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PREFACE 

 

Why do modern people need healthy confectionary and sweet products? 

 

Confectionery products are complex foods, often intrinsic to our cultural identity, 

characterized by a sweet taste that consumers associate with pure enjoyment. 

The sense of taste and the ability of detecting and responding to various stimuli provide 

animals with critical sensory input and valuable information about the quality and nutritional 

value of food: bitter receptors elicit aversive behavioral reactions to noxious and toxic 

substances, while sweet receptors allow recognition of high-caloric food sources [1]. 

Moreover sensory perceptions and preferences for the taste, aroma, and texture of foods affect 

not only food preferences but also eating habits [2], factors that are generally established 

during early childhood [3]. Children especially love all that tastes sweet [4], but palatable 

high-sugar and high-fat foods are universally preferred and often in response to emotional 

pressure to manage stress [5]. 

The human body requires sugar because it is a good energy source used for the maintenance 

of human metabolism [6] and, with a few exceptions and unlike any other tissue, glucose is 

the obligatory energy substrate of the brain [7]. 

However, excessive consumption of sugar is correlated with several diseases including 

obesity, cardiovascular diseases, diabetes mellitus type 2 and certain types of cancer [8-10]. 

Indeed, despite genetic factors and aging are important in determining the overall risk of 

many chronic diseases, a substantial proportions of these diseases occur in conjunction with a 

series of modifiable risk factors susceptible to lifestyle modifications, including diet [11]. 

The rising number of incurable diseases, despite the ground-breaking developments in 

modern medicine, the high incidence of obesity all over the world, and the dietary guidelines 

suggesting more appropriate eating habits have led people to consider confectionary products 

negative from a nutritional point of view. 

Highly rewarding sweet foods may temporarily be a major source of pleasure and ease stress, 

but, in longer term, are likely to have negative impact on well-being.  

Some years ago the attentions of researchers and the media has included the excessive 

promotion and consumption of low calorie foods with artificial sweeteners and fat replacers. 

However, firstly, intense sweeteners can increase appetite for sweet foods, promote 

overeating and may even lead to weight gain [12], secondly consumers should realize that if 
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they increase the consumption low-fat/calorie foods, they may compensate for the lowered 

energy intake of these products [13]. This important issue should be addressed not only to 

consumers and industry but also, and firstly, to food science research. 

As it is true that food is so frequently implicated in a variety of maladies it is also true that it 

can exert a positive life-long environmental impact on human health. Modern nutrition 

research focuses on improving health and wellness, preventing or delaying diseases, and 

optimizing performance. The approach of preventive food compounds has gained 

considerable support since people prefer to consume a food with positive effects on health 

rather than no longer eating what they like most and it encouraged companies and science to 

search for new compounds able to improve human health. 

Many naturally-occurring compounds in dietary plants and animals products possess a variety 

of physiological functions which contribute to reduce the risk of diet-related disease. These 

compounds, known collectively as bioactives possess biological activity in addition to their 

nutritional value and are normally present at very low concentrations in foods [14]. 

Most of these bioactives are non-nutrient low-molecular-weight components produced by 

plants for their protection against pests, for the regulation of their growth, or as pigments or 

odor. Scientists have identified them as phytochemicals and they are a heterogeneous group of 

molecules, including phenolic compounds, glucosinolates, phytates, phytoestrogens, 

phytosterols, difficult to define and classify. A large variety of phytochemicals that are 

present in the daily human diet in vegetables, spices and herbs, fruits, grains and legumes 

have been found to possess a large range of beneficial health properties as antioxidative, anti-

inflammatory and anticarcinogenic [15, 16]. 

Bioactive compounds effects on human health are being studied intensively. Studies 

concerning phytochemicals are often in disagreement because of the biological system chosen 

(cell line, primary culture, animals, humans), the markers considered, the dose and the time of 

supplementation. In any case the concentration and the chemical form of the molecules that 

reach human tissues after digestion should be taken into account. Another variable can be the 

use of pure molecules, extracts or whole foods. The interaction between bioactives and the 

whole food matrix could aid or hinder the bioaccessibility and bioavailability of the actives 

molecules. The effective dose of the isolated compound could change if administrated as part 

of a specific food. Others components already present in the food matrix could exert an 

additional positive or negative effect on the bioactive final effect. Despite the importance of 

this factor most of the studies do not consider it. 
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Furthermore the mechanism of action of bioactive compounds imply that the healthy 

properties that are associated with fruits, vegetables and other healthy products consumption 

are complex and could arise from the synergistic combination of several distinct molecules, 

not only within a given food but also from the overall composition of the diet. In addition, the 

concentration of the active compounds can be different among foods of the same category and 

both agronomic conditions and post-harvest operations, including food processing, have a 

major influence on the levels of phytochemicals in vegetable products [17-19]. 

Functional compounds are frequently added to foods that naturally do not contain the specific 

bioactives. However, a relatively easy and practical strategy to increase the nutritional value 

of complex systems as confectionary products could be the substitution of traditional 

ingredients with others of the same category that naturally contain healthy constituents. For 

example, it is well known that byproducts of plant food processing not only represent a 

disposal problem for the industry concerned, but they also represent an important source of 

sugars, minerals, organic acid, dietary fiber and phenolics which may be used because of their 

favorable nutritional properties [20, 21]. The employment of byproducts in food formulations 

could be an innovative and sustainable strategy that meets current and future expectations of 

consumers about environmental impact, ethical issues, human health and safety, maximizing 

the net benefit to society. 

Confectionary products are poorly studied and only recently few attempts have made to 

improve sweet products functionality by modifying their composition [22, 23]. 

Identifying ingredients naturally rich in bioactives that could be exploited in the confectionary 

fields and establishing their health effects alone and inside the food matrix is an important 

scientific inquiry that could take potential societal benefit.  

 

The overall objective of the project of my PhD thesis was to investigate the possibility to 

increase the nutritional value of confectionary and sweet products by the use of natural 

ingredients with healthy functions. 

First I focused on the possible substitution of the most characteristic components of 

confectionary products, i.e. refined sugar, with another ingredient having a higher nutritional 

value. Molasses, a sugar byproduct that is still rich in vitamins, minerals, and phytochemicals 

is an interesting alternative to refined sugar, devoid of these healthy components. In the study 

reported in Chapter 1 the antioxidant activity and the effectiveness in oxidative stress 

counteraction of molasses has been investigated in cultured liver cells. 

 



Preface 

4 

 

Another main ingredient of confectionary products is wheat flour. To obtain health-valued 

products refined flour could be partially substituted by another food byproduct, durum or soft 

wheat bran. Bran, is a rich source of valuable health-promoting compounds that can be 

appropriately exploited for the production of antioxidant food ingredients; Chapter 2 reports 

the results obtained evaluating the antioxidant capacity of different wheat milling fractions. 

 

As alternative, modern wheat flour could be substituted by flours from ancient grains, that are 

supposed to have a higher nutritional value. Chapters 3 deals with the healthy characteristics 

of an ancient grain, Kamut
® 

khorasan, which antioxidant and anti-inflammatory activity have 

been evaluated and compared to whole durum wheat both in vitro and in vivo.  

 

High consumption of confectionary products is a risk factor for obesity. A new possible 

strategy for the counteraction of this disease considers the effects of some bioactives on 

adipogenesis. In fact, compounds able to regulate size, number and function of adipocytes 

could contribute to treat or to prevent obesity, and could potentially be used for the 

formulation of functional foods, included confectionery products. Chapter 4 focuses on three 

bioactives and their effectiveness in inhibiting adipocytes differentiation by evaluating both 

lipid accumulation and the modulation of adipogenic markers expression. 
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Chapter 1 

Sweetening agents as functional components of confectionery products: 

the case of molasses 

 

Current attention to reducing refined sugar intake translates into replacement by artificial 

sweeteners (sucralose, aspartame, etc.). However, natural whole sweetening alternatives could 

represent a way to increase the antioxidant and nutritional content of a confectionary product, 

mainly considering that some recommended dietary changes involve increasing the intake of 

antioxidant-rich foods. Many alternatives to refined sugar are available, though not widely 

used. In this chapter the substitution of refined sugar with molasses is discussed and molasses 

antioxidant activity is demonstrated both as sweetener alone and as ingredient inside a sweet 

food formulation. Actually, the choice of the byproduct of sugar production as sweetening 

agent has a double added value because it is not only healthy, as we demonstrated, but also 

sustainable.  

 

Sugar cane and sugar beet molasses, antioxidant-rich alternatives 

to refined sugar 

 

          A       -C r v c   M  D  Nun  o  F  D n s   M  C bon   A  Bordon  “Sug r C n   nd Sug r B  t 

Molasses, Antioxidant-r ch A t rn t v s to R f n d Sug r” J  Agr c  Food Ch    2012  60  12508−12515 

 

ABSTRACT 

Molasses, the main byproduct of sugar production, is a well-known source of antioxidants. In 

this study sugar cane molasses (SCM) and sugar beet molasses (SBM) were investigated for 

their phenolic profile and in vitro antioxidant capacity, and for their protective effect in 

human HepG2 cells submitted to an oxidative stress. According to its higher phenolic 

concentration and antioxidant capacity in vitro, SCM exhibited an effective protection in 

cells, comparable to or even greater than that of α-tocopherol. Data herein reported underline 

the potential health effects of molasses and the possibility of using by-products for their 

antioxidant activity. This is particularly important for consumers in developing countries, as it 

highlights the importance of consuming a low-price, yet very nutritious, commodity. 
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INTRODUCTION 

Sugar cane (Saccharum officinarum L.) and sugar beet (Beta vulgaris L. ssp. saccharata) are 

the most important crops for the production of sugar. Molasses, the thick, dark syrup obtained 

as a byproduct from the processing of sugar cane and sugar beet into sucrose, consists of 

fermentable carbohydrates (sucrose, glucose, fructose) and several nonsugar organic materials 

(betaine and other amino acids, mineral and trace elements, vitamins especially of the B-

group, etc.). Although molasses is mainly used as a supplement for livestock feed and as a 

source of carbon in fermentation processes, e.g. for the production of ethanol [1], by tradition 

it also serves as a sweetener and colorant substitutes in cakes. Molasses is considered to be 

generally regarded as safe (GRAS) by the U.S. Food and Drug Administration, and people 

believe molasses has health benefits beyond its special taste and flavor due to it being rich in 

minerals. In addition, several studies evidenced that molasses is a rich source of phenolic 

compounds [2, 3] having possible role in the prevention of several chronic diseases involving 

oxidative stress [4-6]. Maillard browning carbohydrate-amino acid condensation products, 

formed during sugar processing, are also in very high concentration in molasses and range 

from low organic compounds to complex aromatic polymers. They are strongly involved in 

the color and aroma of molasses and they have been reported to have antioxidant activities [7-

10]. In the light of the recommendation of increasing the intake of antioxidant-rich foods [11-

14], the substitution of sugar with molasses could represent a potential extra-source of 

antioxidants. 

In this study we assessed the in vitro antioxidant capacity and phenolic composition of 

molasses from sugar cane (SCM) and from sugar beet (SBM), comparing them to other 

common sweeteners. Then, to go further in demonstrating the oxygen free radical inhibition 

by molasses, the biological activity of SCM and SBM was verified supplementing HepG2 

cells with two different molasses concentrations. HepG2 cells, a human hepatoma cell line 

considered to be a good model to study in vitro cytotoxic agents [15, 16], were chosen as 

model system given that the liver is the organ mainly involved in xenobiotic metabolism [17]. 

SCM and SBM protection from the oxidative damage induced by cell exposure to hydrogen 

peroxide (H2O2) was assessed by measuring cell viability, reduced glutathione (GSH) and 

reactive oxygen species (ROS) intracellular contents, cytosolic total antioxidant capacity 

(TAC), and lactate dehydrogenase (LDH) release and thiobarbituric acid reactive substances 

(TBARS) content in the media. To compare the effect of molasses to the effect of a well-

known antioxidant, some cells were supplemented with 8.6 µg/mL (20 μM) α-tocopherol 

(TC), considered the most important endogenous lipophilic antioxidant in cells [18]. 
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Our results emphasize the potential health effects of molasses, adding functional properties 

and nutritional value to a sweetening agent and sustaining its use as refined sugar substitute. 

Considering that refined sugar is the most common form of sugar in North America as well as 

in Europe [19], the use of molasses as alternatives to refined sugar could increase antioxidant 

intake similar to replacement of refined grains with whole grains [20]. 

 

MATERIALS AND METHODS 

Chemicals: Dulbecco’s modified Eagle’s medium (DMEM), penicillin, streptomycin and 

Dulbecco’s phosphate-buffered saline (DPBS) were purchased from Lonza (Milan, Italy). 

Ethanol, and 1-propanol were supplied by Carlo Erba (Milan, Italy), while HPLC-grade 

solvents acetonitrile, water, methanol and acetic acid were purchased from MERCK KGaA 

(Darmstadt, Germany). All other chemicals were purchased from Sigma-Aldrich (Milan, 

Italy).  

Sweeteners: White refined beet sugar, brown raw cane sugar, sugar cane molasses, sugar beet 

molasses, acacia honey, maple syrup, and fructose were purchased from local markets. 

Glucose was purchased from Sigma-Aldrich (Milan, Italy) and grape sugar and rebaudioside 

(60% and 98% purity) were a kind gift of Eridania Spa (Bologna, Italy). 

Methods 

1. In vitro antioxidant capacity (TAC) and phenolic composition 

In vitro total antioxidant capacity (TAC) of different sweeteners using the ABTS assay 

One gram of each sweetener was dissolved in 10 mL of water. TAC was measured using the 

method of Re et al. [21], based on the capacity of antioxidant molecules in the sample to 

reduce the radical cation of 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS
•+

). 

The decolorization of ABTS
•+

 was measured as the quenching of the absorbance at 734 nm. 

Values obtained were compared to the concentration-response curve of the standard Trolox 

solution and expressed as µmol of Trolox equivalents (TE) per gram.  

In vitro total antioxidant capacity (TAC) of different sweeteners using DPPH assay 

SBM and SCM TAC were also evaluated using the 1-diphenyl-2-picrylhydrazyl (DPPH) 

radical scavenging capacity assay according to Cheng et al. [22] with some modifications. 

Solutions of molasses were prepared in ethanol/water 70:30 at different concentrations (0.1, 

0.2, 0.5, 1, 2, 5, 10.0 mg/mL), and 100 µL 0.208 mM DPPH in ethanol/water (70:30 v/v) was 

added to 100 μL of each solution. The obtained mixtures were left to stand in the dark for 60 

min and the absorbance at 515 nm was measured with a Tecan Infinite M200 microplate 
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reader (Tecan, Männedorf, Switzerland). A blank with a mixture of 100 µL ethanol/water 

70:30 and 100 µL 0.208 mM DPPH was also determined for absorbance. The radical 

scavenging activity was calculated by the following formula: Inhibition = [(Abs blank - Abs 

sample)/Abs blank] x 100. The concentration required to obtain a 50% radical scavenging activity 

(IC50) was calculated based on a dose-response curve correlating the concentration of 

molasses solution to the average inhibition percentage [23]. 

HPLC with diode array detection coupled to electrospray and mass spectrometry 

(HPLC-DAD-ESI-MS) analysis of phenolic compounds 

Liquid chromatography (LC) analyses were performed using an Agilent 1100 series LC 

system (Agilent Technologies, Palo Alto, CA, USA) equipped with a degasser, a binary 

pump, an autosampler, a column heater, a diode array detector (DAD) and a quadrupole mass 

spectrometer. Separation was carried out on a fused core type column Kinetex
TM

 C18 (100 

mm x 4.6 mm, 2.6 µm) (Phenomenex, St. Torrance, CA, USA). The gradient elution was 

programmed using as mobile phase A acidified water (1% acetic acid) and as mobile phase B 

60% of phase A and 40% of acetonitrile. The program was developed as follows: from 5% 

phase B to 7% B, 0-2 min; from 7% B to 9% B, 2-4 min; from 9% to 12% B, 4-7 min; from 

12% to 15% B, 7-8 min; from 15% to 16% B, 8-9 min; from 16% to 18% B, 9-12 min; from 

18% to 20% B, 12-14 min; from 20% to 22% B, 14-15 min; from 22% to 25% B, 15-16.5 

min; from 25% to 28% B, 16.5-18 min; from 28% to 30% B, 18-19 min; from 30% to 31% B, 

19-20 min; from 31% to 32% B, 20-21.5 min; from 32% to 34% B, 21.5-23 min; from 34% to 

35% B, 23-24 min; from 35% to 40% B, 24-25.5 min; from 40% to 50% B, 25.5-27 min; 

from 50% to 100% B, 27-30 min; 100% B, 30-33 min; and from 100% to 5% B in 2 min. The 

flow rate was constant at 0.8 mL/min and the column temperature was maintained at 25°C. 

The injection volume was 2.5 µL and UV spectra were recorded from 200 to 600 nm, whereas 

the chromatograms were registered at 280 and 330 nm. 

MS analyses were carried out using an electrospray (ESI) interface using the following 

conditions: drying gas flow, 9.0 L/min; nebulizer pressure, 35 psig; gas drying temperature, 

350°C; capillary voltage, 3000 V; fragmentor voltage, 80 V. 

2. Biological protective activity of molasses 

HepG2 cells culture and supplementation 

HepG2 cells were cultured in DMEM fortified with 10% (v/v) fetal calf serum, 100 U/mL 

penicillin, and 100 µg/mL streptomycin. Cells were maintained at 37 °C in a humidified 

atmosphere containing 95% air and 5% CO2; once a week cells were split 1:20 into a new 75 

cm
2 

flask and culture medium was changed every 48 h. For experiments cells were seeded in 
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6-well plates and after 24 h (75-80% confluence), they were randomly divided into two 

groups (supplemented and unsupplemented). Supplemented cells were grown in serum-free 

DMEM containing TC (8.6 µg/mL) or molasses (SCM or SBM) at two different 

concentrations (10
2
 and 10

3
 µg/mL

 
medium); unsupplemented (US) cells received a 

corresponding amount of sterile water. Prior to supplementation, SCM and SBM were 

dissolved in water and filtered with sterile 0.2 µm membrane. The total volume of the added 

molasses solution was less than 1% of the medium total volume. 

Twenty-four hours after supplementation, cells were washed twice with warm DPBS. To 

cause an oxidative stress, cells were exposed to 0.2 mM H2O2 in Earle’s balanced salt solution 

(EBSS) (116 mM NaCl, 5.4 mM KCl, 0.8 mM NaH2PO4, 26 mM NaHCO3, 2.38 mM CaCl2, 

0.39 mM MgSO4) for 1 h. Non-stressed US cells instead received EBSS without H2O2. After 

1 h, EBSS was removed, centrifuged at 400g for 3 min and used for thiobarbituric acid 

reactive substances (TBARS) assay and lactate dehydrogenase (LDH) release determination 

as described below. Cells were washed twice with cold DBPS and immediately used for 

further analysis. 

Measurement of intracellular reactive oxygen species (ROS) concentration 

Intracellular ROS concentration was monitored spectrofluorometrically according to Jiao et 

al. [24] with slight modifications. DCFH-DA (2 mM) in absolute ethanol was kept in dark at -

20 °C until used, and 10 µL DCFH-DA/mL medium was added to HepG2 cells 30 min prior 

to H2O2. DCFH-DA penetrates the cell membrane and is enzymatically hydrolyzed by 

intracellular esterases to the non-fluorescent DCFH, which can be rapidly oxidized to the 

highly fluorescent DCF in the presence of ROS. At the end of the oxidative stress, cells were 

washed twice with cold DPBS, lysed with 1 mL of cold Nonidet P-40 (0.25% in DPBS), 

incubated for 30 min on ice and centrifuged at 14,000g for 15 min. DCF fluorescence 

intensity was detected (λex = 485 nm, λem =535 nm) using a Tecan Infinite F200 microplate 

reader (Tecan, Männedorf, Switzerland), normalized for protein content in the sample and 

expressed as percent of value in non-stressed US cells. 

Thiobarbituric acid reactive substances (TBARS) concentration 

TBARS, the end-products of lipid peroxidation, were assayed in EBSS as reported [25]. One 

hundred microlitres of EBSS buffer were added to a mixture containing 100 μL of TCA (30% 

in 0.25 N HCl), 100 μL of TBA (0.75% in 0.25N HCl) and 3 μL of BHT (1% in ethanol). The 

mixture was heated for 10 min in a boiling water bath, allowed to cool, and the TBA adducts 

were detected fluorometrically (λex = 535 nm, λem = 595 nm) [26]. TBARS level was 
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expressed as relative fluorescence units (RFU) and normalized for mg of proteins in each 

well. 

Lactate dehydrogenase (LDH) release 

LDH is a soluble cytosolic enzyme converting pyruvic acid to lactic acid through NADH 

oxidation. Because loss of membrane integrity causes LDH leakage, the level of enzyme 

activity in extracellular fluids is used as an indicator of membrane damage. LDH activity in 

the EBSS buffer was assessed spectrophotometrically at 340 nm for 1 min by measuring the 

rate of NADH oxidation [27]. The assay mixture contained 100 μL of 1.4 mM NADH, 100 

μL of 10 mM pyruvate, and 600 μL of DPBS; the reaction started with 200 μL of sample. 

Enzyme activity was calculated using the extinction coefficient of NADH (6.22 mmol
–1

 cm
–

1
), expressed as mU/mL medium and normalized for mg of protein in each well. 

Cell viability 

Cell viability was evaluated by measuring the conversion of the tetrazolium salt to its 

formazan product as previously reported [28]. 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) was dissolved in RPMI-1640 medium without phenol 

red (final concentration 0.5 mg/mL) and added to cells. After 1 h of incubation at 37 °C, 

medium was completely removed, 1-propanol added to dissolve formazan product, and 

absorbance was measured against a propanol blank at 560 nm. Cell viability in stressed cells 

was expressed as percent of non-stressed US cells. 

Cytosolic TAC 

Cells were lysed with 1 mL of cold Nonidet P-40 (0.25% in DPBS), incubated for 30 min on 

ice and centrifuged at 14,000g for 15 min. Cytosolic TAC was measured on the supernatant 

using the method of Re et al. [21], as described above. Values were normalized for protein 

content in the sample and expressed as µmol of trolox equivalents (TE)/mg protein. 

Total thiols content 

Cytosolic thiol content was determined as previously described [29] and calculated as GSH. 

Cells were lysed with 700 µL of cold Nonidet P-40 (0.25% in DPBS), incubated for 30 min 

on ice and centrifuged at 14,000g for 15 min. One hundred microlitres of the supernatant was 

incubated with 100 µL of reagent buffer (80 mM sodium phosphate, pH 8.0, 2 mM EDTA, 

2% SDS and 250 μM DTNB) for 30 min. Thiols were measured spectrophotometrically by 

reading the absorbance of the newly formed 5-thio-2-nitrobenzoic acid at 415 nm. The 

obtained results were compared to the concentration-response curve of standard GSH 

solutions, normalized for protein content in the sample and expressed as nmol of thiols 

calculated as GSH/mg protein. 
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Protein content  

Protein content was determined according to Bradford [30], using bovine serum albumin in 

water as standard. 

Statistical analysis  

Data on in vitro antioxidant activity and phenolic profile are reported as means ± SD (n = 3); 

data obtained in cell cultures are reported as means ± SD of at least six samples derived from 

three independent cell cultures.  

The evaluation of DPPH and HPLC-MS data statistical significance was carried out by the 

Student’s t test. All other data were analyzed for statistical significance by the one-way 

ANOVA, using Dunnett’s post-hoc test. 

 

RESULTS 

1. In vitro TAC and phenolic composition 

The in vitro TAC of SCM and SBM was from 20 to 100 and from 5 to 20 fold higher than the other 

tested sweeteners respectively (Figure 1). 
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Figure 1. Total antioxidant capacity (TAC) of the different sweeteners.  

TAC is expressed as µmol of Trolox equivalents (TE)/g
 
of sweetener. Data are means ± SD. 

Statistical analysis was by the one-way ANOVA (p < 0.001). 
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The higher antioxidant capacity of SCM than SBM was confirmed by the DPPH assay, 

because the molasses concentration needed to reduce oxidation by 50% (IC50) were 7.25 

mg/mL for SBM and 1.47 mg/mL for SCM (p < 0.001). 

Total phenolic content and SCM and SBM profiles showed significant differences between 

the two molasses, SCM possessing not only a 6 times higher total phenolic content but also a 

more complex and different profile (Table 1). 

 

Table 1. SBM and SCM phenolic profile
a 

 Phenolic compounds RT [M-H]
-
 µg/g SCM µg/g SBM 

1 5,7-Dihydroxyflavanone 4.6 255 9.71 ± 1.05  

2 Catechin 5.0 289 16.42 ± 0.20  

3 4-hydroxyphenylacetic acid 6.9 151 5.83 ± 0.14  

4 Dicaffeoylquinic acid glucoside 7.4 677 2.08 ± 0.33  

5 Vanillic acid 7.7 167 30.07 ± 0.20  

6 Syringic acid 8.5 197 85.53 ± 1.38 2.26 ± 0.07 

7 Quercetin 3-O-glucosyl-xyloxide 9.7 515 25.27 ± 1.94  

8 Vanillin 9.9 151  17.41± 0.51 

9 Feruoylquinic acid 10.0 367 5.32 ± 0.06  

10 Diferuoylquinic acid 10.4 735 5.23 ± 0.20  

11 Tricin 7-O-glucoside 10.8 491 16.45 ± 1.02  

12 p-coumaric acid 10.9 163 9.18 ± 0.91  

13 Apigenin-hexoside-pentoside 11.6 563 53.66 ± 3.02  

14 Ferulic acid 12.3 193 6.25 ± 0.63 14.83 ± 0.29 

15 Hydroxybenzaldehyde 13.4 121  2.93 ± 0.10 

16 7-methylapigenin-6-C-glucoside 13.8 445 22.28 ± 0.96  

17 Hydroxybenzoic acid 13.9 137  1.12 ± 0.11 

18 Caffeoyl-O-malonyl-O-coumaroylquinic acid 15.2 585 4.19 ± 0.41  

19 6,8-Dihydroxykaempferol 15.8 287 22.35 ± 1.67  

20 Tricin-7-O-b-(6-p-methoxycinnamate)-glucoside 16.6 651 15.52 ± 0.38  

21 Luteolin/Kaempferol 19.8 285  17.24 ± 0.49 

22 Caffeoylquinic acid 20.0 353 10.45 ± 0.71  

23 Feruloyl-arabinose-arabinose 20.3 307 35.99 ± 1.31 4.51 ± 0.47 

24 Caffeoyltartaric acid 25.8 311  1.95 ± 0.15 

 Total   381.62 ± 6.82 62.25 ± 1.72 

a
Phenolic compound concentration is expressed in µg analyte/g. Data are means ± SD. 

Student’s t test was used to determine the statistical differences for peak 6 (p < 0.001), peak 

14 (p < 0.001), and peak 23 (p < 0.001). 
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Figure 2 shows the UV chromatogram at  = 280 nm of the SCM and SBM phenolic 

compounds identified using UV and MS data. Syringic acid, the major phenolic component of 

SCM, was present in small amounts in SBM, whereas vanillin, luteolin/kaempferol, and 

ferulic acid, the major components of SBM, were absent or present in smaller amounts in 

SCM. 

 

Figure 2. Chromatograms of the phenolic compounds of SCM and SBM at  = 280 nm. 

Peaks were identified as: 1, 5,7-dihydroxyflavanone; 2, catechin; 3, 4-hydroxyphenylacetic 

acid; 4, dicaffeoylquinic acid glucoside; 5, vanillic acid; 6, syringic acid; 7, quercetin 3-O-

glucosyl-xyloxide; 8, vanillin; 9, feruoylquinic acid; 10, diferuoylquinic acid; 11, tricin 7-O-

glucoside; 12, p-coumaric acid; 13, apigenin-hexoside-pentoside; 14, ferulic acid; 15, 

hydroxybenzaldehyde; 16, 7-methylapigenin-6-C-glucoside; 17, hydroxybenzoic acid; 18, 

caffeoyl-O-malonyl-O-coumaroylquinic acid; 19, 6,8-dihydroxykaempferol; 20, tricin-7-O-b-

(6-p-methoxycinnamate)-glucoside; 21, luteolin/kaempferol, 22, caffeoylquinic acid; 23, 

feruloyl-arabinose-arabinose; 24, caffeoyltartaric acid. 

 

2. Biological protective activity of molasses 

The biological activity of SBM and SCM was verified using HepG2 cells as model system. In 

preliminary experiments cells were supplemented with SCM and SBM at 10
-2

-10
5
 µg/mL

 

medium concentration, and possible cytotoxic effects were assessed by MTT and LDH 

assays. Neither SCM nor SBM up to the 10
4 

µg/mL
 

medium concentration caused 

modifications in the tested parameters (data not shown), while the highest molasses 
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concentration (10
5
 µg/mL

 
medium) caused cell death.  

The microscope observation of 10
4 

µg/mL supplemented cells highlighted appreciable 

changes in morphology, supplemented cells appearing less in number than US cells, mainly in 

clusters and with a well-rounded shape. For this reason the 10
2
 and 10

3
 µg/mL

 
medium 

concentrations were used for supplementation in the following experiments. 

In order to verify the onset of an oxidative stress due to H2O2 treatment and its possible 

counteraction by SBM and SCM, intracellular ROS production and TBARS concentration 

were detected (Figure 3).  
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Figure 3. Cellular ROS (A) and TBARS (B) concentration in unsupplemented and 

supplemented cells. 

ROS concentration (panel A) is expressed as percent of the concentration determined in non-

stressed, unsupplemented (US) cell (assigned as 100%). TBARS concentration (panel B) is 

expressed as RFU/mg protein in the corresponding well. Data are means ± SD. Statistical 

analysis was by the one-way ANOVA (p<0.001) with Dunnett’s post-hoc test: *p<0.05, 

**p<0.01, and ***p<0.001 vs non-stressed US cells. 
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As reported in Figure 3A, incubation with 0.2 mM H2O2 resulted in a significant increase in 

ROS production in unsupplemented and 10
2
 µg/mL

 
SBM and SCM supplemented cells. 

Intracellular ROS concentration was unchanged in TC and 10
3
 µg/mL

 
SBM supplemented 

cells and decreased in 10
3 

µg/mL
 
SCM supplemented ones with respect to non-stressed 

unsupplemented HepG2. Treatment with H2O2 caused a significant increase of TBARS 

concentration in all tested conditions except for TC and SCM at the highest concentration 

(Figure 3B). 

The strong increase in LDH leakage induced by the oxidative stress in US cells was 

completely prevented by SBM and SCM even at the lower concentration used (Figure 4A).  
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Figure 4. LDH release (A) and cell viability (B) in unsupplemented and supplemented 

cells. 

LDH activity in the medium (panel A) is expressed as mU/mL medium/mg protein in the 

corresponding well. Cell viability (panel B) is expressed as percent of non-stressed, 

unsupplemented (US) cells (assigned as 100%). Data are means ± SD. Statistical analysis was 

by the one-way ANOVA (p<0.001) with Dunnett’s post-hoc test: *p<0.05, **p<0.01, and 

***p<0.001 vs non-stressed US cells. 
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Exposure to H2O2 evoked a reduction of cell viability in unsupplemented and 10
2
 SBM 

supplemented cells, whereas 10
2
 SCM supplementation was slightly protective. TC and the 

higher SBM and SCM concentration completely protected HepG2 cells, viability being even 

higher in molasses supplemented than in non-stressed US ones (figure 4B).  

As shown in Figure 5A, cytosolic TAC did not change in any of the tested conditions 

compared to non-stressed US cells; similarly no modification in GSH content was observed in 

US cells or in cells supplemented with SBM and SCM at the lowest concentration. On the 

contrary TC and the highest SBM and SCM concentration caused an increase of the 

antioxidant thiols (Figure 5B). 
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Figure 5. Cytosolic TAC (A) and reduced glutathione (B) concentration in 

unsupplemented and supplemented cells. 

Cytosolic TAC (panel A) is expressed as mol TE/mg protein in the corresponding well, and 

GSH concentration (panel B) as nmol/mg protein in the corresponding well. Data are means ± 

SD. Statistical analysis was performed by the one-way ANOVA (p<0.001) with Dunnett’s 

post-hoc test: *p<0.05, *p<0.01, and ***p<0.001 vs non-stressed US cells. 
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DISCUSSION 

Byproducts of plant food processing represent a major disposal problem for the food industry, 

but they are also promising sources of compounds which may be used because of their 

favorable technological or nutritional properties [1]. Special attention has already been paid to 

agricultural byproducts such as rice hulls, almond hulls, potato peel waste, olive mill waste 

water, grape and citrus seeds and peels, green-vegetable byproducts that have been proven to 

be effective sources of antioxidants [31, 32]. 

The presence of phytochemicals in sugar is often undesirable, as they influence the quality 

and the color of the final product; hence these phytochemicals are removed through various 

purification procedures in the sugar industry [19]. Thus, molasses, the byproduct of sugar 

refining, is a very good source of residual antioxidant components from the plant and of 

antioxidants molecules formed during the cooking of the juice [20]. 

In this study cane and beet molasses were firstly evaluated in vitro for their antioxidant 

capacity and compared with other sweeteners. Our results are in accordance with those 

obtained by Phillips et al. [20] who reported substantial differences in the TAC of several 

sweeteners, SCM having the highest one. In our study maple syrup, for which a high content 

of phenolics has been already reported [33], showed a quite good TAC, while sugar cane had 

a low TAC. Dissimilarities among brown sugars have been reported [34] and are related to 

differences in cane varieties, in the maturity of the cane plant at harvest time, in the 

processing procedures, and mainly in the techniques used to remove color and impurities that 

affect the amount of volatiles and polyphenols that end up on the surface of the crystal. The 

observed low TAC of acacia honey is in agreement with Ghedolf and Engeseth [35], who 

found a wide range of antioxidant capacity in honey from different sources, acacia honey 

having the lowest one. The higher TAC of rebaudioside 60% than rebaudioside 98% can be 

accounted to the lower purity of the former sweetener. TAC of other sweeteners was 

negligible. 

Since the in vitro TAC of foods is only an approximate reflection of their biological 

protective activity, chemical assays and cell-based methods giving often contradictory results 

[36, 37], we evaluated the protective effect of SCM and SBM supplementation against an 

induced oxidative stress in HepG2 cells. α-tocopherol, a well-known potent antioxidant acting 

as peroxyl radical scavenger that terminates chain reaction [38], was used as positive control. 

In preliminary experiments possible cytotoxicity was evaluated using different SCM and 

SBM concentrations, and further experiments were performed using the highest molasses 

concentrations causing no sign of cell toxicity. 
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The effectiveness in the protection of HepG2 cells from the induced oxidative stress, as 

indicated by the different markers considered, was greater for SCM than SBM and dependent 

on the concentration used: at the highest concentration SCM protection was equal to or higher 

than TC effect. 

The higher biological effectiveness of SCM is in agreement with data on in vitro TAC and 

phenolic composition, which were higher for SCM than for SBM, emphasizing the 

importance of phenolic concentration and profile for molasses protective action. It is 

conceivable that molasses antioxidant proprieties are mainly ascribable to the phenolic 

content, although other molecules such as the Maillard reaction products (MRP) could 

contribute to the overall effect. Indeed, MRP effective antioxidant protection against 

oxidizable substrates has already been evidenced in cell culture systems [17, 39, 40]. This 

strongly suggests the implication of MRP in the observed protective effects of molasses. 

Extensive work has been carried out for the identification and quantification of the mayor 

macromolecules (including colorants) in cane and beet sugar processing at all stages [41-43]. 

In general the colorants are believed to be produced during Maillard reaction, alkaline 

degradation reactions and sugar degradation [43]. Godshall et al. [41]
 
evidenced that beet and 

cane colorants are fundamentally different: beet colorants tend to be produced during 

processing, mainly from alkaline degradation of invert and melanoidin formation, while cane 

colorants enters the process in the cane juice as plant pigments associated with 

polysaccharide, and changes very little in process. In addition, cane polysaccharides involved 

in the color formation have been shown to be associated with polyphenolic acids [44]. These 

differences could have contributed to the higher activity of SCM than SBM. 

In this study we supplemented cells with the whole molasses, and not with molasses-derived 

compounds, so it was not possible to define which components were the most protective ones. 

Although it could appear a limitation of our study, to our aim, that is, the evaluation of the 

possible protective effect of molasses as food/food ingredient, it was the best approach, and it 

allowed us to consider the synergism between the different antioxidant molecules and the 

importance of the food matrix, well-recognized factors of the overall antioxidant effectiveness 

[45] that are ignored in studies evaluating the effect of pure compounds. 

Few data are available in the literature on molasses bioactivity in in vivo or ex vivo systems: 

sugar molasses have been reported to have immunomodulatory activity in human whole blood 

cell cultures [46], to raise HDL cholesterol level in rats [47], and to have inhibitory effects on 

mutation and nitric oxide production in lipopolysaccharide stimulated macrophages [48]. To 

our knowledge this work is the first one evidencing molasses effectiveness in the 
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counteraction of the oxidative damage in cultured cells. We acknowledge that results in whole 

organisms may diverge from those in the cultured cells because of bioavailability and 

metabolism of ingested phytochemicals mixtures and agents, and therefore results in the 

cultured cells could be misleading if taken in isolation. After ingestion the most of dietary 

(poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II 

metabolites [49]. Although in our study the use of human hepatic cells able to metabolize the 

parent compounds reduced in part the distance between our approach and the physiological 

situation in humans, further investigation in vivo are needed before drawing conclusion. 

Further in vitro mechanistic studies are also needed to understand how molasses bioactive 

molecules interact with human physiological and pathological processes, particularly 

considering that it is becoming clear that the mechanisms of action of polyphenols go beyond 

the modulation of oxidative stress [50]. Particularly Guimarães et al. [3] demonstrated cane 

molasses protection against DNA oxidative damage besides radical scavenging capacity. 

Although the variability due to agronomical and technological factors among the different 

molasses must be taken into account, our results support a greater exploitation of molasses as 

food ingredient considering it as a tasty extra source of antioxidants. In this light the broad 

quality of molasses sources must be carefully considered, since some impurities (particularly 

plant growth regulators, pesticides, clarification polymers such as polyacrylamide, heavy 

metals, and plant electrolyte salts) concentrated in the sugar syrups could be present in the 

magma from which molasses originates [51]. Consequently, the relative quality of the 

molasses must be assessed before marketing to the public.  

Besides all these considerations, data herein reported underline the potential health effects of 

molasses, adding functional properties and nutritional value to a sweetening agent, and 

sustaining its use as refined sugar substitute. Furthermore, they emphasize the possibility of 

using byproducts for their antioxidant activity. This is particularly important for consumers in 

developing countries, as it highlights the importance of consuming a low-price, yet very 

nutritious, commodity. 
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Evaluation of the total antioxidant capacity of gelato 
§
 prepared with cane 

molasses as refined sugar substitute 

 

INTRODUCTION 

The antioxidant potential of foods is dependent on the synergistic interactions of many 

bioactive compounds, phenolics being one of the major contributors [1]; for this reason it is 

often evaluated as total antioxidant capacity (TAC), and it is not based on the concentration of 

single antioxidant molecules. 

A number of factors, including genetics and growing conditions (cultivar, maturity at harvest, 

soil and water state, climate, and postharvest treatments) are known to affect the concentration 

of plant phytochemicals having antioxidant activity, therefore modulating their TAC [2].  

Food processing, as cooking or freezing, storage, and preparation are other factors that can 

impact TAC, together with the interaction between the antioxidant bioactive molecules and 

other compounds/ingredients in the food. 

To evidence a high TAC in one food ingredient is not sufficient to claim high antioxidant 

potential of the whole food once ready to eat. Therefore, after having evidenced the potent 

antioxidant activity and the high phenolic content of cane molasses as single ingredient [3], in 

this study we have evaluated the TAC of a gelato prepared with sugar cane molasses, and 

compared it with the same product conventionally prepared with refined sugar. 

 

METHODS 

Gelato preparation 

Two types of gelato were prepared by Optima Srl (Rimini, IT) according to the recipe 

reported in Table 1. 

  

                                                            
§     to s  p y    ns “fro  n”  nd is not just the Italian word for ice cream. The difference between gelato and 

ice cream (or industrial gelato) mainly depends upon three factors: fat, air and temperature. I) Ice cream, 

according to American laws, must have at least a 10% fat content, whereas Italian artisan gelato generally 

contain only from 3 to 10% fat; II) Gelato has less overrun than ice-cream, that is the air added to frozen 

desserts to increase volume and obtain softer products; III) Gelato is served at a higher temperature than ice 

cream because of the less overrun. 
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 Molasses  Control 

Milk 900 g 900 g 

Cream 100 g 100 g 

Skim milk powder 30 g 30 g 

Refined sugar 187.5 g 250 g 

Cane molasses 62.5 g  

Stabilizer (E417) 3 g 3 g 

Table 1 Gelato recipe 

The experimental gelato was prepared using 25% of cane molasses instead of refined sugar 

compared to the standard recipe. Usually, ice cream is pasteurized at 85°C for few minutes 

and this procedure could modify the TAC. So, both the experimental and traditional gelati 

were also developed using a “cold” procedure. 

Thus, the samples developed were of 4 kinds: 

- Experimental gelato obtained from a pasteurized mixture (MP) 

- Experimental gelato obtained from a mixture developed using a cold method (MC) 

- Control gelato obtained from a pasteurized mixture (CP) 

- Control gelato obtained from a mixture developed using a cold method (CC) 

Extracts preparation 

All chemicals, reagents and solvents were purchased from Sigma-Aldrich Co. (St Louis, MO, 

USA) unless otherwise stated. 

The in vitro TAC was evaluated after three different complementary methods of extractions, 

since a single procedure could not accurately reflect all the antioxidants in a complex system 

[4]. 

A) Extraction performed using combined solvents, ethanol/water (70:30, v/v) acidified with 

HCl 0.1%, according to the method of Rababah et al. [5] as optimized in our laboratory. 

Briefly, 1 g of gelato was extracted with 6 mL of 70% acidified ethanol (20 min at 40 °C with 

shaking) and centrifuged at 3,000g for 5 min. The residue was extracted again with 3 mL of 

the hydro-alcoholic solvent (20 min at 40 °C with shaking) and centrifuged at 3,000g for 10 

min. The supernatants from both extractions were filtered and mixed. Two independent 

extractions were performed for each sample. 

B) Extraction performed using methanol. Briefly, 1 g of gelato was extracted with 6 mL of 

methanol (20 min at 40 °C with shaking) and centrifuged at 3,000g for 5 min. The residue 

was extracted again with 3 mL of the same solvent (20 min at 40 °C with shaking) and 
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centrifuged at 3,000g for 10 min. The supernatants from both extractions were filtered and 

mixed. Two independent extractions were performed for each sample. 

C) Extraction performed using ultrapure water (Milli-Q; Millipore, Bedford, CT, USA). 

Briefly, 1 g of gelato was extracted with 9 mL of water (20 min at 40 °C with shaking) and 

centrifuged at 4,500g for 10 min. The supernatants from both extractions were filtered and 

mixed. Two independent extractions were performed for each sample. All extracts were 

preserved at -20 °C until analysis. 

Total Antioxidant Capacity (TAC) assay 

TAC was measured using the method of Re et al. [6], based on the capacity of antioxidant 

molecules in the sample to reduce the radical cation of 2,2’-azino-bis-(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS). Values obtained were compared to the concentration-response curve 

of the standard Trolox solution, and expressed as µmol of Trolox equivalents (TE)/g of 

product. 

 

RESULTS AND DISCUSSION 

As shown in Figure 1, the TAC of the experimental gelato was significantly higher than that 

one of control, independently from the kind of extraction considered. 

No significant differences were detected between the products developed with the pasteurized 

mixture and those ones prepared following the “cold” procedure. Thus, pasteurization does 

not affect the TAC of gelato, at least in the reported conditions. 

Comparing the different extraction methods, the one performed using ethanol/water (70:30, 

v/v) acidified with HCl 0.1% proved to be the most exhaustive one, as it is shown by the 

higher TAC values of the hydroalcoholic extracts. This result indicates that the best solvent 

for a complex food as gelato should include an hydrophilic phase and a lipophilic phase. 

Indeed, on the basis of their solubility antioxidants can be roughly classified into two groups: 

i. hydrophilic antioxidants, comprising vitamin C and many of the polyphenolic compounds, 

and ii. lipophilic compounds, predominantly consisting of vitamin E, carotenoids and 

chlorophylls.  

In addition, antioxidants have different degree of solubility; as example, the solubility of 

polyphenols varies according to their molecular weight and the degree of glycosylation, 

acylation (e.g. galloyl groups) or esterification; in particular, water solubility increases with 

increasing glycosylation [7]. 
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Figure 1. Total antioxidant capacity of gelato extracts expressed as μmol TE/g. 

Data are means ± SD (n=4). Statistical analysis was carried out by one-way ANOVA 

(p<0.001 in all cases) using Tukey’s as post-test. Different letters indicate significant 

differences.  
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Regardless the method of extraction used, the partial substitution of refined sugar with 

molasses was able to significantly increase the TAC of the final product. It is worth noting 

that the tested gelati were prepared by an industry producing ingredients for artisan gelato, 

and were totally comparable to products on the market. 

The observed increase in TAC is therefore extremely positive, since it could help increasing 

the intake of dietary antioxidants together with a product that people generally consider 

negatively from a nutritional point of view. 
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Durum and soft wheat bran, valuable health-promoting ingredients for the 

amelioration of confectionary products 

 

V. Valli, F. Danesi, J. Robertson, K. Waldron, F. Fava, L. Vannini, A. Bordoni - Potenziale bioattività di 

sottoprodott  d   ’ ndustr   c r    co   p r    produ  on  d  nuov       nt  - Riunione Nazionale SINU 

“Co pr nd r     pp  c r    LARN” - Florence, 21-22 October 2013 (ISBN: 978-88-97843-09-2). 

 

Wheat is an important agricultural commodity and dietary component across the world. It is 

the main ingredient of bread, pasta, and many sweet baked goods as cookies and cakes. 

The exploitation of soft and durum wheat byproduct is another strategy for a sustainable and 

healthy enrichment of confectionery products. In this chapter the isolation of oligosaccharides 

with bioactive functions form different fraction of the milling stream is shown and the new 

extracted ingredients are readily applicable to sweet foods providing them dietary fiber and 

antioxidants. 

 

ABSTRACT 

Bran is an underutilized byproduct of the milling process, generally discarded as waste or 

used in animal feeding. However, wheat bran represents an inexpensive and abundant rich 

source of valuable health-promoting compounds, including phytochemicals and antioxidants, 

of high interest for the food sector. The objective of this study was to evaluate the exploitation 

of different wheat milling fractions by enzymatic treatments for the production of bioactive 

ingredients. The sugar composition and the total antioxidant capacity were evaluated before 

and after a hydrolysis with xylanase. The enzymatic digestion was designed to release 

oligosaccharides from component arabinoxylans, these possibly having a high potential 

antioxidant activity.  

Whilst further analyses are required, the results of this study clearly indicate that ingredients 

with bioactives properties can be selectively and sustainably prepared from wheat byproducts 

 

INTRODUCTION 

The production of waste is an important issue and an increasing problem for the food and 

drink industry. A relevant challenge for the sector could be to convert food processing 

byproducts into ingredients acceptable for incorporation into food systems. Indeed, plant food 
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residues normally consists of high amounts of polyphenols and their glycosides, carotenoids, 

steroids, and lipids which can be extracted through appropriate treatments and be converted in 

specific components of high interest for food formulations [1, 2]. 

Wheat bran is the byproduct of the flour milling process. It is obtained from the outer cereal 

layers, so mainly comprises the pericarp and the aleurone layers of the wheat grain. It is 

generally discarded or used in animal feeding. However, it is an inexpensive and abundant 

source of natural value-added molecules and biomaterials. In fact, bran contains health-

promoting compounds, including phytochemicals, that correlate well with the benefits 

associated with the consumption of whole grain as the reduced incidence of certain chronic 

and inflammatory diseases [3]. 

There are several studies showing a marked antioxidant activity of wheat bran [4-6]. This 

activity is mainly due to phenolic compounds that can be either the same contained in fruits 

and vegetables, or unique of the specific cereal [7]. 

Synthetic additives as BHT and BHA are more and more rejected by consumers and natural 

antioxidant originating from natural sources would be in great demand nowadays [8]. This is 

particularly valid for phenolic compounds which, in contrast to most carotenoids and 

vitamins, are not chemically synthesized and need to be extracted from plant material [9]. 

Cell wall material might provide the source for a range of functional valuable components and 

for this reason it currently deserves more detailed attention. Oligosaccharides derived from 

wall hydrolysis are associated to the so called dietary fiber [5] and are currently considered 

prebiotics because they reach the colon undigested and are fermented mainly by 

bifidobacteria and lactic acid bacteria; this fermentation produces positive health effects, for 

example as improvement of glucose control and modulation of triglycerides metabolism [10].  

Not all the dietary fiber sources have health promoting characteristics and attempts to 

determine functionality of different fibers types would markedly contribute to the proper 

targeting of product development. 

Exploitation of modern processing methods can chemically and physically alter carbohydrate-

based food materials and add substantial value to residues and co-products which can provide 

a reliable source of functional dietary fiber [11]. 

The major objective of this work was to characterize ingredients from wheat bran in terms of 

composition and bioactive properties. In particular, different fractions taken randomly from 

the flour milling, a mechanical gradual reduction process where the endosperm is separated 

from the bran layers, were considered.  
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The sugar composition and the total antioxidant capacity (TAC) were evaluated before and 

after an enzymatic hydrolysis with a specific xylanase. The xylanase digestion allowed the 

release of the oligosaccharide fractions which may have an enhanced antioxidant potential.  

This work has been undertaken within the EU project NAMASTE, aimed at the development 

and assessment of laboratory-scale experimental protocols for the economically and 

environmentally sustainable conversion of several vegetable processing co-products into 

ingredient for new healthy foods [12]. 

 

MATERIALS AND METHODS 

Materials 

All chemicals, reagents, and solvents were purchased from Sigma-Aldrich Co. (St Louis, MO, 

USA) unless otherwise stated.  

Samples of wheat bran were obtained as milling fractions produced from the flour milling 

stream en route to production of the total unsieved bran (Bulk bran). The samples were 

provided as random samples and were labeled by the miller. 12 bran samples were examined. 

Fractions obtained from the hard wheat milling (HW) were: B2 Germ, A F, G Coarse, G Fine, 

FBF, CBF; fractions obtained from the soft wheat milling (SW) were: B K, B F, BF3, BF4, 

4MD/B2, Bulk (total bran). 

Methods 

Fiber analysis and concentration 

Dietary fiber was assayed as total dietary fiber using the Megazyme Kit assay (Megazyme K-

TDFC) (Bray, Ireland). To remove starch and protein, wheat bran samples were digested 

using a thermostable α-amylase (Megazyme:E-BLAAM) and a protease (Megazyme:E-

BSPRT). Starch digestion was completed using amyloglucosidase (Megazyme; E-AMGDF). 

Samples were solubilized in MES-TRIS buffer (0.05 M, pH 8.2) and heated in a water bath at 

90-100°C to gelatinize starch, then incubated with heat-stable α-amylase for 35 min to digest 

starch. After cooling to 60°C protease was added, and samples were incubated at 60°C for 30 

min. Following pH adjustment to 4.1-4.8, 100 μL amyloglucosidase were added to each tube; 

after 30 min incubation at 60°C absolute ethanol (40 mL) was added to each tube to 

precipitate fiber components. After 16 h at room temperature the fiber pellet was recovered by 

centrifugation. 

Xylanase digestion of fiber concentrates  

The fiber concentrates prepared from each sample were treated with a xylanase (Pentopan
®

 

Mono (Sigma, UK)), Pentopan
®

 is recombinant xylanase from Thermomyces lanuginosus 
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(≥2500 units/g). In duplicate, 100 mg samples were weighed into 15 mL centrifuge tubes and 

dispersed in 3 mL of deionized water. After equilibration in a water bath (15 min at 50 °C), 50 

μL of Pentopan
®

 Mono (stock prepared in 0.5 mg/mL BSA to give 7.5 Units Pentopan
®

/g 

sample) were added to each sample. Samples were incubated for 5 h at 50 °C with mixing, 

then boiled to inactivate enzyme activity, and centrifuged. The pellet was washed three times; 

oligosaccharides-containing supernatants were recovered by centrifugation, combined and 

freeze dried.  

Sugar analysis 

Fiber residues and oligosaccharide fractions produced through xylanase treatment were 

analyzed for component sugars using Gas Chromatography (GC) [12]. To distinguish 

cellulosic and non-cellulosic glucose Saeman hydrolysis (72% H2SO4; 3 h; room 

temperature), followed by dilution to 1 M H2SO4 and incubation at 100°C for 1.5 h was used. 

For oligosaccharide samples only 1 M H2SO4 and incubation at 100°C for 1.5 h was used. 

Samples of each hydrolysate were derivatized to alditol acetates and quantified using GC. 

Extracts preparation 

The preparation of extracts was performed according to Danesi et al. [13] with slight 

modifications. Two different procedures were used to extract antioxidant compounds: 

sequential use of solvents (water and ethanol) and combined use of solvents. Briefly, 1 g of 

sample was extracted with 10 mL water under shaking for 20 min at 40 °C, centrifuged at 

3,000g for 10 min and the supernatant collected. The extraction was repeated with 5 mL water 

and the two supernatants were filtered and combined. The residues were re-extracted with 10 

mL ethanol (20 min at 40°C with shaking) centrifuged at 3,000g for 10 min and the 

supernatant collected. The extraction was repeated with 5 mL ethanol and the two 

supernatants were filtered and combined. Two independent extractions were performed for 

each sample. 

Extraction with the combined solvents was performed using ethanol/water (70:30 v/v). 

Briefly, 1 g of lyophilized food was extracted with 10 mL of 70% ethanol (20 min at 40°C 

with shaking) and centrifuged at 3,000g for 10 min. The extraction was repeated with 5 mL of 

70% ethanol (20 min at 40 °C with shaking); the supernatants were filtered and combined. 

Two independent extractions were performed for each sample. 

Determination of Total Antioxidant Capacity (TAC)  

TAC was measured using the method of Re et al. [14], based on the capacity of antioxidant 

molecules in the sample to reduce the radical cation of 2,2’-azino-bis-(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS), so causing the decolorization of ABTS
•+

, measured as the quenching 
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of the absorbance at 734 nm. Values obtained were compared to the concentration-response 

curve of the standard Trolox solution, and expressed as µmol of Trolox equivalents (TE)/g. 

The antioxidant capacities of aqueous and ethanolic extracts were measured separately and 

the obtained values summed to obtain the final TAC. 

Statistical analysis  

The reported data are means of at least three replicates. Statistical analysis was by one-way 

ANOVA, using Tukey’s post-hoc test. The Pearson correlation test analysis was applied to 

analyze the correlation between TAC value obtained with the different extractions. 

 

RESULTS 

1. Results on bran 

The fiber content of the original milling fractions was variable, ranging from 57.1 to 20.2% 

and from 52.9 to 13.0% in the different fractions of hard and soft wheat, respectively (Table 

1). The major component of the fiber matrix was non starch polysaccharide (NSP). NSP 

represents over 50% of the total fiber in all samples, apart from B2 Germ (hard wheat) and BF 

(soft wheat). NSP represents more than 70% of the fiber in the soft wheat fractions BF3 and 

Bulk. 

Samples 

Fiber 

(%original 

sample) 

NSP 

(% 

original 

sample) 

NSP 

(% fiber) 
Samples 

Fiber 

(% 

original 

sample) 

NSP 

(% 

original 

sample) 

NSP 

(% fiber) 

Hard wheat (HW) Soft wheat (SW) 

CBF 57.1 33.7 59.0 BF 44.5 21.0 47.2 

AF 39.5 21.1 53.4 4MD/B2 13.0 8.1 62.3 

B2 Germ 28.5 13.5 47.4 BK 46.7 32.0 68.5 

G Fine 20.2 11.3 55.9 BF3 52.9 40.0 75.6 

G Coarse 49.7 30.2 60.8 BF4 36.4 19.9 54.7 

FBF 47.3 26.0 55.0 Bulk 53.1 39.6 74.6 

Table 1. Fiber content and NSP contribution from bran milling fractions 

The fiber and NSP content in the different milling fractions is expressed as % original sample 

(w/w). NSP content is also expressed as % fiber in the sample (w/w).  

 

Composition analysis for sugars in the fiber residue (Figure 1A) showed that arabinose, 

xylose and glucose accounted for over 90% of the NSP sugars present, hence that 



Chapter 2 

38 

 

arabinoxylans (AX) and cellulose were considered the major polysaccharides. When account 

is taken of the fiber content in the original sample, then it is apparent that whilst some 

samples are relatively poor in AX, e.g. 4MD/B2, with nearly 5% AX, other fractions are rich, 

e.g. BF3 with over 20% AX (Figure 1B). 

 

Figure 1. NSP Composition of bran. 

Results are expressed per g fiber concentrate from wheat milling fractions (panel A) and per g 

original milling fraction bran sample (panel B). ara = arabinose, xyl = xylose, man = 

mannose, gal = galactose, glc = glucose, uronic = uronic acids.  

 

Figure 2 shows the TAC of bran extracted with both the sequential use of water and ethanol 

(Figure 2A), and the combination of the two solvents (ethanol/water 70:30 v/v) (Figure 2B). 
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Using the sequential extraction (panel A), the TAC was different in the milling fractions, and 

in all samples the aqueous extract contributed more to total TAC than the ethanolic extract. 

Wheat fractions, AF, G coarse and BF, showed the highest TAC, whilst the lowest TAC was 

detected in 4MD/B2 soft wheat sample. These results were mostly confirmed using the 

combined extraction (Figure 2B) which evidenced the highest TAC in BF sample and the 

lowest in 4MD/B2 and G Fine ones. A significant correlation was observed between the TAC 

results obtained with the two extraction procedures (Pearson correlation coefficient: r
2
=0.68; 

p<0.05). 
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Figure 2. TAC of bran both extracted with the sequential use of water and ethanol 

(panel A) and with the combination of the two solvents (panel B). 

Statistical analysis was by the one-way ANOVA (p<0.001) with Tukey’s post-hoc test. 

Different letters indicate significant differences (at least p<0.05).  
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2. Results on the oligosaccharide fractions 

Sugars analysis of the xylanase-solubilized fractions (Figure 3) confirmed that each fraction 

was enriched in arabinose and xylose, though yield varied from ~60 – 90% among milling 

fractions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Content and composition of Pentopan-solubilized wheat bran. 

ara = arabinose, xyl = xylose, man = mannose, gal = galactose, glc = glucose, uronic = uronic 

acids.  

 

As illustrated in Figure 4, oligosaccharides TAC ranged approximately from 90 and 140 µmol 

TE/g, whereas bran TAC ranged approximately from 9 and 19 µmol TE/g (Figure 2). Thus, 

the enzymatic treatment with the xylanase greatly enhanced the wheat bran TAC.  

Samples showing the highest TAC before the xylanase digestion were also among the most 

antioxidant oligosaccharides; similarly 4MD/B2 and G Fine were among the samples with the 

lowest TAC both before and after the enzymatic treatment. However, differences among 

fractions were reduced after Pentopan
®

 usage, as shown by multiple comparisons. 

In the oligosaccharide fractions the contribution of the ethanolic extract to the total TAC was 

negligible (Figure 4A). A significant correlation was observed between the TAC results on 

the two kinds of extractions (Pearson correlation coefficient: r
2
=0.79; p<0.01). 
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Figure 4. TAC of bran both extracted with the sequential use of water and ethanol 

(panel A) and with the combination of the two solvents (panel B). 

Statistical analysis was by the one-way ANOVA (p<0.001) with Tukey’s post-hoc test. 

Different letters indicate significant differences (at least p<0.05). 

 

DISCUSSION 

Milling of wheat generates byproducts, which can be used to improve the technological 

performance and/or to integrate foods with healthy compounds [5]. 

Wheat bran, from the outer tissues of wheat kernel, is mainly composed of non-starch 

polysaccharides (NSP); in the cell wall of Gramineae like wheat and other cereals and grasses. 

Arabinoxylans (AX) rate as the principal component of the NSP [15]. AX are polymers of 

mainly pentose sugars, based on a xylose backbone with arabinose side chains. Uronic acid 
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and phenolic acids, mainly ferulic acid, may also be substituents in AX and these may 

promote the antioxidant properties of AX. 

Results herein described for fiber analysis are in agreement with previous findings [16, 17], 

and evidence that AX are a major components of all the different milling fractions of both 

hard and soft wheat. Since the NSP content was significantly different among the milling 

fractions, AX content was also diverse and depending on grain tissue composition then AX 

composition would also be expected to vary. 

AX are considered important bioactive molecules not only because they exert the benefits of 

the dietary fiber, but also because ferulic acid, either in its monomeric or dimeric form, is 

ester linked to arabinosyl residues [18]. Ferulic acid is the main phenolic acid in wheat bran 

and it is particularly interesting for its antioxidant activity [19]. 

Arabinoxilans may be degraded to oligosaccharides by acidic or enzymatic hydrolysis [20]. 

Due to the interest in their technological and functional applications [21], the isolation of 

feruloyl oligosaccharide from wheat cell wall by treatment with polysaccharide hydrolyzing 

enzymes has been performed in many studies [18, 22]. 

The potential yield of oligosaccharides available through specific xylanase activity and the 

related bioactivity can be influenced by the NSP content and AX structure. In this study, 

different and random milling fractions were considered in order to evidence the ones that are 

richer in yield of components of interest for extraction and exploitation as bioactive agents. 

Structural constraints of AX on oligosaccharide yield have not been considered in this study. 

The heterogeneous distribution of chemical components in the kernel and the different 

technological passages of the flow sheet followed in the mill can cause not only a different 

NSP composition but also a different antioxidant activity in the milling samples [23]. 

Since analytical procedures can significantly affect the antioxidant activity of a sample 

because of the variable contents and types of phytochemicals that can be obtained through 

different preparation procedures [24], in this study two kinds of extractions for the TAC 

evaluation were performed. Correlation analysis between the results obtained from the two 

extraction methods suggests that the procedures are both suitable for a TAC evaluation in this 

kind of matrix. 

Our results clearly indicate that the most antioxidant agents in the milling fractions were 

aqueous rather than ethanol soluble. This is in agreement with Adom et al. [4], who showed 

that different milled fractions of wheat have different profiles of both hydrophilic and 

lipophilic phytochemicals. Hydrophilic antioxidant activity contributed mainly to the total 

antioxidant activity of analyzed wheat samples. 
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Once fiber concentrates from bran were submitted to an enzymatic digestion through xylanase 

in order to break down the component arabinoxylans and release oligosaccharides with a 

bioactive activity, an increase in TAC was observed. This agrees with the results of Katapodis 

et al. [25] and Yuan et al. [21] who showed that feruloylated oligosaccharides from wheat 

bran have a strong antioxidant activity. 

The most promising fractions regarding TAC, before the enzyme hydrolysis, were BF, AF 

and G Coarse. However this difference leveled out after the treatment. Xylanase treatment 

impacted on either the overall TAC or the solubility of antioxidants that were extracted. 

Indeed, the contribution of the ethanolic extract to total TAC was not significant, since 

probably water soluble oligosaccharide were the major component in the samples. However, 

the results obtained on samples extracted with the combination of solvents (ethanol/water 

70:30 v/v) suggest that hydroalcholic extraction also recovers a certain percentage of non-

oligosaccharide components. Since the sugars analysis on the oligosaccharide fractions 

evidenced not only that arabinose and xylose were the major component, but also that some 

glucose was present in all fractions, it could be speculated that other components, e.g. β-

glucans, are solubilized during oligosaccharide preparation as well.  

Further research is warranted to optimize yield and purity of oligosaccharides, and more 

studies are necessary to further elucidate which milling fraction has the highest bioactive 

potential.  

However, the obtained results represent a first step for the evaluation of the antioxidant 

properties of bran demonstrating that ingredients with healthy properties can be selectively 

prepared from wheat byproducts. This is particularly interesting because some antioxidants 

from natural origins, such as herbs extracts from rosemary or thyme, have strong herb flavors 

which restricts their application in food use [1].  

Finally the new value-added ingredients would be appreciated by consumers not only for the 

functional effects but also for the sustainable and ethical concept that drive their production.  
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Chapter 3 

Could ancient grains be functional components of sweet products? 

 

Considering that consumers are changing their purchase and eating habits around meal 

opportunities like breakfast and snacking, product developers should consider the addition of 

ancient grains flour as an appealing way to add variety, nutrients, and healthy characteristics 

to confectionary products. In particular this chapter focuses on the possibility of substituting 

whole durum wheat with Kamut
®

 Khorasan; the antioxidant and anti-inflammatory effects of 

the modern and ancient grain were evaluated and compared both in vivo and in vitro. While in 

the first study in vivo we preferred to feed rats with pasta in order to avoid interferences of 

many ingredients, in the second study we focused on the possible utilization of Kamut
®

 flour 

in a confectionary product (cookies), evaluating its effect in cultured cells. 

 

Role of Kamut
®
 brand khorasan wheat in the counteraction of non-celiac 

wheat sensitivity and oxidative damage 

 

A. Carnevali, A. Gianotti, S. Benedetti, M.C. Tagliamonte, M. Primiterra, L. Laghi, F. Danaesi, V. Valli, M. 

Ndaghijimana, F. Capozzi, F. Canestrari, A. Bordon  “Ro   of K  ut® brand khorasan wheat in the 

counteraction of non-c    c wh  t s ns t v ty  nd ox d t v  d   g ” Food R s  Int  2014, 

http://dx.doi.org/10.1016/j.foodres.2014.01.065 

 

ABSTRACT 

It has been suggested that ancient grains show weaker immunogenic properties and therefore 

can be introduced in the diet of non-celiac wheat-sensitive people. In the present study we 

investigated the possible difference in inflammation caused by feeding ancient Kamut
®

 wheat 

pasta (KP) compared to modern durum wheat pasta (WP) to rats. The effect of the two 

experimental diets on the oxidative status was also compared under basal condition and after 

inducing an exogenous oxidative stress. In rats fed WP the histological evaluation of the 

duodenum morphology evidenced a flattened mucosa, an unusual shape and shortening of the 

villi, and a high lymphocyte infiltration, while no modifications were detected in KP fed 

animals. The fecal metabolite profiling was differently modified by the two diets, suggesting 

significant changes in the gut microflora. Furthermore, the results confirmed previous data on 

the antioxidant protection in rats by Kamut
®

 wheat foods. It is conceivable that Kamut
®
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components can act through an hormetic effect, eliciting an adaptive response that protects the 

organism against both oxidative stress and inflammation. 

 

INTRODUCTION 

Cereal-based food products have been the basis of the human diet for a long time. Cereals 

contain all the macronutrients (proteins, fats, and carbohydrates), and they are an excellent 

source of minerals, vitamins, and other micronutrients required for adequate health. 

Nowadays in Western countries most cereals are consumed after milling, that involves the 

removal of the outer layers of the grain (bran and germ) and the preservation of the starch-rich 

white endosperm. In so doing, milling takes out a significant amount of the key nutritional 

components from cereals. 

There is an increasing amount of evidence showing that consumption of whole grains (WG) 

and whole-grain-based products is associated with a reduction of the risk of developing many 

diseases, including cardiovascular diseases [1], hypertension [2], metabolic syndrome and 

type 2 diabetes [3], and different types of cancer [4]. WG cereals are a rich source of fiber and 

bioactive compounds, such as n-3 fatty acids, sulfur amino acids, oligosaccharides, minerals, 

B vitamins, phytosterols, and antioxidants. Different mechanisms have been proposed for 

explaining the protective role of WG, all based on studies in which one component is isolated 

and tested, but the protective effects of WG consumption may go beyond what would be 

estimated by considering the addition of the effects of each individual component, suggesting 

that synergistic effects and interactions between these components may be as important (or 

perhaps more important) than the individual effects [5]. 

The concentration of WG bioactive components has been reported as higher in ancient crops 

and/or minor cereals (e.g. Kamut
®

 wheat, barley, spelt, rye, einkorn, millet, oats, sorghum), 

thus increasing the interest in the use of ancient grains because of their better health-related 

composition [6]. In addition, the use of ancient grain blends has been evidenced as suitable to 

make highly nutritious, modern and innovative baked goods meeting functional and sensory 

standards in terms of nutritional added value, palatability (high sensory scores), convenience 

(extended shelf life) and easy handling during processing [7]. 

In two recent studies [8, 9], we demonstrated the protective effect of WG bread, particularly 

when made from Kamut
®

 brand khorasan wheat, in rats submitted to an exogenous oxidative 

stress due to the intraperitoneal injection of doxorubicin (DOX). Furthermore, the histologic 

evaluation of the hepatic tissue of these same rats showed a complete protection from the 

onset of the DOX-induced inflammation by a diet of Kamut
®

 bread compared to a diet of 
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modern durum bread. The hypothesis of an anti-inflammatory action of Kamut
®

 khorasan 

bread is intriguing in the light of the controversial hypothesis suggesting ancient grains might 

show lower immunogenic properties and therefore opening the possibility to introduce them 

in the diet of non-celiac wheat sensitive people. 

Therefore, in the present study we have investigated in healthy, unstressed rats the possibility 

that there is less inflammation caused by a diet of ancient Kamut
®

 whole wheat compared to a 

diet of modern durum whole wheat. The duodenum, spleen and lymph nodes were chosen as 

target organs for study since the duodenal mucosa is in direct contact with the potential 

inflammatory agents, and there is a large number of cells especially sensitive to inflammatory 

agents in the spleen and lymph nodes. Furthermore, since the influence of a food or diet on 

the health of the host may be affected by changes occurring in the composition and 

metabolism of the gut microbiota, the fecal metabolite profiling was also compared. 

In this study, rats were fed durum or Kamut
®

 cooked pasta, since our aim was to compare real 

cereal food products commonly used in the human diet; pasta was chosen in order to exclude 

fermentation as a variable of the potential differential protective effect. In fact, the study by 

Coda et al. [10] demonstrated the capacity of sourdough lactic acid bacteria to release 

peptides with antioxidant activity through the proteolysis of native cereal proteins. The use of 

sourdough fermentation could therefore be considered as an adjuvant to enhance the recovery 

from intestinal inflammation of coeliac patients at the early stage of the gluten-free diet [11]. 

Rats were fed modern whole wheat pasta (WP) or ancient whole wheat Kamut
®

 pasta (KP) 

for 7 weeks, and then half animals in each group were submitted to an exogenous oxidative 

stress by intraperitoneal injection of doxorubicin (DOX). DOX is an anthracycline antibiotic, 

widely used as an anticancer agent. Despite its high antitumor activity, its use in clinical 

chemotherapy is limited because of diverse toxicities. Oxidative damage to membrane lipids 

and other cellular components is believed to be a major factor in the DOX toxicity, which is 

caused by the formation of an iron-anthracycline complex that generates free radicals [12]. 

Besides the histological analyses in the duodenum and spleen which indicated the 

inflammatory potential of WP and KP, the modifications which occurred in the fecal 

metabolite profiling were assessed by 
1
H-NMR spectroscopy. All the same analyses already 

reported on rats fed modern durum and ancient Kamut
®

 bread [8, 9] were carried out on pasta 

fed rats. This allowed us to check if the superior antioxidant protective effect already 

observed in Kamut
®

 bread fed animals was also seen in animals fed Kamut
®

 pasta. 

  



Chapter 3 

50 

 

MATERIAL AND METHODS 

Chemicals and reagents 

Doxorubicin was a kind gift of Ebewe (Rome, Italy). Hematoxylin-Eosin and PAS stains were 

purchased from Kaltek Italia (Padua, Italy). All chemicals and solvents were purchased from 

Sigma Chemical Co. (St. Louis, MO, USA) unless differently stated, and were of the highest 

analytical grade. 

Pasta preparation and composition 

According to the Italian guidelines of organic pasta processing, the process parameters 

accounted for a long (more than 6 hours) and low temperature (around 55°C) desiccation 

cycle. The final water content was lowered to less than 12.5%. The cooking process of pasta 

was performed by a semi-industrial pasta cooker in boiling water (10% w/w pasta/water ratio) 

for 8 minutes. Pasta was frozen in single dose packages immediately after cooking, defrosted 

at room temperature before use and administered to rats without any further heating. 

Moisture, ash, protein, fat and carbohydrate content of the cooked pasta were evaluated 

according to the standard AACC methods [13]; soluble and insoluble dietary fiber content 

was estimated according to the method described by Asp et al. [14]. The cooked pasta content 

of carotenoids, folic acid, vitamin E, Se, and total polyphenols was estimated as described 

previously [9]. 

Animals 

Twenty-four male Wistar rats, aged 30 days, were used. Animals were housed in individual 

cages in strictly controlled conditions of temperature (20 ± 2°C) and humidity (60-70%), with 

a 12 hour dark-light cycle. After a 7 day acclimation period animals were randomly divided 

into two groups, each receiving one of the following diets: 1. wheat pasta (WP); and 2. 

Kamut
®

 khorasan pasta (KP). Water and pasta were provided ad libitum; food consumption 

was measured every day, and rat body weight (b.w.) every week. The dietary treatment lasted 

for 7 weeks and then rats of each group were randomly divided into two subgroups. The first 

one received intraperitoneally 10 mg/kg b.w. of DOX in a single dose, the second one similar 

volumes of NaCl 0.9% (w/v) in distilled, apyrogenic water solution. Forty-eight hours later, 

after 12 hours of fasting, rats were anaesthetized and sacrificed. Blood was sampled by intra-

cardiac withdrawal. Plasma was immediately separated by centrifugation and stored in 

separated aliquots at -20 °C until analysis. The liver was quickly excised, washed in 

phosphate buffered saline, weighed, and immediately frozen at -80 °C. The duodenum, lymph 

nodes, and spleen were also excised and immediately fixed in formalin.  



Chapter 3 

51 

 

Stool samples were collected from rats at the beginning of the experimental feeding (T0) and 

the day before DOX administration (T1), and immediately frozen at -80 °C until analysis. 

Stools were not examined after DOX administration, since it was an acute treatment, and the 

time between treatment and sacrifice was too short to evidence modifications in the 

microflora. 

The Animal Care Committee of the University of Bologna approved the study (Prot. 50932-

X/10). 

Histologic evaluations 

Portions of the excised tissues were fixed in 4% formalin. Specimens were then embedded in 

paraffin, and tissues were cut to obtain 3- to 4-µm sections. Sections were stained with 

hematoxylin and eosin and periodic acid-Schiff and microscopically (20 X) evaluated using a 

digital microscope D-Sight (Menarini Diagnostics-Nikon, Florence, Italy). 

In the duodenum, the morphology, the villi length, and the intraepithelial lymphocyte number 

were evaluated according to the diagnosis criteria for celiac disease in humans [15, 16]. In the 

lymph nodes and in the spleen the morphology and diameter of lymphatic follicles were 

evaluated. 

Fecal metabolite profiling 

To study the water soluble fraction of the feces by means of 
1
H NMR spectroscopy, 40 mg of 

thawed fecal mass was thoroughly homogenized by vortex-mixing with 400 μL of cold 

deuterated water at pH 7.4±0.02, containing 1 mM sodium 3-(trimethylsilyl)propionate-

2,2,3,3-d4 (TSP) as internal standard. The mixtures were centrifuged at 14,000 rpm for 5 

minutes and the supernatant was collected. To ensure the complete recovery of the water 

soluble species and highly reproducible spectra, this extraction procedure was repeated twice, 

the supernatants were combined and their pH was finally adjusted to 7.4±0.02 [17]. NMR 

spectra were then registered at 300 K on a Mercury-plus NMR spectrometer from Varian, 

operating at a proton frequency of 400 MHz. Residual water signal was suppressed by means 

of presaturation. 
1
H NMR spectra were processed by means of VNMRJ 6.1 software from 

Varian. To minimize the signals overlap in crowded regions, all free induction decays (FID) 

were multiplied by an exponential function equivalent to a −0.5 line-broadening factor and by 

a Gaussian function with a factor of 1. After manual adjustments of phase and baseline, the 

spectra were scaled to the same total area, in order to compare the results from samples of 

different weight and water and fiber content. The spectra were referenced to the TSP peak, 

then digitized over the range of 0.5–10 ppm. The residual water signal region, from 4.5 to 5.3 

ppm, was excluded from the following computations by means of R [18] scripts developed in-
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house. To compensate for chemical-shift perturbations, the remaining original data points 

were reduced to 128 by integrating the spectra over ‘bins’, spectral areas with a uniform size 

of 0.038 ppm. A 23×128 bins table was finally obtained for univariate and multivariate 

statistical analysis, as one sample was lost. As some parts of the spectra were very crowded, 

some bins could contain peaks pertaining to different molecules. In order to consider this 

potential source of error the bins containing peaks ascribed to the same molecules were not 

summed up. 

Analyses in plasma 

Total antioxidant activity (TAA) 

TAA was measured in plasma using the method of Re et al. [19], on the basis of the ability of 

the antioxidant molecules in the sample to reduce the radical cation of 2,2’-azino-bis-(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS), determined by the decolorization of ABTS
+

, 

and measured as the quenching of the absorbance at 734 nm. Values obtained for each sample 

were compared to the concentration-response curve of the standard trolox solution and 

expressed as moles of trolox equivalent (TE)/mL.  

Concentration of reactive oxygen metabolites (ROMs) 

ROM level in plasma was measured by applying the d-ROMs test (Diacron, Grosseto, Italy) 

as reported by Danesi et al. [12]. This test is based on the ability of transition metals to react 

with peroxides by the Fenton reaction. The reaction produces free radicals that, trapped by an 

alchilamine, form a colored compound detectable at 505 nm. Values obtained for each 

samples were compared to standard (H2O2), and expressed as g H2O2/mL. 

Plasma glucose estimation 

Plasma glucose level was determined by the glucose oxidase enzymatic method [20]. Briefly, 

glucose present in the sample is oxidized by the enzyme glucose oxidase to gluconic acid with 

the liberation of hydrogen peroxide (H2O2), which reacts by peroxidase with 4-

aminophenazone and phenol giving a colored compound which can be measured at 515 nm. 

Values obtained for each samples were compared to a standard curve obtained using glucose 

serial dilutions, and were expressed as mg/dL. 

Analyses in liver 

Liver glutathione peroxidase (GPx) activity 

One hundred milligrams of liver were homogenized in 1 mL of cold buffer (50 mM Tris HCl, 

pH 7.5, 5 mM ethylenediaminetetraacetic acid and 1 mM dithiothreitol) and centrifuged, and 

the GPx activity was measured in the supernatant using a commercial kit as proscribed by the 
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manufacturer (Cayman Chemical Co, Ann Arbor, MI, USA) [21]. GPx catalyzes the reduction 

of hydroperoxides, including hydrogen peroxides, by reduced glutathione and functions to 

protect the cell from oxidative damage. The kit measures GPx activity indirectly by a coupled 

reaction with glutathione reductase (GR). Oxidized glutathione, produced upon reduction of 

an organic hydroperoxide by GPx, is recycled to its reduced state by GR and NADPH. The 

oxidation of NADPH to NADP
+
 is accompanied by a decrease in absorbance at 340 nm. The 

rate of decrease in the A340 is directly proportional to the GPx activity in the sample. 

Results were adjusted for the protein content in the sample and expressed as units per 

milligram of protein. 

Liver thioredoxin reductase (TrxR) activity 

One hundred milligrams of liver were homogenized in 1 mL of cold buffer (25 mM potassium 

phosphate, pH 7, containing 2.5 M ethylenediaminetetra-acetic acid) and centrifuged, and the 

TrxR activity was analyzed in the supernatant with a commercial kit as proscribed by the 

manufacturer (Sigma-Aldrich) [22]. 

Thioredoxin reductase is an ubiquitous enzyme that is thought to be involved in many cellular 

processes such as cell growth, p53 activity, and protection against oxidation stress. The kit 

uses a colorimetric assay for the determination of thioredoxin reductase activity. It is based on 

the reduction of 5,5’-dithiobis(2-nitrobenzoic) acid (DTNB) with NADPH to 5-thio-2-

nitrobenzoic acid (TNB), which produces a strong yellow color that is measured at 412 nm. 

Results were adjusted for the protein content in the sample and expressed as units per 

milligram of protein. 

Intracellular glutathione (GSH) level 

One hundred milligrams of liver were homogenized in 1 mL of cold buffer (25 mM HEPES, 

pH 7.4, containing 250 mM sucrose) and centrifuged, and GSH levels were analyzed in the 

supernatant using a commercial kit from Sigma-Aldrich as proscribed by the manufacturer 

[23]. Briefly, the glutathione content of the sample is evaluated using a kinetic assay in which 

catalytic amounts of glutathione cause a continuous reduction of 5,5′-dithiobis-(2-

nitrobenzoic) acid (DTNB) to TNB. The oxidised glutathione formed is recycled by 

glutathione reductase and NADPH. The product, TNB, is assayed colorimetrically at 412 nm. 

Results were adjusted for protein content in the sample and expressed as nanomoles of GSH 

per milligram of protein. 

Liver α-tocopherol and β-carotene content 

One hundred milligrams of tissue were homogenized in 1 mL of cold phosphate buffered 

saline (pH 7.4) and deproteinized with ethanol. Liposoluble antioxidants were then extracted 
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with hexane and analyzed by reversed-phase high-performance liquid chromatography as 

described previously [24]. Results for α-tocopherol and β-carotene were expressed as 

micrograms per gram of tissue. 

Liver malondialdehyde (MDA) level 

One hundred milligrams of tissue were homogenized in 1 mL of cold buffer (0.25M Tris, 

0.2M sucrose, 5mM dithiothreitol, pH 7.4). After centrifugation, the supernatant was 

derivatized with thiobarbituric acid and the MDA-thiobarbituric acid complex extracted with 

butanol. Samples were then analyzed by reverse-phase high-performance liquid 

chromatography as previously described [25]. Results were adjusted for protein content in the 

sample and expressed as nanomoles of MDA per milligram of protein. 

Liver advanced oxidation protein product 

One hundred milligrams of tissue were homogenized in 1 mL of cold buffer (20 mM 

phosphate buffered saline, pH 7.4) and centrifuged, and advanced oxidation protein product 

(AOPP) levels were measured in the supernatant by colorimetric detection at 340 nm as 

previously described [26]. Results were adjusted for protein content in the sample and 

expressed as nanomoles per milligram of protein. 

Protein concentration 

The protein concentration in all samples was determined according to the method of Bradford 

[27]. 

Statistical analysis 

The point by point comparisons of the NMR spectra were performed by means of the non-

parametric statistical test set up by Wilcoxon [28]. Canonical analysis of principal 

components (CAP) [29] and the consequent leave-one-out test were performed by employing 

the software CAP freely available through the author’s web page. All other data are reported 

as mean ± standard deviation (SD), and statistical significance was evaluated by the Student’s 

t test and the one-way ANOVA using Tukey’s as post-test. 
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RESULTS 

The two experimental pastas provided similar energy, fats, carbohydrates and fiber, while 

protein content was higher in KP than in WP (Table 1). The concentration of antioxidant 

compounds appeared different in the two experimental pasta: selenium was almost 20 times 

higher in KP than in WP, and also total polyphenols were higher in the former, while vitamin 

E, total carotenoids, and folic acid presented higher values in the latter (Table 1).  

 

Table 1. Composition of the experimental pasta. 

 Wheat Pasta 

(WP) 

Kamut
®
 Pasta 

(KP) Energy (kcal/100 g) 174 ± 12 190 ± 14 

Energy (kJ/100g) 734 ± 51 803 ± 59 

Protein (g/100 g) 5.1 ± 0.3 7.1 ± 0.6 ** 

Fat (g/100 g) 4.3 ± 0.2 4.3 ± 0.3 

Carbohydrates (g/100 g) 28.7 ± 1.01 30.8 ± 1.47 

Soluble fiber (g/100 g) 0.8 ± 0.2 0.7 ± 0.1 

Insoluble fiber (g/100 g) 3.8 ± 0.3 3.8 ± 0.24 

Water (g/100 g) 56.7 ± 3.31 52.5 ± 2.67 

Ash (g/100 g) 0.61 ± 0.05 0.79 ± 0.07 ** 

Selenium (µg/100 g) 0.031 ± 0.002 0.541 ± 0.031*** 

Vitamin E (µg/100 g) 1500 ± 111 1060 ± 87 *** 

Carotenoids (µg/100 g) 23.7 ± 1.0 16.1 ± 0.6 *** 

Folic acid (µg/100 g) 40.5 ± 2.2 29.5 ± 1.9 ** 

Total polyphenols (mg/100 g tannic 

acid) 

20.1 ± 0.94 23.4 ± 1.0 * 

The composition of the experimental pasta was determined as previously reported. Statistical 

analysis was by the Student’s t test: * p<0.05; **p<0.01; ***p<0.001. 

In the end of the experimental dietary period all animals appeared in a fair state of health, 

having normal reactivity and behavior and no symptoms of malnutrition, although smaller in 

size compared to age-matched standard rats. No significant differences in b.w. gain were 

observed between the two dietary groups (Figure 1A). In basal conditions, no significant 

differences in plasma glucose concentration were detected between the two dietary groups; 

DOX administration caused a significant increase in glycemia in WP rats only (Figure 1B). 
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Figure 1. Body weight gain (panel A) and glycemia (panel B) in rats fed the two 

experimental diets. 

Body weight was measured once a week during the dietary treatment. Data are means ± SD of 

12 rats in each group. Glycemia was measured in basal (white bars) and stressed (grey bars) 

conditions, and is reported as mean ± SD of 6 rats in each group. Statistical analysis was 

performed by the Student’s t test for the body weight (not significant) and by the one way 

ANOVA (p<0.01) using Tukey as post-test for glycemia: different superscript letters indicate 

statistical significance (at least p<0.05). In stressed condition percent variations of the 

corresponding basal values are reported within the corresponding bar. 

 

In both basal and stressed conditions, the histological evaluation of the duodenum 

morphology evidenced in WP rats a flattened mucosa and an unusual shape of the villi (figure 

2A), confirmed by the measurement of the villi length (figure 2B). Furthermore, a higher 

lymphocyte infiltration was observed in WP animals (figure 2C). 
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Figure 2. Histological evaluation of the duodenum in rats fed the different experimental 

diets. 

In panel A, the different morphology of duodenum in WP (left side) and KP (right side) under 

basal condition is reported. Villi length (panel B) was measured in basal (white bars) and 

stressed (grey bars) conditions. Lymphocyte infiltration of the mucosa (panel C) was 

evaluated in basal (white bars) and stressed (grey bars) conditions as the number of lymphatic 

cells/100 cells. Data in graphs are the mean ± SD of 6 rats in each group. Statistical analysis 

was performed by the one way ANOVA (villi length p<0.001; lymphocytes p<0.001) using 

Tukey as post-test: different superscript letters indicate statistical significance (at least 
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p<0.05). In stressed condition percent variations of the corresponding basal values are 

reported within the corresponding bar. 

 

In the spleen and lymph nodes of WP animals, a significant enlargement of the lymphatic 

follicles was observed (Figure 3), and no modification occurred within each group after DOX 

administration. 
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Figure 3. Histological evaluation of the spleen and lymph nodes in rats fed the different 

experimental diets. 

In panel A, the different morphology of the spleen lymphatic follicles in WP (left side) and 

KP (right side) is reported. In these images the different thickness of the mantle around the 

follicles, that is composed of activated B lymphocytes and indicates a greater immune 

response, as well as the different diameter of the follicles are clearly evidenced. The diameter 

of the lymphatic follicles (µm) was measured in basal (white bars) and stressed (grey bars) 

conditions (panel B). Data are means ± SD of 6 rats in each group. Statistical analysis was 

performed by the one way ANOVA (p<0.001) using Tukey as post-test: different superscript 

letters indicate statistical significance (at least p<0.05). In stressed condition percent 

variations of the corresponding basal values are reported within the corresponding bar. 
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No differences related to the dietary treatment or to DOX administration were detected in 

plasma TAA (Figure 4A), while plasma ROM concentration appeared significantly lower in 

KP than WP animals regardless of the DOX treatment (Figure 4B). 
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Figure 4. Plasma TAA and ROM concentration in rats fed the different experimental 

diets. 

The plasma TAA (panel A) and ROM concentration (panel B) were measured in basal (white 

bars) and stressed (grey bars) conditions. Data are means ± SD of 6 rats in each group. 

Statistical analysis was performed by the one way ANOVA (TAA n.s.; ROMs p<0.01) using 

Tukey as post-test: different superscript letters indicate statistical significance (at least 

p<0.05). In stressed condition percent variations of the corresponding basal values are 

reported within the corresponding bar. 

 

In basal conditions significant differences were detected in liver GPx and TxR activities, 

which appeared extremely lower in WP than KP rats (Figure 5A and 5B, respectively). 

Compared to the corresponding basal condition, the oxidative stress increased GPx activity in 

WP rats, having no effect in KP ones. 
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Figure 5. Liver GPx (A) and TrxR (B) activities in rats fed the different experimental 

diets. 

The antioxidant enzyme activity in liver of rats fed the experimental diets was measured in 

basal (white bars) and stressed (grey bars) conditions. Data are means ± SD of 6 rats in each 

group. Statistical analysis was performed by the one way ANOVA (GPx p<0.05; TxR 

p<0.001) using Tukey as post-test: different superscript letters indicate statistical significance 

(at least p<0.05). In stressed condition percent variations of the corresponding basal values 

are reported within the corresponding bar. 

 

In basal conditions, liver intracellular GSH, α-tocopherol, and β-carotene concentrations were 

the same in the two experimental groups (Figure 6A, 6B, and 6C, respectively). In WP rats 

DOX administration caused a significant decrease in α-tocopherol and β-carotene level, while 

only the latter significantly decreased in KP stressed rats compared to their basal counterpart.  
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Figure 6. Liver GSH, α-tocopherol, and β-carotene concentrations in rats fed the 

different experimental diets. 

Liver GSH (A), α-tocopherol (B), and β-carotene (C) concentrations measured in basal (white 

bars) and stressed (grey bars) conditions. Data are means ± SD of 6 rats in each group. 

Statistical analysis was performed by the one way ANOVA (GSH n.s.; α-tocopherol p<0.001; 

β-carotene p<0.01) using Tukey as post-test: different superscript letters indicate statistical 

significance (at least p<0.05). In stressed condition percent variations of the corresponding 

basal values are reported within the corresponding bar. 

 



Chapter 3 

62 

 

Liver MDA and AOPP levels were also comparable in the two experimental groups in basal 

conditions (Figure 7A and 7B, respectively); after DOX administration, MDA and AOPP 

levels significantly increased with respect to the corresponding basal value in WP fed rats, 

while no changes were detected in KP group.  
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Figure 7. Liver MDA and AOPP levels in rats fed the different experimental diets. 

Liver MDA (A) and AOPP (B) levels were measured in basal (white bars) and stressed (grey 

bars) conditions. Data are means ± SD of 6 rats in each group. Statistical analysis was 

performed by the one way ANOVA (MDA p<0.01; AOPP p<0.001) using Tukey as post-test: 

different superscript letters indicate statistical significance (at least p<0.05). In stressed 

condition percent variations of the corresponding basal values are reported within the 

corresponding bar. 

 

A typical 
1
H-NMR spectrum obtained on the fecal masses analyzed during the present 

investigation is represented in Figure 8, together with the assignments of the main peaks, 

obtained through comparisons with the literature [17] and with the addition of pure 

compounds to the samples. 
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Figure 8. A typical 
1
H NMR spectrum obtained during the present investigation. 

The suggested assignments are based on the literature and/or by adding pure standard 

compounds. 

 

To emphasize the main differences between the samples under investigation, a 

multidimensional space was built with the points forming each spectrum, so that the 

Euclidean distance between rats here projected gave an overall impression about the entity of 

the differences between their fecal metabolomes. A comparison between such distances is 

eased by the dendrogram depicted in Figure 9. The samples collected after 7 weeks formed 

two compact groups according to the research line, both separated from the samples collected 

at T0. This indicated an evolution of the metabolome of the rats, with differences ascribable 

to the two diets. In particular, the metabolic changes due to WP diet were less marked than 

the changes characterizing the gut metabolome of KP fed rats (Euclidean distance between the 

beginning and the end of intervention was 12.4% higher in KP compared to WP samples). 

 

Figure 9. Dendrogram obtained by cluster analysis based on Euclidean distance, using 

gut metabolites before (T0) and after the dietary intervention (T1WP and T1KP 

respectively). 
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To identify the substances mainly responsible for such changes, the spectra from each stool 

sample collected at the beginning and in the end of the experiment were compared point by 

point. Both WP and KP diets led to significant differences in around the 15% of the points 

constituting each spectrum. As evidenced in Figure 10A the changes of the fecal metabolite 

composition observed comparing T0 and T1 were modulated by two concurrent criteria: a 

part of the statistically significant changes, such as the increase of butyrate concentration, was 

observed in both groups of rats and was thus not correlated to the cereal type; other changes, 

such as a dramatic decrease of lactate concentration in WP rats and a great succinate increase 

in KP ones, were specific for the two cereals. The overall effect of the two diets on the gut 

metabolome could be highlighted by comparing the spectra from the different animals at the 

end of the experimental period. Figure 10B shows the relative concentration of the molecules 

characterized by statistically significant differences between the samples pertaining to the two 

experimental groups. The concentration of succinate appeared as strikingly higher for KP 

samples, while WP samples were characterized by higher concentrations of ethanol, 

propionate and putrescine. 

  

Figure 10. A) Differences between the 
1
H-NMR spectra registered at T0 and T1 on the 

WP (light grey) and KP (dark grey) samples. B) Relative signal intensities registered at 

T1 on WP (white) and WP (dark grey) samples. 
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DISCUSSION 

Celiac disease (CD) prevalence is estimated to be near to 1:100 in Western countries [30]. 

However, a much higher percentage (about 15-20%) of the general population than this 1% 

consider themselves to be suffering from wheat sensitivity (WS). Some of these wheat-

reactive patients often present symptoms similar to CD but have negative CD serology and 

histopathology, and are therefore considered to be “simply” suffering from irritable bowel 

syndrome (IBS). The term “non-celiac gluten sensitivity” suggested for describing individuals 

who complain symptoms in response to ingestion of wheat without histologic or serologic 

evidence of celiac disease or wheat allergy, is a misnomer since a role for gluten proteins as 

the sole trigger of the associated symptoms remains to be established [31]. Recently, 

Carroccio et al. [32] demonstrated the existence of non-celiac WS as a defined clinical 

condition. In this study wheat, not gluten, was used for the challenges, so the Authors did not 

exclude the possibility that other components of wheat could be responsible for the resulting 

observations: i.e., fructans and poorly absorbed carbohydrates can induce symptoms by 

themselves [33]. 

Ancient wheat, not subjected to recent major genetic improvements in agronomic and 

processing characteristics, has been speculated to be better suited to be introduced into the 

diets of people suffering from non-celiac WS, although scientific or clinical evidences are 

lacking. Colomba et al. [34] pointed out that ancient wheat (Graziella Ra and Kamut
®

 wheat) 

have greater amounts of both total and α-gliadin than modern ones (Cappelli, Grazia, 

Flaminio, and Svevo), thus challenging the “low-immunogenicity” hypothesis. In that work, a 

large series of α-gliadin epitope variants, mainly consisting of one or two amino acid 

substitutions were detected in all the accessions (including ancient ones); although their T-cell 

stimulatory capacity would need to be further investigated, the role of other wheat 

components than gluten in the triggering of non-gluten WS must also be carefully considered. 

In the present study, the histological evaluation of the duodenum and spleen of rats fed 

modern durum pasta for 7 weeks clearly evidenced an inflammatory picture that could 

resemble non-gluten WS. On the contrary, rats fed ancient Kamut
®

 pasta showed normal 

histological characteristics. At present it is not possible to clearly state if, and which specific 

durum components were responsible for the inflammatory reaction, or if and which specific 

Kamut
®

 grain components had an anti-inflammatory action, or if a unique synergy of 

compounds was responsible. The hypothesis of the presence of anti-inflammatory agents is 

supported by the higher content of specific antioxidant components in the Kamut
®

 pasta, 

whose role can be related not only to the prevention of oxidative stress but also to an anti-
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inflammatory action. It is documented that phenolic compounds have antioxidant capabilities 

in vitro, but low bioavailability and low tissue concentrations make it unlikely that they act 

directly as antioxidants in vivo. Recent findings have suggested that in lower amounts, typical 

of those attained in the diet, phenolics may activate one or more adaptive cellular stress 

response pathways. Specific examples of such pathways include the Nrf-2/ARE pathway, and 

the NF-κB pathway. The nuclear factor erythroid 2-related factor 2 (Nrf2) is the transcription 

factor that binds to the antioxidant-responsive element (ARE) with high affinity and plays a 

central role in the upregulation of genes implicated in the modulation of the cellular redox 

status and the protection of the cell from oxidative insult [35]. The transcription factor NF-κB 

is a master regulator of inflammation, and numerous phenolics have been shown to inhibit 

NF-κB in different cell types [36]. 

In the present study the antioxidant protective effect of Kamut
® 

wheat-based food was clearly 

detected, and at least in part accountable to the higher activity of liver antioxidant enzymes 

such as GPx and TxR.  

Since rats were sacrificed after 12 hours of fasting, it is conceivable that this had completely 

abolished the differences in TAC due to a direct scavenging activity of absorbed compounds. 

In fact, it has been evidenced that plasma TAC (as total ORAC) increases 30 min after an 

antioxidant rich-meal, coming then back to basal value in further 30 min [37]. 

Notably, the induction of GPx, also related to the higher selenium content in Kamut
®

 pasta, 

has been reported to also inhibit inflammation [38].  

Regarding antioxidant protection, results reported in the present study confirmed those 

previously obtained feeding rats durum and Kamut
®

 bread, thus indicating that different types 

of processing does not affect Kamut
® 

grain protective effect. In both studies, Kamut
®

 pasta 

fed rats evidenced a lower oxidative status in basal condition and a better response to the 

exogenous oxidative stress. In addition, data herein reported clearly evidenced the 

inflammatory role of modern durum wheat pasta itself. Although this inflammatory effect was 

surely exacerbated by feeding rats pasta only, it is worth noting that no signs of inflammation 

were detected in rats fed only Kamut
®

 pasta. 

Kamut
®

 anti-inflammatory effects could have been mediated at least in part by modifications 

induced in the gut microflora. Over the last few years, growing evidence has supported a link 

between inflammatory bowel diseases and alterations in intestinal bacterial composition [39], 

and host-microbe dialogue has been showed to be involved not only in the maintenance of 

mucosal homeostasis but also in the pathogenesis of inflammatory disorders of the gut [40]. 

WG cereals provide non-digestible carbohydrates (NDC) that can be fermented by the gut 
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microbiota and act as prebiotic; existing studies assess the effects of wheat-derived NDC on 

parameters related to gut bacterial metabolism and/or in obesity and glucose homeostasis 

[41], and the primacy of environmental or lifestyle factors linked to changes in the gut 

microbiota in the development of inflammatory bowel disease, is increasingly evident [42]. In 

our study, some modifications occurred in the fecal metabolite profiling of rats fed both 

experimental diets; it is conceivable that diets uniquely based on whole grain pasta probably 

“per se” significantly modified the initial gut metabolome, regardless of the type of cereal 

eaten. The whole grain pasta could have cause an increase of fermentative activity of bacteria 

from the Firmicutes phylum which are known to produce high amounts of butyrate, the major 

energy source for colonocytes [43]. In addition, the metabonomic approach allowed to clearly 

distinguish between WP and KP rats, strongly supporting the development of a very different 

microbiota in the two groups. As example, the higher acetate concentration in WP feces could 

be accounted to a selective prebiotic effect on the Bacteroidetes phylum, which is known to 

produce large amount of acetate and propionate [44]. 

In conclusion, herein presented results confirm the antioxidant protection by Kamut
® 

grain-

based foods, and further evidence their anti-inflammatory role. As recently reviewed by 

Lefevre and Jonnalagadda [45], epidemiological studies support for an association between 

diets high in whole grains and the reduction of subclinical inflammation, but interventional 

studies do not demonstrate a clear effect of increased whole-grain consumption on markers of 

inflammation. Issues related to insufficient length of intervention, extent of dietary control, 

and population selection, may underlie these discrepant findings; in the light of our results the 

types of whole grains seems to play a master role, indicating substantial differences between 

whole-grain durum and whole-grain Kamut
®

 wheat. It is important to point out that results 

herein reported were obtained using foods typical of the human diet; in fact pasta was 

administered after cooking to simulate real life conditions. This approach increases the 

predictive potential of the rat model.  

Further studies should prioritize investigations on the mechanisms involved in the observed 

effects, evaluating the role of the different Kamut
® 

wheat components in both the host and 

microbiota. The challenge ahead is to proceed cautiously until rigorous randomized controlled 

clinical trials have been undertaken to determine whether Kamut
®

 grain and other ancient 

wheat could have wide spread efficacy in individuals affected by non-gluten WS. Based on 

available data, it is conceivable that Kamut
®

 components can act through an hormetic effect, 

eliciting an adaptive response that protects the organism against both oxidative stress and 

inflammation [46]. This underline the complexity of the interaction between food and 
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humans, and the need of a new comprehensive approach to food and nutrition, since the 

overall vision of the food-human interaction can be achieved only by merging results coming 

from different scientific fields, using a foodomic approach [46]. 
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ABSTRACT 

Consumption of whole grain based products is associated with a reduction of the risk of 

developing many diseases. This protective activity is related to different phytochemicals, 

whose concentration has been reported higher in ancient crops and/or minor cereals (e.g. 

Kamut
®

, barley, spelt, rye, etc). The present study was aimed to assess antioxidant and anti-

inflammatory properties of cookies made with whole grain durum wheat or Kamut
®

 khorasan 

flour (from Italy and USA), and fermented using S. cerevisiae or S. cerevisiae plus lactic acid 

bacteria. Cookies were in vitro digested and ultrafiltered in order to supplement HepG2 cells 

with a mix of compounds whose size was compatible with the intestinal absorption.  

Results herein reported highlight the overall healthy effect of Kamut
®

 and whole grains. All 

supplementation evidenced antioxidant and anti-inflammatory effects, that were more evident 

in cell supplemented with the digested Kamut
®

 cookies.  

 

INTRODUCTION 

Cookies are a popular foodstuff, consumed by a wide range of populations, due to their varied 

taste, long shelf-life and relatively low cost [1]. Because of the increased demand for healthy 

and functional products, attempts are being made to improve cookies nutritive value and 

functionality by modifying their composition [1-4]. 

Whole grains (WG) are both concentrated sources of dietary fiber and rich in health-beneficial 

phytochemicals including trace minerals and phenolic compounds. The concentration of WG 

bioactive components has been reported as higher in ancient crops and/or minor cereals (e.g. 

Kamut
®

, barley, spelt, rye, etc), thus increasing the interest on the use of ancient grains 

because of their better health-related composition [5]. Epidemiological studies confirm that 
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high whole grain intake protects against cancer, cardiovascular disease, diabetes, and obesity 

[6]. In previous studies we proved that the ancient grain Kamut
®

 khorasan is effective in 

reducing both oxidative damage and inflammatory status in rats [7-9]. 

This work was aimed to assess and compare the anti-inflammatory and anti-oxidant properties 

of cookies made with whole grain durum wheat or Kamut
®

 khorasan flour. 

Since the level of phytochemicals in vegetables is strongly affected by agronomic and 

environmental factors that could therefore have a deep impact on the protective activity of 

edible plants [10], Kamut
®

 khorasan flours from two different geographical area, Italy and 

USA, were used.  

Furthermore cookies were fermented using S. cerevisiae or S. cerevisiae and lactic acid 

bacteria (LAB). LAB are considered to have several beneficial properties, such as 

antimicrobial activity, ability to modulate immune response, anti-tumorigenic activity and 

antioxidant activity [11, 12]. It has been also shown that fermentation by yeast and LAB can 

influence the food nutritional quality for example improving the properties of the dietary fiber 

complex and increasing the uptake of minerals, vitamins and phytochemicals [13, 14]. 

Experiments evaluating the protective effects of whole grain wheat and Kamut
®

 as ingredients 

of cookies were performed using cell cultures. Cell cultures are usually good experimental 

model, but do not allow to monitor and evaluate all modification elapsing in the tested 

products during digestion. Digestion is a very important process, defined as the enzymatic 

breakdown of organic macromolecules into their components. This dynamic physiological 

event is mandatory for obtaining molecules available for absorption, and it is influenced by 

both gastrointestinal condition and physical and chemical characteristics of the food matrix 

[15]. The overall nutritional value of foods relies on bioavailability as well as concentration of 

nutrients and other bioactive components. In order to get closer to the in vivo situation, 

cookies were in vitro digested and the mix of the more bioavailable compounds resulting from 

digestion was used for cell supplementation. In vitro total antioxidant capacity (TAC) and 

total phenolic content (TPC) of not-digested and digested cookies were also verified. 

HepG2 cells, a human hepatoma cell line considered a good model to study in vitro cytotoxic 

agents [16], were chosen as model system given that the liver is the organ mainly involved in 

xenobiotic metabolism [17].  

Protection from the oxidative damage induced by cell exposure to hydrogen peroxide 0.4 mM 

was assessed measuring cell viability, reduced glutathione (GSH) and reactive oxygen species 

(ROS) intracellular content, cytosolic TAC and thiobarbituric acid reactive substances 

(TBARS) content in the media. 
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To evaluate the potential anti-inflammatory effect of the different digested cookies, the level 

of a pro-inflammatory (IL-8) and an anti-inflammatory (IL-10) cytokine was estimated in the 

media in both basal condition and after cell treatment with LPS, known to be a strong 

stimulator of inflammatory response [18]. 

In this study we supplemented cells with a food which is present in the human diet, and not 

with flours or cereal-derived compounds. Although this protocol does not allow to define 

which components are the protective ones, it must not be considered a limitation of the study 

since our aim was to evaluate and compare the possible protective effect of real foods, and our 

approach allowed to consider the synergism between the different antioxidant molecules and 

the importance of the food matrix, well recognized factors of the overall antioxidant 

effectiveness [19] that are ignored in studies evaluating the effect of pure compounds. 

 

MATERIALS AND METHODS 

Chemicals: Dulbecco’s modified Eagle’s medium (DMEM), penicillin, streptomycin and 

Dulbecco’s phosphate-buffered saline (DPBS) were from Lonza (Milan, Italy). Ethanol, and 

1-propanol were from Carlo Erba (Milan, Italy) 

All other chemicals were from Sigma-Aldrich (Milan, Italy). All chemicals and solvents were 

of the highest analytical grade. 

Ingredients for cookies recipe: butter, eggs, sugar and salt were purchased at local markets. 

Kamut
®

 flours were a kind gift of Kamut
®

 Enterprise of Europe, while wheat flour was 

purchased at a local market. 

Methods 

Cookies preparation 

Six different types of cookies were tested: 

1) Cookies made with Italian whole-grain durum wheat fermented using S. Cerevisiae 

(WSIT); 

2) Cookies made with Italian Kamut
®
 wheat fermented using S. Cerevisiae (KSIT); 

3) Cookies made with USA Kamut
®
 wheat fermented using S. Cerevisiae (KSUS); 

4) Cookies made with Italian whole-grain durum wheat fermented using S. Cerevisiae and 

LAB (WLIT); 

5) Cookies made with Italian Kamut
®
 wheat fermented using S. Cerevisiae and LAB 

(KLIT); 

6) Cookies made with USA Kamut
®
 wheat fermented using S. Cerevisiae and LAB (KLUS); 

The LAB used were: Lb. Plantarum, Lb. Sanfranciscensis, Lb. Brevis. 
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Cookies were made according to the same recipe (Table 1) and cooked in oven at the same 

temperature (175°C) for the same time (10 minutes). Each kind of cookie was prepared twice 

in two different days, and the two preparations were mixed in order to consider the variability 

that can derive from these preliminary phases. 

Ingredients WLIT, KLIT, KLUS WSIT, KSIT, KSUS 

Flour (g) 140 140 

Butter (g) 56,5 56,5 

Eggs (g) 44 44 

Sugar (g) 24,25 24,25 

Salt (g) 3 3 

Mix of LAB (mL) 15 - 

S. Cerevisiae (mL) 5 20 

Table 1. Summary of cookies recipe, modified by Drewnowski et al. [20]. 

 

In vitro digestion  

Cookies were digested in vitro according to Bordoni et al. [21] with slight modifications. 

Briefly, the in vitro digestion was simulated inside a 100 ml flask kept at 37°C by means of a 

water bath on a magnetic stirrer equipped with a heating plate. Chemical composition of the 

digestive fluid, pH and residence time periods were adjusted in series to simulate the 

physiological conditions of mouth, stomach and small intestine. A buffer solution (120 mM 

NaCl, 5mM KCl, 6 mM CaCl2 - pH 6.9) was added in proper volumes at every step. For 1 g 

of biscuit dry matter, 2: 4: 4 ml of such buffer was added to resemble saliva, gastric juice and 

duodenal juice respectively. The absolute volumes of the digestive juices were, for practical 

reasons, scaled to the content of food used. Mastication and oral digestion were simulated 

adding buffer solution with 90 U ml
-1

 α-amylase and grounding the biscuits with mortar and 

pestle for 5 minutes. Then, buffer solution was added and the pH was decreased to 2.0 by 

drop-wise addition of 37% HCl. Gastric digestion was started with the addition of pepsin to a 

final concentration of 3 mg ml
-1

. After a 60 minutes incubation, buffer solution was added and 

pH increased to 5 with 1.5 M NaHCO3 to stop peptic digestion. Duodenal digestion started 

with the addition of pancreatin (0.4 mg ml
-1

 final concentration) and bile (2.4 mg ml
-1

 final 

concentration). The pH was adjusted to 6.5 with 1.5 M NaHCO3 and the digestion was 

followed for another 180 minutes. 
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Digestion was performed three times for each kind of biscuits and the resulting final digested 

solutions were mixed and frozen, allowing us to supplement cells with the same solution in 

each experiment.  

Prior to supplementation, the mix was centrifuged at 4,000g for 5 minutes and again at 

21,000g for 20 minutes. The supernatant was filtered with 0.2 µm membranes (TQ - talis 

quails- digested sample), and an aliquot was sequentially ultrafiltered with Amicon Ultra at 3 

kDa of molecular weight cut-off (3K digested sample), allowing the separation of compounds 

which size is small enough to allow absorption through the intestinal mucosa. The 3K 

digested samples, containing molecules with molar mass <3 kDa, were used for cell 

supplementation.  

Cookies extraction  

Cookies extraction was performed according to Danesi et al. [22], with some modifications. A 

precisely weighed amount of the sample (5 g) was extracted with 20 mL ethanol/water (70:30 

v/v) acidified with 0.1% HCl, or with the buffer solution used for digestion. After a 20 min 

incubation at 40°C, samples were centrifuged at 3000g for 5 min and the supernatant 

collected. The extraction was repeated with 10 mL of acidified ethanol/water or buffer, and 

the supernatants were combined. Two extraction replicates were performed for each sample. 

In vitro total antioxidant capacity (TAC) using ABTS assay 

TAC was measured using the method of Re et al. [23], based on the capacity of antioxidant 

molecules in the sample to reduce the radical cation of 2,2’-azino-bis-(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS
•+

). The decolorization of ABTS
•+

 was measured as the quenching of 

the absorbance at 734 nm. Values obtained were compared to the concentration-response 

curve of the standard Trolox solution and expressed as µmol of Trolox equivalents (TE)/g. 

Samples subjected to this analysis were both the digested fractions (TQ and <3 kDa) and the 

extracted cookies.  

Determination of Total Phenolic Content (TPC) 

TPC was determined using Folin-Ciocalteau’s method [24], adapted to a 96-well plate assay 

according to Dicko et al. [25] with slight modifications. Briefly, 45 µL of water were first 

pipetted into each well. Then, 5 µL of extract and 25 µL of 50% in water Folin- Ciocalteau 

(v/v) were added. After 5 min shaking, 25 µL of 20% (w/v) Na2CO3 aqueous solution and 100 

µL of water were added to the mixture to have a final volume of 200 µL. The absorbance was 

measured after 60 min at 750 nm with a Tecan Infinite M200 microplate reader (Tecan, 

Männedorf, Switzerland). A blank measure, for which the sample was replaced by water, was 

subtracted from the absorbances. Gallic acid prepared in ethanol/water (70:30 v/v) was used 
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as standard for calibration and results were expressed as mg gallic acid equivalent (GAE)/g of 

cookie.  

HepG2 cells culture and supplementation 

HepG2 cells were grown in DMEM with 10% (v/v) fetal calf serum, 100 U/mL penicillin, and 

100 μg/mL streptomycin and maintained in a humidified atmosphere of 95% air and 5% CO2 

at 37 °C. Once a week cells were split 1:20 into a new 75 cm
2
 flask, and culture medium was 

changed every 48 h. 

Cells were seeded in 6-well or 12-well plates at the concentration of 1•10
6
 cells/mL. Cell 

counting was carried out using the TC20™ Automated Cell Counter (Bio-Rad Laboratories; 

Hercules, CA, USA). 

After 24 hours (75-80% confluence) cells were incubated with serum-free DMEM containing 

the different <3K digested mixtures at 50 µL/mL
 
medium concentration. Control cells (C) and 

unsupplemented cells (US) received a corresponding amount of sterile water. 

For experiments aimed at investigating the antioxidant activity, 24 h after supplementation 

cells were washed twice with warm DPBS and exposed for 1 h to 0.4 mM H2O2 in Earle’s 

balanced salt solution (EBSS) (116 mM NaCl, 5.4 mM KCl, 0.8 mM NaH2PO4, 26 mM 

NaHCO3, 2.38 mM CaCl2, 0.39 mM MgSO4); C cells received EBSS without H2O2. After 1 

h EBSS was removed, centrifuged at 400g for 3 min and used for the thiobarbituric acid 

reactive substances (TBARS) assay.  

For experiments aimed at investigating the anti-inflammatory activity, 6 h after 

supplementation cells were washed twice with warm DPBS and exposed for 18 h to 100 

ng/mL LPS in RPMI-1640 without phenol red and added of 100 U/mL penicillin, 100 μg/mL 

streptomycin and 200 mM glutamine. C cells received RPMI without LPS. After 18 h 

medium was removed and maintained at -20°C until cytokines quantification.  

Cell viability 

Cell viability was measured using the 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) colorimetric assay [26]. The test is based on the capacity of mitochondrial 

dehydrogenase in viable cells to convert MTT reagent to a soluble blue formazan dye. Briefly, 

after two washing with DPBS, 1 mL of MTT reagent diluted in RPMI-1640 medium without 

phenol red (final concentration 0.5 mg/mL) was added to each well, and the cell cultures were 

incubated for 1 h at 37 °C. Medium was completely removed, 1-propanol added to dissolve 

formazan product, and after 20 min shaking absorbance formazan production measured 

determined spectrophotometrically at 560 nm against a propanol blank. 
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Thiobarbituric acid reactive substances (TBARS) concentration 

TBARS, the end-products of lipid peroxidation, were assayed in EBSS as reported [27]. One 

hundred microliters of EBSS buffer was added to a mixture containing 100 μL of TCA (30% 

in 0.25N HCl), 100 μL of TBA (0.75% in 0.25 N HCl), and 3 μL of BHT (1% in ethanol). 

The mixture was heated for 10 min in a boiling water bath, allowed to cool, and the TBA 

adducts were detected fluorometrically (λex = 535 nm, λem = 595 nm) [28]. TBARS level 

was expressed as relative fluorescence units (RFU) and normalized for milligrams of proteins 

in each well. 

Measurement of intracellular ROS concentration 

To evaluate the ability of digested mixture to reduce ROS levels produced by cells, the 

conversion of DCFH-DA to DCF was monitored spectrofluorometrically according to Valli et 

al. [29]. Briefly, 30 min before oxidative stress, DCFH-DA, dissolved in absolute ethanol, 

was added to cells to a final concentration of 0.02 mM. At the end of the oxidative stress, 

cells were washed twice with cold DPBS, lysed with 1 mL of cold Nonidet P-40 (0.25% in 

DPBS), incubated for 30 min on ice under shaking and centrifuged at 14,000g for 15 min. 

DCF fluorescence intensity was detected (λex=485 nm, λem=535 nm) using a Tecan Infinite 

F200 microplate reader (Tecan, Männedorf, Switzerland), normalized for protein content in 

the sample and expressed as percent of value in non-stressed US cells. 

Cytosolic TAC 

Cells were washed twice with cold DPBS, lysed with 1 mL of cold Nonidet P-40 (0.25% in 

DPBS), incubated for 30 min on ice under shaking and centrifuged at 14,000g for 15 min. 

Cytosolic TAC was measured on the supernatant using the method of Re et al. [23], as 

described above. Results were normalized for protein content in the sample. 

Thiolic content 

Cells were lysed with 700 µL of cold Nonidet P-40 (0.25% in DPBS), incubated for 30 min 

on ice under shaking and centrifuged at 14,000g for 15 min. 

The method, that determine the total thiol content considered as GSH, was based on the 

reaction of GSH with DTNB that produces the TNB chromophore with a maximal absorbance 

at 415 nm [30]. One hundred µl of the supernatant were incubated with 50 µL of DPBS and 

50 µL of reagent buffer (160 mM sodium phosphate pH 8.0, 4 mM EDTA, 4% SDS and 500 

μM DTNB) for 30 min. The concentration of GS-TNB proportional to the concentration of 

GSH was measured spectrophotometrically and the obtained results were compared to the 

concentration-response curve of standard GSH solutions, normalized for protein content in the 

sample, and expressed as nmol of thiols calculated as GSH/mg protein. 
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Evaluation of the cytokines secretion in the cell media 

The level of the pro-inflammatory (IL-8) and the anti-inflammatory (IL-10) cytokine was 

estimated in the media in both basal condition and after cell treatment with LPS using the 

Multi-Analyte ELISArrey Kit (Quiagen; Hilden, Germania) using a quantitative sandwich 

immunoassay. Results were expressed as Optical Density and normalized to cell protein 

content; proteins were extracted with RIPA buffer following the manufacturer’s instructions 

with slight modifications. Briefly, cells were washed with cold DPBS, scraped and 

centrifuged at 500g for 5 min. The pellet was resuspended in 100 µL RIPA buffer and added 

of a protease and phosphatase inhibitors mixture (Protease Inhibitor Cocktail, Sigma). After a 

5 min incubation, cell lysates were centrifuged again at 14,000g for 15 min and the 

supernatant collected. 

Protein content  

Protein content was determined according to Bradford [31] using bovine serum albumin as 

standard. 

Statistical analysis  

Data on cookies antioxidant capacity and phenolic content are reported as means ± SD (n=3) 

whereas data obtained in cell cultures are reported as means ± SD of at least 6 samples 

derived from 3 independent cell cultures.  

Statistical analysis was performed using one-way ANOVA, followed by Tukey’s post-test or 

Dunnet’s post-test as appropriate. 

 

RESULTS 

In vitro TAC and TPC of digested and not digested cookies 

Total antioxidant capacity (TAC) and total phenolic content (TPC) of not-digested (Figure 1) 

and digested (Figure 2) cookies were assessed. Not digested cookies were extracted with both 

an ethanol/water (70:30 v/v) solution acidified with 0.1% HCl, and with the same buffer used 

for the in vitro digestion. 

In non-digested samples, the use of the acidified ethanol-water solution allowed a better 

extraction of phenolics in all samples, that consequently showed an higher TAC. This was 

particularly evident for the KLUS cookies. A significant correlation was observed between 

TAC and TPC (Pearson correlation coefficient: r
2
=0.86; p<0.001). 
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Figure 1. Total antioxidant capacity (TAC) (panel A) and total phenolic content (TPC) 

(panel B) of cookies extracts. 

Data are means ± SD. Statistical analysis was by one-way ANOVA (A p<0.001; B p<0.001) 

with Tukey’s post-hoc test. Different letters indicate significant differences (at least p<0.05). 

 

Both TAC and TPC hugely increased in the digested samples compared to the not digested 

counterparts, the TAC of not digested cookies being about 10 times lower than the 

corresponding digested counterparts. Similarly, the TPC of digested cookies was considerably 

higher than that one of cookies extracts. 

In the digested samples the major contribution of total TAC and TPC was ascribable to the 

<3kDa fraction, containing compounds with dimension compatible to the intestinal 

absorption. KSUS and KLUS cookies evidenced the highest TAC, and KLUS cookies the highest 

TPC. A significant correlation was observed between TAC and TPC (Pearson correlation 

coefficient: r
2
=0.83; p<0.001). 
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Figure 2. Total antioxidant capacity (TAC) (panel A) and total phenolic content (TPC) 

(panel B) of digested fractions. 

Data are means ± SD. Statistical analysis was by one-way ANOVA (A p<0.001; B p<0.001) 

with Tukey’s post-hoc test. Different letters indicate significant differences (at least p<0.05).  

 

Results on biological system 

The <3kDa samples were then used for HepG2 cell supplementation, since this fraction is the 

one resembling more closely the compounds that are adsorbed after intake and digestion of 

cookies. 

To set the suitable concentration for cell supplementation preliminary experiments were 

performed to assess a possible cytotoxicity due to the supplemented compounds. The 50 

µL/mL concentration didn’t cause any cytotoxic effect in basal condition as assessed by MTT 

assay (data not shown) and was therefore use for further experiments. 
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1. Protection against the oxidative damage 

Compared to control cells, the exposure to H2O2 caused a reduction in cell viability in all cells 

but those supplemented with US Kamut
®

 cookies (Figure 3). The decrease in cell viability 

was more evident in unsupplemented (US) cells than in supplemented ones (p<0.001 in all 

cases by the Dunnett’s post-test) 
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Figure 3. Cell viability in control and supplemented cells after the oxidative damage. 

Data are means ± SD. Statistical analysis was by the one-way ANOVA (p<0.001) with 

Dunnett’s post-hoc test compared to C cells: *** p<0.001.  

 

Cell exposure to H2O2 greatly increased TBARS concentration in the medium, and the 

increase was higher in unsupplemented cells than in supplemented ones (p<0.001 in all 

cases). TBARs production was different among supplemented cells, and the lower increase 

was observed in cells supplemented with US Kamut
®

 cookies (p<0.001 by the one way 

ANOVA) (Figure 4A).  

Upon the oxidative stress, ROS concentration significantly increased in unsupplemented cells, 

while it was unchanged or even lower in all the supplemented conditions with respect to C 

(Figure 4B).  
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Figure 4. TBARS (panel A) and ROS (panel B) concentration in control and 

supplemented cells after the oxidative damage.  

Data are means ± SD. Statistical analysis was by the one-way ANOVA ( p<0.001) with 

Dunnett’s post-hoc test (*p<0.05; **p<0.01; ***p<0.001).  

 

In oxidative condition the total antioxidant capacity (TAC) significantly decreased in 

unsupplemented cells only; no differences were detected among stressed, supplemented cells 

(Figure 5A). 

Total thiol intracellular content was not modified by the oxidative stress in unsupplemented 

cells; on the contrary it was increased in supplemented ones regardless the type of 

supplementation (Figure 5B). 
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Figure 5. Cytosolic TAC (panel A) and GSH (panel B) content in control and 

supplemented cells after the oxidative damage.  

Data are means ± SD. Statistical analysis was by the one-way ANOVA (panel A: p<0.001; 

panel B: p<0.001) with Dunnett’s post-hoc test (** p<0.01; ***p<0.001).  

 

2. Anti-inflammatory activity 

Under basal condition (no LPS stimulation) all supplemented cells but WSIT evidenced a 

significant decrease in pro-inflammatory IL-8 production, and the lower IL-8 secretion was 

detected in the medium of the cells supplemented with Kamut
®

 cookies prepared using lactic 

fermentation (Figure 6A). 

In a complementary way the secretion of the anti-inflammatory IL-10 increased in all 

supplemented cells and the lower increase was detected in WSIT supplemented cells. (Figure 

6B). 
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Figure 6. IL8 (panel A) and IL-10 (panel B) secretion in basal conditions. 

Data are means ± SD. Statistical analysis was by one-way ANOVA (p<0.001) with Dunnett’s 

post-test: * p<0.05; **p<0.01; ***p<0.001.  

 

Upon LPS exposure, unsupplemented cells (US) showed a reduction in cell viability that was 

not observed in supplemented cells, regardless the type of supplementation (data not shown).  

In US cells LPS exposure caused a significant increase of IL-8 secretion compared to basal 

condition (C) (Figure 7A). All supplementations protected against the pro-inflammatory 

effect of LPS, KUS supplemented cells showing the lower IL-8 secretion compared to C.  

After a certain time the physiological response of cells to an inflammatory stimulus is also the 

production of anti-inflammatory cytokines. In fact, after 18 h exposure to LPS, IL-10 

secretion was higher in both unsupplemented and supplemented cells but the one receiving 

the wheat cookies prepared with lactic fermentation. In stressed condition Kamut
®

 cookies 
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supplemented cells evidenced a higher IL-10 secretion than unsupplemented ones (at least 

p<0.05 by Dunnet multiple comparison test) (Figure 7B).  
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Figure 7. IL-8 (panel A) and IL-10 panel (B) secretion after the pro-inflammatory 

stimulus. 

Data are means ± SD. Statistical analysis was by one-way ANOVA (p<0.001 both in panel A 

and in panel B) with Dunnett’s post-test: * p<0.05; **p<0.01; ***p<0.001. 

 

DISCUSSION 

All tests used to evaluate the protective effect of the different supplementations against the 

induced oxidative stress confirmed the effectiveness of all the digested foods in reducing the 

damages due to hydrogen peroxide exposure. Although all digested cookies appeared 

protective, the ones made with US Kamut
®

 better preserved cells from the increase in TBARs 

and the decrease in cell viability.  
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Since several of the phytochemicals in whole grain have been reported to exert not only 

antioxidant, but also anti-inflammatory effects [32], cytokines secretion after cells 

supplementation with the different digested cookies was also evaluated. 

IL-8 and IL-10 were chosen as markers of the cell inflammatory status because HepG2 cells 

are capable of producing IL-8 and IL-10 in response to specific cytokines stimulation. 

Moreover, IL-10 is a prototypical regulatory cytokine, exerting several immunomodulatory 

effects and cereals have shown to stimulate its production in monocytes [33], whereas IL-8, a 

cytokine with multiple roles, is a pro-inflammatory molecule also inducing cytotoxic effects 

[34]. Serum IL-8 levels are markedly elevated in patients with alcoholic hepatitis [35].  

The decrease in IL-8 and the increase in IL-10 secretion observed in supplemented cells in 

basal condition suggest a lower inflammatory status. This effect was more evident after LPS 

stimulation, that evoked a lower IL-8 and a higher IL-10 production in supplemented cells 

than unsupplemented ones. The anti-inflammatory effect was more evident in cell 

supplemented with the digested Kamut
®

 cookies than the digested wheat ones, independent of 

either the Kamut
®

 origin (IT or US) or the type of fermentation used. 

The anti-inflammatory effect observed in cultured HepG2 cells is in agreement with previous 

in vivo results. In fact, feeding rats with Kamut
®

 wheat pasta or durum wheat pasta we 

observed histological modifications in the lymph nodes and spleen, and morphological 

alterations of the intestinal villi that are suggestive of an anti-inflammatory effect of Kamut
®

 

components. These in vivo results are reported in this PhD thesis (pp. 47-72). Furthermore 

Sofi et al. [36] have recently evidenced in humans that a replacement diet with Kamut
®

 

products is effective in reducing some markers of inflammation. 

Previous studies in rats [7, 8] and humans [36] showed a greater protection from oxidative 

stress by Kamut
®

-based foods than whole-grain durum wheat-based foods. In this studies we 

also observed a higher protective activity by US Kamut
®

 cookies than IT Kamut
®

 and wheat 

ones. 

Whole grain cereal antioxidant properties are mainly ascribed to their phenolic content; 

ancient grain varieties were shown to present unique health-beneficial phytochemicals in their 

phenolic profile [37], and this can explain the differences observed between wheat and US 

Kamut
®

. The observed higher activity of US Kamut
®

 could therefore be related to a different 

phenolic profile, however a different selenium content could have also contributed to the 

higher effectiveness of the cereal grown in the US.  

The essential trace mineral, selenium, is of fundamental importance to human health. It is 

needed for the proper functioning of the immune system and it is a constituent of 
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selenoenzymes with antioxidant functions [38]. The concentration of selenium in plant foods 

is strongly correlated with its concentration in soils [39] and selenium level in US soils is 

generally higher than in European ones [40]. 

Further studies are in progress to evaluate the phenolic profile and selenium content in the 

cookies used in this study. 

It is important to consider that all cookies were prepared using whole grain flours. The higher 

bioactive content of whole grain cereals is well known [6, 41], and this could have reduced 

differences in the antioxidant and anti-inflammatory potential among the studied cereals. 

Other molecules than phenolics could contribute to the overall effect of whole grain products; 

we supplemented cells with the digested cookies and not with a single class of cookies-

derived compounds in order to evaluate the possible synergistic effect among all different 

components.  

Results in cultured cells may diverge from those in whole organisms since the most of dietary 

(poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II 

metabolites produced by intestinal and liver cells [42]. Although in this study the use of in 

vitro digestion and human hepatic cell culture, that possess phase II enzymes and can 

therefore metabolize phenolics, reduced in part the distance to the physiological situation in 

animals, the existing differences must be considered before drawing conclusions. 

In any case, considering that most studies regarding the healthy properties of cereals are based 

on unprocessed or partially processed cereals rather than on cereal food products, and 

differences in bioactives solubility and/or bioavailability within the digestive tract are not 

taken into account, our results represent a first step for the evaluation of different cereals and 

processing and highlight the potential health effects of whole grains and particularly of the 

ancient variety Kamut
®

 khorasan. 
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Chapter 4 

Modulation of adipocyte differentiation and proadipogenic gene expression 

by sulforaphane, genistein, and docosahexaenoic acid - A first step to 

counteract obesity 

 

V. Valli, K. Heilmann, C. Gerhäuser, A. Bordoni - DHA, Genisteina e Sulforafano: bioattivi anti-obesità - 

R un on  N   on    SINU “Co pr nd r     pp  c r    LARN” - Florence, 21-22 October 2013 (ISBN: 978-88-

97843-09-2). 

 

Excessive caloric intake, related to high fat and high simple sugars foods consumption, is one 

of the main cause of obesity. For this reason, confectionery products are always classified in a 

negative way from a nutritional point of view. However, theoretically, compounds able to 

influence adipogenesis could potentially be used in the formulation of sweet products and 

contribute to treat or to prevent obesity. In this chapter, the ability of three bioactives in 

inhibiting adipocytes differentiation is investigated. Further studies aimed at successfully 

incorporating the bioactive compounds in a confectionery product and at testing the final 

sweet product on humans would be interesting. 

 

ABSTRACT 

Obesity is characterized by excess body fat accumulation due to an increase in size and 

number of differentiated mature adipocytes. Adipocyte differentiation is regulated by genetic 

and environmental factors, and its inhibition could represent a strategy for obesity prevention 

and treatment. The current study had two aims: i. to evaluate changes in the expression of 

adipogenic markers (C/EBPα, PPARγ variant1 and variant 2; and GLUT 4) in 3T3-L1 murine 

pre-adipocytes at four stages of the differentiation process; and ii. to investigate the anti-

obesity effectiveness of sulforaphane, genistein, and docosahexaenoic acid by evaluating both 

lipid accumulation and the modulation of C/EBPα, PPARγ, and GLUT 4 mRNA expression in 

mature adipocytes. The bioactive compounds were shown to suppress adipocytes 

differentiation, decreasing the expression of the adipogenic markers and lipid accumulation to 

the levels of pre-adipocytes. These results set the stage for further studies considering natural 

food constituents as important tools in preventing or treating obesity. 

 

  



Chapter 4 

96 

 

INTRODUCTION 

Obesity is the main dysfunctions of adipose tissue, and associates with premature death and 

the development of chronic diseases as cardiovascular diseases, type 2 diabetes, hypertension, 

certain cancers and inflammation [1]. Environment, lifestyle and genetic susceptibility 

certainly contribute to the increased risk of obesity, which is characterized by an excess 

accumulation of white adipose mass, resulting from both the increase in adipocyte cell size 

and the development of mature cells from undifferentiated precursors. Particularly, de novo 

generation of fat cells plays a key role in the development of obesity. 

Obesity is considered as one of the most easy to recognize and the most difficult to treat 

medical conditions [2], and anti-obesity drugs lack physiology specificity and have side 

effects [3]. Discovering compounds able to regulate size, number and function of adipocytes 

and understanding their mechanisms of action could greatly contribute to obesity prevention 

and treatment; particularly, natural compounds could represent a potential novel strategy 

already exploited for preventing metabolic disorders [4].  

Bioactive food compounds are essential and non-essential constituents naturally occurring in 

small quantities in foods that have been found to possess a large range of beneficial health 

effects [5, 6].  

Certain bioactive compounds have been shown to have specific effects on biochemical and 

metabolic functions of adipocytes [7, 8]. In particular, they were shown to inhibit 

differentiation of pre-adipocytes, stimulate lipolysis, and induce apoptosis of existing 

adipocytes [9]; all of these actions contributing to a possible decrease of adipose tissue 

amount [10]. 

The aim of the current study was to investigate the anti-adipogenic ability of three bioactives, 

namely docosahexaenoic acid (DHA), genistein (GEN), and sulforaphane (SFN). 

DHA (C22:6 n-3) is an n-3 polyunsaturated fatty acid (PUFA) abundant in fish. It is 

considered effective in the prevention of many chronic diseases, mainly cardiovascular 

diseases [11]. 

GEN (4,5,7-trihydroxyisoflavone), the most abundant isoflavone found in soybeans, has 

received particular attention for its structural similarity to estrogen that has high affinity to the 

estrogen receptor. It is a well-known antioxidant, chemopreventive and anti-inflammatory 

agent [12, 13]. 

SFN (sulforaphane), an isothiocyanate compound, is a phytochemical constituent of 

cruciferous vegetables such as broccoli sprouts, Brussels sprouts and cabbage. SFN is known 

to have antioxidant, immunomodulatory, anticancer and antidiabetic properties [14, 15]. 
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To evidence the anti-adipogenic effect of the three bioactives the 3T3-L1 cell line, isolated 

from the disaggregated Swiss 3T3 mouse embryos, was chosen as model system; 3T3-L1 

cells are the most frequently used adipocytes in literature and show many properties similar to 

those of normal adipocytes [16]. 

First, changes in the expression of three adipogenic markers were evaluated at various stages 

of the differentiation process. Indeed, it has been well documented that adipogenesis is finely 

controlled by key transcription factors such as peroxisome proliferator-activated receptor-γ 

(PPARγ) and CCAAT-enhancer binding protein-α (C/EBPα) that induce the expression of 

various genes determining the adipocytes phenotype and involved in insulin sensitivity, 

lipogenesis and lipolysis such as the glucose transporter GLUT4 [17, 18].  

Then pre-adipocytes were supplemented during and post-differentiation with DHA, GEN, and 

SFN, and both lipid accumulation and the mRNA expression of PPARγ, C/EBPα, and GLUT4 

were evaluated to evidence their potential inhibitory activity on adipogenesis. 

Results herein reported suggest that the tested bioactives are able to reduce the expression of 

adipogenic markers to the levels of pre-adipocytes, and to inhibit adipogenesis. Although in 

vitro studies always need confirmation in vivo, our results could be useful to understand the 

process leading to the influence of food bioactives on de novo differentiation of adipocytes, 

contributing to the development of new strategies to prevent obesity. 

 

MATERIALS AND METHODS 

Materials 

Dulbecco’s modified Eagle’s medium (DMEM)/F12 Glutamax I was purchased from 

Invitrogen (Germany), Donor Bovine Serum (DBS) was from Gibco Life Technologies 

(Germany), Fetal Bovin Serum (FBS GOLD) was from PAA Laboratories (Austria) and 

TRIzol Reagent was from Ambion, Life Technologies (Germany). All other chemicals were 

purchased from Sigma (Germany). All chemicals were of the highest analytical grade. 

Methods 

Cell culture and differentiation 

3T3-L1 mouse pre-adipocytes were obtained from American Type Culture Collection and 

maintained at 37 °C in a humidified atmosphere containing 95% air and 5% CO2; pre-

adipocytes were sub-cultured every three days when 80% confluent or less into a new 175 

cm
2
 flask. Cells were cultured in DMEM/F12 Glutamax I added of D-glucose (3151 mg/L 

f.c.) (GM) and containing 10% DBS and 1% penicillin/streptomycin. Cells were seeded in 12-

well plates or 25 cm
2
 flask at a concentration of 50,000 cells/mL. Three days after seeding 
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cells were stimulated to differentiate with GM supplemented with 10% FBS, 1% 

penicillin/streptomycin, insulin (10 µg/mL), dexamethasone (1µM), isobutylmethylxanthine 

(0.2 mM), and rosiglitazone (10 µM) (differentiation medium). After further 3 days 

(differentiation) cells were then maintained in GM with FBS, PS, and insulin (10 µg/mL, 

post-differentiation medium) for another 5 days (post-differentiation); after this period 

approximately 90% of cells displayed the characteristic lipid-filled adipocyte phenotype. 

Bioactive supplementation 

In some experiments DHA, GEN and SFN (dissolved in DMSO) at were added at final 

concentrations of 10, 25 or 50 µM, respectively, to the differentiation or post-differentiation 

medium. Medium was changed every two days during post-differentiation.  

Unsupplemented control cells (US) received a corresponding amount of DMSO as solvent 

control (< 0.5% final concentration). 

The effect of the bioactives on adipogenesis was evaluated morphologically by staining 

accumulated lipids with Oil Red O [19]. Briefly, cells were fixed with 4% formalin in PBS for 

two hours, washed with water, rinsed with isopropanol 60% and stained with Oil Red O for 

30 minutes at room temperature. After washing with distilled water for 3 times, the lipid 

droplets were quantified by dissolving Oil Red O in isopropanol 100% and measuring the 

optical density at 500 nm. 

The lowest bioactive concentrations able to influence lipid accumulation were then used in 

gene expression experiments. 

Gene expression analysis 

To evaluate transcript levels of adipogenesis marker genes at different stages of adipocyte 

differentiation, cells were collected at 4 different steps of the differentiation protocol: 1 day 

after seeding (T1); 3 days after seeding when cells were post-confluent, before the beginning 

of differentiation (T2); at the end of the differentiation, before the addition of the post-

differentiation medium (T3); at the end of post-differentiation (T4).  

In following experiments, GEN at a concentration of 10 µM, SFN at 10 µM, and DHA at 25 

µM were added to the differentiation and post-differentiation medium as described above. At 

the end of the post-differentiation period (T4), cells were collected, and total RNA was 

extracted with TRIzol Reagent following the manufacturer’s protocol. Contaminating DNA 

was eliminated by DNase treatment (DNA-free Kit from Ambion, Life Technologies, 

Darmstadt, Germany). RNA quantity and quality, respectively, were assessed by 

spectophotometric analyses at 260/230 nm using a Nano-Drop ND-2000 spectrophotometer 
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(Thermo Fisher Scientific, Wilmington, DE, USA) and by the microfluidics-based 

Bioanalyzer platform (Agilent Technology). 

First-strand cDNA was synthesized from 0.5 µg or 1 µg of DNase-treated total RNA using 

Superscript II reverse transcriptase (Invitrogen, Darmstadt, Germany) according to 

manufacturer’s instructions. 

Real-time qPCR was performed using the Universal Probe Library system (Roche, 

Mannheim, Germany) on a Roche Lightcycler 480 Real-time PCR system (Roche, 

Mannheim, Germany). The cycling program for analysis was 15 min at 95 °C followed by 45 

cycles of 10 s at 95 °C, 20 s at 55 °C, and 10 s at 72 °C with the following primer pairs and 

respective mono color hydrolysis probes: 

 

Gene Forward Primer Reverse Primer Probe number 

PPARγ 

transcript variant 1 
gaaagacaacggacaaatcacc gggggtgatatgtttgaacttg 7 

PPARγ 

transcript variant 2 
tgctgttatgggtgaaactctg ctgtgtcaaccatggtaatttctt 2 

C/EBPα aaacaacgcaacgtggaga gcggtcattgtcactggtc 67 

GLUT4 gacggacactccatctgttg gccacgatggagacatagc 5 

β-actin gtgggagagcaaggaagaga cactcttggcccagtctacg 56 

HPRT1 tcctcctcagaccgctttt cctggttcatcatcgctaatc 95 

TBP cggtcgcgtcattttctc gggttatcttcacacaccatga 107 

 

Expression levels of target mRNAs were normalized to the three housekeeping genes β-actin, 

HPRT1, TBP. 

 

Statistical analysis 

Gene expression data were analyzed using DataAssist Software version 3.01 (Applied 

Biosystems; Foster City, CA, USA). Average fold change and standard deviation (SD) were 

obtained from 3 biological replicate samples per condition. 

All data were analyzed by one-way ANOVA, using Dunnett post-hoc test in the case of 

comparisons with the untreated controls or Tukey post-hoc test for comparing differences 

among all the groups. Statistical analysis of the data was performed using the GraphPad Prism 

5 software (San Diego, CA, USA). 
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RESULTS 

1. Expression of adipogenesis marker genes at different stages of adipocyte 

differentiation 

Differentiation requires the activation of numerous transcription factors which are in charge 

of the coordinated induction and silencing of more than 2000 genes related to the regulation 

of adipocyte in both morphology and physiology [20]. To characterize the differentiation 

process mRNA expression of the transcription factors PPARγ (variant 1 and variant 2) and 

C/EBPα, and the GLUT4 gene was evaluated at 4 different stages of adipocyte differentiation.  

Expression of all the marker genes was very low and similar at T1 and T2. Three days after 

the addition of the differentiation medium (T3), expression of PPARγ (variant 1 and variant 

2), C/EBPα and GLUT4 started to increase significantly. A prominent increase in 

transcription was observed in mature adipocytes (T4) (Figure 1).  
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Figure 1: PPARγ var1, PPARγ var2, C/EBPα and GLUT4 mRNA expression at 4 

different stages of adipocyte differentiation. 

T1: 1 day after seeding; T2: 3 days after seeding, before the beginning of differentiation; T3: 

end of the differentiation, before the addition of the post-differentiation medium: T4: end of 

post-differentiation (mature adipocytes). 

Gene expression data are presented as the mean fold change of relative expression compared 

to mature cells (T4), normalized to 1. Statistical analysis was by one-way ANOVA (p<0.001) 

with Tukey as post-hoc test. Different letters indicate statistical significance (at least p<0.05). 
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During differentiation, pre-adipocytes took on the characteristics of mature adipocytes. At T2, 

non-differentiated cell showed typical fibroblastoid morphology, while at the end of the 

differentiation process (T4) cells had abundant intracytoplasmic lipid accumulation, showing 

typical white adipocyte morphology (Figure 2). 

 

T2 T4 

  

Figure 2. Morphological changes between pre-adipocytes (T2) and mature adipocytes 

(T4) 

Two images showing different cells morphologies were captured at steps 2 and 4 (T2 and T4) 

using a Leica DMIL Microscope (Germany). Magnification 10X. 

 

2. Inhibition of lipid accumulation 

The anti-obesity potential of DHA, GEN, and SFN was first investigated evaluating the 

bioactive influence on pre-adipocyte differentiation into adipocytes. With this aim, lipid 

accumulation was detected by Oil-Red-O staining in 3T3-L1 cells treated at increasing 

concentrations (10 µM, 25 µM and 50 µM) of the test compounds during the differentiation 

and post-differentiation periods, as described above. All bioactives markedly reduced lipid 

droplet formation compared to vehicle controls. GEN and SFN appeared effective even at the 

lowest concentration used (10 μM), while a higher DHA concentration (25 μM) was required 

to reduce lipid accumulation (Figure 3). 
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Figure 3. Lipid accumulation in supplemented and control cells 

Data are means ± SD and are expressed as a percentage relative to unsupplemented cells 

(US), assigned as 100%. Statistical analysis was by one-way ANOVA (p<0.001) with 

Dunnett post-hoc test: ***<0.001 vs. unsupplemented (US) cells. ND: non differentiated 

cells, before the beginning of the differentiation process. 

 

3. Effects of GEN, SFN and DHA on PPARγ var 1 and 2, C/EBPα, and GLUT4 

expression 

To determine whether the bioactive-induced decrease in lipid accumulation was related to a 

reduction in mRNA levels of adipogenesis marker genes, cells were supplemented during 

differentiation and post-differentiation with the three bioactives at the lowest concentrations 

causing a significant decrease in lipid accumulation.  

At T4, all bioactives significantly reduced transcript levels of PPARγ var 1 and var 2, 

C/EBPα, and GLUT4, the effect of GEN and SFN on PPAR γ and GLUT4 expression being 

stronger than that of DHA (Figure 4). 
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Figure 4. Effects of GEN, SFN and DHA on PPARγ var 1 and 2, C/EBPα, and GLUT4 

mRNA expression 

Gene expression data are presented as the mean fold change of relative expression compared 

to unsupplemented (US) cells at T4, normalized to 1. Statistical analysis was by one-way 

ANOVA (values p<0.001 for every graph) with Tukey as post-hoc test. Different letters 

indicate statistical significance (at least p<0.05). 

 

DISCUSSION 

Adipose tissue has an important function in the energy balance of the body by regulation of 

lipid metabolism, glucose homeostasis, and adipokine secretion. Thus, its dysfunction is 

critical in developing metabolic diseases [21]. 

In general, obesity is related to the extent of adipocyte differentiation, intracellular lipid 

accumulation and lipolysis [22]. The process of adipocytes differentiation is ascribed to the 

activation of the expression of adipocytes specific genes; several transcriptional regulators, 

including C/EBP and PPARγ, play pivotal role in this process. 

PPARγ as a master regulator is both necessary and sufficient for adipogenesis [23, 24]. PPARγ 

has two isoforms, PPARγ1, ubiquitously expressed, and PPARγ2, expression of which is 

restricted to adipose tissue. Both isoforms are strongly induced during pre-adipocytes 
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differentiation and are highly expressed in adipose tissue in animals. PPARγ1 is induced at 

earlier time points than PPARγ2 and is maintained at higher levels than PPARγ2 [25]. 

The C/EBP family includes the members C/EBPα, C/EBPβ, and C/EBPδ. All three are 

expressed sequentially during the differentiation of pre-adipocytes to adipocytes. C/EBPβ and 

C/EBPδ are expressed relatively early and have been shown to play a role in induction of 

PPARγ. Consistent with its late expression during fat cell differentiation, C/EBPα has been 

implicated in the maintenance of the terminally differentiated adipocyte phenotypes [20, 26, 

27]. 

In adipocytes C/EBPα has been reported to be important for the expression of the gene 

encoding for GLUT-4, the major insulin-responsive glucose transporter in adipose tissue as 

well as in skeletal and cardiac muscles [28]. 

In this study, 3T3-L1 cells at four stages of differentiation were characterized by the 

expression levels of the marker genes C/EBPα, PPARγ, and GLUT 4.  

Results obtained on gene expression were consistent with previous reports [29, 30], and are in 

agreement with results on lipid accumulation, confirming that differentiation of 3T3-L1 cells 

includes distinguishable multiple stages. 

The second part of this study focused on the effect of GEN, DHA and SFN on adipocyte 

differentiation. 

Firstly, it was shown that 3T3-L1 treatment with DHA, GEN, and SFN during differentiation 

and post-differentiation suppressed lipid accumulation, and the lowest concentration causing a 

significant decrease in lipid accumulation was chosen to treat 3T3-L1 cells for evaluating the 

influence of the three bioactives on the expression of adipogenic marker genes at the end of 

the differentiation process (T4). 

mRNA expression levels of PPARγ, C/EBPα, and GLUT4 were hugely decreased by cell 

treatment with 25µM DHA, 10µM GEN, and 10 µM SFN, respectively, during differentiation 

and post-differentiation, and GEN and SFN were more effective than DHA. 

At T4 expression levels of PPARγ, C/EBPα, and GLUT4 in treated cells was comparable to 

the expression level in unsupplemented cells at the first stages (T1, T2 or T3) of adipocytes 

differentiation, indicating that all tested compounds could have efficiently blocked adipocytes 

differentiation. 

Most recent advances in food and nutrition sciences have highlighted the possibility of 

controlling body weight through food intake and in particular by incorporating functional 

ingredients [31]. Yun [32] arranged natural products having anti-obesity effects into five 

categories based on their distinct mechanisms: 1) decreased lipid absorption; 2) decreased 
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energy intake; 3) increased energy expenditure; 4) decreased pre-adipocytes differentiation 

and proliferation; 5) decreased lipogenesis and increased lypolisis. Different studies have 

already explored the action of the three bioactives on adipocyte life-stages, revealing that they 

act on different critical pathways. In particular our results are in accordance with literature 

studies on 3T3-L1 models showing that DHA [33, 34], SFN [22, 35], and GEN [36-39] may 

exert antiobesity effects by inhibiting differentiation to adipocytes, inducing apoptosis in post-

confluent pre-adipocytes and promoting lipolysis. 

Concluding, our results represent a first step for the evaluation of the antiadipogenic effects of 

natural bioactive molecules. DHA, GEN, and SFN were shown to exhibit anti-adipogenic 

activity mediated by the inhibition of the expression of PPARγ, C/EBPα and GLUT4. These 

transcription factors and gene are critical to the final stages of adipocyte differentiation and 

progression, and our results are therefore important for the characterization of the anti-

adipogenesis mechanism of the considered bioactive compounds. 

According to our results DHA, GEN and SFN could contribute to the prevention and 

treatment of obesity, and could potentially be used for the formulation of new functional food 

products devoted to a new dietetic strategy for overweight counteraction. 

Authors are aware that further investigations are needed to verify if the anti-obesity effects 

evidenced in vitro do translate into in vivo actions, especially in humans. As well, in this 

study single compounds have been studied separately and not as part of whole foods, ignoring 

both the matrix effect and the eventual synergism between the selected compounds and others 

that could be present in the food, and this issue also deserves future attention.  

Notwithstanding, our results emphasize the potential anti-obesity activity of DHA, GEN, and 

SFN, and considering the link between food consumption and obesity the study herein 

reported can be considered as a first step in the way to find natural anti-obesity strategies.  

 

Acknowledgements: Thanks to Dr. Clarissa Gerhäuser (DKFZ, Heidelberg, Germany) for 

the supervision of this work. Thanks to Prof. Peter Arner group (KI, Stockholm, Sweden) for 

teaching the 3T3-L1 differentiation process. 

 

 

  



Chapter 4 

106 

 

References 

1. Friedman JM (2000) Obesity in the new millennium. Nature 404(6778): 632-634. 

2. Rayalam S, Yang JY, Della-Fera MA, Park HJ, Ambati S, Baile CA (2009) Anti-

obesity effects of xanthohumol plus guggulsterone in 3T3-L1 adipocytes. Journal of 

Medicinal Food 12(4): 846-853. 

3. Bray GA, Tartaglia LA (2000) Medicinal strategies in the treatment of obesity. Nature 

404(6778): 672-677. 

4. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, 

Kwon DY (2007) Anti-obesity effects of ginsenoside Rh2 are associated with the 

activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochemical and 

Biophysical Research Communications 364(4): 1002-1008. 

5. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, 

Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the 

prevention of cardiovascular disease and cancer. American Journal of Medicine 113: 

71-88. 

6. Biesalski HK, Dragsted LO, Elmadfa I, Grossklaus R, Muller M, Schrenk D, Walter P, 

Weber P (2009) Bioactive compounds: definition and assessment of activity. Nutrition 

25(11-12): 1202-1205. 

7. González-Castejón M, Rodriguez-Casado A (2011) Dietary phytochemicals and their 

potential effects on obesity: a review. Pharmacological Research 64(5): 438-455. 

8. Andersen C, Rayalam S, Della-Fera MA, Baile CA (2010) Phytochemicals and 

adipogenesis. Biofactors 36(6): 415-422. 

9. Baile CA, Yang JY, Rayalam S, Hartzell DL, Lai CY, Andersen C, Della-Fera MA 

(2011) Effect of resveratrol on fat mobilization. Annals of the New York Academy of 

Sciences 1215: 40-47. 

10. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA 

(2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 

adipocytes with combinations of resveratrol and quercetin. Life Sciences 82(19-20): 

1032-1039. 

11. Lorente-Cebrian S, Costa AG, Navas-Carretero S, Zabala M, Martinez JA, Moreno-

Aliaga MJ (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and 

cardiovascular diseases: a review of the evidence. Journal of Physiology and 

Biochemistry 69(3): 633-651. 



Chapter 4 

107 

 

12. Polkowski K, Mazurek AP (2000) Biological properties of genistein. A review of in 

vitro and in vivo data. Acta Poloniae Pharmaceutica 57(2): 135-155. 

13. Vitale DC, Piazza C, Melilli B, Drago F, Salomone S (2013) Isoflavones: estrogenic 

activity, biological effect and bioavailability. European Journal of Drug Metabolism 

and Pharmacokinetics 38(1): 15-25. 

14. Yeh CT, Yen GC (2009) Chemopreventive functions of sulforaphane: A potent inducer 

of antioxidant enzymes and apoptosis. Journal of Functional Foods 1(1): 23-32. 

15. Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health 

and disease. Trends in Molecular Medicine 18(6): 337-347. 

16. Iwashita K, Yamaki K, Tsushida T (2001) Effect of flavonoids on the differentiation of 

3T3-L1 adipocytes. Food Science and Technology Research 7(2): 154-160. 

17. Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. The 

Journal of Nutrition 130(12): 3122S-3126S. 

18. Lowe CE, O'Rahilly S, Rochford JJ (2011) Adipogenesis at a glance. Journal of Cell 

Science 124(16): 2681-2686. 

19. Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P, Le Blanc K 

(2003) Functional characterization of human mesenchymal stem cell-derived 

adipocytes. Biochemical and Biophysical Research Communications 311(2): 391-397. 

20. Li HX, Xiao L, Wang C, Gao JL, Zhai YG (2010) Epigenetic regulation of adipocyte 

differentiation and adipogenesis. Journal of Zhejiang University Science B 11(10): 784-

791. 

21. Trayhurn P, Bing C, Wood IS (2006) Adipose tissue and adipokines - energy regulation 

from the human perspective. The Journal of Nutrition 136(7 Suppl): 1935S-1939S. 

22. Lee JH, Moon MH, Jeong JK, Park YG, Lee YJ, Seol JW, Park SY (2012) 

Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by 

AMPK signaling pathway. Biochemical and Biophysical Research Communications 

426(4): 492-497. 

23. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metabolism 

4(4): 263-273. 

24. Rosen ED, Hsu C-H, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM 

(2002) C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes & 

Development 16(1): 22-26. 



Chapter 4 

108 

 

25. Cho Y-W, Hong S, Jin Q, Wang L, Lee J-E, Gavrilova O, Ge K (2009) Histone 

methylation regulator PTIP is required for PPARγ and C/EBPα expression and 

adipogenesis. Cell Metabolism 10(1): 27-39. 

26. Hamm JK, el Jack AK, Pilch PF, Farmer SR (1999) Role of PPAR gamma in 

regulating adipocyte differentiation and insulin-responsive glucose uptake. Annals of 

the New York Academy of Sciences 892: 134-145. 

27. Otto TC, Lane MD (2005) Adipose development: from stem cell to adipocyte. Critical 

Reviews in Biochemistry and Molecular Biology 40(4): 229-242. 

28. Yokomori N, Tawata M, Onaya T (1999) DNA demethylation during the 

differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. 

Diabetes 48(4): 685-690. 

29. Sakamoto H, Kogo Y, Ohgane J, Hattori N, Yagi S, Tanaka S, Shiota K (2008) 

Sequential changes in genome-wide DNA methylation status during adipocyte 

differentiation. Biochemical and Biophysical Research Communications 366(2): 360-

366. 

30. Tang QQ, Otto TC, Lane MD (2003) Mitotic clonal expansion: a synchronous process 

required for adipogenesis. Proceedings of the National Academy of Sciences of the 

United States of America 100(1): 44-49. 

31. Trigueros L, Peña S, Ugidos AV, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E (2013) 

Food ingredients as anti-obesity agents: a review. Critical Reviews in Food Science and 

Nutrition 53(9): 929-942. 

32. Yun JW (2010) Possible anti-obesity therapeutics from nature - a review. 

Phytochemistry 71(14-15): 1625-1641. 

33. Madsen L, Petersen RK, Kristiansen K (2005) Regulation of adipocyte differentiation 

and function by polyunsaturated fatty acids. Biochimica et Biophysica Acta 1740(2): 

266-286. 

34. Kim HK, Della-Fera M, Lin J, Baile CA (2006) Docosahexaenoic acid inhibits 

adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. The Journal 

of Nutrition 136(12): 2965-2969. 

35. Choi KM, Lee YS, Sin DM, Lee S, Lee MK, Lee YM, Hong JT, Yun YP, Yoo HS 

(2012) Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell 

cycle arrest. Obesity 20(7): 1365-1371. 

36. Hwang J-T, Park I-J, Shin J-I, Lee YK, Lee SK, Baik HW, Ha J, Park OJ (2005) 

Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating 



Chapter 4 

109 

 

AMP-activated protein kinase. Biochemical and Biophysical Research 

Communications 338(2): 694-699. 

37. Yang J-Y, Della-Fera MA, Rayalam S, Ambati S, Baile CA (2007) Enhanced pro-

apoptotic and anti-adipogenic effects of genistein plus guggulsterone in 3T3-L1 

adipocytes. Biofactors 30(3): 159-169. 

38. Rayalam S, Della-Fera MA, Yang J-Y, Park HJ, Ambati S, Baile CA (2007) 

Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 

adipocytes. The Journal of Nutrition 137(12): 2668-2673. 

39. Behloul N, Wu G (2013) Genistein: a promising therapeutic agent for obesity and 

diabetes treatment. European Journal of Pharmacology 698(1-3): 31-38. 

 

  

  



Chapter 4 

110 

 

 



Final considerations 

111 

 

FINAL CONSIDERATIONS 

 

The over-consumption of unhealthy food, coupled with lives that are increasingly sedentary, 

is producing large numbers of people who are overweight and obese, primarily in high-

income countries, but also in emerging middle-income countries. 

Confectionery and sweet products, often consumed as snack foods outside the three main 

daily meals, are classified ‘extra’ foods because it is not necessary to consume them to obtain 

the essential nutrients that the body needs. They are energy dense, high in sodium, low in 

micronutrients and can contribute in large amounts to the excess of energy intake, which may 

have potential negative impacts on health, including excess of weight gain. Sometimes, also 

in metropolitan areas, small supermarkets, canteens, bars and vending machines don’t have 

healthy choices for snacks or dessert. It can be true that healthy products cost more than 

unhealthy ones, however the economic costs of diet-related chronic diseases, would be 

dramatically reduced by healthy diets. 

An increased emphasis on healthy lifestyles is an imperative for governments facing rising 

healthcare costs, particularly in developed economies that are battling childhood obesity.  

Actually, in regards to children, key factors in the development of a child’s food preferences 

and eating behaviors are food availability and accessibility as well as adverts for junk food on 

television and they will tend to choose these high fat and sugar snack foods, if made available, 

in preference to more nutritious options. 

Many industries should therefore provide better nutrition in indulgent products like cookies, 

ice-cream, chocolates, cakes, candies. An increase in the potential health and functional 

benefits of such goods can be important for different categories of consumers, not only 

children, but also athletes, elderly, and stressed people. 

 

The overall aim of this PhD project was to find possibilities for increasing confectionary 

products healthy value. We showed that both new ingredients and some ancient ones too can 

help in improving the nutritional aspects of sweet foods. The healthier alternatives do not 

have to replace the traditional products but can provide a choice to consumers whenever they 

want/need a bit more nutrition in their sweet moments. Indeed, sweets can be part of a 

balanced diet as long as people pay attention to portion sizes and choose healthier treats. 

Developing confectionery and sweet products with increased levels of bioactive compounds 

has the potential to maintain our health and wellbeing through our diet. 
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In particular we evidenced different approaches aimed at this nutritional and healthy 

improvement: 

1) Exploitation of by-products. The sustainable addition of agro-industrial by-products as 

sugar molasses and wheat bran was shown to provide specific natural antioxidants as phenolic 

compounds. 

2) Rediscovery of ancient grain varieties. The substitution of the modern durum wheat flour 

with the Kamut khorasan grain resulted highly positive increasing the antioxidant and anti-

inflammatory potential of the final products 

3) Addition of single bioactive compounds with specific functions. Addressing the global 

and rising problem of obesity, sulforaphane, genisteine, and docosahexaenoic acid exhibited 

anti-adipogenic characteristics that could be important in the formulation of new foods. 

 

The common base of these approaches resulted the use of ingredients rich in food bioactives. 

Sources of these valuable molecules can really be the key for a positive impact on human 

health, mainly considering that our modern diets often contain low concentration or minimal 

intake of bioactives and that they can naturally occur in plant varieties that disappeared due to 

the lack of interest or in food industry wastes and residues that are not usually recovered. 

Certainly, further multidisciplinary studies are needed to develop more deeply the healthy 

possibilities studied in this PhD thesis, but taking into account that food science is greatly 

growing developing new foods, designing processes, creating new packaging materials, 

improving sensory characteristics, our results can be useful for driving research and industry 

towards specific aims and specific procedures. 

Finally, considering the enormous impact on what we eat on our health and the need people 

have to reach health and wellbeing also through nutrition, the global vision given by this PhD 

thesis may be important both for giving a new idea of sweet confectionary products that, 

healthy improved, could be also recommended within an optimal diet. 
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PhD Portfolio 

COURSES 

      

Compulsory courses organized by the Agricultural, Environmental and 

Food Science and Technology PhD school at the University of Bologna 

Attendance 

hours 

Philosophy of science and research methodology 10 

Research financing and project design in agricultural sciences 20 

Statistical methods in agriculture and data analysis 30 

Setting up a research protocol 4 

Writing a scientific paper 8 

Work safety 10 

Mathematical models in environmental, crop and food science 20 

Bibliographic services to support research 4 

Artificial neural networks: modeling, software packages and research applications 6 

Issues of risk-benefit assessment in not heat-treated food 3 

English course – Academic writing 24 

Other courses  

NAMASTE Training Course Practical Aspects of Working with Industry 

(Organized within the activities of EU project NAMASTE by the Campden BRI at 

the University of Bologna) 

4 

Training School “Food Digestion and Human Health” 

(Organized by the COST Action FA1005 INFOGEST at Gdansk - Poland)  

20 

 

 

RESEARCH PERIODS ABROAD 

  

Institution and Place Tutor Period 

Karolinska Institutet (KI), Department of Medecine 

Stockholm, Sweden 
Dr. P. Arner 

01/02/2013- 

01/03/2013 

German Cancer Research Center (DKFZ), Division 

Epigenomics and Cancer Risk Factors 

Heidelberg, Germany 

Dr. C. Gerhäuser 

03/03/2013-

31/07/2013 
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PARTICIPATION AT WORKSHOPS AND CONGRESSES 
 

Type of scientific event/Title Place Date 

II International Conference FoodOmics: A science for nutrition, 

health and wellness in a post-genomic era 

Cesena 

(Italy) 

22-24 June 

2011 

Riunione Nazionale della Società Italiana di Nutrizione Umana 

(SINU): Nutrizione e Rischio Cardiovascolare 

Naples 

(Italy) 

12-13 October 

2011 

Workshop Fresh Fish: Tradizione e consumo, Produzione e ricerca, 

Commercializzazione e Ristorazione 

Cesena 

(Italy) 

02 December 

2011 

I International Conference on Food Digestion 
Cesena 

(Italy) 

19-21 March 

2012 

XVII Workshop on the Developments in the Italian PhD Research on 

Food Science Technology and Biotechnology 

Cesena 

(Italy) 

19-21 September 

2012 

Traditional Food International 2012: Traditional food from culture, 

ecology and diversity, to human health and potential for exploitation 

Cesena 

(Italy) 

04-05 October 

2012 

XXXV Congresso Nazionale SINU: 

LARN - Revisione 2012 

Bologna 

(Italy) 

22-23 October 

2012 

IUNS 20
th

 Interantional Congress of Nutrition 

Granada 

(Spain) 

15-20 September 

 2013 

Riunione Nazionale SINU: Comprendere e applicare i LARN 
Firenze 

(Italy) 

21-22 October 

2013 

EFFoST Annual Meeting: Bio-based Technologies in the Context of 

European Food Innovation Systems 

Bologna 

(Italy) 

12-15 November 

2013 

 

 

AWARDS 

Type of award Work presented Place/Date 

PRIZE YOUNG RESEARCHER 

Supported by SINU 

Melasso di canna e di barbabietola: 

possibili alternative funzionali allo 

zucchero raffinato 

Bologna, 

22/10/2013  

STUDENT OF THE YEAR AWARD 2013  

supported by Cargill and EFFoST  

Anti-oxidative and anti-inflammatory 

effects of whole grain durum wheat and 

Kamut cookies in HepG2 cells 

Bologna, 

14/11/2013 
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