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Summary

This thesis describes the developments of new models and toolkits for the orbit
determination codes to support and improve the precise radio tracking experiments
of the Cassini-Huygens mission.

Cassini-Huygens is a joint NASA/ESA/ASI interplanetary mission dedicated to
the study of the Saturn’s planetary system which, composed by the planet Saturn
itself, its natural satellites and rings, is one of the most complex and interesting
planetary systems known. In the mission context, the radio science subsystem
provides fundamental information about the Saturn’s rings, its atmosphere and
ionosphere and the gravity fields of Saturn and its main satellites. In particular,
the determination of the gravity field of a celestial body plays a crucial role in
the investigation of its internal composition, structure and evolution, because it
provides one of the very few direct measurements of its internal mass distribution,
even if with various limitations. The gravity radio science is a particular application
of the precise orbit determination of an interplanetary spacecraft, which consists
in the estimation of a set of parameters that unambiguously defines its trajectory.
The core of the process is the comparison between measured observables and the
corresponding computed values, obtained by an orbit determination program using
the adopted mathematical models. Hence, disturbances in either the observed or
computed observables degrades the orbit determination process. While the different
sources of noise in the Doppler measurements were the subject of several studies
in the past, the errors in the computed Doppler observables were not previously
analyzed and characterized in details.

Chapter 2 describes a detailed study of the numerical errors in the Doppler
observables computed by the most important interplanetary orbit determination pro-
grams: NASA/JPL’s ODP (Orbit Determination Program) and MONTE (Mission-
analysis, Operations, and Navigation Toolkit Environment), and ESA/ESOC’s
AMFIN (Advanced Modular Facility for Interplanetary Navigation). During this
study a mathematical model of the numerical noise was developed. The model was
successfully validated analyzing directly the numerical noise in Doppler observables
computed by the ODP and MONTE, showing a relative error always smaller than
50%, with typical values better than 10%. An accurate prediction of the numer-
ical noise can be used to compute a proper noise budget in Doppler tracking of
interplanetary spacecraft. This represents a critical step for the design of future
interplanetary missions, both for radio science experiments, requiring the highest
level of accuracy, and spacecraft navigation. As a result, the numerical noise proved
to be, in general, an important source of noise in the orbit determination process
and, in some conditions, it may becomes the dominant noise source. On the basis
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of the numerical errors characterization, three different approaches to reduce the
numerical noise were proposed.

MONTE is the new orbit determination software developed since late 2000s by
the NASA/JPL. Only recently it was considered sufficiently stable to completely
replace the ODP for the orbit determination of all the operational missions managed
by the JPL. In parallel, MONTE replaced the ODP also for the analysis of radio
science gravity experiment, so new set-ups, toolkits and procedures were developed
to perform this task. In particular, to analyze the data acquired during the Cassini
gravity radio science experiments the use of a multi-arc procedure is crucial while,
at present, MONTE supports only a single-arc approach. Chapter 3 describes the
development of the multiarc MONTE-Python library, which allows to extend the
Monte capabilities to perform a multi-arc orbit determination. The library was
developed and successfully tested during the analysis of the Cassini radio science
gravity experiments of the Saturn’s satellite Rhea.

Discovered on 1672 by Giovanni Domenico Cassini, Rhea is the second largest
moon of Saturn. Before the Cassini arrival to Saturn, only the gravitational
parameter GM was known, from the analysis of Pioneer and Voyager data. During
its mission in the Saturn’s system, Cassini encountered Rhea four times, but only
two flybys were devoted to gravity investigations. The first gravity flyby, referred
to as R1 according to the numbering scheme used by the project Cassini, was
performed on November 2005. The radiometric data acquired during this encounter
were analyzed by the scientific community with two different approaches, obtaining
non-compatible estimations of the Rhea’s gravity field. A first approach assumed a
priori the hydrostatic equilibrium, deriving that Rhea’s interior is a homogeneous,
undifferentiated mixture of ice and rock, with possibly some compression of the
ice and transition from ice I and ice II at depth. A second approach computed an
unconstrained estimation of the quadrupole gravity field coefficients J2, C22 and S22,
obtaining a solution non statistically compatible with the condition of hydrostatic
equilibrium. In this case, no useful constraint on Rhea’s interior structure could be
imposed. To resolve these discrepancies, a second and last gravity fly-by of Rhea,
referred to as R4, was performed on March 2013. Chapter 4 presents the estimation
of the Rhea’s gravity field obtained from a joint multi-arc analysis of R1 and R4,
describing in details the spacecraft dynamical model used, the data selection and
calibration procedure, and the analysis method followed. In particular, the approach
of estimating the full unconstrained quadrupole gravity field was followed, obtaining
a solution statistically not compatible with the condition of hydrostatic equilibrium.
To test the stability of the solution, different multi-arc analysis were performed,
varying the data set, the strategy for the update of the satellite ephemerides and
the dynamical model. The solution proved to be stable and reliable. Given the
non-hydrostaticity, very few considerations about the internal structure of Rhea can
be made. In particular, the computation of the moment of inertia factor using the
Radau-Darwin equation can introduce large errors. Nonetheless, even by accounting
for this possible error, the normalized moment of inertia is in the range 0.37-0.4
indicating that Rhea’s may be almost homogeneous, or at least characterized by a
small degree of differentiation. The internal composition cannot be assessed with
more details with the available data but, unfortunately, no other gravity flybys are
scheduled up to the end of the mission in 2017.



Sommario

Questa tesi descrive lo sviluppo di nuovi modelli e strumenti per codici di
determinazion orbitale, per supportare e migliorare gli esperimenti di radio tracking
della missione Cassini-Huygens.

Cassini-Huygens è una missione spaziale interplanetaria dedicata allo studio
del sistema planetario di Saturno che, costituito dallo stesso pianeta Saturn, dalle
sue lune e dagli anelli, è uno dei sistemi planetari più complessi ed interessanti
del sistema solare. In questo contesto, il sottosistema di Radio Scienza fornisce
misure fondamentali degli anelli di Saturno, la sua atmosfera e ionosfera, e dei
campi gravitazionali di Saturno e dei suoi satelliti principali. In particolare, la
determinazione del campo di gravità di un corpo celeste ha un ruolo cruciale nello
studio della sua composizione interna, struttura ed evoluzione, in quanto costituisce
uno delle pochissime misure dirette della distribuzione interna della sua massa,
anche se non attraverso una relazione univoca. Gli esperimenti di radio scienza
dedicati alla gravità rappresentano una particolare applicazione del processo di
determinazione orbitale di un veicolo spaziale interplanetario, che consiste nella
stima di un insieme di parametri che definisce univocamente la sua traiettoria. Il
processo di stima è basato sulla comparazione tra le reali misure ottenute a terra
e i corrispondenti valori simulati usando dei modelli matematici. Di conseguenza,
la stima viene degradata sia da errori sulle misure, sia da errori sulle osservabili
simulate. Mentre le diverse sorgenti di rumore di misura sono state oggetto in
passato di diversi studi, gli errori sulle osservabili simulate non sono stati mai
analizzati in dettaglio.

Il Capitolo 2 descrive uno studio approfondito dei rumori numerici che carat-
terizzano le osservabili calcolate attraverso i principali software di determinazione
orbitale: ODP e MONTE del NASA/JPL, e AMFIN di ESA/ESOC. Durante questo
studio un modello matematico del rumore numerico è stato sviluppato. Il modello è
stato validato analizzato direttamente il rumore numerico sulle osservabili Doppler
calcolate da ODP e da MONTE, mostrando un errore relativo sempre inferiore
al 50%, con valori tipici inferiori al 10%. Una predizione accurata del rumore
numerico può essere usata per calcolare un più accurato noise budget del tracking
Doppler di missioni interplanetarie. Questo rappresenta un aspetto critico nello
sviluppo di future missioni, sia per la navigazione, sia per gli esperimenti di radio
scienza, che richiedono le accuratezze più elevate. In generale, il rumore numerico
si è rivelato essere un’importante sorgente di rumore nel processo di determinazione
orbitale e, in alcune condizioni, può rappresentare la sorgente di rumore dominante.
La caratterizzazione del rumore numerico ha permesso di identificare tre possibili
approcci per ridurre il rumore numerico.
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MONTE è il nuovo software di determinazione orbitale sviluppato sin dalla fine
degli anni 2000 dal NASA/JPL. Solo recentemente MONTE è stato considerato
sufficientemente stabile per sostituire completamente ODP nella determinazione
orbitale delle missioni operative gestite dal JPL. Di conseguenza, MONTE ha
sostituito ODP anche nell’analisi degli esperimenti di radio scienza, e a questo
scopo nuovi set-up, strumenti e procedure sono stati sviluppati. In particolare,
l’utilizzo del metodo multi-arco è fondamentale per l’analisi dei dati acquisiti durante
gli esperimenti di radio scienza di Cassini dedicati alla gravità ma, attualmente,
MONTE supporta solo il metodo singolo arco. Il Capitolo 3 descrive lo sviluppo e le
caratteristiche della libreria MONTE-Python multiarc, che permette di estendere le
funzionalità di Monte per effettuare analisi multi-arco. La libreria è stata sviluppata
e testata durante l’analisi degli esperimenti di radio scienza di Cassini dedicati alla
stima del campo di gravità di Rea.

Scoperto nel 1672 da Giovanni Domenico Cassini, Rea è il secondo più grande
satellite di Saturno. Prima dell’arrivo della missione Cassini a Saturno, solo il
GM di Rea era noto, attraverso l’analisi dei dati delle missioni Pioneer e Voyager.
Durante la missione di Cassini nel sistema di Saturno, sono stati realizzati quattro
fly-bys di Rea, di cui solo due dedicati alla stima del campo di gravità. Il primo
fly-by, denominato R1 secondo lo schema di numerazione usato dal progetto Cassini,
è stato effettuato nel Novembre 2005. I dati raccolti durante questo incontro
sono stati analizzati dalla comunità scientifica utilizzando due approcci differenti,
ottenendo stime del campo di gravità differenti e non compatibili tra loro. Una prima
soluzione fu ottenuta assumendo a priori la condizione di equilibrio idrostatico,
deducendo che Rhea è un miscuglio omogeneo, non differenziato, di ghiaccio e
roccia, con una possibile presenza di compressione del ghiaccio e transizione in
profondità da ghiaccio I a ghiaccio II. Una seconda soluzione, ottenuta stimando
un i coefficienti del campo di quadrupolo J2, C22 e S22 senza alcun vincolo, risultò
non essere statisticamente compatibile con la condizione di equilibrio idrostatico.
Di conseguenza alcun vincolo sulla possibile struttura interna di Rea potè essere
imposto. Per risolvere questo disaccordo, un secondo e ultimo fly-by di Rea,
denominato R4, fu pianificato ed eseguito nel Marzo 2013. Il Capitolo 4 presenta la
stima dela campo di gravità di Rea ottenuta dall’analisi dati congiunta di R1 e R4,
descrivendo in dettaglio il modello dinamico della sonda utilizzato, la procedure di
selezione e calibrazione dei dati, e il metodo di analisi adottato. In particolare, si è
scelto di stimare l’intero campo gravitazionale di quadrupolo, senza alcun vincolo
a priori, ottenendo una soluzione non compatibile con la condizione di equilibrio
idrostatico. Per testare la stabilità della soluzione diverse analisi multi-arco sono
state realizzate, modificando i dati analizzati, la strategia di aggiornamento delle
effemeridi satellitari e il modello dinamico. La soluzione si è dimostrata stabile e
affidabile. Data la condizione non idrostatica, poche considerazioni possono essere
fatte sull struttura interna di Rea. In particolare, il calcolo del momento di inerzia
utilizzando l’equazione di Radau-Darwin non è del tutto affidabile. Nonstante ciò,
anche considerando i possibili errori, il momento di inerzia normalizzato ottenuto si
trova nel range 0.37-0.4, indicando che Rea potrebbe essere omogoneo, o almeno
con un basso livello di differenziazione. Tuttavia, la composizione interna non può
essere valutata più in dettaglio con i dati disponibili e, sfortunatamente, non sono
previsti altri fly-by di Rea dedicati alla gravità fino alla fine della missione nel 2017.
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Chapter 1

Introduction

1.1 The Cassini-Huygens Mission
Cassini-Huygens is a joint NASA/ESA/ASI interplanetary mission with the

primary goal to conduct an in-depth exploration of the Saturn’s system. NASA
supplied the Cassini orbiter, ESA supplied the Huygens Titan probe, and ASI
provided hardware systems for the orbiter as well as instruments for both the orbiter
and probe. The primary goal of Cassini is to conduct an in-depth exploration of
the Saturn system. The orbiter was named after the Italian astronomer Giovanni
Domenico Cassini (1625-1712), who discovered the Saturn’s satellites Iapetus, Rhea,
Dione and Tethys, and who firstly noted rings features such as the Cassini division.
The probe was named after the dutch astronomer Christiaan Huygens (1629-1695),
who discovered the first moon of Saturn, Titan, using a self-made telescope.

Being visible to the naked eye, Saturn is known since the ancient times. Saturn
is the second most massive planet in the Solar System, and its system is one of the
most complex and extraordinary planetary systems known. It is composed by:

• The planet Saturn itself, with its atmosphere, gravity field, magnetic field.

• Titan, the biggest moon of Saturn, the second in the solar system.

• The icy satellites, among which Enceladus, Dione and Rhea are the most
important.

• The rings system, the largest and most developed in the solar system.

• The Saturn magnetosphere.

Cassini is studying the present status of each element, the processes operating on or
in them, and the interactions between them, on short and large time scales, allowing
to characterize also the seasonal variations during almost half of the 30-year Saturn
revolution period.

Our understanding of the Saturn system has been greatly enhanced by the
Cassini-Huygens mission. Fundamental discoveries have altered our views of Saturn,
Titan and the icy moons, the rings, and magnetosphere of the system.

1
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1.1.1 The Scientific Objectives
In this section an overview of the scientific objectives of the Cassini-Huygens

mission is provided, for each element of the Saturn system [44].

Titan Titan is the major focus of the mission. It is studied by both the Cassini
orbiter and the Huygens probe. Second for dimensions, Titan has the thickest
atmosphere among the satellites in the Solar System. Moreover, Titan is the only
object in the solar system other than Earth that sustains an active hydrological cycle
with surface liquids, most liquid methane and ethane, meteorology, and climate
change. It possesses methane-ethane lakes and seas, fluvial erosion, and equatorial
dunes shaped by winds and formed of organic particles derived from methane. The
main scientific objectives related to Titan of the mission are:

• Determine the composition of the atmosphere, constraining scenarios of the
formation and evolution of Titan and its atmosphere.

• Characterize the atmosphere, chemically, energetically, measuring winds and
global temperatures, and observing the seasonal effects.

• Determine the topography and surface composition.

• Infer the internal structure of the satellite.

• Investigate the upper atmosphere, and its role as a source of neutral and ions
materials for the magnetosphere of Saturn.

Icy Satellites Saturn has a large number of satellites, with sizes varying from
several km to hundreds of km. As satellites become smaller they approach the size
of ring particles. Some of the smaller icy satellites are embedded into the rings
and interact with them creating complex and fascinating patterns. Among the icy
satellites, the Cassini’s discovery of ongoing endogenic activity of Enceladus was
extremely important- The Cassini scientific objectives specific to the icy satellites
are:

• Determine the general characteristics and geological histories of the satellites.

• Define the mechanisms, both external and internal, responsible of crustal and
surface modifications.

• Investigate the composition and distribution of surface materials.

• Constrain models of the satellites bulk composition and internal structures.

• Investigate interactions with the magnetosphere and ring system, as possible
sources or sink of neutral and ion particles.
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Magnetosphere The scientific objectives specific to magnetospheric and plasma
science are:

• Determine the configuration of the nearly axial symmetric Saturn magnetic
field.

• Determine the composition, sources and sinks of magnetosphere charged
particles.

• Investigate interactions between the magnetosphere, the solar wind, the
satellites and the rings.

Saturn’s Ring System Saturn has by far the best-developed ring system in the
Solar system. The main scientific objectives related to rings are:

• Study ring configuration and dynamical processes.

• Map composition and size distribution of ring materials.

• Investigate correlation between rings and satellites.

• Study interactions between the rings and Saturn’s magnetosphere, ionosphere
and atmosphere

Saturn Saturn is a gas giant planet with a mass of about 95 Earth’s masses. The
main scientific objectives specific to Saturn are:

• Determine temperature and composition of the atmosphere.

• Measure winds and observe wind features.

• Infer the interior structure of Saturn.

• Study the Saturn’s ionosphere.

• Provide observational constraint on scenarios for the formation and evolution
of Saturn.

1.1.2 The Cassini Mission
Cassini was launched on October 15, 1997 using Titan IV-B rocket, in a config-

uration with two solid-rocket boosters and a Centaur upper stage. The launcher
put Cassini into Earth’s orbit and then the upper stage provided the necessary
delta-v to inject it into its interplanetary trajectory. During its seven years cruise
to Saturn, four gravity assists were employed to increase the spacecraft velocity
and allow reaching Saturn: two Venus flybys (26 April 1998 and 24 June 1999),
an Earth flyby (18 August 1999) and a Jupiter flyby (30 December 2000). For 6
months around the Jupiter gravity assist, performed at about 137RJ , scientific
observations of Jupiter system were conducted. This served also as a test for Saturn
later observations. For the first time, joint observations of an outer planet with two



4 CHAPTER 1. INTRODUCTION

spacecrafts were performed: in fact, at that time Galileo was carrying out scientific
observations of Jupiter, since its arrival in 1995.

Cassini arrived at Saturn on 1 July 2004, roughly after 2 years the planet’s
northern winter solstice. The Saturn Orbit Insertion maneuver provided a total
delta-v of about 633m/s, for a duration of 97 minutes, and marked the beginning of
the Saturn tour phase. On December 23, 2004, the Huygens probe was released into
Titan’s atmosphere. After more than 70 orbits around Saturn and 45 Titan’s fly-bys
Cassini completed the 4 year prime mission in July 2008, returning a tremendous
amount of high-quality scientific data. The mission was extend a first time for the 2
year Equinox mission, so named because the spring equinox of Saturn was in August
2009. Being the spacecraft in an excellent health status, the mission was extended
a second time for the ambitious 7-year Solstice Mission, still in progress. During
this phase, Cassini is continuing to study Saturn and its system, addressing new
questions that have arisen during the Prime and Equinox Missions and allowing to
characterize seasonal and temporal changes. Moreover, in November 2016 Cassini
will start a new phase of the Solstice mission, entering the so-called ”proximal
orbits“, a series of 42 short period, low-pericenter, orbits. The first 20 orbits will
have periapses just outside the F ring, and the remaining 22 orbits will have a
periapse just inside the D ring. This phase con be considered almost as a completely
new mission, dedicated to close observations of Saturn. Moreover it will provide a
unique comparison to the very similar Juno observations of Jupiter, planned for
the same period. This mission phase would end with the spacecraft ultimately
vaporizing in Saturn’s atmosphere, with planned impact date on September 15,
2017.

1.1.3 The Cassini-Huygens Spacecraft
Cassini investigations are supported by the most capable and sophisticated set

of instruments sent to the outer solar system [44].
The Cassini-Huygens spacecraft is represented Figure 1.1. It is made of several

sections, from top to bottom [29, 44]:

• The High Gain Antenna (HGA)

• The electronic bus, with 12 bays housing the majority of the spacecraft
electronics.

• The upper equipment module.

• The propellant tanks with the engines.

• The lower equipment module.

Until its release in December 2004 attached on one side there was the three-meter
diameter Huygens probe. A 11m boom supports the Magnetometer (MAG). Three
thin 10m antennas pointing in orthogonal directions are the sensors of the Radio
and Plasma Wave Science (RPWS) experiment. Three Radio-isotope Thermal
Generators (RTG) provides electrical power through the decaying of an isotope of



1.1. THE CASSINI-HUYGENS MISSION 5

Figure 1.1: The Cassini-Huygens spacecraft in cruise configuration.

Plutonium (Pu-238). The heat generated by this natural process is converted into
electrical power by solid-state thermoelectric converters, without any moving part.

Cassini is three-axis stabilized spacecraft. The attitude can be controlled either
using the reaction wheels of a set of small thrusters. The instruments are body-fixed,
so the observations require to pointing the whole spacecraft. For this reason, during
the scientific observations the HGA cannot be used to communicate to the Earth,
either for transmit the telemetry or for gravity radio science experiments. The
data are recorded on two solid-state recorders (SSR), each of which has a storage
capacity of about 2 Gigabits. Due to the effects of solar and cosmic radiation the
actual storage capacity decreased with time.

The Cassini-Huygens system carries 18 instruments, 12 on the orbiter Cassini
and 6 on the Huygens probe. Most of the orbiter instruments are on two body-fixed
platforms, the remote-sensing platform and the particles-and-fields pallet.

A brief description of the Cassini instruments follow [44]:

• Composite Infrared Spectrometer (CIRS): it consists of dual interferometers
that measure infrared emission to determine the composition and temperatures
of atmospheres, rings, and surfaces.

• Imaging Science Subsystem (ISS): it consists of both a wide angle camera
and a narrow angle camera.

• Ultraviolet Imaging Spectrograph (UVIS): the instrument measures the views
in ultraviolet spectrum.

• Visual and Infrared Mapping Spectrometer (VIMS): it consists of spectrome-
ters observing in visual and infrared spectra.
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• Cassini Plasma Spectrometer (CAPS): it measures the flux of ions and elec-
trons.

• Cosmic Dust Analyzer (CDA): it measures directly the physical properties of
the particles in the Saturn system.

• Ion and Natural Mass Spectrometer (INMS): it measures the composition of
neutral and charged particles in Saturn system through mass spectroscopy.

• Dual Technique Magnetometer (MAG): it measures the Saturn magnetic field,
its variation with time and interactions with the solar wind.

• Magnetospheric Imaging Instrument (MIMI): it measures the composition,
charge state and energy distribution of energetic ions and electrons of the
Saturn’s magnetosphere.

• Radio and Plasma Wave Science (RPWS): it measures the electric and mag-
netic fields and electron density in the Saturn system.

• Radar (RADAR): it uses the HGA to study the surface composition and
properties of bodies of the Saturn’s system. In particular it allows to study
the surface of Titan, which is covered by a thick atmosphere layer, opaque in
the visible spectrum.

• Radio Science Subsystem (RSS): it studies the compositions of Saturn and
Titan atmospheres and ionosphere, the rings structure and the gravity field
of Saturn and its satellites.

1.1.4 The Cassini Radio Science Subsystem
In this section the Cassini Radio Science Subsystem will be described in details.

1.1.4.1 Scientific Objectives

During the entire Cassini mission, the following radio science experiments were
performed:

• Gravitational Wave Experiments (GWE), to detect the Doppler shift due to
low-frequency gravitational waves.

• Solar Conjunction Experiments (SCE), to test the general relativity and study
the solar corona.

• Ring occultation experiments.

• Atmospheric and ionospheric occultation experiments, for Saturn and Titan.

• Gravitational field experiments, to measure the gravity field of Saturn, Titan
and the other icy satellites.
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1.1.4.2 Overview

The radio science instrument is peculiar because it is not confined within the
spacecraft, but it is composed by a ground segment and a spacecraft segment, which
in turn is distributed among several spacecraft subsystems. Actually, the radio
science subsystem can be considered as a solar-system-sized instrument observing
at microwave frequencies, with one end a the spacecraft and the other end at DSN
station on Earth [28].

The instrument operates in three fundamental modes:

• Two-way mode: the ground station generates one or more uplink signals,
at either X-band and Ka-band, using as reference the local frequency and
timing system. The signals are amplified, radiated through feed horns and
collimated by a large parabolic antenna. The uplink frequency can be constant
(unramped) or linearly variable with time (ramped) to compensate for the
main Doppler shift due to the spacecraft-station relative motion The spacecraft
receives the uplink signals with the High Gain Antenna (HGA), or the Low
Gain Antennas (LGA), lock the carrier through the transponder, generates
one or more downlink signals that are coherent to the uplink carriers, using
the uplink carriers as reference. To prevent interferences, the frequency of
the downlink and uplink signals are different. The ratio between downlink
and uplink frequqncies is called turn-around ratio. The downlink signal is
amplified, collimated and sent back to the earth were it is received, amplified
and registered by a ground station. Three types of links can be generated:

– X/X: a X-band downlink signal is generated using the X-band uplink as
reference. The turn around ratio is 880/749.

– X/Ka: a Ka-band downlink signal is generated using the X-band uplink
as reference. The turn around ratio is 3520/749.

– Ka/Ka: a Ka-band downlink signal is generated using the Ka-band
uplink as reference. The turn around ratio is 14/15. At present this
link is not available anymore, due to a unrecoverable failure of the KaT
transponder.

The use of the three links at the same time allows a complete calibration
of dispersive media, like solar plasma and earth ionosphere, using the full
multi-frequency link combination [12, 42]. At present, being the KaKa link
unavailable, this calibration method cannot be used, limiting the accuracies
achievable by the experiments.

• Three-way mode: this mode is the same as two-way mode, but the transmitting
and receiving ground station are different. Three-way mode is widely used
when the geometric configuration do not allow continuous tracking from the
same antenna.

• One-way mode: in this operative mode the source of the signal is the spacecraft.
The Ultra-Stable Oscillator (USO) is used as reference to generate one or
more downlink signals, at S-, X-, and Ka- bands. These signals are amplified
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and radiated through the HGA toward Earth. After passing through the
medium of interest (atmosphere, ionosphere, or rings) the perturbed signal is
received and recorded by a ground station.

Two-way mode allows to achieve the greatest signal stabilities, because it exploits
the greater stability of the ground reference frequency to achieve a signal much
more stable. Currently, the DSN frequency standard is based upon a Hydrogen
Maser Oscillator, which provides a very accurate frequency reference at the time
scales of interest. Typical Allan deviations of the ground clock are of the order of
about 10−15 at 1000 s of integration time. As reference, the Allan deviation of the
Cassini USO is about 3× 10−13 at 1000 s of integration time.

1.1.4.3 Spacecraft Segment

The Radio Science Subsystem is a virtual subsystem composed by the elements
from three spacecraft subsystems:

• Radio Frequency Subsystem (RFS).

• Radio Frequency Instrument Subsystem (RFIS).

• Spacecraft Antennas.

The Radio Frequency Subsystem The Radio Frequency Subsystem (RFS) is
a critical, redundant, spacecraft subsystem which supports spacecraft telecommu-
nications, allowing the spacecraft to receive commands and transmit telemetry at
X-band. The components of the RFS involved in the RSS are:

• The Ultra-Stable Oscillator (USO).

• The Deep-Space Transponders (DSTs).

• The X-band Traveling Wave Tube Amplifiers (X-TWTAs).

The RFS has three operative modes:

• Two-way coherent mode: the receiver in the DST locks the uplink carrier,
which is used as a reference to generate a coherent downlink signal.

• Two-way non-coherent mode: the uplink carrier is locked into the DST, but
the downlink signal is generated using as reference either the USO or the DST
auxiliary oscillator.

• One-way mode: in this mode there is no uplink, and a downlink signal is
generated using either the USO or the DST auxiliary oscillator.

The DST generates also the input signals for the S-band transmitter (SBT) and
the Ka-band exciter (KEX) in the RFIS. Either the USO or the uplink signals can
be used.

Cassini’s USO is a crystal oscillator whose internal temperature is maintained
constant to within 0.001K by a proportionally controlled oven. The USO generates
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a 114.9MHz reference signal with exceptional short-term phase and frequency
stability for the DST, SBT, and KEX.

The X-band downlink generated from the DST is amplified by the X-TWTA to
15.8W, and radiated to Earth through the spacecraft antennas.

The Radio Frequency Instrument Subsystem The elements of the RFIS
are devoted exclusively to radio science:

• S-Band Transmitter (SBT): it generates a 13.5W 2.3GHz (S-band) carrier
from a 115MHz input signal from the DST. The input signal can derive
directly from the USO or can be generated coherently from the uplink signal.
The S-band carrier is sent through a diplexer to the HGA.

• Ka-band EXciter (KEX): it generates a Ka-band 32GHz carrier from both a
115MHz and a X-band inputs from the DST. These inputs can be generated
from the USO (in one-way mode) or coherently from the uplink (in two-way
mode). The output is routed through a hybrid coupler to the K-TWTA.

• Ka-band Transponder (KAT): it generates a 32 textGHz downlink signal
coherently from a 34 textGHz uplink signal, usign a turnaround ratio of
14/15, with an intrinsic Allan deviation of 3 × 10−15 at 1000 s. integration
time. The KAT output goes through the hybrid coupler and then to the
K-TWTA.

• Ka-band Traveling Wave Tube Amplifier (K-TWTA): it amplifies the Ka-band
output from both the KEX and the KAT, singly or simultaneously, feeding
the HGA only. The amplifier produces a total output power of 7.2W when
operating with one carrier and 5.7W in dual-carrier mode.

The SBT and KAT were fundend by the Italian Space Agency (ASI) and produced
by Thales Alenia Space Italy (formerly Alenia Spazio) as part of the Italian
participation to the Cassini mission. Alenia Spazio also integrated and tested the
RFIS.

Orbiter Antennas Cassini has one High-Gain Antenna (HGA) and two Low-
Gain Antennas (LGA1 and LGA2) [63].

• The HGA is Cassegrain system, with a 4m diameter parabolic primary
reflector. The HGA is body-fixed with its boresight along the spacecraft
−Z axis and is pointed by moving the spacecraft. In addition to supporting
X-band telecommunications, the HGA supports the S-band, X-band and
Ka-band radio science links, and serves as the transmit and receive antenna
for the Cassini Radar, at Ku-band. It is the most complex antenna ever flown
on a planetary spacecraft.

• The LGAs sacrifice gain to provide a relatively uniform coverage. They are
used when the HGA can’t be pointed toward the Earth, due to thermal
constraints or when the spacecraft is in safe mode. LGA1 is mounted on
top of the HGA and points along −Z axis, as the HGA, while LGA2 is
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mounted on a boom below the Huygens Probe, and pointing along the −X
axis. The LGAs can operate at X-band only. Recently, a test to use LGA for
radio science gravity experiments was performed [11]. The test assessed the
feasibility to perform precise orbit determination using the LGAs, making it
possible to collect data also during satellites fly-bys not dedicated to gravity
investigations, at the expense of a small degradation of the signal-to-noise
ratio.

Carrier signals transmitted between the spacecraft and the ground are all
circularly polarized. X-band uplink and downlink signals can be either Right-hand
Circularly Polarized (RCP) or Left-hand Circularly Polarized (LCP). During normal
operations the received and transmitted signals have opposite polarizations. The
Ka-band uplink is only LCP, and the Ka-band downlink is only RCP.

1.1.4.4 Ground Segment

The ground segment of the Cassini radio science subsystem is composed by
the ground stations and facilities of the NASA’s Deep Space Network (DSN). The
DSN is composed by three complexes separated in longitude by about 120 deg, to
provide a near-global coverage during the diurnal Earth rotation. The complexes
are located near Goldstone, in the desert of the Southern California, near Madrid
in Spain, and near Canberra in Australia. The first two complexes are in the
northern hemisphere, while Canberra is located in the southern hemisphere. Each
complex is equipped with several tracking stations of different aperture size and
different capabilities, but each complex has at least one 70m diameter station, one
34m high-efficiency (HEF) station, and one 34m beam-wave-guide (BWG) station.
While the primary function of the DSN antennas it to send commands and receive
telemetry from deep space probes, they are a fundamental part of the radio science
instruments, so performances and calibration of the antennas components concur
to determine the experiments accuracy. The antennas perform two functions:

• Transmitting function: an uplink signal, at the frequency assigned to the spe-
cific spacecraft, is generated using a very stable reference frequency provided
by the frequency and timing subsystem. The performance of the frequency
and timing subsystem is of order 10−15 for integration times of 1000 s. The
uplink frequency can be constant (unramepd) or linearly varying with time
(ramped). The DSN can transmit at S-, X- or Ka-bands depending on the
transmitting station and the receiving spacecraft. The transmitted frequencies
are recorder for post-processing of the two-way Doppler observable.

• Receiving function: the large parabolic primary reflector collect the incoming
energy of the spacecraft downlink signals and focus it onto the feed horns.
The received signal is amplified through low-noise amplifiers, then it is down-
converted and routed to the receivers. These two processes define the most
important contribution of the ground segment electronics to the overall noise
budget of radio science experiments. Two types of receivers can be used:

– Closed-loop receiver, also called Block V Receiver (BVR): it estimates
parameters such as phase and amplitude in real time with standardized
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values of receiver bandwidths and time constants. It is the primary DSN
receiver for telemetry and tracking data. The signal is phase locked
and demodulated from the telemetry and ranging signals. The tracking
subsystem measures Doppler shifts and ranging information based on
the closed-loop receiver output.

– Open-loop receiver, also called Radio Science Receiver (RSR): it record
the electric field of the received signal downconverting and digitizing a
selected bandwidth of the spectrum centered around the carrier signal.
The RSR had several advantages with respect to the BVR:

∗ More flexibility because the data (amplitudes and phases) are com-
puted in post-processing.
∗ Better performances due to more stringent requirements on ampli-

tude, frequency and phase noise stability.
∗ Simultaneous handling of signals in two polarization states.

Media Calibration System The Earth’s troposphere is one of the most relevant
noise contribution to the overall noise budget of the orbit determination process [9,
27, 34]. The neutral particles of the atmosphere introduce a phase and a group
delay in the signal. The main contribution is represented by the gases in the lower
part of the atmosphere, in particular the water vapor. Being a non-dispersive
media, the group and phase delay are the same. In order to provide a continuous
troposphere calibration a system based on GPS observation has been developed
by JPL. The system, named Tracking System Analysis Calibration (TSAC) uses
the GIPSY-OASIS II software to create continuous calibration of the Zenith Total
Delay (ZTD). The delay along the line of sight of the spacecraft is obtaining scaling
the ZTD with mapping functions.

In order to achieve the unprecedented accuracies needed by the Cassini’s cruise
radio science experiments, a new generation of media calibration system, called
Advanced Media Calibration system (AMC), was developed [10, 52, 57, 58]. The
AMC includes different meteorological instruments to retrieve the entire troposphere
delay:

• A high-stability Water Vapor Radiometer (WVR), which senses the number
of water vapor molecules along the line of sight.

• A Microwave Temperature Profiler (MTP), which senses the vertical temper-
ature distribution.

• A Surface Meteorological station (SM), which measures the temperature,
pressure and humidity.

The AMC system provides the most accurate calibration of the tropospheric noise to
date, because it is capable to measure with very good accuracy the high-frequency
scintillations of the tropospheric path delay due to variation of water vapor content
along the line of sight.
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1.2 The Orbit Determination Problem

1.2.1 Introduction
This Section provides a high-level description of the procedures to be imple-

mented in order to correctly analyze Doppler data acquired during gravity radio
science experiments on interplanetary missions. This analysis is strictly linked to
the problem of orbit determination of interplanetary spacecraft. The orbit deter-
mination process is an iterative estimation procedure based upon the comparison
between the measured observables (observed observables) and the corresponding
computed values (computed observables), computed on the basis of mathematical
models. The difference between the observed and the computed observables are
called residuals. The aim of the orbit determination process is the estimation of a
set of parameters (solve-for parameters) that unambiguously define the trajectory
of a spacecraft. The orbit determination solution is composed by the value of the
solve-for parameters that minimizes, in a least square sense, the residuals, and
by the corresponding covariance matrix that defines the formal uncertainty of the
solution. For Deep Space navigation purposes, the orbit determination S/W is
typically used to analyze large data sets and estimate a large number of solve-for
parameters, with the aim of providing the best estimate of the S/C state, for the
need of both S/C operations and scientific data analysis. On the other hand, for
radio science applications, typically small data sets acquired during the limited time
intervals of dedicated experiments are analyzed in the orbit determination S/W,
aiming at the estimation of a restricted set of parameters (in addition to the S/C
state vector) that defines the gravity field of celestial bodies. These experiments are
carefully designed in order to minimize the uncertainties in the orbit determination
process and to maximize the Signal to Noise Ratio of the solve-for parameters. For
gravity radio science experiments the solve-for parameters may include:

• coefficients of the gravity spherical harmonics expansion of a celestial body;

• Love’s numbers, the define the gravity field response to external tidal effects;

• Rotational parameters of a celestial body.

The gravity field, and so the gravitational acceleration of the spacecraft, are a
consequence of the planet/satellite internal composition and mass distribution,
so the experiments results can be used to develop and test models of the origin,
evolution and structure of celestial bodies, like planets, satellites and asteroids.
Moreover the experiments can be used to test the general relativity, measuring
relativistic effects like the Shapiro light-time delay or the Lense-Thirring effect.

The orbit determination process can be divided into five main steps:

• Pre-processing of radiometric measurements.

• Computation of radiometric observables and partial derivatives with respect
to the solve-for parameters, using mathematical models.

• Observables and partial derivatives computation.
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• Estimation filter.

• Solution analysis.

Because of the intrinsic non-linearity of the problem, these steps are usually repeated
until convergence is reached. In the first iteration the observables and partials are
computed using apriori values of the solve-for parameters. The estimation filter
computes differential corrections to these values, on the basis of comparison between
computed and observed observables. In the next iterations the observables are
computed using the solution of the previous iteration for the solve-for parameters.

In the following each of these steps will be described from an operational point
of view. For more details about the modelization of all the physical effects, see [51]
and [54].

1.2.2 Pre-processing of radiometric measurements
During the pre-processing phase the radiometric observables are prepared for

the orbit determination process. The most important Earth-based radiometric
observables are:

• range: measured round-trip light time, in range units.

• Doppler: frequency shift of the carrier of the received signal.

• DDOR: angular measurement of the S/C along a baseline formed by two
ground stations.

On these data, one or more of the following actions may be performed before the
analysis:

• Apply the calibrations to correct intrinsically not predictable effects that
could affect the measurements, like:

– group delay due to electronics in ground stations and spacecraft;

– group and phase delay due to propagation media, like troposphere,
ionosphere and interplanetary plasma;

The calibrations are computed and provided by JPL.

• Compute received sky frequencies from open-loop recordings.

• Compute synthetic non-dispersive observables, if a multi-frequency link is
available.

• Delete macroscopic invalid data (outliers). Typically up to 20% of the data
may be removed in this phase.
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1.2.3 Observables and partials computation
During this phase, the radiometric measurements are simulated using math-

ematical models of all physical effects that affect, in a not-negligible way, their
values. The parameters that define the mathematical models can be divided into
three categories:

• Solve-for parameters: not exactly known parameters that affect data and
whose current estimate can be improved through the orbit determination
process. At the first iteration their a priori values and uncertainty are used,
obtained from the best measurements or theoretical estimations available to
date. In the next iterations the solution obtained at the previous iteration is
used. The solve-for parameters should always include the initial state of the
spacecraft.

• Consider parameters: not exactly known parameters that affect data and
whose current estimate cannot be improved through the analysis. Their best
estimate to date must be used in the mathematical models, together with their
uncertainties. The orbit determination filter does not change the consider
parameters, but their uncertainty increases the solution covariance matrix.

• Exact parameters: parameters that are theoretically exactly known or whose
uncertainty does not affect the estimation, because it is small with respect to
their influence on measurements data.

Moreover, during this phase, also the partial derivatives of the observables with
respect to the solve-for and consider parameters are computed. They are used to
obtain the new estimate of the value of solve-for parameters and their covariance
matrix.

The observables and partials computation is performed through the following
procedures:

• Planetary and/or Satellite ephemerides update;

• Integration of equations of motion and variational equations;

• Time transformations;

• Ground Station state computation;

• Light-time solution computation;

1.2.3.1 Planetary and/or Satellite ephemerides update

The spacecraft trajectory and the radiometric measurements depend on the
gravity fields of nearby celestial bodies and relative positions between the spacecraft
and celestial bodies. Hence, depending on the type of radiometric observables
and geometry of the observation, to correctly extract the information content
from the measurements should be necessary to estimate also the planetary and/or
satellite ephemerides. For example, during gravity radio science experiments of
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planetary satellites, the spacecraft trajectory and so the Doppler data are affected
in a not-negligible way by the gravitational fields of both the planet and the
satellite. So, the measurements are sensitive to the relative positions and velocities
of the spacecraft, the satellite, and the planet. Hence, the orbit determination fit
shall estimate both the planetary state of the spacecraft and of the satellite. As
another example, the orbit of Mercury is heavily affected by relativistic effects.
Accurate range measurements from a Mercury orbiter can be used to test the
validity of the Einstein’s general relativity, for example through the estimation of
the Parameterized Post-Newtonian parameters γ and β. This requires the capability
to update the planetary ephemerides of Mercury. At the first iteration of the orbit
determination process the most updated ephemeris available at date are used, while
in the next iterations the ephemerides should be updated using the estimate of
the previous iteration. Ephemerides are generated integrating the full relativistic
equations of motion of the planets from their initial states. The partials needed to
update the ephemerides are obtained integrating the variational equations for the
planetary/satellite state.

1.2.3.2 Integration of equations of motion and variational equations

The next step to compute the radiometric observables and partials is to recon-
struct the spacecraft trajectory integrating the equations of motion with respect to
a reference point (Center Of Integration, COI) from an input initial state. The a
priori value (and uncertainty) of the initial state is usually given by the mission
navigation team. To correctly reconstruct the spacecraft trajectory all non-negligible
accelerations acting on the spacecraft and on the COI must be correctly modeled.
The most important accelerations that may influence the spacecraft state are:

• Point-mass Newtonian gravitational acceleration due to the Sun, the planets,
Pluto, small bodies, as asteroids and comets, the Moon and all satellites of a
planetary system.

• Point-mass relativistic perturbative gravitational acceleration due to the Sun,
the planets, Pluto and the Moon.

• Acceleration due to Geodesic precession.

• Acceleration due to Lense-Thirring precession.

• Newtonian acceleration due to the gravitational spherical harmonics of all
the planets, Pluto, small bodies, as asteroids and comets, the Moon and all
satellites of a planetary system. The acceleration of the S/C relative to the
COI due to oblateness of one of the bodies listed above is computed as the
acceleration of the S/C (direct component) minus the acceleration of the COI
(indirect component). If also the COI is an oblate body, the acceleration of
the COI is the sum of two terms:

– the acceleration due to the spherical harmonics of the oblate body on
the point-mass COI;
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– the acceleration due to the point-mass oblate body on the COI’s oblate-
ness.

The acceleration due to the interaction between the oblateness of the body
and the COI is neglected.

• Relativistic acceleration due to the gravitational spherical harmonics: this
effect is usually considered only for the Earth’s gravity field on a near-Earth
S/C.

• Accelerations caused by tidal effects on the physical central body: the accel-
eration of the S/C derives from corrections to the central body’s normalized
harmonic coefficients due to the tides as:

– solid tides;
– ocean loadings;
– pole tides.

• Gravitational acceleration due to planetary rings.

• Gravitational acceleration due to mascons.

• Solar radiation pressure;

• Planetary radiation pressure: acceleration due to the radiation emitted from
the surface of a planet, both reflected visible light (albedo) and thermal
emission.

• Thermal imbalance: acceleration due to non-uniform surface heating.

• Gas leakage: acceleration due to control jets leakage.

• Atmospheric drag.

• Maneuvers.

To compute the various contributions to the total spacecraft acceleration the position
of the celestial bodies must be known, through planetary, satellite and small bodies
ephemerides. At present the most accurate celestial ephemerides are provided by
NASA/JPL, eventually updated in the previous step of the orbit determination
process.

1.2.3.3 Time transformations

All radiometric observables measured at different tracking stations on the Earth
are referred to the time measured by the station clock. Apart from a small drift due
to clock stability, the station reference time is equal to UTC. However, to correctly
compute the light-time solution, time must be expressed in Barycentric Coordinate
Time (TCB), the coordinate time of the relativistic equations of motion in the Solar
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System barycentric space-time frame of reference or in a linear transformation of
TCB, like JPL Ephemeris Time (Teph) or Barycentric Dynamical Time (TDB)1.

1.2.3.4 Ground station state computation

The location of a ground station is conventionally defined as the position of
a reference point. The station’s coordinates are given as inputs in a terrestrial
reference frame, then the station location must be corrected to account for various
effects:

• Solid Earth tides: the tides caused by the Moon and the Sun produce
deformations of the Earth that change the location of the ground station.
At least first order displacements and second order corrections due to a
tidal potential of degree two due to both the Moon and the Sun must be
considered. The first order displacement is about 50 cm, while the second
order correction is about 13mm. Usually the permanent tidal displacement is
included in the expression of the first-order displacement, so the coordinates
of the tracking stations must not include it. At present, terms less than 5mm
can be neglected.

• Ocean loadings: periodic displacements due to the periodic ocean tides. The
displacements are less than 4mm.

• Pole tide: the polar motion modifies the centrifugal potential of the Earth
and caused a solid tide that produces a displacement of the tracking station.
The displacement is less than 2 cm.

• Plate motion: a tracking station has a non zero velocity due to the tectonic
plate motion. The station velocity due to plate motion can be up to 10 cm/y.

• Offset between the real COM of the Earth and the origin of the considered
terrestrial reference frame.

Next, in order to solve the light-time problem it is necessary to convert the station
location from the terrestrial reference frame to the celestial reference frame. The
transformation between the two reference frames consists of a series of rotations:

• polar motion;

• Earth rotation;

• nutation;

• precession.
1Since JPL’s DE430, the Ephemeris Time Teph coincides with Barycentric Dynamical Time

TDB, that is a defined linear transformation of TCB. For the older ephemerides Teph is formally
different from TDB, because it was computed as a part of the ephemerides estimation to remove
a linear drift with the Terrestrial Time (TT). However, this difference at present is completely
negligible.
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These rotations are defined by a set of parameters, that depend on the particular
modelization selected. An internal group at NASA/JPL provides the so-called
Earth Orientation Parameters (EOP), that define these rotations according to IAU
1980 Theory of nutation and the IAU 1976 Precession Model. As an alternative,
the more accurate IAU 2000 Model can be used. The coefficients defining the
rotations are provided either by JPL or by IERS website2. After these rotations the
geocentric state of the tracking station is expressed in the Geocentric space-time
frame of reference, and it must be referred to Solar System barycentric space-time
frame of reference, through proper Lorentz transformations.

1.2.3.5 Light-time solution computation

The next step to evaluate the computed value of a measured quantity is to obtain
the solution of the light-time problem for that observable. The light-time solution
consists of the epoch of participation and the state of each direct participant at its
epoch of participation. The direct participants of the light-time problem and the
times of participation are:

• the receiving station at the reception time t3;

• the S/C at the reflection time (for two-way or three-way observables) or
transmission time (for one-way observables) t2;

• the transmitting station at the transmission time t1 (only for two-way or
three-way observables).

In the orbit determination process, the reception time of an observed quantity is
known, so it is necessary to solve the light-time problem to compute the reflection
time and the transmission time. The light-time problem is based upon the expression
of the time for light to travel from the transmitter to a receiver. This time is the
sum of two components:

• Newtonian light-time, that represents the time for light to travel along a
straight-line path at the speed of light c.

• The relativistic light-time delay, also called Shapiro effect, that accounts for
the reduction of the coordinate velocity of light below c and the bending of
the light path due to presence of a gravity field that curves the space-time.

1.2.3.6 Observables computation

The outputs of the light-time problem are used to compute the value of ra-
diometric observables measured at Earth tracking stations. Moreover, the partial
derivatives of the observables with respect to the solve-for parameters are computed.
The model of the radiometric observables obtained at the stations of the Deep
Station Network (DSN) and the corresponding partials are described in [51].

2http://www.iers.org/
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1.2.4 Estimation Filter
The estimation filter computes the value of the solve-for parameters that mini-

mize, in a least square sense, a combination of the following quantities:

• Residuals between the observed and computed observables. The residuals
should be weighted with their measurements noise. However, because noise is
not known, as a start to the analysis an a-priori value is used, on the basis
of available theoretical error budgets or experience. In the next analysis the
measurements noise is estimated as the residuals’ standard deviation. Note
that this imply the assumption that the measurements noise is white. In the
different iterations of the same analysis residuals weights are kept constants.

• Difference between the solve-for parameters and their a priori values. This
difference is weighted using the uncertainty of the a-priori information. From
a filtering point of view, a priori data are equivalent to additional observations.
They are used to increase the numerical stability of the information matrix
and facilitate the convergence.

The estimation filter produces two outputs:

• A differential correction to a priori values of the solve-for parameters. It gives
the updated estimate of the solve-for parameters.

• The covariance matrix of the solve-for parameters, that represents the solution
uncertainty. The a priori covariance matrix is updated on the basis of the
influence on the solve-for parameters of the measurements noise and consider
parameters uncertainty.

1.2.5 Solution Analysis
The solution obtained from the estimation filter should be verified and tested.

The following aspects should be analyzed:

• Convergence: the orbit determination process reaches convergence if two (or
more) successive iteration steps produce statistically equivalent solutions.

• Residuals analysis: the obtained solution is used to compute residuals. If
the orbit determination process was performed correctly solution residuals
represent only measurements noise, hence they must verify the following
conditions:

– Zero mean: the residuals mean must be much less than their standard
deviation, i.e. compatible with a zero value;

– Spectrum compatible with the expected noise characteristics;

Moreover, the residuals standard deviation should be compatible with the
residuals weight used in the estimation filter.

• Solution covariance matrix analysis:
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– Comparison between a priori and computed formal uncertainties: a
parameter is fully observable from data if the computed uncertainties are
much less than the a priori ones (as reference a factor 10 can be used).
Otherwise, the estimation depends much more on a priori information
than on radiometric measurements.

– Cross-correlation between solve-for parameters: if two solve-for parame-
ters are largely correlated, their estimation is strictly dependent.

• Comparison between a priori values and the new estimates: the new and old
estimate of the solve-for parameters should be statistically compatible.

• Solution stability: to check the solution stability it is useful to make another
estimation process using the solution as a priori values, with ”relaxed“ in-
creased a priori uncertainties. If the solution is sufficiently stable the new
estimation will be statistically compatible with the testing solution.



Chapter 2

Numerical Noise in Interplanetary
Orbit Determination Software

2.1 Introduction
The aim of the orbit determination process is the estimation of a set of parameters

that unambiguously defines the trajectory of a spacecraft. The core of the process
is the comparison between measured observables (“observed observables”) and the
corresponding computed values (“computed observables”), obtained by an orbit
determination program using the adopted mathematical models. The output of the
orbit determination is the values of the parameters, called solve-for parameters,
that minimize, usually in a least-square sense, the global difference between the
observed observables and the computed observables. For the tracking of deep space
probes the use of Earth-based radiometric techniques, especially based on Doppler
measurements, is of fundamental importance.

Disturbances in either the observed or computed observables degrades the orbit
determination process. The different sources of noise in the Doppler observed
observables were the subject of several detailed studies in the past [6–9]. In [9]
a detailed noise budget for Doppler tracking of deep space probes was presented;
however recent tracking data acquired from the NASA/ESA/ASI Cassini-Hyugens
mission to the Saturn system showed imperfect quantitative agreement between the
measured residual noise [34] and the predictions presented in [9], thus suggesting
that there could be additional effects not considered so far, like errors in the Doppler
observables computed by the orbit determination program.

In this study the three most important interplanetary orbit determination
programs are considered:

• ODP (Orbit Determination Program), developed since the 1960s at NASA’s
JPL, and used for navigation in almost all NASA missions controlled by
JPL since recent years [15, 66, 67]. At present ODP is not used anymore for
operational navigation. However, it is still used in different forms for specific
purposes.

• MONTE (Mission-analysis, Operations, and Navigation Toolkit Environment),
developed since late 2000s at NASA’s JPL to replace the ODP. After several

21
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years of development and tests, at present it is used for navigation of all the
operational missions controlled by JPL.

• AMFIN (Advanced Modular Facility for Interplanetary Navigation), devel-
oped at ESA/ESOC and used for the operational navigation of the ESA’s
interplanetary missions.

The errors in the computed radiometric observables can be divided into two
categories:

• Model errors, caused by using incomplete mathematical models for the com-
putation of the observables.

• Numerical errors, that arise from the use of finite-precision arithmetic.

Concerning the model errors, the basis of all the three most important inter-
planetary orbit determination programs is Moyer’s formulation, described in detail
in [51]. At present this formulation is considered sufficiently accurate, compared to
the present level of noise in the radiometric measurements [48].

Numerical errors are introduced in every real number and computation step
because, within a computer, the representation of numbers and the computations
have to be performed using a finite number of digits. The resulting errors in the
computed observables depend upon the hardware and software representation of
numbers, the mathematical formulation of the observables and its implementation in
the software. According to Moyer’s formulation the two-way (or three-way) Doppler
observable is computed as the difference of two round-trip light times between the
spacecraft and the tracking station(s), thus it is called differenced-range Doppler
(DRD) formulation [49, 50]. AMFIN implements also an older formulation, based
upon a truncated Taylor series, called the integrated Doppler (ID) formulation,
formerly implemented in the ODP and described in [50]. Moreover, both the ODP
and AMFIN are compiled to use double-precision floating point arithmetic [17, 51].
MONTE

An order-of-magnitude estimation of numerical errors in DRD double-precision
computed observables is provided in [50] and [49], where it is recommended to
use at least 60 bits to represent the significand, also called mantissa, in order to
keep a two-way accuracy of 2 × 10−2 mm/s at all integration times. This results
in an Allan Standard Deviation (ASDEV) of about 6.7 × 10−14 s/s. However,
the observational accuracy of the interplanetary missions has been gradually and
continuously improving with time. For example, the current most precise two-way
Doppler observations were achieved between the NASA Deep Space Network (DSN)
and the Cassini spacecraft, reaching a fractional frequency stability, expressed
in terms of ASDEV, of about 3 × 10−15 at 1000 s integration time [6]. Future
interplanetary missions, such as ESA’s BepiColombo mission to Mercury and
NASA’s Juno mission to Jupiter, carry radio science instrumentation which, used in
conjunction with highly performing ground antennas, is required to reach a two-way
fractional frequency stability of 1.0 × 10−14 at 1000 s integration time [23, 32],
during most of their operational life. On the other hand, almost all modern
computers follow the IEEE-754 standard, which establishes the use of 64 bits for
double-precision floating point binary representation, where 52 bits are used for the
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mantissa [30], less than the value of 60 recommended by [49]. For these reasons a
more detailed study of the numerical noise is necessary to assess its actual impact on
the precision of the computed observables, for present-day and future interplanetary
missions.

This chapter describes a model of numerical errors in two-way (and three-way)
Doppler observables, computed by an orbit determination program that implements
Moyer’s DRD formulation. In Chapter 2.2 the basic concepts of the floating point
representation and arithmetic are introduced, together with the description of a
statistical model used to evaluate the single contributions to the numerical error,
their propagation and accumulation. An analytical model to predict numerical
errors in two-way differenced-range Doppler observables is presented in Chapter 2.3,
while the validation of this model is described in Chapter 2.4. In Chapter 2.5,
the numerical error model is used to analyze the expected numerical noise for
Cassini’s and Juno’s Doppler tracking data. Then, three different strategies to
reduce the numerical noise in the Doppler link are presented in Chapter 2.6. Finally,
Chapter 2.7 summarizes the results and presents the conclusions of this work.

2.2 The Round-Off Errors

2.2.1 The Floating Point Representation
The most used method for representing real numbers in modern computers

is the binary floating point representation, based upon the normalized scientific
notation in base 2. Using the normalized scientific notation in base 2 a value x0 is
represented using an infinite number of bits bi, as:

x0 = (−1)s(1.b0
1b

0
2 . . . b

0
t−1b

0
t b

0
t+1 . . .)× 2p (2.1)

where:

• s defines the sign of x: s = 0 for positive values, s = 1 for negative ones.

• p is the base-2 order of magnitude of x0.

p can be computed from x0 using the following relation:

p(x0) =

blog2 |x0|c, if x0 6= 0
0, if x0 = 0

(2.2)

where bac is the floor function of a.
Using the binary floating point representation the exact value x0 is encoded

using a finite number of bits, as:

x = (−1)s(1.b1b2 . . . bt−1bt)× 2p (2.3)

The first t− 1 binary digits of x are the same of x0:

bi = b0
i i = 1, . . . , t− 1 (2.4)
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bt is the last represented digit of x and is called Least-Significant Bit (LSB).
In the representation of x0 the maximum value represented by the least-significant
bit is:

q(x0) = 2p(x0)−t (2.5)
There are several rounding algorithms that define how to choose bt. The most
common are:

• Round toward 0, also called “truncation”: bt is equal to b0
t .

• Round toward nearest nearest, usually simply called “rounding”: bt is choose
so that x is closest to x0. If x0 is halfway to two values there are two
approaches:

– Ties away from zero: the mantissa is rounded to the larger value. Because
the mantissa does not contain any information about the sign, if the
number is positive it is rounded above, if it is negative it is rounded
below.

– Ties to even: the mantissa is rounded to the even value. Statistically,
this occurs in the 50% of the cases, so this rounding algorithm does not
introduce a systematic drift.

The most used rounding algorithm is “round toward nearest, ties to even”, because
it minimizes the rounding error for a given t and does not introduce a systematic
drift [26]. In what follows, only this algorithm will be considered.

The use of a finite number of digits to represent the mantissa introduces an
error. The absolute and relative rounding errors are defined as:

∆x(x0) , x− x0 (2.6)

∆x̃(x0) , x− x0

x0
(2.7)

The maximum absolute value of the absolute error in the representation of a
variable x0 is:

∆xmax(x0) , max |∆x(x0)| = q(x0)
2 = 2p(x0)−t−1 (2.8)

Hence, the maximum absolute error depends upon the number of digits available
for the fractional part of the mantissa t and the order of magnitude p of the
binary number. Given t, the maximum error is the same for all values in the range
[2p, 2p+1).

The maximum absolute value of the relative error, also called machine epsilon
or ε, is:

ε , max |∆x̃(x0)| = ∆xmax

|xmin|
= 2−t−1 (2.9)

ε does not depend upon the order of magnitude of the value x0, but only upon the
number of digits of the fractional part of the mantissa t.

The IEEE-754 standard defines several basic floating-point binary formats that
differ by the number of bits used to encode the sign, the exponent and the fractional
part of the mantissa. The most important formats are:
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• Binary32, also called single precision.

• Binary64, also called double-precision.

• Binary128, also called quadruple-precision.

Their characteristics are summarized in Table 2.1 [30].

Table 2.1: Characteristics of the most important binary formats defined by IEEE-754

Number of bits
IEEE format Total s f p ε

Binary32 (Single-Precision) 32 1 23 8 5.96× 10−8

Binary64 (Double-precision) 64 1 52 11 1.11× 10−16

Binary128 (Quadruple-Precision) 128 1 112 15 9.63× 10−35

2.2.1.1 The Effect of the Measurement Units

In the floating point representation of physical values, the choice of the unit of
measurement affects the rounding error.

Given two proportional values x1 and x2 = k x1, in general the corresponding
maximum representation errors ∆xmax(x2) and ∆xmax(x1) do not satisfy the same
relation of proportionality, because of the presence of the floor function in the
definition of p (Eq. 2.2). The maximum absolute errors are proportional if and
only if the absolute value of the scale factor k is an integer power of the basis of
representation:

|k| = 2nk , nk ∈ Z (2.10)
In this case:

p(x2) = blog2 |kx1|c = blog2 |k|+ log2 |x1|c
= bnk + log2 |x1|c = nk + blog2 |x1|c
= nk + p(x1)

(2.11)

∆xmax(x2) = 2p(x2)−t−1 = 2nk+p(x1)−t−1

= 2nk 2p(x1)−t−1 = |k|∆xmax(x1)
(2.12)

As an immediate consequence, the maximum absolute error in the floating point
representation of a specific physical quantity depends upon the adopted unit. For
example:

LSB(1 km) ' 2.22× 10−16 km = 2.22× 10−13 m (2.13)
LSB(1000m) ' 1.14× 10−13 m (2.14)

However, it can be shown that, for a generic scale factor k, the ratio ∆xmax(x2)/∆xmax(x1)
is still |k|, when averaged on a large enough interval. Hence, averaging on a large
enough interval of values, the maximum absolute error in the floating point repre-
sentation can be considered not depend upon the chosen unit of measurement.
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2.2.2 The Statistical Model

The rounding error is a form of quantization error, with the LSB as the quan-
tization step. Hence, it is possible to adopt a statistical model, usually applied
to quantization errors, known as uniform quantization error model, or Widrow’s
model [70]. Using this description, given an exact time function x0(t), the round-off
error ∆x(t) in its numerical representation is modeled as a stochastic process with
the following characteristics:

• White.

• Wide-sense stationary.

• Uncorrelated with the represented function x0(t).

• With a Probability Density Function (PDF) uniform:

f∆x(δx) =

1/q(x0), if −q(x0)/2 ≤ δx ≤ q(x0)/2
0, otherwise

(2.15)

With this model, it is possible to compute the statistical properties of the
rounding error:

1. Mean value:
E[∆x(t)] = 0 (2.16)

2. Maximum absolute value:
∆xmax = q

2 (2.17)

3. Variance:

σ2
∆x = q2

12 (2.18)

The model is valid if the probability density function and the Characteristic
Function (the Fourier transform of the PDF) of the input signal x0(t) satisfy
the conditions of the Quantization Theorem (QT), stated in [70]. In [61] weaker
necessary and sufficient conditions for the QT are provided but in practice, for real-
world input signals, the conditions are very restrictive. For example, a sinusoidal
signal does not satisfy the QT, but Widrow’s model can still be applied with
sufficient accuracy if the amplitude of the signal is several times larger than the
quantization step [41].

In this work the statistical model was assumed to be valid and this assump-
tion was verified through a detailed analysis of the rounding errors, described in
Chapter 2.3.5.
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2.2.3 Operation Errors
When performing an exact operation f(x0, y0) using floating point arithmetic,

the result is affected by two kind of errors with respect to the theoretical value z0:

1) Propagation error of the rounding errors in the inputs:

x = x0 + ∆x, y = y0 + ∆y (2.19)

If the errors are small enough:

z̃0 = f(x, y) ' f(x0, y0) + ∂f

∂x
(x0, y0)∆x+ ∂f

∂y
(x0, y0)∆y (2.20)

2) Additional rounding error: even if the errors in the inputs are zero, the output
could be affected by a rounding error. IEEE Standard 754 requires that the
result of the basic operations (addition, subtraction, multiplication, division
and square root) must be exactly rounded [30], i.e. the operation shall be
performed as if it first produced an intermediate result correct to infinite
precision, and then that result was rounded to the finite number of digits in
use. The rounding on the result z̃0 can be represented by the addition of the
random variable ∆z:

z = z̃0 + ∆z = f(x, y) + ∆z (2.21)

The additional rounding error may be zero if the intermediate result of the
operation does not need rounding. In practice, to obtain an exactly rounded
result, it is necessary to perform the basic operations using at least 3 additional
binary digits [26]. For non-basic operations, the error on the results could be
larger and depends on how the operations are implemented.

Hence, the total error in the result of an operation is the sum of the propagation
error and the additional rounding error:

∆z = ∂f

∂x
(x0, y0)∆x+ ∂f

∂y
(x0, y0)∆y + ∆z (2.22)

Using Widrow’s model for numerical errors ∆x, ∆y, and ∆z, the total error ∆z is
the sum of three uncorrelated white random variables and its statistical properties
derive from the characteristics of each round-off error:

• Mean value:

E[∆z] = ∂f

∂x
(x0, y0) E[∆x] + ∂f

∂y
(x0, y0) E[∆y] + E[∆z] = 0 (2.23)

• Maximum absolute value:

∆zmax =
∣∣∣∣∣∂f∂x (x0, y0)

∣∣∣∣∣∆xmax +
∣∣∣∣∣∂f∂y (x0, y0)

∣∣∣∣∣∆ymax + ∆zmax

=
∣∣∣∣∣∂f∂x (x0, y0)

∣∣∣∣∣ q(x0)
2 +

∣∣∣∣∣∂f∂y (x0, y0)
∣∣∣∣∣ q(y0)

2 + q(z0)
2

(2.24)
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• Variance:

σ2
∆z =

(
∂f

∂x
(x0, y0)

)2

σ2
∆x +

(
∂f

∂y
(x0, y0)

)2

σ2
∆y + σ2

∆z

=
(
∂f

∂x
(x0, y0)

)2
q(x0)2

12 +
(
∂f

∂y
(x0, y0)

)2
q(y0)2

12 + q(z0)2

12

(2.25)

2.3 The Numerical Error Model

2.3.1 Differenced-Range Doppler Formulation
According to Moyer’s DRD formulation, the unramped two-way (F2) or three-

way (F3) Doppler observable is proportional to the mean time variation of the
round-trip light-time (i.e. the mean range-rate divided by c), during the count time
interval centered in the observable’s time-tag [51]:

F2,3(TT ) = M2fT
ρ(TT + Tc/2)− ρ(TT − Tc/2)

Tc
(2.26)

where:

• TT is the observable’s time-tag.

• M2 is the spacecraft transponder turnaround ratio, which is the ratio of the
transmitted frequency to the received frequency at the spacecraft.

• fT is the transmitted frequency of the signal at the transmitting antenna.

• Tc is the count time interval on which the Doppler shift is computed.

• ρ(t3(ST)) is the round-trip light-time, i.e. the time interval between the
reception time t3(ST) and the corresponding transmission time t1(ST), both
referred to the ground station electronics and expressed in Station Time1:

ρ(t3(ST)) = t3(ST)− t1(ST) (2.27)

t3 is the reception time in Ephemeris Time2 (Teph) [62]. It is computed from
the reception time in ST, t3(ST), through different time transformations, while the
reflecting time at the spacecraft t2 and the transmission time t1 are computed from
t3 solving for the down-link and the up-link light-time problems, respectively.

Neglecting second order terms, such as relativistic light-time delays, time scale
transformations, electronic delays, and transmission media delays, the round-trip
light-time can be written as:

ρ(t3) ' r12

c
+ r23

c
=

√
(r2 − r1) · (r2 − r1)

c
+

√
(r3 − r2) · (r3 − r2)

c
(2.28)

where:
1Station Time is a realization of the proper time at the Earth ground station.
2Ephemeris Time is the coordinate time of the Solar System barycentric space-time frame of

reference used in the adopted celestial ephemeris.
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• r1 is the position vector of the transmitting ground station at t1, with respect
to the Solar System barycenter.

• r2 is the position vector of the spacecraft at the reflecting t2, with respect to
the Solar System barycenter.

• r3 is the position vector of the receiving ground station at t3, with respect to
the Solar System barycenter.

• r12 is the Newtonian distance between the transmitting ground station at t1,
and the spacecraft at t2.

• r23 is the Newtonian distance between the spacecraft at t2, and the receiving
ground station at t3.

All state vectors are expressed in the Solar System barycentric space-time frame of
reference.

In Eq. 2.28 the position vectors r3 and r1 are computed from the planetary
and lunar ephemeris and from the Earth-centered position of the ground station
antenna:

r3 = rC
A3(t3) = rC

B(t3)− rE
M(t3)

1 + µE/µM
+ rE

A3(t3) (2.29)

r1 = rC
A1(t1) = rC

B(t1)− rE
M(t1)

1 + µE/µM
+ rE

A1(t1) (2.30)

where:
• ri

j is the position vector of body j with respect to body i.

• µi is the gravitational parameter of the body i.
Superscripts and subscripts designating bodies are explained in Table 2.2.

Table 2.2: Abbreviations for all bodies participating in the light-time problem.

Abbreviation Body
C Solar System Barycenter
S Sun
B Earth-Moon system barycenter
M Moon
E Earth
A1 Transmitting ground station’s antenna
A3 Receiving ground station’s antenna
P Probe
O Center Of Integration of the spacecraft trajectory

r2 is computed from the spacecraft ephemeris, obtained by integrating the
equations of motion with respect to the center of integration, and from the planetary
and satellite ephemeris:

r2 = rC
P(t2) = rC

O(t2) + rO
P(t2) (2.31)
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2.3.2 Sources of Numerical Errors and Order of Magnitude
Considerations

Using the DRD formulation, the Doppler observable is computed as the difference
of two round-trip light-times (Eq. 2.26). Qualitatively, this formulation has a high
sensitivity to round-off errors because, as it is well known, the difference between
two large and nearly equal values substantially increases the relative error, causing
a loss of significance [26]. Hence, errors in the round-trip light-time have a large
influence on the Doppler observables.

The main sources of numerical errors in the round-trip light-time are:

• Representation of times: rounding errors in the time variables.

• Representation of distances: rounding errors in the position vectors.

• Additional rounding errors: rounding errors in the result of each operation.

To evaluate the order of magnitude effect of the numerical errors a simple
expression can be used. At first approximation, the numerical errors ∆ρ in the
round-trip light-time at the start and at the end of the count time can be considered
independent. From Eq. 2.26, an order of magnitude estimation of the corresponding
effect in the Doppler observable is:

∆F2,3 'M2fT
√

2∆ρ
Tc

(2.32)

The three error sources are described in the following sections.

2.3.2.1 Representation of Times

The rounding errors in time epochs t3, t2, and t1 propagate only indirectly into
the round-trip light-time. An error ∆tk in time epoch tk affects the computation of
a position vector ri

j(tk), through the corresponding velocity vector ṙi
j:

∆ri
j = ṙi

j ∆tk (2.33)

The most important orbit determination programs use different representation
of the time variables tk:

• The ODP represents a time variable as a single double-precision value of
seconds past J2000 (January 1st 2000, 12:00) [51].

• AMFIN represents a time variable as a single double-precision value of days
past January 1st 2000, 00:00 [17].

• MONTE represents a time variable as a pair of two double-precision values
of seconds past J2000. Using two double-precision values is a fast software
method to implement an extended precision, called double-double arithmetics.
Using double-double precision However, double-double arithmetics does not
follow the IEEE-754 standard.
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Figure 2.1: Maximum absolute round-off errors in time variable for the time representa-
tions adopted in the ODP, AMFIN and MONTE. When the time variable
increases relative to the reference epoch, the maximum rounding error in-
creases with a piecewise trend, because it doubles when the binary order of
magnitude p(t) increases by one.

ODP and AMFIN use the same number of bits to represent time variables.
Moreover the difference of 12 hours in the reference epochs is negligible, so with good
approximation the only difference between ODP and AMFIN is the measurement
unit adopted. Hence, as discussed in Chapter 2.2, the time round-off errors in these
two orbit determination codes are not exactly the same, but they have the same
average magnitude, on a large enough time interval.

MONTE uses the same reference epoch of the ODP, but the double-double
arithmetics provide 2×52 = 104 bits to represent the fractional part of the mantissa.
The corresponding machine epsilon is 2−105 ' 2.5× 10−32, 256 times the machine
epsilon of the quadruple precision but about 16 orders of magnitude smaller than
the simple double precision.

Figure 2.1 shows the maximum absolute round-off error in time variables, for the
ODP, AMFIN and MONTE. Between July 2008 and January 2017, the maximum
round-off error for the ODP-like time representation is about 30 ns. The approximate
effect on the two-way range and range-rate can be computed using Eq. 2.33 and
Eq. 2.32, considering a range-rate of 30 km/s. For the ODP, the effect of the time
error on the two-way range has an order of magnitude of 2mm, and the approximate
effect on the two-way range-rate is about 4× 10−2 mm/s, for a count time of 60 s.
This corresponds to a significant ASDEV of about 1.4× 10−13 at 60 s integration
time. As stated above, for AMFIN the effect of the numerical errors in time
variables has the same order of magnitude than the ODP. However, for MONTE
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the numerical errors in the time variables are about 16 orders of magnitude smaller,
so the corresponding effects on the two-way range and range-rate measurements
are completely negligible.

2.3.2.2 Representation of Distances

The rounding errors in each component of the position vectors propagate into
the precision round-trip light-time directly, because the position vectors are used in
the computation of the Newtonian distances r12 and r23, but also indirectly, because
the position vectors are used also in the computation of t2 and t1. However, the
indirect effects are much smaller, by a factor 1/c, than the direct ones and can be
neglected.

All the three most important orbit determination programs, ODP, AMFIN, and
MONTE, express a single component of a position vector as a double-precision
value, in km. At 1AU the maximum round-off error in the two-way range is about
0.03mm and at 10AU it is about 0.24mm. From Eq. 2.32, the approximate effect
on the two-way range-rate is about 7× 10−4 mm/s at 1AU and 6× 10−3 mm/s at
10AU, for a count time of 60 s.

2.3.2.3 Additional Rounding Errors

The rounding errors in the result of each operation propagate into the round-trip
light-time. In this analysis, the following steps in the computation of the round-trip
light-time ρ were considered:

rE
B(ti) = rE

M(ti)/(1 + µE/µM) i = 1, 3 (2.34)
rC

E(ti) = rC
B(ti)− rE

B(ti), i = 1, 3 (2.35)
ri = rC

Ai(ti) = rC
E(ti) + rE

Ai(ti), i = 1, 3 (2.36)
r2 = rC

P(t2) = rC
O(t2) + rO

P(t2) (2.37)
rij = rj − ri = [xij yij zij]T , (i, j) = (1, 2), (2, 3) (2.38)

xxij = x2
ij, (i, j) = (1, 2), (2, 3) (2.39)

yyij = y2
ij, (i, j) = (1, 2), (2, 3) (2.40)

zzij = z2
ij, (i, j) = (1, 2), (2, 3) (2.41)

xyij = xxij + yyij, (i, j) = (1, 2), (2, 3) (2.42)
rrij = xyij + zzij, (i, j) = (1, 2), (2, 3) (2.43)
rij = √rrij, (i, j) = (1, 2), (2, 3) (2.44)
tij = rij/c, (i, j) = (1, 2), (2, 3) (2.45)
ρ = t12 + t23 (2.46)

The effect of the rounding errors in the computations is difficult to evaluate using a
simple expression. However, as most of the computations involve position vectors,
as a first approximation the effect can be considered of the same order of magnitude
of the representation of distances.

The position vectors ri
j used in Eqs. 2.34, 2.35, 2.36, and 2.37 are computed using

the astronomical ephemeris (given as an input to the program), the integration of
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the equations of motion and the Earth-fixed location of the ground station antenna.
For simplicity, the numerical errors introduced in these computational steps are
neglected. This assumption was verified a posteriori through the validation of the
numerical errors model.

2.3.3 Numerical Error Preliminary Model
As discussed in Chapter 2.2.3, a numerical error ∆x in a generic variable x

propagates into the output variable z through the partial derivative ∂z/∂x. Hence,
the numerical noise in the round-trip light-time ρ at reception time t3 can be
computed through the partial derivative of ρ with respect to each considered
error source. Neglecting second order terms, the resulting expression for the total
numerical error on ρ is:

∆ρ(t3) = ṙ12 + ṙ23

c
∆t3 + ṙ12 − ṗ23

c
∆t2 −

ṗ12

c
∆t1

+ r̂12 − r̂23

c
·
[
∆rO

P(t2) + ∆rC
O(t2) + ∆rC

P(t2)
]

+ r̂23

c
·

∆rE
A3(t3) + ∆rC

B(t3)− ∆rE
M(t3)

1 + µE/µM

+ ∆rC
A3(t3) + ∆rC

E(t3)−∆rE
B(t3) + ∆r23


− r̂12

c
·

∆rE
A3(t1) + ∆rC

B(t1)− ∆rE
M(t1)

1 + µE/µM

+ ∆rC
A1(t1) + ∆rC

E(t1)−∆rE
B(t1)−∆r12


+ ∆xx12 + ∆yy12 + ∆zz12 + ∆xy12 + ∆rr12

2 c r12

+ ∆xx23 + ∆yy23 + ∆zz23 + ∆xy23 + ∆rr23

2 c r23

+ (∆r12 + ∆r23) /c+ ∆t12 + ∆t23 + ∆ρ

(2.47)

where ṗij is defined as:

ṗij , ṙi · r̂ij (i, j) = (1, 2), (2, 3) (2.48)

The numerical error in two- or three-way Doppler observables with time-tag TT
can be expressed as:

∆F2,3(TT ) = M2fT
∆ρ(TT + Tc/2)−∆ρ(TT − Tc/2)

Tc
(2.49)

Adopting the statistical model for each numerical error in Eq. 2.47, it is possible
to evaluate the statistical properties of the total numerical error in the round-trip
light-time ρ and Doppler observable F2,3. It follows that ∆ρ(t3) is a stochastic
process with the following characteristics:
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• White.

• Non stationary, because the coefficients multiplying every single numerical
error are a function of time. However their time variation is typically very slow
and, for a typical duration of a tracking pass, the process can be considered
stationary.

• Gaussian-like distribution/PDF: from the central limit theorem the sum of
N independent and identically distributed random variables converges to a
normally distributed random variable as N approaches infinity. Because the
different numerical errors are a finite number and not identically distributed,
the expected PDF is only qualitatively bell-shaped.

• Zero mean.

• Variance: the total variance is the sum of each term’s variance. The variance
of each numerical error can be computed using the formulation presented in
Chapter 2.2.2.

The numerical error ∆F2,3 has similar characteristics to ∆ρ but it is not white,
because two consecutive Doppler observables are a function of the round-trip light-
time at their mid-time. In fact, the count times are consecutive, so the end of a
count time is the start of the next count time:

TTk + Tc/2 = TTk+1 − Tc/2 (2.50)

Given Eq. 2.50, two consecutive Doppler observables can be written as:

F2,3(TTk) = M2fT
ρ(TTk + Tc/2)− ρ(TTk − Tc/2)

Tc

= M2fT
ρ(TTk+1 − Tc/2)− ρ(TTk − Tc/2)

Tc
(2.51)

F2,3(TTk+1) = M2fT
ρ(TTk+1 + Tc/2)− ρ(TTk+1 − Tc/2)

Tc

= M2fT
ρ(TTk+2 − Tc/2)− ρ(TTk+1 − Tc/2)

Tc
(2.52)

Hence, the rounding error in ρ(TTk+1−Tc/2) affects both F2,3(TTk) and F2,3(TTk+1).
The autocorrelation function of ∆F2,3 is:

R∆F (τ) , E [(∆F (t)) (∆F (t+ τ))]
σ∆F (t)σ∆F (t+τ)

' 2R∆ρ(τ)−R∆ρ(τ − Tc)−R∆ρ(τ + Tc)
2 [1−R∆ρ(Tc)]

=


1, if τ = 0,
−1/2, if |τ | = Tc,
0, if |τ | > Tc.

(2.53)
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The variance of ∆F2,3 is proportional to the variance of ∆ρ:

σ2
∆F2,3(TT ) =

(
M2fT
Tc

)2 [
σ2

∆ρ(TT + Tc/2) + σ2
∆ρ(TT − Tc/2)

]

'2
(
M2fT
Tc

)2

σ2
∆ρ(TT )

(2.54)

recalling that ∆ρ is a white noise.
Thus, the standard deviation of ∆F2,3, representing the numerical noise level in

Doppler observables, depends on:

• Floating point word’s length: the number of bits used for the fractional part
of the mantissa defines the amplitude of all round-off errors. At present,
almost all hardware and compilers implement the IEEE-754 standard.

• Time: the time at which the orbit determination problem is settled defines
the order of magnitude of all time epochs, thus defining the quantization step
and the amplitude of the round-off errors in each time variable.

• Geometry: the state vectors of all participants to the orbit determination
problem define two critical factors:

– The order of magnitude of the three components of each position vector,
from which the range and the additional round-off errors derive.

– The velocities of the participants that define the influence of time round-
off errors in the observables.

• Count time: ∆ρ does not depend upon Tc, hence ∆F2,3 (and its standard
deviation) varies with T−1

c . As a reference a typical white-phase reference
noise varies with T−1/2

c .

However, the numerical noise does not depend upon the measurements band,
because it is proportional to the uplink frequency fT : increasing the frequency of
the carrier increases the numerical noise in the Doppler, but the value remains
constant in terms of fractional frequency.

2.3.4 Validation of the Widrow’s Model
The most delicate assumption on which the preliminary numerical noise model

is based is the statistical characterization of the round-off errors using Widrow’s
model. In order to verify this assumption and to study in detail the numerical
errors, a Radiometric Observables Generator (ROG) computer code was developed.
The program computes the two-way Doppler observables on the basis of Moyer’s
DRD formulation, with the following simplifications:

• The states of the celestial bodies, the ground stations and the spacecraft were
computed using the SPICE kernels and toolkit [1].

• In the solution of the light-time problems and in the computation of the
precision light-times only the Newtonian terms were considered.
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All steps in the computations were performed using both the quadruple and
double-precision floating point representation. Because the quadruple-precision
machine epsilon is about 18 orders of magnitude smaller than the double-precision
one, the numerical error in the quadruple-precision values can be neglected and the
computed quantities can be considered as infinitely precise reference values. Hence,
a very good estimation of the “real numerical errors” in each double-precision
quantity can be obtained as the difference between the double-precision values and
the quadruple-precision ones.

The ROG program was used to study the statistical properties of all the
elementary round-off errors appearing in Eq. 2.47. As a result of the analysis,
Widrow’s model was proven to be a good description of all round-off errors but ∆t3,
which cannot be considered a white random process, because its autocorrelation
R∆t3(t, Tc) is not a Dirac delta function. An example of the autocorrelation of ∆t3,
computed at two different passes, is shown in Figure 2.2.

The non applicability of the Widrow’s model to the rounding error ∆t3 derives
from how t3, the receiving time in Teph, is computed within the orbit determination
program: t3 is computed from t3(ST), the receiving time in ST, through a series of
time transformations, of which only the transformation from International Atomic
Time (TAI) [64, 65] to Teph is relevant, from the point of the numerical errors. In
fact, the difference between the timescales Teph and TAI is given by a number of
relativistic terms and it is mainly a function of the Earth’s orbital motion around
the Sun. Hence, (Teph −TAI) is approximately a sinusoid with mean value 32.184 s,
peak-to-peak amplitude of about 3.3ms and period of nearly 1 year:

(Teph − TAI)t ' 32.184 s + (1.65ms) cos
( 2π
Tsid

t
)

(2.55)

Using the DRD formulation, the computation of a two-way or three-way Doppler
observable requires the computation of two round-trip light-times ρ, separated by
the count time Tc. During this time interval the maximum variation of (Teph−TAI)
is about 20 ns:

∆(Teph − TAI) ' (1.65ms)
(2πTc
Tsid

)
cos

( 2π
Tsid

t
)

≤ (1.65ms)
(2πTc
Tsid

)
' 20 ns

(2.56)

This value is of the same order of magnitude than the least significant bit of t3, so
the Widrow’s model cannot longer be applied with sufficient accuracy [41] to ∆t3.
This error can still be described using an immediate extension of Widrow’s model,
obtained neglecting the whiteness property. ∆t3 is modeled as a random process:
• Non-white.

• Wide-sense stationary (on a single pass).

• Uniformly distributed with zero mean.
It can be shown that the numerical error in t3 is the rounding error of the

quantity (Teph − TAI)t3 considering the quantization step of t3:

∆t3 = round [(Teph − TAI)t3/q(t3)] · q(t3)− (Teph − TAI)t3 (2.57)
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Figure 2.2: Autocorrelation of ∆t3, computed on different tracking passes.

Hence, ∆t3 is function of (Teph−TAI) and of the quantization step of t3, q(t3), that
is a piecewise constant function of time.

The autocorrelation R∆t3(t, τ) can be computed using the real error ∆t3 obtained
from Eq. 2.57. Figure 2.3, representing R∆t3(t, Tc) using Tc = 60 s, shows a
periodicity of 1/2 year that derives from (Teph − TAI)t and, at about the middle of
2008, a discontinuity caused by the sudden doubling of q(t3).

2.3.5 Numerical Error Complete Model
Dropping the whiteness property of ∆t3, the mathematical model of the numer-

ical errors described in Chapter 2.3.3 must be slightly changed. In particular, the
expressions of ∆ρ and ∆F2,3 remain the same, but their expected statistical char-
acteristics change. ∆ρ has almost the same properties described in Chapter 2.3.3,
except that now it is a non-white random process, and its autocorrelation is a
function of the autocorrelation of ∆t3:

R∆ρ(t, τ) =
(
ṙ12 + ṙ23

c

)2 (σ∆t3
σ∆ρ

)2

R∆t3(t, τ) (2.58)

∆F2,3 is a random process with the following characteristics:

• Non-white, with a non-stationary autocorrelation R∆F2,3(t, τ).

• Distribution: because of the autocorrelation of ∆t3, the distribution may be
very different from a bell-shaped curve. The expected probability density
function of ∆F2,3 was not computed in this study, due its complexity and its
very low practical utility.

• Zero Mean.
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Figure 2.3: Time variation of the autocorrelation of ∆t3 after Tc = 60 s.

• Standard Deviation: Eq. 2.54 must be changed to account for the autocorre-
lation of ∆t3 after Tc seconds:

σ2
∆F (TT ) '

(
M2fT
Tc

)2
2σ2

∆ρ(TT )

− 2
(
ṙ12(TT ) + ṙ23(TT )

c

)2

· σ2
∆t3(TT ) ·R∆t3(TT, Tc)

 (2.59)

2.4 Model Validation

2.4.1 Validation Procedure
The complete numerical error model described in Chapter 2.3.5 was validated

by analyzing the real numerical noise in the Doppler observables computed by both
the ODP and MONTE.

For the purpose of this study, two real-world scenarios were considered:

• Cassini mission, from January 2011 to the planned end of the mission on
September 2017.

• Juno mission, from the launch at August 2011, to the planned end of the
nominal mission on October 2017.

For each mission scenario the following steps were performed:

• Identification of the tracking passes: using an external program, all the
tracking passes from the station DSS-25 of the NASA’s Deep Space Network
were identified. The program, developed in Fortran90, detect the time
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intervals when the spacecraft elevation is greater than a minimum value using
the spice kernel of the nominal trajectory of the mission as reference.

• Trajectory integration: for each tracking pass, ODP and MONTE were used
to integrate the spacecraft trajectory over the time interval covered by the
tracking pass. The initial state is retrieved from the spice kernel of the
nominal trajectory. To simplify the simulation, a reduced dynamical model
was used, which considers only the gravitational accelerations.

• Observables computation: for each tracking pass, ODP and MONTE were
used to compute the corresponding two-way Doppler observables with respect
to the ground station, using the X-band and a typical count time of 60 s.

• Numerical noise extraction: the numerical noise was extracted from the
computed observables using the so-called “six-parameter fit” on each tracking
pass.

• Numerical noise characterization: for each tracking pass the statistical prop-
erties of the numerical noise were computed and compared to the expected
values generated by the complete model. In particular, the analysis focused
on the standard deviation, which defines the numerical noise magnitude.

2.4.2 The Six-Parameter Fit
The numerical noise was extracted from the computed observables using the

so-called “six-parameter fit”, a well known and simple method usually employed
to estimate the noise content of Doppler observed observables [13, 19]. The fit is
based upon a simplified formulation of the range-rate between the spacecraft and
the Earth ground station [69]:

ṙAiP (t) = ṙEP (t) + ωers cos δ(t) sin (ωet+ α0 + λs − α(t)), i = 1, 3 (2.60)

where:

• ωe is the Earth mean rotation rate.

• rs is the distance of the ground station from the Earth spin axis.

• α is the spacecraft right ascension.

• δ is the spacecraft declination.

• α0 is the right ascension of the prime meridian at the adopted epoch.

• λs is the longitude of the ground station.

To take into account the Earth-spacecraft relative motion during the tracking
pass, ṙEP (t), δ(t), and α(t) are expanded to a first-order Taylor time series centered
at the start of the pass. Then, following [19], from Eq. 2.60 the range-rate can be
expressed as a linear combination of the following six functions:

1, tp, sinωetp, cosωetp, tp sinωetp, tp cosωetp (2.61)
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From Eq. 2.26, the two-way and three-way Doppler observable is proportional
to the mean range-rate during the count-time. Hence, during a single tracking
pass, the six functions in Eq. 2.61 can be used to fit F2,3, in a least-squares sense.
The six estimated parameters, which define the fitting function, are related to the
spacecraft geocentric state.

Due to the first-order approximation, the six-parameter fit can be successfully
applied only when the spacecraft does not experience significant accelerations.
Hence, during the numerical noise extraction, tracking passes corresponding to
fly-bys were neglected.

In the absence of artificial additive random quantities, the numerical errors
are the only non-negligible source of noise in the computed observables. Hence,
the analysis is based upon the assumption that the six-parameter fit is capable of
approximating (in a least-squares sense) the theoretical, infinitely precise, computed
Doppler observables, leaving only the numerical errors as the fit’s residuals.

2.4.3 Validation Results

In this section the results of the different analyses are collected.

2.4.3.1 ODP

Figure 2.4 reports the six-parameter fit residuals for the Cassini and Juno
scenarios. For both the scenarios, the residuals have zero mean but they present
a peculiar distribution, significantly different from a Gaussian distribution. This
is due to the autocorrelation of ∆t3 described in Chapter 2.3.4. For each tracking
pass, the numerical noise extracted by the six-parameter fit from the two-way
Doppler observables computed by the ODP was compared to the model described
in Chapter 2.3.5, in terms of:

• Mean: for all analyzed tracking passes the ratio of the residuals’ mean to their
standard deviation remains bounded within 3× 10−8, so it can be considered
zero for practical purposes, as predicted by the model.

• Standard deviation: Figure 2.5 and Figure 2.6 show that there is an optimal
agreement between the model predictions and the real numerical error:

– Juno scenario: the relative error is most of the time below 5% and always
smaller than 15%. No significant trends are visible.

– Cassini scenario: the relative error is most of the time below 10%, and
always smaller than 40%. The standard deviations’ ratio is noisier than in
the Juno scenario, most likely due to the difficulties of the six-parameter
fit to filter faster dynamics. The 1-sigma interval of the ratio, computed
on a moving window of 100 days, is always around 1 and increases from
about 1.05, at the beginning of the simulation, to about 1.15 at the end.
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(a) Cassini mission from January 2011 to September 2017.

(b) Juno mission from August 2011 to October 2017.

Figure 2.4: Six-parameter fit applied to two-way Doppler observables computed by the
ODP: fit’s residuals in Hz and mm/s.
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Figure 2.5: Six-parameter fit applied to two-way Doppler observables computed by the
ODP for the Cassini scenario: comparison between the standard deviation of
the fit’s residuals, computed on each tracking pass, and the predicted value
of the numerical noise model.
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Figure 2.6: Six-parameter fit applied to two-way Doppler observables computed by the
ODP for the Juno scenario: comparison between the standard deviation of
the fit’s residuals, computed on each tracking pass, and the predicted value
of the numerical noise model.
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2.4.3.2 MONTE

Figure 2.7 reports the six-parameter fit residuals for both the scenarios:
• Cassini scenario: the residuals appear good, with zero mean and without

signatures.

• Juno scenario: the residuals have zero mean and most of the time they do
not present signatures. However, on limited time intervals strange signatures
appear, as shown by Figure 2.8. A more detailed analysis found that the
signatures are caused by the so-called “bad points”.

The bad points are single measurements characterized by a numerical error much
larger than the other measurements of the pass. On the affected tracking passes,
the number of bad points per pass is small, always less than 5, and they are located
near the beginning and the end of the tracking pass. The cause of the bad points
is unknown, but it is most likely a software bug. However, as the source code of
Monte is unavailable, a more detailed investigation cannot be performed. A bug
report for the Monte developers team was open but, at present, no action was
taken to investigate and fix this issue. For these reasons, for the validation of the
numerical noise model, the bad points were removed from the residuals.

For each tracking pass, the numerical noise extracted by the six-parameter fit
was compared to the model described in Chapter 2.3.5, in terms of:
• Mean: for all analyzed tracking passes the ratio of the residuals’ mean to their

standard deviation remains bounded within 5× 10−6, so it can be considered
zero for practical purposes, as predicted by the model.

• Standard deviation:

– Cassini scenario: Figure 2.9 shows that there is a quite good agreement
between the real numerical error and the model predictions. The relative
error is most of the time below 20%, and always less than 50%. The
standard deviations’ ratio becomes noisier with time, most likely due to
the difficulties of the six-parameter fit to filter faster dynamics.

– Juno scenario: Figure 2.10 shows that the numerical noise model follows
quite well the time variation of the real numerical errors, being capable
to replicate the sudden step variations of the noise, a typical behavior of
the rounding errors. After the middle of 2015, when the numerical noise
settles down to the highest values, the relative error is most of the time
below 10%. Before this phase, when the total numerical noise is smaller,
the relative error increases up to 50% . This increase is likely due to
the approximations and simplifications introduced when developing the
prediction model: the neglected rounding errors and the second order
terms in the computation of the partial derivatives become non-negligible
for small values of the errors.

To validate the numerical noise model, the analysis of the Juno scenario was
performed removing the bad points from the six-parameter fit’s residuals. The
numerical error of the bad points can be 2-3 orders of magnitude larger than the
expected standard deviations.
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(a) Cassini mission from January 2011 to September 2017.

(b) Juno mission from August 2011 to October 2017.

Figure 2.7: Six-parameter fit applied to two-way Doppler observables computed by
MONTE: fit’s residuals in Hz and mm/s.
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(a) Cassini mission from January 2011 to September 2017.
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(b) Juno mission from August 2011 to October 2017.

Figure 2.8: Six-parameter fit applied to two-way Doppler observables computed by
MONTE for the Juno scenario: fit’s residuals in Hz and mm/s. Details
at different levels of zoom to highlight the presence of the “bad points”.
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Figure 2.9: Six-parameter fit applied to two-way Doppler observables computed by the
MONTE for the Cassini scenario: comparison between the standard deviation
of the fit’s residuals, computed on each tracking pass, and the predicted value
of the numerical noise model.
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(b) Standard deviation ratio.

Figure 2.10: Six-parameter fit applied to two-way Doppler observables computed by
the MONTE for the Juno scenario, without the “bad points”: comparison
between the standard deviation of the fit’s residuals, computed on each
tracking pass, and the predicted value of the numerical noise model.
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2.4.4 Validation Conclusions
Summarizing, the developed model provides quantitative predictions of the

different properties of the numerical noise in the Doppler observables. These
predictions were compared to the actual characteristics of the numerical noise of
the ODP and MONTE:

• ODP numerical noise: the analysis highlighted an optimal global agreement
between the model and the experimental data, with typical relative errors
below 10% and always smaller than 40%.

• MONTE numerical noise: the analysis highlighted the presence of the so-called
“bad points” a limited number of measurements characterized by much higher
numerical errors. Their origin is unknown, but most likely they are caused
by a software bug. The numerical error of the bad points can be up to 3
orders of magnitude larger than the noise of the remaining measurements.
Removing the bad points, the numerical noise model proved to follow quite
well the experimental data, with typical relative errors below 15% and always
smaller than 50%.

Hence, the numerical error model can be considered as fully validated at a level of
accuracy adequate to a priori characterize the expected numerical noise of a real
orbit determination scenario. Moreover, as said in Chapter 2.3, while developing
the model, many assumptions were made and different sources of numerical errors
were neglected. These simplifications may degrade the model accuracy when the
total numerical noise is small. Given the obtained results, these simplifications were
proved not to affect significantly the accuracy of the model predictions.

2.5 Numerical Noise Analysis
Using the numerical noise model described in Chapter 2.3 and validated in Chap-

ter 2.4, a qualitative and quantitative characterization of the numerical noise was
performed, for both the ODP and MONTE orbit determination programs.

Two real-world case studies were considered:

The Cassini mission: Cassini is a joint NASA/ESA/ASI mission to study the
Saturn’s planetary system, formed by the planet Saturn, its moons and its
ring system. Cassini was launched in 1997 and reached Saturn in 2004. After
4 years of successful science investigations, the mission was extended a first
time in 2008 and a second time in 2010. In November 2016 Cassini is planned
to be inserted into low altitude orbits, characterized by a periapsis of about
1.1 Saturn radii, just inside the D ring. After about 42 orbits the spacecraft
will impact the Saturn atmosphere in September, 2017 [59]. Due to the very
low periapsis altitude, during this end of mission phase the expected scientific
return of Gravity Radio Science Experiments is very relevant.

The Juno mission: Juno is a NASA New Frontiers interplanetary mission to
study the origin, interior structure, and evolution of the planet Jupiter [43].
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Juno was launched on August 15, 2011, and, after two Deep Space Maneuvers
(DSM) and an Earth gravity assist, will reach Jupiter in July 2016. In August
2016, through the Jupiter Orbit Insertion (JOI) maneuver, it will be placed in
a highly eccentric polar orbit around Jupiter. The nominal mission will end
in September 2017, with an impact on Jupiter after a de-orbiting maneuver.
The mission will consist of 31 science orbits, 25 of which will be dedicated to
gravity radio science experiments. In fact, one of the main scientific objectives
of the Juno mission is to map the Jupiter gravity field with unprecedented
accuracy. During gravity orbits, a dual-frequency (at X- and Ka-band) two-
way Doppler link will be established between the Goldstone Deep Space
Network (DSN) complex3 and the spacecraft Juno, with a nominal observing
interval of about 6 hours around perijove. This configuration, along with
state-of-the-art troposphere calibration techniques, is expected to reach a
two-way accuracy of 3.0 × 10−3 mm/s at 1000 s integration time or better,
during the entire mission [23].

2.5.1 ODP Numerical Noise
Figures 2.11 to 2.14 show the expected ODP numerical noise during the Cassini

and Juno missions, for two-way Doppler observables at X-band and 60 s of count
time. The plots represent the total numerical noise, plus the noise level due to each
of the three error sources: representation of time (Time), position vectors (Range),
and additional round-off errors (Additional). Note that the total noise curve is the
square root of the sum of the three squared components.

The following considerations about ODP numerical noise can be made:

• The Range and Additional components have a similar trend and increase with
spacecraft’s distance from the Earth, reaching almost constant values with
the arrival at Saturn’s and Jupiter’s orbit distance. For Juno the Range and
Additional components have less influence on the total noise with respect to
Cassini, because of the shorter distance from the Solar System Barycenter
(about 5.4AU for Jupiter, about 10AU for Saturn).

• The time variation of the Time component is a function of the relative velocity
between the ground station and the spacecraft, while the noise amplitude,
and the mean level, are a function also of the time elapsed since J2000. Hence,
the amplitude of the Time component has the minimum value at J2000,
and increases from J2000 becoming dominant. The instantaneous amplitude
variation due to the time quantization step changes is clearly visible, for
example at the beginning of 2002 and 2004, at the middle of 2008 and at
the beginning of 2017. During the cruise phase of the missions the trend of
the Time component of the numerical noise clearly shows an approximately
half-year periodicity due to Earth’s orbital motion. After the Saturn and
Jupiter orbit insertion, at the middle of 2004 for Cassini and at the middle
of 2016 for Juno, the trend of the Time component is the superposition of

3At present, only the Deep Space Station (DSS) 25 of the Goldstone site is capable of
transmitting at Ka-band.
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Figure 2.11: Numerical noise in Cassini’s two-way Doppler observables (Tc=60 s) during
the cruise phase, from the beginning of 1998 to the middle of 2004.
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Figure 2.12: Numerical noise in Cassini’s two-way Doppler observables (Tc=60 s) during
the Nominal Mission (from the middle of 2004 to the middle of 2008) and
the Equinox Mission (from the middle of 2008 to the end of 2010).
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Figure 2.13: Numerical noise in Cassini’s two-way Doppler observables (X-band, Tc=60 s)
during the Solstice Mission, from the end of 2010 to the end of 2017.

0

0.01

0.02

0.03

0.04

0.05

0.06

[m
m

/s
]

2012 2013 2014 2015 2016 2017
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

[H
z
]

Time [year]

 

 

Total

Time

Range

Additional

Figure 2.14: Numerical noise in Juno’s two-way Doppler observables (X-band, Tc=60 s)
during the cruise phase, from the end of 2011 to the end of 2016.
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the low-frequency Earth-planet relative motion and the higher frequency
spacecraft orbital motion around the planet.

• Considering the Cassini mission, during the cruise phase until the beginning
of 2004, the three components of the numerical noise had, on average, about
the same order of magnitude. Since about the beginning of 2004, the Time
component has increased and became dominant over the other sources, in
almost the entire residual mission.

• Considering the Juno mission, the numerical noise is dominated by the
Time component during almost the entire mission duration. Comparing
the Juno mission to the Cassini Solstice mission, the time variable assumes
approximately the same values.

• The maximum numerical noise during the Cassini mission is about 60µm/s,
reached near the end of the mission. The best accuracy in Cassini two-
way Doppler tracking, with proper state-of-the-art calibrations and under
favorable conditions, is about 9 × 10−4 mm/s with a count time of 1000 s,
and it was achieved during the Gravitational Wave Experiment (GWE),
performed during the 2001-2002 solar opposition [6]. As another reference,
during the Solar Conjunction Experiment (SCE) at the middle of 2002, a
two-way fractional frequency stability of about 4.3× 10−3 mm/s was achieved,
with a count time of 300 s [14]. Assuming white phase noise, the corresponding
noise level at 60 s integration time is about 3.7×10−3 mm/s for the GWE and
about 9.5× 10−3 mm/s for the SCE. The expected numerical noise, with the
same count time, has been of the same order of magnitude since about the
beginning of 2001, and becomes up to 15 times larger at the beginning of 2017,
near the end of mission.4 However, the best accuracy was achieved under the
most favorable conditions: the spacecraft was in cruise at solar opposition, the
dispersive noise was removed using the state-of-the-art full multi-frequency link
technique [12, 42], and the troposphere noise was calibrated using Advanced
Water-Vapor Radiometers (AWVR) measurements [27]. In 2003 the KaT
transponder suffered an unrecoverable failure, so the multi-frequency link was
not available during the Saturn tour. At present, the best accuracy achievable
by two-way Doppler measurements of Cassini is about 15µm/s, with 60 s of
integration time. The ODP numerical noise is still larger than this value, thus
remaining the dominant noise source.

• The expected two-way Doppler measurement accuracy of Juno is 1.2 ×
10−2 mm/s at 60 s integration time [23]: for a large portion of the mission the
total numerical noise is significantly larger than this value. Hence, in order to
fully exploit the capabilities of the high performance Juno Doppler link, it is

4Note that this comparison does not reflect the numerical noise level experienced during the
SCE and GWE experiments, because they were performed using higher count times. White phase
noise scales with T

− 1
2

c , while the numerical noise scales with T −1
c . For example, during GWE an

accuracy of about 9× 10−4 mm/s was achieved, with a count time of 1000 s. At this count time
the corresponding expected numerical noise is 4× 10−3 · 60/1000 = 2.4× 10−4 mm/s.
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necessary to reduce the numerical noise impact in the Doppler observables
computed by the orbit determination program.

Summarizing, for the ODP the numerical noise is a very important source of error
in the orbit determination of current interplanetary missions.

2.5.2 MONTE Numerical Noise
Figures 2.15 to 2.18 show the expected MONTE numerical noise during the

Cassini and Juno missions, for two-way Doppler observables at X-band and 60 s of
count time. The plots represent the total numerical noise, plus the noise level due
to each of the three error sources: representation of time (Time), position vectors
(Range), and additional round-off errors (Additional). Note that the total noise
curve is the square root of the sum of the three squared components.

The following considerations about MONTE numerical noise can be made:

• Due to the extended precision used for the representation of time variables, the
Time component of the numerical noise in the radiometric observables becomes
completely negligible. However, the Range and Additional components remain
unchanged, with the Additional rounding errors as the most important sources
of numerical noise.

• Considering the Cassini mission, the MONTE numerical noise increases with
the the spacecraft’s heliocentric distance, reaching the maximum value of
about 7µm/s at Saturn’s arrival, at the middle of 2004. This value is about
one order of magnitude smaller than the maximum ODP numerical noise,
but is still larger than the best Cassini measurement accuracy of about
4µm/s, achieved during GWE [6]. Even considering the current best accuracy
achievable by Cassini, which is about 15µm/s at 60 s integration time, the
MONTE numerical noise is smaller but only by a factor of 2.

• Considering the Juno mission, the maximum value of the MONTE numerical
noise is about 3.5µm/s, reached at Jupiter’s arrival, at the middle of 2005.
This value is about 20 times smaller than the maximum ODP numerical noise,
but it is still comparable to the expected Juno measurement accuracy of
1.2× 10−2 mm/s at 60 s integration time [23].

Summarizing, MONTE numerical noise is more than one order of magnitude smaller
than the ODP numerical noise, but it remains an important source of error in the
precise orbit determination of current interplanetary missions.

2.6 Possible Strategies to Mitigate the Numeri-
cal Noise

On the basis of the developed model, three main strategies were identified to
mitigate the numerical errors in the generation of the computed values of radiometric
observables:
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Figure 2.15: Numerical noise in Cassini’s two-way Doppler observables (Tc=60 s) during
the cruise phase, from the beginning of 1998 to the middle of 2004.
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Figure 2.16: Numerical noise in Cassini’s two-way Doppler observables (Tc=60 s) during
the Nominal Mission (from the middle of 2004 to the middle of 2008) and
the Equinox Mission (from the middle of 2008 to the end of 2010).
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Figure 2.17: Numerical noise in Cassini’s two-way Doppler observables (X-band, Tc=60 s)
during the Solstice Mission, from the end of 2010 to the end of 2017.

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

[m
m

/s
]

2012 2013 2014 2015 2016 2017
0

0.5

1
x 10

−4

[H
z
]

Time [year]

 

 

Total

Time

Range

Additional

Figure 2.18: Numerical noise in Juno’s two-way Doppler observables (X-band, Tc=60 s)
during the cruise phase, from the end of 2011 to the end of 2016.
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• Compile the orbit determination program using a higher precision floating
point representation. For example, moving from the double-precision to
quadruple-precision representation, all round-off errors decrease by about a
factor of 1018, becoming completely negligible. As a side effect, the execution
time of the orbit determination process increases. However, because of the
high complexity of the orbit determination codes, the increase in the execution
time cannot be evaluated a priori, but must be assessed through dedicated
experimental tests. Several approaches to reduce the execution time can
be applied, like parallelization or recompilation in quadruple-precision of a
limited subset of procedures, with further effects of increasing the complexity
of the source code.

• Use an extended precision for the representation of variables. As a side effect,
each operation explicitly involving time variables must be performed using
custom functions, increasing the complexity of the source code. As an example,
MONTE uses a double-double representation for the time variables. As shown
in Chapter 2.5 for the Cassini and Juno missions, the Time component of
numerical noise represents the most important contribution in interplanetary
orbit determination problems. Hence, the numerical noise can be reduced by
about one-order of magnitude changing only the time representation. However,
this reduction may not be sufficient to support present missions like NASA’s
Juno, and future missions, like ESA’s BepiColombo and JUICE, which are
expected to reach accuracies of about 12µm/s at 60 s integration time or
better, during most of their operational life.

• Use the Integrated Doppler formulation, which is much less influenced by
numerical errors [49]. According to this formulation, the Doppler observable
is computed expanding the Doppler frequency shift in a Taylor time series.
Averaging over the count time, terms proportional to the odd powers of Tc
become zero. Hence, retaining only terms up to T 2

c , the intrinsic error of
the ID formulation increases with T 4

c . The maximum allowable count time
depends on the specific orbit determination problem: for a desired accuracy
of 10−2 mm/s, the count time has to be less than 1-10 s if the spacecraft is
close to a planet or a satellite, while in heliocentric cruise much longer count
times can be used, up to 1000 s [49]. On the contrary, the DRD formulation
is theoretically exact, but is very sensitive to numerical errors, which increase
as T−1

c when reducing the count time. Hence, the numerical noise could be
reduced using the ID formulation, but only at small count times. Moreover,
the ID formulation can be only used with a constant uplink frequency. For
most modern and future interplanetary missions, the uplink carrier frequency
is varied in order to minimize the Doppler frequency shift observed by the
spacecraft. The ID formulation is currently implemented only in AMFIN. It
was implemented in older versions of the ODP, but it was then replaced by
the DRD formulation.
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2.7 Conclusions
In this chapter a study of numerical errors in two-way and three-way Doppler

observables computed using the Moyer differenced-range Doppler formulation was
described. This formulation is currently implemented in the most important inter-
planetary orbit determination programs: NASA/JPL’s ODP (Orbit Determination
Program) and MONTE (Mission-analysis, Operations, and Navigation Toolkit
Environment), and ESA’s AMFIN (Advanced Modular Facility for Interplanetary
Navigation). A mathematical model of the numerical noise was developed. The
model was validated analyzing directly the numerical noise in Doppler observables
computed by the ODP and MONTE, extracted using a simplified fitting function,
which was referred to as the “six-parameter fit”. In particular, the model showed a
relative error always smaller than 50%, with typical values better than 10%.

An accurate prediction of numerical noise can be used to compute a proper
noise budget in Doppler tracking of interplanetary spacecraft. This represents a
critical step for the design of future interplanetary missions, both for radio science
experiments, requiring the highest level of accuracy, and spacecraft navigation.
Moreover, the accurate prediction of numerical noise can also be used to identify
enhancements in past radio science experiments, if an improved orbit determination
code, less affected by numerical errors, could be used to reprocess past archived
data.

As real-world scenario case studies, the expected numerical noise in the two-way
Doppler link of the Cassini and Juno interplanetary missions was analyzed, both for
the ODP and MONTE. As a result, the numerical noise proved to be, in general, an
important source of noise in the orbit determination process and, in some conditions,
it may becomes the dominant noise source. Hence, the application of dedicated
strategies to reduce the numerical noise impact is considered mandatory, not only
for future interplanetary missions, but also for the currently operational Juno, and
to a lesser extent, for the Cassini missions. On the basis of the numerical errors
characterization, three different approaches to reduce the numerical noise were
proposed.



Chapter 3

A Multi-Arc Toolkit for MONTE

3.1 Introduction
MONTE is the new orbit determination software developed by the NASA/JPL

to replace the old Orbit Determination Program (ODP). MONTE is based upon
the same mathematical formulation of the ODP, with several differences in how
the time variables are represented to reduce the numerical noise, as described in
Chapter 2. However, the application of MONTE to the analysis of radio science
gravity experiment is very recent, so new set-ups, toolkits and procedures were
developed to perform this task. In particular, to analyze the data acquired during
the Cassini gravity radio science experiments the use of a multi-arc procedure is
fundamental while, at present, MONTE supports only a single-arc orbit determina-
tion approach. The multi-arc approach allows to improve the estimation of bias
parameters with scientific relevance through the joint analysis of measurements
acquired during non-contiguous orbital arcs. The multiarc library is a MONTE-
Python library developed to extend the Monte capabilities to perform a multi-arc
orbit determination.

The library provides a series of scripts and functions to easily:

• Set-up a multi-arc analysis, starting either from the correspondent single-arc
analyses or from a generic already available MONTE-UI set-up.

• Adding more arcs to an already available multi-arc analysis, modifying all
the necessary input files.

• Execute a multi-arc analysis, in a fully automatic and consistent way.

The multiarc library was developed and tested during the analysis of the
Cassini radio science gravity experiments of Rhea, described in details in Chapter 4.

3.2 The Single-Arc Approach
Within the orbit determination, the first way to increase the accuracy and

reliability of the estimation is to process more measurements, increasing the time
span of the observations.
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Within the gravity radio science, the estimation of the gravity field of a celestial
body is performed analyzing data acquired during multiple fly-by, or “gravity
experiments”. The fly-bys are usually separated by long time intervals, from months
in the most favorable conditions, up to several years. As an example, during the
entire Cassini-Huygens mission, only two fly-bys were dedicated to the gravity
investigations of Rhea: R1, held in November, 2005, and R4, performed in March,
2013, after almost 8 years.

In principle, the trajectory of the spacecraft can be always considered as a single
orbit, starting from a single set of initial conditions, no matter how long is the
time interval. Using the standard single-arc approach, more observations are added
increasing the length of the spacecraft orbit to reconstruct, from a single set of
initial conditions that all the measurements contributes to estimate. In practice
the single-arc approach has several limitations:

• Accumulation of modelization errors: the forces acting on a spacecraft are
in general extremely complex, and usually they can be described by a de-
terministic model only over a limited time span, on which the modelization
errors remain “small” with respect to the observational accuracy of the orbit
determination. In particular, the main difficulty is the proper modelization of
the non-gravitational forces acting on the spacecraft: in essence, there is no a
single deterministic model capable to accurately model the non-gravitational
perturbations [45]. Increasing the time span of the integration, the modeliza-
tion errors accumulate and the reconstructed trajectory diverges from the real
one. After a sufficiently long time, the model errors grow beyond observational
errors becoming non-negligible and degrading the estimation. The modeliza-
tion errors are usually absorbed through the so-called “stochastic parameters”,
as a part of a batch-sequential filter-smoother. The stochastic parameters
are parameters modeled as correlated random processes: they are constant
over a so-called batch time interval, but their value and statistical properties
are correlated to the other batches. At the end, after the smoothing process,
for each batch a different estimate of the stochastic parameters is generated,
but the estimation is a function of the measurements of all the batches. The
main drawback of this approach is that the stochastic parameters are not real
physical quantities, so that in the end the “stochastic” orbit determination is
based on tuning a set of parameters without physical bases. Moreover, the
stochastic parameters may adsorb also the observation errors and introduce a
bias in the estimation of the other parameters.

• Increase of the number of parameters to estimate, with consequently degra-
dation of the covariance matrix. In general, to reconstruct the trajectory
over the entire time span of the spacecraft, additional parameters must be
estimated, for example maneuver and range biases.

• Increase of the number of observations on which the parameters of interest
are not observable. For example, the gravity field of a body is observable only
around the closest approach of a limited number of fly-bys. In a single arc
approach the tracking data between the fly-bys do not carry information of
the gravity field, but are added only to estimate the trajectory itself.
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An mathematically equivalent approach to the single-arc method is the batch-
sequential method: the time span of the observations is divided into contiguous
intervals called batches. Each batch is analyzed as a single arc, but using as apriori
information the mapped solution and covariance matrix of the previous batch.
A small variation of the pure batch-sequential method is the “fading memory”
batch-sequential method, that consists in increasing the a priori covariance matrix
of each batch by a scale factor. This corresponds to a single-arc approach on which
the older observations are gradually de-weighted to conservatively increase the
covariance matrix, to take into account modelization errors and too optimistic
covariance models.

3.3 The Multi-Arc Approach
In the multi-arc approach the time span of the observations is divided into

shorter, non-overlapping and non-contiguous intervals called arcs.
The parameters to be estimated are divided into two groups:

Global parameters , which do not vary with time and affect the measurements
of all the arcs.

Local parameters , that affect only the measurements of an arc. In general, any
parameter can be treated as local.

The spacecraft state at the beginning of arc is always considered a set of local
parameters. In other words, the spacecraft trajectory of different arcs are considered
as completely uncorrelated, as if they were different spacecrafts.

Hence, adding an arc results in:

• Increasing the number of estimated parameters, because of the new local
parameters of the arc. This results in an over-parameterization that can
absorbs the models errors.

• Increasing the number of observations that depends upon the global parame-
ters. This results in an improvements of their estimation.

Moreover, the arcs can be selected to maximize the accuracy and the reliability
of the estimation of a set of global parameters, preferring arcs characterized by
high information content:

• Favorable orbital geometry (fly-by).

• Low noise level.

• Less disturbing effects, like maneuvers.

• Limited length, in order to limit the model errors below the observational
error.
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As a drawback, the output of the multi-arc is not a continuous trajectory over
the entire time span, but a series of unrelated, non-contiguous trajectory segments.
The deterministic coherence of the spacecraft trajectory of the single-arc approach
is replaced with a statistical-only type of coherence. Hence, the multi-arc cannot
be used for operational navigation of the spacecraft.

From a mathematical point of view, the multi-arc method is just a simplified
case of the general orbit determination problem, where the partial derivatives of
the measurements of an arc with respect to the local parameters of the other arcs
are zero. This results in a simple block structure of the filter matrices, which can
be easily assembled from the single-arc corresponding matrices [60].

3.4 The Multi-Arc Monte Library

3.4.1 Implementation
Currently, as of version 089, Monte does not support the multi-arc approach. As

stated before, the single-arc approach cannot be applied to analyze the radio science
gravity experiments, because the different fly-bys are separated typically separated
by long time intervals. The multiarc Monte-Python library was developed to extend
the Monte capabilities to perform a multi-arc analysis. For the implementation,
different approaches were analyzed and tested

3.4.1.1 The “external” approach

The first method analyzed to implement the multi-arc method was the “external”
approach [56]: for each separate arc Monte is used to integrate the spacecraft
trajectory, compute the observables, the residuals and the partial derivatives of
the residuals with respect to the parameters. Then, an external software reads
the Monte outputs, extract the residuals and partials, properly build the multi-arc
matrices and compute the multi-arc estimation and the corresponding covariance
matrix through accurate numerical methods. The new estimation is then inserted
in Monte to re-iterate the process. However, the basic idea of the development
was to make use as much as possible of the tools and functions of Monte, without
re-writing routines already available, tested and maintained by the JPL. For these
reasons an “external” approach was discarded.

3.4.1.2 The “multi-spacecraft” approach

Another approach analyzed to implement the multi-arc method was the “multi-
spacecraft” approach, already developed and used with the ODP [46]: for each
arc the spacecraft is considered as a different spacecraft, with a different name
and, in general, different dynamical model. Monte is used to integrate all the
spacecraft trajectories, compute the residuals and the partials, and to filter the
measurements obtaining the multi-arc estimation. The difference between local and
global parameters is “automatic”, because the different spacecrafts have different
names.
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A multi-arc filter must handle and estimate multiple state vectors. At present
Monte implements a current state or pseudo-epoch state batch Kalman filter [47].
This formulation of the Kalman filtering equations is explained in [16]. The Monte
filter supports different types of parameters:

• Parameters to estimate: parameters that the filter is allowed to change. The
filter starts with an initial value and uncertainty (the covariance) for these
parameters and will compute new values and their uncertainties. There are
three types of estimated parameters:

– Dynamic parameters: parameters that changes with time, i.e. parame-
ters whose transition matrix is not the identity matrix. The dynamic
parameters normally include body positions and velocities, masses, and
attitudes for any number of bodies.

– Bias parameters: parameters that are constant with time, i.e. parameters
whose transition matrix is the identity matrix.

– Stochastic parameters: bias parameters that are allowed to change over
a known time interval. For a pseudo-epoch state batch filter, a stochastic
parameter is treated as a piecewise constant parameter over some batch
interval.

• Parameters to consider: parameters that the filter is not allowed to change,
remaining constant during the analysis. The covariance of the consider
parameters is included in the final, smoothed covariance of the estimated
parameters. Usually they are parameters whose estimation cannot be improved
through data, but whose uncertainty affects in a non-negligible way the
uncertainty of the estimated parameters. Consider parameters may not be
stochastic.

Hence, Monte supports an unlimited number of dynamical parameters, as required
by the “multi-spacecraft” approach. However, this method cannot be implemented
because, even if the Monte filter supports multiple spacecrafts, they must have the
same reference epoch, i.e. they must be integrated from the same epoch.

3.4.1.3 The “hybrid” approach

At present, as a part of the operational orbit determination process, the Cassini
navigation team uses Monte also to update the Saturn’s satellites ephemerides,
estimating new values of the satellite states. Unlike the Cassini state, the satellite
states are always referred to a fixed reference epoch, changed every few years.
At present the reference epoch is 01-OCT-2010 00:00 ET. The updated satellites
ephemerides are generated numerically integrating the equations of motion using
a Cowell’s method [53]. Also the partials of the satellite states are computed,
numerically integrating the variational equations. To update the ephemerides,
Monte must compute the partials of the residuals with respect to the satellite states
at the reference epoch. For the filter, these parameters are dynamical parameters,
but their partials are referred to a different epoch. To overcome this situation, the
Monte filter handles these dynamical parameters as bias parameter. This is the same
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approach of the classical epoch state batch filter, in which all the partials are always
referred to a reference epoch. Using Monte nomenclature, the classical dynamical
state parameters are identified using the model “State”, while the bias-dynamical
parameters are identified with the “Ref State” model.

In the multiarc library, “Ref State” parameters were exploited to introduce
dynamical parameters referred to different epochs, like the spacecraft states of the
various arcs. Hence, an “hybrid” approach was used: as in the “external” approach,
for each arc Monte is used to integrate the spacecraft trajectory and compute the
residuals and the partials, which are processed from external routines. Then, as in
the “multi-spacecraft” approach, the measurements are merged and processed by
the standard Monte filter. This approach has the following advantages:

• The multi-arc analysis is well integrated with Monte, making use of the
Monte routines to perform the most difficult and “delicate” phases of the orbit
determination: trajectory integration, observables and partials computation,
and filtering. The strict integration may be also a disadvantage: future
updates of the software may break-up the multiarc library.

• The computations of the residuals and partials of each arc are separated
and completely independent. In this way it is possible to easy remove, or
modify a single arc, or even add a new arc from a single arc analysis already
implemented. However, to correctly combine the single-arc residuals and
partials, the dynamical models of all the arcs must be consistent. A special
care must be dedicated to this problem, because the multiarc library is not
able to verify the consistency of the arcs.

More details about the multi-arc procedure that was implemented are given in
Chapter 3.4.2.

3.4.2 The Multi-Arc Analysis Procedure
The implemented multi-arc procedure is based upon the the basic idea of keeping

conceptually and physically separate the single-arc and the multi-arc functions.
Two “layers” are defined:

• The single-arc layer, inside which the residuals and the partials of each arc are
computed. Each arc resides in a specific single-arc directory, that must contain
a working Monte-UI set-up. Each arc can be considered as a standalone single-
arc orbit determination analysis, without the filtering phase. The arcs are
completely unrelated with each other.

• The multi-arc layer, inside which the residuals are combined and filtered. The
multi-arc layer resides in a multi-arc directory, which usually contains also
the single-arc directories. The multi-arc directory must contain a Monte-UI
set-up defining the models necessary to perform the filtering phase and the
global satellite ephemerides update, if requested.

A schematics of the multi-arc procedure implemented in the multiarc library
is depicted in Figure 3.1. During the multi-arc orbit determination procedure the
following steps are performed:
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Figure 3.1: Block diagram of the multi-arc procedure implemented in the multiarc
Monte-Python library. The red blocks are the original developed routines of
the library.

1. Global dynamical model update, using the input namelists (only at the first
iteration) or the multi-arc solution of the previous iteration.

2. Global satellite ephemerides update, if requested.

3. Single-arc residuals and partials computation. Inside each single-arc layer,
the following steps are performed:

(a) Pre-solupdate: the global multi-arc solution is transformed to a single-arc
solution for the corresponding arc (only after the first iteration).

(b) Local dynamical model update, using the input namelists (only at the
first iteration) or the multi-arc solution of the previous iteration.

(c) Local satellite ephemerides update, if requested.
(d) Spacecraft trajectory propagation.
(e) Residuals and partials computation.
(f) Local editing and weighting of the single-arc residuals (optional).
(g) Pre-merge of the residuals: this original routine changes the name of the

local parameters with respect to the partials are computed:
• “State” parameters become “Ref State” parameters.
• The spacecraft’s name is changed adding a suffix which identify the

arc.
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4. Import a priori values of the local parameters from the single arcs.

5. Merge of the single-arc residuals and partials.

6. Global editing and weighting of the merged residuals.

7. Estimation of local and global parameters.

3.4.3 Set-Up of a Multi-Arc Analysis
This section describes, from an operative point of view, the procedure to set-up

a multi-arc analysis. To prepare a multi-arc analysis the following steps should be
performed:

1. Create the multi-arc directory.

2. Add and configure the single arcs.

3. Configure the multi-arc Options.mpy.

4. Configure the multi-arc setup file.

5. Configure the filter.

Each step will be described in details in the following sections.

3.4.3.1 Create the Multi-Arc Directory

The first step of the set-up is create a “multi-arc directory", inside which the
entire analysis will reside. At the end of the set-up phase the directory will contain:

• The single-arc directories (see Chapter 3.4.3.2).

• The multi-arc Options.mpy, based upon the specifications of the Cassini OD
library 2.0, but with small modifications to control the multi-arc process (see
Chapter 3.4.3.3).

• The multi-arc setup file (see Chapter 3.4.3.4).

• The filter configuration files (see Chapter 3.4.3.5).

• Other input files specified in the multi-arc Options.mpy.

The multi-arc directory can be created automatically using the command line
script prep_multiarc.py. By default, the script will:

• Create a standard basic multi-arc directory.

• Create an empty Options.mpy, to be used as a template.

• Crate an empty multiarc_setup.mpy, to be used as a template.

• Crate an empty filter_setup.mpy, to be used as a template.
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Optionally, it is possible to provide a source Monte working directory to use as
a reference. This can be useful to define a dynamical model for global integrating
the satellite ephemerides. In this case the script will also:

• Copy the content of the source Options.mpy inside the basic multi-arc
Options.mpy.

• Copy all the needed input files.

In both cases the user must review and complete all the configuration files.

3.4.3.2 Add and Configure the Single Arcs

The second step of the set-up is to add and configure all the single arcs. For a
correct multi-arc analysis at least two arcs are needed. However, a full multi-arc
analysis can be completed without errors with only one arc. This can be useful for
testing.

Each arc must reside entirely in a “single-arc directory”, placed inside the
multi-arc directory. The single-arc directory must be a standard Monte-UI working
directory. It must contain:

• The single-arc Options.mpy file, formatted according the specifications of the
Cassini OD library 2.0.

• The necessary input files specified in the Options.mpy.

Each arc can be considered as a standalone single-arc orbit determination
analysis, so it can be copied directly from an already configured Monte-UI case.
In this case, the command line script add_arc.py can be used to automatically
add a new arc from the source directory. The script must be executed inside the
multi-arc directory. By default, the script will:

• Create the single-arc directory.

• Copy the source Options.mpy.

• Copy all the needed input files.

• Insert the basic arc information in the multi-arc Options.mpy (see Chap-
ter 3.4.3.3).

• Insert the basic arc information in the multi-arc setup file (see Chapter 3.4.3.4).

Optionally, it is possible to provide a case number n of the source analysis to
use as a lockfile. In this case the script will:

• Create the single-arc directory.

• Copy the gin.boa.n from the source outputs/ directory to the target
lockfile/ directory.

• Copy all the needed input files.
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• Create a custom Options.mpy.

• Insert the basic arc information in the multi-arc Options.mpy (see Chap-
ter 3.4.3.3).

• Insert the basic arc information in the multi-arc setup file (see Chapter 3.4.3.4).
In both cases the user must review and complete all the configuration files.

3.4.3.3 Configure the Multi-Arc Options.mpy

The computation of the residuals and partials is performed in the single arcs.
Hence, the multi-arc Options.mpy is used to set-up only the information needed
for the multi-arc layer of the analysis:
• A dynamical model for the global satellite ephemerides update, if requested.

• The multi-arc setup file (see Chapter 3.4.3.4).

• Global editing and weighting commands for the merged residuals.

• The filter configuration.

• The a priori covariances, for both the global and local parameters.

• The a priori values of the global parameters only. The a priori values of the
local parameters are automatically imported from the single arcs.

Moreover, the following variables must be defined in the multi-arc Options.mpy:
• ARC_EPOCH: the epoch of the first arc, in string format.

• ARC_END: the end of the last arc, in string format.
If an arc is added using the command line script add_arc.py, these variables are
automatically updated.

3.4.3.4 Configure the Multi-Arc Setup File

The multi-arc setup file specifies the basic information of the single arcs needed
to perform the multi-arc analysis. It must define a Python list named ARCS that,
for each arc, contains a list with the following data:
• A name to identify the arc, without spaces or special characters.

• The name of the single-arc directory, relative to the multi-arc directory.

• The epoch of the arc, in string format.

• The end of the arc, in string format.

• A list of the local parameters of the arc, in string format.
If an arc is added using the command line script add_arc.py, the basic arc informa-
tion will be automatically added to the list ARCS inside the file multiarc_setup.mpy,
if present. The list of the local parameters will include only the initial state of the
spacecraft. After adding the arc the user must review and if necessary complete
the multi-arc setup file.
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3.4.3.5 Configure the Multi-Arc Filter

The next step of the multi-arc set-up is the configuration of the filter. To jointly
process the residuals and the partials of multiple arcs, the name of the single-arc
parameters is changed before the merging:

• All the “State” parameters are renamed to “Ref State”. Hence, all the
dynamical parameters, both global or local, will be treated as bias in the
filter.

• The second key of the local parameters is renamed, adding as suffix the
identification string of the arc provided by the multi-arc setup file.

Due to the changes described above, the filter must be configured using a standard
Monte-UI setup, but with the following differences:

• The list of dynamical parameters must be empty.

• The parameters, both bias and considered, must be inserted with their
modified name.

At present the multiarc library does not support the stochastic parameters. No
stochastic parameters must be added to the filter.

For each parameter in the filter state, the a priori value and the covariance must
be provided:

• The a priori value of the global parameters must be defined in the multi-arc
model, through the multi-arc Options.mpy.

• The a priori value of the local parameters will be automatically imported
from the single arcs. At present the a priori value of the local parameters
can be automatically imported from the single arcs only for the following
parameters:

– Initial integration states: ’State/Body/Center/Frame/Param’.

– Mass parameters: ’Mass/Body’.

– Gravitational parameters: ’Gm/Body’.

– Spherical Harmonics: ’Gravity/Body/Param’.

For the other parameters a model with the a priori values must be provided
in the multi-arc Options.mpy.

• The apriori covariance of both global and local parameters must be defined
in the multi-arc model. The apriori covariance of the local parameters will
not be imported from the single arcs.
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3.4.4 Analysis Execution
Completed the set-up phase, the multi-arc analysis will be performed execut-

ing the command line script estim_ma.mpy inside the multi-arc directory. This
scripts executes prefit_sa.mpy to generate the observables of the single arcs, then
combines these observables and perform a global filter. The user can specify:

• the number of iterations to perform.

• the type of satellite ephemerides update.

For each arc, the outputs and log files will be created in the outputs/ folder of
the corresponding single-arc directory. The outputs and log files of the multi-arc
process will be created in the outputs/ folder of the multi-arc directory.

3.4.5 Current Limitations
At present, the multiarc library has the following limitations:

• The stochastic parameters are not supported.

• The a priori value of the local parameters can be automatically imported
from the single arcs only for the following parameters:

– Initial integration states: ’State/Body/Center/Frame/Param’.
– Mass parameters: ’Mass/Body’.
– Gravitational parameters: ’Gm/Body’.
– Spherical Harmonics: ’Gravity/Body/Param’.

For the other parameters a model with the a priori values must be provided
in the multi-arc Options.mpy.

• The filter does not support mappings.

• The center of integration of the spacecraft and satellites must be constant.
This is because currently “Ref State” parameters do not support arbitrary
center mappings [47].

3.5 Conclusions and Future Work
Monte, the orbit determination software developed by the JPL, does not support

natively the multi-arc method (as of version 089). The multiarc Monte-Python
library was developed to extend the standard Monte capabilities to perform a
multi-arc analysis.

The multiarc library has the following characteristics:

• Developed in python programming language.
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• Strictly integrated with Monte, because it uses the Monte routines, developed,
tested and maintained by the JPL, to perform the most important phases of
the orbit determination:

– Spacecraft trajectory integration.
– Satellites ephemerides update.
– Residuals and partials computation.
– Residuals fitering and estimation.

• The multiarc library provides a series of routines to easily:

– Set-up a multi-arc analysis, from an already working set-up or from
empty standard templates.

– Add more arcs to a multi-arc analysis from an already available single-arc
analysis.

– Configure the single-arc layer and the multi-arc layer.
– Perform the analysis, automatizing all the multi-arc procedure.

The multiarc library was developed and successfully tested during the analysis
of the Cassini radio science gravity experiments of Rhea, described in details in
Chapter 4.

Regarding the future work, the development and testing of the multiarc library
is still ongoing. In particular, the following desired features are identified:

• Support for stochastic parameters.

• Support for variable centers of integration.

• Native support for more local parameters.

• Easy implementation of custom observables.

• Application to other missions than Cassini, like Juno of NASA, Bepi Colombo,
and JUICE of ESA.



72 CHAPTER 3. MULTI-ARC TOOLKIT



Chapter 4

Rhea Gravity Field from Cassini
Data Analysis

4.1 Introduction
Discovered on December 23, 1672 by Giovanni Domenico Cassini, Rhea is the

second largest moon of Saturn, given a mean radius of about 764 km. The main
orbital and physical characteristics of Rhea are presented in Table 4.1[68][37].

Table 4.1: Orbital and physical characteristics of Rhea.

Semi-major axis ( km) 527108
Orbital Period ( d) 4.518
Rotation Period synchronous
Eccentricity 0.0012583
Inclination ( deg) 0.345
GM ( km3/s2) 153.9426± 0.0037
Mean Radius ( km) 764.30± 1.10
Mean Density ( kg/m3) 1233± 5
Geometric Albedo 0.949± 0.003

The first pictures of Rhea were taken by Voyager 1 and Voyager 2 probes, in
1980 and 1981. Images showed that the surface of Rhea can be divided into two
regions: the leading hemisphere is uniformly bright and is heavily cratered, while
the trailing hemisphere is darker, with smaller craters. The difference may indicate
that a major resurfacing event occurred some time in past Rhea’s history.

Before the Cassini arrival to Saturn, only the gravitational parameter GM
was estimated, from an analysis of Pioneer and Voyager data, obtaining GM =
154± 4 km3/s2 [18]. Considering a mean radius of 764± 4 km, the mean density
was 1236± 4 kg/m3, relatively small and compatible with a mixture of about 75%
water ice (density 1000 kg/m3) and 25% rock-metal (density 3000 kg/m3)[2].

During its mission in the Saturn’s system, Cassini encountered Rhea four times,
but only two flybys were devoted to gravity investigations. The first gravity flyby,
referred to as R1 according to the numbering scheme used by the project Cassini, was
performed on November 26, 2005, during the main mission. R1 was characterized
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by a very low inclination, about 17 deg at the C/A, and an altitude of about 502 km
at the C/A, which corresponds to a radius of about 1.6 Rhea radii (RR). The main
orbital and geometrical characteristics of R1 are summarized in Table 4.2.

The radiometric data acquired during this encounter were used to estimate the
gravity field of Rhea. A first estimate was published by [3]. This solution was
obtained with the assumption of hydrostatic equilibrium, i.e. constraining J2 and
C22 to a ratio of 10/3. From the estimation, applying the Radau-Darwin relation
the authors obtained a normalized moment of inertia of about 0.3911 ± 0.0045,
where a value of 0.4 derives from a constant density interior. The authors concluded
that the satellite’s interior is a homogeneous, undifferentiated mixture of ice and
rock, with possibly some compression of the ice and transition from ice I and ice II
at depth.

Moreover, the radiometric data acquired during R1 were independently analyzed
by the Cassini Navigation team [39] and by the Cassini Radio Science team [31].
Both analysis estimated the moon’s GM and quadrupole gravity coefficients J2 and
C22, obtaining different solutions, but consistent at the 2σ level, as the result of
different analysis approaches. The two approaches were then combined to obtain a
joint “best” unconstrained estimation of the quadrupole field [40]. The solution
obtained was not statistically compatible with the hydrostatic equilibrium, hence
no useful constraint on Rhea’s interior structure could be imposed. Moreover, the
application of the hydrostatic constraint led to a significant degradation of the
orbital fit a the closest approach. To explain the non-hydrostatic ratio J2/C22
the authors theorized that a large collision occurred after the completion of the
thermal evolution of the satellite could have created a mass redistribution and a
reorientation of the tidal bulge.

Finally, [4] stated that the differences in the previously published gravity fields
are probably caused by a mis-modeling of the non-gravitational acceleration acting
on Cassini caused by the anisotropic thermal emission. To avoid this issue, the
authors restricted the analysis to a subset of data around the closest approach,
where the information of Rhea’s quadrupole field is not negligible. They obtained a
new solution in agreement with [3], using the hypothesis of hydrostatic equilibrium.
Moreover, the authors concluded that the non hydrostaticity is not supported by
the data.

The different estimations of J2 and C22 published to date are showed in Fig-
ure 4.1.

To resolve these discrepancies, a second and last gravity fly-by, referred to as
R4, was planned in the Solstice mission and performed on March 9, 2013. No other
gravity flybys of Rhea are scheduled up to the end of the mission in 2017. To
de-correlate the estimation of J2 and C22 R4 was designed to be nearly polar, with
a high inclination at the C/A, about 106 deg. However, the altitude at the C/A
was about 999 km, which corresponds to a radius of about 2.3 RR, which is smaller
than R1. The main orbital and geometrical characteristics of R4 are summarized in
Table 4.2, while Figure 4.2 presents the ground track of the two fly-bys, for a time
interval of about 4 h around the closest approaches. The Sun-Earth-Probe (SEP)
angle was greater than 110 deg during both the encounters, thus the solar plasma
noise was not a dominant source of noise on range rate measurements.

This chapter presents the estimation of the Rhea’s gravity field obtained from
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Figure 4.1: Estimations of Rhea J2 and C22 published to date.

Table 4.2: Main orbital and geometrical characteristics of R1 and R4.

R1 R4

Date (ERT) (UTC) 26-NOV-2005, 23:50 09-MAR-2013, 19:40
Altitude ( km) 502 999
Radius ( km) 1266 1763
Radius (RR) 1.6 2.3
Relative Velocity ( km/s) 7.3 9.3
Inclination ( deg) 17 106
Latitude ( deg) −10.2 18.8
Longitude ( deg) −91.5 −176.2
β Angle ( deg) 106 117
SEP Angle ( deg) 113 128
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Figure 4.2: Ground tracks of R1 and R4 Cassini fly-bys of Rhea.

a joint analysis of the two flybys. The analysis was carried out using Mission-
analysis, Operations, and Navigation Toolkit Environment (MONTE), the new
orbit determination software developed by the Jet Propulsion Laboratory (JPL) to
replace the old Orbit Determination Program (ODP). MONTE is based upon the
same mathematical formulation of the ODP, with several differences in how the time
variables are represented to reduce the numerical noise, as described in Chapter 2.
However, the use of MONTE in the analysis of radio science gravity experiment
is new: completely new scripts, work methods and set-ups were produced during
this work. At first a single arc, independent, analysis of R1 was performed. In
this way, the new MONTE setup of the gravity analysis was tested comparing the
estimated gravity field with the published results available in literature. Then,
a second solution was obtained through a single arc analysis of R4. A second
independent solution, based on different data, is useful to check the correctness
of the set-up, because it may highlight systematic modelization errors that can
be absorbed analyzing a single, short, data arc. Finally, data from both R1 and
R4 were combined into a multi-arc solution. The multi-arc analysis was carried
out using the newly developed multi-arc toolkit for MONTE, described in details
in Chapter 3. To test the stability of the solution, different multi-arc analysis
were performed, varying the data set, the strategy for the update of the satellite
ephemerides and the dynamical model.

4.2 Dynamical Model

To correctly estimate the orbit of Cassini, the dynamical model implemented
in the orbit determination program must take into account all the non-negligible
accelerations acting on the spacecraft. In this section a brief description of all the
non-negligible forces acting on Cassini during a satellite fly-by is given.
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4.2.1 Gravitational Accelerations
The implemented dynamical model includes the gravitational acceleration from

all the main solar system bodies and from the main satellites of Saturn. In particular,
the following effects were activated:

• Newtonian point-mass gravity acceleration from the Sun, the planets, the
Moon and Pluto.

• Newtonian point-mass gravity acceleration from the Saturn’s satellites Mimas,
Enceladus, Tethys, Dione, Rhea, Titan, Hyperion, Iapetus, Phoebe.

• Newtonian gravity acceleration due to spherical harmonics of Saturn and
Rhea.

• The Newtonian gravitational accelerations due to the Saturn’s rings are
included in the Saturn’s gravity field.

• Relativistic point-mass gravity acceleration caused by the Sun, Jupiter, Saturn
and its main satellites.

The periodic tidal effects of Saturn on Rhea were not activated, because the
eccentricity of Rhea’s orbit is very small: in this condition the tidal bulge is almost
constant, function of the secular Love’s number kf [38], while the elastic response,
function of the tidal Love’s number k2, cannot be determined, at least with only
two fly-bys available.

The gravitational parameters and state vectors of the planets, the Sun, the
Moon and Pluto were obtained from JPL planetary ephemerides DE430 [24]. The
gravitational parameters and a priori state vectors of Saturn and its main satellites
were obtained from the Saturn’s satellites ephemerides SAT355 provided by the
Cassini Navigation Team by fitting a large number of radio and optical and data1.
The satellite ephemerides provide also the Saturn’s even zonal spherical harmonics
from J2 up to J8 and an updated model of the Saturn’s rotation.

The a priori values for Rhea’s GM and spherical harmonics were retrieved
from [40]. However, a large a priori uncertainty was used, in order to not constrain
the solution.

4.2.1.1 Rhea Rotation Model

Given the very small eccentricity (about 0.001), Rhea is supposed to be in
synchronous rotation around Saturn, with the rotation axis normal to the orbital
plane and prime meridian always oriented toward Saturn. The rotational model
adopted was based on the latest coordinate orientations adopted by the IAU [5],
with small corrections were applied to obtain a better fit of Cassini and other
astrometric data [36]. The adopted Rhea rotational model is reported in Eq. 4.1.

1Available at ftp://ssd.jpl.nasa.gov/pub/eph/satellites/.

ftp://ssd.jpl.nasa.gov/pub/eph/satellites/
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α0( deg) = 40.347− 0.17089132T − 2.958 sinS7 + 0.076 sinS12 (4.1)
δ0( deg) = 83.550− 0.01277063T − 0.332 sinS7 + 0.004 sinS12 (4.2)
W ( deg) = 235.16 + 79.69005069d+ 2.941 sinS7− 0.077 sinS12 (4.3)

Where:

• α0: right ascension of the north pole with respect to EME2000.

• δ0: declination of the north pole with respect to EME2000.

• W : angle measured easterly along the body’s equator between the prime
meridian and the ascending line of nodes.

• T : time measured in Julian centuries (36525 days) past J2000.

• d: time measured in days past J2000.

• sinSi: nutation-precession terms, whose argument is given by Eq. 4.4.

S7( deg) = 9.151048 + 1004.6342250T (4.4)
S12( deg) = 18.302096 + 2009.2684500T (4.5)

A dynamically defined, perfectly synchronous, rotational model was also used,
but the solution was not affected significantly.

4.2.2 Non-Gravitational Accelerations
The most important non-gravitational forces acting on Cassini are:

• Orbital maneuvers, used to change the trajectory of Cassini within the Saturn’s
system.

• Unbalanced thrust during attitude and reaction wheel desaturation maneuvers
implemented with the thrusters.

• Anisotropic thermal emission of Cassini, in particular caused by the RTG
and the geometry of the spacecraft.

• Solar radiation pressure.

• Saturn’s planetary albedo.

• Drag caused by planetary and satellite atmospheres.
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4.2.2.1 Meneuvers

During the orbit determination, any maneuver that may affects the spacecraft
center of mass must be estimated. Adding additional elements to the state vector
degrades the estimation, because of the correlation between the parameters: the
formal covariance matrix increases and biases, due to systematic errors, may be
added. Hence, to maximize the accuracy of the gravity field estimation, gravity
radio science experiments were planned without the presence of any maneuver.
Moreover, even when navigation data is added, the data arc used in the analysis
never include these kind of forces.

4.2.2.2 RTGs

The three onboard Radio-isotopes Thermal Generators (RTG) provides electrical
power to Cassini through natural radioactive decay of an isotope of Plutonium.
The thermal power generated by the RTGs is radiated into space. The spacecraft
BUS is insulated through an insulating blanket and reflects most of the thermal
radiation. Other parts of the spacecraft, like the HGA both absorbs and reflect the
thermal emission. The global thermal emission of the spacecraft is not isotropic,
giving rise to an acceleration because the thermal radiation carries momentum. Due
to the spacecraft geometry, the main effect is an acceleration along the spacecraft
Z body-fixed axis of about 5 × 10−12 km/s2 [21]. The asymmetric spacing of the
RTGs produces also smaller, by a factor of 3, but non-negligible accelerations along
the X-Y plane, mainly along X axis. In the orbit determination software MONTE,
the RTG acceleration is modeled as an exponential decaying acceleration, of the
form:

r̈ = MR

(
ArẐ + AxX̂ + AyŶ

)
e−β∆t (4.6)

where:

• MR: ratio between the mass at t = 0 and the current mass.

• Ar: acceleration along the spacecraft Z axis at t = 0.

• Ax: acceleration along the spacecraft X axis at t = 0.

• Ay: acceleration along the spacecraft Y axis at t = 0.

• β: exponential time scale factor. The value used in this analysis is provided
in Table 4.3.

More details about the mathematical modelization of the RTG accelerations can
be found in [22] and [21]. In this analysis the coefficients Ar, Ax and Ay estimated
by the Cassini navigation team were used. Their value is presented in Table 4.3.
New values for the RTGs acceleration were not estimated, because from only two
fly-bys is not possible to improve their estimation. Moreover, the time scale of the
acceleration is much greater than the duration of the gravity experiments: during
the fly-by the RTG accelerations can be considered constant. Hence, they does not
affect the estimation of the gravity field, because the correlation is very low.
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Table 4.3: Coefficients defining the Cassini RTG acceleration.

β ( s−1) 2.5× 10−10

Ar ( km/s2) −3.00e− 12
Ax ( km/s2) −9.33e− 13
Ay ( km/s2) −1.07e− 13

4.2.2.3 Solar Radiation Pressure

Solar photons carry momentum so, when the solar radiation impacts the surfaces
of Cassini it transfers momentum to the spacecraft, generating an acceleration
well above Cassini acceleration sensitivity. The value of this acceleration depends
upon the amount of incident radiation that is specularly reflected, absorbed and
diffusively reflected, which depend upon the spacecraft geometry and the thermo-
optical properties of the surfaces. A proper general modelization of the solar
pressure is extremely difficult, because the thermo-optical properties are difficult to
measure and because of the interaction between the different surfaces. Fortunately,
during the tracking passes, Cassini points the HGA toward the Earth: the frontal
area is dominated by the two magnetometer booms and the HGA, which alone
accounts for the 90% of the total frontal area. The HGA surface is accurately
modeled as a parabolic antenna, while the booms are modeled as simple cylinders.
The thermo-optical properties of the surfaces were measured and extrapolated
during ground tests, while their variation is inferred from temperature readings of
two sensors mounted on the HGA back side. More details about the mathematical
modelization of the solar radiation pressure can be found in [22] and [21]. As
the RTGs accelerations, new values of the solar pressure coefficients were not
estimated, because the low observability due to the limited amount of data and the
low correlation with the Rhea gravity field.

4.2.2.4 Saturn Albedo

As the solar radiation, the Saturn’s thermal radiation incident on Cassini
transfers momentum and produces a non-gravitational force. The resulting is of the
order of 10−16 km/s2, increasing up to 5× 10−15 km/s2 near Saturn pericenter [21].
Hence the planetary albedo is absolutely negligible, because its maximum value is
three order of magnitude smaller than the RTGs acceleration.

4.2.2.5 Atmospheric Drag

Within the Saturn’s system, only Saturn and Titan have a non-negligible
atmosphere. Hence, during a Rhea fly-by the drag is not present and the model
was not activated.

4.3 Satellite Ephemerides Update
Within the orbit determination process Rhea’s ephemerides were updated. Rhea

is orbiting around Saturn in an almost circular orbit, with a semi-major axis of
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527108 km, about 690 RR. The sphere of influence of Rhea can be estimated using
as the Hill’s radius RH :

RH = a

√
GM

3GMP

' 5830 km ' 7.6 RR (4.7)

where GM and GMP are the gravitational parameters of Rhea and Saturn, respec-
tively. During R1 and R4 Cassini is within the Rhea’s sphere of influence, where
the gravity accelerations can be considered dominated by the satellite, for a time
interval of about 40 min and 30 min around the closest approach. Hence, for almost
the entire duration of the arcs, the gravitational accelerations of Saturn and Rhea
are comparable. The trajectory of Cassini is strictly related to the relative position
between Cassini, Rhea and Saturn. The state of Cassini is obtained integrating the
spacecraft equations of motion, given the dynamical model described in this section.
The state of Rhea, all the other satellites and Saturn is retrieved from the Saturn
satellite ephemerides, obtained numerically integrating the satellites equations of
motion using the Cowell’s method [53]. The Saturn’s satellite ephemerides are ob-
tained fitting a large number of astrometric, optical and radiometric measurements,
obtained from different sources through a large time span of data. However, the
ephemerides of the different satellites have different accuracies, given the different
number and accuracy of the observations available. Moreover, the accuracy degrades
away from the time span covered by observations. For this reason, to correctly fit
the data, both the relative states of Cassini and Rhea with respect to Saturn must
be estimated. Given a new state of Rhea, the satellite ephemerides of the Saturn’s
system have to be updated. The new ephemerides are generated using the same
routines used by the JPL team to create the official satellite ephemerides [35].

When multiple fly-bys, separated by a quite long time (8 years for Cassini R1 and
R4), are analyzed using a multi-arc method, two approaches are available: the global
method and the local method. The global approach is the conventional method, used
in the past for all the analysis of the gravity radio science experiments [31, 33, 40].
Using this approach, when generating new ephemerides the satellites states is
integrated for the entire time span covered by the data arc, from an epoch prior
to the first fly-by, to after the last fly-by. This approach ensures that the satellite
trajectory is internally coherent. However, following this conventional procedure, a
new state of only one satellite is estimated. Moreover, usually the a priori covariance
matrix of the satellite is diagonal: this approach neglects the correlations with all
the other satellites. Moving the initial state of only one satellite and integrating the
equations of motion, the orbits of all the satellite change, because of the relative
gravitational interactions. This could in principle change the fit of all the other data,
astrometric, optical and radiometric are completely neglected. Hence, the updated
ephemerides do not represent an “improved” version of the satellite ephemerides,
but the orbits that allows to better fit only the data under analysis. Moreover, the
integration of the updated satellite ephemerides over a long time span is a long
process (about 15-20 minutes for a single integration over 8 years), and it slows
down the analysis.

For these reasons, a novel local approach was developed and tested. Using
this approach, the state of the satellite is treated as a local parameter of a multi
arc analysis. For each fly-by, not only a different state of Cassini, but also a
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different state of Rhea are estimated. After the estimation, new satellite “local”
ephemerides are generated for each fly-by, integrating from the new states for
a time span that covers the only corresponding fly-by. This approach does not
ensure that the satellite trajectory is strictly coherent but, as for the spacecraft
trajectory in the classic multi-arc analysis, the deterministic coherence is replaced
by a stochastic coherence. If the differences of the orbits are within the uncertainty
of the ephemerides, the two orbits are compatible from a statistical point of view.
For the purpose of the estimation of the satellite gravity field the local approach
can be considered fully equivalent to the global approach. In fact, as for the global
approach, the updated local ephemerides represent only the satellites orbits that
provides a better fit of the analyzed data. Moreover, the epoch of the satellite can
be chosen just before the fly-by, usually coinciding with the epoch of the spacecraft
state, to reduce the time for the integration. For an arc of about 3 days, the satellite
integration is almost instantaneous.

4.4 Data

4.4.1 Data Selection
The main observable quantity used in the gravity estimation was the spacecraft

range rate, also called Doppler. The Doppler observable is the frequency shift due
to relativistic Doppler effect, averaged over a finite count time, of a highly stable
microwave carrier transmitted from an Earth ground station to the spacecraft,
that coherently retransmits the signal to Earth by means of a precise transponder.
Range observables were not used in the analysis because they have a very limited
use in the estimation of gravity fields. In fact, the estimation of the gravity field is
strictly related to the reconstruction of the accelerations acting on the spacecraft.
Doppler measurements provide a measure of the variation of the spacecraft velocity.
The same information can be obtained through range measurements, but with much
less accuracy than range rate, due to the random errors. Moreover, while range-rate
is a relative measurement, range is an absolute measurement of the light-time, thus
is sensitive to systematic errors. At present, for Cassini-era range systems, the
accuracy is limited by the interplanetary plasma and the delays of ground station
and spacecraft electronics, that can be up to 2 m [69]. For this reason, in spacecraft
navigation is a common procedure to estimate a range bias for each tracking pass.
However, in gravity radio science, this may introduce biases in the estimation of
the gravity field.

During the encounters Doppler data in X (8.4 GHz) and Ka band (32.5 GHz)
were acquired by the antennas of the NASA’s Deep Space Network (DSN) at
the three complexes of Goldstone, Madrid and Canberra. In addition to data
obtained around the closest approach, the analysis used also data obtained up to
two day before and after the closest approach, during standard navigation tracking
passes. The additional data allow to improve the orbit determination, in particular
the estimation of Rhea’s ephemerides and Rhea’s GM , because of the stronger
constraints that impose on the relative trajectories between Cassini, Rhea and
Saturn.
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The detailed timeline of R1 and R4, showing the elevation with respect to the
three DSN complexes and the tracking passes, is presented in Figure 4.3. It is
important to note that the closest approach of R1 was tracked only in three-way
mode. This represents a sub-optimal condition, due to the possible delay between
the reference oscillators of the two different uplink and downlink stations. During
R4, the closest approach was tracked in two-way mode.

Dual frequency X-band uplink and Ka-band downlink (X/Ka) Doppler data
were preferred to the standard X/X data when available, to reduce the effects of
the dispersive noise sources, mainly the solar corona and the the Earth ionosphere.
Two-way Doppler data were preferred to three-way data in the same band when
both were available, to remove the errors due to the clock synchronization between
the uplink and downlink ground stations. When only two-way X/X data and
three-way X/Ka data were available, the selection was made on a case by case basis.

4.4.2 Data Calibration
When available, Advanced Media Calibration system (AMC) data [10], obtained

from advanced water vapor radiometers, were used to calibrate the wet path delay
due to the Earth’s troposphere. When not available, the Earth’s troposphere was
calibrated using the standard Tracking System Analitical Calibration (TSAC) data,
based on a combination of weather data and dual frequency GPS measurements.
The TSAC calibration provides good accuracy for the dry component but fails
to calibrate the short time scale (60s-1000s) variations of the wet component [27].
However, the AMC calibrations are less reliable, because advanced water vapor
radiometers provide not reliable measurements if liquid content is present along
the line of sight. For this reason AMC calibration were applied and generated
through an iterative process: starting from a base analysis obtained using only
TSAC calibrations, AMC calibrations are applied on a single tracking pass. Then,
their effect is evaluated comparing the residuals and the solution obtained. If
the residuals show a degradation, the corresponding AMC data are analyzed in
detail, re-generated with different options and re-iterating the procedure, or totally
discarded. The Earth’s ionosphere was calibrated using data generated from dual
frequency GPS measurements.

4.4.2.1 Time synchronization of AMC data

During the analysis, an issue regarding the time synchronization of the AMC
calibrations was found. In particular, a possible time delay was identified in the
AMC data for the DSS-25 tracking station. As a part of the process of AMC
application and evaluation, the cross-correlation between the AMC calibrations and
the residuals, obtained without troposphere calibrations, was computed. Under
normal circumstances, a strong correlation at a zero time-lag is expected, because
one, if not the most, of the dominant noise sources in the residuals should be
the delay due to the Earth’s troposphere. This result was obtained for the AMC
calibrations on the DSS-55, as shown in Figure 4.4.

However, for the two tracking passes on the DSS-25, the peak of the cross
correlation was found at about −20 s, as shown in Figure 4.5. The data were
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Figure 4.3: Cassini elevation with respect to the uplink and downlink stations during R1
and R4, function of the receiving time of the signal. The bold lines represent
the minimum elevation between uplink and downlink during the tracking
passes used in the analysis.
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Figure 4.4: Cross correlation between the AMC calibration on DSS-55 and corresponding
residuals obtained without tropospheric calibrations. To remove the spikes,
the cross-correlation is also low-pass filtered using a simple central moving
average on a time interval of 10 s. The peak of the cross correlation is about
at zero time lag.
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reprocessed inserting this time shift in the AMC calibrations for the DSS-25 only,
obtaining a significant improvement: the RMS of the residuals of the corresponding
passes reduced by 16%, from 19µm/s to 16µm. However, the improvement of the
estimation of the gravity field was marginal, because the two passes does not cover
the closest approach, where is concentrated the maximum observability.
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Figure 4.5: Cross correlation between the AMC calibration on DSS-25 and corresponding
residuals obtained without tropospheric calibrations. To remove the spikes,
the cross-correlation is also low-pass filtered using a simple central moving
average on a time interval of 10 s. The peak of the cross correlation is about
at a time lag of −20 s.

4.5 Estimation
The calibrated data set was analyzed using MONTE. The orbit determination

process is a filtering process: the solution is the value of the solve-for parameters
that minimizes, in a least square sense, the residuals between the real measurements
and the simulated measurements, computed using a mathematical model. Moreover,
the corresponding formal covariance matrix, that defines the formal uncertainty of
the solution, is computed. The residuals are weighted on a pass-by-pass basis using
the RMS of the residuals itself. The RMS of the residuals is not known a priori, so
the estimation is an iterative process: at the beginning the weights are chosen on
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the basis of past analysis and mathematical models of the noise sources. After the
convergence of the estimation, the postfit residuals are weighted using the RMS of
the corresponding tracking pass and the estimation is repeated. The convergence is
reached when the RMS of the postfit residuals, grouped into the tracking passes,
are equal, or a bit less, than the corresponding weights used for the analysis. This
weighting strategy is based on the implicit assumption that the postfit residuals, at
least on a single pass, represent only a white noise. This assumption is not always
verified, but can be considered true in the frequency bands of interest.

To increase the convergence the minimizing function comprises also the distance
from an a priori estimate of the state vector, used also at the first iteration to fit
the data. This distance is weighted using the a priori covariance matrix, which
represents the covariance matrix of the a priori estimate.

In the various analysis the following parameters were estimated:

• Initial state of Cassini. In the joint multi-arc analysis a different initial state
was estimated for each arc.

• Initial state of Rhea at the epoch of the first fly-by. In this work the classical
“global” approach, described in Chapter 4.3, was chosen.

• The gravitational parameters GM of Rhea.

• The quadrupole gravity field of Rhea. Different solutions were obtained
estimating different sets of the quadrupole coefficients.

Cassini Initial State The a priori values for the Cassini states were obtained
from the reconstructed trajectory provided by the Cassini Navigation Team2. The
a priori uncertainty was set conservatively using a diagonal covariance matrix with
1-sigma of 5 km for the X and Y position components, 15 km for the Z position
component, 10 mm/s for the X and Y velocity components and 30 mm/s for the Z
velocity component. These values are 5-50 times larger than the typical covariance
matrices provided by the Cassini navigation team. Moreover, using a diagonal a
priori covariance matrix is a conservative assumption, because it neglects all the
information, in terms of correlations, derived from the past analysis.

Rhea Initial State The a priori values for the Rhea state were retrieved from
the Saturn’s satellite ephemerides SAT3553. The a priori uncertainty was set
conservatively using a diagonal covariance matrix with 1-sigma of 6 km for each
component of the position and 60 mm/s for each velocity component. These values
are 30-50 times larger than the typical covariance matrices provided by the Cassini
navigation team. Moreover, as for the Cassini initial state, using a diagonal a
priori covariance matrix is a conservative assumption, because it neglects all the
information derived from past data.

2The updated Cassini trajectory Spice kernels are available at ftp://naif.jpl.nasa.gov/.
3Available at ftp://ssd.jpl.nasa.gov/pub/eph/satellites/.

ftp://naif.jpl.nasa.gov/
ftp://ssd.jpl.nasa.gov/pub/eph/satellites/
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Rhea Gravity Field The a priori values of GM , J2, C22 and S22 were retrieved
from [40]. The a priori value of C21 and S21 was set to zero. Given the limited
amount of data, analyzing a single fly-by with tracking at the closest approach is
not possible to obtain a reasonable estimation of the full quadrupole gravity. Hence,
in the single-arc analysis C21 and S21 were set to zero. Single-arc analyses were
obtained estimating also C21 and S21 but the formal uncertainties of the gravity
coefficients increased by more than 2 orders of magnitude. Fro the same reason,
higher degree harmonics, whose estimation is not possible with only two fly-bys,
were set to zero in all the analyses. To not constrain the estimation, the a priori
uncertainties of the GM and the estimated quadrupole coefficients were set to be
much higher, at least one order of magnitude, than the formal uncertainty.

To assess the stability of the estimated gravity field, different solutions were
produced, changing: the sets of estimated parameters, the a priori values, the a
priori uncertainties, the data set, the satellite ephemerides, the calibrations. No
significant differences were found, hence in this work only the most relevant solutions
are reported:

Sol-R1 : Single-arc solution of R1 fly-by, estimating the GM and J2, C22 and S22
only. C21 and S21 were set to zero.

Sol-R4 : Single-arc solution of R4 fly-by, estimating the GM and J2, C22 and S22
only. C21 and S21 were set to zero.

Sol-MA-0 : Multi-arc solution of both R1 and R4 fly-bys, estimating the GM and
J2, C22 and S22 only. C21 and S21 were set to zero as in Sol-R1 and Sol-R4
for a direct comparison.

Sol-MA : Multi-arc solution of both R1 and R4 fly-bys, estimating the GM and
the full quadrupole gravity field with very large a priori uncertainties.

Sol-MA-L : Multi-arc solution of both R1 and R4 fly-bys, estimating the GM
and the full quadrupole gravity field with very large a priori uncertainties.
Rhea initial state is treated as a local parameter, using the “local approach”.

Sol-MA-HE : Multi-arc solution of both R1 and R4, estimating GM and the full
quadrupole, where the ratio between J2/C22 was imposed to the hydrostatic
equilibrium value of 10/3.

The results of the analyses are summarized in Chapter 4.6.

4.6 Results
In this section the results of the different analyses are collected.

4.6.1 Residuals
Figure 4.6 to Figure 4.10 report the post-fit residuals of the tracking passes

around the closest approaches of R1 and R4 for all the solutions described above.
For all the solutions (apart Sol-MA-HE) the residuals do not show any evident
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signature around the closest approach and the RMS of the residuals are very similar,
about 77µm/s for R1 and about 17µm/s for R4. The only exception is Sol-MA-HE:
the residuals of R1 show an evident signature around the closest approach, while for
R4 the signature is not evident. For R1 the RMS of the residuals is about 90µm/s,
larger than the other solutions by 17%, while for R4 the RMS is about 17.8µm/s,
an increases only by 4%.

4.6.2 Rhea Gravity Field
Figure 4.11 shows the different estimations of Rhea’s GM , along with their

1-sigma errorbars, while Figure 4.12 shows J2 and C22 in the J2-C22 plane, along
with their 1-sigma error ellipses. Where applicable, the estimations are compared to
the value published in the literature. For sake of clarity, only the results published
in [4] and [40] were considered. Finally, as reference, Table 4.4 collects all the
estimated gravity coefficients for all the different solutions described in this work.

4.6.3 Comments
4.6.3.1 MONTE Set-Up Validation

In this work all the analyses were produced using MONTE, the new orbit
determination software developed in the latest years by JPL. Before this work,
MONTE was never used to analyze radio science gravity experiments. A first
validation of the set-up can be made comparing the results of these analyses with
each others and with the values available in literature. The following considerations
can be made:

• Sol-R1 is compatible at 1-sigma level with [40]. The formal uncertainties are
larger because quite conservative a priori diagonal covariance matrices for
the Cassini and Rhea states where chosen, while [40] used the full covariance
matrices provided by the Cassini navigation team. As expected from an
almost equatorial fly-by, C22 is estimated with better accuracy than J2.

• Sol-R1 is not compatible at 3-sigma level with [4]. However the solutions
cannot be directly compared, because [4] constrained a priori the hydrostatic
equilibrium.

• Sol-R4 and Sol-R1 are compatible at 1-sigma level (2-sigma for S22). However,
Sol-R4 has significantly larger uncertainties than Sol-R1, even though the
RMS of the residuals at the closest approach is more than 4 times smaller.
The reasons is a smaller sensitivity to J2 and C22 because of the less favorable
orbital geometry: the R4 fly-by is characterized by a larger distance and
a larger relative velocity at the closest approach than R1. Moreover the
inclination introduces a strong correlation between J2 and C22 that increases
the uncertainties.

• All the multi-arc solutions are compatible at 1-sigma level with each others
and with the single-arc solutions. The only exception is Sol-MA-HE, that
cannot be directly compared with the other solutions because it was obtained
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Figure 4.6: Sol-R1 and Sol-R4: range-rate residuals around the closest approach of R1
and R4 in mm/s.
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Figure 4.7: Sol-MA-0: range-rate residuals around the closest approach of R1 and R4 in
mm/s.
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(b) R4. The C/A is about at 09-MAR-2013, 19:40 UTC.

Figure 4.8: Sol-MA: range-rate residuals around the closest approach of R1 and R4 in
mm/s.
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(b) R4. The C/A is about at 09-MAR-2013, 19:40 UTC.

Figure 4.9: Sol-MA-L: range-rate residuals around the closest approach of R1 and R4 in
mm/s.
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(b) R4. The C/A is about at 09-MAR-2013, 19:40 UTC.

Figure 4.10: Sol-MA-HE: range-rate residuals around the closest approach of R1 and R4
in mm/s.
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Figure 4.13: Rhea J2/C22 − 10/3 1-sigma error bars.

constraining the hydrostatic equilibrium ratio between J2 and C22. However,
Sol-MA-HE is compatible at 1-sigma level with [4], that used the same a
priori constraint.

Summarizing, the MONTE set-up and procedures developed to analyze the radio
science gravity experiments can be considered successfully tested, because all the
solutions obtained are reliable and congruent to the set-up used.

4.6.3.2 The Multi-Arc Strategy

The multi-arc strategy is a procedure to analyze radiometric data obtained during
non-contiguous orbital arcs, allowing to increase the accuracy of the estimation
with respect to the correspondent single-arc analyses. Regarding the analysis of
the Rhea radio science gravity experiments, the two fly-bys R1 and R4 were first
analyzed using a single-arc approach, then they were jointly analyzed using the
multi-arc approach obtaining significant improvements in the Rhea’s gravity field
estimation, as expected. To quantify this improvements, Sol-MA-0 can be directly
compared to Sol-R1 and Sol-R4 because it was obtained using the same a priori and
estimating the same gravity coefficients. At a first approximation, adding more arcs
is like adding more measurement of the same physical quantity, so the uncertainty
is expected to decrease with the square-root of the number of arcs

√
N , which

corresponds to a 30% passing from 1 arc to 2 arcs. Moreover, of the two single-arc
solutions, Sol-R4 is characterized by much larger uncertainties, by about 5 times for
C22 and 3 times for J2. Hence, at a first approximation, the uncertainty is expected
do decrease by less than the 30% because R4 seems to carry less information content
than R1. In fact, the addition of R4 data allowed to improve the estimation of C22
by 20%, but the estimation of J2 improved by 55%. This is because the advantage
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of a multi-arc approach is not simply the addition of more equivalent measurements,
but it allows to break the correlations between the parameters. In this case, R1
is an almost equatorial fly-by, so there is a large correlation between J2 and GM
because the acceleration due to J2 can be separated from the GM contribution
only for the different variation with the distance from the body. R4 is an almost
polar fly-by, then it allows to break this correlation.

Moreover, given the limited amount of data, the single-arc analyses did not
allow to obtain a reasonable estimation of the full quadrupole gravity, so C21 and
S21 were set to zero. On the contrary, the multi-arc analyses allowed to estimate
also C21 and S21, obtaining almost equal central values and a very limited increase
of the formal uncertainties, about the 7% for C22 and less than 2% for J2.

4.6.3.3 The Satellite Ephemerides Update Strategy

As stated in Chapter 4.3, during a multi-arc analyses two approaches for the
update of the satellite ephemerides can be used: the “global”, conventional, method
and the new “local” method. Sol-MA-0, Sol-MA and Sol-MA-HE were obtained
using the global approach, while Sol-MA-L was obtained using the local approach
starting from the same set-up of Sol-MA.

As a result, solution Sol-MA is compatible at a 1-sigma level with Sol-MA, but
it is characterized by larger uncertainties: the standard deviation of J2 and C22
increase by 50%, while for GM it increases by a factor of 5. This is because the
local approach has a large number of parameters to estimate, and using the global
approach the orbit of Rhea during R4 is very sensitive to the satellite’s GM because
of the very long propagation from the initial epoch.

Summarizing, the local approach provides compatible results for the gravity
field, but the global approach provides the best accuracies. However, the local
approach can be very useful during the analysis set-up, for example to build and
validate the dynamical model and to evaluate the calibrations, because of the much
smaller integration times.

4.7 Interpretation
The most important consideration that is possible to do from the results reported

in Chapter 4.6 is that the obtained estimation of the Rhea quadrupole field are
not compatible with the condition of hydrostatic equilibrium. In fact, as shown
in Figure 4.12 and Figure 4.13, the ratio J2/C22 is more than 3-sigma apart from the
hydrostatic value of 10/3 for all the solution apart Sol-R4, that is about 1.5-sigma
apart, and Sol-HE, where the hydrostatic equilibrium was constrained a priori.
Moreover, forcing the hydrostatic equilibrium degrades the orbital fit, as can be
observed comparing the solutions Sol-MA and Sol-MA-HE, that differ only for the
hydrostatic equilibrium contraint. For R1, the residuals of Sol-MA-HE show an
evident signature around the closest approach, and the RMS increases by 17%,
from about 77µm/s to about 90µm/s. However, for R4 the degradation is much
smaller: the residuals of Sol-MA-HE do not show any evident signature, and the
RMS increases only by a 4%, to about 17.8µm/s.
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Given a body in hydrostatic equilibrium, deviations from the spherical symmetry
are caused only by its rotation and tidal forces exerted by an external body and
are dominated by the quadrupole terms. In particular, considering a satellite in
hydrostatic equilibrium and in a circular orbit around a planet, if the satellite is
in synchronous rotation the only non-zero quadrupole terms are J2, generated by
both rotation and tides, and C22, generated by only tidal forces. Their ratio, as
said before, is defined as 10/3. In this case the Radau-Darwin equation can be used
to infer the normalized principal moment of inertia C/MR2 [20, 55]:

C

MR2 = 2
3

1− 2
5

√√√√4− kf
1 + kf

 (4.8)

where the fluid Love’s number kf can be obtained by either J2 or C22 according to
the following relations:

kf (J2) = 6
5
J2

qr
= −18

5
J2

qt
(4.9)

kf (C22) = 4C22

qr
= −12C22

qt
(4.10)

where qr and qt are adimensional parameters related respectively to the body’s
rotation and external tides:

kf (J2) = 6
5
J2

qr
= −18

5
J2

qt
(4.11)

kf (C22) = 4C22

qr
= −12C22

qt
(4.12)

The moment of inertia can provide useful information about the degree of
differentiation of the body: for an homogeneous body C/MR2 = 0.4, hence smaller
values indicates that there is a concentration of mass near the center, as a rocky
core. Moreover, it can be used as an additional constraint for parametric models of
the internal structure of the body.

Even if Rhea does not satisfy the assumption of hydrostatic equilibrium, the
Radau-Darwin equation can give useful indications about its degree of differentiation,
recalling that in this case it may led to significant errors, up to 20% [25]. For each
solution, the fluid Love’s number kf , and so C/MR2, can be computed either by
J2 or C22. From Table 4.5 is it possible to state that all the solutions produce
qualitatively similar results, even if with different values and accuracies. Using J2
higher values of C/MR2 are obtained, very similar to the homogeneous value of
0.4, while using C22 smaller values are obtained, about 0.37. J2 provides smaller
formal uncertainties, but the real uncertainty is dominated by the applicability of
the Radau-Darwin equation itself. This is a strong indication that Rhea may be
almost homogeneous, or at least with a small degree of differentiation. However,
the exact degree of differentiation and the internal composition cannot be assessed
with the available data but an important constraint has been derived anyway.
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Table 4.5: Rhea Fluid Love’s Number and C/MR2.

kf (J2) kf (C22) C/MR2(J2) C/MR2(C22)
Sol-R1 1.502±0.035 1.245±0.026 0.4002±0.0038 0.3713±0.0031
Sol-R4 1.598±0.094 1.23±0.12 0.4103±0.0096 0.370±0.015
Sol-MA-0 1.518±0.015 1.274±0.019 0.4019±0.0016 0.3747±0.0023
Sol-MA 1.518±0.016 1.287±0.021 0.4019±0.0017 0.3763±0.0024
Sol-MA-L 1.539±0.023 1.237±0.033 0.4041±0.0024 0.3703±0.0039
Sol-MA-HE 1.427±0.011 1.427±0.011 0.3921±0.0012 0.3921±0.0012



Chapter 5

Conclusions

The work presented in this thesis had as its subject the study and development
of new models and toolkits for orbit determination codes to support the radio
science gravity experiments of the Cassini-Huygens mission to Saturn.

Cassini is the largest interplanetary spacecraft ever built. It carries the most
sophisticated and high-performance communication and radio science systems which,
used in conjunction with the most advanced ground station equipment, allowed
to obtain an unprecedented accuracy in the spacecraft orbit determination and
radio science experiments. At present, even if the failure of the KaT transponder
affected the capabilities of the spacecraft to calibrate the solar plasma, the quality
of the residuals is still extremely high, allowing to perform many interesting
investigations and supporting important discoveries about the Saturn system.
Future interplanetary missions, like NASA’s Juno and ESA’s BepiColombo and
JUICE, are expected to achieve and maybe surpass the extraordinary performances
of Cassini radio science.

To support these highly accurate radio science experiments, improvements also
in the data analysis procedures must be achieved.

A first part of the work focused on a detailed study of a somewhat unexpected
source of noise: the numerical errors in the Doppler observables computed by
the orbit determination codes. The numerical errors are due to the use of finite
arithmetics in the computers and, as the “real” measurements noise, they degrade
the accuracy of the orbit determination. Even if the numerical noise was known
since the very beginning of the space era, a detailed characterization was never
performed and its entity was never considered in the noise budget of the orbit
determination, both for navigation and radio science. This work should have fill
this gap proving that, surprisingly, the numerical errors can be an important source
of noise, comparable to the measurements noise and, in some conditions, even larger.
In the process of characterize the numerical errors, several models with different
levels of accuracy were built: initially, an order of magnitude model allowed to assess
the possible criticality of the problem, so the development of more sophisticated
models was started. This required a parallel effort on two aspects: on one side a
detailed study of the mathematical formulation of the radiometric observables was
performed, focusing on its actual implementation in the main orbit determination
codes. Particular attention was devoted to the solution of the light-time problem,
one of the most delicate phases of the computation. On the other side a more
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realistic modelization of the rounding errors, the so-called Widrow’s model, was
identified and applied to the problem under consideration. A first detailed model
provided promising accuracies in the a priori estimation of the numerical noise,
but it failed to provide a complete and satisfactory description of all the observed
phenomena. More analyses were performed to assess the applicability of the
Widrow’s model, finding some condition under which the model cannot be applied,
and deriving the necessary corrections. The resulting, complete, detailed model
describes with very good accuracy the numerical noise on radiometric observables
computed by both the ODP, the orbit determination program developed since
1960s by NASA/JPL, and its recent successor MONTE. In particular, the model
allows to estimate a priori the numerical noise standard deviation for a specific
orbit determination problem, with typical accuracies below the 10%. A numerical
noise characterization proved that the ODP numerical noise is already at critical
levels: for the Cassini and Juno mission it can reach values of about 60µm/s at
60 s of integration time, and it may dominate the noise budget of the missions. To
mitigate these problems, MONTE implements an extended precision representation
of time variables, allowing a reduction of the numerical noise of about one order
of magnitude. The MONTE numerical noise however, even if mitigated, remain
an important source of noise for the high-precision radio science experiments of
present and future missions, like Juno and JUICE.

A second part of the work focused on extending Monte functionalities to support
radio science investigations. In particular, the multi-arc approach allows to improve
the estimation of constant parameters through the joint analysis of measurements
acquired during non-contiguous orbital arcs. This approach is fundamental to
analyze the Cassini radio science experiments dedicated to the estimation of gravity
fields of Saturn and its satellites. However, at present, Monte supports only a
single-arc approach, so a Monte-Python library to perform a multi-arc analysis
was developed. The resulting multiarc library allows to easily set-up, configure,
and execute a multi-arc analysis. It is well integrated with Monte, because it does
not introduce external software to assembly and filter the residuals, so that only
Monte routines, developed and tested by JPL, are used for the most delicate phases
of the orbit determination process, which are: spacecraft trajectory integration,
residuals and the partials computation, and estimation. The library was developed
and successfully tested during the analysis of the Cassini radio science gravity
experiments of the Saturn’s satellite Rhea.

Rhea is the second biggest satellite of Saturn. Cassini performed two fly-bys
of Rhea dedicated to gravity investigations, the first in November 2005, referred
to as R1, and the second in March 2013, referred to as R4. The radiometric data
acquired during R1 were analyzed by the scientific community with two different
approaches, obtaining non-compatible estimations of the Rhea’s gravity field. In
particular, a first approach assumed a priori the hydrostatic equilibrium, obtaining
several constraints about the satellite’s internal structure and composition. A
second approach computed an unconstrained estimation of the quadrupole gravity
field coefficients J2, C22 and S22, obtaining a solution non statistically compatible
with the condition of hydrostatic equilibrium. In this case, no useful constraint on
Rhea’s interior structure could be imposed. This thesis presented the estimation
of the Rhea’s gravity field obtained from a joint multi-arc analysis of R1 and R4,
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describing in details the spacecraft dynamical model used, the data selection and
calibration procedure, and the analysis method followed. In particular, the approach
of estimating the full unconstrained quadrupole gravity field was followed, obtaining
a solution statistically not compatible with the condition of hydrostatic equilibrium.
The stability of the solution was tested performing different multi-arc analysis
varying the data set, the strategy for the update of the satellite ephemerides and
the dynamical model. The solution proved to be stable and reliable. Given Rhea’s
non-hydrostatic condition, very few considerations about its internal structure can
be made. In particular, the computation of the moment of inertia factor using the
Radau-Darwin equation can introduce large errors. Nonetheless, even by accounting
for this possible error, the normalized moment of inertia is in the range 0.37-0.4
indicating that Rhea’s may be almost homogeneous, or at least characterized by a
small degree of differentiation. The internal composition cannot be assessed with
more details with the available data but, unfortunately, no other gravity flybys are
scheduled up to the end of the mission in 2017.
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