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Introduction

Sometimes, certain peculiar behaviours hint a connection might exist to link theories

apparently disjointed. Several examples have been provided by features which are en-

countered both in gauge theories, such as QCD, and string theories set on curved man-

ifolds. An intriguing instance comes from the large spin properties of certain classes

of gauge-invariant operators in QCD [4], the Wilson operators, made out of elementary

quarks and gluons, and in addiction an arbitrary number of covariant derivatives. Obvi-

ously QCD is not scale independent, confinement being a self-evident symptom of that:

nonetheless, due to asymptotic freedom, it can be treated as a conformal field theory

in high energy processes, such as deep inelastic scattering. Hence the computation of

conformal dimensions ∆ for Wilson operators reveals a characteristic logarithmic scaling

behaviour when their Lorentz spin s takes a very large value (and correspondingly so

the number of derivatives does) [5]:

∆− s = 2 Γcusp(αs) ln s+ . . . ,

where the cusp anomalous dimension Γcusp(αs), encoding the dependence on the cou-

pling, emerges from calculations about polygonal light-like Wilson loops with cusps [6].

The same feature also arises in supersymmetric gauge theories and toy models for QCD:

maybe the most renowned and studied example is provided by the N = 4 Super Yang

Mills.

In view of the AdS/CFT correspondence [2][3], Gubser, Klebanov and Polyakov [21] pro-

posed a classical folded string configuration, laid on a subspace of AdS5, which might be

able to account for the logarithmic scaling. The GKP string, named after them, is then

intended to offer a gravity theory counterpart to the above mentioned gauge theories, at

least when studying some selected aspects such as the large spin scaling behaviour, as,

in fact, the energy of the GKP string is governed by the leading order

E − S ∼ lnS .

Anyway, the AdS/CFT duality claims that aspects of the gauge theory, which are suit-

able to a perturbative analysis, turn out to match strongly coupled regimes in the string

theory, and vice-versa, so that, as a consequence, there is lack of overlaps to verify and

improve the conjectured correspondence. Non-pertubative methods are thus needed to

throw insight into regions of the theories, otherwise inaccessible.

The pursuit of this script mainly concerns the exploration of some aspects of the

supposed duality, connecting a string theory set on the AdS5 × S5 background and
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the N = 4 Supersymmetric Yang-Mills theory, endowed with the gauge group SU(N).

Remarkably, there is strong evidence that both these theories are integrable [11][28],

so that a wide set of computation technologies are available to shed light also to non-

perturbative aspects. In particular, when the number of colours N is extremely large,

so that only planar Feynman diagrams are considered, the dilatation operator in N = 4

SYM has been proven [28] (at least under some restrictions) to coincide with the hamil-

tonian of the spin chain (indeed, an integrable model), first introduced by Heisenberg in

order to explain phenomena of ferromagnetism: gauge-invariant operators are then set

to correspond to excitations over the ferromagnetic vacuum, whereas their anomalous

dimensions shall match the eigenvalues of the spin chain hamiltonian, and therefore arise

from its diagonalization by making use of Bethe Ansatz and related computation tech-

niques. This layout has been extensively and deeply studied in literature, and, moreover,

the role of its stringy counterpart, via AdS/CFT, is embodied by the string configuration

proposed by Berenstein, Maldacena and Nastase (BMN) [20].

In what follows instead, the GKP classical solution will be taken into account, as a

ground state, over which excitations are risen. This different choice of the stringy vac-

uum must thus reflect into a novel ground state for the spin chain: as the interest lies

on the large spin limit for the GKP string, the more suitable option is provided, as it

will be explained, by an antiferromagnetic vacuum. The powerful methods furnished by

integrability allow to determinate the dynamics of excitations over the antiferromagnetic

vacuum, and, since they do correspond to actual particles in N = 4 SYM, at the same

time the scattering matrices and dispersion laws of the latters are obtained.

While the energies of the particles promptly lead to the spectrum of anomalous dimen-

sion for the gauge invariant operators, the scattering matrices represent the starting

point to compute the polygonal Wilson loops in N = 4 SYM, upon calculating the

pentagonal amplitudes in which they may be decomposed [46].

A further gauge/string duality will be examined in this text, namely the correspon-

dence relating a three dimensional supersymmetric conformal gauge field theory, that

is N = 6 Chern-Simons Matter theory (else ABJM) [26], and a string theory living on

the AdS4 × CP3 background. More precisely, the role of GKP string in this (conjec-

tured) correspondence will be highlighted, by exploiting again the chances offered by

the integrability dwelling in N = 6 Chern-Simons [51][52]. In the large spin limit, the

whole gauge theory is led to a low-energy reduction (corresponding to the Bykov model

[50], on the string side), which reveals astonishing resemblances with the O(6) non-linear

σ-model: remarkably, the O(6) σ-model governs the dynamics of another known gauge

theory, namely the N = 4 SYM, in the (low-energy, high spin) Alday-Maldacena de-

coupling limit [38]. Actually, this fact should be not quite a surprise, as it simply joins

several further hints [62][58] that a relation between N = 6 Chern-Simons and N = 4

SYM may exist.

The text is organized as follows. The first chapter provides an essential introduction

to spin chains and Bethe Ansatz and moreover a short summary of tools, stemming from
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integrability, which will be employed in subsequent chapters. Strictly speaking, those

computational tools only represent a simplified version of the techniques actually used,

nevertheless even a sketchy outline might be helpful in highlighting some interesting

physical aspects underneath them.

The second chapter contains a very brief review of topics about the AdS5/CFT4 cor-

respondence and the role assumed by integrability: this quick survey is just aimed to

contextualize the next two chapters within the AdS/CFT framework.

The core of the work consists in the third and fourth chapters, which are written after

[47], along with some (up to now) unpublished material. In the third chapter the exci-

tations over the antiferromagnetic (GKP) vacuum will be introduced and examined, so

to find the all loop expressions for the S-matrices governing their scattering 1: the task

is achieved upon turning an infinite set of Asymptotic Bethe Ansatz equations [30] to a

finite number on non-linear integral equations (NLIE), according to [34][37]. Remark-

ably, all the processes can be written in terms of the fundamental scalar-scalar scattering

phase.

In the fourth chapter, the scattering matrices, previously found, are employed as build-

ing blocks to construct the set of complete Asymptotic Bethe Ansatz (ABA) equations

at all loops: from those equations, the dispersion laws of the particles are achieved.

The fifth chapter traces [27], in order to show a few results about the AdS4/CFT3 dual-

ity studied on the GKP vacuum, and in particular a low-energy reduction is taken into

account: moreover, the low-energy reductions of N = 6 Chern-Simons and N = 4 SYM

are compared, so that some peculiar common features can be displayed (even pictori-

ally).

Finally, two appendices gather some useful formulae employed throughout the maintext.

1More precisely, the scalar factor in front of the matricial structure is computed.
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Chapter 1

Ideas and tools of integrability

1 Integrability in a nutshell

This introductory chapter is intended to display a set of computational technologies,

exploited to yield most of the results exposed throughout the rest of the text. Although

these methods are outlined only in a sketchy form, far from being exhaustive of the

subject, and moreover the achievements in the following rely on much more involved

refinements on these basic tools, nevertheless it turns out instructive to portray the

main steps and point out a few interesting aspects of the techniques hereafter.

Almost all the statements contained in the present chapter are referred to (quantum)

integrable models set in two dimensions (precisely one time and one space direction).

Quantum integrability means that the model is endowed with an infinite number of

conserved charges in involution: say Ĥ the hamiltonian operator and be {Qi} an infinite

set of Hermitian operators associated to Noether charges, i.e.
[
Ĥ, Q̂i

]
= 0 , integrability

arises whenever it holds true [
Q̂i, Q̂j

]
= 0 ∀ i, j .

When referring this definition to two dimensional scattering models, several astonishing

results stand out. First, the number of the particles, included in the system, do not

change after collisions, hence creation or annihilation events being forbidden.

Moreover, the scattering is factorizable, meaning that every process, regardless of the

number of particles involved, decomposes into a sequence of two body scatterings. How-

ever, the initial state of a process may evolve to final in many different ways, that is,

there exists more than one sequence leading to the same final result: to ensure the con-

sistency of the theory, an equivalence between those different scattering patterns ought

to be stated. To this aim, the Yang-Baxter relation has been introduced:

S23(u− v)⊗ S12(u)⊗ S13(v) = S13(v)⊗ S12(u)⊗ S12(u− v) .

These and several other implications of integrability often underlie formulae and methods

employed in this text.
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2 Spin chains and Coordinate Bethe Ansatz

A pivotal example of integrable system comes from the Heisenberg spin chain, introduced

to study phenomena of ferromagnetism in metals. The spin chain is a one dimensional

lattice made of L sites, and each of them is endowed with a spin, whose projection

along a fixed axis can assume just two values, say either +1
2 or −1

2 . The system is then

governed by the hamiltonian

Ĥ = J

L∑
l=1

(
1− 4~Sl · ~Sl+1

)
: (1.1)

each site hosts a two dimensional representation of algebra su(2), so that ~S is pro-

portional to Pauli matrices ~S = 1
2(σx, σy, σz). The interest lie on closed chains, hence

a periodicity constraint must be imposed, with period L. The interaction in (1.1) is

of nearest-neighbour type, in that it involves only pairwise adjacent sites, therefore,

upon restricting to positive values of the coupling J (ferromagnetic case), the minimal

eigenvalue of the hamiltonian occurs when all the spin are aligned: this configuration

corresponds to the ferromagnetic vacuum. The eigenvectors of the 2× 2 matrix ~S are

e1 =

(
0

1

)
e2 =

(
1

0

)
, (1.2)

associated respectively to eigenvalues +1
2 and −1

2 : for definiteness, the choose of the

ground state is now set to fall to the tensor product state

|0 〉 = e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
L times

; (1.3)

the whole space state of the system is then built as a tensor product of single site C2

factors

C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
L times

. (1.4)

The lowest-lying excitation is achieved instead by flipping one spin from −1
2 to +1

2 and

on the same footing one e1 turns to e2 , whereas in general the inversion of M spins

accounts for M excitations: for several purposes, reverted spins behave like pseudopar-

ticles, customarily named magnons. The hamiltonian (1.1) may be recast into another

useful form

Ĥ = 2J

L∑
l=1

(
Îl,l+1 − P̂l,l+1

)
, (1.5)

in term of the operator P̂l,l+1 which exchanges adjacent sites l, l + 1, and Îl,l+1, acting

trivially on the chain. Along with the hamiltonian, a further example of observable is

provided by the magnetization

M =

L∑
l=1

S
(z)
l , (1.6)
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which is found to commute with the hamiltonian
[
Ĥ,M

]
= 0 : since each spin flip

lowers the magnetization by one unit, the commutation relation entails that the number

of excitations is a conserved quantity. In addition to that, the shift operator is introduced

as a product of exchange operators

Û = P̂1,2 · · · P̂L−1,L (1.7)

whose action consists in shifting all the sites in the chain by one position (properly,

both left and right operators should be defined). Since the periodicity is imposed,

the application of Û repeated L times must not affect the system, ÛL = 1 , thus the

eigenvalues of the shift operator take the form

U = e2πi n
L

for n = 0, 1, . . . , L − 1 ; what is more,
[
Ĥ, Û

]
= 0 , so that the eigenstates of hamil-

tonian |ψ 〉 are simultaneously eigenstates of Û . These considerations then helps in

quickly retrieving the eigenstate of (1.1) relative to a single excitation on the chain, as

a superposition of plane waves (a Fourier transform):

|ψ(p) 〉 =
L∑
l=1

ψ(l) |l 〉 =
L∑
l=1

eip l |l 〉 , (1.8)

where the state is labelled by the momentum of the magnon, and ψ(l) describes the

amplitude for a pseudoparticle created over the site |l 〉 = S+
l |0 〉 (S+ = σ(x)+iσ(y)

2 ). The

energy eigenvalue E1 for a single-excitation state is deduced by applying the hamiltonian

(1.5) to the state (1.8):

Ĥ
L∑
l=1

ψ(l) |l 〉 = E1

L∑
l=1

ψ(l)|l 〉 . (1.9)

Ĥ takes the form of a discretized laplacian

Ĥ|ψ(p) 〉 = −2J
L∑
l=1

[(ψ(l + 1)− ψ(l))− (ψ(l)− ψ(l − 1))] |l 〉 , (1.10)

and, since ψ(l) = eipl , it is promptly obtained:

E1 = 8J sin2
(p

2

)
≡ ε(p) . (1.11)

When the number of magnons is increased to two, the computations turn more delicated.

The two-magnon state is described by

|ψ(p1, p2) 〉 =
∑

1≤l1<l2≤L
ψ(l1, l2)|l1, l2 〉 ; (1.12)

some attention should be paid to the summation in the formula above: the sequence of

inequalities is needed in order to avoid the double counting of the addends, while the
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inequality l1 < l2 holds strictly (i.e. l1 ≤ l2 is not allowed), as there must not appear two

magnons on the same site, because of the spin 1
2 representation of the su(2) underlying

algebra. Now, when considering the eigenvalue equation

Ĥ
∑

1≤l1<l2≤L
ψ(l1, l2)|l1, l2 〉 = E2

∑
1≤l1<l2≤L

ψ(l1, l2)|l1, l2 〉 (1.13)

two sets of equations arise. Whether the two magnons are far at least two sites away

l2 − l1 > 1, the energy simply reads:

E2 ψ(l1, l2) = [2ψ(l1, l2)− ψ(l1 − 1, l2)− ψ(l1 + 1, l2)] +

+ [2ψ(l1, l2)− ψ(l1, l2 − 1)− ψ(l1, l2 + 1)] , (1.14)

and that entails E2 = ε(p1) + ε(p2) . Otherwise, when l2 = l1 + 1 a subtlety occurs: to

discard the possibility of a double occupation of a site, a different kind of equations must

be taken into account:

E2 ψ(l1, l1 + 1) = 2ψ(l1, l1 + 1)− ψ(l1 − 1, l1 + 1)− ψ(l1, l1 + 2) . (1.15)

To assure the consistency of (1.14)and (1.15) simultaneously and restore (1.12) as an

eigenstate, Hans Bethe [7] (for review and applications, see [10][9][8] for instance) for-

mulated his celebrated ansatz: the state (1.12) shall be the superposition of an incoming

and an outgoing wave, provided the latter experience a phase shift δ(p1, p2) , due to scat-

tering of the two magnons (assumed to be reflectionless)

|ψ(p1, p2) 〉 =
∑

1≤l1<l2≤L

(
eip1 l1+ip2 l2 + eip2 l1+ip1 l2+iδ

)
|l1, l2 〉 . (1.16)

The request that (1.16) be an eigenfunction of the hamiltonian (1.5) leads to an expres-

sion for the phase δ(p1, p2)

eiδ = −e
ip1+ip2 − 2eip2 + 1

eip1+ip2 − 2eip1 + 1
: (1.17)

the phase delay thus enjoys a clear physical interpretation as the S-matrix between two

magnons

eiδ(p1,p2) = S(p1, p2) . (1.18)

A handy substitution could be performed in terms of the rapidity of a magnon

u ≡ 1

2
cot

p

2
,

so that momentum and energy of a magnon read

eip =
u+ 1

2

u− 1
2

ε(u) =
1

u2 + 1
4

(1.19)

and, what is more, the scattering phase (1.18) gets simpler, as, for instance, the unitarity

is now self-evident:

S(u1, u2) =
u1 − u2 − i
u1 − u2 + i

. (1.20)
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The periodicity condition ψ(l1, l2) = ψ(l2, l1 + L) entails

eip1 L = eiδ eip2 L = e−iδ ,

which also implies the quantization condition of the momenta p1 + p2 = 2πmL , some

m = 0, 1, . . . , L− 1 .

Aiming now to cope with the problem of an arbitrary number, it is useful to write

the general eigenstate for M magnons

|ψ(p1, . . . , pM ) 〉 =
∑

1≤l1<···<lM≤L
ψ(l1, . . . , lM )S+

l1
· · ·S+

lM
|0 〉 : (1.21)

the ansatz by Bethe claims the wave function ψ(l1, . . . , lM ) takes the form

ψ(l1, . . . , lM ) =
∑
π

exp

i M∑
k=1

pπ(k)lk +
i

2

∑
k<j

δ(pπ(k), pπ(j))

 . (1.22)

Upon identifying again the phase shift with a scattering matrix between magnons

S(pj , pk) = exp[iδ(pj , pk)] , the periodicity condition leads to the set of Bethe equations

eipk L =
M∏
j 6=k
S(pk, pj) . (1.23)

Actually the Bethe equations (1.23) are but a the quantization condition for the mo-

mentum of a particle, travelling across closed circuit: the particle is not free, for other

particles are encountered within the path, thus a phase delay stems from the scatterings.

Once reformulated with the aid of rapidities, the (1.23) become:(
uk + i

2

uk − i
2

)L
=

M∏
j 6=k

uk − uj + i

uk − uj − i
. (1.24)

Whether, in addiction to periodicity condition
M∑
k=1

pk = 2π
m

L
(m = 0, . . . , L − 1 ), the

invariance of the system under the shift operator Û is demanded, a further constraint

arises

M∏
k=1

uk + i
2

uk − i
2

= 1 , (1.25)

or, equivalently,
M∑
k=1

pk = 2πn : the consistency of the two statements turns to a zero

momentum condition

M∑
k=1

pk = 0 . (1.26)
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As a final remark, it should be noted that in the L −→ ∞ limit, bound states may

occur [12]. The Bethe equations (1.24) allow for complex solutions. Let for instance

a complex valued rapidity u1 be taken, and be its imaginary part positive (whether

negative, the reasoning below would apply equivalently): the modulus below is larger

than one ∣∣∣∣∣Reu1 + i
(
Imu1 + 1

2

)
Reu1 + i

(
Imu1 − 1

2

)∣∣∣∣∣ > 1

hence, when L −→ ∞ the l.h.s. of (1.24) blows, hence this implies there must exist

another root, say u2, such that u2 = u1 − i to compensate the divergence in the r.h.s. .

Three alternatives may now occur. If the imaginary part of u2 is lowered to a negative

value, u1 and u2 couple to form a complex of roots, called 2-string, which arranges

according to {
u1 = ũ+ i

2

u2 = ũ− i
2 ;

after the requirement that the total momentum be real p(u1) + p(u2) ∈ R , it follows

that u1 , u2 are complex conjugated, hence ũ must be real. Otherwise, if u2 lies on the

real axis, a further root u3 needs to be involved in the complex to ensure the reality of

the momentum, thus a string of length three is assembled:
u1 = ũ+ i

u2 = ũ

u3 = ũ− i ,

this time u2 coincides with the real centre. Finally, the last case concerns a root u2

whose imaginary part still remains positive: therefore the l.h.s. of (1.24) diverges again,

thus another root is needed to parallel the effect on the r.h.s. , and so on: this procedure

iterates until a root with non-positive imaginary part is encountered, so that the string

gathers more entries and its length increases. Eventually, the reality condition of the

momentum shapes a l-string bound state of solutions according to the arrangement

ua = ũ+
i

2
(l + 1− 2a) a = 1, . . . , l . (1.27)

3 Nested Bethe Ansatz

Whenever the particles are endowed with some internal degree of freedom, the procedure

outlined above needs to get refined [13][14]. Let the simplest example of this sort be

considered: the particles do carry a colour index with two values a ∈ {1, 2}, on a closed

spin chain made out of L sites. Sticking for a while to the two particle case, just to fix

the notations, an ansatz might be proposed to describe the state:

|ψ(p1, p2) 〉 =
L∑

l1<l2

∑
a1,a2∈{1,2}

[
B12

12 e
ip1 l1+ip2 l2 φ†a1

(l1)φ†a2
(l2) |0 〉+ (1.28)

+B12
21 e

ip1 l1+ip2 l2 φ†a2
(l1)φ†a1

(l2) |0 〉+B21
12 e

ip1 l2+ip2 l1 φ†a1
(l2)φ†a2

(l1) |0 〉+

+ B21
21 e

ip1 l2+ip2 l1 φ†a2
(l2)φ†a1

(l1) |0 〉
]
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where the operator φ†a(l) creates a particle on the site l of the chain. The amplitudes

Bl1,l2
a1,a2 (the subscripts account for colour configuration, whereas the superscripts refer to

the positions) are not independent, as the requirement that (1.28) be an eigenstate of

the hamiltonian relates each other B21
a1a2

= S12B
12
a1a2

under the action of the matrix S
defined on C2 ⊗ C2 according to

Skj(uk, uj) =
uk − uj − iP̂kj
uk − uj + i

(1.29)

S (here written by means of rapidities and exchange operator P̂kj ) works as an S-matrix,

and it allows to express all the amplitudes in terms of, say, B12
a1a2

. Now, coping with the

general M particle state, the ansatz (1.28) generalizes to:

|ψ(p1, . . . , pM ) 〉 =
∑
{π}

∑
{τ}

Bπ
τ exp[i

M∑
j=1

pj lπ(j)]φ
†
τ(1)(π(1))φ†τ(2)(π(2)) · · ·φ†τ(M)(π(M))|0 〉

(1.30)

where the summations are meant over the M ! permutations of the position indices π

and over the permutations of τ colour indices. The imposing (1.30) as an eigenstate of

the hamiltonian results in a set of ’scattering’ relations connecting the amplitudes:

Bπ
a1...aM

= Sj,j+1B
[j,j+1]◦π
a1...aM

, (1.31)

the permutation [j, j+1] transposes the j-th and j+1-th sites. The periodicity condition

then translates to

eipk Lξ0 = Sk+1,kSk+2,k · · · SM,kS1,kS2,k · · · Sk−1,kξ0 (1.32)

(the k-th particle goes round the chain, colliding with all the other particles); the column

vector ξ0 is defined as ξ0 =
(
BI
a1...aM

)
, the identity permutation I acts trivially on the

sequence of labels 12 · · ·M . In order to diagonalize the product of S matrices in (1.32),

a nested structure of spin chains needs to be constructed. Since the numbers of type-1

particles and type-2 particles (the latter named Q) are conserved, the space of eigenstates

of Sk+1,kSk+2,k · · · SM,kS1,kS2,k · · · Sk−1,k is left characterized by two natural numbers, Q

and the total number of particles M . A novel, auxiliary, su(2) Heisenberg spin chain

can thus be built over the original one: the M magnons now represent the sites of the

new chain and the ’auxiliary’ vacuum state is achieved when all the M colour labels

are set to 1, for instance; every excitation is obtained by flipping a colour index to the

entry 2, so that Q counts the number of such novel pseudoparticles. The vectors ξ0 are

identified then as the states of the auxiliary spin chain.

The case Q = 0 plainly coincides with the original su(2) spin chain, discussed in previous

section. The first non trivial instance occurs for Q = 1 : the single auxiliary particle

state is left determined by the ansatz (recalling(1.2) )

ξ(M, 1) =
∑
j

Aj(y) e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
j−1

⊗e2 ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
M−j

, (1.33)
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with the amplitude

Aj(y) = f(y, uj)

j−1∏
n=1

S̃(y, un) (1.34)

accounting for an auxiliary particle with rapidity y over the vacuum formed by the M

magnons, whose rapidities are un . In (1.34) above, the form conjectured for Aj(y)

reminds of coloured-2 particle, born on site 1 then transported to the j-site, engaging

scatterings S̃(y, un) with the j − 1 particles encountered while getting there. The claim

that (1.33) be an eigenvalue is useful to fix the functions

f(y, u) =
y

u− y + i
2

S̃(y, u) =
u− y − i

2

u− y + i
2

, (1.35)

therefore the equation (1.32) turns to

eipk L =
uk − y − i

2

uk − y + i
2

M∏
j 6=k
S(uk, uj) (1.36)

with the usual magnon S-matrix (1.20).

Facing now the Q = 2 case, the ansatz can be formulated

ξ(M, 2) =
∑
j<k

Ak(y1)Aj(y2) e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
j−1

⊗e2 ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
k−j−1

⊗e2 ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
M−k

+

+SII
∑
j<k

Ak(y1)Aj(y2) e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
j−1

⊗e2 ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
k−j−1

⊗e2 ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
M−k

,

(1.37)

the only novelty, with respect to Q = 1, coming from the scattering phase SII weighting

the outgoing-wave-like term (the second line, in the equation above): SII(y1, y2) thus

governs the scattering between two auxiliary particles

SII(y1, y2) =
y1 − y2 − i
y1 − y2 + i

. (1.38)

No new feature arises when dealing with the general Q case: the form of the states is

similar to (1.37), the only difference consists in a more involved structure, due to the

permutation of all the particles. For a system with arbitrary Q type-2 particles, the

diagonalization of (1.32) leads to the set of equations:

eip(uk)L =

M∏
j 6=k
S(uk, uj)

Q∏
α=1

uk − yα − i
2

uk − yα + i
2

(1.39)

1 =
M∏
j=1

yα − uj + i
2

yα − uj − i
2

Q∏
β=1

yα − yβ − i
yα − yβ + i

. (1.40)
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As a remark, in the equations above a momentum term appears in (1.39) alone, for only

the magnons (uk ) do carry momentum: the auxiliary particles, in the shape of their

rapidities yα , are just artifice products, stemming from a diagonalization procedure.

Of course, the number of internal degrees of freedom can be raised, so the number

of nested spin chains accordingly increases and the nested structure gets more involved

[13][14]. In following chapters, numerous examples of this sort will be provided.

4 Thermodynamic Bethe Ansatz

A fruitful technique someway related to Bethe Ansatz, though actually independent, is

provided by the so-called Thermodynamic Bethe Ansatz (TBA): this method has been

introduced by Al.B.Zamolodchikov [15] (although its origins should be traced back to

other works [16]) to solve a purely elastic scattering two dimensional theory by connect-

ing its thermodynamics in the large size limit to the solution of a set of coupled non

linear integral equations. For simplicity’s sake, the theory taken into account will be

assumed to enjoy two dimensional relativistic invariance. First, let the theory lie on a

two dimensional torus, arising from the direct product of the generators C and G , two

circumferences respectively of length R and L : the latter, for future purposes, will be

considered very large L � R . The theory studied can be laid on the surface of the

torus in two different manners: in the first embedding, the momenta of the particles

are quantized along C whereas the time direction is chosen parallel to G , so that in the

L −→ ∞ limit the torus is equivalent to an infinite high cylinder; the second option

concerns instead a theory set on the long circumference G with a compact time with

period R , or, on the same footing, with a finite temperature T = 1
R .

In the latter setup, the partition function is computed by taking the trace on the eigen-

states of the hamiltonian ĤII :

ZII(L,R) = Tr
[
e−RHII

]
= e−RLf(R) , (1.41)

where f(R) is the density of free energy f(R) = F (R)/L . In addition to that, a sort

of wave function can be built to characterize the system. Aiming just to highlight some

interesting aspects, for the time being the system is set to contain only one species of

particles. Since the length L of the space circumference is extremely long, the particles

can be thought to be very distant each other, the space in between them being much

wider than they correlation length (i.e. the inverse of their mass) |xi−xj | � 1/m : there-

fore the particles propagate almost freely, so that relativistic effects, such as particles

creation, may be neglected, and the introduction of a wave function thus makes sense.

Whenever two particles, with rapidities θ1 and θ2 , get near and eventually collide, the

scattering information may be encoded into the scattering matrix S(θ1, θ2) , built after

the requirements of being reflectionless, unitary, real analytic and crossing-symmetric.

A wave function for M particles can be then written, made out of a superposition of

plane waves, according to the proposal

ψ(x1, . . . , xM ) =
∑
π

exp

i M∑
k=1

pπ(k)xk +
i

2

∑
k<j

χ(pπ(k), pπ(j))

 (1.42)
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(defining S = eiχ ): this is exactly the same as the Bethe ansatz (1.22), up to the explicit

form of the scattering matrix S . Correspondingly, the very same form of equations

constraining the rapidities arise (1.23):

eipk L =
M∏
j 6=k

S(pk, pj) . (1.43)

Turning back to the first embedding instead, the behaviour of partition function is

dominated in the large L regime by the lowest energy state

ZI(L,R) ∼ e−E0(R)L . (1.44)

Since the theory is relativistic 1 , (1.44) and (1.41) must coincide, ZI = ZII , as the two

layouts are connected through a two dimensional rotation on the torus, therefore

E0(R) = Rf(R) : (1.45)

this fact entails that the ground state energy E0 can be computed by means macroscopic

thermodynamic quantities, mainly related to dominant microscopic configurations. The

knowledge of the relevant thermodynamic functions stems from equations (1.43) :

p(θk)L+
M∑
j 6=k

χ(θk − θj) = 2πJk , (1.46)

where the numbers Jk are integers, and roughly speaking they counts the number of

available states with rapidity θk . It turns out useful to define the density of accessible

states σ

σ(uk) ≡
Jk+1 − Jk

L (uk+1 − uk)
(1.47)

(so that the number of available states in the interval [uk, uk+1] is given byNk = L(uk+1−
uk)σ(uk) ) and the density ρ of states actually occupied

ρ(uk)L(uk+1 − uk) ≡ nk (1.48)

(nk being the number of occupied states around uk ), and thus the number of equivalent

combinations of particles inside the interval [uk, uk+1] corresponds to

Nk ≡
Nk!

nk! (Nk − nk)!
. (1.49)

In fact, the thermodynamic limit is performed by sending the length of the system L

and the number of particles M to infinity, while keeping their ratio finite: the rapidity

1When the theory is not relativistic, a two dimensional Lorentz transform is not allowed anymore.

Nevertheless, a similar result can be achieved by passing to an Euclidean two dimensional space-time,

then performing a double Wick rotation [19]: in general, the hamiltonians of the original and the Wick-

rotated (mirror) theory need not to coincide.
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becomes a continuous parameter, so that density take the form of derivatives and sum-

mations turn to integrals (ranging from −∞ to +∞ , unless explicitly stated). Therefore

the logarithm of (1.43) can be more suitably recast into an integral equation

2πσ(θ) = mL
dp(θ)

dθ
+

∫
ϕ(θ − θ′) ρ(θ′)dθ′ (1.50)

whose kernel is defined as ϕ(θ) ≡ dχ(θ)
dθ , and relies only on differences of rapidities,

as the theory is relativistic; moreover, energy and momentum of the particles may be

parametrized respectively as

e(u) = m cosh θ p(u) = m sinh θ .

In terms of densities, the thermodynamic the hamiltonian reads

HII [ρ] =

∫
dθm cosh θ ρ(θ) (1.51)

and, upon performing the Stirling approximation to (1.49), the entropy is

S[σ, ρ] =

∫
dθ [σ lnσ − ρ ln ρ− (σ − ρ) ln(σ − ρ)] . (1.52)

Now, according (1.45), the ground state energy E0 equals the free energy, which, in turn,

arises from the minimization of

RLf [σ, ρ] = RHII [ρ]− S[σ, ρ] . (1.53)

The pseudoenergy ε(θ) is suitably introduced

e−ε ≡ ρ

σ − ρ

and alongside it L(θ) ≡ ln
[
1 + e−ε(θ)

]
, so that the minimization condition yields the

non linear integral equation for the Thermodynamic Bethe Ansatz [15][17]:

ε(θ) = mR cosh θ −
∫
dθ′

2π
ϕ(θ − θ′)L(θ′) . (1.54)

Roughly speaking, the pseudoenergy ε(θ) assumes the physical meaning of a ’renormal-

ized’ energy of a particle [17], taking a different value from the free case for it receives

quantum corrections due to the interactions with the other real particles and virtual as

well: its expression, obtained as a solution of (1.54), enters the formula for the ground

state energy:

E0 = Rf(R) = −m
∫

dθ

2π
cosh θ L(θ) . (1.55)

The model can be improved by adding different species of particles: be Q the number

of different species and let Ma denote the number of type a particles with mass ma
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( a = 1, . . . Q ) , so that

Q∑
a=1

Ma = M . Imposing that the scattering still be reflectionless

and bound states do not occur, the integral kernel is defined as:

ϕab(θ) = −i d
dθ

lnSab(θ) .

In the thermodynamic limit L, Ma −→ ∞ for all a , provided the ratios Ma
L ≡ Da

stay fixed, the densities of accessible and occupied states, σa and ρa respectively, are

introduced in the usual way, as well as the pseudoenergies εa; hence (1.50) generalizes

2πσa(θ) = ma L
dp(θ)

dθ
+
∑
b

∫
ϕab(θ − θ′) ρb(θ′)dθ′ . (1.56)

The same step followed to find (1.54) now lead to the set of coupled non linear integral

equations

εa(θ) = maR cosh θ −
∑
ab

∫
dθ′

2π
ϕb(θ − θ′)La(θ′) a = 1, . . . , Q , (1.57)

the solutions of whom give the ground state energy

E0 = −
Q∑
a=1

ma

2π

∫
dθ cosh θ La(θ) . (1.58)

A further improvement [17] is needed when the conservation of the number of particles

Ma = LDa[ρ] =

∫
dθρa(θ)

is imposed: such requirement yields a constraint while minimizing the free energy

Lf [σ, ρ] = HII [ρ]− TS[σ, ρ]−
∑
a

µaDa , (1.59)

where the lagrangian multipliers µa assume the meaning of chemical potentials. There-

fore, the novel constraints modify the TBA equations by adding a constant term

εa(θ) = −µaR+maR cosh θ−
∑
ab

∫
dθ′

2π
ϕb(θ−θ′)La(θ′) a = 1, . . . , Q , (1.60)

and this results in the new formula for E0 :

E0 = −
Q∑
a=1

ma

2π

∫
dθ cosh θ La(θ) +R

Q∑
a=1

µaDa . (1.61)



Chapter 2

AdS/CFT duality and

integrability

1 Basics of the AdS5/CFT4 duality

This chapter is devoted to a very concise summary of the basic concepts in the AdS/CFT

correspondence [2][3], mainly highlighting the role of integrability in attempting to un-

ravel several complicated issues. The aim consists in providing a very essential prospect

of the notions, handled hereafter. According to the mentioned duality, a relation is

conjectured to exist between two theories in principle very different, a supersymmet-

ric conformal gauge field theory and a gravitational theory, concerning supersymmetric

strings living on a curved background. Actually, in this text the interest will stick

primarily to one of such correspondences, namely the AdS5/CFT4.

The AdS5/CFT4 correspondence states a duality involving a string theory in a ten

dimensional layout and a four dimensional gauge theory. On one side then, there is a

type II B string theory, set up in a ten dimensional gravitational background formed

by a five dimensional Anti de Sitter space per a five dimensional sphere, AdS5 × S5,

both factor spaces with radius R; the theory is governed by two coupling constants: a

world-sheet coupling gσ, corresponding to the inverse of the effective string tension

T =
R2

2πα′
≡ 1

g2
σ

(α′ stands for the Regge slope), and gstr, regulating the interactions between strings.

On the other side of the correspondence the N = 4 Super Yang-Mills (SYM) dwells,

as the gauge field theory dual to AdS5 × S5: the information contained in the AdS5 ×
S5 background (inside its bulk) is holographically projected onto its boundary, a flat

Minkowski space-time in 3 + 1 dimensions where N = 4 SYM is set to live in. N = 4

SYM is endowed with a gauge symmetry group SU(N), associated to the coupling gym.

The claim of the AdS/CFT correspondence concerns the identification of string and

gauge theories, in the sense that there exists a stringent link between the characteristic

observables from one theory and those from the other. Moreover, the couplings from the

21
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two sides of the correspondence must be connected via a duality relation:

g−4
σ = g2

ymN , (2.1)

being N the number of colours given by the SU(N) gauge group. This identification

implies that the strong coupling regime for a theory matches the weak coupling results in

the dual model: therefore the correspondence allows to access sector of the gauge theory

otherwise unapproachable with standard perturbative methods, simply by studying the

dual string theory -and, clearly, viceversa. On the other hand, perturbative regimes in

the two theories have no overlaps, so to prove the conjectured correspondence: the role

of integrability thus stands out, since it provides alternative non perturbative ways to

explore regions else inaccessible by usual methods1.

Following sections are meant to outline the main features of N = 4 SYM and AdS5×S5

string theories, in order to state with slightly more precision how the correspondence

works and how to exploit the opportunities offered by integrability.

1.1 N = 4 SYM gauge theory

N = 4 SYM is a supersymmetric conformal theory, endowed with a non-abelian gauge

group SU(N), living on a space with three space-like dimensions and one time. The

renormalization group beta function has been proven to equal zero at all loops

β(gym) = µ
∂gym
∂µ = 0 (µ represents the renormalization scale): the theory is thus confor-

mal, so that it enjoys the four dimensional conformal group symmetry (with Minkowski

signature) SO(2, 4) ∼ SU(2, 2). The designation N = 4 denotes that there are four

generator of supersymmetry, resulting in 16 odd supercharges; the four generators can

be rotated into each other by means of a further bosonic rigid symmetry (R-symmetry)

SU(4) ∼ SO(6). The even and odd generators together do not suffice to close the overall

graded algebra: to accomplish this request 16 more supercharges are needed. To sum

up, the N = 4 SYM possesses a SO(2, 4) × SU(4) bosonic symmetry, enhanced to the

whole PSU(2, 2|4) group upon adding the 32 odd supercharges.

The theory contains the vector supermultiplet (Aµ, ψ
A
α , ψ̄

Ā
α̇ ,Φ

i). the gauge field Aµ
is a singlet under the R-symmetry (it is in the 1 of SU(4) ), and the Lorentz vector

index µ runs from 0 to 3 ; from Aµ, the covariant derivative Dµ = ∂µ− iAµ and the field

strength Fµν = [Dµ, Dν ] are defined. The six real scalars Φi ( i = 1, . . . , 6 ) transform

according the 6 of SU(4); for later purposes, the scalars could be recast into complex

combinations

Z =
1√
2

(Φ1 + iΦ2) W =
1√
2

(Φ3 + iΦ4) Y =
1√
2

(Φ5 + iΦ6) ,

along with their complex conjugated Z̄, W̄ , Ȳ . Finally, the left and right Weyl spinors

ψAα , ψ̄
Ā
α̇ are respectively in the 4 and 4̄ of SU(4) (A, Ā = 1, 2, 3, 4 ), with the Lorentz

spindor indices α, α̇ = 1, 2 . Since all these fields belong to the same supermultiplet, they

must transform under the gauge group SU(N) according to the same representation,

1Since the original work [28] about integrability on the gauge side, many valuable reviews appeared,

such as [9][29]; on the string theory side, integrability has been discovered by [11]
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precisely the adjoint. They represent the ingredients to write the lagrangian of N = 4

SYM:

L =
1

g2
σ

TrN

−1

4
FµνF

µν +DµΦiDµΦi +
∑
j>k

[Φj ,Φk]2 + {Fermionic Part}

 (2.2)

where the fermionic part has been left indicated; the trace TrN [. . . ] is performed on the

SU(N) matrix indices.

The gauge invariant local operators, specifically the key objects of the theory, are

then constructed starting from the fields listed above, in the form of the trace of products

of operator, generically expressed as

O ∼ TrN [ϕ1 ϕ2 . . . ] (2.3)

where ϕk stands for any field ϕ ∈ {Dµ, Aµ, ψ
A
α , ψ̄

Ā
α̇ ,Φ

i} ; besides single trace operators,

multi-trace should be taken into account, too

O′ ∼ TrN [ϕ1 ϕ2 . . . ] · TrN [ϕa ϕb . . . ] · . . . (2.4)

SinceN = 4 SYM is a conformal theory, it turns out described by the spectrum of dimen-

sions relative to the operators, which can be found by taking the two point correlators of

one operator with itself; at classical level, when quantum corrections are overlooked (or

with the coupling constant gym set to zero), it is found for an arbitrary local operator

O(x):

〈 O(x)O(y) 〉 ∼ 1

|x− y|2∆0
, (2.5)

the number ∆0 being the bare (classical) dimension of O(x), so that a space-time variable

dilatation (a rescaling on the argument) x −→ λx entails a rescaling of th operator

O(λx) −→ λ∆0O(x) .

When performing a perturbative expansion in g2
ym, already at one-loop the correlator

above blows, owing to an UV divergence, to be treated, for instance, by introducing an

UV cut-off Λ. The same effect could be achieved by introducing a renormalized version

Oren(x) of the operator O(x):

Oren(x) =
(µ

Λ

)γ(gym)
O(x) ,

so that a rescaling of the renormalization group scale (of distances) µ −→ λµ leads to

Oren(λx) −→ λ∆0+γ(gym)
(µ

Λ

)γ(gym)
Oren(x) . (2.6)

The scaling dimension of the operator Oren(x) is then ∆ = ∆0+γ(gym) , the contribution

stemming from quantum corrections γ(gym) being told the anomalous dimension. A

fundamental remark concerns a special class of operators, the so-called chiral primary

operators, as supersymmetry prevents them from acquiring correction from quantum
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processes, leaving thus γ(gym) = 0 at all values of the coupling: objects of this kind are

said to saturate the BPS bound. An example of chiral primaries could be offered by

operators with the form:

O ∼ TrN [Φi1Φi2 . . .ΦiL ]σi1,i2,...iL (2.7)

when σi1,i2,...iL is a completely symmetric tensor of SO(6), and the trace of any two

indices is null. To conclude, since the bosonic subalgebra so(2, 4) ⊕ su(4) ⊂ psu(2, 2|4)

is rank six, the single trace operators can be labelled by means of a sextuplet of charges

(∆, S1, S2; J1, J2, J3). The first three charges referr to conformal group: ∆ is the eigen-

value of dilatation operator, the scaling dimension, while S1, S2 are the Lorentz spins (the

charges SO(1, 3)); on the R-symmetry side, J1, J2, J3 represent the angular momentum

components, namely the eigenvalues of the three generators in the Cartan subalgebra of

SO(6). For instance, the complex scalars Z carry the sextuplet of charges (1, 0, 0; 1, 0, 0),

whereas the W fields are associated to (1, 0, 0; 0, 1, 0) and the Y ’s to (1, 0, 0; 0, 0, 1). The

fermionic fields ψAα hold the values (3
2 ,±

1
2 , 0;±1

2 ,±
1
2 ,±

1
2) where the number of neg-

ative signs in the SO(6) part is even; the antifermions ψ̄Āα̇ instead carry the charges

(3
2 , 0,±

1
2 ;±1

2 ,±
1
2 ,±

1
2) with an odd number of negative signs for the last three values.

1.2 AdS5 × S5 string theory

A supersymmetric string theory on a curved manifold is described by the Green-Schwarz

action

S =
1

g2
σ

∫
d2σ
√
−g gabGµν(X)∂aX

µ∂bX
ν + SF , (2.8)

where gab(σ) is the metric of the two dimensional world-sheet, spanned by the coordinates

σ = (σ0, σ1), while Xµ = Xµ(σ) (µ = 1, 2, . . . , 10 ) are the coordinate fields on the ten

dimensional target space whose metric is Gµν(X); the fermionic part of the action SF
has not been written explicitly.

When dealing with the type II B string theory set on the target space AdS5 × S5, it

is more suitable to divide the X coordinates in two subsets, referred to the component

manifolds AdS5 and S5, Xµ = (x1, x2, . . . , x5; y1, . . . , y5), so to easily describe the five

dimensional Anti de Sitter space by means of the constant negative curvature surface,

embedded in the R2,4 space:

−(xo)2 − (x1)2 +

5∑
a=2

(xa)2 = −R2 (2.9)

whereas the five dimensional sphere S5 is embedded in R6 as

5∑
b=0

(yb)2 = R2 (2.10)

(the radius R is the same for both AdS5 and S5). The metric of the Anti de Sitter space

can be expressed in several (almost) equivalent way: a special choice which turns out
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particularly enlightening consists in adopting the Poincaré coordinates (z0, z1, z2, z3, t),

so that the line element of AdS5 reads:

ds2 =
R2

z2
0

(
−dt2 +

3∑
i=1

dz2
i + dz2

0

)
, (2.11)

though this choice does not cover the whole space, but instead only the patch

−∞ < t, zi < +∞ and 0 < z0 <∞ is properly described. Remarkably, up to a conformal

factor the line element (2.11) coincides with a 3 + 1 dimensional flat Minkowsi space,

enriched with an additional coordinate z0, which assumes the meaning of kind of ’warp

parameter’: this is, in fact, the Minkowski space where the dual N = 4 SYM gauge

theory lives in.

Once (2.8) is specialized to type II B AdS × S5 background, the Metsaev-Tseytlin

string action results, in the shape of a PSU(2, 2|4) non-linear σ-model, therefore corre-

sponding to the PSU(2,2|4)
SO(1,4)×SO(5) coset model. The bosonic restriction consists in the direct

product SO(2,4)
SO(1,4)×

SO(6)
SO(5) , so that the bosonic part of Metsaev-Tseytlin action is the sum of

the actions of SO(2, 4) (AdS5 ) and SO(6) (S5 ) non-linear σ-models, the only interac-

tions between the two models arising from coupling with fermions; nonetheless, within a

special dynamical regime the two bosonic σ-models decouple, and the O(6) model takes

over.

Turning back to AdS/CFT duality’s claims, now that the key objects of gauge ant

string theories (namely local operators and strings, respectively) have been sketchily

introduced, the correspondences between them may be stated more clearly. The features

of a single-trace gauge invariant operator are asked to match those of single string states:

in particular the spectrum of anomalous conformal dimensions shall be equivalent to the

spectrum of string excitations (over a chosen vacuum reference state). Moreover, the

remaining five charges labelling a gauge theory operator turn to quantum number carried

by a single string: S1 and S2 become angular momentum numbers for a string moving

across the AdS5 space, while J1, J2, J3 describe its motion on S5.

2 Integrability in AdS5/CFT4

There exists an interesting limit to look at, when studying N = 4 SYM, for it allows

to reveal several important properties of such gauge theory: it consists in pushing the

number of colours N (relative to SU(N) gauge symmetry) to infinity, while, on the

same time, the parameter λ ≡ g2
ymN is kept finite; λ is said the ’t Hooft coupling. For

instance, the N −→ ∞ limit allows to show the theory is integrable. To get an idea

about the simplifications brought by the large N limit and how integrability emerges,

it useful to consider the sector of operators made out of scalars only, as an example

(however, the results are far more general). In a small the small coupling g2
ym regime,

the tree-level correlator (2.5) could be generalized as

〈 O(x)O(y) 〉 ' 1

|x− y|2∆0

(
1− γ(gym) ln Λ2|x− y|2

)
; (2.12)
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the anomalous dimension γ(gym) may be thought as the eigenvalue of the higher-than-

tree-level dilatation operator Γ, else said the mixing matrix: the search for anomalous

dimensions amounts to diagonalizing Γ. When evaluating the two-point correlator (2.12),

an expansion can be performed in the the small parameter 1/N , so to gain then the

chance to overlook non planar Feynman diagrams, as they are associated to subleading

contributions. In fact, the Feynman graphs arising from the contractions involved in the

correlator (2.12) can be represented by means of simplicial complexes: each propagator

corresponds to an edge of a simplex, and in terms of ’t Hooft coupling it is left associated

to a weight g2
ym = λ/N , while a vertex brings a factor 1

g2
ym

= N
λ , finally each face of a

simplex is weighted by N . Eventually, calling E,V and F the number of edges, vertices

and faces, a diagram is weighted in a large N power expansion by a factor

NV+F−EλE−V = NχλE−V , (2.13)

where the Euler character is χ = V + F − E . The Euler character is also written as

χ = 2−2G, with G denoting the genus of the topology over which the graph can be laid,

so that the largest is the genus the less the Feynman diagram contributes: hence planar

diagrams (i.e. those which can lie entirely on a plane) carry the leading contributions in

computing observables, such as (2.12), non planar ones being suppressed at least for a

factor 1/N2 in comparison.

Turning back now to the evaluation of (2.12), an arbitrary scalar-made operator reads,

up to a symmetry normalization factor:

Oi1...iL(x) '
(

4π2

N

)L
2

Tr [Φi1(x) · · ·ΦiL(x)] (2.14)

(from now on the subscript in TrN , to denote the trace is taken on N ×N matrices, will

be dropped). Then, the two-point correlation function of the operator Oi1...iL(x) with

itself can be expressed at tree-level as:

〈 Oi1...iL(x)Oj1...jL(y) 〉tree '
1

|x− y|2L
(
δj1i1 δ

j2
i2
. . . δjLiL + {cycles}

)
(2.15)

where {cycles} stands for the summation over cyclic permutations of superscripts jk .

Recalling the discussion above, when the N � 1 regime is considered, the computation

of the one loop correction to (2.15) does not involve the contributions stemming from

non-planar Feynman diagrams; this simplification allows to retrieve the one loop result:

〈 Oi1...iL(x)Oj1...jL(y) 〉1−loop =
λ

16π2

ln(Λ2|x− y|2)

|x− y|2L
×

×
L∑
l=1

[
2P̂l,l+1 − K̂l,l+1 − 2

] (
δj1i1 δ

j2
i2
. . . δjLiL + {cycles}

)
. (2.16)

The operator P̂l,l+1 exchanges the flavour indices for the positions l and l+ 1, so applied

to a Kronecker δ, it produces the effect:

P̂l,l+1(δj1i1 . . . δ
jl
il
δ
jl+1

il+1
. . . δjLiL ) = (δj1i1 . . . δ

jl+1

il
δjlil+1

. . . δjLiL ) ; (2.17)
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the trace operator K̂l,l+1 instead acts on a δ by contracting flavour indices for neighbour

positions:

K̂l,l+1(δj1i1 . . . δ
jl
il
δ
jl+1

il+1
. . . δjLiL ) = (δj1i1 . . . δil il+1

δjl jl+1 . . . δjLiL ) . (2.18)

Upon summing together tree-level (2.15) and one loop correlators (2.16), a comparison

with the general form (2.12) reveals that the mixing matrix Γ assumes the expression:

Γ =
λ

8π2

L∑
l=1

[
1− P̂l,l+1 +

1

2
K̂l,l+1

]
+O(λ2) . (2.19)

The salient remark is that the one loop anomalous dimension operator (2.19) turns out

to share the very same form of the hamiltonian of a spin chain, an integrable system.

The spin-spin interactions stand out more clearly after defining the spin operators

σabij = δai δ
b
j − δaj δbi ,

so that (2.19) reads:

Γ =
λ

16π2

L∑
l=1

[
σl σl+1 −

1

16
(σl σl+1)2 +

9

4

]
(2.20)

(the subscripts l, l + 1 label the site).

2.1 The SU(2) sector

In general, it happens that operators mix under renormalization, so that, for example,

operators made out of scalars only usually mingle with operators involving non-scalar

fields too2. Nonetheless there exist sectors composed of a restricted variety of field

species. One of such example, within scalar sector, is provided by the so-called SU(2)

sector, involving just two kinds of scalars, Z and W (without their complex conjugates),

associated respectively to charges (1, 0, 0; 1, 0, 0) and (1, 0, 0; 0, 1, 0). A trace operator,

with bare dimension L and composed of M fields of type W and L −M of type Z, is

described by the charges (L, 0, 0;L−M,M, 0) : since the operator mixing preserves the

total Lorentz and R-symmetry charges, this operator can combine only to other ones

with the same number of Z’s and W ’s, rearranged according to any possible permutation;

hence, the sector stays closed.

Upon sticking to SU(2) sector, the mixing matrix (2.19) becomes

Γ =
λ

8π2

L∑
l=1

[
Îl,l+1 − P̂l,l+1

]
: (2.21)

interestingly it coincides with the hamiltonian (1.1) of the Heisenberg model for ferro-

magnetism (XXX 1
2

spin chain with L sites):

Ĥ =
L∑
l=1

[
1

2
− 2~Sl · ~Sl+1

]
(2.22)

2Anyway, the operator mixing for scalar sector does not take place at one loop
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with magnetization M =
L∑
l=1

S
(z)
l .

When attempting to diagonalize Γ, first of all it takes to fix a vacuum reference state for

the spin chain, associated to (2.21). A suitable choice concerns the operator V = Tr[ZL] ,

for it is a chiral primary and thus its anomalous dimension equals zero, taking so the

minimal eigenvalue available for Γ. In exploiting the analogy with a spin chain, each Z

field can be thought as, say, a down spin, whereas W behaves like an up spin (only two

values are available for the spin, in the present case): the vacuum V therefore corresponds

to the ferromagnetic state, with all the spins aligned, so to minimize the amount of energy

(read anomalous dimension) of the system. The replacement of a Z with a W accounts

for a spin flip, as a down spin turns to up: the operation increases the eigenvalue of the

’energy’ (2.21), so it relates to the bearing of an excitation, customarily called magnon,

which propagates along the chain. Each time a spin is reverted, an excitation rises. The

periodicity condition is imposed by taking trace in the construction of gauge invariant

operators. The solution of such a model has been discussed in section 2 of chapter 1.

2.2 The BMN vacuum

The SU(2) sector finds a natural correspondence with a particular dynamical configu-

ration for strings in the AdS5 × S5 background [20].

According to a theorem due to Penrose, the space-time in the neighbourhood of a null

geodesic takes the form of a plane fronted gravitational wave (pp wave), regardless of

the original metric. Let the focus stick to a string travelling at the speed of light across

a circumference S2, subspace of S5, at rest in the AdS5: it carries no S1, S2 charges,

and relatively to angular momentum in S5, let only one quantum number be non null,

say J1 = L. Under these assumptions, the pp-wave limit arises when taking the radius

R −→ ∞ by properly rescaling the coordinates. As a result, in light-cone coordinates

the string has got the following momentum components:

p− =
∆− L

2

p+ =
∆ + L

2R2

(in view of the gauge-string correspondence, ∆ here denotes the string energy). Under

the requirement that p± are non-negative3 and finite, it must hold L ∼ R2 ∼
√
N , and

in addition the difference ∆ − L stays fixed. Keeping an eye to the N = 4 SYM side

of the duality, the lowest value ∆ − L = 0 associates uniquely to the chiral primary

operator V = Tr[ZL], which hence assumes the role of a string ground state, and a

spin chain vacuum as well. Sticking to SU(2) sector, the only way to rise ∆− L to the

value 1 consists in substituting one Z field with differently flavoured scalar W : such

operations then bears the lowest string excited state, and correspondingly a magnon in

the (gauge) spin chain. The following excitations/magnons arise in the same manner, so

that the parallel between BMN (classical) string solution and the SU(2) operator sector

is accomplished.

3As a matter of fact, the supersymmetry imposes the BPS condition ∆ ≥ |L|
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2.3 sl(2) sector and GKP string

The SU(2) sector is not the only one closed under renormalization. Indeed, a further

example is provided by the sl(2) sector (also called SU(1, 1) sector): it stems from com-

bining together, into trace operators, Z fields along with light-cone coordinate covariant

derivarives D+ , associated to the sextuplet of charges (1, 1
2 ,

1
2 ; 0, 0, 0) . Single trace op-

erators of this kind arise by starting from a reference state, again V = Tr[ZL] , which

behaves like a vacuum, over whom the application of covariant derivatives produces the

rising of excitations (one for each derivative): a generic operator

O ∼ Tr[(D+)sZL] + . . .

describes a state with s excitations on the vacuum ( s also represents the Lorentz spin of

the operator); the dots account for operator mixing, whose action consists in redistribut-

ing the covariant derivatives over the Z fields in all possible combinations. A peculiarity

of sl(2) sector, against SU(2), resides in that an arbitrary number of derivatives can

be applied to each Z due to the non-compactness of algebra sl(2): in the spin chain

language, any number of excitations may arise on a single site.

Lot of the interest has been devoted to sl(2) sector of N = 4 SYM ([41],[31]-[32] for

instance), since it shares several features with other important fields of research, such as

the study of QCD and deep inelastic scattering, and Wilson loops as well. For instance,

the computations of anomalous dimension for sl(2) operators in the large s limit leads

to the meaningful Sudakov logarithmic scaling:

∆ = s+ f(λ) ln s+O(s0) , (2.23)

where f(λ) is the so-called universal scaling function, and does not depend on L : it is

remarkable that (2.23) does not involve supersymmetry. The scaling behaviour (2.23)

also occurs in computations concerning the above-mentioned theories: for instance, the

cusp anomalous dimension for light-like cusped Wilson loops coincides with the f(λ)
2 .

For N = 4 SYM sl(2) sector the scaling behaviour (2.23) can be further refined, so that

the expression for anomalous dimension, in large s, arises [44]:

γ(λ, s, L) = f(λ) ln s+ fsl(λ, L) +
∞∑
n=1

γ(n)(λ, L) (ln s)−n +O

(
ln s

s

)
. (2.24)

There exists a special classical string solution that works successfully in properly

describing the results from sl(2) sector and, most of all, nicely fits the Sudakov form

(2.23): such string configuration has been retrieved by Gubser, Klebanov and Polyakov

[21], customarily called GKP string. It consists in a closed folded string, moving in the

AdS3 subspace of AdS5. Let the AdS3 line element be considered, first:

ds2 = R2
[
−dt2 cosh2 ρ + dρ2 + sinh2 ρ dφ2

]
;

After imposing a gauge for which it holds τ = t , φ = ωt , along with the periodicity con-

dition ρ(σ) = ρ(σ + 2π) ( τ, σ being the world-sheet coordinates), the string lagrangian
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reads:

L = −4
R2

2πα′

∫ ρ0

0
dρ

√
cosh2 ρ−

(
dφ

dτ

)2

sinh2 ρ ; (2.25)

the maximum radial coordinate ρ0 is left determined by

coth2 ρ0 = ω

and the factor 4 appears since there are four segments of string stretching from 0 to ρ0 .

Energy and spin of the string thus follow from (2.25):

E = 4
R2

2πα′

∫ ρ0

0
dρ

cosh2 ρ√
cosh2 ρ− ω2 sinh2 ρ

(2.26)

S = 4
R2

2πα′

∫ ρ0

0
dρ

ω sinh2 ρ√
cosh2 ρ− ω2 sinh2 ρ

(2.27)

When considering the large spin limit S −→ ∞, the maximal value for the AdS3 radial

coordinate ρ0 grows indefinitely too, since ρ0 ∼ 1
2 lnS and, moreover, the length of the

folded string can be estimated to l ∼ 4ρ0 ∼ 2 lnS . Carrying a more careful analysis of

the S �
√
λ regime, it could be inferred that ω −→ 1 from above, so that ω = 1 + 2η ,

where η � 1. Hence at leading order in η, it holds

ρ0 '
1

2
ln

(
1

η

)
,

therefore energy and spin enjoy the following expansion in η :

E =
R2

2πα′

(
1

η
+ ln

1

η
+ . . .

)
(2.28)

S =
R2

2πα′

(
1

η
− ln

1

η
+ . . .

)
.

Hence, in the regime S �
√
λ the parametric form (2.28) turns to an asymptotic ex-

pression for energy as a function of the spin E = E(S) , so that the Sudakov logarithmic

scaling behaviour shows up (see (2.23) ):

E = S +

√
λ

π
ln(S/

√
λ) + . . . . (2.29)

3 Beisert-Staudacher equations

The parallel between N = 4 SYM and a spin chain, exposed in section 2, is demonstrated

only up to first order within a perturbative expansion in λ . This result can be extended

rigorously to a few orders further, a complete non-perturbative approach being missing

so far. Nevertheless, Beisert and Staudacher [30] proposed a long-range (i.e. the range of

interactions increases with the loop order) spin chain and a set of all-order (nested) Bethe

ansatz equations, so to fully account the N = 4 SYM gauge theory. Strictly speaking,

they should be taken as Asymptotic Bethe Ansatz equations, in the sense they are valid
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pertubatively in λ and solve the underlying spin chain only up to λ2L order. Nonetheless

these equations passed numerous non trivial tests of consistency, so that their reliability

is now considered out of doubts, therefore they will represent the foundation of the work

exposed in the next two chapters. The Beisert-Staudacher Asymptotic Bethe Ansatz

equations are then displayed below 4:

1 =

K2∏
j 6=k

u1,k − u2,j − i
2

u1,k − u2,j + i
2

s∏
j=1

1− g2

2x1,k x
−
4,j

1− g2

2x1,k x
+
4,j

(2.30)

1 =

K2∏
j 6=k

u2,k − u2,j + i

u2,k − u2,j − i

K1∏
j=1

u2,k − u1,j − i
2

u2,k − u1,j + i
2

K3∏
j=1

u2,k − u3,j − i
2

u2,k − u3,j + i
2

1 =

K2∏
j=1

u3,k − u2,j − i
2

u3,k − u2,j + i
2

s∏
j=1

x3,k − x−4,j
x3,k − x+

4,j

1 =

(
x−4,k

x+
4,k

)L s∏
j 6=k

x−4,k − x
+
4,j

x+
4,k − x

−
4,j

1− g2

2x+
4,k x

−
4,j

1− g2

2x−4,k x
+
4,j

σ2(u4,k, u4,j)×

×
K3∏
j=1

x+
4,k − x3,j

x−4,k − x3,j

K5∏
j=1

x+
4,k − x5,j

x−4,k − x5,j

K1∏
j=1

1− g2

2x+
4,k x1,j

1− g2

2x−4,k x1,j

K7∏
j=1

1− g2

2x+
4,k x7,j

1− g2

2x−4,k x7,j

1 =

K6∏
j=1

u5,k − u6,j − i
2

u5,k − u6,j + i
2

s∏
j=1

x5,k − x−4,j
x5,k − x+

4,j

1 =

K6∏
j 6=k

u6,k − u6,j + i

u6,k − u6,j − i

K7∏
j=1

u6,k − u7,j − i
2

u6,k − u7,j + i
2

K5∏
j=1

u6,k − u5,j − i
2

u6,k − u5,j + i
2

1 =

K6∏
j 6=k

u7,k − u6,j − i
2

u7,k − u6,j + i
2

s∏
j=1

1− g2

2x7,k x
−
4,j

1− g2

2x7,k x
+
4,j

where it has been introduced the rescaled coupling constant g2 = λ2

8π , and the spectral

parameters x are related to rapidities u through the Jukovsky map

x(u) =
u

2

[
1 +

√
1− 2g2

u2

]
u(x) = x+

g2

2x
x±(u) ≡ x(u± i

2
) ; (2.31)

for compactness’ sake, the shorthand notation has been adopted xi,j ≡ x(ui,j) . Since

the momentum p(u) is expressed via the Jukovski variables as

eip(u) =
x+(u)

x−(u)
, (2.32)

4The original article [30] furnishes four variations (four gradings) of the Beisert-Staudacher equations,

corresponding to four distinct Dynkin diagrams encoding the underlying su(2, 2|4) algebra: here the

grading η1 = η2 = −1 has been chosen
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the zero momentum condition, to be imposed to solutions of the equations (2.30), trans-

lates to the constraint

1 =
s∏
j=1

x+
4,j

x−4,j
. (2.33)

Please note that only the fourth (the central) equation amongst (2.30) contains a mo-

mentum term: the meaning relies on the fact that only the roots of type 4, corresponding

to rapidities u4,k, do indeed carry momentum and energy, and all the other charges as

well, being then usually referred to as the main roots. Therefore the total amount of a

charge Qr , belonged to the whole system, can be computed as:

Qr =
s∑

k=1

qr(u4,k) =
i

r − 1

s∑
k=1

[
1

(x+
4,k)

r−1
− 1

(x−4,k)
r−1

]
(2.34)

and, in particular, the anomalous dimension (proportional to total energy) is

δD = g2Q2 = ig2
s∑

k=1

[
1

x+
4,k

− 1

x−4,k

]
. (2.35)

In the fourth of (2.30), a peculiar factor deserves further attention: the dressing factor

σ2(u, v) . The asymptotic scattering matrices for gauge and string theories are seen to

differ for an overall flavour-independent factor

Sstring = σ2 · Sgauge :

the presence of σ2 is aimed at taking into account the crossing symmetry in string

theory [24], so to properly match the gauge and string S-matrices. The dressing factor

σ2(u, v) = e2iθ(u,v) is explicitly given by [25]

θ(u, v) =
∞∑
r=2

∞∑
ν=0

βr,r+2ν+1(g) [qr(u)qr+2ν+1(v)− qr(v)qr+2ν+1(u)] (2.36)

where qr(u) stands for the density of the r-th charge (refer to (2.34) ), while for the

functions βr,r+2ν+1(g) it holds

βr,r+2ν+1(g) = 2

∞∑
µ=ν

(−1)r+µ+1 g
2(r+ν+µ)

2r+ν+µ

(r − 1)(r + 2ν)

2µ+ 1
×

× ζ(2µ+ 1)

(
2µ+ 1

µ− r − ν + 1

)(
2µ+ 1

µ− ν

)
= (2.37)

=
∞∑
µ=ν

g2r+2ν+2µ

2r+ν+µ
β

(r+ν+µ)
r,r+2ν+1

The phase σ2 does not affect the solution of (2.30) until the fourth perturbative order

at least, becoming relevant insteadd in the strong coupling regime.

A further remark is now appropriate, for later reference. After imposing the system

(2.30) contains no root of any type, but s of type 4, let the logarithm of the fourth
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equation be taken into account: in the large s limit, the summations turn to integral and

the main roots are more suitably described by means of a continuous density function.

When dealing with the sl(2) sector, this density encodes the properties of the vacuum,

and most noticeably its higher-than-one-loop component σBES reveals the behaviour of

quantum fluctuations. The Fourier transform of σBES is governed by the so-called BES

equation (after Beisert, Eden and Staudacher [23], who refined the results of [22] by

adding the contribution of the dressing factor):

σ̂BES(k) =
2πg2k

ek − 1

[
K̂(
√

2gk, 0)−
∫ ∞

0

dt

π
K̂(
√

2gk,
√

2gt)σ̂BES(t)

]
(2.38)

where the kernel splits into two components K̂(k, t) = K̂m(k, t)+ K̂d(k, t) , the first due

to ’main part’ of the scattering of type-4 roots

K̂m(k, t) =
J1(k)J0(t)− J0(k)J1(t)

k − t
(2.39)

and the second stemming from the dressing phase

K̂d(k, t) =
2
√

2

kt

∞∑
τ=1

∞∑
ν=0

∞∑
µ=ν

(−1)ν

2µ
g2µ+1

[
β

(2τ+ν+µ)
2τ,2τ+2ν+1 J2τ+2ν(k)J2τ−1(t) +

+ β
(2τ+ν+µ+1)
2τ+1,2τ+2ν+2 J2τ (k)J2τ+2ν+1(t)

]
. (2.40)

Eventually, the universal scaling function in (2.23) results from the solution of (2.38):

f(g) = 4g2 − 16g4

∫ ∞
0

dt σ̂BES(t)
J1(
√

2gt)√
2gt

. (2.41)
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Chapter 3

Scattering matrices

1 Non-Linear Integral Equations

This paragraph is intended to outline the main steps of the techniques, used throughout

the chapter, to extract information from the Bethe ansatz equations (2.30). Namely,

by means of the procedure introduced by Destri and De Vega [34] (further applications

are in [35], see instead [36] for a review), an infinite set of equations are encoded into a

single Non-Linear Integral Equation (NLIE), or, more generally, into a limited number

of them.

In order to illustrate the method, a valuable and interesting example is provided the

Beisert-Staudacher equations [30] for a system made up only of type-4 roots, which are

associated with covariant derivatives in the twist operator standpoint. In setting up such

a system, all Bethe roots but u4 are turned off, so that only the fourth set of equations

from (2.30) survives:

1 =

(
x−(u4,k)

x+(u4,k)

)L s∏
j 6=k

x−(u4,k)− x+(u4,j)

x+(u4,k)− x−(u4,j)

1− g2

2x+(u4,k)x−(u4,j)

1− g2

2x−(u4,k)x+(u4,j)

σ2(u4,k, u4,j) (3.1)

(that corresponds to sl(2) sector, see section 2.3 of chapter 2).

The first step consists in introducing the counting function Z4(u), which behaves, in a

way to be explained in the following, as a counter of roots; in the all loops case, the

counting function Z4(u) reads:

Z4(u) = LΦ(u)−
s∑

k=1

φ(u, u4,k) , (3.2)

where it reveals fruitful to operate a splitting of the Φ and φ functions in terms of the

one-loop and higher-loop components

Φ(u) = Φ0(u) + ΦH(u) , φ(u, v) = φ0(u− v) + φH(u, v) , (3.3)

35
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once the following definitions are introduced

Φ0(u) = −2 arctan 2u , ΦH(u) = −i ln

1 + g2

2x−(u)2

1 + g2

2x+(u)2

 , (3.4)

φ0(u− v) = 2 arctan(u− v) , φH(u, v) = −2i

ln

1− g2

2x+(u)x−(v)

1− g2

2x−(u)x+(v)

+ iθ(u, v)


the spectral parameter being defined via the Jukovski map as usual

x(u) =
u

2

[
1 +

√
1− 2g2

u2

]
x±(u) = x(u± i

2
) . (3.5)

The counting function manifests its importance as it allows to recast the set of equations

3.1 as a single one, explicitly:

(−1)L+s+1 = eiZ4(u) ; (3.6)

indeed, the Bethe roots satisfy the equation above. At this time being, a pivotal remark

is in order. By definition, the counting function is monotonously decreasing: as u gets

bigger, every time it reaches a value corresponding to a root of (3.6), Z4(u) is lowered

by an amount of π. Finally, when u grows to infinity, a glance to (3.2) reveals that

lim
u→±∞

Z4(u) = ∓(L+ s)π . (3.7)

Since Z4(u) is a continuous and monotonous function, there exist L + s values of u for

which it becomes a integer multiple of π, and that implies the equation (3.6) enjoys L+s

solutions: remarkably, only s of them are actually Bethe roots, the remaining L ’fake

solutions’ uh, satisfying the condition

Z4(uh) = π(2h− 1 + L) h = 1, . . . , L (3.8)

are commonly referred to as holes, meaning that they are missing roots in the root

distribution.

Now, with the analytic structure of the counting function Z4(u) in mind, let us

consider an observable (real analytic function) O(v), integrated over the rectangular

closed path in the complex plane Γ, made up of two horizontal lines stretching on an

arbitrary interval [−B,B] (the lower line lying on the real axis, the other shifted upward

by a positive possibly infinitesimal value ε), connected by two vertical segments, while

L+ s half circles (γk and γh) surround roots and holes. From the Cauchy theorem, the

following identity arises:

0 =

∮
Γ

dv

π
O(v)

iZ4(v)
dv

1 + (−1)L+se−iZ4(v)
(3.9)

For clarity’s sake, the integration over the single parts composing Γ have been explicitly
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B-B 

iЄ

γ γ
hk

Figure 3.1: The path of integration, in the complex plane

singled out:

0 = (

∫ B

−B
+

∫ B+iε

B
+

∫ −B+iε

B+iε
+

∫ −B
−B+iε

+

s∑
k=1

∫
γk

+
L∑
h=1

∫
γh

)
dv

π
O(v)

iZ4(v)
dv

1 + (−1)L+se−iZ4(v)

(3.10)

After the residues over the hal circles have been taken, the relation (3.10) is rearranged

as

0 =

∫ B

−B

dv

π
O(v)

iZ4(v)
dv

1 + (−1)L+se−iZ4(v)
+ i

s∑
k=1

O(u4,k) + i
L∑
h=1

O(uh) +

−
∫ B

−B

dv

π
O(v)

d

dv
ln
[
1 + (−1)L+seiZ4(v+iε)

]
+

+

∫ −ε
0

dv

π
O(B − iv) ln

[
1 + (−1)L+seiZ4(B−iv)

]
−

−
∫ −ε

0

dv

π
O(−B − iv) ln

[
1 + (−1)L+seiZ4(−B−iv)

]
(3.11)

Next, the logarithm can be expanded in powers of eiZ4(v)

ln
[
1 + (−1)L+seiZ4(v)

]
=
∞∑
n=1

(−1)n+1

n
(−1)n(L+s) einZ4(v) , (3.12)

suggesting the usage of the following relations, obtained by means of repeated integra-

tions by parts:∫
dv O(v + iε)

d

dv
einZ4(v+iε) = einx

∞∑
k=0

(
i

n

)k ( d

dx

)k
O(Z−1

4 (x))

∣∣∣∣∣
x=Z4(v+iε)∫

dv O(±B − iv)
d

dv
einZ4(±B−iv) = einx

∞∑
k=0

(
i

n

)k ( d

dx

)k
O(Z−1

4 (x))

∣∣∣∣∣
x=Z4(±B−iv)

(3.13)

Plugging the above useful formulæ into (3.11) and taking the imaginary part, an explicit

expression is provided for the summation of the observable O(v) evaluated in correspon-
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dence of the Bethe roots:
s∑

k=1

O(u4,k) = −
∫ B

−B

dv

2π
O(v)

d

dv
Z4(v)−

L∑
h=1

O(uh) + (3.14)

+

∞∑
n=1

(−1)n+1

n

(−1)n(L+s)

2π
einx

∞∑
k=0

(
i

n

)k ( d

dx

)k
O(Z−1

4 (x))

∣∣∣∣∣
x=Z4(−B)

x=Z4(B)

B may be chosen such that eiZ4(±B) = (−1)L+s, so that the worthy relation follows:

s∑
k=1

O(u4,k) = −
∫ B

−B

dv

2π
O(v)

d

dv
Z4(v)−

L∑
h=1

O(uh)−

−
∞∑
k=0

(2π)2k+1

(2k + 2)!
B2k+2

(
1

2

)[(
∂

∂x

)2k+1

O(Z−1
4 (x))

]∣∣∣∣∣
x=Z4(B)

x=Z4(−B)

(3.15)

where Bk(x) are the Bernoulli (even) polynomials

B2k(x) =
(−1)k−12(2k)!

(2π)2k

∞∑
n=1

cos(2nπx)

n2k

Eventually, most of our interest will dwell in the large B limit. First of all, when

B −→∞, the functions φ(v) and Z(v), along with their derivatives, can be estimated:

dn

dvn
φ(v)

∣∣∣∣
±B

= O
(

1

Bn+1

)
dn

dvn
Z4(v)

∣∣∣∣
±B

= O
(

1

Bn

)
(3.16)

It is now worthwhile to examinate in slightly more detail the position of Bethe roots

and holes. The interval [−B,B] gathers all the s roots, and L− 2 holes as well (named

’internal’) [36]; besides them, two more holes fall outside that interval, gaining the

designation of ’external’ or ’large’. The B −→ ∞ limit matches the large spin s regime

for a twist operator, leading to the estimate B = s
2

(
1 +O

(
1
s

))
. Now, it is customary

to define

L4(v) ≡ Im ln
[
1 + (−1)L+seiZ4(v+iε)

]
.

When s grows to infinity, L4(v) = O
(

1
s2

)
= O ((ln s)−∞), and, accordingly, (3.15)

catches the form, extensively employed throughout this chapter:

s∑
k=1

O(u4,k) = −
L∑
h=1

O(uh)−
∫ ∞
−∞

dv

2π
O(v)

d

dv
[Z4(v)− 2L(v)] =

= −
L∑
h=1

O(uh)−
∫ ∞
−∞

dv

2π
O(v)

d

dv
Z4(v) +O

(
(ln s)−∞

)
(3.17)

The formula (3.17) just achieved, can be fruitfully applied to the function φ(u, v),

summed over the Bethe roots in the definition of Z4(u) (3.2), so that the operation

results in a non linear integration for Z4(u):

Z4(u) = f(u) +

∫ ∞
−∞

dv

2π
φ(u, v)

d

dv
[Z4(v)− 2L4(v)] , (3.18)



1. NON-LINEAR INTEGRAL EQUATIONS 39

where the forcing term has been defined as

f(u) ≡ LΦ(u) +

L∑
h=1

φ(u, uh) .

Actually, the equation (3.18) proves not so handy, and it would be convenient to recast

it in a more suitable form. For instance, it turns out useful to plug Z4(u) (3.18) back

into itself, so to get the relation

Z4(u) = f(u)−
∫ ∞
−∞

dv

2π

dφ(u, v)

dv
Z4(v) + 2

∫ ∞
−∞

dv

2π

dφ(u, v)

dv
L4(v) =

= f(u)−
∫ ∞
−∞

dv

2π

dφ(u, v)

dv
f(v) + 2

∫ ∞
−∞

dv

2π

dφ(u, v)

dv
L4(v)− (3.19)

− 2

∫ ∞
−∞

dv

2π

dw

2π

dφ(u, v)

dv

dφ(v, w)

dw
L4(w) +

∫ ∞
−∞

dv

2π

dw

2π

dφ(u, v)

dv

dφ(v, w)

dw
Z4(w) ,

then iterating this same procedure for an arbitrary large number of times [41]. Eventu-

ally, a new integral equation for the counting function arises:

Z4(u) = F (u) + 2

∫ +∞

−∞
dv G(u, v)L4(v) . (3.20)

Though, in the equation above the forcing F (u) term and the kernel G(u, v) look nasty

and uncomfortable to computation; explicitly they read:

F (u) = f(u)+
∞∑
k=1

∫ +∞

−∞
dw1ϕ(u,w1)

∫ +∞

−∞
dw2ϕ(w1, w2) . . .

∫ +∞

−∞
dwkϕ(wk−1, wk)f(wk)

(3.21)

G(u, v) = ϕ(u, v)+
∞∑
k=1

∫ +∞

−∞
dw1ϕ(u,w1)

∫
dw2ϕ(w1, w2) . . .

∫
dwkϕ(wk−1, wk)ϕ(wk, v)

(3.22)

making use of the shorthand notation

ϕ(u, v) =
1

2π

d

dv
φ(u, v) . (3.23)

Nevertheless, F (u) and G(u, v) can be regarded as solutions to two novel linear integral

equations, namely:

F (u) = f(u)−
∫ +∞

−∞
dv ϕ(u, v)F (v) (3.24)

G(u, v) = ϕ(u, v)−
∫ +∞

−∞
dw ϕ(u,w)G(w, v) ; (3.25)

in addition to that, the functions F (u) and G(u, v) combine into the relation:

F (u) = f(u)−
∫ ∞
−∞

dv G(u, v)f(v) . (3.26)
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The inspection of (3.24) and (3.25), together with the definition of f(u) and ϕ(u, v)

(3.23), suggests the function F (u) can be decomposed as the sum of two part: one of

them depends explicitly from the hole rapidities uh, whereas the other takes into account

just the variable u. Thus, F (u) can be expressed as F (u) = LP̃ (u) +
L∑
h=1

R(u, uh),

provided R(u, v) satisfies the equation

R(u, v) = φ(u, v)−
∫ +∞

−∞
dwϕ(u,w)R(w, v) ,

1

2π

d

dv
R(u, v) = G(u, v) (3.27)

while instead the function P̃ (u) results from the linear integral equation

P̃ (u) = Φ(u)−
∫ +∞

−∞
dwϕ(u,w)P̃ (w) . (3.28)

2 The GKP vacuum from the spin chain perspective

Clearly, the analysis of excitations shall start from the description of the ground state. It

is therefore appropriate to recall the construction of the BMN vacuum; then, the recipe

to switch to GKP vacuum will be given. The BMN (half BPS, ferromagnetic) vacuum

corresponds, within the gauge theory, to the single trace operator made out of two Z

fields, thus carrying spin zero and twist two:

OBMN ∼ Tr[ZZ] .

Moving out of the ground state, the insertion of covariant (light cone) derivatives D+

adds no twist value to the operator, whereas the total spin is increased by one unit for

each D+; then, an operator composed of the two vacuum Z fields over which s derivatives

act shows up as

O ∼ Tr[Z Ds
+Z] + . . . :

objects of this sort constitute the sl(2) sector.

Remarkably, the number of derivatives s, and correspondingly the total spin, needs not

to stay finite; conversely, s may be pushed to infinity. The large spin limit turns out to

correspond to the GKP, long (i.e. fast spinning) string, and, from now on, such a state

will be settled as the actual vacuum of the theory. In this framework, the excitations

arise as insertions of fields, let us generically say ξ, in between the sea of D+’s: more

precisely, the raising of a single particle over the vacuum gets associated to the operator

O′ ∼ Tr[Z Ds−s1
+ ξ Ds1

+ Z] + . . . . (3.29)

For the GKP vacuum breaks the entire symmetry PSU(2, 2|4) down to SU(4) ' SO(6),

the excitation fields do belong to multiplets under the residual SU(4), or, rather, the

insertions ξ stand for the highest weights of some representation of su(4), associated

to each species of particle: for instance, the introduction of additional Z fields, such

as ξ = Z, accounts for the excitation of a scalar particle transforming under the 6 of

su(4) ' so(6), whilst ξ = ψ+, ψ̄+ involves, respectively, the bearing of a fermion in the
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4 of su(4) or an antifermion in the 4̄, then finally ξ = F+⊥, F̄+⊥ casts the corresponding

two components of the gluon field, behaving as a singlet to su(4). The double excitation

state reflects in the operator

O” ∼ Tr[Z Ds−s1−s2
+ ξ1D

s1
+ ξ2D

s2
+ Z] + . . . , (3.30)

and so on, increasing the number of particles for every ξk inserted.

This picture must be then transposed onto the set-up of spin chain. While the

ferromagnetic vacuum comfortably mirrors the BMN regime, the match between the

GKP string and the antiferromagnetic vacuum is alluring at least. The large spin limit

suggests that the covariant derivatives D+, which are embedded as u4 roots in the

Beisert-Staudacher equations (2.30), are filling every state they are allowed to occupy,

in that mimicking a Fermi sea: to bear any excitation, a u4 root has to be ’pulled’ away

from the distribution of main roots, so that a hole peers in the sea. Eventually, the hole

remains, taking so the role of a ’fake Bethe root’ previously described in (3.8), and the

circumstance results in the raising of a scalar excitation (in the operator standpoint, a Z

insertion). Else, the hole might be ’filled up’ with another type of Bethe root, generating

a fermion (u1 or u3, depending on the cinematical regime) or a gluon (real centre of a

gluonic stack of roots). The picture outlined above accounts for the particles which carry

momentum and energy on the GKP string. In addition to them, in the next chapter it

will turn out necessary to introduce three more kind of roots, lacking of momentum and

energy as well: their task strictly relates to the residual SU(4) residual symmetry of the

vacuum just chosen.

3 Scalar excitations: one loop

The one loop problem deserves a little attention, for it provides a first simple application

of the tools achieved in the present chapter, whereas remarkably all the relevant features

of the all-loop problem are already present. To begin with, the study sticks on the

sector made up of scalars only. Then, in the following sections, this restriction will drop,

allowing the introduction of every different kind of particle belonging to the spectrum

of the theory.

As a first instance, in the one loop case, the counting function for the twist sector

reads

Z4,0(u) = LΦ0(u)−
s∑

k=1

φ0(u− u4,k) , (3.31)

The L holes are characterised by rapidities uh, h = 1, ..., L: the two external (or ’large’)

holes, specifically u1, uL, lie outside Bethe root interval (i.e. u1 < uk < uL), while

internal (or ’small’) ones are labelled as u2, ...uL−1.

By sticking to one loop 1 (i.e. fixing g = 0), the equation (3.18) becomes:

Z4,0(u) = LΦ0(u)+

L∑
h=1

φ0(u−uh)+

∫ ∞
−∞

dv

2π
φ0(u−v)

d

dv
[Z4,0(v)−2L4,0(v)] , (3.32)

1Throughout this text, the subscript 0 means that the function considered is restricted to the form

it assumes in the limit g = 0
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where

L4,0(u) = Im ln[1 + (−1)L+s eiZ4,0(u+i0+)] . (3.33)

It turns out useful to remark that in the one loop limit the function φ(u, v) does not

depend on the two entries separately, but rather on the difference of them, so that the

integral equation above can be easily solved by Fourier transforming 2 it and using the

faltung theorem 3. Since

Φ̂0(k) = −2πe−
|k|
2

ik
, φ̂0(k) =

2πe−|k|

ik
, (3.34)

the equation for Z4,0 in the Fourier space simplifies to

Ẑ4,0(k) = − 2πLe−
|k|
2

ik(1− e−|k|)
+

2πe−|k|

ik(1− e−|k|)

L∑
h=1

e−ikxh − 2
e−|k|

1− e−|k|
L̂4,0(k) . (3.35)

Antitransforming back to direct (coordinate) space, the relation (3.18) comes to

Z4,0(u) = −iL ln
Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) + i

L∑
h=1

ln
Γ(1 + iu− ixh)

Γ(1− iu+ ixh)
+

+

∫ +∞

−∞

dv

π
[ψ(1 + iu− iv) + ψ(1− iu+ iv)]L4,0(v) , (3.36)

Since the GKP string requires s −→∞, the non linear term can be safely approximated

[43] ∫ +∞

−∞

dv

π
[ψ(1 + iu− iv) + ψ(1− iu+ iv)]L4,0(v) = −2u ln 2 +O

(
1

s2

)
, (3.37)

so that in the large spin limit the non-linear equation (3.36) gets linearised. In addition

to that, the regime just chosen allows to extract pieces of information (for an accurate

analysis please refer to [44][41] for instance, and references therein) about the position of

holes and roots on the real rapidity axis, by studying equations (3.6) for Bethe roots and

(3.8). First of all, when considering the minimal anomalous dimension state (as it is the

case of interest), roots and holes arrange themselves symmetrically around the origin,

and moreover they all lie inside a closed interval, say [−B,B], the only exception being

the two external holes forming the vacuum, as they both fall outside. Furthermore, the

minimal anomalous dimension is achieved when the internal holes satisfy the equations

Z(uh) = π(2h− 1− L) involving the set of integers h ∈ {2, . . . , L− 1}, as any different

choice of occupation numbers leads to higher values of the dimension. As a result the

2The Fourier transform of a function f(u) is the function f̂(k) =
+∞∫
−∞

du e−ikuf(u)

3The Fourier transform Fk of the convolution between two functions amounts to the product of the

transforms of both the functions separately; explicitly:

Fk[f ∗ g] = Fk[

∫ ∞
−∞

dv f(u− v)g(v)] = f̂(k)ĝ(k)
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internal holes gather around the origin, concentrating within the interval [−C,C] with

C ∼ 1
ln s [32], where no Bethe root is present at all: the latter instead belong to either

the interval [−C,−B] or [C,B]. At last, in the large spin limit the two external holes

place at

xL = −x1 =
s√
2

(
1 +

L− 1 + f(g)

2s

)
+O

(
1

s

)
,

where f(g) is the universal scaling function.

With these considerations in mind, the next task will be then recognizing the scatter-

ing matrix involving the physical particles of the theory, that is the holes. On the BMN

vacuum the equation (3.6) means nothing but the momentum quantization on the spin

chain: a probe particle travels along the circuit and gets its propagation phase shifted

every time it scatters another particle, eventually coming back to the initial value when

a round is complete. So, in the one-loop approximation, the Bethe equations read4

(−1)L−1 = e−iZ4,0(uk) = eiLP0(uk)
s∏

j 6=k
S0(uk, uj) , (3.38)

where P0(u) and S0(u, v) stand for, respectively, the one-loop momentum and scattering

phase over the BMN vacuum. By means of the formula (3.17), the counting function

drops the explicit dependence on Bethe roots and becomes expressed in terms solely of

the holes which are the physical excitations, while, thanks to the large spin limit, the

roots saturate the number of available states except for the L holes: in doing so the

scattering theory dwells no more on the ferrromagnetic vacuum, but over the antiferro-

magnetic (GKP), instead. Once rewritten on the GKP vacuum, and involving the holes

uniquely, the equation (3.38) now turns to

(−1)L−1 = e−iZ4,0(uh) = eiΛs,0(uh)
L−1∏

h′ 6=h , h′=2

(−S0(uh, uh′))⇒

⇒ 1 = eiΛs,0(uh)
L−1∏

h′ 6=h , h′=2

S0(uh, uh′) . (3.39)

Interpreting anew the equation (3.39) as a quantization condition, this time starting

from the antiferromagnetic vacuum, the scattering matrices among two holes are now

described -at one loop- by S0(u, v), whereas the propagation phase of the h-th hole

Λ0(uh) contains the product between the momentum P0(uh) and the effective length R

associated to this novel spin chain. In order to properly identify these features, it is

worth observing that the total phase Z4,0(u) (3.36) includes one part accounting for the

changes the probe particle experience whenever it collides with a hole, together with a

part which does not depend on the particle in the chain: so while the former vanishes

when no hole is present, the latter still remains. Reminding that in the setup chosen,

the number of scalar excitations is L− 2, for the two external holes do form the vacuum

4The integer s is taken to be even, from now on
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and thus can never be removed, the one loop counting function Z4,0(u) (3.36) splits

accordingly:

Z4,0(u) =

[
−2i ln

Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) + i ln
Γ(1 + iu− iuL)Γ(1 + iu− iu1)

Γ(1− iu+ iuL)Γ(1− iu+ iu1)
− 2u ln 2

]
+

+

L−1∑
h=2

[
−i ln

Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) + i ln
Γ(1 + iu− iuh)

Γ(1− iu+ iuh)

]
+O

(
1

ln s2

)
(3.40)

Aiming to find the scattering matrix between two scalars (two internal holes), the first

suitable case consists in L = 4: such a state is implemented by adapting the expression

for Z4,0(u) above to the present configuration, and plugging the rapidity uh of one the

(actual) internal hole as an entry of the counting function. It would be then tantalizing

to identify the content of the bracket in the second line of (3.40) as the scattering phase:

i ln
Γ
(

1
2 − iuh

)
Γ
(

1
2 + iuh

) Γ(1 + iuh − iuh′)
Γ(1− iuh + iuh′)

Nevertheless, this guess does not fit, since the expression is not unitary. It is thus

needed to reinstate the unitarity ’by hand’: this task can be accomplished by adding

i ln
Γ( 1

2
+iuh′)

Γ( 1
2
−iuh′)

to the expression above, and, moreover, the result enjoys good asymptotic

properties, i.e. it goes to zero when one of the rapidities goes to infinity. To sum up,

after subtracting in the first line the quantity just summed in the second, the counting

function for L = 4 becomes

Z4,0(u) = i

[
−2 ln

Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) − 3∑
h=2

ln
Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh

)+

+ ln
Γ(1 + i(u− uL))Γ(1 + i(u− u1))

Γ(1− i(u− uL))Γ(1− i(u− u1))
+ 2iu ln 2

]
+

+i

[
−2 ln

Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) +

3∑
h=2

ln
Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh

) +
3∑

h=2

ln
Γ(1 + iu− iuh)

Γ(1− iu+ iuh)

]
+O

(
1

ln s2

)
(3.41)

while the one loop scattering matrix involving two holes is

S0(uh, uh′) = −
Γ
(

1
2 − iuh

)
Γ
(

1
2 + iuh′

)
Γ(1 + iuh − iuh′)

Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh′

)
Γ(1− iuh + iuh′)

, (3.42)

in agreement with the results by Basso-Belitsky [33] and Dorey-Zhao [45].

On the other hand, when L = 3 formula (3.40) provides a way to recover the mo-

mentum of a hole. Indeed, it is straightforward to read the propagation phase:

Λs,0(u) = i ln
Γ(1 + i(u− uL))Γ(1 + i(u− u1))

Γ(1− i(u− uL))Γ(1− i(u− u1))
− 2u ln 2−

− 2i ln
Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) − i L−1∑
h=2

ln
Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh

) +O

(
1

ln s2

)
(3.43)
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The (one loop) momentum P0(u) can be extracted from Λ(u) in the large spin limit,

as it appears in the form of a product per the effective length R of the chain, so more

explicitly:

Λs,0(u) = R · Ps,0(u) +Ds,0(u) , (3.44)

where Ds,0(u) is a function, subleading in ln s, yet to be discussed, while R also corre-

sponds to the length of the GKP string, R ∼ 2 ln s (the factor 2 owing to the fact that

the GKP is a folded string), and then

Ps,0(u) = 2u (3.45)

For arbitrary L, the propagation phase in the s −→∞ limit reduces to

Λs,0(u) = 4u ln s− 2i ln
Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) − i L−1∑
h=2

ln
Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh

) +O

(
1

ln s2

)
. (3.46)

Now, since for the internal holes uh ∼ 1
ln s , the sum

L−1∑
h=2

ln
Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh

) can be neglected,

hence the function D(u) is identified:

Ds,0(u) = −2i ln
Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

) . (3.47)

The explanation is that whenever a particle goes round the chain, it experiences an

additional phase shift Ds,0(u) amenable to the presence of two static defects (i.e. they

are not associated to any proper rapidity), each one corresponding to one tip of the

folded GKP string.

In the end, all the features of the one loop spin chain have been displayed in the large

spin limit, so the Bethe equations (3.39), computed over the antiferromagnetic vacuum,

can be recovered from (3.42),(3.45),(3.47):

(−1)L−1 = ei(2uh) 2 ln s

(
Γ
(

1
2 − iuh

)
Γ
(

1
2 + iuh

))2

×

×
L−1∏

h′ 6=h , h′=2

Γ
(

1
2 − iuh

)
Γ
(

1
2 + iuh′

)
Γ(1 + iuh − iuh′)

Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh′

)
Γ(1− iuh + iuh′)

. (3.48)

4 Scalar excitations: all loops

The analysis carried out in the previous section is now going to be extended to the all

loop problem. The calculations are obviously more involved, nevertheless the starting

point remains the Bethe quantization condition:

1 = (−1)L−1 exp(−iZ4(uh)) = eiΛs(uh)
L−1∏

{h′=2, h′ 6=h}

S(uh, uh′) . (3.49)
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It now useful to recall from (3.20) that the all loop counting function reads:

Z4(u) = LP̃ (u) +
L∑
h=1

R(u, uh) + 2

∫ ∞
−∞

dv G(u, v)L(v) . (3.50)

Repeating the reasoning adopted for the one loop case, the counting function should be

slit into a part existing even when there is no internal holes in the system, plus another

strictly dependent on the presence of those scalar excitations; hence explicitly:

Z4(u) =

{
2P̃ (u) +R(u, u1) +R(u, uL) + 2

∫ ∞
−∞

dv G(u, v)L4(v)

}
+

L−1∑
h=2

{R(u, uh)+P̃ (u)} .

(3.51)

The quantity in the last bracket cannot be identified with the scattering matrix between

holes, for it lacks unitarity and so it needs to be completed with an additional term.

From the equations (3.27) and (3.28) the properties of the functions R(u, v) and P̃ (u)

can be easily deduced

P̃ (u) = −P̃ (−u) , R(u, v) = −R(−u,−v) , R(u, v) = −R(v, u) , (3.52)

therefore the unitarity can be restored in a simple way, by properly adding and sub-

tracting P̃ (uh) in the counting function above, so to get:

i ln(−S(u, v)) = R(u, v) + P̃ (u)− P̃ (v) ≡ Θ(u, v) , (3.53)

and, owing to (3.52), Θ(u, v) turns out to be antisymmetric

Θ(u, v) = −Θ(v, u) ,

as it should, in order to satisfy the requests on S(u, v).

The propagation phase Λs(u) may thus be read from (3.50):

Λs(u) = −2P̃ (u)−R(u, u1)−R(u, uL)−2

∫ ∞
−∞

dv G(u, v)L(v) +
L−1∑
h=2

P̃ (uh) . (3.54)

As already learnt from the one loop case, Λs(uh) consists of the sum of the momentum of

the h-th internal root plus a phase shift associated to the presence of defects on the spin

chain. Anyway, all these features will be discussed in more detail in the next chapter.

A further consideration is in order about the nonlinear term

2

∫
dv G(u, v)Ls(v) ≡ NL(u) ,

which in the high spin limit reveals to be subdominant (O (1) ) with respect to the

momentum. In fact, starting from the equation (3.25) for the function G(u, v) in Fourier

space

Ĝ(k, t) = − e−|k|

1− e−|k|
2πδ(t+k)+

ϕ̂H(k, t)

1− e−|k|
− 1

1− e−|k|

∫ +∞

−∞

dp

2π
ϕ̂H(k, p)Ĝ(−p, t) , (3.55)
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it follows from the definition of NL(k) that

N̂L(k) = −2
e−|k|

1− e−|k|
L̂4(k)+2

∫
dt

2π

ϕ̂H(k, t)

1− e−|k|
L̂4(−t)− 1

1− e−|k|

∫ +∞

−∞

dp

2π
ϕ̂H(k, p)N̂L(−p) .

(3.56)

The equation above gets linear when s grows to infinity [44]

N̂L(k) = −4π ln 2

ik
δ(k)− 1

1− e−|k|

∫ +∞

−∞

dp

2π
ϕ̂H(k, p)N̂L(−p) +O

(
1

s2

)
(3.57)

and it is hence apparent that the non linear term contributes from from order O
(

(ln s)0
)

onward.

4.1 Scattering phase between holes

In order to study the scalar scattering phase Θ(u, v), it is useful to split it into its even

and odd (with respect to the second variable) part:

Θ(u, v) = M(u, v) +N(u, v) ,

where M(u, v) and N(u, v) has been introduced according to:

M(u, v) =
Θ(u, v) + Θ(u,−v)

2
= M(u,−v) (3.58)

N(u, v) =
Θ(u, v)−Θ(u,−v)

2
= −N(u,−v) .

It is now convenient to recast the functions above in term of R(u, v) and P̃ (u) for the

reason that they can be determined as solutions of already known integral equations;

then he definition of Θ(u, v) (3.53) allows to write:

M(u, v) =
R(u, v) + P̃ (u)

2
+
R(u,−v) + P̃ (u)

2
(3.59)

N(u, v) =
R(u, v)−R(u,−v)

2
− P̃ (v)

A more careful glance at the odd part of the scattering phase reveals that N(u, v) may

be actually related to M(u, v), by means of the properties of R(u, v) and P̃ (u) (3.52):

M(v, u) =
R(v, u) +R(v,−u)

2
+ P̃ (v) =

−R(u, v) +R(u,−v)

2
+ P̃ (v) = −N(u, v) .

(3.60)

To sum up, the computation of the even component M(u, v) brings to the knowledge of

the scattering phase Θ(u, v) as a whole

Θ(u, v) = M(u, v)−M(v, u) , (3.61)

and, in addition to that, M(u, v) is completely determined by the sum R(u, v) + P̃ (u)

by virtue of its definition (3.58). Aiming to find a description for the scalar scattering
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phase, it is useful to add together the equations (3.27),(3.28), once turned to Fourier

space:

R̂(k, t)+ ˆ̃P (k) = φ̂(k, t)+Φ̂(k)2πδ(t)−
∫ +∞

−∞

dp

4π2
ipφ̂(k, p)

[
R̂(−p, t) + ˆ̃P (−p)

]
(3.62)

which more explicitly becomes

R̂(k, t) + ˆ̃P (k) = 4π2δ(k + t)
e−|k|

ik
− 4π2e−

|k|
2

ik
δ(t) + e−|k|

[
R̂(k, t) + ˆ̃P (k)

]
+ (3.63)

+
4π2e−

|k|
2

ik
[1− J0(

√
2gk)]δ(t) + φ̂H(k, t)−

∫ +∞

−∞

dp

4π2
ipφ̂H(k, p)

[
R̂(−p, t) + ˆ̃P (−p)

]
It turns out convenient to distinguish in (3.63) above the one loop and higher-than-one

loop contributions, so that such operation results in two distinct equations, respectively:

R̂0(k, t) + ˆ̃P0(k) =
4π2

ik

e−|k|

1− e−|k|
δ(k + t)− 4π2

ik

e−
|k|
2

1− e−|k|
δ(t) (3.64)

R̂H(k, t) + ˆ̃PH(k) =
φ̂H(k, t)

(1− e−|k|)(1− e−|t|)
+ 2πδ(t)AH(k)−

−
∫ +∞

−∞

dp

4π2

ipφ̂H(k, p)

1− e−|k|
[
R̂H(−p, t) + ˆ̃PH(−p)

]
, (3.65)

with the shorthand notation

AH(k) =
2πe−

|k|
2

ik(1− e−|k|)
[1− J0(

√
2gk)]− 1

1− e−|k|

∫ +∞

−∞

dp

4π

φ̂H(k, p)

sinh |p|2

.

Thanks to (3.59), it is possible to get the equations for the one loop and higher loop

components of M̂(k, t):

M̂0(k, t) =
2π2

ik

e−|k|

1− e−|k|
[δ(k + t) + δ(k − t)]− 4π2

ik

e−
|k|
2

1− e−|k|
δ(t) (3.66)

M̂H(k, t) =
φ̂H(k, t) + φ̂H(k,−t)
2(1− e−|k|)(1− e−|t|)

+ 2πδ(t)AH(k) −
∫ +∞

−∞

dp

4π2

ipφ̂H(k, p)

1− e−|k|
M̂H(−p, t)

Those two equations join together into a novel one associated to M̂(k, t) = M̂0(k, t) +

M̂H(k, t)

M̂(k, t) =
φ̂H(k, t) + φ̂H(k,−t)

2(1− e−|k|)
− 2π2δ(t)

J0(
√

2gk)

ik sinh |k|2

+ (3.67)

+
2π2

ik

e−|k|

1− e−|k|
[δ(k + t) + δ(k − t)]−

∫ +∞

−∞

dp

4π2

ipφ̂H(k, p)

1− e−|k|
M̂(−p, t) ;

as a consequence the following properties of M̂(k, t) hold true:

M̂(k, t) = M̂(k,−t) , M̂(k, t) = −M̂(−k, t) .

Thanks to this behaviour of M̂(k, t) under parity, the equation (3.67) may be restricted

to the sector t > 0, k > 0 without loss of generality. Hence (3.67) should be handfully
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reformulated by introducing the function K(k, t), commonly referred to as ’magic kernel’

in the study of twist sector:

K(k, t) =
2

kt

[ ∞∑
n=1

nJn(k)Jn(t) + 2
∞∑
m=1

∞∑
l=0

(−1)m+lc2m+1,2l+2(g)J2m(k)J2l+1(t)

]
(3.68)

where Jn(t) stands for the n-th Bessel function of the first kind [1]; indeed the function

φH(k, t) relates to K(k, t) in a pretty simple way

φ̂H(k, t) + φ̂H(k,−t) = 8iπ2g2e−
t+k

2 K(
√

2gk,
√

2gt) , t, k > 0 , (3.69)

and that thus allows to recast the equation (3.67) for M̂(k, t) (for k > 0, t > 0) in a

fruitful fashion, since it recalls known results achieved in works about high spin twist

sector:

M̂(k, t) =
2iπ2g2

sinh k
2

e−
t
2 K̂(
√

2gk,
√

2gt)− 2π2δ(t)
J0(
√

2gk)

ik sinh k
2

+ (3.70)

+
2π2

ik

e−k

1− e−k
δ(k − t) +

ig2

sinh k
2

∫ +∞

0
dp K̂(

√
2gk,

√
2gp)e−

p
2 ipM̂(p, t) .

More specifically, let us introduce the density as the derivative of the counting function:

σ(u) ≡ dZ(u)

du
, satisfying the equation (upon switching to Fourier space and restricting

to k > 0):

σ̂(k) =
πL

sinh k
2

[
e−

k
2 − J0(

√
2gk)

]
+

2πe−k

1− e−k
L∑
h=1

(cos kuh − 1) − (2 ln 2)2πδ(k)−

− g2k

sinh k
2

∫ ∞
0

dt e−
t
2 K(
√

2gk,
√

2gt)

[
2π

L∑
h=1

cos kuh + σ̂(t)

]
+O

(
1

s2

)
.(3.71)

The density σ(u) could be decomposed into a part proportional to ln s L−2
ln s (customarily

called first generalised scaling function, see for instance [31] for more details),

(L − 2)σ(1)(u), plus a part depending on the holes. Moreover, in the latter the contri-

bution coming from the external holes σ(u)|NIH could be distinguished from the one

stemming from all the internal holes σ(u)|AIH :

σ(u) = (L− 2)σ(1)(u) + σ(u)|AIH + σ(u)|NIH =

= (L− 2)σ(1)(u) +
L−1∑
h=2

σ(u, uh)|IH + σ(u)|NIH . (3.72)

where the Fourier transformed function σ̂(1)(k) solves the equation

σ̂(1)(k) =
π

sinh k
2

[e−
k
2−J0(

√
2gk)]− g2k

sinh k
2

∫ ∞
0

dt−
t
2 K(
√

2gk,
√

2gt)[2π+σ̂(1)(t)] (3.73)

whereas σ̂(k, uh)|IH , which is related to a single internal hole (whose rapidity is uh), is

associated to the equation:

σ̂(k, uh)|IH =
2πe−k

1− e−k
(cos kuh − 1) + (3.74)

− g2k

sinh k
2

∫ ∞
0

dt−
t
2 K(
√

2gk,
√

2gt)
[
2π(cos tuh − 1) + σ̂(k, uh)|IH

]
;
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at last, about the part relative to the external holes, it holds:

σ̂(k)|NIH = − 2π

sinh k
2

J0(
√

2gk) +
4πe−k

1− e−k
cos kuL − (2 ln 2)2πδ(k)− (3.75)

− g2k

sinh k
2

∫ ∞
0

dt e−
t
2 K(
√

2gk,
√

2gt) [4π cos kuL + σ̂(t)|NIH ] +O

(
1

s2

)
.

Finally, the sum of (3.73) and (3.74) gives the total contribution a single hole brings

to the counting function, and a comparison with (3.70) suggests the relations linking

M(u, v) to these densities :

ikM̂(k, t) =

∫ +∞

−∞
du e−itu[σ̂(1)(k) + σ̂(k, u)|IH ] (3.76)

d

du
M(u, v) = σ(1)(u) + σ(u, v)|IH . (3.77)

Now, reminding that Θ(u, v) = M(u, v)−M(v, u), it clearly follows that the scattering

phase between scalar excitations is determined by the densities σ(1), σ|IH , which have

been widely and deeply studied in literature (see for instance ([44]) ).

5 Gluonic excitations

The excitation of gluon fields on the GKP string corresponds on the gauge theory side to

the insertion of the field strength components F+⊥, F̄+⊥ inside the trace operator(3.29).

In the framework of the spin chain, the fields F+⊥ and F̄+⊥ are not associated to a single

kind of root, solving anyone among the Beisert-Staudacher equations, instead they are

embedded as complexes of roots of different types. Precisely, a gluon F+⊥ is represented

as a stack composed by two complex u3 roots, which are conjugated each other and

symmetrically placed with respect to a u2 roots laying on the real axis, then referred to

as the centre of the stack ug [42]:

u3± = ug ± i

2
u2j = ug . (3.78)

On the other hand, F̄+⊥ associates to:

u5± = uḡ ± i

2
u6j = uḡ . (3.79)

In addition to those excitations, which increase the twist of the operator by one unit,

the field content of the theory also includes bound states obtained from the reiterate

application of covariant derivatives on the gluons, namely partons of the type Dl−1
⊥ F+⊥

or D̄l−1
⊥ F̄+⊥. The field Dl−1

⊥ F+⊥ is then represented as a stack composed by l+ 1 roots
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u3, l u2 and l − 1 u1-root solutions [42]:

u1j1 = ug[l] + i(j1 −
l

2
) j1 = 1, . . . , l − 1

u2j2 = ug[l] + i(j2 −
1

2
− l

2
) j2 = 1, . . . , l (3.80)

u3j3 = ug[l] + i(j3 − 1− l

2
) j3 = 1, . . . , l + 1

with the real centres ug[l], whereas similarly D̄l−1
⊥ F̄+⊥ comes from the replacement of

the roots u1, u2, u3 with u7, u6, u5, respectively (obviously fixing l = 1 leads to F+⊥,

F̄+⊥).

Let the system be composed of Ng gluonic bound states Dl−1
⊥ F+⊥ (with different

l) moving over the vacuum: n(m) of them are associated to length-m stacks with real

centres u
g[m]
j for every value of m from one to infinity, such that

∞∑
m=1

n(m) = Ng. These

gauge fields live on a sea of covariant derivatives D+ (embedded as u4 roots): an infinite

number of main roots fills every accessible state except for L = 2 holes forming the

vacuum along with the Ng stacks. As a matter of fact, in order to have the Ng gluonic

bound states excited, a u4 root has to be removed from the sea for each gauge field

and then substituted by the centrer of the stack. The system built this way matches to

a spin chain of length L + Ng ≡ L′ (the chain lengthens owing to the presence of the

excitations), the latter being described by the Bethe equations:

• 1 = e−ip4,kL
′
s∏
j=1

S(44)(u4,k, u4,j)
∏
m

n(m)∏
i=1

S(4g)
m (u4,k, u

g[m]
i ) (3.81)

• 1 =
∏
m

n(m)∏
i=1

S(gg)
lm (u

g[l]
k , u

g[m]
i )

s∏
j=1

S(g4)
l (u

g[l]
k , u4,j) . (3.82)

The last one (3.82) is obtained by multiplying among themselves the Beisert-Staudacher

equations associated to every root involved in the construction of a l-stack: the fusion of

l + 1 type-3, l type-2 and l − 1 type-1 equations, properly shifted in order to admit the

roots itemized in (3.80) as their solutions, leads to the assembly of the scattering matrices

for the excitations over the ferromagnetic (BMN) vacuum: S(44)(uk, uj) describes the

scattering involving two type-4 Bethe roots

S(44)(uk, uj) =
uk − uj − i
uk − uj + i

1− g2

2x+(uk)x−(uj)

1− g2

2x−(uk)x+(uj)

2

σ2(uk, uj) , (3.83)

while, for a u4 root colliding with a gluonic stack (with length l and real centre ulj) it is

to be considered

S(4g)
l (uk, u

g[l]
j ) =

uk − u
g[l]
j + i l+1

2

uk − u
g[l]
j − i

l+1
2

1− g2

2x−(uk)x(u
g[l]
j −i

l
2

)

1− g2

2x+(uk)x(u
g[l]
j −i

l
2

)

1− g2

2x−(uk)x(u
g[l]
j +i l

2
)

1− g2

2x+(uk)x(u
g[l]
j +i l

2
)

=

= [S(g4)
l (u

g[l]
j , uk)]

−1 ; (3.84)
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finally, the matrix for the scattering of gluonic bound states, in terms of real centres,

reads

S(gg)
lm (u

g[l]
k , u

g[m]
j ) =

u
g[l]
k − u

g[m]
j − i

2(l +m)

u
g[l]
k − u

g[m]
j + i

2(l +m)

u
g[l]
k − u

g[m]
j + i

2(l −m)

u
g[l]
k − u

g[m]
j − i

2(l −m)
×

×
l−1∏
γ

(
u
g[l]
k − u

g[m]
j − i

2(l +m− 2γ)

u
g[l]
k − u

g[m]
j + i

2(l +m− 2γ)

)2

(3.85)

Aiming to formulate a set of Bethe equations portraying the excitations over the antifer-

romagnetic (GKP) vacuum, the path previously outlined for the scalars will be adapted

for gauge fields and counting functions will be introduced. In addition to definitions

(3.4), (3.4), it is handful to define

χ(v, u|l) ≡ χ0(v − u|l + 1) + χH(v, u− il

2
) + χH(v, u+

il

2
) , (3.86)

where the function χ has been torn into its one-loop and higher-loop parts:

χ0(u|l) ≡ 2 arctan
2u

l
= i ln

il + 2u

il − 2u
(3.87)

χH(u, v) ≡ i ln

1− g2

2x−(u)x(v)

1− g2

2x+(u)x(v)

 ; (3.88)

moreover, for later use,

χ̃(u, v|l,m) ≡ χ0(u− v|l+m)−χ0(u− v|l−m) + 2
l−1∑
γ=1

χ0(u− v|l+m− 2γ) (3.89)

A slight change of notations has been implicitly performed, by dropping in ug[l] the

superscript referring to the stack length, according to χ(v, ug|l) ≡ χ(v, ug[l]). It is

now straightforwrd to define the counting function pertinent to the equation (3.81),

by adapting (3.31) to the case at hand, in order to include the Ng gluonic stacks:

Z4(u) = (L+Ng)Φ(u)−
s∑
j=1

φ(u, uj) +

Ng∑
k=1

χ(u, ugk|mk) . (3.90)

Alongside it, another counting function shall be introduced for a probe particle consisting

in a gluonic stack, with real centre u and length l, which collides only with roots and

gluonic excitations (centre’s rapidity ugk, length mk):

Zg(u|l) =

Ng∑
k=1

χ̃(u, ugk|l,mk) +

s∑
j=1

χ(uj , u|l) . (3.91)

The Bethe equations (3.81), (3.82) thus turns into a more compact fashion:

(−1)L+s−1 = eiZ(uk) (3.92)

1 = eiZg(ug | l) . (3.93)
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When considering the high spin limit, the relation (3.17) allows to recast the counting

functions into a new form, more suitable for the antiferromagnetic vacuum as the explicit

dependence on s is concealed while the holes in the D+-distribution are now manifest. In

fact, the renewed counting function (3.90) arises as the solution of an integral equation:

Z4(v) = (L+Ng)Φ(v) +

∫ +∞

−∞

dw

2π
φ(v, w)

d

dw
[Z4(w)− 2L4(w)] +

+

L∑
h=1

φ(v, uh) +

Ng∑
k=1

χ(v, ugk|mk) (3.94)

Formula (3.94) suggests that Z4(v) could also be gained by solving the nonlinear integral

equation

Z4(v) = F4(v) + 2

∫ +∞

−∞
dwG(v, w)L4(w) , (3.95)

whose forcing term F4(v) may be decomposed according to

F4(v) = (L+Ng)P̃ (v) +
L∑
h=1

R(v, uh) +

Ng∑
k=1

T (v, ugk|mk) , (3.96)

where P̃ (v), R(v, u), and T (v, u|m) are the solutions respectively of (3.28), (3.27) and

T (v, u|m) = χ(v, u|m)−
∫ +∞

−∞

dw

2π

[
d

dw
φ(v, w)

]
T (w, u|m) . (3.97)

For later purposes, it is worth plugging the expression (3.97) back into itself and iterating

the procedure, so to get the formal solution:

T (v, u|m) = χ(v, u|m)−
∫ +∞

−∞
dwG(v, w)χ(w, u|m) , (3.98)

Turning now to (3.91), the relation (3.17) leads to the formula

Zg(u|l) =

Ng∑
k=1

χ̃(u, ugk|l,mk)−
∫ +∞

−∞

dv

2π
χ(v, u|l) d

dv
[Z4(v)−2L4(v)]−

L∑
h=1

χ(uh, u|l) (3.99)

and eventually, after substituting the expression (3.95) for Z4(v), the gluonic counting

function becomes:

Zg(u|l) =

∫ ∞
−∞

dv

π

dL4

dv
(v)T (v, u|l)−

L∑
h=1

[
T (uh, u|l) +

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv
P̃ (v)

]
+

+

Ng∑
k=1

[
χ̃(u, ugk|l,mk)−

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv

(
T (v, ugk|mk) + P̃ (v)

)]
(3.100)

Once the numbers of excitations L and Ng are properly fixed, the scattering matrices

simply stand out from (3.100), it only takes paying attention to correctly impose the

unitarity.
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For instance, when just two gauge fields Dl−1
⊥ F+⊥ (so Ng = 2) live over the vacuum

(L = 2), it is straightforward to read the scattering matrix between the gluonic stacks

(lengths l, m and centres u, v, respectively), taking as reference the antiferromagnetic

vacuum:

i ln(−S(gg)
lm (u, u′)) = χ̃(u, u′|l,m)−

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv
T (v, u′|m)−

−
∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv
P̃ (v) +

∫ ∞
−∞

dv

2π
χ(v, u′|m)

d

dv
P̃ (v) (3.101)

Now, since the relations hold (following from (3.53) and 3.28))

G(u, v) =
1

2π

d

dv
R(u, v) =

1

2π

d

dv
Θ(u, v) +

1

2π

d

dv
P̃ (v) , (3.102)

d

dv
P̃ (v) =

d

dv
Φ(v)−

∫ +∞

−∞

dw

2π

[
d

dv

d

dw
Θ(v, w)

]
Φ(w) , (3.103)

with the aid of formula (3.98) the scattering phase between gluons rearranges:

i ln(−S(gg)
lm (u, u′)) = χ̃(u, u′|l,m) + (3.104)

+

∫
dv

2π

dw

2π
[χ(v, u|l) + Φ(v)]

d

dv

[
d

dw
Θ(v, w)− 2πδ(v − w)

]
[χ(w, u′|m) + Φ(w)]

A system with L = 3 and Ng = 1 instead is suitable for studying the scattering

involving one gauge field and one internal hole. From gluonic counting function (3.100)

the gluon-scalar scattering phase follows, again taking care of unitarity:

i lnS(gs)(u, uh|l) = −T (uh, u|l)−
∫ +∞

−∞

dw

2π
χ(w, u|l) d

dw
P̃ (w)− P̃ (uh) =

= −χ(uh, u|l)− Φ(uh) +

∫ +∞

−∞

dw

2π

[
d

dw
Θ(uh, w)

]
(χ(w, u|l) + Φ(w)) =

=

∫ +∞

−∞

dw

2π

[
d

dw
Θ(uh, w)− 2πδ(uh − w)

]
(χ(w, u|l) + Φ(w)) . (3.105)

On the other hand, from the scalar counting function (3.94) the scalar-gluon scattering

phase is found, in the form expected:

i lnS(sg)(uh, u|l) = T (uh, u|l) + P̃ (uh) +

∫ +∞

−∞

dw

2π
χ(w, u|l) d

dw
P̃ (w) = (3.106)

= −
∫ +∞

−∞

dw

2π

[
d

dw
Θ(uh, w)− 2πδ(uh − w)

]
(χ(w, u|l) + Φ(w)) .

Once the scattering phases between gluons and between gluons and holes have been

singled out, the remaining terms in (3.99):

Λg(u) = T (u1, u|l) + T (uL, u|l)−
∫ ∞
−∞

dv

π

dL4

dv
(v)T (v, u|l) + (3.107)

+ 2

∫ +∞

−∞

dv

2π
χ(v, u|l) d

dv
P̃ (v) +

Ng∑
k=1

∫ +∞

−∞

dv

2π
χ(v, ugk|mk)

d

dv
P̃ (v)−

L−1∑
h=2

P̃ (uh)
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In order to complete the bestiary of matrices which involve gauge fields, the D̄⊥F̄+⊥
fields have to be taken into account, too. A system composed of L (internal and external)

holes, Ng bound states D⊥F+⊥ and Nḡ bound states D̄⊥F̄+⊥ is determined in the large

spin regime by three counting functions:

Z4(v) = (L+Ng +Nḡ)Φ(v) +

∫ +∞

−∞

dw

2π
φ(v, w)

d

dw
[Z4(w)− 2L4(w)] +

+

L∑
h=1

φ(v, uh) +

Ng∑
k=1

χ(v, ugk|mk) +

Nḡ∑
j=1

χ(v, uḡj |qj)

Zg(u|l) =

∫ ∞
−∞

dv

π

dL4

dv
(v)T (v, u|l)−

L∑
h=1

[
T (uh, u|l) +

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv
P̃ (v)

]
+

+

Ng∑
k=1

[
χ̃(u, ugk|l,mk)−

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv

(
T (v, ugk|mk) + P̃ (v)

)]
−

−
Nḡ∑
j=1

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv

(
T (v, uḡj |qj) + P̃ (v)

)
(3.108)

Zḡ(u|l) =

∫ ∞
−∞

dv

π

dL4

dv
(v)T (v, u|l)−

L∑
h=1

[
T (uh, u|l) +

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv
P̃ (v)

]
+

+

Nḡ∑
j=1

[
χ̃(u, uḡj |l, qj)−

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv

(
T (v, uḡj |qj) + P̃ (v)

)]
−

−
Ng∑
k=1

∫ ∞
−∞

dv

2π
χ(v, u|l) d

dv

(
T (v, ugk|mk) + P̃ (v)

)
.

By restricting the system above to just one D⊥F+⊥ and one D̄⊥F̄+⊥ over the vacuum

(so Ng = Nḡ = and L = 2), the matrix S
(gḡ)
lm is thus obtained:

i lnS
(gḡ)
lm (ug, tḡ) =

∫ +∞

−∞

dv dw

4π2
[χ(v, ug|l) + Φ(v)]

d

dv

[
d

dw
Θ(v, w)− 2πδ(v − w)

]
×

× [χ(w, tḡ|m) + Φ(w)] (3.109)

No surprises in discovering that missing matrices to be computed are S(sḡ)(u, v|l) =

S(sg)(u, v|l) and S
(ḡḡ)
lm (u, v) = S

(gg)
lm (u, v), owing to the symmetry (u1, u2, u3) −→

(u7, u6, u5).

Actually, since most of the interest of this work addresses to gluons rather than

to bound states, the length l = 1 stacks (gluons, as already explained) deserve to be

focused on and displayed all together. The previously retrieved scattering matrices

(3.104), (3.105), (3.109) then specialise to the case at hand (with a slight change of

notations about stack-length subscripts):

i lnS(gg)(u, u′) ≡ i lnS
(gg)
11 (u, u′) = i ln

u− u′ + i

u− u′ − i
+ (3.110)

+

∫ +∞

−∞

dv

2π

dw

2π
[χ(v, u|l) + Φ(v)]

d

dv

[
d

dw
Θ(v, w)− 2πδ(v − w)

]
[χ(w, u′|m) + Φ(w)]
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i lnS(gs)(u, uh) ≡ i lnS(gs)(u, uh|1) = i lnS(ḡs)(u, uh|1) =

=

∫ +∞

−∞

dw

2π

[
d

dw
Θ(uh, w)− 2πδ(uh − w)

]
(χ(w, u|1) + Φ(w)) (3.111)

S(gḡ)(u, u′) = S(gg)(u, u′)
u− u′ − i
u− u′ + i

(3.112)

S(ḡg)(u, u′) = [S(gḡ)(u′, u)]−1 . (3.113)

5.1 One-loop

When g = 0, the system (3.108), in Fourier transform, simplifies to:

Ẑ4, 0(k) = −2π(L+Ng +Nḡ)

ik

e−
|k|
2

1− e−|k|
− 2 e−|k|

1− e−|k|
L̂4,0(k) + (3.114)

+

L∑
h=1

2π

ik
e−ikuh

e−|k|

1− e−|k|
+ 2π

Ng∑
i=1

e−iku
g
i

ik

e−|k|
mi+1

2

1− e−|k|
+ 2π

Nḡ∑
j=1

e−iku
ḡ
j

ik

e−|k|
qj+1

2

1− e−|k|

for the type-4 counting function,

Ẑ0,g(k|l)
2π

= − 1

ik

(L+Ng +Nḡ) e
− |k|

2
(l+2)

1− e−|k|
+

L∑
h=1

e−ikuh
1

ik

e−
|k|
2

(l+1)

1− e−|k|
+ (3.115)

+

Ng∑
i=1

e−iku
g
i

ik

e− |k|2 (l+mi) − e−
|k|
2

(l−mi) + 2

l−1∑
γ=1

e−
|k|
2

(l+mi−2γ) +
e−
|k|
2

(l+mi+2)

1− e−|k|

+

+

Nḡ∑
j=1

e−iku
ḡ
j

ik

e−
|k|
2

(l+qj+2)

1− e−|k|
− L̂4,0(k)

π

e−
|k|
2

(l+1)

1− e−|k|

for the gauge fields, while for the barred-gauge fields

Ẑ0,ḡ(k|l)
2π

= − 1

ik

(L+Ng +Nḡ) e
− |k|

2
(l+2)

1− e−|k|
+

L∑
h=1

e−ikuh
1

ik

e−
|k|
2

(l+1)

1− e−|k|
+ (3.116)

− L̂4,0(k)

π

e−
|k|
2

(l+1)

1− e−|k|
+

Ng∑
i=1

e−iku
g
i

ik

e−
|k|
2

(l+mi+2)

1− e−|k|
+

+

Nḡ∑
j=1

e−iku
ḡ
j

ik

e− |k|2 (l+qj) − e−
|k|
2

(l−qj) + 2
l−1∑
γ=1

e−
|k|
2

(l+qj−2γ) +
e−
|k|
2

(l+qj+2)

1− e−|k|


It is now very simple to distinguish the one loop scattering matrices. For instance, the

exponentiation of the formula (3.115) results in

e−iZg(u|l) =

[
Γ
(
l+2
2 + iu

)
Γ
(
l+2
2 − iu

)](L+Ng+Nḡ)

e
1
π

∫
dvL4,0(v)[ψ( l+1

2
+i(u−v))+ψ( l+1

2
−i(u−v))] ×

×
L∏
h=1

(
Γ
(
l+1
2 − i(u− xh)

)
Γ
(
l+1
2 + i(u− xh)

)) Nḡ∏
j=1

Γ
(

1 +
l+qj

2 − i(u− u
ḡ
j )
)

Γ
(

1 +
l+qj

2 + i(u− uḡj )
)
×

+

Ng∏
k=1

1 + i
2(u−ugk)

l+mk

1− i2(u−ugk)

l+mk

1− i2(u−ugk)

l−mk

1 + i
2(u−ugk)

l−mk

l−1∏
γ=1

1 + i
2(u−ugk)

l+mk−2γ

1− i 2(u−ugk)

l+mk−2γ

2
Γ
(

2+l+mk
2 − i(u− ugk)

)
Γ
(

2+l+mk
2 + i(u− ugk)

)

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so that for the scattering between a gluon stack (rapidity u and length l) and a hole

with rapidity uh, it holds:

S
(gs)
l (u, uh) =

Γ
(
l+1
2 + i(u− uh)

)
Γ
(
l+1
2 − i(u− uh)

) Γ
(
l+2
2 − iu

)
Γ
(
l+2
2 + iu

) Γ
(

1
2 + iuh

)
Γ
(

1
2 − iuh

) (3.117)

In the same way, a process of scattering involving two gluons, with rapidities respectively

u, u′ and lengths l, m is associated to:

S
(gg)
lm (u, u′) = −

u− u′ + i
2(l +m)

u− u′ − i
2(l +m)

u− u′ + i
2 |l −m|

u− u′ − i
2 |l −m|

Γ
(
1 + l+m

2 + i(u− u′)
)

Γ
(
1 + l+m

2 − i(u− u′)
) ×

×
Γ
(
l+2
2 − iu

)
Γ
(
l+2
2 + iu

) Γ
(
m+2

2 + iu′
)

Γ
(
m+2

2 − iu′
) min(l,m)−1∏

γ=1

(
u− u′ + i

2(|l −m|+ 2γ)

u− u′ − i
2(|l −m|+ 2γ)

)2

(3.118)

For the missing matrices involving barred-fields, the very same relations (3.111) stay

untouched.

Although the computation of energy and momentum of an excitation will be treated

with more detail and generality in the next chapter, the one loop case offers the chance

to face the method to be used with a heuristic sight, so to highlight a physical interpre-

tation underneath. Let us take into exam, for instance, a system containing only one

gluonic stack, with rapidity ug and length l. The introduction of such an excitation thus

induces an alteration on the density of the sea of covariant derivatives D+ forming the

vacuum. As first step towards estimating the shuffle occurred to the covariant derivative

distribution, it is useful to adapt the the main root counting function (in Fourier space

(3.114)) to the case considered, that is by setting Ng = 1, L = 2 (accounting for the two

external holes, with rapidities u1 and u2) and Nḡ = 0:

Ẑ
(1g)
4,0 (k;ug) = −6π

ik

e−
|k|
2

1− e−|k|
− 2 e−|k|

1− e−|k|
L̂

(1g)
4,0 (k) +

+
2π

ik

e−|k|

1− e−|k|
(e−iku1 + e−iku2) + e−iku

g 2π

ik

e−|k|
l+1
2

1− e−|k|
(3.119)

with the superscript (1g) to distinguish the ’one gluon’ case function from the vacuum

(v) (Ng = 0):

Ẑ
(v)
4,0 (k) = −4π

ik

e−
|k|
2

1− e−|k|
− 2 e−|k|

1− e−|k|
L̂

(v)
4,0(k) +

2π

ik

e−|k|

1− e−|k|
(e−iku1 + e−iku2)(3.120)

The introduction of the gluonic stack affects the root distribution, so that the root density

turns from a vacuum (one-loop) value σ
(v)
0 (u) ≡ dZ

(v)
4,0 (u)

du to a new one σ
(1g)
0 (u;ug) ≡

dZ
(1g)
4,0 (u;ug)

du . We can estimate then such a variation by means of the one-loop fluctuation

density:

τ0(u, ug) ≡ σ
(1g)
0 (u;ug)− σ(v)

0 (u)

2π
= (3.121)

=
1

π

∞∑
n=0

n+ l+1
2

(u− ug)2 + (n+ l+1
2 )2

− 1

π

∞∑
n=0

n+ 1
2

u2 + (n+ 1
2)2
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recalling that in the s→∞ limit, non linear terms are negligeable. As a first instance,

the density fluctuation allows to compute the (one-loop) energy of the excitation. The

observable e(u) =
1

u2 + 1
4

measures the energy associated to a Bethe root with rapidity

u, and it is now appropriate to remark that only the type-4 roots carry energy and

momentum: all the particles acquire some amount of these charges after interacting

with u4 roots. Therefore, in order to compute the total energy of the system, it takes

to evaluate e(u) by summing upon every u4,k, and this operation, under the large s

limit, turns to an integration on the rapidity. Hence, a way to measure the energy

of an excitation consists in computing the variation the u4 roots experience after the

introduction of the particle. Explicitly, for the single gauge field system, it holds:

E0(ug) =

∫ ∞
−∞

σ
(1g)
0 (u;ug)

u2 + 1
4

du−
∫ ∞
−∞

σ
(v)
0 (u)

u2 + 1
4

du =

∫ ∞
−∞

τ0(u, ug)

u2 + 1
4

du =

= 2Ψ(1)−Ψ(
l

2
+ 1− iug)−Ψ(

l

2
+ 1 + iug) , (3.122)

and that matches the result by Basso [42].

Moreover, the density τ0(u, ug) also provides a manner to calculate the momentum

carried by the excitation: upon singling out its odd part, τ odd0 (u, ug) ≡ 1
2

[
τ0(u, ug) −

τ0(−u, ug)
]
, it can be found:

τ odd0 (u, ug) =
1

4π

[
Ψ

(
l + 1

2
+ i(u+ ug)

)
+ Ψ

(
l + 1

2
− i(u+ ug)

)
−

− Ψ

(
l + 1

2
+ i(u− ug)

)
−Ψ

(
l + 1

2
− i(u− ug)

)]
(3.123)

The digamma function (Ψ(z) ≡ d
dz ln Γ(z)) for large z behaves according to following

asymptotic series:

Ψ(z) ∼ ln z − 1

2z
+O(z−2) (3.124)

So, for large rapidity u, it is verified that

τ odd0 (u, ug) ∼ ug

πu
: (3.125)

that is exactly the relation (4.3) of [42] (at one-loop), relating the momentum of the

excitation to the odd part of density fluctuation

P (ug) = 2πuτ odd0 (u, ug) = 2ug (3.126)

6 Fermionic Excitations

To parametrise the dynamics of a fermionic excitation, the rapidity to look at is actually

x, which is related to the Bethe rapidity u via the Jukovski map u(x) = x + g2

2x . To

properly invert the Jukovski map, in order to cover the whole range of values of x,
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two u-planes must be glued together, each one of them being a Riemann sheet. The

two sheets are related to two distinct regimes of the fermionic excitations [42]: large

fermions, embedded in Beisert-Staudacher equations [30] as u3 roots, which do carry

energy and momentum even at one-loop; small fermions, corresponding to u1 roots,

which couple to main root equations just at higher loops. The function x(u) can be

analytically continued from the u3 Riemann sheet to the u1-sheet by means of the map

x(u3) −→ (g2)/(2x(u1)): remarkably the Beisert-Staudacher equations are invariant

under this exchange u3 ↔ u1, provided the spin-chain length increases (see [30] for

details). Exactly the same reasoning holds for anti-fermions, after the replacements

u3 → u5 and u1 → u7: turning on u3 (u1) roots means exciting fermionic fields Ψ+, while

u5 (u7) corresponds to Ψ̄+. After pointing out these remarks, the concern addresses to

a system made of NF large fermions uF = u3, of physical rapidities xF,j = x(uF,j) with

the arithmetic square root for x(u) = (u/2)
[
1 +

√
1− (2g2)/u2

]
, and Nf small fermions

uf = u1, of rapidities xf,j = (g2)/(2x(uf,j)), over the sea of u4 roots; this system is then

portrayed by the following Bethe equations:

• 1 = e−ipkL
s∏

j 6=k
S(44)(u4,k, u4,j)

NF∏
j=1

S(4F )(u4,k, uF,j)

Nf∏
j=1

S(4f)(u4,k, uf,j) (3.127)

• 1 =

s∏
j=1

S(F4)(uF,k, u4,j) (3.128)

• 1 =

s∏
j=1

S(f4)(uf,k, u4,j) (3.129)

where, in addition to previously defined matrices, the scalar-fermion scattering phases

have been introduced:

S(F4)(uF,k, u4,j) =
uF,k − u4,j + i

2

uF,k − u4,j − i
2

1− g2

2xF,kx
+
j

1− g2

2xF,kx
−
j

 =
[
S(4F )(u4,j , uF,k)

]−1
(3.130)

for large fermions, while small fermions are associated to

S(f4)(uf,k, u4,j) =
1− g2

2xf,kx
−
j

1− g2

2xf,kx
+
j

=
[
S(4f)(u4,j , uf,k)

]−1
. (3.131)

Now that all elements have been set up, the search for scattering matrices follows the

usual path. The first step consists in writing the counting functions, for u4 roots, large

and small fermions, namely:

• Z4(u) = (L+NF +Nf ) Φ(u)−
s∑
j=1

φ(u, u4,j) +

NF∑
j=1

χF (u, uF,j)−
Nf∑
j=1

χH(u, uf,j)

• ZF (u) =

s∑
j=1

χF (u4,j , u) (3.132)

• Zf (u) = −
s∑
j=1

χH(u4,j , u)



60 CHAPTER 3. SCATTERING MATRICES

where for concision’s sake it has been defined χF (v, u) ≡ χ0(v − u|1) + χH(v, u). The

very same procedure, adopted so far for the other kinds of particles, allows to formulate

integral equations whose solutions are the counting functions (3.132). To begin with,

the first one of (3.132) becomes the solution of

Z4(u) = (L+NF +Nf ) Φ(u) +

NF∑
j=1

χF (u, uF,j)−
Nf∑
j=1

χH(u, uf,j) +

+

∫
dv

2π
φ(u, v)

d

dv
[Z4(v)− 2L4(v)] +

L∑
h=1

φ(u, xh) : (3.133)

the shape of this equation entails that Z4(v) takes should read as

Z4(v) = (L+NF +Nf )P̃ (v) +
L∑
h=1

R(v, uh) +

NF∑
k=1

FF (v, uF,k) +

Nf∑
k=1

Ff (v, uf,k) (3.134)

where the functions FF (v, u) and Ff (v, u) solve the equations

FF (u, uF ) = χF (u, uF )−
∫
dv ϕ(u, v)FF (v, uF )

Ff (u, uf ) = −χH(u, uf )−
∫
dv ϕ(u, v)Ff (v, uf ) , (3.135)

which, in addition, admit as formal solutions

FF (u, uF ) = χF (u, uF )−
∫
dv G(u, v)χF (u, uF )

Ff (u, uf ) = −χH(u, uf ) +

∫
dv G(u, v)χH(v, uf ) . (3.136)

As usual, after the high spin limit has been taken and the formula (3.17) applied, the

remaining two relations in (3.132) are left associated to two more equations, suitable for

describing fermionic counting functions on the antiferromagnetic vacuum:

ZF (u) = −
∫

dv

2π
χF (v, u)

d

dv
[Z4(v)− 2L4(v)]−

L∑
h=1

χF (uh, u) (3.137)

Zf (u) =

∫
dv

2π
χH(v, u)

d

dv
[Z4(v)− 2L4(v)] +

L∑
h=1

χH(uh, u)

The experience gained in earlier study on scalars and gauge fields, this time helps in

surveying the behave of both large and small fermionic excitations. Hence the matrices

regulating the scattering processes which involve fermions are thus gathered below:

• large fermion-large fermion

i logS(FF )(u, u′) =

∫
dvdw

(2π)2
[χF (v, u) + Φ(v)]

d

dv

(
dΘ(v, w)

dw
− 2πδ(v − w)

)
× [χF (w, u′) + Φ(w)] (3.138)
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• small fermion-small fermion

i logS(ff)(u, u′) =

∫
dv dw

(2π)2
χH(v, u)

d

dv

(
d

dw
Θ(v, w)− 2πδ(v − w)

)
χH(w, u′)

(3.139)

• small fermion-large fermion

i logS(fF )(u, u′) = −i logS(Ff)(u′, u) = (3.140)

= −
∫

dv

2π

dw

2π
χH(v, u)

d

dv

(
d

dw
Θ(v, w)− 2πδ(v − w)

)[
χF (w, u′) + Φ(w)

]
• scalar-small fermion

i logS(sf)(u, u′) = Ff (u, u′) + P̃ (u)−
∫

dv

2π
χH(v, u′)

d

dv
P̃ (v) =

=

∫
dv

2π

(
d

dv
Θ(u, v)− 2πδ(u− v)

)
χH(v, u′) = −i logS(fs)(u′, u) (3.141)

• scalar-large fermion

i logS(sF )(u, u′) = FF (u, u′) + P̃ (u) +

∫
dv

2π

(
χ0(v − u′) + χH(v, u′)

) d

dv
P̃ (v) =

= −
∫

dv

2π

(
d

dv
Θ(u, v)− 2πδ(u− v)

) [
χF (v, u′) + Φ(v)

]
= −i logS(Fs)(u′, u)(3.142)

As a general feature, the S-matrices involving small fermions are achieved from the

corresponding ones for large fermions by means of the plain replacement

χF (v, u) + Φ(v) −→ −χH(v, u) ,

due to the u3 ↔ u1 duality residing in the Beisert-Staudacher equations, as already

discussed in the beginning of the present section.

Anyway the set of scattering phases for fermionic excitations has not been accom-

plished yet: in fact, the matrices accounting of antifermions, both large and small, are

still missing. Nevertheless it is not complicate to enhance the system (3.132) so that

with the antifermion terms, because of the duality amongst u3 ↔ u5 and u1 ↔ u7 roots:

it just takes to supplement (3.132) with two more counting functions, with the purpose

of taking care of antifermions, namely:

• ZF̄ (u) =
s∑
j=1

χF (u4,j , u) (3.143)

• Zf̄ (u) = −
s∑
j=1

χH(u4,j , u)

To be noticed: the counting functions ZF̄ (u) and Zf̄ (u) for antifermions do not differ

from ZF (u), Zf (u), and so neither the corresponding NLIE do diversify (in shape) from

(3.137). Since at the level of Beisert-Staudacher equations the u1, u3, u5, u7 roots do
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not interact among themselves, the only discrepancy, arising from the addition of an-

tifermions, occurs in the u4 counting function Z4(u), which gets modified by the presence

of new terms which explicitly recall the (pseudo) rapidities of those particles:

Z4(u) = (L+NF +Nf ) Φ(u)−
s∑
j=1

φ(u, u4,j) +

NF∑
j=1

χF (u, uF,j)−
Nf∑
j=1

χH(u, uf,j)

+

NF̄∑
j=1

χF (u, uF̄ ,j)−
Nf̄∑
j=1

χH(u, uf̄ ,j) (3.144)

Therefore it is a straightforward task to show that the there is no distinction between

fermions and antifermions, as long as the scattering phases are considered, so that:

S(F̄ F̄ )(u, u′) = S(F̄F )(u, u′) = S(FF̄ )(u, u′) = S(FF )(u, u′)

S(sF̄ )(u, u′) = S(sF )(u, u′) ; (3.145)

also, the same relations hold for small fermions too. Though, that ’conjugation indepen-

dence’ of the scattering theory stays no longer valid when the system also includes gauge

and barred-gauge fields, as a novel term appears both in gluonic and (anti)fermionic

counting functions in order to take into account the gluon-(anti)fermion interaction, al-

ready present in the Beisert-Staudacher equations. For sake of clarity, it is useful to

report the fermionic counting functions for a system composed of fermions, antifermions

and gauge bound states:

ZF (u) =
s∑
j=1

χF (u4,j , u) +

Ng∑
j=1

χ0(u− ugj |mj) (3.146)

Zf (u) = −
s∑
j=1

χH(u4,j , u) +

Ng∑
j=1

χ0(u− ugj |mj)

ZF̄ (u) =
s∑
j=1

χF (u4,j , u) +

Nḡ∑
j=1

χ0(u− uḡj |m̄j)

Zf̄ (u) = −
s∑
j=1

χH(u4,j , u) +

Nḡ∑
j=1

χ0(u− uḡj |m̄j) ;

please mind that gluonic bound states do not mix with antifermions, nor barred-gluonic

bound states do with fermions. In the end, the usual procedure leads to the following
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matrices:

S(gF )(u, u′) = [S(Fg)(u′, u)]−1 =
u− u′ + il

2

u− u′ − il
2

exp

{
i

∫
dv dw

4π2
[χ(v, u|l) + Φ(v)] ×

× d

dv

(
2πδ(v − w)− dΘ(v, w)

dw

)
[χF (w, u′) + Φ(w)]

}
(3.147)

S(gF )(u, v) = S(ḡF̄ )(u, v) (3.148)

S(ḡF )(u, v) = [S(F ḡ)(v, u)]−1 = exp

{
i

∫
dv dw

4π2
[χ(v, u|l) + Φ(v)] × (3.149)

× d

dv

(
2πδ(v − w)− dΘ(v, w)

dw

)
[χF (w, u′) + Φ(w)]

}
S(gF̄ )(u, v) = [S(F̄ g)(v, u)]−1 = S(ḡF )(u, v) (3.150)

6.1 One-loop

At one loop, the counting function for a system composed of L holes (internal and

external)and NF large fermions (recalling that small fermions count just at higher loops)

reads, upon exponentiating:

e−iZ0,F (u) =

[
Γ(1 + iu)

Γ(1− iu)

]L+NF

e
i
π

∫
LF,0[ψ( 1

2
+i(u−v))+ψ( 1

2
−i(u−v))]dv ×

×
L∏
h=1

(
Γ(1

2 − i(u− uh))

Γ(1
2 + i(u− uh))

)
NF∏
j=1

(
Γ(1− i(u− uF,j))
Γ(1 + i(u− uF,j))

)
(3.151)

From (3.151), it is simple to single out the matrices describing the (one-loop) scattering

involving large fermions

S(FF )(u, uF ) =
Γ(1 + i(u− uF ))

Γ(1− i(u− uF ))

Γ(1− iu)

Γ(1 + iu)

Γ(1 + iuF )

Γ(1− iuF )
(3.152)

and between a fermion and a scalar excitation (hole)

S(Fs)(u, uh) =
Γ(1

2 + i(u− uh))

Γ(1
2 − i(u− uh))

Γ(1− iu)

Γ(1 + iu)

Γ(1
2 + iuh))

Γ(1
2 − iuh))

(3.153)

The scattering phases for the antifermions can be deduced from the matrices above,

according to relations (3.145).

Paralleling what has already been carried out for gauge fields, the energy and mo-

mentum of a (large) fermion can be computed by studying the variation of the u4 distri-

bution. As already seen, formula (3.120) for the vacuum gets modified by the insertion

of a large fermion (associated to uF ):

Ẑ
(1F )
4,0 (k) = −6π

ik

e−
|k|
2

1− e−|k|
+

2π

ik
e−ikuF

e−
|k|
2

1− e−|k|
−2L̂4,0(k)

e−|k|

1− e−|k|
+

2∑
h=1

2π

ik
e−ikuh

e−|k|

1− e−|k|
;

(3.154)
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As already pointed out, the fermion may be thought as a missing root in the covari-

ant derivative sea distribution. Such a variation reflects in a change of root density

(σ
(1F )
0 (u;uF ) =

dZ
(1F )
4,0 (u;uF )

du ), which involves the density fluctuation

τ
(1F )
0 (u, uF ) =

σ
(1F )
0 (u, uF )− σ(v)

0 (u)

2π
=

= − 1

π

∞∑
n=0

n+ 1
2

u2 + (n+ 1
2)2

+
1

π

∞∑
n=0

n+ 1
2

(u− uF )2 + (n+ 1
2)2

, (3.155)

The value of the momentum at one loop for the fermion stems from the exam of the odd

part of the density fluctuation [42]

τ odd0 (u, uF ) =
1

4π

[
Ψ(

1

2
+ i(u+ uF )) + Ψ(

1

2
− i(u+ uF ))−

− Ψ(
1

2
+ i(u− uF ))−Ψ(

1

2
− i(u− uF ))

]
(3.156)

which, by means of the u� 1 expansion τ odd0 (u, uF ) ∼ uF
πu +O

(
1
u2

)
, results in:

p(uF ) = 2πuτ odd0 (u, uF ) = 2uF (3.157)

Furthermore the introduction of the large fermionic excitation brings an additional en-

ergy into the system which, at one-loop, amounts to

E(uF ) =

∫ ∞
−∞

τ
(1F )
0 (u;uF )

u2 + 1
4

du =

= 2Ψ(1)−Ψ(1− iuF )−Ψ(1 + iuF ) . (3.158)

7 Strong Coupling

When considering the strong coupling regime of the scattering matrices just retrieved,

three possible ways of performing the g � 1 limit could be outlined. In first instance,

the perturbative drives energy and momentum to taking values in the order of unity:

E, p ∼ g0. In the giant hole (or semiclassical) regime the dispersion relations, relative to

the excitation taken into exam, do not depend on the kind of particle considered; energy

and momentum share the same order as the coupling constant, E, p ∼ g. Moreover, the

near flat-space regime interpolates between the previos two: it leads to E, p ∼ g
1
4 and

all the particles behave as if massless since, upon rescaling Ẽ ≡ E
g1/4 and p̃ ≡ p

g1/4 , the

dispersion laws read Ẽ = p̃ at leading order.

In the following, several strong coupling limit for excitation scatterings will be displayed.

7.1 Scalars

The g −→∞ limit should be provided with any description of the dynamics of the par-

ticle, in order to properly reconstruct the different strong coupling regimes just outlined.

In the scalar scattering for instance, the giant hole regime requires a large value of the
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rapidity u�
√

2g to be performed. When rapidity and coupling constant share the same

order u −
√

2g ∼ 1 the near flat-space limit could be implemented. The perturbative

regime instead is achieved when 1 � u �
√

2g. Moreover, in addition to the com-

mon three, the scalar scattering contemplates one further strong coupling regime, the

non-perturbative one [38], occurring for g � 1 while u = O(1). In this limit the scalar

modes decouple from the rest and consequently behave according to an O(6) non-linear

σ model. Energy and momentum are exponentially suppressed: E, p ∼ e−πg.

Non-perturbative regime:

Let a scalar-scalar scattering process be considered. When the g → ∞ limit is taken

while keeping the two hole rapidities u, v fixed [44], the Fourier-transformed single par-

ticle densities σ̂(1)(k) and σ̂(k)|IH tend toward the limit values:

σ̂(1)(k) −→ σ̂
(1)
lim(k) = 2π

[
e−|k|

1− e−|k|
− e

|k|
2

2 sinh |k|2 cosh k

]
(3.159)

σ̂(k, v)|IH −→ σ̂
(1)
lim(k)(cos kv − 1) = 2π

[
e−|k|

1− e−|k|
− e

|k|
2

2 sinh |k|2 cosh k

]
(cos ku− 1)

Remarkably the antitransform of the limit function σ̂
(1)
lim(k) is

σ
(1)
lim(u) = −1

4

[
ψ
(

1− iu
4

)
+ψ

(
1 + i

u

4

)
−ψ

(
1

2
− iu

4

)
−ψ

(
1

2
+ i

u

4

)
+

2π

cosh π
2u

]
(3.160)

Then, upon recalling the relation (3.76) connecting the even part of the scalar scattering

phase to the densities studied above, it can be seen:

lim
g→∞

d

du
M(u, v) =

1

2
[σ

(1)
lim(u− v) + σ

(1)
lim(u+ v)] (3.161)

and hence that leads to

M(u, v) = − i
2

ln
Γ
(
1− iu−v4

)
Γ
(

1
2 + iu−v4

)
Γ
(
1− iu+v

4

)
Γ
(

1
2 + iu+v

4

)
Γ
(
1 + iu−v4

)
Γ
(

1
2 − i

u−v
4

)
Γ
(
1 + iu+v

4

)
Γ
(

1
2 − i

u+v
4

) −
− 1

2
gd

(
π(u− v)

2

)
− 1

2
gd

(
π(u+ v)

2

)
(3.162)

where the Gudermannian function is defined as

gd(u) ≡ arctan(sinhu) .

Since Θ(u, v) = M(u, v) −M(v, u), the scattering phase between holes Θ(u, v), in the

non-perturbative strong coupling regime, takes the form:

lim
g→∞

Θ(u, v) = −i ln
Γ
(
1− iu−v4

)
Γ
(

1
2 + iu−v4

)
Γ
(
1 + iu−v4

)
Γ
(

1
2 − i

u−v
4

) − gd

(
π(u− v)

2

)
, (3.163)

notably (3.163) signals that in this regime the scattering process described is relativistic,

meaning that Θ(u, v) depends not on the two rapidities separately, but rather on their
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difference alone.

Perturbative regime:

The perturbative regime can be obtained by sending g →∞ while keeping the rescaled

rapidity ū ≡ u√
2g

fixed and such that |ū| < 1. Then, the interesting object to be

computed is the double derivative of the scattering factor Θ(u, v), which clearly depends

only on the density σ(u, v)|IH :

d

du

d

dv
Θ(u, v) =

d

dv
σ(u, v)|IH −

d

du
σ(v, u)|IH . (3.164)

In the large g limit d
dv̄σ(u, v)|IH can be expressed as

d

dv̄
σ(u, v)|IH =

∫ ∞
0

dt̄√
2g

cos t̄ū

 d

dv̄
Γ−(t̄, v̄)− d

dv̄
Γ+(t̄, v̄)− 2e

− t̄√
2g

1− e−
t̄√
2g

t̄ sin t̄v̄

+O

(
1

g

)
(3.165)

where Γ+(t̄, v̄), Γ−(t̄, v̄) are an even and an odd function with respect to t̄, satisfying the

integral equation (at leading order g1):∫ ∞
0

dt̄

[
eit̄ū

d

dv̄
Γ−(t̄; v̄)− e−it̄ū d

dv̄
Γ+(t̄; v̄)

]
=

∫ ∞
0

dt̄eit̄ū
t̄ sin t̄v̄

sinh t̄
2
√

2g

∼= 2
√

2g
v̄

v̄2 − ū2
,

(3.166)

The solution of the equation (3.166) can be inserted into (3.165) to give:

d

dv̄
σ(
√

2gū,
√

2gv̄)|IH = −1

2
H(ū2 − 1)H(v̄2 − 1)

[( v̄−1
v̄+1

) 1
4
(
ū−1
ū+1

) 1
4

+
(
v̄+1
v̄−1

) 1
4
(
ū+1
ū−1

) 1
4

ū+ v̄

+

(
v̄−1
v̄+1

) 1
4
(
ū+1
ū−1

) 1
4

+
(
v̄+1
v̄−1

) 1
4
(
ū−1
ū+1

) 1
4

v̄ − ū

]
(3.167)

(H(x) is the Heaviside function). Eventually, from (3.164) it easy to find (up to O(g0)

order)

d

dū

d

dv̄
Θ(
√

2gū,
√

2gv̄) '
√

2gH(ū2−1)H(v̄2−1)

(
ū+1
ū−1

) 1
4
(
v̄−1
v̄+1

) 1
4

+
(
ū−1
ū+1

) 1
4
(
v̄+1
v̄−1

) 1
4

ū− v̄
(3.168)

The phase delay that two giant holes (solitonic excitations on the GKP string) experience

upon scattering amounts to [45]:

Θsol(ν1, ν2) =
1√
2g

(p1E2 − p2E1) +
√

2g

[(
ν1 − ν2 +

1

ν1
− 1

ν2

)
ln νcm +

+
1

γ(ν1) γ(ν2)

(
1

ν1
− 1

ν2

)]
(3.169)

where νk, Ek, pk represent respectively speed, energy and momentum of the k-th soliton,

γ(ν) = 1√
1−ν2

, while νcm stands for the speed in the centre of mass frame. The calculation

(3.168) is seen to confirm the analogous result obtained from (3.169) [45].
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7.2 Gluons

Perturbative regime:

The perturbative regime can be implemented for gluons by taking the limit g →∞ while

keeping u = ū
√

2g and ũ = ¯̃u
√

2g fixed and bounded by the condition ū2 < 1, ¯̃u2 < 1 .

In this limit, the shifted Jukovsky variable x±(u) can substituted with the expression:

x±(u)→ g√
2

[ū± isgnū
√

1− ū2] (3.170)

so that it may be used the simplification

lim
g→∞

[χ(v, u|1) + Φ(v)] = 2 arctan(v −
√

2gū)− 2 arctan(2v − 2
√

2gū) (3.171)

Looking back at (3.104), the scattering matrix decomposes into three terms:

i ln
(
−S(gg)

11 (u, ũ)
)

= I1 + I2 + I3 (3.172)

The first part in this limit becomes

I1 = χ̃(u, ũ|1, 1) = −2 arctan
√

2g(¯̃u− ū) =

= −πsgn(¯̃u− ū) +

√
2

g(¯̃u− ū)
+O(1/g3) (3.173)

The second part I2, instead, turns out to be negligible n the strong coupling limit, since

I2 = −
∫ +∞

−∞

dv

2π
[χ(v, u|1) + Φ(v)]

d

dv
[χ(v, ũ|1) + Φ(v)] = (3.174)

= −2 arctan

[
g(¯̃u− ū)√

2

]
− 2 arctan[g(¯̃u− ū)

√
2] + 4 arctan

[
2
√

2g(¯̃u− ū)

3

]
= O(

1

g3
)

The integral that constitutes the last term I3 can be more suitably treated after the

change of variables v =
√

2gv̄, w =
√

2gw̄, so that it gets simplified, assuming the form:

I3 =

∫ +∞

−∞

dv̄

2π

dw̄

2π
[χ(v, u|1) + Φ(v)]

[
d

dv̄

d

dw̄
Θ(
√

2gv̄,
√

2gw̄)

]
[χ(w, ũ|1) + Φ(w)] =

∼=
∫ +∞

−∞

dv̄

2π

∫ +∞

−∞

dw̄

2π

1√
2gv̄ −

√
2gū

1√
2gw̄ −

√
2g ¯̃u

d

dv̄

d

dw̄
Θ(
√

2gv̄,
√

2gw̄)

(3.175)

By making use of the expression (3.168), the integration above can be performed, so

that for I3 the relation holds:

I3 =
1

2
√

2g(ū− ¯̃u)

[
2−

(
1 + ū

1− ū

)1/4(1− ¯̃u

1 + ¯̃u

)1/4

−
(

1− ū
1 + ū

)1/4(1 + ¯̃u

1− ¯̃u

)1/4
]

(3.176)

Finally, the three parts (3.173), (3.174), (3.176) sum up, so to give the gluon-gluon

scattering phase in the perturbative regime:

S
(gg)
11 (u, ũ) = exp

[
i√

2g(ū− ¯̃u)

(
1 +

1

2

(
1 + ū

1− ū

)1/4(1− ¯̃u

1 + ¯̃u

)1/4

+

+
1

2

(
1− ū
1 + ū

)1/4(1 + ¯̃u

1− ¯̃u

)1/4

+O(1/g2)

)]
, (3.177)
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thus conferming results previously known in literature [46].

Giant hole regime:

This time the attention lie on the gluonic scattering matrix (3.104) in the giant limit.

Such a regime is achieved by taking the g → ∞ limit, provided the rescaled rapidities

ū and ¯̃u stay fixed and above the threshold ū2 > 1, ¯̃u2 > 1. Referring again to the

decomposition (3.172), the I1 and I2 terms do not vary from the perturbative regime.

The difference from the previous case instead resides in the last part: in fact, in the

desired regime I3 assumes the form

I3
∼=

1

2g2

∫ +∞

−∞

dv̄

2π

∫ +∞

−∞

dw̄

2π
P

1

v̄ − ū
P

1

w̄ − ¯̃u

d

dv̄

d

dw̄
Θ(
√

2gv̄,
√

2gw̄) (3.178)

with P meaning principal value. The integration then results in

I3 =
1

2
√

2g(ū− ¯̃u)

[
1− 1

2

(
ū+ 1

ū− 1

)1/4( ¯̃u− 1
¯̃u+ 1

)1/4

− 1

2

(
ū− 1

ū+ 1

)1/4( ¯̃u+ 1
¯̃u− 1

)1/4
]

(3.179)

In the end, the gluon-gluon scattering matrix in the giant hole regime thus reads:

S
(gg)
11 (u, ũ) = exp

[ i

2
√

2g(ū− ¯̃u)

(
3 +

1

2

(
ū+ 1

ū− 1

)1/4( ¯̃u− 1
¯̃u+ 1

)1/4

+

+
1

2

(
ū− 1

ū+ 1

)1/4( ¯̃u+ 1
¯̃u− 1

)1/4

+O(1/g2)
)]

(3.180)

7.3 Fermions

Perturbative regime:

Before studying the strong coupling limit of the fermion-fermion scattering, it takes to

remark a few facts. As already explained, the rapidity that must actually be handled

when talking about fermions is a x variable, rather than an u; the two variables are

related each other in different ways, according the issue is about a small or a large

fermion: for the former, it holds xf = (g2)/(2x(uf )) = (uf/2)
[
1−

√
1− (2g2)/u2

f

]
,

whereas the latter requires xF = x(uF,j) = (uF /2)
[
1 +

√
1− (2g2)/u2

F

]
. When dealing

with strong coupling expansions, the perturbative regime needs to be connected to the

state of a fermion at rest, that means the rapidity set equal to zero x = 0: as a matter

of facts, such a condition could be obtained just in the small fermion dynamical regime.

The starting point to examine the strong coupling perturbative regime is obviously

the small fermion scattering matrix (3.139), where the function χH(v, u) makes its ap-

pearance: for the considerations just displayed, it may be expressed as

χH(v, u) = −i ln
1− xf (u)

x+(v)

1− xf (u)

x−(v)

, (3.181)
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where both fermionic xf and ’scalar’ rapidities x±(v) =
v ± i/2

2

[
1 +

√
1− 2g2

(v ± i/2)2

]
are involved. The perturbative regime demands the rescaled fermion rapidity

x̄f (ū) ≡ xf (u)√
2g

obey the condition

|x̄f (ū)| ≤ 1

2
. (3.182)

When taking into account the scalar rapidity, it reveals of any use to rescale v =
√

2gv̄,

then to perform an expansion at large g:

x±(v) =
√

2gx̄(v̄)± i

4

1 +
√

1− 1
v̄2√

1− 1
v̄2

+O(1/g) , x̄(v̄) =
v̄

2

[
1 +

√
1− 1

v̄2

]
. (3.183)

To sum up, the function χH(w, u) can be approximated as

χH(v, u) = −i ln
1− xf (u)

x+(v)

1− xf (u)

x−(v)

∼= −
x̄f (ū)√

2g

1

v̄
√

1− 1
v̄2

1

x̄f (ū)− x̄(v̄)
. (3.184)

Then the small fermion scattering matrix (3.139) is written as the sum of two parts,

−i lnS(ff)(u, v) = J1 + J2; the first term is subleading with respect to the second, as

J1 =

∫ +∞

−∞

dw

2π
χH(w, u)

d

dw
χH(w, v) = O(1/g2) (3.185)

while instead, after plugging in the expression (3.168) for the scalar phase,

J2 = −
∫
dw

2π

dz

2π
χH(w, u)

d2

dwdz
Θ(w, z)χH(z, v) =

∼= − 1√
2g

∫
|w̄|≥1

dw̄

2π

∫
|z̄|≥1

dz̄

2π

1

w̄
√

1− 1
w̄2

x̄f (ū)

x̄f (ū)− x̄(w̄)
·

·

(
w̄−1
w̄+1

) 1
4
(
z̄+1
z̄−1

) 1
4

+
(
w̄+1
w̄−1

) 1
4
(
z̄−1
z̄+1

) 1
4

w̄ − z̄
1

z̄
√

1− 1
z̄2

x̄f (v̄)

x̄f (v̄)− x̄(z̄)
(3.186)

Thanks to the identity

(
w̄−1
w̄+1

) 1
4
(
z̄+1
z̄−1

) 1
4

+
(
w̄+1
w̄−1

) 1
4
(
z̄−1
z̄+1

) 1
4

w̄ − z̄
=

1

x̄(w̄)− x̄(z̄)

√
1 +

√
1− 1

w̄2

√
1 +

√
1− 1

z̄2(
1− 1

w̄2

) 1
4
(
1− 1

z̄2

) 1
4

(3.187)

the integral in the second line above can be factorised and then exactly computed, so to

get

J2
∼= −

1

2
√

2g
x̄f (ū)x̄f (v̄)[x̄f (v̄)− x̄f (ū)]J (ū, v̄)2 (3.188)
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where the function J (ū, v̄), after some calculation, can be expressed as

J (ū, v̄) =

√
2

x̄f (ū)− x̄f (v̄)

[
1√

1− 4x̄f (ū)2
− 1√

1− 4x̄f (v̄)2

]
(3.189)

At last, in the large g perturbative regime, the fermion scattering phase (3.139) takes

the form:

−i lnS(ff)(u, v) ∼= −
1√
2g

x̄f (ū)x̄f (v̄)

x̄f (v̄)− x̄f (ū)

[
1√

1− 4x̄f (v̄)2
− 1√

1− 4x̄f (ū)2

]2

(3.190)

7.4 Mixed matrices

Now a few cases of scattering involving particles of different kinds will be taken into

exam in the strong coupling limit.

Gluons-scalars:

Let the g → ∞ limit be considered for the scattering between a gluon with rapidity

u = ū
√

2g and a hole, whose rapidity is uh = ūh
√

2g: the process is thus described by

the formula (3.105) for i lnS(gs)(u, uh). The regime |ū| ≤ 1 has been chosen. The phase

delay splits into two parts i lnS(gs)(
√

2gū,
√

2gūh) = Igs1 + Igs2 : the first one corresponds

to

Igs1 = −χ(
√

2gūh,
√

2gū|1)− Φ(
√

2gūh) ∼= −2 arctan(
√

2gūh −
√

2gū) +

+ 2 arctan(2
√

2gūh − 2
√

2gū) ∼=
2√

2g(ūh − ū)
− 1√

2g(ūh − ū)
(3.191)

whereas the second is given by

d

duh
Igs2 =

1√
2g

∫
dw̄

2π

d

dūh

d

dw̄
Θ(
√

2gūh,
√

2gw̄)
[
χ(
√

2gw̄,
√

2gū|1) + Φ(
√

2gw̄)
]

.

(3.192)

With the help of the scalar-scalar phase (3.168) and formulae (A.15), (A.16), the result

can be achieved, in the regime |ū| ≤ 1, |ūh| ≥ 1:

d

duh
Igs2 = − 1√

2g

∫
|w|≥1

dw̄

2π

1

w̄ − ū
P

1

ūh − w̄

[(
ūh + 1

ūh − 1

) 1
4
(
w̄ − 1

w̄ + 1

) 1
4

+ (3.193)

+

(
ūh − 1

ūh + 1

) 1
4
(
w̄ + 1

w̄ − 1

) 1
4

]
H(ū2

h − 1) =

=
1

2
√

2g

1

ū− ūh

[(
ūh − 1

ūh + 1

) 1
4

−
(
ūh + 1

ūh − 1

) 1
4

]
− 1

2g

1

ū− ūh

[(
1− ū
1 + ū

) 1
4

−
(

1 + ū

1− ū

) 1
4

]

Gluons-fermions in the perturbative regime:

This time the focus lie on the scattering matrix involving a gluon (rapidity u =
√

2gū)
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and a small fermions (rapidity xf (v) =
√

2gx̄f (v̄)), studied in the strong coupling

perturbative regime, which is implemented by assuming the conditions |ū| ≤ 1 and

|x̄f (v̄)| ≤ 1/2 (with vv̄ = v√
2g
≥ 1). The scattering phase previously found is composed

of three parts

i ln
(
−S(gf)(u, v)

)
= Igf1 + Igf2 + Igf3 (3.194)

where

Igf1 = 2 arctan 2(u− v) (3.195)

Igf2 =

∫ +∞

−∞

dw

2π
[χ(w, u|1) + Φ(w)]

d

dw
χH(w, v) + Φ(w) (3.196)

Igf3 = −
∫
dw

2π

dz

2π
[χ(w, u|1) + Φ(w)]

d2

dwdz
Θ(w, x)χH(z, v) (3.197)

In the strong coupling g →∞ limit, the first term takes the form

Igf1 = πsgn(ū− v̄)− 1√
2g(ū− v̄)

+O(1/g2) (3.198)

whereas Igf2 is subleading, while the third term may be recast into

Igf3 =

∫
|w̄|,|z̄|≥1

dw̄

2π

dz̄

2π

1

ū− w̄

(
w̄+1
w̄−1

) 1
4
(
z̄−1
z̄+1

) 1
4

+
(
w̄−1
w̄+1

) 1
4
(
z̄+1
z̄−1

) 1
4

w̄ − z̄
×

×
x̄f (v̄)

√
2gz̄
√

1− 1
z̄2

1

x̄f (v̄)− x̄(z̄)
(3.199)

Formulæ(A.17) and (A.18) allow to retrieve the result:

Igf3 =
1

4g

√
1−2x̄f (v̄)
1+2x̄f (v̄)

(
1+ū
1−ū

) 1
4

+
√

1+2x̄f (v̄)
1−2x̄f (v̄)

(
1−ū
1+ū

) 1
4 −
√

2

v̄ − ū
(3.200)

The sum of Igf1 and Igf3 eventually leads to the strong coupling expression for the gluon-

fermion scattering phase in the perturbative regime:

S(gF )(u, v) = exp

 i

4g

√
2 +

√
1−2x̄f
1+2x̄f

(
1+ū
1−ū

) 1
4

+
√

1+2x̄f
1−2x̄f

(
1−ū
1+ū

) 1
4

ū− v̄
+O(1/g2)

 . (3.201)
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Chapter 4

Dispersion Relations

1 Isotopic Roots

The set of excitations studied in the previous chapter does not actually cover the whole

particle content of the theory, since the total number of degrees of freedom includes

eight bosonic plus eight fermionic modes. They all fall into multiplets under the SU(4)

residual symmetry of the GKP vacuum: six scalars transform according to the 6 of

su(4), two more bosonic degrees of freedom correspond to two components of the gluon

field strength, namely F+⊥ (previously referred to as ’gluon’) and F̄+⊥ (so far called

’barred-gluon’), while the 4 components of the left Weyl spinor ψ (in the 4 of su(4))

together with the 4 components of the right Weyl spinor ψ̄ (in the 4̄ of su(4)) account

for the fermionic modes. In fact, the excitations considered up to now are related to

the highest weights of each of the su(4) representations just cited: moving from them is

nevertheless possible to reconstruct the complete multiplets. Indeed three more solutions

of the Bethe equations deserve an accurate exam, as they are responsible for ’rotating’

the multiplets under the SO(6) (∼ SU(4)) symmetry. Two of them match to the u2

and u6 Bethe roots taken as single (not belonging to any stack), whereas the third type

actually is a composite object, since it is composed of two (complex conjugate) u4 main

roots, together with one u3 and one u5 on the top of each other, corresponding to the

real centre of the stack, i.e.:

u4± = us ±
i

2
us = u3 = u5 . (4.1)

They all are isotopic, as they do not carry energy nor momentum, not even any other

charge [42]: this behaviour is apparent for the u2 and u6 roots, for they do not interact

with main roots u4 within the Beisert-Staudacher equations; otherwise, for the isotopic

stack the issue is more involved to cope with.

Remarkably, the role of these roots pertains to the very structure of the vacuum.

In fact, when the choice of the ground state falls onto the GKP vacuum, the overall

symmetry PSU(2, 2|4) breaks down to a residual SU(4), whose Goldstone bosons are

related to the isotopic roots themselves: indeed u2 and u6 are associated to SU(2) ×

73
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SU(2) ⊂ SU(4), while the stack accounts for the remainder of SU(4) 1.

Within a system composed of H holes, NF (Nf ) large (small) fermions, NF̄ (Nf̄ )

large (small) antifermions and Ng (Nḡ) (barred) gluons, the isotopic roots are properly

described by the following equations:

1 =

K2∏
j 6=k

u2,k − u2,j + i

u2,k − u2,j − i

Ks∏
j=1

u2,k − us,j − i
2

u2,k − us,j + i
2

NF∏
j=1

u2,k − uF,j − i
2

u2,k − uF,j + i
2

Nf∏
j=1

u2,k − uf,j − i
2

u2,k − uf,j + i
2

(4.2)

1 =

Ks∏
j 6=k

us,k − us,j + i

us,k − us,j − i

K2∏
j=1

us,k − u2,j − i
2

us,k − u2,j + i
2

K6∏
j=1

us,k − u6,j − i
2

us,k − u6,j + i
2

H∏
h=1

us,k − uh − i
2

us,k − uh + i
2

(4.3)

1 =

K6∏
j 6=k

u6,k − u6,j + i

u6,k − u6,j − i

Ks∏
j=1

u6,k − us,j − i
2

u6,k − us,j + i
2

NF̄∏
j=1

u6,k − uF̄ ,j − i
2

u6,k − uF̄ ,j + i
2

Nf̄∏
j=1

u6,k − uf̄ ,j − i
2

u6,k − uf̄ ,j + i
2

(4.4)

The equations (4.2),(4.4) for u2 and u6 come directly from the second and the sixth of the

Beisert-Staudacher equations: it is worth observe the cancellation of the contributions

coming from gluonic stacks. Differently, the derivation of (4.3) is less straightforward.

As a matter of fact, the definition of the stack requests it should be taken the product

of the third equation for u3,k = us,k per the fifth with u5,k = us,k, then also for the

fourth, shifted above and below the real axis by a displacement ± i
2 , i.e. it takes a further

multiplication per both the fourth for u4,k = us,k+i/2 and the fourth for u4,k = ub,k−i/2.

Such a procedure results in:

1 =

K2∏
j=1

us,k − u2,j − i/2
us,k − u2,j + i/2

K6∏
j=1

us,k − u6,j − i/2
us,k − u6,j + i/2

K4∏
j=1

us,k − u4,j + i/2

us,k − u4,j − i/2
×

×
Ng∏
j=1

us,k − ugj − i/2
us,k − ugj + i/2

Nḡ∏
j=1

us,k − uḡj − i/2
us,k − uḡj + i/2

(x−−s,k
x++
s,k

)L
×

×
K4∏
j 6=k

x−−s,k − x
+
4,j

x++
s,k − x

−
4,j

1− g2

2x++
s,k x

−
4,j

1− g2

2x−−s,k x
+
4,j

σ2(us,k +
i

2
, u4,j)σ

2(us,k −
i

2
, u4,j)×

×
Ks∏
j=1

(
x++
s,k − xs,j
x−−s,k − xs,j

)2 NF∏
j=1

x++
s,k − xF,j
x−−s,k − xF,j

NF̄∏
j=1

x++
s,k − xF̄ ,j
x−−s,k − xF̄ ,j

Nf∏
j=1

1− xf,j
x++
s,k

1− xf,j
x−−s,k

Nf̄∏
j=1

1− xf̄ ,j
x++
s,k

1− xf̄ ,j
x−−s,k

×

×
Ng∏
j=1

x++
s,k − x

g+
j

x−−s,k − x
g+
j

x++
s,k − x

g−
j

x−−s,k − x
g−
j

Nḡ∏
j=1

x++
s,k − x

ḡ+
j

x−−s,k − x
ḡ+
j

x++
s,k − x

ḡ−
j

x−−s,k − x
ḡ−
j

 , (4.5)

1Actually in the one loop limit two more Bethe roots behave as if isotopic, namely u1 and u7,

associated to small fermions, thus enhancing the vacuum symmetry up to SL(2|4); the small fermions

then acquire energy and momentum at higher loops
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where the double-shifted Jukovsky variable explicitly means x±±(u) = x(u± i) and

L = 2 +H +NF +NF̄ +Ng +Nḡ . (4.6)

The product in the first line may be substituted with the expression obtained by means

of the NLIE:

K4∏
j=1

us,k − u4,j + i/2

us,k − u4,j − i/2
=

Ks∏
j=1

us,k − us,j + i

us,k − us,j − i

H∏
h=1

us,k − uh − i/2
us,k − uh + i/2

(
1 +O(1/s2)

)
×

× exp

[
−
∫ +∞

−∞

dv

2π
ln
us,k − v + i/2

us,k − v − i/2
(Z ′4(v)− 2L′4(v))

]
(4.7)

in wich Z4(v) stands for the counting function for scalars including every possible type

of root:

Z4(u) = LΦ(u)−
K4∑
j=1

φ(u, uj) + 2i

Ks∑
j=1

ln
x+(u)− xs,j
xs,j − x−(u)

+ (4.8)

+

Ng∑
j=1

χ(u, ugj |1) +

Nḡ∑
j=1

χ(u, uḡj |1) +

NF∑
j=1

χF (u, uF,j) +

NF̄∑
j=1

χF (u, uF̄ ,j)−

−
Nf∑
j=1

χH(u, uf,j)−
Nf̄∑
j=1

χH(u, uf̄ ,j) .

Once formula (4.8) is plugged into (4.7), it is therefore found2 that the term

exp

[
−
∫ +∞

−∞

dv

2π
ln
us,k − v + i/2

us,k − v − i/2
Z ′4(v)

]
(4.9)

coincides with the inverse of the expression inside the square brackets in (4.5); moreover

the nonlinear term containing L′4(v) is recalled to be subleading in the large spin limit,

amounting to an O(1/s2) contribution. In the end, the equation (4.3) for the isotopic

stack us follows.

1.1 SU(4) symmetry

In a celebrated paper [48], Ogievetsky and Wiegmann wrote the set of Bethe equations

describing any spin chain built up starting from scattering matrices, symmetrical under

the action of a simple Lie algebra in some representation. A simple Lie algebra, say g,

turns out to be completely determined by the set of simple roots {αq} (normalized to

unity); when diagonalizing the transfer matrix of a spin chain with g as a symmetry, each

αq should be associated to an auxiliary root uq, which may be intended as the rapidity

of a pseudo-particle with no energy nor momentum, carrying instead just colour indices

(relative to g). As a byproduct of the diagonalization, the set of Bethe equations arises:

(
uq,k + i~αq · ~wR
uq,k − i~αq · ~wR

)N
=

Kq∏
j 6=k

uq,k − uq,j + i~αq · ~αq
uq,k − uq,j − i~αq · ~αq

∏
q′ 6=q

Kq′∏
j=1

uq,k − uq′,j + i~αq · ~αq′
uq,k − uq′,j − i~αq · ~αq′

;

2This fact has been originally observed by Basso [42].
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(4.10)

it should be noticed that whilst the r.h.s. of (4.10) does rely on any representation of g

in particular, on the other hand the l.h.s. exhibits the highest weight ~w, belonging to

the representation chosen for the algebra.

The present interest focuses on the algebra g = su(4) ' so(6) 3 (in fact, the group

SU(4) is the double cover of SO(6)). The su(4) is a rank three algebra, therefore its

properties are fully stated by the choice of three simple roots, for instance:

~α1 =

(
1

2
,

√
3

2
, 0

)

~α2 =

(
1

2
,−
√

3

2
, 0

)
(4.11)

~α3 =

(
−1

2
,

1

2
√

3
,

2√
6

)
,

whose norm is set equal to one; the Cartan matrix then follows:

Aij =
∣∣∣2~αi · ~αj

(~αj)2

∣∣∣ =

∣∣∣∣∣∣∣
2 −1 0

−1 2 −1

0 −1 2

∣∣∣∣∣∣∣ . (4.12)

At the same time, the simple roots fix the fundamental weights, that is the three vectors

obeying to the definitory condition
2~αj · ~ϕk

(~αj)2
= δkj :

~ϕ1 =

(
1

2
,

1

2
√

3
,

1

2
√

6

)
~ϕ2 =

(
1

2
,− 1

2
√

3
,

1

2
√

6

)
(4.13)

~ϕ3 =

(
0, 0,

3

2
√

6

)
.

One element is still missing in order to suitably adapt the equations (4.10) to a spin

chain endowed with the SU(4) symmetry: a representation of the algebra su(4) needs

to be chosen, and to this purpose the highest weight ~wR suffices. Every representation is

then uniquely associated to a tern of positive integers (λ1, λ2, λ3), the so-called Dynkin

labels, so that the highest weight results easily as ~wR =
3∑
k

λk ~ϕk, the remaining weights

being obtained by properly acting on it by means of the simple roots.

3Prior to [48], the correct Bethe equations for this case, and in general for so(2n) spin chains as well,

was found by [49]; then the results grew in generality and widened to simple algebras thanks to [48]
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To sum up, the Bethe equations in (4.10) get specialized for the su(4) algebra:(
ua,k + i~α1 · ~wR
ua,k − i~α1 · ~wR

)N
=

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i/2
ua,k − ub,j + i/2(

ub,k + i~α2 · ~wR
ub,k − i~α2 · ~wR

)N
=

Kb∏
j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i/2
ub,k − ua,j + i/2

Kc∏
j=1

ub,k − uc,j − i/2
ub,k − uc,j + i/2(

uc,k + i~α3 · ~wR
uc,k − i~α3 · ~wR

)N
=

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i/2
uc,k − ub,j + i/2

(4.14)

Upon setting to zero the number of any kind of momentum-carrier excitation, a com-

parison between the Bethe equations (4.2)-(4.4) and (4.14) hints the identification of the

isotopic variables u2, us, u6 with the colour-carrying auxiliary roots ua, ub, uc , accord-

ing to the statements

u2 = ua us = ub u6 = uc , (4.15)

and that finally sheds light onto the role of the isotopic roots, making more stringent

the relation with the residual SU(4) symmetry of the GKP vacuum.

In the remainder of the paragraph, a few examples of representations of su(4) will be

displayed, as they will turn out useful in the following, when the endeavour of extending

the results from the previous chapter will be faced.

Fundamental representation:

The tern of Dynkin labels (1, 0, 0) associates to the fundamental representation of su(4),

else referred to as the 4-dimensional (shortly, the 4), thus the highest weight is

~w4 = ~ϕ1 =

(
1

2
,

√
3

2
, 0

)
.

By the way, the other weights of the representation descend from ~w4 under the action of

the simple roots (4.11), eventually arranging themselves into a tetrahedron in the three

dimensional root space:

~w4 = ~ϕ1 ~ϕ1 − ~α1 =

(
0,− 1√

3
,

1

2
√

6

)
~ϕ1 − ~α1 − ~α2 =

(
−1

2
,

1

2
√

3
,

1

2
√

6

)
~ϕ1 − ~α1 − ~α2 − ~α3 =

(
0, 0,− 3

2
√

6

)
= −~ϕ3 .

The Bethe equations (4.14) for the fundamental representation thus read:(
ua,k + i

2

ua,k − i
2

)N
=

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i/2
ua,k − ub,j + i/2

1 =

Kb∏
j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i/2
ub,k − ua,j + i/2

Kc∏
j=1

ub,k − uc,j − i/2
ub,k − uc,j + i/2

1 =

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i/2
uc,k − ub,j + i/2

(4.16)
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Antifundamental representation:

The antifundamental representation of su(4) (also denoted 4̄) is easily obtained from

the fundamental, since the highest weight ~w4̄ simply coincides with the opposite of the

lowest weight of the 4, that means ~w4̄ = ~ϕ3 (Dynkin labels (0, 0, 1) ): in fact, the 4̄ is the

complex conjugate representation of the 4. Hence the Bethe equations (4.14) become:

1 =

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i/2
ua,k − ub,j + i/2

1 =

Kb∏
j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i/2
ub,k − ua,j + i/2

Kc∏
j=1

ub,k − uc,j − i/2
ub,k − uc,j + i/2(

uc,k + i
2

uc,k − i
2

)N
=

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i/2
uc,k − ub,j + i/2

(4.17)

Antisymmetric representation:

Since the tern (0, 1, 0) corresponds to the set of Dynkin labels relative to the antisymmet-

ric 6 of su(4), this time ~w6 = ~ϕ2 plays the role of the highest weight. For later purpose,

it turns out handful to display the complete set of weights in the representation:

~w6 = ~ϕ2 ~ϕ2 − ~α2 =

(
0,

1√
3
,

1√
6

)
(4.18)

~ϕ2 − ~α2 − ~α1 =

(
−1

2
,− 1

2
√

3
,

1√
6

)
~ϕ2 − ~α2 − ~α3 =

(
1

2
,

1

2
√

3
,− 1√

6

)
~ϕ2 − ~α2 − ~α1 − ~α3 =

(
1

2
,

1

2
√

3
,− 1√

6

)
~ϕ2 − 2~α2 − ~α1 − ~α3 = −~ϕ2 .

The weights listed above coincide with the vertices of an octahedron in the three dimen-

sional root space and, remarkably, for each one of them the opposite still belongs to the

weight system: this fact signals that the representation is real (self-conjugate). At last,

the 6 of su(4) is described by the set of Bethe equations:

1 =

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i/2
ua,k − ub,j + i/2(

ub,k + i
2

ub,k − i
2

)N
=

Kb∏
j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i/2
ub,k − ua,j + i/2

Kc∏
j=1

ub,k − uc,j − i/2
ub,k − uc,j + i/2

1 =

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i/2
uc,k − ub,j + i/2

(4.19)

(again obtained by adapting (4.14) ).
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2 Towards the Asymptotic Bethe Ansatz

The present paragraph is intended to provide an explanatory derivation of the complete

set of Asymptotic Bethe Ansatz (ABA) over the GKP (antiferromagnetic) vacuum. To

begin with, a summary will be supplied of all the scattering matrices involving the

momentum-carrier excitations. These matrices indeed play the role of building blocks

towards the assembly of the ABA, the aim pursued so far. Nevertheless, the next step

will not consist in directly displaying the equations for the most general and complete

system. Instead, several sectors will be studied before, each containing only a narrower

variety of excitations, so to highlight some peculiar features of the particles considered.

After that, the widest and richest system will be finally taken into account.

2.1 Dramatis personae

In the previous chapter, the complete set of formulae was retrieved to describe the

scattering matrices for all the excitations dwelling on the antiferromagnetic vacuum.

Below, all those matrices will be resumed, in order to give the chance to survey them

all in a glance: as a matter of fact, they represent the main characters in writing the

Asymptotic Bethe Ansatz equations, therefore a concise recap will make them more

suitable to be handled.

First of all, for sake of compactness of the following expressions, it turns out appro-

priate to introduce the kernel

K(v, w) ≡ 2πδ(v − w)− dΘ

dw
(v, w) : (4.20)

remarkably, the apparent ubiquitousness of such a function enables to appreciate that all

the scattering processes rely on the scalar-scalar phase Θ(v, w), so that its fundamental

role is left clearly pointed out.

The scattering phases are gathered in clusters, according to the types of particle involved.

The features of the scattering processes (unitarity, crossing, charge conjugation) help in

relating the matrices among themselves. Scalars, to begin with:

• Scalar:

S(ss)(u, u′) = −exp[−iΘ(u, u′)] (4.21)

S(sg)(u, u′) = exp
{
−i
∫

dv

2π
K(u, v) [χ(v, u′|1) + Φ(v)]

}
S(sF )(u, u′) = exp

{
−i
∫

dv

2π
K(u, v) [χF (v, u′) + Φ(v)]

}
S(sḡ)(u, u′) = S(sg)(u, u′)

S(sF̄ )(u, u′) = S(sF )(u, u′)

Henceforth only gluons (and barred-gluons, as well) will be taken into account, leaving

out gauge field bound states, instead:
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• Gluons:

S(gs)(u, u′) = [S(sg)(u′, u)]−1 (4.22)

S(gg)(u, u′) = − exp
{
−iχ0(u− u′|2) +

+ i

∫
dv

2π

dw

2π
[χ(v, u|1) + Φ(w)]

dK
dv

(v, w) [χ(w, u′|1) + Φ(w)]
}

S(gF )(u, u′) = − exp
{
−iχ0(u− u′|1) +

+ i

∫
dv

2π

dw

2π
[χ(v, u|1) + Φ(v)]

dK
dv

(v, w) [χF (w, u′) + Φ(w)]
}

S(ḡs)(u, u′) = [S(sḡ)(u′, u)]−1 = S(gs)(u, u′) = [S(sg)(u′, u)]−1

S(ḡḡ)(u, u′) = S(gg)(u, u′) =

= Sgḡ(u, u′)
u− u′ + i

u− u′ − i
= [S ḡg(u′, u)]−1u− u′ + i

u− u′ − i
S(ḡF̄ )(u, u′) = S(gF )(u, u′)

S(gF̄ )(u, u′) = S(ḡF )(u, u′) =

= exp
{
i

∫
dv

2π

dw

2π
[χ(v, u|1) + Φ(v)]

dK
dv

(v, w) [χF (w, u′) + Φ(w)]
}

Below, just large fermion scattering phases are listed:

• Large fermions:

S(Fs)(u, u′) = [S(sF )(u′, u)]−1 (4.23)

S(Fg)(u, u′) = [S(gF )(u′, u)]−1

S(FF )(u, u′) = exp
{
i

∫
dv

2π

dw

2π
[χF (v, u) + Φ(v)]

dK
dv

(v, w) [χF (w, u′) + Φ(w)]
}

S(F̄ s)(u, u′) = S(Fs)(u, u′)

S(ḡF̄ )(u, u′) = S(gF )(u, u′)

S(F ḡ)(u, u′) = [S(ḡF )(u′, u)]−1 =

= exp
{
−i
∫

dv

2π

dw

2π
[χ(v, u′|1) + Φ(v)]

dK
dv

(v, w) [χF (w, u) + Φ(w)]
}

S(F̄ g)(u, u′) = [S(gF̄ )(u′, u)]−1

S(FF̄ )(u, u′) = S(FF )(u, u′) = S(F̄F )(u, u′) = S(F̄ F̄ )(u, u′)

The expressions for the scattering matrices involving small fermions may be recon-

structed directly from the analogous ones for large fermions, after replacing:

χF (v, u) + Φ(v) −→ −χH(v, u) . (4.24)

Finally, it is worth recollecting from (4.2)-(4.4) the interaction of the the isotopic roots

with the momentum-carrying particles, just aiming to point out which excitations the

formers act on:

• ua roots - fermions (both large and small):

i lnS(aF )(ua, u) =
ua − u− i/2
ua − u+ i/2

= i lnS(af)(ua, u)
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• ub roots - holes:

i lnS(bs)(ub, u) =
ub − u− i/2
ub − u+ i/2

• uc roots - antifermions (both large and small):

i lnS(cF̄ )(uc, u) =
uc − u− i/2
uc − u+ i/2

= i lnS(cf̄)(uc, u) .

Strictly speaking, the expressions above are not scattering matrices, since the auxiliary

roots ua, ub, uc are not actual particles, but just artifice products stemming from solving

a nested Bethe ansatz (see section 3 of chapter 1).

2.2 Restricted sectors

As already explained, the excitations studied throughout this text (scalars, gluons,

fermions) belong to some multiplet under the SU(4) symmetry, in dependence of the

kind of particle. Starting from the scattering matrices retrieved in the previous chapter,

the Bethe equations may be assembled for every sort of excitation; anyway, they are ac-

tually able to catch only a single state in each multiplet, precisely the one corresponding

to the highest weight state of the representation. In this paragraph the focus moves to

a few sectors of the complete theory, which include just one type (or two at most) of

excitations, along with the set of isotopic roots: the purpose is to show the behaviour

of the different kinds of particle under SU(4) and also to explain how to include all the

states forming the multiplets into the Bethe equations.

• Scalar sector:

A system composed only of scalar excitations and isotopic roots will now be considered.

Since ua and uc do not couple to main roots u4, the counting function (3.50) experience

a modification stemming from ub roots alone, hence taking the form:

Z4(u) =
L−1∑
h=2

Θ(u, uh)−RΛs(u) + δZ4(u) . (4.25)

The variation δZ4(u) due to the introduction of type-b roots reads

δZ4(u) = δP̃ (u)−
Kb∑
j=1

[R(u, ub,j + i/2) +R(u, ub,j − i/2)] (4.26)

where the function R(u, v) is the solution of (3.27), whereas δP̃ (u) is found to solve the

equation:

δP̃ (u) = 2i

Kb∑
j=1

ln

(
−
x+(u)− xb,j
x−(u)− xb,j

)
−
∫
dv ϕ(u, v)δP̃ (v) . (4.27)
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While the one loop contribution to the variation amounts to

δZ4,0(u) = i

Kb∑
j=1

ln
i/2 + u− ub,j
i/2− u+ ub,j

. (4.28)

the higher-than-one-loop part δZ4,0 satisfies the equation

δZ4,H(u) = 2i

Kb∑
j=1

ln
1− g2

2x+(u)x−−b,j

1− g2

2x−(u)x++
b,j

+ iθ(u, ub,j + i/2) + iθ(u, ub,j − i/2)

+

+

∫
dv

2π
φH(u, v)

d

dv
δZ4,0(v)−

∫
dv ϕ(u, v)δZ4,H(v) ,

and, eventually, it can be proved that δZ4,H(u) = 0, therefore the scalar counting func-

tion (4.25) becomes:

Z4(u) =

L−1∑
h=2

Θ(u, uh)−RΛs(u) + i

Kb∑
j=1

ln
i/2 + u− ub,j
i/2− u+ ub,j

(4.29)

The Bethe equations eiZ4(uh) = (−1)L−1 at last assume the form:

1 = e−iRΛs(uh)
L−1∏

h′=2, h′ 6==h

S(uh, uh′)

Kb∏
j=1

uh − ub,j + i/2

uh − ub,j − i/2
(4.30)

When, in addition to the L− 2 scalar excitations, the system includes Ka roots of type

ua, Kb of type ub and Kc type-c roots, the set (4.30) must be supplemented with the

equations for auxiliary roots, then:

1 =

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i
2

ua,k − ub,j + i
2

(4.31)

L−1∏
h=2

(
ub,k − uh + i

2

ub,k − uh − i
2

)
=

Kb∏
j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i
2

ub,k − ua,j + i
2

Kc∏
j=1

ub,k − uc,j − i
2

ub,k − uc,j + i
2

1 =

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i
2

uc,k − ub,j + i
2

A comparison with (4.19) promptly reveals that the equations (4.31) describe a spin

chain associated to the 6 of su(4), whose length is L − 2 (matching the number of

internal holes); the r.h.s. of the second in (4.31) denotes that the scalar excitations

behave like L−2 inhomogeneities (with rapidities uh, h = 2, . . . , L−1), whose dynamics

is regulated by the equations (4.30). Finally, (4.19) and (4.31), together, entail that

scalars transform according to the antisymmetric representation (the 6) of su(4).

In the gauge theory standpoint, the structure of (4.31) enables to infer the recipe to

obtain all the states of the 6 multiplet, descending from the highest weight. The N = 4

SYM gauge theory contains six scalar degrees of freedom: for convenience, they could

be arranged into three complex fields, say Z, W, Y , along with their complex conjugated
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Z̄, W̄ , Ȳ . Let Z be associated to the highest weight state of the 6. Recalling (3.29), the

bearing of a single Z excitation matches to the gauge-invariant operator

O′ ∼ Tr[Z Ds−s1
+ Z Ds1

+ Z] + . . . ,

which will be denoted |Z 〉 hereafter; likewise |ZZ 〉 stands for the two Z state, while the

insertion of any other scalar field correspond to |W 〉, |Y 〉, and so on. In order to recon-

struct the complete 6 from |Z 〉, it could be af any use to recollect a few notions about

the su(4) algebra: the Cartan subalgebra includes three generators (H1, H2, H3) = ~H,

while the others arrange into couples of raising (lowering) generators E+
αj (E−αj ) where

αj stands for a simple root4. Let an arbitrary state of the representation be considered,

whose weight is ~µ = (µ1, µ2, µ3)

(H1, H2, H3)|µ 〉 = ~µ|µ 〉 :

|µ 〉 can be deduced from the highest weight state |w6 〉 ≡ |Z 〉 (such that
~H|w6 〉 = ~w6|w6 〉 ) by properly acting on it with lowering generators

E−αjk
· · ·E−αj1 |w6 〉 = |µ 〉

~H E−αjk
· · ·E−αj1 |w6 〉 = (~w6 − ~αjk · · · ~αj1)|µ 〉 = ~µ|µ 〉 .

Upon comparing to (4.14), equations (4.31) tell the only way to act on the highest weight

state consists in applying once the lowering generator related to the root ~α2 (4.11), as all

the inner products (in the three dimensional root space) 2~αj · ~w6 = 0, except for j = 2

(indeed 2~α2 · ~w6 = 1/2) . Since the fundamental weights of su(4) are known (4.13), a

glance at (4.31) shows that all the right sides are equal to one, but the second, and it is

thus easy to infer the Dynkin labels of the representation are (0, 1, 0): once the Dynkin

labels and the highest weight of the 6, and also the simple roots are known, the whole

representation is achieved, as those features fix the sequences of lowering generators to

retrieve all the states. In the end, all the multiplet can be reconstructed:

|Z 〉 ~H|Z 〉 = ~w6 (4.32)

|W 〉 = E−α2
|Z 〉 ~H E−α2

|Z 〉 = (~w6 − ~α2)|W 〉
|Y 〉 = E−α1

|W 〉 = E−α1
E−α2
|Z 〉 ~H E−α1

E−α2
|Z 〉 = (~w6 − ~α1 − ~α2)|Y 〉

|Ȳ 〉 = E−α3
|W 〉 = E−α3

E−α2
|Z 〉 ~H E−α3

E−α2
|Z 〉 = (~w6 − ~α3 − ~α2)|Ȳ 〉

|W̄ 〉 = E−α3
|Y 〉 = E−α1

|Ȳ 〉 ~H|W̄ 〉 = (~w6 − ~α3 − ~α2 − ~α1)|W̄ 〉
|Z̄ 〉 = E−α2

|W̄ 〉 ~H|Z̄ 〉 = (~w6 − ~α3 − 2~α2 − ~α1)|Z̄ 〉 ;

the derivation of these states parallels the computation of the weights of the 6 (4.18).

• (Large) Fermionic sector

In order to study the properties of large fermions, it is appropriate to stick to a system

composed of NF large fermions uF,j , j = 1, ..., NF , together with Ka roots of type ua,

4For the present purpose, the explicit form of the generators is not interesting, for only the root

system (4.11) matters
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Kb of type and Kb uc roots. As previously shown, fermions do interact only with the ua
roots, hence only that kind of auxiliary particles affects the fermionic counting function;

anyway, reasoning analogous to the scalar case prove that just the one loop contributions

survive, the higher loop effects being erased. Therefore for the system at hand the Bethe

equations read:

1 = exp [iΛF (uF,k)]

Ka∏
j=1

uF,k − ua,j + i
2

uF,k − ua,j − i
2

NF∏
j=1

S(FF )(uF,k, uF,j) . (4.33)

Alongside them, the equations for auxiliary roots must be added:

NF∏
j=1

(
ua,k − uF,j + i

2

ua,k − uF,j − i
2

)
=

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i
2

ua,k − ub,j + i
2

(4.34)

1 =

Kb∏
j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i
2

ub,k − ua,j + i
2

Kc∏
j=1

ub,k − uc,j − i
2

ub,k − uc,j + i
2

1 =

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i
2

uc,k − ub,j + i
2

A look to (4.16) suggests the equations (4.34) should be associated to a spin chain related

to the 4 of su(4); the number of fermions NF represents the chain length, while the

fermion themselves are treated as inhomogeneities, whose rapidities uF,j , j = 1, . . . , NF

should be deduced from equations (4.33).

Otherwise, when only large antifermions (in number of NF̄ ) appears on the vac-

uum, again accompanied by isotopic roots ua (Ka), ub (Kb) and Kc (Kc), the system is

described by the set of Bethe equations

1 = exp
[
iΛF̄ (uF̄ ,k)

] Kc∏
j=1

uF̄ ,k − uc,j + i
2

uF̄ ,k − uc,j − i
2

NF̄∏
j=1

S(F̄ F̄ )(uF̄ ,k, uF̄ ,j) . (4.35)

together with the auxiliary root equations

1 =

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i
2

ua,k − ub,j + i
2

(4.36)

1 =

Kb∏
j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i
2

ub,k − ua,j + i
2

Kc∏
j=1

ub,k − uc,j − i
2

ub,k − uc,j + i
2

NF̄∏
j=1

(
uc,k − uF̄ ,j + i

2

uc,k − uF̄ ,j − i
2

)
=

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i
2

uc,k − ub,j + i
2

.

The (4.36) are in fact the equations for 4̄ spin chain, as may be read from (4.17). The

inhomogeneity rapidities (else, the antifermions) uF̄ ,j can be obtained from the Bethe

equations (4.35).

Some interest should be paid to a system including both (large) fermions and (large)

antifermions, jointly to auxiliary roots. In order to highlight a peculiar feature of these
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kinds of particles, let fermions and antifermions be excited, setting the number of them

so to coincide, that is NF = NF̄ = N ; they are described by the Bethe equations

(4.37)

1 = exp [iΛF (uF,k)]

N∏
j=1

S(FF )(uF,k, uF,j)

N∏
j=1

S(FF̄ )(uF,k, uF̄ ,j)

Ka∏
j=1

uF,k − ua,j + i
2

uF,k − ua,j − i
2

1 = exp
[
iΛF̄ (uF̄ ,k)

] N∏
j=1

S(F̄ F̄ )(uF̄ ,k, uF̄ ,j)
N∏
j=1

S(F̄F )(uF̄ ,k, uF,j)

Kc∏
j=1

uF̄ ,k − uc,j + i
2

uF̄ ,k − uc,j − i
2

whereas for the auxiliary roots the relations hold:

N∏
j=1

(
ua,k − uF,j + i

2

ua,k − uF,j − i
2

)
=

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i
2

ua,k − ub,j + i
2

(4.38)

1 =

Kb∏
j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i
2

ub,k − ua,j + i
2

Kc∏
j=1

ub,k − uc,j − i
2

ub,k − uc,j + i
2

N∏
j=1

(
uc,k − uF̄ ,j + i

2

uc,k − uF̄ ,j − i
2

)
=

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i
2

uc,k − ub,j + i
2

.

The knowledge of su(4) simple roots (4.11) and fundamental weights (4.13) enable to

claim the equations (4.38) are associated to a spin chain, related to the representation

of su(4) whose Dynkin labels are (1, 0, 1), namely the 15. The reason stems from the

physical interpretation of the event described. Fermions and antifermions are intended

to collide: since they transform according respectively to the 4 and the 4̄ of su(4),

their scattering is expected to mirror the direct product of representations 4 ⊗ 4̄. The

Clebsch-Gordan rule entails that the process decomposes into two channels:

4⊗ 4̄ = 1⊕ 15 ; (4.39)

the singlet 1 channel is concealed in (4.38), so that the 15 stands out.

• Gluonic sector

The case now considered concerns a system where Ng gluons (with rapidities ugj ) arise

over the vacuum, together with isotopic roots. The gluon rapidities are constrained by

the Bethe equations

1 = exp
[
iΛg(u

g
k)
] Ng∏
j 6=k

S(gg)(ugk, u
g
j ) (4.40)
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while the isotopic roots decouple from them, since

1 =

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i
2

ua,k − ub,j + i
2

(4.41)

1 =

Kb∏
j=1

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i
2

ub,k − ua,j + i
2

Kc∏
j=1

ub,k − uc,j − i
2

ub,k − uc,j + i
2

1 =

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i
2

uc,k − ub,j + i
2

:

therefore, gluon excitations behave like singlets (1) under SU(4). The very same rea-

soning applies to barred-gluons.

3 General equations

This paragraph is meant to provide the complete Asymptotic Bethe Ansatz equations,

intended to describe the most general system set up with every sort of excitation over the

antiferromagnetic vacuum. The scattering matrices5 appearing in the following equations

have been listed in paragraph 2.1. Finally, the explicit expressions for the free-particle

propagation phases Λ∗(u) will be provided at the end of this section: each one of these

functions stands for the phase owned by a particle, when no further excitations are

present in the spin chain, so that the Bethe ansatz equations simply reduce to the

momentum quantization conditions in a periodic system. As hinted when studying

the one loop scalar case in section 3 of the previous chapter, the scattering phases are

composed of a part amenable to the particle momentum, plus a further phase shift

coming from defects in the spin chain.

Below, the ABA equations are displayed per type of excitation:

• Scalars:

1 = eiΛs(uh)
H∏

{h′=1, h′ 6=h}

S(ss)(uh, uh′)

Kb∏
j=1

uh − ub,j + i
2

uh − ub,j − i
2

× (4.42)

×
Ng∏
j=1

S(sg)(uh, u
g
j )

Nḡ∏
j=1

S(sḡ)(uh, u
ḡ
j )

NF∏
j=1

S(sF )(uh, uF,j)

NF̄∏
j=1

S(sF̄ )(uh, uF̄ ,j)

×
Nf∏
j=1

S(sf)(uh, uf,j)

Nf̄∏
j=1

S(sf̄)(uh, uf̄ ,j)

5More precisely, they represent the scalar overall factor multiplying the pure matrix part
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• Gluons:

1 = exp
[
iΛg(u

g
k)
] Ng∏
j 6=k

S(gg)(ugk, u
g
j )

Nḡ∏
j=1

S(gḡ)(ugk, u
ḡ
j )× (4.43)

×
H∏
h=1

S(gs)(ugk, uh)

NF∏
j=1

S(gF )(ugk, uF,j)

NF̄∏
j=1

S(gF̄ )(ugk, uF̄ ,j)×

×
Nf∏
j=1

S(gf)(ugk, uf,j)

Nf̄∏
j=1

S(gf̄)(ugk, uf̄ ,j)

• Barred-gluons:

1 = exp
[
iΛg(u

ḡ
k)
] Nḡ∏
j 6=k

S(ḡḡ)(uḡk, u
ḡ
j )

Ng∏
j=1

S(ḡg)(uḡk, u
g
j )× (4.44)

×
H∏
h=1

S(ḡs)(uḡk, uh)

NF∏
j=1

S(ḡF )(uḡk, uF,j)

NF̄∏
j=1

S(ḡF̄ )(uḡk, uF̄ ,j)×

×
Nf∏
j=1

S(ḡf)(uḡk, uf,j)

Nf̄∏
j=1

S(ḡf̄)(uḡk, uf̄ ,j) (4.45)

• Large fermions:

1 = exp [iΛF (uF,k)]

NF∏
j=1

S(FF )(uF,k, uF,j)

NF̄∏
j=1

S(FF̄ )(uF,k, uF̄ ,j)× (4.46)

×
Nf∏
j=1

S(Ff)(uF,k, uf,j)

Nf̄∏
j=1

S(F f̄)(uF,k, uf̄ ,j)

H∏
h=1

S(Fs)(uF,k, uh)×

×
Ng∏
j=1

S(Fg)(uF,k, u
g
j )

Nḡ∏
j=1

S(F ḡ)(uF,k, u
ḡ
j )

Ka∏
j=1

uF,k − ua,j + i
2

uF,k − ua,j − i
2

• Large antifermions:
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1 = exp
[
iΛF (uF̄ ,k)

] NF∏
j=1

S(F̄F )(uF̄ ,k, uF,j)

NF̄∏
j=1

S(F̄ F̄ )(uF̄ ,k, uF̄ ,j)× (4.47)

×
Nf∏
j=1

S(F̄ f)(uF̄ ,k, uf,j)

Nf̄∏
j=1

S(F̄ f̄)(uF̄ ,k, uf̄ ,j)
H∏
h=1

S(F̄ s)(uF̄ ,k, uh)×

×
Ng∏
j=1

S(F̄ g)(uF̄ ,k, u
g
j )

Nḡ∏
j=1

S(F̄ ḡ)(uF̄ ,k, u
ḡ
j )

Kc∏
j=1

uF̄ ,k − uc,j + i
2

uF̄ ,k − uc,j − i
2

• Small fermions:

1 = exp [iΛf (uf,k)]

Nf∏
j=1

S(ff)(uf,k, uf,j)

Nf̄∏
j=1

S(ff̄)(uf,k, uf̄ ,j)× (4.48)

×
NF∏
j=1

S(fF )(uf,k, uF,j)

NF̄∏
j=1

S(fF̄ )(uf,k, uF̄ ,j)
H∏
h=1

S(fs)(uf,k, uh)×

×
Ng∏
j=1

S(fg)(uf,k, u
g
j )

Nḡ∏
j=1

S(fḡ)(uf,k, u
ḡ
j )

Ka∏
j=1

uf,k − ua,j + i
2

uf,k − ua,j − i
2

• Small antifermions:

1 = exp
[
iΛf (uf̄ ,k)

] Nf∏
j=1

S(f̄f)(uf̄ ,k, uf̄ ,j)

Nf̄∏
j=1

S(f̄ f̄)(uf̄ ,k, uf̄ ,j)× (4.49)

×
NF∏
j=1

S(f̄F )(uf̄ ,k, uF,j)

NF̄∏
j=1

S(f̄ F̄ )(uf̄ ,k, uF̄ ,j)

H∏
h=1

S(f̄s)(uf̄ ,k, uh)×

×
Ng∏
j=1

S(f̄g)(uf̄ ,k, u
g
j )

Nḡ∏
j=1

S(f̄ ḡ)(uf̄ ,k, u
ḡ
j )

Kc∏
j=1

uf̄ ,k − uc,j + i
2

uf̄ ,k − uc,j − i
2

• Isotopic roots:
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1 =

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i
2

ua,k − ub,j + i
2

NF∏
j=1

ua,k − uF,j − i
2

ua,k − uF,j + i
2

Nf∏
j=1

ua,k − uf,j − i
2

ua,k − uf,j + i
2

(4.50)

1 =

Kb∏
j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

Ka∏
j=1

ub,k − ua,j − i
2

ub,k − ua,j + i
2

Kc∏
j=1

ub,k − uc,j − i
2

ub,k − uc,j + i
2

H∏
h=1

ub,k − uh − i
2

ub,k − uh + i
2

(4.51)

1 =

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i
2

uc,k − ub,j + i
2

NF̄∏
j=1

uc,k − uF̄ ,j − i
2

uc,k − uF̄ ,j + i
2

Nf̄∏
j=1

uc,k − uf̄ ,j − i
2

uc,k − uf̄ ,j + i
2

(4.52)

Propagation phases:

First, it is convenient to define the number ∆P , whose meaning will get clearer later:

∆P ≡
H∑
h=1

P̃ (uh)−
Ng∑
j=1

∫
dv

2π
χ(v, ugj |1)

d

dv
P̃ (v)−

Nḡ∑
j=1

∫
dv

2π
χ(v, uḡj |1)

d

dv
P̃ (v)−

−
NF∑
j=1

∫
dv

2π
χF (v, uF,j)

d

dv
P̃ (v)−

NF̄∑
j=1

∫
dv

2π
χF (v, uF̄ ,j)

d

dv
P̃ (v) +

+

Nf∑
j=1

∫
dv

2π
χH(v, uf,j)

d

dv
P̃ (v) +

Nf̄∑
j=1

∫
dv

2π
χH(v, uf̄ ,j)

d

dv
P̃ (v) (4.53)

The propagation phase appearing in the scalar Bethe equations (4.42) corresponds to:

−Λs(u) = 2P̃ (u) +R(u, s/
√

2) +R(u,−s/
√

2) + 2

∫
dv G(u, v)L4(v) + ∆P (4.54)

while for a gluon (4.43) it holds:

−Λg(u) = −
∫

dv

2π
χ(v, u|1)

d

dv
[R(v, s/

√
2) +R(v,−s/

√
2)] +

∫
dv

π
FG(v, u)L′4(v)−

− 2

∫
dv

2π
χ(v, u|1)

d

dv
P̃ (v) + ∆P (4.55)

(the function stays the same also for barred-gluons (4.44) ). Both large fermions (4.47)

and large antfermions (4.47), the propagation phase reads

−ΛF (u) = −
∫

dv

2π
χF (v, u)

d

dv
[R(v, s/

√
2) +R(v,−s/

√
2)] +

∫
dv

π
FF (v, u)L′4(v)−

− 2

∫
dv

2π
χF (v, u)

d

dv
P̃ (v) + ∆P (4.56)
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and finally for small fermions (4.48) and antifermions (4.49), it is found that

−Λf (u) =

∫
dv

2π
χH(v, u)

d

dv
[R(v, s/

√
2) +R(v,−s/

√
2)] +

∫
dv

π
Ff (v, u)L′4(v)

+ 2

∫
dv

2π
χH(v, u)

d

dv
P̃ (v) = (4.57)

= −
∫
dw

2π

d

dw

[
Θ(s/

√
2, w) + Θ(−s/

√
2, w)

]
χH(w, u) +

+

∫
dv

π

[
d

dv
χH(v, u)−

∫
dw

2π

d2

dvdw
Θ(v, w)χH(w, u)

]
L4(v) .

Complete scalar counting function:

Since the scalar counting function appears in the formula (3.17), massively exploited

throughout this text can, it might be considered the most fundamental one. Therefore

it is worth writing down the non-linear integral equation , in its most general form:

Z4(u) = (L+Ng +Nḡ +NF +NF̄ )P̃ (u) +
L−2∑
h=2

R(u, uh) +

Ng∑
j=1

T (u, ugj |1) +

+

Nḡ∑
j=1

T (u, uḡj |1) +

NF∑
j=1

FF (u, uF,j) +

NF̄∑
j=1

FF (u, uF̄ ,j) +

+

Nf∑
j=1

Ff (u, uf,j) +

Nf̄∑
j=1

Ff (u, uf̄ ,j) +

Kb∑
j=1

+2

∫
dv G(u, v)L4(v) =

=
L∑
h=1

[Θ(u, uh) + P̃ (u, h)] +

Ng∑
j=1

[T (u, ugj |1) + P̃ (u)] + (4.58)

+

Nḡ∑
j=1

[T (u, uḡj |1) + P̃ (u)] +

NF∑
j=1

[FF (u, uF,j) + P̃ (u)] +

NF̄∑
j=1

[FF (u, uF̄ ,j) + P̃ (u)]

+

Nf∑
j=1

[Ff (u, uf,j) + P̃ (u)] +

Nf̄∑
j=1

[Ff (u, uf̄ ,j) + P̃ (u)] +

Kb∑
j=1

+ 2

∫
dv G(u, v)L4(v) .

It is now appropriate to point out a few remarks about the scalar counting function when

no excitations scalar are present, i.e. referring to formula (4.58) when all the excitations

numbers are set to zero while L = 2:

Z4(u) = 2P̃ (u) +R(u, u1) +R(u, u2) ,

where u1, u2 are the external holes, u1 = −u2 =
s√
2

+ O(s0). By recalling (3.72), it is

found that6:

R(u, u1) +R(u,−u1) + 2P̃ (u) =

∫ u

dv σ(v)|NIH (4.59)

6In the s −→∞ limit, P̃ (u) = O(1)
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Much interest lies in the function ZBES , defined as the higher-than-one-loop part of

Z4(u), proportional to ln s in the large spin limit:

Z4(u) = ln s (−4u+ ZBES(u)) +O(s0) (4.60)

(Z4(u) is an odd function ZBES(u) = −ZBES(−u) ); from ZBES(u), the density σBES(u)

can be defined as its derivative

d

du
ZBES(u) = σBES(u) .

The Fourier transform of σBES(u) enjoys several remarkable properties: it equals half of

the value of the universal scaling function f(g) = 2σ̂BES(0) and it can be obtained upon

solving the linear integral equation (2.38), previously encountered at the end of section

3 in chapter 2:

σ̂BES(k) =
2πg2k

ek − 1

[
K̂(
√

2gk, 0)−
∫ ∞

0

dt

π
K̂(
√

2gk,
√

2gt)σ̂BES(t)

]
k > 0 (4.61)

The transformed density could be handy reformulated in terms of the function γø
±(t)

(whose importance will get clearer in computing energy and momentum of the excita-

tions):

σ̂BES(t) =
2πe

t
2

et − 1

[
γø
−(t) + γø

+(t)
]

(4.62)

The functions behave under parity according to γø
±(−t) = ±γø

±(t) and enjoy the Neu-

mann expansion, in terms of the Bessel functions Jn(t) of the first kind:

γø
−(t) = 2

∞∑
n=1

(2n− 1) J2n−1(t) γø
2n−1 (4.63)

γø
+(t) = 2

∞∑
n=1

(2n) J2n(t) γø
2n

where the Neumann modes satisfies the integral equations

γø
n(t) +

∫ ∞
0

dt

t
Jn(
√

2gt)
γø

+(
√

2gt)− (−1)nγø
−(
√

2gt)

et − 1
=
√

2g δn1 . (4.64)

4 On the energies

This section is devoted to the computation of the energy owned by excitations on the

antiferromagnetic vacuum. First, a few general considerations are provided. The general

expression for the eigenvalue of the r-th conserved charge of the motion reads, as a

function of rapidity u:

qr(u) =
ig2

r − 1

[(
1

x+(u)

)r−1

−
(

1

x(u)

)r−1
]

. (4.65)
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On the ferromagnetic (BMN) vacuum, only main roots u4 carry a non zero value of the

charge, so that the total value of any Qr associated to whole system is given by

Qr =

s∑
j=1

qr(uj) =
ig2

r − 1

s∑
j=1

[(
1

x+(uj)

)r−1

−
(

1

x(uj)

)r−1
]

. (4.66)

When switching to the antiferromagnetic (GKP) vacuum, taking s to infinity, formula

(3.17) should be applied to (4.66):

Qr = ig2
L∑
h=1

[
1

(x+(uh))r−1
− 1

(x(uh))r−1

]
+

Kb∑
j=1

[
ig2

(x++(ub,j))r−1
− ig2

(x−−(ub,j))r−1

]

− ig2

∫
dv

2π

[(
1

x+(v)

)r−1

−
(

1

x−(v)

)r−1
]
d

dv
[Z4(v)− 2L4(v)] . (4.67)

The summation of terms depending on b-roots in the first line of (4.67) gets erased by

contribution ascribable to that kind of isotopic root included in Z4(v): the type-b are

then showed not to carry charges. Henceforth the focus will stick to the r = 2 charge,

corresponding to energy

q2(u) = ig2

[
1

x+(u)
− 1

x−(u)

]
,

so that the total energy of the system is achieved by substituting the counting function

(4.58) in (4.67) and setting r to 2 (Q2 = E ):

E = ig2
H∑
h=1

(
1

x−h
− 1

x+
h

)
− ig2

∫
dv

2π

(
1

x+(v)
− 1

x−(v)

)
d

dv
[Z4(v)− 2L4(v)] .

(4.68)

In (4.68), all nonlinear terms could be dropped, taking into account the estimate [44]∫
dv

2π

(
1

x+(v)
− 1

x−(v)

)
d

dv
L4(v) ∼

∫ +∞

0
dtK̂(0,

√
2gt)ite−

t
2 L̂4(t) = O

(
1

s2

)
. (4.69)

Therefore the energy (4.68) becomes, in a more explicit form:

E = −ig2

∫
dv

2π

(
1

x+(v)
− 1

x−(v)

)
d

dv

[
L∑
h=1

( Θ(u, uh) + P̃ (uh) ) + (4.70)

+
∑
∗

N∗∑
j=1

(F∗(v, u∗,j) + P̃ (v) )

+ ig2
H∑
h=1

(
1

x(uh)−
− 1

x(uh)+

)
+O

(
1

s2

)
,

where the formal summation
∑
∗ is taken over the particle types ∗ ∈ {g, ḡ, F, F̄ , f, f̄},

with the identifications Fg(v, u) = Fḡ(v, u) = T (v, u|1). The energy belonging to each

type of excitation is obtained by splitting formula (4.70) into the contributions amenable

to the different kinds of particles.
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• Scalars:

First, the energy of an internal hole will be computed, by extrapolating the corresponding

contribution in the first line of (4.70):

Es(u) = ig2

(
1

x−(u)
− 1

x+(u)

)
− ig2

∫
dv

2π

(
1

x+(v)
− 1

x−(v)

)
d

dv
Θ(v, u) . (4.71)

Formula (4.71) can be recast in terms of integrals deeply studied in literature about sl(2)

sector ( [31], [44] for details):

Es(u) = −q2(u)−
∫

dk

4π2
q̂2(k) [σ̂(1)(k) + σ̂(k;u)|IH ] . (4.72)

Eventually the energy for a scalar excitation assumes a form which recalls the solution

of BES equation (4.61), namely involving the functions γø
±(t) introduced at the end of

section 3:

Es(u) =

∫ +∞

0

dt

t

[
e−

t
2 − cos tu

e
t
2 − e−

t
2

γø
−(
√

2gt) +
cos tu− e

t
2

e
t
2 − e−

t
2

γø
+(
√

2gt)

]
. (4.73)

The expression above matches the analogous result by Basso [42].

• Gluons:

The energy of a gluon can be extracted from (4.70), and, thanks to(4.71) and (3.105),

its value relates to the energy of scalar excitations:

Eg(u) = −
∫ ∞
−∞

dw

2π

dEs(w)

dw
[χ(w, u|1) + Φ(w)] = (4.74)

=

∫ ∞
−∞

dk

4π2

iπ

e
k
2 − e−

k
2

(γø
+(
√

2gk)− sgn(k)γø
−(
√

2gk))

[
2π

ik
e−|k|e−iku

− 2π

ik
e−
|k|
2

∞∑
n=1

((
g√

2ix(u+ il
2 )

)n
+

(
g√

2ix(u− il
2 )

)n)
Jn(
√

2gk)

− 2π

ik
J0(
√

2gk)e−
|k|
2

]
;

By means of equation (4.64), and by making use of the identity∫ ∞
0

dk

k
e−k(

l
2
±iu) Jn(

√
2gk) =

(±1)n

n

(
g√

2ix(u∓ il
2 )

)n
, (4.75)

the expression above is rewritten as [42]:

Eg(u) =

∫ ∞
0

dk

k

γø
+(
√

2gk)

1− e−k
[cos ku e−

k
2−1]−

∫ ∞
0

dk

k

γø
−(
√

2gk)

ek − 1
[cos ku e−

k
2−1] . (4.76)

A very similar result holds for gluonic bound states too:

Egbs(u|l) =

∫ ∞
0

dk

k

γø
+(
√

2gk)

1− e−k
[cos ku e−k

l
2 −1]−

∫ ∞
0

dk

k

γø
−(
√

2gk)

ek − 1
[cos ku e−k

l
2 −1] .
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(4.77)

• Fermions

The computation of energy for a large fermion parallels the very same reasoning outlined

before for gluons, so that:

EF (u) = −
∫ ∞
−∞

dw

2π

dEs(w)

dw
[χF (w, u|l) + Φ(w)] = (4.78)

=

∫ ∞
0

dk

k

γø
+(
√

2gk)− γø
−(
√

2gk)

ek − 1
[cos ku− 1] +

∫ ∞
0

dk

k
γø

+(
√

2gk) [
1

2
cos ku− 1]

For small fermions, instead, the same steps lead to:

Ef (u) =

∫ ∞
−∞

dw

2π

dEs(w)

dw
χH(w, u|l) =

= −1

2

∫ ∞
0

dk

k
γø

+(
√

2gk) cos ku (4.79)

5 On the propagation phase

The eigenvalue of the momentum, owned by a root, is formulated as a function of

rapidity:

p(u) = i ln

(
x+(u)

x−(u)

)
. (4.80)

Since only u4 roots carry momentum, the total value associated to the spin chain, as

computed on the ferromagnetic vacuum, amounts to the summation

P =
s∑
j=1

p(u4,j) = i
s∑
j=1

ln

(
x+(u)

x−(u)

)

Large spin limit and formula (3.17) allow to switch to antiferromagnetic vacuum, so that

the total momentum the excitations bring to the spin chain equals:

P = −i
L∑
h=1

ln
x+(uh)

x−(uh)
+ i

Kb∑
j=1

ln
x++(ub,j)

x−−(ub,j)
− i
∫

dv

2π
ln
x+(v)

x−(v)

d

dv
[Z4(v)− 2L4(v)] .

(4.81)

As it happened for (4.67), the sum on the b-roots in (4.81) cancels out the contribution

from isotopic roots inside the scalar counting function Z4(v) (4.58). Moreover, the
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terms d̃P (v)
dv and dR

dv (v,±s/
√

2) disappear, for they are integrated with the odd function

ln x+(v)
x−(v)

. Hence, recollecting the quantity ∆P from (4.53), the total momentum reads:

P = ∆P +

∫
dv

π

dP̃

dv
L4(v) . (4.82)

Since the spin chain is supposed not to have momentum with respect its centre of

mass frame, the zero-momentum condition P = 0 (equivalent to

s∏
j=1

x+(u4,j)

x−(u4,j)
= 1 in

Beisert-Staudacher equations) should be imposed as a constraint, thus the expressions

for propagation phases in section 3 get simplified. On the antiferromagnetic vacuum,

the propagation phase is assumed to take the form:

−Λ∗(u) = R · P∗(u) +D∗(u) ,

hence hereafter the particle momentum P∗(u) will be inferred, by extracting the part

proportional to the spin chain length R = 2 ln s (GKP string length) in a s� 1 expan-

sion, the subleading remainder D∗(u) being amenable to a defect.

• Scalars:

The propagation phase for scalars equals:

−Λs(u) = R(u, s/
√

2) +R(u,−s/
√

2) + 2P̃ (u) +

∫
dv

π

d

dv
[R(u, v)− P̃ (v)]L4(v) =

= i ln[−S(ss)(u, s/
√

2)] + i ln[−S(ss)(u,−s/
√

2)] +

+ i

∫
dv

π

d

dv
ln[−S(ss)(u, v)]L4(v) (4.83)

Now, recollecting the notions about the scalar counting function provided at the end of

section 3, it is found that

R(u,
s√
2

) +R(u,− s√
2

) = 2 ln
s√
2

(
−2u+

1

2
ZBES(u)

)
+O

(
1

s2

)
, (4.84)

reminding that P̃ (u) = O(s0). Talking about the nonlinear terms, the large spin limit of

L4(u) is controlled by the leading order behaviour of Z4(u) (not depending on excitations

in this regime, as they start contributing at s0 order)

Z4(u) = 2 ln s

(
−2u+

1

2
ZBES(u)

)
+O(s0) , (4.85)

hence, it is found that:∫
dv

π

d

dv
R(u, v)L4(v) = ln 2

(
−2u+

1

2
ZBES(u)

)
+O

(
1

s2

)
(4.86)∫

dv

π

dP̃

dv
L4(v) = O

(
1

s2

)
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These contributions altogether lead to the propagation phase in high spin limit:

Λs(u) = 2 ln s

(
2u− 1

2
ZBES(u)

)
− 2P̃ (u) +O

(
1

s2

)
= R · Ps(u) +Ds(u) (4.87)

Therefore, the momentum of a scalar excitation is left identified:

Ps(u) = 2u− 1

2
ZBES(u) (4.88)

The results achieved from the study of sl(2) sector allow to make more explicit the

expression (4.88) for the momentum of a scalar [42]:

Ps(u) = 2u−
∫ +∞

0

dk

k
sin(ku) e

k
2

[
γø
−(
√

2gk) + γø
+(
√

2gk)

ek − 1

]
(4.89)

At last, the interaction between scalar excitations (internal holes) and the two external

holes entails a subleading phase shift, assimilable to a defect:

Dscal(u) = −2P̃ (u) . (4.90)

• Gluons:

For gluons

−Λg(u) =

∫
dv

2π

d

dv

[
R(s/

√
2, v) +R(−s/

√
2, v)

]
χ(v, u|1) + (4.91)

+ i

∫
dv

π

d

dv
ln[S(gs)(u, v)]L4(v)− 2

∫
dv

2π

d

dv
P̃ (v)χ(v, u|1)

Upon restrict to order ln s, it is found:∫
dv

2π
χ(v, u|1)

d

dv
[R(v,

s√
2

) +R(v,− s√
2

)] =

= 2 ln
s√
2

{
2u−

(
g2

x−
+
g2

x+

)
+

∫
dk

8π2

[
−2π

sin ku

k
e−|k| + (4.92)

+ i
∑

n=1, n odd

(
g

i
√

2x−(u)

)n 2π

k
e−
|k|
2 Jn(

√
2gk) +

+ i
∑

n=1, n odd

(
g

i
√

2x+(u)

)n 2π

k
e−
|k|
2 Jn(

√
2gk)

]
σ̂BES(k)

}
Now, the equalities∫

dk

k
e−
|k|
2 Jn(

√
2gk)σ̂BES(k) = 4π[

√
2gδn,1 − γø

n] (4.93)

∞∑
n=1

n odd

[(
g

i
√

2x−

)n
+

(
g

i
√

2x+

)n]
γø
n = −i

∫ +∞

0

dk

k
sin ku e−

k
2 γø
−(
√

2gk)
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turn out useful to eventually get

2 ln
s√
2

{
2u−

∫ +∞

0

dk

k
sin ku e−

k
2

[
γø
−(
√

2gk)

1− e−k
+
γø

+(
√

2gk)

ek − 1

]}
(4.94)

and, at the same time, the nonlinear terms give a contribution

ln 2
{

2u−
∫ +∞

0

dk

k
sin ku e−

k
2

[
γø
−(
√

2gk)

1− e−k
+
γø

+(
√

2gk)

ek − 1

]}
+O(1/s2) . (4.95)

Given the usual form for the propagation phase

Λg(u) = R · Pg(u) +Dg(u) , (4.96)

the momentum of a gluon with rapidity u is recognized to be

Pglu(u) = 2u−
∫ +∞

0

dk

k
sin ku e−

k
2

[
γø
−(
√

2gk)

1− e−k
+
γø

+(
√

2gk)

ek − 1

]
, (4.97)

which agrees with [42], while the subleading interaction between a gluon and the two

external holes produces the defect phase shift

Dg(u) = 2

∫
dv

2π
χ(v, u|1)

d

dv
P̃ (v) . (4.98)

• Large fermions:

The propagation phase associated to a large fermion with rapidity u reads

−ΛF (u) =

∫
dv

2π
χF (v, u)

d

dv
[R(v, xL) +R(v,−xL)] + 2

∫
dv

2π
χF (v, u)

d

dv
P̃ (v) +

+ i

∫
dv

π

d

dv
ln[S(Fs)(u, v)]L4(v) (4.99)

THe attention now sticks to order ln s, so to get:∫
dv

2π
χF (v, u)

d

dv
[R(v, xL) +R(v,−xL)] = (4.100)

= 2 ln
s√
2

{
2u−

∫ +∞

0

dk

k
sin ku

γø
+(
√

2gk) + γø
−(
√

2gk)

ek − 1
−

− 1

2

∫ ∞
0

dk

k
sin ku γø

−(
√

2gk)
}

;

in order to obtain the equation, the following relation has been used:∫ ∞
0

dk

2k
sin ku γø

−(
√

2gk) = i

∞∑
n=1

(
g√

2ix(u)

)2n−1

γø
2n−1 . (4.101)

The contribution of the nonlinear terms can be estimated (up to O(1/s2) terms)

ln 2
{

2u−
∫ +∞

0

dk

k
sin ku

γø
+(
√

2gk) + γø
−(
√

2gk)

ek − 1
− 1

2

∫ ∞
0

dk

k
sin ku γø

−(
√

2gk)
}
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To sum up, the propagation phase becomes

ΛF (u) = RPF (u) +DF (u) (4.102)

provided identification of the momentum of a large fermion (with rapidity u) as

PF (u) = 2u−
∫ ∞

0

dk

k
sin(ku)

γø
+(
√

2gk) + γø
−(
√

2gk)

ek − 1
− 1

2

∫ ∞
0

dk

k
sin(ku) γø

−(
√

2gk)

(4.103)

(recalling [42]), so that the defect term stands out:

DF (u) = 2

∫
dv

2π
χF (v, u)

d

dv
P̃ (v) . (4.104)

• Small fermions:

The reasoning for the propagation phase of a small fermion (rapidity u) mimic very

closely the large fermion case

−Λf (u) = −
∫

dv

2π
χH(v, u)

d

dv
[R(v,

s√
2

) +R(v,− s√
2

)] + (4.105)

+

∫
dv

π

d

dv
ln[S(fs)(u, v)]L4(v) + 2

∫
dv

2π
χH(v, u)

d

dv
P̃ (v) =

= RPf (u) +Df (u) , (4.106)

where Pf (u) stands for the momentum of a small femion with rapidity u [42]

Pf (u) =
1

2

∫ ∞
0

dk

k
sin(ku) γø

−(
√

2gk) (4.107)

while the defect might be identified as

Df (u) = −2

∫
dv

2π
χH(v, u)

d

dv
P̃ (v) (4.108)

5.1 Weak coupling expansion

Now a very short summary, gathering all the propagation phases in large spin limit, will

be provided at one loop approximation (or at lowest order in g2, when talking about

small fermions). More precisely, in getting the following expressions a s� 1 expansion

has been performed, then the g −→ 0 limit.

• Scalars:

Λs(u) = 4u lnxL+2i ln
Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

)+2u ln 2 = 4u ln s+2i ln
Γ
(

1
2 + iu

)
Γ
(

1
2 − iu

)+O

(
1

ln s

)
(4.109)

• Gluons:

Λg(u) = 4u ln s+ 2i ln
Γ
(

3
2 + iu

)
Γ
(

3
2 − iu

) +O

(
1

ln s

)
(4.110)
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• Large fermions:

ΛF (u) = 4u ln s+ 2i ln
Γ (1 + iu)

Γ (1− iu)
+O

(
1

ln s

)
(4.111)

• Small fermions:

Λf (u) = (2 ln s+O(1))
g2

u
+O(g4) . (4.112)
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Chapter 5

AdS4 × CP3 and GKP vacuum

1 Integrability in AdS4/CFT3 and large spin limit

This chapter will be devoted to the study of some issues on theAdS4/CFT3 gravity-gauge

theory dualities. In particular, the interest will address to the low-energy reduction of

the AdS4 × CP3 type II A string theory in the Alday-Maldacena decoupling limit [38]

and its counterpart in the dual gauge theory N = 6 Chern-Simons, both considered on

a vacuum state associated to the GKP string.

First, the AdS4 × CP3 type II A string σ-model has got SO(2, 3) × SU(4) as its isom-

etry group, furthermore the theory is found to be integrable at classical level. Let the

Green-Schwarz action of the theory be quantized upon the GKP classical solution, cor-

responding to a string spinning in the AdS3 subspace of AdS4 with spin S, moreover let

this vacuum solution be generalized by taking into account another non zero Noether

charge, say J , associated to the rotation on the circumference S1 in CP3. The Alday-

Maldacena limit is achieved by taking the ratio J
lnS −→ 0 (with both J and S large):

in this regime the massless modes are found to dominate over the massive particles.

Therefore six massless bosons associated to CP3 and one massless Dirac fermion decou-

ple from the whole string σ-model, thus giving rise to an effective low-energy CP3 model,

coupled to a fermion via a Thirring term. This is the so-called Bykov model [50], and it

is described by the Lagrangian:

L = κ(∂α − iAα)z̄j (∂α + iAα)zj + iψ̄γα(∂α − 2iAα)ψ +
1

4κ
(ψ̄γαψ)2 (5.1)

where Aα is non-dynamical U(1) gauge field, whereas the zj bosonic fields j ∈ {1, . . . , 4},
along with their complex conjugated z̄j , are left constrained to S7 ⊂ C4 by the condition

4∑
j=1

zj z̄j = 1 ; (5.2)

the SU(4) symmetry joins to a further U(1) related to the conservation of fermion

number. The lagrangian (5.1) has been shown to lead to an integrable model by [58].

Turning now to the gauge theory side of the AdS/CFT correspondence, the sting

theory on AdS4 ×CP3 is conjectured to be dual to a three dimensional supersymmetric

101
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N = 6 Chern-Simons endowed with a SU(N)× SU(N) gauge group (ABJM [26]). The

SO(2, 3) conformal group on the three dimensional Minkowski is juxtaposed to the R-

symmetry SU(2)R × SU(2)L × U(1), enhanced to a full SU(4) by the Chern-Simons

term. The theory contemplates the presence of two sets of scalars, transforming in the

bifundamental of SU(N): the scalars from the first set behave as doublets under SU(2)R
(say Aa ) in the (N, N̄) of SU(N) × SU(N), else the second is composed of doublets

of SU(2)L (say Bȧ ) in the (N̄,N, ). Moreover, under the complete R-symmetry, they

arrange themselves into two multiplets, namely Y a = (A1, A2, B
†
1̇
, B†

2̇
) in the fundamental

4 representation of SU(4) and Y †a = (A†1, A
†
2, B1̇, B2̇) in the antifundamental 4̄ of SU(4).

These multiplets are the building blocks to construct a class of gauge invariant operators,

in the shape of single trace such as:

O ∼ Tr
[
Y a1Y †b1Y

a2Y †b2 · · ·Y
aLY †bL

]
ηb1,...,bLa1,...,aL

. (5.3)

The classical dimension of (5.3) is L: when ηb1,...,bLa1,...,aL is symmetric with respect to both

ai and bj indices, and all the traces are zero, then (5.3) is a chiral primary operator,

whose dimension gets fixed by the supersymmetry to the bare value L, otherwise O has

got a non zero anomalous dimension. The quantum part of the dilatation operator for

the set of objects (5.3) turns out to get associated to an integrable hamiltonian [51].

This fact allows to relate the class of operators to a spin chain of length 2L, where the

sites alternate between fundamental and antifundamental representations of SU(4), and

the interactions connect next-to-nearest neighbour sites (nearest neighbour interaction

contributions cancel out [51] ).

Now, the attention will turn to the issue of identifying a vacuum state which might

correspond to the GKP string, then finding upon it the relative excitations and their

dynamics, paralleling what has been done for the sl(2) sector in N = 4 SYM. A suitable

choice for the vacuum could be provided by the chiral primary

O ∼ Tr
[
(Y 1Y †4 )L

]
(5.4)

whose dimension stays untouched by quantum corrections. Differently from the N = 4

SYM, there is not a closed sector built out of scalars and covariant derivatives alone.

Instead, the smallest non-compact sector available consists in the sl(2|1) [52], where the

field content restricts to Y 1, ψ1
+ and covariant derivatives (on the (N, N̄) sites) whose

insertions on the vacuum accounts for magnonic excitations, or Y †, ψ†+4 and covariant

derivatives (on the (N̄ ,N) sites) standing for antimagnons. A generic excited state reads

then

O′ ∼ Tr
[
D . . . Y 1D . . .Dψ†+4D . . .Dψ1

+D . . .DY †4

]
: (5.5)

the twist of an operator equals L, while the Lorentz spin s depends on the number of

magnons, say M , and antimagnons, M̄ , so that

s =
1

2
(M + M̄) . (5.6)

Let the equations retrieved by Minahan and Zarembo [51] turn to the sl(2) grading; for

simplicity’s sake, let the weak coupling limit be considered and, for now, only momentum
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carrying roots are taken into account. Therefore, a system with M magnons (with

rapidities uk) and M̄ antimagnons (rapidities ūk) is described by the (one loop) Bethe

equations:(
uk + i

2

uk − i
2

)L
=

M̄∏
j=1

uk − ūj − i
uk − ūj + i

(5.7)

(
ūk + i

2

ūk − i
2

)L
=

M∏
j=1

ūk − uj − i
ūk − uj + i

.

By mimicking what has been done for the sl(2) sector inN = 4 SYM, the Bethe equations

can be rewritten in terms of the (monotonously increasing) counting functions:

Z(u) = 2L arctan 2u+

M̄∑
j=1

2 arctan(u− ūj) (5.8)

Z̄(u) = 2L arctan 2u+
M∑
j=1

2 arctan(u− uj) ,

so that (5.7) become

(−1)L+M̄ = eiZ(uk) (5.9)

(−1)L+M = eiZ̄(ūk) .

Since lim
u→±∞

Z(u) = ±π(L+ M̄), the overall number of available staes is L+ M̄ −1, only

M of whom being actually occupied by magnons: the remaining H = L + M̄ −M − 1

unoccupied states are the holes, then. The same reasoning holds for the H̄ = L +

M − M̄ − 1 antiholes. The system is left therefore endowed with two selection rules

for choosing the solutions: both sum and difference of holes and antiholes must be even

numbers, as

H + H̄ = 2(L− 1) H − H̄ = 2(M̄ −M) ,

moreover the zero-momentum has to be imposed:

eiP =

M∏
k=1

uk + i
2

uk − i
2

M̄∏
j=1

ūj + i
2

ūj − i
2

= 1 . (5.10)

Once that this setup has been supplied, the spin chain (gauge theory) counterpart of

the quantization over the GKP string can be easily portrayed. In the large spin limit

s −→ ∞ 1, the state (5.4) accounts for the antiferromagnetic vacuum, whereas the ex-

citations to actually look at are the holes and antiholes, appearing on the sea formed

by an infinite number of magnons and antimagnons (refer to (5.6) ). These claims thus

accomplish the parallel with the antiferromagnetic spin chain for N = 4 SYM.

1The large Lorentz spin regime is, in fact, the required condition for both GKP string and Bykov’s

model to be realized
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The next step to fully outline the theory to be examined (henceforth) consists in dis-

cussing the excitations for ABJM on this antiferromagnetic vacuum. The lowest-lying

twist-1/2 excitations are the holes and antiholes, commented so far: they respectively

transform under the 4 and 4̄ of SU(4), and, due to their nature of fake solutions of some

Bethe equations, they someway relate to scalar excitations in N = 4 SYM. The fermions,

instead, are found to be associated to the 6 of SU(4) in ABJM, differently from N = 4

SYM which owns two types of fermionic excitations (fermions and antifermions), in the

4 and 4̄. Finally, the gauge fields are SU(4) singlets in both the theories, and moreover

they appear in bound states Dl−1
⊥ F+⊥ ( l ≥ 1 ): anyway, while in N = 6 there is only

one type of gauge fields, the N = 4 SYM theory manifests two kind of them, related to

two components of the field strength, the Dl−1
⊥ F+⊥ and the D̄l−1

⊥ F̄+⊥.

This amusing ’quarrelling’ about excitations over the antiferromagnetic vacuum,

namely either the doubling or halving the number of varieties for the different kinds

of particles, is not a lone hint about an interesting relation between N = 6 Chern-

Simons and N = 4 SYM. An analogous behaviour will be encountered hereafter, when

dealing with Y-systems and folding process (on Bykov model). Moreover, several simi-

larities intertwine the two theories. First, the scaling dimension of the vacuum, in the

large spin regime: in N = 4 SYM, talking about the scaling dimension for twist-two

operators, it holds [40]:

∆N=4
vacuum = s+ f(g)(ln s+ γE) +B2(g) + o(s0) (5.11)

where B2(g) stands for the virtual scaling function and g =
√
λ

4π ; on the other side, for

N = 6 Chern-Simons it is found [54]:

∆N=6
vacuum = s+

f(h)

2
(ln(2s) + γE) +

1

2
B2(h) + o(s0) , (5.12)

this time h = h(λ) is some function of the t’Hooft coupling λ.

Finally, further resemblances between these two theories come from the dispersion rela-

tions [58]. Indeed the holes, belonging either to N = 6 Chern-Simons or to N = 4 SYM,

share almost the same formula for energies and momenta, as their expressions are equal

up to a factor two, at all couplings:

EN=4
hole (u) = 2EN=6

hole (u)

(5.13)

pN=4
hole (u) = 2 pN=6

hole (u) .

2 ABA/TBA for Bykov model

Henceforth, the focus will be put upon the Bykov low-energy effective model, quantized

over the GKP string: more precisely, the sector of operators dual to Bykov model on
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the antiferromagnetic vacuum will be taken into exam. Moreover, the analysis will stick

on lowest-lying excitations, namely holes and antiholes. The starting point consists

in the set of Asymptotic Bethe Ansatz (ABA) equations proposed by [51] for N = 6

Chern-Simons, upon restricting to hole-antihole sector in the large spin limit. In fact

the equations, the interest will be addressed to, do coincide with the ABA proposed by

[57] for the SU(4)× U(1) symmetric.

Before studying them, however, a few remarks are appropriated. In this chapter,

up to now, the auxiliary (isotopic) roots have been disregarded. From now on, instead,

their role will become pivotal in properly describe the system chosen. As the symmetry

of the antiferromagnetic vacuum (GKP string) is SU(4), again there exist three kinds

of auxiliary roots v1, v2, v3, even though they are embedded in general equations [51],

in a way different from the N = 4 SYM case.

The second remark concerns a novel feature of the ABA, that is, the equations are

twisted: the twists q, q̄ are introduced so to satisfy the conditions

q q̄ = eiP q/q̄ = (−1)F , (5.14)

where the number F stands for F = 1
2(H − H̄), while P is the total momentum of

the spin chain, resulting from the sum of momenta belonging to the single excitations.

The ciclicity condition forces the identification q = 1/q̄; anyway, q is not left completely

determined, as it remains twice valued q = ±1 for even F , else q = ±i for odd F .

Hence, now the Bethe ansatz equations for N = 6 Chern-Simons in the lowest-lying

excitation sector can be displayed: considering H holes uk and H̄ antiholes ūk, along

with Mi auxiliary type-k roots vi,j ( i=1,2,3 ), the system is left described by

e−ip(uk)R = q
H∏
j 6=k

S(uk − uj)
H̄∏
j=1

S̄(uk − ūj)
M1∏
j=1

(
uk − v1,j + i

2

uk − v1,j − i
2

)
(5.15)

1 =

M1∏
j 6=k

(
v1,k − v1,j + i

v1,k − v1,j − i

) M2∏
j=1

(
v1,k − v2,j − i

2

v1,k − v2,j + i
2

)
H∏
j=1

(
v1,k − uj − i

2

v1,k − uj + i
2

)

1 =

M2∏
j 6=k

(
v2,k − v2,j + i

v2,k − v2,j − i

) M1∏
j=1

(
v2,k − v1,j − i

2

v2,k − v2,j + i
2

)
M3∏
j=1

(
v2,k − v3,j − i

2

v2,k − v3,j + i
2

)

1 =

M3∏
j 6=k

(
v3,k − v3,j + i

v3,k − v3,j − i

) M2∏
j=1

(
v3,k − v2,j − i

2

v3,k − v2,j + i
2

)
H̄∏
j=1

(
v3,k − ūj − i

2

v3,k − ūj + i
2

)

e−ip(ūk)R = q̄
H̄∏
j 6=k

S(ūk − ūj)
H∏
j=1

S̄(ūk − uj)
M3∏
j=1

(
ūk − v3,j + i

2

ūk − v3,j − i
2

)

provided the spin chain length is identified with R = 2 ln 2s (the GKP string length),

while the momentum of a hole (the antihole shares the very same formula) p(u) is

half the value of that associated to a scalar excitation in N = 4 SYM (4.89), so that

p(u) = 1
2Ps(u), according to (5.13); explicitly, at weak coupling it holds p(u) = u+o(g2).
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The scattering matrix for hole-hole processes, and for antihole-antihole ass well, reads

S(u) = −
Γ
(

1 + i
u

4

)
Γ

(
1

4
− iu

4

)
Γ
(

1− iu
4

)
Γ

(
1

4
+ i

u

4

) , (5.16)

whereas the mixed scattering matrix, involving both holes and antiholes, is expressed by

S̄(u) =

Γ

(
1

2
− iu

4

)
Γ

(
3

4
+ i

u

4

)
Γ

(
1

2
+ i

u

4

)
Γ

(
3

4
− iu

4

) . (5.17)

It should be remarked that, apart from the twists q, q̄ and the different expressions for

the momentum and the spin chain length (though not as far, actually) in the propagation

phase, the matrices S(u) and S̄(u) represent the only discrepancies from the fermion-

antifermion sector equations (4.37), (4.38) seen in the previous chapter for N = 4 SYM.

In further analysing equations (5.15), it is worth considering the thermodynamic

limit, which is performed by taking the number of particles Mk to infinity, beside of

the limit R → ∞ (which now coincides with the large spin limit), provided the ratios

Mk/R stay fixed. Indeed, in this regime the auxiliary roots are conjectured to dispose

into strings [12], which are described by referring to their (real) centres:

v
(l)
1,ka = λ

(l)
k +

i

2
(l + 1− 2a), (a = 1, . . . , l), (5.18)

v
(m)
2,kb = µ

(m)
k +

i

2
(m+ 1− 2b), (b = 1, . . . ,m), (5.19)

v
(n)
3,kc = ν

(n)
k +

i

2
(n+ 1− 2c), (c = 1, . . . , n). (5.20)

The ABA equations turn out easier to be handled by introducing the matrices for the

scattering between two strings (whose lengths are l,m), written in terms of the relative

rapidity of their centres; these matrices are obtained by fusing together the scattering

of every single root included in the strings, so to find:

Sl,m(u) =

l+m−1
2∏

a=
|l−m|+1

2

(
u− ia
u+ ia

)
=

l∏
a=1

(
u− i

2(l +m+ 1− 2a)

u+ i
2(l +m+ 1− 2a)

)
. (5.21)

It might be useful to notice that all the scattering matrices involved depend only on

differences of rapidities (i.e. not on two rapidities separately), as the Bykov model, whose

gauge theory counterpart is outlined here, is relativistic. Therefore in the strong coupling

regime dual to Bykov model reduction, momentum and energy of a hole (antihole) are

found to take the simple expression p(u) = m sinh
(
πu
2

)
and E(u) = m cosh

(
πu
2

)
, where

m stands for the mass gap of Bykov model, and equals half the value of the O(6) non-

linear σ-model mass gap [58].
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Hence the ABA equations (5.15) are rewritten in term of strings as:

e−ip(uk)R =

H∏
j 6=k

S(uk − uj)
H̄∏
j=1

S̄(uk − ūj)
∞∏
l=1

M(l)∏
j=1

[
S1,l

(
uk − λ

(l)
j

)]−1
(5.22)

1 =

H∏
j=1

Sl,1

(
λ

(l)
k − uj

) ∞∏
m=1

M(m)∏
j=1

Sl,m

(
λ

(l)
k − µ

(m)
j

)

×
∞∏
l′=1

M(l′)∏
j=1

[
Sl,l′+1

(
λ

(l)
k − λ

(l′)
j

)]−1 [
Sl,l′−1

(
λ

(l)
k − λ

(l′)
j

)]−1

1 =
∞∏

m′=1

M(m′)∏
j=1

[
Sm,m′+1

(
µ

(m)
k − µ(m′)

j

)]−1 [
Sm,m′−1

(
µ

(m)
k − µ(m′)

j

)]−1

×
∞∏
n=1

M(n)∏
j=1

Sm,n

(
µ

(m)
k − ν(n)

j

) ∞∏
l=1

M(l)∏
j=1

Sm,l

(
µ

(m)
k − λ(l)

j

)

1 =

H̄∏
j=1

Sn,1

(
ν

(n)
k − ūj

) ∞∏
m=1

M(m)∏
j=1

Sn,m

(
ν

(n)
k − µ(m)

j

)

×
∞∏
n′=1

M(n′)∏
j=1

[
Sn,n′+1

(
ν

(n)
k − ν(n′)

j

)]−1 [
Sn,n′−1

(
ν

(n)
k − ν(n′)

j

)]−1

e−ip(ūk)R =
H̄∏
j 6=k

S(ūk − ūj)
M∏
j=1

S̄(ūk − uj)
∞∏
n=1

M(n)∏
j=1

[
S1,n

(
θ̄k − ν

(l)
j

)]−1
,

where M (q) counts the number of strings of length q. In the thermodynamic limit,

equations (5.22) are more suitably recast by means of the densities of states. Hence,

the densities of states accessible to holes and antiholes, respectively σ(u) and σ̄(u), are

introduced, and likewise the densities for auxiliary root strings σ
(1)
n (u), σ

(2)
n (u), σ

(3)
n (u),

labelled according to their lengths n = 1, 2, . . . . In the same manner, the states actually

occupied by holes, antiholes a the three different types of strings are described by ρ, ρ̄,

ρ
(1)
n , ρ

(2)
n , ρ

(3)
n . The equations (5.22) thus become:

σ(u) = m cosh
(πu

2

)
+K ∗ ρ(u) +G ∗ ρ̄(u)−

∞∑
l=1

K1,l ∗ ρ
(1)
l (u)

σ(1)
n (u) = Kn,1 ∗ ρ(u) +

∞∑
l=1

(
Kn,l ∗ ρ

(2)
l (u)− (Kn,l+1 +Kn,l−1) ∗ ρ(1)

l (u)
)

σ(2)
n (u) =

∞∑
l=1

(
Kn,l ∗ ρ

(3)
l (u) +Kn,l ∗ ρ

(1)
l (u)− (Kn,l+1 +Kn,l−1) ∗ ρ(2)

l (u)
)

σ(3)
n (u) = Kn,1 ∗ ρ̄(u) +

∞∑
l=1

(
Kn,l ∗ ρ

(2)
l (u)− (Kn,l+1 +Kn,l−1) ∗ ρ(3)

l (u)
)

σ̄(u) = m cosh
(πu

2

)
+K ∗ ρ̄(u) +G ∗ ρ(u)−

∞∑
l=1

K1,l ∗ ρ
(3)
l (u) ,

(5.23)
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where the convolution operation ∗ has been defined as f ∗g(u) =

∫ +∞

−∞
f(u−u′) g(u′)du′.

The kernels in the integral equations above are the logarithmic derivatives of the scat-

tering matrices, that is:

K(u) =
1

2πi

∂

∂u
lnS(u) (5.24)

G(u) =
1

2πi

∂

∂θ
ln S̄(u)

Kl,m(u) =
1

2πi

∂

∂u
lnSlm(u) ; (5.25)

the properties of K(u), G(u) and Kl,m(u) are listed and described in Appendix B.

As already sketched in section 4 of chapter 1 when outlining the main steps of the

Thermodynamic Bethe Ansatz, the theory at hand can be put on a torus of radii R (the

spin chain length) and R (related to the temperature or compact time by T = 1/R):

since the theory is relativistic, a rotation of the axis can be flawlessly performed on the

surface of the torus, leaving thus the physical content unaltered.

Going through the ordinary steps of TBA [15][17], the system of non linear integral

equations then follows:

ε(u) = iα+mR cosh
(πu

2

)
−K ∗ L(u)−G ∗ L̄(u)−

∞∑
l=1

K1,l ∗ L1,l(u)

ε1,n(u) = Kn,1 ∗ L(u)−
∞∑
l=1

(Kn,l ∗ L2,l(u)− (Kn,l+1 +Kn,l−1) ∗ L1,l(u))

ε2,n(u) =

∞∑
l=1

((Kn,l+1 +Kn,l−1) ∗ L2,l(u)−Kn,l ∗ L1,l(u)−Kn,l ∗ L3,l(u))

ε3,n(u) = Kn,1 ∗ L̄(u)−
∞∑
l=1

(Kn,l ∗ L2,m(u)− (Kn,l+1 +Kn,l−1) ∗ L3,l(u))

ε̄(u) = −iα+mR cosh
(πu

2

)
−K ∗ L̄(u)−G ∗ L0(u)−

∞∑
l=1

K1,l ∗ L3,l(u) ;

(5.26)

the equations above have been formulated in terms of the pseudoenergies

ε(u), ε̄(u), εl,n(u), introduced by means of the densities:

ρ(u)

σ(u)− ρ(u)
= e−ε(u) ,

ρ̄(u)

σ̄(u)− ρ̄(u)
= e−ε̄(u) ,

ρ
(i)
m (u)

σ
(i)
m (u)− ρ(i)

m (u)
= e−εi,m(u) , (5.27)

and the non-linear terms read

L(u) = ln
(

1 + e−ε(u)
)
, L̄(u) = ln

(
1 + e−ε̄(u)

)
, Li,m(u) = ln

(
1 + e−εi,m(u)

)
.

In (5.26), the chemical potential α has been included, after [17]. For the ground state,

achieved by imposing λ = eiα = 1, the free-energy can be expressed as:

Eλ(m,R) = −m
2π

∫ ∞
−∞

dθ cosh θ (L0(θ) + L̄0(θ)) . (5.28)
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3 Non-crossed, crossed Y-systems and universal TBA

The TBA integral equations enjoy a further, more elegant and powerful form: indeed,

thanks to identities (B.11) listed in Appendix B, the (5.26) can be recast into a set of

functional equations, the so-called Y -system [60]:

Y ++
0 Y −−0 =

Ȳ0

Y0

(
1 + Y +

11

) (
1 + Y −11

)
(1 + Y21) (5.29)

Y +
1,l Y

−
1,l =

(
1 + δl1Y0

)(1 + Y1,l−1) (1 + Y1,l+1)(
1 +

1

Y2,l

)
(5.30)

Y +
2,l Y

−
2,l =

(1 + Y2,l−1) (1 + Y2,l+1)(
1 +

1

Y1,l

)(
1 +

1

Y3,l

)
(5.31)

Y +
3,l Y

−
3,l =

(
1 + δl1Ȳ0

)(1 + Y3,l−1) (1 + Y3,l+1)(
1 +

1

Y2,l

)
(5.32)

Ȳ ++
0 Ȳ −−0 =

Y0

Ȳ0

(
1 + Y +

31

) (
1 + Y −31

)
(1 + Y21) . (5.33)

In the system above, each formula links to a kind of particle: equations (5.29) and

(5.33) are related to holes and antiholes (the only types carrying mass and momentum),

provided the definition of the Y -functions

Y0(u) = e−ε(u) Ȳ0(u) = e−ε̄(u) ,

whereas Yi,l(u) = eεi,l(u) are the relevant Y -functions for the equations (5.30)-(5.32)

(henceforward called ’magnonic’), which refer to strings of type-i auxiliary roots, with

length l (so i runs from 1 to 3, while l = 1, 2, 3, . . . ); with (zero column) boundary

condition

Yi,0(θ) ≡ 0 (5.34)

the superscript ± corresponds to a shift u→ u± i
2 , while the double sign ±± accounts

for a double shift u→ u± i (otherwise the argument of the Y -functions is meant to be

u).

The magnonic equations (5.30)-(5.32) enjoy the usual pictorial interpretation. Each

Y -function gets associated to a node in a Dynkin-like graph2, so that the equation whose

lhs contains Y +
i,l Y

−
i,l is meant to indicate the node labelled by (i, l), while the rhs describe

2In fact, the diagram depicted from the Y -system is customarily (though not strictly speaking) called

Dynkin diagram. In this text, this custom will be maintained
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the surrounding environment: every time a factor (1 +Yi′,l′) is present, a horizontal link

is drawn from the node (i, l) to (i′, l′), whereas each factor (1 + Y −1
i”,l”)−1 corresponds

to a vertical link from (i, l) to (i”, l”). In different words, the complex shifts in the lhs

somehow get mirrored into shifts of discrete indices in the rhs. Finally, the equations

(5.30)-(5.32) get encoded into a rectangular lattice, whose (say) left corners links to the

nodes corresponding to massive particles. The massive nodes (those related to massive

particle equations (5.29),(5.33) ) prevent, in fact, from a net graphical interpretation of

the Y -system at hand. A sort of ’double tadpole’ Ȳ0
Y0

appears in the rhs, left without

a clear pictorial counterpart; moreover, the complex shift also in the r.h.s. are a quite

uncommon (though not novel at all, see [70]) feature. Anyway, the massive node equa-

tions suggest kind of conservation of the sum of the absolute value of displacements: the

double (complex) shifts applied to Y0 or Ȳ0 in the lhs of (5.29) and (5.33) reflect into

double shift on the Y -functions in the rhs, be vertical displacements or a single complex

shift (± as a superscript), the tadpole terms being overlooked for a while.

0

0

(1,1) (1,p−1)

(N−1,p−1)(N−1,1)

p

N

Figure 5.1: The (CPN−1)p × U(1) diagram.

This peculiar behaviour and, in particular, the missing interpretation for the double

tadpole hints a more transparent form of the Y -system (5.29)-(5.33) might exist. Indeed

the TBA equations entail, via identities (B.11) in Appendix B, a further functional

relation involving ’massive’ Y ’s, referred to in what follows key relation:

Y +
0 Y −0
Ȳ +

0 Ȳ −0
= e4iα 1 + Y1,1

1 + Y3,1
. (5.35)

This key relation helps in finding, upon being shifted alternely by u→u ± i
2 , two novel

equations for massive particles, so to replace the tricky (5.29) and (5.33), and thus they

join (5.30)-(5.32) to implement a new Y -system, lacking of tadpoles though featuring a

quite unusual appearance:

Y ++
0 Ȳ −−0 = (1 + Y +

11) (1 + Y21) (1 + Y −31) (5.36)

Y −−0 Ȳ ++
0 = (1 + Y −11) (1 + Y21) (1 + Y +

31) . (5.37)

In fact, the lhs of (5.36) and (5.37) above does not involve either (shifted) Y0 or Ȳ0

alone, instead they both appear at the same time, with opposite shifts. From now on,
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this novel Y -system, where the magnonic (5.30)-(5.32) are joined by (5.36),(5.37) will

be named ’crossed’, as in the latters Y0 and Ȳ0 intertwine (in the l.h.s.), in opposition

to the ’uncrossed system’ made of (5.29) and (5.33) along with the magnonic equations

(seen previously).

This peculiar form of the Y -system suggests a new pictorial interpretation The

crossed equations (5.36) and (5.37), somehow, are drawing trajectories (flows) across

the Dynkin diagram. The l.h.s. sets the endpoints of the pattern, while the r.h.s. plots

it: the distance between two consecutive nodes touched by the path strictly amounts to

steps of two units, which may be achieved by means of horizontal or vertical displacement

(i.e. a decrement/increment on one index of the Y -function), or even a purely imaginary

shifts. Let (5.36) be considered, as an example: the flow starts from Y0 ∼ Y1,0 (with

a pretty formal meaning), endowed with a double complex shift ++; then one shift is

dropped, while the second index increases, so to get Y +
1,1, and later the + disappears

whereas the first index is raised, to touch Y2,1; the pattern walks further, this time with

negative complex shifts, so to pass through Y −3,1 and finally reach Y −−3,0 ∼ Y
−−

0 . Besides

that, it is tempting to claim the path’s length gets fixed by the ratio between 2i and

the imaginary unitary shift i
2 (or, someway, the inverse of the Coxeter number, when

this quantity is defined). The key relation (5.35) seems to establish an equivalence class

between closed patterns, passing either through Y0 or through Ȳ0.

A further comment: the crossed appearance of the two nodes 0 and 0̄ in the l.h.s. hints

that they are not to be treated as completely distinguished nodes. Indeed, they could

be thought as originating from a sort of folding procedure of the Dynkin diagram, by

splitting a unique massive node; this issue will be considered in more detail later.

3.1 Crossing Algebra

Actually, the Y -system (5.36),(5.37), (5.30)-(5.32) is not the only one known to possess

a crossed form: indeed, before it two Y -system have been found to share this feature 3.

The first example has been provided by the Y -system for N = 6 super Chern-Simons

(AdS4/CFT3) [62], which, remarkably, is the model whose low-energy reduction is now

under exam. The other crossed system has been discovered to describe the strong cou-

pling of gluon scattering amplitude in N = 4 SYM [64].

In the following, a few considerations are provided, which refer to system

(5.36),(5.37),(5.30)-(5.32) but can easily extend to other crossed Y -systems as well.

First, the key relation (5.35) will be briefly indicated as χ; by shifting it, the equations

χ+ and χ− are promptly obtained:

χ+ :
Y ++

0 Y0

Ȳ ++
0 Ȳ0

=
1 + Y +

1,1

1 + Y +
3,1

(5.38)

χ− :
Y −−0 Y0

Ȳ −−0 Ȳ0
=

1 + Y −1,1

1 + Y −3,1
(5.39)

3Moreover, there is an intriguing common aspect shared by all these three cases, that is, the intertwine

of Y -functions is observed to occur for massive nodes only
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In the same way, the crossed equations (5.36),(5.37) will be called respectively C1 and

C2, while the uncrossed ones (5.29),(5.33) will be designated as U1 and U2. Actually,

the equations now recollected are not quite independent: as a matter of fact, it suffices

to know the key relation χ (more precisely its shifted versions χ+ and χ−) together

with only one among C1, C2, U1 or U2 to recover all the others and describe the whole

system4. The (quite general) rules to accomplish this task are summarized below, after

introducing the formal operation × as a side by side multiplication between equations

(on the same footing, the quotient corresponds to a division).

Getting an Uncrossed equation from another Uncrossed:

U2 × χ+ × χ− = U1 (5.40)

U1

χ+ × χ−
= U2

Getting a Crossed equation from another Crossed:

C2 ×
χ+

χ−
= C1 (5.41)

C1 ×
χ−

χ+
= C2

Getting an Uncrossed equation from Crossed:

C1 × C2 × χ+ × χ− = (U1)2 (5.42)

C1 × C2

χ+ × χ−
= (U2)2

Getting a Crossed equation from an Uncrossed:

U1

χ+
= C2 (5.43)

U1

χ−
= C1

U2 × χ+ = C1

U2 × χ− = C2

To be more explicit, the first rule in (5.40), for instance, means that equation U1 (5.29)

may be obtained upon multiplying side by side the equation U2 (5.33) per the shifted-key

relations (5.38) and (5.39).

The rules stated above do not apply to crossed system (5.36),(5.37) only: otherwise,

with minor modifications, they extend to Y -system in [62] and [64], as well. Let the first

example be considered. The Y -system for gluon scattering amplitudes in N = 4 SYM

4In fact, the key relation holds a crucial role, which should be someway related to the implementation

of Z2 symmetry on the Y -system



3. NON-CROSSED, CROSSED Y-SYSTEMS AND UNIVERSAL TBA 113

reads:

Y +
1,m Y

−
3,m =

(1 + Y1,m−1)(1 + Y3,m+1)

(1 + 1
Y2,m

)
(5.44)

Y +
2,m Y

−
2,m =

(1 + Y2,m−1)(1 + Y2,m+1)

(1 + 1
Y1,m

)(1 + 1
Y3,m

)

Y +
3,m Y

−
1,m =

(1 + Y3,m−1)(1 + Y1,m+1)

(1 + 1
Y2,m

)
;

this time, the superscript ± denotes a shift θ → θ± iπ
4 , while the double sign stands for

a double shift (± iπ
2 ). Also in this case, a key relation exists, namely the ratio between

the first and the third equations (5.44)

χ :
X+

1,mX
−
3,m

X+
3,mX

−
1,m

=
(1 +X1,m−1)(1 +X3,m+1)

(1 +X3,m−1)(1 +X1,m+1)
(5.45)

There comes now a slight difference from system (5.36),(5.37): while χ+ is simply the

up-shift (θ → θ+ iπ
4 ) of χ, to correctly recover χ− it takes to down-shift χ (θ → θ− iπ

4 ),

then invert both sides of the equation obtained this way:

χ+ :
X++

1,mX3,m

X++
3,mX1,m

=
(1 +X+

1,m−1)(1 +X+
3,m+1)

(1 +X+
3,m−1)(1 +X+

1,m+1)
(5.46)

χ− :
X3,mX

−−
1,m

X1,mX
−−
3,m

=
(1 +X−3,m−1)(1 +X−1,m+1)

(1 +X−1,m−1)(1 +X−3,m+1)
.

The equations to be named C1 is obtained by taking the product between the first

equation in (5.44) up-shifted per the down-shifted version; in a the analogous way, C2 is

provided:

C1 : X++
1,mX

−−
3,mX1,mX3,m =

(1 +X+
1,m−1)(1 +X−1,m−1)(1 +X+

3,m+1)(1 +X−3,m+1)

(1 + 1
X+

2,m

)(1 + 1
X−2,m

)

(5.47)

C2 : X++
3,mX

−−
1,mX1,mX3,m =

(1 +X+
1,m+1)(1 +X−1,m+1)(1 +X+

3,m−1)(1 +X−3,m−1)

(1 + 1
X+

2,m

)(1 + 1
X−2,m

)

In order to get U1 and U2, it takes a little more time. First of all, it is useful to write

down the kernels employed in universal TBA system from [64]:

K1(θ) ≡ 1

2π cosh θ

K2(θ) ≡
√

2 cosh θ

π cosh 2θ

K3(θ) ≡ i

π
tanh 2θ ;

(5.48)

they enjoy the following identities, involving shifts of iπ
4 :

K+
1 +K−1 −K2 = 0

K+
2 +K−2 − 2K1 = δ(θ)

K−3 −K
+
3 = δ(θ)

(5.49)
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and, in addition to the those, the identities for double shifts ( iπ2 ):

K++
1 +K−−1 = δ(θ)

K++
2 +K−−2 = δ(θ +

iπ

4
) + δ(θ − iπ

4
)

K++
3 +K−−3 = 2K3 − δ(θ +

iπ

4
) + δ(θ − iπ

4
) .

By means of the relations above, from (5.44) the uncrossed Y -system follows:

Y ++
1,m Y −−1,m =

(1 + Y +
1,m−1)(1 + Y −1,m+1)(1 + Y +

3,m+1)(1 + Y −3,m−1)

(Y3,m)2 (1 + 1
Y +

2,m

)(1 + 1
Y −2,m

)

Y ++
3,m Y −−3,m =

(1 + Y +
3,m−1)(1 + Y −3,m+1)(1 + Y +

1,m+1)(1 + Y −1,m−1)

(Y1,m)2 (1 + 1
Y +

2,m

)(1 + 1
Y −2,m

)

(5.50)

Hence, the first and second equations in (5.50) are respectively labelled U1 and U2. With

those identifications in mind, the crossing algebra, claimed above, does indeed apply. In

a very similar fashion, the Y -system from [62] is found to satisfy the same rules.

4 UV limit: central charge and perturbing operator

Picking a suggestion by Fendley [68], the Bykov model could be studied by conjecturing

it as a two-dimensional conformal field theory (CFT) perturbed by a (marginal) relevant

operator. In particular, a CFT gets characterised by the value of its conformal anomaly,

c, which appears in the expression for vacuum free energy (5.28), when the Ultra-Violet

(UV) limit mR� 1 is taken into account [66]:

EUV = − π

6R
(c− 12d) (5.51)

where d is the conformal dimension of the ground state of the theory, and it is equal to

zero when unitary theories are considered (as it is the present case).In order to get the

value of the central charge c, the TBA equations should be analysed hence in the limit

r = mR → 0, and that reveals the solutions of the system flatten to develop a central

plateau, whose width increases as r approaches zero [15][17]. Following [67], the central

charge splits can be computed by splitting it into two contributions:

c = c(UV ) − c(IR) (5.52)

The first part explicitly reads

c(UV ) =
6

π2

[
L
(

y0

1 + y0

)
+ L

(
ȳ0

1 + ȳ0

)
+

3∑
i=1

∞∑
l=1

L
(

yi,l
1 + yi,l

)]
(5.53)

where the function L(x) is the Rogers Dilogarithm

L(x) = −1

2

∫ x

0

[
log(1− t)

t
+

log t

1− t

]
dt , 0 < x < 1 : (5.54)
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the constants y stem from the stationary solution of the Y -system (5.36),(5.37), (5.30)-

(5.32), in other words, not dependent on u:

y0 ȳ0 = (1 + y1,1) (1 + y2,1) (1 + y3,1)

yi,l = (1 + δl,1δi,1 y0 + δl,1δi,3 ȳ0)
(1 + yi,l+1) (1 + yi,l−1)(
1 +

1

yi+1,l

)(
1 +

1

yi−1,l

)
i = 1, 2, 3 l = 1, 2, 3, . . .

(5.55)

supplemented by the boundary conditions yi,0 = (y4,l)
−1 = (y0,l)

−1 = 0, (equations

(5.36) and (5.37) obviously coincide in the stationary-solution regime); the equations

above can be interpreted as an Ultra-Violet regime, where all the equations become

massless (magnonic). The second contribution, instead, could be thought as an Infra-

Red regime, in which the non-magnonic equations decouple from the rest, as the mass

of the associated particles grows to infinity; therefore, the massive nodes disappear, so

to leave the simpler system:

zi,l =
(1 + zi,l+1) (1 + zi,l−1)(
1 +

1

zi+1,l

)(
1 +

1

zi−1,l

) i = 1, 2, 3 l = 1, 2, 3, . . .
(5.56)

whose solutions enter the second part of the chentral charge

c(IR) =
6

π2

3∑
i=1

∞∑
l=1

L
(

zi,l
1 + zi,l

)
(5.57)

(imposing zi,0 = (z4,l)
−1 = (z0,l)

−1 = 0 ).

Since (5.55) and (5.56) are systems made out of an infinite number of non-linear equa-

tions, they result uncomfortable to cope with. Hence a fruitful strategy to handle those

two systems consists in studying a truncated model, by reducing the number of magnonic

variables to a finite value (i.e. the label l runs from 1 to n); later, the original model will

be recovered after performing the n→∞ limit. The IR contribution can be analytically

computed, after [61],[65], upon evaluating the sum of dilogarithms in (5.57):

c
(IR)
N =

3n(n+ 1)

n+ 5
. (5.58)

The UV contribution instead turns out unfit to be approached analytically, the numerical

analysis revealing more suitable 5; the latter option helps in conjecturing for (5.53) the

form:

c(UV )
n =

(4 + 3n)(n+ 1)

n+ 4
. (5.59)

Composing then the two contributions, the central charge of the truncated model results:

cn = c(UV )
n − c(IR)

n =
7n2 + 27n+ 20

n2 + 9n+ 20
: (5.60)

5The author of this text wishes to acknowledge Alessandro Fabbri and Roberto Tateo for their precious

numerical work when writing [27]
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the n→∞ limit takes back to the original model, so that the central charge is discovered

to assume the value c = 7, as expected from the plain counting of degrees of freedom.

What is more, the result (5.60) deserves interest even at finite n, for this expression

represents the central charge of the SU(4)n+1

SU(3)n+1⊗U(1) coset conformal field theory, perturbed

by some (relevant) operator [68]. The anomalous dimension ∆n,pert of such perturbing

operator can be recognized upon retrieving the purely imaginary period [60] Pn of the

Y -system obtained after the truncation of (5.29-5.33). Indeed, for the Y -functions the

following periodicity relation holds:

Y (u+ 2i Pn) = Y (θ) (5.61)

and, according to [60], the period Pn relates to the dimension of the perturbative oper-

ator:

∆n,pert = 1− 1

Pn
. (5.62)

Numerical analysis shows that the Y -system (5.36),(5.37),(5.30)-(5.32) is endowed with

a period

Pn =
n+ 4

2
(5.63)

and thus the conformal dimension of the adjoint operator, perturbing the conformal field

theory at finite n, is revealed:

∆n,pert = 1− 2

n+ 4
. (5.64)

As a byproduct of the considerations above, the CP 3 sigma model, coupled to one

massless Dirac fermion [50], is equivalent (up to the features taken into account) to the

large level limit n→∞ of the SU(4)n+1

SU(3)n+1⊗U(1) coset conformal field theory, perturbed by

the (relevant) operator whose dimension is read from (5.64).

Before concluding this section, a last remark is worth being mentioned. The trun-

cated version of Y -system (5.36),(5.37),(5.30)-(5.32) suggests a natural generalization

to a novel family of systems (labelled by two positive integers N and p), which are left

associated to any SU(N) algebra with coset level p. Models belonging to this family are

conjectured to exhibit, for what concerns the massive nodes, the generalized equations:

Y0(u+ i) Ȳ0(u− i) =

N−1∏
l=1

(
1 + Yl,1(u+ i− i 2l

N
)

)

Y0(u− i) Ȳ0(u+ i) =
N−1∏
l=1

(
1 + Yl,1(u− i+ i

2l

N
)

)
,

(5.65)

while for the magnonic nodes the relations hold:

Yi,j(u+
2i

N
)Yi,j(u−

2i

N
) =

(
1 + δi,1δj,1 Y0(u) + δi,N−1δj,1 Ȳ0(u)

)
×

×
p−1∏
l=1

(1 + Yi,l(u))A
(p−1)
l,j

N−1∏
l′=1

(
1 +

1

Yl′,j(u)

)−A(N−1)

l′,i
; (5.66)
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where A
(q)
l,j stands for the incidence matrix associated to the Aq Dynkin diagram, namely

A
(q)
l,j = δl, j+1 + δl, j−1 (5.67)

with l, j ∈ {1, 2, . . . , q}. The system studied so far corresponds to the case N = 4 and

p→∞. The TBA equations corresponding to (5.65) are displayed in the universal form

[60], by making use of the Fourier integrals in (B.13):

ε0(u) + ε̄0(u) = 2mR cosh
(πu

2

)
−
N−1∑
l=1

χ(1− 2l
N

) ∗ Λ(l,1)(u) (5.68)

ε0(u) − ε̄0(u) = i2α−
N−1∑
l=1

ψ(1− 2l
N

) ∗ Λ(l,1)(u)

εi,j(u) = δi,1δj,1φN
2
∗ L0(u) + δi,N−1δj,1φN

2
∗ L̄0(u) +

p−1∑
l=1

A
(p−1)
l,j φN

2
∗ Λ(i,l)(u)−

−
N−1∑
l=1

A
(N−1)
l,i φN

2
∗ L(l,j)(u) , (5.69)

with chemical potential α ∈ {0, π}, LA(u) = ln(1 + e−εA(u)) and ΛA(u) = ln(1 + eεA(u)).

A parallel with (5.60), for N = 4 and p → ∞, leads to conjecture (after an accurate

numerical analysis) the following formula for the central charge of the arbitrary (N, p)-

model:

c(N,p) =
p(1− p−N +N2 + 2Np)

(N + p)(N + p− 1)
=
p dim[SU(N)]

p+N
− p dim[SU(N − 1)])

p+N − 1
(5.70)

where it holds dim[SU(N)] = N2 − 1. Eventually, the central charge (5.70), obtained

from equations (5.65), is seen to exactly match the charge of the coset model:

(CPN−1)p × U(1) =
SU(N)p

SU(N − 1)p × U(1)
× U(1) . (5.71)

Finally the large level limit p→∞ of (5.70) leads to the central charge of the SU(N)×
U(1) sigma model:

c(N,∞) = dim[SU(N)]− dim[SU(N − 1)] = 2N − 1. (5.72)

Strictly speaking, a mere equality of conformal charges does not suffice to uniquely

determine the identification (5.71); nevertheless further evidence of this claim, such as

the dimension of the perturbing operator, is provided in [27].

5 Folding diagrams

This section is devoted to the discussion of some peculiar features of the Y -system of

Bykov model, studied so far: in particular, it will be compared to another interesting
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class of Y -systems, those related to non-linear O(2n) σ-models. The focus will turn

mainly to the n = 3 case, the O(6) σ-model: in fact, the Dynkin diagram for the O(6)

stunningly resembles the CP3 × U(1) diagram, retrieved in this chapter, once a sort of

pictorial folding has been performed.

The O(2n) Non-Linear σ Model TBA and Y -system:

According to [69][70][68], the TBA system for the O(2n) (n ≥ 2) non-linear σ models is

obtained from the TBA describing a certain perturbed conformal model, in the limit of

infinitely many equations present (the number also corresponds to Kac-Moody level):

ε0(u) = mR cosh
πu

2
−
n−2∑
j=1

χ 2
g

(n−1−j) ∗ Lj,1(u)− φ1 ∗ [Ln−1,1 + Ln,1] (5.73)

εa,m(u) = −δm1[δa1 + δa2δn2]φ g
2
∗ L0(u)− φ g

2
∗ [La,m−1 + La,m+1] +

+
n∑
b=1

Aab φ g
2
∗ Λb,m(u) (5.74)

where the label a runs from 1 to n and m = 1, . . . , p − 1 (then, the limit p → ∞
should be performed). In addition to that, g = 2(n− 1) represents the Coxeter number

associated to the Dn Lie algebra, while Aab = δa, b+1 + δa, b−1 stands for its incidence

matrix; moreover, it is useful to recollect the definitions:

L0(u) = ln
(

1 + e−ε0(u)
)

La,m(u) = ln
(

1 + e−εa,m(u)
)

Λa,m(u) = ln
(

1 + eεa,m(u)
)

. (5.75)

Thanks to the relation for the kernel χ 2
g

(n−1−j)(u)

χ 2
g

(n−1−j)(u+i) + χ 2
g

(n−1−j)(u−i) = δ(u+
2i(n− 1− a)

g
)+δ(u− 2i(n− 1− a)

g
) (5.76)

and after the definitions

Xa,m(u) ≡ e−εa,m(u)

X0(u) ≡ e−ε0(u) .
(5.77)

the Y -system for O(2n) non-linear σ-models stands out [70]:

X0 (u+ i) X0 (u− i) =
n−2∏
a=1

[(
1 +Xa,1(u− 2i(n− 1− a)

g
)

)
×

×
(

1 +Xa, 1(u+
2i(n− 1− a)

g
)

)]
(1 +Xn−1, 1(u)) (1 +Xn, 1(u))

Xa,m

(
u+

2i

g

)
Xa,m

(
u− 2i

g

)
= [1 + δ1m(δa1 + δn2δa2)X0(u)]×

×(1 +Xa,m+1(u))(1 +Xa,m−1(u))
n∏
b=1

(
1 +

1

Xb,m(u)

)Aab ; (5.78)
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by following the prescriptions stated above, this Y -system may be encoded in the diagram

of Fig.(5.2). It should be noted that (5.78) exhibits complex shifts even in the r.h.s. of

the massive node equations, analogously to (CPN−1)p × U(1) models.

(1,1)

(2,1)

(1,2) (1,p-1)

(3,p-1)

(2,p-1)

0

(n-1,1)

(n-2,1)

(n-1,p-1)

(n-2,p-1)

(n,1) (n,p-1)

Figure 5.2: The O(2n) diagram. The labels of each node are associated to the functions

Y in (5.78)

Folding diagrams:

For present purposes, the Y -system for the O(6) non-linear sigma model reveals reasons

of interest:

X0(u+ i)X0(u− i) =

(
1 +X2,1(u+

i

2
)

)(
1 +X2,1(u− i

2
)

)
(1 +X1,1) (1 +X3,1)

Xa,m(u+
i

2
)Xa,m(u− i

2
) = (1 + δm1δa2X0)

(1 +Xa,m+1) (1 +Xa,m−1)(
1 +

1

Xa+1,m

)(
1 +

1

Xa−1,m

)
(5.79)

(a ∈ {1, 2, 3} and m = 1, 2, 3, ..., p − 1), where the boundary conditions Xa,0 = Xa,p =

(X0,m)−1 = (X(4,m))
−1 = 0 are required and the limit p → ∞ should be taken. The

Y -system (5.79) enjoys the customary uncrossed form, and the usual pictorial rules allow

to encode it into the diagram in Fig.(5.3). Interestingly, the O(6) diagram Fig.(5.3) can

(1,1)

(3,1)

(2,1)

(1,2)

(3,2)

(1,p-1)

(3,p-1)

(2,p-1)

0

Figure 5.3: The O(6) diagram. The labels of each node are to be intended as the

subscripts of the functions X appearing in (5.79).

be obtained directly from the CP3×U(1) by means of kind of folding, performed on the
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diagram in Fig.(5.1): row 1 and 3 merge together, and so do the massive nodes, which

are identified into a unique one; on the other hand, each node along the symmetry row 2

is ’torn’ into two, distinct. This process can be reverted, so to retrieve this time Fig.(5.1)

upon folding Fig.(5.3): again the middle row 2 in Fig.(5.3) gets doubled, whereas rows 1

and 3 overlap and glue together; the central massive node splits into two, which in turn

become the two massive nodes of CP3 × U(1), associated to the holes and the antiholes

of the theory.

Remarkably, the very same procedure could be applied to the diagram encoding the

AdS5 Y -system [59],resulting in the AdS4 diagram [62][63]. This fact catches even more

interest, for O(6) σ-model and CP3×U(1) are found to represent the low-energy reduc-

tions precisely of AdS5 and AdS4 indeed, therefore hinting some deeper relation between

those two theories might exist.



Conclusions

The main achievements of this work pertain to the finding of the scalar factor of the

scattering matrices involving excitations over the antiferromagnetic vacuum (associated

to the GKP string), in the N = 4 SYM gauge theory. Those S-matrices have then been

employed as building blocks towards the construction of the all loop Asymptotic Bethe

Ansatz equations, that is to say, the analogous of the Beisert-Staudacher equations [30]

in the sl(2) grading, written instead upon taking the GKP vacuum as the reference

state. The analysis of the Bethe equations led to the formulation of the dispersion laws,

at any coupling, for the excitations considered, thus confirming the results by Basso

[42]: the main difference from [42] concerns a different approach, based on the method

introduced by Destri and De Vega [34]. In fact, as a starting point, the set of infinite

Beisert-Staudacher equations has been turned, in the large spin limit, to a limited num-

ber of integral equations, easier to be handled.

In addition to that, the N = 6 Chern-Simons Matter has been considered, when choosing

a vacuum corresponding to GKP string. Remarkably, the low-energy (large spin) reduc-

tion achieved this way reveals intriguing connections to the O(6) non-linear σ-model,

which governs the dynamics of N = 4 SYM in a special large spin limit [38].

The results achieved may be contextualized. The method used to obtain energies

and momenta of the different species of excitations turned out more handy than the

ones previously adopted to get the same results, hence, hopefully, it could bring precious

contributions in formulating new tests in verifying the AdS/CFT conjecture.

The (two dimensional) S-matrices help in computing the scattering amplitudes for the

four dimensional N = 4 SYM gauge theory. In fact, when a quark and an antiquark

(at speed of light) interact via the exchange of a gluon, under the N = 4 SYM SU(N)

gauge theory, the process can be intended in two equivalent ways: a GKP string could

be thought to stretch among the two particles, spanning a two dimensional world-sheet

as the time runs, else the flux tube in between the quark and the antiquark may be

framed by a null Wilson loop. As a general feature of N = 4 SYM, a polygonal null

Wilson loop can be decomposed into a superposition of pentagonal and square transition

amplitudes [46]. The pentagonal amplitude P (u|v), in turn, can be computed by means

of the scattering matrices (say generically S(u, v) ) portrayed in chapter 3; indeed [46],

P (u|v)2 =
F(u, v)

g2 (u− v)(u− v − i)
S(u, v)

S(uγ , v)
, (5.80)

where F(u, v) is a known function, while the superscript γ denotes a mirror transform.

Hence, as the formula above suggests, at least some of the results described in this text
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find a direct application in meaningful open issues.
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Appendix A

Useful formulæ

1 Fourier transforms

In this appendix a collection is provided of the Fourier transforms

f̂(k) =

∫ +∞

−∞
due−ikuf(u) (A.1)

for several functions f(u) used in the maintext.

For scalars it has been used

Φ0(u) = −2 arctan 2u ⇒ Φ̂0(k) =

∫ +∞

−∞
due−ikuΦ0(u) = −2π

ik
e−
|k|
2 (A.2)

ΦH(u) = −i ln

1 + g2

2x−(u)2

1 + g2

2x+(u)2

 ⇒ Φ̂H(k) =
2π

ik
e−
|k|
2 [1− J0(

√
2gk)] (A.3)

and also

φ0(u− v) = 2 arctan(u− v) ⇒ φ̂0(k) =
2πe−|k|

ik
, (A.4)

ϕ0(u− v) =
1

2π

d

dv
φ0(u− v) = − 1

π

1

1 + (u− v)2
⇒ ϕ̂0(k) = −e−|k| , (A.5)

φH(u, v) = −2i

ln

1− g2

2x+(u)x−(v)

1− g2

2x−(u)x+(v)

+ iθ(u, v)


φ̂H(k, t) = −8iπ2 e

− |t|+|k|
2

k|t|

[ ∞∑
r=1

r(−1)r+1Jr(
√

2gk)Jr(
√

2gt)
1− sgn(kt)

2
+

+ sgn(t)

∞∑
r=2

∞∑
ν=0

cr,r+1+2ν(g)(−1)r+ν
(
Jr−1(

√
2gk)Jr+2ν(

√
2gt)−(A.6)

− Jr−1(
√

2gt)Jr+2ν(
√

2gk)
)]

For what concerns gluonic stacks, it has been introduced

χ0(u|l) = 2 arctan
2u

l
= i ln

il + 2u

il − 2u
⇒ χ̂0(k|l) =

∫ +∞

−∞
due−ikuχ0(u|l) =

2π

ik
e−|k|

l
2
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(A.7)

and for higher loops the function

χ(v, u|l) = χ0(v − u|l + 1) + χH

(
v, u− il

2

)
+ χH

(
v, u+

il

2

)
where

χH(v, u) = i ln

1− g2

2x−(v)x(u)

1− g2

2x+(v)x(u)

 (A.8)

whose Fourier transform reads∫ +∞

−∞
du

∫ +∞

−∞
dve−ikve−ituχ(v, u|l) = 2πδ(t+ k)

2π

ik
e−|k|

l+1
2 +

+ i

+∞∑
n=1

n(−1)n
2π

k

2π

|t|
e−
|k|
2 e−

|t|l
2 Jn(

√
2gk)Jn(

√
2gt) (A.9)

In getting (A.9) the Fourier tranforms has been employed∫
due−iku

1

x
(
u± i l2

)n = ±n

(√
2

ig

)n
θ(±k)

2π

k
e∓

l
2
kJn(
√

2gk) (A.10)

The Fourier transform of χ(v, u|l) and χH(v, u), with respect to the variable v only, read:∫ +∞

−∞
dve−ikvχ(v, u|l) = e−iku

2π

ik
e−|k|

l+1
2 − (A.11)

−

[ ∞∑
n=1

(
g√

2i x
(
u− il

2

))n +

(
g√

2i x
(
u+ il

2

))n] 2π

ik
e−
|k|
2 Jn(

√
2gk)

∫ +∞

−∞
dve−ikvχH(v, u) = i

2π

k
e−
|k|
2

+∞∑
n=1

(
g√

2i x(u)

)n
Jn(
√

2gk) (A.12)

When l = 1 the identity arises

χ(v, u|1) = −i ln

(
x+(u)− x−(v)

x+(u)− x+(v)

x−(u)− x−(v)

x+(v)− x−(u)

)
(A.13)

Finally, for large fermions the function is introduced

χF (u, v) = χ0(u− v|1) + χH(u, v) = i ln
x+(u)− x(v)

x(v)− x−(u)
(A.14)

2 Integrals

In various calculations throughout the text the following integrals have been employed:∫ 1

−1
dk

1

u− k

(
1 + k

1− k

) 1
4

= −π
√

2

[
1−

(
u+ 1

u− 1

) 1
4

]
, |u| > 1 (A.15)

∫ 1

−1
dkPV

1

u− k

(
1 + k

1− k

) 1
4

= −π
√

2 + π

(
1 + u

1− u

) 1
4

, |u| < 1 (A.16)
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∫
|w̄|≥1

dw̄

2π

1

w̄ − ū
PV

1

w̄ − z̄

(
w̄ + 1

w̄ − 1

) 1
4

=

=
1

2

(
z̄ + 1

z̄ − 1

) 1
4 1

z̄ − ū
+

1√
2

(
1 + ū

1− ū

) 1
4 1

ū− z̄
, |ū| ≤ 1 , |z̄| ≥ 1 . (A.17)

∫
|z̄|≥1

dz̄

2π

1

z̄
√

1− 1
z̄2

1

x̄f (v̄)− x̄(z̄)

(
z̄ − 1

z̄ + 1

) 1
4 1

ū− z̄
= (A.18)

=
1

2x̄f (ū)(ū− v̄)

{√
1− 2x̄f (v̄)

1 + 2x̄f (v̄)
+

1√
2

(
x̄f (v̄)− 1

2

)[(
1 + ū

1− ū

) 1
4

+

(
1− ū
1 + ū

) 1
4

]
+

+
1√
2

(
x̄f (v̄) +

1

2

)√
1− ū
1 + ū

[(
1− ū
1 + ū

) 1
4

−
(

1 + ū

1− ū

) 1
4

]}
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Appendix B

Scattering amplitudes and TBA

kernels

This appendix contains the explicit expressions for scattering amplitudes and the corre-

sponding TBA kernels appearing in the main text.

Hole-hole scattering

The hole-hole S-matrix amplitude [57] is

S(u) = −
Γ
(

1 + i
u

4

)
Γ

(
1

4
− iu

4

)
Γ
(

1− iu
4

)
Γ

(
1

4
+ i

u

4

) , (B.1)

and the corresponding kernel K(u)

K(u) =
1

2πi

∂

∂u
lnS(u), (B.2)

which may be represented in several alternative ways as 1

K(u) =
1

8π

(
Ψ
(

1 + i
u

4

)
+ Ψ

(
1− iu

4

)
−Ψ

(
1

4
+ i

u

4

)
−Ψ

(
1

4
− iu

4

))
=

∞∑
n=0

(
1

π

4n+ 1

u2 + (4n+ 1)2
− 1

π

4n+ 4

u2 + (4n+ 4)2

) (B.4)

Hole-antihole scattering

The S-matrix amplitude associated to the hole-antihole scattering is

S̄(u) =

Γ

(
1

2
− iu

4

)
Γ

(
3

4
+ i

u

4

)
Γ

(
1

2
+ i

u

4

)
Γ

(
3

4
− iu

4

) . (B.5)

1It could be useful to remind that

Ψ(z) =
Γ′(z)

Γ(z)
= −γE −

∞∑
n=0

(
1

z + n
− 1

n+ 1

)
, (B.3)

where γE stands for the Euler constant.
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Consequently the kernel G(u) is

G(u) =
1

2πi

∂

∂u
ln S̄(u), (B.6)

explicitly

G(u) =
1

8π

(
Ψ

(
3

4
+ i

u

4

)
+ Ψ

(
3

4
− iu

4

)
−Ψ

(
1

2
+ i

u

4

)
−Ψ

(
1

2
− iu

4

))
=
∞∑
n=0

(
1

π

4n+ 2

u2 + (4n+ 2)2
− 1

π

4n+ 3

u2 + (4n+ 3)2

) (B.7)

Magnon bound state scattering

Magnonic string solutions scatter according to the amplitudes

Sl,m(u) =

l+m−1
2∏

a=
|l−m|+1

2

(
u− ia
u+ ia

)
, (B.8)

from which

Kl,m(u) =
1

2πi

∂

∂u
lnSlm(u) =

l+m−1
2∑

a=
|l−m|+1

2

1

π

a

u2 + a2
. (B.9)

1 Helpful Relations in Bootstrapping Matrices and Ker-

nels

Below, a list is offered of identities between scattering matrices (cfr [60][61]): they reveal

necessary to write the Y -system and universal form TBA

Slm

(
θ +

i

2

)
Slm

(
θ − i

2

)
= Sl−1,m (u) Sl+1,m (u) e2πiΘ(u) δlm

S̄

(
θ +

i

2

)
S̄

(
u− i

2

)
= −S

(
u+

i

2

)
S

(
u− i

2

)
[S11(u)]−1

S (u+ i) S (u− i) = − S̄(u)

S(u)
S12(u) e2πiΘ(u)

S̄ (u+ i) S̄ (u− 1) = −S(u)

S̄(u)

Slm (u+ i) Slm (u− i) = Sl−2,m (u) Sl+2,m (u) e2πiΘ(u) Ilm

(B.10)
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(Θ(x) stands for the Heaviside step function, while Ilm = δl−1,m + δl+1,m ). These

relations, in terms of the kernels, turn to:

Klm

(
u+

i

2

)
+Klm

(
u− i

2

)
= Kl−1,m (u) +Kl+1,m (u) + δ(u) δlm

G

(
u+

i

2

)
+G

(
u− i

2

)
= K

(
u+

i

2

)
+K

(
u− i

2

)
−K11(u)

K (u+ i) +K (u− i) = −K(u) +G(u) +K12(u) + δ(u)

G (u+ i) +G (u− i) = K(u)−G(u)

Klm (u+ i) +Klm (u− i) = Kl−2,m (u) +Kl+2,m (u) + δ(u) Ilm+

+ δl1 δm1

[
δ(u+

i

2
) + δ(u− i

2
)

]
(B.11)

(the last relation makes sense 2 provided we define Kl,0 = 0 , Kl,−1 = −Kl,1). Moreover,

we find:

K(u+ i) +G(u− i)−K11(u+
i

2
) = 0

K(u− i) +G(u+ i)−K11(u− i

2
) = 0

K(u+ i) +G(u− i) +K11(u− i

2
) = K12(u) + δ(u)

K(u− i) +G(u+ i) +K11(u+
i

2
) = K12(u) + δ(u)

(B.12)

The universal kernels

The kernels appearing in the Zamolodchikov’s universal form of the TBA equations

(5.68) are

∫ ∞
−∞

dω

2π

cosh(π2aω)

cosh(πω2 )
eiωθ =

2

π

cos(aπ/2) cosh θ

cos(aπ) + cosh(2θ)
= χa(θ),∫ ∞

−∞

dω

2π

sinh(π2aω)

sinh(πω2 )
eiωθ =

1

π

sin(aπ)

cos(aπ) + cosh(2θ)
= ψa(θ),∫ ∞

−∞

dω

2π

1

2 cosh(πω2a )
eiωθ =

a

2π cosh(aθ)
= φa(θ).

(B.13)

2Actually, the contact terms δ(u± i
2
) are but a pretty formal scripture: relations (B.11) always appear

in integrals and it is to be taken into account a residue calculation, whose net result is equivalent to the

effect of some kind of complex-argument defined delta function.
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