
Alma Mater Studiorum

Università degli Studi di Bologna

Dottorato di Ricerca in Fisica

Quantum Integrability in

Non-Linear Sigma Models related to

Gauge/String Correspondences

Settore Concorsuale di A�erenza: 02/A2

Settore Scienti�co Disciplinare: FIS/02

Coordinatore: Prof. Fabio Ortolani

Presentata da:

Alessandro Fabbri

Relatore:

Prof. Francesco Ravanini

Correlatore:

Dott. Davide Fioravanti

Esame Finale - Ciclo XXVI

Anno 2014





To my loving parents, for having made this possible.

To Michela, for her unconditional love and support.

To my friends (Very and not), for being brothers.

One has to grow hard but without ever losing tenderness.

Ernesto �Che� Guevara





Abstract

The Thermodynamic Bethe Ansatz analysis is carried out for the extended -CPN−1

class of integrable 2-dimensional Non-Linear Sigma Models. The principal aim

of this program is to obtain further non-perturbative consistency check to the

S-matrix proposed to describe the scattering processes between the fundamental

excitations of the theory by analyzing the structure of the Renormalization Group

�ow. As a noteworthy byproduct we eventually obtain a novel class of TBA mod-

els, the (CPN−1)p × U(1) models, which �ts in the known classi�cation but with

several important di�erences. The TBA framework allows the evaluation of some

exact quantities related to the conformal UV limit of the model: e�ective central

charge, conformal dimension of the perturbing operator and �eld content of the

underlying CFT. The knowledge of this physical quantities has led to the possibil-

ity of conjecturing a perturbed CFT realization of the integrable models in terms

of coset Kac-Moody CFT. The set of numerical tools and programs developed ad

hoc to solve the problem at hand is also discussed in some detail with references

to the code.
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Chapter 1

Introduction

Since the birth of Quantum Field Theories the role of symmetry principles has

been of crucial importance in our understanding of fundamental physics. The

origin of this perspective can be dated back to the well-known fundamental dis-

coveries of Maxwell and Einstein and have reached their actual formulation thanks

to the works of Yang and Mills [1], Higgs [2], t'Hooft [3] and many others. What

stems from their work is one of the highest point of the human e�ort in under-

standing the universe: the Standard Model (SM) of particle physics. The SM is a

local QFT based on the gauge symmetry group SU(3) × SU(2) × U(1) and rep-

resents the result of a uni�cation between the theory of strong interactions, the

so-called Quantum Chromodynamics (QCD), with the Weinberg-Salam-Glashow

gauge theory of electroweak interaction. It constitutes, remarkably, the best ex-

ample of theory consistent with the experimental data as it has been veri�ed with

incredible precision in the last decades. However, despite the impressive success

of the perturbative approach to the asymptotically-free QCD [4, 5] to explain,

for example, deep inelastic scattering experiments and hadronic jet production in

high-energy reactions, a satisfatory theoretical explanation of the most manifest

experimental fact, namely the con�nement of quarks and gluons inside hadrons,

is still lacking. The reason is, clearly, the strongly non-perturbative nature of the

con�nement phenomenon whose formal proof, in a general gauge theory, requires

the employment of non-perturbative theoretical tools which are very di�cult to

develop. It was only recently observed by Seiberg and Witten [6, 7] that super-

symmetry and duality may be the path for the proof of con�nement. Another

approach is represented by String theories. These theories were discovered pre-

cisely in the attempt of describing the strong interactions, once the dual models

1



[8] were proposed to incorporate the so-called Regge trajectories observed in ex-

periments. The advent of the description of strong interaction in terms of YM

theory reduced the importance of string theory as a model of strong interactions,

and for a while the interest in string theory was mainly related to the appealing

possibility of giving an uni�ed description of all the known interactions, including

gravity. In more recent years the idea of duality between string and gauge theo-

ries opened the possibility of employing all the technology developed in the string

context to obtain a description of gauge theories in the regime in which they are

not directly accessible by perturbation theory. Building on the ideas developed by

many authors [9, 10], in 1997 Maldacena conjectured [11] that the N = 4 SYM

theory in 4 dimensions is exactly dual to type IIB superstring in the AdS5 × S5

curved background. In this picture, which much owns to holography ideas [12], the

usual Minkowski space is recovered as the boundary of the AdS5 space, while the

5-sphere is associated with the internal symmetry of the Yang-Mills gauge �elds.

To be more concrete about the Ads/CFT correspondence we can consider the

gauge theory as characterized by two parameters: the coupling constant gYM and

and the number of colors N . In the large-N limit, or planar limit, they can be

combined into a single parameter, the 't Hooft coupling constant λ = g2
YMN . The

bare gauge parameters can then be related to the strings parameters by [11]

4πgs = g2
YM =

λ

N
,

R4

α′2
= λ , (1.1)

with gs being the string coupling constant, α
′ the string tension and R the radius

of both AdS5 and S5. On the other side, the quantum N = 4 SYM theory is a

conformal theory, i.e. invariant under dilatations, so that the Poincaré symmetry

is enhanced to the full superconformal group in 4 dimensions. From the AdS/CFT

perspective a particularly important role is played by the dilatation operator, as-

sociated to the Hamiltonian of the gauge theory. This is so because the eigenvalues

of the dilatation operator are the (quantum) dimensions of the local operators and,

under the correspondence, they are associated to the states of the string, while

their conformal dimensions are associated to the string energy. The dilatation

operator corresponds to a non-compact generator of the global symmetry group,

which can get quantum corrections and depends on the coupling constant, the

corresponding conformal dimension is then known as anomalous dimension. As

can be easily guessed from equation 1.1, the Maldacena duality is a strong/weak

coupling duality, associating the perturbative regime in the N = 4 SYM theory to



the strongly coupled regime of the superstring model. This is the reason why the

duality is not easy to prove, since the regimes accessible by perturbative meth-

ods in the two theories do not match, and, at the same time, its more promising

feature since, in principle, it would allow the inverse process: using the pertur-

bative regime of a theory to obtain information on the strong coupling regime

of the other. Other examples of the AdS/CFT correspondence were discovered

recently, relating the N = 6 superconformal Chern-Simons theory in 3 dimensions

and string theory in AdS4×CP3 [13] and this particular model motivated the main

investigations of this thesis.

The main results obtained in the context of the AdS/CFT correspondence relies

on two of the greatest revolution of contemporary theoretical physics: conformal

�eld theories (CFT) and integrability.

In the last decades the introduction of conformal invariance has led to a remarkable

understanding of the theory of critical phenomena both in statistical systems and

quantum �eld theories [14, 15, 16, 17]. The tools developed within this framework

has led to the possibilty of solving exactly, i.e. non-perturbatively, a large class

of physical systems. This symmetry becomes especially powerful in 2 dimensions

where the underlying generating algebra turns out to be in�nite dimensional, the

celebrated Virasoro algebra. A conformally invariant theory in 2 dimensions result

then so constrained that the form of the correlators results �xed to a large extent

by the sole symmetry requirements.

The other important development we were mentioning is constituted by the study

of integrability. At the most intuitive level a physical system is integrable whenever

it is endowed with a number of conserved quantities equal to the number of degrees

of freedom. In quantum �eld theories this then amounts to the existence of in�nite

conserved charges associated to in�nite conservation laws. The path which led

to the modern understanding of integrability in 2-dimensional QFT originates

from the notable result of Coleman and Mandula [18] which is a no-go theorem

for the structure of the symmetry associated to a generic QFT. More precisely

the theorem states that in 2 dimensions it is possible to combine space-time and

internal transformation in a non-trivial way, as opposite to the 4-dimensional case

in which the only possibility is represented by the trivial one, that is direct product.

The requirement of integrability, together with the results of the Coleman-Mandula

theorem, then constrain severely the form of the S-matrix for integrable QFT. In a

series of remarkable works [19, 20, 21, 22] the authors, basing their considerations



both on speci�c models and general arguments, were able to formulate the crucial

properties of a 2-dimensional integrable QFT which are:

• Absence of particle production in any scattering process.

• Strict momentum conservation, i.e. each momentum is conserved in the

process.

• Factorizability of the n-particle scattering amplitude into 2-body pro-

cesses.

Later, by re�ning the arguments of [21, 22], Parke showed in [23] that the existence

of only two non-trivial conserved quantities in su�cient to ensure the properties

listed above and therefore the integrability of the model.

A fundamental link between CFT and integrable models was established by A.B.

Zamolodchikov in [24, 25, 26]. This result has been extensively employed in the

study of 2-dimensional integrable QFTs over the last decades and can be sum-

marised as follows: an integrable QFT may be viewed as the perturbation of a

CFT by means of a particular operator of the CFT itself. The perturbation is such

that the in�nite conservation laws of the CFT are not spoiled but just deformed,

giving rise to a new in�nite family of conserved quantities, namely the conserved

quantities of the integrable model. In this case the perturbation is said to be

integrable.

Among the tool of integrability the Thermodynamic Bethe Ansatz (TBA for short)

was originally introduced by C.N. Yang and C.P. Yang in [27], in the context of

statistical mechanics, and formulated in the present form by A.B. Zamolodchikov

[87]. TBA provides a non-perturbative framework with which, thanks to the sole

knowledge of the S-matrix, it is possible to analyze integrable systems in their

relation with the perturbed CFT realization, in the sense precised above. Within

the TBA analysis it is possible to obtain a description of the thermodynamic of

the system in terms of a set of non-linear integral equations whose solution allows

to evaluate physically relevant quantities. Moreover, this analytic description is

well suited for non-perturbative Renormalization Group �ow analysis as it em-

bodies the dependence on the energy scale in a very convenient analytic way. In

relation with the perturbed CFT realization then the TBA approach allows for

the calculation of the main informations related to the underlying CFT, which is



recovered as the Ultra-Violet limit of the RG �ow. In this sense, the TBA enables,

for instance, to evaluate the central charge of the CFT, the dimension of the per-

turbing operator and also gives the possibility of exploring the �eld content of the

CFT. The purpose of the work presented in this thesis will be the application of

these methods to the study of a concrete family of 2-dimensional massive inte-

grable QFT's together with the further investigation of the mentioned approaches

themselves.

In view of its importance in modern theoretical physics and for the crucial role

played for the aim of this thesis we include a brief overview about conformal �eld

theories to set up the notation and illustrate their elegance.

Conformal symmetry

For the fundamental importance of conformal �eld theories in the understanding

of integrable models we decided to give a brief overview of the most important

results in order to �x the notation. A more general and exhaustive discussion can

be found for example in [15, 17, 16].

The classical conformal group in arbitrary dimensions d is the subset of coordinate

transformations which leave the metric gµν invariant up to scale transformation of

the form

gµν(x) → eΛ(x)gµν(x) , (1.2)

this property has the consequence of changing the scale of the space but leaving

untouched the angles de�ned through scalar products, henceforth the name con-

formal. By considering an in�nitesimal transformation of the type x′µ = xµ+εµ we

can translate (1.2) into a condition for the in�nitesimal displacement εµ, namely

∂µεν + ∂νεµ =
2

d
∂ρε

ρηµν , (1.3)

where we are supposing to work in a �at space, gµν = ηµν .

The full power of conformal symmetry emerges in considering the case d = 2 where

this beautiful picture becomes sublime by virtue of a very particular symmetry

enhancement. In this case conditions (1.3) become the Cauchy-Riemann theorem

for holomorphic complex valued functions. Provided we introduce the complex

coordinates z = x0 + ix1 and z̄ = x0− ix1, the conformal group becomes the group



of analytic coordinate transformation in the complex plane of the form z → f(z)

and z̄ → f̄(z̄), for independent f and f̄ . This way of looking immediately provides

the in�nite family of classical in�nitesimal conformal generators

ln = −zn+1∂ , and l̄n = −z̄n+1∂̄ , with n ∈ Z , (1.4)

associated to the conformal algebra in 2 dimension which, therefore, turns out to

be in�nite dimensional. The classical conformal generators are known to satisfy

the Witt algebra

[ln, lm] = (n−m)ln+m , [l̄n, l̄m] = (n−m)l̄n+m , [ln, l̄m] = 0 . (1.5)

Having (1.4) in mind it is easy to see that in the z → 0,∞ only the generators

l0, l±1 remain well de�ned and moreover, in view of the Witt algebra (1.5), they

form a subalgebra which is isomorphic to SL(2,C)/Z2. These subalgebra is spe-

cial also because with its elements we can construct the conformal generators of:

translations z → z + a, (l−1 and l̄−1), dilatation z → λz, (l0 + l̄0) and rotations

z → eiθz, (il0 − il̄0).

In the past 40 years, conformal �eld theory has became one of the most active

and fruitful topic of theoretical physics. The reason of its success relies on the fact

that conformal invariance turns out to be an extremely powerful tool to analyse

problems which are very di�cult to treat for general QFT's as it is capable of

giving exact solutions. In the context of physical systems with local interactions,

conformal invariance can be understood as an immediate consequence of scale in-

variance. This observation was originally made by A.M. Polyakov [29]. However,

the seminal paper which really boosts the modern approach to conformal invari-

ance dates back to 1984 and is due to A.A. Belavin, A.M. Polyakov and A.B.

Zamolodchikov [14]. In [14] the authors showed how to construct completely solv-

able CFT's, the minimal models, which thereafter have been extensively studied

in the literature [30]. In particular they were able to formulate, and in some cases

to explicitly solve, the di�erential equations satisfed by correlation functions. The

latter being the manifestation at the level of the correlators of the Ward identities

of the theory.

The quantization procedure known as radial quantization, see [16] for details, al-

lows to formulate the quantum conformal theory in the complex z-plane. The

central objects is represented by the energy-momentum tensor Tµν which is always



symmetric and traceless for conformally invariant theories. The components of

Tµν in complex coordinates are given by

T (z) ≡ Tzz =
1

4
(T00 − 2iT10 − T11) ,

T̄ (z̄) ≡ Tz̄z̄ =
1

4
(T00 + 2iT10 − T11) ,

1

4
Θ(z, z̄) ≡ Tzz̄ = Tz̄z =

1

4
(T00 + T11) .

The conservation of T amounts, in this language, to the holomorphicity conditions

∂̄Tzz = 0 and ∂Tz̄z̄ = 0, which justify the de�nitions T (z) and T̄ (z̄) for the diagonal

components. It seems therefore natural to introduce an in�nite set of generators

Ln and L̄n which arises as operator-valued coe�cients in the Laurent expansion

of the corresponding energy-momentum component. For the holomorphic part we

have

T (z) =
+∞∑

n=−∞

z−n−2Ln ⇐⇒ Ln =

∮
z

dw

2πi
(w − z)n+1T (w) , (1.6)

an analogous relation holding for the anti-holomorphic component T̄ (z̄) as well.

According to the radial quantization procedure the algebra of these modes can be

obtained by calculating some commutators of loop integrals in the complex plane

and the main tool to perform this calculation is represented by the operator product

expansions (OPE). OPE are a way of extracting the singular behavior of products

of operators in the small distance regime or, seen in another way, an e�ective way

of de�ning the regular part of the product of operators, which usually bears the

name of normal ordered product. The OPE for the energy-momentum tensor reads

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ : T (z)T (w) : , (1.7)

where : ... : stands for the normal-ordered part of the, otherwise, ill-de�ned product

of operators. The coe�cient c of the most singular term in the OPE of the energy-

momentum tensor is known as central charge of the CFT. This parameter depends

strongly on the model considered and it is one of the most characteristic quantities

that describes a CFT.

The problem of �nding the algebra of the modes Ln amounts to the application

of the complex analysis and contour integration techniques which can be used to



derive the celebrated Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (1.8)

The latter algebra can be viewed as an extension of the classical Witt algebra

(1.5), which is still recovered for the subalgebra formed by L0, L±1, because, in

general, terms like the one proportional to c are referred to as central extension of

an algebra, being proportional to the identity operator.

The �eld content of the theory can be fully speci�ed by the introduction of a

particular class of �elds: the primary �elds of a CFT are those which, under

holomorphic mappings z = z(w) and z̄ = z̄(w̄), transform as

φ(z, z̄) =

(
∂w

∂z

)∆(
∂w̄

∂z̄

)∆̄

φ(w, w̄) , (1.9)

with ∆ (∆̄) being the (anti)-holomorphic conformal dimension of the operator

φ(z, z̄). All the other operators which do not satisfy (1.9) are said secondary or

descendants �elds. The strong requirements for the transformation properties of a

primary �eld severely constrain the form of the correlators between these type of

�elds. In particular the two-point function of a primary �eld is completely �xed

by conformal invariance and (1.9), it reads

〈φ(z, z̄)φ(w, w̄)〉 =
C

(z − w)2∆(z − w)2∆̄
(1.10)

It is common at this point to de�ne the spin s = ∆− ∆̄ and scale or engineering

dimension d = ∆ + ∆̄ for the primary �eld φ. Also the form of the 3 and 4-

point function is rigidly constrained by the conformal simmetry and we defer to

[14, 16, 31] for more details on this point.

Another relevant feature of primary �elds consists in the special form taken by

their OPE with the energy-momentum tensor components. It is given by

T (z)φ(w, w̄) =
∆φ(w, w̄)

(z − w)2
+
∂φ(w, w̄)

(z − w)
+ : T (z)φ(w, w̄) : ,

T̄ (z̄)φ(w, w̄) =
∆̄φ(w, w̄)

(z̄ − w̄)2
+
∂φ(w, w̄)

(z̄ − w̄)
+ : T̄ (z̄)φ(w, w̄) : .

(1.11)

We stress the fact that the concrete utility of this relation relies on the fact that it

can be applied to identify the primary �elds of theory, once the OPE is evaluated



by other techniques. Combining the OPE (1.11) with the modes de�nition (1.6)

we can easily derive the action of the operators Ln on a holomorphic primary �eld

[Ln, φ(z)] = ∆(n+ 1)znφ(z) + zn+1∂φ(z) (1.12)

a relation which will reveal crucial in determining the space of state of the CFT.

We can start by considering the vacuum state |0〉 of the theory, by imposing the

regularity of T (z)|0〉 as z → 0 we obtain, as a consequence of equations (1.6),

Ln|0〉 = 0 for n ≥ −1 . (1.13)

The introduction of the vacuum state allows the complete construction of the space

of state in terms of the highest weight states, i.e. the eigenstates of the Virasoro

generators Ln, L̄n, which are known to form a highest weight representation of

the Virasoro algebra (1.8). To explicitly construct this representation let us start

by considering a holomorphic primary �eld φ/z) of conformal dimensions (∆, 0),

which we use to construct the state

|∆〉 = φ(0)|0〉 . (1.14)

The state |∆〉 turns out to be a highest weight state since, by means of (1.12), it

satis�es

L0|∆〉 = ∆|∆〉 and Ln|∆〉 = 0 ,∀n < 0 , (1.15)

these relations together allow to show that, in unitary CFT, the conformal di-

mensions and the central charge must be positive numbers. This has led to the

remarkable matching between highest weight states and primary operators, a prop-

erty which is ultimately responsible for the e�ectiveness of the CFT formulation

we are outlining.

The rest of the Hilbert space can then be constructed starting from the heighest

weight states ∆ and is constituted by descendant states of the form

L−n1L−n2 · · ·L−nr |∆〉 , with ni > 0 and i = 1, 2, · · · , r ,

and turn out to be eigenstates of L0 corresponding to the eigenvalue n = ∆+
∑

i ni

as can be easily computed by using (1.12) and the Virasoro algebra (1.8). The



construction we have just explained produces, for each primary �eld, an in�nite

tower of states known in mathematics as Verma module. The states composing

the Verma module are not guaranteed to be linearly independent or even physical

states; as a matter of fact there exist combinations of descendant states, at each

level of the every Verma module, which vanish and are therefore dubbed null

states. These states are spurious and unphysical states which must be removed

from the Verma module in order to obtain an irreducible representation of the

Virasoro algebra built over the heighest weight state |∆〉.

Once this has been achieved succefully the state-operator matching is complete.

Now the descendant states can be put in one-to-one correspondence with the de-

scendant �elds completing the isomorphism between the two classes. A prominent

example of descendant �eld is represented by the energy-momentum tensor. By

considering the OPE (1.7) as a particular case of (1.11) we immediately con-

clude that the energy-momentum tensor cannot be a primary. This should not

be a surprise since the transformation properties of T are not those of a primary

�eld, but neither those of a tensor, as the name may, uncorrectly, suggest. More

precisely it can be shown that T is actually a descendant of the identity, namely

(L−2I)(z) = T (z). The actual transformation law of the energy-momentum tensor

under the usual conformal mapping z, z̄ → w, w̄ is

T (w) =
( z
w

)
T (z) +

c

12
S(z, w) , (1.16)

where we recognize the central charge c of the theory and we introduced the

Schwartzian derivative

S(z, w) =
∂z

∂w

∂3z

∂w3
− 3

2

(
∂2z

∂w”

)2

. (1.17)

The explicit transformation law for the energy momentum can be applied to ob-

tain the form of the Hamiltonian in a desired geometry in terms of the modes

of the plane geometry. In view of the TBA analysis we are going to perform it

is thus useful to obtain the explicit form of the Hamiltonian on a cylinder of ra-

dius R. The conformal mapping z = e2πw/R = exp 2π
R

(σ0 + iσ1), in terms of the

cylinder coordinates σ0 ∈ R and σ1 ∈ [0, R], once plugged into (1.16) results in

the transformation law for the energy-momentum tensor holomorphic component



T (z). The latter is written as

T (cyl)(w) =

(
2π

R

)2 (
z2T (z)− c

24

)
, (1.18)

and an analogous relation holds for the anti-holomorphic component T̄ (z̄). From

the last relation the corresponding transformation law for the modes Ln can be

easily derived. The identi�cation of the cylinder Hamiltonian can then be com-

pleted by noting that the plane dilatations z′ = λz, corresponding to the generator

L0 + L̄0 in the plane, are mapped into time shifts on the cylinder. This can be eas-

ily seen by noting that a dilatation in the z-plane becomes, under the exponential

mapping, a shift in the time direction w′ = w + r/2π log λ on the cylinder. Since

the Hamiltonian is, by de�nition, the operator which generates time translations

we can infer that

H(cyl) =
2π

R

(
L0 + L̄0 −

c

12

)
. (1.19)

The consequences of this relation will reveal essential in the non-perturbative RG

�ow analysis of integrable models of Chapter 4.

A remarkable generalization of the Virasoro algebra is constituted by the cele-

brated Kac-Moody algebras [32, 33, 34, 35] which can be used to formulate a very

large class of CFT. These type of theories are known to correspond to a class of

models known as Wess-Zumino-Novikov-Witten (WZNW) models [37, 38, 39], see

Chapter 3 for more details. In brief WZNW models are 2-dimensional non-linear

sigma models on the (compact) group manifold G which contains a topological

term, the Wess-Zumino term [37]. Kac-Moody algebras can be constructed by

adding to the �eld content of a CFT two holomorphic currents of spin 1, J(z)

and J̄(z̄), which take values in a �nite dimensional Lie algebra G. Choosing the

generators T a, with a = 1, 2, · · · , dim(G), to be hermitean and given their general

commutation relations [
T a, T b

]
= fabc T

c , (1.20)

the component Ja(z) satisfy the OPE

Ja(z)J b(w) =
kdab

(z − w)2
+ fabc

J c(w)

(z − w)
+ : Ja(z)J b(w) : , (1.21)

where dab = Tr(T aT b) is the Cartan-Killing metric of the algebra G used to raise

and lower the group indices a, b, c, · · · . By the usual contour integration technology
we can introduce the Laurent modes Ja(z) =

∑
n∈Z J

a
nz
−n−1 and recast (1.21) as



the Kac-Moody algebra commutation relations

[
Jan, J

b
m

]
= fabc J

c
n+m + kndabδn+m,0 , (1.22)

denoted by Ĝk and where the integer number k is called the level. Note that the

modes J0
n form a subalgebra which satis�es the original Lie algebra commutation

relations (1.20).

The principal application of the Kac-Moody current algebra to CFT is through the

so-called Sugawara construction [40] which enables to write explicitly the energy-

momentum tensor in terms of the current of the model, explicitly

T (z) =
1

2(k + cox(G))
dab(J

aJ b)(z) , (1.23)

where cox(G) is the dual Coxeter number of the algebra G and the notation

(AB)(z) is another more comfortable notation to indicate the normal ordering

: AB :. It is moreover possible to obtain the OPE (1.7) in this case, by employing

the current OPE (1.21), and read from it the central charge of the CFT which

reads

c(Ĝk) =
k dim(G)

k + cox(G)
. (1.24)

The space of states/operators can instead be constructed by identifying the heigh-

est weight Λ with the state created by the action of a Virasoro primary �eld φΛ,

of conformal dimension

∆(φΛ) =
cΛ

2(k + cox(G))
, (1.25)

with cΛ = (Λ,Λ + 2ρ) being the eigenvalue of the second order Casimir in the

Λ-representation of G.

In view of the underlying WZNW model the level k is required to be integer,

by the presence of the Wess-Zumino topological term, and the relative coe�cient

between the Lagrangian and the topological term must be �ne-tuned in order to

provide a conformal theory [39]. Then in the paper [35], the authors applied the

techniques of [14] to obtain the di�erential equations for all the correlators of the

theory solving, in principle, the WZNW models.

To conclude our overview upon CFT we want to outline the relation that can be

established by these theories and integrable models. This conception originated

from a series of work by Al. B. Zamolodchikov [24, 25, 26] in which he explored the



possibility of perturbing a CFT by one of its primary operators with the precise

aim of constructing a theory with in�nite conserved charges associated. The action

describing such a theory can then be written

S = SCFT + λ

∫
dxΦ(x) , (1.26)

where SCFT is the unperturbed CFT action and we assumed the perturbing op-

erator Φ(x) to be a primary of conformal dimension (∆,∆), i.e. of spin 0 and

dimension d = 2∆. Moreover, in order to de�ne a consistent theory, the perturba-

tion must be relevant ∆ < 1 and the coupling λ must be of dimension 2− 2∆ for

dimensional considerations. Following Zamolodchikov's arguments we can consider

a �eld Ts ∈ D̂s.

The space D̂s can be described as follows. De�ne D as the space of all the descen-

dant �elds of the identity, namely the space of composite �elds made up from the

holomorphic component of the energy momentum tensor and its derivatives. The

space D admits an orthogonal decomposition

D =
+∞⊕
s=−∞

Ds ,

in terms of the subspaces Ds spanned by holomorphic �elds of conformal dimen-

sions (s, 0), i.e. spin s. The space D̂s is then obtained by removing from Ds all
the �elds which are total derivatives, namely of the form L−1Ds; this space can

therefore be de�ned by D̂s = Ds/L−1Ds.

The �eld Ts ∈ D̂s considered by Zamolodchikov satis�es, by de�nition, ∂̄Ts = 0.

In considering the perturbed version of the CFT we will observe that the previous

conservation law becomes modi�ed as

∂̄Ts =
∑
n

λnR(n)
s−1 , (1.27)

where R(n)
s−1 are primaries of the unperturbed CFT of spin s − 1 and therefore

conformal dimensions (s − n(1 − ∆), 1 − n(1 − ∆)). We leave on purpose the

summation over n in (1.27) unspeci�ed since, when restricting our attention to

unitary CFT's, by imposing the non-negativeness of the conformal dimensions we

obtain an upper bound for n, namely (1−∆)−1. For simplicity we can consider a

version of (1.27) in which at r.h.s. there's only the term with n = 1.



Next logical step is then the identi�cation of the �eld Rs−1 in terms of the �eld

of the CFT, this requires the conformal perturbation theory (CPT) around the

unperturbed CFT. The correlation functions involving the �eld Ts will have the

perturbative form

〈Ts · · · 〉 = 〈Ts · · · 〉CFT + λ

∫
dwdw̄ 〈Φ(w, w̄)Ts · · · 〉CFT + · · · , (1.28)

with 〈· · · 〉CFT being the correlation functions computed in the unperturbed CFT.

Using the known OPE and a bit of complex analysis it is possible to recast the

anomalous conservation law in the fundamental relation

Rs−1(z, z̄) =

∮
z

dw

2πi
Φ(w, z̄)Ts(z) .

This relation expresses the anomalous term in terms of the �eld content of the

unperturbed CFT, more precisely in terms of the perturbing �eld and some con-

served quantity. Now if we can turn the anomalous term into a total holomorphic

derivative, namely if Rs−1 = ∂Θs−2, we can establish the following conservation

law for the perturbed CFT

∂̄Ts = ∂Θs−2 . (1.29)

Finally, by recalling the counting argument of [25], we can interpret the anomalous

conservation law as a map ϕs : Ds → Ds−1. Consequently the existence of spin s

conserved quantities in the perturbed CFT will be ensured as long as dimKerϕs 6=
0, which is a necessary and su�cient condition for the existence of the conserved

charges. Moreover, taking into account the obvious relation

dimD̂s = dimKerϕs + dimImϕs , (1.30)

the previous condition reads

dimD̂s > dimD̂s−1 . (1.31)

The counting argument provides therefore a su�cient condition which allows for

indications towards the quantum integrability of the perturbed CFT (1.26). The

main advantage of this procedure is that it requires the knowledge of the only

dimensionalities of the subspaces D̂s and D̂s−1 without the necessity of explicitly

computing the conserved charges.



Having summarized the main motivations and the fundamental concepts behind

this thesis we proceed in outlining the material covered in each chapter.

In Chapter 2 we start reviewing the notion of integrability. After a brief discus-

sion on the historical and classical aspects, we proceed by describing the quantum

aspects of integrable models. We do this by the particular perspective of 1 + 1-

dimensional QFT. After a brief account for the historical aspects related to the

progress made in understanding the role of symmetry in QFT we introduce the

necessary tool to develop the analytic S-matrix theory and translate the notion of

integrability in this language.

In Chapter 3 we introduce the general concept of Non-Linear Sigma Models

in QFT by giving a geometrical brief overview on the topic. Then we present

two classes of NLSM which will be of main importance in the following analysis:

symmetric space NLSM and Wess-Zumino-Novikov-Witten NLSM. The rest of the

chapter is then devoted to the formulation of the model of interest in terms of its

Lagrangian formulation. After performing the necessary perturbative renormal-

ization of the model, the explicit procedure for the proof of classical integrability

is outlined and some remarks and observation are formulated for what concerns

the quantum integrability of the model.

In Chapter 4 we give a quite detailed introduction to the Thermodynamic Bethe

Ansatz approach applied to 1 + 1-dimensional integrable models. The core of the

procedure, namely the study of mirror thermodynamic, is performed for simplicity

but with great details for the most simple theory, of which the well known Lee-

Yang model [95, 96] can be considered a prototype. We then follow the unifying

spirit of [101, 88, 89] and introduce a general class of TBA models which can be put

in correspondence with the simply laced Lie algebras of the A,D,E and T type.

A speci�c model of the latter type is then used to introduce and explicitly perform

the non-perturbative computations relative to the study of the Renormalization

Group �ow through the �nite-size scaling function c(r). This non-perturbative

analysis proves itself fundamental in the operation of identifying the speci�c TBA

model in terms of its perturbed CFT realization [87] by knowledge of the UV

data. Then we generalize further the class of TBA models [107] by introducing

some sort of tensor product of diagrams. In this context we also introduce the

elegant and powerful formalism of Y -systems and how it can be used to obtain

non-perturbative informations on the model. We conclude the chapter by outlining

how the previous framework can be used to describe integrable non-linear sigma



model in 1 + 1-dimensions and formulate the so-called Fendley's conjecture about

symmetric space sigma model realizations in terms of WZNW CFT [37, 39, 38].

In Chapter 5 we introduce the main result of this thesis, namely the TBA

formulation of the extended -CPN−1 sigma model. The �rst part contains the non-

perturbative analysis of the model from a more detailed point of view and result in

the conjecture of an S-matrix for fundamental excitations with the relative Bethe

Ansatz set of equations. Then the TBA analysis is carried over by performing

the usual step in some details concluding with the formulation of a new class of

TBA equations and corresponding Y -system. The chapter is then concluded by

the RG �ow analysis of the TBA equation from which will stem the possibility of

conjecturing a perturbed coset CFT realization (close in spirit to those of [103])

of the sigma model at hand.

In Chapter 6 we develop the numerical technology required to solve the TBA

equations presented in the rest of the thesis. Motivated by the very good accuracy

that a simple implementation has made possible we decided to include a section in

which the numerical setup for these type of equations is formulated and explained

in some details. The central part of the chapter contains the result obtained

by applying the numerical algorithm just introduced to the novel family of TBA

which is the central interest of this work. At the end we describe in some details

the numerical strategies that has been employed to conjecture some exact result

related to Rogers dilogarithm sum rule associated to the Y -system presented in

this thesis.

In Chapter 7 we review the key aspects of the derivation of the novel class

of TBA and discuss the conjectures that have been formulated throughout the

chapters. Then open questions will be outlined and possible interesting future

research scenario are drawn.



Chapter 2

Integrable quantum �eld theories in

two dimensions

In this chapter we introduce the notion of Integrability both at classical and quan-

tum level and develop the modern mathematical technology to deal with it. As

mentioned in the Introduction we will adopt the perspective of 1 + 1-dimensional

relativistic quantum �eld theory. Following this path will lead us to the formula-

tion of the integrability property in terms of the properties of the most fundamental

object in this framework: the S-matrix theory.

The content of the chapter is divided as follows: in Section 2.1 we introduce the

basic idea of the notion of integrability for classical systems. Then, in Section 2.2,

we provide an introduction to the idea of quantum integrability in connection with

quantum �eld theories with the speci�c point of view of 1 + 1-dimensional �eld

theories. The chapters concludes with Section 2.3 in which the analytic S-matrix

is brie�y exposed and the property of integrability is translated in this formalism.

2.1 Overview

From the historical point of view the discovery of integrability is intertwined with

the theory of physics since is �rst steps. In Hamiltonian Mechanics the state of

a system is described by a set of generalized coordinates qi and their canonically

conjugated momenta pi, where i = 1, ·, n labels the degrees of freedom of the

system. This even-dimensional space is usually called phase space. There exists

17



a preferred dynamical function, i.e. a function de�ned on phase space, H(qi, pi),

called the Hamiltonian, which encodes the time evolution of the system through

the �rst-order system of ordinary di�erential equations

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
(2.1)

For any dynamical function F (q, p) this implies that

Ḟ = {H,F} (2.2)

where we made use of the Poisson brackets, namely

{F,G} =
n∑
i=1

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
(2.3)

The coordinates themselves obey the so-called canonical Poisson brackets, namely

{qi, qj} = 0 {pi, pj} = 0 {pi, qj} = δij (2.4)

The Hamiltonian is somehow special because it is a conserved quantity under time

evolution, as a trivial consequence of (2.2), therefore the motion takes place on

the subvariety of phase space H(q, p) = E, namely the Isoenergetic variety.

The systems for which equations (2.1) can be solved exactly are very few. Nonethe-

less, there is a general framework where the explicit solutions can be obtained by

solving a �nite number of algebraic equations and computing �nite number of

integrals, i.e. the solution is obtained by quadratures.

A dynamical system on a phase space of dimension 2n is Liouville integrable if one

knows n independent dynamical functions Fi on the phase space which are:

• conserved quantities under time evolution

Ḟi = {H,Fi} = 0 (2.5)

In other words these functions are Integrals of Motion.

• in Involution among themselves with respect to the Poisson brackets, that is

{Fi, Fj} = 0 (2.6)



If this family of conserved dynamical quantities exists then the system can be

solved by quadratures. This is so because we can use a special system of coordi-

nates related to the original one through a canonic transformation which preserves

the Hamiltonian structure of the equations of motion: the Action-Angle variables.

In these particular variables the momenta are actually the n conserved quantities

and the coordinates becomes angles parametrizing a n-dimensional torus which is

the variety onto which the motion takes place.

2.1.1 Classical Integrability in Field Theories

The next logical step is to de�ne the notion of integrability for �eld theories. The

situation now is more involved since �eld theories can be thought of as dynamical

system with an in�nite, though countable, number of degrees of freedom. In this

sense �nding all the integrals of motion is a very di�erent task and we will see how

the Lax formalism is e�cient in doing this.

The history of classical integrable systems is strictly related to the discovery, in

the late 1960s, of the existence of solitons. The latter are strongly stable, localized

solutions of non-linear partial di�erential equations. They could be understood by

viewing these equations as in�nite dimensional integrable Hamiltonian systems.

Their study leads to a very fruitful approach for �integrating� such systems, the

inverse scattering transform and more general inverse spectral methods (often

reducible to Riemann-Hilbert problems), which generalize local linear methods like

Fourier analysis. The basic idea of this method is to introduce a linear operator

that is determined by the position in phase space and which evolves in time in

such a way that its �spectrum� (in a suitably generalized sense) is invariant under

the evolution. This provides, in certain cases, enough invariants, or "integrals of

motion" to make the system completely integrable.

For historical and pedagogical reasons we present a prototypical example: the

Korteweg-de Vries equation, KdV for short. KdV is a non-linear di�erential equa-

tion used to mathematically model the waves on shallow water surfaces. There

exixt several equivalent forms of KdV and we decided to present it as follows

∂tu = 6u ∂xu− ∂3
xu (2.7)



where u = u(t, x) is the height of the 1-dimensional wave pro�le propagating along

the x-direction.

The modern approach to integrable systems relies on the notion of Lax Pairs.

To introduce the Lax formalism we can consider the general non-linear evolution

equation

∂tu = N(u) , (2.8)

with initial condition u(x, 0) = f(x) and where the operator N is some non-linear

operator which may depend on x and on its derivatives but is independent on t.

Next suppose that the evolution equation (2.8) can be expressed in the form

∂tL = ML− LM , (2.9)

where L and M are some linear operators in the variable x which may depend on

u and its derivatives and act on some Hilbert space H. We moreover assume the

operator L to be self-adjoint with respect to the inner product H is endowed with.

Such a set of operators forms a Lax pair. The Lax pair for KdV is given by

L = −∂2
x + u

M = −4∂3
x + 6u∂x + 3∂x (u)

(2.10)

and the KdV equation (2.7) is equivalent to the Lax equation (2.9).

Now we introduce the spectral equation associated to the non-linear problem (2.8)

by means of

Lψ = λψ ,

where ψ ∈ H. The spectral parameter λ can be proved to be independent of t and

the linear evolution equation for the associated wave function ψ turns out to be

given by

∂tψ = Mψ ,

which recall the familiar Schoroedinger evolution equation. On the basis of simple

functional analysis it is then possible to show that the monodromy matrix M(λ)



which is de�ned by means of the monodromy of two independent solutions of the

linear evolution equation. It can be de�ned by

(ψ1(x+ 2π), ψ2(x+ 2π)) = (ψ1(x), ψ2(x))M(λ) .

The fundamental role played by the monodromy matrix is that is represents a

generating function for the in�nite conserved quantities associated with the KdV

equation. The �rst few of them are

I1 =

∫
dx

2π
u(x) ,

I3 =

∫
dx

2π
u(x)2 ,

I3 =

∫
dx

2π

(
u(x)3 − (u′)2

2

)
.

Having given a very brief overview of the �avor of integrable in classical physics

let us now turn the attention to the quantum world.

2.2 Quantum Integrability

We now turn our attention to the quantum mechanical formulation of the notion

of integrability. Rather than following the standard approach to this topic we will

introduce the idea of integrable from a very particular but far reaching perspective:

1 + 1 dimensional QFT. As discussed in the Introduction the variety of physical

systems which can be described in terms of these low dimensional theory is huge

and, moreover, this is the construction which �t better with the aim of this work

which, ultimately, amounts in the non-perturbative analysis of a 2-dimensional

sigma model.

The history of integrability in QFT moves its �rst steps in 1967 with the Coleman-

Mandula theorem [18], a very powerful no-go theorem pertaining the allowed sym-

metry of the S-matrix of a QFT. The authors were able to obtain, under sev-

eral assumptions, the maximum symmetry group associated to Poincaré invariant

1 + 3-dimensional massive QFT. More precisely they found that for any massive,

relativistic and local 1 + 3-dimensional QFT the maximal symmetry group, G,
which contains the Poincaré group P and another group of internal symmetries I



as subgroups is given by the direct product of the two

G = P ⊗ I ;

we stress that the G is assumed to be a Lie group, whose generators obey an algebra

based on commutators, a hypothesis which is crucial in the derivation of the resul.

On physical grounds the Coleman-Mandula theorem states that the only possible

way of mixing the space-time and internal transformations is the trivial one. This

strong result can be generalized, with very di�erent results [41], by the introduction

of anticommutators in the symmetry algebra of the S-matrix, which turns the

latter into a supersymmetry algebra. More precisely, the theorem ensures, under

certain assumptions, that the existence of any conserved charge which transforms

under the Lorentz group like a tensor of spin higher than one in a 1+d-dimensional

QFT (with d > 1) is su�cient to conclude that its S-matrix is trivial, i.e. there's

no interaction between particles. Such a rigid constraint for the form of the S-

matrix in 1 + 3 dimensions may be indication that lowering the number dimension

can possibly result in a modi�cation of the constraint such that the form of the

S-matrix is �xed by the symmetry alone. The 1 + 1-dimensional version of the

theorem states, in fact, precisely the opposite with respect to the 1+3-dimensional

case: in bidimensional QFT it is possible to combine in a non-trivial way the

space-time and internal symmetries. This very powerful result suggests that the

existence of higher spin conserved quantities turns out to be deeply tied with the

symmetry structure of QFT. In the subsequent series of papers [19, 20, 44, 21, 22]

the authors pointed by out that two relevant properties were emerging: the absence

of particle production in multiparticle scattering processes and the factorisability

property of the associated scattering amplitudes. The problem was then solved by

Parke in a remarkable paper [23] in which he was able to de�nitevely closed the

question by showing how the existence of only two higher spin conserved charges,

the spins of the latter being di�erent, is enough to ensure the two crucial properties

mentioned above. In this sense Parke theorem become an extremely powerful tool

in determining whether or not a theory is integrable, it su�ces in fact to �nd

two higher spin conserved charges to prove the integrability of the QFT. Having

introduced the general idea behind 1 + 1-dimensional integrable �eld theory we

can enters the details of what outlined so far.



2.2.1 Massive integrable quantum �eld theories

In what follows we will consider a 1 + 1-dimensional QFT whose spectrum is

composed by a certain number of asymptotic massive particles whose masses are

denoteb by ma. Taking advantage of the 2-dimensional relativistic kinematics we

can conveniently parametrize the energy-momentum vector pµa of the a-th particle

in terms of the so-called rapidity

p0
a = Ea = ma cosh θa , p1

a = pa = ma sinh θa , (2.11)

where the rapidity is explicitly given by tanh θa = pa/Ea. A very useful feature of

the rapidity formalism is represented by the fact that this quantity behaves addi-

tively under Lorentz boosts and therefore the di�erence θab = θa − θb of di�erent
particles' rapidity constitutes a Lorentz invariant quantity. It is therefore reason-

able to assume that the scattering amplitude, being a Lorentz invariant objects,

must depend only on the rapidity di�erence of the incoming particles. This fact

nicely accomodates, as we will see below, for the absence of particle production

in 2-dimensional integrable QFT, since the momenta of the incoming particles are

separately conserved. To construct the S-matrix we need to introduce, as pre-

liminary fundamental assumption, the existence of a set of vertex operator of the

creation/destruction type, denoted by Va(θa) representing an asymptotic particle

of quantum numbers a and rapidity θa. We can then write the 2-body scattering

amplitude for the process a+ b→ c+ d as

Scdab(θ12) = out〈Vc(θ1)Vd(θ2)|Va(θ1)Vb(θ2)〉in . (2.12)

The operators Va(θa) are a generalization of the usual bosonic and fermionic ladder

operators, in the sense that they do provide a generalization of the corresponding

algebra of operators, and can be used to construct the space of physical states. The

algebra satis�ed by the vertex operators bears the name Faddeev-Zamolodchikov

algebra [120] and is constituted by a set of highly non-trivial relations among them,

involving the S-matrix element Scdab . The Faddeev-Zamolodchikov algebra is given



by

Va(θ1)Vb(θ2) =
∑
c,d

Scdab(θ12)Vd(θ2)Vc(θ1) , (2.13)

V †a (θ1)V †b (θ2) =
∑
c,d

Scdab(θ12)V †d (θ2)V †c (θ1) , (2.14)

Va(θ1)V †b (θ2) =
∑
c,d

Scdab(−θ12)Vd(θ2)Vc(θ1) + 2πδabδ(θ12) . (2.15)

The algebra was originally formulated by the Zamolodchikov brothers [119, 120]

and owns his name to the observation made by Faddeev in [42] of introducing the

last term in (2.15).

In the same spirit of the construction of the Fock for ordinary QFT, we can build

up the space of states by means of the vertex operators. We start by de�ning the

vacuum state |0〉 as the state which is annhilated by all the vertex operators

Va(θ)|0〉 = 〈0|V †a = 0 ,

then a generic n-particle state can be obtained by the repeated action of the

creation operators V †a on the vacuum, namely

|Va1(θ1)Va2(θ2) · · ·Van(θn)〉 = V †a1
(θ1)V †a2

(θ2) · · ·V †an(θn)|0〉 . (2.16)

The linear combinations of states of the form (2.16) do generate the Hilbert space

of the theory. Clearly, in view of (2.13-2.15), not all the states obtained in this

way are linearly independent and we should provide a prescription to select a basis

of independent physical states. We characterize a n-particle in-state by requiring

the rapidities to be ordered decreasingly from left to right, thus giving

|Va1(θ1)Va2(θ2) · · ·Van(θn)〉inwith θ1 > θ2 > · · · > θn . (2.17)

While an n-particle out-state can be obtained by inverting the previous prescrip-

tion, we then get

|Va1(θ1)Va2(θ2) · · ·Van(θn)〉outwith θ1 < θ2 < · · · < θn . (2.18)

These prescriptions sound physically reasonable, as can be seen in Figure 2.1,

because the in/out scattering states are de�ned as those for which the t → ∓∞



limit is non interacting and this naturally translates into the di�erent orderings of

(2.17) and (2.18).

x1

x0

θ1 θ2 θn· · ·

θn · · · θ2 θ1

S

Figure 2.1: A representation of the generic n-particle scattering process with

the rapidity ordering prescription.

As mentioned above, in any QFT, there may exist higher spin conserved charges ;

the latter are conserved quantities which transform under the Lorentz group as

spin s objects

Qs → ΛsQs ,

Λ being a generic element of the group. Moreover we shall assume that these

charges are of the local type, i.e. they can be expressed as the integral of an

associated density

Qs =

∫
dxTs+1 , (2.19)

where Ts+1 is one of the conserved currents introduced above, see equation (1.27).

Whenever (2.19) holds true it is possible to show that the higher spin conserved

charges Qs are in involution among themselves

[Qs,Qs′ ] = 0 , ∀s, s′ . (2.20)

Since the mass is a spin 0 conserved quantity we can deduce from (2.20) that its

eigenstates constitute a basis for the eigenstates of the higher spin charges, in other

words, the latter eigenstates are given by linear combination of the states belonging

to the same mass multiplet. The basis of states (2.16) reveals particularly useful

to diagonalize the charges Qs, in fact Lorentz invariance su�ces to �x the form



for the 1-particle states

Qs|Va(θ)〉 = ηsa
(
mae

θ
)s |Va(θ)〉 , (2.21)

while the locality condition (2.19) allows for the n-particle version

Qs|Va1(θ1)Va2(θ2) · · ·Van(θn)〉 =
n∑
i=1

ηsai
(
maie

θi
)s |Va1(θ1)Va2(θ2) · · ·Van(θn)〉 .

(2.22)

Under the general assumptions made throughout this section we are now in the

position of giving evidence of one the key aspects of 2-dimensional integrable

theory: the absence of particle production. As mentioned in the Introduction this

constraint reveals essential in determining the form of the exact S-matrix. This

can be seen as follows. Consider a general scattering process with n in-particles

and m out-states, the corresponding scattering element is given by

Sb1b2···bna1a2···am = out〈Vb1(θb1)Vb2(θb2) · · ·Vbn(θbn)|Va1(θa1)Va2(θa2) · · ·Vam(θam)〉in .

The conservation of the charges under this process implies, taking (2.22) into

account, that

m∑
i=1

ηsai
(
maie

θai
)s

=
n∑
i=1

ηsbi
(
mbie

θbi
)s

(2.23)

must hold. If we study the solution of (2.23) under the condition of integrability,

i.e. by assuming an in�nite number of charges, it turns out that the resulting

in�nite system of non linear equation admits only the trivial solution. The latter

is characterized by n = m and θai = θbi therefore we can directly observe the

absence of particle production and the individual conservation of the momenta.

The argument just exposed can be found in [43, 44, 21].

Now we turn our attention to the crucial properties of integrable theories, namely

the factorisability of the S-matrix. This result goes under the name of Parke

theorem and can be found in [23], see also [43] for a recent review, and we will

outline its statement without entering the technical details of the proof which could

constitute a chapter on their own. The theorem states that any 2-dimensional

theory which possesses two higher spin conserved charges present the absence of



particle production and the strict momentum conservation and, moreover, its n-

particle processes S-matrix factorises in the product of 2-body scattering matrices.

This can be expressed as

Sb1b2···bna1a2···am(θb1 , θb2 , · · · , θbn ; θa1 , θa2 , · · · , θam) =

= δnm

n∏
i=1

δ(θai − θbi)
n∏

i<j,k<l, 1

Sblbkaiaj
(θij) ,

(2.24)

where the absence of particle production and the strict momentum conservation

are explicitly imposed.

The proof of the absence of particle production is not so easy to obtain under the

assumptions of Parke theorem. More precisely the existence of only two higher spin

conserved charges imposes modi�cations of the arguments given in the previous

section, see equation (2.23) and the discussion there. Without entering the details,

for which we refer to [23, 43], we simply assume this constraint to be true and focus

on the other key aspect: factorisability.

In order to prove factorisability we have to introduce the other fundamental as-

sumption at the basis of Parke theorem, namely the possibility of describing the

1-particle asymptotic states by means of localized wave packets ψa(x). It is known

that a wave function description is not possible for relativistic quantum theories

and the very reason behind this is ultimately the property of the latter of being

multiparticle theories. In this sense integrable theories are special as, in view of

the absence of particle production in scattering processes, they do not behave as

the typical relativistic QFT but rensemble more the classical behavior. Moreover,

we can resort to wave packet description for particles which are assumed to be

su�ciently separated in space to be considered as free particles, at least for theo-

ries endowed with short range interactions. A remarkable consequence of the wave

packet formulation is that, in this basis, the action of the transformation generated

by the conserved charges amounts to a rapidity-dependent shift of the center of

the packet. It is customary to analyze the typical 3 → 3 processes, as those of

Figure 2.2. One of the byproducts of Parke's proof is the fact that, provided two

higher spin charges exist, the two amplitudes must be equal, unlike for a general

QFT for which they do not have to be necessariy related. This can be understood

within the wave packet formulation in which, we recall, the isometries associated

to the conserved charges are realized as shifts of the center of the packet. Within

this formulation it can be proved [23] that the amplitudes of Figure (2.2) can
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Figure 2.2: Graphical representation of the Yang-Baxter equation (2.25).

be mapped into each other by acting with the transformation generated by the

charges which, being isometries, leave the amplitude unchanged. This statement

results, in the S-matrix language, in the famous Yang-Baxter equation [45] which

reads

Sαβa1a2
(θ12)Sb1γαa3

(θ13)Sb2b3βγ (θ23) = Sγb3a1α
(θ13)Sβαa2a3

(θ23)Sb1b2γα (θ12) , (2.25)

and was originally introduced in the study of statistical mechanics systems, more

precisely the 1-dimensional anisotropic Heisemberg chain [45].

A particularly simple class of solution which are anyway non-trivial is represented

by the so called diagonal scattering theories, namely theories for which the massive

multiplet is constituted by one single particle. In this case not only the rapidities

but also the individual quantum numbers are conserved, the form of the S-matrix

is then given by

Scdab(θ) = δcaδ
d
bSab(θ) , (2.26)

which trivially solves (2.25). Diagonal scattering theories represent a simpli�ca-

tion of more realistic color-changing scattering but constitute, nonetheless, a very

useful framework into which investigate the analytic properties of the associated

S-matrix.

The S-matrix theory has been applied successfully to a large number of integrable

2-dimensional model in many �elds of physics, from QFT to statistical mechanics

[46, 47, 48, 49, 50]. It is therefore worthwhile to overview the principal properties



of the 2-body scattering amplitude both from the physical and analytic point of

view.

2.3 The analytic S -matrix theory

The form of the S-matrix in integrable models is severely constrained by the Yang-

Baxter equation (2.25) as a re�ection, at the level of 2-body amplitudes, of the

factorisation property induced by integrability. It is however possible to impose

further physical constraints which often result in a complete determination of the

analytic form of the scattering amplitudes [50, 119, 120]. The physical constraints

we impose on the S-matrix are:

• Lorentz invariance : We have seen that the S-matrix is required to be

a function of Lorentz invariant quantities, being itself a Lorentz invariant

quantity. It is known in 4 dimensions that the fundamental kinematical

invariants are represented by the so-called Mandelstam variables

s = (pa + pb)
2 , t = (pa − pc)2 , u = (pa − pd)2 ,

for a general a+b→ c+d scattering process. In 1+1-dimensions these quan-

tity are dependent among each other and we can select one representative,

usually s, onto which the S-matrix will depend. It reads explicitly

s = m2
a +m2

b + 2mamb cosh θab , (2.27)

where θab = θa−θb, as usual. We can now interpret the amplitude as a func-

tion of s, or θ, and perform its analytic continuation in the corresponding

complex plane. It will turn out, see below, that the amplitude Sab(s) will

display square root branch cuts starting at s± = (ma ±mb)
2, which corre-

spond to the points θ = 0, iπ in the complex rapidity plane, and therefore is

not a meromorphic function. On the other side, meaning when considering

the amplitude Sab(θ) as a function of the rapidity, the analytic properties are

better and we can restrict our analysis to the physical values of the rapidity

located inside the so-called physical strip 0 < Imθ < π.



• Analiticity : The analiticity condition we impose can be stated as the fact

that the scattering amplitude Sab(s) and its complex conjugated [Sba(s)]
∗

must be the boundary values of the same analytic function on the two sides

of the branch cut in the complex s-plane. Namely we de�ne the physical

amplitudes as

S
(ph.)
ab (s) ≡ lim

ε→0
Sab(s+ iε) ,[

S
(ph.)
ab (s)

]∗
≡ lim

ε→0
Sab(s− iε) ,

and taking into account that Sab(s± iε)→ Sab(±θ) as ε→ 0 we obtain the

hermitean analiticity condition

Sab(θ) = [Sab(−θ∗)]∗ , (2.28)

therefore the 2-body S-matrix in 1 + 1-dimensional integrable theories is a

complex analytic function of the rapidity θ on the physical strip 0 < Imθ < π

• Unitarity : The unitarity of the S-matrix is expression of the overall nor-

malization to one of the probability for a generic in-state to be found in

anyone of the out-states. This translates on in the S-matrix language in the

condition SS† = S†S = 1 and moreover, by taking analiticity (2.28) into

account, can be written as

Sab(θ)Sba(−θ) = 1 , (2.29)

and by analytic continuation this result holds true for any value of θ in the

whole complex plane.

• Crossing symmetry : This symmetry expresses the fact that the same

process described in the s- and t-channel is found to describe two processes

in which one of the incoming particle and the outgoing particle of opposite

momentum are interchanged. This leads to the constraint

Sab(iπ − θ) = Sbā(θ) ,

where ā denotes the anti-particle of quantum numbers a. Note that changing

the sign of the momentum pa results in the exchange of s and t or the usual

QFT interpretation.
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Figure 2.3: Geometrical representation of the fusing angles.

The listed properties and the requirements of integrability strongly constrains the

form of the S-matrix but an intrinsic degree of ambiguity remains anyway when

trying to construct scattering amplitudes. These multiplicative ambiguities are

named CDD factors and are represented by scalar factors which automatically

satis�es the physical constraints [119, 120, 88]. The general solution to the con-

straints we require for the physical S-matrix has, in the diagonal case [51], the

structure

f(θ) =
∏
α∈A

fα(θ) , where fα(θ) =
sinh(θ + iα)/2

sinh(θ − iα)/2
.

where A is a conjugation-invariant subset of the complex plane. Clearly to select

in a unique way the proper A some physical information must be supplied and

this will ultimately result in the complete determination of the S-matrix form.

Another extremely important data carried by the analytic S-matrix is represented

by the bound states content of the theory. It can be shown that the presence of a

simple pole of the amplitude in the physical strip signals the formation of a bound

state; the latter turns out to be stable if the pole lies on the imaginary axis. To

be more precise let us consider the amplitude Sab(θ) and suppose it has a simple

pole of the form iucab. This signals the presence of a stable bound state, created in

the process a+ b→ c, whose mass is given by

m2
c = m2

a +m2
b + 2mamb cosucab , (2.30)

relation that comes from the very de�nition of s (2.27) evaluated in the rest frame.

The process is depicted in Figure 2.3. The angle ucab is known as fusing angle and

invoking crossing symmetry we can interpret any of the particle a, b and c as a

bound state formed by the remaining two. To each of this interpretation we can

associate the corresponding version of equation (2.30) with the proper permutation
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Figure 2.4: An illustration of the scattering process identi�ed through the

bootstrap equation (2.31)

of indices and the relative fusing angle. The three fusing angles are then seen to

satisfy

uabc + ubac + ucab = 2π ,

a relation that again is quite constraining for the masses of the spectrum.

Clearly the appearance of new excitations in the spectrum calls for the possibility

of obtaining the corresponding scattering amplitudes within the S-matrix theory

we are outlining. This turns into the so-called bootstrap equations [47, 50, 75]

which establishes the equivalence of the two diagram of Figure 2.4. We would

like to stress that the wave packet framework is again the one proper to derive

the mentioned relation. From the analytic point of view the bootstrap equation is

given by

Scd(θ) = Sad(θ + iūbac̄)Sbd(θ − iūabc̄) , (2.31)

with ū = π − u.

The bootstrap equation represents a very powerful analytic tool to generate the

amplitudes for all the particle of the spectrum. Its application, the bootstrap

program, consists of various step: one starts by determining all the the bound



states of the theory by classi�ng the pole of the amplitudes between fundamental

excitations. Then using (2.31) one evaluates all the scattering amplitudes between

the bound states and the fundamental particles and among themselves. Finally,

with the full spectrum and S-matrix at hand, one should check if the bootstrap

procedure has �closed� by verifying that the poles of the S-matrix are those and

only those that produce the known spectrum. If new particle appear at this stage

one should use again (2.31) to obtain the new amplitudes and check if the bootstrap

has closed and so on.

Having introduced the main tools and ideas of integrability for 2-dimensional QFT

we can now turn our attention to the discussion of a very general class of QFT:

Non-Linear Sigma Models.





Chapter 3

Non-Linear Sigma Models

The Non-Linear Sigma Models (NLSM), or simply sigma models, are a particular

class of quantum �eld theories whose �elds take values in a suitable Riemannian

manifold M . The �eld values can therefore be considered as a set of cooordi-

nate in the internal manifold M whose curvature, described by a, generally, �eld-

dependent metric, is a function of the �elds. This feature allows the formulation of

interacting quantum theories in which the structure of the interactions is governed

by the geometry of the manifold in which the �elds take values. Such an elegant

way of formulating QFT relies its importance on the fundamental role played by

symmetry principles in Physics, which, ultimately, is the main reason for many

successful applications of NLSM in �eld theory, string theory and statistical me-

chanics. The geometrical nature of the interaction in NLSM translates into the

geometrical interpretation of the counterterms, the existence of non-trivial �eld

con�gurations (solitons), asymptotic freedom and the dynamical generations of

vector bosons, i.e. all the familiar features of 4-dimensional quantum gauge the-

ories [53]. In view of the particular applications on which this thesis focuses on,

we wanto to stress that NLSM also provides a fundamental theoretical laboratory

for the study of 2-dimensional exaclty solvable systems from all the �elds of the-

oretical physics: the Ising model and the Heisenberg ferromagnet, in statistical

mechanics; modern superstring theories, namely supersymmetric string theories

on a curved gravitational background, are formulated in terms of supersymmet-

ric NLSM. Even the Standard Model formulation can be translated in the NLSM

language, in particular for what concerns the interpretation of the spontaneous

symmetry breaking phenomenon.

35



The chapter is divided as follows: in Section 3.1 we give a quick overview on

sigma models and their explicit formulation. We also give some examples which

are relevant for the discussion of this thesis. Instead, Section 3.2 is devoted to the

formulation of the family of models stemmed from [74]. The model is analyzed in

terms of usual perturbative analysis and found to be renormalizable and asymp-

totically free. Then we address the question of integrability. Starting with the

classical model we brie�y describe how to construct the objects that ensures the

former property. At last we summarize the so-called counting argument of [81]

and apply it to the case at hand. This will ultimately result in the de�nition of

an integrable subclass of models.

3.1 General sigma models

The most general (bosonic) NLSM can be written in terms of a set of D scalar

�elds φa(xµ), therefore a = 1, 2, · · · , D, in a d-dimensional �at spacetime, µ =

0, 1, · · · , d. The corresponding action reads

S =
1

2λ2

∫
ddx gab(φ)∂µφa∂µφ

b , (3.1)

where ∂µ = ηµν∂ν and ηµν = diag(+,−, · · · ,−) are the usual covariant quantities

in a d-dimensional Minkowski �at spacetime and λ is the overall coupling constant,

a counting device for loop expansions in this case. Usually, the metric gab is

also assumed to be positive-de�nite, to ensure the appearance of states with only

positive norm, i.e. the absence of ghost.

From the QFT point of view, the highly non-linear NLSM action (3.1) can be

rewritten thanks to the expansion of the metric, in powers of φ around the φ = 0

con�guration, which reads

gab(φ) = gab(0) + ∂cgab(0)φc +
1

2
∂c∂dgab(0)φcφd , (3.2)

and can be interpreted as the existence of an in�nite number of coupling constants

related to the higher derivatives of the metric gab in φ = 0.

Returning to the geometric point of view we immediately see that the action (3.1)

is invariant under coordinate di�eomorphism of M , whose in�nitesimal form is



give by the �eld reparametrization

φ′ = φ+ ξ(φ) , (3.3)

provided the metric transform as a rank-2 tensor with respect to the manifold

indices. This invariance is not of the usual Noether-type because the associated

transformation acts not only on the �elds but also on the coupling constants,

changing in this way the whole theory at once. Therefore, two di�erent NLSM

are physically equivalent if they are related through a �eld rede�nition as (3.3),

which implies g′ = g at the level of the metrics. Taking this observation into

account the NLSM �eld theory is thus de�ned on the equivalence class of metrics,

related via (3.3). In string theory, on the contrary, this formal invariance is kept, in

some particular cases [54], manifest in order to properly deal with the geometrical

interpretation of (3.1).

The isometries of the manifold M can be su�cient to reduce the number of cou-

plings in the �eld-theoretical interpretation of (3.1), see (3.2), to a �nite number.

The most known example of this type of circumstance is represented by the O(n)

NLSM [118], whose euclidean action can be written as

SO(n) =
1

2λ2

∫
ddx ∂µn · ∂µn , (3.4)

for the real scalar �elds n(xµ) which take values on the n− 1 dimensional sphere

n · n = 1. The latter form is not manifestly the same as (3.1) because in writing

(3.4) we used some spurious degrees of freedom, namely the constrained vector

n(xµ). According to [118], we can obtain the general form (3.1) associated to the

O(n) NLSM by solving the constraints in terms of some, suitably choosen, set of

independent �eld variables and then substituting the result back in (3.4) to obtain

explicitly the non-linear form of the associated model. The speci�c O(3) case in

d = 2, for instance, is known to govern the continuum limit of the isotropic ferro-

magnet in statistical mechanics. Moreover it displays classical [55] and quantum

integrability [119, 120] and the explicit S-matrix between fundamental excitations

has been constructed [120], we report it here for future reference

Sklij (β) =
π + iβ

(2π + iβ)(π − iβ)

(
2πiβ

π + iβ
δijδkl − 2πδilδjk − iβδikδjl

)
. (3.5)



We will return later on this model, and also its generalization to arbitrary even n,

in relation to the TBA approach to integrable models, see Chapter 4.

Another important example, which will constitute the starting point for the anal-

ysis presented in this thesis, is represented by the CPN−1 NLSM [56]. Apart from

being interesting on its own, this type of model introduces the gauging procedure

within the formalism of NLSM. The relative action can be written, in the spirit

of O(n) models, in terms of N complex scalar �elds z = (z1, z2, · · · , zN) subjet to

the constraint z̄ · z = 1 and reads explicitly

SCPN−1 =
1

2λ2

∫
ddx ∂µ (Dµz)† ·Dµz , (3.6)

in terms of the covariant derivative Dµz = (∂µ + iAµ) z. In this case we speak

of gauged model because (3.6) is manifestly invariant under the abelian gauge

transformation

z′ = eiΛ(x)z , A′µ = Aµ − ∂µΛ ,

with gauge parameter Λ(x). The absence of a kinetic term for the gauge �eld Aµ

makes possible to eliminate it from the action (3.6). Thanks to the associated

algebraic equation of motion, namely Aµ = iz̄ · ∂µz, it is possible to replace the

dummy gauge �eld in terms of the NLSM �eld z, an operation which, ultimately,

amounts to translate (3.6) into the general form (3.1).

The 2-dimensional NLSM will play a crucial role in this thesis and we will an-

alyze some example to enlighten the fundamental features. From general point

of view the immediate consequence of the choice d = 2 it that all the main in-

gredients of the action (3.1), namely the �eld φ, the metric gab and the in�nite

couplings, become dimensionless. In the quantum formulation this will result in

the renormalizability of the model by means of the introduction of counterterms

which have the same dimension as the Lagrangian. Since we know that (3.1)

represents the most general (parity conserving) form of action, last observation

implies that all UV counterterms can therefore be absorbed into the metric as

its quantum deformations. This procedure goes under the name of (generalized)

on-shell renormalizability [57, 58] and is explained in full details in [59]. Instead

for a formal proof of NLSM renormalizability see [57] and also [60] for a discussion

on the general structure of NLSM renormalization.



3.1.1 WZNW models

Here we introduce a particular class of NLSM which goes under the name ofWess-

Zumino-Novikov-Witten models [37, 38, 39]. These models are characterized by

the fact of being 2-dimensional quantum conformal NLSM whose underlying CFT

is represented by the coset model discussed in the Introduction in relation with

Kac-Moody algebras [32, 33]. The associated euclidean action can be written as

SWZNW =
k

8π

∫
S2

d2xTr
(
∂µg∂

µg−1
)

+ Γ[g] , (3.7)

where the matrix-valued �eld g takes values in a (semisimple and compact) Lie

group G. The term Γ(g) in (3.7) is the Wess-Zumino topological term which is

given by

Γ(g) =
k

12π

∫
B

d3y εµνρTr
(
g−1∂µgg

−1∂νgg
−1∂ρg

)
. (3.8)

The Wess-Zumino term (3.8) is given as a 3-dimensional integral over a ball B

whose boundary ∂B has to be identi�ed with the compacti�ed 2-dimensional eu-

clidean spacetime S2. A more careful analysis reveals that the integrand in (3.8)

is locally a total derivative and therefore the WZ term is a topological term. The

coe�cient appearing in (3.7) are normalized in the proper way [] to produce the as-

sociated Gk Kac-Moody algebra for the conformal currents J , see equation (1.21)

for the notational convention, which are explicitly realized in terms of the �eld g

as

J(z) = Ja(z)T a = kg−1∂g ,

J̄(z̄) = J̄a(z̄)T a = −k
(
∂̄g
)
g−1 .

We conclude this brief overview on NLSM by mentioning the possibility of in-

troducing gauged NLSM [61]. The idea is to obtain an explicit construction for

the NLSM over symmetric spaces of the type G/H, G being a generic Lie group

with anomaly-free subgroup H. In writing (3.7) for a generic Lie group G we can

assume that G, the algebra associated to G, admits an ad(H)-invariant orthogonal

decomposition

G = H⊕ C , [H,H] ⊂ H , [H, C] ⊂ C ,



where C = G/H. A G-valued �eld JG can then be decomposed as JG = JH + JC.

The explicit construction of the gauged model can then be performed by cosetting

away the subgroup H. Concretely this amounts to minimally couple the H-valued

gauge �elds and make the action invariant under the gauge transformations

g′ = hgh−1 ,

A′µ = ∂µhh
−1 + hAµh

−1 ,

for gauge parameter h ∈ H. These type of models turns out to describe the G/H

coset CFT of [34].

Having given a quick glimpse of the main features of NLSM and having introduced

some simple example we can now turn to the model which is of interest for this

thesis: the extended -CPN−1 model.

3.2 The Basso-Rej sigma models

In this section we will introduce and describe the properties of a particular class

of NLSM related to the CPN−1 complex manifold. Ordinary CPN−1 NLSM have

been studied for long time [62, 63, 65] since they reproduce the main features of

expected for 4-dimensional gauge theories: charge screening, asymptotic freedom

and con�nement, to list some of them. The CPN−1 models are known to be

pertubatively renormalizable [66, 67] and asymptotically free. Moreover they have

been analyzed in the large N limit, in which the model is solvable [63, 65] and,

similarly to the O(2N) NLSM [68], they dynamically develop a mass scale. What

is di�erent in this case is that the fundamental excitations are con�ned by the

long-range Coulomb potential induced non-perturbatively by the gauge �eld they

are endowed with. The associated spectrum has a gap and the excitations fall

into representation of the corresponding global symmetry group, namely SU(N),

cosetted by its center, ZN in this case.

From the non-pertubative point of view much less is known about the CPN−1

models beyond the large-N limit. At the classical level, the model is integrable,

as it possesses an in�nite number of conserved charges [62], but these are spoiled



at the quantum level by the appearance of anomalies [70] and thus the integra-

bility is broken by the quantization1. Nonetheless quantum integrability can be

restored [71, 72] by the introduction of minimally coupled massless Dirac fermions.

In [72] the authors were able to give arguments in favor of the restored quantum

integrability and even to propose a candidate S-matrix, namely the minimal re-

�ectionless U(N)-invariant S-matrix of [75]. Further, they give more robustness to

the result by showing how the leading order large-N expansion of the perturbative

S-matrix agrees with the leading order of the integrable S-matrices proposed. Fur-

ther support to the quantum integrability of the model were found in [76, 77]. An

interesting minimal modi�cation of the Koberle and Kurak models was recently

proposed in [74] and will constitute the basis of our analysis.

3.2.1 The Basso-Rej model

The so-called extended -CPN−1 NLSM introduced in [74] are de�ned by the La-

grangian

L = κ (∂µ − iAµ) z̄ (∂µ + iAµ) z + iψ̄γµ (∂µ − iqAµ)ψ − λ

2

(
ψ̄γµψ

)2
, (3.9)

written in terms of:

• z = (z1, . . . , zN) : SU(N) multiplet of complex bosons subject to the con-

straint z̄z = 1.

• ψ : massless Dirac fermion.

• Aµ : U(1) Gauge Field.

• 1/κ : dimensionless coupling.

• q : dimensionless fermion charge.

• λ : dimensionless Thirring coupling controlling the fermion quartic self-

interaction.

The extended -CPN−1 model enjoys the following symmetry:

1This is not true for the case N = 2 in which the model reduces to the O(3) NLSM and hence
is quantum-integrable [69, 119, 120, 19].



• SU(N) Rigid Symmetry acting on the bosons z and is related to the global

isometry group of the symmetric space CPN−1.

• U(1) Gauge Symmetry implemented by the presence of the (non-dynamic)

gauge �eld Aµ and given explicitly by

Aµ → Aµ − ∂µω

z → eiωz

z̄ → e−iωz̄ .

(3.10)

The lack of a kinetic term for the gauge �eld makes possible to integrate it

out and plug back the result to reveal the highly non-linear nature of the

model under consideration in term of the dynamic �elds z and ψ. The gauge

�eld can be expressed as

Aµ = iz̄∂µz −
q

2κ
ψ̄γµψ . (3.11)

As unfolded by the large-N analysis [65, 63] the gauge symmetry is non-

perturbatively spontaneously broken. The e�ect is similar to what observed

in the Schwinger model (i.e. euclidean 2-dimensional QED) [78]: the mass-

less fermion is eaten up by the gauge �eld which acquires a mass and becomes

dynamical. This lead to the screening of Coulomb interaction at long dis-

tances and the fundamental excitations, called spinons, are formed.

• U(1) Rigid Symmetry (Vector) associated to the conservation of the

fermionic number.

• U(1) Rigid Symmetry (Axial) associated to the chiral rotation of the

fermion. This is spoiled at the quantum level and breaks down to the discrete

Z2k which spontaneously breaks to Z2.

3.2.2 Perturbative renormalization

The model (3.9) comes endowed with three dimensionless parameters. The fermionic

U(1) charge is the only one which does not renormalize. To see this one can com-

pute the Gauss law, namely

i2κz̄Dµz = qψ̄γµψ , (3.12)



where we immediately identify at l.h.s the U(1) bosonic current Jµ = i2κz̄Dµz.

Relation (3.12) provides an identity between the bosonic and fermionic currents

which, being physical observables, �ow to a �nite value in the UV limit. The

charge q plays the role of a constant of proportionality between the two currents

and therefore should not renormalize.

The Thirring coupling λ instead is a running coupling constant. To see this one

should carefully compute the corresponding 1-loop β-function, as done in [74] for

instance. There we learn that to obtain the RG renormalization equation we have

to consider the correlator of two fermionic currents jµ. The result of the analysis,

in the MS renormalization scheme, boils down to the RG equations

µ
∂κ

∂µ
=
N

2π
+O

(
1

κ

)
,

µ
∂λ

∂µ
=

q2

4πκ2
+O

(
1

κ3

)
,

µ
∂q

∂µ
= 0 ,

(3.13)

whose solutions reads

κ(µ)|1-loop =
N

2π
log(µ/Λ) , λ(µ)|1-loop = λ∞ −

q2

2Nκ
, (3.14)

in terms of the renormalization scale Λ and the UV Thirring coupling value λ∞.

A quick look at the form of running bosonic coupling κ(µ) reveals that the model

enjoys asymptotic freedom, as κ→ 0 in the UV limit.

Having established that (5.8) is a properly renormalizable model we can turn the

attention to its integrability properties.

3.2.3 Classical integrability

As seen in Chapter 2 the classical integrability of a �eld theory relies on the

existence of a non-abelian �at and conserved current jabµ , namely the current should

satisfy

∂µj
ab
ν − ∂νjabµ + [jµ, jν ]

ab = 0 , ∂µj
ab
µ = 0 . (3.15)



Such a current is then employed to construct the Lax connection

Lµ(x) =
1

1− x2
Tr Jµ +

x2

1− x2
εµνTr J

ν , (3.16)

depending on a spectral parameter x and which is �at by construction. With-

the path-ordered exponential of the Lax connection we can eventually obtain the

Monodromy matrix,

M(x) = P exp

∫
dσ Lσ(x) . (3.17)

The existence of the latter object guarantees the integrability of the model as

can be expanded in x to generate all the in�nitely many non-abelian conserved

charges.

In [74] the existence of such a �at and conserved current is discussed in details.

The proof is slightly technical and we simply give a brief account of the idea. The

most general conserved current can be constructed by linear combination of the

conserved currents of the theory and a topological term [79, 80]. The former are

given explicitly by the Noether procedure applied to the Lagrangian (3.9); J , the
current associated to the global U(N) isometry, is then given by

J ab
µ = z̄aDµz

b −Dµz̄
azb , (3.18)

out of which we can extract the U(1) component

J ′µ = TrJµ = 2z̄Dµz . (3.19)

Thus the most general conserved current can be written as the combination

jabµ = aJ ab
µ + bJ ′µδab + εµν∂

νfab , (3.20)

with f being an arbitrary matrix of functions. The general current (3.20), once

plugged into (3.15), gives the anomalous �atness equation

∂µj
ab
ν − ∂νjabµ + [jµ, jν ]

ab = εµν

4∑
i=1

αiO
ab
i − εµν(1− a)∂ν∂νf

ab , (3.21)

where the explicit form of the coe�cients αi and of the operators Oab
µ , in terms

of constants a, b and the bosonic �eld z, can be found in [74]. By imposing the

vanishing of the r.h.s. of (3.21) we obtain that the current (3.20) is �at for c =



a = 1 and for any value of b. The insensitiveness to the parameter b is related

to the fact that it controls the U(1) part of the monodromy matrix which is not

of interest here. To conclude the sketch of the proof we can then choose b = 0

and, by expanding the monodromy matrix (3.17) at large spectral parameter x,

it is possible to generate the in�nitely many non-abelian conserved charges of the

model, matching those of [70].

3.2.3.1 Towards quantum integrability

Having established the classical integrability of the model (3.9) we now turn our

attention to the quantum version. Classical integrability may be, and it actually is

in most cases, broken by quantization as the in�nite conservation laws associated to

the conserved charges may develop quantum anomalies. A elegant way of providing

evidences for quantum integrability relies on the counting argument proposed in

[81]. The underlying idea is as simple as powerful and we will give a sketch of it.

The starting point is the observation that the classical theory is scale invariant

which implies, in light-cone coordinates, that the energy-momentum tensor conser-

vation law takes the form ∂+T−− = 0. Thus it is easy to imagine how to construct

an in�nite series of conservation laws associated to the energy-momentum tensor,

for instance it is trivial to verify that ∂+(T−−)n = 0, for any integer n. The broken

scale invariance of the quantum model is then believed not to spoil these conser-

vation laws but to deform them, at least for what concerns integrable models. As

long as the deformation can be casted in the form

∂+ [(T−−)n + F1] = ∂−F2 , (3.22)

for some operators F1 and F2, the existence of a conserved charge is again ensured.

In [81] it has been proposed that a correct way to determine quantum integrability

will pass through the classi�cation of all the possible anomalous term that can ap-

pear at the level of conservation laws. The next step is to classify all the admissible

operator of the form ∂±(· · · ) modulo kinematic constraints and equations of mo-

tion. The spirit of the arguments goes then as follows: if the operators appearing

in the two classi�cations match then this means that all the possible anomalies

may be expressed as the divergence of some operator. Then at the quantum level,

this will imply that any anomalous conservation law can be cast in the form (3.22),

restoring the in�nite number of conserved charges.



In [74] all the anomalies and divergences for two of the higher order conservation

laws have been classi�ed and the authors found that, in both cases, there's an un-

matched anomaly for arbitrary values of the parameters. Considering the variety

of models [81] that can be argued to be integrable according to this argument,

the unmatched anomaly seems to signal that the integrability of (3.9) is lost at

the quantum level. Nonetheless we will see in Chapter 5 how there exist an in-

tegrable subclass of (3.9), which can be obtained by �ne-tuning the parameter of

the model. This �ne-tuning will require the use of non-perturbative techniques

and will leave little doubt about the actual integrability of the �ne-tuned subclass

of models. These non-perturbative techniques, going under the name of Thermo-

dynamic Bethe Ansatz, will be introduced in the next chapter.



Chapter 4

Thermodynamic Bethe Ansatz

In this chapter we describe the main aspects of the Thermodynamic Bethe Ansatz

procedure as developed during the 90's by various groups and pioneered by A. B.

Zamolodchikov [87, 88, 89, 90, 91, 92, 93].

Before entering the details of this approch we want to give a breif overview of

the ideas underlying. We will focus on 1 + 1-dimensional integrable QFT, in other

words those for which the S-matrix factorises in two-particle scattering amplitudes

and the absence of particle production is guaranteed, as discussed in Chapter 2.

We may look at integrable theories as particular perturbations of an underlying

conformal theory. In this sense the in�nite number of conserved quantities asso-

ciated with the CFT can be combined in such a way to produce an in�nite set of

charges even for the perturbed theory. These theories, for which the perturbation

is said integrable, can be analysed non-perturbatively by the TBA technique. The

analysis performed within the TBA framework is precisely in this sense, for exam-

ple one of the quantity which is accessible is related to the high energy RG �ow

of the theory in the parameter space. More precisely it is possible to compute the

central charge of the conformal theory reached in the, so-called, UV limit.

The chapter is organized as follows. In Section 4.1 the TBA standard deriva-

tion is presented and applied to the most simple type of models, for instance the

Lee-Yang model [95, 96]. In Section 4.2 the concept of Y-System, a system of

functional equations which represents an alternative way of describing the system,

is introduced; moreover the non-perturbative RG �ow analysis is illustrated with
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examples. In Section 4.3 more general TBA related to some types of Non-Linear

Sigma Model are introduced and analysed.

4.1 The TBA Framework

The TBA analysis is a multi-step procedure which requires both physical intuition

and sophisticated mathematical tools in order to be performed. In what follows

we will develop the subject by starting with simple models, in the initial step for

which the physical sense should not be spoiled by technical aspects, then, letting

the models become more general, we will lead the discussion to the more advanced

non-perturbative technique that can be applied in this framework.

4.1.1 The Bethe Wave Function

For the time being we will consider a 1 + 1-dimensional integrable quantum �eld

theory which possesses a factorizable S-matrix and moreover is de�ned on a com-

pacti�ed (length L) spatial dimension.

Since the glorious times of Perturbative QFT, it is well known that the wave

function formalism cannot be applied to relativistic1 theories. This fact is related

to the e�ects of pair creation and virtual particles production, processes which

force the theory to have a number of particle which is not �xed. Another way of

looking at this is that the very de�nition of a relativistic quantum particle makes

sense only in the asymptotic regions where the inter-particles distances are large,

compared to the range of the interactions involved. In this conditions we can

consider an asymptotic con�guration composed of N particles and associate to

each of them a position {x1, x2, · · · , xN}. Such a situation can be described by

means of a wave function Ψ(x1, x2, · · · , xN), known as Bethe Wave Function and

originally proposed in [97].

Now we can pick a speci�c particle a and move it along the compacti�ed space

direction back to its original position. In doing so we clearly lose the wave function

description whenever the a-particle is closed to one of the others, say of type b, since

the interaction are then no longer negligible and the free particle pictures cannot

1Here the term relativistic is used to denote that we are considering quantum theories which
are Lorentz invariant and are therefore intrinsically multiparticle theories.



be used. Nonetheless we know that for diagonal integrable scattering theories, such

the one we are considering, the interaction is entirely encoded in the 2-particle S-

matrix Sab(θab). The amplitudes can be thought,at this stage, as numerical factors

picked up by the wave function once the two particle are again well separated,

and can be considered as free. Moreover the space is compacti�ed and the wave

function should be periodic in the variable xa

Ψ(x1, · · · , xa, · · · , xN) = Ψ(x1, · · · , xa + L, · · · , xN) .

If we take the a-particle all around the circumference L and use the scattering

data we end up with a consistency equation of the type

Ψ(x1, · · · , xa + L, · · · , xN) = eiPaL
∏
a6=b

Sab(θab)Ψ(x1, · · · , xa, · · · , xN) ,

which, in view of the periodicity of the wave function de�ned on a compacti�ed

spatial dimension, becomes a quantization condition for the particles rapidities

eiPaL
∏
a6=b

Sab(θab) = 1 . (4.1)

This set of equations is known as Bethe Ansatz (BA) equations. The study of

BA equations is indeed really tied with the study of integrable models as we will

have appreciated if we had followed the customary approach to integrability. This

very elegant and fruitful �eld of research has stemmed from the seminal work of

A. Bethe on the 1 dimensional spin 1/2 chains [83]. Then the BA formulation

culminated in the work of the St. Petersburg group [84] on the Quantum Inverse

Scattering Method. Not having the possibility of covering this interesting topic

we defer to the very good reviews and lecture notes on the algebraic BA and its

application in relation to statistical systems [85]. From the mathematical point of

view the BA procedure provides the analytic tool to perform the diagonalization

of tensor products of matrices like the one appearing in (4.1). We will comment

later on the various form of these equation in association to the various models we

are going to meet.



L

R

Figure 4.1: The TBA torus.

4.1.2 Mirror Thermodynamics

The next idea to deform the geometry of the space-time, i.e. the cylinder, not

by bending it but by deforming the boundaries conditions: we compactify the

time direction. From the geometrical point of view we can imagine of generating

the cylinder on which the theory is de�ned as the limit of a torus with increasing

external radius. Letting L and R be the generating circumferences, as in Figure 4.1

we can know make use of relativistic invariance and decide which direction to pick

up as time. First we can pick the L-direction as time and send it to in�nity keeping

R �nite. Denoting with HR the Hamiltonian of the quantum system de�ned on

the periodic compacti�ed space direction R and by HR its Hilbert space, we have

that the partition function associated to the �eld theory Z(R,L) is, in the L→∞
limit, dominated by

Z(R,L) ≈ lim
L→∞

TrHRe
−HRL ≈ e−E0(R)L , (4.2)

E0(R) being the Casimir Energy of the ground state of the theory which represents

the dominating term in the partition function is such a limit.

Alternatively, we can consider the R-direction as the time and send L to in�nity

anyway. In this case we end in a theory de�ned on a compacti�ed time direction.

We can then interpret the compacti�cation length R as the inverse of the tem-

perature at which we are placing the theory. This is the mirror thermodynamic

picture and will be provided of an Hamiltonian HL acting on an Hilbert space HL.

In this setup the partition function is dominated by

Z(R,L) ≈ lim
L→∞

TrHLe
−HLR ≈ e−RLf(R) (4.3)



where f(R) is the free-energy per unit length of the system at �nite temperature

T = 1/R. By comparing equation (4.2) with (4.3) we then have

E0(R) = Rf(R) (4.4)

Last equation enables to access information about the underlying CFT by per-

forming the UV limit R → 0. Since at the UV point the theory should reduce to

a CFT we can employ a result [98] about CFT to state that

lim
R→0

Rf(R) = − π

6R
ce� , ce� = c− 24∆ , (4.5)

where ce� is the so-called the e�ective central charge of the underlying conformal

�eld theory, i.e. the di�erence between c, the central charge of the underlying

conformal �eld theory, and ∆, the engineering dimension of the lowest operator2.

Therefore, the introduction of periodic boundary conditions in a unitary CFT,

see equation (1.19), has the e�ect of generating a non-zero value for the ground

state energy in the UV-limit and in this sense the e�ective central charge can be

interpreted as Casimir energy.

4.1.3 The TBA approach

The most simple example of how the TBA procedure works is represented by a

theory in which there is just one kind of fundamental scalar excitations. Scatter-

ing amplitudes are thus ordinary functions S(θ) and the momentum quantization

condition for N particle lying on a cylinder of (spatial) circumference L is given

by

eipiL
∏
j 6=i

S(θi − θj) = 1 i = 1, 2, . . . , N . (4.6)

Here pi = m sinh θi is the relativistic momentum of the i-th particle. Parametrizing

S(θ) = exp (i∆(θ)) and taking the logarithm we obtain

mL sinh θi +
∑
j 6=i

∆(θi − θj) = 2πni , (4.7)

2This quantity coincides with the Virasoro central charge for unitary models, the ones for
which the dimension ∆ is zero.



which is a more explicit expression since we introduced some sort of occupation

numbers ni which describe the allowed states. Each possible state is thus charac-

terized by the set of rapidities that solve (4.7) for each choice of the occupation

numbers. The energy of the system is given by

H =
N∑
i=1

m cosh θi , (4.8)

since the theory is relativistic.

The formidable analytical di�culty of the problem calls for some physical idea.

We can analyse the system in the thermodynamic limit

L→∞ N →∞ N/L = �xed . (4.9)

In this limit the growing number of particles forces the spectrum of rapidities

to condense and the spacing between adjacent rapidities scales as θi − θi−1 ∼
1/mL. It makes sense to introduce a continuous function by considering a certain

number of particle ki whose rapidities lie in the interval [θi−1, θi] and taking the

thermodynamic limit; this translates in the de�nitions

ρ̄(θ) = lim
Th

ki − ki−1

θi − θi−1

, (4.10)

for the density of occupied states and

ρ(θ) = lim
Th

ni − ni−1

θi − θi−1

. (4.11)

for the density of allowed states.

These density are useful to estimate the discrete sums over rapidities as integrals

over the occupied states density

lim
Th

N∑
i=1

f(θi) =

∫
dθ ρ(θ)f(θ) (4.12)

Relation (4.12) can be used, for instance, to convert the energy of the system (4.8)

into a functional of the occupation density

H → H[ρ̄] =

∫
dθ ρ̄(θ) cosh θ . (4.13)



The thermodynamic limit of (4.7) can be obtained by �rst recasting the sum as

an integral

mL sinh θi +

∫
dθ′ ρ̄(θ′)∆(θi − θ′) = 2πni ,

then subtracting the equation for i− 1 to the previous, dividing by θi − θi−1

mL
sinh θi − sinh θi−1

θi − θi−1

+

∫
dθ′ ρ̄(θ′)

∆(θi − θ′)−∆(θi−1 − θ′)
θi − θi−1

= 2π
ni − ni−1

θi − θi−1

.

Eventually we can take the thermodynamic limit to obtain

mL cosh θ +
(
ϕ ∗ ρ̄

)
= 2πρ(θ) (4.14)

where (
ϕ ∗ ρ̄

)
=

∫
dθ′ ρ̄(θ′)ϕ(θ − θ′) , ϕ(θ) = ∂θ∆(θ) . (4.15)

Now it is all about thermodynamics. In fact the equilibrium distribution is the

one that extremize the free energy functional E − TS. We can safely choose the

functional (4.13) as a good candidate for the energy E. But two key ingredients are

still not speci�ed: the temperature and the entropy. By considering the theory as

de�ned on a compacti�ed imaginary time direction of circumference R we are led

to interpret 1/R as the temperature. For what concerns the entropy we consider

the number of di�erent distributions in the interval ∆θi. In the "fermionic" case

it is given by
ki!

ni! (ki − ni)!

while in the "bosonic" we have

(ki + ni + 1)!

(ni)! (ki − 1)!
.

In the limiting behavior L→∞ these numbers become functionals N [ρ, ρ1] related

to the entropy by S[ρ, ρ1] = logN [ρ, ρ1]. We explicitly have

SF [ρ, ρ̄] =

∫
dθ [ρ log ρ− ρ̄ log ρ̄− (ρ− ρ̄) log(ρ− ρ̄)] ,

SB[ρ, ρ̄] =

∫
dθ [(ρ+ ρ̄) log(ρ+ ρ̄)− ρ log ρ− ρ̄ log ρ̄] .

Fermionic case: The free energy must be minimized under the constraint of the

Bethe equations thermodynamic limit. To this purpose we introduce a Lagrange



multiplier λ(θ) to minimize

Φ[ρ, ρ̄, λ] = RF [ρ, ρ̄] + Λ[ρ, ρ̄, λ] = RH[ρ̄]− SF [ρ, ρ̄] + Λ[ρ, ρ̄, λ] =

=

∫
dθ [mR ρ̄ cosh θ − ρ log ρ+ ρ̄ log ρ̄+ (ρ− ρ̄) log(ρ− ρ̄)+

+λ
(

2πρ−mL cosh θ −
(
ϕ ∗ ρ̄

))]
The extremum con�guration is then obtained by solving

δΦ

δρ
= − log

ρ

ρ− ρ̄
+ 2πλ = 0 , (4.16)

δΦ

δρ̄
= mR cosh θ + log

ρ̄

ρ− ρ̄
−
(
ϕ ∗ λ

)
= 0 , (4.17)

δΦ

δλ
= 2πρ−mL cosh θ −

(
ϕ ∗ ρ̄

)
= 0 . (4.18)

Without employing equation (4.18), we can solve for λ equation (4.16) and plug

it into (4.17) to obtain

mR cosh θ + log
ρ̄

ρ− ρ̄
−
(
ϕ ∗ log

(
1 +

ρ̄

ρ− ρ̄

))
= 0 ,

which, with the aid of a more suitable variable the so-called pseudoenergy

e−ε =
ρ̄

ρ− ρ̄
, (4.19)

becomes the usual Thermodynamic Bethe Ansatz Equation

ε(θ) = mR cosh θ − 1

2π

(
ϕ ∗ log

(
1 + e−ε

) )
. (4.20)

We want to emphasize that, up to now, no explicit use of the constraint has been

made. It comes at hand once we want to write the maximum value of the free



energy (4.4) (i.e. the Casimir Energy of the relativistic theory)

E(R) =
RF [ρ, ρ̄]

L
=

=
1

L

∫
dθ [mR ρ̄ cosh θ − ρ log ρ+ ρ̄ log ρ̄+ (ρ− ρ̄) log(ρ− ρ̄)] =

=
1

L

∫
dθ

[
mR ρ̄ cosh θ − ρ log

ρ

ρ− ρ̄
+ ρ̄ log

ρ̄

ρ− ρ̄

]
=

=
1

L

∫
dθ

[
log

ρ

ρ− ρ̄

(
−ρ+

1

2π

(
ϕ ∗ ρ̄

))]
=

= −m
2π

∫
dθ cosh θ log

ρ

ρ− ρ̄
,

which in terms of the pseudoenergy becomes

E(R) = −m
2π

∫
dθ cosh θ log

(
1 + e−ε(θ)

)
. (4.21)

Bosonic case: We decided to go through some details also in bosonic case in

order to show a perhaps more quicker but less formal method. The quantity we

want to maximize is represented by

f [ρ, ρ̄] = RF [ρ, ρ̄] = RH[ρ̄]− SB[ρ, ρ̄] =

=

∫
dθ [mR ρ̄ cosh θ − (ρ+ ρ̄) log(ρ+ ρ̄) + ρ log ρ+ ρ̄ log ρ̄] ,

and we can evaluate the �rst order variation δf = f [ρ+ δρ, ρ̄+ δρ̄]− f [ρ, ρ̄], which

is given by

δf =

∫
dθ

[(
mR cosh θ + log

ρ̄

ρ+ ρ̄

)
δρ̄+ log

ρ

ρ+ ρ̄
δρ

]
.

Thus by setting δf = 0 we will obtain the equation corresponding to the bosonic

case. To do this we have to take also into account the �rst order variation of

the constraint, which is given by 2πδρ =
(
ϕ ∗ ρ̄

)
and exchanging the order of

convolution we �nd the TBA equation in the bosonic case

mR cosh θ + log
ρ̄

ρ+ ρ̄
+

1

2π

(
ϕ ∗ log

ρ

ρ+ ρ̄

)
= 0 ,

which, by de�ning a bosonic pseudoenergy

e−ε =
ρ̄

ρ+ ρ̄
, (4.22)



becomes

ε(θ) = mR cosh θ +
1

2π

(
ϕ ∗ log

(
1− e−ε

) )
= 0 . (4.23)

The corresponding Casimir energy is found to be in this case

E(R) =
m

2π

∫
dθ cosh θ log

(
1− e−ε(θ)

)
. (4.24)

The general structure of the TBA equations can be seen immediately from equa-

tions (4.20) and (4.23). Indeed the TBA procedure of implementing the mirror

thermodynamic for an integrable relativistic theory on a �nite-size geometry ulti-

mately result in a non-linear integral equation for the unknown pseudoenergy ε(θ).

As we will see later on this is the key mathematical aspects of TBA description the

topic of integral equations is very well studied in mathematics since XVIII century.

Having developed a formalism capable of condensing the information of a whole

scattering theory, although a not so common scattering theories as integrable ones

turn out to be, into a single integral equation is something remakable which al-

lows the exact solution of integrable QFT. With the term exact we mean that

the result obtainable, as we will see, are genuinely non-perturbative. Moreover,

the TBA equations naturally incorporates the RG scale at which the theory is

considered and allow for non-trivial RG �ow analysis in term of non-perturbative

computations. Establishing the way in which the TBA allows to follow the RG

�ow is the aim of next section.

4.1.4 UV limit and kink limit

We immediately realize that the dimensionful parameters of the problem, namely

the mass scale m and the �nite-size length R, appear only in the dimensionless

combination r = mR. For dimensional considerations we can then safely assume

that the quantities relevant in the asymptotic regions will be functions of r alone.

The parameter r will allow us to explore the RG �ow regimes. In the deep UV

region, for instance, the mass scale goes to zero and thus we can alternatively send

r to zero: the TBA equations behave in the same way. Unfortunately this limit

is not safe to take straightforwardly because the vanishing of r will imply in turn

the vanishing of the driving terms resulting in a ill-de�ned set of equations.



Keeping r �nite but small and analyzing the behavior of solutions reveals that they

develop a central region in which the solution is almost constant. It is customary

to denote this region with the name plateau region and the constant values by

plateau values. Moreover the width of the plateau grows as r becomes smaller and

smaller, see Figure 4.2, and the plateau region can be estimated to be roughly

[− log(2/r), log(2/r)].
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Figure 4.2: The pro�le of function L(θ) for several values of r. In the table, a

numerical comparison of the relative e�ective central charge and the theoretical

value cth = 4/5 and the legend.

It is possible to get analytical access to UV limit by performing a simple manip-

ulation. Namely we can hide the presence of r by shifting the functions in such a

way to send the edge of the fallo� to the origin and to keep only the part of the

driving term which will contributes in the, say, θ � 0 regime. Doing this results

in the so-called kink limit, or massless limit, of the TBA equations, namely

εkink(θ) = eθ −
(
ϕ ∗ Lkink

)
(θ) (4.25)



where the kink quantities are de�ned by shifting the usual ones

εkink(θ) = ε(θ + log(2/r)) ,

Lkink(θ) = L(θ + log(2/r)) .
(4.26)

These shifts implies as well a modi�cation for the Casimir energy of the model

but we want to present a more convenient function, namely the �nite size scaling

function

c(r) = − 6

π
RE0(R) =

3r

π2

∫
L(θ) cosh θ dθ , (4.27)

which depends only on the dimensionless parameter r and is governed in the r → 0

limit by the solution of (4.25). The limit can now be taken safely and we are left

with

ce� = lim
r→0

c(r) =
3

π2

∫
Lkink(θ) e

θ dθ ,

where, as in (4.5), ce� = c− 24∆.

Before entering the details of the exact and non-perturbative calculation of the RG

�ow UV limit we stop the TBA procedure for a while to generalize the concept

developed so far and to introduce a way of converting the typical integral equations

which arise in this context into a system of functional equations.

4.2 Universal TBA's

Since for many integrable systems the analytical form of the 2-body S-matrix is

known, whether it is proved or conjectured, large e�orts had been made by the

comunity to carry out the TBA program for a great number of 1 + 1-dimensional

integrable systems [87, 88, 99, 100]. In this section we want to address to a

particular class of systems, namely the integrable perturbations of some CFT

related to the A,D and E a�ne Lie algebras. We will not enter in a detailed

derivation of the scattering amplitudes and for a complete analysis we defer to the

seminal papers on the topic [88, 89, 90, 91]. We stress that in this situation the

scattering matrix is diagonal, a feature which will allow for a very elegant �nal

form of the equations.



For the time being we can simply denote by Sab(θ) the scattering amplitude for

the scattering a particle of type a with one of type b at rapidity θ = θ1− θ2. With

this writing we refer to the S-matrix which have been computed exactly for the

aforementioned models that can be found in [88, 101].

4.2.1 ADET TBA's

The TBA analysis, including the standard RG �ow analysis, for these type of

systems is carried out in [89] and the result can be compactly written as a system

of non-linear integral equations some unknown pseudoenergies εa(θ), where a =

1, · · · , n and n is the rank of the associated algebra and θ is the rapidity of the

particle. Owing to the symmetry properties of Sab each system is naturally mapped

into its Dynkin diagram and we can associate to each node the corresponding

pseudoenergy. From now on we will thus perform the analysis with a generic

group, denoted by G, in the families A,D and E. To each node of diagram we also

associate a driving term νa(θ) = maR cosh θ in which the masses ma are organized

in the so-called Perron-Frobenius eigenvector3 of G. With these premises the TBA

physical form reads

εa(θ) = νa(θ)−
1

2π

∑
b

(
φab ∗ Lb

)
(θ) . (4.28)

The corresponding function c(r) is given by

c(r) =
3

π2

∑
a

∫
νa(θ)La(θ) dθ (4.29)

where, as standard,

Lb(θ) = log
(
1 + e−εb(θ)

)
, φab(θ) = −i d

dθ
logSab(θ) .

Thanks to the very constrained form of the S-matrices involved it has been shown

by several authors, see [90, 101] for instance, how these type of equations in which

the form of the kernels involved varies from node to node being related to the phase

of the corresponging physical S-matrix, can be brought into a universal form. The

3For a generic Lie algebra the Perron-Frobenius eigenvectors is an eigenvector of the incidence
matrix with all positive entries. It can be proven to be unique and to correspond to the highest
eigenvalue.



latter form involves just a single type of kernel and encodes its model-dependency

only in the coupling among the nodes.

The key relation in this direction is represented by the following matrix identity(
δab −

1

2π
φ̂ab(ω)

)−1

= δab −
1

2 cosh(πω/g)
Gab , (4.30)

in terms of the Fourier Transform of the scattering kernel

φ̂ab(ω) =

∫
dθ eiωθφab(θ) ,

and having incidentally made use of some group theoretical quantities, namely the

Dual Coxeter Number g and the Coxeter Adjacency Matrix G = 2−C. The latter
is an integer-valued matrix which encodes the Dynkin diagram structure of the

simple Lie algebras, essentially it has a 1 at position (i, j) if the node i and j are

linked and a 0 otherwise.

Without entering the details of the proof of relation (4.30) we can get some con-

�dence by evaluating it at ω = 0 to obtain the well known identity [88, 89]

N = C(2− C)−1 ,

between the normalization matrix of the kernels and the Cartan matrix of the

corresponding algebra G. Moreover,and most importantly, by applying (4.30) to

the physical TBA equations (4.28) we obtain the celebrated TBA Universal Form

εa(θ) = νa(θ)−
1

2π

∑
b

Gab

(
φh ∗ (νb − Λb)

)
(θ) , (4.31)

with Λa = log (1 + eεa). As anticipated all the convolutions are taken with the

same universal kernel

φg(θ) =
g

2 cosh(g θ/2)
, (4.32)

which depends on g, the Coxeter number of the algebra G, and the coupling

informations are carried by the adjacency matrix Gab. As a matter of notation

the massive nodes are drawn as black circles and the presence of a convolution

in equation for node i with the node j is represented as link between the nodes.

Since this structure is encoded in the adjacency matrix there's no suprise if the



TBA diagram matches the one of the corresponding Lie algebra. To be explicit

TBAs like (4.31) for the choice G = D5, for instance, is encoded in the following

diagram

D5 GD5 =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 1

0 0 1 0 0

0 0 1 0 0



Another choice for the distribution of masses is possible. This was proposed for

the �rts time in [91, 92, 93] to describe the RG �ows of minimal models perturbed

by their least relevant operator φ13. The energy terms can be choosen as νa(θ) =

δakmR cosh θ, for �xed k. In this case, denoted conventionally by (G)k, the TBA

universal form is given by

εa(θ) = νa(θ)−
1

2π

∑
b

Gab

(
φ2 ∗ Lb

)
(θ) . (4.33)

The massless nodes which do not carry energy nor momentum are usually called

magnons in this context. Their presence is a relic of the auxiliary rapidities that

have been introduced to diagonalize the color part of the trasfer matrix in the

Bethe Ansatz technique. The only di�erence from the diagrammatic point of view

is that magnonic nodes are drawn as white circles in order to distinguish them.

As an illustration we display the situation for the (A4)3 case

(A4)3 GA4 =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0



4.2.2 Y-Systems

One of the most remarkable facts of equations like (4.33,4.31) is that we can cast

the integral form of the equation into a set of functional equations, the so-called



Y-system. This recasting requires a careful analysis since it involves integrals per-

formed on the complex plane and thus the analytic continuation of the pseudoen-

ergies. In order to shift properly the contour of integration one has to know the

exact location of pole and zeros of the functions all over the complex plane and this

might be a di�cult task. To avoid complications we can perform the calculation

for the ground state which is known to posses an analyticity strip |Imθ| < π free

of zero and poles. Once the complex shifts of the kernels are properly evaluated

one is left with the following set of functional equations

Y

(
θ + i

π

g

)
Y

(
θ − iπ

g

)
=
∏
b

(1 + Yb(θ))
Gab

(4.34)

for the Y-functions Ya(θ) = eεa(θ).

Despite its derivation, rigorously proved for the ground state, the Y-system's (4.34)

validity is extended to all the states of the theory. This is reasonable since the

choice of a state of the theory amounts, in the TBA language, to the analyticity

and asymptotic considitions imposed on the Y-functions. We can clarify the role

of the asymptotic conditions by making a comparison with respect to the theory

of partial di�erential equations. In both context the equations give a general

solution which becomes unique only when asymptotics (or boundary or initial

value) conditions are supplied.

4.2.3 RG Flows and Rogers Dilogarithm

We can now carry over the TBA analysis with aim of reaching the UV point of the

RG �ow. The analytic access to UV quantities is strictly related to the appearance

of the Rogers Dilogarithm function, see Appendix A for more details. This function

is ubiquitous in TBA analysis and encodes the UV quantities thanks to the so

called plateau values as we will see later on. The latter are a set of stationary

solution to the Y-system, or alternatively to the TBA integral equations, which

are used as arguments for the Rogers Dilogarithm to produce, for instance, the

UV central charge thanks to some very speci�c sum rule.

These type of sum rules have been studied intensely both from the mathematical

[155, 102, 145] and physical [52, 101, 107] point of view. The most simple cases

can be treated analitically since for them the plateau value are exactly known but



for the general cases one has to resort to numerical analysis, which are usually

extremely accurate, in order to conjecture the proper value for the sum rule.

To see how these type of calculations are performed we can consider the TBA for

the (An+1)1 model of Section 4.2.1, see Figure 4.3 for the corresponding diagram.

The explicit form of the TBA can be read from equation (4.33) by choosing the

(An+1)1
0 1 2 n− 1 n

Figure 4.3: Dynkin diagram for the family of models (An+1)1 of the ADE
type.

appropriate parameters. What is relevant is instead the kink, or massless, limit of

the TBA equations. As discussed in Section 4.1.3, the kink limit is a way to safely

perform the r → 0 limit which would be otherwise ill-de�ned. Thus, shifting the

rapidities by the quantity log(2/r) we can get rid of the explicit dependence from

r in the equations. Selecting one type of "chiral" kinks amounts in the choice of

the sign of the exponential appearing as driving term. With these choices the kink

limit4 of the TBA equation is given by

ε0(θ) +
(
ϕ ∗ L1

)
(θ) = eθ , (4.35)

εk(θ) +
(
ϕ ∗ Lk−1

)
(θ) +

(
ϕ ∗ Lk+1

)
(θ) = 0 , (4.36)

εn(θ) +
(
ϕ ∗ Ln−1

)
(θ) = 0 , (4.37)

where k = 1, 2, . . . , n − 1 and ϕ(θ) = φn+2(θ) is the universal kernel since g =

cox(An+1) = n + 2, see (4.32). Remarkably the calculation is pretty much insen-

sitive to the speci�c form of the kernel involved, at least for what concern the

appearance of the Rogers Dilogarithm. The importance of the kernel will emerge

in determining the plateau values which will be ultimately responsible for the sum

rule value.

4We dropped the su�x in kink quantities to enlighten the notation.



For computational purposes, it will be useful to take a derivative of equations

(4.35-4.37), we get5

ε′0(θ) +
(
ϕ ∗ L′1

)
(θ) = eθ , (4.38)

ε′k(θ) +
(
ϕ ∗ L′k−1

)
(θ) +

(
ϕ ∗ L′k+1

)
(θ) = 0 , (4.39)

ε′n(θ) +
(
ϕ ∗ L′n−1

)
(θ) = 0 , (4.40)

where we used

L′m =
d

dθ
Lm(θ) = − 1

1 + eεm
dεm
dθ

.

According to (4.29) and (4.5) the e�ective central charge can now be written as

ce� =
6

π2

∫
dθ eθL0(θ) ,

which is exactly evaluable by means of some identity concerning Rogers Diloga-

rithms. In order to extract explicitly the integral representation for these special

function we need some preliminary manipulations.

Observation: The peculiar asymptotic behavior displayed by ε0 is given by

ε0(θ) =

const. + . . . , θ → −∞

eθ + . . . , θ → +∞
, (4.41)

while, on the other side, magnonic nodes will be characterized by a constant

behavior in both limits. The asymptotics (4.41) allows to integrate by parts �half�

of the integrand without picking up a �nite contribution

I =

∫
dθ eθL0(θ) =

1

2

∫
dθ
(
L0e

θ − L′0eθ
)
, (4.42)

since the boundary term [L0e
θ]+∞−∞ vanishes.

5The convolution product enjoys the property d
dx

(
f ∗ g

)
(x) =

(
f ′ ∗ g

)
(x) =

(
f ∗ g′

)
(x)



By substituting the right hand sides of equations (4.35) and (4.38) in (4.42) we

come to

I =
1

2

∫
dθ
(
L0e

θ − L′0eθ
)

=

=
1

2

∫
dθ (L0ε0 − L′0ε′0)︸ ︷︷ ︸

I0

+
1

2

∫
dθ
[
L0

(
ϕ ∗ L′1

)
− L′0

(
ϕ ∗ L1

)]
.

Exchanging the convolution order6 and using n − 1 times equations (4.36) and

(4.39) with k = 1, 2, . . . , n− 1 we get

I = I0 + I1 +
1

2

∫
dθ
[
L1

(
ϕ ∗ L′2

)
− L′1

(
ϕ ∗ L2

)]
=

= I0 + I1 + I2 +
1

2

∫
dθ
[
L2

(
ϕ ∗ L′3

)
− L′2

(
ϕ ∗ L3

)]
= · · · =

=
n−1∑
k=0

Ik +
1

2

∫
dθ
[
Ln−1

(
ϕ ∗ L′n

)
− L′n−1

(
ϕ ∗ Ln

)]
=

n∑
k=0

Ik ,

where in the last step we made use of equations (4.37) and (4.40). Explicitly we

obtain

I =
n∑
k=0

Ik =
n∑
k=0

1

2

∫ +∞

−∞
dθ

[
log
(
1 + e−εk(θ)

)
+

εk(θ)

1 + eεk(θ)

]
dεk
dθ

.

Now we can trade the rapidity variable for a more suitable integration variable,

namely t = 1/(1 + eεk(θ)), and, denoting by T
(k)
± its asymptotic values, we obtain

the fundamental result [91]

Ik =
1

2

∫ T
(k)
+

T
(k)
−

dt

[
log(1− t)

t
+

log t

1− t

]
,

What obtained so far can be rewritten in terms of the Rogers Dilogarithm function,

see Appendix A, which we recall for convenience

L(x) = −1

2

∫ x

0

[
log(1− t)

t
+

log t

1− t

]
dt , 0 < x < 1 .

The �nal result can then be written, in terms of

Ik = L
(
T

(k)
−

)
− L

(
T

(k)
+

)
,

6Namely
∫
dx f(x)

(
g ∗ h

)
(x) =

∫
dxh(x)

(
g ∗ f

)
(x), which is true assuming g(x) = g(−x).



as

I = I− − I+ =
n∑
k=0

L
(
T

(k)
−

)
−

n∑
k=0

L
(
T

(k)
+

)
.

We immediately realize that a neat pattern has emerged. The quantity I, related

to the e�ective central charge by c = 6/π2I, is splitted in two contributions and

each of them is a Rogers Dilogarithm sum rule. The latter is inteded in the sense of

a sum of Rogers dilogarithms, evaluated in particular values which solve a certain,

in most cases highly non-linear, algebraic equation. The change of variable we

used de�nes these quantities for us

T
(k)
± =

1

1 + eεk(±∞)

The de�ning equations for the last quantities are then given by the asymptotic

behavior of the TBA equations (4.35-4.37) which are di�erent in the two asymp-

totic regions. A central role is played by the magnonic nodes for which we saw

earlier that the asymptotics were not those of (4.41) but rather are character-

ized by pseudoenergies whose pro�les interpolate between two asymptotic �nite

plateau values. In this way we see that the terms T
(k)
+ vanish for a massive node

and since L(0) = 0 the massive node do not contribute in the θ → +∞ regime.

This suggests to interpret the θ → +∞ contribution as coming from the Infra-Red

(IR) RG limit since the massive particles decouple from the rest of the theory as

their masses goes to in�nity. In the other limit, namely θ → −∞, the situation

is reversed since the driving terms are all equal to zero. We can interpret this

behavior as that of the UV regime in which the all the masses go to zero and the

theory becomes conformal.

The kink, or massless, limit of the TBA equations is a very useful manipulation to

explicitly extract the Rogers dilogarithm functional form but, for what concerns

the asymptotic values, it may seem a little arti�cial. A remarkable properties of

these type of system is that if one solves the full integral equations is left with

a set of functions which display a behavior similar to that of the kink solutions.

More precisely the very de�nition of the kink limit relies on the idea of hiding the

r-dependence of the equations in such a way to obtain a sensible r → 0 limit. This

procedure has been introduced in order to cure the ill-de�niteness of the equation

for r strictly null. Nonetheless from the numerical point of view, see Chapter 6, as



r gets smaller and smaller the behavior of the solution of the full TBA rensembles

very closely that of the kink solutions. Roughly speaking the full solution is

obtained as �superposition� of the left and right kink solutions properly shifted

back to their original position. The result for the case at hand, we choose n = 6,

is displayed in Figure 4.4 where we can appreciate the plateau regions mentioned

above. Moreover we can also notice how the full solutions interpolate between the

constant plateau value in the two regimes. The expected symmetry pattern of the

plateau values is respected as well, in fact we can see how the even Z2 symmetry

(6 nodes) of the UV region, central plateau in Figure 4.4, is reduced to a odd

Z2 symmetry (5 nodes) in the IR regime, asymptotics regions in Figure 4.4. For

instance consider the �rst magnonic node k = 1, green line in Figure 4.4; in the

central plateau region its value matches that of the UV symmetric partner, namely

the k = 5 node (purple line in the picture), while in the asymptotic plateau region

the pro�le of the solution interpolates to the value of the IR symmetric partner

k = 6 (orange line in the picture).

In the case at hand, but as customary in these type of calculations, the asymptotic

equations have to be analyzed separately.

IR contribution: In this regime there are only n nodes since the massive one,

the 0-th, has decoupled. De�ning the quantity xa = e−εa(−∞) for a = 1, · · · , n (i.e.

ranging only over magnons) we have

x2
a =

n∏
b=1

(1 + xb)
Iab , (4.43)

where Iab = δa,b+1 + δa,b−1 is the incidence matrix of An. The solution to this type

of equations are known in literature [88, 93] and reads

xa = −1 +
sin2 π(a+1)

n+3

sin2 π
n+3

. (4.44)

UV contribution: The massive node now reaches a �nite limit which in given

in terms of the quantities yα = e−εα(+∞) for α = 0, · · · , n by

y2
α =

n−1∏
β=1

(1 + yβ)Iαβ , (4.45)
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Figure 4.4: The result of the numerical integration of the (A6)1 TBA for

r = 10−8.

where and Iαβ = δα,β+1 + δα,β−1 is the incidence matrix of An+1. Their explicit

values can be obtained by adapting the parameters of (4.44).

Thanks to relation (A.9) and (A.4) of Appendix A both contribution can be eval-

uted exactly and become

c+ =
6

π2

n∑
k=0

L
(
T

(k)
+

)
=

6

π2

n∑
a=1

L
(

1− 1

1 + xa

)
=
n(n+ 1)

n+ 3
,

and

c− =
6

π2

n∑
k=0

L
(
T

(k)
−

)
=

6

π2

n∑
α=0

L
(

1− 1

1 + yα

)
=

(n+ 1)(n+ 2)

n+ 4
.



It is more interesting to analyze the result in term of the e�ective central charge

which now can be written for the (An)1 model as

ce� = c (An)− c (An−1) =
n(n+ 5)

(n+ 2)(n+ 3)
(4.46)

having introduced as notation the central charge function c(G) denoting objects

like (4.2.3) and (4.2.3), i.e. Rogers dilogarithm sums evaluated in values de�ned by

equations like (4.43) with the incidence matrix of the algebra G. As we will see in

the next section this is a very general behavior emerging even in more complicated

and physically relevant models. Even the analysis of such a result is deferred to

the next section where it could be collocated in a more general picture.

4.3 More General TBA's

In this section we will generalize the framework developed so far and put it to work

in some non-trivial cases in which we will exploit the far reaching consequences

and elegance of the TBA approach.

4.3.1 Product of graphs

The next logical step will be to generalize the construction of Section 4.2. In doing

this we can start by considering a very broad class of conformal theories, namely

the Coset CFT Gk/HIk [34]. To set up the notation we consider a compact Lie

algebra G and one of its proper subalgebras H, embedded in G with index I. The

parameter k stands for the level of the corresponding Kac-Moody algebra [32, 33].

The integrable models we want to consider are realized as perturbation of a coset

CFT by some relevant operator Φ(x) of conformal dimension ∆Φ < 1. The action

for such models can thus be written as

S =

[
Gk

HIk

]
+ λ

∫
d2xΦ(x) (4.47)

where [· · · ] denotes the action for the Gk/HIk coset CFT and λ is a bare coupling

of dimension 2− 2∆Φ.



The knowledge of many exact S-matrices has led to intensive application of the

TBA framework to many models [91, 93, 115]. All of them tend to the very

same structure which we depict in general. There is an elegant way to obtain a

uni�ed form for all these type of TBA's [103, 104, 105, 106, 107, 108]. This idea of

generalization stems from the study [105] of the Φid,id
adj perturbations of the coset

models

Gk ×Gl

Gk+l

, (4.48)

which represent the most straightforward generalization of the minimal models

φ1,3 perturbations.

We introduce two diagram: one encoding the particle species (G) and the other

related to the magnonic structure of colors (H). The result is a diagram which

can be considered a sort of tensor product of the two diagrams and is denoted by

G♦H. In doing this we conventionally de�ne the diagram of G to lie in the vertical

direction and then to obtain the full diagram we attach to each node ofG a diagram

of H in the horizontal direction. At last we reproduce the link pattern of the base

at each row for the corresponding new nodes. The situation has generalized and

now we need two indices to label the nodes of the bidimensional diagram we just

generated, we therefore introduce the usual pseudoenergies εa,i(θ) where the index

a = 1, · · · , rank(G) runs (vertically) along the nodes of the copies of the diagram

of G-type, whereas the index i = 1, · · · , rank(H) runs (horizontally) along the

diagrams of H-type. We need also to specify the driving terms νa,i(θ) and we will

see later under which constraints we can make the choices. This allows to write

the general class of G/H TBA's in the form

εa,i(θ) = νa,i(θ)−
[
ϕg ∗

(∑
b

Gab(Λb,i − νb,i)−
∑
j

Hij La,j

)]
(θ) , (4.49)

here ϕg is the very same kernel of (4.32) in terms of the coxeter g of G and

the matrices Gab and Hi,j are the incidence matrices of the diagram of G and H

respectively. The associated scaling function results to be given by

c(r) =
3

π2

∑
a,i

∫
dθ νa,i(θ)La,i(θ) . (4.50)

As explained in detail in [107] the choices we can make for the mass terms νa,i are



Figure 4.5: The two dimensional diagram encoding the TBA for the model

(A4♦D5)2

not completely free but must be picked in a particular way. Namely one is free to

put masses, organized as the corresponding Perron-Frobenius eigenvector's entries,

along the vertical direction provided we pick all the masses along the diagram of

G or none. Instead in the horizontal direction we have no such a constraint. This

is the reason why the diamond product is not commutative and also why is the

G diagram which carries the informations related to massive particles. As an

illustration we depict in Figure 4.5 the diagram for the case (A4♦D5)2.

4.3.2 General Y-systems and sum rules

We can now present a very general and uni�ed form of Y-systems. Starting from

the integral equations (4.49) and performing the same manipulations of Section

4.2.2 we end up with the following system of functional equations

Ya,i

(
θ + i

π

g

)
Ya,i

(
θ − iπ

g

)
=
∏
b

(1 + Yb,i(θ))
Gab
∏
b

(
1 + Ya,j(θ)

−1
)−Hij , (4.51)

in terms of the functions Ya,i(θ) = eεa,i(θ). In this form the connection with the

product of graphs is even more manifest and moreover we can also reverse-engineer

the form of the graph by looking at the functional equations alone in a very

straightforward way.

In view of following the RG �ow we avoid the complications of an exact calculation,

which will anyway be model dependent, and simply state the very general structure

of the resulting central charge. As grasped in the explicit calculation of Section

4.2.3 the e�ective central charge is obtained, at this level, as the di�erence between

the UV and IR contributions ce� = c− − c+. Both the contribution are evaluated



according to a general Rogers dilogarithm sum rule

s (G♦H) =

r(G))∑
a=1

r(H)∑
i=1

L
(

1

1 + ya,i

)
=
π2

6

r(G) r(H)

cox(G) + cox(H)
cox(H) , (4.52)

having explicitly denoted by r(G) and cox(G) respectively the rank and coxeter

number for a general Lie algebra G. Clearly the set of quantities {ya,i} are the

solution of the plateau equations for the corresponding diagram. The latter is

obtained for the UV part by treating all the nodes on the same footing while, for

the IR part, we cancel the massive node and consider the diagram(s) remaining.

To see this machinery at work we can apply the rule just stated to the following

system

c


 =

UV︷ ︸︸ ︷
c


−

IR︷ ︸︸ ︷
c


 ,

(4.53)

where we dropped the subscripts for simplicity.

The universal sum rules (4.52) have been proved rigorously only in the case An♦Am

[102] but several arguments, most of all the very high accuracy of the numerical

computation for a very broad range of the parameters, con�rm its robustness. See

Section 6.4 for more details about numerical simulations in this direction.

Another important information carried by the Y-system formulation is the di-

mension of the perturbation operator which generates the integrable model by

perturbing the CFT. As a matter of fact the solutions of Y-systems of type (4.51)

possess a natural periodicity in the complex plane. More precisely it can be shifted

by rational multiples of π in the purely imaginary direction of the complexi�ed

rapidity plane. It turns out that a general relation occurs for the ADE♦ADE

under consideration, namely

Ya,i(θ + iπP ) = Yā,̄i(θ) with P =
cox(G) + cox(H)

cox(G)
(4.54)

and the barred indices ā and ī denotes particle-antiparticle coniugation.



The period 4.54 can then be used to obtain the dimension of the perturbing oper-

ator by means of [90, 91, 92]

∆Φ = 1− 1

P
(4.55)

This further data that can be extracted by the Y -system allow, in most cases, to

identify the integrable model in terms of the underlying conformal theory and the

corresponding perturbing operators. This operation is, obviously, very di�erent

according to the speci�c model we are considering and in the next section we give

an overview of the possible identi�cations for the theories described by (4.49).

4.3.3 Models identi�cation

In the following we want to give an overview on the consequences that one can

draw from the non-perturbative considerations allowed by the TBA analysis. In

particular we will identify, in some notable cases, the perturbed CFT realization of

the TBA models discussed so far according to their diagrammatic interpretation.

4.3.3.1 A1♦ADET

These cases have been completely classi�ed in [101] and belongs to the class of

TBA's of Section 4.2. The corresponding CFTs are:

• A1♦An : The analysis presented in [91, 92, 93] classi�es the special unitary

group-related models. It is convenient to set n = k + l − 1 and consider

Ak+l−1. The integrable model is then realized as the (k, l)-th SU(2) coset

CFT
SU(2)k × SU(2)l

SU(2)k+l

,

with the subgroup at the denominator diagonally embedded, perturbed by

the operator of dimension ∆ = 1− 2/(k + l + 1). The choice of the forcing

terms produces two di�erent RG �ows according to the choice of forcing

terms. For the so-called massive choice, namely ν1,i = δk,ir cosh θ, the theory

�ows to the massive theory described by the non-diagonal S-matrices of [110].

Another possibility arises by virtue of the Z2 symmetry of the diagram,

we can pick the energy terms as explained in [101] (the so-called left- and



right-movers) and obtain a �ow which is massles and in the IR limit ends

instead in the (k − l, l)-th SU(2) CFT. Establishing in this way a deeply

non-perturbative massless �ows between the two theories.

• A1♦Dn : The choice ν1,i = δk,ir cosh θ for k = 1, 2, · · · , n− 2, i.e. by putting

the mass on the tail of the Dn diagram, produces a massive �ow to the CFT

of central charge

c =
3k

k + 2
,

which agrees with the k-th critical line of [111]. The latter can be obtained as

the UV limit of a FSSG model [148] whose perturbing operator is therefore

given by ΦΦ̄ with

Φ = ψ1e
iβ√
4π
φ

; (4.56)

ψ1 being the Zk generating parafermion, whose dimension reads (k − 1)/k,

and φ a free massless boson, whose vertex operator appearing in (4.56) has

dimension β2/8π. Thus in order to identify the two descriptions we have to

match the dimension of the perturbation Φ with the perturbing dimension

as coming from the Y -system analysis which, according to (4.54), is given

by ∆ = 1− 1/n. This results in the identi�cation

β2

8π
=

1

k
− 1

n
,

which allows to reconstruct the S-matrix for the perturbed massive theory

as

S = Sk ⊗ SSG
(

1

k
− 1

n

)
.

where Sk is the S-matrix of the k-th minimal model of [112] perturbed by

the corresponding operator φ13 and SSG(β/8π) is the Sine-Gordon S-matrix

[120] at coupling β.

If the mass is located just before the fork, i.e. k = n − 2, we obtain the

N = 2 supersymmetric point of the corresponding line of models introduced

and detailed explained in [113].

The last con�guration is when the mass is located on the fork, k = n or

k = n − 1 equivalently, and has been studied in [114]. The UV central

charge of this model is given by

cUV =
3(n− 1)

n+ 2



and matches with that of the Zn parafermionic models, whose realization in

terms of coset CFT is SU(2)n/U(1). As usual the perturbation is identi�ed

through the Y -system data to be the operator ψ1ψ̄1 + ψ†1ψ̄
†
1.

Instead by putting the left and righ-movers on the nodes of the fork we allow

for a massless TBA which �ows in the opposite direction and in the IR limit

reaches the central charge

cIR = 1− 6

(n+ 1)(n+ 2)
,

which matches the central charge of celebratedMn+1,n+2 conformal minimal

model. In other words we have established a non-perturbative motivation for

the RG �ow between the Zn parafermions and the n+ 1-th minimal model,

as originally proposed in [91].

• A1♦En : These types of models are the most exotic of the group and the TBA

analysis produces the UV central charges displayed in Figure 4.6. Most of the

cases can be identi�ed with direct tensor product of non interacting minimal

models. A speci�c cases which should be mentioned is the (A1♦E6)2 model.

Its UV central charge reads cUV = 25/14 which can be obtained as the tensor

product of two M8,9 minimal models; also the dimension of the integrable

perturbation ∆ = 6/7 reveals that we can realize the perturbing operator as

the product of operators with dimensions 3/28 and 3/4 respectively. Since

the model enjoys a Z2 symmetry we can also make the massless choice for

the driving terms. With this choice the UV behavior is the same while the

IR behavior becomes non-trivial and the model �ows to a c = 81/70 theory

which can be identi�ed with the m = 5 model in the N = 1 superconformal

series [115]. In [101] particular attention is paid to the sequence

c(E6) =
8

7
∆(E6) =

6

7
,

c(E7) =
13

10
∆(E7) =

9

10
,

c(E8) =
3

2
∆(E8) =

15

16
.

when the massive term r cosh θ is placed in the �rst node of the diagram,

the (A1♦En)1 models in the language of the previous section. There, after

formulating a particular extension of the last series, these models are dis-

cussed and related to the generalized parafermionic algebra with Zk grading.
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Figure 4.6: The Dynkin diagrams for the E6,7,8 algebras are displayed with

the central charge evaluated when the mass is placed on the corresponding node

leaving the others magnonic.

These algebras [116], denoted by SZk, can be obtained by the fusion rules

ψi×ψj = ψi+jmodk among the parafermions ψi and contains a distinguished

generating parafermion ψ1 of dimension 1 + 1/k. More precisely we have,

for the �rst two cases, the following correspondences: the SZ2 algebra is the

N = 1 superconformal algebra, generated by a �eld of spin 3/2 and the SZ3

algebra is the spin 4/3 algebra introduced in [117].

• A1♦Tn : Only the massive choice is possible in this case. Putting the mass

term r cosh θ on the l-th node, the corresponding central charge is given by

c =
3l

l + 2

(
1− 2(l + 2)

p(p+ 2l)

)
,

in terms of the parameter p = 2n+ 1. This is a case in which the computed

charge is of the e�ective type c = cUV −24∆0, ∆0 being the lowest conformal

dimension in the underlying CFT, negative if the model is non-unitary. This

observation allows to identify the UV limiting model as the non-unitary

SU(2)k × SU(2)l
SU(2)k+l

series, where l is an integer and k = p/2−2 is an half-integer. The perturbing

operator with dimension

∆ =
p− 2

p+ 2
,



turns out to be the usual φid,id,adj. For l = 1 we obtain the non-unitary

minimal models seriesMp,p+2 perturbed by their φ13 operator while for l = 2

we obtain theMp,p+4 supersymmetric series.

4.3.3.2 ADE♦An

This case is discussed in details in [115]. We denote by G a generic algebra of

the A,D or E type. From the notational point of view it is useful to set again

n = k + l − 1. The resulting TBA describes the integrable model corresponding

to the coset G-WZW model
Gk ×Gl

Gk+l

, (4.57)

perturbed by the operator φid,idadj . The UV central charge computed from the TBA

can be written as

cUV = c(Gk) + c(Gl)− c(Gk+l) , with c(Gm) =
m dim(G)

m+ cox(G)
, (4.58)

in terms of the central charge of the G-WZW model at integer level in perfect

agreement with what expected from the GKO construction for the coset (4.57).

The IR RG �ow instead can be obtained by applying the arguments of [92, 93]

and produces the charge

cUV = c(Gk−l) + c(Gl)− c(Gk) ,

signal of the �ow between the models

Gk ×Gl

Gk+l

→ Gk−l ×Gl

Gk+l

.

4.3.3.3 ADE♦Dn

This case has been analyzed in [107] in the particular con�gurations in which a

mass is located on one of the nodes of the fork, namely the n-th or n− 1-th node,

or in which the left and righ-movers are placed on the fork. The motivation behind

this choice is to generalize the analysis of A1♦Dn to higher level algebras.

These results shows how the TBA approach is e�ective when trying to identify

the UV and IR limits and establishing RG �ows between models: it can give



evidence and hints of highly non-trivial results on the structure of the RG �ow in

two dimensions.

4.3.4 Non-linear Sigma Models

Now we turn our attention to the TBA description of Non-Linear Sigma Models

(NLSM). As introduced in Chapter 3 an integrable class of NSLM is constituted by

the O(n) NLSM and this property still holds at the quantum level. The S-matrix

theory has been applied to these type of models in a series of remarkable papers

by the Zamolodchikov's brothers [119, 120] which derived the exact form of the

2-body scattering amplitudes between the fundamental excitations of the model.

Once the S-matrix is given the TBA procedure goes through straightforwardly,

modulo technical complications, along the lines of Section 4.1.3.

4.3.4.1 The O(3) case

This is one of the simplest NLSM and its TBA description has been subjected to

various investigations during the years [121, 122, 131, 129].

By trying to apply the TBA procedure we immediately face the biggest computa-

tional di�erence. In this case the things are a little more involved because of the

presence of S-matrices which are rational functions of the rapidities. In this case

the resulting Bethe Ansatz Equations (BAE) will not be periodic in the imaginary

rapidity direction allowing for an unbounded number of magnonic con�guration:

the magnonic strings. These type of objects arise in considering the termodynam-

ical limit of certain type of Bethe Ansatz equations. We will now brie�y illustrate

the various points of the TBA derivation for the O(3) NLSM

• Bethe Ansatz Equations: Exploting the isomorphism SU(2) ∼ O(3),

strictly true between algebras, and reformulating the model in a fermionic

way, Wiegmann [124, 125] has been able to diagonalize the transfer matrix



for us, the result reads

eimL sinh θi

Nr∏
j=1,j 6=i

θi − θj − iπ
θi − θj + iπ

M∏
k=1

θi − λk − iπ
θi − λk + iπ

= 1 , i = 1, 2, · · · , Nr ,

M∏
j=1,j 6=i

λi − λk − iπ
λi − λk + iπ

Nr∏
k=1

λi − θk − iπ
λi − θk + iπ

= 1 , i = 1, 2, · · · ,M ,

(4.59)

where the θ's are the Nr particles' root whereas the λ's are the M magnonic

auxiliary rapidities introduced, as customary, in the application of the Bethe

Ansatz technique to non-diagonal scattering.

• String Hypothesis: In the thermodynamic limit the magnonic rapidi-

ties organize themselves in particular con�gurations called strings [126, 127]

whose form reads in this case

λ
(m)
j,α = λ

(m)
j +

iπ

2
(m+ 1− 2α) , α = 1, 2, . . . ,m (4.60)

where λ
(m)
j are the real center of the string. The most remarkable feature

of this sort of magnonic bound states is that one can multiply the BAE

corresponding to all the roots of the same string and obtain after a number

of non-trivial simpli�cation a set of equations only for the center of the string.

This is the usual fusion procedure of S-matrices applied directly at the level

of the Bethe equations. In considering the various string as single objects

we have to make the following replacements in the BAE (4.59)

M∏
j=1

→
∏
m∈M

Mm∏
j=1

m∏
α=1

where

� M is the set of possible root types

� Mm is the number of m-type roots

� α runs over the string's elements in the complex rapidity plane

The result of this operation is a new set of BAE for the center of magnonic

strings and particles' roots alone.

• Thermodynamics: This point is two-folded. Firstly, following the con-

ventions and notations of [121], we perform the thermodynamic limit of the



BAE for the roots and strings' center, namely to let

L,Nr,Mm →∞ , with Nr/L = const. , Mm/L = const. (4.61)

together with the de�nitions of the continuous distributions of roots and

strings rapidities

σ̄0(β) ≡ lim
ni − ni−1

L(βi − βi−1)
, σ̄m(β) ≡ lim

s
(m)
i − s(m)

i−1

L(βi − βi−1)

where the quantum numbers ni and s
(m)
i appeared in taking the logarithm of

BAE. Note that since we are considering the thermodynamics of the system

we have to consider every possible type of magnonic string. In other words

the setM becomes the set of natural numbers N representing the fact that

string of any length can be excited. This result in the integral form of the

BAE which read
σ̄0(θ)−

(
Ψ1 ∗ σ0

)
(θ)−

∞∑
m=1

(
Ψm ∗ σm

)
(θ) =

m cosh θ

2π

σ̄m(λ) +
∞∑
k=1

(
Φmk ∗ σk

)
(λ)−

(
Ψm ∗ σ0

)
(λ) = 0 , m = 1, 2, . . .

,

in terms of the kernels

Ψm(x) =
d

dx

[
ϕm+1(x)− ϕm−1(x)

]
,with ϕk(x) = 2 arctan

(
2

π

x

k

)
,

and

Φmk(x) =
d

dx

[
ϕm+k (x)− ϕm−k (x) + 2

m−1∑
α=1

ϕm+k−2α (x)
]
.

The real novelty of such a system of equation is the in�nite number of

magnonic nodes, trace of the di�erent nature of the underlying S-matrix.

Then we can go through the minimization of the free energy E −S/R in the

mirror theory (at temperature T = 1/R) by picking

E [σµ] =

∫
dβ σ0(β) cosh β ,

S[σµ] =
∞∑
µ=0

∫
dβ
[
σ̄µ log σ̄µ − σµ log σµ − (σ̄µ − σµ) log(σ̄µ − σµ)

]
,



Figure 4.7: Dynkin-like diagram for the O(3) NLSM TBA formulation.

we end up in the following physical TBA for the O(3) NLSM
ε0(β) = mR cosh β −

(
Ψ′1 ∗ L0

)
(β)−

∞∑
m=1

(
Ψ′m ∗ Lm

)
(β)

Lm(β) =
(

Ψ′m ∗ L0

)
(β) +

∞∑
k=1

(
Amk ∗ Lk

)
(β)

(4.62)

in terms of the non-linear functions Lµ = log(1+e−εµ), of the pseudoenergies

σµ
σ̄µ − σµ

= exp(−εµ) , µ = 0, 1, 2, · · · ,

and where the only novel convolution kernel is given by

Amk(x) =
d

dx
Φmk(x) + 2πδmkδ(x)

• Y-system and RG �ow: Thanks to some identities among the kernels,

which rensemble very closely the inversion relation (4.30) of the ADE case,

which we report for completeness

A−1
mk(x) = 2πδmkδ(x)− φ(x) (δm,k+1 + δm,k−1) ,

Ψ′m(x) =
(
φ ∗ Am2

)
(x) , φ(x) =

1

cosh(x)
,

(4.63)

the TBA (4.62) can be brought to the universal form involving only the

universal kernel φ(x) and the incidence matrix of what turns out to be a

�D∞� type in�nite diagram. The mass is located on the fork of the diagram

which extends inde�nitely in the other direction. We can then try to interpret

the NLSM, i.e. a TBA with an in�nite number of magnonic nodes, as the

limit of a certain family of truncated model which we control from the side

of CFT. In this case it seems natural to construct the NLSM TBA as the

N → ∞ of a DN+1 series, as depicted in Figure 4.7. The corresponding



Y-system thus reads

Yµ

(
θ + i

π

2

)
Yµ

(
θ − iπ

2

)
=
∏
κ

(1 + Yκ(θ))
Iµκ , (4.64)

where Iµκ is the incidence matrix of a DN+1 Lie algebra.

From the point of view of central charges matching one found perfect agree-

ment with the expected result, in fact if we compute the e�ective central

charge with the methods of Section 4.2.3 we obtain

ce� (O(3)) = c

  =

= c

 − c( )
=

= c (DN+1)− c (AN) = N − N(N + 1)

N + 3

N→∞−→ 2 .

This calculation con�rms the expected result. In fact the RG �ow of the

sphere sigma model can be seen as a renormalization of the radius and

reaching the UV limit amounts to send the radius to in�nity, restoring a

�at geometry. The limiting theory will thus be the theory of two free bosons

on �at space, each of them will therefore give a contribution c = 1 to the

e�ective central charge.

4.3.4.2 O(2r) TBA and Y-system

The O(3) case reviewed in the previuos section is not the only n-dimensional sphere

NLSM which can be treated by the TBA approach. In a series of important

papers [103, 128, 129, 130] various authors showed how to formulate the TBA

equations which governs the behavior of the O(2r), r ≥ 2, sigma models. The

odd-dimensional cases are, up to now, not yet known due to the technical problems

related to the non-simply laced algebras involved which make the string hypothesis

a formidable task to perform.

According to [103, 128, 130] we can write the TBA system for the O(2r) (r ≥ 2)

NLSM as the limit of a certain sequence of coupled non-linear integral equations,



which read

ε0(θ) = MR cosh θ −
r∑

a=1

∫
dθ′

2π
ψa,1(θ − θ′) log

(
1 + e−εa,1(θ′)

)
, (4.65)

εa,m(θ) = −δm1[δa1 + δa2δr2]A0(θ)+

− Aa,m−1(θ)− Aa,m+1(θ) +

p∑
b=1

Ia,bBb,m(θ) ,
(4.66)

where g = 2(r− 1) and Iab are respectively the Coxeter number and the incidence

matrix associated to the Dr Lie algebra. In writing (4.65-4.66) we incidentally

introduced the quantities

A0(θ) ≡ g

4π

∫ +∞

−∞

dθ′

cosh g(θ−θ′)
2

log
(

1 + e−ε0(θ′)
)
,

Aa,m(θ) ≡ g

4π

∫ +∞

−∞

dθ′

cosh g(θ−θ′)
2

log
(

1 + e−εa,m(θ′)
)
,

Ba,m(θ) ≡ g

4π

∫ +∞

−∞

dθ′

cosh g(θ−θ′)
2

log
(

1 + eεa,m(θ′)
)
,

and the kernels ψa,1 which can be explicitly given in terms of their Fourier Trans-

forms

ψa,1(θ) =

∫
dω eiωθNa,1(ω) ,

with

Na,1(ω) =
cosh

(
ω (r−1−a)π

g

)
cosh (ωπ/2)

a = 1, 2, . . . , r − 2

Nr−1,1(ω) = Nr,1(ω) =
1

2

1

cosh (ωπ/2)
.

A general Fourier pair relation, namely

R(α, β; θ) ≡ 1

α

cos
(
πβ
2α

)
cosh

(
πθ
2α

)
cosh

(
πθ
α

)
+ cos

(
πβ
α

) =
1

2π

∫
dω eiωθ

cosh(βω)

cosh(αω)
,



allows to recast (4.65) as

ε0(θ) = MR cosh θ −
r−2∑
a=1

∫
dθ′R

(
π

2
,
(r − 1− a)π

g
; θ − θ′

)
La,1(θ′)+

− 1

2

∫
dθ′R

(π
2
, 0 ; θ − θ′

)
[Lr−1,1(θ′) + Lr,1(θ′)] .

(4.67)

Now we can obtain the associated Y -system by a slightly di�erent approach than

that of Section 4.2.2) which turns out to reveal itself more useful for practical

purpose. In fact in real life calculations, which customarily involve more general

models than those of Section (4.3.1), obtaining general inversion relations, see

equations (4.30) and (4.63), for the convolution kernels is a very di�cult task.

Nonetheless Y -systems can still be derived by analyzing the behavior of the pseu-

doenergies under shift of the rapidity in the imaginary direction. The integral

form of the TBA equations provides the necessary analytic tools to control cor-

rectly these shifting operation. In fact, by carefully analyzing the behavior of

the convolution integrals in the complex plane, it turns out that the role played

by the eventual poles of the kernels is fundamental. Indeed it can happen that,

in shifting the integration contour in the imaginary direction, a pole of the ker-

nel located in the physical strip is encountered. As a consequence the contour

must be deformed properly giving rise to the so-called contact terms which can

be evaluated by making use of the residue theorem. As an application of this

type of circumstances we present the result for the case at hand concerning the

convolution kernel R(α, β; θ). The result can be written as

R
(
π

2
,
(r − 1− a)π

g
; θ +

iπ

2

)
+R

(
π

2
,
(r − 1− a)π

g
; θ − iπ

2

)
=

= δ

(
θ +

i(r − 1− a)π

g

)
+ δ

(
θ − i(r − 1− a)π

g

)
;

this result, along the lines of the previous discussion, allows to recast equation (4.67) as

ε0

(
θ +

iπ

2

)
+ ε0

(
θ − iπ

2

)
=

= −
r−2∑
a=1

[
La,1

(
θ − i(p− 1− a)π

g

)
+ La,1

(
θ +

i(r − 1− a)π

g

)]
+

− Lr−1,1(θ)− Lr,1(θ) ,



and eventually, by de�ning

Ya ,m(θ) ≡ e−εa,m(θ) ,

Y0(θ) ≡ e−ε0(θ) ,

to obtain the following Y -system of functional equations

Y0

(
θ +

iπ

2

)
Y0

(
θ − iπ

2

)
=

r−2∏
a=1

[(
1 + Ya,1(θ − i(r − 1− a)π

g
)

)
×

×
(

1 + Ya, 1(θ +
i(r − 1− a)π

g
)

)]
(1 + Yr−1, 1(θ)) (1 + Yr, 1(θ)) ,

Ya,m

(
θ +

iπ

g

)
Ya,m

(
θ − iπ

g

)
= [1 + δ1m(δa1 + δr2δa2)Y0(θ)]×

× (1 + Ya,m+1(θ))(1 + Ya,m−1(θ))
r∏
b=1

(
1 +

1

Yb,m(θ)

)Iab .

(4.68)

Even in this case the functional Y -system (4.68) can be encoded in a diagram

similar to that of Figure 4.8 but with an in�nite number of magnonic rows, as

typical form sigma models TBA description.

0

(1,1) (1,k)

(r-2,1) (r-2,k)

(r-1,1)

(r,1)

(r-1,k)

(r,k)

Figure 4.8: The O(2r) diagram. Again the labels of each node are associated

to the functions Y in (4.68)

The TBA formulation allows to reconstruct the e�ective central charge of the

model. In doing this we have to truncate the model to a certain level k, which

represents the width of the diagram of Figure 4.8, in order to deal with a �nite

number of equations. We will denote this truncated version of the model byO(2r)k.



Thanks to the methods illustrated in Section 6.4 it is possible to solve the plateau

equations corresponding to the stationary solutions of 4.68 and to evaluate the

dilogarithms sum rule [128, 131]. Unfortunately an analytic close form is still

lacking for the plateau solution but extensive and highly accurate numerical anal-

ysis have led to conjecture the following expression

ce�

(
O(2r)k

)
=

k(k + r − 2)(2r − 1)

(k + 2r − 3)(k + 2r − 2)

k→∞−→ 2r − 1 . (4.69)

The limit is exactly the number of degrees of freedom of a �atten 2r−1-dimensional

sphere and the analysis of the RG �ow for this TBA con�rms the calculation based

on counting arguments of the renormalized theory.

4.3.4.3 Fendley's Conjecture

Other interesting NLSM which have been analysed within the TBA approach

are those of [103, 104]. They consists of various examples of symmetric spaces

NSLM which we will brie�y de�ne to �x the notation. For example, these type of

NLSM arise in theories of interacting fermions invariant under some group G. If

some fermion bilinear gets an expectation value manifestly invariant under some

subgroup H, then the excitations at low energy can be described by a �eld taking

values in G/H. In other words the fermions get endowed with a mass scale M , by

integrating out the fermions we are then left with only bosonic excitations in G/H

with masses below M . The action can be written, in terms of symmetric matrix

�eld Φ taking value in G, as

S =
1

g

∫
d2x∂µΦ†∂µΦ ,

under the constraint Φ†Φ = 1. In theories with interacting fermions, this often

results from introducing a bosonic �eld to replace four-fermion interaction terms

with Yukawa terms (interactions between a boson and two fermions). Integrating

out the fermions then gives such a potential for the bosons and hence the sigma

model.

The �rst example is represented by the SU(N)/SO(N) model. As seen before

the peculiarity of the TBA description of NLSM is that they usually enjoy an

in�nite number of magnons and are realized as the limit of a particular sequence

of truncated models. The analysis of [104] reveals that this NLSM is encoded in



the TBA AN♦D∞ model with a single row of masses on the fork. Truncating

the model at �nite level k allows for the identi�cation with the SU(N)k/SO(N)2k

model whose central charge correctly reproduces the NSLM degrees of freedom

counting in the k → ∞ limit. In other words these models present the same

type of connection between the central charge calculation and the limit of the

corresponding a�ne Lie algebras displayed by the O(2n) NLSM of Section 4.3.

There's a relevant amount of other known examples some of which, namely those

of [104], are displayed in Table 4.1. All these consideration suggests that a unifying

G/H NSLM TBA Truncated model

SU(N) Gross-Neveu (AN♦Ak)1
SU(N)k × SU(N)1

SU(N)k+1

O(2P ) Gross-Neveu (DP♦Ak)1
O(2P )k ×O(2P )1

O(2P )k+1

O(2P )

O(P )×O(P )
(DP♦Dk)1

O(2P )k
O(P )k ×O(P )k

Table 4.1: Known examples of Fendley's conjecture.

scenario could be drawn. This is precisely the object of the so-called Fendley's

conjecture:

A symmetric space G/H integrable NLSM is equivalent to the k →∞ limit of the

corresponding WZW model Gk/HIk perturbed by some operator.

The �rst observation which con�rms this general statement comes from central

charges considerations. The naive degrees of freedom counting shows that the UV

limiting theory should be that of dim(G)− dim(H) free massless boson and since

each boson carries a unit of central charge the same number also provides the

central charge of the model. From the point of view of the WZNW it is known

that they have a central charge of

c(Gk) =
k dim(G)

k + cox(G)
.

Thus the GKO construction [34] of coset CFT provides the general UV central

charge

c

(
Gk

HIk

)
=

k dim(G)

k + cox(G)
− Ik dim(H)

Ik + cox(H)
,

which correctly tends to the degrees of freedom counting as k →∞.

The operatorial part of the identi�cation can then be performed by recalling that

the spectrum of �elds in the coset theory can be extracted by the knowledge of



those of Gk and HIk respectively. The �elds in the Gk/HIk coset are constructed

by decomposing the �elds φG in Gk into representations of HIk. Because the

energy-momentum tensor obeys the orthogonal decomposition TG = TH + TG/H ,

that of φG should be of the form

φG =
⊕
a

φaG/H ⊗ φaH ,

where the operator-valued coe�cients φaG/H are the �elds of the coset model

Gk/HIk. This �eld identi�cation is needed in order to obtain the perturbing

�eld explicitly by decomposing the WZW currents JA, those of the Gk theory,

into �elds of the coset theory. A consequence of G/H being a symmetric space

is that the generators of G not in H form a real irreducible representation of H

[118]. Therefore when a �eld JA(z) is decomposed into representations of H there

is only one term on the r.h.s which we denote by J A. The �elds J A form a real

irreducible representation of H, of dimension cσ = dim(G)−dim(H) and are used

to explicitly construct the perturbing operators

Φpert. =
Cσ∑
A=1

J A(z)J A(z̄) .

The �eld J A has dimension 1 in the NSLM limit, so the perturbation Φpert. is

of dimension 2 and so is naively marginal; the fact it is not exactly marginal is

known as the phenomenon of dimensional transmutation in relation to asymptotic

freedom. Therefore the coset and its perturbation have the general properties of

a sigma model. Further support for this conjecture is discussed in [103, 128].

In the next chapter we will apply the TBA approach to a novel class of NLSM

which will not �t in Fendley's classi�cation and seems to enlarge it to even more

interesting types of theories.



Chapter 5

The (CPN−1)p Family

In this chapter we introduce a novel class of TBAs related to the extended -CPN−1

non-linear sigma model. The model has been introduced in Chapter 3 in relation

with the AdS/CFT correspondence. More precisely, a distinguished member of

the integrable family, is believed to govern the low-energy limit of the AdS4×CP3

type IIA superstring sigma model. After a more precise discussion about the

quantum integrability of the models the TBA analysis is performed. All the steps

from the S-matrix to the RG �ows, i.e. the material covedered in the previous

chapter, will be carried over and explained in some detail. The aim will be to

conjecture an exact result for some physically interesting quantities associated to

the UV limit of the RG �ow of the model and, moreover, its identi�cation in terms

of perturbed coset CFT. The content of the chapter is based on the pubblication

[146].

The structure of the chapter is the following: in Section 5.1 we explore further the

integrability of the model and present the conjectured S-matrix along with the

corresponding computation of the free-energy. In Section 5.2 we enter the details

of the TBA procedure for the model at hand and we construct a truncated two

parameter in�nite family of novel TBA model. Section 5.3 is devoted to the RG

�ow analysis of the TBA equations and the successive interpretation in terms of

perturbed conformal �eld theories.
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5.1 Integrability consideration

To give more substantial argument to the quantum integrability of the model we

can consider its elementary 2-body scattering. For these type of processes the

2-dimensional kinematic is constrained in such a way that the incoming momenta

are separately conserved and the scattering amplitudes are functions of a single

Mandelstam variable. Letting θ be the incoming particles' rapidity di�erence, the

scattering we are considering are given by the S-matrix elements

〈p3k, p4l|S|p1i, p2j〉 = Sklij (θ)δ(p1 − p3)δ(p2 − p4) + Slkij (θ)δ(p1 − p4)δ(p2 − p3) ,

〈p3k, p̄4l|S|p1i, p̄2j〉 = F kl
ij (θ)δ(p1 − p3)δ(p̄2 − p̄4) +Blk

ij (θ)δ(p1 − p̄4)δ(p̄2 − p3) ,

for the spinon-spinon and spinon-antispinon scattering processes. The S-matrix

elements under the symmetry constraints imposed by the U(N) invariance have

been found long ago in [75]. There we learn that there are only six scalar ampli-

tudes in terms of which the matrices S, F and B read

Sklij (θ) = u1(θ)δki δ
l
j + u2(θ)δliδ

k
j ,

F kl
ij (θ) = t1(θ)δki δ

l
j + t2(θ)δijδ

kl ,

Blk
ij (θ) = r1(θ)δki δ

l
j + r2(θ)δijδ

kl .

Moreover thanks to crossing symmetry these functions are not independent and

we have

uα(iπ − θ) = tα(θ) , r1(iπ − θ) = r2(θ) . (5.1)

The direct of computation of the large-N expansion of these amplitudes is a direct

application of the Feynman rules, which are the same as the CPN−1 model [63]

except for the modi�ed gauge �eld propagator [74]. In view of crossing symmetry

(5.1) it su�ces to evaluate the processes relative to the amplitudes u1, u2 and r1;

their expansion turns out to be given by

u1(θ) = 1− iπ

N

(
2m2

sqrt−st
+

s− 2m2

psqrt−st

)
+O(N−2) ,

u2(θ) = r1(θ) = −iπ
N

(
1

θ
+

s

sθ + 2(p− 1)sqrt−st

)
+O(N−2) ,

(5.2)



in terms of the crucial parameter p given by

p =
q2

N(1 + λ∞/π)
. (5.3)

A closer look to (5.2) reveals that interesting limits in p can be considered. As

p → ∞ the amplitudes reduce to those of the O(2N) model written in SU(N)

variables. While if p → 0 the spinon-spinon amplitude diverges, signaling the

presence of the charge con�nement e�ect in the CPN−1 model.

For what concerns integrability it is possible to show [75] that the factorizability

of the scattering processes amounts, in this particularly symmetric case, to the

constraint

u2(θ) = −iν
θ
u1(θ) , (5.4)

for some constant ν. Only two choices of p are possible in order to satisfy condition

(5.4) : p = ∞, the O(2N) model limit, and p = 1. At this point, following the

analysis of [72], it is possible to show that the amplitudes matches, in the large-

N leading order, those of the minimal re�ectionless SU(N)-invariant S-matrix of

[75].

5.1.1 Free energy matching

The large-N analysis gives arguments in favor of the integrability of the model and

thus it is worthwhile to try a non-perturbative approach to con�rm the integrabil-

ity condition p = 1. This can be done by evaluating the free energy of the theory

at �nite chemical potential, an operation that, remarkably, can be performed fol-

lowing two independent approaches allowing, in this way, for the comparison of

the two calculation. On one side we can evaluate the free energy by perturbation

theory, on the other hand by the S-matrix approach we can obtain the same quan-

tity in an independent way. See [132, 133, 134] for the analogue computation for

the O(N) model. This technique has applied successfully to a number of theories

[135, 136, 137] and consists of introducing the ground state energy density ε of a

gas of spinons with a �nite density ρ. The free energy f(h), h being the chemi-

cal potential, can then be obtained by Legendre transforming the energy density,



namely

f(h) = min
ρ
{ε(ρ)− ρh} →


f(h) = ε(ρ)− ρh

h =
dε

dρ

.

The perturbative computation in this case has been performed in [74] and without

entering the details of the computation we recall the 1/N expansion, which is given

by

f(h) = −ph
2N

2π

[
1− p(N − 1)

N log(h/Λ)
+

−p(N − 1)(N + p− 2) log log(h/m) + pN(N − 1)dN

N2 log2(h/Λ)
+ · · ·

]
.

(5.5)

where

dN = − log p+
1− 2p

2
+

3p− 2

2N
.

The result (5.5) of the perturbative computation must be matched with the com-

putation coming from the S-matrix approach. To this end we recall that the rel-

evant S-matrix amplitudes can be found in Appendix B. We remark that S(θ) =

u1(θ) + u2(θ), i.e. the symmetric channel spinon-spinon scattering element, is the

only relevant for the purpose of evaluating the free energy of the spinon gas. To

this end notice that S(θ) enjoys, under the replacement 1/N → 1−1/N , the same

functional form as in the SU(N) Gross-Neveu model, treated in [135]. Borrowing

their result and performing the same substitution into the free energy we obtain,

in the h� m limit,

f(h) = −h
2N

2π

[
1− (N − 1)

N log(h/Λ)
+

−(N − 12) log log(h/m) +N(N − 1)DN

N2 log2(h/Λ)
+ · · ·

]
,

(5.6)

with

DN = log Γ

(
1 +

1

N

)
− log 2

N
− 1

2
+

3

2N
.



Remarkably the two logarithmic pattern shared by the forms (5.5) and (5.6) are

compatible and, moreover, they match exactly if p = 1 for any N . This non-

perturbative calculation con�rms that the integrability is a property which goes

beyond the 1/N order even though the parameters must be �ne tuned in order to

achieve it.

Further matching of the remaining terms allows for the identi�cation of the relation

between the spinon mass m and the renormalization scale Λ, namely

m

Λ
=

(2/e)1/N

Γ
(
1 + 1

N

) , (5.7)

in the MS subtraction scheme. From this further identi�cation we can compare

the mass gap with the known case N = 2 [135] and again discover that it is

achieved if the integrability condition p = 1 holds.

5.1.2 The integrable model

According to the previous analysis, which parallels that of [74], setting p = 1

and �ne-tuning the RG invariant λ∞ = 0 result in an integrable extended -CPN−1

non-linear sigma model whose Lagrangian reads

L = κ (∂µ − iAµ) z̄ (∂µ + iAµ) z + iψ̄γµ (∂µ − iqAµ)ψ +
1

4κ

(
ψ̄γµψ

)2
. (5.8)

The strong indications towards integrability of this U(1)×SU(N) symmetric model

seems to be even more appealing if one focus on the N = 4 case, i.e. the low energy

limit of the conjectured AdS4 × CP3 superstring sigma model.

Having collected su�cient convincing arguments in favor of the integrability of

(5.8), including the explicit form for the S-matrix of the scattering of fundamental

excitations, we now want to apply the TBA procedure of Chapter 4 to this model

in order to establish further non-perturbative proof of its integrability.

5.2 A new family of TBA's

In this section we review the main step of the TBA procedure applied to the model

5.8. This will eventually lead to the formulation of a new family of TBA equations



related to the extended -CPN−1 gauged NLSM.

5.2.1 ABA and string hypothesis

The starting point of the TBA analysis are the Asymptotic Bethe Ansatz (ABA)

equations in the NS sector of the SU(4)×U(1) symmetric model proposed in [74].

The explicit form is reported here for reference

e−imL sinh θk =
M∏
j 6=k

S(θk − θj)
M̄∏
j=1

t1(θk − θ̄j)
M1∏
j=1

(
θk − λj + iπ

4

θk − λj − iπ
4

)
,

1 =

M1∏
j 6=k

(
λk − λj + iπ

2

λk − λj − iπ
2

) M2∏
j=1

(
λk − µj − iπ

4

λk − µj + iπ
4

) M∏
j=1

(
λk − θj − iπ

4

λk − θj + iπ
4

)
,

1 =

M2∏
j 6=k

(
µk − µj + iπ

2

µk − µj − iπ
2

) M1∏
j=1

(
µk − λj − iπ

4

µk − λj + iπ
4

) M3∏
j=1

(
µk − νj − iπ

4

µk − νj + iπ
4

)
,

1 =

M3∏
j 6=k

(
νk − νj + iπ

2

νk − νj − iπ
2

) M2∏
j=1

(
νk − µj − iπ

4

νk − µj + iπ
4

) M̄∏
j=1

(
νk − θ̄j − iπ

4

νk − θ̄j + iπ
4

)
,

e−imL sinh θ̄k =
M̄∏
j 6=k

S(θ̄k − θ̄j)
M∏
j=1

t1(θ̄k − θj)
M3∏
j=1

(
θ̄k − νj + iπ

4

θ̄k − νj − iπ
4

)
,

(5.9)

where the S-matrix elements are those of [75] in the re�ectionless case, see Section

5.1. The spinon-spinon scattering amplitude S is given by (B.1) while the spinon-

antispinon element t1 can be found in (B.3). In (5.9)M , M̄ andMl with l = 1, 2, 3

indicate the number of spinons, antispinons and �avour-l magnons, respectively.

We stress the fact that with respect to [74], we have chosen the twist factor q = 1,

and rede�ned the magnonic rapidities as

λk =
π

2
u1,k, µk =

π

2
u2,k, νk =

π

2
u3,k .

As for the O(2N) case, and in general for sigma models, the analytic form of

the S-matrix (i.e. its lack of periodicity) allows the existence of magnonic strings

bound states [126], introduced previously in Section 4.3.4.1. In performing the

thermodynamic limit, the dominant contribution to the free energy comes from



the excitation of magnonic strings of the form

λ
(l)
ka = λ

(l)
k +

iπ

4
(l + 1− 2a), (a = 1, . . . , l),

µ
(m)
kb = µ

(m)
k +

iπ

4
(m+ 1− 2b), (b = 1, . . . ,m),

ν
(n)
kc = ν

(n)
k +

iπ

4
(n+ 1− 2c), (c = 1, . . . , n).

(5.10)

The strings are then treated as single objects which scatters among themselves

and with the spinons and antispinons. The e�ective computational power of such

a formulation is related to the simpli�cations which occurs if one tries to obtain

the ABA for the strings. In doing this we multiply the ABA corresponding to

di�erent roots belonging to the same string, see Section 4.3.4.1, and obtain

e−imL sinh θk =
M∏
j 6=k

S(θk − θj)
M̄∏
j=1

t1(θk − θ̄j)
∞∏
l=1

M(l)∏
j=1

[
S1,l

(
θk − λ(l)

j

)]−1

,

1 =
M∏
j=1

Sl,1

(
λ

(l)
k − θj

) ∞∏
m=1

M(m)∏
j=1

Sl,m

(
λ

(l)
k − µ

(m)
j

)

×
∞∏
l′=1

M(l′)∏
j=1

[
Sl,l′+1

(
λ

(l)
k − λ

(l′)
j

)]−1 [
Sl,l′−1

(
λ

(l)
k − λ

(l′)
j

)]−1

,

1 =
∞∏

m′=1

M(m′)∏
j=1

[
Sm,m′+1

(
µ

(m)
k − µ(m′)

j

)]−1 [
Sm,m′−1

(
µ

(m)
k − µ(m′)

j

)]−1

×
∞∏
n=1

M(n)∏
j=1

Sm,n

(
µ

(m)
k − ν(n)

j

) ∞∏
l=1

M(l)∏
j=1

Sm,l

(
µ

(m)
k − λ(l)

j

)
,

1 =
M̄∏
j=1

Sn,1

(
ν

(n)
k − θ̄j

) ∞∏
m=1

M(m)∏
j=1

Sn,m

(
ν

(n)
k − µ

(m)
j

)

×
∞∏
n′=1

M(n′)∏
j=1

[
Sn,n′+1

(
ν

(n)
k − ν

(n′)
j

)]−1 [
Sn,n′−1

(
ν

(n)
k − ν

(n′)
j

)]−1

,

e−imL sinh θ̄k =
M̄∏
j 6=k

S(θ̄k − θ̄j)
M∏
j=1

t1(θ̄k − θj)
∞∏
n=1

M(n)∏
j=1

[
S1,n

(
θ̄k − ν(l)

j

)]−1

,

(5.11)



whereM (q) is the number of length-q strings, and we have introduced the magnonic

bound states scattering amplitudes

Sl,m(θ) =

l+m−1
2∏

a=
|l−m|+1

2

(
θ − iπa

2

θ + iπa
2

)
=

l∏
a=1

(
θ − iπ

4
(l +m+ 1− 2a)

θ + iπ
4

(l +m+ 1− 2a)

)
. (5.12)

The thermodynamic limit can then be performed upon introducing the densities

of accessible states for spinons σ, antispinons σ̄, for magnonic strings σ
(1)
n , σ

(2)
n ,

σ
(3)
n , likewise the occupied state densities ρ, ρ̄, ρ

(1)
n , ρ

(2)
n , ρ

(3)
n . This can be done by

a suitable modi�cation of the de�nitions (4.11) and (4.10). Taking the logarithm

of 5.11 and passing to the continuum we end up with the following system of linear

integral equations for the densities

σ(θ) = m cosh θ +K ∗ ρ(θ) +G ∗ ρ̄(θ)−
∞∑
l=1

K1,l ∗ ρ(1)
l (θ),

σ(1)
n (θ) = Kn,1 ∗ ρ(θ) +

∞∑
l=1

(
Kn,l ∗ ρ(2)

l (θ)− (Kn,l+1 +Kn,l−1) ∗ ρ(1)
l (θ)

)
,

σ(2)
n (θ) =

∞∑
l=1

(
Kn,l ∗ ρ(3)

l (θ) +Kn,l ∗ ρ(1)
l (θ)− (Kn,l+1 +Kn,l−1) ∗ ρ(2)

l (θ)
)
,

σ(3)
n (θ) = Kn,1 ∗ ρ̄(θ) +

∞∑
l=1

(
Kn,l ∗ ρ(2)

l (θ)− (Kn,l+1 +Kn,l−1) ∗ ρ(3)
l (θ)

)
,

σ̄(θ) = m cosh θ +K ∗ ρ̄(θ) +G ∗ ρ(θ)−
∞∑
l=1

K1,l ∗ ρ(3)
l (θ) ,

(5.13)

where n = 1, 2, . . . . For what concerns the convolution kernels K(θ), G(θ) and

Kl,m(θ), they are listed and described in Appendix B. These integral equation

constitutes the thermodynamic limit of the ABA (5.11) and can be interpreted as

integral constraints imposed by integrability on the continuous densities. Having

completed the preliminary operations of determining the thermodynamic behavior

of the model we can now turn to the study of its mirror thermodynamics.

5.2.2 TBA equations and Y-System

The usual mirror thermodynamic procedure of minimizing the free energy E−TS
at the temperature T = 1/R produces, as usual, the physical TBA equations for



the model. Without entering the details of the calculation, which can be found

in [146], we display the resulting system of in�nite non-linear coupled integral

equations They read

ε0(θ) = iα +mR cosh θ −K ∗ L0(θ)−G ∗ L̄0(θ)−
∞∑
l=1

K1,l ∗ L(1,l)(θ),

ε(1,n)(θ) = Kn,1 ∗ L0(θ)−
∞∑
l=1

(
Kn,l ∗ L(2,l)(θ)− (Kn,l+1 +Kn,l−1) ∗ L(1,l)(θ)

)
,

ε(2,n)(θ) =
∞∑
l=1

(
(Kn,l+1 +Kn,l−1) ∗ L(2,l)(θ)−Kn,l ∗ L(1,l)(θ)−Kn,l ∗ L(3,l)(θ)

)
,

ε(3,n)(θ) = Kn,1 ∗ L̄0(θ)−
∞∑
l=1

(
Kn,l ∗ L(2,m)(θ)− (Kn,l+1 +Kn,l−1) ∗ L(3,l)(θ)

)
,

ε̄0(θ) = −iα +R cosh θ −K ∗ L̄0(θ)−G ∗ L0(θ)−
∞∑
l=1

K1,l ∗ L(3,l)(θ) .

(5.14)

in terms of

ρ(θ)

σ(θ)− ρ(θ)
= e−ε0(θ) ,

ρ̄(θ)

σ̄(θ)− ρ̄(θ)
= e−ε̄0(θ) ,

ρ
(i)
m (θ)

σ
(i)
m (θ)− ρ(i)

m (θ)
= e−ε(i,m)(θ),

and

L0(θ) = ln
(
1 + e−ε0(θ)

)
, L̄0(θ) = ln

(
1 + e−ε̄0(θ)

)
,

L(i,m)(θ) = ln
(
1 + e−ε(i,m)(θ)

)
,

with i,m = 1, 2, . . . .

We should emphasize that in (5.14) we have included the chemical potential [88, 89]

λ = eiα = 1 for the groundstate, while λ = eiα = −1 corresponds to the �rst

excited state [138, 104] associated to the lifting, due to tunneling [139], of a two-

fold vacuum degeneracy of the model. These two α-vacua will be the main object

of our investigation for what concerns the RG �ow structure.

The expression for the α-vacuum Casimir energy can then be obtained by employ-

ing equations (5.14) to obtain a form similar to (4.21), suitably adapted for the

case at hand; The result turns out to be given by

Eλ(m,R) = −m
2π

∫
dθ cosh θ (L0(θ) + L̄0(θ)) . (5.15)



The behavior of the energy in the far infrared r = Rm� 1 region can be extracted

to be

E±1(m,R) ' ∓2m

π
C(4,∞)K1(mR), (5.16)

where K1(x) is the modi�ed Bessel function. The coe�cient C(4,∞) will be directly

obtained from the TBA equations in Section 5.3.1 and it should match the number

of SU(4) �avours: C(4,∞) = 4 [74].

By making use of the kernel identities of Appendix B (see Section B.2) we can

derive from the integral equations (5.14) a set of functional equation: the Y -

system. They read

Y0(θ + i
π

2
)Y0(θ − iπ

2
) = e−i4α

Ȳ0(θ)

Y0(θ)

(
1 + Y(1,1)(θ + i

π

4
)
)(

1 + Y(1,1)(θ − i
π

4
)
)
×

×
(
1 + Y(2,1)(θ)

)
,

Ȳ0(θ + i
π

2
) Ȳ0(θ − iπ

2
) = ei4α

Y0(θ)

Ȳ0(θ)

(
1 + Y(3,1)(θ + i

π

4
)
)(

1 + Y(3,1)(θ − i
π

4
)
)
×

×
(
1 + Y(2,1)(θ)

)
,

(5.17)

for the massive Y -functions and

Y(1, l)(θ + i
π

4
)Y(1, l)(θ − i

π

4
) =

(
1 + δl1Y0(θ)

)(1 + Y(1, l−1)

)
(θ)
(
1 + Y(1, l+1)(θ)

)(
1 +

1

Y(2, l)

(θ)

)
Y(2, l)(θ + i

π

4
)Y(2, l)(θ − i

π

4
) =

(
1 + Y(2, l−1)(θ)

) (
1 + Y(2, l+1)(θ)

)(
1 +

1

Y(1, l)(θ)

)(
1 +

1

Y(3, l)(θ)

)
Y(3, l)(θ + i

π

4
)Y(3, l)(θ − i

π

4
) =

(
1 + δl1Ȳ0

)(1 + Y(3, l−1)(θ)
) (

1 + Y(3, l+1)(θ)
)(

1 +
1

Y(2, l)(θ)

) ,

(5.18)

for the magnonic ones. The Y -functions are related to the corresponding pseu-

doenergy by means of

Y0(θ) = e−ε0(θ), Ȳ0(θ) = e−ε̄0(θ), Y(i,l)(θ) = eε(i,l)(θ) . (5.19)

In trying to construct a diagrammatic representation of such a system in terms

of the Dynkin-like picture outlined in Chapter 4 we immediately identify for the



magnonic nodes a structure of type A3♦A∞, as typical for NLSM [91, 121, 122].

Due to the presence of the product of massive Y -functions at r.h.s. it is harder to

give a graphical prescription for the massive equations. Things become easier if

one consider the following key relation

Y0(θ + iπ
4
)Y0(θ − iπ

4
)

Ȳ0(θ + iπ
4
) Ȳ0(θ − iπ

4
)

= e−i4α
1 + Y(1,1)(θ)

1 + Y(3,1)(θ)
. (5.20)

which allow us the crossing of the massive functional equations. We obtain the

following more standard looking pair of equations

Y +
0 Ȳ −0 =

(
1 + Y(1,1)

(
θ + i

π

4

)) (
1 + Y(2,1)(θ)

) (
1 + Y(3,1)

(
θ − iπ

4

))
,

Ȳ +
0 Y −0 =

(
1 + Y(3,1)

(
θ + i

π

4

)) (
1 + Y(2,1)(θ)

) (
1 + Y(1,1)

(
θ − iπ

4

))
,

(5.21)

where we introduce the short-hand notation Y ±(θ) = Y (θ± iπ/2). We can encode

these relation in the diagram of Figure 5.1 by suitably adapting the graphical rules

stated in Chapter 4. By looking at (5.21) we immediately notice that the shifted

0̄

0

(2, 1)

(1, 1) (1, 2) · · ·

(3, 1) (3, 2) · · ·

Figure 5.1: Dynkin-like diagram of the extended -(CP3) sigma model TBA

description.

Y -functions become crossed for the massive nodes. The possibility of this kind of

crossed form has been already noticed in [140, 141] in the non-relativistic context

of the full theory of which the model under consideration is the (relativistic) low

energy reduction. In all known cases apparently only massive nodes enjoy crossed

form equations. This novel type of �crossed� Y-system, without shifts on the r.h.s.,

was �rst obtained in [140] and [142], in the context of the TBA for anomalous

dimensions in the planar N = 6 superconformal Chern-Simons, i.e. AdS4/CFT3.

Pictorially, the related Y -system diagram [140, 142] may be obtained from that

for planar AdS5/CFT4 by means of some sort of �folding� process of the two wings

with doubling of the �xed row of massive nodes; the same relation seems to hold

between their low energy decoupled models, namely the present CP3 × U(1) [82]



and the O(6) nonlinear sigma models [143], respectively. At last but not least, an

intriguing example of �crossed� Y -system describes the strong coupling behaviour

of the gluon scattering amplitudes in SYM4 [141]. The key observation that can

0̄

0

(N-1,1)

(1,1)

(1,p-1)

(N-1,p-1)

Figure 5.2: The diagrammatic representation of the generic (CPN−1)p model

Y -system formulation.

be drawn from (5.21) is that, thanks to crossing, we do not have any unusual term

in the r.h.s., but just a chain of movements on the diagram and in θ in such a way

that they respect the conservation of the algebraic1 sum of the displacements. In

other words, for any Y the algebraic sum of all the displacements stays the same;

moreover its absolute value coincides also with the absolute value of the total

amount of displacement in the l.h.s., i.e., in suitable units, exactly 2. Because of

the algebraic sum, the path starting from 0 can reach 0̄ and viceversa, contrarily

to what happens in the (usual) non-crossed form.

Getting inspired by the empirical conservation rule just stated we have been able

to postulate a relevant generalization of Y -system (5.21-5.17). Since the emerging

pattern begins to rensemble the scenarios outlined in Section 4.3.1, up to possible

generalization, it seems natural to consider a more general family of systems,

stemming from the introduction of two positive integers N and p, so that we

conjecture for the massive nodes the equations

Y0

(
θ + i

π

2

)
Ȳ0

(
θ − iπ

2

)
=

N−1∏
l=1

(
1 + Y(l,1)

(
θ + i

π

2
− iπl

N

))
,

Y0

(
θ − iπ

2

)
Ȳ0

(
θ + i

π

2

)
=

N−1∏
l=1

(
1 + Y(l,1)

(
θ − iπ

2
+ i

πl

N

))
,

(5.22)

1Not the absolute values sum, as in the above uncrossed form.



while, for the magnonic nodes, the straightforward generalization of (5.18) is given

by

Y(i,j)

(
θ + i

π

N

)
Y(i,j)

(
θ − i π

N

)
=
(
1 + δi,1δj,1Y0(θ) + δi,N−1δj,1Ȳ0(θ)

)
×

×
p−1∏
l=1

(
1 + Y(i,l)(θ)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

Y(l′,j)(θ)

)−A(N−1)

l′,i

;
(5.23)

where An is the incidence matrix of a An-type Lie algebra; explicitly we have

Anij = δi,j+1 + δi,j−1 for i, j = 1, 2, · · · , n .

The Y -system (5.22-5.23) can now be pictorially represented as in Figure 5.2 where

the only di�erence is represented by the solid link connecting the massive node

to the magnonic block. The meaning of such a graphical notation is to remind

that since the shifts in the arguments of the Y -functions are di�erent one should

proceed along the �rst magnonic row.

Obviously, the system studied so far is recovered by �xing (N, p) to (4,∞). With

this simple generalisation, we are able to describe a previously unknown in�nite

family of Y-systems naturally associated to a generic SU(N) algebra with quan-

tum reduced coset level p. As we shall see in the following section, the obtained

truncated family of Y-systems exhibit all the important features common to more

standard types of Y-systems. In particular, they can be interpreted as periodic

sets of discrete recursion relations [90] and their solutions lead to sum-rules [102]

and functional identities for the Rogers dilogarithm [145].

We should stress that the results presented so far have been rigorously derived

only for (N, p) = (4,∞), from now on we shall leave the two positive integers

N and p unconstrained to explore the consistency of our congecture in terms of

RG �ow analysis. By somehow reversing the arguments of Section 4.2.2, it is

convenient, for later purpose, to transform the Y-system into the Zamolodchikov's

universal TBA form [90]. Thanks to the Fourier Transforms in (B.8), we obtain



the (CPN−1)p × U(1) TBA

ε0(θ) + ε̄0(θ) = 2mR cosh θ −
N−1∑
l=1

χ(1− 2l
N

) ∗ Λ(l,1)(θ),

ε0(θ)− ε̄0(θ) = i2α−
N−1∑
l=1

ψ(1− 2l
N

) ∗ Λ(l,1)(θ),

ε(i,j)(θ) = δi,1δj,1φN
2
∗ L0(θ) + δi,N−1δj,1φN

2
∗ L̄0(θ)+

+

p−1∑
l=1

A
(p−1)
l,j φN

2
∗ Λ(i,l)(θ)−

N−1∑
l=1

A
(N−1)
l,i φN

2
∗ L(l,j)(θ),

(5.24)

with α ∈ {0, π}, ΛA(θ) = ln(1 + eεA(θ)). The corresponding α-vacuum energy is

given by equation (5.15), in which the dependence on λ enters through the implicit

dependence on α of the solutions to equation (5.24). We can generalize as well the

IR limiting behavior of the free energy to

E±1(m,R) ' ∓2m

π
C(N,p)K1(mR),

in the Rm� 1 infrared region. The coe�cient C(N,p), which contains information

on the SU(N)-related vacuum structure of the model at (N, p) generic [91, 144],

its central charge and underlying CFT, will be determined in the following section.

5.3 Perturbed coset realization

In this section we want to study the RG �ow to the UV point of the two α-vacua

described by TBA (5.24) for α = 0, π. The result obtained in this section rely

mostly on numerical simulations due to the analytical di�culty of the equations

involved. Our aim will be the identi�cation of the model in terms of a suitable

coset CFT and its perturbation primary �eld.

As customary, the (CPN−1)p×U(1) model can be thought of as a CFT perturbed

by a marginally relevant operator, whose vacuum energy is given by the expres-

sion (5.15) endowed with the (vacuum) TBA solution. In particular, the CFT is

characterised by the value of its conformal anomaly, c, which peculiarly enters the

vacuum energy (5.15) in the UV limit mR� 1 [98]:

EUV = − π

6R
(c− 12d) (5.25)



where d = ∆ + ∆̄ is the (conformal) dimension of the ground state of the theory

and disappear for unitary theories, as here: x = ∆ = ∆̄ = 0.

5.3.1 Central charge

As explained in Section 4.2.3 the quest for evaluating the e�ective central charge

amounts to solve the plateau equations, i.e. �nd the stationary solution of the

Y -system (5.22-5.23), associated to the UV and IR regimes of the TBA equations.

The e�ective central charge splits into two parts

cλ(N, p) = c
(UV )
λ − c(IR)

λ , (5.26)

where the two contributions are explicitly given by

c
(UV )
λ =

6

π2

[
L
(

y0

1 + y0

)
+ L

(
ȳ0

1 + ȳ0

)
+

N−1∑
i=1

p−1∑
l=1

L
(

yi,l
1 + yi,l

)]
(5.27)

and

c
(IR)
λ =

6

π2

N−1∑
i=1

p−1∑
l=1

L
(

zi,l
1 + zi,l

)
(5.28)

in terms of the Rogers Dilogarithm function L(x), see Appendix A for more details.

The constants ys and zs are given by the stationary solutions of the Y-system (5.22

- 5.23) and thus we expect di�erent solutions according to the value of the chemical

potential λ = eiα. We start by analysing the 0-vacuum, i.e. the ground state of

the theory.

5.3.2 The ground state

The 0-vacuum represents the true ground state of the theory and since we expect

a coset CFT as underlying theory we can assume that the theory will be unitary.

This will imply in turn that the value of the e�ective central charge will coincide

with the central charge of the limiting UV conformal theory.



The constant values ys we need to plug into sum rule (5.27) to produce the charge

are the stationary solutions of

y0 ȳ0 =
N−1∏
l=1

(
1 + y(l,1)

)
,

y2
(i,j) = (1 + δi,1δj,1y0 + δi,N−1δj,1ȳ0)

p−1∏
l=1

(
1 + y(i,l)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

y(l′,j)

)−A(N−1)

l′,i

;

(5.29)

they have been calculated only numerically (see Section 6.4.2 for a detailed ac-

count) except for some low dimensional cases [146]. Letting

ϕ =
π

2(N + p+ 1)
(5.30)

the results for lower ranks are the following

• N = 2:

y(1,i) = (p− i)(p− i+ 2), y0 = ȳ0 = p,

with i = 1, 2, . . . , p− 1.

• N = 3:

y(1,i) = y(2,i) =
sin((p− i)ϕ) sin((p− i+ 3)ϕ)

sin(ϕ) sin(2ϕ)
,

with i = 0, 1, . . . , p− 1 and y0 = ȳ0 = y(1,0) = y(2,0).

• N = 4:

y(1,p−1) = y(3,p−1) =
2 sin(2ϕ) + sin(6ϕ) + sin(10ϕ)

2 sin(6ϕ)
,

y(2,p−1) =
2 sin(2ϕ) + sin(6ϕ) + 3 sin(10ϕ)

2 sin(2ϕ) + 3 sin(6ϕ) + sin(10ϕ)
.

Despite the analytic form of the solutions for generic N and p is yet unknown we

were able to conjecture a result for the sum rule (5.27) at λ = 1. Nonetheless we

resort to a very high precision numerical computation, see Section 6.4 for details.

Starting from p = 2 and N = 2 we were able to obtain the constants ys with a

precision of about 10−15, for p < 20 and N < 5. Due to intrinsic loss of precision



with increasing size of the system the accuracy progressively decreased down to

10−12 for values around p = 61 and N = 4. The numerical results lead to the

following precise conjecture for the sum rule (5.27)

c
(UV )
1 (N, p) =

p(1 + pN − p)
p+N − 1

. (5.31)

For what concern the IR regime instead the situation is well known in literature

and the resulting model falls in the classi�cation of Section 4.3.1. More precisely

by the usual procedure of removing the massive nodes and the corresponding links

we end up with a TBA model of type AN−1♦Ap−1, according to the classi�cation

of [107]. The constant zs are instead the solutions of

z2
(i,j) =

p−1∏
l=1

(
1 + z(i,l)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

z(l′,j)

)−A(N−1)

l′,i

, (5.32)

they moreover are analytically known to be [102]:

z(i,j) =
sin((j +N)φ) sin(jφ)

sin((i+ p)φ) sin(iφ)
, (5.33)

with φ = π/(p+N), and the corresponding Rogers dilogarithm sum-rule is

c
(IR)
1 (N, p) =

6

π2

N−1∑
i=1

p−1∑
l=1

L
(

z(i,l)

1 + z(i,l)

)
=
p(N − 1)(p− 1)

p+N
. (5.34)

Equations (5.32), (5.33) and (5.34) constitutes the only known example of fully

analytic proved in all the steps example of dilogarithm sum rule, as far as concerns

the knowledge of who writes. This total analytic control has made possible to de-

velop, check and tune the algorithms we relied on for the numerical computations.

These numerical routines, described in Chapter 6, were then employed to analyze

the novel case (5.29-5.27).

Finally, subtracting (5.34) from (5.31) we obtain the central charge of the under-

lying CFT, which reads

c1(N, p) =
p(1− p−N +N2 + 2Np)

(N + p)(N + p− 1)
. (5.35)



It turns out that the central charge (5.35) deduced from equations (5.22,5.23), can

be written as

c(N,p) =
p dim[SU(N)]

p+N
− p dim[SU(N − 1)])

p+N − 1
,

which incidentally is that of the coset model

SU(N)p
SU(N − 1)p × U(1)

× U(1) ≡ SU(p)N−1 × SU(p)1

SU(p)N
× U(1) . (5.36)

This identi�cation is the result of a series of trial and check attempts which have

been progressively tested with the know data obtained from numerical simulations,

as explained below. For the moment we simply mention the fact that we can see

that the known Fendley's conjecture holds even in this case which, by virtue of

its very bosonic and fermionic formulation, is not included in the classi�cation

of [104]. In this sense we believe that the particular functional form of the Y -

system associated may be in some way related to the necessary introduction of

fermions to provide the integrability of the model. The subject is now under

current investigation.

Another non-trivial test that central charge (5.35) should pass is represented by

the sigma model limit p → ∞. In this limit we recover the CPN−1 × U(1) sigma

model to which remains associated the central charge

c(N,∞) = dim[SU(N)]− dim[SU(N − 1)] = 2N − 1 , (5.37)

a result that coincides with the value predicted in [74], through a naive degree of

freedom counting argument. The argument is essentially based on the analysis of

the renormalization �ow of the manifold which is known to �ow to a �at space in

the UV regime and we will outline it.

The CPN−1 manifold is usually de�ned by introducing, on the element of the

complex unit sphere B =
{
z ∈ CN |z†z = 1

}
, the equivalence relation z′ = eiβz.

This operation result in complex manifold with boundary of real dimension

dim
(
CPN−1

)
= 2(N − 1) , (5.38)



as can be obtained by the direct counting of the constraints imposed by the de�-

nition. Alternatively we could look at the coset realization of CPN−1 which reads

CPN−1 =
SU(N)

SU(N − 1)× U(1)
(5.39)

and by counting the dimensions of the unitary algebra involved obtain the same

result of (5.38). At this point it is easy to obtain the UV bosonic degrees of

freedom of the manifold CPN−1 × U(1) to be exactly given by (5.39). In terms

of the UV CFT this can be understood because the bosonic degrees of freedom

carries a unit of central charge, and there are 2n−2 of them according to (5.38), as

well as the Dirac fermion, which is constitutes by two chiral components of central

charge 1/2.

The observation of equation (5.36) is crucial but not su�cient in trying to identify

the family of models we are considering but gives a good candidate which we

can test. Identi�cations based only on central charge are by no means unique,

for example the two U(1) factors in (5.36) yield compensating contributions to

c1(N, p) leading to an equivalently good match with the central charge of the
SU(N)p
SU(N−1)p

coset.

To further support the identi�cation (5.36), following [90], we have determined

the conformal dimension ∆(N,p) of the perturbing operator using the intrinsic pe-

riodicity properties of the Y -system at �nite N and p. Assuming arbitrary initial

conditions and using the Y -system as a recursion relation, as explained in detail

in Section 6.4, we discovered that the following periodicity property holds

YA

(
θ + iπP (N, p)

)
= YA(θ) with P (N, p) =

2(p+N − 1)

N
, (5.40)

for any Y -function of the system, labelled generically by the multi-index A. Thus,

according to [90] (cf. also [91, 101]), we can conclude that

∆per(N, p) = 1− 1

P(N,p)

= 1− N

2(p+N − 1)
, (5.41)

is the conformal dimension of the operator which perturbs the conformal �eld

theory at �nite p and generic N . The immediate consequence of this result is that

the possibility S(N)p/SU(N − 1)p is discarded since in the corresponding table of

the conformal dimensions of primary �elds there's no sign of ∆per(N, p).



To proceed further, we have made the simplest assumption that the two CFTs,

originally disconnected and respectively related to the coset part and the U(1),

are tied together by the perturbing operator φ(N,p) in the simplest possible way,

namely

φ(N,p) = φ[(CPN−1)p] × φ[U(1)], ∆(N,p) = ∆[(CPN−1)p] + ∆[U(1)].

For the identi�cation of ∆[(CPN−1)p] and ∆[U(1)], the presence of two independent

integer parameters was very important as both ∆[(CPN−1)p] and ∆[U(1)] depend

nontrivially on N and p. This has given us the possibility of matching our results

in particular limit in which it reproduces known models:

• At p = 1, the TBA equations (5.24) reduce to those for a pair of free fermion.

This fact leads to

∆[(CPN−1)1] = 0 , ∆[U(1)] = ∆(N,1) = 1/2. (5.42)

which is a standard consequence of conformal symmetry. Also the central

charge displays the expected behavior since c1(N, 1) = 1 and it is well know

that each free fermion carries a central charge of 1/2.

• At N = 2, the TBA equations coincide with the Dp+1 models with two

massive nodes placed on the fork and a tail of magnons. These ground

state TBA equations were identi�ed in [147] (see, also [101]), up to possi-

ble orbifold ambiguities, with a particular series of points of the Fractional

Supersymmetric Sine-Gordon (FSSG) model [148]. The latter identi�cation

leads to the further constraint

∆[(CP1)p] =
(p− 1)

p
, ∆[U(1)] =

1

p(p+ 1)
. (5.43)

The e�ective central charge in this limit, namely c1(2, p) = 3p/(p + 2), re-

produces correctely that of the FSSG [147].

Relations (5.42) and (5.43) together, allow to select the conformal dimension

uniquely:

∆[(CPN−1)p] =
(p− 1)(N + 2p)

2p(N + p− 1)
, ∆[U(1)] =

N

2p(N + p− 1)
. (5.44)



It is interesting to notice that for p = 2 the dimension ∆[(CPN−1)p] corresponds to

the �eld φ21 of the c < 1 minimal modelsMN+1,N+2, while for generic N and p it

coincides precisely with the conformal dimension of the �eld (p, p̄, 1)+(p̄, p, 1) in the

W (p) minimal model SU(p)N−1×SU(p)1

SU(p)N
, mentioned by Fendley [103] while discussing

integrability issues related to the purely-bosonic CPN−1 sigma model.

Finally, following [91, 144], studying equations (5.24) in the infrared mR � 1

regime

ε0(θ)− iα ' ε̄0(θ) + iα ' mR cosh θ − 1

2

N−1∑
l=1

ln(1 + z(l,1)), (5.45)

we �nd

E±1(m,R) ' ∓2m

π
C(N,p)K1(mR),

with

C(N,p) =

√√√√N−1∏
l=1

(
1 + z(l,1)

)
=

sin(Nφ)

sin(φ)
, (5.46)

where we de�ned φ = π/(N + p) as before. In the sigma model limit p → ∞:

φ→ 0 and (5.46) gives C(N,∞) = N , as expected.

5.3.3 The �rst excited state

The π-vacuum is the �rst excited state of the theory, more precisely it can be

considered as the quantum lifting due to tunneling of a second ground state of

the classical theory. The �rst excited state is described by the TBA (5.24) at

chemical potential λ = −1 or, equivalently, at α = π. A glance at the equations

reveals that an important modi�cation has occurred: the massive driving terms

developed an imaginary part becoming complex-valued objects which calls for the

analytic continuation of the TBA in the complex rapidity plane. Once more the

problem is of formidable technical di�culty from the analytic point of view and

we had to resort to numerical simulations, as for the ground state. In particular

the usual procedure to evaluate the e�ective central charge for this state, namely

to �nd the stationary solutions of the associated Y -system and plug them in the

corresponding dilogarithm sum rule, has revealed unsuccessful. This is mainly

related to the presence of complex-valued objects which spoils the e�ciency of the

algorithm. For the time being it seems that a direct computation of the e�ective

central charge by means of a sum rule is out of scope.



We decided then to change perspectives and return to the very de�nition (4.5) of

the central charge and rewrite it as

c−1(N, p) = lim
r→0

c−1(r) = lim
R→0
− 6

πR
E−1(R).

where the central anomaly c−1(N, p) is the quantity we are interested in. Last

expression has to be intended in a computational sense, i.e. as a procedure to

reach the desired quantity numerically. Without entering the details, which are

deferred to Section 6.3, we just want to highlight some milestone of the analysis.

The idea we used is to start integrating numerically the TBA integral equations

(5.24) (at λ = −1) at large values of the dimensionless parameter r = mR� 1. In

this region we know the asymptotic behavior of the massive solutions, see (5.45),

which are not spoiled by the introduction of a constant, although complex, shift

in the driving terms. Having the analytic of the solution we can test the region

of r in which the numerical algorithm are reliable and stable, as we compare

the numerical results with (5.45). Then we progressively decrease the value of

r by using the result of the previous computation as initial guess for the next

one. In doing this we follow the correct solution from the IR region down to the

UV regime. For what concerns the precision, in this case we obtained a neat

loss of accuracy: for the smaller systems, namely N, p < 3, we were able to

obtain precisions of the order of 10−4 which progressively increases to 10−2 for

larger systems, N · p ∼ 15. The reason of this has to be traced to the process of

solution itself which starts in the IR asympotic region computing solutions which

are intrinsically a�ected by numerical errors. Thus in progressively reducing the

value of r these errors accumulate spoiling the correct result. Nonetheless thanks

to the implementation techniques and numerical strategies developed in Section

6.3 we manage to conjecture a result for the e�ective central charge even in this

case.

Again we stress that this result is obtained as continuation in the parameter r for

the TBA integral system (5.24) (at λ = −1) and in this sense it lacks a cross check

with respect to the computation of plateau solutions and dilogarithm sum rule, as

was the case for the ground state.



The numerical work has led us to conjecture the following value for the e�ective

central charge of the π-vacuum

c−1(N, p) = lim
r→0

c−1(r) = −p (n+ 1)(2n+ p− 1)

(n+ p− 1)(n+ p)
. (5.47)

The lowered accuracy of the numerical simulations called for some theoretical

checks in order to verify the robustness of (5.47). As with the ground state, two

particular limits can be compared with known results: p = 1 at generic N and

N = 2 at generic p. These limits can be identi�ed with a pair of free fermions, the

former, and with the FSSG, the latter.

To compare result (5.47) with the known models we need to know their behav-

ior in presence of chemical potential λ = −1. In this regime a free fermion is

known to develop an e�ective central charge of value −1. This can be seen by

analitic continuation in the argument of the Rogers dilogarithm function and can

be represented as

c
( )

= −1 ,

where the red coloration of the node reminds that the chemical potential is set to

−1.

The π-vacuum of the
(
CPN−1

)
p
family reduces at p = 1 and for every N to a

couple of free fermions of the type described above. It is thus non trivial that

(5.47) reproduces exactly this result, as a matter of fact

c−1(N, 1) = c
( )

= 2× c
( )

= −2 .

For the FSSG the match with (5.47) is still there but we need a few more elements

beacause of the appearance of the chemical potential. To this aim let us consider

a particular FSSG encoded in a Dp+1 diagram with the masses on the fork and at

chemical potential λ = −1. Using the colored notation it can be represented as

(
CP1

)
p

1 2 p− 2 p− 10

0̄



For which the e�ective central charge reads [147]

c−1(2, p) = − 3p (3 + p)

(1 + p)(2 + p)
. (5.48)

With the introduction of the chemical potential the FSSG modify its ground state

behavior. The way of computing the e�ective central charge is the same but

the asymptotics for the nodes result slightly modi�ed. In the UV limit the node

labelled by 1 decouples from the system while in the IR regime, as usual, the

massive nodes decouple. This lead to the following e�ective central charge

c−1(Dp+1) = c
(

2 3 p− 2 p− 1
)
− c
(

1 2 3 p− 2 p− 1
)

=

= 2× c
( )

+ c(Ap−2)− c(Ap−1) =

= −2 +
(p− 2)(p− 1)

p+ 1
− (p− 1)p

p+ 2
= c−1(2, p) .

This is another non trivial analytical check for the conjectured e�ective central

charge.

The dimension of the operator which creates the state described by (5.24) at

negative chemical potential, i.e. the π-vacuum, reads

∆π−vac(N, p) =
n p

8(n+ p− 1)

obtained by making use of (4.5) and (5.35). A detailed analysis of the conformal

wieght of this state is currently in progress along the lines of Section 5.3.2 and is

reserved for a future pubblication.

5.3.3.1 Conclusions

In this chapter we have proposed the Thermodynamic Bethe Ansatz equations

and the Y-systems for a two-parameter in�nite family of perturbed conformal

�eld theories related to the CPN−1 sigma models coupled to a massless fermion.

Although the main motivation of the work was the recently discovered link [82]

between the speci�c N = 4 case and a truncation of the AdS4 × CP3 type IIA

string sigma model in the Alday-Maldacena decoupling limit [143], most of the

results presented here are of a much wider mathematical and physical interest.



In particular, we have introduced a novel family of periodic Y-systems classi�ed

in terms of a pair of integers (N, p). These functional relations di�er from the

standard Lie-algebra related ones, discussed for example in [90, 101, 155], in a non

trivial way.

Some of the mathematical results presented here correspond to numerical-supported

conjectures and, although we have little doubt on their exact validity, it would be

still important to prove them rigorously. The main mathematical conjectures are:

the Y-system periodicity (5.40), the stationary dilogarithm identities (5.31) and

the following non stationary sum-rules

2(N+p−1)∑
n=1

(
L
(

Ȳ0(n)

1 + Ȳ0(n)

)
+ L

(
Y0(n)

1 + Y0(n)

)
+

N−1∑
i=1

p−1∑
j=1

L
(

Y(i,j)(n)

1 + Y(i,j)(n)

))
=

= 2p(1 + pN − p)π
2

6
,

(5.49)

where YA(n) = YA
(
θ + i π

N
n
)
are the solutions of the Y-system, obtained recur-

sively from (5.18, 5.22) with arbitrary initial conditions [145].

Concerning the speci�c CP3 × U(1) sigma model, we have computed the value of

the ultraviolet e�ective conformal central charge, con�rming the results predicted

in [74] through a naive degree of freedom counting argument. Our conclusion was

instead reached using highly non trivial dilogarithm identities and by considering

the sigma model as the p → ∞ representative in the family of perturbed coset

conformal �eld theories SU(4)p
SU(3)p×U(1)

× U(1).

Apart from the mathematical aspects mentioned above, there are many other

issues that we would like to address in the near future: the kink vacuum structure,

the exact S-matrix and the mass-coupling relation for the quantum truncated

models, the numerical study of the TBA equations for the other excited states [149]

and the derivation of simpler non-linear integral equations for both the groundstate

and the excited states [150] are only a small sample of important open problems

that deserve further attention.

After having introduced the necessary technical background we turn now to the

description of the structure and the implementation of the numerical set of codes



which have made possible to conjecture all the new results presented in this chap-

ter. Since the tone of the discussion changes drastically to a more technical lan-

guage we decided to deal with it in the conclusive chapter.



Chapter 6

Numerical Work

This chapter is devoted to the numerical analysis of the TBA equations derived

so far. Its aim is to present the detailed technical aspects required to numerically

extract physical informations from TBA integral equations like (4.67) or Y -system

functional equations as (4.51). As immediate check of the reliability of the algo-

rithms we inform that all the numerical plots in this thesis have been produced

with the data obtained by the simulations. We say this to emphasize the easiness

with which the code can be implemented in such a way that minimum modi�ca-

tions are required for passing from a model to another. Moreover, all the RG �ow

analysis results of Section 5.3 have been conjectured thanks to the algorithms and

the numerical investigations explained and developed below.

The algorithms and numerical strategies we present here are related speci�cally to

the (CPN−1)p × U(1) TBA and Y -system but, as stressed above, their scope and

generality goes beyond. The codes developed have been applied, with minor model-

dependent modi�cation such as the di�erent adjacency structure and the di�erent

functional form of kernels, to all the models presented in this work. The incredible

accuracy and speed of computation of the simulations give us the con�dence to

conjecture analytic result which are too well constrained, as we will see below,

to be accidental. This can be achieved by solving the numerical implementation

speci�c problems which are treated in the more model-independent way.

The chapter is divided as follows: in Section 6.1 we introduce the equations to

be solved numerically and describe the implementation of the algorithm in all its

aspects. Section 6.2 is devoted to the analysis of the results obtained by solving the

TBA equation for the ground state of the (CPN−1)p×U(1) TBA. While in Section
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6.3 the same analysis, after the required modi�cation, is performed on the �rst

excited state. At last, in Section 6.4, we introduce the numerical tools and ideas

to deal with dilogarithm sum rules and central charge numerical identi�cation.

6.1 Numerical Setup

According to [146], see also Chapter 5, the mirror thermodynamics in �nite volume

of the CPN−1 × U(1) sigma model can be encoded in the TBA framework. The

relevant system of integral equations is (5.24) which we report here for convenience

ε0(θ) + ε̄0(θ) = 2mR cosh θ −
N−1∑
l=1

χ(1− 2l
N

) ∗ Λ(l,1)(θ),

ε0(θ)− ε̄0(θ) = i2α−
N−1∑
l=1

ψ(1− 2l
N

) ∗ Λ(l,1)(θ),

ε(i,j)(θ) = δi,1δj,1φN
2
∗ L0(θ) + δi,N−1δj,1φN

2
∗ L̄0(θ)+

+

p−1∑
l=1

A
(p−1)
l,j φN

2
∗ Λ(i,l)(θ)−

N−1∑
l=1

A
(N−1)
l,i φN

2
∗ L(l,j)(θ) .

(6.1)

Finding analytical solutions of such a system of coupled non-linear integral equa-

tions is a formidable task and thus we decided to resort to numerical analysis.

TBA equations are known to be well suited for numerical simulations [87, 88,

89]. This is true mainly because of the Leray-Schauder-Tychono� �xed point

theorem which ensures not only the existence but also other important properties

(uniqueness, reality, analyticity) of the solutions. This is an extremely powerful

tool also for the numerical analysis since it ensures that a recursive procedure will

converge, sooner or later, to the correct set of solutions.

Another aspect that makes the numerical analysis very e�ective is related to the

physical behavior of the solutions. As a matter of fact as the dimensionless pa-

rameter r goes to zero, the model is dragged to the conformal UV point (a regime

in which the conformal �eld theory framework can be employed both on the quan-

titative and qualitative level) and the solutions develop a central plateau region

which possesses an almost compact support [87]. This feature will be of crucial

importance in the construction of the numerical algorithm.



To illustrate the recursive procedure we are adopting we can schematically rewrite

the TBA equations as

εa = νa +
∑
b

Φab ∗ F [εb] (6.2)

where a is a proper multi-index, ν is the forcing term of the corresponding node,

Φab is a matrix of generalized universal kernels and F [εb] is a certain non-linear

function of the pseudoenergies. Now we can introduce a sequence of functions,

one for each node, ε
(n)
a and use the TBA equations to �nd the iteration at step

n+ 1; as initial guess we decided to pick the forcing term. Thus we can write the

recursive procedure in a inductive-like way as
ε(0)
a = νa

ε(n)
a = νa +

∑
b

Φab ∗ F [ε
(n−1)
b ]

(6.3)

Clearly the true solution can be rigorously reached only in the n → ∞ limit and

we will develop a criterion to stop the iteration once the desired level of precision

is reached.

6.1.1 The algorithm

Having de�ned the general iterative scheme of solution we can analize the details

of the algorithm. Since this is the �rst incursion of the author in the world of

numerical computation we decided to keep the implementation as simple as pos-

sible in order to focus on other aspects, such as stability, portability and time

performance.

The process of numerical solution is intrinsically a�ected by some loss of infor-

mation and in the case at hand the �rst drastic modi�cation we have to make

is to reduce the range of the rapidity θ, naturally de�ned on the real axis (more

precisely the whole complex plane), to some �nite interval. The peculiar behavior

of the massive solutions discussed before gives a crucial hint in this sense: the cen-

tral plateau region is con�ned in the symmetric interval [− log(2/r), log(2/r)] and

outside this region the behavior is qualitatively an exponential growth. Taking



this into account we decided to de�ne our numerical TBA on the interval

Ω = [−A,A] with A = 2 log(2/r) ,

and to discard everything that lies outside. These considerations account for

the simulations performed in the r � 1 region where, as emphasized before, the

plateau approximation holds true. In the r-asymptotic region, corresponding to

the IR regime of the theory, this approximation fails to be reliable and the interval

Ω must be choosen di�erently. Taking into account that the behavior of the

solution at large r, see equation (5.45), receives exponentially small correction we

can then set the proper value of A. By imposing the exponential correction to be

of the order of the precision of the algorithm we establish a bound for the value

A. It turns out that the more broad, in terms of the r range, precise and stable

computation required the maximum value of A = 40. This in turn implies the

necessity of increasing the sampling number Ns, an operation which ultimately

results in a consistent enlargement of the time required by the simulation.

The �nite-support approximation can then be written, for a generic convolution

term, as

(
f ∗ g

)
(θ) =

∫
dθ′ f(θ − θ′)g(θ′) ≈

∫ A

−A
dθ′ f(θ − θ′)g(θ′) (6.4)

Such a replacement can be motivated, at least for the massive nodes, by consider-

ing the asymptotic behavior εmassive(θ)
θ�1
≈ eθ which enforces the so-called double

exponential damping of the non-linear terms, namely

Lmassive = log
(
1 + e−εmassive(θ)

) θ�1
≈ e−e

θ

(6.5)

Taking this into account one can safely consider the massive L terms as (almost)

compact supported, with support contained in the domain Ω. For the magnonic

nodes the situation is di�erent because their asymptotics are �nite or, more pre-

cisely, they tend to the IR plateau values (5.45) and receive exponentially small

corrections. Nonetheless approximation (6.4) is still reliable, see next section for

more details about this point.

The second substantial modi�cation in switching to numerics is the discretization

process. In fact continuous quantities as such we are dealing with cannot be treated

numerically and one is forced to introduce some form of sampling. We discretized



the θ interval introducing a �nite set of sampled values according to

θi = −A+ i∆θ with i = 0, 1, 2, . . . , Ns − 1 (6.6)

clearly ∆, the rapidity step, and Ns, the number of steps, are not independent

quantities. They obey a simple consistence equation, (Ns − 1)∆θ = 2A, which

allows to choose the free parameter to set. For small values of r, around 10−10, we

took Ns = 1000 to which corresponds ∆θ ≈ 0.09. See below for a discussion on

this point.

The computing core of the algorithm concerns the evaluation of the convolution

products appearing in the LHS of (6.3). We decided to choose the simplest imple-

mentation, namely to discretize the integral using the rectangular approximation.

Despite its simplicity the approximation is very accurate thanks to the good con-

vergence properties of the equations mentioned above.

6.1.2 Technical aspects

In this section we want to highlight the technical points we faced and overcame in

order to obtain a working code.

6.1.2.1 Doubling the kernels

In discretizing the convolution products on a compact support we immediately

realized that the kernels must be de�ned on an interval of double length. This is

so because of the di�erence appearing in the argument of the integrand. To grasp

this subtlety it su�ces to consider a generic convolution and evaluate it at θ = −A∫ A

−A
dθ′ f(−A− θ′)g(θ′) (6.7)

Now letting θ′ span the interval [−A,A] forces the argument of f to span the

interval [−2A, 0]. The solution to this problem is simple: de�ne the kernels of the

convolutions on the interval [−2A, 2A] and then use the index map

k(i, j) = Ns − 1 + |i− j| (6.8)



to obtain the discretized convolution as∫ A

−A
dθ′ f(θ − θ′)g(θ′) ⇒

Ns−1∑
j=0

fk(i,j) gj ∆θ (6.9)

6.1.2.2 Analytical vs. Numerical Equivalence

A very profound lesson to learn when dealing with numerical simulation is that

the analytical equivalence of two expression does not ensure their numerical equiv-

alence. In our case this comes in play when considering the non-linear function,

consider the Λ's term appearing in TBA, it is trivial to check the equivalence

Λa(θ) = log(1 + eεa(θ)) = log
[
eεa(θ)

(
1 + e−εa(θ)

)]
= εa(θ) + La(θ) (6.10)

so one is naively tempted to treat the �rst and last expressions on equal footing.

Numerically this is strongly wrong because of the exponential nature of the forcing

term. Despite the Λ's are of the same order of magnitude of the corresponding ε's,

beacause the presence of the exp and log functions somehow balance themselves,

the process of numerical calculation goes through the exponentiation of an expo-

nential. This quantity easily escapes the range of the real number on any ordinary

machine for values of θ of the order of 10.

6.1.2.3 Enhancing the magnonic convolutions

Due to intrinsic systematic error in the numerical computation we found that near

the boundary of the domain the magnonic pseudoenergies fail to reach the proper

plateau value. We take advantage of the known analytical form of the plateau

solutions [102, 146] to smoothen the convolutions involving magnons. By means

of the equality

φ ∗ La = φ ∗
(
La − L(∞)

a

)
+ cL(∞)

a , (6.11)

where c is the normalization constant of the kernel and L
(∞)
a stands for the proper

non-linear function evaluated in the plateau values, we were able not only to

cure the boundary numerical problem but also to increase the overall precision of

the computation of a factor 10−3 − 10−1 at the cost of a about the 10% of the

computation time.



6.2 The ground state TBA

This section is devoted to present the results of the numerical computation related

to the 0-vacuum (i.e. the actual ground state) of the (CPN−1)p × U(1) theory.

The simulation were performed with a C++ code in which we implemented the

numerical technology developed in Section 6.1 speci�cally to solve the TBA system

of integral equation (6.1) with α = 0.

As typical in these circumstances the ground state is often the most stable and

e�cient state for what concerns numerical simulations. The reality and positivity

of the solutions, joined with the very neat double exponential damping wich helps

in countering the arti�cial �niteness of the domain, is the main reason behind the

good numerical performances of the code.

We begin our numerical investigations by performing single-r computation with

the aim of testing the results both at the qualitative and quantitative level.

In Figure 6.1 the pseudoenergies are displayed for the choice N = 4 and p = 5 and

their behavior is very nice. The simulation is performed at r = 10−8 in deep UV

regime and in fact we can recognize the characteristic plateau patterns which are

interpolated by very sharp region near log(2/r).

We can appreciate that the di�erent asymptotic behaviors for massive and magnonic

nodes is indeed reproduced correctly. The analysis of the symmetry pattern in the

displacements of the central values reveals that is the one expected by the UV

plateau equation (5.29) establishing a qualitative match between the analytical

and numerical analysis. Moreover the set of central values �ts those obtained by

solving numerically (5.29) within an average numerical error which ranges from

10−6, for the large N and p (Np ∼ 30) computations performed at r = 10−8, to

10−11 with the most re�ned simulations, for Np ∼ 15) computations at r = 10−12.

These results con�rms the well known good behavior of the TBA ground state

integral equations under numerical investigations [87, 89]. The last strong quanti-

tative check we can perform is represented by the comparison of the asymptotics

behavior with the theoretically expected ones, see equation (5.33). Even in this

case the agreement is impressive, between 10−8 to 10−12 for the aforementioned

simulations, and it constitutes an even stronger non-trivial consistency check.

After having veri�ed the consistency of our results we can then proceed in per-

forming multiple r computation. This will result in the pro�les of the associated
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Figure 6.1: Pseudoenergies pro�les for the choiche N = 4 and p = 5 at

r = 10−8.

�nite-size scaling function c(r) of (4.29) computed in the rectangular approxima-

tion. We mention this fact to emphasize, once more, the extremely good behavior

of the TBA-like equation under numerical analysis and because we initially tried

more sophisticated way of performing the integral and they result in a negligible

increase in the precision. From the technical point of view, the simulations have

been performed independently for each value of r in view of the excellent result of

single-valued run. We have further been able of controlling the growth of the com-

putation time by taking advantage of multi-core machines onto which distribute

the various instances of the program. This shrewdness has turned into a reduction

of the computation time to the 12% of the expected one.

In Figure 6.2 and 6.3 are displayed the pro�les of the c-functions for the member

of the family reported. The r-range spans from 10−8 to 5 with a sampling step

∆r = 0.05. The r ∼ 0 value has then be compared with the conjectured e�ective

central charge with an agreement ranging between 10−6 to 10−11. The high

accuracy of the cross checks we have been able to perform on the results produced

by the simulations for the ground state motivated us to try to modify it to solve

the TBA for the �rst excited state, the π-vacuum.
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6.3 First excited state TBA

In this section we present the results obtained from the numerical analysis of the

second vacuum of the e�ective sigma model (5.8) in the TBA framework.

6.3.1 The model

The TBA description of the model is encoded again in the system (6.1) at α =

π. The only di�erence with respect to the ground state is represented by the



appearance of an imaginary chemical potential.

In this case the numerical analysis has not been as straightforward as for the

ground state. The new main feature is represented by the imaginary part de-

veloped by the massive forcing terms. We decided to deal with the complex-

valued nature of this system of equations not by brute force, i.e by implementing

a complex-valued system of integral equation, but rather by re-de�ning the massive

pseudoenergies as

ε̃0(θ) = ε0(θ)− iπ , ε̃0̄(θ) = ε0̄(θ) + iπ .

This implies in turn a modi�cation of the non-linear terms related to massive

nodes appearing in the convolutions of (6.1), namely

L̃0(θ) = log
(
1− eε̃0(θ)

)
, L̃0̄(θ) = log

(
1− eε̃0̄(θ)

)
.

These de�nitions allow to recast the TBA for the π-vacuum in the very same

functional form of the ground state TBA (apart from the modi�cation of massive

functions with the tilded ones) and we report it here for convenience

ε̃0(θ) + ε̃0̄(θ) = 2mR cosh θ −
N−1∑
l=1

χ(1− 2l
N

) ∗ Λ(l,1)(θ),

ε̃0(θ)− ε̃0̄(θ) =
N−1∑
l=1

ψ(1− 2l
N

) ∗ Λ(l,1)(θ),

ε(i,j)(θ) = δi,1δj,1φN
2
∗ L̃0(θ) + δi,N−1δj,1φN

2
∗ L̃0̄(θ)+

+

p−1∑
l=1

A
(p−1)
l,j φN

2
∗ Λ(i,l)(θ)−

N−1∑
l=1

A
(N−1)
l,i φN

2
∗ L(l,j)(θ),

(6.12)

Also the free energy of the system gets modi�ed by such a rede�nition

E(π)(R) = −πc
(π)(r)

6R
= −m

2π

∫
dθ cosh(θ)

[
L̃0(θ) + L̃0̄(θ)

]
.

The main advantage of the last forms is the fact that now we have a purely real

system of equations. The price we paid in trading the manifestly complex form to

the real one is that now the arguments of the logarithms in the convolutions are

no longer positive de�nite and will possibly produce singularities and complex-

valued pseudoenergies. We will see that this fact will have important numerical



consequences. The situation is well known in literature, see [151, 152] for instance,

and physically corresponds to the introduction of a chemical potential λ = −1.

In particular the analysis of two systems in this regime will provide some non

trivial analytical checks for the conjectured quantities. These systems are the free

fermion and the Fractional Supersymmetric Sine Gordon (FSSG) [147, 148] at

negative chemical potential.

6.3.2 Numerical Analysis

We now turn to the numerical analysis of the TBA equations (6.12). We decided

to test the performances of the computational setup described in section 6.1 on

the π-vacuum as well. This choice was motivated by the very high precision of

the simulations for the ground state. In particular the cut-o� trick for magnonic

convolutions is justi�ed by the fact that in the large r regime, corresponding to

large θ values, the asymptotics are exactly the same: a constant plateau value, see

(5.45), which receives exponentially small corrections of order O (e−r).

However the strategy in case is a little di�erent. In trying to explore the behaviour

of the solution for various r we face the fact that the algorithm becomes instable

as r approaches zero. This is due to the presence of complex-valued logarithms

which cannot be trated by a purely real implementation. Nonetheless, to avoid

these numerical inconsistecies, we can start from large value of r and decrease

it progressively of a step ∆r. In doing this we keep track of the solution at the

previous value and use it as initial guess for the computation at the present value.

The aim of the procedure is to follow the correct solution from the asymptotic

regions, where can be checked analytically and the code is stable, down to r = 0.

This idea has been implemented with two additional features:

• an adaptive step ∆r :

With the term adaptive we intend a code functionality which works as a

self-consistency check and can recognize if the computed solution is reliable

or not. If the consistency check fails the code make a step back and tries a

new run after having dynamically modi�ed the internal parameters.

• an adaptive weight w :



The solution at step n is evaluated by weighting the contribution coming

from step n− 1 with the convolutions terms, namely

ε(n)(θ) = w ε(n−1)(θ) + (1− w)
(
conv. terms

)
(6.13)

This approach has revealed essential to reach small values of r and we were able

to numerically obtain the c(π)-function pro�le for the �rst members of the fam-

ily. The result are displayed in Figure 6.4. The picture reveals how drastically

the minimum reachable value of r is increased as p grows. We noticed that the
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Figure 6.4: The �nite-size scaling function c(r) pro�les for some members of

the (CP3)p × U(1) for various values of p.

numerical di�culties encountered in solving this type of problem is very sensitive

to the parameter p and more permissive with respect to changes in N . Therefore

performing simulations to explore the other direction of the graph, letting p = 1

to minimize the lowest value of r reachable, we obtained the functions displayed

in Figure 6.5

In this case the precision was drastically decreased to range from 10−2 to 10−4.

The possibility of conjecturing the analytic expression (5.47) for the value of the

e�ective central charge has to rely on the method illustrated in the next section.
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6.4 Y-systems numerical analysis

This section is devoted to the numerical analysis of general Y -systems, as those

encountered in Chapters 4 and 5, with the precise aim of obtaining a candidate for

the associated e�ective central charge. From the more strict mathematical point

of view this amounts to the numerical evaluation of a speci�c dilogarithm sum rule

corresponding to the plateau equations of the associated Y -system. Since most

of the Y -system presented in this work fall in families labelled by one, or more,

integer numbers in such a way that the object of our research is almost always

a sequence of rational numbers. This is by no means a surprise since we are

considering integrable models realized as perturbations of some CFT and there's

a large subset of CFT, known as Rational Conformal Field Theories which enjoys

rational-valued central charges. This observation greatly constrains the form of

the solutions and thus we have at our disposal a very selective criterion to test

our results. At the same time the large amount of mathematically proved and,

where not yet achieved, solidly conjectured results known in literature is impressive

[52, 128, 130, 144, 145, 153, 155] and allows for cross-checks and comparisons.

The key observation is that, in general, Y -systems display a periodicity in the

imaginary direction of the rapidity plane [90, 101] which, from the physical point

of view, is related to the conformal dimension of some operator of the underlying



CFT, namely

YA(θ + iπP ) = YA′(θ) (6.14)

for general multi-index A and A′ which may, or may not, be di�erent. The map-

ping A → A′ is model-dependent and every choice leads to di�erent patterns

according to the symmetry structure of the associated algebra. For the ADET

and ADET♦ADET cases of Chapter 4, A′ is the anti-particle index. Moreover,

in the diagramatic representation of such Y -systems, there's a nice way of read-

ing the particle-antiparticle inversion, they simply correspond to index which are

symmetric with respect to symmetry of the diagram. Other type of more general

Y -systems, such as the ones introduced in [146, 128] and related to NSLM, in-

stead do not display this type of behavior although still enjoy the periodicity in

the imaginary direction.

For the rest of the section we will focus our analysis on the Y -system (5.22,5.23)

describing the ground state of the (CPN−1)p × U(1) model and only for what

concerns the UV contribution. We report the explicit form of the Y -system here

for convenience

Y0

(
θ + i

π

2

)
Ȳ0

(
θ − iπ

2

)
=

N−1∏
l=1

(
1 + Y(l,1)

(
θ + i

π

2
− iπl

N

))
,

Y0

(
θ − iπ

2

)
Ȳ0

(
θ + i

π

2

)
=

N−1∏
l=1

(
1 + Y(l,1)

(
θ − iπ

2
+ i

πl

N

))
,

Y(i,j)

(
θ + i

π

N

)
Y(i,j)

(
θ − i π

N

)
=
(
1 + δi,1δj,1Y0(θ) + δi,N−1δj,1Ȳ0(θ)

)
×

×
p−1∏
l=1

(
1 + Y(i,l)(θ)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

Y(l′,j)(θ)

)−A(N−1)

l′,i

;

(6.15)

this form is general enough (it is bidimensional, presents shifts at both members

and displays both massive and magnonic nodes) to give a taste of the general

procedure. The choice of the ground state was not an accident in fact the approach

we are outlining is known [145, 153] to give the best performances for these type of

states, i.e. those for which the numerics converge in the fastest and most stable way

to the correct solutions. As anticipated in Section 5.3.2 after having eliminated the

θ-dependencies we are left with the system of non-linear algebraic equations (5.29).

Taking the logarithm we obtain a form more suitable for numerical iterations which



explicitly reads

ε0 = ε̄0 −
N−1∑
l=1

log (1 + eεl,1) ,

ε0 = ε̄0,

ε(i,j) = log
(
1 + δi,1δj,1e

−ε0 + δi,N−1δj,1e
−ε̄0
)

+

+

p−1∑
l=1

A
(p−1)
l,j log (1 + eε(i,l))−

N−1∑
l′=1

A
(N−1)
i,l′ log (1 + eε(l′,k)) ;

(6.16)

where the ε's are the stationary values of the pseudoenergies. By using (6.16)

recursively starting from arbitrary initial guess, mimicking somehow the numerical

integration setup of Section 6.1, the convergence is impressively fast and stable

and the runs can be performed on an ordinary laptop. For what concerns the more

technical aspects we implement the iteration by weighting with w = 0.5 the old

and new solutions (see equation (6.13)). The escape condition for the iteration

loops is implemented by evaluating the absolute value of the average di�erence

between the ε's calculated at step n and at step n − 1; if this value is found to

be less then 10−15 the solution is considered su�ciently close to the exact one and

the iterative procedure stops.

Having succeeded in determining numerically the plateau values the next step is

to evaluate the Rogers dilogarithm sum rule

c =
6

π2

[
L
(

1

1 + eε0

)
+ L

(
1

1 + eε̄0

)
+

N−1∑
i=1

p−1∑
l=1

L
(

1

1 + e−ε(i,l)

)]
(6.17)

Many numerical softwares, as Mathematica that we decide to employ, o�er a nu-

merical implementation of the usual Dilogarithm Li2(z) which is needed to com-

pute the function L, see relation (A.3) for the precise link between the two special

functions. By plugging the solutions of (6.16) into the sum rule (6.17) we obtain a

table of (approximated) rational numbers representing the central charges of the

various members of the family. Our goal is therefore to obtain a closed expression,

in term of rational functions of N and p, for the central charges.

The numerical outcome for the central charges atN = 4 for the p-truncated models

are compared with equation (5.35) in Table 6.1: the match is very good and leaves

little doubt on the correctness of conjecture (5.31).



Level p Numerics Exact Error
2 1.8000000000000014 9/5 1.3× 10−16

3 2.428571428571437 17/7 8.4× 10−15

4 2.928571428571431 41/14 2.6× 10−15

5 3.333333333333345 10/3 6.7× 10−15

6 3.666666666666656 11/3 1.1× 10−14

7 3.945454545454537 217/55 8.4× 10−15

8 4.181818181818161 46/11 2.0× 10−14

9 4.384615384615358 57/13 2.7× 10−14

10 4.56043956043953 415/91 3.0× 10−14

11 4.7142857142856 33/7 1.1× 10−13

41 6.212121212124 205/33 2.8× 10−12

51 6.35353535324 629/99 2.9× 10−10

61 6.4519230761 671/104 8.2× 10−10

Table 6.1: N = 4: comparison between numerics and equation (5.35).

6.4.1 Periodicity

Because of its link with the conformal dimension of the perturbing operator [90,

101, 107] it seems reasonable to look for a rational period P of the form R/Q

with R and Q integers not necessarily prime between themselves. In practice the

denominator Q is usually suggested by the explicit form of the Y -system under

consideration. In our case (6.15) the Y -system present to natural shifts: π/2,

for massive nodes, and π/N , for magnonic ones; it is therefore natural to choose

the denominator as Q(N,p) = N since it represents the smallest units of shift.

This assumption is important at the numerical level because we can introduce a

discretized version of Y -system by means of

yA(n) = YA

(
i
π

2N
n
)
, (6.18)



in terms of which the discretized and properly o�setted Y -system becomes

y0(n) =
1

ȳ0(n−N)

N−1∏
a=1

(
1 + ya,1(n− a)

)
ya,l(n) =

1 + δa1δl1y0(n− 1) + δaNδl1ȳ0(n− 1)

ya,l(n− 2)
×

×

(
1 + ya, l−1(n− 1)

)(
1 + ya, l+1(n− 1)

)
(

1 +
1

ya+1, l(n− 1)

)(
1 +

1

ya−1, l(n− 1)

)
ȳ0(n) =

1

y0(n−N)

N−1∏
a=1

(
1 + yN−a,1(n− a)

)
(6.19)

By using (6.19) as a recursive relation starting from the necessary number of

arbitrary initial conditions we have been able to check, up to N and p around 100,

that the follwing discrete periodicity holds

yA(n+R(N,p)) = yA (n) with R(N,p) = 2(N + p− 1) . (6.20)

This implies in turn a periodicity for the Y -function of the form (6.14) with P(N,p) =

2(N + p − 1)/N . This numerical analysis has made possible the identi�cation of

the perturbing operator of Section 5.3.2.

For what concerns the precision of this numerical simulation we implement the

escape condition in a fashion similar to what we have done for the numerical inte-

grator; namely we check that the absolute value of the average di�erence between

all the nodes at step n and at step n + R(N,p) was less than 10−15. In order to

avoid accidental escaping we perform the escape check on multiple, namely 3,

independent values of n.

From a more general point of view this type of approach has revelead extremely

successful and has been tested on all the Y -systems presented in this thesis with

positive outcome and a very high accuracy.

6.4.2 Central Charge Numerics

After having discovered the periodicity of the Y -functions we are in the position

of understanding more in detail the structure of the central charge coming from



the dilogarithms sum rule. To this aim consider a non-stationary version of the

sum rule (6.17) in the form

2(N+p−1)∑
n=1

(
L
(

y0(n)

1 + y0(n)

)
+ L

(
ȳ0(n)

1 + ȳ0(n)

)
+

N−1∑
i=1

p−1∑
j=1

L
(

y(i,j)(n)

1 + y(i,j)(n)

))
.

(6.21)

This can be interpreted as a discretized version of an integral over a period of the

function in bracket and since it is a periodic quantity we know that the average

does not depend on the starting point and thus the result is independent of n.

Moreover we know from Cluster Algebras [154] and general Y -system [153, 155]

considerations that the number represented by (6.21) must be an integer, say I(N,p),

since it is related to the topological structure of the underlying algebra.

In view of these considerations the stationary sum rules, as (6.17) for instance,

acquire a new meaning: they are average over a period of non-stationary sum

rules. In other words the rational result of such sums can be represented as the

ratio

c =
I(N,p)

P(N,p)
(6.22)

where the denominator is exactly the already known discretized period.

This is the last ingredient needed to reconstruct the central charge. In fact now

we can multiply the table of rational numbers obtained numerically in Section

6.4.2 by the corresponding period to obtain a two-parameter sequence of integer

numbers which are extremely easier to indentify.

In order to �x uniquely the factor I(N,p) we resorted to numerical interpolation.

Since we are dealing with integers we can safely assume the quantity I(N,p) to be

a polynomial in N and p. More precisely by keeping one of the parameter, say

N , �xed, i.e. interpolating I(N,p) row by row, we can use interpolating built-in

function to obtain several sequences of integers corresponding to di�erent values

of N . The full result is then obtained by selecting the coe�cient of the same

powers of p and interpolating once more in the same way.

The methods presented in this chapter are very general and can be applied suc-

cessfully to all the TBAs presented in this thesis. They have proved su�ciently

accurate to allow for the conjecture of several non-trivial results concerning the RG



�ow of integrable theories and to test them by analytic and numerical cross checks.

This chapter concludes the research material covered in this thesis and we address

to the draw some conclusions and outline future directions of investigation.





Chapter 7

Conclusions

The main object of the material presented in this thesis has been the develop-

ment of a non-perturbative consistency check for the quantum integrability of the

extended -CPN−1 family of 1 + 1-dimensional Non-Linear Sigma Models, recently

proposed in [74]. The model is an interesting generalization of a well studied

class of sigma models, namely the (gauged) CPN−1, which is coupled to a self-

interacting massless Dirac fermion. The physical interest in this class of models

has been recently renewed in the AdS/CFT correspondence context where, the

distinguished member of the family with N = 4, is believed to govern the low en-

ergy behavior, more precisely the Alday-Maldacena decoupling limit [143], of the

AdS4 × CP3 type IIA superstring sigma model [82]. We recall that this model is

conjectured to be quantum integrable thus the possibility of a detailed knowledge

of its low-energy behavior, with particular focus on the informations that the TBA

allows to extract, may shed some light on the full superstring theory. Moreover the

AdS4×CP3 model is conjectured to be dual to the N = 6 superconformal Chern-

Simons theory in 1 + 2 dimensions, for which a set of ABA has been proposed in

[28] to describe the 2-loop integrability of the model. The work presented here is,

in this sense, a further evidence in the direction of this, less studied, AdS/CFT

correspondence example.

Beyond this point, the quantum integrability problem for CPN−1-related NLSM is

a long standing one [62, 63]. Since the proof of its classical integrability, through

the construction of the explicit Lax operator [73, 74], and the corresponding lack

of the quantum counterpart, spoiled by anomalies at quantum level [70], many

attempts have been made to deform the model in order to restore integrability
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[71, 72]. In this sense the class of model proposed by Basso and Rej constitutes

a minimal estension of the CPN−1 NLSM which, thanks to the addition of a self-

interacting massless Dirac fermion, can be �ne-tuned, from the renormalization

point of view, to de�ne a subclass of integrable models.

These considerations motivated us in performing further non-perturbative analytic

tests on the integrability of these models. One of the main results of [74] is that

the authors have been able to conjecture an explicit form for the 2-body S-matrix

between the fundamental excitations of the model. The scattering amplitudes turn

out to be given by the re�ectionless SU(N)-invariant S-matrix, those of type II

according to the classi�cation of [75]. The evidence of quantum integrability for

these type of models, as described in [74], are supported, among the other argu-

ments, by imposing the (non-trivial) matching between the free energy of a gas of

spinons, as are named the fundamental excitations of the model, computed with

two independent approaches: perturbation theory [74] and the S-matrix theory

[135]. As a result they have been able to �ne-tune the parameter of the general

class of models in order to extract a subclass of integrable ones and, moreover,

to obtain an exact expression for the mass gap of the spectrum. With the idea

of giving more support to this observation we applied the Thermodynamic Bethe

Ansatz analysis in order to test this conjecture by further non-perturbative consid-

erations. Starting from the knowledge of the ABA equations in the NS sector we

carried over all the various analytical steps which constitutes the TBA analysis.

As explained in detail in Chapter 4 (see in particular the Section (4.3.4.1) related

to the application of TBA to NLSM), the TBA procedure we applied has been

constituted by the steps which we list in the following, along with the main general

results and consequences that can be drawn, and outlining the open questions and

possible research directions which have emerged in each step. We stress that the

actual analytic derivation has been explicitly performed in all its parts only in the

N = 4 case, the relevant one in the AdS/CFT context [74, 28].

• String hypothesis: We have been able to obtain the explicit form for

the string hypothesis, along the lines of [126, 127]. These magnonic bound

states have then been analyzed by the bootstrap procedure, at the level of

the ABA, which ultimately resulted in the evaluation of the exact S-matrix

for these states, see equation (5.12). The e�ectiveness and strength of the

string hypothesis are thus con�rmed by this non-trivial application.



• Thermodynamic limit: The ABA have then been considered in the ther-

modynamic limit and casted as linear system of integral equations (5.13)

which is written, for some unknown densities of states, in terms of convolu-

tions with some physical kernels, those obtained in Section B.1. The physical

kernels have been analyzed in the complex plane to produce the shift relation

of Section B.2 which have revealed essential to proceed in the analysis.

• Mirror thermodynamics: The theory has then been formulated on the

TBA torus [87], which generates the �nite-size geometry of the cylinder by

a suitable limiting procedure, and the minimization of the free energy func-

tional has been performed. The minimization ultimately resulted in the TBA

system of non-linear integral equations (5.14) which enjoys a pair of mas-

sive nodes, corresponding to the spinon and anti-spinon massive excitations,

and a three-layer in�nity tail of magnonic nodes, corresponding to the three

types of magnonic strings introduced.

• Y -systems: The kernels shift identities of Section B.2 has then allowed

to recast the integral TBA into the system of functional relations known

as Y -system [90]. The resulting Y -system �ts the well-established classi�-

cation of [107] even though it presents some new interesting features. The

�rst di�erence concerns the presence of shifts on both sides of the functional

equation, a features already outlined in [107] and observed for instance in

the O(2r) case [128]. While the second, and more important, new feature is

related to the structure of the equations; indeed we obtained two di�erent

way of writing the associated Y -system: the uncrossed form (5.17) and the

crossed one (5.21). This choice regards the massive nodes and it has �rstly

been observed in [140, 142], in relation to the Y -system associated to the

AdS4 × CP3 superstring sigma model. Since the extended -CPN−1 model is

believed to govern the low energy behavior of this particular string model

the compatibility of the two Y -systems structures, apart from providing a

qualitative evidence of this limit, opens the interesting possibility of investi-

gate deeper the relation between the two models within the TBA approach.

We also mention that, thanks to the crossed formulation of the Y -system, it

has been possible to encode the TBA description into a Dynkin-like diagram,

that of Figure 5.1. This behavior constitutes an interesting general feature



of Y -system that can be explored further in relation to the possibility of in-

terpreting the crossed form as a mean of analytic continuation to a di�erent

Riemann sheet of the same function.

• Truncated model: As typical for sigma models the magnonic color struc-

ture is described in terms of an in�nite collection of pseudoenergies, non-

trivially coupled to each other [91, 104]. The solution of an in�nite set of

functional equations constitutes a formidable analytic task thus some sort of

truncation, as those outlined in Section 4.3.4.1 for the O(2r) case [128], to

deal with a �nite number of equations is required. Moreover, a careful analy-

sis of the structure of the shifts in the massive equations of the Y -system has

suggested the possibility of formulating a consistent empirical conservation

rule for the shifts in the functional equations. These two observation has led

to the a remarkable generalization of the equations rigorously derived so far.

Namely, by introducing the rank N and the level p we have been able to gen-

eralize the description to an entire two-parameter in�nite family of models:

the (CPN−1)p × U(1) models. The corresponding two-parameter Y -system

was obtained in (5.22-5.23) and enjoys the features discussed above for the

previous model, which corresponds to the choice N = 4 and p =∞.

• Universal form: Thanks to the Fourier analysis, along the lines of [90,

123], performed on the functional equation, which provides, as a byproduct,

the introduction of the generalized universal kernels of (B.8), we eventually

ended up with an non-linear system of integral equations which represents

the TBA description for the model, see equation (5.24), in the, suitably

extended, Zamolodchikov's universal form. This has allowed both analytic

and numerical investigation on the whole novel family of integrable models.

The physical content of the formulation is related to the ground state of

the theory and to its �rst excited state, a second degenerate vacuum which

is lifted by quantization. The dependence of the integral equations on the

state is entirely encoded in the discrete parameter α ∈ {0, π}, related to the

chemical potential by λ = eiα and appearing explicitly in (5.24).

• RG �ow: The equation obtained allowed for a non-perturbative analysis of

the Renormalization Group �ow structure for the system. More speci�cally

we have been able to conjecture, based on the high accuracy results obtained

by employing a suite of numerical algorithms developed ad hoc, an exact form

for the UV e�ective central charge, equation (5.35), of the model and also an



expression for the dimension of the perturbing operator, see equation (5.41).

From a more strictly technical point of view the object of the conjecture is

represented by the non-stationary Rogers dilogarithm sum rule (5.49), which

can be suitably adapted to the case at hand to give the exact form of the

UV central charge for the model, equation (5.31). Aside from being inter-

esting from the physical point of view in relation to the possibility of model

identi�cations, our conjectured result gives a further example of accessible

Rogers dilogarithm sum rule [102, 145]. The mentioned non-stationary sum

rule should be explored further from the analytic point of view in relation to

the topic of cluster algebras [154]. The analysis has been performed for both

the α-vacua and the results passed several non-trivial checks by matching

the known result [147] for particular limit of the parameters, in which the

theory is known to reduce to previously known models: the free fermion and

the Fractional Supersymmetric Sine-Gordon model [148].

For what concerns the interpretation of the exact results related to the (CPN−1)p×
U(1) family of TBA, we followed the path delineated in [101, 107] and constructed

an equivalent formulation in terms of perturbed coset CFT. Explicitly we asso-

ciated to the general quantum truncated integrable model (CPN−1)p × U(1) the

Kac-Moody coset CFT

SU(N)p
SU(N − 1)p × U(1)

× U(1) , (7.1)

where the coset part account for the bosonic degrees of freedom while the U(1)

part is related to the Dirac fermion. In other words, the CFT we are considering

is obtained as the direct product of the theories appearing in (7.1) which are a

Kac-Moody related coset CFT [34] and a compacti�ed free boson, known to be

equivalent to a free Dirac fermion in 2 dimensions. We moreover checked that the

perturbation which generates the integrable model is constituted by an operator

which takes values in both the CFTs, see equation (5.44). The �eld content of

the theories has then been used to split the perturbing dimension, as coming from

the TBA analysis, in a unique way, de�ning in this way the exact form of the

perturbing operator. The results coming from the TBA analysis of the π-vacuum

con�rm this scenario and the conjecture (7.1) but a unambiguous match with

the operator content of the underlying CFT is still under current numerical and

analytic investigations. We reserve the analysis and discussion of these results for

future pubblications.



As mentioned before a great deal of informations has come from the numerical

analysis of the equations discussed so far. Motivated by the well-known excellent

behavior of TBA-related equations under numerical analysis we decided to develop

a whole suite of softwares and scripts, based on several di�erent languages (C++,

Mathematica), to deal with the TBA equations. The accuracy of the results

obtained was impressive, as extensively discussed in Chapter (6), and the non-

trivial cross-checks, both at the analytic and numerical level, leave little doubt

about the correctness of the conjectured formulas. This has been performed with

a bottom-up approach, i.e. starting from simpler systems, such as those of the

ADET type, see Section 4.2, whose analysis has allowed to tune and debug the

codes. Then we proceed to implement more re�ned versions which have given

the possibility of perform the analysis discussed above for the (CPN−1)p × U(1)

models. The legacy of such an approach is constituted by a series of numerical

tool for the solution of TBA-related problems with which we will start, as step 0,

the creation of an open-source online database for the state-of-art of numerics in

this �eld. The project is at an embrional stage but we are con�dent that, in view

of the broad �elds of applicability of the TBA formulation, its scope will expand

in the future. For the moment the material is hosted at the author's web page.

At last we mention some of possible research directions opened by this work.

At the most basic level the result obtained for the π-vacuum requires a deeper

analysis both at the numerical and analytical level. From the analytic side a

deeper understanding of the underlying CFT will shed some light on the operator

content and provide a theoretical framework into which test conjecure (7.1). More

support to the model identi�cation could also be given by the study of other

states of the theory, in order to establish a precise correspondence between the

TBA description and the CFT formulation, thanks to the analytic continuation in

the complex plane of the TBA equations, see for instance [162].

Another interesting open perspective is represented by the so-called magnon re-

summation problem. In recent years some techniques have been developed with

the precise aim of reducing the tail of magnonic TBA nodes to a single node of

di�erent type, which can be indeed interpreted as a new node stemming from re-

summation of magnonic ones. The equation satis�ed by these new type of node

is still a non-linear integral equation which is de�ned on the complex plane and

rensembles those of [163, 164], obtained independently by other means. The aim of

this recasting is obviously related to the possibility of giving a uni�ed description

http://www.link4life.altervista.org/


Figure 7.1: A graphical representation of the folding operation between the

O(6) and the (CP3)p × U(1) TBAs.

of the whole theory in term of single non-linear integral equation. This aspect is

currently under research.

At last we want to mention a remarkable formal link that can be drawn between

integrable models. The operation that could possibly related two di�erent TBA

model is the so-called folding [101]. This operation can be de�ned rigorously

for some type of simple Lie algebra related TBA, for instance the Tn TBAs of

[101], and correspond to introduce an equivalence class, based on the action of

the Weyl group element, in the weight lattice of the algebra. This ultimately

results in a morphism between di�erent TBA models of which a very neat graphical

interpretation is possible. Namely one can consider the (possible) symmetry of the

diagram and fold the diagram along this axis of symmetry. In doing this nodes

and links symmetric with respect to the axis should be identi�ed, while those lying

on the axis should be doubled. This graphical picture allows the introduction of

this type of relation between the model we are dealing with and the corresponding

O(6) TBA. The folding operation applied to the O(6) TBA produces exactly the

diagram found in this work as can be seen in Figure 7.1. Apart from being on

its own an interesting and promising tool for generating new TBA model starting

from known ones, the study of this approach could shed some light on the relations

between the two models. In view of their superstring full counterpart, namely the



well studied AdS5× S5 and AdS4×CP3 models, this interesting techniques could

also shed some light on the possible relations between the two most relevant models

in the context of the AdS/CFT correspondence. The situation we have described

is summarized in Figure 7.2 This interesting intertwining deserves, in our opinion,

AdS5 × S5

String
σ-model

AdS4×CP3

String
σ-model

O(6)

extended -CP3

Low Energy Limit

Low Energy Limit

FoldingFolding

Figure 7.2: A pictorial representation of the possible relations between

AdS/CFT -related models and their low energy behaviors.

more attention and is left for future investigations.



Appendix A

The Rogers Dilogarithm Function

In this appendix we review the main analytical properties of the Rogers dilogarithm

function. The presence of this function in mathematical physics is very broad:

volumes of polytopes in curved geometries, number theory, algebraic K-theory,

representation theory of in�nite dimensional algebras, low dimensional tolopogical

problems, a�ne (or not) conformal �eld theories and TBA analysis.

Clearly we are mainly interested in presenting the properties and relations related

and useful to the non-perturbative RG �ow analysis that can be performed within

the TBA framework. This is usually connected with the topic of dilogarithms

accessible sum rule, namely the (�nite) sum of dilogarithms evaluated in particular

values which are given as the solutions of a highly non trivial algebraic system of

equations.

A.1 De�nition and principal properties

The Rogers dilogarithm function L(x) can be de�ned for 0 ≤ x ≤ 1 by the integral

representation

L (x) = −1

2

∫ x

0

(
log(1− t)

t
+

log t

1− t

)
dt . (A.1)

The symmetric form of the integrand suggests a relation with the usual dilogarithm

(Euler's dilogarithm, to be precise) Li2(x), which can be de�ned, for 0 ≤ x ≤ 1,
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as

Li2 (x) = −1

2

∫ x

0

log(1− t)
t

dt =
∞∑
n=1

xn

n2
. (A.2)

The relation between the two trascendental functions is then given by

L(x) = Li2 (x) +
1

2
log x log(1− x) . (A.3)

as can be checked by direct integration.

The function L(x) can be seen [102] to satisfy the re�ection functional relation

L(x) + L (1− x) =
π2

6
, 0 ≤ x ≤ 1 , (A.4)

and the so-called �ve-terms relation

L(x) + L (y) = L (xy) + L
(
x(1− y)

1− xy

)
+ L

(
y(1− x)

1− xy

)
, x > 0 , y < 1 , (A.5)

wich, evaluated at y = x, becomes the well known Abel duplication formula

L(x2) = 2L (x)− 2L
(

x

1 + x

)
. (A.6)

The function L(x) can be continued analytically to the complex plane and presents

two cuts on the real axis: from −∞ to 0 and from 1 to +∞. The analytic

continuation can then be performed by means of the following relations

L(x) =
π2

3
− L

(
1

x

)
, for x > 1 ,

L (x) = L
(

1

1− x

)
− π2

6
, for x < 0 ,

together with the special values

L (0) = 0 , L (1) =
π2

6
, L (+∞) =

π2

3
, L (+∞) = −π

2

6
.



In [156], using analytical techniques, Rogers was able to prove the following theo-

rem. De�ne the polynomial

p(x, t) = 1− t−
n∏
i=1

(1− αix)

of degree n in x, for non vanishing complex numbers α1, α2, · · · , αn. Then, denot-
ing by xj the roots of p(x, t) = 0, we have

n∑
i=1

n∑
j=1

[
L
(
αi
αj

)
− L (αixj)

]
= L(1− t) . (A.7)

This relation can be remarkably generalized as can be seen in [102, 158]. This

very general example constitutes the prototype of the sum rule encountered in

Chapter 4 and 5. Namely it provides the value of a particular sum of dilogarithm

evaluated at values which satisfy a certain algebraic equation. The main goal of

such a theorem relies on the possibilities of evaluating the sum rule without the

actual knowledge of the solutions to the equation involved.

Relations such (A.7) constitues also an example of accessible identities, namely

relations that can be proved by means of the functional relation (A.5).

A.2 Accessible identities

By making use of relations (A.4) and (A.6) we can easily obtain the following

special values

L (1) =
π2

6
, L (−1) = −π

2

12
, L

(
1

2

)
=
π2

12
, (L.Euler 1768);

L
(

1

2

(√
5− 1

))
=
π2

10
, L

(
1

2

(
3−
√

5
))

=
π2

15
, (J.Landen 1780).

One of most complete list of the accessible identities involving Rogers dilogarithm

function can be found in [102].



The most important result concerning the relations between the Rogers diloga-

rithm and the TBA description of RG �ows comes from the analysis of the follow-

ing dilogarithm sum rule

s(j, n, r) =
6

π2

n−1∑
k=1

r∑
m=1

L
(

sin(kϕ) sin(n− k)ϕ

sin(m+ k)ϕ · sin(m+ n− k)ϕ

)
, (A.8)

where ϕ = (j + 1)π/(n + r) and 0 ≤ 2j ≤ n + r − 2. In [160, 161] the function

s(j, n, r) has been evaluated explicitly and found to obey the level-rank duality

property s(n, r) + s(r, n) = (n− 1)r. It is given by

s(j, n, r) = cnr − 24∆r,n
j ,

where

cnr =
r(n2 − 1)

n+ r
∆r,n
j =

n(n2 − 1)

24

j(j + 2)

n+ r
,

are respectively the central charge and primary �elds conformal dimensions of a

SU(n)r WZW conformal �eld theory. It is remarkable that the values appearing

in A.8 can be reduced to those which solve the An−1♦Ar UV plateau equations in

the TBA formulation of Chapter 4.

As last example we mention a sum rule which has been employed in the text, see

Section 4.2.3). Firstly proved in [52, 159] it reads explicitly

n∑
a=1

L

 sin2 π

n+ 3

sin2 π(a+ 1)

n+ 3

 =
π2

6

2n

n+ 3
(A.9)

and constitutes another example of physically relevant dilogarithm sum rule.



Appendix B

Scattering kernels and Bootstrap

relations

In this appendix we are in going to write down explicitly the scattering matrices

we used throughout Chapter 5 and the associated scattering kernels appearing in

the integral equations. Then we deduce the kernels identities necessary to switch

from the integral to the functional formulation of the TBA for the (CPN−1)p×U(1)

family.

B.1 Kernels

We list here the relevant S-matrices elements and associated kernels. For a com-

plete derivation of these amplitudes in terms of pure S-matrix theory and symme-

tries we refer to [75].

B.1.1 Spinon-Spinon Scattering

The spinon-spinon S-matrix [74] reads

S(θ) = −
Γ

(
1 + i

θ

2π

)
Γ

(
1

4
− i θ

2π

)
Γ

(
1− i θ

2π

)
Γ

(
1

4
+ i

θ

2π

) (B.1)
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Related to that, we de�ne the kernel K as

K(θ) ≡ 1

2πi

d

dθ
logS(θ)

which may be representated in several worthwhile ways 1:

K(θ) =
1

4π2

{
ψ

(
1 + i

θ

2π

)
+ ψ

(
1− i θ

2π

)
− ψ

(
1

4
+ i

θ

2π

)
− ψ

(
1

4
− i θ

2π

)}
=
∞∑
n=0

(
1

π

2π(n+ 1/4)

θ2 + (2π(n+ 1/4))2
− 1

π

2π(n+ 1)

θ2 + (2π(n+ 1))2

)
=

=

∫
dω

2π
eiωθ

q − q4

1− q4
con q = exp

(
−π

2
|ω|
)

It is straightforward to get∫ +∞

−∞
dθK(θ) = lim

ω→0
K̂(ω) =

3

4

B.1.2 Spinon-Antispinon Scattering

The S-matrix associated to the spinon-antispinon scattering is

t1(θ) =

Γ

(
1

2
− i θ

2π

)
Γ

(
3

4
+ i

θ

2π

)
Γ

(
1

2
+ i

θ

2π

)
Γ

(
3

4
− i θ

2π

) (B.3)

Consequently the kernel G(θ) is

G(θ) ≡ 1

2πi

d

dθ
log t1(θ) ,

1It could be of any use to remind that

ψ(z) =
Γ′(z)

Γ(z)
= −γE −

∞∑
n=0

(
1

z + n
− 1

n+ 1

)
(B.2)

where γE stands for the Euler constant



explicitly

G(θ) =
1

4π2

{
ψ

(
3

4
+ i

θ

2π

)
+ ψ

(
3

4
− i θ

2π

)
− ψ

(
1

2
+ i

θ

2π

)
− ψ

(
1

2
− i θ

2π

)}
=
∞∑
n=0

(
1

π

2π(n+ 1/2)

θ2 + (2π(n+ 1/2))2
− 1

π

2π(n+ 3/4)

θ2 + (2π(n+ 3/4))2

)
=

=

∫
dω

2π
eiωθ

q2 − q3

1− q4
con q = exp

(
−π

2
|ω|
)

.

Then ∫ +∞

−∞
dθ G(θ) = lim

ω→0
Ĝ(ω) =

1

4

B.1.3 Magnon Bound State Scattering

Magnonic solution strings scatter according to the matrices

Slm(θ) ≡
l+m−1

2∏
α=
|l−m|+1

2

θ − iπα
2

θ + i
πα

2

(B.4)

from which

Klm(θ) ≡ 1

2πi

d

dθ
logSlm(θ) =

l+m−1
2∑

α=
|l−m|+1

2

1

π

απ/2

θ2 + (απ/2)2
,

Fourier Transformed as

K̂lm(ω) =

l+m−1
2∑

α=
|l−m|+1

2

e−α|ω|π/2 =
e−
|ω|π

4
|l−m| − e−

|ω|π
4

(l+m)

2 sinh(π|ω|/4)
.

We obtain the matrix

Nlm =

∫
dθKlm(θ) = K̂lm(0) = min {l,m} =

l +m− |l −m|
2

whose inverse reads

K̂−1
nl (ω) = 2 cosh

(
|ω|π

4

)
δnl − (δn,l−1 + δn,l+1) ,



satisfying ∑
l

K̂−1
nl (ω)K̂lm(ω) = δnm

B.2 Helpful Relations in Bootstrapping Matrices

and Kernels

Here we are reviewing the identities between scattering matrices (cfr [90, 101])

required in order to write down the Y -system and universal form TBA

Slm

(
θ +

iπ

4

)
Slm

(
θ − iπ

4

)
= Sl−1,m (θ) Sl+1,m (θ) e2πiΘ(θ) δlm

t1

(
θ +

iπ

4

)
t1

(
θ − iπ

4

)
= −S

(
θ +

iπ

4

)
S

(
θ − iπ

4

)
[S11(θ)]−1

S

(
θ +

iπ

2

)
S

(
θ − iπ

2

)
= −t1(θ)

S(θ)
S12(θ) e2πiΘ(θ)

t1

(
θ +

iπ

2

)
t1

(
θ − iπ

2

)
= −S(θ)

t1(θ)

Slm

(
θ +

iπ

2

)
Slm

(
θ − iπ

2

)
= Sl−2,m (θ) Sl+2,m (θ) e2πiΘ(θ) Ilm

(B.5)

(Θ(x) stands for the Heaviside step function, while Ilm = δl−1,m + δl+1,m ). These

relations are re�ected into the following ones, involving the kernels:

Klm

(
θ +

iπ

4

)
+Klm

(
θ − iπ

4

)
= Kl−1,m (θ) +Kl+1,m (θ) + δ(θ) δlm

G

(
θ +

iπ

4

)
+G

(
θ − iπ

4

)
= K

(
θ +

iπ

4

)
+K

(
θ − iπ

4

)
−K11(θ)

K
(
θ +

iπ

2

)
+K

(
θ − iπ

2

)
= −K(θ) +G(θ) +K12(θ) + δ(θ)

G

(
θ +

iπ

2

)
+G

(
θ − iπ

2

)
= K(θ)−G(θ)

Klm

(
θ +

iπ

2

)
+Klm

(
θ − iπ

2

)
= Kl−2,m (θ) +Kl+2,m (θ) + δ(θ) Ilm+

+ δl1 δm1

[
δ(θ +

iπ

4
) + δ(θ − iπ

4
)

]

(B.6)



(the last relation makes sense 2 provided we de�ne Kl,0 = 0 , Kl,−1 = −Kl,1).

Moreover, we �nd:

K(θ +
iπ

2
) +G(θ − iπ

2
)−K11(θ +

iπ

4
) = 0

K(θ − iπ

2
) +G(θ +

iπ

2
)−K11(θ − iπ

4
) = 0

K(θ +
iπ

2
) +G(θ − iπ

2
) +K11(θ − iπ

4
) = K12(θ) + δ(θ)

K(θ − iπ

2
) +G(θ +

iπ

2
) +K11(θ +

iπ

4
) = K12(θ) + δ(θ)

(B.7)

B.3 Useful Fourier Transforms

We conclude this Appendix displaying some useful Fourier pair used in dealing

with the (CPN−1)p TBA (5.24)∫ ∞
−∞

dω

2π

cosh(π
2
aω)

cosh(πω
2

)
eiωθ =

2

π

cos(aπ/2) cosh θ

cos(aπ) + cosh(2θ)
= χa(θ),∫ ∞

−∞

dω

2π

sinh(π
2
aω)

sinh(πω
2

)
eiωθ =

1

π

sin(aπ)

cos(aπ) + cosh(2θ)
= ψa(θ),∫ ∞

−∞

dω

2π

1

2 cosh(πω
2a

)
eiωθ =

a

2π cosh(aθ)
= φa(θ).

(B.8)

From which we can easily read the normalization constants appearing in the

plateau equations (5.29) ∫ ∞
−∞

dθ χa(θ) = 1 ,∫ ∞
−∞

dθ ψa(θ) =
1

a
,∫ ∞

−∞
dθ φa(θ) =

1

2
.

2Actually, the contact terms δ(θ±iπ4 ) are but a pretty formal scripture: relations (B.6) always
appear in integrals and it is to be taken into account a residue calculation, whose net result is
equivalent to the e�ect of some kind of complex-argument de�ned delta function.
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