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INTRODUCTION

I n the last few years, the modeling of the formation of structures in the Universe
through hydrodynamical numerical simulations and observational studies has made
significant progresses. Even though the physics of the dark matter (DM) is

adequately described by gravitational forces alone, a complete understanding of the
relationships between the physical properties and the observables in galaxy clusters is
yet unsolved.
Clusters of galaxies correspond to the largest scale of fully collapsed and virialized

structures in the Universe and provide a powerful probe of the evolution of structure
formation via dynamical collapse. As the most massive bound objects known, they are the
ultimate manifestations of cosmic structure building and provide the most direct evidence
for dark matter and baryon mass distribution on large scale.
They are typically composed of hundreds to thousands of galaxies, embedded in an

intracluster medium (ICM) at hot temperature (T ∼ 108K) and with low density (ngas ∼
10−3 cm−3) gas. From the observational point of view, there are two main ways to obtain
information on the baryons in galaxy clusters. The first and most studied one is given by
the emission in the X-ray band, mainly due to the free-free interaction between electrons
and ions, of the ionized plasma. The other one is constituted by the Sunyaev-Zel’dovich
(SZ) effect, which is the distortion of the cosmic microwave background (CMB) black-
body spectrum due to the interaction between the photons and the electrons of the gas
(Sunyaev & Zeldovich, 1970; Birkinshaw, 1999).
As nowadays we are living in the golden age of the X-ray satellites, most of the

observational research in this field is focused just on X-ray observations, given the large
amount of data available (e.g. Snowden et al., 2008; Maughan, 2007). On the X-ray
observational side, the spatial resolution of the new generation of the X-ray satellites
like Chandra and XMM-Newton, with their high sensitivity and large collecting area, has
allowed us to study the complex interplay of the physical processes which happen in the
internal regions. X-ray observations have proved that the so-called self-similar model
(Kaiser , 1986), where the gravity is the only responsible for the physical properties of
galaxy clusters, is not able to describe the scaling relations of galaxy clusters (e.g. the
steeper slope observed in the luminosity-temperature relation), especially for low-mass
systems: this indicates that gravitational collapse is not the only process that significantly
influences the formation of structures. In a similar manner observations of the gas entropy
profiles in groups and clusters of galaxies, and the analysis of simulated sources with an
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extra non-gravitational energy injection have suggested that we have to account for further
non-gravitational feedback beyond the gravitational energy. The measurements of the gas
entropy S at a fixed fraction of the virial radius showed that it is higher than the expected
one from the self-similar scenario, where S should scale simply with the mean temperature
of the virialized systems. Instead, an excess in the entropy, with respect to the prediction
of the adiabatic model, is observed in the inner regions of groups and poor clusters at
some fraction of the virial radius (labeled as entropy “floor” or “ramp”). This energetic
mechanism, not referable to the gravity only, falls into three main classes: preheating,
where the gas collapsing into the dark matter potential well is preheated by some sources;
local heating by, e.g., AGN activity, star formation or supernovae; cooling.
The complex mutual relation between the physical processes (AGNs, cooling, galactic

winds, star formation, shocks) can affect the thermal history of the gas in a significant
and complex way: this is one of the most interesting challenge of the extra-galactic
astrophysics, involving different aspects of the research, such as hydrodynamical
simulations, observations and semi-analytical models.
Nevertheless X-ray observations are subject to several limitations: i) clusters at high

redshift z suffer from the cosmological dimming of the X-ray surface brightness (∼
(1+ z)−4); ii) it is only possible to observe the central cluster regions (∼< 1/3−1/2 of the
virial radius); iii) difficult background subtraction and local inhomogeneities (the X-ray
brightness depends on the squared density) may lead to systematics in the reconstructed
physical properties.
All of these problems can be overcome by studying the SZ effect. Entering the last

decade of SZ observations and with the incoming instruments of new generation (ALMA,
APEX, the Cosmic Backgroung Imager 2, the South Pole Telescope), we are now in
position to fully exploit the power of the SZ effect by obtaining: i) detailed images of a set
of clusters to understand the intracluster medium (ICM); ii) large SZ samples of clusters to
obtain statistically robust estimates of the cosmological parameters and, most importantly,
iii) large untargeted SZ surveys to probe the high redshift universe. These surveys will
provide a direct view of the growth of large-scale structures and will provide large catalogs
of clusters that extend past z ∼ 2 with remarkably uniform selection functions. Thanks
to the development of new microwave instruments these aspects are providing the first
important results and will likely receive a significant boost in the near future.
Advantages of dealing with SZ data are: i) the linear dependence of the SZ brightness

on the density; ii) independence of the SZ signal of z; iii) the lack of contamination of
interferometric SZ data from sources (like filaments) on larger scales (∼> a few arcminutes)
and iv) the strong dependence of the SZ brightness on the outskirts of the clusters, i.e. till
the virial radius.
In the work of this Thesis, we have considered a sample of galaxy clusters to describe

the properties of the X-ray and SZ signals, focusing on the determination of the physical
properties of the intracluster gas and of the DM and comparing our findings with results
of numerical simulations discussed in the literature. This allowed us to make comparisons
with the theoretical predictions in order to test the validity of the current models of galaxy
clusters and to trace out the thermal history of the gas. In particular, we concentrated
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on a joint analysis of X-ray data, whose high spatial resolution is capable to resolve the
cluster core, and the SZ ones, more sensitive to the cluster outer volume: this allowed
us to characterize the level and the gradient of the gas density, temperature and entropy
distribution on the entire cluster, out to the virial radius. These constraints can break the
degeneracy between the physical models describing the thermal history of the ICM.
This Thesis is organized as follows.

• In Chapter 1 we present an introduction to the picture of galaxy cluster formation
and evolution, as well as their main properties. In all these aspects, we pay particular
attention to the relationships between clusters and cosmological parameters, and
then on the non-linear model leading to galaxy cluster formation.

• In Chapter 2 we will provide an overview of the main properties of galaxy clusters.
We will discuss the optical, X-ray and SZ properties of galaxy clusters, in particular
the emission processes and the physics of the ICM. At last we will outline methods
to measure the mass of the clusters.

• In Chapter 3 we provide an analysis of the scaling relations between X-ray properties
and Sunyaev-Zel’dovich (SZ) parameters for a sample of 24 X-ray luminous galaxy
clusters observed with Chandra and with measured SZ effect. We can compare
our results with expectations from analytical models and hydrodynamical numerical
simulations.

• Chapter 4 is devoted to the study of the profiles and the scaling properties of the
gas entropy in the sample of galaxy clusters presented in Chapter 3. We compare
the current models in literature on the extra-gravitational energy which affects the
thermal history of the ICM with our measurements of the entropy, metallicity and
gas+dark matter temperature profiles.

• In Chapter 5 we present a Bayesian approach to combine X-ray and Sunyaev
Zel’dovich (SZ) data. We will focus on the study of the physical properties of the
ICM and DM in the outskirts of the clusters out to R200, well beyond the regions
accessible with X-ray observations (≤ 0.3−0.5R200).





Chapter 1

Galaxy cluster formation

T his chapter aims at providing an introduction to the picture of galaxy cluster formation and
evolution, as well as their main properties. We start by briefly describing some physical
bases of the Friedmann models and their connections with the formation of the structures in

the Universe. We will concentrate on the relationships between clusters and cosmological parameters,
and then on the non-linear model leading to galaxy cluster formation.

1.1 Understanding galaxy cluster formation

Our current understanding of cluster evolution is a result of the cosmological model,
which depends on just a few parameters. As we will see, one set of parameters (H0,
ΩM, Ωb, ΩR, ΩΛ, and w) characterizes the cosmological model, which describes the
overall geometry of the universe, the mean density of its contents, and how its scale
changes with time, while the other ones (σ8 and np) specify the initial spectrum of density
perturbations that grew into the galaxies, clusters of galaxies, and more in general in the
cosmic structures we see today. Here we define both sets of parameters and their roles in
the context of the global model.

Global Dynamics

To characterize the expansion of the universe one uses a scale factor a(t), which is
dependent on the cosmological time. The parameter is related to the Hubble’s Law

v = H(t)d , (1.1)

where d is the distance between two cosmic structures and v their recession velocity, and
H(t) = ȧ/a is the Hubble parameter.
The general development of all modern cosmological theories is based on General

Relativity. More precisely the Einstein equations describe the relationships between the
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metric of the space-time gi j(xk) with the energy-momentum tensor Ti j(xk) (i, j=0, 1, 2, 3,
with 0 indicating the time coordinate):

Ri j −
1
2

gi jR = −
8πG
c4 Ti j , (1.2)

where Ri j is the Ricci tensor and R the Ricci scalar.
A more general description has been provided by including the cosmological constant Λ

in Eq. (1.2) as well:
Ri j −

1
2

gi jR−Λgi j = −
8πG
c4 Ti j , (1.3)

which arises as an integration constant and allows to obtain static solutions of the Eq.
(1.2) with suitable values of Λ.
The energy-momentum tensor with greater relevance in cosmology is that of a perfect

fluid:
Ti j = −pgi j +(p+ρc2)UiU j , (1.4)

where p is the pressure, ρc2 is the energy density, including also the rest-mass energy, and
Uk is the four-velocity of the fluid.

Since the universe appears homogeneous and isotropic on very large scales, the Einstein
equations yield the Friedmann-Lemaitre model of the universe, in which

ä
a = −

4
3

πG
(

ρ+
3p
c2

)
, (1.5)

where ρ(t)c2 is the mean density of mass-energy and p(t) is the pressure owing to that
energy density. The adiabatic expansion of the Universe requires that

d(ρa3) = −3 p
c2 a2da . (1.6)

Assuming that the equation of state has the form p = wρc2, then density changes with the
expansion as ρ ∝ a−3(1+w). The cosmological redshift z is related to the scale factor a(t) of
the expansion of the universe in such a way that a = (1+z)−1: with this definition a(t)= 1
at the present time t0 (hereafter the subscript ’0’ refers to quantities defined at present
time). Then resolving equations (1.5) and (1.6), for a single mass-energy component with
a constant value of w, we therefore have

(
ȧ
a

)2
= H2

0 [Ω0(1+ z)3(1+w) +(1−Ω0)(1+ z)2] , (1.7)

where Ω0 is the current energy density ρ0 in units of the current critical density ρcr0 =
3H2

0 /8πG.
The global expansion can be influenced by several kinds of components of the universe.

The energy density ρRc2 in photons and relativistic particles contributes a pressure
corresponding to w = 1/3. Einstein’s cosmological constant acts like an energy density
ρΛc2 that remains constant while the universe expands and therefore gives a pressure
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corresponding to w = −1. We can account for non-relativistic particles as well, with a
mass density ρM and they contribute a pressure corresponding to w ' 0. Including each
of these components, Eq. (1.7) then reads:

H2(z) =

(
ȧ
a

)2
= H2

0 [ΩM(1+ z)3 +ΩR(1+ z)4 + ΩΛ +(1−Ω0)(1+ z)2] (1.8)

where Ωx is the current mass-energy density in component x in units of ρcr0 and
Ω0 = ΩM + ΩR + ΩΛ. The value of Ωx at an arbitrary redshift is given by Ωx(z) =

Ωx(1+ z)3(1+w)[H(z)/H0]−2.
Each of these mass-energy density parameters ΩM,ΩR,ΩΛ can be splitted in further

components. The matter density parameter ΩM consists of a contribution Ωb from baryons
and a contribution ΩCDM from non-baryonic cold dark matter. The radiation density
parameter ΩR includes contributions from the photons of the microwave background,
ΩCMB, and from relativistic neutrinos produced in the Big Bang, Ων. The mass-energy
density related to the cosmological constant ΩΛ can be generalized with the dark-energy
term ΩΛ(1+ z)3(1+w), in order to attempt to measure the value of w.

1.2 The formation of structures

One of the main goal of cosmology is the understanding of the formation of the structures
that we observe at the present time. The Jeans theory of gravitational instability is able to
explain the growth of the primordial linear density perturbations, leading to the formation
of stars, galaxies and clusters of galaxies.
The small fluctuations of density are expected to be originated in the first instants after

the big bang by quantum oscillations of the scalar field driving the expansion in the
inflationary epoch. The CMB observations measured the amplitude of such density
perturbations in the primordial Universe and their gravitational amplification can be
linked to the formation of the large scale structures (LSS) of the Universe. According
to the cold dark matter scenario of the hierarchical formation of the cosmic structures,
galaxy clusters form from perturbations in the density field. Small subclumps of matter
are the first pieces of the cluster to deviate from the Hubble flow and undergo gravitational
relaxation because the density perturbations have larger amplitudes on smaller mass
scales. These small structures then merge so as to produce larger and larger structures as
perturbations on larger mass scales reach the non-linear regime, where the linear density
perturbations theory cannot be applied anymore. In this picture stars and galaxies are
the first objects which form, while larger structures like galaxy clusters grow through
coalescence of smaller objects.

1.2.1 Linear evolution: the Jeans theory

We describe now the basis of the Jeans theory that is able to explain the growth of small
density fluctuations in the linear regime. In this picture, the linear perturbations of an
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uniform fluid are able to increase when the gravity starts to dominate on the fluid pressure.

The basic laws that describe the dynamics of a self-gravitating fluid are the continuity,
the Euler and the Poisson equations:

∂ρ
∂t +~∇ · (ρ~u) = 0 (1.9a)

∂~u
∂t +(~u ·~∇)~u = −

1
ρ
~∇p−~∇Φ (1.9b)

∇2Φ = 4πGρ , (1.9c)
where ρ, ~u and p are the density, the velocity and the pressure of the fluid element and Φ
is the gravitational potential. If we neglect the effects of thermal conduction and viscosity,
i.e. we are assuming the conservation of entropy per unit of mass S, we have a further
continuity equation for the entropy:

∂~S
∂t +~u ·~∇S = 0 . (1.10)

If now we introduce linear perturbations δ, ~v, φ, dp and dS to the physical variables
ρ,u,Φ, p and S, respectively, so that

ρ = ρ0 +δρ0 = ρ0(1+δ) (1.11a)

~u = ~u0 +~v (1.11b)
Φ = Φ0 +φ (1.11c)
p = p0 +dp (1.11d)
S = S0 +dS , (1.11e)

where the index ’0’ represents the zeroth-order solutions, solving the equations (1.9) and
(1.10) we obtain the dispersion equation:

δ̈+2 ȧ
a δ̇+(v2

s k2 −4πGρ0)δ = 0 , (1.12)

being vs the sound speed defined as v2
s ≡ (∂ρ/∂p)S. Equation (1.12) represents the

evolution with time of the density contrast δ as a function of their wavelength. More
precisely, if we can define the Jeans length as

λJ ≡ vs

(
π

Gρ0

)1/2
, (1.13)

we have that for fluctuations with λ < λJ the pressure term ∝ v2
s in equation (1.12)

dominates and we have oscillating solutions, while for λ > λJ the gravity term ∝ 4πGρ0
dominates leading to gravitational instability.
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Under these hypotheses, in the case of λ � λJ, when the DM component starts to
dominate driving the growth of the density fluctuations we have two solutions for Eq.
(1.12):

δ−(t) ∝ t−1 (1.14)

δ+(t) ∝ t2/3 . (1.15)
The first solution can be neglected because it vanishes with time. The second one
represents the growing amplitudes of the fluctuations in this regime, leading to the
hierarchical coalescence of the cosmic structures.

1.2.2 The perturbation spectrum
At any given position ~x of space it is possible to define the density contrast (see Sect.
1.2.1) as

δ(~x) ≡ ρ(~x)−〈ρ〉
〈ρ〉

, (1.16)

being 〈ρ〉 is the average density, with Fourier components

δ̃(~k) ≡
∫

δ(~x)ei~k·~xd3~x , (1.17)

where~k is the wavevector.
If we assume that the Universe is homogeneous and isotropic on sufficiently large scales

(e.g. ∼> 100 Mpc), which means that there is not any preferential position or direction (the
Cosmological Principle), δ(x) can be characterized by an isotropic power spectrum

P(k) ≡ 〈|δk|
2〉 . (1.18)

If δ(x) is also a Gaussian random field, then P(k) is a complete statistical description of
the initial perturbation spectrum.
The physical meaning of P(k) becomes clearer if we assume it has a power-law form

P(k) = Akn , (1.19)

with n usually called spectral index, and we consider the variance in mass within identical
volume elements corresponding to the length scale k−1. If we consider the top-hat window
function W (x) defined as having the constant value of 1 for x ≤ 1 and 0 otherwise, the
mass perturbation smoothed over the above window is

δM
M (r) =

∫
δ(x)W(|x− r|)d3x . (1.20)

Using the convolution theorem, we can then write the variance σ2 ≡ 〈|δM/M|2〉 on the
mass scale as a function of the Fourier transform Wk of W (x):

σ2 =
1

(2π)3

∫
P(k)|Wk|

2d3k . (1.21)
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The quantity σ2 does not depend on spatial positions but on time, since δ̃(k) evolves with
time, therefore it represents a measure of the amplitude of the perturbations but it does
not provide any information about their spatial structure. The convergence of the variance
in equation (1.21) requires that n > −3 for k → 0 and n > −3 for k → ∞.
The variance in mass on scale k for a power-law perturbation spectrum is therefore

σ2 ∝ kn+3, because the top-hat window function W (x) smooths out just the perturbations
with wave-number k � x−1. Thus, the typical mass fluctuation on mass scale M ∝ k−3 is

δM
M ∝ M− n+3

6 . (1.22)

For what concerns the value A of the power spectrum normalization in equation (1.19),
it can be demonstrated that it is proportional to the variance of the density contrast on a
given scale. As a reference, it is usual to adopt σ8 defined as

σ2
8 ≡

1
2π2

∫ ∞

0
P(k)|Ŵ(kR8)|

2k2dk , (1.23)

where R8 = 8h−1 Mpc. The scale of 8 h−1 Mpc has been chosen to take into account
the results of Davis & Peebles (1983) that found that at this radius the variance of galaxy
counts is equal to unity.

1.2.3 Non-linear evolution: the cluster formation

The Jeans theory described in Section 1.2.1 is valid only for |δ| � 1, while the structures
observed nowadays correspond to overdensities |δ| � 1, for example a cluster of galaxies
corresponds to a value of δ of several hundreds.
A full understanding of the details of how hierarchical merging process leads to the

formation of virialized structures such as galaxies and clusters of galaxies, requires
numerical simulations, but analytical models of cluster formation allow to address several
important aspects of this picture. Here we will discuss how a cluster would grow from
a spherically symmetric mass perturbation and then we will refine the details of that
simplified approach by considering the results from numerical simulations.

The spherical collapse

The simplest approach to follow the non-linear evolution of the density perturbations is
based on the spherical collapse model and its predictions for the properties of galaxy
clusters. In this model the matter that goes on to form a cluster begins as a low-
amplitude spherical density perturbation with density contrast in the range 0 < δp � 1
and expanding with the background in such a way that the peculiar velocity at the edge
of the perturbation is null. The perturbation’s gravitational pull slows the expansion
of that matter, eventually stopping and reversing the expansion. So, after reaching the
maximum expansion (turn–around), the perturbation detaches itself from the general
Hubble expansion and then recollapses, leading to the gravitational collapse of the matter
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at the center of the perturbation. A cluster of matter then forms at the center of the
perturbation.
The accretion process in real clusters is not spherical. Instead, gravitational forces

between infalling clumps of matter yield a gravitational potential that depends on the time,
leading at the virialization time tvir a state of virial equilibrium in which the total kinetic
energy K is related to the total gravitational potential energy U through the equation

U +2K = 4πPr3 , (1.24)

where P is the effective pressure owing to infalling matter at the boundary r of the
collapsed system. Setting P to zero yields the usual form of the virial theorem E = K +
U = −K for gravitationally bound systems. This process, known as “violent relaxation”
(Lynden-Bell, 1967), leads to a state of the Maxwellian velocity distribution in which the
temperature is proportional to the particle mass.
At the turn–around point, the perturbation has no kinetic energy, so that the total energy

is

Em = U = −
3
5

GM2

Rm
, (1.25)

where we have used the expression for the potential energy of a uniform spherical
density field of radius Rm and total mass M. In a similar manner, the total energy at
the virialization is

Evir =
U
2 = −

1
2

3
5

GM2

Rvir
. (1.26)

Therefore, the condition of energy conservation in a dissipationless collapse gives Rm =
2Rvir for the relation between the radii at turn-around and at virial equilibrium.
The spherical top-hat model has actually led to several different definitions for the virial

radius of a cluster. If one assumes that all the mass in the original top-hat perturbation ends
up within rta/2, then the mass density in that region is 6M/πr3

ta. In a matter-dominated
universe with zero dark energy, this density is equal to ∆v = 8π2/(Ht)2 times the critical
density ρcr ≡ 3H2/8πG. Thus, for a flat, matter-dominated universe in which Ht = 2/3,
the mean density of a perturbation that has just collapsed is taken to be 18π2 ≈ 178 times
the critical density. A useful approximation for ∆v in a flat universe with a non-zero
cosmological constant (w = −1) is

∆v = 18π2 +82 [ΩM(z)−1]−39 [ΩM(z)−1]2 (1.27)

(Bryan & Norman, 1998). However, even if the above picture in which a cluster
would grow from a spherically symmetric mass perturbation is able to describe many
general properties of halo formation, this simple model does not fully reproduce the
observed properties of galaxy clusters, being neglected different effects like merging,
mass dissipation and other processes that affect the baryons during the collapse.
Because it is not easy to determine the outer radius of a real cluster, one pragmatic

definition of the virial radius is then the radius rv within which the mean matter density
is ∆vρcr. Another definition is that to consider ∆v = 200, i.e. the scale radius r200 within
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which the mean matter density is 200ρcr, neglicting its dependence on the cosmological
parameters and on the redshift.
By an observational point of view it is easier to observe the properties of a cluster

in regions where the density contrast is higher (∼< 1/2rv). The easiest way to link
observations to theoretical models is through definitions taking the mass of a cluster to be
M∆, the amount of matter contained in a spherical region of radius r∆ whose mean density
is ∆ ·ρcr. So observers often prefer to raise that threshold from ∆v given by Eq. (1.27) to
∆ = 2500 (r2500 ≈ 1/4rv) or ∆ = 500 (r500 ≈ 1/2rv).

Cluster Mass Profiles

A fundamental question is the distribution of matter in bound systems (galaxies, galaxy
clusters, dark matter halos) that form in an expanding universe. Observations of galaxy
clusters have long shown that their velocity dispersion is roughly constant with distance
from the cluster center, implying an underlying mass-density profile ρM(r) ∝ r−2. The
simplest analytical cluster model consistent with such a density profile is the singular
isothermal sphere, in which the velocity dispersion σv is constant and isotropic at every
point, and the dark matter density ρDM ∝ (1 + (r/rc)

2)−3/2 in the internal regions and
ρDM ∝ r−2 in the outskirts.
Observers have widely used the King profile as a reasonable analytical approximation

of the isothermal sphere in the internal regions accessible to the X-ray observations.
This parameterization was successful for a long time, given the strict connection with
the so called β–model (Cavaliere & Fusco-Femiano, 1976), which aimed at representing
the distribution of isothermal gas sitting in hydrostatic equilibrium within a King–like
potential: within such a DM profile, it is possible to show that there is a relationship
between the kinetic energy σ2

v of any tracer of the gravitational potential (e.g. galaxies)
and the thermal energy of the gas, kBT . Therefore this model was useful for making
analytical estimates of cluster properties.
Nevertheless, numerical simulations of cluster formation have indicated that the density

profiles of dark-matter halos is shallower (steeper) than isothermal at small (steeper)
radii. Most of these profiles are referable to the so called (α,β,γ) model, in which 2− 5
parameters control a double power law behaviour:

ρDM(r) = ρs2(β−γ)/α
(

r
rs

)−γ[
1+

(
r
rs

)α](γ−β)/α

, (1.28)

where ρs is the density at the scale radius, rs, which determines the transition region
between the inner and outer power law, having slopes of −γ and −β, respectively. The
parameter α controls the sharpness of the transition. Setting (α,β,γ) equal to fixed
values we obtain well known models in literature, such as King model (King, 1962) for
(α,β,γ)=(2,3,0); NFW model (Navarro et al., 1997), for (α,β,γ)=(1,3,1); the RTM model
(Rasia et al., 2004), for (α,β,γ)=(1,2.5,1); the generalized NFW model for (α,β,γ)=(1,3,γ)
with an outer slope of −3 and an inner slope of −γ.
Measurements of the inner slope γ is one the most interesting challenge of the

observations, since the cuspiness of dark-matter density profiles at r = 0 is one of the
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critical tests of the cold dark matter (CDM) paradigm for structure formation (see Navarro
et al., 2004, and references therein).
The transition of the density profile from shallow to steep can be characterized by

considering the concentration parameter c = rb/rs, which links the bounding radius rb
(e.g. r200) of the cluster to rs. Typical concentration parameters for simulated clusters are
in the range c ∼ 4− 10 with a mild dependence on the cluster mass: lower-mass objects
tend to have higher halo concentrations because they formed earlier in time, when the
overall density of the universe was greater (Navarro et al., 1997; Bullock et al., 2001).

1.3 Current results on cosmology

The overall cosmological model depends on just a few parameters. As already said, one
set of parameters (H0, ΩM, Ωb, ΩR, ΩΛ, and w) specifies the global cosmological model,
which describes the overall geometry of the universe, the mean density of its contents,
and how its scale changes with time, while the other one (σ8 and np) governs the initial
density perturbation spectrum.
Current observational data suggest as a favorite scenario the so-called “concordance” Λ-

Cold Dark Matter (ΛCDM) model, to characterize cold dark matter with a cosmological
constant. In this picture the Universe is flat with the energy density at the present
epoch dominated by a cosmological constant and the remaining fraction mainly due to
non-baryonic, non-collisional dark matter with low primordial velocity dispersion. The
fraction of density due to standard baryonic matter Ωb is only of few percent.

In the range of redshift 104
∼< z ∼< 103 the DM component dominates driving the growth

of the density fluctuations up to the epoch of recombination (z ∼ 103), when they become
visible as gas temperature fluctuations imprinted in the CMB anisotropies ∆T/TCMB ≈
10−5. In this scenario small objects form first because the typical perturbations that
survive to the effect of free-streaming correspond to masses of the order of M 'MJ(zrec)'
105M�, thus to the typical scales of protogalaxies: bigger structures such as galaxy
clusters form then hierarchically through merging of smaller objects.
The dark energy component became important in driving the expansion at z ∼< 0.5 and it

has the effect of accelerating the expansion of the Universe. This kind of energy can be
associated to the presence of a cosmological constant Λ 6= 0, which corresponds to w =−1
in the equation of state p = wρc2. Although the physical motivation of this constant is still
far from being wholly understood, the presence of a cosmological constant is believed to
be the most realistic explanation of current observational results.
The concordance ΛCDM cosmology is currently supported by many observations which

allow a precise estimate of the cosmological parameters. These data include results from
the dL − z relation of high-redshift supernovae (see, e.g., Astier et al., 2006; Wood-Vasey
et al., 2007), weak lensing (see, e.g., Heymans et al., 2005; Massey et al., 2005; Hoekstra
et al., 2006) and galaxy clustering (see, e.g., Tegmark et al., 2006; Sánchez et al., 2006),
CMB anisotropies observations made by the Wilkinson Microwave Anisotropy Probe
satellite (WMAP, Spergel et al., 2003; Spergel et al., 2007).
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Table 1.1. Main cosmological parameters as estimated by Spergel et al. (2007) using the data of the WMAP satellite
together with other results from CMB data, galaxy clustering, SN-Ia and weak lensing analysis. These values have been
obtained assuming a flat ΛCDM model. Errors correspond to 1σ.

Ωm ΩΛ = 1−Ωm 102Ωbh2 h σ8 ns
0.268±0.018 0.732±0.018 2.186±0.068 0.704+0.015

−0.016 0.776+0.031
−0.032 0.947±0.015

We quote in Table 1.1 the estimates of the main cosmological parameters coming from
WMAP together other observational results (Spergel et al., 2007).
In this Thesis we have assumed a flat concordance ΛCDM cosmology, with matter

density parameter Ω0m = 0.3, cosmological constant density parameter ΩΛ = 0.7, and
Hubble constant H0 = 70km/s/Mpc, compatible to the values shown in this table.



Chapter 2

Clusters of galaxies

T his chapter aims at providing an overview of the main properties of galaxy clusters. After
a brief summary about the historical studies on the clusters, we will discuss their optical
properties. In the central part we will focus on the X-ray properties of galaxy clusters, in

particular on the emission processes and on the physics of the ICM. At last we will outline methods
to measure the mass of the clusters.

2.1 Introduction
As we discussed in the previous chapter, clusters of galaxies represent the largest
virialized structures in the present universe, formed at relatively late times. The
hierarchical scenario provides a picture in which the primordial density fluctuations
generate proto-structures which are then subjected to gravitational collapse and mass
accretion, producing larger and larger systems. Clusters of galaxies probe the high–
density tail of the cosmic density field and their number density is highly sensitive to
specific cosmological scenarios (e.g. Press & Schechter, 1974; Kofman et al., 1993;
Bahcall & Cen, 1993). The space density of clusters in the local universe has been used
to measure the amplitude of density perturbations on ∼10 Mpc scales.
Clusters form through the collapse of cosmic matter over a region of several

megaparsecs. Cosmic baryons, which represent approximately 10–15% of the mass
content of the Universe, follow the dynamically dominant dark matter during the collapse.
They fall into the gravitational potential of the cluster dark matter halo so formed, while
the collapse and the subsequent adiabatic compression and shocks heat the intra-cluster
medium (ICM). A thin hot gas permeating the cluster gravitational potential well is then
formed, reaching temperatures of several 107 K, becomes fully ionized and, therefore,
emits via thermal bremsstrahlung in the X-ray band. Typically, clusters of galaxies have
total masses which exceed 5× 1014 M�, contributed for ∼ 85% by dark matter, ∼ 10%
by ICM and ∼ 5% by galaxies (e.g. Allen & Fabian, 1998).
Historically, clusters of galaxies were first identified by their optical properties as large

concentrations in the projected galaxy distribution (e.g. Zwicky et al., 1966; Zwicky &
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Kowal, 1968), containing hundreds to thousands galaxies, over a region of the order of
∼ 1 Mpc. The first observations showed that such structures are associated with deep
gravitational potential wells.
Afterwards, observations of clusters in the X-ray band have been an efficient method

of identification in the survey, being the X-ray luminosity much more pronounced in
regions where the density contrast with respect to ρcr is higher, i.e. in the gravitational
potential well of the clusters. The X-ray luminosity is also a good probe of the depth of
the cluster gravitational potential and, moreover, retains information about non-radiative
processes, like non-gravitational heating due to energy injection from supernovae, AGN,
star formation or galactic winds, which characterize the physics of the gas besides its
gravitational energy, tracing out its thermal history. For these reasons most of the studies
based on clusters have used X-ray selected samples. X-ray studies of galaxy clusters
provide: (1) by a cosmological point of view, an efficient way of mapping the overall
structure and evolution of the Universe and (2) a robust means to understand their internal
structure and the thermal history of cosmic baryons.
The first X–ray observations of clusters obtained by the UHURU satellite (e.g. Giacconi

et al., 1972) and then by the Einstein satellite cleary indicated that the space between
the galaxies is filled by hot X–ray emitting gas (e.g. Jones & Forman, 1984). X-ray
cluster studies made substantial progress at the beginning of the 90s with the advent of
new X-ray missions. Firstly, hundreds of new clusters have been discovered through the
all–sky survey conducted by the ROSAT satellite. Afterwards, the ASCA and Beppo–
SAX satellites have revealed the first view of the thermal structure of the ICM, involving
star formation processes and energy feedback from supernovae. Nowadays, the spatial
resolution of the new generation of the X-ray satellites like Chandra and XMM-Newton,
with their high sensitivity and large collecting area, has allowed us to unveil the complex
interplay of the physical processes which happen in the internal regions, casting new light
on the interplay between the complex physics of the hot ICM and detailed processes of
star formation associated with cool baryons.
Hot gas in clusters can also be observed through its effects on the cosmic microwave

background. The background itself has a virtually perfect blackbody spectrum. Soon after
the discovery of this background radiation, Sunyaev & Zeldovich (1970) predicted that
hot gas in clusters of galaxies would distort the CMB spectrum by Compton scattering,
now known as the Sunyaev-Zel’dovich (SZ) effect. Cosmological applications of the
thermal SZ effect in clusters benefit greatly from the fact that the effect is independent of
distance, unlike optical and X-ray surface brightness. Thus, a dedicated SZ cluster survey
would find clusters efficiently out to arbitrarily high redshifts.
Two decades after this prediction, there were only a few marginal detections, but many

clusters were detected at high significance in the following decade (Birkinshaw, 1999;
Carlstrom et al., 2002). Entering the last decade of SZ observations and with the incoming
instruments of new generation (ALMA, APEX, the Cosmic Backgroung Imager 2, the
South Pole Telescope), we are now in position to fully exploit the power of the SZ
effect by obtaining i) detailed images of a set of clusters to understand the intracluster
medium; ii) large SZ samples of clusters to determine statistically robust estimates of
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the cosmological parameters and, most importantly, iii) large untargeted SZ surveys to
probe the high redshift universe. These surveys will provide a direct view of the growth
of large-scale structures and will provide large catalogs of clusters that extend past z ∼ 2
with remarkably uniform selection functions.

2.2 Optical properties of clusters

Historically, a great effort were made in studying clusters of galaxies by their optical
properties. The galaxy distribution on the sky is not homogeneous: in fact, galaxies tend
to clump together in clusters. Clusters of galaxies typically contain hundreds of galaxies,
spread over a region of the order of ∼1 Mpc.
Abell (1958) provided the first extensive, statistically complete sample of rich galaxy

clusters in the northern areas of the sky. Based on purely visual inspection, clusters
were identified as enhancements in the galaxy surface density and were characterized by
their richness and estimated distance. Afterwards, some further cluster catalogs became
available (e.g. Zwicky & Kowal, 1968; Gunn et al., 1986).
The population of galaxies in clusters is substantially different from that in the field

(e.g. Dressler, 1980): with respect to the field distribution, clusters are richer in ellipticals
and spheroidals, and poorer in spirals. Rich clusters are often dominated by a single,
central cD galaxy. Different cluster properties have been used to construct morphological
classification systems which define a sequence of clusters running from regular to
irregular. Regular clusters are almost spherical and symmetric, and have a core with a high
concentration of galaxies at the center. They do not show strong evidence of substructures.
On the contrary, irregular clusters have little symmetry or central concentration, and often
show significant hints of substructures. This suggests that regular clusters are dynamically
more evolved and relaxed than irregular clusters.
The first optical observations showed that such structures are associated with deep

gravitational potential wells, containing galaxies with a typical velocity dispersion along
the line-of-sight of σv ∼ 103 kms−1. The crossing time for a cluster of size RV can be
defined as

tcr =
RV
σv

' 1
(

RV
1Mpc

)( σv
103 kms−1

)−1
Gyr . (2.1)

Therefore, in a Hubble time, tH ' 10h−1 Gyr, clusters have enough time in their internal
regions (on scale ∼< 1Mpc) to dynamically relax, while in surrounding environment on
scale of ∼10 Mpc this condition is probably not satisfied. Assuming virial equilibrium,
the typical cluster mass is

M '
RV σ2

v
G '

(
RV

1h−1Mpc

) ( σv
103 kms−1

)2
1015 h−1M� , (2.2)

being RV the virialization radius, which depends on the positions of the galaxies with



18 CHAPTER 2

measured redshifts and recognized as true cluster members:

RV = N2




∑

i> j
r−1

i j




−1

, (2.3)

where N is the total number of galaxies, and ri j the projected separation between the i-th
and j-th galaxies. Besides the assumption of virial equilibrium, which may be fulfilled to
different degrees by different populations of galaxies (e.g., late vs. early type), a crucial
aspect in the application of the dynamical mass estimator concerns the rejection of the
back/foreground galaxies which lie along the line-of-sight of the cluster without belonging
to it. A spurious inclusion of non–member galaxies in the analysis leads in general to an
overestimate of the velocity dispersion and, therefore, of the resulting mass.
Through Eq. (2.2) Zwicky (1937) noticed in his study of the Virgo cluster that the mass

retrieved by galaxy motions was greater than that associated with the optical light, and
this was the first evidence of the presence of dark matter.

2.3 X-ray properties of clusters
Observations of galaxy clusters in the X-ray band have revealed that a substantial fraction
(∼ 15 per cent) of the cluster mass is in the form of hot diffuse gas, permeating its
potential well. Clusters of galaxies are luminous X–ray sources, with typical luminosities
in the range ∼ 1043 - 1046 ergs−1. The X–ray emission is essentially due to thermal
bremsstrahlung from the diffuse ICM, at a temperature of T ∼ 107−108 K and an atomic
density of n ∼ 10−1 − 10−4 cm−3, that fills the deep gravitational potentials. Among
several emission mechanisms that were proposed, that of thermal emission from hot ICM
revealed the most consistent with the X–ray spectra: in fact the detection of strong X–ray
line emission from clusters, especially the 7 keV Fe line, cannot be explained with any
other non–thermal model for the origin of the X–ray emission.
If this gas is subject to the same dynamics of galaxies, then we can expect it has a typical

temperature of
kBT ' µmpσ2

r ' 6
( σr

103 kms−1

)2
keV , (2.4)

where mp is the proton mass and µ is the mean molecular weight (µ ' 0.6 for a primordial
composition with a 76% fraction contributed by hydrogen). Observational data for nearby
clusters (e.g. Wu et al., 1999) and for distant clusters (see Figure 2.1) actually follow this
relation, although with some scatter and with a few outliers which reveal the presence of
a more complex dynamics. The fact that temperature and galaxy dispersion were similar
and proportional to one other suggests that both gas and galaxies were bound by the same
gravitational potential, sharing the same dynamics.

We will discuss the basic properties of a hot diffuse plasma (Sect. 2.3.1), the physical
processes responsible for the X–ray emission from the ICM (Sect. 2.3.2) and summarize
the hydrostatic models for ICM distribution (Sect. 2.3.3).
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Figure 2.1. The relation between galaxy velocity dispersion, σv, and ICM temperature, T , for distant (z > 0.15) galaxy
clusters. The solid line shows the relation kBT = µmpσ2

v , and the dashed line is the best–fit to the low–z T–σv relation
from Wu et al. (1999). (Figure from Rosati et al., 2002)

2.3.1 Physical Properties of Hot Diffuse Plasma

At its high energies (∼ 107 − 108 K), the ICM behaves as a fully ionized plasma, whose
emissivity is dominated by thermal bremsstrahlung. We are dealing with several simple
assumptions (e.g. Sarazin, 1988) in studying the ionization state, line and continuum
emission from a low density, optically thin hot plasma. These assumptions together
constitute the ’coronal model’.

1. The ICM can be treated as a collisional fluid. In fact the mean free path of the
electrons and ions

λ ≈ 23 kpc
(

Te
108 K

)2( ne
10−3 cm−3

)−1
(2.5)

is much shorter than the typical length scale in clusters (∼ 1 Mpc), and therefore in
the ICM the collisions are the dominant process.

2. The time scale for elastic Coulomb collisions between particles in the plasma is
much shorter than the age or cooling time of the plasma, therefore the free particles
obey the Maxwell–Boltzmann distribution at a given temperature T . In fact, it is
possible to show (Spitzer, 1956; Spitzer , 1978) that homogeneous plasma with an
initial non–Maxwellian particle distribution relaxes to a Maxwellian one through
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Coulomb collisions on a time scale that is given by

teq ≈ 3.3×105 yr
(

Te
108 K

)3/2( ne
10−3 cm−3

)−1
(2.6)

for the electrons. The above time scale for the protons is about (mp/me)1/2 ∼ 40
times longer than that for electrons. After this time, both the electrons and ions
have a Maxwellian distribution, but generally at different temperatures, respectively
Te and Ti. The time scale for the electrons and ions to reach equipartition is
∼ (mp/me) teq ∼< 6×108 years for typical values of the ICM temperature and density.
So the above time scale is shorter than the age of the clusters: we can characterize
the ICM by a single kinetic temperature.

3. The gas is optically thin and therefore stimulated radiative transitions can be
neglected and the effect of the radiation field on the gas is insignificant.

4. The gas is at low density and therefore the transport of the radiation field can be
ignored.

5. At these low densities, collisional excitation and de–excitation processes are much
slower than radiative decays, and thus any ionization or excitation process is
assumed to be initiated from the ground state of an ion. Three (or more) body
collisional processes are ignored because of the low density.

Under these conditions, ionization and emission result primarily from collisions of ions
with electrons, and collisions with other ions can be ignored. Moreover, the time scales
for ionization and recombination are generally considerably shorter than the age of the
cluster or any relevant hydrodynamic time scale, therefore the plasma is assumed to be
in ionization equilibrium. The equilibrium ionization state of a diffuse plasma depends
only on the electron temperature: since in nearly all astrophysical plasmas most of the
electrons originate in hydrogen and helium atoms, and these are fully ionized under the
conditions considered here, the ICM is generally treated as a fully ionized plasma.

2.3.2 Thermal emission in the ICM
The X–ray continuum emission from a hot diffuse plasma, such as the ICM, is
due primarily to two processes: thermal bremsstrahlung (free–free emission) and
recombination (free–bound) emission. Processes that contribute to X–ray line emission
(bound–bound radiation) from a diffuse plasma include collisional excitation of valence
or inner shell electrons, radiative and dielectric recombination, inner shell collisional
ionization and radiative cascades following any of these processes.
At the high temperatures typical of clusters (in particular at T >

∼2.5 keV), thermal
bremsstrahlung is the predominant X–ray emission process. The emissivity for this
process at frequency ν scales as

Jbr(ν,T ) = 6.8×10−38Z2neniT−1/2e−hν/kT g(ν,T ) , (2.7)
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where ne and ni are the number density of electrons and ions, respectively, and g(ν,T ) ∝
ln(kBT/hν) is the Gaunt factor, which accounts for quantum mechanical effects (Rybicki
& Hummer, 1978).
If the ICM is mainly at a single temperature, then Eq. (2.7) indicates that the X–ray

spectrum behaves as an exponential (as a function of the frequency), and this is generally
observed.
By integrating the above equation over the energy range of the X-ray emission and over

the gas distribution, one obtains the total power per unit volume:

Jbr(T ) = 1.4×10−27neniT 1/2Z2g(T ) , (2.8)

where g(T ) is a frequency average of g(ν,T ) and it is of the order of the unity.
Even if the pure bremsstrahlung emissivity is a good approximation for T ∼> 3 keV

clusters, a further contribution from the strong lines (high equivalent width) in the 7 keV
iron line complex must be considered and, when considering cooler systems, from other
metal emission lines at T ∼< 1 keV should be also taken into account. Compilations of
the different emissivities for X–ray lines and continua can be found in the literature (e.g.
Raymond & Smith, 1977). The emissivities at the frequency ν increase in proportion to
the ion and electron densities, and depend otherwise on the temperature only, so that:

JX(ν,T ) =
∑

K,i
Λν(Ki,T )n(Ki)ne , (2.9)

where Λν is the emission per ion at unit electron density at the frequency ν.
Integrating Eq. (2.9) on all the frequencies, the bolometric emissivity at a temperature T

can be written as:
JX(T ) = Λ(T )nenp erg s−1 cm−3 (2.10)

where Λ(T ) is the cooling function, which depends on the mechanism of the emission.
For thermal bremsstrahlung, Λ(T ) ∝ T 1/2.
The observed X-ray luminosity is related to the Eq. (2.10) through:

LX =

∫
JX(T )dV = Λ(T )

∫
nenp dV , (2.11)

where the quantity EI =
∫

nenp dV is known as emission integral. Since the projection
on the sky of the plasma emissivity gives the X–ray surface brightness or luminosity, the
latter can be geometrically deprojected or fitted with a model of the assumed distribution
of the gas density by applying Eq. (2.11), in order to constrain the physical parameters
of the ICM, such as its density and temperature. The metal content of the ICM can
be investigated through X-ray spectroscopy instead. Measurements of tens nearby
clusters have yielded a mean metallicity Z ∼ 1/3 Z�, largely independently of the cluster
temperature, while the spatial distribution of metals has been started to be studied in detail
with the first spatially-resolved spectroscopic data obtained with ASCA and Beppo–SAX
(e.g. White, 2000; De Grandi & Molendi, 2001).
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2.3.3 Hydrostatic equilibrium in ICM
Given a plasma with sound speed cs2 = γkT/µmp, where γ = 5/3 for a monoatomic gas,
one finds that the time required for a sound wave in the ICM to cross the cluster is given
by:

ts ≈ 6.6×108
(

T
108 K

)−1/2( D
1 Mpc

)
yr , (2.12)

where D is the cluster diameter. Since this time is considerably shorter than the age of
the cluster, the plasma is assumed to be in hydrostatic equilibrium, unless the cluster
gravitational potential varies on a shorter time scale or the gas is heated or cooled more
rapidly than this. The cooling time due to thermal bremsstrahlung is much longer than
the above time scale, so the gas distribution is generally assumed to be hydrostatic:

∇P = −ρ∇φ (2.13)

where P = ρkT/µmp is the gas pressure, ρ is the gas density and φ is the gravitational
potential of the cluster.
If the cluster is assumed to be spherically symmetric, Eq. (2.13) reads:

1
ρ

dP
dr = −

dφ
dr = −

GM(< r)
r2 , (2.14)

where r is the radial coordinate (clustercentric distance) and M(< r) is the total mass
contained within r.

2.3.4 The β–Model for ICM Distribution
A common description of the gas density profile is the so called β–model,

ρg(r) = ρg,0

[
1+

(
r
rc

)2
]−3β/2

, (2.15)

which was introduced by Cavaliere & Fusco-Femiano (1976) to describe an isothermal
gas in hydrostatic equilibrium within the potential well associated with a King dark-matter
density profile. In the above equation, rc is the core radius, while the parameter β is the
ratio between the kinetic energy of any tracer of the gravitational potential (e.g. galaxies)
and the thermal energy of the gas:

β =
σr2

kT/µmp
. (2.16)

In its original derivation, the β–model was aimed at representing the distribution of
isothermal gas sitting in hydrostatic equilibrium within a King–like potential, which is
a reasonable approximation of the isothermal sphere: in this case it is possible to show
that there is a relationship between the mass density in galaxies ρgal and the gas density ρ

ρ ∝ ρβ
gal (2.17)
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The surface brightness profile observed at a projected radius b, I(b), is obtained by
integrating along the line–of–sight the plasma emissivity. The functional form of the
surface brightness profile reads:

I(b) = I0

[
1+

(
b

rcore

)2
] 1

2−3β

. (2.18)

This parametrization is widely used in the X–ray astronomy to recover the gas density
profile by fitting the surface brightness profile in galaxy clusters. Nevertheless, the
improved angular resolution and large field of view of the Chandra and Newton-XMM
satellites has shown that the β–model cannot always describe properly the surface
brightness profile of clusters.
The β–model is an useful means for interpreting cluster emissivity, although over limited

dynamical ranges. In fact, if the gravitational behaviours of the gas and galaxies were
identical, we expect that β = 1. However, since the galaxies can be considered as a
collisionless system while the gas is a collisional fluid, these two components will be
partially separated during the cluster formation. For example, the infalling gas will
typically be stopped by the passage of a shock while the galaxies continue to fall inwards:
this causes the gas to be less tightly bound than the galaxies, indicating that gas and
galaxies in clusters do not exactly share the same dynamics. Therefore, one could expect
β <
∼1, as observed (e.g. Jones & Forman, 1984; Bahcall & Lubin, 1994). This indicates

that the gas density should fall off less rapidly with radius than the galaxy density, as
observed, and that the energy per unit mass is higher in the gas than in the galaxies.
Nevertheless, this does not agree with the determinations of the X-ray spectral

temperatures and the galaxy velocity dispersion of clusters (Eq. 2.4): the observed
correlation between σr2 and kT implies that the average value β determined by gas
temperature and gas velocity dispersion (Eq. 2.16) is βspec ≈ 1− 1.3, which is about
a factor of two larger than the value βfit determined by fits on the X-ray surface brightness
(βfit ≈ 0.6− 0.8). The β-discrepancy shows how the assumptions of this model, such
as isothermality of the gas, isotropic galaxy velocity distribution, King–like gravitational
potential well, are too simplistic.

2.3.5 Cooling in the ICM

The X–rays emitted from clusters of galaxies represent a loss of energy of the ICM.
Thermal emissivity due to bremsstrahlung and line emission depends on the square of the
gas density (Eq. 2.7), which strongly rises towards the cluster center, i.e. the emissivity is
much more pronounced in the internal regions over scales ∼< 100 kpc. In the core region
the cooling rate of the ICM is sufficiently high that the particles loose a significant fraction
of their thermal energy via radiation. In order to understand the role of cooling in the ICM
one defines the cooling time–scale, which is given by

tcool =
kBT

neΛ(T )
≈ 2.7×108 (ne/10−1cm−3)−1 (T/107K)1/2 yr , (2.19)
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ne(r) being the number density of electrons and where in the second equality we have
considered a pure bremsstrahlung emission (e.g. Sarazin, 1988). Therefore, the cooling
time in central cluster regions can be shorter than the Hubble time. A substantial fraction
of gas undergoes cooling in these regions, and consequently drops out of the hot diffuse,
X-ray emitting phase. The density of the gas in the core regions then increases to maintain
the pressure required to support the weight of the overlying gas in the rest of the cluster,
leading to a slow subsonic inflow of material towards the cluster center. This simple
picture describes the physics of the process known as a cooling flow (Fabian, 1994).

Figure 2.2. A comparison of the X–ray surface brightness profile of A478 (a cool core cluster) and Coma (a non-cool
core cluster). The figures have been scaled to simulate the appearance of the systems when viewed at the same redshift,
being the two objects with similar overall X–ray luminosities. From Allen & Fabian (1997).

The canonical picture of cooling flows predicted that the lack of pressure support due to
gas cooling in the core region causes overlying external gas to flow towards the center,
creating a superpositions of many gas phases at different temperature. The improved
spectral resolution and sensitivity of the XMM satellite has shown that the soft X–ray
spectra of several cooling flow clusters of galaxies are inconsistent with standard cooling
flow models as the gas cools down to about 2−3 keV (e.g. Peterson et al., 2002), but not
to lower temperatures as expected in the canonical picture (e.g. Böhringer et al., 2002;
Fabian et al., 1991).
The solution to this problem is quite ticklish. Numerical simulations (Muanwong et al.,

2002) have shown that cooling in itself is a runaway process, leading to a large fraction
of gas that cools down (∼ 50%), whereas observational data indicate that only ∼< 10%
of the cluster baryons are locked into stars (e.g. Balogh et al., 2001; Bower et al., 2001).
This calls for the presence of further sources of non-gravitational energy, such as local
heating by, e.g., AGN activity (e.g. Valageas & Silk, 1999; Wu et al., 2000; Yamada &
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Fujita, 2001; Brighenti & Mathews, 2006), star formation or supernovae (Bialek et al.,
2001; Brighenti & Mathews, 2006; Babul et al., 2002; Borgani et al., 2002), which might
be able to provide sufficient amount of extra energy to balance overcooling.
The effects of gas cooling are well known to influence the X-ray emission from clusters

of galaxies (Fabian, 1994), as inferred from X–ray images of the cores of many clusters
which show strongly peaked surface brightness distributions (Fig. 2.2). Cooling flows
may be present in as many as 70 per cent of clusters (Peres et al., 1998), particularly
amongst older, relaxed systems, where merger-induced mixing of gas is not a significant
effect.

2.4 The Sunyaev-Zel’dovich effect
The thermal Sunyaev-Zel’dovich effect is a very small distortion of the spectra of the
cosmic microwave background, due to the Inverse Compton between the photons of the
CMB and the hot (∼ 107 − 108 K) electrons of the ICM trapped into the gravitational
potential well of the dark matter halo (Sunyaev & Zeldovich, 1970; Birkinshaw, 1999).
The CMB photons have a very low probability τ (τ ∼ 0.01) of interaction with the hot
electrons of the ICM, which increases statistically their energy by a factor ≈ kBTe/mec2,
producing the distortion of the black-body spectrum of the CMB: this appears as a
decrease of the monochromatic flux of the CMB at frequencies smaller than 218 GHz and
as an increase at frequencies larger than 218 GHz. We can parameterize the amplitude
of this effect by considering the Compton parameter y(θ), which is expressed by the
following relation:

y(θ) ≡
σT

mec2

∫
Pe(

→r )dl , (2.20)

where θ is the angular distance from the cluster centre, σT is the Thomson cross-section,
and Pe(r)≡ ne(r)kbTe(r) is the pressure of the electrons of the ICM at the volume element
of coordinate r, kb is the Boltzmann constant; l is the line of the sight.
In an equivalent way we can think the SZ effect as a small variation in the brightness
temperature (∆Tsz) or in the brightness (∆Isz) of the CMB:

∆Tsz = f(x,Te) Tcmb y , (2.21)

∆Isz = g(x,Te) I0 y , (2.22)

where I0 = 2(kTcmb)
3/(hc)2, x = hν/kTcmb; f(x,Te) e g(x,Te) are given by:

f(x,Te) =

(
xex +1

ex −1 −4
)

(1+o(x,Te)), (2.23)

g(x,Te) =
x4ex

(ex −1)2

(
xex +1

ex −1
−4
)

(1+o(x,Te)) . (2.24)

and account for the frequency dependence of the SZ effect, and for the relativistic
corrections related to the term o(x,Te) (Itoh et al. (1998)), which we consider in our
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Figure 2.3. The Cosmic Microwave Background (CMB) spectrum, undistorted (dashed line) and distorted by the
thermal Sunyaev-Zel’dovich effect (solid line). The SZ distortion shown is for a fictional cluster 1000 times more
massive than a typical massive galaxy cluster. The SZ effect causes a decrease in the CMB intensity at frequencies
smaller than 218 GHz and an increase at higher frequencies (from Carlstrom et al., 2002).

treatment up to the 5-th order, even though they are � 1 for all clusters with temperature
<∼ 10 keV. Figure 2.3 shows the spectral distortion of the CMB due to the thermal SZ
effect for a fictional cluster that is over 1000 times more massive than a typical cluster
to illustrate the small effect. The SZ effect causes a decrease in the CMB intensity at
frequencies ∼< 218 GHz and an increase at higher frequencies.
Because the instruments suitable for the observations are usually interferometers, the

best fit models are computed using visibilities (i.e. data in the Fourier domain) instead
of intensity (i.e. data in the image domain). In fact, we know that the visibility
V (

→u ) = V (u,v) in the uv−plane is the Fourier transform (F T ) of the brightness I(
→
ϕ),

→
ϕ = (ϕ,θ), ϕ = R/Da, with Da diameter distance and R2 = r2 + l2:

V (
→u ) =

∫ ∞

−∞
d
→
ϕB(

→
ϕ) I(

→
ϕ)ei2π

→
ϕ·

→u =

2π
∫ ∞

0
B(ϕ) I(ϕ)Jk

0(2πϕu)ϕdϕ , (2.25)

where the last equality is true in the case of radial symmetry, where the F T transform
became the Hankel transform (H T ); here Jk

0 indicates the K Bessel function of the zero
order, B(φ) is a specific numerical function, normalized to one, that describes the primary
beam of the telescope (Pearson et al., 2003).
Due to the poor coverage of the uv−plane of the SZ data, which actually inhibits the
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above Fourier inversion, the best way to constrain the physical parameter is to work in
the Fourier domain, by performing a H T of the X-ray model and comparing it with the
observed visibilities.

2.5 Methods to estimate galaxy cluster mass
2.5.1 The hydrostatic equilibrium equation
In addition to providing an efficient method to detect clusters, X-ray studies of the ICM
allow one to measure the total gravitating cluster mass, which is the quantity predicted
by theoretical models for cosmic structure formation. The condition of hydrostatic
equilibrium (Eq. 2.13) determines the balance between the pressure force and the
gravitational force. By inserting the equation of state for a perfect gas, P = ρgaskBT/µmp
into Eq. (2.13), one can express M(< R), the total gravitating mass within R under the
assumption of a spherically symmetric gas distribution as

M(< r) = −
r
G

kBT
µmp

(
d lnρgas

d lnr +
d lnT
d ln r

)
, (2.26)

where µ is the mean molecular weight of the gas (µ ' 0.6 for primordial composition) and
mp is the proton mass. An often used mass estimator is based on assuming the β–model
for the gas density profile (Eq. 2.15). By further assuming a polytropic equation of state
ρgas ∝ Pγ, being γ the polytropic index, Eq. (2.26) becomes

M(< r) ' 1.11×1014 βγ
T (r)
keV

r
h−1Mpc

(r/rc)2

1+(r/rc)2 h−1M� , (2.27)

where T (r) is the temperature at the radius r. The mass corresponding to a β–model
parametrization under the isothermal assumption is recovered from Eq. (2.27) by setting
γ = 1 and replacing T (r) with the overall ICM temperature. In the absence of accurately
resolved temperature profiles from X–ray observations, Eq. (2.27) has been used to
estimate cluster masses both in its isothermal and in its polytropic form. In Figure 2.4
we present the relation between dynamical optical masses (Eq. 2.2) and masses derived
from the X–ray temperature by assuming hydrostatic equilibrium (Eq. 2.27).
The improved angular resolution and sensitivity of the Chandra and Newton-XMM

satellites has allowed to recover temperature profiles with high accuracy through the
application of more general methods of mass estimation, not necessarily based on the
assumptions of β–model and of a polytropic form for the equation of state (Allen et al.,
2001; Ettori et al., 2002).
The crucial a-priori assumptions underlying any mass measurements concern the

hydrostatic equilibrium, spherical geometry and the absence of substructures. Some of
these assumptions have been tested through hydrodynamical numerical simulations (see
Rasia et al., 2006, for a study of the systematics on the recovered mass profiles) or through
a parametric combination of X-ray and Sunyaev-Zel’dovich effect measurements (see
De Filippis et al., 2005, for a study of the systematics related to spherical assumption).
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Local deviations from isothermality due to the presence of cold substructures can bias the
spectroscopic temperature (and therefore the mass estimates) with respect to the actual
electron temperature (Mazzotta et al., 2004; Rasia et al., 2006).

Figure 2.4. The relation between dynamical optical masses and masses derived from the X–ray temperature by
assuming hydrostatic equilibrium (from Girardi et al., 1998).

2.5.2 The self–similar scaling
The self-similar model (see, e.g., Kaiser , 1986) gives a simple picture of the process of
cluster formation in which the ICM physics is driven by the infall of cosmic baryons into
the gravitational potential of the cluster DM halo. The collapse and subsequent shocks
heat the ICM up to the virial temperature. Since gravity has not a preferred scale, we
expect clusters of different sizes to be the scaled version of each other as long as gravity
only determines the ICM evolution. This is the reason why the ICM model based on the
effect of gravity only is said to be self-similar. Thanks to this model, which assumes that
gravity is the only responsible for the observed values of the different physical properties
of galaxy clusters, we have a simple way to establish theoretical analytic relations between
them.
Assuming the spherical collapse model (Sect. 1.2.3) for the DM halo and the equation

of hydrostatic equilibrium to describe the distribution of baryons into the DM potential
well, in the self-similar model the cluster mass and temperature are related by:

Ez∆v
1/2Mtot ∝ T 3/2 ; (2.28)

where Ez = (H(z)/H0)
2, H(z) and ∆v are given by Eq. (1.8) and (1.27), respectively. So

we have R∆v ∝ (M/(ρc,z∆v))
1/3 ∝ T 1/2E−1

z ∆v
−1/2. From the previous equations we can
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easily obtain further relations (see, e.g., Markevitch, 1998; Allen & Fabian, 1998; Ettori
et al., 2004; Arnaud et al., 2005; Vikhlinin et al., 2005; Pratt & Arnaud, 2005), such as:

E−1
z (∆v/∆)−1/2L ∝ T 2

gas , (2.29)

E−1
z (∆v/∆)−1/2L ∝ (Ez(∆v/∆)1/2Mtot)

4/3 (2.30)

Eq. (2.28) and (2.30) are unique predictions for the scaling relations among ICM
physical quantities and, in principle, they provide a way to relate the cluster masses
to observables at different redshifts. Nevertheless, it was soon recognized that X-ray
clusters do not completely obey these scaling relations. The observed luminosity–
temperature relation for clusters is LX ∝ T 3 for T ∼> 2 keV, and possibly even steeper
for T ∼< 1 keV groups. Deviations with respect to these relations witness the presence of
more complex physical processes, beyond gravitational dynamics only, which affect the
thermodynamical properties of the diffuse baryons and, therefore, the relation between
observables and cluster masses. We will discuss in detail the scaling relations among
cluster observables in Chapter 3.

2.6 An overview of Chandra and CBI
Nowadays the improved angular resolution and sensitivity of the new generation of the
X-ray satellites like Chandra and XMM-Newton has allowed us to unveil the complex
interplay of the physical processes which happen in the internal regions of galaxy clusters.
On the other hand, thanks to the development of incoming microwave instruments
(ALMA, APEX, the Cosmic Backgroung Imager 2, the South Pole Telescope), we are
now in the position to obtain large untargeted SZ surveys, which will provide a direct
view of the high redshift universe.
As outlined in the Introduction, in the work of this Thesis we have considered a sample

of galaxy clusters to characterize the properties of the X-ray and SZ signals, focusing on
the determination of the physical properties of intracluster gas and DM. In particular, we
have constructed a sample of 24 X-ray galaxy clusters observed with Chandra, having a
central Compton parameter y0 (Eq. 2.20) taken from the literature or interferometric SZ
data obtained with the Cosmic Background Imager (CBI).
Here we briefly describe the main characteristics of Chandra and CBI instruments.

2.6.1 The Chandra X-ray Observatory
The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory.
Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility,
but renamed by NASA in December, 1998. The Chandra spacecraft carries a high
resolution mirror, two imaging detectors, and two sets of transmission gratings. The
main characteristics of this satellite are: very high spatial resolution (' 0.5 arcseconds),
good sensitivity from 0.1 to 10 keV, and high spectral resolution over most of this range.
Chandra was designed to have considerable collecting area between 0.5 and 7 keV,
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allowing the detection of iron lines emitted by many astrophysical sources. Therefore,
a wide variety of high–energy phenomena in an all–encompassing range of astronomical
objects are being observed.
Chandra is in an elliptical high-earth orbit allowing uninterrupted observing intervals of

more than 48 hours in length. This satellite consists of 4 pairs of concentric thin-walled,
grazing-incidence Wolter Type-I mirrors called the High Resolution Mirror Assembly
(HRMA, see Figure 2.5). The front mirror of each pair is a paraboloid and the back a
hyperboloid. The eight mirrors were fabricated from Zerodur glass, polished, and coated
with iridium on a binding layer of chromium. The high energy response is achieved
by using relatively small reflection angles and by coating the mirrors with iridium. The
combination of high resolution, large collecting area, and sensitivity to higher energy X-
rays makes it possible for Chandra to study extremely faint sources, sometimes strongly
absorbed, in crowded fields.

Figure 2.5. An image of the Chandra X-ray Observatory.

There are two transmission grating spectrometers, formed by sets of gold gratings placed
just behind the mirrors. One set is optimized for low energies (LETG) and the other for
high energies (HETG). Spectral resolving powers (E/∆E) in the range 100 to over 1000
can be achieved with good efficiency. These produce spectra dispersed in space at the
focal plane.
Chandra has two focal plane instruments: the High Resolution Camera (HRC), and

the Advanced CCD Imaging Spectrometer (ACIS). The HRI has small pore size, large
microchannel plate (MCP), low background, charged particle anticoincidence, and high
energy resolution, which make this instrument useful for high resolution imaging, fast
timing measurements, and for observations requiring a combination of both.
The ACIS instrument is an array of charged coupled devices. A two-dimensional array of

these small detectors does simultaneous imaging and spectroscopy. Pictures of extended
objects can be obtained with both high spatial resolution along and spectral information
from each element of the picture. ACIS is comprised of two CCD arrays, a 4-chip array,
ACIS-I; and a 6-chip array, ACIS-S. The CCDs are flat, but the chips in each array are
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positioned (tilted) to approximate the relevant focal surface: that of the HRMA for ACIS-I
and that of the HETG Rowland circle for ACIS-S. ACIS-I was designed for CCD imaging
and spectrometry; ACIS-S can be used both for CCD imaging spectrometry and also for
high-resolution spectroscopy in conjunction with the HETG grating. There are two types
of CCD chips. ACIS-I is comprised of front-illuminated (FI) CCDs. ACIS-S is comprised
of 4 FI and 2 back-illuminated (BI) CCDs, one of which is at the best focus position.
The efficiency of the ACIS instrument has been discovered to be slowly changing with
time, most likely as a result of molecular contamination build-up on the optical blocking
filter. The BI CCDs response extends to lower energies than the FI CCDs and the energy
resolution is mostly independent of position. The low-energy response of the BI CCDs
is partially compromised by the contaminant build-up. The FI CCD response is more
efficient at higher energies but the energy resolution varies with position due to radiation
damage caused by protons reflecting through the telescope during radiation-zone passages
in the early part of the mission.
Chandra’s capabilities provide unprecedented science and Chandra users are making

important contributions to all areas of astronomy, including the solar system, stars,
interacting binaries, compact objects, supernovae, galaxies, AGN and galaxy clusters.

2.6.2 The Cosmic Background Imager
The Cosmic Background Imager (CBI) is a radio telescope designed to study the cosmic
microwave background radiation. The CBI is located at an altitude of 5080 meters near
San Pedro de Atacama, in the Andes in northern Chile: this high and dry site minimizes
the effects of Earth’s atmosphere and guarantees good sensitivity levels in a reasonable
observing time.
It is an instrument primarily designed to measure both the temperature and polarization

properties of the CMB, including the SZ effect in clusters of galaxies, in the frequency
range 26-36 GHz and on angular scales from 5 arcminutes to one degree (spherical
harmonic scales from l = 3000 down to l = 300). This instrument is a 13-element
interferometer mounted on a 6 meter platform operating in ten 1-GHz frequency bands
from 26 GHz to 36 GHz. The instantaneous field of view of the instrument is 44 arcmin
and its resolution ranges from 4.5 to 10 arcmin.
The CBI consists of 13 separate radio antennas, each 90 cm in diameter, mounted on

a single altazimuth platform (see Figure 2.6), giving interferometer baselines d, i.e. the
distance between a pair of antenna in λ unit (where λ is the wavelength, λ ∼ 1 cm), that
can be adjusted in length from 1/λ to 5.5/λ. An interferometer of baseline d is sensitive
to cosmic microwave background radiation structure with multipole l = 2πd/λ. The
orientation of the baselines can be changed by rotating the platform. The CBI measures
10 channels for each of 78 baselines simultaneously, while the field of view is basically
given by the primary beam, i.e. the diffraction figure of the antennas. Larger fields can be
imaged by assembling data from multiple pointings (called “mosaicing”).
Each antenna is a 90-cm parabolic reflector enclosed in a shield can and protected by a

teflon cover that is transparent to radio radiation. The signals from each pair of antennas
are combined in a correlator: the function of this computer machine is that to remove the
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Figure 2.6. An image of the Cosmic Background Imager.

so-called spillover, i.e. the constant part of the microwave background and radiation from
the ground and the atmosphere, and to compute the real and imaginary parts of the cross-
correlation between the signal detected by the i-th and j-th antenna. Once these data are
further analyzed by convenient software, the resulting output are processed to extract the
physical information: this output basically represents a sample of Fourier transform (the
visibilities) of the temperature properties of the CMB (Eq. 2.25)
In 2006, the CBI was upgraded to CBI2. The original 0.9m dishes were upgraded to

1.4m dishes each with a new foam cone supporting the new secondaries. The array was re-
configured to maximize the number of long baselines. As well as increasing the sensitivity
to CMB fluctuations on small angular scales (l > 900), this upgrade makes the CBI much
more suited to SZ observations, by both increasing the flux sensitivity and reducing the
relative contamination from primordial CMB anisotropies.



Chapter 3

X-ray and Sunyaev-Zel’dovich
scaling relations in galaxy clusters

T his Chapter aims at presenting an analysis of the scaling relations between X-ray properties
and Sunyaev-Zel’dovich parameters for a sample of 24 X-ray luminous galaxy clusters
observed with Chandra and with measured SZ effect. The combined analysis of the SZ and

X-ray scaling relations is a powerful tool to investigate the physical properties of the clusters and their
evolution in redshift, by tracing out their thermodynamical history. We observe that the correlations
among X-ray quantities only are in agreement with previous results obtained for samples of high-z X-
ray luminous galaxy clusters. On the relations involving SZ quantities, we obtain that they correlate
with the gas temperature with a logarithmic slope significantly larger than the predicted value from
the self-similar model. Our results on the X-ray and SZ scaling relations show a tension between
the quantities more related to the global energy of the system (e.g. gas temperature, gravitating
mass) and the indicators of the structure of the ICM (e.g. gas density profile, central Compton
parameter y0). These relations consistently show a negative evolution suggesting a scenario in which
the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than
the expectations from self-similar model. This Chapter is mainly based on the refereed paper ”X-ray
and Sunyaev-Zel’dovich scaling relations in galaxy clusters”, Morandi A., Ettori S., Moscardini L.
2007, MNRAS, 379, 518-534.

3.1 Introduction
In Chapter 2 we have seen that the so–called self-similar scenario is the simplest
model to explain the physics of the ICM, assuming that gravity only determines the
thermodynamical properties of the hot diffuse gas (see, e.g., Kaiser , 1986). Since
gravity has not a preferred scale, we expect clusters of different sizes to be the scaled
version of each other as long as gravity only determines the ICM evolution and there
are no preferred scales in the underlying cosmological model. This allows to build
a very simple model to relate the physical parameters of clusters: the so-called self-
similar model (Kaiser , 1986; Evrard & Henry, 1991). Based on that, we can derive
scaling relations (see Sect. 3.3) between X-ray quantities (like temperature T , mass M,
entropy S and luminosity L), and between X-ray and Sunyaev-Zel’dovich measurements
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(like the Compton-y parameter), thanks to the assumption of spherical collapse for the
DM halo and hydrostatic equilibrium of the gas within the DM gravitational potential.
These relations provide a powerful test for the adiabatic scenario. In particular, in the
recent years the studies about the X-ray scaling laws (see, e.g., Allen & Fabian, 1998;
Markevitch, 1998; Ettori et al., 2004; Arnaud et al., 2005; Vikhlinin et al., 2005; Voit &
Donahue, 2005), together with observations of the entropy distribution in galaxy clusters
(see, e.g., Ponman et al., 1999, 2003) and the analysis of simulated systems including
cooling and extra non-gravitational energy injection (see, e.g., Borgani et al., 2004) have
suggested that the simple adiabatic scenario is not giving an appropriate description of
galaxy clusters. In particular the most significant deviations with respect to the self-
similar predictions are: (i) a lower (by ∼ 30− 40 per cent) normalization of the M −T
relation in real clusters with respect to adiabatic simulations (Evrard et al., 1996); (ii)
steeper slopes for the M − T and L − T relations; (iii) an entropy ramp in the central
regions of clusters (see, e.g., Ponman et al., 1999, 2003). These deviations are likely the
evidence of non-radiative processes, like non-gravitational heating due to energy injection
from supernovae, AGN, star formation or galactic winds (see, e.g., Pearce et al., 2001;
Tozzi & Norman, 2001; Bialek et al., 2001; Babul et al., 2002; Borgani et al., 2002;
Brighenti & Mathews, 2006) or cooling (see, e.g., Bryan , 2000). More recently some
authors pointed out that there is a mild dependence of the X-ray scaling relations on the
redshift, suggesting that there should be an evolution of these non-gravitational processes
with z (Ettori et al., 2004).

An additional and independent method to evaluate the role of radiative processes is the
study of the scaling relations based on the thermal SZ effect (Sunyaev & Zeldovich,
1970), which offers a powerful tool for investigating the same physical properties of the
ICM, being the electron component of cosmic baryons responsible of both the X-ray
emission and the SZ effect. The advantage of the latter on the former is the possibility of
exploring clusters at higher redshift, because of the absence of the cosmological dimming.
Moreover, since the SZ intensity depends linearly on the density, unlike the X-ray flux,
which depends on the squared density, with the SZ effect it is possible to obtain estimates
of the physical quantities of the sources reducing the systematic errors originated by the
presence of sub-clumps and gas in multi-phase state and to study in a complementary
way to the X-ray analysis the effects of extra-physics on the collapse of baryons in cluster
dark matter halos, both via numerical simulations (White et al., 2002; da Silva et al.,
2004; Diaferio et al., 2005; Nagai, 2006) and observationally (Cooray 1999; McCarthy
et al. (2003a,b); Benson et al. (2004); LaRoque et al. (2006); Bonamente et al. (2006)).

The main purpose of this Chapter is to understand how these SZ and X-ray scaling
relations evolve with redshift. In particular we want to quantify how much they differ
from the self-similar expectations in order to evaluate the amplitude of the effects of the
non-gravitational processes on the physical properties of ICM. Another issue we want to
debate is which relations can be considered a robust tool to link different cluster physical
quantities: this has important consequences on the possibility of using clusters as probes
for precision cosmology. To do that, we have assembled a sample of 24 galaxies clusters,
for which measurements of the Compton-y parameter are present in the literature. Respect
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the previous works we have done our own spatially resolved X-ray analysis recovering
X-ray and SZ quantities necessary to investigate scaling relations. We have performed
a combined spatial and spectral analysis of the X-ray data, which allows us to derive
the radial profile for temperature, pressure, and density in a robust way. These results,
which have high spatial resolution, rely only on the hydrostatic equilibrium hypothesis
and spherical geometry of the sources. Moreover we can compare the observed physical
quantities with the results of hydrodynamical numerical simulations in a consistent way.
This Chapter is organized as follows. In Sect. 3.2 we introduce our cluster sample

and we describe the method applied to determine the X-ray properties (including the
data reduction procedure) and the corresponding SZ quantities. In Sect. 3.3 we report
our results about the scaling relations here considered, including the presentation of the
adopted fitting procedure. Sect. 3.4 is devoted to a general discussion of our results,
while in Sect. 3.5 we summarize our main conclusions. We leave to the appendices the
discussion of some technical details of our data reduction procedure.

3.2 The dataset

3.2.1 Data reduction

We have considered a sample of galaxy clusters for which we have SZ data from the
literature and X-ray data from archives (see Tables 3.1 and 3.2, respectively). In particular,
we have considered the original sample of McCarthy et al. (2003b), to which we added
two more objects from the sample discussed by Benson et al. (2004). For all these
clusters we have analyzed the X-ray data extracted from the Chandra archive. In total we
have 24 galaxy clusters with redshift ranging between 0.14 and 0.82, emission-weighted
temperature in the range 6-12 keV and X-ray luminosity between 1045 and 1046 erg
s−1. In the whole sample we have 11 cooling core clusters and 13 no-cooling core ones
(hereafter CC and NCC clusters, respectively) defined according to the criterion that their
cooling time in the inner regions is lower than the Hubble time at the cluster redshift.
We summarize here the most relevant aspects of the X-ray data reduction procedure.

Most of the observations have been carried out using ACIS–I, while for 4 clusters (A1835,
A370, MS0451.6-0305, MS1137.5+6625) we have data from the Back Illuminated S3
chip of ACIS–S. We have reprocessed the event 1 file retrieved from the Chandra archive
with the CIAO software (version 3.2.2) distributed by the Chandra X-ray Observatory
Centre. We have run the tool aciss proces events to apply corrections for charge
transfer inefficiency (for the data at 153 K), re-computation of the events grade and flag
background events associated with collisions on the detector of cosmic rays. We have
considered the gain file provided within CALDB (version 3.0) in this tool for the data in
FAINT and VFAINT modes. Then we have filtered the data to include the standard events
grades 0, 2, 3, 4 and 6 only, and therefore we have filtered for the Good Time Intervals
(GTIs) supplied, which are contained in the flt1.fits file. We checked for unusual
background rates through the script analyze ltcrv, so we removed those points
falling outside ±3σ from the mean value. Finally, we have applied a filter to the energy
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Table 3.1. The SZ parameters for the galaxy clusters in our sample. For each object different columns report the name,
the central value (y0) of the Compton y-parameter, the SZ flux integrated up to an overdensity of 2500 and over a fixed
solid angle Ω = 1 arcmin (y2500 and yΩ, respectively) divided by the function g(x,Te) (see Eq. 2.24), and the parameter η
(see text). For two objects (namely A1914 and RXJ2228+2037) the corresponding errors are not provided by McCarthy
et al. (2003b): in the following analysis we will assume for them a formal 1σ error of 20 per cent.

name y0 y2500 yΩ η
(×104) (mJy) (mJy)

A1413 1.610.20
−0.22 40.3±5.2 7.67±1.00 0.99

A2204 1.800.46
−0.62 53.1±16.0 7.91±2.38 0.79

A1914 1.59..
.. 26.2±5.2 6.41±1.28 1.20

A2218 1.370.18
−0.26 25.7±4.1 6.62±1.04 1.03

A665 1.370.26
−0.31 37.1±7.7 8.12±1.69 0.92

A1689 3.240.22
−0.20 56.8±3.7 13.34±0.86 0.94

A520 1.240.17
−0.19 38.8±5.6 7.53±1.08 1.10

A2163 3.560.25
−0.27 142.6±10.5 22.69±1.67 0.74

A773 2.370.28
−0.32 34.8±4.4 10.99±1.41 0.95

A2261 3.180.35
−0.40 39.5±4.6 12.40±1.46 0.92

A2390 3.570.42
−0.42 78.4±9.2 17.39±2.05 0.75

A1835 4.700.31
−0.29 48.3±3.1 16.44±1.06 0.80

A697 2.650.32
−0.32 44.1±5.3 13.88±1.66 0.96

A611 1.600.24
−0.24 11.2±1.7 5.39±0.82 1.02

Zw3146 1.610.25
−0.29 15.8±2.6 5.67±0.93 0.92

A1995 1.920.14
−0.16 18.6±1.5 8.22±0.65 1.06

MS1358.4+6245 1.470.16
−0.18 13.4±1.5 5.87±0.68 0.75

A370 2.360.84
−0.45 18.9±5.2 10.42±2.84 1.19

RXJ2228+2037 2.40..
.. 14.9±3.0 10.76±2.15 0.88

RXJ1347.5-1145 7.410.63
−0.68 44.4±3.9 19.60±1.74 0.70

MS0015.9+1609 2.330.19
−0.20 11.5±1.0 10.55±0.89 0.97

MS0451.6-0305 2.690.17
−0.19 12.5±0.8 9.04±0.60 1.31

MS1137.5+6625 1.530.17
−0.19 2.4±0.3 2.73±0.32 1.16

EMSS1054.5-0321 3.871.19
−1.12 11.8±3.5 13.93±4.16 1.04

(300-9500 keV) and CCDs, so as to obtain an events 2 file.

3.2.2 Spatial and spectral analysis

The images have been extracted from the events 2 files in the energy range (0.5-5.0 keV),
corrected by using the exposure map to remove the vignetting effects, by masking out the
point sources. So as to determine the centroid (xc,yc) of the surface brightness we have
fitted the images with a circular one-dimensional (1D) isothermal β-model (Cavaliere
& Fusco-Femiano, 1976), by adding a constant brightness model, and leaving xc and
yc free as parameters in the best fit. We constructed a set of n (n ∼ 15− 40) circular
annuli around the centroid of the surface brightness up to a maximum distance Rspat (also
reported in Table 3.2), selecting the radii according to the following criteria: the number
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Figure 3.1. The radial profiles for the projected temperature Tspec, normalized using the cooling-core corrected
temperature Tew, and for density are shown for all objects of our sample in the left and right panels, respectively.
Solid and dashed lines refer to clusters with or without a central cooling flow, respectively

of net counts of photons from the source in the (0.5-5.0 keV) band is at least 200-1000 per
annulus and the signal-to-noise ratio is always larger than 2. The background counts have
been estimated from regions of the same exposure which are free from source emissions.
The spectral analysis has been performed by extracting the source spectra from n∗

(n∗ ∼ 3− 8) circular annuli of radius rm around the centroid of the surface brightness.
We have selected the radius of each annulus out to a maximum distance Rspec (reported
in Table 3.2), according to the following criteria: the number of net counts of photons
from the source in the band used for the spectral analysis is at least 2000 per annulus and
corresponds to a fraction of the total counts always larger than 30 per cent.
The background spectra have been extracted from regions of the same exposure in the

case of the ACIS–I data, for which we always have some areas free from source emission.
Conversely, for the ACIS–S data we have considered the ACIS-S3 chip only and we
have equally used the local background, but we have checked for systematic errors due
to possible source contamination of the background regions. This is done considering
also the ACIS “blank-sky” background files, which we have re-processed if their gain
file does not match the one of the events 2 file; then we have applied the aspect solution
files of the observation to the background dataset by using reproject events, so as
to estimate the background for our data. We have verified that the spectra produced by
the two methods are in good agreement, and at last we decided to show only the results
obtained using the local background.
All the point sources has been masked out by visual inspection. Then we have calculated

the redistribution matrix files (RMF) and the ancillary response files (ARF) for each
annulus: in particular we have used the tools mkacisrmf and mkrmf (for the data
at 120 K and at 110 K, respectively) to calculate the RMF, and the tool mkarf to derive
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Table 3.2. The X-ray properties of the galaxy clusters in our sample. For each object different columns report the name, the redshift z, the identification number of the
Chandra observation, the used ACIS mode, the exposure time texp, the neutral hydrogen absorption NH (the labels f and t refer to objects for which NH has been fixed
to the Galactic value or thawed, respectively), the physical scale corresponding to 1 arcmin, the maximum radii used for the spatial and for the spectral analysis (Rspat
and Rspec, respectively), the emission-weighted temperature Tew, the metallicity Z (in solar units), a flag for the presence or not of a cooling core (labeled CC and NCC,
respectively), the mass-weighted temperature Tmw, the gas mass Mgas, and the bolometric X-ray luminosity L. The last three columns refer to an overdensity of 2500.
Sources extracted from the McCarthy et al. (2003b) sample and from the Benson et al. (2004) sample are indicated by apices (1) and (2), respectively.

name z obs. ACIS texp NH 1′ scale Rspat Rspec Tew Z CC/ Tmw Mgas L
mode (ks) (1020cm−2) (kpc) (kpc) (kpc) (keV) (Z�) NCC (keV) (1013 M�) (1045erg/s)

A1413(1) 0.143 1661 I 9.7 2.2( f ) 151 1111 1359 6.25+0.36
−0.33 0.45+0.11

−0.10 CC 6.58±0.42 2.87±0.09 1.28±0.03
A2204(1) 0.152 6104 I 9.6 5.7( f ) 159 1183 1262 9.18+0.75

−0.65 0.49+0.14
−0.13 CC 10.52±0.62 5.64±0.18 4.21±0.14

A1914(1) 0.171 3593 I 18.8 0.9( f ) 175 1449 1576 8.93+0.48
−0.45 0.23+0.07

−0.07 NCC 8.90±0.43 3.94±0.09 1.88±0.05
A2218(1) 0.176 1666 I 36.1 3.2( f ) 179 1231 1320 6.88+0.33

−0.30 0.27+0.06
−0.06 NCC 6.67±0.24 2.42±0.07 0.84±0.02

A665(1) 0.182 3586 I 29.1 4.2( f ) 184 1589 1476 7.14+0.33
−0.31 0.28+0.06

−0.06 NCC 7.02±0.20 2.61±0.08 1.22±0.03
A1689(1) 0.183 1663 I 10.6 1.8( f ) 185 1446 1059 8.72+0.63

−0.56 0.23+0.10
−0.10 CC 6.97±1.19 5.24±0.14 3.15±0.09

A520(1) 0.199 4215 I 66.2 3.5(t) 197 1327 1455 8.24+0.31
−0.28 0.32+0.05

−0.05 NCC 9.70±0.55 3.47±0.09 0.92±0.02
A2163(1) 0.203 1653 I 71.1 17.5(t) 200 1846 1807 12.00+0.28

−0.26 0.24+0.03
−0.03 NCC 11.70±0.41 6.71±0.07 4.80±0.05

A773(1) 0.217 5006 I 19.8 1.4( f ) 211 1105 1384 7.23+0.62
−0.52 0.37+0.12

−0.12 NCC 7.09±0.36 2.34±0.11 1.13±0.04
A2261(1) 0.224 5007 I 24.3 3.3( f ) 216 1588 1595 7.47+0.53

−0.47 0.37+0.10
−0.10 CC 7.56±0.38 3.28±0.08 2.02±0.07

A2390(2) 0.232 4193 S 92.0 8.3(t) 222 1205 873 10.18+0.23
−0.21 0.29+0.03

−0.03 CC 10.02±0.16 6.98±0.08 4.66±0.05
A1835(1) 0.253 495 S 10.3 2.3( f ) 237 914 970 8.62+0.60

−0.54 0.44+0.12
−0.12 CC 8.75±0.80 5.89±0.60 5.58±0.22

A697(1) 0.282 4217 I 19.5 1.0(t) 256 1865 1679 10.21+0.83
−0.75 0.36+0.11

−0.11 NCC 9.89±0.67 4.21±0.21 2.52±0.09
A611(1) 0.288 3194 S 35.1 5.0( f ) 260 969 1172 6.06+0.38

−0.34 0.31+0.09
−0.08 CC 6.32±0.37 2.46±0.07 1.25±0.03

Zw3146(1) 0.291 909 I 46.0 3.0( f ) 262 1061 1287 7.35+0.27
−0.26 0.26+0.05

−0.05 CC 8.48±0.30 5.56±0.15 4.32±0.11
A1995(1) 0.319 906 S 44.5 1.4( f ) 279 877 914 7.56+0.45

−0.41 0.38+0.09
−0.09 CC 7.75±0.48 3.39±0.11 1.51±0.05

MS1358.4+6245(1) 0.327 516 S 34.1 3.2(t) 283 796 813 7.51+0.70
−0.61 0.38+0.15

−0.14 CC 8.05±0.58 2.98±0.15 1.37±0.06
A370(1) 0.375 515 S 48.6 3.1( f ) 310 926 762 7.37+0.58

−0.53 0.28+0.10
−0.10 NCC 7.73±0.41 3.35±0.14 1.11±0.04

RXJ2228+2037(1) 0.421 3285 I 19.8 4.9( f ) 332 1320 1636 6.86+0.89
−0.71 0.35+0.15

−0.15 NCC 7.48±0.81 2.36±0.15 1.64±0.08
RXJ1347.5-1145(1) 0.451 3592 I 57.7 4.9( f ) 346 1558 1560 13.92+1.14

−0.93 0.19+0.08
−0.09 CC 15.32±0.83 8.99±0.19 8.84±0.38

MS0015.9+1609(1) 0.546 520 I 67.4 4.1( f ) 383 1889 849 8.29+0.49
−0.43 0.32+0.06

−0.06 NCC 8.00±0.37 3.13±0.09 2.46±0.06
MS0451.6-0305(1) 0.550 902 S 41.1 5.1( f ) 385 1092 1325 9.09+0.70

−0.61 0.29+0.10
−0.09 NCC 8.99±1.15 6.21±0.72 3.92±0.12

MS1137.5+6625(1) 0.784 536 I 116.4 3.5(t) 447 706 880 5.48+0.89
−0.71 0.25+0.25

−0.22 NCC 6.28±0.57 1.73±0.10 1.00±0.06
EMSS1054.5-0321(2) 0.823 512 S 71.1 3.6( f ) 455 763 895 9.00+1.39

−1.10 0.25+0.17
−0.17 NCC 9.38±1.31 2.55±0.18 1.35±0.13
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the ARF of the regions.
For each of the n∗ annuli the spectra have been analyzed by using the package XSPEC

(Arnaud, 1996) after grouping the photons into bins of 20 counts per energy channel
(using the task grppha from the FTOOLS software package) and applying the χ2-
statistics. The spectra are fitted with a single-temperature absorbed MEKAL model
(Kaastra, 1992; Liedahl et al., 1995) multiplied by a positive absorption edge as described
in Vikhlinin et al. (2005): this procedure takes into account a correction to the effective
area consisting in a 10 per cent decrement above 2.07 keV. The fit is performed in
the energy range 0.6-7 keV (0.6-5 keV for the outermost annulus only) by fixing the
redshift to the value obtained from optical spectroscopy and the absorbing equivalent
hydrogen column density NH to the value of the Galactic neutral hydrogen absorption
derived from radio data (Dickey & Lockman, 1990), except for A520, A697, A2163,
MS1137.5+6625, MS1358.4+6245 and A2390, where we have decided to leave NH free
due to the inconsistency between the tabulated radio data and the spectral fit result. Apart
for these objects where also the Galactic absorption is left free, we consider three free
parameters in the spectral analysis for m−th annulus: the normalization of the thermal
spectrum Km ∝

∫
n2

e dV , the emission-weighted temperature T ∗
proj,m; the metallicity Zm

retrieved by employing the solar abundance ratios from Anders & Grevesse (1989). The
best-fit spectral parameters are listed in Table 3.2.
The total (cooling-core corrected) temperature Tew has been extracted in a circular region

of radius R, with 100kpc < R < Rspec, centred on the symmetrical centre of the brightness
distribution. In the left panel of Fig. 3.1 we present for all clusters of our sample the
projected temperature profile (Tspec) normalized by Tew as a function of the distance
from the centre R, given in units of R2500, where R2500 is the radius corresponding to
an ovedensity of 2500.

3.2.3 Spectral deprojection analysis

To measure the pressure and gravitating mass profiles in our clusters, we deproject the
projected physical properties obtained with the spectral analysis by using an updated and
extended version of the technique presented in Ettori et al. (2002) and discussed in full
detail in Appendix A. Here we summarize briefly the main characteristics of the adopted
technique: (i) the electron density ne(r) is recovered both by deprojecting the surface
brightness profile and the spatially resolved spectral analysis obtaining a few tens of radial
measurements; (ii) once a functional form of the DM density profile ρ = ρ(r,q), where
q = (q1,q2, ...qh) are free parameters of the DM analytical model, and the gas pressure P0
at Rspec are assumed, the deprojected gas temperature, T (q,P0), is obtained by integration
of the hydrostatic equilibrium equation:

P(r,q,P0) = P0 −

∫ r

Rspec

ngas(s)µmH
G M(q,s)

s2 d s , (3.1)

where µ = 0.6 is the average molecular weight, mH is the proton mass. So T (q,P0) =
P(q,P0)/ngas expressed in keV units. In the present study, to parametrize the cluster mass
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distribution, we consider two models: the universal density profile proposed by Navarro
et al. (1997) (hereafter NFW) and the one suggested by Rasia et al. (2004) (hereafter
RTM).
The NFW profile is given by

ρ(x) =
ρc,z δc,NFW

(x/xs)(1+ x/xs)
2 , (3.2)

where ρc,z ≡ 3H(z)2/8πG is the critical density of the universe at redshift z, Hz ≡ Ez H0,
Ez =

[
ΩM(1+ z)3 +(1−ΩM −ΩΛ)(1+ z)2 +ΩΛ

]1/2, and

δc,NFW =
∆
3

c3

ln(1+ c)− c/(1+ c) , (3.3)

where c ≡ rvir/rs is the concentration parameter, rs is the scale radius, x ≡ r/rvir,
xs ≡ rs/rvir.
The RTM mass profile is given by:

ρ(x) =
ρc,z δc,RTM

x(x+ x∗s )3/2 , (3.4)

with x∗s ≡ r∗s /rvir, where r∗s is a reference radius and δc,RTM is given by:

δc,RTM ≡
∆

6
[
(1+2x∗s )/(1+ x∗s )1/2 −2x∗s 1/2] . (3.5)

So we have q = (c,rs) and q = (xs,r200) for the NFW and RTM models, respectively.
The comparison of the observed projected temperature profile T ∗

proj,m (Sect. 3.2.2) with
the deprojected T (q,P0) (Eq. A.7 in Appendix A), once the latter has been re-projected
by correcting for the temperature gradient along the line of sight as suggested in Mazzotta
et al. (2004), provides the best estimate of the free parameters (q,P0) through a χ2

minimization, and therefore of T (q,P0) (see an example in Figure 3.2.3).
In the right panel of Fig. 3.1 we present the density profiles (plotted versus r/R2500) as

determined through the previous method. In general, we find there is no significant effect
on the determination of the physical parameters when adopting the two different DM
models. Hereafter we will use the physical parameters determined using the RTM model,
reported with their corresponding errors in Table 3.2, where we also list the exposure
time, the number and the instrument (ACIS–I or ACIS–S) used for each of the Chandra
observations.
Finally we computed the total mass enclosed in a sphere of radius R∆ as M(q)(< R∆) =∫ R∆
0 ρ(r,q)dV where the radius R∆ corresponds to a given overdensity ∆: we considered

the cases where the overdensity is equal to 2500 and 500. The values for masses and
radii, together with the parameters (q,P0) for the RTM model, are reported in Table 3.3.
The errors on the different quantities represent the 68.3 per cent confidence level and are
computed by looking to the regions in the parameter space where the reduction of χ2 with
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Figure 3.2. Example of temperature spectral deprojection for cluster A1413. We display the two quantities which enter
in the Eq. (A.7) in the spectral deprojection analysis to retrieve the physical parameters: the observed spectral projected
temperature T ∗

proj,m (stars with errorbars) and the theoretical projected temperature (triangles, indicated as Tproj,m in
Appendix A). We also show the theoretical deprojected temperature T (q,P0) (points), which generates Tproj,m through
convenient projection tecniques.

respect to its minimum value χ2
min is smaller than a given threshold, fixed according to the

number of degrees of freedom d.o.f. (see, e.g., Press et al., 1992). Notice that we included
in the Eq. (3.1) the statistical errors related to measurement errors of ngas(r).

3.2.4 Determination of the X-ray properties

The bolometric X-ray luminosity L(< R∆) has been calculated by correcting the observed
luminosity L(100kpc < r < Rspec) determined from the spectral analysis performed by
XSPEC excluding the central cooling region of 100 kpc (the results are reported in Table
3.2):

L(< R∆)=L(100kpc < r < Rspec)

∫ x∆
0 (1+ x2)−3βx2dx

Kcorr
, (3.6)

where x = r/rc, x∆ = R∆/rc, rc and β are the best-fit parameters of the β-model on the
image brightness, Kcorr is the normalization of the thermal spectrum drawn with XSPEC,
and corrected for the emission from the spherical source up to 10 Mpc intercepted by
the line of sight: Kcorr =

∫ x1
x0

(1 + x2)−3βx2dx +
∫ x2

x1
(1 + x2)−3βx2(1− cosθ)dx−

∫ x2
x0

(1 +

x2)−3βx2(1− cosθ∗)dx, with θ = arcsin(x1/x), θ∗ = arcsin(x0/x), x0 = 100kpc/rc, x1 =
Rspec/rc and x2 = 10Mpc/rc.
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Table 3.3. Different physical properties for the clusters in our sample. For each object the different columns report the name, the minimum value for χ2 (with the
corresponding number of degrees of freedom d.o.f.), the virial radius rvir, the reference scale xs, the value of the pressure P0, the mass and the radius corresponding to
an overdensity of 2500 (M2500 and R2500, respectively), the mass and the radius corresponding to an overdensity of 500 (M500 and R500, respectively). All quantities are
derived by assuming the RTM model.

name χ2
min(d.o.f.) rvir xs P0 M2500 R2500 M500 R500

(kpc) (10−12 erg cm−3) (1014M�) (kpc) (1014M�) (kpc)

A1413 5.29(3) 1853±255 0.11±0.05 1.87±0.48 2.30(±0.46) 520(±57) 5.58(±2.25) 1195(±232)
A2204 4.24(5) 2840±357 0.16±0.03 0.73±0.71 6.74(±1.40) 742(±91) 19.12(±6.68) 1796(±320)
A1914 2.29(5) 1809±202 0.03±0.03 1.98±0.64 3.39(±0.76) 586(±61) 5.99(±2.28) 1212(±202)
A2218 0.61(2) 1653±180 0.06±0.04 1.53±0.33 2.14(±0.30) 502(±36) 4.36(±1.33) 1088(±152)
A665 1.23(5) 2177±359 0.31±0.16 1.72±0.44 1.88(±0.16) 480(±30) 7.77(±2.71) 1317(±260)
A1689 0.68(4) 2159±323 0.09±0.04 1.24±1.05 4.14(±0.95) 624(±76) 9.40(±3.65) 1402(±260)
A520 0.08(3) 2487±1340 0.23±0.74 1.58±0.57 3.72(±0.93) 599(±102) 12.66(±8.50) 1540(±546)
A2163 3.00(5) 4884±637 1.46±0.46 1.44±0.26 4.07(±0.69) 616(±102) 52.58(±10.72) 2472(±396)
A773 1.38(2) 1672±486 0.09±0.14 2.90±0.51 2.01(±0.45) 485(±60) 4.54(±3.49) 1087(±388)
A2261 2.82(3) 1851±191 0.10±0.03 0.87±0.46 2.68(±0.44) 532(±46) 6.17(±1.79) 1201(±168)
A2390 23.08(4) 3557±497 0.41±0.11 2.66±0.81 6.59(±0.64) 716(±52) 33.22(±9.88) 2099(±373)
A1835 0.80(1) 2259±413 0.14±0.05 5.92±1.70 4.09(±1.34) 606(±113) 10.95(±6.39) 1439(±414)
A697 1.17(4) 2251±1491 0.21±0.72 2.69±2.77 3.23(±0.88) 554(±94) 10.46(±8.47) 1402(±588)
A611 0.81(3) 1719±242 0.12±0.05 2.14±0.59 2.11(±0.45) 480(±56) 5.18(±2.15) 1107(±222)
Zw3146 4.36(3) 2984±403 0.31±0.07 1.26±0.86 5.41(±0.81) 656(±68) 22.50(±7.58) 1804(±344)
A1995 3.05(2) 2585±2042 0.32±0.67 3.41±2.84 3.51(±1.32) 562(±149) 14.96(±13.96) 1558(±804)
MS1358.4+6245 0.60(1) 2748±2134 0.38±0.66 3.67±3.11 3.62(±1.64) 566(±184) 17.37(±16.70) 1633(±885)
A370 4.21(1) 2195±822 0.23±0.33 0.06±1.44 3.10(±0.74) 528(±82) 10.58(±7.70) 1359(±518)
RXJ2228+2037 0.12(2) 1648±1164 0.19±0.73 3.11±1.72 1.59(±0.46) 415(±90) 4.90(±4.35) 1033(±464)
RXJ1347.5-1145 3.58(5) 2703±187 0.13±0.02 0.01±0.15 9.49(±1.26) 744(±56) 24.00(±4.75) 1734(±170)
MS0015.9+1609 0.96(4) 2129±433 0.48±0.39 0.24±0.55 1.72(±0.25) 406(±50) 9.75(±2.82) 1237(±224)
MS0451.6-0305 0.14(5) 2118±1915 0.21±0.73 3.63±3.24 3.68(±1.43) 522(±130) 11.89(±12.85) 1320(±725)
MS1137.5+6625 2.12(1) 1468±284 0.17±0.13 0.13±0.47 1.91(±0.48) 382(±58) 5.47(±2.79) 928(±238)
EMSS1054.5-0321 0.03(1) 3060±1666 1.39±0.75 5.58±7.61 2.17(±1.26) 393(±168) 27.21(±21.81) 1560(±930)
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The gas mass Mgas enclosed in a circular region having overdensity ∆ has been computed
from the total gas density ngas, j, that we directly obtained from the spectral deprojection,
up to Rspec. We have checked that the exclusion of the central cooling region does not
significantly affect the resulting values for Mgas.
Finally we have estimated the total mass-weighted temperature:

Tmw ≡

( p∑

i=1
Tj(q,P0)mi

)
/

p∑

i=1
mi (3.7)

which can be compared to the total emission-weighted temperature Tew; p represents the
number of annuli inside R2500. Notice that our average deprojected temperature profile
implies the following relation between the maximum, the deprojected and the mass-
weighted temperatures: Tmax : Tew : Tmw = 1 : 0.67 : 0.69 (1 : 0.83 : 0.88 for the CC-only
subsample). The physical parameters obtained in this way are also listed in Table 3.2 for
all clusters of our sample.

3.2.5 Determination of the Sunyaev-Zel’dovich properties
In Sect. 2.4 we have seen that the thermal SZ effect is a very small distortion of the spectra
of the cosmic microwave background, due to the Inverse Compton scattering between
the photons of the CMB and the hot (∼ 107 − 108 K) electrons of the ICM trapped in
the gravitational potential well of the dark matter halo (Sunyaev & Zeldovich, 1970;
Birkinshaw, 1999). We can parameterize the magnitude of this effect by considering
the Compton parameter y ∝

∫
Pe(r)dl, which is proportional to integral of the electronic

pressure Pe of the ICM along the line of the sight l (see Sect. 2.4). We consider the
Compton-y parameter integrated over the entire solid angle (and given in flux units) y∆
defined as:

y∆ = I0

∫ θ∆

0
y(θ)dΩ ; (3.8)

To remove the dependence of y∆ on the angular diameter distance da(z) we use the
intrinsic integrated Compton parameter Y , defined as:

Y ≡ d2
a (z)y∆. (3.9)

The same quantity, but integrated over a fixed solid angle Ω, can be similarly written as:

yΩ = I0

∫ Ω

0
y(θ)dΩ . (3.10)

We fixed Ω = 1 arcmin, that is <∼ than the field of view of OVRO, used in the observations
of most of the sources in our sample (see, e.g., McCarthy et al., 2003a). Notice that in
order to remove the frequency dependence we have normalized Y , y∆ and yΩ to g(x,Te).
To integrate Eq. (3.8) and (3.10) we have recovered y(θ) from Eq. (2.20) by using the

pressure profile P(q,P0) determined in the spectral analysis (Sect. 3.2.3), renormalized in
such a way that y(0) equals the central Compton parameter y0 taken from the literature.
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This method can lead to systematics on yΩ and Y due to the fact that, even if we are
assuming the true pressure profiles P(r) in Eq. (2.20), y0 has been obtained by assuming
an isothermal β-model inferred from the brightness profile. The value of y0 is thus
potentially dependent on the underlying model of P(r). As discussed in recent works
(see, e.g., LaRoque et al., 2006; Bonamente et al., 2006), the relaxation of the isothermal
assumption should apply to the analysis of both X-ray and SZ data, to obtain a robust
and consistent description of the physics acting inside galaxy clusters. Unfortunately, we
have only the central Compton parameter, and not the complete uv−data, which are not
public available: so it is very difficult to quantify the amplitude of this systematics, being
y0 determined through a best fit in the uv−plane.
Nevertheless, we can give an estimate in this way: we have computed the central Compton
parameter yI

0,X inferred from the X-ray data by parameterizing first P(r) in Eq. (2.20) with
a β-model inferred on the brightness images:

y0 =
σT

mec2 n0 kTgas

∫
d x
(
1+ x2)(1−3β)/2 (3.11)

with n0 = ngas(r = 0) derived from the brightness profile B(r):

B(r = 0) =
1

4π(1+ z)4 rcΛ0.82n2
0

∫
d x
(
1+ x2)1/2−3β (3.12)

where Λ is the X-ray cooling function of the ICM in the cluster rest frame in cgs units (erg
cm3 s−1) integrated over the energy range of the brightness images (0.5− 5 keV). Then
we have calculated yII

0,X by accounting in Eq. (2.20) for the true pressure profile P(q,P0)
recovered by the spectral deprojection analysis (Sect. 3.2.3), and therefore we determined
the ratio η = yII

0,X/yI
0,X. We notice that the parameter η differs from the unity of ∼< 25 per

cent, comparable to statistical errors.
The different quantities related to the SZ effect are listed in Table 3.1 for all clusters in

our sample.

3.3 The X-ray and SZ scaling relations: theory and fitting procedure
3.3.1 The scaling relations in the self-similar model
The self-similar model (see, e.g., Kaiser , 1986) gives a simple picture of the process of
cluster formation in which the ICM physics is driven by the infall of cosmic baryons into
the gravitational potential of the cluster DM halo. The collapse and subsequent shocks
heat the ICM up to the virial temperature. Thanks to this model, which assumes that
gravity is the only responsible for the observed values of the different physical properties
of galaxy clusters, we have a simple way to establish theoretical analytic relations between
them.
Numerical simulations confirm that the DM component in clusters of galaxies, which

represents the dominant fraction of the mass, has a remarkably self-similar behaviour;
however the baryonic component does not show the same level of self-similarity. This



3.3 – The X-ray and SZ scaling relations: theory and fitting procedure 45

picture is confirmed by X-ray observations, see for instance the deviation of the L− T
relation in clusters, which is steeper than the theoretical value predicted by the previous
scenario. These deviations from self-similarity have been interpreted as the effects of
non-gravitational heating due to radiative cooling as well as the energy injection from
supernovae, AGN, star formation or galactic winds (see, e.g., Tozzi & Norman, 2001;
Bialek et al., 2001; Borgani et al., 2002; Babul et al., 2002; Borgani et al., 2004; Brighenti
& Mathews, 2006) which make the gas less centrally concentrated and with a shallower
profile in the external regions with respect the DM component. Consequently, the
comparison of the self-similar scaling relations to observations allows us to evaluate the
importance of the effects of the non-gravitational processes on the ICM physics.
For Y and yΩ we have the following dependences on the cosmology:

Ez∆
1/2
z Y ∝

(
Ez

−1∆−1/2
z y0

)(
Ez∆

1/2
z R∆z

)2
, (3.13)

and
Ez

−1∆−1/2
z yΩ ∝ Ez

−1∆−1/2
z y0 , (3.14)

respectively,
where the factor ∆z = 200 ×

[
1+82(Ωz−1)/

(
18π2)−39(Ωz−1)2 /

(
18π2)

]
, with

Ωz = Ω0m(1 + z)3/E2
z , accounts for evolution of clusters in an adiabatic scenario (Bryan

& Norman, 1998).
Assuming the spherical collapse model for the DM halo and the equation of hydrostatic

equilibrium to describe the distribution of baryons into the DM potential well, in the self-
similar model the cluster mass and temperature are related by:

Ez∆
1/2
z Mtot ∝ T 3/2 ; (3.15)

so we have R∆z ∝ (M/(ρc,z∆z))
1/3 ∝ T 1/2E−1

z ∆−1/2
z . By setting fz ≡ Ez(∆z/∆)1/2, from

the previous equations we can easily obtain the following relations (see, e.g., Markevitch,
1998; Allen & Fabian, 1998; Ettori et al., 2004; Arnaud et al., 2005; Diaferio et al., 2005;
Vikhlinin et al., 2005; Kotov & Vikhlinin, 2005):

fz (Y ) ∝
(

f−1
z y0

)5/3
, (3.16)

yΩ ∝ y0 , (3.17)

f−1
z y0 ∝ T 3/2 , (3.18)

f−1
z y0 ∝ fzMtot , (3.19)

f−1
z y0 ∝

(
f−1
z L

)3/4
, (3.20)
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fz Y ∝ T 5/2 , (3.21)

fzY ∝ ( fzMtot)
5/3 , (3.22)

fzY ∝
(

f−1
z L

)5/4
. (3.23)

We also remember here that for galaxy clusters similar scaling laws exist also in the X-
ray band (see, e.g., Ettori et al., 2004a; Arnaud et al., 2005; Kotov & Vikhlinin, 2005;
Vikhlinin et al., 2006):

f−1
z L ∝ T 2

gas , (3.24)

fzMtot ∝ T 3/2
gas , (3.25)

f−1
z L ∝ ( fzMtot)

4/3 , (3.26)

fzMgas ∝ T 3/2
gas , (3.27)

f−1
z L ∝ ( fzMgas)

4/3 . (3.28)

In our work we have considered all the physical quantities at fixed overdensity (∆z = ∆),
i.e. fz = Ez in the above equations.

3.3.2 Fitting the scaling relations

We describe here the method adopted to obtain the best-fitting parameters in the scaling
relations. Since they are power-law relations, we carry out a log-log fit:

log(Y ) = α+A log(X) , (3.29)

where X and Y represent the independent and dependent variables, respectively (hereafter
Y |X ); α and A are the two free parameters to be estimated. However, in the considered
scaling relations it is unclear which variable should be considered as (in)dependent.
Moreover both X - and Y -data have errors due to measurement uncertainties, plus an
intrinsic scatter. For these reasons, the ordinary least squares (OLS) minimization
approach is not appropriate: in fact it does not take into account intrinsic scatter in the
data, and it is biased when errors affect the independent variable. So we decided to use
the BCES (Bivariate Correlated Errors and intrinsic Scatter) (Y |X) modification or the
bisector modification BCES (Y,X) proposed by Akritas & Bershady (1996), for which
the best-fit results correspond to the bisection of those obtained from minimizations in
the vertical and horizontal directions. Both these methods are robust estimators that take
into account both any intrinsic scatter and the presence of errors on both variables.
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The results for the best-fit normalization α and slope A for the listed scaling relations are
presented in Table 3.4, where we also report the values of the total scatter

S =




∑

j

(
logYj −α−A logX j

)2
/ν




1/2

(3.30)

and of the intrinsic scatter Ŝ calculated as:

Ŝ =



∑

j

((
logYj −α−A logX j

)2
− ε2

logY j

)
/ν




1/2

, (3.31)

where εlogY j = εY j/(Yj ln10), with εY j being the statistical error of the measurement Y j,
and ν is the number of degrees of freedom (ν = N − 2, with N equal to total number of
data).
Notice that in these fits the physical quantities (L, Mtot, Mgas, Y ) refer to R2500 estimated

through the mass estimates based on the RTM model.

3.3.3 On the evolution of the scaling relations
We can extend the previous analysis by investigating the redshift evolution of the
scaling relations at z > 0.1. Note that only two objects are available at z > 0.6 and
that all CC clusters are at redshift below 0.45. We parametrize the evolution using a
(1 + z)B dependence and put constraints on the value of B by considering a least-square
minimization of the relation

log(Y ) = α+A log(X)+B log(1+ z) . (3.32)

This is obtained by defining a grid of values of B and looking for the minimum of a χ2-like
function, defined as:

χ2 =
∑

j

[
logYj −α−A logX j −B log(1+ z j)

]2

ε2
logY j

+ ε2
α +A2ε2

logX j
+ ε2

A log2 X j
; (3.33)

the sum is over all data, and εlogX ≡ εX/(X ln10) and εlogY ≡ εY /(Y ln10) are related
to the uncertainties on X and Y , respectively. The best-fit parameters values calculated
by using this method are reported in Table 3.5. Again in these fits, which refer to same
scaling relations presented in Table 3.4, the physical quantities (L, Mtot, Mgas, Y ) refer to
R2500, and masses are computed by assuming the RTM model.

3.4 Discussion of the results
We present here a general discussion of our results concerning the scaling relations. In
particular we have chosen to consider both the whole sample (CC plus NCC objects) and
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Table 3.4. Best-fit parameters for the scaling relations computed by using the cluster quantities evaluated at R2500; masses are estimated using the RTM profile. For each
relation we give the logarithmic slope A (compared to the theoretically expected value A∗), the normalization α, the intrinsic scatter Ŝ and the logarithmic scatter of the
data S. The results are given both for a subsample including the CC clusters (11 objects), and for the whole sample (24 objects). In the column “method”, symbols (1) and
(2) indicate if the fit has been performed by adopting the BCES (Y |X) or BCES (Y,X) methods, respectively. With the notation (y0,−4, yΩ, Y8), L44, T7, M14, we indicate
the Compton parameter, the X-ray luminosity, the temperature and the mass, in units of (10−4, mJy, 108 mJy Mpc2), 1044 erg s−1, 7 keV, 1014M�, respectively.

Cooling core clusters All clusters
11 objects 24 objects

relation (Y −X) A/A∗ α Ŝ S A/A∗ α Ŝ S method

fz Y8− f−1
z y0,−4 1.22(±0.15)/1.67 -1.07(±0.06) 0.090 0.113 1.19(±0.20)/1.67 -0.91(±0.06) 0.116 0.137 (1)

yΩ − y0,−4 0.93(±0.14)/1.00 0.61(±0.04) 0.033 0.076 0.92(±0.26)/1.00 0.66(±0.08) 0.120 0.140 (1)

f−1
z y0,−4 −Tew,7 2.21(±0.32)/1.50 0.19(±0.05) 0.138 0.154 2.06(±0.23)/1.50 0.15(±0.03) 0.123 0.141 (2)

f−1
z y0,−4− fzMtot,14 1.25(±0.30)/1.00 -0.50(±0.22) 0.248 0.257 1.22(±0.29)/1.00 -0.41(±0.17) 0.211 0.222 (2)

f−1
z y0,−4− f−1

z L44 0.75(±0.07)/0.75 -0.69(±0.11) 0.156 0.170 0.61(±0.05)/0.75 -0.48(±0.07) 0.124 0.142 (2)
fz Y8 −Tew,7 2.74(±0.23)/2.50 -0.83(±0.03) 0.103 0.124 2.64(±0.28)/2.50 -0.74(±0.03) 0.139 0.157 (2)
fz Y8 − fzMtot,14 1.56(±0.29)/1.67 -1.70(±0.21) 0.235 0.245 1.48(±0.39)/1.67 -1.42(±0.21) 0.288 0.297 (2)
fz Y8 − f−1

z L44 0.92(±0.11)/1.25 -1.92(±0.16) 0.183 0.196 0.81(±0.07)/0.75 -1.58(±0.10) 0.237 0.248 (2)
f−1
z yΩ −Tew,7 1.98(±0.46)/1.50 0.80(±0.05) 0.143 0.158 2.15(±0.45)/1.50 0.79(±0.05) 0.167 0.182 (2)

f−1
z yΩ − fzMtot,14 1.12(±0.31)/1.00 0.17(±0.22) 0.239 0.249 1.07(±0.17)/1.00 0.31(±0.10) 0.278 0.288 (2)

f−1
z yΩ − f−1

z L44 0.68(±0.09)/0.75 -0.02(±0.14) 0.160 0.174 0.74(±0.10)/0.75 0.00(±0.15) 0.233 0.244 (2)

f−1
z L44 −Tew,7 2.98(±0.53)/2.00 1.18(±0.05) 0.182 0.183 3.37(±0.39)/2.00 1.03(±0.05) 0.220 0.221 (2)

f−1
z L44 − fzMtot,14 1.71(±0.46)/1.33 0.24(±0.32) 0.205 0.206 2.03(±0.54)/1.33 0.08(±0.32) 0.269 0.270 (2)

fzMtot,14 −Tew,7 1.74(±0.25)/1.50 0.56(±0.03) 0.000 0.098 1.69(±0.40)/1.50 0.47(±0.04) 0.044 0.142 (2)
fzMtot,14 −Tmw,7 1.63(±0.25)/1.50 0.54(±0.04) 0.000 0.087 1.69(±0.34)/1.50 0.45(±0.03) 0.000 0.125 (2)
fzMgas,13 −Tew,7 1.94(±0.21)/1.50 0.57(±0.02) 0.083 0.086 2.09(±0.23)/1.50 0.51(±0.02) 0.107 0.110 (2)
f−1
z L44 − fzMgas,13 1.55(±0.13)/1.33 0.30(±0.09) 0.083 0.085 1.64(±0.13)/1.33 0.19(±0.09) 0.131 0.132 (2)
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Table 3.5. Best-fit parameters for the redshift evolution of the scaling relations. Again, the quantities are evaluated at R2500 and masses are estimated by using the RTM
profile. For each relation we list the redshift evolution parameter B, the logarithmic slope A (compared to the theoretically expected value A∗), the normalization α, the
minimum value of the function χ2 and the number of degrees of freedom (d.o.f.). The results are given both for a subsample including the CC-only clusters (11 objects),
and for the whole sample (24 objects). With the notation (y0,−4, yΩ, Y8), L44, T7, M14, we indicate the Compton parameter, the X-ray luminosity, the temperature and the
mass, in units of (10−4, mJy, 108 mJy Mpc2), 1044 erg s−1, 7 keV, 1014M�, respectively.

Cooling core clusters All clusters
11 objects 24 objects

relation (Y −X) B A/A∗ α χ2
min (d.o.f.) B A/A∗ α χ2

min (d.o.f.)

fz Y8− f−1
z y0,−4 2.36+0.64

−0.68 1.02(±0.09)/1.67 -1.24(±0.04) 15.9(8) 0.76+0.28
−0.28 1.15(±0.08)/1.67 -1.00(±0.03) 87.8(21)

yΩ − y0,−4 -1.56+0.56
−0.60 0.85(±0.08)/1.00 0.80(±0.04) 5.1(8) -1.24+0.24

−0.24 0.82(±0.07)/1.00 0.83(±0.03) 88.6(21)

f−1
z y0,−4 −Tew,7 -2.12+0.96

−0.96 2.41(±0.25)/1.50 0.40(±0.03) 23.4(8) 0.08+0.36
−0.32 2.08(±0.17)/1.50 0.12(±0.02) 82.4(21)

f−1
z y0,−4 − fzMtot,14 -2.44+1.68

−2.52 1.35(±0.23)/1.00 -0.33(±0.19) 29.6(8) 0.08+0.48
−0.48 0.98(±0.10)/1.00 -0.27(±0.07) 55.6(21)

f−1
z y0,−4 − f−1

z L44 0.04+0.48
−0.48 0.69(±0.05)/0.75 -0.57(±0.07) 48.0(8) -0.32+0.16

−0.16 0.62(±0.03)/0.75 -0.44(±0.05) 99.7(21)
fz Y8 −Tew,7 -1.08+1.12

−1.16 2.98(±0.31)/2.50 -0.71(±0.04) 10.6(8) 0.28+0.40
−0.40 2.66(±0.20)/2.50 -0.78(±0.03) 37.9(21)

fz Y8 − fzMtot,14 -2.32+1.96
−2.60 1.68(±0.25)/1.67 -1.55(±0.20) 20.5(8) 0.28+0.52

−0.52 1.14(±0.13)/1.67 -1.26(±0.08) 78.9(21)
fz Y8 − f−1

z L44 2.40+0.44
−0.48 0.70(±0.05)/1.25 -1.81(±0.07) 58.9(8) 0.12+0.20

−0.16 0.62(±0.04)/0.75 -1.35(±0.05) 206.0(21)
f−1
z yΩ −Tew,7 -4.00+0.96

−0.96 2.31(±0.26)/1.50 1.20(±0.03) 16.6(8) -1.44+0.36
−0.32 1.95(±0.18)/1.50 0.97(±0.02) 71.2(21)

f−1
z yΩ − fzMtot,14 -4.88+1.68

−2.44 1.33(±0.22)/1.00 0.52(±0.18) 26.9(8) -1.52+0.44
−0.40 0.82(±0.12)/1.00 0.64(±0.08) 120.0(21)

f−1
z yΩ − f−1

z L44 -1.52+0.48
−0.44 0.58(±0.05)/0.75 0.34(±0.07) 47.5(8) -1.72+0.16

−0.16 0.40(±0.03)/0.75 0.65(±0.05) 178.0(21)

f−1
z L44 −Tew,7 -0.72+0.96

−1.00 3.27(±0.29)/2.00 1.25(±0.03) 69.40(8) 0.92+0.52
−0.52 4.05(±0.24)/2.00 0.85(±0.03) 190.0(21)

f−1
z L44 − fzMtot,14 -1.32+1.24

−1.56 1.29(±0.16)/1.33 0.66(±0.13) 5.4(8) -0.24+0.56
−0.56 1.36(±0.11)/1.33 0.53(±0.07) 40.5(21)

fzMtot,14 −Tew,7 0.56+1.12
−1.20 1.79(±0.30)/1.50 -1.00(±0.28) 11.1(8) -0.08+0.52

−0.52 2.30(±0.24)/1.50 -1.51(±0.22) 48.4(21)
fzMtot,14 −Tmw,7 -0.88+1.24

−1.32 2.00(±0.28)/1.50 -1.09(±0.27) 7.1(8) -0.32+0.48
−0.48 2.32(±0.22)/1.50 -1.54(±0.21) 33.0(21)

fzMgas,13 −Tew,7 0.16+0.56
−0.60 2.00(±0.16)/1.50 0.57(±0.02) 39.2(8) 0.84+0.28

−0.28 2.17(±0.12)/1.50 0.41(±0.02) 127.0(21)
f−1
z L44 − fzMgas,13 -0.92+0.24

−0.24 1.43(±0.03)/1.33 0.45(±0.03) 73.7(8) -0.60+0.12
−0.12 1.63(±0.02)/1.33 0.26(±0.02) 358.0(21)
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the CC-only subsample: this is done to allow a more direct comparison of our results
with most of the works present in the literature, which are based on CC-sources only.
Moreover this allows also to obtain at the same time more general relations which can be
useful for future much extended (X-ray and SZ) cluster surveys, in which the distinction
between relaxed and unrelaxed systems will be not easy.

3.4.1 The X-ray scaling relations

In this section we consider the scaling relations involving quantities extracted from the
X-ray data only. We start by examining the relation between Mtot and T , and finding in
general a good agreement between our best-fitting slopes and the values expected in the
self-similar model. Then we will consider the other X-ray relations, finding slopes which
are steeper than expected from the self-similar model. In particular the L−T , L−Mgas
and Mgas −T relations display deviations larger than 2σ, while for the L−Mtot relation
we found agreement between the observed slope and the expected one.

The Mtot −T relation

Without any assumption for models on the gas density and (deprojected) temperature
profile, we have supposed that the DM density profile is well described by an analytical
model (RTM or NFW). Thanks to the results of numerical simulations, we know, indeed,
sufficiently well the DM physics which is in fact very simple, only depending on the
gravity, unlike the physics of the baryons, which is also affected by further sources of
non-gravitational energy. Moreover we have removed the observational biases in the
determination of the deprojected temperature (and consequently of the mass) by adopting
the spectral-like temperature estimator (see Sect. 3.2.3). In this way we have a bias-free
estimate of the deprojected temperature and, therefore, of the cluster mass. Below we
focus our attention on Tmw, because it is directly related to the total energy of the particles
and so comparable to the results of hydrodynamical simulations, unlike Tew, which is
affected by observational biases (see, e.g., Gardini et al., 2004; Mazzotta et al., 2004;
Mathiesen & Evrard, 2001).
First, we notice that the two different models for the DM profile give slightly different

results. Nevertheless, at an overdensity of ∆ = 2500 the masses determined by using RTM
are in perfect agreement with the ones determined by using NFW (αCC

RTM = 0.540±0.037
and ACC

RTM = 1.630 ± 0.253, αCC
NFW = 0.546± 0.035 and ACC

NFW = 1.590 ± 0.250). At
∆ = 500 the situation becomes less clear, because for most of the clusters we needed
to extrapolate from Rspec (corresponding to ∆ ∼ 1000) up to ∆ = 500, being Rspec of order
of (1/3)-(1/2) of the virial radius (roughly corresponding to R2500 −R1000). Hereafter
we consider only the RTM model, even if most of the results present in the literature are
usually based on the NFW one.
Considering the whole sample, we find a normalization (α = 0.45± 0.03), which is
∼ 10 (∼ 5) per cent smaller than the value found by Allen et al. (2001) (Arnaud et al.
(2005)), who only consider relaxed clusters. Our normalization (α = 0.54 ± 0.04) is
instead ∼ 10 (∼ 15) per cent larger than the value of Allen et al. (Arnaud et al.) if
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we only consider the CC-only subsample. This suggests a different behaviour depending
on the presence or not of a cooling core (see also the left panel Fig. 3.3): in fact we
find that at ∆ = 2500 the normalization of the NCC subsample at M2500 = 5× 1014M�

(corresponding to our median value for the mass) is ≈ 10 per cent smaller than for
the CC-only subsample; conversely at ∆ = 500 the two subsamples give consistent
normalizations, but the robustness of this result is affected by the fact that in this case
we have to extrapolate the mass profile out of the region covered by observational data.
Some other authors (e.g., Arnaud et al., 2005) prefer to mask out the central region (up

to 0.1×R200) in the determination of the mass profile. We have decided to check the
effects of the inclusion of the cooling region in our analysis by comparing the values of
the mass obtained by excluding or not the central 100 kpc in the determination of the best
fit parameters of the RTM profile: we pointed out that accounting for the cooling region
does not involve any systematic error on the determination of the mass, indeed we obtain
more statistically robust results.
Consequently the disagreement between CC and NCC clusters is probably due to a

different state of relaxation, namely that the former are more regular and with more
uniform physical properties than the latter (De Grandi & Molendi, 2002); this is true
even if we have masked out the most evident substructures. Notice that the observed
mismatch is only marginally statistically significant (∼ 1−1.5σ). For a couple of clusters,
namely A520 and A2163, we find that the exclusion of the unrelaxed central regions
avoids observational biases due to the presence of local substructures: in particular the
mass of the first (second) object increases by a factor of ∼ 2 (∼ 1.5) when excluding
the central 300 (360) kpc. For other clusters which are evidently unrelaxed, we did not
find any convenient way to avoid possible biases: even after masking out the most visible
substructures, the analysis of the density and deprojected temperature profiles still reveals
the possible presence of local irregularities (a sort of local ‘jumps’ in the profiles), which
are difficult to individuate in the brightness image.
At ∆ = 2500, the best fitting normalization obtained considering the whole sample is
∼ 30 per cent below the value found in the non-radiative hydrodynamic simulations by
Mathiesen & Evrard (2001) 1; for the CC-only subsample, the normalization is ∼ 20 per
cent below the theoretical value. The discrepancy is slightly reduced (∼ 15−20 per cent)
with respect to the adiabatic hydrodynamic simulations by Evrard et al. (1996).
The picture emerging from numerical simulations with a more sophisticated ICM

modeling is different. The simulation by Borgani et al. (2004), which includes
radiative processes, supernova feedback, galactic winds and star formation, suggests a
normalization which is in rough agreement with our whole sample, and 15 per cent
lower with respect to the CC-only subsample. Notice, however, that the re-analysis of
the same simulation data made by Rasia et al. (2005), who adopted a different definition
of temperature, the spectroscopic-like one (which is not consistent with our definition
of mass-weighted temperature; see above for a more detailed discussion), gives a higher
(∼ 40−50 per cent) normalization.
Finally we notice that the slope of the M −T relation is, indeed, in agreement with the

1We have rescaled their results from ∆ = 500 to ∆ = 2500.
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theoretical expectations (A∗ = 1.5).
Considering the results at an overdensity of 500, we found a good agreement (at 1σ

level) between observed and theoretical slopes.
Our analysis suggests no evolution (BCC = −0.88+1.24

−1.32, Ball = −0.32 ± 0.48), in
agreement with the literature (see, e.g., Finoguenov et al., 2001; Ettori et al., 2004; Allen
et al., 2001).
We compare also our intrinsic scatter, which is consistent with zero, with the one

estimated by Rasia et al. (2005): they find a scatter of ≈ 30(16) per cent by considering
the emission-weighted (spectroscopic-like) temperature. We reach similar conclusions
comparing our intrinsic scatter with the value retrieved by Motl et al. (2005).

The L−T relation

We find (see the upper-right panel of Fig. 3.3) a marginal agreement of our results on the
slope of this relation (Aall = 3.37±0.39), with those obtained by Ettori et al. (2002), who
found A = 2.64± 0.64 at ∆ = 2500: however, their sample contains colder objects, for
which a flatter relation would be expected. Our results also agree with the analysis made
by Markevitch (1998): A = 2.64± 0.27. Notice that his cluster sample is not directly
comparable with ours, since it covers different ranges in redshift and temperature.
We compare our results about the scatter (Ŝ = 0.220 and S = 0.221) with those obtained

by Markevitch (1998), who found a smaller value: S = 0.103 (see, however, the previous
comments on the different characteristics of the two samples).
Moreover, we find (at ∼ 1σ) a positive (negative) redshift evolution for all clusters (CC-

only subsample), i.e. we notice a mildly different behaviour on the evolution CC and NCC
clusters. For comparison Ettori et al. (2002) found B = −1.04± 0.32 for their sample of
clusters at higher redshift.

Regarding the normalization we observe a slightly different behaviour when the CC-only
subsample and whole sample are considered: αCC = 1.18± 0.05 and αall = 1.03± 0.05,
respectively. We notice that the luminosity of the CC clusters is systematically larger
than that of the NCC clusters, even if we have corrected it for the cooling flow (see Sect.
3.2.4), as already observed by Fabian (1994). On the contrary numerical simulations
predict that the removal of the gas from the X-ray emitting phase reduces the luminosity
(Muanwong et al., 2002). This confirms that cooling (Bryan , 2000; Voit & Bryan, 2001)
is not effective in removing baryons from the X-ray phase, because of the presence
of an extra-source of feedback or pre-heating (Balogh et al., 1999; Cavaliere et al.,
1998; Tozzi & Norman, 2001; Babul et al., 2002), which maintains the ICM at warm
temperature (Borgani et al., 2002). Alternatively, the more evident negative evolution of
the CC clusters compared to the NCC ones (especially in the yΩ−X-ray(SZ) relations)
could indicate different states of relaxation, being the former more regular, relaxed and
virialized than the latter (De Grandi & Molendi, 2002).
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Other X-ray scaling relations

Here we discuss our results for the relations not shown in the figures. For the Mgas −T
relation we find a ∼ 1σ discrepancy between the slope of this relation in the CC-only
subsample (ACC = 1.94±0.21 and Aall = 2.09±0.23) and the theoretical expectation for
the self-similar model (A = 1.5). Nevertheless, our estimate is consistent with the results
already present in the literature. By applying a β-model to recover the gas mass, Vikhlinin
et al. (1998) measured A = 1.71± 0.23 at the baryon overdensity 1000 (approximately
corresponding to the virial DM overdensity). Our slope is also in good agreement with
the value (A = 1.98±0.18) found by Mohr et al. (1999), always by applying the β-model.
We have also a marginal agreement (at 1σ level) with the value found by Ettori et al.
(2004) (A = 2.37± 0.24), who make use of the β-model and apply the correction for
Ez. Finally Ettori et al. (2002), combining a spectral analysis and the application of a β-
model to the brightness distribution and without correcting for Ez, found A = 1.91±0.29
for ∆ = 2500 and A = 1.74± 0.22 at ∆ = 500. The results of this last paper also suggest
a low intrinsic scatter, in good agreement with our analysis (Ŝ = 0.079). We point out
here that we find some differences between CC and NCC clusters at ∆ = 2500, because
of the contribution of the cooling core region (∼< 100 kpc); at ∆ = 500 this effect becomes
negligible because the behaviour of the gas mass is dominated by the contribution from the
external regions (Mgas ∝ r). Finally no significant evolution is observed (B = 0.16+0.56

−0.60)
for the CC clusters; when we consider the whole sample, we notice a more significant
positive evolution (B = 0.84±0.28)
Regarding the L−Mtot the best-fit slope for the CC-only subsample (ACC = 1.71±0.46)

is in good agreement with the results obtained by Reiprich & Böhringer (2002) (A =
1.80± 0.08), Ettori et al. (2002) (A = 1.84± 0.23) and Ettori et al. (2004) (A = 1.88±
0.42). The observed scatter we measure (SCC = 0.206, Sall = 0.270) is slightly smaller
than in previous analysis by Reiprich & Böhringer (2002) (S = 0.32), and in agreement
with Ettori et al. (2002) (S = 0.26). This seems to suggest that the methods we applied to
correct the observed luminosity (see Sect. 3.2.4) and to determine the total mass are quite
robust. Hints of negative evolution are observed (BCC =−1.32+1.24

−1.56, Ball =−0.24±0.56).
For the L − Mgas law we measure a slope which is discrepant with respect to the

theoretical value expected in the self-similar model. This relation, together with the one
between Mgas −T and Mtot −T , has the lowest intrinsic scatter between the X-ray only
scaling laws. Moreover we have a significant evidence of a negative redshift evolution.

3.4.2 The scaling relations involving the SZ effect

In this section, we discuss first the Y − y0 and yΩ − y0 relations, which are linking the
SZ properties only (see Fig. 3.4), and then the relations between SZ and X-ray quantities
(see Fig. 3.5). The importance of these relations relies on the possibility of providing new
insights into the general physical properties of the ICM, in a way complementary to the
X-ray view. In particular, the different dependence on the gas density and temperature
of the SZ flux (∼ ne T ) with respect to the X-ray brightness (∼ n2

e T 1/2) can allow to
reduce some of the biases present in the X-ray analysis. The presence of substructures
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Figure 3.3. The relations between Mtot-Tmw (left panel) and L-Tew (right panel). In each panel the filled circles represent
cooling core (CC) sources, while the diamonds are the no-cooling core (NCC) ones. The solid line refers to the best-
fit relation obtained when considering all clusters of our sample, the dashed one represents the best-fit when the CC
sources only have been considered and the dot-dashed is the best-fit obtained by fixing the slope to the self-similar
value.

Figure 3.4. As in Fig. 3.3 but for the relations between Y − y0 (left panel) and yΩ − y0 (right panel).

and inhomogeneities in the ICM can indeed strongly affect some of the X-ray determined
physical parameters, like temperature and luminosity. An independent approach through
the SZ analysis of some physical quantities can shed more light on the limits of validity
of the ICM self-similar scenario.

The Y − y0, yΩ − y0 relations

For both relations, we find slopes which are smaller than the expected ones. The
discrepancy we measure is larger than the one found by McCarthy et al. (2003b). This
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is likely due to the fact that the self-similar model predicts a pressure profile which is
steeper than the observed one: including extra-gravitational energy draws a picture in
which the gas density (and consequently the pressure) has a profile shallower than the
DM density. This is also confirmed by the observation that there are differences between
CC (which are obviously more subject to non-gravitational processes) and NCC clusters,
having the former a slightly (∼ 1σ) smaller integrated Compton parameter. We point out
that the dispersion in these relations is very high, probably because of the systematics on
the reconstruction of the integrated Compton parameter (see Sect. 3.2.5).
We measure a a strong negative evolution in the yΩ−y0 relation. As pointed as McCarthy

et al. (2003b), this different behaviour of the yΩ − y0 relation (more in general of the
yΩ−X-ray and yΩ−SZ relations) concerning the evolution is likely due to the fact the
SZ effect within a fixed angular size samples larger physical region at higher redshifts.
This means that the effect of non-gravitational processes are relatively more pronounced
if the SZ flux is measured within smaller physical radii, where the density of the ICM is
higher: this is expected in a scenario of either preheating, where we can assign a fixed
extra-energy per particle, or cooling, where the radiative cooling is more prominent in
the denser central regions. This is also in agreement with the general picture emerging
by studying entropy profiles (see Ponman et al., 2003; Pratt et al., 2006; Voit & Ponman,
2003; Tozzi & Norman, 2001, and Chapter 4), which are affected just in the central regions
by non-gravitational processes, while the self-similarity is roughly preserved in the halo
outskirt, where the dynamics is still dominated by the gravity.

The y0 −T , Y −T , yΩ −T relations

We note that y0 − T is the only scaling relation that deviates by >∼ 3σ from the self-
similar slope (see Table 4 and 5) both when only CC clusters and CC+NCC objects are
considered. Moreover, we measure an higher normalization in the CC-only subsample,
probably due to the inclusion of the cooling regions during the SZ data reduction and
the subsequent fit in the visibility plane. These results, in good agreement with the
ones presented in Benson et al. (2004), are consistently obtained with both a robust
BCES fit and a χ2-minimization. By applying the former technique, this relation is
also the one that shows the smaller scatter (both total and intrinsic) around the best-fit.
Furthermore, the χ2-approach indicates a significant negative evolution among the 11 CC
clusters (BCC = −2.12+0.96

−0.96 at 2.5σ; χ2
min = 23.4 with 8 d.o.f.) that disappears when the

whole sample of 24 objects is considered. For the NCC sources we do observe hints of
positive evolution (BNCC = 0.64+0.40

−0.40): this points to a different behaviour of the cool
core and non-cool clusters in the central regions, and different state of relaxation of the
gas as suggested by the comparison of the normalization of the fit (αCC = 0.19±0.15 and
αNCC = 0.14±0.35).
The best-fitting parameters for the Y −T relation show a value for the slope in agreement

with the value predicted by the self-similar model either when we consider the CC-only
clusters or the whole sample, unlike for the y0 −T relation: this is probably due to the
sensitivity of y0 to the cooling region. On the contrary for the yΩ −T relation, when we
consider the CC clusters, we observe a good agreement with the self-similar predictions
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Figure 3.5. As in Fig. 3.3 but for the relations between y0 −Tew (left panel), y0 −Mtot (central panel), y0 −L (right
panel).

(ACC = 1.98±0.46 A∗ = 1.50).
Our results confirm that the Y −T relation exhibits a smaller scatter than the y0 −T one,

as naively expected. Finally we find that the yΩ − T relation has a larger scatter than
the Y −T one, in contrast with what obtained by McCarthy et al. (2003a). Moreover we
notice in the CC-only subsample a mildly larger scatter compared to the whole cluster
sample.

The y0 −M, Y −M, yΩ −M relations

These relations show a very good agreement between observed and self-similar slopes,
with a scatter a factor of 2 larger than the correlation with T (see the previous subsection).
We do not confirm the low scatter, S ≈ 10−15 per cent, for the Y −M relation suggested
from the numerical simulations by Nagai (2006) and Motl et al. (2005): this indicate
possible bias in the determination of Y . But it is possible that the present simulations are
not completely adequate to reproduce the observed quantities, being the ICM modeling
in hydrodynamical codes quite complex.
The normalization of the Y − Mtot relation has been investigated in dedicated

hydrodynamical simulations to discriminate between different ICM physics. For example,
Nagai (2006) uses non-radiative (NR) and with gas cooling and star formation (CSF)
simulated clusters to find a normalization that varies by about 70 per cent: for a typical
cluster with M2500 = 5× 1014M�, Y NR = (1.32+0.10

−0.09)× 10−4 and YCSF = (9.01+0.78
−0.59)×

10−5 at z = 02. At the same mass and overdensity, and fixing the slope to the
self-similar model, our observed normalization is: Y CC = (5.32 ± 1.06) × 10−5 and
Y all = (8.06± 1.35)× 10−5 for CC-only and all clusters, respectively. At ∆ = 200, the
observed normalizations are Y CC = (1.30±0.74)×10−5 and Y all = (1.22±0.53)×10−5,
systematically lower than the results in Nagai (2006) ( Y NR = 5.13+0.57

−0.52 × 10−5 and
YCSF = 3.95+0.37

−0.34×10−5) and more in agreement with the results by da Silva et al. (2004),
that measure Y NR = 1.85× 10−5, Y cool = 1.73× 10−5 and Y pre−heat = 2.50× 10−6 for
non-radiative, cooling (cool) and pre-heating (pre-heat) simulations, respectively.

2Here we are following his definition of Y , corresponding to I0 = 1 in Eq. (3.8), and we adopt his cosmological parameters.



3.5 – Conclusions 57

We obtain, therefore, that our CC clusters, for which we obtain the most robust estimates
of the total mass at the overdensity of 2500 (see Subsect. 3.4.1), well reproduce the
distribution measured in the Y − Mtot plane of the objects simulated including extra
physical processes. Similar conclusions can be drawn for Y −Tmw and Y −L relations.
Finally, we find a negative evolution for the relations under examinations at ∼> 1σ

confidence level for the CC-only clusters (see Table 5). The slopes of the correlations
tend, however, to deviate from the self-similar predictions more significantly than the
measurements obtained with the robust fitting technique. If we fix the slope to the self-
similar value A∗ in these relations between SZ and X-ray quantities, we still obtain a
negative evolution at ≈ 1− 2σ confidence level. We note here that Nagai (2006), on the
contrary, does not find any hint of evolution in the Y −M relation.

The y0 −L, Y −L, yΩ −L relations

In general we find a good agreement between the best-fitted slope and the self-similar
prediction. Compared to other scaling relations, in these cases the intrinsic scatter is
very small (∼ 0.15 for the y0 −L relation estimated in the CC-only subsample). We do
not observe significant differences between CC and NCC clusters, being the estimates of
luminosity corrected for the cooling core.
Regarding the evolution, we find suggestions (at 3σ level) for a negative evolution in the

yΩ −L relation (BCC = −1.52+0.48
−0.44). We observe instead positive evolution in the Y −L

relation, BCC = 2.40+0.44
−0.48, but negative evolution when we consider the NCC clusters

(BNCC = −0.80+0.24
−0.20).

3.5 Conclusions

We have presented an analysis of X-ray and SZ scaling relations of a sample of 24
galaxy clusters in the redshift range 0.14-0.82, selected by having their SZ measurements
available in literature. We have analyzed the Chandra exposures for these X-ray luminous
objects. We have reconstructed their gas density, temperature and pressure profiles in
a robust way. Then, we have investigated the scaling relations holding between X-ray
and SZ quantities. By assuming an adiabatic self-similar model, we have corrected the
observed quantities by the factor fz ≡ Ez, neglecting the factor ∆z, checking that the final
results do not change significantly in this way: so we can compare our results with the
work in the literature. We have estimated the values of normalization, slope, observed
and intrinsic scatters, and evolution to quantify the amplitude of the effects of the non-
gravitational processes in the ICM physics. In this sense, the combined study of the SZ
and X-ray scaling relations and their evolution in redshift is a powerful tool to investigate
the thermodynamical history in galaxy clusters. Indeed, the departures from the self-
similar predictions observed in some of the scaling laws studied in our work confirm that
the simple adiabatic scenario is not wholly adequate to describe the physics of the X-
ray luminous clusters, because it does not account for a further non-gravitational energy
besides the potential one. We remind that our results are, by construction, more robust
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at R2500, where no extrapolation is required and the determinations of the mass (at least
for CC clusters) and the reconstruction of the integrated Compton parameter are reliable.
These results can be here summarized as follows.

• We observe a good agreement of the normalization of the Mtot −T relation between
our results and the ones obtained in hydrodynamical numerical simulations. The
other X-ray scaling relations involving a direct propagation of the absolute value
of the measured gas density show a steeper slope than expected from self-similar
predictions. Departures larger than 2σ are observed in the L−T (Aall = 3.37±0.39
vs. A∗ = 2), L − Mgas (Aall = 1.64± 0.13 vs. A∗ = 1.33) and Mgas − T (Aall =
2.09± 0.23 vs. A∗ = 1.5) relations. These results are consistent with previous
analysis on high-z X-ray luminous galaxy clusters (see, e.g., Ettori et al., 2002; Kotov
& Vikhlinin, 2005; Maughan et al., 2006).

• Correlations between the investigated SZ quantities and the gas temperature have
the largest deviations from the slope predicted from the self-similar model and the
lowest scatter among similar relations with different X-ray quantities. The measured
scatter is comparable to what is observed in the relations between X-ray parameters.
The Y −T relation shows the lowest total and intrinsic scatter both when CC clusters
only and the whole sample are considered.

• We observe a strong negative evolution in the yΩ−X-ray and yΩ−SZ relations.
A plausible explanation is that the SZ effect within a fixed angular size samples
larger physical region at higher redshifts. That means the effect of non-gravitational
processes are relatively more pronounced within smaller physical radii.

• The observed normalization of the Y − Mtot relation in cooling-core clusters at
∆ = 2500, that provide the most robust estimates of the total masses in our cluster
sample, agrees well with the predicted value from numerical simulations (see,
e.g., da Silva et al., 2004; Nagai, 2006). In particular, we confirm the trend that
lower normalization are expected when some feedback processes take place in
the cluster cores: for a cluster with typical M2500 ≈ 5 × 1014M�, we measure
Y CC = (5.32±1.06)×10−5 in the sample of CC objects where the cooling activity
is expected to be very effective, and Y all = (8.06±1.35)×10−5 in the whole sample.
However, we have to note that the normalization in hydrodynamical simulations is
strictly related to the adopted recipes to describe physical processes, like gas cooling
and star formation. These processes are also responsible for the production of the
cold baryon fraction, the amount of which is still under debate when compared to
the observational constraints (see, e.g., Borgani et al., 2006).

• The SZ – X-ray relations are, in general, well described by a self-similar model
parametrized through the dependence upon fz, when a robust fitting technique, that
considers both the intrinsic scatter and the errors on the two variables, is adopted.
On the contrary, when an evolution in the form (1 + z)B is investigated by a χ2-
minimization with error propagations on both X and Y variables, we measure a
strong negative evolution at >∼ 1σ level of confidence for all relations that involve SZ
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quantities (y0,Y,yΩ) and the X-ray measured gas temperature and total mass. The
slopes of the correlation tend, however, to deviate from the self-similar predictions
more significantly than the measurements obtained with the robust fitting technique.
If we fix the slope to the self-similar value A∗ in these relations between SZ and
X-ray quantities, we obtain stronger hints of negative evolution for the y0 −Mtot
relation (BCC = −0.88±0.94) and for the Y −Mtot relation (BCC = −2.30±1.13).

Our results on the X-ray and SZ scaling relations show a tension between the quantities
more related to the global energy of the system (e.g. gas temperature, gravitating mass)
and the indicators of the ICM structure (e.g. gas density profile, central Compton
parameter y0). Indeed, by using a robust fitting technique, the most significant deviations
from the values of the slope predicted from the self-similar model are measured in the
L− T , L−Mtot, Mgas − T , y0 − T relations. When the slope is fixed to the self-similar
value, these relations show consistently a negative evolution suggesting a scenario in
which the ICM at higher redshift has lower both X-ray luminosity and pressure in the
central regions than the self-similar expectations. These effects are more evident in
relaxed CC clusters in the redshift range 0.14-0.45, where a more defined core is present
and the assumed hypotheses on the state of the ICM are more reliable.
A likely explanation is that we need an increase in the central entropy to spread the

distribution of the gas on larger scales: this could be achieved either by episodes of non-
gravitational heating due to supernovae and AGN (see, e.g., Evrard & Henry, 1991;
Cavaliere et al., 1999; Tozzi & Norman, 2001; Bialek et al., 2001; Brighenti & Mathews ,
2001; Babul et al., 2002; Borgani et al., 2002), or by selective removal of low-entropy
gas through cooling (see, e.g., Pearce et al., 2001; Voit & Bryan, 2001; Wu & Xue,
2002), possibly regulated by some mechanism supplying energy feedback [e.g. the
semi-analytical approach proposed by Voit et al. (2002) and the numerical simulations
discussed by Muanwong et al. (2002); Tornatore et al. (2003); Kay et al. (2003)].





Chapter 4

Entropy profiles in X-ray luminous
galaxy clusters at z > 0.1

T he entropy distribution of the intracluster gas reflects both the accretion history of the gas
and the processes of feedback which provide a further non-gravitational energy besides
the potential one. In this Chapter, we study the profiles and the scaling properties of

the gas entropy in 24 hot (kTgas > 6 keV) galaxy clusters observed with Chandra in the redshift
range 0.14–0.82 and showing different states of relaxation. We show that the entropy profiles
are remarkably similar outside the core and can be described by simple power laws with slope of
1.0−1.2. We measure an entropy level at 0.1R200 of 100−500keVcm2 and a central plateau which
spans a wide range of value (∼ a few−200keVcm2) depending on the state of relaxation of the
source. To characterize the energetic of the central regions, we compare the radial behaviour of the
temperature of the gas with the temperature of the dark matter TDM by estimating the excess of energy
∆E = 3/2k(Tgas −TDM). We point out that ∆E ranges from ≈ 0 in typical cooling-core clusters to few
keV within 100 kpc in non-cooling core systems. We also measure a significant correlation between
the total iron mass and the entropy outside the cooling region, whereas in the inner regions they anti-
correlate strongly. We find that none of the current models in literature on the extra-gravitational
energy is able to justify alone the evidences we obtained on the entropy, metallicity and gas+dark
matter temperature profiles. This Chapter is mainly based on the refereed paper ”Entropy profiles in
X-ray luminous galaxy clusters at z > 0.1”, Morandi A., Ettori S. 2007, MNRAS, 380, 1521-1532.

4.1 INTRODUCTION
The self-similar model (see, e.g., Kaiser , 1986, and Chapter 2) gives a simple picture
of the process of cluster formation in which the ICM physics is driven by the infall of
cosmic baryons into the gravitational potential of the cluster DM halo. The collapse and
subsequent shocks heat the ICM up to the virial temperature. In this scenario all the
non-radiative processes are neglected and the gravity, which has not preferred scales, is
the only responsible for the physical properties of galaxy clusters: for this reason they
are expected to maintain similar properties when rescaled with respect to their mass and
formation epoch. X-ray properties of galaxy clusters show, however, some deviations
form this scenario, breaking up the self-similarity predicted by the adiabatic model (see
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recent work in Arnaud et al. (2005); Donahue et al. (2006); Ponman et al. (2003) and
reference therein). In particular, in the last years, the studies about X-ray scaling relations
(Ettori et al., 2004; Vikhlinin et al., 2005; Kotov & Vikhlinin, 2005; Maughan et al.,
2006) and observations of the entropy profiles (Ponman et al., 1999, 2003) in groups and
clusters of galaxies, and the analysis of simulated sources with an extra non-gravitational
energy injection (Borgani, 2004) have suggested that we have to account for further non-
gravitational feedback beyond the gravitational energy.

The gas entropy records the thermodynamic history of the ICM as the product of both
gravitational and non-gravitational processes, shaping its observed structure accordingly
(Voit, 2005a). The measurements of the gas entropy at 0.1 R200 (hereafter S0.1) showed
that the observed value of S is higher than the expected one from the adiabatic scenario
(Ponman et al., 1999; Lloyd-Davies et al., 2000), where S should scale simply with the
mean temperature of the virialized systems. Instead, an excess in the entropy, with respect
to the prediction of the adiabatic model, is observed in the inner regions of groups and
poor clusters at some fraction of R200. This excess sets a minimum value of the entropy,
labeled as entropy “floor” or “ramp”, associated to the ambient gas. The presence of this
minimum level of entropy calls for some energetic mechanism, not referable to the gravity
only, that falls into three main classes: preheating, where the gas collapsing into the dark
matter potential well is preheated by some sources, before clusters were assembled at an
early epoch (Kaiser, 1991; Balogh et al., 1999; Tozzi & Norman, 2001; Borgani et al.,
2005); local heating by, e.g., AGN activity, star formation or supernovae (Bialek et al.,
2001; Brighenti & Mathews, 2006; Babul et al., 2002; Borgani et al., 2002); cooling,
which seems to be able to remove low-entropy gas in the centre of the clusters, producing a
similar effect to non-gravitational heating (Bryan , 2000; Muanwong et al., 2002; Borgani,
2004).

In this Chapter we aim at comparing the models of preheating, feedback and cooling
with the observed properties of the gas and of the dark matter in X-ray luminous galaxy
clusters, by putting constraints on the sources of non-gravitational heating. To do that, we
have considered the sample of 24 clusters presented in Chapter 3. To quantify the excess
of energy stored in the ICM with respect to the amount available from the gravitational
potential, we compare the gas and dark matter temperature profiles and measure the
energy feedback as a function of the radial distance. Moreover, the clusters in our sample
span a wide range of redshift (0.14 ≤ z ≤ 0.82) and have different state of relaxation.
We can thus investigate the dependence of the extra-gravitational energy feedback on the
cosmic time of differently evolved structures.

This Chapter is constructed in this way: in Sect. 4.2 we describe the X-ray data reduction
and analysis; in Sect. 4.3 we present our results about the entropy distribution in our hot
(kTgas > 6 keV) clusters, studying its relation with the gas temperature and metallicity, its
radial profile and how it relates to excess of energy measured by comparing gas and dark
matter temperatures. We discuss our results in Sect. 4.4 and summarize our findings in
Sect. 4.5.
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Table 4.1. Properties of the sample analyzed. For each object, the name, the redshift z, the emission-weighted temperature Tew, the ratio tcool/tage, a flag for the presence
of a strong cooling core, an intermediate one or absence of a cooling core (labeled SCC, ICC and NCC, respectively) are indicated. The columns 6 and 7 refer to the best
fit parameters S0.1 and α for the Eq. (4.3) by setting S0 = 0. The last four columns refer to the best fit parameters S0, S0.1, α and the total χ2 with the number of degree of
freedom (d.o.f.) for the Eq. (4.3). For z and for each of the best fit parameters we report the average values and their dispersion at the bottom.

power law power law + S0

source z Tew tcool/tage CC S0.1 α S0 S0.1 α χ2d.o.f.
/NCC keVcm2 keVcm2 keVcm2

A2204 0.152 9.18+0.75
−0.65 0.03 SCC 602.6±10.0 1.05±0.04 5.8±0.8 602.4±20.7 1.44±0.03 35.9(31)

A2390 0.232 10.18+0.23
−0.21 0.06 SCC 524.8±4.7 1.30±0.02 3.8±1.3 597.6±5.0 1.15±0.01 377.6(55)

A1835 0.253 8.62+0.60
−0.54 0.09 SCC 288.4±2.7 1.16±0.02 11.9±2.5 273.0±10.9 1.35±0.06 10.2(30)

Zw3146 0.291 7.35+0.27
−0.26 0.02 SCC 457.1±9.2 1.20±0.06 4.8±0.4 401.1±7.5 1.39±0.02 55.3(57)

MS1358.4+6245 0.327 7.51+0.70
−0.61 0.05 SCC 489.8±3.1 1.05±0.02 0.0±0.0 511.8±24.2 1.19±0.04 9.9(31)

RXJ1347.5-1145 0.451 13.92+1.14
−0.93 0.08 SCC 616.6±13.2 1.07±0.04 15.7±1.2 548.3±14.8 1.44±0.03 22.3(44)

0.284 409.9±152.6 1.18±0.11 6.0±5.9 509.0±130.7 1.23±0.16

A1413 0.143 6.25+0.36
−0.33 0.22 ICC 263.0±2.3 0.95±0.01 34.8±21.2 230.9±27.8 1.06±0.15 0.8(16)

A1689 0.183 8.72+0.63
−0.56 0.18 ICC 316.2±3.7 1.02±0.02 36.4±20.4 286.9±27.1 1.09±0.13 1.8(23)

A2261 0.224 7.47+0.53
−0.47 0.27 ICC 263.0±1.5 1.09±0.01 55.1±13.1 205.3±18.4 1.29±0.13 0.8(22)

A611 0.288 6.06+0.38
−0.34 0.13 ICC 229.1±0.7 1.08±0.01 36.8±14.4 196.5±19.5 1.16±0.14 0.7(18)

A1995 0.319 7.56+0.45
−0.41 0.92 ICC 331.1±3.8 1.36±0.02 146.8±22.5 205.6±34.6 1.78±0.27 0.4(27)

MS1137.5+6625 0.784 5.48+0.89
−0.71 0.66 ICC 173.8±5.1 1.22±0.04 116.9±36.6 74.4±42.4 1.91±0.67 0.1(22)

0.324 241.3±62.2 1.07±0.16 57.8±50.7 210.3±70.7 1.20±0.42

A1914 0.171 8.93+0.48
−0.45 2.29 NCC 302.0±5.5 0.96±0.03 230.1±41.6 82.2±44.4 1.99±0.55 6.7(23)

A2218 0.176 6.88+0.33
−0.30 2.01 NCC 288.4±5.6 0.71±0.03 269.7±33.4 43.2±28.4 2.08±0.65 0.3(27)

A665 0.182 7.14+0.33
−0.31 1.47 NCC 275.4±1.3 1.16±0.01 184.1±19.8 108.0±20.9 1.94±0.21 9.0(30)

A520 0.199 8.24+0.31
−0.28 5.35 NCC 363.1±14.0 1.10±0.06 440.7±12.1 23.9±6.5 3.47±0.28 10.2(44)

A2163 0.203 12.00+0.28
−0.26 5.37 NCC 831.8±9.4 1.00±0.02 244.2±11.6 498.3±16.5 1.62±0.05 94.6(52)

A773 0.217 7.23+0.62
−0.52 1.19 NCC 281.8±0.8 0.85±0.01 176.7±56.1 114.4±57.6 1.48±0.48 0.7(41)

A697 0.282 10.21+0.83
−0.75 1.01 NCC 371.5±3.4 0.99±0.02 184.4±99.2 198.4±107.8 1.45±0.54 0.1(28)

A370 0.375 7.37+0.58
−0.53 6.63 NCC 398.1±3.4 0.38±0.01 396.4±76.5 25.4±65.4 2.06±2.54 0.7(20)

RXJ2228+2037 0.421 6.86+0.89
−0.71 2.05 NCC 234.4±2.0 0.89±0.01 158.9±111.4 91.2±110.0 1.56±1.10 0.5(23)

MS0015.9+1609 0.546 8.29+0.49
−0.43 1.13 NCC 245.5±8.3 1.02±0.05 173.7±37.5 91.2±39.2 1.76±0.47 0.3(14)

MS0451.6-0305 0.550 9.09+0.70
−0.61 0.97 NCC 229.1±4.8 1.01±0.04 177.5±56.2 70.7±65.2 1.95±1.01 0.1(14)

EMSS1054.5-0321 0.823 9.00+1.39
−1.10 2.82 NCC 398.1±2.1 1.00±0.02 347.2±107.5 69.2±133.2 3.01±3.54 0.1(19)

0.345 292.6±174.3 0.95±0.21 300.7±110.3 86.8±132.5 1.69±0.71
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Figure 4.1. The radial profiles for the projected temperature Tspec(r), normalized using the cooling-core corrected
temperature Tew, for the gas and dark matter density are shown for all objects of our sample in the left, central and
right panels, respectively. The dashed lines refer to the intermediate cooling core clusters (ICC), the solid to the strong
cooling clusters (SCC), and the dot-dashed to the non-cooling core clusters (NCC).

Figure 4.2. Comparison of the entropy and temperature profiles in the internal regions for, from the left to the right,
ZW3146 (SCC), A1914 (NCC) and A2218 (NCC). The points represent each of the measure of S j in the j-th spherical
shell by applying the analysis described in Sect. 4.2, while the gray region refers to the 1−σ error band. The points with
errorbars (triangles) are the measure of S by applying the spectral analysis (see Sect. 4.2.2) with (without) applying the
spectroscopic-like temperature definition of (Mazzotta et al., 2004). The two triangles on the x-axis refer to the δ = 0.1
and δ = 0.3 (see Sect. 4.3).

4.2 The dataset and the analysis

In Chapter 3 we described our dataset and the analysis applied to study their X-ray and
Sunyaev-Zel’dovich properties. Here we remind the main characteristics of the sample
and of the X-ray analysis adopted to recover the radial distribution of the ICM entropy
investigated in this Chapter.
We consider 24 galaxy clusters in the redshift range 0.14–0.82, emission-weighted

temperature between 6 and 12 keV and X-ray bolometric luminosity L ∼> 1045 erg/s, with
exposures available in Chandra archive. Assuming a spherically symmetric emission,
the electron density and temperature profiles are obtained by deprojecting both the
surface brightness profile put in hydrostatic equilibrium with a functional form of the
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dark matter (DM) profile and the best-fit results obtained in the spatially-resolved X-
ray spectral analysis by fitting a single thermal component. In particular, from the
surface brightness profile resolved in a number of radial bins between 24 and 239, we
obtain directly from the geometrical deprojection the electron density n j in each j-th
spherical shell. The deprojected gas temperature, T j(q,P0), is obtained by integration of
the hydrostatic equilibrium equation once a functional form of the dark matter density
profile, ρ = ρ(r,q), is assumed, where q =(scale radius, concentration parameter) and
the gas pressure P0 at the X-ray boundary Rspec are free parameters. To parameterize
the cluster mass distribution, we have considered two DM models: the universal density
profile proposed by Navarro et al. (1997) (hereafter NFW) and the one suggested by Rasia
et al. (2004) (hereafter RTM). In this study, we adopt the RTM model. Our results are not
affected if a NFW functional form is used. To constrain the 3 free parameters (q,P0),
we define a grid of values and proceed with a χ2 minimization of the merit function that
compares the observed temperature profile with the projection of T j(q,P0) by applying
the spectroscopic-like temperature definition (Mazzotta et al., 2004). The best-fit values
of (q,P0) are the ones corresponding to the minimum χ2, χ2

min. The associated errors
are estimated at the 68.3 per cent confidence level and are computed by looking to the
regions in the parameter space where ∆χ2 = χ2 −χ2

min is smaller than a given threshold,
fixed according to the number of degrees of freedom (e.g., ∆χ2 = 1,2.3,3.53 for 1, 2 and
3 d.o.f., respectively; see Chapter 3 and Press et al., 1992). The value of (q,P0) and the
related errors are quoted in Chapter 3.
Furthermore, we deproject the best-fit results of the X-ray spectral analysis, spatially

resolved in a lower number of bins (between 4 and 10) than the surface brightness
profile as requested from the higher counts statistic needed to constrain adequately the
measurements of the temperature. However, in each k-th shell, the electron density nk and
temperature Tk are then recovered without any assumption of the hydrostatic equilibrium
and provide a direct verification of the validity of this assumption once they are compared
to the measures of n j and Tj described above. The spectral deprojection of the observed
projected temperature Tproj has been performed in a set of n annuli selected to collect at
least 2000 net counts by inverting the following equation:

Tproj =
(V #

(
Tkn2

kT−α
k
))

/
(V #

(
n2

kT−α
k
))

, (4.1)

where the operator # indicates the matrix product (rows by columns), V is the effective
volume described in Appendix, and α = 0.75 using the spectroscopic-like temperature
definition (Mazzotta et al., 2004).

4.2.1 Cooling core and Non-cooling core clusters
In the following analysis, we divide our sample in three categories, depending on the
strength of the central cooling-core (see Table 4.1):

• Strong cooling core (SCC) clusters are the 6 objects in which the central cooling
time is significantly less than the age of the universe at the cluster redshift
(tcool/tage,z < 0.1). They show very low central temperature (∼ 2 keV) and strong
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spike of luminosity in the brightness profile, and a very pronounced drop of the
temperature near the boundary of the observation, about a factor two compared with
the peak of the temperature. The temperature profile is very regular, suggesting a
relaxed dynamical state.

• Intermediate cooling core (ICC) clusters have a central cooling time with values
0.1 ∼< tcool/tage,z ∼< 1. The six objects in our sample show a less prominent spike
of brightness than SCC clusters and a mild drop of the temperature in the cooling
region (∼> 1/2Tew).

• The Non-cooling core (NCC) sources (12 objects in our sample) have central
cooling time higher than tage,z and do not present any evidence of the central drop in
the temperature profile. Both the temperature profile and surface brightness map are
less regular than the ones observed in CC systems, showing hints of substructures
and merging activity.

The gas and DM density profiles (right panel of Figure 4.1) have similar slopes over the
entire radial range in the SCC clusters, whereas less self-similarity is present in the ICC
and especially in the NCC clusters: the gas density profile is here flatter than the ρDM
one, supporting the scenario in which the ICM has been affected by some form of non-
gravitational energy. We discuss the physical interpretation of these observational results
in Section 4.3.3.
The high level of relaxation of the SCC sources is also confirmed by the study of

the polytropic index γ 1, that has values near 1 with a very low scatter for the SCC
sources, whereas is more scattered in NCC sources at r ∼> 0.5R2500: γSCC = 1.01± 0.09,
γICC = 1.06±0.12, γNCC = 1.08±0.32. Within 0.3R200, we measure γSCC = 0.66±0.07,
γICC = 0.97± 0.05 and γNCC = 1.29± 0.50, with a clear increase as a function of the
morphological type and a very high scatter for the NCC sources.

4.2.2 On the gas entropy profile

Here we have extended the above analysis by estimating the entropy profile in each cluster
by using (i) the gas pressure Pj and density n j profile in the equation S j = Pj/n5/3

j and
(ii) the deprojected spectral results Sk = Tk/n2/3

k . The errors on the entropy profiles are
obtained by error propagation of the uncertainties on the single quantity and/or best-fit
parameters. We note that the dependence of S j over P0, the gas pressure value at the X-
ray spectral boundary, can be checked by comparing it with the entropy measured once
P0 is fixed to the value measured in the spectral analysis: we find a totally negligible
variation at 0.1R200 and a change ∼< 5 per cent at 0.3R200.
In Figure 4.2 we present a comparison of the entropy and temperature profiles recovered

with the two methods in the inner regions of three representative cases, ZW3146 (SCC),
A1914 (NCC) and A2218 (NCC). We obtain good agreement between the entropy

1γ is calculated as ≡ d log (Tk)/d log (nk)+ 1 by linear fit in the log (nk)− log (Tk) plane by considering the spectral deprojected
density nk and temperature Tk described in Sect. 4.2.
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measurements in ZW3146 and A1914, the former being an example of a typical CC
source where the profile decreases moving inward, whereas the latter shows the most
evident case of flattening, with hints of inversion, in the central entropy values. Given
the good agreement between Sk and S j even in the internal regions, we believe that this
inversion is not due to our approach, but it is real in A1914 (similar behaviour is found in
A773). We note that, if we use the entropy recovered by using the proper cooling function
in Eq. (4.1) instead of the functional T−α, this inversion is less pronounced (see Fig. 4.2)
for Sk.

In A2218 (NCC), we observe a marginal disagreement between S j and Sk: S j shows an
inversion in the core, whereas Sk appears flatter. We draw similar conclusions for A370,
A520, A2163, and RXJ2228+2037. Nevertheless we observe that for the latter sources
the low spatial resolution of Sk in the central regions (∼> 150−200 kpc) does not allow to
sample properly S j on scales of ∼< 50−150 kpc, where the inversion occurs.

We note that the larger deviations between Tj and Tk are observed in NCC clusters within
100 kpc, where we expect higher relative contribution from non-thermal effects due to,
e.g., merging activity. Therefore, even though the most prominent substructures identified
in the cluster images were masked, implying that we have reduced their effects in the
temperature reconstruction under the hydrostatic equilibrium equation, the sampled gas
might be still subjected to ongoing merging processes. The higher value of S j compared
to Sk in the cluster centre is likely due to a very flat density profile that induces a higher
temperature value (once the hydrostatic equilibrium equation is applied) than the spectral
deprojected temperature. Indeed, unresolved mergers could lead to this very flat density
profile (they are clearly visible in A520 and A2163), if the gas at R ∼< 50−100 kpc is not
wholly relaxed and in hydrostatic equilibrium. For the other NCC sources, that do not
show clearly ongoing merging processes, nevertheless we noted a disturbed morphology,
as indicated, for example, from the fact that the centroid of symmetry does not coincide
with the peak of brightness.

On larger scales, that involve larger cluster volumes, local deviations from the
hydrostatic equilibrium are washed out even in the most unrelaxed objects, making
tenable the hypothesis upon which S j is obtained. This is also confirmed from (i) the
agreement between S j and Sk (Tj and Tk) measured in these sources, (ii) the results of
hydrodynamical numerical simulations (Rasia et al., 2006), and (iii) the analysis presented
in Chapter 3 (Sect. 4.1.1), where we show how the relation between Mtot and the
mass-weighted temperature for our sample is in agreement with the results coming from
simulations including feedback and radiative processes, supporting our overall mass and
temperature Tj reconstruction.

In the following analysis, we evaluate the entropy at 0.1 and 0.3R200, i.e. at radii well
beyond the region where the central inversion of S(r) is observed in few NCC objects.
Given that, and the good agreement on larger scales between the reconstructed profiles,
we define S(r) = S j hereafter to fully exploit the spatial resolution available in estimating
the entropy radial profile.
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4.3 Entropy and temperature distribution
We examine the S−T relation at fixed overdensities, comparing our results with the ones
available in literature for nearby systems. We investigate, then, the radial entropy profile,
studying the behaviour of its gradient and its dependence upon the state of relaxation of
the system. Finally, we implement an analysis of the temperature of the ICM and of the
DM to quantify the excess of energy associated to the gas and its radial distribution.

4.3.1 The entropy-temperature relation

We have determined the entropy-temperature relation at different fraction δ of the virial
radius R200 (δ = 0.1 and δ = 0.3). We have fitted a power-law model of the form:

E4/3
z Sδ = αT A

ew,7 , (4.2)

where Ez =
[
ΩM(1+ z)3 +(1−ΩM −ΩΛ)(1+ z)2 +ΩΛ

]1/2 and Tew,7 is the total cool-
core corrected (by masking the central r = 100 kpc region) emission-weighted
temperature in units of 7 keV (see Chapter 3). The fit has been performed by adopting
the BCES (Bivariate Correlated Errors and intrinsic Scatter) Y |X method (Akritas &
Bershady, 1996) (see Chapter 3 for further details on this approach). We quote our
best-fit results in Table 4.2 and show the distribution of the entropy values at different
fractions of R200 in Figure 4.3. We note that SCC clusters show higher normalization
(∼ 440 and 1400 keV cm2 at δ = 0.1 and 0.3R200, respectively) than ICC and NCC
objects, with a larger deviation in the inner regions (δ = 0.1) which can be explained
invoking different relaxation states of the clusters as discussed in Sect. 4.3.4. The best-fit
slopes, within the error-bar at 1σ, are in agreement with the self-similar prediction (A = 1)
and steeper than the slopes of A ∼ 0.5− 0.6 observed in local samples of galaxy groups
and clusters (Piffaretti et al., 2005; Pratt et al., 2006; Ponman et al., 1999, 2003). For
comparison, we present in Table 4.2 also the normalizations measured by fixing A = 1
(self-similar expectation) and A ∼ 0.65 (Ponman et al., 2003) and plot in Figure 4.3
the best-fit results obtained by Pratt et al. (2006) and Piffaretti et al. (2005) from their
analysis of relaxed groups and clusters at low redshift. Pratt et al. (2006) measure
A = 0.49± 0.15 (α = 271± 20) and A = 0.64± 0.11(α = 990± 55) for δ = 0.1 and
δ = 0.3, respectively, with a clear departure from the self-similar expectation (A = 1).
Piffaretti et al. (2005) at δ = 0.1 measure α = 255± 71 by fixing A = 0.65. Once these
results are compared with what we measure in our sample of very massive systems, we
observe that our normalizations are on average higher by 20-60 per cent, with slopes that
are steeper and closer to the self-similar prediction than the values measured locally (see
also Ponman et al., 2003). This result is in agreement with the fact that we are measuring
the entropy distribution in massive clusters with cool-core corrected temperatures in the
range 6 − 12 keV. These systems are definitely less affected from extra-gravitational,
feedback processes that, on the contrary, are so relevant in groups and low-mass clusters
representing the bulk in the sample of objects studied in, e.g., Piffaretti et al. (2005)
and Ponman et al. (2003). Moreover, by parameterizing the evolution in redshift using



4.3 – Entropy and temperature distribution 69

Table 4.2. Best fit parameters of the S− T relation by applying the Eq. (4.2). The sources are grouped into SCC,
SCC+ICC and all clusters.

δ = 0.1 δ = 0.3

CC A α A α
/NCC keVcm2 keVcm2

SCC 0.76±0.24 468±70 0.91±0.19 1380±154
1 (fixed) 440±10 1 (fixed) 1409±146

0.65 (fixed) 494±20 0.65 (fixed) 1567±155
SCC+ICC 1.18±0.16 380±28 1.17±0.22 1202±94

1 (fixed) 399±14 1 (fixed) 1186±85
0.65 (fixed) 432±15 0.65 (fixed) 1242±89

all 1.33±0.20 354±20 1.41±0.26 1023±77
1 (fixed) 415±11 1 (fixed) 1140±50

0.65 (fixed) 460±14 0.65 (fixed) 1216±59

a (1 + z)B dependence (see Chapter 3 for further details on this approach), we did not
observe any hints of evolution of the entropy-temperature relation within our sample. A
very significant positive evolution (B ≈ 2±0.1 but with a reduced χ2 of 5; see Fig. 4.3) is
instead measured in the relation between the entropy estimated at 0.1R200 and Tew when
our CC (SCC+ICC) objects are compared to the best-fit local results in Pratt et al. (2006).
Although the local best-fits refer to objects distributed over a wider range in temperature,
the systematic larger values measured at higher redshift is noticeable and definitely more
evident at 0.1R200 than at 0.3R200 where we measure B ≈ 1± 0.2 with a reduced χ2 of
about 1.

4.3.2 Properties of the entropy profiles
To characterize the gas entropy profile, we follow Donahue et al. (2006) and fit two
different models. The first one reproduces the radial entropy profile with a power law
plus a constant S0:

S(r) = S0 +S0.1

(
r

0.1r200

)α
(4.3)

In the second functional form, we set S0 = 0, modeling the entropy profile with a pure
power law. The best fit parameters on the radial profile are determined by applying the
χ2 statistic to the Eq. (4.3) over the radial entropy profile between 0.1R200 and 0.3R200,
whereas BCES(Y|X) is used when S0 is fixed to zero and the region within 0.1R200 is
excluded from the fit because it is strongly affected by the cooling process. The outermost
bins of the fit are excluded by the fit, being noisy and likely affected by systematic errors
due to subtraction of the noise in the data reduction (see Chapter 3). Our best-fit results
are quoted in Table 4.1.
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Figure 4.3. The S−T relation at different fraction δ of R200: δ = 0.1R200 (left panel) and δ = 0.3R200 (right panel).
In each panel the filled circles represent the strong cooling core sources (SCC), the triangles the intermediate cooling
core clusters (ICC), while the stars the non-cooling core clusters (NCC). The solid line refers to the best-fit relation
obtained when considering all the clusters of our sample, while the dashed one represents the best-fit obtained by Pratt
et al. (2006) and the dot-dashed by Piffaretti et al. (2005).

The entropy profiles show a regular behaviour (see Fig. 4.3.2), once the quantities are
rescaled to the characteristic value K2500 at the overdensity of 25002 for adiabatic clusters
(see, e.g., Eq. 2 in Voit et al., 2005b). Profiles of CC clusters are similar down to the inner
resolved regions, whereas NCC systems show large deviations in the central parts. These
profiles are well reproduced by the functional form with a power law plus a constant
for which we obtain a χ2

red always less than or of the order of unity, apart from A2390.
In particular, SCC sources show a very tight range of values of the entropy pedestal S0
(S0 ∼< 15keVcm2) in agreement with the value found by Donahue et al., and a power-law
behaviour which is roughly preserved on the entire range of the radial entropy profile,
even in the cooling region (see right panel of Figure 4.3.2). The average slope determined
from the second method (α = 1.18 ± 0.11) is very similar to the theoretical value of
1.1 predicted by Tozzi & Norman (2001) by using analytic models of shock dominated
spherical collapse. Concerning S0.1, it shows values in the range 270− 600keVcm2:
if we adopt the definition of S100 in Donahue et al. as the normalization at 100 kpc,
we have S100 ∼ 90 − 150keVcm2, mildly lower than than the range found by them
(S100 ∼ 90−240keVcm2).
The ICC clusters show higher and wider range of S0, with a typical value of ∼

30keVcm2. The power-law behaviour is preserved just on large scale, i.e. outside the
cooling region. The average slope is still in agreement with above theoretical predictions
(α = 1.07±0.16), but it is a little lower than the value measured in SCC clusters.
In NCC objects, we observe a more scattered radial profile, which is likely self-similar

2R2500 is ∼ 0.25R200, i.e. ≈ 400−600 kpc.
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Figure 4.4. Profiles of S/K2500 as a function of r/R2500. The dashed line represents the intermediate cooling core
clusters (ICC), the solid the strong cooling clusters (SCC), and the dot-dashed the non-cooling core clusters (NCC).
The thick solid line represents the profile of Voit et al. (2005b), S/K2500 = 1.62(r/r2500)

1.1 (see their Fig. 1, where we
have renormalized their entropy profile from ∆ = 200 to ∆ = 2500).

beyond the central regions (∼ 0.5R2500 ≈ 200−300 kpc). In the inner regions, we notice
a very high dispersion on the entropy pedestal value (∼ 80− 400keVcm2), larger than
the values found in the CC clusters. The average slope is mildly lower than the one
determined in the CC-only subsample (α ∼ 0.95±0.21).
We point out that α rises by considering NCC, ICC and SCC sources, respectively

(αSCC = 1.18 ± 0.11, αICC = 1.07± 0.16 and αNCC = 0.95± 0.21 for the power-law
model). As we will see in Sect. 4.3.3, this trend is probably due to the effect of
non-gravitational sources on large scale, which justify the flatter radial behaviour of the
entropy profile in NCC clusters.
It is worth noticing the behaviour of the entropy pedestal S0.1 in the different subsamples:

SNCC
0.1 = 300.7± 110.3keVcm2; SICC

0.1 = 57.8± 50.7keVcm2; SSCC
0.1 = 6.0± 5.9keVcm2.

The trend of the gas density and temperature profile (see central and left panel of
Figure 4.1) can justify the progressively greater value of the entropy in the inner regions by
considering SCC, ICC and NCC clusters, respectively. We observe higher normalization
of the entropy in SCC sources (see Figure 4.3.2 and the value of the parameter A in
Table 4.1). This behaviour is due to the fact that the SCC sources show steeper density
profiles, i.e. at the same fraction of R200, as long as we consider radii greater than 0.1R200,
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the density of the SCC sources is lower. Even though the temperature profiles in the SCC
sources are a bit steeper than in the ICC and NCC objects, the overall effect is that the gas
entropy tends to be higher in SCC clusters. We note that the unrelaxed morphology of the
NCC sources cannot account for systematic changes in, e.g., the determination of R∆.
On the evolution with redshift of the best-fit parameters of Eq. (4.3), we note that only

for SICC
0.1 we obtain a marginal evidence of negative evolution (Spearman’s rank coefficient

rs = −0.60 for 22 d.o.f. with probability of null correlation p = 0.28). On the contrary, α
shows a positive evolution for the ICC clusters: rICC

s = 0.90, with p = 0.37, while for the
SCC and NCC sources there is not apparent evolution.
We have calculated the weighted average value of the slopes of the best-fit parameters

of the local sample of clusters determined by Donahue et al. (2006), so as to compare
it with our estimate at higher redshift: they measure α = 1.00± 0.01 (when S0 = 0)
and α = 1.23 ± 0.01 (by accounting for S0), while we obtain α = 1.10 ± 0.01 and
α = 1.27± 0.01, respectively, by applying their procedure3. These results, confirmed
also including in the sample the ICC sources, suggest that entropy profiles in nearby CC
systems are slightly flatter than in CC clusters at higher redshift, providing some marginal
hints on the evolutionary trends present in the entropy distribution.
In Figure 4.3.2, we plot the break radius rbreak present in the entropy profile S(r), i.e.

the radius where S0 = S0.1 (rbreak/(0.1r200))
α in Eq. (4.3), as a function of the redshift.

We found the following average values for rbreak/r200: rSCC
break/r200 = 0.005 ± 0.004,

Figure 4.5. Normalized break radius rbreak/r200 as a function of the redshift.

rICC
break/r200 = 0.050±0.045 and rNCC

break/r200 = 0.172±0.082. The NCC sources show value
3The errors refer to the average value.
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of rbreak/r200 definitely higher than the CC clusters, defining the scale where the non-
gravitational energy breaks the self-similarity (rNCC

break ∼ 0.1− 0.4r200 ∼ 200− 600 kpc).
We do not observe significant evolution for rbreak, except for the CC objects (Spearman’s
rank coefficient of rs = 0.89 , probability of null correlation p = 0.019).

4.3.3 Gas and dark matter temperature profiles
In this section, we define a temperature associated to the dark matter component following
the method presented in Ikebe et al. (2004); Hansen & Piffaretti (2007). We define the
temperature of the dark matter halo, TDM, as:

kTDM ≡
1
3
(
σ2

r +2σ2
θ
)

µmp (4.4)

where µ is the mean molecular weight of the ICM, mp is the proton mass, σθ and σr are
the 1-dimensional tangential and radial velocity dispersions of the dark matter. The radial
velocity dispersions has been obtained by solving the Jeans equation:

GM(q)

R = −σ2
r

(
d lnρDM(q)

d lnR +
d lnσ2

r
d lnR +2β(q)

)
, (4.5)

where a velocity anisotropy parameter is defined, β(q) = 1−σ2
θ/σ2

r . N-body simulations
for a variety of cosmologies shows that β has roughly an universal radial profile (Cole &
Lacey, 1996), which is given by the following relation:

β(q) = βm
4rn

r2
n +4

(4.6)

where rn = r/r200(q), and βm ≈ 0.3 − 0.5 (Carlberg et al., 1997). The dark matter
profile is estimated as ρDM = ρtot − µmpngas, where ρtot and ngas has been determined
from the analysis in Chapter 3. We will compare the dark matter temperature to the gas
temperature, Tgas, recovered by applying the hydrostatic equilibrium equation 4.
We solve Eq. (4.5) for βm = {0,0.4}, corresponding to the case of isotropy of the DM

and to the central value of the above-mentioned range, respectively, to recover σ2
r and

therefore TDM. As boundary condition in Eq. (4.5), we assume TDM equal to Tgas at
Rspec. We have checked that uncertainties on the DM temperature assumption at Rspec
are almost negligible on the DM temperature profile in the inner and central regions
(R ∼< R2500 ∼ 0.25R200), being Rspec ∼ 0.3 − 0.5R200, making our results up to R2500
reliable and not affected from the assumed value at the boundary. The errors are estimated
by looking to the regions of the parameter space that satisfy the condition χ2−χ2

min < 2.3
after the analysis described in Chapter 3. Examples of the gas and DM temperature
profiles for SCC, ICC and NCC objects are shown in Fig. 4.6.
Because only the baryonic component is expected to be prone to non-gravitational

energy effects in galaxy clusters, the difference between Tgas and TDM, ∆kT , is a powerful
tool to trace the thermal history of the ICM. We show in Fig. 4.6 how ∆kT varies as a

4Following the notation in Sect. 4.2, ngas = n j and Tgas = Tj .
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Figure 4.6. Temperature profiles of the gas (solid line) and of the dark matter (dashed and dot-dashed line for βm = 0
and βm = 0.4, respectively). The error bands are represented by the gray shaded region for the gas, and hatched region
for the DM for the case where βm = 0. The clusters are A1835 (SCC), A2261 (ICC), and A2218 (NCC), from the left
to the right.

function of the radius. The NCC clusters show a clear trend of ∆kT , with values always
greater than zero: ∆kT ≈ 1− 2keV outside the central region (∼> 200− 400 kpc) and it
is a few keV in the inner region. Near the cluster observed boundary, DM anisotropies
might make TDM roughly in agreement with Tgas, even though large statistical errors are
present and our boundary condition holds. A similar trend is observed in ICC clusters,
where a less significant disagreement between Tgas and TDM is however observed. In SCC
clusters, on the contrary, Tgas is well in agreement with TDM, especially in the inner and
central regions.
We notice here that the strong negative evolution measured in the scaling relations

between yΩ and the X-ray/SZ quantities presented in Chapter 3, where yΩ is the integrated
Compton parameter over a fixed angular distance, supports the observed radial behaviour
of ∆kT . Indeed, the measured SZ effect within a fixed angular size samples larger
physical regions at higher redshifts. This demonstrates that the effect of non-gravitational
processes is relatively more pronounced if the SZ flux is measured within smaller physical
radii, indicating the physical scale over which the non-gravitational processes are more
relevant. When we perform, instead, the same analysis integrating the Compton parameter
within a physical radius (as done with the quantity y∆), we observe definitely lower
negative evolution.
We have also estimated the global excess of energy ∆U2500 defined in this way:

∆U2500 =

∫ R2500

0

3
2∆kT (r)ngas(r)4πr2 d r (4.7)

We find that ∆U2500 ∼> 1062erg in NCC sources (corresponding to about 15-20 per cent
of the total thermal energy), that is a factor between 4 and 10 higher than the measured
excess in SCC clusters.
We refer to Sect. 4.4 for a discussion of the observational evidence presented in these

two last sections.
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Figure 4.7. Correlation between MFe,0.05 and the entropy pedestal S0 (left), MFe,0.1 and S0.1 (right).

4.3.4 Relations between gas entropy and metallicity

The ICM iron mass is a key observable to constrain the cumulative past star formation
history in galaxy clusters. Its relations with other observables such as the cluster optical
light, total cluster mass, stellar mass and gas entropy, together with its redshift evolution,
allow to study the enrichment processes. Moreover, while the production of metals is
linked to processes of star formation, its radial profile is determined by different physical
processes, such ram-pressure stripping, galactic winds powered by supernovae and AGN
activity, merger mechanism (Gnedin, 1998).
Following the work of De Grandi et al. (2004) on local clusters, we present measured

iron abundances in the ICM, their evolution with the redshift z and their correlation with
the entropy. We adopt the solar abundance ratios from Anders & Grevesse (1989) with
Z� = Fe/H = 4.68×10−5 by number.
We first have determined measures of projected metallicity profiles ZFe = ZFe(r) =

nFe/nH, (in units of Z�, that is the solar abundance of iron), where nFe and nH are the
iron and hydrogen densities (by number) respectively. Notice Zproj

Fe has been integrated
up to Rspec without masking the cooling region, to compare our results with the literature
available. In our sample, we find hints of possible negative evolution with redshift, with
Spearman’s rank coefficient of rs = −0.12 for 22 d.o.f. (probability of null correlation
p = 0.59), in rough agreement with Balestra et al. (2007), whose sample covers a wider
range of z. After the deprojection of the spectral results (see Chapter 3), we have
calculated the iron mass enclosed within a sphere of radius R by integrating the iron
mass density, ρFe, over the cluster volume. The total iron mass in solar units can be then
written as:

MFe(< R) = 4πAFemH
Z�

M�

∫ R

0
ZFe(r) nH(r) r2dr, (4.8)
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where AFe is the atomic weight of iron and mH is the atomic unit mass. To integrate
the observed profiles at any radius, we have linearly interpolated the metallicity mass
profiles within overdensities Rδ = 0.05R200, Rδ = 0.1R200 and ∆ = 2500, which roughly
correspond to 100−150, 200−300 and 400−600 kpc for our sample, respectively.
No significant evolution with z of MFe(< R2500) (probability of null correlation p = 0.94)

and MFe(< R0.05) (p = 0.52) is measured. Instead, we observe a strong segregation
between SSC, ICC and NCC sources, with SCC clusters that tend to have higher
metallicity mass by a factor of ∼ 2 within R2500 and by an order of magnitude within
R0.05, which roughly corresponds to the cooling region. The iron mass excess associated
with cool core regions could be entirely produced by the brightest cluster galaxy (BCG),
which is always found at the centre of cool core clusters, via SN- or AGN- induced winds
(De Grandi et al., 2004). Moreover, we confirm the existence of a correlation between
MFe,δ and Sδ. In Fig. 4.7, we present the correlation between the MFe,0.05 as a function
of the entropy pedestal S0 (see Sect. 4.3.2): we can see an anti-correlation between the
two quantities, as expected in a picture where the cooling is the likely predominant
physical process in the cooling region. Enrichment from recent Supernovae type Ia in
the cD galaxies can explain the central metal abundance excess observed in cooling core
clusters (De Grandi et al., 2004; Böhringer et al., 2004). On the contrary, outside the
cooling region, we observe again nearly self-similar relation between MFe,0.1 and S0.1
(see Fig. 4.7) as we have seen in Sect. 4.3.1 for the Sδ−Tew relation.
Assuming a synthesized iron mass per SNIa event mIa of 0.74 M� (Nomoto et al., 1997)

and an energy output of 1051erg, we estimate that 1−3×1010 SNIa events in the region
inside R2500 are required to produce MFe,2500 ∼> 0.8×1010M� observed in NCC clusters.
This number of SNe corresponds to a global energy output of 1− 3× 1061erg over the
entire lifetime of the cluster, that is lower by a factor 2-4 than the excess of energy ∆U2500
estimated in Sect. 4.3.3 (∆U NCC ∼ 1062erg), suggesting the action of other sources of
non-gravitational energy to fully account for this observed excess.

4.4 Discussion

The main results emerging from our study of the entropy profiles in hot (kTgas > 6
keV) galaxy clusters at z > 0.1 are that these profiles, although similar in the outskirts
where they behave as a power law with slope 1.0− 1.2, are remarkably discrepant in
the central regions, with SCC objects that show a power-law behaviour down to the
innermost spatially resolved regions and NCC clusters having profiles that flatten to a
constant value at r < 0.3R2500 (Fig. 4.3.2). Accordingly, the comparison between gas
and dark matter temperature profiles (Fig. 4.1) reveals that SCC clusters do not present
any significant energy excess at any radius, whereas ICC and, more dramatically, NCC
objects show ∆E = 3/2∆kT larger than few keV in the cooling region and above. Note
that the situation near the boundary of the sources is unclear, because the statistical errors
are very large, the effect of possible anisotropies in the DM are there more prominent
and we are assuming some constraints on the dark matter temperature at Rspec. This
excess of energy with respect to the ’gravitational energy floor’ associated to the DM
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temperature profile can be interpreted as an indication of the presence of some form of
non-gravitational energy that can constrain the mechanisms affecting the ICM thermal
history and the observed entropy profiles. Indeed, in agreement with ∆E ≈ 0 over the
entire radial range, we observe that SCC clusters have very low entropy pedestal values
S0 of few keV cm2, while the higher and more scattered values of S0 measured in ICC and,
particularly, in NCC systems can be justified by an injection of energy ∆E of 1-10 keV,
that, distributed over scales ∼< 100− 300 kpc, explains also their flatter entropy profiles.
The regular behaviour of the entropy profiles outside 0.1R200 is also in agreement with
the fact that ∆E is low at these radii, where we have to consider the limitations of our
analysis near Rspec as mentioned above. This scenario is also supported from our results
on the S−T relation, where we observe an higher normalization, more significant in the
inner regions (δ = 0.1; see Table 4.3) of the SCC subsample with respect to ICC and NCC
sources. We note hints of larger entropy values at higher redshift when our measurements
in CC clusters are compared to the best-fit results obtained in nearby samples, with a
more significant deviations observed at 0.1R200 than at 0.3R200, suggesting that cores
in our CC objects are not yet well defined from the radiative processes. Moreover, the
observed mild differences in the slopes of the entropy profile, with α that becomes slightly
higher by considering NCC, ICC, and SCC sources, respectively (αSCC = 1.18± 0.11,
αICC = 1.07± 0.16 and αNCC = 0.95± 0.21 for the power-law model) can be explained
by looking at the temperature and density profiles (Figure 4.1), which are a bit flatter for
non-cooling core systems: this trend can be justified with small energy excess (∆E ∼
1-2 keV) at large scale in the NCC objects compared to the NCC and SCC ones. The
radial behaviour of ∆E(r) is also confirmed by the analysis made in Chapter 3, where we
noticed a strong negative evolution in the yΩ−X-ray and yΩ−SZ scaling relations (see
Sect. 4.3.3).

All our systems are the products of the hierarchical scenario, how is suggested from the
similar behaviour of the gas temperature, density, entropy and dark matter profiles in the
regions above the cores. On the contrary, the cooling region characterizes SCC, ICC,
and NCC systems. In particular, continuous interplay between cooling and some form
of (pre-)heating can explain the variety of the properties observed, with SCC dominated
from the cooling phase and, on the other end, NCC still subjected to some effects of
heating.

Theoretical models must predict the magnitude of the observed ∆E(r), and the impact
of the non-gravitational processes associated to this excess in the central regions. These
models fall into three main classes: preheating, where the gas collapsing into the dark
matter potential well is preheated by some mechanism, before clusters were assembled at
an early epoch (Kaiser, 1991; Balogh et al., 1999; Tozzi & Norman, 2001; Borgani et al.,
2005); local heating by AGN activity, star formation or supernovae (Bialek et al., 2001;
Brighenti & Mathews, 2006; Babul et al., 2002; Borgani et al., 2002); cooling, which
seems to be able to remove low-entropy gas in the centre of the clusters, producing a
similar effect to non-gravitational heating (Bryan , 2000; Muanwong et al., 2002; Borgani,
2004). Hereafter, we review the main characteristics of these models and discuss how they
are consistent with our observational constraints.
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4.4.1 Preheating models

Models of pre-heating, where a constant energy input is injected either prior of the cluster
collapse (0.1− 0.3 keV per particle, e.g. Navarro et al., 1995; Tozzi & Norman, 2001)
or after the cluster formation (1 − 3 keV per particle, e.g. Metzler & Evrard, 1994;
Loewenstein, 2000; Wu et al., 2000; Bower et al., 2001), could justify, only partially in
NCC objects, the observed magnitude of ∆E(r), but not its radial behaviour. Nevertheless,
as pointed out by Borgani et al. (2005) by studying hydrodynamical simulated clusters,
there is no possibility to inject a large quantity of energy per particle (∼< 1 keV), unless
a large isentropic core is produced in the entropy profile, core that is not observed in our
profiles in agreement with other works (Ponman et al., 2003; Pratt & Arnaud , 2003; Pratt
& Arnaud, 2005).

Ponman et al. (2003) suggest that any raise of the temperature and/or decrease of the
density in the gas inside the primordial structures due to preheating can get largely raised
by the accretion shock. Following the model of Dos Santos & Doré (2002), Ponman
et al. (2003) estimated that a mild raise of the entropy of the gas confined to filaments
(∼ 10−100keVcm2, corresponding to a temperature of ∼ 10−1 keV) can be boosted by
the accretion shock to the observed value of S (∼ 100− 1000keVcm2). They point out
that an interplay between shock and smoothing of the primordial gas due to a preheating
can justify the observed properties of the gas entropy, given the above upper limits on the
energy budget of the preheating and being the slope of the entropy profile close to the
value predicted from shock heating.

Preheating prior of the cluster collapse should be a energetically favorable mechanism
compared to in situ heating to cast further energy into the gas before it is concentrated in
the gravitational potential well of the DM halo, since less energy is required to increase
the entropy of the gas by a given amount when its density is lower as in the filaments.
In fact we observe that in the shock dominated collapse scenario, a mild injection of
energy through preheating can greatly amplify the final energy Efin of the post-shocked
particles, being Efin ∝ Ein, with Ein the initial energy. Borgani et al. (2005) show that
smoothing the accretion pattern by preheating in the case of simulations without radiative
physics amplifies the entropy generation out to the radius where the accretion shock acts.
Nevertheless, the effect seems to be substantially reduced when cooling is also taken into
account.

However, our estimates of ∆E(r) show not a constant profile but instead a declining
one outwards. This behaviour cannot be explained by any preheating mechanism, either
prior or after cluster collapse, even though entropy is amplified through subsequent
shock heating. Results for X-ray bright nearby objects by Pratt et al. (2006) support
this conclusions, because their scaled entropy profiles show increasing scatter in the
inner regions, with a dispersion (∼ 60 per cent) definitely higher than the value found
in simulations including filamentary preheating (∼ 30 per cent, see Voit 2005a).
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4.4.2 Heating models

In principle, heating can amplify the boosting of the entropy out to the radius where
accretion shocks are taking place, especially in low mass systems, since they are accreted
by smaller subhalos where the gas is more smoothed by the extra heating. As pointed
out by Borgani et al. (2005), local heating due to star formation activity is not able alone
to prevent overcooling and to reproduce the predicted star formation as low as measured
(Muanwong et al., 2002) and the observed entropy profile: maybe we have to appeal
to further sources of non-gravitational energy, like AGN, not taken into account in such
hydrodynamical simulations, or different physical mechanisms to distribute the energy
inside the ICM.
The need of this further source of non-gravitational energy is also confirmed by the

analysis made in Sect. 4.3.4, where we observe that the number of supernovae we require
to reproduce the observed metallicity is not able to account for all the excess of energy
∆U2500.
A gentle, transonic heating process, such as the weak shocks detected in the Perseus

cluster (Fabian et al., 2003), can provide a framework by which one can explain all the
observed properties, like the flattening of the entropy profile in the innermost regions (∼< a
few tens of kpc) even of SCC clusters, and the spikes of metallicity measured in the centre
of SCC sources (see Fig. 4.7). Weak shocks are indeed likely not able to prevent metals’
accumulation in the innermost regions. Donahue et al. (2005, 2006) pointed out that the
central cooling time of the SCC galaxies (∼ 108 yr) is consistent with the time scale of the
activity of radio sources (∼ a few107 yr) at the centre of clusters. Energy casted by the
radio jet (∼ 1045 erg/s) can then produce the observed flattening of the entropy profiles on
scale of a few tens of kpc. Gasdynamical models of jets flows proceeding from a central
supermassive black hole and entering surrounding gas may heat the ICM by casting mass
and energy outwards till scale ∼ hundreds of kpc, possibly lowering the cooling rate
(Brighenti & Mathews, 2006). Nevertheless the above picture does not explain the excess
of energy ∆E in the regions outside the core, where we have probably to require some
other form of heating, like e.g. shocks induced from merging activity.
Whatever sources of non-gravitational energy we have to appeal, they must fuel

energetically the ICM in such a way to reproduce the magnitude and the radial behaviour
of ∆E(r), casting energy (in the order of few keV) and metals preferentially in the
innermost regions.

4.4.3 Cooling models

Cooling plays a key role to explain the observed excess of energy ∆E(r). In fact, ∆E(r) is
higher in the central regions moving from SCC to ICC and to NCC systems. Cooling can
easily account for this trend through radiative losses of the accumulated thermal energy.
In the SCC clusters, Tgas is roughly equal to TDM suggesting either that a perfect balance
between cooling and heating is established, permitting the radiative losses of the only
amount of energy in excess with respect to the one associated to the DM, or that heating
is episodic and we are observing structures in their undisturbed phase.
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In a similar manner, Voit et al. (2002) have argued that the entropy responsible for the
break of the self similarity is not a global property of the ICM, but rather a property set
by radiative cooling: they point out that the observed entropy value at the core radii of
groups and clusters is near to the entropy at which tcool ≈ tHubble.
A model to explain the observed features in the entropy profile is that proposed by Voit

& Bryan (2001). They show how cooling and supernovae heating act to eliminate high
compressible gas with S < Sc, being Sc the cooling threshold, from the X-ray phase.
Much of the condensation and the feedback is prior of the epoch of clusters’ formation,
balancing these processes reciprocally: more the cooling is effective, more the star
formation is active with release of energy to the ICM and consequent reduction of the
cooling itself. This picture is likely not wholly adequate, leading to a very large isentropic
core in the entropy profiles, which are not observed.

4.5 Summary and conclusions

We have presented Chandra observations of the entropy profiles and scaling properties
of a sample of 24 galaxy clusters spanning the redshift range 0.14–0.82 and classified
accordingly to their central cooling time in strong (SCC), intermediate (ICC) and non-
cooling core (NCC) systems. We have performed a spatially resolved spectral analysis
and recovered the gas density, temperature T and entropy S profiles at high spatial
resolution and in a non-parametric way. We have shown that those entropy profiles are
remarkably similar outside the central regions with a typical entropy level at 0.1R200 of
100−500keVcm2, and have a central entropy plateau covering a wide range of values (∼
a few−200keVcm2), with the highest values associated to NCC objects. The CC clusters
show larger values of the entropy than the one measured in nearby luminous systems,
with a more significant deviations observed at 0.1R200 than at 0.3R200 with respect to the
best-fit results in Pratt et al. (2006), suggesting that the core in our CC objects are not yet
well defined from the cooling processes.
We have studied the radial behaviour of the temperature of the gas (Tgas) and of the

dark matter (TDM). We have found that Tgas is always higher than TDM: for the SCC
clusters, the difference of temperature ∆kT = kTgas − kTDM is negligible, while it is large
for the non-cooling core clusters (up to ∼10 keV per particle), with ∆kT (r) that declines
outwards.
We conclude that none of the models of (pre-)heating and cooling discussed in literature

is able to explain alone the observed trends of the entropy profiles and of ∆E(r). Likely,
we have to require an interplay of these processes. A scenario with shock dominated
collapse and preheating in the primordial filaments might account for most of the extra-
gravitational energy, as confirmed by the slopes of the entropy profiles near the theoretical
value of 1.1 expected in the accretion shock picture (Tozzi & Norman, 2001). As
described in Sect. 4.4.1, this should be an energetically favorable mechanism compared
to the in situ heating, amplifying significantly the final energy Efin of the post-shocked
particles. On the other side, gentle, sub-sonic heating processes, e.g. supported from
AGN’s jets, can account for many of the observed properties, but not for excess of energy
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still measured outside the core (see Sect. 4.3.3).
The relaxed environment of SCC clusters is required to enhance the central metal

abundance and total iron mass in correspondence of low entropy regions (see Sect. 4.3.4).
There, the cooling is so efficient to remove on short time scale the excess of energy per
particle of the ICM, permitting (i) Tgas to approach the dark matter value TDM and (ii) the
other physical parameters used in describing the entropy profile, like, e.g., S0, rbreak, to
vary.
Overall, the different observed behaviour of the entropy profiles of SCC, ICC and NCC

massive clusters suggest that we are observing the end products of the hierarchical model
for structure formation. They represent different stages of the relative relevance of heating
and cooling in regulating the feedback that shapes the ICM distribution: galaxy clusters
are identified either as NCC objects when heating, probably due to a residual merging
activity and feedback from AGNs triggered from the merger itself, is predominant, or as
SCC systems when the radiative losses are energetically prominent, being ICC objects an
intermediate case between the two.





Chapter 5

Bayesian inference in X-ray galaxy
clusters with Sunyaev Zel’dovich
measurements - Physical
properties of the gas out to R200

T his chapter aims at presenting a Bayesian approach to combine X-ray and Sunyaev
Zel’dovich (SZ) data, observed with Chandra and the Cosmic Background Imager (CBI),
respectively. We show that combining X-ray and SZ allows to study the outskirts of the

clusters out to R200, well beyond the regions accessible with X-ray observations (≤ 0.3− 0.5R200),
thanks to the great field of view of CBI and the strong dependence of the SZ interferometric signal on
the external regions. In particular we show how it is possible to recover the density, the temperature
and the entropy of the gas in the outskirts in a non-parametric way through a Reversible Jump Markov
Chain Monte Carlo technique (RJMCMC).

5.1 INTRODUCTION
Although in the last few years the modeling of the formation of the structures in the
Universe has made enormous progresses, a complete understanding of the connections
between the physical properties and the observables of galaxy clusters is far from being
reached.
The observational X-ray data of the last years showed that the physics of the intracluster

medium is much more complex than it was thought, highlighting several discrepancies
with theoretical predictions that are currently being analyzed with hydrodynamical
simulations.
On one side, X-ray observations have proved that the so–called self-similar model

(Kaiser , 1986; Evrard & Henry, 1991, and Sect. 3.4), where the gravity is the only
responsible for the physical properties of galaxy clusters, is not able to describe the
scaling relations of galaxy clusters, especially for low-mass systems: this indicates that
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the gravitational collapse is not the only process that significantly influences the formation
of structures. It is widely believed that some sort of feedback is able to affect the
thermodynamics of the gas and that a complete understanding of this aspect will solve the
discrepancy between observations and theory. The recent improvements in the physical
modeling of the ICM with simulations (the addition of non-gravitational physics, e.g.
radiative cooling, star formation, feedback from supernovae and AGNs, galactic winds)
were able to explain the breaking of the self-similarity but could not solve the problem
completely.

Beside the X-ray analysis the thermal SZ effect (Sunyaev & Zeldovich, 1970) offers
a powerful tool for investigating the same physical properties of the ICM, being the
electron component of cosmic baryons responsible of both the X-ray emission and the
SZ effect. The advantage of the latter on the former is the possibility of exploring clusters
at higher redshift, because of the absence of the cosmological dimming. Moreover,
since the SZ intensity depends linearly on the density, unlike the X-ray flux, which
depends on the squared density, with the SZ effect it is possible to obtain estimates of
the physical quantities of the sources reducing the systematic errors originated by the
presence of sub-clumps and gas in multi-phase state and to study the physics of the ICM
in a complementary way to the X-ray analysis. A joint X-ray and SZ analysis allows
to study the external volumes of the clusters well beyond the regions resolved with X-
ray observations (≤ 0.3− 0.5R200), thanks to the great field of view of SZ bolometers
like CBI (∼ 45 arcmin) and the strong dependence of the SZ interferometric signal on the
external regions. So it is possible to study the radial behaviour of the deprojected physical
cluster properties, like temperature, density, entropy, gas mass and total mass up to the
virial radius.

In this Chapter we aim at understanding the properties of the ICM and DM in the
outskirts of the galaxy clusters. In particular, we will concentrate on the distribution
of matter in galaxy clusters, which is a fundamental question on structure formation in
an expanding universe, so as to understand which of these models better reproduces the
observed physical properties. Early works on this matter have been addressed just on
simulations (see Merritt et al., 2006; Roncarelli et al., 2006), since just X-ray data cannot
observe the outskirts of the clusters, and through a likelihood method: on the contrary we
adopt a more convenient Bayesian analysis.

The Chapter is organized as follows. In Sect. 5.2 we discuss why it is possible to study
the outskirts of galaxy clusters through interferometric Sunyaev-Zel’dovich data. Sect.
5.3 is devoted to a general discussion about the Bayesian statistics, while in Sect. 5.4 we
describe the cluster sample and the analysis adopted. In Sect. 5.5 we present a test of our
Bayesian X-ray+SZ method on mock observations, while in Sect. 5.6.1 we summarize our
main conclusions. We leave to the Appendix B the discussion of some technical detail of
our method.
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5.2 The Sunyaev-Zel’dovich effect
5.2.1 Determination of the Sunyaev-Zel’dovich quantities
In Sect. 2.4 we have shown that the thermal SZ effect is a very small distortion of the
spectrum of the cosmic microwave background (CMB), due to the Inverse Compton
scattering between the photons of the CMB and the hot (∼ 107 − 108 K) electrons of
the ICM trapped in the gravitational potential well of the dark matter halo (Sunyaev &
Zeldovich, 1970; Birkinshaw, 1999). The magnitude of this effect can by evaluated by
considering the Compton parameter y(θ), defined as

y(θ) =
σT

mec2

∫
Pe(

→r )dl , (5.1)

which is proportional to integral of the electronic pressure Pe of the ICM along the line of
the sight l (see Sect. 2.4).
We also remember that the best fit models are usually computed using visibilities (i.e.

data in the Fourier domain) instead of intensity (i.e. data in the image domain). The
visibility V (u,v) in the uv−plane is the Fourier transform (F T ) of the brightness I(ϕ,θ)
(Sect. 2.4). In the case of radial symmetry, where the F T transform becomes the Hankel
transform (H T ), V (u,v) reads:

V (
→u ) =

∫ ∞

−∞
d
→
ϕB(

→
ϕ) I(

→
ϕ)ei2π

→
ϕ·

→u =

2π
∫ ∞

0
B(ϕ) I(ϕ)Jk

0(2πϕu)ϕdϕ . (5.2)

Given the poor coverage of the uv−plane of the actual SZ observations, the best way to
constrain the physical parameter is to work in the Fourier domain, by performing an H T
of the X-ray model and comparing it with the observed visibilities.

5.2.2 Why to study the outskirts through interferometric Sunyaev-Zel’dovich
data?

Here we discuss briefly why SZ data can constrain the physical properties of the gas
and DM in the outskirts of galaxy clusters. As in the last years a lot of X-ray data
becomes available, most of the observational research in galaxy clusters is mainly based
on X-ray observations. Nevertheless X-ray observations are subject to several limitations:
i) the cosmological dimming of the X-ray surface brightness (∼ (1 + z)−4); ii) difficulty
in observing the external regions (∼> 1/3 − 1/2 of the virial radius) of clusters; iii)
systematics in the reconstructed physical properties due to wrong background subtraction.
All of these problems can be overcome by studying the Sunyaev Zel’dovich effect (SZ).

In fact advantages of dealing with SZ data are:

1. Bias-free determination of the physical properties. Since the SZ intensity depends
linearly on the density, unlike the X-ray flux, which depends on the squared density,
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with the SZ effect it is possible to obtain estimates of the physical quantities of the
sources reducing the systematic errors originated by the presence of sub-clumps and
gas in multi-phase state.

2. Independence of the SZ signal of z. The advantage of the SZ effect on the X-ray
measurements is the possibility of exploring clusters at higher redshift, because of
the absence of the cosmological dimming.

3. Contamination of the unresolved sources of background. The contribution of
unresolved sources of background below the detection limit of the CBI to the total
noise is equal to zero in SZ interferometric data, unlike the X-ray ones. So working
on the Fourier domain instead of the image one allows to overcome the problem of
the contamination, for example, originated by the cosmic filaments along the line
of the sight which have angular dimension ∼> 1/(2ui) ∼ 45′, being ui the shortest
baselines of CBI.

4. Properties of the background. In interferometric data the noise is not due to
unresolved sources of background, as in X-ray data, but just to thermal noise, i.e.
due to the electronic components of the instrument. So in an X-ray source we must
subtract a background of value µx ±σx to the data, while in a SZ interferometric
dataset we must not subtract any background, being the thermal noise equal to
0± σSZ, i.e. with mean value equal to zero. This is very important because, for
example, the subtraction of the noise can lead to large systematic errors in the
determination of the physical properties of the gas near the boundary of X-ray
observations, due to uncertainties in the determination of the level of the same X-ray
background: using interferometric data avoids this problem.
In this sense, by analyzing mock clusters (see Sect. 5.5), it is interesting to show
that just ∼ 5 per cent of the total X-ray photons of a cluster is outside Rspec, and
moreover it is unaccessible, being overwhelmed by the X-ray background.

5. Energy distribution. First, by considering Eq. (5.2), we see that the zero-th baseline
V (0) can be rewritten as:

V (0) =

∫ ∞

−∞
d
→
ϕB(

→
ϕ) I(

→
ϕ) ' D−2

a

∫

V
P dV , (5.3)

where in the second equality we have neglected the effects of the primary beam,
and where Da is the diameter distance. So the physical meaning of V (0) is that the
zero-th baseline is proportional to the total energy budget of the clusters. More in
general, the shortest baselines ui of CBI near to the zero-th baseline are sampling
regions in the image plane on angular scales ∼ 1/(2ui) ∼< R200/Da, and therefore
are strictly related to the total energy budget of the clusters. In Figure 5.2.2 we plot
the cumulative energy function E(< r) normalized to E200 as a function of r/r200.
As we can see, just ∼ 60 per cent of the total energy is accessible to the X-ray
observations (Rspec ∼< 0.3− 0.5R200), while the remaining part is confined in the
outskirts, accessible just through SZ data (the SZ boundary is ∼ 2.5 times the X-ray



5.3 – Bayesian inference 87

Figure 5.1. Cumulative energy function normalized to E200 as a function of r/r200. The dashed line represents the
X-ray boundary, while the dot-dashed refers to the SZ boundary.

one). So the more we are observing on larger angular scales till ∼ R200/Da, the more
we are collecting an higher total energy E(< r), i.e. the more the signal Vi on the
shortest baselines ui (and the signal to noise ratio of Vi) increases, being the errors
on Vi (the thermal noise) roughly independent of the angular scale. So we have that
the SZ boundary is ∼ 2.5 times the X-ray one (see Figure 5.2.2).
The above physical behaviour is wholly antithetic to the one of the brightness
in X-ray data, in the image domain: the X-ray brightness drops very fast by
moving towards Rspec like ∼ n2Λ(T ), so we have that near the X-ray boundary the
significance of our measurements is low, possibly affected by systematics due to non
accurate estimates of the X-ray background.

5.3 Bayesian inference
5.3.1 The Bayes theorem

We start by reviewing briefly the basic principles of Bayesian inference. Given some
dataset D, suppose we are interested in estimating the values of a set of parameters θ

in some underlying model of the data. For any given model, one may write down an
expression for the likelihood P(D|θ,Hi) of obtaining the data vector D given a particular
set of values for the parameters θ. In addition to the likelihood function, one may impose a
prior P(θ|Hi) on the parameters, which represents our state of knowledge (or prejudices)
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regarding the values of the parameters before analysing the data D. Bayes’ theorem then
reads,

P(θ|D,Hi) =
P(D|θ,Hi)P(θ|Hi)

P(D|Hi)
, (5.4)

that is
Posterior =

Likelihood×Prior
Evidence , (5.5)

which gives the posterior distribution P(θ|D,Hi) in terms of the likelihood, the prior and
the evidence P(D|Hi) (which is also often called the marginalized likelihood).
Two levels of inference can be often distinguished in the process of data modeling. At

the first level of inference we assume that a particular model is true, and we fit that model
to the data, i.e. we infer what values its free parameters should plausibly take, given the
data. The results of this inference are often summarized by the most probable parameter
values, and error bars on those parameters. This analysis is repeated for each model. The
second level of inference is the task of model comparison. Here we wish to compare
the models in the light of the data, and assign some sort of preference or ranking to the
alternatives. We write down the Bayes’ theorem for two levels of inference described
below, so as to see explicitly how Bayesian model comparison works.

1. Model fitting. At the first level of inference, we assume that a model, Hi, say, is
true, and we infer what the model’s parameters θ might be, given the data D. Using
Bayes’ theorem, the posterior probability of the parameters θ is given by Eq. (5.4):
thus one normally works instead with the ‘unnormalised posterior’

P(θ|D,Hi) = P(D|θ,Hi)P(θ|Hi) , (5.6)

where we have written P to denote the fact that the probability distribution on the
left-hand side is not normalized to unit volume. The normalizing constant P(D|Hi)
is commonly ignored, since it is irrelevant to this level of inference, i.e., the inference
of θ; but it becomes important in the second level of inference, and we name it the
evidence for Hi.

2. Model selection. At the second level of inference, we wish to infer which model is
most plausible given the data. To rank alternative models Hi, a Bayesian approach
evaluates the evidence P(D|Hi). The posterior probability of each model is:

P(Hi|D) =
P(D|Hi)P(Hi)

P(D)
, (5.7)

where P(D) =
∑

i P(D|Hi)P(Hi). Notice that the data-dependent term P(D|Hi) is
the evidence for Hi, which appeared as the normalizing constant in (5.7). For the
model Hi, the probability density for an observed data vector D is given by

P(D|Hi)=

∫
P(θ|D,Hi)dθ=

∫
P(D|θ,Hi)P(θ|Hi)dθ . (5.8)
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The second term, P(Hi), is the subjective prior over our hypothesis space, which
expresses how plausible we thought the alternative models were before the data
arrived. Assuming that we choose to assign equal priors P(Hi) to the alternative
models, models Hi are ranked by evaluating the evidence, being

K = P(Hi|D)/P(H j|D) = P(D|Hi)/P(D|H j) , (5.9)

where K is called Bayesian factor. A value of K > 1 means that Hi is more strongly
supported by data under consideration than H j.

So we can rewrite the Bayes’ theorem as:

Prior×Likelihood = Posterior×Evidence
assumptions & measurements ⇒ inference(I,II) (5.10)

where with inference(I,II) we indicate the above two levels of inference.

5.3.2 Model fitting: the MCMC algorithm
The Component-Wise Hastings algorithm

A Markov chain is a series of random variables, x1 ; x2; . . ., xt in which the distribution
of xt+1 at a given time t +1 is mediated entirely by the value of xt at time t. The Markov
Chain Monte Carlo (MCMC) method is a robust technique to build these chains and it
can be used to obtain the probability distribution function of model parameters based on
observational data (Skilling, 1998; Neal, 1993).
To construct the Markov chain, we choose candidate parameter values xt =

(xt
1,xt

2, ...,xt
p) ∈ R

p, drawing samples xt
i from the whole allowed parameter space by

assuming a convenient distribution πi of these proposal density. When we have a
sufficiently high number of iterations, the frequency of the occurrence of the parameter
tends to the true probability distribution function (e.g. Gilks et al., 2003; MacKay, 1997),
so we can determine the expectation values and their errors by considering the percentiles
of the distribution.
Here we will concentrate on the Component-Wise Hastings algorithm (Levine et al.,

2005), to determine the distribution of the best-fit parameters. The Component-Wise
Hastings algorithm proceeds by splitting the state vector into a number of components
and updating each in turn by a series of Component-Wise Hastings transitions. For
simplicity we put x = xt . Suppose that we split the p-dimensional vector x into k ≤ p
components, so that x = (x1, ...,xk) ∈ R

p. Having selected component xi to be updated,
the Component-Wise Hastings transition kernel involves sampling a new state x′ =
(x1, ...,xl−1,y,xl+1, ...,xk), sampling y from the conditional distribution of xl given the
other variables: if we denote by π(xl | x(l)) the conditional distribution of xl , given the
values of the other components x(l) = (x1, ...,xl−1,xl+1, ...,xk), i = 1, ...,k, 1 < k ≤ p, then
a single Component-Wise Hastings transition updates xl by sampling a new value for xl
from π(xl | xl

(l)). To complete an entire Component-Wise Hastings transition from a state
xt to xt+1 we need to pick new values for each component in turn, given the values for
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the others. We remand to the literature for a detailed discussion about the acceptance
probability of a new state xi to be updated (Levine et al., 2005).
The basic operation used in the Component-Wise Hastings sampling algorithm is the

generation of a random value for some component of the state, xl , from its conditional
distribution given the current values of all other components, x(l). The speed of
the algorithm depends crucially on whether this operation can be done quickly. The
conditional distribution π(xl | x(l)) can be expressed through a probability density function
f = f (xl,Cl,(l)), i.e. with expectation value xl and covariance Cl,(l)), being C given by:

C =




σ2
1 ρ1,2 σ1σ2 ... ρ1,p σ1σp

ρ2,1 σ2σ1 σ2
2 ... ρ2,p σ2σp

... ... ... ...
ρp,1 σpσ1 ρp,2 σpσ2 ... σ2

p


 , (5.11)

where σ2
l the variance associated with xl , ρi, j the coefficient of linear correlation between

xi and x j. So the usual approach is to simply calculate the joint probabilities f (xl,Cl,(l))
of all the states in which xl takes on its various possible values, while the other x(l) remain
fixed at their current values. The function f (xl,Cl,(l)) can be used to construct a proposal
probability density function in the Component-Wise Hastings sampler. In Appendix B.1
we present a general method to generate p correlated random numbers which enter in
f (xl,Cl,(l)).

Annealing schedule

Looking at Eq. (5.5) we see that in the Bayesian framework the chain xt should converge
to the posterior probability, starting from the prior, when the system will reach the
equilibrium. Unfortunately, the states of xt can be regarded as samples from the stationary
distribution given by the posterior only after some initial burn-in period required for the
chain to reach equilibrium.
Here we consider an approach, defined annealing, which allows us to i) define the

length of the burn-in period; ii) evaluate the Bayesian evidence; iii) sample larger
regions of the posterior to better estimate the parameters. The general idea is to use the
same MCMC sampling in the burn-in period to evaluate the evidence, without adding
further computational costs. In this framework we work with a modified likelihood
Pλ(D|θ,Hi), being λ a numerical coefficient. Setting λ = 0 switches the likelihood off
(P0(D|θ,Hi) = 1), so the modified posterior is just the prior. Setting λ = 1 switches
the likelihood on (Pλ(D|θ,Hi) = likelihood), so the modified posterior is simply the true
posterior. Increasing λ mildly from 0 to 1 according to some annealing schedule, we can
construct a set of finite steps steps between:

prior −−→ posterior
λ = 0 λ = 1 (5.12)

So this allows the chain to sample from remote regions of the posterior distribution and
to arrange for the end of the burn-in period to coincide with the point at which λ reaches
unity.
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Here we present an updated version of the annealing schedule proposed by Geman &
Geman (1990):

t1, ..., tm︸ ︷︷ ︸
∆t1

λ(∆t1)

, tm+1, ..., t2m︸ ︷︷ ︸
∆t2

λ(∆t2)

, ......, tn−m+1, ..., tn︸ ︷︷ ︸
∆t p

λ(∆t p)

(5.13)

being ti the generic time at which the state xi refers, and ∆t j = tk+m−1 − tk the generic
interval of time at which it is associated the transition from the initial state xk at t = tk
to the final one xk+m−1 at t = tk+m−1. In particular for λ(t) we consider the following
schedule:

λ(∆t) =

{
∝ log(∆t), λ(∆t) ∈ [0,1] for ∆t ≤ t∗
1 for ∆t > t∗ (5.14)

where with t∗ we have indicated the length of the burn-in period.
We define the transitions involving a change of state from xt to xt+m−1, with xt and

xt+m−1 ∈ ∆ts, as minor chains, the ones involving a change of state from xk to xk+1

belonging to contiguous intervals of time ∆t i and ∆t i+1, as major chains. So we can
think a MCMC algorithm as a succession of finite steps, the major chains, with a non-
stationary distribution from the prior to the posterior (Eq. 5.12), while an intermediate
transition, a minor chain, is characterized by the same value of λ(∆t), i.e. for a sufficient
number of iterations m (m ∼ 103) it tends to have a stationary distribution intermediate
between the distribution of prior and the posterior depending on the value of λ(∆t).

The RJMCMC algorithm

In the classical Bayesian framework we assume particular models to fit the data, and
to perform the two level of inference described in Sect. 5.3.1. In this picture every
model Hi ∈ R

p is known a priori, and obviously it is known its dimensionality p as well.
Sometime it is necessary to specify a model in such a way that the number of parameters p
of the model is, in itself, a parameter: so we would like to infer H ′ = (H , p) ∈ R

p×{p}.
Green (1995) proposed a general framework, known as the reversible jump MCMC
(RJMCMC) method, to solve the above problem. The general idea is to propose a new
model H ′, described at a given time t by a state (xt , p) = (xt

1,xt
2, ...,xt

p, p) ∈ R
p ×{p},

by attempting steps between state spaces of different dimensionality, say, from (xt , p)
to (yt ,r) ∈ R

r × {r}. If the model (H ,r) at time t is proposed, a reversible move
has to be considered in order to preserve the detailed balance equations of the Markov
chain. This transition is implemented by drawing a vector of continuous random variables
u, independent of xt and with proposal distribution q(u), and setting the new state
(yt ,r) = d((xt , p),u), where d is an invertible and deterministic function.
Here we consider just the so called Birth-and-death transitions, where we just increase

or decrease the number of parameters by one parameter xt
r, r ∈ {p − 1, p + 1}. For

the above deterministic transformation we have: u = xt
p+1, d := (xt

1,xt
2, ...,xt

p, p) →

(xt
1,xt

2, ...,xt
p,xt

p+1, p + 1), y = (xt
1,xt

2, ...,xt
p,xt

p+1) and r = p + 1 for the birth transition.
Similar considerations hold for the death transition. It is possible to show (see Umstätter



92 CHAPTER 5

et al., 2005) that the acceptance probability for the birth transition is:

αbirth = min
{

1,
P(p+1)P(xp+1|H )P(D|y, p+1,H )

P(p)P(D|x, p,H )q(u)

}
(5.15)

and that for the death transition is:

αdeath = min
{

1,
P(p)P(D|x, p,H )q(u)

P(p−1)P(xp−1|H )P(D|y, p−1,H )

}
(5.16)

being P(p) our prior on the number of components: we set P(p) = P(r).
We use a normal proposal distribution N(0,σ2) for q(u). To determine the values for σ2

we set σ2 roughly equal to the noise level of the current status y. Transitions characterized
by tighter proposal distribution would have a negligible effect on the likelihood but they
would be more easily rejected (accepted) due the higher values of the proposal distribution
for birth (death) transitions; on the other hand, a larger proposal distribution would be still
likely rejected because the larger areas of the allowed parameter space with low values of
the likelihood.
We use a uniform proposal distribution U(0,σ′2) for the prior P(xr|H ), with σ′2 suitable

value of the allowed range of xr.
An advantage of the RJMCMC over other evidence-based stopping criteria, i.e. for

determining the number of signals they consider the value of the Bayesian factor K =
P(D|(H , p + 1))/P(D|(H , p)) (see Eq. 5.9), is that the RJMCMC does not require
any evidence calculation, which is computationally very expensive. Moreover, a further
interesting possibility is to describe a physical phenomenon in a non-parametric way: for
example, for the Fourier theorem we can describe a signal as sum of sinusoidal functions,
being the amplitudes, frequencies and the total number of sinusoids the parameters to be
estimated through a RJMCMC method.
We observe that the RJMCMC method provides a general framework, encompassing

other algorithms. For example, when we consider only subspaces of the same dimension,
the RJMCMC algorithm reduces to the Metropolis-Hastings algorithm.

5.4 The dataset and analysis

We have considered 6 objects (A2204, A2163, A85, A401, A478, A1651) at intermediate
redshift (z ∼ 0.1− 0.2) for which we have X-ray data coming from the Chandra archive
and SZ ones from the Cosmic Background Imager (CBI). For four of these sources (A85,
A401, A478, A1651) we also have the density profiles coming from the ROSAT archive.
From the images of the ROSAT Position Sensitive Proportional Counter (PSPC) we have
recovered the density profiles by deprojecting the counts in the 0.4 − 2.4 keV band.
An advantage of introducing ROSAT data is to have brightness profiles, and so density
profiles, sampled up to large radii (∼ 0.7R200), much larger than the region mapped by
Chandra (∼< 1/3 − 1/2R200); a disadvantage to deal with ROSAT data is that, unlike
Chandra, it is not possible to recover temperature profiles.
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Details of the X-ray analysis can be found in Chapter 2. Here we approach this problem
from a new direction, where we have also SZ data, which can provide further constraints
on the physical parameters in the outskirts of galaxy clusters, by considering Bayesian
inference through X-ray and SZ data instead of a χ2 statistic just on X-ray data, and by
implementing a MCMC to determine the distribution of the best-fit parameters, instead of
a grid in the space of the parameters.
As we have seen in Sect. 5.3.1, to perform the two level of inference we are interested on

we need the unnormalized Bayesian posterior P(θ|D,Hi). The general idea of the method
we have developed is to start just by considering X-ray data, so as to have a first estimate
of the parameters concerning the DM profile, which the X-ray data can provide thanks
to their good quality, and then to perform a joint X-ray+SZ analysis in the likelihood, as
shown below:

Unnormalised Posterior = Likelihood︸ ︷︷ ︸
joint X-ray+SZ

× Prior︸︷︷︸
just X-ray

(5.17)

to recover the unnormalized posterior which can provide the two above levels of inference.

5.4.1 The prior: a X-ray analysis only

For details on the X-ray data reduction we remand to Chapter 2. Here, we remind the main
characteristics of the X-ray analysis only adopted to recover the radial distribution of the
ICM and the DM investigated in the present Chapter, while in Sect. 5.4.2 we present a
full description of the combined X-ray and SZ analysis.
Assuming a spherically symmetric emission, (i) the electron density ne(r) is recovered

both by deprojecting the surface brightness profile and the spatially resolved spectral
analysis obtaining a few tens (the total number of radial bins is between 24 and 239)
of radial measurements; (ii) once a functional form of the DM density profile ρ = ρ(r,q),
where q = (q1,q2, ...qh) are free parameters of the DM analytical model, and the gas
pressure P0 at Rspec are assumed, the deprojected gas temperature, T (q,P0), is obtained
by integration of the hydrostatic equilibrium equation:

P(r,q,P0) = P0 −

∫ r

Rspec
ngas(s)µmH

G Mtot(q,s)
s2 d s , (5.18)

where µ = 0.6 is the average molecular weight, mH is the proton mass, Mtot(q,r) is given
by:

Mtot(q,r) = MDM(q,r)+Mgas(r,Sne) (5.19)

and the gas pressure P0 at Rspec is left as free parameter. So T (q,P0) = P(q,P0)/ngas
expressed in keV units. The gas mass has been calculated from the deprojected gas density
up to Rspec, while beyond Rspec we have assumed an analytical model (see Morandi et al.,
2007, for further details): the vector Sne represents its best fit parameters.
To constrain the 3 free parameters P = (q,P0) by assuming a NFW model for the DM

(Navarro et al., 1997), we have proceeded to maximize the likelihood (Eq. 5.20) through a
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MCMC method, by comparing the observed temperature profile T ∗
proj,m in a lower number

n∗ of bins (with n∗ ∼ 4− 10) with the projection of Tj(q,P0), Tproj,m(q,P0), by applying
the spectroscopic-like temperature definition (Mazzotta et al., 2004):

L∗
x =

exp
{
−χ2/2

}

(2π)n∗/2(σ1 σ2 ...σn∗)
, (5.20)

with χ2 equal to:

χ2 =

n∗∑

m=1

(Tproj,m(q,P0)−T ∗
proj,m)2

σ2
T ∗

proj,m

(5.21)

So we can determine some physical parameter of the cluster, T j = Tj(q,P0) and Pj =
Pj(q,P0) till Rspec, and M(< R∆) = M(q)(< R∆), just by relying on the spherical geometry
assumption, on the hydrostatic equilibrium equation and on robust results of the numerical
simulations on the DM profiles.
In particular, just through a X-ray analysis only we can have a first estimate of the

marginal distribution of q given the parameters P = (q,P0), which we can use to put
constraints through the Bayesian prior on the parameters of our DM models.
We observe, however, at this point we still have a strong degeneracy of P = (q,P0), due

to the small dimension of the observed X-ray region (Rspec ∼ 1/3−1/2 R200).

5.4.2 The likelihood: a joint X-ray+SZ analysis
The SZ effect and the X-ray emission both depend on the properties of the hot cluster
plasma, because the electrons of the cosmic baryons are responsible both of the X-
ray emission and the SZ effect. In this sense we construct the likelihood performing a
joint analysis for SZ and X-ray data, that describes all the relevant spatial and spectral
characteristics in the image domain, and spatial characteristics in the Fourier one, to
constrain the properties of the physical parameters of the ICM and of the underlying
DM density profile.
We use the estimate of (q,P0) in the Bayesian prior as proposal distribution to start a new

MCMC simulation and to jump from the same prior to the posterior, where we account for
the SZ data: this makes the calculation faster, because the X-ray data alone can constrain
(q,P0).
The method works by constructing a joint X-ray+SZ likelihood:

L = Lx ·Lsz (5.22)

being Lx and Lsz the likelihoods coming from the X-ray and SZ data, respectively (see
below).
We observe that a X-ray analysis only can determine the density till Rspec. SZ data can,

in principle, constrain the pressure beyond Rspec, being the field of view of CBI better
than that one of Chandra. Anyway we point out that if we add the hydrostatic equilibrium
hypothesis, assumed an analytical model for the DM, and some parameterization for the
density in the outskirts, we are able to measure both the density and the temperature
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beyond Rspec. We remand to Sect. 5.4.3 for a detailed description of the parameterization
of the density in the outskirts.
Assuming a NFW model for the DM (Navarro et al., 1997), we apply the hydrostatic

equilibrium equation:

P(r,q,Psz) = Psz −

∫ r

Rsz

ngas(s)µmH
G Mtot(q,s)

s2 d s , (5.23)

being Psz (this is a free parameter) and Rsz the pressure and the linear size of the SZ
boundary, respectively; Mtot(q,r) is given by Eq. (5.19), with Sne equal to the parameters
of the density in the outskirts (Sect. 5.4.3).
So we have the density ngas,i(Sne), temperature Tj(q,Psz,Sne) and therefore pressure

profile Pj(q,Psz,Sne) for the i− th MCMC step up to Rsz. The proposed sample of the
parameters becomes P = (q,Psz,ε,Sne), where ε is a factor of the order of unity which
accounts for wrong assumptions on the cosmological model or on the geometry of the
cluster in the determination of the theoretical parameters (see Sect. 5.4.4).
By projecting the pressure profile (Eq. 5.23) we obtain the theoretical Compton

parameter y = y(
→
P ,ϕ) (Eq. 5.1); by performing its H T (Eq. 5.2) and using Eq. (2.22)

we obtain the theoretical visibility Ṽ ((q,Psz,Sne), u). We define a corrected theoretical
visibility V (P ,u) = εṼ ((q,Psz,Sne), u).
So Lsz becomes:

Lsz =
exp
{
−1

2 [(Vm(P )−V ∗
m)]tC’−1[(Vm(P )−V ∗

m)]
}

(2π)m∗/2|C’|1/2 , (5.24)

where C’ is the covariance matrix referred to the SZ data (it has an expression similar to
Eq. (5.11), but it refers to SZ measurements), V ∗

m is the m− th observed visibility, Vm(P )
the theoretical one, m∗ the total number of visibilities.
For Lx holds an expression similar to Eq. (5.20), with χ2 given by:

χ2 =

n∗∑

m=1

(Tproj,m(q,Psz,Sne)−T ∗
proj,m)2

σ2
T ∗

proj,m

(5.25)

being Tproj,m(q,Psz,Sne) the convenient projection of Tj(q,Psz,Sne).
So we can think the parameter vector P = (q,Psz,ε,Sne) in this way:

P =





gas properties in the outskirts Psz,Sne
dark matter density q
geometry/cosmology ε

(5.26)

We start by considering the gas properties in the outskirts, and then we will explore the
constraints on the DM, and at last the possibility of determining the cluster geometry and
cosmological parameters.
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Figure 5.2. Example of joint X-ray and SZ analysis (Eq. 5.22). In the upper panel we display the two quantities
which enter in the Eq. (5.25) in the spectral deprojection analysis to retrieve the physical parameters: the
observed spectral projected temperature T ∗

proj,m (big circles with errorbars) and the theoretical projected temperature
Tproj,m(q,Psz,Sne ) (triangles). We also show the theoretical deprojected temperature Tj(q,Psz,Sne) (points), which
generates Tproj,m(q,Psz,Sne ) through convenient projection techniques. The dashed vertical line represents the X-ray
boundary. In the lower panel we display the two quantities which enter in the Eq. (5.24): the observed visibilities V ∗

m
(big points with errorbars) and the theoretical one Vm(P ) (solid line). The dashed line refers to Ṽ ((q,Psz,Sne), u). The
dot-dashed vertical line refers to the above X-ray boundary in the Fourier domain.

5.4.3 Gas properties in the outskirts
As seen in the previous section, an X-ray analysis can determine the density only out to
Rspec. By accounting SZ data we can improve our information of the cluster by studying
regions out to R200. To measure the density in the outskirts we observe that we can always
define an exponent α(r), α(r) ≡ −d lnngas(r)/d lnr: the general idea is to recover α(r)
as series expansion, i.e.

α(r) = α0 +α1z+α2z2 + ...+αhzh , (5.27)

with z = (r − Rspec)/Rspec, α0 = α(Rspec) and under the condition d lnα(r)/d lnr ≥ 0
and being h the unknown number of components. We point out that the density has
a power-law behaviour in the external regions, with α(r) mildly increasing with the
radius (α(r) ≈ 1.5− 3 for r ∼> Rspec), so we can likely recover it with a few terms of
the above series expansion. So the problem is to recover (α0,α1, ...,αh,h): a convenient
approach has been presented in Sect. 5.3.2 through a reversible jump MCMC method, in
particular through Birth-and-death transitions (see Sect. 5.4.5 for details on the parameter
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sampling). As pointed in Sect. 5.3.2, this gives us a non-parametric description of
the density in the outskirts, being the series expansion in Eq. (5.27) applicable to any
convenient function.
So, if we indicate with nCh(r) (nRo(r)) the measured gas density through an X-ray

analysis with Chandra (ROSAT) inside RCh
spec (RRo

spec), we can recover the density up to
∼ R200:

ngas(r)=





nCh(r) r ≤ RCh
spec

nRo(r) RCh
spec ≤ r ≤ RRo

spec

n(RRo
spec)

(
r

RRospec

)−α(r)
r > RRo

spec

(5.28)

with always RCh
spec ∼ 1/3− 1/2R200 ∼< RRo

spec ∼ 0.7R200. For the two sources A2204 and
A2163, for which we do not have ROSAT data, we describe the density beyond RCh

spec just
through the above RJMCMC method.

5.4.4 Constraints on the cosmology/geometry
Another interesting key point is the introduction of the parameter ε. We assume that the
observed Compton parameter q = q(r) and the theoretical one p = p(r) are related by the
following expression:

q = ε p = (εstr + εcosm) p . (5.29)
being εstr the uncertainty due to a wrong assumption about the geometry, εcosm =

(Dtrue/Dass)
1/2 due to the uncertainties about the cosmology entering in the assumed

diameter distance Dass. So the MCMC algorithm can provide us information about the
geometry and the cosmology, being ε a direct output of the algorithm. In other words, if
we consider a sample of clusters, we have < ε >=< (εstr +εcosm) >≈< εcosm >, being the
systematic errors due to the wrong geometry symmetric if we consider a complete sample
of clusters; if we assume that the errors about Ω and Λ are negligible compared with the
one on H, εcosm = h−1/2, and therefore we can derive directly the Hubble constant like an
output of the MCMC algorithm.

5.4.5 The unnormalized posterior: model fitting
We start by pointing out that we used the annealing schedule presented in Sect. 5.3.2,
through a sequence of minor (stationary statistical systems) and major chains (non-
stationary statistical systems).
We remember that in the Component-Wise Hastings sampler (Sect. 5.3.2) we split the

p-dimensional vector x into k ≤ p components, so that x = (x1, ...,xk) ∈ R
p: referring

to Eq. (5.26), we have k = 3 (gas properties in the outskirts, dark matter density and
geometry/cosmology) and x = P . To complete an entire Component-Wise Hastings
transition from a state xt to xt+1, a minor chain, we need to pick new values for each
component group in turn, given the values for the other ones. Given the strong correlation
between the above 3 parameter groups, in particular between gas density and DM density,
the Component-Wise Hastings sampler is a very robust means to sample the space
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parameters breaking the degeneracy between them. An intuitive way to understand this is
to point out that the gas density and the DM density, for example, are strictly correlated:
the more the DM density is higher in the external regions, the more the gas density must
be lower in the outskirts. At the i− th MCMC transition the conditional distribution of
P , π(q | ε,Sne,Psz), involving an update of q but with (Sne,ε,Psz) fixed, retains also the
information coming from the density in the external regions, better determining the mass
profiles, and so on.

Concerning the parameter group of the gas density (Sne), as already said we use
a RJMCMC method, which can be thought just as a more general approach of the
Component-Wise Hastings transition involving Sne . For every major chain (Sect.
5.3.2) we attempt a birth and a death transition, updating the dimensionality of Sne =
(α0,α1, ...,αh,h), while for every minor chain we consider only subspaces of the same
dimension, i.e. the RJMCMC algorithm reduces to the above Component-Wise Hastings
transition involving Sne with conditional distribution π(Sne,Psz | ε,q).

The above MCMC simulation was implemented on an Intel Pentium IV 3 GHz processor.
In 10 min of CPU time the posterior distribution can be evaluated ∼ 104 times. The total
analysis requires ∼ 2 hrs of CPU time for each of the sources.

5.5 Application to mock clusters

To test our method we apply our Bayesian X-ray+SZ method on mock observations. The
fake clusters are constructed by considering the density profiles from real objects out to
RRo

spec (RCh
spec) and adding an analytical model in the outskirts, which aims to mimic the

density profiles coming from hydrodynamical simulations (Roncarelli et al., 2006). The
deprojected temperature has been recovered by considering a NFW model of parameters
(c,rs) fixed and applying the hydrostatic equilibrium equation. The so recovered
temperature has been projected to simulate a real observed projected temperature profiles
T ∗

proj,m. The recovered mock pressure profile has been also used to recover fake visibilities.
The errors on the fake temperature and visibilities have been determined in such a way to
reproduce the ones of real data. We present results of the above method in Figure 5.5 by
simulating data which mimic the source A2204, by using a double power law to model the
density in the outskirts, whose parameters have been set in order to reproduce the results
of Roncarelli et al. (2006).

As we can see, we found a good agreement between the parameters given in input and
the outputs of our program. In particular, given a double power-law model in input for the
density in the outskirts, the program is able reproduce this model through 2-3 components
via the RJMCMC method.
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Figure 5.3. Comparison between the properties recovered by applying our Bayesian X-ray+SZ analysis on mock
observations produced so as to mimic the physical properties of A2204. We present density (lower panel) and
temperature (upper panel) profiles for mock data, which are represented by circles (out to Rspec) and dashed line (for
r ∼> Rspec). The solid line refers to the values recover through our method, whose errors are represented by the gray
shaded region.

5.6 Results on the properties of the ICM

5.6.1 Recovering the physical properties: prior versus posterior comparison

Here we focus on the differences in the determination of the physical properties recovered
by applying an X-ray analysis only and a Bayesian X-ray+SZ one.
In Figure 5.4 (left panel) we present a comparison between the temperature measured by

applying an X-ray analysis only (the prior) T (q,P0) (see Sect. 5.4.1), through a Bayesian
X-ray+SZ one (the posterior distribution) Tj(q,Psz,Sne) (Sect. 5.4.2), and the deprojected
temperature recovered by the standard deprojection techniques T ∗

deproj,m (see Morandi
et al., 2007) for A2204. We have chosen A2204 because it is one of the sources for
which we are able to measure the physical properties through X-ray Chandra data just out
to ∼ 0.5R200: this object, being at intermediate redshift (z = 0.152), does not suffer for the
small field of view of Chandra, so it is an ideal case to see also, for example, the weight
of the X-ray systematics in determining the temperature or mass near Rspec boundary (see
Sect. 5.2.2).
As we can see, we have a good agreement between the three above temperatures, being

the one recovered by a Bayesian X-ray+SZ analysis the temperature with the smallest
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Figure 5.4. Left panel: comparison between the temperature measured by applying a just X-ray analysis (the prior)
T (q,P0) (dashed line), through a Bayesian X-ray+SZ one (the posterior distribution) Tj(q,Psz,Sne ) (solid lines), and
the deprojected temperature recovered by the standard deprojection techniques T ∗

deproj,m (triangles with errorbars). The
error bands are represented by the gray shaded region for the posterior, and hatched region for the prior. Central panel:
comparison between the parameters c and rs of a NFW model for the prior and the posterior distribution. The 1-σ
contours and the average values refers to the prior (dashed line and triangle, respectively) and the posterior (solid line
and point, respectively). Right panel: cumulative total mass profile of a NFW model for the prior (dashed line) and the
posterior (solid line) distribution. The dashed and hatched regions hold the same meaning of the left panel.

statistical errors. Is it possible to see that Tj(q,Psz,Sne) and T (q,P0) present a mild
difference of temperature in the central regions (300-600 Kpc), due to non very good
determination of the parameters (c,rs) and to large uncertainties in the value of the
pressure at the boundary P0. Near the X-ray boundary Rspec the statistical errors on
the prior are very large and the temperature in these regions is also possibly affected
by systematics related to T ∗

proj,m near the same boundary (Eq. 5.21). In fact the last
point of the deprojected temperature T ∗

deproj,m is likely affected by systematics related to a
background subtraction, being the number of net counts of photons from the source in the
(0.5-5.0 keV) band ∼ 200-1000 and the signal-to-noise ratio is ∼> 2 in the last annulus.

A Bayesian X-ray+SZ temperature Tj(q,Psz,Sne) overcomes this problem, because in a
SZ interferometric dataset we must not subtract any background, being the thermal noise
equal to 0±σSZ, i.e. with mean value equal to zero (see Sect. 5.2.2). The statistical errors
we have in Tj(q,Psz,Sne) are also the smallest ones, especially near the X-ray boundary.

In Figure 5.4 (central and right panel) we present a comparison between the parameters
c and rs (central panel) and the cumulative total mass profile (right panel) of a NFW
model for the prior and the posterior distribution. As we can see, the 1-σ contours
are systematically different (∼ 2σ) between the prior and the posterior: this leads to
systematics in the mass profiles which are significant for r ∼> R2500. In other words, we can
trust the mass reconstructed through a X-ray analysis only just till R2500 ∼ 1/4R200, given
that the X-ray measurements are out to Rspec ∼ 1.5R2500 and they are possibly affected
by systematics near the X-ray boundary Rspec due to inaccurate background subtraction.
For Mtot(< r) in the posterior distribution, we can see also lower statistical errors for
r ∼> R2500.
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Figure 5.5. Results of a Bayesian X-ray and SZ analysis for A478. Figure on the right: we display the gas temperature
(upper panel) and gas density (lower panel) recovered by combining X-ray and SZ data. The solid line represents the
expectation value of the temperature (density), while the error bands at 1-σ are represented by the gray shaded region.
The diamonds represent the predictions from Roncarelli et al. (2006) from hydrodynamical numerical simulations,
while the dashed line in the upper panel indicates the functional form that reproduces the behaviour of the deprojected
X-ray temperature profile of the sources presented in Vikhlinin et al. (2006). Figure on the left: polytropic index γ
(upper panel) and entropy profiles S (lower panel) for A478 recovered by combining X-ray and SZ data. The solid line
represents the expectation value for γ (S), while the error bands at 1-σ are represented by the gray shaded region. In the
upper panel the two horizontal dashed lines represent the value γ = 1 and γ = 5/3, while in the lower panel the dashed
line represents the predictions of Voit et al. (2005b), where the entropy is defined as S(r) = K200 1.32(r/r200)1.1, being
K200 a characteristic value of the entropy at the overdensity of 200 (see, e.g., Eq. 2 in Voit et al., 2005b). For all the
figures the arrows at the top represent the Chandra (rCh), CBI (rCbi) boundary, respectively, and r200.

5.6.2 Physical properties in the outskirts

In this section we present results on the properties of the ICM up to the virial radius and
beyond, in the radial range well above the central regions accessible to X-ray observations.
In particular we compare our findings with the results of hydrodynamical numerical
simulations for the density and temperature profiles (left panel of Figure 5.5). Here we
will concentrate on the physical parameters recovered by using a NFW model.
For the gas density we observe a mildly flatter behaviour in regions (∼> R500) than the

predictions of Roncarelli et al. (2006) by re-normalizing their profiles to ours at 0.3R200,
with a slope between R500 −R200 of 1.8−2.5.
Concerning the temperature, we observe a good agreement of our measurements with

the theoretical predictions, with a drop of a factor of 2 from the maximum value of the
same temperature profile to R200, where T (r200) ≈ 3 keV.
The most pronounced deviation is at R200, where simulations predict a density which is

lower than the observed one. A possible explanation of this disagreement at R200 is that
in the above simulation Roncarelli and collaborators masked out condensed regions in
the simulation volume (see their work for further details on the adopted criterion), being
they interested in a comparison with X-ray observations, where these small clumps are
generally masked out. On the contrary, in SZ data it is not possible to mask these dense
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regions, being the SZ observations in the Fourier domain. This could lead to lower values
for the density at R200 in simulations compared to real X-ray+SZ data.
For what concerns the temperature profile, a comparison can be done also with the

functional form that reproduces the behaviour of the deprojected X-ray temperature
profile at r >∼ 0.05R200 of the sources presented in Vikhlinin et al. (2006, see their
equation 9):

T (d) ∝
(d/0.045)1.9 +0.45
(d/0.045)1.9 +1

1
(1+(d/0.6)2)0.45 , (5.30)

where d ≡ r/R500. We overplot this function fitted on the values of the spectral
deprojected temperature to our profiles in Fig. 5.5. We still observe a steeper behaviour
than the above functional form for r ∼> 0.4R200. A possible explanation of this
disagreement is that this function is determined in the local sample of sources of Vikhlinin
et al. (2006), where the X-ray observations are limited to the central regions (∼< 0.5R200),
likely affected by systematics related to the background subtraction near the X-ray
boundary.
In Figure 5.5 (right panel) we also present entropy S(r) and polytropic index γ(r) profiles

for A478. The polytropic index shows a very complex behaviour, far away from being
constant and being always between 1 and 5/3 outside the cooling regions, as expected
for a non-convective gas. For the entropy profiles it is interesting to point out that there
is a flattening for r ∼> 0.7R200 and the value of S(r) is lower than the predictions for
adiabatic clusters from Voit et al. (2005b) for r ∼> 0.75R200, suggesting that our data are
likely affected by dense cold regions in the outskirts, as already noticed by comparing
our density with the predictions from the numerical simulations. In the spatial range
0.4− 0.75R200 we find a good agreement with the adiabatic predictions of Voit et al.
(2005b) by considering SPH simulations through the GADGET code (Springel et al.,
2001; Springel & Hernquist, 2002), where the entropy is defined as

S(r) = K200 1.32(r/r200)
1.1 , (5.31)

being K200 a characteristic value of the entropy at the overdensity of 200 (see, e.g., Eq. 2
in Voit et al., 2005b). Voit and collaborators also consider the semi-analytical models by
using clusters simulated by the AMR code ENZO (Bryan, 1999; Norman & Bryan, 1999;
O’Shea et al., 2004): in the latter case the normalization of the above theoretical relation
is ∼ 10 per cent higher than in the SPH simulations, in disagreement with our constraints.

5.7 Summary and conclusions

We have presented a Bayesian approach to combine X-ray and Sunyaev Zel’dovich (SZ)
data, observed with Chandra and the Cosmic Background Imager (CBI), respectively, in
order to investigate the radial behaviour of the deprojected physical cluster properties, like
temperature, density, entropy, gas mass and total mass up to the virial radius. We showed
that a joint X-ray and SZ analysis allows to study the physical properties of the ICM in
the outskirts of the clusters out to R200, well beyond the boundary (1/3−1/2 of the virial
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radius) of the present X-ray observations. This has been made possible thanks to the large
field of view of CBI and the strong dependency of the interferometric SZ signal on the
external regions of the clusters. In particular we discussed how it is possible to recover
the physical parameters of the gas in the outskirts in a non-parametric way through a
Reversible Jump Markov Chain Monte Carlo technique.
We have compared our findings with the results of hydrodynamical numerical

simulations for the density and temperature profiles (e.g. Roncarelli et al., 2006) or semi-
analytical models (e.g. Voit et al., 2005b). We discussed the systematics which can affect
our data, the discrepancies of our results on the density, temperature and entropy profiles
with respect to the theoretical predictions. In particular, the combination of the Chandra
data at high spatial resolution, capable to resolve the cluster core, with the SZ ones, more
sensitive to the cluster outer volume, allows to characterize the level and the gradient of
the gas entropy distribution in the whole cluster, breaking the degeneracy between the
physical models describing the thermal history of the ICM.





CONCLUSIONS

I n this Thesis we focused our research on the context of understanding the physics
of the structures’ formation in the Universe through X-ray and Sunyaev Zel’dovich
observations and on the comparison of our findings with numerical simulations from

the literature. We have presented our work on a sample of galaxy clusters to describe the
properties of the X-ray and SZ signals, aiming at determining the physical properties of
the intracluster gas.
Here we conclude the presentation of this Thesis by summarizing our main results.

X-ray and Sunyaev-Zel’dovich scaling relations in galaxy clusters
SZ and X-ray scaling relations are a robust means to probe the physical properties
of the clusters and their evolution in redshift, by tracing out the thermodynamical
history of the intracluster medium. We have pointed out that the X-ray laws are
steeper than the relations predicted from the adiabatic model: these deviations
from self-similar expectations call for further feedback processes leading to non-
gravitational gas heating. Our results on the X-ray and SZ scaling relations showed
a tension between the quantities more related to the global energy of the system
(e.g. gas temperature, gravitating mass) and the indicators of the structure of the
ICM (e.g. gas density profile, central Compton parameter y0), showing an evolution
of the physical parameters and suggesting a scenario in which the ICM at higher
redshift has lower X-ray luminosity and lower pressure in the central regions than
the expectations from gravitational processes only.

Entropy profiles in X-ray luminous galaxy clusters at z > 0.1
Another tool to constrain the thermal history of the gas is the entropy distribution,
which reflects both the accretion history of the gas and the processes of feedback.
The entropy distributions provide hints of non-gravitational energy. We have studied
the profiles and the scaling properties of the gas entropy in massive X-ray galaxy
clusters at high redshift (0.14≤ z ≤0.82) and showing different states of relaxation.
We showed that the entropy profiles are remarkably similar outside the core and
can be described by simple powerlaws, with a central plateau which spans a wide
range of values (∼ a few−200keVcm2) depending on the state of relaxation of
the source. The entropy values resolved at given fraction of the virial radius are
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proportional to the gas temperature in these hot systems and appear larger at higher
redshift with respect to the local estimates. To characterize the energetic of the
central regions, we have compared the radial behaviour of the temperature of the gas
with the temperature of the dark matter (TDM), by estimating the excess of energy
∆E = 3/2k(Tgas−TDM). We have found that ∆E ranges from ≈ 0 in typical cooling-
core clusters to few keV within 100 kpc in non-cooling core systems. Furthermore
we have measured a significant correlation between the total iron mass and the
entropy outside the cooling region, whereas in the inner regions they strongly anti-
correlate. We have found that none of the current models in literature including
non-gravitational energy is able to explain entropy, metallicity and gas+dark matter
temperature profiles we have obtained. We have also checked whether hydrostatic
equilibrium is a tenable hypothesis in galaxy clusters by comparing the temperature
recovered through the application of the hydrostatic equilibrium equation with the
spectral measurements, and by exploring the deviations observed in few non-cooling
core clusters in the inner regions.

Bayesian inference in X-ray galaxy clusters with Sunyaev Zel’dovich
measurements - Physical properties of the gas out to R200

We have presented a code to combine X-ray and Sunyaev Zel’dovich (SZ) data,
observed with Chandra and the Cosmic Background Imager (CBI), respectively.
We showed that a joint X-ray and SZ analysis allows to study the external regions
of clusters well beyond the volumes resolved with X-ray observations (≤ R500),
thanks to the large field of view of CBI and the strong dependence of the SZ
interferometric signal on the external regions. We studied the radial behaviour
of the deprojected physical cluster properties, like temperature, density, entropy,
gas mass and total mass up to the virial radius, well beyond the X-ray boundary
(1/3− 1/2 of the virial radius). We have investigated the density and temperature
profile in the external regions, comparing our findings with results from numerical
hydrodynamical simulations. We showed how it is possible to trace out the density,
temperature and entropy of the gas in the outskirts and putting constraints on the
non-gravitational processes which affect the thermal history of the gas.

Future works

In the near future we are going to extend the above work on entropy profiles on massive
clusters at high redshift, by considering local groups of galaxies. The non-gravitational
energy having more pronounced influence on the intergalactic gas of groups of galaxies,
we expect to find a stronger deviation from the self-similar expectations.
We are extending the line of research previously presented by combining X-ray and SZ

data, focusing our research on understanding the physics of the structures’ formation in
the Universe. As already observed, a joint X-ray and SZ analysis allows us to study the
outer regions of the clusters. In this sense one can address many different key aspects that
are still debated and offer solutions to ticklish problems not yet solved. In particular our
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current research aims at exploring the following topics:

Constraints on the properties of clusters outskirts - We are extending the sample of
galaxy clusters presented in Chapter 4 by including further sources observed with the
upgraded CBI2 instrument. So we will able to investigate the radial behaviour of the
deprojected physical cluster properties, like temperature, density, entropy, gas mass and
total mass in the outskirts, in a larger sample and with data of better quality with respect
to the CBI archival data.

Constraints on fgas - In the last years the universal baryonic mass fraction (Ωb/Ωm)
has been constrained using X-ray observations of galaxy clusters (Ettori et al., 2006;
LaRoque et al., 2006; Allen et al., 2008). At the larger observable radius in X-ray data
(∼< R500 ∼ 1/2R200), these measurements indicate a gas mass fraction that is roughly
30 per cent lower than Ωb/Ωm inferred from WMAP 3-yr data (e.g. Spergel et al.,
2007; McCarthy et al., 2007). Combining X-ray and SZ data allows to measure the
gas fraction fgas far away of the actual X-ray observations, out to R200, and compare
it with the primordial gas fraction. In this way, our current work aims at measuring
the depletion parameter Y = fgas/(Ωb/Ωm) at various overdensity out to R200, and to
compare it with the value constrained from hydrodynamical numerical simulations (e.g.
Ettori et al., 2004a; Frenk et al., 1999; Kravtsov et al., 2005; Gottlöber & Yepes, 2007).
Precise observational measurements of Y at R200 allow to address the baryon fraction
issue in a new light, understanding the physical processes acting inside the clusters and
possibly putting further constraints on Ωm and on other cosmological parameters.

Investigating the systematics on observed results: towards a more realistic
description of galaxy clusters - When we deal with X-ray clusters we make some a-priori
assumptions, like that of hydrostatic equilibrium, spherical geometry and the absence
of substructures. Some of these assumptions have been tested through hydrodynamical
numerical simulations (see Rasia et al., 2006, for a study of the systematics on the
recovered mass profiles) or through a parametric combination of X-ray and Sunyaev-
Zel’dovich effect measurements (see De Filippis et al., 2005, for a discussion of the
systematics related to spherical assumption), but only for the inner regions of the clusters
(∼< R500) accessible to X-ray observations. We are involved in a project in which we
have acquired weak lensing measurements: the desired properties of clusters are then
over-constrained by X-ray+SZ+lensing observations, providing critical insights to our
understanding of clusters, and critical tests of current models for the formation and
evolution of galaxy clusters. Extending the critical insights developed in Chapter 4, our
goal is that to understand the goodness of the hydrostatic equilibrium assumption on the
whole cluster, to infer which model of the DM coming from hydrodynamical numerical
simulations better represents the data and provide constraints on the geometry of the
sources.

We can then use these measurements as calibration of cluster masses at R200, with
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important implications in the use of galaxy clusters as cosmological probes.



Appendix A

A.1 Spectral deprojection technique

The deprojection technique decomposes the observed X-ray emission of the i-th annulus
into the contributions from the volume fraction of the j-th spherical shells with j ≤ i, by
fixing the spectrum normalization of the outermost shell to the corresponding observed
values. We can construct an upper triangular matrix V j

i , where the column vectors V 1,
V 2, ...V n represent the “effective” volumes, i.e. the volume of the j-th shell contained
inside the i-th annulus (with j ≥ i) and corrected by the gradient of n2

e inside the j-th shell
(see Appendix B for more detail), so as:

Ki ∝
∫

j≥i
n2

e,j dV =

(
V #

→

n2
e

)

i
. (A.1)

In the previous equation →ne≡ (ne,1,ne,2, ...,ne,n), being n the total number of annuli, having
internal (external) radius rin,1 , rin,2 , ... ,rin,n (rout,1 , rout,2 , ...,rout,n), with n ∼ 15−40; Ki
is the MEKAL normalization of the spectrum in the i-th annulus; the operator # indicates
the matrix product (rows by columns). Notice that the integral

∫
j≥i n2

e,jdV is of the order
of the emission measure inside the i-th ring.1 The inversion of this matrix allows us to
determine ne,i.
The values of Ki are obtained by rescaling by the observed number of counts in the i-th

ring the faked Chandra spectrum with absorption, temperature and metallicity measured
in that ring. The errors are computed by performing 100 Monte Carlo simulations of the
observed counts. We pointed out that the uncertainties in the estimates of the projected
temperature do not reflect into high systematic errors in the determination of Ki, because
of the mild dependence on T of the cooling function Λ(T ) integrated in the considered
band (0.5−5 keV): Λ(T ) ∝ T−α, with 0.1 <∼ α <∼ 0.2 for T ∼ 7−12 keV.
This approach is very powerful, because does not require any “real” spectral analysis,

which could suffer of the poorness of the statistics and would need at least ∼ 2000 net
counts per annulus: we can determine the projected density in annuli even with very small

1Hereafter we assume that the index j (i) indicates the shell (ring) of the source of radius (rin,rout).
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counts (∼ 200− 1000). In other words we have an improvement (of about one order of
magnitude) of the spatial resolution in the spectral analysis.
Concerning the temperature analysis, we have determined its value T j in the j-th

shell, by assuming analytic relations for the mass density profiles: ρ = ρ(r,q), where
q = (q1,q2, ...qh) are suitable parameters. As discussed in Section 2.4, we consider two
functional forms, a NFW profile with q ≡ (c,rs) and a RTM profile with q = (x∗s ,rvir).
We performed a spectral deprojection of the observed temperature T ∗

shell in a set of n∗
annuli with width much larger than the previous ones, with internal (external) radius
r∗in,1 , r∗in,2 , ...,r∗in,n∗ (r∗out,1 , r∗out,2 , ...,r∗out,n∗) corresponding to the ones of the rings in
which we have estimated the projected temperature (see Sect. 3.2.2), with n∗ � n
(n∗ ∼ 3− 8), so as to have at least 2000 counts per annulus. The deprojection method
works in this way:

→

T ∗
ring,m =

(
V ∗#

(
→

T ∗
shell ·

→

ε∗
))

m
/L∗

ring,m , (A.2)

where the
operator “·” indicates the product:

→
T ∗

shell ·
→
ε∗ = (T ∗

shell,1 ε∗1,T ∗
shell,2 ε∗2, ...T∗

shell,n∗ ε∗n∗).
In eq.(A.2),

→
ε∗ = V ∗−1#

→
L
∗

ring is the emissivity, V ∗ =
[V 1,V 2, ...V n∗], L∗

ring,m is the
luminosity of the m-th ring,2 and the generic parameter P ∗ has the same meaning as
above, but it is evaluated in n∗ annuli. The inversion of the matrix in eq.(A.2) allows us
to finally estimate the deprojected temperature T ∗

k .
We computed the theoretical temperature Tj by numerically integrating the equation

of the hydrostatic equilibrium (eq. 3.1), assuming spherical geometry (→r ≡ r). Then
we constructed a grid of values for P0 and for the parameters q entering the DM
density profiles, so as Tj = Tj(q,P0). In particular for P0 we have considered the range
P̂0 − 3σP0 ≤ P0 ≤P̂0 + 3σP0 , where P̂0 is the expectation value of P0. So we can estimate
the temperature kTj(q,P0) = P(r)/ngas(r).
Since the temperature Tj(q,P0) obtained in this way is given on a set of n annuli with

spatial resolution much better than the deprojected temperature T ∗
shell,k defined in the

n∗ annuli only, we perform a (gas mass-weighted) average to calculate the temperature
T ave

k (q,P0) in the k-th shell:

T ave
k (q,P0) =

∑
rk≤r j<rk+1

w jTj(q,P0)dVj∑
rk≤r j<rk+1

w jdVj
, (A.3)

where w j = n j and dV j represents the volume of the j-th shell, so as to reproduce a mass-
weighted temperature. A χ2-minimization between T ave

k (q,P0) and T ∗
shell,k (with error

σT∗
shell,k

),

χ2 =
n∗∑

k=1
(T ave

k (q,P0)−T ∗
shell,k)

2/σ2
T∗shell,k

(A.4)

2Hereafter we assume that the index k (m) indicates the shell (ring) having radius (r∗in,r∗out).
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provides us the best estimate of (q,P0).
We also considered an alternative approach to determine (q,P0). Following Mazzotta

et al. (2004), we perform a weighted average of Tk(q,P0) to compute a projected
spectral-like temperature Tproj,m(q,P0) in the m-th ring to be compared with the observed
temperature T ∗

proj,m of the m-th ring:

Tproj,m(q,P0)=

(
Ṽ ∗#

(
→

T ave(q,P0) ·
→w (q,P0)

))

m
/Lring,m, (A.5)

where w j = n2
jT−α

j (q,P0), α = 3/4,
→
L ring(q,P0) = Ṽ ∗#→w(q,P0); Ṽ ∗ =

[V 1,V 2, ...V n∗,V n∗+1, ...,V n∗+h] is an extension of
the volume matrix V ∗ which takes into account the contributions (up to a distance of 10
Mpc) coming from the h annuli external to Rspat. We have to use the following fitting
function, which is a simplified of the functional form of Vikhlinin et al. (2005):

ne(r) =
n0 (r/rc)−α(1+ rγ/rsγ)−ε/γ

(1+ r2/r2
c)

3/2β−α/2 (A.6)

with γ = 3, and (3.1) to extrapolate ne(R), the pressure and temperature in regions outside
Rspat. Notice that the previous definition of temperature is a very powerful way to remove
observational biases: in fact we are weighting different regions along the line of sight
using different temperatures which are obtained by performing a spectral fit of a single-
temperature model. With this approach we have a robust determination of the deprojected
temperature profile. The best estimate of (q,P0) is obtained through a χ2-minimization
between Tproj,m(q,P0) and T ∗

proj,m :

χ2 =

n∗∑

m=1

(Tproj,m(q,P0)−T ∗
proj,m)2

σ2
T ∗

proj,m
+σ2

Tproj,m

. (A.7)

Here σ2
Tproj,m

accounts for the statistical errors in eq.(3.1) coming from the measured
errors for ngas(r). The reduced χ2 resulting from this method is better than in previous
case: this is likely due to the fact that the deprojected temperature T ∗

shell strongly relies
on assumptions, like spherical symmetry and uniform density profile, which are not
completely satisfied in real clusters. Moreover the values of T ∗

shell,k are not independent:
in fact we relate the deconvolved temperature, gas density and spectra normalization of
the outermost shell to its observed values and then we compute the physical parameters
in the m-th annulus by opportunely accounting for the contributions of the k-th shell
(k ≥ m): this could propagate possible systematic errors from the external regions, where
the determination of the physical properties cannot be so adequate because of the bad
statistic. All the deprojected quantities presented in the present work refer to the second
approach (Tproj) only.
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A.2 Determining the Effective volume
Kriss et al. (1983) computed the geometrical volume of the j-th shell intercepted by the
i-th annulus (with j ≥ i) as:

V j
i = 4π

∫ routi

rini

d r r
∫ (r2

inj
−r2)1/2

(r2
outj−r2)1/2

d z . (A.8)

Notice that when we use a geometrical volume to deproject the physical parameters
(like the density as example) we are assuming that they are nearly constant in the shell.
This introduces a systematic bias in the deprojected quantity, that tends to be increased
when the gradient of the physical parameter is not negligible or when the rings are wide.
McLaughlin (1999) partially corrected this bias by referring the density to an average
radius, rave ≡ ((r3/2

out + r3/2
in )/2)

2/3
.

Here we introduce a new definition of the volume, the effective volume V , which takes
into account the real gradient of the physical parameters as a function of the radius. We
assumed that we are weighting the unknown physical parameter P in the j-th shell using a
function w(R), whose gradient is only due to the case of the squared density (w(R) ∝ n2

e).
We have modeled the density inside the j-th shell as a local power-law,

n(R) = ne, j f (R)−α, where f (R) = (R/rrefj), rrefi ≡ (rinj + routj)/2, α(R) =

− log(n j+1/n j)/ log(rrefj+1/rrefj) + O(α). We first calculated α(R) by relying on the
initial density obtained from the geometric volume-deprojection on a radius rrefi: in this
way the introduced errors on α are negligible (O(α)).
We define r as the projection of R on the sky plane, with R2 = r2 + z2, being z the

distance along the line of the sight. So, if n(rrefj) is the density in the j-th shell, the
observed parameter P ∗ is related to the theoretical one by:

→

P∗ =

∫
dV

→
P w(R) =

∫
dV

→
P n2

e(R) =

=

(∫
dV f (R)−2α

)
#
(

→ne, j
2→
P
)

= V #
(

→ne, j
2→
P
)

. (A.9)

So we can re-write the effective volume V as:

V j
i =

∫

j≥i
dV f (R)−2α=4π

∫ routi

rini

d r r
∫ (r2

inj
−r2)1/2

(r2
outj−r2)1/2

d z f (R)−2α . (A.10)

The effective volume V j
i is equal to the geometric one V j

i if α = 0, i.e. when we have
negligible gradients of n(R)2 in the j-th shell. This is approximately true only in the
case in which we have a good spatial resolution, for example when we consider n annuli
(n ∼ 15−40) in the brightness image (see Section 3.2.3). But this is false when we have
n∗ annuli, with n∗ � n (n∗ ∼ 3− 8) in the spectral analysis, for which a larger statistics
(at least ∼ 2000 net counts per annulus) is required. In this last case, for example, it is
possible to underestimate the true density in the external regions by 5− 10 per cent by
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using the geometrical volume instead of the effective one: this corresponds to set
→
P equal

to I (being I the identity matrix) in eq.(A.9), and
→
P∗ ∝ K (see eq. A.1). The analysis

we performed shows that the case in which adopting the effective volume is important
is in eq.(A.2): using an effective volume can avoid to introduce systematic errors in the
determination of the cluster masses.





Appendix B

B.1 Generating correlated random numbers in the Component-Wise
Hastings sampler

We present a method to generate p random numbers with probability density function
f = f (xl,Cl,(l)), i.e. with expectation value xl and covariance Cl,(l)), being C the
covariance matrix given by eqn. 5.11. This is useful to construct a proposal probability
density function in the Component-Wise Hastings sampler. The general idea is to build
p correlated random numbers taking into account their covariance. The covariance
matrix C can be diagonalized with a convenient change of reference system. Given
a coordinates system X which describes the p parameters under consideration, it is
possible to work in a new reference system X ′ described by the coordinate change matrix
R ′ =

[
R 1′ ,R 2′, ...R p′

]
, being R 1′ ,R 2′ , ...R p′ the eigenvectors of C. In the system

reference X ′ the covariance matrix appears to be diagonal, i.e. C′ = diag(σ2
1
′
,σ2

2
′
, ...,σ2

p
′
)

with eigenvalues σ2
1
′
,σ2

2
′
, ...,σ2

p
′ and the p parameters are uncorrelated, so we can generate

quite simply p uncorrelated random numers to construct the proposal probability density
function in X ′: f ′ = f ′(x′l,C′

l). To obtain the proposal probability density function
f = f (xl,Cl,(l)) in the coordinates system X we use the following relation:

C = R ′#C′ (B.1)

being ’#’ the matrix product (rows per colums). In figure B.1 we present an example of
application in the case of two variables.
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Figure A-1. Example of generation 2 correlated random variables. The ellipse represents the 1-σ region of the proposal
joint density function f = f (xl ,Cl,(l)). The ellipse is rotated by an angle θ (see figure) in the reference system
X = (X ,Y ), with tan (θ) = ρxy σy/σx, being ρxy the correlation coefficient between the two variables x and y. In
the reference system X ′ = (X ′,Y ′) rotated of θ with respect to X the major and minor axes of the above ellipse are
oriented along the cartesian axes, i.e. the two random variables x′ and y′ are uncorrelated. The eigenvectors of C
represent the rotation matrix of an angle θ between X and X ′.
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Metzler C. A., Evrard A. E., 1994, ApJ, 437, 564

Mohr J. J., Mathiesen B., Evrard A. E., 1999, ApJ, 517, 627

Morandi A., Ettori S., 2007, MNRAS, 380, 1521

Morandi A., Ettori S., Moscardini L., 2007, MNRAS, 379, 518

Motl P. M., Hallman E. J., Burns J. O., Norman M. L., 2005, ApJ, 623, L63

Muanwong O., Thomas P. A., Kay S. T., Pearce F. R., 2002, MNRAS, 336, 527

Nagai D., 2006, ApJ, 650, 538

Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 720

Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493

Navarro J. F., Hayashi E., Power C., Jenkins A. R., Frenk C. S., White S. D. M.,
Springel V., Stadel J., Quinn T. R., 2004, MNRAS, 349, 1039

Neal R. M., 1993, Probabilistic inference using Markov chain Monte Carlo
methods. Tech. Rep. CRG-TR-93-1, University of Toronto

Nomoto K., Iwamoto K., Nakasato N., Thielemann F.-K., Brachwitz F., Tsujimoto
T., Kubo Y., Kishimoto N., 1997, Nuclear Physics A, 621, 467



122

Norman M. L., Bryan G. L., 1999, in Astrophysics and Space Science Library, Vol.
240, Numerical Astrophysics, Miyama S. M., Tomisaka K., Hanawa T., eds., pp.
19–+

O’Shea B. W., Bryan G., Bordner J., Norman M. L., Abel T., Harkness R., Kritsuk
A., 2004, ArXiv Astrophysics e-prints

Pearce F. R., Jenkins A., Frenk C. S., White S. D. M., Thomas P. A., Couchman
H. M. P., Peacock J. A., Efstathiou G., 2001, MNRAS, 326, 649

Pearson T. J., Mason B. S., Readhead A. C. S., Shepherd M. C., Sievers J. L.,
Udomprasert P. S., Cartwright J. K., Farmer A. J., Padin S., Myers S. T., Bond
J. R., Contaldi C. R., Pen U.-L., Prunet S., Pogosyan D., Carlstrom J. E., Kovac J.,
Leitch E. M., Pryke C., Halverson N. W., Holzapfel W. L., Altamirano P., Bronfman
L., Casassus S., May J., Joy M., 2003, ApJ, 591, 556

Peres C. B., Fabian A. C., Edge A. C., Allen S. W., Johnstone R. M., White D. A.,
1998, MNRAS, 298, 416

Peterson J. R., Ferrigno C., Kaastra J. S., Paerels F. B. S., Kahn S. M., Jernigan
J. G., Bleeker J. A. M., Tamura T., 2002, ArXiv Astrophysics e-prints

Piffaretti R., Jetzer P., Kaastra J. S., Tamura T., 2005, A&A, 433, 101

Ponman T. J., Cannon D. B., Navarro J. F., 1999, Nat, 397, 135

Ponman T. J., Sanderson A. J. R., Finoguenov A., 2003, MNRAS, 343, 331

Pratt G. W., Arnaud M., 2003, A&A, 408, 1

Pratt G. W., Arnaud M., 2005, A&A, 429, 791

Pratt G. W., Arnaud M., Pointecouteau E., 2006, A&A, 446, 429

Press W. H., Schechter P., 1974, ApJ, 187, 425

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical
recipes in C. The art of scientific computing. Cambridge: University Press,
—c1992, 2nd ed.

Rasia E., Ettori S., Moscardini L., Mazzotta P., Borgani S., Dolag K., Tormen G.,
Cheng L. M., Diaferio A., 2006, MNRAS, 369, 2013

Rasia E., Mazzotta P., Borgani S., Moscardini L., Dolag K., Tormen G., Diaferio
A., Murante G., 2005, ApJ, 618, L1

Rasia E., Tormen G., Moscardini L., 2004, MNRAS, 351, 237

Raymond J. C., Smith B. W., 1977, ApJS, 35, 419
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