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Chapter 1

Introduction

Throughout the world, in different ways, the management of health services and the

improvement of health care at any level are considered as primary goals for national

administrations. Many governments consider health care as one of the most fundamen-

tal rights that has to be guaranteed to each citizen. As a consequence the effective and

efficient management of national health systems is of paramount importance, not only

for its economic sustainability, but also for the huge impact that these activities have

on people’s life. Such very general considerations are valid not only for the Italian

context but also for most of western countries health systems and shall be consid-

ered as fundamental in a context of welfare state crisis where traditional funding and

management techniques are getting less and less sustainable from an economic point

of view. As stated in the 2013 annual dossier of Emilia-Romagna Regional Health

System, it is especially in these moments of crisis that health care, and the welfare

system in general, can mitigate the social impact and support system recovery. The

economic resources and energies devoted to the improvement of health and well-being

conditions must then be considered as an investment rather than as an expense. Those

resources, like any investment, in order to be fully fruitful should be directed towards

the most effective solutions and exploited in the most efficient way. The present and

the future of the National and Regional Health Services are conditioned by two fun-

damental elements: the ability to adequately respond to the needs and expectations

of the population, and the ability of the system to be economically sustainable with

respect to the allocated resources. It is a fact that the structural factors that influence

the trend in health care costs will continue to increase more than the produced wealth.

As a consequence, the system will have to deal with an inevitable increase of health

costs, even under the hypothesis of a maximum resource utilization efficiency.

The redefinition of Regional and National budgets allocated to health systems is just

an element of evaluation in terms of system redesign. It is therefore necessary that

the organization of the public health sector develops in parallel with measures that

minimize the effects of the economic and financial rationing, controlling costs in the

1



2 Chapter 1 Introduction

short term, and rationalizing the system in order to improve its economic and financial

sustainability while simultaneously preserving the quality of service in the long term.

If in the short term the system will not be equipped by the appropriate tools to support

a decade that will be dominated by a strong technological innovation and its related

increased costs, then it will be difficult to pursue in the long term the continuous

improvement required not only because of increased population need of care but also

in terms of economic efficiency that can be achieved by technological and organizational

innovations.

1.1 Health care systems: characteristics and challenges

There are many and heterogeneous ways in which each national health system is struc-

tured in order to deliver services to the population. In any case, required performances

and the critical nature of provided services are generally comparable. Health Systems

performances affect in a direct way people health and their evaluation is usually linked

to indicators such as mortality rates or life expectancy recorded on organizations catch-

ment areas. Absence or lack of prevention, patients acceptance delays and technical or

technological inability to deal with certain medical conditions may have a direct impact

on population life expectancy, increasing its mortality rate. The ability to monitor sys-

tem activity and to identify and quickly apply effective innovations is therefore crucial

for any health service. The monitoring of population health needs is a difficult task

due to the fact that health systems are highly complex and difficult to standardize in

a set of procedures. The behavior and the choices of patients and professionals are

difficult to translate into repetitive patterns. In other words, even if several care path-

way guidelines are defined, patients and professionals discretionary decision-making

strongly affect health system services utilization. The uncertainty does not have to be

considered as a lack of control over the system but as the impossibility of predicting

in an exact way the behavior of the environment in which the health system operates.

It is therefore easy to understand how difficult is to manage such complex organizations

trying to minimize waste and maximize efficiency. The identification of the set of ineffi-

cient activities and the evaluation of the impact that organizational and technological

innovations may have on the whole system dynamics are targets for both primary

health care and in-hospital services. The adoption of technological or organizational

innovations can also cause initial loss of efficiency and the ability to predict these dis-

tortions, and thus somehow to reduce them, is a matter of particular importance in a

context in which this can result in damages to the health of the people.

Health care management entails a wide number of planning problems. In Brandeau

et al. [2004] the authors suggest that health care challenges should be distinguished

among health care planning and health care delivery problems. Health care planning
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and organizing is strongly related to high-level strategical political issues. As an ex-

ample, health care regional and national managers have to define which is the set of

services that the health system should provide to the population and how the budget

has to be allocated among them trying to define future cost patterns (see Bertsimas

et al. [2008]). Resource allocation should be split among different components of the

health system such as primary care and hospital services. Financial resources should be

dedicated to human resources rather than technical equipment and new technologies.

Urban versus rural financing should be managed in order to guarantee equal accessibil-

ity to services to all citizens. Resources must also be allocated among screening versus

treatment programs.

The delivery of health services can be considered as a problem strictly related to system

operations at a strategical, tactical and operational level. At a strategical level this

means to define the design of services in terms of the set of care activities that will be

provided in each health care facility as well as to design the health care supply chain

in terms of number and characteristics of hospitals, outpatient clinics, laboratories

and primary care structures. Other strategic planning problems include demand and

capacity planning and forecasting. Health operations issues arise also at a tactical

and operational level. Workforce sizing and rostering, operating theater planning and

scheduling, bed management are just a subset of problems that should be managed

with hospital facilities. Health care managers should also tackle inventory problems

related to drugs, blood and general medical supplies availability that can strongly affect

the daily provision of care and, in some cases, the ability of the care facility to properly

treat the patient. Hospitalization services are just a component of healthcare delivery

operations. Primary care and public health services such as screening and home care

delivery are elements of increasing importance in terms of volume of activities and the

health managers will face an increasing pressure to effectively organize and monitor

those programs.

1.2 Health care systems: a brief overview of Operations

Research applications

To provide the best health care given the amount of limited resources available, policy

makers need effective methods for planning, prioritization, and decision making, as well

as for management and improvement of health care systems. In recent years Operations

Research (OR) has been increasingly applied to support healthcare strategic, tactical

and operational planning problems by exploiting both optimization and numerical

simulation techniques. The range of applications involving OR is so wide that it is

difficult to define a complete overview of the covered problems. Nevertheless, several

attempts have been made to summarize the improvements and the success stories

achieved till now. In Brandeau et al. [2004] the authors, after a first definition of
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challenges in health care, classify Operations Research applications as: (i) health care

operations management, (ii) public policy and economic analysis, and (iii) clinical

applications.

Among the cited problems it is possible to identify the subset of the most studied

ones. Health related applications can be split over hospital versus primary and home

health care. Hospital management includes nurse rostering problems reviewed in Burke

et al. [2004], appointment scheduling problems in Gupta and Denton [2008] and general

capacity planning problems analyzed in Green [2004]. Operating theater management,

due to the complexity and the economic value of the involved resources, is another

important problem for which several applications have been developed and an in depth

review of the state of the art in this field can be found in Cardoen et al. [2010].

It is clear that primary care and home health care are planning sectors of rising impor-

tance due to the general perception that inpatient activities should be more and more

reduced. An overview of applications related to primary care has been conducted in

Balasubramanian et al. [2013], while home health care problems are studied in Lan-

zarone et al. [2012] and in Mankowska et al. [2014]. Health facility location is then a

problem of paramount importance in terms of impact on population health. A gen-

eral review of the applications in this field can be found in Daskin and Dean [2004].

In Brotcorne et al. [2003] an in-depth analysis of ambulance location and relocation

models is reported.

So far the cited applications analyze health care problems from an optimization per-

spective, it is important to point out that a wide branch of studies focus instead

on numerical simulation techniques. In Seila and Brailsford [2009] and Mielczarek

and Uzialko-Mydlikowska [2012] a wide analysis of simulation-driven applications is

reported classifying the most relevant contributions for strategical, tactical and op-

erational planning. Most of the problems are related to capacity planning analysis,

waiting time and length of stay reduction and care pathway analysis (see Segev et al.

[2012]).

1.3 Thesis aim and objectives

Emilia-Romagna Regional Health system constantly faces most of the challenges that

were previously cited. As an example the increase of the resident population (+0.6%)

and its aging (people aged over 65 years exceeded one million: 1,004,450 units equal to

the 22.5% of the population) reported in the 2013 annual dossier of Emilia-Romagna

Regional Health System put an high pressure on the importance of system redesign.

The aging of the population is even a more dramatic factor considering that the regional

phenomenon is higher than the national one (20.3% at December 31, 2010), and has

been continuously rising for more than two decades. One of the consequences is that the
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number of home cared patients nearly doubled from 2001 (55,000). These phenomena

lead to an increase in terms of overall system expense that raised from 7,627,534 euros

in 2007 up to 8,676,661 euros in 2012. These elements, together with the enduring

economic crisis and the subsequent need to reduce the budget dedicated to public

facilities through political reforms (spending review), push regional health managers

to look for new methods and techniques in order to reduce system inefficiencies by, in

turn, maintaining the quality of care provided to the population.

In this context “Agenzia Sanataria e Sociale Regionale dell’Emilia-Romagna”, a re-

gional center for organizational and technological innovation in health care, in 2010

decided to evaluate how Operations Research techniques could be exploited as decision

support system tools for planning problems arising in the public regional health sector.

The project aims to assess how numerical simulation and combinatorial optimization

models, customized to the healthcare environment, can guarantee planning effective-

ness through the integration with the set of techniques already used to support decision

processes.

The decision support system tools that we will present in the following chapters should

not be considered as an attempt to impose quantitative outputs as out-of-the-box

answers to solve health planning problems. Qualitative evaluations of expert health

managers and clinicians are unavoidable and fundamental factors during policy making

processes in health systems. The idea of the thesis is that informed and quantitative-

driven decision-making processes can lead to an in-depth analysis of system dynamics

and criticality and, as a consequence, to more efficient and effective final solutions. The

collaboration lead to a three-year analysis to deal with some of the main challenges and

organizational problems that can be effectively studied and solved applying operations

research techniques. Three case studies have been developed for the Regional Health

Sector.

1.3.1 Emilia-Romagna case studies

Chapter 2 In Chapter 2 a long term strategic planning model related to workforce

planning is presented. The problem is the forecast and fund allocation of medical

specialty positions. The Regional healthcare authority each year has to define how

many graduated physicians will be trained in medical specialization schools. In or-

der to do this it has to negotiate the number of scholarships that will be funded by

national government and to define how many extra ones will be financed by the Re-

gional health care system itself. Our working hypothesis relies on the assumption that

future Emilia-Romagna Region (ERR)-Human Resources in Health (HRH) require-

ments and the regional grants allocation have to be defined in correlation with the

current shortages/surpluses and demographic and service utilization changes. The ap-

proach we decided to follow is a demand-based one and it relies on the assumption
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that health care services are driven by population demand of care. We developed

a System Dynamics model that represents the human resources of regional medical

specialists. The model calculates the flows of medical specialists trained in the ERR

since 1999 to employment positions in the regional healthcare labor market. Each

component of the labor market as well as the training is defined as a stock element of

a System Dynamics model and flow components are used to characterize retirement

and dropout rates as well as hiring and graduating ones. Then, the model ages the

human resources population by projecting to 2030 its topology. Once the requirement

and supply projections have been defined two kind of gaps have been analyzed in order

to identify future shortages and surpluses, namely the occupational and the training

ones. The former defines employment shortages due to dropout and retirement is-

sues compared to requirement projections, the latter defines shortages and surpluses

between requirement projections and medical specialists available on the employment

market. In order to optimally manage training policies an Mixed Integer Programming

(MIP) model has been implemented. The MIP model allocates on each year a number

of grants to medical specialties that show the higher shortages. The model, designed

in order to support a strategic decision process, minimizes the total shortage over a

20-years time horizon. The case study has been submitted to the EURO Summer In-

stitute (ESI) on OR applied to health in a modern world (ESI XXXI), discussed during

the “WORLD SUMMIT ON BIG DATA AND ORGANIZATION DESIGN” held in

Paris in May 2013, presented at “XVIII Convegno Nazionale Associazione Italiana di

Economia Sanitaria” held in Trento in November 2013. Finally, the Regional working

group has been invited to join the European Joint Action for workforce planning and

forecasting as a component of Work Package 5 on methodology definition and pilot

studies.

Chapter 3 In Chapter 3 a planning problem related to care pathway evaluation

and capacity planning is presented. The aim of this work is to study how two different

Discrete Event Simulation (DES) software packages can be effectively applied to sup-

port tactical and operative decision-making processes. In order to show the potential

of DES modeling, a breast-screening pathway has been studied to demonstrate how

numerical simulation techniques can be used to evaluate lead-time performance under

different capacity settings. The case study was focused on 45-49 and 70-74 women

age bands inclusion that took place in 2010 and has shown how simulation can help

in understanding how many resources the screening program needs in order to face an

increased demand of services. The screening program is analyzed under two perspec-

tives (local and regional) implementing a simulation model with two software packages

in order to show how different conditions in terms of available datasets and modeling

detail can help stakeholders that operate at different decision levels. The case study

has been accepted for publication in the proceedings of the European Conference on

Modelling and Simulation, ECMS 2014.
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Chapter 4 In Chapter 4 an operational planning model related to Operating The-

ater management is presented. In collaboration with the orthopedic department of a

local hospital we analyze, by means of a MIP model, how to effectively plan the as-

signment of operating room time slots to surgeons and the corresponding identification

of which patients have to be admitted to peri-operative activities. The orthopedic de-

partment has a set of operating rooms that have to be daily assigned to surgeons. Each

assignment identifies, for every operating room and for every session (morning or after-

noon), the surgeon, the class of surgical cases (prosthetic or not) and the related subset

of patients admitted. Our assignment is driven both by patient Key Performance Indi-

cators, such as clinical priority, length of stay in waiting list and pre-defined deadlines

and by surgeon peculiarities, such as minimum and maximum desired number of weekly

sessions assigned and length of the associated waiting list. Two models are presented

in the chapter: a general one, based on Emilia-Romagna regional guidelines, which

includes all possible resources that restrict operating room planning (Intensive Care

Unit, ordinary and day hospital stay beds, surgical teams and pre-operative assessment

activities), and a tailored one that considers only the resources that characterize the

orthopedic department. The work has been presented at “INFORMS annual meeting”

held in Phoenix in October 2012.

1.3.2 National and International case studies

In addition to Regional-driven case studies two external collaborations have been ac-

tivated.

Chapter 5 In Chapter 5 a simulation-optimization model for the policy evaluation

of the so-called Kidney Exchange Problem is presented. In recent years several coun-

tries have set up kidney exchange policies between living pairs in parallel with deceased

donors transplantation. These exchanges may occur when a patient that needs a kid-

ney has an incompatible donor, so he is willing to exchange it with another pair, or

more than one, in order to perform a transplant. This problem can be modeled and

solved via integer programming models. Because the problem has a dynamic arrival of

pairs (patient, donor) within the waiting list, it is suitable to study different policies

via a simulation-optimization approach. In collaboration with INESC TEC, an R&D

center in Porto, Portugal, we implemented a simulation-optimization tool that gives

the possibility, to clinicians and policy makers, to test different configurations regard-

ing matching frequency, matching characteristics and pool characteristics. Discrete

Event Simulation has been applied to model exchange pool dynamics. We defined an

input infrastructure that easily allows the modification of pool characteristics so as to

build a tool that can be used to test different policies for different catchment areas. We

collected a set of data in order to test the proposed approach under different configura-

tions in terms of pool characteristics and of matching policy. Finally, we compared the
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simulation results quantifying the increase of number of transplants with the inclusion

of altruistic donors and compatible pairs as well as with the increase of the exchange

length in the number of pairs involved.

Chapter 6 In Chapter 6 an allocation model for the patient flow management of

patients to Regional Emergency Departments is presented. The assignment of service

requests to Emergency Rooms is of paramount importance both from a life-threatening

and an economical viewpoints. In the process of a more general project that aims at

defining optimal allocation policies of patients to regional hospital network facilities,

the Department of Epidemiology of the Regional Health Service of Lazio, Italy was

interested in obtaining a completely offline picture of the effect of an optimal assign-

ment of requests to Emergency Rooms so as to be able to evaluate both the state of

the art and future reorganization ideas. We have implemented and tested with real-

world data of all service requests of 2012 a MIP model that computes such an optimal

request allocation by minimizing travel and waiting times and penalize workload un-

balance among emergency rooms in the region. Within the development process we

have studied special cases and relaxations of the complete model showing interesting

mathematical properties that are, in turn, useful from a practical viewpoint.
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Chapter 2

Forecast and fund allocation of

medical specialty positions:

Emilia-Romagna Region case

study 1

2.1 Introduction

The labor market and the demand for medical doctors are extremely adaptable to new

technologies, societal demand and organizational models, therefore, planning human

resources for health (HRH) is a logistical task of great complexity (Barber and Lopez-

Valcarcel [2010]). In Italy the perceived shortages of medical specialists led to increase

medical schools intake in 2010 (+29%), although, imbalances and appropriateness of

current medical supply and distribution to health care needs have not been assessed.

Planning HRH requires to model the supply of specialists but, most noticeably, to

forecast the changing needs of the population and the emerging care pathways. Italian

Regions aim at correcting perceived imbalances through the funding of supplemen-

tary grants for Medical Specialists Schools, namely Emilia-Romagna’s funding covered

almost 20% of total grants in 2011.

The need for HRH long-term planning and the availability of different methodological

approaches (supply, requirements, needs-based) have been stressed by World Health

Organization in WHO [2010] and by European Union in CE2 [2008]. HRH avail-

ability is crucial to pursuit high performances since HRH imbalances are associated

with financial consequences (e.g. increased cost of labor, supply induced demand),

poor responsiveness to patient expectations due to burn-out and waiting times, and

1This chapter is based on Technical Report OR 14-5 (see Lodi et al. [2014]) submitted to ESI XXXI
EURO Summer Institute on Operational Research applied to Health in a Modern World
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poor services quality and safety in case of under-staffing. Models for doctors supply

and requirement forecasting have been built in several countries such as USA (PSR

[2005]), France (Doan [2004] and Coste and Doan [2003]), Spain (Barber and Lopez-

Valcarcel [2010]), Belgium (Roberfroid et al. [2009]) and Australia (Joyce and McNeil

[2006], Schofield [2007]). Our working hypothesis relies on the assumption that future

Emilia-Romagna Region HRH requirements and prioritization of regional grants have

to be defined in correlation with current shortages/surpluses and demographic and

service utilization changes. Therefore, the development of a demand-based approach

to forecast HRH will prevent future imbalances in the regional health labor market,

considering different demand scenarios that can be driven both by population evolution

and by regional and national guidelines.

The chapter is organized as follows. In Section 2.2 we report a literature review of

current forecasting models. In Section 2.3 we present an HRH forecasting model for

Emilia-Romagna Region. In subsection 2.3.2 we discuss the characteristics of the

simulation component and in subsection 2.3.4 we propose an Integer Programming

model for the allocation of medical funded grants to specialties.

2.2 Literature review

The interest in the development of quantitative models to estimate the needs of human

resources in health care is evident in many countries and international organizations

including the World Health Organization (WHO), the Organization for Economic Co-

operation and Development (OECD) and the European Union (EU). The need to

improve Human Resources in Health planning is motivated by several factors, such as

the regulation of the number of grants funded for health area, the imbalance evaluation

(excess and defect) between needed and employed HRH both in the public and private

sectors and the perception, at least in OECD countries, that the current workforce is

made up mainly of baby-boomers who will soon leave the service.

The idea that the determination of volumes of health professionals training had to be

mainly linked with the need of the public sector is a conceptual simplification that,

however, facilitates the analysis of the, current and future, alignment between the

supply and the demand of health personnel. Supply and demand dynamics for human

resources in health are complex to analyze, as a consequence a forecasting approach

through a correct model of future staffing needs, is suitable in order to plan in a timely

manner the development of public facilities and of university education.

An agreement on measures of HRH needs satisfaction, or an estimate of the “right

number” of professionals is the basis for the definition of correct forecasting models.
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It is fundamental to avoid that HRH policies leads to inadequate satisfaction of pop-

ulation needs, due to poor quality of services (staff shortages), inappropriate services

application and rising costs (excess staff) see Duckett [2000].

While considering these crucial elements the literature review will be an overview of the

dominant HRH forecasting models highlighting their methodological assumptions and

the main variables and constraints that had been taken into consideration. The aim of

this literature review is to provide a methodological guidance on options for achieving

HRH forecast, by taking into account and analyzing the opportunity to integrate the

approaches and to bring the financial forecast as part of the cycle of strategic planning

of human resources.

2.2.1 Supply models

Irrespective of the interest motivating the HRH analysis (occupational policies, training

policies, geographical distribution of services), all models that we reviewed firstly take

into account the supply of professionals. Supply models have been developed in the

USA, Belgium (Roberfroid et al. [2009]), Australia (Joyce and McNeil [2006], Schofield

[2007]), Canada and France (Doan [2004] and Coste and Doan [2003]). Supply forecasts

take into account the main input and output variables that determine the availability

of personnel as the number of active professionals, the newly licensed physicians and

the volume of drop outs per year due to retirement, death, disability, migration, or

unknown causes. A particular emphasis is given to professional demography whereas

age and gender are considered the basic variables to predict supply future behavior,

since working productivity or full time equivalent (FTE) can vary a lot due to sex or age

characteristics. As an example in PSR [2005] it appears that the peak of productivity

for both men and women is in 50-55 age band followed by a gradual decrease until

retirement. In the same study it is said that working hours can be 30-36 % higher

for men if compared to women. A similar analysis was conducted in Roberfroid et al.

[2007] for Belgian physicians. Given a complete description of the baseline stock,

inflow and outflow forecasts define supply model gaps, between remaining professional

supply and initial staffing levels, that must be filled with additional training grants.

As an example the Physician supply model in PSR [2005] analyzes the national health

workforce and projects its evolution by defining how many professionals will be needed

in the future in order to maintain a pre-defined ratio between resident population

and staffing level. In this case the model assumes that the number of graduates and

the productivity of physicians will remain constant over the years and estimates the

relationship between supply and current population applying FTE information and

assuming that the number of required physicians will expand or contract with respect

to population demographic trends.
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Supply models are usually criticized because they assume as adequate the actual system

configuration, defined as level of activity, skill mix and physician-to-population ratio.

Supply model scenarios can be defined as predictive because they are based on observed

trends and their forecasts generally overestimate future staffing needs. This is because

both population and professional aging phenomena are not balanced with technological

or care pathway innovations, which are proper of industrialized countries. Despite

being the most severely criticized, supply models have a good internal consistency and

can support long-term predictions on possible future shortfalls of professional stock.

Forecasts to 2050 in Doan [2004] on the flow of incoming and outgoing doctors in

France is an example of how this kind of models, despite their limits, can provide

useful insights for nationwide training policies.

2.2.2 Physician requirement or demand models

Physician supply analysis can be considered as the side of the problem that analyzes

only the evolution of professionals that were active at the beginning of the analysis.

It is clear that this is just one of the multiple dimensions of the HRH planning prob-

lem. Models that takes into account both the supply and demand sides are known as

physician requirement models or demand models. Most of the demand models take

into account changes in care pathways such as the utilization of primary, outpatient

or inpatient services due to organizational choices and epidemiological factors. In or-

der to project the need of new medical doctors it is then fundamental to define what

are the elements, or the drivers that influences their requirement over time. Accord-

ing to Greenberg and Cultice [1997] model, the segmentation of the population, the

knowledge of care pathways and the consumption of services by age groups are funda-

mental. Roberfroid et al. [2009] suggest that requirement models may use two different

approaches in order to define future demand of services. Current service utilization

ratios can be used as a proxy of real demand as an alternative a reference ratio between

providers and target population can be defined before applying demographic trends.

The predictive model proposed in Nooney and Lacey [2007] for nursing staff as well as

the one proposed in O’Brien-Pallas et al. [2001] for human resources in health suggest

that future needs of staff should be estimated taking into account health system in-

frastructures. The availability of hospitals, clinics or nursing homes can be considered

as active constraints to effective service delivery, therefore employment requirements

cannot be separated from an evaluation of structural constraints. Taking care of the

population in an adequate way does not simply mean to adjust the number of profes-

sionals to population increasing needs, but to make sure that human resources properly

fit with Health System facilities. The limitations of the demand models arise from their

implicit assumptions:

• Current delivery of services respond adequately to the demand;
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• Demand of services responds to population health need;

• Age and sex specific segments of the population won’t change their consumption

behavior;

• The population will follow the demographic changes predicted by the model.

Most radical criticism of this approach come from Birch et al. [2003] and Tomblin Mur-

phy et al. [2009] who argue that age is not a good proxy for the consumption of services

and for the demand of services. These authors discourage the idea to plan services ac-

cording to population dynamics because a retrospective analysis of health status shows

that different generations (cohorts), at the same age, require different type and amount

of services.

2.2.3 Needs-based models

Weaknesses of supply and requirement models have highlighted the need to guide the

planning of human resources through the detection of population real needs. Models

that aim at defining the need for services are recent and have been created to fill the

gaps of supply and requirement models that tend to systematically overestimate the

staffing needs leading to potentially unsustainable systems from the economic point

of view. Need-based approach assumes that current staffing levels are not necessarily

coherent with population needs and may be adapted in order to improve system effi-

ciency and responsiveness. Birch et al. [2007], WHO report of 2001 and CHSRF report

of 2007 suggest that HRH staffing levels should be based on population health needs

that can be periodically inspected and defined through sample surveys and epidemio-

logical observations. Needs-based models, also called epidemiological approaches, are

not based on demand-model drivers such as service utilization or population ratio but

they rely on medical experts opinions and generally assume that:

• Health needs must and can be satisfied through a proper resource resizing;

• An a priori definition of need of care can be convenient since it evolves less rapidly

than population demand of services;

• Demand appropriateness is defined by specialists and not by users;

• Needs can be derived by risk assessment analysis and evidence-based morbidity

data.

Central to needs-based modeling of HRH is the resizing of human resources through

basic and continuous training ensuring an efficient deployment of resources. The cor-

nerstone of Birch et al. [2007] approach is the estimation of the health needs integrated

in a continuous planning cycle.
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The main limitation of need-based approaches is the lack of population epidemiological

data. Persaud and Narine [1999] underline that the lack of proper data is usually over-

come using DRG utilization or insurance refunds data, in order to approximate pop-

ulation health needs. Not surprisingly, studies that promote needs-based approaches

can rely on a consistent volume of epidemiological historical data.

2.2.4 Final considerations

The reviewed studies confirm that, although the estimate of needs is the ultimate goal,

an accurate and integrated analysis of at least three factors must to be taken into

account: training, employment and the demand for health care personnel.

The debate on predictive models in recent years underlined the presence of factors

that are difficult to quantify such as the impact that technological innovations will

have on work organization, the freedom of choice of professionals regarding retirement

decisions and the role played by financial incentives of both public and private health

organizations. Another phenomenon of increasing importance is the highly special-

ized curriculum of professionals able to produce specific outcomes. Health care is a

labor-intensive sector, since it provides services that are highly personalized and char-

acterized, in some cases, by an important relational component. Higher education,

training and productivity of health professionals are then the heart of healthcare in-

dustry. It is, therefore, difficult to find clear instructions on how to conduct a reliable

forecast of health care personnel demand. It is more common to identify lists of warn-

ings or issues that have to be taken into account, among which it is worth remembering

some practical policy recommendations (see WHO [2010]), such as:

• Utilization of updated and reliable data;

• Definition of a clear and comprehensible model to facilitate the involvement of

different actors within the decision process;

• Model verification on the most critical areas (e.g. professional mobility and the

pressure of aging population).

Analyzed models can be roughly distinguished into descriptive and forecasting studies.

Most descriptive studies are limited to the quantification of the current stock of pro-

fessionals distinguished by specialty, age, gender and assess whether the number of

professionals in training will be enough to balance the output of the staff due to re-

tirement and other dynamics of turnover or not.

HRH forecasting models provide, instead, a dynamic cycle of analysis, including an

evaluation of the current system setting and a forecast of its future evolution (see

Gavel [2004]).
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2.3 Emilia-Romagna case study

2.3.1 Objectives and methodology

Each year Emilia-Romagna health authority’s managers have to negotiate the number

of medical specialization grants that will be financed by the national government and

to define the amount of additional grants that will be funded by the regional budget.

The final goal of this study is to provide a requirement indicator for each medical

specialty within Emilia-Romagna territory over a twenty year planning horizon. Based

on these indicators a model will compute potentially effective assignments of medical

specialties grants considering future population utilization of public health services,

programmed needs expressed by Local Health Trusts and the role of commissioned

private organizations. In order to meet the objectives, the decision-making model

that will support regional planners has to be separated in two main components. A

simulation model, which describes the supply and demand behavior over time and an

optimization model that evaluates the imbalances that emerged from the simulation

model and suggests an optimal funding strategy in order to reduce the gap between

HRH availability and requirements.

2.3.2 A system dynamics simulation model

The most appropriate simulation technique to represent the dynamic behavior of mul-

tiple interacting populations (interns, physicians, enrolled patient population, etc.) is

System Dynamics (SD). System Dynamics is a modeling methodology and a simulation

technique to monitor, understand and evaluate organizational problems. Originally

developed in the fifties to help business managers to improve their understanding of

industrial processes, SD is currently used in both the public and private sectors to sup-

port strategic decision-making. The objective of SD models is to understand how the

structure of a system determines its behavior. This understanding normally produces

a framework for determining what actions can improve the system performances or fix

its problems. In a system dynamics model, the simulations are essentially time-step

simulations. SD models complex systems using a stock and flow representation. A

stock is a container that varies over time due to inflows and outflows. An inflow is a

component that is used to increase the initial level of a stock component, an outflow

instead is a component used to reduce the level of the upstream stock. Inflows and

outflows can be then considered as the elements that influence the stock levels and can

be characterized by complex rules that can take into account various elements (stocks,

flows, variables, etc.) of the systems, simultaneously influencing their behavior. Figure

2.4 shows the implemented SD model for Emilia-Romagna. In the following subsections

we describe its supply and demand components.
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2.3.2.1 The supply representation

A supply representation has to take into account all the steps that represent physicians

work-life cycle starting from specialization school, up to retirement or dropout because

of death or move. The work-life begins with admission to specialization schools that

can last up to six years; once graduated a trained specialist becomes available for hiring

in the public or private regional sectors. Each employment sector competes with the

others to hire trained specialist. Working life can finish because of two main factors

that are retirement or move to another region.

It is easy to understand that regional supply cannot be considered as a monolithic

element because several classes of health providers can be distinguished by their role

or their organizational setting. We defined the working population of the study as the

set of medical specialists working in Emilia-Romagna region. Since the objective of

the study is to provide a guideline on future training needs of medical specialists, we

decided to study employment dynamics at the regional level, including in and out flows

from the private sector, accredited profession and underemployment conditions. It is

possible to identify six main components of the supply side:

• Public sector (Servizio Sanitario Regionale SSR);

• Private hospital sector (AIOP);

• Private Outpatient Sector;

• Public self-employed ambulatory specialists (Sumai);

• General Practitioners;

• District Pediatricians “Pediatri di Libera scelta”.

A proper modeling of HRH forecasting in Emilia Romagna has to deal with a screening

of available data sets. Data collection is complicated because, even if multiple data

sources are available and accessible, stored information are usually not homogeneous.

Historically data sources that collected information on HRH were implemented in or-

der to answer to specific organizational requirements that did not take into account

the possibility of supporting HRH forecasting and planning. Thus, at a regional level

it does not exist a unique database that contains individual data on employed medical

doctors. It means that as a first step we had to identify and integrate multiple data

sources in order to define a unique and coherent representation of regional professional

demography. For the purposes of this work it would be desirable to associate to each

active physician its specialization within the Ministry of Education, University and

Research (MIUR) classified ones. For medical doctors it means to identify their spe-

cialization title, taking into account that the definition of new specialization schools can
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lead to identify professionals who currently hold similar jobs, despite having specializa-

tions with different names, depending on the year in which they earned the title. SSR

employement data come mainly from three sources with restricted access: Economy

and Finance Ministry General Accounting Department “Conto annuale”, “Elenco nom-

inativo ruoli regionali” and “Rilevazione personale sanitario” of General Directorate

of Health and Social Policies, human resources development service, Emilia-Romagna

Region (RER-DGSPS).

“Conto annuale” collects annual census surveys compulsory for public institutions as

a part of their final balance. As far as health care sector concerns it is possible to

identify clinicians, managers without a medical background and non-managerial staff.

For each local health authority it is then possible to define professionals managerial

position and a detailed information on their qualification and economic compensation.

For each qualification (legal-economic position covered by the employee on the basis

of national collective bargaining agreement) it is possible to obtain information on

age, part-time, career progression and turn-over for the period 2001-2010. The data

contained in “Conto annuale” are useful to consider the length of service and to study

age related retirement rate probabilities. “Elenco nominativo ruoli regionali” database

is mainly used to establishment the components of examination boards for healthcare

professionals. It collects information by name and age of the permanent employees of

the Health Care and their position. “Rilevazione personale sanitario” is part of a more

complex database that is used to monitor personnel and payroll at a regional level. In

this database staff information is classified at an aggregated level according to role,

responsibilities and specialty with information about the type of employment (tempo-

rary / permanent) and the employment area (hospital, support, district, prevention)

including University contracts. In addition, as regulated by law since the foundation of

National Health Service (SSN), healthcare agencies cooperate with professionals that

work under agreement contracts. Today it is possible to classify agreement-contracted

professionals as general practitioners, continuity of care doctors, district emergency

workforce, pediatricians and health personnel working in university hospitals. Agree-

ment contract data are collected on specific databases and reported in some tables of

“Conto Annuale”.

For general practitioners (GPs), internal DGSPS-RER “Cedolini” database has been

analyzed. In this database GPs, pediatricians (PLS) and their connected substitutes

and trainees are recorded. For each medical doctor age, sex and number of related

patients are recorded. Sumai and AIOP data are not recorded at a regional level so

we collected those pieces of information through ad-hoc surveys.

Once available data sets were analyzed, the supply model was implemented for all

62 specialties active in ER region considering that training and working life can be

included in 25-70 years of age and split by gender. We then initialized training and

working stock levels with 2011 data. Figure 2.1 shows age and gender distribution
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Figure 2.1: Specialists working in the Public sector age distribution in 2011

of physicians working in the public sector in 2011. As stated before a fundamental

element in SD is the definition of variables and flows that allow to represent a system

in a dynamic way. Through the analysis of the supply data bases it has been possible to

quantify not only the amount of physicians that were active in 2011 but also the system

behavior in the period 2001-2010. Retirement rates have been defined for Public,

Private and Accredited sectors, pointing out that physicians behave in a different

way depending on their employment sector. Public to Private sectors flows in 45-65

age band have been then modelled. These flows are mainly due to better economic

conditions that highly skilled physicians can get shifting to Private Hospitals. Regional

healthcare systems can’t be considered as self-sufficient sectors. Migration flows due

to employment reasons are elements that can’t be overlooked. Available data sources

allow an outflow analysis for the public sector. We defined migration outflow rates

starting from the number of physicians that during 2001-2010 left the public system

before retirement age and were not present in the next years in private sector available

databases. As a last flow element we modeled the training rate, that is to say, the

number of specialized physicians that become available for employment in one of the

regional supply sectors. Training flows can be considered as time-delayed flows that

come form training school inflows, defined by funded grants in previous years.

2.3.2.2 The demand model

In the literature review we noted that the projection of future workforce demand is a

task of great complexity due to the ambiguous definition of demand drivers. However

demand should be defined taking into account:
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• Population health needs;

• Expected service utilization changes due to organizational and technological im-

provements;

• Regional employment trends considering both the private and public sectors.

The three scenarios are now discussed in detail.

2.3.2.3 Physician to population ratio scenario

Demographic change is an element of paramount importance for health systems in

terms of future service utilization. Migration flows as well as aging population phe-

nomena can strongly affect future service requirements and, consequently, staffing level

needs. Based on the analysis of regional population historical trends we must say that,

among Italian regions, Emilia-Romagna is the one that had the most rapid and in-

tense transformation of its age structure. As an example elderly population overtook

the young one nearly a decade earlier if compared to Italian overall population. In

a similar way, migration flows are slowing down the overall aging of the population

because foreigners living in Emilia-Romagna are on average younger than the historical

population. The Statistical and Geographic Information Service of Emilia-Romagna

published in 2011 a set of demographic projections to 203. These forecasts are based

on observed population trends recorded from 2001 census up to 2010 annual surveys.

Three alternative scenarios were developed: the first one modeling a further expansion

of population dynamics, the second one projecting a substantial conservation of ob-

served dynamics and the third one consisting of a slowing down of regional dynamics.

By dynamics, we mean birth and death ratios as well as emigration and immigration

flows.

Figure 2.2: Emilia-Romagna Population 2002-2030 forecasts

Figure 2.2 depict Emilia-Romagna Population 2002-2030 forecast. An in depth analysis

of table 2.1 shows a 12% increase of ER resident population up to 2030 with a consistent

increase for elderly (+24%) and young (+18,7%) age bands and a mild increase for
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central age band (+7%). At 2011 the third scenario seemed the most plausible as

the regional population shows the typical characteristics of demographically mature

systems with:

• an increase of elderly population with a particular focus on octogenarians;

• an aging and declining trend for working-age population;

• an increase of school-age population.

Age bands 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

0-4 208,076 209,349 212,714 214,083 214,766 215,602 215,937 216,255 216,615 217,117 217,807 218,746 219,952 221,434 223,182 225,205 227,459 229,915 232,546 235,333 238,230
5-9 194,969 198,264 202,224 207,128 212,238 215,684 218,690 220,762 221,859 222,342 223,034 223,220 223,393 223,625 223,991 224,548 225,359 226,434 227,780 229,392 231,249

10-14 181,487 186,302 189,732 194,231 198,476 203,223 206,791 211,149 215,679 220,385 223,488 226,204 228,043 228,957 229,300 229,865 229,930 229,991 230,116 230,393 230,866
15-19 177,878 178,783 179,897 182,640 186,169 190,168 195,893 200,621 204,916 208,968 213,462 216,781 220,853 225,092 229,489 232,328 234,819 236,482 237,243 237,462 237,925
20-24 187,956 190,727 192,814 195,836 197,700 199,207 200,015 201,401 204,000 207,345 211,168 216,652 221,153 225,256 229,107 233,362 236,471 240,301 244,288 248,410 251,025
25-29 231,127 228,304 226,957 225,140 224,990 225,999 228,080 231,408 234,127 235,744 237,060 237,684 238,900 241,230 244,257 247,707 252,762 256,838 260,572 264,057 267,889
30-34 305,354 293,713 288,811 280,818 273,908 269,540 266,719 264,101 262,053 261,545 262,151 263,797 266,659 269,056 270,385 271,465 271,843 272,793 274,750 277,366 280,399
35-39 369,989 366,874 365,177 357,713 348,255 335,048 323,084 312,814 304,919 298,130 293,749 290,872 288,161 285,939 285,203 285,568 286,952 289,549 291,758 292,927 293,861
40-44 372,510 374,798 376,787 380,194 382,281 384,030 383,286 378,258 370,703 361,214 348,109 336,234 326,063 318,206 311,468 307,058 304,136 301,361 299,040 298,175 298,399
45-49 348,910 358,748 363,617 370,842 376,907 378,708 380,855 383,385 386,493 388,374 389,885 388,954 383,761 376,147 366,638 353,600 341,795 331,678 323,851 317,133 312,702
50-54 302,658 311,114 314,523 323,256 334,111 346,969 357,254 366,421 373,292 378,957 380,494 382,386 384,708 387,612 389,367 390,712 389,664 384,387 376,760 367,262 354,317
55-59 267,733 272,633 275,779 283,297 290,456 298,372 306,510 314,257 322,762 333,348 345,896 355,944 364,864 371,475 376,881 378,287 380,028 382,233 385,020 386,727 387,995
60-64 279,104 280,583 275,947 269,299 263,495 263,250 265,236 272,216 279,511 286,450 294,158 302,065 309,691 318,018 328,378 340,665 350,529 359,262 365,716 370,964 372,347
65-69 234,751 233,812 237,892 247,584 257,029 263,496 273,902 265,901 259,737 254,410 254,365 256,451 263,261 270,377 277,149 284,699 292,429 299,948 308,135 318,277 330,313
70-74 239,388 242,001 240,455 236,605 229,485 223,178 212,234 221,446 230,797 239,866 246,077 255,745 248,640 243,250 238,655 238,968 241,270 247,945 254,894 261,516 268,909
75-79 201,741 202,052 198,827 200,942 205,426 207,652 209,881 210,579 207,542 201,817 196,819 187,684 196,576 205,433 213,974 219,830 228,491 222,641 218,347 214,802 215,633
80-84 159,294 161,059 159,373 157,486 157,293 158,772 158,864 157,695 159,834 164,053 166,466 168,859 169,641 167,538 163,484 160,053 153,193 161,450 169,455 177,105 182,339
85+ 151,093 156,724 163,911 170,415 175,602 179,842 184,913 188,251 190,437 193,139 196,382 198,906 199,148 200,997 204,931 208,232 211,449 212,031 211,832 211,907 212,078

Table 2.1: Population 2010-2030 forecasts

However we decided to use the second scenario projections because regional health

system has a strong passive patient mobility (patients coming from abroad or from

other regions) that we want to consider as a component of the overall demand.

General evaluation methods on staffing level are based on simple physician to popula-

tion ratios and, since we would like to test different demand drivers to discuss future

imbalances, we define as a first demand driver the physician to population ratio as-

suming that 2011 staffing levels were appropriate to cope with ER population needs.

It is clear that for some specialties such as gynecology and obstetrics, geriatrics, neu-

ropsychiatry and pediatrics, physician to population ratios should be estimated with

respect to specific population segments.

2.3.2.4 Service utilization scenario

A predictive model based on epidemiological data can be developed only if, in addition

to disease incidence and prevalence information availability, medical care pathways are

defined for each disease. By means of care pathways, we define the set of activities

and related human resources that are involved during patient’s treatment. Emilia-

Romagna only collects epidemiological data for the most relevant chronic diseases and

very little information is available on care pathway standards. As stated in Persaud and

Narine [1999], in case of scarce or not consistent epidemiological data, population need

of services, expressed and satisfied through annual inpatient services (emergency and

planned) and outpatient ones (diagnostic appointments, treatment and rehabilitation),

can be used as a proxy for physician requirement definition. Service utilization data for



Chapter 2 Forecast and fund allocation of medical specialty positions:
Emilia-Romagna Region case study 23

(a) Public sector SDO rates in 2002 and 2011 (b) Public sector ASA rates in 2002 and 2011

Figure 2.3: Public sector service utilization rates in 2002 and 2011

the public and private hospitals as well as for outpatient appointments are recorded on

Siseps regional database. Inpatient activities are related to hospital discharge (SDO)

records while outpatient activities are recorded in the specialist outpatients care (ASA)

database.

ASA and SDO records can be related to a specific specialty representing a valuable

indicator of specialty-specific demand of care. As a starting point we analyzed how

service utilization has changed for inpatient and outpatient activities in the last decade.

In the 2002-2011 period a general reduction of public hospitalization can be identified

(see figure 2.3). This phenomenon is mild in the 10-40 age band and more consistent

in the 40+ one. The peak of service utilization reduction has been recorded for males

and females in the 70-74 age band (-22,5% and -21.9%), while a reverse trend has been

recorded in the 0-5 age band (+69,4% and +111,1%). Inpatient activities decrease

has been balanced by a general increase of outpatient activities demand that has been

mainly focused on Medical Specialty disciplines. In particular, we note that male

population shows higher consumption rates than women up to 14 years old and starting

from 60-64 years. For women, service utilization increase is mainly related to child-

bearing age and shows a significant increase in the 40-44 age band. Starting form 2002-

2011 data set we extrapolated specific trends for each ‘discipline-sex-age’ combination

up to 2030. The 2002-2011 trend lines are projected until 2021 and then a bounding

factor is considered until 2030.

We defined a service utilization driven scenario by applying utilization rates forecasts

to 2011-2030 population projections and by assuming that 2011 staffing level was ap-

propriate to cope with service demand in that year.

2.3.2.5 Guidelines-driven scenario

The number of beds assigned to a given specialty is a structural constraint that is

often used to estimate the need of health care professionals. This indicator can be

considered appropriate when most of the activities involving a specific specialty are
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related to hospitalization. This is particularly true for surgical area specialties where

peri-operative activities are a core element. We have decided to include this driver,

because one of the key points of the spending review on health is the reduction or

conversion of beds within the public health sector. Beds for discipline can be therefore

considered as a constraint that bounds the overall number of specialists that can work

in the public sector. The definition of a bed-driven scenario is based on two main

elements (see Table 2.2):

• Number of beds available in the public sector for each specialty at a regional level

after Decreto ‘Balduzzi’ criteria to the regional number of public beds available

in 2011

• Abruzzo’s staffing standards defined by a decree of government-appointed com-

mission.

Medical specialties Care complexity Number of medical doctors per bed Number of Beds

General Surgery Medium 0,28 1032
Pediatric Surgery Medium 0,34 63
Plastic Surgery Medium 0,34 42
Maxillo-facial Surgery Medium 0,34 59
Gynecology and Obstetrics Low Medium 0,28 792
Neurosurgery High 0,46 60
Ophthalmology Low 0,28 75
Orthopedic and Traumatology Low 0,28 1118
Otolaryngology Low 0,28 232
Urology Low 0,28 429
Cardiac Surgery High 0,46 10
Thoracic Surgery Medium High 0,34 79
Vascular Surgery Medium High 0,34 156
Geriatrics Low 0,3 293
Thermal Medicine Low 0,24 2262
Emergency medicine High 0,3 196
Neurophysiology Medium High 0 95
Neurology Medium High 0,3 271
Pediatric neuropsychiatry Medium 0,3 22
Psychiatry High 0,42 228
Dermatology and Venereology Low 0,24 31
Hematology Medium High 0,3 122
Endocrinology Low 0,24 20
Gastroenterology Low 0,24 139
Cardiovascular diseases Medium High 0,3 478
Respiratory system diseases Low 0,24 249
Infectious diseases Low 0,24 214
Nephrology Medium High 0,3 138
Rheumatology Low 0,24 23
Nuclear medicine Low 0,24 18
Radiology Low 0 2
Radiation therapy Low 0,3 6
Anesthesiology and Intensive care medicine Very High 1 373
Physical medicine and rehabilitation Low 0,24 329

Table 2.2: Abruzzo guidelines

The System Dynamics model integrates the three scenarios described in the previous

section by importing both regional population forecasts and weighting factors such as

2011-2030 projections on ASA and SDO utilization rates for Scenario 2 and Abruzzo

guidelines and regional beds for Scenario 3.
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2.3.2.6 Shortage and surplus indicators

Once demand and supply representation were defined and integrated in the SD model

(Figure 2.4), we identified two indicators that can be used in order to evaluate Re-

gional Health system forecasts in terms of shortages and surpluses during the planning

horizon. We define employment needs as the difference between the projections of the

initial stock (reduced over years by retirement rates) and the expected requirement,

defined by demand scenarios. We define training needs as the gap between the overall

supply projections and the expected demand. By overall supply we mean the sum of

all the professionals active at a regional level, either employed or specialized but not

yet employed.

Figure 2.4: System Dynamics model
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2.3.3 Simulation results

Since HRH planning is a long-term strategic problem we defined a twenty year planning

horizon based on 2011 data. We considered in this first phase of the work that the

training supported by MIUR will remain constant as observed for the academic year

2012-2013 observing if its funded grants will meet demand forecasts for each of the

three demand scenarios (see 2.5.1).

2.3.3.1 Surgical Area

Table 2.3 shows that Physician of General and Specialistic surgery classes, with the

exception of Plastic surgery, in 2011 were mainly employed in the public sector and just

very few of them were outpatient specialists (SUMAI). Table 2.4 2 shows that Scenario

1, that is linked to general or specific segments of the population (≤14 years), drives

to a general and significant increase, around 12%, for all surgical specialties (detailed

forecasts in Subsection 2.5.2).

Medical Specialties Trained stock SSR Stock Sumai Stock AIOP Stock Supply Stock
2007-2011 2030 MIUR 2011 2030 2011 2030 2011 2030 2011 2030

Digestive System Surgery 0 0 0 0 0 0 0 0 0 0
General Surgery 22 488 493 134 3 1 84 74 602 696
Pediatric Surgery 2 8 45 22 0 0 2 2 49 32
Plastic Surgery 5 76 26 13 0 0 34 22 65 111
Maxillo-facial Surgery 6 84 30 12 0 0 8 9 44 105
Gynecology and Obstetrics 21 421 450 140 57 18 33 31 561 610
Neurosurgery 3 34 65 19 0 0 28 17 96 70
Ophthalmology 9 155 169 54 96 31 57 44 331 284
Orthopedic and Traumatology 21 467 453 156 14 1 156 148 644 772
Otolaryngology 10 152 125 39 45 11 31 23 211 225
Urology 5 138 161 52 8 3 22 23 196 216
Cardiac Surgery 4 78 27 13 0 0 17 12 48 102
Thoracic Surgery 2 81 43 18 0 0 6 2 51 102
Vascular Surgery 4 135 68 26 1 1 16 14 89 176

Table 2.3: Surgical Class Supply: 2011 status quo and 2030 forecasts

Medical Specialties SSR + Sumai demand Aiop Demand Employment gap 2030 Training gap 2030
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Digestive System Surgery 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
General Surgery 556 559 537 94 442 445 423 46 43 65
Pediatric Surgery 50 53 51 2 29 32 30 -21 -24 -22
Plastic Surgery 29 27 29 38 32 30 32 44 46 44
Maxillo-facial Surgery 34 39 33 9 21 27 21 63 57 63
Gynecology and Obstetrics 568 549 536 37 416 397 384 5 24 37
Neurosurgery 73 79 84 31 68 75 80 -34 -41 -46
Ophthalmology 297 317 314 64 232 252 249 -77 -97 -94
Orthopedic and Traumatology 523 544 497 175 393 414 367 74 53 100
Otolaryngology 190 205 191 35 152 166 152 0 -14 0
Urology 189 207 180 25 136 154 127 2 -16 11
Cardiac Surgery 30 31 28 19 25 26 23 53 52 55
Thoracic Surgery 48 60 51 7 34 46 37 47 35 44
Vascular Surgery 77 89 71 18 54 66 48 81 69 87

Table 2.4: Surgical Class Demand: 2011 status quo and 2030 forecasts

General Surgeries class. Table 2.4 shows that Scenario 2 (ASA + hospitalizations

(SDO)) would result in the 2030 pediatric surgeons increase of 18% due to the expected

increase of the residents in the 0-14 age band and to the rising rates of outpatient and

2N.D. is an acronym of Not Defined because no training school is active in Emilia-Romagna Region
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inpatient activities. Scenario 3, the one that links the amount of inpatient activities

to available hospital beds according to Abruzzo guidelines, reduces the increase of the

requirement of general surgery specialist if compared to Scenario 2 (+9% vs. +13%).

This means that inpatient activities have a significant impact on specialists workload.

The implemented national funding at 2011, if maintained during the planning horizon,

seems to cover the overall regional demand for General Surgery specialists. Instead

Pediatric Surgery specialty will face a lack of workforce because at the moment no

Pediatric specialization school is active in the Emilia-Romagna territory.

Specialistic Surgeries class. Table 2.3 shows that among Specialistic surgeries

some specialties are characterized by an higher level of SUMAI workforce namely, 30%

for ophthalmology and 22% for otolaryngology, while Plastic surgery, Neurosurgery and

Othopedic and Traumatology are characterized by an higher level of specialists working

in private hospitals. Scenario 2 is the one that produceds a generalized major increase

in Specialistic Surgery physicians requirement. This phenomenon, particularly clear

for Urology and Maxillo-facial surgery, is due to the significant increase of inpatient

and outpatient activities per person rather than to population demographic forecasts.

The physicians requirement in Scenario 3 for all Specialistic Surgery specialties but

Neurosurgery is generally lower than thai in Scenario 1 and Scenario 2 because Abruzzo

guidelines classify those specialties as having a low or medium complexity of care. The

implemented national funding at 2011, if maintained during the planning horizon, will

not meet estimated physician demand for Ophthalmology and Neurosurgery specialties

in each demand scenario. Instead as far as Otolaryngology and Urology concern only

for Scenario 2 forecasts show a deficit of trained physicians.

Cardiac thoracic and vascular Surgery class. Cardiac thoracic and vascular

Surgery specialties are mainly active in Private Hospitals within the Emilia-Romagna

region. Specialist demography is characterized by young physicians, so retirements

will mildly affect supply numerical consistency. The implemented national funding at

2011, although small in absolute volume, seems to satisfy all demand scenarios.

2.3.3.2 Medical Area

The medical area has a great importance for the Public sector because it groups the

most significant specialties from the numerical point of view such as Pediatrics, Inter-

nal medicine, Emergency medicine, Psychiatry and Cardiology. Table 2.6 3 shows that

Scenario 1 forecasts for geriatrics, pediatrics and neuropsychiatry, which are associated

to 0-14 and 65+ age bands, a demand rising of 13% on average. A general reduction of

3N.D. is an acronym of Not Defined because no training school is active in Emilia-Romagna Region
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the 15-65 age bands population in 2012-2030 planning horizon will contain the increas-

ing demand for Psychiatric services. Medical Area specialties are the most stressed

by Scenario 2 forecasts because they are characterized by an increasing utilization

rate of outpatient appointments and elective surgeries. This effect is remarkable for

Nephrology (+46%), Cardiology (+40%), Neuropsychiatry (+37%) and Rheumatology

(+35%). Scenario 3 forecasts generally increase less than Scenario 2 ones since these

specialties, with the exception of Psychiatry and Emergency medicine, are classified

as low or medium from the complexity of care point of view. In general, for Scenarios

2 and 3, the implemented national funding at 2011, if maintained during the plan-

ning horizon, will not satisfy the overall specialists requirement (detailed forecasts in

Subsection 2.5.3).

Medical Specialties Trained stock SSR Stock Sumai Stock AIOP Stock Supply Stock
2007-2011 2030 MIUR 2011 2030 2011 2030 2011 2030 2011 2030

Geriatrics 12 238 198 61 20 16 19 16 249 331
Sports Medicine 3 76 5 3 27 6 4 3 39 88
Primary Health care 0 0 0 0 2 2 0 0 2 2
Internal Medicine 27 464 970 253 6 1 21 21 1024 739
Thermal Medicine 0 0 0 0 0 0 0 0 0 0
Oncology 16 261 190 60 6 1 6 6 218 327
Emergency medicine 3 107 590 236 0 0 5 4 598 347
Neurofiisopathology 0 0 0 0 0 0 0 0 0 0
Neurology 12 191 181 54 28 14 24 18 245 278
Pediatric neuropsychiatry 7 137 134 45 32 14 5 6 178 202
Psychiatry 22 395 520 113 7 5 63 66 612 579
Clinical pathology 10 10 1 0 5 4 13 9 29 23
Allergology and Immunology 2 8 0 0 6 3 2 0 10 11
Dermatology and Venereology 12 136 84 22 49 17 17 12 162 186
Hematology 7 143 172 40 0 0 4 4 183 187
Endocrinology 7 125 79 19 34 25 15 8 135 178
Gastroenterology 11 141 129 56 4 1 26 11 170 209
Cardiovascular diseases 27 499 429 132 45 16 79 71 580 718
Respiratory system diseases 13 208 138 43 7 3 18 13 176 267
Infectious diseases 5 90 107 26 0 0 2 2 114 118
Tropical medicine 0 0 0 0 0 0 0 0 0 0
Nephrology 12 241 136 45 3 0 6 6 157 292
Rheumatology 5 87 22 10 11 7 3 1 41 104

Table 2.5: Medical Class Supply: 2011 status quo and 2030 forecasts

Medical Specialties SSR + Sumai demand Aiop Demand Employment gap 2030 Training gap 2030
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Geriatrics 262 288 253 23 192 218 183 46 20 55
Sports Medicine 36 45 36 4 28 38 28 48 38 48
Primary Health care 2 2 2 0 0 N.D. N.D. 0 N.D. N.D.
Internal Medicine 1094 1127 1072 24 842 876 821 -378 -412 -357
Thermal Medicine 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Oncology 220 248 222 7 160 188 162 101 73 99
Emergency medicine 661 652 649 6 427 418 415 -320 -311 -308
Neurofiisopathology 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Neurology 234 282 254 27 174 222 194 17 -31 -3
Pediatric neuropsychiatry 195 228 230 6 136 169 171 1 -32 -34
Psychiatry 586 547 541 70 471 432 427 -76 -37 -32
Clinical pathology 7 19 19 15 8 21 21 2 -11 -11
Allergology and Immunology 7 7 8 2 6 7 7 2 1 1
Dermatology and Venereology 149 155 151 19 118 124 120 18 12 16
Hematology 193 230 214 4 153 191 175 -10 -48 -32
Endocrinology 127 153 154 17 91 117 118 34 8 7
Gastroenterology 149 184 171 29 110 146 132 31 -5 9
Cardiovascular diseases 531 686 551 89 400 555 420 99 -56 79
Respiratory system diseases 162 187 172 20 124 149 133 84 59 75
Infectious diseases 120 125 115 2 94 99 89 -4 -9 1
Tropical medicine 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Nephrology 156 205 179 7 112 161 135 129 80 106
Rheumatology 37 45 45 3 23 31 31 64 56 56

Table 2.6: Medical Class Demand: 2011 status quo and 2030 forecasts

General Medicine class. Table 2.5 shows that with the exception of the Sports

medicine specialty, in 2011 most of General Medicine class physicians were employed in

the Public sector. Increased service utilization rates both for inpatient and outpatient
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activities in conjunction with 0-14 and 65+ age band population growth will result

in a demand rise for Sports medicine specialists(+38%), Geriatricians (+31%) and

Oncologists (26%), while Internal Medicine and Emergency medicine specialists will

have a limited increase (11% and 15%) because their activity is mainly focused on

the 15-65 age band population (see Table 2.6). The national funding at 2011-2012, if

maintained during the planning horizon, seems unable to cope with Internal Medicine

demand for any demand scenario. This increasing gap is due to multiple factors, it is

possible to observe in the 2001-2010 period a general decrease of funded grants for this

specialty that, in conjunction with a negative turnover (more retirements than hirings)

and an increased average age for employed specialists, will lead to a sudden decrease

of active physicians. The increasing training gap for the Emergency medicine specialty

is due to a rise of service demand and to a significant retirement in the Public sector

that can’t be balanced by MIUR funded grants.

Neuroscience and Mental disorders class. Table 2.6 shows that, according to

Scenario 2 forecasts, Neurologists demand may increase up to 33%. In this case MIUR

funded grants will not be sufficient to cover the demand of both Public and Private

sectors. Psychiatry seems to be the specialty with the least demand increase because,

as stated before, a general reduction of the 15-65 age band population in the 2012-2030

planning horizon will contain the generally increasing demand for Psychiatric services.

The national funding at 2011-2012, if maintained during the planning horizon, will

not be able to satisfy any of the 3 scenarios because, as observed in the 2001-2010

period, to a positive turn-over of psychiatrists (more hirings that retirements) does

not correspond an increase of funded grants. Pediatric neuropsychiatry demand will

increase up to 37-38% in Scenario 2 and 3 due to the joint action of the 0-14 age band

population increase and outpatient appointment utilization rate. In this case MIUR

funded grants will not be able to cope with projected workforce requirements.

2.3.3.3 Diagnostic and Clinical Services Area

As for Medical specialties class, this area contains some of the most significant special-

ties from the numerical point of view such as anesthesia and intensive care, diagnostic

radiology and hygiene and preventive medicine (see Table 2.7). These specialties have

been strongly influenced, in recent decades, by technological and organizational inno-

vations like the increasing importance of health professions introduced to replace, in

some cases, medical specialties. As a result over the 2002-2011 period a change in

productivity has been recorded, resulting in a lower demand of physicians. As far as

Scenario 2 and 3 demand drivers concern, it is important to note that for most of Di-

agnostic and Clinical Services areas no stay-bed is available, anesthesia and intensive

care being the only exception. This turns to a Scenario 2 demand that will be mainly

influenced by outpatient appointment services, and in some cases even ASA records
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are not available. For those specialties we decided to keep the 2011 staffing level as

the appropriate one. As a first and general analysis of Table 2.8 4 we can observe that

Scenario 1 shows an increase of 12% in 2030, while Scenarios 2 and 3 are not homoge-

neous. Scenario 2 defines, for those specialties where outpatient activities have been

recorded, an increase of 15% on average in 2030, while Scenario 3 is rather similar to

Scenario 2 (detailed forecasts in Subsection 2.5.4).

Medical Specialties Trained stock SSR Stock Sumai Stock AIOP Stock Supply Stock
2007-2011 2030 MIUR 2011 2030 2011 2030 2011 2030 2011 2030

Nuclear medicine 4 65 53 20 0 0 2 2 59 87
Radiology 47 673 659 218 11 2 59 56 776 949
Radiation therapy 7 158 63 26 0 0 5 5 75 190
Hospital pharmacy 6 61 0 0 0 0 0 0 6 61
Health physics 0 7 0 0 0 0 0 0 0 7
Anatomic pathology 4 166 130 32 0 0 0 0 134 198
Clinical biochemistry 10 28 0 0 0 0 0 0 10 28
Microbiology and Virology 12 59 23 11 0 0 0 0 35 70
Clinical pathology 14 123 147 26 6 1 1 1 168 151
Pharmacology 0 0 56 12 0 0 0 0 56 12
Medical genetics 8 17 21 9 0 0 0 0 29 26
Food science 9 87 8 3 2 2 3 3 22 95
Anesthesiology and Intensive care medicine 54 873 935 345 3 0 71 73 1063 1291
Audiology 2 6 7 1 8 0 0 0 17 7
Physical medicine and rehabilitation 22 226 207 54 27 10 28 27 284 317
Toxicology 0 0 0 0 2 2 1 1 3 3
Oral surgery 0 0 0 0 0 0 0 0 0 0
Orthodontics 24 72 0 0 107 35 10 8 141 115
Preventive healthcare 21 307 574 103 16 3 6 5 617 417
Space medicine 0 0 0 0 0 0 0 0 0 0
Occupational medicine 15 226 116 20 5 0 1 1 137 247
Forensic pathology 7 41 80 26 11 4 1 1 99 71
Health statistics 0 0 0 0 0 0 0 0 0 0

Table 2.7: Diagnostic and Clinical Services Class Supply: 2011 status quo and 2030
forecasts

Medical Specialties SSR + Sumai demand Aiop Demand Employment gap 2030 Training gap 2030
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Nuclear medicine 59 62 62 2 39 42 42 26 23 23
Radiology 751 899 898 66 540 689 688 133 -16 -15
Radiation therapy 71 90 90 6 45 65 64 113 93 94
Hospital pharmacy 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Health physics 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Anatomic pathology 146 150 130 0 113 118 98 53 48 68
Clinical biochemistry 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Microbiology and Virology 26 26 23 0 15 16 12 44 43 47
Clinical pathology 171 154 154 1 145 127 127 -22 -4 -4
Pharmacology 63 64 56 0 51 52 44 -51 -52 -44
Medical genetics 24 27 21 0 14 18 12 3 -1 5
Food science 11 9 13 3 7 4 8 80 83 79
Anesthesiology and Intensive care medicine 1051 1284 1153 80 712 946 814 161 -73 59
Audiology 17 15 15 0 16 14 14 -10 -8 -8
Physical medicine and rehabilitation 262 237 235 31 203 177 175 23 49 51
Toxicology 2 2 3 1 0 0 1 0 0 -1
Oral surgery 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Orthodontics 120 117 117 11 88 85 85 -16 -13 -13
Preventive healthcare 661 596 596 7 558 493 493 -251 -186 -186
Space medicine 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.
Occupational medicine 136 167 122 1 116 147 102 110 79 124
Forensic pathology 102 92 92 1 73 63 63 -32 -22 -22
Health statistics 0 0 0 0 N.D. N.D. N.D. N.D. N.D. N.D.

Table 2.8: Diagnostic and Clinical Services Class Demand: 2011 status quo and
2030 forecasts

4N.D. is an acronym of Not Defined because no training school is active in Emilia-Romagna Region
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Therapeutic and diagnostic services class. Pathologists and clinical patholo-

gists are employed in the public sector. Demand scenarios seem to be over satisfied by

the national funding policy, and only Clinical pathologists might suffer a 10% shortage

from 2024 for Scenario 1.

Medical imaging and Radiation therapy class. Medical imaging and Radiation

therapy class specialists are mainly active in the public health sector (see Table 2.7).

For each specialty no stay-bed is available and only outpatient appointments will influ-

ence Scenario 2 and Scenario 3 forecasts. Table 2.8 shows the increasing importance of

diagnostic techniques related to nuclear medicine, diagnostic radiology and radiother-

apy specialties is emphasized in Scenario 2 and Scenario 3 forecasts where an increase

of 41% for Radiation therapy and of 32% for Radiology can be observed. The national

funding policy has invested over the year on these specialties, to the point that even

Scenario 2 and 3 would seem satisfied in 2030. As an example Public Radiologist sup-

ply, that will face a 67% decrease due to retirements and a 32% demand increase in

Scenario 2, will be satisfied just by national funded grants.

Specialistic clinical services class. Anesthesiology and Intensive care medicine

is by far the most supported specialty by MIUR having 9,51% of the overall trained

specialists during the simulation period. The demand for anesthesiologists increases,

during the planning horizon, up to 35% in Scenario 2, while only a 2% increase is

forecasted by Scenario 3 due to Intensive Care Unit (ICU) beds constraints defined by

Abruzzo’s guidelines (see Table 2.8). MIUR training policy would meet future demand

according to Scenario 1 and Scenario 3 forecasts, while it must be integrated with

additional regional grants in Scenario 2. Physical medicine and rehabilitation, whether

linked to ASA and SDO activities, is much more limited compared to Population driven

scenario. Scenario 2 and 3 forecasts only a 2% increase of the overall demand while

a 12% increase is expected for Scenario 1. Scenario 2 and 3 forecasts are influenced

both by demographic factors, such as mild increase of the population within the 15-65

band, and by service utilization rates, namely the decrease of outpatient and inpatient

utilization rates. The national funded grants will largely satisfy future requirements.
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2.3.4 An optimal allocation model

The construction of a simulation model that defines supply and demand scenarios can

be considered as a first fundamental step to support the management of healthcare

resources. The identification of gaps between supply and demand allows an initial

analysis of training needs through the comparison between the current training policy

and regional employment needs under various demand scenarios. Such an analysis is

useful to detect that, for some specialties, it may happen that trained physicians will

not be sufficient to meet future demand and for some others the current training will

be excessive. A comprehensive decision support tool must therefore define allocation

rules for specialization training grants. The decision of building a dynamic allocation

tool is based on the assumption that a long-term planning should consider the struc-

tural impact of decisions by focusing not only on annual perceived shortage, but also

considering that for strategic planners it could be wiser to modulate grants funding

policies over the entire planning horizon. The allocation of training grants at a regional

level can follow two different criteria:

• By assuming that decision power is at a regional level the decision is taken only

on additional grants funded by regional health budget because national funded

grants (MIUR) are considered as exogenous variables that cannot be modified by

regional managers;

• By assuming that regional managers can influence national funding policies, then

the decision is taken on all contracts activated within Emilia-Romagna region by

considering both MIUR and regional funded.

2.3.4.1 Allocation of regional funded grants

As stated in the previous section Emilia-Romagna Region can fund and allocate a

finite number of specialization grants. The number of additional funded positions

can be spread over the fifty medical specialties at the regional level. The proposed

model considers that the purpose of a good allocation policy is to reduce the overall

training gap considered either as scarce or excessive. The final objective is to find

the allocation policy that minimizes the overall gap value in the 2011-2024 planning

horizon. We consider 2024 as the last year in which a decision that will affect the

system can be taken because a 6 year training grant funded in 2024 will affect 2030

training gap.
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MinZ =
∑
i∈S

∑
t∈T

(pi/Supplyi 2011)yit

∑
i∈S

xit ≤ Grantst ∀t ∈ T (2.1)

t∑
l=2011

xil + yit = gapit ∀t ∈ T, ∀s ∈ S (2.2)

xit ≤ BoundGrantst ∀t ∈ T ∀s ∈ S (2.3)

xit ≥ 0 integer ∀t ∈ T, ∀s ∈ S (2.4)

yit ≥ 0 integer ∀t ∈ T, ∀s ∈ S (2.5)

There the Mixed-Integer Linear Programming model reads as follows: where S is the

set of medical specialties that is composed of 61 classified specialties, T is the planning

horizon such that t ∈ {2011, . . . , 2030}. For each medical specialty i ∈ S we define di

as the duration of its specialization school, FabEit as its employment need on year t,

Supplyit as the supply of medical specialists of type i at year t, (already employed in

2011), and Trainedit as the number of Medical specialists trained at year t. We then

define pi as the priority coefficient of specialty i, which is computed as a combination of

the care complexity classification at specialty i ∈ S and its numerical relevance for the

public sector. Parameter gapit is the training gap of specialty i on year t calculated as

gapit = max(FabEi(t+di)−Supplyi(t+di)−Trainedi(t+di), 0). As a last element we define

Grantst, as the overall number of grants funded by Emilia-Romagna region on year t

and BoundGrantst the maximum number of grants that can be allocated to a single

speciality on year t. It is clear that this bound can lead to sub optimal solutions, but,

it is unlikely that regional grants can be all allocated to one single specialty because

of political reasons.

Decision variables xij defines how many grants will be allocated on year t to specialty i,

while yij variables measures the training gap of specialty i on year t. This last measure

is the one that we want to minimize. Constraint 2.1 ensure that on year t at most

Grantst grants are allocated to medical specialties. Constraint 2.2 ensure that, tacking

in consideration previous years allocations, on year t the number of grants assigned to

specialty i will not exceed its demand. Constraint 2.3 bounds the maximum number

of grants that can be allocated to speciality i on year t
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The model is built to capture a rational allocation of training grants and uses the

following data:

• Additional number of grants annually financed: 25

• A maximum of 5 grants assigned to a specialty annually: i.e. 20% of regional

financed grants;

• Complexity of care indexes (intensive: 2.25, high: 2, medium-high: 1.75, mean:

1.50, medium-low: 1.25, low: 1, predominantly outpatient or service: 0.50).

Medical classes Number of grants
Scenario 1 Scenario 2 Scenario 3

Surgical 74 71 98
Medical 238 277 237
Services 36 0 13

Total 348 348 348

Table 2.9: Class cumulative allocation 2011-2024

Table 2.9 summarizes the cumulative allocation of 25 scholarships per year (23 in 2011

and 25 from 2012) for the 2011-2024 period aggregating schools according to their

disciplinary area. It is clear that, for each scenario, additional grants would focus on

medical area specialties, while Services area requires a small number of grants due to

the high impact of MIUR grants. Table 2.10 shows the number of grants allocated

to each specialty and the percentage with respect to the total number of funded posi-

tions. Emergency medicine is the specialty with the highest impact (between 22% and

34% depending on demand scenario). Other priority specialties are pediatrics, Internal

Medicine (Scenario 1), psychiatry and neuropsychiatry. Psychiatry and Neuropsychia-

try receive a large number of grants from the allocation model due to different factors

psychiatry workforce will be strongly reduced due to retirements (e.g. only the 21% of

SSR specialists will still be active at the 2030), while neuropsychiatry will be affected

by a significant increase of the number of population in the 0-6 age band.

As a conclusion it is important to remark that the allocation of 25 additional positions

is not sufficient to close training gaps even for some of the specialties that have been

strongly affected by allocation policies. Taking as an example emergency medicine,

which receives up to 70 grants under Scenario 1 and 3, only 21% of its training need

will be covered with the proposed allocation policies; a similar problem can be observed

for pediatrics where only 9% of its training need will be covered with the proposed

allocation policies.
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Medical Specialty Number of grants Percentage w.r.t. allocated grants
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Digestive System Surgery 0 0 0 0.00% 0.00% 0.00%
General Surgery 0 0 0 0.00% 0.00% 0.00%
Pediatric Surgery 0 0 0 0.00% 0.00% 0.00%
Plastic Surgery 0 0 0 0.00% 0.00% 0.00%
Maxillo-facial Surgery 0 0 0 0.00% 0.00% 0.00%
Gynecology and Obstetrics 0 0 0 0.00% 0.00% 0.00%
Neurosurgery 34 43 45 9.80% 12.36% 12.93%
Ophthalmology 39 0 53 11.24% 0.00% 15.23%
Orthopedic and Traumatology 0 0 0 0.00% 0.00% 0.00%
Otolaryngology 0 10 0 0.00% 2.87% 0.00%
Urology 0 18 0 0.00% 5.17% 0.00%
Cardiac Surgery 0 0 0 0.00% 0.00% 0.00%
Thoracic Surgery 0 0 0 0.00% 0.00% 0.00%
Vascular Surgery 0 0 0 0.00% 0.00% 0.00%
Emergency medicine 70 51 70 20.17% 14.66% 20.11%
Pediatrics 40 40 35 11.53% 11.49% 10.06%
Geriatrics 0 0 0 0.00% 0.00% 0.00%
Sports Medicine 0 0 0 0.00% 0.00% 0.00%
Primary Health care 0 0 0 0.00% 0.00% 0.00%
Internal Medicine 45 0 33 12.97% 0.00% 9.48%
Thermal Medicine 0 0 0 0.00% 0.00% 0.00%
Oncology 0 0 0 0.00% 0.00% 0.00%
Neurofisopathology 0 0 0 0.00% 0.00% 0.00%
Neurology 0 36 3 0.00% 10.34% 0.86%
Pediatric neuropsychiatry 0 28 34 0.00% 8.05% 9.77%
Psychiatry 70 37 31 20.17% 10.63% 8.91%
Clinical pathology 0 0 0 0.00% 0.00% 0.00%
Allergology and Immunology 0 0 0 0.00% 0.00% 0.00%
Dermatology and Venereology 0 0 0 0.00% 0.00% 0.00%
Hematology 10 51 31 2.88% 14.66% 8.91%
Endocrinology 0 0 0 0.00% 0.00% 0.00%
Gastroenterology 0 9 0 0.00% 2.59% 0.00%
Cardiovascular diseases 0 16 0 0.00% 4.60% 0.00%
Respiratory system diseases 0 0 0 0.00% 0.00% 0.00%
Infectious diseases 3 9 0 0.86% 2.59% 0.00%
Tropical medicine 0 0 0 0.00% 0.00% 0.00%
Nephrology 0 0 0 0.00% 0.00% 0.00%
Rheumatology 0 0 0 0.00% 0.00% 0.00%
Nuclear medicine 0 0 0 0.00% 0.00% 0.00%
Radiology 0 0 10 0.00% 0.00% 2.87%
Radiation therapy 0 0 0 0.00% 0.00% 0.00%
Hospital pharmacy 0 0 0 0.00% 0.00% 0.00%
Health physics 0 0 0 0.00% 0.00% 0.00%
Anatomic pathology 0 0 0 0.00% 0.00% 0.00%
Clinical biochemistry 0 0 0 0.00% 0.00% 0.00%
Microbiology and Virology 0 0 0 0.00% 0.00% 0.00%
Clinical pathology 21 0 3 6.05% 0.00% 0.86%
Pharmacology 0 0 0 0.00% 0.00% 0.00%
Medical genetics 0 0 0 0.00% 0.00% 0.00%
Food science 0 0 0 0.00% 0.00% 0.00%
Anesthesiology and Intensive care medicine 0 0 0 0.00% 0.00% 0.00%
Audiology 0 0 0 0.00% 0.00% 0.00%
Physical medicine and rehabilitation 0 0 0 0.00% 0.00% 0.00%
Toxicology 0 0 0 0.00% 0.00% 0.00%
Oral surgery 0 0 0 0.00% 0.00% 0.00%
Orthodontics 0 0 0 0.00% 0.00% 0.00%
Preventive healthcare 15 0 0 4.32% 0.00% 0.00%
Space medicine 0 0 0 0.00% 0.00% 0.00%
Occupational medicine 0 0 0 0.00% 0.00% 0.00%
Forensic pathology 0 0 0 0.00% 0.00% 0.00%
Health statistics 0 0 0 0.00% 0.00% 0.00%

Total 348 348 348 100.00% 100.00% 100.00%

Table 2.10: Cumulative allocation of 25 grants per year (2012-2024) classified for
general area according to the three demand scenarios (1 demographics, 2 ASA + SDO,

3 standard PL and ASA)

2.3.4.2 Allocation of national and regional grants

As previously mentioned, grants funding allocation can be discussed both in terms of

support for regional decision makers and as a tool for national negotiation. In latter

case it must be assumed that the problem is characterized by a set of constraints

that are different from those previously described for the allocation of the additional

regional grants. The negotiation is strongly influenced by the number and the size

of regional training centers. It is then important to remark that an allocation model

whose objective is the training gap reduction could lead to drastic compressions, or

temporary suspension of some university departments. It is then possible that, for some

specialties, no grant is funded over the 2011-2024 time horizon. It is not a purpose



36
Chapter 2 Forecast and fund allocation of medical specialty positions:

Emilia-Romagna Region case study

of the study to define a radical reorganization of regional training centers. It appears

however interesting to analyze the results of such a hypothetical assignment in order to

quantify the deviation between the optimal allocation without structural constraints

and repetitive national policies. In this setting the allocation model for national and

regional grants differs from the regional one only for the removal of constraint 2.3.

Medical area Number of grants Allocation w.r.t. As-is scenario
Scenario 1 Scenario 2 Scenario 3 As-is scenario Scenario 1 Scenario 2 Scenario 3

Surgical 1492 1327 1429 1617 -7.7% -17.9% -11.6%
Medical 3343 3815 3400 2743 21.9% 39.1% 24.0%
Services 1726 1564 1849 1998 -13.6% -21.7% -7.5%

Total allocated 6561 6706 6678 6358 3.2% 5.5% 5.0%

Total demand 6561 6900 6678 / / / /

Table 2.11: Comparison of as-is and demand-driven scenarios allocation policies

Table 2.11 summarizes the results of the cumulative allocation of national and regional

scholarships (495+23 in 2011 and 451+25 from 2012) per year for the 2011-2024 period

by aggregating schools according to their disciplinary area. As a first important infor-

mation we may say that only Scenario 2 will exploit all available scholarships while a

proper management of allocation in Scenario 1 and Scenario 3 can save up to 2.16% of

funding budget. The complete utilization of scholarship will not be sufficient to satisfy

Scenario 2 requirements where an additional 2.89% would be necessary.

An additional information on the results in Table 2.11 is the increase of grants allo-

cated to medical specialties compared to surgery and service ones, meaning that less

importance is given by the current planning policies to a set of specialties that will

become very important in future years.

A deeper analysis of the national and regional grant allocation in Table 2.12 shows

how scarce is the amount of scholarships for emergency medicine, internal medicine

and orthopedic and traumatology surgery. Conversely future needs of plastic surgery,

sports medicine vascular and thoracic surgeries as well as respiratory system diseases

seem overestimated by current policies.

The most interesting outcome of this analysis is that the current budget seems, for two

out of he three scenarios, adequate to fulfill future specialist needs. This means that

the scary baby-boomers mass retirement can be managed without a dramatic impact

on public funds dedicated to the HRH training.
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Medical specialties Number of grants Allocation with respect to ‘as is’ scenario
Scenario 1 Scenario 2 Scenario 3 As-is Scenario 1 Scenario 2 Scenario 3

Digestive System Surgery 0 0 0 0 0.00% 0.00% 0.00%
General Surgery 296 276 277 350 -15.43% -21.14% -20.86%
Pediatric Surgery 0 0 0 0 0.00% 0.00% 0.00%
Plastic Surgery 17 16 17 56 -69.64% -71.43% -69.64%
Maxillo-facial Surgery 0 5 0 57 -100.00% -91.23% -100.00%
Gynecology and Obstetrics 331 312 299 295 12.20% 5.76% 1.36%
Neurosurgery 51 57 62 14 6.25% 0.00% 5.08%
Ophthalmology 179 199 196 99 29.71% 101.01% 28.95%
Orthopedic and Traumatology 360 147 334 337 6.82% -56.38% -0.89%
Otolaryngology 104 119 105 100 4.00% 8.18% 5.00%
Urology 105 123 96 98 7.14% 6.03% -2.04%
Cardiac Surgery 6 7 4 56 -89.29% -87.50% -92.86%
Thoracic Surgery 14 26 17 57 -75.44% -54.39% -70.18%
Vascular Surgery 29 40 22 98 -70.41% -59.18% -77.55%
Pediatrics 655 653 622 348 56.70% 63.66% 48.80%
Geriatrics 143 168 133 168 -31.25% -19.23% -34.48%
Sports Medicine 12 21 8 56 -78.57% -62.50% -85.71%
Primary Health care 0 0 0 0 0.00% 0.00% 0.00%
Internal Medicine 681 715 659 322 111.49% 122.05% 104.66%
Thermal Medicine 0 0 0 0 -100.00% 0.00% -100.00%
Oncology 80 108 82 168 -52.38% -35.71% -51.19%
Emergency medicine 382 373 370 56 582.14% 566.07% 560.71%
Neurofisopathology 0 0 0 0 0.00% 0.00% 0.00%
Neurology 125 173 145 128 -2.34% 5.49% 10.69%
Pediatric neuropsychiatry 100 133 135 98 2.04% 5.56% 2.27%
Psychiatry 385 346 340 280 10.00% 9.15% 9.32%
Clinical psychology 0 0 0 0 0.00% 0.00% 0.00%
Allergology and Immunology 0 0 0 0 0.00% 0.00% 0.00%
Dermatology and Venereology 70 77 72 85 -17.65% -9.41% -15.29%
Hematology 121 158 142 100 10.00% 4.64% 8.40%
Endocrinology 60 87 88 86 -30.23% 1.16% 2.33%
Gastroenterology 65 100 87 85 -23.53% 6.38% 2.35%
Cardiovascular diseases 280 435 300 339 -17.40% 22.54% -11.50%
Respiratory system diseases 69 94 79 140 -50.71% -32.86% -43.57%
Infectious diseases 66 71 61 58 8.20% 5.97% 5.17%
Tropical medicine 0 0 0 0 0.00% 0.00% 0.00%
Nephrology 49 98 72 169 -71.01% -42.01% -57.40%
Rheumatology 0 5 5 57 -100.00% -91.23% -91.23%
Nuclear medicine 21 24 23 42 -50.00% -42.86% -45.24%
Radiology 370 519 517 437 -15.33% 18.76% 15.66%
Radiation therapy 9 29 28 114 -92.11% -74.56% -75.44%
Hospital pharmacy 0 0 0 30 -100.00% -100.00% -100.00%
Health physics 0 0 0 0 0.00% 0.00% 0.00%
Anatomic pathology 76 81 61 124 -38.71% -34.68% -50.81%
Clinical biochemistry 0 0 0 0 0.00% 0.00% 0.00%
Microbiology and Virology 0 0 0 28 -100.00% -100.00% -100.00%
Clinical pathology 98 0 80 71 6.52% -100.00% 8.11%
Pharmacology 0 0 0 0 0.00% 0.00% 0.00%
Medical genetics 0 0 0 0 0.00% 0.00% 0.00%
Food science 0 0 0 55 -100.00% -100.00% -100.00%
Anesthesiology and Intensive care medicine 496 729 598 591 -16.07% 23.35% 1.18%
Audiology 0 0 0 0 0.00% 0.00% 0.00%
Physical medicine and rehabilitation 125 100 98 141 -11.35% -29.08% -30.50%
Preventive healthcare 480 0 408 211 112.39% -100.00% 93.36%
Occupational medicine 51 82 36 154 -66.88% -46.75% -76.62%
Forensic pathology 0 0 0 0 0.00% 0.00% 0.00%

Total 6561 6706 6678 6358

Table 2.12: Cumulative allocation of regional and national grants per year (2012-
2024) classified for general area according to the three demand scenarios (1 demo-

graphics, 2 ASA + SDO, 3 standard PL and ASA)

2.4 Conclusion

The Emilia-Romagna region will face huge changes in its HRH supply structure. The

demographic mix of physicians employed both in the public and private sectors will

turn into a massive retirement. Current training policies can therefore turn to be

unsatisfactory to face such a turnover effect. In addition, population demographic

trends will push higher stress on specialties that are related to the elderly population.

The proposed simulation-optimization tool gives a comprehensive overview of regional

data availability and consequently defines the level of accuracy that can be reached

by a quantitative approach to HRH regional planning. The main contribution of this

approach is the definition of a systematic representation of Regional Healthcare that

must be taken into account while planning training policies. Training decisions will be
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effective after five or six years and then different employment sectors can compete in

order to hire trained physicians. In addition future perceived shortages can be tackled

with a long term perspective considering that allocation policies over multiple years

can improve the overall reduction of future gaps. Forecasts on supply and demand

components as well as allocation weighting factors are based on a series of assumptions

that have to be considered while analyzing model outputs for real policy definition. So

far there was a lack of information management and of systematic representation of the

regional health workforce sector. Through a proper analysis of available data sources

we have described, to the best of our possibilities depending on the lack of proper

databases, the work-life cycle of Public, Accredited and Private sectors defining the

set of dynamics that influence health workforce. We have then identified three possible

demand scenarios that can be used in order to evaluate future shortages. It is then

clear that some specialties will face in the future a significant lack of workforce that

must be solved through a proper re-modulation of both national and regional funding

policies. The model suggests that Emilia-Romagna regional additional grants will not

be able to cope with future system shortages and only an integrated management of

both national and regional funded grants in ER training schools can satisfy future

requirements of physicians.

Up to now training policies were based only on Public sector requirements that were

mainly based on annual surveys with local health authorities. Those surveys only

considered future imbalances based on current staffing level and future retirements.

We included Private and Licensed employment areas by considering supply flows that

can affect Public staffing level in the future. We also tried to capture future changes

in service utilization by analyzing the trend-lines of the last decade and by linking

those forecasts with future population evolution. It is clear from this study that the

main problem with quantitative HRH modeling is related to available data sources.

Full Time Equivalent representation is not possible due to unreliable public data and

incomplete private ones. In addition, no information is given on workload stress of

outpatient and inpatient activities. Unemployment or underemployment are other

important factors that are not modeled at the moment and that can strongly influence

future shortages information. It is possible to know how many physicians have been

trained in recent years and by a proper record linkage how many of them are currently

employed in ER but no information is available on trained and not employed ones. It

is not possible to know if those specialists are currently unemployed or if they migrated

to another region. Training autarchy is then another strong hypothesis of our model.

We have described future emigration flows but we can’t trust the amount of specialists

that can be absorbed by non ER training schools. Then, it is clear that simulation-

optimization model outputs can’t be considered as prophetic forecasts because the

set of information available at a regional level allowed us to give just an approximate

representation of demand drivers. Finally the proposed approach assumes that current

staffing levels are adequate to cope with their catchment areas in 2011 both in terms
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of row population to physician ratio (Scenario 1) and in terms of service utilization

ratio (Scenario 2). It is clear then that a first improving step would be to create a

unique and easily accessible database on regional HRH. Nevertheless, this is the first

quantitative and systematic study and we believe it defines a fundamental step on the

methodological evolution of this strategic healthcare management area.
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2.5 Appendix

2.5.1 Graphs forecast legend

Stock of physicians working in the Public Sector in 2011 and

still active

Stock of physicians working in the Private Hospital Sector in

2011 and still active

Stock of Public self-employed ambulatory specialists (Sumai)

working in 2011 and still active

Stock of district pediatricians working in 2011 and still active

Stock of available physicians (Trained by MIUR + Employed

in Public and Private sectors)

Demand forecast of Scenario1

Demand forecast of Scenario2

Demand forecast of Scenario3
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2.5.2 Surgical Area Forecasts

(a) General Surgery (b) Pediatric Surgery

(c) Digestive Surgery

Figure 2.5: General Surgeries class
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(a) Gynecology and Obstetrics (b) Neurosurgery

(c) Orthopedic and Traumatology (d) Urology

Figure 2.6: Specialistic Surgery class

(a) Maxillo-facial Surgery (b) Otolaryngology

(c) Ophthalmology

Figure 2.7: Head and Neck Surgery class
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(a) Cardiac Surgery (b) Vascular Surgery

(c) Thoracic Surgery

Figure 2.8: Cardiac thoracic and vascular Surgery class

2.5.3 Medical Area Forecasts
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(a) Internal Medicine (b) Geriatrics

(c) Sports Medicine (d) Oncology

Figure 2.9: General Medicine class

2.5.4 Diagnostic and Clinical Services Area Forecasts
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(a) Allergology and Immunology (b) Dermatology and Venereology

(c) Hematology (d) Endocrinology

(e) Gastroenterology (f) Cardiovascular diseases

Figure 2.10: Specialistic Medical class
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(a) Respiratory diseases (b) Infectious diseases

(c) Emergency medicine (d) Nephrology

(e) Rheumatology

Figure 2.11: Specialistic Medical class
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(a) Neurology (b) Pediatric neuropsychiatry

(c) Psychiatry (d) Pediatrics

Figure 2.12: Neuroscience and Mental disorders class

(a) Anatomic pathology (b) Microbiology and Virology

(c) Clinical pathology

Figure 2.13: Therapeutic and diagnostic services class
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(a) Nuclear medicine (b) Radiology

(c) Radiation therapy

Figure 2.14: Medical imaging and Radiation therapy class

(a) Pharmacology (b) Food science

(c) Medical genetics

Figure 2.15: Biomedical clinical services class
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(a) Anesthesiology and Intensive care
medicine

(b) Physical medicine and rehabilita-
tion

Figure 2.16: Specialistic clinical services class

(a) Preventive healthcare (b) Occupational medicine

(c) Forensic pathology

Figure 2.17: Public Health class
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Chapter 3

Tactical versus operational

discrete event simulation: a

Breast Screening case study 1

3.1 Introduction

Since 1996, the Department of Public Health of the Emilia-Romagna region, based

on national and international scientific community recommendations, provides a free

screening program for early detection of breast cancer. The screening program offers

scheduled checks to women, residents or domiciled in the region, falling in those age

groups in which the risk of cancer increases the effectiveness of early diagnosis and

appropriate treatment, reducing the risk of death. The monitoring is done through

periodic checkups, namely mammography tests performed every two years. Local

Health Units, which are coordinated and supervised by the Emilia-Romagna Regional

Health Authority, are in charge of managing screening programs. The program is

characterized by an integrated diagnostic-therapeutic pathway that follows the patient

from the screening test up to surgery treatment and follow-up treatments. Until 2010

women in 50-69 age bands were the target population, in 2010 the Regional health

Authority extended the breast screening program to the 45-49 and 70-74 age bands.

The chapter is organized as follows. In Section 3.2 we report a literature review that

analyze how breast screening programs have been studied by means of operational

research techniques. In Section 3.3 we describe the Emilia-Romagna breast screening

care pathway. Finally, in Section 3.4 we propose the experimental results for two

discrete event simulation models a tactical and an operational one.

1This chapter is based on Technical Report OR 14-7 (see Lodi et al. [2014]) to appear in ECMS
2014, European conference on modeling and simulation Proceedings book
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3.2 Literature review

In the literature Breast screening programs have been studied with simulation tech-

niques considering several aspects. sMichaelson et al. [1999] use biologically based

data from the literature on the rates of tumor growth and spread, to calculate the

course of breast cancer growth and metastatic state to define the optimal screening

interval for early detection of non degenerative breast cancers. In Fryback et al. [2006]

the authors focus their attention on epidemiological aspects simulating 25 years of

U.S. women population evolution addressing what-if questions about effectiveness of

screening and treatment protocols, as well as estimating benefits to women of specific

ages and screening histories. Improving health outcomes through effective diagnostic

and treatment is certainly the overriding objective of screening programs, nevertheless

an in depth evaluation of resources consumption and financial sustainability is very

important to guarantee the success of the programs. In Brown and Fintor [1993] and

Hunter et al. [2004] simulation studies evaluate the cost effectiveness of breast screen-

ing policies testing different scenarios regarding epidemiological trends, population age

bands inclusion and possible outcomes and outputs both in terms of quality of care

and of financial impact due to involved resources. Similarly the MISCAN (MIcrosim-

ulation SCreening ANalysis) model, which uses Monte Carlo micro-simulation of a

large number of life histories according to the epidemiology of the disease in question,

has been used to model and test various breast screening issues in Italy (Paci et al.

[1995]), Germany(Beemsterboer et al. [1994]) and Australia (Carter et al. [1993]). Sur-

veys on cost effectiveness models regarding Breast screening programs can be found in

Brown and Fintor [1993] and in Fone et al. [2003]. In addition to epidemiological and

cost-effectiveness analysis some side aspects regarding screening programs have been

investigated such as the impact of patients behavior on attendance rates in Brailsford

and Schmidt [2003]. In conclusion screening programs can rely on an extensive set

of guidelines and benchmarks that are used for performance monitoring. The quality

of service can be evaluated according to health goals and organizational objectives.

Indicators such as stage at diagnosis (defined as the ability to anticipate the detection

of cancer care pathways and activate), quality of care (defined as the reduction of diag-

nostic errors) and 5-year survival rate after surgery treatment are primary objectives

for health managers. Nevertheless screening programs have to be evaluated with an

organizational and managerial perspective since, in order to provide services, a set of

facilities and associated resources have to be identified. Future volume of activities

and their financial sustainability as well as resources availability and waiting times can

affect treatment effectiveness and are usually monitored and taken into consideration

during planning activities.
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3.3 Breast Screening: planning problem

As previously stated, in 2010 Emilia-Romagna Regional Health system decided to ex-

tend the breast screening program to 45-49 and 70-74 age bands. Each Local Health

Authority, supported by the regional one, had to decide what resources should be re-

sized even if at the time of the planning process it was not clear the impact of the

extension of the screening coverage in terms of waiting time and lead time perfor-

mances. The aim of this work is to study how two different DES software packages

could have been effectively applied to support the process from a tactical and opera-

tional point of view. The case study is only focused on capacity planning since cost

effectiveness analysis as well as screening frequency policies were already defined by

strategic planners.

3.3.1 Breast Screening Pathway

Screening program can be generically described as a care pathway. In Naldoni et al.

[2012] Emilia-Romagna regional guidelines and benchmarks are reported. It is possible

to split the breast screening pathway in three main components: the first contact and

appointment management, the first level examination and the second level examina-

tions (see Figure 3.1 for pathway representation).

3.3.1.1 Invitation, appointment reschedule and reminder

Each woman falling in the target age band is invited every two years to undergo a

screening test. The woman is invited by the Local Screening Center that communi-

cates day and time of the appointment. If the candidate is unable to attend she can

reschedule the appointment, otherwise she goes directly to the diagnostic ambulatory.

In case of no shows, the candidate is contacted and a new appointment is planned.

Contact activities are managed by the Screening Center, an organizational unit that

works as an interface between screening candidates and program activities. This struc-

ture is responsible of breast, uterine and colon-rectum screening programs, therefore

its operators are shared resources and segment their weekly activity in dedicated time

slots for each program. The Screening Center is responsible of monthly supervision

of invitations and no shows, appointment re-schedule and monthly reminder letter

management.

3.3.1.2 First level examination

The day of the appointment the candidate undergoes a mammography test that is per-

formed by a radiologist technician by using a Breast Computed Radiography Scanner.
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After the screening test is performed, the recorded images are sent in a digital way to

radiology senology specialists. When available a specialist analyzes the test and gives

his/her diagnosis that can be negative, positive or uncertain. A test has to be analyzed

at least by two different physicians and if both of them consider it negative, the patient

will receive a letter confirming that no evidence of potential cancer was found. If at

least one of the diagnosis is uncertain, a third physician analyzes the test and decides

if the patient must undergo in-depth examinations. Even though the examinations are

carried out at a local level, the analysis can be done in real time anywhere, since the

images are remotely available in a digital format. In the ideal case it is possible that

on the same day of the examination all diagnostic analysis are performed.

3.3.1.3 Second level examination

In depth examinations are performed for positive or uncertain patients. After a clinical

examination the radiologist decides, depending on first level test results, if the patient

should undergo detailed mammography, ultrasound or magnetic resonance imaging

(MRI) examinations. If non-invasive examinations show the potential presence of a

cancer, before proceeding with surgical activities, an invasive test such as cytology or

micro-biopsy, is done in order to ascertain the presence of a tumor.

3.3.1.4 Key Performance Indexes

In order to monitor the organizational performances of the screening program two lead

times are monitored, the time elapsed from mammography test to the dispatch of the

letter with the first level negative result and the time elapsed from the mammography

test to the first in-depth appointment. For each KPI two thresholds are monitored,

first-level letter dispatch within 15 and 21 days and the first in-depth appointment

within 21 and 28 days. Both lead time indicators measure radiology senology specialists

and Screening Center performances.

3.3.2 Local Health Authority Data

Tactical versus operational planning has to take into account different levels of detail

during the data collection process. Since screening programs are organized at a local

level, we focused our case study on a regional local health authority. We collected

data regarding volume of activities and resources involved in 2009 in order to build

and validate a DES model. In 2009 the target population (women in the 50-69 age

band) was equal to 51,462 residents and 24,111 of them were invited to attend the

screening test. The 65.77% of invited women attended the test in the planned day,

15.29% called for a reschedule, 27.93% did not attend to the first appointment and
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Figure 3.1: Simulation model of Breast Screening pathway implemented with Sce-
nario Generator
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74.54% of them did not answer to the reminder letter. Two screening center operators

managed appointment agenda and need three minutes for each call. Screening tests

were organized in eight public clinics (LOC) spread over the local health authority

territory.

Resource ID Number of working Number of mammograms Working months
days per week per day per year

LOC 1 2 24 10
LOC 2 2 24 10
LOC 3 4 29 10
LOC 4 2 24 10
LOC 5 4 24 10
LOC 6 3 24 10
LOC 7 2 24 10
LOC 8 4 54 11

Table 3.1: First level examination resources available in 2009

Table 3.1 shows the yearly schedule of each clinic. First, analysis were partially out-

sourced, in 2009 30% of them were managed by an Hospital trust that guaranteed

diagnostic results within 5 working days. Seven radiology senology specialists (RSS)

working for the Local Health Authority managed the remaining 70% first analysis as

well as all second and third ones. Monday, Tuesday and Thursday were dedicated to

first level analysis and each mammogram test analysis took on average three minutes

(see Table 3.2).

Screening Center manager dedicated on each day one hour and a half to send 140

negative result letters. In-depth examination were managed by Local Health Authority

radiology senology specialists by following a fixed schedule, on Wednesday non-invasive

examinations were performed invasive ones were planned on Friday.

Specialist ID Months of activity Number holidays during
(included holidays) activity months (days)

RSS 1 12 20
RSS 2 10 40
RSS 3 3 10
RSS 4 12 52
RSS 5 3 17
RSS 6 4 23
RSS 7 0 365

Table 3.2: Radiology senology specialists available in 2009

Table 3.3 shows the workload of diagnostic sonography tests, magnetic resonance imag-

ing tests, detailed mammogram procedures, micro biopsies and cytology test reading

in terms of volume of activities and time required by each activity.

In addition to screening-driven activities, radiologists had to deliver a set of services

associated with regular outpatient activities within the public sector (see Table 3.4).
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Activity type Number Mean time (minutes)

Detailed mammogram procedure 677 15
Magnetic Resonance Imaging 373 20
Diagnostic sonography 373 15
Micro biopsies 119 30
Cytology test reading 55 30

Table 3.3: Second level examination 2009 workload

Activity type Number Mean time (minutes)

Computed Radiography 12.379 10
Magnetic Resonance Imaging 762 30
Diagnostic sonography 2.276 20
X-ray computed tomography 863 20

Table 3.4: Non-screening activities in 2009

As a result, in 2009 81.40% of first level negative results were sent within 15 days and

89.20% within 21 days, whereas 78.14% of first in-depth examinations were performed

within 21 days and 84.88% within 28 days.

3.4 Simulation results

We implemented an operational model and a tactical one and we validated them on

2009 data. Below we present the results for both models.

3.4.1 Operational level model

We developed an operational model using Simul8 (Concannon et al. 2007), a gen-

eral purpose DES software, defining radiology senology specialists, public clinics and

Screening Center detailed schedules. Then, we tested the program extension impact

under different system configurations. The target population in 2010 increased up to

80,289 women in 49-70 age band where 48,165 had to be invited. As a first planning

hypothesis we fixed the rates of (i) invited women that attend the test in the planned

day, (ii) no-shows after first invitation, (iii) appointment reschedules and (iv) no-shows

after reminder letter (see Table 5 for detailed forecasted activity volumes). Then, we

tested the performance worsening in case of no radiology senology specialists resizing

and by considering that in 2010 the outsourcing contract was expired. As it is clear in

Table 2, the real number of active radiology senology specialists in 2009 was less than

the theoretical one. We then tested the system behavior under the hypothesis of five

radiology senology specialists working full time for the Local Health Authority. That

hypothesis holds since one of the seven physicians left in the first days of 2009 and the

second one would have been pregnant during 2010. Observing past annual volume of
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holidays, we identified an average of 49 days off per year per physician. The proposed

setting would have led, for 2010, to a 67.01% of first level negative results sent within

15 days and 73.25% within 21 days, while 63.04% of first in depth examination would

have been performed within 21 days and 69.43% within 28 days.

As a second planning hypothesis, we considered the impact of increasing the number of

radiology senology specialists available until near optimal performances were reached

for both KPIs. It is important to say that the result is strongly influenced by the policy

implemented for holidays. It is possible to reach a 98.76% of first level negative results

sent within 15 days and 99.12% within 21 days with just one additional resource if

physicians holidays never overlap. This would not have been the case even with two

additional resources if holidays overlap. Two additional resources would have led just

to a 76.94% of first level negative results sent within 15 days and 76.94% within 21

days.

Since 2010 data about real performances are available, we decided to test how the

resizing proposed by the model considering 2009 population behavior would have been

able to cope with real 2010 population behavior (see Table 3.5).

Activity type 2010 Forecast 2010 Real activities

Accepted after first invitation 31.679 28.909
No shows 13453 13.087
Examination after reminder letter 3.426 2.005
First level examination 35.104 30.914
Negative examination 33.509 29.473
Positive examination 1.595 1.43
Not responding to in depth examination 24 11
Responding to in depth examination 1.572 1.419
Detailed mammoraphies (DM) 1.371 1.238
Diagnostic sonographies 201 181
Diagnostic sonographies after DM 875 1.267
MRI tests 22 10
Invasive examinations 319 288

Table 3.5: 2010 forecasted and real volume of activities

The proposed setting would have led to a 97.93% of first level negative results sent

within 15 days and 99.19% within 21 days, while 98.77% of first in-depth examinations

would have been performed within 21 days and 99.13% within 28 days. These result

show the proposed resizing would have been effective on the population behavior for

2010.

In addition to screening activities radiology senology specialists are also involved in

general outpatients activities concerning detailed mammography, ultrasound or MRI

examinations. In 2010 an increase in the demand of non-screening services was recorded

(see Table 3.6) and we tested how that could have impacted on our proposed resource

resizing.
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Activity type Number Mean time (minutes)

Computed Radiography 19.68 10
Magnetic Resonance Imaging 413 30

Diagnostic sonography 8.003 20
X-ray computed tomography 1.536 20

Table 3.6: Recorded non-screening activities in 2010

The proposed setting would have led to a 13.75% of first level negative results sent

within 15 days and 16.76% within 21 days while 14.48% of first in depth examination

were performed within 21 days and 16.94% within 28 days, i.e., a dramatic worsening

in performance. To face the increased volume of non-screening activities two additional

radiology senology specialists should have been included by the Local Health Authority.

3.4.2 Tactical level model

In the previous section we analyzed how an operational model could have supported

Local Health Authority planning. At a regional level one could be tempted to use less

detailed information of the system at hands to do a more tactical planning (for example

without resource daily schedules). Thus, we tested Scenario Generator (SG), a DES

software customized for strategic decision planning, in order to show how it could have

been used to test general guidelines regarding breast screening program extensions.

It is important to say that SG software was implemented in order to support long term

strategic and tactical planning evaluation by public health managers. Because of this

the implementation of new models and clinical pathways had to be very simple in order

to ease the utilization to non simulation professionals. SG modeling is then very basic

(lacking then of a detailed system modeling), it does not support the definition of daily

resource schedules and resource capacity is mainly described by number of Full Time

Equivalent (FTE) and minimum, average and maximum number of activities that each

FTE can perform in a week. In our case it is then impossible to model the fact that

some days of the week are dedicated to first level examinations and some others to

in-depth invasive and non-invasive ones. Another modeling constraint is the lack of

single entities labeling and management, as a consequence no distinction can be made

between 2009 and 2010 screened women. Due to those restrictions we decided to test

how SG can be used in order to provide a high level information to regional decision

planners. We tested how the system would have behaved in 2010 if the theoretical

number of radiology senology specialists working for the regional health authority in

2009 had not been changed. Because of SG restrictions we split physicians capacity in

two components, first level examination test and second level non-invasive and invasive

examinations (see Table 3.7).
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Activity type Activities per week per FTE

First level examination test 98
Second level examination 4

Table 3.7: Volume of activities provided in 2009 by a radiology senology specialists
FTE

As a result we measured a stronger impact of program extension in terms of lead time

worsening because the proposed setting would have led to a 45% of first level negative

results sent within 15 days (see Figure 3.2) and 64% within 21 days.

A resource resizing up to 142 test per 9 radiology senology specialists would have been

necessary in order to increase the performances up to 95% of first level negative results

sent within 15 days and 97% within 21 days on average.

Figure 3.2: Scenario Generator 2009-2010 forecasts

3.5 Result interpretation and conclusion

We analyzed the screening program with two DES software packages in order to show

how different tools can help stakeholders that operate at different decision levels. We

applied Scenario Generator, an ad-hoc DES software for tactical planning for health

systems, in order to develop an high level model that can be used to support in a

quantitative way the definition of regional guidelines. We implemented a detailed

DES model using Simul8, a general purpose software, in order to show to local health

authority managers how a more detailed model can be used to understand the reasons

of long lead times.

The Scenario Generator software acquired by the Regional Agency for health and Social

Care of Emilia-Romagna can be used just to provide long term recommendations and

to test guidelines implementation. Such recommendations will build upon available
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regional and local data and will allow the discussion around new services to be provided

by the local trusts. A typical questions that could be answered by SG is the annual

number of first level analysis that each radiologist should ensure in order to achieve

organizational performance goal. Once defined general guidelines it is up to the Local

Health Authority management to define if the number of first level test examinations

is sustainable by the number of resources available.

It is clear that Scenario Generator software can not provide a detailed system forecast

to Local Health Authority planners. The absence of territorial distinctions for mam-

mography machines as well as the impossibility to describe radiologist weekly activities

in a detailed way reveals the unfitness of SG as a tool to support operational planning.

In order to better control activities in a weekly or annual time horizon is therefore

advisable to use a tool like Simul8. In the proposed application we defined and tested

several what-if scenarios and we measured their impact on measured screening lead

times. We identified that resource resizing would have been strongly affected more by

non-screening activities related to radiology senology specialists than by population

rates of attendance to screening programs. We also evaluated how holiday policies

could strongly affect the perception of shortages or surpluses in terms of available

resources. That has been proven to be an interesting approach by health managers

since during the breast screening planning extension it was not clear if and how much

the increased number of radiology senology specialists would have been able to meet

organizational goals. These results helped the Agenzia to asses the need of Decision

Support Systems in general, and of operational planning discrete event simulation in

particular.
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Chapter 4

Pre-operative activities and

Operating Room planning: a

local hospital department case

study1

4.1 Introduction: Operating Theater Planning

The high costs of health care push national and regional health services as well as

local authorities to constantly improve management performances in order to obtain

more efficient organization of hospitals activities so as to provide patients with the

best possible care. Operating Theater (OT) planning is one of the most studied topics

for Operations Research applied to health systems management. Surgery departments

play a crucial role in hospital organization and surgical activities usually constitute the

core of efforts made by hospital managers in order to improve performances. Surgery

activities represent a significant cost in the overall hospital budget because they directly

involve expensive resources but also because they have an impact on other hospital

services and on a multitude of resources indirectly associated. During the last decade

the number of research studies that aim at efficiently organizing and planing surgical

activities by reducing costs and keeping a good level of care has dramatically grow.

A better planning and management of activities and resources directly and indirectly

involved in surgical procedures (Operating Theater Planning) can therefore entail a

more efficient use of resources, a reduction in waiting times for patients and a better

overall performance of the hospital itself. In this chapter we consider the problem of

assigning operating room time slots to surgeons in parallel with the definition of the

admission planning of elective patients. The chapter is organized as follows.

1This chapter is based on Technical Report OR 14-6 (see Lodi and Tubertini [2014])
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In Section 4.2 we report a literature review that analyze the various elements that

has been considered in (OT) optimization models. In Section 4.3 we propose a Mixed

Integer Programming (MIP) formulation based on Emilia-Romagna guidelines. In

Section 4.4 we propose a reformulation of the problem tailored on a Local Hospital

Orthopedic Department. Finally, Section 4.5 reports the computation results for real

wold instances.

4.2 Literature review

Articles on operating theater management are characterized by a wide range of different

criteria and approaches. The OT problem, in several articles, has been formulated as

an optimization problem and solved with exact or heuristic procedures. Nevertheless

a consistent branch of research applies simulation techniques in order to evaluate the

effects of specific changes on performance indicators. Operating Theater planning and

management can be analyzed over multiple decision making levels and classified by its

decision-maker and time horizon characteristics.

4.2.1 Strategic Planning

Strategic planning decisions usually aim at defining the number of operating rooms

that will characterize future hospital structures. Decisions concerning the amount of

investments for the construction of new operating rooms as well as for technical equip-

ment procurement and the prediction of specialists’ need are characteristic elements of

strategic high level planning. Furthermore, welfare policies defined by local or regional

health management are discriminating factors for this kind of capacity planning activ-

ities. Uncertainty about performance impact of structural changes made by the local

health system and the complex and uncertain nature of regional and local population

needs (socio-demographic composition and related pathologies) usually requires the

use of non deterministic decision support system tools.

4.2.2 Tactical planning

Strategic level decisions, despite having a strong impact on operational performance of

the system, cannot be considered as the only planning decision that can be managed

with quantitative tools. A proper management of available resources can, in some

cases, avoid investments for structure upsizing. Once defined the number of available

operating rooms it is necessary to define how operating room time slots should be

assigned to Operating Units. The above mentioned problem is known as Master Sur-

gical Schedule Problem (MSSP). Master Surgical Schedule is then defined as a cyclic

program that determines the daily (or portion of the day) assignment of operating
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rooms to each surgery team. The MSSP is designed to support the negotiation phase

with all Operating Units/Wards involved in order to ensure the most equitable possible

solution. Equity and quality of a solution can be defined in various ways:

• Minimum gap between effective use of resources by the Operating Units and

benchmarks defined by corporate policies;

• Maximum utilization of operating rooms with leveled bed utilization in order to

reduce peaks that can turn into delay for surgeries;

• Minimum gap between required and assigned time for Operating Units.

Designing a weekly MSSP has to take into account restrictions related to surgeons

availability, number of teams belonging to different surgical specialties (Testi et al.

[2007]), operating rooms capacity and equipment (Chaabane et al. [2006]) and legal

constraints imposing conditions on the maximum number of surgeon working hours

(Guinet and Chaabane [2003]). As stated before MSSP is defined on a weekly basis

and it is usually considered valid for a one year time horizon being cyclically applied

rather than modified each week.

4.2.3 Operational Planning

Operating Theater operational planning has to identify, for each Operating Unit, which

patients, among the ones in the waiting list, will undergo surgery during the week.

This decision-making phase is characterized by short-term (weekly or daily) goals and

it is usually called Admission Planning Problem (APP) or Surgical Case Assignment

Problem (SCAP) if it includes tactical decisions regarding operating room time slot

assignment to surgeons(Fei et al. [2008]). In the literature this problem has been solved

with different approaches; as an example in Guinet and Chaabane [2003] and in Con-

forti et al. [2011] the authors define which subsets of patients have to be operated

in each time block assigned to the surgery unity. Adan and Vissers [2002] manages

operational assignment according to the partition of patients into different categories,

determining how many patients, of each class, have to undergo surgery on each day in

order to obtain the best patient’s acceptance profile. Riise and Burke [2011] determine

which patients will undergo surgery in each day by assigning patients to operating

room time slots already dedicated to surgeries related to a specific specialty. Testi and

Tanfani [2009] take into account patients priority according to their clinical status and

the time spent on the waiting list. Finally, Vissers et al. [2005] evaluate the impact of

operating room planning on pre and post surgery resource utilization. Admission Pa-

tients Scheduling is a problem of great complexity since it cannot simply be solved with

a First-Come-First-Served logic, but it has to take into account clinical patients condi-

tions and Operating Unit staff composition. In order to understand the element that
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really differentiates scheduling approaches we inspect the cohorts of patients that can

be involved and the set of objectives that can influence operational planning decisions.

4.2.4 Patients and resources involved

A first distinction of Operating Theater problems can be driven by the set of patients

that are considered during the planning phase. In the literature, two classes of pa-

tients are mentioned: elective patients and non-elective patients. We define an elective

patient as a person who has to undergo a surgery that can be planned in advance (elec-

tive surgery). We define non-elective patients as those who need to urgently undergo

surgery due to unexpected events and therefore that cannot be planned in advance. It

is possible to split elective patients in two categories: inpatients, namely people that

need to be hospitalized for at least one night, and outpatients that enter and leave

the hospital on the same day of the surgery. Adan and Vissers [2002] develop a mixed

integer programming model for scheduling elective operations, where outpatients are

treated as inpatients requiring a hospital stay of only one day, the one in which the

surgery takes place. Among non-elective surgeries, however, it is possible to distin-

guish urgent and emergency ones depending on the timeliness with which they have

to be performed according to the patient clinical condition. An emergency indicates

that a patient must be treated as soon as possible, while an urgency declares that

a patient does not have to be treated immediately but it can wait up to a “short”

period of time. Thus, elective surgeries can be planned in advance without any kind

of uncertainty, that is the reason why most of the articles that apply optimization to

OT planning take in consideration only this component of the problem. It is clear that

non-elective surgeries are hardly predictable due to the stochastic behavior of urgencies

and emergencies (see Denton et al. [2010] and Adan et al. [2009]).

Most of the research dealing only with elective surgeries planning, propose mathemat-

ical models in which a subset of the operating rooms are dedicated to non-elective

interventions that as a consequence does not affect elective plans. Alternatively non-

elective surgeries can be managed reserving them operating room time slots on each

day. Wullink et al. [2007] studied, using a Discrete Event Simulation (DES) model,

which is the best solution among the ones described above and concluded that the

overall use of operating rooms improves significantly when the OT capacity dedicated

to non-elective surgeries is distributed across operating rooms.

A further element of distinction among articles dealing with OT planning, is the vari-

ability associalted with various aspects of surgical services. Planning approaches are

divided into deterministic and stochastic ones depending on the inclusion or not of

variability aspects related to the surgical activity. Uncertainties considered in stochas-

tic approaches are those related to uncertain arrival of non-elective patients or to non
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deterministic surgery time. The first condition is strictly related to the unpredictabil-

ity of emergency or urgent case arrivals, while the second is determined by the fact

that the real surgery time duration may not coincide with the one assumed during

planning. Oostrum et al. [2008] propose a stochastic integer programming model with

a set of probabilistic constraints that define that the total duration of all procedures

performed in a day, in a certain operating room, must not exceed OT capacity, with a

given probability.

4.2.5 Objective Function: performance indicators

Once decision levels have been identified it is import to analyze how combinatorial

optimization approaches to Operating Theater management deal with the definition

of a good solution of the problem. The final objective of these models is obviously

to define the best possible management of operating rooms. In order to define if a

given schedule or assignment is more efficient than others, it is necessary to identify

performance indicators that have been considered in the literature. It is possible to

identify two set of objectives that are taken into account. The first is characterized by

those goals that aim at improving the service provided to patients by reducing waiting

times and by taking in consideration patient need and priority related to their clinical

status. Long waiting lists are one of the most common reported problem in health

services. This results in a large quantity of studies that aim at reducing the waiting

time of patients in order to increase their degree of satisfaction. This kind of objective

can be identified in Tanfani and Testi [2010] and Riise and Burke [2011] papers, where

the authors evaluate the overall efficiency of planning as a function of patients waiting

time.

The second is focused on the improvement of hospital organizational efficiency. We

define hospital organizational efficiency as the branch of research that aims at minimiz-

ing the costs associated to surgical activities maximizing the utilization of resources.

In this context, Conforti et al. [2011] propose a model that aims at maximizing the

number of patients who may be hospitalized. Oostrum et al. [2008] try to minimize

the operating rooms’ capacity by imposing that a predefined set of surgeries must be

performed. This requirement aim at increasing OT productivity avoiding its under

utilization by reducing inactivity times between two consecutive surgeries. Resource

utilization is one of the most used performance indicators that focus on hospital or-

ganizational efficiency. Vissers et al. [2005] develop an integer linear programming

model that minimize the deviation between the target utilization of resources (e.g.

beds, nursing staff, etc.) and their actual use, keeping predefined objectives on num-

ber of surgeries that should be performed during the planning horizon. The decision

to perform interventions in overtime may be more convenient in terms of waiting time

reduction. On the other hand, keeping an operating room open can be very expensive

and, for that reason, the number of planned interventions beyond the regular schedule
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should be kept under control (see Riise and Burke [2011] and Chaabane et al. [2006]).

Resource leveling is another important goal for operating theaters management. For

example, the prevention of peaks in resource utilization is taken in consideration in

Oostrum et al. [2008].

4.2.6 Constraints and Resources

Among the resources directly involved in surgical procedures operating rooms are, of

course, the most important ones. Chaabane et al. [2006] compare two methods of

managing operating rooms time capacity. The authors define operating room time

capacity as the maximum number of hours that can be worked each day on each

operating room. Usually time bounds are between 8 AM and 8 PM. In the first model

they manage operating room time as a fixed resource constraint in which, on each day,

the sum of surgery hours assigned has to be less than or equal to the time capacity.

In the second model, instead, Chaabane et al. [2006] define as a feasible assignment

a schedule that might include some overtime with respect to classical operating room

capacity. Bound on regular time and overtime operating room capacity are defined

in order to forbid an overload of activities. Similar constraints can be found in the

three stage approach of Testi et al. [2007]. Chaabane et al. [2006] manage surgical

staff availability by requiring that, in each day, interventions are carried out, for each

specialty, only if there is at least one surgeon available. In a similar way also Riise

and Burke [2011], take into consideration surgeons availability. Riise and Burke [2011],

as well as Testi et al. [2007], Testi and Tanfani [2009] and Tanfani and Testi [2010]

define non-ubiquity constraints related to surgeons or to surgical staffing units, a non-

ubiquity constraint is the maximum number of simultaneous activities that a resource

can do. So far only resources directly related to surgery activities have been described.

It is clear that there is a set of hospital resources that are indirectly influenced by

Operating Theater planning decisions. Ward and Intensive Care Unit (ICU) beds are

usually a hard constraint to deal with during OT planning. If no bed is available for

after surgery treatments, then the patient cannot be scheduled. Tanfani and Testi

[2010] restrict the number of patients that can undergo surgery in a day, according to

the number of beds available in that same day both for ward and ICU case. Resources

involved in planning activities can also depend on each patient pathology. Conforti

et al. [2011] allow patients admission only when all examination can be planned in one

week. Such kind of planning is bounded by the capacity of all clinical services. In

addition to resource capacity constraints some models consider also political or legal

constraints. Chaabane et al. [2006] impose lower and upper bounds on the number of

time slots that can be assigned to each specialty. Guinet and Chaabane [2003] set a

limit to the maximum number of hours that a surgeon can work in a day.
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4.3 Operating Theater management in Emilia Romagna:

a theoretical optimization model

Emilia-Romagna Region lacks of optimization-driven decision support systems for Op-

erating Theater management. Most of local hospitals are equipped with data man-

agement tools that, at the best of our knowledge, are mainly used to record activities

rather than to plan them. Furthermore, local databases sometimes lack of fundamental

planning information such surgery duration since the adoption of data management

system is in some cases not structured. It must be noted that the lack of data is

mainly focused on organization information rather than on epidemiological or clinical

ones. The literature review suggested that huge improvements can be made with the

adoption of optimization planning tools. We then decided to design an Operating The-

ater Mixed-Integer Programming model that is tailored on Emilia-Romanga Regional

guidelines and known best practices in order to propose this innovative approach to

regional health hospitals. At first, we decided to define a theoretical model that takes

into account most of regional guidelines and then to evaluate how it could be tailored

on specific local case studies.

4.3.1 Decision variables and involved resources

Operating Theater planning in Emilia-Romagna is usually performed on a weekly

basis and is defined from two to four weeks in advance. Surgery activities are usually

classified as either elective or non-elective. Due to the lack of detailed data regarding

non-elective surgeries we focused on elective planning. Planning activities, while having

as a primary focus the definition of which patients should undergo surgery, has to take

into account the availability of a set of resources that are necessary in order to define

a feasible solution. Previous considerations suggested that two main approaches can

be developed regarding Operating Theater planning: (i) Surgical Case Assignment or

(ii) Master Surgical Scheduling plus Admission Planning. Analyzing Maurizio Bufalini

Hospital guidelines we defined SCAP as the most suitable framework. A regional

Operating Theater plan must then consider

• Operating rooms: time slots and surgical teams;

• Beds: Short-Term Care, Ordinary and Intensive Care;

• Preoperative outpatient medical examinations.

As far as operating room management concerns a feasible regional planning has to

consider: (i) how many teams of each Operating Unit can work in parallel on the

same day, (ii) if it is possible in each operating room for each day to perform surgery

on patients coming from different Operating Units or characterized by different kind
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of surgeries and (iii) if the operating room is equipped with the facilities that are

necessary in order to perform each class of surgeries.

Patients hospitalization is a topic of great importance since some hospital wards within

regional territory have to deal with a quite limited number of beds for inpatients

management. Even more, it is important to remind that national guidelines will impose

in future years a general reduction in the number of beds available for each ward. So far,

in Emilia-Romagna each Operating Unit has a set of reserved beds that are occupied

by patients during, before and after surgery hospitalization periods. Pre and post-

surgery hospital stays have to be considered since a patient before and after the day of

surgery may need a bed for a time at least equal to the expected hospital stay related

to his clinical condition. In addition to ward beds, the Intensive Care Unit have a

number of beds that are shared between Operating Units in order to treat patients

in critical conditions. It is clear that beds, being a limited resource, may constraint

surgery scheduling. It may happen that an incorrect distribution of surgeries lead to a

bed occupancy peak that prevents the admission of patients and forbids their planned

surgery. Within Emilia-Romagna, bed stays can be classified as: (i) ordinary inpatient

stay that can be extend beyond 5 days, (ii) short inpatient stay with a maximum length

of 5 days and (iii) Day Hospital, which requires hospital admission only for the day of

surgery. In general, Day Hospital beds are separated from inpatient ones.

Pre-operative management of outpatient anesthetic examination is an element of great

importance while planning surgical interventions. Patients in waiting lists are char-

acterize by an heterogeneous level of critical urgency, associated with their clinical

condition. Each patient can then be classified with a degree of potential criticality

that, in cases of major significance, can require a pre-operative anesthetic consult in

addition to the routine one. This medical examination is associated with the possi-

ble, but not certain, need of in-depth medical examinations in order to give to the

anesthesiologist a complete clinical picture of the patient so as to properly manage his

peri-operative clinical pathway. It is clear that a proper management of schedule case

mix is of major importance in order to define an efficient management of resources

since it is possible that without a pre-operative anesthetic consult a sub-optimal use of

available resources is achieved. This inefficiency is associated with the impossibility to

perform some surgical procedures because some of the information necessary in order

to preserve patient’s health condition is missing. This situation can lead to surgery

cancellations that negatively impact both patient care and hospital resource utilization

since a time slot may not be used. Usually anesthesiologists define, for each Operating

Unit, the maximum number of pre-operative outpatient medical examinations that can

be planned and for critical patients for which it was not possible to book a medical

examination, hospitalization is move up from one to four days in order to ease an

informal and more direct management of anesthetist evaluation.
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4.3.2 Planning objectives

Once defined the optimization problem and the set of constraints that will influence the

definition of a feasible solution, it is important to identify which are the indicators to be

used in order to evaluate the proposed solutions and to identify the most appropriate

one. The concept of appropriateness in health care is not always uniquely defined and

quantitatively measurable. We define two cohorts of objectives: patient-related quality

of service and hospital-driven internal efficiency.

4.3.2.1 Patient-driven indicators

Quality of care and patient centered treatment are considered fundamental driving

factors for the Emilia-Romagna public healthcare system and time-to-surgery can be

considered as the most important planning factor. We define time-to-surgery as the

lead time between patient referral and the day of surgery, where patient referral is

defined as the moment in which, after diagnosis, the surgeon decides that the patient

needs a surgery treatment. Time-to-surgery can then be classified as an indicator of

health system responsiveness to patient needs. It is clear that this kind of information

is strongly related with patient clinical status. If we analyze elective surgeries we can

then define a classification of patients that is based on clinical condition and evaluation

on patient pathology evolution. The clinical status can be defined according to the

ASA (American Society of Anesthesiologists) classification:

• ASA Physical Status 1 - A normal healthy patient,

• ASA Physical Status 2 - A patient with mild systemic disease,

• ASA Physical Status 3 - A patient with severe systemic disease,

• ASA Physical Status 4 - A patient with severe systemic disease that is a constant

threat to life, and

• ASA Physical Status 5 - A moribund patient who is not expected to survive

without the operation.

At a Regional level priority classification is related to pathology evolution risk and to

surgical procedure characteristics defining four degrees of priority:

• Grade 1: Small Surgery,

• Grade 2: Medium Surgery,

• Grade 3: Medium-High Surgery, and

• Grade 4: High and Very High Surgery.
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Clinical patient classification, pathology evolution risk and surgery complexity are used

in order to define four priority classes with related deadlines:

• High priority (A): Time to surgery has to be bounded to 30 days,

• Medium priority (B): Time to surgery has to be bounded to 90 days,

• Low priority (C): Time to surgery has to be bounded to 360 days, and

• Very low priority (D): Time to surgery has no bound and it can exceed 360 days.

The definition of priority can then be analyzed from two different perspectives. First,

if two patients enter on the same day in the waiting list, the one with the highest

level of priority has to undergo surgery before the other one. This statement is trivial

and it can be explained by the fact that the first patient has a deadline that is closer

in time with respect to that of the second patient. It is then important to define a

function that describes how close is the patient to his deadline. The general idea of this

function is that the more we get close to the deadline the more it will cost to postpone

the surgery of the patient. By means of postponing we define the fact that the patient

will not be inserted in the weekly plan. We assume that the function that models the

deadline weight can be considered as constant on a weekly basis but exponential from

week to week. That means that objective function weights π∆i
i and π∆i+1

i related to

patient planned or unplanned admission in the week of planning can be defined as

follows. Let ∆i be the number of weeks that the patient spent in the waiting list, and

DLi the number of weeks that the patient can wait before reaching the deadline day

according to his priority status. Let then define Delayi = ∆i − DLi the number of

elapsed weeks to deadline. If Delayi has a negative value this means that the deadline

has not yet been reached while if the value of Delayi is greater than zero it means that

the deadline is not respected and the patient has to be operated as soon as possible.

The priority level can then be defined as π∆i
i = |Delayi|2Delayi/|Delayi|.

Figure 4.1 shows that parameter π∆i
i is constant during a planning week and varies

on a weekly basis exponentially increasing while the patient approaches the deadline

week.

So far the priority coefficient distribution that we proposed does not take into account

the fact that two patients with different priority levels are considered equal if their

Delayi value is the same. We then decided to weight the π∆i
i factor assuming that

patients with equal deadline conditions have to be evaluated with respect to their

priority level. We then modify π∆i
i as π∆i

i = ρi|Delayi|2Delayi/|Delayi|, where ρi is the

priority coefficient. An example of the impact of the proposed improvement can be

seen in Figure 4.2a and 4.2b where Priority A and Priority B patients waiting factor

trend line π∆i
i is reported .
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Figure 4.1: Example of Priority coefficient for 90 days deadline
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(a) Priority coefficient for class A deadline
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(b) Priority coefficient for class B deadline

Figure 4.2: Weighted trend line of Priority A and Priority B patients waiting factor

4.3.2.2 Hospital driven indicators

Hospital-driven efficiency indicators are related to an efficient resource management.

We considered as a first element of organizational evaluation the number of overtime

hours. Usually operating rooms are organized in two day sections, the morning and

the afternoon one. The afternoon section ends at 8 PM even if it is possible that, as a

consequence of very long waiting times, surgeries are planned during overtime hours.

We then decided to model this behavior representing overtime hours as an element
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that negatively impact on the objective function but that can be accepted if a signifi-

cant improvement in terms of waiting time reduction is achieved. Another important

element of organizational efficiency is the planning of pre-operative appointments. As

we said in Section 4.3.1 it is possible that if the required anesthetist appointment is

not planned the patient must be hospitalized up to four days before the surgery day.

This is clearly an inefficient management of pre-operative appointments that has to be

reduced as much as possible by considering the number of unplanned appointments as

a negative element that has to be weighted in the objective function.

4.3.3 Problem formulation

Let I be the set of patients inserted in waiting lists, K the set of operating rooms and

T the set of days in planning time horizon. We consider as planing time horizon a

period T equal to one month before the first surgery day and we define the last five

working days of period T as the ones where surgery activities will be planned. We

define working days as the ones available for assignment because planned surgeries are

usually performed from Monday to Friday. Given a set K of operating rooms and a

time horizon T , we define the assignment for the last week of the time horizon T of

each operating room time slot to a surgery unit. The model we propose considers as a

first decision variable the assignment of operating room time slots to Operating Units

as follows:

ywkt =

{
1 if ward w is assigned to operating room k on day t

0 otherwise;

Each operating room time slot assigned is then filled with a patient that is associated

with the ward as follows:

xikt =

{
1 if patient i is assigned to operating room k on day t

0 otherwise

Since not all patients in the waiting list can undergo surgery during the week of plan-

ning we define

zi =

{
1 if patient i will not undergo surgery on time horizon T

0 otherwise

Pre-surgery appointments will be managed by variable

ϕit =

{
1 if patient i is examined by an anesthetist on day t

0 otherwise;

In order to consider patient hospitalization as a consequence of missing anesthetist

examination we define
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εit =


1 if patient i will undergo surgery on day t, and no anesthetist examination

was planned

0 otherwise;

Variable fkt measures the overtime on operating room k on day t and variable ηkt the

number of specialties assigned to k on day t exceeding the complexity threshold M

(see parameters table). Finally, variable ψt measures the number of unused anesthetist

appointments.

The complete list of parameters is then reported in Table 4.1
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w Operating Unit index such that w = 1, 2, . . . ,m where m is the number of wards
Iw Subset of patients that are in the waiting list of ward w
∆i Waiting time of patient i

π∆i
i Priority coefficient related to deadline proximity
ρi Priority coefficient of patient i related to his clinical status
PWT Waiting time weight
Fkt Maximum number of overtime hours planned for operating room k on day t
Coverkt Overtime cost of operating room k on day t
POT Objective function overtime weight
PSP Objective function overlapping assignment
PB Objective function unplanned anesthetist appointments weight
PAV Objective function unused anesthetist appointments weight
M Maximum number of specialties/Operating Units that can be assigned

to the same operating room on the same time slot
Csurkt Cost related to exceeding number of different specialties assigned to

the same time slot
Cstayw Cost of stay bed for a specific ward
pi Expected surgery time defined as a deterministic value
Lw Minimum number of surgery hours to be assigned to ward w
Uw Maximum number of surgery hours o be assigned to ward w
Skt Surgery time available on day t for operating room k
µi Clinical condition indicator, equal to 1 if patient i is classified as critical

and needs an anesthetist examination before surgery
hi Number of days that are suitable between anesthetist examination and surgery

time in order to guarantee further in depth examinations if necessary
Ct Number of anesthetist outpatient appointment slots available on day t
αi After surgery hospital stay days based on clinical condition and

surgical treatment
IIC Subset of patients that, after surgery, need an Intensive Care Unit bed
δi Forecasted after surgery stay time for patient i
Gw Number of beds available for ward w
Q Number of Intensive Care Unit beds
Ew Number of surgical teams available for ward w
Awt Number of patients that undergo surgery in previous weeks but that are

still hospitalized in ward w on day t
Bt Number of patients that undergo surgery in previous weeks but that are

still hospitalized in ICU on day t
ϑi Takes value 1 if the patient i has to be hospitalized the day before surgery
N “big M” value used to link xikt and ywkt variables

Table 4.1: Theoretical Operating Theater model parameters



Chapter 4 Pre-operative activities and Operating Room planning: a local hospital
department case study 81

4.3.3.1 Mathematical formulation

The mathematical programming formulation reads as follows.

MinZ = PWT

∑
i∈I

∑
k∈K

|T |∑
t=|T |−4

ρiπ
∆i
i xikt +

∑
i∈I

ρiπ
∆i+1
i zi

+

POT
∑
k∈K

|T |∑
t=|T |−4

Coverktfkt + PSP
∑
k∈K

|T |∑
t=|T |−4

Csurktηkt+

PB

m∑
w=1

∑
i∈Iw

|T |∑
t=|T |−4

Cstaywεit + PAV

|T |−5∑
t=1

ψt

∑
i∈Iw

xikt ≤ Nywkt (4.1)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |; ∀w = 1, 2, . . . ,m

∑
k∈K

|T |∑
t=|T |−4

xikt + zi = 1 ∀i ∈ I (4.2)

m∑
w=1

ywkt ≥ 1 ∀k ∈ K; ∀t = |T | − 4, . . . , |T | (4.3)

m∑
w=1

ywkt ≤M + ηkt ∀k ∈ K; ∀t = |T | − 4, . . . , |T | (4.4)

∑
i∈Iw

∑
k∈K

|T |∑
t=|T |−4

xiktpi ≥ Lw ∀w = 1, 2, . . . ,m (4.5)

∑
i∈Iw

∑
k∈K

|T |∑
t=|T |−4

xiktpi ≤ Uw ∀w = 1, 2, . . . ,m (4.6)

∑
i∈I

xiktpi ≤ Skt + fkt ∀k ∈ K; ∀t = |T | − 4, . . . , |T | (4.7)

∑
k∈K

µixikt ≤
t−hi−1∑
a=1

ϕia + εit ∀i ∈ I; ∀t = |T | − 4, . . . , |T | (4.8)

∑
i∈I

ϕit + ψt = Ct ∀t = 1, 2, . . . , |T | − 5 (4.9)
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∑
i∈Iw

∑
k∈K

(
t∑

τ=t−αi

xikτ + ϑixik(t+1)

)
+

t+4∑
τ=t+1+ϑi

εiτ

− (4.10)

−
∑

i∈Iw∩IIC

∑
k∈K

t∑
τ=t−δi+1

xikτ ≤ Gw −Awt

∀t = |T | − 5, . . . , |T |; ∀w = 1, 2, . . . ,m

∑
i∈IIC

∑
k∈K

t∑
τ=t−δi

xikτ ≤ Q−Bt ∀t = |T | − 4, . . . , |T | (4.11)

∑
k∈K

ywkt ≤ Ew ∀t = 1, 2, . . . , |T | ∀w = 1, 2, . . . ,m (4.12)

xikt ∈ {0, 1} ∀i ∈ I, ∀k ∈ K, ∀t = |T | − 4, . . . , |T | (4.13)

ywkt ∈ {0, 1} ∀w = 1, 2, . . . ,m, ∀k ∈ K, ∀t = |T | − 4, . . . , |T | (4.14)

zi ∈ {0, 1} ∀i ∈ I (4.15)

fkt ∈ {0, . . . , Fkt} ∀k ∈ K, ∀t = |T | − 4, . . . , |T | (4.16)

ϕit ∈ {0, 1} ∀i ∈ I, ∀t = 1, . . . , |T | − 5 (4.17)

εit ∈ {0, 1} ∀i ∈ I, ∀t = |T | − 4, . . . , |T | (4.18)

ηkt ≥ 0 ∀k ∈ K, ∀t = |T | − 4, . . . , |T | (4.19)

ψt ≥ 0 integer ∀t = |T | − 4, . . . , |T | (4.20)

The objective function minimizes the waiting time of patients, weighted by priority

indexes based on the patient clinical condition and associated deadline. As secondary

objectives it is also minimized the total expected duration of planned interventions

in overtime, the excess of surgical specialties associated with an operating room in a

day, the number of unplanned anesthetist appointments. Constraints (4.1) define that

if a patient is assigned to operating room k on day t it is necessary that this room

is assigned on day t to the Operational Unit that is related with patient’s specialty

treatment. Despite this, the allocation of operating rooms to surgical specialties is also

constrained by upper and lower bounds in (4.5) and (4.6). Constraints (4.3) ensure

that each operating room will be assigned to at least one surgical specialty in each

day of the planning week, while an excessive operating room sharing is bounded by

M in (4.4) and penalized in the objective function. The number of working hours

for each Operating Unit is bounded by constraints (4.5) and (4.6) within [Lw , Uw].

Constraints (4.7) model overtimes as the amount of time worked over regular time

Skt. Anesthetist medical examination planning is managed by constraints (4.8) and
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(4.9). More precisely, if a critical patient is selected for surgery his pre-operative

examination can be planned at most once due to constraints (4.8). Constraints 4.8 also

impose that if a medical examination is planned for patient i, it must be performed

at least hi days before surgery. Parameter hi is the time required to possibly plan

in depth examinations. Constraints (4.9) defines maximum available examinations

per day. Constraints (4.10) and (4.11) model beds and intensive care beds capacity

constraints. Namely, constraints (4.10) ensure that a patients can undergo surgery

only if he can be hospitalized. In order to verify bed availability on day t we consider

available beds dedicated to surgical specialties and those already occupied. On day

t beds are occupied both by patients in they pre- and post-surgery stay. Constraints

(4.11) impose that patients, needing a post-operative ICU stay can undergo surgery

only if a bed is available. Finally constraints (4.12) ensure that, for each specialty, at

most Ew teams can work simultaneously.
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4.4 Operating Theater management for a local hospital

orthopedic department

Implementing an OT model requires the collection of a large set of data in order to feed

model parameters and coefficients. Tests can be performed and analyzed using ran-

domly generated or real-world data. Once the model based on the regional guidelines

has been designed, we had the opportunity of testing it on real world data instances.

An orthopedic department of a local health hospital agreed to collaborate with us in

terms of model validation and data supply. The model presented and analyzed in

section 4.3 has been then revisited in order to fulfill special requirements coming from

the collaborating department. Since the revised model is strongly influenced by de-

partment characteristics and peculiarities it represents a specific problem that is not

usually addressed in the literature.

The proposed problem is focused on department internal dynamics, so it does not

require anymore the allocation of time slots to different surgical specialties. In fact,

assignment of operating rooms among surgical units is considered in this case as a

strategic decision that is taken by hospital managers and that cannot be modified at

the operational level. The problem we analyze is then defined as the allocation of

operating room time slots, among the ones already assigned to the department, to

orthopedic surgeons and the subsequent admission plan for their related patients.

All surgeons working at the department share a common waiting list of patients that

have been previously examined within the public health service. In addition each sur-

geon has a personal list of patients waiting for surgery. The final problem can then

be defined as the determination of which operating room time slots will be assigned

to each surgeon and which patients, belonging to shared or personal lists, must un-

dergo surgery in the planning week. Orthopedic surgeries can be classified in elective

and non-elective ones. Elective surgeries can be distinguished in non-prosthetic and

prosthetic. Prosthetic surgeries consists of articulations replacement due to disease or

congenital conditions and can be classified in hip replacement, knee replacement, and

shoulder replacement. Discussing with department physicians we decided to overlook

non-elective surgeries, also known as trauma surgeries, since trauma management is

organized reserving on a daily basis separated operating room time slots.

4.4.1 Problem description: comparison with the theoretical model

The Orthopedic department has two reserved operating rooms in each day of the week

for a total of 20 time slots available per week, 4 of which are reserved to trauma man-

agement. Each day is partitioned into two periods: a morning session of six hours

from 8 AM to 2 PM and afternoon one of the same duration, from 2 PM to 8 PM. A

feasible schedule dedicates to each specific surgeon one or more day periods during the
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planning horizon. An operating room, therefore, is occupied by a single surgeon for the

duration of the assigned period. In addition, the Orthopedics department managers

impose that, in each period, only one class of surgeries can be performed (prosthetic

interventions, non-prosthetic or trauma). Finally, it is preferable that prosthetic surg-

eries are performed during the morning session. As already mentioned, the prosthetic

interventions are classified as hip, knee or shoulder surgery. Each type is characterized

by a distinct degree of complexity so it is preferable, for organizational reasons, to

minimize the number of different type of prothesis surgeries that are performed in the

same time slot. No forecast is possible about real surgery time so it is not possible

to distinguish the impact of different surgeries on Operating Room Capacity. As a

standard description we can consider that two surgeries per time slot can be planned.

However, it is possible to plan on overtime an additional surgery just for non-prosthetic

class ones. A further modification of the model is related to the request that a surgeon

can be supported, for a type of surgery, by a colleague. The model then will have to

satisfy these requests by preventing the assignment of an operating room to a surgeon,

in case he has to assist a colleague.

Once activities that directly involve Operating Theater have been analyzed we evalu-

ated which could be the set of resources that could indirectly impact on OT planning.

Beds availability will not be considered in the model since the number of beds currently

dedicated to the orthopedic department appears to be relatively abundant if compared

to historical demand and therefore it does not constraint surgical activities. That is not

the case for anesthetic appointment management that, according to department man-

agers, is an element of great importance that is at the moment poorly planned. In a

similar way autologous blood donation is a preoperative activity that must be planned

in relation with surgical activities. Autologous blood donation is strongly promoted

by national and regional guidelines since the planning of the blood drawing samples

of patients who may have to undergo blood transfusions during surgery is important

for several reasons. Autologous blood donation can lead to patient self-sufficiency in

terms of blood needs during surgery and can also reduce the volume of requests to

Hospital blood bank that has a limited number of blood bags shared by all the oper-

ating units in the hospital. Autologous blood donation is characterized by two blood

samples the first that has to be organized at least three weeks before the surgery day

and the second that must be taken at least one week before surgery.

4.4.2 Problem formulation

Let I be the set of patients inserted in waiting lists, K the set of operating rooms and

T the set of days in planning time horizon. We consider as planing time horizon a

period T equal to one month before the first surgery day and we define the last five

working days of period T as the ones where surgery activities will be planned. We

define working days as the ones available for assignment because planned surgeries are
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usually performed from Monday to Friday. Each working day is subdivided in P time

slots. Given a set K of operating rooms and a time horizon T , we define the assignment

for the last week of the time horizon T of each operating room time slot to a surgery

unit. Let define Q the set of surgery cohorts, namely prosthetic and non-prosthetic

surgeries. The model we propose considers as a first decision variable the assignment

of operating room time slots to surgeons as follows:

gwktpq =


1 if time slot p on day t of operating room k is assigned to

surgeon w for class q surgeries

0 otherwise;

In order to distinguish if more than one type of surgery is performed we define variable:

ywktpr =


1 if during time slot p on day t of operating room k

a surgery of type r will be performed by surgeon w

0 otherwise;

Each operating unit time slot assigned is then filled with patients that are related to

the surgeon waiting list as follows:

xiktp =


1 if patient i is assigned to Operating room k on day t

in time slot p

0 otherwise;

Since not all patients in the waiting list can undergo surgery during the week of plan-

ning we define:

zi =

{
1 if patient i won’t undergo surgery on time horizon T

0 otherwise;

Pre-surgery anesthetist appointments will be managed by variables

ϕit =

{
1 if patient i is examined by an anesthetist on day t

0 otherwise;

εi =


1 if patient i will undergo surgery

and no anesthetist examination is planned

0 otherwise;

First pre-surgery autologous blood donation appointments will be managed by variable:
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σit =


1 if the first pre-surgery autologous blood donation appointment of

patient i is planned on day t

0 otherwise;

Second pre-surgery autologous blood donation appointments will be managed by vari-

able:

λit =


1 if the second pre-surgery autologous blood donation appointment of

patient i is planned on day t

0 otherwise;

ζi =


1 if patient i, will undergo surgery during the week of planning and

no autologous blood donation is planned

0 otherwise;

Variable fktp measures the overtime on operating room k on day t for time slot p and

variable ηkt the number of specialties assigned to k on day t exceeding the complexity

threshold M (see parameters table). Finally, variable ψt measures the number of

unused anesthetist appointments and variable Φt the number of unused blood donation

appointments.

The complete list of parameters is then reported in Table 4.2
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w surgeon index such that w = 1, 2, . . . ,m where m is the number of
surgeons

Iw Subset of patients that are in the waiting list of surgeon w
Iward Subset of patients that are in the general waiting

list of the Orthopedic Department
Cohortq Subset of surgery types that characterize q ∈ Q class of surgeries

(e.g. for q=1 three type of surgeries are defined, namely hip, knee and shoulder)
Ir Subset of patients that need to undergo surgery type r ∈ Cohortq
∆i Waiting time of patient i

π∆i
i Priority coefficient related to deadline proximity
ρi priority coefficient of patient i related to his clinical status
PWT Waiting time weight
Fkt Maximum number of overtime hours planned for operating room k on day t
Coverkt Overtime cost of operating room k on day t
POT Objective function overtime weight
PSP Objective function overlapping assignment
PB Objective function unplanned anesthetist appointments weight
PAV Objective function unused anesthetist appointments weight
M Maximum number of prosthetic surgery types that can be assigned

to the same operating room on the same time slot
Csurkt Cost related to exceeding number of different specialties

assigned to the same time slot
Lw Minimum number of surgery hours to be assigned to surgeon w
Uw Maximum number of surgery hours o be assigned to surgeon w
Lward Minimum number of patients coming from the ward waiting list

that should be planned in the week
Uward Maximum number of patients coming from the ward waiting list

that should be planned in the week
Skt Surgery time available on day t for operating room k
traumaktp Equal to 1 if on day t operating room k during time slot p

is dedicated to trauma surgeries
µi Clinical condition indicator, equal to 1 if patient i is classified as critical

and needs an anesthetist examination before surgery
hi Number of days that are suitable between anesthetist examination and surgery

time in order to guarantee further in depth examinations if necessary
Ct Number of anesthetist outpatient appointment slots available on day t
νi Clinical condition indicator, equal to 1 if patient i is classified as suitable

for autologous blood donation
Prelt Number of autologous blood donation outpatient appointment

slots available on day t
N “big M” value used to link xiktp and ywktpr variables
D Set of supporting surgeries define as follows: d =< w1, w2, rd >

where rd is the type of surgery for whichw1 needs the support of surgeon w2

Table 4.2: Orthopedic Department Operating Theater model parameters
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4.4.2.1 Mathematical formulation

The mathematical programming formulation reads as follows.

MinZ = PWT

∑
i∈I

∑
k∈K

|T |∑
t=|T |−4

P∑
p=1

ρiπ
∆i
i xiktp +

∑
i∈I

ρiπ
∆i+1
i zi

+

+POT
∑
k∈K

|T |∑
t=|T |−4

Coverkt

P∑
p=1

fktp + PSP
∑
k∈K

|T |∑
t=|T |−4

Csurktηkt+

+PV
∑
i∈I

εi + PAV

|T |−5∑
t=1

ψt + PBS
∑
i∈I

ζi + PB

|T |−5∑
t=1

Φt

∑
i∈Iw∩Ir

xiktp ≤ Nywktpr (4.21)

∀k ∈ K; ∀t = |T |−4, . . . , |T |; ∀w = 1, 2, . . . ,m; ∀p ∈ P ; ∀r ∈ Cohortq; ∀q ∈ Q

∑
i∈IWard∩Ir

xiktp ≤ N
m∑
w=1

ywktpr (4.22)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P ; ∀r ∈ Cohortq; ∀q ∈ Q

∑
i∈Ward

∑
k∈K

|T |∑
t=|T |−4

∑
p∈P

xiktp ≥ Lward (4.23)

∀w = 1, 2, . . . ,m

∑
i∈Ward

∑
k∈K

|T |∑
t=|T |−4

∑
p∈P

xiktp ≤ Uward (4.24)

∀w = 1, 2, . . . ,m

∑
k∈K

|T |∑
t=|T |−4

∑
p∈P

xiktp + zi = 1 ∀i ∈ I (4.25)
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∑
r∈Cohortq

ywktpr ≤ Sktpgwktpq (4.26)

∀w = 1, 2, . . . ,m; ∀k ∈ K; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P ; ∀q ∈ Q

m∑
w=1

∑
q∈Q

gwktpq = 1− traumaktp (4.27)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P

m∑
w=1

∑
r∈Cohort1

ywkt1r ≤M + ηkt (4.28)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |

m∑
w=1

∑
r∈Cohort1

ywkt2r = 0 (4.29)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |

∑
k∈K

|T |∑
t=|T |−4

∑
p∈P

∑
q∈Q

gwktpq ≥ Lw (4.30)

∀w = 1, 2, . . . ,m

∑
k∈K

|T |∑
t=|T |−4

∑
p∈P

∑
q∈Q

gwktpq ≤ Uw (4.31)

∀w = 1, 2, . . . ,m

∑
i∈Ir

xiktp ≤ Sktp (4.32)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P ; ∀r ∈ Cohort1

∑
i∈Ir

xiktp ≤ Sktp + fktp (4.33)

∀k ∈ K; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P ; ∀r ∈ Cohort2

|T |−5∑
t=1

ϕit + εi = µi(1− zi) (4.34)

∀i ∈ I
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∑
k∈K

∑
p∈P

µixiktp ≤
t−hi−1∑
a=1

ϕia + εi (4.35)

∀i ∈ I; ∀t = |T | − 4, . . . , |T |

∑
i∈I

ϕit + ψt = Ct (4.36)

∀t = 1, 2, . . . , |T | − 5

|T |−5∑
t=1

σit + ζi = νi(1− zi) (4.37)

∀i ∈ I

∑
k∈K

∑
p∈P

νixiktp ≤
t−19∑
a=1

σia + ζi (4.38)

∀i ∈ I; ∀t = |T | − 4, . . . , |T |

|T |−5∑
t=1

λit + ζi = νi(1− zi) (4.39)

∀i ∈ I

∑
k∈K

∑
p∈P

νixiktp − ζi ≤
t−6∑

a=t−14

λia (4.40)

∀i ∈ I; ∀t = |T | − 4, . . . , |T |

∑
i∈I

(σit + λit) + Φt = Prelt (4.41)

∀t = 1, 2, . . . , |T | − 5

∑
k∈K

∑
q∈Q

gwktpq ≤ Ew (4.42)

∀w = 1, 2, . . . ,m; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P

∑
k∈K

(yw1ktprd +
∑
q∈Q

∑
r∈Cohortq

yw2ktpr) ≤ 1 (4.43)

∀d ∈ D : d =< w1, w2, rd >; ∀t = |T | − 4, . . . , |T |; ∀p ∈ P
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xiktp ∈ {0, 1} (4.44)

∀i ∈ I, ∀t = |T | − 4, . . . , |T |, ∀p ∈ P,∀k ∈ K

ywktpr ∈ {0, 1} (4.45)

∀w = 1, 2, . . . ,m, ∀t = |T |−4, . . . , |T |, ∀p ∈ P,∀k ∈ K, ∀r ∈ Cohortq, ∀q ∈ Q

gwktpq ∈ {0, 1} (4.46)

∀w = 1, 2, . . . ,m, ∀t = |T | − 4, . . . , |T |, ∀p ∈ P,∀k ∈ K, ∀q ∈ Q

zi ∈ {0, 1} ∀i ∈ I (4.47)

ϕit ∈ {0, 1} ∀i ∈ I, ∀t = 1, . . . , |T | − 5 (4.48)

ψt ∈ {0, . . . , Ct} ∀t = 1, . . . , |T | − 5 (4.49)

εi ∈ {0, 1} ∀i ∈ I (4.50)

ζi ∈ {0, 1} ∀i ∈ I (4.51)

σit ∈ {0, 1} ∀i ∈ I, ∀t = 1, . . . , |T | − 5 (4.52)

λit ∈ {0, 1} ∀i ∈ I, ∀t = 1, . . . , |T | − 5 (4.53)

Φt ∈ {0, . . . , P relt} ∀t = 1, . . . , |T | − 5 (4.54)

ηkt ≥ 0 ∀t = |T | − 4, . . . , |T |,∀k ∈ K (4.55)

fktp ∈ {0, . . . , Fktp} ∀t = |T | − 4, . . . , |T |, ∀p ∈ P,∀k ∈ K (4.56)

The objective function minimizes the waiting time of patients, weighted by priority-

based clinical condition coefficients, and the penalty associated with exceeding deadline

associated with each patient. In addition, the objective function takes into account

the number of non-prosthetic interventions planned in overtime and the number of

different types of prosthetic interventions, scheduled during the same period in one

operating room. Finally, the objective function minimizes the number of unplanned

medical anesthetist appointments and blood samples, for patients defined as critical

or suitable for autologous blood donation. Constraint (4.21) are used to link the

binary variable ywktpr to the value assumed by xiktp by ensuring that, if a patient

surgery is planned for a specific time slot, then the operating room k is assigned to

his related surgeon w on day t, slot p for the type of surgeries related to patient’s

pathology r. Similarly, constraints (4.22) ensure that, if the patient belongs to the

ward waiting list, he can be assigned to every time slot assigned to every surgeon

if it fits with the type of surgeries that will be performed in the time slot. The

maximum and minimum number of surgeries that it is possible to run during each week

is defined by constraints (4.23) and (4.24) for each surgeon depending on Department

internal organization. Constraints (4.25) ensure, for each patient, that he can be either
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planned in a specific day, operating room and time slot or his surgery is postponed.

Constraints (4.26) activate variable gwktpq as a function of the value assumed by ywktpr.

In particular, with the constraints (4.27), we make sure that every operating room,

if not assigned to trauma management, must be dedicated to surgeries belonging to

the same class of programmable operations. Planning constraints related to prosthetic

surgeries characterize constraints (4.28) and (4.29), specifically, in (4.28) the maximum

number of different types of prosthetic surgeries that can be scheduled during the same

time slot is defined. Constraints (4.29), state that prothesis surgeries can be planned

only during morning time slots.

The number of time slots assigned to each surgeon is bounded by constraints (4.30)

and (4.31). Constraints (4.32) impose that the maximum number of prothesis surgeries

that can be planned in each period is bounded by Sktp, while constraints (4.33) define

the possibility of overtime for non-prosthetic surgeries.

Anesthetist appointment management for planned patients that have been classified

as critical is managed by constraints (4.34), (4.35) and (4.36). Specifically, constraints

(4.34) states that if a patient is selected for surgery and it has been classified as critical,

his anesthetist appointment can be planned at most in one day of the time horizon.

If an anesthetist consult is planned for the patient, constraints (4.35) impose that it

must be attended at least hi days before the surgery day. Constraints (4.36) manage

the planning of medical examinations taking into account the number of appointment

slots still available.

Similarly, the planning of autologous blood donation is handled in the constraints

(4.37), (4.38), (4.39), (4.40) and (4.41). Namely, constraints (4.37) and (4.39) ensure

that, if a patient is selected to undergo surgery and it has been defined as suitable

for autologous blood donation, both first and second sampling can be planned in at

most one day of the planning horizon. Constraints (4.38) ensure that, if the first blood

sample is taken, it is planned at least twenty days before the surgery date. As a

consequence of first sample planning, constraints (4.41) ensure that the second blood

sample must be executed in a range that goes from fifteen days to five days prior to

the surgery date. Constraint (4.41) manage the planning of blood sampling activities

taking into account the number of appointment slots still available. In constraints

(4.42) we require that each surgeon is not assigned to more than one operating room

in the same period. Since it is possible that, for certain types of intervention rd, some

surgeries must be managed together by two surgeons, constraints (4.42) require that

a surgeon w2 is not assigned to any operating room in the period in which he has to

support another surgeon w1.
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4.5 A tool to support the planning activities: results in-

terpretation

The practical model presented in Section 4.4 has been implemented on IBM ILOG

CPLEX Optimization Studio 12.5, and tested with realistic instances provided by a

Local Hospital Health department using perturbed data for privacy reasons.

In order to build a pilot study, the data were provided in an Excel file containing, for

each patient, his pseudo ID, priority class, the date of the admission in the waiting list

and the type of surgery he has to undergo. Since age information was available just

for a portion of the patients enrolled in the waiting list we assumed that the observed

age distribution is valid for all patients. In addition to patient’s basic data, informa-

tion regarding his critical status, and the subsequent need to schedule an anesthetist

appointment, as well as his suitability to autologous blood donation were defined. In

order to implement the model by using real information as input we implemented an

Access Data Base, through which it is also possible to obtain a clear representation of

output optimal schedules. It is known that a proposed plan not always turn to be a

feasible one since patients availability is not known in advance. After the definition of

the subset of patients that could undergo surgery during the week of planning, a phone

call to each of them has to be done in order to verify their availability. Since elective

patients are not in life-threatening condition they may decide to postpone the surgery.

It is then necessary to run again the optimization in order to define a new potential

subset of patients that will replace not available ones. The DB interface was created in

order to simplify the insertion of new patients on the list, the change of patients’ day

availabilities and the analysis of proposed schedules so as to facilitate the adoption by

medical managers. The DB interface may also be used as a tool for scenario analysis

developing a multi-week plan. As a consequence routines have been implemented in

order to remove from waiting lists patients that have been planned in previous weeks.

4.5.1 Real instances and results interpretation

The initial waiting list is composed by 1014 patients, 861 of them are waiting for a

non-prosthetic surgery while 153 need a prosthetic one. The mean waiting time of

prosthetic patients is 270 days. A detailed distribution of waiting times is shown in

figure 4.3.

Non-prosthetic patients have a mean waiting time of 428 days, significantly higher than

the one of the patients in the prosthetic waiting list. Figure 4.4 shows that in some

cases the waiting time can be larger than two years.

Waiting time distribution has to be evaluated according to the priority classification of

each patient. The waiting list is composed by 57 priority A patients and 11 of them are
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Figure 4.3: Non-prosthetic surgery waiting time absolute frequencies in weeks
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Figure 4.4: Prosthetic surgery waiting time absolute frequencies in weeks

waiting for a prothesic surgery. Figure 4.5 shows the waiting time absolute frequency

of priority A patients comparing prosthetic and non-prosthetic ones. It is important

to underline that only a few component of both prosthetic and non-prosthetic patients

is currently respecting the regional deadline.

As far as priority B class concerns there are 208 patients in the waiting list and 17.79%

of them are waiting for a prosthetic surgery. Figure 4.6 shows the waiting time absolute

frequency for both cohorts; in this case the deadline has not been passed by 37.84% of

prosthetic patients and 45.03% of prosthetic ones.
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Figure 4.5: A priority patients waiting time absolute frequencies in weeks
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Figure 4.6: B priority patients waiting time absolute frequencies in weeks

The number of patients still waiting increases with the decreasing of the priority level

since there are 272 priority C patients and 475 priority D ones still waiting for a surgery

treatment. Figures 4.7 and 4.8 shows the waiting time absolute frequency respectively

for class C and D patients. For both cohorts it is interesting to observe that there is an

increased percentage of patients that is not already missing the deadline. Respectively

73.13% and 66.67% for non-prosthetic and prosthetic patients of class C and 64.58%

and 88.33% for non-prosthetic and prosthetic patients of class D.

According to the data provided, 20 time slots per week may be assigned to surgeons

and usually some of them are reserved to trauma management (see Table 4.3). The

department has fifteen surgeons that may be active each week.

By consulting historical data on Operating Room weekly assignments it was possible

to define the minimum number Lw of periods assigned to each of the fifteen surgeons

working at the Department of Orthopedics. Since no information is available for the
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Figure 4.7: C priority patients waiting time absolute frequencies in weeks
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Figure 4.8: D priority patients waiting time absolute frequencies in weeks

Day Time slot Operating Room ID

Monday 8 AM - 2 PM 1
Tuesday 2 PM - 8 PM 1

Wednesday 8 AM - 2 PM 1
Friday 2 PM - 8 PM 1

Table 4.3: Time slots and operating rooms reserved for trauma management
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maximum number of assignments for each surgeon Uw we defined as a valid bound

the number of time slots that can be assigned to a single surgeon without violating

non-ubiquity constraints (4.42).

As already mentioned in Section 4.4, in each period (morning or afternoon sessions),

only surgeries related to the same class can be performed. Only by testing the model

with the real-world instances we realized that the optimal solution of the model con-

sisted only of non-prosthetic surgeries. This is due to the low percentage of patients

with very high waiting times that need to undergo a prosthetic surgery. Since the

department wants to ensure a minimum number of time slots per-week dedicated to

perform prosthetic surgeries due to organizational goals we added the following lower

bound on the number of time slots that have to be weekly assigned to prosthetic

activities.
m∑
w=1

∑
k∈K

|T |∑
t=|T |−4

∑
p∈P

gwktp1 ≥ Eprosthetic (4.57)

A slight strengthening of the model can be obtained by putting an upper bound on

the number of time slots assigned to each surgeon for prosthetic surgeries in relation

with the number of patients in need of prosthetic in the surgeon’s waiting list. More

precisely,
m∑
w=1

|T |∑
t=|T |−4

∑
p∈P

Skgwktp1 ≤ |Pw| ∀w = 1, 2, . . . ,m (4.58)

Note that in some cases |Pw| = 0 (where Pw := {Iw ∩ Ir : r ∈ Class1}), thus the effect

of constraints (4.58) is to fix variables to 0 simplifying the model.

As an output the optimization tool proposes two set of informations that are respec-

tively related to how operating room time slots are assigned to surgeons and which

patients have been assigned to operating room time slots.

At first we run the MIP model with an initial configuration of equal weights for all

objective function components and analyze the optimized schedule. Figure 4.9 shows

the output information regarding operating room time slots assignment to surgeons.

Each time slot that is not dedicated to trauma management is assigned to a surgeon

and the class of surgeries that will be perfumed is selected.

Figure 4.10 shows for each time slot which is the subset of patients that have been

selected for surgery. The first proposed approach shows that with the initial weights

configurations all possible overtime slots would be used in order to reduce overall pa-

tients waiting time that in most cases are already missing the priority-driven deadlines.

It is clear that the impact of overtime is, in this case, too low if compared to patients

long waiting time.

We then decided to tune the weighting coefficients in order to identify the configura-

tion that admits overtime just in case that deadlines are missing. This coefficient is



Chapter 4 Pre-operative activities and Operating Room planning: a local hospital
department case study 99

Figure 4.9: Operating room assignment sample with equal weights

Figure 4.10: Operating room planning sample with equal weights
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strongly influenced by the characteristics of the waiting lists. In theory overtime may

be admissible if and only if there is a patient that, if not planned in overtime, will not

undergo surgery before his deadline. This means that, observing priority coefficient

trend line in Figure 4.2a, the definition of the ratio between overtime weight POT and

waiting time weight PWT should be equal to four in order to admit overtime only in

case a patients is missing his deadline. Even if this approach could be reasonable from

a theoretical point of view it is clear that the long waiting times that characterize the

patients in the waiting list will lead to the utilization of all possible overtime (see Table

4.4).

Number of patients Number of surgeries Number of OR time slots CPU time Objective function value Gap %
performed in overtime

1014 12 16 190.60 4,262,171.45 0.00
970 12 16 265.14 1,991,193.91 0.00
928 12 16 140.00 1,314,310.51 0.00
887 12 16 561.67 906,458.50 0.00

Table 4.4: Real word instances results with overtime allowed only for patients miss-
ing their deadline

Observing Figure (4.2) it is then possible to affirm that an overtime discourage can

be achieved only by setting the overtime weighting factor POT up to three order of

magnitude higher than the waiting time one (see Figure 4.11 and Figure 4.12 for an

example of resulting planning).

Figure 4.11: Operating room planning sample
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Figure 4.12: Operating room assignment sample

The analysis of model outputs is also interesting in terms of number of time slots

dedicated to prosthetic surgeries. It is clear that waiting time imbalance between

prosthetic and non-prosthetic patients in waiting lists showed in figures 4.3 and 4.4

leads to a number of time slots assigned to prosthetic surgeries equal to the lower

bound that we imposed. If we observe the outputs not just for the initial waiting

list but over a one month planning horizon by applying a rolling planning approach

that clears the planned patients from the waiting list every time a new planning week

is evaluated, we see that after the third week of planning the number of time slots

assigned to prosthetic surgeries increases.

The proposed planning approach is at the moment not fully comparable with the hand-

made solutions. This is because the current approach is totally informal. Specifically,

each surgeon defines his own subset of patients after time slot assignment. The weekly

plan is not made one month in advance but in most cases two weeks in advance. Anes-

thetist appointments as well as autologous blood donations are at the moment poorly

planned. As far as anesthetist appointment concerns, there is no fixed number of ap-

pointments assigned to the orthopedic department, so, every time a critical patient is

planned, the surgeon staff tries to arrange an appointment and, if not possible, plans

an early hospitalization for the patient. The short advance in Operating Theater plan-

ning in some cases forbids an effective planning of autologous blood donation. Patients

selection follows a qualitative and informal approach in which the waiting list is an-

alyzed and patients with longer waiting times are selected after some considerations

based on their priority level. Every time a potential patient is identified, a phone call

is made in order to verify his availability on the proposed days. It is worth mentioning

that the handmade solution takes approximately one and a half to two hours to man-

ually define the surgical schedules while the proposed approach takes on average five

minutes to solve the problem and to propose solutions that can be iteratively adjusted

to accommodate specific needs.

To analyze the impact of the various components of the model and in particular of
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its complex and heterogeneous objective function, we decided to examine how the

relaxation or the strengthening of some constraints would affect the optimal proposed

solution.

We tested four alternative configurations:

1. Initial configuration;

2. Overtime disabled;

3. Political bound on minimum number of time slots assigned to surgeons disabled;

4. Initial configuration with one additional operating room.

Table 4.5 shows the results of the comparison of the four configurations. The tests

have been made on four instances that have been extracted from the initial waiting

list running the standard configured model over a two months planning horizon.

Instance ID Number of patients Number of OR Overtime enabled Bound enabled CPU time Objective function value Variation w.r.t.
(sec) base line configuration

0.1 1014 2 1 1 135.83 4,261,089.06 /
0.1 1014 2 0 1 73.84 4,265,938.06 0.114%
0.1 1014 2 1 0 105.26 4,258,092.06 -0.070%
0.1 1014 3 1 1 2454.86 4,247,993.06 -0.307%

0.2 970 2 1 1 155.77 2,001,231.38 /
0.2 970 2 0 1 64.16 2,004,402.39 0.158%
0.2 970 2 1 0 52.95 1,996,938.39 -0.215%
0.2 970 3 1 1 646.36 1,991,053.39 -0.509%

0.3 928 2 1 1 84.47 1,322,456.19 /
0.3 928 2 0 1 57.39 1,324,779.19 0.176%
0.3 928 2 1 0 91.71 1,319,353.19 -0.235%
0.3 928 3 1 1 1606.92 1,314,820.94 -0.577%

0.4 887 2 1 1 81.15 918,003.97 /
0.4 887 2 0 1 63.13 919,619.97 0.176%
0.4 887 2 1 0 70.65 915,434.97 -0.280%
0.4 887 3 1 1 202.35 911,884.97 -0.667%

Table 4.5: Computational results under different configurations

Initially, we evaluated the impact of overtime prohibition by comparing configuration

(1) and (2). Analyzing the various components of the objective function it is possible

to observe that, due to the high volume of patients missing their deadline, the waiting

time component is, by far, the most relevant one. It is then clear that a reduction

in terms of overtime is less attractive than a reduction in terms of patients waiting

time. As a consequence in all the four test instances that we used it is possible to

measure a worsening in terms of objective function value that is caused by the fact

that 12 patients less are planned in each tested instance. Since the number of potential

assignments is reduced it is also possible to observe that the computational time to

find an optimal solution is 35.99% lower for configuration (2) if compared to the initial

one.

If we then compare (1) and (3) configurations it is possible to observe a slight improve-

ment in terms of objective function solution value just by defining a different subset of

time slot assignment to surgeons. That is to say that the actual subdivision of oper-

ating room time slots to surgeons is not correlated with the real condition of patients



Chapter 4 Pre-operative activities and Operating Room planning: a local hospital
department case study 103

waiting in different lists. That is even more important because the improvement in

terms of solution quality is reached by planning exactly the same number of patients,

exploiting all possible regular and overtime time slots. We can then affirm that the

political bounds that is actually implemented in the department leads to suboptimal

solutions.

As a last comparison we took the results obtained by configuration (4) evaluating the

impact of an increase in the number of operating rooms assigned to the orthopedic

department. In this situation it is possible to see that all additional time slots related

to the new operating room would be used, thus increasing the number of patients

undergoing surgery in each planning week up to 30 more than the initial configuration.

This would result in an improvement in terms of final objective function value related

to waiting time reduction. This result is obtained at the price of higher computing

times that can, in some cases, get 10 times higher. As a final remark it is important

to point out that the increased number of operating rooms would lead, due to the

situation of the waiting lists, to an increase in terms of overtimes. As stated for (1)-

(2) comparison, the overtime component increase is, for the tested instances, of minor

importance if compared with the waiting time one.

If we focus our attention only on Table 4.5, the differences between the three proposed

policies seem to be very little in terms of overall waiting time reduction. That is not

the case if we analyze the impact of the four proposed policies over a wider planning

horizon. In order to do that, we defined as a starting point for all the four configurations

the initial waiting list and run a one month rolling planning for each of them.

Table 4.6 shows that, by increasing the time horizon, the differences between the

proposed policies clearly emerge. The comparison between configuration (1) and (2)

shows that the overtime disabling would lead to a performance worsening of 12.88%

that is mainly due to the decrease of 46 patients among the planned ones with a

resulting increase in terms of overall length of stay in the waiting list.

Instance ID Number of patients Number of OR Overtime enabled Bound enabled CPU time Objective function value Variation w.r.t.
(sec) base line configuration

0.1 1014 2 1 1 135.83 4,261,089.06
0.2 970 2 1 1 155.77 2,001,231.38
0.3 928 2 1 1 84.47 1,322,456.19
0.4 887 2 1 1 81.15 918,003.97

8,502,780.60 /

2.1 1014 2 0 1 73.84 4,265,938.06
2.2 982 2 0 1 66.77 2,293,036.92
2.3 950 2 0 1 65.55 1,715,845.56
2.4 918 2 0 1 77.47 1,323,454.50

9,598,275.04 12.88%

1.1 1014 2 1 0 105.26 4,258,092.06
1.2 970 2 1 0 107.56 1,963,624.92
1.3 926 2 1 0 80.4 1,089,167.58
1.4 883 2 1 0 72.92 717,039.59

8,027,924.14 -5.58%

3.1 1014 3 1 1 2454.86 4,247,993.06
3.2 940 3 1 1 468.38 1,289,106.92
3.3 869 3 1 1 421.83 600,397.58
3.4 798 3 1 1 479.98 284,630.58

6,422,128.14 -24.47%

Table 4.6: Computational results under different configurations over a 4 week plan-
ning horizon
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The impact of the assignment bounds can be measured evaluating configuration (3).

Even if the overall number of patients that undergo surgery in the planning period

is very similar (843 versus 839) the overall waiting time reduction would lead to a

5.58% decrease in terms of objective function value. That phenomenon strengthens

the perception that political bounds lead to heavily suboptimal solutions because they

forbid a planning cycle that follows overall patients needs. If we then evaluate the

assignment of an additional operating room to the orthopedic department we can

observe that an improvement in terms of objective function value equal to 24.47%

could be reached as a consequence of waiting time reduction. The additional operating

room would allow, over a one month planning horizon, to plan 112 additional patients,

thus reducing the number of them still missing their deadline.
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4.6 Conclusions

Healthcare system management (in terms of waiting list reduction), health care ap-

propriateness and resource utilization efficiency is a subject of great importance. The

increasing need of virtuous programming practices for health services and the sub-

sequent development of quantitative tools to support decision-making processes had

grown mainly for the set of activities that are considered most critical from the or-

ganizational point of view. Operating rooms planning is, among those studied by

operations management scientists, the one with the highest systemic impact due to

the number and the economic importance of involved resources. Operating rooms are

shared and limited resources, therefore they have a strong impact on hospitals both in

terms of quality of service provided to the patients and of economic and organizational

performance. In the presented chapter we analyzed the Operating Theater planning

problem from two perspectives. First, we designed a Mixed Integer Programming

model following benchmark guidelines that are defined by excellent Regional hospitals.

As a result we designed a model that is an hybridization of literature SCAP models

with the inclusion of regional-driven side constraints. The definition of the planning

objectives comes from the high level of importance that is given in Emilia-Romagna

(regional) guidelines to patient care. In particular a strong importance is given to the

respect of priority-driven guidelines. Computational experiments suggested that, even

if the data we used came from a big regional hospital trust, the problem can be easily

solved using a commercial MIP solver. The integration of not yet implemented or

poorly managed regional guidelines into the optimization tool emphasizes the impor-

tance of the case study as a driving factor to ease the planning of complex activities.

Another interesting factor that could be analyzed in the future is the impact of na-

tional and regional policies that aim at reducing the number of beds available for each

department and, in some cases, to consider shared beds among departments. Even if

the model in section 4.3 considers bed capacity, in Section 4.4 we have not considered

those resources because at the time of data mining they did not influence the final

solution. We are aware that a reduction in the number of available beds is now under

evaluation and it is plausible that in the future department OT planning will have to

consider those resources as active constraints that can reduce the overall number of

performed surgeries if they are not properly managed.
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Chapter 5

Kidney Exchange Problem: a

simulation-optimization approach
1

5.1 Introduction

Renal disease is a growing problem, affecting thousands of patients. Although a patient

can incur in hemodialysis treatment this is undesirable as the patients life quality is

severely hampered and the treatment has high costs. To solve this problem, the patients

traditionally enter in the local deceased donor list, where they hope to get a deceased

donor kidney for transplant. However organ demand largely overcomes organ supply, so

new alternatives have been developed. More recently some countries developed policies

where they allowed a patient to receive an organ from a living donor that volunteered

to donate a kidney. The donor is assumed to be emotionally or blood related with

the patient and must be compatible in order for the transplant to be performed. This

compatibility is tested both at blood and tissue-type level. When the pair is shown to

be incompatible there are several alternatives, depending on the country:

• the patient may start a desensitization treatment to progressively overcome his

donors HLA incompatibility. This treatment typically takes a long time and

incurs in high costs;

• the donor may hand over his kidney to a patient in the deceased donor list in

exchange for an higher position for his associated patient in the same list, however

the quality of a living donor organ is assumed to be much superior to an organ

provided by a deceased donor [Zenios, 2002];

1This chapter is based on Technical Report OR 14-8 (see Constantino et al. [2014])
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• both patient and donor may enter a kidney exchange program. In these programs

the donor will cede his organ to another patient in similar conditions in exchange

for a living donor kidney for his related patient.

This last option seems superior as the patient may hope to find an organ of similar

quality to the one that is given. The corresponding matching of patients is known as

the Kidney Exchange Problem (KEP).

Although the initial kidney exchange programs were composed exclusively of incom-

patible pairs they evolved continuously and nowadays may include: (i) patients that

have multiple incompatible donors; (ii) donors without an associated patient that are

willing to donate a kidney for no return, usually called altruistic donors; (iii) patients

that have a compatible donor but enter the exchange program hopping to find a higher

quality organ. A natural way of representing a KEP is through a directed graph. For

each patient/donor pair we create a vertex. If the donor of a given vertex is compatible

with the patient of another one we draw an arc from the first to the second to signal

the compatibility. In figure 5.1we show the example of a pool with three patient/donor

pairs. The donor of pair 1 is compatible with the patients of both pair 2 and pair 3.

The donor of pair 2 is compatible with the patient of pair 3 and the donor of pair 3 is

compatible with the patient of pair 1. Vertex 4 represents an altruistic donor that is

compatible with the patient of pair 2. The clearing of the problem may be achieved

both by using cycles (sequence of patient/donor pairs) or chains (sequence that starts

with an altruistic donor and afterwards includes patient/donor pairs). Note that in a

cycle, the donor of the last pair cedes its organ to the patient of the first pair, while

in chains and depending on the adopted policies, the donor of the last pair may give

his kidney to the deceased donor list or he may be used as an altruistic donor to start

another chain in the future. The second option is know as Never Ending Altruistic

Donor chain (NEAD) as the chain may be prolonged indefinitely. Cycles are also

characterized by the number of pairs included: if a cycle has two elements we say it

represents a two-way exchange. More generally if a cycle contains k is deemed a k-way

exchange. In the presented graph we can find a new transplant for each patient with:

a cycle c1 = {1, 3} and a chain h1 = {4, 2}; a single cycle c2 = {1, 2, 3}; a single chain

h2 = {4, 2, 3, 1}.

While the KEP is simple to state, its management is extremely hard since optimization,

logistic or even ethical questions may rise during each step of the process. In this work

we describe a simulation framework for the KEP. The developed tool is extremely

flexible, allowing to simulate different pool management policies and contains features

not found in other simulators. The proposed solution is also efficient, being able to

solve problems of realistic sizes. In the next sections of this work we review the work

related with the KEP and describe our proposed simulator for the problem. Finally

we conclude presenting computational results, conclusions and future work.
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Figure 5.1: KEP pool example

5.2 Literature review

First theoretical references to KEP are found in [Rapaport, 1986] and the first trans-

plantations following this paradigm took pace in 1991 in South Korea. Due to its

importance, the number of works related to this topic is growing rapidly since 2000.

There are two common approaches: static (offline) or dynamic (online). In the static

variant we have a fixed pool of patient/donor pairs that we want to clear according

to some criteria. In the dynamic case the pool evolves over time: pairs enter the pool

seeking for a new kidney and leave after getting one, or if there is another occurrence

such as sickness, pregnancy or even patient death. In the following subsection we

describe the most relevant (to our knowledge) work in both the static and dynamic

KEP and we provide a more detailed description of simulator features available in the

literature.

5.2.1 Static KEP

When dealing with a static pool of pairs the solution methods vary. When only 2-way

exchanges are considered the problem is solvable in polynomial time with the Edmonds

algorithm [Edmonds, 1965]. Similarly if we consider k-way exchanges, where k is equal

to the number of pairs, the problem is solvable in polynomial time as an assignment

problem. However studies show that if only two-way exchanges are considered an

important number transplants is missed [Roth et al., 2007]. The authors also show

that by including 3-way exchanges they capture most of the possible pairings and that

the advantage of including larger valued exchanges is marginal. Unfortunately, when

k ≥ 3 the clearing problem is NP-Hard [Abraham et al., 2007] and as the number

of patients in the pool increases the problem quickly becomes intractable. To solve

the KEP when exchanges greater than two are considered the great majority of works

use Mixed Integer Programming based either on the cycle or edge formulations also
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described in the same article. Still in the same article the authors describe a branch and

price algorithm developed to tackle very large pools. More recently Constantino et al.

[2013] proposed and analysed the performance of alternative compact formulations.

Recent focus on probabilistic KEP studies the impact of patient withdrawal and cross

match failure (not considered in the deterministic model). In Pedroso [2013] the author

proposes a method for computing the maximum expectation for the length of the

maximum set of vertex-disjoint cycles in a digraph where vertices and/or arcs have a

known probability of failure. The algorithm relies on prepared database of possible

configurations to speed up the process. Computational results are presented for both

deterministic and probabilistic scenarios.

5.2.2 Dynamic KEP

Considering dynamic KEP some early articles consider the allocation of cadaverous

kidneys and its interaction with a KEP.

Zenios et al. [2000] study the allocation of cadaverous kidneys to potential transplant

recipients. The authors develop a linear differential equation model and propose a

dynamic index policy based on the approximate analysis of the resulting optimal control

problem. A tri-criteria objective is considered, maximizing the quality-adjusted life

expectancy of transplant candidates and minimizing the likelihood of transplantation

of the various types of patients and the difference in mean waiting times across patient

types.

The same objective is considered in Zenios [2002] but applied to the case where the

donor has the option of making a direct or indirect exchange. They consider a double

ended queuing model for an exchange system with two types of donor candidate pairs.

An optimal dynamic exchange policy is obtained by invoking a Brownian approxima-

tion.

In Segev et al. [2005] the authors conduct a simulation study to evaluate waiting times

of different patients. The patients are characterized by factors such as blood type,

ethnicity and geographical distance and the authors suggests if a patient should enter

a kidney paired donation program or alternatively choose a desensitization treatment.

In Awasthi and Sandholm [2009] a trajectory-based online stochastic optimization

algorithm is proposed. At each step the algorithm analyses future scenarios before

committing to a decision. Afterwards the algorithm invokes an offline algorithm for

matching the maximum number of pairs.

In Ünver [2010] the authors propose efficient dynamic matching mechanisms for two-

way and multi-way exchanges. The model is based on blood type compatibility and

minimizes the average waiting cost.
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In Beccuti et al. [2011] the authors study the effect of considering different time intervals

between matches in the number of transplants performed and waiting times. The model

is based on patient’s blood compatibility and 2-way exchanges are allowed.

In Li et al. [2011] the authors propose a probabilistic graph model. To each edge in

the compatibility graph they associate a weight based on an utility function and a

probability of failure. After running the clearing algorithm a fall-back mode is also

considered, to compensate for patient withdrawal. Computational results are presented

based on a developed microsimulation platform. This work is further extended in Chen

et al. [2011] with the inclusion of altruistic donors and the development of a graphical

user interface simulation platform for managing KEP programs.

In Dickerson et al. [2012a] the authors introduce the concept of potentials. The main

idea is to penalize donors that can be matched with under demanded patients and

save them for the future. These weights are calculated based in blood compatibility

with a parameter tuning package. Computational results compare the total number of

transplants obtained in the weighted, unweighed and full information model.

In Dickerson et al. [2012b] the same authors study the influence of the size of altruistic

donor chains in the total number of transplants. In Dickerson et al. [2013] the authors

study theoretical and practical implications of the probabilistic graph model and chains

in the performance of the algorithm of Abraham et al. [2007] and propose new bounding

schemes to improve its scaling properties. Based on their previous experience they also

propose a bimodal distribution to model the failure probabilities of matching.

In Ashlagi et al. [2013] the authors study the effect of different waiting periods between

match runs, cycle size and chain inclusion in the total number of transplants. They

present a greedy algorithm that prioritises matching of high PRA patients and study its

behaviour for the online, offline and multiple waiting scheme variants of the problem.

5.2.3 Feature comparison

Although the previous subsection describes work done in the dynamic variant of the

KEP it is hard to compare the features and capabilities of the various simulators for

the problem. For a more throughout comparison we provide table 5.1 where the main

features are summarized in the columns.

In the first column we have the author information.

In the second column we describe the pool management system. More precisely: if

matchings are conducted dynamically (d) or if a static algorithm is invoked periodically

(s); information on how the compatibility graph is generated: more specifically if the

model considers blood compatibility, tissue compatibility or both (respectively B, T

and BT); and the maximum cycle size allowed.
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In the third column we describe particular simulator features that are not common

across all implementations: w if we are considering a weighted version of the problem;

eu if an expected utility function is used to express weights and probabilities between

the donors/patients; fb if the simulator includes a fall-back mechanism to minimize

the impact of drop outs; chn if the simulator considers altruistic donor chains, n

representing the maximum chain size allowed, when specified.

In the fourth column we describe the objective function considered in each article.

article pool extra objective

Segev et al. [2005] s, BT, 2 w maximize weighted number of transplants
Awasthi and Sandholm [2009] d, BT, 3 maximize number of transplants

Ünver [2010] d, B, n minimize discounted surplus
Beccuti et al. [2011] s, B, 2 maximize number of transplants

Li et al. [2011] s, BT, 3 eu, fb maximize expected utility
Chen et al. [2011] s, BT, 3 eu, fb, ch3 maximize expected utility

Dickerson et al. [2012a] s, BT, 3 w, ch maximize weighted number of transplants
Dickerson et al. [2012b] s, BT, 3 ch5 maximize number of transplants
Dickerson et al. [2013] s, BT, 3 eu, ch maximize expected utility

Ashlagi et al. [2013] s/d, T, 3 maximize number of transplants

Table 5.1: Comparison of simulator features

5.3 Simulator features

One of the greatest challenges of a Kidney Exchange Program is the choice of policies

that should be implemented in order to ensure an effective and fair management of

all included patients. Policy evaluation and validation through appropriate Decision

Support System (DSS) lead us to identify the need of an integrated tool that can

be used in order to evaluate, through simulation, how different policies can impact

outcomes of K.E. Programs.

In order to understand the implications of different policies of patient allocation and

pool management we developed a simulation tool for a realistic model of KEP pools

(see Figure 5.2). As stated in the previous section different techniques have been used

in order to model the dynamics of an exchange pool. We decided to implement the

simulation component via a Discrete Event Model. Discrete Event Simulation (DES)

modeling gives the possibility of representing the key elements of KEP in a simple and

straightforward way through the definition of entities and classes of events that can

occur during the dynamic evolution of the program.

The main goal of the implemented simulator is to take into consideration the widest

typology of actors that can be included into an exchange pool as well as the different

policies that can be used in order to manage the matching process. To achieve this

goal several national programs were studied (i.e. Portugal. UK, The Nederlands) and

their main characteristics were captured. The application is then able to test different

configurations regarding matching frequency and matching and pool characteristics.
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The simulator was developed in a modular way and has the following components:

• a configuration module where the user selects the parameters for running the

simulation and defines the distributions of the components;

• a data generation module responsible for generating data according to the spec-

ified distributions;

• a pool management module that will control the evolution of the simulation and

manage the succession of events that occur;

• an optimization module that calculates the matching of pairs in the pool for a

given time.

Figure 5.2: Simulation-optimization tool components interaction

In the following subsections we show a description of the modules.

5.3.1 Configuration module

The configuration module enables the user to set the characteristics of the simulator

in terms of pool composition and matching policy, namely:

• Inclusion of incompatible pair, incompatible pair and altruistic donor;

• HLA or PRA representation of patient and donors tissue type

• After matching crossmatch incompatibility evaluation

• Chain and cycle maximum length definition

• Matching run frequency

• Patient sickness temporary dropout



116 Chapter 5 Kidney Exchange Problem: a simulation-optimization approach

• Donor sickness temporary dropout

• Patient death permanent dropout

• Donor death permanent dropout

• Definition of weighted or maximum transplants matching rule

the following subsections we describe in detail all the features that can be enabled.

5.3.1.1 Pool Characteristics

We define as pool characteristics the typology of actors that will be considered as being

part of the Kidney Exchange program. Most of the papers related to KEP model just

incompatible pairs, but it is known that nowadays KEP programs have evolved from

this first definition of exchange pool. In the UK, as well as in the USA, exchange

pools are composed not only by incompatible pairs but also by compatible ones and

by altruistic donors. The introduction of this new kind of actors into exchange pools

expands the number of possible alternative matchings and lead to a more complex

definition and representation of actors and of graph building rules. It is necessary

to evaluate the improvements that a KE program can experience if those additional

actors are integrated in the exchange pool.

The configuration model of the simulation that we propose allows the user to select

if the pool is composed by incompatible patient/donor pairs, patients with multiple

donors, compatible pairs and altruistic donors. In the event of considering altruistic

donors the user is also able to determine what happens to the donor at the end of an

altruistic donor chain. More precisely if this donor is discarded or if he will be used as

an altruistic donor to start a future chain. In order to characterize the three classes of

actors that have been mentioned, a set of common attributes can be enabled during the

configuration phase so as to properly describe entity behavior within kidney exchange

pool. Patients and donors can be described through their blood type, tissue type and

age.

Blood type representation. Blood type can be considered has the first element

of compatibility evaluation. Blood type is determined by the presence of blood-type

proteins called A and B. As a consequence, it is possible to classify blood types in four

components, 0, A, B, and AB. A donor can donate a kidney to a recipient who has all

the blood-type proteins that the donor possesses, thus:

• 0 blood-type donors are blood-type compatible with all recipients;

• A blood-type donors are blood-type compatible with A and AB blood-type re-

cipients;



Chapter 5 Kidney Exchange Problem: a simulation-optimization approach 117

• B blood-type donors are blood-type compatible with B and AB blood-type re-

cipients;

• AB blood-type donors are blood-type compatible with AB blood-type recipients.

Compatibility evaluation can not be reduced to blood type test since it is possible

that a donor-recipient couple, even if blood type compatible, turns to be tissue type

incompatible. In this case donor-recipient pairs can be defined as incompatible if the

recipient has developed antibodies to at least one of the antigens that characterize the

donor tissue type. Antibody generation is a natural process that help to protect the

body against the invasion by foreign antigens. Antibodies can also be created by the

body to attack tissue, particularly the tissue of another human. Blood transfusions,

transplants, and pregnancy can trigger the production of specific antigen antibodies.

Tissue type compatibility can be then managed following two approaches: (i) detailed

Human Leukocite Antigen (HLA) proteins description, (ii) Panel Reactive Antibody

(PRA) probability classification (see Procurement and Network). The idea of the pre-

sented policy evaluation simulation-optimization approach is to implement a Decision

Support System tool that is as flexible as possible in order to be easily adapted to

national available datasets. As a consequence we implemented the two representations

of tissue type incompatibility.

HLA representation. As we stated above, tissue type incompatibility is related to

human leukocyte antigen (HLA) proteins that characterizes each human being DNA.

HLA compatibility is then performed testing the reaction between potential donor

and potential recipient tissues. Not all HLA information is relevant to evaluate tissue

type compatibility. We defined the subset of HLA information that should be incor-

porated in the configuration module following the ones that US Organ Procurement

and Transplantation Network (OPTN) currently record and use to evaluate potential

tissue incompatibilities (see table 5.2).

PRA representation. A panel reactive antibody test is a blood test that specif-

ically looks for tissue type incompatibilities measuring the level of PRAs that are

present in the recipient blood type; that is the reason why PRA levels are usually

recorded and monitored for all patients waiting for a kidney transplants. A patient,

after the PRA blood test, can then be classified as being high, medium or low with

respect to tissue sensitization. If antibody levels are high a patient is defined as highly

sensitized and a transplant with a donor organ can be difficult since the chances that

the body will reject the kidney increase. Panel reactive antibody levels are based on

percent measurements. The percentages of PRAs in the blood play a role in determin-

ing the likelihood of finding a matching donor. A low level sensitization means that the

recipient has a probability p ∈ [0, 0.09] of being tissue type incompatible to a generic
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A
1 2 3 9 10 11 19 23 24 25

26 28 29 30 31 32 33 34 36 43
66 68 69 74 80 203 210 2403 6601 6602

B
5 7 8 12 13 14 15 16 17 18

21 22 27 35 37 38 39 40 41 42
44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 67 70 71 72 73 75 76 77
78 81 82 703 804 1304 2708 3901 3902 3905

4005 5102 5103 7801 8201

BW
4 6

DR
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 103 1403
1404

DR51/52/53
51 52 53

DQ
1 2 3 4 5 6 7 8 9

Table 5.2: Recipient unacceptable antigens

donor, while for a medium level one the probability is p ∈]0.09, 0.8]. Highly sensitized

patients instead are tissue type incompatible with most of their potential donors since

the incompatibility probability cover almost all possible transplants (p ∈]0.8, 1]). As

for HLA, pregnancy, previous transplants and blood transfusions may increase panel

reactive antibody levels, even if these elements do not always result in a PRA in-

crease. PRA classification can then strongly influence patients waiting times before

a transplant is performed since it is more difficult to find a matching donor kidney

and it is also more likely to experience organ rejection. It is known that there are two

techniques, immunoadsorption and plasmapheresis that can successfully reduce panel

reactive antibody; since those treatments are difficult to model in terms of simulation

we decided that the first release of the simulator will not take them into account.

Crossmatch. PRA evaluation is a useful indicator of potential tissue type incom-

patibility even though it does not give a certain indication on specific donor-patient

incompatibility. In order to have an in-depth evaluation of tissue type incompatibil-

ity a cross match test has to be performed. Cross matching is a very sensitive and

final test that compares the tissue of the potential donor kidney with the one of the

theoretically matched recipient. These tests enable physicians to specifically define

how the recipient may respond to the transplanted kidney, evaluating if he will reject

it. As a final result these compatibility tests define if there is a positive or negative

crossmatch. A positive crossmatch means that the patient will reject the kidney and

then the transplant should not be carried out. A negative crossmatch instead means

that the transplant, if performed, should be safe.

PRA information and cross match distribution relationship have been studied in Glorie

[2012]. The author, given PRAj the PRA level of patient j, applies a probit regression

model to estimate the probability of a positive crossmatch after a negative virtual
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one as follows: Pr[Ti,j = 1 : PRAj = Φ(−1.5007 + 0.0170 ∗ PRAj) where Ti,j = 1

means that the crossmatch between donor i and patient jis positive. Figure 5.3, form

Glorie [2012], shows fitted probabilities approach trend. This crossmatch evaluation

technique can be enabled by the user.

Figure 5.3: Fitted probabilities

5.3.1.2 Simulation and matching policy

Once the pool configuration has been defined the user can decide which is the planning

policy that he would like to test, which is the behavior of the pool in terms of dropouts

and define the planning horizon on which he would like to evaluate the effectiveness of

the proposed policy. The user is then able to define the matching rule, the number of

runs that will determine the studied running time of the experiment and enable warm

up period if the user prefers not to start from an empty pool before relevant statistics

start being gathered. The simulator allows two matching rule, a frequency driven and

an arrival driven one. Frequency-driven option enable the user to define fixed times

between two consecutive matching runs. The frequency of matching can be selected

by the user so as to allow a comparison of KEP effectiveness with respect to matching

frequency. Arrival-driven option triggers a matching every time a new entity enters

the pool. The configuration module can then be considered as a tuning factor for both

the simulation and optimization components.

Patient and donors additional behavior characteristics. As far as the sim-

ulation component concerns the user can decide if the crossmatch test, that has been

described in subsection 5.3.1.1, is considered during the experimental analysis. If

crossmatch testing is enabled a test is performed after each matching for the subset of
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entities that are candidate for transplantation. In case a positive crossmatch is found

both patients and donors involved in the exchange rejoin the pool.

It is also possible to include probabilistic information to characterize the uncertainties

related with the KEP. As we are modeling the dynamic evolution of a matching pool

it is clear that between two consecutive matchings it could happen that patients or

donors can exit the pool, temporarily or permanently. Uncertainties can be related

to patient or donors length of stay in the pool due to age-related death or sickness

causes. It can happen that a recipient got sick during the waiting period and can’t

perform a transplantation. This results in a temporary drop out of the entire entity

(recipient and related donor/donors) from the pool. In a similar way donors can

get sick and be temporary unavailable for transplantation. Donors sickness does not

automatically result in entity dropping out from the pool. If a donor of a recipient

with multiple incompatible donors gets sick only all compatible transplantations from

the donor that got sick to compatible recipients will not be taken in consideration. A

recipient, in case of donor sickness, becomes unavailable only if all its related donors

got sick. Sickness-related unavailability is modeled as an age-related probability of

being unavailable for one matching run. Patient and donors can also drop out due to

permanent unavailabilities as a consequence of serious sickness or death. This kind of

circumstance can lead to entity withdrawal in case of recipients involvement or if all

donors related to the recipient are permanently unavailable. In case serious sickness or

death occur for a donor of a multiple donor incompatible entity then only the donor

becomes permanently unavailable while the remaining available donors and the related

recipient remains in the pool.

Matching policy definition. The user can decide if the optimization component

has to characterize the degree of compatibility between pairs or not. If weighted com-

patibility is selected an utility function is used to feed the solver. If no utility function

is selected the optimal solution will be considered in terms of maximum number of

matched pairs. In addition to weights selection, the user is also able to set up the

matching parameters defining the maximum cycle and maximum chain size allowed.

Given k1 and k2, respectively maximum length of cycle and chain, the optimization

component could be theoretically set up with any value.

Besides selecting which features will be considered in the simulation the user is also

prompted to define the distributions of the selected features through the Data gener-

ation module.

5.3.2 Data generation module

After configuration is complete the simulator steps into the data generation module.

At this point all information that will be used during the simulation is generated and
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stored.

5.3.2.1 Patient and donor generation

The system starts by generating pairs of the selected types as requested in the specified

distributions to match the requested ABO, PRA and age parameters.

Patient characteristics generation procedure. At first a random number uni-

formly distributed in [0, 1] is generated and used to define if the patient will be 0,

A, B or AB blood type. Blood type labeling is based on incoming patients histori-

cally recorded distributions. The utilization of this information prevents a potential

mis-representation of blood type assignment that can happen if the probabilities are

based on the characteristic of patients in the pool in a given time stamp. In the latter

case the blood type percentages would not represent the real distribution of patient

blood types because they would be affected by under demanded pairs (see Sönmez and

Ünver [2010]). Once the blood type is defined, tissue type generation is executed. If

HLA feature is enabled the patient antigen and antibody profile is randomly generated

following the blood type approach. If PRA profiling is enabled, first Low, Medium or

Highly sensitization levels are randomly selected following national or local available

pool statistics. After the PRA class is defined, a specific PRA sensitization level is

generated for each patient. If the patient has been labeled as lowly sensitized, the PRA

level will be randomly selected in ]0, 0.09], if he is medium sensitized the random sam-

pling is defined with p ∈]0.09, 0.8]. Otherwise the probability is defined within ]0.8, 1]

interval. Finally the age is randomly assigned using historical data. Patient genera-

tion is run only for compatible or incompatible entity generation and different input

sources can be used for the two classes of entities. The number of related donors is the

last generated information. The module allows the generation of multiple donors just

for incompatible pairs. Once the patient characteristics have been defined the donor

characteristics generation procedure is called. The procedure is run a number of times

equal to the number of donors that should be related to the patient.

Donor characteristics generation procedure. As for the patient procedure at

first donor blood type generation is randomly defined. In case the donor generation

is related with a compatible patient a blood type compatibility check is performed

and if positive the entity is confirmed. In case of blood type compatibility during

incompatible donor generation we confirm that the couple is tissue type incompatible

after a crossmatch test. Age distribution is then randomly assigned using historical

data based on incoming donors age distribution. Different input sources can be used

for compatible, incompatible and altruistic donor generation.
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Simulation behavior generation procedure. In order to model pool dynamic

composition, incompatible, compatible and altruistic entities are generated and join the

pool with different frequencies. We describe entities arrival behaviour using a Poisson

distribution with mean value equal to λI for incompatible entities, λC for compatible

ones and λA for altruistic donors. That procedure is used in order to assign to each

generated pair the time in which it enters the pool. Finally, if dropout simulation is

enabled, the module randomly defines if and when the patient or the donor will dropout

in a temporary or definitive way. The dropout probability is defined on historical data

based on age-based survival rates.

Compatibility graph generation procedure. The generation of an incoming

incompatible or compatible pair, as well as of an altruistic donor, entail an update in

terms of potential transplantations. The definition of new potential transplantations

is described tacking advantage of a graph representation of the kidney exchange pool

(see Algorithm 1). Graph theory is a natural framework to describe the Kidney Ex-

change Problem since the pool can be modelled as a directed graph G = (V,A) were

V is composed of vertices representing compatible and incompatible pairs, vertices

representing altruistic donors and vertices representing the expansion of patients with

multiple donors. More precisely, let P be the set of all patients in the pool and let

D(p) be the set of all donors related with patient p, for each patient donor combination

(p, d), ∀p ∈ P,∀d ∈ D(p) we consider a different vertex in the graph. This expansion

is essential to model kidney exchange programs where the weight of the arc between

two elements depends on both donors, e.g., age difference between donors. Conversely

A contains the arcs representing the compatibility between vertices. Each incoming

entity can then be represented as an additional vertex of the graph, or more than one

in case of multiple incompatible donors, and an additional set of arcs that depend

on potential donor-recipient compatibilities. A crossmatch graph is also generated to

represent the pairs that are found to be incompatible only after the referred test is

performed. This information will be progressively discovered as the simulation ad-

vances. Although values of the generated data may not be used during the current run

of the simulation by generating all data in advance the user is able to save the pool

information and test/compare afterwards with the results of using different matching

policies.
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Data: T theoretical compatibility arcs, C crossmatched arcs : C ⊂ T , P set of

patients in the pool

Result: T , C, P
p: incoming patient index;

Bp: blood type of incoming patient;

Prap: PRA level of incoming patient;

typ: type of the incoming entity;

(incompatible pair = 1, compatible pair = 2, altruistic donor = 3);

Dp: number of donors of incoming patient;

Bp,d: blood type of incoming donor d ∈ D(p);

ld label related to node of (p, d) pair;

foreach i ∈ P do

if typ = 1 or typ = 2 then

foreach k ∈ D(i) do cycle on each donor of the patient in the pool

if Bp compatible with Bi,k then

pr ← random number in [0, 1];

if pr ≤ Prap then

for d ∈ D(p) do cycle on each donor of the incoming patient

T = T ∪ (lk, ld);

pr′ ← random number in [0, 1];

if pr′ ≤ Φ(−1.5007 + 0.0170 ∗ Prap) then

C = C ∪ (lk, ld);

end

end

end

end

end

end

for d ∈ D(p) do

if Bi compatible with Bp,d then

pr ← random number in [0, 1];

if pr ≤ Prai then

for k ∈ D(i) do

T = T ∪ (ld, lk);

pr′ ← random number in [0, 1];

if pr′ ≤ Φ(−1.5007 + 0.0170 ∗ Prai) then

C = C ∪ (ld, lk);

end

end

end

end

end

end

P = P ∪ p
Algorithm 1: Compatibility and crossmatch arc update procedure
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5.3.3 Pool management module

With all configuration and data information available the pool evolution and manage-

ment is triggered. The pool management can be described by two main procedures:

a before matching procedure that describes the evolution of the pool, and an after

matching one that cleans the pool from the matched patients and donors. The two

procedures are separated by the triggering of the Optimization module.

Before matching procedure. At each time, the engine checks if there are new

pairs to include in the pool, and similarly if any of the current pairs exceeded the

maximum allowed time or is temporarily unavailable updating, if necessary, the Pt set

of active patients and related donors. Afterwards the pool management module builds

a compatibility graph based on the characteristics of the pairs that currently compose
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the pool (see Algorithm 2).

Data: C, T , Pt
Result: G = (V,A)

P̄ = ∅ (set of patients already inserted in the pool);

V = ∅;
A = ∅;
foreach p ∈ Pt do

Bp: blood type of patient p;

Prap: PRA level of patient p;

typ: type of entity p;

(incompatible pair = 1, compatible pair = 2, altruistic donor = 3);

Dp: number of donors of patient p;

Bp,d: blood type of donor d ∈ D(p) of patient p;

ld label related to node of (p, d) pair;

foreach i ∈ P̄ do

if typ = 1 or typ = 2 then

foreach k ∈ D(i) do cycle on each donor of the patient in the pool

if (lk, ld) ∈ T then

A = A ∪ (lk, ld);

end

end

end

for d ∈ D(p) do

V = V ∪ ld;

if (ld, lk) ∈ T then

A = A ∪ (ld, lk);

end

end

end

P̄ = P̄ ∪ p;
end

Algorithm 2: Graph generation procedure

As an example let us take the matching pool graph of Figure 5.4. The pool is composed

by two incompatible entities a compatible one and an altruistic donor. Incompatible

entity A has two donors (2,3) linked with recipient 1, incompatible entity B instead

has three donors (5,6,7) linked with recipient 4. Incompatible entities can’t perform

an exchange because none of the two donors of entity A is compatible with recipient

4. Instead donors 6 and 7 of entity B are compatible with recipient 1. Vertex 9 repre-

sents a compatible pair where the donor is compatible with recipients 1 and 4 and the

recipient is compatible only with donor 3. Finally vertex 10 represents an altruistic
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donor that is compatible only with recipient 4 (see Figure 5.4).

Figure 5.4: Matching pool graph

After matching procedure. After matching module checks which pairs were

selected for matching and, if required, applies the crossmatch test. In case a matching

involves an arc (ld, lk) that is in the crossmatch set C the cycle or chain is considered as

not performed and the theoretical matching set is updated as follows T = T \ (ld, lk).

Otherwise the matching is accepted and the set Pt of active patients in the pool is

updated. Afterwards the pool is updated and relevant statistics are stored.

The module then proceeds to the next time stamp. The process is repeated until the

required number of runs is fulfilled.

5.3.4 Optimization module

The optimization module gets the compatibility graph of the pairs and the pair de-

scription reads its configuration parameters and calls a Mixed Integer Programming

(MIP) solver to evaluate the possible matchings in the pool. The MIP is based on the

cycle formulation Abraham et al. [2007] with the extensions proposed in Constantino

et al. [2013]. The model considers the inclusion of both incompatible and compatible

pairs, altruistic donors and patients with multiple donors.

Let k denote the maximum cycle length allowed and k′ denote the maximum chain

length allowed. Let C(k, k′) be the set of all cycles and chains in G of size less or equal

than the referred. We define a variable zc for each element c ∈ C(k, k′) such that:
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zc =

{
1 if element c is selected for the exchange,

0 otherwise.

Taking V (c) ⊆ V as the set of vertices in element c and wc =
∑

(i,j)∈c
wij , the MIP model

is given by:

Maximize
∑

c∈C(k,k′)

wczc (5.1a)

Subject to:
∑
k∈D(i)

∑
c:i∈c

zc ≤ 1 ∀i ∈ P (5.1b)

zc ∈ {0, 1} ∀c ∈ C(k, k′). (5.1c)

Equation (5.1a) maximizes the weighted number of transplants. Constraints (5.1b)

ensure that a vertex is in at most a selected cycle/chain even if the vertex is associated

with a multiple donor. Note that the model includes unitary cycles representing com-

patible pairs. Their weight corresponds to the weight of the self-arc. Note also that

when considering NEAD chains, the multiple altruistic donors resulting from a patient

with multiple donors at the end of an altruistic donor chain in a previous time iteration

are still related. So equation (5.1b) guarantees that only one of them may be chosen

for transplant. As a consequence, in the previous example a potential matching that

maximizes the number of exchanges could be the cycle [6-1, 3-9, 9-4] or the altruistic

chain [10-4, 6-1] with the compatible pair having it’s own transplantation surgery (see

Figure 5.5).

(a) 3-cycle matching (b) 3-chain matching

Figure 5.5: Matching examples
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5.4 Simulation results

The simulation-optimization tool has been tested under multiple scenario configura-

tions in order to evaluate the impact of different policies regarding pool management

and matching management. Since nor Italian neither Portuguese data were available,

in order to fully feed the simulator characteristics, we decided to collect data from

datasources of different nations. As far as blood type configuration concerns we could

access to UK kidney exchange program data on incoming patients and donors. The UK

data have been used to describe patients and donors blood type distribution, number

of multiple donors per patient and inter arrival times of incompatible, compatible and

altruistic entities. Table 5.3 shows the blood type distribution for both patients and

donors. Tissue type incompatibility has ben modeled enabling the PRA configuration.

As we stated in subsection 5.3.1.1 patients can be defined as Lowly, Medium or Highly

sensitized. We use Dutch national data presented in Glorie et al. [2013] where 48%

of patients involved in KEP programs are classified as low sensitized, 35% as Medium

sensitized, and 17% of them as Highly sensitized.

Blood Type Patients Donors

0 57.509% 31.119 %
A 24.908% 50.349%
B 15.385% 15.385%

AB 2.198% 3.147%

Table 5.3: Blood type distribution

Since we were not able to get detailed information regarding UK patients age and

death related probability, we used United States Renal Data System data (see Table

5.4 and 5.5).

Age Band Donors Patients

0-17 0% 6%
18-34 19% 26%
35-49 38% 31%
50-59 24% 20%
60-69 16% 14%
70-90 3% 3%

Table 5.4: Age distribution

The optimization component can potentially manage k-way cycles and k′-length chain

simultaneous transplantations, where k (k′) (donor-recipients) couples are involved in

the exchange. It is known that due to logistical issues, a k-way cycle can be performed

simultaneously only if 2k operating room are available. Since we decided to test the

model for a realistic case, at most 3-way cycles and 3-chain exchanges will be tested.
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Age Band Patient death Probability

0-4 8.2
5-9 0.9

10-14 0.7
15-19 1.2
20-29 2.8
30-39 4.1
40-49 5.9
50-59 9.7
60-64 13.5
65-69 17.4
70-74 22.1
75-79 28.8
80-84 37.5
85+ 49.3

Table 5.5: Death probabilities for patients with renal diseases

Matching frequency Cycle length Chain length Compatible pairs enabled Theoretical number of matched Total number of matched
pairs before crossmatch pairs after crossmatch

30 2 0 0 610 388
30 2 0 1 738 487
30 2 2 0 815 625
30 2 2 1 921 704
30 2 3 0 853 672
30 2 3 1 1003 786
30 3 0 0 854 452
30 3 0 1 1012 544
30 3 3 0 938 662
30 3 3 1 1124 771
60 2 0 0 627 397
60 2 0 1 747 493
60 2 2 0 806 608
60 2 2 1 941 716
60 2 3 0 895 688
60 2 3 1 1004 758
60 3 0 0 853 441
60 3 0 1 986 543
60 3 3 0 948 639
60 3 3 1 1098 731
90 2 0 0 616 399
90 2 0 1 750 499
90 2 2 0 806 613
90 2 2 1 984 737
90 2 3 0 901 667
90 2 3 1 1036 762
90 3 0 0 855 451
90 3 0 1 1024 545
90 3 3 0 936 612
90 3 3 1 1109 713

Table 5.6: Simulation runs under different policy and pool management configura-
tions
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We now present preliminary results simulating dynamic kidney exchange under the

model described above. Table 5.6 describes the simulation results comparing the im-

pact of potential matches and real ones after crossmatch test is performed. The first

column defines the matching frequency as the number of days between two consecu-

tive matching runs. We tested performances of KEP comparing monthly, bimonthly

and quarterly matching frequencies. The second column describes the cycle length

(we tested two or three way cycles). The third column describes the chain length. If

zero it means that altruistic donors are not considered, otherwise two or three length

chains are considered. The fourth column describes if compatible pairs are included in

the pool. The second to last column considers potential matching; that is to say the

number of matches that at each matching run could have been performed if no after

matching crossmatch evaluation was taken into consideration during the simulation

phase. The last column takes into consideration the real number of exchanges after

the crossmatch test is evaluated as described in subsection 5.3.3. We report extensive

simulation results for twenty replication runs. Patient inter-arrival time is equal to 2.6

days while both compatible pairs and altruistic donors have an average inter-arrival

time of 23.947 days. Let at first fix the matching frequency and compare the results

under different pool configurations.

5.4.1 Monthly matching frequency

The basic kidney exchange program considers only incompatible pairs with cycle length

two. Under this configuration the simulator lead to 388 transplantation over a five

year planning horizon after 20 replication runs. If we consider a modification in the

matching policy allowing 3-way exchanges we can observe that the number of matched

entities rises up to 16,66%. The effectiveness of 3-cycle exchanges compared to 2-way

ones is well known and has been already observed in Saidman et al. [2006] as well as in

Abraham et al. [2007]. If we then evaluate a change in the pool configuration enabling

compatibility pairs we can observe that one or two additional entities per matching

run would lead to an increase of 24.84% in case of two cycle setting with respect

to incompatible 2-cycle configuration, while for the 3-cycle length case the increase

would be equal to 39.90%. If we compare the relative improvement of compatible

inclusion fixing the number of cycles equal to 3-way we can observe a relative increase

in terms of transplants equal to 20.09%. The reduced impact of the compatible pair

inclusion for the 3-cycle case, if compared to the 2-cycle one, can be considered as a

consequence of after matching crossmatch testing. Three way exchanges are in some

way more vulnerable to crossmatch because if only one arc has a positive crossmatch

none of the three matched entities will undergo surgery. Till now we are considering

an arc configuration with weights all equal to one. As a consequence, the optimization

component looks for the solution with the highest number of transplants; it is clear
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that a more robust evaluation of cycles could lead to better final solutions (see Pedroso

[2013]).

If we then evaluate the impact of cycle length increase under a pool configuration that

contains both compatible and incompatible pairs we can observe that the increase in

terms of matched entities would be equal to 11.75%. Let then evaluate the configura-

tion of incompatible and altruistic donor inclusion in the pool with no compatible pairs

joining the exchange. Table 5.6 shows that in case of 2-cycle/2-chain configuration the

increase in terms of overall number of exchanges is equal to 61.08% that can rise up

to 70.77% if we increase both cycle and chain length. The increased level of exchanges

is at first sight unexpected since the inter-arrival time of compatible and altruistic

donors is equal. The gap in terms of compatible versus altruistic donors inclusion can

be explained as the result of three factors. At first we must say that, if we configure

the optimization module for a maximization in terms of number of transplants, all

compatible pairs will remain in the pool for at most one matching run. It is possible

to assert this since or the compatible entity will be contained in a 2/3 way cycle or

a self transplant is executed. A solution that does not take into consideration the

self-transplant if no other exchange is possible is considered a suboptimal one by the

optimization module since at least one more transplant is possible. Altruistic donors

instead does not leave the pool unless a chain is started. The second factor is related

to NEAD chains modeling that consider the donor of the last patient in the chain as

an altruistic one for the next matching run. The last factor is related to the different

impact of positive crossmatch on chains and cycles. Chains are less affected by this

phenomenon than cycles since, unless the positive crossmatch is between the altruis-

tic donor and the first patient of the chain, part of the proposed transplants can be

preserved.

Lastly we evaluate the results with both compatible pairs and altruistic donors en-

abled. For the 2-cycle, 2-chain configuration the increase in terms of number of final

transplantations is equal to 81.64% and a switch to 3-cycle, 3-chain configuration would

lead to an additional 6.02% increase (example in Figure 5.6).

(a) Graph at third monthly
matching

(b) Matched entities under 2-
cycle 2-chain policy

(c) Matched entities under 3-
cycle 3-chain policy

Figure 5.6: Comparison of matched entities with incompatible pairs with multiple
donors and altruistic donors enabled
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5.4.2 Bimonthly matching frequency

As we did for 30 days matching frequency it is possible to see that if only incompatible

pairs are considered, a 3-cycle exchange policy can lead to a 10.90% increase of final

transplantations if compared to the 2-cycle one. If compatibility pairs are enabled the

increase in terms of final transplantations would be equal to 24.16% in case of 2-cycle

setting and to 36.68% in case of 3-cycle one. We can then assert that doubling the

time between two consecutive matching does not affect the behavior of the pool. If

altruistic donors are included in the pool with no compatible pairs joining, the 2-cycle

2-chain configuration lead to an increase in terms of overall number of exchanges equal

to 53.07% for the 2-cycle, 2-chain configuration and to 60.73% for the 3-cycle, 3-chain

one. Lastly we evaluate the results with both compatible pairs and altruistic donors

enabled. For the 2-cycle, 2-chain configuration the increase in terms of number of

final transplantations is equal to 80.27% and a switch to 3-cycle, 3-chain configuration

would lead to an additional 2.09% increase.

5.4.3 Quarterly matching frequency

At last the lowest matching frequency has been evaluated. As for 30 and 60 days

matching frequency an increase of 12.98% of final transplantations can be observed in

case the maximaum cycle length rises from two to three. The inclusion of compatibility

pairs would be equal to an increase of 25.04% in case of 2-cycle setting and to 36.42% in

case of 3-way one, while the inclusion of altruistic donors would increase the number of

matchings up to 53.31% for the 3-cycle, 3-chain one. If both compatible and altruistic

donors can join the pool in the 2-cycle, 2-chain configuration the increase in terms of

number of final transplantations is equal to 84.64%.

If we then compare the exchange program performances under different frequency

configurations we can observe that an increase in terms of time between two consecutive

matchings does not substantially affect the number of matching entities. Theoretically

the number of overall exchanges should increase together with the increase of the

matching pool. That is to say that longer time between matching can lead to bigger

pool an then to an increase in the number of potential exchanges. That should be true

if we assume that once a pair enter the pool he can leave it only if a transplant has

been performed. Nevertheless patients and donors dropouts were usually overlooked in

most of the reviewed approaches. Our model instead takes into consideration patients

mortality and if we analyze the dynamic impact of this element on the exchange pool

we must consider that longer times between two consecutive matchings could lead to

higher probability that a patient dropout.
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5.4.4 Type distribution of matched entities

In the previous section we analyzed the impact of different policies in terms of overall

increase of matched entities. It is important to say that the inclusion of altruistic

donors and of compatible pairs in kidney exchange programs has to be evaluated in

terms of improvement for incompatible pairs. That is to say that we can assert that a

matching policy is more effective than another if we can measure an improvement in

terms of number of incompatible pairs matched. Table 5.7 shows the distribution of

matched entities under different policy configurations. We can then observe that the

inclusion of compatible pairs for the monthly matching 2-cycle policy can guarantee an

increase of 8% in terms of incompatible matched pairs, while the inclusion of altruistic

donors leads to a 16% rise. The most effective policy with a 30.2% increase is the

3-cycle 3-chain matching with compatible pairs and altruistic donor inclusion. The

improvements remain stable with the increase of the time between two consecutive

matchings.

Matching frequency Cycle length Chain length Compatible pairs enabled Incompatible Compatible Altruistic

30 2 0 0 388 0 0
30 2 0 1 419 68 0
30 2 2 0 451 0 174
30 2 2 1 453 68 184
30 2 3 0 454 0 218
30 2 3 1 479 67 239
30 3 0 0 452 0 0
30 3 0 1 474 70 0
30 3 3 0 476 0 186
30 3 3 1 505 70 197
60 2 0 0 397 0 0
60 2 0 1 427 67 0
60 2 2 0 444 0 164
60 2 2 1 462 70 185
60 2 3 0 473 0 215
60 2 3 1 477 66 215
60 3 0 0 441 0 0
60 3 0 1 473 70 0
60 3 3 0 472 0 166
60 3 3 1 492 68 171
90 2 0 0 399 0 0
90 2 0 1 429 70 0
90 2 2 0 480 72 185
90 2 2 1 480 72 185
90 2 3 0 471 0 196
90 2 3 1 485 68 210
90 3 0 0 451 0 0
90 3 0 1 475 69 0
90 3 3 0 461 0 151
90 3 3 1 497 71 146

Table 5.7: Number of matchings per entity type

5.4.5 Blood type analysis

The definition of number of matchings under different policy assumptions can be con-

sidered as the first factor of analysis while considering kidney exchanges. Nevertheless,

some useful insights can be reached analyzing blood type distribution of matched paris.

Table 5.8 shows the distribution of blood type among the incompatible patients that

have been matched. It is then possible to observe that matched patients blood type
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distribution, if compared with the one of table 5.3, is relatively composed by an higher

number of AB type patients and a reduced number of 0 type ones. This phenomenon

has been observed by Sönmez and Ünver [2010] that identifies 0-A, 0-B and 0-AB as un-

der demanded pairs. Observing the blood type distribution of donors, a 0-type patient

has a probability equal to 68.88% of being under demanded if he has only one related

donor. While if we analyze the AB-blood type patients we can justify the relative

increase in terms of blood type composition due to the fact that AB-0, AB-A, AB-B

pairs can be classified as overdemanded since the probability of an AB-type patient of

having a related donor with 0, A or B blood type is equal to 96.85%. If we analyze the

relative blood type distribution under different matching frequencies we can observe

that no real improvement can be reached increasing the time between matchings. That

is also true if we analyze the impact of compatible pairs inclusion or increase of cycle

length. We can then conclude that the simulation of kidney exchange program under

a maximum number of transplant optimization policy does not take into account, or

properly evaluate, the presence of over demanded and under demanded pairs. It is

then interesting to observe that the possibility of tuning the weights as an input pa-

rameter during the configuration phase is a feature of great importance in terms of

policy evaluation.

Matching frequency Cycle length Chain length Compatible pairs enabled Blood O Blood A Blood B Blood AB

30 2 0 0 41.53% 37.20% 18.13% 3.15%
30 2 0 1 44.12% 34.30% 18.11% 3.47%
30 2 2 0 42.76% 35.15% 18.86% 3.24%
30 2 2 1 45.09% 33.11% 18.44% 3.36%
30 2 3 0 42.51% 35.06% 19.30% 3.13%
30 2 3 1 45.75% 32.33% 18.89% 3.03%
30 3 0 0 42.21% 35.18% 19.62% 3.00%
30 3 0 1 44.11% 33.33% 19.39% 3.17%
30 3 3 0 43.66% 33.74% 19.83% 2.76%
30 3 3 1 46.27% 31.90% 18.92% 2.91%
60 2 0 0 42.75% 35.87% 18.37% 3.01%
60 2 0 1 44.79% 34.23% 17.64% 3.34%
60 2 2 0 42.94% 35.17% 18.94% 2.95%
60 2 2 1 44.62% 33.82% 18.55% 3.00%
60 2 3 0 42.70% 35.13% 19.23% 2.94%
60 2 3 1 44.92% 33.62% 18.72% 2.74%
60 3 0 0 41.85% 35.40% 19.78% 2.97%
60 3 0 1 44.56% 33.03% 19.35% 3.05%
60 3 3 0 43.26% 33.71% 20.20% 2.84%
60 3 3 1 44.76% 33.22% 19.35% 2.66%
90 2 0 0 41.92% 36.35% 18.64% 3.09%
90 2 0 1 45.92% 34.04% 17.06% 2.97%
90 2 2 0 43.24% 34.82% 19.01% 2.93%
90 2 2 1 44.95% 33.73% 18.23% 3.08%
90 2 3 0 42.39% 34.72% 19.66% 3.23%
90 2 3 1 44.90% 33.55% 18.73% 2.83%
90 3 0 0 41.50% 35.17% 20.08% 3.26%
90 3 0 1 43.81% 33.32% 19.95% 2.92%
90 3 3 0 42.27% 34.18% 20.42% 3.13%
90 3 3 1 45.30% 32.30% 19.42% 2.97%

Table 5.8: Blood type distribution of incompatible matched patients

5.4.6 Waiting time analysis

Blood type distribution and the probability of receiving a kidney can also affect the

waiting time of patients. Table 5.9 shows the patients waiting time for each class of

blood type. As suggested by the previous analysis on blood type distribution, it is
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possible to observe a strong difference between the waiting time of 0-type patients and

the one of AB-type ones. AB-blood type patients on average has to wait 63% less

than 0-type ones. This phenomenon is particularly stressed for the monthly frequency

policy, while an increase in the number of days between matching reduces the gap

between the two types of patients. The less penalizing policy can then be reached

with the inclusion of compatible pairs and altruistic donors under a 3-cycle/3-chain

policy. The comparison between policies under a waiting time point of view strongly

enforces the importance of increasing the length of both cycles and chains. If we focus

on 0-blood type patients and we take the incompatible pool configuration with 2-cycle

exchanges and monthly matching policy as the baseline scenario we can observe that

the inclusion of compatible pairs would reduce the waiting time before transplant of

6.62%, while the inclusion of altruistic donors under a 2-chain configuration seems to

help A, B and AB patients to the detriment of 0-type ones. If we observe the overall

waiting times and not just the ones related to the under demanded pairs, we can see

that the increase of time between two consecutive matchings has a general negative

impact on A, B and AB patients.

Matching frequency Cycle length Chain length Compatible pairs enabled Blood O Blood A Blood B Blood AB
(Days) (Days) (Days) (Days)

30 2 0 0 303.94 84.85 195.77 66.50
30 2 0 1 283.82 83.53 194.26 76.18
30 2 2 0 318.00 37.18 130.62 36.79
30 2 2 1 293.60 39.66 156.71 35.70
30 2 3 0 235.79 40.81 107.61 38.44
30 2 3 1 212.46 41.38 107.00 44.72
30 3 0 0 201.50 71.82 116.20 61.05
30 3 0 1 180.49 68.28 126.17 76.87
30 3 3 0 207.03 40.29 70.38 39.72
30 3 3 1 192.37 42.53 77.67 49.61
60 2 0 0 290.36 106.04 218.16 84.39
60 2 0 1 278.03 101.65 213.61 103.88
60 2 2 0 301.79 62.50 147.78 58.70
60 2 2 1 280.64 64.54 177.33 57.87
60 2 3 0 238.79 66.78 112.69 62.15
60 2 3 1 221.74 67.47 121.17 74.62
60 3 0 0 213.38 97.58 134.12 95.37
60 3 0 1 191.73 95.46 131.21 100.05
60 3 3 0 216.11 69.88 92.50 63.53
60 3 3 1 204.44 71.61 101.56 73.86
90 2 0 0 289.84 122.34 211.51 100.28
90 2 0 1 273.82 123.94 229.64 116.64
90 2 2 0 290.55 83.46 162.71 81.81
90 2 2 1 283.99 87.70 163.29 85.35
90 2 3 0 243.84 93.26 144.97 84.86
90 2 3 1 234.34 93.36 150.89 106.51
90 3 0 0 225.52 121.56 152.33 118.95
90 3 0 1 226.07 125.79 159.64 141.25
90 3 3 0 231.03 100.63 117.41 92.66
90 3 3 1 236.82 105.25 123.52 103.63

Table 5.9: Waiting times of incompatible matched patients
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5.5 Conclusions

In collaboration with INESC TEC, an R&D center in Porto, Portugal, we implemented

a simulation-optimization tool that gives the possibility to a policy maker to test dif-

ferent configurations regarding matching frequency, matching characteristics and pool

characteristics. Discrete Event Simulation modeling gives the possibility of represent-

ing the key elements of KEP in a simple and straightforward way through the definition

of entities and classes of events that can occur during the dynamic evolution of the

program. Most of the papers related to KEP model only incompatible pairs, but it

is known that nowadays KEP programs have evolved from this first definition of ex-

change pool. In the UK, as well as in the USA, exchange pools are composed not only

by incompatible pairs but also by compatible ones and by altruistic donors. The idea

of the implemented simulator is to take into consideration the widest typology of actors

that can take part to an exchange pool. Two main classes of events, the arrival of new

entities into pool and the matching, can describe KEP dynamics. As we are modeling

a policy making DSS tool, entity generation and matching rules can be modified in

order to evaluate exchange pool performances with different settings.

As far as entity arrival concerns, the tool allows policy makers to set the classes of

entities that will be simulated. It is possible to simulate exchange pools with all possible

combinations of incompatible entities, compatible entities and altruistic donors in order

to evaluate potential benefits that the inclusion of new classes of actors can bring to

incompatible recipients.

Matching rounds can be performed following different rules in order to test multiple

policies related to kidney exchange. The simulator invokes an optimization code that,

given graph characteristics as input, returns information about matched vertexes. The

optimization code can be tuned in order to define the kind of matching that are enabled.

We defined an input infrastructure that easily allows the modification of pool charac-

teristics so as to build a tool that can be used to test exchange policies for different

regional and national programs. We collected a set of data in order to test the pro-

posed approach under different configurations and we analyzed the results quantifying

exchange performance increase both in terms of pool characteristics and of matching

policy. We then observed that a lower matching frequency does not increase the num-

ber of final transplant because of dynamic dropout modeling. In addition we showed

that the inclusion of altruistic donors strongly increases the number of exchanges more

than compatible pairs one. Nevertheless the presented work has to be considered just

as a first step towards a more complete simulation tool that can simultaneously model

different national exchange programs and evaluate their integration in a unified euro-

pean matching pool. In addition an overtime optimization model has been developed

and it will be used in order to compare the implemented policies with the theoretical

maximum number of exchanges that could be reached under omniscience hypothesis.
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Chapter 6

Emergency Room Management

in Lazio, Italy 1

6.1 Introduction

The Department of Epidemiology of the Regional Health Service of Lazio, Italy (DEP-

Lazio in the following), a regional center for Health monitoring and management, is

currently involved in a project that aims at defining optimal allocation policies of pa-

tients to regional hospital network facilities. The reorganization of health centers in

order to deliver services in an effective way safeguarding economic sustainability is a

topic of increasing importance for Regional Health Services in Italy. In recent years

several inputs have been given, through financial laws, to reorganize hospitals infras-

tructure in order to decrease inefficiencies. Reorganization policies can be considered,

from a strategic point of view, as composed by two main decision elements: the defini-

tion of the subset of hospital facilities that should be active within the regional territory

and the allocation of demand of services to active facilities. Since the reorganization of

a Regional Health system in terms of facility location and service allocation is a task

of great complexity Regional mangers decided to focus their attention on Emergency

Departments (ED). EDs are a crucial access point to hospital network facilities and as

a consequence their management is a critical factor in order to improve system effec-

tiveness and efficiency. In Italy it is possible to state that the role of ED is even more

important than in other European countries since, in addition to real emergency and

urgency services, they have to face a set of demands that should instead be managed

by Primary care units or by General Practitioners.

Emergency Department characteristics. Emergency Departments can be de-

fined as an health facility that is dedicated to the management of emergency and

1This chapter is based on Technical Report OR 14-9 (see Leo et al. [2014])
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urgency treatments, that is to say to that spontaneous or traumatic pathological con-

ditions that need to be treated within a short period of time. Emergency activities are,

for their own nature, non elective and patients can reach ED facilities both by their

own or with the support of an ambulance. Due to the impossibility of planning patients

arrival, EDs have to provide an initial treatment for a wide number of diseases some

of which can be life-threatening. Since the set of patients that ask for treatments is

heterogeneous from the pathological point of view, the admission of patients is driven

by a priority-based policy. The stochastic nature of arrival times and of pathological

conditions can have a strong impact on workload and as a consequence on patient

waiting times and quality of care. It is then fundamental that priority assignment is

properly managed in order to meet patients’ needs according to their critical condi-

tion. The process of assigning priorities to patients is defined as triage and it is usually

coded at a regional or national level. Triage is a set of procedures that ensure, in the

best possible way, that patients with a more critical condition are admitted before the

others. The priority level is usually represented by a color code (white, green, yellow

and red) that defines the increasing need of care. For each patient the priority is usu-

ally defined just after the arrival by a dedicated operator. Triage procedure definition

is then fundamental to guarantee an immediate care for the patient, to identify the

priority level and the medical area that may treat him and, ranking lower priority

patients, to reduce waiting times. Triage activities can directly address the patient

to the most appropriate hospital ward in case of complex treatments, for less serious

ones the patient can be directly treated by Emergency Room (ER) physicians and

discharged. It is then important for health managers to plan ERs so as to meet a

set of objectives that can be in some cases conflicting. At first it is fundamental to

guarantee quality of care that is composed by treatment timeliness, according to the

patient health condition, and appropriateness, according to the patient pathological

condition. On the other hand the cost sustained to provide services has to be reduced

as much as possible safeguarding a minimum standard of care.

Literature Review. Operations Research has been widely applied to study ER

management issues such as capacity planning and patient flows using both optimiza-

tion and simulation techniques. Literature case studies can be classified according to

the set of decisions that are taken into consideration, including capacity planning, staff

scheduling and general planning for future development of the facility. Pure capacity

planning case studies evaluate the impact of resource resizing on patients waiting times.

It is then important to evaluate which is the degree of complexity of a comprehensive

simulation model. As an example in Connelly and Bair [2004] the authors consider

triage, prioritization and several staff level types as well as imaging studies, laboratory

studies, physical examination, nursing activity, consultations, and bedside procedures.

The model however does not consider technical resources reducing the potential analy-

sis of supply shortages. In Bagust et al. [1999] the authors show how capacity planning
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can provide an efficient patient flow by calculating the maximum occupancy level of

beds. In Wang et al. [2013] the authors define an analytical model to describe patient

flows in ER department taking into consideration scarce resources such as medical doc-

tors, nurses, beds and diagnostic machines. The model is used to evaluate the impact

of resource resizing policies. In a similar way in Komashie and Mousavi [2005] the

resizing of different resources is compared in order to identify which is the one that

mainly influences ER performances. Patients arrival pattern can be also simulated in

order to level the peak of resource utilization, leading to a significantly better planning

of staff and resources Sinreich and Marmor [2005]. In a similar study Sinreich and

Marmor [2004] arrival analysis allowed a reduction of patient turnaround times. ED

capacity management can be also analyzed from a different perspective through the

evaluation of how budget restrictions and workforce reduction can be faced preserv-

ing operational performances Sinreich and Jabali [2007]. In that case study patient

flow patterns are fixed and the main goal of the problem is to evaluate how staffing

management can influence waiting times.

It is clear that emergency department performances cannot be improved only by means

of resource resizing; advanced prioritization models as well as new organizational de-

signs can turn out to be more effective than simple capacity planning. In Konrad et al.

[2013] the authors evaluate the introduction of the so-called split-flow concept that is

an emerging approach to manage ED processes by a split of the patient flow according

to their acuity and enabling parallel processing. The model, applied to a real ED,

aims at reducing patients waiting times and system congestion. In Cochran and Roche

[2009] a new prioritization model for patients is evaluated taking in consideration pa-

tient acuity mix, arrival patterns and volumes and trying to minimize the walk-away

for patients waiting for a long time. In Kuban Altιnel and Ulaş [1996] simulation also

proved to be of great potential for the evaluation of future expansion of an ED by in-

creasing the understanding of the processes involved. An integration of simulation and

optimization techniques is presented in Yeh and Lin [2007]to reduce patient queuing

time. Modeling the complex behavior of an ED is a challenging task, due to interaction

of human and physical resources. Medical staff, for example, is rarely dedicated to one

patient or task. Instead, the staff treats several patients at a time while waiting for

other processes. This diversity of process interaction can be described as multitasking,

a common feature of ED operations even if rarely considered in planning models (see,

e.g., Gunal and Pidd [2006]).

Till now we focused our attention on Emergency Department planning considering this

organizational unit as a unique component that is externally influenced only by patient

arrivals. It is clear that ED inflow is strongly related to the definition of catchment

areas since this department and Hospitals in general usually cover the health needs of

a subset of the local population. Through ‘covering’ we mean that a specific (regional)

population cluster has as a reference point for health needs a specific hospital that

is usually defined on a distance basis. It is then clear that if we widen the focus of
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analysis we can develop capacity plans for hospitals and EDs taking in consideration

the fact that a reorganization can strongly influence the volume of activities and as

a consequence system performances both in terms of patient outcomes and quality of

service. As an example, in Chu and Chu [2000] the authors propose a modeling frame-

work to analyze the supply and demand matching of public hospital beds addressing

the planning issues of hospital locations and service allocations, which include new

service distribution as well as existing service redistribution. In Branas et al. [2000] an

optimization model is formulated using integer programming and heuristics, the goal

of the case study being to maximize coverage of severely injured patients by locating

trauma centers and aeromedical depots. Finally, in Harper et al. [2005] the authors

propose a discrete-event geographical location/allocation simulation model for evalu-

ating various options for the provision of services including the location of the service

centers, service capacities, geographical distribution of patients, and ease of access to

the health services.

Contribution. As already discussed triage is the first activity that is performed

when a patient reach the ER, this means that the classification of walk-ins and of

patients arrived with an ambulance can only affect the care pathway within the hospital

structure without taking in consideration the possibility that a better quality of care

or a shorter waiting time could have been reached if the patient would have been sent

to another ER.

The objective of the present study is to develop an hybrid model that considers both

ED workload and service allocation, evaluating what could be the impact of a remote

triage management that, anticipating the patient classification, can address popula-

tion requests to the first-aid structure, thus assuring the best possible service level. In

particular, the final objective of the case study is to develop an allocation policy for

Emergency Room requests in order to maximize quality of care and service timeliness.

In order to develop a regional allocation approach we must suppose that all requests

can be filtered at a regional level. That is to say that walk-in or ambulance referral that

have not been screened by the triage management center are not accepted. Clearly,

this is only an hypothetical scenario that is, however, very useful to define a reference

solution (as well as a reference methodology) in terms of service quality (to be defined

below), so as to evaluate, in comparison, new and more sophisticated allocation poli-

cies. In other words, the current case study establishes a benchmark solution with

respect to which the cost of a completely decentralized and loosely planned allocation

is computed.

As mentioned, the first required step is to appropriately define service quality indica-

tors, and we do distinguish two in particular.
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1. Travel time. An initial version of the model can evaluate how to assign requests

to Emergency Rooms in order to minimize the overall time needed to reach the

First aid facility. The travel time between the place where the call is made and

the hospital is an element of paramount importance since, if the patient has

compromised vital functions (consciousness, respiration, heart rate , shock ) and

is in life threatening conditions, the the time needed to reach the closest hospital

can strongly impact on the probability to survive.

2. Waiting time. As a second factor the workload of the emergency room, quan-

tifiable as “waiting time”, has to be evaluated. Using data from the Health

Emergency Information System , it is possible to empirically estimate the work-

load for the hospital for each day of week and time of day, in this way, the choice

of the structure, may be evaluated considering penalty coefficients “proportional

” to the estimated waiting time. Finally, each hospital can be classified according

to a penalty coefficient based on the quality of care provided, estimated by the

indicators of outcome and process of the Regional Program for the Evaluation

of Outcomes (see Fusco et al. [2012] and Renzi et al. [2012]). If, at the time

of the request, the patient’s symptoms are not clearly defined, a summary mea-

sure of hospital quality of care (taking into account some of the most relevant

indicators and proceeding to their synthesis) is applied. Otherwise, if a patient

has more defined symptoms, the penalty coefficient may be applied using specific

indicators according to the pathological area.

Chapter Organization. In Section 6.2 we discuss the details of the problem and we

introduce the required notation and definitions. In Section 6.3 a Mixed Integer Linear

Programming approach (MIP) is proposed and several properties and relaxations are

discussed. In Section 6.4 we extensively discuss computational experiments performed

by solving the MIP model on real-world instances provided by DEP-Lazio. Finally, in

Section 6.5 we draw some conclusions and discuss the use of the proposed optimization

approach.

6.2 Notation and Definitions

Given a positive integer τ , the time horizon of our analysis is modeled by discrete

ordered set T := {1, . . . , τ}, whose elements represent time slots. Let U be the set

of enumeration districts in which the territory under the authority of Lazio Region

is partitioned. Let V ⊆ U be the subset of districts in which an emergency room

department is located. Let d(u, v) the expected time duration of a trip from u ∈ U
to v ∈ V . We assume d(u, v) is constant over T . Let F be a set of certain first-aid

medical treatments that can be supplied by healthcare centers.
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Figure 6.1: Municipal districts of Lazio Region.

Emergency room departments. Let S be the set of emergency room departments

operating under the authority of Lazio Region. Each s ∈ S is modeled by a quadruple

composed by the following elements: (i) vs ∈ V is the district in which s is located;

(ii) Fs ⊆ F is the subset of specializations that s can offer; (iii) ws : R → R is

a function returning the expected time a patient has to wait at s before receiving

first-aid service; (iv) qs ∈ R|Fs| reports the quality of service for each specific medical

treatment in Fs, according to Lazio Region Evaluation Program for medical operations

results (PReValE).

Triage codes and pathologies of interest. Let C be the set of emergency room

codes that can be assigned by triage diagnosis. Let P be a subset of pathologies

that are known to be significant within emergency room management. Each p ∈ P is

characterized by a maximum estimated time tmax(p) that a person suffering p could

wait without medical control. Let fp ∈ F a specific medical treatment for treating p.

Our analysis focuses on three pathologies, namely ST Elevation Myocardial Infarction

(STEMI), Acute Myocardial Infarction (AMI) and Femoral Fracture (FF), which have

a remarkable impact on Lazio healthcare management system.

First-aid requests. Let R be the set of first-aid requests arising on the Lazio Re-

gion area, during time horizon T . Each r ∈ R is modeled by a quadruple (ur, tr, cr, pr),

where: ur ∈ U and tr ∈ T are resp. the district and the time slot in which r arises,

cr ∈ C is the expected triage code associated with r, namely its presumed emergency

level, and pr is the expected pathology, diagnosed in terms of subjective symptoms.

First-aid requests assignment problem. Let us given a set of emergency room

departments S and a set of first-aid requests R arising from a defined geographic area,

during a fixed time horizon T . An assignment of first-aid requests to emergency room

departments is feasible if the following conditions are satisfied:
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a) each request r = (ur, tr, cr, pr) ∈ R is assigned to exactly one emergency room

s = (vs, ws, Fs, qs) ∈ S;

b) s supplies suitable medical treatment for pr;

c) the expected duration of the trip from ur to vs does not exceed the maximum

estimated time for avoiding life-threatening, i.e., tmax(pr).

The goal is looking for feasible assignments that allow to maximize the overall benefit,

in terms of efficiency and effectiveness of supplied emergency room services.

6.3 A Mixed Integer Programming approach

In this section we introduce a basic MIP model for the problem (Section 6.3.1) and we

then discuss some interesting and useful mathematical properties (Section 6.3.2) and

relaxations (Section 6.3.3).

6.3.1 The Basic MIP model

In oder to define the backbone of the basic MIP model we need assignment variables

and constraints. More precisely, we introduce a binary variable xrs with r ∈ R, s ∈ S
for each assignment, such that xrs = 1 if and only if request r is assigned to emergency

room s. Thus, the following constraints guarantee a feasible assignment.∑
s∈S:
fpr∈Fs

xrs = 1 ∀r ∈ R (6.1)

xrs ≤ 1−min

{
1,

⌊
d(ur, vs)

tmax(pr)

⌋}
∀r ∈ R, ∀s ∈ S (6.2)

xrs ≥ 0 ∀r ∈ R, ∀s ∈ S (6.3)

Let observe that (6.1) makes each request r to be assigned to exactly one emergency

room department that is able to supply the required medical treatment; thus, both

conditions (a) and (b) are satisfied. Moreover, (6.2) avoids any assignment that does

not respect condition (c).

Evaluating efficiency. Our model allows to evaluate the efficiency of each as-

signment in terms of waiting time. We identify two time components, namely the

expected time a patient takes to reach the location of the assigned emergency room

and the expected time a patient has to wait for receiving medical treatment. The first

cost contribution is easily given by durvs , whereas the second is given by function ws.

In particular, ws allows to estimate the needed waiting time for processing all first-aid
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Figure 6.2: Example of piecewise linear convex function.

requests assigned to s. In our analysis, we model ws as a (convex) piecewise linear

function because we aim at penalizing emergency room overload situations.

Definition 6.1. Given ks nonnegative integers 0 < n1 < · · · < nks for each s ∈ S, let

ws(n) :=

ashn+ bsh nh ≤ n < nh+1 ∀h = 1, . . . , ks − 1

asksn+ bsks n ≥ nks
(6.4)

such that the following conditions hold:

ash < ash+1 ∀h = 1, . . . , ks − 1 (6.5)

bs1 = 0 (6.6)

bsh+1 = bsh +
(
ash − ash+1

)
nh. ∀h = 1, . . . , ks − 1 (6.7)

In our study, parameters ash have been estimated by analyzing real waiting time data

provided by DEP-Lazio. Moreover, since ws is a piecewise convex function, it is easy

to check that the following property holds:

ws(n) = max
h=1,...,ks

{ashn+ bsh} , (6.8)

i.e., for any value of (the number of patients waiting for medical treatment) n the

slope of the linear segment such that ni ≤ n < ni+1 is the leading one in (6.8). This is

depicted in Figure 6.2.

Let z̄ be the average waiting time of all emergency room departments of Lazio. In order

to balance emergency room departments workload, we introduce a fixed (overtime) cost

λ for each emergency room whose waiting time ws exceeds a constant threshold z̄. In

our computational experience, we discuss results for different value of λ.

Evaluating effectiveness. We evaluate the effectiveness of each assignment by

considering the quality of healthcare service for pathologies of interest. For each emer-

gency room s ∈ S, vector qs gives the quality for each medical treatment supplied by s.
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In particular, the quality of care service supplied by s for treating p is denoted by qsp

and it is computed according to two indicators, namely the ratio of medical treatments

for p over the total number of medical services supplied by s and the ratio of successful

clinical interventions for p. In our model, we relate qs components to time dimension

by introducing a suitable parameter γ, which expresses the amount of time a patient

is prepared to wait for achieving a one-percentage point improved service.

We are now ready to define the basic MIP formulation. Let nst be a nonnegative inte-

ger variable representing the total number of first-aid requests assigned to emergency

room s during time slot t. Let n̄s be a nonnegative integer constant corresponding

to the expected total number of patients who have been waiting or receiving medical

treatments in s at starting time of first time slot of T . Let αt ∈ [0, 1] a real-valued

constant that reports the expected ratio of patients who have required first-aid services

during t− 1, but are still waiting or receiving medical treatments during t. Let zst the

workload of s during t, estimated by waiting time function w. Let yst be a binary

variable such that yst = 1 if the total workload of s during t exceeds the fixed threshold

z̄. Thus, a MIP formulation of the problem follows:

(MIP)

min
∑
r∈R

∑
s∈S

d(ur, vs)xrs +
∑
t∈T

∑
s∈S

(zst + λyst )− γ
∑
s∈S

∑
p∈P

qsp
∑
r∈R:
pr=p

xrs (6.9)

s.t.

ns0 = n̄s ∀s ∈ S (6.10)

nst =
∑
r∈R:
tr=t

xrs ∀s ∈ S, ∀t ∈ T (6.11)

zst ≥ ash
(
αtn

s
t−1 + nst

)
+ bsh ∀h ∈ {1, . . . , ks}, ∀s ∈ S, ∀t ∈ T (6.12)

zst ≤ z̄ +Myst ∀s ∈ S, ∀t ∈ T (6.13)

xrs ∈ A ∩ {0, 1} ∀r ∈ R, ∀s ∈ S (6.14)

nst ∈ Z ∀s ∈ S, ∀t ∈ T ∪ {0} (6.15)

zst ∈ R ∀s ∈ S, ∀t ∈ T (6.16)

yst ∈ {0, 1} ∀s ∈ S, ∀t ∈ T (6.17)

where M is a suitable large real-valued constant and A ⊂ R|R|·|S| is the polytope given

by assignment constraints (6.1)-(6.3).
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Let us observe that any constraint (6.12) forces the corresponding zst variable to assume

the appropriate value of function w by exploiting property (6.8). In particular, zst
estimates the total waiting time of s during t by considering all requests assigned at

time slot t and the partial number of requests assigned at time slot t − 1, obtained

from ratio αt.

Moreover, it is easy to check that any constraint (6.13) forces the associated yst to 1 if

the total waiting time zst exceeds z̄. Let us observe that yst can get value 1 also when

the previous condition is not satisfied: in that case, the corresponding solution could

be feasible but not optimal because the objective function (6.9) is in minimization

form.

6.3.2 Integrality Property of the Assignment Variables

In the following we show how to simplify model (6.9)–(6.17) by exploiting some inte-

grality property of the assignment part of the model. First of all, we need a preliminary

result that characterizes the polytope associated with assignment variables and con-

straints.

Proposition 6.2. Given |S|·|T | integers νst , let polytope P ⊂ R|R|·|S| be the intersection

between A and the polyhedron in R|R|·|S| defined by the inequalities∑
r∈R:

tr=t, fpr∈Fs

xrs = νst ∀s ∈ S, ∀t ∈ T. (6.18)

Then, P is integral and the problem of optimizing a linear function over P is strongly

polynomial.

Proof. Let H(N,A) be a digraph with node set N := R ∪ (S × T ) and arc set A such

that: (i) each node is in bijection with either a request r ∈ R or a pair (s, t) ∈ S × T ;

(ii) each arc is in bijection with an ordered pair (r, (s, t)) that satisfies both conditions

d(ur, vs) ≤ tmax(pr) and fpr ∈ Fs. Moreover, let us consider the following formulation

of P: ∑
s∈S:

fpr∈Fs,
d(ur,vs)≤tmax(pr)

xrs = 1 ∀r ∈ R (6.19)

∑
r∈R:

tr=t, fpr∈Fs,
d(ur,vs)≤tmax(pr)

xrs = νst ∀s ∈ S, ∀t ∈ T (6.20)

0 ≤ xrs ≤ 1 ∀t ∈ R, s ∈ S (6.21)

where (6.19) and (6.20) are obtained by combining (6.2) respectively with (6.1) and

(6.18). Now, it easy to check that the constraints matrix associated with (6.19)-(6.21),
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called B, corresponds to the incidence matrix of H, thus B is totally unimodular, so it

follows that P is integral. In particular, P corresponds to the feasible region of a flow

problem associated with digraph H with demands dr = −1 for each r ∈ R, d(s,t) = νst
for each (s, t) ∈ S×T . Then, by **citation**, we can conclude that optimizing a linear

function over P is strongly polynomial.

Now, we are able to define an improved formulation in which the number of integer

variables is reduced from O(|R| · |S|+ |S| · |T |) to O(|S| · |T |).

Theorem 6.3. Let MIP′ be the mixed integer program obtained from MIP by relaxing

the integrality of variables xrs. Then, MIP and MIP′ have the same optimum value

and an optimal solution to MIP can be obtained from an optimal solution to MIP′ in

strongly polynomial time.

Proof. Let ω′ and ω be resp. the optimal solution values of MIP′ and MIP. In

general, ω′ ≤ ω holds since MIP′ is a relaxation of MIP. Let χ′ := (x′, n′, z′, y′)

be an optimal solution of MIP′ and let consider polytope P with νst = n′st for all

s ∈ S, t ∈ T . Then, let x? be an optimal solution obtained by maximizing func-

tion
∑

r∈R
∑

s∈S d(ur, vs)xrs − γ
∑

s∈S
∑

p∈P qsp
∑

r∈R:
pr=p

xrs over P. Due to Proposi-

tion 6.2, x? is integral and it can be computed in strongly polynomial time. Since

χ? := (x?, n′, z′, y′) is feasible for MIP′ and its corresponding objective function value

is less or equal to ω′, we have that χ? is an optimal solution to MIP′. Moreover, since

χ? is feasible for MIP, we can conclude that χ? is optimal also to MIP.

6.3.3 Relaxing Workload Balance

Let MIP0 be the mixed integer program obtained from MIP′ by relaxing constraints

(6.13) (and assuming λ = 0). In particular, MIP0 models the relaxation of MIP (6.9)–

(6.17) in which emergency rooms workloads are not required to be balanced. In the

following, we present a reformulation of MIP0 as a generalized min cost flow problem

on a suitable network.

Let D(N,A) be a digraph with node set N and arc set A, let b : N → R be a demand

function associated with nodes, let l, µ : A → R+ and a : A → R be respectively

capacity, gain and cost functions associated with arcs. A pseudoflow is a function

ϕ : A → R such that 0 ≤ ϕ(i, j) ≤ l(i, j) holds for all arcs (i, j) ∈ A. The generalized

min cost flow problem consists of finding a pseudoflow that minimizes the overall cost∑
(i,j)∈A a(i, j)ϕ(i, j) subject to the generalized flow conservation constraints

∑
(i,j)∈A

ϕ(i, j)−
∑

(j,i)∈A

µ(j, i)ϕ(j, i) = b(i) ∀i ∈ N.
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For each e = (i, j) ∈ A, let ē := (j, i) be the reverse arc corresponding to e and

let Ā denote the set of reverse arcs associated with A. For reverse arcs, gain and

cost functions respectively satisfy γ(ē) = 1/γ(e) and a(ē) = −a(e)/γ(e). Moreover,

given a pseudoflow ϕ, the residual capacity function lϕ : A ∪ Ā → R, is defined as

lϕ(e) = l(e)− ϕ(e) for each e ∈ A and lϕ(ē) = γ(e)ϕ(e). Then, let Dϕ(N, Ā, b, lϕ, γ, a)

be the residual network associated with ϕ. The gain of a cycle belonging to Dϕ is the

product of the gains of arcs that compose the cycle. A cycle of Dϕ whose gain is strictly

greater (resp. less) than one unit is called flow-generating (resp. flow-absorbing). A

bicycle is composed by a flow absorbing cycle and a flow generating cycle that are

arc-disjoint and connected by a path containing at least one node. We recall that a

feasible pseudoflow ϕ is optimal if and only if Dϕ does not contain any unit-gain cycle

or bicycle. For further details, the reader is referred to Ahuja et al. [1993], Goldberg

et al. [1989b].

The generalized min cost flow is a well-known optimization problem that has a wide

range of applications in many scientific area, as discussed in Ahuja et al. [1993]. It

belongs to the field of generalized flow, so it reduces to min cost flow by assuming

γ(e) = 1 for all e ∈ A. Since generalized min cost flow is a special case of linear

programming, it can be solved in polynomial time by ellipsoid method Karmarkar

[1984]. In literature, many other polynomial algorithms have been addressed, which

are based on linear programming as reported in Kapoor and Vaidya [1986], Vaidya

[1989], or explain combinatorial approaches, like in Goldberg et al. [1989a], Wayne

[2002]. While min cost flow can be solved in strongly polynomial time Tardos [1985], it

is unknown whether the generalized min cost flow problem admits strongly polynomial

algorithms. However, in Cohen and Megiddo [1994] it is shown that the problem is

strongly polynomial if there is a fixed number of arcs whose gain is either than one

unit.

In the following we characterize an instance of generalized min cost flow, denoted by

D(N,A, b, l, γ, a), which gives a combinatorial description of MIP0.

Let Ks := {1, . . . , ks} × T for each s ∈ S, R′ := R, S′ := S and T ′ := T . Then, let

D(N,A) be a digraph with node set

N = R ∪ S ∪ (S × T ) ∪K1 ∪ · · · ∪K|S| ∪ (S′ × T ′) ∪R′ ∪ S′,
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and arc set A =
⋃8
j=1Aj such that

A1 := {(r, (s, t)) : r ∈ R, s ∈ S, t ∈ T with rt = t, d(ur, vs) ≤ tmax(pr), fpr ∈ Fs}

A2 := {(s, (s, t)) : s ∈ S, t = 1}

A3 := {((s, t), (k, t)) : s ∈ S, t ∈ T, (k, t) ∈ Ks}

A4 := {((k, t), (s′, t′)) : s′ ∈ S′, t′ ∈ T ′, (k, t) ∈ Ks with s = s′, t = t′}

A5 := {((s′, t′), (s, t+ 1)) : s′ ∈ S′, t′ ∈ T ′ with t′ < |T ′|, s = s′, t = t′}

A6 := {((s′, t′ + 1), r′) : s′ ∈ S′, t′ ∈ T ′, r′ ∈ R′ with t′ < |T ′|, r′t = t′}

A7 := {((s′, t′), r′) : s′ ∈ S′, t′ = |T ′|, r′ ∈ R′ with r′t = |T ′|}

A8 := {((s′, t′), s′) : s′ ∈ S′, t′ = 1}.

Furthermore, let Rt := {r ∈ R : rt = t}; then, we are given

b(i) =



−1 i = r ∈ R

+1 i = r′ ∈ R′

−ns0 i = s ∈ S

+ns
′

0 i = s′ ∈ S′

0 i = (k, t) ∈ Ks ∀s ∈ S

0 i = (k′, t′) ∈ Ks′ ∀s′ ∈ S′;

l(e) =



1 e ∈ A1

ns0 e ∈ A2

nk − nk−1 e ∈ A3 ∪A4 with k < ks, n0 = 0

|Rt| − nk e ∈ A3 ∪A4 with k = ks, Rt := {r ∈ R : rt = t}

|Rt| e ∈ A5

αt|Rt| e ∈ A6

αt e ∈ A7

α0n
s
0 e ∈ A8

µ(e) =


αt e ∈ A5

1/αt e ∈ A6

1 e ∈ A \ (A5 ∪A6)

a(e) =


d(ur, vs)− γqsp e ∈ A1

ask e ∈ A3

0 e ∈ A \ (A1 ∪A3)

The following result states that the generalized min cost problem associated with

D(N,A, b, l, µ, a) is a relaxation of MIP0.
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Lemma 6.4. For each feasible solution χ to MIP0 there exists a feasible pseudoflow

ϕχ associated with D(N,A, b, l, µ, a) such that χ and ϕχ have the same cost.

Proof. Let χ := (x, n, z) be a feasible solution of MIP0. For each s ∈ S, let hs the

largest integer in {1, . . . , ks} such that hs ≤ nst +αt−1n
s
t−1. Then, let ϕχ a pseudoflow

associated with D(N,A, b, l, µ, a) such that, for each r′ = r ∈ R, s′ = s ∈ S, t′ = t ∈ T

ϕχ(r, (s, t)) = xrs with tr = t (6.22)

ϕχ((s′, t′ + 1), r′) = αtxrs with tr = t, t < |T | (6.23)

ϕχ((s′, |T |), r′) = xrs with tr = |T | (6.24)

ϕχ(s, (s, t)) = ns0 with t = 1 (6.25)

ϕχ((s′, t′), s′) = αtn
s
0 with t = 1 (6.26)

ϕχ((s′, t′), (s, t+ 1)) = nst with t < |T | (6.27)

ϕχ((s, t), (k, t)) = nk − nk−1 ∀k ≤ hs (6.28)

ϕχ((s, t), (hs + 1, t)) = nst + αt−1n
s
t−1 − nhs . (6.29)

It is easy to check that ϕχ is feasible: capacity and pseudoflow conservation constraints

are satisfied. Moreover, let observe that (6.22) implies

∑
r∈R

∑
s∈S

d(ur, vs)− γ
∑
p∈P :
pr=p

qsp

xrs =
∑
r∈R

∑
s∈S

a(r, (s, t))ϕχ(r, (s, t)). (6.30)

By relation (6.8), the following condition holds:

zst = ashs+1

(
αtn

s
t−1 + nst

)
+ bshs+1 ∀s ∈ S, ∀t ∈ T. (6.31)

Then, by substituting (6.5)-(6.7) in (6.31), it follows that

zst = ashs+1(nst + αtn
s
t−1) +

hs∑
h=1

(ash − ash+1)nh =

ashs+1(nst + αt−1n
s
t−1 − nhs) +

hs∑
h=1

(nh − nh−1)ash =

a((s, t), (hs + 1, t))ϕχ((s, t), (hs + 1, t))

+

hs∑
h=1

a((s, t), (h, t))ϕχ((s, t), (h, t)).

(6.32)

Thus, relations (6.30) and (6.32) imply that χ and ϕχ have the same cost.

In general, the converse is not true, i.e., there exist feasible solutions of generalized min

cost flow over D(N,A, b, l, µ, a) that cannot be mapped into feasible solutions of MIP0.
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However, latter problems are equivalent under certain conditions, e.g., assuming αt = 1

for each t ∈ T ∪ {0}. In this case, the generalized min cost flow over D(N,A, b, l, µ, a)

reduces to min cost flow problem over D(N,A, b, l, a). Since demands and capacities

are integer, there exist integral optimal flows corresponding to feasible solutions of

MIP0, which are optimal by Lemma 6.4. Furthermore, we can show the following

result.

Theorem 6.5. Let us assume

min
r∈R

s,s̃∈S, s 6=s̃

{d(ur, vs)− d(ur, vs̃)} ≥ max
s,s̃∈S
s 6=s̃

{
asks − a

s̃
1

}
. (6.33)

Then, optimal solution to MIP0 can be computed in strongly polynomial time.

Proof. Let ϕ? be an optimal pseudoflow to generalized min cost flow problem associated

with D(N,A, b, l, µ, a). In general, ϕ? is not integral. Since the residual network Dϕ?

corresponding to ϕ? does not contain negative cycles, it easy to check that vertices

(s, t), (k, t), (s′, t′) form strictly positive cost cycles for each s ∈ S, t ∈ T with s′ = s

and t′ = t. Thus, it follows that relation (6.32) is satisfied. Moreover, (6.33) ensures

that for each (r, (s, t)) ∈ A such that 0 < ϕ?(r, (s, t)) < 1, there exists at least a null cost

cycle in Dϕ? that contains arc (r, (s, t)) and ((s, t), (k, t)) with residual capacity greater

or equal to 1 − ϕ?(r, (s, t)). Thus, an optimal integer pseudoflow ϕ′ can be obtained

from ϕ? by saturating O(|R|) null cost cycles. Then, we have that ϕ′ corresponds

to a feasible solution χ′ of MIP0, so we conclude that χ′ is optimal by Lemma 6.4.

Finally, by Cohen and Megiddo [1994], it follows that χ′ can be computed in strongly

polynomial time.

6.4 Computational Results

The computational experience focuses on a wide set of instances that are based on

real-world data from the Lazio emergency room department system during entire year

2012.

First-aid requests characteristics have been retrieved from the Hospitals Information

System (HIS)2 and the Emergency Room Information System (ERIS)3 of regional

healthcare services authority, by the support of DEP-Lazio. In particular, HIS manages

the Hospital Discharge Register (HDR)4 database, which maintains information of all

hospital admissions and discharges, by integrating patients personal details, healthcare

services supplied and medical treatment results. Lazio’s HDR provides additional

medical treatments information for STEMI, AMI and FF, which are the pathologies of

2Corresponding Italian acronym is SIO: “Sistema Informativo Ospedaliero”.
3Corresponding Italian acronym is SIES: “Sistema Informativo per l’Emergenza Sanitaria”.
4Corresponding Italian acronym is SDO: “Scheda di dimissione ospedaliera”.
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interest associated with our analysis. The ERIS integrates HIS database by supplying

specific and detailed information only for emergency room departments.

The description of regional emergency departments, with associated quality of service

information, has been retrieved from statistical studies carried out by DEP-Lazio,

which are based on regional and national evaluation programs for medical operations

results. For more details, we refer the reader to Fusco et al. [2012], Renzi et al. [2012].

The computational experience has been carried out on a x86-64 GNU/Linux machine

(CentOS 6.3) with 8 cores @2GHz and 16GB of RAM. We have generated instances of

MIP′ and MIP0 for each day of year 2012 by considering all 50 operating emergency

departments of Lazio. Then, we have achieved optimal solutions for all instances by

using IBM ILOG Cplex 12.5.1.

Table 6.1 summarizes computational results for MIP′ instances by reporting average

values for each month: in particular, i) the second column reports the average number

of emergency requests occurred in each day; ii) the third column reports the number

of infeasible instances, i.e., the number of days of the month in which at least one

request could not be correctly assigned according to the constraints of our model; iii)

the forth column shows the average optimal solution value of each day, while columns

fifth and sixth indicate cost contributions of waiting time functions (the sum of the zst
variables in (6.9)) and overall penalty time value (the sum of λyst terms), respectively;

iv) the last two columns report the average Cplex performance (in terms of elapsed

real computational time and total branch&bound nodes) that has been observed for

solving each (feasible) instance of the month.

Month Mean |R| Infeas. Optimum Waiting time Penalty time Cplex time Cplex nodes
(2012) (day) MIPs (min) (min) (min) (sec) (average)

1 4,300.4 8 60,297.63 25,360.77 2,899.85 111.316 3,209.1
2 3,980.9 6 55,943.78 23,570.66 2,838.61 109.878 3,387.1
3 4,323.1 5 61,418.85 25,859.72 2,888.61 122.203 3,231.3
4 4,287.2 5 60,861.64 25,599.72 2,894.28 131.929 3,384.2
5 4,493.5 7 63,015.01 26,568.41 2,924.67 137.239 3,409.3
6 4,590.0 7 64,929.66 27,427.35 2,990.86 148.866 3,371.1
7 4,409.1 8 62,458.13 26,341.63 2,977.74 139.629 3,311.0
8 4,229.0 4 59,870.97 25,180.69 2,932.98 132.760 3,257.4
9 3,996.3 0 56,082.89 23,604.62 2,859.93 113.067 3,305.0

10 4,154.2 10 58,111.27 24,425.29 2,874.46 112.856 3,395.1
11 4,112.7 11 57,930.31 24,405.94 2,902.58 114.509 3,382.1
12 4,025.8 8 56,399.67 23,862.90 2,822.65 119.214 3,295.8

Table 6.1: Computational experience.

The results in Table 6.1 show that MIP′ can be solved relatively easily by a sophis-

ticated MIP solver like Cplex 12.5.1. The number of instances that turn out to be

infeasible is relatively small, namely around 20%. The influence of the penalty term

associated with workload unbalance amounts at 10% of the term associated with the
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waiting time. In order to evaluate how important is the penalization of such an unbal-

ance we also solved MIP0 and the results are rather easy to interpret. Because MIP0

is a relaxation of MIP′, as discussed in Section 6.3.1, optimal values to MIP0 are on

average better of 5.36% than those of MIP′, but at the price of an increased waiting

time cost contribution, on average of 0.74%, due to the absence of workload balance.

We omit detailed results on MIP0 instances but it is worth mentioning that they are

very easy to solve both by using a combinatorial algorithm for generalized min cost

flow or by solving MIP0 with a general-purpose MIP solver like Cplex. In the latter

case, no branching is ever necessary.

As pointed out in the Introduction, the aim of the present study is to have a completely

offline picture of the effect of an optimal assignment of requests to Emergency Rooms in

Lazio and to use it to evaluate both the state of the art and future reorganization ideas.

To achieve this we compare in Table 6.2 real (observed) first-aid request assignments

during year 2012 with the optimal solutions of model MIP′. Specifically, Table 6.2

is organized as follows: i) second and third columns indicate the number of infeasible

assignments with respect to the violation of constraints (6.2) (each patient has to reach

an emergency room department within a suitable time according to kind of health

emergency) and (6.1) (each request has to be assigned to an emergency department

with a suitable specialization that allows to supply appropriate medical treatments),

respectively; ii) the forth column exhibits the average objective function value for each

day, while columns fifth and sixth specify cost contributions of waiting time functions

and overall penalty time value, respectively (analogously to Table 6.1); iii) the last

three columns report the average relative gaps between values of observed assignments

and optimal solution for the overall value and cost contributions of waiting and penalty

times, respectively.

Month Violated Violated Overall Waiting Penalty Overall Waiting Penalty
(2012) constr. (6.2) constr. (6.1) value (min) time (min) time (min) value (gap%) time (gap%) time (gap%)

1 2.0 360.4 101,437.07 47,964.39 3,851.36 40.18 46.69 24.58
2 2.0 299.2 91,175.49 42,848.48 3,818.35 38.86 45.01 25.79
3 1.6 362.6 102,101.16 48,415.55 3,870.28 40.05 46.73 25.38
4 2.0 361.1 101,898.65 48,231.42 3,862.21 40.57 47.24 25.13
5 1.5 370.4 105,827.41 50,405.02 3,886.48 40.37 47.19 24.80
6 2.0 383.1 110,125.15 51,671.08 3,923.45 41.27 47.19 23.76
7 1.8 343.5 108,814.64 48,679.28 3,944.40 42.90 46.07 24.47
8 2.5 361.5 109,621.28 46,288.93 3,949.02 45.15 45.39 25.72
9 1.9 301.8 93,799.83 43,309.37 3,874.65 40.19 45.43 26.19

10 2.0 320.5 96,755.77 45,338.37 3,852.34 39.32 45.33 25.32
11 1.7 335.2 95,445.33 45,136.85 3,838.66 40.06 46.79 24.52
12 1.8 357.5 94,010.21 44,578.50 3,818.23 40.00 46.22 26.16

Table 6.2: Comparing observed request allocations with optimized solutions.

The numbers in Table 6.2 immediately show that the solutions naturally obtained

without a centralized allocation strategy (for example a remote triage) violate many

of the constraints of MIP′, especially constraints (6.1) associated with suitable spe-

cialization. This information is especially interesting from a strategic (and practical)

standpoint: such a remote triage conducted in an effective way could have a remarkable
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impact to significantly reduce these violations that correspond to dangerous inefficiency

of the system. The rest of the numbers of Table 6.2 are instead interesting but not

easy to interpret. In a sense the objective function (6.9) is completely disregarded

by the observed request allocation system but maybe the part of it associated with

the minimization of the travel time. Thus, the absolute and relative difference of the

components of the objective function are less meaningful at this point in time, while

they will be more and more so when different reorganization settings will be evaluated.

6.5 Conclusions

The assignment of service requests to Emergency Rooms is of paramount importance

both from a life-threatening and an economical viewpoints. In the process of a more

general project that aims at defining optimal allocation policies of patients to regional

hospital network facilities, the Department of Epidemiology of the Regional Health

Service of Lazio, Italy was interested in obtaining a completely offline picture of the

effect of an optimal assignment of requests to Emergency Rooms so as to be able to

evaluate both the state of the art and future reorganization ideas.

We have implemented and tested with real-world data of all service requests of 2012 a

Mixed Integer Linear Programming model that computes such an optimal request allo-

cation by minimizing travel and waiting times and penalize workload unbalance among

emergency rooms in the region. Within the development process we have studied spe-

cial cases and relaxations of the complete model showing interesting mathematical

properties that are, in turn, useful from a practical viewpoint.

The present study is a first step in the evaluation process of centralized allocation

strategies like remote triage that could have a remarkable impact in making the allo-

cation process much more efficient and effective.
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