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Chapter 1.  ABSTRACT 

Bone remodelling is a fundamental mechanism for removing and replacing bone during 

adaptation of the skeleton to mechanical loads. During periods of skeletal unloading, as 

seen with bed rest condition, the mechanism of bone remodelling is not in equilibrium and 

a loss in bone mass is observed. It was suggested that the loss of bone observed in disuse 

models was the result of osteocyte hypoxia, caused by deprivation of loading induced 

oxygen transport. Hypoxia, in vivo, is a physiological condition for osteocytes, in fact a 

concentration of approximately 5% O2 is more likely physiological for osteocytes than a 

concentration of 20% O2, as osteocytes are embedded deep inside the mineralized bone 

matrix and their nutrient availability is greatly dependent upon diffusion.  

It has been hypothesized that severe oxygen deprivation, that hypothetically could be 1% 

of oxygen as in other pathological conditions, due to decreased mechanical loading could 

have an effect on osteocyte apoptosis and that this leads to osteoclast recruitment and bone 

resorption. 

Since is well known that osteocytes orchestrate bone homeostasis by regulating both bone-

forming osteoblasts and bone-resorbing osteoclasts, this study proposes to understand the 

molecular and cellular mechanism of hypoxia in osteocytes, using the MOL-Y4 osteocyte-

like cell line. 

Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) 

expression in different cell types. ORP 150 is a novel endoplasmic-reticulum-associated 

chaperone induced by hypoxia/ischemia. It well known that ORP 150  plays an important 

role in the cellular adaptation to hypoxia, in fact it has been proposed  to be involved in the 

prevention of apoptosis.  It has been reported that the expression of ORP 150 is higher in 

osteocyte-like MLO-Y4 cells than in osteoblast-like MC3T3-E1 cells and is possible that 
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ORP 150 is required for osteocytes to survive in their physiological and not-physiological 

condition of oxygen deficiency. 

The aims of the present study are 1) to determine the cellular and molecular response of the 

osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared 

to the atmospheric oxygen concentration at several time setting points, 8, 16, 24, 48 and 72 

hours. 2) To clarify the role of hypoxic osteocytes in bone homeostasis, through the 

detection of releasing of soluble factors principally involved in a crosstalk with osteoclast 

and osteoblast (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of 

osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic 

osteocytes. 

The data obtained in this study shows that hypoxia compromises the viability of osteocytes 

and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to 

be regulated early during hypoxia. The release of soluble factors and the evaluation of 

osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen 

deprivation, play a role in the regulation of both bone resorption and bone formation. 
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Chapter 2. INTRODUCTION 

2.1 Bone tissue 

The bone is a specialized connective tissue derived by mesenchyme with principal 

functions of locomotion, support for muscles and protection of vital organs and soft 

tissues; it is also involved in the maintaining of electrolyte balance, especially maintaining 

the calcium and phosphate ions homeostasis, and in the haematopoiesis that occurs in the 

marrow or medullary cavities of bone.  

The bone tissue consists of organic and an inorganic matrices; the organic matrix, called 

osteoid, represents about 30% of the weight of the tissue and it is composed primarily of 

collagen fibres; type. Type I collagen fibres represent approximately 90% of the whole 

organic materials, but also type III and V collagen are present in bone. Due to the 

organisation in fibres, the hydroxylation and mature crosslinks found with type I collagen, 

it is essential for the bone strength and mechanical properties (Beraudi et al., 2010; George 

and De Crombrugghe, 2008; Nair et al., 2013).  Although collagen is the most abundant 

protein of the bone, a huge group of proteins, called non-collagenous proteins, also plays 

an important role in the bone structure and biology. Proteoglycans, glycosaminoglycans, 

glycoproteins, leucine-rech pepeat preteins as well as fibronectin, osteopontin, osteocalcin, 

bone sialoprotein, dentin matrix protein 1 are involved in a broad kind of activity, 

regulating bone matrix organization,growth factor activity, cell attachment and 

proliferation, other molecular pathways, cellular signalling and mediation of 

hydroxyapatite deposition (Ritter et al., 1992; Robey, 2008). The inorganic matrix of the 

bone consists of 70% of the total weight. It is rich in calcium and phosphorus that form a 

complex structure with formula Ca10(OH)2(PO4)6, called hydroxyapatite. The bone 

structure is formed by different levels of hierarchy and reflects the material and mechanical 
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properties of each component. Mechanical and biological properties of bone depend on the 

interaction taking place across all levels of organization (Noor, 2013). 

On the basis of the hierarchical organization of the bone tissue components, it is possible to 

distinct two kinds of tissue: cortical and trabecular bone. Cortical bone, also known as 

compact bone, constitutes the diaphysis of long bones and the thin shell that surrounds the 

metaphysis. It is extremely dense, hard and contributing 80% of the weight of a human 

skeleton.  

Cortical bone consists of a functional structure, called osteons or haversian system, a 

quasi-cylindrically shaped element. The individual osteon is composed of concentric 

lamellae, about 3 to 7 μm thick, constructed from wrapped collagen fibres impregnated at 

regularly spaced sites with hydroxyapatite and other mineral crystals. The lamellae are 

arranged in a concentric way around a central channel called Haversian; a smaller size 

channel, Volkmann, runs transversely to the axis of the bone channels; the interconnection 

of this channel structure accommodate small arteries, arterioles, capillaries, and venues of 

the microcirculation system (Buckwalter and Cooper, 1987). The relationship between 

mechanical stress and the orientation of osteonal collagen in the various quadrants of each 

bone has been shown by Beraudi and collaborators that classified the different types of 

osteons in the cortical bone of a human fibula and identified a correlation between the 

orientation of the collagen within the osteons and the anatomical location (figure 1) 

(Beraudi et al., 2010). 
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Figure 1. Cortical bone analysed by Circular Polarized Light Microscopy (CPL). 

Beraudi et.al., 2010 classified three different osteons on the basis of collagen fibres orientation. 

LO: LONGITUDINAL-HOOPED; T: TRANSVERSAL; A: ALTERNATE 

 

Trabecular bone (also known as cancellous, or spongy) is a type of osseous tissue with a 

low density and strength but very high surface area, that fills the inner cavity of long 

bones, as a three-dimensional, interconnected network of trabecular rods and plates. 

The cancellous bone is the typical structure of the bones short, typically of the vertebral 

bodies but also of the epiphysis and metaphysis of long bones. Here the lamellae are 

organized in structures flattened and irregularly shaped trabeculae, osteons are often 

incomplete and lacking of Volkman channels (figure 2) (Kragstrup, 1985).  

The skeleton is a dynamic tissue that is constantly being remodelled in response to 

alterations in physical activity, dietary calcium levels, hormonal changes, and local 

paracrine signals within the bone microenvironment. Bone remodelling, in fact, is a 

fundamental mechanism of removing and replacing bone during adaptation of the skeleton 

that occurs through all the time life. Bone homeostasis is maintained via an equilibrium of 

bone resorption and bone formation (Sims and Walsh, 2012)(Sims and Walsh, 2012). 
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Figure 2. Representation of bone tissue structure. 
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2.2  Bone cells 

The bone cell population consists of osteocytes, osteoclasts, osteoblasts and lining cells.  

The intercellular cross-talk that occurs among bone cells is a critical process for the 

maintenance of normal bone structure. Osteocytes are considered the mechanosensors of 

bone, and they are actively involved in the orchestration of both bone-forming osteoblasts 

and bone-resorbing osteoclasts (Bonewald, 2011; Nakashima et al., 2011). Osteoblasts 

derive from mesenchymal stem cells and probably based on a predetermined fate, can 

become osteocytes or lining cells. The transcription factors that control osteogenesis 

require the activation of runt-related transcription factor 2 (Runx2), essential for the 

cascade of transcriptional factors/cofactors involved in the osteoblast differentiation. 

Osterix (Osx), a zinc finger-containing protein, acts downstream of Runx2 to induce 

mature osteoblasts that express osteoblast markers, including osteocalcin, collagen type I, 

alkaline phosphatase (Harada and Rodan, 2003). Due to their effect on Runx2 and Osx 

expression, the bone morphogenetic proteins (BMPs) are consider very potent inducers of 

mesenchymal progenitor cell differentiation into osteoblasts; for these reasons, 

recombinant human BMP-2 and BMP-7 have been approved for clinical use in orthopaedic 

surgery (Fakhry et al., 2013). 

Osteoclasts are multinucleated bone resorbing cells formed by cytoplasmic fusion of their 

mononuclear precursors derived from hematopoietic stem cells, through monocyte lineage 

progenitor cells (Miyamoto and Suda, 2003). The transformation to osteoclast requires 

expression in osteoclast precursors of different molecules, as c-Fos, receptor activator of 

nuclear factor-κB ligand (RANKL) and many others; it has been also showed that the 

RANKL/RANK/osteoprotegerin (OPG) signalling system is the fundamental molecular 

pathway involved in proliferation and activation of osteoclasts (Boyce and Xing, 2007). 
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      2.2.1 Osteocytes  

Osteocytes are the most abundant cells in bone and they are actively involved in the 

maintenance of bone homeostasis (Bianconi et al., 2013; Bonewald, 2007; Busse et al., 

2010). Osteocytes lie embedded deep inside the mineralized bone matrix, in holes called 

osteocyte lacunae, and their dendritic processes occupy tiny canals called canaliculi (figure 

3). The so formed cellular network allows osteocytes to communicate with each other and 

with other cells on the bone surface, moreover their dendritic processes are in contact with 

the bone marrow giving them the potential to recruit osteoclast precursors to stimulate 

bone resorption and to regulate mesenchymal stem cell differentiation (Fakhry et al., 

2013). Osteocytes are considered the principal cell type responsible for integrating the 

mechanical and chemical signals that govern bone modelling and remodelling. Recently, it 

has been demonstrated that osteocytes exert their regulatory role by participating in 

endocrine pathways that regulate phosphate metabolism (Harada and Rodan, 2003). 

 

 

 

Figure 3. Transversal section of cortical bone; the image shows the osteocytes inside the lacunae 

and the interconnected network of osteocytes dendritic process. 
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Osteocytes originate from mesenchymal stem cells, as they are derived from a 

subpopulation of osteoblasts that undergo terminal differentiation (Miyamoto and Suda, 

2003). However, so far, the osteocytogenesis is a process that is not well understood and 

several different theories exist about this process. On one side, osteocytogenesis has been 

proposed to be a passive process whereby osteoblasts become passively encased in a 

mineralized matrix (Boyce and Xing, 2007). With the increasing of knowledge about the 

osteocyte, it is becoming clear that osteocytogenesis is an active and controlled invasive 

process requiring cleavage of collagen and other matrix proteins, a strong change in 

morphology from a polygonal to a dendritic cells, and a fine regulation of molecular 

pathway (Gross et al., 2005; Rubin and Lanyon, 1984). 

Bonewald and collaborators (Bonewald, 2011) defined the transitional stages of the 

osteocytogenesis process; i) pre-osteoblasts derive from mesenchymal stem cells that 

express markers such as Stro1, CD29, CD105, CD166, ii) once committed to a mature 

stage, osteoblasts able to produce mineralized bone matrix. It remains unclear if each 

osteoblast has a predefined cellularfate, yet, at the end of the bone formation phase 

osteoblasts can become embedded in bone as iii) osteocytes, or become iv) bone lining 

cells, or undergo to programmed cell death (apoptosis) (Dallas and Bonewald, 2010). 

Matrix-producing osteoblasts express Runx2 and Osterix, necessary for osteoblast 

differentiation, followed by alkaline phosphase and collagen, necessary for the production 

of osteoid. Osteocalcin is produced by the late osteoblast and continues to be expressed by 

the osteocyte. Some designated cells begin to embed in osteoid (osteoid osteocytes) and 

begin to extend dendritic projections, keeping connections with already embedded cells 

and cells on the bone surface. Molecules such as E11/gp38 and MT1-MMP appear to play 

a role in dendrite formation, whereas molecules such as destrin and capping protein (actin 

filament) gelsolin-like (CapG) regulate the cytoskeleton, and phosphate regulating 
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endopeptidase homolog X-linked (PHEX), matrix extracellular phosphoglycoprotein 

(MEPE), and dentin matrix protein 1 (DMP-1) regulate biomineralization and mineral 

metabolism, and fibroblast growth factor 23 (FGF-23) that regulating renal phosphate 

excretion. All of these, are the typical markers of the later stage of differentiation, the 

mineralizing osteocytes. Sclerostin is a marker of the mature osteocyte and is a negative 

regulator of bone formation. Mature osteocytes seem to be also enriched in proteins 

associated with resistance to hypoxia, for example ORP 150, as one would expect from 

their location embedded within bone and the potential for a restricted oxygen supply 

(Hirao et al., 2007). It has been shown that oxygen tension may regulate the differentiation 

of osteoblasts into osteocytes, and osteocyte hypoxia may also play a role in disuse-

mediated bone resorption (Gross et al., 2001).  

In contrast to osteoclasts and osteoblasts, osteocytes are defined as mechanosensor of bone 

(Knothe Tate et al., 1998) because of their location deep within the bone matrix and their 

dendritic network that permits detection of variations in the levels of strain placed on bone 

(Bonewald, 2011; Gortazar et al., 2013). For this reason they represent the main model 

adopted in our study. 

2.2.2 Intercellular Cross-Talk and bone homeostasis 

Intercellular communication within the bone microenvironment is a critical process for the 

maintenance of normal bone structure, and osteocytes are considered the “master 

orchestrators of bone” (Schaffler et al., 2014). 
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Figure 4. Mechanism of cross-talk among the bone cells that occurs through the release of factors 

(α) and cell-cell contact and interaction (β)  

 

As above-mentioned, osteocytes carry out their role of biomechanical sensor thanks to 

their intricate network, that allow them to communicate to each other and to the other cells 

on bone surfaces; these cells use several mechanisms, both direct and indirect 

communication, to accomplish these signalling tasks (figure 4). Direct cell–cell 

communication through gap junction (the most common in osteocytes are connexin 43) 

allow the movement of molecules of about 1 kDa among the cells and the transmission of 

electrical potential within the osteocytic network. Another mechanism of osteocyte 

communication is the paracrine signalling by small metabolites, like prostaglandins, nitric 

oxide (NO), and ATP, and by macromolecules such Wnt, Sclerostin, FGF23 and RANKL 

involved in the cellular cross-talk (Schaffler et al., 2014).  

Wnt/β-catenin signalling, also known as canonical Wnt signalling, is a key pathway 

required for normal bone formation and for bone homeostasis and its activation is crucial 

for osteocyte viability and adaptation of different stimuli, including mechanical loading 

(Kramer et al., 2010). 
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Wnt/β-catenin initiated by secreted Wnt ligands binding to a dual-receptor complex formed 

by low-density lipoprotein receptor-related protein 5 or 6 (Lrp5/6) and the seven-

transmembrane domain receptor frizzled. The downstream signalling cascade leads to the 

β-catenin accumulatio in the cytoplasm and translocation into the nucleus where β-catenin 

acts as a transcription factor to regulate expression of genes involved in the control of 

osteoblastogenesis. Thereby, iducing mesenchymal progenitor cells to differentiate into 

osteoblasts and in mature osteoblasts promoting proliferation and mineralization, while 

blocks apoptosis (Kubota et al., 2009).  

Osteocyte to osteoblast communication involve specifically the Wnt/β-catenin pathway 

(Javaheri et al., 2013) and the production of Sclerostin, an inhibitor of osteoblast activity in 

response to unloading (Robling et al., 2008).  In addition to sclerostin, osteocytes express 

the Wnt inhibitors i.e. Dkk1 and secreted frizzled-related protein 1 (sFRP1), that inhibit 

osteoblast differentiation and bone formation by binding to Lrp5/6 (Burgers and Williams, 

2013). Santos and collaborators in 2009 showed that MLO-Y4 osteocytes are also able to 

respond to fluid shear stress in vitro by modulating the expression of Wnts ligand, 

especially WNT3a, and the activation of Wnt responsive genes (Santos et al., 2009).  

Osteoclast differentiation is also driven by Wnt/β-catenin signalling, via the reduction of 

OPG expression, the osteoclasts differentiation inhibitor, produced by both osteoblasts and 

osteoclasts (Baron and Kneissel, 2013).  

Recently, it has been shown that osteocytes express RANKL, a pre-osteoclastogenic 

cytokine involved in bone resorption activation (Nakashima et al., 2011; Paszty et al., 

2010; Xiong and O'Brien, 2012). It is well known that osteoclast precursors require 

supporting cells for osteoclast formation and that cell-to-cell interactions play a pivotal role 

in regulation of osteoclast formation and bone resorption (Zhao et al., 2002). Lau E. and 

collaborators report that osteocytes release RANKL in response to mechanical stimulation 
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(Lau et al., 2010). The balance between RANKL and OPG defines the number of 

osteoclasts formed and their activity and, consequently, determines the rate of bone 

resorption. Moreover it is well known that the requisite for osteoclast formation and 

activation is the binding of RANKL to the RANK receptor on osteoclast precursor cells 

and that OPG, also secreted by osteoblastic cells, is a decoy receptor of RANKL. By 

blocking the RANKL–RANK interaction, OPG acts to antagonize the formation and 

survival of osteoclasts (Busse et al., 2010).  

Another important signalling molecule that osteocytes release in response to mechanical 

stimuli is Prostaglandin E2 (PGE2) that has been reported to act on both osteoblasts and 

osteoclasts, and have both stimulatory and inhibitory effects.  In particular, PGE2 promotes 

the differentiation of osteoclasts in bone marrow cultures and the stage of osteoclast 

maturation. PGE2 released by bone cells has been found to increase upon fluid flow 

stimulation and mediate downstream responses such as increased expression of gap 

junction protein connexin (Cx) 43 and decreased expression of OPG (Tanabe et al., 2005; 

Zhang et al., 2007).  

In recent years it has become clear that the regulation of bone homeostasis is not a process 

regulated by unidirectional pathway, but that it implicates many coupling factors involved 

in a bone cellular cross-talk. In support of this, it has been shown that osteoclasts express 

cardiotrophin-1, a cytokine that stimulates bone formation in vivo, and EphrinB2 expressed 

in the osteoclast lineage and provided an intracellular signal that inhibits osteoclast 

formation by cell to cell contact. It has been also shown that osteoclasts are able to 

expressed different inhibitory factors such as Semaphorin 4D, which is consider the first 

negative regulator of osteoblasts function. 

Also the osteoblast seems to be involved in the regulation of osteoclast activation; in fact, a 

cytokine signal, that involve interleukin (IL)-33, from the osteoblast lineage has been 
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shown to inhibit osteoclast formation through an indirect mechanism that leads with the 

induction of other osteoclast inhibitors, like granulocyte-macrophage colony-stimulating 

factor (GM-CSF), IL-14, IL-13, and IL-10 (Sims and Walsh, 2012). 

2.3 Bone unloading and hypoxia 

Bone remodelling is a fundamental mechanism for removing and replacing bone during 

adaptation of the skeleton to mechanical loads. Mechanical loading placed on bone can 

result in mechanosensation by osteocytes via several potential mechanisms, which include 

changes in whole tissue strain, hydrostatic pressure, and streaming potentials generated by 

bone fluid flow through a charged bone matrix (Klein-Nulend et al., 2013). 

During periods of non-load bearing, as seen with bed-rest condition, the mechanism of 

bone remodelling is not in equilibrium and a loss in bone mass is observed (Bikle and 

Halloran, 1999). It was suggested that the loss of bone observed in disuse models was the 

result of hypoxic osteocytes, caused by deprivation of loading, inducing a decreased 

oxygen transport (Stevens et al., 2006). Oxygen and other gases are transported to the 

nearest vascular canal by diffusion (due to Brownian motion) and by convection (due to 

the interstitial fluid flow). The later is produced in part by the pressure oscillations due to 

the cardiac output, and in part by the acceleration that the interstitial fluid experience due 

to the deformation of the mineralized extracellular matrix. Therefore, it is possible assume 

that: 

 
ocy

pO2 = 
S
pO2 + 

d
pO2 

where 
ocy

pO2 is the partial pressure of oxygen in the osteocyte lacunae, 
S
pO2 is the fraction 

of pressure due to diffusion and to cardiac output, and 
d
pO2 is the fraction due to bone 

matrix deformation. The actual concentration of oxygen occurring inside of the osteocyte 

lacunae during skeletal unloading is remaining still unknown, because of the fluid pressure 
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and the oxygen concentration inside an osteocyte lacuna cannot be measured 

experimentally. 

Most studies on bone microcirculation in unloading condition are done on mice and show 

that hindlimb suspension reduces mice femoral intramedullary pressure of 20-25% 

(Stevens et al., 2006; Zhang et al., 2007). 

By using another classic disuse model (turkey ulna immobilization) originally developed 

by Lanyon and Rubin (Rubin and Lanyon, 1984), it has been shown that osteocytes 

become hypoxic when the bone is totally shielded from biomechanical deformation (Dodd 

et al., 1999). Also this observation suggests that a possible model for disuse osteopenia 

could be mediated by the osteocytes hypoxia (Gross et al., 2001). 

In conclusion, skeletal loading is fundamental to the maintenance of the interstitial fluid 

flow necessary for nutrient and gaseous exchange and, consequently, for maintaining of 

osteocyte viability (Knothe Tate, 2003; Ontiveros et al., 2004). 

2.4  Osteocyte hypoxia 

Several studies showed that hypoxia is a physiological condition for osteocytes compared 

to other cell types. There is evidences that a pO2 value of about 6% was measured in the 

normal human bone marrow aspirates (Harrison et al., 2002) and a concentration of 

approximately 5% O2 is more likely to be physiological for osteocytes than a concentration 

of 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix and their 

nutrient availability is greatly dependent on diffusion (Al Hadi et al., 2013; Arnett, 2010).  

Cellular oxygen concentrations are normally maintained within a physiological range; as 

on one site the lack of oxygen can result in a production of ATP insufficient to maintain 

essential cellular functions, while on the other side the excess of oxygen may result in the 

generation of damaging reactive oxygen intermediates. Cells respond to changes in oxygen 
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tension (pO2) via oxygen-dependent degradation of hypoxia inducible transcription factors 

(HIFs), a heterodimer containing α and ß subunits (Riddle et al., 2011; Zahm et al., 2008). 

In the absence of sufficient oxygen, HIF-α becomes stabilized and is able to 

heterodimerize with its transcription partner HIF-ß. This heterodimer binds hypoxia 

response elements (HREs) in target gene promoter sequences and initiates transcription of 

hypoxia-regulated genes involved in a variety of cellular processes including angiogenesis, 

by increasing of vascular endothelial growth factor (VEGF), energy metabolism, cell 

proliferation and survival (Semenza, 2009); the inhibitory actions of HIF-1α on Wnt 

signalling by directly sequester of β-catenin in hypoxia, seems to be one of the mechanism 

involved in decreasing cell proliferation (Choi et al., 2010). 

“Physiological hypoxia” might be involved in the transformation of osteoblasts to 

osteocytes although it is unclear what is the cellular mechanism regulating this process in 

response to altered oxygen tension. It has been reported that hypoxia promotes the 

synthesis of mineralized matrix by pre-osteoblast cells line in vitro, and increase the 

expression of late osteoblast and osteocyte markers, as connexin 43, dentin matrix protein 

1 (Dmp-1), matrix extracellular phosphoglycoprotein (Mepe), and fibroblast growth factor 

23 (Fgf23) expression, and increase the expression of protein that mediate adaptive 

responses to hypoxia and oxidative stress as the ORP 150 protein (150-kDa oxygen-

regulated protein), a novel endoplasmic-reticulum-associated chaperone induced by 

hypoxia/ischemia (Hirao et al., 2007; Kuwabara et al., 1996).  

However, acute disuse has been reported to induce severe osteocyte hypoxia, 

hypothetically pO2 of about 1% can be reached inside of osteocyte lacuna during 

unloading condition, leading to a severe environmental stress for the cells. It has been 

reported that severe hypoxia condition induces expression of molecules acting as 

chemotaxants for osteoclasts, as demonstrated with the direct upregulation of osteopontin 
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(OPN) induced by acute disuse in osteocytes both in vivo and in vitro (Gross et al., 2005). 

Moreover, some evidence shows that hypoxic osteocytes are also involved in human 

mesenchymal stem cells (MSCs) migration, through an OPN/CD44-mediated pathway 

(Raheja et al., 2008). 

Furthermore, it has been postulated that severe oxygen deprivation could have an effect on 

osteocytes apoptosis (Dufour et al., 2008; Plotkin et al., 2005), leading to osteoclastic 

recruitment and bone resorption, probably by RANKL signal pathway (Aguirre et al., 

2006; Noble et al., 2003; Plotkin, 2014).  

Advancements show that osteocyte apoptosis plays a key role in orchestrating bone 

homeostasis, in fact, osteocyte apoptosis is elevated in bone with high rates of remodelling 

(Noble et al., 1997). Like many other cell types that undergoing to apoptosis or necrosis, 

osteocyte-like MLO-Y4 cell line release high mobility group box 1 (HMGB1) protein that 

stimulates the synthesis of RANKL, TNFα, and IL6, but inhibits the production of OPG 

(Bidwell et al., 2008). Apoptotic bodies produced during the last stages of apoptosis 

represent another potential means of communication with neighbouring viable cells; the 

diameters of apoptotic body generated from osteocyte-like cell line MLO-Y4, or apoptotic 

osteocyte-like cells derived from neonatal calvaria, allow them to circulate within the fluid 

space that surrounds the dendritic processes of viable osteocytes. Interestingly, apoptotic 

bodies derived from MLO-Y4 cells stimulated osteoclast differentiation in a RANKL-

independent manner both in vitro and in vivo. Apoptotic bodies, isolated from dying 

osteoblastic cells, were unable to do so, suggesting the existence of one or more osteocyte-

specific osteoclastogenic factors (Jilka et al., 2013).  

Conditions of severe hypoxia, also directly affect osteoblasts and osteoclasts. In fact 

reduced oxygen tension is known to act as a direct stimulator of osteoclastogenesis; 

moreover the inhibition of osteoblastogenesis in hypoxia has shown to be due to decreased 
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cell proliferation, reduced differentiation of osteoblasts, as demonstrated by the 

downregulation of the osteoblast transcription factor Runx2 and expression of collagen 

type I and alkaline phosphatase (Arnett, 2010).  

Chen and collaborators showed using an in vitro model of murine osteoblasts (MC3T3-

E1), that a possible mechanism for hypoxia to inhibit osteoblast proliferation involves 

hypoxia/HIF-1a inhibition of Wnt pathway, and they found an  upregulation in Sost (gene 

encoding for sclerostin) RNA level after 48 hours of severe hypoxya (1% O2), suggesting 

that hypoxia activates Sost gene expression (Chen et al., 2013; Chen et al., 2012). 

These findings suggest that hypoxia associated regulation pathways of osteocytes could be 

of fundamental importance in the biology and pathology of bone tissues.  
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Chapter 3. AIMS OF THE PROJECT 

The loss of bone observed in disuse models was the result of osteocyte hypoxia, caused by 

deprivation of loading induced oxygen transport (Stevens et al., 2006).  

It has been hypothesized that oxygen deprivation, due to decreased mechanical loading, 

could have an effect on osteocytes apoptosis (Noble et al., 2003; Plotkin et al., 2005) and 

that it could lead to osteoclast recruitment and bone resorption (Aguirre et al., 2006). Since 

it is well known that osteocytes orchestrate bone homeostasis by regulating both bone-

forming osteoblasts and bone-resorbing osteoclasts (Nakashima et al., 2011), this in vitro 

study proposed to understand the molecular mechanism exerted by hypoxia in osteocytes 

using the MOL-Y4 osteocyte-like cell line (Bonewald, 1999; Kato et al., 1997) as cellular 

model. 

Considering that hypoxia is a physiological condition for osteocytes, and a concentration 

of approximately 5% O2 is more likely physiological for osteocytes than a concentration of 

20% O2, and that 1% of oxygen can be considered a severe hypoxia condition occurring 

during disuse (Ritter et al., 1992; Xiong and O'Brien, 2012 Hirao et al., 2007; Arnett, 

2010), we chose to test two hypoxia conditions :  

- 1% O2 (SEVERE)  

- 5% O2 (PHYSIOLOGICAL)  

together with 20% O2 considered as the NORMOXIC condition (representing the 

atmospheric oxygen level); although it is well known that a pO2 of 20% actually 

corresponds to hyperoxia (Arnett, 2010).  

Purposes of the study were: 

 to investigate the osteocyte response to the hypoxic condition; specifically we 

investigated  
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- the trigger of hypoxia condition,  

- the osteocyte viability and proliferation,  

- the presence of apoptosis; 

- the expression of a protein probably involved in the osteocyte adaptation to 

oxygen deprivation called 150-kDa oxygen-regulated protein (ORP150). 

 Therefore, we have attempted to delineate the pivotal functional role of osteocytes 

in regulation of bone remodelling under hypoxia conditions and whether the 

RANKL/OPG signalling axis is the relevant mechanism in hypoxic osteocyte 

regulation of osteoclastogenesis, by using murine monocyte/macrophage cell line 

(RAW 264.7) as in vitro model for osteoclasts.  

 Moreover, we aimed to investigate if hypoxic osteocytes, through the release of 

soluble factors, can also regulate osteoblasts viability and activity (Alkaline 

Phosphatase activity –ALP activity- and β-actin mRNA), in order to lay the basis 

to understand the intricate mechanism involved in the regulation of bone 

homeostasis orchestrated by severely oxygen deprived osteocytes.  

 Furthermore we investigated if sclerostin and prostaglandin 2 (PGE2) released by 

osteocytes in hypoxia/normoxia conditions, exerted an effect on regulation of 

osteoblasts activity. 
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Chapter 4. MATERIALS and METHODS 

4.1 Cell culture 

Murine long bone osteocyte Y4 (MLO-Y4) cell line was used and cultured as previously 

described (Bonewald, 1999). This cell line was derived from a transgenic mouse in which 

the immortalizing T-antigen was expressed under control of the osteocalcin promoter. 

MLO-Y4 cells exhibit properties of osteocytes including high expression of osteocalcin, 

connexin 43, the antigen E11/gp38. In contrast, expression of the osteoblast marker, 

alkaline phosphatase, is low. In addition, the dendritic morphology of MLO-Y4 cells is 

similar to that of primary osteocytes (Kato et al., 1997).  

Briefly, the cells were cultured on collagen - coated (rat tail type I collagen, Becton 

Dickson Bioscience, MA, USA) plastic ware and grown at 37°C, 5% CO2, 95% air using 

α-MEM containing ribonucleosides, deoxyribonucleosides, and L-glutamine, (Invitrogen 

Corporation, Carlsbad, CA, USA) supplemented with 2.5% fetal bovine serum (FBS) 

(PAA The Cell Culture Company, NJ, USA), 2.5% bovine calf serum (CS) (HyClone, 

Utah, USA) and penicillin/streptomycin at 100 U/ml (Invitrogen Corporation, Carlsbad, 

CA, USA). In order to define the best culture condition for hypoxic experiments, five 

different MLO-Y4 cell densities, 2000, 3000, 4000, 5000, 6000 and 7000 cells/cm
2
 and 

two different total serum (FBS +CS) concentration 5% and 1% (v/v) were tested. For these 

experiments the cells were cultured for 24, 48 and 72 hours in standard conditions, 37°C in 

an atmosphere of 5% CO2 and controlled humidity.  

Pre-osteoblast cell line MC3T3-E1 Subclone 4,  obtained from ATCC cell bank (Manassas, 

VA, USA), was used as model of osteoblasts; they were well-characterized murine 

osteoblasts, which express osteoblast-specific proteins including alkaline phosphatase, 

collagen, osteocalcin and they are capable of mineralization (Wang et al., 1999). MC3T3-
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E1 were cultured in αMEM containing ribonucleosides, deoxyribonucleosides, and L-

glutamine, 10% FBS and 100U/ml penicillin/streptomycin. 

Murine monocyte/macrophage cell line Raw 264.7 obtained from ATCC cell bank 

(Manassas, VA, USA), was used as model of osteoclastogenesis (Collin-Osdoby et al., 

2003); they were established from a tumor induced by Abelson murine leukemia virus. 

Raw 264.7 were cultured as suggested by the supplier, in Dulbecco's Modified Eagle's 

Medium high glucose (ATCC Manassas, VA, USA), 10% FBS and 100U/ml 

penicillin/streptomycin.  

4.2 Hypoxia conditions 

For the hypoxia experiments, 5000 cells/cm
2 

 (MLO-Y4 and MC3T3-E1) were seeded onto 

collagen-coated multi-well dishes, incubated in αMEM w/o phenol red, 2.5% FBS + 2.5% 

CS and 100U/ml penicillin/streptomycin. The time 24 hours post seeding, was the 

designated time 0, when the cells were culture under normal conditions (normoxia 20% 

O2), for 8, 16, 24, 48 and 72 hours or cultured under hypoxia conditions (hypoxia 1% O2 

and 5%O2).  

For hypoxic conditions the cells were placed inside a Billups-Rothenberg Chamber (San 

Diego CA, USA) (figure 5), where a mixture of gas (95% N2 and 5% CO2) was injected 

resulting in 1% and 5% O2; the oxygen percentage was controlled by the use of an Oxygen 

Analyzer/Monitor (Vascular Technology, Incorporated). 
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Figure 5. Billups-Rothenberg hypoxia Chamber 

 

Pimonidazole hydrochloride (Hypoxyprobe
TM

-1, Chemicon, Temecula, CA, USA) 

(Raleigh et al., 2001) was used to evaluate hypoxia of osteocytes,. Pimonidazole 

Hydrochloride is a substance with low-molecular weight that binds only the cells that have 

an oxygen tension of 10 mm Hg or lower at 37°C, equivalent to oxygen concentration less 

than 14 µM (pO2 ~1,4%) (Genetos et al., 2010). 

 A monoclonal antibody IgG1 (HypoxyprobeTM_1Mab1), provided by the kit, that 

recognizes pimonindazole hydrochloride bound to the cells, has been used to detected the 

hypoxic cells, according to the manufacture’s protocol.  

Following having supply to the cells culture, pimonidazole hydrochloride reachs all the 

cells and it is reductively activated only in the hypoxic ones; the activated intermediate 

forms stable covalent adducts with thiol (sulphydryl) groups in proteins, peptides and 

amino acids only in those cells that have an oxygen concentration less than 14 micromolar, 

equivalent to a partial pressure pO2 = 10 mm Hg at 37°C. 

For each cell culture the assay done in quadruplicate, was performed. 
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4.3 Conditioning of Osteoblasts and Osteoclasts 

The culture media of the MLO-Y4 grown in both the hypoxic conditions (1% and 5% of 

oxygen) and normoxic condition (20%) were collected at all the time setting points. The 

culture media were centrifuge at 2 g for 7 minutes at +4°C and the supernatant was 

collected; therefore, only soluble factors secreted by hypoxic and normoxic osteocytes 

were present in the conditioned media (CMs). 1 ml of each CMs was stored at - 20°C for 

ELISA assay, the remaining CM were collected in cryovials, rapidly frozen in liquid 

nitrogen and stored at -80°C. 

4.3.1 RAW 264.7 conditioning 

To induce osteoclast formation, RAW264.7 cells were seeded onto tissue culture plates and 

cultured at 2500 cells/cm
2
 density in presence of 20 ng/ml Mouse RANK-Ligand soluble 

factor (sRANKL) (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) in serum-

supplemented DMEM. Three days after the seeding, hypoxic 1% O2 and 5% O2 

conditioned medium (1% O2-CM and 5% O2-CM) and normoxic conditioned media (N-

CM) collected at all the time points (time 0, 8, 16, 24, 48 and 72 hours (h)) were added to 

the cells in a 1:1 ratio with 20 ng/ml sRANKL in serum-supplemented DMEM. This 

concentration of sRANKL was the optimized minimum stimulus to induced osteoclast 

formation for supplementing but without masking the effect of CM. The conditioning was 

performed for 7 days and the culture media, mixed 1:1 with CM, was changed every two 

days.  

 4.3.2 MC3T3-E1 conditioning 

The cells were seeded onto tissue culture plates and cultured at the density of 5000 

cells/cm
2
 and supplied of normal growth media, before mentioned. After 24 hours hypoxic 
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1% O2 and 5% O2 conditioned medium (1% O2-CM and 5% O2-CM) and normoxic 

conditioned media (N-CM) collected at all the time points (time 0, 8, 16, 24, 48 and 72 

hours (h)) were added to the cells in a 1:1 ratio with normal growth media. The 

conditioning was performed for 7 days and the culture media , mixed 1:1 with CM, was 

change every two days.  

4.4 Evaluation of Cell Viability and Apoptosis 

Osteocytes viability and total cells number were determined by trypan blue staining (Ahuja 

et al., 2003; Jilka et al., 1998).  Only blue-stained cells were considered dead, because the 

Trypan blue is a vital stain used to selectively color dead cells in blue; living cells with 

intact cell membranes appeared not colored. All 9 big squares of the hemocytometer 

chamber were used for cell counting. The results were obtained by counting the number of 

positive cells relative to the total number of cells.  

Three experiments performed were done in quadruplicate.  

Cells viability and total cells number with trypan blue method: 

- collect all the supernatant in a tube 

- wash in PBS  and collected the solution 

- add 400µl of trypsin and incubated at 37°C for 2-3 minutes 

- add 1ml Calf serum 

- centrifuge at 500 g for 5 minutes 

- discard the supernatant 

- resuspend the cells in 100µl of PBS +0.1% of BSA 

- 10 µl of tripan blue + 30 µl of cells suspension 

- count in a hemocytometer = total number in all the field of the chamber and the 

cells dead. 
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Osteoblast viability was assessed by MTT assy.  

The MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was 

prepared at 5 mg/ml in 1x PBS. Cell were incubated with the MTT reagent 1:10 for 2 h at 

37°C. Medium was collected and cells incubated with 1 ml of Dimethyl sulfoxide for 15 

min.  

In this assay, the metabolically active cells react with the tetrazolium salt in the MTT 

reagent to produce a formazan dye that can be observed at 570 nm, using a Multiskan FC 

Microplate Photometer (Thermo Scientific). This absorbance is directly proportional to the 

number of metabolically active cells. Mean values of absorbance of 5 replicates were 

determined. 

Osteocytes apoptosis was assessed, after DAPI nuclear staining, by counting cells 

exhibiting chromatin condensation or nuclear blebbing (Plotkin et al., 1999). Positive cells 

were quantified by visualizing random fields of view per sample under 20X magnification 

and counting the number of positive cells versus the total number of cells per image.  

Apoptosis assessment using nuclear fragmentation: 

- wash the cells in PBS 

- fix in PAF 2% in PBS for 5 minutes at +4°C 

- wash in PBS 

- stain with 100 µl (per well) DAPI (1:250  in bd water) for 5 minutes at R.T. in 

gentle agitation  

- wash in PBS 
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4.5  TRAP staining of conditioned RAW 264.7  

The TRAP positive cells detection is a method to determine the presence of osteoclasts. 

After 7 days of conditioning with 1% O2-CM, 5% O2-CM and n-CM collected at all the 

time setting-points of hypoxia and normoxa experiments, the cells were fixed and stained 

for tartrate-resistant acid phosphatase (TRAP) following the Kit (Sigma- Aldrich, St Louis, 

MO, USA) protocol instruction. 

Briefly, cells were fixed in a solution containing formalin (37% v/v), acetone (99.5% v/v) 

and citrate solution (27 mM) for 1 minute at room temperature (RT), and rinsed thoroughly 

in deionized water. Than the cells were incubated for 1 hour in 37°C in controlled humidity 

and protected from light, in a solution containing Naphthol AS-Bl phosphoric acid, 12.5 

mg/ml, Fast garnet GBC base, 7.0 mg/ml, in 0.4 mol/l hydrochloric acid with stabilizer, 

Acetate buffer, 2.5 mol/l, pH 5.2, Sodium nitrite, 0.1 mol/l and L(+)-Tartrate buffer, 0.335 

mol/l, pH 4.9. The cells were then rinsed thoroughly in deionized water and counterstained 

for 2 minutes in Hematoxylin Solution. Osteoclasts were quantified by imaging five fields 

of view under 20x magnification and counting the number of TRAP-positive cells with 

three or more nuclei. 

Osteoclast area was also manually traced and quantitated using Adobe Photoshop software, 

following the criteria of TRAP positivity and multinuclearity (Huang et al., 2003). 

 

4.6 Alkaline phosphatase assay of conditioned MC3T3-E1  

After 7 days of conditioning with 1% O2-CM, 5% O2-CM and n-CM collected at all the 

time setting-points of hypoxia and normoxia experiments, cell Alkaline Phosphatase (ALP) 

activity was quantified using an enzymatic assay based on the hydrolysis of p-nitrophenyl 

phosphate (pNP-PO4) to p-nitrophenol (pNP) (Teixeira et al., 1995). 
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Briefly, 25 µl of cell lysate, obtained after cell incubation with 150 µl 1x PBS with 0.1% 

(v/v) Triton-X, were added to pNP-PO4 solution and allowed to react at 37 °C. 

Absorbance was read at 0, 30, 60, 90 min and 24 hours at λmax of 405 nm, using a 

microplate reader (Tecan, Research Triangle Park, NC) and ALP activity calculated by 

cross-reference to a standard curve of nanomoles of p-nitrophenol liberated.  

 

4.6  Dosage of soluble factors RANKL, OPG , PGE2 and Sclerostin 

(ELISA assay) 

For all the dosages the experiments were performed in duplicate. One hundred microliters 

of conditioned media were coated onto each the respective high-binding ELISA plates at 

4°C overnight. Culture media collected from hypoxic 1% and 5% O2) and normoxic 

osteocytes at all the time points tested were used for the dosage of the soluble factors.  

Briefly, the enzyme-linked immunosorbent assay (ELISA) is a common method used to 

quantified the presence of soluble factors, and it is based on capacity of specific antibodies 

of recognise selectively a sequence of the factor detected. The presence of the factor is 

detected by using a secondary antibody peroxidase conjugated; the adding of the enzymatic 

substrate (OPD) leads to the production of a visible signal, detected with 

spectrophotometry, which is directly proportionated with the quantity of factor in the 

sample. The absorbance was read at 450 nm. The total amounts of soluble factors 

production were converted to picograms per milliliter using the standard curve (4-PL). 

RANKL was detected by using Mouse Trance/RANKL Immunoassay (R&D, Minneapolis 

55413, USA). 

OPG was detected by using Mouse OPG Immunoassay (R&D, Minneapolis 55413, USA). 

PGE2 was investigated by using High Sensitivity PGE2 enzyme immunoassay (Arbor 

Assay, Eisenhower Pl Ann Arbor, MI 48108, USA). 
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Sclerostin was detected by using Mouse Sclerostin, SOST ELISA Kit (Wuhan EIAab 

Science Co, Ltd Wuhan 430079, China). 

4.7  Quantitative Real-Time PCR  

RNA isolation has been performed following the method of TRI Reagent-

RNA/DNA/Protein isolation Reagent, Molecular Research Center, Inc. The amount and 

purity of the isolated RNA were then determined using a Nano Drop spectrophotometer. 

Total RNA (500 ng) was reverse transcribed (RT-PCR) using the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) in a 20 µL reaction volume:  

Revers Transcription cycles:  

Step 1: 25°C for 10’                                               

Step 2: 37°C for 2 hr                                                          

Step 3: 85°C for 5’’   

Step 4: 4°C forever 

The amplification was performed using TaqMan Assay probes (Applied Biosystems) and 

specific primers included in a StepOne Plus Real Time PCR System (Applied Biosystems) 

with the 40 cycle amplification protocol (Stage 2): 

q-PCR cycles: 

STAGE 1:  

Step1: 50°C for 2’ 

Step2: 95°C for 10’ 

STAGE 2: 

Step3: 95°C for 15’’ 

 Step4: 60°C for 1’ 
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Primers (Applied Biosystems): target gene ORP 150 (Mn00491279) and β-catenin 

(Mm00499427); housekeeping gene β2macroglobulin (Mn00437762) and GAPDH 

(Mm99999915). 

All 5 experiments for the quantification of ORP 150 mRNA were done in triplicate, using 

β2 macroglobulin as an internal reference (housekeeping gene). All 2 experiments for the 

quantification of β-catenin mRNA were done in triplicate, using glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as an internal reference (housekeeping gene). The 

threshold cycle (Ct) value was determined by the default settings by using StepOne 

Software v.2.1. We calculated the relative expression of ORP 150 in hypoxic MLO-Y4 

cells and compared this expression to the expression of MLO-Y4 cells grown for 8 h under 

normoxic conditions and calculated the 2
-∆∆Ct 

(Livak and Schmittgen, 2001). 

4.8 Western blotting 

Cells cultured under hypoxia or normoxia were lysed in a RIPA Buffer complete with 

protease inhibitor cocktail (Biomol International, Pennsylvania, USA). Four experiments 

on MLO-Y4 were performed to compare the ORP 150 expression in hypoxia and normoxia 

conditions at all different time points. Three different experiments were conducted to 

compare ORP 150 expression in normoxic osteocytes and pre-osteoblasts. Protein 

concentration was determined in each cell lysate supernatant by a colorimetric assay (Bio-

Rad, Hercules, CA, USA). Equal amounts of protein (17 µg) were used for the analysis. 

Briefly, western blot methods consist in four different phases, Gel electrophoresis, 

Transfer, Blocking and Immunodetection. 1) Gel electrophoretic separation of protein by 

molecular weight was performed using 10% polyacrylamide gels and buffers loaded with 

sodium dodecyl sulphate (SDS-PAGE), the electrophoresis was done at 100 V for 2 hours 

at room temperature; 2) to make the proteins accessible to antibody detection the separated 
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proteins were transferred to a nitrocellulose membrane through a "blotting" process; the 

transfer was done at 34 V at +4°C overnight. 3) The membranes were blocked with 2,5% 

non-fat dry milk (Bio-Rad, Hercules, CA, USA) in PBS 1X at room temperature for 30 

minutes and 4) incubated 1 hour and 30 minutes at room temperature with primary 

antibodies Anti-ORP 150 (Epitomics, California, USA) and Anti-βActin (AbFrontier, 

Seoul, Korea) as internal control. A horseradish peroxidase-linked secondary antibody was 

used to cleave a chemiluminescent agent, and the reaction product providess luminescence 

in proportion to the amount of protein. A sensitive sheet of photographic film is placed on 

the membrane, and the exposure to the light from the reaction creates an image of the 

antibodies bound to the blot. 

4.9  Statistical analysis  

Data were analyzed for normal distribution using Kolmogorov–Smirnov test. Differences 

between the two oxygen conditions were assessed using Mann–Whitney U-test, and 

differences between the experimental times were assessed using Kruskal-Wallis test for 

non-normally distributed data. A p value of ≤ 0.05 was considered significant. Differences 

between the data obtained by western blot analysis for the comparison of ORP150 

expression in MC3T3-E1 to MLO-Y4 cells were assessed using T-Test. 

All the statistical analyses were performed by using SPSS v. 14.0 software (SPSS Inc., 

IBM, Chicago, IL, USA).  
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Chapter 5. RESULTS 

5.1  Definition of the best culture conditions for MLO-Y4 cells 

Toluidine blue staining and transmission electron microscopy (TEM) evaluation showed 

the characteristic morphology of the MLO-Y4 cell line (Fig. 6). 

 

 

Figure 6. Figure a) shows an optical microscope image of MLO-Y4 after toluidine blue staining; 

figure b) shows the morphological detail obtained by TEM analysis.  

 

The morphological analysis (Fig. 7) showed that the cells maintained their characteristic 

dendrites and cellular body morphology only in presence of 5% of total serum. The cells, 

grown in 1% of total serum, showed a very different morphology: decrease in cell body 

dimensions, decrease in dendrites number and extensions; in addition, the pictures of the 

cells grown in 1% of total serum showed a higher number of dead cells compared to cells 

grown in 5% of total serum. Moreover, it was evident that a cells density of 5000 cells/cm
2
 

was the optimal seeding density to guarantee the maintenance of cell morphology and 

avoidance of over-confluences (> 70%) for all experimental time points.  
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Figure 7. Morphological analysis to determinate the best culture condition for the execution of the 

experiments.  

5.2 Hypoxia induction 

MLO-Y4 cells cultured at 1% O2 showed a significant increase in Hypoxyprobe staining 

compared to cells cultured at normoxia condition at 16, 24, 48, and 72 hours, while the 

cells grown at 5% O2 showed a significant increase in Hypoxyprobe staining compared to 

cells cultured at normoxia condition at 24 hours and 48 hours, and at 16 hours compared to 

1% O2 (Fig. 8). The number of Hypoxyprobe positive cells was significantly increased with 

the time of culture under both the hypoxic conditions and also under normoxic conditions 

suggesting that the cells became more sensitive to hypoxia (Table 1). 
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Figure 8. Effect of oxygen deprivation on MLO-Y4 detected by Hypoxyprobe staining.  

Image a. Representative image of Hypoxyprobe staining of (%) hypoxic MLO-Y4; pimonidazole in 

green stains hypoxic cells and DAPI in blue stains cell nuclei. Graph b shows the mean and 

standard error of percentage of Hypoxyprobe positive MOL-Y4 cells at different time points 

cultured in both hypoxia and normoxia conditions.  
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Table 1. Hypoxyprobe staining. Statistical differences existing over the times for each oxygen 

condition. P value obtained with Kruskal- Wallis Post Hoc test. 

 1%O2 5%O2 Normoxia 

Times 48h 72h 24h 48h 72h 48h 72h 

8h p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

16h - - - p<0.001 p<0.001 p<0.001 p<0.001 

24h - - - - - p<0.001 p<0.001 

 

5.3 Osteocyte proliferation, viability and apoptosis 

Couting of cells showed an increase in cellular proliferation with duration of the culture 

(Table 2), but the presence of 1% and 5% of oxygen significantly decreased the 

proliferation of MLO-Y4 after 8, 24 and 48 hours compared to the same time points of 

normoxic condition (Fig. 9 a).   

Osteocyte viability, as determined by trypan blue staining, was compromised by severe 

oxygen deprivation (1% O2) and resulted in a significant increase in the number of dead 

cells at 24 and 72 hours (Fig. 9 b). In both the normoxia and 1% O2 hypoxic conditions, the 

increase in cell death over the time of culture showed a clear trend, with a significant 

difference between 16 and 72 hours of culture (p value= 0.012 in normoxia and p value= 

0.032 in 1% O2). No difference exists comparing 5% oxygen and the other conditions; 

moreover, no difference in cell death was seen in that condition over the time. 
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Figure 9. Effect of oxygen deprivation on MLO-Y4 proliferation and viability. 

Graph a shows the proliferation by counting the total cells number grown in our experimental 

conditions. Graph b shows the quantification of MOL-Y4 dead cells at different time points 

cultured in hypoxia and normoxia conditions. For both the graphs, mean and standard error are 

indicated. 

 

Table 2. Osteocyte proliferation. Statistical differences existing over the time for each oxygen 

conditions. P value obtained with Kruskal- Wallis Post Hoc test 

 1%O2 5%O2 Normoxia 

Times 48h 72h 48h 72h 48h 72h 

8h p<0.004 p<0.004 p<0.001 p<0.001 p<0.001 p<0.001 

16h - - - - p<0.001 - 

24h - - - p<0.001 p<0.001 - 

 

The number of apoptotic osteocytes, as determined by nuclear fragmentation (Fig. 10 a, b 

and c), was increased by both the hypoxic conditions compared to the normoxic one and 

this increase was found to be statistically different at 16, 24 and 48 hours. Besides, 

significant increase in apoptotic MLO-Y4 cells was found in 5% O2 compared to 1% O2 at 

24 hours. Surprising, at 72 hours, the number of apoptotic cells cultured under 1% O2 

hypoxic conditions was decreased compared to normoxia, but this difference was found to 

be not significant. 
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This decrease in apoptotic cell number at 72 hours was found to be also lower than at 48 

hours, although, this difference was not statistically significant (Fig. 10 d). 

 

 

Figure 10. Evaluation of Apoptosis by nuclear fragmentation. 

Images of DAPI stained MLO-Y4 cells under hypoxia (%) (a) and normoxia (b) conditions after 48 

hours of culture. Image c shows a detail of nuclear fragmentation at higher magnification. Arrows 

indicate apoptotic nuclei. 

Graph c. shows the average and standard error of the means of apoptotic cells grown in hypoxia 

and normoxia conditions. 

 

5.4  Expression of ORP150 

No significant difference was found in MLO-Y4 ORP 150 mRNA expression over the time 

in all the tested conditions. No significant changes were observed in mRNA levels under 
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the tested conditions, 1% O2 and 5% O2 and normoxia (Fig. 11 a). Nevertheless, it was 

possible to observe a trend that 5% O2 induced the expression of ORP150. 

Western blot analysis, conducted on MLO-Y4 grown in 1%, 5% of oxygen and normoxic 

conditions, showed no statistically significant differences in ORP 150 expression at protein 

level at all the time points, confirming the results of the ORP 150 at mRNA level (Fig. 11 

b).  

Moreover, western blot analysis showed that the expression of ORP150 was significantly 

lower in normoxic MC3T3 (ORP150/ACT ratio=0.531±0.03 average ± standard deviation) 

compared to normoxic MLOY4 (ORP150/ACT ratio=0.845±0.06 average ± standard 

deviation), with a p-value= 0.001, as reported in literature (Guo et al., 2010). 

 

 

Figure 11. Effect of oxygen deprivation on ORP 150 expression in osteocytes. 

Graph a. shows the fold-change expression of ORP 150 mRNA compared to the control (CT), 

analysed by the 2
-∆∆Ct 

methods.  Graph b shows the level of ORP 150 protein normalized for β-

Actin. For both the graphs, mean and standard error are indicated. 
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5.5 Dosage of soluble factors PGE2, RANKL, OPG, and Sclerostin 

Although no significant difference exists in the level of each soluble factor measured in the 

hypoxic and normoxic osteocytes culture media, it is possible to identify a trend of 

expression. 

PGE2 seems to be released at higher levels by osteocytes grown at 1% of oxygen compared 

to the other conditions, especially after 24, 48 and 72 hours of culture (Fig. 12 a).  

The level of RANKL in our experimental conditions, becomes detectable only after 48 

hours of culture; otherwise, an increase in OPG release over the time of culture was 

detected, without any difference among the oxygen conditions (Fig. 12 b and c). Resulting 

in an overall decrease in the RANKL/OPG ratio as shown in Table 3.  

The levels of Sclerostin, released in all the experimental conditions, were lower respect to 

the limit of detection of the kit assay. 
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Figure 12. Effect of oxygen deprivation on MLO-Y4 release of the selected soluble factors. 

The graph shows the mean and standard error of the soluble factors quantified by ELISA (pg/ml). 

PGE2 (a), RUNKL (b) and OPG (c). 

 

Table 3. RANKL/OPG ratio in the culture media of hypoxic and normoxic MLO-Y4 

RANKL/OPG    

 1%O2 5%O2 Normoxia 

Time 0 - - - 

8h - - - 

16h - - - 

24h - - - 

48h - 0,298319 0,264589 

72h 0,486702 0,385098 0,172001 

 

 

5.6 Trap staining and induction of osteoclastogenesis 

After culturing Raw 264.7 cells for 7 days with conditioned media (CM) collected from 

osteocytes grown in all our experimental conditions (1% O2 –CM, 5% O2 –CM and N-CM 

at T0, 8, 16, 24, 48 and 72 hours), the detection of TRAP positive cells was performed 

(Fig. 13) following two different methods:  

1) by counting the multinucleated Trap positive cells (MNC TRAP
+
 cells) and   

2) by evaluating the pixel area covered from Trap positive cells, as described by 

Huang and collaborators (Huang et al., 2003) .  

I chose to describe the results obtained from the two analyses separately because, although 

the results showed the same trend, some differences in the statistical analysis were 

identified. 
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Figure 13. Representative image of multinucleated TRAP positive cells, specific markers of 

osteoclast (red arrows). Scale bar: 50µm.  

 

5.6.1 Multinucleated Trap positive cells (MNC TRAP+ cells) results 

Looking separately at each conditions, the analysis showed a significant decrease in MNC 

Trap positive cells in the culture conditioned for 72h with 1% O2-CM compared to the 8, 

16 and 48 hours 1% O2-CM, and the same results were found in N-CM (Table 4). 

Regarding the difference in Trap positive cells induced by the three CMs derived from our 

oxygen conditions, I found that the conditioning of RAW cells for 48h with 1% and 5% 

O2-CM induced a significant increasing of MNC Trap+ cells compared to 48h N-CM. 

While 72h 1% O2-CM lead to asignificantly increased osteoclastogenesis compared to 72H 

N-CM (Fig. 14). 
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Table 4. Multinucleated TRAP positive cells. Statistical differences existing in the different times 

CMs. P value obtained with Mann Whitney Post Hoc test. 

 1%O2-CM 5%O2-CM N-CM 

Times 

CMs 

8h 48h 8h 24h 48h 16h 

72h p=0.001 p p=0.001 p=0.001 p=0.001 p=0.001 p=0.012 

 

 

Figure 14. Effect of the CMs (from hypoxic/normoxic osteocytes) on the osteoclastogenesis. 

The graph shows the mean and standard error of the number of MCN Trap positive cells induced 

by the conditioning with the CMs tested.  

 

5.6.2 Pixel area covered by Trap positive cells  

The results showed a decrease of the area covered by osteoclast related to the time of 

conditioning, in detail all the 72h CMs tested (1% O2-CM, 5% O2-CM and N-CM) had 
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lower inductive effect on osteoclastogenesis compared to the effect exerted by the CMs 

collected at the other time points (Table 5).  

However, CMs collected after 24, 48 and 72 hours showed a significant difference in 

inducing osteoclast formation; in particular the 24, 48 and 72h 1% O2-CM significantly 

increased the osteoclasts formation compared to 24, 48 and 72h N-CM; while only 24h 5% 

O2-CM was found significantly different compared to 24h N-CM (Fig. 15). 

 

Table 5. Multinucleated TRAP positive cells. Statistical differences existing in the different times 

CMs. P value obtained with Mann Whitney Post Hoc test. 

 

 1%O2-CM 5%O2-CM N-CM 

Times 

CMs 

8h 24h 48h 8h 16h 24h 8h 16h 24h 

16h - - - p<0.001 - - - - - 

48h - - - p<0.001 - - p<0.001 - - 

72h p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 
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Figure 15. Effect of the CMs (from hypoxic/normoxic osteocytes) on the osteoclastogenesis. 

The graph shows the quantification of osteoclast formation by counting of pixel area covered by 

MCN Trap positive cells induced by the conditioning with the CMs tested. Mean and standard are 

indicated. 

 

 

5.7 Osteoblasts response to the hypoxic osteocytes conditioning media 

After conditioning of MC3T3-E1 cells for 7 days with CM collected from osteocytes 

grown at either 1% O2, 5% O2 and normoxia at T0, 8, 16, 24, 48 and 72 hours, osteoblast 

viability, ALP activity and the quantification of β-catenin mRNA were performed. 

5.7.1 Osteoblast viability (MTT assay) 

The results showed that the conditioning for 7 days with all the CMs tested did not 

compromise the MC3T3-E1 viability, compared to time point 0. Looking separately at the 

1%  O2-CM, 5% O2-CM and N-CM, I saw a significant decrease in cell viability between 

16h N-CM and 72h N-CM (p value= 0.026), while a significant increase was observed 
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between 48h 1% O2-CM and 72h 1% O2-CM (p value= 0.031). It is also interesting that 

72h 1% O2-CM showed a significant higher cell viability compared to 72h 5% O2-CM and 

N-CM, while 24h 5% O2-CM was found to be different compared to 24h 1% O2-CM and 

N-CM (Fig. 16).  

 

Figure 16. Effect of the CMs (from hypoxic/normoxic osteocytes) on the Osteoblast viability 

The graph shows the quantification of osteoblasts (MC3T3-E1cell line) viability assessed by MTT. 

Mean and standard error are indicated. 

 5.7.2 Alkaline Phosphatase (ALP activity) and β-catenin mRNA expression 

For both APL activity and β-catenin mRNA expression, our results indicated that the 

conditioning with both the hypoxic CMs seemed to positively regulate these two tested 

markers of osteoblasts activation, compared with the effect exerted by the normoxic CMs. 

In detail, the ALP activity seems to be not induced by the conditioning with all the N-CMs 

tested except for 48h and 72h N-CM that showed a significant increase of the enzyme 

compared to time point 0 N-CM (Table 5). Moreover, both the 1% O2-CMs and 5% O2-

CMs induced an increase in ALP activity compared to N-CM. This increase was found to 
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be statistically significant when MC3T3-E1 cells were conditioned with 8h, 16h, 24h and 

72h hypoxic CMs (Fig. 17).  

Despite the inductive effect exerted by the both hypoxic CMs compared to the normoxic 

CM, it is necessary underline that this inductions decrease over the time of the CMs. 

Significant decrease was found among 16h and 48h 1% O2-CM compared to 72h 1% O2-

CM, and the same decrease was seen between 8h and 24h 5% O2-CM (Table 6).   

The same trend was found in the mRNA expression of β-catenin; even if no significant 

difference was found, it was possible to indicate that both the hypoxic CMs seemed to be  

involved in an upregulation of this gene, especially compared to the gene expression level 

of time point 0, used as internal control of the analysis (Fig. 18). 

 

Figure 17. Effect of the CMs (from hypoxic/normoxic osteocytes) on the ALP activity  

The graph shows the quantification of enzymatic activation of ALP, indicate in the graph as nmole 

p-Nitrophenol, the enzymatic products of ALP, in osteoblasts (MC3T3-E1cell line) grown with the 

different CMs tested. Mean and standard error are indicated. 
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Table 5. ALP activity. Statistical differences existing in the different times CMs. P value obtained 

with Kruskal-Wallis Post Hoc test. 

 

 

 1%O2-CM 5%O2-CM N-CM 

Times 

CMs 

16h 48h 8h Time 0 8h 24h 

24h - - p=0.018 - - - 

48h - - - p=0.001 p=0.001 p=0.001 

72h p=0.001 p=0.001 - p=0.001 - - 

 

 

Figure 18. Effect of the CMs (from hypoxic/normoxic  osteocytes) on the β-Catenin mRNA  

The graph shows the fold-change expression of β-Catenin compared to the control (CT), in 

osteoblasts (MC3T3-E1cell line) grown with the different CMs tested. The analysis of the data was 

done follow the 2
-∆∆Ct 

methods. Mean and standard error are indicated. 

. 
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Chapter 6. DISCUSSION 

The objectives of this study were to determine the response of osteocytes to the hypoxia, 

and to delineate the functional role of osteocytes in regulation of bone remodelling under 

hypoxia conditions, exploring the signalling from osteocytes to osteoclasts and osteoblasts. 

Three cells line has been used in this study as in vitro model of the bone cells; murine long 

bone osteocyte Y4 (MLO-Y4), murine pre-osteoblast cells line (MC3T3-E1) and murine 

monocyte/macrophage cell line (Raw 264.7) as osteoclasts model, in order to assess the 

intracellular cross talk that occurs during skeletal unloading leading to severe hypoxia 

conditions.  

MOL-Y4 cells represents the unique mature osteocyte-like cell line established and 

characterized and they are widely used by the scientific community as in vitro model.  

These cells expressed the characteristic markers of osteocytes, CD44, connexion 43, 

osteocalcin, osteopontin and low ALP expression; but the principal characteristic to 

identify this type of cells, was still considered the exhibition of characteristics dendritic 

process phenotype. It has been shown that MLO-Y4 cells can maintain this homogeneous 

morphology up to 45 passages in culture, if maintained in appropriated culture conditions 

and if not exceed 60-70% of confluence (Bonewald, 1999; Kato et al., 1997). For these 

reasons it was very important to strictly define the culture conditions in term of cell 

seeding density and concentration of serum supplementing media used during the hypoxic 

experiments (Fig. 7). Moreover, the passage number used in the experiments was relatively 

low (27-30), in order to avoid altering protein expression or morphological profile by time 

in culture.  

Besides, it is important to point out that in vivo hypoxia is a physiological condition for 

osteocytes and a concentration of approximately 5% O2 is more likely physiological for 

osteocytes than a concentration of 20% O2, and that 1% of oxygen can be considered a 
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severe hypoxia condition occurring only during disuse or some pathological conditions 

(Arnett, 2010; Hirao et al., 2007).  

However, for the intrinsic limitation derived from the use of cells line in vitro, in our study 

the two different percentage of oxygen used (1% and 5% O2) should to be respectively 

considered hypoxic conditions, while the atmospheric oxygen concentration 

(approximately 20% O2), in which normally cells line were established and maintained, 

was considered as the normal control of the study (Normoxia).  

6.1 Osteocyte response to Hypoxia condition 

MLO-Y4 cells showed to be sensitive to the decrease of oxygen concentration, as indicated 

by the positive Hypoxiprobe staining observed in hypoxia compared to normoxia 

condition. This staining detects and accurately measures hypoxia and oxygen gradients at 

the cellular level through the pimonidazole hydrochloride molecule, considered the most 

useful immunochemical hypoxia marker presently available. The obtained hypoxiprobe 

staining results indicated that different oxygen gradients occurred in the three conditions of 

partial pressure of oxygen used in this study (Fig. 8). 

This study showed also that oxygen deprivation compromised osteocytes proliferation and 

viability (Fig. 9); although the expected increase in cellular proliferation over the time of 

culture was observed also under hypoxia conditions. The results indicate also that the 

conditions of 1% and 5% of oxygen decreased the cellular proliferative potential. 

However, only at some time points of severe hypoxia condition (1% O2) I observed an 

increase of cell death compared to normoxia, indicating the very strong effect exerted by 

severe oxygen deprivation on the cell life.  
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These results also demonstrated that oxygen deprivation plays a role in inducing apoptosis 

in MLO-Y4 cells. Significant inductions of apoptosis were detected in both hypoxic 

conditions compared to normoxia at certain time points. No relation between the trigger of 

apoptosis and the time of culture could be found (Fig. 10). These findings support the 

evidence, already postulated in literature (Plotkin et al., 2005), of the role played by the 

oxygen deprivation in inducing osteocytes apoptosis.  

The molecular response to hypoxia was investigated by looking at the expression of ORP 

150, anovel endoplasmic-reticulum-associated chaperone in the osteocyte adaptation of 

hypoxia (Guo et al., 2010; Tamatani et al., 2001). No significant differences were observed 

in ORP 150 mRNA and protein expressions in the conditions investigated (Fig. 11). My 

results suggest that ORP150 mRNA expression was delayed in respect to the measurable 

induction of hypoxia via hypoxyprobe staining. Unlike other cell types (Cechowska-Pasko 

et al., 2006; Ozawa et al., 1999), such as neuronal cells (Kitano et al., 2004; Ogawa, 2003), 

renal cells (Arrington and Schnellmann, 2008) and cardiomyocytes  (Aleshin et al., 2005), 

ORP 150 in MLO-Y4 cells didn’t seem to be regulated by hypoxia at early time periods 

and didn’t seem to be involved in the prevention of osteocytes apoptosis induced by 

oxygen deprivation. The western blot analysis showed that ORP 150 protein levels were 

higher in MLO-Y4 osteocytes compared to MC3T3-E1 pre-osteoblasts grown in normal 

oxygen condition. These findings were in accordance with the literature that demonstrated 

low oxygen tension playing an important role in differentiation of osteoblasts into 

osteocytes (Dallas and Bonewald, 2010; Hirao et al., 2007). Guo and collaborators showed 

a higher amount of hypoxia related protein in osteocytes, among which ORP 150, 

compared to the osteoblasts (Guo et al., 2010).  

Although the marker chosen in this study for hypoxia susceptibility, seemed not involved 

in the process of protection during the time from hypoxia, the higher level of ORP 150 
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protein expressed by osteocytes compared to osteoblasts could be a possible explanation 

for the higher osteocyte’s capacity to adapt to a hypoxic environment in comparison to 

osteoblasts.  

6.2 Hypoxic osteocytes regulation on bone homeostasis 

It is well known that osteocytes respond to the oxygen deprivation, as well as to the lack of 

loading, by secreting soluble signals that might modulate the formation and activity of the 

other bone cells (Bonewald, 2011).  

One of the aims of this study was to investigate whether hypoxia condition altered the 

RANKL/OPG signalling axis and whether it exerted an effect on the Sclerostin and PGE2 

expression by osteocytes. Furthermore, the effects of soluble factors released by osteocytes 

on osteoclastogenesis and osteoblast activity were studied using the condition medium 

collected from hypoxic (1% and 5% O2) and normoxic MLO-Y4 cells. 

Although, it has been shown that MLO-Y4 cells support osteoclast formation through 

RANKL expression and that the ratio of RANKL to OPG mRNA was higher in MLO-Y4 

cells than in any other cell types examined (Zhao et al., 2002), the quantification of 

RANKL, but also of OPG, in both hypoxic and normoxic MLO-Y4 showed very low level 

of these factors released in all the conditions tested (Fig. 12). There are controversial 

studies concerning the release of OPG by MLO-Y4 cells. Lau and co-worker and Al-

Dujaili and collaborators showed that OPG protein levels were not detectable in MLO-Y4 

culture media using an ELISA immunoassay (Al-Dujaili et al., 2011; Lau et al., 2010). 

Otherwise, Mulcahy and collaborators showed that MLO-Y4 grown in 3D collagen 

scaffold was able to produce about 170 pg/ml of OPG without any stimuli (Mulcahy et al., 

2011); but it has been also detected the OPG in MLO-Y4 cultured in normal 2D condition 

by another group (You et al., 2008). Nevertheless, the data of RANKL and OPG obtained 



DISCUSSION   

57 
 

in this study showed that the release of these factors increased with the time of culture; 

indeed the RANKL became detectable only after 48 hours of culture with no difference 

among the oxygen conditions, but the RANKL/OPG ratio remained low in all the oxygen 

condition tested (Table 3). These results could explain the decrease in MNC TRAP 

positive cells found in the different times of CMs. In fact, these showed that the inductions 

of osteoclastogenesis decreased over the time of the CMs collected in all the oxygen 

conditions (Table 4 and 5); although the decreasing observed over the times of the CMs 

was found significant in all the oxygen conditions, the hypoxia CMs collected at the late 

time setting points (24, 48 and 72 hours) showed a significant different increasing on 

MNCs TRAP positive cells respect to the same time of normoxic CMs (Fig. 14).  

The significant differences in increase of pixel area covered by osteoclast observed in the 

three oxygen conditions, gave a clear indication of the effect exerted on osteoclast 

activation in particular by the CMs obtained from MLO-Y4 grown in severe hypoxia 

condition (Fig. 15). As large osteoclasts are associated with higher resorbing activity (Lees 

and Heersche, 2000), the data suggested that MLO-Y4 cells grown under severe hypoxia 

condition for 24 hours and longer, secreted soluble molecules that positively regulate the 

formation of osteoclasts, and potentially the amount of bone resorption.  

Unfortunately, the levels of Sclerostin in all the CMs from MLO-Y4 cells were below the 

detection range of the ELISA kit used.  

Sclerostin is considered a potent negative regulator of bone formation for its effect of 

inhibition of canonical Wnt and Wnt-induced BMP signalling by binding to the Wnt 

coreceptors LRP5/6 (Kogawa et al., 2013). The lack of Sclerostin in both hypoxic CM 

could be related to the stimulatory effect of hypoxia upon bone formation via reductions in 

sclerostin expression, to thereby mitigate its inhibitory influence upon bone formation, as 

previously hypothesized by Genetos and collaborators in 2010 (Genetos et al., 2010).  
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The activation of osteoblasts exerted by hypoxic CMs, was demonstrated by anincrease of 

ALP activity and of mRNA β-catenin expression (Fig. 17 and 18), and potentially a lack of 

sclerostin. However, the reason for the absence of sclerostin release also in normoxic 

osteocytes remains unclear. In the literature controversial findings are reported about the 

absence or presence of sclerostin released from MLO-Y4 cells cultured under normal 

conditions. Yang and collaborators reported that MLO-Y4 cells expressed low levels of 

sclerostin mRNA; Papanicolaou et al. in 2009 shown that no sclerostin expression was 

detected in mature MLO-Y4 cells (Papanicolaou et al., 2009; Yang et al., 2009). In 

contrast, other studies reported that sclerostin was induced in response to different stimuli 

in the MLO-Y4 cell line. It has been also shown that the expression of sclerostin by MLO-

Y4 cells tends to disappear after several in vitro passages (Baek et al., 2014; Kim et al., 

2013; Mabilleau et al., 2010; Vincent et al., 2009). One possible explanation for this 

controversy could be the differentiation stage of MLO-Y4 at which the expression of 

sclerostin was investigated.  

The data concerning PGE2 level demonstrated that hypoxic MLO-Y4 osteocytic cells 

released higher amounts of this factor (Fig. 12); although weakly, at 24, 48 and 72 hours of 

culture, the release of PGE2 seemed to be increased especially in 1% O2 of oxygen 

compared to normoxia condition. The observed osteoblasts activation by hypoxic CM, 

demonstrated viaviability, ALP activity and β-catenin mRNA (Fig. 16, 17 and 18), could 

be related to PGE2 released by hypoxic MLO-Y4. In fact, it was reported that MLO-Y4s 

exposed to some type of stress increased the production of PGE2 and this soluble factor is 

able to crosstalk and positively regulate the β-catenin signalling, the principal pathway of 

osteoblast activation (Castellone et al., 2005; Kamel et al., 2010).  
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Chapter 7. CONCLUSIONS 

This project aimed to better understand the mechanisms in which osteocytes are involved 

when exposed to hypoxia, postulating that oxygen flux was decreased by bone 

disuse/unloading.  

This study has produced many results, although not always positive or in the expected 

direction. However, it lays the basis to increase the knowledge of the complex pathways 

involved in the osteocytes response to deprivation of oxygen.  

Firstly, it was demonstrated that hypoxia compromised osteocyte viability and induced 

apoptosis.  

ORP150, was suggested in the literature as protective factor against hypoxia and oxidative 

stress. Yet, according to the findings presented here this seems not be the case in MLO-Y4 

cells grown short term under severe oxygen deprivation. In fact, ORP 150 was highly 

expressed in osteocytes as compared to osteoblasts but it was not elevated with hypoxia 

compared to normoxia condition up to 72 hours of culture. It could be hypothesized that 

the amount of ORP 150 in MLO-Y4 was already enough at baseline to protect the cells 

from hypoxia for up to 72 hours, while, probably, a longer exposure to oxygen deprivation 

could lead to an upregulation of ORP150 expression.  

Moreover, this study strengthens the role of osteocytes as principal orchestrator of bone 

homeostasis. In fact, severe osteocytes hypoxia lead to increased osteoclastogenesis with a 

mechanism probably not strongly dependent of RANKL/OPG pathway. It is possible to 

hypothesize that the increase of osteocytes apoptosis induced by oxygen deprivation, could 

regulate the osteoclasts formation through a RANKL/OPG independent mechanism, such 

as by release of apoptotic bodies (Jilka et al., 2013).  Furthermore, this study has shown 

that hypoxic osteocytes positively regulate the activity of osteoblasts with a mechanism 
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probably related to the PGE2 crosstalk with β-catenin, while Sclerostin seemed to be not 

involved in the regulation of bone homeostasis exerted by hypoxic osteocytes.  

In summary my results suggest that, differences existed between the 1% and 5% of oxygen 

concentration; with 1% O2 being the severe hypoxia state showing the strongest regulatory 

effects. 

Our study presents several limitations:  

I) It was based on the postulation that bone unloading/disuse necessary caused a low 

supply of oxygen up to osteocytes lacunae, although this condition was demonstrated only 

at the bone marrow level (Stevens et al., 2006; Zhang et al., 2007); up to the present, it is 

still not available a technology to detect the actual percentage of oxygen occurring inside 

the osteocyte lacunae, due to their small dimensions ;  

II) In some cases the data  leaves room for speculation. Yet, we firmly think that any part 

of the complex pathway involved in the cross talk existing among bone cells in our study 

conditions, can increase the global knowledge of this field.  
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