
Scuola di Dottorato in Scienze Economiche e Statistiche

Dottorato di Ricerca in

Metodologia Statistica per la Ricerca Scientifica

XX ciclo

A
lm

a
M

a
ter

S
tu

d
io

ru
m

-
U

n
iv

ersità
d
i
B

o
lo

g
n
a

Analyzing the Dependence Structure

of Microarray Data:

a Copula–Based Approach

Francesca Marta Lilja Di Lascio

Dipartimento di Scienze Statistiche “P. Fortunati”

Marzo 2008

Scuola di Dottorato in Scienze Economiche e Statistiche

Dottorato di Ricerca in

Metodologia Statistica per la Ricerca Scientifica

XX ciclo

Analyzing the Dependence Structure

of Microarray Data:

a Copula-Based Approach

Fkancesca Marta Lilja Di Lascio

Coordinatore

Prof.ssa Daniela Cocchi

Tutor

Prof-ssa Paola Monari

Co-tutor

Dott. Simone Giannerini

6 &-*"-

Settore Disciplinare

SECS-S/Ol

Dipartimento di Scienze Statistiche "P. Fortunati"

Marzo 2008

To my father.

His thirst for knowledge

will continue to inspire me

for the rest of my life.

Preface

The analysis of microarray data with statistical methods is a topic with important practical

implications. During the last ten years clustering techniques have been largely used in the

first steps of the analysis of microarray data. In literature many algorithms and methods

have been proposed each one with its pros and cons. Many works have demonstrated the

usefulness of clustering biological data even if in literature the clustering of dependent

data, especially in microarray data analysis, has not been through investigated.

The idea of introducing and utilizing the copula functions in a clustering technique

was born during the period I spent at the Department of Biology of the University of

Pennsylvania, Philadelphia, USA during which I worked with Professor Warren J. Ewens.

At the UPENN I had the opportunity of enriching my knowledge of statistical methods for

microarray data analysis and the theory of copula functions which I had previously met

thank to Professor Estela Bee Dagum (during a conference on Time Series Analysis). The

idea and the realization of a simulation study to test the capability of some well–known

clustering methods in correctly finding clusters of dependent data have taken place at the

University of Philadelphia. From this study many interesting limits of classical clustering

methods emerged.

My work continued and ended at the Department of Statistical Science “P. Fortunati”

of the University of Bologna, Italy. Based on such experiences I thought about a new

procedure able to overcome the limits of other clustering techniques investigated. The

work led to a new clustering algorithm based on copula functions. By using criteria based

on maximum likelihood copula function, the proposed algorithm is built to group observa-

tions preserving the underlying dependence structure. The algorithm has been tested on

simulated data and compared with the performance of the model–based clustering tech-

niques in order to evaluate its performance. In light of the satisfactory results obtained I

finally applied it to a real microarray data set.

The use of copulas to investigate the dependence relationship between genes or biolog-

ical samples is thought as a new starting point to enlarge the knowledge of the biological

processes.

Although different people have participated to my dissertation I am responsible for

any errors that may remain.

v

vi Preface

Acknowledgements

Writing a dissertation can be a lonely and isolating experience but it is obviously not

feasible without the personal and practical support of numerous people. First of all, I

would like to express my sincere thanks and appreciation to my supervisor, Prof. Paola

Monari, for guidance and for providing me with excellent facilities to pursue my work.

Second, I am enormously grateful to my co–supervisor, Dr. Simone Giannerini, who made

me a better programmer, followed my work in each of its part making interesting questions

and giving me helpful suggestions. I also thank him for his continued support and frank

comments throughout my research. Third, I thank Prof. Warren J. Ewens for having given

me the possibility to deepen my knowledge of microarray data analysis and for discussions

about it when I was a visiting student at the University of Pennsylvania, Philadelphia,

USA. Last but not least, I thank Prof. Estela Bee Dagum for her comments on this

dissertation and for her precious advices given in the whole my Ph.D. experience.

I also thank Dr. Cinzia Viroli, Prof. Antonella Capitanio and Prof. Rossella Miglio,

all from the University of Bologna, Italy, for their interesting comments and helpful sug-

gestions.

My sincere gratitude goes to my mother and my sister, to their closeness and their

affection. A special thought goes to my father, prematurely passed away, for being lovely

interested in my Ph.D. experience, for having taught me the love for study and research

and advised me to get into the fabulous world of research. He has always encouraged me

in my work until the last days of his life. My work could not be the same without the

presence of Benedetto in my life. I would like to thank him very much for having comforted

me in each moment of my doctorate, for having been close to me and for providing a loving

environment to me. I am very grateful to my friends, Barbara, Carmela and Marilisa for

their affection and support over the last few years.

I am also very grateful to my Ph.D. colleagues. My first thought goes to Maroussa

Zagoraiou, with whom I have shared the great part of my Ph.D. experience, and to Michele

Modica who made this experience less hard and more amusing. A special thank goes to

Mirko De Martino for the interesting discussions about many statistical topics we discussed

together during the first part of our Ph.D. program. I also thank Dr. Silvia Bianconcini for

her help in preparing my departure to the United States and my foreign friends: Namrita,

Khadija and Peter with which I had the possibility of taking healthy distractions and

discussions during my visiting at the UPENN.

Francesca Marta Lilja Di Lascio

Bologna, March 17th, 2008

Contents

Preface v

Introduction 1

1 Cluster Analysis 5

1.1 Measures of Dissimilarity and Distance . 6

1.2 K–means, Hierarchical and Model–based Clustering 9

1.2.1 K–Means Methods . 9

1.2.2 Agglomerative Hierarchical Techniques 11

1.2.3 Model–Based Clustering . 13

1.2.4 Comparison between Clustering Techniques 15

1.3 Other Clustering Methods . 15

1.3.1 Divisive Hierarchical Methods . 16

1.3.2 Hybrid Hierarchical Clustering . 16

1.3.3 Two–way clustering . 17

1.3.4 Block Clustering . 17

1.3.5 SOM and SOTA . 18

2 Copula Function 21

2.1 Introduction to the Copula function . 21

2.1.1 Fréchet Bounds . 21

2.1.2 Sklar’s Theorem . 22

2.1.3 Probabilistic Interpretation of Copula Function 23

2.1.4 Modeling consequences . 25

2.2 Estimation for Copula Functions . 26

2.2.1 Density of a Copula Function . 26

2.2.2 The FML method . 27

2.2.3 The IFM method . 28

2.2.4 Other estimation methods . 29

2.3 Parametric Families of Copula . 29

2.3.1 Bivariate Copula Functions . 29

2.3.2 Multivariate Copula Functions . 31

vii

viii Contents

3 Microarray Experiments 33

3.1 DNA, RNA, Gene Expressions and Microarray 33

3.1.1 DNA and the Central Dogma . 33

3.1.2 Genes, RNA, Genetic Code and Proteins 34

3.1.3 Gene Expression, Microarray and cDNA 35

3.2 DNA Microarray . 35

3.2.1 Microarray Technology . 36

3.2.2 Data generation . 36

3.3 Experimental Designs . 38

3.3.1 The Main Experimental Designs . 38

3.3.2 Experimental Designs in Microarray Studies 40

3.4 Data Analysis for Gene Expression Data . 41

3.4.1 Preprocessing of the Data . 41

3.4.2 Clustering for Gene Expression Data 42

3.4.3 Copula Function for Gene Expression Data 44

4 Simulation Study 45

4.1 Methodology and Definitions . 45

4.1.1 Motivation and Basic Ideas . 45

4.1.2 Definitions and Simulation Design 46

4.1.3 Measures of Performance . 48

4.1.4 The Methods . 50

4.2 K–means Clustering of Simulated Data . 51

4.2.1 The Single Array Case . 52

4.2.2 The Array Matrix Case . 55

4.3 Hierarchical Clustering of Simulated Data 58

4.3.1 The Single Array Case . 58

4.3.2 The Array Matrix Case . 59

4.4 Discussion . 63

4.4.1 Remark on the Two Clustering Methods 63

4.4.2 K–means vs Hierarchical Clustering 64

4.4.3 Relevance to Empirical Applications 64

5 A copula–based clustering algorithm 67

5.1 A New Clustering Algorithm . 67

5.1.1 A Copula–based Clustering Algorithm 67

5.1.2 Copula–based Split up Rule . 69

5.1.3 R code of the algorithm . 72

5.2 Testing the New Algorithm . 74

5.2.1 CoClust of Gaussian Simulated Data 74

5.2.2 CoClust of Frank Simulated Data . 80

Contents ix

5.2.3 Conclusions about Simulation Results 85

5.3 Comparison between CoClust and mClust 85

5.3.1 mClust of Gaussian Simulated Data 85

5.3.2 mClust of Frank Simulated Data . 91

5.4 Discussion . 96

6 Applying the CoClust to Real Data 99

6.1 Introduction . 99

6.1.1 Description of the Data Set . 99

6.1.2 Preliminary Analysis . 100

6.2 Application of the CoClust to Hedenfalk Data 101

6.2.1 Analyzing the Dependence Between Genes 101

6.2.2 Classification of Different Breast Cancer Samples 111

6.3 Discussion . 113

Conclusions and Perspectives 115

Appendix A: CoClust R Code 117

Bibliography 125

Introduction

The main aim of this Ph.D. dissertation is the study of clustering dependent data by means

of copula functions with particular emphasis on microarray data. Clustering method is

one of the most used technique to analyze multivariate data. The use of copula function

in clustering allows to take into account any possible dependence relationship between

observations. The relevance of the dependence between gene expressions in finding clusters

of genes has not been still investigated in literature.

The dissertation is organized in two main parts: the first one contains the review of

the literature whereas the second part contains the original contribution proposed.

The first part is in turn divided into three different chapters that discuss clustering

methods, copula functions and microarray experiments, respectively.

In the first chapter, after a presentation of the dissimilarity and distance measures, a

review of clustering techniques is presented starting from the oldest to the most recent ones

(e.g. the hybrid hierarchical clustering of Chipman and Tibshirani, 2006). More attention

is given to the K–means (Hartigan, 1975; Hartigan and Wong, 1979), the hierarchical

(Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999 and 2000) clustering

methods since their performance will be compared.

The second chapter presents the copula function from its birth in the probabilistic

context with Sklar’s theorem (Sklar, 1959) to the most used and important copula families

(Nelsen, 2006; Joe, 2004). Copula function is a popular multivariate modeling tool in

each field where the multivariate dependence is of great interest. Indeed, copulas are

independent of the choice of the marginal distributions and they allow us to approach

the problem of multivariate modeling by splitting it into two parts: firstly, the choice of

the most appropriate univariate distribution for each marginal variable and secondly, the

election of the copula which is able to best describe the joint behavior of the data, thus

giving great flexibility in the construction of multivariate models. The central part of the

second chapter is dedicated to estimation methods for copula functions; focus is given

to the so–called Inference for Margins (IFM) method (Joe and Xu, 1996) that allows to

separate the estimation of copulas in two steps and that is at the base of the research

performed.

The literature review ends with a chapter dedicated to the biological and genetic

concepts (Lee, 2004) relevant to understand the birth of the theoretical ideas at the basis

of the dissertation and the kind of applications involved. After a brief introduction to

1

2 Introduction

DNA, genes and the genetic code, it is explained what DNA microarray and microarray

technology are, how it is possible to produce microarray data and which kinds of microarray

experiments exist in the literature (Stekel, 2003; Nuber, 2005). This chapter ends with a

section on the applications of cluster analysis and copula functions to the microarray and

genetic data (Eisen et al., 1998; Tavazoie et al., 1999; Owzar et al., 2007).

From the fourth chapter onwards the original contributions are presented. The fourth

chapter presents a simulation study on the performance of the K–means and the hierar-

chical bottom–up clustering methods. The purpose is to evaluate the capability of these

two clustering techniques to identify clusters according to the dependence structure of the

data generating process. After the introduction of the definitions used, the method for

each performed simulation is described. The attention is focused on the trivariate copula

function and on normal margins, having in mind the standard G× S–dimensional matrix

of microarray data wherein the rows represent the genes and the columns the experi-

mental conditions. For both the two clustering methods different simulations have been

performed by varying different conditions (e.g., the values of the marginal parameters,

distinguishing distinct, overlapping and nested margins and the value of the dependence

parameter, distinguishing dependence from independence case) and the obtained results

have been evaluated by means of different measures of performance (e.g., the overall per-

centage of well–identified clusters sizes, the rejection percentage of the null hypothesis on

the dependence parameter θ and the marginal parameters (µk, σk)). The second part of

this chapter presents and discusses the results obtained from simulations.

In light of the simulation results and of the limits of the two investigated clustering

methods, chapter five, proposes a new clustering algorithm based on copula functions

(‘CoClust’ in brief). The basic idea and the iterative procedure of the CoClust are given

in the first two sections while the third one shows the description of the R functions that

have been written for the algorithm (the main R code is in the Appendix A) and their

output. The second part of this chapter focuses on the study of the performance of this

new algorithm on simulated data from Gaussian and Frank copula functions. Different

simulation settings are chosen allowing to vary the number of clusters, the kind of margins,

the dependence parameter value. Some measures, like the percentage of well–identified

number of clusters and the not rejection percentage of null hypothesis on the dependence

parameter, are used to check the performance of the CoClust. These results are compared

with the model–based clustering studied in the same simulation settings. The CoClust

algorithm allows to overcome all observed limits of the other investigated clustering tech-

niques appearing able to identify clusters according to the dependence structure into the

data independently of the degree of overlap of margins and the dependence parameter

value. By using a criterion based on the maximized log–likelihood function of the copula

it can virtually account for any possible dependence relationship between observations.

Many peculiar characteristics are shown for the CoClust, e.g. its capability of identifying

the true number of clusters and the fact that it does not require a starting classification.

Introduction 3

The last chapter of this Ph.D. dissertation is dedicated to the application of the CoClust

to real microarray data. The database of Hedenfalk et al. (2001) is described and the

analysis of data is performed by applying the new proposed algorithm both to the gene

expressions observed in three different cancer samples and to the columns (tumor samples)

of the whole data matrix.

Conclusions about the proposed algorithm, its characteristics and performance as well

as the comparison to other well–known clustering methods are outlined. Finally, some

perspectives about possible improvements of the CoClust algorithm and its feasible appli-

cations are provided.

Chapter 1

Cluster Analysis

“Classification is a basic human conceptual activity” (Aldenderfer and Blashfield, 1985,

p. 7) and cluster analysis is a multivariate statistical procedure that forms clusters or

groups of similar entities starting with a data set containing information about the sample

of such entities.

Clustering methods can be divided into two general classes, designated supervised and

unsupervised clustering.

In supervised clustering, units/vectors are classified with respect to known reference

vectors, that is the knowledge of classes is obtained from a previously classified training

data set of patterns. In unsupervised clustering, no predefined reference vectors are used.

If we do not have or we have little a priori knowledge of the complete repertoire of

data patterns, like in the gene expression patterns for any condition, we have to favor

unsupervised methods or hybrid (unsupervised followed by supervised) approaches.

The unsupervised clustering method, hereafter “clustering method”, is essentially a

data–driven approach that attempts to discover structure within the data itself, grouping

together the feature vectors in clusters of data. Many cluster analysis can be divided into

two classes: partitioning and hierarchical methods. By means of the first class we attempt

to optimally divide objects into a fixed number of clusters while the second one produces

a nested sequence of clusters.

This chapter presents the state of art of the clustering methods, from the oldest ones,

like K–means method (MacQueen, 1967; Hartigan, 1975; Hartigan and Wong, 1979), to

the most recent ones, like the hybrid hierarchical clustering (Chipman and Tibshirani,

2006). The chapter starts with the presentation of the dissimilarity and distance measures

and ends with a brief review of clustering methods. The central part of this chapter

is dedicated to the presentation and comparison of K–means, hierarchical and model–

based clustering methods, some of the most used clustering techniques in microarray data

analysis.

5

6 Cluster Analysis

1.1 Measures of Dissimilarity and Distance

Many methods of cluster analysis begin with a matrix containing numbers indicating the

dissimilarity (or the similarity) of each pair of individuals or objects which are to be

clustered. This matrix, called proximity matrix or distance matrix, contains the value

of one of the dissimilarity measures that say how remote two objects are. There are

many ways in which the dissimilarity can be calculated. We recall here the most used

dissimilarity measures for quantitative variables underlying the difference between the

notions of distance and dissimilarity.

The most famous measure of dissimilarity is the following Euclidean distance (or me-

tric)

dij =

√

√

√

√

p
∑

f=1

(xif − xjf)2 (1.1)

that corresponds to the true geometrical distance between the points i and j with coordi-

nates (xi1, xi2, . . . , xif , . . . , xip) and (xj1, xj2, . . . , xjf , . . . , xjp) observed in a p–dimensional

space. This is very clear in the special case with p = 2 in virtue of the Pythagoras’ theo-

rem. We remind that this distance measure is largely dependent on the particular scale

chosen for the variables. One sometimes computes the weighted Euclidean distance like

dij =

√

√

√

√

p
∑

f=1

wf (xif − xjf)2 (1.2)

where each variable receives a weight according to its perceived importance.

An other well–known metric is the city block or Manhattan distance defined by

dij =

p
∑

f=1

|xif − xjf | (1.3)

that was used in a cluster analysis context by Carmichael and Sneath (1969) and owes

its peculiar name to the following reasoning. Suppose you live in a city where the streets

are all north–south or east–west and hence perpendicular to each other. Then the actual

distance you would have to travel by car to get from a location i to a location j would

total |xi1 − xj1|+ |xi2 + xj2|. This would be the shortest length among all possible paths

from i to j. “The use of the Manhattan distance is advised in those situations where,

for example, a difference of 1 in the first variable and of 3 in the second variable is the

same as a difference of 2 in the first variable and of 2 in the second one” (Kaufman and

Rousseeuw, 1990).

Both the Euclidean metric and the Manhattan metric satisfy the following mathema-

tical requirements of a distance function:

(D1) dij ≥ 0

(D2) dii = 0 (1.4)

(D3) dij = dji

(D4) dij ≤ dih + dhj

1.1 Measures of Dissimilarity and Distance 7

for all objects i, j and h. Condition (D1), the distinguishability of non identicals, merely

states that distances are nonnegative numbers and (D2), the indistinguishability of iden-

ticals, says that the distance of an object to itself is zero. Condition (D3) states the

symmetry of the distance function and the (D4) is the triangle inequality. “The latter

says essentially that going directly from i to j is shorter than making a detour over object

h” (Kaufman and Rousseuw, 1990).

We underly that the terms ‘distance’ and ‘metric’ are exchangeable while the terms

‘dissimilarity’ and ‘distance’ are not because, basically, dissimilarities are nonnegative and

symmetric but in general the triangle inequality does not hold. It is often assumed that

dissimilarities satisfy (D1), (D2) and (D3) although there are some clustering methods

that do not require any of them. For completeness, we remind that it is possible to work

with dissimilarity measures dij as well as similarity measures sij and that a similarity

measure bounded to zero and unity is the complement to one of the correspondent dis-

similarity measure. Of course, the similarity degree between two objects increases with

sij and decreases with increasing dij .

A generalization of both the Euclidean and the Manhattan metric is the Minkowsky

distance given by

dij = q

√

√

√

√

p
∑

f=1

|xif − xjf |q (1.5)

where q is any real number lager than or equal to 1. This is also called the Lq metric,

with the Euclidean (q = 2) and the Manhattan (q = 1) metrics as special cases.

There are other distances that are not Minkowsky metrics. When it is important

keeping in consideration the correlation between the variables then it is possible to use an

alternative measure called Mahalanobis distance defined by

dij = (xi − xj)
′W−1(xi − xj) (1.6)

where (xi) is the p–dimensional vector of observed variables on the unit i and W is the

pooled within–groups variance–covariance matrix. Of course, this matrix will be unknown

a priori and it will be substituted by the overall covariance matrix.

Finally, we remind the Canberra metric, a measure useful only for non–negative varia-

ble defined as follows

dij =

p
∑

f=1

|xif − xjf |
(xif + xjf)

. (1.7)

Other common measures of dissimilarity are the “1–correlation” distance

dij = 1− ρij = 1−
∑p

f=1(xif − x̄i)(xjf − x̄j)
√

∑p
f=1(xif − x̄i)2

∑p
f=1(xjf − x̄j)2

(1.8)

where x̄i is the average on unit i and the sum is over the p variables. This measure is

bounded in [0, 2] (objects with correlation 1 and −1, respectively). Variations on this

distance include a version that uses the absolute value of correlation

dij = 1− |ρij|. (1.9)

8 Cluster Analysis

The distance measures presented so far are defined for two statistical units. In the following

we discuss the dissimilarity between two populations or two variables.

If one wants to perform a cluster analysis on a set of variables that have been observed

in some population, there are other measures of dissimilarity. For instance, it is possible to

calculate the well–known Pearson product–moment correlation. Its expression is as follows

ρfg =

∑n
i=1(xif − x̄f)(xig − x̄g)

√
∑n

i=1(xif − x̄f)2
∑n

i=1(xig − x̄g)2
(1.10)

where f and g are two variables, xif is the value of variable f for the unit i, x̄f is the

mean of the variable f and n is the number of the statistical units. It is well–known that

ρ lies between 1 and -1 and does not depend on the choice of measurement units. The

correlation coefficient can be converted to dissimilarities dfg by setting

dfg =
1− ρfg

2
(1.11)

With this formula, variables with a high positive correlation receive a dissimilarity coeffi-

cient close to zero, whereas variables with a strong negative correlation will be considered

very dissimilar. In other applications one might prefer to use

dfg = 1− |ρfg| (1.12)

in which also variables with a strong negative correlation will be assigned a small dissimi-

larity. Lance and Williams (1979) compared these formulas in terms of their performance

on real data and concluded that the (1.11) was unequivocally the best.

In clustering applications is also frequently necessary to be able to define distance

measures between groups. One obvious method for constructing distance measures between

groups is to simply substitute group means for the p variables in the formulas for inter–

individual measures such the Euclidean distance (1.1) or city block distance (1.3). If, for

example, group A has mean vector x̄′
A = [x̄A1, x̄A2, . . . , x̄Ap] and group B has mean vector

x̄′
B = [x̄B1, x̄B2, . . . , x̄Bp], then one measure of the distance between the two groups would

be

dAB =

√

√

√

√

p
∑

f=1

(x̄Af − x̄Bf)2. (1.13)

However, measures which incorporate also knowledge of within group variation might be

more appropriate. One possibility is the Mahalanobis distance adapted from the form

given in (1.6) to the following

dAB = (x̄A − x̄B)′W−1(x̄A − x̄B) (1.14)

where W is a p× p matrix of pooled within–group dispersions for the two groups. Notice

that when correlations between variables are low the Mahalanobis distance will be similar

to the squared Euclidean distance calculated on the standardized data.

1.2 K–means, Hierarchical and Model–based Clustering 9

A distance measure that geneticists usually use for describing populations in terms of

genes frequencies and called it genetic distance is defined as follows

dAB = (1− cos α)
1
2 (1.15)

where

cosα =
∑

i

(piApiB)
1
2 (1.16)

and piA and piB are the gene frequencies for the ith allele at a given locus in the two

populations A and B.

A number of other possibilities for between–group measures which are not based simply

on substituting group in inter–individual measures are available. For example, the distance

between two groups could be defined as the distance between their closest members, one

from each group. This is sometimes known as nearest–neighbour distance and is the basis

of the clustering technique known as single linkage. These measures, called linkage rules,

will be described in the Section 1.2.2, p. 11.

1.2 K–means, Hierarchical and Model–based Clustering

In the introduction to this chapter we have stressed the fact that unsupervised clustering

can be divided in two groups: partitioning and hierarchical methods. Partitioning methods

attempt to find the best solution to group the data for a fixed number K of clusters. In a

hierarchical classification the data are not partitioned into a particular number of classes

or clusters at a single step but the classification consists of a series of partitions which may

run from a single cluster containing all individuals/units to n clusters each containing a

single individual/unit. More precisely, hierarchical clustering techniques can be divided in

agglomerative (bottom–up) and divisive (top–down). The first one proceeds by a series of

successive fusions of the n individuals into groups, that is, they start when all objects are

apart and we have n clusters each one containing only one object; the divisive methods,

instead, separate the n individuals successively into grouping, that is they start from one

cluster containing all the n objects.

In this section we focus our attention on the most popular partitioning method, the

K–means method, on the aggregative hierarchical clustering and on the model–based

clustering.

1.2.1 K–Means Methods

K–means algorithms (MacQueen, 1967; Hartigan, 1975; Hartigan and Wong, 1979) are

among the most popular unsupervised learning algorithms that solve the clustering pro-

blem. In the K–means methods, a cluster is represented through its centroid. The centroid

of a cluster k is defined as a point in p–dimensional space found by averaging the mea-

surement values along each dimension (variable). For example, the centroid of a cluster k

10 Cluster Analysis

is given by

x̄(k) = (x̄1(k), . . . , x̄f (k), . . . , x̄p(k)) (1.17)

where the generic f–th coordinate is

x̄f (k) =
1

nk

nk
∑

ik=1

xikf (1.18)

where ik represents the index of k–th cluster (with k = 1, 2, . . . ,K), which contains nk

objects. Notice that centroids do not have to be one of the objects in the original data

set and they are not defined when the data are dissimilarities not based on interval–scaled

measurement values.

The K–means method finds a partition that minimizes the sum of squared distances

from each observation to its cluster center x̄f (k), defined as follows

WSS =
K

∑

k=1

nk
∑

ik=1

||xikf − x̄f (k)||2. (1.19)

The distance || · || here is the Euclidean distance defined in (1.1) calculated between the

objects of a cluster and its centroid. This method is a part of the so–called variance mini-

mization techniques since it looks for a partition into K subsets that minimizes the within

sum of squares. Many different algorithms have been proposed for variance minimization

techniques and all of them are grouped under the name K–means since all these methods

start by an initial partition of the objects into K non empty subsets. These algorithms

have a common structure of operations that we are going to describe. The algorithm

consists of the following steps:

1. An initial partition of the objects into K non empty subsets is randomly generated.

Then go to step 2. The method can also start with a set of central points (centroids)

in which case one proceeds with step 3.

2. Compute seed points as the centroids of the clusters of the current partition.

3. Assign each object to the cluster with the nearest centroid. The central points

remain fixed for an entire step through the set of objects. If this is the first step, go

to step 2.

4. Update the centroid of each cluster and repeat step 3. In subsequent steps the

clustering is compared to the previous clustering and if no change in the assignment

of objects has occurred, the procedure stops. If there has a change, repeat the step

3. and 4. until any change occur.

The number of clusters is fixed a priori and the procedure consists in calculating one

centroids for each cluster and assigning each observation to one of them. The initial

choice for the centroids has little effect upon the final results even if the better choice is

to place them as much as possible far away from each other. The next step is to take

1.2 K–means, Hierarchical and Model–based Clustering 11

each point belonging to a given data set and associate it to the nearest centroid. When no

point is pending, the first step is completed and an early grouping is done. At this point

it re–calculates the centroids as center of mass of the clusters resulting from the previous

step. After we have new centroids and a new binding has to be done between the same

data set points and the nearest new centroid. This step is repeated until the centroids

do not change their location, that is, the centroids do not move anymore. This algorithm

aims at minimizing an objective function, in this case a squared error function.

The variants of this algorithm depend, essentially, on the choice of the initial cluster

centroids, the pattern assignment rule, the centroid computation and the stopping rule.

We focus our attention and we discuss some particular aspects of the Hartigan–Wong

algorithm described in detail in Hartigan (1975) whose efficient version is presented in

Hartigan and Wong (1979). The aim of the algorithm is to find a partition in K clusters of

n objects observed so that the “within–cluster sum of squares is minimized” (Hartigan and

Wong, 1979, p.100), that is to find a “K–partition with locally optimal within–cluster sum

of squares by moving points from one cluster to other” (Hartigan and Wong, 1979, p.100).

This algorithm is based on the same idea presented above but it has some differences.

It is constituted of seven steps whose two transfer steps: the optimal–transfer (OPTRA)

stage and the quick–transfer (QTRAN) stage. These two steps and the concept of live

set are the peculiarities of this algorithm. The live set is the set of initial clusters and

it ‘loses’ clusters as the algorithm runs. The QTRAN stage considers each point i, with

i = 1, 2, . . . , n and it does not check the point i if both the clusters k1 (that contains the

point at previous step of the algorithm) and k2 (that is the cluster which each point is

most likely to be transferred to) have not changed in the last n steps. The OPTRA stage,

instead, considers each point i and if cluster k was updated in the last quick–transfer

stage, then it will belong to the live set throughout the stage, otherwise, at each step, it

will not be placed in the live set if it has not been updated in the last n optimal–transfer

steps. The minimum within–cluster sum of squares is computed only over clusters in the

live set if we are analyzing points belonging to cluster in the live set. The algorithm stops

when the live set is empty.

Finally, we remind that statistical software, like R, allow to choose some characteristics

of the selected K–means algorithm, like the number of iteration, the number of times we

want to run it and the initial vector of centroids.

1.2.2 Agglomerative Hierarchical Techniques

The agglomerative methods produce a series of partitions of the data, Pn,Pn−1, . . . , P1,

starting with each object forming a cluster of size 1 (partition Pn) and joining at each step

the two ‘closest’ clusters until all objects are in a single cluster (partition P1).

There are many different agglomerative hierarchical techniques depending on the de-

finition of the distance between two groups of individuals. The measure of ‘closeness’ has

many possible definitions when clusters are not singleton points. We call them linkage

12 Cluster Analysis

rules.

The simplest technique is single linkage (or the nearest neighbour) that was first de-

scribed by Florek et al. (1951) and later by Sneath (1957) and Johnson (1967). In this

method, the distance between groups is defined as that of the closest pair of individuals,

where only pairs consisting of one individual from each group are considered. Conse-

quently, the dissimilarity between two clusters, dAB , is as follows

dAB = min
x∈A,y∈B

||x− y|| (1.20)

where the norm ||x − y|| is a distance or dissimilarity measure defined in Section 1.1 (p.

6) and x is the pattern of unit i in cluster A while y is the pattern of unit j in the cluster

B. This rule produces a chaining effect identifying ‘stretched out’ clusters.

The complete linkage (or furthest neighbour) clustering method is the opposite of the

single linkage in the sense that the distance between groups is now defined as that of the

most distant pairs of individuals from each group. The dissimilarity between two clusters,

dAB , is as follows

dAB = max
x∈A,y∈B

||x− y|| (1.21)

where the norm ||x − y|| is again one of the distance or dissimilarity measure defined in

Section 1.1. This rule performs well when the clusters are compact, roughly spherical and

of equal size.

Both single and complete clustering techniques are invariant under monotone transfor-

mation of proximity, relatively sensitive to outliers and dependent on the metric. Finally,

these two rules represent two extremes in dissimilarity assessment and tend to be sensitive

to atypical patterns since they depend on nearest or furthest neighbors. The next linkage

rule is less sensitive to atypical patterns.

In the group–average clustering, the distance between two clusters is defined as the

average of the distances between all pairs of individuals that are made up of one individual

from each group. The distance between two clusters is given by

dAB =
1

nAnB

∑

x∈A

∑

y∈B

||x− y||. (1.22)

This rule does not depend on the number of observations in each cluster and tends to

produce clusters that are a compromise between the shape of clusters produced by single

linkage and those produced by complete linkage.

The centroid based clustering represents groups through their mean value for each

variable, that is, their mean vector x̄ and ȳ, and the inter–group distance is now defined

in terms of distance between them. Of course, the variables must be defined on an interval

scale. The dissimilarity between two clusters is as follows

dAB = ||x̄A − ȳB|| (1.23)

A disadvantage of this method is that if the sizes of two groups to be merged are very

different then the centroid of the new group will be very close to that of the larger group

1.2 K–means, Hierarchical and Model–based Clustering 13

and may remain within that group. The centroid method produces a series of merging

distances that might not be increasing due to the fact that the centroids move from one

step to another one.

The Ward ’s method consists in a procedure seeking to form the partitions Pn, Pn−1, . . .

. . . , P1 that minimizes the within sum of squared distances associated with each grouping.

At each step in the analysis, the two clusters that merge are the ones that contribute

to the smallest increase of the overall sum of the squared within–cluster distances. The

dissimilarity between two clusters is as follows

dAB =
1

nA + nB

∑

x∈A,B

||x−m||2 (1.24)

where m is the centroid of the merged clusters.

We hint to the work of Eisen et al. (1998) who have proposed a variation of bottom–up

group–average linkage clustering since they define a particular similarity score. We will

describe it in detail in the last section of the Chapter 3.

Remarkably, hierarchical clustering methods have an appealing property in that the

nested sequence of clusters can be graphically represented by a tree called, dendrogram.

Usually, each join in a dendrogram is plotted at a height equal to the dissimilarity between

the two clusters which are joined. Selection of K clusters from a hierarchical clustering

corresponds to cutting the dendrogram with a horizontal line at an appropriate height.

Each branch cut by the horizontal line corresponds to a cluster.

Finally, we remind that statistical software, like R, allow to choose some characteristics

of the hierarchical clustering like the distance measure to produce the proximity matrix

and the kind of linkage rule.

1.2.3 Model–Based Clustering

Model–based clustering (Fraley and Raftery, 1998, 1999, 2000 and 2007) assumes that the

data are generated by a finite mixture of underlying probability distributions

f(x) =
K

∑

k=1

τkfk(x) (1.25)

where each probability density function fk(x) is the probability that an observation comes

from the kth mixture component that represents the kth cluster. Usually, multivariate

normal distributions with mean µk and covariance matrix Σk

φk(x|µk,Σk) = (2π)−
n
2 |Σk|−

1
2

exp{− 1
2
(xi−µk)′Σ−1

k
(xi−µk)} (1.26)

are used for these. For univariate data, the covariance matrix reduces to a scalar variance.

Clusters are ellipsoidal, centered at the means µk while the covariance Σk determine

their other geometric features. The covariance matrix for each cluster can be represented

by its eigenvalues decomposition

Σk = λkDkAkD
′
k (1.27)

14 Cluster Analysis

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements

are proportional to the eigenvalues, λk is an associated constant of proportionality. They

control, respectively, the orientation, shape, and volume of each cluster. The simplest

forms for the covariance structure can be used, decreasing the number of parameters that

have to be estimated but also decreasing the model flexibility.

The parameters of the model are estimated with an EM algorithm (initialized by

hierarchical clustering) using a fixed value for the number of clusters and a fixed covariance

structure. EM iterates between an ‘E–step’ which computes a matrix whose elements are

an estimate of the conditional probability that an observation belongs to a group k given

the current parameter estimates, and an ‘M–step’ which computes maximum likelihood

parameters given the previously computed matrix. In the limit, the parameters usually

converge to the maximum likelihood values for the Gaussian mixture model

n
∏

i=1

K
∑

k=1

τkφk(xi|µk,Σk) (1.28)

where φk is the Gaussian density function model and n is the number of observations.

This parameter estimation is then repeated for different numbers of clusters and differ-

ent covariance structures. The result of the first step is thus a collection of different models

fitted to the data and all having a specific number of clusters and a specific covariance

structure. Then, the best model in this group of models is selected. This model selection

step involves the calculation of the Bayesian information criterion (BIC for short) for each

model. In general, the smaller the value of the BIC, the stronger the evidence for the

model and number of clusters. A standard convention for calibrating BIC differences is

that differences of less than 2 correspond to weak evidence, differences between 2 and 6 to

positive evidence, differences between 6 and 10 to strong evidence and difference greater

than 10 to very strong evidence. For the formula of the BIC see Chapter 5, Section 5.1.2,

eq. (5.5), p. 71.

The advantages of the model–based clustering relies mainly on the fact that the availa-

ble statistical inference techniques are well–studied and that there is flexibility in choosing

the component distributions. There are some disadvantages. First, the quality guarantee

of the clusters is a user–defined parameter that is hard to estimate and too arbitrary,

second this algorithm produces clusters all having the same fixed diameter not optimally

adapted to the local data structure, third the computational complexity is high.

For this clustering technique the ‘mclust’ and the ‘mclust02’ R packages are available.

The model options available in these package are two in the case of one dimension: ‘E’ for

equal variance and ’V’ for varying variance while there are ten different models in more

than one dimension each one is given by varying the volumes, the shapes and the orienta-

tion of the clusters producing spherical, diagonal and ellipsoidal distributions (Fraley and

Raftery, 2007).

1.3 Other Clustering Methods 15

1.2.4 Comparison between Clustering Techniques

Clearly the K–means, the agglomerative hierarchical and the model-based clustering me-

thods are totally different. In the following we discuss briefly the differences between these

methods and underly their advantages and disadvantages.

One of the most important disadvantage of the hierarchical clustering is that it opera-

tes on the dissimilarity matrix instead of directly on observations and, consequently, it is

computationally expensive for data with many observations (large n), requiring O(n2) cal-

culations. The K–means algorithm, instead, is fast, as it never evaluates all the n(n−1)/2

pairwise dissimilarities. At each iteration, Kn dissimilarities are evaluated, and the K cen-

troids updated. This speed makes K–means a popular algorithm, allowing it to cluster

thousands of objects. The model–based clustering works directly on the data starting by

a hierarchical (or K–means) classification and has an intermediate computational com-

plexity.

An important practical issue for partitioning methods is how to choose an appropriate

number of clusters. Typically, a partitioning method is run repeatedly for different value of

k, and a loss measure is plotted against the number of clusters. Moreover we have already

discussed the issue of the choice of the initial set of centroids for the K–means method.

Since different solutions will be achieved for different starting values it is good practice

to use multiple runs of the algorithm and choose the partition for which the within sum

of squares is minimized. These two drawbacks are not present in hierarchical methods,

since they produce nested partition of data and it is possible to choose a posteriori the

number of groups even if the level to cut the dendrogram is rather arbitrary. Instead, in

the model–based clustering the EM algorithm runs for different values of the number of

clusters and chooses the K that produces a minimum BIC.

Finally, K–means algorithms do not guarantee a optimal local minimum, as it may be

possible to reassign points to different clusters and further reduce sums of squares. This is

a combinatorial optimization problem, in that in most problems the global optimum will

not be found, and one of possibly many local optima will be instead identified.

1.3 Other Clustering Methods

Sofar we have discussed the K–means, the agglomerative (bottom–up) and the model–

based clustering for the historical and practical importance they have. In this section we

briefly present other clustering techniques proposed in the literature.

The section starts by presenting the top–down hierarchical clustering, then we illu-

strate a method that combines the bottom–up and the top–down clustering. The section

continues with the presentation of two–way clustering methods, block clustering and it

ends with a brief discussion of self organized maps and self organizing tree algorithm.

16 Cluster Analysis

1.3.1 Divisive Hierarchical Methods

We have already mentioned that the idea of the divisive (top–down) hierarchical clustering

consists in finding nested partition of the dataset starting with one cluster containing all

the observations and ending with n clusters, one for each observation. The iterative process

gives rise to a tree structure in which the height of the branches is proportional to the

pairwise distance between the clusters. Like in the agglomerative hierarchical methods,

clusters are formed by cutting the tree at a certain level or height.

To understand why top–down methods are of interest, it is useful to consider weak-

nesses of bottom–up methods. Bottom–up methods can poorly reflect the clusters’ struc-

ture near the top of the tree because many joins have been made at this stage. Each

join depends on all previous joins, so if some questionable joins are made early on, they

cannot be later undone. If we are interested on identifying a few clusters, then top-down

algorithms are likely to produce sensible partitions.

This suggests that hybrid techniques that combine the best of top-down and bottom-

up methods may be useful. There are several variations on top-down clustering, each one

offering a different approach to the combinatorial problem of subdividing a group of objects

into two subgroups. Unlike the bottom-up case, where the best join can be identified at

each step, the best partition cannot usually be found and such methods attempt to find a

local optimum.

1.3.2 Hybrid Hierarchical Clustering

The hybrid hierarchical clustering is a new clustering method defined by Chipman and

Tibshirani (2006) that combines the strengths of bottom–up hierarchical clustering with

that of top–down clustering since the first one is good for identifying small clusters and

the second one is good for identifying a few large clusters. The method is built on the

new hybrid idea of a mutual cluster: a group of points closer to each other than to any

other points. Chipman and Tibshirani established theoretical connections between mutual

clusters and bottom–up clustering methods and illustrate the technique on simulated and

real microarray datasets.

In simulation experiments they compare bottom–up, top–down and hybrid methods

and they found that the hybrid and top–down methods have very low misclassification

rates and a relative within–cluster sum of squared distances (WSS) close to the real value,

with respect to the bottom–up, in the simulation of 50 clusters with 4 observations. When

they work with large clusters of random size they find that misclassification rates and the

WSS are higher than in the other simulations.

Notice that this method is available on R package.

1.3 Other Clustering Methods 17

1.3.3 Two–way clustering

Each clustering method reviewed above works on the row of the data matrix or on its

column finding either clusters of observations or clusters of variables, respectively. A

number of algorithms that perform simultaneous clustering on rows and columns of the

data matrix has been proposed even if they are not yet well–developed and they are not yet

of widespread use. The goal is to find sub–matrices, that is, subgroups of statistical units

and subgroups of variables. These clustering methods are usually called two–way clustering

methods even if they are also referred to in the literature as biclustering, coclustering and

direct clustering, among others names, and have been used in fields such as information

retrieval and data mining as well as in the microarray field.

The most important characteristic of two–way clustering is that it is possible to extract,

simultaneously, joint information about both units and variables. For example, it may be

useful to consider more than one grouping of the variables, based on different subsets of

the units. Getz et al. (2000) propose a two–way clustering method that aims at finding

subsets of the genes that result in stable clusterings of a subset of the samples. That is,

they find pairs of subsets of the genes (rows) and subsets of the samples (columns), so

that when genes are used to cluster samples, the clustering yields stable and significant

partitions. This can be especially useful when the overall clustering of the samples based

on all genes is dominated by some subset of the genes, for example genes related to the

profileration of the cells.

1.3.4 Block Clustering

The block clustering method is a top–down, row–and–column clustering of a data matrix.

It reorders the rows and columns to produce a matrix with homogeneous blocks of the

outcome. Block clustering also produces hierarchical clustering trees for the rows and

columns. The basic algorithm for forward block splitting is due to Hartigan (1972) who

called his approach “direct clustering” but it has become known as block clustering. Here

is an outline of the block clustering procedure:

• begin with the entire data in one block

• at each stage, find the row or column split of all existing blocks into two pieces,

choosing the one that produces the largest reduction in the total within block va-

riance

• use only allowed splits: if there are existing row splits that intersect the block, one

of these must be used for the rows, called a “fixed split”. The same is done for

columns. Otherwise all split points are tried

• the splitting is continued until a large number of blocks are obtained, and then some

block are recombined until the optimal number of blocks is obtained. To find the

18 Cluster Analysis

best split into two groups, one can show that it is sufficient to sort the rows (or

columns) by row (or column) mean, and then seek a split in that order.

A drawback of block clustering when applied to median centered data is that at the start,

all row and columns means are approximately zero. Hence, the procedure has difficulty

getting started. Restricting the choice to fixed splits ensures that: 1) the overall partition

can be displayed as a contiguous representation, with a common reordering for the rows

and columns, 2) the partitions of each of the rows and columns can be described by a

hierarchical tree that has been cut at an appropriate level.

An alternative strategy would be to treat the rows and columns as unordered catego-

rical variables.

1.3.5 SOM and SOTA

The Self organized maps (SOM) (Kohonen, 1990; Herrero et al., 2001) are partitioning

algorithms belonged to the first generation clustering algorithms (Moreau et al., 2002).

These algorithms are constrained so that clusters may be represented in a regular, low–

dimensional structure, such as a grid. This facilitates graphical display: clusters that are

close to one another appear in adjacent cells of the grid. Each of K clusters is represented

by a prototype object. The prototypes are points in the same space as the data, but the

estimation algorithm constrains the prototypes to a low–dimensional, grid–like structure.

The SOM clustering algorithm is quite similar to K–means, but with a constraint

reflecting prototype configuration. For two dimensions, a double indexing scheme of pro-

totypes in the grid space (by row and column) is convenient. Each step of the algorithm

adjusts prototype coordinates using only one of the data points. The grid constraint is

enforced by updates that move not just one prototype toward a data point, but also neigh-

bors (in the grid space) of the nearest prototype. Such an algorithm would typically be

run for several thousand iterations. Initial values of the grid radius would depend on the

number of clusters, but might be chosen so that about a third of all prototypes belong to

the same neighborhood.

Like in SOMs, in the self–organizing tree algorithm (SOTA) the rows data are se-

quentially and iteratively presented to the terminal nodes (located at the base of the

tree). SOTA combines both self–organizing maps and divisive hierarchical clustering. The

topology or node geometry here takes the form of a dynamic binary tree. Subsequently,

the units are associated with the nodes that maps closest to it, and the mapping of this cell

plus its neighboring nodes are updated. After convergence the node containing the most

variable population of units (variation is defined here by the maximal distance between

two units that are associated with the same node) is split into two sister nodes (causing

the binary tree to grow), whereafter the entire process is restarted. The algorithm stops

(the tree stops growing) when a threshold of variability is reached for each cell, which in-

volves the actual construction of a randomized data set and the calculation of the distances

between all possible pairs of randomized rows data.

1.3 Other Clustering Methods 19

One of the advantage of SOTA is that the number of clusters does not have to be

known in advance but the procedure provides for a statistical procedure to stop growing

the tree. Therefore, the user is freed from choosing an (arbitrary) level where the tree has

to be cut (like in standard hierarchical clustering).

Chapter 2

Copula Function

In this chapter we present the copula function from its first definition and its probabili-

stic meaning to its multivariate extension. Then we present different copula estimation

methods.

The second part of this chapter is dedicated to the classes and the families of copula

functions that we present both in the bivariate and in the multivariate case.

2.1 Introduction to the Copula function

Dependence relations between random variables is one of the most widely studied sub-

jects in probability and statistics. The nature of dependence can take a variety of forms

and unless some specific assumptions are made, no meaningful statistical models can be

contemplated.

The copula function allow us to investigate the dependence of a joint distribution

function by means of its marginal distribution functions and one or more dependence

parameters.

After introducing the Fréchet bounds, we present copula function as defined in the

Sklar’s theorem (Sklar, 1959). Then we give the probabilistic interpretation of a copula

function and its use in statistics.

2.1.1 Fréchet Bounds

Consider a K–variate joint (cumulative) distribution function

F (x1, . . . , xk, . . . , xK) with univariate marginal (cumulative) distribution functions

F1, . . . , Fk, . . . , FK . By definition, each marginal distribution can take any value in the

range [0, 1]. The joint distribution function is bounded below and above by Fréchet lower

and upper bounds, FL and FU , defined as

FL(x1, x2, . . . , xk, . . . , xK) = max

[

K
∑

k=1

Fk −K + 1, 0

]

(2.1)

FU (x1, x2, . . . , xk, . . . , xK) = min [F1, F2, . . . , Fk, . . . , FK] . (2.2)

21

22 Copula Function

for all x1, . . . , xk, . . . , xK in R̄
K where R̄ = [−∞,+∞]. Notice that the upper bound is

always a distribution function while the lower bound is a distribution function only in

the bivariate case (K = 2). For K > 2, FL may be a distribution function under some

conditions (see Joe (1997), Theorem 3.6).

2.1.2 Sklar’s Theorem

The concept of ‘copula’ or ‘copula function’ as named by Sklar (1959) originates in the

context of probabilistic metric spaces. The idea behind this concept is the following: for

multivariate distributions, the univariate margins and the dependence structure can be

separated and the latter may be represented by a copula.

The word ‘copula’ is a latin noun that means ‘bond’. The term copula is used in

grammar and logic to describe that part of a proposition which connects the subject

and predicate. In statistics, it now describes the function that ‘joins’ one–dimensional

distribution functions to form multivariate ones and may serve to characterize several

dependence concepts. The copula of a multivariate distribution can be considered as the

part describing its dependence structure as a complement to the behavior of each of its

margins.

Copula functions first appeared in the probability metrics literature through the fol-

lowing Sklar’s theorem (Sklar, 1959):

Theorem 2.1 (Sklar’s theorem) A two–dimensional copula is a function

C : [0, 1]2 → [0, 1] which satisfies the following conditions:

1. C is grounded, that is C(u, 0) = C(0, z) = 0, ∀ (u, z) ∈ [0, 1]2

2. C(u, 1) = u and C(1, z) = z, ∀ (u, z) ∈ [0, 1]2

3. C is two–increasing, that is for every rectangle [u1, u2]× [z1, z2] whose vertices lie in

[0, 1]2, such that u1 ≤ u2, z1 ≤ z2, we have that

C(u2, z2)− C(u2, z1)− C(u1, z2) + C(u1, z1) ≥ 0.

It is straightforward to prove that copulas are bounded:

Theorem 2.2 Copula functions satisfy the following inequality:

W (u, z) = max (u + z − 1, 0) ≤ C(u, z) ≤ min (u, z) = M(u, z) (2.3)

for every point (u, z) ∈ [0, 1]2.

The lower bound is usually denoted by C− and called minimum copula and the upper

bound is denoted by C+ and called maximum copula.

The existence of lower and upper bounds also suggests the following definition of

concordance order. We can say that the copula C1 is smaller than the copula C2, written

C1 ≺ C2, if and only if C1(u, z) ≤ C2(u, z) for every (u, z) ∈ I2. Notice that not all

2.1 Introduction to the Copula function 23

copulas can be compared and that this order is only partial. For detail see Cherubini et

al. (2004).

The multivariate extension of Sklar’s theorem takes the following expression:

Theorem 2.3 (Sklar’s theorem in K dimensions) A copula function is a function C

from the unit cube [0, 1]K to the unit interval [0, 1] that satisfies the following conditions:

1. C is grounded, that is C(u) = C(u1, . . . , uk−1, 0, uk+1, . . . , uK) = 0, for every

u ∈ [0, 1]K

2. its one–dimensional margins are the identity function on [0, 1] : Ck(u) = u,

k = 1, 2, . . . ,K

3. C is K–increasing.

For the definition of K–increasing functions see Cherubini et al. (2004) and Nelsen (2006).

In this context the most important thing is to know that grounded, K–increasing functions

are non–decreasing with respect to all entries (see Cherubini et al., 2004, p. 130).

Analogously to the univariate case, multivariate copulas are bounded:

Theorem 2.4 Every copula satisfies the following inequality:

W = max (u1 + . . . + uK −K + 1, 0) ≤ C(u) ≤ min (u1, . . . , uK) = M (2.4)

∀u ∈ [0, 1]K .

The upper bound is denoted by C+ and satisfies the definition of copula while the lower

bound C− never satisfies it for K > 2. For detail see Cherubini et al. (2004).

2.1.3 Probabilistic Interpretation of Copula Function

We can note that, from the definition of Sklar’s theorem, copulas are joint distribution

functions of standard uniform random variates: C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2). We

know that the probability integral transform of random variables X and Y , X → F1(X)

and Y → F2(Y), are distributed as standard uniform Uk, k = 1, 2: F1(X) ∼ U1 and

F2(Y) ∼ U2. Also, since copulas are joint distribution functions of standard uniforms, a

copula computed in F1(x), F2(y) gives a joint distribution function in (x, y):

C(F1(x), F2(y)) = Pr(U1 ≤ F1(x), U2 ≤ F2(y))

= Pr(F−1
1 (U1) ≤ x, F−1

2 (U2) ≤ y)

= Pr(X ≤ x, Y ≤ y)

= F (x, y).

These remarks highlight the link between Sklar’s theorem and its probabilistic meaning.

For the formulation of the following theorem we follow Nelsen (2006).

In terms of distribution functions Sklar’s theorem states the following:

24 Copula Function

Theorem 2.5 (Sklar’s theorem) Let F be a joint distribution function with margins

F1 and F2. Then there exist a copula C such that for all x, y in R̄

F (x, y) = C(F1(x), F2(y)) (2.5)

If F1 and F2 are continuous, then C is unique. Otherwise, C is uniquely determined on

RanF1 × RanF2, where RanF is the range of the domain of function F . Conversely, if

C is a copula and F1 and F2 are distributions functions, then the function F defined by

(2.5) is a joint distribution function with margins F1 and F2.

Proof: See Nelsen, (2006), p. 21. According to this theorem we can write F (x, y) =

C(F1(x), F2(y)) and split the joint probability into the margins and a copula, so that the

latter only represents the ‘association’ between X and Y .

As a consequence of Sklar’s theorem, the minimum and maximum copulas, C− and

C+, are named respectively the Fréchet lower bound and the Fréchet upper bound and we

can write as follows

max (F1(x) + F2(y)− 1, 0) ≤ F (x, y) ≤ min (F1(x), F2(y)) (2.6)

that is the Fréchet–Hoeffding inequality for distribution functions.

As regards the relationship between the copula function and the dependence measures

the function D(u1, u2) = C(u1, u2) − u1u2 is very interesting since it is equal to zero if

and only if two random variables are independent. Recall that X and Y are independent

random variables if and only if F (x, y) = F1(x)F2(y) and that it is evident that Sklar’s

theorem entails that X and Y are independent if and only if have the product copula

C⊥(u1, u2) = u1u2.

The probabilistic interpretation of a K–dimensional copula function is similar to the

two–dimensional case. For the formulation of Sklar’s theorem we follow Nelsen (2006).

Theorem 2.6 (Sklar’s theorem in K–dimensions) Let F be a K–dimensional joint

distribution function with margins F1, . . . , Fk, . . . , FK . Then there exist a copula C such

that for all x ∈ R̄
K

F (x1, . . . , xk, . . . , xK) = C(F1(x1), . . . , Fk(xk), . . . , FK(xK)). (2.7)

If F1, F2, . . . , Fk, . . . , FK are continuous, then C is unique; otherwise, C is uniquely de-

termined on RanF1×RanF2× . . . RanFk × . . .×RanFK . Conversely, if C is a K–copula

and F1, F2, . . . , Fk, . . . , FK are distribution functions, then the function F defined in (2.7)

is a K–dimensional joint distribution function with margins F1, . . . , Fk, . . . , FK .

Proof: See Nelsen (2006).

As in the two–dimensional case, Sklar’s theorem guarantees that the cumulative joint

probability function can be written as a function of the cumulative marginal ones and vice

versa

F (x) = C(F1(x1), F2(x2), . . . , Fk(xk), . . . , FK(xK)). (2.8)

2.1 Introduction to the Copula function 25

We will say that the random vector X = (X1,X2, . . . ,Xk, . . . ,XK) has the copula C or

that the latter is the copula of X. The generalization of the Fréchet–Hoeffding inequality

for multivariate distribution functions is straightforward.

Summarizing, a copula function is a multivariate distribution function with standard

uniform marginal distributions, that is a multivariate distribution function defined on the

K–dimensional unit cube [0, 1]K such that every marginal distribution is uniform on the

interval [0, 1]. In the multidimensional case the possibility of writing the joint cumulative

probability function in terms of the marginal ones allow us to interpret multidimensional

copulas as dependence functions opening the way to a number of different applications.

We will discuss the advantages of using copula functions in statistical modeling in the

next section.

2.1.4 Modeling consequences

According to Sklar’s theorem, any multivariate distribution can be modeled through its

marginal distributions and a copula function separately. Indeed, conceptually, Sklar’s

theorem states that for any bivariate distribution function F (x, y), where F1(x) = F (x,∞)

and F2(y) = F (∞, y) are the univariate marginal probability distribution functions, there

exists a copula C such that F (x, y) = C(F1(x), F2(y)), where we indicate the distribution

C with its cumulative distribution function. The copula contains all the information on the

nature of the dependence between two random variables independently from their marginal

distributions. The information on the marginal distributions and the information on the

dependence are kept separate and their influence can be assessed clearly.

The separation between marginal distributions and dependence parameters explains

the modeling flexibility given by copulas. From theoretical point of view copula functions

allow a double ‘infinity’ of degrees of freedom:

i) define the appropriate margins

ii) choose the appropriate copula

while when modeling from the practical point of view then we can decompose any estima-

tion problem in two steps: the first step is for the margins and the second one is for the

parameters of the copula function. This will be more clear in the next section which will

be dedicated to the estimation methods for copula function.

The advantages of a representation through copula function are many. First of all,

the classical approach to measure dependence, the linear correlation function, is a valid

measure of dependence only within the restrictive class of elliptical distributions. Copula

functions of dependence are free of such limitation. Second, copulas enable to model

the marginal distributions and the dependence structure separately. The former concerns

the shape of the distribution function (such as symmetry, skewness, fat tails and so on),

whereas the copula represents the kind of dependence. Third, one can have combinations

of parametric and non parametric marginal distributions with copulas. Finally, copulas

allow to fit any margin to different random variables and these distributions may vary

26 Copula Function

from one random variables from the next. This has interesting consequences in copula

estimation field.

2.2 Estimation for Copula Functions

In this section we present estimation methods for copula function which have been pro-

posed in the literature.

There is more than one method to estimate copula functions. The most famous method

if the full maximum likelihood (FML, from now on) approach that estimates simultane-

ously all the parameters, that is, those for the margins and those for the copula. A second

method is a sequential 2–step maximum likelihood method, called inference for margins

(IFM, from now on), in which the marginal parameters are estimated in the first step and

are used to estimate the parameter of the copula function in the second step. A third

method is the canonical maximum likelihood (CML, from now on) that is not widely used

in practice consists in estimating the copula parameters without specifying the margins.

We introduce the density of a multivariate copula and then we will present the methods

above cited concentrating our attention on the two–steps method since we will use it on

simulated and real data. In this section we will focus on continuous random variables.

2.2.1 Density of a Copula Function

This section introduces the notions of density and canonical representation of a copula

distribution function.

The density c(u1, . . . , uk, . . . , uK) associated to a copula

C(u1, . . . , uk, . . . , uK) is a function in [0, 1]K as follows:

c(u1, u2, . . . , uk, . . . , uK) =
∂KC(u1, u2, . . . , uk, . . . , uK)

∂u1∂u2 . . . ∂uk . . . ∂uK
. (2.9)

For continuous random variables, the copula density is related to the density of the distri-

bution F , denoted as f , by the canonical representation

f(x1, . . . , xk, . . . , xK) = c(F1(x1), . . . , Fk(xk), . . . , FK(xK))
K
∏

k=1

fk(xk) (2.10)

where

c(F1(x1), . . . , Fk(xk), . . . , FK(xK)) =
∂KC(F1(x1), . . . , Fk(xk), . . . , FK(xK))

∂F1(x1) . . . ∂Fk(xk) . . . ∂FK(xK)
(2.11)

and fk are the densities of the margins

fk(xk) =
dFk(xk)

dxk
. (2.12)

It is straightforward to find these relationships also in the two–dimensional case in which

the copula density is again equal to the ratio of the joint density f and the product of

the two marginal densities f1 and f2 . From the expression in (2.10) it is clear also that

2.2 Estimation for Copula Functions 27

the copula density takes a value equal to 1 everywhere the original random variables are

independent.

The canonical representation is very useful in statistical estimation, in order to have

a flexible representation for joint densities and in order to determine the copula, if one

knows the joint and marginal distributions.

2.2.2 The FML method

Recalling the canonical representation in (2.10) and in (2.11) we can say that, in general,

a statistical modeling problem for copulas could be decomposed into two steps:

• identification of the marginal distributions;

• definition of the appropriate copula function.

Suppose that we observe n independent realizations from a multivariate distribution in

(2.8),
{

(Xi1,Xi2, . . . ,XiK)′ : i = 1, 2, . . . , n
}

and suppose that the multivariate distribu-

tion is specified by K margins with cumulative distribution function Fk and probabi-

lity distribution function fk, both with k = 1, 2, . . . ,K, and a copula function c. Let

θ1 = (β′
1,β

′
2, . . . ,β

′
k, . . . ,β

′
K)′ be the vector of marginal parameters and θ2 be the vec-

tor of copula parameters. The parameter vector to be estimated is θ = (θ′
1,θ

′
2)

′. The

log–likelihood function is

l(θ) =
n

∑

i=1

log c {F1 (Xi1;β1) , . . . , FK (XiK ;βK) ;θ2}+ (2.13)

+

n
∑

i=1

K
∑

k=1

log fi (Xik;βk)

The maximum likelihood estimator of θ is as follows

θ̂FML = arg max
θ∈Θ

l(θ) (2.14)

where Θ is, of course, the parametric space.

Throughout this section, we assume that the usual regularity conditions (see Serfling,

1980, and Shao, 1999) for asymptotic maximum likelihood theory hold for the multivariate

model (that is the copula) as well as for all of its margins (the univariate probability density

functions). Under these regularity conditions the maximum likelihood estimator exists and

it is consistent and asymptotically efficient; also, it is asymptotically normal, and we have

√
n(θ̂FML − θ0)→ N(0,F−1(θ0)) (2.15)

where F−1(θ0) is the usual Fisher’s information matrix and θ0 is the true value.

The covariance matrix of θ̂FML (Fisher’s information matrix) may be estimated by the

inverse of the negative Hessian matrix of the likelihood function.

28 Copula Function

2.2.3 The IFM method

The maximum likelihood method, previously shown, could be very computationally inten-

sive, especially in the case of a high dimension, because it is necessary to estimate jointly

the parameters of the marginal distributions and the parameters of the dependence struc-

ture represented by the copula. Still, if we look more closely at the log–likelihood function,

we will note that it is composed of two positive terms: one term involving the copula den-

sity and its parameters, and one term involving the margins and all parameters of the

copula density. Starting from this considerations Joe and Xu (1996) proposed a two–stage

estimation method called inference for the margins (IFM). This method is useful because

usually the dimension K (the number of margins) is large. The IFM method estimates

the marginal parameters β in a first step by

θ̂1IFM = arg max
β

n
∑

i=1

K
∑

k=1

log fi(Xik;β) (2.16)

when the marginal distributions have the same parameters β or by an ML estimation for

each margin

β̂kIFM = arg max
βk

n
∑

i=1

log f(Xik;βk) (2.17)

when each marginal distribution Fk has its own parameters βk and θ1 = (β′
1, . . . ,β

′
k,β

′
K)′;

then, in the second step, estimates the dependence parameters θ2 given θ̂1IFM by

θ̂2IFM = arg max
θ2

n
∑

i=1

log c
[

F1

(

Xi1; β̂1IFM

)

, . . . , FK

(

XiK ; β̂KIFM

)

;θ2

]

(2.18)

Joe (1997) proved that, like the MLE, the IFM estimator (from the two steps) verifies,

under regular conditions, the property of asymptotic normality, and we have

√
n(θ̂IFM − θ0)→ N(0, Ģ−1(θ0)) (2.19)

where Ģ−1 is the Godambe information matrix (Godambe, 1960).

Finally, we stress that the equivalence of the two estimators, ML and IFM, in general,

does not hold. Indeed, calling l the whole log–likelihood function, lk the log–likelihood of

the k–th marginal, and lc the log–likelihood for the copula itself, we have that the IFM

estimator is the solution of the system:

(

∂l1
∂β1

,
∂l2
∂β2

, . . . ,
∂lk
∂βk

, . . . ,
∂lK
∂βK

,
∂lc
θ2

)

= 0′ (2.20)

while the MLE comes from solving

(

∂l

∂β1

,
∂l

∂β2

, . . . ,
∂l

∂βk

, . . . ,
∂l

∂βK

,
∂l

θ2

)

= 0′. (2.21)

2.3 Parametric Families of Copula 29

2.2.4 Other estimation methods

In literature other estimation methods, parametric and non–parametric, are available. We

mention the canonical maximum likelihood (CML) estimation, a method for the estimation

of copula parameters without specifying the margins. It could be seen as a maximum

likelihood method given the observed margins. This method could be described as follows

1. estimate the margins via empirical distribution functions without any assumption

on the parametric form of F̂k(xik);

2. estimate the copula parameters via the maximum likelihood method maximizing the

following expression

θ̂2 = arg max
θ2

n
∑

i=1

ln c(F̂1(xi1), . . . , F̂k(xik), . . . , F̂K(xiK));θ2) (2.22)

Notice that it is possible to use also non parametric methods for estimating copula

functions. We just remind the possibility of estimating copula function via kernel copula

using empirical copula and a polynomial approximation for it. For detail see Cherubini et

al. (2004).

2.3 Parametric Families of Copula

In this section we are going to present several families or classes of copulas in their bivariate

representation and, successively, in their multivariate representation. For each family,

we give the definition of the copula function, the parametric space of the dependence

parameters and the properties of the kind of dependence explained by particular models.

2.3.1 Bivariate Copula Functions

Here we present some common bivariate copula functions. We essentially digress on copula

functions for elliptical distributions and about copula functions belonging to the so–called

Archimedean family.

The simplest copula function is the product copula that has the following form

C(u1, u2) = u1u2 (2.23)

where u1 and u2 are uniformly distributed over (0, 1). This copula is important because

it corresponds to the independence case.

The Farlie–Gumbel–Morgenstern (FGM) copula takes the form

C(u1, u2) = u1u2(1 + θ(1− u1)(1− u2)) (2.24)

where the dependence parameter θ is bounded on the interval [−1, 1]; when it is equal

to zero then the FGM copula collapses to independence. This copula was proposed by

Morgenstern (1956) and it is a perturbation of the product copula and it is quite simple but

30 Copula Function

the parametric space of θ does not correspond to either Fréchet bound and, consequently,

it is useful when dependence between the two margins is modest in magnitude.

The Normal (Gaussian) copula has the following expression

C(u1, u2) = ΦG

(

Φ−1(u1),Φ
−2(u2); θ

)

(2.25)

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1 − θ2)1/2

{−(s2 − 2θst + t2)

2(1 − θ2)

}

dsdt

where Φ is the cumulative distribution function of the standard normal distribution and

ΦG(u1, u2) is the standard bivariate normal distribution with correlation parameter

−1 < θ < 1. This copula is flexible in that it allows for equal degrees of positive and

negative dependence and includes both Fréchet bounds in its permissible range. Notice

that the Gaussian copula function is positively ordered with respect to the parameter, that

is, CGa
ρ=−1 ≺ CGa

ρ<0 ≺ CGa
ρ=0 ≺ CGa

ρ>0 ≺ CGa
ρ=1 and it is comprehensive since CGa

ρ=−1 = C− and

CGa
ρ=1 = C+.

The Student’s t–copula with θ1 degrees of freedom and correlation θ2 has the following

form

C(u1, u2) =

∫ t−1
θ1

(u1)

−∞

∫ t−1
θ2

(u2)

−∞

1

2π(1− θ2
2)

1
2

{

1 +
s2 − 2θ2st + t2

θ1(1− θ2
2)

}−
θ1+2

2

dsdt (2.26)

where t−1
θ1

(u1) is the inverse of the cumulative distribution function of the standard uni-

variate t–distribution with θ1 degrees of freedom. This is an example of copula with two

dependence parameters, θ1 and θ2. The first one controls the heaviness of the tails and

the second one is the dependence parameter. When the number of degrees of freedom

diverges, the copula converges to the Gaussian one.

The Clayton copula (1978), also referred to as the Cook–Johnson copula (1981) even

if it was first studied by Kimeldorf and Sampson (1975a, 1975b), takes the following

expression:

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−
1
θ (2.27)

where the parameter θ is restricted on the region (0,∞). As θ approaches zero, the margins

become independent. As θ approaches to infinity, the copula attains the Fréchet upper

bound while this copula can not account for negative dependence.

The Frank copula (1979) is as follows

C(u1, u2) = −1

θ
ln

{

1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}

(2.28)

where the dependence parameter θ may assume any real value

(−∞,+∞). Independence is attained as θ reaches zero. Unlike the Clayton copula, the

Frank copula can account for negative dependence and it is symmetric in both tails like the

next two copula functions we present. These two reasons and the fact that the Frénchet

upper and lower bound are included in the range of permissible dependence makes it very

popular and used.

2.3 Parametric Families of Copula 31

The Gumbel copula (1960) takes the form

C(u1, u2) = exp

[

−
(

− log uθ
1 − log uθ

2

)
1
θ

]

(2.29)

The dependence parameter takes values in the interval [1,∞). Values of 1 and infinity

correspond to independence and the Fréchet upper bound, respectively, but, as the Clayton

copula it does not allow negative dependence.

The last three copula functions belong to the Archimedean Copulas. The Archimedean

family of copula functions has been proven useful in empirical modeling and it is popular

because of ease of derivation. Bivariate Archimedean copulas take the general following

form

C(u1, u2) = γ−1 (γ(u1) + γ(u2)) (2.30)

where γ−1 is the inverse of the (strict) generator γ(u) : [0, 1]→ [0,∞] and the dependence

parameter θ is imbedded in the functional form of the generator γ. In order for (2.30)

to be a copula, the generator needs to be a complete monotone function. A generator

uniquely defines an Archimedean copula. For the details see Nelsen (2006). Finally,

Archimedean copulas are symmetric, that is, C(u1, u2) = C(u2, u1), and associative, that

is C(C(u1, u2), u3) = C(u1, C(u2, u3)).

Notice that there one a lot of different copula functions belonging to the Archimedean

family and a lot of different families or classes of copula functions but they are not very

used in practical applications also for their analytical complexity. For an extended review

see Nelsen (2006) and Joe (1997).

2.3.2 Multivariate Copula Functions

In this section we present the copula functions presented till now giving their multivariate

definitions and the parametric space of their parameter/s.

The multivariate Farlie–Gumbel–Morgenstern (FGM) copula (Johnson and Kotz, 1975)

has the following extension to a (2K −K − 1)–parameter family of K–copulas, K ≥ 3:

C(u1, . . . , uk, . . . , uK) = u1 . . . uk . . . uK

[

1 +

K
∑

k=2

(2.31)

∑

1≤j1≤...≤jk≤K

θj1j2...jk
(1− uj1) . . . (1− ujk

)

where each parameter must satisfy |θ| ≤ 1. Note that each k–margin, 2 ≤ k ≤ K, of an

FGM K–copula is an FGM k–copula. For detail see Nelsen (2006).

The multivariate Normal (or Gaussian) copula has the following expression:

C(u1, . . . , uk, . . . , uK) = ΦG

[

Φ−1(u1), . . . ,Φ
−k(uk), . . . ,Φ

−K(uK); θ
]

(2.32)

where Φ is the cumulative distribution function of the standard univariate normal distri-

bution.

32 Copula Function

The multivariate Students t–copula (MTC) is as follows

C(u1, . . . , uk, . . . , uK) =
∫ t−1

ν (u1)
−∞ . . .

∫ t−1
ν (uk)

−∞ . . .
∫ t−1

ν (uK)
−∞

Γ(ν+n
2)|R|−

1
2

Γ(ν
2)(νπ)

n
2

(2.33)
(

1 + 1
ν x

′R−1x
)− ν+K

2 dx1 . . . dxk . . . dxK

where t−1
ν is the inverse of the univariate cumulative distribution function of Student’s t

with ν degree of freedom and R is the correlation matrix.

The Clayton K–copula has the following expression:

C(u1, . . . , uk, . . . , uK) =

[

K
∑

k=1

u−θ
k −K + 1

]− 1
θ

(2.34)

where the parameter θ restricted on the region (0,∞). As θ approaches zero, the marginal

distributions become independent.

The multivariate Frank copula is as follows:

C(u1, . . . , uk, . . . , uK) = −1

θ
ln

{

1 +

∏K
k=1(e

−θuk − 1)

(e−θ − 1)K−1

}

(2.35)

with θ ∈ (0,∞) as long as K ≥ 3. θ = 0 corresponds to independence.

The multivariate Gumbel copula is as follows

C(u1, . . . , uk, . . . , uK) = exp

−
[

K
∑

k=1

(− ln uk)
θ

]

1
θ

(2.36)

with θ > 1.

Finally, we generalize the generator of the Archimedean copula functions recalling the

expression in (2.30). A multivariate Archimedean copula is constructed through a (strict)

generator γ as

C(u1, . . . , uk, . . . , uK) = γ−1 (γ(u1), . . . , γ(uk), . . . , γ(uK)) (2.37)

where γ−1 is the inverse of the (strict) generator γ and in order for (2.37) to be a copula,

the generator needs to be a complete monotone function.

For an extended review of classes of copula functions see Nelsen (2006) and Joe (1997).

Chapter 3

Microarray Experiments

This chapter is dedicated to the biological and genetic concepts relevant to understand

the birth of the theoretical ideas at the basis of our work and the kind of applications

involved. After a brief introduction to DNA, genes and the genetic code, we explain what

a DNA microarray and microarray technology are, how it is possible to produce microarray

data and which kinds of microarray experiments exist in the literature. We conclude this

chapter by a section on the applications of cluster analysis and copula functions introduced

in the previous chapters to the microarray and genetic data.

3.1 DNA, RNA, Gene Expressions and Microarray

In this section we introduce the background of microarray experiments. We introduce

the concepts of DNA, gene and genetic code, as well as the basic of gene expression and

microarray analysis.

3.1.1 DNA and the Central Dogma

The deoxyribonucleic acid (DNA) is the most important macromolecule that controls

most of the activities of life. The genetic material of all known organisms consists of

one or more long molecules of DNA. It is made up of chains of chemical building blocks

called nucleotides and each nucleotide consists of a phosphate group, a deoxyribose sugar

molecule, and one of four different nitrogenous bases usually referred to by their initial

letter: Guanine (G), Adenine (A), Cytosine (C) and Thymine (T). Genetic information

is encoded in DNA through sequences of these nucleotides that are connected each other

via a link of the 5’ 1 hydroxyl phosphate group of one pentose ring of the deoxyribose

sugar to the 3’ OH group of the next pentose ring. It is conventional to write nucleic acid

sequences in the direction from the 5’ end to the 3’ end and each chain is said to have

polarity. DNA forms a double helix of two intertwined chains called strands of nucleotides.

The two chains run in opposite directions. It was proposed in the famous work of Watson

1The carbons in the deoxyribose sugar group of a nucleotide are assigned numbers followed by a prime

symbol (1’,2’. . .).

33

34 Microarray Experiments

DNA-

Replication
DNA

RNA

Reverse

TranscriptionTranscription

RNA-

Replication

Translation

Protein

The Central Dogma of Molecular Biology

Figure 3.1: Central Dogma of Molecular Biology

and Crick (1953) that the two nucleotide chains are held together by hydrogen bounds

between the nitrogenous bases. The polarity of the double helix requires specific hydrogen

bonding between the bases so that they fit together. Guanine pairs only with cytosine

whereas adenine only with thymine and these bases are said complementary.

Each cell contains a complete copy of its genetic material in the form of DNA molecules.

The genetic information can be copied as a transportable copy composed of ribonucleic

acid (RNA) molecules. This process is called transcription. The RNA is transferred to

a machinery that synthesizes protein molecules based on the information carried by the

RNA. This process is called translation. The process sequence from DNA to RNA and

from RNA to protein is called the central dogma of molecular biology (see Fig. 3.1) that

formulates how the information is stored and converted to all components and interactions

that build up a living organism.

3.1.2 Genes, RNA, Genetic Code and Proteins

Genes are the units of the DNA sequence that control the hereditary traits of an organism.

A gene can be defined as a segment of DNA that defines a functional RNA.

There are two general classes of RNA: messenger RNA (mRNA) and functional RNA,

that is the transfer RNA (tRNA) and the ribosomal RNA (rRNA). The mRNA takes part

in the process of decoding of genes in sequences of amino acids while the functional RNAs

take part into the protein synthesis machinery that translates the mRNA into proteins.

The sequences of nucleotides are important because they code for sequences of amino acids

that dictate the structure of a protein with a defined function. The relationship between a

sequence of DNA and the sequence of the corresponding protein is called the genetic code.

3.2 DNA Microarray 35

The genetic code is read in groups of three nucleotides, or codons, each of which

represents one amino acid. There are 43 = 64 different codons because each position can

be occupied by one of the four nucleotides. As there are only 20 amino acids, several

different codons can code for the same amino acid. Consequently, the genetic code is said

to be degenerate for this many–to–one relationship. A line chain of building blocks called

amino acids is the primary structure of a protein.

The total set of genes carried out by an individual or a cell is called its genome that

defines the genotype. Today the complete genome sequences of several species are known.

With microarray experiment we can study all the genes of an organism simultaneously.

3.1.3 Gene Expression, Microarray and cDNA

Gene expression is the process by which the mRNA, and eventually a protein, is synthe-

sized from the DNA template of each gene. The first stage of this process is transcription,

where a DNA copy of one strand of the DNA is produced. In the eukaryotes organisms this

is followed by RNA splicing during which the introns are cut out of the primary transcript

and a mature mRNA is made. Transcription and splicing occur in the nucleus. The next

stage is the translation of the mRNA into protein. This occur in the cytoplasm. In the

process of the gene expression, RNA provides not only the essential substrate (mRNA)

but also components of the protein synthesis apparatus (tRNA and rRNA).

A microarray is typically a glass or a polymer slide onto which DNA molecules are

attached at fixed locations called spots or features. There are may be tens of thousands of

spots on an array, each containing tens of millions of identical DNA molecules of lengths

from tens to hundreds of nucleotides. For gene expression studies, each of these molecules

should identify a single mRNA molecule, or transcript, in a genome.

Complementary DNA (cDNA) is used in recombinant technology and it is complemen-

tary to a given mRNA and it is usually made by the enzyme reverse transcriptase that

allows a mature mRNA to be retrieved as cDNA without the interruption of non–coding

introns (see Fig. 3.1). In microarray technology the process of reverse transcription is

frequently used to incorporate fluorescent dyes into cDNA to the mRNA transcripts.

3.2 DNA Microarray

A DNA microarray, called also gene chip or DNA chip or gene array, is a collection

of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon

chip forming an array for the purpose of expression profiling, monitoring expression levels

for thousand of genes simultaneously. The affixed DNA segments are known as probes

(although some sources will use different nomenclature such as reporters), thousands of

which can be placed in known locations on a single DNA microarray.

Microarray technology is still developing rapidly, so that there are not established stan-

dards for microarray experiments, for processing of the raw data and for measuring gene

36 Microarray Experiments

expression levels. The Microarray Gene Expression Data Society (MGED) has developed

recommendations for ‘Minimum Information About a Microarray Experiment (MAIME)’,

that attempt to define the set of information sufficient to interpret the experiment and

the results of the experiment. It is possible to find these criteria in Brazma et al. (2000).

Measuring gene expression using microarray is relevant to many areas of biology and

medicine, such as studying treatments and disease. Microarray may be used to measure

gene expression levels in different ways.

3.2.1 Microarray Technology

Microarray allow large numbers of DNA clones with known sequences to be immobilized

as an array of detection units (probes) while the pool of RNAs to be examined (targets) is

fluorescently labeled and then hybridized to the detectors. There are three main microar-

ray technological platforms, namely spotted cDNA arrays, spotted oligonucleotide arrays

and in–situ oligonucleotide arrays. The differences between these three platforms lie in

the way the arrays are produced and the types of probes used.

In spotted microarray or two–channel or two–colour microarrays, the probes are cDNA

or oligonucleotides. When this kind of array is hybridized with cDNA from two sam-

ples to be compared (for example, patient and control) that are labeled in two different

fluorophores (for example, green and red usually labeled by Cy3 and Cy5, respectively),

the samples can be mixed and hybridized to one single microarray that is successively

scanned, allowing the visualization of up–regulated and down–regulated genes in one go.

The downside of this procedure is that the absolute levels of gene expression cannot be

observed, but only one chip is needed per experiment.

In oligonucleotide microarray or single–channel microarrays, the probes are designed

to match parts of the sequence of known or predicted mRNAs. There are commercially

available designs that cover complete genomes from some companies and these microar-

rays give the estimations of the absolute value of the gene expression and therefore the

comparison of two conditions requires the use of two separated microarrays.

In–situ oligonucleotide arrays use a combination of photolithography and solid–phase

oligonucleotide chemistry to synthesize short nucleotide probes directly on the solid sup-

port surface. The test and the reference samples are hybridized separately on different

chips while for either spotted cDNA arrays or spotted oligonucleotide arrays, a test and a

reference sample labeled with two different fluorescent dyes are simultaneously hybridized

on the same array.

3.2.2 Data generation

It is possible to divide each microarray experiment in two main parts, each one consisting

of different steps. The first part is the material processing and data collection and the

second one is the information processing. We follow the scheme in Causton, Quackenbush

and Brazma (2003).

3.2 DNA Microarray 37

The material processing and data collection can be divided in the following steps:

1. array fabrication

2. preparation of the biological samples to be studied

3. extraction and labeling of RNA from the samples

4. hybridization of the labeled extracts to the array

5. scanning of the hybridized array.

The starting point for information processing is the scanned image.

The information processing can be also divided into distinct stages:

6. image quantification, that is localization of the spots on the image and measurement

of their fluorescence intensities

7. data normalization and integration, that is constructing the gene expression data

matrix that describes values from sets of spot quantifications from different hy-

bridizations

8. gene expression data analysis, e.g. finding differentially expressed genes or clusters

of similarity expressed genes

9. generation of new hypotheses about the underlying biological processes

Hybridization of the labeled target to the probes on a microarray is performed by adding

the targets dissolved in hybridization buffer to the slide within a confined space, followed

by incubation for a given amount of time at a certain temperature. The hybridization can,

for example, be performed under a microscope slide cover slip. Automated hybridization

stations that agitate the hybridization solution over the slide and allow for better control

of hybridization conditions have been developed and this gives lower backgrounds and

better reproducibility.

After hybridization, an image of the array with hybridized fluorescent dyes must be

acquired. Microarray scanners have confocal lasers or other light sources to produce light at

the wavelength that excites the fluorescent dyes. The fluorescent emission intensity of the

dyes is captured in high–resolution monochrome images acquired for each fluorescent dye.

The scanner software then displays a composite colored image for multi–dye hybridizations.

The goal is to measure, for each spot on the array, the relative amount of fluorescence

from each dye hybridized with its target. Next, the probe spots have to be identified and

the fluorescence intensities quantified from the high–resolution image.

An essential feature of all the imagine analysis softwares is that the digitized microarray

images are processed and the data are extracted and combined in a table. This is known as

a spot quantitation matrix. Each row corresponds to one spot on the array and each column

represents different quantitative characteristics of that spot, such as mean or median pixel

38 Microarray Experiments

intensity of the spot and local background. Generation of the spot quantitation matrix is

only an intermediate stage in data processing. The data from multiple hybridizations must

be further transformed and organized in a gene expression matrix. In this matrix each row

represents a gene (or transcript) by the index g = 1, 2, . . . , G and each column represents

a sample or an experimental condition by the index s = 1, 2, . . . , S, such as a particular

biological sample. Each position in such a matrix characterizes the expression level of a

particular gene under a particular experimental condition. Here a general expression:

x11 . . . x1s . . . x1S

... . . .
... . . .

...

xg1 . . . xgs . . . xgS

... . . .
... . . .

...

xG1 . . . xGs . . . xGS

(3.1)

The simultaneous hybridization of two specimen samples labeled with Cy3 (green) and

Cy5 (red) dyes has special analysis requirements. The fluorescence signals from the two

dye channels have to be normalized in order to calculate correct expression ratios. Nor-

malization not only corrects for different dye properties but also for concentration diffe-

rences between the co–hybridized test and reference samples. In practice, expression data

obtained from either spotted cDNA arrays or spotted oligonucleotide arrays are often re-

ported as an expression ratio. The expression ratio is simply the normalized ratio of the

fluorescence intensity of the test sample and the reference sample for a given gene.

The material processing steps are preceded by information processing in the experi-

mental design to which we dedicate the next section.

3.3 Experimental Designs

Microarray data provide information about the overall amount of mRNA in a sample,

therefore differences in mRNA abundance detected using microarrays reflect not only

differences in gene expression but also any differences in the composition of the sample.

The amount of mRNA can be considered a reflection of the expression level of a transcript

only if the samples are relatively homogeneous and the stability of the transcript does not

change between the conditions being compared. The used experimental design play an

important role in the analysis of the gene expression data.

In this section we briefly present a selective review of experimental design issues arising

in a microarray experiment.

3.3.1 The Main Experimental Designs

It is possible to divide the types of experimental designs by the number of factors involved

in the experiments and by the structure of the experiment. The different setting that a

factor may take on in an experiment are referred to as factor levels.

3.3 Experimental Designs 39

A microarray experiment that involves only one factor may be suited for assessing

changes in gene expressions across a single factor of interest. A one–way comparison of

the expression levels across factor levels can be used to identify a differentially expressed

gene.

In a two–way analysis, there are two factors involved in the comparison. For example,

if we have two types of mice, mutant and wild type, and we are interested in observing the

toxin exposure, which has three levels, according to the kind of mouse, then the two–way

factor structure consists of six combinations of levels.

When there are more than two factors involved in the experiment, the multi–way

structure is often called a factorial design. An S–way factorial design consists of S factors

having k1, k2, . . . , kS levels, respectively. If all possible k1 × k2 × . . . × kS combinations

levels are taken into account, then the design is called complete factorial design.

When the number of factors in an experiment is large, the number of possible combina-

tions of the factor levels required for a complete factorial design is huge and it is necessary

to use only a subset of all possible combinations of factor levels. This chosen subset is

called a fractional replication or a fractional factorial design.

After having decided the number of factors and their levels involved in the experiment,

it is necessary to decide the structure of the experimental design. We have the completely

randomized design that is an experiment in which a random sample of statistical units

drawn from the population are randomly assigned to the factor levels. If an equal number

of mice are assigned to each treatment, then the design is called balanced.

The randomized complete block design was born in agricultural experiment and, in

genetic experiments, it can reduce variability improving the detection of significant diffe-

rences. For example, multiple RNA samples taken from the same mouse could be used for

different treatments so as to eliminate possible intra–sample variations. The S treatments

of interest would be randomly assigned to S RNA samples from each of the mice. When

the number of treatment conditions matches the number of experimental units in each

block, as in this example, the design is called a randomized complete block design.

The incomplete block design is a design with the number of experimental units in each

block less than all possible treatment conditions of interest. For example, if only two RNA

samples are available for each of 4 mice and there are four treatment conditions of interest,

then only two of fours treatments can be applied to each mouse.

The balanced incomplete block design (BIBD) is an incomplete block design where all

treatments are replicated the same number of times and any pair of treatments appears

together equally often within blocks.

Finally, when each level of one factor can not be observed in combination with each

level of any other factor in a multi–factor study, the factors cannot be crossed. In these

experiments the factors may be nested and the designs are called nested designs. Nesting

refers to the condition where all levels of one factor are found within only one level of

a second factor. In the design structure of an experiment, nested effects occur when the

40 Microarray Experiments

experimental units for one factor are different for each experimental unit of a second factor.

In the next section we focus on some widely used experimental designs in the context

of microarray analysis that will be of interest for our applications.

3.3.2 Experimental Designs in Microarray Studies

In microarray experiment it is very common to use the reference design in which the

variation in the RNA from spot to spot can be controlled by having the same reference

RNA sample on each spot. A common practice is to compute ratios of the raw signals

as estimates of differential expression between the two samples spotted together. For

example, Alizadeh et al. (2000), to study molecular classification of human lymphomas

designed the Lymphochip by selecting genes that are preferentially expressed in lymphoid

cells and genes with suspected roles in processes important in cancer or immunology. A

fluorescent cDNA sample, labeled with Cy5 dye, was prepared from each experimental

mRNA sample. A reference cDNA sample, labeled with Cy3 dye, was prepared from

a pool of mRNAs isolated from nine different lymphoma cell lines. Each Cy5–labeled

experimental cDNA sample was combined with the Cy3-labeled reference sample and

the mixture was hybridized to the microarray. The fluorescent ratio was determined for

each gene and gene expression measurements were obtained for normal and malignant

lymphocyte samples using Lymphochip microarrays.

The time–course experiment is often used in microarray studies because knowing when

and where a gene is expressed can provide a strong clue about its biological role. A common

set up for this kind of experiment is similar to the design previously described. DeRisi et al.

(1997) conducted a systematic investigation of gene expression of the yeast Saccharomyces

cerevisiae. In their experiment, cells from yeast culture were inoculated into fresh medium

and grown for 21 hours. After an initial 9 hours of growth, samples were harvested at seven

successive 2–hour intervals. They labeled the cDNA prepared from cells at each successive

time point with Cy5, then mixed it with at Cy3–labeled ‘reference’ cDNA sample prepared

from cells harvested at the first interval after inoculation. We note that a short time course

experiment can be regarded as a single factor experiment with time as a factor. What

makes it different from other single factor experiments is the additional information from

the natural ordering of time course samples.

The reversed–color design allow us to eliminate the confounding between treatments

effects and dye effects typical of a reference design in which one dye is used to label

the reference sample and another dye is used to label other treatment samples. This

confounding can be eliminated by repeating the experiment with the dye colors reversed.

In the loop design, the S pairs of treatments (t1, t2), (t2, t3), . . . , (tS−1, tS), (tS , t1) are

spotted on two arrays with color channel reversed for one array relative to its mate.

3.4 Data Analysis for Gene Expression Data 41

3.4 Data Analysis for Gene Expression Data

The first published microarray used for gene expression profiling was in the 1995 by Schena

et al. (1995) and the first complete eukaryotic genome, the Saccharomyces cerevisae, on

a microarray, that is the first use of microarray to study global gene expression, was

published in 1997 by DeRisi et al., both on Science.

Microarray data analysis is based on the hypothesis that there are biologically relevant

patterns to be discovered in the data. For example, there may be genes whose patterns of

expression either allow the samples to be classified or reflect specific cellular responses.

The analysis of a DNA microarrays poses a large number of statistical problems and

many statistical methods have been used on microarray data. In the literature it is possible

to find a very large set of statistical applications, from ANOVA models to Principal Com-

ponents, from Artificial Neural Networks to Support Vector Machines, from Hierarchical

Bayes Methods to Mixture Models, from Discriminant Analysis to Survival Analysis. A

basic difference between the traditional biomedical research and the microarray data ana-

lysis is the dimensionality of the data. A microarray study is typically performed on one

hundred samples, each of which consisting of many thousand of observations. One of the

first used statistical tool is the technique for reducing the dimensionality of the data so

that it is possible to visualize them.

In this section we discuss briefly the preprocessing phase of the data and we present

some applications of clustering methods and copula functions to microarray data.

3.4.1 Preprocessing of the Data

Before clustering or other methods can be applied to microarray data it is necessary to

perform some additional operations on the data. The most common preprocessing steps

are:

1) Normalization of the hybridization intensities within a single array experiment. In

a two–channel cDNA microarray experiment, several sources of noise (such as diffe-

rences in labeling, in detection efficiency, and in the quantity of initial RNA within

the two channels) create systematic sources of biases. These biases can be assessed

and removed. Since many sources of distortion can be considered and since they

can be estimated and adjusted in a variety of ways, many different normalization

procedures exist;

2) Nonlinear Transformations: it is common practice to pass expression values through

a nonlinear function, often the logarithm transformation is used. This is especially

suited for dealing with expression ratios (coming from two–channel cDNA microarray

experiments, using a test and reference sample), since expression ratios are not

symmetrical. Up–regulated genes have expression ratios between one and infinity,

while down–regulated genes have expression ratios squashed between one and zero.

42 Microarray Experiments

Taking the logarithms of these expression ratios will produce a symmetry between

expression values of up– and down–regulated genes. For detail see Moreau et al.

(2002).

3) Missing Values (due to technical reasons) Replacement: the inability of many cluster

algorithms to handle such missing values, like the K–means methods, needs the

imputation of these values. Simple replacements such as a replacement by zero

or by the average of the expression profile often disrupt these profiles. Indeed,

replacement by average values relies on the unrealistic assumption that all expression

values are similar across different experimental conditions. Because of an erroneous

missing value replacement, genes containing a high number of missing values can be

assigned to the wrong cluster. More advanced techniques of missing value imputation

(which use the nearest neighbor method or the singular value decomposition) take

advantage of the rich information provided by the expression patterns of other genes

in the data set. Finally, note that some implementations of algorithms use only the

measured values to derive the clusters and as such obviate the need for missing value

replacement.

4) Filtering: a set of microarray experiments, generating gene expression profiles, fre-

quently contain a considerable number of genes that do not really contribute to

the biological process that is being studied. The expression values of these pro-

files often show little variation over the different experiments even if they will have

seemingly random and meaningless profiles after standardization. Filtering removes

gene expression profiles from the data set that do not satisfy some simple criteria.

Commonly used criteria include a minimum threshold for the standard deviation of

the expression values in a profile and a threshold on the maximum percentage of

missing values.

5) Standardization or Rescaling: Biologists are mainly interested in grouping gene ex-

pression profiles that have the same relative behavior. Genes showing the same

relative behavior but with diverging absolute behavior will have a relatively high

Euclidean distance. Cluster algorithms based on this distance measure will there-

fore wrongfully assign these genes to different clusters. This effect can largely be

prevented by applying standardization or rescaling to the gene expression profiles to

have zero mean and unit standard deviation. Gene expression profiles showing the

same relative behavior will have a small(er) Euclidean distance after rescaling.

3.4.2 Clustering for Gene Expression Data

Clustering is one of the most used unsupervised method in gene expression data analysis.

For microarray data, clustering may be applied to the genes whose expression levels are

measured with the expectation that functionally related co–regulated genes will show

expression patterns. On the other hand, one may use clustering to analyze the expression

3.4 Data Analysis for Gene Expression Data 43

profiles of a set of cell or tissue samples with the hope that samples with similar biological

characteristics will be grouped together.

Cluster algorithms are explicitly or implicity based on a quantitative measure of dis-

similarity between the objects of interest. In the case of row and column vectors of a gene

expression data matrix, typical examples are the Euclidean distance in (1.1) (p. 6) or 1

minus the correlation coefficient (eq. (1.9) p. 7 and/or eq. (1.12), p. 8).

The first application of a cluster analysis on microarray data was made by Eisen et

al. (1998). They worked on the gene expression in the budding yeast Saccharomyces

cerevisiae by means of the hierarchical clustering based on a measure of distance that is

a form of the correlation coefficient. For any two genes X and Y observed on a series of

S conditions, this measure is as follows

dE(X,Y) =
1

S

S
∑

s=1

(

Xs −Xoffset

σx

)(

Ys − Yoffset

σy

)

(3.2)

where

σX =

√

√

√

√

S
∑

s=1

(Xs −Xoffset)2

S
(3.3)

and similarly for Y . When Xoffset is set to the mean of observations on X, then σX becomes

the standard deviation of X and dE(X,Y) is exactly equal to the Pearson correlation

coefficient of the observations of X and Y .

Values of Xoffset which are not the average over observations on X are used when there

is an assumed unchanged or reference state represented by the value of Xoffset, against

which changes are to be analyzed. In all of the examples presented in Eisen et al. (1998),

Xoffset is set to 0, corresponding to a fluorescence ratio of 1.0. They use a hierarchical

clustering algorithm to compute a dendrogram that assembles all elements into a single

tree. For any set of g genes by using eq. (3.2) an upper–diagonal similarity matrix which

contains similarity scores for all pairs of genes is computed. The matrix is scanned to

identify the highest value representing the most similar pair of genes. A node is created

joining these two genes, and a gene expression profile is computed for the node by averaging

observation for the joined elements (missing values are omitted and the two joined elements

are weighted by the number of genes they contain). The similarity matrix is updated with

this new node replacing the two joined elements, and the process is repeated g − 1 times

until only a single element remains. Although this algorithm usually gives similar results

to average–linkage clustering, results can differ.

In literature many different applications of many different clustering methods on mi-

croarray data have been proposed. We cite the work of Sørlie et al. (2001) on the hie-

rarchical clustering, the work of Yeung et al. (2001) on the model–based clustering, the

work of Madeira and Oliveira (2004) on the biclustering algorithm, the work of Tavazoie

et al. (1999) on the K–means algorithm and the work of Tamayo et al. (1999) who use a

two-dimensional grid in the context of microarray data presenting a grid–structured sum-

mary of the cluster represented by each prototype. Each summary is typically a plot of

44 Microarray Experiments

expression levels of a prototype gene across the different (time–ordered) experiments. An

interesting and particular application of the model–based clustering is the work of Pa et

al. (2002) in which they do not cluster gene–expression patterns but a summary statistic,

the t–statistic. Finally, one the most recent new clustering method applied to microarray

data is the hybrid hierarchical clustering of Chipman and Tibshirani (2006). For detail

see Chapter 1, Section 1.3.2, p. 16 of this work.

An important but difficult question in cluster analysis is the validity of the results.

3.4.3 Copula Function for Gene Expression Data

Copula functions are a popular multivariate modeling tools in many field of applications

where the multivariate dependence is a matter of interest. In actuarial science, copulas

are used in modeling dependent mortality and losses (Frees et al., 1996; Frees and Valdez,

1998; Frees and Wang, 2005) while in finance, copulas are used in asset allocation, risk

modeling, risk management (Embrechts et al., 2003; Cherubini et al., 2004).

Our attention focused on biomedical, genetics and microarray studies. In biomedi-

cal studies, copulas are used in modeling correlated event times (see Wang and Wells,

2000) where they proposed a model selection procedure for bivariate survival models for

censored data generated by the Archimedean copula family (see Chapter 2, Section 2.3.1,

p. 29). Copulas are also used in modeling competing risks in Escarela and Carriere (2003)

where they built a model to assess the effects of concomitant variables and a dependence

parameter on each marginal survival model and on the relationship between the causes

of death. They have applied it to a prostate cancer data set. In genetics, for modeling

the joint distribution of a binary trait (disease) within families it is described how a class

of copula models for the analysis of exchangeable categorical data can be incorporated

into a familial framework (Trégouët et al., 1999). Li et al. (2006) use a Gaussian copula

function for quantitative trait linkage analysis and define a new method called “copula

VC method” that models the non–normal distribution using gaussian copulas.

Copula functions have been widely used in biomedical and genetic studies but actually

there are not many applications to microarray data. We cite the work of Owzar et al.

(2007) who use a copula approach for detecting prognostic genes associated with relevant

clinical outcome variables such as time–to–death or time–to–recurrence of disease. They

estimate the pairwise association between the outcome and each gene expression via a

semi–parametric approach.

Chapter 4

Simulation Study

In this chapter we show the results of a simulation study put forward with the aim of

assessing the performance of clustering methods for microarray data. In particular, we

explore the capability of K–means and hierarchical clustering methods of identifying clu-

sters of genes in a variety of situations and for different dependence settings as reproduced

by means of copula functions.

We identify and compare three set of measures and outline the relevance of the results

for empirical applications.

4.1 Methodology and Definitions

In this section we describe the definitions and the methodology followed in the simulation

study. We define the steps of each simulation and the three different set of measures of

performance we use to evaluate the results.

4.1.1 Motivation and Basic Ideas

We use copula functions to evaluate the goodness of two clustering methods: the K–means

(Chapter 1, Section 1.2.1, p. 9) and the bottom–up hierarchical cluster analysis (Chapter

1, Section 1.2.2, p. 11). With ‘goodness of a clustering method’ we mean the capability

of a clustering method to keep in consideration the kind of the dependence structure

existing between groups of data, that is, the capability of finding clusters according to the

dependence structure existing between themselves.

The basic idea is the following: we think of each cluster like a set of realizations of one

random variable. Having K clusters means having K random variables. Consequently, we

can study the dependence relation between the clusters, that is, between random variables,

by means of copula modelling. Copula functions (defined in the Chapter 2, p. 21) allow

us to study the dependence of a joint distribution function by means of their marginal

distribution functions. In our case, each cluster of data identifies one marginal probability

distribution function and the dependence parameter of the chosen copula function allow

us to define the dependence relationship between themselves.

45

46 Simulation Study

As we have seen in the first chapter, the Hartigan–Wong algorithm searches for a

K–partition with locally optimal within–cluster sum of squares by moving points from

one cluster to another. At each step, the algorithm finds the clustering that minimizes

the distance between each point and the cluster taken in consideration, over all clusters

(see Chapter 1, Section 1.2.1, p. 9). Such algorithm uses the Euclidean distance between

points/observations in the space. At the same time, it is well–known that in statistical

literature there are many different methods to realize a bottom–up hierarchical clustering

since we can choose between many different linkage rules and distance measures and it

is very hard to choose a priori the best method with the most appropriate measure that

suits a particular problem. In the simulation study we use the Euclidean distance and the

average method (see Chapter 1, Section 1.1, eq. (1.1), p. 6 and Section 1.2.2, eq. (1.22),

p. 12) for making homogeneous comparison between the two methods.

The main purpose of this study is to assess whether joining and analyzing together

by means of copula function founded clusters using K–means and hierarchical methods

it is possible to discover the dependence structure existing into the data. This means to

evaluate if these two clustering methods are able to appropriately divide the observations

(genes in a microarray experiment) in clusters such that they could be considered as

generated by a set of independent/dependent random variables.

From the biological point of view, this idea lies on the fact that the quantity of mRNA

produced by genes with similar or not biological functions can be dependent each other.

The classical clustering techniques used in microarray data analysis ignore the dependence

between genes. Other techniques were used to express the relation between dependent

genes, e.g. Friedman et al. (2000) utilize Bayesian network for modeling gene expression

data trying two types of distribution (multinomial and Gaussian ones) but in clustering

methods only the correlation coefficient was used. Since we think genes come from a same

cell related to each other, we can think of each subset of genes as drawn from a marginal

probability distribution function and the whole set of genes can be discovered through

a multivariate distribution function as defined via copula. The final goal is to identify

genes whose quantity of mRNA depend on that of other genes in order to discover the

co–functionality of observed genes in different biological samples. Our purpose is to check

if clusters identified by means of K–means or hierarchical methods correspond to these

sets of genes. We think that the information on the dependence structure between clusters

of genes in a microarray experiment could improve the knowledge about their relationship

(involved in different or in the same functions) and enrich their biological interpretation.

Throughout this work we call between dependence the dependence between different

clusters, that is, the dependence among the random variables that generate them.

4.1.2 Definitions and Simulation Design

In this simulation study we focus our attention on the trivariate Gaussian copula function

(see Chapter 2, Section 2.3.2, eq. (2.32), p. 31) and on normal margins, having in mind

4.1 Methodology and Definitions 47

the standard matrix of microarray data introduced in Chapter 3 (Section 3.2.2, eq. (3.1),

p. 38) wherein the rows represent the genes and the columns the conditions (e.g. tissues

or instants time) and of applying clustering algorithms to its rows.

Both for the K–means and the hierarchical clustering methods we make many different

simulations by varying the following conditions:

1. the number S of arrays (columns of microarray matrix);

2. the number n of observations (drawn from each margin of the multivariate proba-

bility function);

3. the value of the dependence parameter θ;

4. the values of the marginal parameters, (µk, σk) with k = 1, 2, 3;

5. the kind of the dispersion matrix:

1 θ1 θ2

θ1 1 θ3

θ2 θ3 1

. (4.1)

When we work on one array (one column of a microarray standard matrix), we call

small a sample of 300 observations (rows) and big a sample of 3000 observations (rows).

When we work on more than one array at the same time (in particular we work on seven

arrays in the light of the real database we are going to use) we call small a sample of 2100

observations (rows×columns) and big a sample of 21000 observations (rows×columns).

Notice that the total number of observations in the case of seven arrays is chosen such

that the number of the rows (genes) of the microarray matrix is the same of that of a

single array.

Once we fixed clustering method, copula function, probability model for margins, num-

ber of observations and number of arrays, the only two variable factors are the parameters

of the marginal distributions and the value of the dependence parameter θ. Consequently,

we perform simulations with θ = 0.99 (maximum positive dependence) and simulations

with θ = 0 (perfect independence), and for each one of these two cases we perform diffe-

rent simulations by varying the marginal parameters. We choose them distinguishing the

following three different cases:

1) Well–separated margins:
{

µ1 + 3σ1 < µ2 − 3σ2

µ2 + 3σ2 < µ3 − 3σ3.
(4.2)

2) Overlapping margins: at least one of the two conditions expressed in (4.2) does not

hold.

3) Nested margins:
{

µ1 + 3σ1 6 µ2 + 3σ2 6 µ3 + 3σ3

µ1 − 3σ1 > µ2 − 3σ2 > µ3 − 3σ3.
(4.3)

48 Simulation Study

−15 −10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

Nested Margins
N

or
m

al
M

ar
gi

n
s

x

← N (0, 2)

← N (0, 3)

← N (0, 4)

Figure 4.1: Nested Margins

If we think of these marginal distributions in succession on the real axis, we can call

well–separated the margins that have less than the (0.03/2)% of the observations of the

right tail overlapping to (those of) the left tail of the adjacent probability function. The

opposite situation is when we have three margins nested to each other, so that more than

the 99, 7% of the observations of each probability function are in common with the other

ones; we call them nested (Fig. 4.1).

The intermediate situation occurs when at least one marginal distribution has more

than the (0, 03/2)% of observations in common with the adjacent margin; we call them

overlapping (Fig. 4.2).

For each one of these scenarios we simulate 1000 replications. The performance of

each simulation is based on the three set of measures of performance defined in the next

section.

4.1.3 Measures of Performance

We use three different set of measures to evaluate the performance of the two clustering

methods under study in each scenario: the first set is about the post–clustering value of θ,

the second one is about the identified cluster sizes and the last one is about the goodness

of fit clusters to margins. In detail, we have the following three sets of measures:

1. cluster effect, (c.e, in brief): the difference between the real value of the dependence

parameter, θ, and the average over replications of its estimates post–clustering, θ̂∗,

and the rejection percentage (r.p., in brief) of the null hypothesis H0 : θ = 0 or

H0 : θ = 0.99, respectively for the independence and the dependence case;

4.1 Methodology and Definitions 49

−10 0 10 20 30

0.
00

0.
05

0.
10

0.
15

0.
20

Overlapping Margins

N
or

m
al

M
ar

gi
n
s

x

N (2, 2)→

← N (16, 3)

Figure 4.2: Overlapping Margins

2. the overall percentage of well–identified cluster sizes, (p.w.s., in brief): the percentage

of replications in which the number of the observations of each cluster matches the

true one
(

G
3 in our case

)

and the percentage of at least one well–identified cluster

size, (p.o.w.s., in brief): the percentage of replications in which the number of

observations in at least one cluster matches the true one;

3. goodness of fit clusters to the margins: the capability of identifying the exact distri-

bution for margins that we evaluate by means of three statistical tests: the Student’s

t test for the mean value, the Chi Square test for the variance and the Kolmogorov–

Smirnov test for the normality distribution in each cluster; we calculate the percen-

tage of rejection of null hypothesis (R.P., in brief) on mean, variance and normality

distribution with respect to the number of replications.

The first set contains measures of global performance of the clustering and concerns the

capability of the clustering method of taking out correctly the kind of between clusters de-

pendence while the second one concerns the well–identification of cluster sizes and the third

one concern the capability of the clustering method of identifying clusters corresponding

to the margins of the true multivariate distribution.

The statistical test for controlling the null hypothesis H0 : θ = 0 or H0 : θ = 0.99

utilizes the result of Joe (1997) discussed in Chapter 2 (Section 2.2.3, eq. (2.19), p. 28)

whereby it is possible to use a Gaussian test for θ by using the Godambe information

matrix (Godambe, 1960) as standard deviation of the estimator for θ. These tests and the

statistical tests for analyzing margins are two–tailed (α = 0.05).

50 Simulation Study

The good performance of a clustering technique lies on (1) the proximity of the esti-

mation of θ after simulation, that is, the mean value calculated on the total number of

simulations, that we indicate by θ̂∗, to the theoretical value and on a low percentage of

rejection of H0 about θ, (2) the proximity of the overall percentage of well–identified clus-

ter sizes and (3) the exact identification of the probability function of the margins, that

is on a low percentage of rejection of the null hypothesis on mean, variance and Gaussian

distribution for each identified cluster. Our attention essentially focus mainly on the first

set of measures of performance. Of course, this is not sufficient for evaluating the overall

performance since, as it will be possible to understand later, we can obtain (θ − θ̂∗) ≃ 0

even if we have clusters containing observations drawn from marginal probability function

different from the true one.

In summary, first we are going to check the first sets of measures and then we look at

the compliance between clusters and margins.

4.1.4 The Methods

In this section we present the rationale behind the use of copula functions as a means for

measuring the performance of clustering methods. The steps are as follows:

i) generate 3× n = G× S observations

x11 . . . x1S . . . x1n

x21 . . . x2S . . . x2n

x31 . . . x3S . . . x3n

from a trivariate distribution F by using a Gaussian copula C with dependence

parameter θ (see eq. (2.32), p. 31) with Gaussian margins F1, F2, F3:

F (x1, x2, x3) = C (F1(x1), F2(x2), F3(x3); θ) (4.4)

whose density is as follows

f(x1, x2, x3) = c (F1(x1), F2(x2), F3(x3); θ)

3
∏

k=1

fk (xk;βk) (4.5)

and βk = (µk, σk) is the parameter vector of the k–th margin;

ii) arrange the observations in a G×S matrix (in which each row represents a gene and

each column an experimental condition) in a way such that the first
G

3
rows contain

n observations generated by the first Gaussian margin, the second
G

3
rows contain

the n observations generated by the second Gaussian margin and the third
G

3
rows

contain n observations generated by the third margin:

4.2 K–means Clustering of Simulated Data 51

x11 . . . x1S

x1(S+1) . . . x1(2S)

...
...

...

x1(n−S) . . . x1n

x21 . . . x2S

x2(S+1) . . . x2(2S)

...
...

...

x2(n−S) . . . x2n

x31 . . . x3S

x3(S+1) . . . x3(2S)

...
...

...

x3(n−S) . . . x3n

⇒

x11 x12 . . . x1s . . . x1S

...
...

...
...

...
...

x(G
3)1 x(G

3)2 . . . x(G
3)s . . . x(G

3)S

x(G
3

+1)1 x(G
3

+1)2 . . . x(G
3

+1)s . . . x(G
3

+1)S

...
...

...
...

...
...

x(2G
3)1 x(2G

3)2 . . . x(2G
3)s . . . x(2G

3)S

x(2G
3

+1)1 x(2G
3

+1)2 . . . x(2G
3

+1)s . . . x(2G
3

+1)S
...

...
...

...
...

...

xG1 xG2 . . . xGs . . . xGS

;

in this way, each triple of rows (S–dimensional observations) (xG
3
,x 2G

3
,xG), is a

realization of the trivariate distribution function F ;

iii) apply the (K–means or hierarchical) clustering method to the rows of this data

matrix and select the results of the classification in three clusters;

iv) check the goodness of the obtained clustering by means of the measures of perfor-

mance defined in the previous section.

We underly that the c.e. is computed by estimating θ through the second step of the IFM

method (see Chapter 2, Section 2.2.3, eq. (2.18), p. 28), while the marginal parameters

are computed by using the first step of the IFM method (see Chapter 2, Section 2.2.3, eq.

(2.17), p. 28).

When we work on one array, we have S = 1, G = 300 and nk = 100, (k = 1, 2, 3), in

the case of a small sample and S = 1, G = 3000 and nk = 1000, (k = 1, 2, 3), in the case

of a big sample. When we work on multiple arrays, we have S = 7, G = 300 ed nk = 700,

(k = 1, 2, 3), in the case of a small sample (the total number of observations is 2100) while

S = 7, G = 3000 and nk = 7000, (k = 1, 2, 3), in the case of a big sample (the total

number of observations is 21000).

4.2 K–means Clustering of Simulated Data

In this section we investigate the performance of the K–means clustering algorithm to find

clusters according to the dependence structure of the data generating process. We draw

the data from a trivariate distribution defined by means of a Gaussian copula function with

positive or null dependence parameter. Such a copula joins the three kinds of Gaussian

marginal distributions defined in Section 4.1.2, p. 46. In each of these simulations of

1000 replications the dispersion matrix of the copula function is exchangeable, that is as

52 Simulation Study

follows:

1 θ θ

θ 1 θ

θ θ 1

. (4.6)

In the following subsections we present the obtained results distinguishing between the

single array and the array matrix case. As mentioned above we compute the three set

of measures of performance and we put the results in two different tables: the first one

concerns the results of the computed measures about θ̂∗ and about the identified cluster

sizes and the second one contains the results of the statistical tests on the parameters and

the probability model of margins.

4.2.1 The Single Array Case

We remind that we call small a sample of 300 observations, (100 drawn from each one

margin) placed in a 300×1 matrix (consequently, the first 100 rows contain the observations

of the first margin, and so on) while we call big, a sample composed of 3000 observations

placed in a 3000 × 1 matrix (in this case, of course, the first 1000 rows of the matrix

contain the observations drawn from the first margin and so on).

For each one of the two considered values of the dependence parameter, we show the

results in two tables. As we have stressed, the first table presents results about the first

and the second set of performance measures, that is, about the analysis of dependence

between clusters and the evaluation about the cluster sizes, while the second one presents

the results about the third set of measures of performance, that is, the goodness of fit

clusters to margins. Notice that in the Tab. 4.1 the null hypothesis on the dependence

parameter is H0 : θ = 0 while in the Tab. 4.2 is H0 : θ = 0.99. Finally, we indicate in brief

by R.P. of Test the percentage of rejections of a null hypothesis H0 on the mean value,

the variance and the Gaussian distribution for each of the three clusters indicated by C1,

C2 and C3.

First of all, we note in Tab. 4.1 that the c.e. and the r.p. about the null hypothesis on

θ increase as soon as the margins become overlapping, irrespective of the sample size. A

similar trend have the p.w.s. and the p.o.w.s. that decrease as soon as the margins become

overlapping till to become zero in the case of nested margins. Even if the cluster effect and

the rejection percentage of the null hypothesis on θ are low, the p.w.s. is such that the

obtained clustering can not be deemed very good. As for the goodness of fit clusters to

margins (see Tab. 4.3), the performance of this clustering method is not good in general

(the rejection percentages are too high in each simulated setting) but it is better in the

case of well–separated and overlapping margins than in that of nested margins. On the

whole, the K–means method give us quite good results only in the case of small sample

and well–separated margin even if we do not consider it very satisfactory.

The obtained results for the maximum dependence case are similar to those observed in

the previous one both for the analysis of the performance about the clustering and for the

4.2 K–means Clustering of Simulated Data 53

Table 4.1: K–means Method Simulation Results, One Array Case, θ = 0

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated 0.0003 −0.0003 5.4% 0% 20.1%

Big Overlapping 0.0006 −0.0006 6% 0% 8.6%

Nested −0.0356 0.0356 38.2% 0% 0%

Well–separated −0.0023 0.0023 6.3% 46.9% 94.3%

Small Overlapping −0.0018 0.0018 6.5% 24.7% 83.3%

Nested −0.0302 0.0302 11.9% 0% 1.1%

goodness of fit clusters to margins. In particular, the K–means method has a performance

that gets worse as soon as the margins are more and more overlapping (see the increasing

trend of the c.e. and r.p. in Tab. 4.2) and it totally fails in the case of nested margins

with a full percentage of rejections of H0 : θ = 0.99 irrespective of the sample size. Even

here, the method seems to work better on small samples than the big ones. However its

performance is not acceptable in both cases since also on well–separated margins the null

hypothesis on the dependence parameter is rejected in more than half replications. The

goodness of fit (Tab. 4.4) is, in general, not satisfactory in all the setting investigated:

only in the case of non nested margins and small sample the rejection percentage of the

Table 4.2: K–means Method Simulation Results, One Array case, θ = 0.99

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated 0.3482 0.6418 98.8% 2.1% 34.6%

Big Overlapping 0.1802 0.8098 100% 0% 5.7%

Nested −0.0365 1.0265 100% 0% 0%

Well–separated 0.8420 0.1480 50.1% 65.6% 94.8%

Small Overlapping 0.6320 0.3580 75.1% 31.9% 77%

Nested −0.0443 1.0343 100% 0% 1.6%

54 Simulation Study

T
ab

le
4.

3:
K

–m
ea

n
s

M
et

h
o
d

S
im

u
la

ti
on

R
es

u
lt
s,

O
n
e

A
rr

ay
ca

se
,
θ

=
0

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

6
9
.5

%
7
1
.1

%
6
9
%

7
4
.5

%
6
9
.7

%
6
9
.8

%
4
0
.9

%
4
2
.3

%
4
2
%

B
ig

O
v
er

la
p
p
in

g
7
3
%

7
7
.6

%
6
8
%

8
2
.2

%
7
2
.2

%
6
9
%

6
3
.7

%
6
2
.3

%
6
2
%

N
es

te
d

9
0
.3

%
8
9
.8

%
9
1
.7

%
9
7
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

W
el

l–
se

p
a
ra

te
d

7
2
.3

%
7
0
.9

%
6
9
.5

%
7
2
.3

%
6
8
.7

%
6
8
.5

%
1
0
.9

%
1
0
.2

%
1
0
.6

%

S
m

a
ll

O
v
er

la
p
p
in

g
7
1
.3

%
7
1
.7

%
7
3
%

7
0
.8

%
6
6
.6

%
7
0
.8

%
1
4
.9

%
1
4
.7

%
1
4
.6

%

N
es

te
d

9
0
%

8
9
.1

%
9
1
.1

%
5
8
.5

%
9
9
.4

%
1
0
0
%

1
0
0
%

9
9
.9

%
9
9
.9

%

T
ab

le
4.

4:
K

–m
ea

n
s

M
et

h
o
d

S
im

u
la

ti
on

R
es

u
lt
s,

O
n
e

A
rr

ay
ca

se
,
θ

=
0.

99

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

6
8
.9

%
7
1
.3

%
6
8
.5

%
7
4
.1

%
6
9
.1

%
6
8
.9

%
4
2
.2

%
4
4
.4

%
4
3
.2

%

B
ig

O
v
er

la
p
p
in

g
6
8
.5

%
7
3
.8

%
6
7
.5

%
8
1
.9

%
6
9
.7

%
6
8
.5

%
6
5
.4

%
6
1
.5

%
6
1
.3

%

N
es

te
d

9
1
.8

%
9
3
.1

%
9
2
.4

%
9
5
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

W
el

l–
se

p
a
ra

te
d

6
6
.9

%
6
9
.4

%
6
8
%

6
9
.2

%
6
6
.3

%
6
7
%

7
.1

%
8
.2

%
8
.4

%

S
m

a
ll

O
v
er

la
p
p
in

g
7
2
.5

%
7
2
.5

%
7
0
.7

%
7
4
.1

%
6
7
.6

%
6
8
.3

%
1
4
.9

%
1
4
.7

%
1
5
.9

%

N
es

te
d

9
2
.8

%
9
1
.3

%
9
1
.8

%
6
2
.5

%
9
8
.4

%
9
9
.8

%
9
9
.9

%
9
9
.9

%
9
9
.8

%

4.2 K–means Clustering of Simulated Data 55

hypothesis on Gaussian distribution is low.

The performance of K–means method turns out to be not good in each investigated

case except for the case of independence between well–separated margins and small samples

in which just in the 6.3% of the replications the null hypothesis on θ is rejected and in

almost 50% of replications the K–means method identifies the true number of observations

in each cluster. In all remaining settings it does not work satisfactorily.

4.2.2 The Array Matrix Case

In this second set of simulations we call small a sample of 2100 observation (700 from each

margin) placed in a 300× 7 matrix (the first 100 rows contain the observations of the first

margin, and so on) and big a sample composed of 21000 observations placed in a 3000× 7

matrix (in this case, of course, the first 1000 rows of the matrix contain the observations

drawn from the first margin and so on). In order to compare the already obtained results

with the new ones we choose the same number of rows and columns of the previous set of

simulations. Notice that the remarks about the notation of the columns of the following

tables are the same of the previous section.

Table 4.5: K–means Method Simulation Results, Array Matrix Case, θ = 0

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated −0.0079 0.0079 27% 73.6% 73.6%

Big Overlapping −0.0086 0.0086 29.3% 71.2% 71.2%

Nested −0.0356 0.0356 38.2% 0% 0%

Well–separated −0.0104 0.0104 9.5% 72% 72%

Small Overlapping −0.0102 0.0102 6.6% 74.5% 74.5%

Nested −0.0905 0.0905 91.8% 0.2% 6.8%

The K–means method totally fails in the case of independent nested margins, especially in

the case of small sample with a r.p. equal to 91.8% and p.w.s. equal to 0.2% (see Tab. 4.5).

The cluster effect and the percentage of rejections of null hypothesis on the dependence

parameter increase with the degree of overlap of margins and contemporaneously the p.w.s.

and the p.o.w.s. decrease till to become zero (especially in the case of big sample). In

the whole, the K–means seems to work better on small samples when the margins are not

nested. The statistical test computed for each cluster reveals a good identification of the

probability model for margins when the margins are not nested irrespective of the sample

size (see Tab. 4.7) even if the percentage of rejections for the mean and the variance values

56 Simulation Study

Table 4.6: K–means Method Simulation Results, Array Matrix Case, θ = 0.99

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated 0.7410 0.2490 46.9% 75.6% 75.6%

Big Overlapping 0.7522 0.2378 43% 76.7% 76.7%

Nested −0.0795 1.0695 100% 0% 1.6%

Well–separated 0.7131 0.2769 46.6% 72.9% 72.9%

Small Overlapping 0.7424 0.2476 43.1% 75.8% 75.8%

Nested −0.1033 1.0933 100% 0% 5.8%

reveal, on the whole, a not acceptable goodness of fit clusters to margins. Comparing these

results with those in Tab. 4.1 we can state that the K–means works better in the matrix

array case when the sample is small and the margins are not nested.

In the maximum dependence case (see Tab. 4.6), K–means method totally fails in the

case of nested margins with the c.e. equal to 100% and the r.p. equal to 0% irrespective of

the sample size. Its performance in the case of well–separated and overlapping margins is

similarly not satisfactory because of a too high r.p. This remark is confirmed by the results

about the statistical tests computed for each cluster (Tab. 4.8). As in the previous case,

the K–means method appears able to identify the true probability model for margins in the

not nested margins cases but if fails in the nested margins ones. In general, its performance

is not satisfactory and it is worse with respect to that obtained in the independence case

(comparing tables 4.5 and 4.6).

Summarizing, K–means method seems do not work in a satisfactory way in each inves-

tigated setting. Both in the case of one array and matrix array, it works better in the case

of independence. In this case, as regards the cluster effect and the percentage of rejection

of null hypothesis on the dependence parameter it works better on one array when the

margins are well–separated whereas for the percentage of well–identified cluster sizes it

seems to work better in the matrix array case. The best case is that of small matrix array

and independence between not nested margins even if, for this setting, the goodness of

fitting margins to clusters is not very satisfactory. On the whole, the performance of the

K–means method gets worse as long as the marginal distributions are not well–divided

both in the case of maximum positive dependence and in the case of independence between

clusters and it totally fails in the nested margins case.

In conclusion, we can state that the K–means method is able to find clusters according

to the data generating process and we can use the copula function to investigate it if and

4.2 K–means Clustering of Simulated Data 57

T
ab

le
4.

7:
K

–m
ea

n
s

M
et

h
o
d

S
im

u
la

ti
on

R
es

u
lt
s,

A
rr

ay
M

at
ri

x
C

as
e,

θ
=

0

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

7
7
.3

%
7
7
.5

%
7
4
.6

%
7
8
%

7
7
.5

%
6
3
%

1
4
.2

%
1
4
.2

%
1
3
.8

%

B
ig

O
v
er

la
p
p
in

g
7
8
.5

%
7
6
.7

%
7
4
.3

%
7
7
.8

%
7
6
.7

%
6
1
.5

%
1
4
.6

%
1
4
.4

%
1
5
.3

%

N
es

te
d

9
0
.3

%
8
9
.8

%
9
1
.7

%
9
7
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

W
el

l–
se

p
a
ra

te
d

7
6
.9

%
7
7
.2

%
6
7
%

7
6
.7

%
7
6
.7

%
6
1
.8

%
1
2
.6

%
1
3
.7

%
1
6
.1

%

S
m

a
ll

O
v
er

la
p
p
in

g
7
4
.9

%
7
6
.6

%
6
8
.9

%
7
4
.6

%
7
6
.2

%
6
2
.9

%
1
2
.2

%
1
3
.4

%
1
4
.1

%

N
es

te
d

6
8
.6

%
6
8
.4

%
6
8
.6

%
1
0
0
%

3
9
.8

%
9
9
.6

%
7
9
.5

%
7
9
.6

%
7
9
.4

%

T
ab

le
4.

8:
K

–m
ea

n
s

M
et

h
o
d

S
im

u
la

ti
on

R
es

u
lt
s,

A
rr

ay
M

at
ri

x
C

as
e,

θ
=

0.
99

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

7
6
.7

%
7
7
.7

%
7
5
.1

%
7
6
.3

%
7
7
.9

%
6
4
%

1
1
.7

%
1
3
.9

%
1
3
.9

%

B
ig

O
v
er

la
p
p
in

g
7
6
%

7
6
%

7
1
%

7
6
.9

%
7
5
.7

%
6
3
%

1
1
.6

%
1
2
.1

%
1
2
.4

%

N
es

te
d

8
7
.7

%
8
7
.4

%
8
9
.1

%
1
0
0
%

7
3
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

W
el

l–
se

p
a
ra

te
d

7
6
.2

%
7
7
.1

%
6
8
.1

%
7
6
.4

%
7
6
.1

%
6
2
.3

%
1
4
%

1
2
.8

%
1
4
.6

%

S
m

a
ll

O
v
er

la
p
p
in

g
7
5
.9

%
7
5
.9

%
6
8
.7

%
7
5
.7

%
7
5
.9

%
6
1
.4

%
1
2
.5

%
1
4
.4

%
1
3
.7

%

N
es

te
d

7
0
.1

%
7
0
.8

%
7
0
.2

%
1
0
0
%

4
0
.6

%
9
9
.7

%
7
7
.2

%
7
8
.7

%
7
6
.9

%

58 Simulation Study

only if the margins are independent and not nested and they generate a small matrix

array of data.

4.3 Hierarchical Clustering of Simulated Data

In this section we study the capability of the hierarchical clustering method to find clusters

according to the data generator process. The simulations settings are the same as those

described in the previous sections.

4.3.1 The Single Array Case

Here summarize the simulations regarding the hierarchical clustering method applied to

one array dividing the results in two tables as we performed to analyze the performance

of the K–means method.

Table 4.9: Hierarchical Clustering Simulation Results, One Array Case, θ = 0

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated 0.0008 −0.0008 5.2% 2.5% 39%

Big Overlapping 0.0012 −0.0012 5.4% 0.8% 27.2%

Nested −0.0154 0.0154 20.1% 0% 0%

Well–separated 0.0011 −0.0011 6.1% 52.8% 94.8%

Small Overlapping 0.0012 −0.0012 6.1% 32.6% 89.7%

Nested −0.0234 0.0234 24.9% 0% 0%

In the case of independence (tables 4.9 and 4.11), we note that the performance of

the hierarchical clustering method gets worse as long as the margins are more and more

overlapping. As for c.e. and r.p. the method appears to be quite good irrespective of the

sample size and the kind of margins whereas as for the p.w.s. and the p.o.w.s. it totally

fails in each analyzed case except for the small sample drawn from well–separated margins.

On the whole, it works better in the small sample case then in the big one. As for the

performance about the goodness of fit clusters to margins, we note that it works quite

well in the case of non nested margins. However, it gets worse as long as they become

more and more overlapping. The best performance appears for the case of a small sample

drawn form well–separated margins.

Straightaway we note that the performance of this clustering method in the maximum

dependence case (tables 4.10 and 4.12) goes from bad to worse as long as the margins

4.3 Hierarchical Clustering of Simulated Data 59

Table 4.10: Hierarchical Clustering Simulation Results, One Array Case, θ = 0.99

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated 0.2909 0.6991 96% 7.7% 44.9%

Big Overlapping 0.1610 0.8290 99.8% 1.5% 26.1%

Nested −0.0180 0.9720 90.3% 0% 0%

Well–separated 0.7772 0.2128 54.7% 62.7% 92.9%

Small Overlapping 0.6794 0.3106 67.8% 42.5% 90.9%

Nested −0.0464 1.0364 85.9% 0% 0%

become more and more overlapping. The failure of the hierarchical method in the case of

nested margins is total in the sense that it embraces c.e., r.p and p.w.s. (see Tab. 4.10).

The performance is better in the small sample case but the high percentage of rejections

of the null hypothesis on the dependence parameter leads us to not accept this method as

a procedure to analyze the dependence structure underlying the data. At the same time,

the goodness of fit clusters to margins is quite good in not nested margins cases and it is

better in the case of small samples.

Comparing the obtained results in the two different dependence settings, we can state

that the hierarchical clustering method works better on small sample and in this case,

it works better in the independence case. As for the cluster effect and the r.p. it is

satisfactory irrespective of the kind of margins (see Tab. 4.9) but as soon the p.w.s. and

the rejection percentages of the tests on margins are observed, the not nested margins

cases become not acceptable. In conclusion, we may state that this method works quite

well just in the case of independence between well–separated margins and small sample.

4.3.2 The Array Matrix Case

Here summarize the simulations on hierarchical clustering analysis applied to a microarray

matrix consisted of seven columns. For the definition of sample size and kind of margins

we remind to the previously sections.

The hierarchical clustering method works well both on well–separated and overlapping

margins presenting a low cluster effect and a full percentage of well–identified cluster sizes

but it suddenly totally fails on nested margins as regards the p.w.s. and it gets worse as

concerning the c.e. (see Tab. 4.13). The performance on the margins (see Tab. 4.15)

is similar to that about the dependence and the clustering. The whole performance of

the hierarchical method changes in the extreme case of nested margins while there are

60 Simulation Study

T
ab

le
4.

11
:

H
ie

ra
rc

h
ic

al
C

lu
st

er
in

g
S
im

u
la

ti
on

R
es

u
lt
s,

O
n
e

A
rr

ay
C

as
e,

θ
=

0

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

1
0
.5

%
1
5
.2

%
9
.8

%
2
2
.1

%
2
7
.9

%
1
5
.4

%
3
2
.3

%
5
1
.4

%
2
9
%

B
ig

O
v
er

la
p
p
in

g
2
2
.8

%
2
4
.6

%
8
.5

%
3
4
.6

%
3
7
.8

%
1
4
.4

%
4
6
.8

%
6
4
.5

%
2
7
%

N
es

te
d

7
4
%

9
8
.7

%
8
2
.4

%
9
7
.4

%
9
5
.5

%
7
0
%

9
9
.9

%
9
1
.1

%
5
2
.9

%

W
el

l-
se

p
a
ra

te
d

6
.8

%
8
%

6
%

1
1
.1

%
1
2
.2

%
7
.5

%
1
3
.8

%
1
3
.3

%
6
.1

%

S
m

a
ll

O
v
er

la
p
p
in

g
9
.6

%
1
0
.3

%
5
.3

%
1
7
.6

%
1
4
%

6
.4

%
1
7
.4

%
1
7
.4

%
6
.3

%

N
es

te
d

5
8
.1

%
9
7
.1

%
7
5
.8

%
7
7
%

8
8
.1

%
5
7
.1

%
8
3
.7

%
6
8
.5

%
2
5
.4

%

T
ab

le
4.

12
:

H
ie

ra
rc

h
ic

al
C

lu
st

er
in

g
S
im

u
la

ti
on

R
es

u
lt
s,

O
n
e

A
rr

ay
C

as
e,

θ
=

0.
99

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

1
1
.4

%
1
5
.3

%
9
.4

%
2
3
.4

%
2
4
.1

%
1
4
.1

%
3
5
.1

%
4
9
.9

%
2
7
.2

%

B
ig

O
v
er

la
p
p
in

g
2
8
.1

%
2
9
.8

%
9
.8

%
3
8
%

4
0
.7

%
1
4
.1

%
5
0
.7

%
6
6
.6

%
2
9
%

N
es

te
d

7
6
.5

%
9
8
.8

%
8
2
.8

%
9
7
.8

%
9
6
.1

%
7
2
.9

%
1
0
0
%

9
4
%

5
5
%

W
el

l–
se

p
a
ra

te
d

6
.6

%
8
.3

%
6
.5

%
9
.8

%
9
.2

%
5
.9

%
1
3
.3

%
1
5
.2

%
6
.9

%

S
m

a
ll

O
v
er

la
p
p
in

g
1
0
.2

%
1
2
.1

%
7
.1

%
1
6
.3

%
1
3
%

5
.3

%
1
6
.3

%
1
6
.7

%
7
.2

%

N
es

te
d

6
5
.2

%
9
6
.6

%
7
6
.5

%
7
9
.1

%
8
4
.5

%
5
7
.1

%
8
4
.3

%
7
1
.9

%
2
4
.7

%

4.3 Hierarchical Clustering of Simulated Data 61

Table 4.13: Hierarchical Clustering Simulation Results, Array Matrix Case, θ = 0

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated −0.0002 0.0002 5.9% 100% 100%

Big Overlapping 0.00004 −0.00004 4.7% 100% 100%

Nested 0.0003 −0.0003 20.8% 0% 0%

Well–separated −0.0007 0.0007 6% 100% 100%

Small Overlapping −0.0007 0.0007 5.3% 100% 100%

Nested −0.0275 0.0275 19.2% 0% 0%

not important differences between the case of well–separated and overlapping margins in

which its performance appear satisfactory.

The performance of the hierarchical clustering in the maximum dependence case (Tab.

4.14) is similar to that in the dependence case: the method works quite well on well–

separated and overlapping margins. As regards the nested margins case, this method

totally fails irrespective of the sample size. The performance on the margins is coherent

with the results just discussed (see Tab. 4.16).

Summarizing, the only factor that affects the performance of this clustering method

is the degree of overlap of margins. When margins are well–separated as well as they

Table 4.14: Hierarchical Clustering Simulation Results, Array Matrix Case, θ = 0.99

Sample Kind of Dependence Clustering

Size Margins θ̂∗ c.e. r.p. p.w.s. p.o.w.s.

Well–separated 0.9899 0.0001 30.6% 100% 100%

Big Overlapping 0.9899 0.0001 30.3% 100% 100%

Nested −0.0108 1.0008 98.3% 0% 0%

Well–separated 0.9899 0.00001 28.8% 100% 100%

Small Overlapping 0.99 0 29.2% 100% 100%

Nested −0.0074 0.9974 97.8% 0% 0%

62 Simulation Study

T
ab

le
4.

15
:

H
ie

ra
rc

h
ic

al
C

lu
st

er
in

g
S
im

u
la

ti
on

R
es

u
lt
s,

A
rr

ay
M

at
ri

x
C

as
e,

θ
=

0

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

4
.1

%
5
.3

%
5
.7

%
5
.2

%
4
%

4
.9

%
4
.6

%
4
%

3
.6

%

B
ig

O
v
er

la
p
p
in

g
4
.7

%
4
.3

%
6
%

4
.7

%
5
.8

%
5
.3

%
3
%

3
.6

%
4
.2

%

N
es

te
d

5
%

1
3
.2

%
1
1
.4

%
1
0
0
%

9
8
.8

%
8
8
%

1
0
0
%

4
.7

%
5
.4

%

W
el

l–
se

p
a
ra

te
d

4
.8

%
5
.5

%
4
.5

%
4
%

5
.1

%
4
.8

%
4
.7

%
5
%

4
.7

%

S
m

a
ll

O
v
er

la
p
p
in

g
4
.3

%
4
.5

%
3
.7

%
4
.9

%
5
.4

%
4
.4

%
5
.4

%
5
%

4
.4

%

N
es

te
d

5
.7

%
1
3
%

8
.6

%
1
0
0
%

9
7
.5

%
6
3
.7

%
9
9
.8

%
4
.9

%
5
.8

%

T
ab

le
4.

16
:

H
ie

ra
rc

h
ic

al
C

lu
st

er
in

g
S
im

u
la

ti
on

R
es

u
lt
s,

A
rr

ay
M

at
ri

x
C

as
e,

θ
=

0.
99

S
a
m

p
le

K
in

d
o
f

R
.P

.
o
f
T
es

t
o
n

M
ea

n
R

.P
.
o
f
T
es

t
o
n

V
a
ri

a
n
ce

R
.P

.
o
f
T
es

t
o
n

N
o
rm

a
li
ty

S
iz

e
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

4
.3

%
4
.3

%
4
.2

%
4
.8

%
4
.9

%
4
.9

%
5
.3

%
4
.4

%
4
.9

%

B
ig

O
v
er

la
p
p
in

g
4
.6

%
4
.7

%
4
.4

%
6
.2

%
5
.8

%
5
.9

%
4
.2

%
4
.7

%
3
.7

%

N
es

te
d

2
5
.2

%
2
4
.1

%
1
2
.4

%
1
0
0
%

9
8
.5

%
7
9
.5

%
1
0
0
%

1
6
.7

%
9
.1

%

W
el

l–
se

p
a
ra

te
d

4
.7

%
5
.1

%
5
.3

%
5
.6

%
5
.2

%
6
.1

%
4
.8

%
5
.2

%
4
.5

%

S
m

a
ll

O
v
er

la
p
p
in

g
6
.1

%
6
.4

%
6
.2

%
4
.9

%
5
.5

%
5
.4

%
4
.5

%
4
.3

%
5
.2

%

N
es

te
d

2
5
.9

%
2
9
.8

%
1
8
.4

%
1
0
0
%

9
5
.1

%
3
0
.8

%
9
8
.4

%
1
8
.5

%
1
1
.5

%

4.4 Discussion 63

are overlapping, the hierarchical clustering method is quite able to find clusters according

to the dependence structure and each cluster fits a margin in a satisfactory way. When

the margins are nested, this clustering method fails completely. Clearly, the threshold

between the success and the flop of the hierarchical clustering method performance needs

to be investigated. We may argue it depends on the particular values of the marginal

parameters, in particular on the variance value, and on the heaviness of the tails of these

distributions.

Comparing these results to those obtained in the independence case, we note that the

method works better in the independence case than in the maximum dependence case

both for the c.e. and for the r.p. about H0 on θ that are lower in the former than in the

latter case. Moreover, the r.p. is almost equal to 100% in the maximum dependence case

and nested margins (vs ≈ 20% in the independence case). Instead, as regards the p.w.s.,

the performance is perfectly the same in the two cases analyzed, θ = 0 and θ = 0.99. In

conclusion, we may state that the hierarchical method has the best performance in the

case of independent not nested margins.

4.4 Discussion

In this section we compare the two clustering methods summarizing the situations in which

it may be convenient to prefer one above the other in the applications.

4.4.1 Remark on the Two Clustering Methods

In general, we have found that when we work with data generated from a multivariate

distribution with independent margins the K–means method works according to the kind

of the dependence if and only if the marginal probability functions are not nested (prefer-

ably well–separated) and the sample is small. A possible explanation of this result, might

be that the small sample case reduces the possibility to draw from two different margins

two values close to each other. Moreover, in the settings above explained, the K–means

method works better if it is applied to a matrix array, that is, the performance of the

K–means method increases with the dimension of the observational space.

The hierarchical clustering method works well in the array matrix case of independent

not nested margins. The c.e. and the r.p. are very low and the p.w.s. is maximum. As we

have stated it is difficult to find from these results a general threshold between the success

and the failure of this clustering method because of the particular parameter values of

margins. Still, we think that some results are promising and deserve further investigations.

As it was possible to observe in previous sections, the hierarchical clustering method has

contrasting performance if applied to one or more than one array. When it is applied

to only one array it works better on independent well–separated margins that generate

small sample whereas when applied to a matrix array it works quite well irrespective of

the sample size even if its performance is again better in the independence case. Finally,

64 Simulation Study

we have observed that this method totally fails if applied to nested margins.

In the next section we are going to discuss the performance of the two investigated

clustering methods.

4.4.2 K–means vs Hierarchical Clustering

When applied to only one array, the two clustering methods have similar performances.

Both the K–means and the hierarchical methods work quite well just in the case of inde-

pendent, well–separated margins and small sample (see tables 4.1 and 4.9). The cluster

effect and the percentage of rejections of the null hypothesis on the dependence parameter

are very low (≈ 6%) even if the p.w.s. is close to 50% for both methods.

When applied to a matrix array, the hierarchical method seems to outperform the

K–means method. Again, they both have a good performance in the independence case;

in particular, in such a case the hierarchical clustering has a satisfactory performance

irrespective of the sample size (see Tab. 4.13) whereas the K–means method works better

on small samples rather than on big ones (see Tab. 4.5). Moreover, on an array matrix,

the hierarchical method seems to be able to identify the true dependence structure if the

margins are not nested and preferably independent.

Comparing the performance of the K–means method with that of hierarchical cluster-

ing method in the two cases in which they both have a good performance (well–separated

or overlapping independent margins on array matrix case), it is clear that the hierarchical

method works better than K–means since the former has p.w.s. = 100% vs the latter

that has p.w.s. ≈ 70% even if both have very similar c.e. (at least in the small sample

case). As for the goodness of fit clusters to margins, hierarchical method appears to work

better than the K–means method. In the nested margin case, both the hierarchical and

the K–means methods fail.

Finally, for both the two clustering methods the degree of overlap of margins determines

a drop of their performance. We may argue that as margins tend to overlap increasingly

we likely have observations with low Euclidean distance but drawn from different distri-

butions, observations that the clustering algorithm will assign to the same cluster and fail

to reproduce adequately the dependence structure of the data.

On the whole, the performance of both these two methods is not satisfactory to achieve

the purpose of finding a procedure to separate genes in light of the dependence relationship

between their mRNA quantity. However, in the next section we give some indications for

a better use of these two clustering methods for the empirical applications.

4.4.3 Relevance to Empirical Applications

When we need to analyze a microarray data matrix, we should follow this outline:

1. check the number of observations (rows) and experimental conditions (columns);

2. choose the kind of clustering method between K–means and hierarchical methods;

4.4 Discussion 65

3. apply the method chosen at step 2. to the rows matrix;

4. analyze clusters and infer a probability model for each one of them (estimate pa-

rameters trough equation (2.17) (Chapter 2, p. 28);

5. estimate copula function on identified clusters trough the second step of IFM in eq.

(2.18) (Chapter 2, p. 28);

6. evaluate if the estimated dependence parameter value can be accepted.

How can we know if the clusters reflect the true underlying? We give two different guide-

lines for empirical applications based on the simulation results discussed up to now. When

we work on one array, the practical conclusion is the same for the two clustering methods

investigated:

1. if the sample size is small we can apply one of the two clustering methods and

2. after clustering, we can accept the result if and only if the marginal probability

functions are well–separated and θ̂ does not differs significantly from zero

3. otherwise the use of these two clustering methods is not advised.

When we work on a whole array data matrix,

1. we can apply the K–means method if the sample size is small and

2. after clustering, we can accept the results if and only if the margins are not nested

and θ̂ does not differs significantly from zero.

As regards the hierarchical method, the small sample size requirement is not needed if

we work on a whole matrix data. Obviously these conclusions are drawn from the simu-

lation study performed so that they need to be validated and substantiated with further

investigations.

Chapter 5

A copula–based clustering

algorithm

In this chapter we present in detail a new clustering algorithm based on copula func-

tions (‘CoClust’ in brief). The main idea lies in the use of copula functions as a tool for

investigating the dependence relationship between gene expressions (or experimental con-

ditions) and for finding clusters of genes (or experimental conditions) according to their

dependence structure.

We test the CoClust on simulated data for different situations and dependence settings.

This new algorithm allows to overcome the limits of the two clustering methods highlighted

in the simulation study in Chapter 4, p. 45. Finally, we compare the CoClust with the

model–based clustering (see Chapter 1, Section 1.2.3, p. 13).

5.1 A New Clustering Algorithm

In this section we describe the procedure of the clustering algorithm and focus on both the

statistical aspects and the criterion for allocating the observations to clusters. In the last

subsection we describe the output of the main R code (see Appendix A, p. 117) written

for the CoClust.

5.1.1 A Copula–based Clustering Algorithm

The results of the simulation study in Chapter 4 (p. 45) pose important questions about

the use of cluster analysis for dependent observations. In microarray experiments we have

thousands of gene expressions observed under different experimental conditions. Genes

are observed by means of the quantity of mRNA they produce. Such a quantity depends

on both biological function of genes themselves and the biological process in which they

are involved. These genes are related to each other and our purpose is to find a procedure

capable of grouping them according to their dependence relationship.

The clustering algorithm we propose works directly on the observed (G×S) data matrix

(3.1) in Chapter 3, p. 38 (like the K–means algorithm and the model–based clustering

67

68 A copula–based clustering algorithm

presented in Chapter 1, Sections 1.2.1, p. 9 and 1.2.3, p. 13) and not on the proximity

matrix (like the hierarchical method in Chapter 1, Section 1.2.2, p. 11) while it does not

require the number of clusters to be specified a priori (like the hierarchical and model–

based clustering and differently from the K–means algorithm). Notice that the meaning

of the terms ‘margin’ and ‘cluster’ are interchangeable since we think each cluster, that is

each subset of rows of a microarray data matrix, as a sample drawn from the same margin.

Applying the CoClust to the genes (rows) means that each observation in each cluster is

an S–dimensional vector drawn from a univariate probability function.

The copula–based clustering algorithm (CoClust, in brief) consists of the following

steps:

1. For k = 2, 3, . . . ,K estimate a k–dimensional copula function for each possible k–

plet of observations (rows of data matrix or gene expressions), that is, estimate

CG,k =

(

G

k

)

=
G!

k!(G − k)!
copula functions and compute the maximum log–likelihood

of each one of them;

2. Select the value of k and the k–plet the maximizes the log–likelihood copula function

computed at step 1.); as long as a dimension k of copula is chosen, k clusters each

one containing one observation (one gene expression or, equally, an S–dimensional

vector of values) will been identified;

3. Once chosen k, estimate DG−k,k =
(G− k)!

(G− 2k)!
=

k−1
∏

j=0

(G−k−j) k–dimensional copulas

by using the k–plet already selected at step 2.) and a new k–plet of rows data

matrix; this means that the algorithm estimates each copula function by using 2S

observations for each one of marginal distribution function of each copula function:

the first observation coming from the first S–dimensional observations selected at

step 2.) while the second observation varies between the remaining (G−k) rows data

matrix. Notice that hereafter the order of the k–plet of observations candidate for

the selection is important ;

4. Select the new k–plet that once put together with the existing ones maximize the

log–likelihood computed at step 3.);

5. Iterate steps 3.) and 4.) estimating as many copulas as are the dispositions of the

remaining genes by using the observations already clustered and a new k–plet chosen

between the remaining genes for each margin (G−k, G−2k, and so on); the iteration

continues until each row of data matrix is assigned to a cluster.

Notice that it is possible to select the best result by comparing each solution directly

by means of the maximized log–likelihood function of the copula because of the same

sample size and the same number of estimated parameters. This is admitted both for

step 1.) and for step 3.). Indeed, in the first case the algorithm compares the value of the

maximum log–likelihood copula function for each value of k and, later, the selected values

5.1 A New Clustering Algorithm 69

for fixed k having always just an S–dimensional observation in each cluster. In the latter

case the algorithm chooses the clusters number so that, at each iteration, the number of

observations for each copula is the same

(

from 2 to
G

k

)

. In both cases the number of

estimated parameters is the same because of the use of the IFM estimation method: at

each computation of the log–likelihood copula function the marginal parameters have been

already estimated and they are considered constant. We hark on it in the next section.

5.1.2 Copula–based Split up Rule

In this section we discuss from a statistical point of view the so–called copula log–likelihood–

based split up rule, (COSUR, in brief) used in the procedure of the CoClust described in

the previous section.

The basic idea is that the COSUR rule separates two observations (in the case of

two–dimensional copula) allocating them in two different clusters that are assumed to

be realizations of two different (marginal) random variables for which the maximized log–

likelihood copula function is maximum. In order to estimate copula functions the algorithm

uses the IFM estimation method (see Chapter 2, Section 2.2.3, p. 28) and, consequently,

employs the parameters estimates β̂gk
for each gk–th margin, with k = 1, 2, . . . ,K and K

the number of margins (or clusters), estimated in the first step of IFM estimation method.

The copula log–likelihood–based split up rule involves only the dependence parameter and,

consequently, involves only the second step of the IFM estimation method.

At the first step of the procedure described in previous subsection the following value

is computed:

max
{

lxgi1
...xgik

(

θ̂2IFM

)

, ∀ (gi1 , . . . , gik′ , . . . , gik) ∈ {1, 2, . . . , G}, with k 6= k′ ∀ k, k′
}

=

= max

{

max
θ2∈Θ

S
∑

s=1

log c
[

Fg1

(

Xg1s; β̂g1

)

, . . . , Fgk′

(

Xgk′s; β̂gk′

)

, . . . (5.1)

. . . , Fgk

(

Xgks; β̂gk

)

; θ2

]

; ∀ (gi1 , . . . , gik′ , . . . , gik) ∈ {1, 2, . . . , G}, with k 6= k′ ∀ k, k′
}

where l(θ̂2IFM) is the maximized log–likelihood function of a copula and the generic

vector β̂gk
contains the parameters of the gk–th margin estimated by using equation

(2.17) (Chapter 2, Section 2.2.3, p. 28). Having estimated all marginal parameters

θ1IFM = (βg1
, . . . ,βgk′

, . . . ,βgk
) by the first step of the IFM procedure, the dependence

parameter θ2 will be estimated by the second step of the IFM procedure (see eq. (2.18),

p. 28). In this way, we separate k observations in k different clusters as soon as their

maximized copula log–likelihood function is maximum. The COSUR is defined as follows:

Definition 5.1.1 (COSUR on k clusters (step 1.)) k S–dimensional observation vec-

tors (xgi1
, . . . ,xgi

k′
, . . . ,xgik

), with (gi1 , . . . , gik′ , . . . , gik) ∈ {1, 2, . . . , G}, are split up in k

70 A copula–based clustering algorithm

different clusters iff their (maximized) log–likelihood copula function, lxgi1
...xgi

k′
...xgik

(

θ̂2IFM

)

,

is maximum.

For making easier the comprehension of what written, we clarify that for the equation

(5.1) the algorithm works on each possible k–plet of rows data of the following matrix:

x11 . . . x1s . . . x1S

. . .
... . . .

... . . .

xgi1
1 . . . xgi1

s . . . xgi1
S

. . .
... . . .

... . . .

xgi
k′

1 . . . xgi
k′

s . . . xgi
k′

S

. . .
... . . .

... . . .

xgik
1 . . . xgik

s . . . xgik
S

. . .
... . . .

... . . .

xG1 . . . xGs . . . xGS

=

x1

...

xgi1

...

xgi
k′

...

xgik

...

xG

(5.2)

Notice that after selected the dimension of copula functions (consequently, the number of

clusters) and the first k–plet of S–dimensional observations,

(xgi1
, . . . ,xgi

k′
, . . . ,xgik

), the procedure continues going to select the next k–pla of ob-

servations by using the COSUR rule and controlling all possible dispositions between the

remaining rows data matrix. Consequently, in the first iteration of the procedure (see step

3.) in Section 5.1.1) the algorithm works on the rows of the following data matrix:

xgi1
1 . . . xgi1

s . . . xgi1
S xgj1

1 . . . xgj1
s . . . xgj1

S

. . .
... . . .

... . . .
... . . .

... . . .
...

xgi
k′

1 . . . xgi
k′

s . . . xgi
k′

S xgj
k′

1 . . . xgj
k′

s . . . xgj
k′

S

. . .
... . . .

... . . .
... . . .

... . . .
...

xgik
1 . . . xgik

s . . . xgik
S xgjk

1 . . . xgjk
s . . . xgjk

S

=

xgi1
xgj1

...
...

xgi
k′

xgj
k′

...
...

xgik
xgjk

(5.3)

in which each row is obtained merging two different rows of the matrix (5.2). Consequently,

the CoClust computes as follows

max
{

l(xgi
,xgj

)

(

θ̂2IFM

)

, ∀ {gj} ⊆ {1, 2, . . . , G} \ (gi), with k 6= k′ ∀ k, k′
}

=

= max

{

max
θ2∈Θ

2S
∑

s=1

log c
[

F(gi1
,gj1

)

(

X(gi1
,gj1

)s; β̂(gi1
,gj1

)

)

, . . . , F(gi
k′

,gj
k′

)

(

X(gi
k′

,gj
k′

)s; β̂(gi
k′

,gj
k′

)

)

, . . .

(5.4)

. . . , F(gik
,gjk

)

(

X(gik
,gjk

)s; β̂(gik
,gjk

)

)

; θ2

]

; ∀ {gj} ∈ {1, 2, . . . , G} \ (gi), with k 6= k′ ∀ k, k′
}

.

Notice that we indicate with {xgj} the set of rows {xgj1
, . . . ,xgj

k′
, . . . ,xgjk

}, with

{gj} their indexes {gj1 , . . . , gjk′
, . . . , gjk

} and with (xgi
,xgj

) the two column vectors of

the matrix (5.3).

5.1 A New Clustering Algorithm 71

The copula–based split up rule for the first iteration of the CoClust algorithm is as

follows

Definition 5.1.2 (COSUR on k clusters (first iteration, step 3.)) k S–dimensional

observation vectors xgj = {xgj1
, . . . ,xgj

k′
, . . . ,xgjk

}, with

{gj1 , . . . , gjk′
, . . . , gjk

} ∈ {1, 2, . . . , G} \ (gi1 , . . . , gik′ , . . . , gik), are split up iff their (maxi-

mized) log–likelihood copula function, l(xgi,xgj)

(

θ̂2IFM

)

, is maximum.

The only two formal differences between equations (5.1) and (5.4) are the upper bound

of summation in the likelihood function and the indexes (gi, gj). The differences lie in the

fact that when we have two gene expressions in each of the K clusters (that is 2S obser-

vations in each cluster) the first gene (S observations) was fixed by the results obtained at

the step 1.) of the procedure of the CoClust algorithm. In fact, the k–plet {gj1 , . . . , gjk
}

is chosen in (1, . . . , G) \ (gi1 , . . . , gik). We recall that the total number of observations n

from each margin is a multiple of S (see Chapter 4, Section 4.1.4, p. 50).

Notice that within each step of the algorithm the COSUR rule corresponds to the

following Bayes information criterion (BIC)

BIC = −2l
(

θ̂2IFM

)

+ q log(Sr) (5.5)

where S×r is the number of observations and r is a multiple of k according to the number

of the step of the algorithm, that is r = k, 2k, . . . , k × n. of steps, and q is the number of

estimated parameters. The COSUR rule and the BIC coincide because

- the number q of estimated parameters is always equal to 1 since the CoClust algo-

rithm works on an exchangeable dispersion matrix and the dependence parameter

is the unique unknown parameter (in fact, the marginal parameters whose number

varies from four (two parameters for two margins) to G × 2 (two parameters for G

margins) were already estimated by the first step of the IFM estimation method);

- the number of observations S × r is the same for each estimated copula function at

the same step of the procedure.

Moreover, the application of this criterion is justified because we compare non–nested

parametric models, namely, they are compared within each step. Finally, notice that, for

the same reasons, there is a connection also with the Akaike information criterion (AIC)

that has the following expression

AIC = −2l
(

θ̂2IFM

)

+ 2q. (5.6)

To sum up, we use the COSUR rule in definition (5.1.1) in order to decide the number of

clusters (margins) and the first observation inside everyone of them until one observation

vector for each margin is obtained. From this step till the end of the algorithm, the

procedure continues iterating the last two steps, that is, estimating copula functions by

using the observations selected up to that point plus a new observation that will be selected

72 A copula–based clustering algorithm

by using the COSUR rule (given in definition (5.1.2) for the first iteration of the procedure).

Once the clusters have been formed it is possible to compute the dependence parameter

between clusters, that is, between sets of gene expressions and highlight the dependencies

among clusters.

5.1.3 R code of the algorithm

In Appendix A (p. 117) we present the R code written for the clustering algorithm pro-

posed. This function, called ‘CoClust’, requires the data matrix and the kind of copula

model as input and computes the possible clustering in 2, 3, . . . , 6 clusters by default. At

the same time, it is possible to choose the value for the maximum number of clusters to

try by the argument nmaxmarg. Regarding the model for copula, it is possible to choose

between models described in Chapter 2, Section 2.3, p. 29, that is, between Elliptical and

Archimedean copula families.

The output of the CoClust function is an object list containing as follows:

1. the number of identified clusters; e.g.:

$Number_of_Clusters

[1] 3

2. a n.obs×n.marg–dimensional matrix (where n.obs is the number of observations in

each cluster, that is, the number of rows data matrix in input put in each cluster, and

n.marg is the number of identified clusters) containing in column the row indexes of

the observations in the starting data matrix put together in the same cluster; e.g.:

in the first cluster we have the first three rows of the starting data matrix

$Index.Matrix

[,1] [,2] [,3]

[1,] 3 6 9

[2,] 1 4 7

[3,] 2 5 8

3. a vector of integers indicating the cluster to which each point is allocated; e.g.:

$Clustering.Vector

[1] 1 1 1 2 2 2 3 3 3

4. the n.row×n.marg–dimensional matrix , where n.row is the cluster size (given by

n.obs×S), containing in column the grouped observations; e.g.:

5.1 A New Clustering Algorithm 73

$Data_Clusters

Cluster1 Cluster2 Cluster3

[1,] 1.62409295 18.13890 40.38488

[2,] 0.29812385 16.37600 38.80576

[3,] 2.34705146 19.83662 43.16525

[4,] -0.77279847 14.63911 36.39731

[5,] -2.60227795 12.05190 33.38180

[6,] -0.73852112 15.15666 36.55972

[7,] 1.90740923 18.66530 41.02958

[8,] 4.55797192 23.18301 48.00649

[9,] 0.84751932 16.60129 38.56858

[10,] -1.27923528 14.05129 35.44198

.....

[21,] -1.51180623 14.39497 35.11808

this matrix allows to use the copula function for investigating the dependence be-

tween clusters;

5. the estimated dependence parameter between clusters, its standard error, the p–

value associated to the null hypothesis H0 : θ = 0, e.g.:

$Dependence

$Dependence$Param

[1] 0.991177

$Dependence$Std.Err

[1] 0.001851703

$Dependence$P.val.

Pr(>|z|)

[1] 0

and the maximized log–likelihood copula function; e.g.:

$LogLik

[1] 21.90313.

Finally, we have also implemented a function called ‘CoClustK’ in order to compute the

copula–based algorithm for a chosen number of clusters k. This function gives the possi-

bility of saving running time if the researcher has knowledge whereby to choose a priori

the number k.

Notice that the CoClust algorithm can be applied both on the rows and on the columns

of a data matrix according to the purpose of the researcher.

74 A copula–based clustering algorithm

5.2 Testing the New Algorithm

We test the CoClust algorithm by using two different copula functions (the Gaussian

and the Frank copula) and gaussian margins. We check the performance of the CoClust

algorithm for different situations and dependence settings.

5.2.1 CoClust of Gaussian Simulated Data

We perform a simulation study to test the CoClust algorithm by using a Gaussian copula.

The methodology is the same of Chapter 4, p. 45. We check the performance of the

CoClust by varying the number of clusters (or margins), type of margins, the value of

the dependence parameter and the sample size (number of rows and number of columns).

In particular, we perform simulations with 2, 3, 4 and 5 clusters, with well–separated,

overlapping and nested marginal distribution probability functions (see Chapter 4, Section

4.1.2, p. 46), with high and medium values of the dependence parameter (θ = 0.4 and

θ = 0.9). Finally, we apply the CoClust algorithm to the columns of the microarray data

matrix setting the argument nmaxmarg to 5.

For each number of clusters, we express the results in two tables; the first table,

summarizes the clustering procedure by representing:

- the percentage of replications with the correct number of identified clusters (p.n.c.

in brief);

- the percentage of replications with well–identified cluster sizes (p.w.s., (as defined in

Chapter 4, Section 4.1.3, p. 48));

and the analysis of the dependence by presenting:

- the mean value of the estimated dependence parameters post clustering over repli-

cations, θ̂∗;

- the cluster effect defined in Chapter 4, Section 4.1.3, p. 48;

- the percentage of acceptances (not rejection) about the null hypothesis on θ (ac-

cording to the dependence parameter value of the data generating process) over

replications with correct cluster sizes for all clusters, n.r.p. in brief.

The second kind of tables contains information about the goodness of fit clusters to mar-

gins. Its structure is equal to the tables shown in Chapter 4, Sections 4.2 (p. 51) and

4.3 (p. 58), with the only one difference that the percentages are about the ‘acceptances’

(and not about the ‘rejection’) of the null hypothesis on the mean, the variance and the

normality distribution.

We perform 200 replications for each setting.

In the case of data generated from a two–dimensional copula (tables 5.1 and 5.2, with

the number of observations for each margin equal to 1200, the number of rows equal to

5.2 Testing the New Algorithm 75

Table 5.1: CoClust performance: Gaussian copula, two clusters

Dependence Kind of Clustering Dependence

Parameter Margins p.n.c. p.w.s. θ̂∗ c.e. n.r.p.

Well–separated 100% 100% 0.8995 0.0005 94%

θ = 0.9 Overlapping 100% 100% 0.8999 0.0001 94%

Nested 100% 100% 0.8995 0.0005 94%

Well–separated 100% 100% −0.8840 1.2840 94%

θ = 0.4 Overlapping 100% 100% −0.8526 1.2526 94%

Nested 100% 100% 0.3975 0.0025 93.9%

400 and the number of columns equal to 6) the CoClust appears to work perfectly both

for the identification of the number of clusters and for the identification of the cluster

sizes (p.n.c. and p.w.s. are equal to 100%). The not rejection percentage of the null

hypothesis on the dependence parameter lies around 94% in each investigated case. As

for the goodness of fit, the CoClust works always perfectly except for the null hypothesis

on the mean value of the two clusters with low dependence (see Tab. 5.2 for θ = 0.4).

This ‘anomaly’ is coherent with the value of the cluster effect of the correspondent cases

even if we deem that also in these two cases the performance is acceptable in light of the

n.r.p. about the null hypothesis on θ and about other statistical tests (on variance and

Table 5.2: CoClust performance: Gaussian copula, two clusters

Dependence Kind of Mean Variance Normality

Parameter Margins C1 C2 C1 C2 C1 C2

Well–separated 95.5% 94% 100% 100% 100% 100%

θ = 0.9 Overlapping 95.5% 94.5% 100% 100% 100% 100%

Nested 93.5% 93% 100% 100% 100% 100%

Well–separated 0% 0% 100% 100% 100% 100%

θ = 0.4 Overlapping 0% 0% 100% 100% 100% 100%

Nested 96.5% 96.5% 100% 100% 100% 100%

76 A copula–based clustering algorithm

T
ab

le
5.

3:
C

oC
lu

st
p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

0
.8

9
9
5

0
.0

0
0
5

7
7
.5

%

θ
=

0
.9

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

0
.8

9
9
9
7

0
.0

0
0
0
3

7
7
.5

%

N
es

te
d

1
0
0
%

1
0
0
%

0
.8

9
9
9
7

0
.0

0
0
0
3

7
7
.5

%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

0
.2

3
0
1

0
.1

6
9
9

8
8
%

θ
=

0
.4

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

0
.2

7
1
0

0
.1

2
9
0

8
8
%

N
es

te
d

1
0
0
%

1
0
0
%

0
.3

9
8
8

0
.0

0
1
2

8
8
%

T
ab

le
5.

4:
C

oC
lu

st
p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

9
7
.5

%
9
5
%

9
3
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

9
7
.5

%
9
5
.5

%
9
4
%

θ
=

0
.9

O
v
er

la
p
p
in

g
9
6
.5

%
9
5
%

9
5
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

9
4
.5

%
9
2
%

9
4
%

N
es

te
d

9
6
.5

%
9
6
%

9
6
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
7
%

9
5
%

W
el

l-
se

p
a
ra

te
d

7
0
%

7
1
%

7
1
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

7
0
.5

%
7
2
%

7
1
%

θ
=

0
.4

O
v
er

la
p
p
in

g
7
9
%

7
7
%

7
4
%

1
0
0
%

1
0
0
%

1
0
0
%

7
5
.5

%
7
7
.5

%
7
6
%

N
es

te
d

9
4
%

9
6
%

9
5
%

1
0
0
%

1
0
0
%

1
0
0
%

9
3
.5

%
9
7
.5

%
9
6
%

5.2 Testing the New Algorithm 77

T
ab

le
5.

5:
C

oC
lu

st
p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

0
.8

9
9
9

0
.0

0
0
1

8
0
.5

%

θ
=

0
.9

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

0
.8

9
9
6

0
.0

0
0
4

8
0
.5

%

N
es

te
d

1
0
0
%

1
0
0
%

0
.8

9
9
9

0
.0

0
0
1

8
0
.5

%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

−
0
.3

0
6
5

0
.7

0
6
5

8
0
.5

%

θ
=

0
.4

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

−
0
.3

0
5
2

0
.7

0
5
2

8
0
.5

%

N
es

te
d

1
0
0
%

1
0
0
%

0
.3

9
9
9
8

0
.0

0
0
0
2

8
0
.5

%

T
ab

le
5.

6:
C

oC
lu

st
p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

W
el

l–
se

p
a
ra

te
d

9
2
.5

%
9
3
.5

%
9
0
.5

%
9
3
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
3
.5

%
9
5
.5

%
9
4
.5

%
9
5
%

θ
=

0
.9

O
v
er

la
p
p
in

g
9
5
.5

%
9
7
.5

%
9
6
.5

%
9
5
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
.5

%
9
3
%

9
5
.5

%
9
6
.5

%

N
es

te
d

9
5
.5

%
9
7
.5

%
9
4
.5

%
9
6
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
1
%

9
2
.5

%
9
7
%

9
1
.5

%

W
el

l–
se

p
a
ra

te
d

0
%

0
%

0
%

0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

0
%

0
%

0
%

0
%

θ
=

0
.4

O
v
er

la
p
p
in

g
0
%

0
%

0
%

0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

0
%

0
%

0
%

0
%

N
es

te
d

9
1
.5

%
9
3
.5

%
9
3
%

9
3
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
7
.5

%
9
5
.5

%
9
6
.5

%
9
6
%

78 A copula–based clustering algorithm

normality distribution). In general, the performance appears to be independent of the

kind of margins and the level of dependence.

For the three clusters case, the number of observations for each margin is 800, the

number of rows is is 400 and the number of columns is 6. In this case (tables 5.3 and 5.4),

the CoClust works quite perfectly irrespective of the strength of dependence and the kind

of margins. The percentage of replications with correct number of identified clusters and

the percentage of replications with well–identified cluster sizes are full. The n.r.p. of H0

on the dependence parameter is greater in the case of θ = 0.4 (88%) than in the case of

θ = 0.9 (≈ 77%) but, in general, it is high to deem as very good the performance of the

algorithm. As for the goodness of fit, the not rejection percentages for the three computed

statistical tests are quite high. Hence, the CoClust algorithm seems capable to overcome

the limits of the K–means and hierarchical clustering outlined in the Chapter 4.

The performance of the CoClust on dependent data simulated via four–dimensional

copulas (tables 5.5 and 5.6 in which the number of observations for each margin is equal

to 800, the number of rows is equal to 400 and the number of columns is equal to 8) is

very similar to that of the two–clusters case. The analysis of clustering and the n.r.p.

about H0 on the dependence parameter are very satisfactory whereas the goodness of fit

clusters to margins as for the test on the mean values of the identified clusters and the

cluster effect show a possible weakness (see tables 5.5 and 5.6 for θ = 0.4). However, the

most important measures of performance are the p.n.c., the p.w.s. and the n.r.p. of the

null hypothesis on θ that make the performance acceptable. Even now, the performance

of the CoClust appears to be independent of the degree of overlap of margins and the level

of the dependence between observations.

Finally, as for the case of data drawn from a five–dimensional copula function (tables

5.7 and 5.8, with the number of observations for each margin equal to 100, the number of

rows equal to 50 and the number of columns equal to 10) the performance of the CoClust

is perfect as regards the analysis of the cluster performance (p.n.c. and p.w.s. are equal

to 100% in all settings investigated) and very good as regards the not rejection percentage

of H0 on the dependence parameter (n.r.p. is ≈ 77% in all cases) and the goodness

of fit (the percentage of not rejection for all computed statistical tests is > 85%). The

goodness of the CoClust is homogenous with respect to the kind of margins and the level

of dependence.

From this first set of simulations we may conclude that the CoClust algorithm is able

to

1. find always the correct number of clusters

2. find always the true number of observations in each identified clusters

3. overcome the limits of the other clustering methods (see Chapter 4, p. 45), working

perfectly in the case of nested margins and for high level of dependence

4. find the correct probability model for the margins

5.2 Testing the New Algorithm 79

T
ab

le
5.

7:
C

oC
lu

st
p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

0
.8

9
8
5

0
.0

0
1
5

7
7
%

θ
=

0
.9

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

0
.8

9
8
1

0
.0

0
1
9

7
7
%

N
es

te
d

1
0
0
%

1
0
0
%

0
.8

9
7
8

0
.0

0
2
2

7
7
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

0
.3

6
8
6

0
.0

3
1
4

7
6
.5

%

θ
=

0
.4

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

0
.3

7
7
9

0
.0

2
2
1

7
7
%

N
es

te
d

1
0
0
%

1
0
0
%

0
.4

0
0
6

−
0
.0

0
0
6

7
7
.3

%

T
ab

le
5.

8:
C

oC
lu

st
p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

W
el

l–
se

p
a
ra

te
d

9
6
.5

%
9
4
%

9
6
.5

%
9
5
.5

%
9
7
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
4
.5

%
9
4
.5

%
9
5
.5

%
9
5
%

θ
=

0
.9

O
v
er

la
p
p
in

g
9
6
.5

%
9
7
.5

%
9
7
.5

%
9
8
.5

%
9
6
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
.5

%
9
5
.5

%
9
6
%

9
5
.5

%
9
3
%

N
es

te
d

9
5
.5

%
9
6
.5

%
9
8
%

9
7
.5

%
9
7
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
3
.5

%
9
5
.5

%
9
5
%

9
6
%

9
5
.5

%

W
el

l–
se

p
a
ra

te
d

8
8
.3

%
8
7
.2

%
8
5
.2

%
8
9
.8

%
8
8
.8

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
8
.8

%
8
9
.8

%
8
9
.8

%
8
7
.2

%
8
7
.2

%

θ
=

0
.4

O
v
er

la
p
p
in

g
9
0
.1

%
9
2
.2

%
9
0
.6

%
9
1
.2

%
9
2
.2

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
9
.6

%
8
9
%

9
1
.7

%
9
0
.6

%
8
7
.5

%

N
es

te
d

9
8
.4

%
9
1
%

9
3
.7

%
9
5
.2

%
9
4
.2

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
7
.9

%
9
5
.8

%
9
4
.7

%
9
2
%

9
6
.3

%

80 A copula–based clustering algorithm

5. find the correct estimated value for the dependence parameter of the copula function.

We may conclude that the CoClust appears to be a satisfactory procedure to identify clus-

ters of dependent data irrespective of the strength of the dependence between observations

and the degree of overlap of marginal distribution functions. Moreover, we stress that the

CoClust algorithm allows to identify correctly the number of clusters.

5.2.2 CoClust of Frank Simulated Data

In this section we have replicated the simulations presented above by using a Frank copula.

As in the previous section, we made varying the number of clusters (or margins), the

type of margin, the value of the dependence parameter and the sample size. As for the

dependence parameter, we choose two values: 21 and 10, that indicate, respectively, high

and moderate dependence relationship between margins (similarly to 0.9 and 0.4 in the

Gaussian case). The number of rows, columns and observations for each margin are equal

to those used in the previous section.

Table 5.9: CoClust performance: Frank copula, two clusters

Dependence Kind of Clustering Dependence

Parameter Margins p.n.c. p.w.s. θ̂∗ c.e. n.r.p.

Well–separated 100% 100% 20.9548 0.0452 100%

θ = 21 Overlapping 100% 100% 20.9310 0.0690 100%

Nested 100% 100% 20.9979 0.0021 100%

Well–separated 100% 100% −11.1551 21.1551 100%

θ = 10 Overlapping 100% 100% 3.4029 6.5971 100%

Nested 100% 100% 9.9963 0.0037 100%

In the case of two clusters drawn from a Frank copula (tables 5.9 and 5.10) the CoClust

works perfectly both for the analysis of the obtained clustering with the p.n.c. and the

p.w.s. equals to 100% in each investigated case and for the analysis of dependence with

a not rejection percentage of H0 on the dependence parameter equal to 100% in each

analyzed case. These results indicate that the performance of the CoClust is independent

of the degree of overlap of margins and the strength of the dependence relationship between

observations. As regards the goodness of fit the CoClust works almost perfectly in the case

of high dependence between clusters. In the case of low dependence, instead, it appears to

work better in the nested margins case than in the non nested margins case according to

the correspondent cluster effect. In general, the performance of the CoClust is satisfactory.

5.2 Testing the New Algorithm 81

Table 5.10: CoClust performance: Frank copula, two clusters

Dependence Kind of Mean Variance Normality

Parameter Margins C1 C2 C1 C2 C1 C2

Well–separated 94% 95.5% 100% 100% 94% 96.5%

θ = 21 Overlapping 93% 93% 100% 100% 97% 96.5%

Nested 97.5% 95.5% 100% 100% 94.5% 94%

Well–separated 0.5% 0.5% 100% 100% 0.5% 0.5%

θ = 10 Overlapping 63% 64% 100% 100% 63% 62%

Nested 95% 93% 100% 100% 94% 94.5%

In the case of three clusters drawn from a Frank copula function (tables 5.11 and

5.12), the CoClust appears to work well showing a full percentage of replications in which

the number of identified clusters is correct, a full percentage of well–identified cluster

sizes and a quite full n.r.p. of the null hypothesis on the dependence parameter θ. Its

performance is equal in each situation investigated. As for the goodness of fit, the not

rejection percentages for any test is very high and close to 100% in nearly every situation

and dependence settings analyzed. The performance of the CoClust algorithm appears

to be independent of the degree of overlap of margins and of the dependence parameter

value.

The performance of the proposed algorithm in the case of four clusters (tables 5.13 and

5.14) is very similar to the previous case. In general, the CoClust appears able to correctly

identify the number of clusters and the cluster sizes in all replications (p.n.c. and p.w.s.

are equal to 100% in each situation investigated) and the true level of dependence in the

≈ 90% of replications. As for the goodness of fit margins to clusters, the performance is

satisfactory since the not rejection percentages of the null hypothesis on mean, variance

and normality distribution are equal to 100% in the majority of the situations investigated.

In the case of five clusters (see tables 5.15 and 5.16) the performance of the CoClust

is in general satisfactory. The percentage of replications with correct number of identified

clusters and with well–identified cluster sizes are full and the n.r.p. of the null hypothesis

on the dependence parameter θ are around 80%. The only case in which the obtained

results are not completely good is the case of well–separated margins and θ = 21 (n.r.p.

is ≈ 70%). As for the goodness of fit, the percentage of rejection about the computed

statistical tests are greater than 80% and most of them are at 100%.

In conclusion, the CoClust with the Frank copula model appears able to find always

the true number of clusters, the true cluster sizes and quite always the true dependence

82 A copula–based clustering algorithm

T
ab

le
5.

11
:

C
oC

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

2
0
.8

4
2
4

0
.1

5
7
6

9
8
%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

2
0
.8

0
9
5

0
.1

9
0
5

9
8
%

N
es

te
d

1
0
0
%

1
0
0
%

2
0
.8

5
1
9

0
.1

4
8
1

9
8
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

1
0
.0

1
1
8

−
0
.0

1
1
8

9
8
%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

9
.9

6
6
8

0
.0

3
3
2

9
8
%

N
es

te
d

1
0
0
%

1
0
0
%

9
.9

8
2
8

0
.0

1
7
2

9
8
%

T
ab

le
5.

12
:

C
oC

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

9
2
.5

%
9
2
.5

%
9
4
%

1
0
0
%

1
0
0
%

1
0
0
%

9
7
.5

%
9
6
%

9
3
%

θ
=

2
1

O
v
er

la
p
p
in

g
9
5
.5

%
9
4
%

9
4
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
5
.5

%
9
4
%

N
es

te
d

9
4
.5

%
9
5
.5

%
9
4
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
%

9
4
.5

%
9
5
%

W
el

l–
se

p
a
ra

te
d

9
6
%

9
5
.5

%
9
6
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
%

9
4
.5

%
9
4
%

θ
=

1
0

O
v
er

la
p
p
in

g
9
1
.5

%
9
5
.5

%
9
3
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

9
6
.5

%
9
5
.5

%
9
5
%

N
es

te
d

9
4
%

9
3
.5

%
9
5
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
%

9
3
.5

%
9
5
%

5.2 Testing the New Algorithm 83

T
ab

le
5.

13
:

C
oC

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

2
0
.7

5
8
5

0
.2

4
1
5

8
3
.3

%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

2
0
.9

2
1
5

0
.0

7
8
5

9
0
.9

%

N
es

te
d

1
0
0
%

1
0
0
%

2
0
.4

7
4
4

0
.5

2
5
6

9
0
.9

%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

1
0
.0

1
0
1

−
0
.0

1
0
1

9
0
.9

%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

1
0
.0

0
2
5

−
0
.0

0
2
5

9
0
.9

%

N
es

te
d

1
0
0
%

1
0
0
%

1
0
.1

1
2
0

−
0
.1

1
2
0

9
0
.9

%

T
ab

le
5.

14
:

C
oC

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

W
el

l–
se

p
a
ra

te
d

9
1
.7

%
9
1
.7

%
9
1
.7

%
9
1
.7

%
9
1
.7

%
9
1
.7

%
9
1
.7

%
9
1
.7

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
9
1
.7

%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

9
1
%

9
1
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
0
.9

%
9
0
.9

%

N
es

te
d

8
1
.8

%
8
1
.8

%
7
2
.7

%
8
1
.8

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
0
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
0
.9

%
9
0
.9

%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

9
0
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
0
.9

%

N
es

te
d

1
0
0
%

1
0
0
%

1
0
0
%

9
0
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
0
.9

%
9
0
.9

%

84 A copula–based clustering algorithm

T
ab

le
5.

15
:

C
oC

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

1
9
.9

8
5
0

1
.0

1
5
0

6
6
.7

%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

2
0
.6

6
5
5

0
.3

3
4
5

8
0
%

N
es

te
d

1
0
0
%

1
0
0
%

2
0
.9

5
5
8

0
.0

4
4
2

8
0
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
0
0
%

9
.6

8
2
9

0
.3

1
7
1

8
0
%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

9
.5

0
7
5

0
.4

9
2
5

8
0
%

N
es

te
d

1
0
0
%

1
0
0
%

1
0
.4

4
3
8

−
0
.4

4
3
8

8
0
%

T
ab

le
5.

16
:

C
oC

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

W
el

l–
se

p
a
ra

te
d

8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%
8
3
.3

%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
0
%

1
0
0
%

8
0
%

1
0
0
%

N
es

te
d

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
0
%

1
0
0
%

1
0
0
%

W
el

l–
se

p
a
ra

te
d

8
0
%

1
0
0
%

1
0
0
%

8
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
0
%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

N
es

te
d

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

8
0
%

8
0
%

1
0
0
%

1
0
0
%

8
0
%

5.3 Comparison between CoClust and mClust 85

relationship irrespectively of the kind of margins, the number of clusters and the strength of

the dependence relationship. As in the Gaussian cases, the algorithm allows us to overcome

the limits of the two clustering methods investigated in Chapter 4 and to identify clusters

of dependent data respecting the true underlying dependence structure.

5.2.3 Conclusions about Simulation Results

From these simulations we may argue that the main advantages of this new clustering

algorithm are the following:

1. it is able to find clusters of observations (gene expressions or experimental condi-

tions) according to the dispersion structure of the data allowing to uncover the true

dependence relationship in gene expressions data

- irrespective of the degree of overlap of margins;

- irrespective of the level of dependence between margins;

2. it is not necessary to know a priori the number of clusters;

3. it does not require to have a starting classification;

4. it allows to find the k–plets of observations that are dependent;

5. it can account for complex dependence relationship between gene expressions;

6. it overcomes the limits of the K–means and hierarchical clustering (see Chapter 4).

In the next section we are going to compare the CoClust with an other class of clus-

tering techniques based on statistical models: the model–based clustering (Fraley and

Raftery, 1998, 1999, 2000 and 2007).

5.3 Comparison between CoClust and mClust

In this section we perform a simulation study in order to compare the CoClust with the

model–based clustering algorithm (Chapter 1, Section 1.2.3, p. 13) in the same situations

and dependence settings outlined in the previous sections.

5.3.1 mClust of Gaussian Simulated Data

The design of the simulation study is the same as that of the previous sections. We have

set the minimum number of mixture components (clusters) to 2 and the maximum number

to 5. The model–based algorithm is applied to the data put in one column in order to

communicate to the EM algorithm that the data in each cluster are one–dimensional.

All other factors vary as in the simulation study performed in the previous sections and

the obtained results are shown in two tables whose structure is like those of the previous

sections.

86 A copula–based clustering algorithm

Since the ‘mClust’ is not always able to identify the correct number of clusters, the

statistical test on the mean, the variance and the normality for each cluster are computed

on the number of replications with well–identified number of clusters. Finally, notice that

when in the tables concerning the test on the clusters you find ‘NA’ (‘not available’), it

means that it has not been possible to compute the value since there were no correct

results for any replication.

Table 5.17: mClust performance: Gaussian copula, two clusters

Dependence Kind of Clustering Dependence

Parameter Margins p.n.c. p.w.s. θ̂∗ c.e. n.r.p.

Well–separated 100% 34% 0.3848 0.5152 18.5%

θ = 0.9 Overlapping 100% 13% 0.0805 0.8195 0.5%

Nested 81.5% 0% −0.0097 0.9097 0%

Well–separated 100% 37% 0.1552 0.2448 27%

θ = 0.4 Overlapping 100% 11% 0.0421 0.3579 0.5%

Nested 84% 0% 0.0077 0.3923 4.5%

Table 5.18: mClust performance: Gaussian copula, two clusters

Dependence Kind of Mean Variance Normality

Parameter Margins C1 C2 C1 C2 C1 C2

Well–separated 94.5% 93.5% 100% 100% 96% 95%

θ = 0.9 Overlapping 93.5% 92.5% 100% 100% 92.5% 93%

Nested 31.9% 22.1% 93.3% 93.3% 30% 11.7%

Well–separated 97.5% 93.5% 100% 100% 94% 92.5%

θ = 0.4 Overlapping 97% 91% 100% 100% 95% 95.5%

Nested 22% 23.2% 92.9% 92.9% 26.8% 11.3%

In the two clusters case (tables 5.17 and 5.18) note that the model–based clustering

is always able to identify the correct number of clusters in the not nested margins case

and almost always in the nested margins case. As for the p.w.s., instead, the mClust

fails in each situation and dependence settings investigated. This failure influences the

5.3 Comparison between CoClust and mClust 87

failure in finding the true underlying dependence relationship between clusters. However,

as for the n.r.p. of the null hypothesis on the dependence parameter the performance

of the mClust appears to get worse as long as the margins become overlapping. This

result is confirmed by the trend of the cluster effect and the value of the mean of θ̂ over

replications. As for the goodness of fit, the mClust appears to be a good technique to

identify the correct probability model even if the most important measures of performance

reveal the incapability of the mClust in finding the true dependence relationship between

clusters.

In Tab. 5.19 we note that the performance of the mClust is perfect as for the percentage

of replications with correct number of identified clusters in the not nested margins case

but it fails in the nested margins one decreasing dramatically from 100% to 17%. The

performance worsen as the level of overlap increases (see the trend of the c.e and the n.r.p.

of H0 on θ). As for the goodness of fit (Tab. 5.20), the mClust appears to be quite able in

finding the correct probability model for margins even if, also here, its performance gets

worse with the degree of overlap, similarly to the behavior of the K–means and hierarchical

clustering methods (Chapter 4, Sections 4.2, p. 51 and 4.3, p. 58).

Also in the case of four clusters (Tab. 5.21) the performance of the model–based

clustering appears to be dependent on the degree of overlap of margins as for the p.n.c.

that decreases from 100% in the case of well–separated margins to 0% in the case of

nested margins. The cluster effect, the mean of θ̂ over replications and the n.r.p. of the

null hypothesis on the dependence parameter reveal the failure of the mClust in finding the

true dependence relationship between clusters. As for the goodness of fit (Tab. 5.22) the

mClust clustering techniques appears able to identify the true mean and variance values

and the normality distribution (in almost two of the four clusters) for the majority of the

replications in the cases of not nested margins. Notice that we do not have replications in

which is possible to compute the statistical tests in the case of nested margins. In general,

the performance of the mClust in grouping dependent data is not satisfactory.

In the case of five clusters (tables 5.23 and 5.24) the mClust works well as for the

percentage of replications with correct number of identified clusters in not nested margins

(p.n.c. are ≈ 80%) case but totally fails in the nested margins case. As for the other

measures of performance shown in Tab. 5.23, the mClust fails in each investigated case

even if as for the goodness of clusters for the not nested margins cases (Tab. 5.24) appears

to be quite good.

We may conclude that the model–based clustering is able to identify the correct number

of clusters in the not nested margins case irrespective of the kind of dependence relationship

between themselves but it appears not able to group dependent observations not being

able to identify the correct value of θ in each situation investigated. Moreover, the mClust

performance is not independent of the kind of margins and it does not allow to overcome

the limits of the K–means and hierarchical clustering analyzed in Chapter 4. It appears

not adequate to the purpose of clustering dependent (microarray) data. Comparing these

88 A copula–based clustering algorithm

T
ab

le
5.

19
:

m
C

lu
st

p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

3
4
%

0
.3

5
3
7

0
.6

3
6
3

8
%

θ
=

0
.9

O
v
er

la
p
p
in

g
1
0
0
%

1
4
%

0
.2

1
7
6

0
.6

8
2
4

1
%

N
es

te
d

1
7
%

0
%

−
0
.0

1
1
9

0
.9

1
1
9

0
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

2
9
.5

%
0
.1

6
6
3

0
.2

3
3
7

1
4
%

θ
=

0
.4

O
v
er

la
p
p
in

g
1
0
0
%

1
5
.5

%
0
.0

7
9
8

0
.3

2
0
2

1
%

N
es

te
d

2
2
%

0
%

−
0
.0

1
5
5

0
.4

1
5
5

0
%

T
ab

le
5.

20
:

m
C

lu
st

p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

9
3
.5

%
9
2
.5

%
9
5
%

1
0
0
%

1
0
0
%

1
0
0
%

9
3
.5

%
9
4
.5

%
9
7
%

θ
=

0
.9

O
v
er

la
p
p
in

g
9
4
%

9
2
%

9
1
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
.5

%
9
6
%

9
6
.5

%

N
es

te
d

7
0
.6

%
2
6
.5

%
0
%

1
0
0
%

1
0
0
%

1
0
0
%

7
0
.6

%
2
9
.4

%
5
.9

%

W
el

l–
se

p
a
ra

te
d

9
4
.5

%
9
3
.5

%
9
2
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
7
.5

%
9
5
.5

%

θ
=

0
.4

O
v
er

la
p
p
in

g
9
2
%

9
3
.5

%
9
3
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
.5

%
9
6
.5

%
9
6
.5

%

N
es

te
d

6
5
.9

%
1
8
.2

%
9
.1

%
1
0
0
%

1
0
0
%

1
0
0
%

7
0
.5

%
2
0
.5

%
9
.1

%

5.3 Comparison between CoClust and mClust 89

T
ab

le
5.

21
:

m
C

lu
st

p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
%

0
.0

8
5
5

0
.8

1
4
5

0
%

θ
=

0
.9

O
v
er

la
p
p
in

g
1
0
0
%

0
.5

%
0
.0

4
1
8

0
.8

5
8
2

0
%

N
es

te
d

0
%

0
%

N
A

N
A

N
A

W
el

l–
se

p
a
ra

te
d

1
0
0
%

0
.5

%
0
.0

3
3
0

0
.3

6
7
0

0
%

θ
=

0
.4

O
v
er

la
p
p
in

g
1
0
0
%

0
%

0
.0

2
0
3

0
.3

7
9
7

0
%

N
es

te
d

0
%

0
%

N
A

N
A

N
A

T
ab

le
5.

22
:

m
C

lu
st

p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

W
el

l–
se

p
a
ra

te
d

9
6
.5

%
9
4
%

2
7
%

2
4
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
.5

%
9
6
.5

%
2
1
.5

%
0
%

θ
=

0
.9

O
v
er

la
p
p
in

g
9
4
.5

%
9
4
%

2
7
%

1
8
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
.5

%
9
3
.5

%
2
1
%

0
.5

%

N
es

te
d

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

W
el

l–
se

p
a
ra

te
d

9
4
.5

%
9
4
.5

%
2
1
.5

%
1
8
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
7
.5

%
9
7
%

2
3
%

1
%

θ
=

0
.4

O
v
er

la
p
p
in

g
9
7
%

9
8
%

2
4
.5

%
3
1
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
.5

%
9
1
%

1
4
.5

%
1
%

N
es

te
d

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

90 A copula–based clustering algorithm

T
ab

le
5.

23
:

m
C

lu
st

p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

8
1
.5

%
3
%

0
.3

3
5
2

0
.5

6
4
8

0
%

θ
=

0
.9

O
v
er

la
p
p
in

g
8
0
.5

%
3
%

0
.2

8
2
1

0
.6

1
7
9

0
%

N
es

te
d

0
%

0
%

N
A

N
A

N
A

W
el

l–
se

p
a
ra

te
d

7
8
%

2
.5

%
0
.1

3
3
7

0
.2

6
6
3

0
.5

%

θ
=

0
.4

O
v
er

la
p
p
in

g
7
8
.5

%
2
%

0
.1

1
8
9

0
.0

9
6
8

0
.5

%

N
es

te
d

0
%

0
%

N
A

N
A

N
A

T
ab

le
5.

24
:

m
C

lu
st

p
er

fo
rm

an
ce

:
G

au
ss

ia
n

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

W
el

l–
se

p
a
ra

te
d

9
6
.9

%
9
4
.5

%
7
0
.5

%
4
1
.1

%
9
5
.7

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
.7

%
9
4
.5

%
8
5
.9

%
8
5
.9

%
9
0
.8

%

θ
=

0
.9

O
v
er

la
p
p
in

g
9
3
.2

%
9
5
.6

%
6
7
.7

%
4
5
.3

%
9
6
.9

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
.4

%
9
5
.6

%
8
8
.8

%
8
0
.1

%
9
1
.9

%

N
es

te
d

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

W
el

l–
se

p
a
ra

te
d

9
3
.6

%
9
3
.6

%
6
0
.3

%
4
5
.5

%
9
2
.3

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
1
.7

%
9
6
.1

%
9
0
.4

%
8
1
.4

%
9
5
.5

%

θ
=

0
.4

O
v
er

la
p
p
in

g
9
4
.3

%
9
2
.3

%
6
1
.1

%
4
7
.8

%
9
5
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
.2

%
9
6
.8

%
8
7
.3

%
7
8
.3

%
9
4
.3

%

N
es

te
d

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

5.3 Comparison between CoClust and mClust 91

results with the performance of the CoClust algorithm, we may conclude that in general

the CoClust performs better than the mClust method. The only drawback of the CoClust

in its current implementation is that it is more computationally expensive than the mClust.

5.3.2 mClust of Frank Simulated Data

We analyze the performance of the model–based clustering on dependent data simulated

via a Frank copula. The setting is the same of that followed in previous analysis as well

as the two kind of tables in which the results are shown.

Table 5.25: mClust performance: Frank copula, two clusters

Dependence Kind of Clustering Dependence

Parameter Margins p.n.c. p.w.s. θ̂∗ c.e. n.r.p.

Well–separated 99.5% 32% 5.9041 15.0959 19.5%

θ = 21 Overlapping 100% 14% 0.8982 20.1018 0%

Nested 81.5% 0% −0.0549 21.0549 0%

Well–separated 100% 33% 3.3577 6.6423 21.5%

θ = 10 Overlapping 100% 13% 0.6432 9.3568 0.5%

Nested 83% 0% −0.0115 10.0115 0%

Table 5.26: mClust performance: Frank copula, two clusters

Dependence Kind of Mean Variance Normality

Parameter Margins C1 C2 C1 C2 C1 C2

Well–separated 96% 94.5% 100% 100% 97% 98.5%

θ = 21 Overlapping 93% 94% 100% 100% 97% 96%

Nested 25.8% 22.1% 91.4% 91.4% 28.8% 14.1%

Well–separated 95% 93% 100% 100% 98% 96%

θ = 10 Overlapping 92% 91.5% 100% 100% 95% 97%

Nested 30.7% 10.8% 92.2% 92.2% 31.3% 4.2%

The model–based clustering works very well for the identification of the number of

92 A copula–based clustering algorithm

T
ab

le
5.

27
:

m
C

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

3
2
.5

%
4
.7

5
6
5

1
6
.2

4
3
5

9
%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

1
6
%

1
.8

9
8
3

1
9
.1

0
1
7

0
.5

%

N
es

te
d

1
8
.5

%
0
%

−
0
.0

7
8
3

2
1
.0

7
8
3

0
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

2
5
.5

%
2
.6

6
8
4

7
.3

3
1
6

9
.5

%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

1
6
.5

%
1
.2

4
6
1

8
.7

5
3
9

0
%

N
es

te
d

2
4
.5

%
0
%

−
0
.0

1
1
1

1
0
.0

1
1
1

0
%

T
ab

le
5.

28
:

m
C

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
th

re
e

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

W
el

l–
se

p
a
ra

te
d

9
2
.5

%
9
3
%

9
4
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
5
.5

%
9
3
%

θ
=

2
1

O
v
er

la
p
p
in

g
9
3
%

9
1
.5

%
9
3
%

1
0
0
%

1
0
0
%

1
0
0
%

9
2
.5

%
9
7
.5

%
9
6
%

N
es

te
d

7
5
.7

%
1
6
.2

%
2
.7

%
1
0
0
%

1
0
0
%

1
0
0
%

7
0
.3

%
1
6
.2

%
2
.7

%

W
el

l–
se

p
a
ra

te
d

9
4
%

9
4
%

9
5
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
%

9
3
.5

%
9
8
.5

%

θ
=

1
0

O
v
er

la
p
p
in

g
9
5
%

9
4
.5

%
9
4
%

1
0
0
%

1
0
0
%

1
0
0
%

9
8
%

9
1
%

9
6
%

N
es

te
d

5
5
.1

%
2
2
.5

%
1
2
.3

%
1
0
0
%

1
0
0
%

1
0
0
%

5
5
.1

%
2
8
.6

%
1
2
.3

%

5.3 Comparison between CoClust and mClust 93

T
ab

le
5.

29
:

m
C

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

1
0
0
%

0
.5

%
0
.3

9
1
3

2
0
.6

0
8
7

0
%

θ
=

2
1

O
v
er

la
p
p
in

g
1
0
0
%

0
%

0
.1

8
9
5

2
0
.8

1
0
5

0
%

N
es

te
d

0
.5

%
0
%

0
.4

8
7
9

2
0
.5

1
2
1

0
%

W
el

l–
se

p
a
ra

te
d

1
0
0
%

1
%

0
.3

1
3
9

9
.6

8
6
1

0
%

θ
=

1
0

O
v
er

la
p
p
in

g
1
0
0
%

0
%

0
.1

7
1
0

9
.8

2
9
0

0
%

N
es

te
d

0
.5

%
0
%

−
1
.8

0
7
6

1
1
.8

0
7
6

0
%

T
ab

le
5.

30
:

m
C

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fo

u
r

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

C
1

C
2

C
3

C
4

W
el

l–
se

p
a
ra

te
d

9
1
.5

%
8
9
.5

%
2
6
%

2
5
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
6
.5

%
9
6
.5

%
2
0
%

0
%

θ
=

2
1

O
v
er

la
p
p
in

g
9
2
%

9
2
%

2
8
.5

%
1
7
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
%

9
4
%

1
9
.5

%
0
%

N
es

te
d

0
%

0
%

0
%

0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

0
%

0
%

0
%

W
el

l–
se

p
a
ra

te
d

9
3
.5

%
9
5
%

2
7
.5

%
2
6
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
%

9
4
%

1
6
.5

%
0
%

θ
=

1
0

O
v
er

la
p
p
in

g
8
9
%

9
4
.5

%
2
8
%

1
6
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
%

9
5
.5

%
2
0
%

0
%

N
es

te
d

0
%

0
%

0
%

0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

0
%

1
0
0
%

1
0
0
%

94 A copula–based clustering algorithm

clusters irrespective of the kind of margins and the level of dependence (see Tab. 5.25)

whereas it does not have a satisfactory performance as for all other measures of perfor-

mance. In the case of nested margins, it totally fails as for the p.w.s., the c.e. and the

n.r.p. of H0 on the dependence parameter. Notice that as regards the percentage of

well–identified cluster sizes and the not rejection percentage of the null hypothesis on the

dependence parameter, the performance of the mClust gets worse as the margins become

more and more overlapping. This remark is valid also for the goodness of fit (see Tab.

5.26) even if for this kind of analysis the performance of the mClust improves with respect

to the analysis of dependence.

In the case of three clusters drawn from a Frank copula, the performance of the mClust

does not change. It gets worse as long as the margins become overlapping up to a total

failure in the nested margins cases. The only measure of performance that shows a good

performance in the not nested margins cases is the percentage of correct number of clusters

(see Tab. 5.27). As for the n.r.p. of H0 on the dependence parameter the mClust appears

to be better in the two cluster case but it is still unsatisfactory. The goodness of fit (Tab.

5.28) is very good in the not nested cases but the overall performance of the mClust appears

not adequate to group dependent data since it does not allow us to recover correctly the

underlying dependence structure.

Working with four clusters of dependent data, the mClust totally fails in the analysis

of dependence (see Tab. 5.29) with a zero percentage of not rejection of the null hypothesis

on θ in all the cases investigated. Also here, the mClust appears to be able to identify

the correct number of clusters in the not nested margins cases whereas it fails in the

identification of the cluster sizes. The c.e. is very high in each situations investigated,

irrespective of the level of dependence and the kind of margins. The goodness of fit (Tab.

5.30) is quite good in the not nested margins cases but it fails in the nested margins case.

Finally, the model–based clustering does not allow us to recover the true underlying

dependence structure in each dependence settings investigated, irrespective of the kind of

margins, also in the case of five clusters. Indeed, the not rejection percentage of H0 on the

dependence parameter is always equal to zero (Tab. 5.31) and the cluster effect is very

high in each investigated cases. The failure likely lies in that of the identification of the

cluster sizes: the p.w.s. is always close to zero. If we focus our attention only on the not

nested margins cases, the only satisfactory measure of performance is the percentage of

replications in which the number of identified clusters is correct. The goodness of fit (Tab.

5.32) is very good with exception of the nested margins case for which we do not have

replications in which the number of clusters has been correctly identified. In conclusion,

this set of simulations confirms the findings of the Gaussian case since the model–based

clustering does not appear to be appropriate to group dependent data because it does

not allow us to discover the true dependence structure of the data generating process.

Moreover, its performance appears to be dependent on the degree of overlap of margins

like the other two clustering techniques investigated in Chapter 4 but independent of the

5.3 Comparison between CoClust and mClust 95

T
ab

le
5.

31
:

m
C

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fi
ve

cl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

C
lu

st
er

in
g

D
ep

en
d
en

ce

P
a
ra

m
et

er
M

a
rg

in
s

p
.n

.c
.

p
.w

.s
.

θ̂
∗

c
.e

.
n
.r

.p
.

W
el

l–
se

p
a
ra

te
d

8
2
%

1
%

1
.9

0
3
6

1
9
.0

9
6
4

0
%

θ
=

2
1

O
v
er

la
p
p
in

g
8
2
%

2
%

1
.7

8
6
6

1
9
.2

1
3
3

0
%

N
es

te
d

0
%

0
%

N
A

N
A

N
A

W
el

l–
se

p
a
ra

te
d

8
2
.5

%
4
.5

%
1
.6

0
6
5

8
.3

9
3
5

0
%

θ
=

1
0

O
v
er

la
p
p
in

g
8
1
%

1
.5

%
1
.5

3
6
8

8
.4

6
3
2

0
%

N
es

te
d

0
%

0
%

N
A

N
A

N
A

T
ab

le
5.

32
:

m
C

lu
st

p
er

fo
rm

an
ce

:
F
ra

n
k

co
p
u
la

,
fi
ve

fl
u
st

er
s

D
ep

en
d
en

ce
K

in
d

o
f

M
ea

n
V
a
ri

a
n
ce

N
o
rm

a
li
ty

P
a
ra

m
et

er
M

a
rg

in
s

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

C
1

C
2

C
3

C
4

C
5

W
el

l–
se

p
a
ra

te
d

9
5
.1

%
9
5
.7

%
6
9
.5

%
4
9
.3

%
9
5
.1

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
5
.7

%
9
3
.9

%
8
7
.2

%
7
8
.7

%
9
6
.3

%

θ
=

2
1

O
v
er

la
p
p
in

g
9
3
.3

%
9
4
.5

%
6
8
.9

%
4
4
.5

%
9
4
.5

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
3
.9

%
9
6
.3

%
8
7
.2

%
8
4
.8

%
9
6
.3

%

N
es

te
d

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

W
el

l–
se

p
a
ra

te
d

9
2
.7

%
9
1
.5

%
6
7
.9

%
4
0
.6

%
9
5
.2

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
8
.2

%
9
4
.5

%
8
6
.7

%
8
7
.9

%
9
5
.1

%

θ
=

1
0

O
v
er

la
p
p
in

g
9
1
.4

%
9
2
.6

%
6
4
.2

%
3
7
.7

%
9
4
.4

%
1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
4
.4

%
9
5
.1

%
8
6
.4

%
8
0
.9

%
9
4
.4

%

N
es

te
d

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

96 A copula–based clustering algorithm

value of the dependence parameter.

5.4 Discussion

In this chapter, we have described a new clustering algorithm based on copula functions.

This algorithm has been tested on simulated data drawn from Gaussian and Frank copula

in different situations and dependence settings. We have found that the algorithm is able

to recover the true underlying dependence relationship between observations grouped in

different clusters irrespective of the kind of margins, the value of the dependence parameter

and the copula model.

Interestingly, the CoClust algorithm has other peculiar characteristics. In fact, it is

able to identify the correct number of clusters independently of the kind of dependence

relationship between clusters allowing to overcome this difficult matter. Moreover, it

does not require a starting classification of data because in the first two steps of the

algorithm it tests all possible combinations of k–plet of data choosing that maximizes the

log–likelihood copula function. This allows to choose the best number of clusters, that is,

the number of clusters and the k–plet that are better fitted by a copula function. In the

following steps, the algorithm tests all possible dispositions of the remaining observations

and selects the k–plet that preserves the dependence relationship and is the best fitted by

the copula. Taking in account the order in the k–plet of observations enables to choose

at what cluster to assign each observation. The order is very important to preserve the

dependence structure of the data. In the proposed algorithm there are not sources of

coming bias either from the a priori choice of the number of clusters or from a starting

classification.

A drawback of the CoClust is its computational complexity even if there is room for

further optimization under this aspect. Indeed, a new faster version is in progress. It is

based on a change in the last two steps of the procedure described in Section 5.1.1 that

allows to save CPU time. Once k is chosen, the algorithm does not explore anymore the

whole space of the all possible dispositions of each k–plet but at each iteration it selects

a subspace of all possible combinations of remaining k–plets on the basis of the result

obtained at the previous step and computes all possible dispositions just for a specific

k–plet candidate to allocation on the basis of the copula–based split up rule.

We have also compared the CoClust with another well–known clustering technique

based on probability models and we have found that the latter appears not able to model

the true dependence relationship between observations. Moreover it does not allow to

overcome the limits of the K–means and hierarchical clustering methods investigated in

the previous chapter working worse in the not nested margins cases than in the nested

margins ones. The algorithm proposed, instead, allows to achieve such tasks since its

performance is independent of the degree of overlap of margins.

In the next chapter we are going to apply the CoClust algorithm to a real microarray

5.4 Discussion 97

data set.

Chapter 6

Applying the CoClust to Real

Data

This chapter is dedicated to the application of the CoClust algorithm to a real microarray

data set. The attention focuses on the breast tumors data discussed in Hedenfalk et al.

(2001). The main purpose is to discover new information about the relationship between

genes observed in three different cancer samples. At the same time, we apply the CoClust

to the columns of the whole data matrix in order to verify whether the algorithm is able

to group correctly the types of mutation.

6.1 Introduction

In this section we describe the microarray data set we use for the applications of the

CoClust algorithm and the preliminary transformations and analysis performed.

6.1.1 Description of the Data Set

Hedenfalk et al. (2001) obtained RNA from samples of primary breast tumors in patients

who had a family history of breast or ovarian cancer, or both, that was compatible with

a dominant mode of inheritance were referred for genetic counseling to the Oncogenetic

Clinic of Lund University Hospital. Biopsy specimens of primary breast tumors from

patients with germ–line mutations of BRCA1 (seven patients) or BRCA2 (eight tumors

from seven patients) were selected for analysis. In addition, seven patients with sporadic

cases of primary breast cancer whose family history was unknown were also identified.

Summarizing, 21 patients were observed: seven carriers of the BRCA1 mutation, seven

carriers of the BRCA2 mutation and seven patients with sporadic cases of breast cancer.

They were compared with a microarray of 6512 complementary DNA clones of 5361 genes.

The data set is available at

http://research.nhgri.nih.gov/microarray/NEJM_Supplement/.

99

100 Applying the CoClust to Real Data

The (tab–delimited) text file contains the gene expression ratios from 21 microarray ex-

periments, the patients ID (first row), the mutation classification for each experiment:

BRCA1, BRCA2, Sporadic (second row) and the experiment ID (third row); the first

three columns contain information about the microtiter plate ID where each clone is phys-

ically locates, the IMAGE clone ID and the Clone Title, respectively as follows:

NEJM-PatientID 1 5 3..

Mutation BRCA1 BRCA1 BRCA1..

PlatePosition ImageCloneID Title s1996 s1822 s1714..

HK1A1 21652 "catenin" 0.15 0.22 0.3..

HK1A2 22012 "ADP-ribosylation fac.3" 1.54 1.27 0.76..

...

Hedenfalk et al. (2001) select genes based on the following criteria:

- average fluorescent intensity (level expression) of more than 2.500 (gray level) across

all 21 samples;

- average spot area of more than 40 pixels across all 21 samples;

- no more than one sample in which the spot area is zero pixel.

They obtain 3226 genes. Gene expression ratios included in the data file were derived

from the ratio of fluorescent intensity (proportional to the gene expression level) from a

tumor sample and fluorescent intensity from a common reference sample (MCF–10A). The

common reference sample is used for all 21 microarray experiments. Therefore, the ratio

may take value from 0 to infinity.

6.1.2 Preliminary Analysis

First of all, we perform a logarithmic–transform to convert the ratio of the 3226 genes in

order to achieve the symmetric property from over–expression to under–expression range.

Second, we focus our attention on the list of 51 genes whose variation in expression

among all experiments best differentiated among these types of cancers (Hedenfalk et al.,

2001). Consequently, we divide the database in three different sets of gene expressions

according to the type of mutation observed: BRCA1, BRCA2 and Sporadic. We are

going to apply the CoClust algorithm to such three sets of gene expressions in order to

investigate the changes in the kind and the strength of the dependence between genes

according to the type of tumor sample (mutation).

Third, we focus our attention on the whole data set in order to apply the CoClust

algorithm to its columns (kind of mutation). The purpose is to test the capability of the

CoClust of finding groups according to the kind of mutation.

In the analysis we omit the column number 10 that contains the genes of a BRCA2

cancer sample of the same patient whose genes were put into column 7.

6.2 Application of the CoClust to Hedenfalk Data 101

6.2 Application of the CoClust to Hedenfalk Data

In this section we describe the analysis performed on the Hedenfalk et al. (2001) data

set. The first part is dedicated to the application of the CoClust algorithm to the gene

expressions recorded for three different tumor samples. In the second part the CoClust

will be applied to the whole data set in order to test its capability in distinguishing the

three samples observed.

6.2.1 Analyzing the Dependence Between Genes

The main purpose is to investigate the behavior of the genes observed in three different

tumor samples: primary tumors from carriers of the BRCA1 mutation, primary tumors

from carriers of the BRCA2 mutation and sporadic cases of primary breast tumor. We

use the CoClust algorithm to study the differences in the dependence relationship between

genes according to the type of genetic mutation.

In order to reach this purpose, the Hedenfalk data set has been divided in three different

data sets, each one for a different tumor sample (mutation) and the CoClust algorithm

will be applied to the rows of each one of these data matrices. Summarizing, we are going

to apply the CoClust algorithm to

1. gene expressions of carriers of BRCA1 mutation (‘BRCA1’, hereafter)

2. gene expressions of carriers of BRCA2 mutation (‘BRCA2’, hereafter)

3. gene expressions of sporadic case of breast tumor (‘Spo’, hereafter)

by setting the nmaxmarg argument of the R function to 5 and the model for copula to

‘Frank’. The algorithm uses gaussian margins but we underly that it could be interesting

repeat the following analysis by using others models for margins and for copula. Notice

that in the following interpretation of the results we call the genes by their UniGene Title.

We assess the biological significance of our results by considering the distributions

of gene annotations across the clusters and evaluating the cellular components and the

biological processes in which they are involved as provided by the GO consortium of the

EMBL–EBI (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi).

As regards the BRCA1 cancer sample, the CoClust algorithm gives the following out-

put:

$Number_of_Clusters

[1] 3

$Index.Matrix

[,1] [,2] [,3]

[1,] 40 45 48

[2,] 25 9 8

102 Applying the CoClust to Real Data

[3,] 20 26 27

[4,] 35 28 24

[5,] 39 19 47

[6,] 4 5 3

[7,] 16 14 11

[8,] 31 15 46

[9,] 38 30 22

[10,] 33 21 2

[11,] 42 51 6

[12,] 23 50 17

[13,] 43 32 18

[14,] 37 12 7

[15,] 34 29 1

[16,] 36 49 10

[17,] 44 41 13

$Clustering.Vector

[1] 3 3 3 1 2 3 3 3 2 3 3 2 3 2 2 1 3 3 2 1 2 3 1 3 1 2 3 2 2 2

1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 3 3 3 2 2 2

$Data_Clusters

Cluster1 Cluster2 Cluster3

[1,] 1.289233 1.526056 0.04879016

[2,] 2.453588 2.556452 0.98954119

[3,] 1.906575 1.968510 0.73236789

[4,] 1.843719 2.006871 0.83290912

[5,] 1.930071 1.908060 0.80647587

...

[118,] 0.8329091 0.7561220 0.02955880

[119,] 1.0006319 0.9082586 -0.05129329

$Dependence

$Dependence$Param

[1] 3.792196

$Dependence$Std.Err

[1] 0.4357922

6.2 Application of the CoClust to Hedenfalk Data 103

−2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

M
ar

gi
n
s

First Cluster
Second Cluster
Third Cluster

Figure 6.1: Gaussian Margins from Clustering BRCA1 Mutation Cancer Samples.

$Dependence$‘P.val.Pr(>|z|)’

[1] 0

$LogLik

[1] 40.38581

The CoClust algorithm identifies 3 clusters of 17(= 119/7) genes showing high positive

dependence parameter θ = 3.79 (significantly different from zero). We show the degree of

overlap of margins in Fig. 6.1.

In Tab. 6.1 the obtained three clusters of genes observed in BRCA1 mutation cancer

samples is shown. This tables contains by row the triplets of dependent genes (belonging

to a different cluster) and by column the three clusters. The CoClust algorithm reveals

dependence between genes involved in the same biological process, e.g. the cellular defense

response (Myxovirus resistance protein 2 and Zinc finger protein) but also genes involved

in different biological processes like the polyamine metabolism, phospholipid metabolism

and the negative regulation of cell proliferation (for UniGene Title: human mRNA for

ornithine decarboxylase antizyme, transducer of ERBB2, 1 and glutathione maintenance

deficient 7, respectively). Moreover, it reveals dependence between genes associated in

protein binding like low density lipoprotein–related protein 1 and ARP1. Notice that se-

lenophosphate synthetase and minichromosome maintenance deficient 7 are dependent

and they have similar molecular functions (e.g. ATP binding) but are involved in dif-

ferent biological processes (e.g. cell cycle and protein modification). It is interesting to

104 Applying the CoClust to Real Data

T
ab

le
6.

1:
C

lu
st

er
in

g
of

51
G

en
es

in
B

R
C

A
1

M
u
ta

ti
on

C
an

ce
r

S
am

p
le

s

O
b
s

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3

1
es

ts
m

y
x
ov

ir
u
s

re
si

st
a
n
ce

2
zi

n
c

fi
n
g
er

p
ro

te
in

1
6
1

2
d
k
fz

p
5
6
4
m

2
4
2
3

p
ro

te
in

p
h
o
sp

h
o
fr

u
ct

o
k
in

a
se

,
p
la

te
le

t
p
h
o
sp

h
o
fr

u
ct

o
k
in

a
se

,
p
la

te
le

t

3
d
1
2
3

g
en

e
p
ro

d
u
ct

g
d
p

d
is

so
ci

a
ti
o
n

in
h
ib

it
o
r

2
ch

ro
m

o
b
ox

h
om

o
lo

g
3

4
in

te
rl

eu
k
in

en
h
a
n
ce

r
b
in

d
in

g
fa

ct
o
r

2
,
4
5
k
D

tr
a
n
sc

ri
p
ti
o
n

fa
ct

o
r

A
P

–
2

g
a
m

m
a

k
ia

a
0
6
0
1

p
ro

te
in

5
fo

rk
h
ea

d
b
ox

M
1

n
u
cl

ea
se

se
n
si

ti
v
e

el
em

en
t

b
in

d
in

g
p
ro

te
in

1
u
d
p
-g

a
la

ct
o
se

tr
a
n
sp

o
rt

er
re

la
te

d

6
h
.

m
rn

a
fo

r
o
rn

it
h
in

e
d
ec

a
rb

ox
y
l.

a
n
ti
en

z.
tr

a
n
sd

u
ce

r
o
f
er

b
b
2
,
1

g
lu

ta
th

io
n
e

p
er

ox
id

a
se

4

7
in

te
g
ri

n
,
b
et

a
8

su
p
p
re

ss
io

n
o
f
tu

m
o
ri

g
en

ic
it
y

1
3

h
y
d
ro

x
y
a
cy

l

8
ct

p
sy

n
th

a
se

th
y
ro

id
a
u
to

a
n
ti
g
en

7
0
k
D

cy
to

ch
ro

m
e

c
ox

id
a
se

su
b
u
n
it

V
Ic

9
se

le
n
o
p
h
o
sp

h
a
te

sy
n
th

et
a
se

p
h
y
ta

n
oy

l–
C

o
A

h
y
d
ro

x
y
la

se
m

in
ic

h
ro

m
o
so

m
e

m
a
in

te
n
a
n
ce

d
efi

ci
en

t
7

1
0

b
u
ty

ra
te

re
sp

o
n
se

fa
ct

o
r

1
v
er

y
lo

w
d
en

si
ty

li
p
o
p
ro

te
in

re
ce

p
to

r
es

ts

1
1

k
ia

a
0
2
4
6

p
ro

te
in

lo
w

d
en

si
ty

li
p
o
p
ro

te
in

–
re

la
te

d
p
ro

te
in

1
a
rp

1
h
o
m

o
lo

g
A

1
2

es
ts

p
la

te
le

t–
d
er

iv
ed

g
ro

w
th

fa
ct

.
b
et

a
p
o
ly

p
.

es
ts

1
3

ca
rb

a
m

oy
l–

p
h
o
sp

h
a
te

sy
n
th

et
a
se

2
es

ts
p
ro

te
in

p
h
o
sp

h
a
ta

se
1

1
4

cy
cl

in
–
d
ep

en
d
en

t
k
in

a
se

4
re

ti
n
o
b
la

st
o
m

a
–
li
k
e

2
co

ld
sh

o
ck

d
o
m

a
in

p
ro

te
in

A

1
5

tu
m

o
r

p
ro

te
in

p
5
3
–
b
in

d
in

g
p
ro

t.
,
2

g
u
a
n

n
u
cl

eo
t

b
in

d
in

g
p
ro

te
in

,
a
lp

h
a

in
h
ib

it
a
ct

iv
p
o
ly

p
ep

t
3

k
er

a
ti
n

8

1
6

s–
p
h
a
se

re
sp

o
n
se

a
rm

a
d
il
lo

re
p
.

g
en

e
d
el

et
es

in
v
el

o
ca

rd
.

sy
n
d
.

p
ro

li
fe

ra
ti
n
g

ce
ll

n
u
cl

ea
r

a
n
ti
g
en

1
7

m
y
o
tu

b
u
la

ri
n

re
la

te
d

p
ro

te
in

4
n
it
ro

g
en

fi
x
a
ti
o
n

cl
u
st

er
-l
ik

e
a
p
ex

n
u
cl

ea
se

6.2 Application of the CoClust to Hedenfalk Data 105

observe that the candidate gene to tumor suppression (suppression of tumorigenicity 13)

is related to the integrin beta 8 that mediates cell–cell and cell–extracellular interactions.

Moreover cyclin–dependent kinase 4, retinoblastoma–like 2 and Cold shock domain pro-

tein A are dependent according to the overlap of the biological processes in which they are

involved two at time (the cell cycle, division and proliferate, the regulation of progression

through cell cycle and the regulation of transcript DNA–dependent). This result reveals

that the negative regulation of transcription from RNA polymerase II promoter and of

progression through cell cycle are likely to be mutually related, that is, any process that

stops, prevents or reduces the frequency, rate or extent of transcription from an RNA poly-

merase II promoter is related to processes that stop, prevent or reduce the rate or extent

of progression through the cell cycle. Finally, notice that the nitrogen fixation cluster–

like is dependent on the APEX nuclease; namely, it could be possible that the cellular

respiration is an important process for the DNA repair, the regulation of DNA binding

and the transcription from RNA polymerase II promoter. We conclude by observing that

in a same cluster, the CoClust has grouped genes with similar molecular and biological

functions. See, for example, Chromobox homolog 3, Cold shock domain protein A and

Minichromosome maintenance deficient 7 that modulate the frequency, rate or extent of

DNA-dependent transcription and all they are components of the nucleus.

As regards the BRCA2 mutation samples, the CoClust algorithm gives the following

output:

$Number_of_Clusters

[1] 5

$Index.Matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 7 12 26 34 40

[2,] 19 20 16 23 14

[3,] 11 17 29 51 45

[4,] 10 32 37 39 44

[5,] 18 13 15 21 35

[6,] 8 9 22 42 47

[7,] 1 36 5 43 48

[8,] 24 2 28 46 49

[9,] 25 27 6 4 41

[10,] 31 30 3 38 50

$Clustering.Vector

[1] 1 2 3 4 3 3 1 1 2 1 1 2 2 5 3 3 2 1 1 2 4 3 4 1 1 3 2 3 3 2 1 2

0 4 5 2 3 4 4 5 5 4 4 5 5 4 5 5 5 5 4

106 Applying the CoClust to Real Data

$Data_Clusters

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

[1,] -0.6733446 -0.1278334 0.10436002 0.35065687 1.0851893

[2,] -0.9675840 -0.3011051 0.12221763 0.41210965 1.3584092

[3,] -1.4271164 -0.2484614 -0.28768207 0.14842001 0.5306283

[4,] -1.6094379 -0.7550226 -0.38566248 -0.18632958 0.6043160

[5,] -1.5141277 -0.5978370 -0.31471074 0.09531018 0.2700271

[6,] -1.3470736 -0.4942963 -0.67334455 -0.03045921 0.4885800

[7,] -0.8675006 -0.2357223 -0.04082199 0.39204209 1.1249296

.....

[69,] 0.3506569 -0.1984509 0.1310283 0.4317824 1.534714

[70,] -0.6733446 -0.2107210 0.2231436 0.5007753 1.3711807

$Dependence $Dependence$Param

[1] 3.792002

$Dependence$Std.Err

[1] 0.3680580

$Dependence$‘P.val.Pr(>|z|)’

[1] 0

$LogLik

[1] 69.70692

The CoClust algorithm finds 5 clusters of 10(= 70/7) different genes highlighting 5–

plet of dependent genes with a high value of the dependence parameter θ = 3.79. Notice

that the zero in the clustering vector above indicates a gene left out of the clustering. This

gene has clone ID 366647 (33rd row of the original data set: butyrate response factor 1

(EGF–response factor 1)). We show the degree of overlap of margins in Fig. 6.2. In Tab.

6.2, instead, the clustering of BRCA2 mutation cancer samples is shown: the 5–plet of

dependent genes are presented by row and the clusters by column. We note that trans-

ducer of ERBB2, 1 and zinc finger protein 161 are dependent and involved in the negative

regulation of cell proliferation and cellular defense response, respectively, revealing that

the defense response of a cell interacts with any process that stops, prevents or reduces the

rate or extent of cell proliferation. Moreover, the dependent relationship between tran-

scription factor AP–2 gamma, cytochrome c oxidase and armadillo repeat gene deletes in

velocardiofacial syndrome suggests that the chemical reactions and pathways resulting in

the formation of precursor metabolites (substances from which energy is derived) and the

processes involved in the liberation of energy from these substances interact with any pro-

cess that mediates the transfer of information from one cell to another and they are helped

6.2 Application of the CoClust to Hedenfalk Data 107

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

N
or

m
al

M
ar

gi
n
s

First Cluster
Second Cluster
Third Cluster
Fourth Cluster
Fifth Cluster

Figure 6.2: Gaussian Margins from Clustering BRCA2 Mutation Cancer Samples.

by the armadillo that makes easy the communication between internal and external cellu-

lar environments. Finally, we note that the directed movement of substances, either within

a vesicle or in the vesicle membrane, into, out of or within a cell performed by ARP 1,

homolog A is dependent on the enzymatic release of energy from organic compounds which

either requires oxygen (aerobic respiration) or does not (anaerobic respiration) performed

by Nitrogen fixation cluster–like; moreover it is dependent on the formation or destruction

of chromatin structures (complex of DNA and protein that makes up chromosomes and

are relevant to DNA replication and DNA repair) performed by Chromobox homolog 3.

In the end, we note that the second cluster is homogeneous with respect to the cellular

components since most of its genes are in the nucleus of cell.

As regards the Sporadic cancer samples, the CoClust gives the following output:

$Number_of_Clusters

[1] 5

$Index.Matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 20 31 36 38 39

[2,] 8 9 25 7 13

[3,] 15 14 16 34 35

[4,] 3 27 47 42 44

[5,] 1 11 21 6 5

108 Applying the CoClust to Real Data

T
ab

le
6.

2:
C

lu
st

er
in

g
of

51
G

en
es

in
B

R
C

A
2

M
u
ta

ti
on

C
an

ce
r

S
am

p
le

s

O
b
s

C
lu

s
t
e
r

1
C

lu
s
t
e
r

2
C

lu
s
t
e
r

3
C

lu
s
t
e
r

4
C

lu
s
t
e
r

5

1
c
o
ld

s
h
o
c
k

d
o
m

a
in

p
r
o
t
e
in

A
r
e
t
in

o
b
la

s
t
o
m

a
–
li
k
e

2
g
d
p

d
is

s
o
c
ia

t
io

n
in

h
ib

it
o
r

2
t
u
m

o
r

p
r
o
t
e
in

p
5
3
–
b
in

d
in

g
p
r
o
t
.,

2
e
s
t
s

2
n
u
c
le

a
s
e

s
e
n
s
it

iv
e

e
l.

b
in

d
in

g
p
r
o
t
.

1
d
1
2
3

g
e
n
e

p
r
o
d
u
c
t

in
t
e
g
r
in

,
b
e
t
a

8
e
s
t
s

s
u
p
p
r
e
s
s
io

n
o
f
t
u
m

o
r
ig

e
n
ic

it
y

1
3

3
h
y
d
r
o
x
y
a
c
y
l

e
s
t
s

g
u
a
n
.

n
u
c
le

o
t
.

b
in

d
in

g
p
r
o
t
.

3
lo

w
d
e
n
s
it
y

li
p
o
p
r
o
t
e
in

–
r
e
la

t
e
d

p
r
o
t
e
in

1
m

y
x
o
v
ir

u
s

r
e
s
is

t
a
n
c
e

2

4
p
r
o
li
fe

r
a
t
in

g
c
e
ll

n
u
c
le

a
r

a
n
t
ig

e
n

e
s
t
s

c
y
c
li
n
–
d
e
p
e
n
d
e
n
t

k
in

a
s
e

4
fo

r
k
h
e
a
d

b
o
x

M
1

m
y
o
t
u
b
u
la

r
in

r
e
la

t
e
d

p
r
o
t
e
in

4

5
p
r
o
t
e
in

p
h
o
s
p
h
a
t
a
s
e

1
a
p
e
x

n
u
c
le

a
s
e

t
h
y
r
o
id

a
u
t
o
a
n
t
ig

e
n

7
0
k
D

v
e
r
y

lo
w

d
e
n
s
it
y

li
p
o
p
r
o
t
e
in

r
e
c
e
p
t
o
r

in
t
e
r
le

u
k
in

e
n
h
a
n
c
e
r

b
in

d
in

g
fa

c
t
o
r

2
,
4
5
k
D

6
p
h
o
s
p
h
o
fr

u
c
t
o
k
in

a
s
e
,
p
la

t
e
le

t
p
h
o
s
p
h
o
fr

u
c
t
o
k
in

a
s
e
,
p
la

t
e
le

t
m

in
ic

h
r
o
m

o
s
o
m

e
m

a
in

t
e
n
a
n
c
e

d
e
fi
c
ie

n
t

7
k
ia

a
0
2
4
6

p
r
o
t
e
in

u
d
p
–
g
a
la

c
t
o
s
e

t
r
a
n
s
p
o
r
t
e
r

r
e
la

t
e
d

7
k
e
r
a
t
in

8
s
–
p
h
a
s
e

r
e
s
p
o
n
s
e

t
r
a
n
s
d
u
c
e
r

o
f
e
r
b
b
2
,
1

c
a
r
b
a
m

o
y
l–

p
h
o
s
p
h
a
t
e

s
y
n
t
h
e
t
a
s
e

2
z
in

c
fi
n
g
e
r

p
r
o
t
e
in

1
6
1

8
k
ia

a
0
6
0
1

p
r
o
t
e
in

e
s
t
s

t
r
a
n
s
c
r
ip

t
io

n
fa

c
t
o
r

A
P
–
2

g
a
m

m
a

c
y
t
o
c
h
r
o
m

e
c

o
x
id

a
s
e

s
u
b
u
n
it

V
Ic

a
r
m

a
d
il
lo

r
e
p
.

g
e
n
e

d
e
le

t
e
s

in
v
e
lo

c
a
r
d
.

s
y
n
d
.

9
d
k
fz

p
5
6
4
m

2
4
2
3

p
r
o
t
e
in

c
h
r
o
m

o
b
o
x

h
o
m

o
lo

g
3

a
r
p
1

h
o
m

o
lo

g
A

h
.

m
r
n
a

fo
r

o
r
n
it

h
in

e
d
e
c
a
r
b
o
x
y
l.

a
n
t
ie

n
z
.

n
it

r
o
g
e
n

fi
x
a
t
io

n
c
lu

s
t
e
r
–
li
k
e

1
0

c
t
p

s
y
n
t
h
a
s
e

p
h
y
t
a
n
o
y
l–

C
o
A

h
y
d
r
o
x
y
la

s
e

g
lu

t
a
t
h
io

n
e

p
e
r
o
x
id

a
s
e

4
s
e
le

n
o
p
h
o
s
p
h
a
t
e

s
y
n
t
h
e
t
a
s
e

p
la

t
e
le

t
–
d
e
r
iv

e
d

g
r
o
w

t
h

fa
c
t
.

b
e
t
a

p
o
ly

p
.

T
ab

le
6.

3:
C

lu
st

er
in

g
of

51
G

en
es

in
S
p
or

ad
ic

C
an

ce
r

S
am

p
le

s

O
b
s

C
lu

s
t
e
r

1
C

lu
s
t
e
r

2
C

lu
s
t
e
r

3
C

lu
s
t
e
r

4
C

lu
s
t
e
r

5

1
d
1
2
3

g
e
n
e

p
r
o
d
u
c
t

c
t
p

s
y
n
t
h
a
s
e

s
–
p
h
a
s
e

r
e
s
p
o
n
s
e

s
e
le

n
o
p
h
o
s
p
h
a
t
e

s
y
n
t
h
e
t
a
s
e

fo
r
k
h
e
a
d

b
o
x

M
1

2
p
h
o
s
p
h
o
fr

u
c
t
o
k
in

a
s
e
,
p
la

t
e
le

t
p
h
o
s
p
h
o
fr

u
c
t
o
k
in

a
s
e
,
p
la

t
e
le

t
d
k
fz

p
5
6
4
m

2
4
2
3

p
r
o
t
e
in

c
o
ld

s
h
o
c
k

d
o
m

a
in

p
r
o
t
e
in

A
a
p
e
x

n
u
c
le

a
s
e

3
t
h
y
r
o
id

a
u
t
o
a
n
t
ig

e
n

7
0
k
D

s
u
p
p
r
e
s
s
io

n
o
f
t
u
m

o
r
ig

e
n
ic

it
y

1
3

in
t
e
g
r
in

,
b
e
t
a

8
t
u
m

o
r

p
r
o
t
e
in

p
5
3
–
b
in

d
in

g
p
r
o
t
.,

2
in

t
e
r
le

u
k
in

e
n
h
a
n
c
e
r

b
in

d
in

g
fa

c
.

2

4
g
lu

t
a
t
h
io

n
e

p
e
r
o
x
id

a
s
e

4
c
h
r
o
m

o
b
o
x

h
o
m

o
lo

g
3

u
d
p
-g

a
la

c
t
o
s
e

t
r
a
n
s
p
o
r
t
e
r

r
e
la

t
e
d

k
ia

a
0
2
4
6

p
r
o
t
e
in

m
y
o
t
u
b
u
la

r
in

r
e
la

t
e
d

p
r
o
t
e
in

4

5
k
e
r
a
t
in

8
h
y
d
r
o
x
y
a
c
y
l

v
e
r
y

lo
w

d
e
n
s
it
y

li
p
o
p
r
o
t
e
in

r
e
c
e
p
t
o
r

a
r
p
1

h
o
m

o
lo

g
A

t
r
a
n
s
d
u
c
e
r

o
f
e
r
b
b
2
,
1

6
g
u
a
n

n
u
c
le

o
t

b
in

d
in

g
p
r
o
t
.

m
in

ic
h
r
o
m

o
s
o
m

e
m

a
in

t
e
n
a
n
c
e

d
e
fi
c
ie

n
t

7
b
u
ty

r
a
t
e

r
e
s
p
o
n
s
e

fa
c
t
o
r

1
p
r
o
li
fe

r
a
t
in

g
c
e
ll

n
u
c
le

a
r

a
n
t
ig

e
n

c
y
c
li
n
–
d
e
p
e
n
d
e
n
t

k
in

a
s
e

4

7
e
s
t
s

n
it

r
o
g
e
n

fi
x
a
t
io

n
c
lu

s
t
e
r
–
li
k
e

lo
w

d
e
n
s
it
y

li
p
o
p
r
o
t
e
in

–
r
e
la

t
e
d

p
r
o
t
e
in

1
p
h
y
t
a
n
o
y
l–

C
o
A

h
y
d
r
o
x
y
la

s
e

m
y
x
o
v
ir

u
s

r
e
s
is

t
a
n
c
e

2

8
t
r
a
n
s
c
r
ip

t
io

n
fa

c
t
o
r

A
P
–
2

g
a
m

m
a

k
ia

a
0
6
0
1

p
r
o
t
e
in

r
e
t
in

o
b
la

s
t
o
m

a
–
li
k
e

2
e
s
t
s

e
s
t
s

9
n
u
c
le

a
s
e

s
e
n
s
it

iv
e

e
l.

b
in

d
in

g
p
r
o
t
.

1
p
r
o
t
e
in

p
h
o
s
p
h
a
t
a
s
e

1
z
in

c
fi
n
g
e
r

p
r
o
t
e
in

1
6
1

g
d
p

d
is

s
o
c
ia

t
io

n
in

h
ib

it
o
r

2
c
a
r
b
a
m

o
y
l-
p
h
o
s
p
h
a
t
e

s
y
n
t
h
e
t
a
s
e

2

1
0

e
s
t
s

h
.

m
r
n
a

fo
r

o
r
n
it

h
in

e
d
e
c
a
r
b
o
x
y
l.

a
n
t
ie

n
z
.

a
r
m

a
d
il
lo

r
e
p
.

g
e
n
e

d
e
le

t
e
s

in
v
e
lo

c
a
r
d
.

s
y
n
d
.

c
y
t
o
c
h
r
o
m

e
c

o
x
id

a
s
e

s
u
b
u
n
it

V
Ic

p
la

t
e
le

t
–
d
e
r
iv

e
d

g
r
o
w

t
h

fa
c
t
.

b
e
t
a

p
o
ly

p
.

6.2 Application of the CoClust to Hedenfalk Data 109

[6,] 29 22 33 10 37

[7,] 23 41 51 30 45

[8,] 28 24 12 32 40

[9,] 19 18 48 26 43

[10,] 2 4 49 46 50

$Clustering.Vector

[1] 1 1 1 2 5 4 4 1 2 4 2 3 5 2 1 3 0 2 1 1 3 2 1 2 3 4 2 1 1 4 2 4

3 4 5 3 5 4 5 5 2 4 5 5 5 4 3 3 3 5 3

$Data_Clusters

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

[1,] -0.03045921 0.13976194 0.23111172 0.05826891 0.30748470

[2,] -0.02020271 0.18232156 0.35767444 0.65752000 0.50077529

[3,] -0.08338161 0.11332869 0.53649337 0.39877612 0.44468582

[4,] -0.19845094 0.13976194 0.43825493 0.26236426 1.03673688

[5,] 0.13976194 0.20701417 0.36464311 0.39877612 0.25464222

.....

[69,] -0.41551544 -0.08338161 0.88789126 0.03922071 0.51282363

[70,] 0.16551444 -0.07257069 -0.04082199 -0.17435339 0.12221763

$Dependence

$Dependence$Param

[1] 4.040684

$Dependence$Std.Err

[1] 0.3879386

$Dependence$‘P.val.Pr(>|z|)’

[1] 0

$LogLik

[1] 71.47647

The algorithm identifies 5 clusters of genes each one with 10(= 70/7) genes and indicates

a high positive dependence parameter (significantly different from zero) (θ = 4.04). The

same number of clusters found for the BRCA2 mutation samples is achieved. Notice the

gene with clone ID 246194 is left out (the seventeenth row of original data matrix: ESTs)

as indicated by the presence of a zero in the clustering vector above. We show the degree

of overlap of margins in figure 6.3.

In Tab. 6.3 the clustering of genes observed for the Sporadic cancer samples is shown.

110 Applying the CoClust to Real Data

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

N
or

m
al

M
ar

gi
n
s

First Cluster
Second Cluster
Third Cluster
Fourth Cluster
Fifth Cluster

Figure 6.3: Gaussian Margins from Clustering Sporadic Cancer Samples.

We note that CoClust reveals a dependence between the glycolysis biological process with

the transcription from RNA polymerase II promoter and the negative regulation of tran-

scription from RNA polymerase (phosphofructokinase, platelet, Cold shock domain protein

A and APEX), the chromatin assembly (disassembly) and modification with the response

to oxidative stress (Glutathione peroxidase and Chromobox homolog 3). The most impor-

tant result is that the Human mRNA for ornithine decarboxylase antienzyme is dependent

on Armadillo; indeed, since the polyamines level increases in cancer cells, it could be im-

portant to observe that a gene involved in the respiration process of a cell is related to the

polyamine metabolism. Moreover, nuclease sensitivity, protein phosphatase I, zinc finger

protein and carbamoyl–phosphate synthetase 2 are dependent each other revealing that the

biological process of the cellular defense response interacts with the response to parasite

and the glycogen metabolism. In the end, notice that the CoClust reveals dependence be-

tween Butyrate response factor 1, Proliferating cell nuclear antigen and Cyclin–dependent

kinase 4 showing that the regulation of the cell cycle, the division and proliferation of

cell and the regulation of mRNA stability are mutually related. Finally, we note that the

clusters are quite homogeneous with respect to the kind of cellular component of each

gene.

By comparing the results obtained in the three different mutations samples, we observe

that the strength of estimated dependence between genes in BRCA1 cancer samples is

equal to that estimated for BRCA2 cancer samples whereas it is less than the value of θ

estimated in Sporadic cancer samples. At the same time, the number of identified clusters

6.2 Application of the CoClust to Hedenfalk Data 111

is the same for the BRCA2 and Sporadic cancer samples (5) while it is different from that

identified for the BRCA1 cancer samples (3).

If we compare the clustering (see tables 6.1, 6.2 and 6.3) we note that the clustering

of BRCA1 and BRCA2 mutations cancer samples have 5 couples of dependent genes in

common. In particular we note that the Cold shock domain protein A and retinoblastoma–

like 2 are dependent in both these two kind of mutation cancer samples and they are

involved in the biological process of the negative regulation of transcription of DNA–

dependent. At the same time, the first gene is involved in the negative regulation of

transcription RNA polymerase II promoter while the second one in the negative regulation

of progression. Moreover, perhaps, the most important thing is to note that the candidate

gene for tumor suppression could be the same for both these kinds of mutations.

The results of BRCA1 and Sporadic cancer samples are totally different except for

the following three cases in which the dependence relationship is the same: carbamoyl–

phosphate synthetase 2 and protein phosphatase 1 ; dkfzp564m2423 protein, phosphofruc-

tokinase, platelet and phosphofructokinase, platelet ; integrin, beta 8 and suppression of

tumorigenicity 13. Maybe these sets of genes are not useful for distinguishing the two kind

of mutations. Remarkably the candidate gene for tumor suppression intervenes for both

these kinds of cancer samples.

Finally, clustering of BRCA2 and Sporadic cancer samples present 10 couples and 1

triple of dependent genes in common. These two clusters are similar. For example, the

Proliferating cell nuclear antigen and Cyclin–dependent kinase 4 are dependent and both

of them are involved in the cell proliferation; cytochrome c oxidase and armadillo repeat

gene deletes in velocardiofacial syndrome are dependent and the first one participates to

the metabolism and production of energy in a cell while the second one regulates the

communication between internal and external environment of a cell. Finally, note that

the candidate gene for tumor suppression intervene for both these kinds of mutations.

In conclusion, we stress that the candidate gene to suppression of tumorigenicity 13 is

dependent on the integrin, beta 8 in all the three clustering (different mutations) obtained.

It could be very important to assess this result because for all three kinds of mutation

there could be one useful gene to suppress the tumor.

6.2.2 Classification of Different Breast Cancer Samples

In this section we investigate the capability of the CoClust algorithm of identifying the

relation between different tumor samples. We use the whole data set of Hedenfalk et

al. (2001) and apply the CoClust to their columns. Notice that we are working on the

log–transformed data and we use a Frank copula function.

The output of the CoClust algorithm is the following:

$Number_of_Clusters

[1] 6

112 Applying the CoClust to Real Data

$Index.Matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 4 5 6

[2,] 7 8 9 18 19 20

[3,] 10 11 12 13 14 15

$Clustering.Vector

[1] 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 0 0 2 2 2 0

$Data_Clusters

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

[1,] -1.897120 -1.5141277 -1.2039728 -1.3470736 0.1988509 -0.8209806

[2,] 0.4317824 0.2390169 -0.2744368 -0.1625189 0.2390169 -0.4462871

[3,] 0.5423243 0.4510756 0.7561220 0.0861777 0.6830968 -0.3011051

[4,] -0.3424903 0.2151114 0.5247285 0.8020016 0.1484200 -0.1984509

[5,] -0.0618754 0.4252677 0.6259384 0.1739533 0.1484200 0.4317824

...

[9677,] 0.0198026 0.14842001 0.3715636 0.4446858 0.2700271 0.00000

[9678,] -0.1743534 0.0392207 0.157004 0.139762 -0.755023 -1.30933

$Dependence

$Dependence$Param

[1] 4.35141

$Dependence$Std.Err

[1] 0.028359

$Dependence$‘P.val.Pr(>|z|)’

[1] 0

$LogLik

[1] 13225.16

The CoClust Algorithm identifies 6 groups of cancer samples; each one cluster contains

the three different biological samples as it is possible to observe in the Table 6.4, leaving out

3 cancer samples (0 in the Clustering Vector above means ‘not classified’) but allowing

to recover the three different biological samples: BRCA1, BRCA2 and Sporadic tumor

samples. Indeed, 6 of the 7 tumors with BRCA1 mutations, 6 of the 7 tumors with

BRCA2 mutations and 6 of the 7 Sporadic tumors are correctly identified in the BRCA1,

BRCA2 and Sporadic classification, respectively. We may conclude that the mutation

classification performed by the CoClust algorithm is correct.

6.3 Discussion 113

Table 6.4: Classification of Breast Cancer Mutations by using the CoClust Algorithm

C1 C2 C3 C4 C5 C6

BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1

BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 BRCA2

Spor Spor Spor Spor Spor Spor

6.3 Discussion

We have applied the CoClust algorithm to the rows of the microarray data recorded by

of Hedenfalk et al. (2001) for three different observed mutations of cancer samples and to

the columns of the whole data set.

In the first kind of applications, the CoClust algorithm highlights that the candidate

gene for the suppression of tumorigenicity is related to the gene that mediates the cell–cell

and cell–extracell interactions in all three kinds of observed mutations. Furthermore, some

genes have been associated in all three kinds of tumor samples suggesting that they are

not useful for distinguishing the kind of mutation. In addition, the CoClust finds that the

dimension of the dependence is different in the three investigated sets of samples indicating

that perhaps more biological processes are involved in the generation of a BRCA2 or a

Sporadic tumor with respect to BRCA1 mutation tumor. In general, we find that the gene

expressions of BRCA2 mutation cancer samples are more similar to the gene expressions

of Sporadic cancer samples than to those of BRCA1 mutation cancer samples. This could

mean that the genetic background of the patients with sporadic breast cancer may influence

the likelihood of cancer generated by a BRCA2 mutation even in the absence of a specific

predisposing mutation.

The application of the CoClust to the columns of the microarray data set reveals the

capability of the algorithm to classify correctly the three kind of cancer sample. We have

observed that the CoClust does not achieve the correct number of clusters but it is able to

classify correctly the kind of cancer sample clusters composed by the three different kinds

of mutations and relating each kind of them with the same kind of mutation.

We conclude by arguing that the CoClust could be a useful algorithm that allows

to discover new interactions between genes and between the biological processes in which

they are involved, to improve the definition of sporadic cancer case, to distinguish different

cancer samples and to classify new ones.

Conclusions and Perspectives

We have proposed a new clustering algorithm based on copula functions, called ‘CoClust’

in brief (Chapter 5, p. 67). The main purpose was to define a new procedure able to

choose automatically the correct number of clusters and classify observations according

to the underlying dependence structure of the data generating process. Our proposal

originates from the intention to discover clusters of gene expressions according to their

dependence relationship overcoming the limits of other well–known clustering methods

to classify dependent data. The main theory involved in the performed research is that

of copula functions (Chapter 2, p.21). We have studied the performance of the CoClust

algorithm on simulated data and compared it with other clustering techniques (Chapters

4, p. 45 and 5, p. 67). The techniques involved in the comparison were the K–means, the

hierarchical and the model–based clustering methods (Chapter 1, Section 1.2, p. 9). By

using three sets of performance measures (Chapter 4, Section 4.1.3, p. 48) we have shown

that the algorithm proposed outperforms other proposals for the following reasons:

1. it is able to find clusters of observations (e.g., gene expressions or experimental

conditions) according to the dependence structure of the data allowing to recover

the true dependence relationship

- irrespective of the degree of overlap of margins;

- irrespective of the level of dependence between margins;

2. it is not needed to know a priori the true number of clusters since CoClust is always

able to find the true one;

3. it does not require a starting classification;

4. being grounded on copulas, it can virtually account for any possible dependence

relationship between gene expressions; this clearly allows to overcome the limits of

the model–based clustering that tends to use a high number of components/clusters

for modeling non Gaussian data;

5. it allows to discover the k–plets of observations that are reciprocally dependent.

The R code for the ‘CoClust’ function is presented and commented in the Appendix A,

p. 117. Finally, we have applied the proposed algorithm to real microarray data (Chapters

3, p. 33 and Chapter 6, p. 99).

115

116 Applying the CoClust to Real Data

The research performed could be extended in many different directions. First of all,

the proposed algorithm could be tested on non Gaussian margins and on unchangeable

dispersion structure. Second, it would be interesting to introduce a criteria to choose the

best model for copula into the procedure instead of requiring it from the user. Third,

the copula based split up rule (Chapter 5, Section 5.1.2, p. 69) could be involved in the

discriminant analysis for the definition of a new classification rule based on copula mod-

els. Fourth, it could be possible to combine dependence within clusters with dependence

between clusters in order to take into account both the dependence between genes and the

dependence between experiments; this may be achieved by using a combination of copulas

to express the dependence structure.

Furthermore, the CoClust algorithm might be combined or integrated in the context

of model–based clustering techniques in order to avoid the drawbacks that affect the

two and gain further flexibility and power. In fact, one drawback of our proposal is its

computational complexity. Nevertheless, there is room for further optimization of the

algorithm under this aspect and a new faster version is under development.

Another crucial aspect lies in the fact that the CoClust finds clusters of equal size

leaving out a number of observations varying between 1 and k − 1, where k is the num-

ber of identified clusters. This limit could be overcome introducing the estimation of a

conditional copula function that allows to identify genes dependent from other genes but

not necessarily from a gene in each identified cluster, that is, it allows us to keep in con-

sideration if a new observation can belong to a cluster without any other corresponding

observation in other clusters.

An interesting future application could be to use CoClust not to group gene expression

patterns but summary statistics, e.g. the t–statistics. In the end, it would be very

interesting to investigate whether the CoClust could suggest a solution for the important

matter of the dependence between the p–values in multiple tests used to discover genes

differentially expressed.

Finally, we stress that the proposed algorithm opens the door to a new way of inter-

preting clustering techniques and that it can be applied to all the fields in which clustering

dependent data is of interest.

Appendix A: CoClust R Code

The R code for the Copula–based algorithm requires the following packages:

library(copula) # to define and estimate copula function

library(gtools) # to compute dispositions

The R code for the Copula–based algorithm is the following:

CoClust <- function(m,nmaxmarg=6,copula){ # m: data matrix of

dimension n.row*n.col

nmaxmarg: maximum number

of clusters to try

copula: kind of model

for copula

n.row <- dim(m)[1]; # rows num. of data matrix in input

(e.g. number of genes)

n.col <- dim(m)[2]; # cols num. of data mtrix in entry

(e.g. num. of experimental conditions)

loglik.marg <- function(b,y) sum(dnorm(y,mean=b[1],sd=b[2],

log=TRUE));

function of maxloglik for margins

ctrl <- list(fnscale=-1); # parameter of maximization

ifelse(n.row <= nmaxmarg, dimc <- n.row, dimc <- nmaxmarg);

condition to avoid that the max dimension

of copula is greater than the rows (obs) number

llikm <- vector(length=(dimc-1)); # vector of the selected

maxloglik for each

copula of different

dimension (to choose

the number of

clusters)

clusters <- list()

clusters[[1]] <- ("max ML by varying the number of clusters");

initialization of the list of the first

h-plet of obs selected by varying of the

117

118 Appendix A

number of clusters

for (h in 2:dimc){ # loop by varying the dimension of copula

if(copula=="normal"){

copulah <- normalCopula(0.5, dim=h, dispstr="ex");

startco <- 0.5

Gaussian copula and the starting value

for its parameter

}else{

if(copula=="t"){

copulah <- tCopula(0.5, dim=h, dispstr="ex",

df=dfree);

startco <- c(0.5, dfree)

Student’s t copula and the starting

value for its parameter

}else{

if(copula=="frank"){

copulah <- frankCopula(21, dim=h);

startco <- 21

Frank copula and the starting

value for its parameter

}else{

if(copula=="clayton"){

copulah <- claytonCopula(21,

dim=h)

startco <- 21

Clayton copula and

the starting value

for its parameter

}else{

if(copula=="gumbel"){

copulah <- gumbelCopula(

21, dim=h);

startco <- 21

Gumbel copula

and the starting

value for its

parameter

}

}

}

CoClust R Code 119

}

}

combinath <- combinations(n.row,h); # number of possible

combinations of n.row

elements taken h at

a time

ntryh <- dim(combinath)[1]; # number of

estimated copula

llikh <- vector(length=ntryh);

bh <- matrix(0,h,2); # matrix of parameters margin

udath <- matrix(0,n.col,h); # matrix of probability

integral transformed

margins

for (j in 1:ntryh){ # loop by varying the combinations

for (k in 1:h){ # loop for the estimation of parameter

margins (their number depends on the

dimension of copula (h))

try(bh[k,] <- optim(c(mean(m[combinath[j,k],]),

sd(m[combinath[j,k],])),

fn=loglik.marg, gr=NULL,

y=m[combinath[j,k],],

control=ctrl)$par,

silent=TRUE);

estimate parameters margin and

save them in a matrix

udath[,k] <- pnorm(m[combinath[j,k],],bh[k,1],

bh[k,2]);

compute the probability integral

transformation for each margin k

and save them by column

}

try(fitch <- fitCopula(udath, copulah, start=startco),

silent=TRUE);

estimate a copula of dimension h

by using ‘udath’

llikh[j] <- fitch@loglik; # save the maxloglik of

each estimated copula

(that is, for each

combination of n.row

elements taken h at a time)

120 Appendix A

}

resh <- cbind(combinath, llikh);

bind by column the matrix of

combinations and the correspondent

maxloglik values

clusters[[h]] <- resh[which.max(llikh),];

choose the maximum value between the maxloglik

computed for each copulah and the

correspondent k-plet; save the obs

by the correspondent row index vector

llikm[h-1] <- clusters[[h]][h+1];

select the maximum value of loglik

between the selected by varying the

dimension of the copula

}

n.marg <- which.max(llikm)+1;

computed the number of margins (clusters)

result1 <- clusters[[n.marg]];

exstract the first h-plet of observations

n.col obs for each cluster

nam <- vector(length=n.marg)

if((n.row%%n.marg)==0){

if(copula=="normal"){

copula <- normalCopula(0.5, dim=n.marg, dispstr="ex");

Gaussian copula with selected

dimension (n.marg)

startco <- 0.5

}else{

if(copula=="t"){

copula <- tCopula(0.5, dim=n.marg, dispstr="ex",

df=dfree);

Student’s t copula with selected dimension

startco <- c(0.5, dfree)

}else{

if(copula=="frank"){

copula <- frankCopula(21, dim=n.marg);

Frank copula with selected

dimension

startco <- 21

}else{

CoClust R Code 121

if(copula=="clayton"){

copula <- claytonCopula(21,

dim=n.marg)

Clayton copula with

selected dimension

startco <- 21

}else{

if(copula=="gumbel"){

copula <- gumbelCopula(21,

dim=n.marg);

Gumbel copula with

selected dimension

startco <- 21

}

}

}

}

}

noc <- n.row/n.marg;

number of oservations (e.g. gene

expressions) for each cluster

result <- matrix(0,noc,n.marg);

matrix of row index of observations

grouped in n.marg clusters

result[1,] <- result1[1:n.marg];

introduce in the first row the row indexes

of the first selected h-plet of obs

mfin <- matrix(0,(noc*n.col),n.marg);

matrix of clustered data

udat <- matrix(0,(noc*n.col),n.marg);

matrix of probability integral

transform for each margin

bfin <- matrix(0,n.marg,2);

matrix of estimated parameters margin

datprec <- vector(length=n.marg);

for (j in 1:n.marg){

mfin[1:n.col,j] <- m[result[1,j],];

matrix of clustered obs

datprec[j] <- result[1,j];

save the first selected h-plet of rows

122 Appendix A

(that is, its row indexes)

}

res <- c(1:n.row)[-datprec];

vector of remaining rows (G-n.marg)

on which to compute the dispositions

for (i in 2:noc){

combinat <- permutations((n.row-(n.marg*(i-1))),

n.marg,res);

matrix of dispositions of remaining

row indexes taken n.marg at a time

ntry <- dim(combinat)[1];

number of estimated copulas

(numbers of computed dispositions)

logl <- vector(length=ntry);

vector of the maxloglik for each

computed disposition

for (j in 1:ntry){

loop by varying the dispositions

for (k in 1:n.marg){

loop by varying margins

try(bfin[k,] <- optim(

c(mean(c(mfin[(1:(n.col*(i-1))),k],

m[combinat[j,k],])),

sd(c(mfin[(1:(n.col*(i-1))),k],

m[combinat[j,k],]))), fn=loglik.marg,

gr=NULL, y=c(mfin[(1:(n.col*(i-1))),k],

m[combinat[j,k],]), control=ctrl)$par,

silent=TRUE);

estimate of parameters margins

udat[1:(n.col*i),k] <- pnorm(

c(mfin[(1:(n.col*(i-1))),k],

m[combinat[j,k],]),bfin[k,1],

bfin[k,2]);

compute the probability

integral transformation for margins

}

try(fitc <- fitCopula(udat[1:(n.col*i),1:n.marg], copula,

start=startco), silent=TRUE);

estimate a copula function for each disposition

logl[j] <- fitc@loglik;

CoClust R Code 123

save the values of maxloglik of estimated copulas

for each disposition

}

res2 <- cbind(combinat, logl);

link in column the matrix of dispositions

with the computed maxloglik

result2 <- res2[which.max(logl),];

select the maximum value among the

computed maxloglik

result[i,] <- result2[1:n.marg];

introduce (by row) the row indexes of the

i-th vector of selected observations

for (j in 1:n.marg){

loop to update ‘res’

(remaining row indexes)

mfin[((i-1)*n.col+1):(i*n.col),j] <- m[result[i,j],];

matrix of clustered obs (rows of m)

datprec[j] <- which(res==result[i,j]);

select the indexes of

the new clustered observations

}

res <- res[-datprec];

updated the vector of remaining row indexes

}

b1 <- matrix(0,n.marg,2)

from here onward: estimate the copula on clustered data

and save the output

for(j in 1:n.marg){

loop by varying the number of margins

for(i in 1:noc){

loop by varying number of observations

in each cluster

m[result[i,j],1] <- j

clustering.vector <- m[,1]

return a vector of integers indicating

the cluster to which each point

is allocated

}

nam[j] <- paste("Cluster",j,sep="")

return the name of the columns of mfin

124 Appendix A

colnames(mfin) <- nam

try(b1[j,] <- optim(c(mean(mfin[,j]),sd(mfin[,j])),

fn=loglik.marg, gr=NULL,

y=mfin[,j], control=ctrl)$par,

silent=TRUE)

estimate parameters margins

udat[,j] <- pnorm(mfin[,j],b1[j,1],b1[j,2])

compute the probability integral

transformation of each margin

}

try(fitfin <- fitCopula(udat, copula,

start=startco), silent=TRUE);

estimate copula function on

clustered data

depfin <- c(Param=fitfin@est,

Std.Err=sqrt(fitfin@var.est),

P.val=summary(fitfin)@parameters[4]);

save the analysis of dependence

between clustered data

return(list(Number_of_Clusters=n.marg, Index.Matrix=result,

Clustering.Vector=clustering.vector, Data_Clusters=mfin,

Dependence=depfin, LogLik=fitfin@loglik));

return: the number of clusters, the matrix of

row indexes, the vector of allocation indexes,

the matrix of clustered data, the results

of the analysis of dependence and

the estimated loglik copula function

}

else {print("No possible clustering")}

output whether the ‘if’ is not verified

}

Notice that if a Student t copula is chosen, then the degrees of freedom have to be define

before of applying the function ‘Coclust’.

Bibliography

[1] Aldenderfer, M.S., and Blashfield, R.K., (1985). Cluster Analysis, London, Sage.

[2] Alizadeh, A.A., Eisen, M.B., Davis, R.E., et al., (2000). “Distinct types of diffuse large

B–cell lymphoma identified by gene expression profiling”, Nature, 403, p. 503–11.

[3] Brazma, A., Hingamp, P., Quackenbush, P., Sherlock, G., et al., (2000). “Minimun

Information About a Microarray Experiment (MAIME) – toward standards for mi-

croarray data”, Nature Genetics, 29, p. 365–71.

[4] Carmichael, J.W., and Sneath, P.H.A., (1969). “Taxometric maps”, Systematic Zoo-

logy, 18, p. 402–15.

[5] Causton, H.C., Quackenbush, J., and Brazma, A., (2003). Microarray gene expression

data analysis: a beginner’s guide, Malden, MA, USA, Blackwell Publishing.

[6] Cherubini, U., Luciano, E., and Vecchiato, W., (2004). Copula methods in finance,

Chichester, West Sussex, John Wiley & Sons Inc.

[7] Chipman, H., and Tibshirani, R., (2006). “Hybrid hierarchical clustering with appli-

cations to microarray data”, Biostatistics, 7, 2, p. 286–301.

[8] Clayton, D.G., (1978). “A model for association in bivariate life tables and its appli-

cation in epidemiological studies of familial tendency in chronic desease incidence”,

Biometrika, 65, p. 141–51.

[9] Cook, R.D., and Johnson, M.E., (1981). “A family of ditributions for modeling non–

elliptical symmetric multivariate data”, J. Roy. Statist. Soc., B, 43, p. 210–18.

[10] DeRisi, J., Iyer, V.R., and Brown, P.O., (1997). “Exploring the metabolic and genetic

control of gene expression on a genomic scale”, Science, 278, p. 680–86.

[11] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D., (1998). “Cluster ana-

lysis and display of genome–wide expression patterns”, Proceedings of the National

Academy of Sciences, 95, p. 14863–8.

[12] Embrechts, P., Lindskog, F., McNeil, A., (2003). “Modelling dependence with copulas

and applications to risk management”, In: Rachev, S. (Ed.), Handbook of Heavy Tailed

Distribution in Finance. Elsevier, p. 329-84.

125

126 Bibliography

[13] Escarela, G., and Carrière, J.F., (2003). “Fitting competing risks with an assumed

copula”, Statistical Methods in Medical Research, 12, 4, p. 333-49.

[14] Everitt, B., (1993). Cluster Analsys (Third Edition), London, E. Arnold, New York,

Halsted Press.

[15] Ewens, W.J., and Grant, G.R., (2005). Statistical Methods in Bioinformatics. An

Introduction, (Second Edition), New York, USA, Springer.

[16] Florek, K., Lukaszewiez, J., et al., (1951). “Sur la liason et la division des points d’un

ensemble fini”, Colloquium Mathematicum, 2, p. 282–5.

[17] Fraley, C., and Raftery, E., (1998). “How Many Clusters? Which Clustering Method?

Answers Via Model–Based Cluster Analysis”, The Computer Journal, vol. 41, n. 8,

p. 578–88.

[18] Fraley, C., and Raftery, E., (1999). “MCLUST: Software for model–based cluster

analysis”, J. Classification, vol. 16, p. 297-306.

[19] Fraley C., and Raftery, A.E., (2000). “Model–based Clustering Discirminat Analy-

sis and, Density Estimation”, Technical Report no. 380, Department of Statistics,

University of Washington, p. 1–48.

[20] Fraley C., and Raftery, A.E., (2007). “Model–based Methods of Classifications: Using

the mclust Software in Chemometrics”, Journal of Statistical Software, vol. 18, issue

6, p. 1–13.

[21] Frank, M.J., (1979). “On the simultaneous associativity of F(x,y) and x+y-F(x,y)”,

Aequationes Math, 19, p. 194–226.

[22] Fréchet, M., (1951). “Sur les tableaux de corrélation dont les marges sont données”,

Ann Univ Lyon, Sec A, 9, p. 53–77.

[23] Frees, E.W., Carriere, J., Valdez, E.A., (1996). “Annuity valuation with dependent

mortality”, Journal of Risk and Insurance, 63, p. 229-61.

[24] Frees, E.W., and Valdez, E.A., (1998). “Understanding relationships using copulas”,

North American Actuarial Journal, 2, 1, p. 1-25.

[25] Frees, E.W., and Wang, P., (2005). “Credibility using copulas”, North American

Actuarial Journal, 9, 2, p. 31-48.

[26] Friedman, N., Linial, m., Nachman, I. and Pe’er, D., (2000). “Using Bayesian networks

to analyze expression data”, Journal of Computational Biology, 7, 3, p. 601–20.

[27] Getz, G., Levine, E., and Domany, E. (2000). “Coupled Two–Way Clustering Analysis

of Gene Microarray Data”. Proc. Natural Academy of Sciences US, p. 12079–84.

Bibliography 127

[28] Godambe, V. P., (1960). “An optimum property of regular maximum likelihood esti-

mation”, Ann. of Math. Statist., 31, p. 1208–11.

[29] Gumbel, E.J., (1960). “Bivariate exponential distributions”, J. Amer. Statist. Assoc.,

55, p. 698–707.

[30] Hartigan, J.A., (1972). “Direct Clustering of a Data Matrix”. J. Am. Statistical Assoc.

(JASA), 67, 337, p. 123–9.

[31] Hartigan, J.A., (1975). Clustering algorithms, New York, USA, Wiley.

[32] Hartigan, J.A., and Wong, M.A., (1979). “Algorithm AS 136: A K–Means Clustering

Algorithm”, Applied Statistics, 28, 1, p. 100–8.

[33] Hedenfalk, I., Duggan, D., et al., (2001). “Gene–Expression Profiles in Hereditary

Breast Cancer”, The New England Journal of Medicine, 344, 8, p. 539–48.

[34] Herrero, J., Valencia, A., and Dopazo, J., (2001). “A hierarchical unsupervised grow-

ing neural network for clustering gene expression patterns”. Bioinformatics, vol. 17,

p. 126-36.

[35] Joe, H., and Xu, J., (1996). “The estimation method of inference functions for margins

for multivariate models”, Technical Report, 166, Department of Statistics, University

of British Columbia.

[36] Joe, H., (1997). Multivariate Models and Multivariate Concepts, New York, Chapman

& Hall.

[37] Johnson, S.C., (1967). “Hierarchical clustering schemes”, Psychometrica, 32, p. 241–

54.

[38] Johnson, N.L., and Kotz, S., (1972). Distributions in Statistics: Continuous Multi-

variate Distributions, New York, Wiley.

[39] Kaufman, L., and Rousseeuw, P.J., (1990). Finding Groups in Data: an introduction

to Cluster Analysis, New York, J. Wiley & Sons.

[40] Kimeldorf, G., and Sampson, A., (1975a). “One–parameter families of bivariate distri-

butions with fixed marginals”, Comm. Statist. A – Theory Methods, 4, p. 293–301.

[41] Kimeldorf, G., and Sampson, A., (1975b). “Uniform representations of bivariate dis-

tributions”, Comm. Statist. A – Theory Methods, 4, p. 617–23.

[42] Knudsen, S., (2004). Guide to Analysis of DNA Microarray Data, (second edition),

Hoboken, New Jersey, John Wiley & Sons Inc.

[43] Kohonen, T., (1990). “The self–organizing map”, Proc. IEEE, 48, p. 1464-79.

128 Bibliography

[44] Lance, G.N., and Williams, W.T., (1979). “INVER: A program for the computation of

distance–measures between attributes of mixed types”, Australian Computer Journal,

11, p. 27–8.

[45] Lee, M.-L.T., (2004). Analysis of microarray gene expression data, Boston, MA, USA,

Kluwer Academic Publishers.

[46] Li, M., Boehnke, M., Abecasis, G.R., and Song, X.–K.P., (2006), “Quantitative Trait

Linkage Analysis Using Gaussian Copulas”, Genetics, 173, p. 2371–27.

[47] MacQueen, J., (1967). “Some methods for classification and analysis of multivariate

observations”, 4th Berkeley Symp. Math. Statist. Prob., edited by L. Le Cam and J.

Neyman, 1, p. 281–97.

[48] Madeira, S.C., and Oliveira, A.L., (2004). “Biclustering Algorithms for Biological

Data Analisys: a Survey”, IEEE. TRANSACTIONS ON COMPUTATIONAL BIO-

LOGY AND BIOINFORMATICS, 1(1), p. 24–45.

[49] McLachlan, G.J., Do, K.–A., and Ambroise, C., (2004). Analyzing microarray gene

expression data, Hoboken, N.J., Wiley–Interscience.

[50] Moreaou, Y., De Smet, F., Thijs, G., Marchal, K. and De Moor, B., (2002). “Func-

tional Bioinformatics of Microarray Data: From Expression to Regulation”, Procee-

dings of the IEEE, 90, 11, p. 1722–43.

[51] Morgenstern, D., (1956). “Einfache Beispiele Zweidimensionaler Verteilungen”, Mitt.

Math. Statist., 8, p. 234–5.

[52] Nelsen, R.B., (2006). Introduction to copulas, New York, Springer.

[53] Nuber, U.A., (2005). DNA microarrays, Advanced Methods, New York, Taylor &

Francis Group.

[54] Owzar, K., Jung, S-H, and Sen, P.K., (2007). “A Copula Approach for Detecting

Prognostic Genes Associated With Survival Outcome in Microarray Studies”, Bio-

metrics, 63, p. 1089–98.

[55] Pa, W., Lin, J., and Le, T.C., (2002). “Model–based cluster of analysis of microarray

gene–expression data”, Genome Biology, 3, 2, research0009.1-0009.8.

[56] Schena, M., Shalon, D., David, R.W., and Brown, P.O., (1995). “Quantitative moni-

toring of gene expression patterns with a complementary DNA microarray”, Science,

270, p. 467–70.

[57] Serfling, R.J., (1980). Approximation Theorems of Mathematical Statistics. John Wi-

ley & Sons, New York.

[58] Shao, J., (1999). Mathematical Statistics. Springer-Verlag, New York.

Bibliography 129

[59] Sklar, A., (1959). “Fonctions de répartition à n dimensions et leures marges”, Publi-

cations de l’Institut de Statistique de L’Université de Paris, 8, p. 229–31.

[60] Sneath, P.H.A., (1957). “The application of computers to taxonomy”, J. Gen. Mi-

crobiol., 17, p. 201–26.

[61] Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., et al., (2001). “Gene expression

patterns of breast carcinomas distinguish tumor subclasses with clinical implications”,

Proceedings of the National Academy of Sciences of the United States of America, 98,

p. 10869–74.

[62] Speed, T., (2003). Statistical Analysis of Gene Expression Microarray Data, Chapman

& Hall, New York.

[63] Stekel, D., (2003). Microarray Bioinformatics, Cambridge University Press.

[64] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander,

E.S., and Golub, T.R., (1999). “Interpreting patterns of gene expression with self–

organizing maps: methods and application to hematopoietic differentiation”, Proc.

Nat. Acad. Sci. USA, 96, p. 2907-12.

[65] Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., and Church, G.M, (1999).

“Systematic determination of genetic network architecture”, Nat. Gent., 22(3),

p. 281–5.

[66] Trégouët, D.–A., Ducimetière, P., Bocquet, V., Visvikis, S., Soubrier, F., and Tiret,

L., (1999). “A Parametric Copula Model for Analysis of Familial Binary Data”. Am.

J. Hum. Genet., 64, p. 886-93.

[67] Trivedi, P.K., and Zimmer, D.M., (2007). Copula Modeling: An Introduction for

Practitioners, Now Publishers.

[68] Wang, W., and Wells, M.T., (2000). ”Model selection and semiparametric inference

for bivariate failure-time data” (C/R: p73-76), Journal of the American Statistical

Association, 95, 449, p. 62-72.

[69] Watson, J.D., and Crick, F.H.C., (1953). “Molecular Structure of Nucleic Acids”,

Nature, 3, 171, p. 737–8.

[70] Wit, E., and McClure, J., (2004). Statistics for microarray, Chichester, West Sussex,

John Wiley & Sons Inc.

[71] Yan, J., (2006). “Enjoy the Joy of Copulas”, Preprint submitted to Journal of Stati-

stical Software, p. 1–20.

[72] Yan, J., (2006). “Multivariate modeling with copulas and engineering applications”,

In: Pham, H. (Ed.), Handbook in Engineering Statistics. Springer, p. 973-90.

130 Bibliography

[73] Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., and Ruzzo, W.L., (2001). “Model–

based clustering and data transformation for gene expression data”, Bioinformatics,

17(10), p. 977–87.

