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PREFACE 

The current PhD thesis is the result of the work carried out from March 2011 to March 2014 

in the Dipartimento di Scienze Agrarie- DipSA- ALMA MATER STUDIORUM- Università 

di Bologna and financially supported by Erasmus Mundus External Cooperation Window 

Program. It has been a great challenge for me to deal with different aspects of plant 

physiological, biochemical and molecular responses toward salinity stress. It was great efforts 

to shift myself from biochemical laboratory to molecular one and be familiar with all 

laboratory techniques in short tighten time. Also, it was challenging for me to perform the 

grafting processing for the first time trying to apply what I have read of textbooks and 

scientific articles about this technique.  Also, it was not easy to conduct all morphological, 

biochemical, physiological analysis in different plant species from different families in less 

than three years of full working hours between greenhouse and the laboratories.  

The thesis is structured in four main chapters. The first chapter is a general introduction about 

the adverse effect of salt stress and functional plant adaptations for salinity tolerance. The 

second chapter is devoted to dealing with grafting as a way to improve salt tolerance in two 

plant species of muskmelon and tomato. The third chapter addressed the determination 

salinity thresholds, genotypic variability, and morphological, physiological and biochemical 

adaptation of cabbage and radish genotypes grown under saline stress. The fourth chapter 

addresses the possible functional role of salt overly sensitive gene (SOS) and some 

elongation factors in Brassica under the salt stress condition. 

 

Salinity exerts detrimental effects on crop cultivation worldwide. At present, most important 

advances on the understanding of salt tolerance in plants are achieved through the use of 

model plants (eg. Arabidopsis thaliana, Thellungiella halophila). However, the transfer of 

knowledge to the cropped species is a slow process, and most of the 

physiological/biochemical processes involved in stress response in cultivated crops are still 

unknown. The role of several morphological traits (eg. stomatal and root morphologies) was 

highlighted in both model and crop species as important features in determining plant 

response to the stress, but still little connection have been found on their related physiological 

consequences. This is also explained by the difficulties found in the transfer of results from 

model plants and the only recent application of an inter-disciplinary approach to agronomic 

experiments on crop species. During the PhD, several aspects of horticultural crop response 

to salinity have been addressed with the final aim of combining physiological and 
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biomolecular elements of functional stress response in plants. Species adopted in the trial 

were vegetable crops (eg. tomato, melon, cabbage and radish). Overall, the PhD project has 

achieved the following goals: identifying the methods for the measurement of salt stress 

response, screening and assessment of stress perception in plants; and creation of a database 

of plant biochemical and physiological features improving salinity tolerance. 
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SUMMARY 
Among abiotic stresses, high salinity stress is the most severe environmental stress. High 

salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of 

the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even 

death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at 

molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant 

plants show a range of adaptations not only in morphological or structural features but also in 

metabolic and physiological processes that enable them to survive under extreme saline 

environments. The main objectives of my dissertation were understanding the main 

physiological and biomolecular features of plant responses to salinity in different genotypes 

of horticultural crops that are belonging to different families Solanaceae (tomato) and 

Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop 

responses to salinity have been addressed with the final aim of combining elements of 

functional stress response in plants by using several ways for the assessment of plant stress 

perception that ranging from destructive measurements (eg. leaf area, relative growth rate, 

leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. 

stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to 

the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well 

as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen 

species that have been generated under salinized condition, and finally assessing the gene 

induction and up-down regulation upon salinization (eg. SOS pathway). 

 

Grafting is an integrative reciprocal process and an interesting tool to avoid or reduce yield 

losses caused by salinity stress in high-yielding genotypes belonging to Solanaceae and 

Cucurbitaceae families. In this research, we have investigated the role of grafting in 

alleviating the drastic effect of salt stress in muskmelon plant (Cucumis melo). The 

performances of several grafting combinations of interspecific rootstock-scion, self-grafted 

and non-grafted plants have been traced with the aim of highlighting the plant differential 

morphological and physiological responses toward salt stress and address the comprehension 

of which features are responsible of improving salinity tolerance in grafted plants. 

Additionally, particular attention has been given to the role of the root system in altering 

stress perception in the shoot. Furthermore, some contradictory issues have been addressed, 

which on many occasion remained overlooked or conflicted, whether the positive effect of 
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grafting in alleviating the deleterious effect of salt and increase plant tolerance was attributed 

to rootstock characteristics or scion genotypic differences, and/or belong to the scion-

rootstock interaction. It is known that the capacity of some rootstocks is essential for salt 

resistance in some species, while for other species the salt resistance conferred by rootstock 

depends on complex physiological interactions which are not well understood yet, that 

involving the type of scion genotype or the complexity of specific interaction between the 

scion genotype and rootstock. Thus, in this work, for comprehending whether the conferred 

salt tolerance of grafted plants was depended on the rootstock character or is affected by 

scion genotypic differences and/or exchangeable effects of scion-rootstock interaction, 

different tomato cultivars (Lycopersicon esculentum Mill) were used as scions and grafted 

against different tomato rootstock genotypes. The main objectives of this work were 

determining the contribution of rootstock in inducing useful salt tolerance to the shoot growth 

and fruit productivity depending on salt tolerance mechanisms of the shoot genotype; 

identifying the main salt defence mechanisms that induced in the shoot by different rootstock 

genotypes based on rootstock potential to regulate the absorption of ions from saline solution 

and regulate their transportation into shoot in long-term salt stress; and identifying the 

conditioned significant effect of the scion genotypes on physiological and biochemical shoot 

performance that involved in plant salt tolerance. Moreover, the second part of this study was 

devoted to investigate the salinity thresholds, genotypic variability, morphological productive 

performances, and physiological and biochemical adaptation of cabbage (Brassica oleracea) 

and seven red radish genotypes (Raphanous sativus) grown under saline stress in order to 

identify the most tolerant genotype to be used in further breeding programme. 

 

Reactive oxygen species (ROS) are important toxic and regulatory agents in plants. They are 

produced in response to salt stresses. The accumulation of ROS during abiotic stresses causes 

an additional challenge for plants that is called oxidative stress which induces oxidative 

damage to lipids, proteins, and nucleic acids. In plant cells, specific ROS-producing and 

scavenging systems are found in different organelles and coordinated by enzymatic and non-

enzymatic defence system. The enzymatic components of the antioxidative defense system 

comprise several enzymes that operate in different subcellular compartments and respond 

when cells are exposed to oxidative stress. In this work, we assessed the plant differential 

responses upon salinization in term of secondary metabolite (proline and protein 

accumulation), occurring of oxidative stress (measuring the products of lipid peroxidation 

such as H2O2 and MDA) and determining  the activities of enzymatic antioxidative defense 
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systems (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and 

glutathione reductase (GR)) in the leaves of two botanical varieties of cabbage (white and 

savoy) and in seven different genotypic root radish cultivars in order to understand the 

biochemical elements of salt adaptive mechanisms and choose the most promoting cultivar(s) 

under stressed conditions. Moreover, the evaluation of the effect of scion and rootstock 

genotypes in conferring the salt resistance in term of enhancing the tomato fruit antioxidant 

defence system under NaCl stress have been under investigation. 

 

 Moreover, in response to high salinity stress, various genes get up-regulated, the products of 

which are involved either directly or indirectly in plant protection. Some of the genes 

encoding osmolytes, ion channels, receptors, components of calcium signalling, and some 

other regulatory signalling factors or enzymes are able to confer salinity-tolerant phenotypes 

when transferred to sensitive plants. Overall, the susceptibility or tolerance to high salinity 

stress in plants is a coordinated action of multiple stress responsive genes, which also cross 

talk with other components of stress signal transduction pathways. Salt Overly Sensitive 

(SOS) pathway is known to be defined by three protein components, SOS1, SOS2 and SOS3. 

At the cellular level, the SOS signaling pathway has been proposed to mediate cellular 

signaling under salt stress, to maintain ion homeostasis. In the third part of my PhD project, 

we investigated the possible functions of some elongation factor genes and the salt overly 

sensitive SOS3 family of Ca2+ sensors and their associated SOS2 family of protein Kinase as 

well as the plasma membrane Na+/H + exchanger (antiporter) encoded by the SOS1 gene in 

conferring the salt tolerance of two varieties of Brassica.    
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CHAPTER 1 
 
 

Adverse Effect Of Salt Stress And Functional Plant Adaptations For 

Salinity Tolerance 
 

1. INTRODUCTION  

World agriculture is facing a lot of challenges like producing 70% more food for an 

additional 2.3 billion people by 2050 while at the same time fighting with poverty and 

hunger, consuming scarce natural resources more efficiently and adapting to climate change 

(FAO 2009). However, the productivity of crops is not increasing in parallel with the food 

demand. The lower productivity in most of the cases is attributed to various abiotic stresses. 

Curtailing crop losses due to various environmental stressors is a major area of concern to 

cope with the increasing food requirements (Shanker and Venkateswarlu 2011). 

 

As a sessile organism, plants often experience abiotic stress like salinity, drought, high or low 

temperature, flooding, metal toxicity, ozone, UV-radiations, herbicides, etc., which pose 

serious threat to the crop production (Bhatnagar-Mathur et al. 2008; Ahmad and Prasad 

2012a, b). The complex nature of the environment along with its unpredictable conditions 

and global climate change are increasing gradually which is creating the situation more 

adverse (Mittler and Blumwald 2010). Abiotic stresses remain the greatest constraint to crop 

production worldwide. It has been projected that more than 50% of yield reduction is the 

direct result of abiotic stresses (Rodriguez et al. 2005; Acquaah 2007). The major abiotic 

stresses like drought, high salinity, cold, and heat negatively influence the survival, biomass 

production and yield of staple food crops up to 70% (Kaur et al. 2008; Ahmad et al. 2010a; 

Ahmad et al. 2012); hence, threaten the food security worldwide. 

 

Soil salinity is among the major abiotic stresses that limits crop productivity worldwide (Hu 

et al. 2005) since most crops are sensitive to soil salinization (Munns 2002). There are two 

major processes of soil salinization; geo–historical processes and man–made. Most of the 

worldwide salt–affected lands are the result of natural causes, i.e., from accumulation of salts 

over long time period, and this occurs mainly in arid and semiarid zones (Rengasamy 2002). 

One way of soil salinization is weathering of the rocks that releases soluble salts, which is 

mainly in the form of sodium chloride and calcium chloride (Szabolcs 1989), other being salt 
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accumulation due to the deposition of salts from oceans by wind or rain (Munns and Tester 

2008). Man–made saline soils are mostly found in (semi) arid lands as a result of over-

irrigated agriculture, and hence in the rise of water tables. This is the main factor of 

increasing salinity in agricultural lands (Munns et al. 2002). 

 

There is a wider range of salt tolerance in natural populations, which is reported to be 

evolved naturally in numerous grass species like Agrostis, Festuca, Lolium, and Poa 

(Acharya et al. 1992). Such plants provide outstanding materials for studying the mechanisms 

of adaptations they use to tolerate high concentrations of salt (Ashraf 2003). Such adaptations 

have been evaluated in several grass populations from quite diverse habitats such as estuaries 

and coastal areas, marine and fresh water salt marshes, and dry–land salinities. Examples are 

Sporobolus virginicus (Naidoo and Mundree 1993), Cynodon dactylon (Hameed and Ashraf, 

2008), Ochthochloa compressa and Aeluropus lagopoides (Naz et al. 2009), and Imperata 

cylindrica (Hameed et al. 2009). 

2. ADVERSE EFFECT OF SALINITY STRESS 

High salinity causes both hyperionic and hyperosmotic stresses and can lead to plant death 

(Hasegawa et al. 2000). It is reported that plants growing under saline conditions are affected 

in three ways: reduced water potential in root zone causing water deficit, phytotoxicity of 

ions such as Na+ and Cl– and nutrient imbalance depressing uptake and transport of nutrients. 

Na+ competes with K+ for binding sites essential for cellular functions (Munns 2002a). Excess 

salt concentration also enhances the osmotic potential of soil matrix which restricts the water 

uptake by plants. Sodium is the primary toxic ion, because it interferes with K+ uptake as well 

as and disturbs stomatal regulation which ultimately causes water loss and necrosis. On the 

other hand, Cl– induces chlorotic toxicity symptoms due to impaired production of 

chlorophyll (Chl). Although both Na+ and Cl– are the major ions which produce many 

physiological disorders in plants, especially Cl–, which is the most dangerous than Na+ 

(Tavakkoli et al. 2010). In plant cells, Cl– is required for the regulation of some enzyme 

activities in the cytoplasm. It is also a co-factor in photosynthesis and is involved in turgor 

and pH regulation. However, it is toxic to plants at high concentrations, with critical levels 

for toxicity reported to be 4-7 mg g-1 for Cl– -sensitive species and 15-50 mg g-1 for Cl–

tolerant species (White and Broadley 2001). Higher accumulation of Cl– led to a significant 

reduction in growth and water use efficiency in plants. 
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2.1. Growth 

One of the initial effects of salt stress on plant is the reduction of growth rate. Salinity can 

affect growth of plant in various ways. First, the presence of salt in the soil reduces the water 

uptake capacity of the plant, and this causes quick reduction in the growth rate. This first 

phase of the growth response is due to the osmotic effect of the soil solution containing salt, 

and produces a package of effects similar to water stress (Munns 2002b). The mechanisms by 

which salinity affects growth of a plant depend on the time scale over which the plant is 

exposed to salt. Munns (2002b) summarized the sequential events in a plant grown in saline 

environment. He stated that “In the first few seconds or minutes, water is lost from cells and 

shrinked. Over hours, cells recover their original volume but the elongation rates are still 

reduced which led to lower growth rates of leaf and root. Over days, cell division rates are 

also affected, and contribute to lower rates of leaf and root growth. Over weeks, changes in 

vegetative development and over months changes in reproductive development can be seen”. 

Later on, Munns (2005) developed the ‘two-phase growth response to salinity’ for better 

understanding the temporal differences in the responses of plants to salinity. The first phase 

of growth reduction is a quicker process which is due to osmotic effect. The second phase, on 

the other hand, is much slower process which is due to the salt accumulation in leaves, 

leading to salt toxicity in the plants. The later one may results in death of leaves and reduce 

the total photosynthetic leaf area which reduce the supply of photosynthate in plants and 

ultimately affect the yield. With annual species, the timescale is day or week, depending on 

species and salinity level. With perennial species, the timescale is months or year. During 

phase 1, growth of both genotypes is reduced due to the osmotic effect of the saline solution 

adjacent to roots. During phase 2, leaves of more sensitive genotype are died and the 

photosynthetic capacity of the plant is greatly reduced which imposes an additional effect on 

growth. Upon addition of salt at one step, the growth rate plummets to zero or below and 

takes 1-24 h to regain the new steady rate, depending on the extent of the osmotic shock 

(Munns 2002a).  

 

In plants, where Na+ and Cl– build up in the transpiring leaves over a long period of time, 

resulting in high salt concentration and leaf death. Leaf injury and death are attributed to the 

high salt load in the leaf that exceeds the capacity of salt compartmentation in the vacuoles, 

causing salt to build up in the cytoplasm to toxic levels (Munns 2002a, 2005; Munns et al. 

2006). Under saline condition, some crops are most sensitive during vegetative and early 
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reproductive stages, less sensitive during flowering and least sensitive during the seed filling 

stage.  

 

Salinity increased the number of sterile florets and viability of pollen, becoming more 

pronounced with increased salinity. Seed set was reduced by 38% when female plants were 

grown in as low as 10 mM NaCl. In Suaeda salsa , plant height, number of branches, length 

of branches and diameter of shoot were significantly affected by salt stress which was due to 

the increased content of Na+ and Cl– (Guan et al. 2011). Also, Dolatabadian et al. (2011) 

observed that salinity stress significantly decreased shoot and root weight, total biomass, 

plant height and leaf number.  

2.2. Photosynthesis 

The reduction in photosynthetic rates in plants under salt stress is mainly due to the reduction 

in water potential. Photosynthesis is also inhibited when high concentrations of Na+ and/or 

Cl– are accumulated in chloroplasts. As photosynthetic electron transport is relatively 

insensitive to salts, either carbon metabolism or photophosphorylation may be affected due to 

salt stress (Sudhir and Murthy 2004). A positive correlation between salt stress induced 

photosynthetic rate and yield has been obtained in different crops (Sudhir and Murthy 2004). 

Fisarakis et al. (2001) reported a positive growth inhibition caused by salinity associated with 

a marked inhibition of photosynthesis. In fact, the effect of salinity on photosynthetic rate 

depends on salt concentration as well as plant species or genotypes. There is evidence that at 

low salt concentration salinity sometimes stimulate photosynthesis. For instance, in 

Bruguiera parvi fl ora , Parida et al. (2004) observed that rate of photosynthesis increased at 

low salinity while decreased at high salinity, whereas stomatal conductance remained 

unchanged at low salinity and decreased at high salinity. There are some other factors that 

reduced photosynthetic rates under salt stress are: enhanced senescence, changes in enzyme 

activity, induced by alterations in cytoplasmic structure and negative feedback by reduced 

sink activity (Iyengar and Reddy 1996). The reduction in stomatal conductance which results 

in restricting the availability of CO2 for carboxylation reactions is also a factor that reduces 

photosynthesis under stress (Brugnoli and Bjorkman 1992). It was reported that stomatal 

closure minimizes loss of water through transpiration and this affects light-harvesting and 

energy-conversion systems thus leading to alteration in chloroplast activity (Iyengar and 

Reddy 1996). Higher stomatal conductance in plants is known to increase CO2 diffusion into 

the leaves and thereby favor higher photosynthetic rates. One of the most notable effects of 

salt stress is the alteration of photosynthetic pigment biosynthesis (Maxwell and Johnson 



7 
 

2000). The decrease in Chl content under salt stress is a commonly reported phenomenon and 

in various studies and the Chl concentration were used as a sensitive indicator of the cellular 

metabolic state (Chutipaijit et al. 2011). Saha et al. (2010) observed a linear decrease in the 

levels of total Chl, Chla, Chlb, Car and xanthophylls as well as the intensity of 

Chlfluorescence in Vigna radiata under increasing concentrations of NaCl treatments. 

Compared to control, the pigment contents decreased on an average, by 31% for total Chl, 

22% for Chla, 45% for Chlb, 14% for carotene and 19% for xanthophylls (Saha et al. 2010).  

2.3. Water relation 

According to Romero-Aranda et al. (2001) increase of salt in the root medium can lead to a 

decrease in leaf water potential and, hence, may affect many plant processes. Osmotic effects 

of salt on plants are the result of lowering of the soil water potential due to increase in solute 

concentration in the root zone. At very low soil water potentials, this condition interferes with 

plant’s ability to extract water from the soil and maintain turgor. However, at low or 

moderate salt concentration (higher soil water potential), plants adjust osmotically 

(accumulate solutes) and maintain a potential gradient for the influx of water. Salt treatment 

caused a significant decrease in relative water content (RWC) (Ghoulam et al. 2002). 

According to Katerji et al. (1997), a decrease in RWC indicates a loss of turgor that results in 

limited water availability for cell extension processes. Steudle (2000) reported that in 

transpiring plants, water is thought to come from the soil to the root xylem through apoplastic 

pathway due to hydrostatic pressure gradient. However, under salt stressed condition, this 

situation changes because of the restricted transpiration. Under these situations, more of 

water follows cell-to-cell path, flowing across membranes of living cells (Vysotskaya et al. 

2010). 

2.4. Nutrient imbalance 

It is well-established that crop performance may be adversely affected by salinity induced 

nutritional disorders. However, the relations between salinity and mineral nutrition of crops 

are very complex (Grattan and Grieve 1999). The nutritional disorders may result from the 

effect of salinity on nutrient availability, competitive uptake, transport or distribution within 

the plant. Numerous reports indicated that salinity reduces nutrient uptake and accumulation 

of nutrients into the plants (Rogers et al. 2003; Hu and Schmidhalter 2005). However, very 

few evidences exist that addition of nutrients at levels above those considered optimal in non-

saline environments, improves crop yield (Grattan and Grieve 1999). In fact, these processes 

may occur simultaneously and whether they affect the crop yield or quality depends on the 

toxic level, composition of salts, the crop species and surrounding environment (Grattan and 
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Grieve 1999). Numerous plant studies have demonstrated that salinity could reduce N 

accumulation in plants. Decreased N uptake under saline conditions occurs due to interaction 

between Na+ and NH4+ and/or between Cl– and NO3
– that ultimately reduce the growth and 

yield of the crop (Rozeff 1995). This reduction in NO3
– uptake is associated with Cl– 

antagonism (Bar et al. 1997) or reduced water uptake under saline conditions (Lea-Cox and 

Syvertsen 1993). The availability of P was reduced in saline soils due to (a) ionic strength 

effects that reduced the activity of PO4
3– , (b) phosphate concentrations in soil solution was 

tightly controlled by sorption processes and (c) low solubility of Ca-P minerals. Hence, it is 

noteworthy that phosphate concentration in field grown agronomic crops decreased as 

salinity increased (Qadir and Schubert 2002). Different plant studies indicated that high level 

of external Na+ caused a decrease in both K+ and Ca2+ concentrations in plant tissues of many 

plant species (Hu and Schmidhalter 2005; Asch et al. 2000). This reduction in K+ 

concentration in plant tissue might be due to the antagonism of Na+ and K+ at uptake sites in 

the roots, the influence of Na+ on the K+ transport into xylem or the inhibition of uptake 

processes (Suhayda et al. 1990). The availability of micronutrients in saline soils is dependent 

on the solubility of micronutrients, the pH of soil solution, redox potential of the soil solution 

and the nature of binding sites on the organic and inorganic particle surfaces.  

2.5. Yield 

The above mentioned effects of salt stress on plants ultimately lead to reduction of yield of 

crop which is most countable effect of salt stress in agriculture. Except some halophytes, 

yield of most of the crops reduced greatly due to salt stress. Tolerance and yield stability are 

multigenic traits that are complicated to establish in crops since salt stress may be imposed 

continuously or intermittently, or become gradually more severe and at any stage during 

development (Yokoi et al. 2002). Crop species have exhibited substantial differences in salt 

tolerance based on their relative yields. Relative yield often exhibits a linear decrease after a 

threshold salinity has been reached, and salt tolerance has been defined in terms of two 

parameters: the threshold electrical conductivity and the percent decrease in relative yield per 

unit of electrical conductivity in dS m–1 above the threshold. It was observed that relative 

yield varied greatly depending on the salinity levels and the degree of tolerance (Mass 1986). 

Number of pods per plant, seeds per pod and seed weight were negatively correlated with 

salinity levels. This reduction of yield and its component rated under salt stress condition 

may also be attributed to low production, expansion, senescence and physiologically less 

active green foliage (Wahid et al. 1997), thus reduced photosynthetic rate might be a 

supplementary effect (Seemann and Critchley 1985). The severe inhibitory effects of salts on 
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fertility may be due to differential competition in carbohydrate supply between vegetative 

growth and constrained supply of these to the developing panicles (Murty and Murty 1982). 

Also reduced viability of pollen under stress condition could result in failure of seed set 

(Abdullah et al. 2001).  As reported by Greenway and Munns (1980), after some time in 200 

mM NaCl, a salt-tolerant species such as sugar beet might have a reduction of only 20% in 

dry weight, a moderately tolerant species such as cotton might have a 60% reduction, and a 

sensitive species such as soybean might be dead. On the other hand, a halophyte such as 

Suaeda maritima might be growing at its optimum rate (Flowers et al. 1986). 

3. ADAPTIVE COMPONENTS OF SALT TOLERANCE 

Salt tolerance is a complex phenomenon involving a variety of mechanisms. It can be defined 

as the ability of the plants to complete their growth cycle with an acceptable growth and yield 

(Flowers et al. 1986; Colmer and Flowers 2008). Three major factors affect the plant growth 

under salinity, water stress, ion toxicity, and nutrient uptake and translocation, and as a result, 

disturbance of ionic balances such as K+ and Ca2+. Physiological drought may play a crucial 

role, which restricts the water uptake by plants. On contrary, excess salt uptake by plants 

interrupts the cellular functions and this damages vital physiological processes, i.e., 

photosynthesis and respiration (Marschner 1995). Furthermore, mechanisms like increased 

leaf resistance (fewer stomata, increased cuticle and epidermis thickness, and mesophyll 

resistance) could prevent turgor loss from leaf and root surface, and hence better water 

efficiency. 

 

Plant tolerance to saline environments is of broad spectrum ranging from glycophytes (that 

are sensitive to salt) to halophytes (that tolerate high concentrations of salt). The acquired salt 

tolerance may be of hereditary nature in some species (Niknam and McComb 2000), i.e., 

passed along to offspring. Halophytic or salt tolerant species can adopt multiple strategies to 

survive under high salinities by controlling the levels of ions their shoots or particularly in 

leaves. The mechanisms involved are restricting or excluding the ion uptake at root level, and 

hence minimizing the translocation of salts to the shoot (Flowers and Colmer 2008). Genkel 

(1954) divided the halophytes into three groups: euhalophytes, crinohalophytes, and 

glycohalophytes, but this classification has been modified by Nagalevskii (2001) and Zhao et 

al. (2002). Salt tolerance in euhalophytes is based on accumulation, as they accumulate salts 

in their tissues, crinohalophytes depend on excretion of toxic ions like Na+ and Cl− as they are 

capable of excreting salts out of the plant body, and glycohalophytes rely on avoiding 

mechanism by preventing the accumulation of excess salts (Voronkova et al. 2008). The 
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growth rate can be linked to the accumulation of salts in the plant leaves that plant takes up 

from the roots, so the continuation of growth under saline environments is an indication of 

high degree of salt tolerance. 

Plants generally use two mechanisms to tolerate high salt concentrations. Firstly, the 

avoidance, i.e., keeping the salts away from the metabolically active tissues (Munns and 

Tester 2008). This is through passive exclusion of ions (by a permeable membrane), active 

expelling of ions (by ion pumps), or by dilution of ions in plant tissues (Allen et al. 1994). 

Secondly, compartmentalization of accumulated salts in the vacuoles of plant cells (Munns 

2002). These two methods are vital for preventing toxic ions to accumulate or causing 

damage to the plant tissues, and therefore, they could be employed for identifying markers for 

genetic manipulation of salinity tolerance in plants. 

 
Salt tolerant or halophytic plants can minimize the detrimental effects of salts (i.e., ion 

toxicity, nutritional disorder, osmotic stress) by modifying morphological, anatomical and 

physiological mechanisms of salt tolerance (Poljakoff-Mayber 1975; Hameed et al. 2009). 

Extensive root system (root length and proliferation) and the presence of salt secreting 

structures (e.g., salt glands) on the leaf surface may prove vital in plants (Naz et al. 2009). 

The salt tolerance of plants may involve: (a) restricted or controlled uptake of salts, (b) tissue 

tolerance, (c) accumulation of salt in inert areas (e.g., vacuoles), (d) ion discrimination (e.g., 

uptake and translocation of ions like K+, Na+, Cl− and SO4
2−), (e) production of low molecular 

weight protective osmolytes like enzymes, hormones, antioxidants, etc. (Munns and Tester 

2008). These mechanisms may be responsible for variations in the salt tolerance within plant 

genotypes or species.  

 
 
When a plant is exposed to increased soil salinity, a primary response is decreased plant 

water potential, and this is due to a decrease in both osmotic and water potentials of the soil. 

Accumulation of osmotically compatible cellular solutes (e.g., sugars, proteins, free amino 

acids) is one of the well–characterized responses of plants to such low water potential. In salt 

tolerant species, accumulation of osmotically compatible solutes directly correlates with Na 

gradients in soil and thereby reduces the detrimental effect of salt stress (Briens and Larher 

1982; Lee et al. 2007). Mechanisms involved in salinity tolerance or adaptations crucial for 

the plant survival are still not well understood. Therefore, there is a need to identify 

appropriate morpho-anatomical or physio-biochemical indicators of salinity tolerance in 

halophytic and other salt tolerant plants (Ashraf and Harris 2004). 
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3.1. Morphological and anatomical traits 

Both halophytes and non–halophytes exhibit remarkable anatomical changes when exposed 

to elevated levels of salinity (Maas and Nieman 1978). However, most conspicuous changes 

are notable in leaf. Many salt tolerant plants, particularly dicotyledonous halophytes are 

characterized by xeromorphic characteristics such as thick succulent leaves, which apparently 

aid sufficient water supply (Vakhrusheva 1989). Smaller reduced leaves with dense covering 

of pubescence are also a characteristic of xerophytes, which accounts for a successful 

survival of halophytes under dryland salinities (Mokronosov and Shmakova 1978). 

 

Stomatal features like density and size are critical for controlling transpirational loss from 

leaf surface and even more critical under physiological droughts (Hameed et al. 2009). The 

importance of stomatal characteristics in avoiding water loss through leaf surface has been 

reported several species like wheat (Akram et al. 2002). Succulence (both leaf and stem) is 

one of the most noticeable features in halophytes, which provides not only more space for 

dumping off toxic ions in the plant body, but also increasing the total plant water content 

(Drennan and Pammenter 1982), and this is crucial for balancing out ion toxicity. 

 

It is not very much clear as succulence is simply a response to salinity or is the response of 

adaptive value of halophytic plants (Waisel 1972). Increased succulence in halophytes in 

response to increasing salinity is presumed to be of adaptive nature (Waisel 1972). 

Succulence is very much greater in halophytic dicotyledonous species than in 

monocotyledonous ones (Flowers et al. 1986). There is also evidence of a rapid increase in 

vacuolar volume and in the concentration of Na+ (Mimura et al. 2003) in the cells of 

mangrove Bruguiera sexangula, which is a potential mechanism to cope with a rapid increase 

in external salt concentration. 

3.2. Salt excretion 

Halophytes utilize salts in osmotic adjustment, which lowers water potentials of their tissues. 

Accumulation of toxic ions in large quantities in leaves, while avoiding their toxic effects 

seems to be an important strategy for growth and survival under harsh climates (Greenway 

and Munns 1980). Balancing of growth and ion accumulation is the major phenomenon of 

salt tolerance in some species, while in others excess of toxic ions is secreted via secretory 

structures like salt glands and micro-hairs (Drennan and Pammenter 1982). Spartina spp. are 

the example where shoot mineral content is regulated by the ionic secretion through 
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specialized salt glands. Salts are also released by the leaf surface through cuticle or in 

guttation fluid; but they also become concentrated in salt hairs (Stenlid 1956). 

 
Many species exude Na+ salts onto the leaf surface (Naidoo and Naidoo 1998), which is 

effective in reducing Na+ concentration in plant tissues, i.e., Sporobulus spp. (Marcum and 

Murdoch 1992). Salt secretory trichomes, characteristic of Atriplex spp., are bladder–like 

hairs projecting out of leaf surface. They consist of a large secretory or bladder cells on the 

top and a stalk consisting of one or sometimes a few cells (Dickison 2000). All these cells 

contain mitochondria, dictyosomes, ribosomes, endoplasmic reticulum and a large flattened 

nucleus. The chloroplasts are rudimentary or partially developed. The only difference lies in 

that a single large vacuole is present in bladder cell and many small vacuoles in the stalk cell 

(Osmond et al. 1969). A symplastic continuum exists from the mesophyll cells to the bladder 

cells for the movement of ions. The external walls of bladder and stalk cells are cutinized, 

while inner primary walls are not (Thomson and Platt-Aloia 1979). 

3.3. Physiological/biochemical traits 

Salinity causes many adverse effects on plant growth which may be at physiological or 

biochemical levels (Munns 2002; Munns and James 2003), or at the molecular level 

(Mansour 2000; Tester and Davenport 2003). In order to assess the tolerance of plants to 

salinity stress, growth or survival of the plant is measured because it integrates up– or down–

regulation of a variety of physiological mechanisms (Niknam and McComb 2000). Cell 

growth rate depends on cell wall extensibility as well as turgor (Lockhart 1965). 

3.3.1. Osmotic adjustment 

Accumulation of exceptionally high concentrations of inorganic ions as well as organic 

solutes is an important physiological adaptation in both halophytic and salt tolerant species 

(Pitman 1984). In salt excretory plants, salt is kept away from photosynthesizing or 

meristematic cells. In these plants, osmotic balance is generally achieved via extensive 

accumulation of organic solutes and/or inorganic ions. However, in plants where salt 

inclusion is the prime mechanism, accumulation of some inorganic ions (predominantly Na+ 

and Cl−) regulates the osmotic adjustment (Ashraf 2004). Both organic and inorganic solutes 

are essential for osmoregulation in plants, especially under saline environments. However, 

their relative contribution to osmotic adjustment varies from plant to plant or species to 

species, or even within different tissue of the same plant (Hameed and Ashraf 2008). 
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There is a variety of compatible osmolytes in higher plants. Important among these are 

soluble sugars, organic acids, and soluble proteins. The important amino acids that 

accumulate in the plants are alanine, arginine, glycine, leucine, serine, and valine, along with 

the imino acid proline, citrulline and ornithine (Mansour 2000; Ashraf 2004). 

Osmoregulation via accumulation of free amino acids and in particular, glycinebetaine is the 

principal strategy in many plant species to tolerate salt stress (Martino et al. 2003). Amides 

such as glutamine and asparagine (Mansour 2000), and proline (Abraham et al. 2003) have 

also been reported to accumulate in large amounts in higher plants in response to salt stress. 

3.3.2. Ion selectivity 

A major feature of the solute transport by plants in saline conditions is the degree of 

selectivity, particularly between potassium and sodium (Ashraf et al. 2005). One of the most 

important physiological mechanisms of salt tolerance is the selective absorption of K+ by 

plants from the saline media (Ashraf et al. 2006). Halophytic or salt tolerant species differ 

from salt–sensitive ones in having restricted uptake or transport of Na+ and Cl− to the leaves 

despite an effective compartmentalization of these ions. This is critical in preventing the 

build–up of toxic ions in cytoplasm (Munns 2002; Ashraf 2004). Ion imbalance, particularly 

that caused by Ca2+ and K+ is the most important and widely studied phenomenon affected by 

salt stress, which is directly influenced by the uptake of Na+ and Cl− ions (Munns 2002 

Munns et al. 2006). Maintaining better concentrations of K+ and Ca2+ and limiting the Na+ 

uptake are vital for the salt stress tolerance in plants (Karmoker et al. 2008). Higher K+/Na+ 

or Ca2+/Na+ ratios are characteristic to the tissue salt tolerance, and are often used as a 

screening criteria for the salt tolerance (Ashraf 2004; Song et al. 2006). 

3.3.3. Salt exclusion 

Halophytes or highly salt tolerant plants have both types of mechanisms that enable them to 

survive and grow for long times in saline soils. They exclude salts efficiently in addition to 

effective compartmentalization of the salts in vacuoles. Glycophytes, on the other hand, 

exclude the salts but they are unable to compartmentalize them. The mechanism of salt 

exclusion involves transport of salts to the leaves and subsequently excreted out of the plant 

body thereby reducing salt concentration in plant tissues. Salts translocated in the 

transpiration stream are deposited and their concentration increases with time. This results in 

much higher salt concentrations in older leaves than those in younger leaves. Salt exclusion is 

the most important adaptive strategy regulating the internal salt load of halophytes. As an 

example, about 98% of salt was reported to be excluded in the mangrove species Avicennia 

marina growing in 500 mM NaCl (Ball 1988). In perennials, exclusion is particularly 
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important and it is more vital to regulate the incoming salt load in the plant body (Hasegawa 

et al. 2000). 

3.3.4. Intracellular ion compartmentation 

Sequestering of Na+ and Cl− in the vacuoles of the plant cells is ideal situation for plants 

under salt stress. Exceptionally, high concentrations of salts are found in leaves, which still 

function normally. Concentrations well over 200 mM are common in halophytic or highly 

salt tolerant species, and such concentrations will severely inhibit the activity of several 

enzymes in vivo (Munns and Tester 2008). 

3.3.5. Stomatal responses 

Although there are few data available on stomatal responses of different plant species, it is 

possible to identify two types of stomatal adaptations to increasing salinity (Flowers et al. 

1997): the guard cells can utilize sodium instead of potassium to achieve their normal 

regulation of turgor (Ashraf 1994), or the ionic selectivity of the guard cells that use 

potassium and are capable of limiting the sodium intake (Robinson et al. 1997). This 

mechanism may be very important in nonsecretory halophytes that lack secretion 

mechanisms, and it may therefore be of particular interest as a potential contributor to the 

development of salt tolerance in crops. Sodium can substitute for potassium in the stomatal 

mechanism (Flowers and Colmer 2008). In Suaeda maritima, sodium is the major cation 

under salinity in the guard cells of closed stomata (Flowers et al. 1989). Stomatal regulation 

by sodium provides a vital regulatory mechanism for the control of excessive salt 

translocation in the shoot, when a plant capacity to compartmentalize increases. In 

glycophytes, accumulation of sodium ions damages the stomatal function, and this disruption 

supports their lack of survival under saline conditions (Robinson et al. 1997). 

4. REACTIVE OXYGEN SPECIES AND ANTIOXIDATIVE DEFENSE SYSTEMS IN 

PLANTS GROWING UNDER SALT STRESS 

4.1. Generation of ROS and oxidative stress 
Like all aerobes, plants use O2 as terminal electron acceptor. At ambient temperature, one-

step full reduction of O2 to H2O could proceed very slowly due to the requirement of high 

activation energy. When oxygen is exposed to high-energy or electron-transfer chemical 

reactions, it gets converted to various highly reactive chemical forms collectively known as 

reactive oxygen species (ROS). Although, it has been shown that some of the ROS may 

function as important signalling molecules that alter gene expression and modulate the 

activity of specific defense proteins, all ROS are extremely harmful to organisms at high 

concentrations. In plants, ROS are continuously produced by the inevitable leakage of 
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electrons on to molecular oxygen from the electron transport activities of chloroplast, 

mitochondria, and plasma membrane (Pinto et al. 2003), or as a byproduct of various 

metabolic pathways such as respiration and photosynthesis (Apel and Hirt 2004). These ROS 

include highly reactive species such as superoxide anion (O2
•−), hydroxyl radical (•OH), 

hydrogen peroxide (H2O2), singlet oxygen (1O2) which disrupt the homeostasis of the 

organism by oxidatively damaging membrane lipids, proteins, chlorophylls, and nucleic acids 

(Sharma and Dubey 2007; Konieczny et al. 2008; Maheshwari and Dubey 2009). 
 

In its ground state, molecular O2 is relatively unreactive due to the presence of two unpaired 

electrons having parallel spin, which makes it paramagnetic (Apel and Hirt 2004). Activation 

of O2 may occur by two different mechanisms: monovalent reduction or absorption of 

sufficient energy to reverse the spin on one of the unpaired electrons. The stepwise 

monovalent reduction of O2 leads to the formation of O2
•−, H2O2, and •OH, whereas energy 

transfer to O2 leads to the formation of 1O2. Singlet oxygen is a highly destructive ROS, 

which reacts with most of the biological molecules at near diffusion-controlled rates (Foyer 

and Harbinson 1994). It is much more reactive toward organic molecules and can last for 4 

μs in water and 100 μs in a nonpolar environment (Foyer and Harbinson 1994). O2
•− is 

produced if one electron is added to ground state oxygen. O2
•− is a moderately reactive, short-

lived ROS with a half-life of approx. 2-4 μs. H2O2 is produced in the SOD-catalyzed 

disproportionation of O2
•−, or from the reduction of O2

•− by AsA, manganese ions, or 

ferredoxin (Hideg 1997). The H2O2 is one of the major and the most stable ROS that regulates 

basic acclimatization, defense, and developmental processes in plants (Slesak et al. 2007). It 

has been shown to act as a signal transduction molecule in several developmental processes. 

Nevertheless, at high concentrations, it causes oxidative stress marked by increased lipid 

peroxidation and the alteration of membrane permeability (Imlay 2003). The main source of 
•OH in biological systems is the decomposition of H2O2 in the Haber–Weiss reaction. This 

reaction is enhanced by the presence of a transition metal, such as Fe2+ (Fenton reaction) 

(Hideg 1997). •OH is the most reactive among all ROS. •OH can potentially react with all 

biological molecules, can initiate self-perpetuating lipid peroxidation, and, because cells have 

no enzymatic mechanism to eliminate this highly reactive ROS, its excess production would 

eventually lead to cell death (Pinto et al. 2003). •OH interacts with all biological molecules 

and causes subsequent cellular damages such as lipid peroxidation, protein damage, and 

membrane destruction (Foyer et al. 1997). The well-known reactivity of H2O2 is not due to its 
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reactivity per se, but due to the formation of highly reactive •OH, which is strong oxidizing 

agent, and is formed in the presence of metal reductants (Boo and Jung 1999). The 

production of ROS under normal growth conditions in cells is low (240 μM s−1 O2
•− and a 

steady state level of 0.5 μM H2O2 in chloroplasts) (Polle 2001). However, the various 

stressful conditions of the environment that disrupt the cellular homeostasis enhance the 

production of ROS (up to 720 μM s−1 O2
•− and a steady state level of 5–15 μM H2O2) 

(Polle 2001). When the level of ROS exceeds the defense mechanisms, a cell is said to be in a 

state of “oxidative stress.” Oxidative stress is defined as a shift of the balance between 

prooxidative and antioxidative reactions in favour of the former. There is enhanced 

production of ROS in plants growing under various abiotic stresses such as drought, salinity, 

extremes of temperature, excessive levels of metals, anaerobiosis, gaseous pollutants, and 

UV-B radiation. The enhanced level of these ROS causes oxidative damage to biomolecules 

such as membrane lipids, proteins, enzymes, nucleic acids, chloroplast pigments, etc. (Verma 

and Dubey 2003; Sharma and Dubey 2007; Maheshwari and Dubey 2009). 

4.1.1. Lipid peroxidation 

Lipid peroxidation is a normal metabolic process associated with the developmental 

processes of plants, including the juvenile stage of growth, the production of odor volatiles, 

senescence, and the formation of compounds like jasmonic acid under normal aerobic 

conditions (Anderson 1995). Both free radicals as well as enzymes can lead to the initiation 

of lipid peroxidation in both cellular and organellar membranes. Increased peroxidation 

(degradation) of lipids has been reported in plants growing under salt stressful conditions 

(Tanou et al. 2009). Increase in lipid peroxidation under this stresses parallels with the 

increased production of ROS. 

 

Lipid peroxidation, in both cellular and organellar membranes, takes place when above-

threshold ROS levels are reached, thereby not only directly affecting normal cellular 

functioning, but also aggravating the oxidative stress through production of lipid-derived 

radicals (Montillet et al. 2005). The level of lipid peroxidation has been widely used as an 

indicator of free radical mediated damage to cell membranes under stressful conditions. 

Malondialdehyde (MDA) is one of the final products of the peroxidation of unsaturated fatty 

acids in phospholipids and is responsible for cell membrane damage (Halliwell and 

Gutteridge 1985).  
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The polyunsaturated fatty acids (PUFA) present in membrane phospholipids are particularly 

sensitive to attack by •OH and other oxidants. When PUFA in biomembranes are peroxidized, 

a great diversity of aldehydes is formed, some of which are highly reactive. The peroxidation 

of PUFA by ROS attack can lead to chain breakage and thereby increase in membrane 

fluidity and permeability. Phospholipids are essential components of the membrane that 

surrounds the cell as well as other cellular structures, such as nucleus and mitochondria, and 

therefore damage to phospholipids can affect the viability of the cells (Woessmann et al. 

1999). There are two common sites of oxygen free radical attack on the phospholipid 

molecules—the unsaturated (double) bond between two carbon atoms that can be easily 

obtained in chemical reaction and interaction with other substances and the ester linkage 

between glycerol and the fatty acid. It has been suggested that decrease in cell membrane 

stability or increase in membrane permeability reflects the extent of lipid peroxidation caused 

by ROS (Sairam et al. 2002). 

4.1.2. Protein modification 

The attack of ROS on proteins results in the site-specific amino acid modification, 

fragmentation of the peptide chain, aggregation of cross-linked reaction products, altered 

electric charge, and increased susceptibility of proteins to proteolysis. ROS may cause the 

modification of proteins in a variety of ways, some are direct and others indirect. Direct 

modification involves modulation of a protein’s activity through nitrosylation, carbonylation, 

disulfide bond formation, and glutathionylation. Proteins can be modified indirectly by 

conjugation with the breakdown products of fatty acid peroxidation (Yamauchi et al. 2008). 

As a consequence of excessive ROS production, tissues injured by oxidative stress generally 

contain the increased concentrations of carbonylated proteins (Dean et al. 1993). The 

enhanced modification of proteins has been reported in plants under various stresses (Sharma 

and Dubey 2007; Maheshwari and Dubey 2009). The amino acids in a peptide differ in their 

susceptibility to attack by ROS and the various forms of ROS differ in their potential 

reactivity. •OH and alkoxyl radicals are mainly involved in the oxidation of proteins. Sulfur-

containing amino acids and thiol groups specifically are very susceptible sites for attack by 

ROS. Activated oxygen can abstract an H atom from cysteine residues to form a thiyl radical 

that will cross-link to a second thiyl radical to form a disulfide bridge.  

4.1.3. DNA damage 

DNA is cell’s genetic material and any damage to the DNA can result in changes (i.e., 

mutation) in the encoded proteins, which may lead to malfunctions or the complete 

inactivation of the encoded proteins. Thus, it is essential for the viability of cell that the DNA 
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remains intact. ROS are a major source of DNA damage (Imlay and Linn 1986) and cause 

strand breaks, removal of nucleotides, and a variety of modifications in the organic bases of 

the nucleotides. Changes in the nucleotides of one strand can result in mismatches with the 

nucleotides in the other strand, yielding subsequent mutations. Although cells have developed 

repair mechanisms to correct naturally occurring changes in the DNA, additional or excessive 

changes caused by ROS or other agents can lead to permanent damage to the DNA with 

potentially detrimental effects for the cell (Chen et al. 2002). Mitochondrial and chloroplast 

DNA are more susceptible to oxidative damage than nuclear DNA due to the lack of 

protective protein, histones, and close locations to the ROS-producing systems in the former. 

Enhanced DNA degradation has been observed in plants exposed to various environmental 

stresses such as salinity and metal toxicity. The principle cause of single strand breaks is the 

oxidation of the sugar moiety by the •OH. When •OH attacks either DNA or proteins 

associated with it, DNA protein cross-links are formed. DNA protein cross-links cannot be 

readily repaired and may be lethal if replication or transcription precedes repair. •OH reacts 

with free carbohydrates, such as sugars, and polyols (Smirnoff and Cumbes 1989). The 

oxidation of sugars with •OH often releases formic acid as the main breakdown product.  

4.2. Antioxidative defense system in plants 

The balance between production and quenching of ROS may be perturbed by a number of 

adverse environmental factors, giving rise to rapid increases in intracellular ROS levels 

(Noctor et al. 2002; Pitzschke and Hirt 2006). The accumulation of ROS during abiotic 

stresses induces oxidative damage to lipids, proteins, and nucleic acids. In order to avoid the 

oxidative damage, higher plants possess a complex antioxidative defense system comprising 

of nonenzymatic and enzymatic components. In plant cells, specific ROS-producing and 

scavenging systems are found in different organelles such as chloroplasts, mitochondria, and 

peroxisomes, and the ROS-scavenging pathways from different cellular compartments are 

coordinated (Pang and Wang 2008). Plants have the capability to scavenge or detoxify ROS 

by producing different types of antioxidants. Antioxidants can generally be categorized into 

two different types: enzymatic and non-enzymatic compounds. Enzymatic antioxidants 

include superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), 

monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and 

glutathione reductase (GR). The most commonly known nonenzymatic antioxidants are 

glutathione (reduced form, GSH), ascorbate (reduced form, AsA), carotenoids, and 

tocopherols (Apel and Hirt 2004; Ashraf 2009). 

4.2.1. Enzymatic defense system 
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The enzymatic components of the antioxidative defense system comprise several antioxidant 

enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase  

(GPX), enzymes of ascorbate-glutathione (AsA-GSH) cycle: ascorbate peroxidase (APX), 

monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and 

glutathione reductase (GR) (Noctor and Foyer 1998). These enzymes operate in different 

subcellular compartments and respond in concert when cells are exposed to oxidative stress.  

4.2.1.1. Superoxide dismutase 

The enzyme SOD belongs to the group of metalloenzymes and catalyzes the 

disproportionation of O2
•− to O2 and H2O2. Within the cell, SOD constitutes the first line of 

defense against ROS (Alscher et al. 2002). This enzyme neutralizes the very reactive O2
•− 

produced in the different compartments of plant cells into O2 and H2O2 with the rate 104 

times faster than the spontaneous dismutation reaction. Since SOD is present in all aerobic 

organisms and in most of the subcellular compartments that generate activated oxygen, it has 

been assumed that SOD has a central role in defense against oxidative stress. While all 

compartments of the cell are possible sites for O2
•− formation, chloroplasts, mitochondria, and 

peroxisomes are thought to be the most important generators of ROS (Alscher et al. 2002).  

4.2.1.2. Catalase 

Catalase is a tetrameric, heme-containing enzyme found in all aerobic organisms and 

catalyzes the dismutation of H2O2 into water and oxygen. H2O2 has been implicated in many 

stress conditions. In plants, CAT scavenges H2O2 generated during mitochondrial electron 

transport, β-oxidation of fatty acids, and, most importantly, during photorespiratory oxidation 

(Scandalios et al. 1997). CAT is unique among H2O2 degrading enzymes as it degrades H2O2 

without consuming cellular reducing equivalents. Therefore, when cells are stressed for 

energy and are rapidly generating H2O2 through catabolic processes, H2O2 is degraded by 

CAT in an energy efficient manner. Abiotic stresses cause either the enhancement or 

depletion of CAT activity (Sharma and Dubey 2007; Noreen and Ashraf 2009). The 

properties of CAT suggest that the enzyme is inefficient in removing low concentration of 

H2O2.  

4.2.1.3. Enzymes of Ascorbate–Glutathione cycle 

Efficient scavenging/destruction of ROS generated during abiotic stresses require the action 

of several antioxidant enzymes. The AsA–GSH cycle, also referred to as Halliwell–Asada 

pathway, present in at least four different subcellular locations including the cytosol, 

chloroplast, mitochondria, and peroxisomes, scavenges H2O2. The AsA–GSH cycle involves 

successive oxidation and reduction of AsA, GSH, and NADPH catalyzed by the enzymes 
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APX, MDHAR, DHAR, and GR. APX uses two molecules of AsA to reduce H2O2 to water 

with a concomitant generation of two molecules of MDHA. Many workers have reported 

enhanced expression of APX in response to abiotic stresses such as drought, salinity, heat, 

chilling, metal toxicity, anaerobiosis, UV irradiation, gaseous pollutants, etc. (Sharma and 

Dubey 2007; Han et al. 2009; Maheshwari and Dubey 2009).  

 

In plant cells, AsA is a major antioxidant that is part of the AsA–GSH cycle. MDHAR, the 

enzymatic component of this cycle, is involved in the regeneration of reduced AsA. MDHA 

radical produced in APX catalyzed reaction has a short lifetime and if not rapidly reduced, it 

disproportionates to AsA and DHA (Ushimaru et al. 1997). Within the cell, such as at the 

plasmalemma or at the thylakoidmembrane, MDHA can be reduced directly to AsA. The 

electron donor for MDHA reduction may be b-type cytochrome, reduced ferredoxin, or 

NAD(P)H. The reaction is catalyzed by the enzyme MDHAR, which is found in several 

cellular compartments (Miyake and Asada 1994). Despite the possibility of enzymic and 

nonenzymic regeneration of AsA directly from MDHA, some DHA is always produced when 

AsA is oxidized in leaves and other tissues. DHA is reduced to AsA by the action of DHAR 

using GSH as the reducing substrate (Ushimaru et al. 1997). DHAR is a key component of 

the AsA recycling system. Reaction catalyzed by DHAR generates GSSG that in turn gets 

rereduced to GSH using NADPH in a reaction catalyzed by enzyme GR. GR is a NAD(P)H-

dependent enzyme ubiquitously present in mesophyll cells. Although it is located in 

chloroplasts, cytosol, and mitochondria, around 80% of GR activity in photosynthetic tissues 

is accounted for by chloroplastic isoforms (Edwards et al. 1990). Several authors have 

reported the increased activity of this enzyme under abiotic stresses (Sharma and Dubey 

2007; Yoshida et al. 2006; Maheshwari and Dubey 2009).  

5. GRAFTING AS A WAY TO ALLEVIATE SALT-INDUCED DAMAGE AND 

RAISE THE PLANT SALT TOLERANCE 

Numerous attempts have been made to improve the salt tolerance of crops by traditional 

breeding programmes. However, commercial success has been very limited due to the 

complexity of the trait: salt tolerance is complex genetically and physiologically (Flowers, 

2004). At present, major efforts are being directed towards the genetic transformation of 

plants in order to raise their tolerance (Borsani et al. 2003) and in spite of the complexity of 

the trait, the transfer of a single gene or a few genes has led to claims of improvement in salt 

tolerance, such as occurs with the expression of some genes involved in the control of Na+ 

transport (Zhang and Blumwald 2001). However, the nature of the genetically complex 
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mechanisms of abiotic stress tolerance, and potential detrimental side effects, make this task 

extremely difficult (Wang et al. 2003; Flowers 2004). Solving a problem as complex as the 

profitable use of saline water in irrigated agriculture requires more than one strategy. In 

addition to tolerant cultivars, several cultural practices, each contributing to a small extent to 

allow plants to withstand better the deleterious effects of salt, needs to be applied (Cuartero 

and Fernandez-Muňoz 1999).  

 

One environment-friendly technique for avoiding or reducing losses in production caused by 

salinity in high-yielding genotypes belonging to Solanaceae and Cucurbitaceae families 

would be to graft them onto rootstocks capable of ameliorating salt-induced damage to the 

shoot (Santa-Cruz et al. 2002; Fernández-García et al. 2002, 2004; Estaň et al. 2005; Colla et 

al. 2005, 2006a,b; He et al. 2009; Yetisir and Uygur 2010; Zhen et al. 2010). This strategy 

could also enable plant breeder to combine desired shoot characteristic with good root 

characteristic (Zijlstra et al. 1994). Proposed explanations for grafting-induced salt tolerance 

are: (1) higher accumulation of proline and sugar in the leaves (Ruiz et al. 2005); (2) higher 

antioxidant capacity in the leaves (López-Gómez et al. 2007); (3) lower accumulation of Na+ 

and/or Cl− in the leaves (Estaň et al. 2005; Zhu et al. 2008a,b).  

5.1. Mechanisms of salt tolerance in grafted plants 

5.1.1. Morphological root characteristics 

Root characteristics which may play an active role in ions and water uptake are root length 

and density (Krasilnikoff et al. 2003), number of root hairs and their length and hence their 

surface area (Dvoralai and Jens, 1999). The enhanced salt tolerance of grafted vegetables has 

often been associated with the root system. In fact, the root systems are the most critical parts 

of the plant faced with soil-related stress factors such as salinity. Therefore, root 

characteristics are the main reason for the alleviation of deleterious effect of salt stress on the 

shoot growth. 

5.1.2. Physiological and biochemical mechanisms 

High salt concentrations cause ion imbalance, ion toxicity, and hyperosmotic stress in plants. 

As a consequence of these primary effects, secondary stresses such as oxidative damage often 

occur (Zhu 2001a). Grafted plants develop numerous physiological and biochemical 

mechanisms to cope with salt stress. These strategies include (i) salt exclusion in the shoot 

and retention of salt ions in the root, (ii) better maintenance of potassium homeostasis, (iii) 

compartmentation of salt ions in the vacuole, accumulation of compatible solutes and 
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osmolytes in the cytosol, (iv) activation of an antioxidant defense system, and (v) induction 

of hormonesmediated changes in plant growth. 

5.1.2.1. Salt exclusion in the shoot and retention of salt ions in the root 

The most common effect of soil salinity is the growth inhibition due to direct Na+ and Cl− 

toxicity at biochemical level. For some plants, particularly woody perennials such as citrus 

and grapevines, Na+ is retained in the woody roots and stems, while Cl− is accumulated in the 

shoot and causes the most damage to the plant (Flowers 1988). However, for many plants, 

including vegetables such as cucumber, melon, watermelon, tomato, and eggplant, Na+ is the 

primary cause of ion-specific damage (Tester and Davenport 2003; Varlagas et al. 2010). 

Plants grafted onto appropriate rootstocks restricted the transport of Na+ from root to shoot 

(Estaň et al. 2005; Zhu et al. 2008a). 

 
Salt tolerance mechanisms can occur in a wide range of organizational levels from the  

cellular level (e.g., compartmentation of Na+ within cells) to the whole plant (e.g., exclusion 

of Na+ from the plant and exclusion of Na+ from the shoot) (Tester and Davenport 2003; 

Møller et al. 2009). The enhanced salt tolerance of grafted vegetables has often been 

associated with lower Na+ and/or Cl− contents in the shoot. Apart from the level of Na+ in the 

shoot, another component of plant salinity tolerance is the capability of the tissue to tolerate 

Na+ (Munns and Tester 2008). Tissue tolerance to Na+ involves the storage of Na+ in 

vacuoles, which can protect cytosolic enzymes from the toxic action (Apse et al. 1999). 

Electrochemical H+ gradients, generated by H+-pumps at the plasma membrane (H+-ATPase) 

and the tonoplast (H+-ATPase,H+-PPase), provide the energy used by the plasma membrane- 

and tonoplast-bound Na+/H+ antiporters to couple the passive movement of H+ to the active 

movement of Na+ out of the cell and into the vacuole, respectively (Blumwald 1987). This 

mechanism suggests that the roots of grafted plants have a higher capacity for vacuolar Na+ 

sequestration (Chen et al. 2008). 

5.1.2.2. Better maintenance of potassium homeostasis 

The metabolic toxicity of Na+ is largely a result of its capability to compete with K+ for 

binding sites essential for cellular function. More than 50 enzymes are activated by K+, and 

Na+ cannot be used as a substitute in this role (Bhandal and Malik 1988). It should be 

emphasized that a decrease in the K+/Na+ may result in a deficiency of K+. Therefore, K+ 

homeostasis is an important factor in salt tolerance (Munns and Tester 2008). Grafted plants 

have a higher K+ content which seems to relate to the higher salt tolerance compared with 
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self-grafted plants (Zhu et al. 2008a; Huang et al. 2009a). The salt tolerance of grafted tomato 

plants was associated with xylem K+ but not Na+ (Albacete et al. 2009). 

5.1.2.3. Accumulation of compatible solutes and osmolytes 

Plants need to maintain internal water potential below that of the soil in order to maintain 

turgor and water uptake for growth. This requires an increase in osmotica either through 

uptake of inorganic ions or synthesis of metabolically compatible solutes. The compounds 

that most commonly accumulate include sucrose, proline, and glycine betaine (Munns and 

Tester 2008). Unlike inorganic, inorganic solutes such as Na+ and Cl− ions, however, these 

organic solutes are not harmful to enzymes and other cellular structures even at high 

concentrations. They are often referred to as compatible osmolytes (Zhu 2001b). At high 

concentrations, compatible solutes function in osmotic adjustment. The high concentrations 

of compatible osmolytes accumulate in the cytosol and organelles to balance the osmotic 

pressure of the ions in the vacuole (Munns and Tester 2008). In addition, data suggest that an 

increased amount of compatible osmolytes may protect plants by scavenging oxygenfree 

radicals caused by salt stress (Zhu 2001b; Huang et al. 2009c). 

5.1.2.4. Induction of the antioxidant defense system 

Salt stress reduces stomatal conductance, thereby limiting CO2 supply to the leaf (Apel and 

Hirt 2004). This in turn causes the over-reduction of the photosynthetic electron transport 

chain, resulting in the production of reactive oxygen species (ROS). These ROS are highly 

reactive and can seriously disrupt normal metabolism through oxidative damage to lipids, 

proteins, and nucleic acids (Apel and Hirt 2004). Antioxidants can be used as markers of 

salinity tolerance in grafted vegetables. An efficient antioxidant system is an important factor 

for the enhanced salt tolerance of grafted plants. This is achieved by obtaining higher 

activities of anti-oxidative enzymes and contents of non-enzymatic antioxidants to scavenge 

ROS, thereby reducing oxidative damage. 

6. SOS PATHWAYS IN RELATION TO SALINITY STRESS 

6.1. Electrochemical gradients and fluxes 

The driving force for Na+ into root cells is the combined gradient of voltage and chemical 

activity across the plasma membrane (electrochemical gradient). In a typical plant cell, the 

difference in electrical potential between the cytoplasm and the apoplast (membrane 

potential) is in the order of –120 to –180 mV. According to the Nernst equation, this provides 

a driving force for 100–1000-fold accumulation of Na+ in the cytoplasm.  The combined 

evidence suggests that cytoplasmic Na+ concentrations are generally in the low millimolar 
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range. This is in accordance with the notion that cytoplasmic Na+ concentrations above 100 

mM are toxic due to the detrimental effects of a high Na+ environment to protein stability 

(Serrano et al. 1999) and displacement of K+ from essential co-factor binding sites on K+-

dependent enzymes (Wyn Jones and Pollard 1983). Thus in both low and high salt 

environments, living cells have to balance passive influx of Na+ with Na+ efflux, either across 

the plasma membrane back into the apoplast or across the tonoplast into the vacuole. The 

energy requirement for Na+ efflux is considerable; approximately -5.7 kJ/mol per tenfold 

concentration gradient or per -60 mV of membrane potential. In addition to energy, time is an 

important factor for salt tolerance because the rate of Na+ uptake will determine how quickly 

Na+ reaches toxic levels inside the cell. It is clear then that limiting Na+ influx into root cells 

is a fundamental requisite for plant life in high salt conditions. Balancing Na+ influx with Na+ 

export from the cytoplasm back into the apoplast (also sometimes termed ‘futile cycling’) is 

one way of reducing the Na+ load (Malagoli et al. 2008).  

 

A second strategy for removing Na+ from the cytoplasm is to compartmentalise it in the 

vacuoles. Na+ uptake into the vacuole also requires energy but has a dual benefit in saline 

conditions; it avoids Na+ build-up in the apoplast (Oertli 1968) and enhances the intracellular 

solute potential thereby contributing to turgor adjustment. The importance of Na+ allocation 

into vacuoles is evident in the fact that over-expression of NHX-type vacuolar Na+/H+ 

antiporters, (vacuolar Na+/H+ exchanger, NHX), enhances salt tolerance in plants (Zhang et 

al. 2001). However, the vacuolar Na+ storage as a means to remove Na+ from the cytoplasm 

relies on growth. Only if the vacuolar lumen is constantly enlarged can rapid saturation of 

this mechanism be avoided. Or, putting it the other way round, when the vacuolar storage 

space is exhausted Na+ will accumulate in the cytoplasm, and its toxic effect will slow down 

growth thereby exacerbating the problem. The ability of plants to cope with high Na+ 

concentrations in the soil therefore relies on maintaining a positive balance between the rate 

of growth (enlargement of the vacuolar lumen) and the rate of Na+ uptake across the root 

plasma membrane. Two important points should be taken into considerations:the rate of Na+-

uptake (the size of Na+-influx) is critical for the ability of plants to avoid the build-up of toxic 

Na+ concentrations in the cytoplasm; and the driving force for Na+ uptake into roots is 

directed inward and therefore Na+ uptake can proceed through passive transport. 

6.2. Ion pumps, calcium, and SOS pathways in relation to salinity stress 

The adaptation of plants to a saline environment must be due to some salt-related changes in 

the pattern of gene(s) expression (Foodlad 1997). More than 100 genes were estimated to be 
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expressed when subjected to salt stress (Meyer et al. 1990). There are several reports of 

alterations in protein accumulation due to salinity (Meyer et al. 1990). High salinity stress 

causes an imbalance in sodium ions (Na+) homeostasis, which is maintained by the 

coordinated action of various pumps, ions, Ca2+ sensors, and its downstream interacting 

partners, which ultimately results in the efflux of excess Na+ ions. Certain channels show 

more selectivity to K+ over Na+. These include the K inward-rectifying channel, which 

mediates the influx of K+ upon plasma membrane hyperpolarization and selectively 

accumulates K+ over Na+ ions. The nonspecific cation channel is a voltage-independent 

channel, which acts as a gate for the entry of Na+ into plant cells. Moreover, there is the K+ 

outward-rectifying channel, which opens during the depolarization of the plasma membrane 

and mediates the efflux of K+ and the influx of Na+ ions, leading to Na+ accumulation in the 

cytosol. The vacuolar Na+/H+ exchanger (NHX) helps push excess Na+ ions into vacuoles. 

Na+ extrusion from plant cells is powered by the electrochemical gradient generated by H+-

ATPases, which permit the NHX to couple the passive movement of H+ inside along the 

electrochemical gradient and extrusion of Na+ out of the cytosol. Another pump, the H+/Ca2+ 

antiporter (CAX1), helps in Ca2+ homeostasis (Mahajan et al. 2006a; Zhang et al. 2004; Zhu 

2002). 

 

Calcium is one of the principal candidates for functioning as a central node in the overall 

‘‘signaling web’’ and plays an important role in providing salinity tolerance to plants. High 

salinity leads to increased cytosolic Ca2+, which initiates the stress signal transduction 

pathways for stress tolerance. Ca2+ release may result from the activation of phospholipase C, 

leading to the hydrolysis of phosphatidylinositol bisphosphate to inositol trisphosphate and 

the subsequent release of Ca2+ from intracellular Ca2+ stores. Furthermore, calcium-binding 

proteins (calcium sensors) can provide an additional level of regulation in calcium signaling. 

These sensor proteins recognize and decode the information provided in the calcium 

signatures and relay the information downstream to initiate a phosphorylation cascade, 

leading to regulation of gene expression. Wu et al. (1996) commenced a mutant screen for 

Arabidopsis plants, which were oversensitive to salt stress. As a result of this screen, three 

genes, SOS1, SOS2, and SOS3 (salt overlay sensitive), were identified. The SOS3 gene (also 

known as AtCBL4) encodes a calcineurin B-like protein (CBL, calcium sensors), which is a 

Ca2+-binding protein and senses the change in cytosolic Ca2+ concentration and transduces 

the signal downstream. A loss of function mutation that reduces the Ca2+-binding capacity of 

SOS3 (sos 3–1) renders the mutant hypersensitive to salt (Zhu 2002). SOS2 (AtCIPK24) 
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encodes a novel serine/threonine protein kinase known as the CBL-interacting protein kinase 

(CIPK). SOS3 activates SOS2 protein kinase activity in a calcium-dependent manner 

(Mahajan et al. 2006a). The first target of the SOS3–SOS2 pathway was identified by genetic 

analysis of the sos1 mutant of Arabidopsis. SOS1 is a Na+/H+ antiporter, and the sos1 mutant 

was hypersensitive to salt and showed an impaired osmotic/ ionic balance. Genetic analysis 

confirmed that SOS3, SOS2, and SOS1 function in a common pathway of salt tolerance 

(Mahajan and Tuteja 2005; Zhang et al. 2004; Zhu 2002). The SOS3–SOS2 kinase complex 

was found to phosphorylate SOS1 directly. The SOS pathway also seems to have other 

branches, which help remove excess Na+ ions out of the cell, thereby maintaining cellular ion 

homeostasis. SOS2 also interacts and activates the NHX, resulting in the sequestration of 

excess Na+ ions and pushing it into vacuoles, thereby contributing further to Na+ ion 

homeostasis. Some other calcium-binding proteins, such as calnexin and calmodulin, also 

sense the increased level of calcium and can interact and activate the NHX. CAX1 has been 

identified as an additional target for SOS2 activity, reinstating cytosolic Ca2+ homeostasis. 

This reflects that the components of SOS pathway may cross talk and interact with other 

branching components to maintain cellular ion homeostasis, which helps in salinity tolerance. 
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CHAPTER 2 
 

I. Improved Stomatal Regulation And Ion Partitioning Boosts Salt 

Tolerance In Grafted Melon 

 
ABSTRACT 

Grafted plants are often more tolerant to salinity than nongrafted controls. In order to 

distinguish differential response components in grafted melon (Cucumis melo L.), salt stress 

was imposed on several rootstock–scion combinations in four experiments. The rootstock 

used was an interspecific squash (Cucurbita maxima Duch.× Cucurbita moschate Duch.), 

RS841, combined with two cantaloupe (C. melo var. cantalupensis) cultivars, namely London 

and Brennus, against both self-grafted and nongrafted controls. Physiological, morphological 

and biochemical adaptations to 0, 40 and 80mM NaCl were monitored. Upon salinity, plant 

biomass and leaf area were improved by grafting per se, since self-grafted plants performed 

similarly to the heterografted ones. However, improvements in the exclusion of Na+ and the 

uptake of K+ were due only to the rootstock genotype, since ionic composition was similar in 

self-grafted and nongrafted plants. These results indicate that the favourable effects of 

grafting on plant growth cannot be ascribed to a more efficient exclusion of Na+ or enhanced 

nutrient uptake. On the other hand, growth improvements in both self- and heterografted 

plants were associated with a more efficient control of stomatal functions (changes in 

stomatal index and water relations), which may indicate that the grafting incision may alter 

hormonal signalling between roots and shoots. 

 

Additional keywords: cantaloupe, interspecific rootstock, nutritional imbalance, salt stress, 

water relations. 
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1. INTRODUCTION 

Soil salinisation is limiting the future of agriculture in many areas of the world and the 

improvement of salt tolerance in crops is becoming an imperative of agricultural research. 

Scientists have therefore approached different aspects of salinity related to both soil and plant 

issues (Munns 2002). For the latter, much effort over the last decades has been dedicated to 

understanding the fundamental biology of plant stress adaptation with the ultimate aim of 

identifying key stress tolerance functions (Orsini et al. 2010a). One of the main elements 

that, so far, has not earned enough interest is understanding the role played by the root system 

in conferring tolerance. Under salt stress, toxic, osmotic and nutritional factors deplete plant 

growth. The adoption of tolerant rootstocks in vegetable grafting has been suggested to 

improve plant performances under stress. Grafting results in more efficient water and nutrient 

use, increased yield, extended harvest periods and improved fruit quality (Romero et al. 

1997; Estan et al. 2005). Rootstocks can also influence tolerance to extreme temperature and 

moisture (drought, flooding) and salt stress (Colla et al. 2010). In cucurbits, grafting 

experiences addressed the induction of resistance against disease infestation (Cohen et al. 

2002), low root-zone temperature (Bulder et al. 1990), soil alkalinity (Edelstein et al. 2011) 

and the enhancement of both water and nutrient uptake (Huang et al. 2010). Indications on 

the induction of tolerance to salinity by grafting have been provided in the last decade by 

several authors (Estan et al. 2005; Oztekin et al. 2007; Edelstein et al. 2011), although this 

research was often limited to the evaluation of salt-tolerant genotypes, rather than the 

identification of the main elements reducing the effects of salinity on the shoot. 

Morphological adaptations to salinity in grafted cucurbits have been widely described, mainly 

resulting in more vigorous root systems (Romero et al. 1997; Zhu et al. 2008) and greater 

root : shoot ratios (Colla et al. 2006a; Yang et al. 2006; Yetisir and Uygur 2010; Huang et al. 

2010). However, although the available literature provides excellent guidance about the 

agronomic performance of grafted plants, comprehension of the physiological basis of 

improved tolerance in grafted plants is still unclear, mainly due to a lack of controls in 

experiments (interspecific graftings are often compared with either nongrafted or self-grafted 

plants, but rarely with both of them simultaneously), or to partial coverage in the analysis of 

the stress factors (rarely taking into consideration the nutritional elements of the stress). This 

paper aims to identify the functional morphological and physiological responses to salinity 

that are most responsible for the increased tolerance of grafted plants. In this study, particular 

attention is given to the role of the root system in altering stress perception in the shoots. 
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2. MATERIAL AND METHODS 

2.1. Plant growth conditions 

Four independent experiments were conducted in order to compare the effect of grafting on 

the response of melon (Cucumis melo L.) to salinity. From a preliminary screening, two 

melon scions, Brennus (C. melo, Zöldségtermesztési Kutató Intézet (ZKI), Kecskemét, 

Hungary; salt-sensitive) and London (C. melo, Nunhems Bayer Vegetables, Nunhem, The 

Netherlands; salt tolerant), were selected and combined with an interspecific squash rootstock 

of Cucurbita maxima Duch.× Cucurbita moschate Duch., namely ‘RS841 improved’ 

(Monsanto, St Louis, MO, USA; salt-tolerant). Six grafting combinations were assessed for 

their response to salinity: nongrafted (either London or Brennus), self-grafted (London–

London or Brennus–Brennus) or interspecific grafting (London–RS841 or Brennus–RS841). 

 

Seeds of the rootstock and scions were sown in trays filled with peat moss and when the 

rootstock seedlings reached at least one true leaf, and scion seedlings presented one or two 

true leaves, the grafting was performed and plants were then incubated for 1 week. The one-

cotyledon splice grafting technique was used and plants were grown in soilless systems, 

watered with a nutrient solution with the following composition: 16.5mM NO3
–, 1mM NH4

+, 

1.50mM H2PO4
–, 1.50mM SO4

2–, 7.0mM K+, 5.0mM Ca2+, 1.5mM Mg+, 15mM Fe2+, 10mM 

Mn2+, 25 mM B+, 5.0 mM Zn2+, 0.5 mM Cu2+ and 0.5 mM Mo+. Salinity was supplied by 

adding 0 (2.55 dS m–1), 40 (5.50 dS m–1) or 80 (7.10 dS m–1) mM NaCl in the nutrient 

solution. The experimental protocols were as follows: 

Experiment 1  

Experiment 1 was conducted at the research station of Bologna University (44 ͦ 30ʹ 54ʺ N, 11 ͦ 

24ʹ 24ʺ E, 39m above sea level (a.s.l.)), in an experimental glasshouse under controlled 

conditions (maximum temperature, 25 ͦ C; minimum temperature, 18 ͦ C; relative humidity 

(RH), 60%). Seedlings were transplanted into 5-L pots filled with perlite: vermiculite (1 : 1, v 

: v). Seedlings were irrigated with nutrient solution in a closed-loop soilless system and, 

starting from 10 days after transplanting, salt stress was applied. At 15 days after salt supply 

(DAS) leaf gas exchange, water potential and overnight plant water loss (WL) measurements 

were performed. On the same day, samples for stomatal morphology determinations were 

also collected. Destructive measurements for biometric determinations were performed at 30 

DAS. The experimental design was a strip block with grafting combinations within the strip 

and the salt treatments in the main plots. For each treatment, six replicates (individual plant 

pots) were considered. 
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Experiment 2  

Experiment 2 was conducted at the experimental station of Corvinus University of Budapest 

(47 ͦ 29ʹ 09ʺ N, 19 ͦ 03ʹ 28ʺ E, 106m a.s.l.). Plants were grown in 1-L pots, filled with perlite : 

vermiculite (1 : 1, v : v) in a growth chamber under controlled environmental conditions (12 

h light and 22 ͦC, 500 mmol m–2 s–1 from cool white fluorescent bulbs, and 12 h dark and 18 ͦ 

C; RH 75%). At 14 days after transplanting, salt stress was imposed. At 10 DAS, leaf gas 

exchange and WL measurements were performed. The experiment was then closed at 15 

DAS and plants were harvested for biometric determination. The experimental design was a 

strip block with grafting combinations within the strip and the salt treatments in the main 

plots. For each treatment, three replicates were considered.  

Experiment 3  

Experiment 3 was conducted at the Bologna University experimental station under the same 

conditions as Experiment 1. Salt stress treatments were applied when plants were 2 months 

old, and destructive measurements for stomatal morphology and other plant biometric 

determinations were performed at 20 DAS. The experimental design was a strip block with 

grafting combinations within the strip and the salt treatments in the main plots. For each 

treatment, six replicates were considered. 

Experiment 4  

Experiment 4 was conducted at the Faculty of Agriculture, Ege University of Izmir, Turkey 

(38 ͦ 27ʹ 16ʺ N, 27 ͦ 13ʹ 17ʺ E, 33m a.s.l.) in an experimental greenhouse (maximum 

temperature, 33.3 ͦC; minimum temperature, 9.9 ͦC; maximum RH, 88.8%; minimum RH, 

34.4%). Plants were grown in 9-L pots filled with perlite. At 16 days after transplanting, salt 

stress was imposed. The experiment was then closed at 60 DAS and plants were harvested for 

biometric determination. The experimental design was a strip block with grafting 

combinations within the strip and the salt treatments in the main plots. For each treatment, 

three replicates were considered. 

2.2. Measurements 

A summary table showing dates of all measurements performed is shown in Table S1, 

available as Supplementary Material to this paper. 

2.2.1. Plant growth measurements 

Plant vegetative growth measurements were performed in all experiments. Morphological 

determinations included plant FW and DW (after drying at 60 ͦC), root : shoot (R : S) ratio on 

a DW basis and total leaf area (LA). LA was measured on digital images by Image J 

processing software (Orsini et al. 2011). All measurements were on three replicates per plot. 
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2.2.2. Plant water relations 

WL determination was performed in Experiments 1 and 2. At 15 DAS, three plant pots for 

each treatment were sealed with a plastic film to prevent water loss from the surface, leaving 

the shoot protruding from the film. Before sealing, plants were rewatered to pot capacity with 

water (control), or water plus 40 or 80mM NaCl. Each plant was then placed on an electronic 

balance under glasshouse conditions and the weight loss was measured after 24 h. WL values 

were normalised respect to the whole-plant DW taken at the end of the measurements (Orsini 

et al. 2012). Total leaf water potential (Ψw) and osmotic potential (Ψp) were determined in 

Experiments 1 and 3 at 15 DAS with a dewpoint potentiometer (WP4, Decagon Devices, 

Pullman, WA, USA). The Yp was estimated on frozen and thawed leaf samples. Relative 

water content (RWC) was determined in Experiments 1 and 3, calculated as showen in Eqn 1: 

 

RWC (%) = (FM –DM)/(TM- DM)×100,                                                                                (1) 

 

where FM, DM and TM are the fresh, dry and turgid masses, respectively. Leaf saturated 

weight was determined after leaf immersion in distilled water for 24 h (Orsini et al. 2010a). 

2.2.3. Stomatal size and index 

Stomatal features were measured on the abaxial surface of the fully expanded fourth leaf 

from the apex of each plant in Experiments 1–3. Leaf surface imprints were obtained from 

the middle portion of the blade between the midrib and the leaf margin (areas in the vicinity 

of large veins were avoided) and laid on the microscope slide with a couple of water drops 

over the tissues. The stomatal count was performed in nine randomly chosen microscopic 

fields on each leaf on three plants per plot and the average was calculated. Each visual field 

consisted of 0.43mm–2 at 40× magnification. All the stomatal cell photographs were taken by 

using an eye-lens microscope (47–4620–9900, Zeiss, Oberkochen, Germany). Width and 

length of the stomata were determined in mm by using Image J processing software (Orsini et 

al. 2011). The stomatal area (SA) was calculated as shown in Eqn 2: 

 

SA = π × (SW × 0.5) × (SL × 0.5),                                                                                            (2) 

 

where SW and SL are the width and length of the stomata (Orsini et al. 2010b). Stomatal and 

epidermal cells in a 1-mm2 unit area were counted to determine the stomatal index, SI. SI was 

estimated according to Eqn 3: 
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SI% = (NS × 100)/ (EC + NS)                                                                                                 (3) 

 

where NS is the number of stomata and EC is the number of epidermal cells (Orsini et al. 

2011). 

2.2.4. Leaf gas exchanges 

According to the instruments available in each research station, leaf gas exchange 

determinations were performed on the first fully expanded young leaf (usually corresponding 

to the 8th to 10th leaf from the top) with either a CIRAS-2 infrared gas analyser (PP Systems, 

Hitchin, UK) (Experiments 1 and 3), a Li-Cor steady-state porometer (LI-1600 M, Li-Cor, 

Lincoln, NE, USA) (Experiment 4) and a LCi photosynthesis measurement system (ADC 

BioScientific Ltd, Hoddesdon, UK) (Experiment 2). Net photosynthesis (A), stomatal 

conductance (gs), and leaf transpiration rate (E) were measured at 15 DAS. All measurements 

were conducted between 1100 hours and 1500 hours on bright sunny days. Instantaneous 

water use efficiency (WUE) was calculated as the A: E ratio (Experiments 1 and 3). 

2.2.5. Ion analysis 

Ion concentration was determined in Experiments 1 and 4. Chemical analyses were carried 

out a DW basis on samples harvested by three randomly selected plants per replicate. For the 

estimation of anions (Cl–,NO3
–, SO4

2– andPO4
–) and cations (Na+, K+, Ca2+, Mg2+ and NH4+), 

200 mg of root, stem and leaf dry matter were suspended in water (50 ml) and homogenised 

with a stirrer at 0.19g for 20 min. Samples were then filtered (grade 589 filter paper, 

Schleicher, Dassel, Germany) and extracts were further filtered through cellulose acetate 

syringe filters (0.20 mm) and analysed by ion chromatography. For quantification of ions and 

cations, the ion chromatography was performed using an ICS-900 Ion Chromatography 

System (Dionex Corporation, Sunnyvale, CA, USA) equipped with a dual piston pump, a, 

autosample (model AS-DV), an isocratic column at ambient temperature and a DS5 

conductivity detector and a suppressor (4 mm). Chromeleon ver. 6.5 chromatography 

management software (Dionex Corporation) was used for system control and data processing. 

A Dionex IonPac AS23 analytical column (4mm × 250 mm) and an AG25 guard column 

(4mm × 50 mm) were used for separation of anions, and a Dionex IonPac CS12A analytical 

column (4mm × 250 mm) and a CG25 guard column (4mm × 50 mm) were used for 

separation of cations. The eluent consisted of 4.5mM sodium carbonate and 0.8mM sodium 

bicarbonate for anions, and mathanphoric acid (20mM) for cations at a flow rate for both 

cations and anions of 1mL min–1. 
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2.2.6. Statistical analysis 

Morphological and physiological data were analysed by ANOVA, performed using SPSS 

software (SPSS Inc., Chicago, IL, USA). Treatment means were compared using Duncan’s 

multiple range tests at the 5% level of significance. Ion composition and partitioning data 

were analysed using principal component analysis (PCA), using StatGraphics software 

(Statpoint Technologies, Inc., Warrenton, VA, USA). ThePCAresults were graphically 

represented by the projection of the first two components. 

3. RESULTS 

3.1. Factors affecting plant response to salinity 

When data from all experiments were pooled and analysed (Table 1), the results highlighted 

that differences in plant features were attributable to the cultivar for the R : S ratio only; the 

grafting for LA, Ψp, SI, gs, E, A and WUE; and salinity for all measured features. 

Experiments did not affect the plants’ response to salinity, except for FW and LA due to the 

different ages of the plants at sampling. The only significant interaction observed was 

grafting_salinity, which was significant for all features under study. Consistently, the 

experimental results were successively analysed by correlating the response to salinity of 

each grafting type (nongrafted, selfgrafted and interspecific). 

3.2. Morphological response 

In order to compare morphological data from the different experiments, FW and LA were 

presented as relative values of their best performances for each grafting combination. A 

general decrease in both plant FW and LA was observed in all plants exposed to salinity, with 

a concomitant increase in the R : S ratio (Fig. 1). Relatively, the decrease in both FW (Fig. 

1a) and LA (Fig. 1b) was lower in interspecific graftings (-31% and -42% respectively upon 

80mM NaCl), but this was also due to suboptimal performances under control conditions. On 

the other hand, smaller changes in the R : S ratio (Fig. 1c) were observed in interspecific 

graftings under 40 (+43%) and 80 (+31%) mM NaCl, mainly due to the higher R : S ratio 

under control conditions (0.15 as compared with the mean value of 0.13 in nongrafted or self-

grafted melons). The R : S ratio was generally higher in Brennus (+14%) compared with 

London (data not shown). 

3.3. Water relations and stomatal response 

Plant water relations were assessed by determination of Ψw and Ψp as well as the RWC (Fig. 

2). Although salinity reduced both Ψw and Ψp in all treatments, Ψw appeared to be more 

negative in nongrafted plants compared with self-grafted plants under control conditions (Fig. 
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2a). On the other hand, Ψp was not significantly affected by grafting combination (Fig. 2b). 

Finally, RWC was lower in nongrafted plants compared with self- or interspecific graftings 

under control conditions or 80mM NaCl (Fig. 2c). At the leaf level, differences in the 

stomatal response to salinity were observed (Fig. 3). Although under control conditions, SI 

(Fig. 3a) was similar in nongrafted and interspecific graftings, and slightly lower in self-

grafted plants, upon 80mM NaCl, the increase in SI was greater in self-grafted plants 

(+132%) compared to interspecific (+83%) and nongrafted plants (+61%). Although SI 

increased with salinity, the specific area of the stomata (Fig. 3b) was reduced. Instantaneous 

measurements of gs under the control treatment revealed higher values in self-grafted and 

interspecific plants (mean value: 553 ± 63.5mMm–2 s–1), compared with nongrafted plants 

(377±73.0mM m–2 s–1; data not shown). Grafting did not affect CO2 assimilation under 

control conditions; when salinity occurred, indeed, the reduction in A was greater in 

nongrafted plants (-68% and -92% at 40 and 80mM NaCl, respectively), compared with 

grafted plants (mean values: -49% and -68% at 40 and 80mMNaCl, respectively; data not 

shown). Transpiration measurements (WL, Fig. 3c) highlighted that although values were 

higher under control conditions (+69%) in nongrafted plants compared with grafted ones, a 

dramatic reduction in transpiration followed the increase in salinity (80mM NaCl), resulting 

in a 94%, 74% and 61% reduction in nongrafted, selfgrafted and interspecific graftings, 

respectively. WUE was preserved under salinity in all grafted plants and was always higher 

than in nongrafted ones (1.5-fold higher under control conditions and up to 9.4-fold higher 

under severe salinity, compared with nongrafted plants; Fig. 4). 

3.4. Ion partitioning 

Saline stress resulted in changes in the main ionic concentrations in all plant organs, with the 

most relevant variations being observed in Cl–, Na+ and K+ concentrations. On a whole-plant 

basis, similar increases in C–content upon salinity were recorded for the grafting 

combinations (a threefold increase under 80mM NaCl compared with control conditions; Fig. 

5). On the other hand, Na+ accumulation was much lower (and was scarcely affected by the 

salinity of the growing medium) in the interspecific grafting (a 2.6-fold increase under 80mM 

NaCl compared with control conditions), compared with nongrafted or self-grafted melon 

plants (a 5.8-fold increase under 80mMNaCl compared with control conditions). However, a 

consistent trend of a reduction of the K+ content (reduced by half under 80mM NaCl) and the 

K+: Na+ ratio under salt stress was observed in all treatments (Fig. 5). In order to properly 

describe the main changes in the ionic composition occurring in the different plant organs as 
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a consequence of salt application, the PCA analysis was conducted, as displayed in Fig. 6. In 

the chart, the size of the bubbles represents the s.d. for each treament. The bigger the bubble, 

the higher the variability. As PCA takes all nine ions at the same time into account, it allows 

us to identify the ions that were more relevant for justifying the behaviour of one grafting 

combination compared with another in response to salinity. The vectors relative to each ion 

represent the positive axes of the effect of that ion. For example, a bubble lying near the 

vector means that the relative ion has a positive effect for identifying the treatment relating to 

the bubble itself. The analysis identified the most relevant ions in each plant organ and 

allowed their representation ona chart. As bubbles move from one salt concentration to 

another, changes in the ionic composition may be identified. For all studied organs, 

variability was significantly explained by five variables, which were Cl–, SO4
2–, K+, Na+ and 

NH4
+ concentrations (root); Cl–, NO3

–, PO4
3–, K+ and Na+ concentrations (stem); and Cl–, 

NO3
–, PO4

3–, K+ and Na+ concentrations (leaf). At glance, although a common ion 

accumulation and partitioning in response to salinity was observed in non- and self-grafted 

plants, interspecific graftings behaved differently. In roots of nongrafted and self-grafted 

plants, 80mM salinity caused accumulation of Cl– (14.1 mg g–1 DW, 2.5-folds higher than the 

control); in the interspecific grafting, the NH4
+ (1.6 mg g–1 DW, 0.6-fold higher) was 

replaced by SO4
2– (8.8 mg g–1 DW, 1.1-fold higher) and Na+ (14.9 mg g–1 DW, 2.3-fold 

higher). Nongrafted and self-grafted plant stems showed similar behaviours: NO3
– (3.0 mg g–

1 DW, 0.2-fold higher) and K+ (26.0 mg g–1 DW, 0.5-fold higher) were replaced by Na+ (39.5 

mg g–1 DW, 6.8-fold higher), Cl– (37.1 mg g–1 DW, 2.6-fold higher) and PO4
3– (8.3 mg g–1 

DW, 1.6-fold higher). In the interspecific grafting, there was a greater increase in Cl– (35.4 

mg g–1 DW, 2.8-fold higher) and PO4
3– (11.5 mg g–1 DW, 2.3-fold higher). In leaves 

belonging to non- and self-grafted plants undergoing 80mMsalt stress, the increased 

concentrations of Cl– (27.9 mg g–1 DW, 4.2-fold higher), Na+ (11.0 mg g–1 DW, 5.8-fold 

higher), PO4
3– (7.1 mg g–1 DW, 2.0-fold higher) and NH4+ (5.7 mg g–1 DW, 1.4-fold higher) 

were associated with a decrease in K+ (23.4 mg g–1 DW, 0.6-fold). In the interspecific 

graftings, changes in Na+ concentration (1.7 mg g–1DW,1.4-fold higher) were negligible, 

whereas K+ appeared to be the most common cation (23.0 mg g–1 DW). 

4. DISCUSSION 

4.1. Grafting improves plant response to salinity 

The grafting-related effect on the development and growth of the scion was probably the 

result of physiological interactions between the scion and rootstock genotypes (Colla et al. 

2010), but also a consequence of grafting per se. Grafting directly affects plant growth, either 
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by an increase inof water and nutrient uptake due to the rootstock’s vigorous root system 

(Romero et al. 1997), the enhanced production of endogenous hormones (Zijlstra et al. 1994) 

and enhancement of scion vigour (Davis et al. 2008). Similarly, for both plant biomass (Fig. 

1a) and leaf area (Fig. 1b), a general reduction was observed under salinity (Badr and Abou 

Hussein 2008). Indeed, canopy size reduction was greater in nongrafted than in grafted 

plants, thus confirming greater stress sensitivity by the former. It is commonly accepted that 

an interdependent relationship exists between roost and shoots: active shoots that ensure a 

sufficient supply of carbohydrates to the roots may stimulate and maintain active root 

functions; the activation of root functions can, in turn, improve shoot growth and physiology 

by supplying a sufficient amount of nutrients, water and phytohormones, thus ensuring 

increased biomass productivity (Orsini et al. 2012). The R : S ratio was always increased by 

salinity (Fig. 1c), although under control conditions, it was highest in the interspecific 

graftings. This was caused both by a lower shoot biomass (Fig. 1a, b) and the greater size of 

the squash root system compared with that of the melon. 

4.2. Grafted plants acclimate to salinity through efficient stomatal adaptation 

In response to salinity, plants combine strategies in order to both preserve tissue hydration 

and maintain growth (Fernández-García et al. 2004). Measurements of water potential and 

RWC (Fig. 2) suggest that all plants under study efficiently recovered from the stress without 

impairing the overall water status. Nevertheless, the observed differences in plant biomass 

indicate that the preservation of plant growth was achieved in different ways among grafting 

combinations. Self-grafted plants showed constitutively lower stomatal size, a critical trait 

involved in salt stress adaptation (Orsini et al. 2010b). The observed reduction in SA 

concurrent to the increase in SI (Fig. 3a, b) represents a functional response to salinity, 

enabling plants to modulate transpirational fluxes more precisely, alleviate salinity symptoms 

and preserve plant performance (Orsini et al. 2011). Although this appeared to be a common 

strategy pursued by all plants under study, self-grafted plants showed the highest increase in 

SI, a strategy that has been claimed to be crucial for rapid acclimation to salinity (Barbieri et 

al. 2012). Stomatal closure under salt stress acts as a defence against desiccation but, at the 

same time, limits CO2 diffusion into the leaf. In other words, the beneficial effects due to a 

reduced transpiration under stress (e.g. re-establishment of tissue turgor or delayed ion 

accumulation) would also limit photosynthesis and consequently yield. Nongrafted plants 

responded strongly to the stress through stomatal closure, but leaf gas exchange was reduced 

to a lower extent in grafted plants. However, self-grafted plants were able to restore 

transpiration more efficiently (Fig. 3c) than nongrafted ones, even under severe salinity, thus 
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confirming the efficiency of the observed stomatal regulation (Yoo et al. 2010). Interestingly, 

although stomatal adaptations to salinity were less evident in interspecific graftings, their 

transpiration scarcely suffered even when salt was applied at the highest concentrations, thus 

preserving WUE (Fig. 4) (He et al. 2009). It should be noted, though, than when transpiration 

and photosynthetic fluxes are preserved upon salinity, ionic accumulation in epigeous plant 

organs may occur (Orsini et al. 2012). However, regardless of the increased water fluxes, a 

reduced Na+ load was observed in interspecific graftings, where the K+ concentration and the 

K+: Na+ ratio were better preserved under salinity (Fig. 5). Apparently, other mechanisms 

were present that Prevented these plants from experiencing excessive salt accumulation. 

4.3. Interspecific graftings may prevent nutritional imbalances upon salinity 

The reduction in plant performances under saline conditions is generally associated with 

osmotic, toxic and nutritional factors. Nonetheless, although the former two have been 

extensively explored in the last 50 years of saline agriculture research, nutritional imbalances 

were hardly considered to be relevant to the whole picture (Maas and Grieve 1987; Vieira 

Santos et al. 2001). Recent indications (De Pascale et al. 2012) associate the detrimental 

effects of salinity to phosphate and potassium imbalances in tomato (Lycopersicon 

esculentum Mill.), thus suggesting that the ability of the plants to cope with nutritional 

deficiency would be a determinant in conferring salt tolerance. The PCA analysis presented 

here (Fig. 6) may link with further considerations in the subject: interspecific graftings 

responded to salinity mainly through Na+ loading in the root system, whereas in the aerial 

parts of the plant, Na+ and Cl– accumulation was negligible, counterbalanced by a functional 

build-up of K+. On the other hand, independent of the grafting method, Na+ and Cl– were 

found abundantly in nongrafted and self-grafted melon plants, indicating that no filtering of 

these salts operated at rootstock level (Edelstein et al. 2011), with concurrent depletion in the 

concentration of important elements such as potassium and nitrate in the stems and phosphate 

and ammonium in the leaves. The capability of a plant to exclude Na+ at the root level may 

vary substantially among species (Orsini et al. 2010b). Consistently, squash and melon root 

systems behaved differently under salinity, the former being an excluder and the latter an 

accumulator. Differential compartmentalisation was thereafter responsible for the ion 

partitioning, as recently suggested in a study of melon plants grafted on squash (Edelstein et 

al. 2011). K+ plays an essential role in the growth of all plants. However, due to its similar 

physicochemical structure to Na+, when this ion is abundant at the transport sites for K+, it 

enters predominantly into the symplast and might cause K+ deficiency. Salinity dominated by 

Na+ and Cl– not only reduces K+ availability, but also its transport and mobility to growing 
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regions of the plant, thus affecting the quality of both vegetative and reproductive organs. 

Moreover, many studies have shown that high concentrations of Na+ and Cl– in the nutrient 

soil solution may depress nutrient ion activities and deplete the K+: Na+ ratio, causing the 

plants to be susceptible to osmotic and specific ion injury as well as to nutritional disorders 

that result in reduced yield and quality. In the experiments described here, under elevated 

NaCl, plant K+ content decreased similarly in both grafted and nongrafted plants (Fig. 5), 

although K+ concentration under salinity was always higher in interspecific graftings (Fig. 5). 

Consequently, there could be a grafting effect on the K+ movement to shoots, as previously 

indicated by Zhu et al. (2008) on cucumber (Cucumis sativus L.), where grafting facilitated 

the transport of K+ to the leaves. In the leaves of interspecific graftings, an increase in the 

concentration of K+ (Fig. 6) occurred under salinity; in stems, this element decreased, 

together with small changes in other ions, e.g. NH4
+ or PO4

3–(Fig. 6), meaning that these 

plants would efficiently contrast osmotic stress and nutritional imbalance, giving priority to 

leaves (Colla et al. 2006b). The similar behaviour of nongrafted and self-grafted plants (Figs 

5 and 6) suggests that grafting per se does not affect ion accumulation and partitioning. 

Indeed, the RS841 rootstock was able to withhold high Na+ content in its tissue, thus 

alleviating Na+ toxicity and raising the overall salt tolerance by both Na+ accumulation in 

roots and facilitating K+ transport to the leaves in order to maintain the K+ : Na+ ratio (Orsini 

et al. 2012). 

5. CONCLUSIONS 

In this study, grafting significantly improved plant performances under salt stress, with 

similar responses, regardless of whether the plant was self-grafted or grafted on interspecific 

rootstock. Interspecific graftings presented reduced stress symptoms as a consequence of the 

efficient salt accumulation at the rootstock level, resulting in lower toxic and osmotic effects 

in the aerial parts. On the other hand, melon plants (either self-grafted or nongrafted) were 

not able to limit ionic fluxes throughout the plant. This resulted in salt accumulation in the 

stems and leaves, leading to marked nutritional imbalances in the same organs. In non-grafted 

plants, the osmotic component of salinity was counteracted by downregulation of the 

physiological functions and plant growth. Self-grafted plants, instead, made functional 

changes at the stomatal level that enabled them to maintain leaf gas exchanges under elevated 

salinity and to restart growth. 
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Table 1. Results of the ANOVA on selected features of plant stress response in four experiments (Experiments 1–4) 

ns, non-significant differences; *, significant differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; ***, significant differences at P ≤ 

0.001;LA, leaf area; R: S ratio, root-to-shoot ratio;Ψw, leaf water potential, Ψp, osmotic potential; SI, stomatal index (Eqn 3); SA, stomatal area 

(Eqn 2); gs, stomatal conductance; E, leaf transpiration rate; A, net photosynthesis; WUE, water use efficiency; Cv, cultivar; Graft, grafting; S, 

salt; Exp, experiment 
  Cv Graft. Salt Exp. CvxG CvxS CvxE GxS GxE SxE CvxGxS CvxGxE CvxSxE CvxGxSxE 

  (Cv) (G) (S) (E)        

FW  (g plant-1) ns ns *** * ns ns ns * ns ns ns ns ns ns 

FW  (%) ns ns *** ns ns ns ns * ns ns ns ns ns ns 

LA  (cm2 plant-1) ns * ** * ns ns ns * ns ns ns ns ns ns 

LA  (%) ns * ** ns ns ns ns * ns ns ns ns ns ns 

R:S ratio  (%DW) * * ** ns ns ns ns * ns ns ns ns ns ns 

Ψw  (MPa) ns ns *** ns ns ns ns * ns ns ns ns ns ns 

Ψπ  (MPa) ns * *** ns ns ns ns * ns ns ns ns ns ns 

RWC  (%) ns ns ** ns ns ns ns * ns ns ns ns ns ns 

SI (%) ns * *** ns ns ns ns ** ns ns ns ns ns ns 

SA (μm2) ns ns ** ns ns ns ns * ns ns ns ns ns ns 

gs (mM m-2 s-1) ns * *** ns ns ns ns ** ns ns ns ns ns ns 

E (mM m-2 s-1) ns * *** ns ns ns ns *** ns ns ns ns ns ns 

A (μM m-2 s-1) ns * *** ns ns ns ns *** ns ns ns ns ns ns 

WUE  (μM CO2 mM-1 H2O) ns * * ns ns ns ns *** ns ns ns ns ns ns 
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Fig. 1. Effect of salt stress (0, 40, and 80mM NaCl) on (a) relative FW, (b) relative leaf area 

(LA) (c) and root : shoot ratio (R : S ratio) in melon plants: nongrafted (black), self-grafted 

(grey) and grafted onto the RS841 rootstock (white). FW and LA are presented as relative 

values of their best performance for each grafting combination. Mean values of two cultivars, 

four experiments and three replicates (n = 24). Bars indicate s.e. and different letters indicate 

significant differences at P ≤ 0.05. 
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Fig. 2. Effect of 15 days of salt stress (0, 40 and 80mM NaCl) on (a) water potential (Ψw), 

(b) osmotic potential (Ψp) and (c) relative water content (RWC) in melon plants: nongrafted 

(black), self-grafted (grey) and grafted onto the RS841 rootstock (white). Mean values of two 

cultivars, two experiments (Experiments 1 and 3) and three replicates (n = 12). Bars indicate 

s.e. and different letters indicate significant differences at P ≤ 0.05. 
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Fig. 3. Effect of 15 days of salt stress (0, 40 and 80mMNaCl) on (a) stomatal index (SI), (b) 

stomatal area (SA) and (c) overnight water loss (WL) in melon plants: nongrafted (black), 

self-grafted (grey) and grafted onto the RS841 rootstock (white). Mean values of two 

cultivars, four experiments and three replicates (n = 24). Bars indicate s.e. and different 

letters indicate significant differences at P ≤ 0.05. 
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Fig. 4. Effect of 15 days of salt stress (0, 40 and 80mMNaCl) on water use efficiency (WUE) 

in melon plants: nongrafted (black), self-grafted (grey) and grafted onto the RS841 rootstock 

(white). Mean values of two cultivars, two experiments (Experiments 1 and 3) and three 

replicates (n = 12). Bars indicate s.e. and different letters indicate significant differences at P 

≤ 0.05. 
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Fig. 5. Effect of salt stress (0, 40 and 80mMNaCl) in the ion concentration of (a) Cl–, (b) Na+ 

and (c) K+, and (d) the K+: Na+ ratio) in melon plants: nongrafted (black), self-grafted (grey) 

and grafted onto the RS841 rootstock (white). Mean values of two cultivars, two experiments 

(Experiments 1 and 4) and three replicates (n = 12). 
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Fig. 6. Principal component analysis (PCA) of the ion distribution in (a) roots, (b) stems and 

(c) leaves upon salt stress (0, 40 and 80mM NaCl), in melon plants: nongrafted (black 

bubbles), self-grafted (grey bubbles, and with interspecific grafting (white bubbles). The 

analysis was performed on results from Experiments 1 and 4. The position of the bubbles was 

determined by the centroid of the sample distribution, and their size was determined by the 

variability within the sample replications. Vectors of the most explanatory ions were 

determined by the functions defined by PCA. 
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CHAPTER 2 

 
II. Ionic Partitioning And Stomatal Regulation Dissecting Functional 

Elements Of The Genotypic Basis Of Salt Stress Adaptation In 

Grafted Melon 

 
ABSTRACT 

Vegetable grafting is commonly claimed to improve crop’s tolerance to biotic and abiotic 

stresses, including salinity. Although the use of inter-specific graftings is relatively common, 

whether the improved salt tolerance should be attributed to the genotypic background rather 

than the grafting per se is a matter of discussion among scientists. It is clear that most of 

published research has to date overlooked the issue, with the mutual presence of self-grafted 

and non-grafted controls resulting to be quite rare within experimental evidences. It was 

recently demonstrated that the genotype of the rootstock and grafting per se are responsible 

respectively for the differential ion accumulation and partitioning as well as to the stomatal 

adaptation to the stress. The present paper contributes to the ongoing discussion with further 

data on the differences associated to salinity response in a range of grafted melon 

combinations. 

 

 

Keywords: vegetable grafting, Cucumis melo L., salt stress, NaCl, ion partitioning, stomata 
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1. INTRODUCTION 

Salinity results in plant downregulation of physiological functions, accumulation of ions in 

vegetative tissues up to toxic concentrations and, more generally, to the overall depletion of 

the crop performances.1 Several researches have confirmed the beneficial role played by the 

adoption of grafting in counteracting the detrimental effect of salinity.2,3,4 To date, grafting is 

a common practice in melon (Cucumis melo L.) cultivation, mainly through the adoption of 

interspecific rootstocks, which are generally selected genotypes of squash (Cucurbita maxima 

Duch x Cucurbita Moschata Duch.). Although these rootstocks have proven to improve 

crop’s performances in presence of biotic5,6 and abiotic4 stresses, whether the beneficial 

effects should be attributed to the rootstock genotype rather than grafting per se is still a 

controversial matter among scientists.  

2. MATERIAL AND METHOD 

In a recent publication,7 the comprehension of the role of grafting in improving the response 

to salinity in melon was addressed. The manuscript reported on the effects associated to 

cultivar, grafting, and salinity over 4 experiments in a range of different environmental 

conditions. As only grafting and salinity presented significant interactions, results from all 

experiments were jointly discussed, thus offering innovative elements for the comprehension 

of the effect of grafting on the plant physiological response to the stress. In the present 

manuscript, additional results obtained from one of the experiments conducted at Bologna 

University, Italy (experiment 1#) 7 are discussed, with the aim of further elucidating how the 

differential stomatal and ionic response observed in self-grafted vs. interspecific grafting may 

lead to similar performances upon salt stress (0, 40, and 80 mM NaCl, starting from 10 Days 

After Transplanting, DAT, and lasting 30 d). Similarly to other experiments presented in the 

manuscript, 2 melon cultivars (namely Brennus, ZKI, Hungary, and London, Nunhems, The 

Netherlands) were used, altogether with a squash rootstock (Rs841, Monsanto, USA). Every 

genotype was used either non-grafted, self-grafted, or grafted on the interspecific squash 

rootstock. However, the peculiarity of this experiment was that also non-grafted and self-

grafted Rs841 plants were included in the trial.  

3. RESULT AND DISCUSSION  

The ANOVA analysis highlighted that the melon scion genotype did not actually affect the 

plant’s response to salinity, with significant differences observed only between plants either 

non-grafted, self-grafted, and interspecific graftings. Fresh biomass production was depleted 

as a consequence to salinity in all grafting combinations, although to a greater extent 7 in non-

grafted plants undergoing 80 mM NaCl. Upon salinization, an increase in Na+:K+ ratio in 
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roots was observed in all grafting combinations under study  (Fig. 1), confirming that, in both 

grafted and non-grafted plants, an increase of Na+ was to be experienced independently from 

the genotype of the root system.4 An explanation of the highest Na+:K+ values observed in all 

salinized root tissue of Rs841 (either non-grafted, self-grafted, or grafted with a melon scion) 

may be found in the consistent lower Na+ loading in the epigeous organs: filtration of Na+ at 

the grafting union level was observed (Fig. 1), although to a limited extent, whereas major 

differences were observed in stems and leaves. In these organs, although negligible changes 

could be detected upon salinity in any of the plants with a Rs841 root system, a general 

increase of the Na+:K+ ratio was recorded in all self- and non-grafted melons. Despite the 

observed changes in Na+ concentrations, it has been suggested that functional response to 

salinity in grafted plants may include K+ accumulation in aboveground organs.8 Nonetheless, 

while salinity imbalanced the Na+:K+ ratio in epigeous tissue of all melon plants (either non- 

or self-grafted), the adaptation to the stress in self-grafted plants was mediated by the tight 

transpirational regulation operated at stomatal level. This is clearly represented by the 

response of the Water Use Efficiency (WUE) to salinity, which was scarcely (Brennus) or not 

(London) affected in self-grafted plants (Fig. 2). Although a similar behavior was observed 

also in interspecific-graftings, it should be noted that the rootstock (Rs841) had very little to 

do with it: WUE was extremely responsive to salinity in both self-grafted and non-grafted 

Rs841 plants (Fig. 2). 

 

Plant preservation of WUE under stressful environments is generally achieved through tight 

stomatal control, which mainly consists in the reduction of water luxury consumption 

observable under non-limiting growing conditions. 9,10 The increased CO2 assimilation per 

unit water used was a consequence of the changes in the stomatal morphology (mainly 

through increase in the stomatal index, SI),11 rather than stomatal closure, which, on the other 

hand, turned out to be the main response to salinity in non-grafted plants.7 Clearly, the 

improved response of grafted plants to salinity followed a binary pathway: signaling 

(possibly mediated by wound-related hormones, i.e., ABA and ethylene) resulted in a 

physiological pre-adaptation to the stress, most efficient when rootstock and scion belonged 

to the same species. On the other hand, the interspecific rootstock efficiently operated as a 

toxic-ions filter, thus resulting in lower accumulation in the epigeous plant organs. 
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Figure 1. Na+:K+ ratio in plant organs (root, grafting union, stems, and leaves) from grafted 

and non-grafted plants of melon (cv Brennus and London) and squash (rootstock Rs841), as 

affected by 0 (black), 40 (gray), and 80 (white) mM NaCl. Mean values ± SE (n = 9). 

Different letters indicate significant differences within grafting combination at P ≤ 0.05. 
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Figure 2. Water Use Efficiency (WUE) in grafted and non-grafted plants of melon (cv 

Brennus and London) and squash (rootstock Rs841), as affected by 0 (black), 40 (gray), and 

80 (white) mM NaCl. Mean values ± SE (n = 9). Different letters indicate significant 

differences within grafting combination at P ≤ 0.05. 
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4.1.2. The graft combinations of Haruki scion against different rootstocks 
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4.1.2.1. Vegetative growth and physiological responses of Haruki scion against different 

rootstocks 

4.1.2.2. The pattern of ion accumulations of Haruki scion against different rootstocks 

4.1.2.3. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

Haruki scion against different rootstocks 

4.1.3. The graft combinations of Kamonium scion against different rootstocks 

4.1.3.1. Vegetative growth and physiological responses of Kamonium scion against different 

rootstocks 

4.1.3.2. The pattern of ion accumulations of Kamonium scion against different rootstocks 

4.1.3.3. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

Kamonium scion against different rootstocks 

5. DISCUSSION 
5.1. SALT TOLERANT INDUCED MECHANISMS BY DIFFERENT ROOTSTOCKS 

AGAINST ONE SCION GENOTYPE 

5.1.1. Salt inclusion mechanism and leaf ion compartmentation of Nerina F1 scion 

5.1.1.1. Vegetative growth response, water status and gas exchange parameters of Nerina 

F1scion 

5.1.1.2. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

Nerina F1scion 

5.1.2 Salt exclusion/inclusion mechanisms and leaf ion compartmentation of Haruki scion 

5.1.2.1. Vegetative growth response, water status and gas exchange parameters of Haruki 

scion 

5.1.2.2. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

Haruki scion 

5.1.3. Salt exclusion mechanism and leaf ion compartmentmentation of Kamonium scion 

5.1.3.1. Vegetative growth response, water status and gas exchange parameters of Kamonium 

scion  

5.1.3.2. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

Kamonium scion 

4. RESULT 

4.2. THE PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF DIFFERENT 

SCION GENOTYPES AGAINST ONE ROOTSTOCK 

4.2.1. The graft combinations of different scion genotypes against Maxifort F1 rootstock 
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4.2.1.1. Vegetative growth and physiological responses of different scion genotypes against 

Maxifort F1 rootstock 

4.2.1.2. The pattern of ion accumulations of different scion genotypes against Maxifort F1 

rootstock 

4.2.1.3. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

different scion genotypes against Maxifort F1 rootstock 

4.2.2. The graft combinations of different scion genotypes against R1 rootstock 

4.2.2.1. Vegetative growth and physiological responses of different scion genotypes against 

R1 rootstock 

4.2.2.2. The pattern of ion accumulations of different scion genotypes against R1 rootstock 

4.2.2.3. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

different scion genotypes against R1 rootstock 

4.2.3. The graft combinations of different scion genotypes against Arnold rootstock 

4.2.3.1. Vegetative growth and physiological of different scion genotypes against Arnold 

rootstock 

4.2.3.2. The pattern of ion accumulations of different scion genotypes against Arnold 

rootstock 

4.2.3.3. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

different scion genotypes against Arnold rootstock 

5. DISCUSSION 

5.2. SALT TOLERANT INDUCED MECHANISMS OF DIFFERENT SCION 

GENOTYPES AGAINST ONE ROOTSTOCK   

5.2.1. Halophytic inclusion mechanism of graft combinations against Maxifort F1 rootstock 

5.2.1.1. Vegetative growth response, water status and gas exchange parameters of graft 

combinations against Maxifort F1 

5.2.1.2. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 

graft combinations against Maxifort F1 

5.2.2. Semi-halophytic shoot genotype and leaf compartmentation mechanism of graft 

combinations against R1 rootstock 

5.2.2.1. Vegetative growth response, water status and gas exchange parameters of graft 

combinations against R1 rootstock 

5.2.2.2. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 
graft combinations against R1 rootstock 
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5.2.3. Leaf compartmentaion and root extrude mechanisms of graft combinations against 

Arnold rootstock 

5.2.3.1. Vegetative growth response, water status and gas exchange parameters of graft 
combinations against Arnold rootstock 

5.2.3.2. Antioxidant enzyme activities, organic solute accumulation and lipid peroxidation of 
graft combinations against Arnold rootstock 

6. CONCLUSION  
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CHAPTER 2 
 

III. Physiological And Biochemical Alteration Modulated By Different 

Rootstock And Scion Genotypes In Tomato Plant Under Salinized 

Condition 

 

ABSTRACT 

A range of contradictory results have been reported in ascription to the positive effect of 

grafting in alleviating the deleterious effect of salt, claiming the role of either rootstock 

characteristics or scion genotypic and/or to the scion-rootstock interaction. Thus, this 

research was carried out in order to assess whether the primary factor that conferring the salt 

tolerance of grafted tomato plants actually belong to rootstock characteristics, scion 

genotypic differences regardless the rootstock character, and/or belong to the scion-rootstock 

interaction. In this research, two main approaches have been used to identify the relative 

abilities of different rootstock genotypes and scion genotypes to modulate the fruit yield and 

plant growth, transpiration rate (E), net assimilation rate (A), leaf water status, accumulation 

of ions in different plant organs, accumulation of fruit organic solutes, and the enzymatic 

antioxidant defence system of tomato fruit. The first approach was depending on identifying 

the main salt defence mechanisms that were induced in the shoot by different rootstock 

genotypes based on rootstock potential to regulate the absorption of ions from saline solution 

and regulate their transportation into shoot in long-term salt stress. The second approach was 

to determine the contribution of rootstock in inducing useful salt tolerance to the shoot 

growth and fruit productivity depending on salt tolerance mechanisms of the shoot genotype. 

Six tomato (Lycopersicon esculentum Mill) genotypes were used: cv. Haruki (HAR), cv. 

Kamonium (KAM), and cv. Nerina F1 (NER) were used as scions and grafted against three 

different tomato rootstock genotypes cv. Maxifort F1 (MAX), cv. Arnold (ARN), and cv. R1 

(R1). Nine scion/rootstock combinations were obtained utilizing the three scion genotypes as 

follows: with Haruki genotype scion (HAR/MAX, HAR/ARN, and HAR/R1); with 

Kamonium scion (KAM/MAX, KAM/ARN, and KAM/R1) and with Nerina F1 scion 

(NER/MAX, NER/ARN, and NER/R1). The grafted plants were grown in environmentally 

controlled conditions and were irrigated by a hydroponic closed system. Three salt 

concentrations were applied in a single step by adding 100 mM NaCl (moderated salinity), 
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200 mM NaCl (high salinity), and 0 salt (control). The result showed that the plant growth 

and root development, the pattern of ions accumulation, and stomatal performance and net 

assimilation rate were significantly affected by scion genotypes and rootstock characters as 

well as the great physiological complexity that was associated by the specific interaction 

between scion and rootstock genotypes. Different rootstocks that have been grafted against 

one scion genotype showed different capacity to extrude and regulate the ion transportation 

into the shoot; and the differential effects induced by different rootstocks in term of 

transpiration rate, net assimilation rate and water use efficiency was closely related to the salt 

ion accumulation by different rootstocks. Additionally, this study pointed out that those 

rootstocks are not relatively salt tolerant and they are not able to donate the resistant to their 

shoots. Besides, the used rootstocks were not able to enhance effectively the activities of 

antioxidant enzymes in the tomato fruit, as in general lower fruit enzymatic activities were 

recorded and high level of H2O2 was accumulated. Thus, all rootstocks failed to achieve high 

productivity and fruit fresh weight was highly reduced even at mild salt. On the other hand, it 

is important to note that the differential patterns of salt ion accumulation that were induced 

by one rootstock genotype against different scions was actually closely associated with scion 

genotype characters. Furhtermore, different scion genotypes exhibited different mechanisms 

of salt resistance. The different responses of shoot in term of transpiration and net 

assimilation rate, WUE, leaf water relation, and fruit antioxidant defence system could be 

attributed to shoot genotypic variation. Additionally, there was low contribution of scion 

genotypes in term of enhancing the fruit enzymatic antioxidant system upon salinized 

condition.  
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1. INTRODUCTION 

Most of the vegetable crops are glycophyte and salt sensitive plant (Shannon and Grieve 

1998). The response of horticultural crop toward salinity varies depending on several factors 

like the surrounding environment, plant development stage, salt concentration and time of 

exposure (Munns 2002). Soils are classified as saline when the electric conductivity (EC) is 

above 4 ds m-1 which is equivalent to approximately 40 mM NaCl and generates an osmotic 

pressure of approximately 0.2 MPa (Munns and Tester 2008). The hyperosmolarity decreases 

the osmotic potential of the soil solution and restrict water uptake by the plant root and causes 

a significant increase in the stomatal resistance and reduction of CO2 photosynthesis 

assimilation rate (Meloni et al. 2003). 

Plant growth responds to salinity in two phases: a rapid osmotic phase that inhibits growth of 

young leaves, and a slower ionic phase that accelerates senescence of mature leaves (Munns 

and Tester 2008). Osmotic effect resulting from salinity may cause disturbances in the water 

balance of the plant, including a reduction of turgor and an inhibition of growth, as well as 

stomatal closure and reduction of photosynthesis. As a result, plants become susceptible to 

osmotic and specific-ion injury as well as to nutritional disorders that may result in reduced 

yield and quality. However, the plant response depends on the salinity level, composition of 

salt, exposed period to salinity, the crop species and cultivars, the growth stage of plants and 

a number of environmental factors (Grattan and Grieve 1999). 

Frequent attempts have been made to raise the salt tolerance of crops either by traditional 

breeding programme or genetic transformation (Cuartero et al. 2006). However, the 

commercial success has been very limited due to the nature of the genetically and 

physiologically complex mechanisms of abiotic stress tolerance, and potential detrimental 

side effect of gene transferring (Wang et al. 2003; Flowers 2004). Even when halophytic 

species exist in a gene pool, as is the case of tomato, the development of salt resistant 

cultivars has been slow (Cuartero and Fernandez-Muňoz 1999). Thus, solving a problem as 

complex as the profitable use of saline water in irrigation require more than one strategy, 

each contributing to small extent to make the plant withstand better the deleterious effects of 

salt.  

One environment friendly technique for reducing losses caused by salinity in fruit crop plant 

of Solanaceae and Cucurbitaceae families would be graft them onto salt tolerant rootstock 

which enable plant breeder to combine desired shoot characteristic with good root features 

(Zijlstra et al. 1994) and capable of ameliorating salt induce damage to the shoot of tomato 

(Santa-Cruz et al. 2002; Fernández-García et al. 2002, 2004; Estaň et al. 2005; Martinez-
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Rodriguez et al. 2008, He et al. 2009), watermelon (Colla et al. 2006a; Goreta et al. 2008; 

Zhu et al. 2008b; Uygur and Yetisir 2009; Yetisir and Uygur 2010), melon (Colla et al. 

2006b), eggplant (Wei et al. 2007), cucumber (Zhu et al. 2008a; Huang et al. 2009a,b,c, 

2010; Zhen et al. 2010). Grafting is considered as a rapid alternative to the relatively-slow 

breeding methodology aimed at increasing fruit quality and as a way to overcome the 

problems caused by irrigation with saline water, grafting of commercial cultivars onto 

selected rootstocks could be a promising tool (Colla et al. 2008; Proietti et al. 2008). Grafting 

can raise the plant salt tolerance by inducing higher accumulation of proline and sugar in the 

leaves (Ruiz et al. 2005), higher antioxidant capacity in the leaves (López-Gómez et al. 

2007), and lower transportation and accumulation of Na and /or Cl in the leaves (Fernández-

García et al. 2004; Estaň et al. 2005; Goreta et al. 2008; Zhu et al. 2008a,b). 

Salt stress reduces stomatal conductance, thereby limiting CO2 supply to the leaf (Apel and 

Hirt 2004). This in turn causes the over-reduction of the photosynthetic electron transport 

chain, resulting in the production of reactive oxygen species (ROS) (Pinheiro et al. 2004) 

such as superoxide anion radical (O2●¯), hydrogen  peroxide  (H2O2), and hydroxyl radical 

(OH¯) (Mittler 2002). Wang et al. (2007) reported that generation of ROS is a common 

feature of plants subject to abiotic stresses. It has been described that under salt stress 

condition ROS production is stimulated increasing the risk of oxidative damage (Hernández 

et al. 2003). These ROS can injure the plant cell when not eliminated in time (Zhang et al. 

2005) as they are highly reactive and can seriously disrupt normal metabolism through 

oxidative damage to lipids, proteins, and nucleic acids (Apel and Hirt 2004). It is well 

documented that the resistance to oxidative stress may be involved in salt stress tolerance 

(Ashraf 2009; Badawi et al. 2004). To prevent or alleviate these damages, plants possess a 

complex antioxidant system to detoxify ROS, including low-molecular mass antioxidants as 

well as antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and 

enzymes involved in the ascorbate–glutathione cycle (Halliwell–Asada cycle) such as 

ascorbate peroxidase (APX), and glutathione reductase (GR) (Foyer and Halliwell 1976). The 

activities of these antioxidant enzymes are increased in response to several abiotic stresses 

such as drought (Jaleel et al. 2007) and salinity (Manivannan et al. 2008). It is believed that a 

simultaneous increase in several components of the antioxidative defence system would be 

necessary in order to obtain an increase in the plant protective mechanisms (Jaleel et al. 

2009). Ruiz-Lozano. (2003) mentioned that antioxidant enzymes play an important role in 

removing ROS when the plants are subject to osmotic stress. Antioxidants can be used as 

markers of salinity tolerance in grafted vegetable such as Cucumis sativus L. (Huang et al. 
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2010; Zhen et al. 2010) and Solanum lycopersicum L. (He et al. 2009; Zhang et al. 2008). 

SOD constitutes the first cellular defence line as it catalyses the conversion of superoxide 

anion radical (O2●¯) and give raise to H2O2 and O2. The activity of CAT enzyme plays a vital 

role in eliminating H2O2 by catalysing H2O2 to H2O and O2 in the mitochondrion and 

microbody (Shi and Zhu 2008). It is known that APX and GR are considered the main 

enzymes involved in ascorbate-glutathione cycle. In this cycle, APX reduces H2O2 to H2O 

and O2 using AsA as a reducing substrate, while GR is required for the generation of AsA 

which is an important antioxidant scavenging ROS directly or indirectly (Asada 1999). 

Tomato (Lycopersicon esculentum Mill.) is considered one of the most prominent 

horticultural crops in the world (Flores et al. 2010). The cultivated area has increased about 

25% during the last 10 years and greenhouse hydroponic production of tomato has become 

economically important (He et al. 2007; FAO 2009). Rus et al. (2001) mentioned that at 50 

mM NaCl, yield reduction of tomato plant was 50% or more in the dry condition of the 

Mediterranean region. The main sources of salinity in hydroponic cultivation are salted 

irrigation water and the long-term circulation of drain solution (Carmassi et al. 2005). 

However, tomato production is today concentrated in semi-arid regions where the saline 

water is frequently used for irrigation. Thus, searching for new strategies to enhance salinity 

tolerance is a critical task to overcome salinity stress on tomato (Asins et al. 2010). Indeed, 

lots of studies directed towards using grafting as a valid strategy for improving tomato yield 

under saline condition (Fernández-García et al. 2004; Estaň et al. 2005). The practical and 

horticultural aspects of grafting technology have been described in several reviews (Lee and 

Oda 2003), but less has been compiled about the physiological implications of the rootstock-

scion interaction as a barriers for the translocation of water and nutrients or the effect of the 

rootstock-scion connection on the morphology, growth, biomass and photosynthesis of the 

grafted plant (Martínez-Ballesta et al. 2010). 

Beyond the productive advantage offered by grafting as a useful tool to enhance plant 

tolerance toward abiotic stress, important contradictory issues have been addressed, which on 

many occasion remained overlooked or conflicted, whether the positive effect of grafting in 

alleviating the deleterious effect of salt and increasing plant tolerance was attributed to 

rootstock characteristics or scion genotypic differences, and/or belong to the scion-rootstock 

interaction. To date, to our knowledge most of the published data for graft tomato growing 

under saline condition have assessed the effect of rootstock on fruit yield and quality and few 

works have been done to show the exchangeable effects of rootstock and/or scion on salinity 

response depending on root system/and or shoot genotype. However, different contradictory 
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results have been obtained in relation to the root system role in the tolerance. Many reports 

mentioned that the use of tolerant rootstocks demonstrated to be a valid strategy in increasing 

salt tolerance of tomato (Fernández-García et al. 2004; Cuartero et al. 2006; Albacete et al. 

2009) and watermelon (Goreta et al. 2008), and cucumber (Huang  et al. 2010; Zhen et al., 

2010). Zhu et al. (2008) recommended that using salt tolerant rootstock in grafting cucumber 

inhibited K+ leakage and Na+ uptake, consequently, a high K+/Na+ ratio remained. Romero et 

al. (1997) reported that root characteristics are the primary element for determining salt 

tolerance of melon plants. Also, many studies mentioned that the alleviated effects of stressed 

grafted plants belonged to the rootstock characteristics (Martinez-Rodriguez et al. 2008; He 

et al. 2009; Zhen et al. 2010). Tomato tolerant rootstock endows the grafted plant with an 

enhanced capacity for potassium homeostasis under salinity, which depends on the 

characteristics of the genotype used as a rootstock (Estaň et al. 2005). Santa-Cruz et al. 

(2001) found an increase in growth and fruit yield when a salt-sensitive tomato cultivar 

‘Moneymaker’ was grafted onto a tolerant rootstock ‘Pera’ as compared to self-grafted plants 

under 50 mM NaCl. Furthermore, Shaterian et al. (2005) reported about the importance of the 

root system in the regulation of salt tolerance in salt-sensitive and tolerant potato genotypes. 

Additionally, Zhu et al. (2006a, b) suggested that the use of rootstock could increase the fruit 

yield of cucumber. A recent work from the same authors on cucumber suggested that the salt 

tolerance of grafted cucumber seedlings is related to the shoot genotype (Zhu et al. 2008a, b). 

Estaň et al. (2005) mentioned that grafting provides an alternative way to improve fruit yield 

in a commercial tomato hybrid (‘Jaguar’) and the differential fruit yield response among 

several graft combinations were mainly related to the different potentials of the tomato 

rootstocks (‘Radja’, ‘Volgogradskij’, ‘Pera’, and ‘Volgogradskij’×‘ Pera’) to exclude saline 

ions and regulate its transportation. More recently, Martinez-Rodriguez et al. (2008) 

questioning whether shoot genotype with an ‘excluder’ character (‘Moneymaker’) is able to 

increase its salt tolerance when grafted onto rootstocks (‘Radja’ and ‘Pera’) with different 

ability to regulate the transport of saline ions to the shoot over time. They concluded that 

grafting onto either ‘Radja’ or ‘Pera’ improved tomato fruit yield compared to self-grafted 

plants of ‘Moneymaker’ when plants were grown at 50 mM NaCl, whereas there was no 

effect of either rootstocks or grafting per se on fruit yield in the absence of salinity or at 25 

mM NaCl. However, Rahman et al. (2002) and Yoshida et al. (2004) reported that the wild 

species Solanum sisymbriifolium Lam. and Solanum integrifolium Poir. (=Solanum 

aethiopicum L. Aculeatum group) have been tested as rootstocks for grafting of eggplant, the 

results were not very promising due to poor performance. On contrary, Gisbert et al. (2011) 
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investigated rootstock effects on fruit yield, apparent quality and the mineral composition of 

S. melongena ‘Black Beauty’ (BB) scions grafted on interspecific hybrid rootstocks 

developed from crosses of S. melongena with Solanum incanum L. (SI×SM) and Solanum 

aethiopicum L. (SM×SA). They mentioned that grafting eggplant onto interspecific hybrids 

rootstock, particularly (SI×SM), conferred the highest vigour to the scion, which resulted in 

the highest values for fruit earliness and early and total yield. Similarly, the growth 

performance of the eggplant cultivar ‘Suqiqie’ (Solanum melongena L.) was improved under 

saline stress conditions when the ‘Torvum Vigor’ (Solanum torvum Swartz) was used as 

rootstock (Liu et al. 2007; Wei et al. 2007). Chen et al. (2003) concluded that scion genotypes 

play an important role in the growth of grafted tomato plants, whereas rootstock has little 

influence. Also, Santa-Cruz et al. (2002) suggested that the characteristics of the tomato 

rootstock conferring salt tolerance on the shoot depend on the salt tolerance of the shoot 

genotype. Finally, Etehadnia et al. (2008), in a study on potato, indicated a significant 

influence of the scion on the rootstock, in addition to the effect of the rootstock on the scion, 

since the use of a resistant genotype as a scion has a positive impact, increasing the root 

biomass of the ABA (-) mutant rootstock. This might have been due to a higher rate of 

photosynthesis of the more vigorous scions leading to greater potential for partitioning of 

assimilates to the rootstock (Chen et al. 2003). To date, the major efforts have being directed 

towards the importance of grafting to enhance plant performance under salinized condition in 

related to none or self-grafted plant. The capacity of some rootstocks is essential for salt 

resistance in some species, while for other species the salt resistance conferred by rootstock 

depends on complex physiological interactions which are not well understood yet, that 

involve the type of scion genotype or the complexity of specific interaction between the scion 

genotype and rootstock (Santa-Cruz et al. 2002). Although the inclusion capacity of some 

tomato includer rootstock (Pera) that have the ability to accumulate pattern of Na in leaves 

quite similar to that observed in halophyte, was associated with certain physiological 

characteristics favourable to salinity resistance (Perez-Alfocea et al. 1996), biochemical and 

physiological mechanisms involved with the interaction between scion genotypes and 

rootstock are still poorly characterized. Therefore, more studies are necessary to investigate 

the primary factor that confer salt tolerance in grafted plants (Colla et al. 2010). Consistently, 

in this research we address the attention for comprehending whether the conferred salt 

tolerance of tomato graft plants was depends on the rootstock character or is affected by scion 

genotypic differences and/or exchangeable effects of scion-rootstock interaction. 
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2. OBJECTIVE 

The main objectives of this research were determining the contribution of rootstock in 

inducing useful salt tolerance to the shoot growth and fruit productivity depending on salt 

tolerance mechanisms of the shoot genotype; identifying the main salt defence mechanisms 

that were induced in the shoot by different rootstock genotypes based on rootstock potential 

to regulate the absorption of ions from saline solution and regulate their transportation into 

shoot in long-term salt stress; and identifying the conditioned significant effect of the scion 

genotypes on physiological and biochemical shoot performance that involved in plant salt 

tolerance. 
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3. MATERIAL AND METHODS 

3.1. Plant material, experimental conditions and saline treatments 

To evaluate the contribution of root system characters and shoot genotypic differences in 

conferring the salt tolerance of grafted tomato plants, two main approaches have been used. 

The first approach was was to identify the main salt defence mechanisms that induced in the 

shoot by different rootstock genotypes based on rootstock potential to regulate the absorption 

of ions from saline solution and regulate their transportation into shoot in long-term salt 

stress. The second approach was determining the contribution of rootstock in inducing useful 

salt tolerance to the shoot growth and fruit productivity depending on salt tolerance 

mechanisms of the shoot genotype. However, this work has not been performed to evaluate 

the performance of control mechanisms of non-grafted or self-grafted plant in related to graft 

plants since lots of studies have been exclusively directed the appreciative positive effects of 

grafting to increase plant salt tolerance with respect to non-grafted or self-grafted plants in 

different plant species of Solanaceae and Cucurbitaceas families. Consistently, control in the 

hereby presented experiments will be provided by non-stressed tomato plants. 

 

The experiment was conducted in environmentally controlled conditions (T° max 23°C; 

T°min 13°C; RH: 60%) in the experimental glasshouse at the University of Bologna, Italy. 

Three commercial tomato (Lycopersicon esculentum Mill) cultivars: cv. Haruki (HAR), cv. 

Kamonium (KAM), and cv. Nerina F1 (NER) were used as scions and grafted against three 

different tomato rootstock genotypes cv. Maxifort F1 (MAX), cv. Arnold (ARN), and cv. R1 

(R1). Nine scion/rootstock combinations were obtained among the three scion genotypes; 

with Haruki scion: HAR/MAX, HAR/ARN, and HAR/R1; regarding Kamonium scion: 

KAM/MAX, KAM/ARN, and KAM/R1; and finally with Nerina F1 scion: NER/MAX, 

NER/ARN, and NER/R1.  

 

Seeds of nine tomato genotypes were sown in polyethylene trays filled with peat moss till 

germination. Grafting was performed when seedling developed 3-4 true leaves by applying 

cleft grafting method. A V-shaped cut was made in the stem of the scion and then the scion 

inserted into the rootstock, which had a vertical slice cut down the centre of the stem. The 

rootstock and scion are then held together by a spring clip while the graft union forms (Oda 

1999). After grafting, six plants per treatments were covered with a transparent plastic lid to 

maintain a high humidity level and facilitate the graft formation and were left in the shade for 

one week. The covering plastic lid was opened slightly every day to allow reduction in 
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relative humidity and was finally removed seven days after grafting. After the graft had 

established, each plant was transferred onto 5 l-pots filled with a mixture of perlite and 

vermiculite (1:1, v:v). Plants were grown on a hydroponic system and fed with nutrient 

solution having the following composition: NO3
–: 16.5 mM; NH4

+: 1 mM; H2PO4
–: 1.50 mM; 

SO4
2–: 1.50 mM; K+: 7.0 mM; Ca2+: 5.0 mM; Mg2+: 1.5 mM; Fe2+: 15 μM; Mn2+: 10 μM; B+: 

25 μM; Zn+: 5.0 μM; Cu+: 0.5 μM; Mb2+: 0.5 μM. Salt treatment started at 30 days after plant 

grafting and lasted till the harvest time. Three salt concentrations was applied in a single step 

by adding 100 mM NaCl (moderated salinity), 200 mM NaCl (high salinity), and 0 salt 

(control) to 250 l-container.  

3.2. Yield and plant growth determination 

Harvest of ripen fruits was conducted weekly starting from 30 DAS for 2 months. 120 days 

after grafting tomato plants were harvested (90 DAS). Shoot and root biomass were measured 

at harvest time. Dry weight of whole plant and different plant organ were measured after 

oven drying at 65 ͦ C for three days with three replicates per salt treatment. For each plant, 

total fruit fresh weight was recorded every harvest.  

3.3. Leaf gas exchange measurements 

Three plants of 60 days after salinization were randomly selected from each salt treatment for 

leaf gas exchange measurements. The most recently fully expanded leaf of the 5-7th floor 

from the top was selected to measure leaf transpiration (E), stomatal conductance (gs) and net 

photosynthesis (A) using a CIRAS-2 (PPSystem, Hitchin, UK) infrared gas analyser (closed 

system) with a Parkinson’s Automatic Universal Leaf Cuvette (PAR 1000 mmol m–2 s–1, 

26°C, CO2 13.63 mmol l-1 and 300 cm3 min–1 flow rate) equipped with 18-mm diameter, 2.5-

cm2 area cuvette inserts. Water Use Efficiency (WUE) was determined as the ratio between A 

and E. 

3.4. Leaf water relation 

Three plants of 60 days after salinization were randomly selected from each salt treatment for 

water status determination. Leaf water potential (Ψw) was measured on fresh young and fully 

expanded leaves using a dewpoint potentiometer (WP4, Decagon Devices, Pullman, WA, 

USA). The same leaves were then frozen at – 20 °C for at least 24 h and then thawed out to 

measure the osmotic potential (Ψπ). Relative water content (RWC) was calculated as: RWC = 

(leaf fresh weight – leaf dry weight) / (leaf saturated weight – leaf dry weight). Leaf saturated 

weight was determined after leaf immersion in distilled water for 24 h (Orsini et al. 2010a). 

Osmotic adjustment was determined as OA =Ψπ0 V0 - Ψπ V , where Ψπ0 V0 is the product of 
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(osmotic potential) × (osmotic volume) of unstressed plants and Ψπ V is the product of 

(osmotic potential) × (osmotic volume) of leaves from salinized plants.  

3.5. Ion analysis  

Three plants of 90 days after salinization were randomly selected from each salt treatment for 

ion accumulation analysis. Samples of roots, stems, and leaves were collected from the dried 

material for mineral analysis. Sodium, potassium, and calcium concentration were 

determining by using Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

after acidification of 0.1 g dry material with 65% nitric acid HNO3 (1:100 ml, v: v), while 

chloride determination was done by ion chromatography (IC). 

3.6. Biochemical analysis 

3.6.1. Enzymes extraction and assays  

For protein and antioxidant enzyme extraction, 10 g of fresh fruit were homogenized in 10 ml 

of 200 mM chilled potassium-phosphate buffer (pH 7.5) containing 1% (w/v) insoluble 

polyvinylpolypyrrolidone (PVPP) and 0.1% (v/v) Triton X-100 placed in an ice bath. The 

homogenate was filtered through a layer of muslin cloth and centrifuged at 10000 × g for 20 

minutes at 4 °C. The supernatant was collected and eluted through Sephadex G-25 gel 

column (NAP-25, Amersham Biosciences, Piscataway, NJ, USA) then re-suspended in 10 

mM sodium-potassium phosphate buffer (pH 7.0) and used for the determination of the 

antioxidant enzymes. All enzymatic activities were assayed spectrophotometrically, the 

analysis was performed in triplicate and the results were normalized by plant fresh weight.  

3.6.2. Determination of total soluble organic solute, lipid peroxidation, and enzymatic 

activities  

The fruit soluble proteins concentration of the extract was estimated according to Bradford’s 

method using bovine serum albumin as a standard (Bradford 1976). Fruit free proline content 

was determined according to Bates et al. (1973). The level of fruit lipid peroxidation was 

determined by measuring malondialdehyde (MDA) formation using the thiobarbituric acid-

reactive substance (TBA) method as described by Heat and Packer. (1968). Ascorbate 

peroxidase (APX, EC 1.11.1.11) activity was determined using the method of Chen and 

Asada. (1990). Catalase activity (CAT, EC 1.11.1.6) was assayed by measuring the initial 

rate of disappearance of H2O2 and determined using the method of Havir and McHale. 

(1987). Glutathione reductase (GR, EC 1.6.4.2) activity was determined using the method of 

Foyer et al. (1991). Superoxide dismutase (SOD, EC 1.15.1.1) activity was determined using 
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the method of Masia. (1998) by measuring its ability to inhibit the photochemical reduction 

of nitro-blue tetrazolium (NBT) to blue formazan by flavins under illumination.  

3.7. Experimental design and statics 

The experiment was performed with a completely randomized design with nine combinations 

of scion/rootstock (HAR/MAX, HAR/ARN, and HAR/R1; KAM/MAX, KAM/ARN, and 

KAM/R1; and NER/MAX, NER/ARN, and NER/R1) and three NaCl levels (0, 100, and 200 

mM) with three replicates. Data were subjected to Co-Stat-ANOVA and treatment means 

were compared using Student-Newman-keuls at significant level of 0.05 (P<0.05).     

4. RESULTS 

We have studied the physiological and biochemical responses of nine scion/rootstock graft 

combinations that have been generated by grafting three scion cultivars of tomato against 

three tomato rootstock genotypes.  The plant developments were estimated under control and 

two salt levels (mild and high). All results and discussion of physiological and biochemical 

plant performances were organized in two main frames: studying the effect of one scion 

genotype against different rootstock, and viceversa studying the effect of different scion 

genotypes against one rootstock.  

4.1. THE PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF ONE SCION 

GENOTYPE AGAINST DIFFERENT ROOTSTOCKS  

Three tomato cultivars: cv. Haruki (HAR), cv. Kamonium (KAM), and cv. Nerina F1 (NER) 

have been grafted onto three different tomato rootstock genotypes cv. Maxifort F1 (MAX), 

cv. Arnold (ARN), and cv. R1 (R1) and resulted in nine scion/rootstock combinations. We 

investigated the main salt defence mechanisms that induced in the shoot by different 

rootstock genotypes based on rootstock potential to regulate the absorption of ions from 

saline solution and regulate their transportation into shoot in long-term salt stress. 

4.1.1. The graft combinations of Nerina F1 scion against different rootstocks 

4.1.1.1. Vegetative growth and physiological responses of Nerina F1 scion against 

different rootstocks 

This experiment was carried out with the aim of studying the effect of grafting of one shoot 

genotype against different rootstock genotypes in term of shoot growth, fruit yield and 

physiological plant performance under both control and saline conditions. The plant 

development was restricted upon salinization and this reduction was significantly affected by 

rootstock, scion, and rootstock × scion interaction (Table 2). Three rootstock genotypes: 

Maxifort F1, Arnold, and R1 have been used against Nerina F1 cultivar scion and generated 

three graft combinations: NER/MAX, NER/ARN, and NER/R1 (Table 1). The positive effect 
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of the used rootstocks to alleviate the shoot fresh and dry weight diminishing under stressed 

condition was presented when Arnold genotype was used as a rootstock in NER/ARN plant, 

where this plant showed less reduction in shoot FW and DW as (-47% and -21%) at mild salt 

and (-77% and -65%) at high salt level in related to control plant (Table 1). However, the 

other rootstocks Maxifort F1 and R1 showed higher reduction in shoot FW and DW as (-65% 

and -47%) in NER/MAX plant and (-65% and -53%) in NER/R1 plant at moderated salt 

stress. Upon high salt stress, Maxifort F1 rootstock in NER/MAX plant induced the highest 

reduction in shoot FW and DW in related to control plant (-96% and -84%), while the 

respective values of these parameters were (-84% and -74%) in presence of Nerina F1 scion 

in NER/R1 (Table 1). 

 

Indeed, root growth showed different behaviours under salt stress and high significant effect 

was related to rootstock and rootstock × scion (Table 2). In the presence of Nerina F1 

genotype as a scion, the rootstock Arnold in NER/ARN plant presented a going up value in 

root DW by +62% in related to control plant under moderated salt, whereas the Maxifort F1 

rootstock in graft plant NER/MAX showed a noteworthy reduction by -41% comparing with 

control plant, and the this reduction was less in presence of R1 rootstock and reached to -7% 

(Table 1). However, at high salt stress, the root DW reduction was higher in NER/MAX plant 

and accounted for -76%, while NER/ARN and NER/R1 plants showed less reduction as -31% 

in related to their control plants (Table 1). 

 

The yield of all graft combinations was significantly reduced by the ionic composition and 

this reduction varied significantly according to the characteristic of the shoot genotype where 

significant effects were found between scion, rootstock × scion, and salt × rootstock ×scion 

interaction (Table 2). However, different rootstocks did not affected the fruit yield as the 

ANOVA analysis showed no interaction between rootstock and the ionic composition × 

rootstock were observed (Table 2). Accordingly, the three graft combination presented high 

reduction in FW fruit even at moderated salt stress by -74%, -82% and -58%, respectively in 

NER/MAX, NER/ARN, and NER/R1 (Figure 1). Nonetheless, this reduction was higher 

under high salt stress and accounted averagely for -96% for the three graft plants (Figure 1). 

 

To study the plant physiological response, some parameters related to osmotic stress (relative 

water content, water and osmotic potential, and osmotic adjustment) were determined.  

Relative water content (RWC) showed slight insignificant reduction upon salinization in all 
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graft combinations, regardless the scion or rootstock genotypes, in related to control plant 

(data not shown). The effect of salinity stress on leaf water relations was again marked 

differently from control plants, as the applied salt induced sharp decreases in leaf water 

potential (Ψw) and the medium redaction among the three graft plants: NER/MAX, 

NER/ARN, and NER/R1 was as 1.9 and 3 times as their control plants upon 100 and 200 mM 

NaCl (Figure 2). Similarly, osmotic potential (Ψπ) showed high reduction at both salt stresses 

and the most important reduction was recorded when Maxifort F1 was used as a rootstock in 

NER/MAX plant and reached -3.87 MPa, while the medium reduction in presence of other 

rootstocks Arnold and R1 was -2.94 MPa at high salt stress (Figure 2). Accordingly, Maxifort 

F1 rootstock in NER/MAX plant achieved the highest significant value of osmotic adjustment 

1.60 MPa while the medium OA of NER/ARN and NER/R1 plants were 0.6 MPa at high salt 

stress (Figure 2). 

 

Regarding the leaf gas exchange, the results obtained in the current study showed that not 

only the rootstock genotypes but also the scion genotypes affect the stomatal performance 

and net assimilation rate, in which (E) and (A) values were expressively affected by salt, 

scion, rootstock, and their interactions (Table 4). However, in the three graft plants of 

NER/MAX, NER/ARN, and NER/R the transpiration rate (E) and net CO2 assimilation rate 

(A) declined significantly with increasing level of salt stress (Table 3). This decrease was 

accompanied by substantial decreases in stomatal conductance (Gs) and intercellular CO2 

concentration (Ci) (data not shown). However, the differential response of different 

rootstocks was clear in term of net assimilation rate in the leaves of high salinity treated 

plants, as Maxifort F1 rootstock in NER/MAX plant showed the highest significant reduction 

in net assimilation rate (-91%), while Arnold and R1 rootstocks in graft plants NER/ARN and 

NER/R1 showed less reduction in (A) value by 66% in respect to their control plant at 200 

mM NaCl (Table 3). However, the three rootstocks showed no significant effects with Nerina 

F1 scion in term of WUE as the three graft plants showed similar responses to that of their 

control plants (Table 3). 

4.1.1.2. The pattern of ion accumulations of Nerina F1 scion against different rootstocks 

The physical characteristics of the rootstock such as lateral and vertical development of roots 

influence significantly the nutrient and water uptake and pattern of ion accumulation. In this 

study, plants of the tomato (Solanum Lycopersicum) cultivars Haruki, Kamonium, and Nerina 

F1 were grafted onto three different rootstock genotypes Maxifort F1, Arnold, and R1 to 
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assess the ability of these rootstocks to extrude and regulate the transport of different ions 

into the shoot. In the present study, the concentration of Na+ ion in the leaves of different 

grafting combinations increased progressively as NaCl concentration increased (Figure 3). 

However, the pattern of increasing leaf Na+ concentration in salt treated plants was depending 

on scion, rootstock genotypes and the interaction between them (Table 5). However, different 

rootstocks showed significantly different capacity to take up and transport Na+ ion from the 

root medium into the shoot. Among the three graft combinations of Nerina F1 scion 

(NER/MAX, NER/ARN, and NER/R1), the Maxifort F1 rootstock in NER/MAX plant 

accumulated more leaf and stem Na+ ion (150 and 156 mg.g-1 DW) in respect to its root (113 

mg.g-1 DW) upon 200 mM NaCl (Figure3). However, R1 rootstock in NER/R1 plant showed 

similar accumulation of Na+ ion in the leaf and root (104 versus 112 mg.g-1 DW), while the 

root of Arnold rootstock in NER/ARN plant showed high ability to regulate the Na+ 

transportation into its aerial part and accumulate less sodium in its leaf (97 versus 77 mg.g-1 

DW). On other hand, the comparison of the different rootstocks performance revealed that 

Maxifort F1 rootstock in NER/MAX plant accumulated significantly higher leaf Na+ ion by 

+95% and +45% than the other rootstocks in NER/ARN and NER/R1, respectively at 200 

mM NaCl. (Figure3). The pattern of stem Na+ accumulation was similar to that observed for 

leaf Na and showed significant increasing in the three graft plants depending on different 

abilities of rootstocks to transport the sodium ions into plant shoot. The rootstock maxifort F1 

in NER/MAX showed significant increasing by +201% and +134% with respect to Arnold 

and R1 rootstocks in NER/ARN and NER/R1 plants at 200 mM NaCl (Figure 3). Alike Na+ 

content of leaves and stems, root Na+ concentration of the three graft plants exhibited high 

significantly increasing by 7 times as control plant at both salt levels (Figure 3). However, the 

root Na+ ion in NER/MAX and NER/R1 plants showed similar and higher root Na content in 

respect to NER/ARN at severe salt stress (113 versus 97 mg.g-1 DW) (Figure 3). Furthermore, 

the result of Na+/K+ ratio was consistent to that observed with Na content. The leaf Na+/K+ 

value was higher than root Na/K value by three times in NER/MAX and NER/R1 plants and 

by two times in NER/ARN plant (Figure 4). Also, the Maxifort F1 rootstock in NER/MAX 

graft plant showed an increasing of leaf Na+/K+ ratio by +105% and +29% in related to 

NER/ARN and NER/R1, respectively at 200 mM NaCl. This increasing was also associated 

with higher stem Na+/K+ ratio in NER/MAX plant by +209% and +128%, respectively in 

related to NER/ARN and NER/R1plants. In addition root Na+/K+ ratio of NER/MAX plant 

was higher by +50% than other grafted plants (Figure 4).  
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What's more, the partitioning of total plant Na+ data in term of total dry weight showed that 

the three rootstocks accumulate Na+ ion in different percentage (Figure 8). The Maxifort F1 

rootstock in NER/MAX plant accumulated half of total Na+ concentration in its root (53%) 

and distributed the other half equally between stem and leaf (25% and 22%) at 200 mM 

NaCl, where Arnold and R1 rootstocks in NER/ARN and NER/R1 plants partitioned the 

highest percentage of total Na+ ion in the root zone (67%), while 13% and 12% of total Na 

ion were located in its stem and leaf respectively.  

 

With regard to Ca2+ concentration, the highest Ca2+ concentration was located in leaf of the 

three graft plants (NER/MAX, NER/ARN, and NER/R1) and showed medium accumulation 

as 19 mg.g-1 DW at high salt stress (Figure 5). However, there was no effect of both salt and 

rootstock genotypes on leaf Ca2+ concentration (Table 5) and all graft plants accumulate 

similar amount as non-treated plant. However, the effect of rootstock was shown at stem and 

root levels only with Maxifort F1 rootstock in NER/MAX plant, where this plant 

accumulated more root Ca2+ as 1.5-fold as NER/ARN and NER/R1 plants and more stem 

Ca2+ as 2-fold and 3.4-fold as NER/ARN and NER/R1 plants at 200 mM NaCl (Figure 5). 

 

Respecting the K+ ion content, the distribution of this ion differs between plant organs as 

follow: 4, 14, 11 mg.g-1 DW, respectively in leaf, stem, and root as an average of the three 

graft plants NER/MAX, NER/ARN, NER/R1 at 200 mM NaCl (Figure 6). However, at high 

salt stress, there was a significant reduction about 40% in leaf K content in the three graft 

plants in respect to control plant regardless the rootstock genotypes, while stem K+ showed 

no effect either of rootstock or salt level (Table 5). Nonetheless, the root potassium increased 

significantly in Arnold and R1 rootstocks in NER/ARN and NER/R1 plants by 2.2-fold and 

3.6-fold comparing with their control plant at 200 mM NaCl (Figure 6). 

 

Concerning the Cl− concentration, the three graft plants NER/MAX, NER/ARN, and NER/R1 

showed significant increasing in leaf Cl− as 5, 2 and 3 times as their control plants at 200 mM 

NaCl (Table 6 and Figure 7). Moreover, NER/MAX plant showed higher leaf Cl− by +55% 

and +81% than NER/ARN and NER/R1, respectively upon high salt stress. Like Cl− leaf, the 

stem Cl− concentration was increased significantly in the three mentioned plants upon high 

salt stress; however, NER/MAX plant showed an increasing as two times as the other graft 

plants. Similarly, root Cl− ion increased significantly in all those plants without any 

significant effect of the rootstock genotypes (Figure 7).  
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4.1.1.3. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of Nerina F1 scion against different rootstocks 

The effect of different rootstocks on the activities of APX, CAT, GR, and SOD in the fruit of 

grafted plants was measured upon the excess of NaCl in the root medium (Figure 9).Under 

normal condition, no significant differences was observed in the activities of CAT and SOD 

enzymes among the three graft plants of Nerina scion: NER/MAX, NER/ARN, and NER/R1; 

however, the activity of APX enzyme of NER/ARN plant was significantly less than that of 

NER/MAX and NER/R1. Under high salt stress, the rootstock Arnold in NER/ARN plant 

showed high activation of APX enzyme by 17 times as control plant while the other 

rootstocks Maxifort F1 and R1 in NER/MAX and NER/R1 plants did not induce any changes 

in the activity of this enzyme. Regarding the CAT activity, Maxifort F1 and Arnold rootstock 

showed significant increasing in the activity of these enzymes upon both salt stresses, while 

R1 rootstock in NER/R1 plant did not provoke any change in related to control plant (Figure 

9). However, Maxifort F1 rootstock in NER/MAX plant showed higher CAT activity than 

that of Arnold rootstock in NER/ARN plant by +135% at high salt stress. The different 

rootstock genotypes performed differently in regard to GR activity (Figure 9). R1 rootstock in 

NER/R1 plant did not affect GR activity upon salinization and showed similar response to 

that of control plant; however, Arnold rootstock caused an increasing in GR activity by +93% 

regarding the control plant at mild and high salt stress, while Maxifort F1 rootstock in 

NER/MAX plant showed a sharp reduction in the activity of this enzyme by -74% at high salt 

stress respecting the control plant (Figure 9). Nonetheless, there was no appreciative 

performance of any rootstocks used in term of SOD activity as the salt treated plant responses 

in the three grafting combinations were similar to that of relief plants (Figure 9).  

 

The positive effect of different rootstocks was evident in the pattern of compatible solute 

accumulations (proline and protein) in the fruit of three graft plants upon salinization (Figure 

10). Maxifort F1 and Arnold rootstocks in NER/MAX and NER/ARN plants showed similar 

significant increasing in fruit protein by +142% and +193% at 100 and 200 mM NaCl in 

related to control plants, while R1 showed negligible increasing in protein content upon salt 

treatments. With regard to fruit proline content, the three graft plants showed similar 

increasing in proline concentration at mild salt stress as 14 times as the control plant 

regardless the rootstock genotypes (Figure 10). However, the pronounced positive effect of 

different rootstocks was clear when Maxifort F1 was employed as a rootstock at high salt 

stress, where only NER/MAX plant showed an appreciative increasing in proline content as 
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49 times as control plant. Regarding the MDA content as a measure of lipid peroxidation, 

neither salt nor rootstocks affect the fruit MDA in three grafting combinations NER/MAX, 

NER/ARN, and NER/R1 (Figure 10).  

4.1.2. The graft combinations of Haruki scion against different rootstocks 

4.1.2.1. Vegetative growth and physiological responses of Haruki scion against different 

rootstocks 

The genotype Haruki was used as a scion and grafted onto three different rootstocks: 

Maxifort F1, Arnold, and R1 and, accordingly, three graft combinations have been 

constituted: HAR/MAX, HAR/ARN, and HAR/R. The differential effect of different 

rootstocks was presented in morphological and physiological plant responses upon 

salinization. The rootstock Maxifort F1 in HAR/MAX plant exhibited the highest shoot DW 

redaction by (-54% and -72%) at mild and high salt stresses in respect to control plant, while 

the other two rootstocks Arnold and R1 presented less medium reduction as (-32% and -64%) 

respectively at 100 and 200 mM NaCl regarding their control plants (Table 1). Similarly, the 

sharpest root DW redaction was recorded in HAR/MAX plant as (-30% and -37%) 

respectively at both salt levels, while both rootstocks Arnold and R1 showed significant 

increasing in root DW as (+22% and +131%) in HAR/ARN and HAR/R1 plants respectively 

at mild salt stress regarding the control plants (Table 1). However, even at high salt stress, 

these latter two rootstocks showed continued medium increasing in root DW as +4% as the 

control plant (Table 1). Fruit yield was affected strongly with salt stress and showed similar 

reduction in HAR/ARN and HAR/R1 as -80%, while this reduction was -66% in HAR/MAX 

plant at moderated salt stress with relation to control plants (Figure 1). However, the three 

graft plants illustrated sever yield reduction at high salt stress as 95% regarding the control 

plant irrespectively the rootstock genotypes (Figure 1). 

 

Water potential affected apparently upon salinization and showed significant reduction in the 

three graft plants regardless the rootstocks used (Figure 2). Similarly, the osmotic potential 

decreased significantly in all graft plants and especially in HAR/MAX plant that showed the 

lowest Ψπ value at high salt stress; however, the Ψπ reduction in HAR/MAX plant was 

associated with the highest OA value at 200 mM NaCl (Figure 2).  

 

Regarding the gas exchange parameters, HAR/MAX and HAR/ARN plants showed similar 

higher reduction of E and A values as (-84% and -62%) than HAR/R1 (-46% and -34%), 
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respectively at moderated salt stress comparing with the control plants (Table 3). However, 

this reduction in HAR/MAX and HAR/ARN plants was associated with higher WUE by 

+153% comparing with control plant, while the WUE increasing was about +25% in 

HAR/R1 at 100 mM NaCl. On contrary, at high salt stress HAR/R1 plant showed less E and 

higher WUE values than HAR/MAX and HAR/ARN plants (Table 3).   

4.1.2.2. The pattern of ion accumulations of Haruki scion against different rootstocks 

The effect of the same rootstock genotypes (Maxifort F1, Arnold, and R1) on the Na ion 

accumulation pattern of Haruki scion has been studied on the three generated graft 

combinations (HAR/MAX, HAR/ARN, and HAR/R1) (Figure 3). All plant organs showed 

sharp increasing in Na+ content upon salinization (Figure 3). The root of the Maxifort 1 and 

R1 rootstocks accumulated Na+ ion as 8 times as their control plants, while Arnold rootstock 

accumulate 5 times more than control plant at 200 mM NCl (Figure 3). Similarly, stem Na+ 

content of the three graft plants showed 7 times increasing in regarding the control plant, 

while the increasing of leaf Na+ was 13 times as control plant at 200 mM NaCl (Figure 3). 

However, the finding of this experiment showed the effect of rootstock genotypes was 

pronounced only at root level, where Arnold rootstock in HAR/ARN plant showed 

significantly lower Na accumulation by (-48% and -69%) than Maxifort F1 and R1 rootstocks 

in HAR/MAX and HAR/R1 plants, respectively at 200 mM NaCl (Figure 3). However, the 

stem and leaf Na+ concentration showed no significant differences between the rootstocks 

performance as the shoot of the three graft plants accumulated similar stem Na+ ion (54 mg.g-

1 DW) and leaf ion (87 mg.g-1 DW) (Figure 3). It was worthy to mention that the Na 

partitioning of different plant organs was affected by rootstock genotypes. At moderated salt 

stress, root Na+ accumulation rate was higher than Na leaf ion in the three grafts mentioned 

above plants by 2-fold, 1.9-fold, and 1.3-fold, respectively in HAR/MAX, HAR/ARN and 

HAR/R1 (Figure 3). However, upon high salt stress, HAR/ARN plant showed higher Na+ 

content in its leaf than the root (81 versus 60 mg.g-1 DW), while HAR/MAX and HAR/R1 

continued to accumulate higher Na+ ion in the roots (114 and 101 mg.g-1 DW) in respect to 

their leaves (87 and 93 mg.g-1 DW) (Figure 3). Additionally, at mild salt stress, there were 

differences in the leaf Na+/K+ ratio between graft combinations depending on rootstocks, 

where the plant grafted onto R1 rootstock in HAR/R1 plant showing higher value of Na+/K+ 

by two times as HAR/MAX and HAR/ARN, while the respective value of this ratio was the 

same in the root of the all plants (Figure 4). Likewise, at 200 mM NaCl, the root Na+/K+ ratio 

showed similar value among the three graft plants, while leaf Na+/K+ ratio of the HAR/R1 

plant presented slightly higher value by 1.6 times as the other graft plants (Figure 4).  
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Regarding Ca2+ ion, the most abundant Ca2+ ions of the three graft plants (HAR/MAX, 

HAR,ARN, and HAR/R1) was located in the leaves and averaged of 20 mg.g-1 DW compared 

with stem Ca2+ (3 mg.g-1 DW) and root Ca2+ (5 mg.g-1 DW) upon high salt stress (Figure 5). 

However, the pattern of leaf and stem Ca2+ accumulation in all graft combinations was not 

affected by neither salinity nor rootstock genotypes and showed similar values as control 

plant, even at 200 mM NaCl and all the interactions between scion and rootstocks were not 

significant (Table 5) However, only the Maxifort F1 rootstock in HAR/MAX plant showed 

higher Ca2+ root content by 50% than Arnold rootstock in HAR/ARN plant at high salt stress 

(Figure 5).  

 

With reference to K+ ion concentration, leaf K+ of the three graft combinations (HAR/MAX, 

HAR/ARN, and HAR/R1) showed a slight non-significant reduction upon 200 mM NaCl 

(Figure 6). However, stem K+ ion showed a constant K+ content (14 mg.g-1 DW) either in salt 

treated or not treated plants. The significant effects of rootstocks was apparently clear at root 

level where Maxifort F1 and R1 rootstocks showed a significant increasing as two times as 

control plants and Arnold rootstock in HAR/ARN plant at both salt levels (Figure 6). 

 

The pattern of Cl− accumulation in the three graft plants HAR/MAX, HAR/ARN, and 

HAR/R1 was different depending on the rootstock genotypes. Maxifort F1 rootstock induce 

similar Cl−  ion accumulation in the leaf and root (1.5 and 1.8 mg.g-1 DW) and less amount in 

the stem (0.8 mg.g-1 DW) in HAR/MAX plant at 200 mM NaCl (Figure 7). Similarly, R1 

rootstock persuades the highest Cl− ion concentration in the root (1.5 mg.g-1 DW) followed by 

leaf (1.1 mg.g-1 DW), while the Cl− stem was limited (0.6 mg.g-1 DW). On contrary, Arnold 

rootstock in HAR/ARN plant accumulated higher Cl− ion in the stem (1.4 mg.g-1 DW) in 

regard to its root and leaf (0.9 and 1.1 mg.g-1 DW) (Figure 7).  

4.1.2.3. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of Haruki scion against different rootstocks 

The differential effects of different rootstocks in the three graft plants: HAR/MAX, 

HAR/ARN, and HAR/R1 were recorded in term of APX enzyme, as the Rootstock R1 in 

HAR/R1 plant showed a critical increasing in APX activity as +233% as the non-treated plant 

at high salt stress, while there was no significant differences in the activity of this enzyme 

with other two rootstocks Maxifort F1 and Arnold in HAR/MAX and HAR/ARN plants 

(Table 7 and Figure 9). Moreover, the three salt treated graft plants showed no significant 
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changes in the activities of CAT and GR enzymes in their fruit at both salt stresses and 

showed similar responses to that of control plants (Figure 9). However, SOD activity showed 

significant increasing by 98%, 70%, and 163% respectively in HAR/MAX, HAR/ARN, and 

HAR/R1 in relation to control plant at high salt stress (Figure 9). 

 

Regarding the protein concentration, the three rootstocks Maxifort F1, Arnold, and R1 

attempt to induce protein accumulation upon salt application, however, these efforts were not 

enough to make any significant changes in protein accumulation respecting the control plants 

(Table 7 and Figure 10). On the other hand, the different rootstocks affected strongly the fruit 

proline accumulation and showed medium significant increasing by 13 and 16 times as 

control plant at moderated and high salt stress, respectively (Table 7 and Figure 10). In 

related to lipid peroxidation, both rootstocks Maxifort F1 and Arnold in HAR/MAX and 

HAR/ARN plants did not show any significant changes in MDA level upon salinization 

regarding the control plant (Table 7 and Figure 10). However, R1 rootstock in HAR/R1 plant 

exhibited noteworthy increasing in MDA level by +141% respecting the control plant at 200 

mM NaCl. 

4.1.3. The graft combinations of Kamonium scion against different rootstocks 

4.1.3.1. Vegetative growth and physiological responses of Kamonium scion against 

different rootstocks 

The kamonium cultivar was grafted onto three different rootstocks: Maxifort F1, Arnold, and 

R1 and three graft combinations have been generated: KAM/MAX, KAM/ARN, and 

KAM/R1. Among the three graft mentioned combinations, KAM/R1 plants exhibited the 

highest shoot DW reduction as (-62% and -84%) at both salt stresses in relation to control 

plant, while this reduction was less in KAM/MAX plant (-48% and -75%) and KAM/ARN (-

56% and -78%), respectively at mild and high salt levels (Table 1). Upon salt exposure, the 

three graft plant responses in term of root dry weight differed depending on the rootstock 

genotypes. Arnold rootstock in KAM/ARN showed an increasing in root DW as +11% as the 

control plant, while Maxifort F1 and R1 rootstocks exhibited reduction by (-5% and -43%) at 

mild salt comparing their control plants (Table 1). The fruit yield reduced significantly in the 

three graft plants when salt was added to the root medium. However, KAM/ARN plant 

showed less fruit FW reduction as -62% as the control plant, while KAM/MAX and KAM/R1 

showed similar higher reduction as -83% as the control plant at mild salt stress (Figure 1). 

Nonetheless, the fruit yield reduction was so high at 200 mM NaCl for all graft plants and 

averaged 96% regarding the control plants. Concerning the water status, water and osmotic 
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potential decreased significantly upon both salt stresses without specific performance of any 

used rootstock genotypes (Figure 2). The rootstock R1 in KAM/R1 plant has higher ability to 

adjust osmotically than Maxifort F1 and Arnold rootstocks in KAM/MAX and KAM/ARN 

(Figure 2). On the topic of the parameters of photosynthesis apparatus, the highest E value 

redaction was recorded in KAM/ARN plant as -82% that associated with high preserve value 

of WUE (16.51  mM CO2 mM-1 H2O), while this reduction was (-56% and -75%) in 

KAM/MAX and KAM/R1 respectively at mild salt in relation to control plants (Table 3). 

Similarly, the rootstock Maxifort F1 in high salt treated KAM/MAX plant illustrated the 

lower reduction in E value -60% in relation to control plant, while this reduction accounted 

for (-78% and -71%) in KAM/ARN and KAM/R1 plants (Table 3).  

4.1.3.2. The pattern of ion accumulations of Kamonium scion against different 

rootstocks 

The contribution of the root system into ion accumulation responses has been under 

investigation by grafting Kamonium scion genotype onto three rootstock genotypes (Maxifort 

F1, Arnold, and R1). The three rootstocks showed similar capacity to take up the sodium ion 

from the root medium (106 mg.g-1 DW) (Figure 3). Regarding the aerial part, the stem Na+ of 

KAM/R1 plant showed two times more Na+ ion content than KAM/MAX and KAM/ARN 

plants; in addition, the leaf of the same plant accumulated more Na+ ion by 60% and 25%, 

respectively than KAM/MAX and KAM/ARN at 200 mM NaCl (Figure 3). However, these 

rootstocks exhibited different ability to transport the saline ion into the shoot, where the graft 

combination of KAM/MAX and KAM/ARN plants showed higher accumulation rate of 

sodium ion in their roots by +56% and +27%, respectively than the leaf, whereas KAM/R1 

plant showed similar accumulation of Na ion in its root and leaf (102 and 108 mg.g-1 DW) at 

200 mM NaCl (Figure 3). Like Na+ distribution, root Na+/K+ ratio showed no different effects 

of any used rootstock genotypes as they accumulated similar value of Na+/K+ ratio that 

accounted for 10 (Figure 4). Similarly, leaf Na+/K+ ratio of the three plants showed no clear 

effect of the rootstocks although KAM/R1 plant showed a  slight increased value by 1.4 time 

of other plants KAM/MAX and KAM/ARN (18 versus 12) (Figure 4). However, stem Na+/K+ 

ratio in R1 rootstock in KAM/R1 illustrated higher value by 1.9 and 1.6 times respectively in 

related to KAM/MAX and KAM/ARN plants (Figure 4).   

 

Like Ca2+ concentration in Haruki and Nerina F1 scions, the Kamonium scion presented the 

highest Ca2+ content in leaf (21 mg.g-1 DW) and the lowest value in the stem (3 mg.g-1 DW) 

as an average of all graft plants (KAM/MAX, KAM/ARN, and KAM/R1) (Figure 5). 
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Nevertheless, there was no effect either of salt or rootstocks on leaf and stem accumulation of 

all plants, while these effects appeared with root Ca2+ accumulation of maxifort F1 rootstock 

in KAM/MAX plant, where it accumulated higher Ca2+ by (+72% and +27%) than 

KAM/ARN and KAM/R1, respectively at 200 mM NaCl (Figure 5). 

 

On the subject of K+ content, the three graft plants KAM/MAX, KAM/ARN, and KAM/R1 

showed similar partitioning of this ion in the stems and roots (13 versus 11 mg.g-1 DW, 

respectively, as an average), while the leaf presented the lowest amount (6 mg.g-1 DW) at 200 

mM NaCl (Figure 6). However, the root k+ ion increased essentially when Arnold and R1 

genotypes employed as rootstocks in KAM/ARN and KAM/R1 plants and showed increasing 

by two times as the control plants at both salt levels, while there was no effect of different 

rootstocks on the leaf and stem K+ accumulation (Figure 6). 

 

Regarding Cl− content, the three rootstocks accumulated similar root Cl− content that 

averaged 1.6 mg.g-1 DW (Figure 7). Also, there were no significant differences in Cl− 

accumulation at leaf level between the three rootstocks that presented averagely 1.4 mg.g-1 

DW. However, the Cl− stem of Maxifort F1 rootstock in KAM/MAX plant showed higher 

stem Cl− accumulation about 1.5-fold than the other grafted plants KAM/ARN and KAM/R1 

plants.   

4.1.3.3. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of Kamonium scion against different rootstocks 

There was no effect either of rootstock genotypes or salt stress on the activities of APX and 

CAT enzymes as the three graft plants of Kamonium scion: KAM/MAX, KAM/ARN, and 

KAM/R1 showed similar responses of APX and CAT activities under high salt stress as that 

of their control plants (Table 7 and Figure 9). However, the positive effect of R1 rootstock 

was present in KAM/R1 plant that showed increasing in the activity of GR by +50% 

regarding the control plant at both salt levels, while both rootstocks Maxifort F1 and Arnold 

showed no significant increasing in GR enzyme (Figure 9). Furthermore, the three rootstocks 

prompted the increasing in SOD activity at high salt stress; however, the significant 

increasing was only recorded by Maxifort F1 rootstock in KAM/MAX plant that account for 

+56% as control plant (Figure 9).  

 

Regarding the organic solute accumulation, R1 rootstock in KAM/R1 plant showed 

substantial increasing in protein concentration by +296% as control plant at high salt stress, 
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while the other rootstocks Maxifort and Arnold did not differ in protein accumulation from 

their control plants in KAM/MAX and KAM/ARN graft combinations (Figure 10). On 

contrary, the three mentioned rootstocks provoked a significant increasing in proline content 

at moderated salt stress by 15 times as control plant, while KAM/MAX and KAM/ARN 

plants showed continued increasing in proline level at 200 mM NaCl and showed increasing 

by 29 times as control plants (Figure 10). Likewise, the three rootstocks induced MDA 

accumulation particularly at high salt stress that accounted averagely for 16 µM g-1FW in 

three plants (Figure 10).  
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5. Discussion 
5.1. SALT TOLERANT INDUCED MECHANISMS BY DIFFERENT ROOTSTOCKS 

AGAINST ONE SCION GENOTYPE 

Mineral nutrients are essential for plant growth and they are virtually involved in all 

metabolic and cellular function like energy metabolism, primary and secondary metabolism, 

cell protection, gene regulation, signal transduction and plant reproduction (Hansch and 

Mendel 2009). However, plants store the mineral in different organs like root, stem, and leaf 

and these organs have a considerable influence on mineral uptake and translocation (Flowers 

and Colmer 2008). The role of rootstock in regulating leaf Na+ and Cl− accumulation under 

salinized condition is of a great interest for preventing the toxic influence which is the main 

effect induced by salinity in long term (Santa-Cruz et al. 2002). It is supposed that useful 

rootstocks, termed as salt excluder, should be able to reduce the uptake and transport rates of 

saline ions to the shoot. This will slow or prevent the accumulation of toxic level of sodium 

and chloride in the leaves. Salt ion exclusion by roots may result in higher salt resistance of 

the plants due to lower ionic toxicity, contributing to a metabolic stability and protection of 

the leaf tissues (Martinez-Rodriguez et al. 2008; Paranychianakis and Angelakis 2008).  

The tomato plant is moderately tolerant to salinity stress (Maas 1990), however, the long-

term damage in cultivated tomato that are caused by salinity was essentially related to the 

excessive accumulation of Na+ and Cl− in leaves even when the plant are grown in moderated 

salt level (50 mM NaCl) (Cuartero and Fernandez-Muňoz 1999). The salt tolerance 

mechanisms differ essentially among plant species (Munns and Tester 2008). Grafted plants 

develop numerous physiological mechanisms to cope with salt stress. These strategies include 

(i) salt exclusion in the shoot and retention of salt ions in the root, (ii) better maintenance of 

potassium homeostasis, (iii) compartmentation of salt ions in the vacuole, accumulation of 

compatible solutes and osmolytes in the cytosol (Colla et al. 2010). The mechanism 

associated with the exclusion of Na+ and Cl− ions from leaves involve both the uptake 

selectivity in roots and resistance to transferring these ions to the shoot (Maathuis and 

Amtmann 1999). These mechanisms minimize ionic toxicity in leaf tissues and consider 

essential for developing resistance to salt stress in some rootstock of citrus (García-Sánchez 

et al. 2002), rose (Wahome et al. 2001), grape (Paranychianakis and Angelakis 2008) and 

tomato (Estaň et al. 2005). Furthermore, in grafted tomato plant, tomato rootstocks showed 

different mechanisms to cope with salt stress in relation to their ability to regulate the 

transport of Na+ and Cl− into the shoot. However, Estaň et al. (2005) observed that the salt 
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tolerant mechanism of cv. Pera was depended on the salt level and exposure time, as its 

includer character was observed at either low salinity or short exposure times; while when the 

salinity and time exposure increased, cv. Pera was able to regulate the saline ion transport to 

the shoot. 

 

5.1.1. Salt inclusion mechanism and leaf ion compartmentation of Nerina F1 scion 

In the presented experiment, plants of commercial tomato cultivars (Haruki, Kamonium, and 

Nerina F1) were grafted onto several different rootstocks (Maxifort F1, Arnold, and R1) to 

assess some physiological and biochemical changes that have been induced by different 

rootstock genotypes under mild and high salt stress. Generally in this study, the concentration 

of Na in the entire plant was essentially affected by the imposed salt regardless the rootstock 

genotypes and showed a significant increasing in this ion particularly at 200 mM NaCl 

(Figure 3).  There was a quantitative variation in Na distribution throughout the plant organs 

in which the most absorbed Na ion was withhold in roots and leaf of all graft combinations 

(102 and 95 mg.g-1 DW as an average) while the lowest content was allocated in stems (63 

mg.g-1 DW as an average) at 200 mM NaCl (Figure 3). This result may devote the idea that 

the plant was suffering from ionic stress.  

 

When Nerina F1 was employed as a scion, the three rootstocks: Maxifort F1, Arnold, and R1 

showed different capacity to take up and transport the Na+ ion into shoot. The rootstock 

Maxifort F1in NER/MAX plant was unable to influence the distribution of Na+ between the 

root and its aerial part and induce effectively higher Na flux toward the leaves and stem by 

(+33% and +38%), respectively than the root at 200 NaCl (Figure 3). In contrast, R1 

rootstock in NER/R1 plant was able to compartment a nearly constant Na ion in the leaves 

and root (104 versus 112 mg.g-1 DW), while Arnold rootstock in NER/ARN plant showed 

lower Na content in its leaves (77 mg.g-1 DW) regarding the root (97 mg.g-1 DW) at 200 

NaCl (Figure 3). Interestingly, the comparison among these three rootstock genotypes 

revealed that Maxifort F1 showed continuing increasing of Na+ and achieving significantly 

higher Na leaf by 1.9-fold and 1.5-fold than NER/ARN and NER/R1 plants, and higher Na+ 

stem by 3-fold and 2.3-fold than NER/ARN and NER/R1 at 200 NaCl (Figure 3). This result 

confirms that the Maxifort F1 rootstock lost its ability to limit the Na+ influx into aerial part 

and has a high salt includer character. This salt inclusion mechanism could be supported by 

mechanism of Ca2+ uptake selectivity in roots as well as Ca2+ transportation selectivity of this 

ion, where only NER/MAX graft plant accumulated significantly more root Ca2+ by +54% 
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than NER/ARN and NER/R1, and more stem Ca2+ by +97% and +235% than the other graft 

plants (Figure 5). The significant increasing in Ca2+ concentration of stem suggested that the 

ability of this rootstock to regulate the mobility of this ion to upper parts of plants and this 

could possibly be one of the factors involved in conferring salt tolerance (Sivritepe et al. 

2005). However, it is worth mentioned that this inclusion mechanism was effectively 

operated under high salt stress.  

 

Regarding, R1 rootstock in NER/R1, it has the ability of compartmentation excessive Na+ in 

the leaves, where it presented similar content of Na+ ion in its leaves as those in its root, 

suggesting that this rootstock utilize lower salt inclusion mechanism than Maxifort F1 

rootstock to cope with stressed condition. The main long term damaged caused by salinity in 

the cultivated tomato is related to the excessive accumulation of Na+ in leaves which 

provokes a wide variety of physiological and biochemical alteration that inhibit plant growth 

and production (Maggio et al. 2001; Munns 2005).  The compartmentation of excessive Na+ 

in the vacuole by the tonoplast Na+/H+ exchanger is considered to be one of the key 

mechanisms to NaCl tolerance (Zhang and Blumwald 2001), in turn, the increased vacuolar 

Na+ concentrations would require a coordinated increase in the osmotic pressure of the 

cytoplasm, which can be achieved by an increase in the concentration of K+ and compatible 

solutes (Munns and Tester 2008). Consequently, this might interpret, to some extent, the 

higher K+ content in root of NER/R1 plant as 1.5-fold as NER/MAX plant at 200 mM NaCl 

(Figure 6). On contrary, Arnold rootstock in NER/ARN plant regulate more efficiently the 

transportation of Na ion into leaf and showed less Na+ accumulation by 20% comparing with 

Na root. However, the Na+ inclusion strategy of salt tolerant that used by Maxifort F1 and R1 

rootstocks must be accompanied by an adequate compartementation of these ions between 

and within the cell that would avoid the plant to achieve the toxic level of saline ions in the 

cytoplasm and or the apoplast (Yeo 1983). Taken together, these results confirm that the 

rootstock genotypes play a significant role in ions entry at root level and in ion translocation 

into leaf level. These results agree with those of other studies that reported the importance of 

rootstock capacity to reduce the Na+ and Cl− accumulation in leaves of the grafted plants 

(Romero et al. 1997; Fernandez-Garcia et al. 2002; Estaň et al. 2005). Also, our results were 

consistent with other reports that mentioned the lower accumulation of Na+ and Cl− in the 

shoot of grafted plantlets of citrus (García-Sánchez et al. 2002), grape (Paranychianakis and 

Angelakis 2008) and tomato (Estaň et al. 2005) under salinity is also associated with the 
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exclusion capacity of the rootstock, which is attributed to mechanisms of selective transport 

and/or retention in the roots.  

 

Moreover, maintaining a low ratio of Na+/K+ is considered the best overall indicator of plant 

ability to select and use K+ under Na+ salinity (Perez-Alfocea ei al. 1993) and, consequently, 

reflects, the salt tolerance in plant (Santa-Cruz et al. 2002). It is known that the value of one 

of Na+/K+ ratio is considers critical for maintaining metabolic activity (Munns and Rawson 

1999), however, NER/MAX plant was affected strongly by salinity whereas the leaf Na+/K+ 

ratio was 35-fold higher than the mentioned above value (Figure 4). Moreover, only Maxifort 

F1 rootstock in NER/MAX plant showed essentially higher leaf Na+/K+ ratio as 2.1 and 1.3 

times as Arnold and R1 rootstocks in NER/ARN and NER/R1 plants (Figure 4); similarly, 

stem Na+/K+ ratio of NER/MAX plant showed also higher Na+/K+ ratio by 3 and 2 times as 

the other two plants. Moreover, Maxifort F1 rootstock showed higher Na+/K+ ratio at the root 

and leaf level of NER/MAX plant (Figure 4) that associated with lower K+ content (Figure 6). 

This reduction in K+ content could due to the similar physiochemical structures of Na+ and 

K+ ions which mean that Na at transport sites for K+ will enter predominantly and might 

cause K+ deficiency (Maathuis and Amtmann 1999).  

 

K+ ion plays an essential role in the growth of all plant. However, Moreover, high K+ 

concentration is a key factor in salinity tolerance as NaCl negatively affects K+ nutrition 

(Aleman et al. 2009). The root data of K+ concentration showed that only the root of Arnold 

and R1 rootstocks increased significantly upon high salt level, while K+ content in the root of 

Maxifort F1 showed similar value as non-treated plant at 200 mM NaCl (Figure 6). However, 

the leaf K+ of the three graft plants reduced upon 200 mM NaCl. The reduction, particularly, 

in NER/MAX plant showed that the highest leaf Na content could be caused by the inhibition 

of K+ influx into the cell by Na+ or the stimulation of K+ efflux from the cell by Na+ (Figure ) 

(Britto et al. 2010).  

 

Cl− ion is considered as inorganic osmotic anion that plays an important role in osmotic 

adjustment. However, the excessive accumulation of Cl− results in ion toxicity and growth 

inhibition (Ashraf and Harris 2004). It is not easy to determine whether the toxic effects that 

induced by salt stress are due to Na+ or Cl− or the contribution of both. Nonetheless, Cl− has 

been shown to be more toxic than Na+ to citrus seedling (Fernandez-Ballester et al. 2003; 

Moya et al. 2003). However, for many plants, Na+ is considered the primary cause of ion-
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specific damage (Tester and Davenport 2003). Some authors observed that there were some 

rootstocks able to exclude more Cl− than Na+ or vice versa (Romero et al. 1997). According 

to our data, the Cl− accumulation rate (Figure 7) was too much less than Na+ ion (Figure 3) in 

the different plant organs, this indicate that the Na+ uptake and transport to the leaves was 

faster than that of Cl−, and might indicate that the toxic effect, even at salt long term, was due 

to mainly Na+ ion. However, the fact that Maxifort F1 rootstock in NER/MAX plant induces 

significantly higher stem and leaf Cl− content than other rootstocks (Figure 7), it seems that 

this rootstock lost the ability to regulate leaf Cl− transportation and trigger the Cl− salt 

inclusion mechanism altogether with Na+ ion. However, contrast results were recorded with 

grafted fruit trees, where Chaplin and Westwood. (1980) stated that there was no effect of the 

rootstock on leaf mineral content and more influence of the scion was observed. While, 

Brown et al. (1994) reported that the change in rootstock had a significant influence on the 

leaf content of pistachio grafted plant. However, Tagliavani et al. (1993) suggested that the 

vigour of both scion and rootstock had a parallel role in the uptake and translocation of 

nutrient in grafted fruit trees. Kawaguchi et al. (2008) mentioned that the rootstock species 

was the main factor affecting the absorption and translocation of P in the graft combinations 

of Solanaceous plants. Ruiz et al. (1997) showed significant decreases of Na+ and K+ 

minerals in grafted plants, indicating that the Na+ and K+ concentrations were affected by the 

use of certain rootstocks.  

5.1.1.1. Vegetative growth response, water status and gas exchange parameters of 

Nerina F1scion 

The shoot and root genotype can be crucial for the plant development and the efficiency of 

rootstock-scion connection is fundamental for optimal growth.  The harmful effects induced 

by salinity involve the excessive accumulation of salt in the leaves. It is often reported that 

the positive rootstock effects on shoot growth and fruit yield are related to its ability to reduce 

the transport of saline ions over time (Estaň et al. 2005; Martinez-Rodriguez et al. 2008; 

Huang et al. 2009). The identification of rootstocks on the basis of shoot growth and 

physiological traits would be a selective aid of useful rootstock (Martinez-Rodriguez et al. 

2008). Munns and Tester. (2008) indicated that saline condition reduces rates of 

photosynthesis and leaf expansion, thus leading to the shoot growth reduction. In this study, 

we have investigated the effect of different rootstock genotypes in term of plant growth 

response, water status and photosynthesis apparatus parameters. This study demonstrated that 

the differential growth response of the three graft combinations of Nerina F1 scion 

(NER/MAX, NER/ARN, and NER/R1) was related to different capacity of the used 
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rootstocks (Maxifort F1, Arnold, and R1 rootstocks) to extrude the ions and regulate the ion 

transport to the shoot. Arnold rootstock in NER/ARN plant showed high efficiency to 

regulate the Na entry at root level and transported less Na ion into the stem by (-51% and – 

44%) in related to Maxifort F1 and R1 rootstocks in NER/MAX and NER/R1 plants at 

moderated salt stress (Figure 3). Thus, this plant showed less reduction in shoot FW and DW 

(-47% and -21%) in related to control plant at 100 mM NaCl (Table 1). On contrary, both 

Maxifort F1 and R1 rootstocks accumulated higher Na ion in their shoot and, accordingly, 

showed higher reduction in shoot FW and DW as (-65% and -47%) in NER/MAX plant and 

(-65% and -53%) in NER/R1 plant. Nonetheless, the shoot growth showed more depressing 

as long as higher salt content was in the root medium depending on rootstock genotypes. The 

reduction of shoot FW and DW accounted for (-77% and -65%) in NER/ARN plant and it 

was higher in NER/R1 plants (-84% and -74%) (Table 1). However, Maxifort F1 rootstock 

induce the highest reduction in these parameter in NER/MAX plant (-96% and -84%) in 

related to control plant at 200 mM NaCl (Table 1). Indeed, the slower growth is also adaptive 

mechanism of plant grow under stressed condition, in which some plants act responsively 

toward stress condition and tend to stop growing while others keep running the risk of dying 

by continuing to grow even in sever stressed condition (Fernández-García et al. 2004). 

Pervious report linked shoot growth variation under salt stressed condition in tomato grafted 

plant to the shoot genotype (Santa-Cruz et al. 2002), while Martínez-Rodríguez et al. (2008) 

mentioned that the salt tolerance of the shoot depends on the root system, independently of 

the genotype used as a scion, although the positive effect of rootstock may show to a different 

degree depending on the higher or lower exclusion ability of the shoot genotype. These 

results could explain the contradictory result obtained in relation to the role of the rootstock 

in the salt tolerance of the shoot (Abd-Alla et al. 1998). 

 

Plants store minerals and other nutrition in different organs such as roots, stems, leaves, 

and/or fruits. These organs have a considerable influence on the uptake and translocation of 

mineral nutrients in plant and this play an essential role in physiological process such as 

growth, signal transduction and development (Wang et al. 2006; Flowers and Colmer 2008). 

Root characteristics: root length, density, number or root hair and its surface area play an 

active role in ions and water uptake (Krasilnikoff et al. 2003). Colla et al. (2010) indicated 

that root system is considered as the main reason for alleviation the deleterious effect of salt 

stress on shoot growth. Also, Oztekin and Tuzel. (2011) demonstrated that root growth in 

tomato appears to be less effected by salt than shoot growth. Accordingly, in this trial, the 
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positive effect of rootstock genotypes on root dry weight was strong at both salt stress, where 

the rootstock ARN showed a significant increasing in root DW at moderated salt stress as 

+62% as control plant, while the highest root DW reduction was presented by Maxifort F1 (-

41%) (Table 1). However, the role of rootstocks were still presents even under 200 mM 

NaCl, where Maxifort F1 exhibited the highest root DW reduction -76% respecting the 

control plant, while both Arnold and R1 rootstocks in NER/ARN and NER/R1 plants 

displayed lower similar reduction -31%. The increase in the root dry weight support the 

hypothesis that the tomato allocated more dry weight to root to maximize capacities for 

nutrient and water absorption (Debouba et al. 2006). This result was homogenized with ion 

data where Arnold rootstock in NER/ARN plant showed lower Na+ ion accumulation at all 

plant organ, while Maxifort F1 in NER/MAX revealed the highest (Figure 3). However, our 

result was not in consistent with other author (He et al. 2009) who mentioned that tomato root 

dry mass declined under salt stress (100 and 150 mM NaCl) in comparison with non-saline 

conditions but the decrease was similar in all grafted plants. While, Colla et al. (2006a) and 

Yetisir and Uygur. (2010) documented that the root dry weight reduction was significantly 

lower in grafted than non-grafted watermelon plant under salinized condition. Also, Zhu et al. 

(2008a, b) and Huang et al. (2009a) stated that grafted cucumber showed less root dry weight 

reduction in related to non-grafted plant in presence of NaCl. Accordingly, the lowest shoot 

FW and DW and root DW of NER/MAX plant (Table 1), the most entire Na+, Na+/K and Cl− 

ions accumulation (Figure 3, 4 and 7). Moreover, many studies have shown that high 

concentrations of Na+ and Cl− in the soil solution may depress nutrient–ion activities and 

produced extreme ratios of Na+/K+ in the plants, causing the plants to be susceptible to 

osmotic and specific ion injury as well as to nutritional disorders that result in reduced yield 

and quality (Grattan and Grieve 1999; Sivritepe et al. 2003). Taken together, these results 

confirm that the rootstock effect on the shoot growth is based on the rootstock ability to 

reduce the transport of saline ion into the shoot over the time (Martinez-Rodriguez et al. 

2008).   

Salinity affects plant growth by imposing both osmotic stress and ionic stress. The osmotic 

stress takes place when the stress level or the time exposure are not enough, while the toxicity 

provoke by the excessive accumulation of ions in the leaves in presence of high salt 

concentration or elongation of salinized period. Munns. (2002) concluded that the plant 

growth in salinized condition was predominantly prevented by osmotic stress in species 

having a low salt uptake rate. It is known the improvement in fruit yield is a consequence of 

reduced ion transport into the shoot by the rootstock. In this regard, there was no appreciated 
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performance of any used rootstocks where there was no variation among them in term of fruit 

fresh weight and the ANOVA analysis showed neither rootstock nor salt × rootstock have 

significant effect on fruit yield (Table 2). Even at moderated salt stress, the three graft 

combination presented high reduction in FW fruit by -74%, -82% and -58%, respectively in 

NER/MAX, NER/ARN, and NER/R1 (Figure 1). Nonetheless, this reduction was higher 

under high salt stress and accounted for -96% for all used rootstocks. The high fruit FW 

reduction even at mild salt might indicate that the fruit yield redaction was related to osmotic 

stress, while the continued reduction in this parameter at high salt content might correlated to 

ionic stress as cause of excessive accumulation of Na+ and Cl− ions on long-term (Tester and 

Davenport 2003; Estaň et al. 2005). Accordingly, these data demonstrated that in spite of the 

three rootstocks showed different salt morphological and physiological adaptations to cope 

with salt condition, they actually lead to the same preservation of fruit yield and showed 

similar reduction in fruit FW by 96% at high salt stress (Figure 1). Thus, the three rootstocks 

failed to counteract the deleterious effect of salinity stress in term of yield. The highest 

deficient improvement of plant growth and productivity in NER/MAX plant regarding the 

Maxifort F1 rootstock can be ascribed to the ineffectiveness of reducing long-distance 

transport of Na+ or could be related to excessive accumulation of Na+ ion in the shoot since 

although the availability of Na+ as a cheap osmotic adjustment is generally beneficial  (Figure 

2) (Maathuis and Amtmann 1999), excessive accumulation of Na+ resulted in toxicity and 

growth inhibition (Saqib et al, 2005; Tester and davenport 2003). However, our results 

corroborated previous data obtained by (Huang et al. 2009) who stated that rootstock had no 

significant effect on mean fruit weight of tomato but had a significant effect on fruit number. 

Also, our result was in agreement with (Fan et al. 2011) who mentioned that there was no 

significant difference in tomato yield and all growth associated characteristics between the 

tolerant (Edkawi) and sensitive (zs-5) rootstocks. However, other contradictory reports 

showed that the rootstock can also increase salinity tolerance in tomato that evaluated in term 

of fruit yield (Estaň et al. 2005; Martinez-Rodriguez et al. 2008). Colla et al. (2006a, b) 

reported that the use of rootstock raises fruit yield of melon and watermelon due to both the 

higher mean fruit weight and fruit number under saline condition. While Flores et al. (2010) 

stated that depending on the scion–rootstock combination, either a decrease or an increase in 

fruit quality seemed to occur.  

Water status response  

A wide range of morphological and physiological characteristics are affected by rootstocks, 

scions and their interactions (Santa-Cruz et al. 2002; Fernández-García et al. 2002, 2004; 



111 
 

Estaň et al. 2005; Colla et al. 2006b; Yang et al. 2006; Martinez-Rodriguez et al. 2008; 

Huang et al. 2009b; He et al. 2009). Some of these characteristics have the potential for 

improvement of plant water relations, growth and plant development during salt stress. The 

mechanisms of resistance against salinity in grafted plants display a great complexity, such 

complexity may be associated with rootstock structure, scion genotype or specific interaction 

between the scion genotypes and rootstock characters. 

 

Tomato plants have some tolerance avoidance mechanisms such as decreases in water and 

osmotic potential to maintain their water status during the soil water deficit (Monneveux and 

Belhassen 1996). Osmotic adjustment helps the plant cells to withstand salt stress and water 

deficit by maintaining sufficient turgor for growth. It involves the transport, accumulation, 

and compartmentation of inorganic ions and organic solutes (Mustard and Renault 2004).  

This processing allows increasing the water potential gradient between the soil and plant and 

improving the water absorption under soil water deficit (De Herralde 2000). In this research, 

the three graft plants NER/MAX, NER/ARN, and NER/R1 showed medium significant 

reduction in water potential as 1.9 times in related to control plants upon 100 mM NaCl 

(Figure 2). The Ψw reduction was associated with Na+ ion accumulation in leaves (67 mg.g-1 

DW, as an average) (Figure 3). However, under higher salt stress (200 mM NaCl), the plant 

showed sharper significant diminishing in water potential in which the medium reduction 

among the three plants was higher by 1.6 times in respect to moderated salt treated plants, 

and this reduction was associated with higher averaged of leaf Na+ ion accumulation by 1.6 

times in related to moderated salt plants. Thus, this result confirm that the main effect 

induced by salinity at 100 mM NaCl was osmotic effect; while at higher salt exposure, the 

plant accumulate more excessive Na+ ion and suffering from ionic toxicity. However, one 

explanation of this extreme diminishing in water and osmotic potential might be indicative of 

hardening process and may present fundamental mechanism of adaptation to salinity 

(Richardson and McCree 1985). These results were inconsistent with other authors who 

mentioned that the tomato plant react predominantly to the osmotic effect induced by salinity 

and not to ion toxicity at low or moderated salt levels (Neumann 1997), while other 

researcher documented that the response could be differing depending on salt stress level and 

salt time exposure (Perez-Alfocea et al. 1993).  
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Indeed, it is interesting to emphasize that the induced high inclusion tolerance strategy of 

rootstock Maxifort F1 in NER/MAX plant upon high external salt stress has been associated 

with highest accumulation rate of Na+ and Cl− ions in its leaves and stem (Figure 3 and 7) 

(Santa-Cruz et al. 2001), and accordingly the plant maintain the lowest significant osmotic 

potential (-3.87 MPa) and the highest osmotic adjustment values (1.60 MPa) at 200 mM NaCl 

(Figure 2). This result suggested that the plant has used these high concentrations of 

inorganic solutes from the substrate in order to adjust osmotically, which is considered as an 

osmotically adaptive strategy to cope with salt stress since the energetic cost of inorganic 

solute accumulation is less expensive process than the use of organic solutes (Yeo 1983). 

However, the reduction of water and osmotic potential in NER/MAX plant was also 

associated with significant reduction in stomatal conductance (data not shown), while the 

relative water content has not been affected and showed similar value as non-treated plant 

(data not shown). This might indicate that the osmotic adjustment improved the water status 

of the plant under salinity as the dehydration did not appear under salt stress since. This result 

was in agreement with the finding of Weng. (2000) who stated that the leaves of grafted 

tomato plants under water deficit maintained higher leaf water potential in spite of higher 

water loss through transportation, indicating a greater ability to promote water uptake. While 

Fernández-García. (2004) reported that grafted tomato plant failed to adjust osmotically as 

the leaf water potential was not altered.  

Gas exchange parameters response 

He et al. (2009) revealed that the alleviation effects of the tolerant rootstock may be related to 

an improvement of the photosynthetic process. Other authors mentioned that not only the 

rootstock but also the scion affect the stomatal performance, producing a higher CO2 

assimilation rate and less stomatal resistance than in non-grafted or self-grafted plant (Yetisir 

et al. 2007; Rouphael et al. 2008; He et al. 2009; Zheng et al. 2009).  Also, Ferreira-Silva et 

al. (2009) suggested that the type of cashew rootstock plays an essential role in transpiration 

intensity either under control or mild and high salt condition. In this work, under control 

condition, the three graft combinations showed high transpiration rate (Table 3) that 

associated with high values of stomatal conductance (data not shown) which are considered 

the favourable conditions to photosynthesis and net assimilation rate (Ferreira-Silva et al. 

2010; Souza et al. 2005). Nevertheless, the differential response of different rootstocks was 

clear in term of net assimilation rate in the leaves of high salinity treated plants, where 

Arnold and R1 rootstocks in graft plants NER/ARN and NER/R1 showed less reduction in A 

value by 66% in respect to their control plant, while the Maxifort F1 rootstock in NER/MAX 
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plant showed the highest significant reduction in net assimilation rate (-91%) at 200 mM 

NaCl (Table 3). However, this reduction in net assimilation rate in NER/MAX plant was 

associated with significant reduction in stomatal conductance and intercellular CO2 (data not 

shown). This reduction of stomatal conductance that accompanying with reduction in Ci  

concentration implying that stomatal limitation of CO2 diffusion could be more important in 

A CO2 limitation than non-stomatal factors upon salt treatment (He et al. 2009; Zgallaï et al. 

2006). Also, this tendency of redaction of (Gs) under salt stressed NER/MAX plant could be 

a mechanism of water conservation, limiting the loss of water in order to maintain leaf turgor 

and osmotic adjustment (Figure 2) (De Herralde et al. 1998). On other hand, the highest A 

value in NER/ARN and NER/R1 plant at high salt stress could interpret according to Meloni 

et al. (2003) and Munns. (2002) who stated that the salt excess in the root medium decreases 

the osmotic potential of soil solution and restrict water uptake by plant root which result in 

significant increasing in stomatal resistance and net assimilation rate. Furthermore, the lower 

reduction in A value in NER/ARN and NER/R1 plant could be because these plants presented 

less root biomass reduction under stress. It is commonly accepted that an interdependent 

relationship exists between root and shoot: i.e., active shoots that ensure a sufficient supply of 

carbohydrates to roots can stimulate and maintain active root functions; the activation of root 

functions can, in turn, improve shoot characteristics by supplying a sufficient amount of 

nutrients, water, thus ensuring increased biomass productivity (Yang et al. 2004). 

 

Although the both mentioned above rootstocks Arnlod and R1 displayed the least reduction 

in root DW at 200 mM NaCl (Table 1), the yield reduction was high because the water 

absorption by these roots was suppressed, as the presence of salt, and accordingly scion 

growth decreased (Oda et al. 2005).  

5.1.1.2. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of Nerina F1scion 

It was documented that stress tolerance of plant is associated with their ability to remove 

ROS (Senaratna et al. 1985). Activities of many antioxidant enzymes are enhanced to 

scavenge ROS when plants are subject to osmotic stress (Ruiz-Lozano. 2003). Grafted 

cucumbers have a higher relative expression of SOD and CAT mRNA and higher activities of 

SOD and CAT thereby a higher salt tolerance under NaCl stress than self-rooted plants (Gao 

et al. 2008). The increased salt tolerance of cucumber plants grafted onto C.ficifolia was 

linked to the increased SOD and POD activities under saline condition (Huang et al. 2010). 

Higher antioxidant capacities in grafted plants under salt stress have been observed in fruit 
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bearing vegetable. The activities of SOD, POD, and CAT in the leaves of grafted watermelon 

seedling were significantly higher than those of self-rooted seedling under NaCl stress (Zhu 

et al. 2008b). The alleviation of oxidative damage in grafted tomato plants under NaCl 

initiated from the increase in activities of CAT and enzyme involved in ascorbate-glutathione 

cycle such as APX and GR (He et al. 2009). Studies have shown that the alleviation of 

oxidative damage and increased resistance to salinity is correlated to the efficient of 

antoxidative defence system (Bor et al. 2003; Alscher et al. 2002). Rout and Shaw. (2001) 

mentioned that salt tolerance capacity of salt tolerant species is closely related with the 

maintenance of antioxidant enzymes for the effective removal of ROS. Azevedo Neto et al. 

(2006) reported that the complex defence antioxidative system included low-molecular mass 

antioxidant as well as antioxidative enzymes such as SOD, CAT, APX and GR. 

 

The plant need to maintain internal water potential below that of soil in order to maintain 

turgor and water uptake and growth. This requires an increase in osmotica either through 

uptake of inorganic ions or synthesis of metabolically compatible solutes such as proline and 

protein. The organic solutes are often referred to as compatible osmolytes and they are not 

harmful to enzymes and other cellular structure even at high concentration (Zhu 2001).  The 

high concentrations of compatible osmolytes accumulate in the cytosol and organelles to 

balance the osmotic pressure of the ions in the vacuole (Munns and Tester 2008). In addition, 

Zhu. (2001) and Huang et al. (2009c) suggested that the increased amount of compatible 

osmolytes may protect plants by scavenging oxygen free radicals caused by salt stress  and 

alleviates free-radical damage induced by salt stress (Wang et al. 2007). In many plant 

species, the increase in proline level under stressed condition is considered as a typical 

mechanism of the biochemical adaptation, and it has been suggested that proline may 

function as osmoticum, a sink of energy and reducing power, a ROS-scavenger and a 

compatible solute that protect enzyme (Sánchez E et al. 2002).  

 

Although a great deal of work has been done to improve plant salt tolerance, only few studies 

have examined the effect of grafting with different scion genotype onto one rootstock and 

vice versa one scion genotype against different rootstock. In the present study, the effect of 

different rootstock genotypes in term of enhancing the activity of fruit enzymatic antoxidative 

system was studied. Our result showed that different graft combinations that have been 

generated from grafting one scion genotype onto different rootstock characters differ in their 

abilities to activate the enzymatic antoxidative defence system in the fruit depending on the 
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rootstock genotypes. Under control condition, the APX activity in the fruit was different 

depending on the used genotypes, where NER/ARN plant showed less APX activity by -92% 

and -86% respectively than NER/MAX and NER/R1 plants (Figure 9). This result implies 

that the APX fruit activity could be affected by rootstock even under control condition. This 

result was in agreement with Zhen et al. (2010) who stated that SOD and POD activities in 

the cucumber leaves were different depending on rootstock genotypes even under zero 

stressed condition. Also, Zhu et al. (2008a) mentioned that SOD and APX activities in the 

cucumber leaves were different according to rootstock and irrespectively of the saline 

condition. Under high salt stress, the scion Nerina F1 in presence of Arnold rootstock was 

able to increase significantly the activities of APX, CAT, and GR enzymes as 17, 3, and 2-

fold as the control plant (Figure 9). On contrary, when Nerina F1 scion was grafted onto R1 

rootstock, there was no activation of any enzymes even at high salt stress (Figure 9). 

However, this scion showed activation of CAT enzyme and deactivation of GR enzyme when 

Maxifort F1 was used as a rootstock at high salt stress (Figure 9). As we have seen before 

that there were significant differential responses of rootstock genotypes in term of ions 

accumulation and, accordingly, in plant growth and productivity. At moderated salt stress, 

Arnold rootstock in NER/ARN plant showed higher efficiency to regulate the Na entry and 

transport less Na ion into the aerial part (Figure 3) that associated with less reduction in shoot 

FW and DW than Maxifort F1 and R1 rootstocks in related to control plant (Table 1). 

However, the increased salt tolerance of Arnold rootstock in NER/ARN plant, expressed as 

less shoot growth reduction, was found to be linked to the higher fruit enzymatic antioxidants 

activity, where this plant showed a significant increasing in the activity of APX, CAT, and 

GR enzymes under saline conditions (Figure 9). In the processing of removal H2O2 under 

NaCl stress, CAT, APX and GR play vital roles (Shi and Zhu 2008), as the alleviation of 

oxidative damage in grafted tomato plants originated from the increase in activities of CAT 

and the enzymes involved in the ascorbate-glutathione cycle (He et al. 2009). Thus, we could 

suggest that the NER/ARN plant had higher ability to remove ROS than other graft plants.  

 

Grafted tomato plant of NER/MAX induced the highest proline accumulation as two times as 

Arnold and R1 rootstocks of NER/ARN and NER/R1 plants under salt stress (Figure 10) 

(Chen et al. 2005, 2006), suggesting that the increase in proline content in the fruit was 

influenced strongly by rootstock genotypes (Ferreira-Silva et al. 2009). However, the proline 

level increasing NER/MAX plant was associated also with higher Na+ ion accumulation in 

the leaves (Figure 3), indicated that the enhanced salt tolerance is related to the change in 
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osmotic component (Figure 2) (Yang et al. 2006; Chen and Wang 2008; Huang et al. 2009a). 

Though compatible solutes have a higher energy requirement, grafted plants can still benefit 

from the higher accumulation of compatible solutes. The over accumulation of Na in the leaf 

tissue can cause premature leaf senescence or even death, while a higher soluble proline 

content can prevent to some extent the detrimental effect induced by salinity (Tester and 

Davenport 2003). 

 

Although Maxifort F1 rootstock has the capacity to induce the highest proline accumulation 

in fruit of NER/MAX plant at 200 mM NaCl (Figure 10), the plant showed sharp reduction in 

shoot growth and fruit yield (Table 1and Figure 1). However, under saline condition for some 

species, proline is associated with stress resistance as it plays a metabolic function in osmotic 

adjustment and cell protection (Silva-Ortega et al. 2008); while for other plant species, the 

changes in content of this organic solute under salinity could be related to metabolic 

disturbances in the proline biosynthesis pathway than with cell protection or osmotic 

adjustment (Silveira et al. 2003). Additionally, the proline level reduction (Figure 10) was 

associated with high significant reduction in fruit GR activity (Figure 9). The higher 

reduction in GR activity may contribute to lower AsA content, indicating that the ascorbate-

glutathione cycle did not function in a proper way and this plant lost its ability to detoxifying 

a great amount of H2O2 that reaches high toxicity level and thereby the oxidative damage 

occurred. With regard to R1 rootstock, it seems that R1 rootstock in NER/R1 plant was 

unable to activate any enzymes even at high salt stress, suggesting that this rootstock is a 

relatively salt sensitive (Figure 9). Zhen et al. (2010) stated that the higher antioxidant 

capacity of grafted cucumber be existent when the plants grafted onto relative salt tolerant 

rootstock. MDA is the direct production of lipid peroxidation and its content is often used as 

indicator of the extent of lipid peroxidation. However, although the tomato grafted plants of 

Nerina F1 scion was affected hardly by salt imposing into root medium, unexpectedly we 

could not link the salt stress injury with MDA level as the salt treated plants showed similar 

accumulation as the control plant irrespectively of the rootstock genotypes (Figure 10). To 

conclude, the result of this work showed that the scavenging system of fruit free radicals was 

non-effective and different rootstocks showed less power of protective mechanisms of 

antioxidant enzymes under salt stress condition. Accordingly, the three graft combinations 

were not able to sustain the plant performance and a huge redaction in shoot growth and fruit 

yield were registered upon saline condition.    

 



117 
 

To summarize, in this study we have investigated the effect of different rootstock genotypes 

in term of plant growth response, water status and photosynthesis apparatus parameters, and 

enhancing the activity of fruit enzymatic antoxidative system. The main finding of this study 

was the differential responses of graft combinations were related to different capacity of the 

used rootstocks to extrude the ions and regulate the ion transport to the shoot. The Maxifort 

F1 rootstock lost its ability to limit the Na+ influx into aerial part and showed salt inclusion 

mechanism that associated with excessive accumulation of Na+ in stem and leaf, while the R1 

rootstock showed high ability of compartmentation excessive Na+ ion in the leaves and 

presented similar content of Na+ ion in its leaves as those in its root. On contrary, Arnold 

rootstock in NER/ARN plant regulate more efficiently the transportation of Na ion into leaf 

and showed less leaf Na+ accumulation comparing with Na+ root. However, the three 

rootstocks induced different morphological, physiological, and biochemical mechanisms to 

cope with salt stressed conditions. Arnold rootstock showed high efficiency to regulate the 

Na entry at root level and transported less Na+ ion into shoot which was associated with less 

reduction in shoot growth. Moreover, this plant showed increased in root biomass 

productivity upon salinization which helps the plant to maintain higher A value. On other 

hand, the Maxifort F1 rootstock lost its ability to limit the Na+ influx into aerial part and 

showed salt inclusion mechanism that associated with excessive accumulation of Na+ in the 

shoot, and accordingly this rootstock restrict the plant growth as an adaptive mechanism to 

cope with stressed condition. However, the salt inclusion mechanism in Maxifort F1 help the 

plant to achieve lower values of water and osmotic potential, and accordingly, maintaining 

higher value of OA by using high concentrations of inorganic solutes from the substrate 

which is considered as an osmotically adaptive strategy. Moreover, Maxifort F1 rootstock 

induced reduction in net assimilation rate and stomatal conductance which could be a 

mechanism of water conservation in order to maintain leaf turgor and osmotic adjustment 

under salt stressed. Additionally, the Maxifort F1 rootstock induced higher proline 

accumulation in the fruit as an attempt to prevent to some extent the detrimental effect 

induced by salinity. However, though the different rootstocks induced different 

morphological, physiological, and biochemical mechanisms deal with the stressed 

surrounding environment, the three rootstocks failed to counteract the deleterious effect of 

salinity stress in term of yield and lead to the same preservation of fruit yield. 

 

5.1.2 Salt exclusion/inclusion mechanisms and leaf ion compartmentation of Haruki scion 



118 
 

In this study, we investigated the role of different rootstock genotypes in regulation the 

physiological and biochemical plant responses under salt stressed condition based on 

different ability of rootstocks to regulate the transport of saline ions into the shoot genotype. 

The results confirm that different mechanisms of salt tolerance were operated in the three 

graft plants (HAR/MAX, HAR/ARN, and HAR/R1) depending on the rootstock characters. 

Besides, one used rootstock was able to trigger an inclusion or exclusion strategies to cope 

with salinized condition depending on external stress level. The comparison between the two 

rootstocks Maxifort F1 and R1 rootstocks in HAR/MAX and HAR/R1plants presented 

similar capacity of the roots to take up Na+ ion from the root medium either at mild (97 mg.g-

1 DW) or high salt stress (108 mg.g-1 DW) (Figure 3). However, the graft plant against 

Maxifort F1 rootstock in HAR/MAX plant showed high capacity to extrude the sodium ion 

from the shoot and retention this ion into root, where the root kept back higher Na+ ion by 

106% and 32% than the leaf at 100 and 200 mM NaCl, respectively (Figure 3), while the root 

of HAR/R1 plant accumulated more Na+ root by 33% and 9% (Figure 3). Accordingly, 

HAR/R1 plant tend to compartment the Na+ ion in the leaves and exhibited similar Na+ leaf 

ion as the Na+ root content (93 versus 101 mg.g-1 DW) at external high salt, while it showed 

higher leaf Na+ concentration by +51% than HAR/MAX at moderated salt stress (Figure 3). 

Additionally, the leaf Na+/K+ ratio was higher in HAR/R1 by 2-fold and 1.4-fold than 

HAR/MAX plant at mild and high sat stress (Figure 4). Taken together, it seems that R1 

rootstock in HAR/R1 plant utilize the mechanism of leaf ion compartmentation as the high 

Na+ ion was located in the leaves, while the higher accumulation of Na+ in the root of 

Maxifort F1 rootstock in HAR/MAX plant pointed out that this rootstock is considered as salt 

excluder and displayed high capacity to extrude the salt ion from the shoot and retention it in 

its root (Estaň et al. 2005). These results corroborate the effect of rootstock genotypes on the 

intensity of salt ion transport from the root towards the leaves and confirm that the salt 

tolerance of the shoot depends on the root system performance (Ferreira-Silva et al. 209).  

 

The interesting finding of this study was when Arnold genotype has been employed as a 

rootstock in HAR/ARN plant as this rootstock showed more efficient regulation of the entry 

Na+ ion at root level than HAR/MAX and HAR/R1 and showed less significant root Na+ ion 

accumulation by 44% in respect to other graft plants (HAR/MAX and HAR/R1) at 200 mM 

NaCl (Figure 3). Attractively, the Na+ accumulation pattern in the HAR/ARN plant differs 

depending on salt level. Under moderated salt, the root of HAR/ARN plant accumulated Na+ 

ion as two times as its leaf Na+ (77 versus 41 mg.g-1 DW), while upon severe salt this plant 
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accumulated contrary more leaf Na+ by 36% than its root Na+ (Figure 3). Accordingly, 

Arnold rootstock would be able to induce two salt tolerant mechanisms into shoot depending 

on salt level either as an includer character (as showed by high saline ion accumulation in the 

leaves) at high salt stress or as an excluder character (as presented by high saline ion 

accumulation in the root) at mild salt stress.  

 

With reference to K+ ion, In spite of that Arnold rootstock in HAR/ARN plant showed about 

45% less ability to take up this ion from the root medium than Maxifort F1 and R1 rootstocks 

in HAR/MAX and HAR/R1 plants, the K+ leaves and stems of the three graft plants showed 

that there was no significant difference in K+ accumulation in respect to their control plants 

(Figure 6). Accordingly, this result might suggest that grafting itself facilitate the transport of 

K to the leaves and alleviate K+ deficiency even under high salt stress.     

 

As regards to Cl− ion, both Maxifort F1 and R1 rootstocks in HAR/MAX and HAR/R1 plants 

showed almost similar Cl− content in root and leaf and lower Cl− value in the stem, 

suggesting  that there was no limitation to the Cl− transportation to the leaves under 200 mM 

NaCl (Figure 7). Thus, we might indicate that these both rootstocks have Cl− includer 

character. Similarly, the rootstock R1faild to regulate the Cl− transportation and accumulate 

significantly higher stem Cl− anion by 1.8-fold and 2.3-fold than HAR/MAX and HAR/R1 

plants, respectively at 200 mM NaCl (Figure 7).  

 

 

5.1.2.1. Vegetative growth response, water status and gas exchange parameters of 

Haruki scion 

The three graft plants of Haruki scion: HAR/MAX, HAR/ARN, and HAR/R1showed 

differences in term of transpiration rate and Water use efficiency (WUE) under both salt 

stresses depending on the rootstock genotypes (Table 3). Water use efficiency (WUE), 

calculated as the ratio of A (net assimilation) to E  (transpiration), is considered as an 

important indicator of plant salt tolerance, since high WUE may reduce the uptake of salt and 

alleviate the water deficiency induced by salinity (Moya et al. 1999; Karaba et al. 2007). At 

moderated salt stress, HAR/MAX and HAR/ARN plants showed similar higher reduction of 

E and A values as (-84% and -62%) than HAR/R1 (-46% and -34%), respectively comparing 

the control plant. This reduction in both plants was associated with higher WUE by +153% 

comparing with control plant, while the WUE increasing was about +25% in HAR/R1 at 100 
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mM NaCl. However, we might ascribe this increasing in WUE upon moderated salt stress to 

the high decreasing in the transpiration rate altogether with moderated redaction in net 

assimilation rate. These results were consistent with He et al. (2009) who mentioned that the 

increased value of WUE of rootstock-grafted tomato plant under salt was resulted from fast 

reduction in transpiration rate and milder reduction of photosynthetic performance. It is 

important to note that the deferential effect induced by different rootstocks on transpiration 

was closely related to the salt ion accumulation. At moderated salt stress, the plant grafted on 

R1 rootstock of HAR/R1 plant showed significantly higher transpiration rate than 

HAR/MAX and HAR/ARN plants (1.47 versus 0.49 and 0.38 mM m-2 s-1) (Table 3) that 

associated with higher leaf Na ion (72 versus 48 and 41 mg.g-1 DW). This result indicate that 

R1 rootstock was more effective in term of inducing higher water and salt flux towards the 

leaf of HAR/R1 plant and accordingly accumulated more Na ion (Ferreira-Silva et al. 2009). 

On contrary, under 200 mM NaCl, contrast result was recorded in HAR/R1 plant as it showed 

higher reduction in E value -87% and increasing in WUE +169% comparing with control 

plant, while the other graft plants showed less redaction in E value -72%  as well as less 

increasing in WUE as 35% (Table 3). These result demonstrated that the type of rootstock 

employed in grafting influenced the leaf responses in term of transpiration (Ferreira-Silva et 

al. 2010). Nonetheless, all these plant combinations failed to achieve high productivity where 

the fruit fresh weight reduction was high even at mild salt; however, this reduction with 

Arnold and R1 rootstocks was higher (80%) than Maxifort F1 (66%) at moderated salt stress 

(Figure 1). The lower yield reduction showing in graft plant onto Maxifort F1, to some extent 

comparing with other two rootstocks, may due to a high efficient salt exclusion mechanism 

induced in this graft (Figure 3) as it is known that the salt ion exclusion by roots may result in 

higher salt resistance of the plant because of lower ionic toxicity that contribute to a 

metabolic stability and protection of the leaf tissues (Figure 2) (Martinez-Rodriguez et al. 

2008; Paranychianakis and Angelakis 2008). However, the high reduction in fruit yield at 

high salt stress in HAR/R1 plant (-80% and -94% in related to control plant) indicated to the 

fact that the induced tolerant mechanisms by R1 rootstock were not enough to counteract the 

deleterious effect of Na+ ion on the plant, and it might be possible that the compartmentation 

breaks down, and accordingly the toxic effect of excessive Na+ in the shoot may predominate 

over any benefit from better osmotic adjustment (Martinez-Rodriguez et al. 2008). However, 

the lower Cl− concentration at both salt stresses in all graft plants indicated that the plant 

growth inhibition was not related to Cl− ion. 
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5.1.2.2. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of Haruki scion 

A common damage of plants under saline condition is the accumulation of excessive ROS 

(Asada 2006); and it is supposed that the salt tolerant rootstock should be able to alleviate the 

oxidative damage caused by NaCl by enhancing the antioxidant capacity for the effective 

removal of ROS in cucumber (Zhen et al. 2010), in eggplant (Wei et al. 2009), and in tobacco 

(Ruiz et al. 2006). However, the three graft plants of Haruki scion: HAR/MAX, HAR/ARN, 

and HAR/R1 were not able to enhance CAT and GR activities even under high salt stress and 

showed similar activities to their control plant regardless the rootstock genotypes (Figure 9). 

Accordingly, high level of salt stress may trigger phenomena of massive release of ROS, 

resulting in cell and tissue damages. This result might interpret, at least partially, the 

observed reduction in fruit yield in the three graft plants either at mild or high salt stresses. 

SOD enzyme is considered as a main scavenger enzyme by detoxifying superoxide radical 

into H2O2 and the higher activity of this enzyme is usually associated with higher capacity to 

eliminate superoxide radicals and higher tolerance to oxidative stress (Bowler et al. 1991). 

Some studies indicated that stressed condition can induce SOD activity by an overproduction 

of ROS (Hameed et al. 2011). The result of this research showed that at high salt level, the 

fruit SOD enzyme increased in the three graft plants, but more considerably in HAR/R1 plant 

that exhibited the highest SOD activity as 163% as control plant while this increasing was 

restricted to 98% and 70% in presence of Maxifort F1 and Arnold rootstocks (Figure 9). 

Moreover, HAR/R1plant exhibited also a significant increasing in MDA level by +141% in 

HAR/R1 plant regarding the control plant at high salt stress (Figure 10). Thus, the increasing 

of MDA level that associated with SOD activity might indicate that there was an attempt to 

deactivate the ROS and increase the plant ability to dismutate (O2●¯) in this cultivar (Zhang et 

al. 2008; Wei et al. 2009). Halliwell-Asada cycle constitutes an important pathway for 

dissipation of H2O2 and other reactive oxygen radicals in chloroplast (Sgherri et al. 2003). It 

is assumed that the increased activities of the enzymes of ascorbate-glutathione pathway, 

especially that of APX confer general resistant to array of environmental stresses (Gara et al. 

2000). Our data showed that the graft plant (HAR/R1) presented the highest increasing in 

APX activity as +134% as the other rootstocks at high salt stress. Taken together, we deduce 

that in HAR/R1 plant the detoxification of H2O2 by APX and SOD enzymes is somewhat 

more efficient than other plants (Sánchez-Rodríguez et al. 2012). However, although of the 

enhancement of APX and SOD activity enzymes in HAR/R1 plant, there was still remarkable 

increasing in lipid peroxidation that expressed by rising of MDA level as +141% as the 
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control plant and we might link this fruit MDA increasing to the reduction of fruit fresh 

weight that accounted for -94% in this cultivar (Table 1). 

 

All in all, different mechanisms of salt tolerance were operated in the three graft plants of 

Haruki scion depending on the rootstock characters. R1 rootstock utilize the mechanism of 

leaf ion compartmentation as the high Na+ ion was located in the leaves, while the higher 

accumulation of Na+ in the root of Maxifort F1 rootstock pointed out that this rootstock is 

considered as salt excluder and displayed high capacity to extrude the salt ion from the shoot 

and retention it in its root. However, Arnold rootstock would be able to induce two salt 

tolerant mechanisms into shoot depending on salt level either as an includer character at high 

salt stress or as an excluder character at mild salt stress. It is important to note that the 

deferential effect induced by different rootstocks in term of transpiration rate, net assimilation 

rate and water use efficiency was closely related to the salt ion accumulation. At moderated 

salt stress, Maxifort F1 and Arnold rootstocks showed higher reduction of E and A values that 

associated with higher WUE comparing with R1. The high WUE may reduce the uptake of 

salt and alleviate the water deficiency induced by salinity. R1 rootstock showed significantly 

higher transpiration rate than other two rootstocks that associated with higher leaf Na ion. On 

contrary, under 200 mM NaCl, R1 plant showed conversely higher reduction in E value and 

increasing in WUE, while the other graft plants showed less redaction in E value as well as 

less increasing in WUE. It is supposed that the salt tolerant rootstock should be able to 

alleviate the oxidative damage caused by NaCl by enhancing the antioxidant capacity for the 

effective removal of ROS. In this study, different rootstocks showed different ability to 

enhance the enzyme activities upon salinization. R1 rootstock exert efforts to induce APX 

activity at high salt stress, while Maxifort F1 and Arnold rootstocks lost their capacity to 

trigger APX, CAT, and GR enzyme activities. Thus, we might suggest that R1rootstock was 

more efficient in detoxification of fruit H2O2 by enhancing the activity of APX enzyme. 

However, the different tolerant mechanisms that induced by the three used rootstocks were 

not enough to counteract the deleterious effect of Na ion and the toxic effect of excessive Na 

in the shoot may predominate over any benefit from better osmotic adjustment. Moreover, 

there was still remarkable increasing in fruit lipid peroxidation that expressed by rising of 

MDA level in the graft plants. Thus, we could indicate that the three plant combinations 

failed to achieve high productivity where the fruit fresh weight reduction was so high even at 

mild salt, these result could pointed out that those rootstocks are not relatively salt tolerant 

and they are not able to donate the resistant to their shoots.    
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5.1.3. Salt exclusion mechanism and leaf ion compartmentmentation of Kamonium scion 

Three graft combinations (KAM/MAX, KAM/ARN and KAM/R1) have been generated by 

grafting the cultivar tomato Kamonium onto three rootstock genotypes Maxifort F1, Arnold 

and R1 to assess the plant physiological and biochemical responses that induced as the effect 

of different rootstocks under NaCl stress condition. The data of this experiment showed that 

the pattern of ion accumulation was varied according to the characteristic of rootstock 

genotypes. At root level, there was no variation in Na+ accumulation between the three 

rootstocks and showed medium accumulation as 106 mg.g-1 DW at 200 mM NaCl (Figure 3). 

However, at stem level, only R1 rootstock in KAM/R1 plant showed higher Na+ 

accumulation rate by +50% than the other rootstocks in KAM/MAX and KAM/ARN plants 

at high salt level (Figure 3). Similarly, Arnold and R1 rootstocks in KAM/ARN and KAM/R1 

plants exhibited higher significant leaf Na+ ion as 1.6 and 1.3 times as leaf Na+ in 

KAM/MAX plant (Figure 3). Nonetheless, the rootstocks Maxifort F1 and Arnold in 

KAM/MAX and KAM/ARN graft plants showed higher ability to restrict more Na+ ion in 

their roots by (+56% and +27%) than their leaves (Figure 3) while they accumulate similar 

ratio of Na/K between their root and leaf that accounted 10 (Figure 4). However, the both 

rootstocks Maxifort F1 and Arnold have the ability to extrude more sodium ion from the 

shoot and preserve it in their roots by operating a salt exclusion mechanism; While the 

rootstock R1 in KAM/R1 plant showed less efficient in regulation the Na+ ion transport into 

leaf level and positioned similar ion concentration between root and leaf (102 versus 108 

mg.g-1 DW) at 200 mM NaCl (Figure 3). Besides, KAM/R1 plant accumulated more leaf 

Na+/K+ ratio value as 2 times of its root (Figure 4). Taken together, this result suggests that 

the R1 rootstock high ability to translocate Na+ ion and compartment it at leaf level by 

operating leaf compatmentation strategy. This result was consistent with Tester and 

Davenport. (2003) and Møller et al. (2009) who mentioned that salt tolerance mechanisms 

can occur in a wide range of organizational levels from the cellular level (e.g., 

compartmentation of Na+ within cells) to the whole plant (e.g., exclusion of Na+ from the 

plant and exclusion of Na+ from the shoot).    

  

However, although both rootstocks Maxifort F1 and Arnold utilized the same salt exclusion 

strategy to deal with high salt stress, Maxifort F1 showed higher exclusion capacity from the 

shoot than Arnold rootstock as it accumulated less leaf Na+ ion by 22% at high salt stress. 

The lower accumulation of Na+ in the shoot that associated with exclusion capacity of the 

rootstock might be attributed to mechanisms of retention ion in the root or/and uptake 
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selectivity in the root as Maxifort F1 rootstock in KAM/MAX plant accumulates more Ca2+ 

by 1.7 and 1.3 times as KAM/ARN and KAM/R1 plants at 200 mM NaCl (Figure 5) (García-

Sánchez et al. 2002; Estaň et al. 2005). However, stem and leaf Ca2+ of the three graft plants 

maintain the same ions content as the control plant at high salt stress (Figure 5).  

5.1.3.1. Vegetative growth response, water status and gas exchange parameters of 

Kamonium scion  

The positive effect of different rootstocks was evaluated in term of parameter of 

photosynthesis and yield productivity in the three graft combination of Kamonum scion 

KAM/MAX, KAM/ARN, and KAM/R1. At mild salt stress, KAM/ARN plant presented 

slightly lowest E value that associated with high preserve value of WUE (16.51) (Table 3), 

which possibly resulted in lower fruit fresh weight redaction (-62%) at 100 mM NaCl in 

related to control plant (Table 1), while the fruit fresh weight reduction was higher in 

KAM/MAX and KAM/R1 plants (-84%). Additionally, it seems that the leaf 

compartmentation mechanism that presented in KAM/R1plant at high salt stress supported 

the plant to accumulate more stem Na (Figure 3) and Na+/K+ (Figure 4) and accordingly the 

plant adjusted osmotically (Figure 2). However, the fruit and shoot fresh weights were still so 

high (-96% and -89%) regarding the control plant at high salt stress (Table 1). It is accepted 

that during osmotic adjustment the cells try to compartmentalize most of absorbed ions in 

vacuoles in order to maintain the osmotic adjustment (Hasegawa et al. 2000), however, in 

some cases the accumulation of solutes is so high that it goes beyond the limits of regulation 

of cytoplasmic content with associated impairment of growth (Pitman 1984). As we have 

mentioned above, the salt ion exclusion mechanism that associated with high root retention 

ability to the ion may result in higher salt resistant plant as lower Na+ accumulation will 

present in the shoot which protect the leaf tissue and improve plant performance under salt 

condition (Martinez-Rodriguez et al. 2008). Unexpectedly, the exclusion strategy of maxifort 

F1 and Arnold rootstocks in KAM/MAX plant was accompanying with highest fruit weight 

reduction -97% comparing to control plant upon high salt stress. Thus, the exerted strategy of 

Maxifort F1 was not enough to relieve the plant under high salt condition. Moreover, the 

three rootstocks exhibited different reduction in transpiration responses upon salinization 

regarding their control plants (Table 3). The rootstock Maxifort F1 in high salt treated 

KAM/MAX plant illustrated the lower reduction in E value -60% in relation to control plant, 

while this reduction accounted for (-78% and -71%) in KAM/ARN and KAM/R1 plants 

(Table 3). This result was in line with (García-Sánchez et al. 2002) who demonstrated that the 
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exclusion strategy of toxic Na ion from the shoot was associated with the retention of this ion 

into the root and lower transpiration rate. 

5.1.3.2. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of Kamonium scion 

ROS are highly toxic and can damage many important cellular components such as lipid, 

protein, DNA, and RNA (Sainju et al. 2001). The salt tolerant of plants is linked to their 

abilities to enhance the enzymatic antioxidant capacity in order to eliminate ROS and 

alleviate the oxidative damage caused by NaCl. In this experiment, the three salt stressed 

plants KAM/MAX, KAM/ARN, and KAM/R1 showed similar activities of APX and CAT 

enzymes either under control or saline conditions (Figure 9). Moreover, the idleness activities 

of these enzymes in the three graft plants were associated with high significant increasing in 

the quantity of MDA concentration (Figure 10), and possibly with high level of H2O2. Thus, 

the detoxification of ROS by these enzymes is not efficient and might be enhanced the H2O2 

accumulation and accordingly these plants are subject to oxidative stress. Willenkens et al. 

1997) demonstrated that the accumulation of H2O2 in different tissue of plant could reduce 

the plant biomass which gives sense for interpretation the reasons behind the reduction in 

plant biomass in our data. Consequently, the rootstocks used were not in charge of conferring 

enough resistances to the shoot. However, the differential effect of different rootstocks was 

clear with GR enzyme, where the rootstock R1 in KAM/R1 plant presented a higher GR 

activity by (+55% and +45%) than KAM/MAX and KAM/ARN plants, respectively at high 

salt stress (Figure 9). Expectedly, the higher GR activity might be associated with higher AsA 

content (He et al. 2009; Sánchez-Rodríguez et al. 2012), and accordingly, this indicate that in 

this combination the ascorbate-glutathione detoxification system functions better than other 

two graft plants of KAM/MAX and KAM/ARN. 

Free polyamines have been reported to be involved in the plant responses to osmotic stress by 

playing a role in the ROS-mediated damage caused by osmotic condition (Zhu 2002). Under 

salt stress, polyamines could increase the activities of key enzymes involved in oxidative 

stress such as GR and decrease lipid peroxidation in virginia pine and improved plant 

development (Tang and Newton 2005). In this work, the plant KAM/R1 that grafted onto R1 

rootstock showed the higher fruit protein accumulation than the plant grafted onto Maxifort 

F1 or Arnold rootstocks in KAM/MAX and KAM/ARN plants at high salt stress (Figure 10). 

The remarkable protein increasing in KAM/R1 plant might be responsible to enhance activity 

of GR enzyme in this plant. Unexpectedly, the same rootstock R1 in KAM/R1 plant showed 

more reduction in proline accumulation at high salt stress. However, it was stated that salt 
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induced changes in the content of organic solutes such as amino acids and proline, which 

might represent metabolic alteration that are associated with resistance and/or sensitivity to 

salt (Ashraf and Harris 2004). All things considered, the enzyme activities have not been 

induced when Maxifort F1 and Arnold genotypes were used as rootstocks which might 

indicate that these rootstocks had a lower constitutive antioxidant enzyme levels under salt 

condition and accordingly had a lower capacity to scavenge ROS under both salt stress and 

this could be partly related to its lower salt tolerance (Hernández et al. 2003).  

 

To conclude, the rootstocks Maxifort F1 and Arnold operated the mechanism of salt 

exclusion that extrude sodium ion from the shoot and preserve it back in their roots, while the 

rootstock R1 showed high ability to translocate Na+ ion and compartment it at leaf level by 

operating leaf compatmentation strategy. It was expected that the salt ion exclusion 

mechanism that operated by maxifort F1 rootstock may result in higher salt resistant plant as 

lower Na accumulation will present in the shoot which improve plant performance under salt 

condition. Unexpectedly, this exclusion strategy was accompanying with high fruit weight 

reduction upon high salt stress.  Moreover, the salt tolerant of plants is linked to their abilities 

to enhance the enzymatic antioxidant capacity in order to eliminate ROS and alleviate the 

oxidative damage caused by NaCl. In this study, the rootstocks used were not in charge of 

conferring enough resistances to the shoots as the three salt stressed plants showed similar 

activities of APX and CAT enzymes as their control plants. This lower enzymes activity was 

associated with high MDA concentration and possibly with high level of H2O2. The 

accumulation of H2O2 in different tissue of plant could be the reason behind the plant 

biomass reduction.   

 

4. RESULT 

4.2. THE PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF DIFFERENT 

SCION GENOTYPES AGAINST ONE ROOTSTOCK 

Nine different graft combinations have been generated by grafting three tomato cultivars:  

Haruki, Kamonium, and Nerina F1 onto three different tomato rootstocks: Maxifort F1, 

Arnold, and R1. In this research, we assessed the contribution of rootstock in inducing useful 

salt tolerance to the shoot growth and fruit productivity depending on salt tolerance 

mechanisms of the shoot genotype; and we tried to identify the main differential 

physiological and biochemical responses of different scion genotypes that involved in plant 

salt tolerance. 
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4.2.1. The graft combinations of different scion genotypes against Maxifort F1 rootstock 

4.2.1.1. Vegetative growth and physiological responses of different scion genotypes 

against Maxifort F1 rootstock 

Three scion genotypes: Haruki and Kamnium, and Nerina F1 were grafted onto one rootstock 

cultivar Maxifort F1 in order to determine to which extent the scion genotype characters have 

an effect on conferring the salt tolerance into grafted plants under salt stressed condition. 

There were differential responses of the three shoot genotypes in term of plant growth and 

shoot biomass upon salinization (Table 1). The three graft plants HAR/MAX, KAM/MAX, 

and NER/MAX showed similar medium shoot fresh weight reduction at mild salt stress as -

68% regarding the control plants; however, this reduction was higher at 200 mM NaCl, 

particularly, in NER/MAX plant that accounted -96%, while HAR/MAX and KAM/MAX 

presented less reduction as -84% in relation to control plant (Table 1). Alike shoot FW, the 

three scions showed similar reduction in shoot DW as -50% at moderated salt stress in related 

to non-stressed plant; at higher salt stress the highest reduction was recorded in NER/MAX 

plant -84%, whereas HAR/MAX and KAM/MAX plants recorded less reduction -73% (Table 

1). Fruit yield was affected strongly upon salt exposure, and the severest reduction was 

recorded when Kamnium genotype was used as a scion in KAM/MAX plant that accounted 

for -86%, while Haruki and Nerina F1 scions showed lower fruit FW reduction by -66% in 

HAR/MAX and -74% in NER/MAX at mild salt stress in respect to control plants (Figure 1). 

Leaf water potential (Ψw) reduced significantly upon two salt stress levels regardless the 

scion genotypes (Figure 2). Similarly, the osmotic potential showed a strong decreasing upon 

salt stress, however, the lowest value of osmotic potential redaction was recorded in 

HAR/MAX and NER/MAX plants at 200 mM NaCl (-3.62 and -3.87 MPa) that associated 

with higher OA values (Figure 2). Transpiration rate and Net assimilation rate were affected 

strongly upon salinization and showed significant dropping in the three graft plants (Table 3).  

However, the highest reduction was recorded when Nerina F1 genotype was employed as a 

scion in NER/MAX plant and showed reduction as -88%  and -91% respectively for E and A 

values at 200 mM NaCl in respect to control plant.  

4.2.1.2. The pattern of ion accumulations of different scion genotypes against Maxifort 

F1 rootstock 

In this experiment, three tomato cultivars, Haruki, Kamonum, and Nerina F1 were used as 

scions against Maxifort F1 rootstock and three graft combinations have developed: 

HAR/MAX, KAM/MAX and NER/MAX. The physiological and biochemical performances 
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of different scion genotypes have been investigated in order to determine to which extent the 

salt tolerance of the shoot depends on scion genotypes. Na+ accumulation was fundamentally 

different in the three graft combinations depending on the shoot characteristics as different 

scion showed different pattern of leaf Na+ accumulation (Figure 3). Nerina F1scion of plant 

(NER/MAX) showed significantly higher leaf sodium accumulation rate than Haruki 

(HAR/MAX) and Kamonium (KAM/MAX) scion genotypes by 73% and 123%, respectively 

at overstated salt condition (Figure 3). Similarly, the pattern of stem sodium accumulation in 

NER/MAX plant was fundamentally higher than those of HAR/MAX and KAM/MAX graft 

plants by 152% and 379%, respectively at 200 mM NaCl (Figure 3).  However, root data 

showed also the influence of scion genotypes on sodium profile accumulation where 

HAR/MAX and NER/MAX accumulate more Na+ root than KAM/MAX at 200 mM NaCl 

(Figure 3). Furthermore, the partitioning of Na+ ion into different plant organs was also 

affected by the scion genotypes as Nerina F1 scion in NER/MAX plant accumulated higher 

Na ion in its leaf (150 mg.g-1 DW) than its root (113 mg.g-1 DW) (Figure 3). In contrary, both 

other scions Haruki and Kamonium in HAR/MAX and KAM/MAX plants partitioned more 

Na ion in their roots (114 and 105 mg.g-1 DW) in related to their leaves (87 and 68 mg.g-1 

DW) (Figure 3). Interestingly, the finding of total sodium ion partitioning that expressed as a 

ratio of total plant Na+ content on the basis of total plant dry weight support the same idea 

that shoot genotypes play an important role in orientation the ion transportation in grafting 

plant (Figure 8), where Nerina F1 scion in NER/MAX plant positioned 53% of total Na+ ion 

in the root and 22% in the leaf, while HAR/MAX and KAM/MAX located the higher Na 

percentage in the root (73% as an average) and lower Na+ percentage in the leaf (13% as an 

average)  at severe salt stress (Figure 8). 

 

Like Na+ accumulation rate, Na+/K+ ratio showed different response depending on the scion 

genotypes (Figure 4). When Nerina F1 genotype was employed as a scion, NER/MAX plant 

exhibited higher significant Na+/K+ ratio than the other scions Haruki and Kamonium in 

HAR/MAX and KAM/MAX plants by (165% and 215% ) of leaf Na+/K+, (163% and 388%) 

of stem Na+/K+, and (32% and 22%) of root under 200mM NaCl (Figure 4). Besides, Haruki 

and Kamonium scions in HAR/MAX and KAM/MAX plants showed similar value of Na+/K+ 

ratio in their roots and leave that accounted as average 11, while Nerina F1 scion showed 

higher leaf Na+/K+ ratio by 170% than root Na+/K+ ratio (Figure 4) 
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Regarding Ca2+ accumulation, in general the three graft plants HAR/MAX, KAM/MAX, and 

NER/MAX accumulated more leaf Ca2+ by 3.4 times than Ca2+ stem and 2.7 than Ca2+ root 

(Figure 5). Moreover, the three graft plant showed increasing in Ca2+ content upon high salt 

particularly with Nerina F1 scion that showed higher significant accumulation of root and 

stem Ca2+ by 29% and 195% at high salt stress than other scions. On the subject of K+ ion, 

the three graft plants showed no fundamental effect either of salt or scion genotypes and 

showed similar K+ accumulation pattern as control plant with two exceptions; the leaf of 

Nerina F1 scion showed significant reduction by -39% regarding its control plant, and K+ 

root of HAR/MAX plant that showed significant increasing by 85% in related to control plant 

at high salt stress (Figure 6). In relation to Cl− content, the three graft plants showed 

significant increasing in Cl− content upon both salt stresses (Figure 7). Additionally, there 

was significant effect of the scion genotypes on leaf and stem Cl− accumulation, where leaf 

and stem Cl− increased essentially by +40% and +95%, respectively when Nerina F1 was 

used as a scion in NER/MAX plant in respect to other graft plants HAR/MAX and 

KAM/MAX upon high salt stress (Figure 7).  

4.2.1.3. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of different scion genotypes against Maxifort F1 rootstock 

Not too much data are available about the combined effects of salt stress on antioxidant 

mechanism that examined the effect of grafting with different scion genotypes against one 

rootstock or the grafting of one scion genotype onto different rootstock characters, and the 

information on how salt stress and ROS metabolism in the fruit are influenced by rootstock-

scion combinations is still scare. In the present study, the effect of scion genotypes have been 

investigated in term of enzymatic antioxidant capacity in the fruit of salt stressed plants. 

Three scion genotypes: Haruki, Kamonium, and Nerina were grafted against Maxifort F1 

rootstock and generated the following combinations: HAR/MAX, KAM/MAX, and 

NER/MAX. Our data illustrated that there were no significant changes in APX activity in 

three graft plants upon both salt stresses in relation to their control plants regardless the scion 

genotypes (Table 7 and Figure 9). Similarly, there were no differential responses in regard to 

CAT activity between Haruki and Kamonium scions as both of them showed similar 

responses as that of control ones (Figure 9). Controversially, Nerina scion showed a 

significant increasing in CAT activity by +217% and +391% respectively at both salt stresses 

in related to control plant (Figure 9). Similarly to CAT enzyme, there was no effect of Haruki 

and Kamonium scions on GR activity upon salinization while Nerina F1 showed sharp 

reduction in the activity of this enzyme by -74% regarding the control plant at high salt stress 
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(Figure 9). However, SOD activity of the three graft plants showed averaged increasing by 

+69% at high salt stress in related to control plants irrespectively to the scion genotypes 

(Figure 9). 

 

Although Haruki and Kamonium scions exert efforts to increase amino acids accumulation 

upon salinization, this increasing was not significantly pronounced in related to that of 

control plants (Figure 10). However, there was remarkable increasing in protein content when 

Nerina F1 was used as a scion in NER/MAX plant that showed an important raising by 

+114% and +165% in fruit protein at mild and high salt stresses comparing the non-treated 

plant (Figure 10). Moreover, free proline level was provoked similarly among the three graft 

plant at moderated salt stress and showed averaged accumulation as 3.2 µM g-1FW (Figure 

10). However, Nerina F1 genotype showed continued increasing in proline level at high salt 

application as +158% as the other scions Haruki and Kamonium. Lipid peroxidation level in 

the fruit of three graft plants, measured as the content of MDA, showed significant increasing 

when Kamonium genotype was employed as a scion in KAM/MAX plant by +22% and 

+357% at both salt levels regarding the non-stressed plant, while the other graft plants of 

HAR/MAX and NER/MAX showed slight increasing (Figure 10). 

4.2.2. The graft combinations of different scion genotypes against R1 rootstock 

4.2.2.1. Vegetative growth and physiological responses of different scion genotypes 

against R1 rootstock 

Three different scion cultivars were grafted against R1 rootstock in order to establish three 

graft combinations: HAR/R1, KAM/R1, and NER/R1. All growth parameters reduced 

significantly upon salinization. Shoot FW of the three graft plants showed similar reduction at 

mild salt stress as -65% regarding the control plants (Table 1). Upon 200 mM NaCl, 

Kamonium scion in KAM/R1 plant showed the highest shoot FW reduction as -89% in 

related to control plant (Table 1). Similarly, Kamonium scion in KAM/R1 plant presented the 

lowest shoot DW reduction as (-62% and -84%) respectively at mild and high salt stresses 

(Table 1).  However, the effect of scion genotype even on root system was presented, where 

Haruki scion in HAR/R1 plant showed a noteworthy increasing in root dry weight by +131% 

at moderated salt stress, while KAM/R1 and NER/R1 showed reduction by (-43% and -7%), 

respectively in related to control plant (Table 1). Nevertheless, at high salt stress, root DW of 

Haruki scion in HAR/R1 plant was not affected and showed the same biomass as the control 

plant; however, Kamonium scion in KAM/R1 plant represented the lowest root DW 

reduction as -67%, while NER/R1 showed reduction by -31% with comparison to control 
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plant (Table 1). The fruit yield reduced significantly upon salinization in the three graft 

plants. However, the reduction was less with Nerina F1 scion and accounted -58% in 

NER/R1 plant, while this reduction gets hold of -80% in both HAR/R1 and KAM/R1 plants 

at mild salt stress in relation to control plant (Figure 1).There were no appreciative responses 

of scion genotypes in term of water relation as the three graft plants showed similar reduction 

in water and osmotic potential upon both salt stresses (Figure 2). The transpiration rate and 

net assimilation rate reduced sharply upon salt stress in all graft plants irrespectively to the 

shoot genotypes (Table 3). The Haruki scion in HAR/R1 plant illustrated the lowest 

significant reduction in E and A values as (-46% and -34%) respectively at moderated salt 

stress in relation to control plant. Besides, the reduction in this plant was associated with 

higher WUE value (14.04 versus mM CO2 mM-1 H2O) (Table 3). However, the other scion 

genotypes Kamonium and Nerina F1 in KAM/R1 and NER/R1 plants showed similar 

reduction as -73% and -52% in E and A values respectively at mild salt stress (Table 3). 

Under higher salt stress, the reduction in E and A value was harder and accounted for -87%, -

71%, and -80% respectively in HAR/R1, KAM/R1, and NER/R1 plants regarding their 

control plants, while the three graft plants showed  similar reduction in net assimilation rate 

as -66% at high salt stress (Table 3).   

4.2.2.2. The pattern of ion accumulations of different scion genotypes against R1 

rootstock 

Unlike Maxifort F1 rootstock, the comparison of the three graft combinations that have been 

generated against R1 rootstock (HAR/R1, KAM/R1, and NER/R1) showed similar 

accumulation of leaf Na+ among them (93, 108, 104 mg.g-1 DW, respectively) (Figure 3). 

Similarly, the root Na+ data also revealed similar responses of Na+ accumulation among the 

three above graft plants (101,102, and 112 mg.g-1 DW, respectively) (Figure 3). However, 

the Na+ stem showed the lowest Na+ ion content in all above mentioned graft plants (49, 60, 

67 mg.g-1 DW, respectively). Furthermore, the partitioning of Na+ ion was distributed almost 

equally between the leaves and root of the three graft plants  (93 versus 101 mg.g-1 DW in 

HAR/R1; 108 versus 102 mg.g-1 DW in KAM/R1; and, 104 versus 112 in NER/R1 mg.g-1 

DW at staid salt stress (Figure 3). Regarding Na+/k+ ratio, it showed significant increasing in 

the three graft plants HAR/R1, KAM/R1, and NER/R1upon both salt stress but without any 

pronounced effect of scion genotypes as all scion shoots illustrated similar value at organ 

levels (Figure 4). On the topic of Ca2+ accumulation, neither scion nor salt level affect Ca2+  

ion in the three graft plants and they showed similar Ca2+  accumulation as control plants in 

each plant organ (Figure 5). The root potassium concentration of the three graft combinations 
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showed similar significant increasing by +97% in regard to their control plants upon both salt 

stress (Figure 6), while no effect of the scion genotype has been recorded. Stem K+ was not 

affected by scion or salt stress and accumulate K+ ion as control plant, while leaf K reduced 

slightly in stressed plants regardless the scion genotypes. In relation to Cl− content, the three 

graft plants accumulate more root Cl− ion as 10 times as their control plants upon high salt 

stress unrelatedly to the scion genotypes (Figure 7). Similarly, leaf Cl− showed averaged 

significant increasing by 2.8 times regarding the control plant upon high salt stress without 

specific effect of the scion genotypes; however, the Cl− stem of Nerina F1scion in NER/R1 

plant showed higher increasing in Cl− content as 1.3 time as the other graft plants HAR/R1 

and KAM/R1at 200 mM NaCl.   

4.2.2.3. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of different scion genotypes against R1 rootstock 

The genotype Haruki in HAR/R1 plant expressed the highest APX activity as +233% 

regarding the control plant upon 200 mM NaCl, while the other scions of Kamonium and 

Nerina F1 showed negligible increasing regarding their control plant (Figure 9). In regard to 

CAT activity, there was no positive effect of any scions as the three graft plants showed 

similar CAT activity as the non-treated plants (Figure 9). The activity of GR was activated 

when Kamonium scion was used in KAM/R1 plant as it showed increasing by 51% at both 

salt levels in relation to control plant, while HAR/R1 and NER/R1 did not show any 

significant increasing in GR activity upon salt stress (Figure 9). In related to SOD enzyme 

activity, only Haruki scion in HAR/R1 plant showed significant increasing in this enzyme as 

+163% as the control plant at high salt stress (Figure 9).  

 

The amino acids accumulated significantly with Kamonium scion in KAM/R1 plant and 

showed increasing by +296% regarding the control plant, while the other scions showed 

unimportant increasing in the fruit protein level (Figure 10). However, the proline content 

was expressively increased in the three graft plants upon salinization taking in our 

consideration that Haruki and Nerina scions showed higher averaged proline content by 

+103% and +117% than Kamonium scion respectively at mild and overstress salt levels 

(Figure 10). The lipid peroxidation measurement showed that Kamonium scion in KAM/R1 

plant trigger dramatically MDA accumulation upon high salt stress and showed increasing by 

+269% as zero salt treated plant, while the other scion genotypes in HAR/R1 and NER/R1 

plants showed less important increasing in this parameter (Figure 10). 

4.2.3. The graft combinations of different scion genotypes against Arnold rootstock 
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4.2.3.1. Vegetative growth and physiological of different scion genotypes against Arnold 

rootstock 

Three tomato cultivars: Haruki , Kamonium, and  Nerina F1have been grafted onto rootstock 

Arnold in order to generate three graft combinations: HAR/ARN, KAM/ARN, and 

NER/ARN. There were differential responses in plant growth and up-down physiological 

regulation orders in the three graft plants depending on the scion characters. Shoot fresh and 

dry weight affected drastically upon adding the salt into root medium in all graft plants 

(Table 1). At moderated salt stress, in the existence of Nerina F1 scion, the plant NER/ARN 

showed less shoot FW and DW reduction as (-47% and -21%) comparing with control plant, 

while the highest reduction in shoot FW and DW (-67% and -56%) were recorded when 

Kamonium genotype was employed as a scion in KAM/ARN plant (Table 1). Under 200 mM 

NaCl, Kamonium scion in KAM/ARN plant exhibited the highest reduction in shoot FW and 

DW as (-85% and -78%) comparing the control plant, while Haruki and Nerina F1 scions in 

HAR/ARN and NER/ARN plants showed similar shoot FW and DW redaction as (-78% and 

-66%) in related to control plants (Table 1). Interestingly, the moderated salt stress induced 

significant increasing in root dry weight in the graft plants; however, there were differential 

responses among the three scion genotypes in which the Nerina F1 scion genotype in 

NER/ARN plant induced a substantial increasing in root DW as +62%, while this increasing 

was about (+22% and +11%) when Haruki and Kamonium scions used in HAR/ARN and 

KAM/ARN plants, respectively in related to control plants. Upon high sat stress, root DW 

was not affected by salt stress only when Haruki was used as a scion in HAR/ARN plant and 

shoot root DW value as the control plant, while KAM/ARN and NER/ARN affected 

negatively and showed reduction in root DW as (-62% and -32%) respecting their control 

plants (Table 1). Fruit yield affected strongly even at moderated salt stress and showed 

reduction by -62% in KAM/ARN plant, while this reduction was higher -82% in presence of 

Haruki and Nerina scions in HAR/ARN and NER/ARN plant regarding their control plants 

(Figure 1).The positive effect of scion genotypes in was evident in term of water use 

efficiency (WUE) where the both scion genotypes Haruki and Kamonium revealed a 

significant increasing in WUE upon moderated salt stress in HAR/ARN and KAM/ARN that 

averaged  (15.8 mM CO2 mM-1 H2O), whereas the graft plant NER/ARN showed a slight 

increasing in WUE regarding the control plant (Table 3). The water status indicators such as 

Ψπ and Ψw were affected strongly by salt application and showed significant reduction 

irrespectively of the scion genotypes (Figure 2). However, HAR/ARN and KAM/ARN plants 
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showed high ability to maintain higher OA value in respect to NER/ARN plant at both salt 

stresses (Figure 2). Photosynthesis parameters reduced significantly at salt application in the 

three graft plants. Unexpectedly, there was no variation among the performance of the three 

scion genotypes as all graft plants showed similar reduction in E value that averaged as (-

79% and -78%) and A value (-59% and -66% ) at 100 and 200 mM NaCl, respectively (Table 

3).  

4.2.3.2. The pattern of ion accumulations of different scion genotypes against Arnold 

rootstock 

When Arnold genotype has employed as a rootstock, the three graft combinations 

HAR/ARN, KAM/ARN, and NER/ARN performed differently upon salinization depending 

on the scion genotypes at root level (Figure 3). The root sodium of Haruki scion in 

HAR/ARN plant accumulated less significant sodium by (-46% and -38%) compared to 

KAM/ARN and NER/ARN plants at 200 mM NaCl. However, the leaf Na+ of the three plants 

showed similar increasing by 19 times as control plant at high salt stress. Moreover, the 

partitioning of the Na+ ion showed that leaves of HAR/ARN plant accumulated higher Na ion 

than the root (81 versus 60 mg.g-1 DW), while the leave of other two graft plants KAM/ARN 

and NER/ARN presented higher collective Na+ ion in their roots (110 and 97 mg.g-1 DW) 

with respect to their leave (87 and 77 mg.g-1 DW), respectively at high salt stress (Figure 3). 

In relation to Na+/K+ ratio, root, stem and leaf Na/K value increased significantly in all plant 

organs upon salt stress regardless the scion genotypes (Figure 4). With regard to Ca2+ content, 

both salt and scion genotypes did not show any effect either on  root or leaf Ca2+  of the three 

graft plants and accumulate Ca2+ ion similarly to their control plants at high salt stress (Figure 

5). Pertaining to K+ ion, root K+ content was affected significantly by scion genotypes, where 

NER/ARN and KAM/ARN graft plants revealed higher K+ ion accumulation rate than 

HAR/ARN by 72% at 200 mM NaCl, respectively (Figure 6). With respect to stem K+ 

content, there was no significant effect of scion genotypes and the plants accumulated K ion 

as the control plant. With reference to Cl− ion, Kamonim scion in KAM/ARN illustrated 

slightly higher root Cl− ion than HAR/ARN and NER/ARN plants (Figure 7). However, the 

Cl− stem of Haruki scion in HAR/ARN plant showed higher significant accumulation rate of 

Cl− ion by 2.9 and 1.8 times than KAM/ARN and NER/ARN plants at 200 mM NaCl, while 

the Cl− leaf was similar among the three graft plants (Figure 7). 

4.2.3.3. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of different scion genotypes against Arnold rootstock 
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The comparison of scion genotypes performance showed that Nerina F1 scion in NER/ARN 

plant showed significant increasing in APX activity as 9 and 17 times as control plant at 100 

and 200 mM NaCl, while Haruki and Kamonium scions in HAR/ARN and KAM/ARN plants 

showed no difference in the this enzyme at both salt levels (Figure 9). Similar to APX 

enzyme, CAT activity increased significantly only in NER/ARN graft plant by +226% and 

+179% at both salt levels regarding the control plant, while salt treated HAR/ARN and 

KAM/ARN plants presented similar activity in CAT enzyme as their control plants (Figure 

9). Likewise, the activity of GR enzyme was increased significantly only with Nerina F1 

scion in NER/ARN plant that showed increasing by +101% at both salt levels concerning the 

control plant (Figure 9). Furthermore, the amino acids accumulation was induced 

significantly upon salinization when Nerina F1 genotype was used as a scion in NER/ARN 

plant that showed increasing by (+175% and +226%) at mild and high salt stresses in relation 

to control plant (Figure 10). However, the other scion genotypes of Haruki and Kamonium 

showed a little increasing in protein level. On contrary to protein content, the accumulation of 

free proline in the fruit of the three graft plants increased significantly nevertheless the scion 

genotypes and the medium increasing of the three plants was as 16 and 28 times as control 

plants respectively at 100 and 200 mM NaCl (Figure 10). The MDA level was increased 

significantly only with Kamonium scion in KAM/ARN plant that showed increasing by 

+79% regarding the control plant at high salt stress, while Haruki and Nerina F1 scions did 

not differ of their control plant (Figure 10). 

5. DISCUSSION 

5.2. SALT TOLERANT INDUCED MECHANISMS OF DIFFERENT SCION 

GENOTYPES AGAINST ONE ROOTSTOCK   

Lots of contradictory results have been reported in ascription the positive effect of grafting, in 

alleviating the deleterious effect of salt, into rootstock characteristics or scion genotypic 

and/or to the scion-rootstock interaction. Thus, in this study, we have examined the 

conditioned significant effect of the scion genotypes on shoot performance in term of ions 

accumulation in the different organs of salt treated plant.  

5.2.1. Halophytic inclusion mechanism of graft combinations against Maxifort F1 

rootstock 

The most tolerant genotypes of many species are those better able to prevent excessive ion 

accumulation in their leaves. However, salt tolerance is not always associated with low ion 

concentration in leaves. The salt tolerance in halophytes plant is associated with high ion 

concentrations in leaves. Also, the higher salt tolerance of wild tomato species over cultivated 
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forms has generally been associated with the halophytic character of Na+ accumulation in the 

wild relatives (Cuartero and Fernandez-Muňoz 1999). This high salt content is necessary to 

adjust the leaf water relations to low external potential as the plant use the cheapest solution 

from the energetic point of view (Raven 1985). Indeed, the higher salt tolerance of wild 

tomato species has been associated with halophytic character of Na+ accumulation (Cuartero 

and Fernandez-Muňoz 1999), and many halophytes show growth stimulation upon addition 

of NaCl to a growth medium where NaCl is rapidly accumulated and employed preferentially 

as an osmoticum (Ramos et al. 2004).  

 

Three different scion genotypes: Haruki, Kamonium, and Nerina F1 have been grafted onto 

Maxifort F1 rootstock and generated three graft combinations HAR/MAX, KAM/MAX and 

NER/MAX. The HAR/MAX and KAM/MAX plants showed less leaf Na+ accumulation by (-

42% and -55%) and stem Na+ ion (-60% and -79%, respectively) than NER/MAX plant at 

200 mM NaCl (Figure 3). Additionally, Maxifort F1 rootstocks in NER/MAX plant 

accumulated more leaf and stem Na by +33% and +38% than its root, while the other two 

combinations HAR/MAX and KAM/MAX exhibited less leaf Na accumulation (-24% and -

36%) as well leas stem Na+ content (-46% and -69%), respectively, in related to their Na root 

rate at 200 mM NaCl (Figure 3). All these observations demonstrate that the differential 

effects of the same rootstock, in term of ion accumulation, could be attributed to scion 

genotype characters, where Nerina F1 scion shows a halophytic character that accumulate the 

highest salt ions in the stem and leaves (156 and 150 mg.g-1 DW) in respect to its root (113 

mg.g-1 DW) (Figure 3). On contrary, an exclusion mechanism presented when Haruki and 

Kamonium genotypes used as a scion and they show high retention capacity of the salt into 

their roots (114 and105 mg.g-1 DW) in order to avoid the excessive accumulation of salt ions 

in the leaves (87 and 68 mg.g-1 DW). 

 

Furthermore, the partitioning of total plant Na+ ion, in term of total plant dry weight, showed 

a similar scenario to that mentioned above, where NER/MAX plant showed that 53% of total 

Na+ ion was located in the root and 47% in the shoot, while 78% of total Na+ was positioned 

in root versus 22% in the shoot of HAR/MAX plant; and 67% of leaf Na+ was detected in 

KAM/MAX plants versus 33% of root Na+ upon 200 mM NaCl (Figure 8). Besides, the 

NER/MAX plant showed higher aggregation of leaf Na+/K+ ratio as 2.6-fold and 3-fold as 

HAR/MAX and KAM/MAX plants; and also higher stem Na+/K+ ratio by 2.6-fold and 4.9-

fold was recorded in NER/MAX plant in related to HAR/MAX and KAM/MAX plants at 200 
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mM NaCl (Figure 4). Moreover, the halophytic character of Nerina F1 scion was associated 

with both uptake selectivity of Ca2+ ion at the root and transport selectivity of this ion into the 

shoot where NER/MAX plant showed higher root and stem Ca2+ accumulation than 

HAR/MAX and KAM/MAX at high salt stress (Figure 5). In spite of the fact that Cl− content 

was less important to cause toxic effects on tomato regarding the Na accumulation in all plant 

organs, it is worth to mention that the Cl− accumulation was affected by scion genotype as 

Nerina F1 accumulated more leaf and stem Cl− by (+40% and +95%), respectively than 

HAR/MAX and KAM/MAX plants at 200 mM NaCl (Figure 7). Taken together, we could 

confirm that the Maxifort F1 rootstock has the ability to operate two different defence 

mechanisms upon high salt level depending on the character of the scion genotypes used; an 

inclusion strategy when Nerina F1 scion was used and an exclusion mechanism presented 

when Haruki and Kamonium genotypes used. Similar results have been reported by Perez-

Alfocea et al. (1996) who mentioned that tomato cultivar Radja shows a typical Na excluder 

character when used as a rootstock in saline media, while cv. Pera is a salt tolerant tomato 

ecotype with a semi-halophytic inclusion mechanism similar to that found in salt tolerant 

wild relatives of the tomato as the accumulation pattern of Na+ in the leaves of plant grafted 

onto this rootstock is quite similar to that observed in halophytes (Perez-Alfocea et al. 1993); 

both genotypes are considered as salt tolerant within cultivated tomato. While Estaň et al. 

(2005) stated that low rate of Na+ and Cl− accumulation were found in plant grafted on Radja 

independently of the stress level and period of salt exposure, whereas Pera rootstock was able 

to use a strategy of include/excluder  depending on salt level and salinization period.  

5.2.1.1. Vegetative growth response, water status and gas exchange parameters of graft 

combinations against Maxifort F1 

It is known that the plant could combine more than one strategy in order to preserve tissue 

dehydration and maintain growth (Fernández-García et al. 2004). The stomatal clouser is 

considered to be an efficient indicator of plant performance under stressful conditions where 

the resistant plant down-regulate efficiently the transpiration rate to alleviate salinity 

symptoms and preserve plant performances in both halophytes (Orsini et al. 2011) and 

glicophytes (Turhan and Eris 2007). This processing reduced ion-accumulation or desiccation 

in plant tissue (Masle et al. 2005; Orsini et al. 2010b). Ferreira-Silva et al. (2009) 

documented that the cashew plantlets grafted on the cashew BRS 226 rootstock presented 

higher leaf Na+ and Cl− concentrations than those grafted on the CCP 09 rootstock, and this 

higher ion accumulation was associated with greater transpiration when exposed to both mild 

and high salinity. In citrus plants grafted on the rootstock Cleopatra (excluder) and Carrizo 
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(includer), it was observed that the higher exclusion of toxic ions Na+ and Cl− from the shoot 

was associated with retention of this ion in roots and the lower transpiration rate (García-

Sánchez et al, 2002). Our result showed that the key physiological components involved in 

photosynthesis such as the transpiration and net assimilation rate of all plant combinations 

affected strongly by salt treatment and showed differences in term of transpiration intensity 

and net assimilation rate (Table 3). It is important to note that the differential patterns of salt 

ion accumulation that induced by the Maxifort F1 rootstock in the HAR/MAX, KAM/MAX, 

and NER/MAX plants was closely associated with different responses of transpiration and net 

assimilation rate. The two HAR/MAX and KAM/MAX combinations showed the ability to 

maintain the essential components of the photosynthetic apparatus and exhibited maximum 

transpiration (0.81 and 0.74 mM m-2 s-1) and net assimilation rate (6.46 and 7.23 µM m-2 s-1) 

at higher salt stress (Table 3). Conversely, NER/MAX plant presented the lowest respective 

values of both parameters (0.24 mM m-2 s-1 and 1.41µM m-2 s-1). These result clearly 

demonstrated that the type of scion genotype influence the leaf responses in term of intensity 

of transpiration rate and assimilation net. As we mentioned above, HAR/MAX and 

KAM/MAX combinations showed an exclusion mechanism to cope with severe salt and 

showed high capacity for retaining the Na ion into their roots (Figure 3). Consequently, the 

lower accumulation of Na+ in the shoot was accompanied with higher E and A value (Table 

3). Salt ion exclusion by root may result in higher salt resistance of the plant due to lower 

ionic toxicity, contributing to a metabolic stability and protection of the leaf tissue (Martinez-

Rodriguez et al. 2008). On contrary, NER/MAX plant has a halophytic character and showed 

high ion concentration in its leaf (Figure 3) that associated with the lowest E and A value 

(Table 3). High Na+ concentrations should alter ionic homeostasis in the cytosol and cause 

toxicity that alters key biochemical K+-dependent functions such as those involved in 

photosynthesis, protein synthesis, and stomatal opening (Munns and Tester 2008). Besides, 

the salt excess in the root medium causes an osmotic stress, rapidly decreasing water uptake 

and inducing stomata closure. Consequently, transpiration, CO2 photosynthetic assimilation 

and leaf growth are strongly restricted (Munns 2002).  

Punctual WUE determination revealed that plant production per unit water used was 

increased in HAR/MAX by (1.6-fold) compared to KAM/MAX and NER/MAX plants under 

moderated salt conditions (Table 3). It seems that a transpirational water flux, via regulation 

of gs (Thompson et al. 2007) has contributed to partially elucidate the physiological basis of 

WUE. The graft combinations HAR/MAX and NER/MAX reflect a contrast response in 
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transpiration rate under mild salt stress to that observed under severe, and HAR/MAX plant 

experienced lower E value than NER/MAX (0.49 versus 0.67 mM m-2 s-1) at mild salt 

showed (Table 3). Accordingly, the stomatal adaptation to salinity in HAR/MAX plant was 

associated with preserving of WUE (16.96) (Table 3) (He et al. 2009). Recent reports suggest 

that preserved A values associated with lower E may be considered as reliable indicators of 

overall salinity tolerance (Orsini et al. 2011, 2012, 2013), and this is substantiated by the 

greater WUE (16.96 mM CO2 mM-1 H2O) observed in salt tolerant plants undergoing salinity 

(Barbieri et al. 2012). From the presented results, it could be hypothesized that the 

simultaneous regulation of stomatal resulted in differential response in WUE to salinity by 

the different grafting combinations. 

Leaf water potential (Ψw) is recognized as an index for whole plant water status (Orsini et al. 

2010a) and maintenance of high Ψw is considered to be associated with dehydration 

avoidance mechanisms (Muscolo et al. 2010). The considerable decrease of Ψ w is probably a 

result of the structural-functional changes ensuring the plants adaptation to the salt-treatment 

(Kaymakanova et al. 2008). In such cases, a process of osmotic self-adjustment occurs in the 

plant cells, directed towards the preservation of the water balance by means of accumulation 

of osmotically active solutes (Tezara et al. 2003). The higher osmotic potential redaction 

induced by salinity in both HAR/MAX and NER/MAX plants at 200 mM NaCl (-3.62 and -

3.87 MPa) (Figure 2) could point out that these plant would be more tolerant than 

KAM/MAX plant to the osmotic effect and showed higher accumulation of Na and Cl toxic 

ions in their stem and leaf (Figure 3) and this strategy is considered a typical of the salt 

tolerant tomato genotype (Alian et al. 2000; Perez-Alfocea et al 1993). This result was 

consistent with Santa-Cruze et al. (2001) who mentioned that tolerance induced by a 

rootstock has been associated with a raised inorganic solute accumulation in leaves of the 

genotype Pera. However, it seems that the accumulation of salt ions in the leaves of both 

above plants combined with an efficient compartmentalization mechanism in vacuoles that 

could help them to maintain higher osmotic adjustment values (1.6 MPa) than KAM/MAX 

plant (0.9).  

The shoot biomass reduction as a consequence to salinity is a well-recognized phenomena 

(Kaya et al. 2003), either due to osmotic reduction in water availability or to excessive ion 

(Na+ and Cl−) accumulation in plant tissues. In the untaken experiment, the differential 

growth response was related to the different exclusion ability of saline ions, as the includer 

http://www.sciencedirect.com/science/article/pii/S0378429002000369#bib37�
http://www.sciencedirect.com/science/article/pii/S0378429002000369#bib18�
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NER/MAX plant showed the highest reduction of shoot FW (‐96%) and shoot DW (‐84%) 

regarding the control plant under austere salt (Table 1), and this growth reduction was 

associated with the highest ion accumulation found in its leaves and root (150 and 113) 

(Figure 3). Accordingly, the slowest shoot growth of 200 mM NaCl salt treated NER/MAX 

could be a consequences of the high ion accumulation as reduced growth may be an adaptive 

strategy (Cuartero and Fernandez-Muňoz 1999), which could permit the plant moreover to 

maintain higher OA (Figure 2). However, regarding the excluder genotypes Haruki and 

Kamnium, the rootstock Maxifort F1 showed similar and less reduction of shoot fresh and 

dry weight of HAR/MAX and KAM/MAX (-85% and -75%, respectively) at 200 mM NaCl 

in related to their control plant (Table 1), suggesting that the rootstock characteristic able to 

increase the shoot growth under saline condition depend on the capacity of the shoot 

genotype to regulate the ion saline concentration (Santa-Cruz et al. 2002). Thus, we might 

confirm the founding of Oda. (2002) that the grafting-related effect on the development and 

growth of the scion was probably the result of physiological relationships existing between 

the scions and rootstocks. Taken together, the efficient reduction in all growth parameters 

might indicate that the compartmentation of toxic ions at leaf level in NER/MAX plant might 

have been inefficient mechanism to cope with salt stress. Also, we could indicate that the 

ability to exclude Na+ (and Cl−) from the shoot and to accumulate salt preferentially in the 

root in KAM/MAX and HAR/MAX plants do not correlate with the maintenance of growth 

(Tattini et al. 1997). 

Rootstock effect on the fruit varied according to the characteristics of the shoot genotype, as 

the rootstock Maxifort F1 induced higher reduction in fruit fresh weight with kaminum and 

Nerina F1 scions (-86% and -74%), while it showed less redaction with Haruki scion (-66%) 

at mild salt stress (Figure 1). The lower fruit FW reduction in HAR/MAX plant could be 

attributed that the plant maintain high value of WUE (16.96 CO2 mM-1 H2O) at 100 mM 

NaCl (Table 3). However, the three scion genotypes exhibited severe similar reduction in 

fruit fresh weight accounted for 96% at 200 mM NaCl (Figure 1). On other hand, this similar 

reduction in fruit yield of the three scion plants corroborates the idea that the effectiveness of 

scions to induce different mechanisms of salt resistant to maintain the fruit yield at long-term 

salt stress was low.  

5.2.1.2. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of graft combinations against Maxifort F1 
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In this work, there was no effect of both salt and scion genotypes on APX activity as the three 

scion genotypes: Haruki, Kamonium, and Nerina F1 that have been grafted onto Maxifort F1 

rootstock (HAR/MAX, KAM/MAX, and NER/MAX) showed similar APX activity of treated 

and not treated plants (Figure 9). Similarly, GR activity was not affected either by scion or 

salt application except Nerina F1 scion that showed great reduction at high salt stress (Figure 

9). These results might indicate that the three scions did not exert enough efforts to induce the 

defence mechanism of these two enzymes. Nonetheless, the effect of scion genotype was 

clear with Nerina F1 scion that showed higher activity of CAT upon both salt levels that 

associated with significant increasing in proline accumulation (Figure 10), suggesting that 

this scion has higher ability to remove ROS comparing with other scions. 

 

Taking everything into account, the differential effects of the same rootstock in term of ion 

accumulation could be attributed to scion genotype characters as the Maxifort F1 rootstock 

has the ability to operate two different defence mechanisms upon high salt level depending on 

the character of the scion genotypes used: an inclusion strategy with Nerina F1 scion and an 

exclusion mechanism presented when Haruki and Kamonium genotypes used as scions. It is 

important to note that the differential patterns of salt ion accumulation that induced by the 

Maxifort F1 rootstock was closely associated with different responses of transpiration, net 

assimilation rate and WUE in shoot genotypes. At high salt stress, the lower accumulation of 

Na in the shoot of Haruki and Kamonium genotypes was accompanied with higher E and A 

value, while Nerina F1scion has a halophytic character and showed high ion concentration in 

its leaf that associated with the lowest E and A value. At moderated salt stress, the preserved 

A values in Haruki scion that associated with lower E was substantiated by the greater WUE 

which may be considered as reliable indicators of overall salinity tolerance. Moreover, 

Haruki and Nerina F1 scions operated dehydration avoidance mechanisms by achieving 

higher osmotic potential redaction upon salinization. The rootstock characteristic was able to 

regulate the shoot growth under saline condition depend on the capacity of the shoot 

genotype to regulate the ion saline concentration as the includer Nerina F1 scion that 

accompanied with high ion accumulation showed the highest reduction of shoot FW and DW 

which could be an adaptive strategy to cope with saline condition. Moreover, Nerina F1 scion 

directed towards the preservation of the water balance by means of accumulation of 

osmotically active solutes and accumulated more proline in the fruit and enhanced the 

activity of CAT enzyme, suggesting that this scion has higher ability to remove ROS 

comparing with other scions. However, the three scions did not exert enough efforts to induce 
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the defence mechanism of APX and GR fruit enzymes which could interpret to some extent 

the reduction in fruit yield among the three scions used. These results corroborate the idea 

that the effectiveness of scions to induce different mechanisms of salt resistant to maintain 

the fruit yield at long-term salt stress was low under the condition of this experiment.  

 

5.2.2. Semi-halophytic shoot genotype and leaf compartmentation mechanism of graft 

combinations against R1 rootstock 

Salt exclusion from the shoot is a key determinant for salt-tolerance in glycophytes 

(Hasegawa et al. 2000) that have in general a low efficiency of compartmentation at the leaf 

level (i.e., the ability to sequester Na+ and Cl− in the cell vacuole; Glenn et al.1998) and to 

excrete salts outside of the leaf cells via specialized organs (Shannon et al. 1994). It is well 

documented that the response of tomato species toward salt varies depending on genotype, 

salt concentration, and time exposure (Ashraf and Harris 2004; Maggio et al. 2004). In this 

study when R1 was employed as a rootstock, the three scion genotypes Haruki, Kaminom, 

and Nerina F1 exert significant effects on salt ion uptake and showed similar ability of 

withholding the leaf Na ion as root content (105 versus 102 mg.g-1 DW, as an average, 

respectively) under 200 mM NaCl (Figure 3). A like leaf Na ion aggregation, Na stem data 

showed no significant difference was found among the three combinations and accounted for 

58 mg.g-1 DW, as an average at 200 mM NaCl (Figure 3). Similarly to the aerial Na 

accumulation, the root of three grafted plants showed a homogeneousness of Na ion and 

accumulated about (105 mg.g-1 DW), as an average (Figure 3). Moreover, the root and leaf of 

the three graft combinations partitioned almost the same amount of Na ion (105 versus 102 

mg.g-1 DW, respectively) which was two times that of the stem Na (58 mg.g-1 DW) at 200 

mM NaCl. Thus, the three scion genotypes showed a semi-halophytic inclusion mechanism 

and high efficiency of compartmentation the salt ions at leaf level. 

 

 

5.2.2.1. Vegetative growth response, water status and gas exchange parameters of graft 

combinations against R1 rootstock 

The data of this experiment give a picture of some integrated mechanisms of acclimation to 

excess root zone salinity which is responsible to offer the salt tolerant to the plant. However, 

all growth parameters were inhibited in the three graft combinations that employed against 

R1 rootstock: HAR/R1, KAM/R1, and NER/R1 (Table 1). High salt treated KAM/R1 plant 

showed greater inhibition of shoot dry weight (84%) than HAR/R1 and NER/R1 (62% and 
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74%) in related to control plant, which suggests that the former combination is less tolerant to 

NaCl stress than the two latter combinations. Furthermore, under 200 mM NaCl, the root dry 

weight of KAM/R1 plant was affected strongly at high external salt and showed reduction by 

-67% of total root biomass, respecting its control plant, while root system of HAR/R1 plant 

showed no significant difference between the non-treated and high salt treated plant (32 

versus 33 g plant-1) (Table 1). The constant response that observed in high salt treated root 

dry weight of HAR/R1 (Table 1) are consistent with less significant reduction of evaporation 

(0.35 mM m-2 s-1) than KAM/R1 (0.92 mM m-2 s-1) and higher water use efficiency (14.04 

versus 8.98 mM CO2 mM-1 H2O) (Table 3). However, the three graft combinations showed 

similar reduction in net assimilation rate upon 200 mM NaCl (-66%, as an average) (Table 3), 

and this reduction is more likely related to limitation of CO2 diffusion into the leaves (Table 

3). These result supported the idea that biochemical limitation of A become prevalent in 

leaves as a cause of massive salt load (Allakherdiev et al. 2000). However, the higher 

significant reduction of stomatal conductance of HAR/R1 and NER/R1 (-87% and -80%, data 

not shown) comparing with their control plant, in respect to KAM/R1 (-65%) at 200 mM 

NaCl, could reduce the water flow into these scions and impeding the flow of unwanted ions 

(Moya et al. 1999) which explain, at least partly, the lower significant osmotic adjustment 

that have been achieved in those two plants (0.90 and 0.59 MPa) in respect to KAM/R1 

(1.18) (Figure 2) (Moya et al. 1999). Regarding the productivity of the three graft plants, the 

lower redaction in fruit yield at mild salt stress was in NER/R1 plant (-58%) comparing to 

control plant, while this redaction accounted for -80% in HAR/R1 and KAM/R1 plants 

(Figure 1). Consequently, the scion genotypes did not significantly affected the salt induced 

expression of physiological characters of photosystem apparatus and showed high reduction 

in fruit yield that ranged from -58% till -80% depending on the scion genotype at 100 mM 

NaCl, while the fruit fresh weight redaction was higher at 200 mM NaCl (-94%) regardless 

the scion genotypes.  

 

5.2.2.2. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of graft combinations against R1 rootstock 

There was low contribution of scion genotypes in term of enhancing the fruit enzymatic 

antioxidant system upon salinized condition. Haruki scion in HAR/R1 plant showed a sharp 

increasing in APX and SOD activities comparing with other scions in KAM/R1 and NER/R1 

plants at high salt stress (Figure 9), which might suggest higher ability of this scion to remove 

ROS. However, there was no effect either of salt or scion genotype on CAT and GR activities 



144 
 

(Figure 9). Regarding the amino acids accumulation, despite that KAM/R1showed significant 

increasing in fruit protein content regarding the control plant, unexpectedly, the same plant 

showed less accumulation of proline than HAR/R1 and NER/R1 plants upon both salt 

stresses (Figure 10). This result confirms that proline not play a determinant role as 

osmoprotectant and the increased proline concentration may not be associated with salinity 

tolerance (Colmer et al. 1995). Taking everything into account, fruit free radical scavenging 

system did not played an important role in salinity tolerance of grafted tomato under the 

condition of this experiment. The shoot genotypes are relatively salt-sensitive and the 

antioxidant enzymes activities were more limited, accordingly there was high possibility that 

the oxidative stressed has been induced by the excess of NaCl which possibly caused high 

inhibition of fruit yield in all genotypes used.  

 

Briefly, the three scion genotypes showed a semi-halophytic inclusion mechanism upon 

salinization. However, the scion genotypes did not significantly affect the salt induced 

expression of physiological characters of photosystem apparatus and showed high reduction 

in fruit yield either at moderated or high salt stresses regardless the scion genotypes. 

Additionally, there was low contribution of scion genotypes in term of enhancing the fruit 

enzymatic antioxidant system upon salinized condition. 

5.2.3. Leaf compartmentaion and root extrude mechanisms of graft combinations against 

Arnold rootstock 

It is known that Na+ ion is the primary cause of ion-specific damage in cucumber, melon, 

watermelon, tomato, and eggplant, (Tester and Davenport 2003; Varlagas et al. 2010). Plants 

grafted onto appropriate rootstocks restricted the transport of Na+ from root to shoot (Romero 

et al. 1997; Estaň et al. 2005; Goreta et al. 2008; Zhu et al. 2008a). Salt tolerance mechanisms 

can occur in a wide range of organizational levels from the cellular level (e.g., 

compartmentation of Na+ within cells) to the whole plant (e.g., exclusion of Na+ from the 

plant and exclusion of Na+ from the shoot) (Tester and Davenport  2003; Møller et al. 2009). 

In this study, scion genotypes play a significant factor in Na transporting into shoot, where 

the leave of HAR/ARN plant accumulate more Na+ ion by +36% than the root, suggesting 

that salinity resistance in HAR/ARN plant could be related to leaf compartmentation strategy 

(Figure 3). On contrary, the other graft plants KAM/ARN and NER/ARN displayed less Na+ 

leaf accumulation by 21% than their root and the ion exclusion mechanism might be 

presented (Figure 3). This result was consistent with Goreta et al.(2008) who reported that the 
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capacity of ‘Strong Tosa’ (C. maxima Duch.×C. moschata Duch.) in watermelons  to 

withstand salt stress better than other tested rootstocks is partially due to efficient Na+ 

exclusion from the watermelon shoot. 

5.2.3.1. Vegetative growth response, water status and gas exchange parameters of graft 

combinations against Arnold rootstock 

The plant growth has been affected by salt stress depending on the characteristics of shoot 

genotypes. When Arnold genotype was used as a rootstock, the three scions induced different 

positive effect in term of root DW and showed increasing by +22%, +11%, and +62%, 

respectively in HAR/ARN, KAM/ARN, and NER/ARN in related to their control plants at 

mild salt stress (Table 1). This result was in agreement with Chen et al. (2003) who stated 

that some resistant scion has a positive effect on root biomass which due to a higher rate of 

photosynthesis of the more vigorous scions, leading to a greater potential for partitioning of 

assimilates to the rootstock. However, at 200 mM NaCl HAR/ARN plant show almost the 

same root biomass as its control plant, while KAM/ARN and NER/ARN showed reduction 

by (-62% and -32%) comparing with control plants (Table 1). Unexpectedly, despite the plant 

have received an increasing in root biomass at mild salt which was presume to enhance the 

translocation of nutrient and water status (Han et al. 2009), there was high reduction in fruit 

fresh weight as (-82%) in HAR/ARN and NER/ARN and (-62%) in KAM/ARN at 100 mM 

NaCl, while the medium reduction was higher under high salt stress and achieved 95% 

comparing the control plant (Figure 1). Additionally, the high exclusion capacity of Na ion 

from the shoot and extrude it back into the root in high salt stressed KAM/ARN plant was 

associated with higher reduction in shoot FW (-85%) and shoot DW (-78%) in respect to 

control plant, while HAR/ARN and NER/ARN plants showed less shoot FW redaction (-79% 

and -77%) as well as shoot DW reduction (-67% and -56%), respectively (Table 1). One 

explanation might be the excessive Na ion at root level of KAM/ARN plant restricted the 

plant growth.    

 

Furthermore, the effect of genotypes variation on photosynthesis parameters was not 

presented even at high salt stress as all graft plant showed similar reduction in transpiration 

rate and net assimilation rate (Table 3). This significant reduction in E and A values 

respecting the control plants can be largely ascribed to the stomatal limitation (ZgallaÏ et al. 

2006; He et al. 2009). Similarly, there was no large variation among these three plants in term 

of water potential (-2.5 MPa as an average) and osmotic potential (-2.8 MPa) at high salt 
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stress (Figure 2). However, the lowest osmotic adjustment was achieved in NER/ARN (0.6 

MPa) (Figure 2), and this might be due to that this plant contain the lowest Na ion in its 

leaves (77 mg.g-1 DW) (Figure 3) at 200 mM NaCl, in respect to other graft plants HAR/ARN 

and NER/ARN.  

5.2.3.2. Antioxidant enzyme activities, organic solute accumulation and lipid 

peroxidation of graft combinations against Arnold rootstock 

The comparison among the three scion genotypes: Haruki and kamonium and Nerina F1 in 

term of operating the antioxidant defence mechanism revealed that the Nerina F1 scion has 

higher ability to elicit increasing in the activities of APX, CAT, and GR in relation to control 

plant under both salt conditions (Figure 9), which might indicate higher ability to scavenge 

ROS. However, Haruki scion in HAR/ARN plant showed higher significant increasing in 

SOD activity than other scions in respect to its control plant (Figure 9). This increasing 

induced higher tolerance to oxidative stress (Bowler et al. 1991) and accordingly this plant 

showed lower MDA level upon salinization than KAM/ARN and NER/ARN (Figure 10). 

 

Toward the end, scion genotypes play a significant factor in Na+ transporting into shoot, 

where Haruki scion accumulate more leaf Na+ ion than its root and showed leaf 

compartmentation strategy to cope with a drastic salt condition, while the other scions 

Kamonium and Nerina F1 displayed an exclusion mechanism that associated with higher root 

Na+ accumulation. However, the root system exhibited significant increasing in root DW 

upon mild salt level depending on the characteristics of shoot genotypes since Nerina F1 

showed the highest root DW increasing followed by Haruki and Kamonium scions. However, 

there were not too much variation in photosynthesis parameters and water status among these 

graft combinations. Moreover, the operating system of the antioxidant defence mechanism 

was depending on shoot genotypes as Nerina F1 scion has higher ability to enhance the 

activities of APX, CAT, and GR enzymes, while Haruki scion showed higher significant 

increasing in SOD activity that associated with lower MDA level upon salinization. 

Nevertheless, the shoot genotypes are relatively salt-sensitive and the antioxidant enzymes 

activities were more limited, accordingly there was high possibility that the oxidative stressed 

has been induced by the excess of NaCl which possibly caused high inhibition of fruit yield 

in all genotypes used.  

6. CONCLUSION  

The grafting with a salt tolerant rootstock should improve the photosynthesis with higher 

stomatal conductance and WUE under salt condition, increase the capacity of antioxidant 
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system by enhancing different enzymes activities particularly the enzymes involved in 

ascorbate-glutathione cycle, and decrease the level of lipid peroxidation, in turn promoting 

plant growth should be promoted. The characteristics of rootstocks could be the main factors 

that result in increased absorption, upward transport of some ions and translocation of these 

ions into the stem and leaves of the scion. In this study, different rootstocks showed different 

salt resistance mechanisms associated with different patterns of ion accumulation such as salt 

inclusion mechanism involving high concentration of sodium ion in the leaves, salt exclusion 

mechanism consisting in high capacity to extrude the ions from the shoot and retention into 

the root level, and leaf compartmentation strategy entailing Na accumulation in the leaf. The 

physiological plant responses such as water relation, net assimilation rate, transpiration rate, 

and WUE were affected strongly by rootstock genotypes upon salinization. Some rootstocks 

used the high concentrations of inorganic solutes from the substrate to achieve lower water 

and osmotic potential, which is considered an osmotically adaptive strategy, while other 

rootstocks induced reduction in net assimilation rate and stomatal conductance, which could 

be a mechanism of water conservation in order to maintain leaf turgor and osmotic 

adjustment under salt stressed. Additionally, other rootstocks enhanced the vigour of root 

system, which is considered a fundamental issue to sustain the translocation of mineral 

nutrition into the shoot. However, all used rootstocks did not register high capacity in 

conferring the resistance to the shoot and yield and did not present a great ability to enhance 

the enzymatic detoxification mechanism in the fruit; accordingly ROS were not eliminated 

and oxidative stress took place.  

 

Mechanisms of resistance against salinity in grafted plants display a great complexity; such 

complexity may be associated with specific interactions between the genotypes of scion as 

well as rootstock. The plant responses were conditioned significantly by the scion genotypes 

as well as rootstock characteristics, where both scion and rootstock showed specific effects in 

ion absorption, upward transport and accumulation of ions, thereby stimulating different 

physiological and biochemical strategies. The physiological and physical characteristics of 

rootstock probably affect the absorption of the ions while the characteristics of scion affect 

their translocation in the plant. Moreover, the characteristics of rootstock were able to 

regulate the plant growth under saline condition depending on the capacity of the shoot 

genotypes to regulate the ion uptake. It is important to take into account the salt tolerance 

mechanisms of both scion and rootstock before proceeding to the selection of grafting 

combinations. Our results demonstrate that both scion and rootstock exert significant effects 
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on morphological and physiological parameters linked to the activities of root (root biomass, 

water and nutrient uptake, and salt ion uptake) or leaves (intensity of transpiration rate and 

stomatal performance) to cope with salt stress. However, the effectiveness of different 

mechanisms of acclimation of scions and rootstocks to excess root zone salinity, which is 

responsible for providing salt tolerance to the plant, were not enough to enhance the plant 

growth. Moreover, both scions and rootstocks were not able to enhance the fruit enzymatic 

detoxification mechanism of ROS. Thus, the free radical scavenging system did not play an 

important role in salinity tolerance of grafted tomato under the condition of this experiment. 

We could indicate that the salt grafted tomato plants were not tolerant to the stress induced by 

excess NaCl as the grafted tomato seedling showed lower ability to maintain high net 

photosynthesis and showed non-effective scavenging system of ROS. Additionally, the three 

rootstocks used in grafting failed to achieve high productivity where the fruit fresh weight 

reduction was so high even at mild salt. These results could point out that those rootstocks are 

not relatively salt tolerant and they are not able to donate resistance to shoots.    
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Table 1. Effect of salt stress (0, 100, and 200 mM NaCl) on shoot and root biomass of different tomato graft combinations at 90 DAS. Same 

letters in each column indicate no significant differences among treatments at P ≤ 0.05 level. Values are the mean ± SE of three replications. 

Scion Rootstock Scion/rootstock NaCl  
(mM) 

     Shoot FW  
      (g Plant-1) 

 Shoot DW 
 (g Plant-1) 

 Root DW     
  (g Plant-1) 

HARUKI 

MAXIFORT F1 HAR/MAX           0 765b 96b 101a 
100 242fg 44fg 71b 
200 120gh 27hi 64c 

ARNOLD HAR/ARN 0 474e 55ef 27fg 
100 165gh 41gh 33ef 
200 99gh 18ij 28fg 

R1 HAR/R1 0 610cd 65de 32ef 
100 241fg 40gh 74b 
200 143gh 25hi 33ef 

KAMONIUM 

MAXIFORT F1 KAM/MAX 0 1175a 139a 103a 
  100 336f 72cd 98a 
  200 174gh 35gh 33ef 
ARNOLD KAM/ARN 0 711bc 102b 55cd 
  100 237f 45fg 61c 
  200 107gh 22hi 21g 
R1 KAM/R1 0 768b 109b 83ab 
  100 232fg 41gh 47cd 
    200 85gh 17ij 27fg 

NERINA F1 

MAXIFORT F1 NER/MAX 0 690bc 81c 83ab 
  100 243fg 43fg 49cd 
  200 30h 13j 20g 
ARNOLD NER/ARN 0 622cd 72cd 50cd 
  100 327f 57ef 81ab 
  200 146gh 25hi 34ef 
R1 NER/R1 0 568de 62de 42de 
  100 196fg 29hi 39de 
    200 93gh 16j 29fg 
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Table 2. Analysis of variance of shoots and root biomass:  ns, non-significant differences; *, 

significant differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; ***, significant 

differences at P ≤ 0.001. 

Analysis of variance Fruit FW Shoot FW Shoot DW Root DW 

Main Effect     

  Salt                      *** ***  *** *** 

  Rootstock                      ns ***  *** *** 

  Scion                      *** ***  *** * 

Interaction  

  Salt * rootstock                  ns 

 

***  *** *** 

  Salt * scion                  *** ***  *** ** 

  Rootstock * scion                 *** ***  *** *** 

  Salt * rootstock * scion          *** ns  ns ** 
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Table 3. Effect of salt stress (0, 100, and 200 mM NaCl) on photosynthesis parameters of 

different tomato graft combinations at 60 DAS. Same letters in each column indicate no 

significant differences among treatments at P ≤ 0.05 level. Values are the mean ± SE of three 

replications. 

Scion Rootstock 
Scion/ 

rootstock 

NaCl  

(mM) 

         E 

(mM m-2 s-1) 

      A 

(µM m-2 s-1) 

WUE (mM  

CO2 mM-1 H2O) 

HARUKI 

MAXIFORT F1 HAR/MAX 0 2.69b 17.10bc 6.38cd 

100 0.49fg 7.61ef 16.96a 

200 0.81ef 6.46ef 8.62c 

ARNOLD HAR/ARN 0 2.88ab 17.66bc 6.23cd 

100 0.38fg 5.68ef 15.01ab 

200 0.73ef 5.81ef 8.34c 

R1 HAR/R1 0 2.73ab 13.79cd 5.22cd 

100 1.47c 9.05e 6.50cd 

200 0.35gh 4.59ef 14.04ab 

KAMONIUM 

MAXIFORT F1 KAM/MAX 0 1.85c 22.23a 12.19bc 

100 0.81ef 8.37ef 10.37bc 

200 0.74ef 7.23ef 10.28bc 

ARNOLD KAM/ARN 0 2.96ab 17.35bc 5.87cd 

100 0.53fg 8.19ef 16.51a 

200 0.64fg 6.63ef 11.02bc 

R1 KAM/R1 0 3.19a 16.83bc 5.31cd 

100 0.80ef 8.92e 11.24bc 

200 0.92e 5.08ef 8.98c 

NERINA F1 

MAXIFORT F1 NER/MAX 0 2.11c 15.54cd 8.04c 

100 0.67fg 6.62ef 10.53bc 

200 0.24gh 1.41g 7.43c 

ARNOLD NER/ARN 0 2.93ab 18.55b 6.51cd 

100 0.92e 8.16ef 9.02c 

200 0.57fg 5.89ef 10.99bc 

R1 NER/R1 0 2.70b 14.13cd 5.19cd 

100 0.79ef 6.25ef 8.38c 

200 0.54fg 5.26ef 10.73bc 



167 
 

Table 4. Analysis of variance of photosynthesis parameters: ns, non-significant 

differences; *, significant differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; 

***, significant differences at P ≤ 0.001. 

Analysis of variance E A WUE 

Main Effects                

  Salt                      *** ***    *** 

  Rootstock                      *** **    ** 

  Scion                      * ***    ** 

Interaction                 

  Salt * rootstock                 *** ***    *** 

  Salt * scion                  ** ns    ** 

  Rootstock * scion              *** ***    ns 

  Salt * rootstock * scion     *** ***    *** 
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Table 5. Analysis of variance of ions accumulation: ns, non-significant differences; *, significant differences at P ≤ 0.05; **, significant 

differences at P ≤ 0.01; ***, significant differences at P ≤ 0.001. 

Analysis of Variance Ca2+ K+ Na+ Na+/K+ 
Root Stem Leaf Root Stem Leaf Root Stem Leaf Root Stem Leaf 

Main Effects                   

  Salt                      *** *** *** *** *** *** *** *** *** *** *** *** 

  Rootstock                      *** *** *** *** ** *** *** *** *** *** *** *** 

  Scion                      *** *** ** ns *** *** *** *** *** *** *** *** 

Interaction                 

  Salt * rootstock                  *** * ns *** ns ns *** *** *** *** *** *** 

  Salt * scion                  * * ns * ns *** * *** ** ns *** *** 

  Rootstock * scion                 * ns ns *** * ** *** *** *** ns *** *** 

  Salt * rootstock * scion        * ns ns *** ns *** *** *** *** * *** ** 
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Table 6. Analysis of variance of Cl− accumulation: ns, non-significant differences; *, 

significant differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; ***, significant 

differences at P ≤ 0.001. 

Analysis of variance 
          

Root 

        Cl− 

Stem 

 

Leaf 

Main Effects                

  Salt                      *** ***    *** 

  Rootstock                      *** ***    ** 

  Scion                      ns ns    * 

Interaction                 

  Salt * rootstock                 * ns    * 

  Salt * scion                  ns ***    * 

  Rootstock * scion              ** ***    Ns 

  Salt * rootstock * scion     * ***    Ns 
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Table 7. Analysis of variance of antioxidant enzymes and organic solutes: ns, non-significant differences; *, significant differences at P ≤ 0.05; 

**, significant differences at P ≤ 0.01; ***, significant differences at P ≤ 0.001. 

Analysis of Variance 
 

APX 
 

 
CAT 

 

 
GR 

 

 
SOD 

 

 
MDA 

 

 
Proline 

 

 
Protein 

 
Main Effect 
Salt *** *** *** *** *** *** *** 
Rootstock *** *** *** ** ns * ns 
Scion ns *** ns ns *** *** *** 
Interaction  
Salt * rootstock *** *** ** ** ** *** ns 
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Figure 1. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on fruit fresh weight of different tomato graft 

combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 2. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on leaf water relation status of different tomato 

graft combinations at 60 DAS. Values are the mean ± SE of three replications. 
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Figure 3. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on root, stem, and leaf Na+ ion accumulation of 

different tomato graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 4. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on root, stem, and leaf Na+/K+ ratio of different 

tomato graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 5. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on root, stem, and leaf Ca2+ ion accumulation of 

different tomato graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 6. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on root, stem, and leaf K+ ion accumulation of 

different tomato graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 7. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on root, stem, and leaf Cl ion accumulation of 

different tomato graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 8. Total plant Na+ ion partitioning: root Na (black bar), stem Na (grey bar), and leaf Na (white bar) of different tomato graft 

combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 9. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on fruit antioxidant enzymes of different tomato 

graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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Figure 10. Effect zero salt (black bar), 100 mM NaCl (gray bar), and 200 mM NaCl (white bar) on fruit organic solutes and MDA concentration  

of different tomato graft combinations at 90 DAS. Values are the mean ± SE of three replications. 
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CHAPTER 3 

 
I. Salinity Thresholds And Genotypic Variability Of Cabbage (Brassica 

Oleracea L.) Grown Under Saline Stress: Physiological Adaptation 

And Nutritional Value 
 

ABSTRACT 

Excessive soil salinity, resulting from natural processes or from crop irrigation with saline 

water, occurs in many semi-arid to arid regions of the world where it inhibits plant growth 

and yield. The use of saline irrigation water is becoming unavoidable in many horticultural 

zones thus resulting in increasing salinization of soils and aquifers. In the present study, two 

botanical varieties of Brassica, namely savoy (Brassica oleracea var. sabauda L.) and white 

cabbage (Brassica oleracea var. capitata L.) were grown under saline stress, in order to 

understand the physiological and biochemical elements of functional salt stress response 

beyond the salinity threshold. Thirteen salt concentrations (range 0 to 300 mM NaCl) were 

considered in the first trial, and out of them three (0, 100 and 200 mM NaCl) were selected 

for use in the second experiment. Measures considered morphological, physiological and 

biochemical parameters. Exp. 1# enabled to define two salinity thresholds (respectively at 

100 and 200 mM NaCl), where the plant response resulted to simultaneously vary in terms of 

both morphological and physiological elements. In Exp. 2#, moderate salinity (100 mM 

NaCl) had lower effects on savoy cabbage yield (-16% as compared to control) than in the 

white cabbage (-62% of control). Concurrently, 100 mM NaCl resulted in a significant 

increase of antioxidant enzymes (Ascorbate peroxidase, Catalase, and Glutathione reductase) 

from control conditions, that was greater in savoy (+289, +423 and +88% respectively) as 

compared to white (+114, +356 and +28% respectively) cabbage. Ions accumulation resulted 

to be a key determinant in tissue osmotic adjustment (mainly in savoy) whereas the 

contribution of organic hosmolites was negligible. Overall, the higher antioxidative 

enzymatic activities in savoy cabbage upon 100 mM NaCl were associated with lower values 

of water and osmotic potentials as well as higher osmotic adjustment, thus suggesting a 

possible physiological pathway for alleviating salt stress. 
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Key words: salt stress, water relations, gas exchange parameters, antioxidative enzymes, 

Brassica oleracea. 
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1. INTRODUCTION 

Salinity stress affects crop growth and yield by reduction of osmotic potential, alterations in 

plant metabolism, inhibition of enzymatic activities, ionic imbalance, disturbances in solute 

accumulation, specific ion effects or combination of all these factors (Munns et al. 2006). 

Adverse effects on plant growth and development are experienced at physiological and 

molecular levels (Vinocur and Altman 2005; Bressan et al. 2013). Osmotic adjustment helps 

plant cells to withstand salt stress and water deficit by maintaining a sufficient turgor for 

growth (Orsini et al. 2011). It involves the transport, accumulation, and compartmentation of 

inorganic ions and organic solutes (Orsini et al. 2013). Under saline conditions, the osmotic 

withdrawal of water from growing cells may cause their turgor to drop below yield-stress 

thresholds. Cells must then develop a sufficient low osmotic potential to reverse the flow of 

water, either through the uptake of ions from the medium or by the synthesis and transport of 

organic compounds; if none of these actions occur, cell expansion will stop (De Pascale et al. 

2012). Salt stress reduces gas exchange thereby limiting CO2 supply to the leaf and causing 

the over-reduction of the photosynthetic electron transport chain, resulting in production of 

reactive oxygen species (ROS) (Mateo et al. 2004). ROS are highly unstable compounds that 

can seriously disrupt normal metabolism through oxidative damage to lipids, proteins and 

nucleic acids in the absence of any protective mechanism (Mittler 2002). The generation of 

ROS, including superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (HO•), 

and singlet oxygen (1O2), is generally enhanced in salt stressed plants (Bowler et al. 1992; 

Asada 1999). In order to cope with continuous ROS production, plants have a machinery of 

enzymatic and non-enzymatic antioxidants, which function as an extremely efficient 

cooperative system. Enzymatic antioxidants include superoxide dismutase (SOD), catalase 

(CAT), peroxidase (POD) and glutathione reductase (GR), whereas glutathione (GSH), 

ascorbate (AsA), carotenoids and tocopherols are non-enzymatic antioxidants (Jogeswar et al. 

2006). SOD is the front-line enzyme in ROS attack since it rapidly scavenges superoxide, one 

of the first ROS intermediate to be produced, dismutating it to H2O2 (Bowler et al. 1992). 

However, this reaction only converts one ROS to another, and H2O2 also needs to be removed 

since it promptly attacks thiol proteins and reacts with radicals and transition metals to yield 

the extremely reactive hydroxyl radical (Noctor and Foyer 1998). H2O2 is scavenged by 

peroxidase, especially, ascorbate peroxidase (APX) and catalase (CAT) (Mittler 2002; Karim 

et al. 2012). Glutathione reductase (GR), in the ascorbate/glutathione cycle, has a major role 

in maintaining the intracellular glutathione pool in the reduced state (GSH) (Jiménez et al. 

1997). Plants can use the level of steady-state cellular ROS to monitor their intracellular level 
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of stress (Mittler 2002). However, this steady-state level must be tightly regulated in order to 

prevent an oxidative burst by over accumulation of ROS, which would ultimately result in 

extensive cell damage and death (Mittler 2002). Symptoms of oxidative damage (like lipid 

peroxidation) have been used to assess the increase in ROS production under abiotic stresses 

(Smirnoff 1993). However, the lack of symptoms is likely to result on the concomitant 

increase in cellular antioxidant defences. It is generally assumed that salt-sensitive genotypes 

have low levels of antioxidant enzymes (Logan 2005), although these levels are not 

necessarily an indicator of salinity tolerance (Munns and Tester 2008). Cabbage (Brassica 

oleracea capitata L.) is a relatively salt-tolerant crop (Maggio et al. 2005), although 

variability among genotypes has been reported (Jamil et al. 2007). Consistently, previous 

reports showed that increased level of salt caused unbalanced nutrient uptake, declined 

germination, delayed emergence, inhibited seedling growth, root and shoot length, and fresh 

root and shoot weight in cabbage (Brassica oleracea capitata L.) and pak-choi (Brassica 

campestris) (Jamil et al. 2005, 2006 and 2007). The objectives of this study were the 

identification of salinity tolerance thresholds and the assessment of the morphological and 

productive performances, the phytochemical, secondary metabolite, and enzymatic 

antioxidative systems in two botanical varieties of cabbage under different salt treatments for 

the understanding of the salt adaptive mechanisms responsible of the differential response.  

2. MATERIALS AND METHODS 

The present research consisted of two experiments on Brassica olereacea. Exp. 1# was 

conducted in order to identify and confirm salt tolerance thresholds in white cabbage 

(Brassica oleracea var. Capitata L), whereas Exp. 2# used selected salt concentrations for 

determining differential elements of salt stress enzymatic response in two botanical varieties 

of cabbage, namely white (same genotype as in Exp. 1#) and savoy (Brassica Oleracea var. 

Sabauda L.). Both experiments were conducted in environmentally controlled conditions (T° 

max 23°C; T°min 13°C; RH: 60%) in the experimental glasshouse at the University of 

Bologna, Italy. Seeds were sown in polyethylene trays filled with peat moss and transplanted 

20 days after germination onto 5 liters-pots filled with a mixture of perlite and vermiculite 

(1:1, v:v). Plants were grown on a hydroponic system and fed with nutrient solution having 

the following composition: NO3
–: 16.5 mM; NH4

+: 1 mM; H2PO4
–: 1.50 mM; SO4

2–: 1.50 

mM; K+: 7.0 mM; Ca2+: 5.0 mM; Mg2+: 1.5 mM; Fe2+: 15 μM; Mn2+: 10 μM; B+: 25 μM; 

Zn+: 5.0 μM; Cu+: 0.5 μM; Mb2+: 0.5 μM.  Salt stress treatments started at 20 Days After 
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Transplanting (DAT). All morphological and physiological measurements were performed at 

50 Days After Salt (DAS). Experimental details are reported below. 

Exp. 1# 

2.1. Experimental design 

Thirteen salt concentrations were applied and ranged 0 to 300 mM NaCl, in measure of 0 

(2.68 dS m-1), 25 (4.01 dS m-1), 50 (6.33 dS m-1), 75 (7.05 dS m-1), 100 (7.68 dS m-1), 125 

(8.04 dS m-1), 150 (8.35 dS m-1), 175 (8.5 dS m-1), 200 (8.72 dS m-1), 225 (8.86 dS m-1), 250 

(9.21 dS m-1), 275 (9.28 dS m-1), and 300 (9. 33 dS m-1) mM NaCl dissolved in the nutrient 

solution. The experiment used a randomized blocks design, with three replications and three 

plants per replicate. 

2.2. Plant growth determinations 

Morphological determinations included head, root, shoot and total fresh weights (FW). Total 

plant leaf area (LA) was measured on digital images by Image J processing software (Orsini 

et al. 2011). 

2.3. Leaf gas exchanges 

Leaf transpiration (E), stomatal conductance (gs) and net photosynthesis (A) were measured 

15 days after salinization on three completely unfolded leaves of nine plants per treatment. 

Measurements of leaf gas exchange were performed on attached leaf samples using a CIRAS-

2 (PPSystem, Hitchin, UK) infrared gas analyser (closed system) with a Parkinson’s 

Automatic Universal Leaf Cuvette (PAR 1000 mmol m–2 s–1, 26°C, CO2 13.63 mmol l-1 and 

300 cm3 min–1 flow rate) equipped with 18-mm diameter, 2.5-cm2 area cuvette inserts. Water 

Use Efficiency (WUE) was determined as the ratio between A and E. 

Exp. 2# 

2.1. Experimental design 

Three salt concentrations were considered, 0 (2.68 dS m-1), 100 (7.68 dS m-1) and 200 (8.72 

dS m-1) mM NaCl dissolved in the nutrient solution. The experiment used a randomized 

blocks design, with three replications and six plants per replicate. 

2.2. Plant growth determinations 

Morphological determinations included head, root, shoot and total fresh (FW) and dry (DW) 

weights (after drying at 60°C). Total plant leaf area (LA) was measured as in Exp. 1#. At 

harvest, roots and shoots of all plants were dried and weighed and the root:shoot calculated. 

Relative Growth Rate (RGR) was determined using the equations: 

RGR = (ln DM2 - ln DM1) (t2 - t1)-1 (g g-1 d-1) 
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Where DM1 is the initial (15 DAS) total (shoot + root) dry mass, DM2 the final (50 DAS) 

total dry mass, and (t2 - t1) the difference in time interval between the two samplings. Leaf 

area index (LAI) was calculated by multiplying specific leaf area by total leaf dry weight then 

dividing by the ground area occupied by the canopy.  

2.3. Plant water relations and leaf gas exchanges 

Water potential (Ψw) and osmotic potential (Ψπ) was measured on fresh and frozen/thawed 

leaf samples using a dewpoint potentiometer (WP4, Decagon Devices, Pullman, WA, USA). 

Osmotic potential (OA) was calculated using the equation: 

OA =Ψπ0 V0 - Ψπ V (MPa),  

Where Ψπ0 V0 is the product of (osmotic potential) × (osmotic volume) of unstressed plants 

and Ψπ V is the product of (osmotic potential) × (osmotic volume) of leaves from salinized 

plants. Leaf gas exchange measurements were conducted as in Exp. 1#. 

2.4. Mineral solutes accumulation 

For ion analysis, the determination of some cations (Na+, K+, Ca2+ and Mg2+) and anions (Cl−, 

NO3-, and SO42-) was carried out on dry weight basis. 500 mg of leaves dry matter were 

suspended in 50 ml water and homogenized with a stirrer at 150 rpm for 20 minutes. Samples 

were then filtered using filter paper (589 Schleicher) and then the extracts were further 

filtered through cellulose acetate syringe filters (0.20 μm). For cations analysis, the filtrated 

extract was acidified with 65% nitric acid HNO3 (1:100 ml, v: v) and quantification of cations 

was performed using Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES). 

Anions determination was done by ion chromatography (IC). 

2.5. Enzymes extraction and assays  

For protein and antioxidant enzyme extraction, 10 g of fresh leaves were homogenized in 10 

ml of 200 mM chilled potassium-phosphate buffer (pH 7.5) containing 1% (w/v) insoluble 

polyvinylpolypyrrolidone (PVPP) and 0.1% (v/v) Triton X-100 placed in an ice bath. The 

homogenate was filtered through a layer of muslin cloth and centrifuged at 10000 × g for 20 

minutes at 4 °C. The supernatant was collected and eluted through Sephadex G-25 gel 

column (NAP-25, Amersham Biosciences, Piscataway, NJ, USA) then re-suspended in 10 

mM sodium-potassium phosphate buffer (pH 7.0) and used for the determination of the 

antioxidant enzymes. All enzymatic activities were assayed spectrophotometrically, the 

analysis was performed in triplicate and the results were normalized by plant fresh weight.  
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2.6. Total soluble proteins 

The soluble proteins concentration of the extract was estimated according to Bradford’s 

method using bovine serum albumin as a standard (Bradford 1976).  

2.7. Malondialdehyde (MDA) 

The level of lipid peroxidation was determined by measuring malondialdehyde (MDA) 

formation using the thiobarbituric acid-reactive substance (TBA) method as described by 

Heat and Packer (1968). For MDA extraction, 100 µl aliquot of enzyme extract was mixed 

with 900 µl thiobarbituric acid solution containing 0.5 % (w/v) 2- thiobarbituric acid and 

0.5M orthophosphoric acid. The mixture was heated in a water bath at 100 °C for 30 minutes 

then the reaction was quickly stopped by cooling the tubes in an ice water bath. Afterward, 

the mixture was centrifuged for 1 minute at 13000 × g to remove the unspecific turbidity. The 

absorbance of the supernatant was measured at 532 nm using spectrophotometer Cary-1 

(Varian, California, US). Measurements were corrected for unspecific turbidity by 

subtracting the absorbance at 600 nm. The amount of MDA-TBA complex (red pigment) was 

calculated from the difference of the two wavelengths based on standard curve of MDA. 

2.8. Assays of enzymes 

2.8.1. Ascorbate peroxidase (APX, EC 1.11.1.11) 

Ascorbate peroxidase activity was determined using the method of Chen and Asada (1990). 

Ascorbate reaction solution contained 50 mM sodium-potassium phosphate buffer (pH 7.0), 1 

mM ascorbic acid, 0.5 mM hydrogen peroxide and 100 μl enzyme extract in a final assay 

volume of 1 ml. Ascorbate oxidation was followed at 290 nm. The concentration of oxidized 

ascorbate was calculated using an extinction coefficient ε = 2.8 mM-1 cm-1. One unit of APX 

is defined as the enzyme activity catalysing the oxidation of 1μmol of ascorbic acid per 

minute. 

2.8.2. Catalase activity (CAT, EC 1.11.1.6) 

Catalase activity was assayed by measuring the initial rate of disappearance of H2O2 and 

determined using the method of Havir and McHale (1987). Catalase reaction solution 

contained 50 mM sodium-potassium phosphate buffer (pH 7.0), 10 mM H2O2 and 20 μl of 

enzyme extract in a final assay volume of 1 ml. The reaction was initiated by adding the 

enzyme extract and the decrease in H2O2 was measured following the changes in the 

absorbance of the reaction solution at 240 nm. The concentration of CAT was calculated 

using an extinction coefficient ε = 0.036 mM-1 cm-1. One unit of CAT is defined as the 

enzymatic activity that catalyses the degradation of 1 μmol of H2O2 per minute. 
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2.8.3. Glutathione reductase (GR, EC 1.6.4.2) 

Glutathione reductase activity was determined using the method of Foyer et al. (1991). 

Glutathione reductase reaction solution contained 50 mM sodium-phosphate buffer (pH 7.5), 

5 mM EDTA, 1mM (NADPH), 1mM oxidized glutathione (GSSG) and 300 μl enzyme 

extract in a final assay volume of 1 ml. NADPH oxidation was determined at 340 nm. 

Activity was calculated using an extinction coefficient ε = 6.22 mM-1 cm-1 for NADPH. One 

unit of GR is defined as the enzyme activity that oxidizes 1 μmol of NADPH per min at room 

temperature.  

2.8.4. Superoxide dismutase (SOD, EC 1.15.1.1) 

Superoxide dismutase activity was determined using the method of Masia (1998) by 

measuring its ability to inhibit the photochemical reduction of nitro-blue tetrazolium (NBT) 

to blue formazan by flavins under illumination. Superoxide dismutase reaction solution 

contained 50 mM sodium-potassium phosphate buffer (pH 8.0), 300 μM methionine, 1.5 mM 

NBT, 120 μM riboflavin, 100 mM Na2.EDTA, 300 μM potassium cyanide and 100 μl enzyme 

extract in a final assay volume of 1 ml. The riboflavin was added last. The reaction was 

started by illumination the test tubes under 4 fluorescent lamps for 10 minutes. The 

absorbance of illuminated solution was measured spectrophotometry at 560 nm. One unit of 

SOD activity is defined as the amount of enzyme that inhibited 50% of NBT photoreduction 

versus a blank cell containing no enzymatic extract. 

2.9. Proline level 

Free proline content was determined according to Bates et al. (1973). Proline reaction 

solution contained 3 mM ninhydrin in 60% (v:v) acetic acid. The samples were heated at 100 

°C for 1 h in water bath and then cooled in tap water to stop the reaction. The mixture was 

extracted with toluene and the absorbance of toluene fraction aspired from liquid phase was 

read at 520 nm. Proline concentration was determined using a calibration curve and expressed 

as µmol proline g-1 FW. 

2.10 Chloroplastic pigments 

For photosynthetic pigments chlorophyll a, b, xanthophylls and carotenes, 0.1 g fresh leaves 

were extracted in 5 ml of chilled 80% (v:v) acetone. The homogenate was centrifuged at 4000 

× g for 5 min at 4 °C. The absorbance of resulting supernatant was taken at 470, 645, 663 nm. 

Different pigments were estimated using the formula by Arnon (1949) as follows: 

Chlorophyll a = 12.7 (A663) − 2.69 (A645) 

Chlorophyll b = 22.9 (A645) − 4.68 (A663) 

Cx+c = =1000 (A470) −1.9×chl a−63.14× chl b /214 (x= xanthophylls and carotenes) 
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2.11. Statistical analysis 

Data were analysed using analysis of variance (ANOVA) by Co-Stat-ANOVA software 

(CoHort, Monterey, CA, USA). At least three replications per treatment per genotype were 

used for analysis of all parameters. Treatment means were compared using Student-Newman-

Keuls at 5% significance. In exp. 1#, data were plotted and response functions were identified 

by datasets with significant linear regression, by limiting the number of data considered when 

additional data would reduce significance. 

3. RESULTS 

Exp. 1# 

3.1. Plant growth and leaf gas exchanges 

Upon salinity both plant morphological and physiological performances were decreased (Fig. 

1). However, in response to the thirteen salinity levels considered, three different linear 

functions could be observed for all studied parameters. Greatest reducing slopes were 

observed between 0 and 100 mM NaCl, whereas above 100 mM NaCl increasing salinity 

resulted in lower effects on crop performances. Nevertheless, another threshold could be 

observed around 200 mM NaCl, above which most of the measured parameters would not be 

anymore affected. 

Exp.2# 

3.1. Plant growth 

Salinity, genotype and their interaction significantly affected all growth parameters (Table 1). 

Yield of both genotypes decreased significantly upon salinity. However, while 100 mM NaCl 

caused a 62% reduction in head weight in white cabbage, no significant reduction from 

control was appreciated in the savoy genotype. On the other hand, a 70% decline in weight 

was measured in both genotypes when 200 mM NaCl were supplied. Root growth was also 

impaired by salinity (similarly by 83% at 200 mM NaCl in the two genotypes), although 

symptoms to moderate stress were less evident in savoy as compared to white, where root 

weight was reduced in measure of 41% and 81% from control conditions when 100 mM were 

applied. Salinity (100 mM NaCl) depleted leaf area more dramatically in white as compared 

to savoy (reduced by 52% and 25% respectively from control conditions), while at 200 mM 

NaCl no differences among genotypes could be appreciated (average reduction 66% from 

control). Consistently, both leaf area and LAI were greater (1.6 folds) in savoy as compared 

to white when 100 mM NaCl were supplied. Salinity-induced reductions were appreciated in 

terms of relative growth rate (RGR) and root:shoot ratio in both genotypes. Furthermore, 

savoy plants presented greater leaf area and leaf area index (Table 1). 
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3.2. Leaf gas exchanges and water relations 

Unstressed white cabbage plants exhibited expressively higher values of transpiration rate (E) 

and stomatal conductance (gs) as compared to savoy plants (1.6 vs 1.2 mM m-2 s-1 and 115 vs 

46 mM m-2 s-1 respectively) (Table 2). However, the transpiration rate of white cabbage 

plants was more susceptible to 200 mM NaCl as compared to savoy (reduction from control 

conditions in measure of -66% and -49% respectively). Similarly, net photosynthesis (A) was 

lower in white cabbage plants as compared to savoy under 100 (-47%) and 200 (-44%) mM 

NaCl.  

 

Leaf water potential was reduced in both genotypes upon salinization (Fig. 2A). However, 

such reduction was greater in the savoy genotype at both salt levels (-1.40 and -1.67 MPa, at 

100 and 200 mM NaCl) as compared to the white one (-0.75 and -1.42 MPa). Similarly, the 

highest noteworthy osmotic potential reduction at 100 and 200 mM NaCl was observed in the 

savoy genotype (-1.74 and -2.13 MPa) relatively to the white one (-1.36 and -1.80 MPa), 

(Fig. 2B). Higher osmotic adjustment values were achieved in savoy plants (0.7 and 1.0 MPa) 

compared to the white one (0.2 and 0.4 MPa) at 100 and 200 mM NaCl (Fig. 2C). Likewise, 

savoy genotype presented higher value of water use effeciency (WUE) under 100 mM NaCl, 

being about 3-fold higher than those measured on white cabbage plants (26 versus 9 mM CO2 

mM-1 H2O) (Fig. 2D).  

3.3. Mineral solutes accumulation 

The concentration of ions varied between the two Brassica genotypes and among salinity 

treatments. Imposing NaCl stress significantly induced an increase in Na+ concentration in 

leaves of the two genotypes compared to unstressed plant (Fig. 3A). Savoy plant accumulated 

Na+ in response to 100 (+13fold) and 200 (+23fold) mM NaCl as compared to control plants, 

whereas lower increases in response to salinity (+7 and +12 fold, respectively upon 100 and 

200 mM NaCl) were observed in the white genotype (Fig. 3A). Salinized condition did not 

affect the Ca2+ concentration in savoy genotype as shown by the non-significant difference 

under different salt treatments (Fig. 3B). In contrary, white plant showed a drastic 

diminishing in Ca2+ ions by (-78%) and (-93%) under 100 and 200 mM NaCl in relation to 

control plants. The K+ concentration of the savoy leaves increased apparently by (+268% and 

+116%) under 100 and 200 mM NaCl respectively, as compared to control plant, while there 

was no significant effect of salt treatment in white genotype leaves (Fig. 3C). Similarly, the 

Mg2+ content in the leaves of savoy plant increased significantly by +75% and +35% 

respectively in response to increasing salinity (100 and 200 mM NaCl) (Fig. 3D). However 
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white plants exhibited a significant reduction in Mg2+ content under both salt levels (mean 

reduction –66% as compared to control conditions). The Na+/K+ ratio in savoy genotype 

leaves was not affected by moderate salinity (100 mM NaCl), whereas the same salt 

concentration resulted in a 706% increase in white plants (Fig. 3E). Chloride concentration 

was significantly increased in the white genotype undergoing 100 (138%) and 200 (443%) 

mM NaCl, whereas a lower response (no significant differences at 100 mM NaCl and 

increase limited to +202% under 200 mM NaCl was found in the white genotype. (Fig. 3F). 

SO4
2− concentration was similarly reduced by salinity in both genotypes (Fig. 3G). Nitrate 

concentration experienced significant increasing as the salinity increased in both genotypes 

(Fig. 3H). However, white genotype leaves accumulated more NO3
− content by 2.3 fold as 

savoy plants at moderate (100 mM NaCl) salt exposure.  

3.4. Biochemical response to salinity 

APX activity in the leaves of savoy plant was remarkably increased (+123%) as compared to 

white cabbage plants upon 100 mM NaCl treatment (Fig.4A). However, similar values of 

APX in the two genotypes were observed under both control and 200 mM NaCl. Similarly, 

CAT activity was about 2.5 folds higher in savoy compared to white cabbage leaves at 100 

mM NaCl (Fig.4B), whereas no genotypic differences appeared either under control or 200 

mM NaCl. Glutathione reductase (GR) activity showed a rather constant level in white 

cabbage plants under control and salinized conditions (69 U g-1 FW as an average), while a 

significant rise in GR activity was observed in savoy, resulting in 1.9 and 2.3 folds increase at 

100 and 200 mM, respectively compared to control conditions (Fig.4C). SOD activity 

increased similarly with salinity, and no genotypic differences could be observed at the 

studied salinity levels (Fig.4D). However, savoy control plants presented higher SOD (+36%) 

as compared to white cabbage plants.  

 

Lipid peroxidation level in savoy leaves (measured as MDA content) was increased at 100 

and 200 mM NaCl (+201 and +94% from control conditions), whereas no changes would be 

observed in white cabbage plants (Fig.5A). Salinity enhanced leaf proline accumulation 

similarly under both salt levels (Fig.5B). No significant responses in protein concentration 

could be attributed to either genotype or salinity (Fig.5C). Both chlorophyll a and b were 

significantly increased by salinity in savoy plants, whereas no changes were observed in 

white cabbage plants (Fig. 6A and B). Consistently, xanthophylls and carotenes content 

decreased significantly in savoy plant by (-43%) at 200 mM NaCl as compared to control 

plant, while no salt-induced changes could be observed in white cabbage plants (Fig. 6C). 
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4. DISCUSSION  

4.1. Identification of salinity tolerance thresholds in white cabbage 

Results from Exp. 1# enabled to identify two salinity response thresholds in white cabbage, 

respectively at 100 mM NaCl (moderate salinity threshold) and 200 mM NaCl (high salinity 

threshold). Maas (1990) reported that yield declining took place after the tolerance threshold, 

represented by a single regression line with a species-specific slope. More recently, Maggio 

et al. (2006) proposed that the relationship between yield and salinity was represented by 

bilinear response that suggested the existence of a second physiological threshold that 

identifies a functional shift between different adaptation mechanisms. This threshold resulted 

to be at 100 mM NaCl in white cabbage. Furthermore, in the present study, although yield 

decline is found to occur yet at low salinities, a third threshold (above which the plant still 

survives although at basal physiological functions) may be placed for cabbage at 200 mM 

NaCl. Consistently, in the second experiment 0, 100 and 200 mM NaCl concentrations were 

used. 

4.2. Genotypic variability in cabbage physiological and morphological responses to 

salinity 

The greater yield (Table 1) of savoy vs white cabbage plants under moderate salinity (100 

mM NaCl) is consistent with the concept of a strict genotype-related response to salinity even 

within the same family (Brassicaceae): even close relatives may show great differences in the 

capability and means to cope with unfavorable growing conditions (Orsini et al. 2010). 

Furthermore, at 100 mM NaCl, not only the cabbage head was preserved, but also root 

biomass and leaf development were scarcely affected in savoy plants confirming that the 

stress perceived by these plants was negligible. Recent reports on a wide range of vegetable 

crops (e.g. Orsini et al. 2010a, 2011, 2012 and 2013; Barbieri et al. 2012) have pointed out 

that the capability of the plant to cope with salinity through functional physiological down-

regulation may result in preservation of the shoot biomass and, consequently, crop yield. The 

adoption of qualitative descriptors of the plant response to salinity (e.g. RGR or root:shoot 

ratio) may provide further indications on the overall architectural response to the stress. The 

lower RGR observed in the white genotype as compared to savoy plants is consistent with 

more severe reductions in the net assimilation rate observed in the former (Table 1). 

Moreover, the general reduction of root:shoot ratio upon salinity may be interpreted as a way 

for restricting the uptake of toxic ions to the shoot while still maintaining higher turgor and 

positive growth rate (De Pascale et al. 2003a). This may be accomplished by simultaneous 

reducing root versus shoot development and activating specific metabolic pathways (i.e., 
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osmolyte biosynthesis), both of which occur in saline environments (Munns and Tester 2008; 

Akram et al. 2009). Based on these considerations, savoy cabbage appeared to be relatively 

more tolerant than the white one.  

 

Leaf gas exchanges are generally impaired upon salt stress. This reduction is associated with 

salt damage of the photosynthetic tissue, changes in stomatal features with the consequent 

restriction of the CO2 availability for carboxylation or to the acceleration of senescence 

(Orsini et al. 2010a). The reduced gs and E observed in savoy plants, as compared to white 

cabbage yet under control conditions, most likely protected them from tissue dehydration and 

allowed them to effectivelly adjust to the unfavorable conditions by minimizing transitory 

cellular turgor loss (Ashraf 2001; Orsini et al. 2010; Singh et al. 2010). The reduction in 

transpiration with salinity has been associated with reduced gs and lower stomatal density of 

leaves developed under saline conditions (Omami et al. 2006). Nonetheless, while similar A 

values were found in the two genotypes grown under control conditions, a greater reduction 

in photosynthesis was associated to salinity in white cabbage as compared to savoy. Although 

salt-induced reductions of A are commonly associated to impaired stomatal opening (Sifola 

and Postiglione 2002; Bayuelo-Jimenez et al. 2003; Omami et al. 2006), recent reports 

suggest that preserved A values associated with lower gs or E may be considered as reliable 

indicators of overall salinity tolerance (Orsini et al. 2011 and 2012), and this is substantiated 

by the greater WUE observed in salt tolerant plants undergoing salinity (Barbieri et al. 2012). 

The most severe changes in plant water potentials observed in savoy plants may be the result 

of the structural-functional changes operated by the plant in order to ensure successful 

adaptation to salinity (Kaymakanova et al. 2008). The reduction of the osmotic potential 

would therein be a consequence of the net increase in solute accumulation which occurs 

through uptake of solute and/or synthesis of organic compounds in a process called osmotic 

adjustment (Hasegawa et al. 2000; Munns 2002). Osmotic regulation, a phenomena that 

occurs in both roots and leaves, contributes to maintain water uptake and cell turgor, which 

are essential to sustain physiological processes such as cell expansion, stomatal opening, 

photosynthesis (Zhang et al. 1999). However, a process of osmotic self-adjustment occurs in 

the plant cells, directed towards the preservation of the water balance by means of 

accumulation of osmotically active solutes (Tezara et al. 2003). In the hereby presented 

experiment, savoy plants were able to better preserve the turgor and regulate their osmotic 

adjustment compared to white genotype. Thus, also from a physiological perspective, the 
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adaptation of leaf gas exchanges and overall water relations appeared to be more effective in 

savoy as compared to white cabbage plants.  

4.3. Salinity, ion accumulation, and biochemical response in plant tissue: potentials for 

improved nutritional quality in stressed plants 

It is known that deleterious effects of salinity are related to osmotic effects, ion toxicities and 

ionic imbalance (Munns and Tester 2008; Patel et al. 2009). Under salt stress, plants evolved 

complex mechanisms allowing for adaptation to osmotic and ionic stress. These mechanisms 

include osmotic adjustment by accumulation of compatible solute and lowering the toxic 

concentration of ions in the cytoplasm by restriction of Na+ influx or its sequestration into the 

vacuole and/or its extrusion (Binzel et al. 1988). In this study, sodium accumulation was 

enhanced in both Brassica genotypes when the plants were exposed to salt and showed 

similar pattern of Na+ accumulation (Fig. 3A). However, the vast accumulation of Na+ in 

relatively salt tolerant savoy plant at moderated salt demonstrated that salinity resistance of 

this species is not linked to their ability to restrict the uptake and/or transport of sodium 

accumulation into the aerial parts (Boughalleb et al. 2012). K+ has an important role in 

osmotic adjustment in the guard cell controlling the stomata movement and thus CO2 

assimilation in photosynthesis (Chartzoulakis et al. 2006; DeglʼInnocenti et al. 2009). Also, 

K+ is considered to be an effective agent in salt tolerance mechanisms of the plant through 

maintenance of Na+/K+ homeostasis (Kader and Lindberg 2008; Alemán et al. 2009) and 

osmoregulation (Szczerba et al. 2009). A range of studies indicate that an increase in 

concentration of K+ and Ca2+ in plants under salt stress could ameliorate the deleterious 

effects of salinity on growth and yield (Grattan and Grieve 1999; Sivritepe et al. 2003). In 

this study, K+ was the major inorganic ion that accumulated significantly in salt stressed 

savoy while there was no alteration in its concentration in the relatively salt sensitive white 

(Fig. 3C). These results suggest that under salt stress, savoy plant may use K+ for osmotic 

adjustment (K+ accumulation plays a key role in salt tolerance mechanism of Brassica species 

by maintaining the ion homeostasis, Alemán et al. 2009; Cuin et al. 2008). However, under 

salt stress, plants maintain high concentrations of K+ in the cytosol by regulating the 

expression and activity of K+ and Na+ transporters and of H+ pumps that generate the driving 

force for transport (Zhu et al. 1993). Ca2+ plays an essential role in processes that preserve 

the structural and functional integrity of plant membranes, stabilize cell wall structures, 

regulate ion transport and selectivity, and control ion-exchange behavior as well as cell wall 

enzymatic activities (Marschner 1995). Salinity dominated by NaCl causes instability of 

plasma membrane resulting from Ca2+ displacement by Na+ (Santos 2004; Mansour and 
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Salama 2004), reduces Ca2+ availability and Ca2+ transporting and mobility to growing 

regions of the plant, produces extreme ratios of Na+/Ca2+ in the plants which increase the 

plants susceptibly to osmotic and specific ion injury as well as to nutritional disorders that 

result in reduced yield and quality (Sivritepe et al. 2003). In the hereby presented experiment, 

white genotype exhibited sharp diminishing in Ca2+ content associated with increased salt 

stress (Fig. 3B). The reduction in the concentration of this cation may be related to a lower 

Ca2+ release into the root xylem because of an effect of active loading of these cations into the 

xylem vessels (Lynch and Läuchli 1985). However, Ca2+ concentration in leaves of savoy 

plant was not affected by increasing salt supply, which was consistent with many previous 

studies pointing out that an increase in Ca2+ concentration in plants challenged with salinity 

stress could ameliorate the inhibitory effects of salinity on growth (Carvajal et al. 2000; Kaya 

et al. 2003). In addition, Mg2+ was significantly increased in both levels of stressed savoy 

genotype (+55%, as an average) compared to unstressed plant, while the concentration of this 

ion depressed drastically in white genotype by 2.6 fold and 3.5 fold respectively under 100 

and 200 mM NaCl (Fig. 3D). This result might suggest the presence of membrane selectivity 

of savoy plant towards ions uptaking and accumulating which might be utilized in lowering 

its osmotic potential as a way to cope with stressed condition. Many studies on halophytes 

and some tolerant glycophytes plants showed that a low foliar Na+/K+ ratio is a salt tolerance 

index and a good indicator of salt tolerance (Tester and Davenport 2003; Ashraf and Orooj 

2006). In the present study, leaf Na+/K+ ratio was significantly higher in moderated salinized 

plant of white genotype by 4-fold as in savoy plant (Fig. 3E). It might be possible that the 

internal accumulation of K+ ions in salt stressed savoy plant reduced the Na+/K+ ratio which 

improved the plant salt tolerance. Besides, there are different factors that affect Na+/K+ 

homeostasis such as different gene resources (Huang et al. 2008) and over expression of 

potassium-related genes (Mangano et al. 2008). Salt tolerance in plants is associated usually 

with the ability to restrict the uptake and or transport of saline ions from root to shoot 

(Hajibagheri et al. 1987). At moderated salt stress, Cl− concentration in the leaves of 

relatively tolerant savoy plant remained similar to those found under control conditions, 

while its content increased significantly by 2.4 times in white plant comparing to non-treated 

plant (Fig. 3F). Therefore, the salinity resistance of savoy plant could be related to 

Cl−exclusion, However, the accumulation of Cl− in the leaves of both genotypes was 

considerably enhanced with imposition of 200 mM NaCl to the rooting medium and a 

considerable difference between cultivars was observed (915 mg kg-1 DW in savoy versus 

1445 mg kg-1 DW in white). Excessive accumulation of Cl− results in ion toxicity and growth 
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inhibition (Ashraf and Harris 2004). Accordingly, the higher inhibition of growth parameters 

that was observed in white genotype could be related to high concentration of Cl− (Table 1). 

Munns (2002) indicated that there are two mechanisms of salt tolerance in plant: those 

minimizing the entry of salt into the plant and those minimizing the concentration of salt in 

the cytoplasm. In this regard at 100 mM NaCl, savoy genotype was more able to minimize 

the entry of nitrate ions into the leaves than white plant (423 mg Kg-1 DW versus 971 mg Kg-

1 DW, Fig. 3H), suggesting that salinity resistance of this species might be related to its 

ability to restrict NO3
− accumulation. However, there was considerable reduction in NO3

− 

content in white plant at 200 mM NaCl as 2.6 times as moderated salt treated plant. This 

reduction was associated with vast accumulation of Cl− ions in leaves (Fig 3 F and H). 

Theoretically, the reduction of NO3
− uptake might be related to a decrease in the nitrate 

reductase activity (NAR) that accompanied with the presence of Cl− salt in the external 

medium (Flores et al. 2000). According to the hereby presented results, the white cabbage 

behaved similarly to rocket, a member of Brassicaeae family, as a nitrate-accumulation 

vegetable (up to 4300 mg Kg-1 FW, Santamaria et al. 1999). The effects of nitrate and its 

toxic metabolites on human health have been documented (Santamaria 2006). Therefore, 

decreasing leaf nitrate concentration is critically important for fresh healthy vegetable 

production (Barbieri et al. 2011). Under moderated salinity, the turgor was maintained and 

osmotic adjustment was achieved in the relatively salt tolerant savoy plant by accumulated 

higher amounts of Na+, K+ and Mg2+ values, resulting in lower osmotic potential and higher 

osmotic adjustment. Consistenly, salt stress tolerance in this species may be associated with 

ion accumulation (Beltrao et al. 2000; Maggio et al. 2005).  

 

The alleviation of oxidative damage and increased resistance to salinity and other 

environmental stresses is often correlated with an efficient antioxidative system (Hasegawa et 

al. 2000; Acar et al. 2001; Bor et al. 2003). In this study, the activities of the four key 

antioxidant enzymes (APX, CAT, SOD and GR) appeared to be substantially affected by 

both salinity and genotypes under assessment (Fig. 2), although each of them showed a 

specific quantitative and qualitative response (Mittal et al. 2012). Similarities, as for other 

physiological and morphological traits, were generally found among the genotypes either at 

control conditions or when 200 mM NaCl were supplied. On the other hand, under 100 mM 

NaCl completely diverse scenarios could be attributed to the two genotypes under study. At 

this salt concentration, APX, CAT, and GR in savoy resulted to be about 2.2-fold, 2.5-fold, 

and 1.3-fold respectively greater than in white cabbage (Fig.4A, B and C). CAT and APX are 
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major enzymes detoxifying hydrogen peroxide (Dionisio-Sese and Tobita 1998). Salinity-

induced increase in APX has previously been reported by Hernandez et al. (2000). Low GR 

values have been associated to stress sensitivity (Aono et al. 1995), and Shalata et al. (2001) 

found that SOD and CAT activities decreased in roots of a salt-sensitive tomato cultivar 

while they increased in the roots of a salt-tolerant one under salt stress. Vaidyanathan et al. 

(2003) have found increased activity of CAT, APX, SOD and GR enzymes in leaves of rice 

under salt, and Mittal et al. (2012) reported that salt tolerant Brassica juncea cv. Bio902 had 

a higher activity of SOD, APX, and CAT and showed higher capacity for the scavenging 

ROS generated by salt in comparison with cv. Urvashi. Furthermore, Zhu et al. (2011) 

showed that SOD activity in leaves of cauliflower (Brassica oleracea  var. botrytis L.) 

increased first at lower salinity (34, 68 and 102 mM NaCl) and then decreased at higher 

salinity (136 and 170 mM NaCl), while CAT activities changed reversely with SOD. Bor et 

al. (2003) reported that increased GR activity in leaves of sugar beet plants was closely 

related with salt tolerance capacity, and Moradi and Ismail (2007) suggested that increased 

activities of SOD, APX and GR were responsible of the increased tolerance to salinity in two 

rice cultivars, while those enzymes declined or were not affected by salinity in salt sensitive 

rice. The observed increased SOD activity (Fig.4D) in both genotypes might be advocated as 

a common strategy to scavenge O2
- and counteract membrane damage. As suggested by 

Munns and Tester (2008), although antioxidative response is generally associated to greater 

stress tolerance, higher antioxidant capacity is not necessarily an indicator of the overall plant 

tolerance. Furthermore, according to Noreen and Ashraf (2009) care should be taken when 

correlating genotypic variability in salt stress response and the relative antioxidant system 

capability to detoxify ROS. Likewise, salt stress experiments on mutant Nicotiana tabacum 

plants lacking in both APX and CAT showed that plants appeared to be less susceptible to 

oxidative stress (Rizhsky et al. 2002). The observed salt tolerance of savoy genotype may be 

partially attributed to greater CAT and APX activity resulting in improved detoxification of 

H2O2 to H2O, coordinated by the additional effect provided by the increased GR activity. 

Consistently, the present study suggests active involvement of at least catalase and 

peroxidase among the H2O2 scavenging enzymes in determining salinity tolerance of 

cabbage.  

 

Lipid peroxidation (measured as the amount of MDA produced) is the symptom readily 

ascribed to oxidative damage and is often used as an indicator of oxidative stress which 

varies in different plant species (Hernandez et al. 2000). Free radicals may induce 
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peroxidation of lipid membrane, which may also reflect stress induced damages at the cellular 

level (Jain et al. 2001). Greater levels of MDA (as observed in savoy plants under 100 mM 

NaCl) may be associated to the higher osmotic adjustment observed in leaf tissue of the same 

plants, suggesting that excess salt accumulation triggered the production of ROS which 

caused the oxidative damage of plasma membrane. Similarly, Noreen and Ashraf (2009) 

reported that MDA contents were increased in salt tolerant radish cultivars Red Neck and 

Mannu Early undergoing salinity, whereas lower levels were found in salt sensitive ones. 

Also, Zhu et al. (2011) found that MDA contents in four cauliflower cultivars were increased 

gradually with increasing NaCl concentrations.  

 

Proline is generally assumed to serve as a physiologically compatible solute that increases as 

needed to maintain a favourable osmotic potential between the cell and its surroundings 

(Orsini et al. 2010). In response to drought or salinity stress in plants, proline accumulation 

normally occurs in the cytosol where it contributes substantially to the cytoplasmic osmotic 

adjustment (Orsini et al. 2012). In addition to its role as an osmolyte for osmotic adjustment, 

proline contributes to stabilization of sub-cellular structures (e.g. membranes and proteins), 

scavenging free radicals, and buffering cellular redox potential under stress conditions. In the 

present experiment, there was a similar significant increase in proline concentration upon 

salinization in both genotypes (Fig. 5B). Consistently proline seemed not to play a 

determinant role as osmoprotectant, confirming that increased proline concentration may not 

be associated with salinity tolerance in Brassicaceae (Colmer et al. 1995). Although soluble 

protein content is often claimed to be an important indicator of the plant physiological status 

(Doganlar and Atmaca 2011), in the hereby presented experiments, the contribution of amino 

acids accumulation to osmotic adjustment was not significant (Fig. 5C). Consistently, it may 

be confirmed that amino acids are not the main organic solutes involved in the osmotic 

adjustment of cabbage plants. Savoy plants presented greater osmotic adjustment in response 

to salinity as compared to white cabbage plants, indeed soluble protein and proline 

concentrations appeared to be not dependent on genotype. These results were consistent with 

previous authors (Ashraf and Sharif 1997; Beltrao et al 2000; Maggio et al 2005) who 

mentioned that Brassica stress tolerance is associated with ions accumulation only, whereas 

other report stated about a possible accumulation of organic compounds other than ions 

towards combined drought and salt stresses (Siddiqui et al 2008). Although Mittal et al. 

(2012) and Ashraf and Harris (2004) reported higher levels of soluble protein in salt tolerant 

cultivars of barley, sunflower, finger millet and rice, it shall be considered that the production 
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of osmolytes is metabolically expensive and limits plant production by consuming significant 

quantities of carbon (Greenway and Munns 1980). An alternative pathway is provided by the 

accumulation of a high concentration of ions from the external medium, solution that results 

in lower energetic cost for the plant, although it may lead to a toxic effect on the normal 

biochemical activities within the cell (Volkmar et al. 1998). Accordingly, we could correlate 

the tolerance to salt stress in savoy plant to its ability to maintain self-osmotic adjustment in 

terms of inorganic ions substances accumulation through uptake of solute, while the synthesis 

of organic compound was not achieved as protein and proline accumulated in similar pattern 

in both the salt-tolerant and -sensitive species. 

 

Savoy plant experienced noteworthy increases in photosynthetic pigments (chlorophyll a and 

b), while white cabbage plant showed no variation upon salinization (Fig. 6A and B). Higher 

chlorophyll content may be associated to greater photosynthetic rates, as well to the 

functional state of leaf tissues, which depends on the content of photosynthetic pigments, the 

synthesis of the enzymes taking part in the carbon reduction and the formation of the 

membrane system of chloroplasts (Ivanova and Vassilev 2003). Chlorophyll a content has 

been related to salt tolerance in Panicum miliaceum (Sabir et al. 2009). Increased total 

chlorophyll was recorded in Cucumis sp., broad bean and rice plant undergoing salt stress 

(Kusvuran et al. 2008). On the other hand, many reports associated the salt-induced damages 

occurring at cell and tissue level to the reduction in photosynthetic pigments, chlorophyll a 

and b in different crops such as alfalfa (Winicov and Seemann 1990), sunflower (Ashraf 

1999; Ashraf and Sultana 2000), and wheat (El-Hendawy et al. 2005). In the savoy genotype, 

the enzymatic adaptation to salinity may have counteracted the ROS induced damages at cell 

level, thus resulting in greater photosynthetic pigments in the leaves and overall improved 

crop response to salinity.  

5. CONCLUSIONS 

The response to salinity of two botanical varieties of cabbage, namely savoy cabbage 

(Brassica oleracea var. Sabauda L.) and white cabbage (Brassica oleracea var. Capitata L.) 

was hereby addressed. savoy plants were not only more tolerant to the stress than white 

cabbage ones in term of yield, but also operated functional physiological and biochemical 

adaptation that resulted in improved plant status and increased nutritional value. Higher 

activities of APX, CAT, and GR were observed in savoy plants undergoing 100 mM NaCl, 

resulting in greater detoxification of ROS together with the maintenance of lower water 

potential and higher osmotic adjustment by accumulation higher amounts of K+ and Mg2+and 
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lower level of Cl and NO3
- . These combined factors played a functional role in alleviated salt 

stress in savoy plant. 
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TABLES 1 

Table 1. Effect of different salt content (0, 100, and  200 mM NaCl) on some growth parameters of savoy and white cabbage seedling at 2 

50 DAS. Same letters in each column indicate no significant differences among treatments at P < 0.05 level. Values are the mean ± SE of three 3 

replications. Data from Exp. 2#. 4 

 5 

Cultivar NaCl 
(mM) 

Head 
(g plant-1)  Root FW 

(g plant-1)  LA           
(cm-2 plant-1)  LAI  RGR         

(mg g-1 d-1)  Root/Shoot  

 0 109±3.51 A 41±4.93 b 7009±239 a 1.13±0.04 a 69±3.65 a 0.7±0.03 a 
Savoy 100 92±4.36 Ab 24±1.00 c 5232±369 b 0.83±0.07 b 39±4.53 c 0.2±0.01 c 

200 33±1.15 D 7±0.58 d 2652±174 cd 0.43±0.03 c 58±0.48 b 0.1±0.01 c 

 
0 

100 
200 

 
167±7.57 
63±1.76 
51±3.21  

 
 

A 
 

59±2.33 
11±1.15 
10±0.88 

 
 
a

 
6775±295 
3227±149 
2082±310 

 
 
a 

 
1.09±0.05 
0.52±0.03 
0.39±0.03 

 
 
a

 
38±1.99 
40±2.18 
36±5.60 

 
 
c

 
0.6±0.07 
0.1±0.01 
0.2±0.03 

 
 
b 

White 
 
  
 

c  
c 

d 
d

c 
d 

c 
c

c 
c

c 
c 

      
      

Salt (S) ***  ***  ***  ***  **  ***  
Var (V) *  *  **  *  ***  *  
S × V ***  ***  *  ns  **  ns  
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Table 2. Effect of different salt content (0, 100, and 200 mM NaCl) on gas exchange 

parameters of savoy and white cabbage seedling at 50 DAS. Same letters in each column 

indicate no significant differences among treatments at P < 0.05 level. Values are the mean ± 

SE of eight replications. Data from Exp. 2#. 

Cultivar NaCl 
(mM ) 

E 
(mM m-2 s-1)

gs 
(mM m-2 s-1)

A 
(µM m-2 s-1) 

Savoy 0 1.2±0.13 b 46±5.7 b 17±0.9 a 
100 0.4±0.04 c 15±1.3 c 9±0.7 b 
200 0.6±0.05 c 17±1.5 c 6±0.2 c 

 
 
White 

 
0 

 
1.6±0.08 

 
a 

 
115±7.4 

 
a 

 
17±1.2 

 
a 

100 0.6±0.08 c 21±3.1 c 5±0.5 cd 
200 0.5+0.03 c 17±1.3 c 3±0.4 d 

 
Salt (S) 

  
*** 

  
*** 

  
*** 

 

Var (V)  *  ***  **  
S × V  *  ***  **  
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FIGURES 

 

Fig. 1. Identification of salinity tolerance threshold in cabbage seedlings at 50 DAS by means 

of yield (A), Root FW (B), Plant LA (C), stomatal conductance (gs, D), net photosynthesis 

(A, E), and water use efficiency (WUE, F) upon variable salinity (0, 25, 50, 75, 100, 125, 

150, 175, 200, 225, 250, 275 and 300 mM NaCl). Values are the mean ± S.E of three 

replications. Data from Exp. 1#. 
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Fig. 2. Effect of zero salt (black), 100 mM NaCl (grey), and 200 mM NaCl (white) on savoy 

and white cabbage seedling at 50 DAS on water potential (Ψw), osmotic potential (Ψπ),  

osmotic adjustment (OA), and water use efficiency (WUE). Values are the mean ± SE of nine 

independent measures. Data from Exp. 2#. 
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Fig. 3. Effect of zero salt (black), 100 mM NaCl (grey), and 200 mM NaCl (white) on the 

accumulation of some cations (Na+, Ca2+, K+, Mg2+) and anions (Cl−,SO4
2−, NO3

−) and the 

Na+/K+ ratio on savoy and white cabbage leaves at 50 DAS. Values are the mean ± SE of 

nine independent measures. Data from Exp. 2#.   



218 
 

 

Fig.4. Effect of zero salt (black), 100 mM NaCl (grey), and 200 mM NaCl (white) on 

ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and superoxide 

dismutase (SOD) activities in leaves of savoy and white cabbage plants. Values are the mean 

± SE of three replications. Data from Exp. 2#. 
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Fig.5. Effect of zero salt (black), 100 mM NaCl (grey), and 200 mM NaCl (white) on 

malondialdehyde (MDA) and proline level in leaves of savoy and white cabbage plants. 

Values are the mean ± SE of three replications. Data from Exp. 2#. 
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Fig. 6. Effect of zero salt (black), 100 mM NaCl (grey), and 200 mM NaCl (white) on 

chlorophyll a and b and xanthophylls and carotenoid content in leaves of savoy and white 

cabbage plants. Values are the mean ± SE of three replications. Data from Exp. 2#. 
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CHAPTER 3 
 

II. Physiological Response Of White And Red Radish Seedling, 

Metabolites Features And Antioxidant Enzyme Activities Among 

Seven Root Radish Cultivars (Raphanus Sativus L.) In Salinized 

Medium 
 

ABSTRACT  

Reducing detrimental effects of salinity on crop production may be achieved through 

selection of tolerant genotypes within the same species. In the present study a possible 

method for the identification of salt tolerant radish cultivars is presented. In the first 

experiment, two morphologically diverse types (long white and round red) are compared 

morphologically and physiology upon different salinity levels proposed in literature. In a 

second experiment, the most tolerant genotype from the first experiment was used as control 

against other seven genotypes therein ranked for their salinity tolerance according to 

morphological, physiological and biochemical indices such as osmoprotectant biosynthesis 

(total soluble protein and proline accumulation), oxidative stress indicator (malondialdehyde, 

MDA and Hydrogen peroxide, H2O2), and activities of some key enzymes. This study 

showed that both genotypes (red and white) experienced unique performance and presented 

similar significant diminishing in gas exchange parameters after imposing salt, suggesting 

that photosynthetic parameters is negatively related to assess salt tolerant feature. However, 

red radish proved better morphological and physiological responds to incremental salinity in 

term of higher dry matter accumulation, better adaptation of overall water relations, and 

possessing higher ability to osmotically adjust in saline environments. Thus, round red type 

has been chosen to be used in the successive steps of the screening. In second trial, among 

seven radish cultivars, SAXA2 cultivar was relatively considered more salt tolerant in term of 

having higher yield and shoot fresh weight upon salinization. However, salt stress did not 

significantly affect MDA accumulation, H2O2 content, and APX activity in all seven 

cultivars. Nonetheless, the relatively salt tolerant cultivar SAXA2 showed higher ability to 

accumulate more compatible solutes such as proline and protein, and accordingly maintain 

higher value of osmotic adjustment upon salinization. In addition, this cultivar showed also 
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considerable increasing in GR activity and higher CAT activity in respect to other cultivars at 

salt exposure. Thus, our results support the idea that accumulation of proline and protein and 

having higher activity of GR and CAT are associated with radish salt tolerance, while MDA 

and H2O2 content is negatively related to salt oxidative stress under the condition of this 

experiment. 

 

Key words: gas exchange, water status, osmotic adjustment, salt stress, oxidative stress, and 

antioxidative response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 
 

1. INTRODUCTION 

Soil salinity is one of the major abiotic stresses that adversely affect plant productivity and 

quality (Zhu, 2001). It was estimated that up to 20% of irrigated lands in the world are 

affected by different levels of salinity and sodium content (Mostafazadeh-Fard et al., 2007).  

A high salinity concentration may often occur in Mediterranean areas during the long 

summer season, as a result of high temperatures and both reduced water availability and 

quality of irrigation water (Tattini et al., 2002). The selection of crop species or cultivars with 

salinity tolerance traits has been considered an economical and efficient strategy to overcome 

the problem of salinity stress. Various workers have tried to identify physiological and 

biochemical differences between salt tolerant and sensitive plants in an effort to develop 

rapid screening methods for salt tolerance (Alian et al. 2000). It is well established that salt 

tolerance depends on genetic and biochemical characteristics of the species, and crop salinity 

sensitivity varies with species, genotypes, and growth stages (Prado et al., 2000; Pujari and 

Chanda, 2002), and the genetic diversity may provide useful genes for improving salt 

tolerance (Maggio et al., 2005). Salt stress induces various biochemical and physiological 

responses in plants and affects almost all plant processes (Megdiche et al., 2007) like 

photosynthesis, nitrogen metabolism, ion homeostasis (Ashraf, 2004), proline metabolism 

and osmolytes accumulation (Misra and Gupta, 2005). Salt stress causes stomatal closure, 

which reduces the CO2/O2 ratio inside leaf tissues and inhibits CO2 fixation (Hernández et 

al., 1999). As a consequence, an over reduction of the photosynthetic electron transport chain 

occurs, which causes the generation of ROS such as singlet oxygen (1O2), superoxide anion 

(O2•−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) and metabolic toxicity (Jaleel 

et al., 2007).  In addition, excess of Na+ and Cl− ions may lead to changes in the protein 

structure, while osmotic stress leads to turgor loss and cell volume change (Errabii et al., 

2007). However, there are different adaptation mechanisms of salt tolerance that mediate the 

ion homeostasis, osmolytic biosynthesis, toxic radical scavenging, water transport, and long-

distance response coordination (Dalal and Khanna-Chopra, 2001; Jaleel et al., 2007).  

To achieve salt tolerance, plant cells evolve several biochemical and physiological pathways 

such as the exclusion of Na+ ions and their compartmentation into vacuoles as well as 

accumulation of compatible solutes such as proline, glycinebetaine, and polyols (Errabii et 

al., 2007). Plants are equipped with an array of enzymatic and non-enzymatic antioxidant 

molecules to alleviate cellular damage caused by ROS (Foyer and Noctor, 2000; Apel and). 

Commonly known antioxidant enzymes that involved in the enzymatic scavenging of ROS 

include Superoxide dismutases (SOD, EC 1.15.1.1) that react with the superoxide radical to 
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produce H2O2 (Scandalios, 1993). Catalase (CAT, EC 1.11.1.6) has been found 

predominantly in leaf peroxisomes where it functions chiefly to remove H2O2 formed in 

photorespiration or in β-oxidation of fatty acids in the glyoxysomes (Dat et al., 2000). 

Ascorbate peroxidase (APX, EC 1.11.1.11) ,which uses ascorbic acid as a reductant in the 

first step of the ascorbate glutathione cycle, and glutathione peroxidase (GPX, EC 1.11.1.9) 

that uses glutathione as electron donors are the most important plant peroxidase involved in 

H2O2 detoxification (Noctor and Foyer, 1998). Glutathione reductase (GR, EC 1.6.4.2) is 

responsible for the reduction of oxidized glutathione for the chain reactions of scavenging 

H2O2 by APX and GPX to be completed and continued (Mittler, 2002; Apel and Hirt, 2004).  

Mittler et al. (2004) reported that all these interactive processes are regulated by complex 

biochemical pathways controlled by more than 150 genes in Arabidopsis. However, how 

these pathways are regulated, it is still not clearly full understood (Mittler et al., 2004).  

It is generally assumed that salt-tolerant genotypes of most plant species have higher 

activities/levels of antioxidant enzymes than those of salt sensitive ones (Logan 2005), but in 

some cases the reverse is true (Munns and Tester 2008). Many authors proved that the 

antioxidant enzyme systems are altered under abiotic stresses, including salinity, and the 

quantitative and qualitative aspects of changes are often related to the levels of resistance to 

salinity. In rice, the salt-tolerant varieties have higher SOD activity and lower lipid 

peroxidation than the salt-sensitive varieties (Dionisio-Sese and Tobita, 1998). In tomato and 

citrus, salt-tolerance is attributed to the increased activities of SOD, APX, and CAT (Mittova 

et al., 2004). Also, in the model plant Arabidopsis thaliana, mutants lacking one or both 

cytosolic and chloroplastic APX, involved mainly in H2O2 removal, were found to be more 

tolerant to salt stress (Mittler et al. 2004). 

 

Recently, most radish reports have been restricted to determine phytochemical content that 

have been associated with beneficial health effects such as phenolic (Sgherri et al 2003), 

anthocyanins (Liu et al 2008; Wang et al 2010), amylase activity (Hara et al., 2009), 

antioxidant activity (Lugasi et al 2005; Wang et al., 2010), antimutagenic (Nakamura et al., 

2001), and antiproliferative effects (Yamasaki et al., 2009; Beevi et al., 2010). In addition, 

many studies have been conducted for comprising phytochemical composition between 

radish sprouts (Kim et al., 2006; Papi et al., 2008) and mature radishes (Salah-Abbes et al., 

2009; Shukla et al., 2010; Wang et al., 2010). Furthermore, Noreen and Ashraf, (2009) have 

been studied the effects of salt in the leaves of six radish cultivars. They mentioned that NaCl 

adversely affected shoot fresh weight and soluble protein, while increased the level of 
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proline, and SOD and CAT activities. In view of all mentioned reports, there is lack of 

studies about the effect of salt stress on physiological and metabolites features and enzymes 

activities of root radish. Thus, in this work, our objectives were evaluating the performance 

of two botanical varieties of radish (round red or long white) for understanding the salt 

adaptive mechanisms in radish and defining the most salt tolerant genotype between them; 

assessing the differential response of seven genetically different radish cultivars upon 

salinization in term of some phytochemical, secondary metabolite, and enzymatic 

antioxidative systems to choose the most promoting cultivar(s) under stressed conditions.  

2. MATERIAL AND METHODS 

2.1. Plant material and culture 

Two experiments were carried out at the research station of Bologna University, Italy 

(44°30‟54‟ N, 11°24‟24‟ E, 39 m a.s.l.), in an experimental glasshouse under controlled 

conditions (T° max 23°C; T°min 13°C; RH: 60%).  In Exp. 1#, two genotypes of round red 

(cv. SAXA2, Blumen Seed, Milano, Italy) and long white (cv. Candela di ghiaccio, Blumen 

Seed, Milano, Italy) radish were considered. In Exp. 2#, seven round red radish cultivars was 

used as follow:  cv. Tondo PRECOCI SSIMO 1:TP; cv. SAXA DA FORZARE3: SAXA; cv. 

Lungo Apunta Bianca, LPB; cv. Lungo Rosso Apunta Bianca3, LRPB; cv. Tondo Apunta 

Bianca, TPB; cv. SAXA2, and cv. Tondo Apiccola Punta Bianca, TPPB (Blumen seed, 

Milano, Italy). Seeds were sown in polyethylene trays filled with peat moss. Seven days after 

germination, seedlings were transplanted onto small  plastic pots (250 × 250) filled with 

perlite: vermiculite (1:1 v: v). Hydroponic irrigation system was used with nutrient solution 

containing the following composition: NO3
–: 16.5 mM; NH4

+: 1 mM; H2PO4
–: 1.50 mM; 

SO4
2–: 1.50 mM; K+: 7.0 mM; Ca2+: 5.0 mM; Mg2+: 1.5 mM; Fe2+: 15 μM; Mn2+: 10 μM; B+: 

25 μM; Zn+: 5.0 μM; Cu+: 0.5 μM; Mb2+: 0.5 μM.   Salt treatment was begun at 4 days after 

transplanting (DAT). Three salt concentrations were applied in both trails: 0 (2.68 dS m-1), 

100 (7.68 dS m-1) and 200 (8.72 dS m-1) mM NaCl and dissolved in the nutrient solution. At 

40 and 30 days after salt treatment, the plants of Exp. 1# and 2# were harvested, respectively.  

2.2. Growth measurement  

Nine plants from each treatment (three per replicate) were sampled; shoots and roots were 

separated and their fresh weight (FW) were directly determined. Leaf area index (LAI) and 

leaf area (LA) was measured on digital images by Image J processing software (Orsini et al., 

2011). Growth indication was calculated, as the Relative Growth Rate (RGR), and the Net 

Assimilation Rate (NAR) (Benincasa, 1988) using the equations: 
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RGR = (ln DM2 - ln DM1) (t2 - t1)-1      (g.g-1.d-1) 

NAR = [(DM2 - DM1) (LA2 - LA1)-1] [(ln LA2 - ln LA1) (t2 - t1)-1]   (g.m-2.d-1)  

Where DM1 is the initial (15 DAS) total (shoot + root) dry mass, DM2 the final (30 DAS) 

total dry mass, LA1 the initial leaf area, LA2 the final leaf area, and (t2 - t1) the difference in 

time interval between the two samplings (15 d). Total leaf water potential (Ψw) was 

determined by using a dew-point psychrometer (WP4, Decagon Devices, Washington, WA). 

The osmotic potential (Ψπ) was estimated on frozen/thawed leaf samples. OA =Ψπ0 V0 - Ψπ 

V, where Ψπ0 V0 is the product of (osmotic potential) × (osmotic volume) of unstressed plants 

and Ψπ V is the product of (osmotic potential) × (osmotic volume) of leaves from salinized 

plants. Leaf gas exchange measurements as photosynthetic rate (A), stomatal conductance 

(gs), and transpiration (E) were measured by CIRAS-2 infrared gas analyser (PP-system 

Hitchin, UK). Punctual water use efficiency (WUE) was calculated as the ratio of A to E. 

Water loss (WL) determinations were performed at 15 DAS. Three plant pots for each 

treatment were sealed with a plastic film to prevent water loss from the soil surface, leaving 

the shoot protruding from the film. Before sealing, plants were re-watered to pot capacity 

with water (control), or water plus 100 or 200 mM NaCl. Each plant was then placed on an 

electronic balance under glasshouse condition, and the weight loss was measured after 24 h. 

WL values were normalized respect to whole plant dry weights taken at the end of the 

measurements. 

2.3. Enzymes extraction and assays  

The investigation of antioxidant enzymes regulation that provides the protection against NaCl 

induced oxidative damage in plant took place to assess just the performance of different 

seven root red radish cultivars in experiment 2. 

For protein and antioxidant enzyme extraction, 10 g of fresh leaves were homogenized in 10 

ml of 200 mM chilled potassium-phosphate buffer (pH 7.5) containing 1% (w/v) insoluble 

polyvinylpolypyrrolidone (PVPP) and 0.1% (v/v) Triton X-100 placed in an ice bath. The 

homogenate was filtered through a layer of muslin cloth and centrifuged at 10000 × g for 20 

minutes at 4 °C. The supernatant was collected and eluted through Sephadex G-25 gel 

column (NAP-25, Amersham Biosciences, Piscataway, NJ, USA) then re-suspended in 10 

mM sodium-potassium phosphate buffer (pH 7.0) and used for the determination of the 

antioxidant enzymes. All enzymatic activities were assayed spectrophotometrically, the 

analysis was performed in triplicate and the results were normalized by plant fresh weight. 
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The soluble proteins concentration of the extract was estimated according to Bradford’s 

method using bovine serum albumin as a standard (Bradford 1976).  

2.4. Malondialdehyde (MDA)  

The level of lipid peroxidation was determined by measuring malondialdehyde (MDA) 

formation using the thiobarbituric acid-reactive substance (TBA) method as described by 

Heat and Packer (1968). For MDA extraction, 100 µl aliquot of enzyme extract was mixed 

with 900 µl thiobarbituric acid solution containing 0.5 % (w/v) 2- thiobarbituric acid and 

0.5M orthophosphoric acid. The mixture was heated in a water bath at 100 °C for 30 minutes 

then the reaction was quickly stopped by cooling the tubes in an ice water bath. Afterward, 

the mixture was centrifuged for 1 minute at 13000 × g to remove the unspecific turbidity. The 

absorbance of the supernatant was measured at 532 nm using spectrophotometer Cary-1 

(Varian, California, US). Measurements were corrected for unspecific turbidity by 

subtracting the absorbance at 600 nm. The amount of MDA-TBA complex (red pigment) was 

calculated from the difference of the two wavelengths based on standard curve of MDA. 

2.5. Hydrogen Peroxide H2O2 

The H2O2 content was determined as described by Wolff (1994) measuring the colorimetric 

reaction of xylenol orange with Fe(III) that generated after the oxidation of Fe(II) by H2O2.  

Fresh leaf tissue was homogenised with 4ml of 36 mM H2SO4 + 1% PVPP and the 

homogenate was centrifuged at 10000 ×g for 20 minutes at 4 °C. The Fe-xylenol orange 

reagent (FOX) contained 100 μM xylenol orange, 250 μM500 μM (NH4)2Fe (SO4)2, 100 mM 

sorbitol that solved in 25 mM H2SO4. For H2O2 extraction, 50 µl aliquot of plant sample 

extract was mixed with 950 µl of FOX reagent and the mixture was incubated for at least 30 

min. The absorbance of the supernatant was measured at 560 nm. The amount of H2O2 was 

calculated based on standard curve of H2O2. 

2.6. Assays of enzymes 

2.6.1. Ascorbate peroxidase (APX, EC 1.11.1.11) 

Ascorbate peroxidase activity was determined using the method of Chen and Asada (1990). 

Ascorbate reaction solution contained 50 mM sodium-potassium phosphate buffer (pH 7.0), 1 

mM ascorbic acid, 0.5 mM hydrogen peroxide and 100 μl enzyme extract in a final assay 

volume of 1 ml. Ascorbate oxidation was followed at 290 nm. The concentration of oxidized 

ascorbate was calculated using an extinction coefficient ε = 2.8 mM-1 cm-1. One unit of APX 

is defined as the enzyme activity catalysing the oxidation of 1μmol of ascorbic acid per 

minute. 
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2.6.2. Catalase activity (CAT, EC 1.11.1.6) 

Catalase activity was assayed by measuring the initial rate of disappearance of H2O2 and 

determined using the method of Havir and McHale (1987). Catalase reaction solution 

contained 50 mM sodium-potassium phosphate buffer (pH 7.0), 10 mM H2O2 and 20 μl of 

enzyme extract in a final assay volume of 1 ml. The reaction was initiated by adding the 

enzyme extract and the decrease in H2O2 was measured following the changes in the 

absorbance of the reaction solution at 240 nm. The concentration of CAT was calculated 

using an extinction coefficient ε = 0.036 mM-1 cm-1. One unit of CAT is defined as the 

enzymatic activity that catalyses the degradation of 1 μmol of H2O2 per minute. 

2.6.3. Glutathione reductase (GR, EC 1.6.4.2) 

Glutathione reductase activity was determined using the method of Foyer et al. (1991). 

Glutathione reductase reaction solution contained 50 mM sodium-phosphate buffer (pH 7.5), 

5 mM EDTA, 1mM (NADPH), 1mM oxidized glutathione (GSSG) and 300 μl enzyme 

extract in a final assay volume of 1 ml. NADPH oxidation was determined at 340 nm. 

Activity was calculated using an extinction coefficient ε = 6.22 mM-1 cm-1 for NADPH. One 

unit of GR is defined as the enzyme activity that oxidizes 1 μmol of NADPH per min at room 

temperature.  

2.6.4. Superoxide dismutase (SOD, EC 1.15.1.1) 

Superoxide dismutase activity was determined using the method of Masia (1998) by 

measuring its ability to inhibit the photochemical reduction of nitro-blue tetrazolium (NBT) 

to blue formazan by flavins under illumination. Superoxide dismutase reaction solution 

contained 50 mM sodium-potassium phosphate buffer (pH 8.0), 300 μM methionine, 1.5 mM 

NBT, 120 μM riboflavin, 100 mM Na2.EDTA, 300 μM potassium cyanide and 100 μl enzyme 

extract in a final assay volume of 1 ml. The riboflavin was added last. The reaction was 

started by illumination the test tubes under 4 fluorescent lamps for 10 minutes. The 

absorbance of illuminated solution was measured spectrophotometry at 560 nm. One unit of 

SOD activity is defined as the amount of enzyme that inhibited 50% of NBT photoreduction 

versus a blank cell containing no enzymatic extract. 

2.7. Proline level 

Free proline content was determined according to Bates et al. (1973). Proline reaction 

solution contained 3 mM ninhydrin in 60% (v:v) acetic acid. The samples were heated at 100 

°C for 1 h in water bath and then cooled in tap water to stop the reaction. The mixture was 

extracted with toluene and the absorbance of toluene fraction aspired from liquid phase was 
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read at 520 nm. Proline concentration was determined using a calibration curve and expressed 

as µmol proline g-1 FW. 

2.8. Statistical analysis 

The experiment design was randomized block with three replications and 9 plants per 

replicate. A two-way analysis of variance (ANOVA) was performed using Co-Stat-ANOVA 

software program. The means and calculated standard errors are reported. The significant was 

tested using Student-Newman-keuls at 5% significant.  

3. RESULTS 

Exp. 1# 

3.1. Plant growth and physiological response 

Reduction in plant growth was appreciated in two radish cultivars upon salinity (Table 1). 

However, while a greater reduction of yield and leaf area (-94%) was observed in white 

radish exposed to 200 mM NaCl, the red cultivar seemed to better stand the stress and 

showed reduction by (-74% and -72%) compared to control plant. There was a sharp 

diminution in RGR in white radish (-141%) versus (-49%) in red one at 200 mM NaCl 

referring to control plant (Table 1). Similarly, the highest reduction in NAR was recorded in 

white cultivar (-186%) versus (-39%) in red one at 200 mM NaCl related to non-treated plant 

(Table 1). LAI had been affected by salinity and was most evident for white radish that 

showed decreasing by (-94%) compared with (-72%) in red one at 200 mM NaCl.  Though all 

gas exchange parameters showed significant reduction upon salinity in both cultivars, there 

wasn’t any appreciated difference between their performances even at higher salt level 

(Figure 1A, B and C). Total leaf water potential (Ψw) and osmotic potential (Ψπ) in both 

cultivars showed similar pattern of redaction at 100 mM NaCl (Figure 1E and F). However, 

at exaggerated salt (200 mM), white radish showed higher significant reduction in both 

parameters by (75% and 21%, respectively) in related to red plant. Conversely red cultivar 

showed noteworthy higher turgor potential by (+245%) compared to white one at 200 mM 

NaCl. Also, water use efficiency (WUE) increased substantially by (+242%) in red cultivar 

while it showed sharp reduction by (-72%) in white one at 200 mM NaCl compared to zero 

salt plant (Figure 1D).  Indeed, total transpiration in white radish was higher by two times as 

red plant under control condition (Figure1H). Upon salinization, both cultivars showed a 

significant reduction in water loss. However, the rate of water loss in white radish was 

increased to a greater extent by (+381%) compared to red plant at 100 mM NaCl. 
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Exp. 2# 

3.1. Plant growth and physiological response 

Salinity suppressed significantly the shoot fresh weight and yield of all radish cultivars 

(Table 2). However, the response of the radish cultivars was expressively different at varying 

NaCl level. For example, SAXA2 and TP cultivars had relatively higher yield in comparing 

with other cultivars by (+29% and +143%, as an average) under control and 100mM NaCl, 

respectively. Similar results confirmed by shoot fresh weight (Table 2). However, there was 

no appreciated difference in yield and shoot fresh weight among cultivar’s performance at 

200 mM NaCl. Upon salinity, all cultivars showed unique reduction in net photosynthesis 

(Figure 2A), evaporation rate and stomatal conductance (data not shown) and yet without any 

pronounced genotypic variation among them. On other hand, TP and SAXA2 cultivars 

showed higher values of water use effciency by (+80% and +141%, as an average) at 100 and 

200 mM NaCl, respectively in related to all other cultivars (Figure 2B). Leaf water potential 

(Ψw) and osmotic potential (Ψπ) reduced significantly with increased salt content in all 

cultivars (Figure 3A and B). However, the differences among the cultivars was not 

noteworthy observed except for cvs TP and SAXA2 that showed higher reduction in both 

parameters upon 200 mM NaCl. Likewise, all cultivars showed similar ability to maintain 

their osmotic adjustment except cv SAXA2 that showed the highest OA value at 200 mM 

NaCl (Figure 3C).  

3.2. Lipid peroxidation, H2O2, protein, and proline content  

Increasing supply of NaCl did not change clearly the level of MDA, and all salinized root 

radish cultivars showed similar MDA content compared to control condition (14 µM g-1 FW 

as an average) (Figure 4A). Likewise, salt stress did not significantly affect root H2O2 content 

and all cultivars responded without variation in this biochemical attribute (Figure 4B). In the 

same way, there was no significant effect of salt treatment on total soluble protein of all 

radish cultivar roots except in relatively salt tolerant cv. SAXA2 that showed a pronounced 

increasing by (+190% ,as an average) compared to all other cultivars at 200 mM NaCl 

(Figure 4C). Adding salt to growth medium caused a significant increasing of proline level in 

all root radish cultivars (Figure 4D). However, both cultivars SAXA2 and TP showed the 

highest proline content (11 and 14 µM g-1 FW, as an average) under 200 mM NaCl, 

respectively in respect to other cultivars.  
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3.3. Enzymes activities 

The performance of plant under control condition showed similar values of APX activity 

compared to both salinized growth mediums (119 versus 122 Ug-1FW, as an average) (Figure 

5A). In spite of salt treatment did not enhance APX activity in all radish cultivar roots, still 

cv. SAXA2 showed higher APX activity by (+131%, as an average) at 200 mM NaCl 

compared to other cultivars. Under control condition, the cultivar SAXA2 followed by TP 

showed the highest CAT activity by (+255%, as an average) as compared to other cultivars 

(Figure 5B). Despite that both saline levels significantly reduced CAT activity of all radish 

cultivar roots, cv. SAXA2 showed higher value of CAT activity by (+480%, as an average) in 

related to all other cultivars at 200 mM NaCl. On contrary, saline growth medium 

experienced an appreciated increasing in GR activity in all radish cultivar roots (Figure 5C). 

However, SAXA2 cultivar followed by TP showed higher GR value by (+151% and +395% 

as an average) compared to all other cultivars under 100 and 200 mM NaCl, respectively. 

Likewise, salt treatment enhanced SOD activity and all roots showed a similar significant 

increasing in SOD activity under 100 mM NaCl by (+210%) compared to control plant 

(Figure 5D). However, at higher salinized level (200 mM NaCl), SOD activity reduced in all 

roots less than control but was still insignificant reduction (35 versus 46 Ug-1FW as an 

average).  

4. DISCUSSION 

Recent study indicated that radish could possibly be grown with salty solutions at EC (12.7 

dS m-1) (Yildrim et al., 2008). It is well documented that high salinity causes inhibition of 

plant growth, impaired metabolism, imbalance of nitration in plant (Cavagnaro et al., 2006; 

Jie et al 2006), instability of plasma membrane resulting from calcium displacement by 

sodium (Santos 2004, Mansour and Salama, 2004). Furthermore, many physiological 

phenomena such as stomatal regulation, photosynthesis, protein synthesis and turgor-

pressure-driven solute transport in xylem depend upon the availability of potassium to plants 

(Ashraf, 2004; Marschner, 1995). Under salt stressful environments, the availability of 

nutrients to plants including K is hampered (Ashraf, 2004; Munns, 2005), and that leads to 

diminished plant growth and development (Chen et al., 2007). Typical agronomic selection 

parameters for salinity are yield, leaf area, and relative growth rate (Ashraf and Harris, 2004; 

Okhovation-Ardakani et al 2010). In this investigation in Exp. 1#, the white cultivar recorded 

greater reduction in yield by (-78%) compared to red one at imposition of 200 mM NaCl 

(Table 1). Likewise, 200 mM salinized white cultivar showed drastic reduction in both leaf 

area and leaf area index by (-76%) as compared to red one (Table 1). However, Marcelis and 
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VanHooijdonk, (1999) reported that 80% of growth reduction in Raphanus sativus (radish) at 

high salt content attributed to a reduction in leaf area and consequently reduced light 

interception, while 20% of growth reduction referred to reduction in stomatal conductance. It 

is known that net assimilation rate (NAR) is considered as a good physiological marker for 

salt tolerance (Azevedo Neto and Tabosa, 2000a). The photosynthetic capacity in crop plants 

is vital for dry matter production (Akram et al 2009). Thus, the final biological yield or 

economic yield can be increased either by increasing the rate of photosynthesis or by 

optimizing assimilate partitioning (Natr and Lawlor, 2005). In this work, we assessed the 

biomass production of both cultivars under salt in term of relative growth rate (RGR) and net 

assimilation rate (NAR). The application of 200 mM NaCl reduced significantly those both 

parameters in white plants by (-141% and -186%) versus (-49% and -39%, respectively) in 

red cultivar related to control plant (Table 1). Based on these considerations, red radish 

appeared to be relatively more tolerant than the white one. Furthermore, it is well known that 

crop salinity sensitivity varies with species, genotypes, and growth stages (Prado et al 2000, 

Pujari and Chanda 2002). Accordingly, in Exp. 2# seven different red radish cultivars were 

investigated to identify some candidate susceptible/ resistant genome(s) toward salt stress. 

Salinity markedly suppressed the shoot and yield of seven radish cultivars (Table 2). 

However, similar growth reduction was recorded for all cultivars except cvs. SAXA2 and TP 

were found to be consistently higher in growth and yield particularly at 100 mM NaCl. 

Accordingly, we could suggest that SAXA2 followed by TP are the most tolerant cultivars. 

These results showed an intraspecific variability in the response to salt stress of Raphanus 

sativus which is considered as a promising tool for future screening. Similar results of growth 

variation among cultivars have been reported in canola (Ulfat et al., 2007), radish (Noreen 

and Ashraf, 2009) and tomato (Foolad, 1996).  

 

Stomatal regulation is an important factor in controlling photosynthetic rate as well as water 

balance of plant growing under stress condition (Athar and Ashraf 2005). Salt stress reduces 

the rate of water uptake by the root, accordingly, an imbalance between water uptake by root 

and water loss by transpiration causes plant to wilt (Lafitte 2002). Therefore, plant defends 

itself from water loss by closing the stomata to avoid fast dehydration and allowed them to 

adjust to unfavorable conditions (Boughalleb et al., 2009; Orsini et al 2010). Furthermore, a 

reduced photosynthesis rate is considered as normal reaction of plant under salt which due to 

stomatal closure with the consequent restriction of CO2 availability for carboxylation or toxic 

effect of salinity on the photosynthesis apparatus (Praxedes et al., 2010; Orsini et al, 2010a). 
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In our work in Exp. 1#, both cultivars showed unique performance and presented similar 

significant diminishing in gas exchange parameters after imposing salt (Figure 1A, B and C), 

suggesting that photosynthetic parameters are negatively related to assess salt tolerant feature 

in radish. Similarly in Exp. 2#, net photosynthesis of seven radish cultivars showed uniform 

significant reduction upon salt application compared to control plants (Figure 2A). This result 

was consistent with many reports of suppression net photosynthesis under salt in tomato 

(Romeroaranda et al., 2001; Maggio et al., 2007), soybean (Kao et al 2003) and barley 

genotypes (Jiang et al., 2006).  

 

The ability of plant to control transpiration water flux versus growth (i.e water use efficiency) 

under salinized condition is a critical tolerance determinant (Maggio et al., 2006; Orsini et al 

2010; Barbieri et al 2012). In Exp. 1#, both cultivars showed significant reduction in water 

uptake, which expressed in term of water loss by (-65%) in white plant versus (-55%) in red 

one at 200 mM NaCl (Figure 1H). Study by Bayuelo-Jimenez et al. (2003) have shown that 

water uptake and transpiration declined as the salt concentration in the irrigation water 

increased, and this reduction could be related to reductions in leaf area and stomatal 

conductance. However, transpiration water flux is associated with ion loading in which 

reduced transpiration flux will restrict the accumulation of ions to the shoot (Zhu et al 2002). 

Consequently, this remark could interpret that white genotype might uptake and load more 

ions to its shoot than red one which affected its growth development (Table 1). Furthermore, 

red cultivar was more efficient in water use and showed significant increasing in its WUE as 

13 folds as white plant under 200 mM NaCl (Figure 1D). This might be explained, at least in 

part, by the fact that red cultivar had higher WUE that associated with lower reduction in 

total transpiration rates (Figure 1H). In Exp. 2#, both cultivars SAXA2 and TP showed higher 

WUE upon salt stress (Figure 2B). In previous studies, Pagter et al. (2009) reported that 

saline conditions increased the WUE (Gorai et al 2010) and did not alter photosynthetic 

parameters derived from light response curves, supporting the assumption of a well-

functioning CO2 utilization even if plants were salt stressed. Ashraf (2001) linked the 

increasing of WUS in salt-tolerant Brassica species to having higher assimilation rates and 

lower stomatal conductance, while Masle et al., (2005) and Barbieri et al., (2012) reported 

that lower stomatal density is a critical determinant for having higher WUE in Arabidopsis 

and Ocimum basilicum L.  
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It is known that the ability of plant to maintain its osmotic potential at levels below of the 

osmotic potential of the soil surrounding the plant considers as a successful tolerated 

mechanism to face the harmful effect of salt (Tester and Davenport, 2003; Zhu, 2001) in a 

process called osmotic adjustment (Munns 2002, Serraj and Sinclair 2002). It is accepted that 

during osmotic adjustment the cells try to compartmentalize most of absorbed ions in 

vacuoles that associated with synthesising and accumulating of compatible organic solute in 

the cytoplasm in order to maintain the osmotic equilibrium between these two compartments 

(Hasegawa et al., 2000). However, in some cases accumulation of solutes is so high that it 

goes beyond the limits of regulation of cytoplasmic content with associated impairment of 

growth (Pitman 1984). In this study in Exp. 1#, higher decreases in water and osmotic 

potential was recorded in white radish (Figure 1E and F) and this might be attributed to fact 

that white plant uptake more water (Figure 1H) and accordingly had higher Na+ and Cl− 

accumulation which possibly exceeded the amount needed for the osmotic adjustment. 

Consequently, this process accelerated tissue dehydration and causing injury to metabolic 

systems that affected negatively plant development of white radish (Munns, 2002). Similar 

result was recorded by De Lacerda et al (2003) who mentioned that higher reduction in 

osmotic potential was recorded in salt sensitive sorghum. Conversely, leaf turgor potential 

significantly increased in red cultivar as three times compared to white plant at 200 mM NaCl 

(Figure 1G). However, the maintenance of high leaf turgor was possibly functional to support 

the plant growth of red cultivar and yield upon salinization, whereas white plant was subject 

to salt induce disturbance of water balance and loss of leaf turgor (Wang and Nil 2000). 

Several authors have associated tissue turgor maintenance to the plant’s ability to osmotically 

adjust in saline environments (Munns 2002; Maggio et al 2005). Thus, these physiological 

perspectives in term of better adaptation of overall water relations appeared to be more 

effective in red radish as compared to white plants, suggesting that salt adaptive mechanism 

in relatively salt tolerant red radish was associated with plant’s ability to osmotically adjust 

under salt stress. In Exp. 2#, there was a substantial reduction in water and osmotic potential 

in all seven cultivars upon exposure to both salt levels (Figure 3A and B). However, radish 

cultivars showed significant genotypic variation in which TP and SAXA2 showed higher 

reduction in both parameters by (27% and 16%, as an average) respectively in related to other 

cultivars at 200 mM NaCl. Our results were in the same trend with other researchers who 

mentioned about significant reduction in osmotic potential under salt stress in barley leaves 

(Yagmur et al. 2006) and bean seedlings (Gama et al., 2009; Stoeva and kaymakanova, 

2008). Many previous reports showed variation in OA response between cultivars upon salt 
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application such as soybean (Ping et al, 2002), wheat (Abdel- Aziz & Reda 2000) and tomato 

(Santa-Cruz et al., 1999). In our work, the relatively salt tolerant cultivar SAXA2 showed 

higher ability to adjust larger value of OA (1.94 MPa) at 200 mM NaCl in related to other 

cultivars (Figure 3 C). This finding was in line with (Flowers, 2004; Munns and tested, 2008; 

Ashraf and Harris, 2004) who documented that osmotic adjustment is a fundamental 

response of plant under salt condition and it is considered one of the important mechanisms 

of salt tolerance. Thus, we could suggest that salt tolerant feature was achieved possibly by 

contribution of inorganic ions and or/ organic accumulation in this cultivar, while the 

performance of this plant in term of photosynthetic parameters and gas exchange was similar 

to other cultivars. Consistently, the selection of the radish types to be used in the successive 

steps went to the round red type in order to assess its enzymatic adaptation to salinity and its 

role in counteraction the ROS induced damages at cell level.  

 

MDA, a product of lipid peroxidation in plants exposed to adverse environmental conditions, 

is a reliable indicator of free radical formation and peroxidative damage to cell membranes 

(Logan 2005). Shafi et al. (2010) stated that MDA level was increased under salt condition in 

wheat plant. Aksoy and Seçkin Dinler (2012) mentioned that increased MDA level in salt 

treated soybean was related to increasing reactive oxygen species. Many previous reports 

mentioned that lipid peroxidation was strongly variable among cultivars upon salinization 

such as pea (Noreen and Ashraf, 2009), Crithmum maritimum L. (Karim et al 2012), and 

Iranian wild almond species (Sorkheh et al, 2011). However, our results showed that the level 

of lipid peroxidation was similar in stressed and non-stressed root plants and there was no 

noteworthy effect of salt on MDA level (Figure 4A). Consequently, the extent of lipid 

peroxidation was similar among different radish cultivars, suggesting that membrane 

peroxidation is not the main detrimental effect caused by salt stress and it was not associated 

with salt tolerance of red radish. This result was agreed with Jouve et al. (2003) who found 

that the endogenous level of MDA did not vary in the control and salt stressed Aspen 

(populous tremula L.). Also, Noreen and Ashraf (2009) reported that MDA content decreased 

in all radish cultivars upon salinization except in salt tolerant one and they suggested that 

lipid peroxidation was negatively associated with salt tolerance of radish cultivars. Likewise, 

Sorkheh et al, (2011) reported that MDA is not affected harmfully by salt stress and its level 

was increased in salt sensitive almond species p. arabica while it reduced in other salt 

sensitive almond species upon salt treatment.  
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It is known that salt stress induces the production of singlet oxygen, superoxide onion, 

hydrogen peroxide, and hydroxyl radical in plant (Mateo et al., 2004). H2O2 is a strong 

oxidant that can initiate localized oxidative damage in cells leading to disruption of metabolic 

and loss cellular integrity (Sairam and Srivastava, 2000) and it must be eliminated by 

conversion to H2O in reaction involving APX and CAT. In the present study, root H2O2 

remained unchanged upon salt stress in all studied cultivars (Figure 4B). Similar results were 

reported by Sorkheh et al., (2011) who mentioned that there was no significant change in leaf 

H2O2 of almond species upon salinization. On contrary, Mittova et al., (2004) found that the 

mitochondria and peroxisomes of salt stressed tomato root presented increased levels of lipid 

peroxidation and H2O2.   

 

Protein synthesis is considered as one of the mechanisms that have been affected by salt 

stress in plant and a possible primary target of salt toxicity (Gulen et al., 2006). In addition, 

soluble protein content is an important indicator of physiological status of plant (Doganlar 

and Atmaca, 2011). In our results, there was significant increasing in protein content just in 

cultivar SAXA2 by (+366%) at 200 mM NaCl (Figure 4C). This increasing is likely 

attributed to increase protein synthesis of enzymes upon stress activation and might suggest 

that there was a stress-induced protein upon stress activation in this cultivar. Mittal et al., 

(2012) and Ashraf and Harris. (2004) reported higher levels of soluble protein in salt tolerant 

cultivars of barley, sunflower, finger millet and rice. Also, Kapoor and Srivastava (2010) 

observed an increasing in protein content associated with salt stress in Vigna mungo L. 

Consequently, in consistent with all previous reports, we might suggest that protein could be 

one of the main organic solute involved in the osmotic adjustment in this cultivar. 

 

One of the most important mechanisms of higher plants under salt stress is the accumulation 

of compatible solutes like proline (Hasegawa et al., 2000). Proline is known to be an 

osmoregulatory solute in plant under hyperosmotic stress, and plays a functional role as 

primary defense response to maintain osmotic adjustment and protecting cell structure (Misra 

and Gupta, 2006; Al-Saady et al, 2012; Koca et al., 2007). It acts as a free radical scavenger 

(Chen and Dickman, 2005) to alleviate salt stress, and it is  considered as enzyme protectants 

against abiotic stresses (Sharma and Dubey, 2005) by stabilizing many functional units such 

as complex II electron transport (Hamilton and Heckathorn, 2001), membranes and proteins 

(Holmström et al., 2000). In this investigation, although all radish cultivars showed a 

significant increasing in proline content upon salinization, SAXA2 cultivar followed by TP 
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possessed comparatively higher amount of proline accumulation (Figure 4D). This result was 

in agreement with (Hoseini et al., 2010; Najafi et al., 2006) who reported that increased 

proline level is a common response in root and shoot of Carthamus tinctorius and Pisum 

sativum. Indeed, the variation in proline accumulation among radish cultivars was analogous 

to what have been reported by Ashraf and Foolad. (2007) that the contribution of proline 

varies among species and cultivars of a same species. However, higher level of proline might 

due to expression of genes encoding enzymes of proline synthesis such as pyrroline-5-

carboxylate or decrease in enzymes of proline oxidative such as proline dehydrogenes which 

affected by osmotic and salinity stress (Amini and Ehsanpour, 2005; Misra and Gupta, 

2006). Accordingly, we could conclude that the observed salt tolerant in SAXA2 was 

attributed, at least in part, to the osmoprotectant effect of compatible osmolytes such as 

protein and proline accumulation that helped the plant to achieve its osmotic adjustment.   

 

Induction of antioxidant enzyme activities is a general adaptation mechanism that the plant 

used to overcome oxidative stress (Foyer and Noctor, 2003). It is well reported that to endure 

salt-induced oxidative damages, constitutive and/or induced activity of antioxidants such as 

SOD, POX, CAT and GR is crucial (Foyer and Noctor, 2005). Generally, salt tolerant 

cultivars showed higher activities of these antioxidant enzymes as compared to salt-sensitive 

ones (Sairam et al., 2002). Sofo et al. (2010) suggested that higher antioxidant enzyme 

activity are present in tolerant than in sensitive woody species under environmental stress. It 

is known that H2O2, which produced by the activity of SOD, is a strong inhibitor of the Calvin 

Cycle and it must be eliminated by conversion to H2O in reactions involve APX and CAT 

(Sorkheh et al., 2011). APX plays a vital role in plant defence against oxidative stress by 

scavenging H2O2 in chloroplast, cytosol, mitochondria, and peroxisome of plant cells (Asada, 

2006). Many reports have shown increased activity of APX upon salt treatment (Hernandez 

et al., 1995; Oidaire et al., 2000). In the present work, APX activity did not vary between salt 

stressed and control plants (Figure 5A). According to Mittova et al., (2004), high APX 

activity may show high level of H2O2 production in cell walls and/or cytosol it is localized in. 

Accordingly, referring to have a steady activity of APX upon salinization in regard to control 

plant, H2O2 production may be low where this enzyme is located (Doğan, 2001). In addition, 

the decreasing of APX activity under salt stress may be related to its detoxification 

(reduction) capacity being below the oxidation capacity of H2O2 (Doğan, 2001). 
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CAT enzyme, the main H2O2 scavenging enzyme, also plays role in detoxifying H2O2. There 

are many studies stated that stress has a preventing effect on CAT activity, and the 

destructive cells, as a cause of salt,  has a distinctive role in decreasing CAT activity (Doğan, 

2001; Sairam et al., 2005; Lee 2001). However, Shalata et al. (2001) reported that CAT has a 

fundamental role on protecting against salt stress. In this work, CAT activity was down-

regulated by salt stress in all cultivars (Figure 5B). Accordingly, the decrease in CAT activity 

that associated with stable regulation of APX activity upon salinization could indicate that a 

little H2O2 is formed (0.9 nM g-1 FW , as an average Figure 4B) in the root of salt treated 

radish, so that CAT and APX activation are not required to detoxify H2O2 (Figure 5A and B). 

Our result was consistent with Ben Hamed et al. (2012) who found that salt stress reduced the 

CAT activity while APX activity did not change in Crithmum maritimum L. plant. On 

contrary to our result, Bor et al. (2003) and Sekmen et al. (2007) observed that salt induced 

activities of CAT and APX in sugar beet and plantain, respectively. However, Sandalio et al. 

(2001) attributed the reduction of CAT activity in pea plant upon salinization to a decrease in 

protein content. Also, CAT is associated with peroxisomes that contain proteases and CAT 

being a target of the peroxisomal protease activity (Distefano et al., 1999).  

 

GR, the last enzyme of ascorbate-glutathione cycle (ASC-GSH), plays an essential role in 

plant defence against ROS by catalyzing NADPH-dependent reduction of oxidized 

glutathione and maintaining the GSH level (Madhava Rao et al., 2000; Ben Hamed et al, 

2012). It is known that decreased GR activity enhances plant sensitivity to environmental 

stress (Aono et al., 1995). In our experiment, NaCl treatment induced remarkably GR activity 

in all radish cultivars and particularly in SAXA2 and TP (Figure 5C). The oxidative stress in 

SAXA2 followed by TP appeared to be prevented by the ascorbate-glutathione cycle as 

shown by the increased GR activity under both salt levels, suggesting that both cultivars 

might have employed non-enzymatic routs for conversion of O2
•- to H2O2 using antioxidant 

like GSH and ascorbate. Similar result was found by Vaidyanathan et al. (2003) on NaCl-

stressed rice (Oryza sativa L.). The induction of GR by salinity could increase the 

NADP/NADPH ratio, promoting the availability of NADP to accept electrons from the chain 

of electron transfer and limiting ROS formation in chloroplast (Ben Amore et al., 2006).  

  

SOD plays a significant role in protecting living cells against the toxicity of active O2 species 

due to their capacity to scavenge superoxide (Scandalios, 1993). Ashraf (2009) found the 

variation in the activity of SOD in response to salinity appeared at the inter-specific or intra-
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specific level. In this study, salt stress enhanced steady and similar increasing in SOD activity 

among all radish cultivars at 100 mM NaCl and there was no significant change in SOD 

activity detected in the most tolerant cultivar, SAXA2 (Figure 5D). It is known that 

catalyzing the dismutation of superoxide radical by SOD to H2O2 and O2 caused superoxide 

concentration low and stable and thus minimizing the creation of hydroxyl radicals by Haber-

Weiss reaction (Elstner, 1982; Bowler et al., 1992). Similar result was reported by Oidaire et 

al.(2000) who found SOD activity increased steadily after salt stress on rice seeds. The 

increased SOD activity might increase the plant ability to scavenge O2
•-, which might lessen 

membrane damage, and this partly could interpret that there was no variation in MDA and 

H2O2 contents between stressed and relieved plants (Figure 4A and B). Our results was 

inconsistent with many reports that indicated differential response of this enzyme between 

cultivars such as potato (Rahnama and Ebrahimzadeh, 2005), wheat (Sairm et al., 2002), 

Brassica (Kumar et al., 2008), and strawberry (Turhan and Gulen Erics, 2008).  

5. CONCLUSION  

in the first experiment, applying different salt on round red and long white radish showed 

interestingly that round red radish had less reduction in yield, dry matter accumulation and 

leaf area. However, both cultivars showed unique significant diminishing in gas exchange 

parameters after imposing salt, suggesting that photosynthetic parameters is negatively 

related to assess salt tolerant feature. However, higher decreases in water and osmotic 

potential was recorded in white radish and this might indicated that the accumulation of 

solutes was so high that it went beyond the limits of regulation of cytoplasmic content that 

caused impairment of its growth. Also, white genotype showed less efficient in water use and 

higher transpiration and water loss which could be attributed to fact that white plant uptake 

more water and accordingly load more ions that accelerated tissue dehydration and affected 

negatively its development. Based on these considerations, red radish appeared to be 

relatively more tolerant than the white one. In second expiremnt, the investigation of 

intraspecific variability of seven different red radish cultivars upon salt stress was assessed to 

identify some candidate susceptible/ resistant genome(s) toward salt stress. Upon salinity, 

similar growth reduction was recorded for all cultivars except cvs. SAXA2 and TP were 

found to be consistently higher in growth and yield. Also, radish cultivars showed significant 

genotypic variation in which SAXA2 cultivar showed the sharpest reduction in water and 

osmotic potential and the highest ability to adjust greater value of OA. Consequently, this 

reflects the ability of this cultivar to osmotically adjust. Furthermore, the biochemical data 

suggested that the induction of antioxidative enzymes activity is an important component of 
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the tolerance adaptation mechanism of radish to salinity (Mittal et al, 2012).We have found 

steady and similar response of stressed and control plants in term of MDA and H2O2, 

suggesting that these two components are negatively associated to salt oxidative stress. 
Regarding the enzymes that converted H2O2 to water, APX showed steady activity in stressed 

and non-stressed plant, while CAT decreased upon salinization which could suggest that a 

little H2O2 is formed in the root of salt treated radish, so that CAT and APX activation are not 

required to detoxify H2O2. Nonetheless, there was no variation in SOD activity among 

different cultivars upon salt application, suggested that the variation could appear at inter-

specific rather than intra-specific. However, SAXA2 followed by TP showed up-regulation of 

GR activity among different enzymes and metabolites involved in oxidative stress. This could 

indicate that both cultivars might have employed non-enzymatic routs for conversion of O2
•- 

to H2O2 using antioxidant like GSH and ascorbate. In addition, SAXA2 showed higher 

activity of CAT enzyme upon salinization in comparison with other cultivars. Accordingly, 

the higher activity of GR and CAT in SAXA2 could be related with prevention of the 

creation of ROS more effectively. Thus our finding suggests that the cultivar SAXA2 that 

induce anti-oxidative enzymes in response to salt may greatly contribute to its ability to 

sustain growth and give higher productivity in presence of stressed condition.   
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Table 1. Effect of different salt concentration (0, 100 and 200 mM NaCl) on vegetative growth of red and white radish seedling at 40 DAS. 

Same letters in each column indicate no significant differences among treatments at P < 0.05 level.  

 

Cultivar 

 

Salt 

(NaCl)   

   Yield  

(g plant-1) 
  

  Leaf area  

(cm-2 plant-1) 
  

   RGR 

(g g-1 d-1)  
  

    NAR 

(mg cm-2 d-1) 
      LAI   

White 

  0    28±3.49   a 749±25.23 a 14±3.18  a 0.24±0.06 a 1.87±0.06 a  

100    8±1.08 c 247±16.43 cd 8±2.32 a 0.16±0.04 a 0.62±0.04 cd 

200    2±0.14 c 43±5.10 e -6±2.98 b -0.21±0.11 b 0.11±0.01 e 

   Red 

  0   28±2.99 a 657±54.93 b 11±2.43 a 0.22±0.03 a 1.64±0.14 b 

100   15±1.10 b 330±7.57 c 17±2.25 a 0.37±0.02 a 0.82±0.02 c 

200   8±0.15 b 181±24.88 d 5±3.15 a 0.13±0.08 a 0.45±0.06 d 

Salt (S)     ***     ***     ***      **      *** 

Var (V)      *      ns     *      **       ns 

 S×V     ns      **    ns       *       ** 
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Table 2. Effect of different salt concentration (0, 100 and 200 mM NaCl) on shoot fresh 

weight (FW) and yield of seven red radish seedlings at 30 DAS. Same letters in each column 

indicate no significant differences among treatments at P < 0.05 level.  

 

 

 

Cultivar 0  100  200  

Shoot FW  

(g plant-1) 

TP 25±1.51 a 11±0.54 de 6±0.62 hi 

SAXA 15±1.10 bc 6±0.28 hi 3±0.30 hi 

LPB 11±0.85 def 4±0.78 hi 2±0.23 i 

LRPB 15±0.77 bc 5±0.83 hi 3±0.32 i 

TPB 13±1.34 cd 5±0.02 hi 2±0.41 i 

SAXA2 17±0.50 b 7±0.67 e 5±0.62 hi 

TPPB 9±1.01 efg 3±0.29 hi 2±0.33 i 

   Yield             

(g plant-1) 

TP 22±1.51 

 

a 7±0.77 

 

e 4±0.84 

 

gh 

SAXA 19±1.16 b 3±0.71 gh 4±0.66 gh 

LPB 16±0.86 c 4±0.51 gh 3±0.24 gh 

LRPB 20±0.33 b 2±0.41 gh 4±0.39 gh 

TPB 14±0.67 d 2±0.40 gh 1±0.05 h 

SAXA2 23±0.58 a 6±0.33 e 4±0.33 gh 

TPPB 18±0.88 b 3±0.31 gh 2±0.64 gh 

        

Salt (S)    

Var (V) 

S×V  

Shoot FW 

(g plant-1) 

 

*** 

*** 

*** 

 Yield 

 (g plant-1) 

 

*** 

*** 

*** 
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Figure 1. Effect of different salt concentration (0, 100 and 200 mM NaCl) on transpiration 

rate (E), stomatal conductance (gs), net photosynthesis (A), water use efficiency (WUE), 

water potential (Ψw), osmotic potential (Ψπ), turgor potential (Ψp) and water loss (WL) of 

red (open squares) and white radish seedling (closed squares) at 40 DAS. Values are the 

mean ± SE of three replications. 
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Figure 2. Effect of different salt concentration (0, black bar; 100, gray bar; and 200 mM, 

white bar NaCl) on net photosynthesis (A) and water use efficiency (WUE) of seven red 

radish seedlings at 30 DAS. Values are the mean ± SE of three replications. 
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Figure 3. Effect of different salt concentration (0, black bar; 100, gray bar; and 200 mM, 

white bar NaCl) on water potential (Ψw), osmotic potential (Ψπ), and osmotic adjustment 

(OA) of seven red radish seedlings at 30 DAS. Values are the mean ± SE of three 

replications. 
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Figure 4. Effect of different salt concentration (0, black bar; 100, gray bar; and 200 mM, 

white bar NaCl) on MDA, H2O2, protein, and proline content of seven red radish root at 30 

DAS. Values are the mean ± SE of three replications. 
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Figure 5. Effect of different salt concentration (0, black bar; 100, gray bar; and 200 mM, 

white bar NaCl) on APX, CAT, GR, and SOD activities of seven red radish root at 30 DAS. 

Values are the mean ± SE of three replications. 
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CHAPTER 4 

 
TRANSFERRING THE CURRENT KNOWLEDGE OF MOLECULAR 

PROCESSING INVOLVED IN SALT TOLERANCE FROM MODEL 

PLANT OF ARABIDOPSIS TO THE CROPPED SPECIES OF BRASSICA 

RAPA 

 

I. Physiological responses between two Brassica rapa cultivars under  

moderated salt stress and the transcript abundance for SOS pathway and 

some transcription factor genes 
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I. Physiological Responses Between Two Brassica Rapa Cultivars 

Under Moderated Salt Stress And The Transcript Abundance For 

SOS Pathway And Some Transcription Factor Genes 
 

ABSTRACT 

The response to a moderate salt stress was analysed in two cultivars of Brassica rapa: B. 

cimosa and B. rapa var di Milano guetto under growth chamber condition, taking into 

consideration both physiological parameters and gene expression. The seeds were sown in 

multiwell polyethylene trays filled with peat moss. Twenty days old seedling plants were 

subjected to 0 and 100 mM NaCl and sampled at an early (6h) and a late phase (72 h). The 

physiological measurements included gas exchange parameters and ion accumulation 

analysis, while the expression analysis was focused on genes of the SOS pathway and a group 

of abiotic-stress responsive transcription factors. The results showed in B. rapa cimosa a 

down-regulation of the gene SOS1 at 72h, while SOS2 expression was increased in the early 

stage of the response (6h), decreasing then to the constitutive levels after 72h; SOS3 showed 

a >5-fold up-regulation after both 6h and 72h. However, the transcript levels of both non-

induced and induced plants of B. di milano resulted extremely unstable. Similarly, the 

expression pattern of transcription factor genes in most cases showed a very unstable 

expression resembling, at least for some families, an on/off mechanism in both cultivars. 

However, B. rapa cimosa showed a relatively stable expression level for two transcription 

factors belonging to the bHLH and Homeobox families; both of them resulted up-regulated in 

response to salt stress, suggesting a role in triggering the cellular mechanisms involved in salt 

tolerance. The physiological and molecular data obtained are important for planning future 

experiments aimed to the analysis of gene expression in response to abiotic stresses. 
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1. INTRODUCTION 

Salinity is a major abiotic stress affecting crop productivity and limits expansion of 

agriculture land. Salt stress involves cellular osmotic stress, ion toxicity and their 

consequences secondary stress (nutritional deficiency and oxidative stress (Zhu 2001). Toxic 

effects of Na+ include inhibition of enzyme activity (Hasegawa et al., 2000) and disruption of 

K+ nutrient acquisition (Zhu 2003). Thus, it is essential for plant survival to transport or 

compartmentalize Na+ to maintain non-toxic levels of cytosolic Na+ (Manabe et al., 2008). 

Three mechanisms function cooperatively to prevent the accumulation of Na in the 

cytoplasm: restriction of Na influx, active Na efflux, and compartmentalization of Na in the 

vacuole (Tester and Davenport, 2003). The salt-overly-sensitive (SOS) signal-transduction 

pathway is important for ion homeostasis and salt tolerance in plants (Hasegawa et al., 2000; 

Zhu, 2003). The SOS pathway in Arabidopsis is defined by three main protein components, 

SOS1, SOS2, and SOS3. Na+/H+ antiporters located in both the plasma and vacuolar 

membranes are ubiquitous membrane proteins that catalyze the exchange of Na+ for H+ 

across membranes; they play major roles in removing Na+ from the cytosol or 

compartmentalizing it in vacuoles for maintenance of a low Na+ concentration (Shi et al., 

2002), energized by electrochemical H+ gradients generated by H+-pumps in the plasma 

membrane, i.e., H+-ATPase, and the tonoplast, i.e., H+-ATPase and H+-PPiase (Wang et al., 

2007). Manipulating genes responsible for Na+/H+ antiporters to maintain ionic homeostasis 

in plants is an important strategy to deal with salt stress. SOS1encodes for a plasma 

membrane Na+/H+ antiporter, responsible for the exclusion of sodium in the apoplast. SOS2 

gene encodes a serine/threonine type protein kinase, which activates SOS1(Liu et al., 2000). 

Salt stress elicits a transient increase of Ca2+ that is sensed by SOS3, a myristoylated calcium-

binding protein, which physically interacts with and activates SOS2 (Halfter 2000). SOS2 

and SOS3 define a regulatory pathway for Na+ and K+ homeostasis and salt tolerance in 

plants, and the SOS2/SOS3 kinase complex phosphorylates and activates the SOS1 protein 

(Qiu et al., 2002; Zhu 2003). It is thought that SOS1 is in Arabidopsis a plasma membrane 

Na+/H+ antiporter (Shi et al., 2000) and it is mediated Na+ efflux at the root epidermis and 

long-distance transport from roots to shoots while protecting individual cells from Na+ 

toxicity. Furthermore, a large percentage of genes that show altered expression following 

exposure to abiotic stress have been reported to be involved in stress tolerance, in the 

regulation of other gene expression, and in stress signal transduction (Shinozaki et al., 2003; 

Xiong et al., 2002). Therefore, the study of these genes is important for understanding 
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mechanisms involved in regulating the stress-response as well as to fully elucidate the 

mechanisms of tolerance against abiotic stress. It is though that various transcription factors 

are involving and functioning in the responsive mechanisms under abiotic stress in Brassica 

raba (Lee et al., 2008). They identify 56 genes encoding putative transcription factors 

responsive to abiotic stresses (salt, cold and drought) in B. raba and divided them into 15 

transcription factor families on the basis of the classification of their Arabidopsis 

homologues. Some of these genes are most likely to be involved in stress-signaling pathway. 

 

The genus Brassica, which is closely related to Arabidopsis thaliana (belong to the same 

taxonomy family) occupy third place among the various oilseed species due to its 

considerable economic and nutritional value. The cultivated Brassica species include both 

diploid and polyploid species. The high chromosome number of species B. napus (2n = 38, 

AACC), B. juncea (2n = 36, AABB), and B. carinata (2n =34, BBCC) are amphidiploids, 

while the low chromosome number species B. nigra (2n = 16, BB), B. oleracea (2n = 18, 

CC), and B. rapa (2n = 20, AA) are diploid (Morinaga 1934). Most of the Brassica species 

have been classified as moderated salt tolerant (Purty et al., 2008). However, the polyploid 

species can generally withstand adverse environmental factors better than their respective 

diploid ancestors (Stebbins 1966). It has been further suggested that the salt tolerance of 

amphidiploids has been acquired from the (B. campestris) and (B. oleracea L.) genomes 

(Ashraf et al., 2001). Indeed, the species B. rapa accounts for most of the oilseed production 

in Europe and North America. However, their growth, yield, and oil production are markedly 

reduced due to salinity. In particular, seed germination and early seedling growth have been 

reported to be relatively more sensitive towards salinity. There is significant inter and 

intraspecific variation for salt tolerance within Brassica which needs to be exploited through 

selection and breeding for enhancing salt tolerance (Ashraf and McNeilly 2004). The main 

objective of this study is to characterize the response to salt stress in B. rapa using both 

physiological parameters and an expression analysis for a pool of selected genes; this 

approach may lead to identify genes involved in salt tolerance. Given the importance of the 

SOS pathway in the response to abiotic stresses, the expression pattern of genes SOS1, SOS2, 

and SOS3 will be analysed. Moreover, it is known that transcription factors, by activating or 

suppressing the expression of stress responsive genes, are direct mediators of the plant 

response to exogenous and endogenous stimuli; many transcription factors, belonging to 

several different families, have been reported to be up- or down-regulated in Brassica in 

response to cold, drought or salt stress (Lee et al., 2008), and are likely to be responsible for 
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triggering the cellular response to abiotic stresses. A selection of transcription factors from 

different families, whose expression was reported to be modulated in response to salt stress, 

were included in the pool of genes to be analysed to investigate their possible role.    
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2. MATERIAL AND METHOD 

2.1. Plant material and salt stress treatment 

This experiment was carried out in growth chamber at the University of Bologna, Italy. Seeds 

of two cultivars of Brassica raba ssp. cimosa and var di milano gouetto viola were 

germinated in small well polystyrene trays filled with peat moss substrate and grown for 

approximately three weeks in growth chamber at 24 °C (16 h day/8 h night, RH 65%, light 

intensity 290 μmol m-2 sec-1). Two NaCl salt treatments (0 mM, 2.68 dS m-1 and 100mM, 7.68 

dS m-1) were initiated at 20- day old seedling plants under small cyclic hydroponic irrigation 

system. The timecourse of salt stress was lasted for 6h and 72h. At harvesting mentioned 

time, full expanded young uniform size leaves of three individual plants were collected and 

considered as one biological replicate.  

2.2. Measurements of plant growth and photosynthesis rate  

Shoot fresh weight (FW) and dry (DW) weights were determined for each salt treatment. 

Leaf transpiration (E), stomatal conductance (gs) and net photosynthesis (A) were measured at 

6h and 72h on three completely unfolded leaves of nine plants per treatment. The 

measurements of leaf gas exchange was performed using a CIRAS-2 (PPSystem, Hitchin, 

UK) infrared gas analyser (closed system) with a Parkinson’s Automatic Universal Leaf 

Cuvette (PAR 1000 mmol m–2 s–1, 26°C, CO2 13.63 mmol l-1 and 300 cm3 min–1 flow rate) 

equipped with 18-mm diameter, 2.5-cm2 area cuvette inserts.  

2.3. Measurements of mineral solutes concentration 

Sodium, potassium, and calcium accumulation were determined based on dry weight.  500 g 

of leaves dry matter were suspended in 50 ml water and homogenized with a stirrer at 150 rpm 

for 20 minutes. Samples were then filtered using filter paper (589 Schleicher) and then the 

extracts were further filtered through cellulose acetate syringe filters (0.20 μm). Later, the 

filtrated extract was acidified with 65% nitric acid HNO3 (1:100 ml, v: v) and quantification of 

cations was performed using Inductive Coupled Plasma Optical Emission Spectrometry (ICP-

OES). 

2.4. Gene expression studies 

To identify salt responsive genes that could be involved in the plant tolerance mechanism, 

two main approaches have been used. Firstly, we investigated the expression levels of SOS 

pathway genes (SOS1, SOS2, and SOS3) in response to salinity stress in the two Brassica 

raba cultivars. The second approach was aimed to examine the expression level of some salt 

stress responsive transcription factor genes that have been already identified in Brassica rapa 
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ssp. Pekinensis and presumably involved in the regulation of salt resistance genes expression 

(Lee et al., 2008). Seven genes encoding putative transcription factors responsive to salt 

stress in B. rapa ssp. Pekinensis that belong to six different transcription factor families were 

used (Table 5). Two housekeeping genes for the expression analysis, Elongation Factor 1- ɑ 

(EF1alpha) and Gliceraldehyde-3-Phosphate Dehydrogenase (GAPDH) were selected for 

their reported stability under abiotic stresses (Qi et al., 2010). Nucleotide sequences for all 

the genes were obtained from GenBank (Table 4 and 5) 

(http://www.ncbi.nlm.nih.gov/genbank/). The Basic Local Alignment Search Tool (Altschul 

1997) was used to identify their homologues in the Brassica rapa Chiifu-401 v1.2 genome 

sequence (Wang et al., 2011) as implemented in Phytozome (http://www.phytozome.org). 

Primer pairs were designed using Primer3 (Untergasser et al., 2012) close to the 3’ end of the 

coding sequence of each gene, for the amplification of fragments sized approximately 90 to 

120 bp. 

2.4. 1. RNA extraction and reverse transcription 

For gene expression studies, 20 days old plants were subjected to two salt treatments (0 and 

100 mM NaCl) and sampled after 6h and 72h from the treatment. Each sample was formed 

from the leaves of three different plants, and three biological replicates were harvested and 

analysed for each sample. Total RNA was extracted as described by Zamboni et al. (2008); 

RNA integrity was checked by loading 1μl of the extracted sample in a 0,8% agarose gel in 

SB buffer (Brody and Kern 2004). RNA was then treated with DNase I (Sigma) following 

manufacturer’s instructions. One µg of total RNA was reverse transcribed using an oligo-dT 

primer and SuperScript II Reverse Transcriptase (Invitrogen); cDNA was diluted 1:10 in 

sterile distilled water and tested through PCR using gene-specific primers for two 

housekeeping genes (GAPDH and EF1alpha). The PCR tubes contained 1μl diluted cDNA, 

1× PCR reaction buffer, 2 mM MgCl2, 0.5 U Amplitaq Gold DNA Polymerase (Applied 

Biosystem), 0.2 mM dNTPs, and 0.5 μM each primer. PCR was carried out as follows: 1 

cycle of 10 min at 94 °C; 30 cycles of 20 s at 94 °C, 30 s at 58 °C and 30 s at 72 °C; and the 

final extension of 7 min at 72 °C. PCR products were visualized in a 1.2% agarose gel in SB 

buffer.  

2.4.2. Real-time PCR 

Gene expression levels were analyzed through Real-Time PCR using a StepOne Plus Real-

Time PCR instrument (Applied Biosystems) using SYBR Select Master Mix (Applied 

Biosystems). Each reaction was performed in a total volume of 10μl, containing 5μl of SYBR 

Select Master Mix, 100 nM of each primer, 3μl of the 1:10 dilution of the cDNA and PCR-

http://www.phytozome.org/�
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grade water. The reactions were incubated at 50°C for 2 min and at 95°C for 5 min, followed 

by 40 cycles of 95°C for 15 sec and 60°C for 1 min, with data collection at each annealing 

step. Two technical replicates were loaded for each sample; gene expression data were 

normalised to the EF1-alpha housekeeping gene and Relative Quantity (RQ) of each 

transcript was calculated using the delta-delta CT model (Livak and Schnittgen 2001): 

ܴܳ ൌ 2ି∆∆ 

where ΔCT is the difference between the threshold cycle of the tested gene and that of the 

housekeeping in the same sample, and ΔΔCT is the difference between the ΔCT of the tested 

sample and that of an arbitrarily chosen reference sample, for which RQ = 1 (ΔΔCT = 0) is 

assumed. The mean RQ was first calculated between the two technical replicates of each 

sample then the average value of three biological replicates was obtained. 

2.5. Statistical analysis 

For plant growth, photosynthesis measurements and ion analysis, three biological replicates 

of three individual plants per each replicate were considered for each salt treatment and 

timecourse of salt application. The data subject to analysis of variance (ANOVA) by Co-Stat-

ANOVA software program. Treatment means were compared using Student-Newman-keuls 

at 5% significant.  

 3. RESULTS 

3.1. Plant growth and photosynthesis rate 

Two Brassica species showed that imposing 100 mM NaCl to the growth medium has no 

significant effect on shoot fresh and dry weight after 72h of salt application comparing with 

0h (Figure 1); however the difference between two genotypes were significant as were the 

interaction between genotype and salt level (Figure 1 and Table 1). Brassica. rapa cimosa 

showed higher shoot FW either for non-treated or salt treated plants (Figure 1).  

 

The transpiration rate (E) and stomatal conductance (gs) of salt treated plants of two Brassica 

species were not affected by applicable salt either at short time (6h) or elongation time (72h) 

of salt exposure and showed similar responses as the control plants (Figure 2). However, it is 

worthy to mention that both cultivars showed similar range of E and gs values in both control 

and salt stress conditions and the difference between two genotypes were not significant as 

well as all interaction between them: genotype ×salt,  genotype ×time of salt exposure, and 

salt level×time exposure were not significant (Table 2). On other hand, two Brassica species 

exhibited significant difference in A value under control condition, where B.cimosa showed 

higher net assimilation rate as approximately 2-fold as B. di milano (Figure 2). However, 
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upon salinization, only B.cimosa trend to reduce A value by approximately two times as the 

control plants even at early time of salt establishing (6h), while B. di milano did not exert any 

efforts under salt and showed similar manner as non-treated plants (Figure 2). 

3.2. Ion analysis accumulation 

Two Brassica cultivars showed genotype and time-dependent differential Na accoumulation 

effects and the significant difference were recorded between two genotypes (Figure 3 and 

Table 3). At first 6h of salt exposure, B.cimosa showed slighter ability to accumulate more 

Na+ ion in the leaf tissues either under control or saline conditions. However, under 

elongation salt period (72h), B.cimosa showed higher essential Na ion accumulation than B. 

di Milano in both treated and non-treated plants (Figure 3). Intrestingly, these results showed 

that the salt stress did not affect Na accumulation as almost unique pattern of Na 

accumulation were recorded in two Brassica cultivars under control and salt stressed 

conditions. Moreover, potassim analysis showed neither Brassica cultivars, salt treatment, nor 

lasted period of salt application have any effect on K accumulation and the K concentration 

avaraged 57 mg g-1 DW in leaf tissues of two cultivars under control or saline condation 

(Figure 3 and Table 3). Similar to Na accumulation, Ca concentration showed differences in 

term of genotipic variation, where B. di milano  accumulated more Ca ion particularly at 6h 

of salt exposure  (Figure 3 and Table 3).  

3.3. Gene expression studies 

3.3. 1. Integrity of total RNA extraction and amplification of housekeeping gene 

Isolation of intact RNA is essential for many techniques used in gene expression analysis, 

particularly when cDNA has to be synthesized. RT-PCR assays involve the analysis of small 

regions of RNA (generally less than 200bp), preferably placed close to the 3’ extremity of the 

gene, which is reverse-transcribed more efficiently when using oligo (dT) primers annealing 

on the polyadenilated 3’ tail of mRNA. Therefore, it is convenient to check RNA integrity 

before starting a gene expression analysis. Figure 4 showed an aliquot of the RNA sample 

that has been run on a denaturing agarose gel stained with ethidium bromide. In general, the 

most samples showed clearly sharp intensity two bands of the 28S and 18S rRNA band; when 

the correct profile was not visible, suggesting a loss or degradation of RNA in the sample, 

RNA extraction was repeated. 

 

Moreover, housekeeping genes are typically constitutive genes that are required for the 

maintenance of basic cellular function, and are expressed in all cells of an organism under 

http://en.wikipedia.org/wiki/Constitutive_gene�
http://en.wikipedia.org/wiki/Gene_expression�
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both normal and patho-physiological conditions (Butte et al., 2001). The relative 

quantification of mRNA levels by RT-PCR is currently an extensively used technique, in 

which reliable quantification depends on the use of one or more stably expressed endogenous 

genes, usually housekeeping genes, as internal controls. However, because even the 

expression of housekeeping genes can be modulated in some tissues depending on the 

physiological, developmental or health status, it is necessary to first study the stability of 

several endogenous gene expressions in order to select suitable internal references (Huggett 

2005). In this study, we examined the stability of two potential reference genes: Elongation 

Factor 1- ɑ (EF1alpha) and Gliceraldehyde-3-Phosphate Dehydrogenase (GAPDH), whose 

expression was reported to be the most stable under abiotic stresses (Qi et al. 2010). The PCR 

showed a better efficiency in the amplification of EF1alpha compared to GAPDH (Figure 5); 

furthermore, a Real-time PCR comparison of the two housekeepers confirmed a higher 

stability for the EF1alpha transcript among the different samples. Thus, all our gene 

expression analysis was normalized based on EF1alpha housekeeping as a reference gene.  

3.3.2. Real-Time PCR analysis of SOS genes expression  

In this experiment, the expression level of SOS pathway genes from Brassica rapa were 

under investigation .Constitutive (un induced) and salinity-induced transcript levels were 

determined by Real-time PCR in two Brassica cultivars:  Brassica rapa cimosa and Brassica 

rapa var di milano gouetto viola. The expression levels of SOS1, SOS2, and SOS3 were 

assayed in 3-week-old seedling plants after 6 and 72 hours of (0 and 100) mM NaCl salt 

exposure (Figure 6). In the case of SOS1, a down-regulation (approx. one fourth compared to 

not treated plants) was detected in B. rapa cimosa at 72h from salt exposure, while no 

significant deviation from constitutive expression levels was found at 6h (Figure 6). On the 

contrary, B. di milano  showed an up-regulation of SOS1 transcripts at both 6h and 72 h in 

relation to control plants (Figure 6), but a difference in transcript levels was also found 

between the negative controls (untreated plants at 6h and 72h). The expression patterns of 

SOS2 of B. rapa cimosa showed an early up-regulation by 3- fold in respect to the control 

plants at 6h of salt exposure, while the transcript level returned at constitutive levels after 72h 

(Figure 6). In B. di Milano exhibited a similar expression in treated and control plants at both 

6h and 72h, but the transcript levels resulted significantly higher at 72h in both treated and 

non-treated plants (Figure 6). Finally, the expression patterns for SOS3 in B. rapa cimosa 

cultivar exhibited a strong up-regulation in response to salt stress (5 and 9 folds comparing to 

control plants at 6h and 72h, respectively) (Figure 6). On the other hand, B. di Milano 
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revealed a down regulation by 5 times comparing to the control plants only at short salt stress 

time (6h). 

3.3.3. Real-Time PCR analysis of transcription factors expression  

The expression levels of the 7 transcription factors analysed are reported in (Figure 7). TF01 

(belonging to the bHLH family of transcription factors) in B. rapa cimosa resulted to be up 

regulated in response to salt stress and showed a significant increasing in transcript 

abundance by 6 and 7 times as control plants respectively at 6h and 72h of salt exposure 

(Figure 7). On the contrary, B. di Milano showed lower expression levels of TF01 in treated 

samples compared to non-treated, but a high variation was also observed between the control 

plants at 6h and 72h (Figure 7). In the case of TF02 (Cupine superfamily), TF03, TF04 

(C2C2-CO-like superfamily) and TF06 (MYB family), a dramatic variability in expression 

levels was observed between the different samples, including in the comparison of control 

(non-treated) plants of the same cultivar (Figure 7). TF05 (belonging to the Homeobox 

family) showed a strong up-regulation in the early response to salt stress (6 times as the 

control plant at 6h), that later decreased to almost 2 times at 72h (Figure 7). On the contrary, 

Brassica di Milan plant showed similar transcript levels in treated and control plants at both 

salt periods. Finally, for the transcript factor TF07 (NAC family) the only significant 

difference between treated and non-treated plants was found at 6h in B. rapa cimosa, which 

showed an early up-regulation in the salt-exposed sample (5-folds as the control plants) 

However, despite an overall more stable expression level of TF07 compared to the other 

transcription factors analysed, even for this gene very strong differences were observed 

between untreated control plants of the same cultivar.. 

4. DISCUSSION 

4.1. Plant growth and physiological responses 

It is well documented that crop salinity sensitivity varies among species and genotypes 

(Prado et al., 2000; Pujari and Chanda 2002), and the genetic diversity is considered a useful 

tool for screening of genes that involved in salt tolerance (Maggio et al., 2005). Munns. 

(2002) pointed out that the adaptive responses toward salt stress varied depending on plant 

development, salt concentration and time of exposure. Houle et al. (2001) mentioned that 

seedling stage as well as the reproductive stage represents the two most sensitive stages in the 

life cycle of plants. In our investigation, the result of shoot fresh weight of two Brassica 

species showed 100 mM NaCl did not affect the seedling growth at 72h of salt initiation 

(Figure 1). This result might indicate that the salt dose was not enough to elicit the reduction 

in plant growth. However, B. cimosa was able to maintain higher significant shoot FW under 
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control and even after 72h of salt exposure, which might suggest that the B. cimosa is more 

resistant to salt stress than Brassica. di Milan  and present an interesting research genetic 

material. 

 

It is well known that leaf gas exchange parameters were significantly impaired upon salt 

stress. This reduction is generally associated with salt damage of the photosynthetic tissue, 

changes in stomatal features with the consequent restriction of the CO2 availability for 

carboxylation or to the acceleration of senescence (Orsini et al., 2010a). However, our result 

showed the two Brassica cultivars displayed no significant change in E and gs values upon 

salinization regardless the time of salt exposure (Figure 2). Our results were inconsistent with 

Ashraf. (2001) who stated that salt stress causes decreases in transpiration rate with 

increasing salinity with Brassica species. Also, other author reported that the reduction in 

transpiration with salinity was related to the reduced gs and the lower stomatal density of 

leaves developed under saline conditions (Omami et al., 2006). One explanation of our results 

could be 100 mM NaCl or 72h of salt exposure were not enough to drive those plants to 

initiate closure of stomatal. Controversially scenario has been recorded in term of net 

assimilation rate, where B. cimosa showed about 2 times higher A value under control 

condition than B. di Milan; in addition, B. cimosa showed significant reduction in A values 

by (-45% and -102%) at 6h and 72h of salt exposure (Figure 2). It is worthy to mentioned that 

upon salinization B. cimosa had similar value of stomatal condactance and evaporation rate as 

B. di Milan, but the former showed lower significant value of A regarding the control plant 

while  the latter plant did not show any change in A value even at extended period of salt 

stress. Ashraf. (2001) linked the increasing of salt-tolerant Brassica species to having higher 

assimilation rates and lower stomatal conductance. Thus, we might suggest that B. cimosa is 

more salt resistant than B. di Milan as it has the ability to up-down regulate this feature 

depending on surrounding condition.  

 

Mineral nutrients are essential for plant growth and they are virtually involved in all 

metabolic and cellular function like energy metabolism, primary and secondary metabolism, 

cell protection, gene regulation, signal transduction and plant reproduction (Hansch and 

Mendel 2009). Osmotic adjustment helps the plant cells to withstand salt stress and water 

deficit by maintaining sufficient turgor for growth. It involves the transport, accumulation, 

and compartmentation of inorganic ions and organic solutes (Mustard and Renault 2004).  

This processing allows increasing the water potential gradient between the soil and plant and 
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improving the water absorption under soil water deficit (De Herralde 2000). In this study, 

B.cimosa showed higher capacity than B. di Milano to accumulate more Na ion at 72h of salt 

exposure (Figure 3). However, this increasing was recorded under both control and salt 

conditions. Thus, this result most likely pointed out that the differences in Na ion 

accumulation was belong to genetic variability rather than salt effect or it could indicate that 

the salt dose of 100 mM NaCl was not sufficient to induce any specific mineral accumulation 

in both Brassica cultivars. However, we might link the higher Na accumulation in B.cimosa 

with higher shoot fresh weight growth (Figure 1) as the plants use high concentrations of 

inorganic solutes from the substrate which is considered as an osmotically adaptive strategy 

to cope with salt stress since the energetic cost of inorganic solute accumulation is less 

expensive process than the use of organic solutes (Yeo 1983). Potassium accumulation 

showed no differences were presented between the two Brassica cultivars regardless the salt 

concentration of time exposure of salt stress (Figure 3).  Similar to Na concentration, Ca level 

showed the difference in this ion accumulation most likely was owing to genetic variability 

and not because of salt side effect (Figure 3 and Table 3).  

4.2. Differential expression of SOS genes after salt exposure  

Salt tolerant plant can be defined as the ability of the plants to complete their growth cycle 

with an acceptable growth and yield (Colmer and Flowers 2008). However, salt tolerance is a 

complex phenomenon involving a numerous mechanisms that operate at cellular, tissue, 

organ or whole plant levels (Yeo 1998). Some traits may only be functional at one time in a 

particular species and the effect of one mechanism may mutually exclude the effect of the 

others at a of certain stage development (Yeo 1998; Carvajal et al., 1999). The importance of 

the SOS pathway in plant salt tolerance has been fairly established (Zhu 2002, 2003; Shi et 

al., 2003). SOS1, SOS2, and SOS3 genes are the candidate genes in studies related to scoring 

the genetic variability that occurs naturally in Arabidopsis genotype (Quesada et al., 2002). 

SOS1 encodes for a plasma membrane Na+/H+ antiporter, responsible for the exclusion of 

sodium in the apoplast. SOS2 gene encodes a serine/threonine type protein kinase, which 

activates SOS1 (Liu et al., 2000). The SOS3 gene encodes an EF-hand type calcium binding 

protein (Liu 1998; Mahajan et al., 2008). In our study, the expression levels of the three SOS 

genes were determined in the two cultivars B. rapa cimosa and B. rapa var di Milano guetto 

(Figure 6). In the case of B. rapa cimosa all the three SOS genes showed a relatively stable 

constitutive expression, resulting in similar transcript levels after 6h and 72h in non-treated 

samples. In response to salt explosion, SOS1 expression did not vary significantly after 6h 

but strongly decreased after 72h, suggesting a down-regulation in the late response to salt 
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stress. SOS2 expression on the other hand seemed to be enhanced (~3 fold) in the early 

response (6h), decreasing then to constitutive levels after 72h. Finally, SOS3 showed the 

greatest variation, being strongly (>5 fold) up-regulated after both 6h and 72h. SOS2 is 

known as a major salt-tolerance locus in Arabidopsis thaliana and its mutation drastically 

reduces plant tolerance to high Na+ stress (Liu et al., 2000). The up-regulation observed in the 

early stage of salt stress in B. rapa cimosa is consistent with Qiu et al. (2002) who reported 

SOS2 expression to be induced in both root and shoot of Arabidopsis thaliana within 3-6h of 

salt stress. Moreover, our results showed that the expression patterns of calcium sensor 

component (SOS3) is more abundant in the leaf tissue of B. rapa cimosa after both 6h and 

72h of salt stress (Figure 6). On the other hand, the transcript levels in non-induced B. di 

milano leaves resulted extremely unstable, suggesting that in this case a higher environmental 

variation affected SOS genes expression. For this reason, even though in salt-treated samples 

of B. di Milano an up-regulation of SOS1 was recorded at 72h of salt exposure and an early 

(6h) down-regulation of SOS3 emerged. In spite of the attempt to reach the maximum 

uniformity of growth conditions, still some growth and greenness variation among different 

individuals plants exposed to the same treatment was observed. Accordingly, the variation in 

transcription abundance cannot be unambiguously attributed to the effect of salt stress, given 

that an uncontrolled environmental effect proved to act on the same samples to a comparable 

extent. Several transcription factors have been involved in the responsive mechanism under 

abiotic stresses in B. rapa (Lee et al., 2008). It is believed that some of them are responsible 

for the activation or up-regulation of the transcription of stress-inducible genes. In our study, 

seven abiotic stress-responsive genes belonging to six different transcription factor families 

have been chosen (Table 5). Of the seven genes chosen, according to Lee et al. (2008), two 

transcription factors containing bHLH and MYB domains were reported to be down regulated 

in response to salt in both Brassica and Arabidopsis species. On the contrary, four chosen 

genes belonging to the families C2C2-CO-like, Homeobox, and NAC were up-regulated after 

salt stress; finally, a Cupin family transcription factor was considered to be up regulated in 

Brassica and down-up regulator factor in Arabidopsis under salt stress. Our analysis was 

aimed to test whether the same regulation could take place in the two B. rapa cultivars in 

response to salt stress. However, most transcription factors showed a very unstable 

expression, with extremely different patterns even between non-treated samples (Figure 7). 

This was not surprising, considering that a significant environmental effect was also observed 

in the expression pattern of SOS genes; given that transcription factors responsive to stresses 

must have a very fast regulation in response to different stimuli to provide the cell the 
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mechanisms to survive, it is plausible that the same variation that acted on the SOS genes 

transcription affected to a much higher extent the expression of stress-responsive 

transcription factors. This modulation resembled, at least for some of them, an on/off 

mechanism, as for the Cupin family gene TF02, the C2C2-CO-like TF03 and TF04, and the 

MYB TF06 (Figure 7). Given the extreme sensitivity of their regulation mechanism, a 

reliable analysis of the expression of these genes will require a very fine adjustment of the 

experimental conditions. Nevertheless, it was possible to acquire better information for some 

transcription factors whose expression resulted more stable in control samples; it is the case 

of the bHLH-containing TF01 and the Homeobox gene TF05, that at least in B. rapa cimosa 

showed a relatively constant expression level in untreated samples. Of them, the expression 

of the bHLH transcription factor was inconsistent with Lee et al. (2008), as it showed a 

significant up regulation in response to salt stress (6-fold and 7-fold change in B. cimosa at 

6h and 72h respectively) (Figure 7). Similarly, the expression of the Homeobox gene (TF05) 

was induced upon salinization and showed a 6-fold up-regulation after 6h, which decreased to 

approximately 2-fold after 72h (Figure 7).  In this case our data confirms that reported by Lee 

et al. (2008), which indicated a >5 fold up-regulation of the gene in response to salt stress in 

both Brassica and Arabidopsis. Lamentably, the expression of these two genes could not be 

reliably compared between the two B. rapa cultivars, since as observed for SOS genes the B. 

rapa var di milano samples were affected by a higher uncontrolled environmental effect 

(Figure 7). 

5. CONCLUSION 

As a general remark emerging from the results of our gene expression analysis, it should be 

pointed out that the expression of stress-responsive genes, especially when considering 

transcription factors, is very finely regulated and it varies much more quickly than the 

physiological parameters, in response to even small stresses or changes in the plant 

conditions. Our experiment was planned trying to reduce as much as possible the 

environmental variation: the plants were grown in identical polystyrene trays, with the same 

peat moss substrate and placed in the same growth chamber; nevertheless, the gene 

expression data indicated that a significant variability still persisted. Identifying the source of 

this variation is important for planning future experiments aimed to the analysis of gene 

expression. A quote of this variation could be attributed to small, uncontrolled disuniformities 

in the substrate, light exposure or availability of water and nutrients in the different positions 

of the wells in the tray. However, some variability can also be bound to the initial status of 
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the seeds: not all of them performed the same way in terms of speed of germination and 

growth, especially for the cultivar B. rapa di Milano. 

 

Another consideration that can be made is that many of the analysed genes showed a 

relatively low level of expression, resulting in some cases in high threshold cycles (Ct > 30). 

As Ct increase they get close to the detection limit of the instrument, and the accuracy of the 

quantification decreases. To have a more robust quantification of these transcripts, the 

quantity of template cDNA in each well should be increased; this could be achieved by 

increasing the initial amount of RNA in the reverse transcription step and/or reducing the 

cDNA dilution for the preparation of the Real-Time template. Moreover, most reliable results 

are obtained when gene expression is normalized to an housekeeping that is expressed at 

comparable levels, while in our case EF1alpha showed in many cases a higher expression 

than the tested genes (Ct < 25). Many housekeeping genes are available for Real-Time 

experiments in Brassica (Qi et al. 2010); our choice was based on the best stability reported 

under abiotic stress conditions, but additional tests can be made and the most appropriate 

housekeeping gene can be chosen based also on its constitutive expression level. 
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Table 1. Analysis of variance of shoot FW: ns, non-significant differences; *, significant 

differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; ***, significant differences at 

P ≤ 0.001. 

Analysis of variance 
 
Shoot FW             Shoot DW 
                                

Main Effect 
V ***                             *** 
S ns                                  *       
T ns                                *** 
Interaction  
V×S *                                    * 
V×T ns                                  ns 
S×T ns                                  * 
V×S×T *                                    *  
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Table 2. Analysis of variance of gas exchange parameters: ns, non-significant differences; *, 

significant differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; ***, significant 

differences at P ≤ 0.001. 

Analysis of variance E ge A 
Main Effect 
V ns ns ***
S * ns ***
T ns ns ns 
Interaction  
V×S ns ns * 
V×T ns ns ns 
S×T ns ns ns 
V×S×T ** * ***
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Table 3. Analysis of variance of ions accumulations: ns, non-significant differences; *, 

significant differences at P ≤ 0.05; **, significant differences at P ≤ 0.01; ***, significant 

differences at P ≤ 0.001. 

Analysis of variance Ca+2 K+ Na+   
Main Effect   
V *** ns ***   
S ns ns ns   
T *** ns ***   
Interaction    
V×S ns ns ns   
V×T * ** *   
S×T ns ns ***   
V×S×T ns ** ns   
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Table 4. List of housekeeping gene, salt overly sensitive genes, and primers used in RT-PCR analysis. 

Name Symbol          GeneBank  
          Accession 

Primers sequences  
         (5′-3′) 

Elongation Factor 1- ɑ (EF1alpha) HM565967 FW: TTGAGGCTGGTATCTCGAAGAAC 
RV: GCTCGGTGGAGTCCATCTTG 

Gliceraldehyde-3-
Phosphate Dehydrogenase (GAPDH) HM565966 FW: CGCCAAGAAGGTGATCATTTC  

RV: CAGGAGGCGTTCGAGATGAC 

Salt-overly-sensitive  

SOS1 
AT2G01980 

FW: GGAAGGAAAGTGCATTGGTG 
RV: GAGCTTTCAGCGGAAACAAG 

SOS2 
AT5G35410 

FW: CCATCGCTTTTCATGGTAGA 
RV: ATAGCTCTGGCTTTGGCATT 

SOS3 
AT5G24270 

FW: AGATGGTAATCGCGCTTCTT 
RV: TCAATTTTCCCGTCCTTCTT 

 

 

http://arabidopsis.org/servlets/TairObject?id=133434&type=gene�
http://arabidopsis.org/servlets/TairObject?id=135402&type=gene�
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Table 5. List of B. rapa genes encoding putative transcription factor genes and Real-time PCR primer sequences. 

Source: Lee et al (2008). 
aName of transcription factor family based on classification of Arabidopsis homologous gene in TAIR (http://www.arabidopsis.org/) 
bUnique designation provided by NimbleGen for each probe sequence on B. rapa KBGP-24K chip 
cArabidopsis homologous gene ( 
dTranscript name from the B. rapa Chiifu-401 v1.2 genome sequence

 

Gene familya SeqDb abbreviation AGI no.c Transcript  
named 

Nucleotide sequences of primers 
(5′-3′) 

 
Basic Helix-Loop-Helix  BRAS0001S00019389 TF01 AT2G18300 Bra024474  FW:GATGTGCCATTGTTTCCGCT 
             (bHLH) RV:GAGTTTCCCAGCTTGCCGAT 
Cupin super family BRAS0001S00019512 TF02 AT3G20810 Bra035742 FW:CAAAGGTGGTGGAGCTAGAGT 

RV:TGCTCCACCAGAAGCTAACC 
C2C2-CO-like BRAS0001S00008429 TF03 AT5G48250 Bra020709 FW:TCCTCACATGCAACTACACGT 

RV:CTTCACACGCCTCCTCACAT 
C2C2-CO-like BRAS0001S00019462 TF04 AT3G07650 Bra040020 FW:GCGGTTATGCGTTACAAGGA 

RV:CCCCTTTACACGCCTTCTCA 
Homeobox BRAS0001S00018707 TF05  AT2G46680   Bra004516  FW:TGAACATTGTGGAGCCAGCT 

RV:CAATTGCTGCTGGATTGGTC 
MYB BRAS0001S00008974 TF06 AT2G46830    Bra004503   FW:GGAAGGACAGGTTTCAAGCCT 

RV:GTGTTTCCAACCGAATCCGC 
NAC BRAS0001S00010332 TF07 AT4G27410   Bra026353 FW:AGGTTACCACGCGTTCCAAT 

RV:AGCTGTACCCGAGACTCTGA 

http://www.arabidopsis.org/servlets/TairObject?id=129211&type=gene�
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Figure 1. Effect of zero salt (black bar) and 100 mM NaCl (gray bar) on shoot FW of two 

Brassica cultivars at 0h and 72h of salt exposure. Values are the mean ± SE of different 

replications. 
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Figure 2. Effect of zero salt (black bar) and 100 mM NaCl (gray bar) on gas exchange 

parameters of two Brassica cultivars at 0h and 72h of salt exposure. Values are the mean ± 

SE of different replications. 
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Figure 3. Effect of zero salt (black bar) and 100 mM NaCl (gray bar) on ion accumulation of 

two Brassica cultivars at 0h and 72h of salt exposure. Values are the mean ± SE of different 

replications. 
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Figure 4. Gel running of total RNA of some samples of B. rapa cimosa (the first 6 wells) and 

B. di Milano (the latter 6 wells) leaf of seedling 3-week old under 100 mM NaCl salt stress; 

the presence of two main bands for ribosomal RNA indicates a good integrity of the extracted 

RNA. Extraction was repeated for samples showing excessive RNA degradation or 

insufficient yield. 
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Figure 5. Amplification of two housekeeping genes from cDNA obtained from leaf tissue of 

B. rapa. PCR products of EF1alpha are reported on the left and GAPDH on the right. 
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Figure 6. Relative quantity of transcripts for SOS pathway genes in two Brassica cultivars at 

6h and 72h after salt exposure (black bars: 0 mM; gray bars: 100 mM NaCl). Values are the 

mean ± SE of 2 technical × 3 biological replicates. 
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Figure 7. Relative transcript abundance of the seven transcription factors analysed in two 

Brassica cultivars after 6h and 72h of salt exposure (black bars: 0 mM;  gray bars: 100 mM 

NaCl). Values are the mean ± SE of 2 technical × 3 biological replicates. 

 



294 
 

CONCLUSIONS AND FUTURE PROSPECTS 
Soil salinity is one of the most serious constraints to crop productivity, especially in the arid 

and semiarid regions of the world. High concentrations of soluble salts in the soil 

environment cause nutrient imbalance, water deficit, and toxicity of salt ions in growing 

plants. Therefore, plants growing in saline soils have to encounter two types of stresses, 

osmotic stress and ion toxicity. Salt tolerant plants adapt specific structural and physiological 

modifications to cope with high salinities. Morpho–anatomical adaptations include the 

prevention of undue water loss from the plant by the development of thick epidermis and 

sclerenchyma, well developed bulliform cells for extensive leaf rolling, and increased density 

of trichomes, and this is vital in water limiting environment under high salinities. Increased 

moisture retaining capacity is the other adaptive feature which is critical under physiological 

drought due to salinity stress. Development of excretory structures like vesicular hairs and 

salt glands is a major structural adaptation and very crucial for salt tolerance. Physiological 

adaptations include restricted toxic ion uptake at root level. At cell level, succulence is crucial 

for dumping off toxic ions in relatively inert areas like vacuoles. Toxic ions like Na+ and Cl− 

are important for osmotic adjustment in highly salt tolerant species. Lastly, the most 

important point is that ion exclusion which is one of the most vital phenomena for high salt 

tolerance in plants. 

 

However, high salt concentrations normally impair the cellular electron transport and lead to 

the overproduction of the ROS-O2
•−, •OH, H2O2, and 1O2. Salinity stress results in an 

excessive generation of these ROS. Stomatal closure upon salt stress may limit the entry of 

CO2, which, in turn, may cause the over reduction of photosynthetic electron transport 

system. ROS play two divergent roles in plants: in low concentrations, they act as signaling 

molecules for the activation of defense responses under stresses, whereas in high 

concentrations, they cause exacerbating damage to cellular components. If prolonged over a 

certain extent, abiotic stresses, through overproduction of ROS, would result in oxidative 

damage to lipids, proteins, and nucleic acids, in turn causing severe damage to cell viability. 

The enhanced production of ROS is, however, kept under tight control by versatile and 

cooperative ROS-scavenging antioxidant mechanisms that modulate intracellular ROS 

concentration. These mechanisms can be conveniently divided in two groups, nonenzymic 

antioxidants such as GSH, AsA, tocopherols, carotenoids, etc., and the enzymic antioxidants 

like CAT, POX, SOD, as well as enzymes of AsA–GSH cycle such as APX, MDHAR, 
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DHAR, and GR. Antioxidant responses of plants not only depend on the species-inherent 

strategy but also on the tissue, duration, and severity of the stress period. Molecular and 

cellular knowledge associated with abiotic stress induced various damages, and metabolic 

alterations are necessary to improve abiotic stress tolerance in plants. Naturally, abiotic 

stress-tolerant plants provide helpful tools for such research. Enhancements in the expression 

of components of antioxidant defense system involved in ROS-scavenging show significant 

improvements in metabolic status of plants, and this strategy has been used to develop crop 

plants with enhanced stress tolerance. However, attempts to increase abiotic stress tolerance 

by overexpressing one of the components of antioxidant defense system have not always 

been successful because it may not change the capacity of the pathway as a whole. Further, it 

can disturb the balanced interaction among the components. Various abiotic stressful 

conditions of the environment severely limit agricultural productivity throughout the world. 

Therefore, future work employing biotechnological approaches is essential to produce crop 

plants with in-built capacity of enhanced levels of multiple abiotic stress tolerance by 

constitutively expressing high levels of antioxidants, for cultivation in stress-prone 

environments. 

 

The mechanism of high salinity tolerance is just beginning to be understood. The overall 

progress of research on salinity stress responsive genes and their products reflects their 

central role in plant growth and development under stress conditions. Much effort is still 

required to uncover in detail each product of genes induced by salinity stress and their 

interacting partners to understand the complexity of the high salinity stress signal 

transduction pathways. Determination of the upstream receptors or sensors that monitor the 

stimuli, as well as the downstream effectors that regulate the responses, is essential, which 

will also expedite our understanding of salinity stress signaling mechanisms in plants.  
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