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1 Introduction 
 

 

 

A wide variety of foods are dispersions (suspensions or emulsions), containing solid or liquid 

particles in a continuous liquid matrix. A typical example of food dispersion is the molten chocolate. 

Chocolate (a cocoa dispersion), can be defined as concentrated suspensions made up of solid 

particles, such as sugar, cocoa powder, milk powder, etc., dispersed in a Newtonian liquid, generally 

cocoa butter (Afoakwa et al., 2008).  

Chocolate can be consumed as a candy or used to make beverages. It is also used as a flavouring 

ingredient or coating for various confectionery and bakery products (Beckett, 2008). The most 

common types of chocolate are dark, milk and white, characterized by different particles in 

suspension (depending on the recipe) and the same continuous matrix (cocoa butter). Other 

commercial products such as cocoa or nut creams, chocolate surrogates obtained by using fats 

instead cocoa butter, are widespread used.  

All chocolate dispersions are very complex system, being non-Newtonian, shear thinning fluids that 

exhibit yield stress and thyxotropic behaviour (Afoakwa et al., 2007). Rheological characteristics 

(fundamental and empirical) are the most important attribute, affecting several properties such as 

viscosity, consistency and mouth feel, these properties influenced in strong way the quality and 

stability of final products (Servais, 2004). In chocolate dispersions all the physico-chemical and 

microstructural properties are strictly related to their formulation and to the  manufacture process 

(Vavreck, 2004; Schantz & Rohm, 2005). Actually the main steps  of chocolate manufacture, mixing, 

pre-refining, refining, conching and tempering, involves significant modifications in the rheological 

properties of the mass and consequently in its final quality. An effective control of the process 

parameters is required in order to achieve a constant and desirable quality of the final product 

(Muller–Fischer et al., 2005, Baixauli et al., 2007). During chocolate manufacturing, mixtures of 

sugar, cocoa and fat are heated, cooled, pressurized and refined (Beckett 2000). These steps not only 

affect particle size reduction, but also break agglomerates and distribute lipid and lecithin-coated 

particles through the continuous phase, this considerably modify the microstructure of final chocolate 

(Afoakwa et al., 2009). The interactions between the suspended particles and the continuous phase 

provide information about the existing network and consequently can be associated to the properties 
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and characteristics of the dispersions (Sato et al., 2009). Moreover since the macroscopic properties 

of food materials, as well as the appearance attributes and the thermal ones are strongly determined 

by their microstructure, the evaluation and study of the microstructural characteristics, can be very 

important for a through understanding of the food matrices characteristics (Aguilera & Stanley 

1999). 

 

 

1.1 Aim of the thesis  

 

Physico-chemical characteristics and in particular rheological ones are the most important properties 

in continuous oil food dispersions. The rheological properties depend on particle-particle interactions 

and on existings network that are directly influenced by formulation and manufacture process. 

Understanding the influence of both formulation and manufacture process on the microstructural and 

consequently on the physico-chemical attributes of the final product, can be a key parameter in order 

to obtain more detailed informations regarding the complexity of cocoa dispersions matrices. 

Moreover, to my knowledge no papers are available in literature about the influence of each single 

process step on microstructural and physico-chemical properties chocolate type dispersions. The 

most part of the literature (Servais et al., 2004; Afoakwa et al., 2008, 2009; Baldino et al., 2010; et 

al., 2011) has focused on the study of these characteristics in dark and milk chocolate only after the 

final tempering process step. 

For these reasons the objectives of this investigation were: 

 

• to study the influence of formulation and each process step on the microstructural properties 

of: chocolate type dispersions model systems (Paper I); dark (Papers II & III); milk (Paper 

IV) and white chocolate (Paper V) types, and cocoa creams (Paper VI); 

 

 

• to investigate the relationships between microstructural changes and the resulting physico-

chemical properties of: chocolate type dispersions model systems (Paper I); dark (Papers II 

& IV); milk (Paper IV) and white chocolate (Paper V) products. 
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2  Chocolate formulation  
 

 

 

Chocolate can be defined as a concentrated suspension of solid particles in a continuous phase of 

semi-crystalline fat (Johansson & Bergensthal, 1992; Afoakwa et al., 2008). The three main 

types of chocolate are dark, milk and white. Dark chocolate is a suspension of sugar and non-fat 

cocoa solids in cocoa butter, while milk chocolate contains milk solids and milk fat in the mix. 

White chocolate, on the other hand, includes milk solids and milk fat but does not include non-

fat cocoa solids. Chocolate can also include emulsifiers such as lecithin and PGPR (polyglicerol 

polyricinoleate) as well as salt, flavorings or spices. The directives 2000/36/EC of the European 

parliament and of the council of 23 June 2000 relating to cocoa and chocolate products intended 

for human consumption define: 

• Cocoa powder: the product obtained by converting into powder cocoa beans previously 

cleaned, shelled and roasted, and which contains not less than 20 % cocoa butter, 

calculated according to the weight of the dry matter, and not more than 9 % water. 

• Cocoa butter: the fat obtained from cocoa beans or parts of them with the following 

characteristics: 

free fatty acid content (expressed as oleic acid): not more than 1.75 % 

unsaponifiable matter (determined using petroleum ether): not more than 0.5 % except in 

the case of press cocoa butter, where it has to be not more than 0.35 % 

 

 For what concern the final product the above reported directive define: 

 

• Chocolate: as the product obtained from cocoa products and sugars, containing not less 

than 35 % total dry cocoa solids, including not less than 18 % cocoa butter and not less 

than 14 % of dry non-fat cocoa solids. 

 

In particular in order to differentiate in a more detailed way the different formulations, define: 

 

• Milk chocolate: as the product obtained from cocoa products, sugar and milk or milk 

products, which contains: not less than 25 % total dry cocoa solids, not less than 14 % 

dry milk solids obtained by partly or totally dehydrated full cream milk, semi- or full-
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skimmed milk, cream, or from partly or completely dehydrated cream, butter or milk fat 

not less than 2.5 % dry non-fat cocoa solids, not less than 3.5 % milk fat and not less than 

25 % total fat (cocoa butter and milk fat). 

• White Chocolate: the product obtained from cocoa butter, milk or milk products and 

sugar which contains not less than 20 % cocoa butter and not less than 14 % dry milk 

solids, obtained by partly or totally dehydrated full cream milk; semi- or full-skimmed 

milk; cream, or from partly or completely dehydrated cream; butter or milk fat, of which 

not less than 3.5 % of milk fat. 

 

 

2.1  Cocoa Liquor 

 

Cocoa liquor is the product obtained from grinding deshelled and roasted cocoa beans. It is 

composed by cocoa butter and cocoa solid particles. Chemically it is a mixture of mono- and di-, 

triglycerides, proteins, cellulose, starch, water, minerals, polyphenols, phospholipids and other 

organic compounds present in minor quantities. From its composition it is a very complex matrix 

and contains several compounds that can adsorb large amounts of water (Afoakwa et al., 2009). 

In order to separate cocoa butter and cocoa particles from liquor, a pressing system is usually 

used. Beckett (2008) stated that hydraulic press and expeller extrusion are the two most common 

ways to extract cocoa butter. In order to obtain the best quality of cocoa butter as well as cocoa 

powder, a hydraulic press is generally preferred. However, only 55 % of cocoa butter can be 

extracted with this method and the by-products (e.g. pressed cocoa powder cakes) may contain 

variable amounts of fat from 8 to 12 % up to 24 % (Hui, 2007). Pressed cocoa cakes need to be 

further milled in order to obtain a suitable cocoa powder. Cakes are broken into large 

agglomerates of approximately 3 cm diameter passing through rotating rollers. These 

agglomerates are finely grounded by hammer mills, and then sieved. Finally, cocoa powder is 

transported through systems of pipes and packaged immediately. This milling process is carried 

out at cool temperature, because if temperature is more than 34°C the cocoa butter will melt, 

leading to a sticky powder. Moreover, during transport should be avoid all contact with moisture 

because the presence of water tends to aggregate sugar particles creating small aggregates of 

cocoa powder. This modification of the structural and rheological properties of the product, may 

be undesirable for the customer (Afoakwa, 2010). Two types of cocoa powder are commonly 

produced: the high fat cocoa powder (from 20 to 25 % fat content) which is mainly used for 
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chocolate drinks and the low fat cocoa powder (from 10 to 12 % fat content) which is commonly 

used for flavourings and coverings of cakes, ice creams or biscuits (Shittu & Lawal, 2007). 

 

 

2.2 Cocoa particles 

 

The major components of cocoa particles are: proteins (11.5% of the cocoa liquor mass), 

cellulose (9%), starch (6%), polyhydroxyphenols (6%) and water (5%) (Vernier, 1998; Belitz & 

Grosch, 1999). Usually cocoa particles amount in chocolate is around 10 %. To release most of 

the cocoa butter (present in the inner structure of cocoa particles) and hence reduce viscosity, the 

cocoa particles should be refined to sizes below the size less than that of the cocoa cells (20 to 

30µm) (Minfie, 1989). This upper size limit is also important because the mouthfeel of chocolate 

containing particles bigger than 30 µm is perceived as grainy or gritty (Afoakwa et al., 2007). 

The cocoa particles are normally coated with cocoa butter, (that reduces the inter-particles force), 

and are therefore referred to as being hydrophobic (Beckett 2008; Dhonsi & Stapley 2006). 

Nevertheless, from the composition cocoa particles contain amphiphilic (proteins) or hydrophilic 

components (starch, cellulose). The considerable water content of the cocoa particles in 

chocolate is mainly reduced during the conching step. 

 

 

2.3  Cocoa Butter 

 

Cocoa butter represents the continuous and Newtonian fat phase of cocoa and chocolate 

dispersions (Baldino et al., 2010). This fat is a triglyceride, made up from three fatty acids 

attached to a glycerol backbone. It is composed mainly of triacylglycerols of three fatty acids: 

oleic (about 35%), stearic (about 34%), and palmitic (about 26%), the oleic acid is normally 

located in the central position (Afoakwa et al., 2007; Beckett, 2008).  

Cocoa butter can exist in six different crystalline or polymorphic forms (often denoted by roman 

numbers I–VI), depending on the temperature reached during productive process and how it is 

processed, each of which exhibit different thermodynamic stability and melting temperatures 

(Figure 1) (Rousseau, 2007; Svanberg et al., 2011). 
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Figure 1. Respective melting points of the polymorphic forms of cocoa butters (Afoakwa et al., 

2007). 

 

However, for commercial chocolate production only forms IV to VI are important. Form V is the 

preferred polymorph, is produced in the factory by machines called temperers, which brings the 

chocolate through a cooling/ heating cycle while vigorously mixing it. Form IV is found in 

untempered chocolate, and form VI is found in bloomed samples (Timms, 2002). For the final 

quality of the chocolate product, it is of utmost importance to obtain polymorphic form V, as it 

has the capacity to trap liquid oil within its crystal network, thereby obstructing the migration of 

liquid TAGs (tryacilglycerols) to the surface (Dibildox-Alvarado et al., 2004; Smith et al., 2007; 

Svanberg et. al., 2011). The different forms are due to the individual molecules of fat packing 

themselves together in different ways. Depending on the countries’ regulations and intended use, 

other types of vegetable fat can be used in chocolate or compound coatings. These fats can either 

be cocoa butter equivalents (CBE) which have similar chemical and physical characteristics to 

those of cocoa butter or cocoa butter replacers (CBR), which are similar to cocoa butter only in 

their physical properties (Talbot, 1994; Samsudin & Rahim, 1996). Typical CBE blends are 

produced from mixtures of fractionated fats from palm, illipè and shea and must be tempered 

like cocoa butter (Talbot, 1994). On the other hand, lauric and non-lauric CBRs produced from 

palm kernel or coconut oil and palm or soyabean oil respectively do not require tempering as 

they are non-polymorphic (Talbot, 1994). 
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2.4  Sugar 

 

Sugar is one of the most important component of the cocoa dispersions (Beckett, 2008), its 

amount in a chocolate recipes is normally around  45 -50 % of the whole formulation. As known 

by literature (Beckett, 2008) different molecular varieties of sugar exist, all of them are designed 

for different types of chocolate. Among these varieties, sucrose and lactose are used 

predominantly. In particular, sucrose is a disaccharide and is made of a molecule of glucose 

linked to a molecule of fructose. Sucrose can exist in two different polymorphic structures: form 

I and form with different chemico-physical properties dependending on the arrangement of their 

crystal (Okuno et al., 2003; Lee & Lin, 2007). Moreover the presence of a solvent, such as water, 

plays an important role influencing sugar crystallization properties and the flow properties of 

liquid chocolate. The surface properties of the sugar particles shows strong affinity with water 

molecules. In particular, the damage of sugar particles during the refining step (paper VII) can 

create surfaces with extremely high temperature, that are able to absorb the humidity present in 

the surrounding, modifying their crystalline structures, that become amourphous, and their 

rheological properties (Bouzas & Brown, 1995; Vernier, 1998). Appropriate processing 

conditions, that is low humidity of the air in the factory and intermediate storage under dry 

conditions, protect the sugar in chocolate from moisture uptake. Upon water uptake, the 

amorphous sugar re-crystallizes and releases the water. This process can happen immediately 

after the roller-refining (conching step) or during storage (Beckett, 1999).  

 

 

2.5 Milk powder and derivatives 

 

Milk powder is one of the main ingredient of milk and white chocolate (being used at about 20% 

w/w in the formulation). Milk products are complex materials composed of: proteins, lactose, fat 

and emulsifiers (fat membrane components) (Attaie et al., 2003). Milk powder determines the 

sensory profile of the chocolate (taste, texture) and influences processing behaviour of the 

molten chocolate mass, e.g. flow properties (Franke & Heinzelmann, 2008). The latter one is 

important for chocolate manufacturers with respect to moulding and coating. From its structure, 

milk powder can be described as a sponge-like material, exhibiting a large specific surface area. 

The proteins are capable of binding high amounts of water and lactose that can be present in the 

amorphous state. These physical and chemical attributes give to milk powder its high water 
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sorption capacity (Dewettinck et al.,1996; Fäldt & Bergenstahl, 1996). Milk and cream powders 

are milk products, which can be obtained by the partial removal of water from milk or cream; in 

particular powders for the chocolate industry are usually produced by spray drying or by roller 

drying. The fat and/or protein content of the milk or cream may have been adjusted, only to 

comply with the compositional requirements, as shown in detailed way as follow, by the addition 

and/or withdrawal of milk constituents in such a way as not to alter the whey protein to casein 

ratio of the milk being adjusted (Codex Alimentarius, 2003). 

The principal milk powders used during the chocolate production are: 

• Full cream Milk Powder 

Full milk powders obtained by using spray- and roller-dried techniques. Specially processed 

spray-dried powders with a higher level of free fat are produced for the confectionery sector. The 

composition should be as follows (Codex Alimentarius, 2003): 

- Minimum milk fat      42 % m/m 

- Maximum water      5.0 % m/m 

- Minimum milk protein in milksolids-not-fat  34 % m/m 

 

• Skimmed Milk Powder 

This powder is used in combination with milk fat to make chocolate. This means that all the fat 

is free, so the viscosity is lower, the texture softer and the taste is different compared to a product 

made with an equivalent amount of full cream milk powder. Sometimes, lipase-free milk 

powders are requested. This is because the lipase can accelerate decomposition of some milk fat 

into free fatty acids, which produce a soapy or cheesy flavour (Codex Alimentarius, 2003). 

- Maximum milk fat      1.5 % m/m 

- Maximum water      5.0 %  m/m 

- Minimum milk protein in milk solid non fat  34 % m/m 

• Whey Powder 

Whey powders are milk products obtained by drying whey or acid whey. Whey is the fluid milk 

product obtained during the manufacture of cheese, casein or similar products by separation from 

the curd after coagulation of milk and/or of products obtained from milk. Coagulation is obtained 

through the action of, principally, rennet type enzymes. This powder is normally used at a level 

up to about 5% of the chocolate mass to increase the “milkiness” of the product. It is used at 
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higher levels in coatings and chocolate-like products. In general, demineralized whey is used not 

to impart unwanted flavours into the chocolate (Codex Alimentarius, 2003; Beckett, 2008). 

- Maximum milk fat       2.0 % (m/m)  

- Maximum water      5.0 % (m/m) 

- Minimum Milk protein     10 % (m/m)  

• Lactose 

A natural constituent of milk normally obtained from whey with an anhydrous lactose content of 

not less than 99 % m/m on a dry basis. Lactose can be used as a partial alternative to sucrose in 

order to make chocolate less sweet. As with whey, it must not contain any off-flavours (Codex 

Alimentarius, 2003). 

• High-Fat Powders 

Full-cream milk powders are available with more than 55 % milk fat. This anhydrous fat is 

largely present in a free form and so helps chocolate to flow. The high-fat powders enable the 

manufacturer to add all the milk fat as a powder and thereby to avoid the cost and inconvenience 

of additional liquid fat metering systems (Codex Alimentarius, 2003). 

• Buttermilk Powder 

As with whey powder, this can be used in smaller proportions to adjust the flavor and the flow 

properties of a chocolate. It is also used in chocolate-flavored coatings and, in the United States a 

special type of product, known as “buttermilk chocolate” is manufactured. Milk fat is commonly 

used in chocolate because of its desirable flavour and its lower price compared with cocoa butter. 

Adding milk fat also influences the physical properties of chocolate masses, such as the 

crystallization behaviour of cocoa butter and the texture of the final chocolate. A negative 

correlation between the amount of milk fat used and the hardness of chocolate has been reported 

Afoakwa, 2010). Although this softening effect of milk fat in chocolate limits its use; up to 30% 

of cocoa butter can be replaced by milk fat before the product becomes unacceptable (Hartel, 

1996; Codex Alimentarius, 2003). 
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2.6 Minor ingredients in the chocolate recipe 

 

Minor ingredients are also present in a chocolate recipe, that contribute to the final attribute of 

the product. Inside this group there are: stabilizers, used in order to improve the dispersion 

stability throughout the entire shelf life; natural extracts, that contribute to the final aroma of the 

product; and overall emulsifiers and water. The last two ingredients, even if present in lower 

amount (around 1 % or less), influence in strong way the microstructural and rheological 

properties of a cocoa dispersion. 

 

Emulsifiers 

Most oil-continuous food dispersions such as cocoa ones, contain emulsifiers, that can regulate 

the rheological properties, the crystallization of fats and improve the dispersion of the disperse 

phase particles (cocoa, sugar, milk particles, etc.) in the cocoa butter (Schuster, 1985). The 

emulsifiers function is mainly related to their ability to adsorb to different surfaces like oil/ 

water, water/air or particle surfaces (Johansson, & Bergensthal, 1992a). The hydrophilic portion 

of the emulsifier molecules is attached at the hydrophilic surface of chocolate particles. The 

hydrophobic portion protrudes into the bulk fat phase. This reduces particle-particle interactions 

due to steric hindrance, modification of Van-der Waals attraction forces and (in the case of 

charged emulsifiers) modification of particles surface charge (Babin, 2005). The emulsifiers that 

are mostly used in chocolate type dispersions are: lecithin and PGPR. Their most important 

feature is the reduction of the final product yield value (PGPR, lecithin) and viscosity (lecithin) 

(Weyland, 1994). This is important since the cocoa butter content can be reduced in chocolate 

(which is the most caloric and expensive chocolate component), even if the amount of 

emulsifiers cannot exceed the limit range, in order to avoid aggregation effects between micelles. 

A viscosity increase in chocolate, when lecithin is dosed at concentrations beyond the amount 

needed for monolayer coverage, was attributed to the thickening effect of the micelles, which 

may also immobilize fat phase (Finke, 1991). 

 

Water 

Cocoa dispersions contain typically from 0.5 to 1.5% of water; with an aw-value of 0.5 - 0.6 

(Jermini, 1980). When water is added to molten chocolate in small amounts, the chocolate 

thickens irreversibly and can no longer be processed. Water in small amounts (0.5 %) dissolves 

the sugar particle surfaces, which leads to a concentrated syrup at the sugar surface and strong 

agglomeration effects (Paper I). This results in a strong disperse phase network, that involves a 
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modification in the rheological properties of sample, causing an increase in its yield stress and 

viscosity. When water is added to the chocolate at higher percentages, interactions with the 

disperse phase particles and with the emulsifiers have to be taken into account. Belton, et al., 

(1995) investigated the effect of water addition to milk chocolate. He demonstrated by NMR and 

microscopy analysis that the water causes the dissolution of carbohydrates (sugar) and partial 

dissolution of proteins. This promotes the interactions between carbohydrates and proteins and 

causes protein swelling and a build-up of a network. The separation of fat and proteins from the 

matrix could be the cause of the fat weak contraction and the difficult demoulding. 
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3 Manufacture process of chocolate type dispersions  
 

 

 

As previously reported in the manufacture process of chocolate common ingredients requested 

are: sugar, cocoa nibs, cocoa liquor, cocoa butter, butter fat, some emulsifiers, and milk powder 

for the production of milk chocolate. The addition of these ingredients must be rigorously 

performed and should follow several process stages including dosing of the ingredients, mixing, 

pre-refining refining, conching and tempering (Beckett, 2008). The follow diagram (Figure 2) 

illustrates the main steps of the chocolate manufacture process. 

 

 

 
Figure 2. Main phases of a chocolate manufacture process. (Adapted from Afoakwa et al., 2007) 



- 13 - 
 

 

 

3.1 Continuous plant and roller ball mill 

 

Cocoa dispersions have two major distinguishing characteristics: the flavour and its rheological 

properties. The processing of chocolate is aimed to obtaining these two main quality 

characteristics in the final product. Although two different methods of chocolate making exist: 

the industrial and the small scale one. In the first one, the final product is obtained by pushing all 

the dosed ingredients through a mixing machine linked to a three roller refiners (in order to 

obtain a first reduction in particle size around 100 µm) that transport the mass until a five roller 

refiners (in order to obtain a more refined product, around 30 µm particles). The refined product 

is then piped to a conche and at the end toward a tempering machine. The process is fully 

automatic and all the single machine are collected each other by a series of pipes and heat 

exchangers (Afoakwa et al., 2007). The small scale plant is usually a non-continuous plant, 

called “roller ball mill”. This manufacture plant consists of a vertical ball mill grinding chamber 

equipped with a thermostatic control even at night. The inner part of the roller ball is 

characterized by the presence of small stain ball/beads, that realize at the same time the different 

steps of: mixing, pre-refining, refining and conching. Alloy steel beeds are particularly suitable, 

because of their high relative density and hardness, for crushing and mixing heavy and hard 

materials and  also favourable in reducing particle size and fine dispersion of highly viscous 

fluids, such as cocoa mass dispersions (Alamprese et al., 2007). The ingredients passing through 

and between the steel beeds are mixed, refined and at the same time conched because of the 

crushing and mixing effect of these beeds on the particles present in the fluid matrix (Figure 3) 

(Martin, 1988). The tempering step is then realized in a separated machine called: “tempering 

machine”. In this step the final product is obtained as it will show in the 3.7 paragraph. 
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Figure 3. Mechanism of action of a roller ball mill machine (Nanoparticles, 2013). 
 
 

3.2  Dosing ingredients 

 

The first step of the manufacture process of chocolate is the dosing of the ingredients. An 

accurate blending and mixing is a basic requirement for making high-quality products. Usually 

an automatic tubular screw conveyor is used (Figure 4) in order to collect (from the cylindrical 

raw materials storage unit) each individual ingredient, to weigh hoppers and then to the mixers.  

This machine is also usefully suited to conveying of materials in applications which must meet 

elevated sanitation requirements. Usually a sanitation-focused design and bearings that are 

separated from the product stream, and a completely enclosed housing allow flexible application 

even if demanding requirements must be satisfied (Buhler, 2013 ) 

 

 

                                      
Figure 4. Automatic tubular screw conveyor for the dosing ingredients (Buhler, 2013) 
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3.3  Mixing 

 

Mixing is the second phase process achieved for the chocolate production as previously seen in 

Figure 2. The basic ingredients, including cocoa liquor, sugar, cocoa butter, milk products (for 

milk chocolate) are blended together. The machine is generally equipped with a thermostat 

control, with either open or closed water circuit and in conjunction with a hot water system 

energy-efficient, in order to provide accurate temperature control (Figure 5). The outcome is a 

paste with a rough texture and plastic consistency. Commonly from 2 to 10 minutes of mixing 

are necessary in large-scale manufacturing (Afoakwa, 2010; Beckett, 2008). 

 

 

 

 
Figure 5. Mixer machine used to blend chocolate ingredients (Buhler, 2013). 

 

 

3.4 Pre-refining 

 

After the mixing step in many industrial plant there is a phase of pre-refining. This step is done 

with a series of three roller refiners, in which the chocolate mass is pushed through the rollers 

with a defined gap. This refiner was set up vertically, with the first two rollers in the feeding area 

and the third roller collecting the flakes (Figure 6). This stage allows the reduction of the particle 
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size smaller than 100 µm, but this size is still larger for what concern the optimization of 

chocolate rheological and sensorial properties, so a further refining step is necessary. 

However the pre- refining step is very useful in order to obtain: 

•   homogeneus particle size distribution and fluidity of the chocolate mass; 

•   increased productivity of dosing and mixing line thanks to reduced mixing time; 

•   improved refiner efficiency (Afoawka et al., 2007). 

 

 

 

 
Figure 6. Pre-refiner machine equipped with three roller refiners (Buhler, 2013). 

 
 

3.5  Refining 

 

Refining is an important processing stage, carried out in order to obtain a reduction of mass 

particles size, and the releasing of some fat, that uniformly have to coat the different kinds of 

particles (Vernier, 1998). Refining of chocolate that is an important step to for the production of 

smooth texture that is a required quality attribute in modern chocolate confectionery. Final 

particle size and the microstructure of chocolate (sugar and cocoa networks, fat distribution, 

etc…), influence the rheological and sensory properties of the cocoa mass (Afoakwa et al., 2009; 

Fernandes et al., 2013). The refining step is done with a series of roller refiners, generally with 

five rollers, used to reduce the particles size lower than 30 µm, which is the optimum size of 

particles in chocolate products. The cocoa liquor is pushed through the rollers with a defined 

gap. The 5-roller refiner is set up horizontally whereas the 2-roller refiner is set vertically. The 

first roller is commonly used for feeding, whereas the fifth roller collects the flake by a knife 
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blade. Each roller is thermostatically controlled via inner cooling/heating systems (Figure 7). In 

this phase the control of temperature plays an important role; for instance, if the roller is too 

cold, the fat will crystallise on it. Moreover, the local pressure and the shearing rate are the two 

main factors which control the extent of size reduction of the particles. The pressure in the gap is 

hydraulically controlled, and the shearing action depends on the relative roller speed. Shearing 

causes the particles to be pulled apart and pushed towards the faster moving roller. By adjusting 

the gap size, the operator can generate different shear entities and so different amounts of 

product pushed towards the faster roller. The average size of the particles obtained in the final 

stage depends greatly on the gap between rollers, the speed of the refining rollers and the original 

size of the particles (Minifie, 1989; Beckett, 1999; Beckett, 2008). The refiners, in summary, 

not only affect the particle size reduction, but allows also the release of fat necessary in the next 

step. 

 

 

.  

 
Figure 7. Mechanism of action of the five roller refiners (Cacaochocolade, 2013). 

 
 

3.6  Conching 

 

Conching is an essential operation that contributes to develop of the viscosity, texture and 

flavour of the final product.  The principle of conching is to enhance the flavour and the texture 

of the powdery state by a series of periodic mixings. Conching is normally carried out by 

shaking chocolate at more that 50 °C for few hours (Beckett, 2008). During this step, the 

chocolate texture evolves in three stages: dry conching, pasty phase and liquid conching (Figure 

8). The aim of this step is to mix the powder as long as possible in the dry state in order to allows 

the removal of undesirable volatile compounds, e.g. ethanoic acid, through its powerful mixing. 

It also permits the disruption of aggregates and the further release of fat to coat more of the 
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particles. Moreover, it has been observed that, during the earlier stage (Cabras & Martelli, 2004), 

the chocolate paste loses part of its water content thereby contributing greatly to the fluidity of 

the system. This water release, under vaporised form, is enhanced by the temperature of the 

conche (70-80 °C). As the cocoa butter melts and water is lost, the chocolate is transformed from 

a powdery state (or flakes) into a thick paste. The slow motion of the rotary blades allows 

uniform mixing of cocoa butter and lechitin (that is usually added during this step) throughout 

the paste (Minifie, 1989; Awua, 2002; Beckett, 2008). The viscosity of the sample gets thinner as 

more cocoa butter is present in the liquefied state and more water is lost during the process. In 

the last stage of the conching, the mixing time is increased and the remaining ingredients such as 

cocoa butter and emulsifiers are added to the system. These ingredients bring more fluidity to the 

dispersed system and play an important role in determining the viscosity of the final product. At 

this stage of the process, few more processing procedures are required before the product can be 

packaged (Awua, 2002, Whitfield, 2005; Afoakwa, 2010). 

 

 

 

 
 

Figure. 8. Mechanism of action of the conche (Adapted from Afoakwa, 2010). 
 

 

3.7 Tempering 

 

Cocoa butter exists in six different crystals states, however only state V, which has the most 

stable form of crystals, has the full requirements for making a good chocolate, as previous 

explained in the section 2.3. 

In order to obtain the right type of cocoa butter crystals, the chocolate needs to be tempered. This 

means that the chocolate should become crystallised at a temperature below 32°C. Once seed 

crystals are formed, chocolate follows a heating and cooling phases steps (Figure 9). This 
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process promotes the formation of the crystals in the V form rather than in the VI form. While it 

is still warm, melted chocolate flows easily into moulds, or it can be used to enrobe different 

types of sweets or biscuits. Prior to packaging, the chocolate is cooled down online to 

approximately 15°C. Finally the chocolate is stored in chilled area away from direct light 

exposure (Afoakwa et al., 2007). The nutritional value and quality of chocolate may last up to a 

year, but it is generally recommended to be eaten within a month for best results (Cabras & 

Martelli, 2004). 

 

 

 

 
Figure 9. Tempering sequence and cocoa butter crystallization (Talbot, 1994). 
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4  The microstructure of chocolate type dispersions 
 

 

 

Cocoa dispersions can be defined as complex systems. An extended and rigorous characterisation 

using detailed methodological advancements is important in order to predict and evaluate chocolate 

dispersions properties and relate them to quality characteristics and performances (cream stability, 

creaminess and processability) (Peressini et al., 2006 ). 

It is known and well emphasizes in literature (Aguilera, 2005; Larrea et al., 2007; Lillford, 2010; 

Van de Velde & Klok, 2011; Moreno & Bouchon, 2011; Zdunek & Kurenda, 2013) the importance 

of understanding food microstructure in both food process and food design.  

The macroscopic properties of food, such as rheology and mechanical strength, sensory attributes 

(e.g. mouth feel, texture and even flavour release) as well as engineering properties are strongly 

determined by the microstructure (Figure 10) (Bayod et al., 2008), that is considered a key parameter 

in the understanding of the foods behaviour (Aguilera, 2005). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Schematic showing the hierarchy of food structure (Bayod et al., 2008). 
 

The physical properties, rheological behaviour and sensory perception of food products are 

influenced largely by its processing techniques, particle size distribution and composition of 

ingredients (Afoakwa et al., 2007). Processing and formulation in fact can drastically change the 
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phisyco-chemical and structural properties, as well as the microstructure of foods. Important 

examples are fruit juices, vegetable purees, cocoa creams and ground meats that have chemical 

composition similar to their sources, but very different physical properties, rheological behaviour and 

sensorial attributes (Aguilera, 2005).  

In particular food dispersions on the basis of their microstructure can be classified as being dilute, in 

the transition region or as concentrated (Figure 11) (Steeneken, 1989). In dilute systems the particles 

are swollen to their equilibrium size, they have maximum volume and are free to move in the 

suspension under Brownian forces. In the transition region, the particles are in contact with each 

other, but still have their maximum volume. In highly concentrated suspensions, such as cocoa 

dispersions, the particles are deformed  and fill the space available, the matrix is thus fully packed. 

Another definition was given by Coussot & Ancey (1999), who described concentrated suspensions 

and granular pastes from a physical point of view, as “complex systems within which particles 

interact strongly, giving rise to viscosities much higher than the viscosity of the suspending media”. 

In concentrated systems the interactions and contact between particles clearly dominate over the 

Brownian forces. 

Understanding the macroscopic properties governing food systems involves the characterization and 

quantification of their microstructure (Bayod et al., 2008). Microstructural techniques are necessary 

in order to study structure-property relationships. There is no single technique that is superior in all 

applications (Wu et al., 2004). A plethora of new instrumentations has become available to probe the 

foods microstructure (Aguilera et al., 2000), and there are different techniques to measure it, each 

technique has its own limitations, such as the amount of sample required, the particle density, etc. 

The most widely used techniques, in order to analyze the structure of foods are: the microscopy and 

the laser light diffractions (as showed in detailed way in the further paragraphs). 

 

 

 

 
Figure 11. Concentration regime in suspensions. From left to right: dilute, transition and 

concentrated (Adapted from Steeneken, 1989). 
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4.1  Techniques to study food microstructure  

 

Microscopy 

Microscopy (optical or light, electron and atomic) coupled with imaging analysis, are the most 

directly and appropriate techniques used to evaluate food structure because they are the only 

analytical methods that produce results in the form of images rather than numbers. The images may 

then also be converted into numerical data to allow a statistical evaluation (Kalàb et al., 1995). 

Microscopy provides valuable information on the shape and arrangement of the particles in food 

systems (Bayod et al., 2008). Several microscopical techniques are used in both fundamental and 

applied research: light microscopy in bright-field in order to study network structures and particle 

size of cocoa dispersions (Afoakwa et al., 2009); polarised light microscopy to study fat crystal 

morphology and aggregation behaviour (Marangoni & McGauley, 2002); fluorescence microscopy to 

study lipid migration phenomena (Marty et al., 2005); scanning electron microscopy or 

envinronmental electron microscopy for the examination of crystal morphology, network structure 

and particle sizes (Kinta & Hatta, 2005); magnetic resonance imaging to examine migration (Walter 

and Cornillon, 2002; Choi et al., 2005; Deka et al., 2006); atomic force microscopy to investigate 

surface structure (Hodge & Rousseau, 2002; Smith & Dahlmann, 2005; Sonwai & Rousseau, 2006; 

Khan & Rousseau, 2006; Rousseau, 2006). Light microscopy and scanning electron are the most 

suitable techniques to analyze the microstructure of cocoa dispersions, since provide a lot of detailed 

information regarding the internal structure of the matrices, such as, the type and distribution of 

networks, the quantity and size of spaces filled by the particles, the empty spaces, the size, shape and 

distribution of the individual particles, etc. (Kalab et al.,1996; Afoakwa et al., 2009; Dahlenborg et 

al., 2010). In the studies carried out from this PhD thesis an envinronmental electron microscopy 

(ESEM) (Papers  II, III, IV) and a light microscope (Papers I and V) were used to investigate the 

microstructural properties of chocolate type dispersions in terms of network structure, particle size 

and particle-particle interactions. For all obtained images was necessary a subsequently correction of 

their illumination. This is a common problem in microscopic images, when external sides are darker 

than the central ones. The difference in illumination was corrected by using the rolling ball 

technique, and by using several imaging filters (Image pro-plus manual, v. 6.0). Image analysis is 

commonly performed on binary images or by using grey scales. In these works (Papers I, II, III, IV 

and V) a grey 8 scale was used in order to elaborate images and better show areas occupied by 

particles and void spaces. 
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Particles in food dispersions are usually non spherical and poly - dispersed. For a non-spherical 

particle, several equivalent diameters, which are usually based on equivalences either in geometric 

parameters (e.g., volume or surface) are defined. Thus, for a given non spherical particle, more than 

one equivalent diameter can be defined. An equivalent diameter of a particle is usually defined in 

relation to a specific sizing method developed on the basis of a certain equivalency criterion. In 

particular, for what concern the sizing of particles based on the microscopic analysis, three different 

diameters are normally used: projected area, Martin's diameter and Feret diameters (Merkus, 2009) 

(Figure 12). 

 

 

 

 
Figure 12. Schematic representation of the Project area, Martin and Feret diameters (Fan & Zhun, 

2009). 
 

Specifically, the projected area diameter is the diameter of a sphere having the same projected area as 

the particle; Martin's diameter is defined as the averaged cord length of a particle which equally 

divides the projected area and Feret's diameter is the averaged distance between pairs of parallel 

tangents to the projected outline of the particle. Since Martin's diameter, Feret's diameter, and 

projected area diameter are based on the two-dimensional image of the particles, they are generally 

used in optical and electron microscopy (Fan & Zhun, 2009). In Papers III, IV and V Feret’s 

diameter was largely applied, discriminating in significantly way particle size of samples obtained 

from different steps of the manufacture process, as shown in Table 1. 
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Table.1. Feret diameters (µm) of milk chocolate samples obtained from different process steps. 
(corresponding to Table 1 in Paper IV). 

Samples Particle size (µm) 
(Feret diameter) 

A (mixed)                            103.00a±2.57 

       B (pre-refined) 67.00b±3.54 

C (refined) 29.00c±2.37 

   D (conched) 22.00c±2.56 

    E (tempered) 17.91c±3.75 
a-c values in the same column followed by different letters differ significantly at p < 0.05 level 

 

 

Laser light diffraction 

Particle sizing can be obtained also by using indirect techniques such as light scattering and 

diffraction. The laser diffraction technique is based on degree of light diffraction. The degree of 

diffraction depends on the particles size. In general small particles cause large angle diffraction, big 

particles cause small angle diffraction (Merkus, 2009). Usually this technique is coupled to 

microscopic ones, because only by using the laser light diffraction is not possible to distinguish 

between primary particles and agglomerates. Compared with other sizing techniques (microscopic 

ones e.g.), laser light has the advantage of high speed, good reliability, high reproducibility and it is a 

non intrusive approach (Zhenhua et al., 2000). Several studies are present in literature highligh the 

relationship between particle size (PS) and the final properties of the product. Barbosa - Canovas et 

al., (2005) studied the importance of the particle size distribution on the bulk density, compressibility 

and flowability of food powders; Huang et al., (2001) studied the relationship exiting between 

emulsion stability and the size distribution of the oil droplets present inside; Soh et al., (2006) 

investigated the influence of starch particle size on the final properties of the resulting dough; Bayod 

et al. (2008), analyzed the importance of different particle size of tomato products on the final 

rheological properties of ketchup. For what concern chocolate type products, some authors: Servais 

et al., (2002), Sokmen & Gunes, (2006), Afoakwa et al., (2007), Do et al., (2007), observed that the 

particle size (PS) and determinate particle size distribution (PSD) had a considerable effect on the 

macroscopic properties of the final product and in particular on the rheological ones, underlining the 

presence of a correlation between these parameters. However many aspects are still unclear and 

others studies are necessary. 
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This technique has been widely used throughout the Papers I, III and V, and the diffraction data 

were analysed using the Fraunhofer diffraction method. The Fraunhofer method can be applied to 

particle sizes between 1 and 200 µm (Annapragada & Adjei, 1996), and can handle polydisperse 

systems, such as cocoa ones. It assumes that the particles are spherical, but it adequately describes 

the particle size of sugar, cocoa and milk powders. The use of the Fraunhofer theory in determining 

the PSD of cocoa products is rather common (Attaie et al., 2003; Beckett, 2008; Gould et al., 2013). 

For a given size distribution, various averaged diameters can be calculated, depending on the forms 

of weighing factors. The selection of an appropriate averaged diameter of a particle system depends 

on the specific needs of the application. For cocoa dispersions the most suitable diameters are: 

- the Sauter mean diameter, that represent the diameter of a sphere with the equivalent surface to 

volume ratio of all the particles in the size distribution (1); 
 

∑∑=
i
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i

ii dndnd 23
32 /    (1) 

- the weight mean particle diameters that represents the diameter of a sphere having the average 

weight of all the particles in the size distribution (2) (Black et al., 1996). 
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where ni is the percentage of particles with diameter di.  

 

Particle size distributions are often expressed as the percentage of particles found in each size class. 

Foodstuffs often consist of poly - dispersed particles, with continuous particle size distributions 

containing several peaks, i.e. particles of all sizes are present, but most of them are of one or two 

specific size. In chocolate dispersion products, the PSD is usually considered to be bi-modal in the 

first two stages of the manufacture process, becoming unimodal in the last three steps (Papers III 

and V), as shown in Figure 13. Laser light diffraction technique describes in very accurate way the 

changes in the suspensions during processing (Papers III and V) and due to the formulation (Papers 

I).  
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Figure 13. Bimodal and unimodal PSD of dark chocolate particles obtained after the mixing and 
tempering step respectively (corresponding to Figures 2 a, e in Paper III). 
 
 
4.2 Influence of formulation on microstructure 

 

In literature several studies related to the relationships between food microstructure and formulation 

are present. Bayod et. al (2008) showed the influence of incorporation of different tomato paste in 

the microstructural properties of the final ketchup products; Bengtsson (2009) demonstrated the 

effect of different vegetable fibre suspensions on the microstructural characteristics of low fat 

sausages; Lee et al. (2001) focused their studies on the relationship between different formulated 

doughs and its microstructure. 

 

Model systems 

For what concern chocolate type dispersions various ingredients and different amounts of them can 

be used during their manufacture. Chocolate composition, in terms of type and amount of  

ingredients, plays a fundamental role in influencing its microstructural and physico-chemical 

properties. The role of fat, that is the most expensive and important component in a chocolate recipe 

has been for long time investigated. In particular several studies (Marangoni, 2002; Awad & 

Marangoni, 2003; Shi et al., 2005) were carried out on fat model systems and showed the 

relationship between size, shape, amount and type of crystalline fat material and microstructural 

characteristics.  

Other studies (Johansoon & Bergensthal, 1992) report  the influence of minor component, such as 

emulsifiers, on the structural properties of model chocolate type systems. All these studies confirm 

how the interactions between the suspended particles (e.g. sugar, cocoa, milk powder) and the 
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continuous phase influences the existing network and consequently can be associated to the 

rheological properties and structural characteristics of the final product (Sato et al., 2009). 

The microstructural behaviour of chocolate type dispersions can be influenced by the presence of 

minor constituents, such as water (Gaonkar, 1998; Beckett, 2008). It is known that water affects 

stability, quality and physical properties of foods because of the interaction of its molecules with 

other food constituents (Lewicky, 2004). The water binding influence on the solid disperse or 

aggregate phase was no longer considered important for microstructural and rheological behaviour of 

suspensions, especially at low water content, but this does not reflect the reality (Windhab et al., 

2000). In chocolate type suspensions the final water content is around 0.5-1.5%, and despite this 

scarce amount, its presence can influence the microstructure of the product (Paper I). 

 

New findings 

Paper I studied the influence of different formulations on microstructural properties of dispersed 

model systems. In particular the influence of small amount of water on the final properties of model 

samples made up by sugar, water and cocoa butter was evaluated. 

From microstructural analysis, carried out by using a polarized light microscope, increasing the sugar 

solid content from 45 to 60 φ with 0.1 φ of water, an increase in the aggregation was observed. This 

is due to the increase of the volume fraction of particles that involves an increase in the contact point 

between them (Afoakwa et al., 2009). Increasing the water amount from 0.1 to 0.5 φ for all sugar 

concentrations, these interactions between particles become even stronger as shown in Figure 14. 

According to the studies of Lewicky (2004), increasing the water content, the macromolecules of 

sugar acquire structure, due to their interactions with water molecules (Figure 14). 

 

 

(a)      (b) 
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                                 (c)     (d) 

 
 

 

 

 

From Paper I it seems that small amount of water has an impact on the aggregation of particles 

higher than sugar. This study showed that water presence even at very small amount is an important 

factor able to affect both network strength and the rheological properties of food dispersions, as we 

can see in the further chapter 5. 

 

Real systems 

There are three different main type of chocolate: dark, milk and white, according to their formulation 

in terms of cocoa solids, milk fat and cocoa butter, the final products have different compositions of 

carbohydrate, fat, proteins, etc.. (Fernandes et al., 2013). Chocolate composition influence during 

processing the different interactions that take place among ingredients, hence involving changes at 

microstructural level. Studies on the fat amount in dark chocolate recipes (Beckett 1999; Dhonsi & 

Stapley 2006; Afoakwa et al., 2009) highlighted how the greatest amount of cocoa butter in 

formulation involves wide variations in sugar crystalline network structure and inter-particle 

interaction, reducing the aggregation state of matrix. 

Some other studies (Attaie et al., 2003; Franke & Heinzelmann,2008) showed the influence of cocoa 

particles and milk powders on the microstructural properties of cocoa type dispersions. In particular 

the high porosity of these two kind of solid particles, can influence in different way the aggregation 

with sugar and the  microstructure system. 

 

New findings 

The influence of (each single real) formulation on microstructural properties of dark (Papers II, III), 

milk (Paper IV) and white (Paper V) chocolate was investigated.  

Figures 14 a, b, c, d. Micrographs of model dispersions obtained with: 55 φ of sugar and 0.1 φ of 
water, 55 φ of sugar and 0.5 φ of water, 58 φ of sugar and 0.1φ of water and 58 φ of sugar and 0.5 
φ of water respectively (corresponding to Figure 5 a, b and Figure 6 a, b in Paper I). 
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Even if, all this kind of chocolate were subjected to the same manufacture process, results in 

microstructure compositions were different, due to  their different formulations. 

A comparison between the micrographs obtained from dark and milk chocolate after the refining step 

(Figure 15 a, b) show strong differences in the microstructure of the matrix. 

 

(a) 

  

 
(b) 

Figure 15 a, b. Micrographs of dark and milk chocolate samples respectively obtained from the 
reefing step of the manufacture process (corresponding to Figures 3c in Paper III and Figure 2c in 
Paper IV respectively). 
 

As reported in chapter 5, these different structures due to the different amount of cocoa butter 

involves different rheological final characteristics. In milk chocolate, the presence of milk powder 

with an inner high porosity, involves an immobilization of fat on particle surface (surface fluid 

immobilization, SIF), mainly after the refining step that led to a break of their structure, and inside to 

the formed aggregates (volume fluid Immobilization VIF). The latter is related to particle cavities 

and pores as well as to inner voids in particle aggregates. Volume immobilization will increase with 

the inner porosity of particles or particle aggregates. The portion of immobilized fat can be reduced 

during the manufacture process. 
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4.3 Influence of manufacture process on microstructure  

 

Several studies were conducted on the influence of the processing (Parada & Aguilera, 2001; Muller-

Fischer & Windhab, 2005; Agbisit et al., 2007; Zepon, 2013) on the microstructural properties of 

several food matrices, but to our knowledge there are no researches on chocolate types matrix. Final 

quality attributes and physico-chemical properties of food dispersions, are affected by a number of 

factors, such as: particle size (PS), particle size distribution (PSD) and interactions and are strictly 

related to both raw materials characteristics and to the manufacture process (Servais et al., 2002; 

Granger et al., 2005; Sato et al., 2009; Baldino et al., 2010). The manufacture process with its 

different steps (mixing, pre-refining, refining, conching and tempering) can affect chocolate 

properties and final characteristics. During chocolate manufacturing, mixtures of sugar, cocoa and fat 

are heated, cooled, pressurized and refined (Beckett, 2008). These process steps determine PS 

reduction and the breakage of agglomerates and distribution of lipid and lecithin-coated particles 

through the continuous phase, thus modifying the microstructure of final product (Afoakwa et al., 

2009). The interactions between the suspended particles and the continuous phase provide 

information about the existing network and consequently can be associated to the properties and 

characteristics of the dispersions (Sato et al., 2009).  

 

New findings 

In Papers II, III, IV and V, the influence of the different process steps on microstructural properties 

of dark, milk and white chocolate was evaluated. Samples were obtained at each phase of the 

manufacture process: mixing, pre-refining, refining, conching and tempering. Laser light diffraction 

technique was used to study the particle size distribution (PSD), ESEM was used to analyze 

modifications in the network structure of dark and milk chocolate. Micrographs of white chocolate 

were obtained by using a light microscope. White chocolate in fact thanks to its optical properties in 

terms of lightness, due to the absence of cocoa particles, can be easily observed by using a light 

microscope. Each processing step influences in strong way the microstructural characteristics of the 

product and mainly the PSD. A reduction in particles size was observed for all samples, from the 

mixing  to the tempering step. However, microstructural analysis showed an increase in contact 

points and in the aggregation state of particles in all formulations from the mixing to the refining step 
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(Figures 16, a, b ,c). The result is a fully packed suspension in which the smallest particles fill spaces 

between the largest ones (Bayod, 2008). 

 

 

 

 

 

 

 

 

 

The conched and tempered samples (Figures 16 d, e), even if made of particles with the smallest size 

diameter, were constituted by a less dense sugar crystalline network. This could be related to the 

further addition of cocoa butter and lecithin, during the conching step, in dark and white chocolate 

samples, that, wet the suspension, filling the gaps within the crystal network, and open the structure 

(Afoakwa et al., 2009). In milk chocolate samples the less dense structure in the last process steps is 

due to a redistribution of cocoa butter and to a breakage of the previous agglomerates. 

 

Figure 16 a. ESEM micrograph of mixed 
dark chocolate samples (corresponding to 
Figure 1a  in Paper II and 3 a in Paper III). 

 

Figure 16 b. ESEM micrograph of pre-refined 
dark chocolate samples (corresponding to Figure 
1 a in Paper II and 3b in Paper III). 

Figure 16 c. ESEM micrograph of refined 
dark chocolate samples (corresponding to 
Figure 1 c in Paper II and 3 c in Paper III). 
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Figure 16 d. ESEM micrograph of conched 
dark chocolate samples (corresponding to 
Figure 1d in Paper II and 3d in Paper III). 

 

Figure 16 e. ESEM micrograph of tempered 
dark chocolate samples (corresponding to 
Figure 1 e  in Paper II and 3 e in Paper III). 
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5  Rheological behaviour of chocolate type dispersions  

 

 

 

Rheology is the study of the deformation and flow of matter (Barnes & Hutton, 1989) and it 

investigates how materials deform under application of external forces. Deformation expresses the 

relative movements of the "particles" (atoms, molecules, solid particles, etc...) present in the matrix. 

Consequently the way in which a material deforms depends upon the structure of the material.  

The rheological behaviour of dilute suspensions, that assume no interactions between particles, is 

notoriously described by the Einstein equation (3) that stated that the viscosity of a dilute suspension 

of hard spheres (φ ≤ 0.03), can be defined as: 

 

η = ηs (1 + 2.5 φ)   (3) 

 

in which ηs is the viscosity of the dispersion medium and φ represent the volume of a cubic 

centimetre occupied by the particles in suspension (Mark & Simha, 1940).  

The Krieger-Dougherty equation (4) describes the viscosity of more concentrated suspensions of 

hard spheres (φ ≤ 0.63) at low shear rates γ→ 0, when hydrodynamic effects dominate and particle 

interactions are negligible: 

η = ηs 1-[
mϕ

ϕ ] mϕ5.2−
   (4) 

In highly concentrated suspensions, as in the case of cocoa dispersions, the interaction between 

particles dominates over the hydrodynamic forces, especially at low shear rates, and the material 

exhibit a complex flow behaviour. The viscosity of suspensions can be divided into three areas as 

shown in Figure 17. 
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Figure 17. Area of high, medium and low viscosity of dispersion (Adapted from Banerjee et al., 

2010). 
 

At very low shear rates and depending on the type of suspension it can either exhibit a Newtonian 

plateau or a yield value. Increasing shear rate will lead to a shear thinning region which levels off to 

an upper Newtonian plateau. At some point in the upper Newtonian region there can be an increase 

in viscosity which is based on instability effects (Banerjee et al., 2010). The structures of matrix can 

be related to each segment of the flow curve. In cocoa dispersions distance between the individual 

particles decreases and continuous networks are formed. In this case the system exhibits a "yield" 

value. The liquid phase is often, immobilized within the agglomerates and thus the freely available 

liquid phase is less than the total amount of liquid phase. Increasing the shear rate, the forces acting 

on the particles increase, and the structures are altered. The agglomerates will brake up, release the 

entrapped liquid phase and dilute the system. This decreases the resistance to flow and hence 

viscosity.  

The fundamental rheological properties investigated in this study were the flow behaviour and the 

solid- like character of cocoa dispersions. 

 

 

5.1 Fundamental and empirical properties 

 

Flow measurements 

The way in which a material deforms following an applied stress defines its flow behaviour. The 

flow behaviour of materials can be described by the relationship between the shear stress (τ) and the 
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shear rate (γ). The shear stress can be defined as the force divided by the area parallel to the force 

direction, while the shear rate is defined as the velocity gradient or deformation rate. 

The viscosity (η) can be expressed as a constant linking stress and shear rate as follow (5): 

 

η = 
γ
τ

    (5) 

 

For a Newtonian fluid such as cocoa butter, shear stress and shear rate have a linear dependence, but 

in concentrated suspension, these two parameters are not linear related and fluids exhibit a Non-

Newtonian flow (Dickinson, 1992). The cocoa dispersions, a typical example of Non Newtonian 

fluid, as all the major part of the concentrated suspensions are characterized in particular by the 

presence of a yield stress (σ), defined as the minimum stress required to achieve flow. When the 

stress applied to a material is below a certain value (σ < σy), the material exhibits little or no 

deformation. When the stress exceeds a certain value (σ > σy), the material begins to flow. The yield 

stress is related to the strength of the network structure, which in turn results from attractive particle-

particle interactions (Larsson, 1999; Coussot & Ancey, 1999). The magnitude of the yield stress is 

affected by a number of factors, such as the density of the network, particle concentration and 

particle size (Dzuy & Boger, 1983).  

Flow behaviour of cocoa dispersions is usually evaluated according to the International 

Confectionary Association (ICA, 2000), increasing the shear rate from 2 to 50 s-1. Several models 

were developed in order to describe the chocolate behaviour and evaluate the yield stress and the 

infinity viscosity of these complex matrixes as after specified, on the basis of the experimental 

curves obtained. 

As know by literature (Barnes, 1999) the flow behaviour of cocoa matrix is complex, the use of 

structurants together with the increasing presence of flocculated and aggregate structures, due to the 

influence of formulation and manufacture process, leds to the appearance of thixotropy phenomena. 

The thixotropy designates the energy required to break down the structure that is not recovered 

during the experimentation period (Roopa & Bhattacharya, 2009) and represents the rate of the 

internal breakdown of matrix (Dolz et al., 2000).  

 

Oscillatory measurements 

Flow properties are not enough to analyse the chocolate structure and to understand as formulation 

and operating conditions can affect it. Therefore, it should be necessary to adopt techniques able to 
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measure parameters related to material structure and independent on deformation history (Baldino et 

al., 2000). This is the case of the so-called ‘‘asymptotic kinematics’’ carried out in conditions of 

linear material behaviour where measured material functions are independent from the magnitude of 

the stress/strain and are only the function of microstructure (Van Der Vaart et al., 2013). 

In order to identify the linear viscoelastic range (LVR), in which the viscoelastic properties become 

independent on the level of stress/strain applied, stress/strain sweep test is applied. This test consists 

of increasing the magnitude of the stress or strain, while keeping the frequency of oscillation 

constant, usually 1 Hz. In food materials, strains are often kept below 1% to avoid non-linear effects 

(Steffe, 1996). In cocoa dispersions (Papers II, IV, VI, VII ) results showed a narrow viscoelastic 

region, low intensity stresses can destroy the structure of system. Subsequently frequency sweep test 

were carried out in the LVR in order to evaluate the storage modulus (G’), and the loss modulus ( 

G’’). Storage modulus is an index of the elastic behaviour of a sample, and represents the 

deformation energy stored in the sample during the shear process and the loss modulus (G’’) that 

corresponds to the viscous or dissipative component of a sample is a measure of the sample energy 

lost during the shear process (Angioloni & Collar, 2009). 

For solid-like materials G’>>G’’ , whereas for liquid-like materials G′<<G’’.  The complex modulus, 

is defined by: 

 

G* = G’ + G”     (6) 

 

and the complex viscosity is thus defined by 

 

η* = [G*(ω)]/ω    (7) 

 

where ω is the frequency of oscillation. 

 

Rheological models 

Several rheological model functions were developed in order to describe and predict the chocolate 

behaviour; models are mathematical equations, utilized to describe the various flow behaviour curves 

on shear stress–shear rate diagrams. 

Pseudoplastic and plastic fluids (e.g. cocoa dispersions), are assumed to have an initial viscosity at 

the origin η0 which then decreases with increasing shear rate. The decrease is assumed to be the 

consequence of the loss of structure/network in the material, as previous shown. When the molecular 
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structure/network in the fluid has reached a steady state (where the intermolecular forces acting to 

build the structure/network and those acting to break it down by shear, are in equilibrium) no further 

decrease of viscosity is observed. This viscosity is called equilibrium viscosity η∞, (Figure 18). 

 

 

 

 

 

Figure 18. Typical pseudoplastic and plastic behaviour (Adapted from Spetch et al., 2007). 
 

In this type of material, the viscosity changes from η0 to η∞ with increasing shear rate. For a 

mathematical description of these sigmoid shaped curves, a number of model functions have been 

developed. In general, most of these functions require two or three parameters, depending on its 

complexity. These parameters are constants in the model function, whose numerical values make the 

function specific for a given material.. Normally, model parameters are measured experimentally, or 

they are obtained from other researchers working on same material, who report their findings in the 

scientific literature. 

Different models were elaborate and applied to concentrated dispersions, but the most suitable in the 

case of cocoa dispersions were: the rheological model of Ostwald, commonly referred to as the 

Power Law model (Holdsworth, 1993; Hugelshofer, 2000), the model of Casson (ICA, 1973), and 

the model of Windhab (IOCCC, 2000).  

- The Power Law model is represented by the following equation (8) 

 

σ = K* γ&  n                                                     (8) 
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where σ is the shear stress (Pa), K is the consistency index (Pa sn), γ is the shear rate (1/s) and n is the 

dimensionless flow behaviour index (Paper VII ). When the flow behaviour index is less than unity 

(n < 1) the function describes a pseudoplastic flow behaviour curve (convex profile). When the flow 

behaviour index is greater than unity (n > 1) the function describes a dilatant flow behaviour curve 

(concave profile). For Newtonian fluids, the flow behaviour index becomes 1. 

- The rheological model of Casson is normally expressed by (9): 

 

6.06.0
0

6.0 yn
PL

+= ττ    (9) 

 

where τ0 is the yield stress and ηPL is the so-called “plastic viscosity”. The model of Casson was 

originally introduced for suspension of pigments and describes the rheological behaviour of 

viscoplastic fluids (Bolenz & Tischer, 2013). In the 1973 the ICA recommended the use of the 

Casson model for shear rates between 5 and 60 (s-1) (Ludger et al., 2007). For this reason, the Casson 

model is the most known and used to study the rheological behaviour of cocoa dispersions; however, 

according to Weipert et al. (1993), sometimes this model does not reflect in accurate way the 

physical properties of chocolate because its rheological properties do not fit exactly to the Casson 

equation. For this reason modification to Casson model were generated (Paper IV) and further 

model developed such as the Windhab one. 

- The Windhab model has been recommended for shear rates in the range between 2 and 50 s-1
 at 40°C 

(10): 

 

τ = τ0 + η∞*γ + (τ1 - τ0) (1 – e - γ./ γ.*)    (10) 

 

This model assumes that when liquid chocolate is put under shear, there is a change in structure of 

the molten chocolate. This can be observed by noting a change (decrease) in viscosity from an initial 

value (structure of no shear) to a steady state value. Here, the ordering forces (“building structure”) 

and disordering forces (“breaking down structure“) are in equilibrium and the chocolate shows an 

equilibrium viscosity. When the shear stress is increased further, an equilibrium viscosity is reached 

which no longer decreases any further, and a final viscosity η∞ is reached. In the region of this final 

viscosity η∞, there is a straight line with a constant slope in the flow curve. This straight line can be 

extrapolated back to the point of zero shear rate in order to find the intercept. This intercept would 

give the parameter τ1  which is an hypothetical yield stress (Ludger & Teixteira, 2007) (Figure 19). 
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Figure 19. Schematic diagramme of the Windhab model (Ludger & Teixteira, 2007). 

 
In order to find the point on the curve where the final viscosity η∞ is reached, the Windhab model 

uses a second parameter τ∗ = τ (γ*) indicating that the shear-induced loss of structure is at a 

maximum when γ = γ*˙ is reached. For shear rates higher than γ*˙ the material behaves like a plastic 

fluid and the Bingham equation would apply. 

 

Empirical properties 

Empirical properties of a food derive from a group of mechanical and rheological properties (not 

from a single property) depending on the structural parameters of the product and the way in which 

these are perceived (Afoakwa, 2010). These properties often are called "textural properties" of a 

food, designed as a set of physical characteristics resulting from the structural elements of the 

product, perceptible by the senses, related to the deformation or flow of the food under stress (Steffe, 

1996). 

Empirical tests are often used in food engineering and are well-known as quick, cheap test to identify 

the flow behaviour of complex fluids. These tests are useful to simulate the real conditions of the 

process and to obtain objective results comparable with the sensory evaluations (Perrot, 2012). The 

empirical imitative tests, in fact, are carried out by specific tools, called dynamometers, that 

mechanically reproduce the conditions in which the product is located in reality. Textural parameters 

are extremely important for the evaluation of the mechanical properties of chocolate (strictly related 

to the sensory characteristics during consumption) and also to predict its rheological behaviour 

during processing (Beckett, 1999; Bourne, 2002). For these kind of matrix dispersions the most 

suitable empirical test are: the back extrusion and the hardness evaluation. The back extrusion 
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technique can be a very useful tool in assessing the rheological behaviour of non-Newtonian fluids 

(e.g. cocoa matrix) (Alviar & Reid, 2006). Using this test four structural parameters can be obtained: 

firmness, consistency, cohesiveness and index of viscosity. These measurements are performed to 

evaluate the degree of spreadability, consistency and resistance to flow (viscosity) of a material 

(Ziegler & Hogg,  1999) .   

Back extrusion test consist in a compression and subsequently de-compression of sample, hold in a 

back extrusion container by using a disk attached to an extension bar.  

From previous studies (Beckett, 2008; Bueschelberger, 2004), a strictly relationship was observed 

between particle size (PS) and back extrusion index in cocoa products. In particular, particles with 

smaller diameters are firmer, more consistent, cohesive and viscous than those with larger diameters. 

The presence of particles with smaller diameters involves an increase in their number and of their 

contact points due to the increase in the specific surface area. The increase in the state of aggregation 

of particles involves the presence of higher values of firmness, consistency and cohesiveness, 

restricting spreadability and viscosity for a specific solid concentration.  

A reduction in all textural parameters was also observed increasing the fat amount in the formulation, 

probably due to its lubricant effect. 

Another habitual empirical analyzed parameter is the hardness of chocolate. Studies presents in 

literature (Beckett, 2008; Afoakwa et al., 2009; Afoakwa, 2010) showed inverse relationships 

between hardness and particle size, fat and lecithin content. The  greater hardness levels were noted 

in presence of small particle size and low amount of cocoa butter, as previous showed for back 

extrusion index. Significant reductions were noted (Afoakwa et al., 2009) with the increase of 

lecithin content from 0.3 to 0.5 % and with the increase in particle size.  

These results showed that the combined effects of PSD, fat and lecithin could be 

manipulated to control softness and/or hardness of tempered dark chocolate, with 

implications in quality control and production cost. 

 

 

5.2 Influence of formulation and manufacture process on rheological 

properties  

 

Rheological properties are a nodal point in the oil- continuous foods. They govern properties such as: 

flow behaviour, consistency, mouth feel, spreadability and handling of the product during different 

production and transportation steps (Servais et al., 2002). The rheological properties depend on 
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particle-particle interactions and particle microstructure and are directly influenced by the adsorption 

of different molecular species on particles (Johansoon & Bergensthal, 1992c). It is important to 

control the viscosity of chocolate and of related cocoa products in order to obtain good quality 

products. In particular flow properties of cocoa dispersions, a concentrated lipophilic suspension of 

solid particles dispersed in a continuous fluid, are strongly influenced by its formulations, in terms of 

solid fraction and in terms of fat composition (Attaie et al., 2003; Franke & Heinzelmann, 2008). 

Confectionery manufacturers optimizing the process and formulation can control and manipulate the 

chocolate rheological characteristics. The relationships between all ingredients present in cocoa 

dispersions and the continuous phase influencing the microstructural properties of the final matrix, 

affect strongly its rheological properties. The type, quality and quantity of each ingredient used in a 

recipe, particularly fats, affect the chocolate rheological and textural properties and also the flow 

parameters (Fang & Zhang 1997). Also single component present in formulation in small amount, 

such as, water should be take into account. Chocolate rheology exhibits a complex rheological 

behaviour, strictly dependent also on manufacture process (Bourne, 2002; Servais et al., 2004; 

Afoakwa et al., 2008). For this reason understanding how the single process step can affect the final 

rheological properties of these matrixes, could be very useful in order to manipulate and optimize the 

process efficaciously, and mainly to predict and improve quality of final product (Ahmed & 

Ramaswamy, 2006). During chocolate processing the ingredients are mixed, pre-refined, refined, 

conched and tempered in order to obtain desired rheological properties for a final defined product 

texture (Chevalley, 1999; Servais et al., 2004).  

 

New findings 

 

Formulation 

In Paper I the rheological properties of model dispersions were investigated. Model dispersions 

were obtained by using different volume fraction (from 45 to 60 φ) of icing sugar, dispersed in 

different cocoa butter concentration (45 to 55 φ), in presence of small amount of water (0.1φ and 0.5 

φ). 

Rheological properties were evaluated by using a stress controlled rheometer equipped with a vane 

geometry (Kinexus, Malvern, UK). This kind of geometry lets to measure the properties of non-

Newtonian fluids reducing the slip effects at walls. It also offers a way to introduce the testing 

element, a thin-bladed vane, into a structured liquid with the minimum amount of disturbance to the 

sample, making it very suitable for materials such as chocolate and other gelled liquids (Barnes & 
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Nguyen, 2001). This geometry forms a cross shape at the end of a central shaft and can be inserted 

into the sample with minimal disturbance of the microstructure. The fluid circumscribed by the vane 

moves as a solid cylindrical body therefore slip is effectively eliminated. Inserted into the fluid is an 

easy and convenient method of performing accurate rheology measurements on such samples (Stokes 

& Telford, 2004; Baker et al., 2006) 

From the flow curves analysis it was possible to highlight the presence of an apparent yield stress in 

all formulations, and how the increase of the sucrose volume fraction (45 to 60 φ) involves an 

increase of the yield stress values for all dispersion samples, according to the studies of  Den Ouden 

& Van Vliet (1997) and Dzuy & Boger (1983), that evidenced a relationship between yield value and 

particle concentrations. These results are in agreement with the microstructural ones that stated an 

increase in the network of the structure increasing the sugar amount. Plotting the sugar concentration 

as a function of the yield values, an exponential correlation was observed with high coefficient of 

determination (R2= 0.99). 

The presence of an apparent yield stress in these concentrated suspensions was corroborated by 

results of creep –recovery test, as shown in Figure 20. 

 

 

 
Figure 20. Creep recovery test on a model sample (corresponding to Figure 3 in Paper I). 

 

From graph it is possible to notice that when the applied shear stress is below a certain stress value, 

samples recover the initial structure immediately after stress removing, indicating that a solid-like 
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behaviour is predominant. If the stress is above a particular limit, the sample structure is broken and 

it starts to flow exhibiting a liquid-like behaviour (Baldino et al., 2010), showing the presence of a 

yield stress as previously observed from flow tests. In particular, shear rate and time needful to 

obtain the breakage of the structure seem to increase from sample with the lowest amount of sugar 

(45 φ) to sample with the highest volume of sugar (60 φ), probably related with the arise of the solid 

volume fraction of samples, as noted previously by using flow measurements. 

These kinds of concentrated dispersions are characterized by the presence of a yield stress. The 

second aim of this study (Paper I) was to evaluate the influence of small amount of water on 

rheological properties of samples expressed in terms of yield value. Figure 21 represents the yield 

stresses of dispersions at different considered sugar and water concentrations. 
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Figure 21. Yield stresses of dispersions at the different considered sugar and water concentrations 

(corresponding to Figure 4 in Paper I). 
 

As the concentration of sugar and water increases, three viscosity and yield stress regions may be 

identified. According with the model suggest by Goodwin (2004), it is possible to divide graph 

samples, showing the sugar volume fraction versus yield value, into three main regions, depending 

on their state of aggregation, obtaining a volume state diagram (liquid, solid-liquid and solid). The 

first region, which represents the low concentration suspensions (from 45 % to 48% φ of sugar), 

behaves like Newtonian fluids showing low viscosities and low yield values. The second region that 

corresponds to the intermediate level of concentration (from 48 % to 52% φ of sugar) exhibits slight 



- 44 - 
 

viscosities with a shear thinning behaviour and intermediate yield values. Above this concentration 

range, there is the region of highly concentrated samples corresponding to values of sugar >52 % φ. 

The behaviour of the curves in this region may suggest the formation of "structured" aggregates with 

a strong affinity between the particles. As a consequence, the fluidity of the samples is reduced and 

this involves an increase the yield values and a consequent drastically increase of samples viscosity. 

When the water content increases, even if in very low amount, the interaction between crystal 

changes, influencing in strong manner the yield value of dispersions. These results according to 

Johansson & Bergenståhl, (1992c), could be interpreted as the effect of the water adsorption onto 

sugar. Aggregations between sugar particles become more stronger, probably due to the formation of 

water bridges, involving an increase of the yield value of the experimental dispersions. From the 

curves it is possible to highlight  how small amount of water on the yield values of dispersions has an 

impact much higher compared to the sugar one.  

In Paper VI the influence of different kind and amount of fats on rheological and textural properties 

of cocoa creams was studied. The type of fats used in the cream formulations were fractionated palm 

oil and hydrogenated fats (HFs), follow the mixture design (Ruguo, 1999) shown in table 4. 

 

 

Table 4. Mixture Design used for the Fat formulation in cream samples (corresponding to Table 2 in 
Paper VI). 

Cream samples Palm oil (%) HF (%) 

 

Anut 100 0 

Bnut 75 25 

Cnut 50 50 

Dnut 25 75 

Enut 0 100 

 

 

Two commercial nut creams produced by Italian confectionery factories were used as controls. These 

samples were indicated as: X1, the medium-standard quality and X2 the market leader. From the 

product label, the ingredient composition for X1 cream is as follow: sugar, vegetal and hydrogenated 

fats (5%), nut paste (13%), cocoa powder, skimmed milk powder (4%), milk whey, lactose, soy 

lecithin, natural extracts; for X2 cream: sugar, vegetal fats, nuts (13%), cocoa powder, skimmed milk 

powder (5%), milk whey, soy lecithin, natural extracts.  
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Rheological tests were carried out only on A, B, C, X1 and X2 samples, being D and E creams 

extremely consistent and too viscous to conduct textural or oscillatory measurements; this was 

probably due to the high amount of HF in their formulations. 

Flow curves of the analyzed nut cream samples are shown in Figure 22. 

 

 

 

 
Figure 22. Flow behaviour of nut creams realized with different type and amount of fats 

(corresponding to Figure 4 in Paper VI). 
 

The viscosity of the Anut and X1 samples was very similar; X2 had an intermediate initial viscosity 

value (206 Pa s). Sample Anut, made up of palm oil and a 1.5% of solid fat content (SFC), had a 

lower consistency, a less aggregated and elastic structure than Bnut and Cnut, made with 25 and 50% 

of HF. X1 commercial sample showed a plastic structure similar to Anut, while X2 cream presented a 

structure more consistent and elastic close to that of Bnut sample, probably due to the presence of 

hard vegetable fats or HF. These results were supported also, by the consistence index obtained from 

the Power Law model, by the dynamic and textural results. This work confirms that the use of high 

amount of HFs and/or hard vegetable fats leads to a strong fat network, which implies more 

aggregated structure, influencing the final rheological properties of the cocoa matrix. For this reason 

the choise of the right type and amount of fats during the formulation is fundamental in order to 

improve and optimize the rheological properties of the final product. 

The relationship between formulation and in particular between different fat amounts (e.g. cocoa 

butter), and the rheological properties of cocoa matrix was further studied in Papers V, VII. 
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Values of yield stresses were evaluated in dark (Paper VII ), milk (Paper IV) and white chocolate 

(Paper V) formulations according with ICA (2000) and Servais et al., (2002) by evaluating the 

values of stress at shear rates of 5 s-1 and by using different rheological model, in order to better 

explain the rheological values obtained by the flow curves. Milk and white chocolate samples that 

showed higher amount of cocoa butter compared to the dark one, showed lower rheological 

parameters respect this latter formulation. In order to easy underline the differences between yield 

stress values of chocolate samples, these are reported in Table 5.  

 

 

Table 5. Yield values of the three cocoa chocolate formulations after tempering process step 
 

 Chocolate samples Yield Stress 

(Pa) 

DARK  33.07c 

MILK  14.56b 

WHITE  11.15a 
a-c values followed by different letters differ significantly at p < 0.05 level 

 

As know by literature (Chevalley, 1996) cocoa butter, due to its free-moving lubricating plastic flow, 

coats particles and decreases forces between them. This effect, reducing the resistance to flow and 

improving the mobility of the matrix (Beckett, 2008), gives arise to lower values of viscosity and 

yield stress. For this reason milk and white chocolate, having higher amount of cocoa butter than 

dark, need less energy to starts flowing. 

A similar trend was observed for what concern the dynamic measurements (Table 6), the elastic 

modulus (G’) in fact showed the higher values in dark chocolate sample than in milk one, 

highlighting the presence of more elastic structure in the first one. As reported in previous studies 

(Johansson & Bergensthål, 1992; Glicerina et al., 2013) high values of G’ are related to a high level 

of interactive forces between particles; this confirms the high amount of stress needed for dark 

chocolate samples to start flowing. Milk chocolate samples showed the lowest values of G’ probably 

due to the lubricating effect of the major amount of cocoa butter present in formulation. 
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Table 6. Storage (G’) and loss (G’’) modulus of dark and milk temperate chocolate samples 
evaluated at 1Hz 

Chocolate samples G’(Pa) G’’(Pa) 

DARK  4133b 1396b 

MILK  2873a 798a 

a-b values followed by different letters differ significantly at p < 0.05 level 

 

Empirical results (reported in Table 7) were in agreement with that obtained from the fundamental 

rheological analysis. Dark chocolate samples in fact showed the highest values of firmness, 

consistency, cohesiveness and index of viscosity.  

 

Table 7. Textural parameters of dark, milk and white temperate chocolate samples evaluated at 1Hz 

Chocolate 

samples 

Firmness 

(N) 

Consistency 

(N s) 

Cohesiveness 

(N) 

Viscosity index 

(N s) 

DARK 20.10b 110.14b 16.07a 105.07 a 

MILK  0.79a 0.28a 0.40a 1.17a 

WHITE  0.92a 0.87a 1.83a 0.18a 
a-c values followed by different letters differ significantly at p < 0.05 level 

 

Lower rheological values in milk and white cocoa samples can be further attributed to the presence 

of milk powders that contains milk fat. Milk fat is commonly used in chocolate because of its 

desirable flavour and its lower price, compared with cocoa butter. The presence of milk fat also 

influences the physical properties of chocolate masses, such as the crystallization behaviour of cocoa 

butter and the rheological properties of the final chocolate. Previous studies (Hartel, 1996) 

highlighted a negative correlation between the amount of milk fat and the hardness of processed 

chocolate. 

 

Manufacture process 

In the researches carried out in this doctoral thesis, the rheological properties of dark (Papers II, 

VII ), milk (Paper IV) and white (Paper V) chocolate were also evaluated during all process steps: 

mixing (A Dark, Milk, White), pre-refining (B Dark, Milk, White), refining (C Dark, Milk, White), conching (D Dark, 

Milk, White) and tempering (E Dark, Milk, White). 
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For each sample the apparent viscosity (η) against shear rate (γ) was graphically used to represent the 

rheological behaviour in steady state conditions. It was evident that the apparent viscosity decreased 

increasing the shear rate in all cases (Figure 23 a, b, c), proving the pseudoplastic or shear thinning 

nature of chocolate.  

 

 

 

 

 

 

 

     

 

 

 

 

 

In order to better explain the rheological values obtained by the flow curves, several rheological 

models were applied. Each model was chosen in order to obtain better coefficient of determinations 

(R2). 

Figure 23 b Flow curves of milk chocolate 
samples, after mixing (A), pre-refining (B), 
refining (C), conching (D) and tempering (E) 
steps (corresponding to 3 Figure in Paper IV). 

Figure 23 c Flow curves of white chocolate 
samples, after pre-refining (B), refining (C), 
conching (D) and tempering (E) steps 
(corresponding to Figure 5 in Paper V). 

Figure 23 a Flow curves of dark chocolate samples, 
after mixing (A), pre-refining (B), refining (C), 
conching (D) and tempering (E) steps (corrisponding 
to Figure 2 in Paper VII). 
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In particular for what concern dark chocolate samples, the obtained flow curves were evaluated and 

fitted according to the rheological model of Ostwald, commonly referred to as the Power Law model 

(section 5.1). Power Law model provided high coefficients of determination (R2), varying from 0.75 

to 0.99 (Paper VII ). 

As illustrated in Figure 23a and as confirmed by the yield stress and the apparent viscosity values 

(evaluated according to Servais et al., 2002) and on the basis of the k obtained (Table 1 in Paper 

VII ) the viscosity showed a drastic and significantly increase (P<0.05), from sample Adark to Cdark. 

The highest values of these rheological parameters, as for the sample C, made up from the smallest 

particles, could be attributed to the increase of the contact point between particles, that forming very 

aggregated structures (as previous shown by the microstructural analysis, Chapter 4.3), In these 

samples is necessary a major amount of stress to break them and initiate to flow (Afoakwa et al. 

2009). Samples Ddark and Edark presented the lowest rheological parameters compared to other 

samples, probably related with their less aggregate packing structure network. In these steps, in fact 

the addiction of lecithin and further cocoa butter, because of its lubricating action, reduced the 

particle–particle interactions, increasing their mobility that involved a reduction of viscosity 

(Vernier, 1998). These results are supported by the studies of Dzuy and Boger (1983), Coussot and 

Ancey (1999) and Larsson (1999) that noticed a high dependence of yield stress and apparent 

viscosity on particles size and their interaction (Papers II and VII ) 

Frequency sweep tests results were also in agreement with the steady state ones (Table 8): 

 

Table 8. Storage (G’) and loss (G’’) modulus of dark chocolate samples evaluated at 1 Hz 
(corresponding to Table 2 in Paper VII). 

Samples G’ 

(Pa) 

G’’ 

(Pa) 

Adark 16346b 2046b 

Bdark 18593c 3161c 

Cdark 167086d 21473d 

Ddark 5966a 1406a 

Edark 4133a 1396a  
a-d values followed by different letters differ significantly at p < 0.05 level 

 

Bdark and Cdark samples showed the highest significantly G’ values compared to the others. Sample A 

showed viscoelastic properties with intermediate values of G’ and G’’ inside the clusters Bdark–Cdark 

and Ddark–Edark. A significantly lower parameters of G’ and G’’ were found for the samples Ddark and 
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Edark, constituted by a weakly structured system, due to the lubricating and emulsifier effect of fat 

and lecithin. These results are in agreement with the studies of Johansson and Bergensthal (1992), 

that highlighted how the effect of emulsifiers on the sugar particles, reducing the changing in the 

interaction particles and in the network structure ones, involves a decrease of the elastic component 

G’.  

Results of textural properties of dark chocolate samples are shown in Table 9 (Paper VII ). 

 

 

Table 9. Textural properties of dark chocolate samples (corresponding to Table 3 in Paper VII). 

Samples Firmness 

(N) 

Consistency 

(N s) 

Cohesiveness 

(N) 

Viscosity index 

(N s) 

Adark 54.90b 498.26b 36.47a 414.40a 

Bdark 146.57c 739.80c 84.83c 718.90c 

Cdark 378.82d 1624.40d 199.90d 1106.00d 

Ddark 29.30a 147.76a 22.33a 147.00a 

Edark 20.10a 110.14a  16.07a 105.07a 
a-d values followed by different letters differ significantly at p < 0.05 level 

 

Cdark and Bdark dark chocolate samples showed, for all the considered parameters, significantly higher 

values compared to other samples. These results are in agreement with the ones obtained from the 

fundamental rheological analysis, support the presence of a more consistent structure that arise a 

strong resistance to its compression. Sample Adark showed intermediate values of consistency and 

index of viscosity, between those of samples Cdark–Bdark and Ddark–Edark; while results of Ddark and 

Edark samples demonstrate the presence of a weak network structure, more sensitive to the breakage. 

For what concern milk chocolate samples (Paper IV) data were well fitted by the Casson model 

modified by Chevalley (1991), providing high coefficient of determination R2 ranged between 0.75 

to 0.99. Obtained values of the Casson yield value, Casson plastic viscosity, and of the yield stress 

and apparent viscosity (Afoakwa et al., 2008 and ICA, 2000) are shown in Table 10 . 
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Table.10. Casson yield values, Casson Plastic Viscosity, Yield stress and Apparent Viscosity of 
milk chocolate samples (corresponding to Table 2 in Paper IV). 

Samples Casson Yield 

value 

(Pa) 

Casson Plastic 

Viscosity 

(Pa s) 

Yield stress 

 

(Pa) 

Apparent 

Viscosity 

(Pa s) 

Amilk   6.82b 4.38b 37.10b 3.84 b 

Bmilk  11.97c  7.82c 91.10c 10.84 c 

Cmilk  35.70d 15.36d         209.33d  23.23 d 

Dmilk   2.75a 1.55a 16.93a 1.53 a 

Emilk   1.95a 0.21a 14.56a 1.32 a 

a-d values in the same column followed by different letters differ significantly at p < 0.05 level. 

 

A significantly increase in both Casson obtained parameters and in the yield stress and apparent 

viscosity was observed from sample Amilk to Cmilk. This could be attributed in part to the increase of 

the contact point between particles (Do et al., 2007), as confirmed by microstructural analysis results 

(Ch.4.3) and in part to the presence of large void spaces between aggregates (Ch.4.3) that 

immobilized cocoa butter. The immobilized fat, cannot contribute to the flow as lubricant, reducing 

matrix viscosity values (Franke & Heinzelmann, 2008). Samples Dmilk and Emilk were characterized 

by the lowest and significantly similar values of all rheological analyzed parameters, underlining the 

presence of a weak structure, as observed from microstructure results, that involves a less resistance 

to flow. In the conching step in fact, a destruction of the previous agglomerates, coupled to a 

reduction of the larger voids between aggregates and a re-distribution of cocoa butter between 

particles, was noticeable (Attaie et al., 2003). Cocoa butter, due to its free-moving lubricating plastic 

flow, coats particles and decreases forces between them, reducing the aggregation of particles and 

improving their mobility (Beckett, 2008). 

Results of dynamic measurements (Table 11) supported ones obtained in steady state conditions, 

confirming the high amount of stress needed for Bmilk and Cmilk milk chocolate samples to start 

flowing, compared with the others samples (Paper IV). 
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Table 11. Storage (G’) and loss (G’’) modulus of milk chocolate samples evaluated at 1 Hz 

(corresponding to Table 3 in Paper IV). 

Samples G’ 

(Pa) 

G’’ 

(Pa) 

Amilk 8416b 1281b 

Bmilk 13673c 2357c 

Cmilk          72746d          16873d 

Dmilk  3983a 807a 

Emilk 2873a 798a 
a-d values followed by different letters differ significantly at p < 0.05 level 

 

Results obtained by empirical analysis on milk chocolate samples are shown in table 12. 

 
 

Table 12. Textural parameters of milk chocolate samples  

a-d values followed by different letters differ significantly at p < 0.05 level 

 

Samples Cmilk and Bmilk also in this case showed significantly higher values for all the considered 

parameters respect the other samples, demonstrating the presence of an aggregate and very consistent 

structure. Sample Amilk, characterized by a structure made up from larger particles and more empty 

spaces, presents intermediate values of consistency and hardness significantly different from the 

other samples. Dmilk and Emilk, chocolate samples, had the lowest values of all analyzed parameters, 

confirming the presence of a structure affected by weak bonds, more susceptible to breakage. These 

results are positive for the sensory perception of product by the consumer (Bourne, 2002). 

Samples Firmness 

(N) 

Consistency 

(N s) 

Cohesiveness 

(N) 

Viscosity index 

(N s) 

Amilk 11.76b 21.38 b 1.41a 2.67a 

Bmilk 24.14c 37.49c 6.20c 16.70c 

Cmilk 61.15d 469.40d 20.81d 90.93d 

Dmilk 1.42a 0.39a 0.63a 2.10a 

Emilk 0.79a 0.28a  0.40a 1.17a 
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The last part of this research was related with the study of the rheological properties of white 

chocolate (Paper V). To our knowledge no previous studies are found in literature regarding the 

rheological properties of white chocolate. Because of this lack of studies on white chocolate, in this 

research, two different models were compared (the Casson model and the Windhab model), in order 

to accurately study the rheological behaviour of white chocolate during process. Results provided 

high coefficient of determination, underlined the usefulness of both methods in studying white 

chocolate rheological behaviour. In particular, the model of Windhab showed coefficients of 

determination ranged between 0.80 and 0.99, slightly greater than Casson one, being thus the most 

suitable for these kind of matrix (Paper V) . 

Yield stress and apparent viscosity were evaluated respectively at 5 s-1 and 40 s-1 (ICA, 2000; Servais 

2004). At the same time the Casson yield value, Casson viscosity, linear yield stress (Windhab) and 

the infinity viscosity (Windhab), were extrapolated from the two models applied in order to obtain 

more detailed information on the rheological properties of white chocolate. 

Data analysis proved that the product taken from the refining step (Cwhite), also in this case, has the 

significantly higher (p <0.05) values of yield stress and viscosity compared to all other samples, 

highlighting that the amount of stress required to obtain the flow was the highest. This result is 

probably related with the microstructural results (Ch. 4.3), from which this sample showed a highly 

aggregated matrix. Sample Bwhite occupy an intermediate position regarding the values of yield stress 

and viscosity, while samples Dwhite and Ewhite , made up from of less aggregated structures (Ch.4.3), 

showed statistically lower values than the other samples. In the conching step in fact a further 

addition of cocoa butter and lecithin was performed. The lubricating effect of these two components 

affecting the flow behaviour of matrix reduces its viscosity (Dzuy & Boger, 1983; Larsson, 1999; 

Coussot & Ancey, 1999). 

Flow behaviour results of white chocolate were supported by the thixotropy ones. In particular 

thyxotropy measuremenst are strictly related with the microstructural ones. Thixotropy, representing 

the energy required to break down the structure that is not recovered during the experimentation 

period (Roopa & Bhattacharya, 2009), underlines how in very aggregate matrix, this force will be 

higher and not recovered because of the completely de-structuration of matrix. From the histogram in 

Figure 23, as expected, samples Bwhite and Cwhite, having the most aggregated structures, show the 

statistically higher thixotropic values. In agreement with Afoakwa, et al., (2008) the high level of 

aggregation of the structural matrix undergoes an irreversible break immediately after the removal of 

the stress. Samples D and E, showed the statistically lower thixotropic values. In agreement with 
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literature (Afoakwa et al., 2008), in fact, a well-conched and tempered chocolate should not present 

any thixotropy, and should be characterized by poorly aggregated structures. 

 

 

 

Figure 24. Thixotropy of white chocolate samples (corresponding to Figure 6 in Paper V). 

 

 

Empirical results in terms of firmness, consistency, cohesiveness and index of viscosity obtained by 

a back extrusion test are shown in Table 13. 

 

Table 13. Textural parameters of white chocolate samples. 

Samples Firmness  

(N) 

Consistency  

(N s) 

Cohesiveness 

 (N) 

Viscosity Index 

(N s) 

AWhite 1.39b 5.65b 6.26a 0.33a 

BWhite 1.03c 6.56c 6.07c 0.51c 

CWhite 8.34d 57.67d 33.08d 5.94d 

DWhite 0.88a 0.62a 2.07a 0.28a 

EWhite 0.92a 0.87a  1.83a 0.18a 
a-d values followed by different letters differ significantly at p < 0.05 level 
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Sample Cwhite taken from the refining phase, shows also in this case significantly higher values than 

the others for all the considered parameters, demonstrating the presence of a compact and very 

consistent structure. 

Samples Awhite and Bwhite showed intermediate and significantly different values of consistency and 

cohesiveness index compared to the others. This is probably due to the presence of structures 

characterized by larger particles size and more empty spaces compared to sample Cwhite. For what 

concern the hardness and viscosity index, samples Awhite and Bwhite, showed higher absolute values 

even if not statistically significant respect samples Dwhite and Ewhite obtained from the last two steps 

of the manufacture process. Dwhite and Ewhite samples had the lowest values of all the empirical 

analyzed parameters, confirming the presence of a weakly structure more susceptible to breakage. 

From the whole analysis of the obtained results, however, it can be stated that the empirical-imitative 

analysis were not able to discriminate well the structural characteristics of this matrix as a function of 

process steps. 
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6  Conclusions 
 

 

 

The microstructural studies carried out in this thesis on chocolate products, highlighted interesting 

findings: 

 

• Each single manufacture process as well as the formulations of cocoa matrices and chocolate 

type dispersions, have a considerable effect on the microstructure of the suspensions formed. 

• Small amount of water in formulations can affects in very strong way the microstructural 

properties of a food dispersions, increasing the interaction between particles. 

• Has been demonstrated that each step of the manufacture process (from mixing to tempering), 

promoting the reduction of particle size and a different distribution of fat and eventually 

emulsifiers, involves the breakage and the creation of aggregates in all chocolate products 

investigated. 

• Laser light diffraction and microscopy (optical and electron) techniques, coupled with image 

analysis, have been very useful in order to discriminate microstructural differences in 

chocolate samples related to the productive process. 

 

 

Obtained rheological results showed also important findings: 

 

• Formulation and process affect in considerable way cocoa matrix rheological properties, in 

terms of flow and oscillatory behaviour. 

• Different types and amounts of fats in formulation, involve deep changes in the rheological 

attribute of the final product, in particular affecting the viscosity of the matrix. 

• The manufacture process (from the mixing to the tempering step), involving a reduction in 

particle size and creating different aggregate structures, induces drastic modifications in the 

rheological properties of the cocoa matrix. 
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• Fundamental measurements were very accurate in order to highlight differences between 

chocolate samples, while empirical ones were not always able to discriminate chocolate 

samples. 

 

In conclusion, the overall obtained results demonstrate a strictly relationship between microstructural 

and rheological properties in cocoa and chocolate type matrices, that could be very useful in order to 

optimize and to improve (through formulation or process) the quality of the final product, mainly in 

terms of rheological properties, the most critical characteristics for this kind of dispersion products. 
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1. Introduction 
 
Particle technology is concerned with the dispersion of particles into different environments (Babini 

et al., 2005). A very exhaustive example of particles dispersed in a fluid matrix is represented by 

chocolate. Chocolate can be defined as complex systems made up from different solid particles 

(sugar, cocoa powder, milk powders, nuts, etc.) dispersed in a continuous fluid (oil) ( Afoakwa et 

al., 2008). The interactions between the suspended particles, and the continuous phase provide 

information about the existing network and consequently can be associated to the rheological 

properties and structural characteristics of the final dispersions (Sato et al., 2009). The rheological 

behaviour of this concentrated suspensions is further influenced by the presence of various 

additional compounds such as: emulsifiers (Mackie et al., 1989; Johansson & Bergenståhl, 1992c), 

minor surface-active components present (Kawaguchi et al., 2001) and water (Gaonkar, 1998; 

Beckett, 2008). In particular water affects stability, quality and physical properties of foods bacause 

of the interaction of its molecules with other food constituents (Lewicky, 2004). Range of water 

concentration in food begins with fraction of 1% and reachs even more than 98%. In fresh products 



and liquid food water is contained usually in large amounts, while in baked and sweet products as 

chocolate the amount of water is around 1-1.5 % ( Anese et al., 1996; Ahmed & Hosahalli, 2006). 

In products in liquid or viscous state, water involves changes in viscosity and consistency while in 

solid foods, water affects their response to applied force. The water binding influence of the solid 

disperse phase or aggregate were no longer a main aspect considered as important for suspension 

rheological behaviour, overall at low water content, but this does not reflect the reality, (Windhab et 

al., 2001) and despite of several studies (Mackie et. Al, 1989; Hugesolfer, 2000; Beckett, 2008) on 

the increase of viscosity of chocolate by increasing water content, to our knowledge no basic studies 

have been carried out on the influence of small amount water on food oil continuous models. 

In order to evaluate rheological changes in suspensions and in particular in chocolate products the 

cup and bob geometry is recommended (ICA, 2000), but in the last years a new kind of geometry 

has grown in popularity: the vane geometry. This kind of geometry let to measuring the properties 

of non-Newtonian fluids reducing the slip effects at walls. It also offers a way of introducing the 

testing element, a thin-bladed vane, into a structured liquid with the minimum amount of 

disturbance to the sample, making it very suitable for materials such as clay suspensions, chocolate 

and other gelled liquids (Barnes & Nguyen, 2001).This geometry form a cross shape at the end of a 

central shaft and can be inserted into the sample with minimal disturbance of the microstructure. 

The fluid circumscribed by the vane moves as a solid cylindrical body such that slip is effectively 

eliminated. Inserted into the fluid is an easy and convenient method of performing accurate 

rheology measurements on such samples (Stokes & Telford, 2004; Baker et al., 2006) 

The aim of this work was to investigate the influence of small amounts of water (0.1 % and 0.5% in 

volume) on the rheological and structural properties of chocolate type dispersion. In order to 

analyze these relationship, model system were obtained. Rheological properties of different 

dispersions were evaluated by using a four bladed vane geometry.  

 

2. Materials and methods 



 
2.1 Materials 
 
The materials selected for this study were mainly commercial samples. Dispersion samples were 

produced by using: cocoa butter, obtained from an Italian confectionary factory, icing sugar 

purchase at local market and distillated water. The choice to use refined sugar instead of the 

cristallized one, was strictly related with its small size. Small particles size infact present higher 

specific surface area, involving more conatct points betweem them (Afoakwa et al., 2009). The 

reduction of the particle diameter causes an increase of the particle number, parallel to an increase 

of contact points between particle-particle. A mixture design was used to obtain different 

experimental dispersions. In order to simplify the experimental design, the water amount added was 

kept fixed at the two different values of 0.1 and 0.5, in this way only the amounts of sugar and 

cocoa butter were two experimental variables were changed to differentiate the formulations:. To 

differentiate the samples, a simplex centroid design (Ruguo, 1999) was applied and ten different 

samples were obtained (Table 1) 

SAMPLES COCOA BUTTER 

(φ) 

SUGAR 

(φ) 

WATER 

(φ) 

A1 55 45  0.1 

A2 55 45  0.5 

B1 52 48 0.1 

B2 52 48 0.5 

C1 48 52 0.1 

C2 48 52 0.5 

D1 45 55 0.1 

D2 45 55 0.5 

E1 40 60 0.1 

E2 40 60 0.5 



 
 
2.2 Methods 
 
Dispersions described in this paper were realized under stirring by using an IKA High Viscosity 

Mixer equipped with a high efficiency paddle assembly (ColeeParmer, Vernon Hills, USA) 

applying the vacuum. During stirring dispersions were heated at 40 °C by using a magnetic stirrer, 

in order to maintein cocoa butter in a liquid/viscous state. Before start mixing, ingredients (cocoa 

butter and sugar) were left overnight in a oven at 100 °C, in this way all water was evaporated and 

then left 10 minutes in a dryer. The mixing time was around 20 h.With this procedure samples can 

be prepared up to a content of 60 % of sugar in the fat.  

 

2.3 Rheological measurements 

Measurements were carried out at 35 °C using a controlled-stress rheometer (Kinexus Pro, Malvern, 

UK) equipped with a fourblade vane geometry, in order to reduce the wall slip phenomenon. 

The vane was 21 mm in diameter and 60 mm in height, and was placed in a cup 27 mm in diameter. 

Special care was taken to minimize air inclusions in the sample. 

The rheological behaviour of model suspension was analyzed in steady state conditions, flow tests 

and creep - recovery ones were performed on each samples, increasing the shear stress from 1 to 

100 Pa. 

Samples were allowed to equilibrate for 5 minutes at the set temperature before the tests were 

performed. 

 

2.4. Microstructure analysis 

Samples microstructure was observed using a polarized light microscope (Olympus Optical, Tokyo, 

Japan) at 10x of magnification, taking 10 micrographs for each samples. One drop of dispersion 

(previously diluted with hexane) was placed on a glass slide and covered with a cover slip carefully 

placed over the sample, parallel to the plane of the slide and centred to ensure sample thickness was 



uniform. Micrographs were captured using a digital camera (Model 2.1 Rev 1; Polaroid 

Corporation, NY, USA) and observed using Image J (v. 1.38). 

 

2.5. Determination of particle size distribution 

Measurement of PSD was made by using a Mastersizer, Micro Laser Diffraction Particle Size 2000 

(Malvern Instrument Ltd., Malvern, UK) equipped with a Hydro 2000 SM (B) for paraffin oil (RI 

1.450). About 0.3 g of sample was dispersed in oil until an obscuration of 16.85%, following the 

user guide of the instrument. Speed of stirring was maintained at 1900 rpm for all the 

measurements. 

Size distribution was determined as relative volume of particles in “size bands” and presented as 

size distribution curve and statistics (Malvern Mastersizer Micro Software v. 5.60). PSD parameters 

obtained were: specific surface area, the largest particle size (D90), mean particle volume (D50), the 

smallest particle size (D10), Sauter mean diameter (D[3,2]) and Weight mean particle diameter 

(D[4,3]). 

The last two parameters (Sauter mean diameter and weight mean particle diameter) are the most 

commonly used to characterize PS and represent respectively: the diameter of a sphere with the 

equivalent surface to volume ratio of all the particles in the size distribution (1) 

 

∑∑=
i

ii
i

ii dndnd 23
32 /    (1) 

and the diameter of a sphere having the average weight of all the particles in the size distribution (2) 

(Black et al., 1996). 

∑∑=
i

ii
i

ii dndnd 34
43 /   (2) 

 

 

 



3. Results and discussion 

3.1. Fundamental rheological properties  

3.1.1. Effect of the concentration on the apparent yield value  

In Fig. 1 are reported the flow curves of the sugar in oil dispersions with 0.1 % of water, obtained 

increasing the shear stress from 1 to 100 Pa. In each graph, dispersions were characterized by a 

constant amount of water but different volume fraction of sucrose, from 45 to 60 %. 
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Fig. 1. Changes of viscosity (Pa*s) of sugar in oil dispersions with 0.1 % of water. 

 

All samples exhibited a typical non Newtonian behaviour characterized by dependence of viscosity 

upon of flow conditions, such as geometry, shear rate or stress applied (Chabbra, 2006). In 

particular apparent viscosity of these products decreased increasing the shear rate, indicating 

pseudoplasticity, i.e. shear thinning behaviour (Rao, 1999). This behaviour can be explained in 

general, by the structural breakdown of the molecules due to the hydrodynamic forces generated 

and to the increased alignment of the constituent molecules (Izidoro et al., 2008). In highly 



concentrated suspensions, as model samples examined in this study, the interaction between 

particles dominates over the hydrodynamic forces and the material exhibits an apparent yield stress 

as shown in Fig.1. The apparent yield stress is defined as the minimum stress required by a material 

to initiate flow (Bayod et al., 2008) and it’s considered as the result of the particle–particle 

interactions (both of hydrodynamic and surface force) and from particle structure (Johansson and 

Bergenståhl, 1992 b; Macosko, 1994). Yield value is usually determined from the flow curve, in 

particular the critical stress of the onset of the shear thinning region is commonly used to 

characterize it (Bayod et al. 2008). The increasing of the sucrose volume fraction involve an 

increasing of the yield stress values for all dispersion samples, according with the studies of  Den 

Ouden & Van Vliet (1997) and Dzuy & Boger (1983); that evidence a relationship between yield 

value and particle concentrations. Plotting the sugar concentration as a function of the yield values, 

(Fig. 2) an exponential correlation was observed with high coefficient of determination (R2= 0.99).  
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Fig. 2. Correlation between yield value and sugar Volume. 

 

 



3.1.2 Characterization of the creep- recover properties of dispersions subjected to different levels 

of stress  

Some of the most widely used analyses to evaluate the structure of samples are creep and recovery 

tests. These consist of deforming the system for a pre-established period of time, applying a 

constant shear stress and measuring the deformation as a function of time (creep). This is followed 

by recovery of the structure, obtained cancelling the applied stress (Steffe, 1996). 

In this study the evolution of the applied and removed stress was evaluated at the same time of the 

increasing of the shear stress from 1 to 100 Pa, in order to obtain more information about structure 

response of the samples to the stress applied . 

The results obtained for the evolution of the shear rate as a function of time are shown in Fig. 3.  

 

Fig. 3. Creep test of sugar dispersion obtained increasing the shear stress from 1 to 100 Pa. 

In general, trend show the same behaviour for all dispersions samples. When the applied shear 

stress is below a certain stress value, samples recover the initial structure immediately after stress 

removing, indicating that a solid-like behaviour is predominant. If the stress is above a particular 



limit, the sample start to flow exhibiting a liquid-like behaviour (Baldino et al. 2010), showing the 

presence of a yield stress as previously observed from flow tests. For all samples the flowing limits 

were evaluated for shear rates comprised between 0,3299> ẏ < 1,01. In particular shear rate and 

time needful to obtain the breakage of the structure seem to increase from sample with the lowest 

amount of sugar until to sample with the highest volume of sugar, probably related with the arise of 

the solid volume fraction of samples, as noted previously with flow measurement 

 

3.1.3 Effect of the small amount of water on  the apparent yield value  

The principal aim of this study was to evaluate the influence of small amount of water on the 

rheological properties of samples expressed in terms of yield value. Figure 4 represents the yield 

stresses of dipersions at the different sugar and water concentrations.  
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Fig. 4. Diagramme of state of sugar model dispersions obtained at different sugar and water 

amounts. 

In particular the influence of small amount of water on the rheological properties of dispersions was 

highlighted. In this figure, it can be observed that data for each sugar and water concentration have 



well defined points in the curves. As the concentration of sugar and water increases, three viscosity 

and yield stress regions may be identified. According with the model suggest by Goodwin (2004) 

it’s possible to divide graph samples, showing the sugar volume fraction versus yield value into 

three main regions, depending on their state of aggregation, obtaining a volume state diagram 

(liquid, solid-liquid and solid). The first region which represents the low concentration suspensions 

(from 45 % to 48% φ) of sugar behave like Newtonian fluids showing low viscosities and low yield 

values. The second region that corresponds to the intermediate level of concentration (from 48 % to 

52% φ of sugar) exhibit slight viscosities with a shear thinning behaviour and intermediate yield 

values. Above this concentration range, there is the region of highly concentrated samples 

corresponding to values of sugar >52 % φ. The behaviour of the curves in this region may suggest 

the formation of "structured" aggregates with a strong affinity between the particles. As a 

consequence, the fluidity of the samples is reduced and this involves an increase the yield values 

and a consequent drastically increase of the viscosity of samples. 

In particular graph showed as the presence of a higher amount of water 0.5φ involve a change a in 

the state of diagramme of the sugar shifting the curve to higher values of yield stress. 

When the water content is increased, even if in very low amount, the interaction between crystal 

change, influenced in strong manner the yield value of dispersions. These results according with 

Johansson & Bergenståhl, 1992 c, could be interpreted as the effect of the water adsorption onto 

sugar. Aggregation between sugar particles become more stronger, probably due to the formation of 

water bridges, involving an increasing of the yield value of the experimental dispersions. From 

curves was possible to highlighting how the effect of small amount of water on the yield values of 

dispersions has an impact much higher compared to the sugar one.  

With 0.5 % of water a 4th degree polynomial correlation was observed between different yield 

values with coefficient of regression (R2= 1) 

 

 



3.2 Microstructural properties of model systems 

Light polarized microscopy was used to characterise the variations in sugar crystalline network and 

particle-particle interaction varying sugar (from 45 to 60 φ) and water volume fraction. 

Micrographs (Figs 5a,b–6 a,b) showed clear and wide variations in microstructure among samples 

with different formulations. 

                                                   

 

 

                                  

 

 

 

In particular four pictures are shown, in order to highlight the influence of sugar and water increase 

on the structural properties of dispersions. In samples containing the lowest amount of icing sugar 

and water, weak sugar crystalline networks and reduced particle–particle interactions were observed 

compared with samples made up from higher concentration of sugar.  

Increasing the solid content from 45 to 60 with 0.1 φ of water an increase in the aggregation was 

noted, this is probably due to the increase of the volume fraction of particles that involve an 

increase in the contact point between particles. Servais et al. (2004) noted that yield stress depended 

Fig. 5a. Micrograph of model 
dispersion obtained with 55φ of 
sugar and 0.1φ of water 

Fig. 5b. Micrograph of model 
dispersion obtained with 55φ of 
sugar and 0.5φ of water 

Fig. 6a. Micrograph of model 
dispersion obtained with 58φ of 
sugar and 0.1φ of water 

Fig. 6b. Micrograph of model 
dispersion obtained with 58φ of 
sugar and 0.5φ of water 



on amount of small particles (specific surface area) and interactions, and originated in mechanical 

(friction) and chemical interactions between particles. Prasad et al. (2003) concluded that yield 

value was determined by inter-particle contacts. Increasing the water amount from 0.1 to 0.5 φ for 

all sugar concentration, these interactions between particles become more strong as shown by 

pictures. According with the studies of Lewicky (2004), can be noted how, raising water content, 

the macromolecules of sugar acquire structure, due to their interactions with water molecules and 

these changing in structure affect strongly the rheological properties of final dispersion. 

 

3.3 Particle size distribution 

In Fig. 7 the PSD of the different dispersions are shown. All samples exhibit a wide bimodal size 

distribution.
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Fig. 7. Particle size distribution of sugar model dispersion with different sucrose concentrations. 

Two main peaks were observed, one at about 50 µm and the other at about 3 µm. Not clear 

differences were evaluated between samples, comparing the two main areas under the PSD curves 

of this graphs. 



However, the PSD expressed as area-based diameter or Sauter diameter (d32), that take in account 

smaller particles, indicate some interesting differences between samples. Plotting the area-based 

diameter as the sugar volume fraction, as shown in Fig.8 an inverse relationship between them was 

noted. 
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Fig. 8. Relationship between Sauter Diameter and sugar volume fraction. 

 

The increasing of the sucrose volume involved a reduction of d32, indicating the presence of 

particles with small diameters and more specific surface area that according with the studies of 

Beckett (1999) and Sokmen & Gunes, (2006) are inversely correlated with component PSD. The 

increase of specific area diameter resulted in flocculation and agglomeration of particles that restrict 

mobility and compartmentalisation of the matrix. These results in according with the ones obtained 

from the rheological and microstructural analysis highlight how the increase in volume sugar 

fraction involve an increase in the aggregation of particles and in the rheological values. 

 
 
 
 
 



4. Conclusions 
 
In this paper, a rheological characterization of the sugar- cocoa butter dispersion as a function of the 

concentration and the humidity, was evaluated, taking into account the time-dependent rheological 

properties.  

The presence of an apparent yield value was noted, probably related to the disruption of the network 

structure, resulting from attractive particle– particle interactions. From results of rheological 

measurements, was possible to observe a direct proportionality between the minimum stress 

required to obtain the flow and the concentration of sucrose present in the dispersions. A strictly 

and more strong dependency highlighted from rheological analysis, was the one between the 

apparent yield stress and the water amount of the system. These rheological results were supported 

from the microstructural ones that showed an increase in the state of aggregation of particles with 

the raisng of sugar and water amount.Water presence even, in very small amount has confirmed to 

be an important factor able to affect both network strength and the rheological properties of food 

dispersions. 
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ABSTRACT 
The aim of this research was to investigate the influence of different process steps on microstructural, rheological and calorimet-

ric properties of dark chocolate. Samples were obtained at each phase of the manufacturing process: mixing, pre-refining, refining, 
conching and tempering. Microstructural properties, fundamental rheological parameters (yield stress, apparent viscosity, G’ and 
G”) and thermal ones (Tonset, Tend and ΔH) were evaluated by using an environmental scanning electron microscope (ESEM), a 
controlled strain – stress rheometer and a differential scanning calorimetry (DSC) respectively. ESEM analysis revealed an increase 
of the aggregation and contact point between particles from mixing to refining step, that underwent a drastic raising of all considered 
rheological (yield stress, apparent viscosity, G’, G’’) and thermal parameters (Tonset, Tend, ΔH). Samples obtained from the 
conching and tempering steps were characterized by less dense aggregate structure and lower particle–particle interactions, due to 
the adding of further cocoa butter and lecithin. The addition of fat and lecithin in fact covering the sugar and cocoa particles, re-
duced interactions and caused a decrease in all rheological and  thermal parameters. 

Keywords: dark chocolate, process steps, microstructure rheological properties, thermal properties. 

REZIME 
Cilj ovog istraživanja bio je da se ispita uticaj različitih procesnih koraka na mikrostrukturne, reološke i kalorimetrijske osobine 

crne čokolade. Uzorci su uzeti u svakoj fazi proizvodnog procesa: mešanje, pre- prerada, prerada, končiranje i kaljenje. Mikrostruk-
turne osobine, osnovni reološki parametri (napon, viskoznost, G 'i G ") i termičke osobine (Tonset, Tend i ΔH) ocenjeni su 
korišćenjem elektronskog mikroskopa (ESEM), kontrolisani reometarom i diferencijalnim kalorimetrom (DSC). ESEM analiza poka-
zala je povećanje agregacije i kontakt tačka između čestica od mešanja do pripreme, koje su pretrpele drastičan porast svih razma-
tranih reoloških (napon, viskoznost, G ', G'') i termičkih parametara (Tonset, teže, ΔH). Uzorke iz procesa končiranja i kaljenja ka-
rakterisale su niža gustina i niža čestica-čestica interakcija, zbog dodavanja kakao butera i lecitina. Dodavanjem masti i lecitina u 
stvari pokriva šećer i kakao čestice, smanjuje interakcije i izazva pad svih reoloških i termičkih parametara. 

Ključne reči: crna čokolada, procesni koraci, mikrostrukturna reološka svojstva, termička svojstva. 
 

INTRODUCTION 
Dark chocolate can be defined as a concentrated suspension 

made up of solid particles (sugar and ground cocoa particles) 
dispersed in a Newtonian fluid, generally cocoa butter (Afoakwa 
et al., 2008a). The physico-chemical and microstructural proper-
ties of chocolate depend on many factors besides the ingredients 
and their proportions. The different process steps (mixing, pre-
refining, refining, conching and tempering) of chocolate manu-
facture and the different adopted process parameters can affect 
chocolate properties which, in turn, determine the behaviour and 
the characteristics of the final product. The processing of foods, 
dark chocolate in particular, brings several changes in their mi-
crostructure. During chocolate manufacturing, mixtures of sugar, 
cocoa and fat are heated, cooled, pressurized and refined 
(Beckett, 2008). These steps break agglomerates and distribute 
lipid and lecithin-coated particles through the continuous phase, 
modifying the microstructure of final chocolate (Afoakwa et al., 
2009a). Since the macroscopic properties of food, as rheological 
and thermal attributes are strongly determined by the microstruc-
ture, an evaluation of the product microstructure is a necessary 
prerequisite for understanding its macroscopic properties 
(Bayod, 2008). In particular rheology properties are important 
because related both to the efficiency of the main steps in the 
process (mixing, pumping, transportation, etc.) (Servais et al., 
2002), and to the final quality of product (Ahmed & Ramas-
wamy, 2006). For this reason the knowledge of the relations be-
tween microstructure, rheological and thermal properties could 
be very useful in order to optimize the final properties of choco-

late. Several authors (Servais et al., 2004; Afoakwa et al., 2008a; 
2008b; Baldino et al., 2010; De Graef et al., 2011; Efraim et al., 
2011; Fernandez et al., in press) have investigated the micro-
structural and physico-chemical properties of dark chocolate and 
in particular the rheological and thermal ones. Despite of the in-
teresting obtained results, in all the previous cited works only the 
characteristics of finished product was taken into account. In our 
opinion each manufacture step (mixing, pre-refining, refining 
and conching) cause drastic modification in the product micro-
structure influencing its final properties. Understanding how the 
single process step can affect the microstructural properties of 
dark chocolate, could be very useful in order to manipulate and 
optimize the process efficiency and mainly to predict and im-
prove quality of final product. For this purpose in the present 
work the microstructural, rheological and thermal properties of 
dark chocolate were evaluated throughout the manufacturing 
process. 

MATERIAL AND METHOD 
Dark chocolate samples were produced in an Italian confec-

tionery factory using an industrial plant (Buhler, Malmo, Swe-
den) provided of mixer, pre-refiner, refiner, conching and tem-
pering machine, equipped to produce 6000 Kg of chocolate at 
every production cycle. Dark chocolate production was made up 
by different steps: mixing, pre-refining, refining, conching, tem-
pering, demoulding and packing. The formulation employed for 
the recipe was: cocoa liquor (53%), sugar (39.52%), cocoa butter 
(7% added during the conching step), soy lecithin (0.3%), so-
dium carbonate (0.15%) and vanilla extract (0.03%). Experimen-
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tal samples were taken after each production phase: mixing (A), 
pre-refining (B), refining (C), conching (D) and tempering (E). 
Samples were stored in plastic bucket (1 Kg capacity) at room 
temperature until the analytical determinations. Before perform-
ing each analysis the samples were melted in a microwave at 150 
W for 25 minutes. The melting parameters were chosen after 
preliminary experiments in order to avoid changes in the choco-
late properties. 

Microstructure analysis 
Samples microstructure was observed using an environ-

mental scanning electron microscope ESEM (Evo 50 EP, Zeiss, 
Germany) equipped with a microprobe (EDS Mod. 350, Oxford 
Instrument, UK). The detector used was a backscatter electron 
detector (QBSE) that provided good compositional contrast im-
aging at 20 kV and in low vacuum mode with 100 Pascal at 500x 
magnification, taking 10 micrographs for each samples. These 
parameters were chosen after preliminary trials and according to 
Dahlenborg et al. (2010), considering that they cause minimal 
damage of the chocolate surface and in order to optimize the im-
aging quality. The acquired images were subsequently elabo-
rated using the software Image Pro-plus 6.0 (Media Cybernetics 
Inc Bethesda, USA). 

Fundamental rheological properties 
Measurements were carried out at 40 °C using a controlled 

stress-strain rheometer (MCR 300, Physica/ Anton Paar, Ost-
fildern, Germany) equipped with a system of coaxial cylinders 
(CC27). The rheological behaviour of dark chocolate was ana-
lyzed in steady state and dynamic conditions. In steady state 
conditions, after a pre-shearing of 500 s at 5 s-1, viscosity was 
measured increasing shear rate from 2 to 50 s -1 within 180 s, tak-
ing 18 points measurements (ICA, 2000). The yield stress (Pa) 
and the apparent viscosity (Pa s) were obtained according with 
ICA (2000) and Servais et al., (2004) evaluating the values of 
stress respectively at shear rates of 5 and 40 s-1. In dynamic con-
ditions, oscillatory tests were performed to investigate the vis-
coelastic properties of samples and to evaluate the storage (G’) 
and the loss (G”) modulus. In order to identify the linear viscoe-
lastic range (LVR), in which the viscoelastic properties are inde-
pendent from the stress conditions, stress sweep tests were ap-
plied. Frequency sweep tests were carried out in the viscoelastic 
linear region at the constant deformation amplitudes of 0.007%, 
previously evaluated with the stress sweep test, in the range from 
100 to 1 Hz.  

Thermal properties  
Melting properties of dark chocolate were evaluated by using 

a differential scanning calorimeter (Pyris DSC Series 6, Perkin 
Elmer Corporation, Wellesley, USA). Adopting the method re-
ported by Afoakwa et al., (2009b) DSC was calibrated by using 
indium (melting T 156.60 °C, ΔH 28.71 J/g) and tin (melting T 
231.93 °C, ΔH 60.46 J/g) at a scan rate of 10 °C/min using an 
aluminium pan as reference. Samples (5 mg) were loaded into 40 
ml capacity pans with holes and sealed using a sample press. 
Pans were heated at 10 °C/min from 15 to 200 °C in a N2 stream. 
Onset temperature (T onset), end temperature (T end) and en-
thalpy of melting (ΔH) were calculated for each peak present in 
the thermogram obtained (Gloria and Sievert, 2001).  

Statistical analyses 
Analyses of variance (ANOVA) and the test of mean com-

parison according to Fisher least significant difference (LSD) 
were applied. Level of significance was P ≤ 0.05. 

RESULTS AND DISCUSSION 

In Figure 1 (a, b, c, d, e) the micrographs related to the sam-
ples A, B, C, D, E obtained by ESEM are shown. 

 

 

 

 

 
 

Fig. 1. Microghraphs of dark chocolate after different process-
ing steps: (A) Mixing, (B) Pre-refining, (C) Refining, (D) 

Conching and (E) Tempering. Scale( a) -(e) 100µm 
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Electronic microscopy was used to characterize the varia-
tions, during the different processing steps, in sugar crystalline 
network, particle-particle interaction and particle-fat phase be-
haviour of chocolate samples. Microstructural examination 
showed a clear decrease of samples particle size from the mixing 
step (A) to the pre-refining one (B), until the refining phase (C) 
(Figure 2. a, b, c). The reduction of the particle diameter causes 
an increase of the particle number, parallel to an increase of con-
tact points between particle-particle, due to chemical and me-
chanical interactions, according to Servais et al., (2004) and 
Afoakwa et al., (2009a). The increase of particle interactions 
from sample A to C caused a reduction of the particles mobility 
due to their high aggregation. The result is a fully dense and 
packed suspension in which small particles fill spaces between 
large ones (Bayod, 2008). Samples D and E (Figure 2 d, e), hav-
ing particles with smaller size diameter, were constituted by a 
less dense sugar crystalline network, highlighted by a larger 
number of void spaces. This could be related both to the further 
addition of cocoa butter during the conching step that, (Beckett, 
2000; Afoakwa, 2009a), wets the suspension filling the voids 
within the crystal network and opens the structure, and also to 
the addition of lecithin. Lecithin migrates to sugar⁄ fat interfaces 
and coats sugar crystals, reducing particle-particle interactions 
and scattering crystals in the fat phase (; Dhonsi and Stapley, 
2006; Beckett, 2008). In Figure 2 the flow curves of the dark 
chocolate samples, obtained increasing the shear rate from 2 to 
50 s -1 are reported.  

 
Fig. 2. Changes of viscosity (Pa s) of dark chocolate samples, 
during mixing (A), pre-refining (B), refining (C), conching (D) 

and tempering (E) steps 
 

All samples exhibited a typical non Newtonian behaviour, 
characterized by dependence of viscosity upon of flow condi-
tions (Chabbra, 2006). In particular, apparent viscosity of these 
products decreases with the increase of the shear rate, indicating 
pseudoplasticity. As illustrated by Figure 2, sample C presents 
the highest values of viscosity with initial values ranging be-
tween 80 and 90 Pa s, followed by samples B with initial viscos-
ity values between 40 and 50 Pa s and sample A with values be-
tween 20 and 30. The lowest viscosity values belong to samples 
D and E obtained from the last two steps of the manufacture 
process. In order to better explain the rheological values ob-
tained by the flow curves, in Table 1 are shown the values of 
yield stress and apparent viscosity.  

Rheological considered values showed a significantly in-
crease from sample A to sample C. This could be explained con-
sidered results obtained from the microstructural examination. 
The passage from the mixing steps through the pre-refining (B) 
and refining (C) ones involve a reduction in the particle size that 
causing an increase in the contact points between them, forms 
very aggregate structures. According with Bayod, 2008; in these 
conditions samples need of major amount of stress to break them 

and initiate to flow. Samples D and E present the lowest values 
of viscosity parameters probably related with their less aggregate 
packing structure network. In these steps, in fact the addition of 
lecithin and further cocoa butter, because of their lubricating ac-
tion, reduced the particle–particle interactions, increasing their 
mobility that involved a reduction of viscosity (Vernier, 1998). 
These results are supported by the studies of Coussot and Ancey, 
(1999) and Larsoon, (1999) that noticed an high dependence of 
yield stress and apparent viscosity on particles size and their in-
teraction.  
 

Table 1. Yield stress (Pa) and apparent viscosity (Pa s) of 
dark chocolate samples 
Samples Yield stress (Pa) Apparent Viscosity (Pa s)

A 84.50 b 586.67  b 
B 182.33 c 1406.70  c 

C 358.67 d 1880.00  d 
D 38.77 a 161.67  a 
E 33.07 a 147.33  a 

a-d values in the same column followed by different letters 
differ significantly (p < 0.05). 
 

Stress sweep tests were performed in order to identify the 
linear viscoelastic region (LVR), in which properties of material 
are independent from the stress conditions. The results (data not 
shown) showed a narrow viscoelastic region, low intensity 
stresses can destroy the structure of system. 

Results of frequency sweep test in terms of storage and loss 
modulus, are reported in Figures 3 a, b. 

  
a) 

 
b) 

Fig. 3. Storage (a) and loss (b) modulus of dark chocolate sam-
ples. 

 

Storage modulus values (G’) are higher than loss modulus 
(G”) ones for all samples, indicating that all dark chocolate sam-
ples had a solid, elastic-like behaviour. This suggests that under 
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non destructive conditions the elasticity has a predominant effect 
on viscosity (Peressini et al., 2006). Samples B and C showed 
the highest G’ values, due to their aggregate structure according 
with ESEM results. Sample A, showed viscoelastic properties 
with intermediate values of G’ and G” inside the clusters B-C 
and D-E. Some authors (Johansson and Bergensthal, 1992) ob-
served that a high value of G’ is related to a high level of interac-
tive forces between particles; this confirms the high amount of 
stress required by samples B and C to start flow (Figure 1). The 
lowest parameters of G’ and G” were found for the samples D 
and E, constituted by a weakly structured system, due to the lu-
bricating and emulsifier effect of fat and lecithin. These results 
are in agreement with the studies of Johansson and Bergensthål 
(1992), that highlighted how the effect of emulsifiers on the 
sugar particles, reducing the changing in the interaction particles 
and in the network structure ones, involves a decrease of the 
elastic component G’. In Table 2 are reported the values of T 
onset, T end and ΔH of dark chocolate samples obtained by heat-
ing all chocolate samples from 15 to 200 °C. 

 

Table 2. Melting properties by DSC measurements of dark 
chocolate samples after mixing (A), pre-refining (B), refining 
(C), conching (D) and tempering (E) steps 

 

Samples 
FAT SUGAR 

T onset 
(°C) 

T end 
(°C) 

ΔH 
(J/g) 

T onset 
(°C) 

T end 
(°C) 

ΔH 
(J/g) 

A 24.323a 34.011 a 38.960a 174.89a 189.98a 30.015a

B 30.614c 36.657 c 45.378b 176.36a 190.79a 46.841b

C 30.538c 37.222 c 51.464c 180.97b 192.30b 48.954c

D 26.011b 35.059 b 37.696a 175.72a 189.68a 29.229a

E 25.667b 35.344 b 37.769a 174.73a 190.13a 28.685a

a-d values in the same column followed by different letters 
differ significantly (p < 0.05) 
 

It is known that Tonset corresponds to the temperature at 
which a specific crystal form starts to melt; T end represents the 
temperature of the complete melting and ΔH the amount of en-
ergy required to complete the liquefaction (Afoakwa et al., 
2008b). 

Statistically differences between all samples were high-
lighted regarding Tonset and Tend of fat (cocoa butter) melting. 
An increase in the Tonset, Tend and ∆H was noted from sample 
A to C. Samples B and C, constituted by a very aggregate struc-
ture, as shown previously, probably needed higher temperature 
to start and finish their fat melting than sample A. In this sample 
the absence of an aggregate structure and the presence of large 
not refined particles, provides less resistance to breakage and 
melting and are probably the cause of the lowest obtained values 
of fat T onset and T end. A significantly decrease of these pa-
rameters was instead  noted in samples D and E, due to the 
emulsification effect of cocoa butter and lecithin. As far as the 
sugar melting is concerned, only sample C showed Tonset and 
Tend values significantly different from those of the others sam-
ples. 

The ΔH values of both fat and sugar, were higher in samples 
B and C compared to the other dark chocolate samples, confirm-
ing an higher request of energy in order to complete the sugar 
and fat melting, due to the existence of very consistent structures 
(Afoakwa et al., 2009b). 

 

CONCLUSION 

ESEM analysis was very useful in order to discriminate the 
differences existing at microstructural level between dark choco-
late samples, highlighting the increase of small particles number 
from the mixing to the refining step, that involves a reduction of 
the particles mobility due to their high aggregation. Microstruc-
tural results were strictly related to the rheological and thermal 
ones, in fact from the mixing to the refining step there was a 
drastic increase of all considered rheological (yield stress, appar-
ent viscosity, G’, G’’) and thermal parameters (Tonset, Tend, 
ΔH). Obtained results show that the knowledge of the changes 
occurring in the product matrix at each manufacturing stage 
could be very useful in order to optimize the manufacture proc-
ess efficiency and to improve the quality of final product. 
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Abstract 

 

The effect of different process steps on microstructural and visual properties of dark chocolate was 

studied. Samples were obtained at each phase of the manufacture process: mixing, pre-refining, 

refining, conching and tempering. A laser light diffraction technique and ESEM were used to study 

the particle size distribution (PSD) and to analyze modifications in the network structure. Moreover 

colorimetric analyses (L*, h° and C*) were performed on all samples. Each step influenced in 

stronger way the microstructural characteristic of products and above all the PSD. Sauter diameter 

(D [3.2]) decreased from 5.44 µm of mixed chocolate sample to 3.83 µm D [3.2] of the refined one. 

ESEM analysis also revealed wide variations in the network structure of samples during the 

process, with an increase of the aggregation and contact point between particles from mixing to 

refining step. Samples obtained from the conching and tempering were characterized by small PS, 

and a less dense aggregate structure. From colour results, samples with the finest particles, having 

larger specific surface areas and the smallest diameter, appeared lighter and more saturated than 

those with coarse particles.  

 

Keywords: Chocolate; Manufacture steps; Microstructure; Particle size distribution; ESEM; 

Appearance. 

Pratical Applications 

Dispersions quality is affected by particles characteristics and from the process. 

Influence of single steps on structural properties are useful, to improve the rheological ones. 

ESEM and laser diffraction are suitable techniques to study changes in microstructure  



 

Introduction 

 

Dark chocolate can be defined as a concentrated suspension made up of solid particles (sugar and 

ground cocoa particles) dispersed in a Newtonian fluid, generally cocoa butter (Afoakwa and others 

2008). Quality and stability of final products are affected by a number of factors, such as: particle 

size (PS), particle size distribution (PSD) and interaction between them and are strictly related to 

the raw materials but also to the manufacture process (Servais and others 2002; Granger and others 

2005; Sato and others 2009; Baldino and others 2010). The physico-chemical and microstructural 

properties of chocolate depend on many factors besides the ingredients and their proportions. The 

different process steps (mixing, pre-refining, refining, conching and tempering) of chocolate 

manufacture and the different adopted process parameters can affect chocolate properties which, in 

turn, determine the behaviour and the characteristics of the final product. An effective control of the 

technological parameters is required in order to achieve a constant and desirable quality of the final 

product (Muller–Fischer and others 2005, Baixauli and others 2007). The processing of foods and in 

particular of dark chocolate, brings several changes in their microstructure. During chocolate 

manufacturing, mixtures of sugar, cocoa and fat are heated, cooled, pressurized and refined (Beckett 

2000). These steps not only affect PS reduction, but also break agglomerates and distribute lipid and 

lecithin-coated particles through the continuous phase, modifying the microstructure of final 

chocolate (Afoakwa and others 2009). The interactions between the suspended particles and the 

continuous phase provide information about the existing network and consequently can be 

associated to the properties and characteristics of the dispersions (Sato and others 2009). Since 

macroscopic properties of foods, as the appearance attributes and colour are strongly determined by 

the microstructure of the food material, evaluation of the microstructure of food and its components 

is a necessary prerequisite for understanding its macroscopic properties (Aguilera and Stanley 

1999). 



 

Environmental scanning electron microscopy (ESEM) is one of the most suitable technique used to 

investigate microstructure of foods and to highlight the changing in the different structures obtained 

during the manufacturing process (Kalab and others 1996). ESEM in fact is a technique producing 

high resolution images of chocolate specimen due to the way in which the image is created; ESEM 

images have a characteristic three-dimensional appearance and let to investigate the structure of a 

sample (Dahlenborg and others 2010). Laser diffraction analytical method is also a very spread 

technique used for particle size analysis, based on the laser light scattered from particles. This 

method has the advantage of high speed, good reliability and high reproducibility (Ma and others 

2000).  

Afoakwa and co-workers (2008, 2009) used this technique obtaining good results in order to study 

some PSD aspects of dark chocolate. 

Appearance of chocolate, a macroscopic properties, summarized as: gloss (strictly dependent from 

the chroma values), lightness, shininess and translucency, since must respond to consumer’s 

acquired expectations, becomes a key attribute in customer choice and acceptability of final product 

(Beckett 2003; Whitefield 2005; Briones and others 2006). These colour parameters are 

psychophysical phenomena associated with the way in which light is reflected, absorbed and 

scattered by a surface. In general the colour characteristics can be natural in origin, or the result of 

manufacture process (Saluena and Gamasa, 2012). In the case of dark chocolate because of the 

complex matrix, appearance is strictly dependent on the process steps and mostly related with the 

PSD. 

To our knowledge no papers are available about the influence of single process steps on dark 

chocolate microstructural and appearance properties. Most of the literature (Servais and others 

2004; Afoakwa and others 2008, 2009; Baldino and others 2010; Efraim and others 2011) has 

focused on the study of these characteristics after the final tempering process step. 

In our opinion, in order to improve the rheological properties of final product, it would be 

interesting to study in dept the evolution of these important quality characteristics during the 



 

different process phases (mixing, pre- refining, refining, conching and tempering). For this purpose 

in the present work the microstructural properties of dark chocolate were evaluated during all 

manufacturing process of dark chocolate.  

 

Materials and Methods 

Materials 

Dark chocolate samples were produced in an Italian confectionery factory using an industrial plant 

(Buhler, Malmo, Sweden) provided of mixer, pre-refiner, refiner, conching and tempering machine, 

equipped to produce 6000 Kg of chocolate at every production cycle. Dark chocolate production 

was made up by different steps as shown in detailed way in Fig. 1.  

 
Fig. 1. Scheme of chocolate manufacturing process (adapted from Babin, H. 2005). 



 

The formulation employed for the recipe was: cocoa liquor (53%), sugar (39.52%), cocoa butter 

(7% added during the conching step), soy lecithin (0.3%), sodium carbonate (0.15%) and vanilla 

extract (0.03%). Experimental samples were taken after each production phase: mixing (A), pre-

refining (B), refining (C), conching (D) and tempering (E). Samples were stored in plastic bucket (1 

Kg capacity) at room temperature until the analytical determinations. Before performing each 

analysis the samples were melted in a microwave (Stortz and Marangoni, 2013), at 150 watt for 25 

minutes. The melting parameters were chosen after preliminary experiments in order to minimize 

changes in the chocolate properties. 

 

Methods 

Determination of particle size distribution 

Measurement of PSD was made by using a Mastersizer, Micro Laser Diffraction Particle Size 2000 

(Malvern Instrument Ltd., Malvern, UK) equipped with a Hydro 2000 SM (B) for paraffin oil (RI 

1.450). About 0.3 g of dark chocolate was dispersed in oil until an obscuration of 16.85%, 

following the user guide of the instrument. Speed of stirring was maintained at 1900 rpm for all the 

measurements. 

Size distribution was determined as relative volume of particles in “size bands” and presented as 

size distribution curve and statistics (Malvern Mastersizer Micro Software v. 5.60). PSD parameters 

obtained were: specific surface area, the largest particle size (D90), mean particle volume (D50), the 

smallest particle size (D10), Sauter mean diameter (D[3,2]) and Weight mean particle diameter 

(D[4,3]). 

The last two parameters (Sauter mean diameter and weight mean particle diameter) are the most 

commonly used to characterize PS and represent respectively: the diameter of a sphere with the 

equivalent surface to volume ratio of all the particles in the size distribution (1) 
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and the diameter of a sphere having the average weight of all the particles in the size distribution (2) 

(Black and others 1996). 
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Microstructure analysis 

Samples microstructure was observed using an environmental scanning electron microscope ESEM 

(Evo 50 EP, Zeiss, Germany) equipped with a microprobe (EDS Mod. 350, Oxford Instrument, 

UK). The detector used was a backscatter electron detector (QBSE) that provided good 

compositional contrast imaging at 20 kV and in low vacuum mode with 100 Pascal at 500x 

magnification, taking 10 micrographs for each samples. These parameters were chosen after 

preliminary trials and according to Dahlenborg and others (2010), considering that they cause 

minimal damage of the chocolate surface and in order to optimize the imaging quality. With this 

kind of instrument ESEM, samples are not coated and images are more dependent on sample rather 

than coating characteristics, thus the true structure can be analyzed (Rousseau 2007). The acquired 

images were subsequently elaborated using the software Image Pro-plus 6.0 (Media Cybernetics Inc 

Bethesda, USA). 

 

Colorimetric measurements 

Colour of samples was measured using a colour spectrophotometer mod. Colorflex (Hunterlab, 

USA) equipped with a sample holder (diameter 64 mm). Colour was measured using the CIE 

L*a*b* scale and illuminant D65. The instrument was calibrated with a white tile (L*= 98.03, a* = 

-0.23, b* = 2.05) and the calibration was also validated with green standard tile (L* = 53.14, a* = -

26.23, b* = 12.01) before the measurements. 

Numerical values of a* and b* were converted into hue angle (h°) and Chroma (C*) that represent  

 



 

 

the hue and the saturation index (McGuire, 1992): C*  = [ (a*)2+(b*)2]1/2, h°=[arctang (b*/a*)/2 π]* 

360. 

Each analysis was executed in triplicate. 

 

Statistical analyses 

Analyses of variance (ANOVA) and the test of mean comparison according to Fisher Least 

Significant Difference (LSD) were applied on all obtained data. Level of significance was P ≤ 0.05. 

The statistical software used was STATISTICA, version 8.0. (StatSoft, Tulsa, Oklahom). 

 

Results and discussion 

Particle size distribution 

In Table 1 are reported the results of the particle size distribution.  

Table 1. Particle size distribution of the dark chocolate. 

* D(v, 0.9), D(v, 0.1), D(v,0.5), D[3,2] and D[4,3] respectively represent 90 %, 10%, 50%, Sauter 

mean diameter and Weight mean diameter of all particles finer than this size. 

a-d values in the same column followed by different letters differ significantly at p < 0.05 level. 

Samples D(v,0.9)* 

(µm) 

D(v,0.1)* 

(µm) 

D(v,0.5)* 

(µm) 

D[3,2]* 

(µm) 

D[4,3]* 

(µm) 

Specific 

surface area 

(m2 g-1) 

A 621.19a 2.18a 11.64a 5.44a 155.36a 1.10e 

B 129.96b 1.93b 10.69b 4.98b  41.85b 1.20d 

C 31.28c 1.68c 7.58c 4.13c  14.65c 1.45c 

D 25.63c 1.63d 7.12d 3.95d  10.85c 1.52b 

E 27.10c 1.56e 6.91e 3.83e  11.09c 1.57a 



 

Wide differences in PSD were highlighted comparing results of different samples. The volume-

based diameter (D[4,3]) is mainly determined by the large particles present in the suspension, while 

the area-based diameter (D[3,2]) takes into account also small particles. Small particles are 

important in determining the physico-chemical and textural properties of the material because they 

fill spaces between larger particles and contribute to the network structure of the suspension (Bayod 

2008). A statistically significant decrease in D10, D50, D[3,2] values was obtained from sample A to 

sample E with a simultaneous increase of the specific surface area. These results are in agreement 

with those of Beckett (2000) and Sokmen and Gunes (2006) that stated an inverse correlation 

between specific surface area and the others PSD parameters in chocolate. They also indicate that 

process steps from mixing to tempering involve a drastic reduction in particle size (from 5.44 µm to 

3.83 µm of Sauter diameter) with a probable increase of the particles number and a concurrent 

increase of points of contact. No statistically differences were found from samples C to E for what 

concern D[4,3] and D90 parameters. In Fig. 2 (a, b, c, d, e) the volume curves of particle size 

distributions of different samples are shown.  

 

 



 

 

Fig. 2. Particle size distribution of dark chocolate after: (a) Mixing, (b) Pre-refining, (c) Refining, 

(d) Conching and (e) Tempering steps. 

 

It can be observed a narrow bimodal distribution of samples A (Fig. 2 a), a wide bimodal 

distribution of sample B (Fig. 2b) and a narrow unimodal distribution of samples C, D and E (Fig. 2 

c, d, e). These results mean the influence of different steps, reducing the particle size, involve a 

change in the particle distribution that moves from a bimodal trend to an unimodal one. Moreover 

from a graphical point of view different heights in the curves were highlighted. From sample A to B 

a drastic reduction in the height of the second peak (in a range from 100 to 1000 µm) was observed, 

this confirms the decrease in particle size values previously evaluated. Another increase in the 

curves peak height was noted from sample C to E (from 3.8 to 6 %) in the range between 1 and 100 

µm. This trend, that involves an increase of the volume occupied by small particles, confirms the 

reduction of particle size observed from refined to tempered samples. 

According to Beckett (2000) D90 and specific surface area are the two key parameters to assess PSD 

during chocolate manufacture. Large particles diameters determine chocolate coarseness 

influencing textural characteristics of final product, while specific surface area is related to the 

presence of fat that influence flow properties. For this reason, the control and the optimization of 

manufacture process becomes a nodal point in order to improve the final properties of dark 

chocolate. 

 



 

Microstructural properties of dark chocolate  

In Fig. 3 (a, b, c, d, e) the micrographs relating to the samples A, B, C, D, E obtained by ESEM are 

shown.  

   

 

 

  
 

Fig.3. Microghraphs of dark chocolate after different processing steps: (a) Mixing, (b) Pre-refining, 

(c) Refining, (d) Conching and (e) Tempering. 

 



 

Microscopy was used to characterize the variations, during the different processing steps, in sugar 

crystalline network, particle-particle interaction and particle-fat phase behaviour of chocolate 

samples. The micrographs showed a strong heterogeneity in size and microstructure between 

samples. Microstructural examination, carried out with the image analysis (Table 2) showed a 

decrease of samples PS from the mixing step (A) to the tempering phase (E), in agreement with 

PSD analysis results. 

 

Table2. Microstuctural analysis of the dark chocolate 
 

Samples Particle size 

(Feret diameter) 

Number of 

particles/area 

Area occupied by 

particles (%) 

A 466.85a ± 1.99 263c ± 1.52 54 

B 105.26b ± 1.90 367b ± 2.00 65 

C 29.34c ± 1.93 460a ± 3.05 85 

D 22.72c ± 2.70 521a ± 2.00 40 

E 19.32c ± 2.72 532a ± 2.65 42 

a-c values in the same column followed by different letters differ significantly at p < 0.05 level. 

 

The absolute values of PS evaluated with the image analysis were lower compared to the ones 

obtained with the laser light diffraction technique. According to the studies of  Pieri and others 2006 

the distribution of disc-shaped particles, (not spherical as in the case of a chocolate matrix), 

obtained with a laser light diffraction technique shifts the particles size towards larger fractions, 

respect to the ESEM results. The reduction of the particle diameter caused an increase of the 

particle number, parallel to an increase of contact points between particle-particle (Glicerina and 

others 2013), due to chemical and mechanical interactions (Servais and others 2004; Afoakwa and 

others 2009). 



 

The percentage of the relative areas occupied by particles, increased from the mixing step (A) to the 

refining one (C) and then decreased in the samples D and E. In such samples, which are derived by 

the steps of conching and tempering, the presence of smallest particles is parallel to the presence of 

a lower packed structure in which particles are more separated.  

The increase of particle interactions and specific surface area from sample A to C caused a 

reduction of the particles mobility due to their high aggregation. The result is a fully dense and 

packed suspension in which small particles fill spaces between large ones (Bayod 2008). 

Samples D and E (Fig. 3 d, e), having particles with small size diameter, were constituted by a less 

dense sugar crystalline network, highlighted by a larger number of void spaces. This could be 

related both to the further addition of cocoa butter during the conching step that, in agreement with 

Beckett (2000) and Afoakwa (2009), wets the suspension filling the voids within the crystal network 

and opens the structure, and also to the addition of lecithin. In fact lecithin migrates to sugar⁄ fat 

interfaces and coats sugar crystals, reducing particle-particle interactions and scattering crystals in 

the fat phase (Beckett 2000; Dhonsi and Stapley 2006). The micrographs of sample E seems to be 

apparently different from that of sample D. This is due to the effect of tempering step, that improves 

the sample surface aspect making it more shining and smooth. 

 

Colorimetric measurements 

The lightness (L*) hue angle (h°) and chroma (C*) values of chocolate samples are shown in Fig. 4, 

5 and 6 respectively. 



 

 

Fig. 4. Lightness (L*) colour parameter of dark chocolate samples. 

 

Fig. 5. Hue angle (h°) colour parameter of dark chocolate samples. 

 



 

 

Fig. 6. Chroma (C*) colour parameter of dark chocolate samples. 

 

Samples D and E, characterized by smaller particles of the other samples, presented the highest 

significantly values of lightness, hue angle and chroma. B and C chocolate samples, with the most 

aggregated structures, showed intermediate values for all considered colour parameters, while 

sample A, with the less dense and homogenous network, due to particles with the highest size, 

showed the lowest significantly values of colour parameters. The highest values of L*, h° and C* 

were recorded with the decrease of the particle size in the final samples (C, D, E). In particular, the 

addition of cocoa butter during conching step (D), determining an inherent crystalline network, 

scatters light further increasing all colour parameter values. Results obtained can be explained, 

according to the studies of Sagufy and Graf (1991), Hutchings (1994), and Afoakwa (2008), by the 

inverse relationship that exists between scattering light factors and particles size. Dark chocolate 

samples with the finest particles have a large specific surface area and small diameter that tend to 

scatter more light, appearing lighter and more saturated compared to samples with coarse particles.  

 

Conclusions 



 

Both ESEM and the laser diffraction methods were very useful and accurate in order to discriminate 

the differences existing at microstructural level between dark chocolate samples during processing 

steps. 

ESEM provided detailed information about the different network between sugar particles in 

chocolate samples, highlighting the presence of more or less aggregate structures due to the 

particles-particles interaction during chocolate process. Laser diffraction technique, on the other 

hand, was very appropriate for measuring PSD evolution and providing results in form of number 

rather than images to let a more rapid comparison of samples. 

Overall obtained results evidenced the increase of small particles number and specific surface area, 

in the chocolate samples from the mixing to the refining step, that involved a reduction of the 

particles mobility (Glicerina and others 2013), due to their high aggregation. The result was a 

microstructure evolution until a fully dense and packed suspension of refined sample, in which the 

smallest particles fill spaces between the largest ones. Moreover, during process, a reduction in the 

network density was noted after the addiction of fat and lecithin, even if in presence of small 

particles. From obtained data it is possible to state as an extended and rigorous microstructural 

evaluation of this kind of samples is feasible using both Micro Laser Diffraction and ESEM 

analytical techniques.  

Control and optimization of the technological parameters of the manufacture process (in terms of 

microstructure and PSD) show to be a critical point in order to obtain desirable attributes and 

characteristics in the final product. 
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Abstract 

 

The effect of different process steps on microstructural, rheological and visual properties of milk 

chocolate was studied. Each process step affects the microstructural characteristics of milk 

chocolate, involving modifications on its macroscopic properties, such as rheological attributes. 

Milk chocolate samples were obtained at each phase of the manufacture process: mixing, pre-

refining, refining, conching and tempering. Microstructural properties (network structure and 

particle size) and rheological parameters (yield stress, viscosity, thixotropy, G’ and G’’) were 

evaluated by using respectively an environmental scanning electron microscope (ESEM), and a 

controlled strain–stress rheometer. Colorimetric analyses (L*, h° and C*) were also performed. 

ESEM analysis revealed important changes in the network structure during process, with a 

reduction in particle size and an increase in the voids between aggregates, from the mixing to the 

refining step. Moreover, an increase of all rheological analyzed parameters from mixed sample to 

the refined one was found. Samples obtained from the conching and tempering steps were 

characterized by the lowest statistically significantly values of all rheological parameters. This 

could be related to the changes in the structure aggregation evidenced  by ESEM analysis. From 

colour results, the samples with the finest particles appeared lighter and more saturated than those 

with coarse particles.  

 

Keywords: Milk Chocolate; Manufacture steps; Microstructure; Rheology; Appearance. 

 

 

 

 

 

 



 

1. Introduction 

Milk chocolate is a complex rheological system having solid particles (cocoa, milk powder and 

sugar) dispersed in cocoa butter, which represent the fat phase (Pajin et al., 2013). Milk powder is 

one of the main ingredient of milk chocolate (being used at about 20% w/w in the formulation); this 

ingredient affects the sensory characteristics of the final product, the processing behaviour and the 

rheological properties of the fluid chocolate mass (Franke & Heilzmann, 2008; Taylor et al., 2009). 

The determination of the rheological properties of chocolate is important during manufacturing 

processes in order to obtain high quality products with well-defined characteristics (Gonçalves & 

Lannes, 2010). The rheological characteristics of milk chocolate (pseudoplastic flow, yield stress, 

viscosity, thixotropy and viscoelasticity) are in fact influenced by formulation (amount of fat, 

amount and type of emulsifiers) as well as by processing steps (mixing, pre-refining, refining, 

conching and tempering) (Tscheuschner & Wunsche, 1979; Vavreck, 2004; Schantz & Rohm, 

2005). The processing of milk chocolate involves, during each single step (mixing, pre-refining, 

refining, conching and tempering), modifications in its final quality and attributes, influencing in a 

strong way the microstructure of the product (aggregation, de-aggregation, reduction of particle 

size, immobilization of cocoa butter, etc.) (Afoakwa et al., 2009a; Aguilera et al., 2000). In 

particular, milk powder with its own physical characteristics and inner porosity may have a 

significant impact on the chocolate processing conditions and on the physical and organoleptic 

properties of the final product (Liang & Hartel, 2004).  

To our knowledge no papers are available in literature regarding the influence of the single process 

step on microstructural, rheological and appearance properties of milk chocolate.  

In our opinion, in order to improve the final quality of milk chocolate it would be interesting to 

study in depth the evolution of these important quality characteristics during the different process 

phases (mixing, pre- refining, refining, conching and tempering). For this purpose in the present 



work the influence of each process phase on microstructural, rheological and colorimetric properties 

of milk chocolate were evaluated during the overall manufacturing process.  

2. Materials and methods 

2.1. Materials 

Milk chocolate samples were produced in an Italian confectionery factory by using an industrial 

plant (Buhler, Malmo, Sweden) provided of mixer, pre-refiner, refiner, conching and tempering 

machine, and equipped to produce 6000 Kg of chocolate at every production cycle. Milk chocolate 

production was made up by different steps as shown in Fig. 1.  

 

Fig. 1. Scheme of chocolate manufacturing process (adapted from Babin, H. 2005). 



The ingredients used in the chocolate formulation were: sugar (47%), cocoa butter (25%), whole 

milk powder (21%) and cocoa liquor (18%). The experimental samples were taken after each 

production phase: mixing (A), pre-refining (B), refining (C), conching (D) and tempering (E). 

Samples were stored in plastic bucket (1 Kg capacity) at room temperature until the analytical 

determinations. Before performing the analysis the samples were melted in a microwave (Stortz and 

Marangoni, 2013) at 150 watt for 25 minutes. The melting parameters were chosen after 

preliminary experiments in order to minimize changes in the chocolate properties.  

 

2.2. Methods 

2.2.1. Microstructure analysis 

Samples microstructure was observed using an environmental scanning electron microscope ESEM 

(Evo 50 EP, Zeiss, Germany) equipped with a microprobe (EDS Mod. 350, Oxford Instrument, 

UK). The detector used was a backscatter electron detector (QBSE) that provided good 

compositional contrast imaging at 20 kV and in low vacuum mode with 100 Pascal at 500x 

magnification. These parameters were chosen after preliminary trials and according to Dahlenborg 

et al. (2010), in order to cause minimal damage on the chocolate surface and in order to optimize 

the images quality. By using this kind of instrument ESEM, samples are not coated and the images 

are more dependent on sample rather than coating characteristics, in this way the true structure can 

be analyzed (Rousseau, 2007). Ten micrographs for each chocolate sample were taken. The 

acquired images were subsequently elaborated using the software Image Pro-plus 6.0 (Media 

Cybernetics Inc Bethesda, USA). 

 

2.2.2. Fundamental properties  

Measurements were carried out at 40°C using a controlled strain-stress rheometer (MCR 300, 

Physica/ Anton Paar, Ostfildern, Germany) equipped respectively with a bob and cup geometry and 

with a plate-plate system to perform analysis in steady state conditions and the dynamic tests 



respectively. In steady state conditions, after a pre-shearing of 500 s at 2 s-1, viscosity was measured 

as function of increasing shear rate from 2 to 50 s-1 (ramp up) within 180 s, then decreasing from 50 

to 2 (ramp down), within each ramp 18 measurements were taken (ICA, 2000). 

Chocolate rheological flow curves are usually fitted (Afoakwa et.al., 2008, 2009b; Taylor et al., 

2009) by using the Casson model, that is a well-known rheological model to describe the non-

Newtonian flow behaviour of fluids with a yield stress (Joye, 2003). In particular, some fluid 

products, like chocolate, are well described by this model because of their non linear yield-stress-

pseudoplastic nature. According to Chevalley (1991) curve points represent a case for a better fit to 

chocolate data, if the exponent is taken as 0.6 rather than 0.5.  

For this reason, in this study the obtained flow curves were evaluated and fitted according to the 

rheological model of Casson, modified by Chevalley (1991), in order to obtain a better fit of the 

chocolate samples. The model used is represented in the following equation (1): 
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where τ0 is the yield stress and ηPL is the so-called “plastic viscosity” . In order to measure the 

goodness of fit, the determination coefficient (R2) was determined. The yield stress and the apparent 

viscosity were obtained according to Afoakwa, Paterson, & Fowler (2008) and ICA (2000), 

evaluating the shear stress respectively at 5 and 40 s-1. In particular, the apparent viscosity evaluated 

at the shear stress of 40 s-1 according to Do, Hargreaves, Wolf, & Mitchell (2007), reflects the 

microstructure of the sample taking into account the presence of aggregates. 

The samples thixotropy was evaluated according to Servais, Ranch, & Roberts, (2004), from the 

difference between viscosity measured at 40 s-1 during ramp up and ramp down. The thixotropy 

values represent in very close way the value of the hysteresis area between the viscosity curves 

during the ramp up and the ramp down. The loop area designates the energy required to break down 

the structure not recovered during the experimentation period (Roopa & Bhattacharya, 2009) and 

represents the rate of the internal breakdown of matrix (Dolz, González, Delegido, Hernández, & 

Pellicer, 2000). 



In dynamic conditions, oscillatory tests by using a plate-plate geometry were performed in order to 

investigate the viscoelastic properties of samples and to evaluate the storage (G’) and the loss (G”) 

modulus. In order to identify the linear viscoelastic range (LVR), in which the viscoelastic 

properties are independent from the stress conditions, strain sweep tests were applied. Frequency 

sweep tests were carried out in the viscoelastic linear region at the constant deformation amplitudes 

of 0.12%, previously evaluated with the strain sweep test, in the range from 1 to 100 Hz.  

 

2.2.3. Colorimetric measurements 

Colour of chocolate samples was measured using a colour spectrophotometer mod. Colorflex 

(Hunterlab, USA), equipped with a sample holder (diameter 64 mm). Colour was measured in the 

CIE L*a*b* scale using the D65 illuminant. The instrument was calibrated with a white tile (L* = 

98.03, a* = - 0.23, b* = 2.05) and the calibration was also validated with a green standard tile (L* = 

53.14, a* = - 26.23, b* = 12.01) before the measurements. 

Numerical values of a* and b* were converted into hue angle (h°) and Chroma (C*) that represent 

the hue and the saturation index: C* = [ (a*)2+(b*)2]1/2, h° = [arctang (b*/a*)/2 π]* 360 (Mc Guire, 

1992). 

 

 

2.3. Statistical analyses 

All the analysis were carried out in triplicate for each chocolate sample. 

Analyses of variance (ANOVA) and the test of mean comparison according to Fisher Least 

Significant Difference (LSD) were conducted on all obtained data. Level of significance was P ≤ 

0.05. 

The statistical software used was STATISTICA, version 8.0. (StatSoft, Tulsa, Oklahom). 

 

3. Results and discussion 



3.1. Microstructural properties of milk chocolate 

In Fig. 2 (a, b, c, d, e) micrographs of milk chocolate samples obtained by ESEM analysis are 

shown. 

                  

 

         

Fig.2. Microghraphs of milk chocolate after different processing steps: (a) Mixing, (b) Pre-refining, 

(c) Refining, (d) Conching and (e) Tempering. 

 

 

ESEM was employed in order to evaluate all the microstructural modifications occurred on 

chocolate samples during the different process steps, concerning sugar crystalline networks, 



particle-particle interactions, presence of voids and particle-fat behaviour (Afoakwa, Paterson, 

Fowler, & Vieira, 2009). Microstructure examination, carried out with the image analysis (Table 1), 

highlighted different structures and particle diameters between samples obtained from the 

manufcturing steps. 

Table1. Microstuctural analysis of the milk chocolate 
 

 

ESEM micrographs showed a decrease in the particle size from sample A to C (Table 1), parallel to 

an increase in the presence of large voids between aggregates (Fig. 2 a, b, c). The reduction of the 

particles diameter causes an increase in the particles number, parallel to an increase in the contact 

points between them, due to chemical and mechanical interactions (Afoakwa, Paterson, Fowler, & 

Vieira, 2009; Servais, Ranch, & Roberts, 2004). The increase of particle interactions from sample A 

to C, due to the raise of their specific surface area, involves a reduction of the particles mobility, 

due to their high aggregation (Bayod, 2008). On the other side, the presence of large voids between 

aggregates (filled with cocoa butter) involves an immobilization of a part of cocoa butter that can 

not contribute to the continuous fluid phase flow. According with the studies of Windhab (2000), 

the immobilized fluid fraction in the particle aggregates can be considered as an increase of solid 

volume, as explained in the following equation: 
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Samples Particle size 

(Feret diameter) 

A 103±2.57 

B 67±3.54 

C 29±2.37 

D 22±2.56 

E 17.91±3.75 



Where øs = is the volume occupied by solid particles, øsif = is the volume of the fluid immobilized 

by surface, øvif = is the volume of fluid immobilized in particle cavities and into inner voids in 

particle aggregates and øhifi = is the part of fluid immobilized when particles or aggregates move 

within the continuos phase such as in rotation.  

For this reason in order to know the effective solid content in a dispersion, all the parameters 

presents in the equation (2) must be taken into account. In particular, the cocoa butter immobilized 

in large voids can have a significativant impact on the rheological behaviour of the milk chocolate 

system (Windhab, 2000). 

The micrographs of Fig. 2 (d, e), related to the samples after conching and tempering steps, show a 

further reduction in the particle size coupled to a reduction of the larger voids between aggregates, 

that leds to a reduction of the fluid immobilization. In the conching step a destruction of the 

previous obtained agglomerates and a re-distribution of cocoa butter between particles was noted, 

according to Attaie, Breitschuh, Braun, & Windhab, (2003). Cocoa butter in fact, due to its free-

moving lubricating plastic flow, coats particles and reduces forces and aggregation between solid 

particles (Beckett, 2000), thus improving their mobility. 

 

3.2. Fundamental rheological properties 

In Fig. 3 the flow curves of the milk chocolate samples, obtained increasing the shear rate from 2 to 

50 s -1, are reported. 

 



 

Fig. 3. Changes of apparent viscosity (Pa s) of milk chocolate samples, during mixing (A), 

prerefining (B), refining (C), conching (D) and tempering (E) steps. 

 

The apparent viscosity (η) against shear rate (γ) was used to represent the rheological behaviour of 

milk chocolate; it is evident that the apparent viscosity decreases increasing the shear rate, which 

proves the pseudoplastic or shear thinning nature of chocolate.  

According to Juszczak, Witczak, Fortuna & Banys, (2004) this behaviour can be attributed to the 

breakdown of the inner structure dispersions, in fact the increase of shear rate causes the drop in 

viscosity of the molecules orientating along the flow lines. 

As illustrated in Fig. 3, sample C had the highest viscosity with initial values ranging around 60 Pa 

s, followed by sample B with initial viscosity values between 20 and 30 Pa s and sample A with 

values between 10 and 20 Pa s. D and E samples, obtained from the last two steps of the 

manufacture process, had the lowest viscosity values, ranging from 0 to 10 Pa s. 

In order to better explain the rheological values obtained by the flow curves, the Casson yield value 

and the Casson plastic viscosity parameters were calculated applying the Casson model modified by 

Chevalley (1991), moreover yield stress and apparent viscosity values were obtained according to 

Afoakwa, Paterson, & Fowler (2008) and ICA (2000). All these data are reported in Table 2 for 

each chocolate sample. 

 



Table.2. Casson yield values, Casson Plastic Viscosity, Yield stress and Apparent Viscosity of milk  

Chocolate samples. 

 

a-d values in the same column followed by different letters differ significantly at p < 0.05 level. 

 

All data were well fitted by the Casson model, providing high determination coefficients (R2) that 

varied from 0.75 to 0.99. A significantly increase in both Casson obtained parameters was 

highlighted from sample A to C. This could be attributed to the increase of the contact point 

between particles, that need of a major amount of stress to initiate the flow, and to the presence of 

large void spaces that immobilized cocoa butter between aggregates. In this state the fat can not 

contribute to the flow as lubricant (Franke & Heinzelmann, 2008). Samples D and E were 

characterized by the lowest and significantly similar values of both Casson parameters. In 

particular, the obtained values of plastic viscosity are in agreement with the results of Wichchukit, 

Mccarthy & Mccarthy (2004), that showed that Casson viscosity of milk chocolate with 20% of 

cocoa butter, ranged from 7 to 48 Pa s and led to decrease with the adding of lubricant. In the 

 

Samples 

 

Casson Yield value  

 

(Pa) 

 
 

Casson Plastic 

Viscosity 

(Pa*s) 

 

Yield stress 

 

(Pa) 

 

Apparent Viscosity 

 

(Pa*s) 

 

A 

 

6.82b       

 

4.38b 

 

37.10b 

 

3.84 b 

B   11.97 c  7.82c 91.10c 10.84 c 

C 35.70d 15.36d        209.33d  23.23 d 

D  2.75a 1.55a 16.93a 1.53 a 

E  1.95a 0.21a 14.56a 1.32 a 



samples studied in this research work the highest value of Casson viscosity was lower (25.7 Pa s), 

than the one obtained in the study of Wichchukit, Mccarthy & Mccarthy (2004), probably due to a 

higher amount of cocoa butter used in formulation (25%), that caused a greater lubricating effect 

and a reduction of particle–particle interactions (Vernier, 1998). 

The yield stress and apparent viscosity parameters, exhibited the same trends of the Casson yield 

value and of the Casson Plastic Viscosity in milk chocolate samples. According to the studies of 

Do, Hargreaves, Wolf, & Mitchell (2007) in fact an increase in the apparent viscosity, as from 

sample A to C, also in this case indicates an higher degree of particles aggregation, while a decrease 

of this parameter, as for samples D and E, underlines a lower degree of interactions, as confirmed 

by microstructural analysis results. 

Thixototropy results are shown in Fig. 4. 

 

Fig. 4. Thixotropy of milk chocolate samples. 

 

 It is possible to notice how C and B samples, that had the most aggregate structure, presented also 

the significantly highest thixotropy values, related to a more damaged structure after removing the 

stress. This result according to Afoakwa, Paterson, & Fowler, (2008) could be attributed to the high 

aggregation of the particulate system and to an elevate number of interactions beetween particles. 

Sample A was characterized by an intermediate thixotropic value, between B-C and D-E ones, 



strictly related with the results obtained from microstructural examination, that reflects the presence 

of coarse particles and a weak solid structure compared to B and C samples. The lowest 

significantly values of thyxotropy were showed by chocolate samples D and E. According with 

literature (Afoakwa, Paterson, & Fowler, 2008) in fact, a well conched and tempered chocolate 

should not be thyxotropic and hence should not have a very aggregate structure. 

The results of frequency sweep test in terms of storage and loss modulus, evaluated respectively at a 

frequency of 1 Hz, are reported in Table 3.  

 

Table 3. Storage and loss modulus of milk chocolate samples evaluated at 1 Hz. 

Samples G’ 

(Pa) 

G’’ 

(Pa) 

A 8416b 1281b 

B 13673c 2357c 

C 72746d 16873d 

D 3983a 807a 

E 2873a 798a 

a-d values in the same column followed by different letters differ significantly ( p < 0.05). 

 

The response of all samples to the imposed deformation is the stored potential energy, characterized 

by the predominance of the elastic modulus (G’) over the viscous one (G’’) (Ahmed & 

Ramaswamy, 2006). B and C samples were characterized by a relative more elastic structure 

compared to that of the other samples (A, D and E). As reported in previous studies (Johansson & 

Bergensthål, 1992; Glicerina et al., 2013) high values of G’ are related to a high level of interactive 

forces between particles; this confirms the high amount of stress necessary to B and C samples to 

start flow. 



The significantly lowest values of G’ and G” were found for the samples D and E, constituted by a 

weakly structure.  

 

3.3. Colorimetric measurements 

The lightness (L*) and hue angle (h°) values of A – E milk chocolate samples are shown in Fig. 5. 

 

 

Fig. 5. Lightness (L*) and hue angle (h°) colorimetric  parameters of milk chocolate samples. 

 

A similar trend of lightness and hue angle values was observed in all samples. A and B samples, 

characterised by coarser particles, had the lowest significantly values of both colour parameters. As 

known (Voltz and Beckett, 1997; Afoakwa et al., 2008), the human eye detects colour according to 

how the light is reflected from the surface, thus the size of the both non-fat solid and crystalline fat 

particles affects the colour of chocolate. In particular, in a dense packed medium, light scattering 

factors are inversely related with particle diameters (Sagufy & Graf, 1991; Afoakwa, Paterson, 

Fowler & Vieira, 2008), for this C, D and E samples, having finer particles and a large specific 

surface area, tended to scatter more light, appearing lighter than A and B samples, that had larger 



particles. At the same time the highest hue angle values were found in C, D and E samples, that had 

a more yellonish-brown hue than A and B ones.  

 

4. Conclusions 

The modifications in the microstructure of milk chocolate during the different processing steps 

involve deep changes in the rheological and colorimetric parameters of product. 

In particular, the decrease in particle size detected from sample A to C, simultaneosly to an increase 

in the void spaces that immobilize cocoa butter, involves an increase in all rheological analyzed 

parameters. The re-distribution of cocoa butter during the conching step, let to a decrease in all 

rheological values in D and E samples, probably because of the reduction in particle-particle 

interactions due to the cocoa butter that, wrapping particles, reduces forces between them. At the 

same time, colorimetric characteristics were also affected by the different microstructure of 

samples. 

From results obtained in this work it can be concluded that the knowledge of the influence of 

process parameters on the milk chocolate microstructure becomes very important in order to 

modify, improve and/or optimize the rheological and colorimetric properties of final product. 
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Abstract 

The relationships between the microstructural and rheological properties of white chocolate were 

studied during the main steps (mixing, pre-refining, refining, conching and tempering) of the 

manufacture process. Laser light diffraction and a light microscope techniques coupled with image 

analysis were used to study the particle size distribution (PSD) and the modifications in the network 

structure of samples. At the same time rheological parameters in terms of yiels stress, apparent 

viscosity and thixotropy were evaluated by using a stress-strain conrolled rheometer. Casson and 

Windhab rheological models, widely used for dark and milk chocolate matrices, were used in order 

to better explain the rheological values obtained by the flow curves.. Particles analysis revealed 

significant changes in the network structure during process. In particular, a reduction in particle size 

and an increase in the matrix aggregation and of all rheological analyzed parameters, from mixed 

sample to the refined one were found. The white chocolate samples obtained from the conching and 

tempering steps were characterized by the lowest significantly values of all rheological parameters 

and had a weak structure. Differences between samples were well discriminated by both the 

rheological models applyied.  

 

 

1.  Introduction  

Chocolate can be defined as a concentrated suspension made up of solid particles (sugar and ground 

cocoa particles) dispersed in a Newtonian fluid, generally cocoa butter (Afoakwa et al. 2008). In 

particular, the white chocolate is the product free of coloring matters, obtained from cocoa butter, 

milk or milk products and sugars; it contains not less than 20 % cocoa butter and 14 % milk solids, 

obtained by partial or total dehydration of whole, partially or completely skimmed milk; cream, 

partly or wholly dehydrated; butter or milk fat, the latter must be present in an amount at least equal 

to 3.5 % (2000/36/EC). 



Rheological characteristics are the most important attributes for chocolate matrix, affecting 

properties such as viscosity, consistency and mouth feel, that influenced in strong way the quality 

and stability of final products. The flow behaviour of chocolate is determined by its composition 

and above all by its manufacture process (Servais et al. 2002; Granger et al. 2005; Sato et al. 2009; 

Baldino et al. 2010). The manufacture process of chocolate is quite complex and is divided into 

several stages such as: mixing, pre - refining and refining, conching and tempering. Each single 

step, influencing in strong way the microstructure of the product (aggregation, de-aggregation, 

reduction of particles size, etc) involves modifications in its final rheological attributes and quality 

(Afoakwa et al. 2009; Aguilera 2005). 

Despite several studies on dark and milk chocolate (Afoakwa et al. 2009; Baldino et al. 2010, 

Glicerina et al. 2013a; Glicerina et al. 2013b), to our knowledge no basic rheologic and 

microstructural studies are presents in literature on white chocolate. Several rheological models 

were elaborated and applied in order to predict and better study the rheological behaviour of dark 

and milk chocolate type dispersions (Hugelshofer 2003), but no information on their application on 

white chocolate matrix were highlighted.  

In this study, the influence of different step of the manufacture process on the microstructural and 

rheological properties of white chocolate samples was evaluated. Two different rheological models, 

the Casson and the Windhab one, widely used for dark and milk chocolate formulations, were 

compared, in order to assess the most accurate in predicting the rheological behaviour of white 

chocolate. 

 

 

2.  Materials and methods 

 

2.1.  Materials 

 



White chocolate samples were obtained by an Italian confectionery factory by using an industrial 

plant (Buhler, Malmo, Sweden) provided of mixer, pre-refiner, refiner, conching and tempering 

machines, and equipped to produce 6000 Kg of chocolate at every production cycle. White 

chocolate production was made up by different steps as shown in Fig. 1.  

 

 

Figure 1. Scheme of chocolate manufacturing process (Adapted from Afoakwa et al. 2007). 

 



The recipe of white chocolate was: sugar (47%), cocoa butter (31%) (in part added during the 

mixing step and the remaining during the conching step), whole milk powder (21.5%) and lecithin 

(0.5%). Experimental samples were taken after each production phase: mixing (A), pre-refining (B), 

refining (C), conching (D) and tempering (E). Samples were stored in plastic bucket (1 Kg capacity) 

at room temperature until the analytical determinations. Before performing the analysis the samples 

were melted in a microwave (Stortz and Marangoni 2013) at 150 watt for 25 minutes and further 

subjected to an ultrasonic bath treatment at 50 °C for 20 minutes, in order to fluidify the product 

(Afoakwa et al. 2007). The melting parameters were chosen after preliminary experiments in order 

to minimize changes in the chocolate properties.  

 

2.2.  Methods 

 

2.2.1. Determination of particle size distribution (PSD) 

Measurement of PSD was made by using a Mastersizer, Micro Laser Diffraction Particle Size 3000 

(Malvern Instrument Ltd., Malvern, UK) equipped with a Hydro 2000 SM for iso-propanol (RI 

1.38). About 0.2 g of white chocolate was dispersed in oil until an obscuration of 17.5%, following 

the user guide of the instrument. Speed of stirring was maintained at 1530 rpm for all the 

measurements. 

Size distribution was determined as relative volume of particles in “size bands” and presented as 

size distribution curve and statistics (Malvern Mastersizer Micro Software, 3000). PSD parameters 

obtained were: specific surface area, the largest particle size (D90), mean particle volume (D50), 

Sauter mean diameter (D[3,2]), that takes into account the particles with the smallest sizes, and 

Weight mean particle diameter (D[4,3]), mainly determined by the presence of large particles in 

suspension. 



The last two parameters (Sauter mean diameter and weight mean particle diameter) are the most 

commonly used to characterize PS and represent respectively: the diameter of a sphere with 

equivalent surface to volume ratio of all the particles in the size distribution (1): 

 

∑∑=
i

ii
i

ii dndnd 23
32 /     (1) 

 

and the diameter of a sphere having the average weight of all the particles in the size distribution (2) 

(Black et al. 1996): 

 

∑∑=
i

ii
i

ii dndnd 34
43 /    (2) 

 

2.2.2. Microstructure analysis 

Samples microstructure was observed using a light microscope (Olympus Optical, Tokyo, Japan) at 

10x of magnification, taking 10 micrographs for each samples. One drop of dispersion (previously 

diluted with hexane) was placed on a glass slide and covered with a cover slip carefully placed over 

the sample, parallel to the plane of the slide and centred to ensure sample thickness was uniform. 

Micrographs were captured using a digital camera (Model 2.1 Rev 1; Polaroid Corporation, NY, 

USA). The acquired images were subsequently elaborated using the software Image Pro-plus 6.0 

(Media Cybernetics Inc Bethesda, USA). 

 

2.2.3. Fundamental properties  

Measurements were carried out at 40 °C using a controlled strain-stress rheometer (MCR 100, 

Physica/ Anton Paar, Ostfildern, Germany) equipped respectively with a bob and cup geometry. In 

steady state conditions, after a pre-shearing of 500 s at 2 s-1, viscosity was measured as function of 



increasing shear rate from 2 to 50 s-1 (ramp up) within 180 s, then decreasing from 50 to 2 s-1 (ramp 

down); within each ramp 18 measurements were taken (ICA 2000). 

In this study the obtained flow curves were evaluated and fitted according to two rheological 

models: the Casson (ICA 1973) and the Windhab (IOCCC 2000) one. 

 The Casson model used is represented in the following equation (3) as: 

 

τ 0.6 = τ0
0.6 +η

PL
y0.6      (3) 

 

where τ0 is the yield stress and ηPL is the so-called “plastic viscosity” . 

The model of Casson was originally introduced for suspension of pigments and describes the 

rheological behaviour of viscoplastic fluids (Bolenz and Tischer 2013). In the 1973 the ICA 

recommended the use of the Casson model for shear rates between 5 and 60 s-1 (Ludger and 

Teixteira 2007). The Casson model is then the most known and used to study the rheological 

behaviour of cocoa dispersions; however, according to Weipert et al. (1993), sometimes this model 

does not reflect in accurate way the physical properties of chocolate as its rheological properties do 

not fit exactly to the Casson equation. For this reason further models were developed (e.g. Windhab 

one). 

The Windhab model has been recommended (Ludger and Teixteira 2007) for shear rates in the 

range between 2 and 50 s-1 at 40 °C (4): 

 

τ = τ0 + η∞*γ + (τ1 - τ0) (1 – e - γ./ γ.*)    (4) 

 

This model assumes that when liquid chocolate is put under shear, there is a change in structure of 

the molten chocolate. This can be observed by noting a decrease in viscosity from an initial value 

(structure of no shear) to a steady state value. Here, the ordering forces (“building structure”) and 

disordering forces (“breaking down structure“) are in equilibrium, and the chocolate shows an 



equilibrium viscosity. When the shear stress is increased further, an equilibrium viscosity is reached 

which no longer decreases any further, and a final viscosity η∞ is attained. In the region of this final 

viscosity η∞ there is a straight line with a constant slope in the flow curve. This straight line can be 

extrapolated back to the point of zero shear rate in order to find the intercept. This intercept would 

give the parameter τ1  which is a hypothetical yield stress (Ludger and Teixteira 2007) (Fig. 2). 

 

 

Figure 2. Schematic diagramme of the Windhab model (Ludger and Teixteira 2007). 

 

In order to find the point on the curve where the final viscosity η∞ is reached, from the Windhab 

model can be obtained a second parameter τ∗ = τ (γ*) which indicates that the shear-induced loss of 

structure is at a maximum when γ = γ*˙ is reached. 

In order to measure the goodness of fit, the determination coefficient (R2) was determined. The 

yield stress and the apparent viscosity were obtained according with Afoakwa et al. (2008) and ICA 

(2000), evaluating the shear stress respectively at 5 and 40 s-1. In particular, the apparent viscosity 

evaluated at the shear stress of 40 s-1, according with Do et al. (2007), reflects the microstructure of 

the sample, taking into account the presence of aggregates. 

Thixotropy, instead, was evaluated, according with Servais et al. (2004), from the difference 

between viscosity measured at 40 s-1 during ramp up and ramp down. The thixotropy values 



represent in very close way the value of the hysteresis area between the viscosity curves during the 

ramp up and the ramp down. The loop area designates the energy required to break down the 

structure that is not recovered during the experimentation period (Roopa and Bhattacharya 2009) 

and represents the rate of the internal breakdown of matrix (Dolz et al. 2000). 

 

2.3. Statistical analyses 

The results are reported as average of at least three determinations for each sample. 

Analyses of variance (ANOVA) and the test of mean comparison, according to Fisher Least 

Significant Difference (LSD), were applied on all obtained data. Level of significance was P ≤ 0.05. 

The statistical software used was STATISTICA, version 8.0. (StatSoft, Tulsa, Oklahom). 

 

3. Results and discussion 

 

3.1 Particle size distribution 

In Table 1 the results of the particle size distribution of white chocolate samples during process 

steps are reported.  

 

Table 1. Particle size distribution and specific surface area of white chocolate samples. 

Samples D(v,0.9)* 

(µm) 

D(v,0.5)* 

(µm) 

D[3,2]* 

(µm) 

D[4,3]* 

(µm) 

Specific surface 

area (m2 g-1) 

A 280 a 94.5 a 18.6 a 122 a 0.50 a 

B 143 b 39.6 b 12.4 b 59 b 1.32 b 

C 47.7 c 13.6 c 6.67 c 34.4 c 2.21 c 

D 44.1 c 13.4 c 5.82 c 22.1 c 2.61 c 

E 34.4 c 12.5 c 5.44 c 16.2 c 1.99 c 

D(v,0.9), D(v,0.5), D[3,2] and D[4,3] respectively represent 90%, 50%, Sauter mean diameters and the 
wheight mean diameter 



 

Large differences in PSD were obtained between chocolate samples. A reduction in all PS diameter 

measures was recorded from sample A to E with a simultaneous increase in the specific surface 

area; substantial and significantly different data were obtained only from sample A to C.  

These results are in agreement with those of Beckett (2010) and Sokmen and Gunes (2006) that 

stated the presence of an inverse correlation between the specific surface area and the other 

parameters related to the distribution of particles in cocoa matrix. Largest particles affect the 

textural properties of the final product while the specific surface area is related to the requirement of 

fat to obtain desirable flow properties.  

Results obtained from the PSD analysis underlines as each single process step involves drastic 

changes in PSD of white chocolate matrix, also if the major changes in the microstructure of the 

samples were occurred from the mixing to the refining step, as also graphically shown in curves of 

Figures 3 a, b, c, d, e.  

 

  
 

 

 

Figure 3 b. Particle size distribution of 
refined white chocolate sample  

Figure 3 a. Particle size distribution of 
mixed white chocolate sample. 



 

 

 

 

 

 

 

From figures, it can be observe an unimodal PS distribution in sample A (Fig. 3 a), shifted until the 

highest particles size values (around 130 µm), a wide bimodal PS distribution of sample B (Fig. 3b), 

with the presence of a second peak shifted toward PS lower, and a narrow unimodal distribution in  

C, D and E samples (Fig. 3 c, d, e). 

 

3.2  Microstructural properties of white chocolate 

Micrographs of white chocolate samples were obtained by using a light microscope. White 

chocolate in fact, thanks to its optical properties in terms of lightness, due to the absence of cocoa 

particles, can be easily observed by using this kind of microscope. 

Figure 3 d. Particle size distribution of 
conched white chocolate sample. 

Figure 3 c. Particle size distribution of 
refined white chocolate sample. 

Figure 3 e. Particle size distribution of 
tempered white chocolate sample. 



Figures 4 a, b, c, d, e show the images of A, B, C, D and E white chocolate samples acquired at a 

resolution of 10 x. 

 

    

 

 

 

 

 

          

 

 

Figure 4 a. Light micrograph of mixed 
white chocolate sample (A) 
 

Figure 4 b. Light micrograph of pre-
refined white chocolate sample (B). 

Figure 4 c. Light micrograph of refined 
white chocolate sample (C). 

Figure 4 d. Light micrograph of conched 
white chocolate sample (D). 

Figure 4 e. Light micrograph of tempered 
white chocolate sample (E). 



In Table 2 the results of the microstructural analysis, obtained by evaluating the particles Feret's 

diameter, defined as the distance between two tangent lines to the two itself opposite sides (Allen 

1997), are reported . 

 

Table 2. Microstuctural analysis of the white chocolate samples. 

Samples Feret diameter  

(µm) 

A 320.00a ± 11.87 

B 75.00b ± 15.87 

C 33.00c ± 3.15 

D 26.00c ± 2.34 

E 15.65c ± 3.75 

a-c values in the column followed by different letters differ significantly at p < 0.05 level 

 

Microstructural analysis confirmed PSD results obtained with the laser light diffraction technique. 

A reduction in particle size was observed from the mixing step (sample A) to the refining one 

(sample C). As shown in the related micrographs the the reduction of the particle diameter caused 

an increase of the particle number, parallel to an increase of contact points between particles 

(Glicerina et al. 2013b), due to chemical and mechanical interactions (Servais et al. 2004; Afoakwa 

et al. 2009). In white chocolate the interactions between the matrix components are particular 

evident in sample C, taken from the refining step. From the analysis of Figure 4 c, is in fact possible 

to detect the presence of a large black area in the middle of the image, due to the aggregation of 

particles in suspension, that involves a lower diffusion of the light. 

Samples obtained from the conching (D) and tempering (E) phases revealed a further reduction in 

particle size (Table 2), parallel to a reduction in particle-particle interactions (Figures 4 d, e) . 

Consequently, the structure of these samples appears to be less packed and probably more fluid than 

in the previous samples (A, B ,C). This is probably due, both to the effect of the latter process 

stages and in particular to the further addition of cocoa butter and lecithin during the conching step. 



Cocoa butter wraps the individual particles in the matrix, filling the empty spaces between them, 

and thus giving rise to a less aggregated and compact structure (Vernier 1998). Moreover, lecithin 

migrates to the sugar⁄fat interface and coats sugar crystals, reducing particle-particle interactions 

and the dispersed crystals in the fat phase (Dhonsi and Stapley 2006). 

 

3.3.  Fundamental rheological properties 

In Fig. 5 the flow curves of the white chocolate samples, obtained increasing the shear rate from 2 

to 50 s -1, are reported. 

 

Figure 5. Flow curves of white chocolate samples 

 

Due to the presence of sugar particles with large size and the to the presence of a completely 

unstructured matrix in the mixed sample A, it was not possible to perform rheological analysis on 

its, even after treatment in microwave. 

All samples exhibited a typical non-Newtonian behaviour, characterized by the viscosity 

dependence on the flow conditions (Chabbra 2006). In particular, the apparent viscosity of these 

products decreased with the increase of the shear rate, indicating pseudoplasticity. This behaviour 



can be explained by the structural breakdown of the molecules due to the generated hydrodynamic 

forces and to the increased alignment of the same molecules (Izidoro et al. 2008). As illustrated by 

Fig. 5, sample C presents the highest viscosity values with an initial data around 55 Pa s, it is 

followed by samples B with an initial viscosity value of about 6 Pa s. The lowest viscosity values, 

between 0 and 5 Pa s, were recorded for D and E samples, obtained from the last two process steps. 

In order to better explain the rheological values obtained by the flow curves, the Casson yield value, 

the Casson plastic viscosity, the Windhab linear yield stress and the Windhab infinity viscosity 

parameters were calculated applying respectively the Casson and the Windhab models. Moreover, 

yield stress and apparent viscosity values were obtained according with Afoakwa et al. (2008) and 

ICA (2000). All these data are reported in Table 3. 

Both applied models showed high coefficient of determination (R2) ranged between 0.75 and 0.99. 

In particular, the Windhab model determined R2 between 0.80 and 0.99, slightly higher than the 

Casson one, thus describing in more accurate way the rheological behaviour of white chocolate 

matrix. 

 

Table 3. Yield stress, Apparent Viscosity, Windhab Linear yield stress, Windhab Infinity viscosity, 

Casson Yield value, Casson Plastic viscosity, of white chocolate samples 

 
Samples Yield stress 

(Pa) 
Apparent 
Viscosity  

(Pa s) 

Windhab 
Linear 

yield stress 
(Pa) 

Windhab 
Infinity 
viscosity 

(Pa s) 

Casson 
Yield value 

(Pa) 

Casson 
Plastic 

viscosity 
(Pa s) 

B 23.42 b 3.63 b 24.15 b 2.67 b 2.45 b 2.56 b 

C 206.76 a 23.80 a 254.32 a 10.12 a 47.21 a 9.79 a 

D 10.31 c 0.93 c 7.75 c 0.67 c 5.11 b 0.53 c 

E 11.15 c 0.98 c 8.25 c 0.70 c 6.00 b 0.59 c 

a-c values in the same column followed by different letters differ significantly at p < 0.05 level 

 



Data analysis showed that the product taken from the refining step (C) presents the significantly 

highest (p<0.05) values of yield stress and viscosity compared to all other samples, highlighting that 

the amount of stress required to obtain the flow was the highest. This result is related with those of 

microstructural analysis, from which this sample showed a highly aggregated matrix (Afoakwa et 

al. 2009). Sample B showed intermediate values of yield stress and viscosity between the other 

samples, while D and E samples, that had the less aggregated structures presented yield stress and 

viscosity values statistically lower than the other samples. The lubricating effect of cocoa butter and 

lecithin, added in the conching phase, affects the flow behaviour of matrix, reducing its viscosity. 

These results are supported by the studies of Dzuy and Boger (1983), Coussot and Ancey (1999) 

and Larsson (1999) that noticed a high dependence of yield stress and apparent viscosity on the 

particles size and their interactions. 

Also for what concern yield value (Casson), linear yield stress (Windhab), plastic viscosity 

(Casson) and the infinity viscosity (Windhab) samples C, obtained from the refining step, showed 

the highest values. D and E samples had the lowest of these parameters and not significantly 

different between them. 

Thixotropy of white chocolate samples are reported in Figure 6. Thixotropy representing the energy 

required to break down the structure that is not recovered during the experimentation period (Roopa 

and Bhattacharya 2009), underlines how in a very aggregate matrix, this force will be high and not 

recovered because of the completely de-structuration of matrix. Moreover thyxotropy is strictly 

related with the microstructural characteristics of food matrix. As expected, samples B and C 

(Figure 6), having the most aggregated structures, had the statistically highest thixotropic values. 

These values are due to the increased damage of the structure, highlighted immediately after the 

stress removal, which can be attributed (Afoakwa et al. 2008) to a high level of aggregation of the 

structural matrix, which undergoes an irreversible break. Samples D and E, showed the lowest 

thixotropic values, confirming that a well-conched and tempered chocolate should not present any 

thixotropy and should be characterized by poorly aggregated structures (Afoakwa et al. 2008). 



 

 

Figure 6. Thixotropy of white chocolate samples. 

 

 

4.  Conclusions 

The results obtained in this research confirm that white chocolate exhibits a complex rheological 

behaviour, strictly related to its microstructural properties. Microstructural analysis is a fundamental 

parameter in order to study the modifications of the rheological properties of the white chocolate 

during through the manufacture process. All used analytical techniques (Laser light diffraction, light 

microscopy and rheology in steady state conditions) were very accurate in order to discriminate 

white chocolate samples on the basis of process phases which were subjected. Between the 

rheological models normally used to predict and well study the rheological behaviour of chocolate 

matrices, the Windhab one showed to be the more suitable in order to describe the flow behaviour 

of white chocolate products. 
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ABSTRACT

The effects of different types (fractionated palm oil and hydrogenated fats – HFs)
and amounts of fats on the rheological and textural properties of laboratory made
nut creams were evaluated. Samples were produced in a roller ball mill pilot plant,
and the color, rheological and textural characteristics were evaluated. Experimen-
tal creams were compared with two commercial ones. The highest amount of HFs
led to an increase of consistency, viscosity and elasticity of creams involving a
reduction in colorimetric parameters compared to ones with or without a low
level of HFs. Finally, the potential interchangeability between fundamental and
empirical measurements was demonstrated.

PRACTICAL APPLICATIONS

Quality and stability of nut creams are affected by a number of factors, such as
types and different amounts of fats. The study of the influence of the impact of
different types and amounts of fats is important for manufacturing improvements
in order to optimize the different nut cream formulations and the final rheological
quality of products. This study may provide a useful guide for producers in order
to let them to discriminate and choose a right fat composition of nut creams on
the basis of their overall rheological characteristics, assessed by empirical and/or
fundamental measurements.

INTRODUCTION

Nut creams can be defined as a complex system made up of
different solid particles (sugar, cocoa powder, milk whey,
milk powder, nuts, etc.) dispersed in a continuous fluid (oil)
(Afoakwa et al. 2008b). To study them, an extended and
rigorous characterization using detailed methodological
advancements is important in order to predict and evaluate
their properties and relate them to quality characteris-
tics and performances (cream stability, creaminess and
processability) (Peressini et al. 2006).

The final quality and characteristics of these products
arise not only from the manufacturing process through the
steps of mixing, refining, conching and cooling but also
from the formulation that becomes a key parameter in the
study of the rheological behavior of similar products
(Fernandes et al. 2013). The type, quality and quantity of

each ingredient used in a recipe, particularly fats, affect
the creams’ rheological and textural properties and also the
flow parameters (Fang and Zhang 1997). Firmness, consis-
tency, cohesiveness and viscosity, and yield stress are useful
parameters in order to evaluate the degree of consistency
and spreadibility of creams. Fat ingredients are com-
plex mixtures consisting of a large number of fatty acids
assembled with glycerol into different molecular structures
known as glycerides. The type and positional distribution
of fatty acids control the physical properties of the fats.
According to Larsson and Quinn (1994) and Ribeiro et al.
(2009), a high amount of saturated fatty acids contained in
a sample (i.e., the hydrogenated fats) strongly influences its
consistency, increasing it. In fact, the studies of Ribeiro et al.
(2009) showed a significant (P < 0.05) and linear relation-
ship between the consistency and the SFC in different fat
mixture samples.

bs_bs_banner

Journal of Food Quality ISSN 1745-4557

342 Journal of Food Quality 36 (2013) 342–350 © 2013 Wiley Periodicals, Inc.



Nut creams are examples of food products that contain
significant amounts of fats, and thus, the sensory attributes
of creams, such as bite firmness (brittle solid), melting
properties (rough quickly melting), stickiness (not sticky
very sticky) and smoothness (very grainy very fine grind-
ing), are dependent on the mechanical strength of the fat
crystal network. A fat crystal network is the product of an
aggregation process of molecules into crystals and of
crystals into larger clusters, until a space-filling three-
dimensional network is formed (Awad and Marangoni
2006).

The study of nut cream rheology is important because
it is related to the performances of the main steps in the
process (mixing, pumping, transportation, etc.) (Servais
et al. 2002) and also to the final quality and the sensorial
characteristics of products such as cohesiveness, consistency
and spreadibility. During a rheological characterization
of this kind of product, viscosity and flow properties are
the most analyzed parameters. Moreover, because of the
complex rheological behavior of these materials, other
structural properties must be investigated by using dynamic
tests. These measurements, in the linear viscoelastic region
(LVR), are independent of the strain or stress applied but
are only related to the structure of the product (Baldino
et al. 2010).

References in literature to the rheological characteriza-
tion of nut and cocoa creams (Bravin et al. 2004; Peressini
et al. 2006) are scarce. Moreover, to our knowledge, no
papers are available about the influence of various types of
fats in formulation on the creams’ rheological properties.
Since, as previously reported, rheological properties are fun-
damental parameters for the characterization of nut creams
and the used ingredients can affect them in a significant
manner, an evaluation of the impact of different types and
amounts of fats is important in order to optimize the differ-
ent formulations.

The aim of this study was to investigate the influence
of different formulations, obtained by varying the type and
amount of fats, on the rheological and textural properties of
laboratory made nut creams. The experimental nut creams
were compared with two commercial ones produced by
Italian confectionery factories.

MATERIALS AND METHODS

Materials

The type of fats used in the cream formulations were frac-
tionated palm oil and hydrogenated fats (HFs), supplied by
a local confectionery factory. Some physicochemical proper-
ties of these ingredients, reported in the product specifica-
tions, are shown in Table 1.

A mixture design was used to obtain different experimen-
tal creams. The experimental variables used to differentiate
the cream formulations were as follows: type of fat (frac-
tionated palm oil and an HF) and their quantities. To differ-
entiate the samples, a simplex centroid design (Ruguo 1999)
was applied and five different cream samples were obtained
(Table 2). The amount of fats was always 20% of the whole
formulation. All the other ingredients, supplied by a confec-
tionery factory, and amounts were held constant using
the following proportions: sugar (45.55%), commercial nut
paste (13%), milk whey (10%), cocoa powder (6.5%), milk
powder (4%), nut flavor (0.15%), soy lecithin (0.4%) and
stabilizer (0.4%). Two commercial nut creams produced
by Italian confectionery factories were used as controls.
These samples were indicated as (X1) the medium-standard
quality and (X2) the market leader. From the product label,
the ingredient composition for X1 cream is as follows:
sugar, vegetal and hydrogenated fats (5%), nut paste (13%),
cocoa powder, skimmed milk powder (4%), milk whey,
lactose, soy lecithin, natural extracts; for X2 cream: sugar,
vegetal fats, nuts (13%), cocoa powder, skimmed milk
powder (5%), milk whey, soy lecithin, natural extracts.

Three replicates were obtained for each experimental
cream; for the commercial nut creams, three specimens
from different lots were used.

Formulation

Experimental creams were produced in a roller ball mill
pilot plant (ME-MRC, ME.TRA, Verona, Italy), equipped to
produce 4 kg of mixture, by mixing all the ingredients and

TABLE 1. PHYSICOCHEMICAL PROPERTIES OF FATS USED IN THE
EXPERIMENTAL CREAM FORMULATIONS

Specific values of fats Palm oil HF

Peroxide value (meqO2/kg oil) 2.0 1.0
Moisture (%) 0.10 0.10
Solid fat content* (%) 1.5 86
Free fatty acid (as oleic acid) (%) 0.15 0.10

* Evaluated by pulse-nuclear magnetic resonance at 25C.
HF, hydrogenated fat.

TABLE 2. MIXTURE DESIGN USED FOR THE FAT FORMULATION IN
CREAM SAMPLES

Cream samples Palm oil (%) HF (%)

A 100 0
B 75 25
C 50 50
D 25 75
E 0 100

HF, hydrogenated fat.
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50% of lecithin for 15 min at 40C. In the same machine, the
ingredients were refined and conched for a further 120 min
at 40C in order to reduce particle size and viscosity of the
cream and to remove any bad flavor and unpleasant taste.
After conching, the remaining lecithin was added and mixed
for a further 15 min at 40C to improve the viscosity. In the
final step, the product was cooled for 10 min at 37C.

The creams were stored in plastic buckets (5 kg capacity)
at room temperature (22 ± 1C) for 7 days before perform-
ing analyses.

Colorimetric Measurements

The color of samples was measured using a color spec-
trophotometer model Colorflex (Hunterlab, Reston, VA)
equipped with a sample holder (diameter 64 mm). The
color was measured using the CIE L*a*b* scale and
illuminant D65. The instrument was calibrated with a white
tile (L* = 98.03, a* = −0.23, b* = 2.05), and the calibration
was also validated with a green standard tile (L* = 53.14,
a* = −26.23, b* = 12.01) before taking the measurements.

Numerical values of a* and b* were converted into hue
angle (h°) and chroma (C*) that represent the hue and
the saturation index: C* = [(a*)2 + (b*)2]1/2, h° = [arctan
(b*/a*)/2 π]* 360 (McGuire 1992).

Static and Dynamic Rheological
Measurements

Measurements were carried out at 25C using a controlled-
stress rheometer (MCR 300, Physica/Anton Paar, Ostfildern,
Germany) provided of a geometrical rough plate. The plates
were 35 mm in diameter and the gap was 1 mm. The rheo-
logical behavior of nut creams was analyzed in static state
and under dynamic conditions. In steady-state conditions,
using flow tests, viscosity was measured, increasing the
shear rate from 0.02 to 20 s−1, taking 30 measurement
points, in accordance with the previous studies of Peressini
et al. (2006). Before starting measurements, each sample
was stabilized in the rheometer for 5 min at 25C by using a
TEK 150P circulating bath (Physica/Anton Paar).

Nut cream is not a simple Newtonian product; in fact, its
viscosity is not independent of shear rate or shear stress.
In this study, the obtained flow curves were evaluated and
fitted according to the rheological model of Ostwald, com-
monly referred to as the Power Law model (Holdsworth
1993; Hugelsofer 2000). The Power Law model is repre-
sented in the following as

σ γ= K n� (1)

where σ is the shear stress (Pa), K is the consistency index
(Pa·sn), �γ is the shear rate (1/s) and n is the dimensionless

flow behavior index. In order to measure the goodness of
fit, the regression coefficient (R2) was determined. Using the
Power Law model, an important classification of products is
possible: for values of n from 0.1 to 0.95, the products are
known as pseudoplastic and are characterized by a decrease
in apparent viscosity with increasing shear rate, i.e., shear
thinning. For n values in the range of 0.95–1.05, the behav-
ior is essentially Newtonian, ideally n = 1. For values of n
greater than 1.05, the products are referred to as dilatants,
i.e., shear thickening.

In dynamic conditions, oscillatory tests were performed
at 25C in order to investigate the viscoelastic properties of
samples and to evaluate the storage (G′) and the loss (G″)
modulus. In order to identify the LVR, in which the
viscoelastic properties are independent of the stress con-
ditions, stress sweep tests were applied, at a constant
frequency of 1 Hz and with a stress in the range from 10
to 100 Pa. Frequency sweep tests were carried out in the vis-
coelastic linear region, for all samples, at a shear stress of
34.2 Pa, previously evaluated with the stress sweep test, in
the range from 0.06 to 628 rad/s.

Texture Analysis

A TA.HDi 500 Texture Analyzer (Stable Micro System,
Vienna Court, U.K.) was employed to investigate the tex-
tural properties of nut creams. All measurements were per-
formed using a back extrusion test. The test was carried out
in a back extrusion container (50 mm in diameter), 75%
filled with the sample, using a disk (35 mm) attached to an
extension bar, with a load cell of 50 kg. The parameters used
were as follows: a pretest speed of 1 mm/s, a test speed
of 1 mm/s, a post-test speed of 1 mm/s and a distance of
30 mm.

The “peak” or maximum force is taken as a measurement
of firmness (N); the higher the value, the firmer is the
sample. The area under the curve up to this point is taken
as a measurement of consistency (N·s), so the higher the
value, the thicker the sample consistency. The negative
region of the graph, drawn on probe return, is the result of
the weight of the sample that is lifted primarily on the
upper surface of the disc on return, i.e., due to back
extrusion, and hence gives an indication of the viscosity
(resistance to flow off the disc). The maximum negative
force is taken as an indication of the cohesiveness (N) of
the sample, so the more negative the value, the more “cohe-
sive” is the sample. The area of the negative region under
the curve is an indication of viscosity index (N·s) of the
sample and may be referred to as the “work of cohesion”
(Angioloni and Collar 2009).

All the analytical determinations were made at least in
triplicate for each subsamples.
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Fundamental and empirical rheological tests were carried
out only on A, B, C, X1 and X2 samples, being D and E
creams extremely consistent and too viscous to conduct tex-
tural or oscillatory measurements; this was probably due to
the high amount of HF in their formulations.

Statistical Analyses

Analyses of variance and the test of mean comparison using
Fisher’s least significant difference were applied. The level of
significance was at P ≤ 0.05.

Correlation analysis at 95% significance was carried out
to evaluate the relationships between rheological and tex-
tural properties of cream samples. The statistical software
used was STATISTICA (StatSoft, Tulsa, OK), version 8.0.

RESULTS AND DISCUSSION

Color

The hue angle and chroma results of cream samples are
shown in Figs. 1 and 2, respectively. The A, B and C cream
samples with the lowest quantity of HF showed the highest
hue angle values (over 60°), statistically different from D
and E samples. These last two samples did not show statisti-
cally different h° values from each other, probably because
they had the highest HF quantities. Commercial samples
(X1, X2) showed the lowest and not statistically significant
h° different values. From these results, it seems that the
samples with less HF amount (A, B, C) had a more intense
hue than the other experimental samples and were quite

FIG. 1. HUE ANGLE (H°) COLOR PARAMETER
OF NUT CREAM SAMPLES
Within each sample, means with different
letters differ significantly from each other
(P < 0.05).

FIG. 2. CHROMA (C*) COLOR PARAMETER OF
NUT CREAM SAMPLES
Within each sample, means with different
letters differ significantly from each other
(P < 0.05).
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different from the commercial ones. Also for chroma results
(Fig. 2), A, B and C samples showed the highest and statisti-
cally different values. The lowest ones were found in D and
E cream samples. The most saturated samples were A, B and
C, whereas the less saturated were D and E. This means
that A, B, C samples had a more intense and saturated color
than others. Commercial samples had intermediate chroma
values. Among the experimental cream samples, the lowest
hue angle and saturation values were found in the samples
richer in HF; this is probably due to the bigger crystallinity
of this kind of fat, which scatters the light.

Fundamental Rheological Properties: Flow
Behavior and Viscoelastic Properties

As known from the literature (Larsson and Quinn 1994;
Marangoni and Narine 2002; Braipson-Danthine and
Deroanne 2006), there is a direct relationship between solid
fat content (SFC), representing the amount of fat crystals
in the blends (Habi and Rahimmd 1998) and firmness of
food products. The percentage of solid fat measured at 25C
represents the hardness of a specific fat and it is directly
proportional to HF content (Piska et al. 2006).

In Table 3, the n and K parameters obtained applying
the Power Law model on cream samples are reported. The
used model fitted well with the flow test data as shown in
Fig. 3a,b, giving high determination coefficients (R2) that
varied from 0.75 to 0.99. All samples were characterized
by 0.2 < n < 0.43, typical for a product with shear thinning
behavior, well illustrated in Fig. 4, where the apparent vis-
cosity of these products decreased, increasing the shear rate
from 0.02 to 20/s, indicating pseudoplasticity. This behavior
can be explained by the structural breakdown of the mol-
ecules due to the hydrodynamic forces generated and to the
increased alignment of the constituent molecules (Izidoro
et al. 2008).

It is known (Nawar 1985) that the consistency of fats
depends on the number, size and type of crystal networks as
well as on the proportion of solids in the fat. As reported in

Table 3, B and C samples showed higher values of K index
compared with sample A due to a high amount of HF in
the formulation. In particular, sample C, realized with the
highest amount of HF (50%), showed the significantly
highest value of K. The consistency is strictly related to the
HF level and SFC, i.e., 86% in this particular kind of fat
(Table 1). Sample A had the lowest index of consistency due
to its SFC of 1.5% and probably to the absence of HF or
hard solid vegetable fats.

The X1 and X2 cream samples had K index intermediate
values among those of experimental creams. X1 had only a
few amount of HF (5%), while X2 did not have HF, as
reported in the label; consequently, their quite high K index
values could be attributed to the presence of hard vegetable
fats with an SFC composition similar to the HF ones. These
results show that samples B and C, obtained with a high
amount of HF, are likely characterized by a highly aggregate
structure and this is in agreement with the highest viscosity
values (Fig. 4) showed by the same samples (Foegeding et al.
2011). Moreover, as shown in Fig. 4, the viscosity of the A
sample was very similar to that of X1; X2 had an intermedi-
ate initial viscosity value (206 Pa s). Sample A, made up of
palm oil and a 1.5% SFC, had a lower consistency, a less
aggregated and elastic structure than B and C, made with 25
and 50% of HF. X1 commercial sample showed a plastic
structure similar to A, while X2 cream presented a structure
more consistent and elastic close to that of B sample, prob-
ably due to the presence of hard vegetable fats or HF. Stress
sweep tests were performed in order to identify the LVR,
in which properties of material are independent of the
stress conditions. Obtained results (Fig. 5) showed a narrow
viscoelastic region; therefore, low intensity stresses could
destroy the structure of the system.

Results from frequency sweep test in terms of storage
and loss modulus are shown in Figs. 6 and 7, respectively.
Storage modulus values (G′) were higher than loss modulus
(G″) ones for all samples, indicating that all cream samples
had a solid, elastic-like behavior. This suggests that under
nondestructive conditions, elastic modulus has a predomi-
nant effect on the dissipative one.

Samples B and C showed a stronger elastic structure than
A, having higher G′ values. This trend is probably related to
the presence of a strong network of crystal fats. According
to Larsson and Quinn (1994), with a low SFC, as in sample
A, the fat remains like a viscous liquid and not in an elastic
and elastoplastic form. When the SFC increases, the physical
interaction among the crystals produces an elastic structure,
immobilizing the liquid oil in the crystalline network and
giving high values of storage modulus. Some authors noted
that a high value of G′ is related to a high level of interactive
forces between particles (Johansson and Bergenståhl 1992).
In this study, G′ and K index values had the same trend,
higher G′ and higher K index.

TABLE 3. FLOW BEHAVIOR DIMENSIONLESS INDEX (N) AND
CONSISTENCY INDEX (K) OF NUT CREAM SAMPLES FROM
PARAMETERS OF THE POWER LAW MODEL FOR THE NUT
CREAMS ANALYZED

Cream samples K (Pa·s.n) n

A 76.42a 0.34b

B 234.53d 0.20a

C 284.21e 0.20a

X1 124.66b 0.32b

X2 172.19c 0.43b

Mean values followed by the same letter in each column are not
significantly different (P < 0.05).
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Also in this case, X1 and X2 commercial samples showed
loss modulus values intermediate between that of A and
B–C creams. This could be related, as reported above, to the
presence of hard saturated fats in the formulation. This
general trend was similar also for G′ values.

Texture Characteristics

Results of cream samples’ textural properties are reported in
Table 4. The experimental samples (A, B, C) were significantly
different for all the considered parameters. Between the experi-
mental creams, sample A showed the lowest values of firmness,

consistency, cohesiveness and viscosity index, probably related
to the scarce SFC. B and C cream samples, made up of a higher
content of HF than A, were characterized by the highest values
of the considered textural parameters.

X1 was significantly different from X2 and not from A for
all textural parameters. The similarity between structural
properties of X1 and A could be related to the presence of
low HF content (5%) in the former and palm oil in the
latter. These ingredients could induce a low resistance to
compression and decompression, reducing cream samples
consistency. Sample X2 showed intermediate values of firm-
ness and cohesiveness between A and B ones. The presence

a

b

FIG. 3. (A, B) SAMPLES FLOW CURVES (FILLED
SYMBOLS) AND USED MODEL FITTED (EMPTY
SYMBOLS)
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of hard vegetable fats or HF in X2 and B samples could be
the cause of their similar consistency and viscosity index
values.

These results are in agreement with those obtained by
fundamental rheological measurements.

Relationships between Textural and
Rheological Measurements

The results of correlation analysis between textural
(firmness, consistency, cohesiveness and viscosity index)
and rheological properties (index of consistency, storage
and loss modulus) of nut cream samples are reported in
Table 5.

High positive and significant correlations between all
rheological and textural parameters were found; in fact,
the obtained correlation coefficients (r) ranged from 0.737
to 0.911. These results, in agreement with those of Afoakwa
et al. (2008a) and Bourne (2002), suggest that the fundamental
rheological parameters are closely related to the empirical ones,
being closely linked to the physical structure of cocoa cream
products, characterized by the micro- and macrostructural ele-
ments, represented by different solid particles dispersed in a
Newtonian liquid. The obtained results indicate therefore the
usefulness of both methods in studying nut creams’ rheolo-
gical behavior. Nevertheless, empirical parameters are usually
used, especially in food industry, to assess food quality more
than to give information about food microstructure.

FIG. 4. CHANGES OF APPARENT VISCOSITY
(Pa·s) OF NUT CREAM SAMPLES

FIG 5. STRESS SWEEP TESTS OF CREAM
SAMPLES
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CONCLUSIONS

The quality and rheological stability of nut creams are
affected by a number of factors, such as the type and differ-

ent amounts of fats. This study may provide a useful guide
for producers in order to let them to discriminate and
choose a right fat composition of nut creams on the basis of
their overall rheological characteristics, assessed by empiri-
cal and/or fundamental measurements. The results obtained
in this work confirm that the use of high amount of HFs

FIG. 6. CHANGES OF STORAGE MODULUS G″
(Pa) OF NUT CREAM SAMPLES

FIG. 7. CHANGES OF LOSS MODULUS G″ (Pa)
OF NUT CREAM SAMPLES

TABLE 4. TEXTURAL PROPERTIES OF CREAM SAMPLES

Cream
samples

Firmness
(N)

Consistency
(N s)

Cohesiveness
(N)

Index of
viscosity (N·s)

A 4.70a 82.04a −3.76a −53.05a

B 28.98c 427.97b −24.65c −321.20b

C 66.46d 994.67c −47.92d −590.00c

X1 3.28a 67.88a −3.05a −53.70a

X2 19.81b 357.38b −16.68b −259.70b

a–d Values in the same column followed by different letters differ sig-
nificantly at P < 0.05 level.

TABLE 5. CORRELATION ANALYSES BETWEEN TEXTURAL AND
RHEOLOGICAL PARAMETERS OF NUT CREAM SAMPLES

Firmness Consistency Cohesiveness Index of viscosity

K 0.796*** 0.767*** 0.808*** 0.737***
G′ 0.911*** 0.826*** 0.880*** 0.777***
G″ 0.891*** 0.793*** 0.858*** 0.762***

* Significant at P < 0.05; ** P < 0.01; *** significant at P < 0.001.
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and/or hard vegetable fats leads to a strong fat network,
which implies more aggregated structure. Between the
experimental creams, sample B showed textural properties
similar to the X2 commercial one. Because the latter is the
market leader in terms of overall quality, it could be reason-
able to assume that the rheological characteristics of B
cream are the most suitable for commercial applications.
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The influence of several process steps on the rheological, textural and calorimetric characteristics of dark
chocolate was evaluated. Samples were obtained at each phase of the manufacturing process: mixing,
pre-refining, refining, conching and tempering. Rheological fundamental and empirical properties and
thermal characteristics were evaluated on samples. Samples showed marked shear thinning behaviour
with yield stress strictly related with the different process steps. Fundamental measurements results
were well fitted by the power-law model. From the mixing to the refining samples underwent a drastic
significantly (p < 0.05) increase of all considered fundamental (yield stress, apparent viscosity, G0 , G00 and
K index), empirical (firmness, consistency, cohesiveness, viscosity index) and thermal parameters (T
onset, T end, DH). This could be attributed to the reduction of samples particle size that involve an
increase of the contact point between them. Subsequently, the addition of fat and lecithin in conching
and tempering phase, covering the sugar and cocoa particles, reduced interactions and caused a signifi-
cantly (p < 0.05) decrease in all rheological, textural and thermal parameters.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Dark chocolate is a fat – continuous food dispersion, where a
continuous network is formed by solid fat, sugar crystals and
ground cocoa particles (Johansson and Bergensthal, 1992).

Rheological and textural characteristics are very important for
fat continuous food, because they affect important properties such
as viscosity, consistency and mouth feel. The rheological properties
of these foods are complex and depend on many factors such as
composition and processing conditions (Baixauli et al., 2007).
During dark chocolate processing the ingredients are mixed,
pre-refined, refined, conched and tempered in order to obtain de-
sired rheological properties for a final defined product texture
(Chevalley, 1999; Servais et al., 2004). The study of chocolate rhe-
ology is important, because it is related both to the efficiency of the
main steps in the process (mixing, pumping, transportation, etc.)
(Servais et al., 2002), and also to the final quality and the sensorial
characteristics of product (Ahmed and Ramaswamy, 2006). Choco-
late processing techniques are also important since chocolate con-
sumers have well-informed opinions and expectations regarding
appropriate texture and its viscosity characteristics (Afoakwa
et al., 2008c). From a rheological point of view, dark chocolate
exhibits a complex rheological behaviour, i.e. it is a non-Newto-
nian, shear-thinning fluid that shows an apparent yield stress
(minimum amount of energy to initiate fluid flow) and a plastic
viscosity (energy to keep fluid in motion), strictly dependent on
manufacture process (Bourne, 2002; Servais et al., 2004; Afoakwa
et al., 2008a).

At the same time the characterization of the melting properties of
dark chocolate during its manufacture process is very important in
order to evaluate the effects of each step on the fat systems behav-
iour (Foubert et al., 2003; Marangoni and McGauley, 2003). Cocoa
butter can crystallize as a function of triglyceride composition (Tal-
bot, 1999) and due to the process parameters into six polymorphic
forms (I–VI), where form I is the less stable and V the most desirable
form, which can transform to VI, the most stable in storage (Talbot,
1999; Ali et al., 2001). During the manufacture process usually the
tempering step is used to obtain the desirable form V with a melting
temperature of 32–34 �C, in order to impart the desired glossy
appearance, good snap, contraction and enhanced shelf life (Talbot,
1999; Beckett, 2000; Timms, 2003). Poorly tempered chocolate can
develop in storage a white or grey surface layer, named fat bloom.

Several authors (Servais et al., 2004; Afoakwa et al., 2008a,b,
2009b; Baldino et al., 2010; De Graef et al., 2011; Efraim et al.,
2011; Fernandez et al., in press) have investigated the
phisyco-chemical properties of dark chocolate and in particular
the rheological and thermal ones. In particular interesting relation-
ships were highlighted between these product properties and for-
mulation, cooling rate, particle size and fat crystallization kinetics.
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In all the previous cited works, although results obtained were very
interesting, they referred only to finished product. Even if it is
known (Vavreck, 2004; Schantz and Rohm, 2005 and Afoakwa
et al., 2009b) that the formulation and the final tempering process
step affect dark chocolate properties, in our opinion each manufac-
ture step (mixing, pre-refining, refining and conching) cause dras-
tic modification in the product influencing its final quality.
Understanding how the single process step can affect the final rhe-
ological and thermal properties of dark chocolate, could be very
useful in order to manipulate and optimize the process effica-
ciously, and mainly to predict and improve quality of final product.
In the present work the rheological fundamental, empirical and
thermal properties of dark chocolate were evaluated on samples
obtained at each phase of the manufacturing process.
2. Materials and methods

2.1. Materials

Dark chocolate samples were produced in an Italian confection-
ery factory using an industrial plant (Buhler, Malmo, Sweden) pro-
vided of mixer, pre-refiner, refiner, conching and tempering
machine, equipped to produce 6000 kg of chocolate at every pro-
duction cycle. Dark chocolate production was made up by different
steps as shown in detailed way in Fig. 1. The formulation employed
for the chocolate recipe was: cocoa liquor (38% cocoa butter plus
15% cocoa powder), sugar (39.52%), cocoa butter (7% added during
the conching step), soy lecithin (0.3%), sodium carbonate (0.15%)
and vanilla extract (0.03%). Experimental samples were taken after
Fig. 1. Scheme of chocolate manufacturing
each production phase: mixing (A), pre-refining (B), refining (C),
conching (D) and tempering (E), from three production cycles car-
ried out in different days. Therefore three samples for each produc-
tion phase were obtained. Samples were stored in plastic bucket
(1 kg capacity) at room temperature until the analytical determi-
nations. Before performing each analysis the samples were melted
in a microwave at 150 W for 25 min. The melting parameters were
chosen after preliminary experiments in order to avoid changes in
the chocolate properties.

2.2. Methods

2.2.1. Fundamental rheological properties
Measurements were carried out at 40 �C using a controlled

stress–strain rheometer (MCR 300, Physica/Anton Paar, Ostfildern,
Germany) equipped with a system of coaxial cylinders (CC27). The
rheological behaviour of dark chocolate was analyzed in steady
state and dynamic conditions. In steady state conditions, after a
pre-shearing of 500 s at 5 s�1, viscosity was measured increasing
shear rate from 2 to 50 s�1 within 180 s, taking 18 points measure-
ments (ICA, 2000).

In this study the obtained flow curves were evaluated and fitted
according to the rheological model of Ostwald, commonly referred
to as the Power Law model (Holdsworth, 1993; Hugelshofer, 2000).
The Power Law model is represented in the following equation:

r ¼ Kn
_c ð1Þ

where r is the shear stress (Pa), K is consistency index (Pa sn), _c is
the shear rate (1/s) and n is the dimensionless flow behaviour index.
process (adapted from Babin, 2005).
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In order to measure the goodness of fit, the regression coefficient
(R2) was determined. Using the Power Law model, one important
classification of products is possible: for values of n from 0.1 to
0.95, the products are known as pseudoplastic and are character-
ized by a decrease in apparent viscosity increasing the shear rate,
i.e. shear thinning. For values of n = 0.95–1.05, the behaviour is
essentially Newtonian, ideally n = 1. For values of n greater than
1.05, the products are referred to as dilatants, i.e. shear thickening.

The yield stress (Pa) and the apparent viscosity (Pa s) were ob-
tained according with ICA (2000) and Servais et al. (2004) evaluat-
ing the values of stress respectively at shear rates of 5 and 40 s�1.

ICA choose two representative shear rates for yield stress and
plastic viscosity that were as far apart as possible and two shear
rates that provided high repeatability with low error measured.

In dynamic conditions, oscillatory tests were performed to
investigate the viscoelastic properties of samples and to evaluate
the storage (G0) and the loss (G00) modulus.

In order to identify the linear viscoelastic range (LVR), in which
the viscoelastic properties are independent from the stress condi-
tions, stress sweep tests were applied.

Frequency sweep tests were carried out in the viscoelastic lin-
ear region at the constant deformation amplitudes of 0.007%, pre-
viously evaluated with the stress sweep test, in the range from 100
to 1 Hz.

2.2.2. Empirical properties
A TA.HDi 500 Texture Analyzer (Stable Micro System Vienna

Court, England) was employed to investigate the textural proper-
ties of chocolate products. All measurements were performed
using a back extrusion test. The test was carried out in a back
extrusion container (50 mm in diameter), filled for the 75% with
the sample, using a disk (35 mm) attached to a extension bar, with
a load cell of 250 kg. The parameter used were: a pre test speed of
1 mm s�1, a test speed of 1 mm s�1, a post test speed of 1 mm s�1

and a distance of 30 mm.
The textural properties that let to investigate the structure of a

sample were: firmness (N), the point of maximum force, during
penetration, evaluated at 30 mm; consistency (N s), the positive
area up to the maximum force during probe descent; cohesiveness
(N), the peak maximum of the negative region during probe return;
the viscosity index (N s), the area of the negative region of the
graph during probe return.

2.2.3. Thermal properties
Melting properties of dark chocolate were evaluated by using a

differential scanning calorimeter (Pyris DSC Series 6, Perkin Elmer
Corporation, Wellesley, USA). Adopting the method reported by
Afoakwa et al. (2009b) DSC was calibrated by using indium (melt-
ing T 156,60 �C, DH 28,71 J/g) and tin (melting T 231,93 �C, DH
60,46 J/g) at a scan rate of 10 �C/min using an aluminium pan as
reference. Samples (5 mg) were loaded into 40 ml capacity pans
with holes and sealed using a sample press. Pans were heated at
10 �C/min from 15 to 200 �C in a N2 stream. Onset temperature
(T onset), end temperature (T end) and enthalpy of melting (DH)
were calculated for each peak presents in the thermogram ob-
tained (Gloria and Sievert, 2001).

2.3. Statistical analyses

Analyses of variance (ANOVA) and the test of mean comparison
according to Fisher least significant difference (LSD) were applied.
Level of significance was P 6 0.05.

Correlation matrix comprising regression and correlation analy-
sis at 95% significance were used to evaluate the relationships be-
tween rheological and textural properties of dark chocolate
samples.
The statistical software used was STATISTICA (StatSoft, Tulsa,
Oklahom), version 8.0.
3. Results and discussion

3.1. Fundamental rheological properties

In Fig. 2 the dark chocolate sample flow curves, obtained
increasing the shear rate from 2 to 50s�1, are reported.

All samples exhibited a typical non Newtonian behaviour char-
acterized by dependence of viscosity upon of flow conditions
(Chabbra, 2006). In particular, apparent viscosity of these products
decreases with the increase of the shear rate, indicating pseudo-
plasticity. This behaviour can be explained by the structural break-
down of the molecules due to the hydrodynamic forces generated
and to the increased alignment of the constituent molecules (Izid-
oro et al., 2008). As illustrated by Fig. 2, sample C presents the
highest values of viscosity with initial values ranging between 80
and 90 Pa s, followed by samples B with initial viscosity values be-
tween 40 and 50 Pa s and sample A with values between 20 and 30.
The lowest viscosity values belong to samples D and E obtained
from the last two steps of the manufacture process.

In order to better explain the rheological values obtained by the
flow curves, in Table 1 are shown the K and n parameters, obtained
applying the Power Law model, and the values of yield stress and
apparent viscosity.

All samples were well fitted by the Power Law model, provided
high correlation coefficients (R2) varying from 0.75 to 0.99. As
shown in Table 1 all dark chocolate samples were characterized
by n < 1, typical for shear thinning behaviour which corroborates
the pseudoplasticity of the samples obtained by flow tests. The adi-
mensional n parameters are an index of the transition from one
flow regime to another and strictly related to the Reynolds num-
ber. Usually Reynolds number tends to increase when n values de-
crease (Sivakumar et al., 2006).

The K parameter, strictly related with the consistency of a prod-
uct (Nindo et al., 2007), showed a significantly increase from sam-
ple A to sample C, that had the highest K value. The observed
increase in the K values from A to C, can be explained considering
that after the mixing phase sample A is completely unstructured,
compared with samples B and C. The passage through the pre-
refining step (B) and refining (C) involve in fact an agglomeration
in the structure that suggests how these samples are characterized
by higher K values of sample A. Samples D and E present the lowest
values of K parameter probably related with their less aggregate
packing structure network. In these steps, in fact the addiction of
lecithin and further cocoa butter, because of lubricating action, re-
duced the particle–particle interactions, increasing their mobility
that involved a reduction of viscosity (Vernier, 1998). These results
are supported by the studies of Dzuy and Boger (1983), Coussot
and Ancey (1999) and Larsson (1999) that noticed an high depen-
dence of yield stress and apparent viscosity on particles size and
their interaction. Even if from a statistically point of view samples
A, D and E are not significantly different for K value, they are com-
pletely different for the structure. Sample A is in fact characterized
by large particles not refined and not aggregated between them,
while samples D and E are made up from very small aggregate par-
ticles obtained after the pre and refining step, but because of the
addition of cocoa butter and lecithin during the conching step a
reduction in their aggregation and hence in the K values was
observed.

The yield stress and apparent viscosity parameters, exhibited
the same trends of the consistency index (K), showing a signifi-
cantly increase of their values from sample A to C (P < 0.05). The
highest K values could be attributed to the increase of the contact



Fig. 2. Changes of apparent viscosity (Pa s) of dark chocolate samples, during mixing (A), prerefining (B), refining (C), conching (D) and tempering (E) steps.

Table 1
Consistency index (K), flow behaviour index (n), yield stress (Pa) and apparent viscosity (Pa s), of dark chocolate samples.

Samples n K (Pa sn) Yield stress (Pa) Apparent viscosity (Pa s)

A 0.83 ± 0.005a 16.49 ± 1.55a 84.50 ± 5.97b 586.67 ± 6.80b

B 0.86 ± 0.005c 47.89 ± 1.32b 182.33 ± 6.50c 1406.70 ± 5.77c

C 0.76 ± 0.001b 96.51 ± 6.13c 358.67 ± 6.65d 1880.00 ± 5.00d

D 0.58 ± 0.002a 15.20 ± 0.51a 38.77 ± 1.35a 161.67 ± 5.13a

E 0.60 ± 0.0008a 12.69 ± 0.09a 33.07 ± 0.15a 147.33 ± 1.15a

a–d Values in the same column followed by different letters differ significantly at p < 0.05 level.
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point between particles, that forming spanning stress bearing
paths (Afoakwa et al. 2009a) need of a major amount of stress to
initiate the flow. Samples D and E were characterized by the lowest
and significantly similar values of both parameters.

Stress sweep tests were performed in order to identify the lin-
ear viscoelastic region (LVR), in which properties of material are
independent from the stress conditions. The results (data not
shown) showed a narrow viscoelastic region, low intensity stresses
can destroy the structure of system.

Results of frequency sweep test in terms of storage and loss
modulus, evaluated respectively at the reference frequency 1 Hz,
are reported in Table 2.

G0 is an index of the elastic behaviour of a sample, and repre-
sents the deformation energy stored in the sample during the shear
process. G00 value instead, corresponds to the viscous component of
a sample and is a measure of the energy lost from it during the
shear process (Angioloni and Collar, 2009). Storage modulus values
(G0) are higher than loss modulus (G00) ones for all samples, indicat-
ing that all dark chocolate samples had a solid, elastic-like behav-
iour. This suggests that under non destructive conditions the
elasticity has a predominant effect on viscosity (Peressini et al.,
2006).
Table 2
Storage G0 (Pa) and loss G00 (Pa) modulus of dark chocolate samples evaluated at 1 Hz.

Campioni G0 G00

A 16,346 ± 15b 2046 ± 23b

B 18,593 ± 25c 3161 ± 8c

C 167086 ± 25d 21,473 ± 28d

D 5966 ± 24a 1406 ± 21a

E 4133 ± 20a 1396 ± 21a

a–d Values in the same column followed by different letters differ significantly at
p < 0.05 level.
Samples B and C showed the highest significantly values of G’
compared to the others samples. Sample A, showed viscoelastic
properties with intermediate values of G0 and G00 inside the clusters
B–C and D–E. Some authors (Johansson and Bergensthal, 1992) ob-
served that a high value of G0 is related to a high level of interactive
forces between particles; this confirms the high amount of stress
needed from samples B and C to start flow (Fig. 2).

The significantly lowest parameters of G0 and G00 were found for
the samples D and E, constituted by a weakly structured system,
due to the lubricating and emulsifier effect of fat and lecithin.
These results are in agreement with the studies of Johansson and
Bergensthal (1992), that highlighted how the effect of emulsifiers
on the sugar particles, reducing the changing in the interaction
particles and in the network structure ones, involves a decrease
of the elastic component G0.
3.2. Empirical properties

The results of textural properties of dark chocolate samples are
shown in Table 3.

Textural parameters (firmness, consistency, cohesiveness and
index of viscosity) are extremely important for the evaluation of
the mechanical properties of chocolate (strictly related to the sen-
sory characteristics during consumption) and also to predict its
rheological behaviour during processing (Beckett, 2000; Bourne,
2002). The dark chocolate C and B samples showed for all the con-
sidered parameters significantly higher values compared to other
samples. These results in agreement with the ones obtained from
the fundamental rheological analysis, support the presence of an
extremely hard and consistent structure that arise a strong resis-
tance to its compression.

Sample A showed intermediate values of consistency and index
of viscosity, between those of samples C–B and D–E; D and E



Table 3
Textural properties of dark chocolate samples.

Samples Firmness (N) Consistency (N � s) Coesiveness (N) Viscosity index (N � s)

A 54.90 ± 7.72a 498.26 ± 17.91b 36.47 ± 4.94a 414.40 ± 12.82b

B 146.57 ± 8.48b 739.80 ± 12.58c 84.83 ± 9.64b 718.90 ± 15.35c

C 378.82 ± 8.42c 1624.40 ± 19.41d 199.90 ± 10.38c 1106.00 ± 8.23d

D 29.30 ± 6.45a 147.76 ± 9.26a 22.33 ± 4.75a 147.00 ± 9.84a

E 20.10 ± 2.19a 110.14 ± 13.96a 16.07 ± 1.25a 105.07 ± 7.56a

a–d Means values followed by the same letter in eah column are not significantly different (p < 0.05).

V. Glicerina et al. / Journal of Food Engineering 119 (2013) 173–179 177
chocolate samples are characterized by the lowest values of all tex-
tural parameters, demonstrating the presence of a weak network
structure, more sensitive to the breakage.

High, positive and significant correlations between all rheolog-
ical and textural parameters were found. The results of correlation
analysis between textural (firmness, consistency, cohesiveness and
viscosity index) and rheological parameters (index of consistency,
yield stress, plastic viscosity, storage and loss modulus) of dark
chocolate samples are reported in Table 4.

These results suggest that the fundamental rheological param-
eters (in steady and dynamic conditions) are strictly related to
the empirical ones, indicating the usefulness of both methods in
studying dark chocolate rheological behaviour.

3.3. Thermal properties

In Fig. 3 the dark chocolate thermograms, obtained heating all
chocolate samples from 15 to 200 �C, are reported.

It’s know that T onset corresponds to the temperature at which
a specific crystal form starts to melt; T end represents the temper-
ature of the complete melting and DH the amount of energy re-
quired to complete the liquefaction (Afoakwa et al., 2008b).

Results showed that all samples were characterized by two sim-
ilar and distinct endothermic peaks, the first one in a range between
20 and 38 �C, due to the melting of fat (Afoakwa et al., 2009b) and
the second one in a range between 160 and 192 �C that, according
with Okuno et al. (2003) and Beckett et al. (2006), represents the
endothermic peak of sucrose melting. In particular sample C, as
shown by the thermogram, is characterized by two double endo-
thermic peaks, the first one is related to the fat melting and the
other one with the sugar melting. The presence of double or multi-
ple peaks is a common phenomenon observed by DSC in polymor-
phic species (Roy et al., 2007). The double peak presence can be
attributed to the existence of different crystal structure with differ-
ent stability inside of the same compound; this characteristic is
called polymorphism (Ling and Spruiell 2006; Pan et al., 2007).
Regarding the double peak associated with the fat melting of sam-
ple C this is probably due to the simultaneously presence of two of
the six polymorphic crystal of the cocoa butter, with different melt-
ing point (Roy et al., 2007). A similar explanation could be attrib-
uted to the double melting of the sugar particles; in fact,
according with Okuno et al. (2003) and Lee and Lin (2007) sugar
can exist in two different polymorphic structures: Form I and Form
Table 4
Correlation analyses between textural, rheological and power law parameters of dark cho

Yield Stress Apparent Viscosity

Firmness 0.986*** 0.896***

Consistency 0.978*** 0.889***

Cohesiveness 0.980*** 0.887***

Index of Viscosity 0.910*** 0.975***

n.s.: not significant.
* Significant at P < 0.05.
** P < 0.01.
*** Significant at P < 0.001.
II with different chemico-physical and hence melting properties
strictly dependent on the arrangement of their crystal. Moreover
the presence of a solvent such as water play an important role dur-
ing the process of melting and crystallization of sugar, influencing
its melting behaviour (Bhandari and Hartel, 2002; Beckett et al.,
2006). During the roller-refining step, sugar particles are heated,
cooled and pressurized, this involves an arrangements of molecules
present in their crystals. In particular, the fracturing of sugar parti-
cles can create surface with extremely high temperature, that are
able to absorb the humidity present in the surrounding, modifying
sugar structures and their properties (Bouzas and Brown, 1995;
Vernier, 1998). Accordingly, the formation of a double peak in sam-
ple C could be probably attributed to the presence of some small
amorphous sugar fraction (obtained after the absorption of water
by crystal particles), instead that to the presence of polymorphic
species (Bhandari and Hartel, 2002). It is possible also to exclude
that the presence of a double peak could be related to a crystal of
different size because, from previously experiments a monomodal
distribution of particles was obtained after the refining step.

The values of T onset, T end and DH of dark chocolate samples
are reported in Table 5.

Statistically significantly differences between all samples were
highlighted regarding T onset and T end of cocoa butter melting.
An increase in the T onset, T end and DH was noted from samples
A to C. Samples B and C, constituted by a very aggregate structure,
as shown previously by the fundamental and the empirical results,
probably needed higher temperature to start and finish their fat
melting than sample A. In sample A the absence of an aggregate
structure and the presence of large not refined particles, provides
less resistance to breakage and melting, is probably the cause of
the lowest obtained values of T onset and T end. A significantly de-
crease of these parameters was instead noted in samples D and E,
due to the emulsification effect of cocoa butter and lecithin. In fact
according, with the studies of Johansson and Bergensthal (1992)
and Lonchampt and Hartel (2004), lecithin migrating to sugar/fat
interface, coats sugar crystal that promotes the deagglomeration
of particles involving a reduction of the temperatures necessary
for the complete melting of samples.

The DH values of both fat and sugar, were higher in samples B
and C compared to the other dark chocolate samples, confirming
an higher request of energy in order to complete the sugar and
fat melting, due to the existence of very consistent structures
(Afoakwa et al., 2009b).
colate samples.

K G0 G00

0.943*** 0.644** 0.689**

0.966*** 0.763*** 0.796***

0.968*** 0.796*** 0.831***

0.820*** 0.569* 0.609*



Fig. 3. DSC thermograms of dark chocolate samples.

Table 5
Melting properties of dark chocolate samples after mixing (A), pre-refining (B), refining (C), conching (D) and tempering (E) steps.

Samples FAT SUGAR

T onset (�C) T end (�C) DH (J/g) T onset (�C) T end (�C) DH (J/g)

A 24.32 ± 0.16a 34.01 ± 0.87a 38.96 ± 3.10a 174.89 ± 0.56a 189.98 ± 0.66a 30.01 ± 1.63a

B 30.61 ± 0.66c 36.65 ± 1.20c 45.37 ± 1.35b 176.36 ± 1.71a 190.79 ± 0.73a 46.84 ± 0.67b

C 30.54 ± 0.77c 37.22 ± 0.18c 51.46 ± 0.85c 180.97 ± 0.71b 192.30 ± 0.40b 48.95 ± 0.92c

D 26.01 ± 0.37b 35.06 ± 0.63b 37.69 ± 3.5a 175.72 ± 1.03a 189.68 ± 0.41a 29.22 ± 0.72a

E 25.66 ± 0.13b 35.34 ± 0.55b 37.76 ± 2.95a 174.73 ± 1.11a 190.13 ± 1.05a 28.68 ± 1.19a

a–d Values in the same column followed by different letters differ significantly (p < 0.05).
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4. Conclusions

Rheological, textural and thermal properties of dark chocolate
are strictly related to the different steps of the manufacturing pro-
cess. From the mixing to the refining step there is a drastic increase
of all considered rheological (yield stress, apparent viscosity, G0, G00

and K index), empirical (firmness, consistency, cohesiveness, vis-
cosity index) and thermal parameters (T onset, T end, DH). Subse-
quently, the addition of fat and lecithin in conching and tempering
phase, covering the sugar and cocoa particles, reduced interactions
and created more void space between them (filled with cocoa but-
ter). This lubricating action involved a decrease in all rheological,
textural and thermal parameters at the end of process.

Obtained results show that the knowledge of the changes
occurring in the product matrix at every manufacturing stage
could be very useful in order to optimize the production efficiency
and to improve the quality of final product.
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