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ABSTRACT 

Counteract one of the most urgent environmental issues in estuarine and coastal 

ecosystems as eutrophication, hypoxia and anoxia is a main goal for many countries 

around the world. According to the European Union, developing new projects to preserve 

native species, habitat and ecological and biological processes in coastal areas is a 

priority action sector for the Italian government.  

This thesis discusses the design of a system to use wave energy to pump oxygen-rich 

surface water towards the bottom of the sea. 

A simple device, called OXYFLUX, is proposed in a scale model and tested in a wave 

flume in order to validate its supposed theoretical functioning.  

Once its effectiveness has been demonstrated,  a overset mesh, CFD model has been 

developed and validated by means of the physical model results. Both numerical and 

physical results show how wave height affects the behavior of the device. Wave heights 

lower than about 0.5 m overtop the floater and fall into it. As the wave height increases, 

phase shift between water surface and vertical displacement of the device also increases 

its influence on the functioning mechanism. In these situations, with wave heights 

between 0.5 and 0.9 m, the downward flux is due to the higher head established in the 

water column inside the device respect to the outside wave field. Furthermore, as the 

wave height grows over 0.9 m, water flux inverts the direction thanks to depression 

caused by the wave crest pass over the floater. In this situation the wave crest goes over 

the float but does not go into it and it draws water from the bottom to the surface through 

the device pipe. By virtue of these results a new shape of the floater has been designed 

and tested  in CFD model. Such new geometry is based on the already known Lazzari’s 

profile and it aims to grab as much water as possible from the wave crest during the 

emergence of the floater from the wave field. Results coming from the new device are 

compared with the first ones in order to identify differences between the two shapes and 

their possible areas of application. 
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CHAPTER I: Introduction 

 A common worldwide problem: eutrophication and hypoxia 

“No other environmental variable of such importance to estuarine and coastal 

ecosystems around the world has changed so drastically, in such a short period of time, 

as dissolved oxygen”, [1].  

Diaz started his work “Overview of Hypoxia around the World” with the above sentence, 

testifying how the problem of eutrophication of coastal zones is current and global for 

present society. The term eutrophication refers to an excessive enrichment of water by 

nutrients and its associated adverse biological effects,[2]. Cultural eutrophication, which 

results from human activity, may negatively affect marine ecosystems, increasing the 

occurrence of massive benthos and fish mortality, loss of diversity, poisoning episodes 

which can also cause human illness, and mucilage production [3], [4], [5] Eutrophication 

produces an excess of organic matter that fuels the development of hypoxia and anoxia 

when combined with water column stratification. Many ecosystems have reported some 

type of monotonic decline in dissolved oxygen levels through time with a strong 

correlation between human activities and a decline in declining dissolved oxygen.  

Within the past 50 years eutrophication; the over enrichment of water by nutrients such as 

nitrogen and phosphorus, has emerged as one of the leading causes of water quality 

impairment. Selman identifies over 415 areas worldwide that are experiencing symptoms 

of eutrophication, highlighting the global scale of the problem. Recent coastal surveys of 

the United States and Europe have found that a staggering 78 % of the assessed 

continental U.S. coastal areas and approximately 65 % of Europe’s Atlantic coasts show 

symptoms of eutrophication,[6], [7]. In other regions, the lack of reliable data hinders the 

assessment of coastal eutrophication. Nevertheless, trends in agricultural practices, 
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energy use, and population growth indicate that coastal eutrophication will be an ever-

growing problem, [8].  

Because of their geomorphology and circulation patterns, some marine systems have a 

greater tendency to develop hypoxic conditions. The basic features that make a system 

prone to hypoxia are low physical energy (tidal, currents, or wind) and large freshwater 

inputs. These features combine to form stratified or stable water masses near the bottom 

that become hypoxic when they are isolated from reoxygenation with surface waters. 

Better mixed or flushed systems do not have a tendency towards hypoxia.   

 

What is the hypoxia 

Oxygen is necessary to sustain the life of all fishes and invertebrates. In aquatic 

environments, oxygen from the atmosphere or from phytoplankton dissolves in the water 

and allows all animals to breathe, including those that swim or move about the sea 

bottom and those that have a sedentary life. Once dissolved into surface water, the normal 

condition for dissolved oxygen is to be mixed down into bottom layer waters. When the 

supply of oxygen to the bottom is cut off or the consumption rate exceeds resupply, 

oxygen concentration declines beyond the point that can sustain the life of most animals. 

This condition of low dissolved oxygen is known as hypoxia. The point at which various 

animals suffocate varies, but generally effects start to appear when oxygen concentration 

drops below 2 mg/l,  [1]. For sea water, this is only about 18 % of air saturation. As a 

point of reference, air concentration is about 280 mg/l. Anoxia is the complete absence of 

oxygen. The two principal factors that lead to the development of hypoxia, are decreased 

water exchange between bottom water and oxygen-rich surface water, and decomposition 

of organic matter in the bottom water, which reduces oxygen levels. Both conditions 

must occur for hypoxia to develop and persist.  

.  
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Consequence of the eutrophication 

The rise in eutrophic and hypoxic events has been primarily attributed to the rapid 

increase in intensive agricultural practices, industrial activities and population growth, 

which together have increased nitrogen and phosphorus flows into the environment. 

Human activities have resulted in nearly doubling nitrogen and tripling phosphorus flows 

into the environment compared to natural values,  [9]. By comparison, human activities 

have increased atmospheric concentrations of carbon dioxide, the gas primarily 

responsible for global warming, by approximately 32 % since the onset of the industrial 

age,  [10].  

Before nutrients and nitrogen in particular, are delivered to coastal ecosystems they pass 

through a variety of terrestrial and freshwater ecosystems, causing other environmental 

problems such as freshwater quality impairments, acid rain, the formation of greenhouse 

gases , significant impacts on food webs, and loss of biodiversity,  [11]. 

Once nutrients reach coastal systems, they can trigger a number of responses within the 

ecosystem. The initial impact of the increase in nutrients is the excessive growth of 

phytoplankton, microalgae and macroalgae. This, in turn, can lead to other impacts such 

as: 

 loss of subaquatic vegetation such as excessive phytoplankton, microalgae, and 

macroalgae growth which reduces light penetration; 

 a change in species composition and biomass of the benthic (bottom-dwelling) 

aquatic community, eventually leading to a reduced diversity of species and the 

dominance of gelatinous organisms such as jellyfish; 

 coral reef damage as increased nutrient levels promote algae growth over coral larvae. 

Coral growth is inhibited because algae outcompete coral larvae for available surfaces 

to grow on; 
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 shifts in the composition of phytoplankton species, creating favorable conditions for 

the development of nuisance, toxic, or otherwise harmful algal blooms; 

 low dissolved oxygen and formation of hypoxic or “dead” zones (oxygen-depleted 

waters), which in turn can lead to the collapse of the ecosystem. 

It is known that eutrophication diminishes the ability of coastal ecosystems to provide 

valuable ecosystem services such as tourism, recreation, the provision of fish and 

shellfish for local communities, sportfishing, and commercial fisheries. Furthermore, 

eutrophication can lead to reductions in local and regional biodiversity.  

Currently nearly half of the world’s population lives within 60 kilometers from coastal 

areas, with many communities relying directly on coastal ecosystems for their 

livelihoods, [12] This means that a significant portion of the world’s population is 

vulnerable to the effects of eutrophication in their local coastal ecosystems.  

Harmful Algal Blooms and Hypoxia.  

Two of the most acute and commonly recognized symptoms of eutrophication are 

harmful algal blooms and hypoxia. Harmful algal blooms can cause the killing of fish, 

human illness through shellfish poisoning, and the death of marine mammals and shore 

birds. Harmful algal blooms are often referred to as “red tides” or “brown tides” because 

of the appearance of the water when these blooms occur. One red tide event, which 

occurred near Hong Kong in 1998, wiped out 90 percent of the entire stock of Hong 

Kong’s fish farms and resulted in an estimated economic loss of $40 million USD,  [13]. 

Hypoxia, which is considered to be the most severe symptom of eutrophication, has 

escalated dramatically over the past 50 years, increasing from about 10 documented cases 
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in 1960 to at least 169 in 20071,[14]. Hypoxia occurs when algae and other organisms 

die, sink to the bottom, and are then decomposed by bacteria using the available 

dissolved oxygen. Salinity and temperature differences between surface and subsurface 

waters lead to stratification, limiting oxygen replenishment from surface waters and 

creating conditions that can lead to the formation of a hypoxic or “dead” zone, [15]. 

 

Nutrients, eutrophication and hypoxia: an overview on the 

connections 

The primary factor driving coastal eutrophication is an imbalance in the nitrogen cycle 

that can be directly linked to increased population, due either to urbanization in coastal 

areas or along rivers or to the development of agricultural activities. In many areas 

hypoxia follows from eutrophication, which results from the underlying nutrient problem. 

An examination of the distribution of hypoxic zones around the world showed that they 

were closely associated with developed watersheds or highly densely populated coastal 

areas that deliver large quantities of nutrients, the most important of which is nitrogen, to 

coastal seas,[16]. Agriculture and industry are regarded as the principal generators of 

nitrogen, even if, in the end increased population and rising living standards drive the 

need for industry and agriculture to produce. Atmospheric sources of nitrogen are also 

recognized as a significant contributor of nutrients in coastal areas,  [17].  Nitrogen from 

fossil fuel combustion and volatilization from fertilizers and manure is released into the 

atmosphere and redeposited on land and in water by wind, snow, and rain.  

                                                 

1
Hypoxia is generally defined as having a dissolved oxygen concentration of 2.0 milligrams per liter or less, [8] and  [1]. 
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The degenerative scenario linking nutrient additions to the formation of hypoxia via 

eutrophication, following an initial positive effect on fisheries, can be described as 

follow: 

Excess nutrients lead to increased primary production, which represents new organic 

matter that is added to the ecosystem. Since shallow estuarine and coastal systems tend to 

be tightly coupled (benthic-pelagic coupling), much of this organic matter reaches the 

bottom. This increased primary productivity may also lead to increased fishery 

production, [18] At a certain point, however, the ecosystem's ability to maintain a balance 

in processing organic matter is exceeded. If physical dynamics permit stratification, 

hypoxic conditions develop. Initially, increased fishery production may offset any 

detrimental effects of hypoxia but, as eutrophication increases and hypoxia expands in 

duration and area, the fishery production base is affected and declines. The increasing 

input of anthropogenic nutrients to many coastal areas over the last several decades has 

been suggested as being the main contributor to the most recently declining trends in 

bottom water oxygen concentrations around the world. Many studies have demonstrated a 

correlation through time between population growth, increased nutrient discharges, 

increased primary production in coastal areas and increased occurrence of hypoxia and 

anoxia; an example might be the decline in oxygen concentration in the Gulf of Trieste in 

the last 25 years,  [1]. . The direct connection between land and sea is best exemplified by 

the relationship between estuarine and coastal fishery production and land-derived 

nutrients. The most productive fishery zones around the world are always associated with 

significant inputs of either land (runoff) or deep oceanic (upwelling) derived nutrients. 

The basic nutrients carried by land runoff and oceanic upwelling are the essential 

elements that fuel primary production and that, through marine food webs, feed the 

species of economic importance. Problems begin when the nutrients entering the system 

exceed the capacity of the food chain to assimilate them. At first, increased nutrients lead 

to increased fishery production but, as organic matter production increases, changes 

occur in the food web leading to different endpoints. These changes are very predictable 
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and have been recognized in many marine ecosystems, Figure 1. Basically, a hypoxic 

zone is the secondary manifestation of the larger problem of excess nutrients, which leads 

to increased production of organic matter or eutrophication,[19]. When eutrophication 

combines with water column stratification, hypoxia results. 

 

 
Figure 1: Comparative evaluation of fishery response to nutrients,[18]. 

 

Locations of global eutrophic and hypoxic areas 

The latest results of a survey on eutrophic and hypoxic zones date back to 2008, when 

Selman et al. found 415 systems which presented problems related to eutrophication. Of 

these, 169 are documented hypoxic areas, 233 are areas of concern, and 13 are systems in 
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recovery. The advances in identifying and reporting eutrophic conditions will rapidly lead 

to the growth of the number of known areas. The first comprehensive list of hypoxic 

zones was compiled by Diaz and Rosenberg in 1995 [20] and identified 44 documented 

hypoxic areas, nearly one quarter of the hypoxic areas identified by Selman et al. twelve 

years later, [14]. The list of hypoxic areas assembled by Diaz was compiled from 

scientific literature and identified the majority of the documented hypoxic areas. 

However, the list did not include areas with suspected but not documented hypoxic 

events or systems that suffer from other impacts of eutrophication such as nuisance or 

harmful algal blooms, loss of subaquatic vegetation and changes in the structure of the 

benthic aquatic community. The supplementary list of hypoxic zones, shown in Figure 2, 

takes into account systems experiencing any symptoms of eutrophication, including but 

not limited to anoxia. The new zones are divided into: 

 documented hypoxic areas: areas with scientific evidence that hypoxia was caused, at 

least in part, by nutrient overenrichment; 

 areas of concern: systems that exhibit effects of eutrophication, such as elevated 

nutrient levels, elevated chlorophyll levels, harmful algal blooms, changes in the 

benthic community, damage to coral reefs and fish kills. These systems are impaired 

by nutrients and are possibly at risk of developing hypoxia; 

 systems in recovery: areas that once exhibited low dissolved oxygen levels and 

hypoxia, but are now improving. 
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Figure 2: World hypoxic and eutrophic coastal areas, [8]. 

 

Wave Energy Converter, Strengths and weaknesses  

History of the Ocean Wave Energy Converters  

Energy from ocean waves is the most conspicuous form of ocean energy, possibly 

because of the often spectacular destructive effects of the waves. The waves are produced 

by wind action and are therefore an indirect form of solar energy, [21]. The opportunity 

of converting wave energy into usable energy has inspired numerous inventors: more 

than one thousand patents had been registered by 1980,[22] and the number has increased 

markedly since then. The earliest patent was filed in France in 1799 by a father and a son 

named Girard,[23].  

Yoshio Masuda may be regarded as the father of modern wave energy technology, with 

his studies in Japan dating from the 1940s. He developed a navigation buoy powered by 

wave energy, equipped with an air turbine, which was in fact what was later named a 
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(floating) oscillating water column (OWC). These buoys have been commercialized in 

Japan since 1965, [24]. In 1976 Masuda promoted the construction of a much larger 

device: a barge, named Kaimei, which was used as a floating testing platform housing 

several OWCs equipped with different types of air turbines, [25]. Probably because this 

was done at an early stage, when the theoretical knowledge on wave energy absorption 

was at its beginning, the power output levels achieved in the Kaimei testing program 

were not a great success. Masuda realized that converting wave energy to pneumatic 

energy with the Kaimei project was quite unsatisfactory and conceived a different 

geometry for a floating OWC: the Backward Bent Duct Buoy (BBDB). In the BBDB, the 

OWC duct is bent backwards from the incident wave direction, (Figure 3), which was 

found to be advantageous when compared to the frontward facing duct version,[26]. In 

this way, the length of the water column could be made sufficiently large enough for 

resonance to be achieved, while keeping the draught of the floating structure within 

acceptable limits. The BBDB converter was studied (including model testing) in several 

countries (Japan, China, Denmark, Korea, Ireland) and was used to power about one 

thousand navigation buoys in Japan and China,[27], [28]. 

In 1974, a paper published by Stephen Salter,[29] became a landmark and brought wave 

energy to the attention of the international scientific community. In 1975 the British 

Government started an important research and development program in wave 

energy,[21], followed shortly afterwards by the Norwegian Government. In Norway the 

activity resulted in the construction of two full-sized shoreline prototypes near Bergen in 

1985. In the following years, up until the early 1990’s, the activity in Europe remained 

mainly at an academic level; the most visible achievement being a small OWC shoreline 

prototype deployed on the island of Islay, Scotland,[30]. At about the same time, two 

OWC prototypes were constructed in Asia: a converter integrated into a breakwater at the 

port of Sakata, Japan,[31] and a bottom-standing plant at Trivandrum, India,[32]. 

In 1991 the situation in Europe was dramatically changed by the decision made by the 

European Commission of including wave energy in their R&D program on renewable 
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energies. The first projects started in 1992. Since then, about thirty projects on wave 

energy were funded by the European Commission involving a large number of teams in 

Europe,[21]. In the last few years, interest in wave energy has been  growing in northern 

America, involving national and regional administrations, research institutes and 

companies, and giving rise to frequent meetings and conferences on ocean energy, [33], 

[34]. 

 
Figure 3: Schematic representation of Backward Bent Duct Buoy, [21]. 

 

Strengths and weaknesses of the Wave Energy Converter 

The development of wave energy converter devices is characterized by numerous 

inventions. Since the first patent on wave energy,[23], a great number of ideas to harness 

the energy of waves has been conceived; however, only few of them have succeeded in 

being tested in the sea. 

Nowadays developing wave energy converters is no longer a privilege of virtuous and 

wealthy Nations. Even if it does not still represent a safe business, obtaining energy from 

waves allows for the creation of new jobs and the production of clean energy 

characterized by a low environmental footprint. Wave energy is a concentrated and 
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readily available energy source, unlike fossil fuels which, in some places in the world, are 

running out just as quickly as people can discover them. Unlike ethanol, a corn product, 

wave energy is not limited by seasons and it does not need any kind of intervention from 

man,[35]. It is close to densely populated areas and is well distributed around the globe 

and it has a very low visual impact. Moreover, wave energy can be predicted with good 

accuracy and is more constant than wind energy, [36]. 

Nevertheless, the road ahead for the realization of efficient wave energy converters is 

beset with difficulties, particularly related to testing in real seas, due to the characteristics 

of ocean waves and to the related costs. Contrary to many other WECs, the system has  to 

be tested in real seas on a certain prototype scale. Sea trials are generally more 

complicated and expensive than laboratory testing [37]. The deployment also requires 

suitable weather windows and specific vessels. Above all, the prototype has to be 

designed to survive extreme events and to operate in harsh environments, despite being a 

test plant. The extreme conditions at the deployment location, although being infrequent, 

dictate the structural design of the WECs and mooring systems, which are also directly 

linked to the overall investment. All these factors strongly affect project costs. Many 

failures in this sector, (like mooring breakages and WECs getting stranded before an 

audience) are retained and emphasized by the public and other stakeholders. On the other 

hand, one of the biggest success stories of the sector must be recalled. There are about 

three hundred OWCs navigational buoys functioning around the world in places where 

battery changing, lighting a 60 W bulb and driving a flashing unit, as designed by 

Commander Yoshio Masuda, is inconvenient [34].  

Concerning the environmental impacts, the problems due to WECs are probably few, and 

mostly unknown. Some stakeholders' concerns regard the negative impacts on fisheries or 

marine mammal migration, with marine life risking getting entangled in cables. Apart 

from wildlife conservation and site specific environmental issues other recommendations 

for suitable sites for wave energy converters include: avoidance of shipping lanes, 

avoidance of areas of military importance, and marine archaeological sites. Other 
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potential conflicts include areas intended for mining or for the dredging of sand and 

gravel. Further restrictions on the placement of WECs comes from existing pipelines and 

cables, although most likely on a smaller scale. Already existing offshore activities limit 

future establishments, including offshore wind power parks, oil and gas fields,[38]. Wave 

power converters are less likely to interfere with recreational activities such as leisure 

boats, since parks may be placed far off the coast, [36]. Although the techniques are 

generally not very well developed yet, it is likely that wave power will become at least as 

important as wind and hydropower are today,[39]. 
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CHAPTER II: Literature Survey 

Adriatic Sea Conditions 

The Adriatic Sea is an elongated basin, with its major axis oriented in a northwest - 

southeast direction, located in the central Mediterranean, between the Italian peninsula 

and the Balkans.  

 
Figure 4: Adriatic Sea coastline an topography, [40]. 

 

Its northern section is very shallow and gently sloping, with an average bottom depth of 

about 35 m. Middle Adriatic average depth is 140 m, with the two Pomo Depressions 

reaching 260 m. The southern section is characterized by a wide depression more than 

1200 m deep. The water exchange with the Mediterranean Sea takes place through the 
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Otranto Channel, whose sill is 800 m deep. The eastern coast is characterized by rocky 

shores and cliffs, whereas the western coast is flat and mostly sandy. A large number of 

rivers discharge into the basin, with significant influence on the circulation, particularly 

relevant being the Po River in the northern basin, and the ensemble of the Albanian rivers 

in the southern basin,[40]. 

The structure and the seasonal variability of the Adriatic general circulation is 

synthesized in Fig. 5. At the surface the winter general circulation is composed only of 

the Northern and Southern Adriatic current (NAd and SAd) segments and the flow field 

is very different from all other seasons. The general circulation is dominated by 

temperature and salinity compensation effects. It can be speculated that the barotropic, 

wind-induced transport and circulation is probably a major component of the general 

circulation during winter. This can also be estimated by looking at the seasonal water 

mass properties [40], where during winter and throughout the basin vertical temperature 

and salinity profiles become practically uniform with depth. Spring–Summer surface 

flow field is characterized by the appearance of western current segments (W-Mad and 

W-SAd) and the two major cyclonic gyres of the Adriatic circulation. It can be argued 

that the seasonal vertical stratification in the basin triggers the appearance at the surface 

of gyres and an intensification of boundary currents, more generally of eddies and jets, 

probably as a result of baroclinic-barotropic nonlinear instabilities in the basin,[41].  
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Figure 5: Adriatic Sea general circulations,[41]. 

During summer currents occur on smaller spatial scales and the E-SAd current weakens. 

Autumn conditions are characterized by the maximum spatial coherence of the general 

circulation structure. In fact, there are three cyclonic gyres, a continuous western Adriatic 

boundary current, connected between the three subbasins, and an intense SAd current. As 

known from [40], this season is characterized by maximum middle levantine intermediate 

water entrance and spreading from Otranto, a well-defined surface mixed layer and 

maximum warming of the subsurface layers of the northern Adriatic. 

Anoxia in the northern Adriatic 

The northern Adriatic is a shallow basin characterized by a cyclonic circulation and by 

the inputs of many rivers; Po and Adige contribute to the most of the total freshwater 

input. Anthropogenic nutrient loads coming from rivers flowing into the north-western 
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Adriatic Sea have considerably increased during the late 20th century, especially between 

1968 and 1980,[42]. A major fraction of the productivity in surface waters reaches the sea 

floor [43] and anoxic or near anoxic events frequently occur in bottom waters, especially 

during late summer and autumn as a consequence of high downward of organic fluxes, 

microbial decay and thermal stratification,[44], [45], [46]. High concentrations of 

particulate organic matter are present in the north west Adriatic due to the combined 

effects of terrestrial suspended matter input and primary productivity, which depends 

highly upon nutrient load discharged by rivers, [47]. Consequently, massive diatom and 

dinoflagellate blooms and “red tides” (sometimes associated with toxicity episodes) are 

well known along the northwestern Adriatic coast,[5]. In the Adriatic basin, a trophic 

gradient increasing from east to west is present. In the western side of the basin, 

particulate organic matter (POM) reaches higher concentrations, especially in proximity 

of the deltas of Adige and Po,[48]. The POM, diffusing through the water column, 

represents an important source of energy for the benthic system and through the 

degrading processes contributes to the decrease of oxygen content in the bottom waters. 

In coastal environments, the flux of settling particles is influenced by river discharge, 

physical and chemical reactions at the fresh-salt water interface, primary and secondary 

production and water circulation, [49]. The downward flux of particulate organic matter 

in the shallow northern Adriatic basin is relevant both for the sinking and recycling of 

nutrients and for the oxygen consumption at the bottom, which often causes local hypoxia 

in the coastal belt and occasionally may lead to basin scale hypoxia events, when general 

circulation and wave intensity are reduced. 

 

Water mass structure: temperature, salinity, dissolved oxygen and 

stratification of the North Adriatic Sea 

The shallow northern Adriatic Sea is characterized by marked seasonal and long-term 

fluctuations of oceanographic and biological conditions, mainly due to atmospheric 
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forcing, freshwater discharges, variable intrusion of high salinity waters, and a very 

variable and complex circulation,[50], [51]. Due to intense heat losses Fig.6, at the air–

sea interface, the water column of the offshore North Adriatic is well mixed during late 

autumn and winter.  

 
Figure 6: Monthly mean heat flux at the surface (W/m2), estimations based on 4 different datasets,[40]. 

Water mass exchange between northern and central Adriatic is at its maximum during 

this period, characterized by a prevailing cyclonic circulation, and by northward currents 

in the eastern part and southward currents along the western coast, [51]. During spring 

dense water generally remains in the bottom layer in northernmost areas and as a vein 

along the western side of the entire region. During spring and summer, semi-enclosed 

circulation patterns prevail in the region, and thermal stratification gradually increases 

and reaches its maximum in August as a result of heat accumulation in the upper layers, 

[52]. In these conditions freshened surface waters, formed along the western coast, are 

generally advected eastward to the Istrian coast, so significantly increasing the 

stratification of the water column.  
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Particular freshwater discharge dynamics in spring and summer, characterized by 

relevant peaks of short duration, may play an important role for the development of the 

mucilage phenomenon, particularly in conditions of reduced water dynamics, [4],[53]. 

This phenomenon is characterized by the formation of macro-aggregates of different 

shapes and dimensions in the upper water column of the entire northern Adriatic.   

Temperature and Salinity 

Figure 7, shows the climatological medium profiles for temperature and salinity obtained 

for the entire Adriatic Sea. In the northern Adriatic the entire water column exhibits an 

evident seasonal thermal cycle. A well-developed thermocline is present in spring and 

summer down to 30-m depth, whereas a significant cooling begins close to the surface in 

autumn when the bottom temperature reaches its maximum value, probably due to 

increased vertical mixing and intrusion of middle Adriatic waters. 



20 

 

 
Figure 7: Seasonal climatological profile of Adriatic, a) Northern Adriatic, b) Middle Adriatic, c) Southern 
Adriatic. The variables represent are Temperature, °C, (left); and Salinity, ppm, (right). Spring , summer 

, autumn , winter , [40]. 

The cooling of the whole water column only occurs in winter; in this season temperature 

generally increases down to the bottom, but the water column stability is preserved due to 

an associated increase of salinity at depth. The effects of freshwater input can be clearly 

seen in spring and summer due to the increased runoff and the increased water column 

stratification, [41]. 

Dissolved oxygen 

Except for its northern part, the Adriatic Sea is a well-oxygenated basin. The dissolved 

oxygen profiles show that in the warmer seasons a relatively low concentration layer is 

present just near the sea surface, due to oxygen equilibration with the atmosphere,[40]. In 
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the northern Adriatic it can be noticed that the average oxygen profiles have a 

qualitatively different shape of with respect to middle and southern Adriatic conditions. 

The northern Adriatic can be subdivided in two sub regions, the first corresponding to 

areas shallower than 50 m,  Figure 8a and Figure 8b, and the second corresponding to the 

remaining part Figure 8c.  

 
Figure 8: Seasonal climatological profile of Adriatic: a) Northern Adriatic shallower or equal to 50 m, b) 

northern Adriatic  deeper than 50 m,  c) middle Adriatic, d) southern Adriatic max depth, e) southern 
Adriatic shallower or equal to 300 m. Dissolved oxygen (ml/l). Spring , summer , autumn , winter 

, [40]. 

The average value of dissolved oxygen in the Adriatic basin is approximately 5.5 ml/l. 

The parameter wich has been used to describe the variability of the dissolved oxygen is 

standard deviation (STD). Lowest variability of dissolved oxygen appears near the 

bottom in autumn (STD equal to 0.1 ml/l) and summer (STD equal to 0.4 ml/l), while the 
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highest STD value occurs at the surface with values of 0.5 - 0.6 ml/l in all seasons except 

for summer, when the highest STD of 0.9 ml/l is found at a depth of 30 m, [40].  

In this chapter an overview on the climatological water mass and dissolved oxygen 

structure is proposed. The whole Adriatic basin can be divided in three main sectors: 

northern, the shallowest; middle, the transitional area; southern zone, the deepest and the 

interface with the Ionian Sea. Each of them is characterized by its own profiles of 

temperature, salinity and dissolved oxygen level.  No differences can be found for the 

water surface characteristics between the three areas. All of them are sensible to the 

seasonal climatological cycle, presenting the highest values of temperature during 

summer and the deepest level of column agitation during winter. At the surface salt 

balance is largely affected by river runoffs, especially during spring and summer. 

Wave climate of North Adriatic 

Leder in 1998 [54] was the first to investigate the characteristic wave climate of the 

northern Adriatic Sea from measured data. His study was aimed to identify the monthly 

significant wave height through Gumbel distribution fitted on data measured in the 

offshore part of the northern Adriatic Sea from the platforms Panon and Labin, Figure 9.  

 
Figure 9: Locations of the platform Panon and Labin, [54]. 
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Monthly extreme values were available for a ten year period (1978–1986 and 1992). The 

absolute maximum significant wave height measured in those 10 years was 6.58 m 

recorded during a storm in December 1979. The wave height of 10.2 m was measured 

during that storm, being the second highest measured wave in the Adriatic Sea. The 

largest individual wave height recorded so far in the Adriatic Sea reads 10.8 m. The wave 

was measured in the Northern Adriatic in February 1986 during a storm with a significant 

wave height of 6.16 m. The theoretical prediction of the most probable extreme 

significant wave height in 20 and 100 years by [54], reads 7.20 and 8.57 m, respectively, 

Table 1. It should be mentioned that another study has been conducted,[55], but, since it 

was based on data collected by observations from merchant ships, which are better suited 

to the analysis of seagoing ships comparing to the data from the fixed measurement 

stations,[56],[57] it will not be considered. 

 

Table 1: Average monthly and annual wave power significant wave heights (m), Tr return period (years),  
[58]. 

 

Such values were calculated in order to identify the extreme events, with the aim to 

develop an helpful tool for people working in activities related with this area of the 

Adriatic. Hypoxia develops during period of stable stratification, when the waves are not 

strong enough to break this layer. Thus extreme waves are not indicators for events 

related to the anoxia, but they can give an idea of the low wave power in the North 

Adriatic (compared with other extreme wave climates).  
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Vicinanza in [58], used the available data recorded by the Italian Buoy Network (IWN), 

[59], that is active since July 1998, to characterize wave power around Italian coasts. 

IWN offshore wave measurements are available for 15 different sites highlighted in Fig. 

9, but for the present study only results coming from buoy 15 are relevant. From 1989 up 

to about 2002, each wave buoy collected 30 minutes of wave measurements every three 

hours but in presence of wave heights greater than 1.5m the measurements were 

continuous. From 2002 wave measurements have always been continuous and wave 

characteristics parameters refer to 30 minutes time intervals. 

 

 
Figure 10: Location of the IWN buoys, [58]. 

In [58] Vicinanza identified the average monthly and annual value of offshore wave 

power for the Adriatic Sea. It can be argue that the Adriatic has the lowest energetic 

level, with peak of low level of agitation in its northern area. Table 2 shows the entire 

dataset identified by Vicinanza and, as expected, during summer a generalized trend of 

low values of monthly averaged value is recognized. Results coming from buoy 15, 
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related to June, July and August, report 1.2, 0.6 and 0.9 kW/m respectively; even buoy 2 

shows low wave power for the same period (0.5, 0.7 and 0.7). 

Table 2: Average monthly and annual wave power (kw/m), [58]. 

 

Monthly and annual values of wave power are good indicators of the global wave 

climate; Table 2 presents annual wave power values below 2 kw/m only for the buoys 

along the Adriatic coast and Catania coast.  

The northern Adriatic is one of the most delicate environmental in the entire 

Mediterranean Sea and its dynamic seems to be independent from the middle and 

southern Adriatic,[40]. However, it shows its influence on the other two regions through 

the North Adriatic deep water. Its large river runoff brings a great amount of nutrient that, 

when combined with summer wave climate and strong vertical stratification, produces the 

ideal environment to develop hypoxia or anoxia. This work focus is to develop a device 

especially designed for summer wave climate in seas like North Adriatic; the declared 

aim does not represent a restriction, since the device will be able to work in all the Seas 

that, always more frequently, exhibit symptoms of eutrophication and hypoxia. Seas 

characterized by these phenomena show, during hypoxic or anoxic events, a wave climate 

that presents different steepness and direction but its heights are of the same order of 

magnitude of the northern Adriatic Sea; between, completely flat sea and 0.40 m.  
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Wave Overtopping 

Research on wave overtopping of coastal structures has been the subject of numerous 

investigations over the past 50 years. Since then overtopping prediction tools for typical 

sea defense structures have continuously been refined. The term wave overtopping is 

used here to refer to the process where waves hit a sloped structure, run up the slope  and 

eventually, if the crest level of the slope is lower than the highest run-up level, overtop 

the structure, Figure 11.  

 
Figure 11: Wave overtopping of the Wave Dragon prototype,[60]. 

The discharge from wave overtopping is thus defined as overtopping volume (m3) per 

time (s) and structure width (m). The reason for predicting overtopping of structures is to 

design better structures to protect human lives and significant structures against the 

violent force of the surrounding sea. Typically, rubble mound or vertical wall 

breakwaters have been used for the protection of harbors and dikes and offshore 

breakwaters have been used for the protection of beaches and land. All these structures 

are designed to avoid the risk of overtopping or at least to reduce it to a minimum, since 

overtopping can lead either to functional or structural failure of structures.  
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The research described in this thesis has a slightly different target; in fact it is aimed to 

use wave energy to pump water from the surface to the bottom with a simple and 

economical device able to catch even waves characterized by a low level of energy and 

convert the overtopping discharge into a downward flux. Economical or energetic fields 

are not concerned in the present study; the only purpose of this work is to improve the 

quality of deep water. 

 

Wave overtopping studies: present knowledge 

A number of different methods are available to predict overtopping of particular 

structures under given wave conditions and water levels. Each method has its strengths 

and weaknesses under different circumstances. In theory, analytical methods can be used 

to relate the driving process and the structure to the response through equations based 

directly on a knowledge of the physics of the process. It is however extremely rare for the 

structures, the waves and the overtopping process to all be well-controlled and known so 

that an analytical method can give reliable predictions. Other methods are based on the 

use of measured overtopping from model tests and field measurements. They can use the 

neural network tool trained using a test, [61]. The last method is based on physical 

modelling and it consists in testing a scale model with correctly scaled wave conditions. 

Usually, such models may be built in a scale typically ranging between 1:20 to 1:60. 

Physical models can be used to measure many different aspects of overtopping such as 

wave-by-wave volumes, overtopping velocities and depths. Past physical investigations 

on the wave overtopping of marine structures highlighted that the discharge does not 

depend only on environmental condition such as wave height, wave period and level but 

also on the geometrical layout and on the material of the structure, [62], [63]. A lot of 

investigations have been conducted but none of them has been able to describe all the 

possible situations. The most common and reliable way of investigation is the physical 

modelling. Such type of investigation aims to identify an empirical relationship between 
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environmental conditions, geometrical layout and material properties of the structure and 

the overtopping discharge. Several formulas have been produced, since the first study 

conducted by Owen, [64] in 1980. The research was aimed to investigate the overtopping 

over a specific classes of coastal frameworks that included impermeable and smooth, 

rough and straight and bermed sloped structures. In his work Owen determined the first 

experimental method to quantify the overtopping flow rate.  The formula was an 

exponential equation that gave as a result a dimensionless value of the overtopping 

discharge and the input was a dimensionless parameter dependent by the free board of the 

breakwater. Since 1980 ten new equations have been proposed, but all of them were 

based on the same exponential structure of the Owen’s formula, [65], [66], [67], 

[68],[69], [70],[71], [72], [73], [62]. In order to clarify the status of the present 

knowledge Burcharth wrote in 2000 a comprehensive overview on overtopping of coastal 

structures, [74], where more details on some of the prediction formulae are available. 

Douglass, in 1986 [75], reviewed and compared a number of methods for estimating 

irregular wave overtopping discharges. He concluded that overtopping discharges 

calculated using empirically derived equations can only be considered within a factor of 

the actual overtopping discharge. The abovementioned methods deal with overtopping of 

coastal defense structures and so the typical crest freeboards are relatively high and the 

overtopping discharges low. Under such conditions overtopping discharge depends on 

relatively few and relatively large overtopping events. That means that the overtopping 

discharge becomes very sensitive to the stochastic nature of irregular waves. It must be 

expected that uncertainty in estimating the overtopping discharge are going to be reduced 

if the crest freeboard is reduced, since more waves are able to overtop the structure.  

Before Kofoed 2002 [62], all available the studies and researches aimed to estimate the 

overtopping discharge for a ground-based structures. The advent of floating overtopping 

wave energy converters required more accurate equations that can take into account how 

the level of buoyancy affects the water flow over the structure. In his research Kofoed 

made large series of laboratory tests in order to incorporated some correction factors 
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related to slope angle, crest free board, draft, slope shape and shape of guiding walls into 

the expression proposed by Van der Meer 1995, [70].  

 
Figure 12: Parameters investigated by Kofoed,[62]. 

The results of the new equation proposed by Kofoed fitted experimental data very well, 

R2 (square of the Pearson product moment correlation coefficient) increases from 0.75 

(van der Meer’s equation) to 0.97 (Kofoeed’s equation, below).  
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Where λα , λdr and λs   are defined by Kofoed and γr, γb, γh and γβ are defined by Van der 

Meer, 1995, [70].  
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Influence of slope angle 

Completed test series by Kofoed, with varying slope angle shows that the average 

overtopping discharge is slightly dependent an α. Introduced corrector factor λα was 

identified in order to take into account this dependency, its equation is: 

ఈߣ ൌ ఉݏܿ ∙ ሺߙ െ ሻ ( 2 )ߙ

where αm is the optimal slope angle, equal to 30° and β is a coefficient equal to 3, both 

values are identified by best fit. Equation 2 is formulated so that the result is for optimal 

slope angle and it decreases when difference between optimal and actual slope angle 

increases. The correction factor λα for the device here investigated is equal to 0.989, with 

a slope angle of 25.4°, see Appendix A for the calculus.  

 
Figure 13: λα as a function of the slope angle. Value for tested shape in present work is black circle. 

 

Influence of draft 

Conducted test series by Kofoed with varying draft shows results strongly affected by 

this parameter. In order to take into account this dependency the coefficient proposed is: 
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where kp is the wave number based on Lp and k is a coefficient controlling the degree of 

influence of the limited draft. k is equal to 0.4 by nest fit. The expression taking the 

dependency of the draft into account is based on the ratio between the time averaged 

amount of energy flux integrated from the draft up to the surface Ef,dr and the time 

averaged amount of energy flux integrated from the seabed up to the surface Ef,d.  
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Figure 14: Ratio described by equation 4 as a function of the relative draft, [62]. 

To derive equation 3 linear wave theory has been used; this implies a limitation that leads 

to a not exact description of the overtopping phenomena. 

The correction factor λdr for the device here investigated is equal to 0.8101 for a draft 

equal to 0.37 m and a freeboard crest of 0.11 m.  
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 Figure 15: λdr as a function of the relative draft. Two freeboard levels for wave state T (H=0.48 m and 
T=2.88 sec). 

 

Influence of dimensionless freeboard parameter (R) 

Kofoed identified that for values of dimensionless freeboard (R) larger than 0.75 the 

equation given in [70], fit the data very well, but when the R decries from 0.75 to 0 some 

discrepancies appear between the predicted values and the observed values. In order to 

increase the degree of description of the phenomena parameter proposed by Van der 

Meer was modified as follow: 
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Figure 16: λs as a function of dimensionless freeboard parameter (Rc/Hs). Two freeboard levels for wave 

state T (H=0.48 m and T=2.88 sec). 

Coefficients  γr,  γb,  γh  are introduced to take into account the influence of a berm, shallow 

foreshore, roughness and angle of wave attack respectively. All these coefficients are 

worth between 0.5 - 1.0 meaning that when maximizing overtopping the coefficients 

should be 1.0, which is the case of no berm, no shallow foreshore, smooth slope (no 

roughness and impermeable) and head-on wave. This will be the case of the current 

study. 

In the current study Kofoed’s equation is used to estimate the overtopping discharge over 

the device under investigation OXYFLUX, Figure 17.  
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Figure 17: q [m3/m/sec] as a function of dimensionless freeboard parameter (Rc/Hs). Results for 

OXYFLUX, wave climate of Northern Adriatic Sea 

 

Wave energy as a propellant for sea water pump 

Within the past 50 years two different ideas have been proposed for water pumps suitable 

to the ocean and both of them have been built and tested to work under environmental 

conditions. The first method, chronologically speaking, is the perpetual salt fountain that 

is based on the fact that both temperature and salinity affect the density of seawater and 

that heat can be conducted through a metal pipe whereas salt cannot. This idea attracted a 

brief interest only in the 1950s [76] but its origin probably goes back to about 100 years 

before, [77]. In the regions of the ocean, where warm salty water overlies cold fresh 

water (e.g. some areas of the tropics and subtropics) such that overall static stability in 

the vertical direction is maintained, a metal pipe is placed in a vertical position so that it 

bridges these two water types. The system is primed by moving some water upward 

inside the pipe. Heat will diffuse into the rising water in the pipe through its conducting 

metal walls but the impermeability of the pipe will prevent any salt from diffusing in. 

Thus the water in the pipe will become less dense than the environment at the same depth 
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and will continue to rise upward under positive buoyancy. This is the perpetual salt 

fountain, which was first tried in the North Atlantic in 1971 using a 1000 m flexible 

plastic tube, though with unconvincing results, [78]. However, recent results in 2002 in 

the North Pacific have been more encouraging,[79]. The salt fountain can be reversible 

since a downward push on the water would make it flow downward. Since diffusion is 

what drives the fountain, the time-scale of this type of pump is a diffusion time-scale, 

which is expected to be relatively long, compared to a wave period, for example, while 

the flow velocity is anticipated to be relatively weak. In a different sense the salt fountain 

is not reversible because it does not work if a layer of cold fresh water overlies a layer of 

warm salty water, as occurs in the Mediterranean and in some high latitude regions (e.g. 

Norwegian fjords),[80].  

A second method is represented by Isaacs’s idea, dated in 1976. The basic principle is 

simple: a length of tubing attached to a surface buoy, with a one-way valve at the bottom 

can be extended below the eutrophic zone to act as a conduit for deep water. The vertical 

motion of the ocean forces the attached valve to open on the down slope of a wave and 

close on the upslope, thus generating upward movement of deep water to the surface 

ocean,[81], [82].  

A third new type of wave water pump was proposed by Kenyon in 2007. The concept is 

mechanically simpler than the Isaacs’s pump, because it involves no valves at all and has 

a considerably faster pumping rate than the salt fountain method. Furthermore, this wave 

pump does not need to be primed to get started unlike the salt fountain. Kenyon proposed 

to utilize the pressure gradient established inside a strictly rigid, impermeable pipe 

oriented vertically and submerged in the ocean near the surface. Tube's lower end had to 

be located at, or below the depth of wave influence, where the fluid motion and pressure 

variations due to the surface waves are negligibly small compared to those at the surface. 

The upper end of the pipe had to be placed just below the lowest anticipated level of the 

wave troughs in the region of the most active part of the wave field. Kenyon suggested 15 

m below mean sea level could be a reasonable value, taken into account that a 30 m wave 
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height is possible but it is a very rare occurrence. Once the tube is positioned, water will 

immediately begin to flow upward inside the pipe and it will continue to do so as long as 

surface waves move, no reasons lead to think that the flow needs to be primed, as soon as 

the gradient is established along the pipe fluid will move upward, according with,[80]. 

Kenyon's idea is based on taking advantage of two natural principles, the first is 

Bernoulli's principle and the second is the exponential decay of the wave motion with 

increasing depth. Particle motion due to the wave moves across the top opening of the 

pipe, causing relatively low pressure compared to the, essentially, constant and higher 

pressure at the bottom end of the pipe. The pressure difference along the pipe causes the 

fluid to flow consistently upward. In the numerical example given by Kenyon the 

maximum vertical velocity of the wave pump is predicted to be about 3.5 cm/sec when 

the pipe radius is 3 cm, the length of the pipe was half a wavelength and the average 

wave steepness was about 1/100, [80]. That rate was an order of magnitude greater than 

the one quoted by Maruyama, [79], of 2.45 mm/sec for the salt fountain with a pipe 

radius of 15 cm.  

More recently a fourth type of device aimed to pump water has been analyzed by several 

authors. The aim of those studies was to find mechanism to pump water downward 

through the stratificated water column. Two major purpose lead such new technologies; 

the first is the extraction of clean energy from wave motion,[83] , and the second, which 

also the purpose of the present thesis, is to pump well oxygenated surface water to the 

bottom, where oxygen is required, [84], [85], [86], [87]. Concerning with the second of 

the two reasons, it is not a surprise that both the devices investigated in those woks are 

born in countries where eutrophication and anoxia are common, like Italia’s northern 

Adriatic coasts and Sweden’s south-eastern Baltic coasts, according to [40] and [85]. 

Overtopping wave energy converters 

In this work only a few overtopping wave energy converters have been studied. Among 

them, the Wave Dragon, [62],[88], is the most practical and pioneering model. It consists 
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of two wave reflectors, a reservoir and several hydro turbines. The wave reflectors direct 

the incoming waves towards a ramp, and overtopping water is collected in a reservoir 

above sea level. Low-head hydro turbines generate power by using the hydraulic head of 

the stored water. The Wave Dragon is a floating converter that can be placed in offshore 

areas with a mooring line, Figure 18.  

 
Figure 18: The Wave Dragon  pilot plant (scale 1:4.5) in Nissum Bredning, Denmark, [89]. 

A different conception of overtopping wave energy converter is the Seawave Slot-Cone 

Generator (SSG), Figure 19. It consists of multiple reservoirs and a multi-stage turbine, 

which results in a higher overall efficiency compared to a single stage one, Figure 20, 

[90], [91], [92].  
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Figure 19: The SSG pilot plant in the Island of Kvitsøy, Norge, [90]. 

 
Figure 20: Lateral section of a three-levels SSG device with Multi-stage Turbine, [90]. 

A different kind of device is the so called spiral-reef overtopping wave energy converter. 

Such device is a fixed circular-shaped structure. Consequently, the converter’s 

performance is not affected by the direction of the incoming waves. The device is 

composed of a sloped ramp, an inner reservoir and a substructure. The substructure can 

be a mono-pile type or jacket type. Guide-vanes are attached on the ramp to reinforce 

wave overtopping. Overtopping water is accumulated in the reservoir and then drained 

out through a center hole. 
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Figure 21: Spiral-reef overtopping wave energy converter, [83].  

All these devices have been investigated both numerically and physically. From the 

numerical point of view commercial CFD software like STAR-CCM+ [93] , FLUENT 

[94] or FLOW 3D [83] have been used to describe the non linear phenomena acting on 

the devices. For simpler shapes or when the viscosity is negligible software like WAMIT 

or AQWA have been used to investigate the hydrodynamic behavior and the 

hydrodynamic parameters, such as added mass, radiation damping and wave induced 

force. Physical models are well consolidated, both for fixed and floating structures. The 

overtopping volume can be measured by means of different instruments. Wave 

overtopping over the Wave Dragon was widely described by Kofoed in [62]. He used a 

complex but accurate measuring system based on two reservoirs, a pump and a water 

level gauge. Between the slope and the reservoir there was a perforated damping wall to 

reduce the amount of turbulence on the water surface in the reservoir since it can intefere 

with the water level measurements. The water level gauge and the pump were connected 

to a PC monitoring and recording water levels in reservoir. Every time a preset maximum 

water level was reached the pump was activated for a fixed time period and the pumped 

volume of water was estimated thank to the  pump. After data from simulations were 

collected, Kofoed calculated the overtopping discharge time series by mean of 

differentiation. The signal from the water level gauge was corrected by adding a section 
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of the water level time series measured during the calibration of the pump at the time 

where the pump is emptying the reservoir. Measuring the different overtopping 

discharges for each level of the Seawave Slot-cone Generator (SSG), needed a more 

complex method, even if similar to the one described before. Each reservoir was 

connected to a tank behind the structure where the collected overtopping water was 

measured using water elevation gauges and calibrated pumps,[95], [96]. 

Devices to counteract oxygen depletion 

So far only two different types of device aimed to counteract hypoxia or anoxia, have 

been investigated. The paternity of the idea to use floating breakwaters to oxygenate the 

anoxic bottoms and the deep water can be attributed to an independent nonprofit 

organization called O2 gruppen, [97]. They proposed, Figure 22, the Wave Energized 

Baltic Aeration Pump (WEBAP), [85], [86], [87].  

 
Figure 22: An artist's conception of a wave pump,[97]. 

This new idea has been considered by the European Union and financed with a Life+ 

project of one million Euro,[98]. The project started with Carstens’s master thesis [85], in 

which he investigated the design aspects of the device and possible sites where a scale 

prototype could be installed. Carstens analyzed, analytically, the predictable overtopping 

discharge by means of Kofoed’s formula and USACE standard,[99]. He proposed two 

different locations for pilot plant, Kanholmsfjärden and Söder Möjafjärd, which are two 
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connected bays located in the Stockholm archipelago. Second in chronological order, and 

subject of the present work is the OXYFLUX, that will be largely discuses in the 

following chapters.   

The physical principle of the WEBAP, is not so different from the device investigated in 

the present document. A floating breakwater is supposed to collect incoming waves into a 

reservoir inside the breakwater. The stored water, after overtopping the ramp leading to 

the reservoir, will be at a higher level than mean water level and therefore will have a 

potential energy. The driving head of the overtopping water temporarily stored in the 

reservoir induce the water to flow out through a long vertical pipe that ends close to the 

bottom of the sea. Margheritini studied the WEBAP device by means of physical models 

developed at the University of Aalborg. She was concentrated on finding the proof of 

concept of the device, estimating the displacements of the floating body and the mooring 

force under the action of extreme waves and estimating the overtopping discharge 

thorough the Kofoed’s formula.  

 
Figure 23:WEBAP  physical model,[87]. 

Margheritini tried to measure the downward water velocity by means of a propeller posed 

inside the reservoir but high level of agitation, large displacement, and the impossibility 

to identify the direction of rotation of the propeller made this method of measurement 



42 

 

unreliable. Investigation on the physical model of the OXYFLUX will not take into 

account this procedure.  

After 2010, when Margheritini made her studies, the demonstration plants were 

constructed, transported and installed at the defined locations, i.e. Hanö bay outside the 

shoreline of Simrishamn and Kanholmsfjärden/Möja Söderfjärd in the outer Stockholm 

Archipelago. The pilot plants were then tested for three years together with extensive 

monitoring and sampling of water and sediments in and around the pumps.   

 
Figure 24:WEBAP pilot plan locations,[87]. 

On 31st Dicember 2012, WEBAP-LIFE project ended and the results were published in 

the web site of project [100]. The principal parameters that have been monitored are 

dissolved oxygen in the bottom water and phosphorus released from sea sediments 

because of the lack of oxygen.  

Baresel in the project’s final report argues how the expected positive environmental 

impact occurred in the pilot plant location, [101]. Indeed around the lower end of the 
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devices low level of phosphorus in the sediment were recognized. In the project's final 

report it has been highlighted how, on the basis of environmental impact and total cost 

assessment the WEBAP represent the most sustainable and cost-efficient system. 

 
Figure 25:Comparison of environmental footprint for different technologies aimed to remove phosphorus in 

Baltic Sea,[101]. 

 

Figure 26:Comparison of costs for different technologies aimed to remove phosphorus in Baltic Sea,[101]. 

 

Purpose of the study 

In light of the outlined state of development of WECs and the state of the environmental 

health of the Northern Adriatic Sea, the author has carried out a design of a device able to 

counteract oxygen depletion at the bottom sea layers as a PhD project at the Department 
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of Civil, Chemical, Environmental and Material Engineering (DICAM), University of 

Bologna, (UNIBO).  This work aims to provide a new type of device able to pump well-

oxygenated surface water to the bottom, where in many cases, oxygen is consumed by the 

large oxidization activity due to the abnormal quantity of sedimented organic matter. The 

study has investigated how different geometric parameters such the shape of the floaters, 

its structures (flexible or rigid), the crest freeboard and mooring systems affect the 

amount of the downward water flux, highlighting a possible application in the Northern 

Adriatic Sea. This has been achieved through studies of the literature, theoretical 

considerations, model tests in two different wave tanks and numerical modelling of the 

floating device. By using model tests the reliability of the idea was pointed out and the 

influence of several parameters (geometrical and not) were recognized. The 

displacements of the devices have been measured and so the variation in the downward 

flux over time since the latter is influenced by the displacement of the devices. While  the 

numerical modelling has been used to investigate performance of new floater shape, after 

the validation by means of results comparison between physical and numerical analysis.  

It is expected that the findings of this study will be useful for developing new devices to 

counteract oxygen depletion on the bottom layers as well as helpful for all public 

authorities involved in managing eutrophic, hypoxic and anoxic coastal areas. 
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CHAPTER III: Development of the device OXYFLUX 

The first idea to oxygenate the anoxic bottom of the sea by using wave energy originated 

from an independent nonprofit organization called O2-Groupen [97] which proposed a 

floating breakwater able to catch water from waves and to convert its potential energy to 

create a downward water flux in a tube. This device was designed to be used in the Baltic 

Sea and it has large dimensions since it is a breakwater. Due to its working mechanism, 

characterized by having a principal wave direction and a by the need for a relatively high 

minimum wave height in order to work, this device is not suitable for the Adriatic Sea, 

since the Adriatic’s summer wave climate and its medium depth are smaller than the 

Baltic’s ones.  

 

A second idea to counteract oxygen depletion and excessive algal blooms in the Baltic 

Sea has been made by Stigebrandt and Gustafsson in 2007 [102] and it is called the 

halocline ventilation by mid-water mixing. The idea is to mimic the natural mixing 

processes observed during periods of high internal mixing, and to increase both the 

transport of oxygen-rich water to the deep areas and to mix the layers around the 
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halocline pumping water between the depth of 50-125 meters. This is expected both to 

increase oxygen levels in deep water and decrease phosphorus concentrations due to 

decreased leaking from bottom sediment and phosphorus binding when more aerobic 

conditions occur. The hypothesis is that this would lead to better conditions in deep 

water, giving benthic animals, deep-water living and reproducing fish possibilities to 

recover, and contributing to the decrease of algal blooms during the summer months, 

thanks to lower P concentrations in the surface waters, [85].  

In this thesis a device able to induce aeration taking advantage of wave energy during the 

summer along the Northern Adriatic coasts has been designed and tested. The idea is 

based on the abovementioned systems, but OXYFLUX will be characterized by an 

operational range of wave height suitable to obtain a water column mix just with a 

minimum wave height of .20 m and by not needing a main wave direction. The most 

important aspect of this new technology is the absence of any moving or electro-

mechanic parts. The decision to exclude these components comes from the observed 

failures of the WEC’s, as the main problems derived from the inability of movable parts 

to endure open sea environmental conditions, Figure 27. 
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Figure 27: Schematic representation of OXYFLUX’s pumping mechanism. 

 

Proof of concept 

The physical principle on which the investigated device “OXYFLUX” is based, is the 

capacity to enhance vertical mixing processes and to induce aeration of deep water by 

pumping oxygen-rich surface water downward at a desired depth around the halocline. Its 

operating mechanism is based on wave overtopping. The floater will collect incoming 

waves into a reservoir floating on the sea. Water overtopping yields a higher hydraulic 

head in the reservoir, which in turn induces a downward water flux, Figure 27. 

OXYFLUX is developed to be used with a minimum depth of 5 m, such a restriction is 

mainly due to the motion of water particles. Since the device uses only the vertical 
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displacement induced by waves on water particles, the more the depth decreases, the 

more the vertical water displacement decreases, and so the capability of the floater to 

collect water in its floater. It can be argued that there should not be a maximum depth as 

long as wave conditions are able to generate a required head.   

Required head 

Just like every fluid flux in a tube, so the water flux generated by the OXYFLUX needs a 

head capable of  inducing water column motion. The evaluation of this quantity is made 

on the basis that the required head must overcome two main components. A long pipe 

like the one that will be used for OXYFLUX is characterized by significant head losses 

due to its length and roughness, as well as inlet and outlet ones, furthermore the issue of 

the different water density along the vertical water column must also be taken into 

account. Density gradient is affected by two main environmental parameters such as 

salinity and the temperature of the water column. In this work, reference values of the 

summer vertical profile of salinity and temperature of the Northern Adriatic [40] have 

been used to calculate final density distribution by means of UNESCO’s algorithms,[103] 

and so the minimum hydraulic head to overcome the density difference, Figure 28. 

Table 3: Average Summer density anomaly in North Adriatic, [46]. 

.  
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Figure 28: Summer density anomaly in North Adriatic, [46]. 

From Figure 28 a consistent gradient after 8.5 m depth it can be noted. This study takes 

into account a depth range from 0 to 10 m since OXYFLUX is designed to work only in 

shallow waters in the southern area of the mouth of the Po river, where hypoxia generally 

develops, as highlighted by the chlorophyll concentration in Figure 29. 

 
Figure 29: Average value of chlorophyll for August in years 1997-2004, [46]. 

The minimum head to overcome the density difference (∆hρ) has been calculated by 

means of the application of Kelvin’s circulation theorem [104], in the sense that the water 

column inside the device has been considered to be made up of only lighter surface water 
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pushed downward by the wanted minimum head. This phenomenon has been modeled as 

a circular integral on a closed path from the surface to the desired depth in which one 

vertical branch of the path is characterized by a surface density and the other by the 

density profile shown in Figure 28 , eq ( 6 ). 

∆݄ఘ ൌ
∑ ሺఘ∙ሻିఘభ∙

భ

ఘభ
  ( 6 )

Where ρi is the density of the “i” layer, li is the length of the “i” layer, equal to 0.01 m , ρ1 

is the water density at the surface, equal to 1026.10 kg/m3 and L is the desired depth to 

reach.  

Distributed and concentrated pressure drops have been calculated by means of the 

classical Chezy formula in which two tubes have been evaluated in two different states. 

Distributed losses have been evaluated through the Gauckler-Strickler coefficients, the 

values of 120 m1/3/sec and 60 m1/3/sec [105] have been selected for the new and used 

tube, respectively, Figure 30, Figure 31, Figure 32, Figure 33.  

 
Figure 30: : Device capacity for 10 m of water column for different heads and material conditions. 
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Figure 31: Device capacity for 15 m of water column for different heads and material conditions. 

 

 
Figure 32: Device capacity for 20 m of water column for different heads and material conditions. 
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Figure 33: Device capacity for 50 m of water column for  different heads and material conditions. 

The required head is easily obtainable with the modest wave heights developed during 

the summer along the coasts of any Seas, since there is always a minimum agitation of 

the free surface due to the breeze.  

 

Construction of the model 

Three main parts constitute OXYFLUX, and each of them has a precise function. Below 

their functions will be discussed as well as the way in which they have been made. 

Buoyancy of the whole structure is entrusted to a truncated-conical floater, which as well 

as keeping the structure afloat also collects the water from overtopping. The connection 

with the bottom, where a stabilizing ring is mounted, is guaranteed by means of a tube 

made of plexiglas or nylon.  

Both the materials have been tested during preliminary tests. Due to problems in the 

measurement of the velocity of the water flux the idea of a tube made of nylon has been 

abandoned. 
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All the models presented in this thesis were made using the machinery of the Hydraulic 

Laboratory of the University of Bologna.  

The following paragraphs focus on the design and realization of the physical scaled 

model, therefore lengths, masses and forces will be expressed in millimeters [mm], grams 

[g] and Newton [N] respectively. Physical model tests were carried out according to 

Froude’s law on a scale ratio of 1:16, Table 4. 

Table 4: Froude scale law  
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Figure 34: Components of OXYFLUX model. 

Floater 

In order to maximize the overtopping discharge, particular attention has been taken in the 

design of the slope angle of the floater. Kofoed [62], identified the optimal slope angle to 

maximize the overtopping discharge for a linear structure ramp as 30°. In this work the 

slope angle has been kept as close as possible to this value. A plate of 200 x 200 x 50 mm 

of closed polystyrene cells has been modeled by means of a lathe and used as a floater. 

The selection of adequate materials assumes primary importance in order to realize a 

model able to be tested for a  long period of time in water without running into trouble 

due to the absorption of water by the floater. Furthermore the material of the floater must 

guarantee an appropriate level of free-board crest. The selected material has a specific 

weight of 490 N/m3. 
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The result of the manufacturing process is a truncated conical shape with a volume of 

227191.00 mm3, corresponding to a weight of 0.11 N. Its maximum diameter is equal to 

150 mm while its height is 25.00 mm. The top of the floater was completed with a PVC 

ring aimed to define precisely the free-board crest and to clamp the flexible tube; the 

PVC ring has a height of 5.00 mm. The hole in the center is directly connected to the 

outlet side and it has a diameter of 50.00 mm. See Appendix A for all the details of the 

structure. 

 
Figure 35: Details of the floater, all lengths are in mm. 

Table 5: Hydrodynamics parameters of the floater.           
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Tube 

The tube connects the floater, where the water is stored, to the bottom, where the water 

flows out from the device. It has been made with two different materials: a nylon layer 

and plexiglas. They were realized by means of a lathe and heat welding respectively. The 

mass of the tube is 1.15 N for the rigid device and 0.35 N for the flexible one. The 

internal diameter has been kept equal to 50.00 mm. A rigid structure aimed to support the 

DOP transducer, Figure 36, has been installed inside the tube.   

 
Figure 36: Details of the tube and of the support for the DOP transducer, all lengths are in mm. 

 

Stabilizing ring 

The function of this component is to dampen the heave motion in order to let the wave 

crest overtop the floater. The stabilizing ring is made of aluminum and was realized by 
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means of a lathe in the laboratory. It is 3.00 mm thick, its diameter is 180.00 mm and its 

weight is 1.88 N. The diameter has been calculated in order to guarantee a dragging force 

equal to or larger than the maximum buoyancy force acting on the entire structure, which 

is equal to 0.50 N. The drag force has been estimated assuming that the plate moving in 

accordance with the surface and considering, the depth of the stabilizing ring, a vertical 

velocity is calculated according to the linear distribution of the particles velocity. Such a 

method was used at the beginning of the design procedure in order to estimate the size 

that the ring should be. A wave height of 18.00 mm has been hypothesized and a period 

of 0.75 sec (in real scale H=0.30 m – T=3.00 sec) capable of generating a vertical 

velocity of 79.00 mm/sec and 8.00 mm/sec respectively, for the surface and the ring 

depth.  

 
Figure 37: Vertical velocity profile for H=18.00 mm – T=0.75 sec. and h=400.00 mm. 

ௗܨ ൌ 	
ଵ

ଶ
∙ ߩ ∙ ௗܥ ∙ ଶݒ ∙ ܣ ൌ 0.74	ܰ   ( 7 ) 
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Where ρ is the fresh water density, equal to 997.561  kg/m3, Cd is the drag coefficient, 

equal to 1.28 as is suggested in [106], [107] for a flat plate perpendicular to the flow 

direction, v is the relative vertical velocity between the surface and water at the ring depth 

and A is the frontal area of the ring. 

 
Figure 38: Details of stabilizing ring, all lengths in mm. 

The three components of the OXYFLUX model were then assembled. Its total length is 

equal to 335.00 mm (from the top of the floater to the stabilizing ring), the position of the 

center of gravity is largely affected by the difference in density of the components, and it 

is located 267.00 mm below mean water level when the device is at rest i.e. 69.00 mm 

above the lowest surface of the stabilizing ring, Figure 40. Such a position for the center 

of gravity, below the center of buoyancy, was chosen in order to improve the stability of 

the device under the action of waves. The total weight of the model is 3.17 N while the 

maximum buoyancy force is 3.39 N ensuring a buoyancy reserve force of 0.22 N, 7 % of 

the total buoyancy force. 3.17 N corresponds to a free-board crest equal to 7.00 mm (real 

scale 0.11 m), Figure 39. Such a buoyancy reserve was chosen in order to guarantee, (in 
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the real sea environment) floatation of the device also after inevitable weight gain due to 

biofouling growth, that has to be taken into account for structures immersed in sea water. 

 
Figure 39: Total buoyancy force vs floater submergence. 
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Figure 40: Final design of the tested physical model.   
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Figure 41: OXYFLUX physical models. 

All details of the physical model can be seen in Appendix A 
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CHAPTER IV: Physical investigation 

The conditions for the physical tests performed on the OXYFLUX model are described 

In this chapter. The model test setup and the results, as well as the measuring methods, 

are then presented. The tests examine two different aspects: the displacement of the 

floating device and the velocity of the generated water flux. Some characteristics of the 

device are also investigated: crest freeboard, the structure (flexible or rigid) and the 

mooring system. By means of free oscillation tests, the hydrodynamic parameters of the 

devices are also estimated. In this chapter the reliability of the OXYFLUX is investigated 

for the first time. The performance of the device is described for 49 sea states ranging 

between 1,25 to 5,50 % of the design wave steepness 

Parameters investigated 

Device’s structures  

Two different types of structures have been investigated difference of which consists in 

the material the tube is made of. A series of preliminary tests have been carried out with a 

flexible (F) and a rigid (R) tube in order to identify the influence of the structural 

characteristics on the operating mechanism. The rigid tube was made with Plexiglas 

while the flexible one was made with a nylon layer. The flexible structure aimed to 

minimize the transmitted force between the tube and the float. The rigid tube was created 

by means of a lathe from a plastic parallelepiped Figure 42, and the flexible one from a 

common plastic bag. The flexible one required thermal welding between the two 

extremes of the layer. In order to obtain the required diameter, a mechanism to weld the 

plastic has been developed,  Figure 43. The float has the same shape and dimensions 

regardless of the material of the tube, Figure 41. The flexible version of the device will be 

rejected after the physical investigation because it is unsuitable to allow the measurement 

of the velocity of the water flux in the tube. 
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Figure 42: Realization of the rigid tube at the Hydraulic Laboratory of University of Bologna.. 

 

 
Figure 43: The mechanism used to weld nylon layer. 
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Modification of the mooring system  

Two mooring systems are investigated. The first one is made of four chains (CH) 

attached to the bottom of the floater and fixed with four anchors; the chains are 1.25 m 

long (almost three times the water depth 0.40 m) and are characterized by a linear density 

equal to 27.5 g/m in Froude similitude 1:16. The second system is made with two pre-

tensioned nylon cables (CA) attached to the bottom part of the floater and 1.15 m long, 

Figure 44.  

 
Figure 44: Schematic view of the mooring disposition. 

The positions of the small lead anchors were checked after each test, and it was 

confirmed that they had not been moved by the device during the tests. The main function 

of the mooring lines is to counteract the slow drift force and to maintain the floater in its 

dynamic equilibrium position. 

Modification of the crest freeboard 

Hypoxic areas commonly develop during summer, when agitation level is scarce and 

waves and currents are not strong enough to break vertical stratification. Starting from 
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these considerations, the device has been designed with a low crest freeboard in order to 

catch water from waves with a height of 0.20 m or even lower. Two values of crest 

freeboard (Rc) are investigated in the physical model scaled 1:16, 5.00 mm (F1) and 7.00 

(F2) mm, Figure 45. 

 

Figure 45: Schematic representation of the two values of crest freeboard (left) and particular of the physical 
model (right).  

During the tests, both values have been imposed by changing the relative distance 

between the anchor and the device. Little displacements of one anchor (5 mm) allowed to 

vary crest freeboard and to obtain the required values. 

Laboratory set-up  

The tests were carried out in the wave flume at the Hydraulic Laboratory of the 

University of Bologna (LIDR). The wave flume has a length of 15.0 m, a width of 0.50 

and maximum depth of 0.70 m.  

 
Figure 46: Test set-up, values in meters. Longitudinal (top) and horizontal (bottom) sections. 
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Figure 46 shows the test set-up. A vertical piston-type wave paddle generates waves at 

one end of the wave flume, while a passive wave absorber is installed at the other end. 

The scaled model is positioned in the middle section of the flume. The water depth varies 

between 0.52 m and 0.33 m and at the location of the model it has been kept equal to 0.40 

m. The slope is fixed at 2 %, in order to have a better control of the waves to which the 

tested model is exposed, reducing reflection from the passive absorber. 

Three resistance type wave-gauges with a sampling frequency of 1000 Hz are installed on 

the axis of the flume in front of the model to measure the incident and reflected waves.  

The mutual distances between the gauges and the device are the following: 

 Gauge 1 and gauge 2, 0,20 m; 

 Gauge 2 and gauge 3, 0,55 m; 

 Gauge 3 and the device, 1,65 m. 

This particular disposition of the gauges allows the method developed by Zelt and 

Skjelbreia in 1992[103] to be used for the separation of incident and reflected waves, 

Figure 47. The incident wave time series calculated using the Zelt method is then applied 

to further wave analysis. Time domain analysis of the incident wave in front of the device 

are conducted for every test. The results of such process are used to identify medium 

wave heights (Hm) and period (Tm) by means of zero up crossing. 

 
Figure 47: Example of reflection analysis. 
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Table 6: Results of reflection analysis for 49 tested wave state, (subscripts t, m_i, m_r indicate target, 
medium incident, medium reflected)     
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Figure 48: Ratio between the target wave height (Ht) and the incident wave height (Hm_i) 

 
Figure 49: Reflection coefficients (Hr/Hm_i) 

As it can be seen in Figure 48, slight deviations occurred during the tests. The biggest 

deviations correspond to the smallest period, due to the fact that small waves with periods 

below 0.8 – 0.85 sec. are inaccurately generated by the facilities of the laboratory. 

Reflection analysis results show highest values of the reflection coefficients (kr), in 

correspondence to the smallest periods, Figure 49. Although slight deviations between 

recorded (Hm_i) and target (Ht) values occur, target wave conditions are obtained 

satisfactorily. 
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Measurement of the displacement 

It is important to identify the dynamic behavior of the floating body in order to know the 

displacements of the device. This kind of information assumes high importance in the 

design of a OXYFLUXs farm for real sea application. From this point of view it is 

important to identify the maximum displacements of a single device in order to know the 

mutual distance between it and other devices and structures positioned nearby so that it 

does not hit any of them. This kind of investigation, in the present thesis, has been 

conducted by means of image processing analysis. The advantages of this technique are 

related to the low costs of the procedure; in fact the only hardware needed is a 

commercial digital video camera and a standard computer in which Matlab 2012a or a 

successive version has to be installed. The techniques to perform precise and reliable 

measurements of the environment by the use of images are called videometrics [104]; 

among other advantages, they are normally nonintrusive, so that their effect on the 

environment tends to be minimum or nil. 

Image processing procedure 

Computer vision systems are artificial systems that can obtain information from images, 

[105]. The image data may take on many formats, such as a photograph, a video 

sequence, views from multiple cameras, etc. The present system uses images from a 

digital video camera and a set of processing algorithms; the camera records a video 

sequence of the flume section of interest at a rate of 30 frames per second, then in non 

real-time condition, the algorithms process the images to determine the position of the 

device. The investigation has been conducted with two different methods, both based on 

non real-time approaches. In the first method, used only for the preliminary tests, the user 

has to manually identify the two extreme points of the investigated floating body and 

water surface, while in the second one, by means of a set of algorithms, identification of 

the dynamic of the floating body is made by tracking, frame by frame, the position of a 

marker for each time step. When using video images for measurement purposes, there are 
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a number of issues to take into account: first, lens distortion and 3D–2D projection and 

second, in case of certain video cameras and of moving objects, interlacing. Lens 

distortion is an optical error that causes an object to be magnified differently depending 

on its position in the image; a collateral effect is that straight lines in the real world may 

appear curved on the image plane, [106]. The 3D–2D projection refers to the computation 

of distances in a 3D (“real”) scene from its projection into a 2D image. The procedure 

used to overcome these issues is based on the Tsai camera calibration method [106], in 

the sense that it provides correspondences between points in the image and points in 

space. To avoid lens aberration problems, rectification methods usually resort to an image 

of a template with equidistant marks; pixels are moved from their location on the original 

image to that in the final image based on the proximity of the four nearest points in the 

template [107]. In this work, the process is simplified by identifying a conversion factor 

(pixel/mm). The system takes as inputs one image of the template and through its 

physical dimensions it finds the scale. Another issue to address when using video frames 

for measuring purposes is interlacing, which affects video images of fast-moving objects 

taken with non-progressive scanning video cameras. Interlacing was corrected by 

averaging the two fields that make up a single frame, [108].  

Both methods; the semi manual and the automatic one are based on the hypothesis that 

the movements of the floating bodies are 2D, i.e. the device must move only in the 

vertical plane passing for the midpoint of the flume. 

Semi manual approach 

The first method is described here. Such a method was used at the beginning of the 

research, when the tests were carried out with the Northern Adriatic’s wave climate. The 

approach requires a long time for the analysis of displacements, since it requires, for each 

time step, manual identification of the variable to describe. The method consists in 

decomposing the registration in single frames that are analyzed on by one. For each 

frame, several points on the figure have to be identified. After detecting the extremes of 
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the floater (blue dots Figure 52 - Figure 51 - Figure 50 ), by means of optical 

identification, a dashed line joining their centers is drawn by the system. Its midpoint 

(green dot Figure 52 - Figure 51 - Figure 50), gives the position of the float in the image. 

 
Figure 50: Identification of mean value for the extremes of the floater (mean value blue dot single optical 

detection black dots) and for water surface position (blue circle). 

In order to avoid errors due to the imprecision of the optical method, the coordinates of 

the final point are calculated considering the mean value of 4 observed points for each 

interested extreme, Figure 51.  

 
Figure 51: Identification of mean values for the extremes of the floater (mean value blue dot, single optical 

detection black dots) and for water surface position (blue circle).  
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Figure 52: Sequence of analyzed frames, [84]. 

The results coming from this procedure are a series of points in the space and time 

domain. Once the displacement of the device has been estimated, its mean elliptical 

trajectory can be fitted onto the experimental data.  

 
Figure 53: Time series measured example 
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Figure 54: Time series measured example 

Motion analysis is used to estimate the submergence of the floater during the wave cycle 

and its influence on the pumping mechanism: at each wave cycle, the position of free 

surface elevation (blue line) and the floater vertical displacements (red line) are compared 

(Figure 55, Figure 56). The medium value of submergence for each wave state is then 

evaluated over the sampled wave periods. 
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Figure 55: Rigid device moored with chains: wave state C (a),  wave state T (b), wave state O (c), wave 

state E (d) , (measurements are in mm). 
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Figure 56: Flexible device moored with chains: wave state C (a),  wave state T (b), wave state O (c),wave 

state E (d), (measurements are in mm). 

For both the rigid and the flexible device, the tests performed with waves C, T, and E 

show the same frequency response for the incoming wave and the device displacement. 

For both the devices the exception can be observed with wave O. In the spectral analysis 

reported in Figure 57, two main frequency peaks are identified: the first corresponding to 

the wave period (i.e., 1 s) and the second (i.e., 2 s) correlated with the solicitation of the 

natural frequency of the device. The nonlinear response of the devices explains why the 

spatial trajectory of the device motion does not fit the elliptical shape. 
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Figure 57: Energy spectrum for heave motion, wave state O. Rigid (a), Flexible (b). 

All results showed in this paragraph were quantified just for the preliminary tests. 

Automatic approach 

This system uses images from a digital video camera and a set of processing algorithms 

to measure the displacement of a marker drawn on the device surface. For each frame the 

procedure has the following steps: 

 Frames cropping; 

 Averaging the two fields that make up a new single frame.   

 Conversion of cropped frames from RGB to grayscale image; 

 Intensity adjustment of cropped frame; 

 Complement of the cropped frames; 

 Morphological opening and closing of the cropped frame; 

 Conversion of the cropped frame to binary image by thresholding; 

 Identification of the medium conversion factor (mm/pixel); 

 Centroid identification for the white area in binary image;  

 Storage centroid coordinates (pixel) in a new variable; 

 Conversion of the coordinates from pixel to length, (i.e. mm). 
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This procedure is not a real time system since the video camera used may not be 

connected to the PC, so its functioning can be extended to real time with an appropriate 

hardware. All the records are read by a Matlab procedure once the files are downloaded 

on the internal PC memory. The strength of this method consists in its cheapness and 

easiness of installation procedures. The whole procedure has been developed by means of 

a Matlab Image Processing Toolbox.  

Cropping the frames requires the recognition of the area of interest inside the whole 

frame. Such an  operation was carried out by mean of a description of the area given by 

the user dragging the cursor over the image, Figure 58. This step has to be repeated for 

each tests series that has to be analyzed, since the position of the video camera and the 

distance between the camera and the model is supposed to remain the same during the 

entire tests session. 

 

Figure 58: Manual identification of the region of interest (left), zoom on the selected area (right). 

Once the region of interest has been selected, the image processing cycle starts the 

procedures to improve the quality of the image and to finally convert the picture into 

binary code in order to extract the center of the mass of the white stain in the picture, 

Figure 63. Image enhancement techniques are used to improve an image, where term 

"improve" can sometimes be used in an objective manner (e.g., increase the signal-to-
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noise ratio), and sometimes in a subjective manner (e.g., make certain features easier to 

be seen by modifying colors or intensities). The aim, in this instance, is to increase the 

contrast between the black marker and rest of the image as much as possible; the first step 

is the conversion of the region of interest from an RGB image to a gray scale image. Such 

a conversion is required to allow the next step, which consists in the adjustment of the 

intensity of the image. Intensity adjustment is an image enhancement technique that maps 

the intensity values of an image to a new range. To illustrate this feature, Figure 59 shows 

a low-contrast cropped frame with its histogram; the histogram shows how all the 

intensity values are gathered in the center of the range. In Figure 59, which shows the 

same cropped frame after intensity adjustment, all the intensity values shift towards 

higher values leaving a peak in correspondence to frequency equal to zero representing 

the black stain of the marker, thus maximizing the contrast between the marker and the 

rest of the image. 

 
Figure 59: Zoom on selected area of interest before intensity adjustment (left) and its intensity histogram 

(right). 
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Figure 60: Zoom on selected area of interest after intensity adjustment (left) and its intensity histogram 
(right). 

The fourth step of the procedure consists in calculating the complement of the elaborated 

image. In the complement of an intensity image, each pixel value is subtracted from the 

maximum pixel value supported by the class (i.e. 1.00) and the difference is used as the 

pixel value in the output image. In the output image, dark areas become lighter and light 

areas become darker, Figure 61. Such a procedure is required in order to select a proper 

area during the conversion of the image in binary.  

 

Figure 61: Original image (left), complement (right). 

As can be seen in Figure 61, some inaccuracies on the definition of the edges of the 

marker still remain, like the presence of the DOP in the background. To remove 

inaccuracies on the edges and objects that do not represent the investigated shape, a 

morphological opening and closing of the complement image is done. Morphological 

opening of image A (i.e. image that as to be analyzed) by structuring element B is defined 

as ܣ ∘ ܤ ൌ ሺܣ⊖ ܤ⨁ሻܤ  while, similarly morphological closing is defined as ܣ ∙ ܤ ൌ
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ሺܣ ⊕ ⊖ሻܤ  The opening procedure aims to completely remove those regions of .[108] ,ܤ

an object that cannot contain the structuring element, to smooth the object contours and 

to break the thin connection and thin protrusion but it can also be used, for gray scales 

images, to compensate for non-uniform background illumination. The closing procedure 

tends to smooth the contours of objects, to join narrow breaks and to fill long thin gulfs 

and holes that are smaller than the structuring element. In this algorithm, the opening and 

closing procedures are used in combination with smooth images and to remove noises. 

Since the key to performing an effective morphological operation is picking a good 

structuring element, the definition of this element is derived from several tests. The 

results illustrated in Figure 62 lead to the choice of a squared structuring element with a 

dimension of 12 x 12 pixels. The dimensions of the marker edges are, on average, 15 

pixels, and they are vertical and horizontal, so the squared structuring elements seems to 

be the most appropriate choice. 
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Figure 62: Comparison of the effects of morphological opening (left) and closing (right), with different 

structuring element, (disk length 7 (1), square length 2 (2), square length 5 (3), square length 8 (4), square 
length 10 (5), square length 12 (6), square length 13 (7), square length 14 (8)) 

The main process in the algorithms is the conversion of the image from gray scale to 

binary. Such an  operation replaces all the pixels in the input image with a luminance 

greater than a selected level with value 1 (white) and replaces all the other pixels with 

value 0 (black). The issue is the recognition of the right threshold. Common values have 

been tested for all the series of tests, obtaining no good results. Finally, a different 
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threshold for each tests series has been chosen in order to take into account the variation 

of illumination during the day.  

  

Figure 63: Sequence of the last two steps of the algorithm: conversion of the image in binary and 
identification of the center of mass of the marker. 

Once the frame has been converted, through Matlab’s function “region props” it is easy 

to identify the center of the mass and the edge lengths of the white stain. The marker was 

sketched on the external surface of the tube with squared shape with sides equal to 11 

mm. For each frame the system identifies the length of the marker's edges, compares their 

values with those identified in the region of interest and calculates the medium 

conversion factor to convert the image from pixel to mm. 

This procedure is only reliable under the hypothesis of strictly rigid body structure and of 

a plane motion. The automatic procedure proved to be a powerful tool during the analysis 

operation. Its relative velocity, compared with the manual one, allowed to analyze 49 

tests in a half hour. 

Results 

Calm water tests: hydrodynamic parameters 

During calm water tests the device is displaced and released in the water. From the 

resulting motions, the logarithmic decrement, as a measure of the decay rate, is 

determined. These tests were performed on both rigid and flexible devices and the cables 

and chains mooring systems. An additional test without the mooring system, was also 

performed in order to evaluate its influence. It must be noted that this experimental 

method masks the frequency dependence of both added mass and damping coefficients. 

Hence, the values of the coefficients will be approximated. 
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For the purpose of this study, a linearized form of the equation of motion is preferred, as 

suggested in [109]. In eq. ( 8 ) the viscous damping is represented by the equivalent linear 

viscous damping coefficient. The relation between the linear and nonlinear damping 

coefficients is established by assuming that the nonlinear motion is approximately 

sinusoidal. The resulting linear motions, produced by the tests, is predicted by the 

following homogeneous equation eq. ( 8 ): Where awz, brz, bvz, are the hydrodynamic 

parameters of the devices, which represent added mass, radiation damping and equivalent 

linear viscous damping coefficients, respectively, while Awp represents the waterplane 

area when the device is at rest.  The solution of the homogeneous equation, under 

the initial condition z(0)=Z0 is: 

ሺ݉  ܽ௪௭ሻ ∙
ௗమ௭

ௗమ௧
 ሺܾ௭  ܾ௩௭ሻ ∙

ௗ௭

ௗ௧
 ߩ ∙ ݃ ∙ ௪ܣ ∙ ݖ ൌ 0 		 ሺ	8 ሻ

where ωdz is the damped natural circular frequency of the decay motion and is related to 

the natural frequency through the following relation: 

߱ௗ௭ ൌ ߱௭ ∙ ඥሺ1 െ ∆ଶሻ	 ሺ	9 ሻ

	 	

 
Figure 64: Time response of a freely floating damped heaving unmoored 

The time-dependent amplitude of the motion is then: 
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หܼ௫ሺݐሻห ≡ ܼ ൌ ܼ ∙ exp	 ቀെ
ೝାೡ
ଶሺାೢሻ

ቁ ∙ ݐ ≡ ܼ ∙ ൫െ∆௭ݔ݁ ∙ ߱௭ ∙ 			൯ݐ ሺ	10 ሻ

where tj is the time corresponding to a maximum displacement, Figure 64. 

In eq. ( 9 ) and eq. ( 10 ) quantity Δz is defined as damping ratio and it can be expressed 

as the ratio between total and critical damping coefficients:  

∆௭ൌ



ൌ
ೝାೡ

ଶටఘ∙∙ೢሺାೢሻ
			 ( 11 )

The aim of the calm water tests is to measure consecutive amplitudes. Eq. ( 10 ) relates 

two successive amplitudes, and the exponent of the last term is called logarithmic 

decrement eq. (12).   
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From Eq. ( 13 ) Δz is then calculated: 

∆௭ൌ
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ೋೕశభ
ቇ
మ
			 	 ሺ	14 ሻ

By measuring two consecutive amplitudes of the damped heaving motion, we can then 

determine the value of the combined damping coefficient, bz: 

ܾ௭ ൌ ∆௭ ∙ ܾ ൌ ∆௭ ∙ 2ඥߩ ∙ ݃ ∙ ௪ሺ݉ܣ  ܽ௪௭ሻ 		 ሺ	15 ሻ

where the added mass is calculated by: 

ܽ௪௭ ൌ
ఘ∙∙ೢ
ఠ
మ െ ݉			 ሺ	16 ሻ
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Figure 65: alm water test results: unmoored (a), rigid device moored (chains and cables) (b), flexible device 

moored (chains and cables) (c) 

 
Figure 66: Comparison of the damping coefficients, peaks envelope 

The heave is almost unaffected by the mooring system for both devices; the natural 

period presents no relevant variations with the mooring systems. The flexible device 



86 

 

shows an evident second natural period, which could be explained by the mechanical 

characteristics of the device. The flexible duct is less massive and more compliant than 

the rigid duct and cannot contrast compression. The compliance of the duct generates 

more degrees of freedom and a second natural period. The nonlinear elastic behavior 

highly affects the resultant free oscillations.  

 

Table 7: Hydrodynamic parameters 

 

 

Motion analysis 

Motion analysis is used to estimate the submergence of the floater during the wave cycle 

and its influence on the pumping mechanism: at each wave cycle, the position of the free 

surface elevation and the displacement floater are compared. The average value of the 

submergence for each wave state is then evaluated over 10 sample wave periods. The 

experimental response amplitude operator (RAO) is evaluated by means of time domain 

analysis. The procedure calculates, for each wave cycle, the amplitude of the motion in 

heave and surge of the body and then determines, as a final result, the ratio between the 

median of the calculated values and the incident wave. In the following paragraph the 

complete series of results coming from the analysis of the dynamic behavior for 49 wave 
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states will be presented. The physical tests will be proposed only for the rigid device. 

This decision comes out after the preliminary tests carried out under the action of the 

North Adriatic Sea’s wave climate. The preliminary tests highlighted some problems in 

the measurement of velocity and displacements for the flexible device, therefore the full 

analysis of the device behavior will be conducted and proposed only for the rigid one 

with a crest freeboard of 7 mm equivalent to 0.11 m in real scale. 

The tests without a mooring system have been carried out in order to identify a freely 

floating behavior of the device. Results coming from such tests will be helpful to 

demonstrate the influence of the mooring system on the dynamic response of the floater. 

These tests were completed in the high-speed towing tank of Davidson Laboratory at 

Stevens Institute of Technology; they were based on the measure of the elongation of a 

magnetic wire rolled into a spiral. The obtained measurements took into account both 

heave and surge mode, and gave as results a combination of the two. Therefore in order 

to compare these results with those coming from the single mode motion analysis heave 

and surge responses need to be combined. 

 
Figure 67: Facilities at Davidson Laboratory 
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Figure 68: Displacements measuring method at Davidson Laboratory  
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Figure 69: Experimental RAO for rigid device with no mooring system  

	

Figure 70: Experimental Response Amplitude Operator (RAO) for rigid device moored with cables; dotted 
lines indicate standard deviation. They appear only in correspondence to some period, since different wave 

heights have been tested only for selected wave periods. 

Figure 70 and Figure 75 show good correspondence with the results coming from calm 

water tests. Resonant periods for OXYFLUX moored with cables (CA) and chains (CH) 

are equal to 1.15 and 1.05 sec, respectively. Such values are reasonably greater than the 

resonant periods calculated by means of the calm water tests with no mooring system 
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since the presence of the additional mass due to the mooring lines increases the natural 

period of whole structure.  

Cables (Figure 70), largely affect the dynamic response of the floater. The heave peak 

(blue line Figure 70) relative to the resonant period (1.15 sec) is less pronounced as 

compared to the heave peak for the chains system, Figure 75), while the surge mode is 

completely damped by the mooring line. Surge shows an increasing trend according to 

horizontal water particle displacement growth. No resonant period seems to be reached 

for surge mode during the period of the tests with the device moored with cables.   

 
Figure 71: Example of measured time series, Wave n°12 

Non linear effects due to the elastic cables affect the shape of the signal, and are mainly 

caused by the drag acting along the cables. Both heave and surge mode show higher 

values of steepness than the wave signal; furthermore surge mode asymmetry can be 

noticed inside the wave cycle, Figure 71. The more the wave grows, the more the non 

linear effects affect the response. As wave height increases, relative velocity between 

water particles and the device also increases. Such phenomenon interests the cables and 

the stabilizing ring at the bottom of the tube, generating a flow separation at the ring 

corners and then dampening the vertical displacement by means of viscous dissipation,  
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Figure 72. Less energetic wave states show near linear behavior in virtue of the lower 

water particle velocities values,, Figure 74. 

  

Figure 72: Eddy formation at the stabilizing ring, wave trough (left), wave crest (right) 

 
Figure 73: Eddy formation at the stabilizing ring from numerical model. 
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Figure 74: Example of measured time series, Wave n°2 

 
Figure 75: Experimental Response Amplitude Operator (RAO) for rigid device moored with chains; dotted 
lines indicate standard deviation. They appear only in correspondence to some period, since different wave 

heights have been tested only for selected wave periods. 

Comparing Figure 75 with Figure 70 it is evident how the chain mooring system allows 

the motion of the device more than the cables mooring system. Heave response presents a 

clear peak relative to the solicitation of the natural period which is approximately equal to 

1.05 sec, while for the surge mode it can be noticed that chains allow the floater to ride 

the waves much better than the cables since the RAO shows higher values of response; 
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for the values of the period between 0.9 and 1.05 sec the response of where the floater 

oscillates near 1. In the following, a tool similar to the response amplitude operator will 

be used to describe the dynamic response of the floater even if the device shows large 

non linear effects in its behavior. Such effects are taken into account showing the 

standard deviation from the mean value of response to estimate the non linearity. The 

dotted lines correspond to the standard deviation (sd); they are present only in 

correspondence with some periods since not all the periods have been tested with 

different wave heights. The trend of standard deviation highlights the non linear response 

of the floater for both mooring systems.  

 
Figure 76: Comparison between experimental Response Amplitude Operator (RAO) for the rigid device; 

dotted lines indicate standard deviation. They appear only in correspondence to some points since multiple 
wave heights have been tested only for selected wave periods. 

In Figure 76 the comparison with the combined RAO is shown. The combined RAO was 

calculated by taking into account the surge and heave components of the motion. As can 

be expected resonance shifts toward higher values of period for moored device in virtue 

of its increased mass due to the mooring lines. The most relevant effect due to the chain 

is shown in Figure 77.  
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Figure 77: Example of measured time series and relative spectral analysis for chains moored device; the 

non linear behavior of the device is highlighted for wave n° 14 in heave mode. 

Another parameter investigated is the average submergence of the floater during the wave 

cycle. This parameter is strongly affected by the mooring system. Elastic cables dampen 

the possible displacements resulting in asymptotic tendency of the submergence to reach 

100 % during the wave cycle as the wave period increases, while chains allow the body 

to move with the water particle, resulting in an asymptotic value of 50%, as shown in 

Figure 79. 
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Figure 78: Submergence of the floater during wave cycle (%) vs wave period. 

 

Water velocity measurements 

Ultrasound Doppler velocimetry was originally applied in the medical field and dates 

back to the late 40’s. The first use of ultrasound for medical diagnosis came about in 

1949 with attempts to obtain ultrasonographic cross-sectional imaging. In 1954, H. P. 

Kalmus [111], described how flow velocity in fluids could be determined by measuring 

the phase difference between an upstream and downstream ultrasonic wave. Baker and H. 

F. Stegall [112] presented the first Doppler instrument intended for transcutaneous 

measurement of blood flow velocity in man using the continuous wave Doppler principle. 

Approximately five years later, pulsed Doppler instruments were introduced, allowing 

blood flow velocity measurements at predetermined depths. The use of pulsed emissions 

has extended this technique to other fields and has opened the way to new measuring 

techniques in fluid dynamics. Takeda [113] subsequently extended this method to non-

medical flow measurements and developed a monitoring system for the velocity profile 

measurement of general fluids. The method itself was found to be quite useful for 
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measuring the flow of a fluid and in the end, through years of use, has gradually become 

accepted as a tool to study the physics and engineering of fluid flow, [114]. The working 

principle of pulsed ultrasound Doppler velocimetry is to detect and process many 

ultrasonic echoes issued from pulses reflected by micro particles contained in a flowing 

liquid. A single transducer emits the ultrasonic pulses and receives the echoes. By 

sampling the incoming echoes at the same time relative to the emission of the pulses, the 

variation of the positions of scatterers are measured and therefore their velocities. The 

measurement of the time lapse between the emission of ultrasonic bursts and the 

reception of the pulse (echo generated by particles flowing in  the liquid) gives the 

position of the particles. By measuring the Doppler frequency in the echo as a function of 

time shifts of these particles, a velocity profile after few ultrasonic emissions is obtained 

[115]. 

 

The used key features of Signal Processing's DOP2000 velocimeter 

The Emitting Frequency 

In the choice of an emitting frequency the following four factors are crucial. First of all, 

the desired position of the sampling volume is important, especially when dealing with 

small channels. The emitting frequency contributes to the definition of the axial and 

lateral dimension of the sampling volume. Since this dimension is linked to the duration 

of the burst, for a defined number of wave cycles in the burst, a higher emitting frequency 

will give a better resolution. Besides the sampling volume size, attenuation of the 

ultrasonic signal is an important factor to be taken into account in the choice of an 

emitting frequency. The attenuation of ultrasonic waves depends on their frequencies. 

Low frequencies are less attenuated than high frequencies. Moreover, the maximum 

measurable velocity, which is inversely proportional to the emitting frequency, and the 

energy backscattered by particles depend on the ultrasonic frequency. In this study the 
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chosen emitting frequency is equal to 4 MHz since the only usable transducer was a 4 

MHz instrument. This restriction is due to the characteristic dimensions of the transducer. 

The instrument had to be installed inside the tube of the device (diameter equal to 50 

mm), then its diameter had to be small enough so as to not disturb the flow inside. The 

selected apparatus has a diameter of 8.8 mm, the smallest available. It can be argued that 

the effects of the instrument on the flow at a distance from its bottom surface equal to 

more than five times the diameter of the device can be neglected, and the measured 

velocity should be unaffected by the DOP. 

Pulse repetition frequency 

Pulse repetition frequency determines the maximum measurable depth as well as the 

maximum Doppler frequency and therefore the maximum velocity which can be 

measured unambiguously. The choice of the pulse repetition frequency should be based 

on the velocity values that have to be measured and not on the depth that has to be 

reached. The best way to select a correct value is to start with a high value and reduce 

this value until at least 50 percent of the velocity scale is covered. The desired analyzed 

depth can then be adapted by changing the resolution, the position of the first gate or the 

number of gates. In this research the emitting frequency is identified considering the 

maximum velocity range to measure. Such velocity is calculated according to the linear 

wave theory for the most energetic simulated wave, Figure 79. The selected emitting 

frequency has been chosen as equal to 2202 Hz, corresponding to a maximum 

investigated depth of 334 mm from the transducer.   
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Figure 79: Water particles velocity according linear wave theory for wave state 34 

 

Wall effect, position of the first gate and saturation effect 

In order to determine the velocity profile in a correct manner, the position of the first gate 

should be chosen carefully so that the wall effect and saturation are decreased. The 

measured portion of each sample volume is located in the center of the sample. When 

part of the sample volume is located inside the channel wall, this position will not reflect 

the actual measuring position given by the instrument (wall effect). In the following, the 

position of the first gate will be set so that the sampling volume begins ideally right after 

5 times the transducer's diameter in order to exclude the effects of the wake caused by the 

sensor and the turbulence caused by overtopping. The position of the first gate is based 

on the position of the center of the first sample volume which depends on the emitted 

ultrasonic burst length, the speed of sound in the media located between the transducer 

face and the first gate and the starting depth that can be set in the instrument.  When the 

first gates are close to the surface of the transducer, the burst duration and the ringing of 

the piezoelectric ceramic do not allow any measurement in these gates due to a saturation 

of the receiver (saturation effect). The saturation region can be visualized in the display 
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of the received echoes, where the level echoes of the gates located at the depths near the 

surface of the transducer stretch over the entire scale. The position of the first measurable 

gate therefore depends on the emitting frequency, the burst length, the geometry of the 

experimental setup, the emitted power and the amplification level. The starting depth 

chosen in the instrument is the distance between the transducer face and the center of the 

first gate. For the purposes of the present study the position for the first gate was kept 

equal to 43 mm from the emitted bottom surface of the DOP. 

Burst length 

The length of the emitted burst affects the sampling volume. The bandwidth of the 

electronic receiving unit in the ultrasonic instrument is fixed, but the number of cycles 

contained in the emitted ultrasonic burst can be changed. The length of the emitted burst 

depends on the selected emitting frequency and on the speed of sound in the medium. 

The value of this parameter was selected as equal to 4 ultrasonic wave cycles. The length 

of the used burst is equal to 1.48 mm, according to the hypothesis that the speed of sound 

in water is equal to 1480 m/sec, the emitting frequency is equal to 4 MHz and wave 

length is equal to 0.37 mm. 

Resolution 

In ultrasonic instruments, the resolution is defined as the distance between the centers of 

adjacent sampling volumes. In ultrasonic Doppler velocimetry, the shape and lateral size 

of sampling volumes (measured perpendicularly to the ultrasonic beam axis) are defined 

by the geometry of the ultrasonic beam. The longitudinal size of the sampling volumes on 

the other hand is defined by burst length. The borders of the sampling volumes are not 

well defined since the levels of the ultrasonic echoes increase and decrease “slowly” due 

to the finite bandwidth of the receiver. Whenever possible, a value for the spatial filter 

matching the resolution should be selected to achieve an optimum signal to noise ratio. 

Physical tests were completed using a resolution set to 0.74 mm and a relative spatial 

filter fixed on 0.78 mm.  
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Number of gates 

The number of gates that can be measured depends on the selected pulse repetition 

frequency, the position of the first gate and the selected resolution. An upper limit can be 

fixed to ensure a better display of velocity profiles, especially when low pulse repetition 

values are selected. The position of the first gate and the number of gates define the 

measuring range and, therefore, the analyzed depth. In the present investigation 140 gates 

were used to identify water velocity inside the tube corresponding to a range between 43 

and 146 mm from the transducer. Medium simultaneous values are calculated for 140 

measurements obtaining a sinusoidal trend, Figure 80.  

 
Figure 80: Velocity values time series, wave n° 9. 

Emitting Power and Sensitivity 

Emitted ultrasonic power has to be selected in order to receive enough backscattered 

energy from the particles and to avoid saturation in the receiver stage of the instrument as 

much as possible. High emitting power should be avoided since it induces more ringing 

in the transducer and more dissipated energy. Therefore it is generally better to increase 

the amplification (time gain control) instead of increasing the emitting power. 
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Nevertheless, a too high level of amplification can also induce saturation in the receiver 

stage of the instrument, which can lead to wrong measurements. The algorithm used to 

measure the Doppler frequency computes the mean frequency of the Doppler spectrum. 

When Doppler energy decreases, the mean value becomes more and more random due to 

the noise included in the spectrum. In order to avoid the appearance of random values in 

the measurement, the instrument also computes the level of Doppler energy received and 

allows the user to cancel the computation of the Doppler frequency if the level of the 

Doppler energy is below a value defined by the user. In this case the canceled values are 

replaced by zero values. The sensitivity parameter contains five different values, which 

define the level below which the computation is canceled. The sensitivity parameter can 

be used to obtain information on the quality of the measured values. Both parameters 

discussed in this section were set on the highest values during the tests.  

Number of Emissions Per Profile 

The measurement of the Doppler frequencies is based on the correlation that exists 

between different emissions. Since each emission can be considered as a particular 

realization of a random process, more samples are available which reduce the variance of 

estimated quantity. The algorithm used to estimate the Doppler frequency is based on the 

assumption that the particles that generate the echoes during the measurement of the 

Doppler frequency remain inside the ultrasonic beam and their velocities are constant. 

For low velocities in steady flows this assumption is valid, but for transient ones, 

characterized by high velocities (as in this study), a compromise between the quality of 

the estimation (minimum variance) and the measuring time has to be accepted. The 

number of emissions per profile should be selected in accordance with the type of flow 

investigated and with the width of the ultrasonic beam. For low velocities in steady flows, 

a high number of emission will decrease the variance and therefore should be selected. 

For high velocities in unstationary flows this number should be adapted to the degree of 

variation of the velocities versus time. This number was set as equal to 128 emission per 

profile.  
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Profiles to record 

In pulsed ultrasound Doppler velocimetry measurements, a certain number of 

instantaneous velocity profiles are used to calculate the mean velocity profile. Possible 

velocity fluctuations, caused by the recirculation of the backward facing step at high 

Reynolds-numbers (as in the present research), may lead to small differences between 

different instantaneous profiles and therefore to a statistical error. Therefore, it is 

necessary to determine a mean velocity profile on the base of enough instantaneous 

velocity profiles; this parameter was set equal to five contemporarily profiles. 

Furthermore the final result of the present method is the mean velocity value of 15 wave 

cycles. Such procedure allows to identify single representative value of velocity for each 

tested wave state. An important step in the analysis is the choice of the instance when the 

signal should be cut. Velocity values have a sinusoidal trend, therefore the mean value 

must be calculated on integer times of the wave period in order to make negligible 

relative velocity between transducer and water flux due to the movement and not to the 

wave overtopping. 

 
Figure 81: Velocity values time series, wave n° 9. 
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Measurement set-up  

In this study, a commercially available pulsed ultrasound Doppler velocimetry system 

(DOP 2000) manufactured by Signal Processing S.A., Switzerland, is used to measure 

downward water velocity in the experimental setup described above. The basic function 

of pulsed ultrasonic Doppler velocimetry is to measure the Doppler shift frequency and 

time delay between emission and reception of ultrasound scattered back by small 

particles which are moving with the fluid. In water, natural particle contamination usually 

generates enough significant echo signals. If not, particles have to be added in a process 

called seeding. The most important parameter during the selection of the seeding material 

is the size of the scatterer, because the amount of energy reflected by the scatterer and its 

angular distribution depends primarily on the ratio between particle size and ultrasonic 

wavelength. The tests series analyzed in the present document were accomplished in a 

flume filled with water coming from the aqueduct, therefore there were not enough 

particles. Powder of titanium dioxide was added to the water in order to have sufficient 

seeding. Titanium dioxide (TiO2) is a naturally found oxide of titanium, its most 

important application areas are paints and varnishes as well as paper and plastics. Its 

characteristic gravity is equal to 3970 kg/m3  [116] and its primary particle size (d50) 

varies from some nm to tens of μm. Titanium dioxide has been chosen according to 

Longo [117], who already used it in his experiment aimed at investigating turbulence 

flow structures in wind generated gravity waves.   

 

Results  

The DOP sensor was installed along the pipe axis of the physical model at a distance of 

approximately equal to 150 mm from the top of the floater. The measurements start at 

195 mm below mean water level and end at 296 mm below mean water. The connection 
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between the probe and the structure of the floater was developed by means of a rigid 

structure made in the machinery and inherently moving with the device, Figure 83. 

 

 

Figure 82: OXYFLUX during a physical test, only the probe and floater are visible (left), cad view of a 
section of the device with DOP (right). 

A sampling frequency equal to 14.40 Hz is imposed. The DOP data allows to calculate 

average velocity at each point of the measured profile for the whole duration of the signal 

or for just a single wave cycle. The sensor inherently moves with the floater; the relative 

velocity between the device and the water inside the tube is negligible since mean 

velocity is calculated on a multiple of the wave cycle. This method used to estimate flux 

velocity inside the duct was found to be not robust enough for the highest waves acting 

on the flexible device, since the sensor is linked to the floater but not to the flexible duct; 

hence, the emitted beam may sometimes measure velocity outside the duct, Figure 83. 

DOP probe 

Floater 
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Figure 83: Problems relative to the measurements with the flexible structure (right), rigid structure (left). 

In order to have the same temporal reference system the ultrasonic Doppler velocimeter 

was triggered with the acquisition of the wave signal and the camera. Results are given in 

a table format in which each column is the time series at the single point of measurement 

(i.e. each 0.74 mm) while each row is an instantaneous profile along the whole tube for 

the entire set of measuring gates.  

For the purpose of the present study each tested wave state has been characterized by a 

single value of velocity identifying three main operating ranges determined by two 

threshold values of wave heights. As can be noticed from Figure 84 the three fields are 

identified by means of wave height thresholds. Such values distinguish Field 1 for wave 

heights smaller than 3.00 mm in Froude similitude 1:16 (real scale 0.05 m) where no 

overtopping occurs, Field 2 for wave heights between 3.00 mm and 48.00 mm (real scale 

0.77 m) where overtopping of incoming wave generates downward flow for higher head 
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of the water column inside the device with respect to the surrounding wave field and 

Field 3 for wave heights between 48.00 mm and 100.00 mm (real scale 1.60 m) where 

water flux reverses its direction and the water flows from the bottom to the surface. Such 

behavior is mainly due to the depression generated by the wave crest as it goes over the 

floater but not into it. 

 
Figure 84: Vertical water velocity vs. incident wave height, (positive values represent downward water 

velocities), device moored with cables. 
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Figure 85: Vertical water velocity vs. wave steepness, (positive values represent downward water 
velocities), device moored with cables. 

 

 
Figure 86: Vertical water velocity vs. average submergence level during the wave cycle, (positive values 

represent downward water velocities), device moored with cables. 

Comparing R2 values for the investigated parameters it can be argued that wave height is 

the environmental variable that better describes the pumping mechanism.  

Each mooring configuration presents a different pumping mechanism; the chain mooring 

system allows the floater to freely ride the waves and then increases the minimum 

threshold value to allow overtopping of the floater. Both threshold values increase but the 

same trend can be recognized even for this mooring system. In Figure 87 the three fields 

are distinguished as: Field 1 for wave heights smaller than 12.00 mm in Froude 

similitude 1:16 (real scale 0.19 m) where no overtopping occurs, Field 2 for wave 

heights between 12.00 mm and 62.00 mm (real scale 0.99 m) where overtopping of 

incoming waves generates a downward flow for higher head of the water column inside 

the device with respect to the surrounding wave field and Field 3 for wave heights 
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between 62.00 mm and 100.00 mm (real scale 1.60 m) where water flux reverses its 

direction and the water flows from the bottom to the surface. 

 
Figure 87: Vertical water velocity vs. incident wave height, (positive values represent downward water 

velocities), device moored with chains. 

 
Figure 88: Vertical water velocity vs. wave steepness, (positive values represent downward water 

velocities), device moored with chains. 
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Figure 89: Vertical water velocity vs. medium submergence level during the wave cycle, (positive values 

represent downward water velocities), device moored with chains. 

In Figure 87, Figure 88, Figure 89 water velocity results are proposed for the device 

moored with chains; from the values of R2 it is clear that suitable equations for these 

results are harder to identify. Figure 90 clarifies the differences in the pumping 

mechanism for the two mooring systems. Chains let the device ride the waves generating 

a higher value of velocity that can be reached only for wave heights greater than 12.00 

mm (real scale 0.19 m). Since the aim of the device is to induce downward vertical water 

flux during the summer season, when strong vertical stratification shows its effects and 

wave energy is generally reduced, a lower value of the first threshold should be preferred 

in order to guarantee constant flux during all kind of wave states. 
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Figure 90: Comparison of water velocity results and fitting for the two mooring systems. 
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CHAPTER V: Numerical investigation 

Numerical study of wave-structure interaction is a wide field of research; at the present 

day three main approaches are known and broadly used. The methods of investigation 

can be distinguished between empirical, potential flow based, and CFD based,[110]. 

Empirical approaches, such as Morrison’s equation, can be used to estimate the force 

acting on a pile. Since the method is fully empirical it depends on flow coefficients that 

have to be estimated from measurements and they are not generally valid for all flow 

regimes. Morrison’s equation can correctly estimate the forces only if applied to compact 

bodies and it cannot provide a complete description of the pressure acting on them,[111].  

A general overview of potential flow based methods is presented by Newman [112]; such 

methods allow a more realistic representation of the fluid flow than Morrison’s equation. 

These codes discretize the model into panels and calculate pressure and velocity potential 

for each of them. Potential flow methods are based on a simplification of the Navier-

Stokes equations that consists in assuming non-viscous and non-rotational incompressible 

fluid flow. Such hypothesis make them efficient for linear, weakly non-linear, and 

viscous negligible wave structure interaction problems. 

For highly non-linear phenomena as, wave breaking, green water, violent body motion 

and important viscous flow Computational Fluid Dynamic (CFD) should be used. 

Remaining within the CFD category two different methods of calculus can be identified. 

The Eulerian method uses a mesh to describe the fluid flow, and it solves the Navier-

Stokes equation for each mesh element. The Lagrangian method, models the interaction 

between particles representing the fluid instead of using a mesh. The main advantage of 

CFD methods is that in principle they are valid for all flow regimes in off-shore 

engineering. The second advantage of CFD methods is that the simulation does not need 

to be scaled as it is necessary for the physical model. Unfortunately they often need to be 

validated against tests conducted on scaled models due to the lack of full scale data. CFD 
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methods have been widely used to model the complex nonlinear hydrodynamic 

interaction between waves and floating bodies, including several types of WEC’s, [113], 

[114], [83].  

The OXYFLUX exhibits a complex hydrodynamics. The description of its operating 

principles involves the interaction between wave and floating part, the submerged parts 

(in particular the stabilizing ring), and wave overtopping. This implies non linear effects 

that cannot be modeled without CFD techniques. In the present thesis I used the 

commercial CFD code STAR-CCM+, [115] to investigate the nonlinear effects of the 

interaction between regular waves and OXYFLUX device on the pumping mechanism. 

Below, the principal basis on which the software works, basic flow equation and 

discretization schemes are described in order to give a brief illustration of the whole 

software.  

Governing equation 

Basic equations for the present problem are Navier-Stokes equations, which discretized 

on a 3D mesh are solved by the CFD solver in order to calculate the velocity and the 

pressure in the flow field. The integral form of the Navier-Stokes include continuity and 

momentum equation which can be written in integral form as eq. ( 17 ) and eq. ( 18 ), 

respectively, [116].  

డ

డ௧
 ߩ ∙ ܸ݀   ߩ ∙ ൫࢜ െ ൯ࢍ࢜ ∙ ݀ܽ ൌ 0


( 17 )

డ

డ௧
 ߩ ∙ ࢜ ∙ ܸ݀   ߩ ∙ ⊗࢜ ൫࢜ െ ൯ࢍ࢜ ∙ ࢇ݀ ൌ  ሺࢀ െ ሻࡵ ∙ ࢇ݀   ࢌ ∙ ܸ݀     ( 18 )

Where ρ is the fluid density, V is the cell volume bounded by the closed surface A, v	 is 

the velocity vector, vg	 is	 the	grid	velocity	vector,	 t	 is	 the	 time,	T	 is	 the	viscous	stress	

tensor,	and	f	is	the	vector	of	all	body	force	terms.	Viscous	stress	tensor	for	turbulent	

flow	 is	 defined	 as	 the	 sum	of	 the	 laminar	 and	 turbulent	 stress	 tensors,	 and	under 

Bussinesq approximation is defined as: 



113 

 

ܶ ൌ  ߤ ∙ ቂ࢜  ்࢜ െ
ଶ

ଷ
∙ ሺ ∙ ሻ࢜ ∙ ቃ ( 19 )ࡵ

௧ܶ ൌ  ߤ௧ ∙ ሺ࢜  ሻ்࢜ െ ଶ

ଷ
ሺߤ௧ ∙ ࢜  ߩ ∙ ݇ሻ ∙ ( 20 ) ࡵ

ܶ ൌ ܶ  ௧ܶ ൌ  ߤ ∙ ቂ࢜  ்࢜ െ
ଶ

ଷ
∙ ሺ ∙ ሻ࢜ ∙ ቃ ( 21 )ࡵ

Where μ is the laminar viscosity, μt is the turbulent viscosity, μeff is the effective viscosity 

defined as the sum of laminar and turbulent viscosity and k is the turbulent kinetic 

energy, [115]. In STAR-CCM+ additional transport equations for scalar quantities are 

solved for μt to be derived by means of eddy viscosity model based on Reynolds-

Averaged Navier Stokes approach. In this research K-Omega model has been used to 

evaluate the magnitude of the viscous force on the OXYFLUX structure. 

Discretization: Finite Volume Method (FVM) 

In this thesis a Finite Volume Method (FVM) to discretize the previous equations is used. 

Such method expects the solution domain, like the numerical wave tank and the structure 

of the device, to be subdivided into a finite number of discrete volumes called control 

volumes (CVs). The integral form of Navier Stokes equations is applied to each CV in 

order to calculate the values of the variables at its center node. Summing all the equations 

for all the CVs the global conservation equation can be obtained, since surface integrals 

over inner CV faces cancel. The final result is a set of linear algebraic equations with the 

total number of unknowns equal to the number of cells in the grid that it is solved by 

means of the well known segregated, interactive scheme SIMPLE, [117].  

Discrete form of momentum equation 

Appling eq. ( 18 ) to a cell-centered control volume for cell-0, one obtains the following 

discrete equation for the transport of velocity, [93]: 
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డ

డ௧
ሺߩ ∙ ࢜ ∙ ܸሻ  ∑ ࢜ൣ ∙ ߩ ∙ ൫࢜ െ ൯ࢍ࢜ ∙ ൧ࢇ ൌ ∑ ሾሺࢀ െ  ∙ ሻࡵ ∙ ሿࢇ   ( 22 )

The discrete equation for each velocity component may be expressed implicitly as a 

linear system of equation. Evaluating the stress tensor T requires to calculate the velocity 

tensor gradient at the face f, ∇vf	.	

࢜ ⊗ ࢻ  ࢜ഥ െ ൫ഥ࢜ ∙ ⊗൯࢙ࢊ ( 23 )  ࢻ

Where: ࢜ ൌ ଵ࢜ െ ࢜ഥ , ࢜ ൌ
బ࢜∆భି࢜∆

ଶ
 and ࢻ ൌ ࢇ

࢙ࢊ∙ࢇ
 ( 24 )

∆v1 and ∆v0 are the velocity gradient tensors at cells 1 and 0.  

Each boundary condition available in STAR-CCM+  has its own method to calculate T 

that also depends on the simulated flow regime, (laminar or turbulent), more information 

are available in [93].  

Discrete form of continuity equation 

Discretization of the continuity equation in STAR-CCM+ is done according the 

following, [93]: 

∑ ሶ݉  ൌ ∑ ൫ ሶ݉ 
∗  ሶ݉ 

ᇱ ൯ ൌ 0  ( 25 )

The uncorrected mass flow rate ( ሶ݉ 
∗)  is computed after the discrete momentum equation 

have been solved according the following expression: 

ሶ݉ 
∗ ൌ ߩ ∙ ቂࢇ ∙ ቀ

బ࢜
∗ା࢜భ

∗

ଶ
ቁ െ ቃܩ െ Υ   ( 26 )

࢜
∗  and ࢜ଵ

∗  are the cell velocities after the discrete momentum equation has been solved.  
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Gf is the grid flux and Υ is the Rhie-and-Chow-type dissipation at the face; the fully 

developed equation of the grid flux and Rhie-and-Chow-type dissipation can be found in  

[93],[116], [118]. Mass flow correction term ( ሶ݉ 
ᇱ ) is calculated by means of the following 

equation, [93]: 

ሶ݉ 
ᇱ ൌ ܳ ∙ ሺ

ᇱ െ ଵ
ᇱ ሻ 

ሶ 
∗

ఘ
∙ ቀ

డ

డఘ
ቁ
்
∙ ௨௪ௗ

ᇱ    ( 27 )

where 
ᇱ  and ଵ

ᇱ  are the pressure cell corrections and  ௨௪ௗ
ᇱ   is given by: 

௨௪ௗ
ᇱ ൌ ቊ


ᇱ ݂݅	 ሶ݉ 

∗  0
ଵ
ᇱ ݂݅	 ሶ݉ 

∗ ൏ 0
		  ( 28 )

then, the discrete pressure correction is obtained from eq. ( 25 ) and eq. ( 28 ) in 

coefficients form as below: 

ܽᇱ  ∑ ܽᇱ ൌ ( 29 )       ݎ

Where ݎ is the residual equal to the net mass flow into the cell 

r ൌ െ∑ ሶ݉ 
∗

     ( 30 )

For the boundary faces two different conditions can be identified.  

The first one is relative to boundary faces with specified velocity, such as wall, symmetry 

and inlet boundary, in which the value of face mass flow predictor ( ሶ݉ 
∗ ) is directly 

calculated from the imposed velocity. In such case the Neumann condition is used for the 

pressure correction and the mass flux corrections are zero.     

The second one is relative to the boundary with specified pressure, such as stagnation 

inlet and pressure outlet, in which the pressure corrections are not zero. 
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   SIMPLE Solver Algorithm 

In STAR-CCM+ SIMPLE algorithm is used to control the overall solution. Simple 

method is an iterative solver that couples continuity and momentum equations. The 

summarization of such algorithm can be outlined as follow, [93]: 

1. Set the boundary conditions; 

2. Compute the reconstruction gradients of velocity and pressure; 

3. Compute the velocity and pressure gradients; 

4. Solve the discretized momentum equation. This creates the intermediate velocity 

field, v*; 

5. Compute the uncorrected mass fluxes at faces, ሶ݉ 
∗; 

6. Solve the pressure correction equation. This produces a value of the pressure 

correction, p’ for each cell; 

7. Update the pressure field:  

ାଵ ൌ   ߱ ∙  ,ᇱ

where ߱ is the under-relaxation factor for pressure; 

8. Update the boundary pressure corrections, 
ᇱ ; 

9. Correct the face mass fluxes: 

ሶ݉ 
୬ାଵ ൌ ሶ݉ 

∗  ሶ݉ 
ᇱ ; 

10. Correct the velocity cells: 

ାଵ࢜ ൌ ∗࢜ െ
∙ᇲ

ࢇ
ೇ ; 

where ᇱ  is the gradient of the pressure corrections, ࢇ is the vector of central 

coefficients for the discretized linear system representing the velocity equation 

and V is the volume cell; 

11. Update density due to pressure changes; 

12. Free all temporary storage. 
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The application of the previously described finite volume discretization schemes to 

Navier Stokes equations will result in the coefficients of the linear equation system that 

needs to be solved implicitly. 

 

   Multigrid Methods  

Algebraic multigrid methods solve iteratively the discrete linear system originated from 

the discretization method described above.  

 ∙ ࢞ ൌ ( 31 )   ࢈

where A is the coefficients matrix, x is the unknowns vector (i.e. true solution of system) 

and b  represents the residuals vector for each cell. Typically A matrix is sparse. Direct 

methods such as Gauss elimination or LU decomposition on such systems are costly, 

since the triangular factors of the sparse matrices are not sparse.  It is therefore preferable 

to use an iterative method, such as the one used in the present research by means of 

STAR-CCM+.  

The general principle behind iterative methods is that, given an approximate solution of 

the system xk , a better approximation xk+1  is sought. The process is repeated until the 

solution is found. If the system in eq. ( 31 ) is solved through the iterative method we can 

obtain an intermediate solution y after a non specified number of iterations that does not 

satisfy eq. ( 31 ).  

 ∙ ࢟ ൌ ࢈ െ ( 32 )   ࢘

An error vector can be introduced as the difference between the true solution and the 

intermediate one, so that, subtracting eq. ( 32 ) from the initial system eq. ( 31 ) it gives 

the relationship between the residual vector and the error vector, eq. ( 35 ), [116]. 
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ࢋ ൌ ࢞ െ ( 33 )   ࢟

 ∙ ࢋ ൌ ( 34 )   ࢘

The residual vector can be calculated using the iteration process by substituting solution 

in eq. ( 32 ), [116]; then the system in its iterative form can be written as: 

ࢋ ൌ ࢀ ∙ ିଵࢋ  ( 35 )   ࢉ

where matrix T depends on chosen iteration method, i.e. the Jacobi method or Gauss-

Seidel method with or without relaxation, [119].   

It has been established that the solution error has components within the range of wave 

lengths that are multiples of the mesh size. Iteration methods cause rapid reduction of 

error components from short wave lengths up to a few multiples of the mesh size. Coarser 

mesh presents its longest possible wavelengths of error relative to the short wave length 

range of mesh and hence all error components reduce rapidly. On the finer meshes,  the 

longest error wave lengths cannot be eliminated as they fall outside the short-wave length 

range for which decay is rapid, [119]. Multigrid methods are designed to exploit these 

inherent differences of the error behavior and use iteration on meshes of different size 

through the following steps: 

1. Agglomerate cells to form coarse grid levels; 

2. Transfer the residual from a fine level to a coarser level, (known as restriction); 

3. Transfer the correction from a coarse level back to a finer, (known as 

prolongation); 

Multigrid algorithms can be divided into two types: geometric and algebraic.  

Geometric multigrid uses the grid geometry and the discrete equation at the coarse level 

to obtain the linear system that has to be solved on that level. Algebraic multigrid derives 

a coarse level system without any reference to the underlying grid geometry or discrete 
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equations. The coarse-grid equations are derived from arithmetic combinations of the 

fine-grid coefficients. Since it is not always straightforward to obtain suitable discrete 

equations on coarse levels, algebraic multigrid (AMG) is at an advantage. Therefore, it is 

used for the solution of all linear systems in the present investigation. AMG solver in 

STAR-CCM+ has two cycling strategies: fixed and flexible. For systems that are not very 

stiff, it is more economical to use flexible cycles. Instead of following a regular pattern, 

multigrid cycles are applied on the basis of the reduction that is witnessed in residuals. 

This means that in flexible strategy residuals are constantly monitored and if the residuals 

exceed a given threshold, the solution will continue on a coarser level. On the other hand, 

if residuals on a given level are lower than a specific tolerance, the solution moves to a 

finer level. 

Multiphase Methods 

Multiphase flow is a term that refers to the flow and to the interaction of several phases 

within the same system where distinct interfaces exist between the phases. Multiphase 

flows can be classified into two categories:  

 Dispersed flows, such as bubbly, droplet, and particle flows;  

 Stratified flows, such as free surface flows, or annular film flow in pipes. 

STAR-CCM+ provides five distinct models to meet the requirements of these two 

categories of flow: Lagrangian Multiphase, Multiphase Segregated Flow, Volume of 

Fluid (VOF), Discrete Element Model (DEM) and Fluid Film. For the purpose of the 

present thesis a VOF method is used. The Volume of Fluid (VOF) model is suitable for 

systems containing two or more immiscible fluid phases, where each phase constitutes a 

large structure within the system (such as typical free surface flows). This approach 

captures the movement of the interface between the fluid phases, [93]. 
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VOF Multiphase Model 

Volume Of Fluid method is a tool capable to simulate the flow of several immiscible 

fluids on numerical grids and to resolve the interface between the phases of the mixture. 

The main advantage of such method is that it does not need to model inter-face 

interaction, then it is computationally very advantageous. This model is based on the 

assumption that all phases share velocity and pressure. Thanks to its numerical efficiency, 

the model is suited for simulations of flows where each phase constitutes a large 

structure, with a relatively small total contact area between phases. The spatial 

distribution of each phase at a given time is defined in terms of a variable that is called 

the volume fraction, α. A method to calculate such distributions is to solve a transport 

equation for the phase volume fraction. The method uses the STAR-CCM+ Segregated 

Flow model. The description ot the VOF model assumes that all immiscible fluid phases 

present in a control volume share velocity, pressure, and temperature fields. Therefore, 

the same set of basic governing equations describing momentum, mass, and energy 

transport in a single-phase flow is solved. The equations are solved for an equivalent 

fluid whose physical properties are calculated as functions of the physical properties of 

its constituent phases and their volume fractions,[93]. 

ߩ ൌ ∑ ߩ ∙ ߙ     ( 36 )

where αi	 is	defined	as	ߙ ൌ


	and	ρi and Vi		are	the	density	and	the	volume	of	the	 ith	

phase	for	each	cell.	For	the	case	of	a	two	fluid	mixture	such	as	air	and	water	mixture,	

which	is	what	this	thesis	is	dealing	with,	it	will	have,ሾ116ሿ:	

ߩ ൌ ଵߩ ∙ ଵߙ  ଶߩ ∙ ଶߙ ൌ ଵߩ ∙ ଵߙ  ଶߩ ∙ ሺ1 െ ଵሻ  ( 37 )ߙ

The conservation equation that describes the transport of volume fractions is: 

ௗ

ௗ௧
ቀ ߙ ∙ ܸ݀ ቁ   ߙ ∙ ൫࢜ െ ൯ࢍ࢜

∙ ࢇ݀ ൌ 0  ( 38 )
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The discretization of the transport equation, eq. ( 38 ), needs special attentions because 

values of αi		are	bounded	between	0	and	1,	then	the	regions	with	partially	filled	cells	

should	be	as	small	as	possible,	ሾ120ሿ.	Discretization	of	the	convective	term	in	eq. ( 38 

)	 is	 critical.	 First‐order	 upwind	 scheme	 smears	 the	 interface	 too	 much	 and	

introduces	 artificial	mixing	of	 two	 fluids,	 then	 for	 the	 simulation	here	proposed	 a	

second	order	discretization	in	time	has	been	used.	

Three	main	factors	should	be	taken	into	account	in	the	discretization	process.	The	

first	is	the	permitted	value	of	αi,	that	has	to	be	ensured		so	that	the	scheme	does	not	

generate	 overshoots	 or	 undershoots.	 Secondly	 it	 must	 be	 ensured	 that	 the	

convective	flux	out	of	one	CV	does	not	transport	more	fluid	than	what	is	available	in	

the	donor	cell	and	finally	it	must	be	taken	into	account	the	interface	orientation	and	

local	 Courant	 number,	 ሾ120ሿ.	 For	 the	 simulation	 conducted	 in	 this	 study	 local	

Courant	 number	 at	 the	 surface	 was	 monitored	 during	 the	 simulation	 and	 kept	

smaller	than	the	unit,	Figure 91.		
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Figure 91: Monitoring of local Courant Number at the surface.  

STAR‐CCM	 presents	 two	 schemes	 to	 capture	 the	 free	 surface,	 the	 normalized	

variable	 diagram	 proposed	 by	 Leonard,	 ሾ121ሿ,	 and	 High‐Resolution	 Interface	

Capturing.	Both	methods	are	used	according	to	the	Courant	number	at	the	interface,	

more	detail	are	available	at	ሾ93ሿ.	

	

Turbulence model  

In STAR-CCM+ additional transport equation for scalar quantities are solved so that μt is 

derived by means of eddy viscosity model based on Reynolds-Averaged Navier Stokes 

approach. In this research K-Omega model has been used to provide closure of the 

governing equation. Three basic approaches are available in STAR-CCM+, models that 

provide closure of the governing equation. They are Reynolds-Averaged Navier-Stokes 



123 

 

(RANS) equations, Large eddy simulation (LES) and Detached eddy simulation (DES). 

The LES and DES approaches are commonly used to simulate flow in which the 

resolution of small time and length scales are justified. Such approaches are 

computationally more expensive than RANS approach. This study is based on the RANS 

approach, using a two equation closure model to evaluate the magnitude of the viscous 

force acting on the OXYFLUX structure. STAR-CCM+ offers two different approaches 

to model the Reynolds stress tensor in terms of mean flow quantities, and hence provides 

closure of the governing equations. These methods are Eddy viscosity model, which 

involves K-Epsilon, K-Omega and Spalart-Allmaras models, and Reynolds stress 

transport model. Eddy viscosity models use the concept of a turbulent viscosity to model 

the Reynolds stress tensor as a function of mean flow quantities. The K-Omega model is 

a two-equation model. The transport equations that are solved are for the turbulent kinetic 

energy k and a quantity,  ω defined as the specific dissipation rate, that is, the dissipation 

rate per unit turbulent kinetic energy, [93], [122]. One advantage of the K-Omega model 

is its improved performance for boundary layers under adverse pressure gradients. 

Second significant advantage is that it may be applied throughout the boundary layer, 

including the viscous region, without further modification. Furthermore, the standard K-

Omega model can be used in this mode without requiring the computation of wall 

distance. The biggest disadvantage of the K-Omega model, in its original form, is that 

boundary layer computations are sensitive to the values of ω in the free stream. This 

translates into extreme sensitivity to inlet boundary conditions for internal flows. Such 

problem has been addressed by Menter [123], who recognized that the transport equation 

from the standard K-Epsilon model could be transformed into an ω transport equation by 

means of variable substitution. The transformed equation looks similar to the one in the 

standard K-Omega model, but adds an additional non-conservative cross-diffusion term 

containing the dot product. Inclusion of this term in the transport equation potentially 

makes the K-Omega model give identical results to the K-Epsilon model. Menter 

suggested using a blending function that would include the cross-diffusion term far from 

walls, but not near the wall. This approach effectively blends a K-Epsilon model in the 
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far-field with a K-Omega model near the wall. Menter also introduced a modification to 

the linear constitutive equation and dubbed the model containing this modification the 

SST (shear-stress transport) K-Omega model, [123]. The SST model has seen 

applications in the marine and ocean application, where viscous flows need to be resolved 

and turbulence models need to be applied throughout the boundary layer,[124], [120], 

[125]. For the above reason it can be argued that the most suitable turbulence model for 

this investigation is the SST K-Omega model. 

Response calculation 

The dynamic behavior of the OXYFLUX during the simulation is described by the 

equation of motion: 

݉ ∙ ࢇ ൌ ( 39 )  ࡲ

ࡵ ∙ ஐࢇ ൌ ( 40 )   ࡹ

where m is the mass of the total body,	ࢇ is the acceleration vector for the translation, ષ is 

the angular velocity and ࢇஐ is the angular acceleration, ࡵ is the inertial tensor, M	 and	 F	

are	 the	 total	 moment	 and	 force	 acting	 on	 the	 body.	 The	 resultant	 forces	 and	

moments	 acting	on	 the	 rigid	body	are	obtained	 from	 the	 fluid	pressure	and	shear	

forces	acting	on	each	boundary	face	of	the	body.	

The	 similarity	 of	 the	 device	 here	 investigated	with	 a	 point	 absorber	wave	 energy	

converter	described	in	ሾ124ሿ,	ሾ126ሿ,	can	lead	to	compare	the	overtopping	discharge	

to	the	produced	energy.	Furthermore,	also	the	dynamic	motion	of	the	OXYFLUX	and	

its	shape	can	be	compared	with	those	of	a	point	absorber	wave	energy	converter.	In	

these	 two	 works,	 ሾ124ሿ,	 ሾ126ሿ	 the	 effect	 of	 the	 mooring	 system	 on	 the	 power	

extraction	 performance	 is	 neglected,	 so,	 also	 in	 this	 study	 it	 is	 not	 considered.	

Considering	 also	 the	 pitch	mode	 guarantees	 a	more	 realistic	modelling,	 since	 the	

overtopping	mouth	change	its	capacity	to	capture	water	with	its	orientation.		
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Modelling of the wave driven device with STAR-CCM+ 

The numerical study here proposed was conducted using two different mesh techniques 

approaches:  

 fixed mesh, the entire mesh moves itself according with the motion of the rigid 

body; 

 overset mesh or “chimera” mesh, the discretized computational domain is divided 

in several different meshes that overlap each other in an arbitrary manner. For this 

modeling two meshes have been used; a smaller and finer mesh is used to follow 

the rigid body motion and describe the hydrodynamic around the body while a 

second larger and coarser mesh is used to discretize the background fluid domain. 

Both methods will be described below, pointing the focus on the problems occurred with 

the fixed mesh and explaining in detail the advantages and the results coming from the 

overset modelling, that has been chosen to be the final technique to describe the 

functioning of the OXYFLUX.  

In the RANS simulations, the whole structural design has been considered, taking into 

account also the support for the DOP transducer and the transducer used in the physical 

modelling and the supporting jacket used to connect the tube to the reaction ring in the 

model scale 1:16. 
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Figure 92: Geometry input used for the simulations and location of the center of gravity.  

All the simulations were completed considering a real scale geometry, so the device 

presents a length equal to 5.30 m (from top of the floater to the bottom of the ring). Width 

and thickness of the floater are equal to 2.40 and 0.48 m respectively, while the reaction 

ring has a width and a thickness equal to 2.88 and 0.048 m. The mass of the full scale 

model is 1323.00 kg, its center of gravity is located 4.27 m below the mean free surface 

and inertial moments with respect to it are equal to 20226.00 ݉ଶ ∙ ݇݃ for axis x and y and 

980.00 ݉ଶ ∙ ݇݃ for axis z.  

Parameters of the solver 

In this paragraph the parameters of the solver used during the simulation will be 

described. Such configuration will be the same for both the used meshes. 

STAR-CCM+ was configured to model the dynamic motion and the overtopping 

phenomena occurring on the OXYFLUX’s floater. The building the CFD model involves 

selecting mesh resolution, simulation algorithm, boundary condition including air-water 

interface properties, turbulent model and some tools able to catch particular phenomena 
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which in the physical model are hardly measurable. In this work a tool like a non physical 

interface was added to the OXYFLUX model in order to measure the mass flow over it 

and then measure the overtopping flow. In addition to testing the ability of the numerical 

model to replicate the experimental data, the CFD simulation had the secondary objective 

of determining the best model setup to achieve most accurate simulation results. In this 

context several 3D models with different mesh sizes and time steps are tested. 

Simulations are completed as isothermal. STAR-CCM+’s multiphase segregated flow 

model is used to separate governing equations for both water and air. The Segregated 

Flow solver controls the solution update for the Segregated Flow model according to the 

SIMPLE algorithm, [127]. It controls two additional solvers: velocity solver and pressure 

solver. The velocity solver controls the under-relaxation factor and algebraic multigrid 

parameters for the momentum equations. More specifically, it solves the discretized 

momentum equation to obtain the intermediate velocity field. The pressure solver 

controls the under-relaxation factor and algebraic multigrid parameters for the pressure 

correction equation. More specifically, it solves the discrete equation for pressure 

correction, and updates the pressure field, [93]. Water is modeled as an incompressible 

fluid with a density equal to 997.561 kg/m3 (STAR-CCM+ default value) while air is 

modelled as an incompressible ideal gas with a density equal to 1.18415 kg/m3 (STAR-

CCM+ default value). The volume of Fluid (VOF) model in STAR-CCM+ is used to 

model air and water free surface interactions. The VOF model is used to setup the 

multiphase domain. The domain is initialized into water and air section with the free 

surface set in order to have the same freeboard crest measured in the experiments. STAR-

CCM+ currently allows to define five types of waves: flat, first order, fifth order, 

superposition of first order waves, and irregular waves. This model automatically sets up 

functions to be used as boundary conditions that will update while the wave moves. For 

VOF solver the second order discretization scheme is used to discretize the convection 

equation described above. For temporal discretization solver the second order implicit 

scheme is used. The number of internal iteration for these simulations is chosen to be 
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equal to 10, in order to reach the convergence for each time step before going to next 

time step. 

 

Table 8: Solver configuration for all simulations. 

 

 All the simulations are conducted by means of the available facilities of the Hydraulic 

Laboratory of the University of Bologna. The machine consists of a dual socket/six-core 

2.00 GHz Intel processor, with 64 GB of memory shared by all twelve cores. Even with 

such facilities, the high computational intensity of CFD modeling demands an efficient 

model setup to ensure manageable run time. For the final mesh with 0.8 million elements, 

it took about 7 days on 12 cores to complete 10 wave periods of time.  

Solution convergence 

Numerical analysis here presented uses an iterative process to compute the solution. For 

each iteration, values of the residual are given; they indicate how well the governing 

equations, for each solver quantity, are being satisfied numerically. Such quantity can be 

used as a mean to estimate how the solution converges. Products from residuals are not 

necessarily interesting engineering variables such as force or pressure. A convergence 

can be considered good when all residuals are steady and/or drop by some order of 

magnitude. However, if initial conditions match perfectly for solution, residuals may drop 

only slightly, and stay leveled throughout the simulation, [128].    
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Figure 93: Residual for all solver quantities . 

The convergence of the coupling between the RANS simulation and the dynamics of the 

body was reached at each time step. 

 

Fixed mesh technique 

The simplest type of mesh motion strategy is to displace the fluid mesh as if it was a rigid 

body. This is the simplest type of mesh motion strategy available in STAR-CCM+. In 

this case all the cells maintain their shape and the description of the mesh motion is from 

a displacement vector and Euler angles. In Dynamic Fluid Body Interaction (DFBI), the 

position of the grid is determined by solving the equations of the assumed rigid structure, 

and the fluid transport equations automatically account for motion of the grid. 

Domain and boundary conditions 

The set of simulations here described was conducted taking advantage from the 

symmetry section placed along the x-z plane, then the following dimensions will refer to 

half the domain as shown in Figure 94. Computational domain was 112.00 m long ( -

75.00 ≤ x ≤ 37.00 ), 15.00 m wide ( -15.00 ≤ y ≤ 0.00 ) and 57.00 m high ( -32.00 ≤ z≤ 

25.00 ). Selected length of the domain should guarantee the required distance in order to 

have unperturbed wave field at the pressure outlet boundary. The seabed was given at 
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32.00 m below mean water surface, and a 1st order wave velocity profile was specified at 

the up-wave, lateral, top and bottom boundary. The pressure outlet was implemented at 

the down wave boundary, and a symmetry boundary was placed along the x–z plane to 

reduce the size of the problem, Figure 96. An additional artificial interface is generated at 

the top of the floater in order to measure flow and velocity of overtopping water, Figure 

95. 

 
Figure 94: Domain and boundary conditions.  
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Figure 95: Generated interface at the top of the floater.  

 

 

 
Figure 96: Section view of the domain.  

Four boundary conditions have been used to describe the fluid field at the bounds of the 

domain. They involve wall, velocity inlet, pressure outlet and symmetry plane condition. 

Wall boundary condition represents an impenetrable, no-slip condition for viscous flow 

simulation. For no-slip walls, tangential velocity is explicitly set either to zero (for the 

case of no wall motion) or to a specified value while pressure at the boundary is 

extrapolated from the adjacent cell using reconstruction gradients. A velocity inlet 

boundary represents the inlet of the domain at which the flow velocity is known; in this 

investigation it represents the wave maker of the numerical wave flume, where the inlet 

face velocity vector is specified directly according to the required wave profile. The 

boundary face pressure is extrapolated from the adjacent cell using reconstruction 

gradients. A pressure outlet boundary is a flow outlet boundary at which pressure is 

specified. The boundary face velocity is extrapolated from the interior using 

reconstruction gradients, while boundary pressure can have two different calculation 

methods. If inflow occurs, pressure is defined by the follow equation: 
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else boundary pressure is kept equal to the specified one. A symmetry plane boundary 

represents an imaginary plane of symmetry in the simulation. The solution that is 

obtained with a symmetry plane boundary is identical to the solution that would be 

obtained by mirroring the mesh around the symmetry plane. The shear stress at a 

symmetry boundary is zero. The face value of velocity is computed by extrapolating the 

parallel component of velocity in the adjacent cell using reconstruction gradients. The 

boundary face pressure is extrapolated from the adjacent cell using reconstruction 

gradients. All boundary conditions mentioned above involve some specified values, 

constant or variable during the simulation; these values are given to the model by means 

of field function. Such functions are automatically developed during the selection of the 

physical model.    

Mesh and time step selection 

The volume mesh in CFD simulation is the mathematical description of the space (or 

geometry) of the problem being solved, [93]. Selecting a suitable type and size of the 

mesh can largely affect computational requirements, accuracy and convergence rate of 

the solution.  
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Figure 97: Section view of the volumetric mesh. 

The meshes were created using the STAR-CCM+ grid generation utility. Figure 97 shows 

the grid resolution around the OXYFLUX model. The grid resolution was finer near the 

free surface and around the OXYFLUX to capture both the wave dynamics and the 

details of the flow around the device. In addition, prism-layer cells were placed along the 

OXYFLUX surface, Figure 99. Such layer of cells near the body surface is responsible of 

generating the grid that is used to solve the closure problem. Relatively coarse mesh was 

used near boundaries; the lower part of the boundary layer, namely the viscous sub-layer 

and part of the buffer, is not resolved. The centre point (P) of the wall-adjacent cell is 

placed inside the buffer or logarithmic layer and the flow parameters are modelled by 

blended wall functions2, [93], [129]. Typically, during simulations, y+3 values of the wall-

adjacent cell between 5 and 300 are recognized so that P is located in the buffer or 

logarithmic region. A all-y+ wall treatment is used in order to not impose a more sever 

wall treatment, like  high-y+ wall treatment and then solve both buffer and logarithmic 

layer. The all y+ wall treatment is an hybrid model. It provides a more realistic modeling 

than either the low-Re or the high-Re treatments, when the wall-cell centroid falls in the 

buffer region. This treatment uses damping functions for the source terms in the transport 

equation, but the source terms of the model in the wall cell are modified using the 

blended wall laws.   

                                                 
2 Wall function is the set of mathematical relations that are used to obtain the boundary conditions for the 
continuum equations. It is assumed that the turbulence model is valid only outside the viscous region of the 
boundary layer, and the viscous-affected region of the boundary layer is not resolved, it is assumed also 
that the centroid of the near-wall cell lies within the buffer or logarithmic region of the boundary layer. The 
blended wall laws are intended to represent the buffer layer by appropriately blending the viscous sub-layer 
and logarithmic regions, [94], [142]. 
3 y+ is a non-dimensional number, determining whether the influences in wall-adjacent cells are laminar or 
turbulent, hence indicating the part of the turbulent boundary layer that it resolves. It is defined as,  ݕା ൌ
௨∗∙௬

ఔ
  where ݑ∗ is the friction velocity at the wall-adjacent cell, y  is the distance at the wall-adjacent cell and 

  :is the kinematic viscosity. Generally it can be argued that, [150] ߥ
 y+≤5 wall-adjacent cell is in the viscous sub-layer ; 
5<y+≤30 wall-adjacent cell is in the buffer region; 
y+ ≥30 wall-adjacent cell is in the logarithmic region.  
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Figure 98: Section view of the volumetric mesh, thinner mesh layer between the free surface. 

 
Figure 99: Section view of the volumetric mesh, boundary layer. 

In the mesh generation the grid size ∆x (in the wave propagation direction) was 

determined by the incident wavelength ߣ, and the grid size ∆z (in the vertical direction) 

near the free surface was adjusted according to the wave height, H.  

Grid resolution near the free surface was chosen with dimensions of ∆x=30/ߣ and ∆z= 

H/10. Yi-Hsiang [124] proposed ∆x≤ 80/ߣ and ∆z≤ 20/ߣ but, since this mesh technique 

presents some problems due to wave reflection by the pressure outlet boundary, the 

effects of the grid dimension and the sensitivity to the grid parameters were not 

investigated differently from what it will be done for the following mesh technique 
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presented in thesis. Then, values of ∆x= 30/ߣ and ∆z= H/10 were considered acceptable 

to obtain preliminary results. The total number of cells used in this class of simulation to 

discretize the domain ranges around 977825. To keep Courant number small in oreder to 

preserve numerical stability, a small time step of T/315 was utilized in the study, where T 

was the incident wave period. 

Results  

The series of numerical simulations that will be described in this section are related to the 

preliminary investigation, since this technique is largely affected by the reflection 

generated at the pressure outlet. This reflection is mainly due to a couple of factor: the 

first, is that the wave field is perturbed by the device motion also at distance equal to four 

wave lengths. The second, and more relevant, is that free surface interface at the outlet 

and inlet boundary is solved by unsuitable grid part, since the whole mesh follows the 

rotation of the body. Also for small values of pitch angle the simulation showed 

important effects due to reflection. In Figure 100 it is clear how the pitch motion can 

affect resolution at the domain’s boundaries. The more the outlet and inlet boundaries are 

far from the device, the more the rotation of the mesh brings to numerical diffusion at the 

boundary extreme due to the unsuitable grid size used. 

 
Figure 100:Problem due to the mesh rotation. 
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For the above mentioned reasons results coming from these simulations are not validated 

versus the physical experiments, and are only presented as a preliminary research. Four 

regular wave states are tested, their characteristics are shown in Table 9. For each 

simulation heave response, incident wave and water flow inside the tube are measured. 

Heave and incident wave signals are analyzed through zero up-crossing procedure, then 

their medium values are calculated. Furthermore spectral analysis of the signal is done in 

order to identify reflection from the boundary and its related frequency. Medium value of 

water discharge is calculated by means of integral mean value of the flow signal over five 

wave periods. In the following plots, results are shown.  

 
Figure 101: Wave, Heave, Water flow and cumulative pumped volumes for O1. 
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Figure 102: Spectral analysis for O1. 

 
Figure 103: Wave, Heave, Water flow and cumulative pumped volumes for O2. 
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Figure 104: Spectral analysis for O2. 

 
Figure 105: Wave, Heave, Water flow and cumulative pumped volumes for O3. 
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Figure 106: Spectral analysis for O3. 

 

 

 
Figure 107: Wave, Heave, Water flow and cumulative pumped volumes for O4. 
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Figure 108: Spectral analysis for O4. 

 

Table 9: Regular wave states simulated. 

 

Spectral analysis presented in Figure 102, Figure 104, Figure 106 and Figure 108 clearly 

show problems due to reflection, since a low frequency appears. Such phenomena clearly 

vitiate the results related to the displacement. However, the order of magnitude of the 

mean discharge flow can be considered right, demonstrating STAR-CCM+ can be the 

suitable tool to describe OXYFLUX's operation under an appropriate configuration.     

 

Overset mesh technique 

This section describes method and results relative to the final numerical modelling of the 

OXUFLUX. To do this, an overset mesh is used to discretize the computational domain 

Wave Depth [m] Hm [m] Tm [sec] Qm [l/sec]

O1 7.00 0.13 2.21 4.2467

O2 7.00 0.15 2.73 0.149

O3 7.00 0.26 2.73 3.3972

O4 7.00 0.40 2.87 14.5705



141 

 

whit two different meshes that overlap each other in an arbitrary manner. Such mesh 

approach is the most useful in problems with moving bodies like  this. Numerical 

modelling of the OXYFLUX through the overset mesh involves a background region 

enclosing the entire domain and a smaller region within the domain containing the body 

Figure 109. In a domain discretized by means of overset mesh, cells are grouped into 

active, inactive, or acceptor cells. Within active cells, discretized governing equations are 

solved. Within inactive cells, no equation is solved, however, these cells can become 

active if the overset region is moving. Acceptor cells separate active and inactive cells in 

the background region and are attached to the overset boundary in the overset region. 

Acceptor cells are used to couple solutions on the two overlapping grids, Figure 110. 

Variable values at donor cells of one mesh express variable values at acceptor cells in the 

other mesh, through interpolation. The donor cells are the active cells from the other 

mesh that are nearest the acceptor cell. The solution is computed for all active cells in all 

regions simultaneously, that is, the meshes are implicitly coupled.    

 
Figure 109: Schematic representation of the region used to discretized the domain. 
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Figure 110: Screenshots of the used overset mesh. Representation of the cell type used in the coupling of 
the two regions, (blue inactive cells , green donor, red intermediate cell layer used by the hole cutting 

process).   

Using overset mesh involves the same approximations used for all active cells as in the 

case of regular, single meshes. The difference arises from the substitution of the variable 

value at an acceptor cell by interpolation involving 3 (in 2D) or 4 (in 3D) donor cells in 

the overlapping region. Three interpolation methods are available in STAR-CCM+; the 

present simulations have been conducted by means of linear interpolation using shape 

functions spanning a tetrahedron defined by centroids of the donor cells. This option is 

more accurate but also more expensive. It is important in simulations involving moving 

meshes as it ensures that interpolation elements do not overlap. The choice of donor cells 

is not unique since the available donor cell centroids that enclose the acceptor cell 
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centroid can define more than one tetrahedron. This way the interpolation is continuous 

as the acceptor cell centroid passes from one interpolation element to the next. The 

interpolation function is built directly into the coefficient matrix of the algebraic equation 

system. This approach ensures implicit coupling of the overset meshes. The coefficient 

matrix of each equation solved is updated accordingly to ensure that equations can be 

solved up to the round-off level of residuals, more details on this procedure are available 

in [93]. 

 

 

Domain and boundary conditions 

Simulations presented in this work are conducted on the whole OXYFLUX and domain 

geometry, then no symmetry planes are used to describe them. The computational domain 

is divided in two main regions: background and overset region. Length of the background 

region is variable with the wave length (െ
ఒ

ଶ
 ݔ 

ଷ

ଶ
 ≥ m wide ( -4.5.00 ≤ y 9.00  ,(ߣ

4.5.00 ) and 12.00 m high ( -3.5.00 ≤ z ≤ 8.5.00 ), while overset region is represented 

with square-section parallelepiped  which has height equal to 7.00 m ( -6.00 ≤ z ≤ 1.00 ), 

and side equal to 4.00 m ( -2.00 ≤ x; y ≤ 2.00 ), Figure 111 . The geometry of the device 

is placed in order to have its vertical axis of revolution passeing through  x=y =0.00. Such 

configuration of the domain ensures suitable overlap of the two regions and adequate gap 

from the background’s boundaries to the overset region. Furthermore it allows to keep, at 

least, four layers of cell from device surface to overset boundaries, Figure 113. The 

seabed was given at 7.00 m below mean water surface, and a 1st order wave velocity 

profile is specified at the up-wave, lateral, bottom and top boundaries, Figure 113. The 

pressure outlet is implemented at the down-wave boundary, where pressure field due to a 

calm plane of water is imposed in order to use VOF Wave damping layer. This means 

that a VOF wave is damped in the vicinity of outlet boundary to reduce wave oscillation 
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near it, Figure 114. Such operation introduces vertical resistance to the vertical water 

motion in the selected area of domain [130], [93]. Simulations are carried out using a 

length of the wave damping zone equal to the simulated wave length, thus ensuring a gap 

of one half length between the dumped zone and the device. An additional artificial 

interface is generated at the top of the floater in order to measure flow and velocity due to 

wave overtopping, Figure 112. 

 

 
Figure 111: Domain and boundary conditions.  
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Figure 112: Generated interface at the top of the floater.  

 

 
Figure 113: a) Section view x-z, b) section view y-z, c) 3D view of the overset mesh. 
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Four boundary conditions have been used to describe the fluid field at the bounds of the 

domain. They involve wall, velocity inlet, pressure outlet and overset mesh condition. 

Wall boundary condition represents an impenetrable, no-slip condition for viscous flow 

simulation. For no-slip walls, the tangential velocity is explicitly set either to zero (for the 

case of no wall motion) or to a specified value, while the pressure at the boundary is 

extrapolated from the adjacent cell using reconstruction gradients. A velocity inlet 

boundary represents the inlet of the domain at which the flow velocity is known, in this 

investigation it represents the wave maker of the numerical wave flume, where the inlet 

face velocity vector is specified directly according to the required wave profile. The 

boundary face pressure is extrapolated from the adjacent cell using reconstruction 

gradients.  A pressure outlet boundary is a flow outlet boundary for which the pressure is 

specified. The boundary face velocity is extrapolated from the interior using 

reconstruction gradients, while boundary pressure can have two different calculation 

methods. If inflow occurs, pressure is defined by the following equation: 

 ൌ ௦ௗ െ
ଵ

ଶ
∙ ߩ ∙ |ଶ    ( 42 )࢜|

While if no inflow occurs the boundary pressure is kept equal to the specified one. The 

overset mesh is created using the overset mesh boundary, which is the outer boundary of 

the overset region that is expected to be coupled with the background mesh by means of 

the overset mesh interface. All boundary conditions mentioned above, except for the 

overset mesh boundary, involve some specified values, constant or variable during the 

simulation; these values are given to the model by means of field function. Such 

functions are automatically developed during the selection of the physical model.   
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Figure 114: Effects of the VOF Wave damping on the free surface and on the water vertical velocity. 

 

Mesh and time step selection 

The mesh is created using the STAR-CCM+ grid generation utility. Figure 97 shows the 

grid resolution around the OXYFLUX model. The grid resolution is finer near the free 

surface and around the OXYFLUX to capture both the wave dynamics and the details of 

the flow around the device, Figure 115. Furthermore a thicker zone is created in order to 

have cells in the overlapping region of similar size on both the background and overset 

meshes. Moreover, prism-layer cells are placed along the OXYFLUX surface, Figure 

116. 
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Figure 115: Section views of the overset mesh. 

Such layers of cells near the body surface are responsible to generate the grid which is 

used to solve the closure problem. Relatively coarse mesh are used near the boundaries; 

the lower part of the boundary layer, namely the viscous sub-layer and part of the buffer, 

is not resolved. The centre point (P) of the wall-adjacent cell is placed inside the buffer or 

logarithmic layer and flow parameters are modelled by blended wall functions, [93], 

[129]. Typically, during the simulations, y+ values of the wall-adjacent cell between 5 

and 300 are recognized so that P is located in the buffer or logarithmic region, Figure 

117. A all-y+ wall treatment is used in order to not impose a more sever wall treatment, 

like high-y+ wall treatment and then solve both buffer and logarithmic layer. The all y+ 

wall treatment is a hybrid model. It provides a more realistic modeling than either the 

high-Re treatments when the wall-cell centroid falls in the buffer region. This treatment 

uses damping functions for the source terms in the transport equation, but the source 

terms of the model in the wall cell are modified using the blended wall laws.   
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Figure 116: Thicker zone around the overset region, and boundary layer. 

 

 
Figure 117: Distribution of the y+ values on the OXYFLUX surface. 

Background region is discretized by regular hexahedral cells, 0.50 m is selected as a 

target size, while three thinner areas are used to capture free surface action and device 

dynamic. In order to describe waves structure interaction two volumetric controls (VB1 

and VB2) are proposed across the free surface for the entire domain. Their thicknesses are 
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equal to the simulated wave height for the thickest (VB2) and 50% more than simulated 

wave height for the highest one (VB1). Grid size (∆x and ∆z) for these elements is 

determined by the incident wave length ߣ, concerning the wave propagation direction 

(∆x), while the vertical direction (∆z) is adjusted according to the incident wave height, 

H. Third volumetric control (VBO) aims to better describe the body dynamic and then, also 

to allow to have cells in the overlapping region of similar size on both the background 

and overset meshes. Overset region is discretized by irregular polyhedral cells, 0.125 m is 

selected as a target size (OB.S.), while one thinner area is used to capture free surface 

action. Volumetric control used in the overset region (VO) has the same planar 

dimensions of the region and a thickness equal to the incident wave height. Particular 

attention to the size of the cell had to be paid in the generation of volumetric controls in 

the overlapping zone. It is critical to have the same size in all three directions in the 

overlapping layer in order to avoid error in the interpolation. Above it is made use of ∆x 

for both planar dimensions of the grid cell, so in the following ∆x will refer to both the 

dimensions.  

 

 

VB2, VO VB1 
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Figure 118: Volumetric controls used to describe water surface (UPPER, VB1, VB2, VO ), and to ensure 
the same grid size in the overlapping region. 

According to Yi-Hsiang [124] a series of numerical wave tank tests has been conducted 

to determine the appropriate grid resolution needed to model the waves-surface and body 

dynamics. To study the appropriate grid resolution around the OXYFLUX model and 

domain characteristic dimensions, nine grids with different resolutions, sidewall distances 

and VBO dimensions have been generated. In order to do this an incident wave profile with 

a height of 0.29 m and a period of 2.80 sec has been used. Characteristics of each grid are 

summarized in Table 10. The normalized heave response is used as a tool to analyze the 

effects of grid resolution and the domain dimensions on the hydrodynamics of the device 

model, Figure 119. The domain width study indicated that the effect of the sidewall 

distance is not significant, particularly if compared with that of grid size used to 

discretize the wave. Then smaller sidewall is selected in order to reduce number of cells 

used, Figure 120. 

Table 10: grid characteristics. 

VBO 
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Figure 119: Effects of grid resolution on heave response, red dot is the value used for the simulations 
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Figure 120: Effects of sidewall distance on heave 
response, red diamond is the value used for the 

simulations 

Figure 121: Effects of grid resolution on computed 
time, red dot is the value used for the simulations 

 
Figure 122: Effects of wave length discretization on 

heave response, red dot is the value used for the 
simulations 

Figure 123: Effects of wave height discretization 
on heave response, red dot is the value used for the 

simulations 

Further, the local grid resolution around the overset region has shown little effect on the 

prediction of the amplitude of the heave response. It has been observed that a gap able to 

ensure four cell layers between the overset region and the VBO is enough to guarantee the 

convergence if the cell size between the two regions has the same order of magnitude. 

The local grid resolution between the free surface showed large effect on the prediction 

of the heave response and on the computational time required. For these parameters a 

compromise has to be taken between required time for a simulation and accuracy. In this 



154 

 

regard, it was decide to use ∆x=∆y=ߣ /60 and ∆z=H/7.50; such values contribute to 

generate a grid with a number cells variable from 7.5 ∙ 10ହ to 1.4 ∙ 10 according with 

the wave characteristics. Grid 6 in Table 10, is selected to carry out all the simulations. It 

should be taken into account that, if the device model is allowed to move in surge mode, 

the viscous damping effect caused by those shed vortices around the body might have 

been more significant and retain the motion. In that case, additional details of the flow 

need to be resolved, and a higher resolution grid may be required. To keep Courant 

number small to preserve numerical stability, a small time step of T/800 was utilized in 

the study, where T is the incident wave period. 

 

Results and model validation     

Validation of the model is carried out by comparing vertical displacements measured in 

the wave flume and those evaluated within the numerical tank. Furthermore a calm water 

test is completed in STAR-CCM+ in order to identify the natural period of the floating 

body. This parameter is used as a mean to evaluate the accuracy of the numerical model 

in describing the dynamic behavior of the OXYFLUX. A numerical calm water test is 

performed in a squared section computational domain having side equal to 6.00 m and 

height equal to 7.00 m, while the grid used is grid 6. A damping layer zone is placed in 

front of all the far field boundaries to absorb outgoing waves. To perform the decay test, 

the OXYFLUX has been immersed with an initial displacement of -0.15 m. Upper plot in 

Figure 125 shows a comparison between heave decay time history obtained from STAR-

CCM+ simulation and experimental measurements, while the lower one shows spectral 

analysis from both the simulations. Numerical results agreed with experimental data, and 

the natural decay period has been found to be around 4.00 sec in full scale, i.e. around 

1.00 sec in model scale. Although both results agree, some small discrepancies appear in 

the natural period of the body. A period equal to 4.02 sec is detected for physical calm 

water test while 4.10 sec is calculated for the numerical test. Furthermore the numerical 
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simulation seems to be affected by a larger damping than physical test that shows its 

effects also through smaller amplitude oscillations. It can be argued that the mesh could 

be thinner near the OXYFLUX boundaries in order to describe better the local small scale 

turbulence that affects the body, but since the simulations, with these characteristics, 

already required a long computational time, an error of almost 2.00 % between numerical 

and experimental result was considered to be acceptable.    

 
Figure 124: Calm water tests from STAR-CCM+ and experimental measurement. 

A series of simulations has been performed to investigate nonlinear effects of the 

interaction between waves and the device under regular waves. Used wave states and 

their characteristics can be seen in Table 11. The simulations aimed to investigate the 

dynamic response of the whole device and its pumping capacity. 

Table 11: Regular wave states simulated in numerical tank. 
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Figure 125: Heave response of the device, water flow inside the tube and cumulative pumped volume for 

WAVE 1. 
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Figure 126: Heave response of the device, water flow inside the tube and cumulative pumped volume for 
WAVE 38. 

 
Figure 127: Heave response of the device, water flow inside the tube and cumulative pumped volume for 

WAVE 39. 

 
Figure 128: Heave response of the device, water flow inside the tube and cumulative pumped volume for 

WAVE 44. 
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Figure 129: Heave response of the device, water flow inside the tube and cumulative pumped volume for 

WAVE C. 

 
Figure 130: Heave response of the device, water flow inside the tube and cumulative pumped volume for 

WAVE T. 

Series from Figure 125 to Figure 130 shows the main results coming from the numerical 

simulations conducted in STAR-CCM+. In the upper part of the above figures, time 

series of incident wave, heave response and values of the real-time flow overtopping the 

floater are plotted, while in the lower part the cumulative overtopped volume is 

represented. Time integration of the flow signal allows to calculate the volume of 
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overtopped water at each single instant. Since the pumping mechanism is driven by 

incoming waves it is clearly visible as the cumulative volume increases for each wave 

cycle.  

 
Figure 131: OXYFLUX’s heave response  

Comparing Figure 126 Figure 127 Figure 129 and Figure 130, in which equal period 

waves are plotted, it can be noted how the phase shift increases with the increasing of 

wave height. It can be argued that such shift in the heave response is mainly due to the 

larger damping that affects the device for higher wave heights. Therefore, nonlinear 

effects can be more significant, particularly in scenarios concerning greater wave-heights, 

Figure 131. Nonlinear effects of wave and floating-body interaction introduce additional 

damping forces that reduce the response amplitude and shift heave response. Results of 

the heave response are compared with the experimental ones in order to be validated, 

Figure 132. Numerical simulations are carried out in order to investigate OXYFLUX’s 

behavior under the action of short waves, since the device has been developed to work 

with breeze waves or comparable sea states. Investigation of larger periods is not 

conducted here since it requires a larger domain and computational time. Heave response 

analysis and decay test study which have been conducted by comparing RANS solutions 

to experimental results, indicates that the mesh and specified numerical settings and 

algorithms are sufficient and capable to model OXYFLUX's dynamic. 
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 Figure 132: Comparison of experimental and numerical heave response. 

The flow inside the tube is mainly driven by the waves that overtop the floater. Such 

phenomena, jointly with the heave displacement, lead to a cyclic flux with a period 

comparable to the incident wave’s one. Relevant peaks relative to higher frequencies 

appear in the downward flux signal, and are mainly due to two factors One is the pitch 

movement of the device, that affects the capacity of the wave to go inside the floater. 

Since the pitch mode generates a rigid rotation of the floater it affects the capacity of the 

wave to run on the conical surface and fall into the tube. The second factor that generates 

higher frequency response in the flow signal is due to the wave crest action on the back 

side of the mouth of the floater. Once the wave crest meets the frontal region of the 

floater it is divided in two parts that start to run around the circular shape of the floater 

and then hit, on the back side, one with each other generating a second overtopping wave. 

This phenomenon originates from the jointly action of the pitch mode and incident wave 

crest, generating an additional contribution to the downward flux. Some other phenomena 

characterized by a frequency higher than the incident wave are present in the signal, 

especially for highest waves. Such components of the signal are largely caused by the 

sloshing of the water surface inside the floater. Since the flow is measured by means of 

an artificial interface generated at the top of the floater some of those oscillations can be 
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evaluated like overtopping water. Since this component has average value equal to zero 

its effect on the final medium flow can be neglected.      

  

 

  

Solution time 0.125 sec Solution time 0.25 sec 

Solution time 0.375 sec Solution time 0.50 sec 

Solution time 0.625 sec Solution time 0.75 sec 
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Figure 133: Images sequence of wave crest meeting the floater. 

Through integral mean for each wave state the mean values over 5 waves cycles have 

been calculated. The discharged flow is largely affected by the wave height. As it clearly 

appears from Figure 134, for wave states characterized by a period equal to 2.80 sec, the 

more the wave height increases, the more the mean discharge flow increases. An 

exception can be noticed for the wave height equal to 0.59 m, when the maximum 

downward flow appears to be smaller than the one that occurred for a wave height of 0.48 

m. Such circumstance is due to the depression that the wave, above certain values of 

height, generates going over the floater but not into it. Such process has been also 

observed in the physical investigation of the OXYFLUX but, since only waves with 

height smaller than 0.75 m have been model numerically, effects of the depression at the 

top of the floater are not strong enough to divert the flow field inside the tube. 

Solution time 0.875 sec Solution time 1.00 sec 

Solution time 1.125 sec Solution time 1.25 sec 
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Figure 134: OXYFLUX’s mean pumped flow. 

Results of the mean flow are compared with the experimental ones in order to be 

validated, Figure 135Figure 132. Experimental velocity values compared with the RANS 

solutions indicate that the mesh and specified numerical settings and algorithms are 

sufficient and capable to model the OXYFLUX's pumping mechanism. 



164 

 

 
Figure 135: Comparison of experimental and numerical mean downward flux. 
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CHAPTER VI: DEVELOPMENT AND NUMERICAL 

MODELLING OF THE NEW GEOMETRY 

The geometry of the device presented in this chapter, from here on called Geometry 2, 

derives from the results of the analysis described in the preceding chapters. The first 

shape of the device, from here on called Geometry 1, is characterized by three behaviors 

according to the incident wave height and presenting some limits as concerns the amount 

of water pumped down. The inability of this shape to take advantage of the phase shift 

between incident wave and heave response is mainly due to the geometry of the floater, 

which is designed to benefit to the maximum from the overtopping of the wave crest in 

its classical form, as defined by Kofoed, [62]. In this chapter, in order to obtain maximum 

efficiency from the intermediate, lowest wave heights, an already known profile is used 

to model the floater surface. Lazzari’s profile [145], is used to design a new shape of 

floater (Geometry 2). Such a kind of application has never been tested in a physical or 

numerical model before since its main application concerns spillways used in artificial 

lakes. The principal difference with the traditional application concerns the conditions in 

which the spillway is going to work. In artificial lakes, the common applications of 

Lazzari’s profile regards a base fixed concrete structure posed in a way that the 

increasing level of the water brings the free surface to surround and finally overtop the 

whole structure. The adaptation of such a fixed system to a movable floating structure 

interacting with the incident wave is proposed here. Geometry 2 aims to catch as much 

water as possible from the wave crest during the emersion of the floater under the water 

surface. In the following the main parts of Geometry 2 and the results from the numerical 

model will be described and compared with the ones of Geometry 1. 

. 
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Figure 136: Example of spillway designed 
according Lazzari’s profile, [131] 

Figure 137: Spillway during common operation 
time, [131] 

Three main parts constitute Geometry 2, and each of them has the same function as in 

Geometry 1. In the following, only the new shape of the floater will be described since 

the other two parts are not going to change. The new floater will ensure the buoyancy of 

the whole structure. The following paragraphs focus on the design of the new shape 

which will be used for numerical simulations, thus dimensions will be in real scale.  
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Figure 138: Components of Geometry 2 used in numerical  model. 

Floater of Geometry 2 

In order to define the shape of the floater, i.e. of its median section, reference has been 

made to the curve that describes the lower profile of freely fluid flux going out from a 

circular thin-walled spillway. This curve has been moved forward in order to guarantee 

the complete adhesion of the fluid to the wall and a constant pressure on the spillway 

surface as suggested by Creager, [105]. 
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Figure 139: Reference system used to define Lazzari’s profile. 

x0 and y0 are the distances of the origin of reference system used to describe the parabolic 

profile from the external wall of the spillway, and are defined as,[132]: 
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The equation of the parabolic profile is: 
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Assuming a circular shape of the connection used to move forward the origin of the 

parabolic profile, its radius is described as: 
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ଶ

ݕ
 ( 45 )

Geometry 2 has been calculated starting from the dimension of the internal radius of the 

cylinder connected to the floater; such a dimension has been kept equal to Geometry 1 i.e. 

0.40 m. The values of the above mentioned variables are estimated by means of an 

iterative procedure developed by Matlab under the hypothesis of a total head equal to 
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0.13 m. This value is in accordance with the smallest wave height able to activate the 

pumping mechanism. 

Table 12: Geometric parameters used for Geometry 2. 

 

Such a procedure allows to define the internal surface of the floater, while the external 

one has been designed in order to keep the body floating and to guarantee floatation of 

the device even after the inevitable weight gain due to biofouling growth in a real sea 

environment. In order to compare the two geometries and their efficiencies, the 

percentage of buoyancy reserve force will be the same for both, i.e. 7.0 % of the total 

force that, for Geometry 2, is equal to 14400.00 N. The result of the design process is a 

goblet shaped floater with a volume of 1.05 m3, corresponding to a weight of 520 N. Its 

maximum diameter is equal to 1.65 m while its height is 1.21 m. The central opening is 

directly connected to the outlet side and it has a diameter of 0.40 m. See Appendix B for 

all the details of the structure. 

 
Figure 140: Details of the floater, all lengths are in m. 
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Table 13: Hydrodynamics parameters of the Geometry 2 floater.       

 

As already mentioned geometry and the characteristic of the tube and stabilizing ring do 

not change from Geometry 1. Their description is omitted since it is available in Chapter 

3.  

The total length of the device described in this chapter is equal to 5.36 m from the top of 

the floater to the stabilizing ring (Froude similitude 1:16: 335.00 mm), the position of the 

center of gravity is largely affected by the difference in the different density of the 

components, and it is located at 4.59 m (Froude similitude 1:16: 287.00 mm) below mean 

water level when the device is at rest i.e. 0.56 m (Froude similitude 1:16: 35.00 mm) 

above the lowest surface of the stabilizing ring, Figure 142. Such a position for the center 

of gravity, below the center of buoyancy, was chosen in order to improve the stability of 

the device under the action of waves. The total weight of the device is 13392.00 N 

(Froude similitude 1:16: 3.26 N) while the maximum buoyancy force is 14400.00 N 

(Froude similitude 1:16 3.51 N) ensuring a buoyancy reserve force of 1008.00 N (Froude 

similitude 1:16 0.24 N), 7 % of the total buoyancy force. 13392.00 N corresponds to a 

free-board crest equal to 0.21 m (Froude similitude 1:16: 13.12 mm), Figure 142Figure 

39. This buoyancy reserve was chosen in order to guarantee, the floatation of the device 

even after the inevitable weight gain due to biofouling growth in a real sea environment. 
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Figure 141: Trend of the buoyancy force for both geometries, the weight has been chosen in order to have 

the same buoyancy reserve force for both geometries. 
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Figure 142: Details of the Geometry 2. 

 

Numerical modelling and results of Geometry 2 

In this paragraph numerical modelling results of Geometry 2 will be presented. The set-

up, the domain and the mesh used are not described, since the settings of the model are 

the same as used for Geometry 1. The model presented in chapter 5 has shown good 

compliance with physical model results, thus it is can be assumed valid for the simulation 
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of the new geometry, too. No mesh sensitivity has been carried out.  Simulations for 

Geometry 2 are also conducted on the whole OXYFLUX and domain geometry; no 

symmetry planes are used to describe them. The computational domain is divided into 

two main regions: background and overset region. The length of the background region 

varies with the wave length (െఒ

ଶ
 ݔ  ଷ

ଶ
 m wide ( -4.5.00 ≤ y ≤ 4.5.00 ) and 9.00  ,(ߣ

12.00 m high ( -3.5.00 ≤ z ≤ 8.5.00 ), while the overset region is represented with a 

square-section parallelepiped which is 7.00 m high ( -6.00 ≤ z ≤ 1.00 ), and 4.00 m large ( 

-2.00 ≤ x; y ≤ 2.00 ). Device geometry is placed in order to have its vertical axis of 

revolution passing through  x=y =0.00. Such a configuration of the domain ensures 

suitable overlap of the two regions and an adequate gap from the background boundaries 

to the overset region. Furthermore it allows to keep, at least, four layers of cell from 

device surface to overset boundaries, Figure 143Figure 143: 3D view of the overset mesh 

used to simulate Geometry 2.Figure 113. 

 
Figure 143: 3D view of the overset mesh used to simulate Geometry 2. 

The seabed was positioned at 7.00 m below the mean water surface, and a first order 

wave velocity profile is specified at the up-wave, lateral, bottom and top boundaries. The 

pressure outlet is implemented at the down-wave boundary, where the pressure field due 

to a calm plane of water is imposed in order to use VOF Wave damping layer. This 

means that a VOF wave is damped in the vicinity of outlet boundary to reduce wave 

oscillation near it. Simulations are carried out using a length of the wave damping zone 
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equal to the simulated wave length. This ensures a gap of one half length between the 

damped zone and the device. An additional artificial interface is generated in order to 

measure the flow and the velocity of the water at the top of the floater due to wave 

overtopping, (yellow surface in Figure 143). Grid 6 is chosen, and three volumetric 

controls are placed in the domain. Two of them are used to better describe interface 

water-air, and the third one is used to generate a zone in which the grid size of the overset 

region and background is the same, as widely explained in chapter 5. The time step is 

selected according to the settings of the previous simulation and it is equal to T/800, 

where T is the period of the incident wave. 

Results 

As previously done, a series of simulations has been performed in order to investigate the 

nonlinear effects of the interaction between waves and the device under regular waves. 

Used wave states and their characteristics can be seen in Table 14. The simulations are 

aimed at investigating the dynamic response of the whole device and its pumping 

capacity. 

Table 14: Regular wave states simulated in numerical tank and results for Geometry 2. 
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Figure 144: OXYFLUX’s response in heave for Geometry 2. 

Numerical simulations are carried out in order to investigate OXYFLUX’s behavior 

under the action of short waves, since the device has been developed to work with breeze 

waves or comparable sea states. Investigation of larger periods is not conducted in this 

work, since it requires larger domain and computational time. Through integral mean for 

each wave state the mean values over 5 waves cycles have been calculated according to 

the procedure used for Geometry 1.  

 
Figure 145: OXYFLUX’s mean pumped flow for Geometry 2. 
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Geometry 2 shows a different dynamic behavior and pumping capacity to Geometry 1. 

The dynamic response, described here by means of the RAO, shows lower values for all 

the wave states characterized by a period equal to 2.8 sec, that increases as the period 

increases and comes closer to the resonant period. As for Geometry 1, simulations with 

periods greater than 3.20 sec have not been conducted since this work only aims to 

investigate the efficiency of the OXYFLUX under the action of short waves that, in the 

majority of cases, are common during summer when anoxia tends to develop. As 

expected, the water velocity inside the device is affected by the floater device, 

furthermore no overtopping occurs for the lowest wave heights, those waves that mostly 

characterize anoxic areas, while the more the wave height increases, the more the device 

takes in water from the wave crest to pump it downward. A significant increase can be 

noted for the values of mean discharge flow in correspondence to the highest wave 

heights for Geometry 2, even though such an increase occurs for wave states that can 

already mix the water column and then oxygenate the bottom. 
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CHAPTER VII: DISCUSSION  

As an aid to the reader, this chapter of the dissertation provides a brief overview of the 

study, including an introduction to the problem and the major methods involved. The 

main part of the chapter is, however, devoted to the summary and discussion of the 

physical and numerical modelling results of the OXYFLUX. Furthermore, limitations and 

possible future in-depth analysis of the device will be evaluated at the end of the chapter. 

The main aim of this dissertation is to identify the geometry, the shape, and the working 

mechanism of a device able to counteract hypoxia at the bottom sea layers. A device able 

to take advantage of wave energy has been proposed, and its capacity to pump water 

down to the bottom has been demonstrated by means of physical and numerical 

simulations. Results from both investigations, point out the device capacity to pump 

water, identifying a range of mean discharge flow from 0 to 80.00 l/sec according to the 

incident wave characteristics and to the shape of the floater.  

Physical modelling was carried out in two phases. The first one was the preliminary 

investigation. Since then, no results or evidence of the functioning mechanism were 

known. Such a series of tests was completed under the action of four wave states 

characteristic of the Northern Adriatic Sea and gave an idea of the feasibility and 

applicability of the device, highlighting the capacity of the device to pump or draw water 

from the surface to the bottom layers. At the later stage a series of ninety-eight tests was 

completed in order to deduce the dynamic and pumping mechanism of the device and 

identify the effects of the mooring system. This later series of tests underline three main 

operating ranges, in accordance with the incident wave height and mooring system used. 

During such an investigation the main difficulty was relative to the measurement of the 

flow inside the device, since the environment, where the transducer worked, was very 

noisy. This phenomenon affected the measurements, as the trend of the mean water 

velocity shows, and gave some uncertainties during its estimation. Although such 
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uncertainties appear, the method developed allows to identify the functioning mechanism 

of the device and the main parameters which affect it, Figure 146. The image analysis 

procedure developed proved to be an optimum solution to monitor the displacement of 

the device, since it does not affect the body motion, since any contact with the surface of 

the device was absent. Furthermore, it proved to be extremely efficient for what concerns 

the time needed to elaborate the test results.  

 
Figure 146: Comparison of water velocity results and fitting for both the mooring systems used 

Numerical modelling carried out during this study was aimed at investigating the 

behavior of the OXYFLUX during modest energetic wave states, and to identify a second 

geometry able to take into account the limits of the first one and to improve its efficiency. 

The capacity of the numerical model to simulate the dynamic performance and the 

pumping efficiency has been validated by the comparison of the numerical results and the 

physical ones carried out with the cables as mooring system. It has been noted that the 

numerical model cannot describe the exact dynamic of the floating body, as shown by the 

comparison plot of the calm water test. A discrepancy between the natural period 

identified by means of numerical and physical modelling emerged, likely due to the too 

coarse mesh used to discretize the fluid domain around the OXYFLUX surface; this 
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discrepancy is around 2.00 % of the natural period identified, Figure 147. Such 

inaccuracy has been evaluated to be reasonable and then the results are acceptable. A 

second validation test has been done, with the aim to compare the mean flow discharged. 

This validation procedure was accomplished only for the operating range “field 2”. The 

results showed good compliance between numerical and physical results, so the 

numerical model developed can be considered capable of describing the entire behavior 

of the OXYFLUX for the operating range called field 2.  

 
Figure 147: Calm water test from STAR-CCM+ and experimental measurement. 

The second geometry tested, called Geometry 2, has a shape based on Lazzari’s profile; 

the results coming from these series of simulations presented an increase in the minimum 

wave height capable of generating downward water flux as well as a growth in the mean 

water velocity for middle wave heights. Such an increase in the mean velocity has been 

registered for wave heights outside the range of interest, since for the shortest wave 

height used in the simulations the device designed with Geometry 2 did not present any 

overtopping phenomenon. All these considerations lead to reject this new shape, since it 

does not show any relevant increase in the pumped water flow for the wave states 

characteristic of the period when hypoxia and anoxia develop. The comparison of the 
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results coming from both the tested geometries, can be considered valid since both the 

shapes were designed considering the same buoyancy reserve force, i.e. 7.00 % of the 

total buoyancy.  

 
Figure 148: Comparison of the mean pumped water flow for Geometry 1 and Geometry 2. 

The findings of this study cannot give the final design of the OXYFLUX, since the tested 

geometries show two extreme behavior of the device. Geometry 1 showed its capacity to 

generate a downward water flux for whole wave states dataset used. The values of the 

flow are relatively small in perspective to absolute value but this kind of device can work 

for most of the summer, since a minimum sea surface agitation is always present also in 

summer. On the other hand, Geometry 2 showed a relatively large increase in the pumped 

flow but only for wave heights that are not common during hypoxic development 

periods; furthermore it is characterized by a complex shape that requires a more accurate 

and complex production process which is not justifiable with this increase in the 

efficiency of the device. Therefore, the findings of this study are expected to be useful for 

the inventors or developers of new devices to counteract oxygen depletion at the bottom 

layers as well as for all the public authorities involved in managing eutrophic, hypoxic 
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and anoxic coastal areas, introducing a new concept of device. Such a new concept will 

take on importance, since the only other device able to counteract oxygen depletion 

described and published at the present day has been designed to work in deeper waters 

and presents a main wave direction for its functioning. OXYFLUX removes these 

problems and presents a new concept of device, that does not require large wave heights 

to work as well as a preferred wave direction.   

It can be argued that the optimum configuration of the device might be a middle ground 

between the tested geometries, but in this thesis it has not been possible to simulate it, 

considering the computational time required to complete each simulation. This new 

geometry can be tested in the future through physical or numerical models, in order to 

evaluate its efficiency. Furthermore, a more extensive numerical analysis would be of 

interest, in order to evaluate the dynamics of the OXYFLUX for a range of incident wave 

periods closer to the natural one. Such investigations would not aim much in the analysis 

of the mean water discharge, but rather in the analysis of  maximum displacement under 

such wave conditions.  

The modest values of pumped water produced by the device suggest the installation of 

little farms of OXYFLUX in environments such as little fjords or little gulfs where 

aquaculture is an important business to contrast the risk of eutrophication due to the 

pollutants produced by such activities. 
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CHAPTER VIII: CONCLUSION 

This chapter presents the conclusions of the studies conducted during three years of PhD 

studies.  

The problems of eutrophication, hypoxia and anoxia are discussed. Locations, reasons 

and the consequences of such common problems are described in order to identify the 

global scale of eutrophication in coastal areas. The abnormal enrichment of nutrients 

transported by river run-off appears to be, along with specific environmental and physical 

conditions, the main reason for the development of such phenomenon. It is evident, from 

existing knowledge, that additional investigations aimed to design a direct method to 

counteract or at least mitigate hypoxia in coastal areas needs to be conducted. From this 

point of view a critical review of wave energy converter devices has been conducted in 

order to analyze their strengths and weaknesses and their possible application to 

counteract over enrichment of sea waters from nutrients. The main failure causes for 

wave energy converters appeared to be related to electro-mechanic components or to the 

mooring system, that has to guarantee the safe behavior of  large and heavy structures, 

both during normal and extreme wave events. On these bases a floating device called 

“OXYFLUX”, devoid of any electro-mechanic part and characterized by a simple 

geometry and realization process, has been designed and tested through physical and 

numerical models. The proof of concept that drives the pumping mechanism has been 

described, as well as the hydrodynamic response of the floating structure. Since the 

results showed low values of pumped water, a second geometry for the floater of the 

OXYFLUX has been proposed and analyzed by means of a numerical model. This 

second geometry, as expected, shows an increase in the mean values of pumped water, 

but it still encounters difficulties in producing a downward flux for wave heights typical 

of summer wave climate. It can be argued that the optimal shape of the floater of the 

device, in order to guarantee downward flux for low wave heights and at the same time 
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maximize the amount of overtopped water for middle waves, should take into account 

both the geometries tested in this study.  

After the brief general description proposed above, the main conclusions for both 

physical and numerical modeling will be presented below, along with outlines for further 

research and final remarks. 

 

Physical Modelling: Conclusions 

In chapter 4 physical modelling of the OXYFLUX is described and the set-up of the 

laboratory, measuring methods and results are given in order to let the reader understand 

the workflow that was followed during this work. Such an investigation was developed in 

two phases; the first regarded a preliminary test and the second regarded more a detailed 

analysis of the dynamics and pumping mechanism of the device. 49 regular waves have 

been generated in order to have a set of waves which covers a range of wave steepness 

between 1% and 5%. Moreover, in order to identify the effects of the moorings, two 

different systems have been tested. The schemes used consisted of two pretention nylon 

cables and four chains, respectively. The dynamic response of the device was 

characterized by means of calm water tests and response amplitude operator (RAO). The 

natural period of the structure was identified as being around 1.10 sec. RAO showed the 

high non linear dynamics of the structure, since the effects of the viscous dissipations due 

to the stabilizing ring became dominant for the heave mode with the increase in wave 

height. The mooring system also affects the dynamic response, chains generate a second 

main component for the heave response. The main results coming from water velocity 

measurements gave the proof of concept of the pumping mechanism, since three fields 

are identified by means of wave height thresholds. The values of the thresholds vary 

according to the mooring system used. The results coming from the configuration which 

takes into account the nylon cables shows the following fields: Field 1 for wave heights 



184 

 

smaller than 3.00 mm in Froude similitude 1:16 (real scale 0.05 m) where no overtopping 

occurs, Field 2 for wave heights between 3.00 mm and 48.00 mm (real scale 0.77 m) 

where overtopping of incoming wave generates a downward flow as a consequence of the 

higher head of the water column inside the device with respect to the surrounding wave 

field and Field 3 for wave heights between 48.00 mm and 100.00 mm (real scale 1.60 m) 

where water flux reverses its direction and water flows from the bottom to the surface. 

Results coming from the configuration which takes into account the chains highlight as 

the chains let the floater free to ride the waves and then increase the minimum threshold 

value to allow overtopping of the floater. Both threshold values increase but the main 

trend can be recognized even for this mooring system. So we can distinguish Field 1 for 

wave heights smaller than 12.00 mm in Froude similitude 1:16 (real scale 0.19 m) where 

no overtopping occurs, Field 2 for wave heights between 12.00 mm and 62.00 mm (real 

scale 0.99 m) where overtopping of incoming wave generates a downward flow as a 

consequence of the higher head of the water column inside the device with respect to the 

surrounding wave field and Field 3 for wave heights between 62.00 mm and 100.00 mm 

(real scale 1.60 m) where water flux reverses its direction and water flows from the 

bottom to the surface. Chains let the device ride the waves generating higher values of 

velocity that can be reached only for wave heights greater than 12.00 mm (real scale 0.19 

m). The aim of the investigated device is to induce vertical water flux during the summer 

season when strong vertical stratification presents its effects and available wave energy is 

generally rare. A lower value of the first threshold should be preferred in order to 

guarantee a constant flux during all kind of wave states.  

Numerical Modelling: Conclusions  

In chapter 5 CFD software was validated by modelling a calm water test and the 

interaction of the OXYFLUX with regular waves. Only wave states belonging to Field 2 

have been modelled, since the modelling of wave characterized by a period larger than 

3.20 sec needed a larger numerical domain which involved a longer computational time. 

It was shown that the CFD software was well capable of predicting the dynamic response 
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of the device as well as the overtopping mean discharge. The validated numerical model 

was applied to 1:1 OXYFLUX design. Nine simulations were performed to investigate 

the effects of the model selection and the grid resolution. It was shown that the CFD code 

is very sensitive to the type of mesh used and to its size. In order to avoid any relevant 

phenomenon of wave reflection from the outlet boundary, which is mainly due to the 

resolution of the interface air-water with inappropriate mesh size moves according to 

body displacement, an overset mesh has been used. Selected size grid was chosen making 

a compromise between accuracy and computational time required for a single simulation, 

as shown by a discrepancy equal to 2 % of the value of natural period computed with the 

numerical model with respect to the physical model. Since the modelling has been 

considered appropriate to model all the processes that affect the wave-OXYFLUX 

interaction, a second geometry of the floater, based on Lazzari’s profile was tested only 

by means of a numerical model in order to determine its pumping efficiency. This second 

type of floater increases the mean discharged water but ,at the same time, it is not able to 

produce a downward flux for the lowest wave heights tested.  

 

Further research 

It can be argued that the optimum configuration of the device would be a middle ground 

of the two tested geometries, that in this thesis could not be simulated due to the time 

required to complete each simulation. This new geometry can be tested in the future 

through physical or numerical models, in order to evaluate its efficiency. Furthermore, a 

more extensive numerical analysis would be of interest, in order to evaluate the dynamics 

of the OXYFLUX for a range of incident wave periods closer to the natural one. Such 

investigations would not aim much in the analysis of the mean water discharge, but rather 

in the analysis of maximum displacement under such wave conditions. The knowledge of 

the dynamics of the body under the action of the extreme waves is essential in order to 
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design a prototype installation and avoid problems due to contact of the OXYFLUX with 

surrounding structures. 

No results, or analysis have been carried out in this study regarding the biochemical 

effects generated by the OXYFLUX in real seas. Since the difficulty of modelling such  

processes, the only way to evaluate how the concentration of oxygen changes, and how 

biological species react to a flux of surface water pumped to the bottom, is the installation 

of a prototype in real environments. This kind of test is expensive and could represent the 

final step of the research that was started in these three years of this PhD study.  

Final remarks 

Despite some gaps which still exist in the general knowledge of devices to counteract 

eutrophication, the conclusion can be reached that a new concept of device has been 

developed and tested, which shows its capacity to generate a downward flux of well 

oxygenated surface water to the bottom. The modest values of pumped water produced 

by the device suggest the installation of little farms of OXYFLUX in environments such 

as little fjords or little gulfs where aquaculture is an important business to contrast the 

risk of eutrophication due to the pollutants produced by such activities. This thesis does 

not claim to give the final design of a device that can stop the worldwide problem of the 

depletion of oxygen in coastal waters, but, because of its innovative slant it can represent 

a base study for the development of a direct approach that can mitigate the eutrophication 

of such kinds of water. 
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