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Abstract

Basic concepts and definitions relative to Lagrangian Particle Dispersion Models

(LPDMs) for the description of turbulent dispersion are introduced. The study focusses

on LPDMs that use as input, for the large scale motion, fields produced by Eulerian

models, with the small scale motions described by Lagrangian Stochastic Models (LSMs).

The data of two different dynamical model have been used: a Large Eddy Simulation

(LES) and a General Circulation Model (GCM). After reviewing the small scale closure

adopted by the Eulerian model, the development and implementation of appropriate

LSMs is outlined. The basic requirement of every LPDM used in this work is its

fullfillment of the Well Mixed Condition (WMC).

For the dispersion description in the GCM domain, a stochastic model of Markov order

0, consistent with the eddy-viscosity closure of the dynamical model, is implemented.

A LSM of Markov order 1, more suitable for shorter timescales, has been implemented

for the description of the unresolved motion of the LES fields. Different assumptions on

the small scale correlation time are made.

Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able

to maintain an analytical consistency between the diffusion coefficient and its derivative

is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection

scheme based on the diffusion coefficient shape is introduced, and the criteria for the

integration step selection are discussed.

Absolute and relative dispersion experiments are made with various unresolved

motion settings for the LSM on LES data, and the results are compared with laboratory

data. The study shows that the unresolved turbulence parameterization has a negligible
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influence on the absolute dispersion, while it affects the contribution of the relative

dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.
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Riassunto

Il lavoro, dopo aver introdotto definizioni e concetti relativi ai Modelli Lagrangiani di

Dispersione (LPDM), si focalizza su LPDM che fanno uso, per descrivere i moti a grande

scala, di campi prodotti da modelli euleriani, con i moti a piccola scala descritti da

Modelli Stocastici Lagrangiani (LSM).

Sono stati utilizzati i dati prodotti da due modelli dinamici: una Large Eddy

Simulation (LES) ed un modello di circolazione globale (GCM). Dopo aver analizzato

le chiusure adottate dai modelli euleriani, vengono descritti sviluppo ed implementazione

dei modelli stocastici più appropriati. Una delle richieste fondamentali per ogni LPDM

studiato è stato il rispetto della condizione di buon mescolamento (WMC).

Un modello stocastico markoviano di ordine 0, consistente con la chiusura del modello

dinamico, è stata implementata per descrivere la dispersione nel dominio del modello a

circolazione globale.

Per la simulazione degli effetti del campo di velocità non risolta dalla LES sulla

dispersione, è stato invece utilizzato un modello markoviano di ordine 1, più adatto a

descrivere la dispersione turbolenta per tempi scala più brevi. Sul tempo di correlazione

delle piccole scale sono state testate diverse assunzioni.

I test compiuti sul LSM implementato sul modello di circolazione globale suggeriscono

che, se la condizione di buon mescolamento deve essere mantenuta, l’algoritmo di

interpolazione deve assicurare la consistenza analitica tra il valore del coefficiente di

diffusione e la sua derivata. Vengono inoltre discussi i criteri utilizzati per la selezione

di un passo di integrazione appropriato, e viene descritto uno schema per la selezione

dinamica del time step basata sulla curvatura del profilo del coefficiente di diffusione.
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Con il LPDM che utilizza i campi LES sono eseguiti esperimenti con diversi settaggi

della parametrizzazione dei moti non risolti, confrontando i risultati con quelli ottenuti

da esperimenti reali. Lo studio mostra che la dispersione assoluta è poco influenzata dalla

chiusura a piccola scala del modello lagrangiano, che ha invece l’effetto di ridistribuire

il contributo della dispersione assoluta in modo diverso tra le componenti di dispersione

relativa e meandering.
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Introduction

The use of particle dispersion modelling in geophysical flows

.

The description of the diffusion of pollutants is a central issue in many environmental

studies.

The best suited models for the description of fluid dynamics are the Eulerian models,

which integrate the equation of motion of the fluid at fixed points in space.

For air quality studies, one usually is interested in the characteristics of motion and

concentration of masses of trackers transported by the flow. Among the techniques used

to assess this problem, the Lagrangian approach, which follows a large set of tracker

pollutant particle, is an efficient and flexible one for achieving such a task.

Lagrangian models are also easily adaptable to different problems and their physics

is usually intuitive. On the other hand, describing the dynamics of complex flows in the

Lagrangian framework is a daunting task. With this in mind, the use of an Eulerian model

to provide dynamical fields for a Lagrangian model is a natural strategy. Throughout

this text, one will refer to such a model simply as a Lagrangian Particle Dispersion Model

(LPDM).

Still, the small scale turbulence has a non-negligible effect on the diffusion of particles,

and the coarse gridded, smooth fields produced by an Eulerian model can not be enough

precise to describe dispersion with the desired accuracy. This is especially true for

the description of vertical motion in the Planetary Boundary Layer, where small scale

turbulence is produced by shear or buoyancy.
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Where the description of particle motions on scales smaller than the Eulerian

model grid size is needed, a Lagrangian dispersion model can be provided with a

parameterization describing unresolved motion effects. Many of such parameterizations

have been explored. The most used, for its simplicity and numerical efficiency, is the

description of unresolved kinetic fields by means of a Lagrangian Stochastic Model (LSM).

A LSM simulate trajectories that are not (necessarily) solutions of the deterministic

equation of motion of the fluid but mantain a pre-selected set of statistical properties

of the flow (Asymptotic behaviour of tracer statistics, position - velocity moments,

trajectory curvature, and other properties as well).

Some consideration have to be made when providing a LPDM with a LSM. Usually, a

good parameterization is one that mantains consistency with the dynamic model closure

and other hypothesis, and at the same time improve as much as possible the performance

of the dispersion description, for example including effects not covered by the smoothed

Eulerian fields.

The LPDM unresolved scale parameterization methods are the focus of this text.

Here, the implementation of subgrid parameterizations in Lagrangian models using

Dynamical Model outputs is discussed. The work will cover two different situations. In

the first case the subgrid turbulence has well known features, namely it lies in the inertial

subrange. In the second one, a LPDM is implemented on a general circulation model, in

a case where accurate theoretical information for the model subgrid part are lacking. A

substantial number of similar considerations can be applied to both the models.

This text is organized as follow: chapter 1 covers the physical basics and dynamic

modelling information needed. Chapter 2 introduces elements of stochastic modelling.

Chapter 3 describes the numerical methods used in the implementation. Then, chapters 4

and 5 describe in depth the model settings and approximations used and the experimental

results, respectively. Conclusions are outlined in chapter 6.
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Chapter 1

Characterization of turbulence in

the atmosphere

1.1 Introduction

All flows of liquids and gases may be divided into laminar flows, and their opposite,

turbulent flows in which the velocity, pressure, temperature and other fluid mechanical

quantities fluctuate in a disordered manner with sharp space and time variations.

The ability of turbulent flows in the transfer of momentum, heat and admixtures is

far greater with respect to their viscous counterpart.

In addition, it is found that in nature turbulent flows made up the most part of fluid

motions, while viscous flows present themselves in limited conditions.

An appropriate description of turbulence is thus needed in order to predict

atmospheric motion.
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1.2 Basic equations, terminology and techniques 13

1.2 Basic equations, terminology and techniques

Atmosphere and ocean are treated under the assumptions of continuum dynamics1. From

the conservation laws of mass, momentum and internal energy, it is possible to obtain the

laws of fluid dynamics in differential form(Landau and Lifshitz, 1959). The conservation

of mass is expressed throught the continuity equation:

dρ

dt
+ ρ

∂ui
∂xi

= 0 ; (1.1)

Where ρ is the density field and u = (u1, u2, u3) is the Eulerian velocity field. Here,

and throughout the whole text, we adopt the Einstein summation of repeated index

convention. If ambiguity arises, the summation will be written explicitly.

The Navier-Stokes equation describes the conservation of momentum:

ρ
du

dt
= ρXi −

∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

]
; (1.2)

Where p is the pressure field and µ is the dynamic viscosity of the fluid. Xi represents the

effects of volume forces. In usual atmospheric application, this term takes into account

gravitational force as well as pseudoforces caused by the rotating frame of reference

adopted for the NS equation on earth. Assuming the gravitational fields to be∇Φ = −gk,
and denoting the earth rotation vector with Ω:

Xi = ρgδi3 − 2εlmiΩlum . (1.3)

Finally, the conservation of internal energy is described by the thermodynamic

equation:

cv
dT

dt
+ p

1

ρ2
dρ

dt
= J . (1.4)

where T is the temperature, J is the rate of heating due to radiation, conduction, and

latent heat release.

1Because of the density of air in troposphere and ocean, the particle mean free path is short with

respect to the scale of observations. Moreover, the large sample of molecules contained in a given volume

assure that statistical variability in averaged quantities are negligible.

13



14 1. Characterization of turbulence in the atmosphere

1.2.1 Approximate forms of the dynamic equations

Equations 1.1, 1.2 and 1.4 are general expressions that potentially describe any effect

within the fluid dynamic paradigm. In many real problem, some semplification can be

made.

Scaling analysis, or scaling, is a convenient technique for estimating the magnitudes

of various terms in the governing equations for a particular type of motion. In scaling,

typical expected values of the following quantities are specified:

1. Magnitudes of the field variables;

2. Amplitudes of fluctuations in the field variables;

3. Characteristic length, depth and time scales on which this fluctuations occur.

Once evaluated the weight of each term involved, terms of smaller order of magnitude

are neglected. Fluctuation of similar magnitude can occur in motion systems of various

space and time scales, and, as such, the nature of the dominant terms in the governing

equation is dependent of the scale of motion.

Scaling in the synoptic scale

For example, when considering the vertical momentum equation with quantities p0, f0,

ρ, H typical for the synoptic scale motion, the terms ρ−1∂p/∂x3 and g are many order

of magnitude greater than the other involved in the equation. This scale analysis gives

similar results also when considering horizontal fluctuation of density and pressure fields.

This means that at those scale, to a high degree of accuracy, hydrostatic equlibrium

holds.

Similar considerations on the continuity equation lead to the conclusion that, at this

scale of motion and with respect to the basic state density profile ρ0(x3), the mass flux

is non-divergent:

∂

∂xk
(ρ0uk) = 0 . (1.5)
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1.2 Basic equations, terminology and techniques 15

Boundary layer typical scales

On the other hand, when considering a boundary layer with scales of motion of the order

of the km, other terms can become dominant in the equations. There is a rather general

approximation (in the lower atmosphere and ocean) that involve the density value and

is called after Boussinesq.

The Boussinesq approximation treat ρ as constant in every term but the external

forces one inside the equations of motion (Van der Hoven, 1957)2.

One writes the density ρ(x, t) as:

ρ(x, t) = ρ00 + ρ0(x3, t) + ρ′(x, t) . (1.6)

Adopting the Boussinesq approximation and considering the viscosity constant within

the fluid, the Eq.s 1.1, 1.2 and 1.4 take the following forms:

∂ui
∂xi

= 0 , (1.7)

du

dt
= Xi −

1

ρ00

∂p

∂xi
+ ν

∂

∂xj

[(
∂ui
∂xj

+
∂uj
∂xi

)]
. (1.8)

Here, ν = µ/ρ is the kinematic viscosity.

A direct way to put forth the difference in magnitude in each term is the

adimensionalization of the equation 1.2:

dui
dt

= − ∂p

∂xi
+ ǫij3Ro

−1uj +Re−1 ∂2ui
∂xj∂xj

+ δi3Fl
−2ρ , (1.9)

where all the variable are considered adimensionalized. Re, Ro and Fl are parameters

that express the magnitude of each term, and thus characterize the motion. If U , L

are the characteristic scales of velocity and length, and f = 2Ω3 sen(ϕ), where ϕ is the

latitude, then the characteristic numbers are defined as:

Re =
UL

ν
, (1.10)

Ro =
U

fL
, (1.11)

Fl =
U

NL
, (1.12)

2Given the small coefficient of volume of espansion of most fluids, for temperature variations not

exceeding 10K, the variation in the density are at most of 1%. The only exception is represented by the

term ρXi, because the acceleration resulting from δρXi can be quite large(Chandrasekar, 1961).
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16 1. Characterization of turbulence in the atmosphere

where N is the Brünt-Vaisala frequency:

N =

(
− g

ρ00

dρ0
dx3

)1/2

. (1.13)

Typical values in the planetary boundary layer are Re ≈ 109, Ro ≈ 102 and Fl ≈ 1.

1.3 Turbulence

In the earth system, both the motions of air, from small scale breeze to general

atmospheric circulation, and the motions of water in oceans and rivers, are turbulent

flows. Atmospheric turbulence play a fundamental role in the transfer of heat and

moisture by air masses, in evaporation from the surface of land or water, and in thermal

and dynamic interaction between the atmosphere and underlying surface which has a

considerable effect on changes in the weather. Atmospheric turbulence is responsible

for the spreading of admixtures in the air, the production of wind waves and wind

currents in the ocean, and also for turbulent fluctuations in refractive index that can

affect significantly the propagation of light and radio waves from terrestrial and cosmic

sources.

The motion of any continuous medium can be described by and infinite number of

generalized coordinates. For laminar motions, these coordinates are chosen in such a way

that only a few of the corresponding degrees of freedom will actually take part in the

motion. However, in case of turbulent motion, a large number of degrees of freedom are

always excited, and hence the variation with time of any physical value will be described

here by functions containing a huge number of Fourier components, i.e., by functions

of an extremely complicated nature. Therefore, in this case it is practically hopeless

to attempt to describe the individual time variations of all the generalized coordinates

corresponding to the excited degrees of freedom (i.e., to find a mathematical expression

for the time-dependence of the fields of velocity, pressure, etc., of a single individual

flow). The only possibility in the theory of turbulence is a statistical description, based

on the study of specific statistical laws, with validity for large ensemble of similar objects.

Thus, a turbulence theory is, by the nature of turbulence itself, strictly related to the

statistical mechanics(Monin and Yaglom, 1971, 1975).

16



1.3 Turbulence 17

In other words, in a turbulent flow, an individual description of velocity, temperature

and other characteristic is both impossible and unuseful. In fact, the irregular and highly

variable nature of all of these individual fields eliminates the possibility of using exact

values of them in any practical problem.

The inertial forces which produces mixing of the different volumes of fluid moving

inertially with different velocities also produce a transfer of energy from large to small

scale components of motion and hence assist the formation in the flow of sharp, small scale

inhomogeneities that characterize a turbulent flow. The viscous forces, on the contrary,

assist in the smoothing out of small scale inhomogeneities.

1.3.1 Reynolds Averaging

The first attempt in the describtion of turbulence in modern physics is due to the work

of Osborne Reynolds. Among its theory, two concepts have remained almost unchanged

in the following works.

On one hand, Reynolds defined a general criterion for dynamic similarity of flows

of a viscous, incompressible fluid. The so-called Reynolds number, defined by the

characteristic scale of velocity and length of a particular flow and the viscosity of the

fluid. From a dynamical viewpoint, the Reynolds number (Eq. 1.10) may be interpreted

as the ratio of typical values of the inertial and viscous forces acting within the fluid.

Flows with sufficiently large Reynolds number will be turbulent, while flows in which

Reynolds number is low will be laminar.

On the other hand, Reynolds also introduced a technique still in use in the majority of

turbulence problems, namely the separation of turbulent fields in averaged and fluctuating

parts. In the present day theory of turbulence, it is always implied that the fluid

mechanical fields of a turbulent flow are random fields in the sense of probability theory

(see Appendix).

Given the velocity fields u(x, t), and given the phase space of turbulent flows, Ω{ω},
where the points ω represent all the possible vector fields u(x, t) which satisfy the

equations of fluid mechanics and the boundary conditions of the flow, the problem of

turbulence is reduced to finding the probability distribution P (ω) in the phase space Ω.

17



18 1. Characterization of turbulence in the atmosphere

The determination of P (ω) is a difficult task, and the general problem has not been

solved yet. In most practical cases, anyway, is sufficient to determine only some of the

simplest numerical characteristics of the probability distribution of a given turbulent

flow. Those characteristics usually are the single or multiple point moments of a given

set of fields.

The fluid dynamic fields are written as an averaged component (ensemble mean

averaged) and a fluctuating component, whose average is 0:

φ = 〈φ〉+ φ′ , (1.14)

where φ can be ui, θ, p, ρ or a generic scalar field variable χ.

By substituting with the Expression 1.14 in the Navier-Stokes equations, Eq. 1.2,

and averaging, one can obtain the Reynolds momentum equations.

d〈ui〉
dt

= −1

ρ

∂〈p〉
∂xi

+ 〈Xi〉+ ν
∂2〈ui〉
∂xj∂xj

+
∂〈u′iu′j〉
∂xj

. (1.15)

In the deduction of Eq. 1.15, the properties of linearity and commutativity of the average

operation with the derivation has been used.

A method for obatining the complete set of differential equation for moments of P (ω)

has been first proposed by kel (1924). The system of equation is very complicated, and

any finite subsystem of these equation is nonclosed. We report the expression for the

second order averaged momentum equation

d

dt
〈uiuk〉 = S + T + B + C + P +D , (1.16)

18



1.3 Turbulence 19

where:

S = −〈u′iu′j〉
∂〈uk〉
∂xj

− 〈u′ku′j〉
∂〈ui〉
∂xj

, (1.17)

T = −
∂〈u′iu′ju′k〉

∂xj
, (1.18)

B = − g

ρ00
(δk3〈u′iρ′〉+ δi3〈u′kρ′〉) , (1.19)

C = f(εkj3〈u′iu′j〉+ εij3〈u′ku′j〉) , (1.20)

P = − 1

ρ00

(〈
u′k
∂p′

∂xi

〉
+

〈
u′i
∂p′

∂xk

〉)
, (1.21)

D = ν

(
∂2

∂x2j
〈u′ku′i〉 − 2

〈
∂u′i
∂xj

∂u′k
∂xj

〉)
. (1.22)

Here, the term T is a third order moment (the problem is not closed) The first term of D
describes the diffusion of second order moments, and is small with respect to the second

term of D in flows with high Reynolds numbers. The second term, which represents the

correlation of the first derivative of velocity fluctuations, for small scales of motion is

diagonal and takes the form:

2ν

〈
∂ui
∂xj

∂uk
∂xj

〉
=

2

3
δikε (1.23)

where ε is the molecular dissipation.

Diffusive closure for the Reynolds tensor

The traditional approach to the closure problem is to assume that turbulent eddies act

similarly to molecular diffusion so that the the flux of a field is proportional to the local

gradient of the mean. This means writing, for the velocity:

〈u′iu′j〉 = −Kmij
∂〈ui〉
∂xj

, (1.24)

and, for a scalar quantity χ:

〈u′iχ′〉 = −Kχi
∂〈χ〉
∂xi

. (1.25)

Km ij is calle eddy viscosity and, when χ ≡ θ, Kχi ≡ Khi is the eddy diffusivity of heat.

This closure scheme is usually referred to as K-theory.
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20 1. Characterization of turbulence in the atmosphere

The K-Theory has many limitations. The eddy viscosities depend on the flow rather

than the properties of the fluid. The determination of the value of the diffusion coefficient

thus cannot be easily measured and can vary for different conditions for the same fluid.

The K-theory approximation also fails completely when the most energetic eddies have

size comparable with the boundary layer height. In that case, neither the momentum

flux or flux of a scalar are proportional to the local gradient of the mean.

A simple model for estimating the value of diffusion coefficient has been initially

proposed by (Prandtl, 1925). The fundamental hypothesis of that model assumes that

a parcel of fluid carrying the mean properties of the original level is displaced of the

characteristic distance l′ and then it will mix with its surrounding. The hypothesis is

referred to as the ‘mixing length hypothesis’. It is also postulated that the parcel then will

create a fluctuation whose magnitude is proportional to the local gradient of the mean

field and the displacement l′ itself. In formulas, for the velocity and scalar quantities

u′i = −l′j
∂〈ui〉
∂xj

(1.26)

χ′ = −l′j
∂〈χ〉
∂xj

(1.27)

It should be noted that l′ > 0 describe a displacement toward the increase of the Cartesian

coordinate xj and vice-versa. Making the mixing length hypothesis is similar to assume

that the particles behave as a molecule travelling along its mean free path.

Also, the flow Jm, Jχ of the quantities will be:

Jmij = ρ〈lju′j〉
∂〈ui〉
∂xj

(1.28)

Jχj = ρ〈lju′j〉
∂〈χ〉
∂xj

(1.29)

In the 3-dimensional case, K is a fourth-rank tensor (Monin and Yaglom, 1971):

Kijαβ =
1

2
(Kiαδjβ + Kjαδiβ) , (1.30)

where:

Kij =

√
1

2
〈u2γ〉 lij . (1.31)
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1.3 Turbulence 21

Here l is a second-rank tensor, because of anisotropy. In the one-dimensional case, the

above expression becomes:

K = 〈l2〉
∣∣∣∣
∂〈u〉
∂x

∣∣∣∣ , (1.32)

where l is called mixing length.

1.3.2 Homogeneous and Isotropic Turbulence

The previous theory used assumption that are not derived from the equations of fluid

mechanics. It is what is called a semi-empirical theory of turbulence. This kind of theory

concentrates mainly on effects on the large scale of motion, in many practical cases it

can predict the quantity of interest of with good accuracy, but do not provide a deep

understanting of the physical nature of turbulence.

The theory of ‘the universal steady statistical regime of the small scale compontents

of turbulence for very high Reynolds numbers’ is developed starting from few general

assumption and has been proved to be very predictive on some physical features of

turbulence.

The development of this theory can be traced back to the works of Richardson (1926),

Taylor (1935) and Kolmogorov (1941).

In the theory first stated from Richardson, the physical mechanism of developed

turbulence is the existence of a hierarchy of disturbances in the flow (eddies) of various

order. The higher order, small scale disturbances predates on the energy of lower order,

large ones. This creates a transfer of energy from large to small disturbances, up to

the limit at which the Reynolds number become sufficiently small and the viscous forces

dissipates kinetic energy into heat.

The length scales at which the dissipation become important are of the order of several

millimeters in typical air and water turbulent flows3.

The theory is mainly based on the concept of homogeneous and isotropic turbulence.

This is similar to the requirements that all the finite dimensional probability density

3This length is still many order of magnitude greater than the mean free path of the molecules, so for

regular geophysical flow the continuum mechanics still can be applied.
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22 1. Characterization of turbulence in the atmosphere

functions of the fluid dynamical quantities at a finite number of space-time points are

invariant under any shift, rotation and reflection operations.

Under the assumption that this regime can be obtained in every flow with sufficiently

high Reynolds number for sufficiently small scale of motions, the Kolmogorov theory

(hereinafter K41 theory) is based on two main assumption

• In such conditions, the statistical regime will be universal and determined by only

two dimensional parameters, namely the coefficient of viscosity ν and the mean rate

of dissipation of energy, 〈ǫ〉. This assumption introduces a length-scale at which

the viscous forces still exerts a considerable effects on the motion. The scale is

known as Kolmogorov scale and is defined as:

η =

(
ν3

〈ǫ〉

)1/4

, (1.33)

• It exists a range of scales, larger than the Kolmogorov scale η and much smatter

of the length scale of the flow L, in which the viscosity do not play any part and

the statistical regime is determined only by 〈ǫ〉.

Within the relevant deduction of this theory, we list the expression for the second

order Lagrangian and Eulerian structure functions D(2)(t) and D(2)(t):

D(2)(t) = 2(〈u2〉 −R(t)) = C0εt , (1.34)

D(2)(t) = 2(〈u2〉 −R(r)) = CKε
2/3r2/3 . (1.35)

Where ε is the molecular dissipation, C0 and CK are constants, and R(t), R(r) are the

velocity correlation functions. Different values have been attributed to C0 and CK . In

recent works, their values is set as C0 = 6.2 CK = 2.0 (Ouellette et al., 2006).

In the inertial subrange, the Lagrangian and Eulerian velocity spectra take the form:

E(ω) =
Γ(2)sin(π/2)

π
C0εω

−2 , (1.36)

E(k) =
Γ(5/3)sin(π/3)

π
CKε

2/3k−5/3 , (1.37)
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1.4 The Boundary Layer(s) 23

where k and ω are the wavenumber and frequency, respectively.

A model for Lagrangian correlation is proposed by Gifford (1982):

R(t) = 〈u2〉exp
(
t

TL

)
, (1.38)

which implies a relationship between the Lagrangian Timescale TL and C0ε of the form:

ε =
2〈u2〉
C0TL

. (1.39)

Concerning the Eulerian velocity correlation function, Durbin (1980) suggests:

R(r) = 〈u2〉
[
1−

(
r2

r2 + L2
E

)1/3
]
. (1.40)

In the expression, LE is the Eulerian lengthscale

1.4 The Boundary Layer(s)

The viscous sublayer is only few millimeter high, but has the indirect effect of reducing

the flow velocity to 0 at the surface. This no-slip condition causes strong velocity shear

near the surface, which lead to the development of turbulent eddies. These effects, with

the addition of turbulent eddy formation due to the buoyancy, give rise to a layer whose

height varies from tenth of meters (for strong stable conditions ) to few kilometers over

the surface. This layer is referred to as Planetary Boundary Layer.

As expected, as interface between the fluid and its boundaries, the characteristics of

the latter have strong influence on the PBL. Dishomogeneities, roughness and obstacles

lead to sensible modification in the flow. In particular, the ratio between the buoyancy

production and the wind shear at the surface is of paramount importance for the

description of the boundary layer features.

Based on dimensional consideration, a limited number of parameters characterize the

turbulence generated. A measure of the relative effects of combined heat and momentum

fluxes is given by the Richardson flux number:

Rf =
g/θ00〈u′3θ′〉

〈u′hu′3〉d〈u〉/dx3
, (1.41)
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24 1. Characterization of turbulence in the atmosphere

where uh is a velocity representative of the horizontal components, θ is the potential

temperature and θ00 is the reference value of the potential temperature, defined similarly

to eq. 1.6. Buoyancy effects can produce turbulence if 〈u′3θ′〉 > 0 (Rf < 0) or inhibite it

if, viceversa, 〈u′3θ′〉 < 0 (Experimentally, stable stratification correspond to Rf > 0.2).

Rf ≈ 0 means that the turbulence production is completely due to the wind shear.

This condition is called neutral stratification. In this case the turbulent flux near the

ground is constant and gives a definition for the scaling parameter known as friction

velocity, u∗:

−〈u′u′3〉 = u2∗ . (1.42)

The profile of the average velocity in this condition is logarithmical, and the eddy diffusion

coefficient has the form:

Km = κu∗z . (1.43)

If characteristic quantities can be defined in global terms in a PBL flow, a length

scale can be introduced:

LMO
u3∗

κg〈u′3θ′〉/θ00
. (1.44)

|LMO| → ∞ describes the neutral boundary layer. For LMO > 0 the boundary layer is

stable. This boundary layer is characterized from a suppression of turbulence and the

presence of internal gravity waves.

LMO < 0 implies a buoyancy production of turbulence. A Convective Bounary

Layer is characterized by stronge vertical transport due to eddies. The presence of thin,

strong uprising currents (thermals) and large, slow descending ones, causes the Pdf of

the velocity to be strongly skewed. To adequately describe the CBL, the vertical and

horizontal scales have to be considered separately. A scaling parameter for the vertical

motion is the convective velocity scale w∗, defined as:

w∗ =

(
g

θ00〈u′3θ′hi〉

)1/3

, (1.45)

where hi is the CBL height.

For additional information about PBL structure, see for example Stull (1988).
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1.5 Dispersion of fluid particles 25

1.5 Dispersion of fluid particles

After introducing an admixture in a turbulen flow, it is rapidly trasported in disordered

intermixed filaments and rapidly spreads until it is homogeneously mixed in the whole

volume of the fluid.

This phenomenon is one of the fundamental properties of turbulent flows and it mixes

particle many order of magnitude more efficiently than the molecular diffusion. The

spread of plant pollen, industrial pollutants, bacteria and viruses, radioactive isotopes,

sea salt and desert sand are all driven by turbulent dispersion.

The problem of turbulent dispersion has been studied extensively, starting from the

works of Taylor (1921), with experiments both from laboratory and atmosphere.

In this section, a short introduction on theory of turbulent dispersion of fluid particles

is given. All the results refer to particles that are assumed to be indistinguishable from

the fluid particles in their surroundings (i.e., are fluid particle tracers).

1.5.1 Absolute dispersion

Let us consider a set of independent particles (i.e. each particle belonging to a different

realization of the flow). In steady condition particles move independently from each other

if they are released from the same point x0 at time intervals larger than the correlation

time TLij . As reported by the work of Taylor (1921), for such a set of particles the

relation for the position variance reads:

〈xixj〉 = 2〈u′iu′j〉
{
TLijt− T 2

Lij

[
1− exp

(
− t

TLij

)]}
. (1.46)

It follows easily from the equation (1.46) for t << Tij that:

〈xixj〉 ≃ 〈u′iu′j〉
{
t2 − t3

3TLij

}
, (1.47)

that is called ballistic regime. Note that this is true if the particles are inserted in

equilibrium with the flow, and 〈vi(0)vj(0)〉 = 〈u′iu′j〉.
For t >> TLij , eq. (1.46) is reduced to:

〈xixj〉 ≃ 2TLij〈u′iu′j〉t , (1.48)
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26 1. Characterization of turbulence in the atmosphere

called diffusion regime. Now, it is possible to define the eddy-diffusion coefficient

(computed as a limit) as:

Dij = 〈u′iu′j〉TLij . (1.49)

It is thus expected for particles’ mean square distance from the initial position to show

a quadratic growth initially, and, for large time, to manifest a linear growth.

1.5.2 Relative dispersion

Another property of interest of the turbulent dispersion pertains to the evolution of the

mean square separation of a pair of “marked particles” which starts at the time t0 at a

certain distance l0 in the flow (l0 supposed to belong to the inertial range).

When t < tl0 , where tl0 is the characteristic time for eddies of the size of the source,

tl0 ≃ l0/〈∆v2(l0)〉 ≈ ǫ−1/3l
2/3
0 , it is possible to show that, under the assumption that at

times t the velocity difference is dominated by the vortices of scale l0:

〈(l − l0)
2〉 ≃ 〈∆v2(t0)〉t2 , (1.50)

where 〈∆v2(τ0)〉 is the mean square Lagrangian velocity difference at the starting time

t0.

For times larger than tl0 but smaller than T (integral time scale), instead it is:

〈(l − l0)
2〉 ≃ gǫt3 . (1.51)

This is also known as Richardson’s law (Richardson (1926)), and recent evaluation for

the Richardson’s constant g suggest g = 0.6 Sawford (2008).

Finally, for t≫ T :

〈(l − l0)
2〉 ≃ 4〈u2〉TLt . (1.52)

In order that the diffusion regime can occur, it is necessary the presence of both the

Eulerian and Lagrangian independence (i.e., both time and space interval sufficiently

long).

26



1.6 Turbulence Closure in Large Eddy Simulations 27

Relative motions of distribution of particles

Let N(x, t) be the tracer distribution for a single realization of the flow. The total of

particle is:

Q =

∫
dxN(x, t) (1.53)

and the position of their center of mass is:

c =
1

Q

∫
dx xN(x, t) . (1.54)

In many problems, one can be interested in the dispersion of particles around their

center of mass. Define y as the particle position with respect to the reference frame

moving with c, y = x− c.

It can be proven that the absolute dispersion 〈xixj〉 can be written as:

〈xixj〉 = 〈cicj〉+ 〈yiyj〉 , (1.55)

where 〈cicj〉 is called meandering(Csanady, 1973).

For the meandering, in homogeneous turbulence the following relationship holds:

〈c2i 〉 = 〈u2i 〉t , t≪ TL ; (1.56)

d〈c2i 〉
dt

= 0 , t≫ TL. (1.57)

1.6 Turbulence Closure in Large Eddy Simulations

In a Large Eddy Simulation, the small scales of motion are removed by means of a filtering

in the velocity spectrum.

This operation is usually theoretically described as (but this operation is actually done

in some numerical implementations) the filtering of the velocity field by convolution with

a kernel G(x, t).

The goal is to obtain an expression derived from the NS equation describing only

large scale motion.
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28 1. Characterization of turbulence in the atmosphere

1.6.1 Scale Filtering

The LES scheme is based on the concept of filtering out the small scales of motion from

the dynamic equations.

For a given original field ψ, the filtered field ψ̃ is written as the convolution of ψ with

the filter G(x, t)

ψ̃(x, t) =

∫ +∞

−∞
dt′
∫ +∞

−∞
d3x′G(x− x′, t− t′) ψ(x′, t′)dx′ (1.58)

Since the filtering operation has to be easily used to manipulate NS equations, it is

required that any filter G verify the following fundamental properties (Sagaut, 1998):

1. Linearity. Given the generic fields ψ, φ and constants α, β:

˜αψ + βφ = αψ̃ + βφ̃ . (1.59)

2. Conservation of constants. Given a constant α:

α̃ = α⇐⇒
∫ +∞

−∞

∫ +∞

−∞
G(x, t)d3xdt = 1 . (1.60)

3. Commutation with derivation. Given s = xi, t and a field ψ:

∂̃ψ

∂s
=
∂ψ̃

∂s
. (1.61)

The spatial filtering is the most used technique to obtain scale separation separation,

so from now on we will limit our treatise only to them, adopting the notation:

G(x, t) −→ G∆(x) (1.62)

The considerations that follow remain the same also for time filtering. For an

exhaustive treatise of causal filters refer for example to Sagaut (1998) and Pruett (2000).

Most common filters are the top-hat filter, the spectral cutoff filter and the Gaussian

filter.

The top-hat (box) filter is defined as:

Gbox
∆ (x) =





∆−3 , |xk| < ∆/2,

0 , |xk| ≥ ∆/2.
(1.63)
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1.6 Turbulence Closure in Large Eddy Simulations 29

It is equivalent to a volume local mean, and, as such, has a good spatial localization but,

because of spectral overlap, it not allows an unambiguous separation of scales of motion.

On the other hand, the box filter spectral space counterpart, the sharp spectral cutoff

filter,

Gsp
∆ = Π3

k=1

sin(πxk/∆)

πxk
, (1.64)

clearly separates between the scales, but it is non-local (causing oscillatory behavior

in fields around an isolated feature of the field).

The Gaussian filter:

Ggauss
∆ = (6/π)3/2

1

∆3
exp

(
−6x2

∆2

)
, (1.65)

has localization properties that are intermediate between the box filter and the sharp

spectral filter, and it is usually preferred in most practical applications.

1.6.2 Filtered Navier Stokes equations

Applying the filtering operations to the Navier Stokes (Eq. 1.2) and continuity equations

(Eq. 1.1), neglecting effects of rotation restricting the case to incompressible fluid, given

the filter properties of linearity and commutation with derivative, one obtains (Pope,

2000):

∂ũi
∂t

+
∂

∂xj
(ũi uj) = −1

ρ

∂p̃

∂xi
+ ν

∂

∂xj

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, (1.66)

∂ũi
∂xi

= 0 . (1.67)

In order to express Eq. 1.66 in terms of the filtered velocity field ũ only, Leonard

(1975) applies the following transformation (Leonard’s decomposition): First ũi uj

is rewritten considering the velocity field component as the sum of the filtered and

subfiltered part ui = ũi + usi .

ũi uj = ˜̃ui ũj + ˜̃ui usj +
˜̃uj usi + ũsiu

s
j . (1.68)
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30 1. Characterization of turbulence in the atmosphere

After the first substitution in eq. 1.66, a second one follows:

˜̃ui ũj = (˜̃uiũj − ũiũj) + ũiũj . (1.69)

The Navier-Stokes equations obtained after this operation take the form (using the

continuity equation for an incompressible fluid):

∂ũi
∂t

+ ũj
∂ui
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂

∂xj

(
∂ũi
∂xj

+
∂ũj
∂xi

)
−
∂τ∆ij
∂xj

. (1.70)

And τ∆, the so-called subgrid-scale(SGS) stress tensor is defined as:

τ∆ij = ũiuj − ũiũj . (1.71)

The stress tensor τ∆ takes into account the effects of the interaction between subgrid

scales (similarly to the Reynolds stress tensor for the for the fluctuating component of the

velocity field), between subgrid and filtered scales, and between the the filtered scales.

Equation 1.70 can be numerically solved with a spatial resolution of order of ∆,

allowing a computational cost which is more affordable than in DNS simulations.

The effects of subgrid scale fields is now limited to the choice of the an expression for

τ∆, which will provide a closure for the dynamical Equation 1.70.

1.6.3 SGS stress models

As one can expect, any affordable model for the SGS stress is bound to neglect some

features of the real velocity field.

Even if τ∆ (Eq. 1.71) has the same form of the Reynolds stress tensor, the SGS

tensor is a fluctuating stochastic variable in nature. Moreover, similarly to the Reynolds

stress tensor case, an expression for τ∆ has to be chosen in order to integrate the filtered

equation of motion.

Eddy viscosity models

Eddy viscosity models adopt the following closure for the deviatoric part of the SGS

stress tensor, i.e. τ∆ij − 1/3τ∆kkδij :
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1.6 Turbulence Closure in Large Eddy Simulations 31

τ∆,ev
ij = −2νT S̃ij , (1.72)

where:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, (1.73)

is the strain rate tensor and νT is called scalar eddy viscosity.

This is the simplest and most economical closure possible for the dynamic equation,

but its major drawback comes from its definition itself, when comparing viscous effects

and turbulence. In the case of molecular viscosity, if the control volume is large compared

with the mean free path and the macroscopic shear is low compared with the inverse

collision times, the relationship between the stress and shear should be deterministic and

linear with very good approximation.

On the other hand, in turbulence, such a separation in length and timescale do not

exist. So one can expect that, for an individual realization of the flow, the proper physics

of SGS turbulence is not captured by the model (Meneveau and Katz, 2000; Clark et al.,

1979; Liu et al., 1994).

The classical formulation of this type of model, known as Smagorinsky model, defines

the eddy viscosity as (Smagorinsky, 1963; Lilly, 1966):

νT = (c∆S ∆)|S̃| , (1.74)

where ∆ is a length scale and ∆|S̃| is the velocity difference relative to the scale ∆, with

|S̃| ≡ (2 S̃ijS̃ij)
−1/2 (Deardorff, 1974; Scotti et al., 1993).

An interesting variant of the Smagorinsky filter is represented by the so-called kinetic

energy model. In that model, an additional equation for the kinetic energy e = 1/2τ∆ii is

solved, and the eddy viscosity is written as a function of e and ∆:

νT = Cee
1/2∆ , (1.75)

with Ce = 0.1 (Weil et al., 2004). This approach, firstly proposed by Schumann (1975),

incorporates memory effects and has been popular in simulations of atmospheric flows

(Moeng, 1984; Shaw and Schumann, 1992).
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32 1. Characterization of turbulence in the atmosphere

In the kinetic energy model, the turbulence dissipation rate ε is usually parametrized

by:

ε = Cǫ
e
3/2
S

l
, (1.76)

with Cǫ = 0.93 and the value of l which varies if the conditions are neutral or unstable:

l = ∆ , (1.77)

where ∆ is the grid spacing. In case of different grid spacing in 3-D model, ∆ is defined

as:

∆ =

(
α∆

∏

i

∆xi

)1/3

. (1.78)

Here, α∆ = (3/2)2 is included by Weil et al. (2004) to take into account dealiasing. For

stable cases:

l = min(∆, lst) (1.79)

and:

lst =
0.7e

1/2
S

[g/Θ0∂θr/∂x3]1/2
. (1.80)

For an exhaustive treatment of scale separating filters, see Pope (2000), Sagaut (1998)

and Meneveau and Katz (2000).
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Chapter 2

Lagrangian modelling of

unresolved motion

2.1 Stochastic models

With its simple implementation, great generality, intuitive concepts and strong statistical

and mathematical background formulation, stochastic modelling represent a widespread

and powerful technique adopted in many fields of quantitative sciences.

When considering systems with a large number of degrees of freedom (such as

molecular dynamics) and/or strong nonlinearity (i.e. chaos dynamics), stochastic model

do not aim to the deterministic description of a phenomenon, but to obtain a set of

realizations extracted from a probability density function with features as similar as

possible to the PdF of the problem varables.

Applications span from quantum physics and chaos dynamics to economics and social

sciences, passing throught chemistry, biology, and, as expected, turbulence modelling.

The basic concept behind a stochastic model, it goes without saying, is the definition

of a stochastic process. A simple definition for a stochasic process is that of a system

which evolves in time in which stochastic variables appear.

Given a set of stochastic variable values xi ∈ Ω at times ti ∈ I, with Ω and I

respectively the space of all possible event x and the time interval, to describe the
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34 2. Lagrangian modelling of unresolved motion

stochastic process in the interval I means to find the joint probability density:

p ≡ p(x1, t1;x2, t2; ...) , (2.1)

for each set of (xi, ti) ∈ (Ω, I) (Gardiner, 1990).

2.1.1 Markov processes

Consider a succession of events. Under the hypothesis that:

t1 ≥ t2 ≥ ... ≥ τ1 ≥ τ2 ≥ ... . (2.2)

Given x1, t1;x2, t2; ...;y1, τ1; ... the states of the system at subsequent times. Eq. 2.1 can

be written in terms of conditional probability densities:

p(x1, t1;x2, t2; ...;y1, τ1,y2, τ2, ...) =
p(x1, t1;x2, t2; ...|y1, τ1,y2, τ2, ...)

p(y1, τ1;y2, τ2; ...)
. (2.3)

A stochastic process is said to be a Markov process if its conditional probability only

depends on the knowledge of the most recent condition:

p(x1, t1;x2, t2; ...|y1, τ1,y2, τ2, ...) = p(x1, t1;x2, t2; ...|y1, τ1) . (2.4)

The Eq. 2.4 is called Markov assumption. The Markov assumption implies that,

given t1 ≥ t2 ≥ ... ≥ tn:

p(x1, t1;x2, t2; ...;xn, tn) = p(x1, t1|x2, t2)p(x2, t2|x3, t3) ... p(xn−1, tn−1|xn, tn) p(xn, tn) .

(2.5)

Continuous Markov processes

The Markov process itself has a discontinuous character. Markov processes do not really

exist in nature, but a system can be regarded as Markov process if its memory time is

much smaller than the time at which observation are carried out.

In the same condition, it is useful to describe a Markov process as continuous if, for

any ǫ > 0:

lim
∆t→0

1

∆t

∫

|x−z|>ǫ
dx p(x, t+∆t|z, t) = 0 . (2.6)

34



2.1 Stochastic models 35

2.1.2 Fokker-Planck equation and Langevin equation

From the properties of the Markov processes the relationship known as Chapman-

Kolmogorov equation is obtained:

p(xa, ta|xc, tc) =

∫ +∞

−∞
dxb p(xa, ta|xb, tb)p(xb, tb|xc, tc) . (2.7)

One requires for p to satisfy the following conditions, ∀ǫ > 0:

lim
∆t→0

1

∆t
p(x, t+∆t|z, t) =W (x|z, t) , (2.8a)

lim
∆t→0

1

∆t

∫

|x−z|<ǫ
dx (xi − zi) p(x, t+∆t|z, t) = Ai(z, t) +O(ǫ) , (2.8b)

lim
∆t→0

1

∆t

∫

|x−z|<ǫ
dx (xi − zi)(xj − zj) p(x, t+∆t|z, t) = Bij(z, t) +O(ǫ) . (2.8c)

Adopting the continuity hypothesis 2.6 as well as the set of requirements Eq. 2.8 the

Equation 2.7 can be written in differential form:

∂

∂t
p(z, t|y, t′) = −

∑

i

∂

∂zi

[
Ai(z, t)p(z, t|y, t′)

]

+
∑

i,j

1

2

∂2

∂zi∂zj

[
Bij(z, t)p(z, t|y, t′)

]

+

∫
dx

[
W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)

]
. (2.9)

If we assumeW (z|x, t) to be 0, Equation 2.9 describes a diffusion process and it is known

as Fokker-Planck equation. In the equation, Ai is called the drift term, Bij the Wiener

term and the last term within the integral is usually called jump term.

∂

∂t
p(z, t|y, t′) = −

∑

i

∂

∂zi

[
Ai(z, t)p(z, t|y, t′)

]

+
∑

i,j

1

2

∂2

∂zi∂zj

[
Bij(z, t)p(z, t|y, t′)

]
. (2.10)

The equation 2.10 with the term Ai = 0, Bij = 1 with the initial condition:

p(w, t0|w0, t0) = Πiδ(wi − wi0) , (2.11)
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where δ(·) is the Dirac function, has a solution:

p(w, t|w0, t0) = [2π(t− t0)]
−n/2exp

[
−(w−w0)

2

2(t− t0)

]
, (2.12)

that is a multivariate Gaussian with average:

〈w(t)〉 = w0 (2.13)

and variance:

〈[wi(t)−w0] [wj(t)−w0]〉 = (t− t0)δij . (2.14)

One then define a function ξ(t) with the following properties:

〈ξ(t)〉 = 0 , (2.15a)

〈ξ(t)ξ(t′)〉 = δ(t− t′) . (2.15b)

The function is clearly unrealistical because of its infinite variance at t = t′, but it is an

idealization of white noise. The function is clearly not differentiable, but one can require

that the function integral exists. Then, we can write Ψ(t′), the integral of ψ(t′), as:

Ψ(t′) = lim
ǫ→0

[∫ t−ǫ

0
dτ ξ(τ)

]
+

∫ t′

t
dτ ξ(τ) , (2.16)

where for any ǫ > 0, ξ(τ) in the first integral are independent by the ξ(τ) in the second

one. This means that Ψ(t′) is not determined by the values of Ψ(t) but not from his past

values, and so it is a Markov process.

In particular it can be proven that the Fokker-Planck equation for Ψ is the equation

of the Wiener process W (t) and one can write:

∫ t

0
dτξ(τ) =W (t) , (2.17)

and from this interpretation, one defines:

dW (t) =W (t+∆t)−W (t) = ξ(t)dt . (2.18)

36



2.1 Stochastic models 37

Langevin equation and Itô differentiation

In the general form for a multi-variable system, one defines the Langevin equation:

dxi(t) = ai(x(t), t)dt+ bij(x(t), t)dWj(t) . (2.19)

Eq. 2.19 is an Itô differential equation if, for all t and t0:

xi(t) = xi(t0) +

∫ t

t0

dτ ai(x(τ), τ) +

∫ t

t0

dWj(τ) bij(x(τ), τ) . (2.20)

It can be proven that dW is an infinitesimal of order 1/2.

dWi(t)dWj(t) = δijdt . (2.21)

With that knowledge, the expression for a differential df of any funcion f(x(t)) expanded

to order o(dt) is:

df(x(t)) =
∂

∂xj
f(x(t))dxj(t) +

1

2

∂2

∂xj∂xi
f(x(t))dxj(t)dxi(t) +O(dx(t)3) . (2.22)

By the substitution of Eq. 2.19 in Eq. 2.22, and Eq. 2.21, one obtains:

df(x) =

[
ai(x(t), t)f(x(t)) +

1

2
bik(x(t), t)bkj(x(t), t)

∂2

∂xi∂xj
f(x(t))

]
dt

+ bij(x(t), t)
∂

∂xi
f(x(t)) dWj . (2.23)

Equation 2.23 shows that, unless f(x) is linear in x(t), the ordinary calculus chain

rule is not valid with stochastic equations.

Given the Itô formula, Eq. 2.23, the Fokker-Planck equation, Eq. 2.10 , and

considering the differential of a generic function f(x(t)):

〈
df(x(t))

dt

〉
=

d〈f(x(t))〉
dt

, (2.24)

it is possible to show that the Langevin equation describes a stochastic process whose

FPE is described by:
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38 2. Lagrangian modelling of unresolved motion

∂

∂t
p(x, t|x0, t0) = − ∂

∂xi
[ai(x, t)p(x, t|x0, t0)]

+
1

2

∂2

∂xi∂xj
{[bikbkj ](x, t)p(x, t|x0, t0)} . (2.25)

This relationship between Langevin equation and FP equation is fundamental for the

development of Lagrangian Stochastic Models.

2.2 Stochastic models for the description of turbulent

dispersion

2.2.1 Markov order of the process

In the deterministic framework, the evolution of a point cartesian postion and its

derivatives x
(j)
i = djxi/dt

j can be described by the set of equations:

dx
(j)
i = x

(j+1)
i dt , j = 0, n. (2.26)

Where usually the system is described by equation up to the order j = 1 with x
(2)
i

given by the Second Law of Dynamics.

In Lagrangian Stochastic Models for the description of turbulent dispersion the

approach is similar, but, in general, uses a set of equations of the form of eq. 2.19. chosen

the maximum order n, the equation for dx(n) is described by eq.2.19. The maximum order

of the derivative described by this system si called the Markov order of the stochastic

equation. In applications concerning particle dispersion, the Wiener term b is null up to

the maximum order derivative equation.

In a LSM of Markov order n, the evolution of the x
(n)
i is independent of its increments

at previous time. This assumption is valid if, for a given time interval ∆ts at which the

process quantities are sampled, the Lagrangian correlation timescale of the derivatives of

order n+ 1 is much smaller:

∆ts >> T (n+1) . (2.27)
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2.2 Stochastic models for the description of turbulent dispersion 39

In the usual conditions, in the atmosphere, the viscous forces act on timescales of the

order of the Kolmogorov timescale, that, for high Re flows, is τη ≈ 10−2 s. On the other

hand, the velocity correlation timescales are of the order of 102 s in the PBL.

It follows from this reasoning that the most natural choice for the description of fluid

particle dispersion in the atmosphere, in case where the boundary layer turbulence is

involved, is the Lagrangian stochastic model of order 1.

Model of order 0 can still used in absence of strong turbulence and for long time

simulations, during which the behaviour of the LSM of Markovian order 1 relaxes on the

diffusive behaviour of of Markovian order 0 model. The need of Markov order 2 models

can arise in cases in which forces other than the viscous one are involved, or the particle

simulated are inertial.

2.2.2 Well Mixed Condition

For stochastic processes of a given order n, the expression for the coefficients a and b is

uniquely determined by making use of a number of additional conditions. Among them,

one is a requirement for an asymptotic properties of the system of fluid tracers that is of

particular relevance in this work.

Invoked when dealing with particle tracers with the same properties of the fluid

particles in which they are immersed, the Well Mixed Condition requires that, if at any

time the particles are homogeneously distributed within the fluid, in average, then for

any subsequent time they remain homogeneously distributed.

For a Markovian model of order 1, denoting with gf the density function in the phase

space for the particle of the fluid, and denoting with gt the particle of tracers, one has

that:

∫
d3u gf (x,u, t) = 〈ρ〉 , (2.28)

∫
d3u gt(x,u, t) = 〈c〉 . (2.29)

Here, 〈ρ〉 and 〈c〉 are the averaged density and concentration of tracer.
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40 2. Lagrangian modelling of unresolved motion

The WMC states that, if gt is a solution of the FPE, Eq. 2.10, then also gf must be

a solution, as well.

In the Markov order 0 model, the WMC simply state that if 〈c〉 is a solution of the

Equation 2.10, then 〈ρ〉 is a solution as well.

For Random Flight models, from Eq. 2.10, with the substitution of P → gf , it is

possible to obtain an expression for the drift coefficient a:

aigf =
∂

∂uj
(Bijgf ) + Φi(x,u, t) , (2.30)

where Φ satisfies:
∂Φi

∂ui
= −∂gf

∂t
− ∂

∂xi
(uigf ) . (2.31)

It has to be observed that the WMC do not, in the general case, assure a unique solution.

From the Equation 2.31 one sees that Φ is defined with a free choice of a solenoidal term

∂ψ/∂ui = 0. This ambiguity is automatically solved in the 1-dimensional case only. In

models with more than one dimension, other conditions have to be chosen.

The derivation of the Langevin equation for a stochastic process of order 0 taking

into account the variation of the fluid density ρ was first derived by Venkatram (1993)

and rederived in a more general form by Thomson (1995).

In this case, the FPE equation with the substitution P → 〈ρ〉, becomes:

∂〈ρ〉
∂t

= − ∂

∂xi
(ai 〈ρ〉) +

∂2

∂xi∂xj
(bij〈ρ〉) . (2.32)

Brackets around quantities 〈·〉 denote ensemble averages.

2.2.3 Additional conditions

In order to find an expression for a and b, assumptions on the pdf have to be made.

The coefficients for the Random Flight Model

The expression of the Wiener term coefficient for the RFM is deduced from the small

time structure function of the velocity. If particles are in the inertial subrange, from the

expression for the structure function, Eq. 1.34, it has to be:

2〈Bij〉 = δijC0ǫ , (2.33)
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2.2 Stochastic models for the description of turbulent dispersion 41

where Bij = 1/2bikbjk.

The choice of the drift term is usually made by defining a form for the velocity pdf.

For a Gaussian distribution of the Eulerian velocity probability density function pG(u),

with u = 〈u〉+ u′, average 〈u(x, t)〉 and covariance tensor Vij(x, t) = 〈u′iu′j〉:

pF (u) =
1

(2π)3/2 det(V )1/2
exp

(
−1

2
u′i(V

−1)iju
′
j

)
. (2.34)

With this choice for the PdF, the drift term ai can be rewritten as follows:

ai = −b
2

2
(V −1)iku

′
k +

Φi

pG
, (2.35)

where:
Φi

pG
=

1

2

∂Vil
∂xl

+
d〈ui〉

, dt+
1

2
(V −1)lj

dVil
dt

u′j , (2.36)

with:
d

dt
=

∂

∂t
+ uj

∂

∂xj
≡ ∂

∂t
+ (〈uj〉+ u′j)

∂

∂xj
. (2.37)

Now,

dui = d〈ui〉+ du′i =
d〈ui〉
dt

dt+ du′i , (2.38)

thus, the Langevin equation for the velocity reads:

du′i = aidt−
d〈ui〉
dt

dt+ bijdWj(t) . (2.39)

Using eqs. 2.35 and 2.36, eq. 2.39 reads:

du′i =

[
−b

2

2
(V −1)iku

′
k +

1

2

∂Vil
∂xl

+
1

2
(V −1)lk

dVil
dt

u′k

]
dt+ bdWi(t) . (2.40)

Including third- and fourth-order velocity moments

In many applications, such as the dispersion in a CBL, assuming a Gaussian velocity pdf

is inappropriated.

In cases where the third and fourth order moments are far from gaussian, different

approaches are available.

In order to describe an Eulerian velocity pdf with third and fourth order moments

other than Gaussian, it is possible to assume a form for the pdf P as a sum of two

Gaussian distributions (Luhar and Britter, 1989):
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42 2. Lagrangian modelling of unresolved motion

PS = CAPA + CBPB , (2.41)

where (with Λ = A,B) CΛ are constants and PΛ are gaussian distribution characterized

by 〈u〉Λ and σ2u3Λ, of the form:

PΛ =
1

(2π)1/2
√
σ2u3Λ

exp

[
−(u3 − 〈u3〉Λ)2

2σ2u3Λ

]
. (2.42)

With this choice, with the hypothesis of time stationarity and horizontal homogeneity,

the drift term a of the Langevin equation takes the form:

a =
C0ε

2

d

du3
ln(pE) + ΦA +ΦB , (2.43)

with:

ΦΛ =
dCΛ

dx3
PΛσ

2
u3Λ+ (2.44)

+ CΛ

[
1

2

dσ2u3Λ
dx3

+ (u3 − 〈u3〉Λ)
d〈u3〉Λ
dx3

+
(u3 − 〈u3〉Λ)2

2σ2u3Λ

dσ2u3Λ
dz

]
PΛ+

+
1

2
CΛerf

[−(u3 − 〈u3〉Λ)
2σ2u3Λ

+ 1

]
d〈u3〉Λ
dx3

+

+
1

2
〈u3〉Λerf

(−(u3 − 〈u3〉Λ)
2σ2u3Λ

)
dCΛ

dx3
+

+
1

2
〈u3〉ΛCΛ

d

dx3

{
erf

[−(u3 − 〈u3〉Λ)
2σ2u3Λ

]}
.

Adopting a different approach, Franzese et al. (1999) approximate the drift term as a

quadratic function of the velocity instead of fixing a functional form for the velocity Pdf.

The Coefficients of the Random Displacement Model

If the density is constant, the FPE has the same form of the diffusion equation. Is thus

a natural choice to assume bij = 2Kij , where Kij is the diffusion coefficient.

To obtain the expression for the drift coefficient a, an additional condition is given

by the continuity equation, written by Thomson (1995) in the form:

∂〈ρ〉
∂t

= − ∂

∂xi
(ui〈ρ〉) . (2.45)
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Here, ui is defined to be the density weighted velocity i-th component of the velocity

field,

ui =
〈uiρ〉
ρ

= 〈ui〉+
〈u′iρ′〉
〈ρ〉 . (2.46)

With this choice, the following expression for the drift term a is obtained:

ai =
∂Kij

∂xj
+
Kij

〈ρ〉
∂〈ρ〉
∂xj

+ ui . (2.47)
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Chapter 3

Numerical Techniques

3.1 Introduction

In the computations made in this work, an extended use of general numerical technique

has been made. Among them, functional evaluation algorithms, fast fourier transfrom,

polynomial equation solvers, integration and derivation techniques have been applied

(Press et al., 1992).

It is useful to describe two more specific subjects. The following sections present

an overview of the schemes used for the integration of stochastic equations and the

polynomial interpolation scheme used in the computations.

3.2 Numerical algorithms for the integration of Stochastic

equations

Because of the non-deterministic nature of the SDE, there is the need of defining

specifically suited numerical integration methods. The accuracy of a numerical algorithm

for SDE, in the same way, has to be evaluated using statistical tools.
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3.2 Numerical algorithms for the integration of Stochastic equations 45

3.2.1 Strong and weak convergence

An evaluation criterion is the requirement that every trajectory of the numerical

approximation converge to the analytical trajectory path for a sufficiently small

integration step. Given a succession of N integration steps, if Xi and Yi are the analytic

and numerical approximated solution of a SDE at the steps i respectively, the integration

scheme producing Yi values is said to converge in the strong sense with order γ if, given

δ0 > 0 and α > 0, the expectation value:

E(|XN − YN |) ,

respects the relation:

E(|XN − YN |) ≤ αδγ , ∀δ ∈]0, δ0[ . (3.1)

In cases where it is not necessary to have a close pathwise approximation of a

stochastic process, a less strict convergence definition can be adopted. The comparison

between Y and X can be made by comparing some function g of Y and X, instead.

The discrete approximation Y is said to converge to X in the weak sense with order

β if,for any polynomial function g , there exist δ0 > 0, α > 0 such that:

|E(g(XN ))− E(g(YN ))| ≤ αδβ , ∀δ ∈]0, δ0[ . (3.2)

When referring to algorithm for the integration of SDE, in the remainder of this text,

an algorithm that converges in the strong sense with order γ will be simply called a

‘strong order γ’ algorithm. In the same way, an algorithm that converges in the weak

sense with order β will be simply called a ‘weak order β’ algorithm.

3.2.2 Finite difference schemes

In order to obtain an expression for many finite differences scheme, the more general and

direct way is to obtain each scheme by truncating the stochastic Taylor formula (Kloeden

and Platen, 1992a,b).

Let one, for simplicity, considers the Langevin Equation 2.19 in the one-dimensional

form. The simplest forward scheme for the integration of this equation is the Euler-

Maruyama scheme:
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46 3. Numerical Techniques

Yn+1 = Yn + a∆n + b∆Wn , (3.3)

where ∆n is the integration timestep. This scheme can also be obtained heuristically as

the stochastic equivalent of the ODE Euler integration scheme. Coming to stochastic

equations, this is a strong order 0.5 scheme. In order to obtain a strong order 1 scheme

an additional term is needed, and the algorithm, known as the Milstein scheme, reads:

Yn+1 = Yn + a∆n +
1

2
bb′∆n + b∆Wn , (3.4)

where b′ = db/dx. Because it includes the Stochastic Taylor expansion up to the first

order, the Milstein scheme is the stochastic counterpart to the Euler finite difference

scheme for ODEs.

Schemes of higher order exists, which are suited for solving specific problem with

the algorithms, such as implicit scheme (for problem affected by stiffness) and/or higher

order multistep schemes.

In this work, since most of the complexities are left to the resolved velocity fields

and the computational cost of the unresolved motion modelling has to be kept as low as

possible, the Euler-Maruyama and the Milstein scheme are the only two considered.

3.3 Interpolation

In practical application, it is usual to have values of a field F defined on a set of points

organized in a grid. This is the case for variables of an Eulerian model. Lagrangian

models need to compute the field values at any point in the domain.

Given a set x0 < x1 < ... < xn of points, and a set F0, F1, ..., Fn of values. The skill of

an interpolating function f(x) with f(x1) = F1, ..., f(xn) = Fn in describing the values

of the field F for x ∈ [xi, xi+1] can sometimes have strong influence on further numerical

results.

Many interpolation methods exist. Among the functional forms used, the most

common are polynomials, quotients of polynomials (rational functions), trigonometric

functions and spline. An interpolation method can emphasize some features of the
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interpolating function. Some of the more common required properties are listed below

(Akima, 1991).

• Continuity. If, for a small change of the input data correspond a small change in

the interpolated curve, the method is said to be continuous.

• Linearity. This properties is respected if, for all node points i, if yi = af(xi)+bf(xi)

then for any point in the interval [x0, xn] it also holds the relationship: yi =

af(xi) + bf(xi).

• Monotonicity preservation. The monotonicity dictates that if a set of two

consecutive data points has the same value of f(x), then the portion between the

two points must be an horizontal segment.

• Positivity. Some data distribution represents quantities that are not supposed to get

negative value. In that case, the method used in the interpolation has to mantain

this properties.

Local interpolating algorithms, which use a finite number of interpolation points near

the point of interest x, in general do not ensure the continuity of the derivatives of the

function. When, in some application, the continuity of the derivative of the interpolating

function is of concern, it has to be chosen an appropriate method, which involve a non-

local choice of the parameters.

3.3.1 Polynomial interpolation

In polynomial interpolation, the values of a function of which is known a set of n + 1

points, is represented by a polynomial Pn(x) ∈ Pn, where Pn is the set of polynomial of

degree n. Pn(x) has the properties that:

Pn(xi) = f(xi) . (3.5)

With the choice of a base {li}ni=0 for the polynomial Pn(x), li ∈ Pn defined as:

li(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

. (3.6)
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The polynomial Pn(x) can be rewritten as:

Pn(x) =
n∑

i=0

f(xi)li(x) (3.7)

Eq. 3.7 is known as Lagrange form of the polynomial Pn.

The polynomial interpolation is unstable (can give rise to unnatural fluctuation in

the interpolated values) for large n. Because of that, it is natural to define a subset of

the points [xi, xj ] ⊂ [x0, xn+1] and to use Lagrangian interpolation on every subset.

The most simple and ecomomical approximation is the linear approximation: in this

case, n = 0 and, for x ∈ [xi, xi + 1] Eq. 3.7 is simply expressed by:

f(x) = f(xi)li + f(xi+1)li+1 , (3.8)

and:

li =
x− xi
xi+1 − xi

,

li+1 =
xi+1 − x

xi+1 − xi
= 1− li . (3.9)

3.3.2 Hermite-Birchoff interpolation

If the derivative at the nodes xi are available, the Lagrange polynomial interpolation can

be generalized.

If the data (xi, f
(k)(xi)) are available, where i = 0, n is the number of distinct points

and k = 0,m is the order of the known f derivatives , one defines N =
∑n

i=0mi. It can

be shown that exist a unique polynomial HN−1 ∈ PN−1 with the proprety that:

H
(k)
N−1(xi) = f (k)(xi); i = 0, n; k = 0,m . (3.10)

HN−1 is called Hermite interpolating polynomial.

Hermite polynomial interpolation applied with a knowledge of the derivative up to

the order m, ensure the consistency between the values of the interpolating function and

its derivative up to the order m between the nodes and within the order m − 1 at the

node points.
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3.3.3 Spline

The continuity and derivability on the whole interval [x0, xn] can be obtained by using

a non-local algorithm, and the interpolation parameters are computed as a succession of

connected curve. This method is known a spline interpolation:

Given the set of points xi ∈ {x0, xn} a function sk(x) is defined to be a spline of

degree k if, for every subinterval Sj = [xj , xj + 1]:

sk|Sj ∈ Pk, j = 0, 1, ..., n− 1 , (3.11)

sk ∈ Ck−1[x0, xn] . (3.12)

From the definition above a spline function of order k cannot be uniquely defined. The

polynomial spline of order k can be written in general form as:

sk|Sj(x) =
k∑

i=0

sij(x− xj)
i (3.13)

for x ∈ [xj , xj+1]. The problem has (k + 1)n degrees of freedom. From the definition of

spline, Eq. 3.12, it follows that:

dmsk|Sj−1(xj)

dxm
=

dmsk|Sj(xj)
dxm

, (3.14)

which poses k(n − 1) additional constraints. With the requirement of having an

interpolating spline, for which sk(xj) = f(xj) at the nodes, other n constraints are

required. The problem of finding an interpolating spline meeting those requirements has

still k − 1 degrees of freedom left.

The uniqueness of the solution is usually achieved by adding conditions on the extremes

of the interpolation domain, such as periodic conditions.

The spline interpolation presents some disadvantages: in presence of strong gradient

in the function points, the resulting interpolated values presents strong innatural

oscillation. Moreover, in some application, is not possible or practically useful to consider

the whole domain for applying the interpolation.
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3.3.4 Akima local algorithm

In the following section a class of method (based on similar principles of the Hermite-

Birchoff methods) devised by Akima (1970) and subsequently reviewed by Akima (1991).

Akima algorithm is a local interpolation method based on the idea of obtaining a

fitting curve with not excessives unnatural obscillations (a ‘natural looking curve’, Akima

(1970)). This is obtained by choosing a condition for the selection of the curve parameter

in such a way that 3 (Akima, 1970) or 4(Akima, 1991) collinear point must result in a

straight line.

The curve is a third degree polynomial:

f(x) = a0 + a1(x− xi) + a2(x− xi)
2 + a3(x− xi)

3 , (3.15)

where the coefficients are:

a0 = f(xi) ,

a1 = f ′(xi) ,

a2 = −[2(f ′(xi)−mi) + (f ′(xi+1)−mi)]/(xi+1 − xi) ,

a3 = −[(f ′(xi)−mi) + (f ′(xi+1)−mi)]/(xi+1 − xi)
2 , (3.16)

where mi is the slope of the line segment connecting {xi, f(xi)} and {xi+1, f(xi+1)}
(compute as the finite two-point finite differences value).

In the computation of the first order derivatives f ′(xi) and f
′(xi+1) lies the difference

between the two Akima method. The principle on which are built both variants is to

express the the derivative at a node as the weighted average of the numerical derivatives

computed at a number of neighboring nodes.

In Akima (1970), for each point xi, the values of the derivative is estimated from the

values of the function at 4 intervals around xi (this estimate involve the evaluation of the

function at five nodes):

f ′(xi) =
mi−1ωi−1 +miωi

ωi−1 + ωi
, (3.17)
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ωi−1 = 1/|mi−2 −mi−1| ,

ωi = 1/|mi −mi+1| . (3.18)

In the second variant, Akima (1991), the derivative of the function at the point xi is

computed as a combination of finite differences at 6 different intervals surrounding the

data point, for a total of 7 nodes involved in the computation.

f ′(xi) =

(
1∑

k=−2

y′ i+k
i ωi+k

)
/

(
1∑

k=−2

ωi+k

)
. (3.19)

Here, the weight factor ω , which can be written as:

ωi−2 = 1/ (V (i, i− 3, i− 2, i− 1)D(i, i− 3, i− 2, i− 1)) ,

ωi−1 = 1/ (V (i, i− 2, i− 1, i+ 1)D(i, i− 2, i− 1, i+ 1)) ,

ωi = 1/ (V (i, i− 1, i+ 1, i+ 2)D(i, i− 1, i+ 1, i+ 2)) ,

ωi+1 = 1/ (V (i, i+ 1, i+ 2, i+ 3)D(i, i+ 1, i+ 2, i+ 3)) . (3.20)

In Equation 3.20, V is a square difference factor computed respect to the linearity:

V (i, j, k, l) =

max{i,j,k,l}∑

m=min{i,j,k,l}

[f(xm)− b0 − b1xm]2 , (3.21)

Here,writing for notational simplicity:

∑

m

=

max{i,j,k,l}∑

m=min{i,j,k,l}

,

The b factors are computed as follow:

b0 =

[
∑

m

x2m
∑

m

f(xm)−
∑

m

xm
∑

m

xmf(xm)

]
/


4
∑

m

x2m −
(
∑

m

xm

)2

 ,

b1 =

[
4
∑

m

xmf(xm)−
∑

m

xm
∑

m

f(xm)

]
/


4
∑

m

x2m −
(
∑

m

xm

)2

 . (3.22)
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The parameter D is chosen ad the quadratic distance between the reference point

{xi, f(xi)} and the other three points:

D(i, j, k, l) = (xj − xi)
2 + (xk − xi)

2 + (xl − xi)
2 (3.23)

Finally, the first derivative at the data point {xi, f(xi)}, computed as the derivative

of a third degree polynomial fitted to a set of four data points, is represented by:

F (i, j, k, l) =
[
(f(xj)− f(xi))(xk − xi)

2(xl − xi)
2(xl − xk)

+ (f(xk)− f(xi))(xl − xi)
2(xj − xi)

2(xj − xl)

+ (f(xl)− f(xi))(xj − xi)
2(xk − xi)

2(xk − xj)
]

/[(xj − xi)(xk − xi)(xl − xi)(xk − xj)(xl − xk)(xl − xj)] (3.24)

When a set of four data points is collinear, the V value is zero and the weight becomes

infinite1. This method, thus, has the properties that a linear segment is produced

whenever 4 data points are collinear.

Akima (1991) algorithm is consistent with a third-degree polynomial interpolation

accuracy. When interpolating a generic function, it has continuous first order derivatives

but, in general, discontinuous second order derivatives at the nodes.

3.3.5 Positivity requirements

In most of the interpolation, and, more generally, function approximation techniques,

there are additional requirements on the final features, properties and general appearence

of the function.

The shape preserving methods and approximation have been developed for the needs

of preserving relevant properties such as monotonicity, convexity, reduce oscillation (like

Akima (1970, 1991) algorithms, and non-negativity.

The last property (non-negativity) is of particular importance when dealing with

physical quantities that must be, by their nature, non-negative.

1When this happens, in practical application the infinite coefficient is set to 1 and the finite ones are

set to 0
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Mathematically speaking, when requiring an interpolation function f(x) to be

positive, one requires that, for given a set of points I = {xi, yi}i=0,n ⊆ L where

yi ≥ 0 ∀xi ∈ I, f has the properties of an interpolating function and:

f(x) ≥ 0 ∀x ∈ L . (3.25)

A vast number of available techniques exists, based on different kinds of interpolation

and different approximation. Many involve spline interpolation algorithm, and the

techniques are based on spline under tension (Riedel, 2005), rational spline (Gregory,

1986; Hussain and Sarfraz, 2008) and/or the addition of suitable supplementary

interpolating points(Riedel, 2005; Hussain and Sarfraz, 2008).

Schmidt and Heß (1987) studied necessary and sufficient conditions for the positivity

of quadratic spline interpolation, and Schmidt and Heß (1988) defined suitable condition

for cubic polynomial spline to mantain non-negativity.

Fischer et al. (1991) propose a local algorithm for the construction of a non-negative

spline.

A properties of natural spline is that, given a spline s defined in the whole

interpolation interval [x0, xn], has the properties that the integral:

∫ xn

x0
dx (s′′(x))2, (3.26)

is minimized. From a geometrical point of view, s′′(x), the Expression 3.26 represents

the curvature of the spline. This means that the choice natural spline minimize the

tension of the spline curve.

Under the hypothesis that the polynomial function takes negative values between two

consecutive data points xi, xi+1, the Fischer et al. (1991) method search for a function

s̃(x) which is non-negative and minimizes the condition:

∫ xi+1

xi
dx (s′′(x))2, (3.27)

Fischer et al. (1991) show that the goal is accomplished by selecting a function that,

depending on the condition, takes a value of 0 between two additional nodes inserted in

53
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the interval, or, has a single zero on a single node 2. The function is defined in such a

way that the values of s̃, s̃′, s̃′′, matches the value of the original function at the extremes

xi, xi+1.

Now, we rename for the sake of brevity the extremes of the function:

p0 = xi ,

σ0 = s(p0) ,

σ′0 = s′(p0) ,

p1 = xi+1 ,

σ1 = s(p1) ,

σ′1 = s′(p1) .

If the conditions:

σ′0 < 0, σ′1 > 0, p1 − p0 > 3

(
σ1
σ′1

− σ0
σ′0

)
, (3.28)

are satisfied, the non-negative curve s̃ : [p0, p1] → R+ is defined with two additional

internal points, ξl, ξr:

ξl = p0 −
3σ0
σ′0

, ξr = p1 −
3σ1
σ′1

. (3.29)

And s̃(x) has the form:

s̃(x) =





s̃l(x) = al(ξl − x)3 , x ∈ [p0, ξl],

0 , x ∈ [ξl, ξr],

s̃r(x) = ar(x− ξr)
3 , x ∈ [ξr, p1].

(3.30)

with the coefficients:

al = −σ0
′ 3

27σ20
, ar =

σ′ 31

27σ21
. (3.31)

If the Conditions 3.28 are not met, there is only to define a single internal point which

is a zero of the cubic polynomial3:

g(ξ) = (p1 − ξ)2 (3σ0 + σ′0 (ξ − p0))− (ξ − u)2 (3σ1 − σ′1 (p1 − ξ)) (3.32)

2They defined this spline as a spline with a contact arc or a boundary line.
3The polynomial of eq. 3.32 has always at least one zero in ]p0, p1[ since g(p0) > 0 and g(p1) < 0

(Fischer et al., 1991).
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And s̃(x) has the form:

s̃(x) =





s̃l(x) = al(ξ − x)3 + bl(ξ − x)2 , x ∈ [p0, ξ],

s̃r(x) = ar(x− ξ)3 + bl(x− ξ)2 , x ∈ [ξ, p1].
(3.33)

Here, the coefficients are:

bl =
(p1 − ξ)2[3σ0 + σ′0(ξ − p0)]

(ξ − p0)(p1 − ξ)
. (3.34)

The plot in Fig. 3.1 show the interpolating function generated by the Akima (1970)

and Akima (1991) algorithms for a set of data. For both the interpolating functions,

anegative fluctuation appears between σ = 0.9 σ = 0.92 Also shown the Akima (1970)

interpolating function after the application of Fischer et al. (1991) algorithm for ensuring

positivity.

In Fig. 3.2 a the same functions are shown, but the domain is restricted in the

negative fluctuation area.
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Figure 3.1: Interpolating function of the data (red triangles) computed with the Akima

(1970) (blue line) and Akima (1991)(purple line) algorithms. The green line shows

the Akima (1970) interpolation function applied with the positivity control algorithm

proposed by Fischer et al. (1991).
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Figure 3.2: Interpolating function of the data (red triangles) computed with the Akima

(1970) (blue line) and Akima (1991)(purple line) algorithms. The green line shows

the Akima (1970) interpolation function applied with the positivity control algorithm

proposed by Fischer et al. (1991).
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Models and Experiments

58



Chapter 4

Implementation of the models

4.1 Introduction

One can roughly separate the factors influencing the model development between four

different aspects

• The properties of the flow to be reproduced, such as velocity moments and

dispersion statistics.

In our case, there is a basic properties that every selected model is required to

fulfill, and it is the well mixed condition. In some applications, for computational or

practical reason, a deviation from this condition can be permitted if it is not influent

on the experiment results, but there must exist a feasible numerical experiment that

show the model consistency with the WMC.

• Characteristics of the dynamical model that have influence on the LPDM.

Since every dynamical model considered here use some parameterization for the

small scale turbulence, it fall within this aspect the choice of an unresolved motion

model.

• Numerical efficiency and low computational cost of the model.

Efficiency and accuracy of the model are going to be evaluated considering that a

low computational cost has to be mantained, both for time savings and for obtaining
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60 4. Implementation of the models

a better statistics from experiments (using more particles). In principle, a LPDM

can be run at the same time of a dynamical model and has to use only a small

fraction of the computing power of a machine.

• The needs for generality and adaptability to different Eulerian models and settings

of the LPDM code.

With reference to the last point, the models implemented in this work do not aim for

generality, favouring, where possible, the maintainance of an internal consistency

with their reference Eulerian model.

Among the dynamical models where to implement a LPDM, the choice involved

two models that represent two extremes of resolution within the class of models with a

turbulence parameterization (i.e., that are not Direct Numerical Simulations (DNS)): a

LES and a General Circulation Model(GCM).

In the LES, part of the small scale turbulence can be explicitly described and the

resolution limit lies in the inertial subrange, the K41 theory constitutes the basis on many

consideration about unresolved turbulence statistics. The LPDM has to be implemented

to describe with good accuracy the inertial subrange effect, and the specific properties

of the flow are easily computed and can be taken into account.

The general circulation model has resolution of tenth of kilometers (hundredths

in some configurations) and covers every kind of limit condition for turbulence. The

unresolved motion parameterization have been chosen to be consistent with the subgrid

vertical transport closure of the global scale model. Since the sampling times on which

the general circulation model usually work is usually larger than the correlation time of

most of the small scale turbulence, one can expect the simply diffusive model to describe

adequately the unresolved motion. Parameterization more suited for the description

of CBL dispersion, mesoscale effects and deep moist convection, that can display a

Lagrangian timescale of the order of the Eulerian integration timestep, can be added

in the future.

The aim of this chapter is to offer to the reader, after a short review of existing

models and applications of LPDM in geophysical and environmental problems, a
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description of the unresolved field model parameterizations adopted in this work, and

their implementation.

4.2 Overview of existing Lagrangian Particle Dispersion

Models

4.2.1 Large eddy simulations studies on dispersion

Because of the widespread use of LES, it gives a frame for modelling dispersion of tracers

in various conditions. The explicit description of the large scale eddies is expected to

improve the skill of the dispersion modelling, and to allow to explicity deal with effects

like meandering (Csanady, 1973).

The use of a LES to describe particle dispersion was firstly proposed by Lamb (1978).

Other works followed (e.g. Henn and Sykes (1992); Dosio et al. (2003); Dosio and

de Arellano (2006)). Among these, the works of Weil et al. (2004); Vinkovic et al.

(2006a); Cai and Leclerc (2006); Weil et al. (2012) used a Lagrangian Stochastic model

to describe the effects of unresolved motion on the dispersion of particles.

Thomson (1987) seminal paper indicates a procedure for the formulation of the noise

and drift terms in a LSM using a Langevin equation for the velocity increments, which

allows to reproduce the Eulerian velocity statistics and requires the existence of an inertial

subrange in the velocity field.

4.2.2 Trajectory models for long range transport studies

Trajectory models have been used to study transport processes in the atmosphere for

several decades now. The technique was firstly proposed by Pettersen(1940). With the

increment of available data and computing resources 1, trajectory modelling is now a

widely used tool in many fields of atmospheric sciences.

Trajectory models are used to establish a source-receptor relationship for pollutants

or natural particles (Stohl and Trickl, 1999; Cape et al., 2000; Izquierdo et al., 2011;

1The computing has seen an increase of a factor 2 every 18 months. The phenomenon is known as

Moore’s law(Lloyd, 2000)
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Wotawa et al., 2000), to identify pathways of water vapor transport, and to study the

dispersion of tracers from natural events or human-related incidents (Damoah et al.,

2004; Haszpra and Tel, 2011; Srinivas et al., 2012). Other applications can study the

influence of climate phenomena on air transport.

Validations of the model skill often make use of data from long range experiments,

such as CAPTEX, ANATEX and ETEX, where the horizontal dispersion of emission of

organic tracers were studied on scales of 100-1000 km (Stohl et al., 1998).

4.3 Eulerian models considered in this work

4.3.1 Large Eddy Simulation

The well known Weather Research and Forecasting (WRF) Model, ver. 3.0, has been

used to obtain the velocity fields data. This model (Grell et al., 2005) solves the

fully compressible, nonhydrostatic equations of motion in a terrain-following hydrostatic-

pressure coordinate.

A Runge-Kutta second or third order time-integration scheme and a second to sixth

order spatial discretization scheme for the advection term are implemented in WRF. The

model uses a time-splitting scheme, in which fast acoustic and gravity wave modes are

computed with a smaller time step.

WRF can configured as a Large Eddy Simulation (LES), which means that the

turbulent motion of eddies responsible for the boundary layer dynamics is explicitly

resolved (Moeng and Wyngaard, 1988; Moeng et al., 2007; Antonelli and Rotunno, 2007;

Catalano and Moeng, 2010).

For the development of the LPDM, we used the output produced by this model. The

output consisted in the resolved velocity fields uRi for the three velocity components, and

in the subgrid kinetic energy field eS . The fields are sampled on Cartesian coordinates

both in the horizontal and vertical direction.
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Forecast n. long. n. lat. n. σ long. res. lat. res. [km] ∆t

Monthly 362 242 50 78 km 165 km 432 s

Monthly (high res.) 450 322 50 63 km 124 km 360 s

Operational 898 626 60 31 km 63 km 180 s

Experimental(high res.) 1202 818 60 24 km 49 km 150 s

Table 4.1: Resolution settings adopted by GLOBO. Longitude resolution refers to a 45◦

latitude.

4.3.2 GLOBO, general atmospheric circulation model

GLOBO (Malguzzi et al., 2011) is a global scale model developed at the institute ISAC

of the National Council of Research of Italy. It is derived from the grid point limited

area meteorological model BOLAM (Buzzi et al., 1994) developed in the same insitute,

from which GLOBO takes the numerical schemes and physical parameterizations. The

general circulation model has been running experimentally since August 2009.

GLOBO implements a latitude-longitude coordinate system and a split-explicit time

scheme2.

The dynamical equation are integrated over a hybrid vertical coordinate system where

the terrain-following coordinate σ (0 < σ < 1) smoothly tends to a pressure coordinate

p with height above the ground, according to:

p = p0σ − (p0 − pS)σ
α , (4.1)

where p0 is a reference pressure (tipically 1000 hPa), pS is the surface pressure and α is

a parameter that drives the transition from classical σ for α = 1 (Phillips, 1957). The

parameter α depends on the orography and, consequently, on resolution. It is limited by

the relationship:

α ≤ p0
p0 −min(pS)

, (4.2)

2The use of explicit time scheme requires shorter time steps than semi-implicit and semi-Lagrangian

methods but has the advantage of a much simpler implementation and a more accurate numerical

description of the phase speed of gravity waves. The application of the domain decomposition to such a

model is also straightforwardly done.
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Figure 4.1: Left: Horizontal discretization of fields on the Arakawa-C grid of GLOBO.

Center: Arakawa-C grid at the poles. Blue, red and green dots are T,U and V points,

respectively. The red shaded area is the polar volume. Right: Vertical discretization of

GLOBO field variables between σ integer and semi-integer levels.

which is satisfied by the typical setting α = 2 used for a wide range of resolutions in

GLOBO applications (Malguzzi et al., 2011).

The horizontal discretization is based on a staggered Arakawa-C grid. The north and

south poles carry T points only.

Figure 4.1 shows a stencil of the Arakawa-C grid variable attribution, on the left, and

the distribution of the field variables at the poles in the center.

In the vertical, the GLOBO prognostic variables are distributed on a Lorenz (1960)

grid: all the quantities are defined on “integer” levels σi except vertical velocity, turbulent

kinetc energy and mixing length and diffusion coefficients, which are located at “semi-

integer” levels σ
(1/2)
i . The graphic on the right in fig. 4.1 shows the positions of the σ

integer and semi-integer levels. The boundary condition for the velocity σ̇, is σ̇ = 0 both

at the bottom (semi-integer σ level NLEV+1) and at the top (semi-integer σ level 1).

In typical applications, GLOBO vertical grid is regularly spaced in σ, although it is

possible to use a variable grid spacing as in its limited area version BOLAM (Buzzi

et al., 1994). In the latter case, the position of the i-th ( i = 1,NLEV + 1) semi-integer

level σ
(1/2)
i in terms of σ coordinate, is defined by a quadratic polynomial function of the

form:

σ
(1/2)
i = βζ + γζ3 + δζ4 , (4.3)
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Figure 4.2: GLOBO domain parallelization. MYID is the processor identification

number.

where ζ = i/(NLEV+1) and the values of the parameters are usually β = 0.78, γ = 1.44

and δ = 1.22.

GLOBO can be run on parallel architectures, and adopts a domain decomposition

parallelization. The domain decomposition between processors is schematized in fig. 4.2.

The prognostic variable values are distributed at the grid nodes, and the values at the

boundaries (thick lines in the figure) are saved by all the neighboring processors.

4.4 Models implemented in this work

4.4.1 Subgrid Motion parameterization on LES fields

The velocity is divided into resolved and subgrid parts u = uR + uS with the hypotesis

of statistical independence of the two parts 〈uRiuSj〉 = 0.

The whole velocity field (see Eq. 1.34) is required to be consistent with Kolmogorov
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(1941):

〈du2i 〉 ≡ 〈du2Ri〉+ 〈du2Si〉 ≃ C0εdt . (4.4)

When it comes the computation of the subgrid velocity contribution, in Weil et al.

(2004), the correlation functions for both the resolved and subgrid part of the velocity

are assumed to have the same exponential form (Eq. 1.38), so that for small times:

RR(t)

〈u2Ri〉
=
RS(t)

〈u2Si〉
≃ 1− t/TL . (4.5)

From Eqs. 4.4 and 4.5:

C0ε =
2

TL
[〈u2Ri〉+ 〈u2Si〉] (4.6)

With Eq. 4.6, a unique Lagrangian correlation time is assumed for the resolved and

subgrid part.

Then, the authors identify 〈ui〉 = uRi, and u′i = uSi in order to use the resolved

velocity and the subgrid correlation tensor given by the LSM in Eq. 2.40 (Note that

〈u′i〉 = 0, whereas this is not true in general for 〈uSi〉). Assuming a diagonal form of the

covariance tensor for the subgrid velocities 〈uSiuSj〉 = 〈u2S〉δij the authors write, from

Eqs. 4.4 and 4.6:

du2Si =
2〈u2S〉
TL

dt , ∀i , (4.7)

so that it results:

b2 =
2〈u2S〉
TL

, (4.8)

and finally Eq. 2.40 reads:

duSi =

[
−uSi
TL

+
1

2

∂〈u2S〉
∂xi

+
1

2〈u2S〉
d〈u2S〉
dt

uSi

]
dt+

(
2〈u2S〉
TL

)1/2

dWi(t) . (4.9)

This is Eq. 15 with hypotesis Eq. 21 by Weil et al. (2004).

This approach makes a partition of the dissipation rate, partly due to the subgrid

velocities, partly due to the resolved field. In this interpretation both uR and uS are

treated as stochastic variables. This means that, in principle, the WMC is going to be

satisfied if and only if all the possible realizations of resolved velocity field are sampled.

One shall consider the possibility of investigating dispersion around a single realization

of the resolved velocity. WMC will be applied to the Eulerian pdf of the subgrid velocity,

whereas the resolved part is considered deterministic.

66



4.4 Models implemented in this work 67

Moreover one imposes the dissipative range to be characterised by the unique value

of ε (see sec. 1.3.2).

The identification of resolved velocity with average velocity, fluctuating velocity with

subgrid velocity, and the assumption of the diagonal form for the covariance tensor are

made as in the previous model formulation.

Thus Eq. 2.40 with Eq. 1.34 leads to the following expression for duSi:

duSi =

[
− C0ε

2〈u2S〉
uSi +

1

2

∂〈u2S〉
∂xi

+
1

2〈u2S〉
d〈u2S〉
dt

uSi

]
dt+ (C0ε)

1/2 dWi(t) (4.10)

Note that Eq. 4.10 differs from Eq. 4.9 because of the first term in the drift coefficient

and of the diffusion coefficient. Here, a new time scale appears:

TS =
2〈u2Si〉
C0ε

(4.11)

Eq. 4.10 can be rewritten introducing the timescale TS to highlight the formal differences

with eq. 4.9:

duSi =

[
−uSi
TS

+
1

2

∂〈u2S〉
∂xi

+
1

2〈u2S〉
d〈u2S〉
dt

uSi

]
dt+

(
2〈u2S〉
TS

)1/2

dWi(t) (4.12)

Eq. 4.12 is the same used in Vinkovic et al. (2006b).

4.4.2 Random displacement model implemented in IL-GLOBO

The Integrated Lagrangian GLOBO model, which has been implemented as part of this

PhD, includes a module for the description of the vertical motion of particles. The

equation, written for the particle Cartesian coordinate x3, reads:

dx3 =

(
uR3 +

∂K

∂x3
+
K

〈ρ〉
∂〈ρ〉
∂x3

)
dt+

√
2KdW (4.13)

Where uR3 is the resolved vertical velocity.

Another form of the equation can be written for the native σ coordinate of GLOBO:

dσ =

[
σ̇ +

K

ρ

∂ρ

∂σ
+
∂K

∂σ
+K

∂2σ

∂x23

]
dt+

√
2KdW (4.14)

where σ̇ is the vertical velocity in the σ coordinate system and x3 = Φ/g.
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The additional term appearing in the drift is due to the application of the the Itô

chain rule (see Eq. 2.23), being not σ(x3) a linear function, in general.

The vertical Lagrangian coordinate σ is connected to the Lagrangian vertical position

x3 through Equation (4.1) and the hydrostatic relationship.

4.5 Structure of dynamical fields

4.5.1 LES output fields and settings

Settings

The LES run simulates the Convective Boundary Layer (CBL) over an homogeneous

surface with a fixed heat flux q∗ = 0.24Km/s at the ground. The total integration time

is 2 h with a time step of 0.25 s. The spatial grid is made of 128× 128× 128 nodes and

the model domain is about 4000 m × 4000 m× 2000 m with the following mesh lenghts:

∆x1 = ∆x2 = 32 m ∆x3 = 15.5 m (4.15)

The geostrophic wind in the model is set to 0. The initial potential temperature is put

constant and equal to 300K from the ground to 925m, then it presents a capping inversion

of 8K 150m thick, and above it increases linearly of 3K/km. A random homogeneous

perturbation with amplitude 0.1K has been added at the initial time to the temperature

field to activate turbulence.

After 1 hour the model reaches an almost steady condition. For the next 3600 s

the three velocity components uR1, uR2, uR3 and the residual kinetic energy field eS are

recorded at 1 s intervals.

Velocity moments and spectra of the LES

The horizontally averaged kinetic energy profile of the LES is shown in Fig. 4.3 as

function of height. Values are averaged horizontally and over the entire time of the

available dataset (3600 s, 1 frame per second). The graphic shows the resolved velocity

fields contribution to the energy, as well as the subgrid energy field profile and the total
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energy profile computed as:

eT =
3∑

i=1

1

2
u2Ri + eS . (4.16)

The subgrid turbulent kinetic energy averaged considering only the mixing layer has

a value of eS = 0.25 m2/s2. Over the mixing layer top the total turbulent kinetic

energy (eT ) strongly decreases, as expected. Considering the initial profile of potential

temperature, an estimate for the CBL height is hi = 1000 m, leading to w∗ = 2 m/s.

In this work, the choice has been made to attribute the CBL height hi according to the

middle of the abrubpt decrease of kinetic energy shown in Fig. 4.3, leading to a value

of hi = 1100 m. The new hi, substituted in eq. 1.45, leads to a w∗ = 2.06 ≈ 2. From

Eq. 1.76, the value of ǫ averaged in the mixing layer is ǫ = 9 10−3m2/s3. All the three

distributions display a maximun in the energy near the ground. This can be addressed

to the horizontal shear produced by the eddies turnover, increasing both the variance of

the horizontal velocities and the dissipation of energy due to the Eddy-Viscosity closure

near the ground. It is worth noting that the first data level is 7.75 m above the ground

(1/2 ∆x3), so that the horizontal velocity is not forced to be null at that level. Figures

4.4, 4.5 and 4.6 show the resolved velocity moments of order 2, 3 and 4 respectively.

In Fig. 4.4 the second order velocity moments are plotted, normalized with w∗, as a

function of the adimensional height x3/hi. Profiles are averaged over the entire sampled

simulation time. The contribution of the filtered velocity has been assumed isotropic and

added to the each component profiles as 2/3 eS . The vertical velocity field variance has a

maximum at ≈ 0.3hi and goes to 0 at the ground. Variances of the horizontal components

have maximum near the ground and at the top of the boundary layer, whereas in the body

of the mixing layer 〈u′21 〉 and 〈u′22 〉 keep a constant value. As stated when commenting the

kinetic energy profiles, maxima in the horizontal velocity components can be attributed

to the eddy turnover near the ground and at the top of the mixing layer. From similarities

of horizontal profile can be evinced the expected isotropy of the horizontal fields.

Fig.s 4.5 and 4.6 show the third and fourth order moments for the vertical velocities

adimensionalized with w∗ in the top plot, and the same moments normalized with

the vertical velocity variance (skewness and kurtosis). The third order moment has a

maximum located at ≈ 0.5hi, above the height of the second order one. The maxima of
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Figure 4.3: Total (red continuous line), subgrid (green dashed line) and resolved (blue

dotted line) kinetic energy (averaged over horizontal planes) as function of height. Values

averaged on the whole dataset.
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the fourth order moment is at ≈ 0.4hi. The oscillations in skewness and kurtosis profiles

for x3/hi > 1 are caused by the values of the normalizing vertical velocity variance

approaching zero.

The fitting empirical functions shown in figures 4.4, 4.5 and 4.6 have been proposed

by Lenschow et al. (1980) and Gryanik and Hartmann (2002), and have been modified

slightly in order to better fit the LES data. Their expressions are:

µ2(ξ)

w2
∗

= a2ξ
2/3(1− b2ξ)

2 cut(ξ, d) (4.17)

µ3(ξ)

w3
∗

= a3ξ(1− b3ξ)
3(1 + c3ξ) cut(ξ, d) (4.18)

µ4(ξ)

w4
∗

= a4ξ
4/3(1− b4ξ)

4(1 + c4ξ) cut(ξ, d) (4.19)

where ξ = x3/hi is the adimensionalized height and the parameters take values

a2 = 2.03, b2 = 0.8, a3 = 1.11, b3 = 0.81, c3 = 2.0, a4 = 6.76, b4 = 0.81 and c4 = 1.5.

The function cut(ξ, d) is included to smoothly reduce the moments to 0 above the mixing

layer height, were the function have not defined values. It has the form:

cut(ξ, d) =
1

π

[
tan−1(−(ξ − 1)d) +

π

2

]
(4.20)

and d = 30.0.

Fig. 4.7 shows the logitudinal spectra of the LES velocity fields. The Fourier analysis

is restricted to the lower 64 point of the domain, including most of the mixing layer. The

ideal K41 spectrum is also shown, with CK = 1.0, chosen as the best fitted value from

inspections of compensated power spectra. Note that for wavenumbers larger than about

4 10−3 m, corresponding to a spatial resolution of 4∆ ∼ 125 m, the spectra show less

energy than the k−5/3 inertial subrange.

The viscosity νT of the eddy-viscosity closure of the LES is described by Eq. 1.75,

and introduces a Kolmogorov-like lengthscale:

ηS =
4

√
ν3T
ǫ

(4.21)

Substituting the subgrid kinetic energy averaged over the whole model domain in Eq.
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4.21 (eS ∼ eS), using also Eq.1.76 it results:

νT ∼ 0.5
m2

s
(4.22)

and

ηS ∼ 4.0m (4.23)

Thus, the viscosity length scale is 1/4 of the resolution: the spectrum at large

wavenumbers is thus consistent with a viscous decay, much larger than the inertial one.

4.5.2 Test run of GLOBO

GLOBO has been run with the low resolution settings with data of the period 03/11/2011

- 03/18/2011. The aim of this run has been the computation of the dynamical field

profiles. GLOBO settings were those used for monthly forecast, with the horizontal grid

of 362× 242 cells and 50 vertical levels evenly spaced in σ.

Globally averaged vertical profiles of K, ρ and φ have been computed as a function

of σ. The computation of profiles started after 6 h from the beginning of the run, and

the profiles have been averaged for 6 h. Figures 4.8 and 4.9 report the K profile and the

ρ and geopotential height φ/g average profiles, respectively.

The profiles have been fitted with analitical functions. With regard to the K profile,

the function:

e(z) = Az exp
[
−(Bz)C

]
(4.24)

has been used, with A = 0.23 determined according to GLOBO average surface-layer (the

first GLOBO vertical level) and the other two parameters let to vary giving B = 3.8 10−3

and C = 1.3. It can be observed that the given A corresponds to a friction velocity

u∗ ≃ 0.5.

Similarly, functions for profiles of the geopotential field φ and density field ρ have been

adopted. These expressions are obtained by considering a fluid in hydrostatic equilibrium

with a linearly decreasing temperature profile:

φ(σ) =
(σ(−RdΓ/g) − 1)T0g

Γ
(4.25)
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data made with function 4.24.
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and

ρ(σ) = ρ0

(
(T0 + Γ x3(σ))

T0

)−(1+g/(Rd Γ))

(4.26)

The fitting curves are obtained with values T0 = 288.0 K, ρ0 = 1.2kg/m3, Γ =

−0.007K/m and:

x3(σ) =
φ(σ)

g
. (4.27)

It can be observed that, expressing the density ρ in sigma vertical units (ρσ = ρ
∣∣ dz
dσ

∣∣),
using Equations (4.25) and (4.26), it gives the constant value:

ρσ =
ρ0RdT0

g
. (4.28)

4.6 Numerical implementation of the models

4.6.1 Interpolation and derivation

IL-GLOBO

IL-GLOBO implements both a linear interpolation scheme and an Akima (1991), and a

third order polynomial scheme based on the Akima (1970) spline scheme, completed with

the control for non negativity proposed by Fischer et al. (1991). These techniques are

explained in details in section 3.3.5. The choice of Akima (1991, 1970) interpolation

scheme provides an automatic consistency between field values and its first vertical

derivatives in exchange to greater memory allocation and computational cost.

In the 3-D interpolation, in order to apply the 1-D Akima spline a ‘slab model’

approximation has been adopted, where in each horizontal cell the values of the

interpolated field is considered constant with values averaged between adjacent points.

When the linear interpolation algorithm is applied, the first and second order

derivatives are computed using a centered 3 point scheme, of order O(∆σ2) and then

interpolated linearly on the particle position σp. At the lower boundary (σ = 1,

semi-integer level NLEV + 1) two different boundary condition can be imposed on the

derivatives.

The first condition, given a generic field Ψ and a generic coordinate γ, requires that the
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first derivative at the ground is constant and computed as:

∂Ψ

∂γ
|NLEV+1 =

ΨNLEV+1 −ΨNLEV

γNLEV+1 − γNLEV
(4.29)

For the second condition, the value of the second derivative is considered constant and

equal to its value at the level above:

∂2Ψ

∂γ2
|NLEV+1 =

∂2Ψ

∂γ2
|NLEV . (4.30)

With this choice, the first order derivative at the ground is written as:

∂Ψ

∂γ
|NLEV+1 =

∂Ψ

∂γ
|NLEV +

∂2Ψ

∂γ2
|NLEV ∗ (γNLEV+1 − γNLEV ) . (4.31)

In the default configuration of IL-GLOBO, Eq.s 4.31 and 4.30 are adopted to compute

derivative at the lower boundary for the density and geopotential, respectively. Derivative

are computed using Eq. 4.29, instead, when dealing with the diffusivity field K. With

this choice, the derivative is consistent with a linear profile of K near the ground.

Random Flight Model on LES

The interpolation of the LES field is made using a 3D linear interpolation.

The values of the derivative of the kinetic turbulent subgrid energy eS at the

boundaries are made considering the derivative to be 0. This choice is consistent both

with the surface layer hypothesis and the fact that eS goes to 0 above the mixing layer

height.

4.6.2 Integration scheme

IL-GLOBO

IL-GLOBO implements two finite differences integration scheme, the Euler-Maruyama

scheme and the Milstein scheme, for the equations 4.13 and 4.14. The details for these

schemes are shown in section 3.2. The stochastic model is applied only on the vertical

position.
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At the boundaries, reflective condition on the σ or cartesian coordinate are adopted.

Note that in case of non-homogeneous K at reflecting boundaries, a correct numerical

implementation would require that ∆t vanish as the particle approaches the boundary

(Ermak and Nasstrom, 2000). With the dynamical timestep selection algorithm described

in the following section, this necessity has been taken into account while mantaining a

low computational cost.

IL-GLOBO is also parallelized in the same way of its parent model, GLOBO. When

particles cross the boundaries of a processor domain, exiting and entering particles are

transmitted to the other processor. Since the efficiency of parallelization strongly depends

on the frequency of communications between processors during the run, the passage of

particle is made only once per processor per dynamical model timestep (see table 4.1).

RFM-LES

All the Lagrangian random flight models using LES fields implement an Euler-Maruyama

scheme (see sect. 3.2). The stochastic model integrate particle motion for the three

dimensions. The equations implemented are eq. 4.9, 4.10 and the bi-Gaussian pdf

equation described in eq.s 2.43 and 2.44.

The bi-Gaussian pdf equations adopt the MMI algorithm for the definition of a free

parameter as described by Maurizi (1998). The model needs the prescription of third

and fourth order moment profiles. In the first four level above the ground, for the sake of

computational stability of the method, the velocity variance is considered constant and

the moments of order 3 and 4 are considered to be Gaussian.

A reflective condition is applied for particle crossing vertical boundaries. The timestep

used in the integration of the models has been considered sufficiently short for the need

of well representing the boundaries (Wilson and Flesch, 1993).

On the horizontal, the domain of the LES have been considere periodical (as it is for

the dynamical simulation itself), so boundary condition are not needed.
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4.6.3 Selection of the timestep

The integration of the Langevin equation is not made on a fixed grid, so a condition like

the Courant number do not exist.

In general, the finite difference approximation works well for a fixed timestep as much

as the field is slow varying in the integration step length.

When dishomogeneities and strong gradients in the variable arise, the timestep

limitation can become very strict. Some strategies are needed for obtaining an acceptable

accuracy in computation while mantaining an affordable computational cost.

Dynamical time step selection for IL-GLOBO

The choice has been made for a dynamical timestep selection algorithm, that locally

selects the time interval to use for the integration step.

Among the fields involved with the integration of eq. 4.14, the diffusion coefficient is

by far the fastest changing. So the variation of the other fields can be neglected when

evaluating the timestep conditions.

The first timestep constraint involve the diffusivity derivative and requires the time

step satisfying the condition:

√
2K∆t1 ≪ K

(
∂K

∂x3

)−1

(4.32)

(see, e.g., Wilson and Yee, 2007) which expresses the fact that the average root-mean

square step length must be much smaller than the scale of the variations of K.

The condition expressed by Equation (4.32) makes ∆t1 to vanish for x3 → 0. This

behaviour ensures the WMC to be satisfied theoretically but clearly poses problems for

numerical implementation (Ermak and Nasstrom, 2000; Wilson and Yee, 2007). A ∆tmin

need to be selected, small enough for the solution to be within the accepted error and, at

the same time, large enough to not impact negatively on the overall computational cost.

Moreover, at maxima (or minima), Equation (4.32) give an unlimited ∆t1 which is

not suitable for the integration of the model, because particle can have a large integration

step where the fields are still rapidly varying.

82



4.6 Numerical implementation of the models 83

To avoid this problem, a constraint is adopted, based on a spatial scale that gives an

estimation of the width of the maximum, namely, the normalised second-order derivative:

2K∆t2 = CTK

∣∣∣∣
∂2K

∂z2

∣∣∣∣
−1

(4.33)

with CT ≪ 1. The above Equation has the property of limiting ∆t2 according to the

strength of the peak of K(z).

Taking the minimum among ∆T , ∆t1 and ∆t2, Equations (4.32) and (4.33)) give:

∆t = min

[
∆T,

CT

2
K

(
∂K

∂z

)−2

,
CT

2

∣∣∣∣
∂2K

∂z2

∣∣∣∣
−1
]

(4.34)

where the paramter CT quantifies the “much less” condition and, therefore, must be

smaller than 0.1. No other arbitrary assumptions is needed to define this criterion. Its

performances will be evaluated in subsequent sections.

Figure 4.10 shows the resulting integration timestep profile for the fitted average

profile of GLOBO. The contribution of each term of eq. 4.34 is shown in a separate

curve. It can be observed that at high levels, both constraints tends to the same value

due to the vanishing of K and their derivatives, and at σ ≃ 0.87 they become larger

than the Eulerian time step ∆T . Around the maximum of K, ∆t2 becomes small and

dominates in Equation (4.34). Finaly, near the ground, the linear decrease of K with

height, makes ∆t1 dominant.

A practical consideration has to be made about parallelization of the code. Because

of the passage of particle between processors is made once per dynamical timestep

(macrostep), the horizontal integration timestep cannot be easily reduced. Because of

this, the integration of the Langevin equation is made first in the vertical direction for

the duration of a macrostep, then particles are advected horizontally.

Timestep selection for RFM on LES fields

For a Langevin model of Markovian order 1, the relevant conditions for the selection of

timestep can be written as (Thomson, 1987; Rotach et al., 1996; Schwere et al., 2002):

∆tmax = min

(
γ2ǫ

|u3∂ǫ/∂z|
,
γσui
aui

,
γ2σui

|u3∂σui/∂x3|
,

∣∣∣∣
u

u3∂u/∂z

∣∣∣∣ ,
γ2σ2u3
1/2b2

)
(4.35)
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Figure 4.10: Contribution of the different requirements on the selection of integration

timestep ∆t. The green line shows the values for the second order derivative dependent

condition (Eq. 4.33), the blue line describes the first order derivative dependent condition

(Eq. 4.32), and the black dashed line shows the combined condition for the ∆t (Eq. 4.34).

The K profile is also shown, for reference (red line).
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where γ ≪ 1, aui and b are the drift and Wiener terms of the Langevin equation.

In the LPDM implemented in the LES, the timestep of 1 s, corresponding to the time

lapse between the available fields, it has been found to be sufficiently short to obtain a

sufficiently accurate integration. When necessity arises, the timestep is reduced for the

whole model.

The possibility of the use of a dynamical timestep selection has been considered, but

has not been implemented yet.
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Chapter 5

Experiments

5.1 Introduction

This chapter describes the validation tests and results obtained with the models described

in Chapter 4. The numerical experiments have been made with different purposes: the

tuning of parameters for the numerical implementation (Sect. 5.3), the study of effects of

different parameterizations on particle statistics (Sect. 5.4), the evaluation of the model

consistency adopting different configurations (Sect. 5.5), and the comparation of model

results with real experiments (Sec. 5.6).

5.2 Settings of the LPDM

5.2.1 Il-GLOBO

Given the difficulties and unknown factors arising during the testing of IL-GLOBO in its

3D version, a simplified 1-D model implementing the algorithms for the vertical dispersion

of IL-GLOBO 3D has been used.

The model IL-GLOBO-1D runs offline with prescribed field profiles. Values of fields

can both be interpolated from an array of data or computed analitically from prescribed

functions.

The analytical functions used have been desctribed in Sect. 4.5.2, with the addition
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Figure 5.1: Diffusivity profiles. Blue lines with point show the average K profile in

GLOBO averaged over the model domain. The curve in green represents the fit with the

averaged data made with function 4.24. The red curve represents another, more peaked

profile used to test the limit of the scheme.

of an alternative profile for K used to test the model in extreme situation. In fact,

it has been observed that, locally, GLOBO sometimes display diffusivity profiles with

isolated, strong maxima at the second level above the model surface. This second profile

is obtained from Equation 4.24 with B = 2.0 10−3 and C = 5.0. The profile is shown in

figure 5.1.

5.2.2 Random Flight Model on LES data

For the Random Flight Model on LES data (RFM+LES) case, different settings for

the Lagrangian model have been tested, in order to evaluate how the different models

describe the statistical properties of the turbulence and how they perform in comparison

with experiments.

Five different settings have been used.
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• Model A : The motion of the subgrid part is neglected. Particles are solely driven

by the resolved velocity field.

• Model E : Particle motion is driven by the resolved velocity field combined with a

subgrid velocity computed by the model described by Eq. 4.10.

• Model F: Same as model E, but the subgrid velocity is computed using the Weil

et al. (2004)-type subgrid model, Eq. 4.9.

• Model Ga: The model do not use directly the LES fields, but describe the particle

motion using as input a vertical profile for the velocity variance (different for the 3

velocity components).

A stochastic model with a gaussian pdf is prescribed for the horizontal velocities,

and a bi-gaussian pdf is prescribed for the vertical velocities.

The profiles are defined analitically by Equations: 4.17, 4.18 and 4.19. The

functions are sampled on a grid with the same resolution of the LES model and the

variable values are then interpolated during the run.

• Model Gn: The same as model Ga, but directly uses the horizontally averaged

fields computed from the LES.

Note that, since for models Ga and Gn the subgrid velocity variance fields correspond

to the total velocity variance field and so TS = TL, there is no distinction between the

Weil et al. (2004) model and the other in that case.

During the first testings with model Gn, a large number of particle exiting the mixing

layer was found. The problem could be addressed to the poor description of the variance

gradient at the top of the boundary layer in the model or the to the presence of higher

value of velocity variance above the limit of the CBL with respect to the fields used

by the model Ga. None of the previous justification is completely satisfactory On one

hand, the profile of velocity variance is, by its definition, the same of model E and F

that, in turn, do not show this kind of problem. On the other hand, the Gradient of

Ga, althought relative to an analytical function, is very similar to the one of Gn, and

Ga too do not show any problem with the mixing layer limit. A possible explanation is
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that the non zero variance displayed by the vertical profile is the result of isolated and

unconnected areas with positive variance in the 3D fields. Then, the profile of variance

actually overestimate the dispersion properties in this area. This hypothesis has not been

tested yet.

In any case, the results given by experiment Gn are clearly not suited to describe the

dispersion in the CBL, and thus have been dismissed in the rest of this work.

5.3 Tuning of IL-GLOBO dynamic timestep selector

The first series of experiments with IL-GLOBO-1D concerns the optimization of the

adaptive scheme for ∆t, i.e., the selection of the coefficient CT (see Eq. 4.34).

Simulations were performed distributing particles with concentration proportional to

ρ. For the WMC to be satisfied, this distribution must be statistically maintained as

the time evolves. A number of about 400000 particles was used for all of the test. IL-

GLOBO-1D have been run for a simulation time of 24 h. The density, geopotential and

diffusivity distributions were defined by the analitical functions: Eq. 4.26, Eq. 4.25 and

Eq. 4.24, respectively. The parameters of the diffusivity profiles are those of the fitted

GLOBO average.

Note that, when expressed in a σ-coordinate defined from Eq. 4.25, the profile of

density, defined in the cartesian coordinates by Eq. 4.26, becomes a constant.

For the simulations 4 cores of a Intel Xeon multi-CPU, multicore machine was used.

Five different values of CT have been tested, with values of 0.5, 0.1, 0.01, 0.001.

Concentration profiles have been computed by dividing the number of particle

between 200 bins regularly spaced in σ. The deviation of the model from the WMC

has been evaluated considering how much the particle distribution at the end of the run

differed from the normalized (and constant in σ) density profile.

Figure 5.2 reports the different profiles of concentration after 24 hours of simulation

for different values of CT (Lower panel). The shaded area indicate the error within 3

standard deviations for the distribution of particles. Also reported in the figure the

timestep profiles for the different choices of CT and the diffusivity profile (upper panel).

Values of the RMSE are reported in Table 5.1 along with the computation time.
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Figure 5.2: Top graphic: Timestep profiles for different choices of CT : light blue CT = 0.5,

green CT = 0.1, red CT = 0.01, blue CT = 0.001. The K profile is also shown. Bottom

graphic: Normalized concentration profiles for different CT (colors as defined above) and

normalized density profile (horizontal black line). The shaded area indicates the error

between 3 standard deviations.

Both experiments with CT = 0.01 and CT = 0.001 have the same value of RMSE. That

value can be interpreted as the statistical limit given the number of particles and vertical

resolution when computing the concentration.

Since results do not improve reducing the parameter below CT = 0.01, this value have

been chosen for all the following experiments.

5.4 Moments and statistics of RFM+LES for different

configurations

A comparative study between the different model listed in Sect. 5.2.2 has been made

with the purpose to evaluate their description of particle motion. The second, third
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CT RMSE Time [s]

0.5 0.044 76

0.1 0.037 238

0.01 0.021 1172

0.001 0.021 7317

Table 5.1: RMSE and execution time for different CT .

and fourth order velocity moments, Lagrangian correlations and velocity pdfs have been

evaluated for the models A, E, F and Ga.

The experiment have been made by dispersing 400000 particles homogeneously

distributed in the mixing layer (including all the independent point in the horizontal

periodic domain), between 8 m (the lower boundaries) and 1000 m. After 600 s, the

particle have been considered having filled the mixing layer and reached equilibrium

with the fields. Then, for 1200s the position and velocity values have been saved. The

values have been sampled every second for the first 60 s, then every 10 second up to 600

s, then every 60 s.

Velocity moment profiles have been computed considering the particles between two

vertical mesh point, and also averaging over time. The velocity pdfs have been computed

similarly, obtaining a velocity pdf for every 15 m up to the mixing layer height.

Figures 5.3 and 5.4 show the model second and third order velocity moment profiles

respectively. The values of the variance of A are lower, as expected, because of the

absence of subgrid turbulent kinetic energy contribution.

Fluctuating values above x3/hi = 1.1 are due to the low number of particle in that

area causing statistical noise. The effect do not appear in model Ga and with less intensity

in model A because no particle reach that height.

In general, all models reproduce adequately well the velocity moments predicted, and

thus are consistent with the Eulerian fields.

Examples of probability density function for the vertical velocity are shown in Fig. 5.5,

for different heights. It is evident that, even if the biGaussian pdf modelled in experiment
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mod. F; purple, mod. Ga. Black line plot the analytical function Eq. 4.17
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Figure 5.5: Probability density functions at 320m computed from tracer velocities.

Different colors denote different experiments, as in Fig. 5.3

Ga represents well the velocity moments up to the fourth order, an unnatural bimodality

is present.

The correlation functions have been computed by considering the i-th velocity

component of the n-th particle at initial time as u
[n]
i (t0) and then, for each t > t0,

the correlation function is obtained as:

R̃(t− t0; t0) =
1

∑
n

(
u
[n]
i (t0)u

[n]
i (t0)

)
∑

n

(
u
[n]
i (t− t0)u

[n]
i (t0)

)
(5.1)

Where the sums are intended over the whole set of particles. The correlations have been

computed separately for the subgrid, resolved and total velocity of the particle.

Results for the horizontal velocity are shown in Figure 5.6. From the values of ε, 〈u2Sh〉
and 〈u2Rh〉 (h = 1, 2) computed from the data shown in Fig.s 4.3 and 4.4 and using Eq.s

1.39 and 1.38, the expected values for the Lagrangian timescale adopted from models

are: TS ∼ 30 s and TL ∼ 100 s.

The correlations of the subgrid velocities are consistent with this prediction, with
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models Ga and F that well reproduce the Gifford (1982) correlation with Lagrangian

timescale TL, and model E that reproduces the same correlation function with Lagrangian

timescale TS .

Considering the correlation functions of the total velocity, it can be seen that the

presence of a subgrid scale velocity reduces the correlation. It is interesting to notice

that the final correlation function is not consistent with the total correlation timescale

TL, that has been computed from the dissipation rate ǫ coming from the same simulation.

Lagrangian correlations of vertical velocities also show the same correlation reduction

for short times. The form of the correlation strongly differs from the Gifford (1982)

because of the absence of homogeneity in the vertical direction.

5.5 IL-GLOBO 1D: Effects of the resolution on the WMC

One can expect that, indipendently from the timestep choice, the errors in the

computation of the derivative and the ones produced during the interpolation can hinder

the skill of a model in fullfilling the WMC.

A set of numerical experiments have been performed with the purpose of evaluating

IL-GLOBO resolution requirements for maintaining consistency with the WMC.

Under the same experimental conditions described in Sect. 5.3, different resolutions

have been tested.

The experiments have been set as follow. First, analytical fields were sampled on

a grid, according to the resolution of each experiments. Then the IL-GLOBO-1D was

run with the desired resolution, computing the field values with the linear interpolation

algorithm as described in Sect. 4.6.1. The experiments tested both the GLOBO averaged

and peaked diffusivity distribution.

The resolutions considered were (here expressed by the number of point of the σ

array): 50 points (the same resolution of the GLOBO monthly forecast), 50 points on a

non regular grid (with higher resolution near the ground), 100 points, 100 points on a

non-regular grid, 200 points and 500 points.

Results for the GLOBO averaged diffusivity distribution (the green curve in Fig. 5.1)

are shown in fig. 5.7. The experiment with interpolation over 50 regularly spaced points
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Figure 5.6: Lagrangian horizontal velocity correlations. In the upper panel, correlations
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Different colors denote different models: A, red; E, green; F, blue; Ga, purple. Also

plotted the expected correlation function (eq. 1.38) given the integral Lagrangian

timescale for each experiment.
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shows accumulation of particle near the ground and above the diffusivity maximum.

The experiment with 50 points on a non-regular grid perform better not accumulating

particles near the ground thanks to the increased resolution, but has the same problem

of the previous one for the higher levels. The other resolutions perform within the 3

standard deviation error-bar.

The accuracy of IL-GLOBO with the default resolution is thus near the limit of the

description of the WMC for the average GLOBO diffusivity distribution.

Fig. 5.8 shows the results for the peaked diffusivity distribution (the red curve in

Fig. 5.1). All the experiments clearly break the WMC. The problem has been addressed

to inconsistency between the values of diffusivity and the values of its first derivative.

The fact that also the 500 point resolution experiment is not WMC compliant suggests

that the sensibility of the model to this error very high. A third set of tests have been

executed using the Akima (1970) and Akima (1991) algorithms for the interpolation.

These interpolation algorithm permit to compute analytically the values of the diffusivity

derivatives. In this case, the experiments do not show any deviation from the WMC above

the statistical limit, thus reinforcing the idea that the error in the WMC is due to the

value-derivative inconsistency in the linear interpolation method.

The computational cost of the Akima (1970, 1991) and the linear interpolation

algorithm have been compared. Model with Akima (1970, 1991) algorithms and the linear

interpolation algorithms have been run with resolutions of 50 and 100 point with regularly

spaced grid. The diffusivity distribution used was the GLOBO averaged. Results are

reported in Tab. 5.2. The experiments using Akima (1970, 1991) interpolation respect

the WMC for any resolution, and the computational time they require is higher of only

∼ 10% with respect to the other one. This make the interpolation algorithm suitable for

its implementation in 3D applications.

5.6 Experiments with localized source with the RFM

The models A, E, F, Ga have been tested comparing their predictions of absolute and

relative dispersion of tracers in an experiment with localized sources with an equivalent

real experiment.
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Figure 5.7: Numerical experiment with interpolated fields. GLOBO-Averaged diffusivity

distribution. Upper panel: integration ∆t profile and diffusivity profile. Lower panel:

normalized concentration results for simulations at different resolution: 50 points (light

blue), 100 points (green), 200 points (red), 50 points non regularly spaced (black),

100 points non regularly spaced (blue). The shaded area indicates the error between

3 standard deviations.
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Interpolation algorithm n. points exec. time rmsqe

Akima-70 50 332 s 0.024

Akima-91 50 327 s 0.023

Linear 50 293 s 0.097

Akima-70 100 582 s 0.022

Akima-91 100 578 s 0.022

Linear 100 497 s 0.059

Table 5.2: Computational cost and performance of numerical algoriths with Akima and

linear interpolation, for different resolution settings.
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The data used come from the water tank experiments of Weil et al. (2002) and Willis

and Deardorff (1976).

5.6.1 Water tank experiments

The convection water tank had an initial temperature stratification, and the convection

was driven by an electrically heated bottom surface. The hi for the experiment was

chosen as the height of intersection between the well mixed temperature profile and the

linear temperature profile aloft.

In order to reproduce the dispersion downwind to a continuous source, since the tank

had not a mean flow, the source was towed along one of its axis. The source emitted

a mixture containing Rhodamine dye. A laser mounted outside the tank was towed

with the same speed of the source in order to illuminate the transversal plane at a fixed

distance downstream to the source.

Weil et al. (2002) estimated the velocity standard deviation in the mixed layer as:

σui ∼ 0.51w∗ , (5.2)

and the Lagrangian timescale as:

TL = 0.62hi/w∗ . (5.3)

Finally, the results of Weil et al. (2002) are expressed in nondimensional form using the

relationship:

x̂ =
w∗x

Uhi
, (5.4)

where U is the velocity of the mean flow.

5.6.2 Settings of the numerical experiments

The data of absolute dispersion, meandering, relative dispersion and concentration

obtained from the water tank experiment are compared with the same quantities

reproduced by our experiments.

In order to obtain a good sampling of the LES resolved fields, particles are emitted

on spherical surfaces of radius of 8 m, with sphere centres distributed equally spaced on
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5.6 Experiments with localized source with the RFM 101

a grid of 128 x 128 point covering the whole horizontal surface. Each source consists of

64 particles. Experiments have been made with sphere centres starting at two different

height: 0.32 hi and 0.07 hi. Results from emissions of 0.32 hi are meant to be compared

with relative dispersion and meandering data, the others with data of concentration

profiles.

The data are adimensionalized using the equation:

t∗ = tw∗/hi (5.5)

that is the instantaneous source equivalent adimensionalization of Eq. 5.4 (Weil et al.,

2002).

Three different quantities have been computed. Elements of the theory of turbulent

dispersion can be found in Sec. 1.5. For simplicity, in this section, we denote the root

mean square meander in the i-th direction with σmi, the relative rms dispersion with σri

and the absolute dispersion with σai. Let the position of a particle emitted in a given

release (puff or cloud or particle) be xpi and the position of the center of mass of each

release be xpi. With the usual meaning of the ensemble mean for 〈·〉, the above quantities
are computed as:

σ2mi = 〈(xpi − 〈xpi〉)2〉 (5.6)

σ2ri = 〈(xpi − xpi)
2〉 (5.7)

σ2ai = 〈x2pi〉 (5.8)

Fig. 5.9 show the vertical rms meander normalized with hi for model A, E and F.

Model A shows the largest values of meandering, model F the smallest and model E

gives results intermediate between the two. Fig. 5.10 shows normalized rms horizontal

meander for data and numerical experiments. The data are overestimated by all the

numerical models. F results are the nearest to the data. In both vertical and horizontal

cases, a small scale velocity noise added to resolved velocity fields, has the effect to reduce

the meander. This effect is stronger increasing the Lagrangian timescale of the subgrid

velocity field.

From Fig. 5.10 can clearly be evinced an effect of anisotropy between the two

horizontal component of the velocity field. The source of this behavior is not clear.
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Figure 5.9: Vertical rms meander normalized with hi, as function of the normalized

timestep t/t∗. Black squares represent Weil et al. (2002) data. Different colors denote

different models. Red, model A; green, model E; blue, model F.

The averaged velocity profile is nearly 0 for both uR1 and uR2, and their variance profiles

and correlation function are almost identical. The particles also are sampling all the

horizontal domain. Its presence in all the experiment that included the resolved fields

seem to point to an instantaneous inhomogeneity in the circulation. In the simulation

the typical distance between two updraft is of ≈ 2000 m, implying that the domain

of the LES is not large enough to avoid instantaneous fluctuations of the fields about

their average. Since the particles are emitted at the beginning of the simulation in

compact sources, and the meander increases at the initial time but remains constant for

longer times (when particles are well mixed in the flow) an initial dishomogeneity could

present itself without being eliminated (up to the limit of the domain) in the meandering

statistics. This effect also disappear in the absolute dispersion statistics for long times,

reinforcing this hypothesis.

The horizontal relative dispersion results are shown in Fig. 5.10. In order to highlight
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the asymptotic behaviour of the dispersing particles, results have been normalized with

the dispersion coefficients. In formula:

σλi∗ =
σλi√

2〈u2i 〉TLit
, (5.9)

where TLi is the Lagrangian timescale relative to the i-th component of the velocity. The

TLi used in this operation have been computed as the Lagrangian integral timescale,

i.e., integrating the correlation functions computed in the previous experiment (see Sect.

5.4).

With respect to the meandering case, the inclusion of a subgrid velocity

parameterization have an opposite effect on relative dispersion statistics. Model F shows

the highest values, followed by model E. Model A strongly underestimate the relative

dispersion.

Even if none of the subgrid velocity model implemented in this work describes directly

any relative dispersion effects, it enhance the initial growth of clouds of particle near

to each other. Then the dishomogeneity in the resolved turbulence take place, thus

increasing the relative dispersion.

Fig. 5.12 shows results for the absolute horizontal dispersion. The models

describe adequately the long times asymptotic behaviour with an underestimation of the

experimental data. The subgrid velocity parameterization can have a strong influence on

the description of the meandering and relative dispersion, but not on the description of

absolute dispersion, where the effect of largest eddies dominate.

Finally, fig. 5.13 shows the concentration profiles computed from the emission at

0.07 hi compared with Weil et al. (2002) data. All the models using the LES resolved

velocity field show a good accordance with the experimental data, but, among them, the

best results are obtained from model A.

Model Ga shows an innatural double maxima feature in the concentration profile.

Since both the first four velocity moments and the Lagrangian correlation are well

simulated, we can address the problem to the anomalous form of Ga vertical velocity

pdfs (see Fig. 5.5).

The accumulation of particle for t∗ = 2.55 in model F and E has to be addressed to
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Figure 5.13: Concentration profiles of the numerical experiment compared with the data

obtained by Weil et al. (2002). Different color denotes different experiments: red, model

A; green, model E; blue, model F; purple, model Ga.

the choice of the integration timestep of 1s. This choice has been made to speed up the

simulation, since the problem present itself only for long times.
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Chapter 6

Conclusions

Lagrangian Particle Dispersion Models (LPDMs) driven by Eulerian model outputs have

been studied and implemented in this work. The design of such models is strictly related

to the type of the Eulerian model used. Since the dynamical model used in the description

of the atmosphere do not describe the complete spectrum of the turbulent motions, but

only the largest scales, and adopt physical parameterizations to describe the smaller ones,

a very relevant part in the design of a LPDM is the modellization of unresolved motion. In

this regard, basically, one has to choose between two different design strategies. The first

is to implement a LPDM small scale closure consistently with the Eulerian model one.

The other is to describe the unresolved motion with a parameterization that reproduce

features expected from the small (subgrid) scale turbulence.

The dynamical models also describe the variable fields at discrete points in space,

and the step used to integrate the equation of motion is selected on the basis of internal

criteria. On the other hand, the LPDMs describe the flow as a continuum and, in

general, they require an integration timestep computed considering their own features.

Thus, methods for the Lagragian model integration and the interpolation of variables

between grid points are the other aspects to consider when implementing models of this

kind.

The present work aimed to study, develop and validate, some viable and efficient

options for LPDM implementation using Lagrangian Stochastic Models (LSMs) for
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the description of unresolved motions. The primary requirement on which model are

validated is the fullfillment of the Well Mixed Condition, namely, the properties of the

simulated particle of keeping the same statistical distribution of flow particles once they

reach it.

In order to compare methods for very different conditions, data of two dynamical

models have been considered, namely a Large Eddy Simulation(LES) and a General

Circulation Model(GCM).

Given the time and space scales of the GCM, the LSM implemented on it has been

chosen to be of Markov order 0, consistent with the eddy-diffusivity closure of GLOBO. It

also maintains the WMC in the general case of a variable density field. As input, it uses

the dynamical model density, diffusivity and geopotential fields. The Lagrangian module

reproduces the same code parallelization and its default implementation run online with

the GCM, creating a fully integrated Eulerian-Lagrangian model.

In the case of the LES, a good amount of information on the subgrid field is known.

The LES resolution lies inside the inertial subrange, and usually the statistical features

of the fields are easily assessed. Because of this, the Lagrangian model paired with LES

fields uses a LSM of Markov order 1 where the velocities at two different times can be

correlated. This is not consistent with the LES parameterization of the subgrid motion

effects, but should reproduce correctly the subgrid turbulence properties. The turbulent

kinetic energy field produced by the LES gives information about the magnitude of

small scale turbulence and its dissipation rate, but not on the finer characteristics of its

structure, such as its correlation timescale and higher order moments. These information

have to be evinced indirectly from the fields. In the literature, two different unresolved

velocity parameterization have been proposed for this model: one considers the small

scale motion having the same Lagrangian timescale of the large scale (our model F), and

the other considers the dissipation to be specific of small scales and introduces a shorter

timescale (our model E). The LPDM implements both of them in the aim to understand

difference in their effect on the final description of turbulent dispersion.

The integration of the diffusive model shows some critical issues related to its

computational efficiency and the robustness of its WMC compliance. This is due, on
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one hand, to the necessity for the model to cover a wide range of conditions (expecially

regarding the shape of the diffusivity profiles produced by the GCM), and on the other

hand, by the direct influence of the stochastic noise on the particle position. In order

to implement the model, an efficient integration timestep selection algorithm has been

developed and tested, which selects the step lengths on the base of the diffusion coefficient

profile shape. During the WMC validation tests, the need for a consistency between

diffusivity and its derivative is evidenced. Experimental results suggests that the linear

interpolation algorithm is not able to produce values that let the LSM to fulfill the WMC

if the diffusion coefficient profiles has strong variations. A computationally efficient

modified Akima spline algorithm is shown to produce good results with only a moderate

increase in the computational costs.

The Random Flight Model on LES fields seems to be less influenced by error in

derivation and computation of fields when tested for its consistency with the WMC. As

previously stated, since the parameterization for the unresolved velocity fields in the

LES is required to reproduce formally the correct subgrid statistics (K41 compliance)

it is not in general consistent with the eddy-viscosity LES closure. From this situation,

necessity arises to select freely some statistical parameters of the subgrid field (in our

case, the Lagrangian timescale). Model E and F have been compared in experiments of

absolute and relative dispersion with the reference of experimental data. The absolute

dispersion is poorly affected by the unresolved velocity parameterization chosen, and it

is influenced only by the large scale motions. The unresolved scale velocities simulated

by model E and F influence the relative dispersion and meandering, with the relative

dispersion that increase as the Lagrangian timescale increase. The meander compensate

this effect decreasing when relative dispersion increase. It can also be observed that,

as expected, the stochastic noise imposed on the subgrid velocity has an effect on the

reduction of the total Lagrangian correlation. It is not straightforward, althought,

to evaluate quantitatively how the definition of a given Lagrangian timescale for the

subgrid motion influences the total correlation (and thus, the total Lagrangian timescale).

Furthermore, none between model E and F is shown to perform better when comparing

numerical experiment results with real experiment ones. It can’t be excluded that, given
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112 6. Conclusions

the highly detailed description of coherent eddy motion made by a LES of sufficiently

high resolution, a simple stochastic model describing the absolute dispersion statistics is

unfitted for giving a better representation of the turbulent motion.

As a concluding remark, we observe that many different model similar to the ones

described in this work have been developed and used in many applications. Anyway,

innovation can be stimulated by critical examination, and this work suggests that,

in order to increase the performance skill of these Lagrangian models, the connection

between the input-giving Eulerian model and the Lagrangian dispersion model should be

accurately explored. An atmospheric dynamical model, not describing the full spectrum

of real atmospheric motion, can produce only a peculiar representation of that motion.

A LPDM can compensate for the Eulerian model approximation or can aim to a full

consistency with their assumption. The first choice surely can give better results in

(some) applications, while the second one should produce more predictable results, and,

maybe, lead to a jointed improvement of both models.

112



Appendix A

FLEXPART and HYSPLIT

implementation: an overview

In the last decade, a fair number of models for the description of trajectory in the

atmosphere has been implemented and applied.

Some of these models are widely used on many problem and have been adapted to

work on various data and implementation. Before describing the model implemented by

the PhD candidate, a short review of implementation of two of the most popular and

widely known model, HYSPLIT and FLEXPART, will be given.

These models can be used for deterministic trajectories (without subgrid models)

or with modules for subgrid motion. Both backward and forward trajectories can be

computed and the models are adaptable to different coordinate systems.

A.1 Unresolved vertical motion description

The unresolved motion in the PBL is computed introducing noise in the velocity fields

by the introduction of a stochastic equation of Markov order 1. The expression for the

Langevin equation is (Wilson et al., 1983; Thomson, 1987; Fay et al., 1995) :

d

(
w

σw

)
= − w

σw

dt

τw
+
∂σw
∂z

dt+
σw
ρ

∂ρ

∂z
dt+

√
2

τw
dW (A.1)
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114 A. FLEXPART and HYSPLIT implementation: an overview

The model implemented by HYSPLIT omits the third term on the rhs of eq. A.1,

which include effects of density variations.

The finite difference algorithm implemented by both the models for the description

of velocity fluctuation make the assumption that σw and τw take constant values along

the partcle path for the integration step and update the vertical velocity with a single

timestep using the integral formulation of eq. A.1.

HYSPLIT implements:
(
w

σw

)
(t+∆t) = Rw(∆t)

(
w

σw

)
(t) + τw(t)(1−R(∆t))

∂σw
∂z

(t)+

+
√

(1−Rw(∆t)2)ζ (A.2)

whereas FLEXPART:
(
w

σw

)
(t+∆t) = Rw(∆t)

(
w

σw

)
(t)+

+ τw(t)(1−R(∆t))

(
∂σw
∂z

(t) +
σw(t)

ρ(t)

∂ρ

∂z
(t)

)
+

+
√
(1−Rw(∆t)2)ζ (A.3)

Where ζ is a gaussian noise with zero mean and unit variance

For an integration timestep ∆t < 0.5τw FLEXPART use the finite difference

approximation of A.1 in order to save computational time.

A.2 Input fields and parameters. The PBL

In HYSPLIT, vertical Lagrangian timescale is defined as τw = 100s. The horizontal

τi = 1/f

Velocity variances can be computed in two different ways. The first one consist

in computing a mixing coefficient from momentum fluxes or, if not availables, from

Richardson number [computed using the first two level (nearest to the ground) of the

resolved fields] and stability functions (Troen and Mahrt, 1986; Holstag and Boville, 1993;

Beljaars and Betts, 1993). The passage to velocity variances is then made by:

σ2j =
Kj

τj
(A.4)
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A.3 Above the PBL 115

With this option the diffusivity is obtained as a single averaged values for all the boundary

layer (in the same vertical column).

The second way to compute σi values is to use Turbulent Kinetic Energy fields when

available, following (Kantha and Clayson, 2000). In this case a value for the velocity

variances is each PBL level.

FLEXPART computes u∗, θ∗, LMO from surface and near-surface (model level 1-2)

data. It then computes σi and τi as function of u∗, w∗, hi, stability and z throught

empirical relations (Hanna, 1982).

FLEXPART uses a qualitative scheme to compute the effective boundary layer height

(Henv) in order to take into account topography and time variation effects:

Henv = hi +min(σZ , CTV/N) (A.5)

In the above equation σZ is the standard deviation of the dynamical model subgrid

topography, CT = 2.0 is a constant and V/N is the rate of wind speed V at hi over

Brunt-Vaisala frequency N (local Froude number).

The maximum Henv value of the grid points surrounding the particle position in space

and time is taken, instead of interpolating it.

Henv is used in place of hi for all FLEXPART computations.

A.3 Above the PBL

For taking account of vertical motion above the PBL, HYSPLIT compute a mixing

coefficient defined as:

K = l
2|∂V
∂z

|φh(l/LMO) (A.6)

where V is the meridional velocity, φh is the stability function (in the same form used

for stable surface layer) and:

l
−1 = kz−1 + 150−1 (A.7)

l/LMO is chosen as function of Rib.

In FLEXPART manual there is no mention of a value chosen for σw in the free

troposphere.
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116 A. FLEXPART and HYSPLIT implementation: an overview

A.4 Horizontal Motions

HYSPLIT computes a subgrid-scale horizontal mixing coefficient based on velocity

deformation (Smagorinsky, 1963; Deardorff, 1973).

Khor =
1√
2
(c∆Xd)

2

√(
∂v

∂x
+
∂u

∂y

)2

+

(
∂u

∂x
+
∂v

∂y

)2

(A.8)

Where ∆Xd is the meteorological data grid size and c = 0.14.

In FLEXPART, the computation of horizontal velocity variances and Lagrangian

timestep come from empirical relations similar to the one used in the vertical direction,

as far as the PBL is concerned. The FLEXPART model includes also effects of mesoscale

fluctuation. It solves an independent stochastic equation for the mesoscale velocity

component. The mesoscale wind standard deviation is qualitatively defined as a constant

cm times the standard deviation of grid points surrounding the particle position. The

Lagrangian timescale in the equation is chosen to be half of the time interval at which

dynamical fields are available.

A.5 Choice of integration timestep

HYSPLIT requires a timestep which do not violate the condition

∆zp < 0.5∆zm (A.9)

where ∆zm is the mesh length, and ∆zp is the particle displacement after a timestep.

For this condition to be respected, it is required that:

∆t =
(∆z)2

8σ2wτw
(A.10)

FLEXPART has two option for timestep computation.

1. Do not adapt the computation timestep and simply use timestep of a

synchroniziation time interval (usually 900 s)
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2. Compute the timestep ∆t as:

∆t =
1

ctl
min

(
τw ,

hi
2w

, 0.5

(
∂σw
∂z

)−1
)

and fix a minimum timestep as 1 s for horizontal motion and 1/ifine for vertical

motion. ifine and ctl are user defined parameters.

A.6 Deep Convection Effect Parametrization

FLEXPART deep convection effect scheme is based on the Emanule Zivkovic-Rothman

scheme (Emanuel, 1991; Emanuel and Zivkovic-Rothman, 1999). When convection is

triggered by the parametrization, a matrix Mi,j is computed, which represents the

saturated upward and downward mass fluxes within clouds.

The elements of the matrix Mi,j are the mass fraction displaced from source level i

to destination level j.

FLEXPART computes a probability matrix for the displacement of a particle in

convective environment and then apply a Monte-Carlo scheme using the obtained

probability matrix (Forster et al., 2007). The matrix is computed as the rate of mass

displaced from level i to level j in a timestep ∆t,Mi,j∆t, over the mass over square meter

of the dynamical model, computed (from the hydrostatic relation) as:

mi = (pi−1/2 − pi+1/2)/g (A.11)

with pi−1/2, pi+1/2 are the pressure one-half level below and abole level i respectively,

and g is gravity.

The probability Pi,j for a particle to be moved from level i to level j because of

saturated up and downdraft for these scheme is:

Pi,j =
Mi,j∆t

mi
(A.12)

The Monte-Carlo scheme extracts a random number η ∈ [0, 1] and the particle is

displaced at the level jd at which

η <

jd∑

j=jb

Pi,j (A.13)
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118 A. FLEXPART and HYSPLIT implementation: an overview

is first satisfied, where jb is the lowest cloud level.

In order to obtain a mass conserving scheme, FLEXPART model assumes that

saturated up- and down-drafts in the cloud are compensated by a subsidence mass flux

in the cloud-free environment. After the Monte-Carlo algorithm is used, the saturated

mass flux are computed at each level and a compensating velocity acts on the particle

that have not been displaced from their initial level.
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