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1.1 MINIMALLY PROCESSED FRUITS AND VEGETABLES 

FRESH-CUT PRODUCTS AND THEIR MARKET TREND 

Fresh-cut fruits and vegetables can be defined as any fresh fruit or vegetable that has been 

physically modified from its original form (by peeling, trimming, washing, and cutting) to obtain 

100% edible product that is subsequently bagged or prepackaged and kept in refrigerated storage 

(IFPA, 2005). Fresh-cut produce includes any kind of fresh commodities and their mixtures in 

different cuts and packaging. Items such as bagged salads, baby carrots, stir-fry vegetable mixes, 

and fresh-cut apples, pineapple, or melon are only some examples of this type of product (Rojas-

Graù et al., 2011). 

The market for chilled fresh-cut produce has witnessed dramatic growth in recent years, 

stimulated largely by consumer demand for fresh, healthy, convenient and additive-free foods 

which are safe and nutritious. In fact, organizations such as the World Health Organization 

(WHO), Food and Agriculture Organization (FAO), United States Department of Agriculture 

(USDA), and European Food Safety Authority (EFSA) recommended an increase of fruits and 

vegetables consumption to decrease the risk of cardiovascular diseases and cancer (Allende et al., 

2006). The food industry has responded to this demand with creative product development, new 

production practices, innovative use of technology and skillful marketing initiative (James & 

Ngarmsak, 2011). 

Consumers generally purchase fresh-cut products for convenience, freshness, nutrition, safety and 

the eating experience. In fact, the consumption of these products allows to save time on food 

preparation. Another reason for the success of fresh-cut product is the absence of waste material. 

Waste is generated in peeling and coring fruits. However, when utilizing fresh-cut produce, 100% 

is consumable, and there is a substantial decrease in labor required for home produce preparation 

and waste disposal (Garcia & Barrett, 2005). 

Different kind of Fresh-cut fruits and vegetables have been introduced or expanded since the 

early 1980s. Some fresh-cut produce currently available in supermarkets is include in Table 1.1. 

 

 

 

 

 



3 

 

Table 1.1-Some kind of prepared fruits, Leafy salads and Mixed-Tray salads, currently available in supermarkets 

(Garner E. 2008). 

 

Whilst the manufacture of fresh-cut produce requires relatively little product transformation, it 

necessitates investment in technology, equipment, management systems and strict observance of 

food safety principles and practices to ensure product quality. 

Nowadays, the consumption of fresh-cut fruits and vegetables is increased, and this because the 

consumer is looking healthy fruit and vegetable products. In the beginning of 1980s, fresh-cut 

productions were very popular just in fast food sector, but in the last years they became available 

at a retail level. The production and commercialization of fresh-cut vegetables are still higher 

than fresh-cut fruits. In particular, salads represent the dominant product among the minimally 

processed products (Rojas-Graù et al., 2011). The sector of fresh-cut fruits is rapidly increased in 
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the last years and will probably overshadow salad sales in the future, because fresh-cut fruits are 

more attractive to young consumers (Mayen & Marshall 2005). 

Nowadays, fresh-cut produce is one of the fastest growing food categories in U.S. supermarkets, 

where packaged salads are the most important item sold (Figure 1.1). Fresh-cut fruit and 

vegetable sales have grown to approximately $15 billion per year in the North American food 

service and retail market and account for nearly 15% of all produce sales. According to the 

United Fresh Produce Association (2007), the largest portion of U.S. fresh-cut produce sales at 

retail is fresh-cut salad, with sales of $2.7 billion per year. However, the fast food sector is 

increasing the demand for packaged fresh-cut fruits by offering healthier choices on their menus. 

Scott (2008) reported that the U.S. sales of fresh-cut fruit items increased for every product, 

ranging from 7% to 54% growth. 

 

Figure 1.1-Fresh-cut product sales via supermarket channels in U.S.; $6 Billion total. *Carrots = 45% of vegetables 

(Rojas-Graù et al., 2011adapted from Cook R., 2008).  

 

The fresh-cut vegetables and fruits European market trend  is different among countries. The 

fresh-cut industry is rising in many European countries with the United Kingdom, France, and 

Italy as share leaders. In Italy, for example, the sales exceeded 42,000 tons of production, 

corresponding to €375 M ($450 M U.S.) in 2004 (Nicola et al., 2006). Over the last decade, 

ready-to-eat mixed salad packs have been one of the greatest successes of the UK food industry 

(Rojas-Graù et al., 2011). Currently, the countries with higher growth in the fresh-cut fruits and 

vegetables market are Germany, The Netherlands, Spain, and United Kingdom. The average 

European consumes up to 3 kilos of fresh-cut products a year, but the differences are quite 
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substantial within Europe. For instance, in the United Kingdom the rate is 12 kg per capita per 

year, France comes second consuming 6 kg per capita, and Italians consume around 4 kg. Other 

European countries, where the consumption is not far less than those already mentioned, are 

Belgium, The Netherlands and Germany. In the countries of eastern Europe, with increasingly 

healthier economies, they are beginning to see great growth in this sector (Rojas-Graù et al., 

2011). 

 

QUALITY OF FRESH-CUT FRUITS AND VEGETABLES 

The quality of fresh-cut fruits and vegetables depends on several factors, which may be described 

by different attributes such as color, aroma, texture and nutritional value.  

Appearance and color 

The appearance of the product is an important factor affecting the consumer choice., It may 

comprise size, shape, color, gloss and absence of visual defects including morphological, 

physiological, physical or pathological ones. An important aspect, during the shelf-life of fresh-

cut products, is the preservation of the tissue color avoiding the surface browning. For example, it 

is well documented that lettuce and carrots may be subject to changes in color due to biochemical 

processes, in particular, chlorophyll degradation and browning, in case of lettuce, or carotene 

degradation, whiteness and browning for carrots (Rico et al., 2007). This is probably the major 

defect of fresh cut fruits and vegetables, able to reduce their quality and shelf-life (Lopez-Galvez 

et al., 1996). The occurring of browning is different between fruits and vegetables, for example, 

in case of lettuce, browning appears very slowly because of the de novo biosynthesis of 

polyphenols (Murata et al., 2004). In case of apple, the high amount of polyphenols caused a 

rapid enzymatic browning. Generally, the vegetable browning is related to tissue wounding 

(cutting, breaking, etc.), which induces the biosynthesis of phenolic compounds and consequently 

of the browning (Rico et al., 2007). The main enzymes involved in the synthesis of brown 

pigments are peroxidase (POD) and polyphenol oxidase (PPO) (Nicoli et al., 1991). These 

enzymes, in the presence of oxygen, converts phenolic compounds into dark-colored pigments. 

Moreover, some vegetables and fruits are susceptible to dehydration and subsequent discoloration 

due to the damaged cells or to the removal of protective skin. In carrots for example, in stress 

conditions, lignin is synthesized with the role of defense from microorganisms and other stress 
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factors. The lignin formation and the reversible surface dehydration of the outer layers lead to a 

discoloration of the tissues, increasing the whiteness (Rico et al., 2007). 

Texture 

Textural quality factors include firmness, crispness, juiciness and toughness depending on the 

product. Products that maintain firmness, crunchiness and other texture parameters, are desirables 

for the consumers because are generally associated to freshness of the produce (Bourne, 2002). In 

minimally processed vegetables, changes in texture parameters are generally associated to 

enzymatic and non-enzymatic processes. Enzymes involved in the loss of firmness are pectine 

methylesterase (PME) and poligalacturonase (PG), that cause the degradation of pectins (Vu et 

al., 2004). The stimulation of PME activity with mild heating treatments has been correlated with 

texture maintenance, therefore only the combined action of PME and PG lead to a loss of 

firmness. Considering lettuce, it is very difficult maintaining the texture during storage. The 

cutting process makes start undesirable biochemical reactions that lead to a loss of crispness. In 

particular, the tissue softening and the associated leakage of juice are the major textural defects of 

fresh-cut fruits and vegetables. 

Sensory quality 

The flavor of the products comprises  the taste and aroma of the products. Aroma compounds are 

detected by olfactory nerve endings in the nose. Taste is the detection of nonvolatile compounds 

by different receptors in the tongue. Flavor includes tastes like sweet, sour, astringent, bitter and 

off-flavors. The flavor quality of fresh-cut fruits and vegetables is affected by their content of 

sugar, organic acids, phenolic compounds and volatile active molecules. Hundreds of volatile 

compounds are responsible of the flavor of the products, and some of them are presents in very 

low concentrations (part per billion). For this reason, the analysis of the flavor actually requires 

the use of gas chromatography and gas chromatography/mass spectrometry techniques. A wide 

range of volatile molecules were detected and belonging to several chemical groups such as 

alcohols, aldehydes, ketones, esters, furanes, glucosinolate, lactones, nitrogen and sulfur-

containing compounds, terpenes and other compounds (Rico et al., 2007). Esters are usually the 

major components affecting the aroma in fruits. Several studies demonstrated that the sensory 

quality may decline before to the textural and physiological quality. A hypothetical postharvest 
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quality evolution, comparing flavor, visual nutritional and texture quality, is reported in Figure 

1.2. Basing on sensory evaluation, to satisfy the consumers it is necessary to get more 

information as possible about the optimum volatile compound concentration ranges.  

 

 

Figure 1.2-Fresh-cut fruits life based on texture, nutritional and flavor quality attributes (adapted from Beaulieu 

J.C. 2011).  

 

Fresh-cut fruits and vegetables can be a source of vitamins, minerals and dietary fiber. Besides, 

they contain other minor constituents (flavonoids, carotenoids, polyphenols, and other 

phytonutrients), that may have a beneficial effect on human health and reduce the risk of cancer 

and heart diseases. Losses in nutritional quality are common during the storage, and they are 

enhanced by physical damage, high temperatures during storage, low relative humidity. 

Moreover, a decrease in the antioxidant activity during process has been reported for different 

kind of fruits and vegetables (Rico et al., 2007). 

Intrinsic factors affecting quality of minimally processed vegetables and fruits 

The main intrinsic factors affecting the quality of ready to eat fruits and vegetables are pH and 

respiration rate of minimally processed produce. Ready-to-eat fruits and vegetables are living 

tissue and if they are damaged in some way, the respiration rate increases (Laties, 1978). Tissues 

with a high respiration rate have a shorter postharvest life. The use of modified atmosphere 

during storage has the function to reduce the respiration rate of vegetable tissues. Also treatments 
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before and after wounding can affect the respiration rate and this can be evaluated by monitoring 

the concentration of oxygen and carbon dioxide in the headspace composition. 

Another factor influencing the quality of minimally processed vegetables and fruits is the pH, 

which, for vegetables, should be between 5 to 6.5 to maintain the quality. However, some 

treatments, in particular the level of CO2 in the modified atmosphere, can affect the pH of 

samples. 

 

1.1.1 MICROBIOLOGICAL AND SAFETY ASPECTS OF FRESH-CUT FRUITS AND 

VEGETABLES 

The spoilage of fresh-cut fruits and vegetables can be divided into physiological spoilage (due to 

enzymatic and metabolic activity of living plant tissue) and microbiological spoilage (due to 

microorganisms proliferation). During processing of fresh-cut fruits and vegetables, plant tissues 

suffer physical damage, with releasing of enzymes from substrates, and this makes them more 

perishables than the starting product (Artès et al., 2007). Moreover, the processing leads to an 

increase of respiration rate and ethylene production and in the end a faster metabolic rates 

(Ahvenainen, 1996; Surjadinata & Cisneros-Zevallos 2003; Artés et al. 2007; Soliva-Fortuny et 

al., 2003). 

Besides, the release of nutrients on trimmed surfaces, enables the growth of microorganisms. The 

presence of microorganisms is correlated to the amount of sugar present on the surface of leaves. 

The presence of damaged areas on plant tissues represents a good substrate for microbial growth 

by providing nutrients (King et al., 1991; Zagory et al., 1999). Some of spoilage microorganisms 

produce pectinolytic  enzymes degrading texture and providing more nutrients for microbial 

growth (Ragaert et al., 2011). The intrinsic properties of the product (e.g., pH of the tissue and 

nutrient availability) determine the growth rate and the type of microorganisms developing on the 

produce and, consequently, the type of spoilage pattern. Extrinsic properties (e.g., storage 

temperature and gas atmosphere) also influence the spoilage behavior of fresh-cut fruits and 

vegetables (Ragaert et al., 2011). The use of modified atmosphere can improve the shelf-life of 

fresh-cut products. The physiological state of the product, rather than the inhibition of spoilage 

bacteria, plays an important role in the beneficial effects of modified atmosphere  storage of 

vegetables (Bennik et al., 1998). 
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MICROORGANISMS RELATED TO SPOILAGE OF FRESH CUT FRUITS AND VEGETABLES 

Both fresh-cut fruits and vegetables are susceptible to many different contamination sources, such 

as seed, soil, irrigation water, animals, manure/sewage sludge use, harvesting, processing, and 

packaging. Total counts of microbiological populations on fresh-cut vegetables after processing 

range from 3 to 6 log CFU/g (Ragaert et al., 2011). In case of fresh-cut vegetables, the intrinsic 

properties favor growth of bacteria and yeasts, whilst molds are not so important. The 

predominant bacteria species are Pseudomonadaceae, Enterobacteriaceae and some species 

belonging to lactic acid bacteria (especially Leuconostoc mesenteroides) (Lund 1992; Nguygen & 

Carlin, 1994; Vankerschaver et al., 1996; Bennik et al., 1998). The yeasts species identified in 

fresh-cut vegetables are Candida sp., Cryptococcus sp., Rhodotorula sp., Trichosporon sp., 

Pichia sp., and Torulaspora sp. (Nguygen & Carlin 1994). In case of fresh-cut fruits, the growth 

of yeasts and molds is favor due to the lower pH values  compared to vegetables (Beaulieu & 

Gorny, 2002). The most present yeasts are Pichia sp., Rhodotorula sp., Candida pulcherrima, C. 

lambica, C. sake, and Debaryomyces polymorphus. The principal molds reported on fruits are 

Botrytis cinerea, Rhizopus stolonifer, Mucor piriformis, Rhizoctonia solani, and Phytophtora 

cactorum. 

Generally, the proliferation of microorganisms can have different impacts resulting in the 

production of enzymes and metabolites able to generate defects of texture and off-odors. The 

kind of spoilage depends from the composition of fruits and vegetables. For example, in sugar-

rich vegetables and most of fresh-cut fruits the growth of yeasts and lactic acid bacteria is favored 

resulting in off-odors caused by microbial proliferation and the production of acids such as lactic 

acid, acetic acid, malic acid, succinic acid, and pyruvic one. In many vegetables and fresh cut 

fruits, the presence of off-odors normally happens when the bacterial count exceeds the threshold 

limit of 8 log cfu/g or  5 log cfu/g in the case of yeasts (Barry-Ryan & O’Beirne, 1998;  Hao et 

al., 1999). Another problem related to the yeast growth is the production of ethanol and other 

volatile organic compounds such as 2-methyl-1-propanol, 2-methyl-1-butanol, and 3-methyl1-

butanol, especially for   fresh-cut fruits, which contain high concentrations of fermentable sugars 

(Ragaert et al., 2006; Ragaert et al., 2011). The fermentative processes, and so the ethanol 

production, can be also favored by too low O2 concentrations or too high CO2 concentrations 

regardless of the microbiological counts (López-Gálvez et al., 1997; Smyth et al., 1998). In some 

cases, for example in strawberries, the ethanol and other  microbial metabolites such aldehydes 
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and ketones can be converted in acetate and butyrate esters by physiological processes 

(Hamilton-Kemp et al., 1996; Yu et al., 2000). 

In produce with lower sugar content, as lettuce, the major spoilage microorganisms are 

Pseudomonas sp., which can produce metabolites resulting in off-odors. Moreover, many of these 

bacteria are able to produce pectinolytic enzymes resulting in changes of the texture of the 

product (Ragaert et al., 2011). The presence of soft and macerated tissues can happen when the 

Pseudomonas sp. count is above 7-8 log cfu/g, depending on the kind of vegetable. An overview 

of the mains spoilage mechanisms in different types of fresh cut fruits and vegetables are reported 

in Figure 1.3.  

 

Figure 1.3- Overview of dominating mechanisms of spoilage and influences on spoilage of leafy vegetables versus 

sugar-rich fruits and vegetables (adapted from Ragaert et al., 2011). 
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PATHOGENIC MICROORGANISMS RELATED TO FRESH CUT FRUITS AND VEGETABLES 

Fresh-cut fruits and vegetables are normally considered as safety products. However, in the last 

years some foodborne outbreaks were associated to this kind of products. In fact, fresh cut fruits 

and vegetables are considered as possible vehicles of foodborne pathogens. Pathogens may be 

present on the raw vegetables or due to cross-contamination during processing (Nguygen & 

Carlin, 1994; Beuchat, 1996; Seymour & Appleton, 2001). The incidence of foodborne outbreaks 

caused by contaminated fresh fruits and vegetables has increased in recent years (Mukherjee et 

al., 2006). 

The pathogens most frequently linked to produce-related outbreaks include bacteria (Salmonella, 

E. coli, L. monocytogenes), viruses (Norwalk-like, hepatitis A), and parasites (Cryptosporidium, 

Cyclospora) (Tauxe et al., 1997), with Salmonella and E. coli O157:H7 being the leading causes 

of produce-related outbreaks in the USA (Olsen et al., 2000). Fresh produce and sprouts have 

been implicated in a number of documented outbreaks of illness in countries such as Japan (Nat'l. 

Inst. Inf. Dis., 1997; Gutierrez, 1997), the USA (De Roever, 1998) and EU (Emberland et al., 

2007; Pezzoli et al., 2007; Abadias et al, 2008b; Söderström et al., 2005).  

Many pathogens were isolated from different kind of fresh-cut fruits and vegetables, although not 

all of them could be associated with foodborne outbreaks (Table 1.2).  

 

Table 1.2- Pathogenic organisms of concern or Potential concern in Fresh-cut Produce (adapted from Ragaert et 

al., chapter 3 Advances in fresh-cut fruits and vegetables processing, 2011). 

 

Among fresh-cut and vegetable categories, lettuce was most frequently associated with outbreaks 

of illness, followed by potatoes, tomatoes, melons, sprouts, berries, mushrooms, and peppers 

(Figure 1.4). 
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Figure 1.4- Produce-linked outbreak vehicles between 1998 and 2006 (adapted from Buchholz et al., 2010). 

 

Salmonella and Shigella 

Salmonella and Shigella spp. are Gram-negative, facultative anaerobic and nonspore forming 

bacteria. They are mesophilic fecal-associated pathogens. Their presence is mostly associated to 

fresh-cut vegetables and their growth on this kind of products is generally associated to 

temperature abuse (T>10 °C).  On the contrary, in fresh-cut fruits, the low pH is a limit for the 

pathogen growth, with the  only exception of melons because of their high pH. 

These pathogens have a very low infectious dose of less than 100 cells. Shigellosis  may also 

occur through consumption of contaminated water and foods, particularly salad vegetables. 

Imported food products from endemic regions where hygienic standards are insufficient have 

become a potential source of Shigella contaminated foods (Smith, 1987; ICMSF 1996). 

Laboratory studies revealed that S. sonnei can survive on shredded cabbage at 0 to 6°C for 3 days 

without decrease in number (Ragaert et al., 2011). Raafi et al.(1995) demonstrated that Shigella 
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spp. survived for several days both at 22°C and at refrigerator temperatures (5 and 10°C) when 

inoculated into commercial salads and vegetables (carrots, coleslaw, radishes, broccoli, 

cauliflower, lettuce, and celery). The experiment, conducted at 12°C on fresh-cut lettuce and 

shredded carrots, showed that Shigella flexneri and S. sonnei were able to proliferate (Ragaert et 

al., 2011). 

Salmonella is frequently present on raw vegetables and fruits (Doyle, 1990, Beuchat, 1996, 

Abadias et al., 2008b). Normally its growth rate is reduced at less than 15°C and prevented at less 

than 7°C (ICMSF 1996). Zhuang et al. (1995) showed no changes in S. montevideo on tomatoes 

surfaces at 10°C after 22 days of storage, but at 20°C growth occurred after 7 days. S. enteriditis, 

S. infantis, and S. typhimurium were reported to be capable of growth in chopped cherry 

tomatoes. Abadias et al., (2008b), showed that the incidence of Salmonella in fresh cut vegetables 

was of 1.3%, but in other study conducted by Garcia-Villanova et al. (1987), was found that 7.5% 

and 3.3% of whole vegetables harbored Salmonella. Other studies of fresh, unprocessed produce 

conducted in Minnesota and Wisconsin (Mukherjee et al., 2006), the UK (Sagoo et al., 2003), in 

southern USA (Johnston et al., 2005), in USA (with imported fresh produce, FDA, 2001) and 

Malaysia showed widely varying incidences of Salmonella: 0, 0.2%, 3.3%, 3.5% and 35%, 

respectively. This microorganism was able to grow at low pH (3.99 to 4.37) under certain 

conditions (Asplund & Nurmi, 1991; Wei et al., 1995). However, refrigeration was the best 

preservation method to prevent an outgrowth of this mesophilic pathogen. 

In the European regulation regarding criteria for foodstuffs (EU Regulation 2073/2005), is 

generally recommended for fresh-cut products the absence of Salmonella in 25 g of product. 

 

Escherichia coli 

E. coli is commonly found in the intestines of warm-blooded animals. Most types of E. coli are 

harmless, but some are pathogenic. The symptoms of E. coli O157:H7 infection include severe, 

sometimes bloody, diarrhea and abdominal cramps. Escherichia coli can be present in raw 

material and also in vegetables and fruits. The number of E. coli O157:H7 infections associated 

to fresh-cut vegetables and fruits have increased in the last years (Park et al., 1999). Survival and 

growth patterns of E. coli O157:H7 are dependent on vegetable type, package atmosphere, 

storage temperature, and bacterial strain (Francis & O’Beirne 2001). E. coli O157:H7 was able to 

grow on apples stored at 24°C for 6 days. (Dingmann, 2000). E. coli O157:H7 population in 
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shredded lettuce declined approximately 1 log throughout a 14-day storage at 4°C (Chang & 

Fang, 2007). At a higher temperature (22°C), populations of the same strain increased with about 

3 log within 3 days. Similarly, populations of E. coli O157:H7 in lettuce stored at 5°C decreased 

with about 1 log in 18 days but it increased with about 3 log when lettuce was stored at 15°C (Li 

et al. 2001). 

E. coli O157:H7 has the capability to grow at high temperatures and to survive at refrigerated 

temperatures. In addition, its low infectious dose (10 to 100 CFU/g) makes the presence of this 

pathogen in fresh-cut vegetables and fruits a risk for public health (Chang & Fang 2007). 

Conflicting results were observed about the effect of modified atmosphere on the growth of E. 

coli O157:H7. Diaz and Hotchkiss (1996) showed that, although modified atmosphere packaging 

had beneficial effects on the shelf life of shredded lettuce, the extended shelf life allowed E. coli 

O157:H7 to grow to higher numbers within the shelf-life period compared to air-held shredded 

lettuce. Gunes and Hotchkiss (2002) observed that E. coli O157:H7 survived in fresh-cut apples 

but it was inhibited in modified atmospheres with high carbon dioxide concentrations at abusive 

temperatures. 

E.coli is used as hygiene indicator for fresh cut fruits and vegetables because it is a true indicator 

of fecal origin and its presence is linked to the possible presence of other fecal pathogens 

(Ragaert et al., 2011). 

 

Listeria monocytogenes 

L. monocytogenes is widely distributed in natural environment including raw vegetables 

(Beuchat, 1996). L. monocytogenes is a bacterium that is able to grow in refrigerated produce 

such as lettuce (Carlin & Nguyen, 1994; Koseki & Isobe, 2005). The minimal temperatures for 

growth are between 0 and 4°C, it is not affected by the modified atmospheres applied for fresh-

cut vegetables and fruits (Thomas et al., 1999; Castillejo-Rodriguez et al. 2000). Fresh-cut 

vegetables showed an incidence of L. monocytogenes varying from 0% to 19% in Europe (Carlin 

& Nguyen 1994). L. monocytogenes was also found in different kind of fresh-cut vegetables like 

green beens, tomato products and artichoke (Aguado et al., 2004). However, there were no L. 

monocytogenes outbreaks associated with fresh produce reported in the United States during 

1999–2005 (DeWaal & Bhuiya, 2007), and in United Kingdom a screening on different 

vegetables revealed that, on the 151 samples analyzed, no L. monocytogenes was isolated. 
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The microbiological criteria about the presence of L. monocytogenes in fresh-cut fruits and 

vegetables are different and depending on the region. In Europe, the EU Regulation 2073/2005 

considers fresh-cut fruits and vegetables as “ready-to eat foods able to support growth of L. 

monocytogenes,” and it establishes as  food safety criteria a maximum of 100 CFU/g at the end of 

the shelf life with the indication that during the entire shelf life, a maximum of 100 CFU/g must  

not be exceeded (Ragaert et al., 2011). However, depending on the shelf life of the fresh-cut 

vegetables (less than 5 days of shelf life) and the pH of the produce (pH below 4.4, as will be the 

case for the majority of fruits), they can also be considered as “ready-to-eat foods unable to 

support the growth of L. monocytogenes”. The European classification of fresh-cut fruits and 

vegetables in possible risk of outgrowth of Listeria monocytogenes during shelf life is reported in 

Table 1.3. 

 

Table 1.3- Classification of Fresh-cut Fruits and Vegetables in Possible risk of outgrowth of Listeria monocytogenes 

during shelf life (adapted from Ragaert et al., chapter 3 Advances in fresh-cut fruits and vegetables processing, 

2011). 

 

It is the task of the food business operator to verify the capability of L. monocytogenes to grow in 

the concerned product, in the selected storage conditions within the prescribed shelf-life period. 

Generally, the absence of Listeria in 25 g of the product is recommended.  

Outside Europe, there are often different criteria regarding L. monocytogenes. For example, the 

United States and Canada introduced a zero tolerance for some foods (absence of L. 

monocytogenes in 25 g), especially foods that are supportive of growth and have extended shelf 

lives. In these countries, decontamination techniques are often allowed in the production chain in 

order to reduce the bacterial load and avoid the presence of pathogens. 
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Spore forming pathogens 

The growth of aerobic spoilage microflora rapidly decreases the redox potential of the food, 

improving conditions for the growth of C. botulinum (Francis et al., 1999). Normally C. 

botulinum is not able to grow below 10°C, but it is reported in literature that the types B, E and F 

are able to grow and produce toxin at temperature of 3°C (Francis et al., 1999). However, for 

becoming a real hazard for safety, the C. botulinum counts has to be more than 5-6 log CFU/g. 

Only in this condition the production of toxin occurs but in real condition, the natural microflora 

present on fresh-cut produce, inhibits the growth of C. botulinum at so high levels. 

 

1.1.2 TREATMENTS AND FACTORS AFFECTING THE SHELF-LIFE AND SAFETY 

OF FRESH-CUT FRUITS AND VEGETABLES 

Ensure the safety and the quality of fresh-cut products is an important target of the food industry. 

Every step from cultivation to the shelf is relevant for guarantee the safety and quality of fresh-

cut produce. There are several guidelines for washing, sanitizing and packing the minimally 

processed fruits and vegetables. Some of these minimal processing procedures can cause to the 

products some negative effects, such as ethylene production,  water loss, membrane deterioration, 

susceptibility to microbiological spoilage, loss of chlorophyll, decrease in acidity, tissue 

softening and lipid oxidation (Toivonen & De-Ell, 2002). Below, some of the traditional 

chemical and physical treatments are reported. 

 

WHASHING OF FRESH-CUT PRODUCE 

A correct washing process is probably one of the most important step affecting the subsequently 

shelf-life and safety of the minimally processed vegetables and fruits. 

The main aim of the washing step is to remove the dirt, pesticides residue, and spoilage 

microorganisms. During the washing, the products are transported under water through 

pressurized water into a water tank. Water can be used alone or with a sanitizing agent. If it is 

used alone is enough for removing cell exudates released by cutting (Allende et al., 2008) but not 

sufficient  to guarantee the safety of the produce, because pathogens,  entrapped in plant residue 

or in biofilms along the process line, may survive and contaminate the clean products (López-

Gálvez et al., 2009, Gil et al., 2011). Furthermore, at industrial level, the reuse of water is a 
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common practice and this may negatively affect the efficacy of the washing step (Lou, 2007; 

Allende et al., 2008). In conclusion, although washing can remove some of the surface 

microorganisms, it cannot remove all of them. 

For these reasons, the disinfection of the water used for washing is necessary. Disinfection 

consists in the treatment of the process water, with the aim to inactivate pathogenic 

microorganisms, viruses and fungi and to prevent the microbial contamination of the produce 

(Gil et al., 2001). The use of commercial sanitizers can lead to a disinfection but not a 

sanitization of the produce. Normally, the used sanitizers do not have a microbiological benefit 

on produce, but they are used to extend the use of wash water or confer some improvement in 

quality during early to mid-storage (Gil et., 2011). Moreover, the reduction of microbial 

population can reduce the competition among microorganisms and could lead to a faster growth 

of potential pathogenic microorganisms (Gomez-López et al., 2007; Stringer et al., 2007; Allende 

et al., 2008b). It is well documented that the microbiology of fresh-cut vegetables and fruits 

affects also the quality of the produce, including sensory quality (Allende et al., 2008). Other 

authors have demonstrated that there are not relationship between the total microbial count and 

the shelf-life of the produce (Bennik et al., 1998; Gram et al., 2002). In this contest, the main aim 

of the washing is not to remove completely the microorganisms, but to ensure that the present 

microorganisms will not create a human health risk. 

Concluding, sanitizing treatments are recommended to reduce the potential growth of 

microorganisms and possible contamination of fresh-cut vegetables and fruits. The Food and 

Drug Administration (FDA) elaborates guides with recommendations for a correct washing 

process. The last FDA guide suggests that washing raw agriculture commodities before 

processing the produce, may reduce the surface contamination. However, washing, even if a 

sanitizer is used, can only reduce but not eliminate the presence of microorganisms, including 

pathogens. Moreover, the importance of the water quality during the washing is well underlined. 

In fact, when antimicrobials are used with adequate quality water, the potential of produce 

contamination is reduced. 

Different methods have been used for washing the produce and guarantee microbiological 

quality. Among them, several physical and chemical methods whose efficiency has been largely 

studied (Table 1.4). 
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Table 1.4- Consideration concerning fresh-cut produce washing sanitizers (Gil et al. 2011, chapter 8 Advances in 

fresh-cut fruits and vegetables processing, 2011). 

 

The efficacy depends on several factors such as the type of treatment and product, the target 

microorganisms, the time of the treatment, the concentration of the sanitizer, the operating pH 

and temperature (Sapers, 2001; Parish et al., 2003). 

 

Chlorine based treatments 

Chlorine based sanitizers are the most widely used for decontamination of fresh cut produce and 

in general in the food industry. Chlorine is normally used in a range of 50-200 ppm and with a 

contact times of 1-5 minutes (Rico et al., 2007). The antimicrobial activity of chlorine is 
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dependent on the pH of the washing solution. In fact, at acidic pH, the chlorine is more active 

because is in the form of active hypochlorous acid (HOCl). On the contrary, if the pH is above 

pH 7.5, only a little part of chlorine is in the active form while the other is inactive hypochlorite 

(OCl
-
) without antimicrobial activity. For this reason the pH of the treatment solution should be 

ranged between 6 and 7.5. The use of washing solution with  pH below 6 is not applicable 

because of the corrosion of processing devices and the ability to generate gas which is a health 

hazard for employees (Beuchat, 2000, Rico et al., 2007). Chlorine is widely used as sanitizer for 

washing vegetables and fruits, although  several studies have demonstrated some concerns 

regarding  its effectiveness when   organic matter is present in the washing solution. In this 

condition, its efficacy is related to the time of contact with the product (Beuchat, 2000, Rico et 

al., 2007, Abadias et al., 2011, Gil et al., 2009). 

Furthermore, chlorine may react with the organic matter and lead to the formation of undesirable 

product, such as chloroform and trihalomethanes, which are suspected of being potentially 

carcinogenic (Parish et al., 2003; Alegria et al., 2010; Abadias et al., 2011; Gomez-López et al., 

2013). In some European countries including Germany, The Netherlands, Switzerland, and 

Belgium, the use of chlorine to wash minimally processed vegetables is prohibit (Artés & 

Allende, 2005), and in other countries there are some restrictions about its use. 

Chlorine dioxide (ClO2) has high oxidizing power, 2.5 times greater than free chlorine, and for 

this reason is more effective against microorganisms (Rico et al., 2007; Keskinen et al., 2009; 

Lee et al., 2004). Moreover, it does not react with organic matter and has a greater activity at 

neutral pH. Therefore, it does not form dangerous and carcinogenic compounds (Tsai et al., 

1995). The use of chlorine dioxide in washing fruits and vegetables is accepted (FDA, 1998), and 

many studies have demonstrated its antimicrobial activity against spoilage and pathogenic 

microorganisms (Listeria monocytogenes and E. coli) in food models (Han et al., 2000; González 

et al., 2005; Allende et al., 2008). The main problems about the use of Chlorine dioxide are the 

stability, and the high costs related to  the chlorine dioxide generation systems. 

 

Organic acids 

The use of acidifying agents may prevent the proliferation of spoilage microorganisms and the 

growth of pathogenic species. In fact, most of pathogens cannot grow at pH levels lower than 4.5 

(Parish et al., 2003). Normally, fruits contain several organic acids such as acetic, benzoic, citric, 
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malic, sorbic, succinic and tartaric that may prevent the proliferation of bacteria. Otherwise, other 

fruits such as melon and pineapple, and the majority of vegetables, contain lower concentrations 

of organic acids and the pH is not below 5.0. This pH value cannot guarantee the microbial safety 

because of most of pathogens are able to grow at pH level above 5.0.  

The antimicrobial activity of organic acids against psychrophilic and mesophilic microorganisms 

in fresh-cut fruits and vegetables is well documented (Cherrington et al., 1991; Uyttendaele et al., 

2004; Bari et al., 2005). The activity of organic acids is due to the reduction of pH of 

environment, disruption of membrane transport and/or permeability, anion accumulation, or a 

reduction in internal cellular pH by the dissociation of hydrogen ions from the acid (Beuchat, 

2000; Rico et al., 2007). Ascorbic acid and citric acid are probably the most used organic acids. 

They are generally recognized as safe (GRAS) and they are highly used in the dipping solution of 

ready to eat fruits to reduce microbial contamination and, because of their antioxidant properties, 

for the prevention of browning and other oxidative reactions. Ascorbic acid, in particular, also 

acts as an oxygen scavenger, removing molecular oxygen in polyphenol oxidase reactions. 

Polyphenol oxidase inhibition by ascorbic acid has been attributed to the reduction of 

enzymatically formed o-quinones to their precursor diphenols (Rico et al., 2007). 

 

Hydrogen Peroxide 

Hydrogen peroxide (H2O2) is considered as GRAS for some food application, but it has not been 

approved yet as an antimicrobial wash-agent for products. H2O2 is a powerful oxidant due to its 

capability to generate other cytotoxic oxidizing species such as hydroxyl radicals (Juven & 

Pierson, 1996). For this reason, H2O2 possess bactericidal, sporicidal and inhibitory activity. It is 

widely used as sterilizing agent for food contact surfaces decontamination. In normal condition, it 

produces no residue because it is broken down to water and oxygen by catalase (Sapers, 2003), 

but it depends on the presence or absence of peroxidase in the produce item (Parish et al., 2003). 

Sapers et al. (1999) have shown that solution of 5% hydrogen peroxide can achieve a higher log 

reduction for inoculated apples than 200 ppm of chlorine. Moreover, treatments by dipping in 

H2O2 reduce microbial population on fresh-cut produce as bell peppers, cucumber, zucchini, 

cantaloupe, and honeydew melon (Ukuku & Sapers, 2001; Ukuku et al., 2001; Beuchat & Ryu, 

1997; Park & Beuchat, 1999). However, it is well documented that the use H2O2 in some kind of 

produce as shredded lettuce and mushrooms, can cause browning.  
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Lactoperoxidase technology, that is the use of H2O2 plus the sodium thiocyanate, is a relatively 

recent technology. In this case, the active molecule with disinfectant activity is OSCN–, this 

molecule does not remain in the finished product because it has very short life duration. For this 

reason this technology is suitable to be used in food processing, in particular for fresh cuts 

(Allende et al., 2008). 

 

Ozone 

Ozone (O3) is a powerful antimicrobial and sporicidal agent (Singh et al., 2002; Guzel-Seydim et 

al., 2004). Ozone is one of the most known potent sanitizers, and it leads to a spontaneous 

decomposition to a non-toxic product (Grass et al., 2003). Ozone results from the rearrangement 

of atoms when oxygen molecules are subjected to high-voltage electric discharge. The product is 

a bluish gas with pungent odor and strong oxidizing properties (Horvath et al., 1985). The 

product is a bluish gas with pungent odor and strong oxidizing properties (Horvath et al., 1985). 

Solubility ratio for ozone increases as the temperature of water decreases (Bablon et al., 1991), 

but it is also affected by water pressure, pH an purity (Smilanick et al., 1999) 

Molecular ozone reactions are selective and limited to unsaturated aromatic and aliphatic 

compounds. Ozone oxidizes these compounds through cycle-addition to double bonds (Bablon et 

al., 1991). Oxidation of sulfhydryl groups, which are abundant in microbial enzymes, may 

explain rapid inactivation of microorganisms and bacterial spores by ozone (Rico et al., 2007). 

Perez et al. (2002) showed that N-acetyl glucosamine, a compound present in the peptidoglycan 

of bacterial cell walls and in viral capsids, was resistant to the action of ozone in aqueous solution 

at pH 3 to 7. Glucosamine reacted relatively fast with ozone, but glucose was relatively resistant 

to degradation. This observation may explain the higher resistance of Gram-positive bacteria 

compared to Gram-negative ones; the former contains greater amounts of peptidoglycan in their 

cell walls with respect to Gram-negative bacteria. Moreover, ozone reacts with amino acids and 

peptides, saturated and unsaturated fatty acids and also with nucleobasis (Ishizaki et al., 1981).  

Ozonized water is widely used as sanitizer in fresh-cut vegetables (Beltran et al., 2005; Selma et 

al., 2008). Several studies have shown the beneficial effects of O3 in extending shelf-life of fresh-

cut and not cut vegetables such as fresh-cut onion, escarole, carrot, spinach, broccoli, cucumber, 

apples, grapes, oranges, pears and strawberries (Beuchat et al.,1998; Kim et al., 1999; Skog & 
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Chu, 2001). Although the antimicrobial activity of ozone is well documented, a lack of 

knowledge is present about the effect of O3 on pathogenic species (Rico et al., 2007). 

Ozone has been declared as GRAS by FDA as antimicrobial agent for the treatment of raw and 

fresh-cut fruits and vegetables in gas and aqueous phases (Graham, 1997; Xu, 1999). The 

positive impact on water, decomposing many pesticides and reducing the oxygen demand is well 

documented (Rico et al., 2007). Moreover, the activity of ozone is not affected by the pH (Gil et 

al., 2011). When compared to chlorine, ozone has a greater effect against certain microorganisms 

and rapidly decomposes to oxygen, leaving no residues (White, 1992). The critical points about 

the use of ozone are related to the initial capital cost of the generator, the higher corrosiveness 

than chlorine and its high instability, making it difficult to predict how O3 reacts in the presence 

of organic matter (Cho et al., 2003). Concluding, the use of ozone could be a good option for the 

wash-water disinfection for the fresh-cut industry, because it will reduce the need for water 

replacement and for high sanitizer concentration such as chlorine during vegetable washing (Gil 

et al., 2011) but its oxidant impact on the products needs to be considered. 

 

Electrolyzed water 

Electrolyzed water (EW), also known as electrolyzed oxidising water, is a novel antimicrobial 

agent which has been used in Japan for several years (Huang et al., 2008). It has been reported to 

possess antimicrobial activity against a wide range of microorganisms (Fabrizio & Cutter 2003; 

Kiura et al., 2002; Kimura et al., 2006). EW is generated by electrolysis of aqueous sodium 

chloride to produce an electrolyzed basic aqueous solution at the cathode and an electrolyzed 

acidic solution at the anode. By subjecting the electrodes to direct current voltages, negatively 

charged ions such as chloride and hydroxide in the diluted salt solution, move to the anode to 

give up electrons and become oxygen gas, chlorine gas, hypochlorite ion, hypochlorous acid and 

hydrochloric acid, while positively charged ions, such as hydrogen and sodium, move to the 

cathode to take up electrons and become hydrogen gas and sodium hydroxide (Hsu, 2005). The 

produced acidic EW (pH 2.1-4.5) has a strong bactericidal effect against pathogens and spoilage 

microorganisms, more effective than chlorine due to a high oxidation reduction potential (Bari et 

al., 2003; Rico et al., 2007). The main disadvantage of EW water is that the solution rapidly loses 

its antimicrobial activity if EW water is not continuously supplied with H
+
, HOCl and Cl2 by 

electrolysis (Kiura et al., 2002). Moreover, problems such as chlorine gas emission, metal 
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corrosion, and synthetic resin degradation, due to its strong acidity and free chlorine content, 

have been reported. 

 

PHYSICAL TREATMENT 

Several physical methods are used for extending the quality and guarantee the safety of 

minimally processed produce. Some of them are traditional methods as modified atmosphere 

packaging; but there are also alternatives to chemicals for disinfection of recycled or recirculating 

process water and fruit and vegetable sanitization, such as ultraviolet (UV) illumination, high 

pressure, pulsed electric field, pulsed light, oscillating magnetic fields, and ultrasound treatments, 

that they have been studied to reduce microbial contamination. 

 

Modified atmosphere packaging 

Modified atmosphere packaging (MAP) of fresh food is a growing sector, with an average annual 

growth rate of 13.6% over the last 5 years, and it will continue to grow due to research and 

development. MAP is a packaging system, consisting in different ratios of the components of the 

normal air (78% nitrogen, 21% oxygen, 0.03% carbon dioxide, in  addition to trace amounts of 

noble gases) in order to improve the shelf-life and maintain the quality of the produce (Phillips, 

1996). The packaging materials have to be selectively permeable to gases, and the modified 

atmosphere can be passive or active. In the first case, when the atmosphere is altered passively, 

the package is sealed under normal air conditions, and respiration of the product in the packaging 

causes an increasing of CO2 or reduction of O2 partial pressure until an atmospheric balance is 

reached. This condition is reached after a transient period, when gas partial pressure of packaging 

headspace reaches a steady state when diffusive exchanges through the film exactly compensate 

gas or vapor production or consumption. In case of active modified atmosphere, a gas mixture 

with defined concentrations of O2 and CO2 is injected into the package, so that the atmospheric 

equilibrium is reached quickly. For example, Charles et al. (2008), have shown that the 

equilibrium state in endives packaged in active MAP was reached faster (2 days) if compared to 

passive MAP (5 days). The changes of the package atmosphere composition is due to produce 

respiration and film gas permeability (Sivertsvik et al., 2002). 

Low levels of O2 and high levels of CO2 are able to reduce the respiration rate; but too low O2 

concentrations can cause fermentative processes which cause the formation of off-flavors 
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compounds (Rico et al., 2007). Moreover, high level of CO2 in sensitive product, can lead to the 

formation of brown spots on lettuce or yellowing of mushrooms, which are common visual 

degradations caused by high CO2 content (Zagory & Kader 1988; Lopez Briones et al. 1992). 

The recommended atmosphere composition depend on product species, variety and adopted 

processing. Normally fresh-cut produce are more tolerant to higher levels of CO2 than intact 

products because the resistance to diffusion is smaller (Kader et al., 1989; Rico et al., 2007). The 

use of MAP to extend shelf-life for many foods has been well documented (Jayas & 

Jeyamkondan 2002; Brecht et al. 2003; Varoquaux & Ozdemir 2005; Rico et al. 2007; Guillaume 

et al., 2011). At this time, to support the development and achieve breakthroughs in the design of 

innovative MAP solutions in a rational way, there is still a need to formulate strategic options for 

reducing time-consuming step-by-step trials (Guillaume et al., 2011). There are several system 

that can be used in MAP of minimally processed fruits and vegetables and they are reported in 

Table 1.5 

 

Table 1.5- Some Available Systems Used or That Could Be Used in Commercial Applications for Modified 

Atmosphere Packaging of Fresh Fruits and Vegetables (adapted from Guillaume et al. chapter 10 Advances in fresh-

cut fruits and vegetables processing, 2011). 
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The use of an active system, with a package engineered to scavenge molecules as O2, CO2 and 

ethylene can find good applications in fresh-cut sector. The most important O2 scavengers are 

based on the oxidation of ferrous ions, other active agents are unsaturated fatty acids, ascorbic 

acid, and enzymes (Brody et al., 2001). CO2 scavengers already exist and they are composed of a 

physical absorbent such as zeolite or a chemical one such as calcium hydroxide, sodium 

carbonate, or magnesium hydroxide. The use of this CO2 scavengers is not common in fresh-cut 

sector, because only on few products can give an advantage. Ethylene scavengers are already 

used to delay ripening of climacteric fruits and they are mainly based on ethylene oxidation by 

potassium permanganate. 

Several studies have shown the good potential of the combination of MAP with antimicrobial 

packaging, that release volatile substances with antimicrobial activity to inhibit the growth of 

spoilage microorganisms on product surface. 

The common packages used are made of plastic or polymer films. Plastic packaging may have 

different shapes (bags, pots, cups, and trays). Among the plastic materials, the most used are low 

density polyethylene, expanded polystyrene, polyvinyl chloride (PVC), polypropylene (PP) and 

polyethylene terephthalate (PET). 

Different studies have shown the combined effect of MAP and low temperatures to reduce the 

respiration rate and ethylene synthesis in minimally processed lettuce, broccoli, melon, pineapple, 

apple, kiwi and papaya (O’Connor-Shaw et al., 1994; Barth et al., 1993; Nicoli et al., 1994). 

The use of biodegradable films increased in the last years; the materials used in these edible 

coatings are lipids, polysaccharides and proteins. Those made of polysaccharides such as starch 

and alginate have shown the better results in extending the shelf-life of minimally processed 

fruits and vegetables (Rojas-Grau et al., 2008; Davis & Song, 2006). 

 

Thermal treatments 

Thermal treatment are extensively used in food industry. In case of ready to eat fruits and 

vegetables, there are some undesirable effects, such as loss of minerals and vitamins, formation 

of thermal reaction components and loss of fresh appearance, flavor and texture (Rico et al., 

2007). To avoid or minimize these negative effects, it is important to reduce the extent of the heat 

treatment which has the greatest influence, with respect to the treatment temperature, on the 

undesirable quality changes. 
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Blanching is a widely used technique to decontaminate minimally processed vegetables; it 

consists in heating the produce in water or steam at 85-100°C for a short time. This treatment is 

very effective to reduce the initial microbial population of the product (Rico et al., 2007). 

However, it causes some negative changes in the product and particularly the loss of nutrients 

and the undesirable changes in color and texture indexes (Negi & Roy, 2000; Song et al., 2003). 

An alternative to the blanching is the Heat-Shock method. In this case the heat treatment takes 

place during the washing step, at a temperature of 45-70°C for few minutes (less than 5) 

(Hisaminato et al., 2001). This method is able to repress the enzymatic browning of cut lettuce 

(Loaiza-Velarde et al., 1997). Moreover, in vegetable with a low level of phenolic compounds, 

where browning depends on the accumulation of phenolic compounds, heat-shock may redirect 

the protein synthesis away from the production of enzymes involved in phenolic compound 

accumulation. For this reason, in this kind of vegetables heat-shock can improve the organoleptic 

properties of the produce (Murata et al., 2004; Rico et al., 2007).  

 

Irradiation and Ultraviolet light 

The use of ultraviolet light (UV) light is well established for water treatment, air disinfection and 

surface decontamination. The UV region of the electromagnetic spectrum can be used for 

disinfection of liquid food products. The wavelength for UV processing ranges from 100 to 

400nm (Guerrero-Beltràn & Barbosa-Cànovas, 2004). The wavelength between 250 and 270nm 

has the highest antimicrobial properties; normally a wavelength of 254nm is used for disinfection 

of water, food products, and surfaces (Bintsis et al., 2000).  

The effects of UV light is dependent from the kind of microbial strain and type and composition 

of the food. The UV light causes a damage to the DNA (Liltved & Landfald, 2000), and 

moreover, it can increase the resistance of vegetable tissues to pathogen microorganisms (Nigro 

et al., 1998). This technique does not produce chemical residues, by-products or radiation 

(Guerrero-Beltràn & Barbosa-Cànovas, 2004). Also, it is a simple dry and cold process 

(Bachmann, 1975; Morgan, 1989) requiring very low maintenance and low cost, as it does not 

need energy as a treatment medium. Exposition to UV may induce the synthesis of healthy 

compounds such as anthocyanins and stilbenoids (Cantos et al., 2001). However, high UV can 

damage  the vegetable tissue (Nigro et al. 1998). Some studies have demonstrated that the use of 

UV at 254 nm,  on minimally processed lettuce, can reduce deterioration of the produce by 
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effectively reducing microbial populations. But negative effects were also found, and the 

application of UV increased the stress of the produce, respiration rate, and possibly induced a 

lignification-like process, which changed the appearance of the samples (Allende & Arles, 2003; 

Rico et al., 2007). 

Another technique suitable to be used in food decontamination and that causes DNA damage in 

living cells in order to prevent the growth of microorganisms is the ionizing radiations. 

According to the Codex General Standard for Irradiated Foods, ionizing radiations foreseen for 

food processing are limited to high energy photons. Irradiation was approved by the FDA for use 

on fruits and vegetables at a maximum level of 1.0 kGy (IFT, 1983). Vegetative bacteria and 

molds are very sensible to irradiation; instead, more resistant are bacterial spores (Farkas, 2006). 

However, fungi with melanized hyphae have a radiation resistance comparable to that of bacterial 

spores (Saleh et al., 1988). Yeasts are as resistant as the more resistant bacteria. Viruses are 

highly radiation resistant (WHO, 1999). The suggested dose employed can be applied without 

unwanted changes, (e.g. off-flavours, in case of protein foods, and/or texture changes in fresh 

fruits and vegetables) (Farkas, 2006). Several studies have shown the potential application of 

irradiation in different kind of food produce. In particular, recently research was directed more on 

irradiation of minimally processed fresh produce. Good microbiological results without affecting 

color and texture parameters have been obtained in minimally processed carrots, lettuce and 

cantaloupes (Chervin & Boisseau, 1994; Foley et al., 2004; Goularte et al., 2004; Boynton et al., 

2006). 

 

High Pressure Processing 

The use of high pressure processing has shown its great potential in food industry (Norton & Sun, 

2008). The high pressure treatment microbial targets are the cell membranes, and in some cases, 

additional damaging events such as extensive solute loss during pressurization, protein 

denaturation and key enzyme inactivation are also required (Manas & Pagan, 2005). Moreover,  

high pressure treatments are very effective against a wide range of microorganisms. Normally, 

yeasts and molds, are more resistant to high pressure processing and they are inactivated by 

pressures between 200 and 300MPa (Smelt, 1998). Gram-positive bacteria are more resistant to 

pressure than Gram-negative bacteria. 
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High pressure processing can be applied to different range of foods, including juices and 

beverages, fruits and vegetables, meat-based products (cooked and dry ham, etc.), fish and pre-

cooked dishes, with meat and vegetables being the most popular applications (Norton & Sun, 

2008). The application of high pressures in a range 300-800 MPa can inactivate the 

microorganisms without affecting the color, texture and nutritional properties. 

There are several limits about the use of high pressure processing in minimally process fruits and 

vegetables. In fact, pressure has shown to cause softening influence on texture of fruits and 

vegetables, and tissue firmness may be lost due to cell wall breakdown and loss of turgidity (De 

Belie, 2002). Trejo-Ayara et al. (2007) have found that textural changes in raw carrots are 

primarily caused by loss of turgidity induced by rapid compression and decompression. 

Moreover, the presence of  air confined in the food matrix is subjected to compression and 

expansion during pressurization and decompression, disrupting food tissues, therefore making 

this unit operation unsuitable for fresh vegetables (Rico et al., 2007). 

 

Hurdle Technologies 

Hurdle technology is the combination of different preservation techniques as a conservation 

strategy (Rico et al., 2007). The control of temperature, water activity, acidity, redox potential 

and the use of preservatives, modified atmosphere and competitive microorganisms (e.g., lactic 

acid bacteria) represent the most important hurdles commonly used in food preservation 

(Leistner, 1999). By using hurdles, the intensity of the individual preservation techniques can be 

kept comparatively low, minimizing the loss of quality, while the overall impact on microbial 

growth may remain the same or better (Rico et al, 2007). The most important factor to consider is 

the selection of hurdles; this choice should be done carefully on the basis of the quality attributes 

of a product (Gorris & Tauscher, 1999). According to Leistner (1999), there are more than 60 

potential hurdles for foods that improve the stability and/or quality of minimally processed 

products. 

 

1.1.3 FUTURE TRENDS IN FRESH-CUT FRUITS AND VEGETABLES PROCESSING 

In the last few years, a remarkable mutation occurred inside the social and family structure. The 

changes in lifestyles have led to a dramatic reduction in the times for meal preparation. An 

increasing number of people have at least one meal away from home. In this perspective, 
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industrial kitchens need to prepare and cook large numbers of meals in short periods of time 

(Oms-Oliu & Soliva-Fortuny, 2011). Simultaneously, consumers have become more appealed in 

food health and more interested in fresh and convenience products (Rocha & Morais, 2007). 

Moreover, nutrition experts agree in asserting that the consumption of sufficient amounts of fruits 

and vegetables is important in a healthy lifestyle while the presence of fiber, vitamins, minerals 

and phytonutrients can play an important role to prevent cardiovascular diseases, certain types of 

cancer, obesity, and diabetes. 

A global trend is to encourage the consumption of fruits and vegetables, and in this regard 

different proposals have been carried out such as lower price of healthy foods to increase 

consumption. Although the knowledge about the health effects of fruits and vegetables has 

increased in the last time, the diets of a large part of consumers are still deficient in the 

recommended intake. In European countries, trends show that diets are moving away from the 

traditional “Mediterranean diet” (Rodrigues & de Almeida, 2001). 

This situation is an opportunity for the introduction to the markets of new food products such as 

fresh-cut fruits and vegetables that may represent a strategy to increase the consumption of fruits 

and vegetables to the recommended levels for a healthy diet (Oms-Oliu & Soliva-Fortuny 2011).  

In fact, minimally processed fruits and vegetables come across the consumer desire for 

convenience, quality, appearance, and healthy nutrition. A significant number of fresh-cut 

produces are already available in the markets of many developed countries. Ready to eat products 

are one of the major growing sectors in food retail establishments (Soliva-Fortuny & Martín-

Belloso, 2003). 

The market of fresh-cut produce is well consolidate in United States and some European country 

such as the Netherlands, United Kingdom, Germany and France whereas in countries such as 

Spain and Italy, its development is still limited. The reasons of the consolidation of the fresh-cut 

produce market in the cited countries appears to be due to the wide range of products and 

typology offered, the increase in exhibition space, and the increase in shelf-life up to 10−16 days 

for fresh salads. A different situation is present in countries such as Spain or Italy, where the 

shelf-life of fresh-cut salads is around a week. These shelf-life differences are related to the 

technology issues, but particularly to the logistic development that allows maintenance of the 

cold chain. The promotion of fresh-cut fruits and vegetables requires the appropriate combination 

of technologies for extending the shelf-life of the products, maintaining the sensory and 

organoleptic properties and guarantying the microbial safety of the product. 
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NEW APPROCHES TO CONTROL QUALITY AND SAFETY OF MINIMALLY 

PROCESSED FRUITS AND VEGETABLES 

In order to obtain minimally processed vegetables endowed with high sensory quality, 

microbiological safety and high nutritional value, new approaches need to be developed.  

Actually, it is possible to get a shelf-life of at least 1 week for most refrigerated (5°C) products 

(Oms-Oliu & Soliva-Fortuny 2011). Nevertheless, some products would need a shelf-life of more 

than 2 weeks, so that success in their commercialization can be achieved. The maintenance of the 

correct product temperatures through the entire chill chain is the most important aspect to ensure 

quality and safety of fresh-cut fruits and vegetables. Even if these products are often packaged 

under modified atmospheres, the maintenance of a temperature close to 0ºC is necessary to keep 

the product safe for consumption. 

The use of integrated approaches including the management of  different aspects such as raw 

material, handling, processing, packaging, and distribution, can extend the shelf-life of the 

products. A good choice of different preservation techniques is expected to have significant 

prospects for the future of minimally processed fruits and vegetables (Oms-Oliu & Soliva-

Fortuny 2011). 

The disinfection step is important and necessary in order to minimize microbiological spoilage, 

and at the same time afford safe and high-quality fresh-cut fruits and vegetables. Even if chlorine 

is still the most commonly used sanitizer, future regulatory restrictions are expected and will 

require the development of substitutes. Therefore, innovative approaches have been studied for 

the sanitization of this kind of foods. 

However, different studies have demonstrated that decontamination treatments such as hydrogen 

peroxide or acidic electrolyzed water can even enhance the microbial growth rate depending on 

the product and applied conditions (Gómez-López et al., 2008). Other alternatives are chlorine 

dioxide, low-dose gamma irradiation, ultraviolet light and pulsed light. All these technique have 

shown interesting prospects and advantages, but in all cases there are still some disadvantages 

and limits. 

The use of a correct packaging has an important function in the preservation of fresh-cut 

products. Recently, new packaging has been developed due to the necessity to meet  the demands 

of product safety, shelf-life extension, cost efficiency, environmental issues, and consumer 

convenience. Products are frequently packaged after flushing with different combinations of 
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gases (O2, CO2, and N2). The use of low O2 concentrations (1−5%) and high CO2 concentrations 

(5−10%) in combination with storage at refrigeration temperatures (4ºC), is suggested as ideal 

storage situation for minimally processed vegetables to preserve sensory and microbial quality 

(Oms-Oliu & Soliva-Fortuny 2011). 

The main issue is that the packaging films available do not have enough O2 and CO2 transmission 

rate to offset the high respiration rate of the products. This aspect, combined with the changes in 

temperature during storage (very common), lead to a rise in the respiration rate and consequently 

of the CO2 level in the package headspace. Too low O2 levels and excessive amounts of CO2 in 

package headspace are often detrimental to fresh-cut fruits. To partially solve this kind of 

limitations, active packages are being developed. An active package is asked to respond to 

environmental changes such as temperature or atmosphere composition, or to physiological 

changes in the product (Oms-Oliu & Soliva-Fortuny 2011). Some films can change their 

permeability on the basis of the outer temperature. The incorporation of sachets in the packages 

can give advantages. Sachets may contain a different constituents that can absorb or release gases 

and provide another mechanism for regulating atmosphere composition and product quality 

(Ozdemir & Floros, 2004). 

An alternative is the use of edible coatings that can be used as a complement or an alternative to 

MAP in order to improve the shelf-life of fresh-cut commodities. The use of edible coatings that 

can deliver active substances is an important advance. In particular, the incorporation of 

antimicrobial agents (chemical preservatives or antimicrobial compounds obtained from a natural 

source), antioxidants, and functional ingredients such as minerals and vitamins, can improve the 

functionality of edible coating. Micro- and nano-encapsulation can represent an useful  method to 

incorporate functional ingredients and antimicrobials into edible coatings. This technology can be 

adapted for packaging solids, liquids, or gaseous substances in micro- and nanoscale  forming 

capsules that can release their contents at controlled rates under specific conditions. The release 

can be solvent activated or signaled by changes in pH, temperature, irradiation, or osmotic shock 

(Vargas et al., 2008; Oms-Oliu & Soliva-Fortuny 2011). 

Interesting results in prolonging the shelf-life and safety of minimally processed fruits and 

vegetables have been obtained through the use of biotechnological approaches. Fresh-cut 

productions are potentially contaminated by pathogenic microorganisms. Modern biotechnology 

provides molecular methods, fast and sensitive, for detecting human pathogens on fresh-cut 

produce. An example is the use of real-time polymerase chain reaction (RT-PCR) for detecting 
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pathogens in food matrices. RT-PCR systems have been verified for identification and 

quantification of Listeria monocytogenes (Liming et al., 2004) and Salmonella spp. (Cheung et 

al., 2004) on minimally processed products such as fresh-cut cantaloupe, mixed salads, and 

cilantro leaves. Other biotechnological techniques have been tested for detecting pathogens such 

as enzyme-linked fluorescence immunoassay and immune strip test (Huang et al., 2005), pulsed-

field gel electrophoresis (Francis & O’Beirne, 2006), random amplified polymorphic DNA 

(RAPD), and restriction endonuclease analyses (REA) (Aguado et al., 2004). Finally, genetic 

engineering  may generate fruits and vegetables best suitable for fresh-cut processing. The most 

desirable characters for such genotypes would include inhibited enzymatic browning, firm 

texture, slow tissue degradation, inhibited senescence, and protection against microbial 

proliferation. However, prospects of concrete employment of these genotypes depend on their 

acceptance by consumers (Oms-Oliu & Soliva-Fortuny 2011). 
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1.2 USE OF COMPETITIVE MICROFLORA IN FOOD 

BIOPRESERVATION 

HYSTORICAL USE OF MICROORGANISMS IN FOOD PROCESSES 

A wide range of microorganisms are commonly present on food; some of them have positive 

effects, for example those used in fermentation processes. On the other hand, some 

microorganisms can be dangerous for human healthy, such as pathogens. 

Fermentation is a process dependent on the biological activity of microorganisms for production 

of a range of metabolites which can suppress the growth and survival of undesirable microflora in 

foodstuffs (Ross et al., 2002). Many microorganisms are used for the production of different kind 

of fermented products, and the properties of the final product are dependent on the used 

fermenting microorganisms. In many cases, the use of fermentation leads to a shelf-life extension 

and an improvement of the organoleptic properties of the final product. Species used for food 

fermentations belong to the genera Lactococcus, Streptococcus, Pediococcus, Leuconostoc, 

Lactobacillus, and the newly recognized Carnobacterium (Table 1.6). These organisms have 

been isolated from grains, green plants, dairy and meat products, fermenting vegetables, and the 

mucosal surfaces of animals. Once used to retard spoilage and preserve foods through natural 

fermentations, they have found commercial applications as starter cultures in the dairy, baking, 

meat, vegetable, and alcoholic beverages industries. 

Even if fermentation as preservative technique has well known for 8000 years; it has been only in 

the more recent past that microorganisms were recognized as responsible for the fermentation 

process. Moreover, the consumer demand for fermented produce is increased in the last years. 

For this reason also the availability of fermentative strains has increased. Nowadays, the 

production of fermented foods and beverages is dependent almost exclusively on the use of 

starter strains which have replaced the undefined strain mixtures traditionally used for the 

manufacture of these products (Ross et al., 2002). The use of starter strains allows to improve the 

performance and product quality of fermented processes, even if the intensive use of starters lead 

to some problems such as the bacteriophage proliferation that can affect cheese starter 

performance (Ross et al., 2002; Klaenhammer & Fitzgerald, 1994). 
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Table 1.6- Biopreservation by lactic acid bacteria (Ross et al., 2002). 

 

There is a relationship between fermentation and preservation, and the aim is the biopreservation 

of food by extending shelf-life and food safety. The use of starter microorganisms can inhibit the 

growth of spoilage and pathogenic microorganisms through antagonistic activity and the 

production of antimicrobial compounds and proteinaceous substances which can inhibit or reduce 

undesirable flora in food products (Ross et al., 2002). An example are Lactic Acid Bacteria 

(LAB) that are able to inhibit spoilage and pathogenic microorganisms; their activity is mainly 

due to the acids production and the production of a wide range of antimicrobial peptides and 

proteins that are called bacteriocins. Recently, the use of functional starter cultures in the food 

fermentation industry has been explored (De Vuyst, 2000; Leroy et al., 2006; Leroy & De Vuyst, 

2004). Functional starter cultures are starters having functional properties. For example, LAB that 
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are able to produce antimicrobial substances, sugar polymers, sweeteners, aromatic compounds, 

useful enzymes, or nutraceuticals, or probiotic strains (Leroy & De Vuyst, 2004).  

 

LACTIC ACID BACTERIA (LAB) 

Lactic acid bacteria (LAB) are the most used microbial group in fermentative processes. LAB 

improve the taste and texture of fermented products and inhibit food spoilage microorganisms by 

producing growth-inhibitory substances (bacteriocins) and large amounts of lactic acid, and other 

organic acids. Moreover, LAB can have a benefit effect on human health. 

In the last two decades, major advances on fermented product technology have included 

improved culture selection procedures. Molecular technology has been applied to map the genetic 

constructs of starter culture organisms and, by using plasmid/gene transfer mechanisms, to 

improve starter culture performance (Doyle et al., 2013). 

LAB are the most important microbial group associated to food, and especially to fermented 

products. LAB associated with food are generally restricted to the genera Enterococcus, 

Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, and 

Weissella. In particular, lactocococci are involved in cheese manufacture, Streptococcus 

salivarius subsp. thermophilus for cheese and yoghurt manufacture and various members of the 

Lactobacillus genus for a variety of dairy, meat and vegetable fermentations (Table 1.6). LAB are 

Gram-positive, nonsporeforming cocci, coccobacilli, or rods. They are strictly fermentative, 

catalase-negative and lack a terminal electron transport chain. 

On the basis of carbohydrate metabolism, LAB can be subdivided into homofermentative and 

heterofermentative. Homofermentative group includes the genera Lactococcus, Enterococcus, 

Streptococcus, Pediococcus and some member of the Lactobacillus genus, which use the 

Embden–Meyerhof– Parnas pathway to convert glucose into lactate (Figure 1.5), where sugars 

can only be fermented by glycolysis. Heterofermentative group includes the genera Leuconostoc, 

Oenococcus, Weissella and some Lactobacilli. In this case, bacteria produce equimolar amounts 

of lactate, CO2 and ethanol from glucose using the hexose monophosphate or pentose phosphate 

pathway alternatively referred to as the pentose phosphoketolase pathway (Figure 1.5), 

generating only half the energy of the homofermentative group. 
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Figure 1.5- Homolactic fermentation pathway of glucose glycolysis (on the left). Heterolactic fermentation pathway 

of glucose (on the right). 

 

LAB can be also classified on the basis of the rate of growth at different temperatures, pH of 

media and sodium chloride tolerance. A characteristic of lactic acid bacteria is their high acid-

resistance, which allows them to grow until the pH reaches values lower than 5.0. This 

physiological characteristic is of great ecological importance, because it allows them to win the 

competition of other bacteria in environments rich in organic matter. LAB are able to develop in 

a very broad range of temperature (from 2 to 55 ° C), with an optimum between 20 ° and 45 ° C 

depending on the species (Stiles & Holzapfel, 1997). Some can develop only with high levels of 

water activity, while others have little demands on the aw (up to 0.85).  
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Antimicrobial activity of  LAB 

LAB have shown a wide range of antimicrobial activity. The antimicrobial properties of LAB in 

food are mainly due to the production of a wide range of antimicrobial metabolites (Ross et al., 

2002). Various organic acids can be produced, including lactic, acetic and propionic acids which 

provide an acidic environment which inhibiting a broad range of microorganisms, including 

Gram-positive and Gram-negative bacteria, yeasts and molds. 

Other antimicrobial compounds produced by LAB are ethanol, from the heterofermentative 

process; H2O2 produced during aerobic growth and diacetyl which is generated from excess 

pyruvate coming from citrate (Ray & Daeschel, 1992). There are also secondary metabolites 

produced by LAB with antimicrobial activity, for example the molecule reuterin (Chung et al., 

1989) and the antibiotic reuterocyclin (Holtzel et al., 2000). 

Many LAB are also able to produce bacteriocins and bacteriocin-like molecules. Bacteriocins are 

antimicrobial peptides produced by bacteria to compete against bacteria of the same species or 

other genera (Cotter et al., 2005). Despite bacteriocins can be produced by Gram-positive and 

Gram-negative bacteria, those produced by LAB have received particular attention in recent years 

due to their potential application in the food industry as natural preservatives  (De Vuyst & Leroy 

2007) and because LAB are designed as GRAS (generally recognized as safe) by the U.S. Food 

and Drug Administration (FDA). Bacteriocins are ribosomally synthesized peptides, 

proteinaceous inhibitor that act through depolarization of the target cell membrane or through 

inhibition of cell wall synthesis (Abee et al., 1995). They can have a wide or narrow spectrum of 

action. For example, lactococcins can inhibit only lactococci, instead the lantibiotic nisin has a 

broad range of antimicrobial activity (Ross et al., 2002). 

Bacteriocins can be divided into three groups according to Klaenhammer (1993) (Table 1.7).  
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Table 1.7- Classification of bacteriocins according to Klaenhammer (1993). 

 

The class I includes lantibiotics family and these bacteriocines are generally small, composed of 

one or two peptides of approximately 3 kDa. Type A includes the elongated flexible molecules 

that have a positive charge and act via membrane depolarization, such as nisin. Type B 

lantibiotics are globular in structure and interfere with cellular enzymatic reactions and examples 

include mersacidin and actagardine (Ross et al., 2002). The group II includes peptide bacteriocins 

or small, heat-stable, non-lanthionine-containing bacteriocins. This group can be divided into two 

classes, class IIa includes pediocin-like or Listeria- active bacteriocins, while class IIb comprise 

bacteriocins that are composed of two separate peptides. 

The class III includes bacteriocins not very characterized and it consists of large heat-labile lytic 

proteins, often murein hydrolases proteins which are generally > 30 kDa. 

The continual discovery of new extra members of these groups of peptides has meant that their 

classification has to be periodically updated. An update was proposed by Cotter et al. in 2005 

(Figure 1.6). 
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Figure 1.6- Cotter et al (2005) classification of LAB bacteriocins adapted by Nishie et al. (2012). 

 

In this case, class I includes lantibiotics which stands for lanthionine-containing antibiotics. Class 

II includes non lanthionine-containing bacteriocins. In this classification, large, heat-labile 

proteins and murein hydrolases were excluded from previously classified bacteriocins and named 

bacteriolysins. Subsequently, a new update was proposed by Heng and Tagg in 2006 (Figure 1.7). 
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Figure 1.7- Bacteriocins classification scheme proposed by Heng and Tagg (2006). 

 

Recently, bacteriocins produced by LAB have been characterized and they exhibit a wide range 

of antimicrobial activity, including activities against Gram-negative bacteria (Svetoch & Stern 

2010; Lee et al. 2011). It seems that the mechanisms of action of bacteriocins are related to the 

permeabilization of  the cell membrane. Moreover, they are cationic and amphiphilic or 

hydrophobic (Nissen-Meyer et al., 2009). However, it is demonstrated that each bacteriocin 

possesses more than one modes of action on the target microorganism (Hasper et al., 2006). The 

main target of lantibiotics are Lipid II, a membrane-bound cell wall precursor, as a berthing 

(Nishie et al., 2012). After that, lantibiotics, as nisin, kill the target microorganism by 

permeabilizing the plasma membrane, leading to the leakage of intracellular molecules. 

Two-peptides lantibiotics, as lacticin 3147, interact with Lipid II and then cause an inhibition of 

the cell wall biosynthesis and form pores (Wiedemann et al., 2006). Bacteriocins of class IIa such 

as Pediocin PA1, are able to use components of the mannose phosphotransferase system (man-
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PTS) of target cells as receptor, and then they act through the dissipation of the proton motive 

force via membrane pore formation (Nishie et al., 2012). 

Two-peptides bacteriocins of class IIb, consist of two different unmodified peptides. Examples 

are lactococcin G and lactococcin Q, whose mode of action is the permeabilization of the cell 

membrane that induce the release of intracellular substances such as monovalent cations, 

phosphate and ATP (Oppegard et al., 2007). A similar behavior is exercised by class IIc of  cyclic 

bacteriocins such as enterocin AS-48. This class is able to permeabilize the cell membrane of 

target cells, resulting in release of ions, dissipation of the membrane potential and finally cell 

death (van Belkum et al., 2011). 

The non-categorized bacteriocins of class IId are diverse in their structure and so in the mode of 

action (Nishie et al., 2012). In fact, lactococcin A and lactococcin B are suggested to utilized the 

man-PTS as receptor, permeabilize the cytoplasmic membrane and cause leakage of solutes 

across the membrane. Instead, lacticin Q does not require a receptore for its membrane-

permeabilizing activity, and acts via a toroidal-pore mechanism (Yoneyama et al., 2009). 

Although the number of known bacteriocins is very large, nisin is absolutely the most 

characterized bacteriocin and the only one to have realized widespread commercial use (Ross et 

al., 2002). 

In recent years, bacteriocins produced by LAB with an expanded range of antimicrobial activity, 

in particular against Gram-negative bacteria have been identified (Svetock & Stern 2010; Lee et 

al., 2011). 

 

USE OF LAB AND BACTERIOCINS IN FOOD BIOPRESERVATION 

The capability of LAB to produce bacteriocins and other antimicrobial molecules such as organic 

acids, diacetyl, acetoin, reuterin, reutericyclin, peroxidase, etc., and their general acceptability in 

foods, make them interesting to be used as alternatives to chemicals in food preservation (Doyle 

et al., 2013). LAB as “antimicrobials” can be used in a food system in different ways. The used 

of purified bacteriocins such as nisin are already used in food industry to prevent the growth of 

Listeria and spoilage microorganisms (Leroy & De Vuyst 2010). An alternative is the use of 

living cultures of LAB as protective cultures, to obtain the desired antimicrobial effect to food 

(Jones et al., 2011). 
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Several possible strategies for the application of bacteriocins in the preservation of foods may be 

considered: inoculation of the food with LAB (starter or protective cultures) able to produce the 

bacteriocin in the product (production in situ); addition of the purified or semipurified bacteriocin 

as a food preservative; use of a product previously fermented with a bacteriocin- producing strain 

as an ingredient in food processing (Schillinger et al., 1996). The success of the first application 

depends on the ability of the bacteriocin-producing LAB to grow and to produce the bacteriocin, 

while in the case of a semi-purified preparation the dosage can be most accurate and its effect 

most predictable. Finally, a crude bacteriocin preparation, obtained by growing a bacteriocin- 

producer LAB in a complex or natural substrate, is now employed for the industrial-scale 

production of nisin (Randazzo et al., 2009). 

Antimicrobial properties of LAB can be delivered to food produce by living cells in the form of 

protective cultures. These capabilities are due to production of several metabolites such as 

bacteriocins, bacteriocin-like inhibitory substances (Jones et al. 2011), organic acids, and may 

also be a result of other microbial interactions (competitive exclusion, quorum sensing). 

Protective cultures can be developed to inhibit specific target microorganisms such as yeast and 

mold or pathogens such as Listeria monocytogenes. As these cultures are viable, it is important 

that they do not affect the products from a sensory point of view. For this reason, their use in 

food has generally been limited to cultured products, where they are typically added as adjunct 

cultures and have little effect on the finished product with regard to organoleptic properties. 

Protective cultures for specific food safety and quality applications are available commercially, 

and they are gaining in popularity as biopreservative agents in food (Doyle et al., 2013). 

The desirable criteria of biopreservatives agents should be nontoxic, regulatory approved (GRAS, 

Generally Recognized as Safe), low cost, no negative organoleptic effects, effective in low 

concentrations, stable at storage conditions, and no medical application (Jones et al., 2011). 

LAB and in particular bacteriocin-producing LAB have been tested on several food products. For 

example, several studies have shown the efficacy of nisin and/or nisin producing strains against 

pathogens such as Clostridium butulinum and against L. monocytogenes in cheeses such as 

Camembert, Ricotta, and Manchego (Annanou et al., 2007; Davies al., 1997; Nunez et al., 1997). 

Other bacteriocins have been tried in dairy products, such as pediocin AcH against L. 

monocytogenes, S. aureus, and E. coli O157:H7 (Buyong et al., 1998; Alpas & Bozoglu, 2000), 

lacticin 3147 against undesirable LAB, L. monocytogenes and B. cereus in Cheddar, Cottage 

cheese and yogurt (Ananou et al., 2007; Ross et al., 2002), and enterocin AS-48 against B. 
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cereus, S. aureus and L. monocytogenes in milk, Manchego cheese and meat (Ananou et al., 

2007; Rodriguez et al., 1997; Munoz et al., 2004). 

Several applications of LAB and bacteriocins in meat products are reported in literature. In 

particular, the tested bacteriocins in meat products include nisin, enterocin AS-48, enterocins A -

B, sakacin, leucocin A, and particularly pediocin PA-l/AcH, also in combination with 

physicochemical treatments, modified atmosphere packaging, high hydrostatic pressure, (HHP), 

heat, and chemical preservatives, as an additional hurdle to control the proliferation of L. 

monocytogenes and other pathogens (Ananou et al., 2007). Moreover, some bacteriocin-

producing LAB have been tested as bioprotective agents in meat products, in order to control 

these pathogens (Ananou et al., 2010, 2007, 2005a,b;). The data obtained on meat products have 

shown a lower efficacy of the tested strains and bacteriocin if compared to dairy products, 

probably due to their  low solubility, irregular distribution, and lack of stability. 

Some applications of bacteriocins and biocontrol agents have been reported also in vegetable 

products, in particular, bacteriocins such as nisin, pediocin PA-1/AcH and enterocin AS-48 have 

been tested in tinned vegetables, fruit juices, and salad, against pathogens such as E. coli 

O157:H7, S. aureus, and the spoilage bacterium Alicyclobacillus acidoterrestris (Grande et al., 

2006; Ananou et al., 2005b; Cobo-Molinos et al., 2005; Cleveland et al., 2001; Alpas & Bozoglu, 

2000). 

The application of bacteriocin and bacteriocin-producing LAB have  been reported to delay the 

fresh-fish deterioration. The use of nisin reduced the total aerobic bacteria populations of fresh 

chilled salmon, as well as the growth of inoculated L. monocytogenes in fresh salmon 

(Zuckerman & Ben Avraham, 2002). Also the use of bacteriocin producing cultures such as 

Carnobacterium divergens showed the inhibition of L. monocytogenes in fish (Duffesa et al., 

1999). 

However, the best effects of bacteriocins and bacteriocin-producing LAB on food products, have 

been obtained when the use of bacteriocins was combined with other preservation methods, in 

order to make a series of hurdles during the food processes to reduce food spoilage (Ananou et 

al., 2007). In fact, the use of chemical additives, physical treatments, or new physical methods 

such as HHP, pulsed electric field, vacuum, or modified atmosphere packaging, can increase the 

permeability of cell membranes, increasing the effects of many bacteriocins (Garriga et al., 2002; 

Ananou et al., 2010). In fact, the use of physical or chemical treatments increase the permeability 

of the outer-membrane increasing the effectiveness of some LAB bacteriocins against Gram-
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negative cells, which are generally resistant. Examples of the application of bacteriocins in 

combination with other physical or chemical preservation methods are reported in Table 1.8.  

 

Table 1.8- Example of bacteriocins used in combination with other preservative methos in order to prolong the 

shelf-life and guarantee the safety of food products (adapted from Ananou et al., 2007) 
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1.3 ESSENTIAL OILS 

Essential oils are complex mixture of volatile compounds, characterized by a strong sensorial 

impact and they are produced by many plants as secondary metabolites. Also called volatile oils, 

they may be obtained from all the organs of the plant, i.e. flowers, buds, seeds, leaves, roots, 

wood, stems, twigs, fruits or bark, and they are stored in secretory cells, cavities, canals, 

epidermis cells or glandular trichomes (Bakkali et al., 2008). Essential oils are extracted from 

various aromatic plants generally located in warm temperate countries such as the Mediterranean 

and tropical countries where they represent an important part of the traditional medicine. The 

main function in nature of essential oils may be different. In fact, they can act as internal 

messengers, as defensive substances against herbivores or as volatiles directing not only natural 

enemies to these herbivores but also attracting pollinating insects to their host (Harrewijn et al., 

2001). 

Essential oils are usually extracted from plants through several different methods, including 

steam, hydro-distillation or also, in the lasted years, supercritical carbon dioxide. The method of 

extraction depends on the use of the oil. For pharmaceutical and food purposes, the extraction by 

steam distillation is preferred, whereas for other uses extraction with lipophilic solvents or 

supercritical carbon dioxide is favored. The historical use of essential oils is in perfumes, 

cosmetics, soaps and other products; because of their bactericidal, fungicidal, virucidal, and 

medicinal properties and their fragrance, they are used also in embalmment, preservation of foods 

and as antimicrobial, analgesic, sedative, anti-inflammatory, spasmolytic and locally anesthetics 

remedies (Bakkali et al., 2009). Right now, an estimate number of about 3000 EOs are known, of 

which about 300 are commercially important, especially for pharmaceutical, agricultural, food, 

health, cosmetics and perfumes. Hundreds of new natural substances are being isolated and 

identified every year, but data concerning their biological activities are known only for some of 

them (Cowan, 1999). 

Most of these substances have been recognized as safe (GRAS) (Newberne et al. 2000). Until 

now, these features have not changed much, while  some of their mechanisms of action, in 

particular the antimicrobial action, is now more clear. In fact, originally essential oils have been 

used to enhance the aroma of foods, but they can also lead to a prolongation of the shelf-life due 

to their antimicrobial activity. Therefore, it is important to develop a better understanding of their 

mechanisms of action for the new applications in human health, agriculture, food and 
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environment. Due to the increasing interest on the part of the consumer towards natural products, 

some of essential oils constitute effective alternatives or complements to synthetic compounds of 

the chemical industry, without showing the same secondary effects (Carson & Riley, 2003). 

 

EXTRACTION AND COMPOSITION 

Different methods are known for the extraction of essential oils and the choice of the method 

depends on the nature of the material, the stability of the chemical components and the 

specification of the targeted product. The main extraction techniques used are distillation 

processes, in particular steam and hydro distillation. Other methods include the supercritical 

carbon dioxide, solvent, cold pressed and microwave extraction. The hydro distillation and steam 

distillation are still the most economical methods of extracting essential oil from spices and 

aromatic plant material. The main advantage of distillation is that it can generally be carried out 

with some very simple equipment, close to the location of plant production. Even in relatively 

remote locations, large quantities of material can be processed in a relatively short time. 

Moreover, distillation is less labor intensive and has a lower labor skill requirement than solvent 

extraction (Douglas et al., 2005). However, also the solvent extraction process cost is not 

expensive. The mainly disadvantages of distillation are related to the induction of thermal 

degradation, hydrolysis and water solubilization of some fragrance constituents. Extracts 

obtained by solvents contain residues that pollute the foods and fragrances to which they are 

added (Guan et al., 2007).  

Supercritical carbon dioxide extraction is an environmental friendly technique, very suitable to 

obtain different plants extracts, due to the simple manipulations of some process parameters such 

as temperature and pressure able to easily change the solvent power of the supercritical fluid. 

However, the most serious drawback of supercritical carbon dioxide extraction, when compared 

with traditional atmospheric pressure extraction techniques, is the higher initial investment cost 

of the equipment (Coelho et al., 2012). 

Cold press extraction is used exclusively for the extraction of citrus oil from the fruit peel, 

because the chemical components of the oil are easily damaged by heat. 

The microwaves extraction fits with the new “green” technique in essential oil extraction, which 

typically use less solvent and energy. The main benefits of this technique are the reduction of 

extraction time and the absence of toxic solvent residue in the extract (Lucchesi et al., 2004). On 
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the other hand, the main disadvantage of microwave extraction are its high capital cost and 

possible need to filter the sample if fine particles are used for the extraction of compounds 

(Wang, 2010). 

The different extraction method goes to influence the composition of the oils that will be different 

depending on the method used, affecting also their flavor profile and their antimicrobial 

properties. Moreover, independently on the extraction methods, essential oils may be subjected to 

numerous degradative processes (primarily oxidative) and for this reason, following the 

extraction, they need to be stored in the dark in order to prevent compositional changes. 

There are several studies on the composition of essential oils obtained from herbs and fruits. For 

each essential oil, “characteristic” molecules can be identified, but their qualitative and 

quantitative composition is extremely changeable. This variability depends on several factors 

such as climate, soil composition, plant organ, age and vegetative cycle stage (Masotti et al., 

2003; Angioni et al., 2006). Thus, in order to obtain essential oils at constant composition, these 

must be extracted in the same conditions, from the same organ of the plant that has been grown 

on the same soil, under the same climatic conditions and was collected in the same season. 

Most of the essential oils have been characterized by gas chromatographic and mass spectrometry 

analysis. Precisely, through these techniques, it is possible to obtain a detailed analysis of the 

composition of the essential oils or their head space (Salzer, 1977; Daferera et al., 2000; Juliano 

et al., 2000; Jerkovic et al., 2001; Delaquis et al., 2002). Normally, essential oils contain about 

20–60 components at quite different concentrations. They are characterized by two or three major 

components at fairly high concentrations (20–70%) compared to others components present in 

trace amounts (Bakkali et al. 2008). The major components and the relative percentage of some 

essential oils with high antimicrobial properties are reported in Table 1.9. 
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Table 1.9-Major components of some essential oils well known  for their antimicrobial properties (Burt, 2004) 

 

Among the various components, it seems that the phenolic compounds are those most responsible 

for the antibacterial properties of the essential oils (Cosentino et al., 1999). However, also the 

minor components can play a critical role in antibacterial activity, probably due to a synergistic 

effect with other components. For example this synergistic effect has been demonstrated for some 

species of Thymus, Oregano, Sage, Eucalyptus and Malaleuca alternifolia essential oils (Paster 

et. al., 1995; Marino et al., 1999; Marino et al., 2001; Lattaoui & Tantaoui-Elaraki, 1994; 

Mulyaningsih et al., 2010; Carson et al., 2006). The components can be divided into two different 

classes on the basis of biosynthetic origin (Croteau et al., 2000; Betts, 2001; Pichersky et al., 

2006). The main group is composed of terpenes and terpenoids and the other of aromatic and 

aliphatic constituents, all characterized by low molecular weight (Bakkali et al., 2008) (Figure 

1.8).  
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Figure 1.8-Chemical structure of selected aromatic components of essential oils (Bakkali et al., 2008) 
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The terpenes have different classes from a structural and functional point of view. They are 

substances composed of isoprene (2-methylbutadiene) units. The biosynthesis of terpenes 

consists on coupling of isoprene units is almost always in one direction, the so-called head to-tail 

coupling. This is shown in Figure 1.9.  

 

Figure 1.9-Head-to-tale coupling of two isoprene units (Sell, 2010) 

 

The branched end of the chain is referred to as the head of the molecule and the other as the tail, 

and finally, secondary enzymatic modification (redox reaction) of the skeleton to attribute 

functional properties to the different terpenes. Terpenoids are terpenes that undergo biochemical 

modifications via enzymes that add oxygen molecules and move or remove methyl groups 

(Caballero et al., 2003). They can be hydrocarbons, alcohols, aldehydes, ketones, acids, acetals, 

esters, lactones, epoxides, ethers or phenols; they can also contain sulfur and nitrogen groups, can 

be saturated or unsaturated, with a linear, branched, cyclic or heterocyclic structure, and with a 

number of carbon atoms greater or lesser degree. The first terpenoids to be studied contained 10 

carbon atoms per molecule and were called monoterpenoids. This nomenclature has remained 

and so those with five carbon atoms are known as hemiterpenoids, those with 15, 

sesquiterpenoids, and those with 20, diterpenoids, and so on. In general, only the hemiterpenoids, 

monoterpenoids, and sesquiterpenoids are sufficiently volatile to be components of essential oils. 

Monoterpenoids are the most representative molecules constituting 90% of the essential oils and 

allow a great variety of structures, for example carbures, alcohols, aldehydes,  ketone, esters, 

ethers, peroxides, phenols (Bakkali et al., 2008). 
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When the molecule is optically active, the two enantiomers are very often present in different 

plants: (+)-α-pinene from Pinus palustris, (-)-β-pinene from Pinus caribaea and from Pinus 

pinaster, (-)-linalol from coriander, (+)-linalol from some camphor trees, etc. In some cases, it is 

the racemic form which is the most frequently encountered, for example (±)-citronellol is 

widespread, the form (+) is characteristic of Eucalyptus citriodora, the form (-) is common to the 

rose and geranium essential oils (Bakkali et al 2008) (Figure 1.10). 

 

 

Figure 1.10-Structural formula of (+)-α-pinene, (-)-β-pinene, (-)linalol, (+)-linalol, (+)-citronellol and (-)-

citronellol; generally for pinene and linalol the two enantiomers are synthesized in different plants. 

 

By definition, sesquiterpenoids contain 15 carbon atoms. This results in their having lower 

volatilities and hence higher boiling points than monoterpenoids. Therefore, fewer of them (in 

percentage terms) contribute to the odor of essential oils but those that do often have low odor 

thresholds and contribute significantly as end notes. They are also important as fixatives for more 

volatile components (Sell, 2010). The structure and functions of the sesquiterpenes are similar to 

those of monoterpenes, and some examples are reported in Figure 1.11. 



52 

 

 

Figure 1.11- Examples of acyclic (farnesene), monocyclic (humulene), bicyclic (caryophyllene) and tricyclic 

(longifolene) sesquiterpenes. 

 

Examples of plants containing terpenes in their essential oils are: angelica (Angelica 

archangelica), bergamot (Citrus bergamia), caraway (Cuminum cyminum), celery (Apium 

graveolens), citronella (Cymbopogon nardus), coriander (Coriandrum sativum), eucalyptus 

(Eucalyptus globulus), geranium (Pelargonium graveolens), juniper (Juniperus communis), 

lavender (Lavandula officinalis), lemon (Citrus limonum), lemongrass (Cymbopogon citratus), 

mandarin (Citrus nobilis), mint (Mentha piperita), orange (Citrus sinesis), peppermint (Mentha 

piperita), pine (Pinus sylvestris), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), 

thyme (Thymus vulgaris) and oregano (Origanum vulgare). In Figure 1.12 some of these plants 

are reported  
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Figure 1.12- Main plants which produce essential oils containing mainly terpenes and terpenoids. 

 

The aromatic compounds, compared to terpenes and terpenoids, are derivatives of 

phenylpropane, which are less frequently than the terpenes in essential oils. The biosynthetic 

pathways concerning terpenes and phenylpropanic derivatives are generally separated in plants 

but they may coexist in some, with one major pathway taking over (see cinnamon oil with 
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cinnamaldehyde as major and eugenol as minor constituent) (Bakkali et al., 2008). The structure 

of some of these aromatic compounds are reported in Figure 1.13. 

 

Figure 1.13-Structures of some aromatic components of essential oils. 

 

Examples of plants containing these molecules are anise (Pimpinella anisum), cinnamon 

(Cinnamomum zeylanicum), clove (Eugenia caryophyllata), fennel (Foeniculum vulgare), 

nutmeg (Myristica fragrans), parsley (Petroselinum sativum), sassafras (Sassafras albidum), star 

anise (Illicium verum), tarragon (Artemisia dracunculus), and some botanical families (Bakkali et 

al., 2008). In Figure 1.14 some of these plants are reported. 
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Figure 1.14- Main plants which produce essential oils containing mainly aromatic compounds. 

 

PHYSICAL AND CHEMICAL PROPERTIES 

The study of the chemical-physical characteristics of the essential oils obtained from certain 

plants, consisting mainly in terpenoids. Nowadays the comprehension of the oil composition is of 

great importance to understand their antimicrobial action, especially against pathogenic 

microorganisms (Delaquis et al., 2002; Dorman & Deans, 2000). 

In particular, the activity and the physico-chemical properties of oils extracted from plants 

belonging to the Labiatae family, such as rosemary (Rosmarinus officinalis), oregano (Origanum 

vulgare) etc., and to citrus family (Citrus bergamia, Citrus nobilis, Citrus sinensis ) has been 

studied by several authors (Basilico & Basilico, 1999; Juven et al. 1994, Lambert et al., 2001; 

Tasoou et al., 2000; Ben-Yehoshua et al. 1998). 

The aromatic compounds possess similar physical properties while they are structurally 

heterogeneous between them. It can be said that with an increase of the number of carbon atoms 

of the structure as well of the molecular weight the water solubility of the molecule decreases, 
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while the solubility in less polar solvents increases. The water solubility of linear aldehydes 

increases with decreasing of the length of the carbon chain. The same can be applied for alcohols 

from 1 to 9 carbon atoms, for ketones and for the methyl esters. The characteristics of 

hydrophilicity and lipophilicity are very important for the biological activity of volatile organic 

compounds, the solubility in fats enables, to volatile molecules, to permeate in cytoplasmic 

membranes and the waxy cuticle. Among the features of  these substances, the volatility, or rather 

the tendency of the molecules to pass from the liquid phase to the vapor phase, is one of the most 

important . Also the knowledge of pure compound solubility is essential, but more important is 

the knowledge of the solubility of their aqueous solutions. The volatility is described by the 

partition coefficient expressed as the ratio at equilibrium and constant temperature between the 

amount of volatile compound dissolved in one mL of air and the amount dissolved in one mL of 

water. For example, at the same concentration of compound in water, nonanal is present in the 

vapor phase in an amount 100 times greater than ethanol having an higher boiling point. The 

partition coefficients are valid only for pure aqueous solutions and well below the saturation 

point. 

Generally alcohols have a low partition coefficient in water and are followed, with increasing 

volatility from ketones, esters and aldehydes. The addition of other solutes such as salts or sugars 

can change considerably the volatility of the present aromatic compounds . 

Under the same conditions of temperature and concentration, the vapor pressure of a solute 

depends on the Aw of the system and on the concentration and nature of the other solutes. In fact, 

various solutes present in an aqueous solution interact with water molecules by changing the 

structure and characteristics (Guerzoni et al. 1994). 

The chemical-physical characteristics of essential oils, such as their volatility and particularly 

their hydrophobicity, affect the bioactivity of these aromatic substances which generally is 

expressed as inhibition or stimulation of metabolic processes. The compounds in the gaseous 

phase may accumulate more rapidly in the cytoplasmic membranes of cells acceptor than they do 

if solubilized in the carrier. Once the compound has entered the liquid film that surrounds the 

cells and then in the cytoplasm, there are not physiological differences between volatile and non-

volatile compounds (Guerzoni et al., 1994). In this regard, the evaluation of the effects of the 

bioactivity of molecules and factors influencing by the vapor pressure may be an important key to 

optimize the use of these molecules in food. 
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1.3.1 ANTIMICROBIAL ACTIVITY OF ESSENTIAL OILS 

Different methods are known for testing the antimicrobial activity of essential oils and their 

components. The most used screening are the dilution and diffusion methods (Rios et al., 1988). 

In particular, the disk diffusion method (Farag et al., 1989; Elgayyar et al., 2001; Skandamis et 

al., 2001; Cimanga et al., 2002; Faleiro et al., 2002; Packiyasothy & Kyle, 2002; Burt & 

Reinders, 2003; Wilkinson et al., 2003), the agar wells method (Dorman & Deans, 2000), the 

agar dilution method (Rios et al., 1988, Hammer et al., 1999) and the broth dilution method 

(Delaquis et al., 2002, Lambert et al., 2001, Ultee et al., 2002, Smith-Palmer et al., 1998, Gill et 

al., 2002, Tassou et al., 2000, Pol & Smid 1999) are the most used. In broth dilution studies, a 

number of different techniques exists for determining the end-point and the most used methods 

are that of optical density (OD) (turbidity) measurement and the enumeration of colonies by 

viable count (Burt et al., 2004). Other methods used for the determination of the antimicrobial 

properties of essential oils are the time-kill analysis (Tassou et al., 1995; Ultee et al., 1998; Ultee 

et al., 2002) that is used for the determination of rapidity and duration of antimicrobial activity, 

and the scanning electron microscopy (SEM) that is used for study the damage of the cell wall 

and loss of cell contents (Lambert et al., 2001; Skandamis et al., 2001; Burt & Reinders, 2003).  

Normally there is not a standardization of these methods, and researchers adapt their 

experimental methods to better represent possible future applications in their proper field (Burt 

2004). This aspect makes difficult to compare published data. In fact, the antimicrobial activity is 

affected by some factors such as the method used to extract the EO from plant material, the 

volume of inoculum, growth phase, culture medium used, pH of the media and incubation time 

and temperature (Burt, 2004). Moreover, a solvent has to be used to vehicular the essential oils 

and dissolve them in a water solution and for this purpose several solvents have been used: 

ethanol, methanol, Tween-20, Tween-80, acetone in combination with Tween-80, polyethylene 

glycol, propylene glycol, n-hexane, dimethyl sulfoxide and agar (Burt, 2004). The solvent used as 

carrier for essential oils strongly affects the antimicrobial activity (Burt, 2004). 

The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration 

(MBC) are the most used parameter for expressing the antimicrobial activity of essential oils or 

their components. Carson et al. (1995), defined MIC as the lowest concentration resulting in 

maintenance or reduction of inoculum viability. Instead, the MBC is defined as the concentration 

where 99.9% or more of the initial inoculum is killed (Carson et al., 1995). In table 1.10, are 
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reported the MICs values of some essential oils and their principal components in relation to the 

test method and the bacterial strain used. 

 

Table 1.10-Selected MICs of essential oils and their most bioactive components against food borne pathogens (Burt 

2004) 
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MODE OF ACTION OF ESSENTIAL OILS AND THEIR PRINCIPAL COMPONENTS 

Although the antimicrobial properties of essential oils and their components have been tested in 

the past (Nychas, 1995; Dorman & Deans 2000; Cosentino et al., 2003; Smith-Palmer et al., 

2001; Prabuseenivasan et al., 2006, Holley & Patel 2005; Kalemba & Kunicka 2003), their 

mechanisms of action has not been studied in detail (Lambert et al. 2001, Hyldgaard et al., 2012). 

Considering the large number of different groups of chemical compounds present in the essential 

oils, it is likely that their antibacterial activity is not attributable to a specific mechanism but there 

are more targets in the cell (Skandamis et al., 2001; Carson et al., 2002, Faleiro, 2011). The 

locations or mechanisms inside the bacterial cells that seem to be the major sites of action of the 

components of the essential oils are shown in Figure 1.15. 

 

 

Figure 1.15- Possible sites of action of essential oils or their compounds at the cellular level: cell wall degradation; 

damage of the cytoplasmic membrane; damage of membrane proteins; loss of cell contents; coagulation of 

cytoplasm and depletion of the proton motive force (Raybaudi-Massilia,  2009, adapted from Burt, 2004). 
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Essential oils can have pronounced antimicrobial effects, although often their complexity and 

variability make difficult the correlation between antimicrobial activity and individual specific 

components, also in relation to possible synergistic and antagonistic effects. 

The role and the mechanisms of action of the minor components of EOs is not well documented, 

but some antagonistic effects due to these minority fractions were observed. In Malaleuca 

alternifolia EO, not oxygenated hydrocarbon monoterpenes (p-cymene, -terpinene) increase the 

resistance of the more tolerant microorganisms probably due to the reduction of solubility of 

aqueous terpenes terpen-4-ol, 1,8-cineole and for this reason, also the availability of the active 

components against microorganisms. 

As previously mentioned, the aromatic molecules among the various physical properties, are 

characterized by a poor solubility in water and a high hydrophobicity. For this reason, many 

studies indicate their antimicrobial effects as dependent on this characteristic and on their ability 

to act on the cell membrane. The bioactivity of many aromatic compounds may depend, in 

addition, by the vapor pressure, which can be considered an indirect measure of hydrophobicity. 

The factors responsible for the increase of the vapor pressure of the aromatic molecules lead to a 

rise the antimicrobial activity, since it increases their solubility in cell membranes (Caccioni et 

al., 1997; Gardini et al., 2001). 

Precisely, it is their hydrophobicity to permit them to share in the lipids of cell membranes and 

mitochondria, altering the structures and making them more permeable (Knobloch et al., 1986; 

Sikkema et al., 1994), and leading to the loss of ions and other cell contents (Helander et al., 

1998; Cox et al., 2000; Lambert et al., 2001; Skandamis et al., 2001; Carson et al., 2002; Ultee et 

al., 2002). 

The bacterial cell can tolerate, up to a certain limit, the loss of some cell contents, but their 

excessive leakage or the loss of critical molecules and ions lead to the cell death (Denyer & 

Hugo, 1991). Gilbert et al. (1977) have found that when the concentration of antimicrobial agents 

is bacteriostatic, the loss of low molecular weight cytoplasmic constituents, could be due to a 

reversible disorganization of the cytoplasmic membrane. At bactericidal concentrations (defined 

by Gill and Holley (2004) as the concentration that can prevent the reproduction of the treated 

cells when transferred to a medium without antimicrobial agent), relations between the loss of 

cellular components and the death of the cell, due to antimicrobial agents, were detected. 
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Cellular targets 

Many studies indicate the cell membrane as the primary target of bioactive aromatic compounds. 

Membranes disrupted by the action of terpenes can be observed both on bacteria and fungi 

(Lanciotti et al., 2004). The antimicrobial action of many essential oils (EOs) appears to be 

connected with the presence of phenolic compounds. The inhibitory effect of phenols can be 

explicate through interaction with the cell membrane of microorganisms, and it is often correlated 

with the hydrophobicity of the compounds (Sikkema et al., 1995; Weber & de Bond 1996). 

Indeed, the hydrophobicity of these molecules is responsible for their solubility in the cell plasma 

membranes and their bioactivity depends essentially on their partition coefficient (Caccioni et al., 

1997; Lambert et al., 2001). 

The lipophilic structure of cyclic monoterpenes promotes their partition from the aqueous phase 

to cell membranes resulting in expansion and increase in fluidity and permeability of the 

membrane, which leads ultimately to an inhibition of membrane enzymes (Cox et al., 2000). In 

some microorganisms, mild heat treatments increase the inhibitory effect of carvone, altering the 

membrane composition, the fluidity and favoring the partition of these molecules in the 

membrane phospholipids. 

In bacteria, the permeabilization of membranes is associated with the loss of ions and the 

reduction of the membrane potential, the collapse of the proton pump and the depletion of the 

ATP pool (Knobloch et al., 1989; Sikkema et al., 1994; Helander et al., 1998; Ultee et al., 2000, 

2002; Turina et al., 2006). EOs can coagulate the cytoplasm (Gustafson et al., 1998) and cause 

damage to lipids and proteins (Ultee et al., 2002; Burt, 2004). The damages to the cell wall and in 

the membranes, may lead to loss of macromolecules up to cell lysis (Juven et al., 1994, Gustafson 

et al., 1998; Cox et al., 2000; Lambert et al., 2001; Oussalah et al ., 2006). 

In particular, the loss of specific ions, due to the action of the aromatic molecules on the cell 

membrane, has dramatic effects on the proton motive force, by decreasing the content of 

intracellular ATP. In this manner, the total activity of the cells is greatly compromised, as well as 

the cellular turgor (osmotic pressure), the transport of solutes and the regulation of metabolism 

(Lanciotti et al., 2004). 

The oregano EO, for example, creates an alteration of membrane permeability with a consequent 

loss of protons, phosphorus and potassium (Lambert et al., 2001). Carvacrol leads to a dissipation 

of intracellular ATP in B. cereus due to the reduction of the synthesis or hydrolysis, accompanied 
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by the increase of permeability of the membrane to ATP (Ultee et al., 1999). On the other hand, a 

loss of ATP was already observed by Helander (1998) in Gram-negative bacteria. 

The "Tea Tree" EO  stimulates autolysis, coagulates the cytoplasm of the cell, resulting in loss of 

intracellular material in E. coli (Gustafson et al., 1998). Cox et al. (1998) showed that 

concentrations of tea tree oil inhibiting the growth or kill E. coli, also inhibit the glucose 

dependent respiration and stimulate the loss of intracellular K 
+
. 

Juven et al. (1994) hypothesized that the inhibition against S. typhimurium and S. aureus by the 

thyme EO, was dependent on the hydrophobicity and the nature of the present phenolic 

constituents, which determined alteration of the functionality of membrane proteins after 

partitioning in the phospholipid bilayer. 

In general, the EOs with the most remarkable antibacterial properties against pathogenic 

microorganisms, contain a high percentage of phenolic compounds such as carvacrol, eugenol 

and thymol (Farag et al., 1989; Cosentino et al., 1999; Dorman & Deans, 2000; Juliano et al., 

2000; Lambert et al., 2001). It seems reasonable to assume that their mechanism of action is 

similar to that of other phenolic compounds, i.e., the alteration of the cytoplasmic membrane, the 

interruption of the proton motive force, the electrons flow, the active transport and coagulation of 

the cellular contents (Denyer & Hugo, 1991; Sikkema et al., 1995; Davidson, 1997). 

The antimicrobial activity of the oils seems to be related to their composition, to the structural 

configuration of the constituents and to their functional groups, as well as to the possible 

synergistic interactions among the components. Consequently, the chemical structure of the 

individual compounds present in the EOs affects their precise mode of action and their 

antibacterial activity (Dorman & Deans, 2000). 

The compounds with a phenolic structure, such as carvacrol, eugenol, thymol, have shown high 

activity against the tested microorganisms. Some members of this class of substances are known 

both as bacteriostatic or bactericidal agents, depending on the concentrations used. These 

compounds are highly actives despite their relatively low solubility in water. This is in agreement 

with data reported in the literature (Lattaoui & Tantaoui, 1994; Charai et al., 1996). 

The relative position of the hydroxy group in the phenolic ring, does not appear to strongly affect 

the degree of antibacterial activity. For example, the action of thymol against B. cereus, S. aureus 

and Pseudomonas aeruginosa appears to be comparable with that of carvacrol (Lambert et al., 

2001; Ultee et al., 2002). However, Dorman and Deans (2000) have shown that carvacrol and 

thymol have behaved differently against Gram-positive and Gram-negative species. The high 
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antimicrobial activity of phenolic components can also be explained in terms of alkyl substitution 

of the phenolic nucleus which, as well known, promotes the antimicrobial activity of these 

substances. 

The importance of the phenolic ring (destabilized electrons) is demonstrated by the lack of 

activity of menthol when compared to carvacrol (Ultee et al., 2002). The addition of an acetate 

molecule seemed to increase the antibacterial activity: the geranyl acetate was more active 

compared to geraniol against various species of Gram-positive and Gram-negative (Dorman & 

Deans, 2000), even alcohols are known for their bactericidal activity, especially against 

vegetative cells. The terpene alcohols have exhibited a strong bioactivity against microorganisms 

proving potentially active, both as denaturing agents against proteins, and as solvent and 

dehydrating agents. 

Numerous components of EOs belong to the group of ketones. The presence of oxygen in the 

structure increases the antimicrobial effects of terpenoids. Regarding the non-phenolic 

compounds, although are less interesting, the type of alkyl group affects its activity (alkenyl> 

alkyl). For example, limonene is more active than p-cymene (Dorman & Deans, 2000). 

Moreover, also the stereochemistry has an influence on the bioactivity. It was noted that the -

isomers are less active than -isomers. Cis-isomers are less effective than trans-isomers; cyclic 

compounds such as methyl-isopropyl cyclohexane are the most active; unsaturations in the ring 

of cyclohexane further enhances the antibacterial activity, such as terpinolene, terpineol and 

terpineolene. 

The components of the EOs appear to act on membrane proteins embedded in the cytoplasmic 

membrane (Knobloch et al., 1989). Enzymes such as ATPase are localized in the cytoplasmic 

membrane and they are surrounded by lipid molecules. Two possible mechanisms through which 

the cyclic hydrocarbons may act have been proposed. The lipophilic hydrocarbon molecules may 

accumulate in the lipid bilayer and distort the protein-fat interactions, or alternatively direct 

interactions of lipophilic compounds with hydrophobic parts of proteins are possible (Juven et al., 

1994; Sikkema et al., 1995). 

Cytotoxic effects (for cytotoxicity is meant the effects of a chemical, physical or biological agent, 

able to induce a damage to the cell) were observed in vitro, through the method of agar diffusion, 

using the filter paper disk or through the method of dilutions using agar or broth liquid culture, on 

the majority of Gram-positive and Gram-negative bacteria (Williams et al., 1998; Kalemba & 
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Kunicka, 2003; Schnebelen Arnal et al., 2004 , Burt, 2004; Hong et al., 2004; Rota et al., 2004; 

Si et al., 2006; Sonboli et al., 2005) and in viruses (Logu et al., 2000; Jassim & Naji, 2003; 

Reichling et al., 2005) and fungi (Manohar et al., 2001; Pitarokili et al., 2002; Hammer et al., 

2004; Kosalec et al. , 2005) also included yeasts (Harris, 2002; Hammer et al., 2004; Duarte et 

al., 2005; Pauli, 2006; Carson et al., 2006). 

Recent works on Saccharomyces cerevisiae, have shown that the cytotoxicity of some EOs, on 

the basis of the ability to form colonies, was considerably different depending on their chemical 

composition. Treatments with EOs on cells in stationary growth phase showed 50% mortality 

with 0.45 μL / mL of EO of Origanum compactum, 1.6 μL / mL of EO of Coriandrum sativum, > 

8 μL / mL of EO of Cinnamomum camphora, Artemisia herba-alba and Helichrysum italicum 

(Bakkali et al. 2005). 

A number of characteristics of Gram-negative bacteria including the virulence and pathogenicity 

are regulated through the quorum sensing (mechanism by which the bacterial population measure 

its cell density, is a communication from cell to cell, based on the synthesis, the exchange and the 

perception of small signal molecules between bacteria, and that regulate the expression of certain 

sets of genes). Its interruption  is an example of anti-pathogenic effect. Several EOs including 

cinnamon (Cinnamomum zeylanicum), mint (Mentha piperita) and lavender (Lavandula 

officinalis) have shown a potential anti-quorum sensing activity on pigment production by C. 

violaceum (Khan et al., 2009). It is not clear if are the larger or the smaller constituents of the 

EOs that act on the system of quorum sensing. The common mechanism of interference with 

quorum sensing includes:  

a) the inhibition of the biosynthesis of signals or the inhibition of the activity of enzymes 

that produce N-acyl-homoserine lactones (AHLs) (small molecules that act as signals for 

the quorum sensing); 

b) the degradation of enzymatic signals; 

c) the inhibition of molecules of signal reception. It is also possible that the final effect on 

the inhibition of particular traits related to quorum sensing may be the result of an action 

of the various multi-target components of EOs on bacterial quorum sensing system. 
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1.3.2 USE OF ESSENTIAL OILS IN FOOD MICROBIOLOGY: CURRENT USES AND 

FUTURE PROSPECTS 

The combination of the antimicrobial properties and the flavor of essential oils that are suitable 

for use in food products, has led to increase research for the uses of EOs as potential food 

preservatives. For a safe use of EOs as antimicrobial agents in food products, they must not only 

be safe for consumption but also reduce the initial microbial load during production and extend 

the shelf-life of food products (Moreira et al., 2005). 

Taking into consideration the consumer demand for alternatives to chemical-based antimicrobials 

for food applications, EOs are potentially an ideal alternative, given the new attraction towards 

natural products. It is important to develop a better understanding of their biological mode of 

action for the new applications on human health, agriculture and the environment. Some of them 

are effective alternatives or complements of synthetic compounds of the chemical industry, but 

without showing the same negative secondary effects (Carson & Riley, 2003). 

Further studies on foods are additionally required to assess changes in the organoleptic properties 

of food products after application of EOs. Also their economic sustainability needs to be revised, 

as well as their mechanisms actions avoiding  the possibility to originate resistant pathogens (Hili 

et al., 1997). However, it seems that EOs applied to foods may be able to inhibit a wide range of 

microrganisms but, on the other hand, they may also cause an imbalance in the intestinal 

microflora (Dorman & Deans, 2000). 

The large amount of papers on the study of the antimicrobial activity of EOs and their 

constituents (Burt, 2004; Fisher & Phillips, 2008; Lanciotti et al., 2004; Holley & Patel, 2005) is 

a sign of an increased interest on their potential use in order to control the growth of pathogen 

and spoilage microorganisms in food products. Large part of this literature is referred  to EOs in 

vitro antimicrobial activity, to the research of more bioactive molecules, to the understanding of 

the mechanisms of action and to the factors affecting their bioactivity. Nevertheless, the 

application of EOs for antimicrobial purpose in foods is still limited and sporadic and the reasons 

are numerous. Among them, the most important are i) the variability of the composition of EOs 

(due to the geographic origin, agricultural techniques, season, methods of extraction, etc..) able to 

influence their effective overall antimicrobial activity (Burt, 2004); ii) the interaction of bioactive 

molecules with the food matrix (in particular with proteins, lipids, starch, etc..) that limits the 

contact of these molecules with the microbial cells, thereby reducing the effects on cell viability 
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(Gutierrez 2008b); iii) the lack of knowledge of the mechanism by which these molecules exert 

their antimicrobial activity and the influence that technological and composition parameters may 

have on their activity. Another important factor that limits the use of these substances is the 

amount of EOs or their constituents needed to exercise a tangible and satisfactory antimicrobial 

activity. In fact, the EO must be compatible with the organoleptic characteristics of the food in 

which it will be used both in qualitative and quantitative terms.  

In this perspective, the use of EOs in combination with other inhibiting factors in the context of 

"hurdle technologies" (Alzamora et al., 2003) could represent an interesting strategy to obtain 

minimally processed food products which can preserve the characteristics of freshness typical of 

untreated fresh product, and at the same time to safeguard the hygienic and microbiological 

aspect. Several recent researches have studied the stabilization of minimally processed foods 

combining  the presence of EOs and their constituents with bacteriocins, organic acids, low aw, 

low pH and modified atmosphere (Alzamora et al. 2003; Chouliara et al. 2007; Lopez-Malo et al., 

2005; Lopez et al, 2006; Serrano et al. 2008). 

A great advantage of EOs is the fact that they are usually without genotoxic risks in the long 

term, where for genotoxicity means the ability of a substance to induce changes in the nucleotide 

sequence or of the double helix structure of the DNA of a living organism. Also, some of them 

show a very clear anti-mutagenic capacity that could be connected to an antitumor activity. 

Active components and toxicity should be clearly documented before the oil use in the food 

industry or in the clinical area (Rios & Recio, 2005). As demonstrated recently by Dusan et al. 

(2006), high doses of some essential oils can have adverse effects on the intestinal cells and 

therefore the effect for the entire intestinal tract must be evaluated to achieve a safe use. The use 

of oils that are suitable to be used as a flavoring in the food industry and that are GRAS, 

therefore, can be considered a good starting point for the use of essential oils as antimicrobials in 

food. 
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Fruits and vegetables are strongly recommended in the human diet due to their content in 

vitamins, antioxidants, minerals and  dietary fibers. However, outbreaks of food-borne diseases 

associated to the consumption of fresh and minimally processed fruits and vegetables, have 

augmented dramatically since the 1970s. In fact, a wide literature shows the presence on fresh 

produce and related minimally processed products of pathogenic species (Harris et al., 2003; 

CDC, 2007; Powell & Luedtke, 2000; Abadias et al., 2011; Olaimat & Holley, 2012; Van 

Boxstael et al. 2013). The application of decontamination methods is the most important tool to 

guarantee the safety and shelf-life of minimally processed products. Several chemical sanitizers 

have been employed to decontaminate raw material, however, a wide literature showed, in 

addition to their potential toxicity, their inability to completely eradicate or kill microorganisms 

on fresh produce (Beuchat, 1998; Brackett, 1999; Abadias et al., 2008a,b). These reasons have 

stimulated the research of alternative methods to decrease minimally processed fruits and 

vegetables decay and increase the product safety and shelf-life. In fact, the intrinsic characteristics 

of minimally processed fruits may favor the growth of pathogens and spoilage microbiota.  

Currently, several investigations  have been focused on the search for natural antimicrobials able 

to increase the quality and safety of the minimally processed fruits and vegetables (Beuchat, 

1998; Allende et al., 2008; López-Gálvez et al., 2009; Vandekinderen et al., 2009; De Azeredo et 

al., 2011). A wide literature shows the great potential as antimicrobials in model and food 

systems of essential oils (EOs) and their components (Nychas, 1995; Dorman & Deans 2000; 

Cosentino et al., 1999; Smith-Palmer et al., 2002; Prabuseenivasan et al., 2006, Holley & Patel 

2005., Kalemba & Kunicka, 2003). Moreover, the action of single constituents of these oils has 

been studied to identify their cell targets and the most active molecules, and to balance their 

intrinsic variability (Karatzas et al., 2000; Vazquez et al., 2001; Sado Kamdem et al., 2011; 

Zheng et al., 2013; Kurekci et al., 2013; Picone et al., 2013). However the action mechanisms of 

EO and their main components are not fully understood limiting the industrial exploitation of 

these natural antimicrobials. 

Also the use of protective cultures has been proposed for their potential application in minimally 

processed fruits and vegetables (Schillinger et al., 1996; Bennik et al., 1999; Rodgers, 2001). 

Protective cultures of lactic acid bacteria (LAB) to increase safety and shelf-life of minimally 

processed fruits and vegetable have been developed in last decades (Vescovo et al. 1996; Bennik 

et al. 1999; Leroy et al. 2003; Palmai & Buchanan, 2002). Several authors showed the potential 

of LAB strains to increase the safety of minimally processed fruits and vegetables due to the 
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inhibition pathogenic microorganisms. Selected strains of Pseudomonas syringae, Pseudomonas 

graminis, Gluconobacter asaii, Candida spp., Dicosphaerina fagi and Metschnikowia 

pulcherrima showed great potential as biocontrol agents in minimally processed fruits to their 

ability to antagonize under laboratory conditions  several foodborne pathogens (Leverentz et al., 

2006; Abadias et al., 2009; Trias et al., 2008a, 2008b; Alegre et al., 2012, 2013). However, the 

application of bioprotective cultures at industrial level for commercial products is scarce because 

satisfactory conditions under laboratory settings are unable to guarantee the success under real 

processing and distribution conditions (Trias et al., 2008a; Abadias et al., 2009). 

In this context, the main aims of this thesis were: 

 to evaluate the potential of some essential oils and their components to improve the 

safety and the shelf life of Lamb’s lettuce (Valerianella locusta) and apples (Golden 

delicious); 

 to isolate, identify, characterize for their technological features LAB isolated from apples 

and fresh-cut lettuce in order to select potential bio-control agents 

 to evaluate the effect of the addition of the selected LABs, alone or in combination with 

essential oils or their components, on the shelf-life and safety (through execution of 

challenge-test) as well as organoleptic properties of minimally processed Lamb’s lettuce 

(Valerianella locusta) and apples (Golden delicious). 

Since the lack of knowledge of cell targets of essential oils represent one of the most important 

limit to the use of this molecules at industrial level, another aim of this thesis was the study of 

the action mechanisms of essential oils and their components against pathogens frequently 

associated to minimally processed vegetables (Listeria monocytogenes, Escherichia coli and 

Salmonella enteritidis). In particular, the study of the modifications in the fatty acids of the 

cytoplasmic membrane and the volatilome of the microorganisms mentioned above, grown in the 

presence of sublethal concentrations of antimicrobial molecules, was performed. In addition, the 

evaluation of the effects of some of the natural antimicrobials considered on gene expression of 

the entire genome of a pathogenic microorganism (Escherichia coli) and a potential bio-control 

agent (Lactococcus lactis), was performed. 
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Abstract 

Minimally processed fruits are susceptible to microbial proliferation and  to a fast loss of 

sensory quality. In this experimental work, to increase shelf-life and quality parameters 

(texture and colour) maintenance of sliced apples (Malus communis, var. Golden delicious), 

the use of natural antimicrobials was proposed as alternative to the traditional sanitization 

methods. Citron EO, hexanal, 2-(E)-hexenal, citral and carvacrol, alone or in combination, 

were added to the traditional dipping solution (0.5% of ascorbic and 1% of citric acid) of 

sliced apples. As controls, apples dipped in the traditional solution were used. The products 

packaged in ordinary atmosphere were stored at 6°C and, immediately after washing and 

during storage, the yeast cell loads were monitored until the spoilage threshold (6 log cfu/g). 

In addition, the volatile profiles, electronic nose analyses, colour and texture analyses were 

monitored during  the storage. Cell load data showed that the use of natural antimicrobials 

changed the naturally occurring yeast growth parameters with respect to the control. The 

combination of citron/carvacrol prolonged the yeast lag phase of about 6 days in comparison 

with control sample, while the use of citral and the mixture hexanal/2-(E)-hexenal decreased 

the maximum reached yeast cell load and growth rate respectively. After 8 days of storage, 

samples treated with hexanal/2-(E)-hexenal and citral, although characterized by an initial 

browning, showed equivalent or even better colour and texture attributes compared to the 

controls. In order to further improve the shelf-life of the minimally processed apples the same 

molecules were tested in combination with packaging in active modified atmosphere (7% O2 

and 0% CO2) and some modifications of the washing process. After the optimization, in all the 

samples the spoilage yeast threshold was not attained within the 35 days of storage 

independently on the substances supplemented. Samples treated with the combinations 

citral/2-(E)-hexenal and hexanal/2-(E)-hexenal showed a good retention of colour parameters 

during storage. Among investigated natural antimicrobials, the mixture hexanal/2-(E)-hexenal 

promoted the best retention of firmness throughout 35 days of storage. These results evidence 

the potentiality of dipping treatment based on these natural antimicrobials to strongly prolong 

the shelf-life of fresh-cut apples. 

1. Introduction 

Minimally processed fresh fruits represent an important component of a healthy diet and are a 

convenient way of increasing fresh produce consumption. Fresh-cut fruits are susceptible to 

microbial proliferation due to the loss of natural resistance and their high water and nutrient 



73 
 

content (Brackett, 1994; Rico, et al., 2007). In addition, the raw materials during processing 

are subjected to peeling, cutting or slicing that favour the microbial growth due to the release 

of nutrient and the transport of the surface microbiota on the cut surfaces (Lanciotti et al., 

2003; Rojas-Grau et al., 2007). The absence of treatments able to guarantee the microbial 

stability, the active metabolism of fruit tissue, and the confinement of final product inside the 

packaging increases the growth potential of the naturally occurring microorganisms (Nguygen 

& Carlin, 1994 and Lanciotti et al., 2003). Due to the lack of processing steps or factors able 

to kill microbial contaminants, an efficient temperature control during manufacture, 

distribution and retailing is required for maintaining the microbiological quality and the safety 

of these products. However, the maintaining of the cold chain and the use of chemicals as 

disinfectants of raw materials are not sufficient to either eliminate or significantly delay the 

microbial spoilage of these products entirely and to ensure the product safety (Soliva-Fortuny, 

& Martín-Belloso, 2003). In fact, a wide literature shows the presence on fresh fruits and 

related minimally processed products of pathogenic species such as Listeria monocytogenes, 

Salmonella spp., Yersinia enterocolitica, Aeromonas hydrophila and Staphylococcus aureus 

(Beuchat, 1998; Conway et al., 2000; Gunes & Hotchkiss, 2002; Alegre et al., 2010). 

Moreover, fresh fruits, fruit juices and minimally processed fruits have been incriminated in 

several outbreaks caused by E. coli O157:H7,  Salmonella spp. and Listeria monocytogenes 

(Powell & Luedtke, 2000; Harris et al., 2003; Abadias et al., 2011; Olaimat, & Holley, 2012; 

Van Boxstael et al., 2013). 

Currently, several investigations  have been focused on the search for natural antimicrobials 

able to increase the quality and safety of the minimally processed fruits (Beuchat, 1998; 

Allende et al., 2008; López-Gálvez et al., 2009; Vandekinderen et al., 2009; De Azeredo et 

al., 2011). A wide literature shows the great potential as antimicrobials in model and food 

systems of essential oils from citrus fruits (Fisher, & Phillips, 2008; Espina et al., 2011; 

Settanni et al., 2012). Moreover, the action of single constituents of these oils has been 

studied to identify their cell targets and the most active molecules, and to balance their 

intrinsic variability (Karatzas, 2000; Vazquez et al., 2001; Sado Kamdem et al., 2011; Zheng 

et al., 2013; Kurekci et al., 2013; Picone et al., 2013). In particular, citral (3,7-dimethyl-2-7-

octadienal), is a terpenoid with 2 isomers, geranial and neral, naturally occurring in citrus 

essential oils and characterized by a wide spectrum antimicrobial activity both in model and 

real foods (Hayes & Markovic, 2002; Wuryatmo et al., 2003; Belda-Galbis et al., 2013). 

Citral and citron essential oil at concentration compatibles with sensorial features were able to 
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significantly prolong the microbial shelf-life of the fruit-based salads in syrup (Belletti et al., 

2008), and the stability of fruit based soft drink (Belletti et al., 2007). 

Also the antimicrobial activity of hexanal and 2-(E)-hexenal, which are components of the 

aroma of many fruits and vegetables, has been already tested in model (Gardini et al., 1997; 

Gardini et al., 2001; Kubo & Fujita, 2001) as well as in real systems (Lanciotti et al., 1999; 

Corbo et al., 2000; Lanciotti et al., 2003; Lanciotti et al., 2004). Hexanal, 2-(E)-hexenal, and 

hexyl acetate improved shelf-life and safety of minimally processed fruits (Lanciotti et al., 

2004; Serrano et al., 2008). In particular, the addition of hexanal and 2-(E)-hexenal in storage 

atmosphere of fresh-cut apples resulted in a positive effect on shelf-life, due to their 

antimicrobial activity against naturally occurring spoilage species also when deliberately 

inoculated at levels of 10
3
 cfu/g. Moreover, these molecules determined the enhancement of 

the sensorial properties, as well as the retention of the original colour of the packaged 

products (Lanciotti et al., 1999; Corbo et al., 2000). These aldehydes showed a great potential 

as antimicrobials also against pathogens such as Salmonella spp., E. coli and Pseudeomonas 

aeruginosa (Kubo et al., 2001). Little information is available on the relationship between the 

outgrowth of spoilage microorganisms, their volatilome, and the perception of the decay of 

minimally processed vegetables by consumers.  

In this direction the principal aim of this work was in the first place to evaluate the effects of 

dipping treatments with different concentrations of hexanal, (E)-2-hexenal, citral, carvacrol 

and citron essential oil (EO), alone or in combination, on the shelf-life of fresh-cut apple 

slices stored at 6°C. Specifically, after the determination of citron EO composition, the 

minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

values of the chosen substances against the most frequent pathogenic species in this kind of 

products (L. monocytogenes, E. coli, Salmonella spp). In addition the study of the effects of 

the same molecules on the shelf-life of minimally processed apples packaged in modified 

atmosphere, after some modifications of the washing parameters, were performed. In 

particular, the effects of these antimicrobials on yeast and lactic acid bacteria (LAB) cell 

loads, texture, colour and volatile molecule profiles were monitored during the storage at 6°C. 

An additional aim of this work was the identification of eventual spoilage volatile markers in 

relation to the natural antimicrobial used.   
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2. Material and methods 

2.1 Natural antimicrobials 

The tested compounds (hexanal, 2-(E)-hexenal, citral and carvacrol) were purchased from 

Sigma-Aldrich (Milano, Italy). Citron essential oil (EO) was obtained from Flora s.r.l. (Pisa, 

Italy). Citron EO and the natural tested antimicrobials were selected both for their 

antimicrobial activity and impact on organoleptic properties after a preliminary screening. 

Citron EO was preliminarily characterized by solid phase microextraction combined to gas-

chromatography and mass-spectometry (GC/MS-SPME) technique to know the exactly 

composition of the oil (Belletti et al., 2008).  

 

2.2 Characterization of citron essential oil (EO) by GC/MS-SPME technique 

Citron EO was placed into a 10 mL vial and sealed through a PTFE/silicon septa. Three 

different samples were prepared. The samples were conditioned 30 min at 25°C. An SPME 

fiber covered by 50 mmdivinylbenzene-carboxen-poly(dimethylsiloxane)- 

(DVB/CARBOXEN/PDMS StableFlex) (Supelco, Steiheim, Germany) was exposed to each 

sample at room temperature (25 °C) for 20 min, and finally, the adsorbed molecules were 

desorbed in the GC for 10 min. For peak detection, an Agilent Hewlett-Packard 6890 GC gas-

chromatograph equipped with a MS detector 5970 MSD (Hewlett–Packard, Genevra, 

Switzerland) and a Varian (50 m×320 µm×1.2 µm) fused silica capillary column were used. 

The temperature program was 50 °C for 0 min, then heated to 230 °C at 3 °C/min, this 

temperature was maintained for 1 min. Injector, interface, and ion source temperatures were 

200, 200, and 230 °C, respectively. Injections were performed with a split ratio of 30:1 and 

helium as carrier gas (1 mL/min). Compounds were identified by the use of the Agilent 

Hewlett–Packard NIST 98 mass spectral database. 

 

2.3 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

determination. 

For the determination of MIC values, 150 µl of BHI broth inoculated at three different levels 

(2, 4 or 6 log cfu/mL) of the tested pathogens (Listeria monocytogenes Scott A, Salmonella 

Enteritidis E5, Escherichia coli 555, S. aureus F1, Bacillus cereus SV90) were added to 200 

µl microtiter wells (Corning Incorporated, NY, USA). 15 µL of the tested EO or natural 

antimicrobials, properly diluted in Brain Heart Infusion (BHI, Oxoid Ltd., Basingstoke, 
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United Kingdom) broth and conveyed through 96% ethanol (VWR international, PROLABO, 

France) were added to each well in order to obtain the required concentration of each 

compound in the final volume (200 µL), and with a constant amount of ethanol (1% v/v in 

wells). Microtiter plates were incubated at 37 °C and checked after 24 and 48 h. The MBC 

were determined by spotting 10 µL of each well after 48 h, onto BHI agar plates.  

MIC was defined as the lowest concentration of the compound preventing visible growth of 

the inoculated cells after 24 h (MIC 24 h) or 48 h (MIC 48 h). The MBC was defined as the 

lowest concentration of the compound that caused the death of the inoculated cells, 

corresponding to no growth after 24 h of incubation at 37 °C of a 10 µl spot plated onto BHI 

agar. 

 

2.2 Preparation of sliced apple products 

Apples (Golden delicious sp.) were purchased at a local retailer in the same day of the 

analyses. The protocol used in the first experimental part is reported in Figure 3.1. Eight 

different treatment solutions were prepared with running water. Two contained only citral or 

hexanal (250 ppm); the others were mixtures of citral/hexanal (125/125 ppm), citral/2-(E)-

hexenal (125/125 ppm), hexanal/2-(E)-hexenal (125/125 ppm), citral/citron EO (125/125 

ppm), citron EO/carvacrol (200/50 ppm). Natural antimicrobials were conveyed through 1% 

(v/v) of ethanol. Control apple slices were subjected to the dipping treatment without the 

supplementation of natural antimicrobials. The packaged apples were stored at 6 °C and 

analysed until the end of shelf-life. 

In the second experimental phase, an optimization of the washing protocol was carried out. 

Apples (Golden delicious sp.) were purchased at a local retailer in the same day of the 

analyses. They were washed with running water at 13°C for 2 min and then dried with 

blotting paper. After that, apples were peeled and sliced into cubes of roughly 1.5 cm
3
. The 

citron EO and natural antimicrobials, alone or in mixture, were added to apples with the 

dipping (1% citric acid + 0.5% ascorbic acid). The same eight different treatment solutions of 

the first experimental phase were employed, at a temperature of 13°C and prepared with 

running water. Also in this case natural antimicrobials were conveyed through 1% (v/v) of 

ethanol. Control apple slices were subjected to dipping treatment without the supplementation 

of natural antimicrobials. The complete protocol used in this experimental phase is reported in 

Figure 3.2. After the treatment, apples were dried with paper and packaged in active modified 

atmosphere with 7% O2 and 0% CO2. Both control packaged in modified atmosphere and in 

ordinary atmosphere were considered. Apples were stored at 6 °C until the end of shelf-life. 
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Figure 3.1- Working protocol employed to prepare sliced apples; the addition of natural antimicrobials was 

performed during the dipping step, samples dipped  with only citric and ascorbic acid represented the controls 

 

 

Figure 3.2- Modifications implemented in the working protocol used in the second experimental phase; in the 

flow chart are reported only the modifications employed, the remaining steps were the same of the protocol 

reported in Figure 3.1. 
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2.3 Microbiological analyses  

In both the considered experimental phase, during storage, the evolution over time of LAB 

and yeasts was evaluated by plate counting respectively on de Man Rogosa and Sharpe Agar 

(MRS, Oxoid Ltd. Basingstoke, United Kingdom) with added cycloheximide (Sigma-Aldrich) 

and Sabouraud Dextrose Agar (SAB, Oxoid Ltd.), added to chloramphenicol (Sigma-Aldrich) 

respectively. After homogenization, samples were serially diluted in physiological solution 

(10 g of sample diluted into 90 mL of physiological water (0.9% (w/v) NaCl). For the 

detection of the natural occurring Listeria monocytogenes, the method suggested by McClain 

and Lee (1988) was followed, whereas the occurrence of Salmonella spp. was investigated 

according to the method proposed by Andrews and Hammack (1998). Escherichia coli was 

investigated on violet red bile agar (Oxoid) added to 4-methylumbelliferyl-β-D-glucuronide 

(Oxoid), incubating the plates at 37°C for 24 h. The potential Staphylococcus aureus was 

enumerated on Baird-Parker media (Oxoid) with added egg yolk tellurite emulsion (Oxoid) 

after 24 h at 37°C. In the first experimental phase, microbiological analyses were performed 

immediately after treatments and after 2, 3, 7, 10, 14 and 21 days of storage. In the second 

experimental phase, after the optimization of the washing process and modified atmosphere 

packaging, the analyses were performed immediately after treatments and after 3, 7, 10, 12, 

14, 17, 21, 24, 28, 31 and 35  days of storage. 

 

2.4 Volatile molecule profiles and electronic nose analyses  

Apple packages were used for headspace volatile compound analysis by GC/MS-SPME 

technique. In the first experimental phase, for each treatment condition the samples were 

analysed immediately after the treatments and after 3 and 10 days of storage, while in the 

second experimental phase each sample was analysed immediately after the treatments and 

after 10 and 20 days of storage. The samples were conditioned 30 min at 37 °C; after that, for 

fibre and gas-chromatographic conditions, the method reported by Patrignani et al. (2013) was 

used. Compounds were identified by the use of the Agilent Hewlett–Packard NIST 98 mass 

spectral database. 

Electronic nose (EN) analyses were performed on the headspace of 40 mL vials, sealed by a 

lid with a PTFE/silicon septa, containing 5 g of apples. EN evaluations, in the first 

experimental phase, were carried out immediately after the treatments and after 3 and 10 days 

of storage, while in the second phase after the optimization of the washing step, EN 

evaluations were performed immediately after treatments and after 10 and 20 days of storage. 
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Sample vials were conditioned before the analysis for 30 min at 37 °C. Determinations were 

performed with a commercial portable electric nose PEN2 (Airsense Analytics, Milano, Italy) 

composed of an array of 10 temperature-moderated metal-oxide sensors (MOS), a sampling 

system, a data acquisition system, and a data processing system. Each sensor is sensible to 

different kind of volatile molecules (Table 3.1). For each sample, three analysis repetitions 

were performed. During the analysis the response of the sensors were monitored at 1 sec 

intervals for an overall time of 95 sec at a flow rate of 400 mL/min. Results were obtained by 

comparing the signal of every sensor at every time with the minimum signal level. The signal 

evaluation was done following the method reported by Sado Kamden et al. (2007), in order to 

found out which were the most indicative signals for the evaluation of the differences among 

the samples. 

 

Table 3.1- Sensors of electronic nose, and compounds classes detected by each sensor. 

 

2.5 Physical analyses: colour and texture 

Surface colour was measured using a colour-spectrophotometer mod. Colorflex (Hunterlab, 

USA). Colour was measured using the CIELab scale and Illuminant D65. The instrument was 

calibrated with a white tile (L*98.03, a* - 0.23, b* 2,05) before the measurements. Results 

were expressed as L* (luminosity) and a* (red index); numerical values of a* and b* were 

converted into hue angle (h°), according to the following equations (McGuire, 1992): 

 

At each storage time, 21 readings were obtained for each sample from the seven packages, 

measuring three slices for each package. 

Firmness measurement was performed at room temperature (20±2 °C), about 1 h after 

removing samples from 4 °C. Penetration tests were carried out by measuring the maximum 



h 
tan1(b* /a*)

2
 360
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force registered during penetration of a 6 mm diameter stainless steel cylinder for 6 mm into 

the apple slice tissue, using a Texture analyser mod. HD500 (Stable Micro Systems, Surrey, 

UK) equipped with a 5 kg load cell. Test speed was 0.5 mm/s
 
and data were expressed in kg. 

At each storage time, 21 tests were performed for each sample from the seven packages, 

measuring three slices for each package. 

 

2.6 Statistical analysis 

For each sample, the microbiological, volatile and nose data were the mean of three different 

samples of three independent experiments. 

The yeast cell load data were modelled according to the Gompertz equation as modified by 

Zwietering et al. (1990). The spoilage threshold (6 log cfu/g) can be defined as the sum of k, 

corresponding to the initial level of yeast after sample packaging, and A, corresponding to the 

maximum cellular density increase with respect to initial cell load (k).  

The quantitative data obtained from metabolites determinations were used to build up a single 

matrix, which was submitted to a two-way hierarchical clustering analysis. A heat map, 

visualizing metabolite concentration was then obtained in which values are represented by 

cells coloured according to the Z-scores, where Z =(observed value - mean)/standard 

deviation (Ferrara et al., 2008; Serrazanetti, et al., 2011). 

Principal component analysis (PCA) was performed using Statistica software (version 8.0; 

StatSoft., Tulsa, Oklahoma, USA) to obtain a visual overview of electronic nose analyses. 

Regard microbiological, colour and texture data, statistical analysis was performed using 

Statistica software (version 8.0; StatSoft., Tulsa, Oklahoma, USA). Means were compared 

using one way-ANOVA followed by LSD test at p<0.05 level in order to monitor changes 

over time as well as differences between treatments. 

 

3. Results and Discussion of the first experimental phase: effects of natural 

antimicrobials on minimally processed apples packaged in ordinary atmosphere 

3.1 Citron essential oil composition  

The composition of citron essential oil used in this study was determined throughout GC/MS-

SPME analyses. This technique was chosen because a preliminary condition for the 

antimicrobial effects of EO is the contact between the antimicrobial molecule and the target 

cells (Gardini et al., 1997; Belletti et al., 2004). The contact is favoured if  the molecules are  

in their most hydrophobic state, i.e., in their vapor phase, because this favour their 
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solubilisation in the cell membranes. Although the headspace composition does not 

correspond to the whole EO composition, its knowledge is fundamental because it gives a 

measure of the volatile molecules of the oil (Belletti et al., 2004). In addition, the obtaining of 

a volatile profile fingerprinting is fundamental to standardize the composition in terms of the 

most effective molecules and, consequently, to standardize antimicrobial activity of the 

essential oils. It is well known that the EO GC/MS-SPME profile is affected by the 

composition in its turn dependent on plant variety and origin, extraction modality, agronomic 

practices, (Nannapaneni et al. 2009). Table 3.2 shows the total area of the GC peaks and the 

percentage (on the basis of the relative peak area) of the identified molecules in the 

headspace, as well as the cumulative percentages of the classes of compounds (monoterpenes, 

sesquiterpenes, oxygenated monoterpenes, aliphatic alcohols, aliphatic aldehydes, esters, and 

ketones). This essential oil was characterized by the presence of high percentage 

monoterpenes such as of limonene (35.75%), β-pinene (11,03%), γ-terpinene (20.14%), p-

cymene (11.46%) and α-pinene (3.06%) and oxygenated monoterpenes such as linalool 

(1.21%), neral (2.69%) and geranial (3.94%). It is well known that many of these terpenes can 

have antimicrobial activities (Dorman and Deans 2000; Belletti et al., 2004). In fact, such 

molecules can interact with some cellular structures causing the inhibition of cell growth or 

cell death. The data obtained were in accordance with those of Belletti et al. (2004, 2008). On 

the other hand, it is well known that that the volatile fraction of citrus essential oils is a 

mixture of monoterpenes, sesquiterpenes and their oxygenated derivatives including 

alhdeydes (citral) ketones, acids, alcohols and esters  (Borgmann et al., 2004; Flamini et al.,  

2007). 

 

Table 3.2 Citron essential oil characterization 

Molecules Total peak area Area % 

α-Pinene 38112402 3.06 

Camphene 757129 0.06 

β-Pinene 137322834 11.03 

β-Phellandrene 26026228 2.09 

β-Myrcene 17285238 1.39 

α-Phellandrene 125001 0.01 

α-Terpinene 689537 0.06 
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Limonene 445232682 35.75 

β-Thujene 4555454 0.37 

β-trans-Ocimene 648384 0.05 

γ-Terpinene 250747986 20.14 

3,8-p-Menthadiene 725860 0.06 

p-Cymene 142735387 11.46 

Terpinolene 3488583 0.28 

(+)-(E)-Limonene oxide 3018628 0.24 

Linalool 15086745 1.21 

cis-β-Terpineol 166768 0.01 

Linalyl propionate 58324455 4.68 

α-Bergamotene 3107911 0.25 

Caryophyllene 2233647 0.18 

Citronellyl butyrate 305439 0.02 

Neral 33540693 2.69 

Terpineolo 1702439 0.14 

Nerol acetate 3627589 0.29 

β-Bisabolene 1823835 0.15 

Geranial 49016281 3.94 

Geraniale acetate 2791492 0.22 

 

3.2 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

evaluation.  

The MICs and the MBCs of citral, hexanal, 2-(E)-hexenal, citron EO and carvacrol against 

Listeria monocytogenes Scott A, Escherichia coli 555, Salmonella enteritidis E5, 

Staphylococcus aureus F1, and Bacillus cereus SV 90 were assessed after incubation at 37°C, 

with three levels of the target microorganisms (Table 3.3). 
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Table 3.3- Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of citral,  2-(E)-hexenal, hexanal, citron oil and carvacrol against L. 

monocytogenes, E. coli, S. Enteritidis, B. cereus and S. aureus in relation to the inoculum level 

 Listeria monocytogenes 

Cells concentration 6 log cfu/mL 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 4 log cfu/mL  2 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) 

Citral 350 475 500 325 425 425 250 300 325 

2-(E)-hexenal 1250 1400 >1500 1250 1400 >1500 850 1300 1400 

Hexanal >1500 >1500 >1500 1500 >1500 >1500 1350 >1500 >1500 

Citron oil >1200 >1200 >1200 >1000 >1000 >1000 500 >1000 >1000 

Carvacrol  175 200 225 150 175 200 100 175 200 

 

 Escherichia coli 

Cells concentration 6 log cfu/mL 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) 

Citral >1500 >1500 >1500 >1500 >1500 >1500 >1500 >1500 >1500 

2-(E)-hexenal 525 600 650 500 575 575 500 525 525 

Hexanal >1500 >1500 >1500 1050 >1500 >1500 700 1200 >1200 

Citron oil >1200 >1200 >1200 >1200 >1200 >1200 >1000 >1000 >1000 

Carvacrol 200 200 225 200 200 200 200 200 200 

 

 Salmonella Enteritidis 

Cells concentration 6 log cfu/mL 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) 

Citral >1500 >1500 >1500 >1500 >1500 >1500 >1500 >1500 >1500 

2-(E)-hexenal >1500 >1500 >1500 >1500 >1500 >1500 800 1300 1500 

Hexanal >1500 >1500 >1500 1050 >1500 >1500 >1500 >1500 >1500 

Citron oil >1200 >1200 >1200 >1200 >1200 >1200 >1000 >1000 >1000 

Carvacrol 200 200 250 175 175 200 175 175 200 
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  Bacillus cereus 

Cells concentration 6 log cfu/mL 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) 

Citral 300 >650 >650 300 350 350 300 300 300 

2-(E)-hexenal 1200 1350 >1400 1200 1350 >1400 800 1250 1300 

Hexanal >1500 >1500 >1500 1500 >1500 >1500 1350 >1500 >1500 

Citron oil >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 

Carvacrol 175 175 200 150 175 175 150 150 150 

 

  Staphylococcus aureus 

Cells concentration 6 log cfu/mL 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) MIC 24h (ppm) MIC 48h (ppm) MBC (ppm) 

Citral 500 550 550 450 500 500 250 250 250 

2-(E)-hexenal 1200 1400 >1500 1300 1400 >1500 900 1300 1400 

Hexanal >1500 >1500 >1500 1500 >1500 >1500 1400 >1500 >1500 

Citron oil >1200 >1200 >1200 >1000 >1000 >1000 800 >1000 >1000 

Carvacrol 225 275 275 200 250 250 150 200 200 
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Pronounced differences in the MICs and MBCs were observed in relation to the substances, 

the species and the inoculum level considered. Citron oil exhibited the lowest antimicrobial 

activity with respect to the other molecules studied. In fact, it showed MIC and MBC values 

higher than 1000 ppm independently from the species and the inoculation level, with the 

exception of the MIC values against L. monocytogenes and S. aureus inoculated at levels of 

10
2
 cfu/mL and recorded after 24 h. In these conditions the MIC values were respectively of 

500 and 800 ppm. Belletti et al. (2008) showed a reduced effects of this oil used at a 

concentration ranging between 300 and 600 ppm on Gram-negative species, such as S. 

enteritidis and E. coli deliberately inoculated in salad fruit in syrup, but a marked inhibition 

toward the Gram-positive pathogen L. monocytogenes.  

Citral showed a low antimicrobial effectiveness against the Gram negative species considered, 

being the MIC values always higher than 1500 ppm, independently from the inoculation level. 

On the contrary, Gram-positive species had MIC values ranging between 250 and 700 ppm as 

a function of the initial inoculation level. The effect of inoculation level is particularly evident 

for B. cereus and S. aureus, whose MICs and MBCs decreased from 700 and 550 ppm to 250 

and 300 ppm in cultures of 10
6
 and 10

2
 cfu/mL respectively. The needed concentrations to 

obtain MICs and MBCs at high cell levels were in these cases about doubled compared with 

those needed to reach the same result at the lower cell level. The influence of the initial 

inoculum on MICs and MBCs was evident also in the presence of hexanal and 2-(E)-hexenal. 

These molecules showed the highest efficacy against E. coli and in minor extent against S. 

enteritidis while were quite ineffective against the other target microorganisms. This different 

response to essential oil or their components between Gram-positive and Gram-negative 

bacteria is already reported in the literature. Gram-negative bacteria are generally more 

resistant to many compounds due to the outer membrane, which acts as an efficient 

permeability barrier against macromolecules and hydrophobic substances (Helander et al., 

1997), as well as to the high content in cyclopropane fatty acids of the inner membrane 

(Chang & Cronan, 1999). If enough hydrophilic, low molecular mass molecules seem to be 

more efficient in passing through these barriers and they may have access, throughout porin 

proteins, to the deeper parts of Gram-negative bacteria without any alteration to the 

permeability of the outer membrane (Lanciotti et al.,2003; Helander et al., 1997). 

On the contrary, carvacrol showed the highest efficacy both against considered Gram-positive 

and Gram-negative bacteria. Actually it had MIC values ranging between 175 and 200 ppm 

for S. Enteritidis and E. coli and 175-275 ppm for L. monocytogenes, B. cereus and S. aureus. 

The results showed values of MIC and MBC relatively high due to the optimal microbial 
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growth conditions, and to the high inoculation levels used and not compatible with the 

product sensorial properties. However, for apple slices treatment, concentrations significantly 

lower with respect to MIC values were used, taking into consideration the real contamination 

level (pathogens were absent in 25 g of products) of the product with pathogenic species, the 

more stringent conditions of the real system with respect to the model one used for MIC 

determination, and the product sensorial acceptance. 

 

3.3 Effects of citron EO and natural antimicrobials on the shelf-life of apple slices  

During refrigerated storage, the growth of lactic acid bacteria (LAB) and yeasts was evaluated 

because they represent the main microbial groups involved in fresh-cut fruits spoilage 

(Patrignani et al., 2013). In fact for these commodities the pH value, the sugar content and the 

C/N ratio favour the growth of LAB, yeast and moulds. However, the increased respiration 

rate of the fresh-cut fruits tissue caused by endogenous wounding response rapidly consume a 

great part of the oxygen present in the packages, creating an environment not suitable for the 

growth of aerobic moulds (Belletti et al., 2008). The Gompertz parameters recorded for yeasts 

are shown in Table 3.4. Immediately after apple packaging, the yeast levels were under the 

detection limit, independently of the presence of the test compounds; for this reason K values 

were not reported. Yeasts showed a significant higher growth rate in the control sample 

reaching cell loads of 6.0 log cfu/g after about 12 days. This level of cell load can be 

considered as an acceptability threshold, because it corresponds to the beginning of a 

perceivable spoilage (Patrignani et al., 2009, 2013); higher cell concentrations can result in a 

visible blowing of the package. All the tested molecules, alone or in combination, 

significantly delayed the yeast growth. However, the most effective substances were hexanal 

when used at 250 ppm, citral and  the mixture hexanal/2-(E)-hexenal, both used at 125 ppm. 

Hexanal delayed the reaching of the spoilage threshold of about 10 days with respect to the 

control (Table 3.4), while the yeast cell loads in samples washed with citral and the mixture of 

the two aldehydes never reached that limit. A similar trend has been shown by Lactic Acid 

Bacteria (LAB) although their growth was delayed with respect to yeasts (data not shown). In 

fact, after 14 days of storage at 6 °C LAB reached levels of 5.0 log cfu/g only in the control 

samples, while in the other samples the LAB cell loads ranged between 1.0 and 2.7 log cfu/g. 

The efficacy of the tested antimicrobials to prolong the shelf-life of minimally processed 

fruits is well documented (Patrignani et al., 2008; Belletti et al., 2008; Lanciotti et al., 2004). 

Belletti et al. (2008) showed that citron essential oil doubled the time needed for the 

degradative microflora to reach concentrations able to produce a perceivable spoilage during 
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storage at 9°C. A more pronounced delay of spoilage agents was obtained with citral which 

however evidenced some citotoxic effects on fruit tissue. Also the addition of hexanal and 2-

(E)-hexenal in storage atmosphere of fresh-cut apple slices resulted in a positive effect on the 

product shelf-life because of the antimicrobial activity of these substances against naturally 

occurring spoilage species, also when deliberately inoculated at levels of 3 log cfu/g. 

Moreover these molecules determined the enhancement of the aromatic properties, as well as 

the improvement of the original colour retention of the packed products (Lanciotti et al., 

1999; Corbo et al., 2000). 

 

Table 3.4- Gompertz parameters of yeast cell load dynamic equations in apples, stored at 6 °C, in relation to the 

applied dipping. 

 
a Control was washed only with dipping solution (1% citric acid + 0.5% ascorbic acid) 
b Concentration employed 125 mg L-1 each. 
c Concentration employed 125 mg L-1 each. 
d Concentration employed 250 mg L-1. 
e Concentration employed 125 mg L-1 each. 
f Concentration employed 250 mg L-1. 
g Concentration employed 125 mg L-1 each. 
h Concentration employed 200 mg L-1 citron oil and 50 mg L-1 carvarcol. 
 Time: the time (days) necessary to reach the cell load of 6.0 log cfu mL-1 chosen as spoilage threshold. 

A: maximum cellular density increase with respect to the initial cell load (k) (log cfug-1). 

μmax: maximum specific growth rate ((log CFU g-1) days-1). 

λ: latency time (lag time) (days). 

R: correlation coefficient. 

- unable to  reach the spoilage value 

 

3.4 Effects citron EO and natural antimicrobials on apple volatile molecules and electronic 

nose profiles  

In order to evaluate the effect of the compounds taken into consideration on the volatile 

molecule profiles as a function of storage time, the samples were analysed by means of 

GC/MS-SPME and electronic nose. Although only the most significant molecules were 

reported in Table 3.5, the GC/MS-SPME allowed the identification of 45 molecules belonging 
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to different chemical classes and provided  specific volatile fingerprinting in relation to the 

antimicrobial agent used and to the storage time advancement. The supplemented 

antimicrobials and their detoxification greatly affected the volatile profile composition (Table 

3.5). Actually, neral, geranial, nerol and geraniol characterized the samples supplemented 

with citral and citral in combination with citron oil. The latter sample showed the presence of 

high levels of limonene and terpinene, linalyl butyrate, β-mircene. The samples treated with 

citral was characterized also by citronellyl acetate and β-citronellol while hexanal, 2-(E)-

hexenal, hexanol, and acetic acid hexyl esters were detected in the samples supplemented with 

hexanal and 2-(E)-hexenal. This sample showed a remarkable abundance (in term of peak 

area) of 2-hexen-1ol-acetate. Hexanal and 2-(E)-hexenal showed higher levels in the control 

samples with respect to the samples treated with the same molecules indicating that their 

supplementation fastened the detoxification mechanisms adopted by tissues and naturally 

occurring microorganisms (Table 3.5). On the other hand, it has been demonstrated also for 

other aldehydes such as neral and geranial their reduction into nerol and geraniol as the first 

step of citral biotransformation by penicilli into lower toxicity compounds (Esmaeili & 

Tavassoli, 2010). Patrignani et al. (2013) showed the increase during storage of such alcohols 

in fruit juices supplemented with citral over the storage; the authors attributed this 

phenomenon to the detoxifying mechanisms of spoilage yeasts. A similar detoxifying 

mechanism, i.e. reduction to the respective alcohols, was shown for six carbon aliphatic 

aldehydes (Patrignani et al., 2008). The samples supplemented with citron EO showed the 

presence of high amounts of monoterpenes and oxygenated monoterpenes, whose presence is 

well documented in citron EO. Carvacrol and thymol methyl ether were the main volatile 

molecules detected in the GC/MS-profiles of the samples added with carvacrol. 
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Table 3.5- Volatile aroma compounds (expressed as Area 10
-5

) detected in apples treated with different dipping solutions during the storage time at 6°C. 

  Control a Citron oil/Citral b Hexanal/2-(E)-hexenal c  Citral d Citral/Hexanal e Hexanal f Citral/2-(E)-hexenal g Citron oil/Carvacrol h 

Compounds T0 T3 T10 T0 T3 T10 T0 T3 T10 T0 T3 T10 T0 T3 T10 T0 T3 T10 T0 T3 T10 T0 T3 T10 

Ethyl acetate 0.0 4.3 2.5 2.5 7.5 3.6 0.8 12.7 34.3 6.4 13.5 14.6 1.2 10.3 11.0 1.2 19.3 33.9 0.6 15.2 14.6 3.7 23.3 38.7 

Acetic acid, 
isobutyl ester 0.6 1.2 5.6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.6 0.0 0.0 0.5 0.0 0.0 0.0 

Acetic acid, butyl 

ester 6.9 10.9 1.8 6.0 4.7 0.0 0.8 4.4 7.9 12.9 5.2 7.6 1.3 5.5 6.0 6.1 13.6 9.3 5.2 11.5 11.6 0.8 2.5 5.1 

1-butanol, 2-
methyl-acetate 11.0 11.5 12.3 5.6 4.0 0.0 1.1 1.4 4.8 23.7 11.8 5.2 4.3 5.5 1.7 15.3 27.5 3.6 5.9 10.0 2.8 2.6 4.1 4.3 

Acetic acid, hexyl 

ester 16.4 42.2 12.6 7.3 22.0 4.2 235.1 460.8 74.0 20.6 57.2 36.8 25.0 167.3 12.2 236.5 431.6 259.3 31.3 171.6 53.5 6.9 26.0 20.3 

2-Hexen-1-ol, 

acetate 0.0 0.0 0.0 0.0 0.0 0.0 46.4 9.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.1 3.0 0.2 0.0 0.0 0.0 

Butanoic acid 

methyl esters 0.0 0.0 0.0 0.4 1.0 0.0 0.0 0.1 0.0 3.4 6.8 3.9 5.6 3.8 0.0 5.2 11.1 0.0 0.7 7.9 1.1 0.0 0.0 0.0 

Citronellyl acetate 0.0 0.0 0.0 0.3 5.4 1.9 0.0 0.0 0.0 1.4 9.5 11.1 1.5 10.2 0.4 0.0 0.0 0.0 1.2 21.8 4.0 0.0 0.0 0.0 

Linalyl butyrate 0.0 0.0 0.0 4.9 5.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.4 26.6 8.3 

Total Esters 34.9 70.0 34.7 26.9 50.0 10.1 284.2 489.0 122.8 68.5 104.1 79.2 38.9 202.6 31.6 264.3 503.3 306.6 58.0 240.9 88.2 42.4 82.5 76.6 

Hexane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.3 0.0 6.4 0.0 0.0 0.0 0.0 0.0 

β-myrcene 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 3.6 2.0 

Limonene 0.4 1.7 1.4 38.6 28.3 2.6 0.0 0.4 0.9 1.0 1.3 0.9 1.7 0.5 0.0 0.7 0.2 0.0 0.5 1.1 0.3 213.0 203.1 124.8 

α Terpinene 0.0 0.0 0.0 19.7 19.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 155.5 126.9 72.1 

Cymene 0.0 0.0 0.0 13.3 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 66.3 55.2 

β-pinene 0.0 0.0 0.0 3.1 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 8.0 4.4 
thymol methyl 

ether 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.0 11.0 

Total 

Hydrocarbons 0.4 1.7 1.4 75.0 52.2 4.0 0.0 0.4 0.9 1.0 1.3 8.4 1.7 0.5 0.0 0.7 0.5 0.0 6.9 1.1 0.3 416.4 426.0 269.4 

Nerol 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 

Geraniol 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 

Carvacrol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.4 15.5 0.0 

β-citronellol 0.0 0.0 0.0 39.6 58.3 33.4 0.0 0.0 0.0 63.7 144.3 81.1 44.8 64.8 4.7 0.0 0.0 0.0 42.4 72.1 21.5 6.5 6.0 0.0 

Hexanol 2.5 1.7 0.0 8.4 3.0 3.8 33.1 8.4 2.6 9.5 11.0 11.4 33.3 17.8 2.6 35.2 10.2 7.6 21.0 16.3 5.6 1.5 2.4 1.5 

Ethanol 0.6 0.9 0.0 12.0 10.8 6.1 11.0 8.9 8.0 14.0 12.2 10.3 11.5 10.3 4.9 14.1 12.0 8.7 10.8 11.5 7.4 14.5 14.1 9.3 

Total Alcohols 3.1 2.6 0.0 63.7 72.0 43.3 44.1 17.2 10.6 96.5 167.5 102.9 92.8 92.9 12.2 49.3 22.2 16.3 79.0 99.9 34.5 49.9 38.0 10.8 

Hexanal 24.6 35.6 24.0 18.2 55.5 38.5 3.9 2.7 16.5 9.9 27.7 20.0 31.5 26.1 28.8 14.7 11.3 10.4 16.3 20.2 30.2 5.1 6.3 12.5 

Neral  0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 48.7 1.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 

Geranial 0.0 0.0 0.0 3.7 0.5 0.0 0.0 0.0 0.0 48.4 1.9 0.0 3.3 0.0 0.0 0.0 0.0 0.0 8.2 0.0 0.0 0.0 0.0 0.0 

2-(E)-hexenal 14.6 28.2 50.0 13.3 29.3 31.6 7.2 5.5 29.8 7.2 19.3 18.4 24.7 12.4 11.1 0.0 7.2 18.2 18.8 16.8 23.3 6.9 10.4 18.8 

Total Aldehydes 39.2 63.7 73.9 38.0 85.3 70.0 11.1 8.2 46.3 114.1 49.9 38.4 61.5 38.5 39.9 14.7 18.5 28.5 51.4 37.0 53.5 12.0 16.7 31.2 

Total metabolites 77.5 138.1 110.1 203.6 259.6 127.4 339.3 514.8 180.6 280.1 322.9 228.9 194.9 334.5 83.6 329.0 544.6 351.4 195.3 378.9 176.5 520.6 563.1 388.1 
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Legend:  
a Control was washed only with dipping solution (1% citric acid + 0.5% ascorbic acid) 
b Concentration employed 125 ppm each. 
c Concentration employed 125 ppm each. 
d Concentration employed 250 ppm 
e Concentration employed 125 ppm each. 
f Concentration employed 250 ppm. 
g Concentration employed 125 ppm each. 
h Concentration employed 200 ppm citron oil and 50 ppm carvarcol. 

 

A multivariate analysis using a heat map was performed in order to identify the molecules 

able to significantly contribute to the statistical discrimination among the samples, and five 

small clusters were obtained. The heat map underlined the role of the EO or the natural 

antimicrobials in grouping the samples (Figure 3.3). In particular, the sample submitted to the 

treatment with citron EO/carvacrol and stored up to 5 days grouped together (Cluster 2) and 

α-terpinene, limonene and p-cymene contributed to the grouping. Hexanal clearly contributed 

to the formation of cluster 3 that grouped the samples added with hexanal immediately after 

packaging and after 10 days of storage; the sample supplemented with the mixture hexanal/2-

(E)-hexenal immediately after packaging as well as the sample supplemented with citral in 

mixture with hexanal or 2-(E)-hexenal after 3 days of storage. The samples of this cluster 

were characterised by the presence of acetic acid hexyl ester. The two samples of cluster 3 

supplemented with citral were also characterized by the presence of β-citronellol; the latter 

molecule contributed to the formation of cluster 5, grouping the samples containing citral or 

citron EO alone or in mixture. Neral and geranial mainly characterised the samples added 

with citral analysed immediately after the supplementation. The control samples were 

distributed in two subclusters of cluster 4 that included samples with citral/2-(E)-hexenal, 

hexanal and 2-(E)-hexenal  and citron/citral after 10 days of storage. This cluster was 

characterized by the presence of 2-(E)-hexenal, hexanal and ethyl acetate. The samples 

supplemented with citron/citral and stored for 10 days showed the highest similarity to the 

controls analysed immediately after the packaging. Cluster 1 comprised the samples 

supplemented with hexanal and hexanal/2-(E)-hexenal after 3 days of storage, with acetic acid 

hexyl ester as the unique discriminating molecule. The samples supplemented with citral after 

3 days of storage did not group in any cluster but was near to cluster 4 with a similarity 

percentage of 66.6%; these samples were characterized by the highest abundance of β-

citronellol. The storage time did not contribute significantly to the clustering, probably 

because of the different detoxification rate and patterns of the supplemented substances, in 

their turns dependent on microbial composition (in terms of species and strains) and growth 

rate. Moreover the volatile molecule profiles reflected also the metabolisms of apple tissue. In 

this direction Gutierrez et al. (2009) attributed the increases of same terpenic molecules over 
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storage of lettuce and carrot supplemented with oregano and thyme to microbial metabolism 

and to the tissue synthesis throughout mevalonic acid. 

The data obtained with electronic nose were subjected to a principal component analysis in 

order to outline the differences among the samples detected by the 10 sensors of the 

instrument. All the samples were mapped in the space spanned by the first two principal 

components PC1 versus PC2. The score and loading plot, reported in Figure 3.4, show the 

clustering of the samples according mainly to storage time. Three different clusters were 

evident in the PCA plot. The first cluster grouped the samples analysed immediately after 

packaging, independently of the presence of natural antimicrobials. The second group 

accounted for the samples stored for 10 days and samples stored for 3 days supplemented 

with citral or hexanal, while the third cluster contained all the remaining samples stored for 3 

days. Exception was represented by the 3 day-control samples belonged to the first cluster. 

All the samples, except those of the cluster 3 (containing the samples analysed after 3 days of 

storage), were not discriminated on the basis of PC1 (57.4% of variance was captured by the 

first PC), while were grouped in two clusters on the basis of PC2 (26.9% of variance) that 

captured most of the variation among the three considered storage time. The cluster 3 differed 

by the other samples on the basis of PC1. In particular, the sensors 8 and 6, detecting alcohols 

and hydrocarbons, respectively, accounted for this clusterization. Sensor 9, a quite aspecific 

sensor, characterized the cluster 1 while sensors 1, 3 and 5, more responsive for aromatic 

compounds, defined the cluster 2. 

Sado et al. (2010) in a study aimed to evaluate the sensitiveness of electronic nose to 

discriminate different chemical classes, showed that response of sensors 9 and 2 have a 

similar responsiveness while the sensors 1, 3 and 5 had an inverse responsiveness to the 

analysed substances. This different response could contribute to the sample clustering. The 

data clearly indicate that the addition of the chosen compounds did not affect significantly the 

electronic nose profiles. In fact, the clusterization was based mainly on storage time except 

for the samples added with citral or hexanal stored for 3 days that clusterized with the 10 day-

stored samples. Probably in these samples this behaviour can be attributed to the delayed 

yeast growth, as shown by the Gompertz parameters (Table 3.4). On the other hand, the used 

concentrations were chosen on the basis of preliminary trials aimed to balance the 

antimicrobial activity and the sensorial impact of the product. 
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Figure 3.3- Heat map of correlations between metabolites produced during the storage of apples treated with citron essential oil, natural antimicrobials and their combinations. Each square 

represents the Spearman’s correlation. 
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Figure 3.4- Projection of the scores (different apples treated with citrus essential oil, natural antimicrobials and 

their combination ) and loadings (sensors) on the factor-plane (1x2). PC1 and PC2 explained 57.4% and 26.9 of 

the total variance respectively. 

Legend:  

Cluster 1: A0d (control 0 days), B0d (citral 0 days), C0d (hexanal 0 days), D0d (citral+hexanal 0 days), E0d (citral+citron oil 

0 days), F0d (citral+2-(E)-hexenal 0 days), G0d (citron oil+carvacrol 0 days), H0d (hexanal+2-(E)-hexenal 0 days), S3d 

(control 3 days). 

Cluster 2: T10d (citral 10 days), U10d (hexanal 10 days), V0d (citral+hexanal 10 days), Z10d (citral+citron oil 10 days), 

AA10d (citral+2-(E)-hexenal 10 days), AB10d (citron oil+carvacrol 10 days), AC10d (hexanal+2-(E)-hexenal 10 days), L3d 

(citral 3 days), M3d (hexanal 3 days). 

Cluster 3: N3d (citral+hexanal 3 days), O3d (citral+citron oil 3 days), P3d (citral+2-(E)-hexenal 3 days), Q3d (citron 

oil+carvacrol 3 days), R3d (hexanal+2-(E)-hexenal 3 days), I10d (control 10 days). 

 

3.5 Effects of Citron EO and natural antimicrobials on colour and texture of fresh-cut apple 

slices 

As reported in Figure 3.5a, dipping treatments with essential oil and natural antimicrobials 

promoted immediately a modification of the achromatic component of fresh-cut apples 

colour, corresponding to a decrease of L* in the range of 1.5-3.5 units. According to Fltcher 
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(1999), the human eyes can recognize L* differences higher than three units; the L* 

decrease promoted by the treatments investigated is around this value. Until the fourth day of 

storage, control sample showed the highest L* values, with a progressively decreasing trend 

until the end of the experiment, as a consequence of enzymatic browning advancement. After 

four days of storage, among investigated treatments, citral/citron EO, citral/2-(E)-hexenal, 

citral/hexanal and citral 250 ppm evidenced the highest levels of L*, showing a positive effect 

on the inhibition of L* decrease. Treatments with hexanal 250 ppm, citral 250 ppm, 

citral/citron EO and citral/2-(E)-hexenal caused an immediate increase on the red index (a*) 

of apple slices colour (Figure 3.5b), while hexanal/2-(E)-hexenal, citron EO/carvacrol and 

citral/hexanal samples showed initial values of a* very similar to control sample. After two 

days of storage, all treated samples showed significantly higher values of a* compared to the 

control, reaching similar values at the fourth day of refrigeration. Among investigated 

treatments, during the second part of storage, citral/hexanal permitted to maintain the lowest 

a* values on apple slices surface. As far as hue angle (h°) (Figure 5c), treatments with citrus 

EO/carvacrol and citral/hexanal seemed not to influence this parameter, but after two days of 

storage control sample showed a h° value very similar to the initial one, while all treated 

samples evidenced a fast decrease in the first part of the storage period. From the fourth day 

to the end of the experiment, the decreasing trend of h° was very similar for all the samples 

investigated excluded sample citral/hexanal, that showed the highest h° values after 

respectively height and ten days of storage.  
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Figure 3.5- Evolution of luminosity, L*; (3.5a), and red index, a*, (3.5b) of apples treated with citron essential 

oil, natural antimicrobials and their combinations during storage time. The variability coefficients were ranged 

between 2 and 5% 

The initial browning caused by citral is in accordance with the data of Belletti et al. (2008) 

who observed citotoxic effect on apple slices in fruit salad in syrup, when the terpenic 

molecule was used at concentration of 125 ppm . Probably in our experimental conditions, the 

negative effects of citral was reduced when in combination with hexanal. On the other hand, 

the positive effect of hexanal on apple colour maintenance has been already observed 

(Lanciotti et al., 1999; Corbo et al., 2000). To the conversion of hexanal to hexanol was 

attributed the key to understanding its effect on browning delay. In fact, the aliphatic alcohols 

are regarded as inhibitors of polyphenol oxidase (Valero et al., 1990). As a consequence of 

dipping treatment, only sample citral 250 ppm showed higher value of firmness compared 

with the control, while the treatment with citral/citron EO caused the maximum softening. 

Citral 250 ppm effect was lost after just two days of storage (Figure 3.6). As expected, 

generally during storage, apple slices firmness decreased for all samples investigated in a very 

similar way. Among them, only the sample hexanal/2-(E)-hexenal maintained higher firmness 

values compared with the control for all the storage period investigated.  
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Figure 3.6- Evolution of firmness (kg.g) of apples treated with citron essential oil, natural antimicrobials and 

their combinations during storage time. Data are the mean of three different samples.  

 

4. Results and Discussion of the second experimental phase: effects of natural 

antimicrobials on minimally processed apples packaged in modified atmosphere 

4.1 Microbiological results 

During the refrigerated storage (6°C), the growth of yeasts and lactic acid bacteria (LAB) was 

monitored due to their dominant role in the spoilage of minimally processed fruits (Patrignani 

et al., 2013). In Figure 3.7 the yeast cell loads recorded over 35 days of storage at 6°C are 

shown. In all the apples the yeast cell loads remained below 5 log cfu/g within the 35 days of 

storage independently on the substance or mixture of substances supplemented. After 35 days 

of storage, the mixtures 2-(E)-hexenal/hexanal, hexanal/citral and citron EO/citral were the 

most effective to delay the yeast growth compared to the other samples (p < 0.05). On 

contrary, citron/carvacrol mixture was the less effective one; from the sixth days of storage, 

the yeast cell loads of these samples were significantly higher (p < 0.05) compared to the 

other samples at the same time of storage. 
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Figure 3.7- Evolution of the load of yeasts, in sliced apples packaged in MAP, in relation to the addition of 

citron essential oil and natural antimicrobials during the storage time. 

Lactic Acid Bacteria (LAB) showed a behaviour similar to yeasts but with decreased growth 

potential. In fact, after 35 days of storage at 6 °C in all the apple samples the LAB cell loads 

ranged between 1.0 and 3.7 log cfu/g without significant differences. On the other hand, 

yeasts were favoured with respect to LAB by the high sugar content and the C/N ratio of the 

system (Patrignani et al., 2013). The efficacy of the antimicrobials used to decrease yeasts and 

LAB growth in minimally processed fruits is well documented (Lanciotti et al., 1999; Corbo 

et al., 2000; Lanciotti et al., 2004; Belletti et al., 2008; Patrignani et al., 2008). The use of 

modified atmosphere further increased the efficacy of these antimicrobials against the main 

spoilage agents of minimally processed fruits. On the other hand, it is well known that 

modified atmosphere (MAP) technology is largely used for minimally processed fruits to 

control both product respiration and ethylene production resulting in product of high 

organoleptic quality (Sandhya, 2010). Concerning the pathogens, L. monocytogenes and 

Salmonella spp. were never found while E. coli and S. aureus were always under the detection 
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limits (1 Log cfu/g) also after 35 days of storage, independently on the natural antimicrobial 

supplementation.  

 

4.2 Effects EO and natural antimicrobials on apple colour and texture 

Among the investigated dipping treatments, only the mixture citral/citron EO caused an 

immediate significant (p<0.05) decrease of the achromatic component of apple cubes, as 

reported in Figure 3.8a, while the other treatments showed values very close to the control 

(p>0.05). During storage, all samples underwent a progressive but slight decrease of L* value; 

in particular, after 20 days control sample showed a value of about 3 units lower compared to 

the initial one. Sample treated with carvacrol/citron EO did not differ from the control in the 

first part of the storage period but after 14 days it showed a sharp decrease of L*, while 

samples treated with hexanal and the combinations citral/2-(E)-hexenal, hexanal/2-(E)-

hexenal, and citral/hexanal showed L* values very close to the initial ones, until the 35
th

 day 

of storage, as shown also by Figure 3.8a. 

Dipping treatment did not seem to have an immediate marked effect on a* value compared to 

the control sample, as reported in Figure 3.8b. The kinetics of this parameter showed a similar 

behaviour to the one of L* value. Samples treated with hexanal, citral/2-(E)-hexenal, 

citral/hexanal and hexanal/2-(E)-hexenal showed a good retention of this parameter during 

storage, while citral treatment caused an increase compared to the control. This negative 

effect has already been reported by Belletti et al. (2008), who observed a cytotoxic effect of 

citral causing browning on apple slices. As far as colour retention is concerned, the 

combination citral/citron EO showed a positive interaction, particularly in the second part of 

storage. The b* parameter values did not show significant modification over storage (data not 

shown). 

It is worth noting that the major phenomenon limiting the shelf-life of fresh-cut apples is 

enzymatic browning caused by polyphenol oxidase (PPO) enzymes that, after peeling and 

cutting operations, come in contact with their substrate promoting their oxidation, with a 

consequent decrease in L* and increase in a* values of fresh apple colour. 

According to Lanciotti et al. (1999) and Corbo et al. (2000) dipping treatments with hexanal 

delayed enzymatic browning, inhibiting polyphenol oxidase (PPO) activity in apples 

particularly if associated to modified atmospheres. These authors suggested two possible 

mechanisms to explain this effect: the conversion of hexanal to hexanol, that can act as PPO 

inhibitor according to Valero et al. (1990) and/or an inhibitory effect of hexanal on 

phenylalanine ammonia-lyase (PAL), an enzyme that can be activated by tissue disruption 
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and responsible for the biosynthesis of polyphenol substrate of PPO. In the present study, a 

positive interaction between 2-(E)-hexenal with both hexanal and citral was observed. In fact, 

as shown in Figure 3.8b, the samples 2-(E)-hexenal/citral, 2-(E)-hexenal/hexanal and 

hexanal/citral, showed the better retention (p<0.05) the a* value after 35 days of storage. 

 

 

Figure 3.8 a, b- Evolution of luminosity, L*, of apples treated with natural antimicrobials, their combinations 

and packaged in MAP, during storage time. 



100 
 

Recently, Gao et al. (2014) suggested that the antioxidant activity reported for the essential 

oils may reduce occurrence of browned polymers responsible for the browning in mushrooms. 

Although the role of these compounds on browning phenomena and more generally on quality 

parameters is still unclear, the positive interaction between EOs and MAP observed by 

Lanciotti et al (1999) on fresh cut apples, has been also reported on table grapes and on sweet 

cherries (Serrano et al., 2005; Valero et al., 2006;  Guillén et al., 2007).  

Figure 3.9 reports apple sample firmness evolution during storage. Immediately after dipping, 

citral/2-(E)-hexenal, hexanal/2-(E)-hexenal, treated samples showed a firmness values 

significantly higher (p<0.05) compared to the control. As expected, during storage, control 

samples underwent a decrease in firmness; a similar behaviour was observed in citral, 

citral/citron EO and carvacrol/citron EO treated samples. Samples dipped in hexanal and 

citral/hexanal showed a decrease in firmness immediately after the treatment but, following, a 

good retention (p<0.05) for 19 days of storage. Among investigated samples, hexanal/2-(E)-

hexenal and citral/2-(E)-hexenal promoted the best retention of firmness throughout 35 days 

of storage (p<0.05). For samples showing the worst colour retention, texture analyses were 

performed only until the 20
th

 day of storage at 6°C.  

 

Figure 3.9- Evolution of firmness (kg.g) of apples treated with citron essential oil, natural antimicrobials and 

their combinations during storage time. 
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Physical parameter analyses showed that treatments including 2-(E)-hexenal in combination 

with either hexanal or citral and with modified atmosphere packaging promoted a better 

retention (p<0.05) of the initial characteristics of the product compared to control samples. 

The positive effect was maintained until 35 days of storage, evidencing the potentiality of 

dipping treatment based on these substances in order to obtain long storage fresh-cut apples. 

However further researches are needed in order to better understand the mechanism of action 

of these molecules on enzymatic reactions and/or cellular modifications, that result in 

browning and loss of firmness. 

 

4.3 Effects of citron EO and natural antimicrobials on apple volatile molecule and electronic 

nose profiles  

To evaluate the effects of the compounds taken into consideration on the volatile molecule 

profiles in relation to storage time, the samples were analysed by means of GC/MS-SPME 

and electronic nose. The samples were analysed until 20 days due to the colour quality loss of 

several samples (i.e. control samples and those supplemented with citral, citron 

EO/carvacrol). Although only the most significant molecules were reported in Table 3.6, the 

GC/MS-SPME allowed the identification of 39 molecules belonging to different chemical 

classes and provided specific volatile fingerprinting, in relation to the concentration and 

composition of the antimicrobials used, to the storage time and to the tissue detoxification 

mechanisms. In fact, high percentages of monoterpenes such as limonene, γ-terpinene, β-

pinene and  β-mircene and oxygenated monoterpenes  such as linalool, neral and geranial 

characterized the samples supplemented with citron EO, in combination with citral. On the 

other hand, a wide literature shows that the volatile fraction of citrus EOs is a mixture of 

monoterpenes, sesquiterpenes and their oxygenated derivatives including aldehydes (citral), 

ketones, acids, alcohols and esters (Flamini et al., 2007; Smith-Palmer et al., 2001; Belletti et 

al., 2004; Belletti et al., 2008).  

Neral, geranial, nerol, geraniol, citronellyl acetate and β-citronellol characterized the samples 

supplemented with citral analysed immediately after packaging. However, neral and geranial 

peak areas decreased in the samples added with citral alone or in combination with citron EO 

due to their transformation for the interaction with apple and microbial enzymes, while ethyl 

acetate and ethanol increased remarkably during the storage. On the other hand, it has been 

demonstrated that the reduction of neral and geranial into nerol and geraniol is the first step of 

citral biotransformation by Penicilli into lower toxicity compounds (Esmaeili & Tavassoli, 
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2010). The high level of nerol and geraniol in the samples immediately after packaging, 

indicated that the apple tissues immediately respond to the  chemical stress applied producing 

the corresponding alcohols. Also Patrignani et al., (2013) showed the increase during storage 

of such alcohols in fruit juices supplemented with citral over the storage, and attributed this 

phenomenon to the detoxifying mechanisms of spoilage yeasts. A similar detoxifying 

mechanism, i.e. reduction to the respective alcohols, was shown for six carbon aliphatic 

aldehydes (Patrignani et al., 2008). 

Immediately after packaging the samples supplemented with citron EO/carvacrol presented, 

in addition to high percentages of monoterpenes such as limonene, γ-terpinene, β-pinene and  

β-mircene, and carvacrol, high level of 1-butanol,2-methylacetate, acetic acid ethylester and 

linalyl butyrate. After 3 days of storage at 6°C, a significant increase of ethyl acetate and 

ethanol associated to the remarkable decrease of carvacrol was observed.  

Hexanal, 2-(E)-hexenal, hexanol, and acetic acid hexyl esters were detected in the samples 

supplemented with hexanal/2-(E)-hexenal. The samples supplemented with hexanal alone, 2-

(E)-hexenal/citral and 2-(E)-hexenal/hexanal showed a remarkable abundance (in term of 

peak area) of 2-hexen-1ol-acetate. Hexanal and 2-(E)-hexenal showed higher levels in the 

control samples with respect to the samples supplemented with the same molecules, 

indicating that their supplementation fastened the detoxification mechanisms adopted by 

tissues and naturally occurring microorganisms, increasing the peak area of derived alcohols. 

In the samples supplemented with hexanal/citral, a remarkable increase of hexanol was 

observed while nerol and geraniol were not detected.  
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Table 3.6- Volatile aroma compounds (expressed as Area 10
-5

) detected in apples treated with different dipping solutions and packaged in MAP during the storage time at 

6°C. 

  Control 
a
 Hexanal 

b
 Citral 

c
 Citron EO/Carvacrol 

d
 Citral/Citron EO

e
 Citral/2-(E)-Hexenal 

f
 Hexanal/2-(E)-Hexenal g Citral/Hexanal 

h
 

Compounds T0 T10 T20 T0 T10 T20 T0 T10 T20 T0 T10 T20 T0 T10 T20 T0 T10 T20 T0 T10 T20 T0 T10 T20 

Ethyl acetate 1.0 14.1 30.7 3.8 11.5 13.9 6.4 14.0 24.3 0.7 28.1 23.0 1.7 24.3 26.6 1.1 16.9 12.2 0.8 17.1 17.1 0.0 17.8 12.3 
Acetic acid, 
butyl ester 3.1 4.2 3.1 2.8 1.1 1.7 12.9 1.4 1.4 1.1 1.4 0.5 4.4 3.1 2.4 2.3 2.5 2.0 0.0 1.2 1.9 1.6 3.9 2.4 
Acetic acid, 
pentyl ester 0.0 0.6 0.3 0.5 0.0 0.0 1.9 0.0 0.0 0.0 0.2 0.0 0.6 0.4 0.3 0.6 0.4 0.2 0.0 0.1 0.2 0.0 0.6 0.3 
1-butanol, 2-
methyl-
acetate 28.6 26.5 23.5 2.6 1.1 0.7 23.7 1.2 2.1 6.5 6.9 2.1 12.8 15.4 9.1 6.1 6.2 2.8 0.3 1.1 1.7 7.6 20.6 10.7 
Acetic acid, 
hexyl ester 8.3 19.7 4.9 235.1 54.5 57.3 20.6 2.5 3.2 9.4 9.5 1.8 13.9 14.8 13.1 42.7 63.5 33.3 88.3 82.0 48.1 32.6 142.6 95.4 
2-Hexen-1-ol, 
acetate 0.0 0.0 0.0 46.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.1 0.5 0.0 39.4 1.0 0.2 0.0 0.0 0.0 
Citronellyl 
acetate 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.7 0.6 0.0 0.0 0.0 0.0 1.6 0.5 0.0 1.2 0.2 0.0 0.0 0.0 0.0 3.9 1.2 
Linalyl 
butyrate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.4 4.2 5.3 1.9 3.6 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
propanoic 
acid methyl  
esters 0.0 0.0 0.0 0.8 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.4 0.0 1.0 0.0 0.0 0.0 0.0 
butanoic acid 
methyl esters 0.0 0.0 0.0 0.0 0.0 0.2 3.4 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.1 0.0 1.0 2.2 0.0 1.0 0.2 0.0 1.6 1.5 

Total Esters 41.0 65.1 62.5 292.0 68.2 73.9 72.3 19.8 31.6 27.1 50.3 33.3 35.4 63.2 54.4 103.0 93.0 54.4 128.8 104.5 69.4 41.9 191.1 123.8 

β-myrcene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 5.1 5.5 1.2 2.5 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Limonene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 123.8 145.3 151.8 51.4 80.2 82.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

β-Terpinene 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.9 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 

γ-Terpinene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.5 16.8 17.3 4.6 8.4 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Terpinolene 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.4 0.8 1.1 0.0 0.8 0.0 0.0 0.9 0.3 0.0 0.6 0.0 0.0 1.5 0.0 

Cymene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 2.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

β-pinene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 8.7 9.6 2.9 4.5 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Total 
Terpens 3.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 155.1 179.2 188.2 60.1 96.7 97.4 0.0 0.9 0.3 0.0 0.6 0.0 0.0 1.7 0.1 

Thymol 
methyl ether 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.1 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total Ethers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.1 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nerol 0.0 0.0 0.0 0.0 0.0 0.0 4.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Geraniol 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Carvacrol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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β-citronellol 0.0 0.0 0.0 0.0 0.0 0.0 63.7 39.9 22.4 0.0 0.0 0.0 8.8 14.0 10.7 4.3 12.9 16.3 0.0 0.0 0.0 7.0 13.6 13.0 

Hexanol 0.0 1.5 0.4 33.1 18.6 21.6 9.5 1.6 0.9 1.1 0.8 1.4 1.7 0.9 1.4 4.7 11.2 13.4 12.7 16.6 13.1 15.6 5.2 7.2 

Ethanol 1.3 6.7 15.1 8.4 12.4 18.3 14.0 14.0 17.3 7.4 13.4 22.2 6.6 8.7 13.6 6.4 11.4 15.5 7.7 12.4 16.7 6.9 5.3 7.9 

Butanol 0.0 0.9 0.7 0.5 0.2 0.7 1.9 0.3 0.4 0.0 0.0 0.0 1.2 1.0 1.0 0.7 0.6 0.9 0.3 0.7 0.5 1.2 0.4 0.4 
2-methyl-, 1-
Butanol 1.1 1.3 1.3 0.0 0.0 0.2 1.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.6 0.0 0.1 0.3 0.9 0.4 0.6 

2-hexenol (E) 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 

Linalool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.4 0.8 1.5 1.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Total 
Alcohols 2.4 10.4 17.5 44.9 31.2 40.7 99.4 57.2 41.3 18.4 14.5 25.1 19.7 25.8 27.3 19.1 36.8 46.8 22.8 29.8 30.7 31.7 24.9 29.1 

Hexanal 11.9 6.3 4.0 3.9 2.5 4.9 9.9 3.3 3.3 7.0 2.6 3.2 10.9 3.0 2.2 5.9 2.5 3.5 5.7 3.5 3.4 9.1 2.9 2.9 

Neral  0.0 0.0 0.0 0.0 0.0 0.0 48.7 0.2 0.0 0.0 0.0 0.0 1.4 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 11.8 0.0 0.0 

Geranial 0.0 0.0 0.0 0.0 0.0 0.0 48.4 0.6 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 9.4 0.0 0.0 

2-hexenal (E) 4.3 0.5 0.0 7.2 0.0 0.3 7.2 0.0 0.0 3.1 0.0 0.0 5.2 0.2 0.1 4.7 0.0 0.1 5.2 0.1 0.4 3.5 0.0 0.0 
Total 
Aldehydes 16.2 6.8 4.0 11.1 2.5 5.2 114.1 4.1 3.3 10.1 2.6 3.2 18.4 3.2 2.3 16.1 2.5 3.6 10.9 3.6 3.8 33.8 2.9 2.9 

  62.5 82.3 84.0 348.0 101.9 120.4 285.8 81.1 76.2 210.7 260.8 262.4 133.6 188.9 181.5 138.1 133.1 105.0 162.5 138.6 103.8 107.3 220.6 156.0 

 

a Control was washed only with dipping solution (1% citric acid + 0.5% ascorbic acid) 
b Concentration employed 250 ppm. 
c Concentration employed 250 ppm. 
d Concentration employed 200 ppm citron oil and 50 ppm carvarcol. 
e Concentration employed 125 ppm each. 
f Concentration employed 125 ppm each. 
g Concentration employed 125 ppm each. 
h Concentration employed 125 ppm each. 
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A multivariate analysis using a heat map was performed in order to identify the molecules 

able to significantly contribute to the statistical discrimination between the samples and five 

small clusters were obtained. The heat map underlined the role of the EO or the natural 

antimicrobials in grouping the samples (Figure 3.10). In particular, the samples added with 

citron EO/carvacrol and stored up to 20 days grouped together (Cluster 1) and limonene, 

ethanol, ethyl acetate and α-terpinene contributed to the grouping. The samples supplemented 

with hexanal alone or in combinations with the considered antimicrobials grouped in cluster 2 

and 5, with the exception of the samples supplemented with hexanal alone immediately after 

packaging. Acetic acid hexyl esters, hexanol, ethanol and ethyl acetate characterized cluster 5, 

while to the formation of cluster 2 contributed acetic acid hexyl esters, 2-hexenol acetate, 

hexanol, ethyl acetate and ethanol. The samples added with citral and analysed immediately 

after packaging did not cluster with the other samples due to the presence of neral, geranial 

and β-citronellol. Differently, the samples added with citral and analysed after 10 and 20 days 

of storage grouped with all the control samples in cluster 4 due to the presence of ethanol, 

ethyl acetate, β-citronellol and 1-butanol,2-methyl acetate. 

Cluster 3 grouped the samples added with citron EO/citral due to the high levels of limonene. 

The very limited microbial growth in all the samples, independently on the antimicrobial 

supplementation, did not permit the identification of eventual spoilage volatile markers. In 

fact, also in the control samples yeasts and LAB attained at the end of storage 2.3 and 3.7 log 

cfu/g, respectively. Such cell loads were not able to allow the accumulation of microbial 

spoilage markers. With exception of the samples added with hexanal/citral, analysed 

immediately after packaging, that did not cluster with any other samples, the storage time did 

not contribute significantly to the grouping, probably due to the different detoxification rate 

and patterns of the supplemented substances. 
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Figure 3.10- Heat map of correlations between metabolites produced during the storage of apples treated with citron essential oil, natural antimicrobials and their combinations 

and packaged in MAP. Each square represents the Spearman’s correlation. 
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The electronic nose data were subjected to a principal component analysis in order to outline 

the differences among the samples detected by the 10 sensors of the instrument. All the 

samples were mapped in the space spanned by the first two principal components PC1 versus 

PC2. The score and loading plot, reported in Figure 3.11a and 3.11b, showed the clustering of 

the samples according mainly to storage time, differently from heat map that clustered 

samples mainly on the base of added antimicrobials.  

 

 

Figure 3.11 a, b- Projection of the cases (6a, different apples treated with citron EO, natural antimicrobials and 

their combination and packaged in MAP) and loadings (6b sensors) on the factor-plane (1x2). PC1 and PC2 

explained 79.97% and 15.85 of the total variance respectively. 

Cluster 1 

Cluster 2 
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This can be attributed to the minor sensitiveness of the electronic nose with respect to GC-

MS-SPME to the natural antimicrobials and their detoxification products. In fact, two 

different clusters were evident in the PCA plot, while the samples supplemented with 

citral/citron EO resulted separated from the other both on the basis of PC1 (explaining 

74.36% of variance) and PC2 (explaining 14.92% of the variance). The first large cluster 

grouped the samples supplemented with 2-(E)-hexenal/hexanal, 2-(E)-hexenal/citral 

carvacrol/citron EO after 20 days of storage. These samples were grouped on the basis of 

sensors 9, 10 and 4. The second cluster grouped all the other samples that in their turns were 

well separated along the PC1 able to explain 74.36% of the variance. The sensors 1, 3 and 5, 

more responsive for aromatic compounds, defined this cluster. Only the sample added with 

citral/citron EO after 20 days of storage was not included in the other clusters, and it was well 

separated from the first cluster along PC2, and from the second cluster both on the basis of 

PC1 and PC2. This sample was separated from the others on the basis of sensor 2. 

 

4. Conclusion  

The effectiveness of citron oil and natural antimicrobial compounds to delay the spoilage 

agents of minimally processes apples packaged in ordinary atmosphere was demonstrated in 

this research. The antimicrobials considered delayed the reaching of the yeast spoilage 

threshold in a range of 3-10 days with respect to the controls. Among the tested conditions, 

citral and hexanal+2-(E)-hexenal were the most effective to inhibit the yeast growth that did 

not attain the spoilage threshold within 21 days of storage. Although all the compounds used 

determined a specific GC/MS-SPME volatile molecule profile, they did not  affect the 

electronic nose profiles of the samples that clusterized mainly on the basis of storage time. 

Exceptions were represented by the samples added with citral or hexanal stored for 3 days 

that clusterized with 10 day-stored samples, demonstrating that during this storage time no 

significant modifications appeared in the electronic nose profiles of these samples. Physical 

analysis results showed that generally until fourth-seven days of storage control sample better 

maintained its initial colour and texture characteristics. The beneficial effects of dipping with 

essential oils solutions become noticeable in the second part of the storage period, suggesting 

the potential use of these treatments for long storage fresh-cut apples stabilization. 

In addition the results obtained showed that the shelf-life of minimally processed apples can 

be significantly prolonged by combined use of natural antimicrobials in the dipping solution 

and packaging in modified atmosphere. However in these conditions the shelf-life of the 

products is quite unaffected by microbial growth, independently on the addition of natural 
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antimicrobials such as hexanal, citral, 2-(E)-hexenal, citron EO and carvacrol, alone or in 

combination. In fact, the end of shelf-life was determined by changes mainly in colour and 

texture. However, among the tested natural antimicrobials, 2-(E) hexenal in combination with 

citral or hexanal allowed the prolongation of the product shelf-life up to 35 days, without 

detrimental effects on safety. The addition of such molecules in the dipping solution of fresh 

sliced apples in combination with MAP permitted the retention of quality parameters such as 

colour, texture and volatile profiles detected throughout electronic nose. In fact, on the basis 

of PCA analysis the electronic nose data grouped the samples on the basis of storage time  

showing that the volatile profiles, perceived by the instrument that mimes the human nose 

(Wilson, & Baietto, 2009), were quite unaffected by the added antimicrobials. These results 

are very promising and with great applicative potential for the minimally processed vegetable 

manufacturing.  
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Abstract 

The health benefits of increasing intake of fruits and vegetables are well recognized and their 

consumption is strongly promoted. Food industry offer a broad range of packaged fresh-cut 

vegetables that merging “health” and “convenience” features. However, in recent years the 

number of foodborne outbreaks linked to minimally processed vegetables has increased 

dramatically. Currently, the safety and shelf-life of minimally processed vegetables is based 

on few tools such as modified atmosphere packaging and maintaining of refrigeration chain. 

Chlorine is the most common decontaminant used in these products, however, at the 

concentration used it is quite ineffective in reducing pathogens on vegetables. In addition 

chlorine-based compounds formation of potentially harmful chlorinated by-products  such as 

trihalomethanes. These drawbacks of chlorinate sanitizers have stimulated the investigation 

on alternatives. Plant essential oils (EOs) and their components have been investigated as 

natural sanitizer alternative to chlorine to control of foodborne pathogens and spoilage 

bacteria associated with minimally processed vegetables because Generally Recognized as 

Safe and endowed with a wide antimicrobial activity. In fact, The antimicrobial activity of 

oregano, thyme EOs and their main components carvacrol and thymol against variety of 

microorganisms is well documented both in model and real food system. In this perspective 

the main aim of this study was to evaluate the efficacy of oregano and thyme EOs as well as 

carvacrol in comparison with chlorine for lamb’s lettuce decontamination addressing the 

control of spoilage and pathogenic species and improving shelf-life of these products. To 

reach this goal, preliminarily the two EO were characterized by GC-MS-SPME and the MIC 

values of the antimicrobials considered against Listeria monocytogenes, Escherichia coli, 

Staphylococcus aureus and Salmonella enteritidis were determined. Following, the effects of 

the antimicrobials used as alternative to chlorine in the washing solution of lamb’s lettuce 

were evaluated on mesophilic aerobic bacteria, yeasts, LAB, color parameters and volatile 

molecule profiles detected by GC-MS-SPME. In addition, in a second experimental phase, the 

study of the effects of thyme and oregano EOs on the shelf-life of minimally processed 

lamb’s lettuce packaged in artificial ordinary atmosphere, after some modifications of the 

washing parameters, were performed. In particular, the effects of these antimicrobials on total 

mesophilic aerobic bacteria and lactic acid bacteria (LAB) cell loads, texture, color and 

volatile molecule profiles were monitored during the storage at 6°C. 
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1. Introduction 

Today consumers are more conscious of the rapport between nutrition and health. The health 

benefits of increasing intake of fruits and vegetables are well recognized and their 

consumption is strongly promoted. In fact, due to their high levels of  nutrients, vitamins, 

minerals and fibers, they are considered  an essential part of the world’s population’s diet 

(World Health Organisation (WHO) 1998; Olaimat & Holley, 2012; Goodburn & Wallace 

2013). Food industry and the retail market anticipated this market trend and offer a broad 

range of packaged fresh-cut vegetables that merging “health” and “convenience” features  

could be an excellent alternative to raw materials (Allende et al., 2006). However, in recent 

years the number of foodborne illness outbreaks linked to raw  and minimally processed 

vegetables has increased dramatically (Warriner et al., 2009; Olaimat & Holley, 2012; 

Gudburn & Wallace 2013; Van Boxstael et al. 2013). In fact, the minimally processing and 

lacking of thermal treatment before eating enhance the risk due to pathogen contamination 

(Berger et al., 2010). A wide literature shows that Aeromonas hydrophila, Bacillus cereus, 

Clostridium spp., E. coli O157:H7, Listeria monocytogenes, Salmonella  spp., Shigella spp., 

Vibrio cholerae, Campylobacter spp., Yersinia enterocolitica are frequently associated with 

illness outbreaks related to consumption of fresh produce (Aruscavage et al., 2006; Beuchat, 

2002; Buck et al., 2003; Rangel et al., 2005; Sivapalasingam et al., 2004; Olaimat and Holley 

2012; Gudburn and Wallace 2013 ). However, Salmonella and E. coli O157:H7 are reported 

as the main cause of foodborne illness associated with fresh produce (Buck et al., 2003; FDA, 

1998; Warriner et al., 2009). On the other hand microbial contamination, with spoilage and 

pathogenic species  can arise during the different steps from farm-to-consumer (production, 

harvest, processing, wholesale storage, transportation or retailing and handling in the home) 

and this contamination can occur from environmental, animal or human sources (FDA, 2001; 

WHO/FAO, 2008). In addition, the release tissue damages and the release of nutrient due to 

cutting, slicing or peeling as well as and the confinement of final product inside the packaging 

enhance the microbial growth (Lanciotti et al. 2003; Harris et al., 2003). Currently, the safety 

and shelf-life of minimally processed vegetables is based on few tools such as modified 

atmosphere packaging and maintaining of refrigeration chain (Gomez-Lopez et al. 2007; 

Alegre et al. 2010; Siddiqui et al. 2011). However washing with sanitizing solutions is usually 

the only step during production of minimally processed vegetables by which the number of 

pathogenic and spoilage microorganisms can be reduced (Sao José & Vanetti 2012). 

Nodaway, chlorine is the most common decontaminant used in the minimally processed 

vegetable industry (Tirpanalan et al. 2011; Joengen, 2005), although is use is prohibited in 
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some European countries such as the Netherlands, Sweden, Germany and Belgium (Rico et al. 

2007; Gil et al. 2009). However, at the concentration normally used (50-200ppm) it does not 

achieve more than a 1-2 log reduction in bacterial populations and it is quite ineffective in 

reducing pathogens on vegetables (Oliveira et al. 2012; Gil et al. 2009). In addition chlorine-

based compounds are corrosive, cause skin and respiratory tract irritation and  reacts with the 

organic matter present in the water and, as a consequence, formation of potentially harmful 

chlorinated by-products such as trihalomethanes (Selma et al. 2008; Sao Josè and Vanetti, 

2012; Lopez Galvez 2010; 2012). In addition some literature reports show that emerging 

pathogens are more resistant to chlorinated compounds raising further concerns about the 

effectiveness and the use of chlorine in the minimally processed food industry (Allende et al., 

2008; Alvaro et al., 2009).  

These drawbacks of chlorinate sanitizers have stimulated the investigation on the efficiency of 

non-traditional sanitizers (hydrogen peroxide, peroxyacetic acid and ozone) and other 

alternative technologies such as physical treatments (UV-C light, ultrasound and gamma rays) 

(Rivera et al. 2011; Rico et al. 2007, Artès-Hernandez et al. 2009; Alegria et al. 2009; Gil et 

al. 2009). Also plant essential oils (EOs) and their components have been investigated as 

natural sanitizer  alternative to chlorine to control of foodborne pathogens and spoilage 

bacteria associated with minimally processed  vegetables because Generally Recognized as 

Safe and endowed with a wide antimicrobial activity (Gutierrez, et al. 2008a; 2008b; 2009; 

Gunduz et al. 2010). The in vitro antimicrobial activity of oregano (Origanum vulgare), 

thyme (Thymus vulgaris) EOs and their main components carvacrol and thymol against 

variety of Gram-positive, Gram-negative bacteria, yeasts and molds is well documented 

(Dorman and Deans 2000; Marino et al., 2001; Burt 2004;  Sagdic et al., 2003; Viuda-Martos 

et al., 2007). In addition their efficacy has already be experienced in several real foods 

including meat (Skandamis & Nychas, 2001; Tsigarida et al., 2000; Boskovic et al. 2013), 

fish products (Kykkidou et al. 2009; Sagdic & Ozturk 2014) and  dairy products (Lucera et 

al., 2012; Govaris et al. 2011; Shan et al. 2011). However, there are very limited studies that 

investigate the antimicrobial efficacy of these natural antimicrobials alone or in combinations 

with other hurdles on fresh produce (Gutierrez et al. 2008b; Gutierrez et al., 2009; Sellamuthu 

et al. 2013). 

In this perspective the main aim of this work was to evaluate the efficacy of oregano and 

thyme EOs as well as of carvacrol in comparison with chlorine for lamb’s lettuce 

decontamination addressing the control of spoilage and pathogenic species and improving 

shelf-life of the minimally processed products. To reach this goal, preliminarily the two EO 
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were characterized by GC-MS-SPME and the MIC values of the antimicrobials considered  

against Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella 

enteritidis were determined. Following the effects of the antimicrobials used as alternative to 

chlorine in the washing solution of lamb’s lettuce were evaluated on mesophilic aerobic 

bacteria, yeasts, LAB, color parameters and volatile molecule profiles detected by GC-MS-

SPME. In addition, in a second experimental phase, the study of the effects of thyme and 

oregano EOs on the shelf-life of minimally processed lamb’s lettuce packaged in artificial 

ordinary atmosphere, after some modifications of the washing parameters, were performed. In 

particular, the effects of these antimicrobials on total mesophilic aerobic bacteria and lactic 

acid bacteria (LAB) cell loads, texture, color and volatile molecule profiles were monitored 

during the storage at 6°C.   

 

2. Material and Methods 

2.1 Natural antimicrobials 

Thyme and Oregano EOs were obtained from Flora s.r.l. (Pisa, Italy). Carvacrol was 

purchased from Sigma-Aldrich (Milano, Italy). The EOs and the natural antimicrobial used 

were selected both for their antimicrobial activity and impact on organoleptic properties. 

 

2.2 Characterization of thyme and oregano essential oil by GC/MS-SPME technique 

One mL of oregano and thyme EOs were placed into a 10 mL vial and sealed through a 

PTFE/silicon septa. Three different samples were prepared. The samples were conditioned 30 

min at 25°C. An SPME fiber covered by 50 µm divinylbenzene-carboxen-poly 

(dimethylsiloxane) (DVB/CARBOXEN/PDMS StableFlex) (Supelco, Steiheim, Germany) 

was exposed to each sample at room temperature (25°C) for 20 min, and finally, the adsorbed 

molecules were desorbed in the GC for 10 min. For peak detection, an Agilent Hewlett-

Packard 6890 GC gas-chromatograph equipped with a MS detector 5970 MSD (Hewlett–

Packard, Geneva, Switzerland) and a Varian (50 m×320 µm×1.2 µm) fused silica capillary 

column were used. 

The temperature program was 50°C for 0 min, then heated to 230 °C at 3°C/min, this 

temperature was maintained for 1 min. Injector, interface, and ion source temperatures were 

200, 200, and 230°C, respectively. Injections were performed with a split ratio of 30:1 and 

helium as carrier gas (1 mL/min). Compounds were identified by the use of the Agilent 

Hewlett–Packard NIST 98 mass spectral database. 
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2.3 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

determination. 

For the determination of MIC values, 150 µl of BHI broth inoculated at three different levels 

(2, 4 or 6 log CFU/mL) of the tested pathogens (Listeria monocytogenes Scott A, Salmonella 

Enteritidis E5, Escherichia coli 555, S. aureus F1, Bacillus cereus SV90), belonging to the 

DISTAL Department, were added to 200 µl microtiter wells (Corning Incorporated, NY, 

USA). Fifty µl of the tested EO or natural antimicrobials, properly diluted in Brain Heart 

Infusion (BHI, Oxoid Ltd., Basingstoke, United Kingdom) broth and conveyed through 96% 

ethanol (VWR international, PROLABO, France), were added to each well so as to obtain the 

required concentration of each compound in the final volume of 200 µl, with a constant 

amount of ethanol (1% v/v in wells). Microtiter plates were incubated at 37°C and checked 

after 24 and 48 h. The MBC were determined by spotting 10 µL of each well after 48 h, onto 

BHI agar plates.  

MIC was defined as the lowest concentration of the compound preventing visible growth of 

the inoculated cells after 24 h (MIC 24 h). The MBC was defined as the lowest concentration 

of the compound that caused the death of the inoculated cells and therefore no growth after 24 

h of incubation at 37°C of a 10 µl spot plated onto BHI agar. 

 

2.4 Preparation of lamb’s lettuce products 

Lamb’s lettuce (Valerianella locusta sp.) was purchase at a local retailer in the same day of 

the experiment. To prepare the lettuce, the withered leaves and roots were removed. Different 

washing solutions were prepared with running water at concentration of 250 ppm for thyme 

and oregano EO alone; 125/125 ppm for the combinations thyme/oregano EO and oregano 

EO/carvacrol; 120 ppm for chlorine. Natural antimicrobials were conveyed through 1% (v/v) 

of ethanol. Control samples were represented by the product washed with 120 p of chlorine, 

without the supplementation of natural antimicrobials. Prepared lettuce was immersed and 

gently agitated into appropriate washing solution for 2 min and with a ratio product/water of 

1:10 (w/v). The employed complete process protocol is reported in Figure 4.1. After the 

treatment, lettuce was spin dried and packaged into 59µm-thick BOPP bags (permeability 

CO2 at 22°C: 2720 cm
3
/m

2
/day, permeability O2 at 22 °C: 986 cm

3
/m

2
/day) with 25 g of 

product and a ratio apples/headspace of 1:1. Samples were stored at 6°C until the end of shelf-

life. In the second experimental phase only samples added with thyme and oregano EOs alone 
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at a concentration of 250 ppm as well as the control added with 120 ppm of chlorine were 

employed. The working protocol was modified as reported in Figure 4.2. After the treatment, 

lettuce was spin dried and packaged in artificial ordinary atmosphere atmosphere into 59µm-

thick BOPP bags (permeability CO2 at 22°C: 2720 cm
3
/m

2
/day, permeability O2 at 22 °C: 986 

cm
3
/m

2
/day) with 25 g of product and a ratio apples/headspace of 1:1. Samples were stored at 

6°C until the end of shelf-life. 

 

Figure 4.1- Working protocol employed to prepare lamb’s lettuce; the addition of natural antimicrobials was 

performed during the washing step, samples washed with chlorine represented the controls 
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Figure 4.2- Modifications implemented in the working protocol used in the second experimental phase; in the 

flow chart are reported only the modifications employed, the remaining steps were the same of the protocol 

reported in Figure 1. 

2.5 Microbiological analyses  

During storage, the evolution over time of mesophylic aerobic bacteria, lactic acid bacteria 

and yeasts, was evaluated by plate counting respectively on Plate Count Agar (PCA, Oxoid 

Ltd., Basingstoke, United Kingdom), Man Rogosa and Sharpe Agar (MRS, Oxoid Ltd., 

Basingstoke, United Kingdom) and Sabouraud Dextrose Agar (SAB, Oxoid Ltd., 

Basingstoke, United Kingdom), respectively. After homogenization, samples were serially 

diluted in physiological solution (10 g of sample diluted into 90 mL of physiological water 

(0.9% (w/v) NaCl). For the detection of the natural occurring Listeria monocytogenes, the 

method suggested by McClain and Lee (1988) was followed, whereas the occurrence of 

Salmonella spp. was investigated according to the method proposed by Andrews and 

Hammack (1998). Escherichia coli was investigated on violet red bile agar (Oxoid) added to 

4-methylumbelliferyl-β-D-glucuronide (Oxoid), incubating the plates at 37°C for 24h. 

Staphylococcus aureus was enumerated on Baird-Parker media (Oxoid) with added egg yolk 

tellurite emulsion (Oxoid) after 24 h at 37°C. In the first experimental phase the analyses were 

performed immediately after treatments and after 2, 3, 6 and 8 days of storage. In the second 

experimental phase, after the optimization of the washing process and artificial ordinary 

atmosphere packaging, the analyses were performed immediately after treatments and after 1, 

2, 3, 6, 9, 11 and 14 days of storage. 
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2.6 Volatile molecule profiles analyses 

Lettuce bags, containing 25 g of products, were used for headspace volatile compound 

analysis by GC/MS-SPME technique. In the first experimental phase, for each treatment 

condition samples were analyzed immediately after treatments and after 3 and 7 days of 

storage, while in the second experimental phase each sample was analyzed immediately after 

the treatments and after 3 and 10 days of storage. 

The samples were conditioned 30 min at 37°C. The same type of SPME fiber used for the 

characterization of oregano and thyme EO, was exposed to each sample at room temperature 

(25°C) for 40 min, and finally, the adsorbed molecules were desorbed in the GC for 10 min. 

An Agilent Hewlett-Packard 6890 GC gas-chromatograph equipped with a MS detector 5970 

MSD (Hewlett–Packard, Geneva, Switzerland) and a Varian (50m×320µm×1.2µm) fused 

silica capillary column were used for peak detection. The temperature program was 50 °C for 

0 min, then heated to 230°C at 3°C/min, this temperature was maintained for 1 min. Injector, 

interface, and ion source temperatures were 200, 200, and 230°C, respectively. Injections 

were performed with a split ratio of 30:1 and helium as carrier gas (1 mL/min). Compounds 

were identified by the use of the Agilent Hewlett–Packard NIST 98 mass spectral database. 

 

2.7 Physical analyses: color and withering index 

Surface colour was measured using a color-spectrophotometer mod. Colorflex (Hunterlab, 

USA). Color was measured using the CIELab scale and Illuminant D65. The instrument was 

calibrated with a white tile (L*98.03, a* - 0.23, b* 2,05) before the measurements. Results 

were expressed as L* (luminosity) and a* (red index);  

At each storage time, 21 readings were obtained for each sample from the seven packages, 

measuring three slices for each package. 

To evaluate the withering phenomena during storage, a geometric index was created. 

Perimetral sections of about 4 cm were cut from the leaves and placed on a tweezer mounted 

on a vertical stand. Images were acquired on black background with a distance objective-leaf 

of about 8 cm. The angle created by the two leaf sections and the fixing point was measured 

(Figure 4.3) and used as Withering Index. 
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Figure 4.3- Example of images acquired to evaluate the withering index of Valerianella locusta leaves.  

 

2.8 Statistical analysis 

For each sample, the microbiological and volatile data were the mean of three different 

samples. Regarding microbiological data, statistical analysis was performed using Statistica 

software (version 8.0; StatSoft., Tulsa, Oklahoma, USA). Means were compared using 

ANOVA followed by LSD test at p<0.05 level in order to monitor changes over time as well 

as differences between treatments. 

Principal component analysis (PCA) was performed using Statistica software (version 8.0; 

StatSoft., Tulsa, Oklahoma, USA) to obtain a visual overview of electronic nose analyses. 

 

3. Results of the first experimental phase: effects of natural antimicrobials on minimally 

processed lamb’s lettuce packaged in ordinary atmosphere 

3.1 Characterization of thyme and oregano essential oils throughout GC-MS-SPME 

Thyme and oregano EOs were characterized throughout GC-MS-SPME analyses. Table 4.1 

reports  the total area of the GC peaks and the percentage (on the basis of the relative peak 

area) of each compound present in the headspace of the oregano and thyme EO, as well as the 

cumulative percentages of the different classes of compounds (monoterpenes, sesquiterpenes, 

oxygenated monoterpenes, aliphatic alcohols, aliphatic aldehydes, esters, and ketones). The 
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volatile profile of oregano EO was characterized by the presence of 34 identified molecules 

belonging to different chemical classes, while that of thyme showed 41 identified molecules. 

Carvacrol,  thymol, p-cymene, α-pinene, caryophyllene and gamma terpinene accounted for 

about 88 and 83 % of the total peak area of oregano and thyme EO, respectively. Oregano EO 

showed also high levels of and α-terpinene (3.89%) while thyme had higher level of linalool  

(2.04%), limonene (1.08%) and β-thujene (1.01%). 

 

Table 4.1- Oregano and thyme EOs characterization 
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3.2 Evaluation of MIC and MBC values  

The MICs and the MBCs  of the oregano EO, thyme EO and carvacrol against Listeria 

monocytogenes Scott A, Salmonella Enteritidis E5, Escherichia coli 555, S. aureus F1, in 

relation to inoculation levels of the target microorganisms were assessed after incubation at 

37°C (Table 4.2). The data showed the great antimicrobial activity of the 3 substances against 

all the chosen target organisms. The Gram-positive species considered resulted more sensitive 

to oregano and thyme EO with respect to Gram-positive ones. The Gram-negative species 

showed, with inoculation level of 2 log cfu/mL, MBC values at 48h  lower or equal than 250 

ppm. However they increased with the inoculation level. Carvacrol showed a higher 

effectiveness with respect to the two EOs showing MIC values at inoculation  level of 6 log 

cfu/mL lower than 275 ppm independently on the species. Concerning thyme and oregano 

EOs, the positive effect of inoculation level on MIC and MBC values of all the target 

microorganisms, was evident; also for carvacrol there was the same effect  with the exception 

of  E.coli and Salmonella. 

 

Table 4.2- Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 

oregano EO,  thyme EO and carvacrol against L. monocytogenes, E. coli, S. Enteritidis and S. aureus in relation 

to the inoculum level 

Carvacrol 

cell concentration 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (mg/L) MBC (mg/L) MIC 24h (mg/L) MBC (mg/L) MIC 24h (mg/L) MBC (mg/L) 

Listeria 175 225 150 200 100 200 

Escherichia coli 200 225 200 200 200 200 

Salmonella 200 250 175 200 175 200 

S. aureus 225 275 200 250 150 200 

       
Oregano EO 

cell concentration 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (mg/L) MBC (mg/L) MIC 24h (mg/L) MBC (mg/L) MIC 24h (mg/L) MBC (mg/L) 

Listeria 175 225 175 225 125 150 

Escherichia coli 350 350 300 325 250 250 

Salmonella 325 350 300 325 250 250 

S. aureus 275 300 250 250 225 250 

       
Thyme EO 

cell concentration 6 log cfu/mL 6 log cfu/mL 4 log cfu/mL 4 log cfu/mL 2 log cfu/mL 2 log cfu/mL 

MIC/MBC MIC 24h (mg/L) MBC (mg/L) MIC 24h (mg/L) MBC (mg/L) MIC 24h (mg/L) MBC (mg/L) 

Listeria 325 500 275 400 200 225 

Escherichia coli 475 475 400 400 350 350 

Salmonella 400 475 325 350 250 300 

S. aureus 350 475 300 425 225 250 



123 
 

3.3 Effects of natural antimicrobials on lamb’s lettuce microbial spoilage 

On the basis of the MIC values and the preliminary evaluation of sensorial acceptability, 

thyme EO (250 ppm), oregano EO (250), a mixture of thyme/oregano (125/125 ppm) and a 

mixture of oregano/carvacrol (125/100 ppm) were chosen to be used as alternative to chlorine 

in the washing solution of lamb’s lettuce. Lamb’s lettuce washed with chlorine solution (120 

ppm) was used as controls. The products were then packaged and stored at 6°C. During the 

refrigerated storage the evolution of mesophylic aerobic bacteria, lactic acid bacteria and 

yeasts was performed. Also the presence of pathogenic species such as Listeria 

monocytogenes, Salmonella enteritidis, Escherichia coli and Staphylococcus aureus was 

evaluated the end of refrigerated storage. The results obtained for mesophylic aerobic bacteria 

are shown in Table 4.3. No significant differences with respect to control samples were 

evidenced. In fact, the behavior of  cell loads of mesophylic aerobic bacteria was similar in 

the different samples independently on the washing solution used. No significant differences 

were observed for yeasts and lactic acid bacteria whose cell loads (data not shown) remained 

lower than 3.0 log cfu/g  during the 8 d of storage at 6°C. Concerning the pathogens, L. 

monocytogenes and Salmonella spp. were absent in 25 g of products while E. coli and S. 

aureus were always under the detection limits (1 log cfu/g) after 8 days of storage 

independently on the whishing solution used.  

 

Table 4.3- Mesophylic aerobic bacteria count on lamb’s lettuce treated with EOs or chlorine 

    

Counts are expressed in Log cfu/mL (+/− standard deviation). Means followed by different letters are 

significantly different (p<0.05) 

1 Control was washed with 125 ppm of chlorine 

2 Concentration employed 250 ppm. 

3 Concentration employed 250 ppm. 

4 Concentration employed 125 ppm each. 

5 Concentration employed 125 ppm each. 
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3.4 Effects of natural antimicrobials on volatile molecule profiles  

The effects of the substances used in the washing solution instead of chlorine on volatile 

molecule profiles of lamb’s lettuce were studied analysing samples during storage at 6°C by 

GC-MS-SPME. This method allowed the identification of 41 molecules belonging to different 

chemical classes and to obtain specific volatile fingerprinting in relation to antimicrobial used 

in the washing solution. In fact, the natural antimicrobial used affected significantly the 

product volatile molecule profiles. The most significant molecules detected are reported in 

Table 4.4.  

 

Table 4.4 Volatile aroma compounds (expressed as Area 10
-5

) detected in lamb’s lettuce treated with different 

solutions during the storage time at 6°C 

 

a Control was washed with 125 ppm of chlorine 
b Concentration employed 250 ppm. 
c Concentration employed 250 ppm. 
d Concentration employed 125 ppm each. 
e Concentration employed 125 ppm each. 
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Immediately after packaging the main components of thyme and oregano EO were also the 

main components detected in the head space of samples with these EOs added in the washing 

solution instead of chlorine. Moreover, carvacrol, thymol, p-cymene, α-pinene, caryophyllene 

and γ-terpinene remained the main components also during the storage, even if the 

percentages of some of them decreased probably due to the microbial and vegetable tissue 

detoxification mechanisms. In particular, thymol and carvarvacrol were the molecules 

subjected to the highest  decrease during the storage. 

To better evaluate the effects of antimicrobials used on product volatile molecule profiles the 

GC-MS-SPME data were subjected to a Principal Component Analysis (PCA). All the 

samples were mapped in the space spanned by the first two principal components PC1 versus 

PC2 that explain 47.6 and 22.6% of the variance. The score and loading plot, reported in 

Figure 4.4a and 4.4b, show the clustering of the samples according mainly to storage time. In 

fact, the samples were grouped in 4 clusters. The first cluster, well separated by the others on 

the basis of PC1 that explain about 50% of variance, was composed by the control samples 

independently on storage time. Control samples were grouped on the basis of 2-(E)-hexenal 

and butane 1-chloro-3-methyl, the latest, probably a deriving from chlorine added during the 

washing process. The other clusters were separated from each other along PC2, that 

accounted for 22.6% of variance. The second cluster included all the samples washed with 

natural antimicrobials, alone or in combination, immediately after packaging. This cluster was 

grouped mainly by the molecules present in the EOs added, as carvacrol, thymol and b-

myrcene, and that showed a rapid decrease of their amount during the storage. The third 

cluster grouped all the samples treated with thyme, oregano or carvacrol after 3 days of 

storage. In this case, the samples were characterized by p-cymene, γ-terpinene and limonene. 

These molecules were components of the EOs added, and their amount was quite stable 

during storage. In the last cluster (cluster 4) were grouped all the samples after 8 days of 

storage except the control and the sample added with oregano EO/carvacrol after 8 days of 

storage. This cluster was characterized by the presence of isovaleric acid 2-methylbutyl-ester 

and isovaleric acid, ethyl ester. These molecules are produced through detoxification 

mechanisms adopted by vegetable tissues and naturally occurring microorganisms. Only the 

samples added with oregano EO/carvacrol after 8 days of storage were not included in the 

other clusters, and they were well separated from the other samples mainly on the basis of 

PC2. 
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Figure 4.4 a, b Projection of the cases (3a, samples treated with different natural antimicrobials at different 

times of storage) and loadings (3b molecules detected by GC/MS/SPME) on the factor-plane (1x2). PC1 and 

PC2 explained 47.58% and 22.60% of the total variance respectively. 
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3.5 Effects of natural antimicrobials on color and withering index 

During the storage at 6°C the changes of colour indices of lamb’s lettuce in relation to dipping 

solution used  were monitored. As evidenced by Table 4.5, relative to L, a and b values, after 

3 days of storage no significant differences were observed among control and treatments, 

while after 5 days the mixture oregano/carvacrol induced a significant decrease of the product 

color quality, while thyme and oregano used at concentration of 250 ppm and their mixture 

showed performances not significantly different from chlorine. In addition, thyme used alone 

analogously to chlorine, did not affect negatively the retention of turgidity of the products 

(Figure 4.5) during 5 days of storage at 6°C. On the contrary, a significant turgidity loss was 

observed after 3 days in samples dipped in thyme-oregano Eos and after 5 days in samples 

dipped in oregano and oregano-carvacrol EOs.  

 

Table 4.5- Color parameters of  lamb’s lettuce treated with EOs or chlorine, immediately after treatments and 

after 3 and 5 days of storage 

 

Values are reported with +/− standard deviation.  

1 Control was washed with 125 ppm of chlorine 
2 Concentration employed 250 ppm. 
3 Concentration employed 250 ppm. 
4 Concentration employed 125 ppm each. 
5 Concentration employed 125 ppm each. 
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Figure 4.5- Whitening index determined after 3 and 5 days of storage, it represent an index of the freshness of 

the products. Means followed by different letters are significantly different (p<0.05). 

 

5. Results of the second experimental phase: effects of selected natural antimicrobials on 

minimally processed lamb’s lettuce after optimization of the washing process and 

packaged in artificial ordinary atmosphere 

5.1 Effects of natural antimicrobials on lamb’s lettuce microbial spoilage 

On the basis of the results of the first experimental phase, only thyme EO (250 ppm) and 

oregano EO (250 ppm), were considered to be used as alternative to chlorine in the washing 

solution of lamb’s lettuce. Also in this experiments, lamb’s lettuce washed with chlorine 

solution (120 ppm) was used as controls. As reported in material and methods, an 

optimization of the washing process was carried out by performing a pre-washing with tap 

water at 8 °C for 1 min, increasing the temperature of washing solution (from 8 to 13°C) and 

augmenting the ratio between product and washing solution. The products after washing were 

packaged in artificial ordinary atmosphere and stored at 6°C. During the refrigerated storage 

the evolution of mesophylic aerobic bacteria, lactic acid bacteria and yeasts was performed. 

Also the presence of pathogenic species such as Listeria monocytogenes, Salmonella 

enteritidis, Escherichia coli and Staphylococcus aureus was evaluated the end of refrigerated 
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storage. The results obtained for mesophylic aerobic bacteria are shown in Figure 4.6. No 

significant differences with respect to control samples were showed. In fact, the behavior of  

cell loads of mesophylic aerobic bacteria was similar in the different samples independently 

on the washing solution adopted. No significant differences were observed for yeasts and 

lactic acid bacteria whose cell loads ranged between 2 and 3 log CFU/g  during all the storage 

period. Concerning the pathogens, L. monocytogenes and Salmonella spp. were absent in 25 g 

of products  while E. coli and S. aureus were always under the detection limits (1 log CFU/g) 

after 14 days of storage independently on the whishing solution used.  

 

Figure 4.6- Evolution of the load of mesophilic, in lamb’s lettuce added with essential oils and/or bioactive 

components during storage at 6°C 

 

5.2 Effects of natural antimicrobials on volatile molecule profiles  

The effects of thyme and oregano used in the washing solution instead of chlorine on volatile 

molecule profiles of lamb’s lettuce were studied by GC-MS-SPME analysing samples during 

storage at 6°C. The most significant molecules detected are shown in Table 4.6. Immediately 

after packaging the main components of thyme  and oregano EO were also in this case the 

main components detected in the head space of treated samples. Moreover,  p-cymene, α-

terpinene, caryophyllene and γ-terpinene were the main volatile molecules also during the 

storage and showed a behaviour similar to that observed in the first experimental phase. 
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Table 4.6- Volatile aroma compounds (expressed as Area 10
-5

) detected in the optimization of the washing 

process of lamb’s lettuce treated with different solutions during the storage time at 6°C 

 

The PCA of the GC-MS-SPME data showed that all the samples were mapped in the space 

spanned by the first two principal components PC1 versus PC2 that explain 48.05 and 30.34% 

of the variance. The score and loading plot, reported in Figure 4.7a and 4.7b, show the 

clustering of the samples according to substances used. Also the storage time affected, 

although in minor extent, the clustering of the samples. In fact, three clusters were evident: 

the first included the control samples that, however, resulted well separated along PC2 in 

relation to the storage time; the second cluster included the samples treated with thyme and 

oregano analyzed immediately and after 3 d of storages. The samples treated with oregano 

resulted well separated along PC2. The third cluster grouped the samples treated with OEs 

analyzed after 10 d of storage at 6°C. 

The variable factor coordinates for the first two factors, reported in Figure 6b, shows the 

molecules that contributed significantly to the clustering of the samples. 
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Figure 4.7 a, b- Projection of the cases (6a, samples treated with different natural antimicrobials at different 

times of storage) and loadings (6b molecules detected by GC/MS/SPME) on the factor-plane (1x2). PC1 and 

PC2 explained 48.05% and 30.34% of the total variance respectively. 

The samples were analyzed with electronic nose during  the storage at 6°C.The data were 

subjected to a principal component analysis in order to outline the differences among the 

samples detected by the 10 sensors of the instrument. All the samples were mapped in the 

space spanned by the first two principal components PC1 versus PC2. The score and loading 

plot, reported in Figure 4.8a and 4.8b, showed the clustering of the samples according mainly 

to storage time and in minor extent on the basis of the added antimicrobial, differently from  

PCA obtained with GC-MS-SPME data that clustered samples mainly on the basis of added 

EO. This can be attributed to the minor sensitiveness of the electronic nose with respect to 
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GC-MS-SPME to the natural antimicrobials and their detoxification products. In fact, three 

different clusters were evident in the PCA plot, while the control samples analyzed 

immediately after packaging  resulted separated from the other both on the basis of PC1 

(explaining 56,47% of variance) and PC2 (explaining 24,75% of the variance). The first 

cluster grouped the samples supplemented with EOs immediately after packaging. These 

samples were grouped on the basis of sensors 5 and 7. The second cluster grouped all the 

samples analyzed after 3 d of storage independently on the EO supplementation due to the 

sensors 1 and 3. The cluster 3 included the samples analyzed after 10 d of storage and the 

sensors responsible for the clustering were sensors 4, 9 and 10. 

 

 

Figure 4.8a, b Projection of the cases (4.8a, samples treated with different natural antimicrobials at different 

times of storage) and loadings (4.8b electronic nose sensors) on the factor-plane (1x2). PC1 and PC2 explained 

56.47% and 24.75% of the total variance respectively 
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 5.3 Effects of natural antimicrobials on color and withering index 

During the storage at 6°C the changes of colour indices of lamb’s lettuce in relation to dipping 

solution used  were monitored. As evidenced by Figure 4.9a and 4.9b, relative to L* and a* 

values, during storage, no significant differences were observed among control and 

treatments, only after 2 days of storage a decrease of luminosity in treated samples was 

detected. Anyway, after 12 days of storage the L* and a* values of treated samples were 

similar to the controls and to the initial values. In addition, thyme and oregano used did not 

affect negatively the retention of turgidity of the products (data not shown) during 12 days of 

storage in modified atmosphere. In fact a slight decrease of the withering index was observedt 

after 8 days of storage, and was similar to those of the controls. 

 

 

Figure 4.9a, b- Evolution of luminosity, L*; (4.9a), and red index, a*, (4.9b) of lamb’s lettuce treated with 

chlorine (120 ppm), or thyme EO(250 ppm) or oregano EO (250ppm) and stored at 6°C.  

4. Discussion 

Thyme and oregano EOs were characterized by GC-MS-SPME technique because it has been 

applied increasingly often in the EO analyses (Richter & Schellenberg 2007; Klimankova et 

al. 2008; Zawirska-Wojtasiak & Wasowicz 2002; Mazida  et al. 2005; Belletti et al. 2004; 

Ndagijimana et al. 2004; Fuselli et al., 2007; Wojtowicz et al. 2010). In addition it evaluates 

the volatile molecules in the vapor phase of the oil (Belletti et al. 2004) and the preliminary 
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condition for the antimicrobial effects of EO is the contact between the antimicrobial 

molecule and the target cells (Gardini et al. 1997; Belletti et al. 2004). The contact is favored 

if  the molecules are  in their vapor phase, that correspond to in their most hydrophobic state, 

because this improve their partition in the microbial cell membranes. In addition, this 

techniques provides a volatile profile fingerprinting fundamental to standardize both the EO 

composition in terms of the most effective molecules and  their antimicrobial activity. In fact, 

the EO composition, and consequently the volatile molecule profile, can notably vary with  

plant variety and origin, extraction modality, agronomic practices, etc  (Nannapaneni et al. 

2009; Figuereido et al., 2008). The volatile molecule profiles of thyme and oregano EOs were 

in agreement with those of literature (Ortega-Nieblas et al. 2011; Cosentino et al., 1999; 

Juven et al., 1994). In fact, although the GC-MS-SPME profile is affected by age, season and 

developmental state,  the literature indicates p-cymene, carvacrol, thymol and γ -terpinene  as 

the main components in oregano and thyme EOs (Johnson et al. 2004; Richter & Schellenberg 

2007). A wide literature attribute to carvacrol and to monoterpenes the great antibacterial 

activity of the considered EOs (Burt, 2004; Dorman & Deans, 2000; Elgayyar et al., 2001; 

Gutierrez et al., 2008a; Oussalah et al., 2006; 2007; Belletti et al. 2004). In fact, such 

molecules can interact with some cellular structures causing the inhibition of cell growth or 

cell death. However  according to Caccioni et al. (1998) to evaluate the antimicrobial activity 

of an EO it is fundamental to use an holistic approach due to synergistic or antagonistic 

actions among the different EO components. 

The MIC and MBC values showed that the natural antimicrobials taken into consideration had  

great in vitro antimicrobial activity against the target chosen microorganisms, although 

affected by inoculation levels. The effects of inoculation level on MIC and MBC are well 

known and in agreement with literature (Belletti et al., 2008; Sado Kamden et al., 2011). Also 

the higher values of MBC with respect to MIC ones are in agreement with literature (da Silva 

Hughes et al. 2013; Shen et al. 2014). The data showed that the Gram-positive species were 

more sensitive to thyme  and oregano EOs. The different response to EO or their components  

among Gram-positive and Gram-negative bacteria is already reported in the literature. Gram-

negative bacteria are generally resistant to many compounds due to the outer membrane, 

which acts as an efficient permeability barrier against macromolecules and hydrophobic 

substances (Helander et al. 1997; Nazzaro et al. 2013), as well as to the high content in 

cyclopropane fatty acids of the inner membrane (Chang & Cronan 1999; Gardini et a. 2009; 

Patrignani et al. 2008). In addition, Gram-negative bacteria like S. enteritidis have efflux 

pumps, which are the first defense of bacteria in harsh environment, allowing them to 
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selectively extrude specific toxic compounds (Yow et al., 2012; Shen et al. 2014). More 

efficient to pass these barriers seems quit hydrophilic low molecular mass molecule that may 

have access, throughout porin proteins, to the deeper parts of Gram-negative bacteria without 

any alteration to the permeability of the outer membrane (Nikaido, 1996; Helander et al., 

1997; Lanciotti et al. 2003b).  

Carvacrol showed a similar antimicrobial activity against the Gram-positive and Gram- 

negative species considered. On the other hand several studies indicated that the antimicrobial 

activity of carvacrol is related, in addition to the permeabilization and depolarization the 

cytoplasmic membrane, to its ability to break up the outer membrane properties inducing 

morphology modification  (Helander et al.1998; Di Pasqua et al. 2007; La Storia et al. 2011;  

Lambert et al. 2001; Veldhuizen et al. 2006; Xu et al. 2008; Cristani et al. 2007, Picone et al 

2013; Ait-Ouazzou et al. 2013). The inhibition of membrane bound ATPases and  the 

dissipation of pH gradientdue to the treatment with carvacrol were demonstred both in Gram- 

positive and Gram-negative bacteria (Picone et al. 2013; Gill & Holley, 2006a; 2006b; Ben 

Arfa et al. 2006).  

The GC MS-SPME analyses and the Principal Component Analysis (PCA) showed that the 

antimicrobials used in the washing solution affected the volatile profile of the products, and 

the storage time showed a significant effects, indeed the volatile molecule profiles changed 

over time. In fact, during the storage β-myrcene, carvacrol, 2-(E)-hexenal decreased their 

abundance probably due to the detoxification mechanisms of vegetable tissue and 

microorganisms present. With except to the control, all the other samples grouped in relation 

to the time of storage. The color and turgidity data showed that after 5 days of storage, only 

the mixture oregano/carvacrol induced a significant decrease of the product color quality, 

while thyme and oregano used at concentration of 250 ppm and their mixture showed 

performances not significantly different from chlorine. Moreover, the addition of thyme EO 

did not affect the turgidity of lamb’s lettuce after 5 days of storage. This results are in 

agreement with Gutierrez et al. (2009) that did not find any significant differences in color 

and textural parameters of lettuce dipped in oregano and oregano-thyme EOs. 

The data concerning the optimization of the production process showed that if it is possible to 

increase further the shelf-life of the product, improving the washing process, introducing a 

pre-washing step, increasing at 13°C the temperature of the washing solution, increasing the 

ratio product/washing water to 1:15, and packaging into artificial ordinary atmosphere. In 

fact, it is well known that the increase of temperature results in the increase of the vapor 

pressure of volatile molecules composing the essential oils and consequently their affinity for 
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the cell membranes, main  and primary target of antimicrobials  (Gardini et al., 1997). In fact, 

while in the first experimental phase chlorine and the natural antimicrobial showed the same 

reduction of the naturally occurring microbial population, in the second trial  thyme and 

oregano reduced the cell loads of mesophilic aerobic bacteria of about 1 log cfu/g more than 

the chlorine solution. However, the differences decreased  during the storage and after 3 d no 

significant differences was observed  between control and treated samples. On the other hand 

some literature reports show that the reduction of the naturally occurring microbiota can favor 

the growth of numerically less represented and competitive species, including pathogenic 

species, suggesting the use of biocontrol agents (Bracket, 1992; Schuenzel & Harrison, 2002). 

In our experimental conditions the initial reduction of the naturally occurring microbiota due 

to the use of EOs did not affects negatively the safety of the products. In fact, the pathogenic 

species, most frequently associated to minimally processed vegetables, such as L. 

monocytogenes, E. coli, S. enteritidis and S. aureus were not detected also after 14 d of 

storage at 6°C. Also de color and the withering data showed that the treatments applied can 

guarantee the maintenance of the main quality parameters affecting the consumer choice. In 

fact, by improving the washing process, the products washed with thyme and oregano, 

similarly to chlorine, were able to maintain good color and turgidity attributes during over 12 

days of storage at 6°C. In addition, on the basis of PCA analysis the electronic nose data 

grouped the samples on the basis of storage time showing that the volatile profiles of the 

products after the optimization process, perceived by the instrument that mimes the human 

nose (Wilson, & Baietto, 2009), were quite unaffected by the added antimicrobials. Also the 

sensorial analysis confirmed that the organoleptic features of the Lamb’s lettuce  treated with 

oregano and thyme instead of chlorine was not significantly. Considering that EOs such as 

thyme and oregano EOs are not only considered powerful antimicrobials but also have 

antioxidant features (Misharina et al., 2009; Graßmann et al., 2000; Bakkali et al., 2008), they 

could be used not only to increase safety and shelf-life but also to increase the health benefits 

of the  products. Although these results are very promising and with great applicative 

potential for the minimally processed vegetable manufacturing, a consumer test seem 

necessary to better evaluate the consumer acceptance of this innovative minimally processed 

lettuce. 
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Abstract 

Fruits and vegetables are strongly recommended in the human diet due to their content in 

vitamins, antioxidants, minerals and  dietary fibers. However, outbreaks of food-borne disease 

associated to the consumption of fresh and minimally processed fruits and vegetables have 

increased dramatically since the 1970s. In fact, a wide literature shows the presence of 

pathogenic species on fresh produce and related minimally processed products. The 

application of decontamination methods is the most important tool to guarantee the safety and 

shelf-life of minimally processed products. Several chemical sanitizers have been employed 

to decontaminate raw materials. However, a wide literature showed, in addition to their 

potential toxicity, their inability to completely eradicate or kill microorganisms on fresh 

produce. These reasons have stimulated the research of alternative methods to decrease 

minimally processed fruits and vegetables decay and increase the product safety. The use of  

protective cultures, and especially lactic acid bacteria (LAB), has been proposed for their 

potential application in minimally processed fruits and vegetables. However, the application 

of bioprotective cultures at industrial level for commercial products is scarce because 

satisfactory conditions under laboratory settings are unable to guarantee the success under  

real processing and distribution conditions. In this perspective, the main aims of this research 

were i) to isolate, identify and characterize LAB from minimally processed fruits and 

vegetables and select some strains to be used as biocontrol agents in the same products; ii)to 

evaluate the effects of the selected strains on the shelf-life and safety features of minimally 

processed apples and lamb’s lettuce; iii)to evaluate the combined effects of the most effective 

biocontrol agents and natural antimicrobials such as hexanal, 2-(E)-hexenal, citral and thyme 

EO on minimally processed lamb’s lettuce and apple safety and shelf-life. The results showed 

that the use of the strains Lactobacillus plantarum CIT3 and V7B3, respectively, on apples 

and lettuce provided encouraging results regarding the safety and shelf life of minimally 

processed products considered. 

 

1. Introduction 

Fruits and vegetables are strongly recommended in the human diet due to their content in 

vitamins, antioxidants, minerals and  dietary fibers. They are generally consumed fresh, 

minimally processed, pasteurized or cooked by boiling in water or microwaving. Heat 

treatments, although they increase product safety and shelf-life, decrease the nutritional 

properties and sensorial features of the raw materials, while fresh produce and minimally 
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processed products are characterized by a very short shelf-life since subjected to rapid 

microbial spoilage (Zia-ur-Rehman et al., 2003; Zhang & Hamauzu, 2004; Di Cagno et al. 

2008). In addition, outbreaks of food-borne disease associated to the consumption of fresh 

and minimally processed fruits and vegetables, primarily due to Escherichia coli O157:H7, 

Salmonella spp and Listeria monocytogenes, have increased dramatically since the 1970s 

(Harris et al., 2003; CDC, 2007; Powell & Luedtke, 2000; Abadias et al., 2011; Olaimat & 

Holley, 2012; Van Boxstael et al. 2013). In fact, a wide literature shows the presence on fresh 

produce and related minimally processed products of pathogenic species such as Listeria 

monocytogenes, Salmonella spp., Yersinia enterocolitica, Aeromonas hydrophila and 

Staphylococcus aureus (Beuchat, 1998; Conway et al., 2000; Gunes & Hotchkiss, 2002; 

Alegre et al., 2010; Francis et al., 1999; Ilic et al., 2008; Froder et al., 2007). Nowadays, 

modified atmosphere packaging and refrigeration are the most utilized tools to improve shelf-

life of minimally processed fruits and vegetables delaying microbial growth and physiological 

degradation of vegetable tissues (King et al. 1991; Gomez-Lopez et al. 2007; Alegre et al. 

2010; Siddiqui et al. 2011). The application of decontamination methods is another tool to 

reduce the microbial cell loads of the raw materials with positive effects on product safety and 

shelf-life (Rico et al., 2007; Gomez-Lopez et al., 2008; Manzocco et al., 2011; Ramos et al., 

2013). Presently, chlorine is the most broadly used among the washing and sanitizing agents 

available for fresh produce. However, a wide literature shows that it has a limited 

antimicrobial efficacy, allowing, at the permitted concentrations, 1–2 log reductions in the 

bacterial population of raw materials, associated to the production of potentially toxic 

substances (Beuchat, 1998; Brackett, 1999; Abadias et al., 2008). Also other disinfectants 

such as hydrogen peroxide, organic acids and ozone  have been used to reduce the natural 

occurring microorganisms of raw fruits and vegetables (Beuchat, 1998; EU Scientific 

Comitee on Food, 2002; Alegre et al. 2013). However, a wide literature showed, in addition to 

their potential toxicity, their inability to completely eradicate or kill microorganisms on fresh 

produce (Koseki & Itoh, 2001; Park et al., 2001; Alegre et al. 2013). The washing procedures 

are able to remove from raw fruits and vegetables only a part of spoilage or pathogenic 

microbial cells; the remaining part can survive to the sanitizing agents attached to the surfaces 

of raw material (Allende et al., 2008; Sapers et al., 2001; Takeuchi & Frank, 2001). Peeling, 

slicing, and shredding of fresh produce stimulate the growth of survived microorganisms 

transferring them to inner tissues and releasing nutrients (Lanciotti et al. 2003a; King & 

Bolin, 1989). In addition, the reduction of naturally occurring population throughout washing 

and sanitization can reduce the competition for space and nutrients against human pathogenic 
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species (Brackett, 1992; Schuenzel & Harrison, 2002). The consumer concern about chemical 

synthetic additives, perceived as negative for human health and environmental pollution 

(Ayala-Zavala et al., 2008; Roller & Lusengo, 1997), has stimulated the research of 

alternative methods to decrease minimally processed fruits and vegetables decay and increase 

the product safety. The use of protective cultures has been proposed for their potential 

application in minimally processed fruits and vegetables (Schillinger et al., 1996; Bennik et 

al., 1999; Rodgers, 2001). Protective cultures of lactic acid bacteria (LAB) to increase safety 

and shelf-life have been developed in last decades (Vescovo et al. 1996; Bennik et al. 1999; 

Leroy et al. 2003; Palmai & Buchanan 2002). For example Torriani et al. (1997) and Scolari 

and Vescovo (2004) showed the potential of a strain of Lactobacillus casei to increase the 

safety of minimally processed vegetables due to the inhibition of Aeromonas hydrophila, 

Staphylococcus aureus, Escherichia coli and Listeria monocytogenes. Selected strains of 

Pseudomonas syringae, Pseudomonas graminis, Gluconobacter asaii, Candida spp., 

Dicosphaerina fagi and Metschnikowia pulcherrima showed great potential as biocontrol 

agents in minimally processed fruits due to their ability to antagonize under laboratory 

conditions  several foodborne pathogens (Leverentz et al., 2006; Abadias et al., 2009; Trias et 

al., 2008a, 2008b; Alegre et al., 2012, 2013). However, the application of bioprotective 

cultures at industrial level for commercial products is scarce because satisfactory conditions 

under laboratory settings are unable to guarantee the success under  real processing and 

distribution conditions (Trias et al., 2008a; Abadias et al., 2009). However, some Authors 

showed that microorganisms isolated from the same commercial type of products can better 

succeed  to control spoilage end pathogenic microorganisms (Vescovo et al. 1996; Breidt & 

Flemming 1997; Reina et al., 2006; Rodgers, 2008). In this perspective the main aims of this 

research were: i)  to isolate,  identify and  characterize lactic acid bacteria from minimally 

processed fruits and vegetables and select  some strains to be used as biocontrol agents in the 

same products; ii) to evaluate the effects of the selected strains on the shelf-life and safety 

features of minimally processed apples and lamb’s lettuce; iii) evaluate the combined effects 

of  the most effective biocontrol agents and the natural antimicrobials selected in during the 

first experimental phase (chaper 3 and 4) on minimally processed lamb’s lettuce and apple 

safety and shelf-life. 
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2. Material and Methods 

2.1 Isolation and identification of lactic acid bacteria from minimally processed apples and 

lamb’s lettuce 

Samples of commercial slides apples and minimally processed lamb’s lettuce were obtained 

from a local market. Ten grams of each vegetable was suspended in 90 mL of sterile sodium 

chloride (0.9%, w/v) solution and homogenized with a Stomacher for 2 min at room 

temperature. Serial dilutions were made, plated on MRS agar (Oxoid Ltd., Basingstoke, 

England), and incubated at 30 °C for 48– 72 h under anaerobic conditions, for isolating 

presumptive mesophilic lactic acid bacteria. In the case of lamb’s lettuce, an enrichment onto 

MRS broth of 24 h at 30°C was necessary in order to isolate lactic acid bacteria. Serial 

dilutions of the enrichment cultures were then plated on MRS agar. Different colonies, 

possibly with different morphology, were isolated from the MRS plates. Gram-positive, 

catalase-negative, non-motile rods and cocci were cultivated in MRS broth at 30 °C for 24 h, 

and restreaked onto MRS agar. Stock cultures were stored at −20 °C in 10% (v/v) glycerol. 

Genomic DNA from each strain of presumptive lactic acid bacteria was extracted as described 

by Balcàzar et al. (2007). Thirty-nine representative isolates were identified by RAPD-PCR 

(primer M13) and sequencing of the 16S rRNA region by following the protocol reported by 

De Angelis et al. (2006). 

 

2.2 Phenotypic characterization and evaluation of antagonistic activity of identified LAB 

The identified strains were characterized on the basis of the capability to grow in different 

environmental conditions such as different temperatures (4, 8, 15 and 30°C), different levels 

of sodium chloride (2, 4 and 6%), high concentrations of sucrose (20%) and low pH values 

(3.5, 4.0 and 4.5). The strains, grown overnight, were inoculated at a level of approximately 5 

log cfu/mL in tubes with 10 mL of MRS broth for the evaluation of growth at different 

temperatures or supplemented with the selected concentrations of NaCl or sucrose. Regarding 

to the conditions at low pH values, glacial acetic acid was used to reach the selected pH 

values. The inoculated tubes (5 repetitions for each condition) were stored at the expected 

temperatures, while in case of the addition of NaCl, sucrose and different pH values, the tubes 

were stored at 30°C. The growth of the strains was evaluated on the basis of the optical 

density at 600nm (OD600) using a spectrophotometer UV-1204 (Shimadzu, Kyoto, Japan). If 
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the growth was not observed, the viability of the strains was verified by counting without any 

dilution on MRS agar plates. 

For the evaluation of the ability of the identified LAB to antagonize the pathogenic strains 

Listeria monocytogenes, Escherichia coli and Salmonella enteritidis, the method reported by 

Schillinger and Lucke (1989) was followed. 

2.3 Preparation of minimally processed apples and lamb’s lettuce added of the selected LABs 

In a first experimental phase, on the basis of  the preliminary results the strains M3B6, CIT3 

and V4B4 and V7B3 were chosen as potentially biocontrol agents for minimally processed 

apples and lamb’s lettuce, respectively. The protocols used to prepare apples and lamb’s 

lettuce minimally processed products were the same reported in chapter 3 (Figure 3.2) and 4 

(Figure 4.2) for the process optimization. The chosen LABs were inoculated at level of about 

7 log cfu/mL in dipping and washing solutions, for apple and lamb’s lettuce, respectively. In 

some conditions, Listeria monocytogenes and Escherichia coli were inoculated in the washing 

or dipping solutions at levels ranging between 2.5 to 3.5 log cfu/g. Six different conditions 

were considered for apples and seven for lamb’s lettuce (Table 5.1). After the treatments, 

apples were dried with paper, packaged in active modified atmosphere with 7% O2 and 0% 

CO2 and stored at 6 °C until the end of shelf-life. After the different treatments, lettuce was 

spin dried and packaged in artificial ordinary atmosphere, and then stored at 6°C until the end 

of shelf-life. 

 
Table 5.1- Conditions tested on apples and lamb’s lettuce; the inoculation of the selected LABs was at a level of  

7 log cfu/mL in dipping or washing solutions; when provided by the experimental plan, the pathogenic 

microorganisms were inoculated at a level ranged between 2.5 to 3.5 log cfu/mL in dipping or washing 

solutions. The products were dipped (apples) or washed (lettuce) for  two minutes.   

 

In a second phase, the combination of natural antimicrobials and lactic acid bacteria were 

tested on apples and lamb’s lettuce. On the basis of the results obtained in chapter 3 and 4 and 

in the first experimental part of this chapter, the Lb. plantarum CIT3 for apples and V7B3 for 

lamb’s lettuce were selected to be used in combination with 2-(E)-hexenal/hexanal and 
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citral/2-(E)-hexenal in apple dipping and with thyme essential oil in lamb’s lettuce washing 

solution. The same protocols used in chapter 3 (Figure 3.2) and 4 (Figure 4.2) for the 

optimization of the processes of apples and lamb’s lettuce were used to produce minimally 

processed apples and lettuce. Also in this phase, challenge tests with Escherichia coli and 

Listeria monocytogenes were performed. When provided by the experimental plan, the 

pathogenic microorganisms were inoculated in the washing or dipping solution at levels 

ranging between 3.5 to 4.5 log cfu/g. The supplementation of the biocontrol agents and/or 

natural antimicrobials and/or pathogens occurred in the dipping or in the washing solution for 

apples and lamb’s lettuce, respectively. All the conditions employed in this experimental 

phase, both for apples and lettuce, are reported in Table 5.2. 

 

Table 5.2- Conditions tested on apples and lamb’s lettuce; the inoculation of the selected LABs were at a level 

of  7 log cfu/mL; the pathogenic microorganisms were inoculated at a level ranged between 3.5 and 4.5 log 

cfu/g. Thyme EO was added at a concentration of  250ppm; while 2-(E)-hexenal/hexanal and citral/2-(E)-

hexenal were used at 125ppm for each compound. LABs and/or antimicrobial compounds and/or pathogens 

were supplemented in the dipping and washing solution for apples and lamb’s lettuce, respectively. 

 

The samples, packaged in active modified atmosphere with 7% O2 and 0% CO2 and in 

artificial ordinary atmosphere for apples and lettuce, respectively, were stored at 6°C until the 

end of the shelf-life. 

 

2.4 Microbiological analyses 

During the refrigerated storage, the evolution of LAB, yeasts and mesophylic aerobic bacteria 

was evaluated by plate counting, respectively, on de Man Rogosa and Sharpe Agar (MRS, 

Oxoid Ltd. Basingstoke, United Kingdom) with added cycloheximide (Sigma-Aldrich), 

Sabouraud Dextrose Agar (SAB, Oxoid Ltd.), added to chloramphenicol (Sigma-Aldrich) and 

Plate Count Agar (PCA, Oxoid Ltd., Basingstoke, United Kingdom). After homogenization, 

samples were serially diluted in physiological solution (10 g of sample diluted into 90 mL of 
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physiological water (0.9% (w/v) NaCl). The lactic acid bacteria were incubated at 37°C for 

48h; yeasts and mesophylic aerobic bacteria were incubated at 30°C for 48h. The detection of 

the inoculated pathogens Listeria monocytogenes and Escherichia coli was evaluated by plate 

counting on Listeria Selective Agar Base (LSO, Oxoid) added to Selective Listeria 

Supplement (Oxoid) and  Violet Red Bile Agar (Oxoid) added to 4-Methylumbelliferyl-β-D-

glucuronide (Oxoid), respectively. The incubation was performed at 37°C for 24h. In the first 

experimental phase, microbiological analyses were performed immediately after treatments 

and after 2, 5, 7, 9, 13 and 16 days of storage in the case of apples, while for lamb’s lettuce 

immediately after treatments and after 2, 5, 7 and 9 days of storage. In the second 

experimental phase, the analyses were performed immediately after treatments and after 3, 7, 

10, 13, 15, 22, and 27  days of storage for apples and immediately and after 2, 5, 7, 12 and 15 

days of storage for lamb’s lettuce. 

 

3. Results and Discussion 

3.1 Identification and characterization of lactic acid bacterial from minimally processed 

apples and lamb’s lettuce 

Commercial apple and lamb’s lettuce were analyzed in order to isolate lactic acid bacteria 

(LAB). Apple samples showed LAB cell loads ranging between 2 and 4 log cfu/g while 

lamb’s lettuce samples had LAB counts lower than 1 log cfu/g. Consequently, for lettuce 

samples, an enrichment procedure was necessary to isolate LAB. A total of 15 and 55 strains 

were isolated respectively from lamb’s lettuce and apple samples. Gram-positive, catalase-

negative, non-motile cocci and rods, oxidase negative able to grow on MRS agar, randomLy 

isolated from the highest plate dilution of each products or enrichments, were identified by 

partial sequencing of the 16S rRNA. The following species were identified for minimally 

processed apples: Leuconostoc mesenteroides (10 isolates), Lactobacillus plantarum/pentosus 

(14 isolates), Weissella soli (2 isolates), Lactobacillus casei/paracasei/rhamnosus (6 isolates), 

Lactococcus lactis (1 isolate). Lactobacillus casei/paracasei/rhamnosus (1 isolate) and 

Lactobacillus plantarum (5 isolates) were identified on lamb’s lettuce samples.  

The LAB identified were screened for bacteriocin production using an agar overlay spot test 

method and to antagonize Salmonella enteritidis, Listeria monocytogenes and Escherichia 

coli. None of the identified strains showed the ability to produce bacteriocin. However, some 

of them were able to inhibit the pathogenic species considered. The most promising, as 

reported in Table 5.3, were two Leuconostoc mesenteroides strains (M5B7 and M19B25), two 
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strains of L. plantarum (CIT3 and ESA3) and the strain of L. paracasei M3B6 isolated from 

minimally processed apples; among the strains isolated from minimally processed lamb’s 

lettuce, two strains of Lactobacillus casei/paracasei (V4B4 and V4B5) and Lactobacillus 

plantarum V7B3 have shown the best performances. 

 

Table 5.3- Inhibitory activity of the identified strains on Escherichia coli, Salmonella enteritidis and Listeria 

monocytogenes. 

 

a
 Symbols: -No inhibition zone; +small inhibition zone (0.5 to 1 mm); ++medium inhibition zone (1 to 2 mm); 

+++large inhibition zone (>2mm) 
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The identified strains were characterized also for their physiological features, such as the 

ability to grow at low temperature, low pH and aw values, able to give a competitive 

advantage in real systems. The results, reported  in Table 5.4, showed that all the strains were 

able to grow at 30°C within 24h, the major part of  them grew within 5-9 days at 15°C while, 

at 4°C, only 3 strains were able to growth within 7 days. None of the strains tested was 

inhibited by 2 and 4% NaCl and 20% sucrose attaining cell loads higher than 8 log cfu/mL 

within 48 h of incubation at 30°C. In the presence of 6% NaCl at 30°C, all the stains, except 

three, grew within 5 days attaining cell load levels higher than 8 log cfu/mL. Low pH values 

resulted in the most stringent hurdles. In fact, all the strains were unable to grow at pH 3.5 

within 20 days of incubation at 30°C. However, at pH 4.0 and 4.5 15 strains grew within 48 h.  

 

Table 5.4- Characterization of the identified lactic acid bacteria strains for their ability to growth in different 

conditions 

 

Legend: 
a,b and c

) The samples were incubated at 30°C 
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3.2 Effects of selected LAB, used as biocontrol agents, on microbiological quality of 

minimally processed apples and lamb’s lettuce 

On the basis of  this preliminary results, the strains M3B6 and CIT3 and V4B4 and V7B3 

were chosen as potentially biocontrol agents for minimally processed apples and minimally 

processed lamb’s lettuce, respectively. They were inoculated at a level of about 7 log cfu/mL 

in dipping and washing solutions, for apple and lamb’s lettuce, respectively.  

In order to assess the ability of the selected biocontrol agents to antagonize pathogenic 

microorganisms in real products and under real process conditions, during the dipping or 

washing phase, in some conditions Listeria monocytogenes, and Escherichia coli were 

inoculated. 

As evidenced from the Figure 5.1, the lactic acid bacteria used as biocontrol agents remained 

viable during the whole storage period considered, independently on the presence or the 

absence of the deliberately inoculated pathogenic microorganisms. In fact, in the samples 

added with the biocontrol agents the loads of lactic acid bacteria were always higher than 6 

log  cfu/g. After 16 days of storage at 6 °C, all samples inoculated with the biocontrol agents, 

showed LAB loads higher than 7 log cfu/g of product. By contrast, in the control samples not 

containing added biocontrol agents, the loads of lactic acid bacteria were at the end of storage 

less than 3 log cfu/g of product. 
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Figure 5.1- Evolution of the lactic acid bacteria  in sliced apples in relation to the addition of pathogenic 

species and/or Lb. plantarum (CIT3) or Lb. casei (M3B6) 

Regarding to the evolution of yeasts, no significant differences,  in relation to the presence of 

biocontrol agents, were evidenced with the exception of the strain of Lactobacillus paracasei 

(M3B6). In fact, the latter allowed to keep the yeast cell load after 16 days of storage at 6 ° C 

at levels of about 1 logarithmic cycle lower compared to the other conditions. In these 

conditions, the yeast loads remained below the threshold of spoilage, that is considered for 

sliced apples 6 log cfu/g, even after 16 days of storage (data not shown). 

The Lactobacillus plantarum CIT3 showed a significant inhibition against Escherichia coli 

and Listeria monocytogenes (Figures 5.2 and 5.3). In fact, this biocontrol agent accelerated 

significantly the kinetics of death of Escherichia coli, that, after 7 days, was below the limit 

of detection in products inoculated with Lactobacillus plantarum CIT3. Furthermore, this 

strain allowed to inhibit the growth of Listeria monocytogenes  until the end of storage time. 

Also the strain Lactobacillus paracasei (M3B6) accelerated, although in a more limited 

extent, the death kinetics of Escherichia coli and exerted an inhibitory effect on Listeria 

monocytogenes in the first 9 days of storage at 6 °C. However, also the presence of biocontrol 

agents cannot guarantee the complete inactivation of Listeria monocytogenes when present at 

levels higher than the initial 1.5 log cfu/g. 
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Figure 5.2- Evolution of Escherichia coli (log cfu/g) inoculated in sliced apples in relation to the washing 

conditions and lactic strain adjunct 

These levels are quite unusual in real conditions of processing and real products. However, it 

is well known that Listeria monocytogenes is a psychrotrophic microorganism and it is able to 

grow, in the absence of other obstacles, also at refrigeration temperatures although with very 

low growth rate.  This rate can increase dramatically if the product undergoes to thermal 

abuse (Beuchat, 2002). Therefore, biocontrol agents considered, and especially Lb. plantarum 

CIT3, seem to be, at least up to 16 days of refrigerated storage, an effective hurdle to the 

multiplication of L. monocytogenes. Moreover, the two biocontrol agents considered seem to 

increase the safety against E. coli, another pathogen frequently associated with fresh-cut 

products . 

 

Figure 5.3- Evolution of Listeria monocytogenes (log cfu/g) inoculated in sliced apples in relation to the 

washing conditions and lactic strain adjunct 
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Although the considered strain of E. coli was not able to grow even in the control samples, 

where it showed a slow loss of viability, the addition of biocontrol agents fastened the death 

kinetics of the target microorganism. The data obtained are in agreement with those of the 

literature. In fact, similar effects on Escherichia coli and Listeria monocytogenes were 

obtained under laboratory conditions with selected strains of Pseudomonas syringae, 

Pseudomonas graminis, Gluconobacter asai, Candida spp and Metschnikowia pulcherrima 

inoculated as biocontrol agents in fresh-cut fruits (Harris et al., 2003; Beuchat, 2002; Trias et 

al., 2008a; Leverentz et al., 2006). However, the literature data do not exhaustively explain 

the effects of biocontrol agents on the spoilage microflora and more generally on the shelf-life 

of products. It is well known that the shelf life of fresh-cut fruits is mainly determined by the 

changes in color and texture of the product (Soliva-Fortuny & Martin-Belloso, 2003). The 

data obtained showed that the biocontrol agents considered (and especially the Lactobacillus 

plantarum CIT3) were able to inhibit significantly the growth of yeasts, but may negatively 

affect the sensory characteristics of the produce as evidenced by the pictures of apples taken 

during the storage (Figure 5.4). The presence of biocontrol agents leads to a more premature 

browning of products. However, the color also in the samples inoculated with the biocontrol 

agents remained acceptable up to 7 days of storage at 6 ° C. 
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Figure 5.4- Images of apples  subjected to different washing conditions and added with pathogens and/or  Lb. 

plantarum (CIT3) or Lb. casei (M3B6) immediately and after 7 days of storage 

Lb. casei (V4B4) and Lb. plantarum (V7B3) showed excellent adaptability to the stringent 

conditions of the minimally processed lamb’s lettuce. In fact, in all the conditions considered 

lactic acid bacteria maintained cell loads similar to the inoculation levels for the whole 

storage period (Figure 5.5). 

 

Figure 5.5- Evolution of the lactic acid bacteria, in minimally processed lamb’s lettuce in relation to the 

addition of pathogenic species and/or Lb. plantarum (V7B3) or Lb. casei (V4B4). The samples added only with 

pathogens, chlorine and chlorine+pathogens showed a load of LAB below the limit of detection (1 log cfu/g) 
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Regarding the effect on the spoilage microflora, the two biocontrol agents caused a reduction 

of the levels of the total aerobic mesophilic similar to that of chlorine in the samples not 

inoculated with pathogens. The strain of Lactobacillus plantarum V7B3 determined a 

significant reduction of the mesophilic bacteria  also in the samples inoculated with the 

pathogenic microorganisms considered (of about 1 logarithmic cycle). In contrast, the other 

samples inoculated with the considered pathogenic microorganisms showed a higher level of 

the total aerobic mesophilic bacteria. The differences highlighted immediately after washing, 

in relation to the agent of biocontrol considered and the presence or absence of pathogenic 

microorganisms inoculated, were attenuated during the storage period. After 9 days of storage 

in all samples the total aerobic mesophilic cell loads ranged between 6.5 and 7.5 log cfu/g of 

product. The lowest values  were recorded in the presence of the biocontrol agent V7B3 that 

showed an effectiveness against the spoilage microflora similar to that exercised by traditional 

disinfectants (data not shown). 

The strain V7B3 showed great potential also for the control of the considered pathogenic 

microorganisms (Figure 5.6 and 5.7). In fact, the presence of the strain V7B3 increased the 

death kinetics of Escherichia coli and induced a viability loss also in Listeria monocytogenes. 

L. monocytogenes was able to grow although very slowly in the samples washed only with 

water without the addition of chlorine or the biocontrol agent V7B3, and in the presence of 

biocontrol agent V4B4. In fact, Listeria monocytogenes increased its load of about 0.8-0.9 

logarithmic cycles also in the control samples washed with chlorine inoculated with the target 

microorganisms. The inoculated strain of Escherichia coli lost viability under all conditions 

adopted even if with different kinetics. However, its cell load, even after 9 days of storage, 

was not lower than 2 log cfu/g. Even in this case, the inoculum levels of the pathogenic 

microorganisms considered were above those encountered in real conditions. Therefore, the 

results obtained on lamb’s lettuce clearly indicate the good potential of the strains of lactic 

acid bacteria selected and in particular the strain V7B3, to  control the spoilage microflora and 

to inhibit pathogenic microorganisms. In addition, the appearance and the color of the 

products were not affected by the addition of the lactic acid bacteria. In fact, after 9 days of 

storage the samples treated with the biocontrol agents had the same turgidity of the controls 

treated with chlorine in the washing step (Figure 5.8 ). 
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Figure 5.6- Evolution of Escherichia coli (log cfu/g) inoculated in lamb’s lettuce in relation to the washing 

conditions and lactic strain adjunct 

 

Figure 5.7-. Evolution of Listeria monocytogenes (log cfu/g) inoculated in lamb’s lettuce in relation to the 

washing conditions and lactic strain adjunct 
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Figure 5.8- Images of lamb’s lettuce subjected to different washing conditions and added with pathogens and/or  

Lb. plantarum (V7B3) or Lb. casei (V4B4) after 1 and 7 days of storage 

Although the data obtained are comparable with those of the literature, regarding to the 

control of pathogens, the efficacy obtained in maintaining the quality parameters and the 

control of spoilage microorganisms indicate the possibility to transfer at industrial level the 

conditions developed in this work. In fact, other Authors have focused their attention on the 

ability of biocontrol cultures to inhibit pathogenic microorganisms frequently associated with 

fresh-cut products leaving out the effects on the shelf life of the product. Regarding to 

minimally processed vegetables, literature data indicate the good potential of selected strains 

of lactic acid bacteria and in particular of specific strains of Lactobacillus casei for the control 
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of Aeromonas hydrophila, Staphylococcus aureus, Escherichia coli and Listeria 

monocytogenes (Palmai and Buchanan, 2002; Torriani et al.,1997). Furthermore, Allende et 

al. (2007) and Trias et al. (2008a) have proposed the use of bacteriocin producer strains 

belonging to the species Lactobacillus plantarum, Lactococcus lactis, Leuconostoc 

mesenteroides, Weissella cibaria and Pediococcus acidilactici to increase the safety of the 

products and in particular the inhibition of Listeria monocytogenes. 

 

3.2 Effects of selected LAB, in combination with natural antimicrobials, on microbiological 

quality of minimally processed apples and lamb’s lettuce 

In order to assess the effects of the selected biocontrol agents Lb. plantarum CIT3 and V7B3, 

in combination with the natural antimicrobials selected in the first part of experimentation, 

they were added simultaneously in the dipping and washing solution respectively on apples 

and lamb’s lettuce. More specifically, mixtures of hexanal/E-(2)-hexenal, and E-(2)-

hexenal/citral (at a concentration of 125 ppm for each compound) in combination with Lb. 

plantarum CIT3 were added in the dipping solution of sliced golden delicious apples, because 

it resulted the most suitable condition for this type of product. Regarding lamb’s lettuce, 

thyme essential oil was used at a concentration of 250 ppm, during the washing process in 

combination with the biocontrol agent Lb. plantarum V7B3. Moreover, in order to evaluate 

the effectiveness of antimicrobial substances and of biocontrol culture chosen, challenge tests 

were performed by inoculating pathogenic microorganisms such as Escherichia coli and 

Listeria. monocytogenes directly in dipping or washing solutions of apples and lettuce, 

respectively. 

As evidenced in Figure 5.9, the Lactobacillus plantarum CIT3 was absolutely well adapted to 

the considered system and it was not affected by the presence of the natural antimicrobials 

used in the dipping step. In fact, the load of lactic acid bacteria was constant and similar to the 

inoculation level during the first 10 days of storage in all the samples inoculated with the 

biocontrol agent. After 10 days, in the samples added with the mixture hexanal/E-(2)-hexenal, 

an increase of the LAB cell load of about one logarithmic cycle, independently on the 

addition of pathogenic species, was detected. By contrast, in the samples treated with E-(2)-

hexenal/citral, the load of lactic acid bacteria remained almost constant during the storage at 

6°C. In samples not treated with the biocontrol agent, the load of lactic acid bacteria was less 

than 3 log cfu/g during the whole period of storage (data not shown). 
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Figure 5.9- Evolution of Lb. plantarum CIT3 (log cfu/g) inoculated in sliced apples in relation to the washing 

conditions and pathogenic species presence. In the samples not added with the biocontrol agent the load of LAB 

was below 3 log cfu/g during all the storage period 

As evidenced by the Figure 5.10, E. coli was not able to grow during the storage at 6°C. In 

fact, a loss of vitality was detected in all types of products considered, but with death kinetics 

more or less accelerated, in relation to the conditions adopted in the dipping step. In fact, the 

mere presence of natural antimicrobials contributes significantly to accelerate the death 

kinetics of the target microorganisms.  In the presence of mixtures of natural antimicrobials, 

E. coli cell loads decreased below the detection limit with 24h in advance compared to 

controls subjected to traditional dipping. The addition of the biocontrol agent further 

increased the safety of the product.In fact, the cell loads of E. coli decreased below the 

determination limit already after 7 days in the samples treated with natural antimicrobials in 

combination with the strain of Lactobacillus plantarum CIT3. 

In Figure 5.11, the evolution of L. monocytogenes is reported. This pathogenic species 

maintained a quite constant cell load during storage at 6°C; on the other hand it is a 

psychrotrophic microorganism, and therefore able to survive and multiply with a low growth 

rate at refrigeration temperatures. All conditions tested were not very effective for the 

inactivation of this microorganism. However, the use of the mixture 2-(E)-hexenal/citral, and 

especially the combined use of this mixture with the biocontrol agent, resulted in a reduction 

of the cell load of L. monocytoges during the first 10 days of storage, approximately of a 

logarithmic cycle.  
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Figure 5.10- Evolution of Escherichia coli (log cfu/g) inoculated in sliced apples in relation to the washing 

conditions and lactic strain adjunct 

 

Figure 5.11- Evolution of Listeria monocytogenes (log cfu/g) inoculated in sliced apples in relation to the 

washing conditions and lactic strain adjunct 

Yeast cell loads did not show significant differences in relation to the type of dipping in the 

first 15 days of storage. However, the presence of citral in the dipping solution was able to 

prevent the attainment of the spoilage threshold of yeasts (6 log cfu/g), even after 27 days of 

storage, with the exception of the samples added with pathogenic microorganisms. In all the 

other samples, the levels of yeasts overcame the spoilage threshold after 27 days of storage, 

while controls and controls added with pathogens after 22 days. The selected biocontrol 
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agent, although very effective in the control the inoculated pathogens, did not show any 

inhibitory effect against yeasts. However, it is known that in matrices with high C/N ratio, 

characterized by low pH, high sugar content the yeasts are clearly more competitive with 

respect to lactic acid bacteria (Patrignani et al., 2013). 

In any case, the yeast spoilage threshold was reached when the product was already degraded 

in terms of color and texture (data not shown). Regarding to the visual quality, the conditions 

adopted allowed to maintain a good appearance of the product up to 15 days of storage; after 

this period, a marked decline in the quality of control samples and the samples treated with 

citral was evident. On the other hand, it is well known that the citral can exert cytotoxic 

effects on the cells of plant tissues (Belletti et al., 2008). 

 

Regarding to the combined use of biocontrol agent Lb. plantarum V7B3 and thyme EO, the 

strain V7B3 showed excellent adaptability to the stringent conditions of the system 

considered, also in the presence of thyme EO (Figure 5.12). In fact, the loads of the added 

lactic acid bacteria were almost constant throughout the period of storage at 6°C, and similar 

to the inoculation levels. In the control samples and in the samples not supplemented  with the 

biocontrol agent,  LAB cell loads were always below the detection limit (1 log cfu/g). 

 

Figure 5.12- Evolution of Lb. plantarum V7B3 (log cfu/g) inoculated in lamb’s lettuce in relation to the washing 

conditions and pathogenic species presence. In the samples not added with the biocontrol agent the LAB loads 

were below the detection limit of 1 log cfu/g during all the storage period. 

As evidenced by the Figure 5.13, E. coli was not able to grow during storage of the products 

at 6°C; In fact a  loss of viability was clear in all types of product, although with a lower death 

kinetics with respect to that observed in apples. In fact, in the control samples subjected to 

Time (d) 
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washing with water, after 15 days, the level of Escherichia coli was decreased of 1 

logarithmic cycle. The addition of chlorine or thyme essential oil, in combination with the 

biocontrol agent, accelerated the death kinetics of the microorganism considered. In 

particular, the combination of the biocontrol agent with thyme EO showed a marked effect on 

the inactivation of E. coli analogous to chlorine.  

In Figure 5.14, the evolution of Listeria monocytogenes is reported. As it shown, the target 

microorganism maintained a constant load, during storage at 6°C, in the samples washed only 

with water. The addition of chlorine, thyme and/or biocontrol agent allowed a reduction of the 

initial L. monocytogenes loads of about one logarithmic cycle. The biocontrol agent and the 

thyme EO showed an effect comparable to that of chlorine, that represents the most 

commonly used disinfectant in minimally processed vegetables. It is well known that chlorine 

is able to reduce the microbial loads to levels never exceed 1-2 logarithmic cycles (Alegre et 

al., 2013). Furthermore, it is known that the antimicrobial efficacy of chlorine is strictly 

dependent on the organic matter content of the product: with increasing concentrations of the 

organic substance, the antimicrobial effectiveness of the chlorine decreases (Gil et al., 2009; 

Olmez & Kretzschmar, 2009). After 15 days the L. monocytogenes loads were similar, 

independently on washing solution adopted, with the exception of the samples treated with 

thyme and chlorine that showed a reduction of the cell  loads, of about 1 log cycle, compared 

to the initial one. 

 

Figure 5.13- Evolution of Escherichia coli (log cfu/g) inoculated in minimally processed lamb’s lettuce in 

relation to the washing conditions and lactic strain adjunct 
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Figure 5.14. Evolution of Listeria monocytogenes (log cfu/g) inoculated in minimally processed lamb’s lettuce 

in relation to the washing conditions and lactic strain adjunct 

The total aerobic mesophilic bacteria, which can be considered as the main spoilage agents of 

this kind of product, exceeded the threshold of alteration (7 log cfu/g) after just 5 days of 

storage in the samples washed with water and inoculated with pathogens (Figure 5.15). In the 

samples treated with chlorine, total mesophiles reached the threshold of spoilage after 7 days 

of storage, independently on the presence or the absence of the deliberately inoculated 

pathogens. The replacement of chlorine with the thyme EO caused a positive effect on the 

shelf-life of the product that even after 15 days of storage showed a total mesophilic loads 

below the threshold of spoilage (7 log cfu/g), independently on the presence of pathogens in 

the washing water. The combination of thyme and biocontrol agent was more effective in 

prolonging the shelf-life than natural antimicrobials alone, presenting values of the total 

aerobic mesophilic significantly lower than the other samples for the whole period of storage. 

Moreover, the combination of thyme EO and the biocontrol agent was able to preserve the 

qualitative characteristics, color and texture of the products during the whole period of storage 

at 6°C (data not shown). 
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Figure 5.15. Evolution of total aerobic mesophilic bacteria (log cfu/g) in minimally processed lamb’s lettuce in relation to the washing conditions and lactic strain adjunct 
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4. Conclusion 

The use of the strains Lactobacillus plantarum CIT3 and V7B3 on apples and lettuce, 

respectively, provided encouraging results regarding the safety and shelf life of the minimally 

processed products considered. The obtained results are also more interesting because lactic 

acid bacteria are recognized as GRAS (Generally Recognized As Safe), and often they have a 

beneficial effect  on consumer  health . The results also highlighted the importance of 

isolation and selection of biocontrol agents from commercial products of the same type. In 

fact, the good performance of the strains used was not only against deliberately inoculated 

pathogens, but also against spoilage microorganisms. These abilities have to be attributed to 

the capability of the strains to colonize the product and survive under stringent conditions of 

refrigerated storage. Also  the ability of biocontrol agents to not affect the quality indexes of 

the product is important. Regarding to the strain used in lamb’s lettuce, it did not cause a 

reduction of the product quality, also when used in combination with thyme EO. We have to 

take into account the pressing for finding alternatives to the use of chlorine (the most common 

sanitizer used for leafy vegetables), and this research showed the good potential of the L. 

plantarum V7B3 alone or in combination with thyme EO as alternative to chlorine. 

Also the strain CIT3, despite its higher potential degradation of the product compared to 

V7B3, was able to preserve the quality of fresh-cut apples treated up to 9 days when used 

alone and up to 16 days when used in combination with natural antimicrobials. However, 

further analyses should be performed to confirm that the application of these strains, as 

potential biocontrol agents, do not alter the sensory properties. 
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Abstract 

The demand of minimally processed fruits and vegetables has increased in the last years. 

However, their intrinsic characteristics may favor the growth of pathogens and spoilage 

microbiota. The negative effects on human health reported for some traditional chemical 

sanitizers have justified the search for substitutes to guarantee food safety and quality. In this 

context, the use of lactic acid bacteria (LAB) as biocontrol agents represents a good alternative, 

and numerous LAB have been identified as bioprotective agents, also due to their ability to 

produce bacteriocins. Furthermore the usage of natural antimicrobials has been proposed as 

alternative to the traditional sanitization methods. 

In this experimentation, several Lactococcus lactis strains isolated from different sources were 

screened for their ability to produce nisin. Among the nisin-producing strains, the Lactococcus 

lactis CBM21 was chosen due to its capability to produce nisin Z. This strain was technologically 

characterized in order to verify its ability to growth at low pH and temperature and in the 

presence of sucrose 20%. Thus, the purpose of this study was to evaluate the potential application 

of the nisin-producing Lactococcus lactis CBM21 on the safety and shelf-life of sliced apples and 

minimally processed lamb’s lettuce combined or not with natural antimicrobials such as hexanal, 

2-(E)-hexenal, citral and thyme EO. To assess the effects on products safety, challenge tests in 

the presence of Listeria monocytogenes and Escherichia coli were also performed. The biocontrol 

agent, the natural antimicrobials, and pathogenic bacteria were added in the dipping or washing 

solution for apples and lamb’s lettuce, respectively. The products were subsequently packed in 

modified atmosphere and stored at 6°C. During storage, microbiological analyses were 

performed during the storage of the products. In case of apples also color analyses and a panel 

test after 1 and 4 days of storage were performed. 

The data highlighted the good performance of strain CBM21, combined or not with the 

antimicrobials employed, to inhibit both the inoculated pathogenic species Listeria 

monocytogenes and Escherichia coli, the naturally occurring yeasts and the total mesophilics. 

The addition of the biocontrol agent did not affect significantly the quality parameters of lamb’s 

lettuce, while, the addition of the biocontrol agent affected the apples color parameters after 14 

days of storage, but this negative effect was balanced by the presence of hexanal and 2-(E)-

hexenal. The panel test showed that the consumer was not able to find differences between apples 
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added or not with the biocontrol agent. These results suggest that the considered alternative 

“hurdles” can represent a new strategy to ensure the safety and quality of this kind of products. 

 

1. Introduction 

The demand of minimally processed fruits and vegetables has incessantly increased in the last 

years reflecting the interest of consumers for fresh and healthy products with an easy way of 

preparation. The intrinsic characteristics of ready-to-eat vegetables and fruits, such as the low 

acidity and high humidity, together with the high number of cut surfaces, may favor the microbial 

growth, as well as foodborne pathogens and spoilage microorganisms (Ongeng et al., 2006). 

These products have been implicated in outbreaks of foodborne infections provoked by human 

pathogens like Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., 

Staphylococcus aureus and Pseudomonas aeruginosa (Viswanathan & Kaur, 2001; Francis et al., 

1999; Tian et al., 2012; Salleh et al., 2003; Beuchat, 1996, 2002). Consequently, the use of raw 

materials of good quality and correct decontamination procedures are critical steps to ensure the 

safety of ready-to-eat fresh fruits and vegetables (Silva et al., 2007; Legani & Leoni, 2004). The 

negative effects on human health reported for some chemical compounds such as chlorine (Gil et 

al., 2009; Selma et al. 2008; Sao Josè a& Vanetti, 2012; López-Gálvez et al., 2010; Tomás-

Callejas et al., 2012), and the development of resistant strains of pathogenic microorganisms, 

have justified the search for substitutes to guarantee food safety and quality. In this context, the 

use of biocontrol agents fits well with this new trend, and numerous microorganisms have been 

identified as bioprotective agents (Vermeiren et al., 2004). Numerous studies have shown the 

great potential of several microorganisms to inhibit the growth of foodborne pathogens in 

minimally processed fruits and vegetables (Vescovo et al. 1996; Bennik et al. 1999; Leroy et al. 

2003; Palmai & Buchanan 2002). The use of biocontrol agents such as Candida sp., 

Gluconobacter sp., Discosphaerina sp. and Metschnikowia sp., have been reported to inhibit the 

growth of L. monocytogenes, E. coli and S. enterica in fresh-cut apples but negative effects such 

as browning of fruits were observed (Leverentz et al., 2006). Also Torriani et al. (1997) and 

Scolari and Vescovo (2004) showed the potential of a strain of Lactobacillus casei to increase the 

safety of minimally processed vegetables due to the inhibition of Aeromonas hydrophila, 

Staphylococcus aureus, Escherichia coli and Listeria monocytogenes. However, literature data do 

not exhaustively explain the effects of biocontrol agents on the spoilage microflora and more 
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generally on the shelf-life of products. For this reason, there is still a need for new bioprotective 

microorganisms that fulfill desired characteristics such as biosafety and limitation of non-target 

effects (Trias et al., 2008a,b). 

Lactic acid bacteria (LAB) are generally recognized as safe (GRAS) by the USA Food and Drug 

Administration (FDA), and their use to preserve (trough fermentation) meat and dairy products 

and to bioprotect fermented vegetables is well documented (Ruiz-Barba et al., 1994; Stiles & 

Holzapfel, 1997). Moreover, the capability of LAB to produce bacteriocins and other 

antimicrobial molecules such as organic acids, diacetyl, acetoin, reuterin, reutericyclin, 

peroxidase, etc., and their general acceptability in foods, make them interesting to be used as 

alternatives to chemicals in food preservation. In particular, the antimicrobial effects of 

bacteriocins, an heterogeneous group of antibacterial peptides with different molecular weight 

and composition, classified into different groups and produced by bacteria to compete against 

bacteria of the same species or other genera, is well documented (Yang et al., 2012; Alakomi et 

al., 2000; Cleveland et al., 2001; Cotter et al., 2005). Moreover, bacteriocins have been consumed 

unconsciously by humans for thousands years like natural ingredients of fermented foods.  

Several authors have reported the great potential of bacteriocins to inhibit Gram-positive bacteria 

both in model and in real food systems such as cheese, meat and ready-to-eat vegetables (Cai & 

Farber, 1997; Molinos et al., 2005; Buyong et al., 1998; Ennahar et al., 1998; Loessner et al., 

2003; McAuliffe et al., 1999; Jamuna et al., 2005). 

Among bacteriocins, nisin  is produced by L.lactis and it was the first characterized bacteriocin . 

It is generally recognised as safe (GRAS) and, consequently, permitted as preservative in food.  

 (FDA, 1988; Delves-Broughton et al., 1996; Jones et al., 2005). Recent works have shown 

synergistic effect of nisin when used in combination with other food additives such as chlorine, 

sodium lactate, citric acid, phytic acid, potassium sorbate, H2O2 in fresh cut lettuce and various 

kinds of minimally processed fruits and vegetables (Allende et al., 2007; Bari et al., 2005; 

Leverentz et al., 2003; Ukuku et al., 2005). 

Several possible strategies for the application of bacteriocins in the preservation of foods have 

been proposed: i) addition of the purified or semipurified bacteriocin as a food preservative; ii) 

use of a product previously fermented with a bacteriocin-producing strain as an ingredient in food 

processing or iii) inoculation of the food with LAB (starter or protective cultures) able to produce 

the bacteriocin in the product (Schillinger et al., 1996; Deegan et al., 2006; Settanni & Corsetti, 
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2008). The success of the latter application is related to the ability of the bacteriocin-producing 

LAB to grow and to produce the bacteriocin in the food system under real production and storage 

conditions. 

In this context, the purpose of this experimental phase was to identify and characterize nisin-

producing Lactococcus lactis strains,, since this nisin has the most potential applications in food 

sector. In fact, nisin, and in particular the Z type, is commonly used in various food products, due 

to its high solubility and stability in foods, in order to increase the microbiological safety (de 

Arauz et al., 2009). It is well-known the activity of nisin against Gram-positive bacteria, and 

particularly Listeria monocytogenes, both under laboratory conditions as well in foodstuffs, as 

well the synergistic effect of nisin combined with food additives which can increase the range of 

antimicrobial activity also against Gram-negative bacteria, yeasts and molds. In this context the 

second objective of this research was to evaluate the potential application of selected nisin-

producing strain of Lactococcus lactis in minimally processed apples and lamb’s lettuce, 

combined or not with other “hurdles” to microbial growth. More specifically, the strain 

Lactococcus lactis CBM 21 was added in the dipping or washing solution, respectively, for 

apples and lettuce, in combination with hexanal, trans-2-hexenal and citral for sliced apples, and 

thyme EO for lamb’s lettuce. To assess the effects on product safety, also challenge tests with 

Listeria monocytogenes and Escherichia coli, added in the washing step, were performed. Apples 

and lamb’s lettuce were subsequently packed in modified atmosphere (0% CO2 and 7% O2) or 

artificial ordinary atmosphere, respectively, and stored at 6°C. The conditions of dipping, 

washing and the composition of the atmosphere were chosen on the basis of previous 

experiments, reported in chapter 3 and 4, which had proven their ability to significantly increase 

the shelf-life of minimally processed apples and lettuce. 

 

2. Material and methods 

2.1 Screening for the detection of nisin-producing Lactococcus lactis strains 

Thirty-one strains of Lactococcus lactis isolated from different food sources, previously 

identified and belonging to the Department of Biotechnology of Verona University, were 

screened for the capability to produce nisin. An agar spot test was used to verify the antimicrobial 

activity against an indicator strain such as Lactobacillus plantarum ATCC 14917
T
, which was 



 

 

168 

 

shown to be sensitive to nisin (Rossi et al., 2008). More specifically, 5 µl of overnight cultures of 

each tested strain were spotted onto M17 (Oxoid Ltd., Basingstoke, England) agar plates. The 

spotted agar plates were then incubated at 30°C for 24h. Subsequently, spots were covered with 

10 mL of MRS (Oxoid Ltd., Basingstoke, England) soft agar (0.75%) inoculated with 100 µl of 

an overnight culture of Lactobacillus plantarum ATCC 14917
T
 (indicator strain). These plates 

were then incubated at 37°C for 24h. Positive cultures were then considered in the following 

steps. 

 

2.2 Search for nisin encoding gene through PCR 

Total genomic DNA was extracted from microbial cells and purified, using the Wizard
R
 Genomic 

Purification Kit (Promega corporation, Madison, WI, USA) following the manufacturer’s 

recommendations. 

Primers reported by de Vos et al. (1993) (forward: 5'–CGCGAGCATAATAAACGGCT-3'; 

reverse:5'-GGATAGTATCCATGTCTGAAC-3'), were employed for the amplification of the 

nisin-encoding gene. These sequences are complementary to 80bp upstream and 29bp 

downstream the coding region of the nisA and nisZ genes, respectively (Mulders et al., 1991). 

The PCR mixture (50 µl) was composed by 2 mM MgCl2, 0.2 µM of each primer, 0.2 mM of 

deoxyribonucleotide triphosphates (dNTPs), 0.02 U/µl Taq polymerase, 1× PCR buffer and 

approximately 20 µg of genomic DNA. Thermocycling conditions were preliminary denaturation 

at 94°C for 5 min; 30 cycles of 93°C for 2 min, 54°C for 1 min, 72°C for 1.5 min, then a final 

extension at 72°C for 10 min. PCR products were visualized on 1.5% agarose gel.  PCR products 

were purified following an internal protocol and sequenced at BMR Genomics sequencing center 

(Padua, Italy). sequences were then compared with those available in GeneBank database 

retrieved thorugh BLASTn searches and then aligned using the GeneDoc 2.7 software. 

 

2.2 Phenotypic characterization and evaluation of antagonistic activity of the strain Lactococcus 

lactis CBM21 

The nisin Z-producing Lactococcus lactis CBM21 was characterized on the basis of the 

capability to grow in different environmental conditions. The selected conditions were different 

temperatures (4, 8, 15 and 30°C), different levels of sodium chloride (2, 4 and 6%), high 
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concentrations of sucrose (20%) and low pH values (3.5, 4.0 and 4.5). The protocol used is the 

same reported in paragraph 2.2 of chapter 5. 

The evaluation of the ability of CBM21 to antagonize typical spoilage and pathogenic 

microorganisms was performed on the following target strains: Lactobacillus casei V4B4, 

Lactobacillus plantarum CIT3 and V7B3, Listeria monocytogenes Scott A and OSP4, Salmonella 

enteritidis E5, Escherichia coli 555, Bacillus cereus SV90, Staphylococcus aureus F1, 

Enterococcus faecalis 29212, Saccharomyces cerevisiae spa, Lactococcus lactis S1, 

Lactobacillus rhamnosus C 111 2, Lactobacillus sakei S8 and Lactobacillus brevis IOEB 9809. 

The antimicrobial activity was evaluated through an agar spot assay following the method 

reported by Schillinger and Lucke (1989). 

The capability of L. lactis CBM21 to survive in the presence of the natural antimicrobials, 

previously used on minimally processed apples and lamb’s lettuce, was evaluated by the 

determination of the minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) of the selected natural antimicrobials against the strain CBM21. In 

particular, the MIC and MBC values of thyme essential oil, citral, 2-(E)-hexenal and hexanal 

against the L. lactis CBM21, were determined by following the method reported in paragraph 2.3 

of chapter 3. 

  

2.3 Preparation of minimally processed apples and lamb’s lettuce added of Lactococcus lactis 

CBM21 alone or in combination with natural antimicrobials 

The effect of Lactococcus lactis CBM21, alone or in combination with natural antimicrobials, on 

the shelf-life and safety of minimally processed apples and lamb’s lettuce was tested. Minimally 

processed apples and lamb’s lettuce were prepared by following the protocols reported in Figure 

3.2 and 4.2 of chapter 3 and 4, respectively, for sliced apples and lettuce. As antimicrobials, the 

mixtures citral/2-(E)-hexenal and hexanal/2-(E)-hexenal were employed for apples, at a 

concentration of 125 ppm for each compound, while thyme EO was used for lettuce at a 

concentration of 250 ppm. Challenge tests with Listeria monocytogenes and Escherichia coli 

were performed in order to evaluate the effects of the added biocontrol agent and natural 

antimicrobials on the safety of the products. The supplementation of the biocontrol agent (7-8 log 

cfu/mL) and/or natural antimicrobials and/or pathogens (3-4 log cfu/mL) occurred in the dipping 
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or in the washing solution for apples and lamb’s lettuce, respectively. All the conditions 

employed in this experimental phase both for apples and lettuce are reported in Table 6.1. After 

the treatments, apples were dried with paper, packaged in active modified atmosphere with 7% 

O2 and 0% CO2 and stored at 6°C until the end of shelf-life. Regarding lamb’s lettuce, after the 

treatments, lettuce was spin dried and packaged in artificial ordinary atmosphere, and then stored 

at 6°C until the end of shelf-life. 

 

Table 6.1- Conditions employed on apples and lamb’s lettuce; the inoculation of L. lactis CBM21 at a level between 

7-8 log cfu/mL; the pathogenic microorganisms were inoculated at a level ranged between 3 and 4 log cfu/mL. 

Thyme EO was employed at a concentration of  250ppm while the two combinations 2-(E)-hexenal/hexanal and 

citral/2-(E)-hexenal were used at 125ppm for each compound. The addition of L. lactis CBM21 and/or antimicrobial 

compounds and/or pathogens was in the dipping and washing solution for apples and lamb’s lettuce, respectively.  

 

2.4 Microbiological analyses 

During storage, the evolution over time of LAB, yeasts and mesophylic aerobic bacteria was 

evaluated by plate counting respectively on de Man Rogosa and Sharpe Agar (MRS, Oxoid Ltd. 

Basingstoke, United Kingdom) with cycloheximide (0.05%) (Sigma-Aldrich), Sabouraud 

Dextrose Agar (SAB, Oxoid Ltd.), with chloramphenicol (Sigma-Aldrich) and Plate Count Agar 

(PCA, Oxoid Ltd., Basingstoke, United Kingdom). After homogenization, samples were serially 

diluted in physiological solution (10 g of sample diluted into 90 mL of physiological water (0.9% 

(w/v) NaCl). Lactic acid bacteria were incubated at 37°C for 48h, while yeasts and mesophylic 

aerobic bacteria were incubated at 30°C for 48h. The detection of the inoculated pathogens 

Listeria monocytogenes and Escherichia coli was evaluated by plate counting on Listeria 

Selective Agar Base (LSO, Oxoid) with selective listeria supplement (Oxoid) and violet red bile 
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agar (Oxoid) with 4-methylumbelliferyl-β-D-glucuronide (Oxoid), respectively. Plates were 

incubated at 37°C for 24h. Microbiological analyses were performed immediately after 

treatments and after 2, 5, 7, 9, 12, 14, 16, 19, 21, 23, 26 and 28 days of storage in case of apples, 

while for lamb’s lettuce immediately after treatments and after 2, 5, 7, 12 and 15 days of storage.  

 

2.4 Color analyses and panel test 

Surface color of sliced apples was measured using a color-spectrophotometer mod. Colorflex 

(Hunterlab, USA). Color was measured using the CIELab scale and Illuminant D65. The 

instrument was calibrated with a white tile (L*98.03, a* - 0.23, b* 2,05) before the 

measurements. Results were expressed as L* (luminosity), a* (red index) and b* (yellow index). 

At each storage time, 21 readings were obtained for each sample from the seven packages, 

measuring three slices for each package. 

A panel test was performed for sliced apples after 1 and 4 days of storage. The panel was 

composed by 30 untrained consumers, and the quality parameters evaluated were flavor, taste, 

browning, firmness, crispiness, sweetness, bitterness, acidity, flower, juiciness and overall 

impression. Four different conditions were evaluated by consumers: control apples, apples added 

with citral/2-(E)-hexanal and apples added with hexanal/2-(E)-hexanal and apples added with the 

biocontrol agent. 

 

3. Results 

3.1 Selection of a nisin Z-producing Lactococcus lactis strain 

In this experimental phase thirty-one strains of lactic acid bacteria belonging to the species 

Lactococcus lactis, isolated mainly from dairy products, were screened for the capability to 

produce nisin by an agar spot test using the sensitive strain Lactobacillus plantarum 

ATCC14917
T 

as target. Table 6.2 shows the strains taken into consideration, their isolation 

source and the eventual inhibition of the indicator strain. Only four strains (CBM21, CBM44, Lc 

caciotta and DSM 20729) were able to inhibit the indicator strain. To prove that the bacteriocin 

produced by the positives L. lactis strains was nisin, the presence of the nisin-encoding gene was 

assayed by PCR. As reported in Figure 6.1, only strains CBM21 and DSM 20729
T
 were shown to 

harbor the nisin-encoding gene. 
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Table 6.2- Screened Lactococcus lactis strains, source of isolation and eventual inhibition of the nisin-sensitive 

indicator strain 

 

Legend: +: Inhibition observed; -: no inhibition observed 
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Figure 6.1- Agarose gel electrophoresis of  PCR products obtained with nisin gene specific primers from the L. 

lactis strains CBM21, CBM44, Lc caciotta and DSM 20729
T
 

 

The amplified PCR products of L. lactis CBM21 and DSM 20729
T
 were subsequently sequenced 

as shown in Figure 6.2. Sequences of CBM21 and DSM 20729
T
 showed 100% similarity values 

with nisin Z and nisin A, respectively, indicating the production of nisin Z by CBM21 and nisin 

A by DSM 20729
T
. Since nisin Z is characterized by a better solubility in food systems compared 

to the A type (de Arauz et al., 2009), strain CBM21 was selected to be used on food products. 

 

Figure 6.2- Nucleotide sequences of the nisZ and nisA gene isolated respectively from L. lactis CBM21 and DSM 

20729
T
 and aligned with the nisZ and nisA gene sequences found in GeneBank 
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3.2 Technological characterization and evaluation of the antimicrobial activity of L. lactis 

CBM21 

Strain CMB21 was characterized for technologically important features in order to assess the 

potential for its use in minimally processed apples and lettuce. The considered strain showed the 

ability to grow at low temperatures, at low pH values and in substrates with low water activity. In 

particular, the strain CMB21 was able to grow within 24 hours at 30°C and 15°C, with 2% and 

4% NaCl , and with 20% sucrose. By contrast, at 4°C and 8°C a growth reached levels which 

were higher than 10
8
 cfu/mL after seven days of incubation. Also the increase of NaCl 

concentration to 6% resulted in a significant decrease of the growth kinetics of the strain, which 

however, reached the stationary phase of growth after 5 days of incubation at 30°C. Regarding 

pH conditions, values of 4.5 and 4.0 allowed the strain to reach levels higher than 10
8 

cfu/mL in 2 

and 5 days, respectively. On the contrary, pH values of 3.5 did not allowed the microorganism to 

grow, at least in 15 days of incubation at 30°C. However, in the latter condition no significant 

decrease in the viability of the strain L. lactis CBM21 was detected. In addition, the assessment 

of the antagonistic activity was performed against several Gram-positive and Gram-negative 

microorganisms, and a strain of Saccharomyces cerevisiae. Target strains and results obtained are 

reported in Table 6.3. In particular Lactococcus lactis CBM21 showed a high antagonistic 

activity (diameter of inhibition higher than 3 mm) against Listeria monocytogenes, 

Staphylococcus aureus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus sakei, 

Lactococcus lactis and the two Lactobacillus plantarum strains considered. In contrast, L. lactis 

CBM21 did not show antagonistic activity against both Gram-negative and the yeast considered. 

On the other hand, it is well-known the good activity of nisin against Gram-positive bacteria, 

while it is quite ineffective against Gram-negative bacteria and yeasts unless the outer membrane 

is compromise or damaged (Stevens et al., 1991; Helander & Sandholm, 2000). 

Considering that the raw materials showed pH values of 4.1±0.2 and 5.6±0.3 for apples and 

lettuce, respectively, and the storage conditions of minimally processed fruits and vegetables 

rarely maintained the cold chain at 4°C, the selected strain showed good technological 

characteristics for the application in a real system.  
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Table 6.3- Antagonistic activity of L.lactis CBM21 against several microorganisms and determined by agar spot test 

 

Legend: - No inhibition zone; + small inhibition zone (0.5 to 1 mm); ++ medium inhibition zone (1 to 2 mm); +++ 

large inhibition zone (>2mm) 

 

3.2 Effects of L. lactis CBM21, in combination with natural antimicrobials, on microbiological 

quality of minimally processed apples 

Given the ineffectiveness against Gram-negative bacteria considered by L. lactis CBM21, as well 

as the frequent association of Gram-negative pathogens to fresh-cut products, the use of natural 

antimicrobials was combined with the bioprotective culture. In fact, the antimicrobial activity of 

essential oils (EO) and their main component against both Gram-positive and Gram-negative 

bacteria is well documented (Dorman & Deans 2000; Cosentino et al., 2003; Smith-Palmer et al., 

1998; Kalemba and Kunicka 2003; Burt, 2004) and also confirmed by the experimental activities 

reported in the previous chapters of this thesis. 

More specifically, biocontrol effects of L. lactis CBM21 in minimally processed products based 

on apples and lettuce were analysed in combination with natural antimicrobials. These 

compounds were  sensory compatible with the food matrices considered and selected for their 

efficacy in real systems in the previous chapters. In fact, on the basis of previous results, mixtures 

hexanal/2-(E)-hexenal and citral/2-(E)-hexenal combined with the biocontrol agent were 
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employed on minimally processed apples. In order to verify the impact of the natural 

antimicrobials on the viability of the biocontrol agent, their MIC (Minimum Inhibitory 

Concentration) and MCB (Minimum Bactericidal Concentration) values after 24 and 48 hours of 

incubation at 30°C were determined. 

Lactococcus lactis CBM 21 was shown to be extremely resistant against citral and hexanal (MIC 

and MCB higher than 700 ppm) when inoculated at a level of 4 log cfu/mL. On the contrary, it 

was more sensitive towards 2-(E)-hexenal, anyway the MIC values were always higher than 200 

ppm. Generally, literature data indicate that significant increase in shelf-life can be obtained by 

using less than 50 ppm of 2-(E)-hexenal in products based on minimally processed fruits 

(Lanciotti et al., 2003, 2004). In addition, literature reports concerning minimally processed fruits 

show that citral and hexanal has a good antimicrobial potential associated with a good 

organoleptic compatibility at concentrations less than 200 ppm (Lanciotti et al., 1999; Belletti et 

al., 2008). 

The biocontrol agent (7 log cfu/mL) and the natural antimicrobials (125 ppm for each compound) 

were added during the dipping of sliced apples while samples obtained with the same protocol 

but treated (in the process of dipping) with only ascorbic acid and citric acid were considered as 

controls. In the phase of dipping, pathogenic microorganisms such as Listeria monocytogenes 

Scott A and Escherichia coli 555 were inoculated also in order to assess the efficacy of 

biocontrol and/or of natural antimicrobials employed on the safety of the products. The pathogens 

were inoculated between 3 and 4 log cfu/mL. During storage at 6°C, the effects of dipping 

conditions tested on the microbiological quality of the product were evaluated. 

The considered biocontrol agent was able to survive in the products considered independently on 

the presence or the absence of natural antimicrobials; in fact, in each condition adopted, 

Lactococcus lactis CBM21 showed a level of about  7 log cfu/g during the storage (28 days at 

6°C; data not shown). In the control samples, lactic acid bacteria did not exceed 3 log cfu/g. 

As shown in Figure 6.3, the biocontrol agent considered allows the significant increase of the 

safety of the products since it inhibits the growth of Listeria monocytogenes when used alone, but 

especially when used in combination with the proposed natural antimicrobials. 
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Figure 6.3- Evolution of Listeria monocytogenes (log cfu/g) inoculated in sliced apples in relation to the washing 

conditions employed 

 

The higher effectiveness against Listeria monocytogenes was observed when strain CBM21 was 

used in combination with hexanal/2-(E)-hexenal. In fact, in these conditions, Listeria 

monocytogenes showed a loss of viability of more than 2 logs. By contrast, L. monocytogenes 

was able to grow, although very slowly, in the controls and in the samples added with hexanal/2-

(E)-hexenal and citral/2-(E)-hexenal in the absence of the biocontrol agent. Regardind E. coli, the 

low storage temperatures did not allow its proliferation, independently on the conditions 

employed in the dipping processes. Furthermore, the use of natural antimicrobials slightly 

increased the kinetics of death of the target microorganism (Figure 6.4). 
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Figure 6.4- Evolution of Escherichia coli (log cfu/g) inoculated in sliced apples in relation to the washing conditions 

employed 

 

Yeast loads during storage at 6°C in relation to the dipping conditions employed are reported in 

Figure 6.5. Obtained data clearly showed that yeasts were able to overcome the level of 6 log 

cfu/g, which is considered as the spoilage threshold for this type of product, only in control 

samples subjected to the traditional dipping and in control samples which were previously 

inoculated with the considered pathogens. The addition of the biocontrol agent and/or natural 

antimicrobials significantly delayed the growth of yeasts, allowing a significant increase of the 

product shelf-life. In fact, the yeast cell loads in all the samples supplemented with Lactococcus 

lactis CBM 21 and/or natural antimicrobials did not reach 6 log cfu/g also after 28 days of 

refrigerated storage. 
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Figure 6.5- Evolution of the load of yeasts in sliced apples in relation to the washing conditions employed 
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Although L. lactis CBM21 showed good potential for the control of inoculated pathogens and 

spoilage agents naturally present in the products, color data showed a negative effect on the 

evolution of the colorimetric measurement indexes. In fact, samples inoculated with the 

biocontrol agent were characterized by a rapid worsening of L* (luminosity) and a* (red index) 

values. The evolution of luminosity L* is reported in Figure 6.6. The presence of natural 

antimicrobials mitigated the negative effects of the Lactococcus lactis strain selected. However, 

also in samples treated only with the biocontrol agent, the color parameters were acceptable up to 

16-19 days. Photographs shown in Figure 6.7 confirmed the negative effects of the Lactococcus 

lactis strain from the sixteenth day of storage at 6 °C. 

Panel test performed after 1 and 4 days of storage at 6°C on control samples, samples added with 

L. lactis CBM21, samples added with the mixture hexanal/2-(E)-hexenal and samples 

supplemented with citral/2-(E)-hexenal (Figure 6.8), showed that the addition of the biocontrol 

agent had a positive effect on the overall impression of the consumers after 1 day of storage. 

Otherwise, all the other quality parameters evaluated were similar or better than those detected in 

the controls and in the other treated samples. The browning of the samples added with L. lactis 

CBM21 after four days of storage was perceived by consumers as similar to the controls. The 

addition of citral/2-(E)-hexenal was perceived as negative for the flavor and the odor of the sliced 

apples by the consumers, both after 1 and 4 days, mainly due to the presence of citral that is 

characterized by a lemongrass flavor. On the contrary, the addition of citral/2-(E)-hexenal 

dramatically reduced the browning of the product after 4 days of storage. For the consumers, the 

addition of hexanal/2-(E)-hexenal resulted more compatible with apple flavor and all the other 

quality parameters. Moreover, samples added with this mixture of natural antimicrobials were 

perceived quite similar to the controls after 1 days of storage, while, after 4 days of storage, their 

quality parameters resulted better, in particular the flavor, the odor and the overall impression, 

than all the other samples. 
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Figure 6.6- Evolution of luminosity, L*, of apples in relation to the washing conditions employed during storage time. 
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Figure 6.7. Evolution during storage of the samples inoculated only with the L. lactis CBM 21, in comparison with the 

control samples and samples supplemented with the mixture hexanal/2-(E)-hexenal 

 

 



 

 

183 

 

 

Figure 6.8- Sensory data of sliced apples, in relation to the washing employed, after 1 day  (A) and 4 days (B) of storage at 

6°C 

 

3.3 Effects of L. lactis CBM21, in combination with natural antimicrobials, on microbiological quality 

of minimally processed lamb’s lettuce 

On the basis of previous results, thyme EO combined with the biocontrol agent were employed on 

minimally processed lamb’s lettuce. Also in this case, in order to verify the impact of thyme EO on the 

viability of the biocontrol agent considered, the MIC and MBC values after 24 and 48 hours of 

incubation of thyme EO against L. lactis CBM21 were recorded. 

Lactococcus lactis CBM21 proved to be resistant to thyme EO (MIC and MBC higher than 300 ppm) 

with cell concentrations of 4 log cfu/mL. On the contrary, it was more sensitive when inoculated at 2 

log cfu/mL, anyway the MIC values were always higher than 250 ppm. On the other hand the effects of 

inoculation level on MIC and MBC values is well known (Lambert et al., 2001). 

The biocontrol agent (7 log cfu/mL) and/or thyme EO (250 ppm) were added during the washing step, 

samples obtained with the same protocol but treated (in the washing process) with 120 ppm of chlorine 

were considered as controls. In the phase of washing, in some conditions, pathogenic microorganisms 

such as Listeria monocytogenes and Escherichia coli were also inoculated in order to assess the 
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efficacy of the biocontrol agent and/or thyme EO on the safety of the products. Pathogens were 

inoculated at levels ranging between 3 and 4 log cfu/mL. During storage at 6°C the effects of the tested 

washing conditions on the microbiological quality of the product were evaluated. 

The considered Lactococcus lactis CBM21 was sensitive to the stringent conditions of the system 

independently on the presence of thyme EO. In fact, the population of Lactococcus lactis CBM21 

decreased during storage at 6°C, both in the presence or the absence of thyme EO (data not shown). 

The latter, however, accelerates the death kinetics of the added strain which, after 15 days of storage 

showed a cell load of about 10
4
 cfu/g compared to the initial loads that ranged between 6 and 7 log 

cfu/g. 

The addition of the biocontrol agent in combination with thyme EO decreased the initial loads and the 

growth kinetics of the total aerobic mesophilic bacteria. In particular, the addition of Lactococcus lactis 

CBM21 induces the reduction of the initial total aerobic mesophilic loads of a logarithmic cycle, while 

the addition of the strain in combination with thyme EO reduced the load of the total mesophilic of 

about two logarithmic cycles. Samples which were washed separately with chlorine exceed the level of 

7 log cfu/g of product after 7 days storage at 6°C, whereas all samples added with antimicrobials and/or 

protective agent did not exceed the level of 7 log cfu/g even after 15 days storage at 6°C. 

Concerning the antimicrobial activity against Escherichia coli, Figure 6.9 shows the loss of viability of 

this microorganism during storage at 6°C, independently on the presence of biocontrol agent and 

antimicrobials. However, the presence of these compounds increased the inactivation kinetics of E. 

coli. In particular, similarly to chlorine, the addition of thyme EO showed the major effect on the 

viability reduction of E. coli and, consequently, the highest effectiveness in increasing the safety of the 

product. 



 

 

185 

 

 

Figure 6.9- Evolution of Escherichia coli (log cfu/g) inoculated in minimally processed lamb’s lettuce in relation to the 

washing conditions employed 

 

Listeria monocytogenes remained viable without showing growth in the control samples without  

chlorine and in the samples added with the biocontrol agent. The stringent characteristics of the raw 

materials and the competition with the endogenous microflora presumably prevented its proliferation. 

L. lactis CBM21 seems to be less effective against L. monocytogenes in lamb’s lettuce than apples. 

This is probably due to the lower production of nisin in these conditions. In fact, it is well documented 

in literature that nisin production increases only in the late exponential phase of growth (De Vuyst & 

Vandamme, 1992). Based on this, L. lactis CBM21 was not affected by the presence of competitive 

microflora when grown on apples; consequently, strain CBM21 remained viable or also increased its 

load during the refrigerated storage. Contrarily, on lamb’s lettuce, the presence of competitive 

microflora caused a reduction of the biocontrol agent cell load during storage. 

However, the presence of thyme EO in combination or not with the biocontrol agent showed a 

significant efficacy (comparable to that of chlorine) in reducing the levels of L. monocytogenes during 

storage at 6°C (Figure 6.10).  
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Figure 6.10- Evolution of Listeria monocytogenes (log cfu/g) inoculated in minimally processed lamb’s lettuce in relation 

to the washing conditions employed 

 

As regard to the effect of L. lactis CBM21 and natural antimicrobials on the color and texture of lamb’s 

lettuce, not significant differences were evident among the different treatments compared to the 

samples added with chlorine during the storage at 6°C. 

 

4. Conclusions 

The results obtained showed that L. lactis CBM21, selected on the basis of the ability to produce nisin 

Z as well as the physiological characteristics (ability to grow at low pH, low temperature and in the 

presence of high concentrations of sugars), significantly increased the safety and shelf-life of sliced 

apples and minimally processed lamb’s lettuce. In particular, the considered biocontrol agent was able 

to inhibit both the pathogenic microorganisms inoculated as well as yeasts (apples) or mesophilic 

aerobic bacteria (lettuce), that represent the main spoilage agents of this type of product. The 

effectiveness against Listera monocytogenes observed on sliced apples seems to be attributed to the 

production of nisin Z more than to the competition for space and nutrients. The effects obtained against 

Listeria monocytogenes was absolutely relevant and comparable to that observed for other biocontrol 

agents used on fresh-cut apples. For example, Alegre et al. (2013) observed a reduction of 2.5 log cfu/g 
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of Listeria monocytogenes in Golden Delicious apples inoculated with Pseudomonas graminis CPA-7 

packaged in modified atmosphere and stored for 7 days at 10°C. 

The selected strain, in particular when combined with the natural antimicrobials employed, showed a 

good inhibition also against microorganisms not specifically sensitive to nisin Z such as the 

deliberately inoculated Escherichia coli and the naturally occurred yeasts. On the other hand the 

inoculated strain of Escherichia coli was not able to grow at the conditions adopted, but the presence of 

the biocontrol agent increased the death kinetics. Also Abadias et al (2009) obtained similar results 

using Candida sake CPA-1 as a biocontrol agent.. In this case the inhibition was attributed to the 

competition for space and for nutrients. However, it is possible that the selected strain was able to 

produce other molecules with antimicrobial activity; in fact it is well known that lactic acid bacteria can 

produce a broad spectrum of antimicrobial substances (volatile ketoacids, furanones, diacetyl, lactic 

acid, hydrogen peroxide) (Schillinger et al., 1996). Moreover, the selected strain showed interesting 

inhibition also against the spoilage agents in both the food system considered. Since literature data 

concerning minimally processed fruits and vegetables are mostly focused on the effect of biocontrol 

agents on pathogen microorganisms, without any reference to the shelf-life of the product, these results 

can be useful to better understand the effects of biocontrol agents on spoilage microorganisms. The use 

of Lactococcus lactis CBM21 allowed to limit the growth of yeasts on apples below 5 log cfu/g during 

all the time of storage considered, while on lamb’s lettuce allowed to not exceed the level of 7 log cfu/g 

in the population of total meshopilic bacteria, also after 15 days storage at 6°C. The addition of 

Lactococcus lactis CBM21 affected the quality parameters of apples such as color after 14 days of 

storage at 6°C. However, the recognized average life of this category of products is generally less than 

this preservation period. Moreover, the negative effects due to the inclusion of biocontrol agent after 14 

days of storage was balanced by the presence of the natural antimicrobials, particularly hexanal. On the 

other hand, the positive effect of hexanal on the maintenance of the color of minimally processed 

apples is reported in literature (Lanciotti et al., 1999; Corbo et al. 2000). The consumers were not able 

to recognized the presence of the biocontrol agent on sliced apples after 1 and 4 days of storage. 

Moreover the panel test showed that the addition of the biocontrol agent positively affected quality 

parameters such as the flavor and odor, which were preferred by the consumer compared to control 

samples.  

Therefore, the selected biocontrol agent, and in particular its combination with natural antimicrobials, 

may represent a good strategy to increase the safety and the shelf-life of minimally processed fruits and 
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vegetables. Furthermore, since important health properties have been attributed to lactic acid bacteria, 

their use in this kind of products could also contribute to confer specific healthy properties to these 

products. However, the introduction of biocontrol agent can be further optimized, focusing on the level 

and mode of inoculation and to limit the negative effects observed on the color parameters. 
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Abstract 

In recent years, the interest of the food industry and consumers in natural antimicrobials, 

alternative to traditional chemical additives, to prevent the growth of spoilage and pathogenic 

microorganisms is increased significantly. Thyme and oregano essential oils are two of the most 

effective as antimicrobials. Their antimicrobial activity is well documented both in in vitro 

screening and in food model media, and carvacrol and thymol are present as major and effective 

components of thyme and oregano essential oils. Also aldehydes, such as citral and 2-(E)-

hexenal, which are component of the aroma of many fruits and vegetables are endowed with 

strong  antimicrobial activity both in model and real system. Although the antimicrobial 

properties of essential oils and their major components are well known, their mechanisms of 

action have not been fully understood. Because the usage of these compounds as antimicrobials 

in foods has to be supported by the comprehension of their action mechanisms, the aim of the 

research was to investigate the modifications of cell membrane fatty acid composition and 

volatile molecule profiles of pathogenic microorganisms, such as Listeria monocytogenes, 

Salmonella enteritidis, Escherichia coli, during the growth in the presence of different sublethal 

concentrations of thyme and oregano essential oils as well as  carvacrol, thymol, 2-(E)-hexenal 

and citral. The results obtained evidenced that the tested molecules induced noticeable 

modifications of membrane fatty acid profiles and volatile compounds produced during the 

growth. Although specific differences in relation to the species considered were identified, the 

tested compounds induced a marked increase of some membrane associated fatty acids, 

particularly unsaturated fatty acids, trans-isomers, and specific released free fatty acids. 

 

1. Introduction 

Essential oils (EOs), can be defined as complex mixture of volatile compounds, characterized by 

a strong sensorial impact and produced by many plants as secondary metabolites. In recent years, 

the interest of the food industry and consumers in natural antimicrobials, alternative to traditional 

chemical additives, to prevent the growth of spoilage and pathogenic microorganisms, is 

increased significantly. For this reason the number of publications regarding the antimicrobial 

activity and the potential application of EOs and their main components as natural preservatives 

in different food matrices such as meat, dairy products, minimally processed fruits and vegetables 

is greatly augmented (Holley & Patel 2005; Espina, et al, 2011; Gutierrez et al, 2009a; Smith-
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Palmer et al, 2001; Burt, 2004; Karabagias et al., 2011). Is well documented that these volatile 

molecules play a key role in defence of fresh vegetables against microbiological decay (Ben-

Yehoshua et al., 1998). The antimicrobial properties of EOs and their components have been 

tested in the past (Dorman & Deans 2000; Cosentino et al., 2003; Smith-Palmer et al., 1998; 

Kalemba & Kunicka, 2003). In addition, these molecules are widely used as flavouring in 

foodstuffs and are generally recognized as safe (GRAS).  

Normally EOs contain about 20–60 components at different concentrations. They are 

characterized by two or three major components at fairly high concentrations (20–70%) 

compared to others components present in trace amounts (Bakkali et al. 2008). Among EOs, 

thyme and oregano EO are two of the most effective as antimicrobials. Their antimicrobial 

activity is well documented both in in vitro screening (Cosentino et al., 1999; Ivanovic et al., 

2012; Gutierrez et al., 2008a) and in food model media (Gutierrez et al., 2009b; Chouliara et al., 

2007; Nowak et al., 2012). Carvacrol and thymol are presents as major and effective components 

of thyme and oregano EOs (Burt, 2004). These two phenolic monoterpenes have shown a strong 

in vitro antimicrobial activity against a wide range of pathogenic microorganisms (Bagamboula 

et al., 2004; Zhou et al., 2007, Oussalah et al., 2007), fungi and insects (Kordali et al., 2008). 

Other volatile compounds are aldehydes, such as hexanal and 2-(E)-hexenal, which are 

component of the aroma of many fruits and vegetables and endowed with strong  antimicrobial 

activity both in model and real system (Gardini et al., 2001; Lanciotti et al., 2004). Moreover, 

citral (3,7-dimethyl-2-7-octadienal), a component of several citrus EOs, is a mixture of two 

isomeric acyclic monoterpene aldehydes: geranial and neral, characterized by a wide spectrum 

antimicrobial activity both in model system and foodstuffs (Hayes & Markovic, 2002; Wuryatmo 

et al., 2003 and Belda-Galbis et al., 2013). 

Although the antimicrobial properties of EOs and their major components is well known, their 

mechanisms of action have not been fully understood (Hyldgaard et al., 2012). In general, the 

hydrophobicity of EOs and their components, allow them to be distributed in the lipids of the cell 

membrane. The presence of the hydroxyl group, in thymol and carvacrol, is connected to the 

inactivation of the microbial enzymes. Probably, this group interacts with the cell membrane 

causing leakage of cellular components, change in fatty acids (FAs) and phospholipids 

composition, and disruption of the proton motive force, electron flow, active transport, 

coagulation of cell contents and influencing genetic material synthesis (Burt, 2004).  
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2-(E)-hexenal and citral, have mechanisms of action on microbial cells, similar to that of other 

aldehydes. These molecules are able to permeate the plasma membrane through passive 

diffusion. Inside the cells α, β-unsaturated aldehydes can reacts with biologically important 

nucleophilic groups (Kubo & Fujita, 2001). Moreover, aldehydes may cross link amino groups in 

the cell wall and cytoplasm and increase in its permeability and inhibit enzymes with a thiol 

group at the cytoplasmic membrane (Aiemsaard et al., 2011). At high concentrations, aldehydes 

may also cause coagulation and precipitation of cytoplasmic constituents (Denyer, 1995). 

It is well known that when microbial cells are exposed to a sub-lethal stress, the cell membrane is 

able to change the fluidity in order to deal with the new environment (Russell et al., 1995). This 

is fundamental in maintaining membrane integrity and functionality against external stresses 

(Russell et al., 1995). To reduce the effects of environmental condition changes on cell 

membrane, the cell can regulate the fluidity by modifying the unsaturation level, the fatty acid 

length and the presence of branched chains or hydroxylic groups (Guerzoni et al., 1997; 2001). 

In this perspective, the aim of the research was to investigate the modifications in cell membrane 

fatty acid composition and volatile molecule profiles of pathogenic microorganisms, such as 

Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, during the growth in the 

presence of different sublethal concentrations of thyme EO, oregano EO, carvacrol, thymol, 2-

(E)-hexenal and citral. 

 

2. Materials and Methods 

2.1 Natural antimicrobials and microbial strains 

Oregano and thyme EO were obtained from Flora s.r.l. (Pisa, Italy), the others compounds (2-(E)-

hexenal, Citral, Carvacrol and thymol) were purchased from Sigma-Aldrich (Milano, Italy). 

The strains used in this study, L. monocytogenes Scott A, E. coli 555, S. enteritidis E5, belonging 

to the Department of Agricultural and Food Sciences. The strains were maintained at -80°C and 

cultured in brain heart infusion (BHI) broth (Oxoid, Basingstoke, Humpshire, UK) for 24 h at 

37°C. Before experiments, the strains were sub-cultured, on BHI broth for 24h at 37 °C. 
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2.2 Determination of the growth kinetics of L. monocytogenes, E. coli and S. enteridis in presence 

of EO 

The growth curves of the tested microorganisms, were performed by using the most effective 

EOs and their components, selected on the basis of MIC results (reported in chapter 3 and 4). 

Thyme EO, oregano EO, carvacrol and thymol were used on all the selected pathogens. Citral 

was tested only on L. monocytogens, whereas 2-(E)-hexenal was used on E. coli. Each EOs or 

components was used at three different concentrations (approximately 1/2, 1/3, 1/5 of the MIC 

value), the EOs or components and the relative concentrations used on L. monocytogenes, S. 

enteritidis and E. coli are reported in Table 7.1. The tested strains were inoculated in 100 mL 

flasks, containing 50 mL of BHI broth at a level of about 2.5 log cfu/mL. Immediately after the 

inoculum, the samples were supplemented with the selected concentrations of each compound. 

The EOs or their components used were conveyed through 1% of ethanol (0.5 mL:50 mL). Three 

flasks for each condition were considered in different days. Inoculated samples added just with 

1% of ethanol and samples without any addition were considered as controls. The samples were 

incubated at 37°C, and the growth evaluated on the basis of the optical density at a 600nm 

(OD600) using a spectrophotometer UV-1204 (Shimadzu, Kyoto, Japan), and periodically (every 

hour during exponential growth phase) a plate count was performed. The OD growth kinetics 

were modelled by using Gompertz equation with the statistica 8 software. 

Table 7.1- Molecules and relative concentrations (ppm) used respectively on E. coli, L. monocytegenes and S. 

enteritidis for the determination of the growth kinetics and subsequently for study the modifications in fatty acid 

composition of the cell membranes 
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2.3 Cell treatments 

The same molecules and strains used in the determination of the growth kinetics and reported in 

Table 7.1, were used in the next step. 

The tested strains, grown overnight, were inoculated in 1.0 L flasks, containing 500 mL of BHI 

broth at a level of about 2.5 log cfu/mL. Immediately after the inoculum, the samples were 

supplemented with the selected concentrations of each compound. The EOs or their components 

used were conveyed through 1% of ethanol (5 mL : 500 mL). Three flasks for each condition 

were considered. Inoculated samples added just with 1% of ethanol and samples without any 

addition were considered as controls. 

The incubation was performed at 37°C, until was reached the stationary growth phase. The times 

of incubation for each condition were previously defined through the determination of the growth 

kinetics. 

 

2.4 Fatty acid analyses 

Late exponential phase cells were collected by centrifugation (8000 g × 15 min) and washed in 

physiological water. Lipid extraction and membrane fatty acid analyses were performed 

according to Suutari et al. (1990). The fatty acid composition analyses was executed through gas 

chromatography combined to mass spectometry (GC/MS) technique. For peak detection, an 

Agilent Hewlett-Packard 6890 GC gas-chromatograph equipped with a MS detector 5970 MSD 

(Hewlett–Packard, Geneva, Switzerland) and a fused silica capillary column coated with a 0.2 

μm film of Carbowax (Supelco) as stationary phase was used. The injector and detector 

temperatures were respectively 125 and 225 °C. Helium was used as carrier gas at a flow-rate of 

3 mL/min; the splitting ratio was 1:20 (v/v). The oven temperature program was 120 °C for 5 

min, then heated to 215 °C at 3 °C/min, this temperature was maintained for 0 min, then heated to 

225 °C at 0.5 °C/min, this temperature was maintained for 2 min. Compounds were identified by 

comparing their retention times with those of a standard mix, BAME (Sigma-Aldrich, Milan, 

Italy) and by the use of the Agilent Hewlett–Packard NIST 98 mass spectral database. The results 

were the average of three different biological replicates.  
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2.5 Volatile molecule profile analyses through GC/MS/Solid Phase Microextraction (SPME) 

Late exponential phase cells, for each strain and added antimicrobial, were collected by 

centrifugation and then 5 mL of the supernatant were sterilely taken and placed in 10 mL vial 

sealed by PTFE/silicon septa. Three replicates for each condition were analysed and the samples 

were stored at -40 °C until analyses. 

Before analysis the samples were thawed and then conditioned for 5 min at 50 ° C. An SPME 

fiber covered by 50 µm divinylbenzene-carboxen-poly(dimethylsiloxane) 

(DVB/CARBOXEN/PDMS StableFlex) (Supelco, Steiheim, Germany) was exposed to each 

sample at 50 °C for 40 min, and finally, the adsorbed molecules were desorbed in the GC for 10 

min. Regarding fibre and gas-chromatographic conditions, the method reported by Patrignani, et 

al. (2008) was used. Compounds were identified by the use of the Agilent Hewlett–Packard NIST 

98 mass spectral database. 

 

2.6 Statistical analyses  

The growth curves of the tested microorganisms were modelled according to the Gompertz 

equation as modified by Zwietering et al. (1990). Three replicates for each strain and each pH 

condition were performed. 

The relative percentages of the FAs (as peak areas of the methyl esters) are means of 3 replicate 

determinations. The coefficients of variability, expressed as the percentage ratios between the 

standard deviations and the mean values, ranged between 2 and 5%.  

The unsaturation degree (Δ/mol) in the lipid fraction was calculated as: 

Δ/mol = [%monoenes+2 (%dienes)]/100 

The mean fatty acid chain length was expressed as: 

Mean chain length = Σ(FAP x C)/100 

where FAP is the percentage of fatty acid and C the number of carbon atoms. 

Principal component analysis (PCA) were performed using Statistica software (version 8.0; 

StatSoft., Tulsa, Oklahoma, USA) to obtain a visual overview of FA composition of cell 

membranes and of the volatile molecule profile. 
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The volatile molecule compounds detected for the tested microorganisms grown in presence of 

the selected compounds are expressed as peak area x 10
5
. The results are means of three 

independent experiments. The coefficients of variability, expressed as the percentage ratios 

between the standard deviations and the mean values, ranged between 5 and 10% 

 

3. Results  

3.1 Effects of the selected compounds on the growth kinetics of Listeria monocytogenes, 

Escherichia coli and Salmonella enteritidis 

In Table 7.2a the Gompertz parameters of E. coli, grown in the presence of different 

antimicrobials such as carvacrol, 2-(E)-hexenal, oregano, thymol  and thyme are reported. As 

shown by Table 7.2a, the growth in the presence of the tested antimicrobials caused a reduction 

of A value (maximum increase of the population in stationary phase), associated to a reduction of 

µ max (growth rate in exponential phase) and an increase of λ (duration of lag phase), respect to 

the control and the control added with 1% of ethanol. Clearly, this trend resulted more 

accentuated increasing the concentrations used for each antimicrobial. In particular, the addition 

of 2-(E)-hexenal at different concentrations and 100 ppm of oregano increased significantly the 

durations of lag phase respect to the control, and all the other treated samples. 2-(E)-hexenal, at 

all the concentrations used, carvacrol and oregano, at the highest concentration (100ppm), were 

the most effective to reduce the growth rate in exponential phase. 

Table 7.2b reports the Gompertz parameters of S. enteritidis, supplemented with different 

concentrations of carvacrol, oregano, thymol  and thyme. Also for Salmonella, a decrease of A 

and µ max parameters, associated to an increase of λ was detected in the treated samples respect 

to the control. The effectiveness to delay the growth kinetics were dependent on the 

antimicrobials used and their concentrations. Oregano and thyme, when used at the higher 

concentrations, carvacrol  at 100 ppm were the most effective in slowing the growth of 

Salmonella. 

In Table 7.2c the Gompertz parameters of L. monocytogenes, grown in presence of different 

antimicrobials such as carvacrol, citral, oregano, thymol  and thyme are reported. The employed 

strain of Listeria monocytogenes had a lower growth rate than the other tested microorganisms 

and the highest sensitiveness to antimicrobials used. In particular, the addition of thyme and 
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oregano, independently on the concentration used, caused a marked increase of the lag phase, 

while thyme and thymol were the most effective to reduce µ max. 

 

Table 7.2 a,b and c.  Gompertz parameters of E. coli (a) S. enteritidis (b) and L. monocytogenes (c), grown in the 

presence of different concentrations of carvacrol, 2-(E)-hexenal, citral, oregano, thymol  and thyme 

 

 

 

Gompertz parameters calculated according to Zwietering et al. (1990) for E. coli (2a), S. enteritidis (2b) and L. 

monocytogenes (2c) grown in the presence of different concentrations of natural antimicrobials. The reported values 

are average of three different replicates. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a
 Maximum growth extent. It corresponds to the asymptotic optical density attained as time increases indefinitely 

(final optical density). 
b
 The maximun specific growth rate as variation of O.D. 600 nm/h. 

c
 Lag Time in hours 

 

 

3.2 Cell fatty acid changes induced by sublethal concentrations of 2-(E)-hexenal, citral, 

carvacrol, thymol, thyme EO and oregano EO 

The presence of the tested substances affected both membrane associated and released fatty acids 

(FAs) of the tested strains. Table 7.3 reports the FAs composition of late exponential phase cells 

of L. monocytogenes Scott A in relation to the stress condition applied during the growth. The 

main FAs detected in the control cells were C15ante, C15iso, C17ante, C16:0 and C18:0. The 

addition of ethanol did not modify the FAs profile of cells. On the contrary, the addition of 

carvacrol modified the FAs profiles in relation to the concentrations used. In particular 

independently to the concentration employed, carvacrol induced the decrease of C17iso and 
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C17ante, associated to the increase of C14:0, C16:0, C16iso, and particularly of C18:1z9. The 

marked increase of C18:1z9 accounted for the increase of the unsaturation level (UL).  

The growth in the presence of citral (50, 85 and 125 ppm) did not affect significantly the 

percentage of C15iso, C15ante and C18:0, whereas a small increase of C16:0 and C16iso and a 

decrease of C17iso and C17 ante, compared to the control were observed. The UL increased with 

the increase of the concentration of citral in the growth medium. This result was due to the 

increment of the relative percentage of C14:1, C16:1, C18:2 and C18:1. The presence of oregano 

EO (30, 40 and 50 ppm) strongly affected FAs composition compared to the control. In fact, the 

unsaturated fatty acids (UFAs) % was at least two times higher than the control and all the 

detected UFA showed higher relative percentage with respect to the control cells. Moreover an 

increase of C16:0 and C18:0 was detected associated to and augmentation of  the CL. Thymol 

(40, 70 and 100 ppm) had a similar effect of oregano on the membrane FAs composition of the L. 

monocytogenes cells. The UL and the relative percentage of UFAs were similar to those of the 

control, while a marked decrease of C18:0 and an increase of C15ante were evident. An increase 

of the UL was detected for samples treated with 40 and 100 ppm of thyme EO, while in all the 

samples added with thyme, an increase of the CL was detected. This trend was mainly due to the 

increase of relative percentage of C18:0, in particular for the samples treated with 40 ppm of 

thyme, and of C17ante for the samples treated with 70 and 100 ppm of thyme EO. 

In Table 7.4 the relative percentages of free fatty acids (FFAs) in relation to the chemical stress 

conditions applied to L. monocytogenes are shown. The addition of ethanol did not affect UL 

compared to the control. Instead, an increase of C15iso, C15ante, C16iso and C17ante, associated 

to a decrease of C16:0 and C18:0 was observed. The growth in the presence of different 

concentrations of carvacrol increased the relative percentages of medium chain FAs (C10:0 and 

C12:0) and of C16iso. These changes were associated to the reduction of the CL. In case of the 

samples treated with the higher concentrations of carvacrol (35 and 50 ppm), also an increase of 

C18:2 and C18:1 and, consequently, of the UL, respect to the control, were noticed. Citral, 

independently on the concentration employed, caused an increase of the relative percentages of 

medium chain FAs. In samples treated with citral, respect to the control, an increase of C18:0, 

C18:1 and, in case of the treatment with 50 ppm, also of C18:2 were detected. Opposite trends 

were evident for C15ante, C17iso, C17ante and also for the CL. Oregano EO was the substance 

that mainly affected the FFAs composition. In fact, a marked increase of the relative percentages 
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of medium chain FAs, UFAs (C14:1, C16:1, C18:1 and C18:2) and C15iso, associated to a 

decrease of the saturated FAs C16:0, C18:0, C15ante and C17ante, was detected. 

As consequence, in all the samples treated with oregano EO, the UL was at least three times 

higher than that of the control, while the CL was significantly reduced. The samples treated with 

thymol showed different FAs composition in relation to the concentration added. An increase  of 

the relative percentages of C10:0, C12:0 and C14:0 was observed with the increase of the 

concentration of thymol.  The relative  percentages of these FAs were higher, with few 

exceptions,  with respect to the control. An opposite trend was observed for C15iso, C15ante, 

C16iso and C17ante. These FAs showed higher percentages, with the exception of C17ante, with 

respect to the control cells. In addition a decrease of their relative percentages was observed 

increasing the thymol concentration. The samples treated with 40 ppm of thymol showed a 

decrease of the UFAs and consequently of the UL. The other samples supplemented with thymol, 

showed a slight increase of the UL and of UFAs percentages. Moreover, in all the cells treated 

with thymol a decrease of C16:0 and C18:0, and, consequently, of CL was observed. The cell 

membrane FAs profiles showed an increase of C10:0, C12:0, C14:1, C15iso, C16iso, C16:1, 

C17iso, C17ante, C18:2 and C18:1, accompanied by a marked decrease of C16:0 and C18:0 

respect to the control, independently on thyme concentration. 

Table 7.3- Membrane fatty acid composition of Listeria monocytogenes Scott A in relation to the stress condition 

applied  

 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are 

means of three independent experiments. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a 
Unsaturation level calculated as [percentage monoenes+2(percentage dienes)+3(percentage trienes)]/100 

b
Mean chain length calculated as (FAP*C) (where FAP is the percentage of fatty acid and C the number of carbon 

atoms). 
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Table 7.4- Free fatty acid of Listeria monocytogenes Scott A in relation to the stress condition applied  

 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are 

means of three independent experiments. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a 
Unsaturation level calculated as [percentage monoenes+2(percentage dienes)+3(percentage trienes)]/100 

b
Mean chain length calculated as (FAP*C) (where FAP is the percentage of fatty acid and C the number of carbon 

atoms). 

 

The fatty acids composition of E. coli 555 is shown in Table 7.5. The main FAs detected in the 

control cells were C12:0, C14:0, C12cyc, C16:0, C17cyc, C18:2, C18:1z9, C18:1e9, C18:0 and 

C19cyc. In general, the growth in the presence of the tested antimicrobials (ethanol, 2-(E)-

hexenal, carvacrol, thymol, thyme EO and oregano EO) caused an increase of the UL, with 

exception of the samples added with 40 ppm of thymol. In particular, the samples treated with 

carvacrol, thyme EO and oregano EO showed an UL at least two time higher than control 

samples. Moreover, in all the treated samples, there was a marked decrease of the FAs C12:0 and 

C14:0, compared to the control. The decrease of medium chain FAs resulted in the increase of the 

CL in the treated samples. The samples supplemented with oregano showed also a marked 

increase of C12cyc and the UFAs (C16:1, C18:1z9, C18:1e9 and C18:2) associated to the  

decrease of the other branched FAs (C17cyc and C19cyc). In the samples added with thyme EO, 

an increase of the UFAs, with exception of C18:2 for samples added with 70 ppm of thyme, was 

detected. The same trend was evident for C16:0 and C18:0, except C18:0 for the samples added 

with 170 ppm of thyme. In addition a decrease of all the branched FAs (C12cyc, C17cyc and 

C19cyc) was observed. The samples added with carvacrol showed a marked  increase of UFAs 

and C18:0 relative percentages as well as a slight diminution of C16:0, C12cyc and C19cyc. On 
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the contrary, the relative percentages of C17cyc detected in the cell membranes of cell treated 

with carvacrol were similar to those of the control. The addition of different concentrations of 

thymol provoked a different FAs profiles in relation to the amount added. In fact, at the lowest 

concentration of thymol (40 ppm) the UL was quite similar to the controls; this was due to the 

diminution of the relative percentage of C16:1, C18:2 and C18:1z9 associated to an increase of 

C18:1e9. At the highest concentrations of thymol (70 and 100 ppm) a raise of the UL respect to 

the control was observed. Even if a slight diminution of C18:2 was detected, an increase of the 

relative percentage of C16:1 and C18:1e9 were found. All the samples treated with thymol, 

independently of the concentration added, showed the increase of C16:0 and C18:0 respect to the 

controls. In addition, a general decrease of C19cyc, respect to the control, was observed, while 

the relative percentage of C12cyc and C17cyc were quite similar to the control. The only 

exception was C12cyc in samples treated with 40 ppm of thymol which showed a marked 

decrease.  

Table 7.5- Membrane fatty acid composition of Escherichia coli 555 in relation to the stress condition applied  

 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are 

means of three independent experiments. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a 
Unsaturation level calculated as [percentage monoenes+2(percentage dienes)+3(percentage trienes)]/100 

b
Mean chain length calculated as (FAP*C) (where FAP is the percentage of fatty acid and C the number of carbon 

atoms). 

The addition of 2-(E)-hexenal caused a marked and general increase of C16:1 and C18:1e9. A 

slight increase of C18:2 and C18:1z9 was observed only in the samples supplemented with the 

lowest concentrations of 2-(E)-hexenal (100 and 170 ppm); at the highest concentration  of 2-(E)-
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hexenal (250 ppm) the trend was opposite. The relative percentage of C16:0 showed an evident 

rise compared to the controls in all the samples added with 2-(E)-hexenal. The same increase was 

detected for C18:0 in the samples added with 170 ppm of  2-(E)-hexenal, while no significantly 

differences respect to the control were found for the other concentrations used. A slight decrease 

or not significantly differences of the relative percentages of branched FAs, respect to the control, 

were detected in all the samples treated with 2-(E)-hexenal. 

In Table 7.6 the relative percentages of free fatty acids (FFAs) in relation to the chemical stress 

conditions applied to E. coli are shown. In general, the growth in presence of the tested molecules 

(ethanol, 2-(E)-hexenal, carvacrol, thymol, thyme EO and oregano EO) caused an increase of the 

UL, with exception of the samples treated with 50 ppm of oregano, and the lowest concentrations 

of 2-(E)-hexenal (100 and 170 ppm) employed. Only the samples supplemented with ethanol, 

thymol or 2-(E)-hexenal showed an increase of the CL respect to the controls. The samples added 

with oregano at the lowest concentrations used (50 and 80 ppm) had a lower CL, while the others 

did not show significantly differences. The relative percentages of medium length saturated FAs 

such as C12:0 and C14:0 in the treated samples did not show differences compared to the 

controls; the only exceptions were the samples added with oregano, 2-(E)-hexenal and thyme. In 

case of oregano a slight increase of C14:0 was detected, while an opposite trend was found when 

2-(E)-hexenal and thyme were added, independently on the concentration used. Regarding to 

C16:0, it represented the most present FA in FFAs profiles. In general, a raise in C16:0 relative 

percentages respect to the control, with the exception of the samples supplemented with thymol, 

and carvacrol at the lowest concentration, was detected. On the contrary, the relative percentages 

of C18:0 of the treated samples showed a decrease, in some cases remarkable. The only exception 

was represented by the samples added with thymol. In this sample the relative percentages of 

C18:0 were similar or higher than those of control cells. In all the treated samples, the UFAs 

C16:1 and C18:1e9 showed an increase; this was particularly evident for C16:1 in the sample 

supplemented with the highest concentrations of thyme and oregano. Regarding to C18:2 and 

C18:1z9, the relative percentages of the treated samples were lower or quite similar to those of 

the controls. About the branched FAs detected, the stresses applied caused an increase of C17cyc 

with the exception of the samples supplemented with ethanol or carvacrol, that showed relative 

percentages similar to the control cells. Contrarily, C19cyc in the treated samples decreased or 

was similar respect to the control. Only the samples added with thymol or 2-(E)-hexenal at 170 

ppm showed a slight increase of this FA. 
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Table 7.7 reports the FAs composition of late exponential phase cells of S. enteritidis in relation 

to the stress condition applied during the growth. The growth in the presence of sublethal 

concentrations of the tested molecules caused a modulation of the FAs composition. In particular, 

in the treated samples, a remarkable increase of UL respect to the controls was detected. The 

same trend, respect to the control, was noted for the CL, with exception of samples added with 

oregano; in these samples a decrease of the CL was found. Regarding to the UFAs, C16:1z9 and 

C18:1e9 showed a remarkable increase of the relative percentages in the presence of the added 

molecules. Contrarily, C18:1z9 in treated samples decreased or was similar to the control, with 

the exception of samples added with thyme at 50 ppm. Not significant differences were observed 

for medium length saturated FAs (C12:0 and C14:0). In fact, only the samples added with 70 

ppm of carvacrol, 100 ppm of thymol and oregano showed a marked increase of both C12:0 and 

C14:0. C16:0 represented the most present FA, and independently on the added antimicrobial, the  

relative percentages of the treated samples were similar or lower than the control. 

Table 7.6- Free fatty acid of Escherichia coli 555 in relation to the stress condition applied  

 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are 

means of three independent experiments. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a 
Unsaturation level calculated as [percentage monoenes+2(percentage dienes)+3(percentage trienes)]/100 

b
Mean chain length calculated as (FAP*C) (where FAP is the percentage of fatty acid and C the number of carbon 

atoms). 

 

The same trend was detected for C18:0, with the exceptions of the samples supplemented with 60 

ppm of thymol and 70 ppm of carvacrol. A different trend on the basis of the added molecules 
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was observed for the branched FAs. The addition of ethanol and thyme, independently on the 

concentration employed, caused a remarkable decrease of C12cyc associated to an increase of 

C17cyc and C19cyc. A decrease of the branched FAs was observed with the addition of 

carvacrol, independently on the concentration. The supplementation of thymol at different 

concentrations provoked a decrease of C12cyc and C17cyc, while an increase of C19cyc was 

detected in the samples supplemented with 40 and 70 ppm of thymol. In contrast to the other 

treatments, the addition of oregano, independently on the concentration, caused a marked 

increase of C12cyc associated to decrease of C17cyc and C19cyc. 

Table 7.7- Membrane fatty acid composition of Salmonella enteritidis E5  in relation to the stress condition applied  

 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are 

means of three independent experiments. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a 
Unsaturation level calculated as [percentage monoenes+2(percentage dienes)+3(percentage trienes)]/100 

b
Mean chain length calculated as (FAP*C) (where FAP is the percentage of fatty acid and C the number of carbon 

atoms). 

 

In Table 7.8 the relative percentages of FFAs in relation to the chemical stress conditions applied 

to S.enteritidis are shown. Also in this case the increase of UL of treated samples respect to the 

control, with the exception of samples added with ethanol and the lower concentrations of 

carvacrol (40 and 70 ppm), was evident. This change was linked to the increase, in the treated 

samples, of the relative percentages of the two main UFAs, C16:1z9 and C18:1e9. The only 

exceptions were the samples added with carvacrol at 40 and 70 ppm, that showed a similar 

percentages of C18:1e9 with respect to the control. The addition of carvacrol, independently on 

the concentration, provoked a decrease of C14:0, while the other treatments did not change 
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significantly the relative percentage of C14:0. Also the percentages of C12:0 in treated samples 

were not different to the ones of the control with the exception of the samples added with the 

lower concentrations of oregano (60 and 100 ppm), that showed a slight increase of this FA. With 

the addition of ethanol no changes in C16:0 percentages were detected, while a slight decrease of 

this FA was observed when oregano, thymol and thyme were added. On the contrary, the 

supplementation with carvacrol caused a remarkable increase of C16:0 relative percentages, 

compared to the control. The addition of carvacrol and oregano provoked a marked increase of 

the relative percentage of C18:0. Moreover the addition of carvacrol and oregano caused a 

remarkable decrease of the branched FAs (C17cyc and C19cyc) with respect to the control. 

Regarding the growth in the presence of thyme the relative percentages of branched FAs were 

quite similar or slightly lower compared to the control. When thymol was added at the lowest 

concentration (40ppm) an increase of branched FAs was detected, but increasing the thymol 

concentration a reduction of the relative percentages of these FAs was observed. 

Table 7.8- Free fatty acid of Salmonella enteritidis E5 in relation to the stress condition applied  

 

The fatty acid relative percentages were calculated with respect to the total fatty acid methyl esters. The results are 

means of three independent experiments. The coefficients of variability, expressed as the percentages ratios between 

the standard deviations and the mean values, ranged between 2 and 5%. 
a 
Unsaturation level calculated as [percentage monoenes+2(percentage dienes)+3(percentage trienes)]/100 

b
Mean chain length calculated as (FAP*C) (where FAP is the percentage of fatty acid and C the number of carbon 

atoms). 

 

3.3 PCA analyses of cell fatty acid changes  

To better show the relationships between membrane FAs composition and the EOs treatments, a 

principal component analysis (PCA) was carried out with the FA percentages detected in the 
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controls and treated strains. In fact, the PCA is a very powerful technique, able to emphasize 

sample clusters in a two-dimensional space (Cruz et al. 2013; Tabanelli et al. 2013). 

In Figure 7.1a are reported the PCA loading plot of FAs composition of late exponential phase 

cells of L. monocytogenes in relation to the stress condition applied during the growth. All the 

samples were mapped in the space spanned by the first two principal components PC1 versus 

PC2. PC1 accounted for 64.58% of the variability, and PC2 for 23.83%. The samples were 

grouped mainly on the basis of the added molecules independently on the concentrations added. 

Four clusters were evident: cluster 1 included all the samples added with thyme EO; in cluster 2 

were present the samples treated with oregano EO independently on its concentration; cluster 3 

grouped all the samples added with carvacrol and the sample added with 85 and 125 ppm of 

citral. Cluster 4 grouped the samples added with 1% ethanol, 50 ppm of citral and all the samples 

supplemented with thymol.  

Figure 7.1b reports the variable factor coordinates for the first two factors. Factor 1 was highly 

positively related with the FAs C15iso and C15ante, and highly negatively related with C18:1 z9 

and C16:1e9. Regarding factor 2, the main negative effects were determined by C17ante, C17iso 

and C18:0, while the main positive effects were related with C14:0, C14iso and C15iso. 
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Figure 7.1a,b Principal component analysis (PCA) loading plots of the two-first factors relative to the fatty acid 

membrane composition of Listeria monocytogenes Scott A in relation to the stress condition added (a) and variable 

factor coordinates for the two-first factors (b); 

 

In Figure 7.2a are reported the PCA loading plot of FAs composition of late exponential phase 

cells of E. coli in relation to the stress condition applied during the growth. In this case, PC1 

accounted for 45.22% of the variability, and PC2 for 21.20%. Five clusters were evident: cluster 

1 included all the samples treated with oregano EO; in cluster 2 the samples added with thyme 

EO, independently on the concentration, were present; cluster 3 grouped the samples added with 

carvacrol. In cluster 4 all the samples added with 2-(E)-hexenal and the sample supplemented 

with the highest concentration of thymol (100ppm) were present. Finally cluster 5 was 

characterized by the presence of samples added with the lower concentrations of thymol (40 and 

70 ppm) and the sample supplemented with 1% ethanol. However, the clusters 4 and 5 showed  

marked scatterings among the samples along the PC2 that explained the 21.2% of the variance.  

Figure 7.2b reports the variable factor coordinates for the first two factors. Factor 1 was highly 

positively related with C16:0, C14:0, C17cyc and C19cyc, and negatively related with the UFAs 

C16:1z9, C18:1z9 and C18:1e9. Regarding factor 2, the main negative effects were determined 
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by C14:0, C16:0 and C12cyc, while the main positive effects were related with C17cyc, C19cyc 

and the chain length (CL). 

  

 

Figure 7.2a,b- Principal component analysis (PCA) loading plots of the two-first factors relative to the fatty acid 

membrane composition of Escherichia coli 555 in relation to the stress condition added (a) and variable factor 

coordinates for the two-first factors (b); 

Cluster 4 
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The PCA loading plot of FAs composition of late exponential phase cells of S. enteritidis in 

relation to the stress condition applied during the growth are reported in Figure 7.3a. PC1 

accounted for 45.27% of the variability, and PC2 for 38.92%. The samples were grouped mainly 

on the basis of the supplemented compounds independently on the concentrations added. Three 

clusters were evident: cluster 1 included all the samples added with carvacrol and the sample 

treated with the highest concentration of thymol (100ppm); in cluster 2 the samples treated with 

thyme EO independently on the concentration and with the lower concentrations of thymol (40 

and 70ppm) were included; while cluster 3 was composed by the samples added with oregano 

EO. The sample added with 1% of ethanol did not grouped with any other sample. 

Figure 7.3b reports the variable factor coordinates for the first two factors. Factor 1 was 

positively related with C12cyc and C18:0, and negatively related with the UFAs C16:1z9, 

C18:1e9. Regarding factor 2, the main negative effects were determined by C18:0, C12cyc, 

C16:1z9 and C18:1e9, while the main positive effects were related with C17cyc, C19cyc and the 

CL. 
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Figure 7.3a,b- Principal component analysis (PCA) loading plots of the two-first factors relative to the fatty acid 

membrane composition of Salmonella enteritidis E5 in relation to the stress condition added (a) and variable factor 

coordinates for the two-first factors (b); 

3.4 Volatile molecule profile changes induced by sublethal concentrations of 2-(E)-hexenal, 

citral, carvacrol, thymol, thyme EO and oregano EO 

The supplementation of the growth media with the considered natural antimicrobials provoked 

marked modifications of the GC–MS-SPME profiles of the tested strains. As expected, the 

volatile profiles of the strains differed according to the species. With respect to the controls and 

the cultures added with ethanol, which were characterized by GC profiles with a lower number of 

metabolites, the exposure to the tested compounds resulted in the release of enhanced levels of 

several molecules. In particular, aldehydes, hydrocarbons, pyrazines and alcohols were the 

principal families of metabolites. As shown by Tables 7.9, 7.10 and 7.11, the supplementation of 

the growth medium with the tested compounds significantly affected the volatile molecule 

profiles of cells, In fact, the volatile molecule profiles of treated cells showed the presence of the 

supplemented antimicrobials and their detoxification compounds. The occurrence of the 2-(E)-

hexenal detoxification products, such as 2-(E)-hexen-1-ol, 2-(Z)-hexen-1-ol, 2 hexenoic acid, 

ethyl ester and butane, 1,1-diethoxy characterized the SPME-GC profile of E. coli subjected to 

the unsaturated aldehyde exposure; while the presence of citral detoxification molecules such as 

nerol, geraniol, β-citronellol, 5-hepten-2-one, 6-methyl and 1-pentene, 2,3-dimethyl characterized 

the volatile molecule profile of L. monocytogenes subjected to citral exposure. 
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Table 7.9 Major volatile compounds (expressed as peak area × 10
5
 detected for Listeria monocytogenes Scott a in relation to the different stress conditions 

 

The results are means of three independent experiments. The coefficients of variability, expressed as percentage ratios between the standard deviations and the mean 

values, ranged between 5 and 10%. 

- Undetectable level 
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Table 7.10- Major volatile compounds (expressed as peak area × 10
5
 detected for Escherichia coli 555 in relation to the different stress conditions 

 

The results are means of three independent experiments. The coefficients of variability, expressed as percentage ratios between the standard deviations and the mean 

values, ranged between 5 and 10%. 

- Undetectable level 
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Table 7.11- Major volatile compounds (expressed as peak area × 10
5
 detected for Salmonella enteritidis E5 in relation to the different stress conditions 

 

The results are means of three independent experiments. The coefficients of variability, expressed as percentage ratios between the standard deviations and the mean 

values, ranged between 5 and 10%. 

- Undetectable level 
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Thymol, carvacrol, caryophillene, p-cymene, γ-terpinene, 1-terpinen-4-ol and linalool 

characterized the volatilomes of cells treated with oregano and thyme EOs. On the other hand a 

wide literature shows that they are the main components of these essential oils (Daferera et al., 

2000). 

To better understand the effects of the tested antimicrobial on the volatilome of L. 

monocytogenes, E. coli and S. enteritidis exposed during the growth to different sub-lethal 

concentrations the chosen compounds, a principal component analyses (PCA) was performed on 

the volatile molecule profiles without considering the added antimicrobials and their 

detoxification products. Although the volatile molecule profiles differed with the species, the 

PCA results showed clearly that the antimicrobials used induced specific changes in the 

compound release independently on their concentrations. In fact, the samples grouped generally 

in relation to antimicrobial used independently on the species considered. More specifically, the 

PCA loading plots for the two main factors explaining the variability of volatile molecules of late 

exponential phase cells of L. monocytogenes in relation to the stress condition applied during the 

growth are shown in Figure 7.4. All the samples were mapped in the space spanned by the first 

two principal components PC1 versus PC2. PC1 accounted for 37.81% of the variability, and 

PC2 for 20.69%.  

 

Figure 7.4- Principal component analysis (PCA) loading plots of the two-first factors relative to the volatile 

molecules profile of Listeria monocytogenes Scott A in relation to the stress condition added (without considering 

the added antimicrobials and their detoxification products); 



215 
 

The samples were grouped mainly on the basis of the added molecules independently on the 

concentrations added. Four clusters were evident: cluster 1 included all the samples added with 

thymol; in cluster 2 the samples treated with oregano EO independently on its concentration were 

present; cluster 3 grouped all the samples added with citral. Cluster 4 grouped the samples added 

with 1% ethanol, carvacrol and thyme EO. The control sample was not included in any cluster.  

In Figure 7.5, the PCA loading plots relative to E. coli in relation to the stress condition applied 

during the growth are shown. In this case, PC1 accounted for 34.40% of the variability, and PC2 

for 23.89%. Also in this case four clusters were evident: cluster 1 including all the samples added 

with 2-(E)-hexenal; in cluster 2 grouping the samples treated with thyme EO independently on its 

concentration; cluster 3 clustering all the samples added with oregano and the samples 

supplemented with the highest concentrations of thymol and carvacrol (100ppm); cluster 4 

including the samples added with 1% ethanol, 40 and 70 ppm of carvacrol  and 40 ppm of 

thymol. The control and the sample added with 70 ppm of thymol were not included in any 

clusters.  

 

Figure 7.5- Principal component analysis (PCA) loading plots of the two-first factors relative to the volatile 

molecules profile of Escherichia coli 555 in relation to the stress condition added (without considering the added 

antimicrobials and their detoxification products); 
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In Figure 7.6, the PCA loading plots for S. enteritidis are reported. In this case, PC1 and PC2 

accounted for 50.10% and 20.80% of the variability, respectively. The samples were grouped 

mainly on the basis of the added molecules independently on the antimicrobial concentrations in 

two clusters. The first cluster included all the samples added with thymol and carvacrol; while the 

second grouped the samples treated with oregano and thyme EO independently on the 

concentration employed. The control sample and the sample added with 1% of ethanol were not 

included in any cluster.  

 

Figure 7.6- Principal component analysis (PCA) loading plots of the two-first factors relative to the volatile 

molecules profile of Salmonella enteritidis in relation to the stress condition added (without considering the added 

antimicrobials and their detoxification products); 

 

4. Discussion  

Microbial cells have adopted proficient defence systems to survive with a variety of 

physicochemical adverse conditions and to adapt to the environmental stresses. Particularly, 

essential for bacterial cells is to retain integrity and functionality of the membrane in response to 

environmental stresses. In presence of stresses, microbial cells respond by modulating the ratio of 

saturated to unsaturated FA, cis to trans unsaturation, branched to unbranched structure and type 

of branching and acyl chain length (Russel, 1984). The modulation mechanisms are different 
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depending to the species, the strains and the physiological state of the cells (Rock & Cronan, 

1996). 

In the considered microorganisms a uniform response was not recognized due to the fact that they 

belonged to different species. However, a general increase of the UL in presence of the tested 

molecules was observed independently on the species. In particular, a marked increase of C16:1 

Z9 and C18:1 E9 was observed in Gram-negative bacteria Salmonella enteritidis and Escherichia 

coli independently on the supplemented molecule and the concentration added; while in case of 

Gram-positive Listeria monocytogenes a remarkable increase of C18:1z9 and C14:1e11 was 

evident in all the treated samples. Therefore, in presence of environmental stresses is clear the 

role of specific unsaturated FAs. The crucial role of unsaturated FAs has been reported by several 

works and in response to several different stresses, including low or high growth temperatures, 

oxidative stress, acid stress and ethanol and salt addition stress and high pressure homogenization 

(Chatterjee et al. 2000; Streit et al. 2008; Montanari et al. 2010; Wu et al. 2012; Tabanelli et al. 

2013). Additionally, Patrignani et al. (2008) demonstrated the role of C18:1 and C18:2 in the 

resistance of some pathogenic species to antimicrobials, such as hexanal and (E)-2-hexenal. Di 

Pasqua et al. (2006) detected an increase of some UFAs and of the membrane fluidity,  in E. coli 

and B. thermosphacta grown in the presence of sublethal concentrations of thymol, limonene, 

carvacrol, eugenol and cinnamaldehyde. On the other hand, is well-documented that UFAs 

provide to the membrane a high level of fluidity (Bayer et al., 2000).  

The increase of trans isomers observed both in E. coli and S. enteritidis, seems to play a key role 

in presence of chemical stress. The findings of this study confirmed those of Patrignani et al. 

(2008), who found that the increase of C18:1trans both in E. coli and S. enteritidis cells exposed 

to ethanol, hexanal and 2-(E)-hexenal. In fact, the isomerization of double bonds is described to 

confer chemical stability and protection to the membrane against toxic compounds (Härtig et al., 

2005). Cyclization and isomerization of membrane FA was shown to be the main response 

mechanisms of Escherichia coli to acidic growth conditions (Gianotti et al. 2009).  

Regarding to cyclic fatty acids (CFA) in Gram-negative bacteria, a different modulation on the 

basis of the added molecule and the species was detected. The addition of thymol or carvacrol did 

not affect or caused a decrease of the detected CFA compared to the control, while the addition of 

oregano caused both in S. enteritidis and E. coli a marked increase of the relative percentages of 

C12cyc but coupled to a reduction of C17cyc and C19cyc; whereas the supplementation of thyme 

EO provoked in Salmonella a decrease of CFA in E. coli and a slight increase of C17cyc and C19 
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cyc relative percentages. Patrignani et al (2008) showed  general reduction of CFA in E. coli and 

S. enteritidis, growth in presence of sublethal concentrations of hexanal and 2-(E)-hexenal.  

It is well-documented in literature that the modulation of the synthesis of CFA is one of the main 

response of Gram-negative bacteria to adverse environmental conditions (Yuk & Marshall, 2004; 

Grogan & Cronan, 1997). The literature data shows that  they play a key role also in the stress 

response mechanisms of Gram-positive bacteria (Gomez-Zavaglia et al. 2000; Tabanelli et al. 

2013). In fact, Gomez-Zavaglia et al. (2000) reported that these CFAs enhanced the stress 

tolerance of L. delbrueckii subsp. bulgaricus, L. helveticus and L. acidophilus, as well as that the 

amount of CFAs in the membranes of numerous LAB increased under various stress situations 

(Guillot et al. 2000; Beal et al. 2001). Tabanelli et al. (2013) showed, studying the response 

mechanisms of probiotic lactobacilli to a sub-lethal treatment at high pressure homogenization, 

that the content of CFA in relation to pressure applied varied in relation to species and strain. The 

ability to maintain the proper membrane fluidity in response to changing environmental 

conditions is fundamental for cell surviving and adaptation. Regulation of membrane fluidity 

through fatty acid alteration is a way for the microbial membrane to restore the balance between 

bilayer and non-bilayer forming lipids when challenged with environmental stresses and to 

maintain proper membrane structure and function (Denich et al., 2003). 

Several authors (Fozo et al., 2004; Di Pasqua et al., 2006) have reported that increased of fatty 

acid length is another important membrane modification to rise survival in adverse environments 

such as acidic conditions or in presence of antimicrobial compounds. Also in our experimental 

conditions, an increase of the CL in all the treated of E. coli, S. enteritidis and L. monocytogenes 

was observed. These FA modifications probably compensated and overcame the fluidizing effect 

of the increase of unsaturation level. The only exceptions were represented by the cells of S. 

enteritidis supplemented with oregano, and L. monocytogenes supplemented with ethanol or 

thymol at different concentrations. However, Salmonella enteritidis cells supplemented with 

oregano showed with respect to the other treated samples were the highest concentration of C12 

cyc and  lower concentration of trans-isomers associated to the highest unsaturation level. In this 

case the fluidizing effects of UL is mainly compensated by the trans-UFA increase. In fact, trans 

UFA with their long linear structure behave more like saturated FA that lie in a linear manner, 

taking up less volume and creating a more ordered membranes (Diefenbach et al., 1992). This 

samples evidenced also a high level of cyclic FA. However, the literature data concerning the role 

of cyclic acid in the membrane fluidity are quite contrasting. In fact, some authors attributed to 
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the presence of a cyclopropane ring within membrane FA an increase of stability of the structural 

and dynamic properties of biological membrane and a decrease of fluidity (Grogan & Cronan, 

1997). On the contrary, other authors reported that cyclopropane fatty acids confer fluidity upon 

the cell membrane and assist in tolerance towards disturbance factors (Denich et al., 2003). In 

particular, Denich et al. (2003) showed as cyclic FA, analogously to branched FA, increase the 

fluidity of cytoplasmic membrane as they retain the ability to slide past each other as they cannot 

form crystalline structure. Also Gianotti et al. (2009) showed the fluidizing effect of cyclic FA  in 

E. Coli grown in acidic conditions.  

L. monocytogenes supplemented with ethanol or with different concentration of thymol  probably 

guaranteed the proper membrane fluidity also with minor CL because characterized by a minor 

UL with respect to the other treated samples. On the other hand the samples supplemented with 

ethanol and thymol cauterized together sharing the same response mechanisms. 

Also the GC-MS-SPME analyses showed that the supplementation of growth media with natural 

antimicrobials such as cital, 2-(E)-hexenal, carvacrol, thymol, oregano and thyme EO modified 

significantly the volatile molecule profiles of L. monocytogenes, E. Coli and S. enteritidis. In fact, 

a dramatic increase of nerol, geraniol,  2-(E)-hexen-1-ol, 2-(Z)-hexen-1-ol, deriving from the 

detoxification of citral and 2-(E)-hexenal, was observed.  On the other hand the PCA performed 

on the volatile molecule profiles without the from added antimicrobials and their detoxification 

products was able to group the samples mainly in relation the chemical stresses applied, 

suggesting specific response mechanisms for each microorganism and antimicrobial used. In fact, 

specific volatile profiles were recorded in relation to chemical stress applied and target 

microorganism. A uniform response was not evidenced probably due to differences in metabolic 

pathway of the microorganisms considered and the differences in their modulation in response to 

chemical-physical and environmental conditions. 

In conclusion the findings of this work contribute to the comprehension of the volatilome and 

membrane FA modulation mechanisms used by the different microorganisms (L. monocytogenes, 

E. coli and S. enteritidis) in relation to the exposure to sublethal concentrations of 2-(E)-hexenal, 

citral, carvacrol, thymol, oregano and thyme EO. However, to clarify if the changes in membrane 

FA compositions and volatilome induced by the natural antimicrobials considered are the 

consequences of or the trigger for stress-related gene expression a transcriptome analysis is 

necessary. 
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Abstract 

Essential oils are produced by plants as secondary metabolites for plant defense and some of 

these are well known for their antimicrobial properties. In vitro studies showed that thyme EOs 

and two of its main components, such as carvacrol and thymol, are characterized by a strong 

antimicrobial activity. Also volatile aldehydes such as 2-(E)-hexenal and citral, which are 

components of the aroma of many fruits and vegetables, are characterized by a strong  

antimicrobial activity both in model and food systems. Moreover, Essential oils and some of their 

components are generally recognized as safe (GRAS). Their application as food preservatives is 

very promising but it requires a deeper knowledge about the microorganisms they can target, 

their interaction with food matrix components and their modes of action. In fact, the mechanisms 

of action of most EOs is not or not fully understood. In order to more consciously use essential 

oils and their components in the food industry it is necessary to better comprehend the stress 

response induced by the addition of these natural antimicrobials on pathogenic and  spoilage 

microorganisms as well as on microorganisms used as starter or biocontrol agents in food 

products. In this context, the main aim of this work was to study the stress response to sublethal 

concentrations of thyme essential oil, carvacrol, citral and 2-(E)-hexenal in the two model 

bacteria, Escherichia coli and Lactococcus lactis using DNA microarray technology. The data 

obtained proved that the addition of sublethal concentrations of the natural antimicrobials 

employed here did not strongly affect global gene expression in L. lactis NZ9700 while these 

treatments caused a major response in E. coli K12 for all antimicrobials used. In the latter, the 

modification of the expression in genes involved in fatty acid biosynthesis suggestsing that the 

cytoplasmic membrane of E. coli is the major cellular target of essential oils and their 

components. 

 

1. Introduction 

Essential oils (EO) are aromatic and volatile compounds extracted from the whole plant as well 

as from plant material such as flowers, roots, leaves, seeds, peel, fruits and wood (Hyldgaard et 

al., 2012). They are produced by plants as secondary metabolites for plant defense and some of 

these EOs are well known for their antimicrobial properties (Fraenkel, 1959; Tajkarimi et al., 

2010). The historical use of EOs was in medicine, perfumery, cosmetics, and they are also added 
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to foods as part of spices or herbs. Generally EOs contain 20–60 constituents at different 

concentrations. EOs are characterized by two or three major components at fairly high 

concentrations (20–70%) compared to others components present in trace amounts (Bakkali et al. 

2009).  

In vitro studies showed that thyme EOs possess antimicrobial activity against a broad spectrum of 

Gram-negative or Gram-positive bacteria as well as yeasts and moulds (Solomakos et al., 2008; 

Burt, 2004; Bagamboula et al., 2004). Carvacrol is, in addition to thymol, one of the main 

components of thyme and oregano EOs; it is a phenolic monoterpenoid characterized by a strong 

antimicrobial activity against a wide range of pathogenic microorganisms (Bagamboula et al., 

2004; Zhou et al., 2007, Oussallah et al., 2007), fungi and insects (Kordali et al., 2008). 

Volatile aldehydes such as 2-(E)-hexenal and citral, which are components of the aroma of many 

fruits and vegetables, are characterized by a strong  antimicrobial activity both in model and food 

systems (Gardini et al., 2001; Lanciotti et al., 2004). In particular, antimicrobial action against 

bacteria, yeasts and moulds in different conditions has already been demonstrated for citral (3,7-

dimethyl-2-7-octadienal), an acyclic α,β-unsaturated monoterpene aldehyde that exists as the 2 

isomers geranial and neral and naturally occurs in citrus essential oils. (Belletti et al., 2007, 2008; 

Caccioni and Deans, 1993; Rivera-Carriles et al., 2005; Wuryatmo et al., 2003). 

Moreover, EOs and some of their components are generally recognized as safe (GRAS) (Kim et 

al., 1995; Burt, 2004; Moreira et al., 2005). In addition, some essential oils appear to exhibit 

particular medicinal properties that have been claimed to cure some organ dysfunctions or 

systemic disorders (Hajhashemi et al., 2003; Perry et al., 2003; Bakkali et al., 2008). 

EOs are used in the food industry as flavoring agents since several years. Because of the 

antimicrobial properties of some of the EOs (Dorman and Deans 2000; Cosentino et al., 2003; 

Smith-Palmer et al., 1998; Kalemba and Kunicka 2003), their application as food preservatives is 

very promising but it requires a deeper knowledge about the microorganisms they can target, 

their interaction with food matrix components and their modes of action. In fact, the mechanisms 

of action of most EOs is not or not fully understood (Hyldgaard et al., 2012).  

Given their structural differences and the presence of different functional groups the mechanism 

of the antibacterial activity of the various essential oil components will most likely not be the 

same and there may be several specific targets in the cell (Burt, 2004). Generally, it is accepted 

that EOs and their active molecules can lead to degradation of the cell wall, damage of the  

cytoplasmic membrane and membrane proteins, leakage of cellular contents, coagulation of 
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cytoplasm, depletion of the proton motive force, or more general perturbation of energy 

metabolism (Burt, 2004; Picone et al. 2013). Evaluating  the effect of carvacrol on the 

Escherichia coli 555 metabolome using 1H-NMR spectroscopy, Picone et al. (2013) noticed a 

shift from respiration toward fermentation as the concentration of  carvacrol increased. 

In order to more consciously use essential oils and their components in the food industry it is 

necessary to better comprehend the stress response induced by the addition of these natural 

antimicrobials on pathogenic and  spoilage microorganisms as well as on microorganisms used as 

starter or biocontrol agents in food products. It is well known that microorganisms respond to a 

wide range of stresses by regulating gene expression and protein profiles. Microorganisms come 

across several different stress conditions in foods, particularly minimally processed foods. Stress 

responses in pathogens can allow survival under more stringent conditions, augment resistance to 

consequent processing conditions, and/or increase virulence (Chung et al., 2006). Consequently, 

understanding the effects of stress on the physical tolerance of pathogens is important in order to 

evaluate and minimize the risk of food-borne illness (Chung et al., 2006). Moreover, stress 

responses in potential starter and/or biocontrol cultures may result in a decrease of survival and 

technological performances in food industry (Leroy & deVuyst, 2004; .Guchte et al., 2002). 

The main aim of this work was to study the stress response to natural antimicrobials in the two 

model bacteria, Escherichia coli and Lactococcus lactis using DNA microarray technology. The 

effects on whole-genome gene expression (the transcriptome) of E. coli and L. lactis of sub-lethal 

concentrations of thyme essential oil and some of the major components of essential oils such as 

carvacrol, citral and 2-(E)-hexenal have been studied in depth using home-made as well as 

commercial DNA microarray slides. 

 

2. Material and Methods 

2.1 Natural antimicrobials 

Citral, 2-(E)-hexenal, and carvacrol were purchased from Sigma-Aldrich (Milano, Italy). Thyme 

essential oil was obtained from Flora s.r.l. (Pisa, Italy) and first characterized by solid phase 

microextraction combined to gas-chromatography and mass-spectometry GC/MS-SPME to know 

the exact composition of the oil (Chapter 4). The natural antimicrobials were stored at 4 °C. 

 



225 
 

2.2 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

determination. 

For the determination of the MIC and MBC values of 2-(E)-hexenal, citral, carvacrol and thyme 

EO on the target microorganisms Escherichia coli K12 and Lactococcus lactis NZ9000, the 

method reported in Chapter 3 (paragraph 2.3) was used. Brain Heart Infusion (BHI, Oxoid Ltd. 

Basingstoke, United Kingdom) and M17(Oxoid Ltd., Basingstoke, England) +2% glucose broth 

(GM17) were used for E. coli and L. lactis, respectively. Three different inoculum levels (6, 4 

and 2 log cfu/mL) were used and MIC values were determined after 18 and 24h while MBC 

values were determined after 24h of incubation at 37
o
with shaking for E. coli and at 30

o 
for L. 

lactis (standing cultures). 

 

2.3Treatments of bacterial cultures with natural antimicrobial compounds 

The concentrations of 2-(E)-hexenal, citral, carvacrol and thyme EO employed on E. coli and L. 

lactis are reported in Table 8.1. Each compound was used at approximately ½ of the determined 

MIC values after 18h at an inoculum level of 2 log cfu/mL.  

Overnight grown cultures were inoculated at a level of about 6 log cfu/mL in 1.0 L flasks, 

containing 800 mL of BHI or GM17 broth, respectively, for E. coli and L. lactis. Immediately 

after inoculation, the samples were incubated at 37
o
 or 30°C for E. coli and L. lactis, respectively. 

The growth rate was monitored by measuring the optical density at 600 nm (OD600) every 0.5 h 

using a spectrophotometer UV-1204 (Shimadzu, Kyoto, Japan), until an OD600 of 0.4 was 

reached. Then, the microbial cultures where aliquoted into 50 mL tubes and supplemented with 

the selected concentration of each compound conveyed through 1% ethanol. The experiments 

were repeated three times on different days, and for each experiment three tubes for each 

condition were used. Bacterial cultures to which 1% of ethanol was added served as controls. 

Treatments were performed for 1h at 37°C or 30°C, respectively, for E. coli and L. lactis. From 

every condition, the cells from two samples of 50 mL were harvested by centrifugation (6,000/g 

for 5 min in an eppendorf centrifuge (Eppendorf, S.r.l., Hamburg, Germany) at room 

temperature. The pellets were immediately frozen in liquid nitrogen prior to storage at -80°C.The 

effects of the addition of the natural antimicrobials on the growth rate of the target 

microorganisms were monitored also after the treatment, by measuring the OD600every 0.5 h of 

one 50 mL culture for each condition. 
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Table 8.1- Compounds and relative concentrations employed on E. coli and L. lactis. The treatments were 

performed when the OD600 of the cultures reached 0.4, and for a duration of 1h. 

 

 

2.4 DNA microarray analyses 

Transcriptome analyses were performed essentially as described previously (Kuipers et al. 

(2002),,Ultimately, the labelled cDNAs of L. lactis NZ9700 were hybridized to full-genome 

DNA microarray slides of L. lactis MG1363(ref). The E.coli K12 cDNAs were hybridized to 

commercial E. coli gene expression 8×15K  microarray slides (Agilent Technologies, Palo Alto, 

CA, USA). After washing, the slides were scanned by using an Agilent G2565CA microarray 

scanner (Agilent Technologies). For the two bacterial species, each treatment condition was 

compared to the control. A biological replicate of each comparison as well as a dye swap were 

performed. DNA microarray slide pictures were analyzed using ArrayPro 4.5 (Media Cybernetics 

Inc., Silver Spring, MD). The Limma R package (Smyth, 2005) was used to analyse the DNA 

microarray data using the 1% ethanol control as the common reference. Fold changes were 

considered to be significantly changed when the Benjamini-Hochberg adjusted p-value is ≤ 0.1. 

 

 

2.5 Statistics tools 

An in-depth analysis of the transcriptome data was performed with a variety of bioinformatics 

tools from the MolGen GENOME2D website (http://genome2d.molgenrug.nl). In order to 

compare the different treatments, the fold-change (FC) values were used.  

 

 

 

 

 

Thyme EO Carvacrol Citral  2-( E )-hexenal 

 (ppm) (ppm) (ppm)  (ppm) 

 E. coli K12 125 60 500 200 

L. lactis NZ9700 12.5 25 150 100 
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3. Results and Discussion 

3.1 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

evaluation.  

The MICs and MBCs of citral, 2-(E)-hexenal, thyme EO or carvacrol against three density levels 

of the target microorganisms L. lactis NZ9700 and E. coli K12 were assessed after incubation at 

30°C and 37°C, respectively, (Table 8.2). Pronounced differences in the MICs and MBCs were 

observed in relation to the substances and the inoculum level used for both bacterial species. 

Citral showed a low antimicrobial effectiveness against E. Coli; in fact, the MIC values were 

always higher than 2000 ppm, independent of  the inoculation level. On the contrary, L. lactis 

MIC and MBC values ranged between 300 and 1200 ppm as a function of the initial inoculation 

level. In fact, the MIC after 18h and the MCB decreased from 1100 and 1200 ppm to 300 and 

700 ppm in cultures of 10
6
 and 10

2
 cfu/mL respectively. The effects of inoculation level on MIC 

and MBC values has been described previously (Carson et al., 1995; Lambert et al. 2001; Burt, 

2004). The bacteriostatic effect of citral was evident at the lowest inoculum level and with an 

inoculum of 2 log cfu/mL the MIC after 24h was 350 ppm higher than that after 16h. These 

different responses to essential oil or their components between the Gram-positive L. lactis and 

the Gram-negative E. coli has been reported in literature (Smith-Palmer et al., 1998; Marino et 

al., 2001; Delaquis et al., 2002). Gram-negative bacteria are generally more resistant to many 

compounds due to their outer membrane, which acts as an efficient permeability barrier against 

macromolecules and hydrophobic substances (Helander et al., 1997; Lanciotti et al., 2003; Chang 

& Cronan, 1999). The influence of the initial inoculum on MICs and MBCs was evident for the 

treatment with of 2-(E)-hexenal. This molecule showed a good efficacy against both target 

microorganisms. L. lactis and E. coli had MIC and MBC values ranging between 200-750 ppm 

and 350-600 ppm, respectively, depending on the initial inoculation level. 

Carvacrol showed the highest efficacy against both target microorganisms. However the MIC and 

MBC values of E. coli were not affected by the inoculation level. For L. lactis the MIC at18h and 

the MCB decreased from 125 ppm to 50 ppm with inoculation levels lowered from 10
6
 to 10

2
 

cfu/mL, respectively. Thyme EO strongly inhibited the growth of L. lactis. In fact, the MIC and 

MBC values were 25 ppm at the lowest inoculum level, while this value increased as the 

inoculum level increased. E. coli is more resistant to thyme EO with MIC and MBC values 
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ranging between 250 and 500 ppm in dependence of the inoculation level. MICs and MBCs 

values are reported in Table 8.2. 

 

Table 8.2-Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of citral,  2-

(E)-hexenal, carvacrol and thyme EO against E. coli K12 and  L. lactis NZ9700
a 

 

 
a
 MIC and MCB values are in ppm. 

 

3.2 Transcriptional analyses of L. lactis and E. coli treated with sub-lethal concentrations of 

natural antimicrobials 

The transcriptional response of L. lactis and E. coli to sub-lethal concentrations of the natural 

antimicrobials studied here was assessed by using a whole-genome DNA microarray approach. 

To reach this goal, each antimicrobial (2-(E)-hexenal, citral, carvacrol and thyme EO) was used 

at a concentration of about ½ of the MIC values for the two species. Treatments were performed 

for 1 h at 37 and 30°C for E. coli and L. lactis, respectively, on cells grown until was reached the 

middle of exponential growth phase, at an OD600 of 0.4 for both the strains. Since the 

antimicrobials were resuspended in 1% ethanol, the common reference was a bacterial culture 

treated with 1% ethanol. In order to verify the effects of the treatments on cell vitality, growth of 

the target microorganisms after the treatments was also monitored (Figure 8.1). 

In L. lactis, the addition of sub-lethal concentrations of natural antimicrobials slightly reduced the 

maximum growth rate compared to the control (1% ethanol addition). Only the addition of 150 

ppm of citral led to a marked reduction of the maximum growth rate The addition to E. coli, of 

1% ethanol or 200 ppm of 2-(E)-hexenal did not  affect the growth rate of the organism compared 

cell concentration

MIC/MBC MIC 18h (ppm) MIC 24h (ppm) MBC 24h (ppm) MIC 18h (ppm) MIC 24h (ppm) MBC 24h (ppm) MIC 18h (ppm) MIC 24h (ppm) MBC 24h (ppm)

Carvacrol 125 125 125 75 100 100 50 50 50

T-2-Hexenal 700 700 750 400 700 700 200 400 450

Citral 1100 1200 1200 900 1100 1200 300 650 700

Thyme oil 150 175 175 50 75 75 25 25 25

Lactococcus lactis  NZ9700

6 log cfu/ml 4 log cfu/ml 2 log cfu/ml

cell concentration

MIC/MBC MIC 18h (ppm) MIC 24h (ppm) MBC 24h (ppm) MIC 18h (ppm) MIC 24h (ppm) MBC 24h (ppm) MIC 18h (ppm) MIC 24h (ppm) MBC 24h (ppm)

Carvacrol 125 125 125 125 125 125 125 125 125

T-2-Hexenal 500 575 600 375 425 450 350 400 425

Citral >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000

Thyme oil 375 475 500 300 375 425 250 275 300

6 log cfu/ml 4 log cfu/ml 2 log cfu/ml
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to the control. On the contrary, carvacrol and, to a greater extent, thyme EO and citral strongly 

affected the maximum growth rate as well as the OD600 reached in stationary phase. 

 

  

Figure 8.1-Effect of natural antimicrobial addition on the growth of L.lactis (A) and E.coli (B). L. lactis 

NZ9700 growth after treatment with the indicated sub-lethal concentrations of natural antimicrobials. The control is 

represented by an L. lactis culture to which no addition was made(A). E. coli K12 growth after treatment with the 

indicated sub-lethal concentrations of natural antimicrobials. The control is represented by E. coli without any 

addition (B). The arrows indicate the point at which cultures were collected for micro arraying 

Growth was recorded as the change in OD600. 

DNA microarray analyses were done on parallel cultures after 1 h. of treatment with the various 

compounds. At that point in time relatively little effects were seen on the growth of both bacterial 

species relative to the 1% ethanol control. The DNA microarray results showing the  a 
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differences in the numbers of genes being  up- or down regulated of the two target 

microorganism and in the response to the antimicrobial added are presented in Table 8.2.  

 

Table 8.2-Number of significantly (p<0.1) up- or down regulated genes in  L. lactis NZ9700 (2A) and E. coli K12 

(2B)  

 

 

 

Independent from the treatment applied, the gene functional categories involved in the response 

of L. lactis to the employed compounds were the energy metabolisms, purine/pyrimidine 

metabolism and fatty acid and phospholipid metabolism. With regard to the gene functional 

categories involved in the E. coli response to the added antimicrobials: energy metabolism, 

purine/pyrimidine metabolism, fatty acid and phospholipid metabolism, protein synthesis and 

DNA metabolism were affected the most. 

The distribution of differentially expressed genes in relation to the treatment employed was 

examined to better understand the effect of each treatment (Figure 2). The Venn diagram 

obtained from the L. lactis data (Fig. 2 A) showed that most of the genes that were differentially 

expressed in the presence of one of the added antimicrobials were specific for that compound; 

only a few genes respond to the presence of each of two antimicrobials while no genes responded 

to each of  three antimicrobials. All-in-all, the addition of the different natural antimicrobials did 

not strongly affect gene expression in L. lactis NZ9700 compared to the common reference (to 

which 1% ethanol was added). In fact, with the exception of only a few genes, the fold changes 

for L. lactis genes were lower than 3.0. 

On the contrarily,  the addition of the compounds to E. coli seems to lead to a response in gene 

expression that is partially similar for all antimicrobials used. In fact, as is evident from Figure 

2A Citral 2-(E)-hexenal Carvacrol Thyme EO

UP 35 9 0 9

UNCHANGED 2337 2367 2349 2355

DOWN 7 3 30 15

Lactococcus lactis NZ9700

2A Citral 2-(E)-hexenal Carvacrol Thyme EO

UP 35 9 0 9

UNCHANGED 2337 2367 2349 2355

DOWN 7 3 30 15

Escherichia coli K12
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8.2 b, 70 genes are differentially expressed in all the four conditions. Moreover, approximately 

31% of the differentially expressed genes were common in at least three conditions.  

 

 

Figure 8.2-Distribution of differentially expressed genes in L. lactis (A) and E. coli (B) in relation to the natural 

antimicrobial used. The Venn diagram (Kestler et al., 2005) reports the numbers of unique and common 

differentially expressed genes 

The response of E. coli to sub-lethal concentrations of thyme EO and citral are particularly 

similar, the numbers of differentially expressed genes common to both conditions being around 
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45%. Moreover, the gene functional categories involved in the response were similar for each of 

to the added compounds (Table 8.3). 

The E. coli genes that are up- or down regulated at least 2-fold or more and with a p-value lower 

than 0.1 are reported in Table 8.3. 

 

Table 8.3- Selected genes up- or down regulated at least 2-fold in E. coli K12 after treatment with citral (500 ppm), 

2-(E)-hexenal (200 ppm), carvacrol (60ppm) and thyme EO (125 ppm).)
a 

 

  Fold Change Description 

Gene Carvacrol Thyme Citral 
2-(E)-

hexenal   

Ribosome           

b0911 (rpsA) 1.84 2.07 1.76   30S ribosomal subunit protein S1 [b0911] 

b3321 (rpsJ) 2.52 2.90 2.67 1.63 30S ribosomal subunit protein S10 [b3321] 

b3297 (rpsK) 1.62 2.00 1.65   30S ribosomal subunit protein S11 [b3297] 

b3342 (rpsL) 2.26 2.49 2.04 1.45 30S ribosomal subunit protein S12 [b3342] 

b3307 (rpsN) 1.96 2.18 1.84 1.41 30S ribosomal subunit protein S14 [b3307] 

b3165 (rpsO) 2.23 2.08 2.03   30S ribosomal subunit protein S15 [b3165] 

b2609 (rpsP) 1.73 2.04 1.90 1.49 30S ribosomal subunit protein S16 [b2609] 

b3311 (rpsQ) 3.02 2.84 2.64 1.56 30S ribosomal subunit protein S17 [b3311] 

b4202 (rpsR) 1.84 2.48 1.88   30S ribosomal subunit protein S18 [b4202] 

b3316 (rpsS) 2.21 2.48 2.07 1.35 30S ribosomal subunit protein S19 [b3316] 

b0169 (rpsB) 2.20 2.23 1.37 2.14 30S ribosomal subunit protein S2 [b0169] 

b3065 (rpsU) 1.82 2.35 2.22 1.50 30S ribosomal subunit protein S21 [b3065] 

b3303 (rpsE) 2.05   1.90 2.15 30S ribosomal subunit protein S5 [b3303] 

b4200 (rpsF) 1.64 2.23 1.93   30S ribosomal subunit protein S6 [b4200] 

b3341 (rpsG) 1.68 2.09 1.85 1.50 
30S ribosomal subunit protein S7, initiates 
assembly [b3341] 

b3230 (rpsI) 2.33 2.09 2.65   30S ribosomal subunit protein S9 [b3230] 

b1717 (rpmI) 2.61   2.00   50S ribosomal subunit protein A [b1717] 

b3985 (rplJ) 1.98 2.28 2.02 1.48 50S ribosomal subunit protein L10 [b3985] 

b3983 (rplK) 1.94 2.22 1.91   50S ribosomal subunit protein L11 [b3983] 

b3231 (rplM) 3.05 7.35 2.78   50S ribosomal subunit protein L13 [b3231] 

b3313 (rplP) 1.95 2.36 1.96   50S ribosomal subunit protein L16 [b3313] 

b3294 (rplQ) 1.84 2.05 1.61 1.46 50S ribosomal subunit protein L17 [b3294] 

b3304 (rplR) 2.22 2.90 1.92 1.46 50S ribosomal subunit protein L18 [b3304] 

b3317 (rplB) 1.79 2.02 1.77   50S ribosomal subunit protein L2 [b3317] 

b1716 (rplT) 2.00   2.18 2.47 
50S ribosomal subunit protein L20, and regulator 
[b1716] 

b3186 (rplU) 2.66   2.55 2.68 50S ribosomal subunit protein L21 [b3186] 

b3318 (rplW) 2.07   2.06 2.37 50S ribosomal subunit protein L23 [b3318] 

b2185 (rplY) 1.83 2.22     50S ribosomal subunit protein L25 [b2185] 
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b3185 (rpmA) 2.27 2.75 2.24   50S ribosomal subunit protein L27 [b3185] 

b3312 (rpmC) 2.13 3.13 2.45 1.42 50S ribosomal subunit protein L29 [b3312] 

b3320 (rplC) 2.19 2.54 2.31 1.45 50S ribosomal subunit protein L3 [b3320] 

b3302 (rpmD) 1.78 2.09 1.82   50S ribosomal subunit protein L30 [b3302] 

b1089 (rpmF) 2.71 2.33 2.63   50S ribosomal subunit protein L32 [b1089] 

b3319 (rplD) 2.39 2.84 1.92   
50S ribosomal subunit protein L4, regulates 
expression of S10 operon [b3319] 

b3308 (rplE) 1.80 2.08 1.73   50S ribosomal subunit protein L5 [b3308] 

b3305 (rplF) 1.95 2.19 1.86   50S ribosomal subunit protein L6 [b3305] 

b3986 (rplL) 1.90 2.43 2.11   50S ribosomal subunit protein L7/L12 [b3986] 

b4203 (rplI) 1.82 2.13 2.04   50S ribosomal subunit protein L9 [b4203] 

            

Fatty acid metabolism         

b1241 (adhE) 2.06 1.27 1.74 1.66 

CoA-linked acetaldehyde dehydrogenase and iron-
dependent alcohol dehydrogenase; pyruvate-
formate-lyase deactivase [b1241] 

b0356 (frmA)     2.01 3.57 
alcohol dehydrogenase class III; formaldehyde 
dehydrogenase, glutathione-dependent [b0356] 

b4042 (dgkA) 1.76 2.18 1.83 1.35 diacylglycerol kinase [b4042] 

b3926 (glpK) -1.47     -2.06 glycerol kinase [b3926] 

b2243 (glpC) -1.60 -1.66   -3.34 sn-glycerol-3-phosphate dehydrogenase [b2243] 

b3426 (glpD) -1.18     -2.89 sn-glycerol-3-phosphate dehydrogenase [b3426] 

b1800 (yeaU)       3.08 putative tartrate dehydrogenase [b1800] 

            

Energetic metabolism         

b2297 (pta) 2.00   2.04 1.75 phosphotransacetylase [b2297] 

b1651 (gloA)   1.72   2.87 lactoylglutathione lyase [b1651] 

b3403 (pck) -1.64 -1.47   -2.13 phosphoenolpyruvate carboxykinase [b3403] 

b0113 (pdhR) 1.51 2.04     
transcriptional regulator for pyruvate 
dehydrogenase complex [b0113] 

b0114 (aceE) 1.45 2.26     pyruvate dehydrogenase [b0114] 

b0115 (aceF) 1.66 2.20     pyruvate dehydrogenase [b0115] 

b2579 (yfiD) 1.57 1.56 1.44 2.58 putative formate acetyltransferase [b2579] 

b0824 (ybiY) -1.94 -1.98   -2.39 
putative pyruvate formate-lyase 2 activating 
enzyme [b0824] 

            

Purine, Pyrimidine metabolism and transcription 

b2146 (yeiT) -1.75 -1.72   -2.38 putative oxidoreductase [b2146] 

b3011 (yqhD)     5.13 8.36 putative oxidoreductase [b3011] 

b3295 (rpoA) 1.82 2.01 1.71 1.60 RNA polymerase, alpha subunit [b3295] 

b4238 (nrdD)       2.82 
anaerobic ribonucleoside-triphosphate reductase 
[b4238] 

b4244 (pyrI) -2.10   -2.04 -2.05 
aspartate carbamoyltransferase, regulatory 
subunit [b4244] 

b1207 (prs)       -2.03 phosphoribosylpyrophosphate synthetase [b1207] 

b2684 (mprA)   1.50 1.50 2.45 regulator of plasmid mcrB operon [b2684] 
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Hypothetical proteins         

b1088 (yceD) 1.79 2.13 2.14 1.38 orf, hypothetical protein [b1088] 

b1112 (bhsA)       5.51 orf, hypothetical protein [b1112] 

b1179 (ycgL) 2.03       orf, hypothetical protein [b1179] 

b1654 (grxD)     2.13 2.53 orf, hypothetical protein [b1654] 

b3012 (dkgA)     1.36 2.25 orf, hypothetical protein [b3012] 

b3207 (yrbL) 1.27 1.25 2.16   orf, hypothetical protein [b3207] 

b3238 (yhcN) 1.73   2.41 7.04 orf, hypothetical protein [b3238] 

b3914   4.29 3.82   orf, hypothetical protein [b3914] 

b4050 (pspG)   2.47 1.80   orf, hypothetical protein [b4050] 

            

heat shock, acid shock, proteasesand detoxification and protection 

b1597 (asr) 2.20 5.01 2.10   acid shock protein [b1597] 

b0605 (ahpC)       2.18 
alkyl hydroperoxide reductase, C22 subunit; 
detoxification of hydroperoxides [b0605] 

b0606 (ahpF) 1.69 2.80 2.03 1.49 
alkyl hydroperoxide reductase, F52a subunit; 
detoxification of hydroperoxides [b0606] 

b3686 (ibpB)   7.15 10.72   heat shock protein [b3686] 

b3687 (ibpA)   2.35 3.43   heat shock protein [b3687] 

b1305 (pspB)   2.92 2.19   phage shock protein [b1305] 

b1307 (pspD)   2.57 1.63   phage shock protein [b1307] 

b1304 (pspA)   4.10 2.39   
phage shock protein, inner membrane protein 
[b1304] 

b1306 (pspC)   2.05 1.64   
phage shock protein: activates phage shock-
protein expression [b1306] 

b0161 (degP) 1.59 2.05 2.26   
periplasmic serine protease Do; heat shock protein 
HtrA [b0161] 

b1531 (marA)   2.07 2.76 3.80 
multiple antibiotic resistance; transcriptional 
activator of defense systems [b1531] 

            

Transport/binding proteins       

b1247 (oppF) 1.73 1.72   2.05 
homolog of Salmonella ATP-binding protein of 
oligopeptide ABC transport system [b1247] 

b1244 (oppB)       2.12 oligopeptide transport permease protein [b1244] 

b0904 (focA) 1.97   1.83 2.32 probable formate transporter [b0904] 

            

Outer and inner cell membrane       

b3035 (tolC)     5.96   

outer membrane channel; specific tolerance to 
colicin E1; segregation of daughter chromosomes 
[b3035] 

b0814 (ompX) 2.58 1.60 2.02 2.36 outer membrane protein X [b0814] 

b2240 (glpT) -1.57     -2.14 sn-glycerol-3-phosphate permease [b2240] 

b0411 (tsx)   2.07 1.78   
nucleoside channel; receptor of phage T6 and 
colicin K [b0411] 

            

Amino acid metabolism         
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b3708 (tnaA)       -2.12 tryptophanase [b3708] 

b2957 (ansB)       -2.16 periplasmic L-asparaginase II [b2957] 

b1416       2.36 
glyceraldehyde-3-phosphate dehydrogenase 
[b1416] 

            

Secondary metabolisms         

b2153 (folE)   2.23 1.71 1.22 GTP cyclohydrolase I [b2153] 

b4240 (treB) -1.56     -2.02 PTS system enzyme II, trehalose specific [b4240] 

            

Replication and repair         

b3179 (rrmJ)   2.43 2.57   cell division protein [b3179] 

b4201 (priB) 1.64 2.30 1.76 1.34 primosomal replication protein N [b4201] 

            

Other functions         

b0701 1.62 2.13 1.72   protein in rhs element [b0701] 

b1902 (ftnB) -1.67 -1.70   -2.09 ferritin-like protein [b1902] 

b0849 (grxA)   2.85 2.48   
glutaredoxin1 redox coenzyme for glutathione-
dependent ribonucleotide reductase [b0849] 

b3927 (glpF) -1.52     -2.39 facilitated diffusion of glycerol [b3927] 

b1743 (spy)   2.17 2.60   
periplasmic protein related to spheroblast 
formation [b1743] 

b1454 (yncG)       -4.19 putative transferase [b1454] 

b2607 (trmD) 1.70 2.18 1.61 1.42 tRNA methyltransferase; tRNA [b2607] 

 

a
, p-values are lower than 0.1 

 

After all the E. coli treatments, an increase in expression in ribosomal subunit genes (rps, rpm 

and rpl) was evident. As can be seen in Figure 1b, the addition of the antimicrobials did not cause 

a growth arrest. Several authors have reported up- or down regulation of these genes under 

various stress condition. Bailey et al, (2009) observed a decrease in the expression of ribosomal 

subunit genes after an exposure of 30 min to triclosan. Downregulation of ribosomal protein 

genes (rpl and rps) was apparent in Campylobacter jejuni, after 15 min of exposure to osmotic 

stress, coincide with a temporary growth arrest, while the same genes later returned to steady-

state or greater expression levels with the resumption of growth( Cameron et al, 2012). In fact, in 

our case, as possible to see in figure 1b, the addition of the antimicrobials did not cause an arrest 

of growth of E. coli (Fig 1B). 

The perturbation in genes involved in fatty acids (FAs) biosynthesis, confirms what has been 

reported in Chapter 7. It is well known that one of the main targets of essential oils is the 

cytoplasmic membrane (Burt, 2004; Di Pasqua et al., 2007; Nazzaro et al., 2013). As reported in 
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Chapter 7, the addition of carvacrol, thyme EO and citral caused an increase of the unsaturation 

level as well as of trans-isomers in E. coli faty acids. The crucial role of unsaturated fatty acids 

has been reported in other studies and in response to several different stresses, including low or 

high growth temperatures, oxidative stress, acid stress and ethanol and salt addition stress the 

stress evoked by high pressure homogenization (Chatterjee et al. 2000; Streit et al. 2008; 

Montanari et al. 2010; Wu et al. 2012; Tabanelli et al. 2014). Moreover, the effect of essential 

oils and their components on the modulation of the synthesis of cyclic fatty acids is well 

documented in Gram-negative bacteria (Yuk and Marshall, 2004; Grogan and Cronan, 1997). 

Several authors (Fozo et al., 2004; Di Pasqua et al., 2006) have reported that also the increase in 

the length of fatty acids is another important membrane modification that might raise the survival 

in adverse environments e.g., of low pH or containing antimicrobial compounds. 

The addition of natural antimicrobials also affected genes involved in energy metabolism. Picone 

et al. (2013) observed a shift from respiration to fermentation, upon carvacrol exposure. The 

inhibition of respiration in E. coli, together with K
+
 leakage, was already observed by Cox et al. 

(1998) following to the exposure to sublethal concentrations of  tea tree essential oil. 

Interesting by we observed the upregulation of the ompX gene in E. coli treated with all the tested 

compounds (Table 8.3). The product of this gene seems to play a key role in the downregulation 

of porins in response to environmental stresses that induce its overproduction. On the other hand 

the effect of essential oils on the outer membrane of Gram-negative bacteria is well documented. 

Helander et al. (1998) showed the effect of essential oils on outer membrane permeability in 

Gram-negative bacteria: evidencing that monoterpenes components of essential oils such as 

carvacrol and thymol caused the disintegration of the outer membrane and release of outer 

membrane-associated material from the cells to the external medium. 

In conclusion, it appears that the addition of sublethal concentrations of the natural antimicrobials 

employed here did not strongly affect global gene expression in L. lactis NZ9700 while these 

treatments caused a major response in E. coli for all antimicrobials used. In the latter, the 

modification of the expression in genes involved in fatty acid biosynthesis is in agreement with 

what is reported in literature and in Chapter 7 of this thesis and suggests that the cytoplasmic  

membrane of E. coli is the major cellular target of essential oils and their components. 
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CONCLUSIONS 
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The results obtained showed the beneficial effects of natural antimicrobials supplemented 

in dipping or washing phases for the improving of minimally processed fruits and vegetable 

safety and shelf-life. In fact, the addition of hexanal, citral and 2-(E)-hexenal, in sliced 

apples dipping solution, as well as thyme and oregano essential oils in lamb’s lettuce 

washing solution, allowed to improve the shelf-life and safety of these kind of products 

packaged in ordinary atmosphere. In addition the results obtained showed that the shelf-life 

of minimally processed apples and lamb’s lettuce can be further prolonged by combined 

use of natural antimicrobials in the dipping solution and packaging in modified atmosphere. 

Particularly, among the tested natural antimicrobials, 2-(E) hexenal in combination with 

citral or hexanal allowed the prolongation of apples shelf-life up to 35 days, without 

detrimental effects on safety and with a good retention of quality parameters such as colour, 

texture and volatile molecules profiles. Moreover, the addition of thyme essential oils in 

lamb’s lettuce washing solution, after an optimization of the washing process and the use of 

an artificial modified atmosphere, permitted to prolong the shelf-life up to 14 days, without 

detrimental effects on the microbiological quality, the color and turgidity of products in 

comparison with chlorine. 

Regarding the introduction of biocontrol agents in minimally processed products, the use of 

the strains Lactobacillus plantarum CIT3 and V7B3 respectively on apples and lettuce 

provided encouraging results concerning the safety and shelf life of minimally processed 

products considered. The results obtained are also more interesting because lactic acid 

bacteria are recognized as GRAS (Generally Recognized As Safe). The results also 

highlighted the importance of isolation and selection of biocontrol agents from commercial 

products of the same type. In fact, the good performance of the strains used was not only 

against deliberately inoculated pathogens, but also against spoilage microorganisms, these 

abilities have to be attributed to the capability of the strains to colonize the product and 

survive under stringent conditions of refrigerated storage. Also important is the capability 

of biocontrol agents to not affect the quality indexes of the product. The beneficial effects 

obtained by the use of the selected biocontrol agents were further increased combining 

them with natural antimicrobials. Also the use of the nisin producing L. lactis strain as 

biocontrol agent alone or in combination with natural antimicrobials showed enhanced 

potentials to increase the shelf-life and the safety of minimally processed apples and lamb’s 

lettuce. Therefore, the selected biocontrol agents, and in particular its combination with 
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natural antimicrobials, may represent a good strategy to increase the safety and the shelf-

life of minimally processed fruits and vegetables. Furthermore, since important health 

properties have been attributed to lactic acid bacteria, their use could also contribute to 

confer specific healthy properties to these products. However, the introduction of 

biocontrol agent can be further optimized, focusing on the level and mode of inoculation 

and to limit the negative effects observed on the color parameters. 

Since the lack of knowledge of cell targets of essential oils represent one of the most 

important limit to the use of this molecules at industrial level, the results of this thesis may 

represent an useful tool to improve the knowledge about it. In fact, the results obtained 

evidenced that the tested molecules induced noticeable modifications of membrane fatty 

acid profiles and volatile compounds produced during the microbial growth. Although 

specific differences in relation to the species considered were identified, the tested 

compounds induced a marked increase of some membrane associated fatty acids, 

particularly unsaturated fatty acids, trans-isomers, and specific released free fatty acids. 

Also the trascriptome analyses of E.coli and Lc. Lactis cells, showed that the addition of 

sublethal concentrations of the natural antimicrobials employed here did not strongly affect 

global gene expression in L. lactis NZ9700 while these treatments caused a major response 

in E. coli K12 for all antimicrobials used. In the latter, the modification of the expression in 

genes involved in fatty acid biosynthesis suggesting that the cytoplasmic membrane of E. 

coli is the major cellular target of essential oils and their components. 

Other regulation mechanisms, independently on the substances considered, involved in the 

stress response to the employed molecules were the energy metabolisms, purine/pyrimidine 

metabolism, fatty acid and phospholipid metabolism, protein synthesis and DNA 

metabolism. The comprehension of microbial stress response mechanisms can contribute to 

the scaling up of natural antimicrobials and bio-control agents at industrial level. 
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