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Introduction

It is well known that many realistic mathematical models of biological

systems, such as cell growth, cellular development and differentiation, gene

expression, gene regulatory networks, enzyme cascades, synaptic plasticity,

aging and population growth need to include stochasticity. These systems

are not isolated, but rather subject to intrinsic and extrinsic fluctuations,

which leads to a quasi equilibrium state (homeostasis). Any bio-system is

the result of a combined action of genetics and environment where the pres-

ence of fluctuations and noise cannot be neglected. Dealing with population

dynamics of individuals (or cells) of one single species (or of different species)

the deterministic description is usually not adequate unless the populations

are very large. Indeed the number of individuals varies randomly around a

mean value, which obeys deterministic laws, but the relative size of fluctu-

ations increases as the size of the population becomes smaller and smaller.

As consequence, very large populations can be described by logistic type or

chemical kinetics equations but as long as the size is below N = 103 ∼ 104

units a new framework needs to be introduced. The natural framework is

provided by Markov processes and the Master equation (ME) describes the

temporal evolution of the probability of each state, specified by the number

of units of each species. The system evolves and asymptotically reaches a sta-

tionary equilibrium after a specific relaxation time. The deterministic model

does not determine uniquely the ME since the nature of the noise needs to

be specified. For a single population of size N the ME gives the probability

pn of having n ≤ N individuals and the relative size of the fluctuations with
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respect to and average value < n > is of order N−1/2. For large populations

the continuous interpolation p(n) of the probability distribution satisfies the

Fokker-Planck equation and in the limit for N → ∞, where the fluctua-

tions disappear, it satisfies the continuity equation for to the deterministic

evolution (mean field equation).

The ME is a relevant tool for modeling realistic biological systems and

allow also to explore the behavior of open systems. These systems may

exhibit not only the classical thermodynamic equilibrium states but also the

non-equilibrium steady states (NESS). When the system is in an equilibrium

state there is no flux of energy and molecules; this is known as the principle of

detailed balance (DB) and the system is time-reversible, that is, the system

will have equal probability to forward and backward transitions. When the

system is in a NESS it does not change with time in a statistical sense,

namely the probability distribution are stationary. However, the system is

not at equilibrium and its fluctuations do not obey Boltzmann’s law. The

principal property of a NESS is that it only exists when it is driven by

an external energy source. Using the concepts of DB and NESS a non-

equilibrium thermodynamic description can be developed in terms of the

ME, which provides a natural framework integrating a consistent theory of

biological systems.

This thesis is organized into six chapters which are grouped in two parts:

the biological applications of the Master equation and the nonequi-

librium thermodynamics in terms of the Master equation, with three

chapters each one. There are four new scientific works and a correspondence

of the level of complexity between then.

First part: Biological applications of the Master equation

In Chapter 1- Master Equation- we introduce the general concepts of

stochastic systems, given a mathematical derivation of the master equation

from the Chapman-Kolmogorov equation, with the characterization of the

one-step process, which are the basilar concepts used throughout the the-

sis. The Chapters 2- Stochastic analysis of a miRNA-protein toggle
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switch- deals with the stochastic properties of a toggle switch, involving a

protein compound and a miRNA cluster, known to control the eukaryotic

cell cycle and possibly involved in oncogenesis. We address the problem by

proposing a simplified version of the model that allows analytical treatment,

and by performing numerical simulations for the full model. In general, we

observed optimal agreement between the stochastic and the deterministic de-

scription of the circuit in a large range of parameters, but some substantial

differences arise when the deterministic system is in the proximity of a tran-

sition from a monostable to a bistable configuration and when bistability (in

the deterministic system) is ”masked” in the stochastic system by the dis-

tribution tails. The approach provides interesting estimates of the optimal

number of molecules involved in the toggle. In the Chapter 3- One param-

eter family of master equations for logistic growth- we propose a

one parameter family of master equations for the evolution of a population

having the logistic equation as mean field limit, studying the dependence of

the stationary state distributions, the relaxation time with our parameter

for systems with and without absorbing state. We also propose an analyti-

cal solution for the stationary distribution and the results agree with those

calculate with the CME.

Second Part: Nonequilibrium thermodynamics in terms of the Master

equation.

The Chapter 4- Nonequilibrium thermodynamics in terms of the

ME - introduce the differences between equilibrium (DB) and nonequilibrium

steady states (NESS), review the principal concepts of equilibrium thermody-

namics and the principal mathematical features of nonequilibrium thermody-

namics. We also describe mathematically the nonequilibrium approach based

on the CME and Gibbs entropy. In the Chapter 5-The role of nonequilibrium

fluxes in the relaxation processes of the Linear Chemical Master Equation-

we have studied the dynamical role of chemical fluxes that characterize the

NESS of a chemical network. Using the correspondence between the CME

and a discrete Fokker-Planck equation we are able to show that the chemical
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fluxes are linearly proportional to a non-conservative ”external vector field”

whose work on the system is directly related to the entropy production rate

in the NESS. We study the effect of the fluxes on the relaxation time of the

CME in the case of NESS. Our main result is to show that the presence

of stationary fluxes reduces the characteristic relaxation time with respect

the DB condition and it allows bifurcation phenomena for the eigenvalues of

the linearize dynamics around a local maximum of the probability distribu-

tion. We conjecture that this is a generic results that can be generalized to

non-linear CME. In the Chapter 6- Energy consumption and entropy

production in a stochastic formulation of BCM learning - we pro-

pose a one parameter parametrization of BCM learning1, that was originally

proposed to describe plasticity processes, to study the differences between

systems in DB and NESS. We calculate the work done by the system as a

function of our parameter, our results show that when the system is not in

the detailed balance condition, the work necessary to reach the stable state

is less than that requested when the detailed balance holds. This means that

the system requires less energy to memorize a pattern when the detailed bal-

ance is not satisfied. Hence the system is more plastic: a part of the energy

that is requested to maintain the NESS is recovered when the system learns

and develops selectivity to input pattern. We believe that this can be an

hallmark of biological systems and that this can explain why these systems

spend a large part of their metabolic energy to maintain NESS states; this

energy is recovered during crucial developmental steps such as differentiation

and learning.

1Named after Elie Bienenstock, Leon Cooper and Paul Munro, the BCM rule is a

physical theory of learning in the visual cortex developed in 1982.
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Chapter 1

Master Equation

1.1 Stochastic Process

A stochastic process with state space S is a collection of random variables

{Xt, t ∈ T} defined on the same probability space [2, 3]. The set T is called

its parameter set. The index t represents the time, and then one thinks of

Xt as the ”state” or the ”position” of the process at time t. A stochastic

variable is defined by specifying the set of possible values of the set of states

and the probability distribution over this. It can be discrete as the number

of molecules of a component in a reacting mixture, continuous as the velocity

of a Brownian particle or multidimensional as the velocity at a point in a

turbulent wind field.

1.1.1 Markov Process

A system has the Markov property if its evolution from a determinate

state depends only on that state, it is a system without memory, the events

depend just of time tn and not the time tn−1.

1



2 Biological applications of the Master equation

1.1.2 The Markov Property

Consider a discrete-parameter stochastic processXn. Think ofX0, X1, ..., Xn−1

as ”the past”, Xn as ”the present” and Xn+1, Xn+2, ... as ”the future” of the

process relative to time tn. In this way, a Markov process can be defined in

terms of conditional probability density at tn as follows [3]:

P1|n−1(Xn, tn;X1, t1; ...;Xn−1, tn−1) = P1|1(Xn, tn|Xn−1, tn−1). (1.1)

That is, the conditional probability density at tn, given the value Xn−1 at

tn−1, is uniquely determined and is not affected by any knowledge of the

values at earlier times. P1|1 is called the transition probability. Indeed, one

has for instance, taking t1 < t2 < t3,

P3(X1, t1;X2, t2;X3, t3) = P2(X1, t1;X2, t2)P1|2(X3, t3|X1, t1;X2, t2)

= P1(X1, t1)P1|1(X2, t2|X1, t1)P1|1(X3, t3|X2, t2). (1.2)

The value Xn−1 at tn−1, is uniquely determined and is not affected by any

knowledge of the values at earlier times. A Markov process is fully determined

by the two functions P1(X1, t1) and P1|1(X2, t2|X1, t1); the whole hierarchy

can be constructed from them. That is, the conditional probability of some

future event, indeed to tn+1 be the present at tn, is independent of past event

and it depends only of the present state of the process. Continuing this algo-

rithm one finds successively all Pn. This property makes Markov processes

manageable, with is the reason why they are so useful in applications [3].

1.1.3 The Chapman-Kolmogorov (C-K) equation

In mathematics, specifically in probability theory and in particular the

theory of Markovian stochastic processes, the Chapman-Kolmogorov equa-

tion is an identity relating the joint probability distributions of different

sets of coordinates on a stochastic process. Taking the relation (1.2) for

t1 < t2 < t3, integrating it over X2 and dividing both sides by P1 gives us

the Chapman-Kolmogorov equation [3]

P1|1(X3, t3|X1, t1) =

∫
P1|1(X3, t3|X2, t2)P1|1(X2, t2|X1, t1)dX2. (1.3)
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This equation states that a process starting at t1 with value X1 reaches X3

at t3 via any one of the possible values X2 at the intermediate time t2 [4].

This equation holds also when X is a vector with r components; or when X

only takes discrete values then, the integral is replaced by a sum [3, 4]. As we

have said in section 1.1.2, P1 and P1|1 entirely determine a Markov processes,

because the whole hierarchy of Pn can be constructed from them. These two

functions cannot be chosen arbitrarily, however, but obey two identities [3]:

1. the Chapman-Kolmogorov equation (1.3);

2. The necessary relation

P1(X2, t2) =

∫
P1|1(X2, t2|X1, t1)P1(X1, t1)dX1.

Therefore, any two nonnegative functions P1 and P1|1 that obey these

consistency conditions define uniquely a Markov process.

Stationary and homogeneous Markov process

A process Xn is stationary if it is not affected by a shift in time, i.e.

Xn and Xn+1 have the same probability distribution. In that case, a special

notation [3] is used for the transition probability

P1|1(X2, t2;X1, t1) = Tτ (X2|X1) (1.4)

with τ = t2 − t1 and the C-K equation, for τ, τ ′ > 0

Tτ+τ ′(X3|X1) =

∫
Tτ ′(X3|X2)Tτ (X2|X1)dX2. (1.5)

These processes are non-stationary because the condition singled out a

certain time t0. Yet their transition probability depends on the time interval

alone as it is the same as the transition probability of the underlying sta-

tionary process. Non-stationary Markov process whose transition probability

depends on the time difference alone are called homogeneous processes [3, 4].
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1.2 The Master Equation

In general, the term ”master equation” is associated with a set of equa-

tions that describe the temporal evolution of the probability of a particular

system. In mathematical terms, the master equation is an equivalent form

of the Chapman-Kolmogorov equation for Markov process, but it is easier

to handle and more directly related to physical concepts [3]. This equation

is universal and has been applied in many problems in physics, chemistry,

biology, population dynamics, and economy [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

1.2.1 Derivation of the Master Equation from the C-K

equation

The Chapman-Kolmogorov equation (1.5) for Tτ is a functional relation,

the master equation is a more convenient version of the same equation [3]: it

is a differential equation obtained by going to the limit of vanishing time dif-

ference τ ′. Therefore, considering the equation (1.5) and Tτ as the transition

probability

Tτ+τ ′(X3|X1) =

∫
Tτ ′(X3|X2)Tτ (X2|X1)dX2, (1.6)

which have the following normalization condition∫
Tτ (X2|X1)dX1 = 1. (1.7)

Taking Tτ for τ ′ → 0

Tτ ′(X3|X2) = (1− α0τ
′)δ(X2 −X3) + τ ′W (X3|X2), (1.8)

the delta function expresses the probability to stay at the same state for

τ = 0, whereas the probability to change state for τ > 0 is equals zero.

W (X3|X2) is transition probability per unity time from X2 to X3 and hence

W (X3|X2) ≥ 0. (1.9)
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The expression (1.8) must satisfy the normalization property. Therefore,

taking its integral over X3∫
Tτ ′(X3|X2)dX3 =

∫
[(1− α0τ

′)δ(X2 −X3) + τ ′W (X3|X2)]dX3, (1.10)

but from (1.7) we have
∫
Tτ ′(X3|X2)dX3 = 1, therefore

1 = 1− α0τ
′ + τ ′

∫
W (X3|X2)dX3

α0 =

∫
W (X3|X2)dX3 (1.11)

where the delta function has been corrected by the coefficient 1− α0τ
′ with

corresponds to the probability for transition to have taken place at all. Using

the definition (1.11) we can rewrite (1.8) as

Tτ ′(X3|X2) = δ(X2 −X3)− τ ′δ(X2 −X3)

∫
W (X3|X2)dX3 + τ ′W (X3|X2),

(1.12)

Putting (1.12) into (1.6),

Tτ+τ ′(X3|X1) = Tτ (X3|X1) + τ ′
∫
W (X3|X2)Tτ (X2|X1)dX2 (1.13)

+ τ ′
∫
δ(X2 −X3)W (X3|X2)Tτ (X2|X1)dX2

− τ ′
∫
δ(X2 −X3)W (X3|X2)Tτ (X2|X1)dX2dX3.

simplifying

Tτ+τ ′(X3|X1) = Tτ (X3|X1) + τ ′
∫
W (X3|X2)Tτ (X2|X1)dX2 (1.14)

− τ ′
∫
W (X2|X3)Tτ (X3|X1)dX2.

Dividing by τ ′ and going to the limit τ ′ → 0 gives us the differential form

of the Chapman - Kolmogorov equation which is called the Master Equation

[3, 4]:

∂

∂τ
Tτ (X3|X1) =

∫
[W (X3|X2)Tτ (X2|X1)−W (X2|X3)Tτ (X3|X1)]dX2

(1.15)
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It is useful to cast the equation in a more intuitive form. Noting that all tran-

sition probabilities are for a given value X1 at t1, we may write, suppressing

redundant indices:

∂

∂t
P (X, t) =

∫
[W (X|X ′)P (X ′|t)−W (X ′|X)P (X|t)]dX ′ (1.16)

This equation must be interpreted as follows: taking a time t1 and a value X1

and considering the solution of (1.16) that determined for t ≥ t1 by the initial

condition P (X, t1) = δ(t − t1). This solution is the transition probability

Tτ−τ1(X|X1) of the Markov process for any choice of t1 and X1. The master

equation is not meant as an equation for the single-time distribution P1(X, t),

but it determines the entire probability distribution P (X, t) [3]. If the range

of X is a discrete set of states with labels n, the equation reduces to:

dpn(t)

dt
=
∑
n′

[Wn,n′pn′(t)−Wn′,npn(t)]. (1.17)

This form of the master equation makes the physical meaning more clear:

the master equation is a gain-loss equation for the probability of each state

n. The first term is the gain due to transitions from n′ to n states, and

the second term is the loss due to transitions from n to n′ states. When

we will study the one-step process (section 1.3), the interpretation of the

master equation as a gain-loss equation will be more clear. Remember that

Wn,n′ ≥ 0 when n 6= n′, and that the term with n = n′ does not contribute

to the sum [3].

Note: A fundamental property of the master equation is: As t → ∞ all

solutions tend to the stationary solution.

1.2.2 Detailed Balance

As we presented in section 1.1.3 a steady state is a condition for which

the probability distribution does not change in time. If the master equation

(1.17) is in a stationary state, we have dpn(t)
dt

= 0 and consequently∑
n′

[Wn,n′p
s
n′(t)−Wn′,np

s
n(t)] = 0 (1.18)
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where psn is the steady state probability. Therefore the steady state condition

property has the form: ∑
n′

Wn,n′p
s
n′ =

(∑
n′

Wn′,n

)
psn. (1.19)

This relation express the fact that in the steady state, the sum of all tran-

sitions per unit time into any state n must be balanced by the sum of all

transitions from n into other states n′.

However, there is a special case for closed, isolated, finite physical system,

which is known as detailed balance condition. It is associated with thermo-

dynamic equilibrium and we can replace psn by the equilibrium probability

pen. In that case, we have [3]

Wn,n′p
e
n′ = Wn′,np

e
n. (1.20)

Which means that the transitions for each pair n, n′ separately must be

balanced. In the Chapter 4 we will treat the detailed balance condition in

more details.

1.2.3 Transition Matrix

In order to describe the stationary solutions methods of the master equa-

tion we consider the convenient notation for discrete states. Defining the

transition matrix W as [3]

W =


Wn,n′ = Wn,n′ for n 6= n′

Wn,n = −
∑
n6=n′

Wn′,n
(1.21)

Using the definition (1.21) we can simplify the master equation (1.17) as

a linear dynamic system:

ṗ(t) = Wp(t) (1.22)

where p is a column vector with components pn. The next results are valid

when the matrix W is symmetric and its solution is known

p(t) = eWtp(0). (1.23)
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This expression for p(t) is sometimes convenient, but does not help to

find p(t) explicitly. The familiar method for solving equations of type (1.22)

by means eigenvectors and eigenvalues of W cannot be used as a general

method, because W need not be symmetric, so that it is not certain that all

solutions can be obtained as superpositions of these eigensolutions [3]. In the

general case, the matrix Wn,n′ should obey the following properties

Wn,n′ ≥ 0 for n 6= n′; (1.24)∑
n

Wn,n′ = 0 for each n′. (1.25)

The equation (1.25) states that the matrix W has zero determinant, as we

can confirm in the example for example for N = 3,

W=


−(W2,1 +W3,1) W1,2 W1,3

W2,1 −(W1,2 +W3,2) W2,3

W3,1 W3,2 −(W1,3 +W2,3)

 . (1.26)

Introducing the eigenvector ψ and the eigenvalue λ of the matrix W, defined

by the equation

Wψ = λψ. (1.27)

A zero determinant states that W has a left eigenvector ψ = (1, 1, 1, ...) with

zero eigenvalue. There is at least one zero eigenvalue, whose correspond-

ing eigenvector is the so-called stationary distribution, the distribution to

which the stochastic process always converges, i.e. p(t) = 0, as long as the

transition propensities Wn,n′ are not a function of time. The stationary dis-

tribution will be obviously positive, i.e. all its terms are with positive sign

and the sum of all its components is 1 (being a probability distribution). All

the other eigenvalues will be with negative module, and the corresponding

eigenvectors will have total sum of the components equal to zero, as they

can be interpreted as the difference between the present distribution and the

stationary one, both having total sums of the components equal to 1. A spe-

cial role is played by the eigenvalue with the smallest absolute value, which

it means that its eigenvector is the longest-standing one. This eigenvector is
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referred as the metastable state and its eigenvalue gives a time-scale of the

time of convergence to the stationary distribution.

1.3 One-Step processes

In this thesis we will treat only problems that can be described by the

formalism of one-step processes. They represent a very important family of

Markov processes and they are also known as generation-recombination or

birth-death processes. These processes are continuous in time, their range

consists of integers n, and only jumps between adjacent states are permitted

[3], that is, just the transitions n− 1 
 n and n 
 n+ 1 are permitted. In

that case, the Master equation (1.17) is written as

dpn(t)

dt
= Wn,n+1pn+1(t)+Wn,n−1pn−1(t)−Wn−1,npn(t)−Wn+1,npn(t) (1.28)

The transition rates, Wn′,n, are written in a special notation for these pro-

cesses (see Figure 1.1)

Wn+1,n = gn and Wn−1,n = rn. (1.29)

Therefore, gn is the gain term, that is the probability per unit time for a jump

from n to n+ 1 and rn is the recombination term, that is the probability per

unit time for a jump from state n to state n− 1.

Figure 1.1: The one-step process and its transition probabilities
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Ergo, the Master equation for such process can be rewritten as

ṗn = rn+1pn+1 + gn−1pn−1 − (rn + gn)pn. (1.30)

One-step processes occur for example at generation and recombination pro-

cesses of charge carriers, single-electron tunneling, surface growth at atoms,

birth and death of individuals. And one-step processes can be subdivided

based on the coefficients rn and gn into the following categories: linear, if

the coefficients are linear functions of n, nonlinear, if the coefficients are

nonlinear functions of n and random walks, if the coefficients are constant

[3, 4].

A important point to consider is the boundaries conditions, if the possible

states n variate as 0 ≤ n ≤ N , we consider both boundaries: n = 0 and n =

N . For n = 0, the Master equation (1.30) is ṗ0 = r1p1 + g−1p−1− (r0 + g0)p0,

but the terms g−1p−1 and r0p0 are physically inconsistent, p−1 obviously

cannot exist, and the term r0 represents a transition from the state n0 to

n0 − 1, which is not permitted. In the other extreme we have n = N and

the Master equation is ˙pN = rN+1pN+1 + gN−1pN−1− (rN + gN)pN . Here the

inconsistencies are rN+1pN+1 and gNpN , because the state N + 1 does not

exist and gN represents a transition from the state N to N + 1. Then ṗ0 and

˙pN are

ṗ0 = r1p1 + g0p0 and ˙pN = gN−1pN−1 − rNpN (1.31)

Introducing the ”step operator” or ”van Kampen operator” En and E−1
n ,

and defining its effect on arbitrary function f(n)

Enfn = fn+1 and E−1
n fn = fn−1. (1.32)

Then, the equation (1.30) for a generic one-step process can be written

in the equivalent and compact form:

ṗn = (En − 1)rnpn + (E−1
n − 1)gnpn. (1.33)
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1.3.1 Nonlinear one-step processes

When rn and gn are both nonlinear in n we normally can give an explicit

solution of the master equation only for the stationary state. The distinction

between linear and nonlinear one-step processes has more physical signif-

icance than appears from the mathematical distinction between linear and

nonlinear functions rn and gn [3]. Frequently, n is associated with the number

of individuals of a population, such as electrons, neurotransmitters, quanta,

chemical species or bacteria.

In terms of the master equation, pn is linear in n when these individuals

do not interact, but follow their own individual random history regardless of

the others. While, a nonlinear term in the equation means that the fate of

each individual is affected by the total number of others present. Therefore,

linear master equations play a role similar to the ideal gas, in gas theory.

1.3.2 Mean field approximation

The master equation determines the probability distribution of a Markov

system at all t > 0. But in a macroscopic physical description, one ignores

fluctuations and treat the system as deterministic. The evolution of n(t) is

described by a deterministic differential equation for n, called the macro-

scopic or phenomenological equation. Examples are Ohm’s law, the rate

equations of chemical kinetics and the growth equations for populations. As

the Master equation determines the entire probability distribution it must be

possible to derive from it the macroscopic equation as an approximation for

the case that the fluctuations are negligible [3]. Assuming that for t = 0 the

quantity n has the precisely value n0, then the probability density is initially

pn(0) = δn,n0 . At any later time n has the value n(t) and consequently one

should have pn(t) = δn,n(t). The fluctuation vanish in the limit N →∞ where

N is the largest value that n can reach. In general we define the mean value

< n(t) >

n(t) =< n >t=
∞∑
n=0

npn(t). (1.34)
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In the case of the one-step process governed by the master equation (1.33),

we can calculate the time derivative of < n > as

d

dt
< n >=

∑
n(En − 1)rnpn +

∑
n(E−1

n − 1)gnpn (1.35)

=
∑

rnpn(E−1
n − 1)n+

∑
gnpn(En − 1)n

= − < rn > + < gn > .

This is an equation for < n > only when < rn >= r<n> and < gn >= g<n>.

This condition is satisfied by linear systems for any N whereas for a generic

system it holds only when N →∞. In this limit the fluctuations vanish and

n(t) =< n >t satisfies the deterministic equation for the evolution of the

macroscopic system.

1.3.3 Fokker-Planck equation

The Fokker-Planck equation gives the time evolution of the probability

density function for the system [4]. This equation is a special type of master

equation [3], that is, for N → ∞ the master can be written in terms of the

Fokker-Planck equation. Through a Taylor expansion of the master equation

(1.33) we have

(En − 1)f(n) = f(n+ 1)− f(n) =
∂f

∂n
+
∂2f

∂n2
+ ...

(E−1
n − 1)f(n) = f(n− 1)− f(n) = −∂f

∂n
+
∂2f

∂n2
+ ... (1.36)

Putting (1.36) into (1.33) we obtain the functions P (n, t),g(n) and r(n) that

interpolates pn(t), gn and rn in n

∂P (n, t)

∂t
=
∂[(rn − gn)Pn]

∂n
+

1

2

∂2

∂n2
[(rn + gn)Pn]. (1.37)

The range of n is necessarily continuous, the coefficients r(n) − g(n) and

r(n) + g(n) may be any real differentiable functions with the only restriction

r(n)+g(n) > 0 [3]. The equation can be broken up into a continuity equation

for the probability density

∂P (n, t)

∂t
=
∂J(n, t)

∂n
, (1.38)
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where J(n, t) is the probability flux, and a ”constitutive equation”

J(n, t) = (r(n)− g(n))P (n) +
1

2

∂

∂n
[(r(n) + g(n))P (n)]. (1.39)

If we define q ≡ (r(n) + g(n))P (n) the stationary solution is found with

∂q

∂n
= 2q

(g(n)− r(n))

(r(n) + g(n))
(1.40)

we obtain by separation of variables

q(n) = q(0)exp

(
2

∫ N

0

g(n′)− r(n′)
r(n′) + g(n′)

dn′
)

(1.41)

where q(0) should be determined imposing the normalization.

It is appropriate to rewrite the Fokker-Planck equation considering the

normalized variable φ = n/N , P (φ, t) = NPn(t) and the functions a±(φ)

defined by

a−(φ) =
g(n)− r(n)

N
a+(φ) =

g(n) + r(n)

N
. (1.42)

where P (φ, t) and a± are defined as φ ∈ R. And (1.37) is rewritten as

∂P (φ, t)

∂t
= −∂[a−P (φ)]

∂φ
+

1

2N

∂2

∂φ2
[a+P (φ)]. (1.43)

The Fokker-Planck equation is obtained through an expansion in 1/N and

the therm 1
2N

∂2

∂φ2
[a+P (φ)] represents the fluctuations. the magnitude of the

noise is 1/N and obviously disappears when N → ∞. In that limit the

equation becomes
∂P (φ, t)

∂t
+
∂[a−P (φ)]

∂φ
= 0, (1.44)

which is the continuity equation associated with the deterministic equation
dφ
dt

= a−(φ).

1.3.4 General expression for the stationary solution of

linear one-step process (with detailed balance)

From (1.33) we have that the stationary solution is written as

0 = (En − 1)rnp
s
n + (E−1

n − 1)gnp
s
n (1.45)

= (En − 1)[rnp
s
n − E−1

n gnp
s
n].
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This equation states that the terms in the square brackets are independent

of n, then we define the net flow of probability J from n to n− 1 as

−J = rnp
s
n − E−1

n gnp
s
n (1.46)

If the detailed balance holds we have that J = 0, then

rnp
s
n = gn−1p

s
n−1. (1.47)

Applying this relation repeatedly, we obtain

psn =
gn−1gn−2...g1g0

rnrn−1...r2r1

ps0

which can be written in the more compact form,

psn =
N∏
n=1

gn−1

rn
ps0. (1.48)

This equation determines all psn in terms of ps0, which is subsequently fixed

by the normalization condition

1

ps0
= 1 +

N∑
n=1

g0g1...gn−1

r1r2...rn
. (1.49)

For an isolated system the stationary solution of the master equation ps is

identical with the thermodynamic equilibrium pe [3].

1.3.5 Gaussian approximation and stable equilibrium

For systems without the absorbing state we can establish an analytical

approximation for the equilibrium state, as long as psn have a sharp maximum

for n = n∗ � 1. Introducing the functions g(n) = gn and r(n) = rn defined

for real n which interpolates gn and rn and considering the deterministic

mean field equation for the variable φ = n/N . This equation follows in the

limit N →∞ as a consequence of (1.44) and reads

dφ

dt
= a−(φ) a−(φ) =

g(n)− r(n)

N
=
g(Nφ)− r(Nφ)

N
(1.50)
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The a−(φ) should be defined in the limit N → ∞. For every N large we

could write the equation for the n variable as

dn

dt
= r(n)− g(n). (1.51)

Supposing a−(φ) has a critical point in φ = φ∗, where n∗ = Nφ∗ this condi-

tion stands

a−(φ∗) = 0 a′−(φ∗) = g′(n∗)− r′(n) < 0. (1.52)

Where we consider a′−(φ) = da−(φ)/dφ = N−1d/dφ[g(nφ)−r(Nφ)] = g′(n)−
r′(n). Linearizing a−(φ) = a′−(φ∗)(φ− φ∗) one find

φ(t) = φ∗ + (φ(0)− φ∗) ea
′(φ∗) t (1.53)

In this way we can determine the relaxation time (τ) of the system

τ = − 1

a′−(φ∗)
= − 1

g′(n∗)− r′(n∗)
(1.54)

Assuming n∗ ' N , namely φ∗ not goes to zero for N → ∞ we can

obtain the equilibrium distribution by the detailed balance. Introducing the

function p(n) = psn for integer n and considering equation (1.48) we define

f(n) = log p(n) =
N∑
n=1

[log g(n−1)−log r(n)] '
∫ N

1

[log g(n−1)−log r(n)] dn+log p1

(1.55)

As N → ∞ we replace the sum by an integral. If f(n) has a maximum for

n = n∗ the it is determinate by

f ′(n∗) = 0 f ′(n) = log g(n− 1)− log r(n) = 0 (1.56)

and by

f ′′(n∗) < 0 f ′′(n) =
g′(n− 1)

g(n− 1)
− r′(n)

r(n)
(1.57)

which reads

g(n∗ − 1) = r(n∗) (1.58)
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If n∗ ' N we have 1

g(n∗) = r(n∗) f ′′(n∗) =
g′(n∗)− r′(n∗)

g(n∗)
< 0 (1.59)

Making for f(n) a Taylor expansion on the second order around its maximum

n∗ we find

f(n) = f(n∗)−
f ′′(n∗)

2 (n− n∗)2
, (1.60)

obtaining for p(n) a Gaussian approximation

p(n) = C exp

(
− (n− n∗)2

2σ2

)
σ2 = − 1

f ′′(n∗)
(1.61)

where the constant C is determined imposing that the p(n) are normalized.

We note that σ is in order of N .

1.3.6 Absorbing states

A state ni is defined as absorbing when t → ∞, psni
→ 0, that is, all

probability distribution tends asymptotically to ni and the equilibrium dis-

tribution can be write as psn ' δnn′ . For the one-step process we can consider

the Figure 1.2 to visualize how the transition rates behave. For an absorbing

(a) (b)

Figure 1.2: Illustration of an absorbing state: (a) at n = 0 and (b) at n = N .

state at n = 0 (see Figure 1.2a) we have: g0 = 0, r1 6= 0 and dp0
dt

= r1p0,

what means when t → ∞ the probability at the state n = 0,p0 tends to

1Unless a correction of order 1/N respect to 1.
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one. When we use the ideas of Master equation to model living organisms, a

common interpretation for the absorbing state at n = 0 is death. Once the

organism enters that state, it is not possible to leave. In this situation, the

organism has entered an absorbing state. We also can analyze the behavior

for an absorbing state at n = N (see Figure 1.2b), in this case gN−1 6= 0,

rN = 0 and dpN
dt

= gN−1pN−1 and for t → ∞ all probability is concentrated

in the state n = N .

The problem of a Master equation with an absorbing state for populations

has been investigated by Dykman [13] and Assaf [14] with eikonal approxima-

tion, by Newman [15] with the moment closure approximation and by Nasell

[16] with the quasi-stationary distribution, while Thomas [17] investigated

the open biochemical reaction networks thought the linear noise approxima-

tion. In the Chapters 3 and 6 dedicate to the logistic growth and the BCM

theory we will propose an alternative method to eliminate the absorbing

state.

1.3.7 Chemical Master Equation

As we saw in the introduction the stochastic description of natural phe-

nomena has been applied to a variety of problems and during the last decade

has gained increasing popularity in other fields of science, such as Biology

and Medicine. A reason for this expansion is that many biological processes

are molecularly-based and hence the role of fluctuations can not be ignored.

A natural way to cope with this problem is the chemical master equation

(CME), that realizes in an exact way the probabilistic dynamics of a finite

number of molecules, and recovers the chemical kinetics of the Law of Mass

Action, in the thermodynamic limit (N →∞), using the mean field approx-

imation [18, 8]. It is not a competing theory to the Law of Mass Action,

rather, it extends the latter to the mesoscopic chemistry and biochemistry.

The CME for a given system invokes the same rate constants as the associated

deterministic kinetic model. Just as Schrödinger’s equation is the fundamen-

tal equation for modeling motions of atomic and subatomic particle systems,
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the CME is the fundamental equation for reaction systems. The CME can

be understood as a huge system of coupled ordinary differential equations,

there is one differential equation per state of the system, in contrast to the

traditional reaction-rate approach where only one differential equation per

species is required [19].

According to the theory of the CME, the stability of a state of a biochem-

ical reaction system, i.e., the peak in the stationary distribution, is due to

the biochemical reaction network. In other words, the epigenetic code could

be distributive, namely, properties such as state stabilities are the outcome

of the collective behavior of many components of a biochemical network. [5]

The CME is a set of linear ordinary differential equations, there will be a

unique steady state to which the system tends, the probability steady state,

psn,n′ .

One naturally would like to approximate the CME in terms of a Fokker-

Planck equation, van Kampen [3] has repeatedly emphasized that the Fokker-

Planck approximation can be obtained for master equations only with small

individual jumps.



Chapter 2

Stochastic analysis of a

miRNA-protein toggle switch

Abstract

Within systems biology there is an increasing interest in the stochas-

tic behavior of genetic and biochemical reaction networks. An appropriate

stochastic description is provided by the chemical master equation, which

represents a continuous time Markov chain (CTMC). In this work we con-

sider the stochastic properties of a toggle switch, involving a protein com-

pound and a miRNA cluster, known to control the eukaryotic cell cycle and

possibly involved in oncogenesis, recently proposed in the literature within

a deterministic framework. Due to the inherent stochasticity of biochem-

ical processes and the small number of molecules involved, the stochastic

approach should be more correct in describing the real system: we study

the agreement between the two approaches by exploring the system param-

eter space. We address the problem by proposing a simplified version of the

model that allows analytical treatment, and by performing numerical sim-

ulations for the full model. We observed optimal agreement between the

stochastic and the deterministic description of the circuit in a large range

of parameters, but some substantial differences arise in at least two cases:

19
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1) when the deterministic system is in the proximity of a transition from a

monostable to a bistable configuration, and 2) when bistability (in the de-

terministic system) is ”masked” in the stochastic system by the distribution

tails. The approach provides interesting estimates of the optimal number of

molecules involved in the toggle. Our discussion of the points of strengths,

potentiality and weakness of the chemical master equation in systems biology

and the differences with respect to deterministic modeling are leveraged in

order to provide useful advice for both the bioinformatician practitioner and

the theoretical scientist.

Title: Stochastic analysis of a miRNA-protein toggle switch

Authors: E. Giampieri, D. Remondini, L. de Oliveira, G. Castellani, P.

Lió

Journal: Molecular BioSystems - 2011 (published)

doi:10.1039/c1mb05086a.

Motivation of the work

Complex cellular responses are often modeled as switching between phe-

notype states, and despite the large body of deterministic studies and the

increasing work aimed to elucidate the effect of intrinsic and extrinsic noise in

such systems, some aspects still remain unclear. Molecular noise, which arises

from the randomness of the discrete events in the cell (for example DNA mu-

tations and repair) and experimental studies have reported the presence of

stochastic mechanisms in cellular processes such as gene expression [20], [21],

[22], decisions of the cell fate [23], and circadian oscillations [24]. Particularly,

low copy numbers of important cellular components and molecules give rise

to stochasticity in gene expression and protein synthesis, and it is a funda-

mental aspect to be taken into account for studying such biochemical models

[25, 26]. In this work, we consider a simplified circuit that is known to govern

a fundamental step during the eukaryotic cell cycle that defines cell fate, pre-

viously studied by means of a deterministic modeling approach [1]. Let set
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the scene by reminding that ”all models are wrong, but some are useful” (said

by George Edward Pelham Box, who was the son-in-law of Ronald Fisher).

Biologists make use of qualitative models through graphs; quantitative mod-

eling in biochemistry has been mainly based on the Law of Mass Action which

has been used to frame the entire kinetic modeling of biochemical reactions

for individual enzymes and for enzymatic reaction network systems [27]. The

state of the system at any particular instant is therefore regarded as a vector

(or list) of amounts or concentrations and the changes in amount or concen-

tration are assumed to occur by a continuous and deterministic process that

is computed using the ordinary differential equation (ODE) approach. How-

ever, the theory based on the Law of Mass Action does not consider the effect

of fluctuations. If the concentration of the molecules is not large enough, we

cannot ignore fluctuations. Moreover, biological systems also show hetero-

geneity which occurs as a phenotypic consequence for a cell population given

stochastic single-cell dynamics (when the population is not isogenic and in

the same conditions). From a practical point of view, for concentrations

greater than about 10 nM, we are safe using ODEs; considering a cell with a

volume of 10−13 liters this corresponds to thousands of molecules that, under

poissonian hypothesis, has an uncertainty in the order of 1%. If the total

number of molecules of any particular substance, say, a transcription factor,

is less than 1,000, then a stochastic differential equation or a Monte Carlo

model would be more appropriate. Similarly to the deterministic case, only

simple systems are analytically tractable in the stochastic approach, i.e. the

full probability distribution for the state of the biological system over time

can be calculated explicitly, becoming computationally infeasible for systems

with distinct processes operating on different timescales. An active area of

research is represented by development of approximate stochastic simulation

algorithms. As commented recently by Wilkinson the difference between an

âapproximateâ and âexactâ model is usually remarkably less than the differ-

ence between the “exact” model and the real biological process [28]. Given

we can see this either as an unsatisfactorily state of art or as a promising
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advancement, we can summarise the methodological approaches as follow-

ing. Biochemical networks have been modeled using differential equations

when considering continuous variables changing deterministically with time.

Single stochastic trajectories have been modeled using stochastic differential

equations (SDE) for continuous random variables, and using the Gillespie

algorithm for discrete random variables changing with time. Another choice

consists in characterizing the time evolution of the whole probability distri-

bution. The corresponding equation for the SDE is the Fokker-Planck equa-

tion, and the corresponding equation for the Gillespie algorithm is called the

Chemical Master Equation (CME) [5]. Therefore, as we said in the section

1.3 the CME could be thought as the mesoscopic version of the Law of Mass

Action, i.e. it extends the Law of Mass Action to the mesoscopic chemistry

and biochemistry, see for example [12, 29].

Here we compare the results of a stochastic versus deterministic analysis

of a microRNA-protein toggle switch involved in tumorigenesis with the aim

of identifying the most meaningful amount of information to discriminate

cancer and healthy states. We show that the stochastic counterpart of such

deterministic model has many commonalities with the deterministic one, but

some differences arise, in particular regarding the number of stable states

that can be explored by the system. In this work we consider a simplified,

biologically meaningful, version of the model that allows to calculate an exact

solution.

2.1 Properties of a microRNA toggle switch

The two pivotal factors in tumorigenesis are: oncogenes1 and tumor-

suppressor genes2 [30]. Recent evidences indicate that MicroRNAs (miR-

1Oncogene is a gene that normally directs cell growth. If altered, an oncogene can

promote or allow the uncontrolled growth of cancer. Alterations can be inherited or

caused by an environmental exposure to carcinogens.
2Tumor-suppressor genes are genes that protects a cell from one step on the path to

cancer. When these genes are mutated to cause a loss or reduction in they function, the
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NAs) can function as tumor suppressors and oncogenes, and these miRNAs

associated with cancer are referred to as oncomirs. MiRNAs are small, non-

coding RNAs that modulate the expression of target mRNAs. The biogenesis

pathway of miRNAs in animals was elucidated by Bartel [31]. In normal tis-

sue, proper regulation of miRNAs maintains a normal rate of development,

cell growth, proliferation, differentiation and apoptosis. Tumorigenesis can

be observed when the target gene is an oncogene, and the loss of the miRNA,

which functions as a tumor suppressor, might lead to a high expression level

of the oncoprotein. When a miRNA functions as an oncogene, its constitu-

tive amplification or overexpression could cause repression of its target gene,

which has a role of tumor suppressor gene, thus, in this situation, cell is likely

to enter tumorigenesis. MiRNAs are often part of toggle switches [32, 33]:

important examples involve gene pairs built with oncogenes and tumour sup-

pressor genes [34, 35]. Here we focus on the amplification of 13q31-q32, which

is the locus of the the miR-17-92. The miR-17-92 cluster forms a bistable

switch with Myc and the E2F proteins [36, 37, 1]. The oncogene Myc reg-

ulates an estimated 10% to 15% of genes in the human genome, while the

disregulated function of Myc is one of the most common abnormalities in

human malignancy [38, 39]. The other component of the toggle is the E2F

family of transcription factors, including E2F1, E2F2 and E2F3, all driving

the mammalian cell cycle progression from G1 into S phase. High levels of

E2Fs, E2F1 in particular, can induce apoptosis in response to DNA dam-

age. The toggle also interacts with dozens of genes (see figure 2.1 depicts a

portion), particularly with Rb and other key cell-cycle players. A summary

of the experiments perturbing miRNA/Myc/E2F and E2F/RB behaviours

have suggested the following:

• The Rb/E2F toggle switch is OFF when RB inhibits E2F, i.e. stopping

cell proliferation; it is ON when E2F prevails and induces proliferation.

cell can progress to cancer, usually in combination with other genetic changes. The loss

of these genes may be even more important than oncogene activation for the formation of

many kinds of human cancer cells
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Once turned ON by sufficient stimulation, E2F can memorize and main-

tain this ON state independently of continuous serum stimulation.

• The proteins E2F and Myc facilitate the expression of each other and

the E2F protein induces the expression of its own gene (positive feed-

back loop). They also induce the transcription of microRNA-17-92

which in turn inhibits both E2F and Myc (negative feedback loop).

Moreover, the increasing levels of E2F or Myc drive the sequence of cellular

states, namely, quiescence, cell proliferation (cancer) or cell death (apopto-

sis).

Figure 2.1: The E2F-MYC-miR-17-92 toggle switch with its biochemical

environment (derived form [1]). Arrows represent activation, and bar-headed

lines inhibition, respectively. The elements inside the dashed box represent

the protein compound p (Myc-E2F) and the miRNA cluster m (miR-17-92),

modelized in eq. 2.1 and 2.2.

Although there is increasing amount of research on cell cycle regulation,

the mathematical description of even a minimal portion of the E2F, Myc and

miR-17-92 toggle switch is far from trivial. Aguda and collaborators [1] have

developed a deterministic model, which reduces the full biochemical network
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of the toggle switch to a protein (representing the E2F-Myc compound) and

the microRNA-17-92 cluster (seen as a single element).

It is a 2-dimensional open system, in which p represents the E2f-myc

complex and m the miRNA cluster: thus no Mass Action Law holds, and

the total p and m concentration is not conserved. The dynamics of p and m

concentrations are described by

ṗ = α +
k1 · p2

Γ1 + p2 + Γ2 ·m
− δ · p (2.1)

ṁ = β + k2 · p− γ ·m (2.2)

The model is conceptually quite simple: we have two creation-destruction

processes for p and m driven by α, δp, β and γm, with a term k2p which

represents an additional source of miRNA due to the protein complex p.

The interesting part is the nonlinear term of the p derivative, which is a

modified Hill equation of order 2 driven by the k1 parameter. This term is

a representation of a self-promotion effect driven by a sigmoidal activation

curve, a very common fenomena in gene regulation systems. The Γ1 term is

the ”critical value” where the sigmoid switch to it’s higher status and the Γ2

term represent the inibition due to the miRNA regulation machinery.

All the effects described in this work are very robust to the choice of the

specific order of the Hill reaction (here chosen as 2 for continuity with the

original work [1]), as long as it’s greater than one. It’s actually robust even

if a different functional form is hypotized, as long as it retains it’s sigmoidal

structure.

The system can be rewritten in an adimensional form as follows:

εφ̇ = α′ +
k · φ2

Γ′1 + φ2 + Γ′2 · µ
− φ (2.3)

µ̇ = 1 + φ− µ (2.4)

Where the parameters are: α′ = k2
δ·βα, k = k1k2

δβ
, Γ′1 =

k22
β2 Γ1, Γ′2 =

k22
βγ

Γ2, ε = γ
δ

and the change of variables is: φ = k2
β
p, µ = γ

β
m and τ = γt. In this way,

the fixed points for the system are determined by

α′ +
k · φ2

Γ′1 + φ2 + Γ′2 · µ
− φ = 0 (2.5)
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and

1 + φ− µ = 0. (2.6)

From equation (2.6) we have 1 + φ = µ, replacing this result in (2.5) we

obtain following cubic equation:

α′ +
kφ2

Γ′1 + φ2 + Γ′2 · (1 + φ)
− φ = 0, (2.7)

whose can be reduced as

φ3 + aφ2 + bφ+ c = 0 (2.8)

where

a = Γ′2 − (α′ + k) (2.9)

b = Γ′1 + Γ′2(1− α′)

c = −α′(Γ′1 + Γ′2).

The solutions of (2.8) should be real and positive, because φ represents the

concentration of molecules of p. From the Descartes’ rule of signs [40] a

polynomial with degree n has a number of positive zeros corresponding to

the number of signal changes between two consecutive coefficients. Therefore,

from (2.8) we have

a < 0⇒ Γ′2 − (α′ + k) < 0 (2.10)

b > 0⇒ Γ′1 + Γ′2(1− α′) > 0

c < 0⇒ −α′(Γ′1 + Γ′2) < 0.

Which lead us to determine the necessary (but not sufficient) condition for

the existence of 3 steady states (and thus a bistable system)

(Γ′2 − k) < α′ <

(
1 +

Γ′1
Γ′2

)
. (2.11)

The system represented by equations (2.1) and (2.2) is a one-step process

(see section 1.3), therefore we can study it as a stochastic system through
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the CME approach. The resulting CME has two variables, the number of

p and m molecules, labeled as n and m. The mean field equations can be

written replacing Φ1 = p/N and Φ2 = m/N , where N is the total number of

molecules

Φ̇1 =
α

N
+

k1 · Φ2
1

NΓ1 + Φ2
1/N + Γ2 · Φ2

− δ · Φ1 (2.12)

Φ̇2 = β/N + k2 · Φ1 − γ · Φ2.

The temporal evolution in the probability, pn,m(t), to have n and m molecules

at time t is described by the following bidimensional master equation:

ṗn,m = (En − 1)rnpnm + (E−1
n − 1)gnpnm + (Em − 1)rmpnm + (E−1

m − 1)gmpnm

(2.13)

The two generation and recombination terms associated with the n and

m variables are respectively:

gn = α/N +
k1 · n2

NΓ1 + n2/N + Γ2 ·m
; rn = δ · n (2.14)

gm = β/N + k2 · n; rm = γ ·m. (2.15)

2.1.1 The one-dimensional model

We can reduce the problem from two to one dimension, by considering a

different time scale for the two reactions (in particular considering ṁ � ṗ)

and thus considering the steady state solution for the m:

m =
β + k2 · p

γ
= β′ + k′ · p, (2.16)

therefore we have

ṗ = α +
k1 · p2

Γ′ + Γ′′ · p+ p2
− δ · p (2.17)

where Γ′ = Γ2·k2
γ

and Γ′′ = Γ1+ Γ2β
γ

. Following what we have done in (2.13) we

can replace Φ = p/N and obtain the one-dimensional deterministic equation

Φ̇ = Nα +
k1 · Φ2

NΓ′ + Γ′′ · Φ + Φ2/N
− δ · Φ (2.18)
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The stochastic equation for pn is thus as follows:

ṗn = (E− 1)rn · pn + (E−1 − 1)gn · pn (2.19)

gn = αN +
k1 · n2

NΓ′ + Γ′′ · n+ n2/N
; rn = δ · n (2.20)

The one-dimensional system presents detailed balance condition, there-

fore we can obtain the general solution, as introduced in (see 1.3.4),

psn =
N∏
i=1

g(i− 1)

r(i)
· p0 =

N∏
i=1

αN + k1·i2
NΓ′+Γ′′·i+i2/N

δ · i
· p0 (2.21)

with an adequate normalization factor imposed on p0:

p0 =
1

1 +
∑N

i=1

∏N
i=1 p

s
n

. (2.22)

We remark that the system is open, thus in theory N is not fixed, but we

can truncate the product to a sufficiently high value of N obtaining a good

approximation of the whole distribution. This one-dimensional system (for

which an analytical solution can be obtained) will be compared to numerical

simulations of the exact one-dimensional and two-dimensional systems.

2.2 Model Analysis

2.2.1 The stationary distribution

The one-dimensional model can show monomodal as well as bimodal sta-

tionary distributions, depending on the parameters considered. As an exam-

ple, we obtain bistability with a set of parameters as shown in Fig. 2.2.

Thus the qualitative features of the two-dimensional deterministic model

(i.e. the possibility of being bistable depending on the parameter range) are

recovered for the one-dimensional approximation of the stochastic system.

Also the two-dimensional stochastic system shows bistability for the same

parameters, and they are in optimal agreement for a range of parameters in
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Figure 2.2: The stationary distribution for the one-dimensional space, ob-

tained using the following parameters: α = 0.0056(molecule/h), β =

6.7 ·10−4(molecule/h), δ = 0.2(h−1), γ = 0.2(h−1), Γ1 = 34.3333(molecule2),

Γ2 = 1006(molecule), k1 = 0.3(molecule/h) and k2 = 5.5 · 10−7(h−1).

which the ṁ� ṗ condition holds

We also observe some remarkable differences between the deterministic

and the stochastic models: there are regions in parameter space in which

the deterministic approach shows only one stable state, but in the stochastic

system two maxima in the stationary distribution are observed (see Fig. 2.3).

This difference can be explained qualitatively as follows: for the deterministic

system, there are parameter values for which the system is monostable but

very close to the ”transition point” in which the system becomes bistable.

It is known that in these situations a ”ghost” remains in the region where

the stable point has disappeared [41], for which the systems dynamics has

a sensible slowing down (i.e. when the system is close to the disappeared

fixed point, it remains ”trapped” for a longer time close to it, in comparison

with other regions). This behaviour results in the presence of a peak in the

stationary distribution of the corresponding stochastic systems, that thus

remains bistable also when the deterministic system is not anymore.

Another difference is observed: for some parameter values the determin-

istic system is bistable, but the stochastic distribution shows a clear peak
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Figure 2.3: Comparison between the deterministic vetorial field (bottom)

and the stationary distribution (top) for the parameter set as in Table 2.1,

case 3.

for the maximum with the largest basin of attraction and the smaller peak

results ”masked” by the tail of the distribution around the first peak (see

Fig. 2.4), thus resulting in a monomodal distribution with a long tail. In

practice, the highest state behaves like a sort of metastable state, since the

states of the system with a high protein level are visited only occasionally.

2.2.2 Numerical analysis

Here we implemented numerical methods to find the stationary distri-

bution of a CME. The most accurate is the Kernel resolution method (see

1.2.3): given the complete transition matrix of the system, it is possible to

solve numerically the eigenvalue problem, obtaining the correct stationary

distribution. This method, in this case, has a serious drawback: the sys-

tem is of non-finite size, preventing a complete enumeration of the possible

states. Even with a truncation, the system size rises in a dramatic way: the

state space for a bidimensional system is of order N2 if N is the truncation

limit, and thus the respective transition matrix is of order N4. This means

that even for a relatively small system (with a few hundred of molecules)

the matrix size explodes well beyond the computational limits. The only
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Figure 2.4: Comparison between the deterministic vetorial field solution (bot-

tom) and the stationary distribution (top) for the parameter set as in Table

2.1, case 4.

feasible resolution strategy is a massive exploration of state space by Mon-

tecarlo methods, in which single trajectories of the system are simulated:

performing this simulations long enough for several times allows to estimate

the stationary distribution.

The Montecarlo method we chose is a modified version of the SSA al-

gorithm (also known as the Gillespie algorithm) named logarithmic direct

method [42, 43], which is a statistically correct simulation of an ergodic

Markov system. It is not the fastest algorithm available, as compared to

other methods like the next-reaction or the τ -leap method, but it produces

a correct estimation of the statistical dispersion of the final state.

For each parameter set we performed 10 simulations for about 106 − 107

iteration steps each. The multiple simulations were averaged together for

a better estimation of the stationary distribution, and they allowed also an

estimation of the variance over this average distribution.

In the following we discuss four cases that describe the system behaviour

for different parameter settings, shown in Table 2.1.

In case 1, we have a system in which the hypothesis of a time-scale sepa-

ration between m and p is strongly satisfied. The simulation was performed

up to a time limit of 103: we can see how the two resulting distributions are
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Table 2.1: Table of the parameter sets for the cases considered.

Par Case 1 Case 2 Case 3 Case 4

α (molecule/h) 0.0033 0.0056 0.0033 0.0666

δ (h−1) 1.0 0.20 0.09 1.19

β (molecule/h) 0.0033 6.7 · 10−4 0.0 0.0033

γ (h−1) 100.0 0.20 10.0 1.0

k1 (molecule/h) 0.1 0.3 0.0416 0.7666

k2 (h−1) 0.0011 5.5 · 10−7 1.1 · 10−4 1.1 · 10−4

Γ1 (molecule2) 0.2 34.33 17.66 40.33

Γ2 (molecule) 10.0 1006.0 10.0 10.0

Figure 2.5: Case of good agreement between the theoretical and obtained

distribution (see Tab. 2.1, case 1). Left: one-dimensional system, right:

two-dimensional system. The thin black line is the theoretical distribution

obtained from Eq. 2.21. The thick dark grey line is the average of the various

simulations, while the grey and light grey areas represent the range of one

and two standard deviations from the average distribution.
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Figure 2.6: Case of poor agreement between the theoretical and obtained

distribution (see Tab. 2.1, case 2). Left: one-dimensional system, right:

two-dimensional system. The thin black line is the theoretical distribution

obtained from Eq. 2.21. The thick dark grey line is the average of the various

simulation, while the grey and light grey areas represent the range of one and

two standard deviations from the average distribution.

in good agreement with the theoretical one (see Fig. 2.5), with the regions

of higher variance of the histogram around the maxima and minima of the

distribution.

In case 2, the time-scale separation assumption does not hold, due to the

very low value of γ and k2: even if this condition doesn’t guarantee that

the stationary state will be different from the approximate one-dimensional

solution, with this set of parameters we can see a huge difference between

the two distributions (Fig. 2.6).

In case 3, as defined before, we observe a ”ghost” in which, even if a de-

terministic stable state does not exist, we can clearly see a second peak in the

distribution (Fig. 2.7). In this system the time-scale separation assumption

holds, and we can see how both distributions show similar features.

In this final case (Tab. 2.1, case 4, Fig. 2.8) we can see another effect, in

which the peak related to a deterministic stable state is masked by the tail of

the stronger peak, becoming just a fat tail. Even without a strong time-scale

separation for the m and p variables, we can see how both systems give a very
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Figure 2.7: Case 3, ”ghost effect”: only the biggest peak comes from a deter-

ministic stable point. Left: one-dimensional system, right: two-dimensional

system. The thick dark gray line is the average of the various simulation,

while the gray and light gray areas represent the range of one and two stan-

dard deviations from the average distribution.

Figure 2.8: Case 4, peak masking effect (parameters as in Tab. 2.1, case 4).

The deterministic system has two stable points, but only the peak related

to the smallest stable point (with the largest basin of attraction) is visible.

Left: one-dimensional system, right: two-dimensional system.
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similar response, evidencing that this effect is very robust. Increasing the γ

and k2 values does not affect the distribution as long as their ratio is kept

constant. Note that while there are several computational tools for discrete-

state Markov processes such as PRISM [44], APNNtoolbox [45], SHARPE

[46], or Mobius [47], there is very little for CMTC (see for instance [48]).

Different modeling approaches for toggle switches do exists in the area of

formal methods (see for example [49, 50]).

2.3 Discussion of the results

We have studied a stochastic version of a biochemical circuit that is sup-

posed to be involved in cell cycle control, with implications for the onset of

severe diseases such as cancer, consisting of a gene cluster (Myc-E2F) and

a miRNA cluster (mir-17-92). This cluster has been reported in very large

number of cancer types: particularly in different types of lymphomas, glioma,

non-small cell lung cancer, bladder cancer, squamous-cell carcinoma of the

head and neck, peripheral nerve sheath tumor, malignant fibrous histiocy-

toma, alveolar rhabdomyosarcoma, liposarcoma and colon carcinomas. This

huge variety of cancer stresses the centrality of this toggle switch and sug-

gests that advancement in modeling this toggle could lead to insights into

differences between these cancers. This aim is still far but we are delighted

to report that our modeling approach shows important results inching to

that direction. First of all, many features are recovered as observed for the

deterministic version of the same system, also by means of a further approxi-

mation that reduces the system to an unique variable: in this case the system

can be treated analytically, and compared to the one- and two-dimensional

numerical simulations.

The stochastic approach, that is the exact approach when the number of

molecules involved is low, shows a different behaviour than the deterministic

one in two situations we have observed. It is noteworthy that the number

of molecules involved shows some agreement with the estimates by [51] and
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by [52] for other miRNA-systems (see also [53]). The cell volume is assumed

10−13 liters, then 1 nM =100 molecules.

First, bistability in the stochastic system (namely, the possibility of hav-

ing two stable states, one associated to a resting and the other to a prolif-

erative cell state) is observed also in situations in which the corresponding

deterministic system is monostable, and this can be explained by the pres-

ence of a ”ghost” state in the deterministic system that is strong enough to

produce a second peak in the stationary distribution of the stochastic model.

Secondly, there are situations in which the peak for the stochastic dis-

tribution related to the highest level of expression (with parameter values

for which the deterministic system is bistable) is masked by the tail of the

distribution of the lowest-expression maximum (that is related to the largest

basin of attraction in the deterministic model), making the ”proliferative

state” appear almost as a scarcely visited metastable state. This is an in-

teresting behaviour, that should be further investigated in real experimental

data of protein concentration and gene expression related to the biochemical

circuit considered. The ”metastable” and the ”fully” bimodal distributions

could be associated to healthy and tumoral cell states respectively, because

the highest ”proliferative” state has different properties in the two cases.

From a biological point of view such state, being associated to a dysregu-

lated, disease-related conditions, could actually represent a compendium of

several dysregulated states.

We argue that the deterministic approach to this biochemical circuit is not

capable to characterize it completely, and the stochastic approach appears

more informative: further features unique to the stochastic model could be

obtained by considering different time patterns for the molecular influxes to

the system, and this point in our opinion should deserve more investigation

in a future work. MicroRNAs (miRNAs) express differently in normal and

cancerous tissues and thus are regarded as potent cancer biomarkers for early

diagnosis. We believe that the potential use of oncomirs in cancer diagnosis,

therapies and prognosis will benefit accurate cancer mathematical models.
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Given that MiR-17-5p seems to act as both oncogene and tumor suppres-

sor through decreasing the expression levels of anti-proliferative genes and

proliferative genes, this behavior is suggestive of a cell type dependent tog-

gle switch. Therefore fitting of experimental data could provide insights into

differences among cancer types and on which cell type is behaving differently.
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Chapter 3

One parameter family of master

equations for logistic growth

Abstract

We propose a one parameter family of master equations for the evolution

of a population having the logistic equation as mean field limit. The pa-

rameter α determines the relative weight of linear versus non linear terms in

the population number n ≤ N entering the loss term. By varying α from 0

to 1 the equilibrium distribution changes from a Gaussian centered near the

stable critical point of the mean field equation to a power law peaked at the

unstable critical point. A bimodal distribution is observed in the transition

region. In the mean field limit N → ∞, for any fixed value of α, only the

Gaussian solution, whose limit is a δ function, survives and allows a consis-

tent interpretation of the model. The choice of the master equation in this

family depends on the equilibrium distribution for finite values of N . The

presence of an absorbing state for n = 0 does not change this picture since

the extinction mean time grows exponentially fast with N with a coefficient

which vanishes for α = 1. As a consequence for α close to zero extinction is

not observed, wheres as α approaches 1 the relaxation to a power law occurs

before the extinction occurs with relaxation time exponential in (1− α)N .

39
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Motivation of the work

Many biological phenomena are intrinsically stochastic and this seems

to be a distinctive feature of fundamental processes such as cell growth

[54], cellular development and differentiation [55, 56, 28], gene expression

[57, 58, 59, 60, 61, 62], synaptic plasticity [63, 64] and aging [65, 66, 67].

The natural way to deal with such a stochasticity is the master equation ap-

proach, that allows a precise treatment of noise and fluctuations and to derive

analytically, in some cases, the resulting probability distribution. A possi-

ble example is provided by the dynamics of genetic networks which involve

a large number of biochemical reactions. This dynamics is non linear and

has a stochastic character, since the number of a given species of molecules

is small and fluctuations are relevant [68, 17]. As a consequence a mas-

ter equation, rather than a deterministic differential equation, is frequently

used for modeling [69, 70, 71]. A difficulty related to this approach [17] is

that the macroscopic dynamics, specified by a deterministic differential equa-

tion for the population(s), does not uniquely determine the master equation

which depends on the noise field, corresponding to the diffusive term in the

related Fokker-Planck equation [3, 4]. Its specification requires additional

information on the microscopic dynamics which is usually not available. The

arbitrariness can be partially removed by some additional information con-

cerning the equilibrium distribution and the relaxation time required to reach

it [68, 72]. The fact that different master equations can have the same mean

field limit leads to different statistical properties (different variances) and

to the possible presence of absorbing states. The boundary conditions play

a relevant role and various options are allowed [13, 16, 73, 74]. A possible

choice leads to an absorbing null state, namely its probability monotonically

increases with time until it reaches the value 1 asymptotically [13, 16]. The

presence of an absorbing state is allowed even when the mean field equation

has a stable equilibrium with a finite population . This apparent contradic-

tion is resolved taking into account that the relaxation time grows exponen-

tially fast with the maximum number N of individuals. As a consequence
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for N large enough the null state is never reached in the time scales relevant

for the problem. The presence on an absorbing state leads, in the large N

limit [3], to a Fokker-Planck equation whose equilibrium solution is not nor-

malizable. In some cases however the presence of an absorbing is physically

significant since it describes the extinction of a population, but it is relevant

to control the time required to reach such a state. The stochastic logistic pro-

cess has been studied using a variety of techniques in more recent years. In

particular, numerous authors have derived exact summation formulas for the

mean extinction time of the population [16, 15, 14, 75]. We propose here a

one parameter family of master equation models, having the same mean field

population equation and corresponding each one to a specific noise. Starting

from macroscopic data, the choice of the parameter specifying the model can

be achieved by considering the equilibrium state for a fixed value of N . The

family we propose depends on a parameter α ∈ [0, 1] such that for α→ 0 the

probability distribution pn is a Gaussian peaked near the stable equilibrium

of the deterministic equation n = N , whereas for α→ 1 a Pareto like power

law distribution is obtained, so that all the states are populated the low ones

being preferred. For intermediate values of α a smooth transition between

these states is observed and a bimodal distributions appears. The approach

based on a one parameter family of master equations is applied to the logistic

growth of one population. In this case the family of master equations for two

populations depends on the parameter α ∈ [0, 1]. For α→ 0 the equilibrium

distribution corresponds to the stable equilibrium of the mean field equation,

whereas for α→ 1 a power law is obtained so that the populated states are

close to the unstable equilibrium of the mean field equation corresponding

to total extinction. We show that letting N → ∞ the system for any value

of α < 1 evolves towards the stable equilibrium of the mean field equation.
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3.1 The logistic model

The logistic model describes the limited growth of a population due to a

finite availability of resources and it is formulated as a one dimensional differ-

ential equation with a linear Malthusian term and a quadratic one controlling

the growth. The mean field equation for the logistic growth reads

dx

dt
= x(1− x

N
), (3.1)

which has an unstable equilibrium at x = 0 and a stable one at x = N . We

can rewrite (3.1) considering the relative population and defining φ = x/N

φ̇ = φ(1− φ). (3.2)

Letting n and N be the the number of individuals at time t, when N is a

small integer number the fluctuations are relevant and the process must be

described by a master equation, then for equation (3.1) the generation and

recombination terms can be chosen as

gn = n and rn =
n(n− 1)

N
, (3.3)

and the master equation is (1.33)

ṗn = (En − 1)
n(n− 1)

N
pn + (E−1

n − 1)npn. (3.4)

We have that g0 = r1 = 0, as a consequence dp0
dt

= 0 → p0 = constant, we

choose p0 = 0 because in this manner we decouple the state n = 0 of rest of

the system. Therefore the equilibrium solution, obtained from the detailed

balance condition (1.48), is written in function of the state p1,

psn =
N∏
i=2

gi−1

ri
p1. (3.5)

And from the normalization we have,
∑N

n=1 p
s
n = 1.

We are also interesting to study the behavior for N →∞, then we use (as

we presented in section 1.3.3) the definition of the Fokker-Planck equation



3.1 The logistic model 43

(1.37), where

a−(φ) = φ

(
1− φ+

1

N

)
a+(φ) = φ

(
1 + φ− 1

N

)
. (3.6)

In this way, the probabilities P (φ, t) are

∂P (φ, t)

∂t
=

∂

∂P (φ)
[(φ(φ− 1− 1

N
)P (φ)] +

1

2N

∂2

∂P (φ)2
[(φ(φ+ 1− 1

N
)P (φ)].

(3.7)

To determine the stationary solution P s
φ we note that

a−
a+

= −1 +
2

1 + φ− 1/N
, (3.8)

by a simple integration we find

P s(φ) = P (0)
exp(2NF (φ))

φ(φ+ 1− 1
N

)
F (φ) = −φ+ 2 log(1 + φ− 1

N
). (3.9)

where P (0) is a normalization constant and P (φ) is defined in the interval

[1/N, 1].

The choice of the generation and recombination terms is arbitrary, for

example, if we choose the generation and recombination terms as

gn = n and rn =
n2

N
, (3.10)

We have that g0 = 0 and r1 = 1/N , in this way dp0
dt

= p1
N

, and the stationary

solution is given by

psn =
N∏
i=1

gi−1

ri
p0. (3.11)

Analyzing the first 3 stationary states we have

For n = 1 ps0 =
g0

r1

p1 = 0, (3.12)

for n = 2 ps2 =
g1

r2

p1 = 0,

for n = 3 ps3 =
g2

r3

p2 = 0.
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It is clear from (3.13) that n = 0 is an absorbing state [3], because we

have
∑N

n=1 p
s
n = 0, because ps1 = ps2 = . . . = psN = 0, therefore the stationary

solution can be only,

psn = δn,0. (3.13)

All other solutions of the master equation tend towards it, i.e., with that

probability the population will ultimately die out, which was not observed

in the last case.

We can also analyze the behavior of the Fokker-Planck equation, in this

case

a−(φ) = φ− φ2 a+(φ) = φ+ φ2. (3.14)

where P (φ, t) are

∂P (φ, t)

∂t
=

∂

∂φ
[(φ− φ2)P (φ)] +

1

2N

∂2

∂φ2
[(φ+ φ2)P (φ)]. (3.15)

To determine the stationary solution P s
φ we note that

a−
a+

=
(1− φ)

(1 + φ)
(3.16)

by a simple integration we find

P s(φ) = P (0)
exp(2NF (φ))

φ+ φ2
F (φ) = −φ+ 2 log(1 + φ). (3.17)

where P (0) is a normalization constant.

Note: P (φ) is defined in [0, 1], but for n = 0 the equation (3.17) has a

singularity and P (φ) is not normalizable. Furthermore in the same point1

the master equation presents an absorbing state. Consequently, an absorbing

state in the master equation is associated with a singularity in the Fokker-

Planck equation.

3.1.1 One parameter family and elimination of the ab-

sorbing state

Considering the logistic equation as written in (3.2), we can rescale the

time (t) according to the following parametrization t′ = t(1 − α), hence we

1Remember: n = 0→ φ = n/N = 0
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obtain,
dφ

dt
= φ− αφ− (1− α)φ2. (3.18)

If we choose gn = (1− α)n and rn = (1− α)n(n−1)
N

, it coincides with the

equation (3.3) except for the term (1−α) that serve as the rescaling the time.

Nevertheless, we choose gn = n and rn = αn+(1−α)n(n−1)
N

, because we obtain

a Master equation for which the difference a− = (gn− rn)/N change just for

a multiplicative factor (1− α) whereas a+ = (gn + rn)/N has a dependence

in α different from (1 − α), consequently changing α we change the noise.

The parameter α determines the relative weight of linear versus non linear

terms in the population number. By varying α we can study the variation of

the stationary solution. The choice of the model in the one parameter family

and the eventual presence of an absorbing state can be determined by some

additional information on the system. Since the information on the noise

term is hardly accessible the knowledge of the equilibrium distribution for

different values values of N and eventually the relaxation time might allow

the specification of the model master equation.

Reminding the results presented in Section 3.1, the master equation (3.4)

has an absorbing state in n = 0. If we set the transitions from the state

n = 1 to n = 0 can not happen, that is, imposing r1 = 0, the two first states

are
dp1

dt
= r2p2 − g1p1 = (1− α)p2 − p1

and
dp2

dt
= −r2p2 + g1p1 = −(1− α)p2 + p1. (3.19)

The normalization is conserved and the state n = 0 has p0 = 0. In that way,

we have a new equilibrium distribution, obtained from the DB condition

(1.48)

psn =
gn−1

rn
pn−1 (3.20)

=
n− 1

αn+ (n− α)(n− 1) n
N

pn−1 n ≥ 2.
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The the stationary solution (3.21) is then rewritten as

psn =
N∏
i=2

gi−1

ri
p1. (3.21)

Regarding our parametrization and elimination of the absorbing state we

have the following gain and loss terms

gn = n and rn = αn(1− δn,1) + (1− α)
n(n− 1)

N
, (3.22)

where the term δn,1 ensure the elimination of the absorbing state.

The choice of the model in the one parameter family is arbitrary, because

different master equations can be associated with the same mean field equa-

tion. For example we could choose the the parameterized time as t′ = t
(1−α)

which leads to following generation and recombination terms:

gn =
n

(1− α)
and rn =

n

(1− α)
+ (1− δn,1)

n(n− 1)

(1− α)N
, (3.23)

also for this parametrization we recover the original system (3.2) for α = 0.

Following the same scheme that we presents before, we retrieve the most

general equation with a linear and quadratic term can be reduced after a

scaling of the variables t, φ. We preferred to choose the definition (3.18) for

the transition probabilities in order to avoid their diverge when α→ 1.

The justifications of our elimination of the absorbing state are: for a

system with sufficiently large N the transitions of the state n = 0 to n = 1

are low importance in the total probability pn. From equation (3.22) we

can do a ”check” considering the extreme values of α: for α = 0, gn =

n and rn = n(n−1)
N

, where the linear loss term vanishes. While, for

α = 1, gn = n and rn = n, where the linear gain and loss terms are

equal, whereas the quadratic term vanishes, as we expect. In the nest section

we will prove that the system has the expected behavior after the elimination

of the absorbing state.
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Equilibrium of the Fokker-Planck equation

Considering the elimination of the absorbing state and the parametriza-

tion we can rewrite the Fokker-Planck equation as

a+ = (1 + α)φ+ (1− α)φ

(
φ− 1

N

)

a− = (1− α)φ− (1− α)φ

(
φ− 1

N

)
(3.24)

The stationary solution P s(φ) is therefore

P s(φ) = P0
exp(−2NFφ)

αφ+ (1− α)φ(φ− 1/N) + φ
, (3.25)

where

F (φ) = −φ+
2

1− α
log

(
φ− 1

N
+

1 + α

1− α

)
.

In this case, 1/N ≤ φ ≤ 1 and the normalization constant is determined

imposing ∫ 1

1/N

F (φ)dφ = 1. (3.26)

Here we do not have any singularity for n or φ. We can recover the stationary

distribution ps(n), because we defined P s(φ)dφ = ps(n)dn, then

ps(n) =
1

N
P0

(
n

N

)
(3.27)

where ps(n) interpolates psn. As the constant P0 can not be determinate

analytically, to evaluate ps(n) we calculate it numerically, imposing

N∑
n=1

1

N
P0

(
n

N

)
= 1. (3.28)

The comparison between the result of pn gives by (3.21) and the Fokker-

Planck equation (3.25) are very similar also for relative low values of N and

for every value of α between 0 and 1. In the results we will confront P s(φ)

with the result obtained with the master equation psn.
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From equation (3.25) a Gaussian approximation for α ∼ 0 can be ob-

tained. Considering the maximum value of F (φ) is given by

F ′(φ) =
a−
a+

= 0 (3.29)

and its solution is φ = 1 + 1
N

, then we have

F ′′(1 + 1/N) = − 2

1− α
1(

1 + (1 + α)/(1− α)
)2 = −1− α

2
. (3.30)

Near the maximum value we can approximate F (φ) with its second order

Taylor expansion, approximating its denominator with a constant, because

it varies rather slowly with its value at the point of maximum φ. Hence,

P s(φ) results be approximate by a Gaussian

P s(φ) = P0

exp

(
−N(1− α)

2 (φ− 1)2

)
a+(φ)

. (3.31)

When α ∼ 0 the halfwidth of the Gaussian tends to N−1/2 and then is

justified approximate a+(φ) that is a quadratic function in φ with its value

in φ = 1. Therefore, for α ∼ 0 we approximate the function P s(φ) by

P (φ) =

(
2N (1− α)

π

)1/2

exp

(
−N(1− α)

2
(1− φ)2

)
(3.32)

or in terms of p(n)

p(n) =

(
2 (1− α)

π N

)1/2

exp

(
−(1− α)

2N
(N − n)2

)
. (3.33)

For α ∼ 1 the situation changes drastically. The derivative F ′(φ) tends

to zero as 1−α, that is, F (φ) is almost constant. The function in φ = 1 and

in φ = 1/N assumes the following values

F (1) = −1+
2

1− α
log

(
2

1− α

)
F (1/N) = − 1

N
+

2

1− α
log

(
1 + α

1− α

)
.

(3.34)
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The difference is positive F (1)− F (1/N)→ 1/N for α→ 1. In this way we

can approximate e2N F (φ) with a constant and write

P (φ) =
C

φ

(
1 +O(1− α)

)
(3.35)

calculating the normalization constant C−1 =
∫ 1

1/N
φ−1 dφ we have

P (φ) =
1

logN

1

φ
. (3.36)

Calculation of equilibrium by detailed balance

Following the results presented in section 1.3.5, the equilibrium solution

can be obtained for any value of α and N , defining f(n) = log ps(n), indeed

for N � 1, obtained from eq. (3.21)

f(n) = log ps(n)−log p(1) =
N∑
i=2

log g(i−1)−log r(i) '
∫ N

i=2

log g(i−1)−log r(i)di

(3.37)

where we consider the approximation with an integral of the sum and g(n),

r(n) interpolates gn, rn on the R. To analyze the behavior of the function

f(n) we take f(n)′ = log g(n− 1)− log r(n)

f ′(n) = log(n− 1)− log

(
αn+

1− α
N

n(n− 1)

)
(3.38)

and in the stationary point n∗, f
′(n∗) = 0 which leads to the condition

rn = gn−1, that is

n2 − n(N + 1) +
N

1− α
= 0 (3.39)

which have solutions

n =
N + 1

2

(
1±

(
1− 4

1− α) N
(N+1)2

)1/2

. (3.40)

Provided that N(1−α)� 1, and expand the solutions only the terms in the

first order of 1/[N(1− α)] the largest solution can be approximated by

n+ = (N + 1)

(
1− 1

1− α
N

(N + 1)2

)
' N + 1− 1

1− α
= N − α

1− α
(3.41)



50 Biological applications of the Master equation

and the smallest solution is

n− =
1

1− α
N

N + 1
' 1

1− α
(3.42)

In this way we have n+ ' N and n− � N . To determine what solution is a

maximum we should calculate f ′′(n), then we have

f ′′(n) =
1

n− 1
−

α + 1− α
N (2n− 1)

αn+ 1− α
N n(n− 1)

(3.43)

For N � 1 we establish

f ′′(N) =
1

N
− 2− α

N
= −1− α

N
f ′′
(

1

1− α

)
=

(1− α)2

α
(3.44)

Then the maximum value is 2

n∗ = N

(
1− α

N(1− α)

)
' N (3.45)

to approximate with quite accurately psn with a Gaussian centered at n = n∗

having a width σ namely

psn = C exp

(
− (n− n∗)2

2σ2

)
n∗ = N − α

1− α
σ2 =

N

1− α
(3.46)

If we normalize on [0,∞] the constant is C =

(
2
πσ2

)1/2

, therefore we have a

general equation for the Gaussian approximation for different values of α. In

the section 3.4 we will analyze the robustness of this approximation, studying

also the behavior in the extremes points α = 0 and α = 1.

Note: Since n∗ ' N the result (3.46) correspond with the result obtained

with the Fokker-Planck. Actually, for n = Nφ we have P (φ) = pndn/dφ =

npn, which reads,

P s(φ) = Npsn =

(
2N2

πσ2

)
exp

(
− N2

2σ2
(φ−1)2

)
N2

σ2
= N(1−α) (3.47)

Therefore, we obtain the same result with 2 different pathways.

2Remark: This result is valid for N(1− α)� 1, in this way, N

(
1− α

N(1−α)

)
' N .
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For α ∼ 1 we have from (3.21)

pn =
p1

nαn−1

N∏
m=2

1

1 + ((1− α)/α)((m− 1)/N)
=

p1

nαn−1
exp(f(n)) (3.48)

Then we have that f(n) is

f(n) = −
∫ N

2

log

(
1 +

1− α
α

m− 1

N

)
dm ' −1− α

αN

∫ N

2

mdm = −1− α
αN

n2

2
(3.49)

with solution

p(n) ' c

n
exp

(
(1− α)n− (1− α)

n2

2N

)
. (3.50)

For N →∞ we have simply,

p(n) ' c

n
. (3.51)

In the results we will compare the error on the Fokker-Plank and by the

Gaussian approximation for different values of n and α.

3.1.2 Relaxation to equilibrium

In the mean field limit, we can write the equation (3.18) as

dφ

dt
= (1− α)(φ− φ2) (3.52)

the linearized equation around the equilibrium position is given by

dφ

dt
= (1− α)(1− φ) (3.53)

which solution is

x(t) = 1 + (x(0)− 1)e−(1−α)t. (3.54)

The relaxation time is defined as the exponential decay τ = 1/(1 − α). In

general, if we consider the function f(t) that gives the logarithmic of the

error at time t we have

f(t) = log |x(t)− 1| = log |x(0)− 1| − t

τ
(3.55)
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which leads to

τ = −1/f ′(t). (3.56)

As the master equation is linear, the convergence to the equilibrium is deter-

mined by the norm of its bigger eigenvalue λ = −1/τ , where τ > 0 represents

the relaxation time. Considering pn(t) the solution in the time t and pen the

equilibrium solution, then we can write

pn(t) = pen + (pn(0)− pen)e−t/τ . (3.57)

For any initial condition, the error is ||pn(t)−psn|| tends to zero exponentially,

therefore we have
1

τ
= − lim

t→∞

1

t
log ||pn(t)− psn||. (3.58)

In that way we have a general formulation for the error of the solution of the

ME in respect of the equilibrium solution.

3.2 The BCM model

We will introduce another population model that can be studied as a one

dimensional family of master equations, the BCM theory for the synaptic

plasticity. Here we just study this model as a population, because in the

Chapter 6 we will study it in more details. We consider the equation for the

limited growth write as

dx

dt
= x2 − αx2 − (1− α)x3 (3.59)

then the mean field equation reads

φ̇ = (1− α)(φ2 − φ3). (3.60)

The generation and recombination terms are

gn =
n2

N
rn = α

n2

N
(1− δn,1) + (1− α)

n2

N2
(n− 1) (3.61)
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then g0 = r0 = 0 and dp0/dt = 0 where we choose p(0) = 0. Therefore the

states varies from n = 1 to n = N and the master equation is

dpn
dt

= (E− 1)(rn − E−1gn) 2 ≤ n ≤ N − 1 (3.62)

We have also calculate the Fokker-Planck equation (1.37) and in this case

the stationary distribution is

P (φ) =
P0

φ2

exp(2N(F (φ)− F (0))

1 + α + (1− α)

(
φ+ 1

N

) (3.63)

where

F (φ) = −φ+
2

1− α
log

(
φ− 1

N
+

1 + α

1− α

)
(3.64)

To calculate p(n) we use

p(n) =
1

N
P

(
n

N

)
(3.65)

For α→ 0 we find a maximum for F (φ) in φ = 1 + 1/N and then we can use

the same Gaussian approximation used before

p(n) = c

exp

[
(1− α)n

(
1− n

2N

)]
n2

(3.66)

For α→ 1 we find that

pn =
p1

n2
(3.67)

where p1 is calculated with the normalization.

3.2.1 The 2D extension

We have considered the two population version of the BCM model which

reads

φ̇x = φ2
x − αφ2

x − (1− α)φx(φx + φy)
2 and (3.68)

φ̇y = φ2
y − αφ2

y − (1− α)φy(φx + φy)
2.
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Following what is introduced in section 3.1.1 we write the gain and the re-

combination terms as

g(x)
nx,ny

=
n2
x

N
g(y)
nx,ny

=
n2
y

N
(3.69)

r(x)
nx,ny

= α
n2
x

N
(1− δnx,1) + (1− α)

(nx − 1)(nx + ny)
2

N2
(3.70)

r(y)
nx,ny

= α
n2
y

N
(1− δny ,1) + (1− α)

(ny − 1)(nx + ny)
2

N2
.

The bidimensional master equation associated with the system (3.71) is

dpn
dt

= (E−1
x − 1)g(x)

n pn + (Ex − 1)r(x)
n pn + (E−1

y − 1)g(y)
n pn + (Ey − 1)r(y)

n pn

(3.71)

where n ≡ (nx, ny) and Ex, Ey denote the raising operators for the indexes

nx, ny respectively. The boundary conditions are specified by imposing the

transitions to non existing states to vanish g
(x)
−1,ny

= 0, g
(y)
nx,−1 = 0, r

(x)
0,ny

= 0,

r
(y)
nx,0 = 0 and g

(x)
N,ny

= 0, g
(y)
nx,N

= 0, r
(x)
N+1,ny

= 0, r
(y)
nx,N+1 = 0. In addition

supposing that g
(x)
0,ny

= 0, g
(y)
nx,0 = 0 by imposing that r

(x)
1,ny

= 0, r
(y)
nx,1 = 0 we in-

sure the absence of absorbing states. In order to have a well behaved solution

we impose the initial probabilities for one null population vanish p0,ny(0) =

pnx,0(0) = 0. This insures that the condition p0,ny(t) = pnx,0(t) = 0 is satisfied

at any time time t and that any other probability pn(t) is always positive. The

r.h.s. of equation (3.71) can be written as a discrete divergence−DxJ
x−DyJ

y

where the currents are given by Jxnx,ny
= E−1

x g
(x)
nx,nypnx,ny − r

(x)
nx,nypnx,ny and

Jynx,ny
= E−1

y g
(y)
nx,nypnx,ny − r

(y)
nx,nypnx,ny . By imposing the currents to vanish

separately we obtain an equilibrium distribution which is uniquely defined

provided that the relation between pnx+1,ny+1 and pnx,ny is the same computed

along two distinct paths on the elementary cell having pnx,ny+1 and pnx+1,ny as

intermediate steps respectively. The necessary condition for equality, known

as detailed balance, is consequently

g
(y)
nx+1,ny

r
(y)
nx+1,ny+1

g
(x)
nx,ny

r
(x)
nx+1,ny

=
g

(x)
nx,ny+1

r
(x)
nx+1,ny+1

g
(y)
nx,ny

r
(y)
nx,ny+1

. (3.72)
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Figure 3.1: Plot of pnx,ny for N = 63 and α = 0.85 for the master equation

defined by equation (3.71). The color scale is linear and illustrates the evo-

lution of the probabilities with time t = 2 (left frame), t = 20 (center frame)

t = 100 (right frame) for an initial condition pnx,ny(0) = δnx,N/2 δnxy,N/2.

Even though the equilibrium is fully reached at t = 1000 at t = 100 we are

already close to it.

The stable equilibrium are (0, 1) and (1, 0) whereas the unstable equi-

librium are (0, 0) and (1/4, 1/4). The model satisfies the detailed balance

equation for α = 0 and α = 1. The equilibrium distribution for α = 0 is

approximated by a Gaussian pnx,1 = 1
2
G(nx) and p1,ny = 1

2
G(ny) where G(n)

is defined by equation (3.46) and pnx,ny = 0 if nx > 1, ny > 1. For α → 1

the solution is a power law pnx,ny = c/(n2
xn

2
y) for nx, ny ≥ 1. The solutions

obtained by numerical integration of equations (3.71) confirm these results

and allow us to compute the equilibrium distribution for any value of α in

the interval [0, 1]. These equilibrium solutions are rather close to the results

obtained by computing pnx,ny from p1,1 along two distinct paths parallel to

the x, y axis in the nx, ny lattice. The transients can also be computed and

show the way the equilibrium solutions are reached. In figure 3.1 we show the

the results for α = 0.85 where the equilibrium distribution is a superposition

of the Gaussian and power law distributions.
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3.3 Entropy for 1D master equation

For large N the solution of master equation for population dynamics is

approximated by the solution of the corresponding Fokker-Planck equation.

The stationary solution corresponding to a stable equilibrium of the mean

field equation is approximated by a Gaussian and consequently the entropy

can computed analytically. The entropy diverges as − logN in agreement

with the fact that in the limit N →∞ the probability distribution tends to

a δ function namely it is perfectly localized at the equilibrium point of the

mean field equation. If the mean field equation depends on a parameter η

then the Master equation will also depend on it and the dependence of the

entropy on η can be evaluated. Since the relaxation time τ also depends on

this parameter it is interesting to analyze how S(η) and τ(η) are related. We

start with the following mean field equations

dx

dt
= x− x1+η dx

dt
= x2 − x2+η (3.73)

which for η = 1, 2 become the logistic and the BCM equations, respectively.

The fields given by the right hand side of these equations vanish at x = 1

and have a first derivative at this point equal to −η. As a consequence φ = 1

is a stable equilibrium and the relaxation time is τ = 1/η. Consider now the

corresponding Master equation defined by the gain and loss terms

g(n) = n r(n) = (n− 1)
nη

Nη
(3.74)

g(n) =
n2

N
r(n) = (n− 1)

n1+η

N1+η

The equilibrium conditions are given by f ′(n) = log g(n − 1) − log r(n) = 0

which is satisfied for n = N with f ′′(n) = −η/N . As a consequence the

equilibrium distribution in both cases is a semi Gaussian with maximum at

n = N and width σ = N/η. Letting φ = n/N the probability P (φ) = Np(n)

is a Gaussian with maximum at φ = 1 and width σ = (Nη)−1/2 defined in

the interval [1/N, 1] where it is normalized

P (φ) =

(
2ηN

π

)1/2

exp

(
− Nη

2
(φ− 1)2

)
(3.75)
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We can now compute the entropy

S(η,N) =

∫ 1

1/N

P (φ) logP (φ)dφ (3.76)

= −
(

2ηN

π

)1/2 ∫ 1

1/N

1

2
log

(
2Nη

π

)
− Nη

2
(φ− 1)2 exp

(
−Nη

2

)
(φ− 1)2

=
2

π1/2

∫ (ηN/2)1/2

0

−1

2
log

(
2Nη

π

)
+ w2e−w

2

dw

S(η,N) = −1

2
log

2η N

π
+

1

2

where we have set w = (Nη/2)1/2(1− φ). We can write the result as

S(η,N) = −1

2
log η − 1

2
logN + c (3.77)

where c = 1
2
[1−log(2/π)] is a fixed numerical constant. For any fixed value

ofN the variation of the entropy is simply given by the term Ŝ(η) = −1
2

log(η)

which is a decreasing function of η just as the relaxation time τ = 1/η.

This means that when η increases the system becomes more stable and less

disordered.

Remarks: Let us remark that the relaxation time can be varied simply

by scaling the field. In this case, however, the entropy does not change.

Indeed if you consider the equations

dx

dt
= η(x− x2)

dx

dt
= η(x2 − x3) (3.78)

the relaxation time is τ = 1/η but the entropy for the related master equation

is S(1, N) as for the unscaled equation. This is evident since the equilibrium

distribution is invariant under a scaling of gn and rn with the same scaling

factor η.

If we compute the entropy S̄ from the Master equation we notice that

there is an additive factor with respect to the entropy S we computed from

the solution of the Fokker-Planck equation. Indeed recall that if p(n) inter-

polate the equilibrium distribution pn then P (φ) = N p(n) where φ = n/N .
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As a consequence

S̄ = −
N∑
n=1

pn log pn

∫ N

1

p(n) log p(n)dn (3.79)

= −
∫ 1

1/N

P (φ) log(P (φ)/N) dφ = S + logN

3.3.1 The 2D models

The same considerations apply to a two dimensional model such as

dx

dt
= x2 − x(x+ y)1+η dy

dt
= y2 − y(x+ y)1+η (3.80)

Such a model has x = 1, y = 0 and x = 0, y = 1 as stable critical points

and the eigenvalues of the matrix for the linearized equation are −1,−η. For

the master equation the Gaussian approximation to the equilibrium leads to

the same expression for the entropy we found for the one dimensional system.

In view of a further analysis on the BCM model we consider the parameter

η to be a function of another parameter α according to

η = (1 + α)(2− α)

where α ∈ [0, 1]. The function is symmetric with respect to α = 1/2 where

it reaches a maximum. As a consequence taken as a function of α both the

relaxation time and the entropy for the corresponding master equation have

a minimum as shown by figure 3.2.

The previous 2D equation with η chosen as a function of α corresponds

for α = 0, 1 to the BCM equation and the corresponding Master equation has

for any value of α an equilibrium which fulfills the detailed balance condition.

Instead the equations

dx

dt
= x2 − x(x1+α + y1+α)2−α dy

dt
= y2 − (x1+α + y1+α)2−α (3.81)

correspond for α = 0 to the BCM82 model and for α = 1 to the BCM92

model. The equilibrium for the associate master equation satisfies the de-

tailed balance condition only for α = 0. The entropy can be computed
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(a) (b)

Figure 3.2: Change of (a) entropy S and (b) the relaxation time τ , for the

one dimensional population model where η = (1 + α)(2− α)

numerically and also exhibits a minimum close to α = 1/2. The problem

now is to disentangle whether this is due to the loss of the detailed balance

or mainly to the asymptotic behavior of the loss terms which depends on α.

We consider then the one parameter family of master equations associated

to the scaled logistic equation

dx

dt
= x− αx− (1− α)x2

gn = n rn = αn (1− δ1,n) + (1− α) (n− 1)
n

N
. (3.82)

The mean field equation is simply the logistic equation with the time scaled

by 1 − α. As a consequence the entropy S̄ which depends on α is the same

as for the unscaled master equation

dx

dt
= x−x2 gn =

n

1− α
rn =

n

1− α
(1−δ1,n) + (n−1)

n

N
. (3.83)

The equilibrium solution is a Gaussian with η = 1−α. As a consequence

for α close to zero we have

S̄ = S + logN = −1

2
log(1− α) +

1

2
logN +

1

2
(1− log

2

π
) (3.84)

In Figure 3.3 we compare the exact solution with the previous approxi-

mation. As it can be seen it is less and accurate as we approach α = 1. Here
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(a) (b)

Figure 3.3: Change of entropy S for the one parameter master equation

associated to the logistic equation ẋ = (1−α)x−x2 with gain and loss terms

defined by gn = n, rn = αn(1 − δn,1 + (1 − α)n(n − 1)/N . Blue line exact

and green line the approximated solution. (a) N = 50 and (b)N = 200

.

we can make a further approximation starting from the approximate solution

for α = 1 which is given by

p(n) =
1

n logN
(3.85)

So the entropy is given by

S̄ = logN + log logN +
1

logN

∫ 1

1/N

log φ

φ
dφ = log logN +

1

2
logN. (3.86)

The dependence on α for α close to 1 is obtained from

P (φ) =
C

φ
exp (1− α)Nφ1− φ

2
' C

1

φ
+ ε1− φ

2
ε = (1− α)N

(3.87)

where the normalization constant is given by

C−1 = logN +
3

4
ε (3.88)

and we have assumed that ε = (1 − α)N � 1 and that N � 1 for the

continuous interpolation in n to hold. Computing the entropy at the first

order in ε and neglecting 1/N with respect to 1 we finally find

S̄ = log logN +
1

2
logN +

3

8
ε− 3

2

ε

logN
. (3.89)
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3.4 Results

The asymptotic behavior of the probabilities pn(t) for the master equation

with an absorbing state has been investigated [76], but here we propose

also an approximation for the elimination of the absorbing state. Therefore

we will study both cases: with and without absorbing states, to focus our

attention in the extinction time of a population (with absorbing state) and

on a family of equations depending on a parameter α. We will study the

dependence of psn with α calculating it analytically, we also will make a

numerical study, calculating the time of extinction for systems that presents

an absorbing state and the relaxation time for systems without absorbing

states.

3.4.1 Dependence the stationary distribution with α

For the following results we consider the one parameter family of master

equations represented by (3.22) (for which the absorbing state has been elim-

inated), to investigate the behavior of the stationary distribution in function

of the parameter α. The stationary distribution is calculated analytically

directly from (3.21) and in this case n varies as 1 ≤ n ≤ N . In figure 3.4 we

show psn in function of n and α, where the maximum number of individuals

is N = 100. Specifically for figure 3.4a, we varies α in intervals of 0.1 and

we see a continuous transition from α = 0 to α = 1. While in figure 3.4b, we

plot the distributions for α = 0.9, 0.93, 0.95, 0.98 and 1.

For low values of α we observe that the equilibrium solution initially

is a semi-Gaussian centered in n∗ ' N , when α increases, the maximum

moves to lower values with respect to N . Particularly for α ' 0.9 a bimodal

distribution appears and for α → 1 the distribution is a power law peak at

n = 1 (see Fig. 3.4). Further increasing α so that N < 1/(1 − α) only the

peak at n = 1 remains and the distribution becomes a genuine power law.

However unlikely when the absorbing state is present if we keep the value of α

fixed close to 1 and let N grow, only the states with n ' N become populated
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(a) (b)

Figure 3.4: Plot of the psn in function of n for different values of α. (a)

The colors correspond to: α = 0.1 → red, α = 0.2 → orange, α = 0.3 →
yellow, α = 0.4 → green, α = 0.5 → blue, α = 0.6 → light blue, α = 0.7 →
violet, α = 0.8 gray, α = 0.9 → brown, α = 0.99 → black. (b) The colors

correspond to: α = 0.1 → red, α = 0.2 → orange, α = 0.3 → yellow,

α = 0.4 → green, α = 0.5 → blue, α = 0.6 → light blue, α = 0.7 → violet,

α = 0.8 gray, α = 0.9 → brown, α = 0.99 → black . In the right figure the

colors correspond to: α = 0.9 → blue, α = 0.93 → yellow, α = 0.95 → red,

α = 0.98→ green, α = 1→ black.

with a spread of order N−1/2, so that in the limit N → ∞ the equilibrium

φ = 1 is recovered. In [77] a power law equilibrium was obtained for a linear

equation by preventing the presence of the absorbing state with a constant

term in the gain factor gn so that g0 > 0. For α → 0 the maximum value

is for n = N , that is φ = 1, while for α → 1 we observe that the maximum

value is for n = 1. Ergo, our results show that the equilibrium solution for

α → 0 is a Gaussian distribution, while for α → 1 is a Pareto distribution.

To summarize the situation we first consider the equilibrium distribution

for a fixed value of N : the transition from a Gaussian distribution peaked

close to n = N to a power law distribution peaked near n = 1 occurs at

N ' 1/(1−α) and close to the transition a bimodal distribution is observed.

Conversely if we keep α fixed and increase N only the first equilibrium is

observed as long as N � 1/(1−α). The limit the distribution in the variable

φ = n/N becomes δ(φ) corresponding to the stable equilibrium of the mean
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(a) (b)

(c) (d)

Figure 3.5: Plot of the error ξ(psn) of estimate psn , in function of n for

different values of α. (a) Black line corresponds to the plot of the error

of Fokker-Planck ξ(psn) = |psn − psFP (n)| and the red line corresponds to

the error of Gaussian approximation ξ(psn) = |pn − psG(n)| for N = 100 for

α = 0.1. (b) Black line corresponds to the plot of the error of Fokker-Planck

ξ(psn) = |psn − psFP (n)| and the red line corresponds to the error of Gaussian

approximation ξ(psn) = |pn − psG(n)| for N = 500 for α = 0.1. (c) Black line

corresponds to the plot of the error of Fokker-Planck ξ(psn) = |psn − psFP (n)|
and the red line corresponds to the error of approximation with (1 − α)

ξ(psn) = |pn − psapp)| for N = 100 for α = 0.99. (d) Black line corresponds to

the plot of the error of Fokker-Planck ξ(psn) = |psn− psFP (n)| and the red line

corresponds to the error of approximation with (1−α) ξ(psn) = |pn−psapp| for

N = 500 for α = 0.99. The stationary distributions were calculated as: psn

with the equation (3.21), psFP (n) with the equation (3.25), GS(n) with the

equation (3.46) and psapp with the equation (3.51).
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field equation. In this case we recall that when α is close to 1 the relaxation

time of the mean field equation grows as (1− α)−1.

To test the efficiency of our approximations introduced in sections (3.1.1

and 3.1.1), now we are going to study the error on the evaluation of the sta-

tionary distribution psn by the Fokker-Planck equation, the Gaussian approx-

imation and the approximation with (1− α). We calculate the distributions

with the equations: eq. (3.21) for the exact solution (psn), eq. (3.25) for the

Fokker-Planck equation (psFP (n)), eq. (3.46) for the Gaussian approximation

(psG(n)) and eq. (3.51) for the approximation with (1− α) (psapp). We define

the error ξ as

ξ(psn) = |psn − psi (n)| psi (n) = psFP (n), psG(n), psapp (3.90)

In Figure 3.5 we plot the error ξ(psn) for the Fokker-Planck equation,

Gaussian approximation and approximation with (1 − α) in function of n

for different values of α. We show the results for α = 0.1 and α = 0.99 for

N = 100 and 500. The results show that the error for α→ 1 of the Fokker-

Planck is very small, in order of 10−10 for N = 100 and 10−25 for N = 500,

while for the Gaussian approximation is in order of 10−6 for N = 100 and

10−25 for N = 500. For α → 1 the error Fokker-Planck is in order of 10−6

for N = 100 and 10−9 for N = 500, while for the approximation with (1−α)

10−3 for N = 100 and N = 500.

3.4.2 Relaxation time

For the system without absorbing state (eq. (3.22)) we can study the

behavior of the relaxation time τ , that is, the time needed for the system

from an initial condition reach the steady state. We are interesting to study

the dependence of τ with the parameter α.

In the Figure 3.6 we plot the evolution of pn(t) for α = 0 and α = 1, the

total number of molecules is N = 400 and we choose the initial condition

pn(0) = δn,N/2. From figure 3.6 we observe that the relaxation time is different

for the distinct values of α, which lead us to do the Figures 3.7 and 3.8. Here
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(a) (b)

Figure 3.6: Plot of the pn(t) in function of n and t for systems with N = 200

molecules. (a) α = 0 The colors correspond to: t = 0→ red, t = 3→ yellow,

t = 5 → blue, t = 7 → green and t = ∞ → black. Where = 150 steps of

integration. (b) α = 1 The colors correspond to: t = 0 → red, t = 3 →
yellow, t = 5→ blue, t = 7→ green and t =∞→ black.

we plot τ in function of α. To establish if the system is in the stationary

state we use the distributions calculated analytically in section 3.4.1. The

behavior of the relaxation time in function of N shows a trend as plot in

Figure 3.7. There is a change around α = 0.5. For α = 1 the relaxation

time grows linearly with N , which agrees with the fact that in the mean

field the equilibrium does not exist anymore. The Figure 3.8 shows that

in the interval 0 ≤ α ≤ 1, τ varies quite linearly with α, while there is

a discontinuity between α = 0.9 and α = 1. As we demonstrate in the

Figure 3.4 this interval represents a phase transition, and as it is known one

characteristic of a phase transition is the relaxation time largest. The other

interesting result is that τ grows with α.



66 Biological applications of the Master equation

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Plot of τ in function of N : (a) α = 0; (b) α = 0.1; (c) α = 0.4;

(d) α = 0.6; (e) α = 0.9 and (f) α = 1.

Figure 3.8: Plot of the time τ in function of α for N = 300 and the system

without absorbing state.
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3.4.3 Extinction time

To analyze the behavior of the parametrized system with an absorbing

state, we consider gn = n and rn = αn + (1 − α)n(n−1)
N

. The stationary

solution psn is calculated with the equation (3.21), but n varies from 1 to N

and the equation is normalized in function of p0. In this way we have r1 = α

and g0 = 0, then n = 0 is absorbing. Letting τ0(N) be the time needed for

a population of N units to have a probability p0 = 0.98 of being in the null

state, we plot in Figure 3.9 τ0(N) in function of N for a system with N = 16

as maximum number of individuals, here we plot just for α = 0.1, α = 0.5

and α = 0.9. A simple numerical analyses shows that the growth with N is

exponential,

τ0(N) ' τ0(N0) eλ(N−N0). (3.91)

We are also interesting in the behavior of τ0(N) in function of α. For

this study we fixed N and analyzed how τ0(N) changes in function of α that

varies α from zero to one, as show in figure 3.10a. We plot λ in function of

α, estimating λ with (3.91) and 0 ≤ α ≤ 1, as in figure 3.10b. We observe

that λ depends on α and tends to zero when α → 1. For instance λ ' 0.7

for α = 0.1 and λ ' 0.044 for α = 0.9. This means that when α → 1 the

state n = 0 is no longer absorbing and we expect that the relaxation time

diverges. Indeed for N0 = 2, 3, 4, ... we find τ0(N0, α) = cN0

α
. Conversely

when the nonlinear term has a small weight α ∼ 1 the extinction is rather

rapid.
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(a) (b)

(c)

Figure 3.9: Plot of the time τ0(N) required for extinction of a population

with N individuals, namely for the null state probability to reach the value

p0 = 0.98. Red line is the time given by the simulation and the black line is

the plot of relation (3.91). Figure (a) refers to the value α = 0.1 and τ0(2),

(b) to α = 0.5 and τ0(2) and (c) to α = 0.9 and τ0(25).

(a) (b)

Figure 3.10: (a) Plot of the time τ0 for N = 20 in function of the parameter α.

(b)Plot of λ calculated with the equation (3.91) in function of the parameter

α.
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3.5 Discussion of the results

We have proposed a one parameter family of master equations associated

to the logistic population model. For each value of the parameter α ∈ [0, 1]

and of the maximum value N of the population number a specific equilibrium

is reached. In the transition probability rn describing the loss, the term linear

in n has a weight α whereas the quadratic term has a weight (1 − α). As

a consequence when the quadratic term dominates (α → 0) the equilibrium

distribution is Gaussian with a maximum at n = N and a width N−1/2,

whereas when the linear term dominates (α → 1) the distribution becomes

a power law and the low population states are the most probable. In the

limit N →∞ the same mean field equation is recovered, up to a time scale,

and the equilibrium distribution of the master equation converges, for any

fixed value of α, to the stable equilibrium of the mean field equation. As a

consequence the Pareto like equilibrium which is close, for N large, to total

extinction, namely to the unstable equilibrium of the mean field equation, is

never observed in the previous limit. If we scale the time so that the mean

field limit is the logistic equation with relaxation time equal to 1, any master

equation, corresponding to a given value of α, is associated to a specific noise

namely to a specific microscopic dynamics, and can be determined by looking

at the equilibrium distribution for finite values of N .

The presence of an absorbing state does not change the picture substan-

tially. Indeed when α is close to 1 the relaxation time grows so fast with

N that when N is large enough only the metastable equilibrium correspond-

ing to n = N is observed in any reasonable time interval. Conversely when

α→ 1 the relaxation time increases as e(1−α)N so that one first observes the

relaxation to a power law distribution followed by total extinction.

The detailed balance conditions, which allows to determine analytically

the equilibrium, holds only for the limit cases α = 0, 1. However the numer-

ical analysis shows that the behavior of the equilibrium distribution when

N → ∞ for α fixed is the same namely that the stable equilibrium of the

mean field equation are recovered.
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A one parameter family of master equations has been proposed for the

BCM model as well and the conclusions on the equilibrium are very simi-

lar. The extension of the model to two populations has been considered and

the equilibrium distributions have been analyzed. The detailed balance con-

ditions, which allows to determine analytically the equilibrium, holds only

for the limit cases α = 0, 1. However the numerical analysis shows that

the the equilibrium distributions depend on α and N as in the previous one

population models.
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Chapter 4

Nonequilibrium

thermodynamics in terms of

the master equation

In this chapter we will see how to derivate the thermodynamic formal-

ism in terms of the master equation. Starting with the differentiation be-

tween equilibrium and nonequilibrium steady states we will understand the

nonequilibrium approach. We will review the statistical mechanics of equi-

librium, because it is the base for the nonequilibrium approach. And finally

we will derivate all thermodynamic variables in terms of the master equation,

which we will use in the Chapters 5 and 6.

4.1 Introduction

A much larger variety of phenomena can be described as stationary states

of open systems, i.e., systems that can exchange molecules or/and energy

with its environment, which exist away from thermodynamic equilibrium. In

this way it is important to extend equilibrium thermodynamics to nonequi-

librium process [3, 8, 78, 9, 10], in particular we are interested in biological

systems (populations, living cells, gene networks, RNA, proteins and en-
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zymes).

To develop a nonequilibrium thermodynamic theory we should know

clearly the concepts of detailed balance (closed systems) and nonequilib-

rium steady states (open systems). The thermodynamic characterization of

systems in equilibrium got its microscopic justification from equilibrium sta-

tistical mechanics which states for a system in contact with a heat bath the

probability to find it in any specific microstate is given by the Boltzmann fac-

tor [79, 78]. In contrast to systems in thermal equilibrium, systems far from

equilibrium carry non-trivial fluxes of physical quantities such as particles or

energy. These fluxes are induced and maintained by coupling the system to

multiple reservoirs, acting as sources and sinks (of particles or energy) for

the system. The non-zero probability flux implies the breaking down of the

detailed balance which is a quantitative signature of the systems being in

nonequilibrium states [80, 81].

Nonequilibrium thermodynamics as here understood applies to small sys-

tems and it is described by a probability distribution pn evolving according

to a Markovian Master equation [82, 78], which provides a framework for

extending the notions of classical thermodynamics like work, heat and en-

tropy production. Hence, the exchange of energy (heat) or particles with

the environment and the other thermodynamic quantities associated to the

system states n become stochastic variables. The system entropy is defined

using the Gibbs expression S = −kb
∑

n pn ln pn and entropy balance equa-

tions of the usual form can be derived via the identification of a non-negative

entropy production consistent with macroscopic nonequilibrium thermody-

namics [83, 84, 9].

4.1.1 Equilibrium and nonequilibrium steady states

In terms of the master equation, the system can reach, after a sufficiently

long time, two types of stationary solution: an equilibrium or nonequilib-

rium steady state. The equilibrium is a special-case steady state that is

obtained by closed and isolated systems, which is associated with detailed
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(a) (b)

Figure 4.1: (a)Simple, unimolecular chemical reaction cycle. (b) Cyclic en-

zyme reactions with substrates D and E.

balance (DB) condition [3, 10, 9, 80, 78, 7]. These systems do not exchange

molecules and energy with its environment and the concentrations of all

chemical species are constant macroscopically. A closed system can only

approach a chemical equilibrium with zero flux in each reaction, it means

that each forward reaction is balanced by the reverse one [10, 11]. While a

nonequilibrium steady state (NESS) is related to an open system that ex-

change molecules or/and energy with its environment [3, 10, 9, 80, 78, 7].

It is a chemical system with all the concentrations and fluctuations being

stationary, the system is no longer changing with time in a statistical sense,

i.e., all the probability distributions are stationary; nevertheless, the system

is not at equilibrium. The system fluctuate, but not obey Boltzmann’s law.

Such a system only exists when it is driven by a sustained chemical energy

input, the system has fluxes and dissipates heat [10, 11, 12].

To clarify the differences between DB and NESS we will use the cyclic

enzyme reaction represented in Figure 4.1. We can let A, B, and C be

three conformations of a single enzyme, D and E be substrates and ki,j

the transition rates between the single elements i, j = A,B,C. The Figure

4.1a represents a simple, unimolecular, closed chemical reaction. For this

system the D.B. condition is γ = kABkBCkCA/kBAkCBkAC = 1, that is the

forward reaction A → B → C is balanced by the backward reaction C →
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B → A. The open cycle (Figure 4.1b) brings in two more substrates D and

E which can break the DB to generate a nonequilibrium steady state flux,

characterizing the NESS. Cyclic enzyme reactions with substrates D and E

can be mapped into the unimolecular cycle in terms of pseudo-first-order

rate constants: kCA = k0
CA[D] and kAC = k0

AC [E]. If the species D and E

are in equilibrium, then we have γ = kABkBCk
0
CA[D]/kBAkCBk

0
AC [E] = 1 and

the system is in a detailed balance condition. However, if [D] and [E] are

sustained under nonequilibrium conditions in an open system, then γ 6= 1

and the DB condition is broken. Therefore, a closed system tends to be an

equilibrium, whereas an open system tends to be an NESS.

4.1.2 Equilibrium thermodynamics

Equilibrium thermodynamics is defined by a set of parameters (measured

macroscopically) which specify a thermodynamic state. When the thermo-

dynamic state does not change with time we are in a situation known as ther-

modynamic equilibrium. We can describe a thermodynamic system through

the statistical mechanics, that is concerned with the properties of matter in

equilibrium in the empirical sense used in thermodynamics [79]. The aim of

statistical mechanics is to derive all the equilibrium properties of a macro-

scopic molecular system from the laws of molecular dynamics. Thus it aims

to derive not only the general laws of thermodynamics but also the specific

thermodynamic functions of a given system [85, 79, 86]. For our purposes we

need to know the canonical ensemble, as is described bellow.

The Canonical Ensemble

The canonical ensemble is characterized by a closed system that can ex-

change heat with its surrounds and as a consequence will have a fluctuating

total energy. In order to obtain the thermodynamic variables for the system

we must extremize the Gibbs entropy

S = −kb
∑
i

pi ln pi (4.1)
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where the constant kB is typically consider the Boltzmann’s constant and

the pi can be interpreted as a representation of our knowledge of the system.

We require that the probability be normalized∑
i

pi = 1 (4.2)

and we demand that the average energy be fixed to some constant value

< U > ∑
i

uipi =< U > . (4.3)

With these choices we have that the canonical distribution of equilibrium

is pei = e
− ui

kBT

Z
, where Z =

∑
i e
− ui

kBT is Gibbs canonical partition function and

ui = kbT lnZi. The Gibbs functional S = −kB
∑

i pi ln pi have the maximum

value for pi = pei , to all distributions that have < U >=
∑

i uipi = constant.

In a conservative system, mechanical work can be stored into the form of

potential energy and subsequently retrieved it in form of work. Under certain

circumstances the same is true for thermodynamic systems. We can stored

energy in a thermodynamic system by doing work on it through a reversible

process, and we can eventually retrieve that energy in the form of work. The

energy which is stored and retrievable in the form of work is called the free

energy [79]. For the canonical ensemble we have that the Helmholtz free

energy is defined as:

F = U − TS. (4.4)

For a process carried out at fixed temperature (T), volume (V) and number

of molecules (N) we find

∆F ≤ −∆W (4.5)

where ∆W is the work make in the system. If no work is done the equation

(4.5) becomes

∆F ≤ 0. (4.6)

Thus, an equilibrium state is a state of minimum Helmholtz free energy 1.

1In this thesis we will assume that kB = 1 and the temperature T is constant.
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4.1.3 From Classical to nonequilibrium thermodynam-

ics

At the heart of the classical thermodynamics we have general laws gov-

erning the transformations of a system, these transformations involve the

exchange of heat, work and matter with the environment. In the classical

formulation of the second law (due to Clausius) we have a central result: the

total entropy production can never decrease, it increases monotonically until

it reaches its maximum at the state of thermodynamic equilibrium

dS

dt
≥ 0. (4.7)

This statement applies to the stages of the evolution in which the entropy

is well defined. For example, for a system in equilibrium at initial and final

times, the final entropy will be larger than the initial one, even though the

entropy may not be well defined during the intermediate evolution. However,

it is often a very good approximation to assume that the system is in a state

of local equilibrium, so that the entropy is well defined at any stage of the

process [82]. The relation (4.7) is valid for system in equilibrium, but as we

will see in the next sections, we can extend this formulation to systems which

exchange energy and matter with the outside world.

As is well known, the statistical mechanics gives a characterization for sys-

tems in equilibrium with a microscopic perspective, determining the proba-

bility to find the system in any specific microstate by the Boltzmann distribu-

tion. On a more phenomenological level, linear irreversible thermodynamics

provides a relation between such transport coefficients and entropy produc-

tion in terms of forces and fluxes [78]. When we change our perspective we

can realize that besides the fluctuations of the entropy production in the heat

bath one should similarly assign a fluctuating, or stochastic, entropy to the

system proper [87].

Therefore, as a natural way to understand the properties of a nonequilib-

rium thermodynamics we can consider the laws of equilibrium thermodynam-

ics, taking the energy conservation, i.e., the first law, and entropy production



Nonequilibrium thermodynamics in terms of the master equation 79

on the mesoscopic level [78].

4.2 Nonequilibrium thermodynamics

Here we understand as nonequilibrium thermodynamics the set of state

functions written in terms of the master equation. Following the important

works of Schnakenberg [7], Oono and Paniconi [88], Qian [8, 10, 9], Seifert

[78, 87] and Zia [80, 89], in the next sections we will derivate this general

theory, which describes systems in DB and NESS.

4.2.1 Entropy production

As we saw in the section 4.1.3, the second law of the thermodynamics

specifies the existence of the entropy S, ascertains that the total entropy of

an isolated macroscopic system cannot decrease in time and that it increases

monotonically until it reaches its maximum at the state of thermodynamic

equilibrium

dS

dt
≥ 0. (4.8)

The relation (4.8) is valid for systems in equilibrium, to extend to nonequi-

librium processes we need an explicit expression for the entropy production

[83]. In open systems the corresponding quantity to entropy change dS turns

out to have two contributions [84]:

dS = diS + deS. (4.9)

Where diS is the entropy produced inside the system due to spontaneous pro-

cess and deS is the transfer of entropy across the boundaries of the system

(see Figure 4.2). According with second law of thermodynamics diS must

be zero for reversible (or equilibrium) transformations and positive for irre-

versible transformations of the system, i.e., diS ≥ 0. The entropy supplied,

deS, may be positive, zero or negative depending on the interaction of the

system with its surroundings.
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Figure 4.2: The exchange of entropy between the outside and the inside for an

open system.

The heat dissipated into the environment can be identified with an in-

crease in entropy of the medium and the basic distinction here is between

reversible and irreversible processes [78, 83]. Only irreversible processes con-

tribute to entropy production, because in the steady state the system still

exchange energy with the environment to maintain the NESS.

4.2.2 Housekeeping heat Qhk and Excess heat Qex:

Oono and Paniconi [88] constructed a phenomenological framework corre-

sponding to equilibrium thermodynamics for steady states. They focused on

transitions between steady states and decomposed the total heat dissipation

(Qtot) into a housekeeping part (Qhk) and an excess part (Qex). Since we are

in a NESS we dissipate energy as heat (Qhk) to maintain the steady state,

then we must somehow subtract the contribution of Qhk in the Qtot and the

Qex is defined as [88]:

Qex ≡ Qtot −Qhk. (4.10)

To understand the meaning of Qhk and Qex we can consider the system

represented in the Figure 4.3. The subsystem A is in a NESS condition and

B is its heat bath. Whereas this system is described by the grand canonical

ensemble, A and B can exchange energy and molecules. To sustain the NESS

the part A dissipate heat, what is known as housekeeping heat, while the heat

exchange by B and A is the excess heat. By convention, we take the sign

of heat to be positive when it flows from the system to the heat bath. The

housekeeping heat rate Qhk does note account for the total energy difference
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Figure 4.3: Subsystem A in a NESS situation in contact with its heat bath B.

∆U between different steady states. ∆U − Qex is the remaining systematic

part called (excess) work, that is, the portion of energy stored in the system

in the systematic form [88]. For equilibrium systems Qex reduces to the total

heat Qtot, because in this case the system does not dissipate energy and

Qhk = 0 [88, 90].

In the Hatano and Sasa’s work [90] they employed the phenomenolog-

ical framework of steady-state thermodynamics constructed by Oono and

Paniconi [88], they find the extended form of second law holed for transi-

tions between steady states and the Shannon entropy (also accepted as the

common definition of Gibbs entropy) difference is related to the excess heat

produced in a infinitely slow operation. Because any proper formulation of

steady-state thermodynamics (SST) should reduce to equilibrium thermody-

namics in the appropriate limit, Qex should correspond to the change of a

generalized entropy S within the SST. Considering systems in contact with a

single heat bath whose temperature is denoted by T , the second law of SST

reads

T∆S ≥ −Qex. (4.11)

The generalized entropy difference ∆S between two steady states can be

measured as −Qex/T resulting from a slow process connecting these two

states. This allows us to define the generalized entropy of nonequilibrium
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steady states experimentally, by measuring the excess heat obtained in a

slow process between any nonequilibrium steady state and an equilibrium

state, whose entropy is known [88, 90].

4.3 Nonequilibrium Thermodynamics based

on Master equation and Gibbs Entropy

Now we have all features to derive the nonequilibrium variables in terms

of the master equation. Considering the generic form of the master equation

defined in Chapter 1 by eq. (1.17)

dpi(t)

dt
=
∑
j

[Wi,jpj −Wj,ipi]. (4.12)

and the Gibbs entropy defined by (4.1), which derivative is express by

dS(t)

dt
= −

∑
i

dpi
dt

ln pi −
d

dt

∑
i

pi. (4.13)

The term d
dt

∑
i pi is obviously null, because by the normalization we have∑

i pi = 1. Replacing the term dpi
dt

in (4.13) by the master equation (4.12)

we obtain
dS(t)

dt
= −

∑
i,j

[Wi,jpj −Wj,ipi] ln pi. (4.14)

If we exchange the indexes i and j we rewrite dS(t)
dt

as

dS(t)

dt
= −1

2

∑
i,j

[Wi,jpj −Wj,ipi] ln
Wj,ipi
Wi,jpj

+
1

2

∑
i,j

[Wi,jpj −Wj,ipi] ln
Wj,i

Wi,j

. (4.15)

On the other rand we have that the derivative of entropy from eq. (4.9) is

dS(t)

dt
=
diS

dt
+
deS

dt
, (4.16)
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Ge and Qian [9] defined diS
dt

= ep and deS
dt

= −hd, then the time-dependent

variation of entropy reads

dS(t)

dt
= ep(t)− hd(t) (4.17)

where ep is the instantaneous entropy production rate and hd is the rate

dissipation heat. Comparing the equations (4.15) and (4.17) we can identify

ep = −1

2

∑
i,j

[Wi,jpj −Wj,ipi] ln
Wj,ipi
Wi,jpj

(4.18)

and

hd = −1

2

∑
i,j

[Wi,jpj −Wj,ipi] ln
Wj,i

Wi,j

. (4.19)

We still can relate hd and ep with the thermodynamic variables from

equilibrium. If we consider the definition of the Helmholtz free energy (eq.

(4.4)), F = U −S, writing in function of S and taking its time derivative we

obtain
dS(t)

dt
= −dF

dt
+
dU

dt
. (4.20)

Therefore, comparing with equation (4.17) we identify,

hd = −dU(t)

dt
and ep = −dF (t)

dt
. (4.21)

In this way we have the mathematical formulation for the thermodynamic

variables in terms of the master equation. When the system presents detailed

balance condition, for t→∞ it reaches an equilibrium state with ep = hd =
dS(t)
dt

= 0. In contrast to systems in equilibrium, systems in NESS present

fluxes of physical quantities, such as particles or energy. Thus DB is violated

and there is a continuous useful energy being pumped into the system that

sustains the NESS [9, 81, 11] and then ep and hd are not null, but will be

equal, this is necessary to ensure that S is finite asymptotically and dS(t)
dt

= 0.

We will use these results in the Chapters 5 to analyze the general thermo-

dynamic properties of a linear system using the chemical fluxes to character-

ize the NESS of a chemical chain reaction and in Chapter 6 to establish how
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the entropy variation can be used to find the optimal value (corresponding

to increased robustness and stability) for a parametrization doing in the well

known model of synaptic plasticity, the so called BCM theory, calculating

also the work as the parameter of the plasticity of these systems.



Chapter 5

The role of nonequilibrium

fluxes in the relaxation

processes of the Linear

Chemical Master Equation

5.1 Motivations of the work

We consider the dynamics of a chemical cycle chain reaction among m

different species, the reaction cycles are fundamental to biochemical net-

work kinetics [81, 11], they are the chemical basis of cellular signal trans-

duction [91, 92] and biological morphogenesis [93, 94]. As it is known the

determination of the global stability of the dynamical systems and the net-

works is still an open field, because these systems are not in isolation and

their description are not trivial. [81, 95, 9, 10, 11, 12, 78, 78, 80, 89]. A

possible method to describe global stability for these systems is the proba-

bilistic (or nonequilibrium) approach, whereas these processes involves less

number of molecules and thus the role of fluctuations should be considered

[81, 7, 9, 11, 78, 87, 80, 89].

An important consideration for the nonequilibrium approach is whether

85
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the system is isolated or open to interactions with the environment. After a

sufficient long time, isolated systems reaches an equilibrium state (detailed

balance), which the probability chemical fluxes are null. While an open

system (if the exchange with its surroundings is sustained) approaches a

nonequilibrium steady state (NESS) [3, 4, 7, 9, 78, 89], probability chemi-

cal fluxes are not null leading the breaking down of the DB. When the DB

holds the equilibrium distribution can be written as a Maxwell-Boltzmann

distribution, which means there is a unique equilibrium constant for every

chemical reaction in a system, regardless of how complex the system is. How-

ever, in a NESS, the stationary chemical currents are different from zero and

this can be associated with the existence of an external non-conservative field

interacting with the system.

We propose a general theory for the dynamics of a chemical chain reaction

among m different species, based in the in previous works [7, 9, 81, 78, 87,

80, 89] we present a nonequilibrium thermodynamical description in terms of

the chemical master equation (CME). The determination of stationary fluxes

allows us to completely describe systems in equilibrium (DB) as well as in

NESS. We are interested in the role of fluxes in the transient states and,

in particular, in the relaxation process towards the stationary distribution.

Indeed the relaxation times of biochemical reactions could be related to the

plasticity properties of biological systems.

5.2 Nonequilibrium fluxes and stationary states

for the CME

Let us consider the dynamics of a chemical chain reaction among m dif-

ferent species as represented in Figure 5.1. Introducing the transition proba-

bility πk−1,k that a single particle of the chemical specie k− 1 is transformed

in a particle of the specie k in a time unit and assuming that the particles

are independent, the transition rate from the specie k − 1 to the specie k is

given by πk−1,knk−1 where nk−1 denotes the number of particles of the k − 1
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species. In a generic situation, the transition probability πk−1,k may depend

on the state n = (n1, ..., nm) ∈ Nm that gives the distribution of particles

into the different chemical species. Here we consider the case for which the

πk−1,k are independent on nk and the total number of particles is constant

|n| =
m∑
k=1

nk = N.

The deterministic mean field equations for the m states are

Figure 5.1: Chemical chain reaction among m different species.

ṅk(t) = πk−1,knk−1 + πk+1,knk+1 − (πk,k−1 + πk,k+1)nk

...

ṅm(t) = πm−1,mnm−1 + πm+1,mnm+1 − (πm,m−1 + πm,m+1)nm (5.1)

If the reaction chain is a cycle, we impose periodic boundary conditions

in the sum m+ 1 ∼ 1. In this way we can write the CME that describes the

evolution of the probability distribution pn(t) of the system (5.1), according

to (1.33) introduced in the Chapter 1

ṗn(t) =
m∑
k=1

(
E+
k−1E

−
k πk−1,knk−1pn(t)− πk,k−1nkpn(t)

)
+

(
E−k E

+
k+1πk+1,knk+1pn(t)− πk,k+1nkpn(t)

)
(5.2)
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To write the equation (5.2) in a discrete form of the Fokker-Planck equation,

we introduce the difference operator Dk = D+
k or D−k defined as

D+
k ≡ E+

k−1E
−
k − 1

D−k ≡ E−k−1E
+
k − 1. (5.3)

The operator Dk has the following properties:

1. We can write the relation

D−k = E−k−1E
+
k (1− E+

k−1E
−
k ) = −D+

k E
−
k−1E

+
k (5.4)

2. We can write a discretized Laplacian

−D+
k D

−
k = −(E+

k−1E
−
k − 1)(E−k−1E

+
k − 1) (5.5)

= E−k−1E
+
k − 2 + E+

k−1E
−
k

3. The operator Dk has similar properties to a derivative and in particular

the product rule reads

D+
k f(n)g(n) = E+

k−1E
−
k f(n)D+

k g(n) + g(n)D+
k f(n)

D−k f(n)g(n) = E−k−1E
+
k f(n)D−k g(n) + g(n)D−k f(n) (5.6)

for any real function f(n) and g(n) with n ∈ Nm.

4. The commutativity property holds

DkDh = DhDk. (5.7)

5. We can extend the definition of the operator Dk to any subset Γ ⊆
{|n| = N} according to

D+
k Γ = {E+

k−1E
−
k Γ\Γ} ∪ {Γ\E+

k−1E
−
k Γ} (5.8)

D−k Γ = {E−k−1E
+
k Γ\Γ} ∪ {Γ\E−k−1E

+
k Γ}
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and we have the relation∑
Γ

Dkf(n) =
∑
DkΓ

f(n) ∀ k. (5.9)

As a consequence if f(n) vanishes at the boundary points we have,∑
Γ

Dkf(n) = 0. (5.10)

Using the definition (5.3), the CME (5.2) can be written in the form of

discrete continuity equation in the hyperplane {|n| = N}

ṗn(t) = −
m∑
k=1

D+
k Jk(n, t) (5.11)

where Jk are the chemical fluxes and are defined according to

Jk(n, t) = −πk−1,k(n)nk−1pn(t) + E−k−1E
+
k πk,k−1(n)nkpn(t)

= (−πk−1,k(n)nk−1 + πk,k−1(n)nk)pn(t) +D−k πk,k−1(n)nkpn(t) (5.12)

On the other hand we have that the Fokker-Planck (see section 1.3.3) equa-

tion is defined as

∂Pn(t)

∂t
= −∂Jk(n, t)

∂n
= −

m∑
k=1

∂

∂n

(
Ak(n)− ∂Bk(n)

∂n

)
Pn(t) (5.13)

where Ak(n) is the drift field and Bk(n) the diffusion coefficient. Comparing

the equations (5.11) and (5.13) we can rewrite ṗn(t) as

ṗn(t) = −
m∑
k=1

D+
k (Ak(n)pn(t) +D−k Bk(n)pn(t)) (5.14)

and therefore the fluxes Jk(n, t) are

Jk(n, t) = Ak(n)pn(t) +D−k Bk(n)pn(t). (5.15)

We have defined the drift field

Ak(n) = −πk−1,k(n)nk−1 + πk,k−1(n)nk (5.16)



90 Nonequilibrium thermodynamics in terms of the master equation

and the diffusion coefficient

Bk(n) = πk,k−1(n)nk. (5.17)

The drift field is directly correlated to the average dynamics: suppose that

exist a subset Γ ⊆ |n| = N obyes the condition 5.9, such that the distribution

pn(t) almost vanishes at the boundary. To compute the average dynamics for

the CME (5.11) we use the equation for the mean field < nk >Γ=
∑

Γ nkpn(t).

Then we have

< ṅk >Γ =
∑

Γ

nkṗn(t) = −
∑

Γ

nkDkJk

' −
∑

Γ

Dk(nk + 1)Jk(n)−
∑

Γ

Jk(n) (5.18)

−
∑

Γ

Dk+1(nk − 1)Jk+1(n) +
∑

Γ

Jk+1(n).

Using the definition (5.15) we have

< ṅk >Γ '
∑

Γ

(Ak+1(n)− Ak(n))p(n, t)− (Dk+1Bk+1(n)−DkBk(n))p(n, t)

'
∑

Γ

Ak+1(n)p(n, t)−
∑

Γ

Ak(n)p(n, t) (5.19)

where we use the relation (5.9), consequently the term
∑

Γ(Dk+1Bk+1(n) −
DkBk(n))p(n, t) is null. Therefore we can write the average equations as

< ṅk >Γ' 〈Ak+1(n)〉Γ − 〈Ak(n)〉Γ k = 1, ..,m (5.20)

The average field approximation can be applied to eq. (5.20) on Γ, if

< ṅk >' Ak+1(< n >)− Ak(< n >) k = 1, ..,m. (5.21)

As a consequence, this approximation is correctly applied when the fluctu-

ations with respect to the average values and it becomes exact when the

transition probabilities πk−1,k are constant. In the last case we get a linear
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CME whose solution can be explicitly computed in the form of a multinomial

distribution

pl(t) = N !
m∏
k=1

λnk
k (t)

nk!
|n| = N (5.22)

where the quantities λk are the non trivial solutions of the linear system

(5.21) according to

λ̇k = −πk,k+1λk + πk+1,kλk+1 + πk−1,kλk−1 − πk,k−1λk k = 1, ..,m (5.23)

with the constraint

|λ| =
m∑
k=1

λk = 1 λk > 0. (5.24)

Letting t → ∞ we get the stationary solution with λ∗k = limt→∞ λk(t) that

satisfies the condition

Ak+1(λ∗) = Ak(λ
∗) (5.25)

and corresponds to the maximum value of the stationary distribution pl(n)

at n∗k ' Nλ∗k. Therefore in the linear case the critical value of the stationary

distribution corresponds to the stable fixed point of the average systems

(5.21). The previous results can be generalized to a non-linear CME provided

one could apply the average field approximation.

5.3 Thermodynamical properties of CME

The CME can model both the evolution of equilibrium and non equi-

librium systems and a thermodynamical approach has been proposed to

characterize the properties of the stationary solutions ṗsn(t) = 0. In par-

ticular one distinguishes the equilibrium states at which the chemical fluxes

Jsk(n) = 0 (Detailed Balance (DB) condition), and the Non Equilibrium Sta-

tionary States (NESS) where the weaker condition holds

m∑
k=1

DkJ
s
k(n) = 0. (5.26)
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We will explicitly recall some properties of the stationary solution for the

equation (5.11). To characterize the properties of the stationary solution of

the CME we first analyze the DB case. Using the definition (5.15) the DB

equilibrium can be written in the form

DkBk(n)psn = Ak(n)psn (5.27)

the DB equilibrium satisfies to

Dk lnBk(n)psn = ln

(
1 +

DkBk(n)psn
Bk(n)psn

)
= ln

(
1 +

Ak(n)

Bk(n)

)
(5.28)

Then we get the relation

Dk ln psn = ln
Bk(n) + Ak(n)

E+
k−1E

−
k Bk(n)

= ln

(
1 +

Ak(n)−DkBk(n)

E+
k−1E

−
k Bk(n)

)
(5.29)

that allows to compute the distribution psn in a recursive way using any path

connecting a fixed point n0 with a generic point n in the surface |n| = N .

Then we define an internal interaction energy V (n)

DkV (n) = − ln

(
1 +

Ak(n)−DkBk(n)

E+
k E

−
k−1Bk(n)

)
(5.30)

and an internal energy as

E(t) =
∑
|n|=N

V (n)pn(t) (5.31)

Therefore, when the DB holds the equilibrium distribution can be written as

a Maxwell-Boltzmann distribution

psn ∝ exp(−V (n)) (5.32)

where the V (n) is an interaction microscopic energy, according to (5.30).

In a NESS, the stationary chemical currents Jsk(n) are different from zero

and this can be associated with the existence of an external field Aextk (n),

which lead us to split the drift field into an internal and external vector field

[78, 87]

Ak(n) = Aink (n) + Aextk (n). (5.33)
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Where Aextk (n) is an external non-conservative field which generates the sta-

tionary fluxes

Aexk (n) =
Jsk(n)

psn
(5.34)

and Aink (n) is a conservative vector whose potential satisfies V in(n) = − ln psn.

Remark : The splitting is possible only if one knows the stationary distribu-

tion and the stationary fluxes.

We will present an alternative thermodynamic description from which

introduced in Chapter 4. We follow the same procedure, but here we consider

the CME written in terms of the difference operators Dk. Considering the

Gibbs entropy (see 4.1) we write the internal entropy

Sin = −
∑
|n|=N

pn(t) ln pn(t) (5.35)

taking its time derivative we obtain

Ṡin = −
∑
|n|=N

ṗn(t)(1 + ln pn(t)) (5.36)

Ṡin = −
∑
|n|=N

ṗn(t)−
∑
|n|=N

ṗn(t) ln pn(t) = −
∑
|n|=N

ṗn(t) ln pn(t)

replacing ṗn(t) by the CME (5.11) we have

Ṡin =
m∑
k=1

∑
|n|=N

D+
k Jk(n, t) ln pn(t), (5.37)

where we can use the property (5.6) and get the extend form

Ṡin =
m∑
k=1

∑
|n|=N

E+
k−1E

−
k Jk(n, t)D

+
k ln pn(t). (5.38)

We can approximate D+
k ln pn(t) as

D+
k ln pn = ln

E+
k−1E

−
k pn

pn
= ln

(
1 +

D+
k pn
pn

)
' D+

k pn
pn

(5.39)

To determine D+
k ln pn(t) we consider the definition of currents (5.15)

Jk(n)− Ak(n)pn(t) = D−k Bk(n)pn(t), (5.40)
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using (5.6) we write

D−k Bk(n)pn(t) = (E−k−1E
+
k pn(t))D−k Bk(n) +Bk(n)D−k pn(t) (5.41)

putting (5.41) in (5.40)

Jk(n)− Ak(n)pn(t) = (E−k−1E
+
k pn(t))D−k Bk(n) +Bk(n)D−k pn(t) (5.42)

dividing by: (E−k−1E
+
k pn(t))Bk(n)

E−k−1E
+
k D

+
k pn(t)

E−k−1E
+
k pn(t)

=
(Jk(n)− Ak(n)pn(t))

(E−k−1E
+
k pn(t))Bk(n)

− D−k Bk(n)

Bk(n)
(5.43)

To find
D+

k pn(t)

pn(t)
we use the relation (5.4)

E−k−1E
+
k D

+
k pn(t)

E−k−1E
+
k pn(t)

=
(Jk(n)− Ak(n)pn(t))

(E−k−1E
+
k pn(t))Bk(n)

− D−k Bk(n)

Bk(n)
(5.44)

multiplying by
E+

k−1E
−
k

E+
k−1E

−
k

D+
k pn(t)

pn(t)
=
E+
k−1E

−
k (Jk(n)− Ak(n)pn(t))

pn(t)Bk(n)
−
E+
k−1E

−
k D

−
k Bk(n)

E+
k−1E

−
k Bk(n)

(5.45)

Therefore we can write the entropy production (5.38) as

Ṡin =
m∑
k=1

∑
|n|=N

E+
k−1E

−
k Jk(n, t)

D+
k pn
pn

(5.46)

=
m∑
k=1

∑
|n|=N

E+
k−1E

−
k Jk(n, t)

(
E+
k−1E

−
k (Jk(n)− Ak(n)pn(t))

pn(t)Bk(n)
−
E+
k−1E

−
k D

+
k Bk(n)

E+
k−1E

−
k Bk(n)

)

=
m∑
k=1

∑
|n|=N

(E+
k−1E

−
k Jk(n))2

pn(t)Bk(n)

+
m∑
k=1

∑
|n|=N

E+
k−1E

−
k Jk(n, t)

(−E+
k−1E

−
k Ak(n)pn(t) + (E−k−1E

+
k pn(t))D−k Bk(n)

pn(t)Bk(n)

)

=
m∑
k=1

∑
|n|=N

(E+
k−1E

−
k Jk(n))2

pn(t)Bk(n)
+

m∑
k=1

∑
|n|=N

E+
k−1E

−
k Jk(n, t)

(
−Ak(n)−D−k Bk(n)

E+
k−1E

−
k Bk(n)

)
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multiplying by
−D+

k E
−
k−1E

+
k

D+
k E
−
k−1E

+
k

Ṡin =
m∑
k=1

∑
|n|=N

D+
k J

2
k (n)

pn(t)D−k Bk(n)
−D+

k Jk(n, t)

(
Ak(n) +D−k Bk(n)

D−k Bk(n)

)
(5.47)

Since the changes of pn and Jk are negligible for a single exchange in the

particle numbers, i.e. N � 1 , we can approximate

Ṡin =
m∑
k=1

∑
|n|=N

J2
k (n)

pn(t)D−k Bk(n)
−

m∑
k=1

∑
|n|=N

Jk(n, t)

(
Ak(n) +D−k Bk(n)

D−k Bk(n)

)
(5.48)

In the r.h.s. of eq. (5.48) one recognizes the total Entropy production Ṡ and

the Environment entropy production ṠSen according to

Ṡ =
m∑
k=1

∑
|n|=N

J2
k (n)

pn(t)D−k Bk(n)

Ṡen = −
m∑
k=1

∑
|n|=N

Jk(n, t)

(
Ak(n) +D−k Bk(n)

D−k Bk(n)

)
(5.49)

At the stationary condition

Ṡsin =
m∑
k=1

∑
|n|=N

E+
k E

−
k−1J

s
k(n)DkV

in(n) = 0 (5.50)

which means that the average ”work” of the currents due to internal interac-

tions is zero for a NESS. Therefore in a NESS it is straightforward to observe

that the total stationary Entropy production is always positive, so that to

maintain the stationary distribution the environment is exchanging energy

with the system through the work done on the system, which is dissipated.

Conversely in a DB equilibrium the total entropy production is zero and

there is no dissipated work. By using the decomposition (5.33) it is possible

to modulate the external field by changing the drift term according to

Âk(n) = Ak(n)− λAexk (n) (5.51)

where λ is a parameter: λ = 0 corresponds to the initial case and λ = 1 to the

DB equilibrium when the external field vanishes. Moreover it is possible to
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prove that the stationary distribution does not depend on λ, the stationary

condition for the modulated drift (defined in eq. (5.51)) reads

m∑
k=1

Dk

(
Âk(n)p̂sn −DkBk(n)p̂sn

)
=

m∑
k=1

Dk (Ak(n)p̂sn −DkBk(n)p̂sn)− λ
m∑
k=1

DkA
ex
k (n)p̂sn = 0

(5.52)

and it is satisfied if we set p̂sn = psn since the first term vanishes as a conse-

quence of eq. (5.26), whereas the second term becomes

λ
m∑
k=1

DkA
ex
k (n)psn = λ

m∑
k=1

DkJ
s
k(n) = 0 (5.53)

due to the definition of Aexk (n). The new stationary current vector reads

Ĵsk(n) = Jsk(n)− λAexk (n)psn (5.54)

= (1− λ)Jsk(n).

Therefore from this point of view it seems to be not convenient for a

system to create NESSs due to its energetic and entropic cost. Nevertheless

the CME models many biochemical reactions that relax towards NESSs. The

question is then to study the effect of fluxes in the transient states and, in

particular, in the relaxation process towards the stationary distribution.

5.4 Nonequilibrium fluxes the linear CME

We study the relaxation time of a linear CME in DB equilibrium and

NESS to understand the influence of the nonequilibrium fluxes in the behav-

ior of the system. For seek of simplicity we have chosen a chemical reaction

with three states, as represented in Figure 5.2, which deterministic mean

field equations are

ṅA = −πABnA − πACnA + πBAnB + πCAnC
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ṅB = −πBAnB − πBCnB + πABnA + πCBnC

ṅC = −πCAnC − πCBnC + πACnA + πBCnB (5.55)

where nA, nB and nC are the number of molecules of the species A, B and

Figure 5.2: Unimolecular chemical reaction cycle

C respectively, with the constraint nA + nB + nC = N . The CME (5.2)

associated with this process is

ṗn(t) = E+
CE
−
AπCAnCpn(t)− πACnApn(t) + E−AE

+
BπBAnBpn(t)− πABnApn(t)

E+
AE
−
BπABnApn(t)− πBAnBpn(t) + E−BE

+
CπCBnCpn(t)− πBCnBpn(t)

E+
BE
−
CπBCnBpn(t)− πCBnCpn(t) + E−CE

+
AπACnApn(t)− πCAnCpn(t)

(5.56)

The particle distribution is a multinomial distribution (5.22),

pn(t) = N !
λA(t)λB(t)λC(t)

nA!nB!nC !
(5.57)

where λA(t), λB(t), λC(t) are the solutions of the linear system

λ̇A(t) = −(πAB + πAC)λA(t) + πBAλB(t) + πCAλC(t)

λ̇B(t) = πABλA(t)− (πBA + πBC)λB(t) + πCBλC(t)

λ̇C(t) = πACλA(t) + πBCλB(t)− (πCA + πCB)λC(t) (5.58)
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with the constraint λA + λB + λC = 1. The steady state solution psn is

computed taking the limit t→∞ in the equation (5.57) and the limit values

λs can be explicitly computed

λsA ∝ πBAπCA + πBCπCA + πBAπCB

λsB ∝ πABπCA + πABπCB + πACπCB

λsC ∝ πACπBA + πABπBC + πACπBC (5.59)

In Figure 5.3 it is represented the stationary distribution of the CME (5.56),

Figure 5.3: Stationary distribution from eq.(5.57)

for N = 50 as a function of nA and nB: the maximal value corresponds to

nA = NλsA and nB = NλsB. For an explicit computation of the chemical

fluxes we reduce the systems dimensionality using nA = nx; nB = ny and

nC = N − nx − ny. Then eq. (5.56) reads

ṗnx,ny(t) = πAB(E+
xE−y − 1)nxpnx,ny + πBA(E−xE+

y − 1)nypnx,ny +

+πCA(E−x − 1)(N − nx − ny)pnx,ny + πCB(E−y − 1)(N − nx − ny)pnx,ny

+πAC(E+
x − 1)nxpnx,ny + πBC(E+

y − 1)nypnx,ny .(5.60)

We write the CME (5.60) in the form of a continuity equation (5.11) without

any constraint

ṗ(nx, ny) = −D+
x Jx(nx, ny)−D+

y Jy(nx, ny) (5.61)
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where the discrete difference operators are: D+
x = E+

x andD+
y = E+

y . Then we

identify the fluxes Jx(nx, ny) = JA(n)−JB(n) and Jy(nx, ny) = JB(n)−JC(n)

as (cfr. eq. (5.13)):

Jx(nx, ny) = −(πABE−y nx − πBAE−x ny + πACnx − πCAE−x (N − nx − ny))pnx,ny

Jy(nx, ny) = −(πBAE−x ny − πABE−y nx + πBCny − πCBE−y (N − nx − ny))pnx,ny(5.62)

Substituting the explicit form of the steady state solution psnx,ny
in (5.62), we

determine the stationary nonequilibrium fluxes Jsx(nx, ny) and Jsy(nx, ny):

Jsx(nx, ny) =

(
πBAnxny(λ

s
A)−1λsC

(N − nx − ny + 1)
− πABnxny(λ

s
B)−1λsC

(N − nx − ny + 1)
(5.63)

+ πCAnx(λ
s
A)−1λsC − πACnx

)
psnx,ny

Jsy(nx, ny) =

(
πABnxny(λ

s
B)−1λsC

(N − nx − ny + 1)
− πBAnxny(λ

s
A)−1λsC

(N − nx − ny + 1)
(5.64)

+ πCBny(λ
s
B)−1λsC − πBCny

)
psnx,ny

According to eq. (5.13), we write the nonequilibrium fluxes introducing a

drift term and a diffusion coefficient

Jx(nx, ny) = Ax(nx, ny)pnx,ny −D−xBxxp(nx − 1, ny)−D−y Bxyp(nx, ny − 1)

Jy(nx, ny) = Ay(nx, ny)pnx,ny −D−xByxp(nx − 1, ny)−D−y Byyp(nx, ny − 1)

.(5.65)

WhereD−x = E−x and D−y = E−y and the drift vector A(nx, ny) is

Ax(nx, ny) = −(πAB + πAC)nx + πBAny + πCA(N − nx − ny)

Ay(nx, ny) = πABnx − (πBA + πBC)ny + πCB(N − nx − ny) (5.66)

and the diffusion matrix B is

B =

(
πBAny + πCA(N − nx − ny + 1) −πABnx

−πBAny πABnx + πCB(N − nx − ny + 1)

)
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Then we define an external field Aex (cfr. eq. (5.34)) related to the nonequi-

librium fluxes as

Jsx(nx, ny) = Aexx (nx, ny)p
s
nx,ny

Jsy(nx, ny) = Aexy (nx, ny)p
s
nx,ny

(5.67)

The non-equilibrium fluxes are orthogonal to the gradient of probability if

the following equality holds

Js(nx + 1, ny)D
+
x p

s
nx,ny

+ Js(nx, ny + 1)D+
y p

s
nx,ny

= 0 (5.68)

To prove the previous equality, we apply the operators D+
x and D+

y to the

multinomial stationary distribution psnx,ny
according to

D+
x p

s
nx,ny

=

(
(N − nx − ny)λsA(λsC)−1

nx+ 1
− 1

)
psnx,ny

(5.69)

and

D+
y p

s
nx,ny

=

(
(N − nx − ny)λsB(λsC)−1

ny + 1
− 1

)
psnx,ny

(5.70)

Therefor, an explicit calculation of (5.68) provides

Js(nx + 1, ny)D
+
x p

s
nx,ny

+ Js(nx, ny + 1)D+
y p

s
nx,ny

=

=

(
(N − nx − ny)λsA(λsC)−1

nx+ 1
−1

)
+

(
πBAnxny(λ

s
A)−1λsC

(N − nx − ny)
−πABnxny(λ

s
B)−1λsC

(N − nx − ny)

+πCAnx(λ
s
A)−1λsC − πACnx

)
psnx,ny

+(
(N − nx − ny)λsB(λsC)−1

ny + 1
− 1

)
+

(
πABnxny(λ

s
B)−1λsC

(N − nx − ny)
− πBAnxny(λ

s
A)−1λsC

(N − nx − ny)

+πCBny(λ
s
B)−1λsC − πBCny

)
psnx,ny

= 0

where we have used the average equation (5.58). This means that in the

NESS the work of the internal field Ain (cfr. eq, (5.33)) on the chemical

fluxes is zero at any point (nx, ny) since the level curves of the stationary

distribution coincide with the field lines of the chemical fluxes.
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5.5 Results

To compute the relaxation time towards the stationary distribution we

take advantage from the fact that a multinomial distribution is completely

determined by the average values. Then we study the average dynamics,

written (5.55) in function of nx and ny

ṅx = −(πAB + πAC)nx + πBAny + πCA(N − nx − ny)

ṅy = πABnx − (πBA + πBC)ny + πCB(N − nx − ny) (5.71)

The relaxation process towards the limit values NλsA, Nλ
s
B is an exponential

whose exponents are the eigenvalues of (5.71). To study the effects of the

chemical fluxes we modulate the external field which produces the fluxes by

changing the drift term according to Âk(n) = Ak(n)−λAexk (n) (see eq.(5.51)).

In this way we change the nonequilibrium fluxes without modifying the sta-

tionary distribution (see (5.53)). From (5.55) the new nonequilibrium fluxes

reads

Ĵx(nx, ny, t) = Jx(nx, ny, t)− λAexx (nx, ny)p(nx, ny, t)

Ĵy(nx, ny, t) = Jy(nx, ny, t)− λAexy (nx, ny)p(nx, ny, t) (5.72)

It is convenient to set λ = 1 + ε, in this way ε = 0 corresponds to the DB

equilibrium and changing ε we drive the system to a NESS condition. From

(5.61) we write the following modified CME

ṗ(nx, ny, t) = −Dx(Jx(nx, ny, t)− (1 + ε)Aexx (nx, ny, t)p(nx, ny, t))

−Dy(Jy(nx, ny, t)− (1 + ε)Aexy (nx, ny, t)p(nx, ny, t)) (5.73)

where

Aexx (nx, ny) =

(
πBAnxny(λ

s
A)−1λsC

(N − nx − ny + 1)
− πABnxny(λ

s
B)−1λsC

(N − nx − ny + 1)
+ πCAnx(λ

s
A)−1λsC − πACnx

)
Aexy (nx, ny) =

(
πABnxny(λ

s
B)−1λsC

(N − nx − ny + 1)
− πBAnxny(λ

s
A)−1λsC

(N − nx − ny + 1)
+ πCBny(λ

s
B)−1λsC − πBCny

)
We remark that the external fields are not linearly dependent on nx and

ny, therefore we can not compute in an exact way the average equations. The
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solution for this problem is to apply the mean field approximation (5.21),

because this approximation gives good results when it is near the critical

point of the distribution pnx,ny(t). Consequently, we obtain

< ṅx > = −
(
πAB + πAC + πCA + (1 + ε)

∂Aexx (nx, ny)

∂nx

∣∣∣∣
n∗x

)
< nx > +

+

(
πBA − πCA − (1 + ε)

∂Aexx (nx, ny)

∂ny

∣∣∣∣
n∗y

)
< ny >

< ṅy > =

(
πAB − πCB − (1 + ε)

∂Aexy (nx, ny)

∂nx

∣∣∣∣
n∗x

)
< nx > +

− (πBA + πBC + πCB + (1 + ε)
∂Aexy (nx, ny)

∂ny

∣∣∣∣
n∗y

)
< ny > (5.74)

In order to evaluate the relaxation time, we compute the eigenvalues

αk of the system (5.74) and we define a characteristic relaxation time τ =
1

Min|Re(α1,α2)| . To prove that our choice represents the relaxation time of

the system we performed a numerical simulation, through the integration

of the system (5.73), for ε = 0.9, precisely we set the transition rates as

πAB = 1; πCA = 1.1; πBC = 1; πBA = 1; πAC = 1; πCB = 1, the total

number of molecules as N = 50 and initial condition pnx,ny(0) = 1/N2, so

we plot ||pnx,ny(t) − psnx,ny
|| in function of the relaxation time τ , fitting as

an exponential function. We determine the exponent of the function and

compare with the eigenvalues of equation (5.74) for the stationary state.

The value of the exponent of the simulation is the same of the eigenvalue,

what follow us to believe that our definition of relaxation time is correct. In

Figure 5.4 we show the plot of ||p(t)− ps|| x τ .

To performed a numerical study we set the transition rate values near

a DB condition, and specifically πAB = 1; πCA = 1.1; πBC = 1; πBA = 1;

πAC = 1; πCB = 1. Using N = 50 for the total number of molecules and

0 ≤ ε ≤ 1 we plot in Figure 5.5a the change of the relaxation time τ as a

function of ε, the numerical results show a linear dependence of the norm

of the stationary nonequilibrium fluxes (|| ~Js||) on ε as expected (see Figure

5.5b). Moreover in Figures 5.5c and 5.5d we show the dependence on ε of
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Figure 5.4: Relaxation time of a numerical simulation performed on system (5.73)

with initial condition pnx,ny(0) = 1/N2,πAB = 1; πCA = 1.1; πBC = 1; πBA = 1;

πAC = 1; πCB = 1, ε = −0.9 and N = 50. Black line: ||p(t) − ps|| from the

simulation; Gray line: Expect behavior of the relaxation time; Dotted line: limit

of precision of the simulation

the eigenvalues α.

We remark that the relaxation time τ decreases as the fluxes increases up

a constant value which denoted a bifurcation phenomenon in the eigenvalues

(see Figure 5.5c and Figure 5.5d) of the average equation (5.74). After this

critical value (ε ' 0.6799) the relaxation time is not affected by the chemical

fluxes.

5.6 Discussion of the results

In this work we have studied the dynamical role of chemical fluxes that

characterize the NESS of a chemical chain reaction. Using the correspondence

between the CME and a discrete Fokker-Planck equation we are able to show

that the chemical fluxes are linearly proportional to a non-conservative to

an ”external vector field” whose work on the system is directly related to

the entropy production rate in the NESS. As a consequence by modulating

the external field we can change the chemical fluxes without affecting the

stationary probability distribution of the chemical species. In such a way it
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(a) (b)

(c) (d)

Figure 5.5: (a) τ x ε, (b) || ~Js|| x ε (c) Re(α) x ε and (d)Im(α) x ε. The

calculation is performed using N = 50 and πAB = 1; πCA = 1.1; πBC = 1;

πBA = 1; πAC = 1; πCB = 1.
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is possible to study the effect of the fluxes on the relaxation characteristic

time of the CME in the case of NESS. We have performed explicit calculations

on a linear CME for which it is possible to compute explicitly compute the

stationary probability distribution, the chemical fluxes and the external non-

linear field. Our main result is to show that the presence of stationary fluxes

reduces the characteristic relaxation time with respect the DB condition and

it allows bifurcation phenomena for eigenvalues of the linearize dynamics

around a local maximum of he probability distribution. We conjecture that

this is a generic results that can be generalized to non-linear CME.
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Chapter 6

Energy consumption and

entropy production in a

stochastic formulation of BCM

learning

Abstract

Biochemical processes in living cells are open systems, therefore they

exchange materials with their environment and they consume chemical en-

ergy. These processes are molecular-based and for that reason the role of

fluctuations can not be ignored and the stochastic description is the most

appropriate. The chemical master equation describes in exact way the prob-

abilistic dynamics of a given discrete set of states and helps us to understand

and clarify the differences between closed and open systems. A closed system

is related to a condition of detailed balance (DB), i.e. an equilibrium state.

After a sufficiently long period, an open system will reach a non-equilibrium

steady state (NESS) that is sustained by a flux of external energy. We

demonstrate that two implementations of the BCM learning rule (BCM82)

and (BCM92) are, respectively, always in DB, and never in DB. We define

107
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a one parameter parametrization of the BCM learning rule that interpolates

between these two extremes. We compute thermodynamical quantities such

as internal energy, free energy (both Helmholtz and Gibbs) and entropy. The

entropy variation in the case of open systems (i.e. when DB does not hold)

can be divided into internal entropy production and entropy exchanged with

surroundings. We show how the entropy variation can be used to find the

optimal value (corresponding to increased robustness and stability) for the

parameter used in the BCM parametrization. Finally, we use the calculation

of the work to drive the system from an initial state to the steady state as

the parameter of the plasticity of the system.

6.1 Motivations of the work

The BCM theory [63, 64] was originally proposed to describe plasticity

processes in visual cortex as observed by Hubel and Wiesel [96]. One of

the main postulates of this theory is the existence of a critical threshold

(the sliding threshold θM) that depends from the past neuronal history in a

non-linear way. This nonlinearity is necessary to ensure stability of synaptic

weights in the LTP behavior. The main predictions of the BCM theory

have been confirmed in hippocampal slices and visual cortex and recently

in in vivo inhibitory avoidance learning experiments[97]. The extension of

this results to other brain areas, and ultimately to the whole brain, is not

confirmed but is under active study. The motivation for this research is that a

proposed biophysical mechanism for the BCM rule is based on calcium influx

through NMDA receptors and phosphorylation state of AMPA receptors and

that both receptors are widely distributed within the brain[98, 99]. This

biophysical mechanism is, at least partly shared, by the plasticity rule STDP

( Spike-timing-dependent plasticity ) that describes the synaptic functional

change on the basis of the timing of action potentials in connected neurons.

The main difference between STDP and BCM is that BCM is an average

time rule and thus not take out time (i.e. it does not work with spikes but
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with rates).

The BCM rule has been classically implemented in two ways that substan-

tially differ for the definition of the moving threshold θ, that is respectively

< c >2 and < c2 >, where <> means expectation over all input distribution.

This difference in the definition of θ leads to the possibility of deriving the

rule from an energy function and in their statistical interpretation [64, 100].

Among various approaches used, the BCM theory still lacks a stochastic im-

plementation of the synaptic weights growth, whereas the stochasticity of the

inputs has been extensively studied [64]. The needs for a stochastic version

of synaptic growth is motivated by the observation that synaptic activity de-

pends on molecules inserted in the postsynaptic membrane [98, 101, 100] such

as AMPA receptors that for a single spine can be on the order of hundreds,

and hence the fluctuations in the molecules number and synaptic strength can

be not negligible. A “natural” way to cope with this problem is the so-called

Chemical Master Equation (CME) approach [3] that realizes in an exact way

the probabilistic dynamics of a finite number of states, and recovers, in the

thermodynamic limit (N → ∞), the mean field approximation. The CME

can be viewed as a Markov process describing the temporal evolution of the

probability of a given discrete set of states [3]. Other relevant motivations

for the CME implementation of synaptic plasticity processes arise from bi-

ological and thermodynamic considerations: 1) this process requires energy

that, at a cellular level, is supplied from cells such as astrocytes, 2) the CME

approach offers the possibility of computing the thermodynamic state func-

tions of the system both when it is closed and open (i.e. whether satisfies or

not the detailed balance condition). An interesting observation is that the

two implementations of the BCM rule can satisfy or not the DB condition.

Let m be the synaptic weights and d the input signals received by the

synapses, the BCM synaptic modification rule for a single neuron [63] has

the form

ṁj = φ(c, θM)dj (6.1)

where the modification function φ(c, θM) depends on the neuron activity level
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c ∝ d ·m (it is assumed a linear proportionality between the input d and

the output c) and on a moving threshold θM , which is a super-linear function

of the cell activity history in a stationary situation θM can be related to

the time averaged value < ck > where k > 1 of a non-linear, momentum of

the neuron activity distribution [102]. The modification function φ is a non-

linear function of the postsynaptic activity c which has two zero crossings,

one at c = 0 and the other at c = θM (see fig. 6.1). When the neuron

activity is over the threshold θM than we have the long-term potentiation

[103] (LTP) phenomenon 1, whereas the long-term depression [104] (LTD)2

appears when the activity is below the threshold. In the simplest form the

function φ is a quadratic function c2 − cθM and the dynamic threshold θM

is the time-averaged < c2 > of the second moment of the neuron activity,

which can be replaced by the expectation value over the input probability

space E(c2) under the slow-learning assumption.

Figure 6.1: The BCM Synaptic Modification Rule. c denotes the output

activity of the neuron, θM is the modification threshold.

1Long-term potentiation (LTP) is a form of synaptic plasticity that fulfils many of the

criteria for a neural correlate of memory.
2Long-term depression (LTD) is an activity-dependent reduction in the efficacy of neu-

ronal synapses lasting hours or longer following a long patterned stimulus
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6.1.1 The averaged BCM rule

The BCM theory has been formulated to describe synaptic weight changes

and memory formation in cell response in visual cortex due to changes in

visual environment. It has been extensively studied theoretically and in

simulation [102] and compared to physiological results [63, 64]. The BCM

learning rule can be formulated as “averaged” equations:

ṁ(t) = (PD)Tφ(c, θ), (6.2)

where D is the matrix of inputs, P is a diagonal matrix containing the

probabilities of the different input vectors, c = m ·d is the neuronal activity,

output; m and d are the synaptic strength and the incoming signal vectors

respectively. The function φ(c, θ) = c(c − θ) is a quadratic function that

changes sign at a dynamic threshold that is a nonlinear function of some

time-averaged measure of cellular activity, which is replaced (under a slow

learning assumption) by the expectation over the environment θ = E[c2] =∑n
i=0 pi(mi · di)2 [64, 101]. The components of φ(c, θ) are given by the values

on each input vector: φi = φ(mi · di, θ).
It has been shown that a variant of this theory performs exploratory pro-

jection pursuit using a projection index that measures multi-modality [64].

This learning model allows modeling and theoretical analysis of various visual

deprivation experiments such as monocular deprivation (MD), binocular de-

privation (BD) and reversed suture (RS) [64] and is in agreement with many

experimental results on visual cortical plasticity [105, 106, 107]. Recently,

it has been shown that the consequences of this theory are consistent with

experimental results on long term potentation (LTP) and long term depres-

sion (LTD) [108, 109, 110] and phosphorylation/dephosphorylation cycle of

AMPA receptors [100, 98].

6.1.2 The bidimensional case of the BCM rule

It turns out that the bidimensional version of BCM rule, with two or-

thogonal inputs is indicative of the general case of stochastic high dimen-
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sional non orthogonal inputs. Analysis that connects both has been given in

[63, 64, 102, 99, 107]. The averaged version of the BCM learning rule, in the

bidimensional case is:

d

dt

(
nx

ny

)
= (PD)T

(
φ1

φ2

)
(6.3)

where nx and ny are the synaptic weights, P is the diagonal matrix with

the probability of the inputs p1 and p2, D is the inputs matrix (a matrix

whose rows are the input vectors d1 and d2), and the neuronal output in the

linearity region is c = m · d. The vectors m and φ = (φ1, φ2) are defined as:

m = (m1,m2) = (nx, ny) and φ = (φ(nx · d1, θ), φ(ny · d2, θ)). For the sake

of simplicity we start by considering two special input vectors as d1 = (1, 0),

and d2 = (0, 1) with equal probability of appearing: p1 = p2 = 1/2. With

these hypotheses, the equation (6.2) becomes:
ṅx =

1

2
φ(nx, θ) =

nx
2

(nx − θ)

ṅy =
1

2
φ(ny, θ) =

ny
2

(ny − θ).
(6.4)

Now we can write the system (6.4) with two definitions of the threshold

θ: θ =< c >2 and θ =< c2 >, where <> is the average over the inputs

environment. For the BCM82 (θ =< c >2):
ṅx =

nx
2

(
nx −

(nx
2

+
ny
2

)2
)

ṅy =
ny
2

(
ny −

(nx
2

+
ny
2

)2
) (6.5)

Whereas, for the BCM92 (θ =< c2 >):
ṅx =

nx
2

(
nx −

(
n2
x

2
+
n2
y

2

))
ṅy =

ny
2

(
ny −

(
n2
x

2
+
n2
y

2

)) (6.6)

6.2 BCM rule and CME

Both systems (6.5 and 6.6) can be studied by the CME because the num-

ber of synapses, as with the number of receptors (i.e. the AMPA receptors),
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can be small, and the role of fluctuations can be not negligible. On the

other hand, if these numbers increase, the CME approaches the determinis-

tic equations (mean field limit). Another motivation for the CME approach,

is that we can state conditions for the validity of the detailed balance, and

if we can compute the stationary distribution, we can also compute all the

relevant thermodynamic quantity as free energy and entropy. The CME for

the system (6.4) is:

ṗnx,ny = (Enx − 1)r(nx)
nx,ny

pnx,ny + (E−1
nx
− 1)g(nx)

nx,ny
pnx,ny (6.7)

+ (Eny − 1)r(ny)
nx,ny

pnx,ny + (E−1
ny
− 1)g(ny)

nx,ny
pnx,ny .

This CME is derived under the condition of a one-step Poisson process [3], E
and E−1 are the forward and backward step operators: Enxf(nx, ny) = f(nx+

1, ny),E−1
nx
f(nx, ny) = f(nx − 1, ny) and g

(mi)
nx,ny =

m2
i

2N
, r

(mi)
nx,ny = miθ

2N2 , i = 1, 2,

are the generation and recombination terms and N is the maximum value of

the synaptic weight (proportional to the maximum number of molecules).

As we are interested in the equilibrium properties of the probability distri-

bution, we can derive the stationary distribution. The methods for deriving

the stationary distribution are dependent on the fulfillment of the detailed

balance (DB) condition. If the DB condition holds, it is possible to find the

stationary distribution by iterating the method used for the one dimensional

CME, whereas if the DB is broken we have to take into account the correction

arising from the presence of a “nonconservative” term [100]. In any case, if

the DB does not holds, the stationary distribution can be found numerically

by computing the kernel of the transition matrix or by integrating the sys-

tem (6.8) for a sufficiently long time[3]. To verify if the DB condition holds,

we define a quantity that we call “commutator” C(nx, ny), because it is the

difference between the two possible paths (i.e. by joining the bottom left

vertex with the upper right vertex) in an unitary square. The validity of this

definition relies on the structure of the CME that does not contain diagonal

terms (i.e. there are no terms with simultaneous variations of nx and ny).



114 Nonequilibrium thermodynamics in terms of the master equation

C(nx, ny) =
g

(ny)
nx−1,ny−1 · g

(nx)
nx−1,ny

r
(ny)
nx−1,ny

· r(nx)
nx,ny

−
g

(nx)
nx−1,ny−1 · g

(ny)
nx,ny−1

r
(nx)
nx,ny−1 · r

(ny)
nx,ny

. (6.8)

If C(nx, ny) = 0, the DB condition always holds, whereas if C(nx, ny) 6= 0

the DB does not hold. If we consider the two possible implementations of

the BCM rule: θ =< c >2 and θ =< c2 >, we can observe that in the first

case the DB condition holds, while in the latter case we have DB violation

being C(nx, ny) 6= 0.

C(nx, ny) = − 8(nx − 1)2(ny − 1)2(nx − ny)
nxny (n2

x + (ny − 1)2)
(
n2
x + n2

y

) (
n2
x − 2nx + n2

y + 1
) (6.9)

It is interesting to observe that when the Commutator is not zero, this

means that the system is no longer a “closed system”, but that it will ex-

change energy with its surroundings and that it will reach a Non Equilibrium

Stationary State (NESS) by consuming energy [111, 112, 7, 100].

6.3 Parametrization of the BCM rule and the

stationary distribution

As shown in section II, the BCM learning rule can be formulated in two

way (6.5) and (6.6), based on two definitions of the moving threshold θ; as

< c2 > and < c >2 respectively. It is possible to find a parametrization

that interpolates with continuity between these two extremes by a suitable

definition of θ.

θα =< c1+α >2−α . (6.10)

With this definition of θ, the system (6.4) becomes:
ṅx =

1

2
φ(nx, θα) =

nx
2

(
nx −

(
n1+α
x

2
+
n1+α
y

2

)2−α)

ṅy =
1

2
φ(ny, θα) =

ny
2

(
ny −

(
n1+α
x

2
+
n1+α
y

2

)2−α) (6.11)
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With this parametrization we obtain the BCM82 model for α = 0, whereas,

for α = 1 we obtain the BCM92 model. This behavior is confirmed by the

analysis of the commutator

Cα(nx, ny) =
1

nxny

(
22−α(nx − 1)2(ny − 1)2N (α+1)(2−α)(nα+1

x + nα+1
y )α−2(6.12)

·1
2

(nx − 1)α+1 +
nα+1
y

2
)α−2 − 22−α(nα+1

x + (ny − 1)α+1)α−2)

)
.

With the parametrization (6.10) we write the recombination and genera-

tion terms of the CME (6.8) as


g(nx)
nx,ny

=
n2
x

2
r(nx)
nx,ny

=
nx
2

(
n1+α
x

2
+
n1+α
y

2

)2−α

,

g(ny)
nx,ny

=
n2
y

2
r(ny)
nx,ny

=
ny
2

(
n1+α
x

2
+
n1+α
y

2

)2−α

.

(6.13)

The stationary distribution, if the DB holds, is a product of two “one

dimensional” distributions computed along the nx and ny axes:

P s
nx,ny

=
nx∏
i=1

g
(nx)
i−1,ny

r
(nx)
i,ny

·
ny∏
l=1

g
(ny)
0,l−1

r
(ny)
0,l

P00 nx, ny ≥ 1. (6.14)

Where the term P00 is determined by the normalization condition:

nx,ny∑
i,l=1

Pi,l =

1. We explicitly observe that (0, 0) is an absorbing state, so all the solutions

of the CME will tend toward it. This means that the deterministic fixed

points are not stable in the stochastic sense, but merely metastable, and

that when the synaptic weights are close to their values, there is always a

small chance for a fluctuation to occur and drive the solutions to (0, 0). A

way to overcome the problem of the absorbing state is simply by removing

it, that is, by defining the transition probability to reach the state (0, 0) as

0. In this way we obtain a new stationary distribution written in terms of

P1,1

Pnx,ny =
N∏

nx=2

N∏
ny=2

g
(nx)
nx−1,ny

g
(ny)
1,ny−1

r
(nx)
nx,ny r

(ny)
1,ny

P1,1 nx, ny ≥ 2. (6.15)
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Evidently P1,1 follows the normalization condition

nx,ny∑
i,l=2

Pi,l = 1. In Figure 6.2

we plot the stationary distribution (6.15) for N = 100.

Figure 6.2: Plot of the stationary distribution obtained by (6.15) for α = 0.5

and N = 31.

6.4 Thermodynamic quantities from CME:

Once has been fixed the CME and we have obtained its stationary distri-

bution, we can compute the thermodynamic quantities such as total energy,

Gibbs and Helmholtz energy and entropy, following the results introduced in

Chapter 4. The central result is the split of entropy in (4.17) as the sum of

two terms:

dS(t)

dt
= hd − ep (6.16)

reminding that ep is the entropy produced inside the system due to sponta-

neous process and hd the entropy supplied to the system by its surroundings.

So we can explicitly write ep and hd for the BCM rule (6.8) following the

definitions (4.18) and (4.19) (see section 4.3)

ep = −
N−1∑
nx=1

N∑
ny=1

r
(nx)
nx+1,ny

pnx+1,ny − g(nx)
nx,ny

pnx,ny log
pnx,nyg

(nx)
nx,ny

pnx+1,nyr
(nx)
nx+1,ny
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−
N∑

nx=1

N−1∑
ny=1

(r
(ny)
nx,ny+1pnx,ny+1 − g(ny)

nx,ny
pnx,ny log

pnx,nyg
(ny)
nx,ny

pnx,ny+1r
(ny)
nx,ny+1

(6.17)

and

hd = −
N−1∑
nx=1

N∑
ny=1

r
(nx)
nx+1,ny

pnx+1,ny − g(nx)
nx,ny

pnx,ny log
g

(nx)
nx,ny

r
(nx)
nx+1,ny

−
N∑

nx=1

N−1∑
ny=1

(r
(ny)
nx,ny+1pnx,ny+1 − g(ny)

nx,ny
pnx,ny log

g
(ny)
nx,ny

r
(ny)
nx,ny+1

. (6.18)

The entropy variation dS(t)
dt

can be expressed in terms of the variation of

Internal Energy (U) and Free Energy (F )

dS(t)

dt
=
dU(t)

dt
− dF (t)

dt
(6.19)

Using the result (4.21) we can calculate the work to drive the system from a

initial state to the stationary (or equilibrium) state, where each value of ep

and hd represents a probability configuration for the system. We define the

work done by ep as

d(Wep)

dt
=

dF (t′)

dt′
− dF (∞)

dt′
(6.20)

Wep = lim
t→∞

∫ t

0

(ep(t
′)− ep(∞))dt′ = lim

t→∞

[ ∫ t

0

ep(t
′)dt′ − tep(∞)

]
,

the work done by hd as

d(Whd)

dt
=

dU(t′)

dt′
− dU(∞)

dt′
(6.21)

Whd = lim
t→∞

∫ t

0

(hd(t
′)− hd(∞))dt′ = lim

t→∞

[ ∫ t

0

hd(t
′)dt′ − thd(∞)

]
,

And the total work (work of entropy) is written as the difference between

Wep and Whd

WS = Wep −Whd. (6.22)
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6.4.1 Analytic calculus of Entropy

As we demonstrate in Chapter 3 we can calculate analytically the entropy

for the one dimensional BCM model, which reads

dn

dt
= n2 − n2+η η = (1 + α)(2− α)− 1 (6.23)

The corresponding CME can be written immediately and for N large has a

Gaussian distribution for which the entropy is computed analytically see eq.

(3.77)

S = − log η

2
− logN

2
+ c. (6.24)

The function η(α) is symmetric around α = 1/2 where it has a maximum.

As a consequence the entropy as a function of α has a minimum for α = 1/2.

We can also compute the relaxation time which is τ = 1/η and consequently

has also a minimum for α = 1/2 just as the entropy. As a consequence the

behavior for the entropy found for the bi-dimensional model might be corre-

lated to the loss of the detailed balance and the behavior of the NESS when α

is varied. However it cannot be excluded that the asymptotic behavior of the

fields also determines the behavior of the entropy as in the one-dimensional

case.

6.5 Results

In this section we compare the thermodynamical behavior of the parametrized

BCM rule (eq. (6.11)) for different values of α. We are interested to study

the differences between systems in DB and NESS, specifically we desire de-

termine which model is more plastic. The first step is ascertain the NESS

condition for systems with α 6= 0, as we introduced in section 6.2 the com-

mutator Cα measures the breaking or not of DB, but the violation of DB does

not completely characterize NESS. To ensure the NESS (as we enunciated

in Chapter 4), in the stationary state the system should be sustained by an

external energy input, in thermodynamics terms it reads hd = ep 6= 0.
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(a) (b)

Figure 6.3: (a) Commutator (6.13) in function of α. (b) Plot of the stationary

state of hd when α is varied from 0 to 1. The simulations are performed for

N = 31 and the initial condition pnx,ny = δnx,15δny ,15.

We calculate the commutator Cα (eq. 6.13) for 0 ≤ α ≤ 1. As we expect

only for α = 0 the system is in DB and for others values of α the DB condition

is broken. We plot the norm of the commutator in Figure (6.3a). To confirm

the NESS, we simulate the time evolution of the system (6.13) through the

numerical integration of the CME (6.8) over a time span sufficiently long to

reach the stationary distribution. Therefore, we can calculate hd (eq. (6.18))

and ep (eq. (6.17)) for 0 ≤ α ≤ 1. We verify for all values of α 6= 0 in the

stationary state hd = ep 6= 0. We plot the stationary state values of hd in

function of α in Figure 6.3b). For example, for α = 1 (BCM92) the system

presents hd = ep = 0.0013465 and for α = 0 (BCM82) we obtain hd = ep = 0.

Therefore, we can infer that the BCM82 (α = 0) reaches an equilibrium state

and all systems with α 6= 0 reaches a NESS.

With the last results we are pretty sure to study systems in DB and NESS.

Using the results for hd(t) and ep(t) we can calculate the works,Whd ,Wep

and WS, done by the system to reach the stationary state configuration

(eqs. (6.22), (6.21) and (6.22)). In Figure 6.4 we plot the work done by

BCM82 (black line) and BCM92 (red line), for which the simulations are

performed for N = 31 and the initial condition pnx,ny = δnx,31δny,31. A first

comparison between the two BCM models reveals that the work done reach

the stationary distribution is lower for BCM92, that is, for α = 1 where
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(a) (b)

(c)

Figure 6.4: Change of (a)Whd, (b)Wep and (c) WS for BCM82 (black line)

and BCM92 (red line). The simulations are performed for N = 31 and the

initial condition pnx,ny = δnx,31δny,31.

the DB is violated. We confirm this trend by plotting the value of entropy

work in the stationary state W s
S and the entropy S as a function of α (see

Figure 6.5b and 6.5a). It is possible to see that the entropy variation shows

a minimum for α ≈ 0.55.

We note that the value of these quantities is dependent on the choice

of the initial conditions. This dependence on the initial conditions is easily

explainable for the WS, because from the definition:

WS =

∫ ∞
0

dS

dt′
dt′ =

∫ ∞
0

(ep(t
′)− hd(t′))dt′ = Wep −Whd = S(∞)− S(0)

in such a way, the entropy variation depends on the initial value. If for

example we choose the initial conditions as: pnx,ny = δnx,nxδny ,ny , the initial

entropy is zero, hence Wep −Whd is simply S(∞).
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(a) (b)

Figure 6.5: (a) Plot of the entropy S in function of α. (b)Change of W s
S

when α is varied from 0 to 1. In both cases the simulations are performed

for N = 31 and the initial condition pnx,ny = δnx,15δny ,15.

It is possible to relate the minimum of the entropy variation with the

stability of the deterministic system (6.11). If we perform a linear stability

analysis of the system (6.11) we find that the eigenvalues of the Jacobian

matrix computed on the selective fixed points are both of the type (−1,−λα).

If we plot −λα as a function of α, we see a minimum for α ≈ 0.5, whereas

for α = 0 and α = 1 we have −λα = −1.

Figure 6.6: Plot of −λα for a 50 dimensional deterministic system

6.6 Discussion of the results

We propose a one parameter parametrization of the CME to study the

differences between systems in DB and NESS. Calculating the values of Cα,
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ep and hd we ascertain for α = 0 the DB holds and for α 6= 0 the system

is in a NESS. We calculate the work done by the system as α varies, our

results show that when the system is not in the detailed balance condition,

the work necessary to reach the stable state is less than that requested when

the detailed balance holds. We show also the values of stationary state of

the total entropy S and the work of entropy W s
S, which exhibit a minimum

value for α ≈ 0.55. This interesting result, lead us to perform a linear

stability analysis of the deterministic system, we calculate the eigenvalues of

the Jacobian matrix, computed on the selective fixed points. And also in this

case the system present a minimum value, α ≈ 0.5. Therefore, we believe

that the minimum value of the entropy variation associated with α ≈ 0.55

can be related with the stability of the deterministic system.

The central result is that for our parametrized system, when α 6= 0

(NESS) the work is allways less than the work for α = 0 (DB). This means

that the system requires less energy to memorize a pattern when the detailed

balance is not satisfied. Hence the system is more plastic: a part of the energy

that is requested to maintain the NESS is recovered when the system learns

and develops selectivity to input pattern. We believe that this can be an

hallmark of biological systems and that this can explain why these systems

spend a large part of their metabolic energy to maintain NESS states; this

energy is recovered during crucial developmental steps such as differentiation

and learning.
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The purpose of the present thesis was to show the biological applications

and the nonequilibrium thermodynamic consequences of the Master equation

description. Presenting four new studies in the biophysics context, divided

into two well defined parts, but connected to each other. In the first part we

investigate two nonlinear systems: the stochastic biochemical circuit and the

logistic population model. In the second part we analyze a linear chemical

chain reaction and the nonlinear BCM model.

The biochemical circuit has two stable equilibrium and the ME we asso-

ciated to exhibits a bistable stationary distribution. To the logistic equation

which has just one stable equilibrium we associated a family of ME which

show the transition between two different stationary distributions peaked at

the highest and lowest population states via a bimodal distribution which

maximizes the entropy. The linearity of the model for the chemical chain

reactions allows the exact determination of the stationary distribution and

the relaxation time due to currents which do not affect the stationary state.

For the synaptic plasticity we propose a family of deterministic equations

interpolating the BCM82 and BCM92 models. The entropy and the work

for the related ME exhibits a minimum for an intermediate member of the

family which might be choose due to a high biological effect.

In the first work we have studied a simplified stochastic version of a bio-

chemical circuit that is supposed to be involved in cell cycle control, with a

lot of implications for the onset of several diseases such as cancer. This cir-

cuit is bidimensional, but we reduce it to one dimensional obtaining a CME

I



II Conclusions

that can be studied analytically. This approximation shows the same quali-

tative features of the two-dimensional deterministic model. We also compare

the one- and two-dimensional numerical simulations, the stochastic approach

shows a different behavior than the deterministic one in two situations we

have observed. First, bistability in the stochastic system is observed also

in situations in which the corresponding deterministic system is monostable

and secondly, there are situations in which the peak for the stochastic dis-

tribution related to the highest level of expression is masked by the tail of

the distribution of the lowest-expression maximum making the ”prolifera-

tive state” appear almost as a scarcely visited metastable state. We argue

that the deterministic approach to this biochemical circuit is not capable to

characterize it completely, and the stochastic approach appears more infor-

mative: further features unique to the stochastic model could be obtained by

considering different time patterns for the molecular influxes to the system.

In the second one we have proposed a parametrization of the nonlinear

master equation associated to the logistic population model. In this way we

could study a family of master equations depending on a parameter α with

the same mean field equation, but have a different noise depending on α.

The standard version of the logistic growth corresponds to α = 0 and has

no absorbing state since r1 = 0. If we impose the same condition r1 = 0 for

any value of α then the equilibrium distribution depends on α and exhibits

interesting features. We have shown that the distribution changes from a

Gaussian peaked at the maximum population n = N for α = 0 to a power

law peaked at n = 1 to α = 1. When we increase α starting from 0 the width

of the power law occurs via a bimodal distribution. For N � 1 the Fokker-

Planck equilibrium solution provides a very accurate approximation to the

analytic equilibrium solution of the ME and for instance when N = 100

the relative error is of the order of 10−4. Near α = 0 and α = 1 the same

simple analytical expressions were obtained from the Fokker-Planck solution

and from the detailed balance condition. Even though the ME equilibrium

strongly depends on the parameter value we have shown that, keeping α
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fixed, for N large enough a Gaussian peaked at n = N with mean square

deviation σ = N1/2 is always recovered. As a consequence for N → ∞ the

distribution corresponding to the stable equilibrium of the mean field equa-

tion is always recovered. The relaxation time τ for any α < 1 reaches a finite

value proportional to 1
(1−α)

when N increases, just as the mean field equa-

tion3. The dependence of the noise on the parameter α and the population

size N is non trivial nor uniform and shows that the choice of a ME given

the macroscopic mean field equation requires additional information such as

the dependence on the population size N of the equilibrium distribution.

if in our model we make the choice r1 = α rather than r1 = 0 then the

same state n = 0 becomes absorbing except for α = 0 and the equilibrium

distribution corresponds to the total extinction since the probability of the

null state n = 0 is 1. Surprisingly the difference with the previous model is

not so sharp. Indeed for α ∼ 0 the relaxation time to equilibrium grows as

τ ∼ α−1eN which becomes so large, even for moderate values of N , that in

practice extinction is not observed, since the system remains for very long

time on a state described by a Gaussian distribution peaked at n = N . When

α approaches 1 the relaxation time grows as τ ∼ eN(1−α) and consequently

the system first relaxes to the power law peaked an n = 1 and quite rapidly

extinction occurs. This results so far obtained are general and can serve as

guide to choose the ME suitable to describe the time evolution of a finite

size population. The logistic growth gives a framework to treat biological

systems such as cell growth, cellular development and differentiation, gene

expression, synaptic plasticity and aging.

In the third work we have suggest a general framework to deal with sys-

tem with a linear CME, concentrating our attention in the modeling of the

nonequilibrium thermodynamics of a chemical chain reaction. Where we did

not use the classical implementation of the CME, choosing written it in terms

of a discretized Fokker-Planck equation, it because our aim was interpreted

3For α = 1 it increases linearly with N since the equilibrium in the mean field equation

is lost.
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the influence of the chemical fluxes, that are known to be related with the

entropy production, on the relaxation characteristic time of the CME. We

derived all thermodynamic variables written in terms of the nonequilibrium

fluxes, which are general results because are valid to system in DB and NESS.

To systems in NESS we have introduced an external vector field whose work

on the system and is directly related to the entropy production rate. This

field is responsible to the change of the nonequilibrium fluxes in the stationary

state, but in our formulation it does not change the stationary distribution,

which ensures us to study the same system in DB and NESS. Here we also

use the parametrization of the external field, in this way we have a range of

systems with the same stationary distribution. We have used a three states

linear CME to illustrate our results, for which the analytically form of the

stationary distribution is well known, in this way it is possible to compute

explicitly compute the chemical fluxes and the external nonlinear field. Our

main result is to show that the presence of stationary fluxes reduces the

characteristic relaxation time with respect the DB condition and it allows

bifurcation phenomena for eigenvalues of the linearize dynamics around a

local maximum of the probability distribution. We conjecture that this is a

generic results that can be generalized to non-linear CME.

And in the fourth work we deal with the well known theory of synaptic

plasticity BCM, for which there two main formulations: BCM82 and BCM92.

The two formulations differ principally because in the stationary state the

BCM82 is in an equilibrium state and the BCM92 is in a NESS state. Taking

as reference this two models, we propose a one parameter parametrization

that interpolates for α = 0 the BCM82 and for α = 1 the BCM92, and we

study the nonequilibrium thermodynamic behavior of the system for different

values of alpha between zero and one. We stabilized that for α 6= 0 the

system is in NESS, through the calculation of the entropy production and

rate dissipation heat that are different from zero in the stationary state. We

showed the results for the calculation of the work, done by the system from

a initial condition to the stationary state, as α varies. For all values of α 6= 0
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the work is less when the system is in NESS. A interesting result, because

to maintain the NESS the system dissipates energy. Analyzing the behavior

of the total entropy and the its work is the stationary state in function of

α we find a minimal value for α ≈ 0.5. Therefore, we believe that the

minimum value of the entropy variation associated can be related with the

stability of the deterministic system. Based on our results we believe that the

system requires less energy to memorize a pattern when the detailed balance

is not satisfied. Hence the system is more plastic: a part of the energy that

is requested to maintain the NESS is recovered when the system learns and

develops selectivity to input pattern. We believe that this can be an hallmark

of biological systems and that this can explain why these systems spend a

large part of their metabolic energy to maintain NESS states; this energy

is recovered during crucial developmental steps such as differentiation and

learning.
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profissional, agradeço ao professor Bazzani que foi um criador de dúvidas na
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le mie garotas: Angela, Entela, Claudia e Stefania per le pause che abbiamo
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