing ma-
chine”. For more details on motivations and applications we
refer to the Master’s Thesis of Gomiero (2010).

In order to compute the test statistic we need to start from
the univariate linear model from which it is derived:

(3.2.5)
Yijhs = β0j +β1jhZih +

Q∑
q=2

βqjsX
q−1
is + εijhs,

i = 1, . . . ,n; j = 1, . . . ,d; h = 2, . . . G; s = 1, . . . ,S.

Here Zih is the dummy variable coding for the group h with
the usual convention that the first group acts as the baseline,
Xis is the value of the stratifying covariate for observation i and
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stratum s, with S being the total number of strata, and Q− 1 is
the degree of the polynomial with which we fit the effect of the
covariate. It is an additive model for the group’s effect and a
polynomial regression on the stratifying covariate in which, for
most of the practical cases, setting Q = 3 or 4 will be enough
(quadratic or cubic polynomial). Thus we are trying to assess
the effect of the groups while controlling for the covariate ef-
fects with a polynomial regression. Furthermore, note that also
here we can modify the formula in order to introduce the linear
interaction between the covariate values and the group’s effect,
leading to:

(3.2.6)
Yijhs = β0j +β1jhZih ·Xis +

Q∑
q=2

βqjsX
q−1
is + εijhs,

i = 1, . . . ,n; j = 1, . . . ,d; h = 2, . . . G; s = 1, . . . ,S.

In this setting the univariate hypotheses are to be based on
the β1jh coefficients so the Equation (3.1.3) on page 29 needs to
be rewritten as:

(3.2.7a)
H
j
0(1,h) :

G⋂
h=2

{
β1jh = 0

}
vs. Hj

1(1,h) :

G⋃
h=2

{
β1jh < 0

}
for the comparisons with the baseline

(3.2.7b)

H
j
0(k,h) :

⋂
k<h
h,k 6=1

{
β1jk = β1jh

}
vs. Hj

1(k,h) :
⋃
k<h
h,k 6=1

{
β1jk < β1jh

}
for the other comparisons

Here though, there is an additional complication due to the
pairwise comparisons that do not involve the baseline group:
while for the comparisons in Equation (3.2.7a) we can just use
the usual t-test with G(n− 1) +Q− 1 degrees of freedom for
the nullity of the parameters in the linear model, we need a
constraint testing solution for the other comparisons in which
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we substitute β with R>β, with R> being the vector of con-
straints, basically a contrast vector for the two parameters to be
compared. Leaving out the details (for which we refer again
to Gomiero (2010)), the expression of the test suitable for a sin-
gle pairwise comparison between β parameters is:

(3.2.8)
ε̂>R ε̂R − ε̂

>ε̂

ε̂>ε̂
· k∼F1,k

d
= tk with k = G(n− 1) +Q− 1

where ε̂ is the residuals vector of the unconstrained model,
and ε̂R that of the constrained model.

Finally, the test statistic based on the parameters of this linear
model has the expression:

(3.2.9) T̂ lm
j(h,k) = β̂1jh − β̂1jk, h,k = 1, . . . ,G;

where the way p-values are computed depends on the compar-
ison at hand, i.e. if it is a comparison with the baseline or not,
but the reference distribution is the same thanks to the relation-
ship between the Fisher’s F and the Student’s t distributions.

It is important to note that the tests in this section are not
exact, as they are based on residuals from a (constrained) linear
model.

3.2.2 Test Statistics for Categorical Data

Although using test statistics designed for continous data
is possible with categorical data, and sometimes even a good
approximation, it was worth to implement also another one,
specifically designed for categorical data.

Directional Anderson-Darling

In order to deal with categorical data we implemented a mod-
ified version of the Anderson-Darling statistic (original papers:
Anderson and Darling, 1952, 1954), which falls into the big fam-
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ily of the “Goodness-of-Fit” tests based on the Empirical Distri-
bution Function (EDF), and it was designed to test the proxim-
ity of a distribution to a reference one.

In our case we needed a directional version of the statistic
suitable to compare the relative preference between two groups
(see Pettit, 1976, for the two sample version, and Scholz and
Stephens, 1987, for the K-sample extension), as it is the core
element of the method described in this work. The fact that we
rely on a permutation framework, though, makes it easier to
define such test statistic because everything is conditioned on the
observed sample.

In order to do this we have to start with the definition of
the EDF for ordinal variables, that can be written as F̂(q) =
1
n

∑n
i=1 I {yi 6 q} where q is the category and, without loss of

generality, we can say it runs from 1 to Q. Now we can use the
statistic to test how close the EDF of a single group is to the
pooled EDF for all groups for each category.

In this way, though, we will not have a directional alternative
becuase the original expression contains the squared difference
between the two EDFs. In order to render it directional, we
can simply use its square-root version so that we will have a
signed-test for the equivalence of the single group EDF and the
pooled EDF. If we now compute the difference between such
test statistics, obtained from two different groups, e.g. h and k,
we can consider it as a sort of EDF-based two-sample t-test and
use it against the directional alternatives we are interested in.

In a more formal way, if we consider a single variable with
Q categories and two groups being compared, the test statistic
consists in the pairwise EDF difference of the two groups for
each category, standardised by the variance of the pooled EDF.
The expression of the statistic is therefore:

(3.2.10)
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T̂ AD
j(h,k) =

Q∑
q=1

wjq

(
F̂jk(q) − F̂j•(q)

)
−

Q∑
q=1

wjq

(
F̂jk(q) − F̂j•(q)

)

=

Q∑
q=1

wjq

(
F̂jk(q) − F̂jh(q)

)
with w−1

jq =

√
F̂j•(q)

[
1− F̂j•(q)

]

Where n · F̂jh(q) =
∑n
i=1 I

{
yijh 6 q

}
is the EDF for the group

h in the variable j and nG · F̂j•(q) =
∑nG
i=1 I

{
yij 6 q

}
is the

pooled EDF for variable j. Note that also T̂ AD
j(h,k) will be used to

test the system of hypotheses in Equation (3.1.3) on page 29 as
are all other test statistics.

3.2.3 Permutation Strategies

To obtain the permutation distribution of each pairwise uni-
variate test statistic T̂ •j(h,k) (where • can be t, md, lm or AD) we
have to compute each test statistic not only on the observed
dataset but also for each one of the permuted dataset. In order
to maintain the dependence structure among the variables we
must use the same permutation for each variable, therefore it is
enough to permute entire rows of the data matrix.

More formally, let Y ∈ RN×d be the originalN×d data matrix
where N = n ·G ·S, or n ·G is the number of rows that depends
on the presence of the stratifying covariate or not. Then, if
T̂ •j(h,k) is obtained from yj =

(
y1,j,y2,j, . . . ,yN,j

)
(column j of the

matrix), the b-th permutation bT̂ •j(h,k) is obtained from the per-

muted data vector byj =
(
yu1,b,j,yu2,b,j, . . . ,yuN,b,j

)
with ub =

(u1,b, . . . ,uN,b)
> being the b-th permutation of row indices.

In particular, in case of the simpler experimental design, in
which there is no covariate to take into account we will have

(3.2.11) ub = (u1,b, . . . ,unG,b)
> = π {1, . . . ,nG}
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(where π{·} is the permuting operator), i.e. simply a shuffle
(sampling without replacement) of the sequence {1, . . . ,nG}. In
case a stratifying covariate is present instead, permutations will
have to be performed in blocks, hence restricted to within each
stratum and different/independent from one stratum to the
other, ub will then have the following structure.

(3.2.12)

ub =
(
1u>b , . . . ,Su>b

)>
with

sub = (su1,b, . . . ,sunG,b)
> = π{1, . . . ,nG} and

sub 6= rub ∀s 6= r

3.3 the ranking algorithm

After the choice of the test statistic and having computed all
univariate pairwise test statistics we need to combine them to-
gether in order to obtain the multivariate test statistic suitable
to test the system of hypotheses in Equation (3.1.4) on page 29

(HG0(k,h)). This of course does not concern the modified Hotel-
ling’s test statistic as it is designed to give directly a test for the
global pairwise hypothesis.

This is possible with the Nonparametric Combination, in-
deed after having chosen a combining function or after having
performed the iterated combination procedure we will have:

(3.3.1) T̂ •(h,k) = ψ
(
T̂ •1(h,k), . . . , T̂

•
j(h,k)

)
, h 6= k, h,k = 1, . . . ,G

and its corresponding permutation distribution

(3.3.2)
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

1T̂ •(h,k)
...

bT̂ •(h,k)
...

BT̂ •(h,k)


=



ψ
(
1T̂ •1(h,k), . . . ,

1 T̂ •j(h,k)

)
...

ψ
(
bT̂ •1(h,k), . . . ,

b T̂ •j(h,k)

)
...

ψ
(
BT̂ •1(h,k), . . . ,

B T̂ •j(h,k)

)


,

h 6= k,

h,k = 1, . . . ,G

where here again • = md, t, lm, or AD.

The next step is just the computation of permutation p-values
for each one of these test statistics:

(3.3.3)

λ(h,k) =
1

B
#
{
bT̂ •(h,k) > T̂

•
(h,k)

}
=
1

B

B∑
b=1

I
{
bT̂ •(h,k) > T̂

•
(h,k)

}
h 6= k, h,k = 1, . . . ,G

where, for simplicity, we dropped the notation about the type
of test statistic it originates from.

3.3.1 Multiplicity Adjustment

At this point we have gathered the information from the D
variables and obtained a test for the relative preference of each
group in comparison with all the others, but we still need a rule
that allows us to exploit this information to construct the final
ranking. In view of this it is useful to note that the p-values
we have just obtained needs to be corrected for multiplicity be-
cause, even just looking at the logical dependencies, we are per-
forming G · (G− 1) tests based on G groups, hence we can not
consider them independent. Indeed, even with G = 3 groups
we can see that the resulting tests (1, 2), (1, 3) and (2, 3) will
necessarily present some kind of dependence.

That being said, we can split in two the p-values multiplicity
adjustment given that the tests for the comparisons of the type
(h,k) are all testing the violation of the null hypothesis in one
direction, whereas the ones for the comparisons of the type
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(k,h) are testing against the other direction. Thus we just have
to choose a multiplicity correction and perform it separately on
the G · (G− 1)/2 tests against one direction, and on the G · (G−

1)/2 tests against the other direction.
Of course the kind of multiplicity correction depends on the

desires of the experimenter and the needs of the specific study,
as it can influences the results when e.g. differences between
groups are not dramatic.

Popular quantities that the experimeter might want to con-
trol are e.g. FamilyWise Error Rate (FWER) and False Discovery
Rate (FDR), where here “Family” refers to the collection of pair-
wise hypotheses against one direction; their definition is given
in the following.

fwer FamilyWise Error Rate is defined as Pr {V > 0|H0} where
V is the number of true hypotheses wrongly rejected;

fdr False Discovery Rate is defined as E{V/R|R > 0} ·Pr {R > 0},
hence the expected proportion of false rejections in the set
of all rejections.

Two algorithms for the control of the FWER (the more strict
one) are implemented in the SOUP package and are referred to
as: “Bonferroni-Holm-Shaffer”, or “BHS” (Shaffer, 1986), and
“FWE-minP” (Westfall and Young, 1993, reprised within the
context of NPC in Finos et al., 2003 and Pesarin and Salmaso,
2010b, on page 272).

The first one is a modification of the sequential rejection strat-
egy of Bonferroni-Holm in which at each step i instead of mul-
tiplying our p-values p(i) by (n − i + 1), where p(1) 6 p(2) 6

· · · 6 p(K) and K is the number of hypotheses to be tested, we
multiply the p-values by the maximum number of possibly true
hypotheses (not rejected) at step i, given that at least i− 1 hy-
potheses are false (rejected) and taking into account the logical
dependencies. The algorithm can be described as follows.

• Let p(1) 6 p(2) 6 · · · 6 p(6) be the ordered p-values suit-
able for the K = G · (G− 1) = 6 pairwise tests coming from
G = 4 groups and let α be the desired significance level.
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• If we have that p(1) · 6 > α (step i = 1) then no hypothesis
is rejected as the p-values are increasingly ordered.

• If we have instead that p(1) · 6 6 α then at least other two
hypotheses must be rejected, since if any two groups differ,
at least one of these must differ from the remaining ones.

• Hence, in this settings, step i = 2 will be p(2) · 3 6 α

instead of p(2) · 5 6 α of the Bonferroni-Holm procedure,
and so forth.

• These sets of “maximum number of possibly true hypothe-
ses” (the number 3 in the example), are actually the cardi-
nality of subsets (partitions) induced by the rejection of
some of the hypotheses in a pairwise comparison setting.
They have to be computed recursively with the following
formula: C0 = C1 = {0}, and Ck =

⋃k
j=1

{(
j
2

)
+ x : x ∈ Ck−j

}
for i > 2.

The second one also stems from the Bonferroni-Holm proce-
dure but relies on resampling considerations and more specif-
ically on the permutation null distribution of the minimum
p-value. Also this procedure ensure the strong control of the
FWER and it can be described as follows:

1. let p(1) 6 p(2) 6 · · · 6 p(K) be the vector of increasingly
ordered p-values;

2. let p′(i) := Pr
{

minj∈{i,...,K}(pj)∗ 6 p(i)
}

where minj∈{i,...,K}(pj)∗

denotes the permutation distribution of the minimum p-
value and p(i) the observed minimum p-value;

3. if p′(1) 6 α reject the corresponding hypothesis and go on,
otherwise retain hypotheses from (1) to (K) and stop;

4. for i = 2, . . . ,K, p′(i) = max
(
p′(i),p

′
(i−1)

)
and if p′(i) 6 α

reject also the hyphothesis (i) and continue, otherwise re-
tain hypotheses from (i) to (K) and stop.

As for controlling the FDR, two popular methods are already
implemented in R : Benjamini and Hochberg (1995), and Ben-
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jamini and Yekutieli (2001); but in this case the first two meth-
ods seemed more appropriate, especially because of the per-
mutation framework and because we are dealing with pairwise
comparisons leading to logical implications w.r.t. rejections.

3.3.2 Ranking Rule

Now our set of adjusted p-values λadj
(h,k), h 6= k, h,k = 1, . . . G

can be used to build a G×G matrix that will be our starting
point for the ranking rule, with the convention that λadj

(h,h) = 1.
The matrix has the following structure:

(3.3.4) Λ =



1 λ
adj
(1,2) · · · λ

adj
(1,G)

λ
adj
(2,1) 1 · · · λ

adj
(2,G)

...
... . . . ...

λ
adj
(G−1,1) · · · 1 λ

adj
(G−1,G)

λ
adj
(G,1) · · · λ

adj
(G,G−1) 1


.

Note that λadj
(k,h) + λ

adj
(k,h) = 1 is not necessarily true nor it is

a problem because we are using these quantities as a kind of
summarised score rather than formal p-values.

Now, by recalling that λadj
(k,h) is associated with the global pair-

wise hypothesis (see Equation (3.1.4) on page 29), with alter-

native Yk
st
�Yh, we can interpret each entry of the matrix, in

football terminology, as the score resulting from a match between
group h and group k.

Hence, continuing the parallel with the football world,

rejecting the pairwise hypothesis HG0(k,h) can be interpreted
as “the group k has lost in a match against the group k”;
whereas

not rejecting HG0(k,h) can be interpreted as “the match be-
tween group k and h was a draw”.

From this point of view, looking at a specific row or column
aquires an interesting meaning: if we focus on e.g. row k we
can interpret it as containing all matches performed by group
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k, and therefore all matches for which HG0(k,•) is rejected are the
ones lost by that group; on the contrary, if we focus on column h
we have the opposite interpretation, hence all matches won by
group h are the ones for which HG0(•,h) is rejected.

If we now choose a desired significance level, and we keep
the abovementioned interpretation in mind, we can build the
final ranking in the simple following manner:

• let Lk :=
∑G
h=1 I

{
2 · λadj

(k,h) 6 α
}

, be the number of matches
lost by group k, k = 1, . . . G;

• letWh :=
∑G
k=1 I

{
2 · λadj

(k,h) 6 α
}

, be the number of matches
won by group j, h = 1, . . . G;

• then the final ranking Ri of group i is simply Ri = R (Wi − Li)

where R(·) is the usual rank operator, with the convention
that the “best” (stochastically highest) group gets Ri = 1.

remark: note that the adjusted p-value λadj
(k,h) is multiplied

by 2 as we are now using it to test both directional alternatives
simultaneously. Indeed all values under the main diagonal of
the matrix are testing against the direction 6 whereas values
over the main diagonal are testing against the direction >; thus,
if we consider a specific row or column, we are basically per-
forming a two-sided test.

A Remark on Logic Transitivity

LetG = 3 the number of groups being tested, α be the desired
significance level, and (0, 1]3×3 3 Λ be the resulting pairwise
global test matrix. If we consider e.g. the first row, in practical
cases we may have the following situation:{

2 · λadj
(1,2) > α

}
∧
{
2 · λadj

(1,3) 6 α
}
∧
{
2 · λadj

(2,3) > α
}

.

In this case there seems to be an inconsistency because, if we
were to interpret the λs as p-values, we would say that: “group
1 is equivalent to group 2”, “group 1 is stochastically smaller
than group 3”, and “group 2 is equivalent to group 3”; leading
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to an apparent violation of the logic transitivity property of the
order relation. In actuality λs are not seen as p-values but are
regarded as scores where α/2 acts as a threshold to determine if
the match has to be considered a draw or not. Thus, avoiding
the logical inconsistency, our interpretation of the previous sit-
uation would simply be that “the match between group 1 and
2 was a draw”, “group 1 lost against group 3”, and “the match
between group 2 and 3 was a draw”.
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4 S I M U L AT I O N S T U DY

In this chapter we will describe the simulation study that has
been performed in order to empirically validate the proposed
method, as well as assess the practical and computational char-
acteristics of the algorithm and its applicability as a routine
operation.

4.1 simulation settings

With these simulations we want to study the behaviour of the
procedure, both under the null and under some different struc-
tures of alternative hypothesis that seemed interesting from the
statistical point of view. Moreover, we wanted it to be quite ex-
tensive so we have let vary not only the sample size or the
number of variables, but also the number of groups, the dis-
tribution of the error term, and the nature of the data values
(continuous or ordered categorical).

It is important to note that, in this conditional context, spe-
cial attention is needed when defining the error term, because
an improper definition of it may render the method unable to
distinguish the groups.

For example, let us consider the simplest case of standard
normal error with: D = 1 (univariate), group “h” under the
alternative with µh > 0, and group “k” under the null hypoth-
esis (i.e. µk = 0). In this case a µh equal to e.g. 1 might be too
small to be considered relevant by the method as Pr {Yh < Yk} =
Φ1,2(0) ∼= 0.24, where Φ1,2(·) is the distribution function of
N(1, 2); i.e. the unconditional probability of rejection (power),
may be not enough for the permutation test to attain a rea-
sonably significant permutation p-value, and this applies with
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different degrees of importance to all kind of errors and test
statistics.

Getting back to the simulation settings and referring to the
model in Equation (3.1.1) on page 28, we have the following
general parameters:

mc number of MonteCarlo replications of each setting is 500;

G (number of groups) varies in {4, 6, 8};

S (number of strata) will be equal to 1 for the non-stratified
case and will be fixed to S = 5 for the stratified design.

n (number of replications) taking values {5, 11, 31}, hence from
really low number of replications to quite large (for per-
mutation tests);

D (number of variables) varies in {7, 13, 37}.

remark Note that not all combinations of settings will be tested
as they are not all equally informative, especially with an eye
on the applications, and also because the cartesian product
of all sets of parameters would be a considerably big num-
ber. Indeed, identifying for a moment the set with the corre-
sponding symbol (details are presented in the next subsection),
|G|× |S|× |n|× |D|× |ε|× |µk| = 3× 2× 4× 4× 4× 4 = 1536 com-
binations of parameters in total.

Subsequently, we divide the simulations in two parts, accord-
ing to the kind of data that are generated.

4.1.1 Continuous Data

Given that most of the test statistics described in this work
are designed for continuous data, the majority of simulations
will be on this type of data. In particular, the distribution of the
error terms ε will be important and this is why four different
ones will be considered:
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4.1 simulation settings

1. N(0, 1), it acts as the benchmark distribution;

2. N(0,Σ) where {Σ}i,j = 0.7|i−j|, it basically introduces a long-
memory serial dependency among variables, it is consid-
ered in order to have a slightly correlated set of variables;

3. t2, a heavy-tailed distribution;

4. Γ(3/2, 1), highly asymmetric and positive distribution.

There are instead four scenarios for the vectors of group mean
RD 3 µk,k = 1, . . . ,G each one designed to test one specific fea-
ture of the procedure.

1. All µk = 0 ∀k, therefore all the variables are under the
global null hypothesis.

2. ‖µ2‖2 = 1
2‖µG−1‖2 > 0 and ‖µk‖2 = 0 for k 6= {2,G −

1}; here we try to test whether the method can pick up
correctly only two groups under the alternative while the
rest of groups should get the same lower rank.

3. The same structure as the previous scenario but applied
only on 3 variables, the rest are under the global null hy-
pothesis; this is useful to check how much “noisy” vari-
ables (under the null) we can add before the method start
to breakdown classifying all groups together.

4. ‖µk‖2 linearly increasing with k; this scenario serves to
test how well the method is able to give the correct rank-
ing when all pairwise hypothesis are to be rejected in one
direction or the other, i.e. when each group is different
from all the others.

For all considered combinations of the settings, we will use
as test stastistics: modified Hotelling’s T2, mean difference with
permutation p-values, and the t-test like test statistic with asymp-
totic p-values.
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4.1.2 Categorical Data

For the ordered categorical data case, as we have only one
test statistic to be evaluated, we will consider all combinations
of sample sizes and number of variables as well as two different
types of errors. Moreover, each variable takes values in the
set of integers between 1 and 10 to emulate the results of a
questionnaire experiment or any other survey based on a set of
answers with a fixed number of possible values. Note that all
values are rounded to the next integer and shifted in order to
take values between 1 and 10.

1. N(3, 1), it acts as the benchmark distribution;

2. 10 ·B(2, 5), a beta distribution skewed towards the lower
bound.

Of course the errors have been tuned such that they don’t shift
the values of the variables too much on the boundaries.

As for the alternative hypothesis, only one scenario will be
tested: a modified version of the scenario in which means of
groups are linearly increasing with k; the modification being
the discretization of the group means before adding them to
the pure errors data, and bounding the resulting values in the
interval 1–10.

4.2 simulations results

As the main interest lies in correctly ordering the groups un-
der study, it is reasonable to check the final ranking for each
setting combination across MonteCarlo replications. In particu-
lar, under the null hypothesis it makes sense to check only if all
groups have received rank equal to 1 or not (global null hypoth-
esis not rejected or rejected, respectively), whereas for the other
scenarios it is more meaningful to check for each group if it got
the correct rank or not. Hence the graphs that will be reported
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in the following are divided by the scenario under which they
fall.

The problem here is in the high number of graphs that should
be drawn: one for each test statistic, for each sample size, and
for each number of groups; that would be too much to convey
the information efficiently and clearly. This is why we will
make use of an additional level of “summarization” in between:
one version of it for the null hypothesis and another one for the
alternative hypothesis scenarios.

4.2.1 Under The Global Null Hypothesis

To explain this summarization we have to start from the graph
of a single combination of simulation settings: figure 1 on the
next page shows such a graph, where the proportion of rejec-
tions (across simulations) are plotted against the level of signif-
icance α. From this figure we compute the discretized version
of the highlighted area and we standardize it with the total area
under the bisector line; this value will be henceforth referred to
as “Disagreement Area” or DA for simplicity.

This is the element we can use for our purposes as it con-
tains the summarized information about the simulation: if the
curve in the graph lies all under the bisector line, the procedure
is conservative and the DA will be a positive value, whereas if
the curve in the graph goes over the bisector line, it means the
procedure is liberal (at least for some values of α) and the DA
will have a negative value. Basically the DA measures the “dis-
tance” from the line of perfect agreement between theoretical
and obtained coverage.
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Figure 1: Toy example: results of a single simulation settings combi-
nation under HG0 , it shows the proportion of rejected null
hypothesis across MC simulations vs. the α significance
level. The Disagreement Area (DA) is highlighted in red and
has the interpretation “the lower in absolute value, the bet-
ter”.
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The graphs that follow (Figures 4 to 5 on pages 56–57) con-
tain the summary of all simulations under the null hypothesis
where each dot is an DA value coming from one combination
of simulations settings. More in detail, in the figures we have:

• values of DA vs. sample sizes n;

• 4 or 2 curves in each panel, i.e. one for each kind of error,
for the continuous data and for the discrete data respec-
tively;

• one panel for each number of groups and for each number
of variables (9 panels in total);

• one graph for each test statistic.

Note that dots for sample size equal to 5 with 37 variables
are absent in the Hotelling’s test statistic for the reference dis-
tribution has no degrees of freedom in that situation.

Note also that lines marked by the symbol “1” are related
to the standard normal errors where iterated combination had
been used in place of usual single NPC.
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Figure 2: DA graph for the “mean difference” test statistic, each row
is obtained with a different number of variables: 7, 13, and
37 respectively (top-down direction). It is slightly conser-
vative in almost all situations, apart from when the error
variance is large where it becomes slightly liberal.
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Figure 3: DA graph for the “t-test” test statistic, each row is obtained
with a different number of variables: 7, 13, and 37 respec-
tively (top-down direction). It is slightly liberal for small
sample sizes and with 4 groups but has a quite good be-
haviour in all other situations.
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Figure 4: DA graph for the “Hotelling’s” test statistic, each row is
obtained with a different number of variables: 7, 13, and
37 respectively (top-down direction). The “breakdown” no-
ticeable at 31 observations is due to an overfitting problem,
this is why with 37 variables the results are basically the
same as the other graphs.
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Figure 5: DA graph for the “Anderson-Darling’s” test statistic, each
row is obtained with a different number of variables: 7, 13,
and 37 respectively (top-down direction).

57



simulation study

Discussion

For continuous data, as we can see from the graphs, the test
statistic that seems to have better coverage (i.e. better respect the
α-level), is the “mean difference” one. Indeed, it is slightly con-
servative with almost all kinds of error, all numbers of groups,
variables, and sample sizes; it becomes slightly liberal only
when the error variance is large, hence with the t2 errors, but
in general it behaves better than the other two.

The “t-test” test statistic is comparable to the “mean differ-
ence” one but lies more on the liberal side for most of the error
kinds and especially for the smallest sample size n = 5.

Finally, the “Hotelling’s” test statistic is the one with the
worst behaviour because it is highly conservative with the two
lower sample sizes (basically it rejects almost nothing), and be-
comes highly liberal with the largest sample size. The conserva-
tive behaviour is most likely due to the few degrees of freedom
of this test statistic: it needs the sample size to be much greater
than the dimensionality D to attain nominal levels. The strange
liberal behaviour seen with n = 31, instead, is most likely re-
lated to numerical errors.

For discrete data instead, the “Anderson-Darling’s” test statis-
tic has a behaviour comparable to the “mean difference” one
for continuous data: it is slightly conservative in almost all sit-
uations and when it crosses the zero line (becoming liberal) it
does not take values lower than −0.1, that is, the area over the
line of perfect agreement is roughtly ten percent of the half-
square area.

4.2.2 Under the Alternative Hypotheses

Under the alternative hypothesis scenarios the summariza-
tion step is more complicated as we have to check, in each sim-
ulation, if each group got the right rank.

A possible way to summarize this concept of “closeness to the
exact ordering” is to compute the distance of the obtained rank-
ing from the exact ranking. For example, we can use the L1
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distance (or Manhattan distance) that has the following expres-
sion:

(4.2.1) d1(x0, x̂) := ‖x0 − x̂‖1 =
G∑
i=1

|x0
i − x̂i| ,

where x̂ represents the estimated ranking vector and x0 the true
ranking. The interpretation of this distance is clearly “the lower
the better” and although it depends on the number of groups
G, it is easy to compute the maximum distance we can obtain,
as the worst case-scenario is when the method gives rank 1 to
all groups. For example, for the fourth scenario in 4.1.1 on
page 49, we have:

(4.2.2) d1(x0, x∗) =
G∑
i=1

|1− i| =
(G− 1)G

2
,

this maximal value will be used to normalise the index such
that all graphs will be on the same scale, and hence comparable.

Now that we have this measure, we can use it in our sum-
mary graphs which are reported in the following, separately
for each test statistic.

More in detail, in order to assess both the average closeness to
the true ranking and how many times the method estimated
correctly the true ranking, we will have two series of graphs:
one where the average of d1 across simulations is plotted against
the α significance level, the other one where the proportion of
attained exact ranking is drawn vs. α.

In particular, we will have for each figure and for each alter-
native hypothesis scenario:

• either the average of d1 measures across simulations or
the proportion of times across simulations where the min-
imum d1 was attained (vs. α);

• one curve for each error type in each panel, 2 for discrete
data and 4 for continuous;
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• given one specific row, 3 panels obtained with the same
sample size, one panel for each number of groups G.

• one figure for each number of variables and for each test
statistic (not all will be shown).

We have 2× 3× 3× 3+ 2× 3 = (Average and Exact ranking) ×
(# continuous data test statistics) × (# of variables) × (# of sce-
narios) + (Average and Exact ranking for the AD test statistic
for discrete data) × (# of variables) only for the 4th alternative
scenario (see 4.1.1 on page 49). Thus, in total, we can produce
2× 33 + 6 = 60 graphs although not each one of them is highly
informative or different from the others.

Indeed, fortunately enough, lot of these graphs are really sim-
ilar as they share lot of the settings, so we will be able to show
only results obtained with 7 variables without losing important
information.

Moreover, for the sake of clarity, we will show only graphs
that convey some actual information in comparison with the
others and omit the ones that can be regarded as identical, some
of these will be put in the appendices for the interested reader
to check.

Second and Fourth Scenarios

Here we group together results for the 2nd and the 4th sce-
narios as they produce really similar graphs for all situations
and all test statistics. Recall that the fourth scenario is the one
in which group averages are linearly increasing with the group
index (i.e. µ1 < · · · < µG) for all variables; whereas the second
scenario is the one where only µ2 and µG−1 are greater than 0
and the rest is under the null, also for all variables.

This can be probably explained by the fact that group means
were shifted for all variables, so the amount of information was
apparently high enough for the method to distinguish among
them, whereas in the 3nd scenario the power goes down as only
3 variables are active.
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Figure 6: d1 distance from true ranking, averaged across simulations,
of the “mean difference” test statistic. The same graph for
the “t-test” statistic is omitted as it is basically identical.
The value of 1 represent the maximum distance from true
ranking, hence the case in which all groups get the rank
1; 0 instead corresponds to perfect agreement between esti-
mated and expected ranking.

In addition, an important note needs to be mentioned: for the
“mean difference” and for “t-test” statistics the graphs shown
are obtained with 7 variables, whereas for Hotelling’s test statis-
tic they are obtained with 37 variables. This because we have
seen that under the null, the latter statistic has overfitting prob-
lems with D = 7 and D = 13 variables hence it is not reliable.

Here in the following are reported first the graphs related to
the average d1 distance (average across simulations), and then
the graphs showing the proportion of exact ranking across sim-
ulations.
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Figure 7: d1 distance from true ranking, averaged across simulations,
of the Hotelling’s test statistic. Note that the first row of
panels is constant as the test statistic was not computed in
that setting combination because non existence of reference
distribution for that settings combination.
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Figure 8: d1 distance from true ranking, averaged across simulations,
of the “Anderson-Darling” test statistic. The value of 1
represent the maximum distance from true ranking, hence
the case in which all groups get the rank 1; 0 instead cor-
responds to perfect agreement between estimated and ex-
pected ranking.
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Figure 9: Proportion of “exact ranking” across simulations, i.e. d1 =
0, for the “mean difference” test statistic. The same graph
for the “t-test” statistic is omitted as it is basically identical.
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Figure 10: Proportion of “exact ranking” across simulations, i.e. d1 =
0, for the Hotelling’s test statistic. Here also the first row
of panels is constant as the test statistic was not computed
in that setting combination.
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Figure 11: Proportion of “exact ranking” across simulations, i.e. d1 =
0, for the “Anderson-Darling” test statistic.
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From these graphs we can see that, in general, lines marked
with “1” and “3”(black and light-green respectively) have a bet-
ter behaviour as they are closer to zero in the “average” graph
and higher than the others in the “exact ranking” graph. This
is easily interpretable as the two lines correspond, respectively,
to N(0, 1) and Γ(3/2, 1) errors, hence the benchmark error dis-
tribution and the highly asymmetric and positive one. Indeed,
in terms of information, the standard normal errors are carry-
ing more information than the correlated normal ones whereas
for the t2 errors the large variance is responsible for the inferior
performances. This is not entirely true for the Hotelling’s test
statistic as it gives better performances to the correlated normal
errors w.r.t. the t2 errors, this is due to the nature of the statis-
tic that is specifically designed to exploit the correlation among
variables.

Another general behaviour that is noticeable is that: increas-
ing the number of groups makes it more difficult for the method
to obtain an exact ranking, regardless of test statitstic and sam-
ple size; we can interpret that as an increased difficulty in trying
to correctly estimate lot of parameters rather than few.

There is something else that sets the Hotelling’s statistic apart
in the “exact ranking” graph in the panels produced with sam-
ple size n = 31: although following the general behaviour, the
proportion is always higher than the counterpart obtained with
the other two statistics, regardless of the error type or the num-
ber of groups. This can be seen as an empirical confirmation
of the difference in the speed with which the three test statis-
tics diverge: for all of them increasing the sample size leads to
more precise estimations, but for the Hotelling’s statistic this
increase is quicker, at least with these settings. Nonetheless, it
still seems that “mean difference” and “t-test” are to be pre-
ferred over Hotelling’s, given their better behaviour on lower
sample sizes, unless indeed, the sample size is much larger
than the number of variables.
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Third Scenarios

In this scenario only the “exact ranking” graphs are reported
as they are more informative than the “average graphs” in this
situation and they basically convey the same information.

Although only 3 variables and 2 groups are active (active is
intended here as not under the null), it is apparently enough for
the algorithm to distinguish the right groups, at least for certain
significance levels.

The clear increase in the proportion of exact ranking values
marks when the active groups start to be clustered separately
from the others and it is quite clear in the following graphs.
This feature basically explain the behaviour of all curves in the
two graphs that follows, the different shape and position of the
increase mark the point from which the algorithm was able to
correctly classify the active groups.
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Figure 12: Proportion of “exact ranking” across simulations, i.e. d1 =
0 for the “mean difference” test statistic. The same graph
for the “t-test” statistic is omitted as it is basically identi-
cal.
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Figure 13: Proportion of “exact ranking” across simulations, i.e. d1 =
0 for the Hotelling’s test statistic. Here also the first row
of panels is constant as the test statistic was not computed
in that setting combination.
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5 C A S E S T U D I E S

In this chapter we will describe an applications of the method
on a real dataset within the field of Statistical Genetics, it deals
with microarray measurements for the lead optimisation stage
in an early-stage drug development project.

5.1 gene expression study

5.1.1 Some Background

A DNA microarray (also commonly known as gene chip, DNA
chip, or biochip) is a collection of microscopic DNA spots at-
tached to a solid surface. Scientists use DNA microarrays to
measure the expression levels of large numbers of genes simul-
taneously or to genotype multiple regions of a genome. Each
DNA spot contains picomoles (10−12 moles) of a specific DNA
sequence, known as probes (or reporters). These can be a short
section of a gene or other DNA element that are used to hy-
bridize a cDNA or cRNA sample (called target) under high-
stringency conditions. Probe-target hybridization is usually de-
tected and quantified by detection of fluorophore-labeled tar-
gets to determine relative abundance of nucleic acid sequences
in the target (wikipedia/microarray). A visualisation of a mi-
croarray experiment is depicted in-Figure14.

Studying gene expression (GE) with the help of microarray
technology is highly interdisciplinary. It lies at a busy inter-
section of many different research areas. Microarray studies
require input from molecular biology, bioinformatics and (bio)-
statistics to design, carry out and interpret the results of these
experiments. The current state of the technology would neither
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Figure 14: Steps required in a microarray experiment

have been possible without the advances in information tech-
nology, combinatorial chemistry and photo-lithography. But
also physics has played a role in solving the “riddle of the
bright mismatches” or attempts to define the boundaries for
using the technology for absolute mRNA quantification (see
Talloen and Göhlmann, 2009, for a comprehensive monography
on the topic)

For these microarray data, pre-processing steps attempt to re-
move the technical variation originating from different sources
during the process, from manufacturing of the microarrays to
the biological and the microarray experiment. Methods used to
remove the technical sources of variation, for background cor-
rection and normalization are performed as described in Tal-
loen and Göhlmann (2009).

Next, genes are filtered with using the I/NI-call filtering (Tal-
loen et al., 2007). The resulting data frame consists of a data
matrix composed by positive values on the log scale measuring
the expression of each gene (columns) in each biological sample
(rows).

In this particular project, we are at the stage of lead optimi-
sation: a step in the early drug development where chemists
have synthesised typically 30 to 90 molecules (compounds) be-
longing to a limited number of chemotypes (class of similar
compounds), and hence showing often only small variations in
some of their substructures.

Moreover, a specifically developed biological experiment, or
bioassay, is used to measure the effect (potency) of the com-
pounds on the target identified for the disease under study.
Other bioassays maybe used to measure off-target effects, which
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5.1 gene expression study

are predictive for side-effects of the compound when consumed
by humans.

The main aim for the chemists, at this stage, is to select which
class of compounds, which chemotype, is best suited to be car-
ried forward in the drug development process. One possibly
useful indication, that can help in this choice, is to find which
chemotype generates the least overall gene expression; indeed,
in case such a chemotype is associated with a high bio-activity,
it can be the most worthy to be further investigated because it
induces the desired final biological effects while not interfering
too much with the gene expression mechanism.

5.1.2 Analysis With SOUP

Hereafter we present the analysis made with the SOUP pack-
age and show the typical output of the R function. The package
implements the method described in Chapter 3 on page 27 and
it is available on CRAN.

The complete (already filtered) data matrix contains log-fold
changes induced by 96 compounds on 7103 genes. The com-
pounds are divided in 5 chemotypes. All these compounds
were synthesised in order to target a specific receptor in the
cell, the activation of which is related to the development of
certain types of cancer in humans.

The sample size of groups are reported in Table 1.

Table 1: Sample sizes of chemotypes, considered as “treatments” in
this study.

Chemotype label 2 3 5 6 8

27 9 38 6 16

Given that we are looking for the chemotype generating the
least overall gene expression (GE) we will have that, for each
gene (variable), the lower the value the better; this can be set
with the option “tails” in the call of the main function “SOUP”.
Moreover, as the original data matrix is too big to be handled
by the algorithm, only a subset of all the 7103 genes was con-
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sidered. This subset is the union of the 200 genes with the high-
est overall variance across compounds, and the genes already
known from previous studies to be linked to the problem at
hand.

Hereafter we report the estimated ranking as well as the out-
put of the R function. In this analysis 2000 permutations were
used. As test statistic we used the “t-test” because it seems a
more sensitive choice, given the high unbalance of the group
sample sizes and hence the possibly great difference in the vari-
ance of any two given groups. Indeed, studentised test statis-
tics are preferable for permutation testing in non-ideal condi-
tions such the present one: not only from the intuition point of
view, but also from theoretical consideration about asymptotic
robustness that can be found in the insightful paper of Chung
and Romano (2013).

Thus the “asymptotic” p-values were employed and we also
made use of the iterated NPC to avoid the additional burden of
chosing the combining function, especially since we are trying
to assume as less as possible in this exploratory study.

Table 2: Estimated ranking for the GE dataset.

Chemotype label 2 3 5 6 8

alpha=0.01 2 1 2 2 2

alpha=0.02 2 1 2 2 2

alpha=0.03 5 1 2 3 3

alpha=0.04 2 1 2 4 5

alpha=0.05 3 1 2 3 5

alpha=0.06 3 1 2 3 5

alpha=0.07 3 1 2 3 5

alpha=0.08 3 1 2 3 5

alpha=0.09 3 1 2 3 5

alpha=0.1 3 1 2 3 5

alpha=0.15 3 1 2 3 5

alpha=0.2 4 1 2 2 4

Hereafter we report the R output of the function, it sum-
marises all important information.

*** "SoupObject" object of package "SOUP" ***

* Call:
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SOUP(Y = geMatOK, covars = as.integer(chemoTypes), analysisType

= "simple",

p.adj.method = "FWEminP", p.valuesType = "asymptotic",

testStatistic = "Ttest", univ.p.values = FALSE,

tails = tails, returnPermSpace = FALSE, nPerms = 2000, alpha

= alpha,

iteratedNPC = TRUE)

*** "RankResults" object of package "SOUP" ***

* Final ranking results *

2 3 5 6 8

alpha=0.01 2 1 2 2 2

alpha=0.02 2 1 2 2 2

alpha=0.03 5 1 2 3 3

alpha=0.04 2 1 2 4 5

alpha=0.05 3 1 2 3 5

alpha=0.06 3 1 2 3 5

alpha=0.07 3 1 2 3 5

alpha=0.08 3 1 2 3 5

alpha=0.09 3 1 2 3 5

alpha=0.1 3 1 2 3 5

alpha=0.15 3 1 2 3 5

alpha=0.2 4 1 2 2 4

* Associated p.value matrix *

2 3 5 6 8

2 NA 0.1710 0.0190 0.41779 0.0190

3 0.0030 NA 0.0025 0.00250 0.0025

5 0.0145 0.2635 NA 0.17100 0.0190

6 0.0940 0.3615 0.3615 NA 0.1710

8 0.0200 0.3370 0.1780 0.53373 NA

* p.values multiplicity adjustment method: FWEminP *

* Seed for the RNG: 565 *

*** End of "SoupObject" ***

From these results it seems that the chemotype number “3”
produces the lowest GE so it would be the one to be chosen,
but there is an important information missing: the bio-activity
of those same compounds. Indeed, it can easily be that com-
pounds of that chemotype have a low potency/activity, there-
fore they do not produce gene expression but they also lack
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of biological activity and hence they are not interesting for the
chemists.

This is something that clearly needs to be avoided, so in com-
bination with these results it is reasonable to look at the bio-
activity of the different chemotypes in comparison with their
estimated rank. To this end we can, for example, plot the activ-
ity level for the two most important bioassays (that measures
the potency on the target of interest) vs. their estimated rank to
check which compounds are at the same time potent and with
a good (low) rank.

The plot being described is reported in Figure 15 on the fac-
ing page, from the graph we can see that, although the chemo-
type “3” was selected as the one producing the least GE, it is
also not the most potent and hence it may be not the most
interesting from the biological point of view. Chemotype “5”
instead, gets either rank two or three but it seems to be the
most potent on the considered bioassays while still being not
classified as the one producing the most GE.

Incidentally, and mostly because of biological considerations,
the one being carried forward in the development process was
chemotype “2”, the one that seems the least potent. From our
analysis it is classified as equal to chemotype “6”, but appar-
ently with the former one it was easier for the chemists to fur-
ther improve its potency.
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5.1 gene expression study
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Figure 15: Values of the 2 most important bioassays plotted against
the estimated ranking for each compound, the different
colours represent the chemotype.
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6 C O N C L U S I O N S

The aim of this thesis was developing a method capable of es-
timating the stochastic order of a set of multivariate treatments,
by considering the joint information from more than one re-
sponse variable.

By empirically comparing several experimental conditions,
with 4 different test statistics, and by applying the method on a
real dataset, we have demonstrated both the flexibility and the
practical effectiveness of the algorithm constituting the main
contribution of this thesis work.

The test statistics being employed can be tailored to the spe-
cific problem and data at hand, e.g. continuous or ordered cate-
gorical, in the presence of a stratifying variable or not, and can
deal with several kind of errors.

The results of the simulations have also empirically demon-
strated some features of the NPC (NonParametric Combination)
in comparison with the Hotelling’s way of combining informa-
tion from more variables: the former seems to be more reliable
and applicable to more cases, regardless of the sample size or
dimensionality of the data, whereas the latter seems better if
the sample size is considerably large but fails whenever the
sample size is small and/or the errror variance is high (at least
fails more often than the former).

This higher flexibility and reliability is clearly due to how the
NPC is constructed. Since it considers one variable at-a-time,
it can be used e.g. even when the number of variables is larger
than the sample size. It thus summarises the information in an
effective way. Furthermore, it permits the statistician (with a
good knowledge of R ) to write his own test statistic.
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conclusions

6.1 future research

As far as future research is concerned, some directions in
which more investigation could be of interest are the following.

6.1.1 Error Distribution

So far the error distributions considered in this work have
different shape, correlation structure, and variance. It would
be also interesting to assess the effect of heteroscedastic errors,
i.e. error variance different from group to group, and correlated
observations.

In the “heteroscedastic errors” situation, it would be useful
to test the amount of variance needed e.g. in a single group for
the method to breakdown, or even when the data are unbal-
anced as in that case the within-variance of the groups will be
different by construction (unless pathological cases).

In the “correlated observation” situation, it could be inter-
esting, for example, in case of multivariate time series data
in which observations may have some sort of auto-correlation
structure. The magnitude of this auto-correlation can be pos-
sibly tested by dividing the data groups with equal number
of observations (respecting their order) and considering them
as different “treatments”. For example, within the Statistical
Process Control framework, applying such procedure would be
interesting in the sense that, if the global null hypothesis is re-
jected, it would be possible to pinpoint the moment when the
system has started to deviate from the optimum in the multi-
variate sense.

6.1.2 Continuous Covariates

The current method is not capable of dealing with continuous
covariates but only with one discrete covariate and possibly
without a lot of categories. This because the permutation space
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6.1 future research

is restricted within each stratum and hence lowering the power
in case the covariate has several levels.

A possibly more general approach could be for example to
remove the linear effects of the covariates by pre-multiplying
the data matrix by the square root of the matrix In −Hx where
Hx is the hat matrix coming from the linear model having as
regressors the covariates. This would lead to an approximate
solution in case of permutations but can still be a viable option
for some practical experimental problems.

Another option would be to lose the distribution-free assump-
tion typical of the permutation tests and to use the rotation tests
instead. These tests assume left sphericity of the errors but are
exact in case the assumption holds (see Solari et al., 2014, for
details).
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R C O D E

In this chapter we report some of the R code implementing the
method described in this thesis work, in particular:

1. the description file,

2. the script of the main function SOUP,

3. the function script computing the “mean difference” test statis-
tic,

4. one of the most important utility functions, the one generating
the matrix that pre-multiplied by the dataset gives the pairwise
differences of means.

1 description file

Package: SOUP
Type: Package
Title: Stochastic Ordering Using Permutations (and Pairwise Comparisons

)
Version: 1.1
Date: 2011-11-16
Author: Federico Mattiello
Maintainer: Federico Mattiello <federico.mattiello@gmail.com>
Depends:

R (>= 2.10.0),
methods,
tensor

Suggets: flip
Description: This package allows to construct a ranking of a set of

treatments/groups, gathering together information coming from a
several response variables.
It can be used with both balanced and unbalanced experiments
(with almost all test statistics) as well as in presence of either
continuous covariates or a stratifying (categorical) variable.

License: GPL (>= 2)
LazyLoad: yes
Collate:

’NPC.R’
’PermSpace.R’
’RankResults.R’
’SOUP.R’
’multiplicity.R’
’simpleAD.R’
’simpleHotelling.R’
’simpleMeanDiff.R’
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’simpleTtest.R’
’strataAD.R’
’strataLmCoef.R’
’strataMeanDiff.R’
’strataTtest.R’
’t2p.R’
’utilities.R’
’PValueMat.R’
’SoupObject.R’
’rankingRule.R’
’iterNPC.r’

2 main function

#’ Main function of the package, interface for every analysis.
#’ The dataset can be balanced or not for almost all possible choices

of the
#’ input parameters. The function allows also for the presence of one

or more
#’ continuous covariates or for stratified analysis.
#’
#’ Depending on the chosen p-values type and on the analysis type, only

some
#’ options can be selected:
#’ \itemize{
#’ \item{}{
#’ with \code{"simple"} or \code{"regres"} analysis and
#’ \code{"asymptotic"} \emph{p}-values, \code{"Hotelling"} and
#’ \code{"Ttest"}; with \code{permutation} \emph{p}-values \code{"

AD"},
#’ \code{"Hotelling"} and \code{"meanDiff"} can be selected.}
#’ \item{}{
#’ With \code{"strata"} analysis and \code{"asymptotic"} \emph{p}-

values,
#’ \code{"lmCoef"} and \code{"Ttest"}; with \code{"permutation"}
#’ \emph{p}-values \code{"AD"} and \code{"meanDiff"} can be

selected.}
#’ }
#’ @title SOUP Main Function
#’ @param Y
#’ input \code{matrix} where each column is a response variables.
#’ @param covars
#’ it can be a \code{matrix}, a \code{data.frame} or a \code{

formula},
#’ in the first two cases it must contains at least the labels of

groups,
#’ in the latter case it has to be a right-sided \code{formula}
#’ (\emph{e.g.} \code{~ v1 + v2}) specifying the model to extract

from
#’ the \code{data} input.
#’ @param data
#’ optional \code{data.frame} containing covariates requested by \

code{covars},
#’ if \code{covars} is not a formula this input is useless.
#’ @param analysisType
#’ \code{character}, type of the analysis to be performed: it can

be
#’ \code{"simple"} if the only covariate is the labels of groups,
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#’ \code{"strata"} if there is also a stratifying (categorical)
covariate,

#’ \code{"regres"} if there is one or more (numerical or not)
covariate(s)

#’ besides labels of groups. In the latter case the linear effect
of the

#’ covariates is removed from the response variables are
#’ residualised by the matrix \eqn{V^{-1/2}} obtained from
#’ \eqn{V = I - H} (where \eqn{I} is the identity matrix and \eqn{H

} is
#’ the ‘‘hat’’ matrix of the OLS, by means of a spectral

decomposition.
#’ @param p.adj.method
#’ \code{character} string containing the type of required \emph{p

}-value
#’ adjustment
#’ @param p.valuesType
#’ \code{character} string indicating the type of \emph{p}-value to

be
#’ used, it can be \code{"permutation"} or \code{"asymptotic"}
#’ @param testStatistic
#’ \code{character} string indicating the test statistic to be used

, it
#’ depends on both \code{analysisType} and on \code{p.valuesType}

and
#’ the alternatives are:
#’ \describe{
#’ \item{\code{AD, meanDiff}}{
#’ for all \code{analysisType} but only using \code{

permutation}
#’ \emph{p}-values}
#’ \item{\code{Ttest}}{
#’ for all \code{analysisType} but only using \code{

asymptotic}
#’ \emph{p}-values}
#’ \item{\code{Hotelling}}{
#’ with both \code{permutation} and \code{asymptotic}
#’ emph{p}-values, with \code{"simple"} and \code{"regres"}

but
#’ not with \code{"strata"} \code{analysisType}}
#’ \item{\code{lmCoef}}{
#’ only with \code{"strata"} \code{analysisType} and with
#’ \code{"asymptotic"} \emph{p}-values}
#’ }
#’ @param combFunct
#’ \code{character} string containing the desired combining

function to be
#’ used, choices are:
#’ \describe{
#’ \item{\code{Fisher}}{
#’ the famous Fisher’s \emph{p}-values combining function}
#’ \item{\code{Liptak}}{
#’ it uses the quantile function of the Normal distribution to

combine
#’ \emph{p}-values}
#’ \item{\code{minP, tippett}}{
#’ combine \emph{p}-values by taking the minimum across the set

}
#’ \item{\code{maxT}}{
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#’ combines directly the test statistics by taking the maximum
across

#’ the set}
#’ \item{\code{direct, sumT}}{
#’ combine the test statistics by summing them}
#’ \item{\code{sumT2}}{
#’ combines the test statistics by squaring and summing them}
#’ }
#’ See the references for more details about their properties.
#’ @param univ.p.values
#’ \code{logical}, if \code{TRUE} (default) \emph{p}-values are

returned
#’ for each variable separately in a 3-ways \code{array}, the

chosen
#’ multiplicity correction is performed independently for each

variable
#’ @param tails
#’ \code{integer} vector of \eqn{\pm 1}{\{+1,-1\}} containing the
#’ alternatives for response variables: \code{+1} means ‘‘the

higher the
#’ better’’, \code{-1} means ‘‘the lower the better’’ (direction of
#’ preference), if \code{NULL} (default) all variables are

considered
#’ to be of the type ‘‘the higher the better’’
#’ @param linearInter
#’ \code{logical}, if \code{TRUE} the presence of linear

interaction is
#’ assumed between levels of the stratifying covariate and response
#’ variables, this affects only the \code{"lmCoef"} test statistic

in the
#’ (in the \code{"strata"} \code{analysisType}),
#’ basically the contrasts matrix of groups is multiplied by the

levels
#’ of the stratifying factor.
#’ @param returnPermSpace
#’ \code{logical} if \code{TRUE} (default) the whole permutation

space is
#’ returned, class \code{\linkS4class{PermSpace}}, otherwise it is

an empty
#’ instance of the class.
#’ @param nPerms
#’ \code{integer} number of permutation to be performed
#’ @param alpha
#’ \code{numeric} desired significance level, \emph{i.e.} type-I

error
#’ @param seed
#’ \code{integer} seed for the Random Number Generator
#’ @param iteratedNPC
#’ \code{logical}, single or iterated Non-Parametric Combination,

see \
#’ code{\link{iterNPC}} for details.
#’ @param ...
#’ put here the optional \code{weights} and \code{subsets} for the
#’ \code{\link{NPC}} function and the permutation space of rows

indexes
#’ \code{permSpaceID}.
#’ The latter allows to exactly reproduce a previous analysis, if

all
#’ other inputs are kept equal, or to see what happens changing for
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#’ example only the \code{testStatistic}.
#’ @return
#’ an object of class \code{\linkS4class{SoupObject}}.
#’ @author Federico Mattiello <federico.mattiello@@gmail.com>
#’ @references
#’ Pesarin, F. and Salmaso, L. (2010)
#’ \emph{Permutation Tests for Complex Data}.
#’ Wiley: United Kingdom.\cr
#’
#’ Pesarin F. (2001)
#’ \emph{Multivariate Permutation Tests with Applications in

Biostatistics}
#’ Wiley: New York.\cr
#’
#’ Federico Mattiello (2010)
#’ \emph{Some resampling-based procedures for ranking of

multivariate
#’ populations}, Master’s Thesis, Faculty of Statistical Sciences:

Padova.
#’
#’ @export
#’ @examples
#’ ###
#’ ### testing SOUP
#’ ###
#’ rm(list = ls()); gc(reset = TRUE)
#’
#’ require(SOUP)
#’ n <- 5L # replication of the experiment
#’ G <- 4L # number of groups
#’ nVar <- 10L # number of variables
#’ shift <- 1.5 # shift to be added to group 3
#’ alpha <- c(0.01, 0.05, 0.1) # significance levels
#’
#’ ## groups factor
#’ groups <- gl(G, n, labels = paste("gr", seq_len(n), sep = "_"))
#’
#’ set.seed(12345)
#’ Y <- matrix(rnorm(n * G * nVar), nrow = n * G, ncol = nVar)
#’ colnames(Y) <- paste("var", seq_len(nVar), sep = "_")
#’ ind1 <- groups == unique(groups)[3L]
#’ Y[ind1, ] <- Y[ind1, ] + shift
#’
#’ res <- SOUP(Y = Y, covars = as.matrix(groups), analysisType = "

simple",
#’ testStatistic = "meanDiff", combFunct = "Fisher",
#’ alpha = alpha,
#’ subsets = list("first" = 1:5, "second" = 6:10),
#’ weights = list(
#’ "firstW" = c(.1, .2, .1, .5, .1),
#’ "secondW" = rep.int(1, 5)),
#’ p.valuesType = "permutation", p.adj.method = "FWEminP")
#’ res
#’
SOUP <- function(Y, covars, data = NULL, analysisType, p.adj.method, p.

valuesType,
testStatistic, combFunct, univ.p.values = TRUE, tails = NULL,
linearInter = FALSE, returnPermSpace = TRUE,
nPerms = 999L, alpha = 0.05, seed, iteratedNPC, ...)
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{

###
### Matching arguments
###

### iteratedNPC, if missing is set to FALSE
if (missing(iteratedNPC))
{

iteratedNPC <- FALSE
} else {}

### analysisType
if(missing(analysisType))
{

stop("\"analysisType\" is missing, must be one of ",
"\’simple\’, \’strata\’ or \’regres\’"

)# END:stop
} else {

analysisType <- match.arg(analysisType, c("simple", "strata", "
regres"))

}# END:if-analysisType

### covars, i.e. covariate(s)
if(missing(covars) || is.null(covars))
{

stop("\"covars\" is empty. It must contains at least the ",
"vector of groups\’ labels")

} else {}# END:covars-present

### p.adj.method
if(missing(p.adj.method))
{

## default = bonferroni
warning ("p.value adjustment method is missing, ",

"using \"BHS\" as default", call. = FALSE)
p.adj.method <- "BHS"

} else {
p.adj.method <- match.arg(p.adj.method, c("BHS", "FWEminP", p.

adjust.methods))
}# END:if-p.adj.method

### p.value.type
if(missing(p.valuesType))
{

stop("\"p.valuesType\" is missing, must be either ",
"\"asymptotic\" or \"permutation\"")

} else {
p.valuesType <- match.arg(p.valuesType, c("asymptotic", "

permutation"))
}# END: missing - p.valuesType

### selecting the proper "testStatistic": depends on "analysisType"
### and "p.valuesType"
if(missing(testStatistic))
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{
stop(

"\"testStatistic\" must be one of: ",
"\"AD\", \"lmCoef\", \"Hotelling\", \"meanDiff\" or \"Ttest

\""
)

} else
{

if(p.valuesType == "asymptotic")
{

switch(analysisType,
"simple" = {

testStatistic <- match.arg(testStatistic,
c("Hotelling", "Ttest"))

},
"strata" = {

testStatistic <- match.arg(testStatistic,
c("lmCoef", "Ttest"))

},
"regres" = {

testStatistic <- match.arg(testStatistic,
c("Hotelling", "Ttest"))

}
)# END: switch - analysisType

} else ## permutation p.values
{

switch(analysisType,
"simple" = {

testStatistic <- match.arg(testStatistic,
c("AD", "Hotelling", "meanDiff"))

},
"strata" = {

testStatistic <- match.arg(testStatistic,
c("AD", "meanDiff"))

},
"regres" = {

testStatistic <- match.arg(testStatistic,
c("AD", "Hotelling", "meanDiff"))

}
)# END:switch-analysisType

}# END:if-p.valuesType
}# END:missing-testStatistic

### checks for Hotelling’s test-statistic
if(testStatistic == "Hotelling")
{

if(univ.p.values)
{

warning ("When using \"Hotelling\" test-statistic ",
"univariate p-values are not calculated.",

call. = FALSE)# END:warning
univ.p.values <- FALSE

} else {}# END:if-univ.p.values

if(analysisType != "simple")
{

warning ("When using \"Hotelling\" test-statistic no ",
"covariates are considered, so only \"simple\" ",
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"analysis can be performed.", call. = FALSE)
analysisType <- "simple"

} else { }# END: if - simple
}# END: check - hotelling

### check combining function
if(missing(combFunct))
{

if (testStatistic != "Hotelling")
{

message ("combining function is missing, ",
"using \"Fisher\" as default")

combFunct <- "fisher"
} else {}

} else {
combFunct <- match.arg(tolower(combFunct),

c("fisher", "liptak", "minp", "tippett",
"maxt", "sumt", "direct", "sumt2"))

}# END: missing - combFunct

### check of tails
if(missing(tails) || is.null(tails))
{

tails <- rep.int(1L, NCOL(Y))
} else
{

if(length(tails) != NCOL(Y))
{

warning ("Number of \"tails\" differs from number of ",
"variables. \"tails\" are all set to 1.",
call. = FALSE)

tails <- rep.int(1L, NCOL(Y))
} else {}

}# END: if - check tails

### extract arguments in ’...’
dots <- list(...)

### check dim of Y
if(NCOL(Y) == 1L)
{

dim(Y) <- c(NROW(Y), 1)
} else {}# END:dim-Y

### ’covars’ is a formula of variables in ’data’
if(is(covars, "formula"))
{

if(length(covars) > 2L)
{

warning("\"covars\" is a \"formula\" with response, ",
"it has to be a right-sided formula ",
"(responses are in \"Y\").")

covars <- covars[-2]
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} else {}# END: if - formula check

if(!is.null(data))
{

covars <- model.frame(covars, data = data)
} else {

stop("\"data\" argument is missing and \"covars\" is a
formula, ",

"not a matrix.")
}# END: ifelse - data check

} else {}# END: ifelse - covars is a formula

### "covars" is a matrix
if(!is.data.frame(covars))
{

covars <- data.frame(covars)
} else {}# END:if

### set the seed for the random number generator
if(missing(seed))
{

seed <- round(1e3 * runif(1), digits = 0)
}# END:ifelse-set.seed
set.seed(seed)

###
### END Matching
###

### regression aov: residualise Y with a linear regression of Y on
the

### covariate(s); after that is like the "simple"
if(analysisType == "regres")
{

Xmm <- model.matrix(model.frame(covars[, -1L, drop = FALSE]),
data = data)

Y <- .orthoX(Y, Xmm)
analysisType <- "simple"
covars <- covars[, 1L, drop = FALSE]

} else {}# END: if - regres

### do the analysis
switch(analysisType,

### simple aov: AD = Anderson-Darling, Hotelling = Hotelling’s
T^2,

## meanDiff = differences of means
"simple" = {

### check number of columns of covars
if(NCOL(covars) > 1L)
{

stop("selected \"simple\" so \"covars\" must have only
one column")
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}# END:if-no-covariate(s)

### ordering of data
groups <- covars[, 1]

ord <- order(groups)
Y <- Y[ord, ]
groups <- groups[ord]

### permutation space of row IDs
if(is.null(dots$permSpaceID))
{

permIndexMat <- .makePermSpaceID(nObs = NROW(Y),
analysisType = analysisType, seed = seed, nPerms =

nPerms)
} else
{ ## take input permSpace of indexes (for reproducibility

)
permIndexMat <- dots$permSpaceID
seed <- integer()

}# END: indexes - permSpace

switch(testStatistic,
"AD" = {

T <- .simpleAD (
dataset = Y, groups = groups, indexMat =

permIndexMat
)# END:AD

},
"Hotelling" = {

T <- .simpleHotelling (
dataset = Y, groups = groups, indexMat =

permIndexMat,
p.valuesType = p.valuesType

)# END:hotelling
},
"meanDiff" = {

T <- .simpleMeanDiff (
dataset = Y, groups = groups, indexMat =

permIndexMat
)# END:meanDiff

},
"Ttest" = {

T <- .simpleTtest(
dataset = Y, groups = groups, indexMat =

permIndexMat
)# END:Ttest

},
{

stop("can not match the test statistics")
}

)# END:switch-simple
},

### stratified aov: "AD" = Anderson-Darling, "lmCoef" = anova
test

### for the effect of the "groups" and pairwise differences
between

### coefficients estimated by "lm", variable by variable,
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### "meanDiff" = differences of mean, "Ttest" = t-test as in
### the case "simple"-"meanDiff"-asymptotic p.values but with
### different denominator (the MSE take into account also the
### stratifying variable considered as factor)
"strata" = {

### check number of columns of covars
if(NCOL(covars) > 2)
{

stop("selected \"strata\" so \"covars\" must have 2
columns, ",

"both factor variables")
}# END:if-no-covariate(s)

### ordering of data
# if((NCOL(covars) == 2) && is.factor(covars[, 1]) && is.

factor(covars[, 2])) {
if(NCOL(covars) == 2L)
{

ord <- order(covars[, 2], covars[, 1])
covars <- covars[ord, ]
Y <- Y[ord, ]
groups <- covars[, 1]
strata <- .unfactor(covars[, 2])

}# END:if-1-covariate
### permutation space of rows IDs
if(is.null(dots$permSpaceID)) {

permIndexMat <- .makePermSpaceID(nObs = NROW(Y),
analysisType = analysisType, strata = strata,
seed = seed, nPerms = nPerms

)
} else {# take input permSpace of indexes (for

reproducibility)
permIndexMat <- dots$permSpaceID
seed <- integer()

}# END:indexes-permSpace
### select test statistic
switch(testStatistic,

"AD" = {
T <- .strataAD(

dataset = Y, groups = groups, strata = strata,
indexMat = permIndexMat

)# END:AD
},
"lmCoef" = {

T <- .strataLmCoef(
dataset = Y, groups = groups, strata = strata,
indexMat = permIndexMat, linearInter =

linearInter
)# END:lmCoef

},
"meanDiff" = {

T <- .strataMeanDiff(
dataset = Y, groups = groups, strata = strata,
indexMat = permIndexMat, linearInter =

linearInter
)# END:meanDiff

},
"Ttest" = {

T <- .strataTtest(
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dataset = Y, groups = groups, strata = strata,
indexMat = permIndexMat, linearInter =

linearInter
)# END:Ttest

},
{

stop("can not match the test statistics")
}

)# END:switch-testStatistic-strata
}

)# END:switch-analysisType
###-----------------------------##

### from raw statistics to univariate p.values
if(p.valuesType == "asymptotic")
{

P <- T
} else
{

P <- t2p(T)
}# END:ifelse-asympotic-p.values

### create object PValueMat
if(univ.p.values)
{

pValueMat <- .makePValueMat(
P = P, multAdjMethod = p.adj.method, groupsLabs = unique(

groups)
)

} else
{

pValueMat <- new("PValueMat")
}# END:if-univ.p.values

### NPC and create object "PermSpace"; subsets and weights are
### extracted from "..."
if(testStatistic == "Hotelling")
{

T.H0Low <- T
if(p.valuesType == "asymptotic")
{

T.H0Gre <- 1 - T.H0Low
} else
{

T.H0Gre <- -T.H0Low
}# END:asymptotic

permSpace <- new(
Class = "PermSpace",
seed = seed,
T.H0Low = T.H0Low,
T.H0Gre = T.H0Gre,
P.H0Low = t2p(T.H0Low),
P.H0Gre = t2p(T.H0Gre),
rawStats = array(0, dim = c(0, 0, 0)),
comb.funct = combFunct)

} else
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{
### change behaviour: if iteratedNPC then add permSpace2 to the

output list
# permSpace <- NPC (rawStats = T, combFun = combFunct, seed =

seed,
# p.values = (p.valuesType == "asymptotic"),
# tails = tails, subsets = dots$subsets, weights = dots$

weights,
# iteratedNPC = FALSE)

permSpace <- NPC (rawStats = T, combFun = combFunct, seed =
seed,

p.values = (p.valuesType == "asymptotic"),
tails = tails, subsets = dots$subsets, weights = dots$

weights,
iteratedNPC = iteratedNPC)

}# END:if-permSpace-generation
permSpace@IDs <- permIndexMat

### create object "RankResults"
rankRes <- rankingRule(permSpace = permSpace, alpha = alpha,

multAdjMethod = p.adj.method, groupsLabs = unique(groups))

### conditional removal of PermSpace
if (!returnPermSpace)
{

permSpace <- new(Class = "PermSpace", seed = seed, rawStats = T
)

} else {}

### create object "SoupObject"
soupRes <- new("SoupObject",

call = match.call(),
rankResults = as.list(rankRes),
pValueMat = pValueMat,
permSpace = permSpace)

return(soupRes)

}#=END=

3 mean difference script

.simpleMeanDiff <- function(dataset, groups, indexMat)
{

#- global variables
groups <- as.factor(groups)
B <- NCOL(indexMat)
nObs <- NROW(dataset)
p <- NCOL(dataset)
C <- length(tab <- table(groups))
K <- C * (C - 1)/2

##- labels
labsMat <- t(outer(levels(groups), levels(groups), FUN = paste, sep

= "-"))
labsPC <- labsMat[lower.tri(labsMat)]

#- matrix of statistics
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T <- array(NA, c(B + 1, p, K))

#- Contrasts Matrix (CM), and checking (un)balance of the
experiment

CM <- .DesM(tab)/rep(tab, tab)

#- observed statistics
Ttemp <- t(dataset) %*% CM
T[1, , ] <- Ttemp

#- permutation statistics
for(bb in 2L:(B + 1))
{

ind <- indexMat[, bb - 1]
data.p <- dataset[ind, , drop = FALSE]
Ttemp <- crossprod(data.p, CM)
T[bb, , ] <- Ttemp

}# END:for-bb
##- last permutation==observed

# T[B + 1, , ] <- T[1, , ]

dimnames(T) <- list(
c("p-obs", paste("p-*", seq_len(B), sep = "")), colnames(

dataset), labsPC
)
return(T)

}#=END=

4 pairwise difference matrix

##===========================================================##
## Constructing Design Matrix for pairwise comparisons ##
##-----------------------------------------------------------##
## @author: Federico Mattiello ##
## @date: 17/10/2011 ##
## @version: 3.0 ##
## @notes: unbalanced case taken into account ##
## @notes: now 4 times faster thanks to the use of "matrix" ##
## instead of "kronecker" ##
##-----------------------------------------------------------##
## Inputs: ##
## - N: number of replications of the experiment, either ##
## an integer vector or a "table", both of length "C" ##
##-----------------------------------------------------------##
## Outputs: ##
## - M: matrix of {-1, 0, 1}, of dimensions (sum(N) x K) ##
## where K = C*(C-1)/2; if dataset has "nObs" rows and ##
## "p" columns then "t(dataset) %*% M = P", where P is ##
## a (p x K) matrix of pairwise differences of sums ##
##===========================================================##
#’ Construct Design Matrix that pre-multiplied to the dataset gives the
#’ pairwise mean differences (wrt the groups)
#’
#’ @title Design Matrix For Pairwise Differences
#’ @rdname DesM
#’ @param N
#’ number of replication of the experiment for each group, either

an
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#’ \code{integer} vector or a \code{table} of length \code{G}
#’ \emph{i.e.} number of groups/treatments
#’ @return
#’ matrix of
#’ @author Federico Mattiello <Federico.Mattiello@@UGent.be>
#’
.DesM <- function(N)
{

M <- NULL
C <- length(N)
sq <- c(0, cumsum(N))
for (i in seq_len(C - 1))
{

tmp <- NULL
negD <- -diag(C - i)
for (j in (i + 1):C)
{

tmp <- rbind(tmp,
matrix(negD[j - i, ], nrow = N[j], ncol = C - i, byrow

= TRUE)
)# END:tmp

}# END:for-j
A <- rbind(

array(0, c(sq[i], C - i)),
array(1, c(N[i], C - i)),
tmp

)# END:A
M <- cbind(M, A)

}# END:for-i
return(M)

}#=END=
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