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Abstract

The work carried out during my PhD was focused on the study of the

numerical and mathematical methods of the analysis of the stability of a

slope, in particular on the Minimum Lithostatic Deviation (MLD) method,

a variant of the Equilibrium Limit method.

This thesis is organized as follows:

Chapter 1 - This chapter illustrates the principal features of landslides

and outlines the essential terminology used in this thesis.

Chapter 2 - In this chapter we illustrate the main mathematical concepts

and formulas on which the limit equilibrium method is based. In addition

to the MLD method, we delineate, in broad line, even the most common

methods used in the engineering and geological field, such as the methods

of Fellenius, Bishop , Janbu and Morgenstern and Price. The purpose of

this chapter is to highlight the differences between these methods and the

MLD method.

Chapter 3 - In this chapter we test the limit equilibrium methods dis-

cussed in chapter two on a real case: the well-known Vajont landslide.

The choice of this particular case is justified by the huge amount of avail-

able data obtained since the area was selected to build the dam, until the



night when the landslide occurred. This event is a dark page of the his-

tory of Italy due to the high number of victims, but even it is important

on a global scale for the awareness about the risk assessment associated

with landslides and the increase of the in-site inspections and the thor-

ough investigations regarding the stability of slopes. Within the chapter,

using the MLD method we go back, step by step, to the conditions that

led to the landslide, focusing on the main features that destabilized the

slope: the combination of clay layers and heavy rainfall that led to an

increase of the pore pressure; after the rapid lowering of the basin level,

the hydrostatic conditions failed causing the detachment of the mass.

Chapter 4 - In this chapter we show the application of the MLD method

on two Norwegian cases provided by the Norwegian Geotechnical Insti-

tute of Oslo. The cases are selected in function of the dip angle: the

first is a typical flat profile of the Norwegian continental margin, it is

located off shore the Lofoten and Vesterålen peninsula and the inclina-

tion is about 4o - 5o. The second is a deep profile of the main scarp of

the famous Storegga landslide: the inclination is about 30o and it is lo-

cated on the edge of the continental shelf of Norway. The main goal is

to obtain the present equilibrium conditions of both sites by means of the

MLD method and to compare the results with the Morgenstern and Price

method implemented into the software GeoStudio2012. Furthermore we

make assessment on conditions that could destabilize the profile.

Chapter 5 - In the last chapter we used the MLD method to make a critical

analysis of Taylor’s and Mikalowski’s stability charts.



The stability charts are a tool used in the engineering and geological field

to assess the stability conditions of the slope. Usually they are used on

slopes of geotechnical interest (dikes and embankment). Our purpose

was first to understand if this tool can be exploited also to study the sta-

bility of slope of geophysical interest, and second, more important, to

investigate the adequacy and accuracy of the stability charts.
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Chapter 1

The Landslides

In this first chapter, we introduce the most important soil characteristics connected with

the landslide process. With the word Landslide we identify the ground movements, off-

shore, coastal or onshore, when the equilibrium conditions of forces that act in the soil

do not hold anymore: the state passes from stable to unstable. The principal conditions

that generate this transition are linked to the soil morphology, the hydrostatic condition

and the situation at the top surface of the mass such as vegetation or civil works. In the

following sections we describe, under the geological point of view, what is a Landslide.

1.1 Material Classification

A landslide has often a heterogeneous composition which can be described by means

of parameters characterizing the ground material and its mechanical properties, e.g.

permeability, stiffness, strength. There are two principal types of ground:

• Rock: a hard and stiff material of igneous, sedimentary, or metamorphic origin,

with a generally homogeneous matrix.

• Soil: a consolidation of solid particles, that can be of the same type or an aggre-

gate of minerals and rocks. The soil class is divided in two subclasses based on

16



Chapter 1 17

MATERIAL CHARACTERISTIC
Rock Strong

Weak
Stiff

Clay Soft
Sensitive

Mud Liquid
Earth Plastic
Silt
Sand Dry or
Gravel Saturated or
Boulders Partially saturated

Dry or
Debris Saturated or

Partially saturated
Peat
Ice

TABLE 1.1: Landslide material types

their granular size: the earth, in which most of the particles are smaller than 2

mm diameter; the debris where the particles are larger than 2 mm.

Furthermore, the ground is not a compact and uniform solid, but there are some voids,

called pores, that can be filled with air or water and their presence affects the mechanical

response to stress, as will be shown in the chapter of this thesis where we treat the

Vajont landslide case. The soil is said permeable if the water of interconnected voids

can flow from points of high energy to points of low energy and the permeability is the

coefficient that describes the capability of a material to be passed through by a fluid.

The knowledge of permeability is important for the understanding of the mechanics and

the hydraulic conditions that can influence the stable state of the slope.

Depending on the quantity of water, the ground can be:

• Dry, no wetness;

• Moist, contains some water, inside the connected pores, free to move; the mass is

similar to a plastic solid;

• Wet, contains enough water to behave in part like a liquid, and water flows away

from it;
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• Very wet: contains enough water to flow like a liquid.

The water inside the ground produces the pressure that could destabilize the equilibrium

conditions. It takes the name of pore pressure u and it is defined, according with the

Bernulli’s equation, as

u = γw h (1.1)

where γw is the unit weight of water and h is the height to which a column of liquid rises

against gravity. In the chapters 3 and 4 we show in depth this soil characteristic.

1.2 Landslide classification

There are different ways to classify landslides. The prevalent one is the classification of

Varnes Varnes (1954, 1978), based on the movement and on the ground types (rock or

debris). The classification system has frequently been reworked and improved because

landsliding is a very complex process that is hard to classify into specific categories.

Until today there are 32 different landslide types, evaluated on the basis of the geotech-

nical and geological features of the soil and in accordance with the behaviour of the

mass movement (Highland and Bobrowsky, 2008, Hungr et al., 2013).

Based on the mass movement the following classes can be distinguished:

• Fall: a sudden movement of mass such as rocks that detaches from steep slopes.

It occurs next to the fractures and discontinuities of the soil, in which the gravita-

tional component has a significant influence, though it is caused by earthquakes

and excess of water inside.

• Topple: a rotation of the mass around a fulcrum; the slope angle has to be high,

between 45◦ and 90◦ and the movement is mainly driven by the gravity force,

while the crack could be triggered by the saturation of fractures with water or by

earthquakes.
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• Slide: most movements of soil fit in this class. It is divided into two subclasses,

the rotational slide and the translation slide. The first has a concave sliding surface

and the movement occurs around a rotational axis. Usual for plastic rocks and

homogeneous slope, it could be affected by the water pore pressure or the action

of earthquakes.

The second subclass has a planar surface where the soil moves like a unique block.

It is typical for homogeneous or stratified rocks where the upper part of the slope

is marked out by the tension cracks.

• Lateral spreading: this is typical for very gentle slopes or flat terrain, subject

to a stratification. When the soil becomes saturated, the pore pressure increases

under layers with a low permeability and the sediments (usually sands and silts)

are transformed from a solid into a liquefied state. The state transformation can

be generated by an earthquake or also artificially.

• Flow: A lot of landslide types belong to this category, which frequently is di-

vided in many subclasses. The most important are the Debris flow (caused by

intense surface-water flow, composed by a large proportion of silt and sand), the

Earthflow (the characteristic shape is an hourglass and it occurs in fine materials

under saturated and dry conditions), the Mudflow (a particular earthflow that oc-

curs when the material is wet and the movement is sudden), and the Creep (an

imperceptible slow movement, in which the permanent deformation, for example

due to seasonal changes, produces a small shear failure).

• Complex: the last category contains all landslide types that cannot be included

in one of the preceding categories. Usually a combination of two or more types,

like slide-earthflow or slide-debris, are used to describe the main features of one

particular landslide.

Another way to describe the landslide type is based on the movement velocity, but this

case is not deepened here for it does not fit the purpose of this work.
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Movement type Rock Debris Earth
Fall Rock fall Debris fall Earth fall
Topple Rock topple Debris topple Earth topple
Rotational sliding Rock slump Debris slump Earth slump
Translational sliding Rock slide Debris slide Earth slide
Lateral spreading Rock spread Earth spread
Flow Rock creep Talus flow Dry sand flow

Debris flow Wet sand flow
Debris avalanche Quick clay flow

Solifluction Earth flow
Soil creep Rapid earth flow

Loess flow
Complex Rock slide-debris Cambering, valley Earth slump-earth

avalanche bulging flow

TABLE 1.2: The classification system of Varnes (1978)

1.3 Landslide features

Within a particular landslide two essential parts are distinguished: the sliding zone,

in which the mobilized material is located at lower altitudes than originally, and the

accumulation area, in which the slide material lies down. Furthermore it is important

to identify the principal parts of a landslide (figure 1.1):

• Crown: The upper edge that remains steady and is adjacent to the highest parts

of the main scarp.

• Main scarp: the exposed slide surface caused by the movement of displaced

material. It is often steep, but depends on the fracture mechanism of the landslide.

• Head: The upper parts of the landslide.

• Minor scarp: The lateral surfaces produced by differential movements that are

visible along the landslide flanks.

• Main body: The part of the ground that slides on the slip surface.

• Toe: The lower part of the landslide that usually has a curved shape due to the

amassed material of a landslide.

• Foot: The portion of the ground that has moved beyond the toe.
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FIGURE 1.1: The essential parts of a landslide, Varnes (1978)

• Surface of rupture: The surface that defines the rupture zone and along which

the ground slides; it is usually called slip surface.

• Toe of the rupture’s surface: Intersection between the lower part of the slip

surface and the ground level before of the landslide

Other important pieces of information are the dimension and the volume of the land-

slide. In our work we have considered the problem of stability in 2 dimensions, impos-

ing a unitary width, and, as we show in the next chapter, the dip angle and the height

have a fundamental role on the stability of a slope.
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The limit equilibrium method

Investigating the soil stability means to analyse the contributions of the forces acting

on a slope and to examine the conditions of balance. The problem of slope stability

is an important topic in the geological and engineering field, in continuous evolution,

especially due to the continuous incrase of computing power over time. The limit equi-

librium is one of the main methods used for the stability analysis and the goal of this

chapter is to show a 2-D mathematical elaboration of conventional methods found in

the literature, in agreement with the formulation of the Minimum Lithostatic Deviation

(MLD) method (Tinti and Manucci, 2006, 2008).

Some parts of the methods and their mathematical developments exposed in this chapter

and in the Appendix A and B are the reworking of unpublished reports developed by

Tinti and Manucci.

2.1 Limit Equilibrium Method

In our analysis, we consider a 2-D problem: the functions z1(x) and z2(x), where x

indicates a point in the range [xi,x f ], represent the bottom and the top curves that delimit

the slide body. Studying the equilibrium means analysing all the forces acting on the

slope. To ease, the body is divided into an arbitrary number of vertical slices of width

22
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FIGURE 2.1: (a) Geometric representation of a landslide body, delimited by two
curves, z1(x) and z2(x), which identify the upper and lower surface; z3 represents the
upper surface of the reservoir; the end points of these two curves coincide z1(xi) =
z2(xi) and z1(x f ) = z2(x f ). (b) Geometric representation of a single slice: dl1 and dl3
are the two vertical sides, while dl2 and dl4 are the upper and lower sides, characterized

by the inclinations β and α with respect to the x-axis; dx is the width of the slice.

dx (Fellenius, 1936). The horizontal component of the inter-slice forces E(x) is defined

as

E(x) =
∫ z2(x)

z1(x)
σxx dx (2.1)

and the vertical component X(x) is

X(x) =
∫ z2(x)

z1(x)
σxz dx (2.2)

where σ is the matrix of stresses.

Since the thickness is zero at the beginning and at the end points of the slope, fig. 2.1,

i.e.

z2(xi) = z1(xi) (2.3)
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z2(x f ) = z1(x f ) (2.4)

the boundary conditions are

E(xi) = E(x f ) = X(xi) = X(x f ) = 0 (2.5)

Supposing that the slope, in addition to the weight, may be subject to seismic and hy-

drostatic load, we express the horizontal equilibrium (see appendix A.1.1) as

dE
dx

+P tanα−S−D tanβ + kh w = 0 (2.6)

and the vertical equilibrium (see appendix A.1.2) as

dX
dx

+P+S tanα−D− (1+ kv) w = 0 (2.7)

where P and S are respectively the normal and shear stress along the bottom z1(x),

linked to the slide material, D is the hydrostatic load of the water on the upper surface

z2(x). The coefficients kh and kv express the ratio of the seismic load components to the

magnitude of the gravitational acceleration.

In addition to the above two equations, we have a third equilibrium relationship relative

to the mechanical moment, because the equilibrium of a body requires that all forces

and all moments are equal to zero. There are different manners to express the moment of

forces. In our method we impose the equilibrium of each slice, because, this condition

is implied when the entire body is in equilibrium. The moment equation in our notations

(see appendix A.2) is

dA
dx
− z1

dE
dx
−X− (z2− z1)D tanβ + kh(zB− z1)w = 0 (2.8)
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where A(x) is the moment of first order of the normal stress (Tinti and Manucci, 2006,

2008). In the next sections we show the relationships used in the classical methods to

express the total moment and the equilibrium of the slope.

2.1.1 Mohr-Coulomb criterion

Another important relationship that takes into account the geotechnical property and the

capacity of rupture of a soil is the failure criterion of Mohr-Coulomb (Nadai, 1950). It

relates the normal and shear stress acting on the sliding surface as follows

Smax = c+P′ tanφ (2.9)

where Smax is the shear strength of the material, P′ is the effective normal stress, c is the

cohesion coefficient of the soil, φ is the friction angle. When the soil is saturated, the

total normal stress at a point is the sum of the effective stress and pore water pressure u

P = P′+u (2.10)

and the expression 2.9 becomes

Smax = c+(P−u) tanφ (2.11)

The coefficient

F =
Smax

S
(2.12)

represents a new parameter called Factor of Safety (F), whose value determines the

equilibrium conditions of the slope: since Smax is the maximum value of shear stress

beyond which the soil breaks and S is the effective shear stress acting along the slide
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surface, when the value of F is less than 1 the slope is unstable, because the shear stress

is greater than the limit value sustainable by the slope.

If we want to write 2.9 with 2.12

F =
c+(P−u) tanφ

S
(2.13)

To simplify we pose

c∗ = c−u tan φ (2.14)

and the 2.13 becomes

F =
c∗+P tanφ

S
(2.15)

It is worth pointing out that, even if we have four equations, 2.6, 2.7, 2.8, 2.15, and their

boundary conditions that define the problem, the number of unknowns E(x), X(x), S(x),

P(x) and F is greater than the number of equations and the system is underdetermined

with an infinite number of solutions. So we must impose additional relations that allow

us to uniquely solve the system.

Starting from this base, in the last century a large number of techniques have been

developed, the most famous of which are the methods of Fellenius, Bishop, Janbu,

Morgenstern and Price, Spencer, Sarma, and others, that we call classical methods.

In this chapter we show the most important and famous methods that today are still in

use for the analysis of stability, and in the next chapter we compare the results obtained

by the classical methods and the Minimum Lithostatic Deviation method.
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2.2 Ordinary method

The Ordinary method is the first analytical and easiest method and was developed by

Fellenius, (Fellenius, 1927, 1936). The Limit Equilibrium (LE) is introduced to study

the stability of an infinite homogeneous slope, imposing that the inter-slice forces E(x)

e X(x) have to be equal to zero

E(x) = X(x) = 0 (2.16)

Solving the system of the two horizontal and vertical equations without external loads,

the expression of F is

F =
c∗+w cosα tanφ

w sinα
(2.17)

that represents an exactly and trivial solution for the slope. For a dry soil without cohe-

sion it simplifies to

F =
tanφ

tanα
(2.18)

The equation 2.18 indicates that the slope is stable, (F > 1), if the angle of slip is less

than the friction angle, while it is unstable when the slip angle is greater than the friction

angle.

In our work we calculate the value of F for a slope with a generic slip surface. The

conditions are 2.16, but the system is composed of the equations 2.6 and 2.7. Without

examining this in depth (more details can be found in the Appendix B.1), the final

expression of F for a generic slip surface is:
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FO =

x f∫
xi

[(xO− x) tanα +(zO− z1)](c∗+P tanφ)dx

x f∫
xi

{
−(xO− x) [P−D− (1+ kv)w]+ (zO− z1) [P tanα−D tanβ + khw]+ (z2− z1)D tanβ − khw(zB− z1)

}
dx

(2.19)

that in case of a circular sliding surface simplifies to :

FO =

x f∫
xi

{ c∗

cosα
+[D tanβ sinα− khwsinα +[D+(1+ kv)w]cosα] tanφ}dx

x f∫
xi

{[D+(1+ kv)w]sinα−D tanβ cosα + khwcosα}dx
(2.20)

The subscript O indicates the Ordinary method and although it represents a simple so-

lution, it is often used to make a quick evaluation of F and it is also the basis of the

method of Bishop, as we will show in the following section.

2.3 Method of Bishop

The method of Bishop proposes a refined solution to the Ordinary method, because the

inter-slice forces are not null and takes into account the equilibrium of moment (Bishop,

1955).

To solve the problem, this method needs the boundary conditions and, depending on

the choice of these, there are two different methods of Bishop, called simplified and

generalized methods. In both cases, the trial surface for the original method has to be

circular, but in our work we formulate the Bishop theory even for a generic slide surface.

2.3.1 Bishop’s simplified method

The simplified method assumes that the horizontal force is null. Solving the system

between 2.7 and 2.9, and imposing that X = 0, P is calculated as
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P =
D− (kv +1)w− c∗

F
tanα(

1+
tanφ tanα

F

) (2.21)

This allows one to find an expression for F , making the integral along the range [xi,x f ]

F =

x f∫
xi

[(xO− x) tanα +(zO− z1)](c∗+P tanφ)dx

x f∫
xi

{
−(xO− x) [P−D− (1+ kv)w]+ (zO− z1) [P tanα−D tanβ + khw]+ (z2− z1)D tanβ − khw(zB− z1)

}
dx

(2.22)

The 2.22 can be applied to any type of slide surfaces. The simplification for a circular

surface is

F =

x f∫
xi

c∗+P tanφ

cosα
dx

x f∫
xi

[D +(1+ kv)w]sinα dx+
1
R

x f∫
xi

[D tanβ (z2− zO)− khw(zB− zO)]dx

(2.23)

where R is the radius of the circular slip surface and z0 is the vertical coordinate of the

circular surface center (see Appendix B.2). Within the expression 2.21 there is F , and

this suggests to use an iterative method to search for a solution, that is:

Fn
BS =

x f∫
xi

1
cosα

[
c∗+

D− (kv +1)w− c∗

Fn−1 tanα(
1+

tanφ tanα

Fn−1

) tanφ

]
dx

x f∫
xi

[D +(1+ kv)w]sinα dx+
1
R

x f∫
xi

[D tanβ (z2− zO)− khw(zB− zO)]dx

(2.24)

where BS is used to denote the Bishop’s simplified method and n is the number of

iterations: for convention the initial value of F
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F0 = FO (2.25)

coincides with the value of the Ordinary method, but it can be any initial value. For

each n we find a new value of FBS that, during the next step, is placed as the new Fn. If

the process converges the solution could be expressed as

Fn
BS = lim

n→∞
Fn−1 (2.26)

but in practice a few iterations are sufficient to find the limit value.

2.3.2 Bishop’s generalized method

The simplified method does not take into account all of the equations that define the

problem, and therefore it does not satisfy all the boundary conditions. One attempt to

overcome this drawback is to impose a dependency between the horizontal and vertical

components of the inter-slice forces

X(x) = λ f (x)E(x) (2.27)

where the function λ f (x) is used to force the expression of X to satisfy the boundary

conditions. This method has a double iteration cycle, the first is an internal loop and

is identical to that shown to find the value of FBS, while the second cycle concerns the

relation

Xm(x) = λ f (x)Em−1(x) (2.28)

where m represents is the index of the external iteration. We assume the initial value

E0 = 0 and λ f (x) = tanθ , where θ is the angle between the inter-slice forces and the

x−axis. The expression of P is



Chapter 2 31

Pm
n−1(x) =

D− dXm

dx
+(kv +1)w− c∗

Fm
n−1

tanα(
1+

tanφ tanα

Fm
n−1

) (2.29)

and S is

Sm
n−1(x) =

c∗+Pm tanφ

Fm
n−1

(2.30)

For a circular slip surface we have

Fm
n =

x f∫
xi

1
cosα

{c∗+D− dXm

dx
+(1+ kv)w

1+
tanφ tanα

Fm
n−1

tanφ

}
dx

x f∫
xi

[D +(1+ kv)w]sinα dx+
1
R

x f∫
xi

[D tanβ (z2− zO)− khw(zB− zO)]dx

(2.31)

where Fm
0 is the initial value that can be obtained through the Ordinary method or can

be an arbitrary initial value as

Fm
0 = ηFm

O (2.32)

where η is an appropriate coefficient. The iteration finishes when Fm
n reaches a limit

value

| Fm−Fm+1 |< ε (2.33)

where ε is sufficiently small.

In our work we have calculated the 2.31 for a generic slip surface, and without explicit-

ing the 2.29, we have
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Fm
n =

x f∫
xi

[(xO− x) tanα +(zO− z1(x))](c∗+Pm
n−1)dx

x f∫
xi

{
[(x− xO)+(zO− z1(x)) tanα]Pm

n−1 +(xO− x) [D+(1+ kv)w]− (z0− z2(x))D tanβ + khw(z0− zB(x))
}

dx

(2.34)

2.4 Method of Janbu

The method of Janbu is similar to Bishop’s, because it takes into account two of the

three equations of the equilibrium problem, but the choice is on the horizontal and ver-

tical forces expressions, overlooking the moment equation (Janbu, 1954).

In particular, Janbu takes into account the global horizontal equilibrium

E(x f )−E(xi) =

x f∫
xi

{
S−P tanα +D tanβ − khw

}
dx = 0 (2.35)

where

P =
D− dX

dx
+(kv +1)w− c∗

F
tanα(

1+
tanφ tanα

F

) (2.36)

and

S =

c∗+
D− dX

dx
+(kv +1)w− c∗

F
tanα(

1+
tanφ tanα

F

) tanφ

F
(2.37)

Imposing that F is a parameter, its value is
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F =

x f∫
xi

{
c∗+

D− dX
dx

+(kv +1)w− c∗

F
tanα(

1+
tanφ tanα

F

) tanφ

}
dx

x f∫
xi

{D− dX
dx

+(kv +1)w− c∗

F
tanα(

1+
tanφ tanα

F

) tanα−D tanβ + khw
}

dx

(2.38)

We see that 2.38 leads to an expression of F in terms of other unknowns, i.e. X and F

itself. So, depending of the initial assumptions, it is classified as simplified or general-

ized.

2.4.1 Janbu simplified method

In the Janbu simplified method, the additional condition is

X = 0 (2.39)

everywhere and with an iterative method it obtains the Factor of Safety assuming the

initial value of F equal to FO. The result is

Fn
JS =

x f∫
xi

{
c∗+

D+(kv +1)w− c∗

Fn−1 tanα(
1+

tanφ tanα

Fn−1

) tanφ

}
dx

x f∫
xi

{D+(kv +1)w− c∗

Fn−1 tanα(
1+

tanφ tanα

Fn−1

) tanα−D tanβ + khw
}

dx

(2.40)

and for a converging process leading to

Fn
JS = lim

n→∞
Fn−1 (2.41)
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the iterations stop when the difference between two consecutive solutions has magnitude

smaller than a given small number ε .

2.4.2 Janbu generalized method

In the same way as with the Bishop’s generalized method, the Janbu generalized method

imposes the relationship between the functions E and X equal to 2.27. With a double

iteration in m and n, the solution is

Fm
n JG =

x f∫
xi

{
c∗+

D− dXm

dx
+(kv +1)w− c∗

Fm
n−1

tanα(
1+

tanφ tanα

Fm
n−1

) tanφ

}
dx

x f∫
xi

{D− dXm

dx
+(kv +1)w− c∗

Fm
n−1

tanα(
1+

tanφ tanα

Fm
n−1

) tanα−D tanβ + khw
}

dx

(2.42)

and the iteration finishes when the value of FJG gets sufficiently close to its own limit

value.

The fundamental difference between the Bishop and the Janbu methods is in the slip

surface used: in the first one, originally, it has to be circular (with our modification it

can be used also for a generic slip surface), while the second method can be used for

any slip surface.

2.5 Method of Morgenstern and Price

Morgenstern and Price developped a method that satisfies all the three equations and

all the boundary conditions of the equilibrium problem. They improve the Bishop and

the Janbu methods, combining them to find a solution for F . They keep the relation

between the inter-slice forces
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X(x) = λ f (x)E(x) (2.43)

as viewed in Bishop and Janbu methods, but they allow the function f (x) to assume

different shapes. One of the more used is the half-sine function. Varying λ within an

initial range, they find for each value of λ , two independent solutions of F from the

expressions 2.34 and 2.42. In this way one can draw two curves, satisfying respectively

the moment and the forces equilibrium. The solution for F is the value that coincides

with the intersection of the two curves, (Fredlund, 1974, Fredlund and Krahn, 1977,

Morgenstern and Price, 1965, 1967).

2.6 Method of the Minimum Lithostatic Deviation

The MLD method brings a new way of solving the LE problem, starting from the con-

cept that the solution to the problem in its original formulation is not unique. In the

MLD approach F is considered a known parameter. It has been already stressed that the

LE system of equations is underdetermined and therefore there are infinite values of F

that solve the problem. The MLD method introduces a criterion to identify the solution

that best solves the equilibrium conditions of the body. In the MLD method X(x) is a

Fourier sine expansion truncated to the third term

X(x,λ ;F,q)= qsin
[

π (x− xi)

L

]
+λ1 sin

[
2π (x− xi)

L

]
+λ2 sin

[
3π (x− xi)

L

]
(2.44)

where q is a free parameter and λ1 and λ2 are unknown parameters. The choice to

truncate the series to the third term is related to the performance of the code. Tests

were conducted by using up to six terms: the end result is an exponential increase

of the number of combinations to be analysed (and consequently a radical increase of

the time spent by the program to complete the calculations), and since results change

only in the fourth decimal place of the safety factor, the inclusion of more terms is not

justified (Paparo, 2010). The boundary conditions for X(x) are automatically satisfied.
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On combining the vertical equilibrium equation with the Mohr-Coulomb criterion, we

can derive the expressions for P

P(x,λ ;F,q)=

π

L

{
qcos

[
π (x− xi)

L

]
+2λ1 cos

[
2π (x− xi)

L

]
+3λ2 cos

[
3π (x− xi)

L

]}
1+

tanα tanφ

F
(2.45)

and for S

S(x,λ ;F,q) =
c∗

F
+

π

L

{
qcos

[
π (x− xi)

L

]
+2λ1 cos

[
2π (x− xi)

L

]
+3λ2 cos

[
3π (x− xi)

L

]}
F
(

1+
tanα tanφ

F

) tanφ

(2.46)

After some mathematical manipulations one can further derive the expressions for the

functions

E = (x,λ ;q,F) =
π

L
q

x∫
xi

H cos
[

π(x− xi)

L

]
dx′+

2π

L
λ1

x∫
xi

H cos
[

2π(x− xi)

L

]
dx′+

3π

L
λ2

x∫
xi

H cos
[

3π(x− xi)

L

]
dx′+

x∫
xi

g(x;F)dx′ (2.47)

and
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A(x,λ1,λ2;q,F) =
L
π

{
q
(

1− cos
[

π(x− xi)

L

])
+

1
2

λ1

(
1− cos

[
2π(x− xi)

L

])
+

1
3

λ2

(
1− cos

[
2π(x− xi)

L

])}
−

x∫
xi

(1+ kv) H(x;F) w(x) z1(x)dx′−

x∫
xi

D H(x;F) z1(x) dx′+
x∫

xi

H(x;F) z1(x)
d
dx

X(x,λ1,λ2;q)dx′+

x∫
xi

D tanβ (x) z2(x)dx′−
x∫

xi

kh w(x) zb(x)dx′ (2.48)

By imposing the boundary conditions for E(x) and A(x), we obtain two equations where

everything is known, except the coefficients λ1 and λ2. This is an algebric system of

two equations in two unknowns that can be solved. Finally, knowing the values of λ1

and λ2, we can obtain all the expressions previously defined for each point of the slide.

In this case the searching of the solution is carried out in a space of configurations that

depends on the number of the trial values of q, (2imax), and of the trial safety factor F,

(NF). The formula which gives the total number of configurations that are analyzed is

n = (NF +1)(2imax+1) (2.49)

So how do we choose the right solution?

The MLD method introduces the new parameter called Lithostatic Deviation defined as

δ =W−1
[

1
(x f − xi)

x f∫
xi

[E(X)2 +X(x)2]dx
] 1

2

(2.50)

with

W =
1

(x f − xi)

x f∫
xi

w(x)dx (2.51)
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where δ is the average magnitude of the inter-slice forces normalized to the weight

of the sliding mass. Notice that this parameter is equal to zero only if the functions

E(X) and X(x) vanish everywhere, which is a condition that can be met only by a

homogeneous uniform layer in lithostatic equilibrium on a constant slope. Therefore

δ represents the value of the deviation from a state of lithostatic equilibrium, and then

allows us to identify the state of equilibrium as the one which satisfies all the equilibrium

equations and which in addition corresponds to the smallest value of δ . This was called

the Minimum Lithostatic Deviation principle.
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The Vajont

In this chapter we show the results of applying the MLD method to the famous case of

the Vajont landslide that occurred about fifty years ago, in the attempt of casting light

on the causes that triggered this event and that led the slope to transit from stability

to instability conditions. The analysis has been performed also by using the classical

methods, mentioned in the previous chapter, and the results have been compared with

those obtained by means of the MLD method. The choice of studying this case is linked

to the complexity of the factors intervened in addition to the gravitational component,

such as the pore pressure, the rise and decrease of the piezometric level, the stratigraphic

sequence made of limestone and clay layers and the non-circular failure surface that has

to be found along planes of weakness represented by clay beds (Paparo et al., 2013).

3.1 The Vajont case

The landslide of Vajont is one of the greatest catastrophes in Italy and occurred on

October 9th, 1963: the mass detached from Mount Toc and flew into the reservoir at

high speed, about 18 m/s (Zaniboni and Tinti, 2014, Zaniboni et al., 2013). It generated

a water wave that totally destroyed a number of villages, including Longarone that

turned out to be the most affected one. The end result is 1917 victims of which 1450

39
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belonging to Longarone, 109 to Codissago and Castellavazzo, 158 to Erto and Casso

and 200 employees, technicians and their families who were working on the dam.

In view of the large amount of data collected during the monitoring of the site since

1936, the year in which the Vajont site was selected for the construction of the dam, the

case of Vajont is still today an important masterpiece for the study of stability, evolution

and effects generated by a landslide.

3.1.1 Geological structure

The Vajont valley is positioned in the North of the Venetian Prealps and the torrent lined

the gorge that runs along the valley axis with an E−W trending, eroded along a syn-

clinal (Ghirotti, 1993, Giudici and Semenza, 1960, Semenza and Ghirotti, 2000): the

widest part of the gorge is derived by the soil erosion during the Wurmian glacialism and

the deepest part during an intermediate or postglacial phase (Carli, 2011, Carloni and

Mazzanti, 1964). The soil presents a complex structure of typical Jurassic-Cretaceous

carbonate sequences where a succession of layers have been identified: the Jurassic

sequence is composed of massive Vajont Limestone of the Fonzaso Formation and Am-

monitico Rosso Formation, while the Cretaceous sequence is composed of the Soccher

Limestone and the Scaglia Rossa Formation marl (Francese et al., 2013, Massironi et al.,

2013) .

The landslide involves the Soccher formation and the upper part of the Fonzaso lime-

stone: this last zone is spaced by thin layers of clays (Genevois and M., 2005) and the

presence of clay, as we will see later, plays a fundamental role in the slope stability.

Unfortunately, for several years after the disaster, the presence of clay in the rock lay-

ers officially was not accepted (Broili, 1967, Müller, 1986), although many geological

studies confirmed that the dolomitic limestone was fractured and a thin layer of clay

was located along the slip surface (Rossi and Semenza, 1965, Semenza, 1965).

It was only through the studies conducted by Hendron and Patton (1985) that it was

recognized the presence of clay and demonstrated its relevance among the causes and

mechanisms that led to the landslide motion.
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3.1.2 Hydrostatic condition

In addition to the geomorphological characteristics of soil, we must take into account

the presence of water, not only as infiltration resulting from continuous lowering and

raising of the dam basin, but also due to the persisting rainfalls that affected the area.

Since 1961 the level of the water in the soil was measured by piezometers installed at

different elevations (838, 860, 765, and 851 m) and borehole depths (220, 220, 140, and

180 m), and the precipitations were recorded by the station located in the town of Erto.

FIGURE 3.1: Daily precipitation (in mm) from 1960 to 1963 (Hendron and Patton,
1985)

The two phenomena (rainfall and variations of the piezometric level) were studied sep-

arately until Hendron and Patton: they correlated the daily precipitation with the piezo-

metric records, under the hypothesis of the existence of an artesian aquifer located at the

base of the landslide mass (′′the lower permeability of the clay layers and the higher per-

meability of the intervening limestones and cherts must have combined to significantly

increase the hydraulic conductivity along the bedding relative to that across the bedding.

This effect results in a classic case of an inclined multiple-layer artesian aquifer system

at and below the surface of sliding ′′ (Hendron and Patton, 1985)).
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FIGURE 3.2: Monthly precipitation (in mm) from 1960 to 1963 (Hendron and Patton,
1985)

FIGURE 3.3: Rate of movement from 1960 to 1963 (Hendron and Patton, 1985)

The artesian aquifer has particular features that play a key role in the soil stability. The

aquifer, confined by impermeable clay layer at the base of the slice, is under pressure

exceeding that of atmospheric pressure due to the amount of rain. Every time the level
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of the water basin quickly decreases, the hydrostatic conditions of the soil are missing

causing a rise of the pore pressure and a decrease of the shear stress along the sliding

surface (Crawford et al., 2008, Faukker and Rutter, 2000, Reep, 2009): the stability

condition reaches a critical point that leads to the slipping of the mass.

In fact the first movement of the mass corresponds with the end of a very rainy year

(1960), fig. 3.3 and we can correlate the increase in the piezometric level with the

decrease of the safety factor (Kaneko et al., 2009).

FIGURE 3.4: Map of the Vajont slide: the red line is the failure scar and the blue lines
represent some discontinuity set along the crown. The main scarp can be divided in
two parts: the upper one is composed mainly of micritic and cherty limestone with thin
intercalation of green clay and marl, while the part near the deposit is constituted of
alluvional and glacial deposits. The yellow arrow indicates the position of the dam.

3.2 Analysis of stability

Although the whole mass of the slide, approximately of 260 million m3, ran down at

the same time, it is now well established that the failure mechanisms have not been the

same along the entire sliding surface, so that we can talk of more slip sub-surfaces: in

view of results coming from seismic tomography, numerical simulations of the slide
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motion and comparison of pre- and post-landslide maps, the slip surface can be divided

in two main areas (Francese et al., 2013).

FIGURE 3.5: Longitudinal profile 1 of Vajont (Paparo et al., 2013)

FIGURE 3.6: Longitudinal profile 2 of Vajont (Paparo et al., 2013)

For this reason we divide the landslide body into two parts (that can be named as the

east and west part) and for each part we select one main profile, profile 1 fig. 3.5 and
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Specific weight of the Vajont limestone 26 KN/m3

Friction angle of fissured limestone 22o

Friction angle along the clay-limestone interface 8o

Coefficient of cohesion for a fractured rock matrix 20 KPa
Coefficient of cohesion along the clay-limestone interface 10 KPa

TABLE 3.1: Geotechnical parameters of section 1 (Hendron and Patton, 1985)

Specific weight of the Vajont limestone 26 KN/m3

Friction angle of fissured limestone 22o

Friction angle along the clay-limestone interface 17o

Coefficient of cohesion for a fractured rock matrix 20 KPa
Coefficient of cohesion along the clay-limestone interface 10 KPa

TABLE 3.2: Geotechnical parameters of section 2 (Hendron and Patton, 1985)

profile 2 fig. 3.6. The analysis begins in steady condition and the parameters of the west

(tab. 3.1) and the east zones (tap. 3.2) are changed until reaching the condition of the

limit equilibrium. These soils, when saturated by water, lose significantly their shear

strength and unconfined compressive strength, become fragile and their grains break

down in water as observed in grain size analysis (Kim et al., 2004, Lee and De Freitas,

1989).

3.2.1 Application of classical and MLD methods

First we analyze the two profiles by means of all methods introduced earlier: in this

case we assume a homogeneous unsaturated body composed of only fractured dolomitic

limestone.

The figs. 3.7, 3.8 and 3.9 show the functions E(x), X(x), and A(x) for each method: in

line with the theory discussed in the second chapter, we observe that the Morgenstern

and Price and MLD methods satisfy all three boundary conditions for the two compo-

nents of the inter-slice forces and the moment.

In fig. 3.10 we can see that the F value varies in function of the used method: Janbu

gives the lowest values of F , but it does not satisfy all the boundary conditions, and this

is also true for the Bishop method. Only the methods of Morgenstern and Price and

MLD satisfy all the conditions of problem.
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FIGURE 3.7: Comparison of inter-slice forces E(x) obtained by means of all differ-
ent methods: all methods satisfy the boundary conditions, but the generalized Bishop

method (see the second chapter) (Paparo et al., 2013).

FIGURE 3.8: Comparison of inter-slice forces X(x) obtained by means of different
methods: all methods satisfy the boundary conditions with the exception of the gener-

alized Bishop method (Paparo et al., 2013).
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FIGURE 3.9: Comparison of the moment A(X) obtained by means of different meth-
ods: in this case the Bishop and Janbu methods do not satisfy the boundary conditions,

while the MLD and M&P methods do (Paparo et al., 2013).

FIGURE 3.10: Values of F resulting from the different methods.

3.2.2 Analysis of stability with the MLD method

To deepen the analysis of the Vajont case we selected to use only the MLD method to

reconstruct the conditions that led to the instability of the Mount Toc slope.
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We can divide our analysis in six cases:

• Case 1: the soil is unsaturated and the basin level increases up to 710 m;

• Case 2: the level of the reservoir and the piezometric level increase both up to

710 m;

• Case 3: the reservoir and piezometric levels increase up to 710 m and the clay

layer along the slip surface decreases its cohesion due to the rise of the pore

pressure;

• Case 4: the level of the basin and of the piezometric line are as in the third case,

but the friction angle decresases;

• Case 5: the level of the basin and of the piezometric line are as in the third case,

and both the friction angle and cohesion change because of the rise of pressure in

the soil;

• Case 6: the level of the reservoir is stable at 710 m and the piezometric level

increases up to 790 m, the cohesion and the angle of friction change like in the

fifth case.

Figs. 3.11 and 3.12 show that when the level of the reservoir increases also the value of F

rises, since the load of the basin stabilizes the slope (Case 1). Following the geological

analysis of post-landslide a series of layers of clay was identified, placed along the

sliding surface of the landslide; the soil, above the critical surface, from unsaturated

becomes saturated due to impermeability of clay and due to the rise of the piezometric

level (Case 2). The piezometric level increased due to the increase of the level of the

basin and due to the heavy rainfall: furthermore, the geotechnical parameters at the

base of the failure surface also change, in particular the value of the cohesion and of the

friction angle (Hendron and Patton, 1985, Müller, 1964) (Cases 3, 4 and 5).

In all of the cases the value of F does not reach the critical value of 1, but we can see,

according to our analysis, that the predominant element for changing the safety factor

is the angle of friction.
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FIGURE 3.11: Trend of F for different cases for profile 1: in case 1 reservoir level
increases; in case 2 reservoir and piezometric levels increase; in case 3 reservoir and
piezometric levels increase and the cohesion varies from 20KPa to 10 KPa; in case 4
reservoir and piezometric levels increase and the angle of friction varies from 22o to
17o; in case 5 reservoir and piezometric levels increase and the cohesion and the angle

of friction vary. The red line highlights the critical condition of F equal to 1

Figs. 3.13 and 3.14 show the case 6 for both profiles: increasing the piezometric level

means increasing the pore pressure. As viewed in the relation of Mohr-Coulomb, the

pore pressure decreases the effective normal stress, which itself leads to a decrease of

the shear stress. The final result is the reduction of the safety factor, but also in this case

we do not reach the unstable conditions, even though we are very close.

The decisive role that breaks the weak equilibrium of the slope, is played by the low-

ering of the level of the basin that took place relatively rapidly compared to the time

required for the soil to reach the hydrostatic conditions.

The red points in figs. 3.13 and 3.14 indicate the condition of instability, F less than 1,

obtained after the lowering of the basin from 710 m down to 700 m and the increase of

the piezometric level due also to the precipitation in the months preceding the landslide.

The concomitant occurrance of these conditions, natural and due to human intervention,

have varied the geological and structural conditions of the soil, leading to the failure of
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FIGURE 3.12: Trend of F for different cases from 1 to 5 for the profile 2: see fig. 3.12

FIGURE 3.13: Trend of F for case 6, profile 1: we keep the reservoir level constant
at 710 m and we raise the piezometric level to 790 m (Hendron and Patton, 1985),
reaching the limit equilibrium. Lowering the level basin from 710 m to 700 m triggers

the instability (red dot)

the Mount Toc flank, and on October 9th, 1963, 10:39 p.m., the giant landslide slipped

in the Vajont lake.
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FIGURE 3.14: Trend of F for case 6, profile 2: as in profile 1, we keep the reservoir
level constant at 710 m and we raise the piezometric level to 790 m (Hendron and
Patton, 1985), reaching the limit equilibrium. Lowering the level basin from 710 m to

700 m triggers the instability (red dot).

3.3 Conclusions

The case of the Vajont is perfectly suitable to compare different analyses of slope sta-

bility with the limit equilibrium methods, showing the principal differences in line with

the theory developed in the second chapter.

The main purpose of this chapter was to show our work in reconstructing the main

processes that led to the instability of the flank of the Mount Toc: the safety factor

varied greatly, depending on the conditions of the soil, saturated or unsaturated, and on

the values of the geotechnical parameters of the soil along the slip surface (the angle

of friction and cohesion). Finally, the slope collapsed due to the rise of pore pressure

inside the ground due to the heavy rain precipitations and the quick lowering of the

basin level from 710 m to 700 m.

All of these factors generated the landslide that detached and provoked the disaster of 9

October 1963.
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Analysis of two Norwegian sites

The purpose of the chapter 3 was to build the conditions that led to the Vajont landslide,

using the MLD method and the large amount of data obtained from the continuous

monitoring during the construction of the dam: the results obtained are able to explain

the main factors causing the disaster.

In this chapter the main goal is to derive the equilibrium conditions of two sites along

the Norwegian continental margin prone to landslides and to find what conditions would

bring the two slopes to instability.

The cases treated in this chapter were provided by the Norwegian Geotechnical Institute

(NGI) of Oslo, during my visit there. We can divide the work in two main parts based

on the degree of steepness of the slopes. The first part takes into account a low-angle

slope, specifically one of the landslides which affected the continental margin off the

Lofoten and Vesterålen. The second part considers a slope with a high angle, namely

the headwall scar of the Storegga slide.

Furthermore, another objective of this study is to compare the results obtained by means

of the MLD technique with the results of the Morgenstern and Price (M&P) method,

because the latter is one of the limit equilibrium methods that satisfies all of the problem

conditions. In order to analyze the slope with the M&P method, the software GeoStu-

dio2012 has been used that is one of the most important tools in the engineering field.
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In particular the package Slope/W has been utilised, which is the specific section of the

program GeoStudio2012 dedicated to the study of slope stability.

4.1 The Lofoten and Vesterålen analysis

Several geological and geophysical studies (Brekke, 2000, Doré et al., 1999, Mosar,

2003, Olesen et al., 1997, Talwani and Eldholm, 1977) show that the Norwegian conti-

nental margin can be divided into a series of segments: one of these is the selected area

of Lofoten and Vesterålen, that belongs to the northernmost segment of the Norwegian

continental margin (figg. 4.1,4.2).

FIGURE 4.1: Map of the Scandinavian Peninsula

We can identify several canyons along the shelf, eroded by ice streams during the glacial

period. The flanks of these canyons have a slope of about 30o, while the sea floor dips

gently with a gradient of 3o. Since also the sea floor is affected by landslides, our

analysis focuses along a profile whose inclination varies from 2o to about 4o− 5o (fig.

4.3).
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FIGURE 4.2: Lofoten and Vesterålen area: the red square indicates the analyzed zone

FIGURE 4.3: Profile used to compare the results obtained by means of the (M&P) and
the MLD methods. The red line indicates the post-landslide surface, while the dark
brown line indicates the reconstructed top surface of the slope. The light brown line

indicates a thin layer of overconsolidated clay
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Cohesion c 5 KPa
Unit weight γ of laminated clay 18.3KN/m3

Unit weight γ of sandy glacial clay 17.7KN/m3

Friction angle φ 28o−30o

TABLE 4.1: Geotechnical parameters of the sediments

Geotechnical investigations show that the soil is composed of a series of layers of sandy

clay and silty clay. The drained strength parameters of sediments have been determined

from Triaxial and DSS tests (L’Heureux et al., 2013).

To get the conditions in which the slope currently is, we start from the simplest case

of a homogeneous slope and we observe how the value of F changes, step by step, on

varying the external loads.

To ensure the comparison of the results of the two methods, we divide this section into

four parts, each one illustrates the following analysis:

• Homogeneous slope and circular surface without piezometric and basin levels

• Homogeneous slope and circular surface with piezometric and basin levels

• Homogeneous slope and circular surface changing the parameter ru

• Homogeneous slope and circular surface with seismic load

4.1.1 Homogeneous slope and circular surface without piezometric

and basin levels

We start with a simple case of a homogeneous slope in drained conditions. The trial

surface has been selected on the basis of typical shapes of the scars left by landslides

that have occurred. The slope has been divided into 50 slices.

The results show that the shapes of the inter-slice functions are different (figg. 4.5 4.6),

in particular this is true for the function X(x), just as observed in the Vajont case: its

expression in the M&P method is a half-sine equation by assumption (2.43) while in

the MLD method is a Fourier sine expansion truncated to the third term (2.44).
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FIGURE 4.4: Cross-section and partition of the slide into 50 slices. The green line is
the top of the slide and the red line is the trial circular slip surface

FIGURE 4.5: Comparison of the functions X(x) obtained by means of the Morgenstern
and Price and MLD methods

Small differences can be identified also in the shape of the normal and shear stresses

(figs. 4.7, 4.8), the results for bottom pressures P(x) and shear stresses S(x) are very

similar and the safety factor obtained with the two codes are also quite close to each

other: FM&P = 8.831 and FMLD = 8.864.
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FIGURE 4.6: Comparison of the functions E(x) obtained by means of the Morgenstern
and Price and MLD methods

FIGURE 4.7: Comparison of the functions P(x) obtained by means of the Morgenstern
and Price and MLD methods
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FIGURE 4.8: Comparison of the functions S(x) obtained by means of the the Morgen-
stern and Price and MLD methods

4.1.2 Homogeneous slope and circular surface with piezometric and

basin levels

In this second case we observe the behavior of F as a function of the piezometric and

basin levels. We observe an initial lowering of the factor of safety and then a gradual

rise of F on increasing the piezometric level, until reaching the value of about 9, when

the entire profile is completely covered by water, fig. 4.9.

The final results when the basin level is 0 m a.s.l. are FM&P = 9.069 and FMLD = 8.979

(fig. 4.9). Also in this case, the results are very close though not perfectly equal, with

about 1% discrepancy. This is due to the fact that the two methods make use of different

approaches to the solution of the problem: in the MLD method the contributions of the

pore pressure u(x) and the hydrostatic load D(x) are considered separately: the first is

taken into account inside the Mohr-Coulomb criterion 2.11, and the second inside the

three equations of the limit equilibrium, 2.7, 2.6 and 2.8. In this way the pressure along

the sliding surface is also a function of the height of the overlying water column. Instead

the program Slope/W implementing the M&P method, considers the submerged weight

of the slice, and the normal pressure turns out to be independent from the height of the

water above the slope:
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FIGURE 4.9: Trend of the safety factor as a function of the basin level: in this case the
level of the sea and the piezometric level are coincident

P
′
= hslice(γs− γw) (4.1)

where hslice is the height of the slice, γs is the unit weight of the soil and γw is the unit

weight of the water.

Finally, we can say that if the level of the basin increases in the same manner as the

piezometric level, the variations of the safety factor are consistent until the slope is

completely submerged. Afterwards the soil reaches the hydrostatic condition. Indeed,

if inside the MLD method we take into account only the effect of the buoyancy force,

one obtains Fbouyancy = 9.069, perfectly identical to that obtained through Slope/W.

4.1.3 Homogeneous slope and circular surface changing the param-

eter ru

The situation changes if we take into account the excess of pore pressure: it is expressed

through the coefficient ru, that is defined as the ratio of the pore-water pressure to the

weight of the slice
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ru =
u(x)
w(x)

=
(zpiez− z1)γw

(z2− z1)γs
(4.2)

If the value is 0, the soil is in hydrostatic conditions.

This parameter is not constant along the slope, but in Slope/W it is taken as constant

since it is defined as

ru =
A1ru1 +A2ru2 +A3ru3 + ...+Anrun

A1 +A2 +A3 + ...+An
(4.3)

where Ai is the area of the single slice and n the number of the vertical slices. Mathe-

matically, ru is an average value, and therefore the same value of ru can be achieved by

different combinations (Fredlund, 1974, Fredlund and Krahn, 1977). In the manual of

Slope/W it is specified that the variable ru within a slope makes it an impractical option

in a software package like Slope/W. The ru option is included in Slope/W mainly for

historical reasons. Howeveer making use of this option is not recommended, except in

some simple cases.

In the MLD method ru is not defined, but we are allowed to assign the piezometric

level point by point, which is equivalent to use a value of ru depending on the horizon-

tal distance. In fact it is possible to establish the following relationship between the

piezometric level, zpiezand ru:

zpiez(x) = z1(x)+ ru(x)
[z2(x)− z1(x)]γs

γw
(4.4)

Although ru is not recommended, it is often used in the engineering field.

Fig. 4.10 shows as the factor of safety decreases with the rise of the excess pore pres-

sure: the water inside the pores is not free to move and remains confined, in this case,

below the sliding surface, generating a pressure that destabilizes the mass. In fact, we

can see that the safety factor decreases significantly, though it does not reach the critical

condition.
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FIGURE 4.10: Trend of the safety factor as a function of the parameter ru for a sub-
merged slope

4.1.4 Homogeneous slope and circular surface with seismic load

In addition to the water and its pressure, there is another important external factor that

can greatly influence the stability of a slope: the seismic load.

Though the examined area, as the whole Scandinavian zone, does not have frequent

seismic records, it does not mean that the area is aseismic (fig. 4.13).

FIGURE 4.11: Trend of the safety factor as a function of the seismic coefficients kh
and kv for a submerged slope.
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FIGURE 4.12: Trend of the safety factor as a function of the seismic coefficients and
the excess of pore pressure

Although there are no seismic records, from geological studies and seismic analyses

one can determine what types of earthquakes can occur in the area, their peak ground

acceleration and their recurrence period.

Once this information is obtained, we can use the data of the real earthquakes that are

close to those hypothesized. In the case of the Norway, three time series are suggested,

recommended by NORSAR and NGI, Bungum (1998):

• Nahanni, Canada, 23-12-1985, occurred in the Nahanni region of the Mackenzie

Mountains in the Northwest Territories. It is an mainshock with Mw = 6.8, fig.

4.14

• Imperial Valley, USA, 15-10-1979 occurred at the Mexico-United States border,

with Mw = 6.4, fig. 4.15 (Johnson and Hutton, 1982)

• Tarcento, 11-09-1976, occurred in the Friuli region of Italy. It is an aftershock

belonging to the famous Friuli seismic sequence recorded at Tarcento Mw = 5.5,

fig. 4.16

Usually, in the engineering works one takes into account only the horizontal contri-

bution of the soil acceleration of an earthquake, because the vertical contribution is
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FIGURE 4.13: Seismic Hazard Map of the Norway (USGS site:
http://earthquake.usgs.gov/ earthquakes/world/norway/gshap.php)

believed to be smaller, as we can see in fig. 4.11. On changing the seismic coefficient

from 0.01to 0.22 (the maximum value of the PGA selected), in the vertical and hori-

zontal directions, we can observe that the variation of F for kv is about 1%, while for

kh = 0.22 one obtains the critical condition, F = 1. But if we take into account the joint

effect of the horizontal seismic load and of the coefficient of pore pressure for a generic

slope, we see the same trend of fig. 4.11, but with some slight difference. It seems

that the water slightly increases the cohesion of the soil. This argument is very delicate,

since many studies have shown that the effect of the excess pore is not immediate, but

may appear after a certain period of time (even months) after the earthquake. This prin-

ciple is the base of the liquefaction phenomenon, but this topic will not be addressed in

this context.
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FIGURE 4.14: Acceleration time series of Nihanni: kh = 0.155

FIGURE 4.15: Acceleration time series of Imperial Valley: kh = 0.204

4.1.5 Summary of Lofoten and Vesterålen analysis

We had two main objectives: the first was to compare our method with the M&P method

implemented in the GeoSlope software, and the second was to assess what conditions

could cause a destabilization of the slope. The analysis, performed on a typical Norwe-

gian submerged slope with an inclination of about 2o− 3o, shows that the discrepancy

between the two methods (MLD and M&P) is very small for all the simple cases ad-

dressed here, with F values found in the range of 9.

To evaluate the conditions for the instability we took into account the pore pressure in

hydrostatic conditions and an excess pore pressure due to a confined aquifer. Finally,

we considered the seismic loads and used values of real earthquakes that, in line with
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FIGURE 4.16: Acceleration time series of Friuli: kh = 0.220

the studies of NORSAR and NGI, have a certain recurrence in Norway. It was found

that in this case F can reach the value of 1.

In conclusion. for this flat slope we cannot highlight an evident difference between the

MLD and the M&P method, and the slope can fail under a seismic load with PGA =

0.22g.

4.2 The Storegga Headwall analysis

We repeated the same analysis for a profile with a greater angle of inclination. The

profile analyzed is a steep slope at the headwall of Storegga at the edge of the continental

shelf of Norway (fig. 4.17 and 4.18). This area is part of the scar left by the Storegga

landslide, one of the largest known landslides occurred underwater, causing a large

tsunami in the Holocene.

The seismic analysis shows that the headwall is composed of a series of layers of glacial

till and marine clay, linked to the main glaciations.

First we take into account the simple case of a homogeneous submerged slope, 4.19,

without excess pore pressure and seismic load, as done in the previous analysis.

The geotechnical parameters values are equal to the Vesterålen slope, because the soil

is composed of overconsolidated clay layers.
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FIGURE 4.17: Map of the Scandinavian Peninsula.

FIGURE 4.18: Storegga area

Also in this case, the landslide has not occurred yet, and our goal is to find the potential

slip surface with the smallest value of F. For each method about 2500 geometrical con-

figurations have been analyzed. In fig. 4.20 we show the results of the first 140 surfaces:

they seem to follow two independent regular trends, blue points for M&P method and

red points for the MLD method, where the smaller values of F are FM&P = 1.59 and
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FIGURE 4.19: Section of the headwall of Storegga and average angles of the slope

FMLD = 1.17.

Notice that these values do not correspond to the same slip surface. In fig. 4.21 we can

see that for the MLD method the critical surface is deep (the blue dashed line), while

for the M&P method the critical surface is shallow (the red line).

Starting from this observation, we investigated why there is such a big difference in the

results, while this was not true for the analysis of the flat slope.

First of all, the problem is to understand if there are any differences in the single contri-

butions of the forces taking into account that the module Slope/W uses the hydrostatic

γ ′

γ
′ = (γs− γw) (4.5)

The plots 4.22, 4.23, 4.24 and 4.25 show that the functions u(x), D(x), w(x) are the same

and that E(x) is similar. Instead the functions X(x), (fig. 4.26), are totally different in

the two methods, and such dissimilarity has origin exactly in the way the function X(x)

has been defined, 2.43 and 2.44.
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FIGURE 4.20: Trend of the safety factor obtained by changing the circular surface, that
are numbered according to increasing radiuses. The blue and red highlighted points
indicate the smallest value of F for the two methods: FM&P = 1.59 and FMLD = 1.17

FIGURE 4.21: Circular trial surfaces: the red line is the critical surface for M&P, the
blue dashed line is the circular surface n.102 with F=1.17 (MLD)

The innovation of MLD method is to accept the multiplicity of possible values of F that

can solve the equilibrium problem and to choose the correct value through the Minimum

Lithostatic Deviation criterion, 2.6.

Indeed the solution obtained by using the M&P method is not wrong, but is one of the

very many analyzed by the MLD method and rejected by the MLD criterion, since it
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FIGURE 4.22: Comparison of the pore pressure u(x)

FIGURE 4.23: Comparison of the weight for every single slice

does not minimize the lithostatic deviation.

We can prove that if we truncate the expression of X(x), that is given by

X(x,λ ;F,q) = qsin
[

π (x− xi)

L

]
+λ1 sin

[
2π (x− xi)

L

]
+λ2 sin

[
3π (x− xi)

L

]
(4.6)
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FIGURE 4.24: Normal pressure of the basin above the slope

FIGURE 4.25: Comparison of the functions E(x)

to the second term and we search a solution under the constraint that the λ1 = 0, we

obtain an expression of X(x) more similar to the one of the M&P method.

So the values for the geometry no 102 (fig. 4.21), where FMLD = 1.17, are

• FM&P = 2.33

• FMLD modi f y = 2.35 with δ = 0.50194
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FIGURE 4.26: Comparison of the functions X(x)

Now the two F are similar, and if one compares the functions X(x) and E(x) of the two

methods, one does not find big differences, 4.29 and 4.28

FIGURE 4.27: Comparison of the functions E(x) with simplified MLD

But the values of δ are

• δ = 0.36273 for FMLD = 1.17

• δ = 0.50194 for FMLDmodi f y = 2.35
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FIGURE 4.28: Comparison of the functions X(x) with simplified MLD

and for this reason the MLD criterion selects the value F=1.17. This is an important

result, given that the two values of F are different, and from the results obtained, we

decided to continue our analysis only with the MLD method.

Another key feature of the MLD method is that it was also developed to study the sta-

bility of slopes with a complex stratigraphy. In the case of Lofoten, we have considered

only a homogeneous body, but now, since the value of F is very low, it is worth to

make a more accurate analysis and to take into account a profile in its present geolog-

ical structure. As mentioned earlier, the crown of the Storegga landslide is composed

of some layers made mainly of glacial sediments separated by overconsolidated clay.

The presence of clay is particularly important, since numerous studies demonstrate that

the likely sliding surface might be determined by the shape of the clay layers. As was

observed in the analysis of the Vajont, one of the causes of failure for a slope is the

destabilizing pressure along a clay layer, due to its low permeability and the increasing

of the pore pressure for a saturated soil.

The results of F are 2.38 for the red circular surface and 1.57 for the blue circular

surface: they indicate that the likely slip surface is of the shallow type, while the deep

type is more stable.
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FIGURE 4.29: Typical cross-section of the headwall of Storegga: the succession of
layers is composed by glacial till (grey lines) and marine clay (brown lines). The blue

and red lines represent the trial slip surface that passes through the clay layers.

4.2.1 Summary of the analysis of the Storegga headwall

The main objectives of the previous section were to assess the present conditions of

stability of the Storegga crown characterized by high slope angle, about 30o, and to

observe if the use of the MLD method and of the M&P method lead to considerable

differences in the results. The slope was considered first as a homogeneous soil and in

a second stage as a series of layers: in both cases the value of F was greater than 1,

confirming that in the current situation the slope is stable.

Regarding the second item, we found that the M&P method and the MLD methods

provide substantially different results, but that the MLD method finds almost the same

solution if certain constraints are imposed. In the MLD principle optics, however, the

M&P solution is worse since it does not minimise the lithostatic deviation.
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The Stability Charts

In chapters 3 and 4 we have shown the comparison of the MLD method with other

methods based on the limit equilibrium principle, and we have further noticed that some

satisfy all of the boundary conditions (namely MLD and M&P), while others satisfy

only some of them (namely Bishop and Janbu).

At this point we can say that the MLD method appears to be a very good tool for

the stability analysis: it allows us to reconstruct the critical conditions in cases where

the landslide has already occurred (see the Vajont case), and to investigate the current

equilibrium conditions along slopes, even submarine, analysing the weight of poten-

tial destabilizing factors such as the seismic load or the excess pore pressure (see the

Norwegian cases).

In this last chapter, we use the MLD method for the computation of stability charts,

that is a well-known tool used in the engineering field. Our main goal is to explore

the correctness and the adequacy of the commonly used stability charts. The main

observation is that they are mainly exploited to estimate the stability of embankment,

dikes and dams, and our scope is to consider if they are suitable also to analyse the

stability of slopes of geophysical interest.

The preliminary phase is part of a work illustrated in a poster for the EGU 2013 General

Assembly (Paparo and Tinti, 2013)

74
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5.1 Taylor’s stability charts

Stability charts are a known tool used to make preliminary estimation of the stability of

a slope. The method is graphic and easy to use, without the need to make complicated

calculations.

FIGURE 5.1: Example of 2-D slope: simplification of a sliding body for building
stability charts: H is the height, β is the inclination of the slope.

The charts were introduced for the first time byTaylor (1937). They consist in a set of

curves, drawn on the basis of some relations between the geometric and geotechnical

parameters including the safety factor, and that were deduced both on experimental data

and on calculations.

The geometry (fig. 5.1) of the slope is very simplified: it is a 2D plane incline with

inclination angleβ and height H. A further possible parameter in some models is the

depth of an underlying stiff layer, that is assumed to resist to any failure, that is a layer

into which the slip surface cannot propagate. However, we follow the original Taylor’s

model that takes into account only homodegenous soils with no stratification.

For the geotechnical component of soil, Taylor defines a mobilized cohesion

cm =
c
F

(5.1)
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and a mobilized angle of friction

tanφm =
tanφ

F
(5.2)

where F is the safety factor. For a frictional and cohesive soil, the mobilised parameters

satisfy the trivial relation

F =
c

cm
=

tanφ

tanφm
(5.3)

Taylor calculated the factor of safety for a large number of slopes over a wide range of

slope angles and for each of them computed also the slip surface. He found (which is

the essence of the stability chart concept) that, given the mobilized friction angle φm,

then the dimensionless number Ns defined as the ratio of the mobilized cohesion over

the product γH is only a function of the slope angle β , that is:

cm

γH
= Ns(β ;φm) (5.4)

whereγ = ρg is the unit weight of the soil. Taylor designated Ns as the stability number

and in a Cartesian plane (Ns,β ) he drew curves of Ns as a function of β for several

different values of the mobilized friction angle, calling this a stability chart, since it

condenses all the information needed to estimate the safety factor of a slope without

repeating all calculations Taylor made.

In practice there are different ways to derive the value of F from the stability charts.

• The first is described by the following steps, (Tanpure and Koranne, 2012):

1. for a given slope with β and H, we assume a trial value of F and calculate

φm;

2. from the stability chart we read the value of Ns corresponding to β and φm;
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3. we use the inverse formula

H ′ =
cm

γNs
(5.5)

to calculate the trial slope height H ′ corresponding to the assumed factor of

safety;

4. if the calculated value of H ′ is within an acceptable distance from the actual

height H, the assumed value of the trial factor of safety represents the factor

of safety of the slope;

5. if the calculated value of H ′ is not within the desired acceptable range, the

process is repeated with a new assumed value of the factor of safety until

the recomputed value of H falls within that range.

• The second method is a simple graphical approach (Tanpure and Koranne, 2012):

1. we take a reasonable F and calculate φm ;

2. we read the corresponding value of the stability number Ns from the stability

chart;

3. we calculate cm from Ns and then we calculate F ′=c/cm.

4. we repeat the process for at least two other assumed values of F , so that at

least three couples of F and F ′ are obtained.

5. we plot the calculated points of F ′ vs. F in a (F ′,F) coordinates plane and

draw a curve through the points;

6. we draw the bisectrix of the first quadrant that represents the line where

F = F ′

7. the searched factor of safety for the slope is the value corresponding to the

intersection of the drawn line with the bisectrix.

• The last method is another iterative procedure like the first method

1. for a given slope with β and H, we assume a trial value of F1 and calculate

φ 1
m, where the index 1 denotes the first element of the iteration

2. we read the corresponding value of the stability number N1
s ;
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3. since Nsand φmare linked by the following relationship:

Ns =
cm

γH
=

c
γ H F

=
c

γ H tanφ
tanφm (5.6)

after introducing the parameter λ that is constant for a given slope:

λ =
c

γ H tanφ
(5.7)

we can find the new value of φ 2
m from the relationship:

tanφ
2
m = N1

s /λ (5.8)

and the new value of F2as:

F2 =
tanφ

tanφ 2
m

(5.9)

The above relations can be generalized for the k-th step of the iteration:

tanφ
k
m = λ

−1 Nk−1
s (5.10)

and

Fk =
tanφ

tanφ k
m

(5.11)

4. the iterations finish when

Fk ' Fk−1 (5.12)

In practice, as already explained above, a stability chart is a set of curves of NS plotted

vs. the slope angleβ for constant φm, where the mobilized friction is seen as a parameter.

However, one can also take φm as an independent variable and consider that the stability

number is a function of two independent variables, i.e. NS ≡ NS(β ,φm); and after a

suitable procedure of curve fitting, one can show that NS can be suitably approximated

by a polynomial of third degree in β and of second degree in φm (Easa and Vatankhah,

2011), that is:
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NS =0.042186+0.004905β −6.44 ·10−5
β

2 +4.07 ·10−7
β

3−0.00807φm+

3.41 ·10−5
βφm +5.94466 ·10−5

φ
2
m

(5.13)

where the angles are expressed in degrees. After considering the expression 5.6for NS

and using the approximation tanφm ∼ φm, one can rewrite the previous equation as:

λφm
π

180
= 0.042186+0.004905β −6.44 ·10−5

β
2 +4.07 ·10−7

β
3

−0.00807φm +3.41 ·10−5
βφm +5.94466 ·10−5

φ
2
m

(5.14)

where λ was already introduced. Once β is known, this is a quadratic equation for φm,

that can be easily solved:

φm =
−b− (b2−4ac)

1
2

2a
(5.15)

where

• a = 5.94466 ·10−5

• b =−0.00807+3.41 ·10−5β −λ
π

180

• c = 0.042186+0.004905β −6.44 ·10−5β 2 +4.07 ·10−7β 3

Knowing the value ofφm, one finds eventually:

F =
tanφ

tan
[
−b− (b2−4ac)

1
2

2a

] (5.16)

This procedure is straightforward and has the further advantage that it is not based on

any graphical reading, but only on calculations.
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Before concluding this section, it is worth pointing out that the safety factor of a slope

that is computed by means of the stability charts has to be meant as the smallest safety

factor for a slope. The idea is that, given a slope, one can consider an infinite number

of potential slip surfaces, and every one of these surfaces is associated to its own safety

factor. The charts provide the smallest value of F , that is associated to that slip surface

that is closest to instability. If it results that F > 1, then all possible slip surfaces are

stable and the slope itself is stable. On the contrary, if, by using the charts one finds that

F < 1, then there is at least one slip surface that is unstable, and the slope is prone to

fail. Therefore, in addition to knowing whether a slope is stable or not, it is also of value

to obtain the geometry of the slip surface that is most prone to failure. This is the second

essential piece of information and will be treated in the following section. Here we will

follow the classical approach of Taylor, but we will also take into account the variants

elaborated later and even in recent times Janbu (1954, 1973), Bishop (1955), Bishop

and Morgenstern (1955), Morgenstern and Price (1965), Spencer (1967), Bell (1968),

Sarma (1987), Michalowski (1999, 2002), Baker (2003), Baker and Tanaka (1999), Easa

and Vatankhah (2011).

FIGURE 5.2: Taylor’s stability chart for uniform slopes.The dashed lines are the Tay-
lor’s curve corresponding to a given value of φm. Colored lines delimit regions within
which the critical slip surface takes a specific shape: between blue and green lines, slip
surfaces are midpoint circles; between green and red lines, slip surfaces are deep toe

circles and under the red line slip surfaces are shallow toe circles.



Chapter 5 81

5.1.1 The geometry of the slip surface

The geometry of the slip surface can be an arc of circumference (Baker, 2003, Taylor,

1937) or a spiral (Michalowski, 2002). Following Taylor’s analysis we identify two

main classes of surfaces:

• Toe circles

• Midpoint (or base) circles

The toe circle is a failure surface that passes through the landslide toe. This category

can be divided in two further sub-classes, according to the thickness of the slope:: the

shallow toe circle, whose deepest point, zmim coincides precisely with the toe (fig. 5.3),

and the deep toe circle, whose deepest point zmin is located below the toe (fig. 5.4).

Instead, if the failure surface passes over the toe, the critical circle is known as midpoint

or base circle 5.5.

FIGURE 5.3: Shallow toe circle: z1(x) and z2(x) define respectively the bottom and
upper curves of the landslide. R is the radius of the circular slip surface with center
coordinates (Xc,Zc). H and β are the height and the inclination of the slope. T is the
landslide toe, η is the inclination of the chord connecting the start- and end-point of

the slip surface and 2ξ is the central angle of the chord AT (Baker, 2003).
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FIGURE 5.4: Deep toe circles: see fig. 5.3 , (Baker, 2003).

FIGURE 5.5: Base circle: see fig. 5.3. The particularity in this failure mode is in the
end-point C that lies beyond the toe. The friction circle shows how much the center of
the sliding surface is moved with respect to the center of the slope M, (Baker, 2003) .

Taylor defines the radius of the slip surface as

R =
H

2sinη sinξ
(5.17)

and the zc coordinate of the center as
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zc = Rcos(η−ξ ) (5.18)

while the xc coordinate differs if we consider a toe or a midpoint circle. From the

requirement that the toe circles pass through the toe point T of the slope, one gets

xc = Rsin(η−ξ ) (5.19)

while for the midpoint circle, Taylor gives the expression:

xc =
R

2tanβ
− sinφm (5.20)

This last relation for xc is due to Taylor’s observation, whcih is the consequence of

the numerous calculations and experimental data, that the critical conditions for base

circles occur when the friction circle is tangential to a vertical line passing through the

midpoint M of the slope, 5.5 (Baker, 2003).

FIGURE 5.6: The function ξ (β ,φm). The dashed lines are the Baker’s curves cor-
responding to different values of φm. The colored lines bound regions with different
shapes of the critical slip surface: between blue and green lines one finds base or mid-
point circles, between green and red lines one finds deep toe circles, while under the

red line one finds shallow toe circles
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FIGURE 5.7: The function η(β ,φm): see fig 5.6

In the previous formulas, the radius and the coordinates of the center of the slip surface

are expressed in terms of the variables η and ξ , but Taylor did not specify the way to

easily determine them for a given slope. This problem was addressed and solved only

recently Baker (2003). Baker builds two charts where η and ξ are curves expressed in

terms of the inclination β and the parameter φm (figs. 5.6 and 5.7). The procedure is

simple: to estimate the smallest value of F for a slope, one first computes the value of

φm 5.2. Through Baker’s charts, one can use this value of φm also to read the values of

ξ and η corresponding to a given value of the variable β and of the parameter φm, and

eventually one computes the radius and the center. The solution is unique and identifies

univocally the circular slip surface.

5.1.2 Analysis of Taylor’s and Baker’s charts

The charts of Taylor and Baker are based on the concept that for a simple slope one can

define an adimensional number (the stability number NS) that depends only on β and

on φm. Though this is based on calculations and experimental data, this is indeed not

strictly true since the equations 2.6, 2.7 and 2.8 are too complex to be amenable to the

simple form of NS(β ,ϕm). The stability charts of Taylor can therefore be considered at

most as a tool to find a first approximated value for the factor of safety. The question
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is to evaluate how good this approximation is. In other words, for a given slope one

can compute the value of F through the joint Taylor-Baker’s charts and compute it

also through a more accurate method and eventually compare the two solutions. In

this work, we use the MLD method that we showed to provide reliable solutions for

the safety factor. Our strategy here consists in taking a slope of the kind examined by

Taylor (i.e. wih a geometry univocally determined by the slope angle β and the height

H) to compute the factor of safety F by means of the MLD method and to use the found

value of F to compute the stabillity number NS. Eventually this can be compared with

the stability number one reads on the Taylor’s stability chart, and evaluate the amount

of the discrepancy. We will see that points that should belong to the same Taylor’s

curve result instead to be spread around the curve though they do not fall far from

it. This confirms that Taylor’s curve do not provide the correct solution, but only an

approximate one.

A systematic exploration of all possible cases implicitly treatable through a stability

chart approach would require too much computing time and is not feasible. In the

second chapter we have seen that, given a slope and a preselected slip surface, the MLD

method examines a number of configurations n expressed by 2.49 to find the safty factor.

FIGURE 5.8: Circular rupture surfaces investigated for stability calculations. The gray
points are the circumference centers. The center and the arc corresponding to the lowest

value of F are in red. Notice that horizontal and vertical scales are different.
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In the present case, the slip surface is not known a priori, but is one of the unknowns

of the problem. In fact we want to find the one corresponding to the smallest value of

F , which implies that we have to investigate a space of configurations by varying three

more variables, namely the radius of the circumference and the two coordinates of the

centers. Consequently, for a single point of the stability charts we should explore a total

ofN configurations,

N = n∗nR∗nC (5.21)

where nR is the number of trial radiuses and nC is the number of the trial circle centers

(xc,zc), fig. 5.8. Considering that n is in the order of 105, the final result is that N is

reasonably in the order of 108, which is too large to allow a systematic analysis.

For this reason, we have chosen to avoid recomputing the stability charts, but to analyse

only some selected cases: in practice we have selected 4 cases for each curve of φm in

correspondence of the inclination anglesβ = 30o and 60o.

Fig. 5.9 shows what we anticipated before: the four points, that in line with Taylor’s

theory should coincide and be placed perfectly along of the same curve, have slightly

different values of Ns: the discrepancy is suggestively increasing with the slope inclina-

tion β and, if one considers the corresponding values of F , one sees that they vary from

5% to about 10% with respect to the expected values of Taylor. These differences are

significant especially if slopes are close to critical conditions, that is close to instability.

As a conclusion, we can state that Taylor’s charts are useful in a preliminary stage of

stability analysis, because they enable one to make an acceptable estimate of F , but

for a better accuracy, which is a need for critical slopes, one has to use more accurate

methods, like the MLD method.

In light of these results, we have carried out further investigations with two main goals:

the first is to understand which parameters affect most the equilibrium conditions; and

the second how much the results vary if the stability charts are applied to cases of

geophysical interest rather than cases of geotechnical interest.

We have chosen only one point of the curve, in correspondence of β = 30o and ϕm =

15o. For this first round of cases, the selected value of γ is equal to 25 KN/m3. We
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FIGURE 5.9: Comparison of the MLD results, colored points, with the curves of Tay-
lor. The cases analyzed are in correspondence of β = 30o,60o. We show that the
resulting points do not fall exactly on the curves, also if they follow the curve’s trend.
The discrepancy grows with the increase of the inclination, from about 5% for β = 30o,

up to10% for β = 60o

have taken three different values for the slope height, i.e. H ≡ [10 m, 75 m, 130 m]. We

have then selected values of cohesion by imposing that the slopes are close to instability

conditions. To reduce the number of configurations to explore in order to find the slip

surface we have made use of Baker’s charts, according to which the values of ξ and η

are respectively 35.09o and 22.27o. Consequently, with the aid of 5.17, 5.18, 5.19 and
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FIGURE 5.10: The three configurations with β = 30o . The three marked points in-
dicate the centers found through Baker’s charts. The big rectangles (violet, blue and
orange) are the areas explored to find MLD slip circle centers; the little rectangles
(blue, red and green) are the zones swept to refine the MLD research. The last areas

are shown in fig. 5.11

5.20, we have
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• H = 10 m

R = 22.95 m

xc = 5 m

zc = 22.4 m

(5.22)

• H = 75 m

R = 172 m

xc = 38 m

zc = 167 m

(5.23)

• H = 130 m

R = 298 m

xc = 66 m

zc = 290 m

(5.24)

We have restricted the search for the slip surface in the neighborhood of the above

Baker’s solutions. Fig. 5.10 shows the three slopes, and the highlighted points are

the centers of the Baker slip surfaces. The MLD search has been first carried out with

low resolution in areas around the Baker’s centers and then refined to find the one cor-

responding to the minimum value of the safety factor. If we analyze the three cases

with the MLD method, we obtain the following solutions in the larger areas with rough

resolution:

H = 10 m FTaylor = 0.96 FMLD = 0.947

H = 75 m FTaylor = 0.96 FMLD = 0.955

H = 130 m FTaylor = 0.96 FMLD = 0.962

(5.25)
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FIGURE 5.11: Rectangles (blue, red and green) shown in fig. 5.10. Each point in the
rectangle represents the center coordinates of a set of trial slip surfaces with different
radiuses. The value of F is the lowest value computed according to the MLD method.
The first rectangle is for H = 10 m, the second for H = 75 m and the third for H =
130 m. The slip surfaces are similar to the ones obtained by Taylor. The values of F

are slightly smaller than those obtained with Taylor’s chart

After we make a refinement of the search with improved resolution ( fig. 5.10), we find

even lower values of F , (figs. fig. 5.10 and 5.11):

H = 10 m FTaylor = 0.96 FMLD = 0.929

H = 75 m FTaylor = 0.96 FMLD = 0.931

H = 130 m FTaylor = 0.96 FMLD = 0.931

(5.26)

If we repeat the same analysis with a different value of γ (i.e. γ = 15 KN/m3), we note

a further significant lowering of the F values found with the MLD method
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FIGURE 5.12: Numbers of stability obtained from values of FMLD (blue dots)
vs.NsTaylor (red dots). The cases explored are six: three corresponding to γ = 15 KN/m3

and three corresponding to γ = 25 KN/m3and all sharing the same Taylor’s NsTaylor.
The largest discrepancy is about 8%

H = 10 m FTaylor = 0.96 FMLD = 0.883

H = 75 m FTaylor = 0.96 FMLD = 0.885

H = 130 m FTaylor = 0.96 FMLD = 0.898

(5.27)
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From the results obtained, we can draw two conclusions. First, the equilibrium con-

ditions depend on the geometrical structure and the parameters of the soil, but the ap-

proach cannot be simplified so much as instead suggested by Taylor’s stability charts.

In Taylor’s diagram, cases that should be represented by the same point are indeed well

separated if the analysis is carried out with some more sophisticated method (like MLD)

and safety factors are different as well. Second, changes of the geometrical scale (i.e.

passing from H = 10 m to H = 130 m) do change the stability number and the safety

factor but much less than changes in the unit weight γ that seems to be a very impor-

tant factor. In addition, since the general trend of Taylor’s curves is confirmed, it is

also confirmed the important role of the slope inclination and of the friction angle. In

conclusion, Taylor’s and Baker’s charts are useful to highlight the relevance of certain

parameters, but do obscure the relevance of others (like the unit weight), and have to be

considered a rough approximation of the solution to the slope stability problem.

5.2 Michalowski’s stability charts

As mentioned earlier, a huge amount of work has been done to improve the Taylor’s

stabilty charts. One of the most important contributions is that of Michalowski (1999,

2002) who produced his own charts. The main purpose of our analysis is to demon-

strate that, also in this case, these charts represent an oversimplification of the stability

analysis and provide rough estimates of the safety factor for the slope.

Michalowski built his charts by using a kinematic approach for the limit equilibrium

analysis applied to a rigid rotational failure mechanism, and referring to (Chen et al.,

1969), assumed that the slip surface is an arc of a logarithmic spiral.

Following an idea of Bell (1966), he wanted to build charts from which F can be de-

rived directly, without any iterative process (Bell, 1966, Bishop and Morgenstern, 1955,

Cousins, 1978, Singh, 1970). To this purpose he defined a new NS independent from F ,

that he obtained from the NS of Taylor by dividing it by the function tanφm, that is:
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FIGURE 5.13: Stability charts of Michalowski for unsaturated soil

NS =
c

γHF tanφm
=

cF
γHF tanφ

(5.28)

which leads to the new NS:

NS =
c

γH tanφ
(5.29)

This new formulation allows Michalowski to write the new charts (fig. 5.13). For

each value of the slope inclination β there is a curve (this means that β is taken as

a paramter) The chart oordinates are the Ns in x-axis and the new parameter
F

tanφ
in

y-axis: so y≡ y(Ns) is a function of the new NS and this implies that F ≡ F(Ns).

We notice that, just because of the way the number NSis defined, the charts cannot be

applied to soils with φ = 0, because NS becomes singular.
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Geometrical and geotechnical parameters Range
Cohesion 0 - 35 KPa

Friction angle 0o−30o

Unit weight 15−25KN/m3

Height 3−200m

TABLE 5.1: Ranges of the geotechnical and geometrical parameters used to study
Michalowski’s stability charts

Also for Mikalowski’s charts, the amount of computing time that should be spent for

a complete reconstruction of these charts is not in our favor and we were obliged to

choose, as we did for Taylor’s charts, some cases. The ranges of the parameters explored

in our analysis are listed in the Tab. 5.1.

5.2.1 Numerical results

For the first phase of the analysis we have considered four values of the slope in-

clination, namely β = 10o, 30o, 45o, 60o, which means that we have considered four

Michalowski’s curves and we have varied the parameters within the ranges of Tab. 5.1

by taking into account a large number of configurations (more than in Taylor’s charts

analysis).

Figs. 5.14, 5.15, 5.16 show the results we obtained by applying the MLD method. The

calculated points that should lie on the curves fall indeed in somewhat different positions

and the discrepancy (measured in terms of the stability number F) ranges from 5% to

about 20%.

From this first analysis it appears that Micalowki’s charts can be interpreted as Taylor’s

charts. The Mikalowski’s independent variable
F

tanφ
has not a univocal dependence on

the stability number Ns, and more accurately computed values result to be close to the

theoretical curves but displaced and forming a cloud around the curves.

To understand better, as for the stability charts of Taylor, we have selected one curve,

β = 30o, and we have considered the same cases used in Taylor’s curves analysis. The

result is that the resulting points (that by purpose have the same stability number and
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FIGURE 5.14: Mikalowski’s curve of β = 15o compared with our results (red crosses).
Discrepancies range from 5% to 15%.

therefore the same abscissa, are not located along the Michalowski curve, but under it

fig. 5.18.

For a further analysis, we have considered four points of the Michalowski curve cor-

responding to different values of the abscissa. For each point we have considered two

cases, corresponding to critical values of the safety factor, i.e. with F ≈ 1. These cases

differ only for the unit weight (15− 25KN/m3) that was seen to have a very relevant
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FIGURE 5.15: Mikalowski’s curve of β = 30o. The same as for Fig. 5.14

role in the previous section, while all other parameters are kept constant (i.e. friction

angle φ = 15o and slope geometry.

The results illustrated in fig. 5.19 show that if one varies only the unit weight, the

points seem to be aligned along a curve (dashed red line for γ = 25KN/m3 and green

line for γ = 15KN/m3), but in none of the two cases this curve identifies with the one by

Michalowski, with the largest discrepancies being due to the lower unit weight. Though



Chapter 5 97

FIGURE 5.16: Mikalowski’s curve of β = 45o. Discrepancies range from 5% to 10%.

we have not conducted a systematic analysis, the results we obtained are suggestive that

Mikalowski’s chart tend to produce overestimations of the safety factor.

In conclusion, even Mikalowski’s stability charts seem to be a too simplistic tool, and

do not provide the right information about the soil conditions. A further observation is

that, when soil is close to instability, even errors in the range of 10%−15% cannot be

considered tolerable, since one might evaluate as stable a slope that indeed is unstable.
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FIGURE 5.17: Mikalowski’s curve of β = 60o. Discrepancies range from 5% to 20%.

In addition to the traditional stability charts referred to homogeneous slopes, Michalowski

introduced new charts where he took into account also the effect of pore pressure and

seismic load. Here, we have focused only on the latter and in particular we analyzed the

case for β = 60o with the horizontal seismic coefficient kh ≡ [0.1;0.2;0.3].

Results are displayed in Fig. 5.20 and show that introducing new factors, like the seis-

mic load, leads to larger discrepancies (up to 35%) with respect to the MLD results,
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FIGURE 5.18: Chart of β = 30o. Six different cases (red points) that should all corre-
spond to the same point (blue dot) in Mikalowski’s diagram. Discrepancies range from

2% to about 10%.

which makes the Michalowski’s stability charts less reliable. In this case it seems that

Mikalowski’s curves tend to underestimate the value of the safety factor.
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FIGURE 5.19: Chart of β = 30o. We have selected 4 points and for each one we have
defined 2 cases, varying the weight γ = [15 (green points) −25 (red points)]KN/m3. It
seems that for a given value of the weight, the points are located along their own curve,

that however is not the Michalowski curve. Discrepancies range from 5% to 15%.

5.3 Conclusion

In light of what is shown in this chapter, stability charts, which today are a tool exten-

sively used in the engineering field, have to be used with caution, because they do not

provide a correct information on the stability of a slope, but only a rough approximate
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FIGURE 5.20: Chart of β = 60o with horizontal seismic load. Discrepancies range
from 5% to 35%.

estimate. We have further shown that the unit weight of the slope is one of the parame-

ters that most influence the value of the safety factor, more than the height of the slope.

Stability charts cannot be considered a good instrument to solve the problem of the limit

equilibrium, but they have to be integrated with, or better replaced by, more complex

and complete instruments, like the MLD method.
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A.1 The equilibrium equations

For a bi-dimensional body divided in slices, the equilibrium equations are derived from

the local equilibrium of the stress matrix

∂xσxx +∂zσxz =−khρg (A.1)

∂xσzx +∂zσzz = (1+ kv)ρg (A.2)

where

σzx = σxz (A.3)

If the equations (A.1) and (A.2) are integrated over a surfaceΣ with a close boundary C,

we obtain

∫
Σ

(∂xσxx +∂zσxz)dxdz =−
∫
Σ

khρgdxdz =−khρgA (A.4)

∫
Σ

(∂xσzx +∂zσzz)dxdz =
∫
Σ

(1+ kv)ρgdxdz = (1+ kv)ρgA (A.5)

102
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where A is the area of the surface Σ. The density and the seismic coefficient are assumed

to be constant over the surface.

A.1.1 The horizontal equilibrium equation

We derive the horizontal equation from A.4, that is the divergence of the vector [σxx,

σxz]. Introducing the position

a1 = σxx

a2 = σxz

and remembering the Gauss theorem in which the surface integral is linked to the bound-

ary integral with the expression

∫
Σ

∂iai dσ =
∮

C
aini dl (A.6)

we have

∮
C
(σxxnx +σxznz)dl =−khρgA (A.7)

where n is the outward pointing unit normal vector of the boundary C. The integral has

no orientation and the element dl is always positive. The traction on the element dl

orthogonal to the vector n is

T(n) = (σxxnx +σxznz)i+(σzxnx +σzznz)k (A.8)

and its components nx and nz are

Tx(n) = σxxnx +σxznz (A.9a)
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Tz(n) = σzxnx +σzznz (A.9b)

Considering one slice with infinitesimal area dA

dA = (z2− z1)dx (A.10)

we can analyze the four sides of the slide separately, to write the line integral as the sum

of the four contributions.

• Side 1: n1 = (1,0) T(n)i = σxx

z2(x+ dx
2 )∫

z1(x+ dx
2 )

σxxdz = E
(

x+
dx
2

)
(A.11)

where we used the expression (2.1). In the same way

• Side 3: n3 = (−1,0) T(n)i =−σxx

z2(x− dx
2 )∫

z1(x− dx
2 )

−σxxdz =−E
(

x− dx
2

)
(A.12)

• Side 2: n2 = (sinβ ,cosβ )

x+ dx
2∫

x− dx
2

(σxx(x,z2(x))sinβ +σxz(x,z2(x))cosβ )dl =σxx(x,z2(x)) tanβ +σxz(x,z2(x))

(A.13)

with dl =
dx

cosβ
, and

• Side 4: n4 = (−sinα,−cosα)



Appendix A 105

x+ dx
2∫

x− dx
2

(−σxx(x,z1(x))sinα+σxz(x,z1(x))cosα)dl =σxx(x,z1(x)) tanα+σxz(x,z1(x))

(A.14)

with dl =
dx

cosα

All of the contributions compose the horizontal equilibrium equation, as

E
(

x+
dx
2

)
−E

(
x− dx

2

)
+[σxx(x,z2(x)) tanβ +σxz(x,z2(x))]dx+

[σxx(x,z1(x)) tanα +σxz(x,z1(x))]dx
(A.15)

The stresses along the basis of the slice are the pressure P and the shear stress S, defined

as

P =−T(n4) ·n4 (A.16a)

S = T(n4) · t4 (A.16b)

where the normal n4 and tangential t4 unit vector are

n4 = (−sinα,−cosα) (A.17a)

t4 = (−cosα,sinα) (A.17b)

We can express the stress components of the equation (A.15) in terms of P and S. Since

the couples of the unit vectors (i,k) and (t4,n4) are orthonormal bases in (x,z), the

vector T(n4) can be expressed as:

T(n4) = St4−Pn4 = Tx(n4)i+Tz(n4)k (A.18)
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After a scalar multiplication of (A.18) by i, we have

Tx(n4) = St4x−Pn4x =−Scosα +Psinα (A.19)

and by k

Tz(n4) = St4z−Pn4z = S sinα +Pcosα (A.20)

Considering the expression (A.19) and (A.9),we can re-elaborate the expression (A.14)

and write

−σxx(x,z1)sinα−σxz(x,z1)cosα =−Scosα +Psinα (A.21)

and, after dividing by cosα , we obtain

−σxx(x,z1) tanα−σxz(x,z1) =−S+P tanα (A.22)

We can follow the same mathematical steps for the side 2, introducing the hydrostatic

pressure above the surface z2. We obtain

T(n2) = Txi+Tzk =−Dn2 (A.23)

where

n2 = (sinβ ,cosβ ) (A.24)

and the components are

Tx(n2) =−D n2 · i =−Dsinβ (A.25)
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Tz(n2) =−D n2 ·k =−Dcosβ (A.26)

Finally the horizontal equilibrium equation becomes

E
(

x+
dx
2

)
−E

(
x− dx

2

)
+(P tanα−S−D tanβ )dx+ khw dx = 0 (A.27)

that in differential form can be written

dE
dx
−S+P tanα−D tanβ + khw = 0 (A.28)

This is exactly the equation (2.6).

A.1.2 The vertical equilibrium equation

Also in this case, the line integral is the sum of the four contributions of the each side

of the slice

• Side 1: n1 = (1,0) T(n) ·k = σzx

z2(x+ dx
2 )∫

z1(x+ dx
2 )

σzxdz = X
(

x+
dx
2

)
(A.29)

where we used the equation (2.2).

• Side 3: n3 = (−1,0) T(n) ·k =−σzx

z2(x− dx
2 )∫

z1(x− dx
2 )

−σzxdz =−X
(

x− dx
2

)
(A.30)

• Side 2: n2 = (sinβ ,cosβ ) T(n2) ·k = σzx sinβ +σzz cosβ
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x+ dx
2∫

x− dx
2

(σzx(x,z2(x))sinβ +σzz(x,z2(x))cosβ )dl2 =σzx(x,z2(x)) tanβ +σzz(x,z2(x))

(A.31)

with dl2 =
dx

cosβ
, and

• Side 4: n4 = (−sinα,−cosα) T(n4) ·k =−σzx sinα +σzz cosα

x+ dx
2∫

x− dx
2

(−σzx(x,z1(x))sinα−σzz(x,z1(x))cosα)dl4 =(−σzx(x,z1(x)) tanα−σzz(x,z1(x)))

(A.32)

with dl4 =
dx

cosα
.

All of the four contributions summed together lead to:

X
(

x+
dx
2

)
−X

(
x− dx

2

)
+(σzx(x,z2(x)) tanβ +σzz(x,z2(x))) dx +

+(−σzx(x,z1(x)) tanα−σzz(x,z1(x)))dx− (1+ kv)ρg(z2− z1) dx = 0

(A.33)

By taking into account S and P given in (A.20) and D given in (A.26), we obtain the

vertical equilibrium equation

X
(

x+
dx
2

)
−X

(
x− dx

2

)
+Tz

dx
cosα

−Ddx− (1+ kv)w dx = 0 (A.34)

that in differential form becomes

dX
dx

+P+S tanα−D− (1+ kv) w = 0 (A.35)



Appendix A 109

This is exactly the equation (2.7).

A.2 The moment equation

The system is in static equilibrium if the sum of all the forces is zero

∑
k

Fk = 0 (A.36)

and the total moment with respect to a given point O is also zero, that is

M = ∑
k
[rk×Fk] = 0 (A.37)

where rk is the vector that joins the point O to the application point of the force Fk. But

for a system in equilibrium the moment is independent from the reference system and

we can define it with respect to any point O′ that is displaced by a distance R from the

point O. We indicate r′k the vector that joins O′ with the application point of the kth

force, and we obtain

r’k = rk +R (A.38)

and

M′ = ∑
k
[r’k×Fk] = ∑

k
[rk×Fk]+∑

k
[R×Fk] = M+R×∑

k
Fk (A.39)

From (A.36), we have that

M’ = M (A.40)
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So we can choose any point, and in our analysis we impose that the point O coincides

with the middle point of the slice base M(x,zM). As we have done for the analysis of the

equilibrium equations for the forces, we take into account separately the contributions

of the moment for slice sides and for each one we define the following vectors

r1(z) = [z− z1(x)]k+
dx
2

i con z1

(
x+

dx
2

)
≤ z≤ z2

(
x+

dx
2

)
(A.41)

r2(xi) = [z2(xi)− z1(x)]k+(xi− x)i con x− dx
2
≤ xi ≤ x+

dx
2

(A.42)

r3(z) = [z− z1(x)]k−
dx
2

i con z1

(
x− dx

2

)
≤ z≤ z2

(
x− dx

2

)
(A.43)

r4(xi) = [z1(xi)− z1(x)]k+(xi− x)i con x− dx
2
≤ xi ≤ x+

dx
2

(A.44)

In order to take into account the moment of the volume forces that act on the center of

mass of the slide, let us also introduce the vector

rB = (zB− z1(x))k (A.45)

where the index B indicates the barycenter. Using the stress matrix components, for

each side we have

• Side 1: considering (A.41) with (A.11) and (A.29),
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M1 =

z2(x+ dx
2 )∫

z1(x+ dx
2 )

dM1

dz
dz =

z2(x+ dx
2 )∫

z1(x+ dx
2 )

(
r1×

f1

dz

)
dz =

=

z2(x+ dx
2 )∫

z1(x+ dx
2 )

{{
[z− z1(x)]k+

dx
2

i
}
× [σxxi+σzxk]

}
dz =

=

z2(x+ dx
2 )∫

z1(x+ dx
2 )

{
[z− z1(x)]σxxj+

dx
2

σzx(−j)
}

dz

(A.46)

• Side 2: considering (A.42) with (A.13) and (A.31) and remembering (A.23),

M2 =

x+ dx
2∫

x− dx
2

{{
[z2(x′)− z1(x)]k+(x′− x)i

}
× [(−D tanβ )i+(−D)k]

}
dx′ =

=

x+ dx
2∫

x− dx
2

{
[z2(x′)− z1(x)](−D tanβ )j+(x′− x)(−D)(-j)

}
dx′

(A.47)

• Side 3: using (A.12) and (A.30)

M3 =

z2(x− dx
2 )∫

z1(x− dx
2 )

dM3

dz
dz =

z2(x− dx
2 )∫

z1(x− dx
2 )

(
r3×

f3

dz

)
dz =

=

z2(x− dx
2 )∫

z1(x− dx
2 )

{{
[z− z1(x)]k−

dx
2

i
}
× [−σxxi−σzxk]

}
dz =

=

z2(x− dx
2 )∫

z1(x− dx
2 )

{
[z− z1(x)](−σxx)j+(−dx

2
)(−σzx)(−j)

}
dz

(A.48)

• Side 4: with the expressions (A.14), (A.32) and (A.18)
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M4 =

x+ dx
2∫

x− dx
2

{{
[z1(x′)− z1(x)]k+(x′− x)i

}
× [(P tanα−S)i+(S tanα +P)k]

}
dx′ =

=

x+ dx
2∫

x− dx
2

{
[z1(x′)− z1(x)](P tanβ −S)j+(x′− x)(S tanα +P)(-j)

}
dx′

(A.49)

Summing all of the contributions we obtain the moment of the forces acting along the

slice boundary. The volume forces, as weight and seismic load, act on the center of

mass (xB, zB), and the corresponding moment is

MB = (zB(x)− z1(x))k× [khρg(z2(x)− z1(x))dx i− kvρg(z2(x)− z1(x))dx k] (A.50)

Simplifying

z2(x+ dx
2 )∫

z1(x+ dx
2 )

[z− z1(x)]σxxj dx =

z2(x+ dx
2 )∫

z1(x+ dx
2 )

z σxxj dx− z1(x)

z2(x+ dx
2 )∫

z1(x+ dx
2 )

σxxj dx (A.51)

and defining the first-order moment of the normal stresses as

A(x) =
[ z2(x)∫
z1(x)

zσxxdz
]
(j) (A.52)

the total moment is
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M =

[
A
(

x+
dx
2

)
− z1(x) E

(
x+

dx
2

)
− dx

2
X
(

x+
dx
2

)
+

−A
(

x− dx
2

)
+ z1(x) E

(
x− dx

2

)
− dx

2
X
(

x− dx
2

)
+

+

x+ dx
2∫

x− dx
2

{
[z2(x′)− z1(x)](−D tanβ )+(x′− x)D

}
dx′+

+

x+ dx
2∫

x− dx
2

{
[z1(x′)− z1(x)](P tanβ −S)+(x′− x)(−S tanα−P)

}
dx′+

+ khρg(zB(x)− z1(x))(z2(x)− z1(x))dx
]

j = 0

(A.53)

and has to be equal to zero.

Since we can write:

dA
dx

=

A
(

x+
dx
2

)
−A
(

x− dx
2

)
dx

(A.54)

− z1(x)
dE
dx

=−z1(x)
E
(

x+
dx
2

)
−E

(
x− dx

2

)
dx

(A.55)

thus the moment equilibrium equation can be given the form:

dA
dx
− z1(x)

dE
dx
− 1

2

[
X
(

x+
dx
2

)
+X

(
x− dx

2

)]
−D tanβ (z2− z1)+kh w(zB− z1) = 0

(A.56)

that finally becomes

dA
dx
− z1(x)

dE
dx
−X− (z2− z1)D tanβ − kh w(zB− z1) = 0 (A.57)
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identical to the 2.8



Appendix B

In this section we show some mathematical developments for the methods of Fellenius

and Bishop.

B.1 The Ordinary method

The system of equations is composed of:

P tanα−S−D tanβ =−khw

P+S tanα−D = (1+ kv)w
(B.1)

S = P tanα−D tanβ + khw

P+[P tanα−D tanβ + khw] tanα−D = (1+ kv)w
(B.2)

S = P tanα−D tanβ + khw

P(1+ tan2 α) = [D tanβ − khw] tanα +D+(1+ kv)w
(B.3)


S = P tanα−D tanβ + khw

P =
[D tanβ −wkh] tanα +D+(1+ kv)w

(1+ tan2 α)

(B.4)

Knowing that
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1
(1+ tan2 α)

= cos2
α

we have

S = P tanα−D tanβ + khw

P = [D tanβ tanα− khw tanα +D+(1+ kv)w]cos2 α

(B.5)

S = [D tanβ sinα cosα− khwsinα cosα +[D+(1+ kv)w]cos2 α] tanα−D tanβ +wkh

P = D tanβ sinα cosα− khwsinα cosα +[D+(1+ kv)w]cos2 α

(B.6)

S = D tanβ sin2
α− khwsin2

α +[D+(1+ kv)w]cosα sinα−D tanβ +wkh

P = D tanβ sinα cosα− khwsinα cosα +[D+(1+ kv)w]cos2 α

(B.7)

and with

sin2
α = 1− cos2

α

we obtain

S =−D tanβ cos2 α + khwcos2 α +[D+(1+ kv)w]cosα sinα

P = D tanβ sinα cosα− khwsinα cosα +[D+(1+ kv)w]cos2 α

(B.8)

Putting the expressions of P and S in the Mohr-Coulomb relationship, we find

F =
c∗+[D tanβ sinα cosα− khwsinα cosα +[D+(1+ kv)w]cos2 α] tanφ

[D+(1+ kv)wcosα sinα−D tanβ cos2 α + khwcos2 α
(B.9)
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The expression (B.9) depends on the geotechnical parameters (c, u, φ , ρ), on the ge-

ometry (z1, z2, α, β ), and on the external loads (D, kh, kv). Dividing by cosα and

integrating the numerator and denominator, we obtain exactly the expression (2.19).

B.2 The Bishop’s method

With our notation, using the expression of the moment and the Mohr-Coulomb criterion,

the equation of Bishop can be expressed as

x f∫
xi

{(−D tanβ + khw)cosα +[D +(1+ kv)w]sinα}dx+

+
1
R

x f∫
xi

[D tanβ (z2− z1)− khw(zB− z1)] dx =

x f∫
xi

1
F cosα

{
c+
(

P−u
)

tanφ

}
dx

(B.10)

and P can be obtained from the vertical equilibrium equations of the forces

P =
D− dX

dx
+(kv +1)w− c∗

F
tanα(

1+
tanφ tanα

F

) (B.11)

Inserting the equation (B.11) in (B.10), we have
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x f∫
xi

[(
−D tanβ + khw

)
cosα +

(
D +(1+ kv)w

)
sinα

]
dx+

1
R

x f∫
xi

[D tanβ (z2− z1)− khw(zB− z1)]dx =

=

x f∫
xi

1
F cosα

{
c∗+

(D− dX
dx

+(1+ kv)w−
c∗

F
tanα(

1+
tanφ tanα

F

) )
tanφ

}
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Since F is a constant parameter, we can write
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}
dx
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D +(1+ kv)w

)
sinαdx+ 1

R

x f∫
xi

[D tanβ (z2− zO)− khw(zB− zO)]dx
(B.13)
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