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1. Durum wheat 

1.1 Botany of the genus Triticum 

Wheat genus (Triticum ssp.) belongs to the Graminaceae family (i.e. Poaceae), Triticeae tribe and 

Triticinae subtribe. It includes, among a rich variety of other species, two major crops important 

for human diet: bread wheat (Triticum aestivum) and durum wheat (Triticum turgidum, i.e. 

Triticum durum Desf.). Although very similar in many aspects, the two species are well 

differentiated at genetic (ploidy) and agronomical (main growing areas) levels. Bread and 

durum wheat are allotetraploid and alloheaxaploid species respectively, with large  and complex 

genomes (Ganal and Röder, 2007). 

From a genetic point of view, wheat species represent an allopolyploid series (x = 7) based on 

genomes A, B, D and G. The series includes:  

1) Diploid wheat species (2n = 2x = 14 chromosomes) with genomic formula AA; 

2) Allotetraploid species (2n = 4x = 28 chromosomes) with genomic formula AABB (Triticum 

dicoccoides, Triticum dicoccum and Triticum turgidum ssp. durum Desf.) and AAGG (Triticum 

timopheevi); 

3) Allohexaploid species (2n=6x=42 chromosomes) and genomic formula AABBDD (Triticum 

aestivum ssp. spelta and Triticum aestivum ssp. aestivum).  

The phylogenetic relationships among wild and cultivated wheat species have been extensively 

studied (Kihara, 1919, 1924). Triticum species are usually largely interfertile and the 

evolutionary history of cultivated wheats witnessed several interspecific hybridization events 

(Blanco et al., 1990; Monneveux et al., 2000). The evolutionary history of cultivated wheat 

species have started around 10,000 – 8,500 years ago with a series of interspecific 

hybridizations (see Fig. 1) followed by spontaneous chromosome doublings which produced 

fertile polyploid progeny characterized by bivalent chromosome pairing at meiosis (Ozkan et al., 

2001, Shaked et al., 2001). 

 

The discovery of the diploid species that conferred genomes to cultivated wheat species is an 

important task both for elucidating the actual phylogenetic relationships and for identifying 

potential sources of beneficial alleles (Blanco et al., 1990; Monneveux et al., 2000). The A 

genome is considered as the pivot genome common to all wheat species and derives from an 

ancestor of the wild wheat Triticum urartu (AA genome, 2n = 14. Dvorak et al,. 1992). The origin 

of the B genome is more complex to be traced (Zohary and Feldman, 1962; Talbert et al., 1995). 
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It has been suggested that the B genome originates from the SS genome of an Aegilops species 

belonging to the Sitopsis section and similar (van Slageren, 1994) to the present Aegelops 

speltoides (Sarkar and Stebbins, 1956). The D genome of bread wheat and of Triticum spelta 

was the result of a second independent hybridization (for a review, see Dubcovsky and 

Dvorak, 2007) between an ancestor of the diploid Aegilops tauschii var. strangulate (DD 

genome, McFadden and Sears, 1946) and an allotetraploid wheat. Based on recent 

investigations (Akhunov et al., 2010) the tetraploid genome of cultivated durum wheat 

appears homolog to the wild allotetraploid T. dicoccoides and to the ancestral 

domesticated species T. dicoccum (emmer wheat) while bread wheat genome shows 

analogies with T. aestivum ssp. spelta  , i.e. spelt (Slageren, 1994).  

 

 

Fig.1. Phylogeny of wheat species. 

 

1.2 Economic importance of durum wheat  

Wheat is grown worldwide on more than 216 million hectares, with a world production of 670 

million tons in 2012 (http://faostat3.fao.org/), and world’s top producers being China, India, 

Russia and the United States. Therefore, wheat is the third most-produced cereal after maize 

(well over 800 million tons) and rice (over 700 million tons), occupying more arable land than 

any other crop. 

http://faostat3.fao.org/
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Durum wheat accounts only for 10% of total wheat-world production but is considered a 

primary staple crop particularly in the Mediterranean basin, where it is grown across several 

macro-environments rather differentiated with regards to the thermo-pluviometrical conditions 

during the crop cycle (Loss and Siddique, 1994). Durum wheat is generally grown under rainfed 

conditions and is adapted to relatively harsh environments prone to drought stresses (Bozzini, 

1988, Araus et al., 2002; Condon et al., 2004).  

Durum wheat is used for a variety of food products. Its vitreous kernel is composed by 60-80% 

of carbohydrates (principally starches); 8-16% of proteins; 1.5-2% of fat, 1.5-2% of minerals, 

2.2% of fibres, vitamin B and E (Pena, 2002). The majority of durum grown in the Mediterranean 

basin is milled to form semolina, which is then processed in a variety of food products (pasta, 

cus-cus, burgur, as well as flat breads). 

 

1.3 Wheat phenology  

Although crop development is a continuum process, it is often schematically regarded as a 

sequence of phenological steps characterized by functional and morphological modifications 

(Landsberg, 1977). Efforts in modelling wheat development generally focus in defining the 

phenology related to apex development in relation to the stages most important for particular 

grain yield components (see Fig. 2). The scheme possess an arbitrary time-scale as the actual 

scale is in fact affected by the interaction between genetic and environmental factors. Wheat 

cycle is usually divided into the following growth stages: germination, seedling growth; tillering; 

stem elongation; booting; ear emergence; flowering; milk development; dough development; 

ripening. Such stages can be grouped in three main three sub-phases (Slafer and Rawson, 1994): 

1) vegetative stage (from seed imbibition to floral initiation 2) early reproductive (in which 

reproductive organs’ differentiation occurs) and 3) late reproductive/maturity stage (from 

terminal spikelet initiation to end of grain filling). The most wide-spread scale which discretely 

describes wheat development have been proposed by Zadoks at al., 1974. Zadok’s growth scale 

(0-99) is a decimal code comprising two digits. The first indicates one of the ten principal wheat 

growth stages (0-9 from germination to ripening, respectively) while the second digit subdivides 

each principal growth stage according to secondary stages of development. 

 

http://www.sciencedirect.com/science/article/pii/S0378429001002106#BIB39
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Fig. 2 Phenological stages in wheat development and their relationship to particular grain yield 

components. Figure From: FAO Irrigated Wheat. Howard M Rawson and Helena Gómez Macpherson. 

 

1.4 Vernalization and photoperiod responses 

In wheat species, the control of the irreversible transition from vegetative to reproductive phase 

(the initiation of the first floral primordia) is crucial event for its adaptation to a wide range of 

climatic environments and has been heavily targeted during domestication and breeding. The 

time required for a wheat plant to reach flowering (i.e. precocity or earliness) is the result of 

several interactions involving both genetic and environmental factors (Brooking, 1996; 

Robertson et al., 1996) and it is generally divided into three components: vernalization (a plant's 

requirement for a prolonged exposure to cold temperatures in order to initiate/accellerate 

flowering (Chouard, 1960), photoperiod sensitivity (when flowering time is defined by long 
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days’ sensing) and earliness per se, i.e. variability in precocity independently from the 

mechanisms of vernalization and photoperiod (Kato and Yamagata, 1988; Dubcovsky et al., 

2007). With regards to the strength of vernalization response, it is possible to define two major 

classes of grow habit in wheat (Flood and Halloran, 1986): 1) spring wheat (very mild or no 

response to vernalization, i.e. capable of flowering without vernalization treatment) and 2) 

winter wheat (i.e. strong response to vernalization). Then, wheat genotypes can be subdivided 

based on their sensitivity (or no-sensitivity) to photoperiod. Most of cultivated varieties are 

defined as quantitative long-day plants which flower faster as the day-length increases but do 

not need a particular day-length to initiate the process (Evans et al., 1975) ‘Photoperiod 

insensitive’ mutations have then conferred to certain wheat genotypes the early flowering trait, 

which is advantageous in drought-prone environments as it could allow the plant to complete 

the life cycles before the likely occurrence of environmental stresses (Law and Worland, 1997; 

Kato and Yokoyama, 1992). Wheat genetic variability for flowering time largely explains the 

successful of its worldwide cultivation and heavy influences wheat yield potential in a range of 

temperate to sub-tropical regions. Investigations on the genetic bases quantitatively 

determining the length of the vegetative cycle and flowering initiation in are of crucial 

importance for further improving productivity in wheat. The major genes (as well as their 

molecular interactions) controlling vernalization and photoperiod response in wheat have been 

detected (see Trevaskis et al., 2007; Distelfeld et al., 2009; Kumar et al., 2012a).  Three main 

genes associated to vernalization response in wheat have been identified: VRN1 and VRN2 on 

group 5 chromosome and VRN3 on group 7 chromosome (Yan et al. 2003, 2004) and their 

molecular interactions have been extensively investigated (Tranquilli and Dubcovsky, 2000). 

Vrn-B3 locus on 7BS (Law and Worland, 1997) has been associated to growth habit in wheat and 

has been identified as an FT-like gene (Yan et al., 2006). In bread wheat, some major genes for 

photoperiod response have been characterized and mapped on group 2 chromosome: Ppd-D1, 

Ppd-B1, and Ppd-A1 (Kato and Yokoyama 1992; Dubcovsky et al., 2006) identified as a PRR-like 

genes (Yan et al., 2006; Bonnin et al., 2008;). In tetraploid wheat, a candidate Ppd locus has been 

detected on chromosome chr 2A (Wilhelm et al., 2009, Maccaferri et .al.,. 2008). Loci controlling 

earliness-per se contribute in fine tuning flowering time and are thought to be internally self-

regulated by the plant, independently from variation in light (photoperiod or day length) and 

vernalization-sensitiveness (Kato and Wada, 1999; Hanocq et al., 2007; Le Gouis et al., 2012). 

 

1.5 Yield potential in wheat 

Yield is an extremely complex trait which derives from the final balance among different factors 

determined at different stages of development and it is highly influenced by the environment 
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(Reynolds et al., 2001). The physiological and numerical yield components which contribute to 

the overall crop yield could be exemplified by two well-known equations (Hay and Walker, 

1989; Slafer, 2003) namely:  

 

1) GY=BY * HI developed in GY= Q * I * RUE * HI   

where GY, BY, HI, Q, I, RUE, stand for: grain yield, biomass yield, harvest index, amount of 

incident radiation during growing season, the fraction of incident radiation intercepted by the 

crop canopy and the efficiency of the crop to convert this radiant energy into dry matter, 

respectively. 

From a simpler numerical point of view, the final yield (per m2) is considered as 

2) GY=NG m-2 * IGWt   

Where NG m-2 and  IGWt  stand for: number of grains per unit area and individual grain weight, 

respectively.  

The ‘number of grains per unit of area’ is itself determined by many individual sub-components 

which have been schematically identified as: Spikes m-2 (determined by both spikes*plant-1 and 

plants*m-2) and Grains spike-1 (determined by grains*spikelet-1 and spikelets*spike-1) and 

compensate each other along all the plant development (Slafer and Rawson, 1994). The ‘average 

individual grain weight’ has a range of variation inferior to those possessed by NG m-2 and a 

lower correlation to net yield (Slafer and Andrade, 1993). 

Crop development is usually described with regards to the phases which seems more critical for 

determining yield potential. A crucial period for final yield determination has been identified 

between terminal spikelet initiation and anthesis, around 20-30 days before anthesis (Fisher, 

1984; Slafer and Rawson, 1994). At this stage of wheat development, the elongating stem 

concurs in fact with spike development for the partition of assimilates influencing Grains spike-1 

(Frederick and Bauer, 1999). As underlined by Fischer (1984), a strategy aimed at increasing 

yield potential acting exclusively on single numerical yield determinants is often turning to be 

ineffective, because negative relationship among components exist. Since the magnitude of the 

parameters describing such relationships is variable, it is in fact impossible to predict net yield. 

Yield improvement have been often performed seeking for mapping ‘yield per se’ quantitative 

loci which, as expected, it is considered as a very hard task (Loss and Siddique, 1994).  
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1.6 Genetic improvement of wheat  

World’s trend in wheat production has seen a substantial increase during the second half of the 

20th century (from 303 million tons in 1966 to 606 million tons in 2006, Evenson and Gollin, 

2003) as a consequence of two causes of very different nature: an increase in the overall 

harvested area which occurred mainly in the first half of the century, followed by the raising 

importance (from 1955 onwards) of increased grain yield which has been ascribed both to 

genetic gain in yield potential and to improved agronomic practices (Slafer et al., 1994). A 

considerable boost in genetic gains in wheat yield potential have occurred during the so-called 

‘Green Revolution’ with the release of new improved varieties. The main drivers of such 

revolution were represented by efforts towards the optimization of crop development and 

phenology.  

Wheat phenological development has been manipulated to reduce competition among tissues in 

the pre-anthesis allowing a better allocation of assimilates toward spikes following two main 

strategies. 

 

1) Pursuing a better reallocation of the biomass towards the reproductive organs (higher 

harvest index) 

 

Such change in the dry matter partitioning have been achieved reducing stem elongation via the 

introgression in bread wheat of major genes controlling plant height and conferring a semi-

dwarf phenotype (Rht genes, Richards, 1992a, 1992b). As floral abortion usually coincides with 

the period of maximum rate of both stem and spike growing (Siddique et al., 1989; Youssefian et 

al., 1992) it has been hypothesized that the increased survival of florets (thereby resulting in 

more whilst smaller grains per spike) observed with dwarf/semi-dwarf cultivars could derive 

from a reduced competition between the growing spike and the elongating stem (Calderini, 

Deccer and Slafer, 1995; Isidro et al., 2011; Rebetzke et al., 2012).  The presence of such 

physiological mechanism has been hypothesized also in the case of durum wheat by Miralles et 

al. (2002). These changes, in turn, enabled to increase the crop nitrogen fertilization without the 

negative impact on plant architecture (unbalanced harvest index and stem lodging) (Fischer 

and Stockman 1986 ) 

 

2) Delaying anthesis and increasing the photosynthetic activity in pivotal phases  

 

This objective has been principally achieved manipulating crop response to photoperiod and 

temperature with the deployment of major genes controlling  photoperiod-sensitivity (Ppd 
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genes, Turner et al. 2005; Foulkes et al., 2004) and Vrn, vernalisation-response genes (Yan et al., 

2003, 2006). 

 

As a matter of fact, while breeding programs during the 20th century have contributed to 

increase the number of grains per unit land area, little or no changes (or even a deployment) in 

individual grain weight have been observed (Austin et al., 1980; Slafer and Andrade1989; Sadras 

and Lawson, 2011). The negative correlation between number of grains per unit land area and 

individual grain weight generally found in wheat varieties (Slafer et al., 1996) is thought to be 

not assignable to feedback regulation as these two components are determined during different 

developmental stages with only minor temporal overlapping. Understanding the physiological 

basis of such negative compensation is of pivotal importance in wheat breeding, as this mutual 

mechanism it is hampering further genetic improvements in terms of grain yield (Slafer et al., 

1996). Two possible causes have been summarized by Slafer et al. (1996): 1) Competitivity: 

increasing the grain number per ear reduces the growing ratio of grains themselves as it reduces 

the available assimilates; 2) intrinsic minor weight potential of additional grains for instance 

positioned at the top or at the bottom of ear and spikelets. Although the first one is the most 

widely accepted explanation, Slafer et al. (1996) pointed out that only a finer and deeper 

physiological investigation about the complex mechanisms determining yield (e.g. crop ability in 

using radiation, absorbing nutrients and allocating them into competing organs) could lead to 

further increases in yield potential.  

 

Growing evidence is being accumulated regarding the hypothesis that sink strength is still a 

critical yield limiting factor in wheat (Miralles et al, 2000; Miralles and Slafe, 2007) and that elite 

materials are still currently facing unnecessary floret abortion due to non-optimal exploitation 

of their photosynthetic capacity (Borras et al, 2004). Therefore, improving the source-sink 

balance could represent a  promising strategy for raising RUE, biomass and final grain yield 

(Calderini et al., 1997; Reynolds et al., 2001, 2005; Shearman et al., 2005, Richards, 1996; Slafer 

et al., 1996). As suggested by Reynolds et al. (2007), sink-source (SS) related traits could be 

grouped in three different classes: 1) Finer-tuning of crop phenological patterns (e.g. focussing 

on early-per se QTL. 2) Assimilation capacity of the crop until shortly after anthesis. 3) 

Partitioning of assimilates to competing sinks during spike growth.  

Focussing on the latest class, a larger genetic plasticity both in terms of kernel size and number 

of kernel per ear could likely contribute to efficiently accommodate an increased carbon 

remobilization from source tissues. Such partitioning trade-offs should be accompanied by a 
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parallel improvement in both stem strength and root anchorage system in order to prevent 

lodging and thus yield losses (Reynolds et al., 2009).  

Grain protein quantity in wheat, besides determining grain nutritional value, it is a trait affecting 

the end-use quality of bread and durum wheat and is controlled by a complex genetic system. 

Modern high-yielding wheat cultivars are characterized by low grain protein content (GPC), due 

to its generally negative correlation with grain yield components (Zanetti et al., 2001; Blanco et 

al., 2002, 2006).Grain weight and yield penalties have been identified also as associated to the 

first cloned wheat gene responsible for variation in GPC, GPC-B1 (Uauy et al., 2006).  

 

 

2. The dissection of quantitative traits 

Most traits of interest in agricultural genetics show a continuous range of variation and a 

complex mode of inheritance which appear to not follow Mendelian inheritance patterns. As 

suggested by the multiple-factor hypothesis by Nillson-Ehle (1909) and East (1916), they are 

thought to be controlled by the cumulative action of several genes, along with environmental 

factors and epistatic interactions (Tanksley, 1993; Falconer and Mackay, 1996; Lynch and Walsh, 

1998). 

A quantitative trait locus (QTL, Geldermann, 1975) is a statistically identified genomic region 

hypothetically associated with genetic variation of a complex trait. The dissection of a 

quantitative trait implies the identification of the QTL contributing to the expression of a 

quantitative phenotype, by means of molecular markers statistically associated with the 

variation at the phenotypic level (Lynch & Walsh, 1998). Genotype-phenotype associations are 

detected when different classes of marker alleles show statistically different trait values, as a 

consequence of linkage disequilibrium between tested marker positions and genomic loci that 

underpin trait variation (Lynch and Walsh, 1998).  

The basic approach underlying QTL analysis is the comparison of a model assuming no QTL (H0: 

no QTL at the test position) with the alternative hypothesis expecting a QTL to be present in 

genetic linkage to the target marker/s. A number of statistical methods intended to test the 

validity of H0 have been proposed and they are generally subdivided into two main categories 

(for a review, Broman, 2001; Wurshum, 2012). The first one includes those approaches 

requiring the development of ad hoc experimental populations (this category is usually named 

QTL analysis by linkage mapping), the second comprises methods relying on existing 
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populations (natural populations, germplasm collection, breeding materials, etc.) and exploits 

their linkage disequilibrium (this category is usually referred to as linkage disequilibrium 

mapping or association mapping).  

The results of QTL analysis contribute information on the genetic architecture of a target 

complex trait, including the number and position of quantitative loci  detected as responsible for 

trait variation, the relative portion of genetic variance explained, the magnitude and direction of 

effect of each locus (i.e. the parental source of beneficial alleles at each QTL). More advanced 

approaches allow as well to identify QTL interactions (epistasis) and/or genotype x 

environment interactions (Bradshaw, 1996). 

The success of a QTL mapping experiment depends on many factors of different nature (e.g. the 

type and size of chosen mapping population, the complexity of the investigated trait, the quality 

of the linkage map). As the genetic variation of a quantitative trait could involve a very large 

number of loci with minor effect (Kearsey and Farquhar, 1998), a high trait hereditability is 

crucial for reliable QTL results (Bradbury et al., 2011). To limit the weight of additional sources 

of variation on the  target trait, the design of a QTL experiment generally requires to collect 

phenotypic data from replicated field experiments with large sample of individuals and to allow 

the observation of an adequate number of recombinants. 

In last decades, the improvement in high-throughput genetic marker systems and the 

development of high-density linkage maps and specific analytical software, have resulted in the 

successful application of QTL analysis for deciphering complex traits in the field of crop genetics 

(Doerge et al., 1997; Mackay, 2009). 

The mapping of agriculture-relevant QTL could also lead to the applicative goal of identifying 

markers to be used as indirect selection tools in marker-assisted breeding, (Semagn et al., 2006; 

Bernardo, 2008, see Chapter 3). 

 

2.1 Linkage-based QTL mapping 

QTL mapping with experimental crosses can be further subdivided in single marker analysis 

(SMA, Sax, 1923) and interval mapping (IM, Lander and Botstein, 1989). More advanced 

methods enable to contemporarily consider multiple QTL comprise composite interval mapping 

(CIM, Zeng, 1993; Jansen and Stam, 1993), multiple interval mapping (Kao et al., 1999).  

 

Once obtained the required two sets of data from the same segregating population (phenotypic 

measurements of a quantitative trait and a molecular marker dataset), the simplest method for 

https://mail.unibo.it/owa/redir.aspx?C=zbvpgEfZ-ESNTuBiOqevjPplYENPFdEIsleogNA6Py_8DdUunZJjzxJTaf1S6981RoHC-CcxmX8.&URL=http%3a%2f%2fejbiotechnology.info%2fcontent%2fvol13%2fissue5%2ffull%2f14%2f%2311
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assessing the difference in the phenotypic means with respect to a single-marker genotype is 

represented by F-statistics ANOVA test (or t-test, if only two possible genotypes are determined 

by the population type, Sax, 1923; Soller et al., 1976). The sampled population is therefore split 

into groups according to the existing genotype classes at each marker position and a null 

hypothesis (H0 = the mean of the trait value is independent of the genotype at a particular 

marker) is tested. If previous knowledge about other marker loci associated to the trait of 

interest is present, the statistical model could include such constant set of background markers 

and test the datasets for further associations by multiple regression (Manly and Olson, 1999). 

Important constraints of SMA have been underlined by many authors (Lander and Botstein, 

1989; Manly and Olson, 1999; Broman, 2001). First of all, although being a simple method for 

pointing the existence of potential QTL, SMA hardly provides a reliable estimation of QTL 

location since the QTL effect and QTL location are unable to be estimated separately. SMA is 

quite sensitive both to unbalanced datasets (individuals with missing genotypes need often to be 

discarded unless a mixed model is utilized) and to uneven distribution of markers which can 

cause a strong decrease in QTL detection power. 

 

More sophisticated methods for mapping QTL with improved location accuracy, rely both on the 

simultaneous use of multiple marker information and on the availability of a genetic map 

estimated in the population under investigation. Lander and Botstein (1989) firstly proposed a 

simple interval mapping approach, SIM, where the existence of a putative QTL is tested 

conditional upon flanking marker genotypes at incremental map intervals defined by ordered 

pairs of markers. Lander and Botstein's IM is a likelihood-based method where a likelihood-of-

odd score (LOD) is estimated by an EM algorithm at each increment across the genetic map to 

evaluate the likelihood of the null hypothesis compared to a single-QTL model. Where the LOD 

profile exceeds a genome-wide significance threshold, a QTL is declared at the interval with the 

highest LOD score. IM is considered as more efficient than SMA in locating quantitative loci, as 

QTL effects are estimated after incrementally fixing the position of an hypothetical QTL. Haley 

and Knott (1992) and Martinez and Curnow (1992) both proposed a reliable approximation to 

the described computationally-demanding interval mapping based on maximum likelihood. 

Phenotypic values were then regressed onto expected genetic coefficients of a putative QTL at 

tested positions, by means of a least square equivalence. The approximation has been proved as 

very close to IM results based on likelihood profile by Haley and Knott (1992) and Rebai et al. 

(1995). However, Xu (1995) underlined that the model residual variance could be overestimated 

and presented a correction in order to not affect the IM QTL detection power.  
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Although the additional information supplied by the genetic map enables SIM to be considered 

as a more powerful method than ANOVA for mapping QTL (Lander and Botstein, 1989; Haley 

and Knott, 1992; Zeng, 1994), SIM is still a single-QTL model and therefore presents its own 

limitations. With SIM the effects of other possible QTL on the same linkage group are ignored, 

thus providing a biased estimation of QTL effect and position when such multiple quantitative 

loci exist (Haley and Knott, 1992; Knott and Haley, 1992; Martinez and Curnow, 1992; Zeng, 

1994). Moreover, the likelihood profile in a certain interval may exceed the significance 

threshold even when there is no QTL within the target markers (a phenomenon known as ‘ghost 

peak’), due to the effect of other QTL linked nearby to the interval of interest. Motivated by those 

issues, Jansen and Stam (1993) and Zeng (1993) proposed to introduce as covariates additional 

flanking markers into the likelihood function. Such model QTL mapping model resulted thus 

adjusted for the confounding effects of loci located outside a currently scanned interval. Both 

Jansen’s multiple QTL mapping and Zeng’s composite interval mapping (CIM) evaluate the 

existence of a QTL at multiple analysis points across a given interval, while simultaneously 

fitting partial regression coefficients for background markers. Fitting a CIM model may help in 

two ways, depending whether the markers chosen as cofactors and the target interval are linked. 

If the included cofactors are not linked to the current region, they may anyway improve the 

sensitivity of the test, as they likely help in reducing residual variation. If linkage exists, CIM 

allows to discriminate the target QTL from other linked QTL (Zeng, 1993; Zeng, 1994), even if it 

is difficult to estimate the joint contribution  of multiple linked QTL to the overall genetic 

variance. The number of CIM cofactors to be included in the model should be carefully chosen. 

On one side, the use of tightly linked markers may reduce the statistical power when attempting 

to identify a QTL in a particular region (Zeng et al., 1999). Additionally, the use of too many 

regressor variables can lead to a bias known as statistical over-fitting (Piepho, 2001). The main 

limitation with CIM is represented by the one-dimensional nature of its hypothesis testing 

across the intervals delimitated by flanking markers. Such model seems in fact still inadequate to 

analyze the genetic architecture of complex traits, which appear to be affected by both multiple 

QTL and their interactions. To address CIM limitations, Kao et al., (1999) introduced a multiple 

interval mapping (MIM) method for simultaneously fitting by maximum likelihood multiple QTL 

in the model. MIM is considered to be a more precise and powerful tool for deciphering the 

genetic bases of complex traits as it reduces the model residual variation. Fitting multiple QTL 

has also an important role in the estimation of epistasis. With MIM, the more computationally-

demanding step is generally  represented by the identification of the best-fitting genetic model 

(number and positions of QTL and epistasis of QTL) in the parameter space.  
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Significance thresholds in QTL mapping 

Applying appropriate significance thresholds in QTL analysis is not trivial, as many factors may 

influence the distribution of the test statistics, e.g. sample and genome sizes, marker density, 

number of segregating QTL (Churchill and Doerge, 1994). Several methods have been proposed 

to set an appropriate level of statistical significance when mapping QTL. Lander and Botstein 

(1989) relied on the cumulative distribution of the LOD score (“LOD drop-off method”) while 

Churchill and Doerge (1994) estimated empirically the threshold for declaring a QTL, based on 

permutation tests. Bootstrap-based methods have also been proposed (Efron, 1979; Mammen, 

1993). 

Experimental populations for linkage mapping of QTL 

The creation of an ad hoc experimental cross genetically segregating for the trait of interest is 

the first step in QTL mapping studies and represent an important factor for its success (Darvasi 

and Soller, 1995). Conventional linkage mapping methods involve the development of 

segregating population derived from two lines with contrasting phenotype at target trait, with 

the general aim of being able to observe segregation both at genetic loci and at phenotypic level. 

Different types of experimental crosses have been proposed (for a review, see Semagn, 2010).  

The first experimental crosses which have been utilized for genetic analysis in crops were F2 or 

backcross (BC) populations developed from inbred lines in relatively very short time. As a 

consequence of the presence of long-distance genetic linkage, strong marker-trait associations 

are possible to be detected even with markers far from the target quantitative locus. The other 

major limitation of F2 and BC populations is represented by the fact that they are temporary 

genetic resources based on single plants and they do not allow replicated trials of the same 

genotype, except for the cases when cloning (e.g. vegetative propagation) is possible. 

Conversely, Recombinant Inbred Line (RIL) represents an immortalized genetic resource 

derived from an F2 population  through several (generally from five to ten) cycles of selfing in 

autogamous species (via bulking or single seed descent) or full-sib mating in outcrossing species 

(Darvasi and Soller, 1995; Soller and Beckman, 1990; Xu and Crouch, 2008). Such multiple 

generations of selfing/ full-sib mating produce advanced homozygous lines and increase the 

potential number of recombination events. Due to the breakage of moderate genetic linkage 

among markers, RIL populations likely allow an higher mapping resolution than previous 

designs. A shortest way to obtain inbred lines population is the double haploid (DH) strategy, as 

in just one generation it allows to get complete homozygous individuals at all genomic loci. (e.g., 

Bao et al., 2002; Xu and Crouch, 2008). A variety of protocols exists in order to produce haploids 

in different species (e.g. anther/pollen cultures, interspecific crossing). The chromosome 
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number of haploid plants is generally doubled with colchicine treatment, a substance which 

inhibits microtubule polymerization in mitosis and permit to develop a DH genetic resource. 

Another type of permanent population very valuable in genetic mapping of target traits is 

represented by near isogenic lines (NILs) and introgression lines (IL). Such genetic stocks are 

characterized by an isogenic background with the exception of  the region of the QTL under 

investigation and could therefore drive to an hypothesis-driven high-resolution mapping. They 

are usually generated though back-crossing to a recurrent parent at least for six generations, in 

order to be able to selectively analyse the phenotypic effect attributable to a QTL (Pumphrey et 

al., 2007; Xu and Crouch, 2008). One of the constraints which are common to all the herein 

described segregating populations for QTL mapping is that the confidence intervals for many 

detected QTL will correspond to several centimorgans and several hundreds of genes (Doerge, 

2002; Holland, 2007). 

Apart from increasing population size with the aim of being able to detect more recombination 

events, mapping resolution can also be improved by providing additional opportunities for 

effective meiosis during cross development, as in the case of  advanced intercross lines (AILs, 

Darvasi and Soller, 1995). AILs are similar to RILs as they derive from an initial bi-parental cross 

but involve further cycles of random intercrossing before allele fixation through selfing. Each 

generation of intercossing likely reduces the extent of linkage disequilibrium, allowing QTL to be 

mapped more precisely (Rockman and Kruglyak, 2008). This approach has been applied to plant 

genetics with the name of intermated recombinant inbred lines (iRILs, Winkler et al., 2003). An 

example of iRIL mapping resource is the IBM population in maize (Lee et al., 2002), developed 

by randomly intermating for four generations an F2 population derived from the inbreds B73 

and Mo17. IBM was reported to show a four-fold increased recombination frequencies as 

compared to an F2 population in maize (Lee et al., 2002) and was later used for precise QTL 

mapping (Rodriguez et al., 2008).  
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Fig. 3 RIL (on the left) and AIL (on the right) population development (from Cavanagh et al., 2008, page 

216). The random intercrossing steps pursued with AILs is likely helping in reducing the extent of linkage 

disequilibrium.  

 

Although they can allow for a more accurate QTL localization, the described multi-meiosis 

resources are still developed starting from only a pair of founder lines. Indeed, their narrow 

genetic base cannot significantly represent  the variation present in the breeding-relevant gene 

pool. As pointed out by (Xu, 1996) bi-parental mapping populations are characterized by a 

statistical inference space limited to the two parents and the QTL analysis is highly population-

specific. In order to overcome the intrinsic limitations of conventional methods for mapping QTL 

in crops, there has been a need to move toward new mapping resources with a broader genetic 

and phenotypic bases (Blanc et al., 2006; Rakshit et al., 2012).  

 

2.2 Association mapping 

Association mapping (AM) of complex traits is considered as a complementary strategy to 

conventional QTL linkage mapping based on experimental crosses (see Fig. 4b from Zhu et al., 

2008). AM aims to genetically dissect complex phenotypes by exploiting the pattern of linkage 

disequilibrium (LD, i.e. non-random association of alleles, Flint-Garcia et al., 2003) existing in 

collections of diverse germplasm (Buckler and Thornsberry, 2002; Breseghello and Sorrells, 

2006, Yu and Buckler, 2006). AM has been originally developed in human genetics as a 

promising technique to detect complex disease susceptibility alleles otherwise un-detected in 

pedigree-based linkage studies (Risch and Merikangas, 1996). In crop genetics, the potential of 

LD mapping approaches for deciphering the genetic bases of quantitative traits has already been 

demonstrated (Thornsberry et al., 2001; Gupta et al. 2005; Rafalski, 2010). With association 
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studies, all the recombinations occurred during the history of a sampled population are 

capitalized in order to identify marker-phenotype statistical associations (Kruglyak, 1999; 

Jannink et al., 2001).  

 

 

Fig. 4a. QTL mapping approach based on genetic linkage within a bi-parental mapping population. 4b. 

Association mapping strategy based on historical linkage disequilibrium existing in collections of diverse 

germplasm. From: Zhu et al., 2008 (page 6).  

 

Theoretically, AM could achieve an higher mapping resolution in comparison to QTL mapping 

with bi-parental crosses, since the latter can only rely on the informative meiosis accumulated 

during cross development (Remington et al., 2001; Thornsberry et al., 2001; Morgante and 

Salamini, 2003). However, as proved by Remington et al. (2001), the effective AM resolution and 

detection power is linearly dependent on the extent of LD in the genome and in the particular 

region under investigation. In addition, in many crop species the genetic bottleneck occurred at 

domestication or caused by breeding methods caused extensive identity-by–descent of 

chromosomes among individuals and reduced genetic diversity. These processes have the effect 

of reducing the informativeness of meiosis and therefore the potential genetic resolution of 

association mapping. A further advantage in AM compared to bi-parental linkage mapping is the 

possibility to evaluate a broader spectra of genetic diversity instead of a maximum of two alleles 

per genomic locus (Buckler and Thornsberry, 2002; Flint-Garcia et al., 2003).  

In association studies, two kind of approaches could be chosen: whole genome scans (after 

having saturated the genome with well-dispersed markers to reach a coverage adequate to the 

estimated LD extent) or candidate gene studies which focused on a particular genomic region 

with high LD decay  to likely identify polymorphisms responsible for variation at trait of interest 

(Rafalski, 2002b; Thornsberry et al., 2001). 

 

http://ejbiotechnology.info/content/vol13/issue5/full/14/#107
http://ejbiotechnology.info/content/vol13/issue5/full/14/#84
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The main drawback with association mapping is represented by the high risk of incurring in 

type I error (false positives) caused by unaccounted subdivisions in the sampled population 

which can lead to spurious associations (Flint-Garcia et al,. 2003; Gupta et al., 2005). 

 

Most germplasm sets are characterized by unknown population structure, i.e. when different 

subpopulations show different alleles frequencies, as a consequence of their breeding and 

evolutionary history (Jannink and Walsh, 2002). Factors such as genetic drift, population 

admixture, genetic bottlenecks may influence LD between markers and quantitative loci, as far 

as in experimental populations LD appears influenced only by recombination frequency in the 

absence of segregation distortion (Nordborg and Tavaré, 2002). Association mapping could 

therefore be hindered by inferential problems caused by both the presence of major sub-

populations in the sample under examination and different degrees of relatedness among the 

lines. A variety of methods have been proposed to infer population substructure in AM studies. 

They are generally based on clustering individuals either according to distance-based estimates 

between lines (Nei, 1972) or probabilistically (Pritchard et al., 2000). The most known 

likelihood-based approach is the bayesian modelling method of Pritchard et al., (2000) 

embedded in STRUCTURE software (Pritchard et al., 2000), which produces Q (population 

structure) and K (relative kinship) matrix estimates to be included by unified mixed models in 

AM studies (Yu et al., 2006).  An inherent issue is represented by the common removal of rare 

alleles which may also increase the probability of type I error by inflating LD estimates between 

unlinked markers (Somers et al., 2007).  

Accounting for multiple testing in GWAS 

Due to the advances in high-throughput genotyping technologies, the multitude of comparisons 

performed in a genome-wide association study could easily lead to type I error. An adjustment of 

statistical test is therefore required. On the other hand, if the adjustment for type I error turns to 

be overly conservative, a decrease in statistical power may produce false negative results. Such 

inflation of type II error is more likely to occur with rare variants: functional alleles which 

appear rare population-wide and for which a decrease in AM statistical power have been 

described, even if they presented a relatively large effect. A commonly used method aimed at 

controlling the GWAS-wide Type I error rate is the Bonferroni method, which directly adjust the 

p-value threshold according to the number of multiple comparisons effectuated, assuming that 

all comparisons are independent. Due to the preponderance of linkage disequilibrium between 

tested genetic markers, Bonferroni assumption is often violated, leading to type II error (over 

correction). Several efforts to develop alternatives to Bonferroni correction have been made, in 

order to better reflecting the dependent nature of genetic datasets. An alternative is offered by 
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permutation testing (e.g. PRESTO software, Browning, 2008). Another kind of approaches aims 

to identify the actual number of independent statistical comparisons which are being made 

(apart from the number of SNP which have been tested). The number of actual comparisons 

could be defined by Principal components analysis (PCA) methods (Cheverud, 2001; Nyholt, 

2004) or estimating the number of LD blocks across the genome (Patterson et al., 2004). 

 

2.3 Multiparental populations 

Quantitative Trait Loci (QTL) analysis on multiparental populations (MPPs) occupies an 

intermediate niche between conventional linkage mapping based on bi-parental populations and 

association mapping based on collections of germplasm. Linkage mapping with bi-parental 

resources often detects QTL with large support intervals because of the limited chances for 

recombination events occurring during population development (Doerge, 2002; Holland, 2007; 

Li et al., 2010). Allele fixation at tested loci could even determine the impossibility of detecting 

QTL affecting a certain trait (Xu, 1998).  

On the other hand, association mapping approaches (Risch and Merikangas, 1996; Nordborg and 

Tavaré, 2002) relying on both wider genetic and phenotypic diversity and historical 

recombinations are often hindered by inferential problems caused by hidden population 

structure (Balding, 2006).  

The idea of combining the genomes of multiple founders in a single multi-meiosis mapping 

population to ensure segregation for multiple QTL for multiple traits was first developed in the 

framework of mouse genetics with the name of heterogeneous stocks (HS, McClearn, 1970; 

Talbot et al,. 1999; Demarest et al., 2001; Valdar et al., 2003). HS could be considered as an 

extension of the bi-parental AIL approach, involving multiple parents in the crossing scheme in 

order to include a broader genetic diversity. During HS development, eight mice founder strains 

have been intercrossed for more than sixty generations (see Mott et al., 2000). Each HS line 

chromosome can be considered as a fine mosaic of the known founder haplotypes and specific 

software have been created to reconstruct the probable ancestry of each genomic segment (Mott 

et al., 2000). To prevent fixation of alleles by genetic drift, a large population of mating pairs 

(forty lines) has been provided at each generation. RI lines can be then derived from an 

heterogeneous stock by repeated brother-sister mating. Yalchin et al. (2005) they have 

successfully used HS resource to fine QTL controlling complex traits in mice to extremely 

narrow confidence intervals.  To further address complex trait dissection, mouse-genetics 

community (the Complex Trait Consortium) has also established a large multiparent RIL panel 
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derived from eight laboratory mouse inbred strains which was called the Collaborative Cross 

(CC, Churchill et al., 2004 Threadgill et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Development of a MAGIC genetic resource (from Cavanagh et al., 2008, page 216).  

 

A multiparent strategy was then adapted to plant genetics via multi-parent advanced generation 

inter-crosses (MAGIC, Mackay and Powell, 2007; Cavanagh et al., 2008) and interconnected 

populations via di-allelic schemes or star designs (Yu et al., 2008; Huang et al., 2011). A typical 

MAGIC resource is initiated by a funnel breeding scheme in order to combine the founder 

genomes; the resulting intermediate lines are then randomly intercrossed for a varying number 

of generations prior to fixation (see Fig. 5). Such inter-crossing steps are pursued in order to 

shuffle the founder genomes to the point that each fixed recombinant inbred line (RIL) can be 

seen as a particular mosaic of the initial lines.  

Mapping of QTL with MPPs indeed combines a greater accuracy due to the high number of 

informative crossovers which cause linkage disequilibrium breakdown (Broman, 2005; Flint et 

al., 2005) and the possibility to interrogate multiple alleles over multiple genetic backgrounds 

with a single study (Rebai and Goffinet, 2000).  

With multiparental populations, both linkage and association methodologies can be conducted, 

without generally being hampered by population structure (Brachi et al., 2010). 

Current software tools for linkage mapping in MAGIC population rely on a variety of statistic 

methods for reconstructing the parental haplotype probabilities along the line fixed 

chromosomes and being able to infer the parental origin of allelic information (Broman, 2005; 

Teuscher and Broman, 2007, see section 5.3). In connected bi-parental populations allelic 

ancestry information is not ambiguous but it has been proved that fitting a joint multi-

http://www.genetics.org/content/190/2/389.full
http://www.genetics.org/content/190/2/389.full
http://www.genetics.org/content/190/2/389.full
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population model with IBD estimates (rather than nesting effects whithin populations) could 

increases the power of QTL detection (Rebai and Goffinet, 1993; Jannink and Jansen, 2001) and 

improve the accuracy in estimating the location and allelic effect of detected loci (Meuwissen 

and Goddard, 2001; Jansen et al., 2003; Uleberg and Meuwissen, 2007, see section 5.3 ). 

If enough RILs are generated, MPPs offer as well the possibility to examine epistasis (Charcosset 

et al., 1994; Rebai et al., 1994; Jannink and Jansen, 2001) and estimate GxE interactions to model 

more realistically the genetic architecture associated with complex traits. As pointed by 

Charcosset (Charcosset et al., 1994) connected multiparent design enables to investigate higher-

order epistasis than digenic interactions.  

These theoretical advantages of MPPs are now being tested empirically with existing 

populations and tools. Since preparing a multiparent genetic resource is demanding in terms of 

time, labour and costs (Rakshit et al., 2012), few have been created, and each one in a new 

species provides a valuable platform for a wide variety of analyses. In plants, different types of 

MPPs have been produced and utilized for mapping QTL: Arabidopsis thaliana MAGIC and 

AMPRIL populations (Kover et al., 2009; Huang et al., 2011); four and eight-way panels in bread 

wheat (Huang et al., 2012); maize NAM design (Yu et al., 2008); Arabidopsis NAM design 

(Bentsink et al., 2010; Brachi et al., 2010) and four MPPs in rice (Bandillo et al., 2013).  

 

3. Molecular-based genetic improvement (from MAS to GS) 

Following the advancement of molecular marker technology, marker-assisted selection (MAS) 

has gained a fundamental role in breeding programs targeting quantitative complex traits of 

agronomic relevance. Molecular-based crop genetic improvement has in many cases substituted 

conventional selection practices which merely relied on phenotypic evaluation (not a reliable 

predictor of individual breeding values, especially with traits characterized by a low 

hereditability and a complex genetic background). Several quantitative loci are often detected as 

associated with a complex phenotype and, as a consequence of the high LD encountered in 

experimental crosses, markers can reliable act as predicting variables (Whittaker et al., 1995). 

MAS approach involves the early-stage marker-based identification of those individuals showing 

the favourable alleles of interest at detected QTL, whose population frequency is then generally  

increased with several breeding cycles, e.g. through marker assisted recurrent selection (MARS) 

strategies (Bernardo et al., 2006, Lorenzana and Bernardo, 2009). 



 

22 
 

Predicting the probability of allele transmission in different MAS schemes is not straightforward, 

decision support platform in marker assisted breeding (see OptiMAS, Valente et al., 2013) may 

greatly help in marker-assisted assembly of diverse alleles of agronomic values in new genetic 

materials. Some authors (e.g. Hospital et al., 1997) underlined that the possible fixation of 

unfavourable alleles at loci with small effect on the phenotype (often undetected in QTL 

mapping) could significantly affect the efficiency of MAS over breeding cycles. Similarly,  after 

the first generation, marker tagging could not hold in the long term as a result of unstable 

marker-phenotype associations. Regarding the first issue, Hospital et al. (2000) have stressed on 

the importance of equally weighting all index predictor loci, whatever the magnitude of the 

recorded effect. To address the stability of MAS predictions molecular breeding has been 

recently implemented with experimental population which could represent a larger breeding 

pool. However, the well-known constraints related to the statistical power in QTL detection 

experiments appear as the main limiting factor of MAS practices (Beavis, 1994, Hospital et al., 

1997).  

Whittaker et al. (2000) proposed though simulations a shift in the paradigms of quantitative 

genetics related to breeding improvement: avoiding the selection of significant markers by using 

a penalized regression which involved all genotyped loci.  

In the context of animal breeding, Meuwissen et al. (2001) suggested in fact to skip the step 

involving the detection of significant marker-trait associations in favour of a genome-wide 

approach based on SNPs as unit of selection. The rationale of such approach, which has been 

called genomic selection (GS), is to take advantage from dense marker data which is nowadays 

from high-throughput genotyping platforms and base the selection step on aggregates of 

estimated marker effects, summarized by predicted genomic breeding values (GEBV). The GS 

model will therefore likely capture all genomic variation associated with a certain phenotypic 

performance, including also the effect of minor QTL too small to be declared as significant in QTL 

mapping experiments. In practice, predictive models are generally trained only on a 

representative subset of individuals (called training population) for which both phenotypic and 

genotypic data have been recorded (Schefers and Weigel, 2012).Two major issue have to be 

faced when simultaneously estimating genome-wide marker effects. First of all, due to huge 

density of marker data, more predictor (p) than observations (n) is likely to arise when fitting 

the model with least square methods, meaning that the degree of freedom of the model are not 

sufficient to simultaneously estimate all predictor effects (the so-called ‘large p small N 

problem’). The genome-wide model trained on the reference set is then applied to the entire set 

of individuals (the selection candidates having only genotype data) in order to predict GEBV and 

select the candidates for advancement in the breeding cycle. Several studies addressed the 
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selection efficiency of GS both in animal and plant breeding and highlighted a significant 

improvement with regards to conventional MAS based on BLUP models and QTL detection 

(Hayes et al., 2009; Heffner et al., 2011). Genome-wide prediction accuracy was also assessed 

analysing diversity panels and multiparental resources, which exploit a broad genetic base with 

the aim of identifying favourable alleles (Crossa et al., 2010, Rincent et al., 2012; Bardol et al., 

2013). Although multiparental designs investigate a more limited sample of diversity then 

association panels, they generally represent breeding-relevant materials and appear closer to 

real breeding practices (Würschum, 2012). In animal breeding context, Calus et al. (2008) 

pointed out that the use of haplotype information allow to significantly enhance the prediction 

accuracy of GS and to better model variation at multi-allelic QTL. 

The importance of determining the actual haplotypes segregating in crop breeding-relevant 

gene pools has been extensively underlined (see the ‘breeding by design’ concept by Peleman 

and Rouppe van der Voort, 2003). In the plant breeding framework, a currently debated 

question is whether more targeted approaches (relying on ‘chromosome haplotyping’ to identify 

the allelic variation at target loci,  Peleman and Rouppe van der Voort, 2003) are more effective 

than GS in selecting optimal combination of alleles (Lübberstedt, 2013). Efforts in the fine-scale 

definition of the pedigree haplotypes (ancestral chromosome blocks) present in breeding-

relevant materials have been recently carried out in rice (Yamamoto et al., 2010). From a 

breeding point of view, describing the association between particular haplotypes and 

phenotypic variation in crops could represent a useful tool to allow breeders to avoid redundant 

haplotypes in crossing designs and facilitate future targeted selection (Yamamoto et al., 2010). 
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4. Single nucleotide polymorphisms 

SNPs (i.e. single nucleotide polymorphisms) represent the richest source of sequence genomic 

variation in populations (Brookes, 1999). Due to their high abundance in virtually all 

populations of individuals and relatively low mutation rate they can be easily converted into 

very stable genetic markers suitable to highly multiplexed and relatively low-cost automated 

analysis (Rafalski, 2002a). Several high-throughput SNP-genotyping platforms are now available 

for profiling up to one million SNPs in parallel (e.g. Illumina GoldenGate, Illumina Infinium, 

Affymetrix GeneChip). As a result, SNP technology is nowadays going to be currently preferred 

to previously widespread marker systems based  on Simple Sequence Repeats (SSR) and 

Diversity Arrays Technology (DArT) markers (Ganal et al., 2009; Varshney et al., 2009). SNPs are 

considered an efficient marker tool in plant species. Their main applications involve the 

construction of high-resolution genetic maps,  the assessing of linkage disequilibrium patterns 

and genetic diversity, the discovery of marker-trait associations in mapping complex phenotype, 

marker-assisted breeding (Rafalski et al., 2002a) and genomic selection (Meuwissen et al., 

2001). 

 

4.1 SNP discovery  in crops 

As expected, heavy SNP discovery efforts are required for the construction of large SNP-

genotyping platforms with whole-genome coverage. Several different approaches for identifying 

and validating SNPs within the genome of a certain species may be adopted (see Edwards et al., 

2007). The simplest  route for SNP discovery in a defined target region, involves the comparative 

analysis of PCR-amplified sequences generated from different individuals and the scanning for 

previously unknown polymorphisms. Alternatively, the multitude of published expressed 

sequence tags (EST) libraries (URL: http://www.ncbi.nlm.nih.gov/dbEST) represents a 

considerable source for “in silico” SNP detection through bioinformatics pipelines. ESTs are 

developed. by single-run sequencing of cDNAs obtained from different individuals and are 

usually redundant in databases. Thus, overlapping sequences are assembled in multiple 

alignments and mismatches are reported as candidate SNPs.  Pipelines generally comprise the 

estimation of a base calling quality score (as Phred, Ewing et al., 1998a and 1998b) to reduce the 

likelihood of false positives when calling a putative SNP without a previous step of de novo 

sequencing. Whole-genome sequencing projects offers unprecedented opportunities for 

identifying single nucleotide variation among individuals. Comparison of  overlapping BAC clone 

sequences could also provide opportunities for identifying novel polymorphisms. The number of 

sequenced plant genomes is constantly increasing but efficient whole-genome re-sequencing 



 

25 
 

SNP discovery have been reported only for genomes with low-to moderate complexity as 

Arabidopsis, rice, barley and maize (Kumar et al., 2012b). As a result, the set of SNPs available for 

un-sequenced and complex sequenced genomes is still low, and such issue delayed the 

utilization of SNP platforms in crops (Ganal et al., 2009). In recent years, technological advances 

such as next-generation sequencing (NGS, Metzker, 2010) has enabled faster rates of de novo 

and reference-based SNP discovery for numerous plant species. With NGS, a SNP is identified 

after comparing reads from different genotypes (or comparing reads to the reference genome) 

and adjusting for the genome coverage achieved by the NGS experiment. Moreover, as large 

parts of plant genomes consist of repetitive element, specific algorithms for enabling correct SNP 

assembling are particularly important to prevent erroneous read mapping to paralogous 

sequences (Kumar et al., 2012b). Similar misalignment could potentially be created by 

homoeologous regions in polyploid genomes (see section below). In such cases, the 

identification of SNPs by parallel sequencing technology has been combined with reduced 

complexity  approaches aimed to reduce the representation of low-information-content 

repetitive sequences (e.g. by generating reduced representation libraries (RRLs) or by CRoPS 

technology). 

 

4.2 The problem of SNP identification and use in wheat 

Bread and durum wheat are allopoplyploid crops characterized by 21 pairs of homologous 

chromosomes and 14 pairs of homologous chromosomes, respectively, each composed of 7 

homoeologous groups (see section 1.1). The main hurdles to a large-scale SNP identification in 

wheat are the low level of genetic diversity encountered in the breeding germplasm, the absence 

of a whole-genome reference sequence, and the highly repetitive and the duplicated nature of 

the genome (Somers et al., 2003; Ganal and Röder, 2007; Barker and Edwards 2009; Ganal et al., 

2009). The low nucleotide diversity which characterizes bread and durum wheat has been likely 

caused by the severe species formation (i.e. ploidy change) and domestication bottlenecks 

experienced by the cultivated wheat species (Ravel et al., 2006; Haudry et al., 2007; Ganal et al., 

2009). Moreover, a high number of paralogous genes have been described to characterize wheat 

genome (Dubcovsky and Dvorak, 2007) and the percentage of repetitiveness has been estimated 

to be approximately equal to 77% (Flavell et al., 1977). Such issues reduces the efficiency of both 

SNP discovery and genotyping, as closely related paralogues, pseudogenes and, generally, multi-

copy sequences could confound bot SNP discovery and the downstream ability of correctly 

identifying the allelic state of each individual at marker loci. (Akhunov et al., 2009). 
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An additional concern when working with SNPs in wheat species is the possible confounding 

role of the homoeologous genome/s, which were estimated to share a sequence identity of 

around 96-98% (Dvorak et al., 2006). Therefore, homoeologous sequence variants have a 

considerable chance to act as confounding factors when analysing SNPs. As summarized by Trick 

et al. (Trick et al., 2009), polyploid genomes are characterized by three types of polymorphism 

(see Table 1), namely 1) inter-homoeologue polymorphisms 2) inter-varietal SNPs and 3) hemi-

SNPs. 

Homoeo-SNPs (e.g. in tetraploid durum wheat, AA/AB vs AA/AA or BB/BA vs BB/BB), i.e inter-

homoeologue polymorphisms or “false SNPs”, represent the most frequent class of 

polymorphism occurring within two homozygous individuals (Somers et al., 2003; Ravel et al., 

2006; Barker and Edwards, 2009). As homoeo-SNPs are not expressing allelic variation per se 

and are possible to detect also paralogous loci within each of the genomes,  most of the 

genotypes called with an homoeo-SNP marker will result in heterologous loci with lesser value 

for mapping purpose. 

 

By contrast, simple SNPs (i.e. inter-varietal SNPs or true SNPs) are derived from allelic 

differences at a single genomic locus. Being a genome-specific assay they could thus be 

assimilated to a simple diploid tests. This SNP class reflects varietal SNPs between individuals 

and is traditionally referred as allelic variation, essential for mapping purposes. Due to selection 

pressure, simple SNPs represent only a very limited proportion (10-30%) of total polymorphic 

SNPs in various polyploidy crop species (Ravel et al., 2006; Barker and Edwards, 2009; 

Mammadov et al., 2012). 

  

The major class of hemi-SNPs (e.g. in durum wheat: AABB vs BBBB or AABB vs AAAA) 

represents a SNP assay which is amplifying both genomes but is homozygous in one genome and 

heterozygous in the other. It is therefore considered as an allelic variant observed in the 

presence of homoeologous sequences, scored as dominant marker as the most frequent base is 

un-informative. As reported by Mammadov et al. (2012), hemi-SNPs represent a percentage 

varying from 30 to 60% of SNP variation in polyploidy crop species. 

 

Table 1 SNP classes encountered in polyploid wheat genomes. Cv1 and Cv2 indicates the putative 

genotypes of two different cultivars. 

 

  

Genome A Genome B

Cv1 11 10

Cv2 11 11

Cv1 11  - -

Cv2 0  - -

Cv1 11 00

Cv2 00 00

Homoeo-SNPs

Simple SNPs

Hemi-SNPs
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5. Haplotype analysis 

An haplotype is defined as a specific combination of alleles occurring (cis) on the same 

chromosome. The human genome has been described as comprising small regions of high 

recombination frequency (recombination hotspots) connected by conserved segments 

characterized by strong linkage disequilibrium between markers (Daly et al., 2001; Patil et al., 

2001; Gabriel et al., 2002). Such SNP association patterns have been termed haplotype blocks 

and have been inherited from generation to generation essentially as a single unit where only 

limited recombination has occurred since the origin of modern humans (Daly et al., 2001; 

Jeffreys et al., 2001). Such structural arrangement holds for cereal species too (Comadran et al., 

2011; Cavanagh et al., 2013). 

It has been hypothesized (Risch and Merikangas, 1996; Pritchard, 2001) that the concurrence of 

multiple susceptibility alleles of independent origin could underline many complex diseases in 

populations. Haplotype-based association studies are currently considered as more effective (in 

terms of statistical power) than individual SNPs for investigating quantitative loci (Slager et al., 

2000; Longmate, 2001). In fact, in presence of multiple susceptibility alleles (and particularly 

when linkage disequilibrium between SNPs in a target region is weak) association analysis 

based on haplotype profiles determined after SNP genotyping can be more informative over the 

use of individual SNP binary data when an allelic series exists at a locus (Morris and Kaplan, 

2002). Apart from depicting a more discriminative state of a chromosomal region between case 

and controls in disease association studies, the use of haplotypes also reduces the number of 

tests to be carried out and hence the penalty for multiple testing (Zhao et al., 2007). The 

advantages of an haplotype-based analysis depend on various factors as: the trait genetic 

architecture, the marker density and the local LD pattern (Lorenz et al., 2010). In 2002, an 

international collaboration (called the International HapMap Consortium) has been set up with 

the goal of developing an haplotype map of the human genome (HapMap), which will describe 

the common patterns of genetic variation in humans. 

Haplotype definition and haplotype-based QTL mapping are receiving an increasing interest also 

in the framework of complex trait mapping in crop species. As herein described in human 

genetic context, considering multi-SNP haplotypes as a synthetic multi-allelic marker system 

could combine SNP ubiquity and abundance with the advantages of an haplotype-based analysis: 

low redundancy, high informativity and power in analysing association with phenotypes. 

Haplotype data could in fact capture associations that would elude analysis based on single 

SNPs, e.g. when the number of QTL functional alleles could not being fully described by the 

distribution of marker variants. Haplotype analysis in crops offers two additional interesting 

properties. The analysis of the haplotype structure in domesticated plants could put new 
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highlights into the historical flow of pedigree haplotypes during breeding practices, tagging the 

genomic regions which have been subjected to more intense selection (Yamamoto et al., 2010). 

From an applicative point of view, a QTL analysis based on haplotypes could allow haplotype-

assisted selection and, more generally, haplotypes and IBD/IBS investigations at target loci to 

enable a more informed classification of parental lines.  

 

The computational issues related to haplotype analysis could be subdivided in two major 

conceptual subcategories. On one side, the set of methods for inferring the allelic state of a 

certain chromatid on precise individual (i.e. haplotype phasing). Regarding plant genetics, 

phasing is not an important issue in crop species (such as wheats) which are commonly handled 

as inbred lines. Yet, other crop species (e.g. many fruit crops) suffer of the phasing problem. 

Additionally, a problem similar to the haplotype phasing must be dealt in recent polyploid 

species with similar homologous genome sets such as wheats. Moving to the population-level, 

haplotype reconstruction refers to a comprehensive set of methods which have been developed 

in order to locally define haplotypes along the genome and locally infer IBS/IBD states. 

 

5.1 Haplotype inference 

In diploid organisms including human, current high-throughput genotyping techniques return 

information about which alleles are present at each typed SNP but are unable to discriminate 

data coming from two homologous chromosomes and therefore loose haplotype phases (i.e. the 

gametic phase results ambiguous). Knowing the haplotypes at individual's parents could help in 

uniquely define phases at target region only if pedigree data is fully informative. Due to the 

increased interest in haplotypes, a variety of computational methods have been proposed to 

infer phase at linked loci from individual genotype data when parental genotypes are ambiguous 

(for a review, see Browning and Browning, 2011). Generically, an haplotype resolution problem 

is solved using probabilistic models based on observations carried out in a sample of individuals. 

A well-known computational method phasing haplotypes is Clark’s parsimony approach (Clark, 

1990) which attempt to minimize the total number of haplotypes observed in the sample with a 

combinatorial approach starting from those individuals whose haplotypes are unambiguously 

inferred from their genotypes (i.e. individuals homozygous at every locus or heterozygous at 

only one locus). Other widespread inferential methods rely on likelihood functions combined 

with optimization algorithms (e.g. E-M, MCMC, HMM) based on different assumptions, e.g. the 

limited diversity of the haplotypes in the population (Excoffier and Slatkin, 1995; Long et al., 

1995; Fallin and Schork, 2000). In particular, a wide-spread assumption is the infinite sites model 

by Hudson (1990) and the correlated perfect phylogeny model (Gusfield, 2002): at each SNP site 
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a mutations occurred only once in the history of a population, tagging all the possible 

descendants of a single ancestors. Other examples of statistical methods for haplotype 

reconstruction are the Gibb sampler in PHASE (Stephens et al., 2001) and HAPLOTYPER (Niu et 

al., 2002). 

 

5.2 The definition of haplotype blocks  

The definition of haplotypes at a particular region strictly depend on the length of the genomic 

window being examined: the larger the window, more haplotype classes are likely to be 

expected in a particular sample of individuals as more chances for recombination events have 

occurred. In regions characterized by strong LD, many SNPs comprised in a particular haplotype 

contain redundant information and a small subset of them (called tagging SNPs) may suffice to 

completely define local haplotypes. An example of statistical software able to infer haplotype 

patterns and tagging SNPs from genotype data is Haploview (Barrett et al., 2005). Haplotype 

block definition with Haploview is performed either by LD structure estimation (Confidence 

interval or Solid Spine methods) or by the alternative four-gametes rule (Wang et al., 2002) 

which compute the population frequencies of the 4 possible two-marker haplotypes for each 

marker pair to detect recombination events. 

 

5.3 Haplotype reconstruction in MPPs in crops 

Haplotype reconstruction  is a pivotal issue when analysing multiparental crosses in crops. The 

step of defining the parental origin of marker alleles along the fixed chromosomes have to 

precede any genetic analysis and statistic inference in any multi-way population. Then, 

computational tools for multiparental linkage map construction, missing data imputation and 

mapping of quantitative traits must be able to contend with all the allelic segregation patterns 

consistent with observed marker genotypes and accommodate the framework which is better 

fitting the associated founder probabilities. 

 

Although marker phases are generally known due to the inbred state of parents, the ambiguous 

inference regarding the parental origin of allelic information is generally due to two major 

causes. The first one is correlated to the information provided by the generally adopted marker 

systems. Due to the high-throughput of SNP platforms, SNPs are often the marker system of 

choice. While such co-dominant bi-allelic marker could be either fully informative (each 

genotype probability is uniquely identified) or non-informative in a simple cross, a SNP marker 

system will never be totally informative in a multi-parent population. In a MPP, even if up to n 
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(n=number of founders) alleles can theoretically segregate at each tested genomic locus, a SNP 

marker system will capture no more than two alleles in each investigated position. It is therefore 

impossible to discriminate alleles that are identical by state from those that are identical by 

descent without applying probabilistic models accounting for founder haplotype probabilities 

along the genome. The second major cause which hampers the possibility of inferring the 

ancestry of any locus on crop MPP’s genomes is represented by the severe bottlenecks which 

characterized the history of cultivated crops. As a result, many genomic regions are expected to 

show IBD stretches, impeding direct observation of the parental origin of marker alleles as the 

number of alleles segregating in the final population is often inferior to the actual number of 

founder lines. In such cases, choosing an hypothetical multi-allelic marker system instead of 

wide-spread SNP platforms could not enhance the informativity of the test.  

 

The theoretical framework for haplotype reconstruction in MPPs have been already extensively 

defined (Broman, 2005; Teuscher and Broman, 2007). Nowadays, different statistical tools are 

available  for reconstructing the genome of each line as a mosaic of the founder haplotypes and 

trace back to the founder lines the present allelic information.  

 

Some of these computational approaches (e.g. R/Happy, Mott et al., 2000; Valdar et al., 2006) 

ignore pedigree information and initially consider all ancestry combination as equally possible. 

Then, based on HMM (where the hidden states are the progenitor haplotypes and the observed 

data are the final line genotypes, Broman and Sen, 2009), founder assignment is inferred along 

the individual chromosomes. A more accurate inference could be usually performed by methods 

accounting for the breeding design, e.g. including the three-point probabilities computed 

conditionally on the observed marker data at flanking markers described in Broman (Broman, 

2005) or multipoint probabilities given all the linked-marker data (as provided in R/qtl, Broman 

et al., 2003). Huang and George (2011) developed a R-coded platform for analysing MAGIC 

populations with the possibility or interfacing both to R/qtl and R/Happy to infer founder 

probabilities at each locus. 

 

Haplotype definition has also been adopted for mapping QTL in multiple connected bi-parental 

populations. Statistical models used for mapping QTL in such MPP designs are generally based 

on the assumption of parental allele independency (i.e. the existence of a different QTL allele for 

each segregating parental allele). The independency hypothesis generally does not hold  in crops 

populations, as the parental lines are often related and at a given tested position they may share 

identical alleles from common ancestors. 
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In the context of animal genetics, Meuwissen and Goddard (2001) proposed to analyse multiple 

connected designs with an alternative approach called Linkage Disequilibrium-Linkage Analysis 

(LDLA). It combines conventional QTL mapping based on the genetic linkage (deriving from 

recent recombination within families) with estimated identity by decent (IBD) probabilities 

between founders. Inspired from methods developed in human and animal genetics, Jansen et al. 

(2003) proposed an advanced haplotype-based method for QTL mapping of multi-allelic plant 

populations where parental alleles are grouped based on local marker similarity of parents.  

LDLA method generally involves the computation of IBD probabilities from dense marker 

coverage of parents to estimate local correlation between random effects of QTL alleles. Such LD 

information (computed trough pedigree and/or marker information, Van Eeuwijk et al., 2010) is 

usually stored in a variance-covariance matrix  of QTL alleles and fitted in a mixed model for 

QTL analysis. Many simulation-based as well as empirical studies highlighted the potentialities 

of LDLA method in comparison to conventional linkage analysis for QTL mapping: a significant 

gain of power, and accuracy in QTL mapping and allelic effect estimates has been reported 

(Meuwissen and Goddard, 2001; Jansen et al., 2003; Uleberg and Meuwissen, 2007). As pointed 

by Jansens et al. (2003), LDLA promising features are likely due to a statistical issue: the 

reduction in the number of parameters to be estimated in the QTL mapping model after the 

clustering of founder alleles into different classes of ancestral alleles. Such putative ancestral 

classes are in fact modelled with the same parameter, leading to a more parsimonious (and 

statistically more powerful) model. Marker-based methods for locally clustering parental 

information in LDLA studies have recently been discussed (Bardol et al., 2013). A bi-allelic 

single-marker clustering was in fact compared to a more computationally-demanding clustering 

methods based on  similarities between local marker haplotypes (ClustHaplo software, Leroux et 

al., 2014).  
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OBJECTIVES 

 

 

Multiparental cross designs for mapping quantitative trait loci in crop species are raising as 

efficient alternative to conventional experimental populations involving only two founders, since 

they enable to explore a wider genetic variability and provide a higher mapping resolution.  

The present research focused on the analysis of a new multiparental population in durum wheat  

(Triticum durum Def.) named NCCR, derived from a four-way cross involving the cultivars 

Neodur, Claudio, Colosseo, Rascon/Tarro. Based on pedigree information of parental cultivars, 

this cross represents well the genetic diversity of elite durum wheat germaplasm. NCCR 

population is composed by 338 F7:8 recombinant inbred lines and segregates for several traits of 

agronomic relevance, therefore it represents a valuable resource for multi-trait quantitative loci 

mapping analysis. As a multiparental resource initiated by elite germplasm, NCCR offers also the 

chance to evaluate the effect of multiple QTL alleles/haplotypes in a breeding-relevant genetic 

background. The work herein described regarded four main specific objectives: 

 Genotypic and phenotypic characterization of NCCR 

 Development of a cluster file for correct high-throughput SNP genotype calling in 

tetraploid wheat  

 Construction of a linkage map  

 Quantitative trait loci (QTL) analysis for yield, yield-components and other traits of 

agronomic relevance by both a bi-allelic single marker analysis and an interval mapping 

analysis based on the founder haplotype probabilities 
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MATERIALS AND METHODS 
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1. Plant material and crossing design 

A balanced four-way multiparental cross was developed starting from four durum wheat 

cultivars (Neodur, Claudio, Colosseo and Rascon/Tarro) chosen as diverse contributors of 

different alleles of agronomic relevance. Neodur (184.7/Valdur/Edmore) is a photoperiod-

sensitive late cultivar showing an high number of spikelets per ear; Claudio (Sel. CIMMYT 

35/Durango/IS1938/Grazia) shows wide adaptability, stable high test weight and high number 

of fertile tillers; Colosseo (Creso-derived with Italian landrace introgressions) presents high-

yielding ears (in terms of thousands kernel weight); Rascon/Tarro (Rascon-37/2*Tarro-2, 

CIMMYT germplasm) is a photoperiod-insensitive cultivar with high yield potential due to an 

high number of grains per spikelet. Indeeed, yield potential of the four selected lines seemed to 

be driven by different yield components.  

Regarding resistant/tolerance to pathogens, the four cultivars presented the following 

favourable features: Neodur appeared characterized by partial tolerance to Fusarium and 

SBCMV; Claudio by resistance to powdery mildew; Colosseo showed brown rust resistance. 

Besides showing valuable agronomic traits, the four founders appeared also to well-represent 

durum wheat elite germplasm, as it is reported in the PCA plot in Fig. 1 (from Maccaferri et al. 

2003, pag. 791). Neodur belongs to the 2E group of the US-related cvs; Claudio is represented in 

the plot by Grazia cv. (group 2A: Valnova-Valforte related cvs); Colosseo appears to be situated 

in the group 2B (Creso-related cvs) and Altar84 (group 2D: Altar 84-related cvs) acts for 

Rascon/Tarro in the PCoA. 

In the present work, the genetic diversity represented by the four founders has been anew 

estimated by means of an UPGMA cluster analysis (simple matching genetic similarity, Tassel 

v.4) based on 280 durum wheat cultivars and accessions, genotyped with a 90k-wheat chip. 

The cultivars were pairwise crossed following the scheme (Neodur / Claudio // Colosseo / 

(Rascon*Tarro), i.e. NCCR) to produce 2-way F1s which were subsequently crossed to produce 

400 4-way F1 NCCR hybrids (Fig. 2). These 4-way F1s were advanced through SSD and have 

been bulked in the F8 generation.  
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Table 1 Pedigree, origin and year of release of the durum wheat cultivars utilized as founders of the NCCR population. 

Cultivar Pedigree Origin Year 

Neodur (Neo) 184-7/Valdur//Edmore France 1987

Claudio (Cla) CIMMYTselection/Durango//IS193b/Grazia Italy 1999

Colosseo (Col) Mexa mutant/Creso Italy 1995

Rascon/Tarro (RT) Rascon_37/2*Tarro_2 Mexico 2000  

 

 

 

Fig. 1 Principal Coordinate Analysis (PCoA, principal coordinate 1 and 2) on 58 durum wheat accessions 

as reported in Maccaferri et al. 2003, pag. 791. Five main gene pools have been identified (convex hulls 

highlighted the most diverse cultivar related to each pool). 
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Fig. 2 NCCR four-way RIL population development.   

  



 

37 
 

2. NCCR genotyping 

 

2.1 Sample preparation  

For each NCCR RIL, we sampled leaf tissue from four plants. Plant tissues were then lyophilized 

and DNA extraction was performed using Qiagen DNeasy kit standard protocol (Qiagen). By 

means of a Tecan infinite 200Pro plate reader we normalized NCCR plates to 50 ng/μL. 

2.2 High-throughput genotyping and SNP chip description 

Genotyping was carried out by means of a wheat-dedicated 90K Illumina Infinium array 

inlcuding 81,587 effective SNPs and recently developed by an international consortium (E. 

Akhunov, KSU e M. Hayden, Victorian AgBiosciences. (Wang et al., in press).  

The array, an Infinium iSelect HD custom BeadChip, allowed to high-throughput genotype NCCR 

via a DNA hybridization-based technology. Technically, a BeadChip is composed by silica beads 

of 3 μm in diameter carrying (covalently linked) locus-specific 50-mers, randomly assembled 

into miniaturized wells.  

The Infinium HD technology combines two different strategies for probe assaying, namely 

Infinium I and II, each of them specific for different SNP typologies. The Infinium I strategy 

carries one different probe, i.e. beadtype, for each allele. It is recommended with less common 

A/T and C/G SNP alleles. On the contrary, the Infinium II strategy (suitable for most SNPs) 

presents one single probe for both alleles and carries at the 3’ terminus the base just before the 

SNP locus under investigation. In both cases (Infinium I and II), each SNP assay is represented in 

each chip with a 15 to 30-fold redundancy, to increase the likelihood of correct genotype calls.  

The Infinium HD protocol requires around 750 ng of genomic DNA for each sample and involves 

an isothermal whole-genome amplification, followed by DNA digestion with restriction 

endonucleases (Kennedy et al., 2003). Selectivity of the marker assays is accomplished through 

sample hybridization to immobilized probes (the locus-specific 50-mers) capillary flow-through 

chamber. Allele specificity is guarantee by high-fidelity allele-specific extension (by SBE, single 

base extension).  

Allele discrimination is pursued during the SBE reaction with the help of a single hapten-labelled 

di-deoxynucleotides and a later multi-layer immunohistochemical sandwich assay, whole signals 

are recorded by an Illumina’s scan imaging system. The probes characterized by the Infinium II 
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chemistry, are fluorescently stained with a dual colour channel (Cy5-Red and Cy3-Green dyes 

representing each allele).  

 

Successively, the raw signal intensities (X and Y) referring to the two possible SNP alleles are 

experiment-wide normalized and usually processed with a clustering algorithm in order to 

convert the continuous signal scores to discrete genotype classes. With Illumina BeadChip 

platforms, the GenCall Illumina’s method implemented in the GenomeStudio software is usually 

adopted. 

Two polar coordinates are estimated from the raw intensity data: R and θ. R (R = X + Y) measure 

the total signal intensity for each marker test and θ (θ = 2/π*arctan(Y/X)) refers to the angle 

deviation from pure A-signal (genotype AA, θ=0) in a polar intensity plot representing A-

normalized intensity on the x-axis and B-normalized intensity on the y-axis. Pure B-signal 

(genotype BB) is represented by the maximum signal value (θ = 1), so theta it is also called ‘BAF’ 

(B allele frequency) as it represents the B-signal intensity ratio.  

The Illumina’s GenCall method for allele scoring relies on sample clustering is based on the 

expected position of the homozygote and heterozygote genotypes for each particular SNP in a 

diploid genetic model (expected R and theta values of the cluster position for every genotype 

and SNP are embedded in a so-called ‘Clusterfile’, which is a Cluster *.egt file to be input in the 

GenCall run). 

The Illumina algorithm therefore defines the allowable signal intensity ranges for AA, AB, and 

BB samples and, eventually, it estimates the predicted intensities of missing clusters.  

As an example, Fig. 3 is reporting the genotype-calling polar coordinate graph of 190 samples for 

a selected SNP. Samples are default coloured according to their called genotypes and the number 

of data points in each cluster  is indicated below the x-axis : sample lying within the dark red 

region are called AA, those within the dark purple, AB and those falling in the dark blue region 

are called BB (theta value equal to 1). The cluster ovals are characterized by a diameter of two-

standard deviations. Sample quality assessment is performed through the GenCall score (GC) 

which reflects the distance of a data point to a certain cluster’s centroid and represent the 

confidence of that particular genotype calling. A threshold (typically GC ≤ 0.15 in Infinium 

experiments, dark shaded regions in Fig. 3) is applied to filter poor quality data which will be 

declared as missing (pale shaded regions correspond to the no-call regions) In addition, sample-

averaged GC scores are used to check SNP data quality.  
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Fig. 3 On the left: the expected signal intensities for AA, AB, and BB genotypes in a diploid species (and 

relative θ values). On the right: polar coordinate graph regarding a SNP typed in a diploid species. 

 

The 90k BeadChip utilized for NCCR genotyping was composed by 81,587 gene-associated SNPs 

in total, the majority of them originally identified after trascriptomic analysis of bread wheat 

elite varieties. Around 8,000 durum wheat SNPs contributed by CRA and the AGER project (PSB, 

UniBO, UniUD). We evaluate the transferability of bread wheat SNPs in durum wheat with a pilot 

study carried out using a bread wheat-derived 9K SNP Illumina Infium array to  analyse 43 

tetraploid wheat genotypes.  Approximately 44% of the assayed SNPs resulted polymorphic (i.e. 

any SNP test showing at least one reliable polymorphism and <3 missing calls among the 43 

tested genotypes) while the proportion of detected real informative (with MAF>10%) SNPs was 

lower, accounting for approximately 15-16% of the total assay. Around half of such informative 

set of SNPs behaved as diploid while the rest appeared as reliable hemi-SNPs (i.e. a signal is 

produced by both homoeolog marker loci whilst only one homoeolog couple is polymorphic). 

The pilot study therefore proved the adequacy of using SNP platforms developed with SNP 

discovery efforts in bread-wheat to genotype the less characterized tetraploid wheat. On the 

other hand, a consistent decrease in the level of parallel SNP typing has to be expected.  

The effective genotyping of NCCR population with the 90k Illumina array was performed by the 

Illumina Provider Trait Genetics (M. Ganal, Gatersleben, Germany).  

 

2.3 Cluster file development for allele calling in durum wheat 

The Illumina GenCall algorithm embedded in the Genome Studio software has been optimized 

for allele calling in diploid organisms and it has been trained to have an a priori expectation for 

three possible genotypic states. As previously described, the optimus cluster positions for 

genotypes AA, AB and BB are corresponding, in polar coordinates, to theta equal to 0, 0.5 and 1. 

The allotetraploid genome of durum wheat might determine significant deviations from 

standard diploid allelic ratios hampering sample clustering (Akhunov et al., 2009). With 
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reference to the polar genotyping graph in Genome Studio (in the normalized theta/R plot), such 

situation could be exemplified by a cluster compression towards the theta values of 0, 0.25 and 

0.5 or , referring to the other allele: 0.5, 0.75 and 1.0 (see Fig. 4).  

In addition, paralogous loci and possibly occurring null alleles might also contribute to interfere 

with the allelic dosage of precise SNPs and a maximum of five (instead of three) possible 

genotype classes are possible to be expected at each marker position (E. Akhunov et al., 2009). 

Indeed, the ploidy nature of durum wheat made not feasible automated GenCall calling for those 

assays producing multiple clusters, compressed clusters or low intensity signals (Cavanagh et 

al., 2013).  

A dedicated cluster file was therefore produced by Trait Genetics and UNIBO with the aim of 

assuring correct capturing of variation in data also in the presence of genotyping plots 

characterized by shifted SNP clusters. Editing the new cluster file was quite time-consuming 

since we had to manually adjust the cluster positions and sizes according to the  performance of 

the 81,587 SNPs on durum wheat samples. The calibration of the cluster positions to durum 

wheat data was performed on the Genome Studio normalized theta/R plot after applying the 

conventional GenCall diploid version. 

 

              

Fig. 4 On the left: the expected signal intensities for (AA)AA, (AB)AA, and (BB)AA genotypes for an hemi-

SNP typed in a tetraploid species (and relative θ values). On the right: polar coordinate graph regarding a 

SNP typed in a diploid species. 

 

The training durum wheat materials involved: a diverse panel of durum accessions, NCCR RILs 

,six F1 samples (Dylan x Normanno; Tiziana x Normanno; Dupri x Normanno; Achille x 

Normanno; Strongfield x Saragolla; Kofa x Claudio) and their corresponding 9 F1 parental lines.  

The presence of F1 samples was particularly important to assess reproducibility of the assay. 

In relation to the three major classes of SNPs which have been described in durum wheat (see 

Introduction), the possible scenarios which could be encountered while analysing durum wheat 

samples through the GenCall algorithm were: 
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1) Inter-homeologous SNPs: non-informative SNP class, the marker is discarded.  

 

 

2) Simple SNPs (genome-specific SNPs): no need to edit the cluster positions as they 

generally behave as an ordinary SNP test in diploid organisms. 

 

 

3) Hemi-SNP: e.g. with a fixed AA homeolog: (AA/AA), (AB/AA), (BB/AA), Θ (with respect 

to the B allele)= [0; ¼; ½]. Cluster shifting, editing needed.  
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4) Paralogous/duplicated loci could cause the simultaneous detection of more-than-3 

clusters: Θ (with respect to allele B)= [0; ¼; ½; ¾; 1]. The marker is discarded. 

 

 

The finally produced durum wheat-dedicated cluster file resulted able to score 25,631 

polymorphic markers (5,946 genome-specific and 19,685 unspecific assays). The monomorphic 

markers were 50,468 while the overall failed assays were 5,488. 

 

3. Map construction 

After eliminating markers characterized by > 10% missing data we examined NCCR for potential 

segregation distortion. In NCCR two types of segregation patterns were present due to the 

founder alleles distributions, namely 1:1 (e.g. 0-1-0-1 or 0-0-1-1) and 1 : 3 (e.g. 0-1-1-1 or 0-0-0-

1). Markers were therefore filtered based on the expected RIL values, with an allowed distortion 

of +/- 30% (corresponding to a skewed segregation p-value < 10-4). A more stringent threshold 

(+/- 10% allowed distortion) was adopted post-reconstruction of parental information.  

The NCCR linkage map was estimated using the program mpMap (Huang and George, 2011), an 

R package specifically written for the analysis of MPPs. Maximum likelihood estimates of 

recombination fraction (r) between each SNP pair were obtained using the mpestrf function with 

default parameter settings. We then clustered the markers in linkage groups when the pairwise 

LOD score exceeded 5.0, through the mpgroup function set to form 50 initial groups.  We 

explored the LOD and recombination fraction matrices with interactive heatmaps in R (R Core 

Team 2013) and iteratively collapsed the number of marker clusters to 22 based on closest 

linkage between clusters. The 22 linkage groups were then combined into 14 groups 

corresponding to the T. durum chromosomes by leveraging on markers in common with a 
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recently developed T. aestivum consensus 90k SNP map  (Wang et al., in press), combining six 

different bi-parental maps and comprising 40,266 SNP markers typed with the same 90k SNP 

Illumina array used in this population. Markers were ordered within each linkage group using 

the mporder function which to minimize the sum of adjacent recombination fractions. We 

estimated map positions using the function computemap (Haldane map function, maxOffset = 1) 

imputing missing r values based on values at the most highly correlated marker.  

The final map has been described and validated through the following methods.  

Method IV of Chakravarti et al. (1991) was used to adjust the length of each linkage group and 

thus the total length of the genetic map. The marker coverage (c) of the map was estimated by 

the formula c = 1-e-2dm/L (with 2d = distance between adjacent markers, L = cM length of genome; 

m = number of mapped markers. (Lange and Boehnke 1982; Remington et al., 1999) under the 

assumption of random distribution of markers over the LGs. 

The genome coverage was further investigated by taking as a reference the previously cited T. 

aestivum consensus 90k SNP map (Wang et al., 2014, in press) and the local deviations from the 

marker random distribution that frequently occurred along the LG. Based on the projection of 

the NCCR mapped markers on the hexaploid wheat consensus 90k SNP map (considering 

reference map intervals of 5 cM), the observed A and B genome coverage of the NCCR map was 

calculated for each chromosome. Additionally, Spearman’s rank correlation values between the 

two considered maps have been calculated for all chromosome pair comparisons.  

 

4. Haplotype reconstruction  

Founder probabilities were computed with the mpprob function in mpMap using an Hidden 

Markov model implemented in R/qtl (Broman et al., 2003). Haplotype were then reconstructed 

by imputing founder alleles as known if the corresponding probabilities at a genomic location 

exceeded 0.7. The original bi-allelic SNP data were thus recoded on the basis of the most likely 

founder haplotype at each particular linkage block, increasing the overall marker information 

content. Recombination events were declared at loci where the founder allele changed along the 

genome. In addition, markers co-located along the genome were removed in order to minimize 

redundancy. The computation of founder probabilities for each RIL along the chromosomes 

enabled us to estimate founder-specific additive genetic effects at each QTL. 
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5. Field experimental design  

The phenotypic evaluation of NCCR population was carried out during two harvesting years 

(2010-2011 and 2011-2012) in three similar locations in the Po Valley: Cadriano (44°33’N lat., 

11°24’E long. 2010-2011 and 2011-2012. Sizes of plots were, respectively,  2.4 m2 and 2.28 m2); 

Poggio Renatico  (44°45’57’’N, 11°25’31’’E,  2010-2011. Plots: 4 m2) and Argelato (44°39’03’’ N, 

11°20’34’’ E, 2011-2012. Plots: 4 m2). In each environment, as control genotypes, we inserted 

three replicates of the cultivars Levante, Meridiano, Orobel, Saragolla and Svevo, as well as the 

four parental lines replicated twice. The 338 RI lines, the four parents and the five control 

genotypes were evaluated according to an incomplete-block experimental design. A 19 x 19 α-

lattice design (Petterson and Wiliams, 1976) with two replications was considered for each 

environment blocking and was designed by means of FACTEX procedure (SAS Institute, 2006).  

 

6. Phenotypic evaluation 

NCCR population was phenotypically evaluated in open-field except for grain yield and yield-

related traits and seed quality traits (Grain protein content) which were analysed in the post-

harvest phases. Where not specified, traits were recorded in all environments(four). The 

phenotypic traits were:  

- Phenology-related traits 

 

1) Heading date (HD, days to heading from sowing) was recorded when 50% of the ears 

in a plot showed emergence out of the flag leaf. 

 

2) Maturity date (MD, days to maturity from sowing) was determined when 50 % of the 

peduncles in a plot have totally turned to yellow color. Data for MD in Poggio Renatico 

was not available. 

 

- Morpho-pysiological traits 

 

3) Early ground cover (EGC, visual score). EGC it is an early-vigour measure which 

indicates the strength of plants in early stages, an important feature above all in low 

input environments. 

 

4) Flag leaf erectness (FLER, visual score estimated at booting stage, Zadok 47).  
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5) Plant height (PH, cm).  PH was measured at maturity from ground level to the top of 

the terminal spikelet (excluding awns) on four main culms per plot. Data for PH in 

Argelato was not available. 

6) Flag leaf greenness (FLG, SPAD unit). The measured SPAD index was the average of 

three readings effectuated at beginning of anthesis (Zadok 60) on 20 representative 

flag leaves by means of a SPAD-502 chlorophyll meter (Konika Minolta). The SPAD 

index measures the canopy spectral reflectance and is generally used to assess the 

chlorophyll content of leaves in situ. Until flowering, SPAD readings are generally 

correlated to yield potential while, during grain filling, represents a “greenness” 

measurements which can estimate plant senescence. As much of the N in a leaf is 

partitioned in chlorophyll, SPAD index could be also used to monitor the nitrogen 

status of crops (Filella et al., 1995). 

 

7) Normalized difference vegetation index (NDVI, NDVI units). The NDVI is a canopy 

spectro-radiometric index capable of assessing green biomass and plant nitrogen (N) 

content. The canopy spectral reflectance is estimated as: NDVI =(NIR-R)/(NIR+R), 

where NIR=value of near-infrared radiation from a pixel and R= red wavelengths of 

the whole range of PAR from a pixel (Value of Phtosynthetically Active Radiation). 

NDVI was measured at three different Zadok’s scales: Zadok 31 (first node detectable, 

stem elongation stage), Zadok 40 (booting stage) and Zadok 57 (emergence of the ear 

from the boot). 

 

- Yield and yield-related traits 

 

8) Fertile Tillers * m-2 (FTsm, number). Number of fertile tillers (at least one grain on the 

ear) considering one square meter for each plot. 

 

9) Grain volume weight (GVW, Kg*hl-1). Measured by a Grain Analysis Computer, GAC 

2100 (Dickey-John Corporation, Minneapolis, MN, USA). On the same sample of grains, 

the kernel moisture (%) have been recorded. 

 

1) Thousand kernel weight (GWT, g/1000 kernels) was recorded averaging the test 

weight values of two samples of 50 kernels for each line.  

http://hortsci.ashspublications.org/content/47/7/955.full#ref-4
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2) Spikelet number per ear (SNE, number). Potential spikelet number was measured on 

six selected ears for each line. Trait recorded in Cadriano 2010-2011 and 2011-2012 

only. 

 

3) Grain number per ear (GNE, number). Grain yield per spike was measured on six 

selected ears for each line. Trait recorded in Cadriano 2010-2011 and 2011-2012 only. 

 

4) Grain number per spikelet (GNS, number). Derived from the ratio GNE/SNE per  ear. 

Trait recorded in Cadriano 2010-2011 and 2011-2012 only. 

 

5) Grain weight per ear (GWE, g). Average grain weight of six selected ear for each line. 

Trait recorded only in Cadriano, 2010-2011 and 2011-2012. 

 

6) Grain yield (GY, t ha-1). Grain production per plot was adjusted accounting for sample 

moisture percentages and converted to tonnes per hectares.  

 

 Quality traits 

 

7) Grain protein content (GPC, %). The percentage of protein content on total dry weight 

was obtained with near-infrared reflectance spectroscopy. 

 

 

7. Statistical analysis of phenotypic data  

Analysis of variance per environment was performed with the LATTICE procedure (SAS Institute 

Inc., 2006), according to Cochran and Cox (1960). Genotype’s least square means were adjusted 

for lattice if its relative efficiency was greater than 105% when compared to that of a 

randomized complete block design. The ANOVA over environments was performed on the basis 

of the least square means of each environment (i.e. location x year) via the SAS GLM procedure. 

After weighting the ANOVA for replications in each location, the residual pooled over 

environments was considered as the error term. Heritability for each trait was estimated on the 

adjusted means calculated across the four environments (n) and the two replications (r) per 

environment, as: h2 = σ2g/( σ2g+ σ2ge/n + σ2/nr) and on the single environment data as: h2 = σ2g /  
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σ2
g + (σ2

error/r). The descriptive statistics and the correlation values (Pearson’s correlation 

coefficients) were calculated in R (R Core Team 2013).  

 

8. QTL mapping 

Composite interval mapping was conducted to detect QTL using mpMap, an R-coded platform 

specific for analysing multiparental populations (Huang and George, 2011). Accordingly, 

marker-trait statistical associations are evaluated accommodating the conditional founder 

haplotype probabilities at each locus, given the available marker genotype data. Therefore, 

mpMap CIM QTL analysis will be further denoted as IBD-CIM. 

 

The phenotypic dataset was composed by combined adjusted means over years, environments 

replications nested in environments. For a subset of phenotypic data (HD, MD, PH, GY), the QTL 

analysis was carried out by two different strategies, namely single marker analysis with Tassel 

Version 3.0 (Bradbury et al., 2007) and composite interval mapping with mpMap (Huang and 

George, 2011). Moreover, for the same subset of data, we have carried out also independent QTL 

analysis for each of the four location*year combinations, namely Cadriano 2010-2011 (Cad11), 

Cadriano 2011-2012 (Cad12), Poggio Renatico (Pr11) and Argelato (Arg12). These single-

environment QTL analysis were run with mpMap on the adjusted means calculated across the 

two replications per environment.  

 

With mpMap, we performed interval mapping using the mpIM function (program ‘qtl’), fitting in 

ASReml v3.0 (Butler et al. 2007) a linear model and separately estimating fixed effects for each 

of the four founders along the chromosomes (Rascon/Tarro has been arbitrarily chosen as the 

reference haplotype). The regression was performed at each position for which we estimated 

founder probabilities. We first ran simple interval mapping (SIM) and consequently fit the 

number of SIM-detected QTL in a composite interval mapping (CIM) (Jansen and Stam, 1994; 

Zeng, 1994) model which accounted for background variation. CIM was estimated on the 

reduced map representing only unique genomic positions. A Wald statistic testing the overall 

significance of all founder effects was computed at each hypothesized QTL position. In addition, 

to estimate the amount of putative functional alleles at each identified QTL, t-test were 

performed on the founder effects. After Bonferroni’s correction, a p-value threshold of 0.05 was 

applied to each founder’s significance. We considered a p-value equal to 10-3 as marker-wise 

detection threshold for putative QTL. The reported founder effects and the full model R2 were 

obtained by fitting all QTL simultaneously. The percentage of phenotypic variation accounted for 
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by each individual QTL (R2) was determined as the square of the partial correlation coefficient, 

fitting the final multiple regression model. We finally calculated the LOD-2 supporting interval 

(for combined data) and the LOD-1 supporting interval (for single-environment data) based on 

transformed p-value [−log10(p)] profiles. QTL clusters have been determined at chromosome 

regions where QTL for different traits showed overlapping supporting and/or significance 

intervals. 

 

In Tassel, we utilized a General Linear Model (GLM) analysis and performed an F-test at each 

SNP position to conduct a single marker analysis (SMA). When testing for the presence of a 

putative QTL, SMA test was merely considering the bi-allelic information present at a certain 

position. As a result, the QTL analysis performed with Tassel will be further indicated as IBS-

SMA. Putative QTL have been identified applying a marker-wise threshold of 10-3 to the results 

of the genome-wide associations obtained with Tassel. In addition, only QTL supported at least 

by three markers significantly associated with the trait have been considered as true. For each 

QTL, the peak was identified in correspondence with the marker showing the highest LOD value 

in the target interval. We then computed QTL significance intervals by a sliding window applied 

to SMA LOD values (± 4 marker, threshold at LOD equal to 1.44).  

The putative QTL detected by SMA have been then additionally checked for robustness 

comparing their peak p-values with the marker-wise p-value corresponding to a genome-wise 

significance level of α = 0.05. We therefore calculated the effective number of independent tests, 

Meff, in order to correct such genome wise threshold for multiple testing (Cheverud, 2001; 

Nyholt, 2004). This procedure has been previously shown to significantly smooth conventional 

Bonferroni adjustment which is often overly conservative (Gao et al., 2010). The number of 

independent tests was inferred by Haploview, defining the number of LD blocks with the four-

Gamete rule and setting the cut off for examining haplotypes at 20%. The estimated number of 

independent statistical tests had a mean of 30 over the 14 durum chromosomes and has been 

approximated genome-wide by 500 linkage blocks. We then obtained 10-4 as marker-wise 

significance threshold for claiming a statistical SNP-phenotype association corresponding to the 

target genome-wise significance level of α = 0.05.  
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RESULTS 
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1. Genetic diversity represented by NCCR founders 

The 90k SNP genotyping array was utilized to genotype a collection of 280 durum wheat 

cultivars and accessions available at Unibo (Maccaferri et al. in preparation), which included the 

four NCCR founders. The large dataset were preliminarily analysed in order to evaluate the 

genetic diversity explored by the NCCR cross in the context of cultivated durum wheat. 

According to the UPGMA analysis (Fig 1), the four NCCR founders seem to represent quite well 

the major breeding groups of elite durum wheat, as also delineated by Maccaferri et al. (2003). 

More precisely, while Claudio and Colosseo both belong and were classified into the Italian 

group of accessions, they actually represent different genetic sub-pools, as Claudio is a recent 

Cimmyt-derived cultivar. The only important gene pool clearly not represented by the four NCCR 

founders is the Icarda one (which includes the subpools ‘Icarda temperate areas_Cham1’ and 

’Icarda drylands_Omrabi3’. See Fig. 1) 

  

 

Fig. 1 Dendogram representing the UPGMA cluster analysis of 280 durum wheat cultivars and accessions 

(Tassel v.4) based on SNP data produced by the wheat-dedicated 90k Illumina chip. 
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2. 90k SNP chip performance on NCCR 

The application of the 90k ILLUMINA SNP array and the specifically developed cluster file (for 

correct genotyping of tetraploid samples) to NCCR enabled us to genotype the 338 NCCR RILs 

and the four founders by means of the 81,587 SNPs present in the chip.  

 

 

Fig. 2 Performance of the 90k SNP array on the NCCR population. Failed = SNP with >10% of RILs with 

missing genotype calls;  Monomorphic = monomorphic data; Strange pattern_discarded = ambiguity in the 

founders’ data; Distorted_discarded = segregation distortion with reference to the expected RIL values; 1 

vs 3 = proportion of SNP showing 1 to 3 allele segregation; 2 vs 2 = proportion of SNP showing 2 to 2 allele 

segregation.  

 

Approximately 78% of such marker set resulted monomorphic in NCCR (Fig. 2). After filtering 

the remaining dataset for missing information and distortion in marker segregation pattern, we 

obtained the final polymorphic SNP set (7,959 markers) available for developing the NCCR 

linkage map. The percentage of markers showing a segregation pattern consistent with the 

model 1:1 was 0.26% while the amount of markers segregating as 1:3 was equal to 0.7%.  

 

3. NCCR genetic map 

The final number of SNPs included in NCCR linkage map was equal to 7,594. The map covered 

the 14 durum wheat chromosomes and spanned 2,663 cM, distributed as 1,188 for the A genome 

and 1,475 for the B genome (details reported in Fig. 3 and Table 1). Collapsing the markers to 

unique positions resulted in 1,229 co-segregating clusters of markers. The number of unique 

positions for each chromosome varied from 43 (chr 1A) to 134 (chr 1B) and had a mean of 87.8.   
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The total estimated genome length of the NCCR map (after adjustment following Chakravarti et 

al., 1991) was 2,674.25 cM. The overall average marker distance was 2.8 cM. The histogram of 

inter-marker distances (Fig. 4) showed the large majority of pairs were in the class of 0-1 cM 

(6,365 over 7,580, 84.0%). However there were 135 inter-marker distances of 10-50 cM, 

indicating potential gaps in optimal marker coverage.  

We further investigated the genome coverage by taking as a reference the recently published 

90k SNP consensus map for T. aestivum (bread wheat) (90k bread. Wang et al., in press). A 

monotonic increase was detected in NCCR vs 90k bread scatterplots (Fig. 6) with an extremely 

high conservation of marker order (Spearman’s rank correlation >0.95 for all chromosome pair 

comparisons). Based on the same comparison, the A and B genome coverage of the NCCR map 

was calculated for each chromosome and is reported in Fig. 5. Gaps in genome coverage as 

referred to the hexaploid wheat consensus map were comprised between 5 and 14% for most of 

the chromosomes and the majority of the gaps were accounted for by the distal telomeric 

regions. The observed interstitial gaps did not extended over 5% of the consensus map. Total 

gaps equal or lower than 2% were observed for four chromosomes (2A, 6A, 6B, 7B). On the 

contrary, chromosomes 4A and 5A showed large non covered regions of 22.4 and 42.7%, both in 

the distal chromosome regions. 

 

 

Fig. 3 The NCCR linkage map. 
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Table 1 Summary of main parameters about the NCCR map by chromosomes. For each chromosome is 

reported: number of SNP markers, length (cM) of the chromosome, number of unique positions (bins of 

co-segregation among markers) and average number of recombination events for each RI line. 

            

Chr No. SNPs Lenght (cM) Unique Pos No.Rec/chr

1A 281 125.2 43 1.8

1B 864 176.2 134 2.4

2A 695 208.8 99 3.0

2B 542 263.7 101 2.4

3A 622 204.8 104 3.3

3B 304 253.7 64 1.2

4A 359 138 68 1.7

4B 552 175.9 105 2.6

5A 177 98.8 53 1.6

5B 408 186.4 65 2.3

6A 708 125.7 91 1.5

6B 719 196 101 2.7

7A 632 286.4 82 3.5

7B 731 223.6 119 1.6

Tot 7,594 2,663.20 1,229 31.5         
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Fig. 4 Classes of inter-marker distances(in cM). 

 

 

 

 

Fig. 5 Chromosome coverage of the NCCR map, calculated projecting NCCR mapped markers on the bread 

wheat reference map, considering intervals of 5 cM. 
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Fig. 6 Scatterplots representing the relationship between the 

NCCR map (x) and the T. aestivum consensus 90k SNP map (y) 

for the 14 chromosomes. 



 

56 
 

 

Fig. 7 From top to bottom: 1) SNP coverage of the consensus 90k map, 2) SNP coverage of NCCR map. Red 

triangles represent anchor markers. 3) NCCR map: 3cM-sliding window of the haplotype density along the 

chromosome (in green) and probability of assignment to a certain founder at the 0.7 target threshold (red 

dotted scatterplot). Study cases of chromosome 1A (on the left) and chromosome 7A (on the right). 
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4. Genetic structure of NCCR population  

Estimating the founder probabilities for each RIL along the genome allowed a better 

understanding of the genetic structure of the population. Average assignment percentages of 

each founder along the 14 chromosomes ranged between 5.5% (Claudio haplotype, chr 3B) and 

30.4% (Neodur haplotype, chr 5A) and had a genomic mean of 20% across the four founders 

(compared to 25% expected). The percentage of regions where founders could not be assigned 

per chromosome varied from 9.0% (chr 5A) to 46.1% (chr 3B). On average, for each line, 20.1% 

of the genome could not be assigned at the chosen threshold probability (0.7) to any founder. 

Average genome-wide founder assignment percentages for all the 14 chromosomes are reported 

in Fig. 8. Percentage of founder assignment was typically lower at centromeric regions, which 

also showed a lower SNP density and lower haplotype diversity between the four founders (Fig 

8). The genome-wide average number of recombination events per line was 31.5, while the 

average number of recombination events per chromosome varied from 1.2 (3B) to 3.4 (7A), see 

Table 1. 

 

Fig. 8 Percentages of genome-wide founder assignment for all chromosomes. Orange lines indicate 

boundaries of chromosomes.  
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5. Statistical analysis of phenotypic data 

In the NCCR population, all traits followed a normal distribution (excluding a skewed 

distribution identified in the FLER-score dataset) and were characterized by transgressive 

segregation with respect to the parental lines (Fig. 9). In particular, a clear positive transgressive 

segregation has been observed for EGC, NDVI_31, and GPC. Colosseo was the earliest (both in 

terms of days to heading and maturity) and lowest yielding parent, Neodur was the latest and 

Claudio was the highest yielding (Fig. 9). The four founders appeared characterized by 

favourable alleles at different yield-potential QTL, consistently with the expectations (see 

Materials and Methods). With respect to the parental values, Neodur showed the highest SNE 

values, Claudio the greatest GVW and Ftsm values, Colosseo the highest GWT while 

Rascon/Tarro the highest GNS.  

 

The general linear model highlighted highly significant differences among NCCR RIL genotypes 

and highly significant genotype-environment interactions for the target traits (p-values <<10-4, 

see Table 4). Broad sense heritability for the combined values over the four environments 

returned values higher than 90% for HD (94.5%) and GWT (93.6%). GY heritability was 

estimated as 47.7% (Table 4). GVW, for which the h2 value was estimated as equal to 25.4% in 

the present experiment, was discarded from further analysis. 

 

The Pearson’s correlation values regarding the 18 traits herein considered are reported in Table 

2 (combined phenotypic data) and Table 3 (single-environment data for a subset of traits: HD, 

MD, PH, GY). With combined data a positive and relatively high correlation was found between 

HD and MD (r = 0.62). A positive HD-MD correlation have been encountered as well over single-

environment data (Cad11=0.63; Cad12=0.33; Arg12=0.45). Regarding NDVI measurements, N31 

showed an high correlation with N40 (0.77) and a slightly lower correlation value with N57 

(0.60). The correlation between N40 and N57 was estimated as r = 0.74. The three NDVI 

measurements permitted to identify different correlation values with regards to the other 

examined traits. As expected, N 31 showed a considerable correlation (r = 0.68) with EGC, while 

the magnitude of such correlation seems to decrease with the progressing of plant development 

(N40 and EGC, r = 0.44; N57 and EGC, r = 0.32). An opposite whilst milder trend has been 

identified for NDVI31, 40 and 57 and PH (N31 and PH, r=0.33; N40 and PH, r = 0.39; N57 and PH, 

r = 0.46). Additionally, N40 was weakly correlated with FLER (r = 0.42) and GY (r = 0.31), while 

N57 showed a sizable correlation with HD (r = 0.53) and GY (r = 0.40). Combined PH data 

appeared to have a weak and positive correlation with GWE (r = 0.35) and GY (r = 0.33). On 

single-environment data, PH significantly correlates only with HD in Cad11. Considering yield 
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numerical components, HD appeared to positively correlate with SNE (r = 0.46), GNE (r = 0.38) 

and GWE (r = 0.40), MD with SNE (r = 0.38). SNE showed a positive correlation with GNE (r = 

0.38) and GWE (r = 0.45). Being a GNE-derived measure, GNS was obviously extremely 

correlated with GNE (r = 0.90). GNS then presented a moderate positive correlation with GWE (r 

= 0.52) and a negative correlation with GPC (r = -0.54). GNE resulted as highly and positively 

correlated with GWE (r = 0.68) and negatively with GPC (r = 0.59). GY appeared as slightly 

correlated with GNE (r=0.35), GNS (r = 0.32) and GWE (0.42). GWT appeared to have a relatively 

strong negative correlation with the numerical yield components GNE (r = -0.53) and GNS (r = -

0.59) and an r value of 0.39 with regards to GPC. Considering the spike-yield value GWE, a 

negative and significant correlation (r = 0.32) was detected with regards to GPC . 

 

 

Tab. 2 Correlation (Pearson’s) values among phenotypic traits collected on NCCR. Significant correlation 

values > |0.30| are shown bolded excel boxes.  

HD MD EGC FLER PH FLG N31 N40 N57 FTsm GVW GWT SNE GNE GNS GWE GY GPC

HD 1

MD 0.62 1

EGC -0.01 0.05 1

FLER -0.06 -0.1 0.06 1

PH 0.16 0.11 0.23 0.13 1

FLG -0.26 -0.13 -0.01 -0.17 0.02 1

N31 0.19 0.05 0.68 0.29 0.33 -0.07 1

N40 0.13 0.01 0.44 0.42 0.39 -0.08 0.77 1

N57 0.53 0.26 0.32 0.27 0.46 -0.16 0.6 0.74 1

FTsm -0.14 -0.11 0.22 0.02 -0.02 -0.01 0.21 0.12 0.09 1

GVW -0.16 -0.02 0.09 -0.06 0.07 -0.07 -0.07 -0.06 -0.07 0.15 1

GWT -0.09 0.12 0.25 0.19 0.21 -0.03 0.14 0.17 0.04 -0.14 0.1 1

SNE 0.46 0.38 -0.12 -0.15 0.19 -0.09 -0.15 -0.05 0.15 -0.22 0.09 0 1

GNE 0.38 0.1 -0.25 -0.14 0.15 0.06 -0.15 -0.11 0.13 -0.16 -0.16 -0.53 0.38 1

GNS 0.2 -0.07 -0.22 -0.08 0.07 0.11 -0.09 -0.09 0.07 -0.07 -0.22 -0.59 -0.05 0.9 1

GWE 0.4 0.28 -0.09 0.01 0.35 0.05 -0.07 0.01 0.19 -0.27 -0.08 0.18 0.45 0.68 0.52 1

GY 0.26 0.12 0.19 0.01 0.33 0.05 0.3 0.31 0.4 0.12 -0.02 0 0.13 0.35 0.32 0.42 1

GPC -0.21 0.04 0.2 0.07 -0.05 0.01 0.08 0.03 -0.16 -0.04 -0.04 0.39 -0.21 -0.59 -0.54 -0.32 -0.49 1

 

Tab. 3 Correlation values within single-environment data for HD, MD, PH, GY. 

Pr11

HD_Cad11 MD_Cad11 PH_Cad11 GY_Cad11 HD_Pr11 PH_Pr11 GY_Pr11

HD_Cad11 1 HD_Pr11 1

MD_Cad11 0.63 1 PH_Pr11 0.07 1

PH_Cad11 0.38 0.25 1 GY_Pr11 0.34 0.14 1

GY_Cad11 0.43 0.31 0.44 1

Arg12

HD_Cad12 MD_Cad12 PH_Cad12 GY_Cad12 HD_Arg12 MD_Arg12 GY_Arg12

HD_Cad12 1 HD_Arg12 1

MD_Cad12 0.33 1 MD_Arg12 0.45 1

PH_Cad12 0.04 0.12 1 GY_Arg12 0.26 0.26 1

GY_Cad12 -0.22 -0.15 0.45 1

Cad11

Cad12
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Table 4 Descriptive statistics of the phenotypic traits collected on NCCR and analysed in this work. 

Trait Abbr. Min. Mean Max. p- val. Tratt h2

Heading date HD 132.3 140.6 149.0 *** 94.4

Maturity date MD 180.4 188.2 193.3 *** 58.4

Early ground cover EGC 3.6 6.1 7.6 *** 47.4

Flag leaf erectness FLER 1.0 2.1 5.3 *** 58.8

Plant height PH 64.0 82.1 94.8 *** 86.6

Flag leaf greeness FLG 42.6 52.8 59.2 *** 63.3

NDVI_Zadoks 31 NDVI_31 0.3 0.4 0.5 *** 62.0

NDVI_Zadoks 40 NDVI_40 0.5 0.7 0.7 *** 51.8

NDVI_Zadoks 57 NDVI_57 0.6 0.7 0.8 *** 65.6

Fertile tillers*m-2
FTsm 345.6 461.2 608.8 *** 32.8

Grain volume weight GVW 73.0 77.7 81.5 *** 25.4

Thousand kernel weight GWT 38.8 51.9 63.1 *** 93.6

Spikelet number per ear SNE 14.7 17.9 23.3 *** 79.6

Grain number per ear GNE 29.3 47.7 74.4 *** 78.2

Grain number per spikelet GNS 1.6 2.7 3.9 *** 74.2

Grain weight per ear GWE 1.5 2.4 3.7 *** 64.8

Grain yield GY 4.2 5.9 7.1 *** 47.7

Grain protein content GPC 12.4 15.1 17.5 *** 77.7  
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Fig. 9 Frequency distributions of the 18 phenotypic traits analysed in this work. The arrow represents the average RIL population value for the considered trait, while the 

parental values are depicted by colored bars (Neodur=green, Claudio=red, Colosseo=orange and Rascon/Tarro=blue). 

 



 

62 
 

6. QTL results 

The whole-genome genetic map constructed from the SNP data was used to conduct a composite 

interval mapping on phenotypic data combined across years and environments.  

For a subset of phenotypic traits (HD, MD, PH and GY), a comparative QTL search was conducted 

in parallel with two distinct methods: i) by composite interval mapping as implemented in 

mpMap software (hereafter reported as IBD-CIM) which exploits the four founders identity by 

descent haplotype probabilities, and ii) by single marker analysis using the SNP bi-allelic classes 

(hereafter reported as identity by state single marker analysis, IBS-SMA). 

 

6.1 QTL mapping across environments 

Considering the phenotypic data combined across years and environments, IBD-CIM identified 

10 QTL for development-related traits, 23 QTL for morpho-physiological traits, 23 QTL for yield-

related traits, 2 QTL for grain yield and 4 QTL for GPC (Table 5-8, Fig. 10). Adjusted R2 of the CIM 

full model fitted for each trait is showed in Table 9. With regards to the subset of combined 

phenotypic data subjected to a comparative IBD-CIM/IBS-SMA QTL analysis, results are 

reported in Table 11-14 and Fig. 11. Considering the phenotypic data combined across years and 

environments IBD-CIM detected a total of 17 QTL effects with adjusted R2 for the CIM full model 

decreasing  from 0.52 (HD) and 0.40 (MD) to 0.26 (PH) and 0.12 (GY). The adjusted IBS-SMA 

identified 30 QTL for the four traits, including all but one of the 17 IBD-CIM QTL (Table 10, Fig. 

10). The cumulative R2 values of the QTL detected by IBS-SMA were almost equivalent (+/- 0.04) 

to the values obtained by IBD-CIM. 

 

6.2 QTL mapping on single - environment data 

Considering the IBD-CIM QTL analysis performed on single-environment data for HD, MD, PH 

and GY, a total of 23 QTL for Cad-11, 15 QTL for Cad-12, 13 QTL in Pr-11 and 9 QTL in Arg-12 

(detailed results are presented in Table 11-14, Fig. 11) were identified. Comparing the results of 

QTL analysis for the combined-data with those obtained for single-environments, we found that 

13 out of the 17 QTL detected with IBD-CIM across environments and 28 out of 30 QTL 

identified with the IBS-SMA showed environmental-specificity to various extents. In addition, 

several QTL with significant effects on single environments that were not significant across 

environments were found for all traits. IBD-CIM analysis for the single environments resulted in 

a total of 38 unique QTL (considering QTL with probability peaks within a 10-cM interval and 

consistency of direction of QTL effects across environments as unique QTL) for the four traits 
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considered. Of these, only four were consistently significant across all environments and were all 

detected for HD on chromosome 2A, 2B, 4B and 7A (Fig. 11) and were coincident with the main 

QTL clusters. Among the other QTL, two PH QTL were significant over three environments and 

corresponded to the QTL clusters on 2B proximal and 7A, 6 QTL including two for MD, two for 

PH and two for GY were concomitantly significant over two environments and the majority (26) 

were environment- and trait- specific. Among the 10 GY QTL, two QTL were concomitantly 

detected on chromosome 2A and 7A over two environments each, with the latest QTL 

corresponding to the 7A QTL cluster and the eight QTL remaining were all environment-specific.  

6.3 QTL for development-related traits 

Both CIM and SMA analysis identified four heading date QTL whose QTL peak positions were 

located with small (<5 cM) differences in genetic distances by the two mapping methods. These 

QTL, that showed the largest genetic effects on HD, were located on chr 2A (QHd.ubo-2A, with 

QTL peaks located at 46.0 and 42.0 cM with CIM and SMA and R2 of 22.0 and 22.9%, 

respectively), chr 2B (QHd.ubo-2B at 51.5 and 57.0 cM, R2 of 12.0 and 11.5%), chr 4B (at 59.1 and 

55.1 cM, R2 of 2.5 and 4.3%) and chr 7A (QHd.ubo-7A.2 at 63.2 and 65.7 cM, R2 of 10.9% and 

12.2%). At P ≤0.001, IBS-SMA identified two additional HD QTL on chr. 6A (at 64.7 cM with R2 of 

3.4%) and on chr 7A (QHd.ubo-7A.1 at 19.7 cM, R2 of 5.3%). All the four main QTL on 2A, 2B, 4B 

and 7A showed concomitant significant effects across environments for maturity date, with 

magnitude and ranking of R2 effects similar to that observed for HD. Additional MD QTL were 

identified by both CIM and SM analysis on chr 5B (peaks at 41.8 and 42.3 cM, respectively, with 

R2 of 3.0 and 4.2%) and 7B (peaks at 25.0 identified by CIM only, R2 of 1.3%); additional QTL 

effects for MD were found by SMA analysis only on chr 1B (two QTL), 1B, 2A, 2B, 4B, 6A 

(concomitant with the effect for HD as reported above), 7A, with R2 ranging from 3.5 to 5.8% 

each. The analysis based on IBD-CIM allowed to test for the presence of different genetic effects 

among the four founders at each of the QTL. At the two major QHd.ubo-2A and QHd.ubo-2B QTL 

the post-hoc comparison showed that three of the four founder phenotypic effects were 

significantly diversified to each other. At QHd.ubo-2A, the latest heading phenotypic effect was 

associated to Colosseo allele (+3.05 days compared to the reference Rascon/Tarro), with Neodur 

allele associated to a delay of 1.94 days and Claudio and Rascon/Tarro with undistinguishable 

effects from each other that were categorized as the third earliest allele. At the QHd.ubo-2A CI 

region, the four founders' molecular haplotypes were easily distinguishable while at the most 

associated SNP the two alleles differentiated Colosseo and Neodur from Claudio and 

Rascon/Tarro (associated to an earliness effect of 2.69 days). At QHd.ubo-2B, the latest allele 

effect was associated to Neodur and Claudio (undistinguishable from each other, ca. +1.70 days 

from Rascon/Tarro), Rascon/Tarro was medium and Colosseo was the earliest (-1.28 days from 
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Rascon/Tarro). In this case, the local haplotype and the most associated SNP in the IBS-SMA 

effectively distinguished Colosseo and Neodur from Claudio and Rascon/Tarro while the 

distinguished features of Rascon/Tarro could not be detected. In the case of QHd.ubo-7A QTL, 

there were only two well distinct phenotypic effects, with Colosseo associated to earliness (-2.55 

days from Rascon/Tarro) and distinct from all the other three founders. The QTL tag-SNP in the 

IBS-SMA distinguished Colosseo from the others founders and thus the two analysis yielded 

comparable results. Interestingly, Colosseo founder has distinct effects that were strong in 

magnitude at all the three major QTL, but with opposite directionality (i.e. contributing lateness 

at QHd.ubo-2A and earliness at QHd.ubo-2B at QHd.ubo-7A). Additional QTL for phenology 

showed a marked environment-specific expression and R2 values ranging between approx. 1.5 

and 5%. For the relatively stable QTL on chromosome 4B QHd.ubo-4B (detected in Cad11, Cad12, 

Pr11) three distinct phenotypic effects were associated to the four founders as already observed 

for group 2 QTL. Neodur and Colosseo founder alleles were both associated to a unique lateness 

effect (+0.5 days from Rascon/Tarro), Rascon/Tarro had a medium effect and Claudio’s allele 

contributed an earliness effect (-0.76 days vs Rascon/Tarro). QHd.ubo-4B was most probably 

syntenic to the meta-QTL found by Hanocq et al. (2007) and to the A.18 GWAS-QTL found by 

LeGouis et al. (2012), as the QTL was positioned to a relative distance of 0.24, while the 

hexaploid wheat QTL were located at a relative distance of 0.31. In summary (and in respect of 

Rascon/Tarro effect), Neodur was always associated to lateness except for the QTL on 7A 

(QHd.ubo-7A.2) were the phenotypic effect was comparable to that of Rascon/Tarro, Claudio was 

associated to lateness at two QTL (2B and 7A) and to earliness at 2A and 4B QTL; Colosseo 

showed allelic effects opposite to those of Claudio, with lateness at 2A and 4B QTL and earliness 

at 2B and 7A QTL, Rascon/Tarro. For all the four QTL, the same trend have been reported for the 

corresponding MD QTL at target regions, with slight differences in relative effects. QHd.ubo-2A, 

QHd.ubo-2B and QHd.ubo-7A were confirmed to have concomitant effects on MD, however their 

effects were not as relevant as for HD, particularly for QHd.ubo-2A and QHd.ubo-7A. A range of 

QTL specific for MD and/or for MD and PH were also identified, all with low- to medium-R2 

values (QMd.ubo-1B.1, QMd.ubo-1B.2, QMd.ubo-2A.2, QMd.ubo-2B.2, QMd.ubo-4B.2, QMd.ubo-5B, 

QMd.ubo-6A, QMd.ubo-7B). Specifically for these QTL, Rascon/Tarro was frequently associated to 

early maturity, together with Claudio and/or Colosseo depending on the QTL (Claudio 

contributed a strong late maturity QTL at QMd.ubo-7B and Colosseo at QMd.ubo-4B.2). Neodur 

appeared to mostly contribute late maturity alleles.  
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6.4 QTL for morpho-physiological traits  

QTL analysis for EGC identified three QTL, the most interesting one situated on chr 2A (R2 = 

8.8%) and co-mapped with a large NDVI_31 QTL (QNdvi_31.ubo-2A. R2 = 16.6%) and a relatively 

lower-effect NDVI_40 QTL (QNdvi_40.ubo-2A. R2 = 8.2%). Such QTL cluster is of physiological 

interest and appears to be related to yield-component and quality QTL (see discussion). Plant 

height data analysis on combined phenotypic data revealed five QTL confirmed by both IBD-CIM 

and IBS-SMA mapping methods, situated on chromosomes 1B (peak at 41.4 for mpMap and 38.3 

for SMA, R2 = 3.30% and 3.81%, respectively), 2B (peak at 97.9 and 96.8 cM, R2 = 7.70% and 

9.0%), 5B (peak at 105.8 and 105.3 cM, R2 = 4.10 and 5.20%), 7A (peak at  67.2 cM for both 

methods, R2 = 9.10 and 8.40%), 7B (138.4 and 152 cM, R2 of and 2.8 and 3.5%). In addition, the 

SMA detected some other small effect quantitative loci for plant height on chr 2B (peak at 127.5, 

R2 = 6.02%), 4A (peak at 120.0 cM, R2 = 4.70%), 5B (peak at 105.3 cM, R2 = 5.20%). Mapping of 

PH with single-environment data returned additionally QTL with relatively important effects in 

single environments: a PH QTL on chr 2A (peak at 42.5 cM, R2 = 7.73%) with Cad11 data and  a 

PH QTL on chr 5B (peak at 155.6 cM and R2 = 6.53%) with Cad12 phenotypic dataset. The most 

significant locus associated to flag leaf chlorophyll content (SPAD index) was found on chr 5B 

(R2 = 10.0%), co-localizing with a QTL for maturity date. They both appear not to drive any yield-

component QTL.  

6.5 QTL for yield components 

Three QTL for FTsm have been found (chr 2A, chr 3A and chr 4B), although none of them 

explained a relative high portion of total genetic variation (R2 = 3.9, 2.4 and 6.0%, respectively). 

Five QTL for SNE have been identified (chr 1B, chr 2A, chr 4B, chr 6B and chr 7A). The most 

important QTL mapped on chr 2A, showing an R2 = 16.1% despite the relatively large confidence 

intervals (49.2 cM). Three SNE QTL (chr 1B with R2 = 5.3%, chr 4B with R2 = 9.9% and chr 6B 

with R2 = 2.2%) were not found to be later represented in GNE. GNS showed a major QTL on chr 

2A (R2 = 39.2%), driven by a the positive effect of Rascon/Tarro haplotype which appears clearly 

functionally distinct by a second functional allele share by the other three founders. 

Interestingly, the GNS QTL located on chr 4B and belonging to a composite cluster appear not to 

be determined by any SNE QTL (see Discussion for further analysis of these QTL clusters). For 

GNE data, four significant QTL have been identified, the most interesting ones mapped on chr 2A 

(R2 = 24.3%) and chr 7A (R2 = 9.2%). Three QTL for GWE were identified, the main one on chr 

7A (R2 = 8.6%). Finally, four GWT QTL were identified, including a major locus on chr 2A which 

co-mapped with major QTL for SNE, GNE and GNS as mentioned above (see discussion for 

further analysis). Summary statistics for QTL for yield components are reported in Table 7.  
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6.6 QTL for grain yield  

Based on the four-environment combined phenotypic data, QTL for GY were found by both QTL 

analysis methods (IBD-CIM and IBS-SMA) on chromosome 2B (QGy.ubo-2B. Peak at 103.4 and 

127.5 cM, R2 = 3.90 and 5.30%, respectively) and 7A (QGy.ubo-7A. Peak at 110.9 and 127.5 cM, R2 

= 7.0 and 7.2%) (Table 10). It should be noted that for QGy.ubo-7A, CIM SIM QTL analysis 

provided somewhat contrasting results in terms of QTL peak position (not shown). In order to 

be as inclusive as possible , we decided for this QTL only to report the QTL CI interval based on 

SIM. Interestingly, as reported above, these two QTL appear to be differently correlated with PH 

and development-related traits. QGy.ubo-2B was found to co-map with the QPh.ubo-2B while its 

association with phenology was milder, as only a very small effect MD QTL (QMd.ubo-2B.2, 

detected by IBS-SMA only) co-mapped. On the contrary, QGy.ubo-7A belong to a QTL cluster 

including QTL for HD, MD and PH and coincident with TaFT-7A chromosome position. For the 

QGy.ubo-2B, Colosseo allele was associated to a decrease of GY (-0.35 ton/ha) in respect to the 

other three founders, whose allelic effects were indistinguishable from each other. The 

directionality of allelic effects agreed with the effects observed for PH where Colosseo showed 

an effect for reduced PH. The QTL-tag SNP at this GY QTL in part failed to predict the founders' 

allelic effects because the two alleles  related Claudio to Colosseo and Neodur to Rascon/Tarro, 

respectively. At QGy.ubo-7A, the post-hoc test differentiated three functional alleles, with 

Colosseo associated to a sensible decrease in GY (-0.35 ton/ha), Claudio also associated to a yield 

decrease (-0.11 ton/ha) in comparison with Neodur and Rascon/Tarro, which appear to share a 

similar effect QTL allele. At both chr 2B and 7A GY QTL the earliness allele of Colosseo seemed to 

be associated to a negative effect on yield.  

Most of the GY QTL were detected for single-environment trials only. We identified eight GY QTL 

of which only one (identified in Cad11 and Arg12) corresponded to a GY QTL found with 

combined data (QGy.ubo-7A). Most significant single-environment GY QTL data were 

represented by QTL mapped with Cad11 data on chr 2A (42.51, R2 = 5.69%) and 2B (51.54, R2 = 

4.84%) and by a QTL located at 101.2 cM on chr 4B (R2 = 6.02%) with Arg12 data. 

6.7 Quality traits 

Regarding quality-related traits, we reported four QTL  for GPC, of which two co-mapped with 

GWT (chr 2A, R2 of 12.0% and chr 4B, R2 of 5.6%) and two localized in the same genomic region 

of a GY QTL (chr 2B, R2 of 3.2% and chr 7A, R2 of 4.0%).  
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Table 5 Development-related traits. IBD-CIM analysis on combined phenotypic means. Threshold for QTL 

detection: p-value <10-3; LOD-2 confidence interval). 

QTL name Pos s.i. R2 p- value LOD L Mrk-R Mrk Eff_Neo Eff_Cla Eff_Col

QHd.ubo -2A 46.0 41.5-49.5 22.0 0 >15.0 IWB70098 - IWB52303 1.94 -0.45 3.05

QHd.ubo -2B 51.5 39.5-53.5 12.0 0 >15.0 IWB4604 - IWA3868 1.6 1.73 -1.28

QHd.ubo -4B 59.1 49.1-70.1 2.5 1.42E-04 3.1 IWB6994 - IWB2398 0.6 -0.76 0.5

QHd.ubo -7A.2 63.2 62.2-67.2 10.9 0 >15.0 IWA8390 - IWB72200 0.15 0.45 -2.55

QMd.ubo- 2A.1 45.0 33.4-71.5 11.5 0 > 15.0 IWB67517 - IWB70098 0.69 -0.32 1.72

QMd.ubo- 2B.1 51.5 39.5-63.1 10.7 6.79E-14 12.2 IWB4604 - IWA3868 0.46 1.05 -1.1

QMd.ubo- 4B.2 97.2 85.7-108.2 3.9 4.10E-06 4.6 IWB67166 - IWB25207 0.49 0.64 1.16

QMd.ubo- 5B 41.8 30.8 -51.3 3.0 1.99E-05 4.0 IWA3870 - IWB45033 0.81 0.97 0.36

QMd.ubo- 7A 63.2 58.7 -67.2 4.9 2.89E-09 7.7 IWA8390 - IWB72200 0.32 0.55 -0.87

QMd.ubo- 7B 25.0 0 -48.6 1.3 6.84E-04 2.5 IWA2568 - IWA6901 0.27 1.46 0

 

 

Table 6  Morpho-physiological traits. IBD-CIM analysis on combined phenotypic means. Threshold for 

QTL detection: p-value <10-3; LOD-2 confidence interval). 

QTL name Pos s.i. R2
pvalue LOD L Mrk-R Mrk Eff_Neo Eff_Cla Eff_Col

QEgc.ubo -2A 97.1 83.1 - 106.2 8.8 1.99E-08 6.8 IWB35615 - IWB34999 -0.14 0.2 0.43

QEgc.ubo -4B 75.2 64.6 - 85.7 4.3 1.87E-05 4.0 IWB68348 - IWB32941 -0.06 0.26 -0.23

QEgc.ubo -5A 82.1 70.6 - 93.8 3.6 3.91E-04 2.7 IWB14445 - IWB14333 0.21 0.03 -0.17

QFler.ubo -2A 42.5 6.3 - 71.5 3.0 5.37E-03 1.7 IWB51686 - IWB70375 -0.42 -0.27 -0.34

QFler.ubo -4B 40.6 29.1 - 50.6 5.6 9.81E-06 4.2 IWB46249 - IWB69708 -0.43 -0.56 -0.2

QFler.ubo -7B 95.8 85.8 - 137.9 3.2 7.69E-04 2.5 IWB72925 - IWB71827 -0.22 -1.22 -0.56

QPh.ubo- 1B 41.4 31.3 -51.9 3.3 6.20E-04 2.5 IWB66840 - IWB8804 2.92 0.94 1.64

QPh.ubo- 2B 97.9 87.8 -127.5 7.7 4.64E-08 6.5 IWB69270 - IWB69796 1.05 0.12 -2.91

QPh.ubo- 5B 105.8 95.7 -126.6 4.1 9.83E-05 3.3 IWB3693 - IWB71533 0.14 -2.48 0.15

QPh.ubo- 7A 67.2 60.7 -76.8 9.1 9.71E-08 6.2 IWB67995 - IWB33919 -0.5 0.4 -3.91

QPh.ubo- 7B.2 138.4 104.8 -180.5 2.8 7.87E-04 2.4 IWB10498 - IWA7330 -0.22 3.61 1.32

QFlg.ubo -2A 50 33.4 - 71.5 3.8 2.02E-05 3.9 IWB71058 - IWB67178 -0.53 -0.43 -1.87

QFlg.ubo -2B 127.5 103.9 - 137.5 5.2 7.24E-05 3.4 IWB43954 - IWB43015 -0.04 -0.82 -1.55

QFlg.ubo -3A 64.2 49.6 - 75.2 4.5 2.45E-05 3.9 IWB71974 - IWB70107 -0.63 -1.77 -1.22

QFlg.ubo -5B 42.3 32.8 - 51.3 10.0 1.31E-09 8.0 IWB45033 - IWB57461 -2.11 -0.47 0.11

QNdvi_31.ubo -2A 95.6 93.1 - 106.2 16.6 1.81E-13 11.8 IWB8192 - IWB9037 -0.02 0.01 0.03

QNdvi_31.ubo -6B 106.2 89.6 - 119.8 6.4 2.32E-04 2.9 IWB3431 - IWA221 -0.02 0.01 0.01

QNdvi_40.ubo -2A 95.6 84.6 - 106.2 8.2 3.77E-06 4.6 IWB8192 - IWB9037 0 0.01 0.03

QNdvi_40.ubo -6B 106.2 89.6 - 119.8 6.4 9.58E-05 3.3 IWB3431 - IWA221 -0.02 0 0.01

QNdvi_57.ubo -1A 27.6 2 - 82.6 3.0 3.07E-03 1.9 IWB3682 - IWB73652 0.01 0.01 0

QNdvi_57.ubo -2A 50.5 33.4 - 71.5 6.9 1.22E-06 5.1 IWB67178 - IWB53117 0.01 -0.01 0.02

QNdvi_57.ubo -2B 53.5 23.7 - 84.3 3.1 9.41E-04 2.4 IWA3868 - IWB30115 0.01 0.02 0

QNdvi_57.ubo -6B 106.2 89.6 - 131.4 5.9 3.61E-05 3.7 IWB3431 - IWA221 -0.01 0.01 0.01
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Table 7 Yield and yield-related traits. IBD-CIM analysis on combined phenotypic means. Threshold for 

QTL detection: p-value <10-3; LOD-2 confidence interval). 

QTL name Pos s.i. R2
pvalue LOD L Mrk-R Mrk Eff_Neo Eff_Cla Eff_Col

QFTsm.ubo -2A 109.2 98.1 - 128.9 3.9 1.42E-04 3.1 IWB28520 - IWB35417 -9.85 17.16 24.1

QFTsm.ubo -3A 109.8 84.7 - 128.4 2.4 5.40E-04 2.6 IWB71364 - IWB67653 -15.01 -40.63 -11.26

QFTsm.ubo -4B 95.7 85.7 - 101.2 6.0 1.20E-06 5.1 IWB72291 - IWB67166 13.34 3.1 -20.5

QSne.ubo -1B 132 124.2 - 148.7 5.3 1.13E-05 4.2 IWB10224 - IWB73738 -0.6 -0.38 -0.68

QSne.ubo -2A 81.1 33.4 - 82.6 16.1 0.00E+00 >15.0 IWB73849 - IWB20811 1.32 -0.39 0.5

QSne.ubo -4B 60.1 55.6 - 70.1 9.9 1.05E-11 10.0 IWB73588 - IWB11999 0.2 -0.29 0.72

QSne.ubo -6B 61.5 29 - 119.8 2.2 2.92E-03 1.9 IWB72280 - IWB42585 -0.15 0.02 0.34

QSne.ubo -7A 65.7 61.7 - 72.3 7.2 7.11E-12 10.2 IWB72200 - IWB67995 0.19 0.1 -0.84

QGne.ubo -2A 83.6 81.1 - 84.6 24.3 0.00E+00 >15.0 IWB32396 - IWB27892 -4.92 -10.6 -7.67

QGne.ubo -4B 116.2 106.2 - 126.2 3.0 7.94E-08 6.3 IWB68421 - IWB71580 3.43 1.17 4.33

QGne.ubo -6A 20.6 0 - 103.7 1.5 1.16E-03 2.3 IWB63758 - IWB9810 0.11 0.29 3.35

QGne.ubo -7A 60.7 58.7 - 67.2 9.2 1.30E-14 12.9 IWB73088 - IWB47104 2 1.76 -4.12

QGns.ubo -2A 86.1 84.6 - 87.6 39.2 0.00E+00 >15.0 IWA581 - IWB72980 -0.54 -0.58 -0.55

QGns.ubo -4B 129.7 118.2 - 139.2 1.7 5.78E-09 7.4 IWB5588 - IWB27042 0.22 0.17 0.23

QGns.ubo -7A 61.7 58.7 - 72.3 4.2 3.62E-08 6.6 IWB47104 - IWB8374 0.09 0.08 -0.13

QGwe.ubo -1B 38.3 24 - 48.4 7.0 4.45E-07 5.5 IWB73662 - IWB72569 0.18 -0.04 0.16

QGwe.ubo -2A 42.5 24.4 - 71.5 2.4 6.27E-05 3.5 IWB51686 - IWB70375 0.15 0.03 0.18

QGwe.ubo -4B 98.7 79.6 - 148.8 3.7 3.68E-04 2.8 IWB35646 - IWB7850 0.05 0.08 0.19

QGwe.ubo -7A 59.7 53 - 72.3 8.6 1.02E-09 8.1 IWB59817 - IWB73088 0.11 0.12 -0.17

QGwt.ubo -1B 30.3 24 - 48.9 5.6 1.09E-12 11.0 IWB9147 - IWB8046 3.38 0.16 3.08

QGwt.ubo -2A 83.6 82.6 - 84.6 35.7 0.00E+00 >15.0 IWB32396 - IWB27892 6.4 7.94 6.45

QGwt.ubo -4B 139.2 127.2 - 149.3 3.5 8.26E-07 5.3 IWB73977 - IWA3654 -2.71 -0.49 -1.58

QGwt.ubo -5A 37.6 23.3 - 51.6 2.6 1.10E-04 3.2 IWA1829 - IWB71757 -1.21 0.93 0.85

QGy.ubo - 2B 103.4 87.8 -127.5 3.9 6.32E-05 3.5 IWB69796 - IWA5411 -0.14 -0.05 -0.35

QGy.ubo - 7A 110.9 98.8 -123.4 7.0 2.18E-07 5.8 IWB319 - IWB23989 0.16 -0.11 -0.39

 

 

 

Table 8 Quality traits. IBD-CIM analysis on combined phenotypic means. Threshold for QTL detection: p-

value <10-3; LOD-2 confidence interval). 

QTL name Pos s.i. R2
pvalue LOD L Mrk-R Mrk Eff_Neo Eff_Cla Eff_Col

QGpc.ubo -1B 148.8 24 - 176.2 2.1 1.15E-04 3.2 IWA7992 - IWA3660 0.12 -0.29 0.16

QGpc.ubo -2A 91.1 88.1 - 93.1 12.0 2.86E-14 12.6 IWB32205 - IWB54818 0.48 0.82 0.65

QGpc.ubo -2B 136.5 84.3 - 172.6 3.2 8.39E-04 2.4 IWB32221 - IWB73241 -0.15 -0.26 0.15

QGpc.ubo -4B 129.7 118.2 - 140.7 5.6 1.43E-06 5.0 IWB5588 - IWB27042 -0.49 -0.2 -0.5

QGpc.ubo -7A 110.9 98.8 - 123.4 4.0 1.41E-05 4.1 IWB319 - IWB23989 -0.5 -0.14 0.08
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Table 9 The adjusted R2 of the CIM full model for each of the trait which have undergone QTL analysis.  

IBD-CIM 

Trait Adj. R2 full model

HD 0.52

MD 0.41

EGC 0.17

FLER 0.12

PH 0.26

FLG 0.24

NDVI_Z31 0.21

NDVI_Z40 0.13

NDVI_Z57 0.18

FTsm 0.14

SNE 0.41

GNE 0.43

GNS 0.50

GWE 0.23

GWT 0.50

GY 0.12

GPC 0.29  
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Table 10 Comparison between IBD-CIM and IBS-SMA methods for a subset of trait data (HD, MD, PH, GY). 

HD Pos s.i. L Mrk-R Mrk p -value R2
LODEff_Neo Eff_Cla Eff_Col Funct. Alleles Pos Mrk signif.i. p-value LOD R2

Effect Ref

QHd.ubo-2A 46.0 41.5-49.5 IWB70098 - IWB52303 0 22.0 > 15.0 1.94 -0.45 3.05 Col > Neo > Cla, RT 42 IWB67307 7.3 -51.5 3.32E-20 > 15.0 22.9 -2.69 Cla/RT

QHd.ubo-2B 51.5 39.5-53.5 IWB4604-IWA3868 0 12.0 > 15.0 1.6 1.73 -1.28 Neo, Cla > RT > Col 57 IWA8083 39.5 -57.1 2.43E-10 8.7 11.5 -1.90 Col/RT

QHd.ubo-4B 59.1 49.1-70.1 IWB6994-IWB2398 1.42E-04 2.5 > 15.0 0.6 -0.76 0.5 Neo, Col > RT > Cla 55.1 IWA4916 48.1 -59.1 1.37E-04 3.2 4.3 -1.17 Cla/RT

QHd.ubo-6A  -  -  -  -  -  -  -  - 64.7 IWA1235 58.7 -65.7 7.55E-04 2.5 3.4 -1.12 Cla/Col/RT

QHd.ubo-7A.1  -  -  -  -  -  -  -  - 19.7 IWB54744 0 -49 2.03E-05 3.9 5.3 1.52 Neo/Cla/RT

QHd.ubo-7A.2 63.2 62.2-67.2 IWA8390-IWB72200 0 10.9 > 15.0 0.15 0.45 -2.55 Neo, Cla,  RT > Col 65.7 IWB56953 59.7 -98.8 6.06E-11 9.3 12.2 2.59 Neo/Cla/RT

MD Pos s.i. L Mrk-R Mrk pvalue R2
LODEff_Neo Eff_Cla Eff_Col Funct. Alleles Pos Mrk signif.i. p-value LOD R2

Effect Ref

QMd.ubo- 1B.1  -  -  -  -  -  -  -  - 61.8 IWB66172 56.6 -68.9 1.09E-05 4.2 5.7 -0.96 Cla/Col/RT

QMd.ubo- 1B.2  -  -  -  -  -  -  -  - 130.5 IWB6805 122.6 -134.5 2.11E-04 3.0 4.1 -0.75 Cla/RT

QMd.ubo- 2A.1 45.0 33.4-71.5 IWB67517-IWB70098 0 11.5 > 15.0 0.7 -0.3 1.72 Col > Neo > Cla, RT 42 IWB67305 7.3 -45 1.79E-09 7.9 10.5 1.19 Cla/RT

QMd.ubo- 2A.2  -  -  -  -  -  -  -  - 83.6 IWB1 73 -91 1.01E-05 4.2 5.8 -1.04 RT

QMd.ubo- 2B.1 51.5 39.5-63.1 IWB4604-IWA3868 6.8E-14 10.7 > 15.0 0.46 1.05 -1.1 Neo, Cla, RT > Col 57 IWA8083 56.5 -57.1 1.47E-08 7.0 9.3 -1.13 Col/RT

QMd.ubo- 2B.2  -  -  -  -  -  -  -  - 97.9 IWB5039 87.3 -97.9 7.48E-04 2.5 3.5 0.81 Neo/Cla/RT

QMd.ubo- 4B.1  -  -  -  -  -  -  -  - 49.6 IWB72203 48.11 -59.1 1.08E-05 4.2 5.7 -0.88 Cla/RT

QMd.ubo- 4B.2 97.2 85.7-108.2 IWB67166-IWB25207 4.10E-06 3.9 4.6 0.49 0.64 1.16 Neo, Cla, Col > RT 101.2 IWB66623 92.2 -101.2 3.24E-04 2.8 3.9 -0.78 RT

QMd.ubo- 5B 41.8 30.8 -51.3 IWA3870-IWB45033 1.99E-05 3.0 4.0 0.81 0.97 0.36 Neo, Cla, Col > RT 42.3 IWB37497 39.8 -42.3 3.03E-04 2.8 4.2 -0.76 Col/RT

QMd.ubo- 6A  -  -  -  -  -  -  -  - 63.2 IWA6724 51.7 -65.7 2.65E-04 2.9 3.9 -0.81 Cla/Col/RT

QMd.ubo- 7A.1  -  -  -  -  -  -  -  - 48.7 IWB71609 35.7 -49.7 8.04E-05 3.4 4.6 -0.8 Col/RT

QMd.ubo- 7A.2 63.2 58.7 -67.2 IWA8390-IWB72200 2.9E-09 4.9 7.7 0.32 0.55 -0.87 Neo, Cla, RT > Col 62.7 IWB40574 62.7 -67.2 2.36E-05 3.9 5.3 1.05 Neo/Cla/RT

QMd.ubo- 7B 25.0 0 -48.6 IWA2568-IWA6901 6.84E-04 1.3 2.5 0.27 1.46 0 Cla > Neo, Col, RT  -  -  -  -  -  -  -  -

PH Pos s.i. L Mrk-R Mrk pvalue R2
LODEff_Neo Eff_Cla Eff_Col Funct. Alleles Pos Mrk signif.i. p-value LOD R2

Effect Ref

QPh.ubo- 1B 41.4 31.3 -51.9 IWB66840-IWB8804 6.20E-04 3.3 2.5 2.92 0.94 1.64 Neo, Cla, Col > RT 38.3 IWB58817 34.8 -79.7 3.91E-04 2.7 3.8 -2.24 Cla/Col/RT

QPh.ubo- 2B 97.9 87.8 -127.5 IWB69270-IWB69796 4.6E-08 7.7 6.5 1.05 0.12 -2.91 Neo, Cla, RT > Col 96.8 IWB69109 87.7 -97.9 2.61E-08 6.7 9.0 3.53 Neo/Cla/RT

QPh.ubo- 2B  -  -  -  -  -  -  -  - 127.5 IWB20922 127.5 -151 6.28E-06 4.4 6.0 2.78 Neo/Cla/RT

QPh.ubo- 4A  -  -  -  -  -  -  -  - 120 IWB23377 116.5 -131.5 6.38E-05 3.5 4.7 -2.20 Neo/RT

QPh.ubo- 5B 105.8 95.7 -126.6 IWB3693-IWB71533 9.83E-05 4.1 3.3 0.14 -2.48 0.15 Neo, Col, RT > Cla 105.3 IWB11813 96.7 -113.8 2.56E-05 3.8 5.2 2.68 Neo/Col/RT

QPh.ubo- 6A  -  -  -  -  -  -  -  - 119.7 IWA6537 113.2 -122.7 2.67E-05 3.8 5.3 2.79 Neo/Cla/RT

QPh.ubo- 6B  -  -  -  -  -  -  -  - 51 IWA2451 51-56.5 8.18E-04 2.4 3.5 -2.30 Neo/Cla/RT

QPh.ubo- 7A 67.2 60.7 -76.8 IWB67995-IWB33919 9.7E-08 9.1 6.2 -0.5 0.4 -3.91 Neo, Cla, RT > Col 67.2 IWA7301 59.7 -98.8 1.46E-07 6.0 8.4 3.89 Neo/Cla/RT

QPh.ubo- 7B.1  -  -  -  -  -  -  -  - 14 IWB27108 14 -14 1.37E-04 3.2 4.3 -2.36 Cla/Col/RT

QPh.ubo- 7B.2 138.4 104.8 -180.5 IWB10498-IWA7330 7.87E-04 2.8 2.4 -0.22 3.61 1.32 Cla, Col > Neo, RT 152 IWB69205 138.4 -158 5.24E-04 2.6 3.5 2.24 Cla/Col/RT

GY Pos s.i. L Mrk-R Mrk pvalue R2
LODEff_Neo Eff_Cla Eff_Col Funct. Alleles Pos Mrk signif.i. p-value LOD R2

Effect Ref

QGy.ubo-  2B 103.4 87.8 -127.5 IWB69796IWA5411 6.32E-05 3.9 3.5 -0.14 -0.05 -0.35 Neo, Cla, RT > Col 127.5 IWB62437 97.4 -150 3.08E-05 3.8 5.3 0.23 Neo/RT

QGy.ubo- 7A 110.9 98.8 -123.4 IWB319IWB23989 2.18E-07 7.0 5.8 0.16 -0.11 -0.39 Neo > Cla, RT > Col 60.7 IWB30443 59.7 -87.8 6.81E-07 5.4 7.2 0.32 Neo/Cla/RT

IBD-CIM IBS-SMA
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Fig 10 The position on the NCCR linkage map of the QTL detected for the  

considered traits (threshold for QTL detection: p-value <10-3). For each QTL, 

the peak’s position and the LOD-2 confidence interval are reported. IBS-SMA 

QTL confidence intervals have been calculated by a sliding window applied to 

SMA LOD values (± 4 marker, threshold at LOD equal to 1.44). Trait classes 

have been represented by different QTL bar colors: green, development-

related traits; black, morpho-physiological traits; pink, yield and yield-related 

traits and blue, quality traits. The results of the IBS-SMA QTL analysis 

performed with Tassel for HD, MD, PH and GY are denoted as a t-HD, t-MD, t-

PH and t-GY. Chromosomes and QTL have been drawn with MapChart 2.2 

(Voorips, 2002).  
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Table 11 Single-environment Cad11 QTL detected by IBD-CIM (threshold for QTL detection: p-value < 10-3; LOD-1 confidence interval). 

Trait Chr Pos s.i. p- value R2
LOD L Mrk - R Mrk Eff_Neo Eff_Cla Eff_Col

HD_Cad11 1A 36.1 28.6 -125.2 2.57E-03 0.8 2.0 IWB63226 - IWA2287 1.06 0.35 -0.14

HD_Cad11 2A 46.0 33.4 -49.5 0 32.9 > 15.0 IWB70098 - IWB52303 3.15 -0.41 4.18

HD_Cad11 2B 51.5 39.5 -63.1 0 10.4 > 15.0 IWB4604 - IWA3868 1.8 1.84 -1.22

HD_Cad11 4B 59.1 49.1 -70.1 8.04E-04 2.7 2.4 IWB6994 - IWB2398 0.47 -0.85 0.47

HD_Cad11 7A 65.7 62.2 -67.2 0 9.0 > 15.0 IWB72200 - IWB67995 -0.03 0.2 -3.02

MD_Cad11 1A 40.6 30.6 -70 6.17E-05 2.0 3.5 IWA2287 - IWB51724 1.38 -0.53 0.38

MD_Cad11 1B 133.5 120.6 -176.2 1.43E-02 3.6 1.3 IWB9182 - IWB10582 1.11 0.09 0.84

MD_Cad11 2A 45.0 33.4 -71.5 0 16.7 > 15.0 IWB67517 - IWB70098 1.94 -0.72 3.16

MD_Cad11 2B 51.5 47.5 -63.1 8.27E-13 9.6 11.1 IWB4604 - IWA3868 0.5 1.58 -2

MD_Cad11 3A 76.2 25.3 -114.8 1.53E-03 1.6 2.2 IWB68422 - IWB71668 0.78 1.77 0.67

MD_Cad11 4B 97.7 92.7 -106.2 4.9E-09 4.4 7.4 IWB25207 - IWB71823 0.52 0.74 2.3

MD_Cad11 5B 42.3 8 -64.4 1.75E-03 2.3 2.1 IWB45033 - IWB57461 0.99 0.92 -0.16

MD_Cad11 7A 63.2 58.7 -72.3 4.07E-09 3.0 7.5 IWA8390 - IWB72200 0.62 1.05 -1.3

PH_Cad11 2A 42.5 33.4 -71.5 1.21E-13 7.7 11.9 IWB51686 - IWB70375 3.63 -0.27 3.87

PH_Cad11 2B 97.9 87.8 -127.5 2.16E-08 9.3 6.8 IWB69270 - IWB69796 0.76 0.13 -3.04

PH_Cad11 4A 75.2 58.2 -82.3 0.00000179 4.5 5.0 IWB48435 - IWB68425 -0.7 -1.1 2.96

PH_Cad11 6A 87.2 65.7 -98.2 1.79E-05 2.0 4.0 IWB72745 - IWB9468 -1.25 2.18 -2.17

PH_Cad11 6B 110.7 83.6 -196 7.98E-04 2.7 2.4 IWA634 - IWB47763 -2.67 -0.93 0.31

PH_Cad11 7A 63.2 61.7 -72.3 3.21E-14 10.7 12.5 IWA8390 - IWB72200 0.08 1.68 -3.91

GY_Cad11 2A 42.5 30.9 -51.5 0.000000139 5.7 6.0 IWB51686 - IWB70375 0.48 -0.02 0.37

GY_Cad11 2B 51.5 39.5 -63.1 1.49E-04 4.8 3.1 IWB4604 - IWA3868 0.38 0.45 0.08

GY_Cad11 3A 142.0 129.4 -155.6 3.94E-04 3.8 2.7 IWB20248 - IWB6370 -0.48 -0.24 -0.44

GY_Cad11 7A 63.2 58.7 -72.3 0.000000206 5.3 5.9 IWA8390 - IWB72200 0.26 0.24 -0.31  
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Table 12 Single-environment Cad12 QTL detected by IBD-CIM (threshold for QTL detection: p-value < 10-3; LOD-1 confidence interval). 

Trait Chr Pos s.i. p- value R2
LOD L Mrk - R Mrk Eff_Neo Eff_Cla Eff_Col

HD_Cad12 1B 34.3 7.7 -49.9 1.99E-04 1.5 3.0 IWB39074 - IWB48416 0.4 -0.46 1.01

HD_Cad12 2A 46.0 33.4 -71.5 1.11E-16 9.3 14.9 IWB70098 - IWB52303 1.32 -0.41 2.33

HD_Cad12 2B 51.5 39.5 -63.1 1.39E-12 8.6 10.9 IWB4604 - IWA3868 1.74 1.71 -0.6

HD_Cad12 4B 55.1 43.6 -65.6 1.13E-04 5.2 3.2 IWA4916 - IWB73830 1.12 -0.45 0.52

HD_Cad12 7A 63.2 62.2 -65.7 0.00E+00 20.1 > 15.0 IWA8390 - IWB72200 -0.39 0.51 -3.62

MD_Cad12 2A 83.1 73 -93.1 2.96E-07 7.0 5.7 IWB69369 - IWB32396 0.68 0.27 1.47

MD_Cad12 6A 58.7 36.1 -109.2 7.85E-04 2.8 2.4 IWB66638 - IWB73301 0.64 0.18 0.73

MD_Cad12 7A 63.2 53 -73.8 1.49E-05 5.0 4.1 IWA8390 - IWB72200 0.38 0.53 -0.45

PH_Cad12 1B 46.4 40.3 -60.8 4.36E-04 3.3 2.7 IWB68449 - IWB7028 3.03 0.66 1.36

PH_Cad12 2B 97.9 66.6 -151.5 1.09E-03 3.7 2.3 IWB69270 - IWB69796 1.1 0.16 -1.9

PH_Cad12 5B 155.6 145.1 -170.3 1.83E-05 6.5 4.0 IWB44136 - IWB69060 -6.93 -14 -6.59

PH_Cad12 6A 94.7 85.7 -104.7 1.15E-05 4.5 4.2 IWB65466 - IWB68272 -10.13 -12.96 -9.15

PH_Cad12 7A 67.2 58.7 -83.8 6.22E-05 4.9 3.5 IWB67995 - IWB33919 -0.16 0.23 -3.46

PH_Cad12 7B 152.4 104.8 -155.4 2.51E-05 3.7 3.9 IWB25127 - IWB71692 -1.54 2.28 1.7

GY_Cad12 2A 98.1 88.1 -108.7 0.000428 4.3 2.7 IWB43067 - IWA32 0.62 0.55 0.41  
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Table 13 Single-environment Pr11 QTL detected by IBD-CIM (threshold for QTL detection: p-value < 10-3; LOD-1 confidence interval). 

Trait Chr Pos s.i. p- value R2
LOD L Mrk - R Mrk Eff_Neo Eff_Cla Eff_Col

HD_Pr11 2A 46.01 41.5 -49.5 0.00E+00 30.2 >15.0 IWB70098 - IWB52303 2.7 -0.11 3.9

HD_Pr11 2B 51.54 39.5 -53.5 0.00E+00 10.8 >15.0 IWB4604 - IWA3868 1.65 1.84 -1.12

HD_Pr11 4A 2.5 0 -82.3 6.14E-04 1.8 2.5 IWB74057 - IWB26513 -0.61 -5.3 3.68

HD_Pr11 4B 59.14 49.1 -70.1 1.93E-04 2.9 3.0 IWB6994 - IWB2398 0.58 -0.68 0.63

HD_Pr11 6B 53.54 43 -64 2.52E-04 1.6 2.9 IWB59925 - IWA4078 0.18 0.22 1.19

HD_Pr11 7A 63.24 61.7 -67.2 4.44E-16 4.4 14.3 IWA8390 - IWB72200 0.53 0.83 -1.73

PH_Pr11 2B 96.87 87.8 -127.5 4.98E-07 5.7 5.5 IWB69363 - IWB69109 -0.36 0.16 -4.01

PH_Pr11 4B 28.09 18 -38.6 6.55E-04 2.7 2.5 IWB13072 - IWB63894 -2.54 -3.56 -1.44

PH_Pr11 6B 125.35 110.7 -137.9 3.14E-04 3.9 2.8 IWB71650 - IWA8072 -3.51 -0.31 -0.58

PH_Pr11 7A 67.24 65.7 -73.8 4.16E-05 6.6 3.6 IWB67995 - IWB33919 -0.37 1.09 -3.3

GY_Pr11 2B 22.16 0 -39.5 1.57E-04 4.2 3.1 IWB7031 - IWB36011 0.37 0.04 -0.01

GY_Pr11 2B 103.39 87.8 -127.5 6.49E-05 3.4 3.5 IWB69796 - IWA5411 -0.11 0.16 -0.31

GY_Pr11 7A 172.63 137 -189.2 1.28E-04 4.4 3.2 IWB68677 - IWA2371 0.36 -0.18 -0.18  

 

Table 14 Single-environment Arg12 QTL detected by IBD-CIM (threshold for QTL detection: p-value < 10-3; LOD-1 confidence interval). 

Trait Chr Pos s.i. p- value R2
LOD L Mrk - R Mrk Eff_Neo Eff_Cla Eff_Col

HD_Arg12 2A 46.0 33.4 -71.5 6.38E-13 8.7 11.2 IWB70098 - IWB52303 0.85 -0.76 1.9

HD_Arg12 2B 51.5 39.5 -63.1 8.90E-14 11.6 12.1 IWB4604 - IWA3868 1.05 1.17 -1.99

HD_Arg12 4B 118.2 108.2 -129.7 3.62E-03 1.6 1.8 IWB23828 - IWB3229 0.47 -0.79 0.2

HD_Arg12 7A 63.2 61.7 -72.3 1.00E-12 8.5 11.0 IWA8390 - IWB72200 0.43 0.16 -2.18

MD_Arg12 2A 24.4 8.3 -41.5 1.54E-04 5.2 3.1 IWB12622 - IWB71223 0.6 0.41 1.64

GY_Arg12 2B 57.0 39.5 -84.3 5.76E-05 5.7 3.5 IWB73972 - IWB46810 0.4 0.93 -0.79

GY_Arg12 2A 97.6 73 -108.7 4.97E-04 2.6 2.6 IWB34999 - IWB43067 -0.45 -0.39 -0.33

GY_Arg12 4B 101.2 92.7 -112.2 9.22E-07 6.0 5.2 IWB72802 - IWB73462 0.53 0.03 0.17

GY_Arg12 7A 62.2 49.7 -65.7 1.30E-05 4.9 4.1 IWB8374 - IWB117 0.17 0.03 -0.35  
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Fig 11 QTL results for the subset of trait data (HD, MD, PH and GY) 

which have been analysed both with IBS-SMA  (red QTL bars) and IBD-

CIM (green QTL bars). For each QTL, the peak’s position and the LOD-2 

confidence interval are reported (threshold for QTL detection: p-value 

<10-3). The results of the QTL mapping on single-environment data are 

represented as following: brown, Cad11; blue, Cad12; pink, Pr11 and 

pale green, Arg12. For each QTL, the peak’s position and the LOD-1 

confidence interval are reported (threshold for QTL detection: p-value 

<10-3). Chromosomes and QTL have been drawn with MapChart 2.2 

(Voorips, 2002). 
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7. Identity of functional QTL haplotypes and comparison 
with SNP-based haplotypes at QTL 

For the 17 QTL mapped across environments we verified the identity of functional haplotypes as 

obtained by CIM (i.e. based on estimated QTL effects for the four founders) with molecular 

haplotypes (i.e classification of founders haplotype based on SNP genotypes at QTL confidence 

interval). Despite the NCCR population is based on four founders, none QTL showed four 

functionally different haplotypes, while seven QTL showed three and ten showed two (mean 

number of functional QTL haplotypes per QTL = 2.4, see Table 10). At the same QTL, we 

identified four, three and two molecular haplotypes at 11, 5 and 1 QTL, respectively (mean value 

= 3.6 molecular haplotypes per QTL). Molecular haplotypes outnumbered functional haplotypes 

in all cases except two. At no QTL, the two grouping criteria provided the same results although 

some concordance was observed (e.g. extreme functionally different haplotypes were always 

classified as molecularly different except one case). Fig. 12 shows haplotype grouping at two 

exemplary case QTL, QHd.ubo-2A and QHd.ubo-2B. At QHd.ubo-2A, functional classification 

identified two haplotypes (Neodur = Colosseo, increasing heading date; Claudio = Rascon/Tarro 

decreasing heading date) while four haplotypes were identified based on SNP profiling (Fig. 12). 

In this case, functional and molecular haplotyping are not necessarily in contrast since the four 

molecular haplotypes may include only two functionally different alleles which are not obviously 

evident due to high genetic diversity between the four founders at this QTL. Indeed, shorter 

portion of this QTL confidence interval (as also outlined by the SNP-based QTL analysis - marker 

IWB67307. Fig. 12 indicates the presence of molecular haplotypes fully concordant with 

functional haplotypes. At QHd.ubo-2B (data not shown) functional haplotypes were three 

(Neodur = Claudio as late flowering, Rascon/Tarro as intermediate, and Colosseo as early 

flowering). However, SNP-based haplotypes were only two (Neodur vs Claudio, Colosseo and 

Rascon/Tarro). In this case, Claudio and Colosseo while attributed with the same molecular 

haplotype, showed contrasted functional effects. One possible explanation is that the relevant 

genetic variation (e.g. additional SNPs) linked with the functional gene(s) underlying this QTL 

was missed by our SNP profiling (see discussion). 
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Fig 12 Functional and molecular haplotypes at QHd.ubo-2A.  
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Fig. 13 The pattern of haplotype effects at the proximal QTL cluster on chr 2A. Trait in brown color are 
believed as not involved in the present cluster. The histograms represent the genetic effects estimated in 
terms of the four founders for MD, FTsm, GNS, SNE, GNE, GWT and GPC at the target region. The MD QTL 
was detected by IBS-SIM and therefore only the direction of the allelic effects could be estimated. 
Regarding the QTL for the other examined traits, they were identified by IBD-CIM. This enabled us to 
describe in the histograms the modulation of effects in terms of the four haplotypes (different color tones 
identify different functional haplotypes at each quantitative locus). 
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DISCUSSION 
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Increasing grain yield potential and stability and improving semolina quality are the major goals 

in durum wheat plant breeding (Slafer and Calderini, 2005). However the genetic basis of these 

traits is complex and its dissection remains a formidable task. Multiparental experimental 

crosses are raising as particularly useful resources for QTL mapping, since they allow to address 

a broader genetic variability and offer the chance of evaluating multiple haplotypes within a 

single mapping experiment, potentially providing at the same time higher genetic map 

resolution (Cavanagh et al., 2008).  

In this work we have described the establishment and the initial utilization of the first 

multiparental population in durum wheat, named NCCR, which was obtained by experimental 

crossing four different elite durum wheat cultivars. The final aim of this research was to carry 

out a multi-trait quantitative trait loci analysis regarding yield and yield-relevant traits in the 

context of the cultivated background of durum wheat. The population’s founders were elite lines 

which were chosen not only to represent the cultivated genetic diversity, but also because they 

contributed genetic diversity for important agronomic traits. Neodur is a cultivar characterized 

by a high number of spikelets per ear, Claudio shows stable high test weight and high number of 

fertile tillers and it is also characterized by resistance to powdery mildew, Colosseo presents 

high-yielding ears (in terms of thousands kernel weight) and brown rust resistance, 

Rascon/Tarro is known for the high number of grains per spikelet. The NCCR population has 

therefore the potential to enable detecting QTL and estimating QTL allele/haplotype effect 

directly in a cultivated elite genetic background, providing direct insights about the practical 

potential usefulness of the identified QTL haplotypes in breeding programs. 

In principle, QTL alleles/haplotypes are also intrinsically tested in a more diverse genetic 

background (up to four functional genetic haplotypes at any locus) than usually obtained in bi-

parental crosses, providing a further test to their applicability in breeding.  

NCCR-based genetic map and the NCCR population structure 

NCCR genetic map spanned 2,663 cM and can be considered as significantly longer than the 

reference bread wheat consensus maps based on bi-parental populations (Somers et al., 2004; 

Sourdille et al., 2004; Wang et al., 2014). Genetic maps estimated from multiparental 

populations are likely to show a length expansion when compared to bi-parental maps 

estimated from a similar number of lines, due to additional opportunities for informative 

meiosis (Cavanagh et al., 2008). Overall, the quality of the NCCR map appeared satisfactory as a 

monotonic increase was observed when compared to the 90k-bread wheat map (Wang et al., 

2014) and an extremely high conservation of marker order have been identified. However, as 

previously observed (Huang et al., 2012) we confirm that building a linkage map in a 
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multiparental cross has drawbacks. For instance, the genealogical relationships between the 

four population founders (ie. the presence of IBD chromosome regions between the NCCR 

founders) inherently prevented to perfectly attribute founders haplotype and crossing-over 

positions to each population RIL. In our population, as in other multiparental crosses (Huang et 

al. 2012) this caused an apparently lower-than-expected observed number of recombination 

events. More precisely, simulations conducted on hexaploid bread wheat and based on a 

consensus map of total length 2,500 cM (Huang et al., 2012) highlighted that a mean of 51 and 

77 recombination events per bi-parental RIL population or four-parent RIL should be expected, 

respectively. Such expected values, adjusted for the 14 durum chromosomes, approximate to 34 

and 51.3 genome-wide recombination events. In NCCR, the genome-wide average number of 

recombination events per line was 31.5. Similarly to what was found by Huang in the bread 

wheat multiparental population (Huang et al., 2012), the detected recombination events in the 

NCCR population appeared slightly lower than those expected with a bi-parental RIL. As 

hypothesized by Huang et al. (2012), although the present result seems counterintuitive given 

the increased NCCR map length, it could be due to the computational difficulty in estimating 

recombination events in multi-way experimental populations. Moreover, the gaps present in the 

NCCR map have likely prevented us from detecting all the recombination events present in each 

RIL. As a matter of fact, the ability to detect recombination events in multiparental crosses relies 

on the success in estimating the allele founder probabilities along the genome of single RIL. Such 

estimates are therefore directly and negatively correlated to the percentage of unassigned 

genomic regions (for instance in long chromosome stretches of IBD), and appear heavily 

influenced by map gaps. In NCCR map, the percentage of regions not assigned to any founder 

varied from 9.0% (chr 5A) to 46.1% (chr 3B) per chromosome. On average, for each line, 20.1% 

of the genome could not be assigned at the chosen threshold probability (0.7) to any founder. In 

conclusions, these observations seem to indicate that while multiparental crosses are potentially 

very informative for QTL analysis, an excessively close genealogical relationship between two or 

more parental lines may seriously hinders the process of map construction and QTL mapping 

due to the inherent negative effect of such close genealogy on to the algorithms currently in used 

for linkage map reconstruction and QTL mapping. The inspection of the average percentages of 

founder assignment for each chromosome highlighted  important deviations from the expected 

theoretical 25%. In particular Claudio’s haplotype significantly dropped in frequency on chr 5A 

and 6B. They therefore might indicate a segregation distortion relative to the Claudio haplotype 

which should be further investigated. 
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IBS vs IBD mapping approaches for mapping QTL in NCCR 

For a subset of traits (i.e. HD, MD, PH and GY), a comparative QTL analysis have been conducted 

both with IBD-CIM and IBS-SMA, providing a means for comparing the efficiency of the two 

mapping methods in effectively modelling and describing the haplotype variation at genomic 

loci associated to target traits. Indeed, although an algorithm aimed at reconstructing haplotype 

founder probabilities along the chromosome is essential when constructing a linkage map with 

multiparental populations, not necessarily QTL mapping on MPPs have to rely on IBD 

information.  

The IBS-SMA analysis we have performed with Tassel software relied on independent F-test at 

each bi-allelic marker position and can be considered as an IBS mapping approach considering 

allelic states and regardless of a common-ancestor origin. The main drawback with IBS mapping 

is that plants with identical marker alleles are grouped together at test SNP positions, 

irrespective of a possible incomplete linkage disequilibrium between markers and functional 

QTL alleles (Würschum, 2012). The composite interval mapping which has been performed with 

mpMap software (Huang et al. 2011) on founder haplotype probabilities, relied on IBD estimates 

(as it attempted to trace the parental origin of SNP alleles). Such estimates are computed along 

the chromosomes via a multipoint probability algorithm which does not consider the possible 

existence of IBS stretches among founders due to common descent. The information carried by 

founders is therefore modelled as un-related although such assumption is unrealistic with 

breeding populations, especially if derived from elite materials. Such computation approach 

would lose possible IBS information among founders, although gaining IBD information as it  

likely enables to detect QTL also when two founders with local IBS stretches have different 

effects on the phenotype. At these QTL, a pure IBS-SMA analysis would be misleading as two 

parents may apparently share the same haplotype but not necessarily the same QTL genotypes. 

As an example, we have underlined the case of the QHd.ubo-2B where IBD-CIM analysis enabled 

us to discriminate three haplotypes with contrasted functional effects, while SNP-based 

haplotypes in the target region were only two. The IBD-approach should likely  work better in 

cases where variation at target quantitative loci is multiallelic. As pointed out by Huang et al. 

(Huang et al 2010) referring to the connected multiparental population, such approach could 

also better detect variation at ‘bi-allelic’ quantitative loci determined from clusters of tightly 

linked QTL. It is noteworthy that in this work the two QTL mapping methods generally agreed in 

terms of QTL number, map position, effect and proportion of explained variance (both at the 

single QTL level and as full-model)  As obvious, only the IBD-CIM methods enabled us to identify 

more than two functional haplotypes, if present. 
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Analysis of QTL results 

QTL for grain yield 

QTL analysis for grain yield on the combined data over the four environments identified only 

two QTL QGy.ubo-2B and QGy.ubo-7A, which were supported by both QTL statistical mapping 

methods (IBD-CIM and IBS-SMA). In addition, from one to four yield QTL were identified in each 

single environment. In three cases (at chr 2B for PR11, and at Chr 7A for Cad11 and Arg12) yield 

QTL from single environments overlapped with the two QTL QGy.ubo-2B and QGy.ubo-7A with 

general concordance of direction of allelic effect (in all these cases, the Colosseo QTL allele was 

characterized by a statistically significant negative effect on yield). It is noteworthy that an 

important portion of QTL detected for grain yield was found as environment-specific and with 

relatively minor effect. Accordingly, the full CIM modelling of grain yield in mpMap explained 

only the 12% of the total genetic variation, while the GY QTL detected by Tassel SMA on chr 2B 

and 7A showed an R2 of 5.3 and 7.2%, respectively. The relatively low effect and percentage of 

phenotypic variance for grain yield QTL in NCCR are likely due to the choice of the four founders, 

all belonging to the elite cultivated germplasm and generally adapted (although with important 

differences) to high fertility environments, where the experiments took place. As pointed by 

Maccaferri et al. (2008) QTL for yield and yield-related traits in cereals frequently are found to 

explain at maximum 10% of the total phenotypic variation. This is particularly true when 

evaluating segregating materials obtained from elite accessions (Quarrie et al., 2005; Dilbirligi et 

al., 2006). The incomplete correspondence of GY QTL in the same regions of yield-component 

QTL could have been the result of a fine counterweight balancing among the single components, 

and to a limited statistical power to detect grain yield QTL of small effect. This notwithstanding, 

the analysis of yield-component data resulted very informative and contributed to tag several 

regions carrying QTL alleles of potential importance in durum wheat breeding as discussed 

below. 

QTL for yield components 

An extremely interesting QTL was identified for GNE/GNS (grains or kernels per ear and grains 

per spikelet. QGns.ubo2A - QGne.ubo2A) on chr 2A. Grain per ear has been identified as probably 

the most important grain yield component across cereals (Sakamoto and Matsuoka, 2008; 

Reynolds et al., 2009). The QGns.ubo2A - QGne.ubo2A identified here explained a large portion of 

phenotypic variation (R2 = 39.2 and 24.3% for GNS and GNE, respectively), with a clear 

functional QTL allele increasing the traits value provided by Rascon/Tarro. The same QTL has an 

important impact on GWT (QGwt.ubo-2A,  R2 = 35.7) in this case with the Rascon/Tarro allele 

strongly decreasing the trait value. At this region, GNE appears modulated in terms of three 
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functional haplotypes (Neodur – Colosseo vs Claudio vs Rascon/Tarro) while at the SNE QTL 

only two functional haplotypes were estimated (Neodur – Claudio – Colosseo vs Rascon/Tarro), 

this supporting the presence of an allelic series at this QTL. It is noteworthy that Rascon/Tarro 

was previously known for potentially providing favourable alleles for yield potential (i.e. high 

number of grains per spikelet). The grain yield component GNE, potentially the product of SNE × 

GNS, appears here completely driven by GNS. However, the understanding of the developmental 

and physiological mechanisms (higher number of differentiated florets per spike, higher 

intrinsic floret fertility, etc) behind this QTL requires additional investigations. 

Overlaps between NCCR grain yield QTL and yield QTL reported in literature 

Grain yield is by far the most investigated trait in terms of QTL analysis in wheat. More than 400 

hits were obtained in Web of Science (Thomson Reuters) database after searching using “grain 

yield QTL wheat” as keywords (on March 27, 2014). Approximately 60% of these manuscripts 

reported original QTL experimental data. In addition, one manuscript reported the results of 

QTL meta analysis (Goffinet and Gerber, 2000) for grain yield, ie. an effort aimed at summarizing 

and synthesizing the huge number of published QTL for this important trait. In this meta 

analysis, 59 independently published QTL experiments spanning. the 2000-2010 decade were 

used to collect information on 541 QTL (Zhang et al. 2010). This enabled to identify 55 metaQTL, 

of which 12 metaQTL were considered highly significant. Chr 2 harbored the highest number 

(21%) of QTL. By comparison with the yield QTL map positions identified in this thesis, none of 

the grain yield QTL identified across environments corresponded to any major significant yield 

metaQTL. However, QGy.ubo.2B and QGy.ubo7A overlapped with three minor yield meta QTL 

(MQTL12- MQTL13 and MQTL49. Table 3 in Zhang et al. 2010). For grain yield QTL identified in 

single environments, the 2A QTL identified in Cad12 and Arg12 coincided with MQTL10  (Table 3 

in Zhang et al. 2010) at approx position 90-100 cM. It is noteworthy that the major QTL for grain 

number per spikelet and per ear (QGns.ubo2A - QGne.ubo2A) identified in this thesis also co-

maps at this region. We therefore further checked the single QTL experiments utilized for meta 

analysis at this chr 2AS region in order to verify how often QTL for grain number per ear 

underlined the MQTL10 for grain yield. Indeed, MQTL10 resulted from QTL identified in four 

independent studies (Huang et al 2003; Kumar et al 2007; Li et al. 2007; Wang et al. 2009) and 

in all such studies a QTL for grain number per ear co-mapped with MQTL10, Zhang et al. (2010). 

It appears therefore that our major QGns.ubo2A - QGne.ubo2A QTL on 2AS co-maps with 

several relevant QTL for the same yield component and for yield identified in independent 

genetic backgrounds (all different bread wheat experimental crosses). This suggests that further 

studies (eg. fine mapping and cloning) on the QGns.ubo2A - QGne.ubo2A QTL could be of  general 
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potential interest for wheat genetic improvement. From 2010 to March 2014, approximately 40 

QTL mapping experiments in addition to the ones summarized in Zhang et al (2010) have been 

published. Although it goes beyond the objective of this thesis to formally compare (eg. by 

means of meta analysis) our QTL with all such QTL, the following interesting QTL overlaps were 

observed. Our QGy.ubo.2B yield QTL overlapped with several QTL and QTL clusters for yield and 

phenology, likely due to the segregation of major loci influencing phenology (eg. Ppd) on 2B, as 

already discussed. Of more interest, Bennet et al. (2012) and Wu et al. (2012) reported grain 

yield or grain yield component QTL on chr 7A which overlap with our grain yield QTL 

QGy.ubo7A.  

QTL for phenology-related traits 

Genes controlling phenology are key for wheat breeding as they are among the main factors 

determining cultivar adaptation to a given environment and are highly correlated with grain 

yield. In NCCR, phenology-related traits (HD and MD, combined value across environments) 

showed a relatively low correlation value (r = 0.26) with grain yield, despite the NCCR 

population presented a quite extended range of variation for HD (min value = 132.3 days from 

sowing, max value = 149.0 days from sowing). Slightly higher correlation between HD and yield 

components were observed, in particular regarding SNE (r = 0.46) and GWE (r = 0.40). 

The main QTL affecting both HD and MD on chr 2A, 2B and 7A were likely positioned on the 

well-known PpdA1-2A, PpdB1-2B and Vrn3-7A loci affecting photoperiod sensitivity and 

vernalization requirements. Evidences for this were provided by an analysis of co-location of the 

QTL supporting intervals in the NCCR map and in previously reported QTL and meta-QTL 

attributed to Ppd and FT loci in hexaploid and tetraploid wheat (Griffiths et al., 2009). This was 

carried out based on the unique feature of the iSelect wheat 90k assay of being derived from the 

transcribed portion of the genome.  

The QHd.ubo-2A corresponded to the meta-QTL 1 for HD reported by Griffiths et al. (2009) in chr 

2A. Similarly, in the durum wheat Kofa x Svevo, QHd-2A.2 (Maccaferri et al., 2008) was mapped 

to this position. QHd.ubo-2B corresponded well with Ppd-B1 mapped by Bennett et al. (2012). In 

NCCR, QHd.ubo-7A was mapped to a relative interval compatible to those reported in Bennett et 

al. (2012), in Hanocq et al. (2007), and in Griffitths et al. (2009), with 7A meta-QTL1 located to 

an interval of 9-19 and 7A meta-QTL2 to 33.5-49.03.  

Among the QTL that affected phenology, the only QTL that also showed strong related effects on 

PH was QHd.ubo-7A, for which the direction of the effects on PH were consistent with the 

observed effects on HD (i.e. the earliest founder effect associated to Colosseo was associated to a 
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shortest height of 3.91 cM). Excluding QHd.ubo-7A, QPh.ubo-2B was the strongest QTL for PH per 

se, with R2 = 7.7% across environments and appreciable effects on MD (significant in the IBS-

SMA, R2 of 4.1%) and particularly GY (R2 of 7.0%) across environments. QPh.ubo-2B is therefore 

to be considered a major QTL for plant vigour independent to the regulation of heading. It is 

located ca. 50 cM proximal from the location of Ppd-B1. For this QTL, the plant height effects 

were positively correlated with yield effects. 

QTL for protein content 

Four QTL involved in the expression of GPC have been identified, all of them associated with 

significant QTL for grain yield (chr 2B, chr 7A. In the latter case, the location of the GY peak 

remains approximately defined) or grain yield components (chr 2A, 4B). Generally, an opposed 

pattern in terms of allelic effect is detected for GPC and GY or GY-components (Zanetti et al., 

2001; Blanco et al., 2002, 2006). A negative correlation between productivity and GPC is found 

in most segregating populations likely due to pleiotropic genetic effects and complex 

interdependent development patterns (Blanco et al., 2011). Modern high-yielding cultivars are 

characterized by a relative low grain protein content as practical breeding programs indirectly 

selected for decreasing GPC, while aiming to enhance grain yield. Thus, identifying QTL that 

appear to influence GPC independently from variation in yield components is particularly 

promising from an applied breeding perspective. Our QTL cluster on chr 2A provides an 

interesting case. At this region, the GPC and GWT QTL unexpectedly showed the same direction 

of genetic effect (high GPC corresponded to high GWT). However, the concurrent clustering of 

QTL for yield-components related to ear morphology clarified that both GPC and GWT were 

likely driven by the segregation of the major QTL for GNS/GNE (QGns.ubo-2A/QGne.ubo-2A). 

Thus, at this region, a higher number of kernels per ear was associated with lower GPC and GWT, 

as commonly observed.  

QTL clusters 

Multi-trait QTL analysis enabled us to identify and highlight QTL clusters that showed 

concomitant effect on several agronomical important traits. Based on the IBD-CIM QTL analysis, 

which provides the estimate of allele/haplotype effects for all four founders across the genome, 

we have additionally investigated such clusters for coherence in terms of patterns of 

allelic/haplotype effects. One typical example is provided by heavy influence of phenology (and 

therefore phenology-related QTL) on crop yield in cereals (Reynolds and Tuberosa, 2008). The 

analysis of QTL-clusters should in principle enable us to characterize the adaptive values (in 

terms of effects on yield) of QTL for heading and maturity, and at least in principle provides the 

opportunity to identify QTL for yield or yield components which were relatively independent 
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from phenology. These QTL would be extremely important for breeding purposes (Reynold et 

al., 2009; Pinto et al., 2010).  Main QTL clusters where identified on chr 2A, 2B, 4B and 7A.  

The cluster of QTL on chr 2A distal involved major loci associated to phenology-related traits 

(HD, R2 = 22.0%; MD, R2 = 11.5% with IBD-CIM and HD, R2 = 22.9%; MD, R2 = 10.5% with IBS-

SMA) and QTL for FLER (R2 =3.0%), FLG (R2 =3.8%), NDVI_57 (R2 =6.9%) and GWE (R2 =2.4%).  

The QTL cluster detected on chr 2A proximal (a region associated to MD with IBS-SMA combined 

data analysis and to MD and GY in Cad12, GY in Arg12) appeared as extremely enriched by a 

multi-trait QTL analysis including morpho-physiological, yield-components and quality data. 

Apart from detecting QTL for EGC (R2 = 8.8%), NDVI_31 (R2 =  16.6%), NDVI_40 (R2 = 8.2%), in 

the same cluster we could also map yield-component QTL which appeared as extremely 

appealing. First of all, we noticed a genomic region highly associated with GNS (QGns.ubo-2A,  R2 

= 39.2%),  SNE (QSne.ubo-2A,  R2 = 16.1%), GNE (QGne.ubo-2A,  R2 = 24.3%) and GWT 

(QGwt.ubo-2A,  R2 = 35.7%). A relatively milder association have been described for FTsm (R2 = 

3.9%). Interestingly, such QTL cluster appeared to be driven by the favourable effect of the 

haplotype provided in the four-way cross by Rascon/Tarro, which is a cultivar characterized by 

favourable alleles for yield potential (i.e. high number of grains per spikelet). It is very 

interesting to note that the two single-environment GY QTL detected in the same region (Cad12 

and Arg12) showed contrasting genetic effects in terms of haplotypes. These could perhaps 

contribute to explain the lack in GY QTL which was observed when analysing combined data.  

Regarding the cluster detected on chr 2B proximal, heading date seemed not to influence 

QGY.ubo-2B, which co-mapped with a relative high-effect QTL for plant height.  The peak of 

QGY.ubo-2B resulted 51.9 cM apart from QHd.ubo-2B and a very mild potential MD effect on 

QGY.ubo-2B was detected by IBS-SMA only (in terms of QMd.ubo-2B.2). This QTL cluster showed 

significant effects mainly for PH on three environments (Cad11, Cad12 and Pr11, with R
2
 equal 

to 9.3, 3.7, 5.7%, respectively) and for GY in Pr11 (R
2 = 3.4%). Conversely, the QTL for days to 

maturity detected by IBS-SMA has not been revealed by any single-environment CIM analysis at 

the target threshold.  

On chr 4B we observed two QTL clusters. In the distal one, a QTL for SNE was mapped (R2 = 

9.9%) as unique yield component in a region characterized by HD and MD QTL, as well as by 

early-vigour QTL (EGC, R2 = 4.3% and FLER, R2 =5.6%). The proximal 4B QTL cluster involved 

various yield-related QTL (for FTsm, R2 =6.0%; GNS, R2 = 1.7%; GNE, R2 =3.0%, GWE, R2 = 3.7% 

and GWT, R2 = 3.5%), a GPC QTL (R2 = 5.6%). Analysing data from Arg12, we found a GY QTL (R2 

=6.0%) mapping in the same region. The directions of the genetic effects appeared conserved 

and coherent with respect to a QTL for MD (detected both by IBD-CIM and IBS-SMA with R2 = 
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3.9% with both methods). Therefore, although GNS and SNE seem here to be determined by 

different genetic factors, the variation in GNE could be hypothesized as influenced by the MD 

locus. The confidence intervals of the MD and yield-related QTL were distributed over a large 

chromosome portion and this prevented us from drawing final conclusions about the examined 

cluster.  

On chromosome 7A, QHd.ubo-7A and QMd.ubo-7A appeared to influence both PH and GY, a trend 

confirmed as well in the QTL analysis performed on single environments. The cluster has been 

additionally populated by QTL for yield-components (SNE, R2 = 7.2%; GNE, R2 = 9.2%; GNS, R2 

=4.2%, GWE, R2 =8.6%). At this cluster, the post-hoc test on the allelic effects, indicated that 

three functional alleles are likely to be present (Neodur - Claudio vs Colosseo vs Rascon/Tarro). 

As a greater number of functional haplotypes are segregating, the pattern of variation at this 

region seems less easy to be interpreted than that involved in chr 2A proximal cluster. Anyway, 

SNE trait variation appears to have a major role in the pattern of allelic effects present at this 

cluster, and was likely correlated to the pattern of effects at the HD and MD loci. The most likely 

explanation is that the Colosseo haplotype as an early-haplotype in terms of development-

related QTL, determines a relatively major decrease both in SNE and GNS. At the target region, 

the Colosseo haplotype effect appears more negative the Rascon/Tarro one, while the estimated 

Neodur – Claudio common haplotype apparently increased GNS. 

Possible impact of NCCR analysis on improving yield potential 

In this work, we have had the opportunity to analyse the effect of the segregation of haplotypes 

deriving from parents characterized by very different features in terms of yield potential, 

particularly related to the sink-source balance. Among NCCR founders, Neodur (late genotype) 

was characterized by a high number of spikelet per ear, while Rascon (early genotype) is known 

as a cultivar producing a high number of grains per spikelet. This has enabled us to map QTL for 

ear-morphology traits (the most important detected loci were mapped on chr 2A, 4B, 7A), to 

discriminate the relative contribution of SNE and GNS on GNE, and to describe their 

interconnection in terms of four founder haplotypes. The QTL for GNS detected on chr 2A 

appeared particularly promising as likely driven by a favourable effect of a relatively rare (in 

terms of the sampled founder) haplotype, which was present at a ratio 1 vs 3 (i.e. Rascon/Tarro 

vs Neodur, Claudio and Colosseo). The detected allelic effect for a yield-potential QTL was 

estimated in elite genetic background, thus in a framework close to real breeding practices. In 

order to describe the physiological factors determining GY genetic gains in crops, yield potential 

has been alternatively described in terms of numerical components or harvest index. Since the 

Green revolution, genetic improvement in wheat has been mainly achieved as a consequence of 
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an indirect genetic shift towards greater harvest index (Fischer, 1984) likely caused by an 

increase of grain number per unit area. On the other hand, it has been reported (Loss et al., 

1989; Slafer and Andrade, 1989) that individual grain weight has even been reduced by wheat 

breeding during the past century without final yield being seriously affected (Pfeiffer et al., 

2000). The importance of such trade-off between the two main yield components have led wheat 

scientists to look for alternative ways to increase crop yield potential. In particular, several 

physiological evidences indicate that grain yield in wheat is sink-limited (Miralles et al., 2000; 

Miralles and Slafer 2007; Reynolds et al., 2007) and that a promising path for raising yield 

potential relies in improving the source/sink balance. A larger genetic plasticity both in terms of 

kernel size and number of kernel per ear could likely contribute to efficiently accommodate an 

increased carbon remobilization from source tissues. There is therefore a growing interest in 

better understanding the role of spike morphological traits in determining grain yield genetic 

gains, since a wheat ideotype should present long spikes with high spikelet number per ear and 

high number of grains per spikelet (Gaju et al., 2009). In particular, grain number per ear (which 

in this work has been denoted as GNE) it is a complex trait mainly determined by two individual 

components: spikelet numb per ear (SNE) and Grain number per spikelet (GNS) whose genetic 

control has not yet been well characterized. It has been noticed that these two components 

generally appear negatively correlated and that early genotypes generally produce a lower 

number of spikelet per ear (Pugsley, 1966; Worland and Law, 1986; Sourdille et al., 2000). The 

developmental basis of this phenomenon is unknown. For instance it is not clear the relative 

contribution of floret differentiation and floret abortion to the observed spike fertility in 

different wheat genotypes. Experimental crosses aimed at inducing higher grain sink capacity 

have been performed utilizing genetic sources characterized by multi-ovary florets (Skovmand 

et al., 2000) and branched spikelets (Dencic, 1994). In particular, Dencic (1994) succeeded in 

significantly increasing ear length, number of spikelets per ear, grains per spikelet, and number 

of grains per ear while he highlighted a negative correlation between number of grains per ear 

and individual grain weight. In our case, Rascon/Tarro has been chosen as founder of the 

multiparental population as it is known to be characterized by an high yield potential in terms of 

number of grain per spikelet.  
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CONCLUSIONS 
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In this study we have carried out a multi-trait multi-environment QTL analysis deploying the 

NCCR population, a new multiparental population in durum wheat including 338 RILs. NCCR 

was developed starting from crossing four cultivars, Neodur, Claudio, Colosseo and 

Rascon/Tarro, which represent the cultivated elite germplasm and are characterized by 

different traits of agronomic value. QTL mapping experiments on this population should provide 

insight into the genetic control of yield in elite durum materials. At the same time, effect of 

relevant QTL alleles are discovered and estimated in a context closer to real plant breeding.  

NCCR was characterized in four-environment field trials for 18 traits, including yield, yield-

components, morpho-physiological and quality traits. High-throughput genotyping was obtained 

based on a recently-developed wheat-dedicated 90k SNP chip in which we have specifically 

contributed a “cluster file” algorithm required for correct genotyping of tetraploid  wheats. Such 

durum wheat-tailored algorithm could serve the entire durum wheat community in future 

genotyping experiment involving the same chip. 

The NCCR-based linkage map (2,663 cM) covered all the 14 wheat chromosomes and has been 

quality-checked with a recently released bread wheat consensus map. Although the quality 

appeared highly satisfactory, intervals with relatively low marker density remained. Regions of 

Identity-by-descent (IBD) among the four founders are probably the main cause of the 

occasional difficulties in linkage map construction as well as of the relatively high rate (approx. 

20%) of unassigned genotype along RIL chromosomes. 

 Among the many QTL identified, we have mapped two QTL for grain yield across environments 

and 23 QTL for grain yield components. A novel major QTL for number of grain per spikelet/ear 

was mapped on chr 2A and shown to control up to 39% of phenotypic variance in this cross. 

More generally, our QTL results confirmed the importance of relatively minor and environment-

specific QTL in controlling grain yield in the elite durum wheat germplasm. In addition, the 

analysis of the main QTL cluster offered by the multi-trait QTL analysis confirmed the strong 

influence of phenology-related loci on yield, although QTL for yield and yield components which 

were relatively independent from phenology were also identified. For all detected QTL, it was 

possible to estimate the number of functionally different QTL haplotypes, which was on average 

2.3 per locus, providing an estimate to the residual useful genetic variation still present in the 

durum wheat elite germplasm.  

As a future perspective, the major QTL for number of grain per spikelet/ear identified in this 

study is worth of additional investigation. It should be confirmed (e.g. by verification in diverse 

association panels), further functionally characterized (e.g. by testing its effect on yield after 

isogenization in different genetic backgrounds) and eventually cloned. Results based on this 
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study also indicated that linkage and QTL analysis based on multiparental population can still be 

improved by developing better algorithms improving founders haplotype reconstruction in the 

progeny. On the other hand, our results indicate that the IBD relationships among founders 

should be carefully considered when planning such highly demanding (in terms of time and 

funding) multiparental resources.  

  



 

99 
 

 

REFERENCES 

  



 

100 
 

Akhunov E, Nicolet C, Dvorak J, 2009. Single nucleotide polymorphism genotyping in polyploid 
wheat with the Illumina GoldenGate assay. Theoretical and Applied Genetics, 119: 507-517.  

Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, 
Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Hao H, Huo N, Lazo GR, 
Luo M-C, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert 
LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, and Dvorak J. 2010. Nucleotide 
diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC 
Genomics, 11: 702. 

Araus JL, Slafer GA, Reynolds MP, Royo C, 2002. Plant breeding and drought in C3 cereals: What 
should we breed for? Annals of Botany, 89: 925-940. 

Arumuganathan K, Earle ED, 1991. Nuclear DNA content of some important plant species. Plant 
Molecular Biology Reports, 9: 208-219. 

Austin RB, Bingham J, Blackwell RD, Evans LT, Ford MA, Morgan CL, Taylor M, 1980. Genetic 
improvement in winter wheat yield since 1900 and associated physiological changes. J. Agric. 
Sci. 94:675–689. 

Balding DJ, 2006. A tutorial on statistical methods for population association studies. Nature 
Genetics, 7: 781-791. 

Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C, McCouch S, 
Thomson M, Mauleon R, Singh RK, Gregorio G, Redoña E, Leung H, 2013. Multi-parent advanced 
generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research 
and breeding. Rice, 6: 11. 

 Bao JS, Wu YR, Hu B, Wu P, Cui HR, Shu QY, 2002. QTL for rice grain quality based on a DH 
population derived from parents with similar apparent amylose content. Euphytica, 128: 317-
324. 

Bardol N, Ventelon M, Mangin B, Jasson S, Loywick V, Couton F, Derue C, Blanchard P, Charcosset 
A, Moreau L, 2013. Combined linkage and linkage disequilibrium QTL mapping in multiple 
families of maize (Zea mays L.) line crosses highlights complementarities between models based 
on parental haplotype and single locus polymorphism. Theoretical and Applied Genetics, 126: 
2717-2736. 

Barker GLA, Edwards KJ, 2009. A genome-wide analysis of single nucleotide polymorphism 
diversity in the world’s major cereal crops. Plant Biotechnol J, 7: 318-325.  

Barrett JC, Fry B, Mallerand J, Daly MJ, 2005. Haploview:analysis and visualization of LD and 
haplotype maps. Bioinformatics, 21:263-265. 

Beavis WD, 1994. The power and deceit of QTL mapping experiments: lessons from comparative 
QTL studies. Proceedings of the Annual Corn and Sorghum Industry Research Conference, 49: 
250-265. 

Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T, 2012. Genetic 
dissection of grain yield and physical grain quality in bread wheat (Triticum aestiumL.) under 
water-limited environments. Theoretical and Applied Genetics, 125: 255–271.  

Bentsink L, Hansona J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, El-Lithy M, 
Alonso-Blanco C, de Andrés MT, Reymond M, van Eeuwijk F, Smeekens S, Koornneef M, 2010. 
Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and 
molecular pathways. Proceedings of the Natural Academy of Sciences, 107: 4264-4269.  



 

101 
 

Bernardo R, Moreau L, Charcosset A, 2006. Number and fitness of selected individuals in 
marker-assisted and phenotypic recurrent selection. Crop Science, 46: 1972-1980. 

Bernardo R, 2008. Molecular marker and selection for complex traits in plants: learning from the 
last 20 years. Crop Science, 48: 1649-1664. 

Blanco A, Giorgi B, Perrino R, Simeone R, 1990. Risorse genetiche e miglioramento della qualità 
del frumento duro. Agricoltura Ricerca, 114: 41-58. 

Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R, 2002. Detection of grain protein 
content QTLs across environments in tetraploid wheats. Plant Molecular Biology, 48: 615-623. 

Blanco A, Simeone R, Gadaleta A, 2006. Detection of QTLs for grain protein content in durum 
wheat. Theoretical and Applied Genetics, 112: 1195-1204. 

Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P, 
Mastrangelo A, Cattivelli L, Gadaleta A, 2011. Relationships between grain protein content and 
grain yield components through quantitative trait locus analyses in a recombinant inbred line 
population derived from two elite durum wheat cultivars. Molecular Breeding, 30: 79-92. 

Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I, 2008. FT genome A 
and D polymorphisms are associated with the variation of earliness components in hexaploid 
wheat. Theoretical and Applied Genetics, 116: 383-394. 

Borras L, Slafer GA, Otegui ME, 2004. Seed dry weight response to source-sink manipulations in 
wheat, maize and soybean: a quantitative reappraisal. Field CropsResearch 86: 131-146. 

Bozzini A, 1988. Origin, distribution, and production of durum wheat in the world. In: Fabriani C, 
Lintas C (Eds.), Durum Wheat: Chemistry and Technology. Saint Paul. Minesota. USA. 

Bradbury P, Parker T, Hamblin MT, Jannink JL, 2011. Assessment of power and false discovery 
rate in genome-wide association studies using the Barley CAP germplasm. Crop Science, 51: 52–
59. 

Bradshaw HD, 1996. Molecular genetics of populus. In: Stettler RF, Bradshaw HD, Heilman PE, 
Hinckley TM (Eds.), Biology of populus and its implications for management and conservation, 
Part 1. Ottawa, NRC Research Press, 183-199. 

Breseghello F, Sorrels ME, 2006. Association analysis as a strategy for improvement of 
quantitative traits in plants. Crop Science, 46: 1323-1330. 

Broman KW, 2001. Review of statistical methods for QTL mapping in experimental crosses. 
Laboratory Animals, 30: 44-52. 

Broman KW, Wu H, Sen S, Churchill GA, 2003. R/qtl: QTL mapping in experimental crosses. 
Bioinformatics, 19: 889-890. 

Broman KW, 2005. The genomes of recombinant inbred lines. Genetics, 169: 1133-1146. 

Broman KW, Sen S, 2009. A guide to QTL mapping with R/qtl. Springer, New York. 

Brookes AJ, 1999. The essence of SNPs. Gene 234: 177-186. 

Brooking IR, 1996. Temperature response of vernalization in wheat: a developmental analysis. 
Annals of Botany, 78: 507-512. 



 

102 
 

Browning BL, 2008. PRESTO: Rapid calculation of order statistic distributions and multiple-
testing adjusted P-values via permutation for one and two-stage genetic association studies. 
BMC Bioinformatics, 9: 309. 

Browning BR, Browning BL, 2011. Haplotype phasing: existing methods and new developments. 
Nat. Rev. Genet., 12: 703–714. 

Buckler ES, Thornsberry JM, 2002. Plant molecular diversity and applications to genomics. 
Current Opinions in Plant Biology, 5: 107-111. 

Butler DG, Cullis BR, Gilmour AR, Gogel BJ, 2007. Analysis of mixed models for S language 
environments, ASReml-R reference manual Release 2. QLD Department of Primary Industries 
and Fisheries, Brisbane, QLD. Training and Development Series, No QE02001. 

Calderini DF, Dreccer MF, Slafer GA, 1995. Genetic improvement in wheat yield and associated 
traits. A re-examination of previous results and the latest trends. Plant Breeding, 114: 108–112. 

Calus MPL, Veerkamp RF, 2007. Accuracy of breeding values when using and ignoring the 
polygenic effects in genomic breeding value estimation with a marker density of one SNP per cM. 
J. Anim. Breed. Genet., 124: 362-368. 

Cavanagh C, Morell M, Mackay I and Powell W, 2008. From mutations to MAGIC: resources for 
gene discovery, validation and delivery in crop plants. Curr. Opin. Plant Biol., 11: 215-21.  

Cavanagh C, Chao S, Wang S, Huang BE, Stephen S,  Kiani S, Forrest K, Saintenac C, Brown-
Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, 
Lopez da Silva M, Bockelman, Luther Talbert, James A. Anderson, Susanne Dreisigacker, Stephen 
Baenziger H, Carter A, Korzun V, Laurent Morrell P, Dubcovsky J, Morell MK, Sorrells ME, Hayden 
MJ,  Akhunov E, 2013. Genome-wide comparative diversity uncovers multiple targets of 
selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci., 110: 
8057–8062. 
 
Chakravarti A, Lasher LK, and Reefer JE, 1991. A maximum likelihood method for estimating 
genome length using genetic linkage data. Genetics, 128:175–182. 

Cheverud JM, 2001. A simple correction for multiple comparisons in interval mapping genome 
scans. Heredity, 87: 52–58. 

Chouard P, 1960. Vernalization and its relations to dormancy. Annual Review of Plant 
Physiology, 11: 191-238. 

Churchill GA, Doerge RW, 1994. Empirical threshold values for quantitative trait mapping. 
Genetics, 138: 963-971. 

Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, 
Berrettini W, et al., 2004. The Collaborative Cross, a community resource for the genetic analysis 
of complex traits. Nat Genet, 36: 1133–1137. 

Clark AG, 1990. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. 
Biol. Evol., 7: 111-122. 

Cochran WG, Cox GM, 1960. Experimental designs. John Wiley and Sons, New York, USA. 

Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R, 2011. 
Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and 
Applied Genetics 122:523–531. 
 



 

103 
 

Condon AG, Richards RA, Rebetzke GJ, Farquhar GD, 2004. Breeding for high water-use 
efficiency. Journal of Experimental Botany, 55: 2447-2460. 

Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño JL, Araus, D, Makumbi, R.P. Singh, 
Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ, 2010. Prediction of genetic values of 
quantitative traits in plant breeding using pedigree and molecular markers, 186: 713-724. 
 
Daetwyler H. D, Pong-Wong R, Villanueva B, Woolliams JA, 2010. The impact of genetic 
architecture on genome-wide evaluation methods. 185: 1021–1031.  

Daly MJ, Rioux, J, Schaffner, S, and Hudson T, 2001.  High resolution haplotype structure in the 
human genome. Nat.Genet., 29: 229–232. 

Darvasi A, Soller M, 1997. A simple method to calculate resolving power and confidence interval 
of QTL map location. Behavior Genetics, 27: 125-132. 

Dencic S, 1994. Designing a wheat ideotype with increased sink capacity. Plant Breeding, 112: 
311-317. 

Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baezingeret PS,  Dweikat I, Gill KS, 2006. 
High-density mapping and comparative analysis of agronomically important traits on wheat 
chromosome 3A. Genomics, 88: 74-87. 

Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J, 2009. Genetic and molecular characterization 
of the VRN2 loci in tetraploid wheat. Plant Physiology, 149: 245-257. 

Doerge RW, Zeng Z, Weir BS, 1997. Statistical issues in the search for genes affecting quantitative 
traits in experimental populations. Statistical Science, 12: 195-219. 

Doerge RW, 2002. Multifactorial genetics: Mapping and analysis of quantitative trait loci in 
experimental populations. Nature Review Genetics, 3: 43-52. 

Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L, 2006. Effect of photoperiod on the 
regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469-480. 

Dubcovsky J, Dvorak J, 2007. Genome plasticity a key factor in the success of polyploid wheat 
under domestication. Science, 316: 1862-1866. 

Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC, 2006. Molecular characterization of a 
diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from 
wild tetraploid wheat to hexa-ploid wheat. Mol Biol Evol, 23: 1386-1396. 

East EM, 1916. Studies on size inheritance in nicotiana. Genetics, 2: 164-176. 

Edwards D, Batley J, Cogan NOI, Forster JW, Chagné D, 2007. In: Oraguzie NC, et al.(Eds.), Single 
Nucleotide Polymorphism discovery,  Association mapping in plants. Springer, New York, 53-76. 

Efron B, 1979. Bootstrap methods: another look at the jack-knife. Annals of Statistics, 7: 1-26. 

Evans LT, Wardlaw IF, Fischer RA, 1975. Wheat. In: Evans LT (Ed.), Crop Physiology. Cambridge, 
UK, Cambridge University Press, 101-149. 

Evenson RE, Gollin D, 2003. Assessing the Impact of the Green Revolution, 1960 to 2000. Science, 
300: 758-762. 

Ewing B, Hillier L,Wendl MC, Green P, 1998b. Base-calling of automated sequencer traces using 
phred. I. Accuracy assessment. Genome Res., 8: 175-185.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Dweikat%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16624516
http://www.ncbi.nlm.nih.gov/pubmed?term=Gill%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=16624516


 

104 
 

Ewing B, Green P, 1998a. Base-calling of automated sequencer traces using phred. II. Error 
probabilities. Genome Res., 8: 186-194.   

Excoffier L, Slatkin M, 1995. Maximum-likelihood estimation of molecular haplotype frequencies 
in a diploid population. Mol. Biol. Evol., 12: 921-927. 

Falconer DS, Mackay TFC, 1996. Introduction to quantitative genetics. 4th ed. Harlow, UK, 
Longman Group. 

Fallin D, Schork N, 2000. Accuracy of haplotype frequency estimation for biallelic loci, via the 
expectation-maximization algorithm for unphased diploid genotype data. Am. J. Hum. Genet., 67: 
947-959. 

Filella I, Serrano L, Serra J, Peñuelas J, 1995. Evaluating wheat nitrogen status with canopy 
reflectance indices and discriminant analysis. Crop Science, 35: 1400-1405. 

Fischer RA, 1984. In: Smith, WH, Banta SJ (Eds.), Wheat, Symposium on Potential Productivity of 
Field Crops Under Different Environments. IRRI: Los Baños, 129-153. 

Fischer RA, 2009. Number of kernels in wheat crops and the influence of solar radiation and 
temperature. The Journal of Agricultural Science, 105: 447. 

Flavell RB, Rimpau J, Smith DB, 1977. Repeated sequence DNA relationships in 4 cereal genomes. 
Chromosoma, 63: 205–222. 

Flint J, Valdar W, Shifman S, Mott R, 2005. Strategies for mapping and cloning quantitative trait 
genes in rodents. Nature Reviews Genetics, 6: 271-286.  

Flint-Garcia SA, Thornsberry JM, Buckler ES, 2003. Structure of linkage disequilibrium in plants. 
Annual Review of Plant Biology 54: 357-374. 

Flood RG, Halloran GM, 1986. Genetics and physiology of vernalization response in wheat. 
Advances in Agronomy, 39: 87-124. 

Foulkes MJ, Sylvester-Bradley R, Worland AJ, Snape JW, 2004. Effects of a photoperiod-response 
gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica, 135: 63-
73. 

Frederick JR, Bauer PJ, 1999. Physiological and numerical components of wheat yield. Wheat 
Ecology and Physiology of Yield Determination, 45-65. 

Gabriel SB, et al., 2002. The structure of haplotype blocks in the human genome. Science, 296: 
2225–2229. 

Gaju O, Reynolds MP, Sparkes DL, Foulkes MJ, 2009. Relationships between large-spike 
phenotype, grain number and yield potential inspring wheat. Crop Science, 49: 961-973. 

Ganal MW, Roder MS, 2007. Microsatellite and SNP markers in wheat breeding, Vol. 2. In: 
Varshney RK, Tuberosa R, (Eds.), Genomic assisted crop improvement: genomics applications in 
crops. The Netherlands: Springer, 1-24. 

Ganal MW, Altmann T, Roder MS, 2009. SNP identification in crop plants. Current Opinion in 
Plant Biology, 12: 211–217. 

Gao X, Becker LC, Becker DM, Starmer JD, Province MA, 2010. Avoiding the high Bonferroni 
penalty in genome-wide association studies. Genetic Epidemiology, 34: 100–105. 



 

105 
 

Geldermann H, 1975. Investigations on inheritance of quantitative characters in animals by gene 
markers. I. Methods. Theoretical and Applied Genetics, 46: 319-330. 

Girma K, Martin KL, Anderson RH, Arnall DB, Brixey KD, Casillas MA, Chung B, Dobey BC, 
Kamenidou SK, Kariuki SK, Katsalirou EE, Morris JC, Moss JQ, Rohla CT, Sudbury BJ, Tubana BS, 
Raun R, 2006. Mid-season prediction of wheat-grain yield potential using plant, soil, and sensor 
measurements. Journal of Plant Nutrition, 29: 873-897. 

Goffinet B, Gerber S, 2000. Quantitative trait loci: a meta-analysis. Genetics, 155: 463-473. 

Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, 
Herry L, Faure S, Laurie D, Bilham L, Snape J, 2009. Meta-QTL analysis of the genetic control of 
ear emergence in elite European winter wheat germplasm. Theoretical and Applied Genetics, 
119: 383–395. 

Groos C, Robert N, Bervas E, Charmet G, 2003. Genetic analysis of grain protein content, grain 
yield and thousand-kernel weight in bread wheat. Theoretical and Applied Genetics, 106: 1032-
1040. 

Gupta PK, Rustgi S, Kulwal PL, 2005. Linkage disequilibrium and association studies in higher 
plants: present status and future prospects. Plant Molecular Biology, 57: 461-485. 

Gusfield D, 2001. Inference of haplotypes from samples of diploid populations: Complexity and 
algorithms. J. Comp. Biol., 8: 305-323. 

Habier D, Fernando RL, Kizilkaya K, Garrick DJ, 2011. Extension of the Bayesian alphabet for 
genomic selection. 12: 186.  

Haley CS, Knott SA, 1992. A simple regression method for mapping quantitative trait loci in line 
crosses using flanking markers. Heredity, 69: 315-324. 

Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J, 2007. Most significant genome regions 
involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. 
Theoretical and Applied Genetics, 114: 569-584. 

Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C,Hochu I, Poirier S, Santoni S, Glémin S, 
David J, 2007. Grinding up wheat: a massive loss of nucleotide diversity since domestication. 
Mol. Biol. Evol., 24: 1506-1517. 

Hay RKM, Walker AJ, 1989. An introduction to the physiology of crop yield. Longman Scientific & 
Technical - Science. 

Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, 2009. Invited review: Genomic selection in 
dairy cattle: progress and challengess. J. Dairy Sci., 92: 433-443. 

Heffner EL, Sorrells ME, Jannink JL, 2009. Genomic Selection for Crop Improvement. Crop 
Science, 49: 1-12. 

Higgins JA, Bailey PC, Laurie DA, 2010. Comparative genomics of flowering time pathways using 
Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5: e10065.  

Holland JB, 2007. Genetic architecture of complex traits in plants. Current Opinion in Plant 
Biology, 10: 156-161. 

Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A, 1997. More on the efficiency of 
marker-assisted selection. Theoretical and Applied Genetics, 95: 1181-1189. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Fish%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Sayers%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Alibert%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Orford%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Wingen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Herry%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Faure%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Laurie%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Bilham%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19430758
http://www.ncbi.nlm.nih.gov/pubmed?term=Snape%20J%5BAuthor%5D&cauthor=true&cauthor_uid=19430758


 

106 
 

Hospital F, Goldringer I, Openshaw S, 2000. Efficient marker-based recurrent selection for 
multiple quantitative trait loci. Genetics Research, 75: 357–368. 

Huang BE, George AW, 2011. R/mpMap: a computational platform for the genetic analysis of 
multiparent recombinant inbred lines. Bioinformatics, 27: 727–729. 

Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell M, Cavanagh C, 2012. A 
Multiparent Advanced Generation Inter-Cross population for genetic analysis in wheat. Plant 
Biotechnology Journal, 10: 826-839.  

Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, Eeuwijk FV, 2011. Analysis of 
natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. 
Proceedings of the National Academy of Science, 108: 4488-4493. 

Hudson RR, 1990. Gene genealogies and the coalescent process. Oxf. Surv. Evol. Biol., 7: 1-44.  

Isidro J, Alvaro F, Royo C, Miralles DJ, Garrido LF, 2011. Changes in apical development of durum 
wheat caused by breeding during the 20th century: analysis by phases and its implications for 
yield formation. Annals of Botany, 107: 1355-1366. 

Jannink JL, Bink M, Jansen RC, 2001. Using complex plant pedigrees to map valuable genes. 
Trends in Plant Science, 6: 337-342. 

Jannink JL and Jansen RC, 2001. Mapping epistatic quantitative trait loci with one-dimensional 
genome searches. Genetics, 157: 445-454. 

Jannink JL and Walsh B, 2002. Association mapping in plant populations. In: Quantitative 

Genetics, Genomics and Plant Breeding, edited by M. S. Kang. CAB International, New York, 59–

68. 

Jansen RC, 1993. Interval mapping of multiple quantitative trait loci. Genetics, 135: 205-211. 

Jansen RC, Stam P, 1994. High resolution of quantitative traits into multiple loci via interval 
mapping. Genetics, 136: 1447-1455. 

Jansen RC, Jannink JL, Beavis WD, 2003. Mapping quantitative trait loci in plant breeding 
populations: Use of parental haplotype sharing. Crop Sci, 43: 829-834. 

Jeffreys AJ, Kauppi L, Neumann R, 2001. Intensely punctate meiotic recombination in the class II 
region of the major histocompatibility complex. Nat. Genet., 29: 217-222. 

Kao C, Zeng Z, Teasdale RD, 1999. Multiple interval mapping for quantitative trait loci. Genetics, 
152: 1203-1216. 

Kato K, Yamagata H, 1988. Method of evaluation of chilling requirement and narrow-sense 
earliness of wheat cultivars. Japanese Journal of Breeding, 38: 172-186. 

Kato K, Yokoyama H, 1992. Geographical variation in heading characters among wheat 
landraces, Triticum aestivum L., and its implication for their adaptability. Theoretical and 
Applied Genetics, 84: 259-265. 

Kearsey MJ, Farquhar AGL, 1998. QTL analysis; where are we now? Heredity, 80: 137-142. 

Kihara H, 1919. Uber cytologische Studien bei einigen Getreidearten. Mit. 1. Spezies- Bastarde 
des Weizens und Weizenmggen-Bastarde. Tokyo Botanical Magazine, 33: 17-38. 



 

107 
 

Kihara H, 1924. Cytologische und genetische Studiell bei wichtigen Getreidearten mit 
besonderer Riicksicht auf das Verhaltell der Chromosomen und die Sterilitat in den Bastarden. 
Memoirs of the College of Science, Kyoto Imp. Univ., Series B, 1: 1-200. 

Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R, 
2009. A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in 
Arabidopsis thaliana. PLoS Genetics 5: e1000551. 

Kruglyak L, 1999. Prospects for whole genome linkage disequilibrium mapping of common 
disease genes. Nature Genetics, 22: 139-144. 

Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP, 2007. Genetic dissection of grain 
yield in bread wheat. I. QTL analysis. Theoretical and Applied Genetics, 115: 1029–1041. 

Kumar N, Kulwal PL, Balyan HS, Gupta PK, 2007. QTL mapping for yield and yield contributing 
traits in two mapping populations of bread wheat. Molecular Breeding, 19: 163–177. 

Kumar S, Sharma V, Chaudhary S, Tyagi A, Mishra P, Priyadarshini A, Singh A, 2012a. Genetics of 
flowering time in bread wheat Triticum aestivum: complementary interaction between 
vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering 
habit to spring wheat. J Genet., 91: 33-47. 

Kumar S, Banks TW, Cloutier S, 2012b. SNP discovery through next-generation sequencing and 
its applications. Int. J. Plant Genomics BMC Genomics, 13: 684. 

Lander ES, Green P, 1987. Construction of multilocus genetic linkage maps in humans. 
Proceedings of National Academy of Science, 84: 2363-2367. 

Lander ES, Botstein D, 1989. Mapping Mendelian factors underlying quantitative traits using 
RFLP linkage maps. Genetics, 121: 185-199. 

Landserg JJ, 1977. Effects of weather on plant development. In: Landserg J, Cutting CV, (Eds), 
Environmental Effect on Crop Physiology. Accademic Press, London, 289-307. 

Lange K, Boehnke M, 1982. How many polymorphic genes will it take to span the human 
genome? Am. J. Hum. Genet., 34: 842–845. 

Law CN, Worland AJ, 1997. Genetic analysis of some flowering time adaptive traits in wheat. 
New Phytologist, 137: 19-28. 

Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S et al., 2012 Genome-wide association analysis to 
identify chromosomal regions determining components of earliness in wheat. Theor. Appl. 
Genet., 124: 597-611. 

Lee M, Sharopova N, Beavis WD, Grant D, Katt M, 2002. Expanding the genetic map of maize with 
the intermated B73 × Mo17 (IBM) population. Plant Molecular Biology, 48: 453-461. 

Leroux D, Rahmani A, Jasson S, Ventelon M, Louis F, Moreau L, Mangin B Clusthaplo, 2014. A plug 
in for MCQTL to enhance QTL detection using ancestral alleles in multi cross design. Theor Appl 
Genet, 127: 921-933. 

Long JC, Williams RC, Urbanek M, 1995. An E-M algorithm and testing strategy for multiple-locus 
haplotypes. Am. J. Hum. Genet., 56: 799-810. 

Long N., Gianola D., Rose G. J. M., Weigel K. A., Avendano S., 2007.   Machine learning 
classification procedure for selection SNPs in genomic selection: application to early mortality in 
broilers. J. Anim. Breed. Genet. 124: 377–389.  



 

108 
 

Longmate JA, 2001. Complexity and power in case-control association studies. Am J Hum Genet., 
68: 1229–1237. 

Lorenz AJ, Hamblin MT, Jannink JL, 2010. Performance of single nucleotide polymorphisms 
versus haplotypes for genome-wide association analysis in barley. PLoS ONE. 

Lorenzana RE, Bernardo R, 2009. Accuracy of genetic value predictions for marker-based 
selection in biparental plant populations. Theoretical and Applied Genetics, 120: 151-161. 

Loss SP, Siddique KHM, 1994. Morphological and physiological traits associated with wheat yield 

increases in Mediterranean environments. Advances in Agronomy, 52: 229-276. 

Lübberstedt T, 2013. Diagnostics in Plant Breeding. In: Lübberstedt T and Varshney K (Eds.), 

Diagnostics in Plant Breeding. Dordrecht: Springer, New York, 3-10. 

Lynch M, Walsh B, 1998. Genetic and analysis of quantitative traits. In: Sunderland MA (Ed.), 

Sinauer Associates. 

Maccaferri M, Sanguineti MC, Noli E, Tuberosa  R, 2005. Population structure and long-range 
linkage disequilibrium in a durum wheat elite collection. Molecular Breeding, 15: 271-290. 

Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral 
LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, 
Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R, 2008. Quantitative trait loci for grain yield 
and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. 
Genetics, 178: 489-511. 

Mackay I, Powell W, 2007. Methods for linkage disequilibrium mapping in crops. Trends Plant 
Sci, 12: 57-63. 

Mackay TFC, Stone EA, Ayroles JF, 2009. The genetics of quantitative traits: challenges and 
prospects. Nature Reviews Genetics, 10: 565-577. 

Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S, 2012. SNP Markers and Their Impact on 
Plant Breeding. International Journal of Plant Genomics. 

Mammen E, 1993. Bootstrap and wild bootstrap for high dimensional linear models. Annals of 
Statistics, 21: 255-285. 

Manly KF, Olson JM, 1999. Overview of QTL mapping software and introduction to Map Manager 
QT. Mammalian Genome, 10: 327-334. 

Martinez O, Curnow RN, 1992. Estimating the locations and the sizes of the effects of 
quantitative trait loci using flanking markers. Theoretical and Applied Genetics, 85: 480-488. 

McCarthy MI, Abecasis GR, Cardon LR, 2008. Genome-wide association studies for complex 
traits: consensus, uncertainty and challenges. Nature Reviews Genetics, 9: 356-369. 

McFadden ES, Sears ER, 1946. The origin of Triticum spelta and its free-threshing hexaploid 
relatives. Journal of. Heredity, 37: 81-107. 

McIntyre CL, Mathews KL, Rattey A, Drenth J, Ghaderi M, Reynolds M, Chapman SC, Shorter R, 
2010. Molecular detection of genomic regions associated with grain yield and yield components 
in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl 
Genet, 120: 527–541. 



 

109 
 

Metzker ML, 2010. Sequencing technologies—The next generation. Nature Reviews Genetics, 11: 
31-46. 

Meuwissen THE, Hayes BJ, Goddard ME, 2001. Prediction of total genetic value using genome-
wide dense marker maps. Genetics, 157: 1819–1829.  

Meuwissen THE and Goddard ME, 2001. Prediction of identity by descent probabilities from 
marker haplotypes. Genet. Sel. Evol., 33: 605–634. 

Miralles DJ, Slafer GA, 1999. Wheat development. In: Satorre EH, Slafer GA (Eds.), Wheat: 
Ecology and Physiology of Yield Determination. Food Production Press. 

Miralles DJ, Richards RA, 2000. Response of leaf and tiller emergence and primordium initiation 
in wheat and barley to interchanged photoperiod. Annals Bot., 85: 655–663. 

Miralles DJ, Slafer GA, 2007. Sink limitations to yield in wheat: how could it be reduced? Journal 
of Agricultural Science145: 1-11. 

Monneveux P, Zaharieva M, Rekika D, 2000. The utilisation of Triticum and Aegilops species for 
the improvement of durum wheat. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (Eds.), Durum 
Wheat Improvement in the Mediterranean Region: New Challenges. CIHEAM, Centre Udl-IRTA, 
ICARDA, CIMMYT, Zaragoza. Options Méditerranéennes, Series A, 40: 71-83. 

Morgante M, Salamini F, 2003. From plant genomics to breeding practice. Current Opinions in 
Biotechnology, 14: 214-219. 

Morris RW, Kaplan NL, 2002. On the advantage of haplotype analysis in the presence of multiple 
disease susceptibility alleles. Genet Epidemiol., 23: 221-233. 

Mott R, Flint J, 2002. Simultaneous detection and fine mapping of quantitative trait loci in mice 
using heterogeneous stocks. Genetics, 160: 1609–1618. 

Nei M, 1972. Genetic distance between populations. Am. Nat., 106: 283-292. 

Nillson-Ehle H, 1909. Kreuzunguntersuchungen an Hafer und Weizen. Acta Universitatis 
Lundensis, 2: 1-122. 

Niu T, Qin Z, Xu X, Liu JS, 2002. Bayesian haplotype inference for multiple linked single-
nucleotide polymorphisms. Am. J. Hum. Genet., 70: 157-159. 

Nordborg M, Tavaré S, 2002. Linkage disequilibrium: What history has to tell us. Trends in 
Genetics, 18: 83-90. 

Nyholt DR, 2004. A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms 
in Linkage Disequilibrium with Each Other. American journal of human genetics, 74: 765–769. 

Ozkan H, Levy AA, Feldman M, 2001. Allopolyploidy-induced rapid genome evolution in the 
wheat (Aegilops–Triticum) group. Plant Cell, 13: 1735-1747. 

Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks 
C, McDonough DP, et al., 2001. Blocks of limited haplotype diversity revealed by high-resolution 
scanning of human chromosome 21. Science, 294: 1719-1723. 

Patterson HD, Williams ER, 1976. A new class of resolvable incomplete block designs. 
Biometrika 63: 83-92. 



 

110 
 

Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, et al., 2004. Methods for high-
density admixture mapping of disease genes. Am. J. Hum. Genet. 74: 979-1000. 

Peleman JD, Rouppe van der Voort J. 2003. Breeding by design. Trends Plant Sci. 8:330–334. 

Peña RJ, 2002. Wheat for bread and other foods. In: Curtis BC, Rajaram S, Macpherson HG (Eds.), 
Bread Wheat: Improvement and Production. FAO, Rome. 

Pfeiffer WH, Sayre KD, Reynolds MP, 2000. Enhancing genetic grain yield potential and yield 
stability in durum wheat. Options Méditerranéennes 40: 83–93. In: C. Royo et al. (Eds.), Durum 
wheat improvement in the Mediterranean region: New challenges. 

Piepho HP, Gauch HG, 2001. Marker pair selection for mapping quantitative trait loci. Genetics, 
157: 433-444. 

Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares–Villegas JJ, Chapman SC, 2010. Heat 
and drought adaptive QTL in a wheat population designed to minimize confounding agronomic 
effects. Theoretical and Applied Genetics, 121: 1001-1021. 

Pritchard JK, Stephens M, Donnelly P, 2000a. Inference of population structure using multilocus 
genotype data. Genetics, 155: 945-959. 

Pritchard JK, 2001. Are rare variants responsible for susceptibility to complex disease? Am J 
Hum Genet, 69: 124-137. 

Pugsley AT, 1966. The photoperiodic sensitivity of some spring wheats with special reference to 
the variety Thatcher. Aust J Agric Res 17: 591–599. 

Pumphrey MO, Bernardo R, Anderson JA, 2007. Validating the Fhb1 QTL for Fusarium head 
blight resistance in near-isogenic wheat lines developed from breeding populations. Crop 
Science, 47: 200-206. 

Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, 
Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva 
A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, 
Aragués R, Royo A, Dodig D, 2005. A high-density genetic map of hexaploid wheat (Triticum 
aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield 
across a range of environments. Theoretical and Applied Genetics, 110: 865–880. 

Rafalski A, 2002a. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin 
Plant Biol, 5: 94-100.  

Rafalski JA, 2002b. Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant 
Science, 162: 329–333. 

Rafalski JA, 2010. Association genetics in crop improvement. Current Opinion in Plant Biology 
13: 174-180. 

Rakshit S, Rakshit A, Patil JV, 2012. Multiparent intercross populations in analysis of quantitative 
traits. Journal of Genetics, 91: 111-117. 

Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub 
B, Brunel D, et al., 2006. Single-nucleotide polymorphisms (SNPs) frequency in a set of selected 
lines of bread wheat (Triticum aestivum L.). Genome, 49: 1131-1139. 

Rebai A, Goffinet B, Mangin B, 1995. Comparing powers of different methods for QTL detection. 
Biometrics, 51: 87-99. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Chinoy%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Steele%20N%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Pljevljakusi%C4%87%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Waterman%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Weyen%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Schondelmaier%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Habash%20DZ%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Farmer%20P%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Saker%20L%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Clarkson%20DT%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Abugalieva%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Abugalieva%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Yessimbekova%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Turuspekov%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Abugalieva%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Tuberosa%20R%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Sanguineti%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Hollington%20PA%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Aragu%C3%A9s%20R%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Royo%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15719212
http://www.ncbi.nlm.nih.gov/pubmed?term=Dodig%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15719212


 

111 
 

Rebai A, Goffinet B, 2000. More about quantitative trait locus mapping with diallel designs. 
Genome Research, 75: 243-247. 

Rebetzke GJ, Condon AG, Rattey AR, Farquhar GD, Richards RA, 2012. Genomic regions for 
canopy temperature and their genetic association with stomatal conductance and grain yield in 
bread wheat (Triticum aestivum L.). Functional Plant Biology, 40: 14-33. 

Remington DL, Whetten RW, Liu B, O'Malley DM, 1999. Construction of an AFLP genetic map 
with nearly complete genome coverage in Pinus taeda. Theor Appl Genet, 98: 1279-1292. 

Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, 2001. Structure of linkage 
disequilibrium and phenotypic associations in the maize genome. Proceedings of the National 
Academy of Science, 98: 11479–11484. 

Reynolds MP, Trethowan RT, van Ginkel M, Rajaram S, 2001. Application of physiology to wheat 
breeding. In: Reynolds MP, Ortiz-Monasterio  I, McNab A (Eds.), Application of physiology in 
wheat breeding. Mexico, DF, CIMMYT. 

Reynolds MP, Pellegrineschi A, Skovmand B, 2005. Sink-limitation to yield and biomass: a 
summary of some investigations in spring wheat. Annals of Applied Biology, 146: 39-49. 

Reynolds MP, Calderini DF, Vargas M, 2007. Association of source/sink traits with yield, biomass 
and radiation use efficiency among random sister lines from three wheat crosses in a high -yield 
environment. Journal of Agricultural Science, Cambridge 145: 3-16. 

Reynolds M, Tuberosa R, 2008. Translational research impacting on crop productivity in 
drought-prone environments. Curr. Opin. Plant Biol., 11: 171–179. 

Reynolds M et al, 2009. Raising yield potential in wheat. J. Exp. Bot., 60: 1899–918. 

Richards RA, 1992a. The Effect of Dwarfing Genes in Spring Wheat in Dry Environments. I. 
Agronomic Characteristics. Spring. 

Richards RA, 1992b. The Effect of Dwarfing Genes in Spring Wheat in Dry Environments. II.* 
Growth, Water Use and Water-use Efficiency. Water. 

Rincent R, Laloe D, Nicolas S, Altmann T, Brunel D, et al., 2012. Maximizing the Reliability of 
Genomic Selection by Optimizing the Calibration Set of Reference Individuals: Comparison of 
Methods in Two Diverse Groups of Maize Inbreds (Zea mays L.). Genetics, 192: 715-728. 

Risch N, Merikangas K, 1996. The future of genetic studies of complex human diseases. Science, 
273: 1516-1517. 

Robertson MJ, Brooking IR, Ritchie JT, 1996. Temperature response of vernalization in wheat: 
modelling the effect on the final number of mainstem leaves. Annals of Botany, 78: 371-381. 

Rockman MV, Kruglyak L, 2008. Breeding designs for recombinant inbred advanced intercross 
lines. Genetics, 179: 1069-1078. 

Rodriguez VM, Butron A, Malvar RA, Ordas A, Revilla P, 2008. Quantitative trait loci for cold 
tolerance in the maize IBM population. Int. J. Plant Sci. 169: 551-556. 

Sakamoto T and Matsuoka M, 2008. Identifying and exploiting grain yield genes in rice. Curr. 
Opin. Plant Biol. 11: 209–214. 

Sadras VO and Lawson C, 2011. Genetic gain in yield and associated changes in phenotype, trait 
plasticity and competitive ability of South Australian wheat varieties released between 1958 and 
2007. Crop Pasture Sci. 62: 533–549. 



 

112 
 

Sarkar P, Stebbins GL, 1956. Morphological evidence concerning the origin of the B genome in 
wheat. American Journal of Botany, 43: 297-304. 

Sax K, 1923. The association of size differences with seed-coat pattern and pigmentation in 
Phaseolus vulgaris. Genetics, 8: 552-560. 

Schefers, J.M. and K.A. Weigel. 2012. Genomic selection in dairy cattle: Integration of DNA testing 
into breeding programs. Animal Frontiers 2: 4-9. 

Semagn K, Bjørnstad Å, Ndjiondjop MN, 2006. Progress and prospects of marker assisted 
backcrossing as a tool in crop breeding programs. African Journal of Biotechnology, 5: 2588-
2603. 

Semagn K, Bjørnstad Å, Xu Y, 2010. The genetic dissection of quantitative traits in crops. Electron 
J Biotechnol 13: 5. 

Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA, 2001. Sequence elimination and cytosine 
methylation are rapid and reproducible responses of the genome to wide hybridization and 
allopolyploidy in wheat. Plant Cell, 13: 1749-1759. 

Siddique KH, Kirby EJM, Perry MW, 1989. Ear stem ratio in old and modern wheat varieties: 
relationship with improvement in number of grains per ear and yield. Field Crops Research, 21: 
59-78. 

Skovmand B, Peynold MP, Delacy IH, 2000. Mining wheat germplasm collection for yield 
enhancing traits. Proceeding of the 6th International Wheat Congress, June 5-9, 2000. Budapest, 
Hungary. 

Slafer GA and Andrade FH, 1989. Genetic improvement in bread wheat (Triticum aestivum, L.) 
yield in Argentina. Field Crops Res. 21: 289–296. 

Slafer GA, Andrade FH, 1993. Physiological attributes related to the generation of grain yield in 
bread wheat cultivars released at different eras. Field Crops Research, 31: 351-367. 

Slafer GA and Rawson HM, 1994. Sensitivity of wheat phasic development to major 
environmental factors: a re-examination of some assumptions made by physiologist and 
modellers. Australian Journal of Plant Physiology, 21: 393-426. 

Slafer GA, Satorre EH, Andrade FH, 1994. Increases in grain yield in bread wheat from breeding 
and associated physiological changes. In: Slafer GA (Ed.), Genetic improvement of field crops. 
New York: Marcel Dekker Inc., 1-68. 

Slafer GA, Calderini DF, Miralles DJ, 1996. Yield components and compensation in wheat: 
opportunities for further increasing yield potential. In: Reynolds MP, Rajaram S, McNab A (Eds.), 
Increasing Yield Potential in Wheat: Breaking the Barriers. Reynolds, M.P., S. Rajaram, and 
A.McNab, eds., Mexico, D.E: CIMMYT.  

Slafer GA, 2003. Genetic basis of yield as viewed from a crop physiologist’s perspective. Annals of 
Applied Biology, 142: 117-128. 

Slafer GA, Calderini DF, 2005. Importance of breeding for further improving durum wheat. In: 
Royo et al. (Eds.), Durum wheat breeding. Food Products Press, NewYork, Vol. I. 87-89. 

Slager SL, Huang J, Vieland VJ, 2000. Effect of allelic heterogeneity on the power of the 
transmission disequilibrium test. Genet. Epidemiol., 18: 143-156. 



 

113 
 

Slageren M, 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) 
Eig (Poaceae). ICARDA / Wageningen Agricultural University Papers, 94(7): i-xiv, 1-512. 

Soller M, Brody T, Genizi A, 1976. On the power of experimental designs for detection of linkage 
between marker loci and quantitative loci in crosses between inbred lines. Theoretical and 
Applied Genetics, 47: 35-39. 

Soller M, Beckmann JS, 1990. Marker-based mapping of quantitative trait loci using replicated 
progenies. Theoretical and Applied Genetics, 80: 205-208. 

Somers DJ, Kirkpatrick R, Moniwa M, Walsh A, 2003. Mining single nucleotide polymorphisms 
from hexaploid wheat ESTs. Genome, 49: 431-437. 

Somers DJ, Isaac P and Edwards K, 2004. A high density microsatellite consensus map for bread 
wheat (Triticum aestivum L.). Theor Appl Genet, 109:1105-1114. 

Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C, 2007. Genome-wide 
linkage disequilibrium analysis in bread wheat and durum wheat. Genome, 50: 557-567. 

Sourdille P, Tixier MH, Charmet G and Gay G, 2000. Location of genes involved in ear 
compactness in wheat (Triticum aestivum) by means of molecular markers. Mol. Breed. 6: 247-
255. 

Sourdille P, Sukhwinder T, Cadalen G, Brown-Guedira G, Gay et al., 2004. Microsatellite-based 
deletion bin system for the establishment of genetic-physical map relationships in wheat 
(Triticum aestivum L.). Funct. Integr. Genomics 4: 12–25. 

Stephens M, Smith NJ, Donnelly P, 2001. A new statistical method for haplotype reconstruction 
from population data. Am. J. Hum. Genet., 68: 978-989. 

Talbert LE, Blake NK, Storlie EW, Lavin M, 1995. Variability in wheat based on low-copy DNA 
sequence comparisons. Genome National Research Council of Canada, 38: 951-957. 

Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J, 1999. High-resolution mapping of 
quantitative trait loci in outbred mice. Nat Genet, 21: 305-308. 

Tanksley SD, 1993. Mapping polygenes. Annual Review of Genetics, 27: 205-233. 

Teuscher F, Broman KW, 2007. Haplotype probabilities for multiple-strain recombinant inbred 
lines. Genetics, 175: 1267-1274. 

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES, 2001. Dwarf8 
polymorphisms associate with variation in flowering time. Nature Genetics, 28: 286-289. 

Threadgill DW, Hunter KW, Williams RW, 2002. Genetic dissection of complex and quantitative 
traits: From fantasy to reality via a community effort. Mamm Genome, 13: 175–178. 

Tranquilli GE, Dubcovsky J, 2000. Epistatic interactions between vernalization genes Vrn-Am1 
and Vrn-Am2 in diploid wheat. Journal of Heredity, 91: 304-306. 

Trevaskis B, Hemming MN, Peacock WJ, Dennis ES, 2007. The molecular basis of vernalization-
induced flowering in cereals. Trends in Plant Science, 12: 352-357. 

Trick M, Long Y, Meng J, Bancroft I, 2009. Single nucleotide polymorphism (SNP) discovery in the 
polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnology, 7: 334-
346. 



 

114 
 

Turner A, Beales J, Faure S, Dunfordand RP, Laurie DA, 2005. The pseudo-response regulator 
Ppd-H1 provides adaptation to photoperiod in barley. Science, 310: 1031-1034. 

Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J, 2006. A NAC gene regulating senescence 
improves grain protein, zinc, and iron content in wheat. Science, 314: 1298-301. 

Uleberg E, Meuwissen THE, 2007. Fine mapping of multiple QTL using combined linkage and 
linkage disequilibrium mapping – A comparison of single QTL and multi QTL methods. Genet Sel 
Evol, 39: 285-299. 

Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JN, 
Mott R, Flint J, 2006b. Genome-wide genetic association of complex traits in heterogeneous stock 
mice. Nat. Genet., 38: 879-887. 

Valente F, Gauthier F, Bardol N, Blanc G, Joets J, Charcosset A, Moreau L, 2013. OptiMAS: a 

decision support tool for marker-assisted assembly of diverse alleles. J Hered. 104(4): 586-90. 

van Eeuwijk FA, Boer M, Totir LR, Bink M, Wright D et al., 2010. Mixed model approaches for the 
identification of QTLs within a maize hybrid breeding program. Theor Appl Genet, 120: 429-440. 

van Slageren MW, 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and 
Spach) Eig (Poaceae). Agricultural University, Wageningen & International Center for 
Agricultural Research in Dry Areas, Aleppo, Syria. 

Varshney RK, Hoisington DA, Nayak SN, Graner A, 2009. Molecular plant breeding: methodology 
and achievements. In: Somers D, Langridge P, Gustafson PJ (Eds.), Methods in molecular biology: 
Plant genomics. Totowa, NJ: The Humana Press, 283-304. 

Vorrips RE, 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. 
Journal of Heredity, 93: 77–78. 

Wang N, Akey JM, Zhang K, Chakrabortyand R, Jin L, 2002. Distribution of recombination 
crossovers and the originof haplotype blocks: the interplay of population history, recom-
bination, and mutation. Am. J. Hum. Genet., 71: 1227-1234. 

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli 
L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat 
Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, 
Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, 
Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, 
Akhunov E, 2014. Characterization of polyploid wheat genomic diversity using a high-density 90 
000 single nucleotide polymorphism array. Plant Biotechnol J., In press. 

Whittaker JC, Curnow RN, Haley CS, Thompson R, 1995. Using marker-maps in marker-assisted 
selection. Genetical Research, 66: 225-232. 

Whittaker JC, Thompson R, Denham MC, 2000. Marker-assisted selection using ridge regression. 
Genetics Research, 75: 249-252. 

Wilhelm EP, Turner AS, Laurie DA, 2009. Photoperiod insensitive Ppd-A1a mutations in 
tetraploid wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 118: 285-294. 

Winkler CR, Jensen NM, Cooper M, Podlich DW, Smith OS, 2003. On the determination of 
recombination rates in intermated recombinant inbred populations. Genetics, 164: 741-745. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Valente%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed?term=Gauthier%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed?term=Bardol%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed?term=Blanc%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed?term=Joets%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed?term=Charcosset%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed?term=Moreau%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23576670
http://www.ncbi.nlm.nih.gov/pubmed/23576670


 

115 
 

Worland AJ, Law CN, 1986. Genetic analysis of chromosome 2D of wheat. I 1. The location of 
genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. 
Zeitschrift für Pflanzen, 96, 331–345. 

Würschum T, 2012. Mapping QTL for agronomic traits in breeding populations. Theoretical and 
Applied Genetics, 125: 201-210. 

Xu S, 1995. A comment on the simple regression method for interval mapping. Genetics, 141: 
1657-1659. 

Xu Y, Crouch JH, 2008. Marker-assisted selection in plant breeding: from publications to practice. 
Crop Science, 48: 391-407. 

Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M, 2010. Fine 

definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide 

discovery of single-nucleotide polymorphisms. BMC Genomics 11: 267. 

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Dubcovsky J, 2006. 
The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the 
National Academy of Sciences, 103: 19581-19586. 

Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J, 2004. Allelic variation at the 
VRN-1 promoter region in polyploid wheat. TAG. Theoretical and Applied Genetics, 109: 1677-
86. 

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J, 2003. Positional cloning 
of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences, 100: 
6263-6268. 

Youssefian S, Kirby EJM, Gale MD, 1992. Pleiotropic effects of the GA-insensitive Rht dwarfing 
genes in wheat 2. Effects on leaf, stem, ear and floret growth. Field Crops Research, 28: 191-210. 

Yu J, Buckler ES, 2006. Genetic association mapping and genome organization of maize. Current 
Opinion in Biotechnology, 17: 155-160. 

Zadoks JC, Chang TT, Konzak CF, 1974. A decimal code for the growth stages of cereals. Weed 
Research, 14: 415-421. 

Zanetti S, Winzeler M, Feulillet C, Keller B, Messmer M, 2001. Genetic analysis of bread-making 
quality in wheat and spelt. Plant Breed, 120: 13-19. 

Zeng Z, 1993. Theoretical basis for separation of multiple linked gene effects in mapping 
quantitative trait loci. Proceedings of the National Academy of Sciences, 90: 10972-10976. 

Zeng Z, 1994. Precision mapping of quantitative trait loci. Genetics, 136: 1457-1468. 

Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A, 2010. Genomic Distribution of 
Quantitative Trait Loci for Yield and Yield‐related Traits in Common Wheat. Journal of 
integrative plant biology, 52(11): 996-1007. 

Zhu C, Gore M, Buckler ES, Yu J, 2008. Status and prospects of association mapping in plants. 
Plant Genome 1: 5–20. 

 

http://www.maizegenetics.net/images/stories/pubs/zhu2008plantgenome.pdf

