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I 

 

SUMMARY 

 

Nowadays rigid multibody modelling is a well-established technique for the analysis of 

stability and dynamic behaviour of road-racing motorcycles, reducing designing times and 

avoiding the risks and costs related to experimental testing. In order to provide accurate 

assessments of ride and handling performances a tire model capable of representing the 

dynamic response of rolling over uneven surfaces is required. While extensive research 

efforts have been dedicated to car tires, leading to the development of the so-called rigid-ring 

model, its application to motorcycles presents a number of issues. 

Aim of this research is the development and validation of a comprehensive multibody 

motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of 

road surfaces. A novel parametrization for the general kinematics of the motorcycle is 

proposed, using a mixed reference-point and relative-coordinates approach. The resulting 

description, developed in terms of dependent coordinates, makes it possible to efficiently 

include rigid-ring kinematics as well as road elevation and slope. The equations of motion for 

the multibody system are derived symbolically and the constraint equations arising from the 

dependent-coordinate formulation are handled using a projection technique. Therefore the 

resulting system of equations can be integrated in time domain using a standard ODE 

algorithm. 

The model is validated with respect to maneuvers experimentally measured on the race track, 

showing consistent results and excellent computational efficiency. More in detail, it is also 

capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, 

appearing during high speed cornering maneuvers, consists of a self-excited vertical 

oscillation of both the front and rear unsprung masses in the range of frequency between 17 

and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, 

consistent with the experimentally measured chatter vibration. Finally, the driving 

mechanism for the self-excitation is highlighted and a physical interpretation is proposed. 
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Chapter 1 

 

MOTORCYCLE MODEL 
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1.1 INTRODUCTION 

 

Several motorcycle models have been presented in the literature, showing a very good 

agreement with experimental data for a wide range of maneuvers. Several dedicated 

commercial softwares are available as well, though their computational efficiency is usually 

lower in comparison with purposely built codes. 

Main contributions on multibody motorcycle modelling include the works of Cossalter [1] 

and Sharp [2], [3]. Both authors developed advanced tridimensional, rigid multibody models 

of motorcycles with standard geometry (namely front telescopic forks and rear oscillating 

swingarm suspensions), featuring chain transmissions, torus-shaped tires and empirical 

models of tire-ground interaction forces (Magic Formula, MF), making it possible to take into 

account the major effect of the lean angle. 

Nevertheless, it is possible to highlight some limitations of the presented approaches, the 

main ones being ignoring the ground roughness and slope (in both lateral and forward 

directions) and neglecting the tires own dynamics (although the overall tire deformability is 

considered). 

The above limitations prevent those models from performing accurate simulations of the 

dynamics of the motorcycle moving over an effective road surface. 

This kind of analysis is crucial for the virtual development of electronic active control 

systems that are becoming more and more important in motorcycle industry. 

In fact, to enhance both safety and performance control systems such as ABS, traction control 

and stability control (originally developed for four-wheeled vehicles) have been adapted to be 

installed on road motorcycles. 

This process presents a number of issues, and requires a comprehensive virtual vehicle 

model, capable to accurately describe the higher dynamics of motorcycle tires for a wide 

frequency range, while ensuring high computational efficiency. 

While extensive research efforts have been dedicated to car tires, leading to the development 

and experimental validation of the so-called rigid-ring tire model (named SWIFT: Short 

Wavelength Intermediate Frequency Tire Model) [4], only a few papers [5], [6], [7] address 

to the application of this model to motorcycle tires. 

The rigid-ring tire model consists of two rigid bodies, representing the tire belt and the rim 

respectively. The belt is suspended with all six degrees of freedom (dofs) with respect to the 

rim, and six spring-damper elements model the sidewall deformability of the tires. 
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It has been shown [8] that a rigid-ring tire model is able to describe the in-plane (longitudinal 

and vertical) and out-of-plane (lateral and yaw) tire behaviour up to frequencies of 60 - 100 

Hz, where the contribution due to flexible belt modes is negligible. 

Aim of this chapter is to develop a comprehensive single-track vehicle model, integrating a 

rigid-ring tire model, effective road elevation and slope, chain transmission for both driving 

and braking states and full drivetrain inertia. 

To this purpose, a novel approach for the derivation of the equations of motion of a general 

motorcycle is presented. Starting from the discussion developed in [9], dependent variables 

are used to determine the front wheel orientation, leading to a simple, computationally fast 

description of the motorcycle kinematics. This feature makes it possible to easily include 

rigid-ring tires and road slope without affecting efficiency. The equations of motion are 

obtained symbolically, using a computer algebra software (CAS), which ensures maximum 

flexibility and accuracy in the description of the system. The constraint equations due to the 

dependent coordinates formulation are handled using a projection technique, resulting in an 

ODE system of equations. This system can be successfully solved not only in the simulation 

environment presented, but also in real-time applications, such as vehicle state estimation and 

active vehicle control. 

The proposed model will be validated with respect to experimental data in both the time and 

frequency domains, showing consistent results, accuracy and excellent computational 

efficiency. 

The chapter is organized as follows: the description of the motorcycle geometry and 

kinematics is followed by the tire and chain transmission models and finally by the derivation 

of the equations of motion. 

 

  



4 

 

1.2 MOTORCYCLE MODEL GEOMETRY 

 

Modern road motorcycles feature a front suspensions of telescopic fork type, rear suspensions 

of swingarm type (with leverage activating the rear shock absorber), and chain transmissions. 

The motorcycle model, depicted in Fig. 1.1, consists of eleven rigid bodies: the front and rear 

tire belts, attached respectively to the front and rear rims (including brake discs), the 

swingarm (including rear brake caliper and rear suspension strut), the main frame (including 

rider, engine, rear shock absorber and fuel mass), the front assembly (including fork 

stanchions, handlebars and steering assembly), the front sprung mass (including lower fork 

and front brake calipers) and three bodies modelling the rotating inertias of the crankshaft, 

first gearbox shaft (including clutch) and second gearbox shaft (including drive sprocket). 

Although the presented approach makes it possible to easily include the rider movement, it is 

beyond the scope of this work the discussion of its effect. Hence, the rider is modelled as a 

mass rigidly attached to the main frame, and the controlling effect due to the rider’s body 

movement is neglected. Vehicle control is due to a steering torque applied on the front 

assembly and reacting on the main frame (a steering damper is also included), front and rear 

braking torques, and engine torque. The chain transmission model makes it possible to take 

into account a braking engine torque as well, since it plays a major role in defining the 

vehicle’s trim during braking maneuvers.  

The motorcycle geometry is described by means of three fixed parameters: the swingarm 

length lsa, the frame length lr, and the front fork offset lf. The frame length is defined as the 

distance between the swingarm pivot and the steering head along the direction orthogonal to 

the steering axis (frame line), while the front fork offset is the distance between the steering 

axis and the front wheel axle. 

The motorcycle trimming (or internal configuration) can be defined by means of three 

variables: the angle between swingarm and frame line θ, which depends on the rear 

suspension extension, the steer angle δ and the front suspension extension fk. 

The motorcycle kinematics are defined in a x-forward, y-right and z-down axis system, which 

is consistent with SAE conventions. This implies that the roll angle is positive when leaning 

right as well as steering is positive when heading right; wheel rotations are negative while 

moving forward. 

The positions of the reference frames attached to each body are determined by means of 

mixed relative coordinates and reference point methods, using the following coordinates and 
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transformations. The rear wheel axle position and orientation are defined with respect to the 

ground reference frame. The translations are {x,y,z} and the rotations around the x, y and z 

axes are {φ,βy-R,ψ} respectively, being ψ the yaw angle, φ the roll angle and βy-R the road 

tangent plane forward inclination angle at the rear wheel. 

Note that the ground reference frame is the inertial reference system. It is not parallel to the 

road plane tangent axis system, whose angles are given as a function of the curvilinear 

abscissa in the inertial reference system. 

The swingarm pivot position is defined taking as a reference point the rear wheel axle 

coordinates. The orientation is given again with respect to the ground, with the rotations 

{φ,μ2,ψ} being μ2 the (absolute) swingarm pitch angle. Along the new x-axis a translation of 

length {lsa,0,0} leads to the swingarm pivot. The frame head is located similarly taking as a 

reference point the swingarm pivot position. The rotations are {φ,μ3,ψ} being μ3 the 

(absolute) frame pitch angle, and the frame head is reached through a translation of {lr,0,0}. 

Therefore the previously mentioned rear suspension (angular) extension θ can be defined as 

θ= μ3 – μ2. 

The positions of the upper and lower steering assemblies are given in relative coordinates 

starting from the frame head. The upper steering reference system is rotated about the 

previously defined z-axis by the steering angle {0,0,δ} and the lower steering assembly is 

reached through a translation of length {0,0,fk} along the z-axis. The front wheel axle position 

is located by means of a further translation of length {0,0,lr} along the x-axis, given by the 

steering offset. 

It is now possible to express the front axle position as a function of the independent variables 

defined above; the three coordinates, with respect to the rear axle, read: 

 

 

 

3 2 3 3

3 3 2

3 3 2

cos( )cos( ) cos( ) sin( ) cos( )

sin( ) cos( ) sin( ) cos( ) sin( ) cos( )sin( )

cos( ) cos( ) sin( ) cos( ) sin( ) sin( )sin( )

f f sa k r

f f r k sa f

f f r k sa f

x l l f l

y l l f l l

z l l f l l

    

      

      

   

     
 

      
 

 (1.1) 

 

It is also possible to express the front wheel orientation as a result of the rotations applied to 

each member of the kinematic chain. Again, starting from the rear axle, the front axle is 

reached by rolling around the x-axis, then by pitching around the y-axis and finally by 
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steering around the z-axis. Using the previously introduced angles (and adopting the notation 

cos() = c(), sin() = s()) the overall rotation reads: 

 

3 3 3

3 3 3 3

3 3 3

c( )c( ) s( )c( ) s( )

( ) ( ) ( ) c( )s( )s( ) c( )s( ) s( )s( )s( ) c( )c( ) c( )s( )

c( )s( )c( ) s( )s( ) s( )s( )c( ) s( )c( ) c( )c( )

x y z

    

              

           

 
 

    
 
    

R R R
 (1.2) 

 

where Rx, Ry and Rz are the orthonormal rotation matrices around the three axes. 

As it is demonstrated in [9] the front axle orientation can be also obtained by means of three 

(non-independent) angles, applying the well-known yaw-roll-pitch rotations. Some analytical 

derivations are given for the sake of clarity. Being φf, δf, θf  the roll, yaw and pitch angles of 

the front axle, the resulting rotation matrix is: 

 

c( )c( ) s( )s( )s( ) c( )s( ) c( )s( ) s( )s( )c( )

( ) ( ) ( ) s( )c( ) c( )s( )s( ) c( )c( ) s( )s( ) c( )s( )c( )

c( )s( ) s( ) c( )c( )

f f f f f f f f f f f f

z f x f y f f f f f f f f f f f f f

f f f f f

           

              

    

   
 

   
  

R R R
 (1.3) 

 

Equating (1.2) and (1.3) one obtains: 

 

 
 

 

1

3

1

3 3

1

3 3

sin sin( )cos( ) cos( )sin( )sin( )

tan (sin( )cos( ) tan( )sin( )) / cos( )

tan cos( )sin( ) / (cos( )cos( ) sin( )sin( )sin( ))

f

f

f
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     

       







   
  

   
      

 (1.4) 

 

It must be noted that the yaw angle of the front axle δf is defined with respect to the 

motorcycle mid-plane, hence it does not include the overall yaw angle of the motorcycle. 

This angle is also known as ground steer angle. The yaw angle of the front wheel with respect 

to the inertial reference frame therefore reads: 

 

f f   
  (1.5) 

 

Equation (1.4) makes it possible to express the orientation of the front wheel axle as a 

function of the orientation of the whole vehicle. Hence the front axle reference frame can be 
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defined using the reference point method: the coordinates of the reference point are given by 

Eq. (1.1), the front roll and yaw angles are given by Eqs. (1.4), (1.5) and the pitch angle of 

the front axle is given by the road tangent plane forward inclination angle βy-F at the front 

wheel, in short form: {φf,βy-F,ψf}. Therefore the motorcycle kinematics are described by 

means of 11 independent Lagrangian parameters (x, y ,z, φ, βy-R, ψ, μ2, μ3, δ, fk, βy-F) and 2 

dependent coordinates (φf, ψf). This choice makes it possible to avoid the extremely involved 

expression resulting from a full independent-coordinates description, thus reducing the 

dimension of the model and the computational effort, but requires to handle two algebraic 

constraint equations during the numerical integration of the equations of motion. 

The kinematics of the rigid-ring model and of the chain transmission will be analyzed in the 

following sections. 

 

 

Fig. 1.1: Schematic of the motorcycle model. 
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1.3 RIGID RING TIRE MODEL 

 

The rigid-ring tire model (Fig. 1.2) consists of two rigid bodies. The first (from now on called 

the rim) includes the inertial properties of the rim and the inner part of the tire sidewall 

moving together with the rim, while the second (from now on called the belt) takes into 

account the inertial properties of the remaining parts of the tire [10]. The rim is attached to 

the wheel axle reference frame, while the belt is suspended with respect to the rim with six 

dofs as already stated. 

The following analysis holds for both the front and rear tires: their axle positions and 

orientations are given by {x,y,z}, {φ,βy-R,ψ} for the rear wheel and by {xf,yf,zf}, {φf,βy-F,ψf} 

for the front wheel. The subscript a from now on will identify the rim reference frame, while 

the subscript rb will identify the belt reference system, either for front and rear wheel. 

The kinematics of the rigid-ring model are derived using relative coordinates starting from 

the wheel axle non-rotating reference frame. The rotating reference frame is easily obtained 

by pre-multiplication of the rotation matrix Ry(a). 

The position of the center of the belt is reached with three translations (xrb, yrb, zrb) from the 

center of the rim and three further positive rotations (namely rb, rb, rb), define its 

orientation. Since the deformations of the tire sidewalls are small, the rotation matrices can be 

linearized and higher order terms neglected. Applying the usual yaw-roll-pitch series of 

rotations, a vector v given in the belt reference frame (subscript rb) can be expressed in the 

rim reference frame (subscript a) by applying the rotation matrix Rrb-a [11]: 

 

1

, ( ) ( ) ( ) 1

1

rb rb

a rb a rb rb a z rb x rb y rb rb rb

rb rb

 

    

 

 

 
 

      
 
  

v R v R R R R
 (1.6) 

 

The forces between the rim and the belt are due to six linear spring-damper systems. While 

the forces due to the springs are defined in the non-rotating reference system, dampers are 

rotating along with the wheel. This leads to coupling terms in the damping forces. The 

components of the absolute angular velocity  of the rim (given in the rim non-rotating 

reference frame) are: 
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sin( )

cos( )

a

a a a a

a a


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 

 
 

 
 
  

Ω
   (1.7) 

 

where a  is the yaw angular velocity (in the ground reference frame), a  is the roll angular 

velocity (in the rim reference frame) and a  is the rotating speed of the rim, leading to the 

following expression for the forces and moments of the springs and dampers in the non-

rotating frame [11]: 

 

 

 

 

 0

sin( )

sin( )

sin( )

sin( )

xrb x rb x rb z rb a a a

yrb y rb y rb

zrb z rb z rb x rb a a a

xrb rb rb rb a a a

yrb rb rb

zrb rb rb rb a a

F k x c x c z

F k y c y

F k z c z c x

M k c c

M k c

M k c c

  

 
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  

  

     

 

     

   

 

   

   

 

   

  (1.8) 

 

in which second order terms were neglected (due to the small values of xrb, yrb, zrb and rb, 

rb, rb). 

In order to properly model the tire overall lateral and radial stiffness, two spring-damper 

systems are added in series with those of the rigid-ring model, between the belt and the 

ground contact point. In fact, the rigid-ring stiffness are chosen in order to simulate the high 

frequency behaviour of the tire, while not ensuring the effective overall deformability. 

Moreover, it is well known that the overall tire stiffness is nonlinear, depending on vertical 

load and forward velocity, so that the residual stiffness must respect this relation: 

 

1 1 1

1 1 1

rad rr x

lat lr y

k k k

k k k

 

 
  (1.9) 

 

where krad and klat are the overall lateral and radial stiffness of the tire and krr, klr are the 

residual radial and lateral stiffness. 
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The profile of the tire is assumed to be torus-shaped, so that, starting from the belt center, the 

contact point is reached through the following translation of coordinates: 

 

 

0

sin( )

1 cos( )

cp

cp x lat

cp x rad

x

y y

z r z

  

  



  

     

  (1.10) 

 

where ρ is the radius of the torus, r is the maximum radius of the tire, βx is the angle of lateral 

slope (with respect to the inertial reference frame) of the plane tangent to the road surface in 

the contact point and ylat, zrad are the lateral and radial residual deformations. 

A contact mass with translational inertia is added at the ground contact point [6]. Acting on 

the contact mass are the forces of residual springs and damper (in tilted direction), the tire-

ground normal contact force, and the tire driving forces. The forces of the residual springs 

and dampers read: 

 

 

rad rr rad rr rad

lat lr lat lr lat

F k z c z

F k y c y

 

    (1.11) 

 

 

Fig. 1.2: Schematic of the rigid-ring tire model. 
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The tire-ground normal force is calculated considering the ground contact as a deformable 

unilateral holonomous constraint. The normal force in the ground reference system hence is: 

 

cos( )cos( )
0

eff el cp cp el

N gr eff x y

eff cp el

z w z if z w
F k z

z if z w
 

  
   

 
 (1.12) 

 

where kgr is the ground stiffness, wel is the effective road elevation and zcp is the elevation of 

the contact mass, both elevations with respect to the inertial reference system. 

The tire driving forces are described using the well-known empirical “Magic Formulas” (MF) 

for motorcycle tires, as described in [12]. Input quantities for the MF are: the vertical load FN, 

the wheel camber angle (which equals x  ), the longitudinal and lateral slip factors. The 

driving forces are applied to the contact mass, so no overturning moment is considered. 

Rolling resistance and self-aligning torque are applied to the belt. 

In order to properly calculate the slip factors it is necessary to define the slip velocities of the 

contact mass. The longitudinal and lateral slip, κ and α, in stationary conditions are defined 

as: 

 

    

tan( )

VSX

VX

VSY

VX





 


  (1.13) 

 

where VX, VSX and VSY are velocities which can be calculated by means of the 

transformation T0-a, that defines the position of a point given in the inertial reference system 0 

in the rim reference system a, applied to the position of the contact point P: 

 

0 0

0 0 0 0

a a

P a a

P T P

v T P T P



 

 

      (1.14) 

 

The absolute velocity v of the contact point is composed of two terms: the first is the relative 

velocity of the contact point with respect to the rim and the second term is the velocity of a 

point instaneously coincident with the contact point and belonging to the rim rotating 
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reference system, also known as eulerian velocity of the contact point. The speed VX is the 

x-component of vp and VSX, VSY are the x and y-components of the so-called eulerian 

velocity. When an experimental estimate of the actual rolling radius Re of the tire as account 

this dependence by defining the longitudinal slip factor as [4]: 

 

1   a eR

VX





  

  (1.15) 

 

The actual expressions are not shown due to their large size, but it must be noted that both 

lateral and longitudinal slips depend on rigid-ring deformations, residual deformations and 

road slopes. 

In order to model the tire-thread own dynamics the above defined slip is not directly fed to 

the Magic Formula. A relaxation model is introduced instead, which makes it possible to 

describe the contact patch deformation by introducing a time delay defined by a relaxation 

length. The relaxation equations are defined below, being u and v the contact patch 

deformations in longitudinal and lateral direction: 

 

k k

du
VX u VSX

dt

dv
VX v VSY

dt
 

 

 

    

    
  (1.16) 

 

From Eq. (1.16) it is possible to calculate the actual slip factors using the relations: 

 

       

tan( )

u

v














  (1.17) 

 

The relaxation lengths are not constant, since they depend on the tire overall (longitudinal 

and lateral) stiffness C and on the slip and cornering stiffness K, that, in turn, depend on the 

vertical load: 
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x

y

y

K

C

K

C















  (1.18) 

 

1.4 TRANSMISSION MODEL 

 

The adopted transmission model features three (rigid) bodies with rotational inertias 

modelling the crankshaft and the gearbox. The angular velocity of the gearbox output shaft 

θds is the only independent variable, while the angular velocities of the remaining shafts are 

determined by the actual gear ratio and the primary reduction gear ratio. The engine torque is 

applied to the crankshaft. Transmission efficiency is also included. 

The chain is modelled as a massless visco-elastic thread wrapped around the pinion (radius 

rds) and the chainwheel (radius rws). When the upper (lower) segment of the chain is 

stretched, it becomes tangent to both the pinion and the chainwheel, in the points A, C (B, D) 

as shown in Fig. 1.3: 

 

 

Fig. 1.3: Chain transmission model. 
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It is possible to locate the tangent points by means of the following geometric quantities: 

 

2 3

cos( ) ( )

tan( ) [ sin( ) cos( )]

cos( ) sin( )

ws ds ia

ds ds ia

ia sa ds ds

r r d

x z d

d l x z

  



  

 

 

 

   

    

  (1.19) 

 

 

Fig. 1.4: Chain transmission kinematics. 

 

In points A, C (B, D) a force is applied as depicted in Fig. 1.5, acting on both pinion and 

chainwheel along the chain line and in opposite direction. This force is proportional to the 

chain extension and to the relative speed between tangent points A, C (B, D), according to: 

 

if 0

0 if 0                  

if 0

0 if 0                  

u
u u

u

u

u
l l

l

l

de
k e c e

T dt

e

de
k e c e

T dt

e


   

 
 


   

 
 

  (1.20) 
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Fig. 1.5: Chain transmission forces. 

 

where the chain extension eu (el) is defined as the difference between the upper (lower) rest 

length (which is a parameter of the model) and the upper (lower) length. The upper (lower) 

length depends on the pinion and chainwheel angular displacements θds and θwr, as well as on 

the unstretched chain length lu
0
 (ll

0
): 

 

2 2

0

0

( )

( ) ( )  

( ) ( )

ia ws ds

u ws wr ds ds u

l ws wr ds ds l

AC BD d r r

e r t AC r t l

e r t BD r t l

 

 

   

     

      

  (1.21) 

 

If the sum of the upper and lower unstretched chain lengths is large enough, the two segments 

are never in tension at the same time. 

An upper limit is imposed to the maximum engine braking torque, in order to model the anti-

hop clutch effect featured in modern four-stroke racing motorcycles. 
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1.5 DERIVATION OF THE EQUATIONS OF MOTION 

 

The equations of motion are automatically generated using a symbolic formalism within a 

MAPLE software environment. A set of symbolic multibody procedures developed by Lot 

[13] is adopted to define the reference systems attached to each body as well as the applied 

forces and torques. The equations of motion can be obtained through a Lagrange [14] or a 

Newton-Euler [15] approach, the latter being most suitable in the case of a linearized system.  

Using the full set of redundant coordinates, both techniques result in a second order ODE 

system in the following form, where M denotes a mass matrix (time dependent, positively 

defined) and f denotes the vector of applied forces and terms dependent on displacements and 

velocities: 

 

( ) ( , , )t M q q f q q
  (1.22) 

 

Equation (1.22) can also be written using the well-known state-space transformation as 

follows: 

 

1

( ) ( )

( ) ( , ) ( , , )

t td

t t tdt


   
   

   

q q

q M q f q q   (1.23) 

 

Since not all the coordinates are independent, a system of holonomous constraint equations g 

(with Jacobian matrix Φ) must be satisfied: 

 

( , )
( , ) 0, ( , )

t
t t


 



g q
g q Φ q

q   (1.24) 

 

Introducing the Lagrange multipliers λ(t) and the constraint equations (1.24), the system Eq. 

(1.22) becomes an index-3 DAE system: 

 

( ) ( , , ) ( , ) ( )t t t   M q q f q q Φ q λ
  (1.25) 
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The dimension of g (and therefore of λ) depends on the selected approach for modelling the 

system kinematics. Using natural coordinates, for example, leads to as many constraint 

equations as many joints in the system. This approach was adopted in [1], leading to a large 

number of constraint equations (although very simple) to be satisfied during numerical 

integration, for which the Baumgarte stabilization method was successfully applied. 

The kinematic constraints Eq. (1.24) imposed at the displacement level, must hold at the 

velocity and acceleration levels as well [16]. By derivation w.r.t. time one obtains: 

 

2 2 2

2 2 2

2

2

( , ) ( , ) ( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) 0

d d
t t t t t

dt t dt t

d d d d
t t t t

dt t dt dt dt

d
t t t

t dt

  
      
  

   
      
   


     


q
g q g q g q g q Φ q q

q

q q
g q g q g q g q

q q

g q Φ q q Φ q q

 (1.26) 

 

and, consequently: 

 

2

2

( , ) ( , )

( , ) ( , ) ( , )

t t
t

t t t
t


  




    



g q Φ q q

g q Φ q q Φ q q
  (1.27) 

 

The simultaneous solution of Eq. (1.25) as long as conditions (1.26) leads to the system: 

 

T

2

2

( , , )
( )( , ) ( , )

( , )( , ) ( , ) ( , )

t
tt t

tt t t
t

 
                   

f q q
qM q Φ q

λ qΦ q 0 g q Φ q q  (1.28) 

 

The system Eq. (1.28) has n unknowns, being n the dimension of the full set of dependent 

coordinates, and it has m Lagrange multipliers. That is, the system has f = n – m independent 

coordinates (dofs). 

In the case of scleronomous constraints (constraint equations not explicitly time dependent) it 

is possible to partition the dependent coordinates qd from the independent ones qi. Then the 

first of Eqs. (1.27) becomes: 
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  d

d i

i

 
   

 

q
0 Φ Φ

q z   (1.29) 

 

If matrix dΦ  is invertible, it is possible to express the dependent velocities as a function of 

the independent ones as:  

 

1( )d d i

  q Φ Φ z
  (1.30) 

 

establishing the following relation between the velocities: 

 

1( )
, d i

  
    

 

Φ Φ
q R z R

I   (1.31) 

 

Since matrix dΦ  is invertible it has full rank, that is m independent columns, and n rows. Its 

nullspace represents the subspace of allowable motions of the system: hence the velocity of 

any point (compatible with constraints) must belong to this subspace [17]. 

By differentiating w.r.t. time Eq. (1.31) the projection operator for accelerations is obtained: 

 

 q Rz Rz
  (1.32) 

 

By partitioning the acceleration vector the constraint equation Eq. (1.27) becomes: 

 

  d d

d i d i

   
      

   

q q
Φ Φ Φ Φ

z z   (1.33) 

In order to obtain the term Rz , note that it represents the system accelerations in the case of 

null independent accelerations. From Eq. (1.33) for 0z  one obtains: 

 

0

( )T
d d d d

z

  
    
   

q Φ Φ q
Rz

z 0   (1.34) 
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Substituting q  in the first row of Eq. (1.28) and pre-multiplying by T
R  it is possible to obtain 

the equations of motion in independent coordinates as: 

 

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )T T Tt t        R z M z R z z R z f z z R z M z R z z
 (1.35) 

 

The independent coordinates formulation in Eq. (1.35) is only valid locally (where the 

parametrization is well-defined). It requires the construction of matrix R, and the evaluation 

of the dependent displacements and velocities at each integration step, even if only the 

independent coordinates are integrated. In conventional formulations it is necessary to check 

the linear independence of the chosen parametrization at each function evaluation, using the 

properties of Jacobian matrix. Frequent reparametrizations hence may be required as well as 

the numerical evaluation of large coefficients matrices in Eq. (1.35), which can affect 

computational efficiency, especially in case of multistep solvers [18]. In the presented 

approach an optimal parametrization is adopted, which is well-defined for all feasible 

motorcycle motions (namely when both the roll and steering angle are in the range of  90°) 

and therefore does not require checking or modifications during the integration. Moreover 

Eq. (1.35) is implemented symbolically, so the coefficients are prepared before the simulation 

in order to make their evaluation efficient. Finally, due to the adopted parametrization, it is 

possible to obtain uncoupled constraint equations, so that dependent displacements and 

velocities are computed at each time step without any further matrix inversion. 

It has been shown in Eq. (1.4) how to relate the dependent orientation coordinates for the 

front wheel (φf, δf) to the independent (Lagrangian) parameters describing the vehicle 

kinematics. In ref. [9] a detailed analysis of the domain of definition for those equations is 

given, showing that equations are not only consistently defined but also are continuously 

differentiable on [-π/2, π/2]. It is hence possible to state a set of constraint equations by 

rearranging Eq. (1.4) as: 

 

3 3

3

s( )[c( ) c( ) s( ) s( ) s( )] c( ) c( ) s( )

s( ) c( ) s( ) s( ) s( ) c( )

f f

f

        

     

      


    
 (1.36) 
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By computing the time derivative of Eq. (1.36) it is possible to express the constraints at the 

velocity level. Moreover, is possible to calculate the matrices dΦ  and iΦ  by collecting the 

terms multiplying the dependent and independent velocities, respectively. The following 

expression for the matrix dΦ  is obtained: 

 

3 3c( )[s( )s( )s( ) c( )c( )] s( )c( )s( ) 0

0 c( )

f f

d

f

        



  
  
 

Φ
 (1.37) 

 

Being Eqs. (1.36) uncoupled, the resulting Jacobian sub-matrix is diagonal, has full rank 

within the domain, and the calculation of the inverse matrix required in Eq. (1.30) is trivial.  

The matrix iΦ  is shown next, considering only the terms involved by the constraints: 

 

3 3

3 3 3

3 3 3

s( )[c( )s( )s( ) c( )s( )] s( )s( )s( ) c( )c( )

s( )[s( )s( )c( ) c( )s( )] c( )c( )c( ) s( )s( ) s( )c( )c( )

s( )c( )s( )s( ) c( )s( )s( ) c( )c( )s( )

f

T

i f f

f f

          

             

         

  
 

    
   

Φ
 (1.38) 

 

It is now possible to assemble matrix R using Eq. (1.31), obtaining (for the terms involved): 

 

3 3

3 3

3 3

3 3

s( )[c( )s( )s( ) c( )s( )] s( )s( )s( ) c( )c( )
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f f f

f fT
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          
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f f
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

         

         

 
 
 
 


 
 
 

  
   

(1.39) 

 

At this stage the computation of vector Rz  is straightforward by means of derivation w.r.t. 

time. All the operations from Eq. (1.29) to Eq. (1.35) have been implemented in a MAPLE 

procedure, where the equations of motion of the unconstrained system are computed as well, 

using the library presented in [13]. Finally, the equations of motions have been reformulated 

symbolically in terms of independent coordinates as shown in Eq. (1.35), and only 

independent coordinates are integrated. The solving algorithm therefore is: 
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1)  The state vector  ,y z z  is received from the integrator. Using Eqs. (1.4) and 

(1.31) the dependent displacement and velocities are obtained. This operation is 

computationally inexpensive due to uncoupled constraint equations. 

2) The independent accelerations are immediately computed using Eq. (1.35). Note that 

all of the matrices are pre-computed symbolically and no check on the 

parametrization is needed. The only computational efforts are matrix evaluation and 

numerical inversion. 

3) The state vector  ,y z z  is assembled and returned to the integrator. 

 

The numerical integration was performed using an algorithm based on backward 

differentiation formulae (BDFs) available in Matlab environment (ODE15s), one of the most 

often used time-integration methods for stiff technical systems, due to its higher order of 

convergence compared to backward Euler method [16] and adaptive computation stepsize. 

The large number of function evaluations required to numerically compute the Jacobian 

matrix during integration does not affect the overall computational efficiency due to the 

efficient approach adopted in the derivation of the equations of motion. However note that 

the adopted symbolic approach makes it possible to easily obtain the expression of the 

Jacobian matrix in symbolic form, which can be directly passed to the integrator, avoiding the 

above mentioned numerical evaluation and thus further improving computation times. 
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1.6 MODEL SUMMARY 

 

Finally a summary of the model features is given, in order to provide a comprehensive view 

of its architecture. 

 

Independent coordinates (rotations are not linearized where not explicitly stated): 

- x, y, z, translational displacements of the rear wheel axle center w.r.t. to the inertial 

reference system, 

- φ, ψ: roll and yaw angles of the rear wheel axle w.r.t. to the inertial reference system, 

- μ2, μ3: pitch angles of the swingarm and frame w.r.t. to the inertial reference system, 

- δ: steering angle, 

- fk: translational displacement of the front suspension, 

- θds: rotation angle of the drive sprocket w.r.t. to the inertial reference system, 

- θFw, θRw: rotation angle of the wheels w.r.t. to the inertial reference system, 

- xrb-F, yrb-F, zrb-F: translational displacements of the front tire belt, w.r.t. front wheel axle, 

- φrb-F, θrb-F, ψrb-F: linearized angular displacements of the front tire belt w.r.t. front wheel 

axle, 

- zrad-F, ylat-F: radial and lateral residual front displacements, w.r.t. front tire belt, 

- xrb-R, yrb-R, zrb-R: translational displacement of the rear tire belt, w.r.t. rear wheel axle, 

- φrb-R, θrb-R, ψrb-R: linearized angular displacements of the rear tire belt w.r.t. rear wheel 

axle, 

- zrad-R, ylat-R: radial and lateral residual rear displacements, w.r.t. rear tire belt, 

- uf, ur: front and rear contact patch longitudinal deformations, 

- vf, vr: front and rear contact patch lateral deformations. 

 

Dependent coordinates 

- φf, ψf: roll and yaw angles of the front wheel axle w.r.t. to the inertial reference system. 

 

Kinematic input quantities 

- βx-F, βy-F, wel-F: lateral and longitudinal road surface slopes and road elevation at the front 

contact point w.r.t. to the inertial reference system, 

- βx-R, βy-R, wel-R: lateral and longitudinal road surface slopes and road elevation at the rear 

contact point w.r.t. to the inertial reference system. 
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The resulting state vector therefore has 322 = 64 components, since the dependent 

coordinates are not integrated, and road elevation and slopes are taken into account as input 

parameters. 

Each rigid body constituting the multibody model is associated with a mass and a tensor of 

inertia. 

 

Rigid bodies 

- front and rear contact masses, 

- front and rear tire belts, 

- front and rear rims, 

- swingarm and mainframe (including engine and rider), 

- upper and lower steering assemblies, 

- crankshaft, gearbox first and second shafts. 

 

Controls 

- Mst: steering torque, acting on the upper steering assembly (reacting on the frame), 

- Me: engine torque, acting on the crankshaft, 

- Mb-F: front brake torque, acting on the front rim (reacting on the lower steering assembly), 

- Mb-R: rear brake torque, acting on the rear rim (reacting on the swingarm). 

 

The applied forces and torques can be classified as external and internal. The external forces 

and torques are due to aerodynamic actions and tire-ground forces. The aerodynamic actions 

are modelled as three forces applied at ground level in the wheelbase midpoint and three 

torques. The aerodynamic coefficients were determined by means of wind tunnel testing, for 

both a prone rider and a standing rider, and for both leaning and straight running 

configurations. Using the actual roll angle and applied brake and engine torques it is possible 

to properly chose the set of aerodynamic coefficients during numerical simulations. The tire 

forces are modelled using Magic Formulas as stated in section 1.3. 

The internal forces are due to spring-damper systems. While the rigid-ring spring-damper 

systems are fully linear, the residual spring-damper systems feature non-linear stiffness. The 

front suspension, which is not activated by a leverage, has a tri-linear elastic characteristic 

(modelling the spring, the bottom out bumper and the top out spring) and a non-linear 

damping characteristic, which will be described in detail in chapter 2. The rear suspension, 
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while sharing with the front one the shock absorber model, is activated by a leverage, which 

converts the angular relative motion of the swingarm with respect to the frame into a 

translational compression of the shock absorber. In order to obtain the equivalent rotational 

spring-damper system, the procedure presented in [3] was applied. The steering damper is 

modelled as purely linear, acting on the upper steering assembly (reacting on the frame). The 

last internal force is the chain force which acts on chainwheel and sprocket. 

 

Internal forces and torques 

- Mst-D: steering damper torque (linear), 

- Msh: rear suspension visco-elastic torque (non-linear), 

- Ffk: front suspension visco-elastic force (non-linear), 

- Fx-rb-F, Fy-rb-F, Fz-rb-F, Mx-rb-F, My-rb-F, Mz-rb-F: front rigid ring forces and torques (linear), 

- Frad-F, Flat-F: front tire residual forces (non-linear), 

- Fx-rb-R, Fy-rb-R, Fz-rb-R, Mx-rb-R, My-rb-R, Mz-rb-R: rear rigid ring forces and torques (linear), 

- Frad-R, Flat-R: rear tire residual forces (non-linear), 

- Fch-L, Fch-U: upper and lower chain force. 

 

External forces and torques 

- Fx-A, Fy-A, Fz-A, Mx-A, My-A, Mz-A: aerodynamic forces and torques, applied to the sprung 

mass, 

- Fx-F, Fy-F, FN-F: front tire forces, applied to the front contact mass, 

- Mx-F, My-F: front tire torques, applied to the front tire belt, 

- Fx-R, Fy-R, FN-R: rear tire forces, applied to the rear contact mass, 

- Mx-R, My-R: rear tire torques, applied to the rear tire belt. 
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1.7 CONCLUSIONS 

 

In this chapter a novel approach to the dynamic modelling of motorcycles was presented. The 

adopted kinematic description makes it possible to consider forward and lateral road slopes as 

well as road elevation and to add to the standard motorcycle geometry a rigid-ring tire model 

without affecting computational efficiency. By means of an independent coordinate 

formulation it was possible to express the position and orientation of the front wheel axle in 

the inertial reference frame, reducing the complexity of the resulting expression with respect 

to the fully relative-coordinate formulations presented in the literature. The selected 

constraint equations are well defined and continuous for the entire range of feasible 

motorcycle motions. Moreover, the adopted parametrization yields uncoupled constraint 

equations, making the evaluation of dependent displacements and velocities computationally 

inexpensive. On the basis of this kinematic description, a rigid multibody motorcycle model 

was implemented using a symbolic formalism. The equations of motion were written for the 

entire set of variables (dependent and independent) using either Lagrange or Newton-Euler 

equations. The constraint equations were handled using a projection technique, that made it 

possible to express the dependent variables as a projection of the independent ones over the 

nullspace of the Jacobian matrix of the constraint equations. As a result, the system of 

equations of motion was reformulated in terms of independent variables only. Therefore the 

numerical integration can be performed using a simple ODE algorithm, instead of the DAE 

algorithm required by conventional formulations (Lagrange multipliers), resulting in a highly 

enhanced computational efficiency: the developed code is between 3 and 5 times faster than 

commercial softwares of similar complexity. Moreover, the amount of RAM memory 

required is extremely low (computation time being influenced mainly by the CPU clock 

frequency) making the code suitable also for low-capacity computers such as laptops, unlike 

the majority of commercial softwares. 

Some results regarding model validation (numerical vs experimental data) will be presented 

in chapter 3. 
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Chapter 2 

 

SHOCK ABSORBER MODEL 
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2.1 INTRODUCTION 

 

The study of the dynamic behaviour of motorcycle suspensions has been performed via 

mathematical models of different complexity. The simplest of them is the so-called 2 dofs 

“quarter car model” [19], which can be studied in closed form under the assumption of 

linearity of both damping and spring characteristics. While the assumption of spring linearity 

is not a major limitation (e.g. when coil springs are adopted), it is well known that standard 

shock absorbers are neither linear nor symmetrical. Hence an “optimal damping” value 

obtained through a linear model needs corrections, by means of experimental and/or 

numerical procedures. Experimental tests show that, in a wide range of working conditions 

(namely in absence of fluid vaporization), the force developed by the damper depends only 

on the relative velocity of the suspension. This dependency is strongly non-linear [20], due to 

both purposely built non-linearities, and dry-friction at low speed. Thus a variety of force-

velocity characteristics have been proposed, as for example in [21], where the phenomena 

which contribute to the behaviour of the damper are identified and modelled in detail. 

A general force-velocity relation can be expressed in the form [22]: 

 

         e oF f z c z f z f z    
  (2.1) 

 

where z  is the suspension relative velocity, fe and fo are two functions making it possible to 

model the deviations from symmetry and from linearity. When fe is linear and fo vanishes, the 

function becomes bi-linear and the effect of dry-friction in suspension seals is neglected. The 

latter can be modelled by an appropriate choice of function fe. While this approach makes it 

possible to consider characteristics with complex shapes, it may require different functions 

for different cartridges and setups, making optimization procedures difficult to approach. 

Schielen [20] on the other hand proposed a stochastic identification approach, yielding a 

tri-linear shock function: 
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where c1, c2, c3 are the angular coefficients of the three linear steps, and V1, V2 are reference 

velocities. This model takes into account the effect of dry-friction, but introduces a non-

negligible error in the representation of the damping behaviour at high speed. 

In this chapter a different damping characteristic function is proposed, based on a non-

parametric B-spline [23]. Its shape is optimized for a cornering maneuver at constant velocity 

and a braking maneuver over a rough terrain, both simulated by means of a planar multibody 

non-linear motorcycle model. 

 

2.2 PLANAR MOTORCYCLE MODEL 

 

A simplified planar multibody motorcycle model (with telescopic fork and chain transmission) 

is considered, as shown in Fig. 2.1. This model features 8 dofs: rear contact point coordinates 

x and zr, wheel rotation angles θf  and θr, swingarm pitch angle μ2, frame pitch angle μ3, fork 

stroke fk and drivetrain rotation angle θds. The input variables are the front and rear braking 

torques and the engine torque. Since the model is planar, no steering torque is required. The 

vertical contact forces with the ground are taken into account with residual stiffness and 

damping.  

 
 

Fig. 2.1: Schematic representation of the adopted (simplified) motorcycle model. 
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The rear suspension is modelled by a linear-equivalent torsional spring-damper system, 

taking into account the effects of the rear suspension leverage. The front suspension is 

modelled by a linear spring in parallel with a non-linear damper, described by a specific 

function Fdamp = f(v), where v is the first time derivative of the fork stroke. Since the model is 

planar, only quasi-steady-state cornering maneuvers can be considered. The in-plane 

component of the resulting force applied to the mass center G (due to gravity and inertial 

actions) can be expressed by taking into account also the gyroscopic torques on the wheels: 

 

 
2

1 2 0 0

1

cosi i i

i

M M M J 


       (2.3) 

 

where  is the roll angle,  is the cornering angular velocity (i.e. the yaw rate), 0i and J0i are 

the angular velocity and the moment of inertia (along the rotation axis) of wheel i, 

respectively. 

Referring to Fig. 2.2, the roll angle can be expressed as: 

 

 
2 2

0

1

1
tan 1 i

iG i

JV

Rg mh r




 
  

 
   (2.4) 

 

where V is the motorcycle forward velocity, m its overall mass, hG the in-plane distance of the 

mass center from ground, R the cornering radius, ri the radius of wheel i and g the gravity 

acceleration. The angle  is given by: 

 

2

atan
V

Rg
 

 
   

 
  (2.5) 

 

If the gyroscopic effects are neglected, then  = 0. The in-plane component of the resulting 

force applied to the mass center G can be written in the form: 
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F mg
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The input parameters for computing Fin are: m, hG, V, R, ri and J0i. 

 

Fig. 2.2: Schematic representation of a motorcycle in steady-state cornering maneuver. 

 

The rolling radiuses of the wheels must be reduced as well. Assuming a torus shaped tire 

profile gives: 

 

 1 cos( )effr r    
  (2.7) 

 

where r  is the tire radius and ρ is the torus radius. The tire-ground forces are modelled by 

means of the adherence ellipse, the lateral force being calculated as: 

 

( ) ( ) sin( )Yf res fr f res fr fF c y z k y z         (2.8) 

 

where cres and kres are the values of the linear residual stiffness and damping, zf  is the 

elevation of the front contact point and yfr is the corresponding road elevation. The whole 

system is excited with a translating ground displacement applied at the contact points P1 and 

P2. A ground excitation is applied to the front and rear residual spring-damper systems, with a 

time-shift depending on the actual wheelbase and on the imposed law of motion. The braking 

maneuver is performed with an open loop application of a proper braking torque, with the 

following distribution: 60% front brake, 20% rear brake and 20% engine brake. 
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2.3 SHOCK ABSORBER MODEL 
 

A set of experimental data supplied by a suspension manufacturer is considered. The 

experimental characterization was performed by testing the tuning range of different 

hydraulic cartridges. Figure 2.3 shows the effect of tuning on two different cartridges, taken 

as an example. 

 

Fig. 2.3: Setup limits for two different cartridges (normalized force values). 

 

The force data are normalized with respect to a reference value. It should be pointed out that 

the presence of seals produces a dry-friction action for low compression and rebound 

velocities in the range [– 0.001, 0.001] m/s. This makes the cartridge hydraulic contribution 

negligible, so that the shock behaviour in this velocity range does not vary with respect to any 

cartridge or tuning setup and shows a linear dependence on shaft speed. The slope of this 

linear contribution, according the experimental datasets supplied by the manufacturer, is set 

at: 
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It comes evident from Fig. 2.3 that a tri-linear model cannot reproduce satisfactorily these 

damping characteristics. Therefore a B-spline model is considered, suitable to model curves 

of complex shape with a minimum amount of parameters [24]. Let the experimental data be 

1 1 2 2( , ),( , ),..., ( , )s sv f v f v f . A generic point belonging to a non-parametric B-spline curve of 

degree n and r parameters can be expressed as: 

 

   
1

r
n

k k

k

f v N v b


   (2.10) 

 

where ( )n

kN v  are the spline coefficients, defined over a knot distribution 1 1,..., n rx x  x . 

Maximum end knots multiplicity is chosen, that is: 1 1 1,..., nx x v   and 1 1,...,r r n sx x v    . 

A non-uniform knot distribution is obtained using the optimization algorithm proposed in 

[25]. Due to the smooth shape of the data sets, the selected degree is    . The unknown 

parameters 1,...,k rb b b  can be evaluated by solving the system: 
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f N v N v b
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    
    

      
        

f = N b
 (2.11) 

 

If the number of parameters r equals the number of given data s, there would be interpolation. 

This case is not convenient for the present application, since a relatively low number of 

parameters ( )r s  yields a low number of optimization dofs, and oscillations between fitted 

points should not arise. On the other hand, lowering the number of parameters and solving 

the over determined system in the least square sense would lead to ignore the dry-friction 

effect.  

In order to provide a precise representation also in the region in which the dry-friction 

dominates, with a minimum number of parameters, the system Eq. (2.11) is partitioned into 

two sub-systems: 
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     

I I

II II

f N
= b

f N  (2.12) 

 

Matrix NI has dimension mr and matrix NII has dimension (s – m)r. It is well known that 

the SVD technique allows any mn real matrix A to be factorized in the form A = UV 

where U is a mm orthogonal matrix, V is an nn orthogonal matrix and  is a mn diagonal 

matrix with 0ii i    [26]. Applying the SVD to the system Eq. (2.12) yields: 
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II II II II II II II II II II
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Introducing two new variables ZI and ZII, their p-th and q-th components can be computed as 

follows: 
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All the m components of vector ZI are considered, and collected in a new vector IZ . Only the 

first r – m components of vector ZII are considered, and collected in a new vector ZII. 

Consequently, the dimension of IZ  is m1 and the one of IIZ  is (r – m)1. Hence: 
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where IV  and IIV  are obtained from IV  and IIV  by including only the first mm and r m  

rows. So IV  and IIV  have dimensions m× r and ( )s m r  . Merging vectors IZ  and IIZ

with matrices IV  and IIV  the following system of r equations in r unknowns can be obtained: 

 

 

 

   
    

   

I I

II II

V Z
b

V Z   (2.16) 

 

It is now possible to determine the vector b  (unknown spline parameters): 

 

1

 

 



   
    
   

I I

II II

V Z
b

V Z   (2.17) 

 

The first   equations are selected to interpolate the damping behaviour due to friction in the 

velocity range [– 0.001, 0.001] m/s. The minimum number of parameters for this purpose is 

m   , hence the conditions are set to ( 0.001) 25f     N, (0) 0f  , (0.001) 25f   N. 

Numerical tests led to the use of other six parameters for a least square fitting of the 

remaining experimental data. Hence the total number of unknown parameters becomes r = 9. 

This procedure is repeated for every measured shock dataset, making it possible to identify an 

optimal knot sequence and set of parameters for each dataset. A final knot sequence is thus 

computed averaging all of the optimal knot sequences for every dataset in order to minimize 

the modelling error through the entire range of different cartridge models, and associated 

feasible adjustments. 

The actual comparison between experimental data and spline-modelled data is shown in Fig. 

2.4, where red dots represent the experimental data, cyan solid lines represent the fully-

interpolated experimental data, blue lines represent the B-spline modelled data and green 

squares represent the Greville abscissae for the proposed B-splines. A close-up view in the 

range dominated by the effect of dry-friction is shown in Fig. 2.5, in order to show the 

effectiveness of the proposed method. 
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Fig. 2.4: Comparison between experimental data and proposed model. 

 

 

Fig. 2.5: Comparison between experimental data and proposed model (dry friction effect). 
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2.4 GROUND ROUGHNESS MODEL 

 

Experimental measurements show that the actual road roughness can be described by a 

Gaussian, ergodic and stationary random process with zero mean value. Road quality is 

defined by the frequency content of the surface elevation. A standard model [27] for defining 

the ground power spectral density (PSD) from measured data is: 

 

0
0 1 2w 0t( ) i h

w

yS S
 

      
   (2.18) 

 

with reference spatial frequency 0 1   rad/m and exponent 2w   for constant speed PSD. 

The spectral density Sξ(Ω) for the spatial frequency between 10    and 2   shows a 

minor influence on the dynamic behaviour of vehicles [27]. Therefore the spectral density 

( )S   is usually assumed to be constant on both spatial frequency ranges: 
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The following parameters are typical for a smooth A-class road: 1 = 0.05 rad/m, 2 = 500 

rad/m, S0 = 4.68 10
–6

 m
2
/(rad/m). The generation of a sample function of a stochastic process 

plays a major role in road surface simulation. For this purpose the spectral representation 

method described in [28] is adopted. It has been shown that the ensemble and temporal auto-

correlation functions for a fixed time lag τ converge to their target autocorrelation function as 

n . The simulation formula is: 
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where ( 0,1,... 1)n n N    are independent random phase angles uniformly distributed in the 

range [0,2 ] . The frequencies are set to 
2u

n n n n
N T

 
     , where T  is the simulation 

total time. The coefficients 0A  and nA  for 1,2,..., 1n N   are defined as follows: 

 

0 0 

2 ( )n n

A

A S  



    (2.21) 

 

The coefficient    is set equal to zero, as the mean value averaged over the entire simulation 

time of the generated stochastic process remains zero. The data are sampled from the initial 

time 0 0t   to the final time 32.768T   s with a time step 0.001t   s and 152N   samples. 

Since the computed road elevation does not match the measured data for racetracks, a scaling 

factor 0.3sf   has been adopted. A realization of the stochastic ground roughness is shown 

in Fig. 2.6. 

 

 

Fig. 2.6: A realization of the stochastic ground roughness for V=100 km/h. 
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2.5 TWO DIFFERENT MANEUVERS 

 

Two different maneuvers are considered, as shown in Fig. 2.7, and numerically integrated in 

the time domain with time-step 0.001t  . The first one is a constant velocity maneuver at 

speed V =180 km/h over the terrain described in section 2.4, with an imposed constant roll 

angle  = 50°. The second one is a braking maneuver, starting at V = 300 km/h with constant 

deceleration ax = – 5 m/s
2
, ending after 10 s at a speed V = 100 km/h, over the same terrain.  

 

Fig. 2.7: (left) Constant speed maneuver and relative ground displacement;  

(right) braking maneuver and respective ground displacement. 
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vibration. Since the relation between contact forces and normal load is strongly nonlinear [4], 

even small variations in wheel load can significantly worsen the overall vehicle performance. 

Hence the optimal suspension system, with respect to a performance index, may be the one 

that minimizes the dynamic component of the wheel load [29]. 

For an assessment of vehicle performance, the RMS value of the normal front tire force is 

considered, as the front tire adherence represents the main performance limiting factor for the 

considered maneuvers. The normal front tire force ZfF  is given by: 

 

( ) ( ) cos( )Zf res fr f res fr fF c y z k y z         (2.22) 

 

Therefore a normalized objective function is proposed in the form of: 
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obj
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F

F
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  (2.23) 

 

where 
0ZfF  is the front tire force computed in case of absence of front suspension damping in 

a reference condition, that is the static trimming condition. 

Two penalization terms are added to the above objective function. The first penalization term 

is added in order to reject the damping setups allowing the front tire detachment from the 

ground. This term is non-null if 0ZfF  , that is when the front tire is not in contact with the 

ground, and it is defined as: 

 

1

1 1

 

     if  min( )    
 

0
  
     if  00  

ZfZf stat

Zf

Fpn c F F

Fpn

  

   (2.24) 

 

where 1c  is a numerical coefficient chosen w.r.t. the overall penalty function value and statF  

is the front wheel load in static condition. 

The second penalization term is added in order to reject the damping setups originating 

unwanted and potentially dangerous sprung-mass oscillations. In Fig. 2.8 the modulus of the 

Fourier transform of the front suspension stroke fk in the case of null front suspension 

damping and null longitudinal acceleration is shown. 
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Fig. 2.8: Fourier transform of the front suspension stroke. 

 

A peak is evident in correspondence of 3 Hz, this value being close to the first natural 

frequency of the linearized model in the vehicle static kinematical configuration. Those 

natural frequencies are associated with the modes of sprung mass, vertical bounce and sprung 

mass pitch, that become unstable for low values of front suspension damping, resulting in 

performance limiting sprung mass oscillation during the maneuver. Hence a penalty term is 

defined as: 
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  (2.25) 

 

where R is the actual RMS value of front suspension stroke Fourier transform in the 

frequency range [2.5,4]f   Hz and 0R  is the analogous, computed in case of no front 

suspension damping. Hence the new objective function is defined as: 
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The optimal damping characteristic is the one that minimizes this objective function. 

Optimization is now held for the constant speed maneuver and the braking maneuver. Only 

six of the nine spline parameters    are chosen as optimization variables. The three 

parameters b4, b5, b6 describing the dry friction behaviour are hold fixed, since the 

experimental data from the suspension manufacturer (see Fig. 2.5) show that ( )f v  displays 

only slight differences in the range [ 0.001,0.001]v   m/s with respect to different damping 

cartridges and tuning setups. 

 

2.7 OPTIMIZATION RESULTS 

 

The initial conditions for the optimization algorithm are displayed in Fig. 2.9, along with the 

boundaries of the optimization field. 

 

Fig. 2.9: Optimization boundaries (dash-dot lines) and initial condition (solid line). 
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Figure 2.10-right shows the optimal characteristic curve for the braking maneuver (see Fig. 

2.7-right). Both optimal damping characteristics display a similar shape for compression 

stroke: an increase in compression damping force with respect to the optimization initial 

values. On the other hand, the optimal damping curve for the constant speed cornering 

maneuver shows a lower speed rebound force in comparison with the optimal one for the 

braking maneuver. 

 

Fig. 2.10: (left) Optimal damping characteristic for constant speed maneuver (solid line) and 

optimization initial condition (dash-dot line); (right) Optimal damping characteristic for 

braking maneuver (solid line) and optimization initial condition (dash-dot line). 

 

The optimization results obtained using the above procedure applied to a simpler, half-car 
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-0.2 -0.1 0 0.1 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Speed [m/s]

F
o
rc

e

a)

-0.2 -0.1 0 0.1 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Speed [m/s]

F
o
rc

e

b)



44 

 

2.8 CONCLUSIONS 

 

In this chapter a handling-oriented procedure was presented for the optimization of a 

suspension damping characteristic. A set of experimentally measured damper diagrams were 

modelled with a non-parametric B-spline curve. In order to keep into account the dry-friction 

and all of the tuning setup effects, a procedure for determining the spline parameters was 

defined and adopted. Part of the spline parameters, used to fit experimental damper 

measurements, were computed by means of interpolation of experimental data, while the 

remaining ones were obtained by means of least square fitting, and only six independent 

parameters were selected to model all of the different cartridges and tuning setups. A 

handling-oriented objective function for optimization was defined, considering the wheel-

ground contact conditions and the whole vehicle dynamic behaviour. Two applications, 

concerning the simulation of a cornering maneuver and a braking maneuver were considered, 

and their associated “optimal” cartridge characteristics were found. 
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Chapter 3 

 

A SIMPLIFIED PLANAR MODEL FOR THE ANALYSIS OF MOTORCYCLE 

CHATTERING 
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3.1 INTRODUCTION 

 

In [31] a self-excited vibration was simulated, consistent with the actual chatter vibration of 

road racing motorcycles. It has been shown how the interaction between chain force, rear 

suspension motion and tire radial deformability is the driving mechanism for the self-

excitation, in case of rear longitudinal relaxation length dependent of vertical load. In order to 

analyze in detail the coupling between tire radial deformation, chain transmission and tire 

relaxation behaviour, a simplified planar model is developed in this chapter. Considering a 

planar model makes it possible to develop an analytical approach to the chatter vibration 

without loss of generality, since this phenomenon takes place in the motorcycle midplane and 

in stationary cornering conditions (after brake release and before throttle application). The 

simplified system consists of a radially deformable lenticular wheel moving over flat surface, 

suspended with respect to a forward moving frame. The vertical guidance system of the 

wheel axle is tilted by an angle α, close to the swingarm angle of the actual motorcycle in 

cornering trim. It was demonstrated experimentally by Prof. S.K. Clark at the University of 

Michigan in 1970 that an unstable oscillatory mode may indeed show up for this system. In 

[32] Prof. Pacejka proved analytically how the stability of this motion is determined by the 

coupling between rolling radius and vertical ground load. Starting from the model developed 

in [32] (reported also in [4]), modifications are made in order to take into account the 

interaction of the chain braking force in the simplest possible way, to show instability 

occurrence due to chain interaction. The effects of a braking torque and of damping are 

considered as well. After presenting the constitutive and equilibrium (simplified) linearized 

equations of the model, the characteristic equation is derived in a dimensionless form. Some 

numerical results are discussed by means of root-loci and stability maps, computed by 

applying the Hurwitz criterion. Finally, some remarks are included, regarding the constitutive 

model of the longitudinal slip force. 

3.2 PLANAR MODEL 

 

The planar linear model considered in this chapter is represented in Fig. 3.1. For the sake of 

clarity, the nomeclature adopted in the analytical developments presented in this chapter is 

summarized in Tab. 3.1.   
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Fig. 3.1: Planar wheel and chain transmission model. 
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Tab. 3.1: Nomenclature adopted in this chapter. 
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The linearized constitutive and equilibrium equations are written next in a simplified form 

neglecting the rolling resistance, the coupling term zsin(), approximating re with r, and 

introducing a parameter p (either positive or negative, p<1) for describing the coupling 

between the chain force Fc and the suspension compression. These equations in the time 

domain read: 

 

 

2

tan   

                              

1

r s s c z x

y c x

x
x x

x x

m z c z k z pk a F F

I k a T rF

VC
F F r x z

V V r

 

 

 


 


    




   


            

  (3.1) 

 

The first equation is the vertical equilibrium of the mass mr, the second one is the rotational 

equilibrium of the rim, while the last one is the linearized constitutive equation for the non-

steady-state longitudinal slip force Fx, as obtained by Pacejka [32]: note that linear 

dependency of Fx on z vanishes if   1. 

The expressions of x and Fz as linear functions of z, as reported in Tab. 3.1, can be introduced 

in the constitutive and equilibrium equations, rewritten in the complex Laplace domain as 

follows (using the same symbols for the transforms of z, , Fx and T): 
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    

            

 (3.2) 

 

After eliminating the variables  and Fx, setting T = 0 yields the characteristic equation in the 

form of a 5
th

 order polynomial P:  

 

  5 4 3 2

5 4 3 2 1 0 0n n n n n nP s A s A s A s A s A s A      
  (3.3) 

 



49 

 

which can be written in dimensionless form by introducing some characteristc angular 

frequencies and related ratios, as in [32]: 
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 (3.4) 

 

as well as some other dimensionless parameters: 
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 (3.5) 

 

Then the coefficients A in polinomial P take the form: 
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 

 (3.6) 

 

in the case  = 0 (i.e. kc = 0) and  = 0, the coefficients of P reduce exactly to those of the 

model studied by Pacejka [32]; the coupling parameter  can be either positive or negative, 
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but given the rear suspension kinematics of a road racing motorcycle its modulus is small and 

it holds that <1;  

P is a 5
th

 order polynomial due to the interaction of the chain force Fc; otherwise P would 

have been a 4
th

 order polynomial (as in the case studied by Pacejka [32]), with two couples of 

complex-conjugate eigenvalues corresponding to the modes of vertical and rotational 

displacement. The presence of the chain interaction produces one more real negative 

eigenvalue, since the constitutive model of Fx, (actually a Maxwell model), consisting of a 

series of a spring Cx and a damper C/Vx, becomes a Zener model by addition of one more 

spring in parallel, i.e. kc. 

When Cx   (with kc = 0), the Maxwell model reduces to a Newton one (single damper), 

the relaxation length   0, the differential expression of Fx becomes algebraic and the 

characteristic equation P reduces to a 3
rd

 order polynomial (a couple of complex-conjugate 

eigenvalues, plus a real one). This reduction leads to a non-realistic model, that is a tire 

without torsional deformability. On the contrary, in the case of the rigid-ring model described 

in chapter 1, even letting the residual longitudinal stiffness Cx   , the torsional stiffness of 

the tire is still present, and it is given by the rotational stiffness between belt and rim. 

3.3 STABILITY ANALYSIS 

 

Root-loci and stability maps are computed varying the values of the following parameters: , 

,  and , while the following dimensionless parameters are hold fixed according to the 

assumptions made by Pacejka [32]: 

 

16, 2 , 2.5, 2 / 3, 1x nxV          
 (3.7) 

 

While in the model proposed by Pacejka (without chain interaction) the instability arises first 

for the rotational mode, when considering Fc the first potentially unstable mode becomes the 

vertical one (bounce). 

The root-loci shown in Fig. 3.2 are related to the vertical mode eigenvalue with negative 

imaginary part. Note that, having the eigenvalues been normalized with respect to z, in this 

case if Re(sn)  0, then Im(sn)  1. 
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The plots are computed by varying  (either from 0 to + 0.3, or from 0 to – 0.3) for two 

different values of  (10° and 18°) and two different values of   (0.2 and 0.5), while keeping 

 = 0. Note that if  = 0, the root sn is not exactly in (0, – 1). 

For   + 0.3, Im(sn) < – 1, while for   – 0.3, Im(sn) > – 1. 

For  < 0, the system can be stabilized either by reducing , or by increasing  . And vice-

versa for  > 0. This behaviour can be clarified by drawing some stability maps. 

 

 

Fig. 3.2: Root loci for one of the eigenvalues of the vertical mode ( = 0). 

 

A scenario of the effects of parameters , ,  and  on the dynamic behaviour of the model 

can be observed on stability maps, computed by applying again the Hurwitz criterion. The 

maps shown in Figs. 3.3-3.6 are plotted as functions of the parameters  and  (the latter 

being closely related with the relaxation length). Unstable regions are coloured, stable regions 

are white. 

In the case of the model proposed by Pacejka [32], the unstable regions would have been 

limited to the lobes on the right-upper side of the plots. In these unstable areas both  and   

assume values which are non-realistic (i.e. excessive) for motorcycles: the regions of 

practical interest of the maps are their lower left portions. 
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When considering the interaction of the chain, however, unstable regions appear for lower 

values of  and  , in proximity of the origin of the axes, and in the region of practical interest 

for motorcycles. 

Figs. 3.3 – 3.5 are referred to the undamped system ( = 0), showing the effect of changing 

the coupling parameter  from a small negative value to a small positive one: for values of  

in the range of 10° to 18°, and for values of (1 – ) in the range from 0.1 to 1, Figs. 3.3 and 

3.4 show an opposite behaviour.  

Fig. 3.5 shows the effect of suspension damping: the unstable regions rapidly vanish by 

increasing , and the portion of practical interest for motorcycles results to be completely 

stable even for small values of . 

The effects of Vx and  are finally analyzed. An increase of Vx increases the damping, and 

therefore enlarges the stability regions. On the other hand , which can vary from 0 to 1, 

when  = 1 the system is always stable; when  = 0 the unstable regions reach their largest 

extension (all of the other parameters hold fixed). 

 

 

Fig. 3.3: Negative   ( = – 0.02), with  = 0. 
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Fig. 3.4: Positive   ( = + 0.02), with  = 0. 

 

 

Fig. 3.5: Positive   ( = + 0.02). Close-up view of Fig. 3.4. 
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Fig. 3.6: Positive   ( = + 0.02), with 3 different levels of damping 

( = 0.001 cyan,  = 0.01 blue and  = 0.03 red). 

3.4 REMARKS ON SLIP MODELS 

 

The expression of the longitudinal slip force Fx can be obtained from the constitutive 

equation of the Maxwell model (represented in the Fig. 3.7), consisting of a series of a spring 

(stiffness C x) and a damper (damping coefficient C/Vx). 

 

Fig. 3.7: Slip model as a Maxwell spring damper system. 

Cx



u

Vx

Vsx

C /Vx
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The force acting on the spring is the same acting on the damper. As a consequence, the 

system behaviour is dominated by the spring at low speed, while the damper is dominant at 

high speed (since the damping coefficient is inversely proportional with respect to Vx). 

The constitutive equation of the Maxwell model gives: 

 

 x x x x sx

x x

C C
F C F C V

V V

   
  (3.8) 

 

which, divided by the stiffness coefficient, yields the standard formula: 

 

sx
x x

x x

V
F F C C

V V


 


   

  (3.9) 

 

showing the dependency on the relaxation length . The same equation can be rewritten in 

terms of the steady-state value of the longitudinal slip force (i.e. Fxss): 

 

x x x x xssF V F V F  
  (3.10) 

 

or by taking into account the displacement u of the contact point: 

 

     x x

e e

F C u

u r r 





  (3.11) 

 

that is the very well-known form, also implemented in the multibody vehicle model (chapter 1): 

 

x sxu V u V    
  (3.12) 

 

These expressions are valid in general, for non-steady-state force Fx and velocity Vsx. 

In the following some functions will be expressed by highlighting two separate contributions: 

one taking into account the steady state (nearly constant) value of the function (subscript 0) 

and one considering the oscillating, variable value of the function (symbol ). 
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The variable parts are assumed to be small, in order to linearize the equations. So, for 

example considering the longitudinal slip speed Vsx: 

 

 0x sx sx

x

C
F V V

V

  
  (3.13) 

 

The expression of Fx adopted at the beginning of chapter 4 has been written (according to 

Pacejka [32]) assuming a constant value for C (as well as a constant value for the relaxation 

length ) and neglecting the constant part of Vsx, giving: 

 

   1

sx

x
x

x
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VC
F r x z

V r

  



 
     

    (3.14) 

 

where the expression in square brackets represents sxV . As already mentioned, the term 

which may cause instability is the factor (1 – ). 

As an alternative approach, a variable C may be considered, linearly dependent on the 

vertical load Fz (as in chapter 4, Eq. 4.1)  

 

0 0 zC C C C F       
  (3.15) 

 

where  is a proportionality constant. Setting  = 1 in sxV  and taking into account the constant 

part Vsx0 gives an alternative expression for Fx: 
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 (3.16) 

 

where the non-linear term sxC V   was neglected. 

Taking into account the linear dependency of the vertical load with respect to z: 
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z z
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 
  (3.17) 

 

the expression of Fx becomes: 

 

 0 0sx
x

x x

C V
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V V
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which (assuming a constant value for Cx) yields immediately: 
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 (3.19) 

 

This constitutive equation for Fx closely resembles the one employed at the beginning of this 

chapter, the only difference being the constant of linear proportionality to the vertical 

displacement z. Therefore the two constitutive models are perfectly equivalent if the 

following condition is satisfied: 

 

   0 0

0

1 1 x

z sx

C C V

r rC V

        
  (3.20) 

 

If   1, then   0 and   0: in any case the model becomes stable. 
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3.5 CONCLUSIONS 

 

A simplified linear model of the motorcycle rear wheel with suspension and chain 

transmission was developed, based on a classical study of the self-excited wheel hop. A 

stability analysis of the model was carried out, showing the major influences of chain force 

and suspension damping. By means of further analytical developments it was demonstrated 

that the relaxation model adopted in [31] (with relaxation length linearly dependent on 

vertical load) is equivalent to the slip model presented in the literature in order to explain the 

self-excited wheel hop. 
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Chapter 4 

 

THE CHATTERING VIBRATION OF RACING MOTORCYCLES 
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4.1 INTRODUCTION 

 

The chatter phenomenon, appearing during high speed cornering maneuvers performed by 

racing motorcycles, consists of a self-excited vertical oscillation of both the front and rear 

unsprung masses in the range of frequency between 17 and 22 Hz. The suspensions are not 

generally able to dampen the above vibrations which start from the rear wheel and suddenly 

propagate to the front wheel during the corner entry phase, making the vehicle’s handling 

unpredictable and, ultimately, weakening the overall performance, that is the lap time. The 

determining factor causing this phenomenon is still not clear. 

The chattering is perceived by the rider as a severe vertical vibration appearing in particular 

sections of the track. Namely, riders experience chattering during the latter phase of corner 

entry, while exerting high front brake torque and engine brake torque at high lean angle. The 

vibration continues during the rolling phase throughout the corner apex up to the corner exit. 

The vibration quickly disappears while accelerating out of the corner. During chattering the 

confidence of the rider drops down because it becomes more difficult to estimate the tire 

adherence which is still available, preventing him from obtaining the maximum possible 

longitudinal and lateral acceleration. Therefore performance during braking and turning is 

seriously affected by this phenomenon, and the risk of crashing is increased. Several 

contributions to the understanding of this phenomenon have been published, highlighting 

different aspects. In 2004 Tezuka et al. [33] showed how an unstable mode due to the lateral 

and longitudinal deformability of the tires may appear when increasing the cornering effort, 

but they did not consider the effects of braking and of the engine drivetrain inertia. In 2008 

Cossalter et al. [34] demonstrated that a self-excited vibration shows up during a straight-

running braking maneuver, due to the interaction between transmission and tires, neglecting 

the effects of roll. In 2013 Sharp [35] found that the lateral and torsional flexibilities of the 

frame may take part in the phenomenon during a steady state cornering maneuver, but, again, 

the presence of braking forces was neglected. This demonstrates how the phenomenon is far 

from being understood. 

Aim of this chapter is to simulate the actual vibration, highlighting its driving mechanism and 

which components of the motorcycle are involved [36]. To this purpose, the comprehensive 

motorcycle model described in chapter 1 will be used to simulate a three dimensional 

maneuver experimentally measured on the race track, for a Ducati MotoGP class vehicle. 
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4.2 PARAMETER ESTIMATION 

 

In order to perform accurate dynamic simulations, an experimental estimate of the model 

parameters introduced with the rigid-ring model is required. For this purpose a road racing 

motorcycle was tested using a two-post test rig. Its setup features two hydraulic actuators 

(controlled in closed loop) exciting the actual vehicle at the wheel contact points. The 

imposed ground displacement can be calculated as shown in chapter 2. The system response 

was measured by means of two tri-axial accelerometers fixed on the wheel spindles as shown 

in Fig. 4.1. 

 

Fig. 4.1: Z-axis position and orientation for the accelerometers fixed on the wheel spindles.  

 

This experimental setup made it possible to update the model parameters by means of fitting 

the experimental data. Fig. 4.2 shows a comparison between experimental (red lines) and 

simulated (black lines) frequency response functions, for three configurations of interest. The 

figure axes are dimensionless for confidentiality purpose. The first one (dashed line) is the 

ratio between the Fourier transforms of the Z signal of the rear spindle accelerometer and the 

signal of the load cell at the rear contact point. The second one (solid line) is the ratio 

between the Fourier transforms of the Z signal of the front spindle accelerometer and the 

signal of the load cell at the front contact point. The third one (dotted line) is the ratio 

between the Fourier transforms of the X (forward) signal of the front spindle accelerometer 

and the signal of the load cell at the front contact point. It is possible to notice a peak for the 

first two signals at nearly the same frequency, corresponding to the natural frequency of the 

front and rear tire radial deformation. This made it possible an accurate tuning of the rigid-

ring stiffness by fitting the experimental data. Consequently, the residual stiffness could be 

computed according to Eq. (1.9) in order to ensure the actual overall tire deformability. The 

same procedure can be adopted for the lateral stiffness. The third signal shows a peak at a 

much higher frequency, corresponding to the first in-plane frame flexional mode. Through 

the front telescopic fork this mode is visible at the front wheel spindle. 
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Fig. 4.2: Experimental (red) and simulated (black) 

frequency response of the whole motorcycle. 

4.3 MANEUVER DESCRIPTION 

 

In this section some experimental evidences of chattering are shown. The data have been 

recorded via a telemetric system installed on the motorcycle, during a lap of Sepang 

international racetrack. The critical maneuver considered includes the turns T12, T13 and 

T14 of the track, as shown in Fig. 4.3, and it consists of a lean angle braking phase followed 

by high roll angle cornering and acceleration as shown in Fig. 4.4. 

 

 

Fig. 4.3: Sepang racetrack layout, counterclockwise direction. 
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Fig. 4.4: Measured speed and roll profiles. 

 

The braking is performed with front brake and engine brake up to a roll angle of 55° as 

shown in Fig. 4.5. Note that all data were normalized with respect to their maximum values 

for confidentiality reasons. 

 

 

Fig. 4.5: Measured torques requested by the rider. 
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The engine and front brake torques are calculated from the inputs given by the rider: throttle 

angle and brake circuit pressure. During the subsequent very short cornering phase, low 

engine and rear brake torques are applied, limited by the engine’s idle speed and anti-hop 

clutch. Then engine torque is gradually increased by the rider up to the maximum available. 

Figure 4.6 shows the signals in vertical direction of two accelerometers rigidly connected 

with the wheels spindles as shown in Fig. 4.1. 

 

 

Fig. 4.6: Normalized vertical acceleration of the wheel spindles. 

 

A chatter phenomenon is evident, and the measured vertical acceleration of both axles are in 

the range of magnitude of tens of m/s
2
. This leads to a great fluctuation of the vertical load 

acting on the tires. As it is very well known, a strongly nonlinear function correlates vertical 

tire load, slip and camber angles to longitudinal and lateral ground forces, and a high 

fluctuation of the driving forces of the tires is expected, yielding the unpredictable behaviour 

of the motorcycle which riders complain about. 
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4.4 MODEL LINEARIZATION 

 

This section deals with the stability of the motorcycle in particular configurations extracted 

from the above described maneuver. To simulate this maneuver, proper controllers were 

implemented in the model: a longitudinal PI controller for imposing a velocity profile, along 

with a PID steering controller for ensuring the equilibrium at the desired roll angle. The linear 

response of the model was evaluated with a numerical perturbation routine. In order to 

highlight the dependence of the longitudinal relaxation length from the vertical load the 

definition of relaxation length given in Eq. (1.18) was replaced with an explicitly linear one, 

as follows: 

 

0

0

N

N

F
p R

F
   

  (4.1) 

 

where R0 is the undeformed rear tire radius and FN0 is a reference vertical load as defined in 

[4]. The influence of the slope p in Eq. (4.1) is first investigated, for both front and rear 

relaxation lengths. A straight running maneuver at 45 /x m s , is considered, with

 0.5,0.75, 1, 1.25, 1.5, 2p . Fig. 4.7 shows the root locus, i.e. the eigenvalues of the 

system, computed for the 6 different values of p, neglecting those related to the steering 

motions (weave, wobble) for the sake of clarity. The suspension damping was weakened in 

order to highlight the contribution of the rigid-ring tire model. The eigenvalues corresponding 

to the parameter p = 2 are marked with a star. 

 

Fig. 4.7: Root locus, straight running maneuver. 
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Figure 4.7 shows the eigenvalues corresponding to 7 natural modes: 

 

1) Bounce mode: vertical oscillation of the sprung mass, which shows very poor stability 

due to the reduction in suspension damping, 

2) Pitch mode: angular oscillation in the motorcycle midplane of the sprung mass 

(counterphase compression of the suspensions); weak stability due to the reduction in 

suspension damping, 

3) Front tire vertical mode: vertical oscillation of the front tire belt with respect to the 

rim, 

4) Rear tire vertical mode: vertical oscillation of the rear tire belt with respect to the rim, 

5) Transmission mode: angular oscillation of the gearbox shafts and crankshaft, 

6) Front relaxation length mode: angular oscillation of the entire front tire with respect to 

the ground, 

7) Rear relaxation length mode: angular oscillation of the entire rear tire with respect to 

the ground. 

 

It can be observed that by increasing the values of p, the stability of the rear tire vertical 

mode is weakened, and the same occurs with respect to relaxation length modes. 

The effects of deceleration and braking style during cornering are now investigated, assuming 

a realistic value of the parameter p = 0.5. Linear velocity profiles with constant acceleration 

values   20, 2, 4, 6, 8 /a m s  and final velocity 40 /x m s  with a roll angle 50   

were obtained with the front brake only, resulting in a loss of stability of the front tire vertical 

mode, with minor effects on the rear tire (Fig. 4.8). Moreover, the front relaxation length 

mode become stable for all the decelerations tested. The pitch mode is affected as well, 

becoming unstable. 
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Fig. 4.8: Root locus, front braking maneuver. 

 

On the other hand, when the same maneuver is obtained with a realistic brake distribution at 

the rear wheel, such as 60% front brake, 20% engine brake and 20% rear brake, the rear tire 

vertical mode becomes clearly unstable, and a greater participation of the transmission mode 

is evident, as shown in Fig. 4.9. 

 

 

Fig. 4.9: Root locus, combined braking maneuver. 
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4.5 MANEUVER SIMULATION 

 

The reference maneuver was simulated with the full model developed in chapter 1, in order to 

highlight unstable motions of the system. A PID steering controller was implemented to 

reproduce the measured roll profile, while the other controls, i.e. engine torque, front and rear 

brake torques, were imposed in open loop. A low pass filter was first applied to the measured 

input signals, in order to eliminate high frequency components. The integration was carried 

out with a multistep solver available in Matlab environment (ODE15s). Note that no road 

elevation was considered. The velocity and roll profiles are presented in Fig. 4.10 with 

respect to the experimental data, showing the consistency of the simulated maneuver. A 

difference in the initial condition is introduced in order to compensate for the actual vehicle 

acceleration at the initial point. 

 

 

Fig. 4.10: Measured vs simulated speed and roll profiles. 
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amplitude is larger at the rear, according to linear analysis. This vibration quickly vanishes as 

a positive engine torque is applied starting at 3.5 s. The actual vertical ground forces were 

computed through the data recorded by the Inertial Measuring Unit (IMU) installed on the 

motorbike. 

 

 

Fig. 4.11: Measured vs simulated vertical wheel loads. 

 

A vibration at the same frequency is also present in the suspension strokes (Fig. 4.12). It can 
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Fig. 4.12: Measured vs simulated suspension strokes. 

 

A better gauge for chattering vibration is the vertical acceleration of the wheel spindles, as 

reported in Fig. 4.13. The graph shows that the simulated vertical accelerations of the axles 

start from the rear with greater magnitude and, again, it propagates to the front, with the same 

frequency, resulting in a pitching motion of the entire motorcycle (as a rigid body) over the 

tires deformability. 

 

 

Fig. 4.13: Simulated wheel spindle acceleration. 
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A close up of measured vs simulated spindle accelerations is reported in Fig. 4.14, showing a 

satisfactory global agreement, in terms of both amplitudes and frequencies. 

 

 

Fig. 4.14: Measured vs simulated wheel spindle accelerations. 

 

4.6 CONCLUSIONS 
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Fig. 4.15: Comparison between non chattering (blue) and chattering (red) simulations. 
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Figure 4.15 shows respectively:  

 

1) vertical load acting on the rear contact point, 

2) rear tire-ground longitudinal force (negative when braking), 

3) rear wheel longitudinal slip, 

4) rear wheel absolute angular acceleration (negative when decelerating), 

5) chain force in the lower segment (positive when decelerating the wheel). 

 

In conclusion, the following physical interpretation of the chatter phenomenon is proposed: 

when a front and rear braking torque is applied, a transient starts, in which the rear tire 

vertical deformation mode is excited, due to the low damping of the tire carcass. This causes 

a fluctuation in the vertical load acting on the contact patch. When the relaxation length is 

kept constant this does not affect slip, the phase lag introduced between the longitudinal and 

vertical tire forces is nearly constant, and the vibration vanishes. On the other hand, when the 

relaxation length depends on vertical load, a fluctuation of slip starts along with tire 

deformation, introducing a fluctuating phase lag between vertical load and thrust. This 

generates a major oscillation in the rear wheel angular acceleration which is in phase with 

vertical load and in counter-phase with thrust. The rear wheel acceleration produces an 

increase in lower chain force, which compresses the suspension, increasing the vertical load, 

thus feeding the self-excited cycle. The front wheel receives the vibration from the rear wheel 

and it reacts in resonance, being the front tire natural frequencies close to the rear one as 

shown by linear analysis. The resulting vibration of the vehicle is an angular oscillation of the 

sprung mass, driven by the anti-phase tire vertical deformations. 
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