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SUMMARY 

Gleno-humeral joint (GHJ) is the most mobile joint of the human body. This is related to the 

incongruence between the large humeral head articulating with the much smaller glenoid (ratio 3:1). 

The GHJ laxity is the ability of the humeral head to be passively translated on the glenoid fossa and, 

when physiological, it guarantees the normal range of motion of the joint. Three-dimensional GHJ 

linear displacements have been measured, both in vivo and in vitro by means of different instrumental 

techniques. In vivo gleno-humeral displacements have been assessed by means of 

stereophotogrammetry, electromagnetic tracking sensors, and bio-imaging techniques. Both 

stereophotogrammetric systems and electromagnetic tracking devices, due to the deformation of the 

soft tissues surrounding the bones, are not capable to accurately assess small displacements, such as 

gleno-humeral joint translations. The bio-imaging techniques can ensure for an accurate joint kinematic 

(linear and angular displacement) description, but, due to the radiation exposure, most of these 

techniques, such as computer tomography or fluoroscopy, are invasive for patients. Among the bio-

imaging techniques, an alternative which could provide an acceptable level of accuracy and that is 

innocuous for patients is represented by magnetic resonance imaging (MRI). Unfortunately, only few 

studies have been conducted for three-dimensional analysis and very limited data is available in 

situations where preset loads are being applied.  

The general aim of this doctoral thesis is to develop a non-invasive methodology based on open-MRI 

for in-vivo evaluation of the gleno-humeral translation components in healthy subjects under the 

application of external loads. To achieve this goal it was necessary to take action on two critical points 

related to the use of MR scanner: (1) the definition of scapula and humerus anatomical coordinate 

systems which are suitable to be used with 3D incomplete bone models obtained from MRI images; (2) 

the development of a device for applying an external force during a MRI exam and which was 

compatible, in terms of material, with the MR scanner. 

For the research study thirteen asymptomatic shoulders were acquired using a horizontal open magnetic 

resonance scanner. Recordings were made with the subjects in the supine position both at 15 deg and 

90 deg of arm abduction with and without an anterior force of 20 N applied to the humerus. The results 

showed that when no load was applied, from 15 deg to 90 deg of arm abduction, the translation of the 

humeral head center with respect the glenoid fossa were greater in the anterior and superior direction 
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than in the medio-lateral direction. Under the application of the anterior force no statistically significant 

differences were found in the GHJ laxity between 15 deg and 90 deg of arm abduction. The translations 

observed in vivo in this study were significantly smaller than those observed in previous cadaver 

studies under the application of an anterior load of 20 N. This discrepancy can be ascribed to the total 

or partial lack of the shoulder muscles and differences in muscular tone. The results also showed a level 

of precision associated to the GHJ translation estimates of one order of magnitude smaller than the 

relevant translations. 
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SOMMARIO 

L’articolazione gleno-omerale rappresenta l’articolazione più mobile del corpo umano. Le ragioni di 

ciò sono da ricondursi alla parziale congruenza tra la testa omerale che si articola con la più piccola 

cavità glenoidea (rapporto 3:1). La lassità dell’articolazione gleno-omerale rappresenta l’attitudine 

della testa omerale a essere traslata passivamente rispetto alla cavità glenoidea; essa garantisce, quando 

fisiologica, il normale range di movimento dell’articolazione. Gli spostamenti lineari tridimensionali 

(lassità) sono stati misurati, sia in vivo sia in vitro per mezzo di diverse tecniche strumentali. In vivo gli 

spostamenti dell’articolazione gleno-omerale sono stati valutati con sistemi stereofotogrammetrici, 

sensori di tracciamento elettromagnetici, e tecniche di bio-imaging. 

Sia i sistemi stereofotogrammetrici sia i dispositivi di tracciamento elettromagnetici, a causa della 

deformazione dei tessuti molli che circondano le ossa, non sono adatti a stimare accuratamente piccoli 

spostamenti, come possono essere le traslazioni dell’articolazione gleno-omerale. Le tecniche di bio-

imaging possono garantire un’accurata descrizione della cinematica articolare (spostamenti lineari e 

angolari), ma a causa dell’esposizione alle radiazioni molte di queste tecniche, come la tomografia 

assiale computerizzata e la fluoroscopia, sono invasive per i pazienti. Tra le tecniche di bio-imaging, 

un’alternativa che può garantire un accettabile livello di accuratezza e che risulta innocua per i pazienti 

è rappresentata dall’imaging di risonanza magnetica (RM). Sfortunatamente, solo pochi studi sono stati 

condotti sull’analisi tridimensionale e pochi dati sono disponibili in situazioni in cui l’articolazione è 

soggetta all’azione di carichi esterni noti. 

L’obiettivo generale di questa tesi di dottorato è di sviluppare una metodologia non invasiva basata 

sulla RM aperta per la valutazione in vivo delle componenti traslazionali dell’articolazione gleno-

omerale in soggetti sani e con l’applicazione di carichi esterni. Per raggiungere quest’obiettivo è stato 

necessario intervenire su due punti critici legati all’uso della RM: (1) la definizione dei sistemi di 

riferimento anatomici di scapola e omero, compatibili con l’uso di modelli ossei 3D incompleti ottenuti 

da immagini di RM; (2) lo sviluppo di un dispositivo per l’applicazione di carichi esterni durante gli 

esami di RM e che fosse compatibile, in termini di materiali, con lo scanner di RM. 

Per lo studio sono state acquisite tredici spalle asintomatiche per mezzo uno scanner di RM aperta 

orizzontale. Le acquisizioni sono state fatte con il soggetto in posizione supina con il braccio abdotto a 

15 e a 90 gradi, in presenza e in assenza di un carico esterno di intensità pari a 20 N applicato all’omero 
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e diretto anteriormente. I risultati hanno mostrato che in assenza di carco, da 15 a 90 gradi di abduzione 

dell’omero, le traslazioni del centro della testa dell’omero rispetto alla cavità glenoidea erano maggiori 

in direzione anteriore e superiore rispetto alla direzione medio laterale. Non sono state trovate 

differenze significative nella lassità dell’articolazione gleno-omerale nelle due posizioni del braccio 

analizzate (15 e 90 gradi di abduzione) a seguito dell’applicazione del carico. Le traslazioni osservate 

in vivo in questo studio sono significativamente più piccole rispetto a quelle osservate in studi 

precedenti svolti su cadavere e con l’applicazione di un carico esterno d’intensità pari a 20 N diretto 

anteriormente. Questa discrepanza può essere attribuita alla totale o parziale mancanza dei muscoli 

della spalla e alle differenze nel tono muscolare. I risultati hanno mostrato inoltre un livello di 

precisione associata alla stima delle traslazioni dell’articolazione gleno-omerale di un ordine di 

grandezza più piccolo rispetto alle effettive traslazioni.  



 

ix 
 

STRUCTURE OF THE THESIS 

The present doctoral thesis fits in the broader context of the gleno-humeral joint laxity evaluation 

which represents a topic of high relevance both in biomechanics and orthopedic medicine. Specifically, 

the general objective of the present thesis concerns the evaluation of the translational components of 

the joint under the action of an anterior directed force.  

Primary and secondary aims of the doctoral thesis and the main issues addressed during the research 

work were discussed in CHAPTER 1. 

In CHAPTER 2, a brief description of the shoulder joint complex and a detailed description of the 

anatomy and biomechanics of the gleno-humeral joint are reported.  

The CHAPTER 3 reports a literature review of the in vivo and in vitro techniques proposed for the 

evaluation and quantification of the translation of the gleno-humeral joint. This section also focuses on 

the magnetic resonance imaging technique by covering the following topics physical principles, image 

formation, and acquisition parameters. 

The CHAPTER 4 contains a review of the literature on scapula and humerus anatomical reference 

systems. In addition a novel proposal for the definition of scapula and humerus anatomical reference 

systems is presented. In this chapter it is also investigated an alternative method for the definition of the 

humerus anatomical coordinate system. 

In CHAPTER 5 is presented a MRI based methodology for the evaluation of the translations of the 

gleno-humeral joint. The thesis ends with a section reporting the general conclusions.   
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GLOSSARY OF TERMS 

3D: Three-dimensional LB: Lateral Border 

AA: Angulus Acromialis LE: Lateral Epicondyle 

ACS: Anatomical Coordinate System LT: Lesser Tubercle 

AL: Anatomical landmark 


zyxMAD ,, / 
zyxMAD ,, :Mean Absolute Angular 

Deviation Value 

AN: anatomical Neck MEc: Medial epicondyle (central) 

A-P: Anterior-Posterior M-L: Medio-Lateral 

AR: Anatomical Region MRI: Magnetic Resonance Imaging 

B0: Magnetic Field Strength NMV: Net Magnetization Vector 

CP: Tip of Coracoid Process RSA: Radio Stereometric Analisis 

CT: Computed Tomography RF: Radio Frequency 

DoF: Degree of Freedom SBP: Portion of the Subject Specific Bone Model 

DRRs: Digitally Reconstructed Radiographs SD: Standard Deviation 

EBCT: Electron Beam Computed Tomography S-I: Superior-Inferior 

FFT: Fast Fourier Transform SS: Root of Scapula Spine 

FoV: Field of View TBC: Template of a Complete Bone Model 

GHJ: Gleno Humeral Joint TE: Echo Time 

GHJC: Gleno Humeral Joint Center TR: Repetition Time 

G: Glenoid TS: Trigonium Spinae Scapula 

GT: Greater tubercle  

HHC: Humera Head Center  

IA: Inferior Angle   

 



 

 
 

CHAPTER 1  

AIMS OF THE THESIS
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Traumatic joint dislocations represent a frequent and important problem in orthopaedic surgery and 

sports medicine. The most frequently dislocated joint by far is the shoulder, or the gleno-humeral joint 

(GHJ), which is characterized by the widest range of motion among the human joints and by very little 

coverage of the humeral head by the joint socket. The incidence of gleno-humeral dislocations has been 

reported to be 11.2 per 100`000 per year and a high number of recurrences after the first dislocation 

have been reported, especially in young patients. The investigation of gleno-humeral kinematics of the 

shoulder, in terms of rotations and translations and joint stability, has been a primary focus of 

orthopaedic research and it is instrumental in understanding and thus preventing primary and repeated 

shoulder dislocations. In vivo kinematics of the shoulder joint has been studied by means of different 

instrumental techniques (Hill et al., 2007). Both using stereo-photogrammetric systems and 

electromagnetic tracking devices, the orientation and position of the relevant body segments are 

estimated using sensors placed on the skin of the subject. Due to the deformation of the soft tissues 

surrounding the bones, there is an ongoing debate about the capability to accurately track the 

movement of the underlying bony segments from sensors attached to the skin (van Andel et al., 2009). 

It is especially true, when small displacements, such as gleno-humeral joint translations, need to be 

assessed. An alternative approach is offered by the use of technologies based on ionizing radiation such 

as computer tomography (Baeyens et al., 2001), biplanar X-rays (Lagacé et al., 2012), fluoroscopy (San 

Juan and Karduna, 2010) or a combination of dual-plane fluoroscopy and 3D bone models derived 

from CT. Major limitations of such techniques include the image geometric distortion and invasiveness 

due to the radiation exposure. A further alternative, which could provide an acceptable level of 

accuracy and that is innocuous for patients, is the use of magnetic resonance imaging (MRI) (von 

Eisenhart-Rothe et al., 2010). GHJ translations have been investigated both in healthy subjects (Rohad 

et al, 1998; Graichen et al., 2000; Sahara et al., 2007) and patients (von Eisenhart-Rothe et al., 2002; 

Chhadia et al., 2010) using MRI. However, none of the latter in vivo studies analyzed the GHJ 

translations under the action of selected external forces. This doctoral research aims at developing and 

testing a MRI based methodology for in vivo estimation of the GHJ translations with and without an 

external load. The images from an open-MRI system were used, along with three-dimensional post-

processing methods, to analyze gleno-humeral displacements (1) in different shoulder positions and (2) 

under the application of an anterior load in healthy volunteers. In contrast to earlier conducted 

cadaveric studies and anatomical studies using bone pin markers, the assessment with open-MRI 

allowed us to observe and document joint motion at high resolution and with all passive restraints 
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(ligaments, joints capsule) and active stabilizers (musculature) in place and fully, physiologically 

functioning. 

This research represents the first step of a wider research aimed at developing and validating both 

experimental and analytical methods for evaluating and comparing the outcome of different surgical 

techniques and rehabilitation protocols for the treatment of gleno-humeral joint dislocation using bio-

imaging techniques as an ultimate goal.  

While pursuing, the main aim of the present doctoral thesis, the following secondary aims were also 

considered: 

Anatomical coordinate systems definition 

The description of joint kinematics requires the definition of anatomical reference systems of the bone 

segments forming the joint. Most of the definitions in the literature are based either on the 

identification of anatomical landmarks, or anatomical regions located in the distal portions of the bones 

under analysis. Often, the relevant anatomical landmarks or anatomical regions are not included in the 

images acquired using bio-imaging techniques for the clinical examination of the joint. In fact, these 

techniques have the limitation of being characterized by a restricted field of view (FoV) which may 

prevent the acquisition of the entire bones. 

Development of a device for applying an external force during a MRI exam 

To study the gleno-humeral joint in different configurations while an external force is applied, a device 

for fixing the arm at different degrees of abduction and applying a selected force to the proximal 

humerus was developed. Since the recordings have to be carried out under high intensity magnetic 

fields and in small measurement volumes, particular attention was paid in the selection of non-

ferromagnetic materials for the construction of the device for the shoulder loading.



 

 
 

CHAPTER 2  

THE SHOULDER JOINT COMPLEX AND THE GLENO-HUMERAL JOINT
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2.1 Anatomy of the shoulder joint complex 

The shoulder joint complex is formed by the shoulder girdle and the humerus. The shoulder or pectoral 

girdle is the set of bones which connects the upper limb to the axial skeleton. It consists of the clavicle, 

scapula and sternum. The pectoral girdle is a complex of five joints that can be divided into two groups. 

Three of these joints are true anatomical joints, while two are physiological joints. Within each group, 

the joints are mechanically linked so that both groups simultaneously contribute to the different 

movements of the shoulder to variable degrees. 

The scapulo-thoracic joint is not a true joint in anatomical sense, it has no capsule or ligamentous 

attachments, but is a physiological joint formed by articulation of the anterior scapula with the posterior 

thoracic rib cage. The scapula attachment to the axial skeleton in a healthy shoulder is purely musculo-

tendinous, formed by the trapezius and serratus muscles. Its gliding movement patterns consist of 

elevation/depression, retraction/protraction, and superior/inferior rotation. Scapulo-thoracic joint 

function enhances arm-trunk motion and gleno-humeral stability as the scapula orients the glenoid to 

the humeral head.  

Sterno-clavicular joint represents the single bony articulation between the axial skeleton and upper ex-

tremity (Dempster, 1965). It is formed by the articulation of the manubrium of the sternum and the first 

costal cartilage with the medial end of the clavicle. The sterno-clavicular joint serves as the pivot point 

for scapular elevation-depression and abduction-adduction (Doody et al., 1970). 

Acromio-clavicular joint is a plane synovial joint formed by the articulation of the distal clavicle with 

the acromion of the scapula. The acromion of the scapula rotates on the acromial end of the clavicle. 

Three degrees of freedom are available at the acromio-clavicular joint. Movement can occur between 

the acromion and lateral end of the clavicle, about a vertical axis, around a frontal axis, and about a 

sagittal axis (Peat, 1986). 

Supra-humeral joint (subacromial joint) is a physiological joint formed by an articulation of the coraco-

acromial ligament and the head of the humerus. It is formed by the gap between the humerus and the 

acromion process of the scapula. This joint plays a role during complex movements while the arm is 

fully flexed at the gleno-humeral joint. 
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Gleno-humeral joint is the articulation between the head of the humerus and the glenoid cavity of the 

scapula. It is a ball-and-socket type of synovial joint. It represents the most important joint of the 

shoulder. In this chapter we will focus on the gleno-humeral joint, its components and the mechanism 

which confer mobility to the joint. 

Plane of motion of the shoulder complex 

Motion of the shoulder complex is described in relation to the cardinal planes, sagittal, coronal, and 

horizontal (Fig. 2.1). Shoulder flexion and extension occur in the sagittal plane, abduction and 

adduction in the coronal plane, and horizontal abduction and adduction in the horizontal plane. Internal 

and external rotation occurs through the long axis of the humerus, affording a high degree of mobility 

in an in finite number of planes. This is typically assessed at 90 deg of coronal plane abduction or with 

the arm at the side (Kelley et al., 1995).  

   
Figure 2.1: Motion of the shoulder in the coronal (abduction-adduction), sagittal (flexion-extension) and horizontal (internal-
external rotation) planes. 

Scapulo-humeral rhythm 

During arm elevation the humerus rotates around the scapula, at the gleno-humeral joint, and the 

scapula moves around the thorax, at the scapulo-thoracic joint. The result is a synchronized movement 

of the shoulder girdle and humerus, described as the scapulo-humeral rhythm (Inman et al., 1944; 

Groot et al., 1999; McQuade et al., 1998; Meskers et al., 1998). 

The scapulo-humeral rhythm describes the relationship of motion between the scapula and humerus, 

and is influenced by the movement of the sterno-clavicular and acromio-clavicular joints. 

With active humeral elevation up to 30 degrees (deg) in the coronal or scapular abduction planes and 

up to 60 deg of sagittal plane flexion, the scapula seeks a position of stability (setting phase). The 

setting phase is variable and individualized (Inman et al., 1944). Following the setting phase, the 

humerus and scapula maintain a particular relationship during arm elevation (a ratio of movement). The 

relationship between gleno-humeral and scapulo-thoracic motion is critical and is generally considered 

to be 2:1, culminating in 120 and 60 deg, respectively.  
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Taking into account only the GHJ, the active abduction up to 120 deg occurs only if the humerus extra 

rotates of 90 deg. Then, the movement is due to the tilting of the scapula. The shoulder blade glides 

over the thoracic wall thanks to the scapulo-thoracic and acromion-clavicular joints, and the muscular 

activity. The full abduction of the arm in the frontal plane is therefore the consequence of a harmonic 

sequence of actions, for every 15 deg of abduction 10 deg achieved on the gleno-humeral joint and 5 

deg at scapulo-thoracic level, with an integrated scheme and rhythm. For the deltoid, the main muscle 

of abduction, it is important the scapular rotation to maintain the tension necessary for its contraction. 

The stability of the shoulder, especially after the first 90 deg of abduction, is guaranteed by the tilting 

of the scapula that changes the relationship between the humeral head and the glenoid so that at 180 

deg the deltoid almost does not work because the glenoid socket is located below the humeral head. In 

this rhythm also the sterno-clavicular joint steps in. In the excursion between 0 deg and 90 deg the 

scapula rotates 30 deg and the clavicle rises equally; beyond 90 deg of abduction (at sterno-clavear 

level), however, it is no longer possible for the scapula to move. For this reason the clavicle rotates 45 

deg around the axis of the diaphysal, in order to raise its lateral end of the remaining 30 deg required to 

complete the movement of abduction. 

2.2 Gleno-humeral joint  

The gleno-humeral joint is an enarthrosis (ball-and-socket 

joint). The bones entering into its formation are the 

humeral head and the glenoid cavity of the scapula. Only 

25% to 30% of the humeral head is covered by the glenoid 

surface in any given anatomic position. Although the bony 

surfaces of the humeral head and glenoid fossa have 

slightly different curvatures, their cartilaginous articular 

surfaces have approximately the same radius of curvature. 

This joint has three rotational axes of motion along the 

cardinal planes of the body: sagittal, frontal, and 

horizontal. 

The humeral head spins, rotates, and glides or translates, 

on the face of the glenoid during arm elevation and 

rotation (Fig. 2.2) (Hart and Carmichael, 1985). 

Figure 2.2: Three types of articular movement occur at 
the gleno-humeral joint. A, Rotation. B, Rolling. C, 
Gliding. (From Matzen FA III, Zuckerman J: Biome-
chanics of the shoulder. In Frankel VH, Mordin M [eds]: 
Basic Biomechanics of the Musculoskeletal System, 2nd 
ed. Philadelphia, Lea & Febiger, 1989, p 231). 
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The direction of rolling and gliding components is dependent on whether the concave or convex 

surface is moving. The more congruent the surfaces, the more gliding occur and the more incongruent, 

the more rolling takes place (Kaltenborn, 1980). If a convex surface moves on a concave surface, then 

gliding occurs in the opposite direction to the rolling; if a concave surface moves on a convex surface, 

then rolling and gliding occur in the same direction. Therefore, due to the disproportion between the 

gleno-humeral articular surfaces rolling would be dominant. 

Humerus 

The humerus (Fig. 2.3) is the longest and largest bone of the upper 

extremity. Three parts can be distinguished: the body and two 

extremities. The upper extremity consists of a large rounded head 

joined to the body by a constricted portion called the neck, and two 

eminences, the greater and lesser tubercles. 

The head (nearly hemispherical in form) is the humeral portion that 

articulates with the glenoid cavity of the scapula. The circumference 

of its articular surface is slightly constricted and it is referred to as the 

anatomical neck, in contradistinction to a constriction below the 

tubercles called the surgical neck. The anatomical neck is obliquely 

directed, forming an obtuse angle with the body. It is best marked in 

the lower half of its circumference; in the upper half, it is represented 

by a narrow groove separating the head from the tubercles. It affords 

attachment to the articular capsule of the shoulder-joint. 

The greater tubercle (greater tuberosity) is situated laterally to the head and lesser tubercle. Its upper 

surface is rounded and marked by three flat impressions which give insertion to the muscle tendons 

(supra-spinatus; infra-spinatus and teres minor).  

The lesser tubercle (lesser tuberosity) although smaller, is more prominent than the greater and it is 

located anteriorly.  

The body or shaft is almost cylindrical in the upper half of its extent, prismatic and flattened below, and 

has three borders and three surfaces. 

The lower extremity includes, projected on either side, the lateral and medial epicondyles. The lateral 

epicondyle is a small, tuberculated eminence, curved a little forward. The medial epicondyle, larger and 

Figure 2.3: Humerus. 
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more prominent than the lateral, is directed slightly backwards. The epicondyles serve as insertion 

points for tendons and ligaments of the elbow-joint (Standring, 2008). 

Scapula  

The scapula forms the posterior part of the shoulder girdle. It is a flat, triangular bone, with two 

surfaces, three borders, and three angles.  

The costal or ventral surface (Fig. 2.4) presents 

a broad concavity, the sub-scapular fossa. The 

medial two-thirds of this fossa are marked by 

several oblique ridges, which run laterally and 

upward. The ridges provide the attachment to 

the tendinous insertions. 

The dorsal surface (Fig.2.4) is arched from 

above downward, and it is divided into two 

unequal parts by the spine; the portion above the spine is called the supra-spinatous fossa, and that 

below it is the infra-spinatous fossa.  

The spine is a prominent plate of bone, which crosses obliquely the medial four-fifths of the dorsal 

surface of the scapula at its upper part, and separates the supra- from the infra-spinatous fossa. It begins 

at the vertical border by a smooth triangular area and ends in the acromion. The spine is triangular, and 

flattened from above downward. It presents two surfaces (superior and inferior) and three borders 

(anterior, posterior and lateral).  

The acromion forms the summit of the shoulder. It is a large, somewhat triangular or oblong process, 

curving forward and upward, so as to overhang the glenoid cavity. 

The scapula has three borders and three angles. The superior is the shortest and thinnest of the three 

borders of the scapula, it is concave, and it extends from the medial angle to the base of the coracoid 

process. The axillary border is the thickest of the three. It begins above at the lower margin of the 

glenoid cavity, and inclines obliquely downward and backward to the inferior angle. The vertebral 

border is the longest of the three, and extends from the medial to the inferior angle.  

The inferior angle is formed by the union of the vertebral and axillary borders. The lateral angle is the 

thickest part of the bone, and it is sometimes called the head of the scapula. The articular surface, the 

glenoid cavity, is directed laterally and forward and articulates with the head of the humerus; it is 

broader at the bottom than at the top and its vertical diameter is the longest. The surface is covered with 

Figure 2.4: Scapular ventral and dorsal surfaces.  
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cartilage in the fresh state; and its margins, slightly raised, give attachment to a fibro-cartilaginous 

structure, the glenoidal labrum, which deepens the cavity. At its apex is a slight elevation, the supra-

glenoid tuberosity. The neck of the scapula is the slightly constricted portion which surrounds the head. 

The coracoid process is a thick curved process attached by a broad base to the upper part of the neck of 

the scapula; it runs at first upward and medially, then, becoming smaller, it changes its direction and it 

projects forward and laterally (Standring, 2008). 

The scapula is involved in various movements of the shoulder. In particular, Kibler et al. (1998) have 

described five roles attributed to the scapula: (1) it represents a stable part of the gleno-humeral joint; 

(2) it allows for retraction and protraction along the thoracic wall; (3) it elevates the acromion to 

decrease impingement and coraco-acromial arch compression in the throwing and serving motion; (4) it 

serves as a base for muscle attachment; and (5) it functions as a link in the proximal to distal 

sequencing of the kinetic chain (Fig. 2.5). 

 Posterior and anterior tilt: posterior and anterior 

tilt is the scapular rotation about an oblique medial-lateral 

axis (Karduna et al., 2000); posterior tilt occurs as the 

acromion moves backward and anterior tilt occurs as the 

acromion moves forward. 

 Internal and external rotation: internal and 

external rotation are described as scapular rotation about 

an oblique superior-inferior axis (Karduna et al., 2000); 

external rotation can be visualized as the acromion 

moving posteriorly with the medial border of the scapula 

moving in an anterior direction.  

 Downward (medial) and upward (lateral) 

rotation: scapular downward and upward rotation occurs 

about an axis in the scapular body (Karduna et al., 2000); downward rotation is defined by the 

rotation of the glenoid downward and the inferior angle of the scapula toward the spine; upward 

rotation is the rotation of the glenoid superiorly and movement of the inferior angle away from the 

spine. 

 Abduction and adduction: abduction is the movement of the medial border of the scapula away 

from the vertebral column; adduction is defined as movement of the medial border of the 

scapula toward the vertebral column (Oatis, 2004).  

Figure 2.5: Scapular variables: posterior tilt, upward 
rotation, and external rotation. (From Dayanidhi S, Orlin 
M, Kozin S, et al: Scapular kinematics during humeral 
elevation in adults and children. Clin Biomech (Bristol, 
Avon) 20:600-606, 2005). 
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 Elevation and depression: scapular elevation is the movement of the scapula superiorly on the 

thorax; depression is the movement of the scapula inferiorly on the thorax (Oatis, 2004). When a 

patient assumes the prone position, the shoulder girdle falls into a relatively elevated and protracted 

state. 

2.2.1 Normal gleno-humeral relationship  

The gleno-humeral joint is a multi-axial ball-and-socket synovial joint. The articular surfaces, the head 

of the humerus and the glenoid fossa of the scapula, although reciprocally curved, are oval and are not 

sections of true spheres. It was estimated that the articular surface of the glenoid fossa is one third to 

one fourth that of the humeral head (Iannotti et al., 1992). 

Because the head of the humerus is larger than the glenoid fossa, only part of the humeral head can be 

in articulation with the glenoid fossa in any position of the joint.  

The gleno-humeral congruence (conformity) is the relationship between the radius of curvature of the 

humeral head and the glenoid (Iannotti et al., 1998). If the radii of curvature of the humeral head and 

glenoid were the same, i.e. congruency ratio of 1, and then there would be maximum contact between 

the two surfaces. The most common configuration (90%) is a smaller radius of curvature for the 

humeral head relative to the glenoid, such that the congruency ratio is less than one. This implies an 

increased range of movement but a decreased stability. The design characteristics of the joint are 

typical of an "incongruous" joint. The surfaces are asymmetrical, the joint has a movable axis of 

rotation, and muscles related to the joint are essential in maintaining stability of the articulation 

(O’Brien et al., 1990). 

The mean humeral head radius and the mean humeral head thickness are correlated with the humeral 

head offset, which is the distance between the center of the humeral head and the longitudinal axis of 

the humeral shaft. The ratio of the humeral head thickness to humeral head radius is reliably consistent 

at 0.7–0.9 (Howell et al., 1989; O’Connell et al., 1990). This ratio is directly proportional to the amount 

of humeral head which articulates with the glenoid, irrespective of other variables such as length of the 

humeral shaft or the size of the patient (O’Connell et al., 1990). 

The normal glenoid has a pear shaped appearance with a shorter anterior-posterior dimension in the 

superior half (mean 23 mm) than in the inferior half (mean 29 mm) (Howell et al., 1989). The glenoid 

offset is the distance between the base of the coracoid and the deepest portion of the glenoid articular 

surface (Howell et al., 1989). This measurement determines the location of the gleno-humeral joint line 

and again is not related to the size of the patient. The lateral gleno-humeral offset is the distance 
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between the base of the coracoid and the most lateral aspect of the greater tuberosity. This 

measurement is important as it determines the resting tension of the rotator cuff and the moment arm of 

the deltoid. 

Gleno-humeral index 

This is defined as the maximum transverse diameter of the glenoid divided by the maximum transverse 

diameter of the humeral head. This ratio is approximately 0.75 in the sagittal plane and 0.6 in the 

transverse plane (Saha et al., 1971). A low gleno-humeral index is associated with recurrent anterior 

instability (Randelli et al., 1986). 

Gleno-humeral articular constraint 

The constraint is the amount of humeral head which is in direct articulation with the glenoid cavity 

(Iannotti et al., 1998). It is related to the depth of the glenoid but it is independent of articular 

congruence. The normal glenoid has a depth of 9 mm in the superior-inferior direction and 5 mm in the 

anterior-posterior direction. As a result, the glenoid is more constrained in the superior-inferior 

direction than anterior-posterior direction, accounting for the more frequently observed anterior-

posterior dislocation (Lam et al., 2006). 

2.2.2 Gleno-humeral joint stability 

The term “gleno-humeral joint stability” refers to the process by which the humeral head remains 

centered on the glenoid during motion (Halder et al., 2001). 

The stability of the joint is maintained by an interconnecting network of static and dynamic restraints 

(Lam et al., 2006) and it is provided by the articulating surfaces, capsular and ligamentous structures 

(static stabilizers), and synchronous activity of the rotator cuff, biceps, deltoid, and scapular muscles 

(dynamic stabilizer). The role of any specific component of the stabilizing system varies with gleno-

humeral joint position and direction of the opposing force. A functional interplay or interdependence 

exists between anterior and posterior and between superior and inferior components of the capsule-

ligamentous system. For the stability two aspects are important: conformity and constraint. Conformity 

is the relative match between the radii of the humeral head and glenoid; i.e. a completely conforming 

joint has 0 mm mismatch between the respective radii. Constraint is the threshold to dislocation which 

is related to the depth and size of the socket. Experimental evidence shows greater gleno-humeral 

translation in non-conforming articular surface (Iannotti et al., 1999). This means that the relationship 
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between gleno-humeral translation and joint conformity only applies under active, not passive joint 

loading. 

Capsulo-ligamentous complex 

The gleno-humeral joint capsule originates from the labrum and the margin of the glenoid fossa. It is 

attached laterally to the anatomical neck of the humerus. It maintains the negative intra-articular 

pressure, contributing to the stability of the gleno-humeral joint (Lam et al., 2006). 

The gleno-humeral joint capsule provides passive stability at the extremes of gleno-humeral motion 

(Werner et al., 2004). The capsule does not only limit rotation and prevent excessive translations, but 

also causes a coaptation and obligate translation of the humeral head on the glenoid at the end of 

passive movements. The superior part of the capsule, together with the coraco-humeral ligament, is 

important in strengthening the superior aspect of the joint and resisting the effect of gravity on the 

dependent limb.  

Anteriorly and posteriorly the capsule is strengthen by ligaments and tendons. Inferiorly, the capsule is 

thin and weak and contributes little to the stability of the joint. The inferior part of the capsule is 

subject to considerable strain because it is tightly stretched across the head of the humerus when the 

arm is elevated; moreover it is lax and lies in folds when the arm is adducted. The frequency of anterior 

dislocation seen clinically demonstrates the weakness of the inferior part of the capsule (Lam et al., 

2006). The integrity of the capsule and the maintenance of the normal gleno-humeral relationship 

depend on the reinforcement of the capsule by ligaments and the attachment of the muscle tendons of 

the rotator cuff mechanism. 

Glenoid labrum  

The glenoid labrum is a rim of fibro-cartilaginous tissue attached around the margin of the glenoid 

fossa, deepening the glenoid cavity and serving to bridge bone to the gleno-humeral ligaments and 

biceps tendon. The inner surface of the labrum is covered with synovium; the outer surface attaches to 

the capsule and is continuous with the periosteum of the scapular neck (Lam et al., 2006). The glenoid 

labrum accounts for about 10–20% of the static stability by deepening the glenoid socket 50%, and 

detachment of the labrum anteriorly may reduce the depth of the socket in the anterior-posterior 

direction. The shape of the labrum adapts to accommodate rotation of the humeral head, adding 

flexibility to the edges of the glenoid fossa. Resection of the glenoid labrum has been reported to 

reduce the effectiveness of compression-stabilization by approximately 10% to 20% (Halder et al., 

2001). 
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Compression by muscle activity and capsule-ligamentous tightening increases the stability of the 

labrum. Superior labral defects have been found to decrease torsional rigidity and increase inferior 

gleno-humeral ligament strain, which contributes to anterior instability (Abboud et al., 2002). 

Gleno-humeral ligaments 

The gleno-humeral ligaments are thickenings of the joint capsule and consist of superior, middle and 

inferior portions. The superior gleno-humeral ligament functions as the primary restraint to inferior 

translation of the humeral head. The middle gleno-humeral ligament is the most variable and it limits 

external rotation and anterior subluxation of the humeral head when the arm is in mid-abduction. The 

inferior gleno-humeral ligament is the most important ligament in maintaining joint stability (Lam et 

al., 2006).  

Coraco-humeral ligament 

The coraco-humeral ligament is one of the most important ligamentous structures in the shoulder 

complex as it is involved in maintaining the gleno-humeral relationship. The downward pull of gravity 

on the arm is counteracted largely by the superior capsule and the coraco-humeral ligament. Because 

the coraco-humeral ligament is located anterior to the vertical axis about which the humerus rotates 

axially, the ligament checks lateral rotation and extension. Shortening of the ligament would maintain 

the gleno-humeral relationship in medial rotation and would restrict lateral rotation severely. 

Together with the acromion and the coracoid processes, the ligament forms an important protective 

arch over the gleno-humeral joint. The arch forms a secondary restraining socket for the humeral head, 

protecting the joint from trauma and preventing dislocation of the humeral head superiorly.  

Rotator cuff 

The rotator cuff is the musculo-tendinous complex formed by the attachment to the capsule of the 

supraspinatus muscle superiorly, the subscapularis muscle anteriorly, and the teres minor and 

infraspinatus muscles posteriorly. All of their tendons blend intricately with the fibrous capsule. They 

provide active support for the joint and can be considered true dynamic ligaments. The rotator cuff, 

acting as a dynamic compound musculo-tendinous unit, plays an essential role in movements of the 

gleno-humeral joint. The combined effect of the cuff muscles works as a force-couple to keep the 

humeral head centered on the glenoid. The dynamic restraints stabilize the joint by several mechanisms 

(Lam et al., 2006): 

1. by a passive muscle tensioning effect; 
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2. by dynamic contraction thereby causing compression of the humeral head into the glenoid (Halder et 

al., 2001); 

3. by determining a secondary tightening effect on the static constraints; 

4. by exerting a direct barrier effect.  

2.2.3 Gleno-humeral joint laxity and instability 

The term shoulder laxity refers to the physiological motion of the gleno-humeral joint that allows a 

normal range of motion. It was defined as the ability of the humeral head to be passively translated on 

the glenoid fossa (Matsen et al., 1991). This obligate translation of the humeral head on the glenoid is 

physiologic and in fact necessary in order to achieve the large degrees of freedom afforded the highly 

mobile shoulder (Saurer et al., 2001). Translation can occur in any direction as the humeral head moves 

on the glenoid face during humeral elevation and rotation.  

The position at which the maximal mobility occurs is defined resting position (Lin et al., 2007). The 

resting position is the position of a joint in which the joint tissues are under the least amount of stress 

and in which the joint capsule has its greatest laxity (Lin et al., 2007). It is also called the “loosely 

packed position” as opposed to the “closely packed position” (Lin et al., 2007). This position is also the 

position of minimal congruence between joint surfaces allowing the greatest passive separation 

between articular surfaces (Lin et al., 2007). 

For the in vivo gleno-humeral joint, the resting position was found to be located at a position in neutral 

rotation between 30 and 60 deg of shoulder abduction with respect to the trunk in the plane of the 

scapula (commonly defined as the plane 30 deg anterior to the frontal plane) (Lin et al., 2007) . 

Quantitative assessment of gleno-humeral laxity has been performed both in vivo and in vitro. Poppen 

and Walker (1976) observed from X-rays that the humeral head moved upward relative to the glenoid 

between 0 and 30 deg of abduction and translated inferiorly by 2-3 mm throughout the rest of 

abduction. Harryman et al. (1990) in their cadaveric study demonstrate the obligate nature of 

translation. In order to determine whether the observed translations were forced by asymmetrical 

tightness of the capsule, rather than being associated with laxity of the capsule, they attempted to 

prevent the anterior translation of the humeral head during flexion of shoulders that had an intact 

capsule by applying an oppositely directed (posterior) force to the humeral head. Herryman et al. 

(1990) concluded that given the obligate nature of these translations they may also occur with active 

motions. To confirm this, Howell et al. (1989) reported evidence that translation occurs with combined 
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abduction, extension, and external rotation and that normal translation is reduced or eliminated when 

there is gleno-humeral instability.  

Rhoad et al. (1998) used MRI to examine normal relationships about the gleno-humeral joint in internal 

and external rotation. They found that during active motion the humeral head translation averaged 2.1 

mm in the anterior-posterior plane and that during passive positioning average translations increased to 

8.2 mm in the anterior-posterior plane.  

Graichen et al. (2000) used 3D MRI to demonstrate the centering of the humeral head during abduction 

and rotation. They found that during passive elevation the humeral head translated slightly inferiorly at 

low angles of elevation (from +1.58 mm at 30 deg to +0.36 mm at 150 deg of abduction ) and slightly 

posteriorly at higher angles of elevation (from +1.55 mm at 30 deg to -0.07 mm at 150 deg of 

abduction). With muscle activity, the respective translations were smaller, particularly at low angles of 

elevation (1.0±1.3 mm at 60 deg of abduction, 0.04±1.3 mm at 90 deg and of -0.02 ±1.4 mm at 120 deg 

of abduction). In their study, Graichen et al. (2000) reported an inferior translation of 1.2 mm (from 30 

to 150 deg). While at 60 deg of abduction the humerus is still 1 mm superior to the glenoid, it is more 

centered at 90 and 120 deg. The superior position at 60 deg may be caused by the dominance of the 

deltoid with its cranial force direction, while at 90 deg and 120 deg the rotator cuff muscles with their 

centralizing effect are more active (Graichen 2000).  

Saurer et al. (2001) in their study on the gleno-humeral joint laxity using an instrumented arthrometer 

found a greater posterior translation than anterior. This is probably due to the fact that the posterior 

capsule is thinner than the anterior capsulo-ligamentous structures and therefore may provide less 

resistance to translation than the thicker anterior capsule and supporting gleno-humeral ligaments 

(O’Brien et al., 1995). Additionally, the subscapularis tendon is also reported to resist anterior 

translation when the humerus is below 90 deg of abduction (McFarland et al., 1996). 

Schiffern et al. (2002) conducted a study to analyze the humeral head centering in the absence of 

voluntary positioning. They found that the humeral head remained centered within the glenoid, 

especially in the midrange positions of passive rotation in which the gleno-humeral ligaments and 

capsule are known to be lax (from 0 deg to 45 deg of external rotation, 35 deg of gleno-humeral 

abduction, cadaveric studies) (Matsen et al., 1994; Matsen et al., 1998). Within this midrange of 

rotation, none of the humeral heads tested translated more than 2.2 mm either anteriorly or posteriorly 

in relation to the glenoid center. 

The findings of the Schiffern et al. (2002) study demonstrate that active muscle effort is not required to 

stabilize the shoulder in midrange positions. They demonstrated that the humeral head remains centered 
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in the glenoid in the absence of voluntary muscle contraction when the shoulder is passively positioned 

in midrange positions in which the capsule and ligaments are lax. This observation leads to the 

consideration of what mechanisms other than ligament stabilization or dynamic neuromuscular control 

might maintain the desired position of the humeral head in the glenoid (Schiffern et al, 2002). 

They justified their findings with the conformity of the joint. In a high conforming joint, the stability 

ratio (the ratio of force necessary to translate the humeral head to the load compressing the humeral 

head into the glenoid) is maximal when the humeral head is centered in the glenoid. In a system of this 

sort, the stabilizing effect of a given compressive load is greatest when the head is centered in the 

glenoid concavity, and very low compressive loads, such as those from resting muscle tone, may be 

sufficient to center the humeral head. Thus, a high degree of conformation of the glenoid concavity to 

the humeral head provides an anatomic situation that optimizes the centering effect of concavity 

compression (Schiffern et al, 2002). 

This tendency for the gleno-humeral joint to become uncentred in positions near the end of the range of 

motion is thought to be related to an unopposed translatory force applied to the humeral head, forcing it 

from the centered position (Matsen et al., 1994; Matsen et al., 1998). 

Alberta and colleagues (Alberta et al., 2006) tested six cadaver shoulders with an intact capsule and all 

muscles removed, under an external load of 15 and 20 N and found an anterior translation of 12.8 ± 1.9 

mm and of 13.4 ± 2.0 mm at 90 deg of shoulder abduction, respectively. Sahara et al. (2007) in their in 

vivo study investigated the gleno-humeral joint motion during isometric arm abduction by means of an 

open and vertical MR scanner. As reported by the authors, in the superior-inferior direction, the 

humeral head translated inferiorly from 1.9 mm at 0 deg to 0.8 mm at the maximum abduction. In 

anterior-posterior direction, the humeral head translated anteriorly from 0 to 90 deg (mean 2.4 mm) and 

posteriorly from 90 to 150 deg of abduction (mean -1.4 mm). Marquardt et al. (2006) by means of 

robot-assisted shoulder simulator tested twelve cadaveric shoulders with all soft tissues removed except 

for the tendons of the rotator cuff, the pectoralis major and the deltoid muscle. They found a translation 

of 6.8 ± 2.4 mm at 0 deg and 5.1 ± 3.1 mm at 90 deg of gleno-humeral abduction. Su et al., (2009) 

investigate the translations in five cadaveric intact shoulders in both the superior and anterior-superior 

directions. The study design also provided the rotator cuff tendons were individually loaded, to 

simulate the muscle forces acting in vivo. They found an average translation of 2.0 ± 0.5 mm at 45 deg 

of gleno-humeral abduction. The studies on cadaver demonstrate the importance of muscle forces and 

joint conformity in the limitation of humeral head translations, which can lead to the instability. 
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Shoulder instability is the inability to maintain the humeral head within the center of the glenoid during 

active motion of the arm (Lippitt and Matsen, 1993). 

As above mentioned, gleno-humeral stability is influenced by a variety of factors, such as adhesion-

cohesion, concavity-compression, negative intra-articular pressure, and limited joint volume. All these 

factors are combined with the static ligamentous restraints and dynamic muscular control to provide 

stability within the large range of motion.  

Gleno-humeral instability leads to shoulder dislocations in 2-8% of cases (Grumet et al., 2010). 

Although the natural history of the dislocated shoulder depends on a variety of factors, it is the age of 

the patient at the time of the initial dislocation that is most important (VandenBerghe et al., 2005). 

Shoulder dislocations most commonly occur in young males of less than 25 years of age, with a 

prevalence of anterior dislocations (about 90–95% of all shoulder dislocations). The etiology of 

shoulder instability is most commonly traumatic, and results in a Bankart lesion or disruption of the 

labrum and anterior-inferior gleno-humeral ligament complex from the glenoid as well as an impaction 

fracture on the postero-lateral aspect of the humeral head. Among the different dislocations the 

posterior are less common (only 3-5% of dislocations), instead the sub-acromial dislocation (humeral 

head posterior to the glenoid and inferior to the acromion) is the most common.  

The incidence of shoulder dislocations has been reported to be 11.2 per 100`000 per year (Simonet et 

al., 1984). Major deficits in shoulder function and a high number of recurrences after the first 

dislocation have been reported especially in young patients (Robinson et al., 2006). According to 

Robinson et al. (2006), recurrences are found in 56% of young patients aged between 15 and 35 within 

the first year (Robinson et al., 2006). 

Many classification systems have been developed to describe shoulder instability. Schemes related to 

direction (anterior, posterior, multidirectional), etiology (traumatic, atraumatic, overuse), degree of 

instability (subluxation versus dislocation), and duration of symptoms (acute, recurrent, fixed) are 

described in the literature. 

A new classification, which distinguishes among static, dynamic, and voluntary dislocation, have been 

proposed (Gerber et al., 2002) and provides for a division into classes and subclasses.  

 Class A-static instabilities: they are defined by the absence of classic symptoms of instability 

and are associated with rotator cuff tears and degenerative joint disease (radiological diagnosis) 

(VandenBerghe et al., 2005). 

 Classe B-dynamic instabilities: they are symptomatic and have traumatic etiology (Hawkins et 

al., 1987). 
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 Class C: they are voluntary dislocation and are of two types: muscular and positional. This type 

of dislocation is most frequently among children and the preadolescent population. The first group of 

patients is able to sublux or dislocate the shoulder by selective muscle activation, whereas the others 

need to place the arm in appropriate position (such as forward flexion, adduction, and internal rotation 

for posterior instability) to induce the subluxation or dislocation. 



 

 
 

CHAPTER 3  

QUANTITATIVE MEASUREMENT OF THE GLENO-HUMERAL JOINT 
TRANSLATIONS
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3.1 Background 

Three-dimensional (3D) gleno-humeral joint linear displacements have been measured, both in vivo 

and in vitro by means of different instrumental techniques. In vitro studies allow for a very accurate 

and repeatable joint kinematics reconstruction permitted by the use of different invasive approaches 

(Bourne et al., 2010; Bull et al., 1997; Ludewig et al., 2009; Massimini et al., 2010; Milne et al., 1996; 

Nishinaka et al., 2008). Studies on anatomical specimens also enable researchers to study patterns of 

injury and changes in joint kinematics that would be impossible in vivo studies (Su et al., 2009). 

Cadaveric experiments (Halder et al., 2001; Payne et al., 1997; Sharkey et al., 1995; Wuelker et al., 

1994; Wuelker et al., 1995) can provide highly accurate measures of joint position or motion, because 

of the use of bone-embedded sensors (pins drilled into the bone) (Karduna et al., 1997), but are unable 

to accurately duplicate the complex motions, muscle forces, or joint forces associated with dynamic in 

vivo conditions (Bey et al., 2006). Extensive analyses of the biomechanical role of soft tissues and 

articular surfaces as joint constraints under the application of selected external forces has been 

conducted on cadavers mainly by means of shoulder testing device that allow six degrees of freedom 

for gleno-humeral positioning (Grossman et al., 2005) coupled with microscribe, used to digitize three-

dimensional anatomic landmarks on the bone and record the humeral shift and translation data 

(Grossman et al., 2005); linear transducers for linear displacements measurement, or magnetic tracking 

device to determine position and orientation of a user in the working space (Su et al., 2009, Lin et al., 

2007).The main limitations associated with published in vitro models are the inactivity of the muscles 

involved and that the gleno-humeral joint is often analyzed in isolation, without consideration of 

scapulo-thoracic motion or, the position of the clavicle. In vivo kinematics of the shoulder joint has 

been studied by means of stereophotogrammetry, electromagnetic tracking sensors, single and dual-

plane fluoroscopy and open-MRI. Due to various factors such as the total or partial lack of the shoulder 

muscles and differences in muscular tone in cadaveric experiments, there are discrepancies between the 

phenomena observed in vivo and in vitro conditions.  

3.1.1 Instrumental techniques  for the assessment of the gleno-humeral joint translations  

After a brief overview on in vivo and in vitro studies and the main characteristics, in this chapter we 

will focus on the principal techniques employed, both in vivo and in vitro, for the assessment of the 

GHJ translations.  



 

19 
 

Stereophotogrammetry 

Video-based optoelectronic systems represent conventional motion measurement methods used to track 

the instantaneous position of markers attached to the skin. These systems are used to track the 3D 

position of a set of fiducial points, constituted from either retro-reflective (passive) or light-emitting 

(active) markers. In order to reconstruct 3D positions of markers captured by two or more cameras, the 

extrinsic parameters of each camera have to be known. These extrinsic parameters describe the 

geometrical relation between the camera and the captured calibration body (Lujan et al., 2006; Everaert 

et al., 1999). 

These systems are non-invasive, easy to use and represent a convenient solution for many clinical and 

research applications (Tashman et al., 2003). However, several studies have shown that markers affixed 

to the skin shift relative to underlying bone by as much as 30 mm, particularly during rapid movements 

(Holden et al., 1997; Reinschmidt et al., 1997; Lafortune et al., 1992). This marker tracking error varies 

with the body segment analyzed, the marker position, the type of motor task under analysis and the 

angular joint excursion. Due to the deformation of the soft tissues surrounding the bones, there is an 

ongoing debate about the capability to accurately track the movement of the underlying bony segments 

from sensors attached to the skin (van Andel et al., 2009). It is especially true, when small 

displacements, such as gleno-humeral joint translations, require to be assessed.  

Electromagnetic tracking devices 

Six-degree-of-freedom (DoF) electromagnetic trackers provide both the position and orientation of the 

sensor with respect to a laboratory coordinate system by exploiting orthogonal electromagnetic fields 

(Raab, Blood, Steioner, & Jones, 1979; Foxlin et al., 1998; Kindratenko et al., 1999, Kindratenko et al., 

2000; Borstad et al., 2002; Karduna et al., 1996; Karduna et al., 1997; Karduna et al., 2000; Bull et al., 

1998; Harryman et al., 1990; Herryman et al., 1992). The system is compound by a source (transmitter) 

and a detector (sensor attached to the skin). Similarly to the video-based optoelectronic systems, when 

using electromagnetic tracking devices for in vivo evaluation, the sensors are placed on the skin of the 

subject and the measurements are affected by the presence of soft tissue artifacts which can conceal the 

measurement of the small displacements involved (Bey et al., 2006). Moreover due to the dependence 

of the measurements on the local electromagnetic field, the tracking systems are sensitive to the 

ambient electromagnetic environment and the transmitter signals could be distorted and the resulting 

measurements contain errors (Kindratenko et al., 2001). 
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To overcome the error imparted by soft tissue deformation some in vivo studies have used bone-

embedded sensors that is trans-cortical pins drilled into the bone to hold marker cluster (Bourne et al., 

2010, Stereophotogrammetry) or sensors (Ludewing et al., 2009, Electromagnetic tracking devices). 

Since these systems use pins anchored directly to the bone segments, they allow obtaining a highly 

accurate estimation of joint kinematics. Unfortunately, bone-pin cluster markers are associated with the 

risk of infection, change in pattern of motion due to pain, and translational/rotational instability of the 

actual pin (Bourne et al., 2010). The pain intensity of 4 out of 10 (Visual Analog Scale, VAS) have 

been reported when bone pins were used (Ludewing et al., 2009).  

Bio-imaging techniques 

The term bio-imaging refers indiscriminately to a wide range of techniques either based on the use of 

ionizing (e.g. X-ray based techniques) and non-ionizing radiations (e.g. MRI) (Hill et al., 2007). 

Among the techniques based on ionizing radiation the main used for the shoulder analysis are: 

computer tomography (CT) (Baeyens et al., 2001), biplanar X-rays (Lagacé et al., 2012), fluoroscopy 

(Karduna et al., 1997; San Juan et al., 2010) or a combination of dual-plane fluoroscopy (Fleisig et al., 

1995) and 3D bone models derived from CT. An alternative which avoid the radiation exposure and 

then is noninvasive for the patient is represented by the magnetic resonance imaging (MRI) (Bey et al., 

2006; Nishinaka et al., 2008; Massimini et al., 2012).  

- Techniques based on ionizing radiation 

X-ray based techniques have been employed to measure the position of bones relative to one another, 

or the position of implanted markers (RSA), either from static or dynamic images. Below the main 

techniques employed for the assessment of the gleno-humeral joint displacement have been reported. 

Planar rontegenography (planar X-ray) is more commonly used in the clinical practice for evaluating 

pathological abnormalities than as a tool for the kinematic study (Hill et al., 2007). Several studies used 

the X-ray for the imaging of the shoulder in the plane of the scapula (de Luca et al., 1973; Freedman et 

al., 1966; Poppen and Walker, 1976; Johnston et al., 1937; Saha et al., 1950) and the evaluation of the 

parameters of motion in normal and abnormal shoulders, such as the excursion of the humeral ball on 

the face of the glenoid (Poppen and Walker 1976).  

However, this technique is affected by projective artifacts, which can be responsible of the many 

differences reported in the scapular-humeral rhythm in the different studies (de Groot et al., 1998). 

Moreover, for some applications, the 2D assessments of gleno-humeral joint motion, cannot be 
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sufficient to characterize the relative movement between the humerus and the glenoid which is 

characterized by rotations and translation along three axes (Bey et al., 2006) 

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the internal 

body structures. Fluoroscopy can be mono-planar, which allows investigating a larger volume with a 

reduced dose of X-rays, or bi-planar which is more accurate but also expose the patient to a higher 

radiation dose. Mono- and bi-planar X-ray fluoroscopy besides allowing the acquisition of a wide range 

of motion (Anderst et al., 2009; Dennis et al., 2005; Torry et al., 2010) enable to measure the joint 

motion during dynamic activities (Burkhart et al., 1992; Mandalidis et al., 1999; Pfirrmann et al., 2002; 

Werner et al., 2004).  

Unfortunately, the low quality of the fluoroscopic images and especially the motion artifact (blur) may 

introduce errors which could affect the estimation of the relevant variables. In fact, the errors 

associated to the geometry distortion are comparable to those found in static planar radiography, if not 

greater due to the dynamic nature of the modality (Hill et al., 2007). In addition to the image geometric 

distortion, another important limitation is related to the radiation exposure which makes this approach 

invasive for the patients (Massimini et al., 2010; Nishinaka et al., 2008). 

Radiostereometric analysis consists in the implantation of tantalum spheres into the bony segments to 

be analyzed and to reconstruct their 3D positions from repeated multi-planar radiographic 

examinations. This methodology is very accurate (Selvik et al., 1983) and it has been applied to study 

prosthetic fixation (Ryd 1992) and joint stability (Uvehammer et al., 2000). RSA can be also used to 

dynamically study joint kinematics. Dynamic RSA has been used to study joint movements (Kärrholm 

et al. 1988; Brandsson et al., 2002; Saari et al., 2005), and in particular gleno-humeral joint kinematics 

(Bey et al., 2006; Hallström and Kärrholm, 2009). Use of biplane radiographic film methods (RSA) for 

3D studies of static bone position has been well established (Kärrholm et al., 1988; Selvik et al., 1990), 

with precision reported in the ±10–250 µm range (Kärrholm et al., 1989). However, given the high 

invasiveness, the RSA is adopted only if there is the opportunity to insert marker of tantalum during the 

operating phase (such as in prosthetic implantation),  

X-ray computed tomography (x-ray CT) is a technology that uses computer-processed x-ray to form a 

series of electronically collected projections, which are later reconstructed to a topographic image of 

specific areas of the scanned body. Digital geometry processing is used to generate a three-dimensional 

image of the inside of the body from a large series of two-dimensional radiographic images taken 

around a single axis of rotation (Herman et al., 2009). 
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Thin (1mm or less) sections with multi-slice CT scanners provide high resolution multi-planar (axial, 

coronal, and sagittal) images along with 3D images. Because of the inherent high-contrast resolution of 

CT, differences between tissues that differ in physical density by less than 1% can be distinguished 

Computed tomography provides better bone detail than does roentgenography. Nevertheless with 

respect to MRI, CT provides worse contrast for evaluation of soft tissue. CT is regarded as a moderate- 

to high-radiation diagnostic technique. The radiation dose for a particular study depends on multiple 

factors: volume scanned, patient build, number and type of scan sequences, and desired resolution and 

image quality. In addition to the static 3D imaging of gleno-humeral joint position CT has been 

employed for the assessment joint kinematics mostly in combination with 2D biplane radiographic 

images as model-based tracking technique (Bey et al., 2006, Kon et al., 2008, Nishinaka et al., 2008). 

This technique takes advantage of the geometry of the biplane x-ray system and a 3D bone model 

(from a CT scan) to generate a pair of digitally reconstructed radiographs (DRRs) via ray-traced 

projection through the 3D bone model. This allows tracking the position of bones based on their 3D 

shape and texture (Bey et al., 2006). The results indicate that the proposed model-based tracking 

technique is accurate to within approximately ±0.5 mm of a high accuracy, validated dynamic RSA 

technique. 

Electron beam computed tomography (EBCT): it is a fast scanning modality which generates twenty 

180 x180 x 120 mm scan volumes throughout a 5s dynamic motion with minimal radiation exposure. It 

was employed in the volumetric dynamic and real-time imaging of different joints (Hill et al., 2003; 

Hill et al., 2004). With respect the traditional 3D imaging, the volumetric imaging involves the 

progressive capture of a number of contiguous stacked slices through a structural volume in order to 

approximate a 3D representation of the anatomy which can then be post-processed into slices. Using 

this technique, the need to infer spatial structure from a 2D image is reduced, and therefore, less error 

introduced (Hill et al., 2007) 

- Techniques base on non-ionizing radiation: 

Magnetic Resonance Imaging (MRI). It is a medical technique used in radiology to investigate the 

anatomy and function of the body. MRI scanners use strong magnetic fields and radio-waves to form 

images of the body. Based on MRI, GHJ translations were investigated for different shoulder 

configurations both in healthy subjects (Rohad et al, 1998; Graichen et al., 2000) and patients (von 

Eisenhart-Rothe et al., 2002; Chhadia et al., 2010), both with and without isometric muscle activity 

(von Eisenhart-Rothe et al., 2002; Sahara et al., 2007). The current literature describes two distinct 

methods of conducting this analysis: passive supine positioning (Graichen et al., 2000; Rhoad et al., 
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1998; Von Eisenhart-Rothe et al., 2002) or seated weight-bearing (Hodge et al., 2001, Sahara et al., 

2007). Since the use of closed shape tunnel (Kiss et al., 1997), do not allow investigating the arm in the 

clinically relevant positions (Kessel and Watson, 1977; 1983), recent several studies have employed 

low field open MRI scanner (Graichen et al., 1998). Due to the non-ionizing nature of MRI and the 

capability of providing multi-planar imaging with both anatomic and physiologic information this 

technique is often chosen in place of the CT. Farther on in this chapter in this chapter we will focus on 

the MRI technique. 

Robot-assisted techniques 

The shoulder testing device (jig) and the robot-assisted kinematic simulator are robot-assisted 

techniques for the in vitro assessment of gleno-humeral joint translations. 

The jig measures the gleno-humeral translations and rotations (Remia et al., 2003). The testing 

apparatus allows for six degrees of freedom. Alternatively, a robot-assisted kinematic simulator allows 

to measure force and moments with the force moment sensor and to determine the joint kinematics in 

multiple directions (Marquardt et al., 2006, Burkart et al., 1992), is employed. Both these systems, 

allow to apply translational forces in the anterior, posterior, superior, and inferior directions; moreover 

they allow to apply loads to the muscle-tendon units in an attempt to simulate their contribution to 

stability (Su et al., 2009), even if in vivo, the muscle forces acting on the humeral head, such as the 

pectoralis major, biceps tendon, latissimus dorsi, and scapulothoracic stabilizers, are more complex 

than those modeled in cadaveric studies (Su et al., 2009). 

3.2 Magnetic Resonance Imaging 

MRI is an accurate non-invasive technique for the 3D visualization of muscles, tendons, and bones. It 

also provides 3D coordinate values (Sahara et al., 2007) and represents a powerful tool in those clinical 

applications where the joint motion can be analyzed in quasi-static conditions (Esfandiarpour et al., 

2009) and small displacements need to be detected. Several studies on gleno-humeral joint translations 

have been conducted by means of a MR imaging. 

3.2.1 Basic principles 

MRI relies on the spinning motion of specific nuclei which are present in biological tissue. This spin 

derives from the individual spins of protons and neutrons within the nucleus. MRI active nuclei are that 

nuclei which have odd mass numbers (the number of neutrons is slightly more or less than the number 
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of protons) (Fig. 3.1). In these nuclei the spin directions are not equal and opposite, so the nucleus itself   

has a net spin or angular momentum. The hydrogen nucleus is the MR active nucleus used in clinical 

MRI, because it is very abundant in the human body, and because its solitary proton gives it a relatively 

large magnetic moment. 

  

Figure 3.1: In the figure are represented the two situation of nuclei with even (left) and odd (right) mass numbers (From 
Magnets, Spins, and Resonance. An introduction to the basics of Magnetic Resonance. Siemens medical). 
In absence of an applied magnetic field, the magnetic moments of the hydrogen nuclei are randomly 

oriented (Fig. 3.2a). 

 

Figure 3.2: Magnetic moments of the hydrogen nuclei: (a) in absence of an applied magnetic field; (b) placed in a static 
magnetic (From Magnets, Spins, and Resonance. An introduction to the basics of Magnetic Resonance. Siemens medical). 
When placed in a strong static external magnetic field, however the magnetic moments of the hydrogen 

nuclei align parallel with the magnetic field (in the same direction, high energy nuclei named spin-up 

nuclei Fig. 3.2b), while a smaller number of the nuclei align anti-parallel to the magnetic field (in the 

opposite direction, low energy nuclei named spin-down nuclei) as in Fig. 3.2b.  

This is because they represent the only two possible energy states of hydrogen (thermal energy of the 

nucleus); the hydrogen nucleus itself does not change direction but merely spins on its axis. The 

thermal energy of the nucleus is mainly determined by the temperature of the patient. 

a b 
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In thermal equilibrium the magnetic moments of the nuclei aligned parallel to the magnetic field cancel 

out the smaller number of magnetic moments aligned anti-parallel. As there are a larger number aligned 

parallel, there is always a small excess in the direction that produces a net magnetic moment (Fig. 3.3). 

 

 

Figure 3.3: Spin-up nuclei, spin-down nuclei and net magnetic vector (M) (From Magnets, Spins, and Resonance. An introduction to the 
basics of Magnetic Resonance. Siemens medical). 
The net magnetic moment of hydrogen produces a significant vector that is used in clinical MRI, the 

net magnetization vector (NMV: M in Fig. 3.3) which reflects the relative balance between spin-up and 

spin-down nuclei. 

While each hydrogen nucleus is spinning on its axis, the presence of B0 produces an additional spin, 

and then adds magnetic moments of hydrogen around B0. This secondary spin is called precession and 

causes the magnetic moments to follow a circular path around B0 (precession path) with a speed called 

the processional frequency (MHz: 1 million cycles per second). This rotation causes the emission of a 

radio signal from the sample. The frequency of this signal is identical to the precessional frequency and 

is termed the Larmor frequency (ω). The Larmor frequency is the product of the magnetic field strength 

(B0) and the gyromagnetic ratio (γ) of the nuclei in the sample. 

ω = γ B0 

The Larmor frequency is unique for each type of nucleus; in a given magnetic field, therefore, all 

identical nuclei, such as in hydrogen, emit a signal of the same frequency. The frequency of this signal 

varies only with the magnetic field strength.  

When a nucleus is exposed to an external perturbation, that has an oscillation similar to its own natural 

frequency, the nucleus gains energy from the external force and resonates. If the energy is delivered at 

a different precessional frequency, the resonance does not occur. Energy at the precessional frequency 

of hydrogen at all field strengths in clinical MRI corresponds to the radio frequency (RF) band of the 

electromagnetic spectrum. For resonance of hydrogen to occur, an RF pulse of energy at exactly the 
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Larmor frequency of hydrogen (excitation) must be applied. This absorption of energy causes an 

increase in the number of spin-up nuclei. The energy difference between the two populations 

corresponds to the energy required to produce resonance via excitation. As results of the resonance the 

NMV moves out of alignment away from B0. As the NMV reflects the balance between the low and 

high-energy populations, resonance causes the NMV to no longer be parallel to B0 but at given angle 

with respect to it. The angle to which the NMV moves out of alignment is the flip angle (Fig. 3.4). The 

magnitude of the flip angle depends upon the amplitude and duration of the RF pulse. Usually the flip 

angle is 90 deg. With a flip angle of 90 deg the longitudinal NMV is completely transferred into a 

transverse NMV (Fig. 3.4). 

 

Figure 3.4: Angle to which the NMV moves out of alignment as consequence of the application of RF (From Magnets, Spins, 
and Resonance. An introduction to the basics of Magnetic Resonance. Siemens medical). 
This transverse NMV rotates in the transverse plane at the Larmor frequency. When resonance occurs, 
all the magnetic moments move to the same position on the precessional path and are then in phase (or 
coherent) (Fig. 3.5). 

 

Figure 3.5: Magnetic moment in phase and magnetic moment out of phase (From Catherine Westbrook and Carolyn Kaut, 1993. 
MRI in Practice 2nd edition. Blackwell Science Oxford.). 
The MR signal is produced when coherent magnetization cuts across the coil. Therefore the coherent 

moving transverse magnetization produces magnetic field fluctuation inside the coil that induces an 

electrical voltage in the coil (Faraday’s law). This voltage is the MR signal. The frequency of the signal 
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is the same as the Larmor frequency, the magnitude of the signal depends on the amount of 

magnetization present in the transverse plane. When the RF pulse is switched off, the NMV is again 

influenced by B0 and it tries to realign with it. To do so, the hydrogen nuclei must lose the energy 

(relaxation) given to them by RF pulse.  

As relaxation occurs, the NMV returns to realign with B0. As the magnitude of transverse 

magnetization decrease, so does the magnitude of the voltage induced in the receiver coil. During 

relaxation hydrogen nuclei give up absorbed RF energy and the NMV returns to B0. At the same time 

but independently the magnetic moments of hydrogen lose coherency due to dephasing. Relaxation 

results in recovery (gradually increment of amount of magnetization in the longitudinal plane, T1 

recovery) in the longitudinal plane and decay (gradually decrement of amount of magnetization in the 

transverse plane, T2 decay). The rate of recovery is an exponential process, with a recovery time 

constant (T1 relaxation time). This is the time it takes 63% of longitudinal magnetization to recover in 

the tissue. The rate of decay is also an exponential process, so that the T2 relaxation time of a tissue is 

its time constant of decay. It is the time it takes 63% (Fig. 3.6) of the transverse magnetization to be 

lost (37% remains) (Fig. 3.7). 

 

Figure 3.6: T1 relaxation time (From Catherine Westbrook and Carolyn Kaut, 1993. MRI in Practice 2nd edition. Blackwell Science 
Oxford.). 

 

Figure 3.7: T2 relaxation time (From Catherine Westbrook and Carolyn Kaut, 1993. MRI in Practice 2nd edition. Blackwell Science 
Oxford.). 
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Any pulse sequence is a combination of RF pulses, signals and intervening periods of recovery. The 

two characterizing components a pulse sequence are the repetition time (TR) and the echo time (TE). 

TR is the time from the application of one RF pulse to the application of the next RF pulse for each 

slice and is measured in milliseconds (ms). It determines the amount of relaxation that is allowed to 

occur between the end of RF pulse and the application of the next. The TR thus determines the amount 

of T1 relaxation that has occurred when the signal is read. TE is the time from the application of the RF 

pulse to the peak included of the signal in the coil and is also measured in ms. It determines how much 

decay of transverse magnetization is allowed to occur. The TE thus controls the amount of T2 

relaxation that has occurred when the signal is read (Westbrook and Kaut, 1993). 

3.2.2 Image formation, contrast and weighting 

Image formation 

As previously described, for resonance to occur RF must be applied at 90 deg to B0 at the precessional 

frequency of hydrogen. This RF gives the NMV energy so that it is flipped into the transverse plane. 

The RF pulse also puts the individual magnetic moments that constitute the NMV into phase. The 

resultant coherent transverse magnetization precesses at the Larmor frequency of hydrogen in the 

transverse plane. A voltage or signal is therefore induced in the receiver coil that is positioned in the 

transverse plane. This signal has a frequency equal to the Larmor frequency of hydrogen, regardless of 

the origin of the signal in the patient. The system must be able to locate the signal spatially in three 

dimensions, so that it can position each signal at the correct point on the image. First it locates a slice. 

Once a slice is selected, the signal is located or encoded along both axes of the image. These tasks are 

performed by gradients. 

Gradients are alterations to the main magnetic field and are generated by coils of wire located within 

the bore of the magnet through which current is passed. The passage of current through a gradient coil 

induces a gradient (magnetic) field around it, that alter (increase or decrease) the magnitude of B0, so 

that the magnetic field strength and therefore the precessional frequency experienced by nuclei situated 

along the axis of the gradient can be predicted (spatial encoding). 

Nuclei that experience an increased magnetic field strength due to the gradient speed up (their 

precessional frequency increases); whereas nuclei that experience a lower magnetic field strength due 

to the gradient slow down (their precessional frequency decreases). Therefore the position of a nucleus 

along a gradient can be identified according to its precessional frequency. There are three gradient coils 

situated within the bore of the magnet, and these are named according to the axis along which they act 
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when they are switched on, the Z, Y and X gradient which alter the magnetic field strength along the Z 

(long), Y (vertical) and X (horizontal) axis of the magnet respectively. 

The magnetic field strength at the isocentre is always the same as B0 (1.5 T, 1.0 T, 0.5 T), even when 

the gradients are switched on. When a gradient coil is switched on, the magnetic field strength is either 

subtracted from or added to B0 relative to isocentre. 

Gradients also perform the following three main tasks in encoding. 

1. Slice selection - locating a slice within the scan plane selected. 

2. Frequency encoding- spatially locating (encoding) signal along the long axis of the anatomy. 

3. Phase encoding-spatially locating (encoding) signal along the short axis of the anatomy. 

When data of each signal position are collected, the information is stored as data points in the array 

processor (K space) of the system computer. K space is a spatial frequency domain (where the 

information of frequencies related to the determinate point in the patient is stored). The acquired data 

held in K space are converted into an image. This conversion is made mathematically by a process 

known as Fast Fourier Transform (FFT). An MRI image consists of a matrix of pixels, the number of 

which is determined by the number of lines filled in K space (phase matrix) and the number of data 

points in each line (frequency matrix). As a result of FFT, each pixel is allocated a color on a grayscale 

corresponding to the amplitude of specific frequencies coming from the same spatial location as 

represented by that pixel. Each data point contains phase and frequency information from the whole 

slice at a particular moment in time during readout. In other words, frequency amplitude is represented 

in the time domain (Westbrook and Kaut, 1993). 

Image contrast 

One of the main advantages of MRI compared with other imaging modalities is the excellent soft tissue 

discrimination of the images. The contrast characteristics of each image depend on many variables. 

Contrast in MRI is more complex and depends on many parameters, which can be classified into 

“intrinsic” and “extrinsic” parameters. Intrinsic contrast parameters are related directly to body’s tissue 

and cannot be changed. They are T1 recovery time; T2 decay time; proton density; and many others. 

Extrinsic contrast parameters are related to the physical characteristics of the imager and the details of 

the pulse sequence used for imaging. They are TR, TE, flip angle, and many others. These are selected 

by the operator and depend on the pulse sequence used. In this section we will focus on only the main 

parameters (Westbrook and Kaut, 1993). 
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Contrast mechanism: An MR image has contrast if there are areas of high signal (white on the image), 

areas of low signal (dark on the image) and areas of an intermediate signal (shades of gray in between 

white and black). The NMV can be separated into the individual vectors of the tissue present in the 

patient. A tissue has a high signal if it has a large transverse component of coherent magnetization at 

time TE. If that occurs the amplitude of the signal received by the coil is large, resulting in a bright area 

of the image. A tissue returns a low signal if it has a small transverse component of coherent 

magnetization at time TE. In this case the amplitude of the signal received by the coil is small, resulting 

in dark area on the image. Images obtain contrast mainly through the mechanism of T1 recovery, T2 

decay and proton or spin density. The higher the proton density of a tissue, the more signal available 

from that tissue. 

 Relaxation in different tissues: T1 relaxation and T2 decay are exponential processes with a time 

constant T1 and T2. Generally, the two extremes of contrast are fat and water. The magnetic moments 

of fat nuclei are able to relax and regain their longitudinal magnetization quickly. The NMV of fat 

realigns rapidly with B0 so the T1 time of fat is short. Energy exchange is efficient in neighbor in fat as 

the molecular tumbling rate of fat is similar to the Larmor frequency and the molecules are packed 

closely together. As a result, spins diphase quickly and the loss of transverse magnetization is rapid. 

The T2 time of fat is therefore short. In water, molecular mobility is high, resulting in less efficient T1 

recovery because the molecular tumbling rate does not match the Larmor frequency and does not allow 

efficient energy exchange from hydrogen nuclei to the surrounding molecular lattice. T2 of water is 

therefore long. The magnetic moments of water take longer to realign with B0 and so the T1 of water is 

long. 

T1 contrast: As the T1 time of fat is shorter than that of water, the fat vector realigns with B0 faster 

than water vector. The longitudinal component of magnetization of fat is therefore larger than of water. 

After a certain TR that is shorter than the total relaxation times of the tissue, the next RF excitation 

pulse is applied. The RF excitation pulse flips the longitudinal component of magnetization of both fat 

and water into the transverse components (assuming a 90 deg pulse is applied). As there is more 

longitudinal magnetization in fat before the RF pulse, there is more transverse magnetization in fat after 

the RF pulse. Fat therefore has a high signal and appears bright on a T1 contrast image. As there is less 

longitudinal magnetization in water before RF pulse, there is less transverse magnetization in water 

after the RF pulse. Water therefore has a low signal and appears dark on a T1 contrast image. Such 

images are called T1 weighted images. 
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T2 contrast: The T2 time of fat is shorter than that of water, therefore the transverse component of 

magnetization of fat decays faster. The magnitude of transverse magnetization in water is large. Water 

has a high signal and appears bright on a T2 contrast image. However, the magnitude of transverse 

magnetization in fat is small. Fat therefore has a low signal, and appears dark on a T2 contrast image. 

Such images are called T2 weighted images. 

Proton density contrast: Proton density contrast refers to differences in signal intensity between unit 

volumes. To produce contrast due to the differences in the proton densities between the tissues, the 

transverse component of magnetization must reflect these differences. Tissues with a high proton 

density (e.g. brain tissue) have a large transverse component of magnetization (and therefore a high 

signal), and are bright on a proton density contrast image. Tissues with a low proton density (e.g. 

cortical bone) have a small transverse component of magnetization (and therefore a low signal), and are 

dark on a proton density contrast image. Proton density contrast is always present and depends on the 

patient and the area being examined. It is the basic MRI contrast (Westbrook and Kaut, 1993). 

Image weighting 

To demonstrate either T1 proton density or T2 contrast, specific values of TR and TE are selected for a 

given pulse sequence. The selection of appropriate TR and TE weights an image so that one contrast 

mechanism predominates over the other two. 

Four types of weighting: 

1. T1 weighting: image wherein the contrast depends predominantly on the differences in the Tl times 

between fat and water. Because the TR controls how far each vector can recover before it is excited 

by the next RF pulse, to achieve T1 weighting the TR must be short enough so that neither fat nor 

water has sufficient time to fully return to B0 (Fig. 3.8). 

 

Figure 3.8: T1 weighting (From Catherine Westbrook and Carolyn Kaut, 1993. MRI in Practice 2nd edition. Blackwell Science Oxford.). 
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2. T2 weighting: image wherein the contrast id determined by the differences in the T2 times between 

fat and water. The TE controls the amount of T2 decay that is allowed to occur before the signal is 

received. To achieve T2 weighting, the TE must be long enough to give both fat and water time to 

decay (Fig. 3.9). 

 

Figure 3.9: T2 weighting (From Catherine Westbrook and Carolyn Kaut, 1993. MRI in Practice 2nd edition. Blackwell Science Oxford.). 
3.  Proton density weighting: image wherein the difference in the numbers of protons per unit volume 

in the patient is the main determining factor in forming image contrast. In order to achieve proton 

density weighting, the effects of T1 and T2 contrast must be diminished, so that proton density 

weighting can dominate. That implies a long TR and a short TE.  

4. T2* decay: when the RF excitation pulse is removed, the relaxation and decay processes occur 

immediately. This decay is faster than T2 decay since it is a combination of two effects, (1) T2 

decay itself and (2) dephasing due to magnetic field inhomogeneities (areas within the magnetic 

field that do not exactly match the external magnetic field strength) (Westbrook and Kaut, 1993). 

3.2.3 Magnetic Resonance Imaging  acquisition parameters  

There are many parameters available to the operator when setting up a sequence. The choice of pulse 

sequence determines the weighting and the quality of the images. The timing parameters selected 

specifically determine the weighting of the images. 

- TR determines the amount of T1 and proton density weighting. 

- Flip angle controls the amount of T1 and proton density weighting. 

- TE controls the amount of T2 weighting. 

The quality of the images is controlled by many factors including. 
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1. Spatial resolution 

The spatial resolution is the ability to distinguish between two points as separate and distinct, and is 

controlled by the voxel size. Small voxels result in good spatial resolution as small structures can be 

easily differentiated. Large voxels, on the other hand, result in low spatial resolution, as small 

structures are not resolved so well. In large voxels, individual signal intensities are averaged together 

and not represented as distinct within the voxel. This results in partial valuing. The voxel size is 

affected by: 

a. slice thickness - reducing the slice thickness therefore increases spatial resolution; 

b. FoV- the matrix determines the number of pixels in the FoV. Small pixels increase spatial resolution. 

Increasing the matrix therefore increases the spatial resolution; 

c. number of pixels or matrix - the size of the FoV also determines the pixel dimensions. A large FoV 

results in large pixels, whereas a small FoV produces small pixels. Increasing the FoV size therefore 

decreases the spatial resolution. 

2. Scan time 

The scan time is the time to complete data acquisition. Scan times are important in maintaining image 

quality, as long scan times give the patient more of a chance to move during the acquisition. Any 

movement of the patient will probably degrade the images. As multiple slices are selected during a 2D 

and 3D volumetric acquisition, movement during these types of acquisition affects all the slices. During 

a sequential acquisition, movement of the patient only affects those slices that are acquired while the 

patient is moving. 

 

Type of acquisitions 

There are basically three ways of acquiring data: 

- sequential acquisition; 

- two-dimensional volumetric acquisition; 

- Three-dimensional volumetric. 

Both the first two acquisition types acquire data in separate slices; the difference between the two 

consists in the way the K space is filled. On the contrary, three-dimensional volumetric acquires data 

from an entire volume of tissue, rather than in separate slices. The advantage of the latter acquisition 

type is that many slices can be obtained (typically 28, 64 or 128) without slice gap (the slice are 

contiguous). The other main advantage of volumes is that, as data is collected from a slab, the slab can 

be manipulated to look at the anatomy within the volume in any plane and at any angle of obliquity. 



 

34 
 

The disadvantages of volume imaging are that, in general, the scan times associated with them are 

relatively long. For this reason, they are usually used in conjunction with faster pulse sequences. 

Moreover to obtain equal resolution in every plane and at every angle of obliquity, each voxel should 

be symmetrical (isotropy). That is to say, that the voxel should have equal dimensions in every plane. If 

this is not true, the volume has poorer resolution in the planes other than the one in which it was 

acquired. Volume imaging has many potential applications, but it is widely used for imaging of joints 

where anatomy is often confusing and not strictly in plane (Westbrook and Kaut, 1993).  
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Scapular and humeral anatomical coordinate systems (ACSs) identification represent a prerequisite for 

the assessment of the gleno-humeral displacements. Many different conventions exist in literature for 

defining both scapular and humeral ACS, including the currently standard proposed by the 

International Society of Biomechanics (ISB) (Wu et al., 2005). The latter definition, as other in 

literature, is based on the use of selected anatomical landmarks (ALs) (Pearl et al., 1992; van der Helm 

et al., 1997; Novotny et al., 2000; Veeger et al., 2000; Wu et al., 2005; Kedgley et al., 2010; Ludewig 

et al., 2010; Verstraeten et al., 2013), other definitions require the identification of anatomical regions 

(ARs) (Sahara et al., 2007; Amadi et al., 2008; Amadi et al., 2009) to be defined. In the present section 

we will focus on the different ACSs proposed in literature in order to highlight the advantages and 

disadvantages of each definition.  

4.1 Literature review 

ALs and ARs required to define the different ACSs (Fig. 4.1)  

HHC: Center of the humeral head 

GT: Greater tubercle 

LT: Lesser tubercle 

AN: Anatomical neck 

MEc: Medial epicondyle (central) 

LE: Lateral epicondyle 

TS: Trigonium Spinae scapula 

AA: Angulus Acromialis 

IA: Inferior Angle 

G: Glenoid 

CP: Tip of Coracoid Process 

LB: Lateral Border  

SS: Root of Scapula Spine 
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Figure 0: Humeral (a) and scapular (b) ALs and ARs. 

Humeral ACS definitions 

van der Helm et al. (1996) (Fig. 4.2) - The origin coincides with HHC. The Y axis is oriented as the 

line connecting HHC and E (midpoint of LE and MEc). The Z axis is directed as the line perpendicular 

to Y and the line connecting LE and ME, pointing backward. The X axis is the line perpendicular to Y 

and Z axes. 

 

Figure 4.2: Humeral ACS (van der Helm et al., 1996). 

(a) (b) 



 

37 
 

Road et al. (1998) - The isolation of the proximal portion of the humerus (Fig. 4.3) is required. The latter AR 

was obtained by performing a radial cut by means of a sphere centered in the humeral head center HHC and of 

fixed radius (slightly larger than the best fit spherical surface). The origin and the three axes coincide with the 

centroid and principal axes of the isolated proximal humerus respectively. 

 

Figure 4.3: Proximal humerus (Road et al., 1998). 

Novotny et al. (2000) (Fig. 4.4) - The origin coincides with HHC. The X axis is directed parallel to the 

proximal humeral shaft centerline. The Z axis is directed from the medial to lateral epicondyle and the 

Y axis was directed to result in a right-handed coordinate system. 

 

Figure 4.4: Humeral ACS (Novotny et al., 2000). 

Wu et al. (2005, standard ISB) (Fig. 4.5) - The origin coincides with HHC. The Y axis is the line 

connecting HHC to the midpoint of the lateral and medial epicondyles (LE, MEc) and pointing to 

HHC. The X axis is the line perpendicular to the plane formed by LE, ME, and HHC, pointing 

anteriorly and the Z axis is defined as the cross product between X and Y axes. 
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Figure 4.5: Humeral ACS (Wu et al., 2005). 

Sahara et al. (2007) (Fig. 4.6) - The origin coincides with the HHC. The Y axis is orthogonal to the 

anatomical neck plane pointing superiorly. The X axis is equal to the cross product between Y and the 

canal axis. The Z axis is defined as the cross-product between X and Y axes. 

 

Figure 4.6: Humeral ACS (Sahara et al., 2007). 

Amadi et al (2009) (Fig. 4.7) - The origin coincides with the HHC. The Y axis is oriented as the canal 

axis pointing superiorly. The canal axis coincides with the best fitting line to the center of the humeral 

shaft cross sections selected from 10 to 60 mm distal to the surgical neck. The X axis is equal to the 

cross-product between Y and the oriented line from HHC to GT. The Z axis is defined as the cross 

product between X and Y axes.  
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Figure 4.7: Humeral ACS (Amadi et al., 2009). 

Lee et al. (2010) (Fig. 4.8) - It is based on digitized points along the articular margin of the humeral 

head where the articular cartilage ends (Fig. 4.8).  The following parameters are required: 

ഥሬሬሬ⃗	݌ 	: is the average position of all the digitized humeral head articular margin points (݌	തതതതሬሬሬሬሬ⃗ = ଵ
௠
∑ ሬሬሬ⃗	݌ ௜௠
௜ୀଵ 		 

were m is the number of digitized points); 

݊	ሬሬሬ⃗ ௜: is the normal vector of the each triangle. It is computed by equation reported below; 

) ௜: is the ratio of the areaݏ ௜ܳ) of a triangle ∆(݌	ഥሬሬሬ⃗ ሬሬሬ⃗	݌, ௜ ሬሬሬ⃗	݌, ௜ାଵ) to the total area of all triangles (Q); 

݁௜: is the centroid of each triangle(			݁	ሬሬሬሬሬ⃗ ௜ = ഥሬሬሬ⃗	݌) + ሬሬሬ⃗	݌ ௜ + ሬሬሬ⃗	݌ ௜ାଵ)/3); 

ሬܱ⃗ ସ	: is the true geometric centroid of the elliptical humeral head articular border. It computed as the 

average values of all triangles constructed from the average position	(݌	ഥሬሬሬ⃗ ), the point	(݌	ሬሬሬ⃗ ௜), and (i + 1) the 

point	(݌	ሬሬሬ⃗ ௜ାଵ). Numerically ሬܱ⃗ ସ was defined as the average of the centroids of all triangles ( ሬܱ⃗ସ =

	∑ [݁	ሬሬ⃗ ௜ × ௜]௠ݏ
௜ୀଵ ሬሬሬ⃗	݌= ுு஼). 

݊	ሬሬሬ⃗ ௜ = ሬሬሬ⃗	݌) ௜ − ሬሬሬ⃗	݌ ுு஼) × ሬሬሬ⃗	݌)	 ௜ାଵ − ሬሬሬ⃗	݌ ுு஼)/(|	(݌	ሬሬሬ⃗ ௜ − ഥሬሬሬ⃗	݌ ሬሬሬ⃗	݌|| ௜ାଵ − ഥሬሬሬ⃗	݌ |). 

ሬ݊⃗ 	: is the normal vector of the articular margin plane. It is determined by averaging the normal 

directions of all triangles (	݊	തതതሬሬሬሬ⃗ = ଵ
௠
∑ ݊	ሬሬሬ⃗ ௜௠
௜ୀଵ  ). 

The origin coincides with ሬܱ⃗ ସ. Z axis is defined as the normal direction of the humeral head resection 

plane ( ሬ݊⃗ ). X axis is oriented as the vector connecting (Oሬሬ⃗ ସ)	and the superior point of the humeral head 

resection surface. Y axis is the axes resulting from the cross product of the Z and X axes. 
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Figure 4.8: Humeral ACS (Lee et al., 2010). 

Scapular ACS definitions 

Pearl et al. (1992) (Fig. 4.9) – Origin coincides with P. The Z axis is oriented as the line connecting P 

and TS, pointing to P. The X axis is directed as the line perpendicular to the plane formed by AI, TS 

and P, pointing forward. The Y axis is defined as the common line perpendicular to the X and the Z 

axes, pointing upward. 

 

Figure 4.9: Scapular ACS (Pearl et al., 1992). 
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van der Helm (1996) (Fig. 4.10)- The origin coincides with AC. The X axis is oriented as the line 

connecting AC and TS, pointing to AC. The Z axis is directed as the cross product of X axis and line 

connecting AI and AC pointing downward. The Y axis is defined as the common line perpendicular to 

the Z and the X axes, pointing upward. 

 

Figure 4.10: Scapular ACS (van der Helm et al., 1996). 

Road et al. (1998) - The origin and the three axes coincide with the centroid and principal axes of the 

isolated glenoid surface (Fig. 4.11) respectively. 

 

Figure 01: Glenoid surface obtained by means of an automatic process based on the computation of parameters related to the MRI images 
(Road et al., 1998). 

Novotny et al. (2000) (Fig. 4.12) - The Z axis is directed superiorly from the most inferior aspect of the 

glenoid to the biceps tendon insertion. The X axis is directed laterally along the line making the 

shortest distance from the Z axis to the center of a sphere fit to the glenoid surface, and the Y axis is 



 

42 
 

directed to result in a right-handed coordinate system. The origin coincides with the intersection of the 

X and Z axes. 

 

Figure 02: Scapular ACS (Novotny et al., 2000). 

Wu et al. (2005) (Fig. 4.13) - The Z axis is oriented as the line connecting AA and TS, pointing to AA. 

The X axis is directed as the line perpendicular to the plane formed by AI, AA, pointing forward. The 

Y axis is defined as the common line perpendicular to the X and the Z axes, pointing upward. 

 

Figure 03: Scapular ACS (Wu et al., 2005). 
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Sahara et al. (2007) (Fig 4.14) - The scapular origin coincides with K. The Z axis is oriented as the line 

orthogonal to the plane pointing to the right. The X axis direction is defined as the line orthogonal to 

the Z axis, passing through the closest point of the glenoid margin and pointing anteriorly. The Y axis 

is defined as the cross-product between Z and X axes. 

.  

Figure 04: Scapular ACS (Sahara et al., 2007). 

Amadi et al. (2008) (Fig. 4.15) - The origin is not specified. The Z axis is oriented as the line passing 

through the centre of the root of the scapular spine and pointing to the right, X axis is anteriorly 

directed and it is defined as the cross-product of Z axis and a line, superiorly directed, through the 

centre of the ridge of the scapular lateral border. The Y axis is defined as the cross-product between Z 

and X axes. 

 

Figure 4.15: Scapular ACS (Amadi et al., 2008). 
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Kedgley et al. (2010) (Fig. 4.16) - The origin coincides with AA. The Z axis is oriented as the line 

connecting TS and AA, pointing to AA. The Y axis direction is defined as the cross product between 

the oriented line from CP to AA and the Z axis. The X is defined as the cross-product between Y and Z 

axes.  

 

Figure 4.16: Scapular ACS (Kedgley et al., 2010). 

Ludewing et al (2010) (Fig. 4.17) - The origin is not specified. The Z axis is directed as the line 

perpendicular to the glenoid plane. The Y axis is directed superiorly toward the superior glenoid 

tubercle. The X axis is directed anteriorly perpendicular to the other two axes. 

 

Figure 4.17: Scapular ACS (Ludewing et al., 2010). 
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Lee et al. (2010) (Fig. 4.18) - the definition of the preliminary ACS is require: the pre-ACS is built on 

the supero-inferior (SI) axis defined by the intersection of the superior glenoid rim with the glenoid-

coracoid confluence (S, Fig. 4.18), and the intersection of the inferior glenoid rim with the infero-

lateral margin of the scapula (I, Fig. 4.18). Anterior and posterior ALs of the glenoid were defined as 

the anterior and posterior intersections (A and P in Fig. 4.18) of the bony glenoid rim with a 

perpendicular plane bisecting the S–I bony line. The bisecting point of the SI is the origin (ܱ′ሬሬሬ⃗ ଷ) of the 

preliminary glenoid coordinate system (pre-ACS, X’, Y’ and Z’). With	ܱ′ሬሬሬ⃗ ଷ, the anterior and posterior 

landmarks (A, P) and the superior landmark (S), the pre-ACS was determined by the right-hand rule-

based Cartesian coordinate system.  

Opg: the origin of the pre-GCS coincident with	ܱ′ሬሬሬ⃗ ଷ. 

Xpg: the vector parallel to ܲܣ	ሬሬሬሬሬሬ⃗  and passing Opg.  

Ypg: ܵܫ	ሬሬሬሬሬ⃗ .  

Zpg: the axis defined as the cross product of the Xpg and Ypg-axes.  

The ACS was determined by translating the origin of the pre-GCS (Opg) to the bottom of the glenoid 

surface. This bottom level of the glenoid surface was determined by numerically finding the point 

(݃⃗௛)which has the least distance from the origin of the pre-GCS among the points (݃⃗௜) digitized along 

the concave SI glenoid surface.  

The vertical depth of the glenoid ∆௧= หܱᇱሬሬሬሬ⃗ ଷ − ݃⃗௛ 	.		ሬ݇⃗ ଷห			) was expressed as the distance from the origin 

of the pre-ACS to the point (݃⃗௜) along the Z-direction of the pre-ACS where ( ሬ݇⃗ ଷ) is the unit vector 

along the Zpg. 

 

Figure 4.18: Scapular ACS (Lee et al., 2010). 
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Verstraeten et al. (2013) (Fig. 4.19) - The origin is defined as the center of the circle defined by the 

three selected glenoid points. The Z axis is oriented as the line orthogonal to the circle plane and 

pointing to the right. The Y axis direction is defined as the line orthogonal to the Z axis, passing 

through the inferior point of the glenoid margin and pointing superiorly. The X axis is defined as the 

cross-product between Y and Z axes. 

 

Figure 4.19: Scapular ACS (Verstraeten et al., 2013). 

The principal limitation of most of the ACSs in literature (Pearl et al. 1992; van der Helm et al., 1996; 

Novotny et al., 2000; Amadi et al., 2008; Kedgley et al., 2010) including the currently standard 

proposed by the ISB (Wu et al., 2005), is the need to have access to ALs sited both in the proximal and 

distal portion of the bone models. These ACS are not suitable to be used with high resolution models 

obtained from MR clinical images, because, due to their restricted FoV, this technique prevent the 

acquisition of the complete bone model. Moreover these definitions do not define a specific glenoid 

ACS that is crucial for assessing the humeral movement with respect to the glenoid (Lee et al., 2010). 

On the contrary the ACSs proposed by Rohad et al. (1998), Novotny et al. (2000), Sahara et al. (2007), 

and Verstraeten et al. (2012) in addition to being constructed on the glenoid, because the latter is 

always included in the FoV, they could be implemented also with 3D models obtained from MR 

clinical images. 
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However, the ACS proposed by Rohad et al. (1998) and based on principal axis to be consistent and 

yield accurate motion information, it is essential that the shapes of the surface of the bone determined 

at various joint positions are as similar as possible, may therefore depend on the 3D model. 

Novotny et al. (2000) as Verstraten et al. (2012) used a sphere to represent the glenoid, instead the 

glenoid appear like a pear-shaped (Iannotti et al., 1992). Consequently, due to the variability of the 

glenoid shape the axes direction may show an intersubjective variability. The main limitation of the 

scapular ACS proposed by Sahara et al. (2007) is the difficulty of implementation and the need for 

manual adjustments. 

An additional issue is represented by the use of information which may be morphologically variable 

between different samples as for Lee at al. (2010) which proposed a specimen-specific ACS definition 

and based on information not easily identifiable on 3D bone models obtained from magnetic resonance 

images. This is true also for the definition of the humeral coordinate system proposed by Sahara et al. 

(2007), which is based on the anatomical neck of the humerus. Some anatomical study had reported the 

intersubjective variability in the neck-shaft angle (125°-150°, Iannotti et al., 2007), which is the angle 

subtended by the central intramedullary axis of the humeral shaft and a line perpendicular to the base of 

the joint segment (humeral anatomical neck); accordingly the variability in the anatomical neck 

inclination influences the orientation of the coordinate system based on it. Moreover, the identification 

of the anatomical neck used in this proposal does not take in to account of the intersubjective 

variability of this AR. With regard to the scapular ACS, the problem related to the intersubjective 

variability has been overcome by Amadi et al. (2009), who have proposed the best body-fixed 

coordinate system based on ALs and ARs that are least susceptible to scapular morphometric 

variability. Nevertheless, this definition is based on the identification of anatomical regions which are 

not easy to identify from MRI, that are not readily accessible and that could not be included in the FoV. 

Among the different definitions proposed for the humeral ACS, the most robust method for defining an 

ACS is based on the use of the HHC and epicondylar axis (Amadi et al., 2009; Wu et al., 2005), as for 

the humeral ACS proposed in the ISB recommendation (Wu et al., 2005). Unfortunately, as previous 

highlighted it can be used only if the entire bone are included in the FoV of clinical bio-imaging 

techniques. The use of the proximal humerus to define a robust ACS has been proven by Amadi et al. 

(2009). This humeral ACS was defined to be most closely oriented as that ACS using the epicondylar 

and humeral canal and to be applied to a standard shoulder CT scan. The CT scan, however, has a 

larger FoV and a higher spatial resolution with respect to the MR scan, therefore, once again it cannot 

be used with 3D high resolution models obtained from MR clinical images.  
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To overcome the limitation associated to the ACS exiting in literature two different approaches have 

been proposed. 

4.2 Proposal for a novel humerus and scapula anatomical coordinate system definition 

4.2.1 Introduction 

The scapular and humeral ACS definitions proposed in the literature are based either on the 

identification of ALs (Pearl et al., 1992; van der Helm et al., 1997; Novotny et al., 2000; Veeger et al., 

2000; Wu et al., 2005; Kedgley et al., 2010; Ludewig et al., 2010; Verstraeten et al., 2013), or of ARs 

(Sahara et al., 2007; Amadi et al., 2008b; Amadi et al., 2009). Generally, the spatial locations of the 

abovementioned morphological parameters are identified by manual palpation or visual inspection of 

3D digital models of the bones obtained from biomedical images (Salvia et al., 2009). The size of the 

reconstructed portion of the bone and the resolution of the images used to reconstruct it determine the 

applicability of a specific ACS. 

Considering that technologies allowing for the highest spatial resolution are based on ionizing 

radiation, such as computer-tomography scanning (CT), dual fluoroscopy, it would be ideal to limit the 

bone portions to be exposed (Lee CH et al., 2008). A restricted FoV allows MR scans to be faster, to 

have a finer spatial resolution and a higher tolerance to motion artifacts (Smith et al., 2012). To this 

extent, it would be desirable to have ACSs readily applicable when limited scapula and humerus bone 

portions are included in the FoV. 

Moreover, to meet the requirements of intra- and inter-operator repeatability, the ACS definition should 

be based on ALs (or ARs), which are easy to identify, irrespective of the bone morphology acquisition 

tool used and least susceptible to the physiological morphometric variability (Amadi et al., 2008b). In 

addition, ACSs should be consistent with the anatomical cardinal directions to be clinically 

interpretable (Amadi et al., 2008b; Amadi et al., 2009; Ludewig et al., 2010).The primary aim of this 

study is to present ACS definitions for both scapula and humerus to be used when only their portions 

near the gleno-humeral joint fall in the FoV (Fig. 4.20) and fulfilling the abovementioned requirements. 

The sensitivity of the newly proposed ACS definitions to bone morphological variation was assessed 

along with a preliminary analysis of the inter- and intra - operator repeatability associated to the 

uncertainty in the ALs (and ARs) identification and ACS consistency with the anatomical cardinal 

directions. A comparison with alternative ACS definitions found in the literature, which do not require 

the entire scapula and humerus models, was also performed. 
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Figure 4.20: Bony scapular and humeral portions hypothesized to be available from MR images. The greater tubercle (GT), the lesser 

tubercle (LT), the anatomical neck (AN) and surgical neck (SN) for the right humerus are reported in (a); The acromial angle (AA), the 

root of scapular spine (TS) and tip of coracoid process (CP) are reported for the right scapula (b). 

4.2.2 Materials and methods 

Twenty healthy asymptomatic subjects (9 females, 31 ±8 y.o.) were enrolled for this study and signed 

an informed consent. The study was approved by the local Institutional Review Board. MR scans of the 

whole right humerus and scapula were obtained by using a 1.5 T MR scanner (Philips Intera Achieva 

version 1.7). Spin Echo imaging sequences were used (axial T1-W: TR 660 ms; TE 18 ms; flip angle 

90 deg; Contiguous Slice Thickness 4 mm, FoV 280 mm). Bone contours were identified using a 

semiautomatic segmentation procedure. 3D reconstructions of the entire scapular and humeral bones 

were obtained using the AMIRA image processing software (Visualization Sciences Group, v.5.4). 

In the following ACS definitions, right-handed ACSs are considered, anatomical planes are defined 

with respect to the standing subject in the anatomical position (Cappozzo et al., 1995; Wu et al., 2005). 

Proposal for the scapular and humeral ACS 

Scapular ACS - The glenoid margin, and consequently its surface, is manually isolated from the 

scapular model. The scapular origin (Os) coincides with the centroid (K) of the glenoid, calculated as 

the average of the coordinates of the vertices forming the triangular meshes. A plane (α) is then fitted to 

the glenoid margin points (Amadi et al., 2008a). The Zs axis is oriented as the line orthogonal to α 

pointing to the right in accordance with Amadi et al. (2008a). An ellipse is fitted to the projections on α 

of the glenoid margin points. The Xs and Ys axes are oriented as the minor and major axes of the 

ellipse, pointing anteriorly and upward, respectively (Fig. 4.21).  
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Figure 4.21: The novel scapular ACS definition. Glenoid margin is manually identified from the reconstructed glenoid model (a, b); the 

plane α is fitted to the selected glenoid points (c); an ellipse is fitted to the points of the glenoid margin projected on α. The ACS for a 

right scapula is also shown (d).  

Humeral ACS - The humeral ACS origin (Oh) coincides with the center of the best fitting sphere to the 

humeral head (Gamage and Lasenby, 2002). The Yh axis is oriented as the canal axis identified by the least 

square regression line connecting the centers of the humeral shaft cross section (C1: surgical neck; C2: at a 

distance of 10 mm from C1, C3 at a distance of 20 mm from C1) pointing upwards. The Xh axis is oriented 

as the line orthogonal to the Yh axis, passing to LT and pointing anteriorly. The Zh is equal to the cross-

product between the Xh and Yh axes (Fig. 4.22). 

 

Figure 4.22: The novel humeral ACS. A sphere is fitted to the spherical portion of the humeral head for the identification of the HHC; the 
centers of the humeral shaft cross-section (C1, C2, C3) are used to identify the canal axis; the lesser tubercle (LT) and the resultant ACS 
for a right humerus are also shown. 

ACSs selected for comparison 

The novels ACS definitions were compared to the definitions proposed by Sahara et al. (2007) and 

Amadi et al. (2009) for the humerus (Fig. 4.23), Sahara et al. (2007), Kedgley et al. (2010), Verstraeten 
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et al. (2013) for the scapula (Fig. 4.24). Both scapular and humeral ACS have been described in the 

paragraph 4.1.  

 
Figure 4.23: Humeral ACSs selected for comparison and reference humeral ACS (Wu et al., 2005) for an arbitrary selected humerus. The 

Yh axis of the ACS of Amadi et al., 2009 is not visible since it coincides with the Yh axis of the novel proposal. 

 
Figure 4.24: Scapular ACSs selected for comparison and reference scapular ACS (Amadi et al., 2008b) for an arbitrary selected right 

scapula. For sake of clarity, all the origins were made to coincide with the origin adopted in the novel proposal. 

As regard the scapular ACS proposed by Sahara et al. (2007), since the instructions provided for the 

identification of the flat central region of the glenoid were ambiguous (“… defined as 3D contiguous 

meshes including the central mesh and the meshes under 25-30° angles from the central one”), the flat 

region was identified as follows. An inverted right circular cone with the axis coinciding to the normal 

to α (see proposal for the scapular and humeral ACS-Scapular ACS), with an aperture equals to 150° and 

with the apex coinciding with the closest point of the glenoid surface from the centroid K of the 

glenoid, is determined. The points of the glenoid surface not included in the cone were selected as the 

“flat” area of the glenoid. A plane is then fitted to the points belonging to the flat area (Fig. 4.25).  
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Figure 4.25: The glenoid surface, the centroid K of the glenoid and the closest point Q of the glenoid surface from the centroid K are 
shown (a). A two-dimensional schematic representation of the glenoid surface as seen in a frontal section (plane containing the line r) is 
depicted in (b). An inverted right circular cone with the axis coinciding to the normal to the best fitting plane α to the glenoid margin 
points, with an aperture equals to 150° and with the apex coinciding with the Q, is determined. The points of the glenoid surface not 
included in the cone were selected as the flat area of the glenoid. A plane α is then fitted to the points belonging to the flat area. 

For both the humeral ACSs proposed by Sahara et al. (2007) and Amadi et al. (2009) the procedure to 

identify the canal axis was the same used for the novel ACS proposed in this study. This adjustment 

was performed because the small size of the reconstructed portion of the bone derived by MR clinical 

images. 

Sensitivity to bone morphological variability 

To assess the sensitivity of the various ACS definitions to the bone morphometric variability, the 

reconstructed 3D bone models need to be appropriately superimposed. Amadi and colleagues carried 

out an extensive analysis aimed at the identification of the axes the least sensitive to scapular 

morphological variations and used those axes to define an ACS which minimizes specimen variability 

(Amadi et al., 2008b). For the humerus, the most robust method for defining an ACS is based on the 

use of the HHC and epicondylar axis (Amadi et al., 2009; Wu et al., 2005). Based on the 

aforementioned considerations, the reconstructed bone models were superimposed by aligning the 

scapulae using the ACS proposed by Amadi et al. (2008b) and the humeri using the ACS definition 

proposed in Wu et al. (2005) (both the scapular and humeral ACS proposed by Amadi et al., 2008b and 

Wu et al., 2006 respectively, have been described in the paragraph 4.1). The ACSs proposed by Amadi 

et al. (2008b) and Wu et al. (2005) were used as reference for the assessment of bone morphological 

variability but since they require the scapular lateral border and the complete humeral bone models to 

be implemented, they were not included in the comparative evaluation. From the aligned scapulae and 

humeri, for each selected ACS definition, the X, Y and Z mean axes were computed. The angular 
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deviations i
zyx ,, , between the ACS axes of the i-th (i = 1,.., 20) scapular and humeral bones and the 

corresponding mean axes, were calculated. The overall ACS sensitivity to the morphological bone 

variations was evaluated for each ACS definition and direction by calculating the mean absolute 

angular deviation values 



20

1
,,,, 20

1
i

i
zyxzyxMAD   and the corresponding standard deviation values. 

Significant differences between the 
zyxMAD ,,  values found in correspondence of the proposed scapular 

and humeral ACS definitions and those selected for evaluation were analyzed by performing pairwise 

comparisons using the Wilcoxon rank-sum test for non-normal sample distributions (three and two 

pairwise comparisons for the scapular and humeral ACSs, respectively). The level of significance was 

determined using the Holm-Bonferroni method for adjusted p-values (alpha = 0.05). Statistical analyses 

were performed using IBM SPSS statistics, version 21 (SPSS Inc., Chicago, IL, USA).  

Intra- and inter-operator repeatability  

To preliminarily investigate the sensitivity of the various ACS definitions to the uncertainty associated 

to the identification of the ALs and ARs location, for an arbitrary selected scapula and humerus model, 

the calibration procedure was performed seven times by the same operator in seven separate days 

(intra-operator repeatability) and one time by seven different operators (inter-operator repeatability). 

All operators had experience in ALs (ARs) identification and the visual inspection was performed 

following the guidelines given to examiners (Van Sint Jan, 2005; Van Sint Jan and Della Croce, 2005). 

For each calibration, the corresponding scapular and humeral ACSs were computed and for each ACS 

definition, the 
zyxMAD ,,   values from the corresponding mean axes were calculated along with the 

corresponding standard deviation values. Since the assessment of the inter- and intra-rater reliability 

with statistical power would require the design of a specific study (Walter et al., 1998), for this 

preliminary evaluation only descriptive statistics are reported.  

Scapular and humeral ACSs anatomical cardinal directions consistency.  

The aim of this specific analysis was to assess the angular offsets between the ACS definitions 

analyzed and the anatomical cardinal directions and therefore their clinical interpretability. For the 

scapula, the angular deviations were computed with respect the ACS proposed by Amadi and 

colleagues since the latter ACS definition was developed with the aim of minimizing the axes deviation 

from the plane of the scapular blade and it is closely related to clinical coordinate systems (Amadi et 

al., 2008b; Ludewig et al., 2010). For the humerus, we referred to the ACS definition proposed in Wu 
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et al. (2005) since it is based on the epicondylar and the longitudinal axes which define the standard 

anatomical planes. For each scapula, the angles i
zyx ,,  between the scapular axes identified in 

correspondence of the various definitions selected for comparison and the corresponding axes defined 

by Amadi et al. (2008b) were computed and the 
zyxMAD ,, values and the corresponding standard 

deviation values estimated. Similarly, the same calculations were repeated for each humerus with 

respect to the ACS definition described in Wu et al. (2005). The same statistical analysis described 

above (in the section sensitivity to bone morphological variability) was used to analyze statistical 

differences among the various ACS definitions.  

4.2.3 Results 

Data relative to the sensitivity of the ACS definitions to the bone morphological variability are reported 

in Table 4.1. For the scapular ACS, our proposal showed for all three axes 
zyxMAD ,,  values very similar 

to those found for Kedgley et al. (2010). Despite the differences observed in the 
zyxMAD ,,  values 

among the compared methods, the only statistically significant difference was observed for the Yh 

between our proposal and the ACS proposed by Sahara et al. (2007) and Verstraeten et al. (2013) 

(adjusted p equals to 0.003 and 0.006, respectively). For the humeral ACS, the 
zyxMAD ,, values found 

for our ACS were similar to those found for the ACS presented in Amadi et al. (2009). Since the 

definition of Yh axis is the same in Amadi et al. (2009) and in our ACS, the corresponding 
yMAD

values were identical. ACS variability for the ACS presented in Sahara et al. (2007) was the largest for 

all three axes and statistically significant differences from our ACS were found for both Xh and Yh 

(adjusted p equals to 0.038 and 0.01, respectively). 

 Scapula Humerus 
ACS definition Xs (deg) Ys (deg) Zs (deg) Xh (deg) Yh (deg) Zh (deg) 

Sahara et al. (2007) 13.0 (6.7) 13.9* (7.0) 10.0 (4.3) 13.6* (9.7) 9.5 (6.8) 10.5 (6.5 
Amadi et al. (2009) - - - 7.2 (4.0) 4.0 (1.8) 7.4 (3.8) 

Kedgley et al. (2010) 8.3 (3.6) 7.8 (3.6) 8.1 (5.1) - - - 
Verstraeten et al. (2013) 11.2 (7.0) 14.2* (5.8) 9.5 (5.2) - - - 

Novel proposal 8.0 (3.3) 8.3 (3.3) 8.3 (3.3) 7.1 (3.4) 4.0 (1.8) 7.1 (3.4) 

Table 4.1: Mean absolute angular deviation values 
zyxMAD ,,  (and standard deviation values) for each ACS definition and axis 

direction computed over 20 scapular and humerus bone models. The symbol (*) indicates a significant difference with respect to the novel 
proposal. 
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Data relative to the sensitivity of ACSs definitions analyzed to the uncertainty associated to the ALs 

and ARs identification are reported in Table 4.2 and Table 4.3. 

 Scapula Humerus 
ACS definition Xs (deg) Ys (deg) Zs (deg) Xh (deg) Yh (deg) Zh (deg) 

Sahara et al. (2007) 2.7 (2.4) 2.8 (2.4) 0.7 (0.3) 4.2 (2.9) 2.9 (2.0) 3.1 (2.1) 
Amadi et al. (2009) - - - 3.6 (1.7) 0.3 (0.3) 3.6 (1.7) 

Kedgley et al. (2010) 0.5 (0.3) 0.4 (0.3) 0.4 (0.3) - - - 
Verstraeten et al. (2013) 3.7 (1.9) 3.7 (1.9) 0.9 (0.9) - - - 

Novel proposal 0.3 (0.1) 0.3 (0.1) 0.2 (0.1) 0.4 (0.3) 0.3 (0.3) 0.4 (0.3) 

Table 4.2: Intra-operator repeatability for the ACS definitions, associated to the identification of the ALs and ARs location, in terms of 

mean absolute angular deviation values 
zyxMAD ,,  (and standard deviation values) for each ACS definition and axis direction. 

 Scapula Humerus 
ACS definition Xs (deg) Ys (deg) Zs (deg) Xh (deg) Yh (deg) Zh (deg) 

Sahara et al. (2007) 3.2 (2.6) 3.3 (2.6) 0.6 (0.6) 7.8 (6.6) 5.8 (4.4) 5.4(4.7) 
Amadi et al. (2009) - - - 5.2 (2.8) 0.8 (0.3) 5.2 (2.8) 

Kedgley et al. (2010) 1.3 (1.0) 1.1 (0,5) 1.2 (1.2) - - - 
Verstraeten et al. (2013) 5.8 (2.8) 6.0 (2.9) 1.4 (1.1) - - - 

Novel proposal 1.5 (0.6) 1.4 (0.7) 0.7 (0.3) 3.3 (0.8) 0.8 (0.3) 3.3 (0.8) 

Table 4.3: Inter-operator repeatability for the ACS definitions, associated to the identification of the ALs and ARs location, in terms of 

mean absolute angular deviation values 
zyxMAD ,,  (and standard deviation values) for each ACS definition and axis direction. 

The scapular ACS proposed in the present study showed an intra- and inter-operator precision ranging 

between 0.3 deg to 1.5 deg for all axes. A comparable repeatability was observed for the definition 

proposed in Kedgley et al. (2010) which varied, for all axes, between 0.4 deg to 1.3 deg. The highest 

intra and inter-operator variability was found for Xs and Ys axes of the scapular definition proposed by 

Verstraeten et al. (2013). For the humerus, our ACS showed the highest intra- and inter-operator 

precision with 
zyxMAD ,,  values between 0.3 deg and 3.3 deg for all axes. The humerus ACS proposed 

in Amadi et al. (2009) appeared to be characterized by a high repeatability in the identification of the 

humerus longitudinal axis Yh but not for the Xh and Zh ( 
zxMAD , values equal to 3.6 deg and 5.2 deg 

for the intra and inter-operator repeatability, respectively). The 
zyxMAD ,,  values for the humerus ACS 

described in Sahara et al. (2007) varied between 2.9 deg to 4.2 deg and between 5.4 deg to 7.8 deg for 

the intra- and inter-operator repeatability, respectively. Results relative to the scapular and humeral 

ACS consistency with the anatomical cardinal directions are reported in Table 4.4. The 
zyxMAD ,, values 

for the scapular ACS proposed in this study were significantly smaller than those reported in Sahara et 
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al. (2007) and in Verstraeten, et al. (2013) for the Ys axis (adjusted p equals to 0.001 and 0.032, 

respectively), and smaller than those in Kedgley et al. (2010) and Verstraeten, et al. (2013) for the Zs 

axis (adjusted p equals to 0.002 and 0.01, respectively). The 
zyxMAD ,, values for the humerus were 

similar to those found for Amadi et al. (2009) and significantly smaller than Sahara et al. (2007) for Ys 

and Zs axes (adjusted p value equals to 0.00). 

 Scapula Humerus 
ACS definition Xs (deg) Ys (deg) Zs (deg) Xh (deg) Yh (deg) Zh (deg) 

Sahara et al. (2007) 16.7 (9.2) 21.6* (9.2) 15.2 (7.1) 15.4 (13.6) 46.5* (2.1) 49.5*(5.4) 
Amadi et al. (2009) - - - 8.1 (4.0) 6.1 (3.0) 8.8 (3.9) 

Kedgley et al. (2010) 14.7 (6.9) 12.9 (6.3) 17.7* (8.7) - - - 
Verstraeten et al. (2013) 12.7 (8.0) 25.9* (9.8) 22.8* (9.4) - - - 

Novel proposal 11.1 (5.5) 15.0 (7.0) 13.9 (5.9) 8.2 (4.5) 6.1 (3.0) 8.6 (4.6) 

Table 4.4: Mean absolute angular deviation values 
zyxMAD ,,  (and standard deviation values) for both scapular and humeral ACSs 

definitions with respect the corresponding axes defined by Amadi et al. (2008b) and Wu et al. (2005) respectively. The symbol (*) 
indicates a significant difference with respect to the novel proposal. 

4.2.4 Discussion 

The use of bio-imaging techniques represents a powerful tool for high resolution joint biomechanical 

analysis (Esfandiarpour et al., 2009). 3D models of the bone surface can be derived from the 2D 

segmented images, acquired using either CT or MR scans, employing different image processing 

software commercially available. For a given 3D bone model, the level of repeatability associated to 

the ACS identification is determined by the intrinsic uncertainty characterizing the AL definitions 

(Della Croce et al., 1999) and the sensitivity of the ACS construction rules to the ALs location errors 

(Della Croce et al., 2003). As extensively documented in the literature, the precision with which the 

various ALs can be identified depends on the morphological features of the bone area within the AL is 

located (Salvia et al., 2009; Donati et al., 2008; Della Croce et al., 1999; Van Sint Jan, 2007). The level 

of detail with which the bone surface can be reconstructed is determined by the spatial and contrast 

resolution associated to the bio-imaging technique employed and it is likely to influence the precision 

with which ALs and ARs can be identified. In general, CT scans allow for a more distinct segmentation 

of the contours of the bones with respect to MR scans and therefore for a higher resolution of the bone 

surface description (Lee YS et al., 2008). 
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Figure 4.26: Example of right scapula and humerus models reconstructed from MR (a) and CT images (b). The bones reported in the 

picture belong to different subjects. 

Therefore, the intra- and inter-operator repeatability obtained using scapular and humeral bone models 

derived from MR images is expected to be worse than that obtained from CT images (Amadi et 

al.,2008b) (Fig. 4.26). Furthermore, the MRI acquisition parameters, such as the slice thickness, 

employed in the study, were similar to those used in standard clinical MR images of the shoulder joint 

(Lee and Lang, 2000). 

In the present study, we focused on the ACS definitions proposed in the literature for the humerus and 

scapula based on the identification of ALs and ARs located in the proximity of the GHJ and which are 

generally included even in images with a small FoV. Overall, our ACS scapular definition proposal and 

that presented in Kedgley et al. (2010) were found to be the least sensitive to the morphometric 

variability and, from a preliminary investigation, they were characterized by a high intra- and inter-

operator repeatability. The strength points of the scapular ACS proposed by Kedgley et al. (2010) are 

the simple implementation and its compliance with the ISB standard (Kedgley et al., 2010). On the 

other hand, while the scapular ACS proposed in the present study is based on the glenoid, which is 

always included in the scan FoV and clearly visible, sometimes the most superior aspects of the 

scapula, required for the ACS definition of Kedgley et al. (2010), such as the root of the scapular spine 

or the tip of the coracoids process, are poorly visible and they are not always guaranteed to appear in 

standard clinical MR scans. 

With regards to the humerus, the sensitivity to morphological variability between our definition and the 

ACS proposed by Amadi et al. (2009) was found to be very similar and smaller than Sahara et al. (2007). It 

is key to acknowledge that in the work of Amadi et al. (2009), conducted on 21 CT scans of humeri, the 

HHC-LT axis was taken into consideration for comparative purposes but then discarded in favor of an axis 

passing through the GT since the HHC-GT axis was nearly in the same direction of the elbow epicondylar 

axis and presented a slightly lower variability. The choice to include LT in our definition of the humeral 
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ACS, instead of GT as proposed by Amadi et al. (2009) did not increase either the morphological variability 

or the anatomy consistency and it was justified by the simpler identification of LT with respect to GT when 

the bone model is reconstructed from MR images. In fact, LT is smaller and more prominent than GT 

(Botte, 2002). This may explain the lower intra-and inter-operator repeatability observed for the humeral 

ACS proposed by Amadi et al. (2009). The largest dispersion of the humeral ACS proposed in Sahara et al. 

(2007) is possibly due to the morphological variability of the anatomical neck plane (neck-shaft angle 

between 125 deg and 150 deg) (Iannotti et al., 2007), which would affect the axes direction. For the scapula, 

substantial differences in the axes directions were observed between the ACS definitions analyzed and that 

proposed by Amadi et al. (2008b). This implies that attention should be paid when comparing the scapular 

motion as derived by different ACS definitions (Ludewig et al., 2010; Xu et al., 2012). The ACS proposed 

in the present study for the humerus showed angular deviation from the anatomical cardinal directions 

smaller than 8.6 deg for all three axes. Differences in the axes direction among alternative ACS definitions 

can lead to significantly different joint kinematics (Kedgley et al., 2010), unless appropriate transformations 

are applied (Xu et al., 2012). 

An evaluation of the clinically significant differences associated to the adoption of different ACS definition 

would require an analysis of the joint kinematic outcomes. However, the latter evaluation was beyond the 

scope of the present study and it advocates for further research. Another limitation is in regards to the 

methodology employed for the assessment of the intra- and inter-operator ACS repeatability, a conclusive 

assessment would have required the design of a specific reliability study by defining the optimal number of 

observations (operators) and number of subjects (bone models) according to a preliminary statistical power 

calculation. In the present study, we proposed ACS definitions for the scapula and humerus based on the 

extraction of ALs and ARs easy to identify and which can be applied when a limited portion of the gleno-

humeral joint is available as it may occur in standard shoulder clinical exams. However, while the use of 

contours or surfaces for the creation of ACSs allow exploiting redundant information and circumventing the 

errors inherent in the identification of single fiducial points, this approach can be more time-consuming for 

the operator. 

4.3 An alternative method for the anatomical coordinate system definition on incomplete 3D 

bone model: an application to the humerus 

4.3.1 Introduction 

Standard MRI is a powerful tool in those clinical applications where the joint motion can be analyzed 

in quasi-static conditions (F. Esfandiarpour et al., 2009) and small displacements need to be detected. 
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However, due to its limited field of view, often, only portions of the 3D model of the analyzed bones 

can be reconstructed, while complete bone models are needed to use ISB recommendations. 

This problem could be overcome by obtaining the missing ALs by matching the MRI-based portion of 

the subject specific 3D bone model (SBP), to a template of a complete bone model (TBC) on which the 

relevant ALs have been previously identified. Established algorithms exist for surface matching, 

popular ones being based on the Iterative Closest Point (ICP) algorithm (Besl et al., 1992) for which an 

initial guess of the transformation between the bone meshes is required. The reliability of the above 

mentioned registration exercise would depend on the size of SBP and the similarity level between SBP 

and TBC morphologies. In this preliminary study, the feasibility and the assessment of the level of 

accuracy and repeatability of the procedure for the ALs estimate when applied to the proximal portion 

of the human humerus, was evaluated. To this purpose, two experimental scenarios which can be 

encountered in the clinical practice were simulated. First, the ALs estimate procedure was tested to 

different SBPs characterized by different extents (expressed as percentage of the humerus length) using 

as TBC the bone applied to SBP and TBC belonging to different subjects. 

4.3.2 Materials and methods 

Data sets 

Three left humeri were scanned and the 3D corresponding mesh models reconstructed (TBC1, 2, 3). 

From each TBC, three SBP were generated by isolating different proximal portions identified as 

percentage of the humerus length (14%, 16%, 20%) (14%, 16%, 20% 1, 2, 3 SBP). These values were 

chosen to simulate different sizes of the MRI acquisition volume. On each TBC, the following ALs 

were identified by an expert: lateral and medial epicondyle (LE, ME), greater and lesser tubercle (GT, 

LT) and the geometrical center of the humerus head (HHC). HHC was identified by fitting a sphere to 

the humeral head.  

Procedure for the estimation of the ALs on the SBP 

To estimate the position vectors of both LE and ME, with respect to the SBP point set, the next steps 

are followed: 

1) Registration of first approximation - Three anatomical landmarks GT, LT, and HHC were manually 

identified by an operator on the SBP (Fig. 4.27a). Using the three pairs of corresponding points, TBC 

and SBP were uniformly scaled, registered and expressed in a common reference frame. 
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2) TBC iso-shaping - A TBC iso-shape was automatically created by isolating a portion from the whole 

TBC using a separation plane coinciding with the most distal slice plane of the SBP (Fig. 4.27b). 

3) Final registration and LE and ME position estimation - ICP algorithm was employed to refine the 

registration between SBP and the iso-shaped TBC portion. At this stage, the position vectors of both 

LE and ME, identified on the TBC, were expressed in the same system of reference of the SBP point 

set (Fig.4.27) 

 

Figure 4.27: Registration procedure. TBC (gray) to SPB (red) registration of first approximation (a). TBC iso-shaping (b). Final 
registration (c).  

Application 1: SBP and TBC of the same subject 

Each 14%, 16%, 20% 1, 2, 3 SBP was matched to the corresponding TBC (Table 4.5). For SPB116%, the 

ALs estimate procedure was performed three times by the same operator to verify the method sensitivity to the 

registration of first approximation. 

Application 2: SBP and TBC of different subjects 

Each 14%, 16%, 20% 1, 2, 3 SBP was matched with the two TBC belonging to different subjects 

(Table 4.5). For SPB2 16%, the ALs estimate procedure was repeated three times by the same operator, 

using as template TBC1. 

Data analysis  

Since the SBPs were generated from the corresponding TBC, the true positions of both LE and ME for 

each SBP were known and used as ground truth for evaluating the magnitude of the errors associated to 

the ALs estimation procedure. Humerus ACSs were defined from both the estimated and the true LE 

and ME positions and their relative orientation (α, β, γ) was computed using the Euler angles 

representation suggested by Grood and Suntay (1983) (Grood et al., 1983). 
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 TBC1 TBC2 TBC3 
SPB1

14% X X X 
SPB1

16% xxx X X 
SPB1

20% X X X 
SPB2

14% X X X 
SPB2

16% xxx X X 
SPB2

20% X X X 
SPB3

14% X X X 
SPB3

16% X X X 
SPB3

20% X X X 
Table 4.5: Experimental scenarios. Different combinations of SBP and TBC tested. In light gray and dark gray are reported Application 1 
and Application 2, respectively. The symbol xxx is referred to the combination which was tested three times. 

4.3.3 Results 

When SBP and TBC belonged to the same subject, the errors associated to the ACSs definition were 

negligible for all different SBP extents analyzed (14%, 16%, 20%) and were lower than 0.1 deg for all 

angles (α, β, γ). Errors on the ACS identification, due to variability with which GT, LT, HHC were 

manually identified during the registration of first approximation, ranged, over the three repetitions, 

between 0.1-0.4 deg, 0.0-0.1 deg and 0.0-0.2 deg for α, β and γ, respectively. On the contrary, when the 

TBC and the SBP belonged to different subjects, the errors in the ACS definition increased for all 

angular components and ranged, over the different TBC-SBP combinations (Table 4.5), from 0.2-1.9 

deg for α, 2.7-19.0 deg for β, 0.3-4.3 deg for γ. By estimating the ALs for different registrations of first 

approximation (SPB2 16%-TBC1), ACSs estimation errors varied, over the three repetitions, from 0.5-

0.9 deg for α, 13.5-16.3 deg for β, 1.1- 1.8 deg for γ. 

4.3.4 Conclusion 

A general method for the estimate of the position of missing ALs on incomplete 3D bone model was presented. 

The methodology was applied and preliminarily tested on 3D bone models relative to the proximal 

portion of the human humerus. Preliminary results have shown that this method can be successfully 

employed when the portion of the 3D model of the bone, SBP, and the template, TBC, refer to the same 

subject. Under this condition, even with a limited portion of the SBP of the humerus (14% of the 

humerus length) it is possible to accurately estimate the position of the missing ALs. Moreover, the 

manual identification of the ALs, necessary for the registration of first approximation, and the TBC iso-

shaping procedure did not appear to be critical. On the contrary, the performance of the method was 

unsatisfying when tested on SBPs and TBCs of different subjects. In this case, errors associated to the 
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ACS identification were up to 2 deg, 19 deg and 4 deg for α, β and γ, respectively. The large variability 

observed for the tested SBP-TBC combinations confirmed that the accuracy of the method is heavily 

affected by the degree of similarity between the morphology of the SBP and that of the template 

selected for the matching. The largest errors found for β can be explained by the high level of 

symmetry of the proximal portion about the humerus long axis and the variability characterizing the 

angle of humeral torsion (Cowgill et al., 2007). The validity of present study is limited by the low 

number of samples analyzed. However, our preliminary results may suggest the critical role played by 

morphological variability. This issue might be faced using appropriate statistical models (Heimann et 

al., 2009) or by selecting from large databases the template most morphologically similar to the portion 

of the 3D model of the bone. The applicability and the evaluation of this approach to different type of 

bones, such as the scapula, calls for further and specific analysis. 

 



 

 
 

CHAPTER 5  

MAGNETIC RESONANCE IMAGING BASED METHODOLOGY FOR 

ESTIMATION OF GLENO-HUMERAL JOINT TRANSLATIONS 
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(This chapter was written on the basis of the article “In vivo gleno-humeral translation under external 

loading in an open-MRI setup” Cereatti A., Calderone M., Buckland M.D., Buettnerb A., Della Croce 

U., Rosso C. Journal of Biomechanics, submitted). 

5.1 Introduction 

The in vivo assessment of the GHJ instability is crucial in orthopedic research since it is instrumental in 

understanding and thus preventing primary and repeated shoulder dislocations (Mallon and Speer, 

1995). The evaluation of the GHJ laxity requires the ability of accurately measuring the linear 

displacement of the HHC with respect to the glenoid resulting from shoulder movements and/or from 

the applications of external forces. In vivo experiments for the assessment of shoulder laxity under the 

application of anterior forces have been proposed in the literature (Sauers et al., 2001; McQuade and 

Murthi, 2004). However, while the use of skin mounted sensors may be acceptable for quantifying the 

relative changes in translation, it cannot provide an accurate description of the HHC position with 

respect to the glenoid. In fact, the deformation of the soft tissues surrounding the scapula and humerus 

bones hampers reaching the level of accuracy required for the analysis of the small displacements 

involved (Anglin et al., 2000; Hill et al., 2007; Veeger and van der Helm, 2007). An alternative 

approach is offered by the use of technologies based on ionizing radiation such as CT (Baeyens et al., 

2001), biplanar X-rays (Lagacé et al., 2012), fluoroscopy (San Juan and Karduna, 2010) or a 

combination of dual-plane fluoroscopy and 3D bone models derived from CT or MRI (Bey et al., 2006; 

Nishinaka et al., 2008; Massimini et al., 2012). Major limitations of such techniques include the image 

geometric distortion and invasiveness due to the radiation exposure. A further alternative, which could 

provide an acceptable level of accuracy and that is innocuous for patients, is the use of MRI (von 

Eisenhart-Rothe et al., 2010). GHJ translations have been investigated both in healthy subjects (Rohad 

et al., 1998; Graichen et al., 2000; Sahara et al., 2007) and patients (von Eisenhart-Rothe et al., 2002; 

Chhadia et al., 2010) using MRI. However, none of the latter in vivo studies analyzed the GHJ 

translations under the action of selected external forces. Conversely, extensive analyses of the 

biomechanical role of soft tissues and articular surfaces as joint constraints under the application of 

selected external forces has been conducted on cadavers (Alberta et al., 2006; Marquardt et al., 2006; 

Su et al, 2009). However, the translation of the in vitro results to the in vivo condition should be 

approached with caution due to the lack of tone of the mono and bi-articular muscles involved. The 

primary aim of this study was thus to develop a MRI based methodology for an accurate in vivo 
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evaluation of the GHJ translation under a loaded condition. The secondary aim was to gather normative 

data on healthy subjects to use for further comparison on patients population. 

5.2 Materials and methods 

5.2.1 Subjects selection 

Thirteen shoulders of ten healthy subjects (5 females; age 28.5 ± 3.2 years [mean ± standard deviation, 

SD]; height 1.76 ± 0.9 m; weight 68.3 ± 8.4 kg) with no previous shoulder injury and no congenital 

joint laxity were analyzed. The study was approved by the local Institutional Review Board of Basel 

and an informed consent was obtained from all subjects prior to enrollment. 

5.2.2  Experimental set-up 

A horizontal open-MR scanner (Philips Panorama HFO, 1 Tesla, Fig. 5.1) and a custom-built device 

(Fig. 5.2, Fig. 5.3) for the shoulder loading were used.  

 
Figure 5.1: Philips Panorama HFO, 1 Tesla. 

The device is composed by a wooden goniometer (Fig. 5.2a) to fix the trunk of the subject and which 

allow to firmly positioning the forearm of the subject at different degree of abduction by means of a 

Velcro strap, a carbon lever used to transmit the force to the arm and a load (Fig. 5.2b) which define 

the magnitude of the force applied.  
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Figure 5.2: Custom-built device for shoulder loading. Wooden goniometer (a); lever and weight (b); Velcro strap to attach the lever to the 
arm (c). 

The intensity of the external force was fixed at 20 N plus the weight of the arm (2.55% and 2.71% of 

the body mass (Kg) for female and male respectively) (de Leva et al., 1996). The force was aligned to 

the gravity and anteriorly directed. The lever was attached to the proximal portion of the humerus 

through a Velcro strap (Fig. 5.2c). Scans were performed using 3D T2-W Spin Echo imaging 

sequences (TR 1.4 s; TE 50 ms; flip angle 90 deg; interslice gap 1.5 mm, slice thickness 3 mm, FoV 

180 mm).  

 
Figure 5.3: Detail of the experimental set-up employed to apply the anterior force to the subject humerus in the MRI scanner. 

5.2.3 Experimental protocol 

Acquisition  

The following acquisitions were collected while the subject was asked to relax as much as possible: 

1) 15 deg of arm abduction without external load (15-w/o, Fig. 5.4a); 

2) 15 deg of arm abduction with the external load (15-w, Fig. 5.4b); 

3)  90 deg of arm abduction without external load (90-w/o, Fig. 5.4c); 

4) 90 deg of arm abduction with the external load (90-w, Fig. 5.4d). 

(a) (b) (c) 
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Recordings were made with the subject in the supine position between the two gantries of the MRI 

system with the hand of the tested arm facing up representing 90 deg of external rotation. The thoraco-

humeral angle was adjusted by using the wooden goniometer. The acquisition time for each scan was 

approximately 12 minutes. 

 

 

 

 

Estimation of GHJ displacements 

From each MR acquisition, 3D scapula and humerus models were obtained through a semiautomatic 

segmentation (Fig. 5.5) performed by a single skilled operator using the software AMIRA (v.5, Visage 

Imaging Inc., San Diego, CA, USA). The scapula and humerus anatomical ACSs were defined 

according to the definitions proposed in Calderone et al. (2013).  

 
Figure 5.5: Image segmentation (a) and 3D scapula and humerus models reconstructed (b). 

Following the latter guidelines, the humeral ACS origin coincides with the HHC and it is determined as 

the center of the best fitting sphere to the spherical portion of the humeral head (Veeger, 2000). For 

each shoulder, four distinct pairs of humerus and scapula models of the same bone were obtained for 

the acquisitions (15-w/o, 90-w/o, 15-w, and 90-w). To minimize repeatability errors associated with the 

ACSs identification procedure, these were defined by the same operator on the humerus and scapula 

Figure 5.4: Acquisition: 15 deg of arm abduction without external load (a); 15 deg of arm abduction with the external load (b); 90 deg 
of arm abduction without external load (c); 90 deg of arm abduction with the external load (d). 

(a) (b) 
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models reconstructed in correspondence of an arbitrary acquisition (15-w/o) referred to as bone 

templates (Fig. 5.6). The latter templates, carrying the ACSs, were then optimally registered to the 

remaining scapula and humerus models of the same shoulder by means of the iterative closest point 

technique (Besl and McKay, 1992) and the ACSs transferred to them (Fig. 5.6). For each acquisition, 

the positions of the HHC with respect to the relevant scapula ACS were estimated. The GHJ 

translational components were computed as the HHC displacements in the following conditions: (1) 

between 15-w/o and 15-w, (2) between 90-w/o and 90-w; (3) between 15-w/o and 90-w/o. From the 

anterior-posterior (A-P), the superior-inferior (S-I) and the medio-lateral (M-L) components, both 3D 

and 2D displacement (A-P, S-I plane) were computed.  

 
Figure 5.6: Registration of the humerus and scapula models by means of the iterative closest point technique and ACSs transfer. 

5.2.4 Repeatability assessment 

To assess the level of precision associated with the GHJ translation estimates, the MR images, relative 

to two arbitrary selected shoulders (1 right male and 1 left female) were segmented and processed by 

the same operator four times in four separate days. Repeated estimates of the GHJ translations for the 

different conditions (15-w/o and 15-w, 90-w/o and 90-w, 15-w/o and 90-w/o) were performed and the 

SD values computed. 
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5.2.5 Statistical analysis 

A test for normality of the GHJ translational components over the subjects indicated that none of them 

was normally distributed. Therefore, their dispersion was described using a five number summary 

technique. To determine if there were differences 100 in the GHJ translation components for each of 

the different analyzed conditions, a Friedman’s multiple comparison test for dependent samples was 

applied. Post-hoc pairwise comparisons were then performed by using the Wilcoxon rank-sum test for 

non-normal sample distributions. The level of significance was determined using the Holm-Bonferroni 

correction for adjusted p-values (α= 0.05). Differences between GHJ translations estimated between 

15-w/o and 15-w and between 90-w/o and 90-w were analyzed by performing pairwise comparisons 

using the Wilcoxon rank-sum test for non-normal sample distributions. Statistical analyses were 

performed using IBM SPSS statistics, version 21 (SPSS Inc., Chicago, IL, USA). 

5.3 Results 

As an example, HHC positions for the different shoulder acquisitions relative to a subject are shown in 

Fig. 5.7. Descriptive statistics of the GHJ translations 

for the analyzed conditions is reported in Fig. 5.8. The 

results for each shoulder are reported in table 5.1. The 

smallest GHJ translations were observed along the M-

L direction (p < 0.03) in all conditions. No significant 

differences were found in the GHJ translation 

components at 15 deg and 90 deg of arm abduction in 

the loaded condition. The precision assessment of the 

GHJ translations across the analyzed conditions and 

the two subjects revealed SD values below 0.22 mm, 

0.33 mm, 0.17 mm for the A-P, S-I and ML 

directions, respectively, and below 0.17 mm for the 3D translations. 

Figure 5.7: Projections onto the (A-P, S-I) scapula plane of 
the glenoid margins and the HHC positions for the four condi-
tions analyzed for an arbitrary selected subject. 
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Figure 5.8: Minimum, first quartile, median, third quartiles and maximum values of the gleno-humeral joint center translations 
components (A-P, S-I, M-L) and of the 3D displacement for the following conditions: 1) between 15-w/o and 15-w; 2) between 90-w/o 
and 90-w; 3) between 15-w/o and 90-w/o. The outliers are shown by circles and represent cases that have values more than three times the 
height of the boxes. 
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Table 5.1: GHJ translation of each shoulder, Mean and SD values averaged across subjects for the three conditions. 

5.4 Discussion 

The methodology presented allowed to accurately assess the GHJ translation in vivo under the 

application of an anterior directed force. The intensity of the anterior load was set to 20 N (Alberta et 

al., 2006; Marquardt et al., 2006; Su et al., 2009) plus the weight of the arm to remove differences in 

the loading condition among subjects associated to the gravity contribution. The GHJ stability was 

tested under moderately low loading condition in order to avoid patient’s discomfort as the same 

methodology will be applied to analyze pathological shoulders. When no load was applied, from 15 

deg to 90 deg of arm abduction, the gleno-humeral joint center (GHJC) translated both anteriorly and 

superiorly, while significant smaller displacements were observed in the M-L direction. In particular, 

the estimated anterior translations were within the ranges observed in similar in vivo studies (Table 

5.2). Conversely, no clear trend has emerged from the literature on the GHJ translations in the S-I 

direction (Table 5.2).  

 
 

15-w/o to 15-w (mm) 90-w/o to 90-w (mm) 15-w/o to 90-w/o (mm) 

Subject A-P S-I M-L 3D 2D A-P S-I M-L 3D 2D A-P S-I M-L 3D 2D 

S1-left 0.7 0.4 0.1 0.8 0.8 1.2 -0.3 -0.4 1.3 1.3 3.8 3.2 -0.2 4.9 4.9 
S1-right 2.2 2.8 0.3 3.5 3.5 2.2 -0.4 -0.1 2.2 2.2 1.1 2.3 0.4 2.5 2.5 
S2-left 0.7 0.3 -0.4 0.9 0.8 0.5 0.0 -0.3 0.6 0.5 1.5 0.8 0.5 1.8 1.7 
S3-left 1.1 0.3 -0.1 1.2 1.2 2.7 0.1 0.4 2.7 2.7 0.5 0.3 -0.4 0.7 0.6 

S3-right 1.4 0.5 -0.1 1.5 1.5 0.4 0.2 0.1 0.5 0.5 0.2 0.1 0.9 0.9 0.2 
S4-left 3.6 0.9 0.7 3.8 3.7 0.6 0.9 0.1 1.1 1.1 1.2 1.9 -0.3 2.3 2.3 

S4-right 0.7 3.8 0.2 3.9 3.9 1.2 1.1 -0.8 1.8 1.7 4.3 4.2 0.8 6.1 6.0 
S5-right 1.0 -0.3 -0.4 1.1 1.0 0.4 -0.3 -0.4 0.6 0.5 1.5 1.6 -0.5 2.3 2.2 
S6-rigth 0.2 0.6 0.4 0.7 0.6 0.6 0.7 0.8 1.2 0.9 3.0 0.6 -0.5 3.1 3.0 
S7-left 0.2 1.4 0.4 1.5 1.4 0.3 1.0 1.1 1.5 1.0 1.2 2.9 1.2 3.4 3.2 

S8-rigth 0.7 0.8 -0.1 0.9 0.8 0.0 0.3 -0.5 0.6 0.3 0.6 3.1 1.6 3.6 3.2 
S9-left 1.2 2.1 0.2 2.5 2.4 1.2 1.7 -0.1 2.1 2.1 1.2 2.8 0.2 3.1 3.1 

S10-right 0.1 -0.1 0.2 0.2 0.2 0.3 0.1 -0.3 0.5 0.4 0.8 0.5 0.5 1.0 0.9 

MEAN 1.1 1.0 0.1 1.7 1.7 0.9 0.4 0.0 1.3 1.2 1.6 1.9 0.3 2.7 2.6 

SD 0.9 1.2 0.3 1.3 1.3 0.8 0.6 0.5 0.7 0.8 1.3 1.3 0.7 1.6 1.6 
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Authors 
Shoulder range 

of abduction 

Direction (mm) Muscle 

activity 
Methodology 

A (+)/P (-) S(+)/I(-) 

Graichen et al., 2000  30 - 90 deg 0.9  0.7 No Horizontal open MR 

Von Eisenhart-Rothe et al., 2002 30 - 90 deg 0.7 ± 0.6  1.3 ±1.1 No Horizontal open MR 

Sahara et al., 2007 0 - 90 deg 2.4 ± 2.6  0.5 Yes Vertical open MR 

Nishinaka et al., 2008 15 - 90 deg -  0.9 Yes Mono planar fluoroscopy 

Massimini et al., 2012 0 - 90 deg 3.2 ± 2.8  0.3 ± 2.1 Yes Biplanar fluoroscopy 

Matsuki et al., 2012 0 - 90 deg -  2.1 Yes Monoplanar fluoroscopy 

Our study 15 - 90 deg 1.6 ± 1.3  1.9 ± 1.3 No Horizontal open MR 

Table 5.2: GHJ translations (mean ± SD) along the A-P and S-I scapula axes estimated by different authors during in vivo experiments 

using different methodologies.  

To the authors’ knowledge, this is the first study investigating the GHJ translation in vivo as 

consequence of the application of an anterior directed force using bio-imaging techniques. When 

interpreting the GHJ translation components, it is important to keep in mind that the force direction 

(aligned to the gravity) did not necessarily coincide with the direction of the scapula A-P axis 

(Calderone et al., 2013). This circumstance explains the occurrence of HHC translation component 

different from zero along the S-I direction. Under the application of an anterior force of  20 N, the HHC 

moved, on average, with respect to the glenoid 1.7 ± 1.3 mm and 1.3 ± 0.7 mm at 15 deg and 90 deg of 

arm abduction, respectively. Despite the slightly larger GHJ translation at 15 deg, no statistically 

significant differences were found in the GHJ laxity for the two analyzed arm positions. The 

translations observed in vivo in our study were significantly smaller than those observed in previous 

cadaver studies under the application of an anterior load of 20 N. Alberta and colleagues (Alberta et al., 

2006) tested six cadaver shoulders with an intact capsule and all muscles removed and found an 

anterior translation of 13.4 ± 2.0 mm at 90 deg of shoulder abduction. Smaller translations (6.8 ± 2.4 

mm and 5.1 ± 3.1 mm at 0 deg and 90 deg of gleno-humeral abduction, respectively) were found by 

Marquardt et al. (2006) on twelve cadaveric shoulders with all soft tissues removed except for the 

tendons of the rotator cuff, the pectoralis major and the deltoid muscle. Adopting a more realistic 
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cadaveric model in which the rotator cuff tendons were individually loaded, Su et al., (2009) found an 

average translation of 2.0 ± 0.5 mm at 45 deg of gleno-humeral abduction. The discrepancies between 

in vivo and in vitro conditions can be ascribed to various factors such as the total or partial lack of the 

shoulder muscles and differences in muscular tone. In this regard, it is interesting to note that the GHJ 

translation measured when simulating the muscle tone (Su et al., 2009) were quite similar to the in vivo 

results herein presented.  The level of precision associated to the GHJ translation estimates provided by 

the proposed MR-based methodology was acceptable (< 0.33 mm) and it is expected to be at least of 

one order of magnitude smaller than the GHJ translations. It is worth noting that, in order to increase 

the segmentation reproducibility and minimize the errors in the GHJ translation estimates, all shoulders 

were segmented by the same operator.  The use of an MRI offers both advantages and limitations 

compared to alternative bio-imaging techniques such as CT or fluoroscopy. The main advantages are 

related to the complete non-invasiveness of the exam and the potentiality of visualizing and identifying 

soft tissues abnormalities in the GHJ (Rohad, 1998). A first limitation is that the joint analysis is 

restricted to static conditions, while dual fluoroscopy or single plane fluoroscopy combined with CT 

bone model allow to evaluate GHJ kinematics in dynamic conditions (Nishinaka et al., 2008; 

Massimini et al., 2012; Matsuki et al., 2012). Secondly, whereas using CT-based images, the 

segmentation is automatic, in MR images, the segmentation is mainly performed manually, it is time 

consuming and requires a high level of expertise. Furthermore, the reliability of the GHJ translation 

estimates is highly dependent on the quality of the reconstructed bone models. The one-Tesla 

horizontal open-MRI scanner used for this study, along with an appropriate imaging sequence, 

guaranteed for good quality images, however MR scanner with a lower magnetic field could not be 

suitable for such analysis. In conclusion, the MRI-based methodology allowed to analyze GHJ 

translations under loaded conditions within an acceptable level of reliability and to detect changes in 

GHJ translations which are clinically significant (Bey et al., 2006).  
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CONCLUSIONS 

The present doctoral research was focused on developing and testing a Magnetic Resonance Imaging 

methodology for in vivo estimation of the GHJ translations with and without an external load.  

A thorough review of the literature has highlighted that very limited data relative to gleno-humeral 

joint translations in healthy subjects resulting from the applications of external forces are available. 

Moreover, no studies investigating the GHJ translations in vivo as consequence of the application of an 

anterior directed force using bio-imaging techniques have been proposed so far. In particular, only few 

studies have been conducted using open MRI to estimate GHJ translations, but none of these have 

analyzed the shoulder under loaded condition. The developed methodology proposed in this research 

doctoral thesis represents a feasible tool for the assessment of the GHJ laxity because of the 

noninvasiveness for the patients and the possibility to measure the GHJ displacements in vivo under the 

application of an anterior directed force using a technique which provides an acceptable level of 

accuracy. 

The results obtained in the present thesis were found to be different from those obtained in studies 

conducted on cadaver; in particular the translations in loaded conditions were smaller than those 

observed on cadaver. This discrepancy can be ascribed to the lack of muscular tone of the latter. On the 

other hand, the number of subjects analyzed in this study is too small to reach a definitive conclusion. 

In this regard, it was found that the GHJ translation measured when simulating the muscle tone were 

quite similar to the in vivo results presented in this study.  

Results provided in this research project can be used to define normative reference data about the 

anterior translations of the gleno-humeral joint. This information can be useful when different 

pathological populations need to be evaluated. Another important aspect which tackles in this research 

project was the definition of the scapula and humerus anatomical coordinate systems. In fact, the 

quantification of the GHJ translations requires the definition of the scapular and humeral ACSs, which 

can be used with incomplete bone models derived from MR images. The large majority of the ACSs 

definitions proposed in the literature for both scapula and humerus are based on the use of selected 

anatomical landmarks or anatomical regions located both in the proximal and distal portion of the bone 

models. These ACSs are not suitable to be used with high resolution models obtained from MR clinical 

images, because, due to their restricted field of view, this technique prevents the acquisition of the 
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complete bone model. To guarantee a high level of precision in the GHJ translations estimate novel 

humeral and scapular ACSs were defined in order to meet a number of strict criteria: they were defined 

using ALs and ARs, easy to identify irrespective of the bone morphology acquisition techniques used 

and least susceptible to the physiological morphometric variability.  
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