
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

AUTOMATICA I RICERCA OPERATIVA

Ciclo XXVI

Settore Concorsuale di afferenza: 01/A6

Settore Scientifico disciplinare: ING-INF/04

Discrete Event Systems based Design Patterns for

Diagnosability Analysis of Automated Manufacturing Systems

Presentata da: Dmitry Myadzelets

Coordinatore Dottorato: Daniele Vigo

Relatore: Andrae Paoli

Esame finale anno 2014

Discrete Event Systems based Design Patterns for

Diagnosability Analysis of Automated

Manufacturing Systems

by

Dmitry Myadzelets

Submitted to the
Department of Electrical, Electronic and Information Engineering

“Guglielmo Marconi” (DEI),
Center for Research on Complex Automated Systems (CASY)

in fulfillment of the requirements for the degree of

PhD

at the

UNIVERSITY OF BOLOGNA

March 2014

Thesis Supervisor: Andrea Paoli

XXII Cycle

2011 – 2014

2

Discrete Event Systems based Design Patterns for

Diagnosability Analysis of Automated Manufacturing

Systems

by

Dmitry Myadzelets

Submitted to the Department of Electrical, Electronic and Information Engineering
“Guglielmo Marconi” (DEI),

Center for Research on Complex Automated Systems (CASY)
in fulfillment of the

requirements for the degree of
PhD

Abstract

The main goal of this thesis is to facilitate the process of industrial automated systems
development applying formal methods to ensure the reliability of systems. A new
formulation of distributed diagnosability problem in terms of Discrete Event Systems
theory and automata framework is presented, which is then used to enforce the desired
property of the system, rather then just verifying it. This approach tackles the state
explosion problem with modeling patterns and new algorithms, aimed for verification
of diagnosability property in the context of the distributed diagnosability problem.
The concepts are validated with a newly developed software tool.

Thesis Supervisor: Andrea Paoli
Title: Professor

3

4

Contents

Introduction 15

1 Failure Diagnosis for Industrial Automation Plant 21

1.1 Case Study of the Automated System 21

1.1.1 Technological process . 21

1.1.2 Control System . 23

1.1.3 Failures of the system . 25

1.1.4 Examples of the systems’ failures 27

1.2 Industrial and Academical Analytical Approaches 28

1.2.1 Prevent, Detect, Isolate and Recover 28

1.2.2 Failure Mode and Effects Analysis 30

1.2.3 Mean Time Between Failures 31

1.2.4 Knowledge-based Databases 32

1.2.5 Safety standards IEC 61508/IEC 61511 33

1.2.6 Simulation . 34

1.2.7 Formal methods . 34

2 Diagnosis-oriented Modeling and Verification Framework 39

2.1 Modeling Framework . 39

2.1.1 Introduction . 39

2.1.2 Generalized Actuator and Generalized Device 42

2.2 Discrete Event Systems Framework for Diagnosability Verification . . 50

2.2.1 Introduction . 50

5

2.2.2 Notation . 51

2.2.3 Abstraction by decomposition 52

2.3 Diagnosability of DES . 52

2.3.1 Centralized diagnosability . 53

2.3.2 Decentralized diagnosability 54

2.3.3 Distributed diagnosability . 54

2.3.4 Diagnosability of a Modular System 55

3 Virtual Modular Diagnosability 61

3.1 Formal Definition . 62

3.2 Trivial system. Analysis of two adjacent modules 63

3.2.1 Example . 67

3.3 Generalization. Conditions for diagnosability 69

3.4 Algorithms for diagnosability by virtual modules 71

3.4.1 Co-faulty and co-non-faulty sublanguages 72

3.4.2 Fault propagation algorithm 73

3.4.3 Observation propagation algorithm 75

3.4.4 Algorithm to choose a module with observable support 76

3.5 Example . 77

4 Design, Simulation and Verification Tool 83

4.1 Requirements for Formal Tools . 83

4.2 Tool Description . 84

4.3 Diagnosability verification of the system 86

4.3.1 Global model of the system 87

4.3.2 Example of a failure verification 87

5 Conclusions and future work 93

A Automata models 97

A.1 Digital Inputs/Outputs, Sensors, Motors, etc., and their connection . 97

A.2 Valve . 98

6

A.2.1 Valve with sensors . 100

A.2.2 Valve with actuator . 101

A.2.3 Valve with sensors and actuator 102

7

8

List of Figures

1-1 Piping and Instrumentation (P&I) diagram of a dust cleaning system

at an aluminium smelter . 22

1-2 The necessary steps for FMEA methodology 31

1-3 Design process of automated systems 35

2-1 Example of an UML Statechart diagram (at top) and its representation

by the Mealy automaton . 41

2-2 GA with two types of interfaces (top) and its underlining formal rep-

resentation by the automaton (bottom) 43

2-3 Device with Double Actuation and Double Feedback (DADF) and its

connection to a physical device (valve) 46

2-4 Hierarchical relation of system’s components: high level logic of plant,

GAs, GDs and physical devices . 47

2-5 Automaton representing digital output 48

2-6 Automata models of Relay (top left, constrains (top right), and result

of composition (bottom) . 49

2-7 Failure model of the relay (example of the broken coil) 49

2-8 Architecture of a system with centralized diagnosis 53

2-9 Architecture of a system with decentralized diagnosis 53

2-10 Architecture of a system with distributed diagnosis 54

2-11 Size of modules, diagnosers, and events exchange rate, changing with

respect to the degree of modularity of the system 56

3-1 Automaton for marking the language L2 67

9

3-2 Automaton for marking the language L1 67

3-3 Automaton G1 . 68

3-4 Automaton G2 . 68

3-5 Verifier of G1 . 69

3-6 Verifier of G1 ‖ G2 . 70

3-7 Automata marking languages L1, L2, L3 and L4. Σo := {o1, o2}, Σf :=

{f} . 79

3-8 Automata marking the faulty and non-faulty sublanguages of L1 . . . 80

3-9 Automata marking sublanguages F1 and N1 of the faulty module, and

co-faulty and co-non-faulty languages of the modules 2, 3 and 4 in the

order they are composed (top-down): 1-2, 2-4, 1-3, 3-4. Note, that the

sublanguage F4 is defined partially at first, then fully 80

3-10 Automata marking co-faulty and co-non-faulty sublanguages of the

language L4. Automata for the sublanguages of the modules 2 and 3

are equal to the ones depicted in the Figure 3-9 81

3-11 Automata marking Dj,f of the modules 1, 2 and 3 in the order they

are composed (top-down): 4-3, 4-2, 2-1, 3-1. Automata marking Dj,nf

are not depicted since they have no observable events 81

3-12 Automata marking the faulty and non-faulty sublanguages of L1 after

the backward Algorithm. The observation of L1,f is {o1o2} differs from

the observation of L1,nf which is {o1} 81

4-1 View of the simulator in a browser window 86

4-2 Inference diagram of the system depicted in the Figure 1-1 88

4-3 Growth of the number of states (curve with round dots) and transitions

(curve with square dots) while the growth of the number of modules

in the centralized systems model . 89

4-4 Model of a technological process failure 90

A-1 General model of a digital input/output, relay, contactor, etc. 97

A-2 Model of a digital input/output with failures 98

10

A-3 The constrain model (left) for two consequent two-state components,

and the result of the composition of the entire system (right) 99

A-4 Fault model of two consequent digital two-state modules. The first

module has failures . 99

A-5 The cause-effect fault automaton model (left), and the resulting com-

position of two components (right) 100

A-6 The model of the constrain (left) and the composition result (right).

Failures are in the second (i.e. “effect”) module 101

A-7 Automaton model of a valve . 101

A-8 Automata of a sensor and a constrain model for the sensor–valve rela-

tionship . 102

A-9 Inference diagram of a valve with two sensors 102

A-10 Automaton of a valve with two sensors (open and closed) 103

A-11 Automaton of a valve actuator . 103

A-12 Automata of the valve actuator constrains 103

A-13 Automaton of a valve with the actuator 104

A-14 Inference diagram of a valve with two sensor and an actuator (see Table

A.1 for the nodes names description) 104

11

12

List of Tables

1.1 MTBF values for some SIEMENS Simatic components 32

2.1 Correspondence of automata event labels to digital output signals . . 48

4.1 Objects and operations available with the tool 85

4.2 Modules of the system depicted in the Figure 1-1 87

4.3 Growth of the centralized model during parallel composition 89

A.1 Nodes labels of the inference diagram of the valve, sensors and actuator 105

13

14

Introduction

Modern society is characterized by the growing demand for the use of automated

systems in the everyday life, and these systems require software engineering with con-

stantly increasing complexity. Industrial automation software engineering has tradi-

tionally been a field with the most strict requirements and highest standards applied.

However, it is still a common practice for an automation software design to consist

of writing a ladder logic for programmable logic controller (PLC) with partially and

ambiguously determined specifications, without clearly defined software architecture,

and no formal verification of the system. Reflecting the importance of the software

and a growing ratio of the software cost to the costs of machinery, engineers and

researches put a lot of effort toward facilitating the development and maintenance of

software, increasing its performance and reliability while decreasing the cost of its life

cycle. One of the major established trends is use of standardised component solutions

for industrial automation systems aiming at portability, reusability, interoperability

and reconfiguration of applications. Another tendency is the growing number of for-

mal methods - mathematical approaches supporting decisions making process during

systems design and operations.

Design Process of Industrial Systems

According to the standard ISO/IEC 12207 [8] the industrial software development

process (life cycle process) can be structured into six stages: requirements speci-

fication, software design, implementation and integration, testing, deployment and

maintenance. Starting from the implementation the stages mainly depend on a par-

15

ticular vendor of hardware and a dedicated software - supervisory control acquisition

system (SCADA). There are hundreds of major producers of automation hardware

and software, but the variety of ways the developers can write programs is limited by

the standards, such as IEC 61131, making them less error prone and more reusable.

In other words, this sequence of stages is quite mature.

The stage of requirements specification consists of analyzing, documenting and

validating the needs and conditions for technological process, as well as rules, con-

strains and policies for the plant hardware. The most known standard used at this

stage is the Unified Modeling Language (UML), developed by the Object Management

Group (OMG) Technology Standards Consortium. This standard facilitates also the

next stage, software design, with a Model-Driven Architecture (MDA) approach. The

industrial software design stage adopts numerous methods, such as component based

approach, object-oriented and aspect-oriented programming, and software product

line, etc (see [58] for an extensive survey of the state of the art for software engineer-

ing methods in industrial automation).

Problems Statement

The major drawback of the aforementioned industrial software development process

is that it is mainly designed for humans, whereas the reliability and other important

properties of systems in large part depend on machine-oriented formal verification

methods. Formal methods apply mathematically-based techniques to the develop-

ment of systems, from the specification level to the implementation level. These

methods proved to be effective, especially for safety critical systems, but due to their

mathematical nature and lack of the supporting tools the use of formal methods in

industrial practice is not common yet. The problem is that mathematical notation

requires to have additional knowledge on the part of the development engineers, creat-

ing a psychological barrier for them, and also that the ’de facto’ development process

does not incorporate a formal representation.

A way to overcome the above problem is to mix formal techniques with “standard-

16

based” approaches/tools which are already adopted in industry. If a non formal (or

semi-formal) systems representation has the ability to be translated into a completely

formal form, then mathematical techniques can be applied. Examples of such ap-

proaches are [31], where authors extend UML representation with a “collaboration

diagram” and translate it to extended hierarchical automata, [51] which formalizes

UML into Dirac structures, and [63] where the authors translate Simulink diagrams

into input/output extended finite automata.

Even though the translation into a mathematical representation gives the oppor-

tunity to apply formal techniques, the requirements for the system’s properties should

again be expressed in a formal way by engineers, which raises the above mentioned

problems. Thus, despite of the fact that some successful reports can be found in

literature, progress along these lines seems minimal .

Another solution to overcome the problem is the development of new approaches

which incorporate advantages of both methodologies, the one suitable for humans,

and the other using formal techniques. Nowadays, when the growing complexity of

automated systems imposes requirements which can be met only by formal methods,

the relevant response may be the creation of modeling techniques when the models

already encapsulate their formal representations. Thus, the underlining mathematical

nature would be “hidden” from engineers, and verification of important properties can

be performed automatically. An example of such approach is presented in [50] where

the authors propose a library of general UML blocks where each block is corresponded

to a predefined automaton. The simple blocks can be used then to construct more

complex entities while their formal representation can be achieved automatically by

composition of the predefined automata.

The necessity of composition of modules formal representations for the sake of

verification of some important properties gives rise to another problem, which is

inseparable from the formal methods, - the problem of so-called state explosion. This

problem can be solved by development of mathematical techniques which efficiently

exploit the modular nature of the systems such that the correspondent computational

burden remains at an acceptable level.

17

As soon as the quantity and quality of mathematical methods and their imple-

mentations is sufficient for the current complexity of automated systems, and these

methods can be encapsulated into integrated development tools as a first-class citizen,

seamlessly providing the power of formal approaches through the easy-to-understand

visual modeling process, the development process of automated systems will move to

the next stage of its evolution.

Contribution

This work aims to facilitate the process of industrial automated systems development

applying formal methods to ensure the reliability of systems. From many existing

problems, for this work has been chosen the problem of verification of system’s design

in terms of diagnosability. Diagnosability problem answers the question: either the

given system is ready for fault diagnosis or not. According to the IEC vocabulary

[7] the fault diagnosis are “actions taken for fault recognition, fault localization and

cause identification”, and a fault is “the state of an item characterized by inability

to perform a required function”.

To achieve the goals, this work exploits Discrete Event Systems theory [26] and its

automata framework. The theory of automata is chosen due to its relative simplicity.

Indeed, it has just two basic entities (state and event) and intuitively intelligible

graphical representation. Taking apart a language theory, which is necessary for

research, the automata framework does not require much additional mathematical

knowledge for automation engineers. This makes it the first candidate as a formal

mathematical tool for future general purpose integrated development environments

(IDE) in automation industry.

The main contributions are following:

• A new formulation of distributed diagnosability problem. This formulation

is then used to enforce the desired property of the system, rather then just

verifying it. This approach tackles the state explosion problem which arises

when the automata framework is applied for complex discrete event systems.

18

• Presented new structural patterns, in terms of automata framework. These

patterns are aimed to decrease computation burden while applying verification

algorithms.

• Created algorithms for verification of diagnosability property in the context of

the new distributed diagnosability problem.

• Extended the approach of GeneralizedDevice, recently developed in the Univer-

sity of Bologna [33], [50]. This work extends it towards formalization of failures

representation in order to apply the developed algorithms. It allows the embed-

ding of a formal approach into a higher level of the systems’ representation of

“standard” modular design process, similar to one exploiting UML design tools.

• To validate the concepts developed during the research, a software tool was cre-

ated. This tool exploits web-technologies in order to provide zero-time access to

it, the possibility for easy modifications in order to solve other formal problems,

and opportunities for further enhancement by community.

Organization

Chapter 1 gives an overview of the problem of fault diagnosis in a real example of

an industrial automation plant. It provides a short description of the technological

process with a couple of illustrative failures. The types of failures are discussed, and

how particular system’s failures can be determined, evaluated and treated.

Chapter 2 describes the UML based modeling framework, and how the framework

specifies hardware modules with automata. Then the formal framework for discrete

event systems is briefly presented, different definitions of diagnosability are explained,

and the general idea of new notion of virtual modular diagnosability is given.

Chapter 3 presents the new type of diagnosability - virtual modular diagnosability,

in details. It is firstly explained with a simple example of a system consisting of two

modules, then a general form of the approach is described. At the end of the chapter

algorithms for verification of the virtual modular diagnosability are described.

19

Chapter 4 introduces a new tool for modeling and simulation with automata. An

application of the tool to the example of the real system presented in the Chapter 1

is shown.

The conclusions for the work are given at the end.

20

Chapter 1

Failure Diagnosis for Industrial

Automation Plant

This chapter uses an example of industrial automation plant to present the problem

of fault diagnosis. After a short description of the technological process it shows two

cases of failures. Then the types of failures are discussed, and what approaches are

adopted in industrial and academic practices.

1.1 Case Study of the Automated System

An instance of the real automated systems is exploited to explain the problem of

failure diagnosis. It is a dust cleaner at an aluminium smelter. The Figure 1-1

depicts a simplified Piping and Instrumentation (P&I) of the system.

1.1.1 Technological process

For the given system two flows can be distinguished in the technological process. The

first is the air flow which is blown trough a series of containers (the figure depicts

only one container, for simplicity). Each container is equipped with an electrostatic

filter. The second flow is the flow of a dust. The dust comes with the air, sticks to

the filter, and then falls down to the bunker. Periodically the dust collected in the

21

PT1 TT2

P-1

V-1
V-2

V-3

V-4

V-5

PT2

FT1

WT1

M-1

M-2

M-3

Air with dust

Electrostatic filter

Compressed air

To silos

Cleaned air
to atmosphere

Vibration machine

Screw conveyer

Belt conveyer

TT1

LT1

LT2

LT3

LT4

Figure 1-1: Piping and Instrumentation (P&I) diagram of a dust cleaning system at
an aluminium smelter

22

bunker is transported out to a silos.

For the proper dust cleaning, the following parameters of the air flow have to be

maintained: a constant difference between the output and the input pressures of the

container, and a temperature at the input of the container. The pressure is regulated

by the valve V –2, which changes the area flow before the pump P–1. The temperature

is regulated by the valve V –1 which changes the area flow of a preheated air. The air

at the entrance of the filter is, thus, a mix of the the polluted air and the preheated

air. The temperature of this mix should be higher then a certain point such that no

condensation inside of the container is guaranteed.

When the amount of the dust collected at the bottom of the container reaches a

necessary volume, i.e. it reaches a certain level, the dust is removed by the screw

conveyer. The gate valve V –3 is normally opened, since the screw of the conveyer

blocks the flow of the dust automatically when it is stopped. The belt conveyer, in

its turn, starts to work whenever one of the screw conveyers starts. It delivers the

dust to a dust bucket.

The dust bucket collects the dust until a volume of the dust is enough to pass it

down, to a pneumatic container. Then the gate valve V –4 opens and the dust fills

the container. Then the gate valve V –4 closes and the gate valve V –5 opens allowing

the compressed air to come to the container. Under a high pressure the mix of the

dust and the air is transported to a silos.

Periodically, in order to prevent sticking of the dust to the walls of the container

with electrostatic filters, the vibration machine M–1 has to be switch on for a few

seconds.

1.1.2 Control System

The control system consists of a PLC (Siemens Simatic S7–300 [13]), remote acqui-

sition modules and an operator station (with Siemens WinCC software) connected

via industrial network. The PLC is mounted near the field equipment, the operator

station is located a few hundreds meters away.

The control systems has a few control cycles. Starting to the bottom-up direction,

23

the first cycle controls emptiness of the dust bucket with two level sensors, LT3 and

LT4. When a level of the dust reaches the high level sensor LT3, the system starts to

empty the bucket with the pneumatic container until a level of the dust reaches the

low level sensor LT4. The weight meter WT1 is used to collect the statistic, and its

measurements can be also used to evaluate the amount of the dust in the container.

The air flow meter FT1 is aimed to collect statistical data too.

The second control cycle regulates the filling of the dust bucket. When the dust

level in the bucket is lower then the high level sensor LT3, and there is an enabling

signal from the upper (with respect to the material flow) control cycle, it turns on the

belt conveyer and enables a signal to one of the upper control cycles (each container

with its filter has its own control cycle). Either the level of the dust in the bucket

reaches the high level sensor LT3 or there is no any enabling signals from the upper

control cycles, then the belt conveyer stops.

The third control cycle regulates the level of the dust in the container with the

filter (the cycle is the same for each container). When the dust level reaches the

high level sensor LT1, it gives enabling signal to the below control cycle of the belt

conveyer and waits for enabling signal from it. After receiving the enabling signal, the

control cycle switches on the screw conveyer. Ether the container becomes empty, i.e.

the dust level decreases below the low level sensor LT2, or the control cycle receives

disabling signal from the below control cycle, then it switches the screw conveyer off.

The forth control cycle regulates an order the containers with the filters should

be emptied. If more then one container is ready, i.e. the level of the dust reached

its high level sensor, then the first container has a priority, since the speed it is filled

with dust is faster. Then the second container is emptied and so forth.

The fifth control cycle switches on vibration machines periodically, but only when

the container is being emptied.

All the actuators of the system can be in three states: disabled for operation,

manual control or automatic control. A signal correspondent to the current state of

each actuator is received by the PLC.

24

1.1.3 Failures of the system

The system can be affected by different types of failures, which may be classified into

the following categories with respect to likelihood the failure occurs (the first type

has the highers rate of occurrence):

• Failures of the technological process

• Failures of mechanical devices

• Failures of electric and electronic components of the control system

Moreover, the failures can be external or internal with respect to the given system.

Yet another type of failure is one when malfunction of the system’s behavior is caused

by an inconsistent human (operator) intrusion; it has left outside of the scope. Some

of the possible failures are described further, according to the above classification.

Failures of the technological process

The technological failures might be caused by deviation of properties of the materials

involved in the process. Particularly in this system, a deviation of the dust’s or air’s

humidity can result in that the dust sticks to the filter, to the walls of the container

and to pipes, and obstructs the flow of the material. Whereas the temperature of

the air (low value of which is the main reason for the condensation) is controlled, the

humidity is not measured.

The air, coming to the pneumatic container has neither a temperature nor humid-

ity control. Additionally, the rise of the material humidity may happen due to a leak

of rainwater from the building’s roof, and etc.

In general, technological failures are hard to predict, since there is usually a little

of statistical information for the particular process, if any.

Failures of the mechanical devices

Malfunction of field mechanical devices, probably, is the most frequent reason the

automatic systems fail. Firstly, the field devices are exposed to hard environmental

25

conditions, such as temperature, vibration, humidity, electromagnetic field, mechani-

cal impact and etc. Secondly, they are normally complex devices, composed of many

other components, and thus the failure rate of a complex device is higher then the

highest failure rate of its modules. A common solution adopted in industry is that all

the actions performed under each individual device, conditions under with the equip-

ment is used, a time duration it works, and etc. are journalized. These statistical

information is later used to plan and perform the maintaining and repairing.

The above presented system has following devices with mechanical parts and parts

which can be affected mechanically (e.g. by the flow of a material):

• Butterfly valves V –1, V –2 and gate valves V –3, V –4, V –5. The weakest part of

a valve is its actuator, which contains a plenty of moving components. Beside

this, the valve’s core is subject to abrasion.

• The screw conveyer and the belt conveyer. These devices have a lot of moving

components either, where the belt as the weakest part.

• Electric motors M–1 – 3 and pump P–1, which are subject to mechanical and

electric damages.

• Weight meter WT1, with its fore tension meters which are subject to degrada-

tion.

• Fork level meters LT1 – 4. The forks are subject to abrasion.

• Pressure meters PT1, PT2. The drive mechanism of a pressure meter is the

subject to stacking, dirt and oil clogging.

All the above potential mechanical failures, the most of the listed above devices

contain electronic and electric components, which can have their one failures.

Failures of electric and electronic components

Due to enormous amount electric and especially electronic components used in modern

manufacturing industry, it is quite impossible to make a classification of all the failures

26

which might occur, and it is seems useless to have such information at the level of

industrial automation, since a fault of a single component most likely results in the

failure of entire device it contains. Instead, complex characteristics are used in order

to be able to estimate possible faults. One of the well know parameters is the Mean

time between failures (MTBF). Another, relatively modern standard IEC 61511 also

defines a set of characteristics (MTBF and IEC 61511 are described briefly later).

1.1.4 Examples of the systems’ failures

This work does not consider the question of faults prevention. The fact of a fault

occurrence has to be assumed, since the problem of the failure is not only that it may

lead the necessity to interrupt the technological process, delay for delivery of spare

parts and row materials. The major problem is that one failure can sequentially

cause other failures which may spread further and so forth, with exponential growth,

provoking a catastrophic impact at the end.

As an example, the system presented in this chapter was subjected to some failures

observed by the author of this work. These failures are interesting from the point of

view of their propagation.

In the first case the high level sensor LT3 failed while the system was at the state

of refilling the dust bucket. Since one of the conditions the control system has to stops

the filling is that the dust bucket is full, it was delivering more and more material.

The material overflowed the bucket in great quantity, causing clogging of ventilation

holes of the control system (which later resulted in some spare parts change), and

blocking entrance to the building. The failure was spotted occasionally; elimination

of its consequences took a few days. It was discovered later, that the failure of the fork

level sensor was caused by blocking it with a wet material that, in its turn was caused

by a high humidity in the building. Thus, the technological failure has propagated to

a failure of sensor, and later to a failure of electronic components.

Another example is related not to a failure of particular equipment, but to the

control system. In this case the shaft of the motor M–2 was left not connected to the

screw conveyer after a maintenance service. Thus, when the motor is switched on, the

27

screw conveyer does not rotates and blocks the flow of material. When the system

started to empty the first container, i.e. the control cycle responsible for unload of

the container with electrostatic filter had enabling signal to the below control cycle,

and the control cycle responsible for the filling of the dust bucket, in its turn, had an

enabling signal for the upper control cycle, the system was found infinitely trying to

fill the dust bucket from the first container. If not spotted, this failure could lead to

the overfilling of the container, clogging of the filters and air channels, and pollution

of the environment.

These illustrative examples of failures are showing importance of the failures de-

tection. If a particular single fault can not be detected, at least one the propagating

effects should be observed. The earlier a failure is detected the less damaging impact

it leads to. The evidence of this fact can be stressed by a numerous examples and

case studies: [38], [5], [20] to mention a few.

1.2 Industrial and Academical Analytical Approaches

1.2.1 Prevent, Detect, Isolate and Recover

From the point of view of an automation engineer a failure is an event which has to be,

firstly, prevented, then detected and diagnosed. It is clear that nobody can guarantee

that a failure can not occur under all circumstances. As it was shown by examples

in the previous section, failures also tend to propagate, causing other failures with

a greater impact. Thus, a general assumption is that the failures are not avoidable,

but the failure propagation may be prevented.

Determinization of all the potential failures is a separate difficult task. This prob-

lem is addressed with the different qualitative and quantitative analytical methods

at the design stage while the development of a new system.

The next step, after all the possible system’s failures are found and evaluated, is to

decide if each failure can be detected. The problem is that the effects of a failure may

be difficult to observe. There can be a lack of the technological process parameters

28

deviation, lack of equipment (sensors) or time (performance). Even if observed, the

failure may be not easy to distinguish from a normal system’s behaviour. Moreover, it

might happen that the observed effects caused by one failure can not be distinguished

(or, in other words, isolated) from effects caused by another failure. These two failures

may required different reactions, thus they has to be distinguished. The problem of

failure detection and isolation is know as a diagnosability problem.

After a failure is detected and analysed, the system usually is desired to continue

operating properly, possibly at a reduced level of performance, but not to fail com-

pletely. Such property of systems is called fault tolerance. In industrial applications

the property of fault tolerance is usually achieved by redundancy, i.e. is by duplica-

tion of critical components or functions of a system. The major form of redundancy

in manufacturing are:

• Hardware redundancy, such as double module redundancy or triple module

redundancy

• Information redundancy, such as error detection and correction methods.

• Functional redundancy, when the same input produces an equivalent output

through different media or different principles

For example, in the dust cleaning systems, presented in this work, the three con-

tainers with electrostatic filters may be considered as a form of hardware redundancy.

A level of dust in the dust bucket can be measured by mean of its weight and by the

fork level sensors, thus, providing a form of information redundancy. When the sys-

tem works in the non-automatic mode, based on decisions of its operator, actuation of

motors can be performed both via the software control system and locally by hardware

buttons - functional redundancy.

The problem of fault-tolerance is out the scope of this work. We proceed with a

brief description of some qualitative and quantitative analytical approaches adopted

in industry, such as Failure Mode and Effects Analysis (FMEA), Mean time between

failures (MTBF), reliability online databases and IEC 61511 standard. Then a Sim-

ulation approach is described as a way for failure validation, and, finally, the formal

29

methods approach. Some of these approaches can be considered as pure industrial

ones, while other widely used in both industrial and academic fields. The formal

methods is seen as a pure academic response to the problem of failures diagnosis.

1.2.2 Failure Mode and Effects Analysis

FMEA is an exhaustive analysis of systems, an analytical tool to identify, quantify,

prioritize and evaluate the risk of possible failures in order to reduce risk of failures,

ensure that failures are detectable and prevent failure from happening. Assuming

that any failure which was determined can occur, it is necessary to figure out what

negative impact of each failure (of type of failures) can be, i.e. what failures must

to be detected, what are wished to be detected, and what are not, since the failure

detection may be an expensive process in terms of time, increasing complexity and

costs of the whole system.

FMEA is described in the IEC 60812 standard, and consists of:

• System analysis - how interactions among systems may fail

• Design analysis - how product design may fail

• Process analysis - how processes that make the product might fail

• Design analysis - focuses on how machinery that perform processes might fail

A chart with steps which are necessary to perform according to FMEA method-

ology is depicted in Figure 1-2.

FEMA involves reviewing as many components, assemblies, and subsystems as

possible to identify failure modes, and their causes and effects. It also involves a

lot of human resources: experts and practitioners in particular industrial fields [56].

That is why this tool is considered as a relatively expensive approach, and is adapted

mostly for life-critical systems, related to military area, automotive, gas and oil in-

dustry, health-care and life-support activity. There are other, less costly but yet

similar knowledge based analytical approaches, presented in literature, for instance

the adapted for industrial use Process Mapping [27], and State analyses [47].

30

Define the table for Severity,

Occurence and Detect

Study about the process/product

and devide them to

subprocesses/components

Determine all potential

failure mode of each

process/component

Determine effects

of each failure mode

List control/prevention

of each case

Rank the efficiency of

the control/prevention

Evaluate risk - compute

Risk Priority Number

Evaluate the impact

of each effect

(Severity rank)

Evaluate the probability

of each failure to occure

(Occurence rank)

Determine the root

of each failure mode

Figure 1-2: The necessary steps for FMEA methodology

1.2.3 Mean Time Between Failures

Mean time between failures (MTBF) is a statistical mean value for error-free operation

(between two failures) of an electronic device during the normal working life. The

MTBF does not apply to an individual component, it always refers to the phase with

constant failure rate (i.e. without early or wear failures). The higher the MTBF, the

less often the component fails and the more reliable it is. In addition to the MTBF

value, the environment and operating conditions should be taken into consideration.

If a device is operated under conditions beyond its specification (e.g. at extremely

31

Table 1.1: MTBF values for some SIEMENS Simatic components

Part Number Type Description MTBF (years)
6ES7321-1FF01-0AA0 8 Pt. AC Input 5,4
6ES7314-1AC00-0AB0 CPU 314 22,2
6ES7321-1BH00-0AA0 SM 321, DI 16 x DC24V 28,0
6ES7331-7NF00-0AB0 AI 8 channels 76,0
6ES7951-0FD00-0AA0 Memory Card 90,2
6ES7322-1BH01-0AA0 DO 16 x DC 24V, 0,5 A 105,7
6ES7340-1AH01-0AE0 CP 340 278,3
6ES7960-1AA04-5AA0 Patch cable 1m 394,9
6ES7964-2AA04-0AB0 DP-interface module 703,4
6ES7972-0BA12-0XA0 profibus connector 19120,4
6ES7368-3BB00-0AA0 Cable 317097,9

high ambient temperatures or subject to a massive EMC load), then the MTBF values

are no longer valid and large numbers of failures might occur.

This term is based on the assumption that when a failure occurs, the system

does not generally remain in the down state, but is renewed or repaired. The time

required for renewal or repair (i.e. from the start of the down state to the restoration

of the up state) is known as the Mean Time to Repair (MTTR), often also called

Mean Down Time (MDT). These characteristics are the most common parameters

related to reliability which are provide by manufactures in the documentation for

their equipment.

As an instance, the Table 1.1 shows some values MTBF for the equipment used

in the previously described system. This data are provided by the manufacture [12].

1.2.4 Knowledge-based Databases

It is common that hardware vendors provide some parameters as MTBF for their

equipment, but there is no information about complex types of failures. Since each

relatively big manufacture usually has it is own history records for the equipment,

an idea to unite such historical data seems to be a relevant responses to the prob-

lem. There exists international initiatives which gather the data collected by users

of equipment in a centralized database, in order to provide realistic data about dif-

32

ferent types of technological devices. For example, plant and equipment taxonomies

developed by the Process Reliability Database Project (PERD) [2].

1.2.5 Safety standards IEC 61508/IEC 61511

These standards is the quantitative approach for the failures analysis. They define a

concept of functional safety as a safety instrumented function calculated for electrical,

electronic and programmable electronic systems. The standards require a quantitative

proof for the risk, based on calculating the probabilities of dangerous failures. This

calculation is carried out for the complete safety loop, consisting of sensor, PLC and

actuator. The standards define the following steps for evaluation of safety:

• Risk definition and assessment according to detailed probabilities of failure from

sensor over controller to actuator for the overall component life time

• Specification and implementation of measures for risk reduction

• Use of suitable instrumentation (evaluated or certified)

• Periodic test for correct operation of the safety functions

Some of the calculated parameters are following:

• Percentage of failures without the potential to put the safety-related system

into a dangerous or fail-to-function state

• Average probability of failure on demand

• Failure rate for all safe detected failures

• Failure rate for all safe undetected failures

• Failure rate for all dangerous detected failures

• Failure rate for all dangerous undetected failures

33

The calculations are made for every single component of a system. Clearly, a com-

plete quantitative evaluation can be determined only for relatively simple and small

devices, such as film resistors, transistors, relays and etc. Characteristics of complex

components such as processors and memory for PLC are determined partially.

The complexity of the underlining approach for these standards and a correspon-

dent high cost restricts its application only for so-called Safety Instrumented Systems

(SIS) that are designed and used to prevent or mitigate hazardous events, to protect

people or the environment or prevent damage to process equipment.

1.2.6 Simulation

Simulation is the imitation of the operation of a real-world process or system over

time[21]. In industrial practice it is used as the imitation of the real-life technological

processes and equipment. It usually includes generation of a software model which

reflects the supposed system’s behaviour. It is also a common case when simulations

involve hardware devices and entire subsystems, such as networks, sensors and ac-

tuators, and even real physical objects and media. Either existing and conceptual

systems can be modeled with simulation. The main goal of simulations is validation of

system’s behaviour while a real system is not accessible, it is being designed, or it may

be dangerous to use its processes and machines. Examples of simulation approach

can be found in performance optimisation [32], scientific modeling [52], analysis of

possible failures [60] and of failure avoidance [59].

The main issue of this approach is how an imitated system is close to the corre-

spondent model, i.e. how the quality and quantity of information provided for the

simulation reflects the processes and machines’ behaviour in the real life.

1.2.7 Formal methods

The Failure Mode and Effect Analysis is the first step of a system reliability study.

The Simulation can augment this analysis with a reality-like experience of failures

and of how the automated system would behave. However, only formal methods

34

can ensure reliability of a manufacturing system design [36]. Formal methods apply

logic and mathematics to development process of systems and their analysis during

operations. The are used for specification, development and verification of software

and hardware.

The formal methods have been used in industrial automaton for a half of century,

providing distinct field of research, development and application, mainly for control

engineering due to its importance. Nowadays, formal methods have their own design

programming languages as [53] for instance, and tools as [4], [1] and [10] for example.

Informal Specification

Formalization

Formal Specification

Implementation

Realization

ValidationDirec Implementation

Figure 1-3: Design process of automated systems

The Figure 1-3 depicts a generic model of a manufacturing system design process.

The design process of a particular system starts, in most of the cases, with informal

description of technological processes. It specifies the system’s behaviour in not a

strictly semantically and syntactically defined form. Additionally to the verbal form,

the description includes P&I diagrams, equations and algorithms expressed in block

diagrams. The main problem with informal specifications is that they do not facilitate

35

tests for completeness, unambiguity and consistency of the system.

Until nowadays, the common approach is when after the stage of informal spec-

ification immediately begins its direct implementation into a code for PLC with a

programming language. Instead, when applying formal methods, the implementation

stage follows after formalization of informal descriptions into formal specification.

Formalisation is performed by humans, and involves conversion of textual and graph-

ical information into the form of a formal language or another representation (for

instance, automata).

Formal specifications can be translated directly into programming languages [41]

by a design tool. This step eliminates the error prone interpretation by humans

ensuring that the system will behave exactly as it was specified.

Formal specification of the system brings opportunity to apply verification tech-

niques to the design process. Verification is used to prove some properties of the

system’s specification. These properties are independent from the modeled system,

such as, for example, existence of deadlocks in the discrete-event systems approach.

Verification is closely related to Model checking “technique for verifying finite state

concurrent systems such as sequential circuit designs and communication protocols.

It has a number of advantages over traditional approaches that are based on simula-

tion, testing, and deductive reasoning”[28]. Model checking verification considers a

system as state-based model specified using, for instance, automata framework, and

specifications of properties written in temporal logic.

A formal verification approach can be a model based or non model based. In

model based approaches a model of the studied object is included into analysis. This

can be a model of technological process or of manufacturing equipment. In non model

based approaches the formal representation of specifications does not include a model

of the object. These approaches assume that, literally, everything can happen. An

example of this approach is development of a system with a few formally described

controllers, where the whole system, i.e. the composition of the concurrent acting

controllers needs to be verified for deadlocks absence.

Due to importance of the problem of failures analysis for modern complex auto-

36

mated systems, formal method tools are widely used to support it. Whenever the

specification of a system is accessible in a formal form, many formal approaches can

be applied for offline failure analyses of the system’s design and its online failures

monitoring during its operation.

The next Chapter 2 describes an UML model based modeling approach for manu-

facturing systems design, and how this approach is used to reflect failures, such that

it is suitable for formal analysis due to exploiting the automata framework at the

internal layer. Then the mathematical notation for discrete event systems is briefly

presented, different definitions of diagnosability are given, as well as an idea under-

lining a new notion of diagnosability which is described in details in the following

Chapter 3.

37

38

Chapter 2

Diagnosis-oriented Modeling and

Verification Framework

This first part of the chapter presents a modeling approach for design of manufacturing

systems which exploits idea of decomposition of a system into modules, and presents

them in a form of UML blocks. It is shown then, how the modules are represented

internally by automata, and how the failures can be modeled. The second part of this

chapter gives a necessary introduction into a formal notation for discrete event systems

in terms of languages and automata, and describes different types of diagnosability.

2.1 Modeling Framework

2.1.1 Introduction

The fundamental principle “divide and concur” underlies many techniques and ap-

proaches either used solely at the level of individual engineers and programmers or

developed at the level of international standard committees and organisations. For in-

stances, one can recall object-oriented concepts in traditional programming principles

[34], and standards of International Electrotechnical Commission (IEC), particularly

the legacy IEC 61131-3 [43] which defines programming languages for programmable

logic controllers (PLC), and the modern IEC 61499 [57] which represents a com-

39

ponent solution for distributed industrial automation systems aiming at portability,

reusability, interoperability and reconfiguration of distributed applications.

Many Integrated Development Environments (IDE) used in industrial world sat-

isfy all the requirements and standards in order to facilitate the process of develop-

ment, enrollment and maintenance of a complex system. They exploit object-oriented

concepts as classes with their instances, inheritance and encapsulation. However,

these concepts were not initially created bearing in mind the purpose of formal veri-

fication. As a consequence, the tools widely used in industry nowadays do not gener-

ally support approaches for DES raising in the scientific world. As a response for the

growing demand for intersection of classical development process with formal tech-

niques many researches attempt to create instrumental and theoretical bridges. The

most promising results seem to be reached in formalizing Unified Modeling Language

(UML), Statecharts, and general purpose programming languages as C.

In [42] the authors introduce a framework which allows to convert an UML model

into the formal languages described in the form of specification. The framework can

be applied only for a subset of UML diagrams. The resulting formal specification can

be used for model checking and simulation, using existing tools aimed for this purpose.

Figure 2-1 depicts the instance of an UML diagram and its representation by a Mealy

automaton which, in its turn, can be transformed into a classical automaton. In [24]

the authors develop a framework to transform UML diagrams and Statecharts into

Computation Tree Logic (CTL) which is the used in a model checking tool. Other

works to mention are [31], where UML diagrams are mapped to automata, [35] where

the authors concentrate on converting PLC languages to UML and then to automata.

Even a such known widely spread tool as Matlab [9], used by both practitioners and

theoreticians, also has to be tweaked in order to get its modeling ability closer to

a formal representation. Examples of such attempts are [46] and [40]. An instance

of model checking tool, which is exploited by many of the approaches mentioned

above, the most notable one is NuSMV [10] which automatically verifies properties

of finite-state systems, expressed in CTL, Linear Temporal Logic (LTL) or Property

Specification Language (PSL).

40

toasting

door open

baking

initial

do toasting /
heater on
arm time event

do baking /
heater on
set temperature

door open /
heater off
disarm time event
lamp on

door close /
heater on
arm time event
lamp off

door open /
heater off
set temperature 0
lamp on

door close /
heater on
set temperature
lamp off

Figure 2-1: Example of an UML Statechart diagram (at top) and its representation
by the Mealy automaton

Quick analysis of the aforementioned attempts to bridge the most widely used

object-oriented IDEs and their underlining modeling technologies shows that they

solve the problem of using formal methods by system’s developers only partially. The

reason is, as it was said before, that those concepts and tools had been developed

before formal methods became useful in practice, and they simply can not be merged

with modern formal approaches. The problem lays, firstly, in the ambiguity of legacy

methods, their freedom of interpretation. It appears when, for instance, one tries to

convert an UML diagram to automata. Second, the problem comes from the fact,

that producers of development tools have created a wide range of derivatives of one

41

standard, which, at one hand, satisfied requirements of the market and, on the other

hand, made these implementations incompatible to each other. Now, when formal

approaches both, have reached enough theoretical level, and have growing demand

due to the high complexity of currently appearing systems, there is a need for new

approaches and tools that exploit formal methods as an underlying concept.

One of the approaches which uses the object-oriented principles, and focuses on

formal verification is presented in [50]. The approach introduces a modeling entity

called Generalized Device and shows how it can be used for formal verification in

the DES framework. The approach is a refined architecture of a concept of Gener-

alized Actuator for industrial automated systems [33]. The next section gives a brief

introduction into both the concept and the refined approach.

2.1.2 Generalized Actuator and Generalized Device

Generalized Actuator

The GA approach aims to reduce complexity of the modeling process using standard-

ized object-oriented concepts of engineering. An idea of GA is to identificate essential

patterns in automated manufacturing systems, and design control software entities

suitable for formal methods of DES theory. The GA approach gives a modeling

framework and defines a design procedure with following characteristics:

• Encapsulation of “actuation mechanism”;

• Hierarchical representation of a plant;

• Separation of control policies from actuation mechanisms in each GA;

• Support of visualization of plant’s hardware;

• Interoperability and reusability of GAs.

The GA implements a concept of abstraction. It implies that all the actions of a

complex process, from the high-level point of view, can be decomposed into sets of

two kinds: Do-Done actions and Start-Stop actions.

42

Figure 2-2: GA with two types of interfaces (top) and its underlining formal repre-
sentation by the automaton (bottom)

The Do-Done GA reflects a process which starts by an external (with respect to

this process) “Do” command, and continues until an internal (with respect to this

process) decision to terminate is taken. The duration can be finite or infinite. After

its termination the process issues “Done” event. The instance of a process which can

be abstracted by this type of GA is the opening of a valve: the command “Do” is

issued to open the valve; when it opens, the event “Done” occurs.

The Start-Stop GA is an abstraction of a process which starts by an external

“Start” event, and continues until an external “Stop” event occurs . Again, the

duration can be finite or infinite. The instance of a such process is a temperature

regulation with a heater: the “Start” event switches on the heater; when temperature

reaches a required level the “Stop” event switches it off.

43

The above described two types of GA can be implemented as Functional Blocks

(FB) in terms of IEC 61131-3 standard, as depicted in Figure 2-2 1. Besides the

essential inputs and outputs necessary to perform the above described types of actions,

the blocks have other inputs and outputs related to the low level of processes, and to

some additional information related to the high level.

Internally, each type of GA is represented by the automaton, as depicted on the

figure. Each state of the automaton can abstract a set of states of other automata,

i.e. GAs contain a hierarchical structure of automata.

A design procedure, according to the framework of GA can be described by the

following steps:

• Identification of distinguished processes and their basic actions;

• Classification of actions into Do-Done and Start-Stop actions;

• Definition of GAs for two kinds of actions;

• Assigning low level information and additional information to each GA;

• Design of internal hierarchical structure and logic of automata for each GA.

The last two steps in the above described design procedure encapsulate a logic

specific for a given process. Potentially, the complexity of internal implementations

of GAs is not limited. Thus, the functional blocks correspondent to the GAs can

became very specific, such that it would be possible to reuse them only at the same

plant, or for a technologically similar processes. A designer of a GA must be aware

of this problem, and maintain simplicity of the internal implementation. Instead of

increasing the complexity of internal structure of a GA, one can create other GAs.

However, this process relies solely on decision of a particular designer for a system.

The design problem, described above, can be reformulated as that a GA abstracts

a process at its high level, but does not abstract it at its low level. The architectural

approach of Generalized Device (GD) is aimed to solve this problem.

1The image is borrowed from [33]

44

Generalized Device

The idea of a Generalized Device is based of the observation that the most of different

low level field devices can be viewed as only two kind of abstract devices: either single

acting device or double acting device. Each kind of devices has an actuator and also

may have sensors.

A single acting device has only one command (input) to perform a “forward”

or “on” action. The “backward” or “off” action is performed by the device itself,

implicitly ore explicitly. Examples of single acting devices are: a cylinder with a

return spring, a contactor itself or together with any controlled equipment (electric

motor, heater, lighting, etc).

A double action device has one command to activate the device and another

command to deactivate it. Simultaneous commands on inputs of the device are usually

prohibited or have now effect on a state of the device. The instances of double action

devices are: a double acting cylinder, an auxiliary relay or any start-stop device which

may itself be a composition of two single acting devices.

The common feature of the both, single and double acting devices is that they

have two clearly distinguished states. In order to detect what the current state of a

device stays in, it is usually equipped with one or two sensors. In case of two sensors

each of them gives the feedback for the correspondent state. In case of one sensor

one level of its signal corresponds to the first state of the device, another level - to

the second one. A state of the device in the case when it has no sensors is implied

according to a previous command. Concluding, a classification of the devices in this

approach is the following:

• Single acting device

– with no feedback

– with single feedback

– with double feedback

• Double acting device

45

Figure 2-3: Device with Double Actuation and Double Feedback (DADF) and its
connection to a physical device (valve)

– with no feedback

– with single feedback

– with double feedback

As an instance, the Figure 2-3 depicts the device with double activation and double

feedback. It abstracts a physical device, the valve in this example, for a higher level

GA.

The approach of generalized actuators and devices allows to construct complex

automated systems using simple predefined models, as it is shown at the Figure 2-4.

Due to representation of the system’s models by automata, various DES tech-

niques can be applied in order to define and solve control and diagnosis problems for

entire system. To preserve the level of abstraction, however, additional information

necessary for a required problem has to be encapsulated into modules. Particularly,

possible failure behaviour should be incorporated into modules for the diagnosability

problem.

46

Plant

Generalized Actuator (GA)

Phisical Device

Generalized Device

Control Logic of GA

Phisical Device

Generalized Device

General Supervision Logic

Generalized Actuator (GA)

Phisical Device

Generalized Device

Control Logic of GA

Figure 2-4: Hierarchical relation of system’s components: high level logic of plant,
GAs, GDs and physical devices

The next section proceeds with a description of how the approach of generalized

device is used for modeling and analyses of faults.

Generalized Device and Failures Diagnosis

This section briefly describes an approach for building structured formal models,

presented in [49]. The methodology extends the approach of generalized device to

facilitate diagnosis verification and monitoring problems. The authors present each

GD as a composition of automata, where automata reflect control logic and a model of

physical device, decomposed into sensors, actuators, components and their constrains.

For the sake of simplicity, the approach is presented further with a small illustrative

example. The example shows the idea of decomposition with two components of

a hypothetical device (think of a valve from the system given in Chapter 1), their

constrains and how failures are modeled.

47

do_hi

do_lo

do_hi

do_lo

0

1

Figure 2-5: Automaton representing digital output

Table 2.1: Correspondence of automata event labels to digital output signals

Label Digital output signal state
do lo Digital output signal is low
do hi Digital output signal is high

The Figure 2-5 depicts a model of digital output (a model of digital input would

be equal). The automaton has two states, reflecting the low and high levels of signal.

The event labels of the automaton are correspondent to digital signal states as shown

in the table 2.1. The states of a signal are treated as events because they are seen

as readings (two values) of a variable (either it is output or input) in a program in

PLC, while the cyclical program execution.

In major of cases, a digital output is linked to an actuator, there is an intermediate

signal amplifier, e.g. an electromagnetic relay. It acts also as an galvanic isolation of

the PLC and the field device.

In this example, the behaviour of the relay is related to the behaviour of digital

output, i.e. it is constrained by the digital output. A model of the relay, a model

of constrain and the resulting composition of all the aforementioned components is

depicted in the Figure 2-6.

s

For illustration of a failure lets pick one of the possible relays failures, e.g. broken

coil. The correspondent model of the relay with this failure is depicted in the Figure

2-7 (event f0 states for the failure event). Similar to the this failure, a “stuck on”

relay’s failure can be modeled.

As the the approach of GD assumes, almost any field device can be decomposed

into simple components, as ones described in the above example. The failure models

48

r_hi

r_lo

r_hi

r_lo

0

1

r_lo, do_lo

do_hi

r_hi, do_hi

do_lo

0

1

do_lo, r_lo

do_hi

do_lo

do_hi

r_hi

do_lo

do_hi, r_hi

do_lo

do_hi

r_lo

0

1

2

3

Figure 2-6: Automata models of Relay (top left, constrains (top right), and result of
composition (bottom)

r_hi
r_lo

r_hi

r_lo

f0
f0

r_lo

0
1

2

Figure 2-7: Failure model of the relay (example of the broken coil)

for such components can be easily determined. More complex components can be

then composed by using the simple models and constrain automata. Thus, a set of

predefined models can be exploited for building a library of GD. Since all the models

include failure behaviour, formal diagnosability analysis techniques can be applied.

In the Chapter 3 a part of the work is devoted to an extension of the above failure

modeling approach such that a failure behaviour can be modeled without failure

events, by state marking. It will be shown how a failure behaviour can be separated

from a non-failure one automatically, for further diagnosability analysis.

49

2.2 Discrete Event Systems Framework for Diag-

nosability Verification

2.2.1 Introduction

Discrete Event Systems (DES) are systems, the dynamic of which is characterized

by asynchronous occurrence of events. An event is a fundamental concept which can

be viewed and described as “something happened”, either in systems designed by

humans or in nature. Events have no property of continuation, they are instant, and

can be observed only at discrete points in time. The second fundamental concept,

characterizing a DES, is a state. A state is viewed as a result of temporally ordered

discrete events, occurred starting from a moment when the system was at its initial

state. The initial state of a DES characterizes the system before occurrence of any

event. In reality, this characteristic may be seen as an assumption or “agreement” for

the given system. Being at a certain state, when an event occurs, the system makes

a transition to another state.

The examples of events are: switching a light on, pressing a button, a moment of

rising a temperature above a certain level. The correspondent states are: the light is

on, the button is down, the temperature is high.

Historically, all the system’s events are thought as of an alphabet. Temporally

ordered, they form words which, consequently, form a language. At this level of

abstraction DES are studied by the language theory [19].

Formal language theory is closely related to Automata theory [37]. Automata are

used as one of the modeling formalisms for DES. A single automaton can be repre-

sented as a directed graph, and it is, probably, the simplest way a complex system’s

behaviour can be graphically and formally described and conceived by humans.

The next section gives the preliminaries from theories of languages and automata,

used in this document.

50

2.2.2 Notation

The notation used in this document is the one in [26]. For the benefit of the reader

we place here the most essential notation necessary for understanding of the further

material.

Let Σ be a finite set of events. A sequence of events is a string. Σ∗ denotes a set

of all finite strings over Σ. L ⊆ Σ∗ is a language over Σ. Given strings s and t, st

is their concatenation. Given strings s and w, w is a prefix of s if exists t such that

wt = s. Prefix closure of L, denoted by L is a set of all prefixes of all the strings in L.

If L = L then L is prefix-closed. The post language of L after a string s is denoted

as L/s, i.e. L/s := {t | st ∈ L}. We write σ ∈ s if the event σ ∈ Σ appears in the

string s ∈ Σ∗. If {s} is a singleton, we write s for operations on languages.

An automaton G is a tuple

G := 〈X,Σ, δ, x0, Xm〉 ,

where X is a set of states, x0 ∈ X is an initial state, Xm ⊆ X is the set of marked

states, and δ : X × Σ → X is the transition function. We say a language L :=

L(G) is generated or recognized by the automaton G. In this paper we assume that

for each language there is always a correspondent automaton, and vice versa. The

marked language Lm ⊆ L is intended to make a part of the automaton’s behaviour

distinguishable in a certain context.

Some events of DES can not be observed. To reflect that the set of events Σ is

partitioned into disjointed sets of observable events Σo and not observable events Σou,

i.e. Σ = Σo ∪̇ Σou. M : Σ∗ → Σ∗
o denotes natural projection that erases unobservable

events. The correspondent inverse projection is M−1 : Σ∗
o → 2Σ

∗

.

Let I := {1, 2, . . . , n} ⊂ N be an index set. A system is defined by a set of

automata {Gi∈I} and a correspondent set of languages {Li∈I}. We use the term local

in context of the automata and languages from these sets. The global language of the

system is defined by the parallel composition [26] of its local languages: L :=‖i∈I Li.

The natural projection for the local languages is defined as Pi := Σ∗ → Σ∗
i . We

51

extend it to the system’s languages as follows: Pi(L) := {s | s ∈ Li}, and P−1

i (Li) :=

{s | s ∈ L, Pi(s) ∈ Li}, i ∈ I. We also define natural projection over observable

events for the index set: Mi : Σ∗
i → Σ∗

i,o, natural projection over common events:

Pi,c : Σ∗
i → (Σi ∩

⋃I

j 6=i Σj)
∗, and natural projection over observable and common

events: Pi,co : (Σi ∪Σo)
∗ → (Σo ∪ (Σi ∩

⋃I

j 6=i Σj))
∗. All the above projections, as well

as the correspondent inverse projections, are defined also for languages in the usual

manner.

2.2.3 Abstraction by decomposition

For model checking and verification of DES the state explosion problem is one of the

main limitations for their application in industry. The most important technique to

deal with the state explosion problem is abstraction. The basic idea of abstraction

is that some parts of a given system do not have effect on particular properties, and

hence, these parts can be eliminated from the system’s design.

One of the most effective abstraction techniques, compositional reasoning [22],

deals with complex systems in order to reduce its complexity by breaking into smaller

parts, checking its properties and then deducing the system correctness. These parts

do not necessary reflect the real structure of a system if any. On the other hand, the

most of systems are already structured in reality. Their structure is understood by

humans, the properties of their parts can be described and checked easier relatively

to the complex system. Then the models of the system’s parts along with their

properties can be reused.

The modeling approach, described in this chapter, exploits automata framework

and, which makes the idea of abstraction applicable for it.

2.3 Diagnosability of DES

In Discrete-Event Systems, diagnosis of a fault is a problem of deciding whether

or not the fault occurred, under partial observation of the system’s events. The

problem was defined in [48] where the authors consider a monolithic model of a

52

system. This definition and new definitions of diagnosability problem, emerged later,

may be grouped as, for example, in [55], where an approach can be centralized as

in [48], [39] and [61], decentralized as in [30], [44] and [45], or distributed as in [54].

The centralized and decentralized approaches require building of a monolithic model.

This process corresponds with exponential growth of the model’s state space, which

makes the diagnosability problem intractable for complex large systems with high

modularity.

Architectures for on-line diagnosis can be categorized as follows: centralized, de-

centralized and distributed.

L1
. . . Ln

D

M(‖i Li)

Decision

Figure 2-8: Architecture of a system with centralized diagnosis

L1L1
. . . Ln

D1

. . .

. . . DnM(L1) M(Ln)

Decision

Figure 2-9: Architecture of a system with decentralized diagnosis

2.3.1 Centralized diagnosability

This architecture refers to a global model (language).If the system is modular, then

the global language is built by the parallel composition of the local languages. All

the observations are performed at one site. In this architecture only one diagnoser D

53

L1

D1

. . .

Communication

Ln

Dn

Decision

M(L1) M(Ln)

Figure 2-10: Architecture of a system with distributed diagnosis

[48] is constructed. Upon the current state of the diagnoser a decision on the fault

occurrence is made. The structure is depicted in Figure 2-8.

2.3.2 Decentralized diagnosability

This approach also exploits the entire model built from its modules, but several

local sites perform observations using only local diagnosers. The diagnosers do not

communicate to each other, but they provide necessary information (via a protocol)

to a central decision node. This architecture is depicted in Figure 2-9.

2.3.3 Distributed diagnosability

The architecture is depicted in Figure 2-10. The distributed approach does not require

to built the entire model of the system. The architecture implies that the system has

a set of observation spots, and each spot observes only one module of the system. A

communication among observation spots is possible in order to make a decision about

a fault occurrence.

The notion of modular diagnosability meets the same architectural implications,

and we refer to it as to the distributed approach when the amount of information the

observation spots communicate to each other is equal to zero.

Distributed approach does not require to built an entire model of the system. The

approach implies that the system has a set of observation spots, carrying diagnosabil-

ity information (diagnosers), each observing only a part of the system (a subset of the

modules, composed). Diagnosers can communicate to each other in order to decide if

54

a fault occurred. In general, the bigger the observation spots for the same system, the

less communications among the spots is required. Figure 2-11 shows that the average

size of a composed module grows while the system’s modules are composed together

(we imply that each module is represented by automata, and the size of a module is

reflected by the number of states of a correspondent automaton). The shape of this

curve depends mostly on the order the modules are taken for the composition, but the

initial point, when the system has maximal modularity, and the final point, when all

the modules are composed into one monolithic model, remain the same. Assuming

that the system is diagnosable, the average size of a diagnoser grows much faster,

since it is exponential with respect to the average size of a module, in the worst case.

The amount of events the diagnosers have to exchange among each other, in order to

decide if a fault occurred, is decreasing. The reason the diagnosers require less event

for decision making is due to the fact that they become more self-sufficient, since

amount of observable events available for each diagnoser without communications is

growing. Thus, the events exchange rate decreases down to the point where no com-

munications is required to make a decision about the faults occurrence. That is the

point when the system becomes modular diagnosable (the notion of modular diagnos-

ability was introduced in [29]). The following composition of the modules does not

affect diagnosability, and leads only to the growth of the modules’ and diagnosers’

sizes.

In our approach, given a system with an initial natural modularity, we search for

a point, when the system is modular diagnosable. If the system is diagnosable, then

this point can always be found. The modules correspondent to that modularity we

call virtual, since they differ from natural modules and used only to build diagnosers.

2.3.4 Diagnosability of a Modular System

Diagnosability analysis uses a notion of a faulty language to describe the faulty be-

haviour of a discrete-event system. This section discuses design issues related to

representations of the faulty language and focuses on a definition of modular diag-

nosability.

55

Events

0 1

States

1/Number of modules

Virtual
modules

Average size of module, states
Average size of diagnoser, states
Events exchange rate

Figure 2-11: Size of modules, diagnosers, and events exchange rate, changing with
respect to the degree of modularity of the system

The faulty behavior is usually modeled by introducing fault events or by faulty

specifications. We refer to this approaches as to event-based and specification-based

correspondingly. All the aforementioned works exploit the event-based approach,

whereas the works [62] and [49] are examples of the specification-based one.

In the event-based approach fault events are a special type of event such that Σuo

can be disjointed into the sets of faults Σf and non-faults Σuo\Σf . A string containing

a fault event is called faulty string. A set of faulty strings is called faulty language,

i.e. formally

Lf := {s ∈ L | σ ∈ s, σ ∈ Σf}.

By definition, the faulty language is not necessarily prefix-closed, Lf ⊆ Lf . Thus, in

the event-based approach the language of the system can be partitioned into faulty

and non-faulty languages, where the non-faulty language is defined as Lnf := L\Lf .

In the case of the specification-based approach the faulty specification allows us to

define undesired behavior when the fault events are not necessarily introduced. In this

case this behaviour can be represented by a marked language Lf := Lm ⊆ L. Labeling

automata’s states for the same purpose can be considered as an equal technique.

Different types of undesired behaviours (or types of faults) are defined by parti-

tioning Σf into subsets (not necessarily disjoint) or by several faulty specifications for

the same language.

56

A faulty language defined in the event-based approach can be simply converted

into a faulty specification by marking faulty strings, and erasing fault events. Then,

we can assume that if fault events are defined, then faulty specifications can also be

defined. Consequently, a set of different types of faults requires a correspondent set of

specifications. Thus, a method suitable for the specification-based approach implies

that it can be adopted for the event-based approach. In this paper, for the sake of

unification, we use specification-based approach. For this reason the definitions of

diagnosability originally developed by their authors for the event-based approach are

slightly modified with no loss of meaning.

For the sake of simplicity, in the following we assume that there is only one type

of fault, and that the language of the system is live.

We define diagnosability of a fault as follows:

Definition 1. Given a system’s language L with a fault defined by the sublanguage

Lf . The fault is diagnosable if there is no two strings in the language L with the same

observation such that one string is faulty and of arbitrary cardinality, and another is

non-faulty, i.e. if the following holds:

∀(s ∈ Lf , t ∈ Lf/s)

(∃n ∈ N)(|t| ≥ n)

[M(st) ∩M(Lnf) = ∅] .

(2.1)

We define diagnosability property of a language as follows:

Definition 2. The language is diagnosable if all its faults are diagnosable.

The two above definitions altogether are similar to the Definition 1 in [48]. We

recall the statement in [29] proved by Theorem 2, that the global language of the

system is not diagnosable only if exists at least one non-diagnosable local language.

If all the local languages are diagnosable then the global language is diagnosable. We

refer to this property as to a local diagnosability property:

Definition 3 (Local diagnosability). Given the set of languages {Li∈I}. The global

57

language L :=‖ Li is diagnosable locally if each local language Li is diagnosable, i.e.

if the following holds:

∀(i ∈ I, s ∈ Li,f , t ∈ Li,f/s)

(∃n ∈ N)(|t| ≥ n)

[Mi(st) ∩Mi(Li,nf) = ∅] .

(2.2)

The definition of modular diagnosability extends the definition of local diagnos-

ability as it takes into account the case when a faulty string locally indistinguishable

in one module becomes distinguishable due to the composition with another module:

Definition 4 (Modular diagnosability). Given the set of local languages {Li∈I} and

its correspondent sets {Li,f} and {Li,nf}. The global language L :=‖ Li is modularly

diagnosable with respect to Mi : Σ
∗ → Σ∗

i,o if the following holds:

∀(i ∈ I, s ∈ Li,f , t ∈ Li,f/s)

(∃n ∈ N)(|t| ≥ n)
[

Mi(P
−1

i (st)) ∩Mi(P
−1

i (Li,nf)) = ∅
]

.

(2.3)

It was proved in [29] by Theorem 2, Part 2 that the local diagnosability implies

the modular diagnosability2, i.e.

∀(i ∈ I, s ∈ Li,f , t ∈ Li,f/s)

(∃n ∈ N)(|t| ≥ n)

[(Mi(st) ∩Mi(Li,nf) = ∅)⇒
(

Mi(P
−1

i (st)) ∩Mi(P
−1

i (Li,nf)) = ∅
)]

.

(2.4)

Recall the Definition 1 of the diagnosable fault. If a module is not diagnosable

locally then exist at least two strings in its language, one is faulty and the other one is

not, with the same observation of arbitrary length, i.e. the strings are not distinguish-

able. The indistinguishability can disappear if and only if: a) at least one string is

2In [62] the authors show that the local diagnosability and modular diagnosability are not com-
parable but they have a different setup for the problem.

58

not in its language due to concurrency with other module, and then the strings would

be distinguishable locally - the verification of the modular diagnosability property is

devoted to find if this is the case; b) indistinguishability is broken globally by inter-

leaving sequences of the module’s events with observable events of other modules.

The later case is expressed in the following conjecture:

Conjecture 1. Given a system of two modules with languages L1 and L2, and the

global language L := L1 ‖ L2. Suppose there is only one faulty string s ∈ L1 such

that it is not distinguishable from at least one string of L1\s. Thus, L1 is not locally

diagnosable. Suppose the system is not modular diagnosable. Then the global language

L is diagnosable only if all the strings t ∈ P−1

1
(s) change their observation due to the

composition with the language L2.

The above conjecture gives the insight into the underlining idea of our approach. If

we find a module which makes the faulty string distinguishable then the composition

of that module with a faulty one would result in a new module satisfying the property

of local diagnosability, thus improving the modular diagnosability property of the

system. In the following section we provide a formal description of the problem.

59

60

Chapter 3

Virtual Modular Diagnosability

This chapter presents the virtual modular diagnosability, a new type of diagnosability.

After a formal definition of the notion, it proceeds with an analysis of a simple system

which consists of two modules, modeled by automata. This analysis exposes structural

conditions for the models, such that a verification whether the models satisfy these

conditions allows to infer diagnosability property of their composition, i.e of the entire

system. Then these conditions are rewritten for a general case, i.e. a system that

consists of an arbitrary number of components. The chapter then presents algorithms

which facilitate diagnosability verification in a efficient way. At the end, a simple

abstract example shows application of this approach.

The final goal is to make a given system modularly diagnosable. Lets assume that

the system is diagnosable globally with respect to a given fault. It implies that it

is always possible to find a subset of the system’s modules, such that it contains a

faulty module, and all the modules from the subset can be composed into one locally

diagnosable module. Each module in the subset helps to detect and distinguish the

fault by sequences of its observable events. The assumption also implies that not each

module of the system can or may participate in the fault detection and distinguishing

process.

61

3.1 Formal Definition

Mathematically speaking, if the initial modularity does not satisfy the property of

modular diagnosability, then we need to find a partition of the set of the modules such

that all the modules in each element of the partition can be considered as a virtual

module, and the system with the new modularity satisfies the property of modular

diagnosability.

The setup for the problem is following. Let a system be defined as a set of local

languages {Li∈I}, and let a faulty behaviour be defined for any i ∈ I, i.e. each

language Li can be disjoint into faulty and non-faulty sublanguages: Li,f and Li,nf .

For the sake of simplicity, we assume that a language may have only one type of

fault. We assume that (∀i ∈ I) [Li = Pi(L)]. The motivation for this assumption

is following. Most of real-life complex systems are of high modularity, where each

module is presented as a small model along with correspondent faults as, for example,

in [49]. When properly designed, such systems have neither deadlocks nor trajectories

which never executed. In practice, such assumption may require construction of a

supervisor, and verification that a local language of each module is globally consistent,

before checking diagnosability of the system.

Definition 5. Let J be a partition of I. Given a set of system’s languages {Li∈I} and

a set of observable projections {Mj | j ∈ J}. The system is modularly diagnosable

with respect to J and {Mj} if the following holds:

∀(i ∈ I, s ∈ Li,f , t ∈ Li,f/s)

(∃n ∈ N)(|t| ≥ n)
[

Mj(P
−1

i (st)) ∩Mj(P
−1

i (Li,nf)) = ∅
]

.

(3.1)

The definition requires each fault originated in any language of the subset j to be

diagnosed by observing only events of the languages from the same subset j.

A trivial solution for the above problem is to enumerate all the partitions of the set

and check whether the result of composition of each element of the partition is locally

diagnosable. In general, the total number of partitions of a set with cardinality n is

62

known as the Bell number Bn, which has a double exponential generation function

[25].

In reality, it may not necessary to enumerate all the partitions, since a partition

which corresponds to modularly diagnosable system can be found even at the first

iteration. Moreover, it is not necessary to compose all the modules of each element

of the partitions, since not all partition’s elements may contain modules with faults.

However, the level of complexity in the worst case motivates us to find a more smart

solution for the problem.

In the next section we make the first step toward a feasible approach for the

problem.

3.2 Trivial system. Analysis of two adjacent mod-

ules

As was mentioned above, the first step to improve the search for a relevant partition, is

to enumerate only the modules which potentially can influence diagnosability. Firstly,

those are ones which have observable events. Then, the structure of modules may

have some patterns, such that if a pattern is found, then we can infer its influence

before the module is composed with others. The module with the fault may also

be analyzed for a possibility to change its observation due to interaction with other

modules. Thus, in the trivial case of a system consisting of two modules where only

one module has a fault, in order to solve the problem, we need to answer the following

questions: a) can a module with a fault potentially change observations of its strings

while composed with the adjacent module? and b) can a module change observation of

some strings of another module due to concurrency? No parallel composition should

be used in order to answer the questions. Otherwise, the problem would reduce to

the problem of local diagnosability.

We suppose that the system consists only of two modules with the correspondent

languages L1 and L2. The language of the system is L := L1 ‖ L2. Suppose that

63

only one module has a faulty behaviour: L1 := L1,f ∪̇ L1,nf . Suppose that L1 is not

diagnosable locally, but L is diagnosable.

Firstly, we define the notion of observation changing of a string in a global lan-

guage.

Definition 6. Given two languages L1 and L2. A string s ∈ L1 changes its obser-

vation M1(s) in the language L if there is no the same observation in P−1

1
(s), i.e. if

the following holds:

M(L) ∩M1(s) = ∅. (3.2)

Lemma 1. Given two languages L1 and L2, and a string s ∈ L1. Assume that

s ∈ P1(L). The string s changes its observation in the language L if and only if:

(∃σ ∈ s | σ ∈ Σ1 ∩ Σ2)∧ (3.3a)

(∀tσ ∈ L2) [M2(t) 6= ∅] , (3.3b)

where M2 : Σ
∗ → (Σ2,o\Σ1)

∗. (3.3c)

Proof. In order to prove sufficiency of (3.3) we use its converse relation and prove by

contradiction that the change of observation (3.2) is necessary. Assume ∃w ∈ L and

∃s ∈ L1 such that M(w) = M1(s) and, therefor, (3.2) is false. Let ∃σ ∈ Σ1 ∩Σ2 such

that σ ∈ w and also (3.3a) holds. Then may ∃uσ ∈ w such that M2(u) = ∅, and then

M2(P2(u)) = ∅ which contradicts (3.3b). Now, let (3.3b) be true for all tσ ∈ P2(w).

Then the assumption M(w) = M1(s) holds only if σ 6∈ s, which contradicts (3.3a).

We prove necessity of (3.3) by contradiction. Let (3.3a) holds, and ∃tσ ∈ L2

such that M2(t) = ∅. Then may ∃t′σ ∈ L ⊆ P−1

2
(tσ) such that M2(t

′) = ∅ and

M1(t
′) = M1(s) 6= ∅, which contradicts (3.2). Now, let (3.3b) holds and 6 ∃σ ∈ s′ ∈

P−1

1
(s) | σ ∈ Σ1 ∩ Σ2. Then may ∃w ∈ L2 and, hence, w′ ∈ L ⊆ P−1

2
(w) such that

M(w′) = M(s), which contradicts (3.2).

64

Informally, the above lemma says that the string of the local language L1 changes

its observation in the global language L if and only if the string has an event in

common with the language L2, and all the strings of L2 which have this common

event have observable events in the prefixes, and some of the observable events in the

prefixes are not common with L1.

We call the subset of stings {t ∈ L2} satisfying condition (3.3b) as the adjacent

observable support for the given string s ∈ L1.

Definition 7. Given two languages L1 and L2. We say that a string s ∈ L1 is

distinguished from all the other local strings L1\s in the language L if the following

holds:

(∀w ∈ L1\s)
[

MP−1

1
(w ‖ L2) ∩MP−1

1
(s ‖ L2) = ∅

]

.
(3.4)

Lemma 2. Given two languages L1 and L2. Assume that L1 = P1(L). The string

s ∈ L1 is distinguished from L1\s in the language L if s has an adjacent observable

support L2,s ⊆ L2 which satisfies the following condition:

(∀t ∈ L2,s) [∃σ ∈ t | σ ∈ Σ1 ∩ Σ2)]∧ (3.5a)

(∀w ∈ L1\s) [σ 6∈ w]∧ (3.5b)

(∀t′σ ∈ t)[M2(t/t
′σ) 6= ∅], (3.5c)

where M2 is defined as in (3.3c).

Proof. Assume (3.4) is false, i.e. ∃w′ ∈ P−1

1
(w) and ∃s′ ∈ P−1

1
(s) such that M(w′) =

M(s′).

Assume (3.5a) and (3.5b) hold. Then may ∃t′ ∈ s′ | t′ ∈ P−1

2
(L2,s) such that

M(t′) = M(w′), and t ∈ P2(t
′) such that M2(t) = M2(w). And may ∃t′′ ∈ t such that

M2(t
′′) = M2(w). Since σ ∈ t and σ 6∈ w, then M(t\t′′σ) = ∅ for any t′′σ ∈ t, which

contradicts (3.5c).

65

Assume (3.5a) and (3.5c) hold. Let M1(L1) = ∅ and M2(t\t
′σ) = M2(s) = M2(s).

Then ∀s′ ∈M(P−1

1
(s)) there exists σ ∈ s′, which contradicts (3.5b).

Assume (3.5b) and (3.5c) hold. If (3.4) is false, then (3.5a) is false. However,

(3.5c) is sufficient for (3.5a), which contradicts the former statement.

Informally, the above lemma says that a string s becomes distinguishable from

the other strings L1\s in the global language, when the occurrence of events from the

observable support happens only in P−1(s) due to common events. Thus, whenever

we observe events of the observable support of L2, we are sure the string s in L1 is

being executed.

Indistinguishability can be changed either by blocking the string in the local lan-

guage due to concurrency, or by interleaving with observable events from other lan-

guages. Under assumption that all the strings are not affected by concurrency, i.e.

L1 = P1(L) we can deduce, that the conditions of Lemma 4 are also necessary for

changing distinguishability.

The Figure 3-1 depicts an automaton which accepts the sublanguage of L2 sat-

isfying conditions (3.3a), (3.5a) and (3.5c) of the above lemmas. The Figure 3-2

depicts an automaton which marks a sublanguage of L1 satisfying conditions (3.3a)

and (3.5a).

A procedure verifying if a string s ∈ L1 is distinguishable in the global language L

consists of two steps. First, the string s should be marked by the automaton depicted

in the Figure 3-2. Then the set of common events Σ1 ∩ Σ2 is reduced to the set

of events causing transitions in the automaton. Second, all the continuations of the

strings of the language L2 which have these common events should be accepted by

the automaton depicted in the Figure 3-1.

Now we are ready to apply Lemma 4 with respect to diagnosability property, but

make some notes before. Intuitively, one would apply the conditions of the lemma

for faulty and non-faulty languages. Recall, that faulty and non-faulty languages

are disjoint, but they may have common prefixes. This common sublanguage is

defined as Lf ∩ (L\Lf). Changing observability of this sublanguage has no effect

for diagnosability, and we can exclude it from a verification procedure. Thus, the

66

0 1 2 3

Σ2\(Σ1 ∩ Σ2)

Σ1 ∩ Σ2

Σ2\(Σ2,o\Σ1)

Σ2,o\Σ1

Σ2\(Σ1 ∩ Σ2)

Σ1 ∩ Σ2

Σ2

Figure 3-1: Automaton for marking the language L2

0 1 2

Σ1\(Σ1 ∩ Σ2)

Σ1 ∩ Σ2

Σ1\(Σ1 ∩ Σ2)

Σ1 ∩ Σ2

Σ1

Figure 3-2: Automaton for marking the language L1

non-faulty sublanguage disjoint to all the prefixes of the faulty language is defined as

L\Lf , and the set of all prefixes of the faulty language disjoint to the above non-faulty

sublanguage and to the common prefixes is defined as Lf\(Lf ∩ (L\Lf)).

Lemma 3. Given L1, L2, L1,f ⊆ L1 and L1,nf ⊆ L1. A language L := L1 ‖ L2 is

diagnosable if the sublanguages L1,f\(L1,f ∩ (Li\L1,f)) and L1\L1,f have distinguished

observable supports in L2.

The proof can be deduced from the Lemma 4.

The automata depicted in Figures 3-1 and 3-2 can not be simply used in a proce-

dure verifying diagnosability, since we should avoid the verification of L1,f\L1,f and

L1,nf\L1,f . However, it can be used to demonstrate the approach in a trivial case, as

it is shown in the next section.

3.2.1 Example

Consider the system of two automata G1 and G2 depicted in Figure 3-3 and Figure 3-

4. The set of events for the system is Σ = {a, b, c, e, f}. Suppose the observable events

are Σo = {c, e}, and the set of fault events is {f}. Thus, only the language L1 has a

fault, and L2 has not. We use the verifier [61] to check if a language is diagnosable.

The verifier for the language L1 is depicted in the Figure 3-5. One can check that it

has an indeterminate cycle. The strings fbc∗ and ac∗ are not distinguishable in the

67

0

1

2 3

c
a

c

f b

c

Figure 3-3: Automaton G1

0 1 2

c

b e

c

Figure 3-4: Automaton G2

local language L1. Hence, L1 is not locally diagnosable.

We now use the verification procedure described in this paper to check if the

language L2 can changes observation of either strings fbc∗ or ac∗ in the language

L1 ‖ L2 such that the strings become distinguishable. The set of events common

for L1 and L2 is {b, c}. It can be verified that only the strings fbc∗ are marked

by the automaton depicted in the Figure 3-2. Next, it can be verified that all the

strings of L2 which have events common with the strings fbc∗ are accepted by the

automaton depicted in the Figure 3-1. Thus, we conclude that L2 changes observation

of the strings fbc∗ in the virtual module G built of modules G1 and G2, such that G

becomes diagnosable. Indeed, if we make a parallel composition of the modules and

build a verifier for the result as it is depicted in the Figure 3-6, it can be checked that

the verifier has no indeterminate cycles.

68

0N,0N

2F,0N 1N,0N

3F,0N2F,2F 1N,2F 1N,1N

3F,2F 1N,3F

3F,3F

f

a

f
b

a

f
a

c

b
f

a
b

c

b

c

Figure 3-5: Verifier of G1

3.3 Generalization. Conditions for diagnosability

We rewrite Lemma 2, where the statements hold for a system of two languages, for

an arbitrary couple of languages as follows.

Lemma 4. Given a tuple 〈Li, Lj, s, u〉 | i, j ∈ N, i 6= j and s, u ∈ Li. The strings

s, u are distinguished in the language Li ‖ Lj if for the string s exists an adjacent

observable support Kj ⊆ Lj which satisfies the condition:

(∀t ∈ Kj)(∃σ ∈ t | σ ∈ Σi ∩ Σj)(σ 6∈ u)

(∀wσ ∈ t)[Mj(t/wσ) 6= ∅].
(3.6)

Informally, the lemma imposes a requirement for the string s to have an observable

support (subset of observable strings ending with common events) in another lan-

guage, which guaranties that we can observe some events in that language before any

continuation of the string s. Then, the lemma defines a condition which allows us to

distinguish these observations from the observation of the string u.

69

0, 0N ; 0, 0N

2, 0F ; 0, 0N 1, 0N ; 0, 0N

3, 1F ; 0, 0N2, 0F ; 2, 0F 2, 0F ; 1, 0N 1, 0N ; 1, 0N

3, 1F ; 2, 0F 3, 1F ; 1, 0N

3, 1F ; 3, 1F

3, 2F ; 3, 2F

f

a

f

f
a

f
a

cb
f

a
b

b

e

c

Figure 3-6: Verifier of G1 ‖ G2

Now, we rewrite Lemma 3, in the context of our setup, as follows:

Lemma 5. Given a virtual module j ∈ J , the module is diagnosable with respect to

Mj if:

(∀i ∈ j, s ∈ P−1

i (Li,f), t ∈ P−1

i (Li,nf))

(∃k ∈ j | k 6= i) and

condition (3.6) holds for at least one of the tuples:
〈

P−1

i (Li), Lk, s, t
〉

,
〈

P−1

i (Li), Lk, t, s
〉

.

(3.7)

The lemma implies, that the virtual module is diagnosable if we can distinguish all

faulty strings from all non-faulty strings. From the lemma it can be seen that for

one faulty sublanguage there can be a subset of languages with observable supports

(a few k ∈ j), satisfying the conditions. In order to make the system modularly

diagnosable, thus, one needs to find a relevant partition, with a desired distribution

70

of modules over the partition. It worth to note, that the partitioning implies that

languages with faults are in subsets with the languages which have observable events.

Thus, other languages which have no faults and have no observable events, as well

the languages with observations which have no effect for the diagnosability property,

will be in other subsets.

One faulty module may require a few modules with observable supports. The al-

gorithms presented in the following section are aimed to find such subset of system’s

modules. The first algorithm may be viewed as a forward propagation procedure.

It starts from the faulty module, and propagates faulty and non-faulty information

trough all the modules, according to some of requirements of the lemmas 4 and 5

related to common events. The second algorithm may be viewed as a backward prop-

agation procedure. It starts from a module with observable support, and propagates

information related to observable events toward the faulty module, according to the

rest of the lemmas’ requirements.

3.4 Algorithms for diagnosability by virtual mod-

ules

Assume that a language with a faulty behaviour and a language which has an ob-

servable support are given. Then, it’s required to verify if the observable support

is either for the faulty or non-faulty sublanguages. If it is true, then the correspon-

dent modules can be composed into a virtual module. According to the Lemma 5,

in order to decide if the virtual module is diagnosable we need to verify the neces-

sary conditions for all the strings P−1

i (Li,f) and P−1

i (Li,nf), projected to the local

languages of other modules {j ∈ I | j 6= i}. Those local projections are the basic

elements our algorithms operate with. In the sequel we refer to the correspondent

local sublanguages as to co-faulty and co-non-faulty ones. A formal definition of these

sublanguages is presented below, and then an algorithm which computes the co-faulty

and co-non-faulty sublanguages for all the system’s modules, is given.

71

3.4.1 Co-faulty and co-non-faulty sublanguages

Definition 8. Given i, j ∈ I, Li,f ⊆ Li, we say that a sublanguage Lj,cf ⊆ Lj is

co-faulty with respect to Li,f if

(∀s ∈ Lj,cf)(∀t ∈ Pi[P
−1

j (s)]) [t ∈ Li,f ∧ t 6∈ Li,nf] ,

and a sublanguage Lj,cnf ⊆ Lj is co-non-faulty with respect to Li,nf if

(∀s ∈ Lj,cnf)(∀t ∈ Pi[P
−1

j (s)]) [t 6∈ Li,f ∧ t ∈ Li,nf] .

In words, the co-faulty sublanguage is a sublanguage which satisfies two condi-

tions: a) it is the sublanguage of projection of the global faulty language to the

local language; b) the sublanguage is not co-non-faulty. Similarly, the co-non-faulty

sublanguage is a sublanguage which satisfies conditions: a) it is the sublanguage of

projection of the global non-faulty language to the local language; b) the sublanguage

is not co-faulty.

Given global faulty and non-faulty sublanguages, one can compute the local co-

faulty sublanguage, using the global language, as follows:

Lj,cf := Pj(Lf)\Pj(Lnf),

Lj,cnf := Pj(Lnf)\Pj(Lf).
(3.8)

However, we are interested to compute local sub languages without computing the

global language. Since the global faulty sublanguage is define as

Lf := P−1

i (Li,f) ∩
I
⋂

k 6=i

P−1

k (Lk), (3.9)

then, by substituting the global language in 3.8 by 3.9, and by mathematical induc-

72

tion, the co-faulty sublanguage of an arbitrary module can be computed as follows:

Lj,cf :=

Pj

(

P−1

j (Lj) ∩ P−1

i (Li,f) ∩
⋂I

k P
−1

k (Lk,cf)
)

\

Pj

(

P−1

j (Lj) ∩ P−1

i (Li,nf) ∩
⋂I

k P
−1

k (Lk,cnf)
)

,

where i 6= j 6= k ∈ I.

(3.10)

We skip the definition of co-non-faulty sublanguage here due to its similarity.

3.4.2 Fault propagation algorithm

Now, we present Algorithm 1 which, given a module with a faulty behaviour defined,

computes the co-faulty and co-non-faulty languages for all the rest modules of the

system. The algorithm starts from a preliminary step at line 1. At this step a projec-

tion to the common events Cj is computed for all the local languages. Projections of

co-faulty and co-non-faulty sublanguages to the common events, denoted as Fj, Nj,

are empty in the beginning. Event sets Σj,c are sets of the common events, which

don’t belong neither to co-faulty and co-non-faulty sublanguages nor to intersection

of the sublanguages’ prefix-closures. Since that sublanguages are not defined in the

beginning, the event sets contain all events from the projections. A role of these sets

will be clarified later. The recursive procedure propagate-fn computes Fj and Nj for

all the system’s modules, except the module with a fault; the procedure operates

with common events only. Before entering the procedure the projections of the faulty

module’s sublanguages, Fi, Ni are computed at the step 22. Note, that projection op-

eration preserves faulty and non-faulty information, when faulty behaviour is defined

in a specification-based way.

The recursive procedure computes all projections Fj, Nj of the modules adjacent

to a given module k (we say that two modules are adjacent to each other if their

languages have events in common). At the first steps 8-12 of the procedure we com-

pute F ′
j , N

′
j with respect to the module k; these projections are partial. The parallel

composition Fk ‖ Cj, followed by projection to the common events, is used to extract

73

Require: The set of the system’s languages {Lj | j ∈ I}, faulty and non-faulty
sublanguages Li,f , Li,nf of a faulty module i ∈ I.

1: for all j ∈ I do ⊲ Initialization
2: Σj,c ← Σj ∩

⋃I

i 6=j Σi

3: Cj ← Pj,c(Lj)
4: Fj ← ∅, Nj ← ∅
5: end for
6: procedure propagate-fn(k, Fk, Nk)
7: for all j ∈ I | j 6= i,Σj ∩ Σk 6= ∅,Σj,c 6= ∅ do
8: F ′

j ← Pj,c(Fk ‖ Cj)
9: N ′

j ← Pj,c(Nk ‖ Cj)

10: K ← F ′
j ∩N ′

j

11: F ′
j ← F ′

j\K
12: N ′

j ← N ′
j\K

13: if F ′
j\Fj 6= ∅ ∨N ′

j\Nj 6= ∅ then
14: Fj ← Fj ∪ F ′

j

15: Nj ← Nj ∪N ′
j

16: Σj,c ← {σ ∈ s}, where
17: s ∈

[

(Fj\Fj) ∪ (Nj\Nj)
]

\(Fj ∩Nj)
18: propagate-fn(j, Fj, Nj)
19: end if
20: end for
21: end procedure
22: Fi ← Pi,c(Li,f)
23: Ni ← Pi,c(Li,nf)
24: propagate-fn(i, Fi, Ni) ⊲ Beginning of recursion
25: for all j ∈ I | j 6= i do ⊲ Finalization
26: Lj,cf ← Lj ∩ P−1

j,c (Fj)

27: Lj,cnf ← Lj ∩ P−1

j,c (Nj)
28: end for
29: return {Lj,cf}, {Lj,cnf}

Algorithm 1: Forward propagation of a fault. Computes co-faulty and co-non-faulty
languages of all the modules

the faulty information from the language Fk to Cj, and non-faulty from Nk to Cj.

At the step 13 we check if some co-faulty or co-non-faulty strings should be added

to the projections computed earlier. If so, then we update Fj, Nj, Σj,c and call the

same procedure to update projections of the adjacent modules. Thus, whenever the

co-faulty or co-non-faulty projections of that module changed, the projections Fj, Nj

are updating with respect to every other module, due to recursion. The event sets

74

Require: The index i ∈ I of the faulty module, the index of a module with observable
support k ∈ I |M(Lk,cf) 6= ∅∨M(Lk,cnf) 6= ∅, k 6= i, the sets {Lj,cf}, {Lj,cnf}, j ∈
I.

1: for all j ∈ I do
2: Dj,f ← Pj,co(Lj,f)
3: Dj,nf ← Pj,co(Lj,nf)
4: end for
5: procedure propagate-d(k, Dk,f , Dk,nf)
6: for all j ∈ I | Σj ∩ Σk 6= ∅ do
7: D′

j,f ← Pj,co(Fj ‖ Dk,f)
8: if (D′

j,f\Dj,f 6= ∅) ∨ (D′
j,nf\Dj,nf 6= ∅) then

9: Dj,f ← D′
j,f

10: Dj,nf ← D′
j,nf

11: propagate-d(j, Dj,f , Dj,nf)
12: end if
13: end for
14: end procedure
15: propagate-d(k, Dk,f , Dk,nf)
16: Lext

i,f ← Pi,co(Li,f ‖ Di,f)
17: Lext

i,nf ← Pi,co(Li,nf ‖ Di,nf)
18: return Lext

i,f , L
ext
i,nf

Algorithm 2: Backward propagation of the fault observation. Computes observable
information for the faulty module

Σj,c represent a potentiality that the projections Fj, Nj can be changed; the modules

which have these sets empty can’t change their language’s property with respect to

the fault and, thus, are skipped during recursive procedure. Finally, all the co-faulty

and co-non-faulty sublanguages are calculated for each module at the step 25.

3.4.3 Observation propagation algorithm

The structure of the Algorithm 2 is similar to one in Algorithm 1. It starts from

computing projections to common and observable events for the co-faulty and co-

non-faulty sublanguages of each module’s language. Then, starting from the module

k which has observable events in its sublanguages (i.e. it has potential observable

support for a sublanguage of the faulty module), begins a recursive procedure at

step 15. In the procedure we collect only observable events of other modules which

are related to co-faulty or co-non-faulty sublanguages. Then we propagated these

75

events down to the faulty module. Finally, at the step 16, the faulty and non-faulty

sublanguages of the faulty module are extended with observable events.

The result of the Algorithm 2, the faulty and non-faulty sublanguages extended

with observable events, can be used to verify diagnosability now. Any approach,

which allows us to check for the presence of indistinguishable strings in the language

(the faulty and non-faulty sublanguages can be united, if necessary), is suitable. We

can have the following outcomes after verification: a) no indistinguishable strings are

broken, b) no indistinguishable strings left, and c) some indistinguishable strings are

broken. In case (a) we pick another module k ∈ I satisfying requirements of the

Algorithm 2 for further processing and verification. In case (b) we may construct a

virtual module of the faulty module i and the module k and declare that the fault is

diagnosable with respect to the virtual module {i, k} and stop, or continue and check

if exists another module which can also be used to build a virtual module. In case

(c) we should pick additional module satisfying requirements of the Algorithm 2 and

continue the process until all the indistinguishable strings are broken. The following

section analyzes what may be considered as a criteria for choosing the module with

observable support k.

3.4.4 Algorithm to choose a module with observable support

Assume that the objective function is to have the number of modules in the system

as many as possible, i.e. to have the maximal cardinality of the partition J . Given

an initial set of languages, let rank of J be equal to 0, i.e. |J | = |I|. Let F denotes

the subset of languages with faults, and M denotes the subset of languages with

correspondent observable supports. Assume that it is always possible to make the

system modularly diagnosable with respect to some virtual modules. Then we know

that (∀f ∈ F) ∃m ∈ M . Let F ∩M = ∅ and |M | ≥ |F |. Then, to make the system

modularly diagnosable it is required, in the worst case, |F | members of M . Thus, the

cardinality of the systems with virtual modules, i.e. the cardinality of the partition,

in the worst case is:

min |J | = |I| − |F |. (3.11)

76

Let M ⊆ F . Then, the cardinality of the partition in the best case is:

max |J | = |I| −

(⌊

|F |

2

⌋

+mod
|F |

2

)

. (3.12)

As can be seen from the above, in order to maximize the number of modules while

making the virtual modules, we should consider, firstly, the modules which themselves

have faults. We propose a procedure for the given objective function as follows:

Given the system of cardinality |I|, the subset F ⊆ I of modules with faults,

such that any f ∈ F is not diagnosable locally, the subset M ⊆ I of modules with

observable supports, such that (∀f ∈ F) {m ∈M} 6= ∅. In order to make the system

diagnosable by the minimal number of virtual modules:

1. Initially set the partition J of I such that the rank of J is equal to 0;

2. (∀j ∈ J, f ∈ j) update j as follows: j := j ∪ {m ∈ M ∩ F} if M ∩ F 6= ∅,

j := j ∪ {m ∈ M} otherwise, where {m} is a singleton of the arbitrary chosen

observable support for the given f , such that the new j is locally diagnosable;

exclude m from k ∈ J | k 6= j, and remove k from J if k = ∅.

The order the observable supports are verified in the procedure guaranties that we

consider the languages which themselves contain the faulty sublanguages at first, thus

maximizing the number of virtual modules in the system.

It worth to note that the above algorithm can be augmented by additional criteria

aimed, for instance, to decrease computational burden.

3.5 Example

An example with languages presented by automata (see the Figures 3-7 – 3-12) shows

how the algorithms 1 and 2 can be applied to a simple system. We use marked states

to mark strings in languages, since they are not prefix-closed, in general. The system

consists of three modules as depicted in Figure 3-7. Here a fault is presented only in

the language L1 by the event f . Figure 3-8 depicts faulty and non-faulty sublanguages

77

of the language L1. Projections of these sublanguages to the common events (step 22

of the Algorithm 1), F1 and N1 are depicted in the Figure 3-9. Suppose that in the

beginning of the recursive procedure we pick module 2. The figure depicts the co-

faulty and co-non-faulty sublanguage of the language L2 with respect to the language

L1, calculated at the steps 8 of the algorithm (we don’t show intermediate automata,

reflecting compositional steps, due to space restrictions). Note, that, when calculated,

the event set Σ2,c is empty for module 2. Hence this module will not participate in

the procedure as a module adjacent to others. At the next step we randomly pick the

language L4, and compute F4 and N4 with respect to the module 2. Now, note that

Σ3,c := {e}, since this event is neither in the co-faulty and co-non-faulty projections

nor in their common prefix. The iterations is followed by the module 3, which has

module 4 as an adjacent one. Therefore, the sublanguages of this module are updated.

Figure 3-10 depicts co-faulty and co-non-faulty sublanguages of module 4 calcu-

lated at the step 16 of the Algorithm 1. It shows that the co-faulty sublanguage of

the module has an observable support; it satisfies the requirements of the Lemma

4. Other modules with no faults have no observable events; they have no observable

supports, and not depicted.

The major steps of Algorithm 2 are depicted in the Figure 3-11. It is shown

how the observable information from the module 4 is propagated backward to the

language of the module 1. The final step of the algorithm is depicted in the Figure

3-12. Clearly, the faulty and non-faulty sublanguages, extended with observable in-

formation, have distinguished observations. Then, we can conclude that the virtual

module composed of the modules 1 and 4 is locally diagnosable. Hence, the system is

modularly diagnosable with modularity presented by the partition {{1, 4}, {2}, {3}}.

78

0

L1

1 2 3 4

5

f

a o1 b
c

o1
c 0

L2

1 2
a

c

d
c

0

L3

1 2
b

c

e
c 0

L4

1 2 3
e

c

o2 d
c

Figure 3-7: Automata marking languages L1, L2, L3 and L4. Σo := {o1, o2}, Σf := {f}

79

0

L1,f

1 2 3 4

0

L1,nf

5

f a o1 b

c
o1

c

Figure 3-8: Automata marking the faulty and non-faulty sublanguages of L1

0

F1

2 4 0

N1

5
a b

c
c

c

0

F2

1 2
a d

c 0

N2

c

0

F4

1 2
e d

c 0

N4

c

0

F3

1 2
b e

c 0

N3

c

0

F4

1 2
e d

c 0

N4

c

Figure 3-9: Automata marking sublanguages F1 and N1 of the faulty module, and
co-faulty and co-non-faulty languages of the modules 2, 3 and 4 in the order they are
composed (top-down): 1-2, 2-4, 1-3, 3-4. Note, that the sublanguage F4 is defined
partially at first, then fully

80

0

L4,cf

1 2 3
e o2 d

c

0

L4,cnf

c

Figure 3-10: Automata marking co-faulty and co-non-faulty sublanguages of the lan-
guage L4. Automata for the sublanguages of the modules 2 and 3 are equal to the
ones depicted in the Figure 3-9

0

D3,f

1 2 2′
b e o2

c 0

D2,f

1 1′ 2
a o2 d

c

0

D1,f

2

2′

4

4′

a b

o2

b

c

o2

c 0

D1,f

2 4 4′
a b o2

c

Figure 3-11: Automata marking Dj,f of the modules 1, 2 and 3 in the order they are
composed (top-down): 4-3, 4-2, 2-1, 3-1. Automata marking Dj,nf are not depicted
since they have no observable events

0

L1,f

1 2 3 4 4′

0

L1,nf

5

f a o1 b o2

c
o1

c

Figure 3-12: Automata marking the faulty and non-faulty sublanguages of L1 after the
backward Algorithm. The observation of L1,f is {o1o2} differs from the observation
of L1,nf which is {o1}

81

82

Chapter 4

Design, Simulation and Verification

Tool

This chapter describes a design, simulation and verification software tool developed

by the author during the research period. In order to show the motivation underlined

the tool development a breve observation of existing publicly accessible tools is pre-

sented, as well as requirements for such software. Then an application of the tool is

demonstrated on the example of industrial plant, which is described in the Chapter

1.

4.1 Requirements for Formal Tools

According to the survey, that was presented in [23], the industrial and research com-

munities, there is a need for light-weight formal methods and associated tools, where

engineers can push-the-button and have powerful evaluations and analysis take place.

More then one decade later, this need has been even grown, and requirements the

authors imposed are still actual. Shortly, the requirements are:

• Formal methods should be “invisible” and automatic

• Usage of open standards for sharing formal results

• Easy to use (either in academic or industrial field)

83

• Modular structure, lightweight architecture

• Scalable for real world problems

Nowadays, numerous commercial software tools can be found on market and even

more accessible with no charge. Verilog hardware description language [18], Event-B

and Roding [4], ProB model checker [17], Pessoa [11] to mention a few. These tools

aimed for complex task and are capable to solve heave industrial-like problems. The

lightweight academical response is GOAL [6], DESUMA [3], TCT [16], Supremica

[14], etc.

Some of the tools are of high quality, other are easier to use. But the major

drawback of the aforementioned software is that it is closed for modification, which

makes it is almost impossible to use it for a research, for creation and validation of

new formal techniques. An appropriate software tool for the studying and research

purpose is desired to be easy to access, working on most of hardware and software

platforms, flexible for changes, and with an intuitive user interface design.

Bearing in mind the above motivation, a specialised software tool was created in

frame of this work. Its primary goal was a validation of concepts developed during

the research. It provides simple access and zero-time enrollment time on general

operational systems due to the exploiting web-technologies. It was thought as a

Free Open Source Software (FOSS) tool with potential of enhancement by a wide

community interested in it.

The main disadvantage of the web-based underlining approach is a relatively low

performance due to the nature of the programming languages used. However, the last

trends in web development show that this issue can be overcome in a near future.

4.2 Tool Description

The charasterics of software tool developed during the research project are sum-

marised in the Table 4.1. The objects and operations allow to cover many tasks while

formal techniques development. Additional methods can be easily implemented.

84

As a programming language a general purpose web-oriented language was chosen,

the JavaScript. For the sake of memory efficiency, a set–based approach was chosen

for automata structural representation (see ?? for the approaches). The current

graphical implementation exploits Scalable Vector Graphics (SVG) [15]. This allows

use of any graphical representation (e.g. automata, influence diagrams) to be used

with no translation in the most of types of documents. An instance of the screen of

the tool is shown in the Figure 4-1.

Table 4.1: Objects and operations available with the tool

Object Operations
Sets Binary, Numbers, Strings and Objects operations
Sets Operations on triples (for graph edges/transitions)
Graph Manipulations with edges and nodes
Graph Breadth-First Search (BFS) in a graph
Graph Depth-First Search (DFS) in a graph
Graph Automatic layout
Automata Parallel composition of two automata
Automata Intersection (full synchronisation)
Automata Kleene closure
Automata Subtraction
Automata Emptiness verification
Automata Copying operation
Automata Projection to a given set of events
Automata Complement operation
Automata Reachability operation
DES Centralized management of the events set
DES Creation of a module in frame of the DES
DES Creation of an external module
DES Computation of common events of two automata
DES Representation of the system with as the inference diagram
Diagnosability Fault states and events support
Diagnosability Computations of automata deterministic w.r.t. a failure history
Diagnosability Computation of fault-reachable and fault-non reachable languages

85

Figure 4-1: View of the simulator in a browser window

4.3 Diagnosability verification of the system

In this section the problem of diagnosability verification of the system presented in

the Chapter 1 is studied. In order to validate the theoretical approach and the algo-

rithms introduced in this work a formal model of the system has to be constructed.

The model contains automata of the component types listed in the Table 4.2. More-

over, the model contains automata which describe supervisory control policy for each

control cycle.

Automata models of the system’s physical components are constructed accord-

ing to design patterns of the Generalized Device approach. Types of automata and

composition techniques used to model this system are presented in Appendix A.

The resulting inference diagram of the system is depicted in the Figure 4-2. The

diagram is built automatically by the simulation tool. It is interesting to see how

86

Table 4.2: Modules of the system depicted in the Figure 1-1

Module name Number of modules
Butterfly valve 2
Gate valve 3
Screw conveyer 1
Vibrator 1
Belt conveyer 1
Fork level sensor 4
Air pump 1

the nodes which represent the control policy automata link all the nodes representing

filed devices into the whole.

4.3.1 Global model of the system

Global monolithic model of a system is required for verification of centralized diag-

nosability. An attempt to construct the global model of a real complex system usually

faces the states explosion problem.

The presented system with the current design consists of 53 automata. Using

the simulation tool, an attempt to construct the monolithic model was made. Table

4.3 shows the growth of the automaton of the monolithic model by means of states,

transitions and time spent for each iteration. The correspondent plot is depicted in

the Figure 4-3.

The given system has relatively low complexity. Construction of the global model

using another tool like NuSMV [10] is likely possible. However, the tool used in this

case has performance not optimised yet, and the construction of the global model was

performed only partially due to the time limit.

4.3.2 Example of a failure verification

For a demonstration of diagnosability verification with the developed tool the instance

of a hypothetical technological failure is taken (though it could be a real case for the

given system). A part of the material flow description, given by a technologist is

87

V1

V1scV1s�

V1-V1sc

V1-V1so

V1a

V1a_a-V1

V1a_b-V1

V2

V2sc

V2so

V2-V2sc

V2-V2so

V2a

V2a_a-V2

V2a_b-V2

V3

V3sc

V3so

V3-V3sc

V3-V3so

V3a

V3a_a-V3
V3a_b-V3

V4 V4sc

V4so

V4-V4sc

V4-V4so

V4a

V4a_a-V4

V4a_b-V4

V5

V5sc

V5so

V5-V5sc

V5-V5so

V5a

V5a_a-V5

V5a_b-V5

M2
M3

M1

LT1

LT2

LT3
LT4

P1

Control1

Control2

Control3

Control4

Control5

Figure 4-2: Inference diagram of the system depicted in the Figure 1-1

following.

Consider the P&I diagram of the system depicted in the Figure 1-1. Volumes of

88

Table 4.3: Growth of the centralized model during parallel composition

Number of modules States Transitions Time spent, min:sec.ms
2 10 46 0:0.4
3 20 132 0:0.37
4 22 122 0:0.5
5 21 96 0:0.3
6 63 498 0:0.12
7 63 460 0:0.10
8 63 424 0:0.11
9 315 2939 0:0.78
10 630 7138 0:0.406
11 1260 16796 0:1.627
12 1386 17014 0:1.686
13 1323 14952 0:1.282
14 3969 58086 0:7.701
15 3969 55692 0:8.579
16 3969 53424 0:7.866
17 19845 318717 3:43.389
18 39690 716814 23:41.914

5 10 15

10

100

1,000

10,000

100,000

1,000,000

2 18

Figure 4-3: Growth of the number of states (curve with round dots) and transitions
(curve with square dots) while the growth of the number of modules in the centralized
systems model

the filter container and of the dust bucket are chosen according to a speed the filter

container fills up, the dust bucket unloads and a speed of the material transportation

by the both screw and belt conveyers. When the filter container is filled, it takes two

times to load and unload the dust bucket. Due to physical limits of the process, the

89

filter conveyer can not be emptied with one load–unload cycle of the dust bucket,

neither the filter container can be full after two unload cycles. An automaton model

which may describe this technological process is depicted in the Figure 4-4.

The automaton reflects also possible failures (shown with the marked state of the

automaton). If the filter container is empty just after one unload, this may be a

symptom of the screw conveyer breakage, destruction of the pipe or its connection to

the valve. If the filter container is full after three unload cycles, it may be a sign of

low dust bucket performance, pipes clogging, etc.

A_full
B_full

B_empty

B_full

B_empty

B_full

B_empty

A_empty

A_empty

A_full

0

1

2

3

4

5

6

7

8

Figure 4-4: Model of a technological process failure

The failure automata model does not contain any observable events. Thus, the

model is not diagnosable locally. However, the model can be linked to the fork level

sensors LT1 and LT3 as with digital signals via cause-effect automata (see description

in the Appendix A).

The diagnosability of the system was verified using the tool presented earlier.

The forward-propagation algorithm performed 356 compositions of the modules in

less then a second. During the failure propagation through the inference diagram

90

(see Figure 4-2) six modules where updated while a little complexity growth was

observed. The verification has shown that in the diagnosis of the failure two modules

of the system participate, the sensors LT1 and LT3. According to the approach of

this work, these modules can be treated as one virtual module. This virtual module

can be used to build diagnoser for online monitoring of the system, particularly for

detection of the above described failure.

91

92

Chapter 5

Conclusions and future work

“We are stuck with technology when what we really want is just stuff that works” –

Douglas Adams, The Salmon of Doubt.

The main aim of this research was to bring the fascinating beauty of formal math-

ematical approaches closer to everyday practices of industrial development engineers

in order to enhance the routine creation process of automated systems.

As shown in this work, the major obstacle for the application of formal methods

in the industrial systems development process seems to be a lack of appropriate

design techniques and tools. Despite the fact that the formal approaches are quite

mature generally, and in the field of Discrete Event Systems particularly, probably

the effort which is being taken in this area could be increased. As the confirmation,

one can observe every-day design processes, decision assistance, programming tools

and languages, which are often outdated from the perspective of what could be used

nowadays, if such effort has had succeed.

To show the current situation in industry the Chapter 1 describes, with help of

an industrial plant real example, what quantitative and qualitative methods are used

nowadays besides the formal approaches in order to achieve desired properties of

industrial systems.

Aa few goals were persuaded in this work. The first one is the modeling approach

for design of manufacturing systems. The effort has been taken in development of

formal representations of widely used industrial components. For the formal repre-

93

sentation the framework of formal languages and automata has been chosen. The

choice is based on a high availability of formal approaches which proved efficiency of

this framework on the one hand, and a relative simplicity of the mathematical nota-

tion and graphical representation of automata models, on the other hand, bearing in

mind that the results of the research should be understood by a wide community of

industrial engineers with a little or no effort.

The automata design patterns, developed and validated during this research, in-

corporate both nominal and faulty behaviours. This approach appeared to be possi-

ble after decomposition of hardware components into small models, such that these

models may efficiently abstract details of the formal model for the designer of an in-

dustrial system. In order to increase the level of abstraction, thus enhancing usability

and reusability, the formal models are ’hidden’ into UML-like blocks of Generalised

Devices. This modeling process, as well as essential mathematical notation for dis-

crete event systems in terms of languages and automata, and diagnosability types is

described in Chapter 2.

Use of the formal methods is often corresponds with a problem of exponential ex-

plosion which may make the solution for the problem intractable. The diagnosability

analysis is not an exception. Approaches which rely on modular nature of the com-

plex system use a variety of notions and algorithmic techniques in order to tackle the

computational burden. This work has introduced a new definition of diagnosability

and notion of virtual modules. It is an algorithmic ’trick’ to combine the existing

modules of the system into new modules (which are not correspondent to the real

components, and that is way are called “virtual”) in a way that the system with the

new modularity is modular diagnosable. The theoretical part of this work is covered

in Chapter 3.

The final goal of the research was to focus on applicability of the developed con-

cepts. In order to validate the algorithms, which verify diagnosability and provide

information for construction of virtual modules, a software tool has been created. It

is described in the Chapter 4. There an application of this tool for an instance of

failure in the real industrial process is demonstrated and compared with centralized

94

approach.

Concluding, the developed modeling and new theoretical approaches have been

validated with the software tool and proved efficiency of the concepts. Particularly,

the performance advantage with comparison to the centralized approach is obvious.

The advantages and disadvantages of the method with comparison to other algorith-

mic techniques, even if they differ from the theoretical point of view, has to be checked

in the future. Additional effort is also required for performance optimisation of the

developed software tool.

95

96

Appendix A

Automata models

Here a set of automata models for some industrial entities is given. The models are

given both with no failure and failure behaviour. Failures are reflected as events

according to the event-based failure modeling approach and as marked states for the

state-based failure modeling approach. In the both cases a marked state in a figure

means that a fault occurred.

A.1 Digital Inputs/Outputs, Sensors, Motors, etc.,

and their connection

hi

lo

hi

lo

0

1

Figure A-1: General model of a digital input/output, relay, contactor, etc.

The Figure A-1 depicts a general model of a two-state component. This model

reflects behaviour of digital inputs/outputs, relays, contactors, motors and other de-

vices the behaviour of which can be equal to this abstraction. The Figure A-2 depicts

a faulty version of the model. The faulty model reflects two failures: “stuck low”

97

hi

lo

hilo

f0

f0

f1

f1

lo

hi

0

1

2

3

Figure A-2: Model of a digital input/output with failures

denoted as f0 and “stuck high” denoted as f1.

A consequent connection of two modules as the ones described above in a cause-

effect manner imposes constrain on the “effect” module. Assume that there is two

modules: 1 – “cause” (e.g. a contactor) and 2 – “effect” (e.g a motor). The model

of the constrain and the result of composition of the entire system (two components

and their constrain) is depicted in Figure A-3. If the module 1 has failures modeled

as shown in Figure A-2, then the entire system looks as in Figure A-4.

A model of the same failure can be presented using the state-based failure ap-

proach. In this case no fault events are used. Since the model of a digital signal

defines its full language, the model of the constrain has to be exploited instead, as

shown in the Figure A-5. The resulting composition has lower complexity. It has

a positive effect for the computation burden during verification of complex systems,

since almost any industrial system includes many digital inputs, outputs and other

similar components. However, it is arguable what model should include the failure of

the component, the model of the component itself or models of constrains.

A consequent connection of two modules: 1 – “cause” (e.g. a contactor) and 2 –

“effect” (e.g. a motor), where the second module has failures is depicted in Figure

A-6. Here the failures are modeled using state-based failure approach.

A.2 Valve

The most known physical model of a valve is depicted in the Figure A-7. The model

reflects a wide variety of valves, e.g. gate valves, butterfly valves, ball valves, etc.

98

2_lo, 1_lo

1_hi

2_hi, 1_hi1_lo

0

1

1_lo, 2�lo

1_hi

1�lo

1_hi

2�hi

1�lo

1_hi, 2�hi

1�lo

1_hi

2�lo

0

1

2

3

Figure A-3: The constrain model (left) for two consequent two-state components, and
the result of the composition of the entire system (right)

1_f1

1�f0

1�lo, 2�lo

1_hi

1�f1

1�f0

1�lo 1_hi

2�hi

1�f1

1�f0

1�lo
1_hi, 2�hi

1�f1

1�f0

1�lo

1_hi

2�lo

1_lo

2_lo
1_hi

2�lo

1_lo 2_hi

1�hi, 2�hi

1�lo

2_hi

1�hi

2�hi

1�lo, 2�lo

1_hi

2�lo

0

1

2

3

4

5

6

7

8

9

10

11

Figure A-4: Fault model of two consequent digital two-state modules. The first
module has failures

In general, five states if this type of equipment can be distinguished: two boundary

states (closed and open), two movement states (opening, closing) and stop in an

intermediate position.

The “stop” position of the gate valve model can be marked as faulty, since gate

valves must usually stay either closed or open.

99

2_lo, 1�lo

1_hi

2�hi, 1�hi

1�lo

1_lo

1_lo, 2�lo

1_hi

1�hi, 2�hi

0

1

2

3

1_lo, 2�lo

1_hi

1�hi

1�hi

2�hi

1�hi, 2�hi

1�lo

1_lo

1_hi

2�hi
1�lo

1_lo

1_hi, 2�hi

1�lo

2_lo

1_lo

1_hi

1�hi

2�lo

1_lo, 2�lo

0

1

2

3

�
5

�

�

Figure A-5: The cause-effect fault automaton model (left), and the resulting compo-
sition of two components (right)

A.2.1 Valve with sensors

Figure A-8 shows the model of a sensor 1 built according to the model of two-state

components described before, and a constrain model which assumes that the sensor

observes “closed” state of the valve. From the perspective of the sensor the valve can

be either closed or not. In another words, the valve is seen as a two-state component.

Thus, the constrain automaton similar to the one shown in the Figure A-3 can be

used.

Let the valve to have two sensor: one for the closed state and another one for

the open state. An inference diagram of such system is shown in the Figure A-9. It

reflects the coupling of all the correspondent models, e.g. valve, two sensors (S1, S2)

and their constrains. The result of the composition of is depicted in the Figure A-10.

The purpose of the figure is to show the level of complexity of such simple system.

A fault model of the valve’s sensors is equal to the one depicted in the Figure A-2.

100

2_lo, 1�lo

1_hi

2�hi, 1�hi

1�lo

2_lo
2_lo, 1�lo, 1�hi

2�hi

2�hi, 1�lo, 1�hi

0

1

2

3

1_lo, 2	lo

1_hi

2	hi

1	lo, 2	hi 1	hi

1	lo

1_hi, 2	hi

1	lo

1_hi

2	hi

2	lo

1_lo

1_hi, 2	lo

1_lo, 2	lo

1_hi

1	lo

1_hi, 2	hi

2	lo

1_lo

1_hi

2	hi

2	lo

0

1

2

3

5

�

�

Figure A-6: The model of the constrain (left) and the composition result (right).
Failures are in the second (i.e. “effect”) module

opening
opening

open

open

closing

closing

closed

closed

stopedstoped

stoped

opening

closing

0

1

2

3

4

Figure A-7: Automaton model of a valve

A.2.2 Valve with actuator

Automaton model of a double actuation device for a valve is depicted in the Figure

A-11 (think of an bidirectional motor). Actually, it has two actuating parts, denoted

101

s1_lo

s1_hi

s1
hi

s1
lo

0

1

s1_lo, opening

s1_hi, closed

closed

opening

0

1

Figure A-8: Automata of a sensor and a constrain model for the sensor–valve rela-
tionship

Valve

S1

S2

S1-Valve

S2-Valve

Figure A-9: Inference diagram of a valve with two sensors

in the figure by prefixes a and b. Part a is responsible for the “opening” movement,

part b is responsible for the “closing” movement. Each actuating part is equal to

the two-state digital component model, presented before. In the composition of these

two components a consequent execution of events ahi and bhi is forbidden, i.e. it is

necessary that a hi⇒ b lo and b hi⇒ a lo.

The actuation devices are coupled with the physical valve model through a con-

strain automaton, similar to described above. The constrain automata for the valve

are shown in the Figure A-12. The result of the composition of the valve, actuator

and constrains is depicted in the Figure A-13. Marked states are correspond to the

“stop” state of the valve, which may be considered as a fault for a gate valve.

A.2.3 Valve with sensors and actuator

Automaton which represents the complete model, i.e. the composition of the valve

with two sensors and the actuator has 63 states and 424 transitions. A correspondent

inference diagram is shown in the Figure A-14. Meaning of the nodes names is

explained in the table below.

102

closed

opening

s2_lo, s1�lo

stoped

open

opening, s2�lo, s1�lo

closing
open, s1�lo

s2_hi
closingopen, s2�hi, s1�lo

stoped

closed

closing, s1�lo

s2_lo

clo��d

opening

s2�lo

s1_hi

closed, s1�hi

opening

s2�lo

closed, s2�lo, s1�hi

opening

stoped

open

opening, s2�lo

s1_lo

closing
open

s2_hi

s1�lo
closing

open, s2�hi

s1�lo

stoped

closed

closing

s2_lo

s1_lo

closing

opening

stoped

s2�lo

s1_lo

stoped

closed

closing, s2�lo

s1_lo

closing

opening

stoped, s2�lo

s1_lo
stoped

open

opening

s2�lo

s1_lo

stoped

open

opening, s1�lo

s2_lo

closing

opening

stoped, s1�lo

s2_lo

stoped

closed

closing, s2�lo, s1�lo
closing

opening

stoped, s2�lo, s1�lo

closed, s2�lo

opening

s1�hi

0

1

2

s2 lo

3

4

opeopeope
5

6

7

8

s2�hi
closing, s2 loclosing, s2 loclosing, s2 lo
s2_his2 hi

9

open, s1�lopen, s1 lopen, s1 loopen, s1 lo
closingclosin

10

closing, s2 loclosing, s2
11

closing
open

12

13

_lo, s1 lo
14

closed, s2 loclosed, s2 lo
15

closed

stoped, s2 lo,stoped, s2

16

openopeope
17

closed18

19

closedclosed 20

Figure A-10: Automaton of a valve with two sensors (open and closed)

a_lo, b_lo

a_hi

a_hi, b_lo

a_lo

b_hi
b_hi, a_lo

b_lo

0

1

2

Figure A-11: Automaton of a valve actuator

stoped, a_lo

opening, a_hi

a_hi

a_lo

0

1

stoped, b_lo

closing, b_hi

b_hib_lo

0

1

Figure A-12: Automata of the valve actuator constrains

103

closed, a_lo, b_lo

a_hi

b_hi

closed, b_hi, a_lo

b_lo

closed, a_hi, b_lo

opening

a_lo

open

opening, a_hi, b_lo

a_lo

stoped

open

a_lo, b_lo

a_hi

b_hi

open

b_hi, a_lo

b_lo

closing
open, b_hi, a_lo

b_lo

closed

closing, b_hi, a_lo

b_lo

stoped

closed

a_lo, b_lo

a_hi

b_hi

closed

a_hi, b_lo

a_lo

open, a_lo, b_lo

a_hi

b_hi

stoped, a_lo, b_lo

a_hi

b_hi

closing

b_hi, a_lo

b_lo

opening

a_hi, b_lo

a_lo
open, a_hi, b_lo

a_lo

0

1

2

3

�

5

6

7

8

9

10

11

12

13

1�

Figure A-13: Automaton of a valve with the actuator

v1

v1sc
v1so

v1-v1scv1-v1so

a

a_a-v1a_b-v1

Figure A-14: Inference diagram of a valve with two sensor and an actuator (see Table
A.1 for the nodes names description)

104

Table A.1: Nodes labels of the inference diagram of the valve, sensors and actuator

Node label Description
v1 Valve
v1so Sensor “Open”
v1sc Sensor “Closed”
v1-v1so Constrain of the valve to the sensor “Open”
v1-v1sc Constrain of the valve to the sensor “Closed”
a Actuator
a a-v1 Constrain of the valve to the actuator’s part “Opening”
a b-v1 Constrain of the valve to the actuator’s part “Closing”

105

106

Bibliography

[1] Atelier B - industrial tool for use of the B Method . http://www.atelierb.eu/.

[2] Center for Chemical Process Safety - Process Equipment Reliability Database

(PERD). http://www.aiche.org/ccps/resources/perd.

[3] DESUMA Tool for discrete event systems.

http://www.eecs.umich.edu/umdes/toolboxes.html.

[4] Event-B and the Rodin Platform. http://www.event-b.org/.

[5] Forensic Engineering and Failure Analysis - Case Studies A-Z List.

http://www.intertek.com/forensics/casestudies/.

[6] GOAL is a graphical interactive tool for defining and manipulating Bchi au-

tomata and temporal logic formulae. http://goal.im.ntu.edu.tw/wiki/doku.php.

[7] International Electrotechnical Commission. Electropedia: The World’s Online

Electrotechnical Vocabulary. http://www.electropedia.org/.

[8] ISO/IEC 12207:2008 Standard for Information Technology - Software Life Cycle

Processes. http://www.iso.org/iso/catalogue detail?csnumber=43447.

[9] MATLAB, a high-level language and interactive environment for numerical com-

putation, visualization, and programming. http://www.mathworks.it/.

[10] The NuSMV symbolic model checker. http://nusmv.fbk.eu/.

[11] Pessoa Software Toolbox for the Synthesis of Correct-by-Design Embedded Con-

trol Software. https://sites.google.com/a/cyphylab.ee.ucla.edu/pessoa/.

107

[12] SIEMENS Industry Online Support mean time between failures (mtbf) - list for

simatic products.

[13] SIMATIC S7-300: the modular universal controller for the manufactur-

ing industry. https://www.automation.siemens.com/mcms/programmable-logic-

controller/en/simatic-s7-controller/s7-300/.

[14] Supremica Tool for Development Robust Control Systems.

http://www.supremica.org/.

[15] SVG graphics format by the W3C SVG Working Group.

http://www.w3.org/Graphics/SVG/.

[16] TCT design software for discrete event systems theory.

http://www.control.toronto.edu/DES/.

[17] The ProB Animator and Model Checker. http://www.stups.uni-

duesseldorf.de/ProB/.

[18] Verilog hardware description language, IEEE 1364. http://www.verilog.com/.

[19] Alfred V. Aho and Jeffrey D. Ullman. The theory of languages. Mathematical

systems theory, 2(2):97–125, June 1968.

[20] A. Arora, N.K. Medora, and J. Swart. Failures of Electrical/Electronic Com-

ponents: Selected Case Studies. In IEEE Symposium on Product Compliance

Engineering, 2007. PSES 2007, pages 1–6, October 2007.

[21] J. Banks. Introduction to simulation. In Simulation Conference Proceedings,

1999 Winter, volume 1, pages 7–13 vol.1, 1999.

[22] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional reason-

ing in model checking. In Willem-Paul de Roever, Hans Langmaack, and Amir

Pnueli, editors, Compositionality: The Significant Difference, number 1536 in

Lecture Notes in Computer Science, pages 81–102. Springer Berlin Heidelberg,

January 1998.

108

[23] M.R. Blackburn and R.D. Busser. Requirements for industrial-strength formal

method tools. In 2nd IEEE Workshop on Industrial Strength Formal Specification

Techniques, 1998. Proceedings, pages 137 –138, 1998.

[24] M. Bonfe and C. Fantuzzi. Design and verification of industrial logic controllers

with UML and statecharts. In Proceedings of 2003 IEEE Conference on Control

Applications, 2003. CCA 2003, volume 2, pages 1029 – 1034 vol.2, June 2003.

[25] Brualdi. Introductory Combinatorics. Pearson Education, 2004.

[26] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event

Systems. Springer, 2nd ed. 2008 edition, October 2010.

[27] Anderson Chris. What is a Process Map? Business Process Management, 2014.

[28] E. M Clarke, Orna , Grumberg, and Doron Peled. Model checking. MIT Press,

Cambridge, Mass., 1999.

[29] Olivier Contant, Stéphane Lafortune, and Demosthenis Teneketzis. Diagnosabil-

ity of discrete event systems with modular structure. Discrete Event Dynamic

Systems, 16(1):9–37, January 2006.

[30] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized proto-

cols for failure diagnosis of discrete event systems. In 1998 IEEE International

Conference on Systems, Man, and Cybernetics, 1998, volume 3, pages 3010–3011

vol.3, 1998.

[31] Wei Dong, Ji Wang, Xuan Qi, and Zhi-Chang Qi. Model checking UML state-

charts. In Software Engineering Conference, 2001. APSEC 2001. Eighth Asia-

Pacific, pages 363 – 370, December 2001.

[32] Mian S. H. El-Tamimi A. M., Abidi M. H. and Aalam J. Analysis of performance

measures of flexible manufacturing system. In Journal of King Saud University-

Engineering Sciences, pages 115–=129 vol. 24, 2012.

109

[33] Eugenio Faldella, Andrea Paoli, Matteo Sartini, and Andrea Tilli. Hierarchical

control architectures in industrial automation: a design approach based on the

generalized actuator concept. Seoul, Korea, 2008.

[34] Joyce Farrell. An object-oriented approach to programming logic and design.

Course Technology/Cengage Learning, Boston, MA, 2013.

[35] G. Frey and M.B. Younis. A re-engineering approach for PLC programs using

finite automata and UML. In Proceedings of the 2004 IEEE International Con-

ference on Information Reuse and Integration, 2004. IRI 2004, pages 24 –29,

November 2004.

[36] C. Michael Holloway. Why engineers should consider formal methods. In In 1997

AIAA/IEEE 16th Digital Avionics Systems Conference, page 9, 1997.

[37] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages, and Computation. Pearson/Addison Wesley, 2007.

[38] M Neil James. Failure Analysis - Industrial Case Studies.

http://www.fatiguefracture.com/.

[39] Shengbing Jiang, Zhongdong Huang, V. Chandra, and R. Kumar. A polynomial

algorithm for testing diagnosability of discrete-event systems. IEEE Transactions

on Automatic Control, 46(8):1318 –1321, August 2001.

[40] Meng Li and R. Kumar. Stateflow to extended finite automata translation.

In Computer Software and Applications Conference Workshops (COMPSACW),

2011 IEEE 35th Annual, pages 1 –6, July 2011.

[41] D. Maclay. Click and code [automatic code generation]. IEE Review, 46(3):25–28,

May 2000.

[42] W.E. McUmber and B. H C Cheng. A general framework for formalizing UML

with formal languages. In Proceedings of the 23rd International Conference on

Software Engineering, 2001. ICSE 2001, pages 433–442, May 2001.

110

[43] A. Otto and K. Hellmann. IEC 61131: A general overview and emerging trends.

IEEE Industrial Electronics Magazine, 3(4):27–31, December 2009.

[44] Yannick Pencolé and Marie-Odile Cordier. A formal framework for the decen-

tralised diagnosis of large scale discrete event systems and its application to

telecommunication networks. Artificial Intelligence, 164(12):121–170, May 2005.

[45] Wenbin Qiu and R. Kumar. Decentralized failure diagnosis of discrete event

systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems

and Humans, 36(2):384 – 395, March 2006.

[46] Rajarshi Ray. Automated translation of MATLAB Simulink/Stateflow models to

an Intermediate format in HyVisual. Chennai Mathematical Institute, Chennai,

2007.

[47] I. Ruiz, E. Paniagua, J. Alberto, and J. Sanabria. State analysis: an alternative

approach to FMEA, FTA and markov analysis. In Reliability and Maintainability

Symposium, 2000. Proceedings. Annual, pages 370–375, 2000.

[48] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-

zis. Diagnosability of discrete-event systems. IEEE Transactions on Automatic

Control, 40(9):1555–1575, September 1995.

[49] M. Sartini, A. Paoli, R.C. Hill, and S. Lafortune. A methodology for modular

model-building in discrete automation. In 2010 IEEE Conference on Emerging

Technologies and Factory Automation (ETFA), pages 1 –8, September 2010.

[50] Matteo Sartini. Architectures and design patterns for functional design of logic

control and diagnostics in industrial automation. Tesi di dottorato, Univercity

of Bologna, March 2010.

[51] C. Secchi, M. Bonfe, and C. Fantuzzi. On the use of UML for modeling mecha-

tronic systems. IEEE Transactions on Automation Science and Engineering,

4(1):105–113, January 2007.

111

[52] B. Sharda and S.J. Bury. Best practices for effective application of discrete

event simulation in the process industries. In Simulation Conference (WSC),

Proceedings of the 2011 Winter, pages 2315–2324, December 2011.

[53] J. M Spivey. The Z notation: a reference manual. Prentice Hall, New York,

1992.

[54] R. Su, W.M. Wonham, J. Kurien, and X. Koutsoukos. Distributed diagnosis for

qualitative systems. In Sixth International Workshop on Discrete Event Systems,

2002. Proceedings, pages 169–174, 2002.

[55] Rong Su and W.M. Wonham. Global and local consistencies in distributed fault

diagnosis for discrete-event systems. IEEE Transactions on Automatic Control,

50(12):1923–1935, 2005.

[56] Nancy R. Tague. The Quality Toolbox, Second Edition. ASQ Quality Press,

October 2010.

[57] V. Vyatkin. The IEC 61499 standard and its semantics. IEEE Industrial Elec-

tronics Magazine, 3(4):40–48, December 2009.

[58] V. Vyatkin. Software engineering in industrial automation: State-of-the-art re-

view. IEEE Transactions on Industrial Informatics, 9(3):1234–1249, August

2013.

[59] L. Warrington, J.A. Jones, and N. Davis. Modelling of maintenance, within

discrete event simulation. In Reliability and Maintainability Symposium, 2002.

Proceedings. Annual, pages 260–265, 2002.

[60] H.H. Weatherford and C.W. Brice. Simulation of industrial AC drive system

under fault conditions. In Eighteenth Annual IEEE Applied Power Electronics

Conference and Exposition, 2003. APEC ’03, volume 1, pages 457–463 vol.1,

February 2003.

112

[61] Tae-Sic Yoo and S. Lafortune. Polynomial-time verification of diagnosability

of partially observed discrete-event systems. IEEE Transactions on Automatic

Control, 47(9):1491 – 1495, September 2002.

[62] C. Zhou, R. Kumar, and R.S. Sreenivas. Decentralized modular diagnosis of

concurrent discrete event systems. In 9th International Workshop on Discrete

Event Systems, 2008. WODES 2008, pages 388 –393, May 2008.

[63] Changyan Zhou and Ratnesh Kumar. Semantic translation of simulink diagrams

to Input/Output extended finite automata. Discrete Event Dynamic Systems,

22(2):223–247, June 2012.

113

