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IInnttrroodduuccttiioonn  
 

The use of multiphase motors over conventional three-phase motors gives 

a series of benefits that can be summarized as follows: possibility of dividing the 

power between multiple phases, higher reliability in case of failure of a phase, 

use of various harmonic orders of airgap magnetic field to obtain better 

performances in terms of electromagnetic torque and possibility to create multi-

motor drives by connecting several machines in series controlled by a single 

power converter [1]-[9]. These features are appreciated when high power, high 

reliability and low dc bus voltage are requested as it happens in ship propulsion, 

electrical vehicles and aerospace applications. In recent years, suitable techniques 

have been applied in order to reduce the power losses in multiphase IGBT 

inverters [10]. 

Bearingless motors are spreading because of their capability of producing 

rotor suspension force and torque avoiding the use of mechanical bearings and 

achieving in this way much higher maximum speed. There are two typologies of 

winding configurations: dual set and single set of windings. The first category 

comprises two separated groups of three-phase windings, with a difference in 

their pole pair numbers equal to one: the main one carries the ‘motor currents’ 

for driving the rotor, while the other carries the ‘levitation currents’, to suspend 

the rotor [11]. 

The windings belonging to the latter category produce torque and radial 

forces by means of injecting different current sequences to give odd and even 

harmonic orders of magnetic field, using the properties of multiphase current 

systems, which have multiple orthogonal d-q planes. One of them can be used to 
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control the torque. The additional degrees of freedom can be used to produce 

levitation forces [12]. 

The main advantages of bearingless motors with a single set of windings 

(i.e., the assets of bearingless and multiphase motors together) lead to a simpler 

construction process, better performances in control strategy and torque 

production with relatively low power losses [13]. This kind of technology is 

expected to have very large developments in the future, particularly in the design 

of high power density generators, actuators and motors of More Electric Aircraft 

(MEA), mainly for the ability of achieving higher speed in comparison to 

conventional electrical machines [14]. In addition, it can be supposed that the 

cooperation of bearingless control techniques and the adoption of magnetic 

bearing could be of  large interest in the MEA field. 

An important target in the design of electrical machines is the analysis and 

comparison of a large number of solutions, spending less time than is possible 

but also providing an accurate description of electromagnetic phenomena. The 

main problems are related to the calculation of global and local quantities like 

linkage fluxes, output torque, flux densities in various areas of the device. The 

difficulties increase especially in presence of magnetic saturation, in fact in the 

case of non-linear magnetic problems it would be necessary to provide in-depth 

analyses by using complex software based on accurate analytical methods, like 

Finite Element Analysis (FEA). Simultaneously, it would be useful to save time, 

not only in terms of reducing computing time, but mainly for the need of re-

designing the model of the machine in a CAD interface when changing some 

electrical or geometrical parameter. In order to solve this problems, some authors 

present analyses based on equivalent magnetic or lumped parameter circuit 

models [15], [16], [17]. 

In this thesis, a method for non-linear analysis and design of Surface-

Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. The 
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relevant edge consists in the possibility of defining the machine characteristics in 

a simple user interface. Then, by duplicating an elementary cell, it is possible to 

construct and analyze whatever typology of windings and ampere-turns 

distribution in a pole-pair. Furthermore, it is possible to modify the magnet 

width-to-pole pitch ratio analyzing various configurations or simulating the rotor 

movement in sinusoidal multiphase drives or in a user-defined current 

distribution. Previous papers proposed the analysis of open-slot configurations 

with prefixed structure of the motor, with given number of poles and slots, or for 

only a particular position of the rotor with respect to the stator. The performances 

of the proposed non-linear model of SPMSM have been compared with those 

obtained by FEA software in terms of linkage fluxes, co-energy, torque and 

radial force. The obtained results for a traditional three-phase machine and for a 

5-phase machine with unconventional winding distribution showed that the 

values of local and global quantities are practically coinciding, for values of the 

stator currents up to rated values. In addition, they are very similar also in the 

non-linear behavior even if very large current values are injected. 

When developing a new machine design the proposed method is useful not 

only for the reduction of computing time, but mainly for the simplicity of 

changing the values of the design variables, being the numerical inputs of the 

problem obtained by changing some critical parameters, without the need for re-

designing the model. For a given rotor position and for given stator currents, the 

output torque as well as the radial forces acting on the moving part of a 

multiphase machine can be calculated. The latter feature makes the algorithm 

particularly suitable in order to design and analyze bearingless machines. For 

these reasons, it constitutes a useful tool for the design of a bearingless 

multiphase synchronous PM machines control system. 

Another important section of this thesis concerns an analytical model for 

radial forces calculation in multiphase bearingless SPMSM. It allows to predict 
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amplitude and direction of the force, depending on the values of the torque 

current, of the levitation current and of the rotor position. It is based on the space 

vectors method, letting the analysis of the machine not only in steady-state 

conditions but also during transients. 

When designing a control system for bearingless machines, it is usual to 

consider only the interaction between the main harmonic orders of the stator and 

rotor magnetic fields. In multiphase machines, this can produce mistakes in 

determining both the module and the spatial phase of the radial force, due to the 

interactions between the higher harmonic orders. The presented algorithm allows 

to calculate these errors, taking into account all the possible interactions; by 

representing the locus of radial force vector, it allows the appropriate corrections. 

In addition, the algorithm permits to study whatever configuration of 

SPMSM machine, being parameterized as a function of the electrical and 

geometrical quantities, as the coil pitch, the width and length of the magnets, the 

rotor position, the amplitude and phase of current space vector, etc. 

The design of a control system for bearingless machines constitutes 

another contribution of this thesis. It implements the above presented analytical 

model, taking into account all the possible interactions between harmonic orders 

of the magnetic fields to produce radial force and provides in this way an 

accurate electromagnetic model of the machine.  

This latter is part of a three-dimensional mechanical model where one end 

of the motor shaft is constrained, to simulate the presence of a mechanical 

bearing, while the other is free, only supported by the radial forces developed in 

the interactions between magnetic fields, to simulate a bearingless system with 

three degrees of freedom. The complete model represents the design of the 

experimental system to be realized in the laboratory. 
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CChhaapptteerr  11  
  

  

TTWWOO--DDIIMMEENNSSIIOONNAALL  AANNAALLYYSSIISS  

OOFF  MMAAGGNNEETTIICC  FFIIEELLDD  

DDIISSTTRRIIBBUUTTIIOONNSS  IINN  TTHHEE  AAIIRRGGAAPP  

OOFF  EELLEECCTTRRIICCAALL  MMAACCHHIINNEESS  
  

  

11..11  IInnttrroodduuccttiioonn  

The aim of this chapter is the development of a method proposed in 

literature [1] to study the distributions of the magnetic vector potential, magnetic 

field and flux density in the airgap of axial flux permanent magnet electrical 

machines by applying a two-dimensional model. With respect to [1], the 

contribution of this chapter consists in the execution of the complete calculations, 

not reported in the original work, to get the solution of the problem. They were 

conducted by using the techniques of mathematical analysis applied to physical 
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and engineering problems, with particular reference to [2]. 

In the origin, the method has been applied to the design of axial flux PM 

machines, but it can be generalized to the analysis of any typology of electrical 

machine in the case of neglecting slotting effects and with the assumption of 

developing the machine linearly in correspondence of the mean airgap radius. 

 

11..22  AAnnaallyyttiiccaall  mmeetthhooddss  iinn  lliitteerraattuurree  

The works [3]-[6] represent a series of papers for a complete 2-d analysis 

of the magnetic field distribution in brushless PM radial-field machines. In [3] is 

presented an analytical method for determining the open-circuit airgap field 

distribution in the internal and external rotor typologies. The solution is given by 

the governing field equations in polar coordinates applied to the annular magnets 

and airgap regions of a multi-pole slotless motor, with an uniform radial 

magnetization in the magnets. 

In [4] the analysis is conducted to determine the armature reaction field 

produced by a 3-phase stator currents and to take into account the effect of 

winding current harmonic orders on the airgap field distribution. 

In [5], the method developed in [3], [4] is integrated with a model to 

predict the effect of stator slotting on the magnetic field distribution, using a 2-d 

permeance function which realizes a much higher accuracy than the conventional 

1-dimensional models. 

Finally, [6] presents a model to analyze the load operating conditions of the 

motor, by combining the armature reaction field component with the open-circuit 

field component produced by the magnets, studied in [3]. All the cases [3]-[6] 

were compared with the results of FE analysis, showing an excellent agreement. 

The paper [7] presents an analytical method to study magnetic fields in 

permanent-magnet brushless motors, taking into consideration the effect of stator 
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slotting, by studying the magnetic field distribution in the situations where the 

magnet passes over the slot opening. In such situations it is difficult to interpret 

the correct method for determining, with the properly accuracy, the flux density 

distribution and, consequently, the magnetic forces and cogging torque. 

In [8] the effects of slotting in a brushless dc motor (BLDCM) are 

determined by calculating the airgap permeance distribution using the Schwarz-

Christoffel transformation. The analytical calculations of no-load air-gap 

magnetic field distribution, armature field distribution, and phase electromotive 

force, are implemented. Then, a three-phase circuital model is realized for 

determining the phase current waveforms and the instantaneous magnetic field 

distribution in load conditions, during the actual operations of the drive. The 

computation of electromagnetic torque and the analysis of torque ripple complete 

the features of the algorithm. 

The paper [9] presents a method for the accurate calculation of magnetic 

field distribution in the motors with big airgap, by means of the magnetic 

potential superimposed calculation, since in the examined case the computing 

error resulting by conventional formulas can’t be neglected as happens in the 

small airgap machines. 

 In [10] a general analytical method to predict the magnetic field 

distribution in surface-mounted brushless permanent magnet machines is 

presented, considering a two-dimensional model in polar coordinates which 

solves the Laplacian equations in the airgap and magnets areas, with no 

constraints about the recoil permeability of the magnets. The analysis is 

applicable to internal/external rotor typologies, to radial/parallel magnetization of 

the magnets, to slotless/slotted motors. 
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11..33  MMaaiinn  aassssuummppttiioonnss  aanndd  ccaassee  ssttuuddyy  

In the following, the main assumptions of the case study are presented: 

I) The permeability of iron is infinite; 

II) The considered model is a slotless machine, or a slotted one with slot-

openings supposed of infinitesimal width, so that the slotting effects are 

negligible; 

III) In correspondence of the rotor and stator boundary surfaces, the magnetic 

field lines have only normal component; 

IV) The mean airgap radius is assumed infinite, so that the airgap path can be 

considered as having a linear development, ignoring curvature; 

V) Extremity effects are neglected. 

VI) The effects of the leakage fluxes are neglected. 

The Ampere-turns distributions are analyzed by means of the current sheet 

technique; the innovative aspect of the analysis, presented in [1], is the process of 

solving the electromagnetic problem depending on a generalized current 

distribution, whatever be the generating source, and then applying to the general 

solution the current-sheet related to the particular case study (ampere-turns 

distribution of the stator, equivalent distribution of the magnets, etc.). Consider 

the 2-D model presented in Fig. 1.1: 

 
Fig. 1.1 
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The lower surface, placed at 0=y , represents the rotor iron; the higher one, 

placed at 2Yy = , represents the stator iron. A generalized current sheet 

distribution, given by ( ) ( )uxsinK̂xK nn = , is placed at 1Yy =  coordinate: this 

parameter can be assumed as a variable height, dividing the airgap in two areas 

and determining different solutions of the magnetic vector potential in everyone 

of them. In this way, the current sheet ( )xKn  can be considered in one case the 

stator current distribution (in the presented example, by substituting 21 YY = ) in 

the other case the equivalent ampere-turns distribution produced by rotor 

magnets (in the presented example, by substituting mYY =1 , being this latter the 

magnet height). So, it is possible firstly to solve the problem for a generalized 

distribution and then to apply it to the particular case to represent. 
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11..44  AAnnaallyyttiiccaall  ssoolluuttiioonn  ooff  tthhee  pprroobblleemm  

Consider by assumption that the magnetic vector potential A  has the only non-

zero component zA , not dependent on z-coordinate (i.e., the analysis is carried 

out by operating on xy -planes where all the magnetic and electrical quantities 

are supposed invariant with respect to the z -axis). With these assumptions, the 

Laplace operator A2∇ can be written as: 

( )k̂y,xAA z=           (1.1) 
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The x - and y -components of flux density and magnetic field distributions can 

be determined as: 
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The equation to be solved in the domain of study (1.5), with its related boundary 

conditions (1.6), is the characteristic Laplace’s equation considered in a two-

dimensional domain: 
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Since the boundary conditions are homogeneous, it is possible to apply the 

method of separation of variables. Let us assume, therefore, that zA  is of the 

form: 
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hence, multiplying both sides by ( ) ( )[ ]yYxX1  and rewriting the second 

derivatives in a different way for brevity, we obtain: 
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By isolating in different members the terms respectively dependent on x  and y  

we obtain: 

( )
( )

( )
( )xX

xX
yY
yY xxyy

−=             (1.9) 

Note that the members of the equation are absolutely independent from each 

other, since the first one is a function of the variable x  only, the second one of 

the y  only: having to be equivalent for any value assumed by the two variables, 

it is deduced that they have to be both equal to a constant term, which we define 

as 2u , assumed positive. By further developing the calculations, two separate 

differential equations are obtained, each one as a function of a single variable: 

( )
( ) ( ) ( ) 022 =+⇒=− xXuxXu
xX
xX xx

xx
     (1.10) 



Chapter 1 
 

_________________________________________________________________ 

_________________________________________________________________ 

16 

( )
( ) ( ) ( ) 022 =−⇒= yYuyYu
yY
yY yy

yy
     (1.11) 

Are obtained from (1.10), (1.11) the respective characteristic equations and their 

solutions: 

juujpup , ±=±=⇒=+ 22
21

22 0      (1.12) 

uuquq , =±=⇒=− 2
21

22 0       (1.13) 

Recalling the general expression of the solutions associated with the 

characteristic equations (1.12), (1.13): 

( ) jux
x

jux
x eBeAxX −+=         (1.14) 

( ) uy
y

uy
y eBeAyY −+=          (1.15) 

where Ax, Bx, Ay, By, are constant terms to be evaluated using the boundary 

conditions. Recalling (1.7) is possible to write: 

( ) ( ) ( ) ( )( )uy
y

uy
y

jux
x

jux
xz eBeAeBeAyYxXy,xA −− ++==    (1.16) 

By introducing the Euler’s formulas, presented in the follows: 

( ) ( ) ( ) ( )uxsinjuxcose,uxsinjuxcose juxjux −=+= −    (1.17) 

( ) ( ) ( ) ( )uysinhuycoshe,uysinhuycoshe uyuy −=+= −    (1.18) 

and using (1.17) and (1.18) in (1.16), the general solution can be expressed in a 

trigonometric form: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]uycoshDuysinhCuxcosBuxsinAyYxXy,xAz ++==  (1.19) 

 

11..44..11  AAnnaallyyssiiss  iinn  tthhee  RReeggiioonn  11 

Assume for region 1 the following general expression for the magnetic vector 
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potential: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]uycoshBuysinhAuxcosBuxsinAyYxXy,xAz 22111 ++==  
            (1.20) 

The value of the x -component of the magnetic field in the lower boundary of the 

region 1, leads to the first boundary condition: 

( ) 001 ==yH x            (1.21) 

( ) ( ) ( )[ ] ( ) ( )[ ]uysinhBuycoshAuxcosBuxsinAu
y

Ay,xH z
x 2211

0

1

0
1

1
++

μ
=

∂
∂

μ
=

 
            (1.22) 

By applying the condition (1.21) in (1.22) and considering that the equation has 

to be verified for any value of x  and y , we obtain (1.23): 

( ) ( ) ( )[ ] 000 2211
0

1 =⇒=+
μ

== AAuxcosBuxsinAuyH x   (1.23) 

By substituting the result of (1.23) into (1.20): 

( ) ( ) ( ) ( )[ ]uxcosBuxsinAuycoshBy,xAz 1121 +=       (1.24) 

where, defining the constant terms 121 ABk =  and 122 BBk = : 

( ) ( ) ( ) ( )[ ]uxcoskuxsinkuycoshy,xAz 211 +=       (1.25) 

By substituting the result of (1.23) into (1.22): 

( ) ( ) ( ) ( )[ ]uxcoskuxsinkuysinhuy,xH x 21
0

1 +
μ

=        (1.26) 

By executing similar calculations is possible to write the Hy1 component of the 

magnetic field as: 

( ) ( ) ( ) ( )[ ]uxcoskuxsinkuycoshu
x

Ay,xH z
y 12

0

1

0
1

1
−

μ
=

∂
∂

μ
−=    (1.27) 
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11..44..22  AAnnaallyyssiiss  iinn  tthhee  RReeggiioonn  22 

Assume for region 2 the following general expression for the magnetic vector 

potential: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]uycoshDuysinhCuxcosDuxsinCyYxXy,xAz 22112 ++==  
(1.28) 

The value of the x -component of the magnetic field in the higher boundary of 

the region 2, leads to the second boundary condition: 

( ) 022 == YyH x            (1.29) 

( ) ( ) ( )[ ] ( ) ( )[ ]uysinhDuycoshCuxcosDuxsinCu
y

Ay,xH z
x 2211

0

2

0
2

1
++

μ
=

∂
∂

μ
=  

             (1.30) 

By applying the condition (1.29) in (1.30) and considering that the equation has 

to be valid for any value of x  and u , we obtain (1.31), (1.32): 

( ) ( ) ( )[ ] ( ) ( )[ ] 0222211
0

22 =++
μ

== uYsinhDuYcoshCuxcosDuxsinCuYyH x  

            (1.31) 

( ) ( ) ( )2222222 0 uYcothCDuYsinhDuYcoshC −=⇒=+    

            (1.32) 

By substituting (1.32) in (1.28): 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]21122 uYcothuycoshuysinhuxcosDuxsinCCy,xAz −+=   

            (1.33) 

where, in a similar way to what was done for the region 1, by introducing the 

constant terms 213 CCk =  and 214 CDk = , it gives: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]2432 uYcothuycoshuysinhuxcoskuxsinky,xAz −+=    

            (1.34) 
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which can be written, by explicating ( )2uYcoth , as: 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡ −
+=

2

22
432 uYsinh

uYcoshuycoshuYsinhuysinhuxcoskuxsinky,xAz  

            (1.35) 

By considering that: 

( ) ( ) ( ) ( ) ( ) ( )uysinhuYsinhuycoshuYcoshuyuYcoshyYucosh 2222 −=−=−   

            (1.36) 

The relationship (1.35) can be simplified as in (1.37): 

( ) ( ) ( )[ ] ( )
( )2

2
432 uYsinh

yYucoshuxcoskuxsinky,xAz
−

+−=     (1.37) 

and, by means of (1.38), the related components of the magnetic field in region 2 

can be calculated as in (1.39), (1.40): 

( ) ( )
x

Ay,xH,
y

Ay,xH z
y

z
x ∂

∂
μ

−=
∂
∂

μ
= 2

0
2

2

0
2

11     (1.38) 

( ) ( ) ( )[ ] ( )
( )2

2
43

0
2 uYsinh

yYusinhuxcoskuxsinkuy,xH x
−

+
μ

=     (1.39) 

( ) ( ) ( )[ ] ( )
( )2

2
43

0
2 uYsinh

yYucoshuxsinkuxcoskuy,xH y
−

−
μ

=     (1.40) 

 

11..44..33  CCoommmmoonn  bboouunnddaarryy  ccoonnddiittiioonnss 

Considering a current sheet described by means of an harmonic distribution 

given in the generic form: 

( ) ( )uxsinK̂xK nn =          (1.41) 

where nK̂  depends on the actual current distribution and has to be evaluated in 
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any particular considered case, while u  is defined as follows: 

nu
pτ
π

=            (1.42) 

The discontinuity between the x -component values of the magnetic field in the 

current sheet region, leads to the third boundary condition: 

( ) ( ) ( )xKYyHYyH nxx ==−= 1112         (1.43) 

which can be expressed by calculating (1.26) and (1.39) in correspondence of the 

particular value 1Yy = . By substituting them in (1.43) it gives: 

( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )

( )uxsinK̂

uYsinhuxcoskuxsinku
uYsinh

YYusinhuxcoskuxsinku

n=

=+
μ

−
−

+
μ 121

02

12
43

0

            (1.44) 

By collecting the common terms in (1.44): 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 012

2

12
4

0
11

2

12
3

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

+⎥
⎦

⎤
⎢
⎣

⎡ μ
−−

−

uYsinhk
uYsinh

YYusinhkuxcos

u
K̂uYsinhk

uYsinh
YYusinhkuxsin n

            (1.45) 

Note that (1.45) has to be verified for any value of u  and x , so the only 

possibility is that both the coefficients of ( )uxsin  and ( )uxcos  are equal to zero: 

( )
( ) ( ) 00

11
2

12
3 =

μ
−−

−
u
K̂uYsinhk

uYsinh
YYusinhk n      (1.46) 

( )
( ) ( ) 012

2

12
4 =−

− uYsinhk
uYsinh

YYusinhk        (1.47) 

After a few steps (1.46) and (1.47) give, respectively, the relations ( )13 kfk =  

and ( )24 kfk = : 
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( ) ( )[ ]
( )12

1102
3 YYusinhu

uYsinhukK̂uYsinhk n

−
+μ

=        (1.48) 

( ) ( )
( ) 2

12

21
4 k

YYusinh
uYsinhuYsinhk

−
=         (1.49) 

Putting (1.48) and (1.49) in (1.40): 

( ) ( ) ( )
( ) ( )

( )
( ) ( )⎥

⎦

⎤
−

−

+⎢
⎣

⎡
−

+μ
μ

−
=

uxsink
YYusinh

uYsinh

uxcos
YYusinhu
uYsinhukK̂yYucoshuy,xH n

y

2
12

1

12

110

0

2
2

 (1.50) 

The continuity between the y -components of the magnetic field in the current 

sheet region, leads to the fourth boundary condition: 

( ) ( )1112 YyHYyH yy ===          (1.51) 

By calculating (1.50) and (1.27) in 1Yy =  it respectively gives (1.52) and (1.53); 

by substituting them in (1.51), it gives (1.54): 

( ) ( ) ( )
( ) ( )

( )
( ) ( )⎥

⎦

⎤
−

−

+⎢
⎣

⎡
−

+μ
μ

−
==

uxsink
YYusinh

uYsinh

uxcos
YYusinhu
uYsinhukK̂YYucoshuYyH n

y

2
12

1

12

110

0

12
12

 (1.52) 

( ) ( ) ( ) ( )[ ]uxcoskuxsinkuYcoshuYyH y 121
0

11 −
μ

==     (1.53) 

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )[ ]uxcoskuxsinkuYcoshu

uxsink
YYusinh

uYsinhuxcos
YYusinhu
uYsinhukK̂YYucoshu n

121
0

2
12

1

12

110

0

12

−
μ

=

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

+μ
μ

−

 

            (1.54) 

By collecting common terms in (1.54): 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )uxsinkuYcoshuYYucothuYsinhuk

uxcosuYcoshukYYucothuYsinhukK̂n

⎥
⎦

⎤
⎢
⎣

⎡
μ

+
μ

−
=

=⎥
⎦

⎤
⎢
⎣

⎡
μ

+−
μ

+μ

21
00

12
12

1
0

112
0

110

 (1.55) 

As seen before, (1.55) has to be verified for any value of u  and x , so the only 

possibility is that both the coefficients of ( )uxsin  and ( )uxcos  are equal to zero. 

From (1.55) the equation (1.56): 

( ) ( ) ( ) ( ) 01
0

112
0

1
112 =

μ
+−

μ
+− uYcoshukYYucothuYsinhukYYucothK̂n  (1.56) 

which results after a few steps in (1.57): 

( )
( ) ( ) ( )1121

120
1 uYcoshYYucothuYsinh

YYucoth
u
K̂k n

+−
−μ

−=      (1.57) 

and also the equation (1.58): 

( ) ( ) ( ) 01
00

12
12 =⎥

⎦

⎤
⎢
⎣

⎡
μ

+
μ

− uYcoshuYYucothuYsinhuk        (1.58) 

which results in (1.59): 

02 =k            (1.59) 

Note that (1.57) can be simplified, by simplifying the term ( )12 YYucoth −  in the 

numerator and denominator. After a few steps, it gives: 

( )
( )2

120
1 uYsinh

YYucosh
u
K̂k n −μ

−=         (1.60) 

By substituting (1.60) in (1.48) and performing some similar calculations, a 

simplified form for 3k  can be obtained: 

( )1
0

3 uYcosh
u
K̂k nμ

=          (1.61) 
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Finally, using the result of (1.59) in (1.49), it gives: 

04 =k            (1.62) 

All the coefficients are now known; thus, is possible to determine the expression 

of magnetic vector potential and of magnetic field in the regions of the machine. 

By substituting (1.59) and (1.60) in (1.25), it immediately gives: 

( ) ( )
( ) ( ) ( )uycoshuxsin
uYsinh

YYucosh
u
K̂y,xA n

z
2

120
1

−μ
−=     (1.63) 

Similarly, by substituting (1.61) and (1.62) in (1.37): 

( ) ( )
( ) ( ) ( )yYucoshuxsin
uYsinh
uYcosh

u
K̂y,xA n

z −
μ

−= 2
2

10
2     (1.64) 

From (1.63) and (1.64) are derived the following relationships (1.65)-(1.68): 

( ) ( )
( ) ( ) ( )uysinhuxsin
uYsinh

YYucoshK̂
y

Ay,xH n
z

x
2

121

0
1

1 −
−=

∂
∂

μ
=    (1.65) 

( ) ( )
( ) ( ) ( )uycoshuxcos
uYsinh

YYucoshK̂
x

Ay,xH n
z

y
2

121

0
1

1 −
=

∂
∂

μ
−=    (1.66) 

( ) ( )
( ) ( ) ( )yYusinhuxsin
uYsinh
uYcoshK̂

y
Ay,xH n

z
x −=

∂
∂

μ
= 2

2

12

0
2

1    (1.67) 

( ) ( )
( ) ( ) ( )yYucoshuxcos
uYsinh
uYcoshK̂

x
Ay,xH n

z
y −=

∂
∂

μ
−= 2

2

12

0
2

1    (1.68) 

 

11..55  CCuurrrreenntt  sshheeeett  ddiissttrriibbuuttiioonn  ooff  tthhee  mmaaggnneettss  

As a particular example of a current sheet distribution ( )xKn , will be examined 

the equivalent current density distribution of the magnets. Each magnet is 

represented by two current pulses at its edges, assuming to flow in a tending to 
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zero thickness, having an angular width equal to mδ2 . 

( ) ( ) ( )∑∑∑
∞

=

∞

=

∞

=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ
π

=θ=
..,,n

n
..,,n p

n
..,,n

n uxsinĴxnsinĴnsinĴxJ
531531531

  (1.69) 

The function is represented by means of the Fourier harmonic series distribution, 

the coefficients of which are calculated in the following: 

( ) ( ) ( ) ( )

( ) ( )

( )[ ] ( )[ ]{ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( )[ ]{ }

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−θ
⎟
⎠
⎞

⎜
⎝
⎛ π

δ
π

=

=θ−π+θδ
π

=

=δθ−π+δθ
π

=

=θ−+θ−
π

=

=θθ
π

+θθ
π

=

=θθθ
π

=θθθ
π

=

δ+θ−π
δ−θ−π

δ+θ
δ−θ

δ+θ−π

δ−θ−π

δ+θ

δ−θ

ππ

π−

∫∫

∫∫

2
2

2
24

4

222

12

22

21

0

nn
cosnsinnsin

n
J

nnsinnsinnsin
n

J

nsinnnsinnsinnsin
n

J

ncosncosJ
n

dnsinJdnsinJ

dnsinjdnsinjĴ

mp
m

mpmpm

mmpmmp

mmp
mmp

mmp
mmp

mmp

mmp

mmp

mmp

n

  (1.70) 

Considering that n  is an odd number, the value of ( )2πncos  in (1.71) is always 

zero: 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ π

θ=⎟
⎠
⎞

⎜
⎝
⎛ π

θ+⎟
⎠
⎞

⎜
⎝
⎛ π

θ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π−θ

2222
2

nsinnsinnsinnsinncosncos
nn

cos mpmpmp
mp

            (1.71) 

By substituting the result of (1.71) in (1.70), it gives: 

( ) ( ) ( ) ( )mpmmpmn nsinnsin
n
Jnsinnsinnsin

n
JĴ θδ

π
=θ⎟

⎠
⎞

⎜
⎝
⎛ π

δ
π

=
8

2
8 2   (1.72) 

The equivalent surface current density related to the magnets is expressed by 

(1.73): 
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[ ]2

22
m/ABHJ

pmm

rem

pm

c

τδ
π

μ
=

τδ
π

=        (1.73) 

By substituting (1.73) in (1.72), is also necessary to calculate the limit as mδ  

tends to zero, considering every edge of the magnet as a current pulse: 

( ) ( )mp
m

m

pm

rem

m
n nsin

n
nsinBlimĴ θ
δ
δ

τ
π

μπ
=

→δ 2
8

0
      (1.74) 

Being: 

( ) n
n

nsinlim
m

m

m
∀=

δ
δ

→δ
1

0
         (1.75) 

It results: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ
τπ

τμ
=θ

τμ
=

p

m

pm

rem
mp

pm

rem
n nsinBnsinBĴ

2
44      (1.76) 

By substituting the relationship (1.76) in (1.69), it gives: 

( ) ( )∑
∞

=

θ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ
τπ

τμ
=

..,,n p

m

pm

rem nsinnsinBxJ
531 2

4       (1.77) 

Considering that: 

uxxnnnu
pp

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ
π

=θ⇒
τ
π

=        (1.78) 

By substituting (1.78) in (1.77), it results: 

( ) ( )∑
∞

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ
τπ

τμ
=

..,,n p

m

pm

rem uxsinnsinBxJ
531 2

4       (1.79) 

To define the function of distribution ( )xKn , is important to note that the 

magnets are constituted by a succession of current sheets, each one of 
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infinitesimal width dy , thus characterized by a linear current density given as: 

( ) ( ) [ ]m/AuxsindyĴxK nn =         (1.80) 

The expression of magnetic vector potential in the region 2, given by the magnets 

distribution (1.80) can be obtained by integrating (1.64) over the magnet 

thickness Ym: 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )yYucoshuxsin
uYsinh
uYsinh

u
Ĵ

dyyYucoshuxsin
uYsinh
uycosh

u
Ĵy,xA

mn

mY
n

z

−
μ

−=

=−
μ

−= ∫

2
2

2
0

1
0

2
2

10
2

 (1.81) 

Note that the particular form of equation (1.80), which represents in this case the 

magnets distribution, replaces the general function ( )uxsinK̂n  in the equation 

(1.64). 
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11..66  CCoonncclluussiioonn  

In this chapter a method proposed in literature was developed to study the 

distributions of the magnetic vector potential, magnetic field and flux density in 

the airgap of axial flux permanent magnet electrical machines by applying a two-

dimensional model. 

The contribution of this chapter with respect to the examined work, 

consists in the execution of the complete calculations, which are not presented in 

the original paper, to get the solution of the problem. They were conducted by 

using the techniques of mathematical analysis applied to physical and 

engineering problems. 

This method can be generalized to the analysis of any typology of 

electrical machine in the case of neglecting slotting effects and with the 

assumption of developing the machine linearly in correspondence of the mean 

airgap radius. 
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CChhaapptteerr  22  
  

  

AANN  AALLGGOORRIITTHHMM  FFOORR  NNOONN--

LLIINNEEAARR  AANNAALLYYSSIISS  OOFF  

MMUULLTTIIPPHHAASSEE  BBEEAARRIINNGGLLEESSSS  

SSUURRFFAACCEE--MMOOUUNNTTEEDD  PPMM  

SSYYNNCCHHRROONNOOUUSS  MMAACCHHIINNEESS  
  

  

22..11  IInnttrroodduuccttiioonn  

In recent years, more and more advanced technologies and an impressive 

rise in the use of electronics, both in civil as in the industrial sector, given a 

contribution to reduce the cost of the components, allowing the use of complex 

technologies which in the past had high costs and therefore of little industrial 



Chapter 2 
 

_________________________________________________________________ 

_________________________________________________________________ 

30 

interest. In the field of electrical machines this evolution led not only to the 

realization of power drives controlled by an inverter, capable of ensuring 

performance significantly better than those obtained with the previous control 

systems, but also the advent of a new type of machines with a different number 

of phases from the traditional three-phase, usually employed in generation and 

distribution of electric energy. This has reawakened the interest in the study of 

multi-phase electrical machines. 

In [1], a general modulation strategy is presented to be used in multimotor 

drives and in multiphase motor drives for improving the torque density. 

In [2] a scheme, functional to implement a space vector PWM control of a 

twelve-phase permanent magnet synchronous motor is analyzed, to reduce the 

switching losses without affecting performances. 

A rotor field oriented based on the space vector PWM (SVPWM) 

technique for a 5-phase synchronous reluctance motor is developed in [3] and 

verified using a dedicated inverter. 

In [4] the stator of an induction machine is rewound with two three-phase 

winding sets displaced from each other by 30 electrical degrees, showing that this 

winding configuration eliminates rotor copper losses and torque harmonics of 

particular orders and the sixth harmonic dominant torque ripple. 

In [5] an invertor-fed 5-phase induction motor is compared with a 

corresponding 3-phase motor, showing that the amplitude of the torque 

fluctuation is reduced to approximately one third. 

The space vector decomposition technique is presented in [6], where the 

analytical modeling and control of the machine are developed in three 2-

dimensional orthogonal subspaces which permits to decouple the variables 

related to the control of harmonic contributions. 

In [7] a novel multiphase SVPWM strategy is presented, able to synthesize 

the d-q subspace voltage vectors to accomplish the control requirements and 
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make null the resultant voltage vectors on other subspace, minimizing the 

switching losses. 

The advantages of multiphase machines are explained and discussed in [8]: 

capability of improve the torque production by injecting harmonic of currents in 

the motor, a better torque and flux adjustment in DTC control, the fault resilient 

current control of multi phase drive under loss of phases and the possibility of 

controlling multi motors through a single inverter. 

The space vector control and direct torque control (DTC) schemes are 

presented in [9], applied to the operation of a 5-phase induction motor and using 

a fully digital implementation. Experimental results show that an optimal control 

capability is obtained for both methods, further validating the theoretical 

concepts. In the last years, various techniques have been applied in order to 

reduce the power losses in multiphase IGBT inverters [10]. 

The multiphase feature results particularly suitable in bearingless 

machines, capable of producing rotor suspension force and torque avoiding the 

use of mechanical bearings and achieving in this way much higher maximum 

speed [11]. There are two typologies of winding configurations: dual set and 

single set of windings. The first category comprises two separated groups of 

three-phase windings, with a difference in their pole pair numbers equal to one: 

the main one carries the ‘motor currents’ for driving the rotor, while the other 

carries the ‘levitation currents’, to suspend the rotor [11]. 

The windings belonging to the latter category produce torque and radial 

forces by means of injecting different current sequences to give odd and even 

harmonic orders of magnetic field, using the properties of multiphase current 

systems, which have multiple orthogonal d-q planes. One of them can be used to 

control the torque, the additional degrees of freedom can be used to produce 

levitation forces [12], as will be explained in chapter 3. The main advantages of 

bearingless motors with a single set of windings (i.e. of multiphase type) consist 
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of a simpler construction process, better performances in control strategy and 

torque production with relatively low power losses [13]. This kind of technology 

is expected to have very large developments in the future, particularly in the 

design of high power density generators, actuators and motors of More Electric 

Aircraft (MEA), mainly for the ability of achieving higher speed in comparison 

to conventional electrical machines [14].  

In addition, it can be supposed that the characteristics of bearingless 

control techniques and the use of magnetic bearing could be of large interest in 

the MEA field. 

The possibility of making quick analyses, with the comparison of a large 

number of solutions, nevertheless providing an accurate calculation of 

electromagnetic quantities, represents a relevant goal in the design of electrical 

machines, by analyzing global and local quantities as output torque, magnetic 

energy and co-energy, linkage fluxes, magnetic fields and flux densities in many 

parts of the machine. The difficulties increase especially in presence of magnetic 

saturation; in order to solve these problems, the equivalent magnetic circuit 

method lets fast modifications of the geometrical and electrical parameters 

simply by varying numerical inputs and, at the same time, obtaining an high 

accuracy in calculations with respect to other software based on more in-depth 

analytical methods, as Finite Element Analysis (FEA). 

Previous papers proposed the analysis of open-slot configurations with a 

prefixed structure of the motor, with a given number of poles and slots [15], or 

by studying only particular positions of the rotor with respect to the stator 

without relative movement [16], [17]. This chapter presents an algorithm for non-

linear magnetic analysis of multiphase surface-mounted permanent-magnet 

machines with semi-closed slots. The relevant edge of the method consists in the 

possibility of defining the machine characteristics in a simple user interface. 

Then, by duplicating an elementary cell, it is possible to construct and analyze 
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whatever typology of windings and ampere-turns distribution in a pole-pair. 

Furthermore, it is possible to modify the magnet width-to-pole pitch ratio 

analyzing various configurations in order to minimize the cogging torque, or 

simulating the rotor movement in sinusoidal multiphase drives or in a user-

defined current distribution. 

Finally, the capability of radial forces calculation allows to determine the 

optimal ampere-turns distribution in the design of a bearingless control of the 

motor. The choice of using a software based on the equivalent magnetic circuit 

method allows relevant time saving for this kind of analysis with respect to a 

FEA software, not only due to the reduction of computing time, but mainly for 

the simple change of electrical and geometrical parameters (i.e. the numerical 

inputs of the problem), without the need of re-designing the model in a CAD 

interface. 
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22..22  TThhee  MMaaggnneettiicc  CCiirrccuuiitt  MMooddeell 

The basic element of the magnetic network is shown in Fig. 2.1, whose the 

related reluctances are highlighted. 

 
Fig. 2.1. The basic element of the magnetic network 

It consists of one tooth and the adjacent two semi-slots, being composed of 18 

reluctances representing sub-domains of the machine, i.e. volumes of teeth, 

sections of the airgap, of the magnets, branches of yokes, semi-slots, etc. 

Beside of considering longitudinal components, in the model were provided 

transverse components of the magnetic fluxes as, for example, in the slot area 

and in the slot-opening to take into account the leakage paths [18], in the tips of 

the tooth and in the branches of stator and rotor yokes. 

To construct the whole model of a motor, the i-th basic cell is connected to 

the previous one through four transverse reluctances: Ncv + i - 1, 2Ncv + i - 1 
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(stator and rotor yokes), 3Ncv + i - 1 (slot area), 8Ncv + i - 1 (slot-opening area). 

Furthermore, the i-th basic cell is connected to the following one through the 

elements Ncv + i, 2Ncv + i, 3Ncv + i, and 8Ncv + i. 

Considering one pole pair of the model, that comprises two gaps between the 

magnets (each one of them provides 4 additional terms), the whole network 

results in a number of reluctances, i.e. unknown terms, equal to 18Ncv + 8, being 

Ncv the number of slots per pole pair. 

 

2.2.1 Analytical Models of the Reluctances 

In this subsection some formulas and criteria used to determine the most relevant 

parameters of the magnetic circuit are described. 

 
Fig. 2.2. Configuration of the network in the case of uniform magnet 

Elements i = 1 to Ncv, i = 5Ncv+1 to 6Ncv 

To provide a more realistic representation of the flux lines crossing the airgap, 
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the total magnetic flux in a slot pitch, passing through the magnet, was divided 

into three tubes (Fig. 2.1): the one in the middle presents the tooth surface as 

cross-sectional area, depending on the mean radius Rm for the magnet zone (2.1) 

and on the mean radius Rg for the airgap zone (2.2). The related reluctances are 

respectively calculated as: 

LR
L

Ldgm

m

m
i αμ
=ℜ

1       (2.1) 

LR
g

Ldgg
i αμ
=ℜ

0

1       (2.2) 

where the meaning of the symbols is shown in Fig. 4 and in Tab. I.  

 

Elements i = 7Ncv+1 to 8Ncv, i = 9Ncv+1 to 10Ncv, elements i = 10Ncv+1 to 11Ncv, 

i = 11Ncv+1 to 12Ncv 

 

The two tubes in left and right sideways positions with respect to the tooth, 

develop their paths across the airgap in a succession of a straight line and a 

circumferential arc, closing in the tooth tips [14], [18]. The related reluctances 

are calculated as: 
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     (2.3) 

In the magnet, flux paths are developed in radial direction, using the simple 

conventional formula: 

LR
L

sapm

m

m
i αμ
=ℜ

1       (2.4) 
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Elements i = 12Ncv+1 to 14Ncv 

 

Furthermore, a description of the leakage flux in the gap between the magnets is 

provided by using transverse reluctances. These create a closed loop including 

the magnets, the airgap and the tooth tips. This situation has a not negligible 

effect on PM machines [15] and is described in the literature [19]. The reluctance 

used to describe a tooth tip is given by the series of two elements, a rectangular-

shaped one and a trapezoidal-shaped one (Fig. 2.3 a): 

 
Fig. 2.3. Reference systems for calculating the transverse reluctance:  

a) tooth tip, b) slot area. 

( ) ( ) ( ) ⎟⎟
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i h
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2
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2

1     (2.5) 

Note that the reluctances placed in the iron have a value of the permeability 

which depends on the magnetic characteristic of the material, thus characterized 

as ( )H,Biμ . 

 

Elements i = 3Ncv+1 to 4Ncv, i = 8Ncv+1 to 9Ncv 

For evaluating the leakage flux produced by the stator currents were used two 

transverse reluctances: one through the air of the slot (2.6), calculated as the 
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parallel connection of two reluctances (Fig. 2.3 b), the other across the slot 

opening (2.7): 
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0

1
μ

=ℜ       (2.7) 

 

Other elements 

The reluctances related to other elements are not reported because of their simple 

form. Note that, in general, the non-linear sub-domains have a value of 

permeability that depends on the B-H curve, as in (2.5). 

 

22..33  TThhee  NNuummeerriiccaall  SSoollvviinngg  PPrroocceessss  

The problem is described through a non-linear system of n equations (n = 

18Ncv + 8) where the unknowns are the values of the magnetic fluxes φ1, φ2,… φn 

in every sub-domain of the machine. 

Two principles of electromagnetism are used to write the equations: Hopkinson’s 

law, applied along closed paths identified in the machine, and Gauss’s law, i.e. 

conservation of the magnetic fluxes incoming in and outgoing from the nodes of 

the network (continuity equations). 

Overall, the system includes 9Ncv + 5 equations of the first typology and 

9Ncv + 3 of the second typology, with a matrix form defined as follows: 

[ ] MFA =ϕ       (2.8) 
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Matrix [A] in (2.8) can be seen as composed by some blocks depending on the 

following characterization: its coefficients aij represent magnetic reluctances in 

the rows related to Hopkinson’s law equations, whereas they have the value ±1 in 

the rows related to Gauss’ law equations, being essentially algebraic sum of 

fluxes: 

( )

818718418318

1611412251
61851821811818..          

11614112151

++++

++=±≡
++++

+++=θμℜ≡

cvcvcvcv

cvcvcvcvij

cvcvcvcvcv

cvcvcvcvxmij

N,N,N,N

,N..N,N..Nia
N,N,N,N,N

..N,N..N,N..i,a

 (2.9) 

 

The system, divided in groups of equations according to the different areas of the 

machine, is specified in detail as follows (2.10 – 2.28). Note that the index i 

varies in every group from 1 to Ncv depending on the basic cell related to the 

examined equation, except for group (2.16), where the first equation of the group 

is substituted by (2.15): 

 

Tooth to tooth across the airgap ( )cvNi to1=  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )iMicvNicvN

icvNicvNicvNicvN

icvNicvNicvNicvNicvNicvN

icvNicvNicvNicvNiiii

F=ϕℜ−

+ϕℜ+ϕℜ−
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+ϕℜ−ϕℜ−ϕℜ−ϕℜ
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++++++++

++++++

1616

661515

55141444

2211

 (2.10) 

 

Higher slot area between two teeth ( )cvcv NNi 2to1+=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )icvNMicvNicvN

icvNicvNicvNicvNicvNicvN

F +++++

++++++

=ϕℜ−

+ϕℜ+ϕℜ−ϕℜ−

1616

6633
   (2.11) 
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Tooth to tooth around the slot area ( )cvcv NNi 3to12 +=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )icvNMicvNicvNicvNicvN

icvNicvNicvNicvNicvNicvN

icvNicvNicvNicvNicvNicvN

F +++++++

++++++++

++++++++

=ϕℜ−ϕℜ−

+ϕℜ−ϕℜ−ϕℜ+

+ϕℜ−ϕℜ+ϕℜ−

21313112112

88161666

141444

  (2.12) 

 

Right tooth tip across the airgap ( )cvcv NNi 4to13 +=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 013131111

9955

=ϕℜ+ϕℜ−

+ϕℜ−ϕℜ+ϕℜ

++++

++++

icvNicvNicvNicvN

icvNicvNicvNicvNii
    (2.13) 

 

Left tooth tip across the airgap ( )cvcv NNi 5to14 +=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 012121010

7755

=ϕℜ+ϕℜ+

+ϕℜ+ϕℜ−ϕℜ−

++++

++++

icvNicvNicvNicvN

icvNicvNicvNicvNii
    (2.14) 

 

Closing equation ( )15 += cvNi  

( ) ( ) 0
1

=ϕℜ∑
=

++

cvN

i
icvNicvN  .      (2.15) 

 

Nodes (1-2-4-7-9-3-5) 

( )cvcv NNi 6to25 +=  

( ) ( ) ( ) ( ) ( ) 0171661 =ϕ−ϕ−ϕ−ϕ−ϕ ++++−+ icvNicvNicvNicvNicvN    (2.16) 
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( )cvcv NNi 7to16 +=  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0171615

1464313

=ϕ−ϕ−ϕ+

+ϕ+ϕ−ϕ+ϕ−ϕ

+++

++++−+

icvNicvNicvN

icvNicvNicvNicvNicvN
   (2.17) 

 

( )cvcv NNi 8to17 +=  

( ) ( ) ( ) ( ) 0131254 =ϕ+ϕ−ϕ−ϕ ++++ icvNicvNicvNicvN      (2.18) 

 

( )cvcv NNi 9to18 +=  

( ) ( ) 05 =ϕ−ϕ + icvNi        (2.19) 

 

( )cvcv NNi 10to19 +=  

( ) ( ) ( ) ( ) ( ) 01110212 =ϕ+ϕ+ϕ+ϕ−ϕ +++−+ icvNicvNicvNicvNi     (2.20) 

 

( )cvcv NNi 11to110 +=  

( ) ( ) ( ) ( ) 01412187 =ϕ−ϕ−ϕ+ϕ ++−++ icvNicvNicvNicvN      (2.21) 

 

( )cvcv NNi 12to111 +=  

( ) ( ) ( ) ( ) 0151398 =ϕ+ϕ−ϕ−ϕ ++++ icvNicvNicvNicvN      (2.22) 

 

Right semi-slot area ( )cvcv NNi 13to112 +=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )icvNMicvNicvNicvNicvN

icvNicvNicvNicvNicvNicvN

F +++++

++++++

=ϕℜ−ϕℜ−

+ϕℜ−ϕℜ+ϕℜ

1217171515

13136644
  (2.23) 



Chapter 2 
 

_________________________________________________________________ 

_________________________________________________________________ 

42 

Lower tooth area between two slots ( )cvcv NNi 14to113 +=  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )icvNMicvNicvNicvNicvN

icvNicvNicvNicvN

F +++++

++++

=ϕℜ−ϕℜ+

+ϕℜ−ϕℜ−

1315151414

13131212
   (2.24) 

 

Nodes (6-8)  

 

( )cvcv NNi 15to114 +=  

( ) ( ) 0107 =ϕ−ϕ ++ icvNicvN       (2.25) 

 

( )cvcv NNi 16to115 +=  

( ) ( ) 0119 =ϕ−ϕ ++ icvNicvN       (2.26) 

 

Higher left semi-slot area ( )cvcv NNi 17to116 +=  

( ) ( ) ( ) ( ) ( )icvNMicvNicvNicvNicvN F +++++ =ϕℜ+ϕℜ− 16161666    (2.27) 

 

Higher right semi-slot area ( )cvcv NNi 18to117 +=  

( ) ( ) ( ) ( ) ( )icvNMicvNicvNicvNicvN F +++++ =ϕℜ−ϕℜ 17171766     (2.28) 

The form of the remaining eight equations is described in the next sections: 

they are used for describing additional branches which are formed during the 

movement of the rotor. The known terms FM(i), i = 1 to n, represent the ampere-

turns linked by the paths related to the Hopkinson’s law equations. 

Note that the row 5Ncv+1 (14) represents the equation which makes the system 
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solvable: it can be seen as a boundary condition equation, closing the path along 

the branches of the stator yoke. 

The solving process is based on the method of Gaussian elimination, for 

reducing the matrix of coefficients to a triangular one. It is applied iteratively k-

times, being some coefficients dependent on the rotor position (aij(k) = f(θxm)), 

some other also dependent on the value of magnetic permeability of the i-th sub-

domain (aij(k) = f(μi(k), θxm)). For a given rotor position θxm the length and 

thickness for the flux tubes that change dimensions or position are recalculated. 

Starting with initial random values of ℜi(1) , i = 1 to n, the solution of the system 

in the k-th order of iteration is obtained in terms of φi(k) , i = 1 to n, by solving the 

system (2.8): it is then possible to determine the values of flux densities Bi(k) 

being known the flux tubes cross-sectional areas Si. An interpolation of the 

magnetic characteristic Hi = f(Bi) is implemented for domains occupied by non-

linear magnetic material, while a constant value of μi is used for linear domains. 

It is then possible to calculate the k-th value μi(k) by combining the actual value 

( )kiμ̂  and the previous value μi(k-1) and, for every order of iteration, re-calculating 

the magnetic permeabilities μi(k) related to non-linear domains, following the 

general criterion, to facilitate the convergence process [15]: 

( )
( )

( )ki

ki
ki H

B
ˆ =μ       (2.29) 

( ) ( ) ( )
d

ki
d

kiki ˆ −
−μμ=μ 1
1       (2.30) 

where the value of d, the damping constant, is chosen equal to 0.1. Consequently, 

the reluctances ℜi(k) = f(μi(k), θxm) are updated, leading to a further step for the 

Gauss method, until the following condition is satisfied [15]: 

( ) ( )

( )
δ≤

μ

μ−μ

−

−

1

1

ki

kiki       (2.31) 
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being δ the requested accuracy. At this step, all the magnetic quantities related to 

each sub-domain of the machine are known: permeabilities μi, magnetic field Hi, 

fluxes φi, flux densities Bi. 

 

22..44  SSiimmuullaattiinngg  tthhee  MMoovveemmeenntt  

The analysis in the presence of movement proceeds with an external loop 

that sets the rotor angular position θxm, representing the N-magnet position in a 

generic time instant, with respect to a fixed reference system. The origin of the 

reference system lies on the axis of symmetry of a chosen slot. 

 
Fig. 2.4. Configuration of the network in presence of gap between N- and S- magnet. 

By varying the value of θxm, the geometrical parameters of the flux tubes are 

modified. Consequently, the related coefficients aij(k) = f(μi(k), θxm) and the 

continuity equations in the nodes involved in changes are modified also. The 

solution process is then repeated by solving every step in the same way described 

in Section 2.3.When the gap between the magnets is comprised under a tooth, as 
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shown in Fig. 2.4, the software modifies the configuration of the magnetic 

network by adding two new branches and four new reluctances of variable cross 

section, depending on the value of θxm in a generic time instant. Consequently, 

there are four new unknowns per gap. Instead of only one flux tube, as in the 

case of uniform magnet (Fig. 2.2), in this situation the area under the tooth can be 

divided into three flux tubes related, respectively, to N-magnet portion, magnet 

gap and S-magnet portion, as shown in Fig. 2.4.The index idt assumes an integer 

value to identify the tooth that comprises the gap, so that the reluctances ℜ(idt), 

ℜ(5Ncv+ idt), ℜ(18Ncv+1), ℜ(18Ncv+3) involved in the movement, change their reference 

angles θA1 = f(θxm) and θB1 = f(θxm), that subtend the related cross-sectional area, 

according to: 

( )[ ]cvdtsapxmA i α−−α−θ=θ 11       (2.32) 

mpmspm Rs=α
      (2.33) 

( )[ ]cvdtspmxmsapcvB i α−+α−θ−α−α=θ 11       (2.34) 

The three flux tubes under the tooth are characterized by six reluctances: two of 

them also existing in the case of uniform magnet, ℜ(idt) and ℜ(5Ncv+ idt), but in the 

present case modified in the cross-sections and four additional reluctances, from 

the ℜ(18Ncv+1) to the ℜ(18Ncv+4). 

( ) ( )Li,R
L

dtxmAm

m

m
dti θθμ

=ℜ
1

1       (2.35) 

( ) ( )Li,R
g

dtxmAg
dticvN θθμ

=ℜ +
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5
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1       (2.37) 
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( ) ( )Li,R
g

dtxmBg
cvN θθμ

=ℜ +
10

318
1       (2.38) 

( ) LR
L

spmm

m
cvN αμ

=ℜ +
0

218
1       (2.39) 

( ) LR
g

spmg
cvN αμ

=ℜ +
0

418
1        (2.40) 

The cross-sectional areas in the formulas are calculated at the reference radius of 

every sub-domain. Four additional equations (2.41)-(2.44) are added to the 

system for taking into account the new unknown fluxes with respect to the case 

of uniform magnet: the Hopkinson’s law applied to N- and S-magnet, the 

continuity equations applied to nodes 7(2) and 7(3): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )118418418

21821855

+++

++++

=ϕℜ−

+ϕℜ−ϕℜ+ϕℜ

cvNMcvNcvN
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F
   (2.41) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )218418418

318318218218118118

+++

++++++

=ϕℜ+

+ϕℜ−ϕℜ+ϕℜ−

cvNMcvNcvN

cvNcvNcvNcvNcvNcvN

F
  (2.42) 

( ) ( ) 0418218 =ϕ+ϕ− ++ cvNcvN       (2.43) 

( ) ( ) 0318118 =ϕ+ϕ− ++ cvNcvN  .      (2.44) 

Obviously, other equations already comprised in the system have to be modified 

according to the variations in the magnetic circuit, as for example in the node 4, 

where the continuity equation written in the presence of gap (2.45) is compared 

with the situation of uniform magnet (2.46): 

( ) ( ) ( ) ( )

( ) ( ) 0418318

131254

=ϕ−ϕ−

+ϕ+ϕ−ϕ−ϕ

++

++++

cvNcvN

dticvNdticvNdticvNdticvN
    (2.45) 

( ) ( ) ( ) ( ) 0131254 =ϕ+ϕ−ϕ−ϕ ++++ icvNicvNicvNicvN      (2.46) 
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The same logic can be applied to the other additional equations (with indexes 

from 18Ncv + 5 to 18Ncv + 8) considering the second gap between the magnets, 

depending on the related reference angles and on a new index 2dti  which 

identifies the tooth comprising the gap, with reluctances ℜ(idt2), ℜ(5Ncv+ idt2), 

ℜ(18Ncv+ 5), ℜ(18Ncv+ 6), ℜ(18Ncv+ 7) , ℜ(18Ncv+ 8). 

 

22..55  CCoo--eenneerrggyy,,  TToorrqquuee  aanndd  RRaaddiiaall  FFoorrcceess  

One of the features of the proposed algorithm is the capability of 

determining the total magnetic co-energy of the machine in a series of different 

rotor positions: this allows calculating the electromagnetic torque acting between 

stator and rotor. In order to do this, the volumes τi and flux paths of every sub-

domain are developed in circular shape, based on the average radius of the 

related part of the machine [15], [18]. The equation used to determine the 

magnetic co-energy Wi’ of the i-th sub-domain is [20]: 

τ=′ ∫ ∫
τ

ddH)H(BW
i

H

iii
0

      (2.47) 

To evaluate (2.47), in case of non-linear sub-domains, the algorithm uses the 

numerical integration method of trapezoids by interpolating the magnetic 

characteristic of the material in order to find the couples of consequent values 

Bj+1 and Bj in m-1 steps, where m depends on the desired accuracy: 

( )
( ) ( )[ ]

i

m

j

jjjjj
NLi

HHBHB
W τ

Δ+
=′ ∑

−

=

++  
2

1

1

11       (2.48) 

In the case of linear sub-domains, the following relationship is used: 
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( ) i
i

i
Li

BW τ
μ

=′
2

2
1        (2.49) 

The electromagnetic torque T is calculated through the finite difference 

approximation of the first derivative of the total co-energy W’ obtained as 

summation of all the Wi’ [21]: 

.constfirm.constfirmrm

'W'WlimT
==

→θΔ θ∂
∂

≅
θΔ
Δ

=
0

      (2.50) 

where Δθrm is the angular rotor displacement between two different steps and the 

calculation is done by maintaining constant values of the phase currents. 

The radial component Fr of the forces was determined by applying the 

Maxwell Stress Tensor method (42) on a closed surface enveloping the frontal 

cross sections of the teeth in the stator, taking into account the normal and 

tangential components of flux density and of magnetic field acting in every tooth. 

( ) ( ) ( )n̂BHBHt̂BHn̂HBn̂BHT ttnnnt −+=⋅−⋅=
2
1

2
1 rrrrr

    (2.51) 

Integrating (2.51) on the above described surface and considering the 

discretization of the model, the contribution related to the i-th tooth is given, for 

radial components acting along the axis of the tooth (normal to the surface), as 

( ) ( )

( )2
8

2
18

0

2
9

2
7

2
5

0

2
1

2
1

icvNsapicvNsap

icvNsapicvNsapicvNdgirn

BSBS

BSBSBSF

+−+

+++

+
μ

−

+++
μ

=

   (2.52) 

and, for radial components acting perpendicularly to the axis of the tooth 

(tangential to the surface), is given as 

( ) ( )icvNicvNsapicvNicvNsapirt BBSBBSF ++−++ +
μ

= 89187
0

1    (2.53) 
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Note that, in (2.52) and (2.53), Sdg represents the frontal cross-sectional area of 

the tooth, Ssap the area related to a semi-slot opening, while the considered flux 

densities values are described in Figs. 2.2-2.4. The projections of the normal and 

tangential components on a reference system centered on the motor axis are 

finally given as 

( ) ( ) ( )( ) ( ) ( )( )idtirtidtirnixr sinFcosFF α+α=       (2.54) 

( ) ( ) ( )( ) ( ) ( )( )idtirtidtirniyr cosFsinFF α−α=       (2.55) 

where αdt(i) represents the angular position of the axis of the i-th tooth with 

respect to the x axis; by summing the terms in (2.54), (2.55) for all the teeth, it 

gives the components Fxr and Fyr of the resultant radial force applied on the rotor. 

 

22..66  RReessuullttss  aanndd  CCoommppaarriissoonn  wwiitthh  FFEEAA  SSooffttwwaarree  

The 2D FEA software “FEMM 4.2” [22] was used in order to verify the accuracy 

of the proposed analysis. Two different typologies of synchronous PM machine 

were considered, as shown in Fig. 2.5, supplied by sinusoidal drives. 

 
Fig. 2.5. The PMSM machines considered in the analysis 
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Machine A: 2-pole pairs, 3-phase, 24 slots, traditional winding (only odd mmf 

harmonic components), 1 - 6 double layer shortened pitch.  

Machine B: 1-pole pair, 5-phase, 30 slots, special winding (odd and even mmf 

harmonic components), 6 slots per phase per pole in each layer, one phase 

occupying 72° in angular space of the stator. 

In order to obtain an accurate electromagnetic analysis, about 108˙000 

nodes were used for meshing the models in FEMM. In Tab. I the main 

geometrical dimensions of the machines are given. 

 
Fig. 2.6. The B-H characteristic of the material 

The non-linear B-H curve of the magnetic material is shown in Fig. 2.6, the same 

for Machine A and for Machine B. The initial relative permeability is 4380. In 

Tab. I the main data of the two machines are presented. 

In the following the results of the comparisons are presented in graphical 

form. 
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TABLE I. MAIN DATA OF MACHINES A E B 
Param. Description A B 
Nsl number of slots 24 30 
p pole pairs of the machine 2 1 
m number of phases 3 5 
In rated phase current (Arms) 74.78 59.82 
Tn rated torque (Nm) 42.41 30.29 
g airgap width (mm) 1 1 
De stator outer diameter (mm) 210 230 
Ds stator inner diameter (mm) 120 120 
Dm mean diameter of the magnet (mm) 116 116 
Dcv_ext diameter at the bottom of the slot (mm) 170 170 
Dcv_int diameter at the top of the slot (mm) 130.2 126.3 

Dr rotor outer diameter (mm) 114  114 
Dalb rotor inner diameter (mm) 74 60 
αLdg angle underlying the tooth surface 13.1° 10.1° 
αsap semi-angle underlying the slot opening 0.95° 0.95° 
αspm angle underlying the magnet gap 4° 8° 
αcv slot pitch angle 15° 12° 
adt stator slot height (mm) 25 25 
hcl slot opening height (mm) 1 1 
L axial length of the machine (mm) 180 180 
Lm magnet width (mm) 2 2 
Ldt tooth-body width (mm) 7.5 8 
Lcl slot opening width (mm) 2 2 
Ltc slot width at the top slot radius (mm) 9.6 5.23 
Lfc slot width at the bottom slot radius (mm) 14.8 9.7 
τcv slot pitch at the inner stator radius (mm) 15.71 12.57 

 

 

22..66..11  MMaacchhiinnee  AA  

With reference to Machine A, Figs. 2.7, 2.8 show the results of the 

comparison for the same rotor position. In particular, Fig. 2.7 shows the linkage 

fluxes. As can be seen, the linkage fluxes of the three phases calculated using the 

proposed method are in very good agreement with those obtained by FEA 

analysis. 
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Fig. 2.7. Phase linkage fluxes vs stator RMS current (Machine A) 

Small discrepancies appears only for very high values of the current 

(highly saturated machine). In Fig. 2.8 the torque values (p.u.) and the magnetic 

co-energy values, calculated using the proposed method, are compared with 

those obtained by FEA. 

 
Fig. 2.8. Torque and magnetic co-energy vs stator RMS current (Machine A) 

For low values of the currents the two approaches give the same results. For 
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higher current values (non-linear behavior) some small differences appear. 

However, the torque reduction with respect to the supposed linear behavior is 

very well represented. 

 

22..66..22  MMaacchhiinnee  BB  

With reference to the 5-phase Machine B, Figs. 2.9 to 2.11 show the results 

of the comparison for the same rotor position. 

 
Fig. 2.9. Phase linkage fluxes vs stator RMS current (Machine B) 

In particular, Fig. 2.9 shows the linkage fluxes of the five phases. Also in this 

case, the results obtained using the proposed method are in very good agreement 

with those obtained by FE analysis. Fig. 2.10 shows the torque (p.u.) and the 

magnetic co-energy values of the system calculated using the proposed and the 

FEA approach. Referring to the magnetic co-energy, a very good agreement 

appears, with only small differences when the machine is highly saturated; about 

the torque, is possible to observe a very good agreement for low and medium 

(rated) current values. Some small differences appear in the higly saturated 

behavior. 
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Fig. 2.10. Torque and magnetic co-energy vs stator RMS current (Machine B) 

A further comparison has been made by supplying the five phases of Machine B 

with a balanced system of sinusoidal currents with a time-phase displacement of 

4π/5 (sequence 2). The considered winding arrangement produces an airgap 

distribution of the mmf having odd and even harmonic components. 

 
Fig. 2.11. Magnitude of the radial force vs stator RMS current (Machine B) 
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Taking the winding arrangement into account and the particular system of 

currents, it is possible to align the 4 pole harmonic component of the stator mmf 

with the magnet axis. In these conditions a resultant radial force exists acting on 

the rotor along the direction of the magnet axis [12]. Fig. 2.11 shows the 

calculated magnitude of the radial force compared with that obtained by FEA. As 

can be seen, in this case also there is a good agreement between the proposed 

method and the results of FEA. In Fig. 2.12 the x- and y-components of the radial 

force are shown. The force has been calculated for 9 values, equally spaced of 

π/16, of the phase angle of the second harmonic component of the stator mmf 

with respect to the magnet axis (y-axis in Fig. 2.12), and for 3 values of the stator 

current amplitude: the rated value, two-times and four-times the rated value. 

 
Fig. 2.12. y-component vs x-component of the radial force (Machine B) 

Also in this kind of analysis, the obtained results are very similar to those 

obtained by FEA. It is interesting to note that, for the same currents amplitude, 
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the magnitude of the radial force is not constant but changes with the phase angle 

of the mmf. This behavior is due to the presence of higher harmonic orders in the 

magnet and stator mmf distribution. 
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22..77  CCoonncclluussiioonn 

In this chapter an algorithm for the non-linear magnetic analysis of 

multiphase surface-mounted PM machines with semi-closed slots has been 

presented. 

The basic element of the geometry is duplicated allowing to build and 

analyze whatever typology of windings and ampere-turns distribution in a pair of 

poles. 

The performances of the proposed method have been compared with those 

of a well known FEA software in terms of linkage fluxes, co-energy, torque and 

radial force. The obtained results for a traditional three-phase machine and for a 

5-phase machine with unconventional winding distribution showed that the 

values of local and global quantities are practically coinciding for values of the 

stator currents up to rated values. Furthermore, they are very similar also in the 

non-linear behavior even if very large current values are injected. 

When developing a new machine design the proposed method is useful not 

only for the reduction of computing time, but mainly for the simplicity of 

changing the values of the design variables, being the numerical inputs of the 

problem obtained by changing some critical parameters, without the need for re-

designing the model in a CAD interface. It can be concluded that the proposed 

method provides an accurate description of electromagnetic phenomena taking 

magnetic saturation into account. For a given rotor position and for given stator 

currents, the output torque as well as the radial forces acting on the moving part 

of a multiphase machine can be easily and quickly calculated. 

The latter feature makes the algorithm particularly suitable in order to 

design and analyze bearingless machines. 
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AAppppeennddiixx  AA22..11  
  

TTHHEE  PPRROOGGRRAAMMMMIINNGG  CCOODDEE  

PPaarrtt  11  
In the following, the programming code of the algorithm is presented. This is the 

VBA version, since there is an advanced variant, implemented in Visual Basic 

6.0 and not reported here. Some input files are necessary to run the program: 

ordpr.txt, ordsc.txt, which describe respectively the disposition in the stator slots 

of the first and second winding layers; aM(pp).txt, which describes the position 

of the equivalent ampere-turns distribution of the magnets. The magnetic 

characteristic of the material is provided through the .xls main file and the stator 

ampere-turns distribution is created by the program with the subroutine presented 

in Appendix A2.2.  

 

AA22..11..11  TThhee  mmaaiinn  pprrooggrraamm  
 
Const pi = 3.1415927 
Const muzero As Double = 1.25664 * 10 ^ -6 
 
Public a, aI, aI_p, aIp, aIs, aM, ASP, ainiz, noti, x, x_p, y, B, Hdt, Flux_dt, deltaBH, 
normx As Variant 
Public Fluxcs, mu, mu_p, mur_dt, Rildt, Rilcs, Bcs, Hcs, changer_R, changer_C As Variant 
Public Fluxcvs, Hg_dt, Bg_dt, Aspcv, Bdt_r, Hdt_r, mu_dt_r As Variant 
Public Blam, Hlam, Flux_tdt, Flux_dsp, dFlux_f, Flux_f, Ifs As Variant 
 
Public piv_R, piv_C, mem, cv As Variant 
Public n, m, z, fault, undteeth_1, zero_ctrl As Variant 
Public pivot, a_logic, b_logic As Variant 
 
Public xprec, Bprec, diffx, Flux_tcv, Flux_tcv_ As Variant 
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Public dEnM, EnM, EnM_p, deltaEnM, Vol, Ril, Sez As Variant 
Public H As Variant 
Public Ncv, nc, Ia0, Ib0, Ic0, Hc, mu_magr, Lm, Ldt, Lcvs, Lcl, hcl, adt, acs, acr, L, 
g, havv, tollx, ta, xm, spm, dx, dx_cost, ixm_max, wm As Variant 
Public Taucvs, Taucvs_Rs, Taucvs_int, Ldg, Ldg_Rs, hbd, alfa_tcv, Ltd, mu_mag, Taup, 
Brm, xm2 As Double 
Public ind_dt, ind_dt2 As Variant 
Public ordpr, ordsc, Ifse, Ifse_p As Variant 
Public npr, nsc, nfasi, w, fi_in, Irms As Variant 
 
Public filepath As String 
Public pp, kw, st As Integer 
Public LdA_1, LdA_2, LdB_1, LdB_2, Ldsx_1, Ldsx_2, Lddx_1, Lddx_2, LdA_1_Rs, LdA_2_Rs, 
LdB_1_Rs, LdB_2_Rs As Double 
Public Fxr, Fyr, Fr_n, Fr_tsx, Fr_tdx, Fr_mod, alfa_dt, alfa_dt_deg As Variant 
Public Fxr_, Fyr_, Fr As Double 
 
Public pr01, pr02, pr03 As Double 
Public Rcv_ext, Lfc, Ltc, Rcv_int, thcv, Vol_setcv, VolH_setcv, VolL_setcv, Lcvx_med, 
Re, Rr, Rs, Ralb, alfa_cv, Lcs_med, Lcr_med, Vol_cs, Vol_cr As Double 
Public Rcv_efz, Rcv_ifz, Rcv_mfz, LcvxH, LcvxL As Double 
Public VolHcv, VolLcv As Variant 
 
'NUOVI PARAMETRI *********************************************************************** 
 Public Rm, Rme, Rg, alfa_sap, alfa_Ldg, Vol_mLdg, Vol_msap, Vol_gLdg, Vol_gsap,   
alfa_spm, th_xm, th_xm2, thA_1, thA_2, thB_1, thB_2 As Double 

 Public dthr_m, C_EM As Double 
 Public xm_Rs, xm2_Rs, spm_Rs As Double 
' ************************************************************************************** 
 
Private Sub OptionButton2_Click() 
 If OptionButton2.Value = True Then 
  MsgBox "Preparare il file ASP_TOT.txt premendo" & Chr(13) & "il pulsante nel foglio 
successivo", vbOKOnly, "SATSOLVER" 

 End If 
End Sub 
 
Public Sub Triang_Click() 
 
Range("AE5:AG65492").ClearContents 
Range("AH5").ClearContents 
Range("AI37:IV65492").ClearContents 
Range("E5:AB65492").ClearContents 
 
ReDim Blam(1 To 452), Hlam(1 To 452), Flux_tdt(13 To 15), Flux_dsp(13 To 15), dFlux_f(1 
To 3), Ifs(1 To 3) As Double 
  
'*************************************************************************************** 
'INPUT 
  
 'numero di cave per coppia polare 
 Ncv = Int(Cells(4, 4)) 
 'conduttori in cava 
 'I strato 
  npr = Cells(5, 4) 
 'II strato 
  nsc = Cells(6, 4) 
 'passo polare 
 Taup = Cells(7, 4) 
 Taup = Taup * 0.001 
 'corrente efficace 
 Irms = Cells(8, 4) 
 'campo coercitivo intrinseco del magnete (A/m) 
 Hc = Cells(9, 4) 
 'permeabilità relativa magnete 
 mu_magr = Cells(10, 4) 
 'spessore magnete 
 Lm = Cells(11, 4) 
 Lm = Lm * 0.001 
 'spessore del corpo del dente 
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 Ldt = Cells(12, 4) 
 Ldt = Ldt * 0.001 
 'apertura di cava (reale) 
 Lcl = Cells(14, 4) 
 Lcl = Lcl * 0.001 
 'altezza collarino 
 hcl = Cells(15, 4) 
 hcl = hcl * 0.001 
 'altezza dente statore 
 adt = Cells(16, 4) 
 adt = adt * 0.001 
 'spessore corona statore 
 acs = Cells(17, 4) 
 acs = acs * 0.001 
 'spessore corona rotore 
 acr = Cells(18, 4) 
 acr = acr * 0.001 
 'profondità di macchina 
 L = Cells(19, 4) 
 L = L * 0.001 
 'spessore traferro 
 g = Cells(20, 4) 
 g = g * 0.001 
 'altezza dell'avvolgimento 
 havv = Cells(21, 4) 
 havv = havv * 0.001 
 'scarto massimo ammesso fra due soluzioni successive del sistema 
 tollx = Cells(22, 4) 
 tollx = tollx * 0.01 
 'parametro adimensionale che definisce il rapporto fra 
 'la misura della parte bassa e quella dell'intero dente 
 ta = Cells(23, 4) 
 'posizione iniziale del magnete N 
 xm = Cells(24, 4) 
 xm = xm * 0.001 
 'step di sospensione del movimento (<= dx) 
 dx_cost = Cells(25, 4) 
 dx_cost = dx_cost * 0.001 
 'step di spostamento rotore 
 dx = Cells(26, 4) 
 dx = dx * 0.001 
 'numero di step nel movimento 
 ixm_max = Cells(27, 4) 
 'fase iniziale 
 fi_in = Cells(28, 4) 
 'ampiezza del magnete 
 wm = Cells(29, 4) 
 wm = wm * 0.001 
 'numero di fasi 
 nfasi = Cells(30, 4) 
  
'*************************************************************************************** 
 'INPUT CARATTERISTICA DI MAGNETIZZAZIONE 
  
  For i = 1 To 452 
   Blam(i) = Cells(4 + i, 29) 
   Hlam(i) = Cells(4 + i, 30) 
  Next i 
 
'*************************************************************************************** 
 
 'frequenza elettrica 
 f = 50 
 kw = 1 
 st = 2 
 'raggio al fondo cava 
 Rcv_ext = 0.085 
 'coppie polari 
 pp = 1 
 'larghezza cava al fondo 
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 Lfc = 0.0097 
 'larghezza cava in testa 
 Ltc = 0.00523 
  
 filepath = CStr(TextBox1.Text) 
  
 If ta <= 1 - havv / adt Then 
  MsgBox ("Valore di ta troppo basso!") 
  Exit Sub 
 End If 
  
 'angolo di cava (rad. mecc.) 
 alfa_cv = 2 * pi / pp / Ncv 
 'raggio esterno statore 
 Re = Rcv_ext + acs 
 'raggio rotore alla base del magnete 
 Rr = Rcv_ext - adt - g - Lm 
 'raggio rotore interno (raggio albero) 
 Ralb = Rr - acr 
 'raggio interno statore 
 Rs = Rcv_ext - adt 
 'raggio di cava in testa 
 Rcv_int = Rcv_ext - havv 
 'angolo corrispondente alla cava (rad.) 
 thcv = 2 * Atn((Lfc - Ltc) / 2 / havv) 
 'passo di cava statore 
 Taucvs = 2 * Taup / Ncv 
 'passo di cava al raggio interno statore 
 Taucvs_Rs = 2 * pi * Rs / pp / Ncv 
 'passo di cava al raggio di cava in testa 
 Taucvs_int = 2 * pi * Rcv_int / pp / Ncv 
 'larghezza dente al diametro di riferimento 
 Ldg = Taucvs - Lcl 
 'larghezza dente al raggio interno statore 
 Ldg_Rs = 2 * pi * Rs / pp / Ncv - Lcl 
 'larghezza cava statore in testa 
 Lcvs = Taucvs_int - Ldt 
 'spazio intermagnetico 
 spm = Taup - wm 
  
 'NUOVI PARAMETRI ********************************************************************** 
   
  'raggio medio magnete 
  Rm = Rs - g - Lm / 2 
  'raggio esterno magnete 
  Rme = Rs - g 
  'raggio medio traferro 
  Rg = Rs - g / 2 
  'angolo corrisp. alla semiapertura di cava 
  alfa_sap = Lcl / 2 / Rs 
  'angolo corrisp. alla testa del dente 
  alfa_Ldg = alfa_cv - 2 * alfa_sap 
   
 ' ************************************************************************************* 
  
 'conduttori in cava 
 nc = npr + nsc 
 'pulsazione elettrica 
 w = 2 * pi * f 
 'altezza della base del dente 
 hbd = adt - havv - hcl 
 'angolo testa di cava 
 alfa_tcv = Atn((Lcvs - Lcl) / 2 / hbd) 
 'linea di sezione testa del dente 
 Ltd = hbd / Cos(alfa_tcv) + hcl 
 'permeabilità assoluta del magnete 
 mu_mag = mu_magr * muzero 
 'permeabilità relativa del magnete 
 Brm = mu_mag * Hc 
 'posizione iniziale del magnete S 
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 xm2 = xm + spm + wm 
  
 
'*************************************************************************************** 
'CONTROLLO DELLA POSIZIONE INIZIALE DEL MAGNETE 
  'Alla variabile "undteeth_1" viene assegnato valore True 
  'se la discontinuità N-S si trova sotto un qualsiasi dente 
 
 undteeth_1 = 0 
 For i = 1 To Ncv 
  a_logic = (xm >= (Lcl / 2 + (i - 1) * Taucvs) And xm <= (Lcl / 2 + Ldg + (i - 1) * 
Taucvs)) 
  b_logic = ((xm + spm) >= (Lcl / 2 + (i - 1) * Taucvs) And (xm + spm) <= (Lcl / 2 + Ldg 

+ (i - 1) * Taucvs)) 
  If a_logic And b_logic = True Then 
   undteeth_1 = i 
   GoTo 20 
  End If 
 Next i 
  
 MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto 
l'apertura di cava", vbCritical, "SATSOLVER" 
 Exit Sub 
  
20 
  'Alla variabile "undteeth_2" viene assegnato valore True 
  'se la discontinuità S-N si trova sotto un qualsiasi dente 
 undteeth_2 = 0 
 For i = 1 To Ncv 
  c_logic = (xm2 >= (Lcl / 2 + (i - 1) * Taucvs) And xm2 <= (Lcl / 2 + Ldg + (i - 1) * 

Taucvs)) 
  d_logic = ((xm2 + spm) >= (Lcl / 2 + (i - 1) * Taucvs) And (xm2 + spm) <= (Lcl / 2 + 

Ldg + (i - 1) * Taucvs)) 
  If c_logic And d_logic = True Then 
   undteeth_2 = i 
   GoTo 30 
  End If 
 Next i 
  
MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto 
l'apertura di cava", vbCritical, "SATSOLVER" 
 Exit Sub 
  
30 
  
'*************************************************************************************** 
 
 If undteeth_1 <> 0 And undteeth_2 <> 0 Then 
  n = 18 * Ncv + 8 
 Else 
  n = 18 * Ncv 
 End If 
 
  m = Int(n + 1) 
   
  ReDim a(n, m), aI(n), aI_p(n), aIp(n), aIs(n), aM(n), ASP(ixm_max * n), ainiz(n, m), 

noti(n), x(1 To n), x_p(1 To n), y(n, m), B(n), Hdt(n), Flux_dt(1 To Ncv), deltaBH(n), 
normx(199) As Double 

  ReDim Fluxcs(n), mu(n), mu_p(n), mur_dt(n), Rildt(n), Rilcs(n), Bcs(n), Hcs(n), 
changer_R(m), changer_C(n) As Double 

  ReDim Fluxcvs(n), Hg_dt(n), Bg_dt(n), Aspcv(n), Bdt_r(n), Hdt_r(n), mu_dt_r(n) As 
Double 

  ReDim piv_R(n), piv_C(n), mem(n), cv(1 To Ncv) As Integer 
  ReDim xprec(1 To n), Bprec(1 To n), diffx(1 To n), Flux_tcv(1 To Ncv), Flux_tcv_(1 To 

Ncv) As Double 
  ReDim dEnM(1 To n), EnM(1 To n), EnM_p(1 To n), deltaEnM(1 To n), Vol(1 To n), 

VolHcv(1 To 2 * Ncv), VolLcv(1 To 2 * Ncv), Ril(1 To n), Sez(1 To n) As Double 
  ReDim H(1 To n) As Double 
  ReDim ordpr(1 To Ncv), ordsc(1 To Ncv) As Integer 
  ReDim Ifse(1 To nfasi), Ifse_p(1 To nfasi), Flux_f(1 To nfasi) As Double 
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  ReDim Fxr(1 To Ncv), Fyr(1 To Ncv), Fr_n(1 To Ncv), Fr_tsx(1 To Ncv), Fr_tdx(1 To 
Ncv), Fr_mod(1 To Ncv), alfa_dt(1 To Ncv), alfa_dt_deg(1 To Ncv) As Double 

   
 'PARAMETRI CIRCOLARI DI MACCHINA *************************************** 
   
 'CAVA 
  'NB: i raggi "fittizi" seguono i fianchi della cava, 
  '    NON convergendo al centro del motore (0,0) 
  'raggio esterno fittizio 
  Rcv_efz = Lfc / 2 / Tan(thcv / 2) 
  'raggio interno fittizio 
  Rcv_ifz = Ltc / 2 / Tan(thcv / 2) 
  'raggio medio fittizio 
  Rcv_mfz = Rcv_efz - (1 - ta) * adt 
  'volumi nella zona alta di cava (H) e bassa (L) 
  VolH_setcv = thcv * L / 2 * (Rcv_efz ^ 2 - Rcv_mfz ^ 2) 
  VolL_setcv = thcv * L / 2 * (Rcv_mfz ^ 2 - Rcv_ifz ^ 2) 
  'volume dell'area di cava tra il raggio TCV e FCV 
  Vol_setcv = thcv * L / 2 * (Rcv_efz ^ 2 - Rcv_ifz ^ 2) 
  'volume cava (escluso il collarino) 
  Vol_cv = (Lcvs + Lcl) / 2 * hbd * L + Vol_setcv 
  'larghezza di cava al raggio medio 
  Lcvx_med = thcv * Rcv_mfz 
  If Lcvx_med < 0 Then 
   MsgBox ("Aumentare ta!") 
   Stop 
  End If 
  LcvxH = thcv / 2 * (Rcv_efz + Rcv_mfz) 
  LcvxL = thcv / 2 * (Rcv_mfz + Rcv_ifz) 
  For i = 1 To 2 * Ncv 
   VolHcv(i) = VolH_setcv / 2 
   VolLcv(i) = ((Lcvs + Lcl) * (hbd - hcl) / 2 * L + VolL_setcv) / 2 
  Next i 
   
 'CORONE 
  Vol_cs = alfa_cv * L / 2 * (Re ^ 2 - Rcv_ext ^ 2) 
  Vol_cr = alfa_cv * L / 2 * (Rr ^ 2 - Ralb ^ 2) 
  Lcs_med = alfa_cv / 2 * (Re + Rcv_ext) 
  Lcr_med = alfa_cv / 2 * (Rr + Ralb) 
   
 'NUOVI PARAMETRI ********************************************************************** 
  
   'MAGNETI 
    Vol_mLdg = alfa_Ldg * L / 2 * (Rme ^ 2 - Rr ^ 2) 
    Vol_msap = alfa_sap * L / 2 * (Rme ^ 2 - Rr ^ 2) 
   'TRAFERRO 
    Vol_gLdg = alfa_Ldg * L / 2 * (Rs ^ 2 - Rme ^ 2) 
    Vol_gsap = alfa_sap * L / 2 * (Rs ^ 2 - Rme ^ 2) 
   
' ************************************************************************************** 
   
'PARAMETRI AUSILIARI (per calcolo riluttanze) ****************************************** 
    
    pr01 = (adt - havv) * L 
    pr02 = 2 * hbd * L / (Ldg - Ldt) 
    pr03 = 2 * hbd * L / (Lcvx_med - Lcl) 
  
  
'*************************************************************************************** 
  'RILUTTANZE COSTANTI 
    
   'Riluttanze MAGNETE SOTTO IL DENTE md(i) 
   For i = 1 To Ncv 
    Sez(i) = Rm * alfa_Ldg * L 
    Vol(i) = Vol_mLdg 
    Ril(i) = 1 / mu_mag * Lm / Sez(i) 
   Next i 
    
   'Riluttanze CORONA STATORICA 
   For i = Ncv + 1 To 2 * Ncv 
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    Sez(i) = acs * L 
    Vol(i) = Vol_cs 
    Ril(i) = Rnd() * 3000 
   Next i 
    
   'Riluttanze CORONA ROTORICA 
   For i = 2 * Ncv + 1 To 3 * Ncv 
    Sez(i) = acr * L 
    Vol(i) = Vol_cr 
    Ril(i) = Rnd() * 3000 
   Next i 
    
   'Riluttanze trasversali CAVE cvx(i) 
   For i = 3 * Ncv + 1 To 4 * Ncv 
    Sez(i) = (Rcv_ext - Rcv_int) * L 
    Vol(i) = Vol_cv 
    Ril(i) = 2 / muzero * 1 / pr03 * Log((adt - hcl) / havv) + 1 / muzero * Lcl / (adt - 

hcl) / L 
   Next i 
   
   'Riluttanze DENTE LOW 
   For i = 4 * Ncv + 1 To 5 * Ncv 
    Sez(i) = Ldt * L 
    Vol(i) = (adt * (ta - 1) + havv) * Ldt * L 
    Ril(i) = Rnd() * 3000 
   Next i 
   
   'Riluttanze TRAFERRO SOTTO IL DENTE gd(i) 
   For i = 5 * Ncv + 1 To 6 * Ncv 
    Sez(i) = Rg * alfa_Ldg * L 
    Vol(i) = Vol_gLdg 
    Ril(i) = 1 / muzero * g / Sez(i) 
   Next i 
      
   'Riluttanze DENTE HIGH 
   For i = 6 * Ncv + 1 To 7 * Ncv 
    Sez(i) = Ldt * L 
    Vol(i) = adt * (1 - ta) * Ldt * L 
    Ril(i) = Rnd() * 3000 
   Next i 
     
   'Riluttanze TRAFERRO SOTTO SEMICAVA SX gcs(i) 
   For i = 7 * Ncv + 1 To 8 * Ncv 
    Sez(i) = Rg * alfa_sap * L 
    Vol(i) = Vol_gsap + pi * hcl ^ 2 / 4 * L 
    Ril(i) = pi / (2 * muzero * L * Log((2 * g + pi * hcl) / 2 / g)) 
   Next i 
   
   'Riluttanze trasversali COLLARINO clx(i) 
   For i = 8 * Ncv + 1 To 9 * Ncv 
    Sez(i) = hcl * L 
    Vol(i) = hcl * Lcl * L 
    Ril(i) = 1 / muzero * Lcl / (hcl * L) 
   Next i 
   
   'Riluttanze TRAFERRO SOTTO SEMICAVA DX gcd(i) 
   For i = 9 * Ncv + 1 To 10 * Ncv 
    Sez(i) = Rg * alfa_sap * L 
    Vol(i) = Vol_gsap + pi * hcl ^ 2 / 4 * L 
    Ril(i) = pi / (2 * muzero * L * Log((2 * g + pi * hcl) / 2 / g)) 
   Next i 
   
   'Riluttanze MAGNETE SOTTO SEMICAVA SX mcs(i) 
   For i = 10 * Ncv + 1 To 11 * Ncv 
    Sez(i) = Rm * alfa_sap * L 
    Vol(i) = Vol_msap 
    Ril(i) = 1 / mu_mag * Lm / Sez(i) 
   Next i 
    
   'Riluttanze MAGNETE SOTTO SEMICAVA DX mcd(i) 
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   For i = 11 * Ncv + 1 To 12 * Ncv 
    Sez(i) = Rm * alfa_sap * L 
    Vol(i) = Vol_msap 
    Ril(i) = 1 / mu_mag * Lm / Sez(i) 
   Next i 
   
   'Riluttanze nel SEMIDENTE SX e DX 
   For i = 12 * Ncv + 1 To 14 * Ncv 
    Sez(i) = Ldg / 2 / (Ldt / 2 / (adt - havv) / L + 1 / pr02 * Log(pr01 / (pr01 - pr02 

* (Ldg - Ldt) / 2))) 
    Vol(i) = (Ldg / 2 + Ldt / 2) * hbd / 2 * L + Ldg / 2 * hcl * L 
    Ril(i) = Rnd() * 3000 
   Next i 
   
   'Riluttanze longitudinali BASSE SEMICAVE Lcvys(i), Lcvyd(i) 
   For i = 14 * Ncv + 1 To 16 * Ncv 
    Sez(i) = LcvxL / 2 * L 
    Vol(i) = VolLcv(i - 14 * Ncv) 
    Ril(i) = 2 / muzero * hcl / (Lcl * L) + 2 / muzero * (hbd - hcl) / (Ltc - Lcl) / L * 

Log(Ltc / Lcl) + 2 / muzero * (ta * adt - hbd) / (Lcvx_med - Ltc) / L * Log(Lcvx_med 
/ Ltc) 

   Next i 
     
   'Riluttanze longitudinali ALTE SEMICAVE Hcvys(i), Hcvyd(i) 
   For i = 16 * Ncv + 1 To 18 * Ncv 
    Sez(i) = LcvxH / 2 * L 
    Vol(i) = VolHcv(i - 16 * Ncv) 
    Ril(i) = 2 / muzero * adt * (1 - ta) / (Lfc - Lcvx_med) / L * Log(Lfc / Lcvx_med) 
   Next i 
   
'*************************************************************************************** 
'ARRAY DEI TERMINI NOTI 
'*************************************************************************************** 
   
   For i = 1 To n 
    aI(i) = 0 
    aM(i) = 0 
   Next i 
     
   'Lettura del file relativo al I strato dell'avvolgimento statorico 
   Open filepath & "\ordpr.txt" For Input As #5 
    For i = 1 To Ncv 
     Input #5, ordpr(i) 
    Next i 
   Close #5 
   'Lettura del file relativo al II strato dell'avvolgimento statorico 
   Open filepath & "\ordsc.txt" For Input As #6 
    For i = 1 To Ncv 
     Input #6, ordsc(i) 
    Next i 
   Close #6 
  'Lettura del file contenente le amperspire equivalenti del magnete 
   Open filepath & "\aM(pp).txt" For Input As #2 
    For i = 1 To n 
     Input #2, aM(i) 
    Next i 
   Close #2 
   
  If OptionButton2.Value = True Then 
  'Lettura del file contenente le amperspire con andamento SINUSOIDALE 
   Open filepath & "\ASP_TOT.txt" For Input As #1 
   For i = 1 To (n * ixm_max) 
    Input #1, ASP(i) 
   Next i 
   Close #1 
  Else 
  'Lettura del file contenente le amperspire COSTANTI 
   Open filepath & "\ASP_COST.txt" For Input As #8 
   For i = 1 To n 
    Input #8, aI(i) 
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   Next i 
   Close #8 
  End If 
   
 'Creazione file di output 
  Open filepath & "\PP_18Ncv_FX(1.7st).txt" For Output As #3 
   
 Call SUBR_1 
  
End Sub 
  
Public Sub SUBR_1() 
 
'Azzeramento coenergia magnetica 
  EnM_tp = 0 
  For i = 1 To n 
   EnM_p(i) = 0 
  Next i 
'Inizializzazione variabile di controllo delle soluzioni nulle 
  zero_ctrl = 0 
 
'CICLO DI POSIZIONAMENTO DEL MAGNETE 
'  NB: se le amperspire cambiano di posto nel vettore dei termini noti al variare 
'      della posizione del magnete, è necessario inserire l'input nel ciclo "ixm" 
 
For ixm = 1 To ixm_max 
 Range("AE5:AG65492").ClearContents 
  
 For i = 1 To Ncv 
  a_logic = (xm >= (Lcl / 2 + (i - 1) * Taucvs) And xm <= (Lcl / 2 + Ldg + (i - 1) * 

Taucvs)) 
  b_logic = ((xm + spm) >= (Lcl / 2 + (i - 1) * Taucvs) And (xm + spm) <= (Lcl / 2 + Ldg 

+ (i - 1) * Taucvs)) 
  If a_logic And b_logic = False Then 
   MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto 

l'apertura di cava", vbCritical, "SATSOLVER" 
   GoTo 50 
  End If 
  c_logic = (xm2 >= (Lcl / 2 + (i - 1) * Taucvs) And xm2 <= (Lcl / 2 + Ldg + (i - 1) * 

Taucvs)) 
  d_logic = ((xm2 + spm) >= (Lcl / 2 + (i - 1) * Taucvs) And (xm2 + spm) <= (Lcl / 2 + 

Ldg + (i - 1) * Taucvs)) 
  If c_logic And d_logic = False Then 
   MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto 

l'apertura di cava", vbCritical, "SATSOLVER" 
   GoTo 50 
  End If 
 Next i 
  
 'INDIVIDUAZIONE POSIZIONE MAGNETE 
 'Alle variabili ind_dt, ind_dt2 viene assegnato l'indice 
 'numerico dei denti sotto i quali si trovano i "buchi" 
 ind_dt = 0 
 ind_dt2 = 0 
  
 For i = 1 To Ncv 
  If xm >= (Lcl / 2 + (i - 1) * Taucvs) And xm <= (Lcl / 2 + Ldg + (i - 1) * Taucvs) 

Then 
   ind_dt = i 
   GoTo 120 
  End If 
 Next i 
120 
 For i = 1 To Ncv 
  If xm2 >= (Lcl / 2 + (i - 1) * Taucvs) And xm2 <= (Lcl / 2 + Ldg + (i - 1) * Taucvs) 

Then 
   ind_dt2 = i 
   GoTo 130 
  End If 
 Next i 
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130 
  
 If ind_dt = ind_dt2 Then 
  MsgBox "ATTENZIONE: ind_dt = ind_dt2 !" & Chr(13) & "CONDIZIONE IMPOSSIBILE !", 

vbCritical, "SATSOLVER" 
  GoTo 50 
 End If 
   
'*************************************************************************************** 
'PARAMETRI DIPENDENTI DALLA POSIZIONE 
   
  'PARAMETRI GEOMETRICI f(xm,ind_dt) ************************************* 
   
  LdA_1 = xm - Lcl / 2 - (ind_dt - 1) * Taucvs 
  LdA_2 = xm2 - Lcl / 2 - (ind_dt2 - 1) * Taucvs 
  LdB_1 = Taucvs - Lcl / 2 - xm - spm + (ind_dt - 1) * Taucvs 
  LdB_2 = Taucvs - Lcl / 2 - xm2 - spm + (ind_dt2 - 1) * Taucvs 
  Ldsx_1 = xm - Lcl / 2 + spm / 2 - (ind_dt - 1) * Taucvs 
  Ldsx_2 = xm2 - Lcl / 2 + spm / 2 - (ind_dt2 - 1) * Taucvs 
  Lddx_1 = Taucvs - Lcl / 2 - xm - spm / 2 + (ind_dt - 1) * Taucvs 
  Lddx_2 = Taucvs - Lcl / 2 - xm2 - spm / 2 + (ind_dt2 - 1) * Taucvs 
   
  'parametri per il calcolo della forza radiale riferiti 
  'al diametro interno di statore 
    
   xm_Rs = Rs / Rm * xm 
   xm2_Rs = Rs / Rm * xm2 
   spm_Rs = Rs / Rm * spm 
   
   LdA_1_Rs = xm_Rs - Lcl / 2 - (ind_dt - 1) * Taucvs_Rs 
   LdA_2_Rs = xm2_Rs - Lcl / 2 - (ind_dt2 - 1) * Taucvs_Rs 
   LdB_1_Rs = Taucvs_Rs - Lcl / 2 - xm_Rs - spm_Rs + (ind_dt - 1) * Taucvs_Rs 
   LdB_2_Rs = Taucvs_Rs - Lcl / 2 - xm2_Rs - spm_Rs + (ind_dt2 - 1) * Taucvs_Rs 
   
   'NUOVI PARAMETRI ******************************************************************** 
     
    'angolo corrispondente allo spazio intermagnetico 
     alfa_spm = spm / Rm 
    'angoli corrisp. alle posizioni dei magneti 
     th_xm = xm / Rm 
     th_xm2 = xm2 / Rm 
    'angoli corrisp. ai parametri variabili 
     thA_1 = th_xm - alfa_sap - (ind_dt - 1) * alfa_cv 
     thA_2 = th_xm2 - alfa_sap - (ind_dt2 - 1) * alfa_cv 
     thB_1 = alfa_cv - alfa_sap - th_xm - alfa_spm + (ind_dt - 1) * alfa_cv 
     thB_2 = alfa_cv - alfa_sap - th_xm2 - alfa_spm + (ind_dt2 - 1) * alfa_cv 
     
   ' *********************************************************************************** 
   
 '*********************************************************************** 
   
  'RICALCOLO DI RILUTTANZE, SEZIONI E VOLUMI NELLE ZONE SOGGETTE A MODIFICHE DELLA 

GEOMETRIA 
   
   If ind_dt <> 0 And ind_dt2 <> 0 Then 
 
   'DISCONTINUITA' N-S 
     
    Vol(ind_dt) = thA_1 / 2 * L * (Rme ^ 2 - Rr ^ 2) 
    Sez(ind_dt) = thA_1 * (Rme + Rr) / 2 * L 
    Ril(ind_dt) = 1 / mu_mag * Lm / Sez(ind_dt) 
     
    Vol(5 * Ncv + ind_dt) = thA_1 / 2 * L * (Rs ^ 2 - Rme ^ 2) 
    Sez(5 * Ncv + ind_dt) = thA_1 * (Rs + Rme) / 2 * L 
    Ril(5 * Ncv + ind_dt) = 1 / muzero * g / Sez(5 * Ncv + ind_dt) 
     
    Vol(18 * Ncv + 1) = thB_1 / 2 * L * (Rme ^ 2 - Rr ^ 2) 
    Sez(18 * Ncv + 1) = thB_1 * (Rme + Rr) / 2 * L 
    Ril(18 * Ncv + 1) = 1 / mu_mag * Lm / Sez(18 * Ncv + 1) 
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    Vol(18 * Ncv + 2) = alfa_spm / 2 * L * (Rme ^ 2 - Rr ^ 2) 
    Sez(18 * Ncv + 2) = alfa_spm * (Rme + Rr) / 2 * L 
    Ril(18 * Ncv + 2) = 1 / muzero * Lm / Sez(18 * Ncv + 2) 
     
    Vol(18 * Ncv + 3) = thB_1 / 2 * L * (Rs ^ 2 - Rme ^ 2) 
    Sez(18 * Ncv + 3) = thB_1 * (Rs + Rme) / 2 * L 
    Ril(18 * Ncv + 3) = 1 / muzero * g / Sez(18 * Ncv + 3) 
     
    Vol(18 * Ncv + 4) = alfa_spm / 2 * L * (Rs ^ 2 - Rme ^ 2) 
    Sez(18 * Ncv + 4) = alfa_spm * (Rs + Rme) / 2 * L 
    Ril(18 * Ncv + 4) = 1 / muzero * g / Sez(18 * Ncv + 4) 
    
     
   'DISCONTINUITA' S-N 
     
    Vol(ind_dt2) = thA_2 / 2 * L * (Rme ^ 2 - Rr ^ 2) 
    Sez(ind_dt2) = thA_2 * (Rme + Rr) / 2 * L 
    Ril(ind_dt2) = 1 / mu_mag * Lm / Sez(ind_dt2) 
     
    Vol(5 * Ncv + ind_dt2) = thA_2 / 2 * L * (Rs ^ 2 - Rme ^ 2) 
    Sez(5 * Ncv + ind_dt2) = thA_2 * (Rs + Rme) / 2 * L 
    Ril(5 * Ncv + ind_dt2) = 1 / muzero * g / Sez(5 * Ncv + ind_dt2) 
     
    Vol(18 * Ncv + 5) = thB_2 / 2 * L * (Rme ^ 2 - Rr ^ 2) 
    Sez(18 * Ncv + 5) = thB_2 * (Rme + Rr) / 2 * L 
    Ril(18 * Ncv + 5) = 1 / mu_mag * Lm / Sez(18 * Ncv + 5) 
     
    Vol(18 * Ncv + 6) = alfa_spm / 2 * L * (Rme ^ 2 - Rr ^ 2) 
    Sez(18 * Ncv + 6) = alfa_spm * (Rme + Rr) / 2 * L 
    Ril(18 * Ncv + 6) = 1 / muzero * Lm / Sez(18 * Ncv + 6) 
     
    Vol(18 * Ncv + 7) = thB_2 / 2 * L * (Rs ^ 2 - Rme ^ 2) 
    Sez(18 * Ncv + 7) = thB_2 * (Rs + Rme) / 2 * L 
    Ril(18 * Ncv + 7) = 1 / muzero * g / Sez(18 * Ncv + 7) 
     
    Vol(18 * Ncv + 8) = alfa_spm / 2 * L * (Rs ^ 2 - Rme ^ 2) 
    Sez(18 * Ncv + 8) = alfa_spm * (Rs + Rme) / 2 * L 
    Ril(18 * Ncv + 8) = 1 / muzero * g / Sez(18 * Ncv + 8) 
     
   End If 
     
  If OptionButton2.Value = True Then 
   If Int(ixm / 2) <> ixm / 2 Then         
   'step di spostamento DISPARI: le correnti vengono calcolate 
   'secondo l'esatto valore istantaneo correlato alla posizione 

t = pi * xm / w / Taup                 
    'Memorizzazione del valore delle correnti allo step precedente 
    For i = 1 To nfasi 
     Ifse_p(i) = Ifse(i) 
    Next i 
    For j = 1 To nfasi 
    'Andamento cosinusoidale delle correnti 
     Ifse(j) = -Sqr(2) * Irms * Cos(kw * w * t - (j - 1) * kw * st * 2 * pi / nfasi + 

fi_in) 
    Next j 
   Else 
    For i = 1 To nfasi 
     Ifse(i) = Ifse_p(i) 
    Next i 
   End If 
  End If 
  
'*************************************************************************************** 
'COSTRUZIONE DELLA MATRICE A+B 
'*************************************************************************************** 
 
 For i = 1 To n 
  For j = 1 To m 
   a(i, j) = 0 
  Next j 
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 Next i 
 
 If OptionButton2.Value = True Then 
  For i = 1 To n 
   a(i, m) = ASP((ixm - 1) * n + i) 
  Next i 
 Else 
  For i = 1 To n 
   a(i, m) = aI(i) + aM(i) 
  Next i 
 End If 
   
'PARTE INVARIANTE DELLA MATRICE (A) 
  
 '5Ncv+2 to 6Ncv *********************************************************************** 
 'NODO 1: CONTINUITA' DENTE H - COR.STAT. 
  
 For i = 2 To Ncv 
  a(5 * Ncv + i, Ncv + i - 1) = 1 
  a(5 * Ncv + i, Ncv + i) = -1 
  a(5 * Ncv + i, 6 * Ncv + i) = -1 
  a(5 * Ncv + i, 16 * Ncv + i) = -1 
  a(5 * Ncv + i, 17 * Ncv + i) = -1 
 Next i 
  
 '6Ncv+1 to 7Ncv *********************************************************************** 
 'NODO 2: CONTINUITA' DENTE L - DENTE H 
   
  a(6 * Ncv + 1, 4 * Ncv) = 1 
  a(6 * Ncv + 1, 3 * Ncv + 1) = -1 
  a(6 * Ncv + 1, 4 * Ncv + 1) = 1 
  a(6 * Ncv + 1, 6 * Ncv + 1) = -1 
  a(6 * Ncv + 1, 14 * Ncv + 1) = 1 
  a(6 * Ncv + 1, 15 * Ncv + 1) = 1 
  a(6 * Ncv + 1, 16 * Ncv + 1) = -1 
  a(6 * Ncv + 1, 17 * Ncv + 1) = -1 
   
  For i = 2 To Ncv 
   a(6 * Ncv + i, 3 * Ncv + i - 1) = 1 
   a(6 * Ncv + i, 3 * Ncv + i) = -1 
   a(6 * Ncv + i, 4 * Ncv + i) = 1 
   a(6 * Ncv + i, 6 * Ncv + i) = -1 
   a(6 * Ncv + i, 14 * Ncv + i) = 1 
   a(6 * Ncv + i, 15 * Ncv + i) = 1 
   a(6 * Ncv + i, 16 * Ncv + i) = -1 
   a(6 * Ncv + i, 17 * Ncv + i) = -1 
  Next i 
  
 '7Ncv+1 to 8Ncv *********************************************************************** 
 'NODO 4 
  
 'Equazioni standard 
  For i = 1 To Ncv 
   a(7 * Ncv + i, 4 * Ncv + i) = 1 
   a(7 * Ncv + i, 5 * Ncv + i) = -1 
   a(7 * Ncv + i, 12 * Ncv + i) = -1 
   a(7 * Ncv + i, 13 * Ncv + i) = 1 
  Next i 
  
 'Variazioni 
  If ind_dt <> 0 Then 
   a(7 * Ncv + ind_dt, 18 * Ncv + 3) = -1 
   a(7 * Ncv + ind_dt, 18 * Ncv + 4) = -1 
  End If 
    
  If ind_dt2 <> 0 Then 
   a(7 * Ncv + ind_dt2, 18 * Ncv + 7) = -1 
   a(7 * Ncv + ind_dt2, 18 * Ncv + 8) = -1 
  End If 
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 '8Ncv+1 to 9Ncv *********************************************************************** 
 'NODO 7(1) 
  
  For i = 1 To Ncv 
   a(8 * Ncv + i, i) = 1 
   a(8 * Ncv + i, 5 * Ncv + i) = -1 
  Next i 
  
 '9Ncv+1 to 10Ncv ********************************************************************** 
 'NODO 9: CONTINUITA' MAGNETE - COR.ROT. 
  
  a(9 * Ncv + 1, 1) = 1 
  a(9 * Ncv + 1, 2 * Ncv + 1) = 1 
  a(9 * Ncv + 1, 3 * Ncv) = -1 
  a(9 * Ncv + 1, 10 * Ncv + 1) = 1 
  a(9 * Ncv + 1, 11 * Ncv + 1) = 1 
   
  For i = 2 To Ncv 
   a(9 * Ncv + i, i) = 1 
   a(9 * Ncv + i, 2 * Ncv + i) = 1 
   a(9 * Ncv + i, 2 * Ncv + i - 1) = -1 
   a(9 * Ncv + i, 10 * Ncv + i) = 1 
   a(9 * Ncv + i, 11 * Ncv + i) = 1 
  Next i 
    
  If ind_dt <> 0 Then 
   a(9 * Ncv + ind_dt, 18 * Ncv + 1) = 1 
   a(9 * Ncv + ind_dt, 18 * Ncv + 2) = 1 
  End If 
   
  If ind_dt2 <> 0 Then 
   a(9 * Ncv + ind_dt2, 18 * Ncv + 5) = 1 
   a(9 * Ncv + ind_dt2, 18 * Ncv + 6) = 1 
  End If 
   
 '10Ncv+1 to 11Ncv ********************************************************************* 
 'NODO 3 
   
  a(10 * Ncv + 1, 9 * Ncv) = 1 
  a(10 * Ncv + 1, 7 * Ncv + 1) = 1 
  a(10 * Ncv + 1, 12 * Ncv + 1) = -1 
  a(10 * Ncv + 1, 14 * Ncv + 1) = -1 
  
  For i = 2 To Ncv 
   a(10 * Ncv + i, 8 * Ncv + i - 1) = 1 
   a(10 * Ncv + i, 7 * Ncv + i) = 1 
   a(10 * Ncv + i, 12 * Ncv + i) = -1 
   a(10 * Ncv + i, 14 * Ncv + i) = -1 
  Next i 
  
 '11Ncv+1 to 12Ncv ********************************************************************* 
 'NODO 5 
   
  For i = 1 To Ncv 
   a(11 * Ncv + i, 8 * Ncv + i) = 1 
   a(11 * Ncv + i, 9 * Ncv + i) = -1 
   a(11 * Ncv + i, 13 * Ncv + i) = -1 
   a(11 * Ncv + i, 15 * Ncv + i) = 1 
  Next i 
   
 '14Ncv+1 to 15Ncv ********************************************************************* 
 'NODO 6 
  
  For i = 1 To Ncv 
   a(14 * Ncv + i, 7 * Ncv + i) = 1 
   a(14 * Ncv + i, 10 * Ncv + i) = -1 
  Next i 
   
 '15Ncv+1 to 16Ncv ********************************************************************* 
 'NODO 8 
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  For i = 1 To Ncv 
   a(15 * Ncv + i, 9 * Ncv + i) = 1 
   a(15 * Ncv + i, 11 * Ncv + i) = -1 
  Next i 
   
'*************************************************************************************** 
   
  If OptionButton2.Value = False Then 
   For i = 1 To n 
    a(i, m) = aI(i) + aM(i) 
   Next i 
  Else 
   For i = 1 To n 
    a(i, m) = ASP((ixm - 1) * n + i) 
   Next i 
  End If 
   
'*************************************************************************************** 
'Ai coefficienti del sistema che dipendono dalle riluttanze magnetiche vengono assegnati 
'valori di primo tentativo casuali non nulli per evitare che nello step iniziale della 
'soluzione vengano rilevate equazioni linearmente dipendenti 
   
  For i = 1 To (5 * Ncv + 1) 
   For j = 1 To n 
    a(i, j) = Rnd() * 3000 
   Next j 
  Next i 
   
  For i = (12 * Ncv + 1) To (14 * Ncv) 
   For j = 1 To n 
    a(i, j) = Rnd() * 3000 
   Next j 
  Next i 
   
  For i = (16 * Ncv + 1) To n 
   For j = 1 To n 
    a(i, j) = Rnd() * 3000 
   Next j 
  Next i 
  
 
'*************************************************************************************** 
'chiamata della subroutine per la soluzione del sistema di equazioni 
   
  Call SOLVESYS 
  
'*************************************************************************************** 
   
 'CALCOLO DI FLUSSI NELLE VARIE ZONE DI MACCHINA 
     
 'flusso nel passo di cava 
  For i = 1 To Ncv 
   Flux_tcv_(i) = x(i + 5 * Ncv) + x(i + 7 * Ncv) + x(i + 9 * Ncv) 
  Next i 
   
 'flusso per polo al traferro 
  Flux_pg = 0 
  For i = 1 To Ncv 
   Flux_pg = Flux_pg + Flux_tcv(i) 
  Next i 
  
 'flusso nel dente basso - alto 
  Flux_pdL = 0 
  Flux_pdH = 0 
  For i = 1 To Ncv 
   Flux_pdL = Flux_pdL + x(4 * Ncv + i) 
   Flux_pdH = Flux_pdH + x(6 * Ncv + i) 
  Next i 
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 'flusso all'altezza dei denti 
  Flux_pd = ta * Flux_pdL + (1 - ta) * Flux_pdH 
   
 'flussi nei denti 
  For i = 1 To Ncv 
   Flux_dt(i) = ta * x(4 * Ncv + i) + (1 - ta) * x(6 * Ncv + i) 
  Next i 
  
 'flussi nel passo di cava (inteso come semicava sx - dente - semicava dx) 
  For i = 1 To Ncv 
   Flux_tcv_(i) = Flux_dt(i) + x(14 * Ncv + i) + x(15 * Ncv + i) 
  Next i 
   
 'FLUSSI CONCATENATI CON LE FASI 
  
  For i = 1 To nfasi 
   Flux_f(i) = 0 
  Next i 
  
 'Flussi concatenati I strato 
  For j = 1 To nfasi 
   For i = 1 To Ncv 
    If ordpr(i) = j Then 
     Flux_f(j) = Flux_f(j) + npr * x(Ncv + i) 
    ElseIf ordpr(i) = -j Then 
     Flux_f(j) = Flux_f(j) - npr * x(Ncv + i) 
    End If 
   Next i 
  Next j 
 'Flussi concatenati II strato 
  For j = 1 To nfasi 
   For i = 1 To Ncv 
    If ordsc(i) = j Then 
     Flux_f(j) = Flux_f(j) + nsc * x(Ncv + i) 
    ElseIf ordsc(i) = -j Then 
     Flux_f(j) = Flux_f(j) - nsc * x(Ncv + i) 
    End If 
   Next i 
  Next j 
  
 'FORZA RADIALE 
  For i = 1 To Ncv 
   Fyr(i) = 0 
   Fxr(i) = 0 
   Fr_n(i) = 0 
   Fr_tsx(i) = 0 
   Fr_tdx(i) = 0 
  Next i 
  Fyr_ = 0 
  Fxr_ = 0 
   
 'NB: il sistema di riferimento considerato nel calcolo delle forze ha gli assi 
coincidenti con il sistema di rif. 
 '    x-y standard di FEMM. L'asse della fase 1, secondo l'interpretazione del segno 
delle correnti in FEMM (- se 
 '    ENTRANTI nello schermo, + se USCENTI), è ruotato invece di 180 gr.m. in senso 
orario rispetto al sistema di 
 '    riferimento in questione. Gli angoli sono valutati rispetto all'asse (x-standard). 
 
 'angolo dell'asse del dente (gr.m.) 
  For i = 1 To Ncv 
   alfa_dt(i) = pi / 2 - (i - 1) * alfa_cv 
   alfa_dt_deg(i) = 180 / pi * alfa_dt(i) 
  Next i 
   
 'Superfici frontali dei DENTI 
  For i = 1 To Ncv 
   Select Case i 
    Case ind_dt 
    'dente ind_dt 
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     If ind_dt = 1 Then 
     'Componente NORMALE della forza radiale 
      Fr_n(i) = 1 / 2 / muzero * L * (LdA_1_Rs * B(5 * Ncv + i) ^ 2 + spm_Rs * B(18 * 

Ncv + 4) ^ 2 + LdB_1_Rs * B(18 * Ncv + 3) ^ 2 + Lcl / 2 * B(7 * Ncv + i) ^ 2 + Lcl 
/ 2 * B(9 * Ncv + i) ^ 2) 

      Fr_n(i) = Fr_n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(9 * Ncv) ^ 2 - 1 / 2 / muzero 
* Lcl / 2 * L * B(8 * Ncv + i) ^ 2 

     'Componenti TANGENZIALI della forza radiale 
      Fr_tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(9 * Ncv) 
      Fr_tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i) 
     Else 
     'Componente NORMALE della forza radiale 
      Fr_n(i) = 1 / 2 / muzero * L * (LdA_1_Rs * B(5 * Ncv + i) ^ 2 + spm_Rs * B(18 * 

Ncv + 4) ^ 2 + LdB_1_Rs * B(18 * Ncv + 3) ^ 2 + Lcl / 2 * B(7 * Ncv + i) ^ 2 + Lcl 
/ 2 * B(9 * Ncv + i) ^ 2) 

      Fr_n(i) = Fr_n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(8 * Ncv + i - 1) ^ 2 - 1 / 2 
/ muzero * Lcl / 2 * L * B(8 * Ncv + i) ^ 2 

     'Componenti TANGENZIALI della forza radiale 
      Fr_tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(8 * Ncv + i - 1) 
      Fr_tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i) 
     End If 
      
    Case ind_dt2 
    'dente ind_dt2 
     If ind_dt2 = 1 Then 
     'Componente NORMALE della forza radiale 
      Fr_n(i) = 1 / 2 / muzero * L * (LdA_1_Rs * B(5 * Ncv + i) ^ 2 + spm_Rs * B(18 * 

Ncv + 8) ^ 2 + LdB_1_Rs * B(18 * Ncv + 7) ^ 2 + Lcl / 2 * B(7 * Ncv + i) ^ 2 + Lcl 
/ 2 * B(9 * Ncv + i) ^ 2) 

      Fr_n(i) = Fr_n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(9 * Ncv) ^ 2 - 1 / 2 / muzero 
* Lcl / 2 * L * B(8 * Ncv + i) ^ 2 

     'Componenti TANGENZIALI della forza radiale 
      Fr_tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(9 * Ncv) 
      Fr_tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i) 
     Else 
     'Componente NORMALE della forza radiale 
      Fr_n(i) = 1 / 2 / muzero * L * (LdA_1_Rs * B(5 * Ncv + i) ^ 2 + spm_Rs * B(18 * 

Ncv + 8) ^ 2 + LdB_1_Rs * B(18 * Ncv + 7) ^ 2 + Lcl / 2 * B(7 * Ncv + i) ^ 2 + Lcl 
/ 2 * B(9 * Ncv + i) ^ 2) 

      Fr_n(i) = Fr_n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(8 * Ncv + i - 1) ^ 2 - 1 / 2 
/ muzero * Lcl / 2 * L * B(8 * Ncv + i) ^ 2 

     'Componenti TANGENZIALI della forza radiale 
      Fr_tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(8 * Ncv + i - 1) 
      Fr_tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i) 
     End If 
      
    Case Else 
      
     If i = 1 Then 
     'Componente NORMALE della forza radiale 
      Fr_n(i) = 1 / 2 / muzero * L * (Ldg_Rs * B(5 * Ncv + i) ^ 2 + Lcl / 2 * B(7 * Ncv 

+ i) ^ 2 + Lcl / 2 * B(9 * Ncv + i) ^ 2) 
      Fr_n(i) = Fr_n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(9 * Ncv) ^ 2 - 1 / 2 / muzero 

* Lcl / 2 * L * B(8 * Ncv + i) ^ 2 
     'Componenti TANGENZIALI della forza radiale 
      Fr_tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(9 * Ncv) 
      Fr_tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i) 
     Else 
     'Componente NORMALE della forza radiale 
      Fr_n(i) = 1 / 2 / muzero * L * (Ldg_Rs * B(5 * Ncv + i) ^ 2 + Lcl / 2 * B(7 * Ncv 

+ i) ^ 2 + Lcl / 2 * B(9 * Ncv + i) ^ 2) 
      Fr_n(i) = Fr_n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(8 * Ncv + i - 1) ^ 2 - 1 / 2 

/ muzero * Lcl / 2 * L * B(8 * Ncv + i) ^ 2 
     'Componenti TANGENZIALI della forza radiale 
      Fr_tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(8 * Ncv + i - 1) 
      Fr_tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i) 
     End If 
      
   End Select 
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  'Componenti secondo (y) della forza radiale in ogni dente 
   Fyr(i) = Fr_n(i) * Sin(alfa_dt(i)) - Fr_tsx(i) * Cos(alfa_dt(i)) - Fr_tdx(i) * 

Cos(alfa_dt(i)) 
  'Componenti secondo (x) della forza radiale 
   Fxr(i) = Fr_n(i) * Cos(alfa_dt(i)) + Fr_tsx(i) * Sin(alfa_dt(i)) + Fr_tdx(i) * 

Sin(alfa_dt(i)) 
  'Modulo della forza radiale in ogni dente 
   Fr_mod(i) = Sqr(Fxr(i) ^ 2 + Fyr(i) ^ 2) 
    
  Next i 
   
 'Calcolo della risultante delle forze RADIALI 
  For i = 1 To Ncv 
   Fyr_ = Fyr_ + Fyr(i) 
   Fxr_ = Fxr_ + Fxr(i) 
  Next i 
 'RISULTANTE 
  Fr = Sqr(Fxr_ ^ 2 + Fyr_ ^ 2) 
   
 
'*************************************************************************************** 
'CICLO DI CALCOLO COENERGIA MAGNETICA DEL SISTEMA 
  
 If OptionButton1.Value = True Then 
   
  'Memorizzazione dei valori step precedente 
  'Coenergia magnetica complessiva 
   EnM_tp = EnM_t 
   
  'Memorizzazione dei valori step precedente 
  'Coenergia magnetica nel singolo volume 
   For i = 1 To n 
    EnM_p(i) = EnM(i) 
   Next i 
   
  EnM_t = 0 
  nH = 640 
   
 'MAGNETE (SOTTO IL DENTE) 
  For i = 1 To Ncv 
   dEnM(i) = 1 / 2 * B(i) ^ 2 / mu(i) 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
   
 'CORONA STAT., CORONA ROT. 
  For i = Ncv + 1 To 3 * Ncv 
   dEnM(i) = 0 
   dH = Abs(H(i)) / nH 
   For j = 1 To nH 
    H1 = (j - 1) * dH 
    H2 = j * dH 
    B1 = Induction(n, H1, Hlam, Blam) 
    B2 = Induction(n, H2, Hlam, Blam) 
    dA = (B2 + B1) * dH / 2 
    dEnM(i) = dEnM(i) + dA 
   Next j 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
  
 'CAVE (Componenti orizzontali CVX) 
  For i = 3 * Ncv + 1 To 4 * Ncv 
   dEnM(i) = 1 / 2 * B(i) ^ 2 / mu(i) 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
   
 'DENTE BASSO 
  For i = 4 * Ncv + 1 To 5 * Ncv 
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   dEnM(i) = 0 
   dH = Abs(H(i)) / nH 
   For j = 1 To nH 
    H1 = (j - 1) * dH 
    H2 = j * dH 
    B1 = Induction(n, H1, Hlam, Blam) 
    B2 = Induction(n, H2, Hlam, Blam) 
    dA = (B2 + B1) * dH / 2 
    dEnM(i) = dEnM(i) + dA 
   Next j 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
   
 'TRAFERRO sotto il DENTE 
  For i = 5 * Ncv + 1 To 6 * Ncv 
   dEnM(i) = 1 / 2 * B(i) ^ 2 / mu(i) 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
   
 'DENTE ALTO 
  For i = 6 * Ncv + 1 To 7 * Ncv 
   dEnM(i) = 0 
   dH = Abs(H(i)) / nH 
   For j = 1 To nH 
    H1 = (j - 1) * dH 
    H2 = j * dH 
    B1 = Induction(n, H1, Hlam, Blam) 
    B2 = Induction(n, H2, Hlam, Blam) 
    dA = (B2 + B1) * dH / 2 
    dEnM(i) = dEnM(i) + dA 
   Next j 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
    
 'TRAFERRO sotto la SEMICAVA SX 
 'COLLARINO (TRASV.) 
 'TRAFERRO sotto la SEMICAVA DX 
 'MAGNETE SOTTO APERTURA CAVA SX e DX 
  For i = 7 * Ncv + 1 To 12 * Ncv 
   dEnM(i) = 1 / 2 * B(i) ^ 2 / mu(i) 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
   
 'TESTA DENTE SX e DX 
  For i = 12 * Ncv + 1 To 14 * Ncv 
   dEnM(i) = 0 
   dH = Abs(H(i)) / nH 
   For j = 1 To nH 
    H1 = (j - 1) * dH 
    H2 = j * dH 
    B1 = Induction(n, H1, Hlam, Blam) 
    B2 = Induction(n, H2, Hlam, Blam) 
    dA = (B2 + B1) * dH / 2 
    dEnM(i) = dEnM(i) + dA 
   Next j 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
   
 'SEMICAVE SX e DX 
  For i = 14 * Ncv + 1 To 16 * Ncv 
   dEnM(i) = 1 / 2 * B(i) ^ 2 / mu(i) 
   EnM(i) = dEnM(i) * Vol(i) 
   EnM_t = EnM_t + EnM(i) 
  Next i 
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 'CONTRIBUTI AGGIUNTIVI 
  If ind_dt <> 0 And ind_dt2 <> 0 Then 
   For i = 1 To 8 
    dEnM(18 * Ncv + i) = 1 / 2 * B(18 * Ncv + i) ^ 2 / mu(18 * Ncv + i) 
    EnM(18 * Ncv + i) = dEnM(18 * Ncv + i) * Vol(18 * Ncv + i) 
    EnM_t = EnM_t + EnM(18 * Ncv + i) 
   Next i 
  End If 
   
 'VARIAZIONE COENERGIA MAGNETICA TOTALE 
  dEnM_t = EnM_t - EnM_tp 
   
 'VARIAZIONE COENERGIA MAGNETICA SINGOLI VOLUMI 
  If ixm = 1 Then 
   For i = 1 To n 
    deltaEnM(i) = 0 
   Next i 
  Else 
   For i = 1 To n 
    deltaEnM(i) = EnM(i) - EnM_p(i) 
   Next i 
  End If 
   
  Cells(5 + ixm, 13 + 2 * nfasi + 1) = EnM_t * pp 
    
 End If 
    
 
'*************************************************************************************** 
   
 If OptionButton1.Value = True And Int(ixm / 2) = ixm / 2 Then 
  
  Fx_EM = dEnM_t / dx_cost 
   
  'Coppia elettromagnetica 
  dthr_m = pi / pp / Taup * dx_cost 
  C_EM = dEnM_t / dthr_m 
   
  Cells(5 + ixm, 13 + 2 * nfasi + 2) = C_EM * pp 
   
 End If 
 
'*************************************************************************************** 
'OUTPUT ARRAY 
 
   For i = 1 To Ncv 
    Cells(4 + i, 5) = CStr("md") 
    Cells(4 + Ncv + i, 5) = CStr("cs") 
    Cells(4 + 2 * Ncv + i, 5) = CStr("cr") 
    Cells(4 + 3 * Ncv + i, 5) = CStr("cvx") 
    Cells(4 + 4 * Ncv + i, 5) = CStr("dL") 
    Cells(4 + 5 * Ncv + i, 5) = CStr("gd") 
    Cells(4 + 6 * Ncv + i, 5) = CStr("dH") 
    Cells(4 + 7 * Ncv + i, 5) = CStr("gcs") 
    Cells(4 + 8 * Ncv + i, 5) = CStr("clx") 
    Cells(4 + 9 * Ncv + i, 5) = CStr("gcd") 
    Cells(4 + 10 * Ncv + i, 5) = CStr("mcs") 
    Cells(4 + 11 * Ncv + i, 5) = CStr("mcd") 
    Cells(4 + 12 * Ncv + i, 5) = CStr("dsx") 
    Cells(4 + 13 * Ncv + i, 5) = CStr("ddx") 
    Cells(4 + 14 * Ncv + i, 5) = CStr("Lcvys") 
    Cells(4 + 15 * Ncv + i, 5) = CStr("Lcvyd") 
    Cells(4 + 16 * Ncv + i, 5) = CStr("Hcvys") 
    Cells(4 + 17 * Ncv + i, 5) = CStr("Hcvyd") 
   Next i 
   Cells(5 + 18 * Ncv, 5) = CStr("mdB1") 
   Cells(6 + 18 * Ncv, 5) = CStr("spm1") 
   Cells(7 + 18 * Ncv, 5) = CStr("gdB1") 
   Cells(8 + 18 * Ncv, 5) = CStr("gd01") 
   Cells(9 + 18 * Ncv, 5) = CStr("mdB2") 
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   Cells(10 + 18 * Ncv, 5) = CStr("spm2") 
   Cells(11 + 18 * Ncv, 5) = CStr("gdB2") 
   Cells(12 + 18 * Ncv, 5) = CStr("gd02") 
 
   For i = 1 To n 
    Cells(4 + i, 6) = H(i) 
    Cells(4 + i, 7) = B(i) 
    Cells(4 + i, 8) = mu(i) / muzero 
    Cells(4 + i, 9) = x(i) 
   Next i 
  
  Cells(5 + ixm, 12) = xm 
  Cells(5 + ixm, 13) = Hc 
 
  For i = 1 To nfasi 
   Cells(5 + ixm, 13 + i) = Ifse(i) 
  Next i 
 
  For i = 1 To nfasi 
   Cells(5 + ixm, 13 + nfasi + i) = Flux_f(i) * pp 
  Next i 
   
  Cells(5 + ixm, 13 + 2 * nfasi + 3) = Fxr_ 
  Cells(5 + ixm, 13 + 2 * nfasi + 4) = Fyr_ 
  Cells(5 + ixm, 13 + 2 * nfasi + 5) = Fr 
   
 If OptionButton1.Value = True Then 
   
  Print #3, xm 
  Print #3, 
  Print #3, "i      VOL(m^3)      dEnM(J/m^3)   EnM(J)        H(A/m)        B(T)     

deltaEnM(J)     Ril(H-1)      x(Wb)" 
  Print #3, 
  For i = 1 To 18 * Ncv 
   Val_00 = Format(i, "000" & "    ") 
   Val_01 = Format(Vol(i), "0.00000E+" & "    ") 
   Val_02 = Format(dEnM(i), "0.00000E+" & "    ") 
   Val_03 = Format(EnM(i), "0.00000E+" & "    ") 
   Val_04 = Format(H(i), "0000000.00" & "    ") 
   Val_05 = Format(B(i), "0.000" & "    ") 
   Val_06 = Format(deltaEnM(i), "0.00000E+" & "    ") 
   Val_07 = Format(Ril(i), "0.00000E+" & "    ") 
   Val_08 = Format(x(i), "0.000E+" & "    ") 
   Print #3, Val_00 & Val_01 & Val_02 & Val_03 & Val_04 & Val_05 & Val_06 & Val_07 & 

Val_08 
  Next i 
 'ELEMENTI AGGIUNTIVI 
  For i = 18 * Ncv + 1 To n 
   Val_00 = Format(i, "000" & "    ") 
   Val_01 = Format(Vol(i), "0.00000E+" & "    ") 
   Val_02 = Format(dEnM(i), "0.00000E+" & "    ") 
   Val_03 = Format(EnM(i), "0.00000E+" & "    ") 
   Val_04 = Format(H(i), "0000000.00" & "    ") 
   Val_05 = Format(B(i), "0.000" & "    ") 
   Val_06 = Format(deltaEnM(i), "0.00000E+" & "    ") 
   Val_07 = Format(Ril(i), "0.00000E+" & "    ") 
   Val_08 = Format(x(i), "0.000E+" & "    ") 
   Print #3, Val_00 & Val_01 & Val_02 & Val_03 & Val_04 & Val_05 & Val_06 & Val_07 & 

Val_08 
  Next i 
  Print #3, 
  Print #3, 
  Print #3, "Fyr(N)        Fxr(N)        alfa_dt(gr.m.)  Fr_mod(N)" 
  Print #3, 
  For i = 1 To Ncv 
   Val_09 = Format(Fyr(i), "0000000.00" & "    ") 
   Val_10 = Format(Fxr(i), "0000000.00" & "    ") 
   Val_11 = Format(alfa_dt_deg(i), "0000000.00" & "    ") 
   Val_12 = Format(Fr_mod(i), "0000000.00" & "    ") 
   Print #3, Val_09 & Val_10 & Val_11 & Val_12 
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  Next i 
  Print #3, 
  Print #3, 
  Print #3, 
 
 End If 
  
 'aggiornamento della posizione dei magneti 
 If Int(ixm / 2) <> ixm / 2 Then 
  dx1 = dx_cost 
 Else 
  dx1 = dx 
 End If 
  
 xm = xm + dx1 
 xm2 = xm + spm + wm 
  
 Cells(5, 34) = zero_ctrl 
  
Next ixm 
  
50 
 Close #3 
 OptionButton1.Value = False 
 OptionButton2.Value = False 
 
End Sub 
 
Public Sub SOLVESYS() 
 
  For i = 1 To n 
   For j = 1 To m 
   'matrice iniziale del sistema 
   ainiz(i, j) = a(i, j) 
   Next j 
  Next i 
 
'*************************************************************************************** 
   
  maxdiffx = 1000000 
  z = 1 
 
  For i = 1 To n 
   mu(i) = muzero 
   mu_p(i) = 0 
  Next i 
 
 Do While maxdiffx > tollx 
  
 
'*************************************************************************************** 
'TRASFORMAZIONE DELLA MATRICE a(i,j) IN TRIANGOLARE SUPERIORE 
  
 pivot = False 
 fault = 0 
  
 iperm = 0 
 For k = 1 To n - 1 
   'lo scambio avviene con le righe successive a quella considerata (k-esima) 
   r = k + 1 
 
   Do Until a(k, k) <> 0 
       
   'ciclo che scambia la riga k-esima con la r-esima 
   'nel caso in cui un elemento diagonale sia nullo 
      pivot = True 
      For icol = 1 To m 
       changer_R(icol) = a(k, icol) 
       a(k, icol) = a(r, icol) 
       a(r, icol) = changer_R(icol) 
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      Next icol 
      
     For i = 1 To n 
      piv_R(i) = 0 
     Next i 
      
     piv_R(k) = r 
     piv_R(r) = k 
      
     r = r + 1 
      
     If r > n Then 
      MsgBox ("Un elemento A(k,k) rimane nullo dopo aver scorso tutte le righe (r > n)") 
      Stop 
     End If 
      iperm = iperm + 1 
    
   Loop 
 
     If pivot = True Then 
      mem(k) = r 
     Else 
      mem(k) = k 
     End If 
 
  For i = k + 1 To n 
   y(i, k) = -a(i, k) / a(k, k) 
   a(i, k) = y(i, k) 
   For j = k + 1 To m 
    a(i, j) = a(i, j) + a(i, k) * a(k, j) 
   Next j 
  Next i 
     
  pivot = False 
   
 Next k 
 
'*************************************************************************************** 
'SOLUZIONE DEL SISTEMA DI EQUAZIONI CON IL METODO DIRETTO 
  
 For i = 1 To n 
  noti(i) = a(i, m) 
 Next i 
  
 x(n) = noti(n) / a(n, n) 
  
  For i = n - 1 To 1 Step -1 
   sm = 0 
    For k = n To i + 1 Step -1 
     sm = sm + a(i, k) * x(k) 
    Next k 
   x(i) = (noti(i) - sm) / a(i, i) 
  Next i 
  
'*************************************************************************************** 
 
 'memorizzazione permeabilità allo step precedente 
 For j = 1 To n 
  mu_p(j) = mu(j) 
 Next j 
   
 'determinazione delle induzioni dai flussi 
 For i = 1 To n 
  B(i) = x(i) / Sez(i) 
 Next i 
  
 'richiama la function per il calcolo delle permeabilità magnetiche 
 For j = 1 To n 
  Select Case j 
   Case 1 To Ncv 
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    mu(j) = mu_mag 
    H(j) = 1 / mu_mag * B(j) 
   Case Ncv + 1 To 3 * Ncv 
    H(j) = Magfield(n, B(j), Hlam, Blam) 
    If B(j) < 0 Then H(j) = -H(j) 
    If B(j) = 0 Then 
     mu(j) = (Blam(2) - Blam(1)) / (Hlam(2) - Hlam(1)) 
     zero_ctrl = zero_ctrl + 1 
    Else 
     mu(j) = B(j) / H(j) 
    End If 
   Case 3 * Ncv + 1 To 4 * Ncv 
    mu(j) = muzero 
    H(j) = 1 / muzero * B(j) 
   Case 4 * Ncv + 1 To 5 * Ncv 
    H(j) = Magfield(n, B(j), Hlam, Blam) 
    If B(j) < 0 Then H(j) = -H(j) 
    If B(j) = 0 Then 
     mu(j) = (Blam(2) - Blam(1)) / (Hlam(2) - Hlam(1)) 
     zero_ctrl = zero_ctrl + 1 
    Else 
     mu(j) = B(j) / H(j) 
    End If 
   Case 5 * Ncv + 1 To 6 * Ncv 
    mu(j) = muzero 
    H(j) = 1 / muzero * B(j) 
   Case 6 * Ncv + 1 To 7 * Ncv 
    H(j) = Magfield(n, B(j), Hlam, Blam) 
    If B(j) < 0 Then H(j) = -H(j) 
    If B(j) = 0 Then 
     mu(j) = (Blam(2) - Blam(1)) / (Hlam(2) - Hlam(1)) 
     zero_ctrl = zero_ctrl + 1 
    Else 
     mu(j) = B(j) / H(j) 
    End If 
   Case 7 * Ncv + 1 To 10 * Ncv 
    mu(j) = muzero 
    H(j) = 1 / muzero * B(j) 
   Case 10 * Ncv + 1 To 12 * Ncv 
    mu(j) = mu_mag 
    H(j) = 1 / mu_mag * B(j) 
   Case 12 * Ncv + 1 To 14 * Ncv 
    H(j) = Magfield(n, B(j), Hlam, Blam) 
    If B(j) < 0 Then H(j) = -H(j) 
    If B(j) = 0 Then 
     mu(j) = (Blam(2) - Blam(1)) / (Hlam(2) - Hlam(1)) 
     zero_ctrl = zero_ctrl + 1 
    Else 
     mu(j) = B(j) / H(j) 
    End If 
   Case 14 * Ncv + 1 To 18 * Ncv 
    mu(j) = muzero 
    H(j) = 1 / muzero * B(j) 
   End Select 
  Next j 
  
 If ind_dt <> 0 Then 
  mu(18 * Ncv + 1) = mu_mag 
  H(18 * Ncv + 1) = 1 / mu_mag * B(18 * Ncv + 1) 
  mu(18 * Ncv + 2) = muzero 
  H(18 * Ncv + 2) = 1 / muzero * B(18 * Ncv + 2) 
  mu(18 * Ncv + 3) = muzero 
  H(18 * Ncv + 3) = 1 / muzero * B(18 * Ncv + 3) 
  mu(18 * Ncv + 4) = muzero 
  H(18 * Ncv + 4) = 1 / muzero * B(18 * Ncv + 4) 
 End If 
  
 If ind_dt2 <> 0 Then 
  mu(18 * Ncv + 5) = mu_mag 
  H(18 * Ncv + 5) = 1 / mu_mag * B(18 * Ncv + 5) 
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  mu(18 * Ncv + 6) = muzero 
  H(18 * Ncv + 6) = 1 / muzero * B(18 * Ncv + 6) 
  mu(18 * Ncv + 7) = muzero 
  H(18 * Ncv + 7) = 1 / muzero * B(18 * Ncv + 7) 
  mu(18 * Ncv + 8) = muzero 
  H(18 * Ncv + 8) = 1 / muzero * B(18 * Ncv + 8) 
 End If 
  
 'Ridefinizione delle permeabilità magnetiche 
  For j = 1 To n 
   mu(j) = mu(j) ^ 0.1 * mu_p(j) ^ 0.9 
  Next j 
  
  '************************************************************************************ 
  '            ****               CRITERIO DI CONVERGENZA               **** 
  
  maxdiffx = 0 
    
  'Solo elementi NON LINEARI 
   For j = Ncv + 1 To 3 * Ncv 
    diffx(j) = Abs((mu(j) / muzero - mu_p(j) / muzero) / (mu_p(j) / muzero)) 
    If diffx(j) > maxdiffx Then 
     maxdiffx = diffx(j) 
    End If 
   Next j 
   For j = 4 * Ncv + 1 To 5 * Ncv 
    diffx(j) = Abs((mu(j) / muzero - mu_p(j) / muzero) / (mu_p(j) / muzero)) 
    If diffx(j) > maxdiffx Then 
     maxdiffx = diffx(j) 
    End If 
   Next j 
   For j = 6 * Ncv + 1 To 7 * Ncv 
    diffx(j) = Abs((mu(j) / muzero - mu_p(j) / muzero) / (mu_p(j) / muzero)) 
    If diffx(j) > maxdiffx Then 
     maxdiffx = diffx(j) 
    End If 
   Next j 
   For j = 12 * Ncv + 1 To 14 * Ncv 
    diffx(j) = Abs((mu(j) / muzero - mu_p(j) / muzero) / (mu_p(j) / muzero)) 
    If diffx(j) > maxdiffx Then 
     maxdiffx = diffx(j) 
    End If 
   Next j 
     
 
'*************************************************************************************** 
 
 'RIDEFINIZIONE MATRICE "A" DEL SISTEMA 
 'vengono aggiornati i coefficienti variabili in cui compaiono i valori di permeabilità 
 'magnetica delle varie parti di macchina 
   
'*************************************************************************************** 
  
 'azzeramento di tutti i coefficienti 
 For i = 1 To n 
  For j = 1 To m 
  a(i, j) = 0 
  Next j 
 Next i 
  
 'RIDEFINIZIONE DELLE RILUTTANZE VARIABILI f(mu) 
   
  'corona statore 
   For i = Ncv + 1 To 2 * Ncv 
    Ril(i) = 1 / mu(i) * Lcs_med / Sez(i) 
   Next i 
    
  'corona rotore 
   For i = 2 * Ncv + 1 To 3 * Ncv 
    Ril(i) = 1 / mu(i) * Lcr_med / Sez(i) 
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   Next i 
    
  'dente LOW 
   For i = 4 * Ncv + 1 To 5 * Ncv 
    Ril(i) = 1 / mu(i) * (adt * (ta - 1) + havv) / Sez(i) 
   Next i 
   
  'dente HIGH 
   For i = 6 * Ncv + 1 To 7 * Ncv 
    Ril(i) = 1 / mu(i) * (adt * (1 - ta)) / Sez(i) 
   Next i 
     
  'semidente SX e DX 
   For i = 12 * Ncv + 1 To 14 * Ncv 
    Ril(i) = 1 / mu(i) / pr02 * Log(2 * pr01 / (2 * pr01 - pr02 * (Ldg - Ldt))) + 1 / 

mu(i) * Ldt / 2 / (adt - havv) / L 
   Next i 
   
 'le righe con coefficienti costanti della matrice del sistema vengono ricomposte come 
 'quelle iniziali per ripartire con la soluzione del sistema, aggiornato aggiungendo 
 'le permeabilità calcolate 
  
  For i = 5 * Ncv + 2 To 12 * Ncv 
   For j = 1 To n 
   a(i, j) = ainiz(i, j) 
   Next j 
  Next i 
  
  For i = 14 * Ncv + 1 To 16 * Ncv 
   For j = 1 To n 
   a(i, j) = ainiz(i, j) 
   Next j 
  Next i 
  
  'l'ultima colonna della matrice (termini noti) 
  'riassume i valori iniziali 
  For i = 1 To n 
   a(i, m) = ainiz(i, m) 
  Next i 
   
 'PARTE VARIABILE DELLA MATRICE (A) 
 '1 to Ncv ***************************************************************************** 
 'CIRCUITAZIONI DENTE - DENTE 
  
  For i = 1 To Ncv - 1 
   a(i, i) = Ril(i) 
   a(i, i + 1) = -Ril(i + 1) 
   a(i, i + Ncv) = -Ril(i + Ncv) 
   a(i, i + 2 * Ncv) = -Ril(i + 2 * Ncv) 
   a(i, i + 4 * Ncv) = Ril(i + 4 * Ncv) 
   a(i, i + 4 * Ncv + 1) = -Ril(i + 4 * Ncv + 1) 
   a(i, i + 5 * Ncv) = Ril(i + 5 * Ncv) 
   a(i, i + 5 * Ncv + 1) = -Ril(i + 5 * Ncv + 1) 
   a(i, i + 6 * Ncv) = Ril(i + 6 * Ncv) 
   a(i, i + 6 * Ncv + 1) = -Ril(i + 6 * Ncv + 1) 
  Next i 
      
  a(Ncv, Ncv) = Ril(Ncv) 
  a(Ncv, 1) = -Ril(1) 
  a(Ncv, 2 * Ncv) = -Ril(2 * Ncv) 
  a(Ncv, 3 * Ncv) = -Ril(3 * Ncv) 
  a(Ncv, 5 * Ncv) = Ril(5 * Ncv) 
  a(Ncv, 4 * Ncv + 1) = -Ril(4 * Ncv + 1) 
  a(Ncv, 6 * Ncv) = Ril(6 * Ncv) 
  a(Ncv, 5 * Ncv + 1) = -Ril(5 * Ncv + 1) 
  a(Ncv, 7 * Ncv) = Ril(7 * Ncv) 
  a(Ncv, 6 * Ncv + 1) = -Ril(6 * Ncv + 1) 
   
 
 Select Case ind_dt 
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  Case 1 
  'Circuitaz. precedente 
   a(Ncv, 1) = 0 
   a(Ncv, 5 * Ncv + 1) = 0 
   a(Ncv, 18 * Ncv + 2) = -Ril(18 * Ncv + 2) 
   a(Ncv, 18 * Ncv + 4) = -Ril(18 * Ncv + 4) 
  'Circuitaz. attuale 
   a(1, 1) = 0 
   a(1, 5 * Ncv + 1) = 0 
   a(1, 18 * Ncv + 2) = Ril(18 * Ncv + 2) 
   a(1, 18 * Ncv + 4) = Ril(18 * Ncv + 4) 
  Case 2 To (Ncv - 1) 
  'Circuitaz. precedente 
   a(ind_dt - 1, ind_dt) = 0 
   a(ind_dt - 1, ind_dt + 5 * Ncv) = 0 
   a(ind_dt - 1, 18 * Ncv + 2) = -Ril(18 * Ncv + 2) 
   a(ind_dt - 1, 18 * Ncv + 4) = -Ril(18 * Ncv + 4) 
  'Circuitaz. attuale 
   a(ind_dt, ind_dt) = 0 
   a(ind_dt, ind_dt + 5 * Ncv) = 0 
   a(ind_dt, 18 * Ncv + 2) = Ril(18 * Ncv + 2) 
   a(ind_dt, 18 * Ncv + 4) = Ril(18 * Ncv + 4) 
  Case Ncv 
  'Circuitaz. precedente 
   a(Ncv - 1, Ncv) = 0 
   a(Ncv - 1, 6 * Ncv) = 0 
   a(Ncv - 1, 18 * Ncv + 2) = -Ril(18 * Ncv + 2) 
   a(Ncv - 1, 18 * Ncv + 4) = -Ril(18 * Ncv + 4) 
  'Circuitaz. attuale 
   a(Ncv, Ncv) = 0 
   a(Ncv, 6 * Ncv) = 0 
   a(Ncv, 18 * Ncv + 2) = Ril(18 * Ncv + 2) 
   a(Ncv, 18 * Ncv + 4) = Ril(18 * Ncv + 4) 
  Case Else 
   Stop 
 End Select 
   
   
 Select Case ind_dt2 
  Case 1 
  'Circuitaz. precedente 
   a(Ncv, 1) = 0 
   a(Ncv, 5 * Ncv + 1) = 0 
   a(Ncv, 18 * Ncv + 6) = -Ril(18 * Ncv + 6) 
   a(Ncv, 18 * Ncv + 8) = -Ril(18 * Ncv + 8) 
  'Circuitaz. attuale 
   a(1, 1) = 0 
   a(1, 5 * Ncv + 1) = 0 
   a(1, 18 * Ncv + 6) = Ril(18 * Ncv + 6) 
   a(1, 18 * Ncv + 8) = Ril(18 * Ncv + 8) 
  Case 2 To (Ncv - 1) 
  'Circuitaz. precedente 
   a(ind_dt2 - 1, ind_dt2) = 0 
   a(ind_dt2 - 1, ind_dt2 + 5 * Ncv) = 0 
   a(ind_dt2 - 1, 18 * Ncv + 6) = -Ril(18 * Ncv + 6) 
   a(ind_dt2 - 1, 18 * Ncv + 8) = -Ril(18 * Ncv + 8) 
  'Circuitaz. attuale 
   a(ind_dt2, ind_dt2) = 0 
   a(ind_dt2, ind_dt2 + 5 * Ncv) = 0 
   a(ind_dt2, 18 * Ncv + 6) = Ril(18 * Ncv + 6) 
   a(ind_dt2, 18 * Ncv + 8) = Ril(18 * Ncv + 8) 
  Case Ncv 
  'Circuitaz. precedente 
   a(Ncv - 1, Ncv) = 0 
   a(Ncv - 1, 6 * Ncv) = 0 
   a(Ncv - 1, 18 * Ncv + 6) = -Ril(18 * Ncv + 6) 
   a(Ncv - 1, 18 * Ncv + 8) = -Ril(18 * Ncv + 8) 
  'Circuitaz. attuale 
   a(Ncv, Ncv) = 0 
   a(Ncv, 6 * Ncv) = 0 
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   a(Ncv, 18 * Ncv + 6) = Ril(18 * Ncv + 6) 
   a(Ncv, 18 * Ncv + 8) = Ril(18 * Ncv + 8) 
  Case Else 
   Stop 
 End Select 
  
'Ncv+1 to 2Ncv ************************************************************************* 
'CIRCUITAZIONI DENTE H 
 
 For i = 1 To Ncv - 1 
  a(Ncv + i, Ncv + i) = -Ril(Ncv + i) 
  a(Ncv + i, 3 * Ncv + i) = -Ril(3 * Ncv + i) 
  a(Ncv + i, 6 * Ncv + i) = Ril(6 * Ncv + i) 
  a(Ncv + i, 6 * Ncv + 1 + i) = -Ril(6 * Ncv + 1 + i) 
 Next i 
  
 a(2 * Ncv, 2 * Ncv) = -Ril(2 * Ncv) 
 a(2 * Ncv, 4 * Ncv) = -Ril(4 * Ncv) 
 a(2 * Ncv, 7 * Ncv) = Ril(7 * Ncv) 
 a(2 * Ncv, 6 * Ncv + 1) = -Ril(6 * Ncv + 1) 
 
'2Ncv+1 to 3Ncv ************************************************************************ 
'CIRCUITAZIONI DENTE - DENTE (without AIRGAP) 
 
 For i = 1 To Ncv - 1 
  a(2 * Ncv + i, Ncv + i) = -Ril(Ncv + i) 
  a(2 * Ncv + i, 4 * Ncv + i) = Ril(4 * Ncv + i) 
  a(2 * Ncv + i, 4 * Ncv + 1 + i) = -Ril(4 * Ncv + 1 + i) 
  a(2 * Ncv + i, 6 * Ncv + i) = Ril(6 * Ncv + i) 
  a(2 * Ncv + i, 6 * Ncv + 1 + i) = -Ril(6 * Ncv + 1 + i) 
  a(2 * Ncv + i, 8 * Ncv + i) = -Ril(8 * Ncv + i) 
  a(2 * Ncv + i, 12 * Ncv + 1 + i) = -Ril(12 * Ncv + 1 + i) 
  a(2 * Ncv + i, 13 * Ncv + i) = -Ril(13 * Ncv + i) 
 Next i 
  
 a(3 * Ncv, 2 * Ncv) = -Ril(2 * Ncv) 
 a(3 * Ncv, 5 * Ncv) = Ril(5 * Ncv) 
 a(3 * Ncv, 4 * Ncv + 1) = -Ril(4 * Ncv + 1) 
 a(3 * Ncv, 7 * Ncv) = Ril(7 * Ncv) 
 a(3 * Ncv, 6 * Ncv + 1) = -Ril(6 * Ncv + 1) 
 a(3 * Ncv, 9 * Ncv) = -Ril(9 * Ncv) 
 a(3 * Ncv, 12 * Ncv + 1) = -Ril(12 * Ncv + 1) 
 a(3 * Ncv, 14 * Ncv) = -Ril(14 * Ncv) 
 
'3Ncv+1 to 4Ncv ************************************************************************ 
'CIRCUITAZIONI BASE DENTE - TRAFERRO - MAGNETE DX 
 
 For i = 1 To Ncv 
  a(3 * Ncv + i, i) = Ril(i) 
  a(3 * Ncv + i, 11 * Ncv + i) = -Ril(11 * Ncv + i) 
  a(3 * Ncv + i, 5 * Ncv + i) = Ril(5 * Ncv + i) 
  a(3 * Ncv + i, 9 * Ncv + i) = -Ril(9 * Ncv + i) 
  a(3 * Ncv + i, 13 * Ncv + i) = Ril(13 * Ncv + i) 
 Next i 
 
 If ind_dt <> 0 Then 
  a(3 * Ncv + ind_dt, ind_dt) = 0 
  a(3 * Ncv + ind_dt, 5 * Ncv + ind_dt) = 0 
  a(3 * Ncv + ind_dt, 18 * Ncv + 1) = Ril(18 * Ncv + 1) 
  a(3 * Ncv + ind_dt, 18 * Ncv + 3) = Ril(18 * Ncv + 3) 
 End If 
 
 If ind_dt2 <> 0 Then 
  a(3 * Ncv + ind_dt2, ind_dt2) = 0 
  a(3 * Ncv + ind_dt2, 5 * Ncv + ind_dt2) = 0 
  a(3 * Ncv + ind_dt2, 18 * Ncv + 5) = Ril(18 * Ncv + 5) 
  a(3 * Ncv + ind_dt2, 18 * Ncv + 7) = Ril(18 * Ncv + 7) 
 End If 
    
'4Ncv+1 to 5Ncv ************************************************************************ 
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'CIRCUITAZIONI BASE DENTE - TRAFERRO - MAGNETE SX 
 
 For i = 1 To Ncv 
  a(4 * Ncv + i, i) = -Ril(i) 
  a(4 * Ncv + i, 10 * Ncv + i) = Ril(10 * Ncv + i) 
  a(4 * Ncv + i, 5 * Ncv + i) = -Ril(5 * Ncv + i) 
  a(4 * Ncv + i, 7 * Ncv + i) = Ril(7 * Ncv + i) 
  a(4 * Ncv + i, 12 * Ncv + i) = Ril(12 * Ncv + i) 
 Next i 
 
'5Ncv+1 ******************************************************************************** 
'CIRCUITAZIONE HcS 
 For i = 1 To Ncv 
  a(5 * Ncv + 1, Ncv + i) = Ril(Ncv + i) 
 Next i 
  
'12Ncv+1 to 13Ncv ********************************************************************** 
'CIRCUITAZIONI DENTE - SEMIDENTE - SEMICAVA DX 
  
 For i = 1 To Ncv 
  a(12 * Ncv + i, 4 * Ncv + i) = Ril(4 * Ncv + i) 
  a(12 * Ncv + i, 6 * Ncv + i) = Ril(6 * Ncv + i) 
  a(12 * Ncv + i, 13 * Ncv + i) = -Ril(13 * Ncv + i) 
  a(12 * Ncv + i, 15 * Ncv + i) = -Ril(15 * Ncv + i) 
  a(12 * Ncv + i, 17 * Ncv + i) = -Ril(17 * Ncv + i) 
 Next i 
  
'13Ncv+1 to 14Ncv ********************************************************************** 
'CIRCUITAZIONI SEMICAVA SX LOW 
  
 For i = 1 To Ncv 
  'a(13 * Ncv + i, 4 * Ncv + i) = -Ril(4 * Ncv + i) 
  a(13 * Ncv + i, 12 * Ncv + i) = -Ril(12 * Ncv + i) 
  a(13 * Ncv + i, 13 * Ncv + i) = -Ril(13 * Ncv + i) 
  a(13 * Ncv + i, 14 * Ncv + i) = Ril(14 * Ncv + i) 
  a(13 * Ncv + i, 15 * Ncv + i) = -Ril(15 * Ncv + i) 
 Next i 
  
 '16Ncv+1 to 17Ncv ********************************************************************* 
 'CIRCUITAZIONI ALTA SEMICAVA - ALTO SEMIDENTE SX 
   
  For i = 1 To Ncv 
   a(16 * Ncv + i, 16 * Ncv + i) = Ril(16 * Ncv + i) 
   a(16 * Ncv + i, 6 * Ncv + i) = -Ril(6 * Ncv + i) 
  Next i 
    
 '17Ncv+1 to 18Ncv ********************************************************************* 
 'CIRCUITAZIONI ALTA SEMICAVA - ALTO SEMIDENTE DX 
   
  For i = 1 To Ncv 
   a(17 * Ncv + i, 6 * Ncv + i) = Ril(6 * Ncv + i) 
   a(17 * Ncv + i, 17 * Ncv + i) = -Ril(17 * Ncv + i) 
  Next i 
     
 '18Ncv+1 to 18Ncv+8 ******************************************************************* 
 'EQUAZIONI AGGIUNTIVE 
  
 If ind_dt <> 0 Then 
 'Circuitazione PRIMA discontinuità del magnete 
  a(18 * Ncv + 1, ind_dt) = Ril(ind_dt) 
  a(18 * Ncv + 1, 5 * Ncv + ind_dt) = Ril(5 * Ncv + ind_dt) 
  a(18 * Ncv + 1, 18 * Ncv + 4) = -Ril(18 * Ncv + 4) 
  a(18 * Ncv + 1, 18 * Ncv + 2) = -Ril(18 * Ncv + 2) 
  
 'Circuitazione SECONDA discontinuità del magnete 
  a(18 * Ncv + 2, 18 * Ncv + 2) = Ril(18 * Ncv + 2) 
  a(18 * Ncv + 2, 18 * Ncv + 1) = -Ril(18 * Ncv + 1) 
  a(18 * Ncv + 2, 18 * Ncv + 4) = Ril(18 * Ncv + 4) 
  a(18 * Ncv + 2, 18 * Ncv + 3) = -Ril(18 * Ncv + 3) 
 



The programming code - Part 1 
 

_________________________________________________________________ 

_________________________________________________________________ 

89 

 'NODI 7(2) 
  a(18 * Ncv + 3, 18 * Ncv + 2) = -1 
  a(18 * Ncv + 3, 18 * Ncv + 4) = 1 
 
 'NODI 7(3) 
  a(18 * Ncv + 4, 18 * Ncv + 1) = -1 
  a(18 * Ncv + 4, 18 * Ncv + 3) = 1 
  
 End If 
  
 If ind_dt2 <> 0 Then 
 'Circuitazione PRIMA discontinuità del magnete 
  a(18 * Ncv + 5, ind_dt2) = Ril(ind_dt2) 
  a(18 * Ncv + 5, 5 * Ncv + ind_dt2) = Ril(5 * Ncv + ind_dt2) 
  a(18 * Ncv + 5, 18 * Ncv + 8) = -Ril(18 * Ncv + 8) 
  a(18 * Ncv + 5, 18 * Ncv + 6) = -Ril(18 * Ncv + 6) 
 
 'Circuitazione SECONDA discontinuità del magnete 
  a(18 * Ncv + 6, 18 * Ncv + 6) = Ril(18 * Ncv + 6) 
  a(18 * Ncv + 6, 18 * Ncv + 5) = -Ril(18 * Ncv + 5) 
  a(18 * Ncv + 6, 18 * Ncv + 8) = Ril(18 * Ncv + 8) 
  a(18 * Ncv + 6, 18 * Ncv + 7) = -Ril(18 * Ncv + 7) 
  
 'NODI 7(2) 
  a(18 * Ncv + 7, 18 * Ncv + 6) = -1 
  a(18 * Ncv + 7, 18 * Ncv + 8) = 1 
 
 'NODI 7(3) 
  a(18 * Ncv + 8, 18 * Ncv + 5) = -1 
  a(18 * Ncv + 8, 18 * Ncv + 7) = 1 
 
 End If 
  
 Cells(4 + z, 31) = z 
 Cells(4 + z, 32) = maxdiffx * 100 
 
 z = z + 1 
  
Loop 
 
End Sub 
 
 
Public Function Induction(n, x_, Hlam, Blam) 
   
 'NON LINEARE 
  For i = 1 To 451 
   If Abs(x_) >= Hlam(i) And Abs(x_) <= Hlam(i + 1) Then 
    deltaBH = (Blam(i + 1) - Blam(i)) / (Hlam(i + 1) - Hlam(i)) 
    Induction = deltaBH * (Abs(x_) - Hlam(i)) + Blam(i) 
   End If 
  Next i 
  
  If Abs(x_) >= Hlam(452) Then 
   deltaBH = (Blam(452) - Blam(451)) / (Hlam(452) - Hlam(451)) 
   Induction = deltaBH * (Abs(x_) - Hlam(452)) + Blam(452) 
  End If 
   
End Function 
 
 
Public Function Magfield(n, x_, Hlam, Blam) 
   
 'NON LINEARE 
  For i = 1 To 451 
   If Abs(x_) >= Blam(i) And Abs(x_) <= Blam(i + 1) Then 
   deltaHB = (Hlam(i + 1) - Hlam(i)) / (Blam(i + 1) - Blam(i)) 
    Magfield = deltaHB * (Abs(x_) - Blam(i)) + Hlam(i) 
   End If 
  Next i 
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  If Abs(x_) >= Blam(452) Then 
   deltaHB = (Hlam(452) - Hlam(451)) / (Blam(452) - Blam(451)) 
   Magfield = deltaHB * (Abs(x_) - Blam(452)) + Hlam(452) 
  End If 
   
End Function 
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AAppppeennddiixx  AA22..22  
  

TTHHEE  PPRROOGGRRAAMMMMIINNGG  CCOODDEE  

PPaarrtt  22  
In the following, the programming code of the subroutine to determine the array 

of the stator ampere-turns distribution, to save in the file ASP_TOT.txt combined 

with the magnets distribution. Two versions are presented, a simpler one and a 

more elaborate one. 

  

AA22..22..11  TThhee  MMMMFF  aarrrraayy  ((ssiimmpplliiffiieedd  vveerrssiioonn))  
 
Const pi = 3.1415927 
 
Private Sub CommandButton1_Click() 
 
'INPUT 
  
 Ncv = Foglio2.Cells(4, 4) 
 npr = Foglio2.Cells(5, 4) 
 nsc = Foglio2.Cells(6, 4) 
 Taup = Foglio2.Cells(7, 4) 
 Taup = Taup * 0.001 
 Irms = Foglio2.Cells(8, 4) 
 adt = Foglio2.Cells(16, 4) 
 adt = adt * 0.001 
 havv = Foglio2.Cells(21, 4) 
 havv = havv * 0.001 
 ta = Foglio2.Cells(23, 4) 
 xm = Foglio2.Cells(24, 4) 
 xm = xm * 0.001 
 dx_cost = Foglio2.Cells(25, 4) 
 dx_cost = dx_cost * 0.001 
 dx = Foglio2.Cells(26, 4) 
 dx = dx * 0.001 
 ixm_max = Foglio2.Cells(27, 4) 
 fi_in = Foglio2.Cells(28, 4) 
 nfasi = Foglio2.Cells(30, 4) 
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 filepath = CStr(Foglio2.TextBox1.Text) 
  
 If ta <= 1 - havv / adt Then 
  MsgBox ("Valore di ta troppo basso!") 
  Stop 
 End If 
  
 f = 50 
 kw = 1 
 st = 2 
  
'Grandezze derivate 
 w = 2 * pi * f 
 n = 18 * Ncv + 8 
 kcir = adt * (1 - ta) / havv 
  
ReDim ordpr(1 To Ncv), ordsc(1 To Ncv) As Integer 
ReDim aI(1 To n), aIp(1 To n), aIs(1 To n), aI_p(1 To n), aM(1 To n), ASP(1 To n) As 
Double 
ReDim Ifse(1 To nfasi), Ifse_p(1 To nfasi) As Double 
 
 'Lettura del file relativo al I strato dell'avvolgimento statorico 
 Open filepath & "\ordpr.txt" For Input As #1 
  For i = 1 To Ncv 
   Input #1, ordpr(i) 
  Next i 
 Close #1 
 'Lettura del file relativo al II strato dell'avvolgimento statorico 
 Open filepath & "\ordsc.txt" For Input As #2 
  For i = 1 To Ncv 
   Input #2, ordsc(i) 
  Next i 
 Close #2 
 'Lettura del file contenente le amperspire equivalenti del magnete 
 Open filepath & "\aM(pp).txt" For Input As #3 
  For i = 1 To n 
   Input #3, aM(i) 
  Next i 
 Close #3 
    
 Open filepath & "\ASP_TOT.txt" For Output As #4 
    
For ixm = 1 To ixm_max 
   
 If Int(ixm / 2) <> ixm / 2 Then 
  'step di spostamento DISPARI: le correnti vengono calcolate 
  'secondo l'esatto valore istantaneo correlato alla posizione 
   
  'inizializzazione dell'array 
   For i = 1 To n 
    aI(i) = 0 
   Next i 
  
   'Andamento sinusoidale delle correnti 
    t = pi * xm / w / Taup 
 
   'Memorizzazione del valore delle correnti allo step precedente 
    For i = 1 To nfasi 
     Ifse_p(i) = Ifse(i) 
    Next i 
    For j = 1 To nfasi 
     Ifse(j) = -Sqr(2) * Irms * Cos(kw * w * t - (j - 1) * kw * st * 2 * pi / nfasi + 

fi_in) 
    Next j 
    
  'ARRAY AMPERSPIRE STATORICHE 
    
    For i = 1 To Ncv 
     aIp(i) = npr * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
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     aIs(i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
      
    For i = 1 To Ncv 
     aIp(Ncv + i) = 0 
     aIs(Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
     
    For i = 1 To Ncv 
     aIp(2 * Ncv + i) = npr * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     aIs(2 * Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
     
    For i = 1 To Ncv 
     aIp(12 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     aIs(12 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
     
     aIp(13 * Ncv + 1) = npr / 2 * Sgn(ordpr(Ncv)) * Ifse(Abs(ordpr(Ncv))) + npr / 2 * 

Sgn(ordpr(1)) * Ifse(Abs(ordpr(1))) 
     aIs(13 * Ncv + 1) = 0 
    For i = 2 To Ncv 
     aIp(13 * Ncv + i) = npr / 2 * Sgn(ordpr(i - 1)) * Ifse(Abs(ordpr(i - 1))) + npr / 2 

* Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     aIs(13 * Ncv + i) = 0 
    Next i 
     
     aIp(16 * Ncv + 1) = 0 
     aIs(16 * Ncv + 1) = nsc / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs(ordsc(Ncv))) 
    For i = 2 To Ncv 
     aIp(16 * Ncv + i) = 0 
     aIs(16 * Ncv + i) = nsc / 2 * Sgn(ordsc(i - 1)) * Ifse(Abs(ordsc(i - 1))) 
    Next i 
     
    For i = 1 To Ncv 
     aIp(17 * Ncv + i) = 0 
     aIs(17 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
     
   'composizione dei vettori dei due strati in un unico (ASP TOTALI STATORICHE) 
     
    For i = 1 To 3 * Ncv 
     aI(i) = aIp(i) + aIs(i) 
    Next i 
    For i = 12 * Ncv + 1 To 14 * Ncv 
     aI(i) = aIp(i) + aIs(i) 
    Next i 
    For i = 16 * Ncv + 1 To 18 * Ncv 
     aI(i) = aIp(i) + aIs(i) 
    Next i 
     
   'memorizzazione per lo step successivo 
   '(nel quale le correnti restano invariate) 
    For i = 1 To n 
     aI_p(i) = aI(i) 
    Next i 
     
    dx1 = dx_cost 
     
 Else 
  'step di spostamento PARI: le correnti vengono 
  'mantenute costanti per il calcolo della Fx 
     
    For i = 1 To n 
     aI(i) = aI_p(i) 
    Next i 
    
    dx1 = dx 
    
 End If 
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 'composizione vettore amperspire totali 
  For i = 1 To n 
   ASP(i) = aI(i) + aM(i) 
  Next i 
  
 'scrittura su file 
  For i = 1 To n 
   Print #4, ASP(i) 
  Next i 
   
  xm = xm + dx1 
   
Next ixm 
  
Close #4 
  
End Sub 
 

  

  

AA22..22..22  TThhee  MMMMFF  aarrrraayy  ((oorriiggiinnaall  vveerrssiioonn))  
 
Const pi = 3.1415927 
 
Private Sub CommandButton1_Click() 
 
'INPUT 
  
 Ncv = Foglio2.Cells(4, 4) 
 npr = Foglio2.Cells(5, 4) 
 nsc = Foglio2.Cells(6, 4) 
 Taup = Foglio2.Cells(7, 4) 
 Taup = Taup * 0.001 
 Irms = Foglio2.Cells(8, 4) 
 adt = Foglio2.Cells(16, 4) 
 adt = adt * 0.001 
 havv = Foglio2.Cells(21, 4) 
 havv = havv * 0.001 
 ta = Foglio2.Cells(23, 4) 
 xm = Foglio2.Cells(24, 4) 
 xm = xm * 0.001 
 dx_cost = Foglio2.Cells(25, 4) 
 dx_cost = dx_cost * 0.001 
 dx = Foglio2.Cells(26, 4) 
 dx = dx * 0.001 
 ixm_max = Foglio2.Cells(27, 4) 
 fi_in = Foglio2.Cells(28, 4) 
 nfasi = Foglio2.Cells(30, 4) 
  
 filepath = CStr(Foglio2.TextBox1.Text) 
  
 If ta <= 1 - havv / adt Then 
  MsgBox ("Valore di ta troppo basso!") 
  Stop 
 End If 
  
 f = 50 
 kw = 1 
 st = 2 
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'Grandezze derivate 
 w = 2 * pi * f 
 n = 18 * Ncv + 8 
 kcir = adt * (1 - ta) / havv 
  
ReDim ordpr(1 To Ncv), ordsc(1 To Ncv) As Integer 
ReDim aI(1 To n), aIp(1 To n), aIs(1 To n), aI_p(1 To n), aM(1 To n), ASP(1 To n) As 
Double 
ReDim Ifse(1 To nfasi), Ifse_p(1 To nfasi) As Double 
 
 'Lettura del file relativo al I strato dell'avvolgimento statorico 
 Open filepath & "\ordpr.txt" For Input As #1 
  For i = 1 To Ncv 
   Input #1, ordpr(i) 
  Next i 
 Close #1 
 'Lettura del file relativo al II strato dell'avvolgimento statorico 
 Open filepath & "\ordsc.txt" For Input As #2 
  For i = 1 To Ncv 
   Input #2, ordsc(i) 
  Next i 
 Close #2 
 'Lettura del file contenente le amperspire equivalenti del magnete 
 Open filepath & "\aM(pp).txt" For Input As #3 
  For i = 1 To n 
   Input #3, aM(i) 
  Next i 
 Close #3 
    
 Open filepath & "\ASP_TOT.txt" For Output As #4 
    
For ixm = 1 To ixm_max 
   
 
 If Int(ixm / 2) <> ixm / 2 Then 
  'step di spostamento DISPARI: le correnti vengono calcolate 
  'secondo l'esatto valore istantaneo correlato alla posizione 
   
  'inizializzazione dell'array 
   For i = 1 To n 
    aI(i) = 0 
   Next i 
  
   'Andamento sinusoidale delle correnti 
    t = pi * xm / w / Taup 
   'Memorizzazione del valore delle correnti allo step precedente 
    For i = 1 To nfasi 
     Ifse_p(i) = Ifse(i) 
    Next i 
    For j = 1 To nfasi 
     Ifse(j) = -Sqr(2) * Irms * Cos(kw * w * t - (j - 1) * kw * st * 2 * pi / nfasi + 

fi_in) 
    Next j 
    
  'ARRAY AMPERSPIRE STATORICHE 
    
    For i = 1 To Ncv 
     aIp(i) = npr * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     aIs(i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
      
    For i = 1 To Ncv 
     If (0 <= kcir) And (kcir <= 0.5) Then 
      aIp(Ncv + i) = 0 
      aIs(Ncv + i) = 2 * nsc * kcir * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     ElseIf (0.5 < kcir) And (kcir < 1) Then 
      aIp(Ncv + i) = (2 * npr * kcir - npr) * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
      aIs(Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     Else 
      aIp(Ncv + i) = npr * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
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      aIs(Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     End If 
    Next i 
     
    For i = 1 To Ncv 
     aIp(2 * Ncv + i) = npr * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     aIs(2 * Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
     
    For i = 1 To Ncv 
     aIp(12 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     aIs(12 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
    Next i 
     
    If (0 <= kcir) And (kcir <= 0.5) Then 
    'concatena in ogni caso sempre tutto il (I) 
     aIp(13 * Ncv + 1) = npr / 2 * Sgn(ordpr(Ncv)) * Ifse(Abs(ordpr(Ncv))) + npr / 2 * 

Sgn(ordpr(1)) * Ifse(Abs(ordpr(1))) 
    'concatena una parte del (II), a seconda del valore di ta 
     aIs(13 * Ncv + 1) = (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(Ncv)) * 

Ifse(Abs(ordsc(Ncv))) + (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(1)) * 
Ifse(Abs(ordsc(1))) 

    ElseIf (0.5 < kcir) And (kcir < 1) Then 
     aIp(13 * Ncv + 1) = 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(Ncv)) * 

Ifse(Abs(ordpr(Ncv))) + 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(1)) * 
Ifse(Abs(ordpr(1))) 

     aIs(13 * Ncv + 1) = 0 
    Else 
     aIp(13 * Ncv + 1) = 0 
     aIs(13 * Ncv + 1) = 0 
    End If 
    For i = 2 To Ncv 
     If (0 <= kcir) And (kcir <= 0.5) Then 
     'concatena in ogni caso sempre tutto il (I) 
      aIp(13 * Ncv + i) = npr / 2 * Sgn(ordpr(i - 1)) * Ifse(Abs(ordpr(i - 1))) + npr / 

2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
     'concatena una parte del (II), a seconda del valore di ta 
      aIs(13 * Ncv + i) = (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(i - 1)) * 

Ifse(Abs(ordsc(i - 1))) + (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(i)) * 
Ifse(Abs(ordsc(i))) 

     ElseIf (0.5 < kcir) And (kcir < 1) Then 
      aIp(13 * Ncv + i) = 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(i - 1)) * 

Ifse(Abs(ordpr(i - 1))) + 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(i)) * 
Ifse(Abs(ordpr(i))) 

      aIs(13 * Ncv + i) = 0 
     Else 
      aIp(13 * Ncv + i) = 0 
      aIs(13 * Ncv + i) = 0 
     End If 
    Next i 
     
    If (0 <= kcir) And (kcir <= 0.5) Then 
     aIp(16 * Ncv + 1) = 0 
     aIs(16 * Ncv + 1) = 2 * nsc * kcir / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs(ordsc(Ncv))) 
    ElseIf (0.5 < kcir) And (kcir < 1) Then 
     aIp(16 * Ncv + 1) = (2 * npr * kcir - npr) / 2 * Sgn(ordpr(Ncv)) * 

Ifse(Abs(ordpr(Ncv))) 
     aIs(16 * Ncv + 1) = nsc / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs(ordsc(Ncv))) 
    Else 
     aIp(16 * Ncv + 1) = npr / 2 * Sgn(ordpr(Ncv)) * Ifse(Abs(ordpr(Ncv))) 
     aIs(16 * Ncv + 1) = nsc / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs(ordsc(Ncv))) 
    End If 
    For i = 2 To Ncv 
     If (0 <= kcir) And (kcir <= 0.5) Then 
      aIp(16 * Ncv + i) = 0 
      aIs(16 * Ncv + i) = 2 * nsc * kcir / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     ElseIf (0.5 < kcir) And (kcir < 1) Then 
      aIp(16 * Ncv + i) = (2 * npr * kcir - npr) / 2 * Sgn(ordpr(i)) * 

Ifse(Abs(ordpr(i))) 
      aIs(16 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
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     Else 
      aIp(16 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
      aIs(16 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     End If 
    Next i 
     
    For i = 1 To Ncv 
     If (0 <= kcir) And (kcir <= 0.5) Then 
      aIp(17 * Ncv + i) = 0 
      aIs(17 * Ncv + i) = 2 * nsc * kcir / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     ElseIf (0.5 < kcir) And (kcir < 1) Then 
      aIp(17 * Ncv + i) = (2 * npr * kcir - npr) / 2 * Sgn(ordpr(i)) * 

Ifse(Abs(ordpr(i))) 
      aIs(17 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     Else 
      aIp(17 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))) 
      aIs(17 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i))) 
     End If 
    Next i 
     
   'composizione dei vettori dei due strati in un unico (ASP TOTALI STATORICHE) 
     
    For i = 1 To 3 * Ncv 
     aI(i) = aIp(i) + aIs(i) 
    Next i 
    For i = 12 * Ncv + 1 To 14 * Ncv 
     aI(i) = aIp(i) + aIs(i) 
    Next i 
    For i = 16 * Ncv + 1 To 18 * Ncv 
     aI(i) = aIp(i) + aIs(i) 
    Next i 
     
   'memorizzazione per lo step successivo 
   '(nel quale le correnti restano invariate) 
    For i = 1 To n 
     aI_p(i) = aI(i) 
    Next i 
     
    dx1 = dx_cost 
     
 Else 
  'step di spostamento PARI: le correnti vengono 
  'mantenute costanti per il calcolo della Fx 
    For i = 1 To n 
     aI(i) = aI_p(i) 
    Next i 
    
    dx1 = dx 
    
 End If 
 'composizione vettore amperspire totali 
  For i = 1 To n 
   ASP(i) = aI(i) + aM(i) 
  Next i 
 'scrittura su file 
  For i = 1 To n 
   Print #4, ASP(i) 
  Next i 
   
  xm = xm + dx1 
   
Next ixm 
  
Close #4 
  
End Sub 
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Fig. A2.2-1. The flow-chart of the algorithm 
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CChhaapptteerr  33  
  

  

  

PPRRIINNCCIIPPLLEESS  OOFF  
BBEEAARRIINNGGLLEESSSS  MMAACCHHIINNEESS  

  

  

  

33..11  IInnttrroodduuccttiioonn  

A bearingless motor is an electrical machine where the suspension and the 

centering of the rotor is provided by radial forces generated by the interactions 

between the magnetic fields acting in the airgap, avoiding the use of mechanical 

bearings and achieving in this way much higher maximum speed [1], as in [2] 

where is proposed a 60000 rpm motor for compressors and special pumps. In this 

way, the rotor is suspended and centered by a radial force distribution, suitably 

created by the interactions between different harmonic orders of the magnetic 

fields produced by the stator and rotor sources, whatever they are: in fact, the 
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principle can be applied to the permanent magnet surface-mounted synchronous 

machine [3], [4], [5], internal PM motors, induction motors. An interesting 

general method for a comparison of bearingless machines is presented in 

literature [6]: PM synchronous motors have the advantage that the control of 

rotation and levitation are independent, while the levitation force is weak. 

Conversely, induction motors produce a strong levitation force, but their 

efficiency is poor and the control of rotation and levitation are coupled. The 

internal permanent magnet (IPM) type bearingless motor represents a 

compromise, being characterized by strong levitation force and relatively easy 

control properties. 

The radial force are generated by creating an unbalanced flux density 

distribution in the airgap, which results in a magnetic force acting on the rotor. In 

fact, in this situation by summing the force vectors related to every pole, they 

give a not null resultant. On the contrary, in the electrical machines of 

conventional typology, the magnetic poles have equal flux density and hence 

equal magnitudes of the attractive forces, with a null vector sum of the radial 

forces. An unbalanced magnetic field distribution in a bearingless machine can 

be obtained by two different winding distributions: 

 

1) ‘Dual set of windings’, characterized by two systems of three-phase windings 

physically separated, one dedicated to the generation of tangential forces which 

produce torque, the other to the generation of the radial forces of levitation; a 

bearingless motor previously proposed in literature, presents a 2-pole radial force 

windings wounded in the stator of a 4-pole motor [1], could be applied to super 

high speed motors as well as induction and synchronous reluctance machines, as 

theorized in [7], [8]. An analysis and classification of 3-phase separated and 

concentrated windings bearingless machines is proposed by [9], which 

constitutes a relief in the design of this typology of motors. 
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2) ‘Single set of multiphase windings’, in which the two typologies of force are 

obtained from a single winding, exploiting the potential of multiphase motors to 

produce spatial harmonics of odd and even orders, by injecting different current 

space vectors: in this way two stator magnetic fields of different harmonic order, 

by acting with the rotor magnetic field, ensure one the suspension of the rotor, 

the other the generation of torque. In [10] is proposed a 6-phase induction 

machine with one set of windings instead of two sets of 3-phase windings, taking 

advantage of the multiple control degrees of freedom given by multiphase 

machines; [11] presents a 5-phase bearingless motor, explicating the principle of 

generating the torque and suspension forces by feeding two groups of currents 

projected into 2 orthogonal d-q planes. In the same paper is also presented a 

control system which estimates the parameters of the current levitation system by 

means of PID controllers, acquiring the position error of the rotor and estimates 

the parameters of the current motor system by means of a PI controller, acquiring 

the angular speed error. 

 

33..22  GGeenneerraall  PPrriinncciipplleess  ooff  MMaaggnneettiicc  FFoorrccee  GGeenneerraattiioonn  

Fig. 3.1 shows the cross section of a general bearingless motor under 

different operative conditions [1], [12]. In Fig. 3.1(a), the flux distribution is a 

symmetrical 4-pole, the flux paths around the conductors 4a being shown: the 

four pole flux wave a4ψ  produces alternating magnetic poles in the airgap. Since 

the flux distribution is symmetrical, the flux density distribution is identical, 

apart from the sign, in the airgap sections 1, 2, 3 and 4. There are attractive 

magnetic forces between the rotor poles and stator iron, which have identical 

amplitudes, but with equally distributed directions, so that the sum of radial force 
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acting on the rotor is zero. Fig. 3.1(b) shows the principle of radial force 

generation: a 2-pole winding, represented by conductors 2a, produces a magnetic 

flux a2ψ  having the same direction than the one generated from the 4-pole 

winding in the section 1, but having the opposite direction in section 3. In this 

way, the flux density will increase in section 1, while will be reduced in section 

3, generating a radial force F  according to the x -axis direction. It follows that 

the amplitude of the radial force increases as the current value in conductors 2a 

increases. Fig. 3.1(c) shows how a negative radial force in the x -axis direction is 

generated. The current in conductors 2a is reversed so that the flux density in 

airgap section 1 now decreases while that in airgap section 3 increases. Hence the 

magnetic force in airgap section 3 is larger than that in airgap section 1, 

producing a radial force in the negative x -axis direction. 

 
Fig. 3.1 

 

Fig. 3.2 shows the radial force generation in the y -axis direction. The conductors 

2b, which have an MMF direction along the y -axis, produce a flux through the 

airgap sections 2 and 4, thus resulting in a force along the y -axis. The polarity of 

the current will dictate the direction of the force. These are the principles of the 

radial force generation, being its value almost proportional to the current in the 
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windings 2a and 2b (assuming a constant 4-pole current). The vector sum of 

these two perpendicular radial forces can produce a radial force in whatever 

direction, with any amplitude. As an essential condition to generate radial forces, 

the difference of pole pair numbers of the motoring and levitation fields has to be 

1± . 

 
Fig. 3.2 

 

33..33  BBeeaarriinngglleessss  MMaacchhiinneess  wwiitthh  aa  DDuuaall  SSeett  ooff  WWiinnddiinnggss  

In [13] is presented an interesting analysis of a bearingless permanent 

magnet motor with a dual set of windings, reported in the following. The 4-pole 

magnetic field (produced by the torque current system) and the 2-pole magnetic 

field (produced by the levitation current system) are generated by separated, 

physically distinct, windings. This method allows to design the two windings 

independently, but has the disadvantage of reserving part of the copper surface in 

the slot to the levitation winding (Fig. 3.3), used to produce radial forces, causing 

in this way higher Joule losses to give the same torque output with respect to the 
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conventional electrical machines. 

 
Fig. 3.3 

With reference to Fig. 3.4, the additional 2-pole windings αN  and βN  are wound 

in the stator slots with the conventional 4-pole windings. The radial force is 

caused by the unbalanced distribution of the flux density in the airgap, caused by 

the existing interaction between the excitation flux Pψ , which flows in the 4 

poles and in the permanent magnets, and the flux generated by the 2-pole 

windings currents αi  and βi . 

The current αi , with a direction and orientation as in Fig. 3.4, generates the 

flux αψ . The flux density increases in the airgap section 2 and decreases in the 

airgap section 1, the radial force F is generated in the negative direction of the α  

axis. For simplicity, it will analyzed a model of two-phase machine. The current 

able to generate a magneto-motive force equal to that of the permanent magnets 

is represented as an equivalent current in the motor windings. The currents api  

and bpi , in the motor windings aN  and bN , are the sum of the actual 

components of the motor current with amplitude qI  and of the equivalent current 
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of permanent magnets with amplitude pI . 

 
Fig. 3.4. PM bearingless motor with a dual set of windings 

The currents can be written as: 

tcosItsinIi pqap ω+ω−= 22        (3.1) 

tsinItcosIi pqbp ω+ω= 22         (3.2) 

Where ω  represents the angular frequency If the bearingless motor is in open-

circuit operating condition qI  is about zero and can be neglected: 

tcosIi pap ω≅ 2           (3.3) 

tsinIi pbp ω≅ 2           (3.4) 

By defining apψ , bpψ , αψ , βψ  respectively as the 4-pole fluxes related to 
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windings aN , bN  and the 2-pole fluxes related to windings αN , βN , the 

relationships between them and the currents that flow in the motor and levitation 

windings can be written as: 
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Being 4L  and 2L  respectively the self-induction coefficients of motor and 

levitation windings, α  e β  the rotor displacements along the x  and y  axes, 'M  

the derivative of the mutual-induction coefficient, related to the coupling 

between motor and levitation windings with respect to rotor displacements. 

4L , 2L and M  are functions of the airgap lenght, number of turns and rotor 

dimension. By assuming a magnetic linear system, 'M  can be written as: 
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where 2n and 4n  are the real number of turns of the windings, l  is the axial 

length of the machine, r  is the internal stator radius, ml  the magnet thickness, gl  

the airgap length. Consequently, ( )gm ll +  represents the distance between the 

internal stator surface and external rotor surface. The stored magnetic energy mW  

can be expressed as: 
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The radial force produced by the interactions between the two windings and the 
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rotor magnetic field can be calculated in terms of its components αF  and βF  

along the axes direction α  e β : 

α∂
∂

=α
mW

F            (3.8) 

β∂
∂

=β
mW

F            (3.9) 

By executing the calculations is obtained: 
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It can be seen that the radial force is proportional to 'M  and to the equivalent 

current of the permanent magnets pI ; thus, if the factor pI'M  has an high value, 

the levitation windings current can be reduced. In order to do this, pI  and the 

magnet thickness are increased but, consequently, the total gap between rotor and 

stator grows causing a decreasing of 'M . 

So, it results very important to choose the right compromise between the 

optimum thickness of the permanent magnets and the motor performances. 

 
Fig. 3.5(a). 
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Fig. 3.5(b)-(c). 

 

In order to do this, was defined a performance index which correlates the radial 

force-versus-current ratio to the flux density in the airgap. In Fig. 3.5 is shown 

the cross-section of the examined permanent magnet bearingless motor, being R  

the rotor radius, sφ  and rφ  the angular positions along the stator and rotor 

periphery with respect to the α  axis, tω  the rotor angular displacement. 

The rotor iron core is made from the laminated silicon steels with the small 

projections. Permanent magnets are mounted on the surface of the rotor core as 

shown in Fig. 3.5(b). w  is the width of permanent magnets. 'w  is the width 

between the small projections. Then, an area 'S  between small projections and 

an area S  of a permanent magnet can be represented as l'w  and wl , 

respectively. Fig. 3.5(c) shows a magnetic equivalent circuit of the permanent 

magnet having width w . The magneto-motive force mF  of permanent magnet is 

given as 

r
m

m B
l

F
0μ

=           (3.11) 

where rB  is the remanent flux density of the permanent magnet, 0μ  is the air 
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permeability, gR  and mR , in Fig. 3.5(c) are the reluctances of mechanical airgap 

clearance and permanent magnet, respectively: 

S
l

R g
g

0μ
=            (3.12) 

S
l

R m
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0μ
=            (3.13) 

Neglecting magnetic saturation, slot ripples and permeance in the small 

projections, the flux linkage mψ , caused by permanent magnets can be written as 
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Therefore, peak values of the flux density B,, in the airgap can be written as 
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Let us define the terms mnl , and gnl , as rlm  and rlg ,respectively. These 

normalized lengths with respect to the stator inner radius can be used to derive 

the general expression of the peak air-gap flux density. Thus, gpB  can be 

rewritten as 
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Fig. 3.6 shows the relationships between mnl , and gpB , with parameters of gnl . 

The term 'SSBr  in the vertical axis is a constant determined by the remanent 
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flux density of permanent magnets and the area density of mounted permanent 

magnet. In the case of Sm-Co magnets, rB  = 1 T. The ratio 'SS  is equal to 1 if 

a cylindrical magnet is used, but it is slightly smaller than 1 if small permanent 

magnets are mounted on the surface of rotor iron core as shown in Fig. 3.5(b). 

The decrease in gnl , i.e. a reduction of the ratio of mechanical air-gap width gl  to 

radius r  of stator inner surface, and the increase in mnl , i.e. the ratio of 

permanent magnet thickness ml  to r  results in an increase in airgap flux density. 

The desired value of the peak airgap flux density is generally determined at a 

rated rotational speed and heat dissipation. 

 
Fig. 3.6. 

An important result achieved in [13], is given by analyzing the quantity radial 

force for unit current αα IF  as a function of the machine parameters: 

( )
( )2

2 12

gnmn

gnmnmnr

ll
lll

'S
SlBn

I
F

+

−−
=

α

α        (3.17) 

The first term of (3.17) depends on the number of turns of levitation windings, 
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the rotor stack length, the remanent flux density of permanent magnets, and the 

area density of mounted permanent magnet. Thus, is not possible to increase it 

without an increase in dimension or an improvement in materials. The second 

term is determined by ratios of permanent magnet thickness and mechanical 

airgap width to the radius of the stator inner surface. Radial force can be 

produced most efficiently when the second term has its maximum value. The 

question is if the airgap flux density value is to determine at rated motor speed 

and rated heat dissipation or for the optimal condition to produce radial forces. 

However, by differentiating (3.17) with respect to mnl , it can be found that 

αα IF  is maximum when gnmn ll = , i.e. radial forces can be produced most 

efficiently when permanent magnet thickness is equal to mechanical airgap width 

(Fig. 3.7). 

 
Fig. 3.7. 
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33..44  BBeeaarriinngglleessss  MMaacchhiinneess  wwiitthh  aa  SSiinnggllee  SSeett  ooff  

WWiinnddiinnggss  

It is known that a multiphase system of currents can be represented by 

using temporal sequences (if in sinusoidal alternating regime) or, more generally, 

by using space vectors of different orders (if in non-periodic regime). 

By controlling separately and in an appropriate manner various orders of 

the current space vectors it is possible, for example, to generate and control the 

torque produced by the motor with a certain order and to produce and control the 

suspension radial forces with other orders. 

The advantage of the single set of winding consists in the possibility of 

implementing both the above functions using a single winding, with a simpler 

construction process, without designing another one which subtracts a useful 

section of copper, with a reduction of power losses. In this type of machines is 

however necessary to provide asymmetric shortened pitch windings, in order to 

generate even harmonic orders in the magnetic fields that permit to create a radial 

forces distribution. 

This typology of windings has the disadvantage of reducing the available 

torque, so the designer must then find a compromise between the intensity of the 

radial force and the motor performances. 

In [11] is presented an interesting analysis of a bearingless permanent 

magnet motor with a single set of 5-phase windings, reported in the following. 

The two needed magnetic fields are produced by feeding two groups of currents 

which are projected into 2 orthogonal d-q planes respectively. 

The radial force acting on the rotor can be obtained from Maxwell stress 

tensor: 

σ= ( )22
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where the contribution of 2
tb  can be neglected with respect to 2

nb . By supposing 

that there are two revolving magnetic fields in the airgap B1 and B2: 

nb = 1B + 2B            (3.19) 

1B = ( )1111 ϕ+θ−ω ptcosB m         (3.20) 

2B = ( )2222 ϕ+θ−ω ptcosB m        (3.21) 

where 1p  and 2p  are their corresponding numbers of pole pair, 1ω  and 2ω  are 

their corresponding angular frequencies, and θ  is an arbitrary angle in stator 

surface. The horizontal and vertical force components are given by: 

θθσ= ∫α lrd)cos(F          (3.22) 

θθσ= ∫β lrd)sin(F          (3.23) 

where l is the length of the stack, and r is the radius of airgap. By combining the 

equations (3.19)-(3.21), then substituting in (3.18) and integrating by means of 

(3.22), (3.23), the projections of the force on the horizontal α  axis and vertical β  

axis are obtained. 
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So, it result that a radial force can be obtained when 121 ±= pp , and the force is 
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stable when 21 ω=ω . 

The Modified Winding Function Method is applied in order to analyze the 

magneto-motive force. In an n-phase symmetric system, the winding functions of 

each phase can be written as: 
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where nπ=ξ 2  and 1N , 2N , 3N  are coefficients of the winding function. The 

group of currents is defined as kI : 
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where kmI  is the amplitude of kI  and kφ is the initial phase of aki . The MMF 

wave of an n-phase symmetric system fed by kI  can be expressed as 
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Thus, the v -th harmonic mmf wave results: 
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From (3.29), the resultant MMF of 5-phase symmetrical windings can be shown 

in Tab. I. “F” and “B” indicate the harmonic orders of MMF rotating forward and 

backward respectively,“±” denotes a pulsating MMF. 

 

TABLE I. SPACE HARMONICS OF A 5-PHASE MOTOR 

 

In a 5-phase winding motor, 1I  generates 1 pole-pair revolving magnetic field in 

the airgap, 2I  generates 2 pole-pair revolving magnetic field when 02 ≠N .So 

the suspension force can be produced by the interaction of 1I  and 2I . 

In the analyzed machine, the 5-phase windings are identical and each of 

them is 72° displaced in angular space around the stator. Fig. 3.8 shows the 

windings configuration and the slots where a phase goes in, in capital letter, 

where goes out, in lowercase letter. The phases are star-connected, as can be seen 

in the same Fig. 3.8. 
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Fig. 3.8. 

Voltage equations in stationary reference frame are given by 

( )rsssss p ΨILIRU ++=         (3.30) 

where U , I  , R  , L  and Ψ  are matrices of voltage, current, resistance, 

inductance and flux linkage respectively, subscript s and r represent stator and 

rotor respectively, and p is the differential operator. 

A transformation has to be applied to equation (3.30) in order to express the 

voltages and currents of stator to synchronous reference frame, given by a matrix 

C  not reported here. The form of the voltage equations in the new reference 

frame results: 
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where rq1ψ , rd1ψ are the q- and d-axis flux linkages of rotor respectively. The 
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radial force acting on rotor can be calculated with Virtual Displacement Method: 
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being mrdrd Li 111 ψ= , mrqrq Li 111 ψ= , equivalent rotor currents and mL1 , mL2  

leakage winding inductances related to 1 pole pair and 2 pole pair fields. By 

developing (3.32), (3.33), the radial force can be seen as composed of two parts. 

One part is related to eccentricity: 

[ ] 2
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24
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while the other results independent of eccentricity, used to control the rotor 

suspension: 

)(
LLg

F mqmqmdmd
mm

1212
2102

1
ψψ+ψψ=α      (3.36) 

)(
LLg

F mqmqmdmd
mm

1212
2102

1
ψψ−ψψ=β      (3.37) 

where 0g  is the equivalent radial length of a uniform air gap, α  and β  are the 

displacement of rotor center. The fluxes which appear in (3.36), (3.37) are 
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defined as: 
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The rotor displacements in stationary reference frame are given by: 
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where m  and rG  are the mass and weight of rotor respectively. The “motor 

currents” command *
sqi 1  is generated from speed controller. Suspension force 

command *Fα , *Fβ   are generated by rotor displacement controller, after 

that,“levitation currents” commands *
sqi 2  *

sdi 2  are given by (3.41), (3.42), which 

are derived by (3.36), (3.37). Phase currents are given by the inverse 

transformation of *
sqi 1  *

sdi 1  and *
sqi 2  *

sdi 2 . 
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In the following, the main data of the proposed motor: mL1  = 36 mH, mL2  = 6.3 

mH, 10sL  = 1.3 mH, 20sL  = 1 mH, sr  = 1.1 Ω , fψ =1.05 Wb, J=0.012 kgm2, 

airgap thickness: 2 mm , magnet thickness 3mm , 0g  = 5mm. The airgap length 

between the rotor shaft and the touchdown bearing is 0.6 mm. In Fig. 3.9 is 

shown the control diagram of the 5-phase PM bearingless motor. 
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Fig. 3.9. 

Fig. 3.10 shows angular speed, torque and rotor displacement during the start up 

operation. The shaft results successfully suspended and the dynamic of rotor 

suspension is stable with radial displacement variations less than 50 μm . It is 

also obvious that the system has good speed-regulation performance. 

.  

Fig. 3.10. 
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33..55  RRoottoorr  eecccceennttrriicciittyy  

In bearingless machines, due to the fact that the rotor is not sustained by 

mechanical bearings, a rotor eccentricity is determined while the motor is 

operating and has to be compensated by the control system. This phenomenon 

leads to a variation in the values of the airgap flux density, as these resulting 

decrease in the areas where the airgap widens, and increase in the areas where the 

airgap is reduced, causing a similar behavior in the radial force distribution. 

 

Fig. 3.11 

In Fig. 3.11 is shown the reference system in which a simplified calculation [12] 

permits to take into account the eccentricity by writing the airgap width g  as a 

function of the angle sφ , that the line joining the effective rotor centre with the 

origin, describes with the x -axis: 

( ) sss sinycosxgg φ−φ−=φ 0        (3.43) 

being x  and y  the actual coordinates of the rotor centre. With the assumption of 

small displacements compared to the nominal airgap length 0g , is possible to 
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write: 
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φ ss
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gg 000
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and, consequently, to calculate the permeance 0P  in the generic angular position 

sφ : 
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being R  the rotor radius and l  the axial length. By using properly (3.45) in the 

equations of the machine, is possible to take into account the force variation with 

respect to rotor position. Two typologies of eccentricity can be defined in 

bearingless machines: 

• Static eccentricity: it occurs when the rotor is not centred in the stator 

bore; 

• Dynamic eccentricity: it occurs when the rotor is not rotating on the rotor 

axis but is rotating on the centre axis. 

Various authors developed models able to interpret and calculate the effects of 

eccentricity on the radial forces and on the rotor position. In [14] is presented, by 

using the nonlinear FEM and a theoretical analysis, an analytical model for 

calculating the levitation force under airgap eccentricity by means of the 

interaction between harmonic field components and a simplified modeling for 

levitation force control in bearingless induction machines; [15] describes a 

method for modeling a bearingless IPM motor, for calculating the forces on the 

rotor by using complex winding analysis and rotating field theory and comparing 

the results to FEA analysis; the model allows the introduction of levitation and 

main windings and rotor eccentricity. In [16] an analytical expression of the 

levitation force for an induction-type bearingless motor is proposed, taking into 
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account the rotor eccentricity, being its computation accuracy verified by 

ANSOFT. A real-time observation of magnetic levitation force can be realized, is 

then implemented a closed-loop control of levitation force on the basis of airgap-

flux-oriented decoupling control system of the bearingless motor. 

A very interesting work about the analysis of static and dynamic 

eccentricity is presented in [17], which refers to an analytical modeling technique 

for calculating the radial force on the rotor of a bearingless consequent-pole 

permanent magnet motor. The flexibility of the method permits to identify 

vibration components and calculate the force in various situations when the rotor 

is not centred in the bore, in case of either dynamic eccentricity, static 

eccentricity or when the rotor is vibrating. It also allows a calculations of the 

force in presence of a varying load or with load imbalance. The paper also 

studies the effects of winding design and gives a validation of the results using 

2D finite element analysis. 

Another particular work which could be applied also to the force 

calculation in bearingless machines is [18], where a general analytical model, 

formulated in 2-D polar coordinates, is developed to predict the unbalanced 

magnetic force, which results in permanent-magnet brushless ac and dc machines 

having a diametrically asymmetric disposition of slots and phase windings. The 

unbalanced magnetic force can be significant in machines having a fractional 

ratio of slot number to pole number, particularly when the electric loading is 

high. The developed model is validated by FE calculations on 9-slot/8-pole and 

3-slot/2-pole machines. Finally, [19] proposes a novel approach to control the 

rotor radial displacement in bearingless permanent-magnet-type synchronous 

motors, based on the relationship between radial displacement and radial 

suspension force. The rotor flux orientation is adopted to decouple the 

electromagnetic torque and the radial suspension force. This approach, which 

directly controls the rotor radial displacement, was applied by designing a 
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suitable control system. 

 

33..66  CCoonncclluussiioonn  

The main features and issues of bearingless machines were presented in 

this chapter, highlighting the potential of the multiphase single set of windings 

type, which surely represents the most effective design methodology to adopt in 

the future. In fact, it permits valid control strategies for suspending the rotor, for 

controlling the motor and, at the same time, for generating torque by using the 

properties of multiphase current systems, without the need of altering the 

physical structure of the machine by designing other groups of windings in 

addition to the main one. 

Thus, the focus of the activity in the next chapters will be on the analysis 

of this typology of bearingless machines. 
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CChhaapptteerr  44  
  

  

AANN  AANNAALLYYTTIICCAALL  MMEETTHHOODD  FFOORR  

CCAALLCCUULLAATTIINNGG  TTHHEE  

DDIISSTTRRIIBBUUTTIIOONN  OOFF  FFOORRCCEESS  IINN  AA  

BBEEAARRIINNGGLLEESSSS  MMUULLTTIIPPHHAASSEE  

SSUURRFFAACCEE--MMOOUUNNTTEEDD  PPMM  

SSYYNNCCHHRROONNOOUUSS  MMAACCHHIINNEE  
  

  

44..11  IInnttrroodduuccttiioonn  

Bearingless motors have the capability to achieve much higher maximum 

speed in comparison to conventional electrical machines [1],[2]. The typology 

“dual set windings”, has a main one which carries the ‘torque currents’ for 

driving the rotor and producing torque, while the other carries the ‘levitation 
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currents’, to suspend the rotor [3],[4]. Its advantages consist of a simpler 

construction process, higher flexibility in control strategy and relatively low 

power losses [5]. 

The typology “single set windings” produces torque and radial forces by 

means of injecting different current space vectors within the same winding to 

give odd and even harmonic orders of magnetic field, using the properties of 

multiphase current systems with multiple orthogonal d-q planes. One of them can 

be used to control the torque, as in [6]. The additional degrees of freedom can be 

used to produce levitation forces [7],[8]. 

An important development of this technology is expected to be in the 

design of electromechanical devices for More Electric Aircraft (MEA), mainly 

for the possibility of achieving higher speed in comparison to conventional 

electrical machines [9]. Also, it would be applicable in the aerospace field, where 

the lubricants of mechanical bearings evaporate in the presence of vacuum [10]. 

The multiphase motors with respect to conventional three-phase motors 

gives a series of advantages [11], in particular in the cases of high power, high 

reliability, low dc bus voltage and reduction of power losses in IGBT inverters 

[12] as it happens in ship propulsion, electrical vehicles and MEA applications.  

In the control system of multiphase bearingless motors is necessary to 

calculate the levitation current able to compensate the actual error in the rotor 

shaft position, thus the analytical function which correlates the applied currents 

to the resulting suspension force on the rotor. In order to do this and to simplify 

the problem, some authors consider only the interactions between the main 

harmonic orders of the stator and rotor magnetic fields, in the particular case of 

steady-state AC conditions, with sinusoidal systems of currents, as done in [7]; 

nevertheless, by proceeding in this way, a relevant error in the prediction of the 

force vector can be committed, because the interactions between higher harmonic 

orders of the magnetic fields acting on the rotor and the effect of the torque 
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current on the radial force are neglected. 

The aim of this chapter is to present a model allowing to predict amplitude 

and direction of the force for given values of the torque current, of the levitation 

current and of the rotor position [13], based on the space vectors method, being 

able to include in this way also the analysis of transients. 

For this purpose, a generalized analytical model for the calculation of 

radial forces in multiphase bearingless Surface-Mounted Permanent Magnet 

Synchronous Motors (SPMSM) is presented. The stator magnetic field is 

represented as the sum of separated contributions given by the different current 

space vectors. In this way it is possible to analyze the interactions between the 

torque current system, the levitation current system and the rotor magnetic field. 

In fact, in multiphase machines the combined effect of two stator current space 

vectors leads to a resulting levitation force which is sensibly different from that, 

foreseeable, produced by the currents in the separated windings of traditional 

bearingless machines. In Tab. I are shown all the possible interactions between 

the harmonic orders of the magnetic fields The results are compared with those 

of FE analysis to demonstrate their accuracy. 
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44..22  DDeeffiinniittiioonn  ooff  vvaarriiaabblleess  

In the following, is presented a list of the variables used in the equations 

and relationships of this chapter: 

 

θs Angular abscissa in the stator reference system 
ps Number of stator pole pairs 
pr Number of rotor pole pairs 
k1(2) Spatial harmonic order of the space vector 1 (2) stator field distribution 
h Spatial harmonic order of the rotor field distribution 
φ1(2) Phase of the current space vector 1 (2) 
n Half of the number of conductors in a slot 
δ Total airgap height 
g Airgap height 
Lm Magnet height 
q Number of slots per pole per phase 
kdk1(2) k-th harmonic component of the winding distribution factor related to the 

space vector 1 (2) 
γ Half of the coil pitch angle 
sv1(2) Order of the space vector 1 (2) 
Δθ Angular displacement between phase-1 axis and magnet axis 
Brem Remanent flux density of the magnets 
Kc Karter factor 
μ0 Magnetic permeability of the air 
μmr Relative magnetic permeability of the magnets 
αm Angle underlying the magnet pitch 
isv1(2) Amplitude of the current space vector 1 (2) 
r Mean airgap radius 
L Axial length of the machine 
BSk1(2) peak value of the k-th harmonic order of flux density distribution produced 

by current space vector 1 (2) 
BRh peak value of the h-th harmonic order of flux density distribution 

produced by rotor magnets 
nac Number of slots forming the coil pitch 
N0 Set of natural numbers including zero 
Nodd Set of odd natural numbers 
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44..33  AAnnaallyyssiiss  ooff  fflluuxx  ddeennssiittyy  ddiissttrriibbuuttiioonn  iinn  tthhee  aaiirrggaapp  

Considering 5 real variables x1,.., xl,.., x5, an associated set of complex 

variables 210 x,x,x  can be obtained by means of the following symmetrical linear 

transformations: 

( ) ( )210
5
2 5

1

1 ,,,xx
l

l
l =ρα= ∑

=

−ρ
ρ      (4.1) 

where ( )52 /jexp π=α . The inverse transformations of (4.1) are as follows: 

( ) ( )521
2
1

21

1
0 ..,,,l,xxx

,

l
l =α⋅+= ∑

=ρ

−ρ
ρ      (4.2) 

where the symbol “ · ” represents the scalar product, defined as the real part of 

the product between the first operand and the complex conjugate of the second. 

 
Fig. 4.1 
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The considered reference system is a cartesian one, whose axes x- (horizontal) 

and y- (vertical) have the origin in the motor shaft center, the y-axis coinciding 

with phase “1” axis (Fig. 4.1). The assumptions taken into account are: infinite 

iron permeability, current distribution concentrated at the slot opening, almost 

unitary relative permeability of the magnets. 

The method will be applied to SPMSM machine with 5 star-connected 

stator phase windings, symmetrically distributed within the stator slots: the 

windings are supposed to be shifted by 2π/5 electrical radians, with a single 

neutral point. According to (4.1) and (4.2), it is possible in this case to represent 

the currents system using 2 space vectors in different α - β planes, being the zero-

sequence component null because of the star-connection of the phases: 

( ) ( ) ( ) ( )tj
svsv

tj
svsv etii,etii 2

22
1

11
ϕϕ ==       (4.3) 

By applying (4.3) to (4.2) and by explicating some variables, the l-th phase 

current can be written as: 

( ) ( ) ( )
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1 ..,,,l,eieiii
lj

sv
lj

sv
,
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−
π

−
π

=ρ

−ρ
ρ∑   (4.4) 

By developing (4.4), it gives: 

( ) ( ) ( ) ( ) ( ) ( )521
5

41
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21 2211 ..,,,l,ltcosiltcositi svsvl =⎥⎦
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⎡ π
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⎡ π

−−ϕ=  

      (4.5) 

When the sv-th space vector current is flowing in the coils, the l-th phase of the 

motor produces a magnetic field distribution whose the radial component is given 

by (4.6): 

( ) ( ) ( ) ( ) ⎥⎦
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⎡ π
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with HMk defined as follows: 

( )γ
δπ

= ksinqkni
k

H dk
sv

Mk 2
4      (4.7) 

Note that the expanded Fourier harmonic series (4.6) contains odd and even 

orders, differently from the representations of the magnetic field distributions in 

the usual electrical machines, because of the particular location of the coils in the 

stator slots; (4.6) is also a function of the angular abscissa θs whose origin 

coincides with the y-axis, as shown in Fig. 4.1. 

By combining the relationship (4.6) considering all the phase currents, the k-th 

harmonic order Hsk of the 5-phase stator magnetic field, related to the current 

space vector sv, can be expressed as: 
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   (4.8) 

The total stator magnetic field is the summation of all the existing terms given by 

(4.8), depending on the value of k. The rotor magnetic field generated by the 

magnets can be written as: 

( ) [ ]θΔ−θ=θ ∑
∞

=
rsr

..,,h
Rhsr hphpcosHt,H

531

      (4.9) 

where HRh, BRM are defined as follows: 
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Two different current space vectors, one for torque production and the other for 

levitation (4.5), are injected: respectively sv1 and sv2, so that the resulting radial 

component of flux density in the airgap can be written by means of the principle 
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of superposition: 
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where the values of k1 and k2 follow the conditions explained in (4.8), and the 

amplitudes of the three distributions are defined as follows: 
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44..44  CCaallccuullaattiioonn  ooff  tthhee  ffoorrccee  aaccttiinngg  oonn  tthhee  rroottoorr  

The resulting force acting on the rotor can be determined by applying the 

Maxwell Stress Tensor method on a closed surface enveloping the frontal cross 

sections of the teeth in the stator: 

( ) t̂BBn̂Bt̂BHn̂BHBHT ntn
ntttnn

00

2

22
1

μ
+

μ
≅+−=     (4.15) 

Taking the normal and tangential components of flux density and of magnetic 

field into account and neglecting the term related to the product of tangential 

components, the expression of the elementary force Fd , acting at the angular 

abscissa θs on the elementary surface dS = Lrdθs, results: 

( ) ( ) ( ) ( ) ( ) t̂dSt,Bt,Bn̂dSt,BdSt,Tt,Fd snstsn
ss

00

2

2 μ
θθ

+
μ
θ

=θ=θ    (4.16) 

By substituting the expression of dS in (4.16), it gives: 

( ) t̂dBLrBn̂dLrBt,Fd

tdF

s
nt

ndF

s
n

s
4342143421

θ
μ

+θ
μ

=θ
00

2

2
      (4.17) 

where can be recognized the elementary normal component ndF  and the 

tangential component tdF . 

 

44..44..11  NNoorrmmaall  CCoommppoonneennttss  ooff  tthhee  FFoorrccee  

With the previous assumptions the resulting force acting on the rotor can 

be expressed as: 

( ) sssnsnxn dsint,BLrsindFF θθθ
μ

=θ= ∫∫
ππ 2

0

2

0

2

0 2
      (4.18) 
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( ) sssnsnyn dcost,BLrcosdFF θθθ
μ

=θ= ∫∫
ππ 2

0

2

0

2

0 2
      (4.19) 

Remember that the reference axis for the angle θs is the y-axis. Considering the 

integer values of k1, k2 and h that makes non-zero the related harmonic 

components of the flux densities in (4.11), we obtain six terms representing the 

square of Bn: 

( ) rhskrhskskskrhsksksn BBBBBBBBBt,B 2121
22

2
2

1
2 222 +++++=θ   (4.20) 

When integrating all the terms in (4.20), taking (4.18)-( 4.19) into account, it is 

important to consider that the components of forces have to be added in 

summation only for the existing harmonic orders of k1, k2 (k2'), which are related 

to the stator magnetic fields respectively given by the current space vectors sv1 

and sv2, and the existing harmonic orders of h, which are related to the rotor 

magnetic field. This fact is expressed by means of the pre-conditions (4.21)-

(4.23): 

0
11

5
Nsk v ∈

m            (4.21) 

0
22

0
22

55
Nsk,Nsk v

'
v ∈∈

mm         (4.22) 

oddNh ∈             (4.23) 

In (4.22) it is highlighted the interaction between different harmonic orders of the 

same current space vector sv2: in fact, as will be clear later, some components of 

the force depend on this phenomenon. 

In Tab. I are presented all the possible interactions, in this case until the 

18-th order for reasons of brevity, determined by using the equations (4.21), 

(4.22), (4.23). By performing the calculations (4.19) and considering term by 

term of (4.20): 
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TABLE I. INTERACTIONS BETWEEN HARMONIC 
ORDERS 

 

 

( ) ( ) ( )[ ] ssssSkssssk
a

yn dcostkpcosBLrdcost,BLrF θθϕθ
μ

=θθθ
μ

= ∫∫
ππ 2

0

22

0

2

0

2

0 22
m  

      (4.24) 

By considering that: 

( ) ( )
2

212 α+
=α

coscos       (4.25) 

Applying (4.25) to (4.24), it gives: 

( ) ( )[ ] ssss
Sk

ss
Ska

yn dcostkpcosLrBdcosLrBF θθϕθ
μ

+θθ
μ

= ∫∫
ππ 2

00

22

00

2
22

44
m   (4.26) 

By considering that: 

( ) ( ) ( ) ( )
2

β−α+β+α
=βα

coscoscoscos       (4.27) 

Applying (4.27) to (4.26), it gives: 
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( ) ( ) ( )[ ] ( ) ( )[ ] sss
Sk

sss
Ska

yn dtkpcosLrBdtkpcosLrBF θϕθ−
μ

+θϕθ+
μ

= ∫∫
ππ 2

00

22

00

2
212

8
212

8
mm

      (4.28) 

 
( ) ( )[ ][ ]

( )[ ][ ]
⎭
⎬
⎫

ϕθ−
−

+

⎩
⎨
⎧

+ϕθ+
+μ

=

π

π

2
0

2
0

0

2

212
12

1

212
12

1
8

m

m

ss
s

ss
s

Ska
yn

kpsin
kp

kpsin
kp

LrBF
    (4.29) 

( ) ( )[ ] [ ][ ]

( )[ ] [ ][ ] 022122
12

1

22122
12

1
8 0

2

=
⎭
⎬
⎫

ϕ−ϕ−π
−

+

+
⎩
⎨
⎧

ϕ−ϕ+π
+μ

=

mm

mm

sinkpsin
kp

sinkpsin
kp

LrBF

s
s

s
s

Ska
yn

 (4.30) 

Note that, being both 12 +skp  and 12 −skp  integer numbers, the angular 

arguments in (4.30) differ by integer multiples of π2 , thus the sinusoidal 

functions assume the same value and their difference is equal to zero. 

Hence, the contribution of the terms in the form (4.24) to the y-component of the 

force is zero: 

( ) ( ) [ ] 0
22

2

0
11

22
1

0

2

0

2
1

0
=θθϕθ

μ
=θθθ

μ
= ∫∫

ππ

ssssSkssssk
a

yn dcospkcosBLrdcost,BLrF m

      (4.31) 

For the same reason, the similar quadratic term related to the space vector sv2 and 

the one related to the rotor magnetic field give a null result (4.32), (4.33): 

( ) ( ) [ ] 0
22

2

0
22

22
2

0

2

0

2
2

0
=θθϕθ

μ
=θθθ

μ
= ∫∫

ππ

ssssSkssssk
b

yn dcospkcosBLrdcost,BLrF m

      (4.32) 

( ) ( ) ( )[ ] 0
22

2

0

22

0

2

0

2

0
=θθθΔ−θ

μ
=θθθ

μ
= ∫∫

ππ

sssrRhsssrh
c

yn dcoshpcosBLrdcost,BLrF

      (4.33) 



An analytical method for calculating the distribution of forces in a bearingless 
multiphase surface-mounted pm synchronous machine 

_________________________________________________________________ 

_________________________________________________________________ 

139 

Now, examine the fourth term of (4.20): 

( ) ( ) ( )

[ ] [ ] ssssssSkSk

sssskssk
d

yn

dcospkcospkcosBBLr

dcost,Bt,BLrF

θθϕθϕθ
μ

=

=θθθθ
μ

=

∫

∫
π

π

22
2

0
1121

0

2
2

0
1

0
2

2

mm

  

      (4.34) 

By applying (4.27): 

( ) ( )[ ]

( )[ ]
⎭
⎬
⎫θθϕ±ϕθ−+

+
⎩
⎨
⎧ θθϕϕθ+

μ
=

∫

∫
π

π

sssss

sssssSkSk
d

yn

dcospkpkcos

dcospkpkcosBBLrF

2

0
2121

2

0
212121

0

2
1

2
1

m

mm

 (4.35) 

Repeating the same process (4.27) in both the integrals of (4.35): 

( ) ( )[ ]

( )[ ]

( )[ ]

( )[ ]
⎭
⎬
⎫θϕ±ϕθ−−+

+θϕ±ϕθ+−+

+θϕϕθ−++

+
⎩
⎨
⎧ θϕϕθ++

μ
=

∫

∫
∫

∫

π

π

π

π

ssss

ssss

ssss

ssssSkSk
d

yn

dpkpkcos

dpkpkcos

dpkpkcos

dpkpkcosBBLrF

2

0
2121

2

0
2121

2

0
2121

2

0
212121

0

1
2
1

1
2
1

1
2
1

1
2
1

2

m

m

mm

mm

 (4.36) 

We make the assumption (4.37), that according to (4.36) gives the relationship 

(4.38) and consequently (4.39): 

ssss pkpkpkpk 1221 101 +=⇒=+−       (4.37) 

( ) ( )[ ]

[ ]

[ ] [ ]
⎭
⎬
⎫θϕ±ϕθ−+θϕ±ϕ+

+θϕϕθ+

+
⎩
⎨
⎧ θϕϕθ+

μ
=

∫∫

∫

∫

ππ

π

π

sss

sss

sssSkSk
d

yn

dcosdcos

dpkcos

dpkcosBBLrF

2

0
21

2

0
21

2

0
211

2

0
21121

0

2
2
1

2
1

2
2
1

12
2
1

2

mm

mm

mm

  (4.38) 
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( )
( ) ( )[ ][ ]

[ ][ ] ( ) [ ]
⎭
⎬
⎫ϕ±ϕθ−−ϕ±ϕπ+ϕϕθ+

⎩
⎨
⎧

+ϕϕθ+
+μ

=

ππ

π

2
02121

2
0211

1

2
0211

1
21

0

2
2
122

2
1

12
12

1
4

mmmm

mm

sss
s

ss
s

SkSk
d

yn

sincospksin
pk

pksin
pk

BBLrF

      (4.39) 

As observed above, the first, second and fourth terms in (4.39) have a null result, 

being the difference of sine functions with multiples arguments of π2 . The only 

term different from zero is the third, not depending on the integration variable 

sθ . Finally, the result of the integral (4.34), under the hypothesis (4.37) is: 

( ) ( ) 1if
2 212121

0
−=−ϕ±ϕ

μ
π

= ssSkSk
d

yn pkpkcosBBLrF m    (4.40) 

We make the assumption (4.41), that according to (4.36) gives the relationship 

(4.42): 

ssss pkpkpkpk 1221 101 +−=⇒=−−       (4.41) 

( ) [ ]

( )[ ]

[ ] [ ]
⎭
⎬
⎫θϕ±ϕ+θϕ±ϕθ+

θϕϕθ−+

⎩
⎨
⎧ θϕϕθ

μ
=

∫∫

∫

∫

ππ

π

π

sss

sss

sssSkSk
d

yn

dcosdcos

dpkcos

dpkcosBBLrF

2

0
21

2

0
21

2

0
211

2

0
21121

0

2
12

2
1

12
2
1

2
2
1

2

mm

mm

mm

 (4.42) 

( ) ( )[ ]

( ) ( )[ ][ ]

( ) ( )
⎪⎭

⎪
⎬
⎫

ϕ±ϕπ+⎥⎦
⎤

⎢⎣
⎡ ϕ±ϕθ+

+ϕϕθ−
−

+

+
⎩
⎨
⎧

ϕϕθ
μ

=

π

π

π

21

2

0
21

2
0211

1

2
0211

1
21

0

22
2
1

12
12

1

2
2

1
4

mm

mm

mm

cossin

pksin
pk

pksin
pk

BBLrF

s

ss
s

ss
s

SkSk
d

yn

   (4.43) 

With very similar conclusions of the other assumption, the result of the integral 

(4.34), under the hypothesis (4.41) is: 
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( ) ( ) 1if
2 212121

0
=−ϕ±ϕ

μ
π

= ssSkSk
d

yn pkpkcosBBLrF m    (4.44) 

Note that the assumptions regarding the sum of the numbers of pole pairs, shown 

in (4.45), (4.46) are not examined because they don’t correspond to real cases, 

being impossible to occur. 

101 2121 =+⇒=−+ ssss pkpkpkpk       (4.45) 

101 2121 −=+⇒=++ ssss pkpkpkpk       (4.46) 

So, the final form of the y-projection of the normal component of the force, 

related to the d factor of (4.20), is given by: 

( ) ( )

0
22

0
11

21

21
2121

0

:with

1if
1if

2

N
m

skN
m

sk

pkpk
pkpk

cosBBLrF

vv

ss

ss
SkSk

d
yn

∈∧∈

⎩
⎨
⎧

=−
−=−

ϕ±ϕ
μ

π
=

mm

m

  (4.47) 

It is very important to observe that the signs of the conditions of existence have 

to be accorded to signs of the angular phases in the same order that appears in 

(4.47). Performing similar calculations, by integrating the e and f factors in (4.20) 

which refer to the interactions between every single stator current space vector 

and the rotor field produced by the magnets, the following relationships can be 

found: 

 

( ) ( )

odd
v

rs

rs
rRhSk

e
yn

NhN
m

sk

hppk
hppk

hpcosBBLrF

∈∧∈

⎩
⎨
⎧

=−
−=−

ϕθΔ
μ

π
=

0
11

1

1
11

0

:with

1if
1if

2

m

m

  (4.48) 
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( ) ( )

odd
v

rs

rs
rRhSk

f
yn

NhN
m

sk

hppk
hppk

hpcosBBLrF

∈∧∈

⎩
⎨
⎧

=−
−=−

ϕθΔ
μ

π
=

0
22

2

2
22

0

:with

1if
1if

2

m

m

  (4.49) 

By adding up all the non-zero terms of the y-projection of the normal component 

of the force, is obtained: 

( ) ( )

0
22

0
11

0
1

2

0
1

2

1
2121

0

21

:with

1

1

2

N
m

sk
N

m
sk

N
p

pk
k

N
p

pk
k

cosBBLrF

vv

s

s

s

s

k
SkSk

k,k
yn

∈∧∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
+−

=

∈
+

=

∀ϕ±ϕ
μ

π
= ∑

mm

m

 (4.50) 

( ) [ ]

0
11

1

1

1
11

0

1

:with

1

1

2

N
m

sk

N
p

pk
h

N
p

pk
h

hpcosBBLrF

v

odd
r

s

odd
r

s

k
rRhSk

h,k
yn

∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
+−

=

∈
+

=

∀ϕθΔ
μ

π
= ∑

m

m

 (4.51) 

( ) [ ]

0
22

2

2

2
22

0

2

:with

1

1

2

N
m

sk

N
p

pk
h

N
p

pk
h

hpcosBBLrF

v

odd
r

s

odd
r

s

k
rRhSk

h,k
yn

∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
+−

=

∈
+

=

∀ϕθΔ
μ

π
= ∑

m

m

 (4.52) 

( ) [ ]

0
22

0
22

0
2

2

0
2

2

2
2222

0

22

:with

1

1

2

N
m

sk
N

m
sk

N
p

pk
k

N
p

pk
k

cosBBLrF

v
'

v

s

s'

s

s'

k
''SkSk

'k,k
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∈∧∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
+−

=

∈
+

=

∀ϕ±ϕ
μ

π
= ∑

mm

m

(4.53) 
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The equations (4.53) represent a typology of interaction not explicated in (4.20): 

it is the influence between different harmonic orders belonging to the same 

current space vector 2vs , denoted with 2k  and 'k2 . In fact, it happens in the 

analyzed bearingless machine that some harmonic orders of 2vs   exist, whose 

number of pole pairs differ of 1± : in this case, they also give a contribution to 

the resultant force. Is important to note that the phase angle '2ϕ  in (4.53) 

represents exactly the same phase angle 2ϕ , being only a formal distinction 

which indicates that the sign of '2ϕ  depends on the existing harmonic order 'k2 , 

while the sign of 2ϕ  is obviously related to 2k : in this way the argument of the 

function cosine in (4.53) has to be understood as the algebraic sum of the same 

variable 2ϕ , resulting in a 0 , 22ϕ  or 22ϕ− . Finally, the resultant y-projection of 

the normal component of the force transmitted to the rotor is the sum of the 

equations (4.50), (4.51), (4.52), (4.53): 

( ) ( ) ( ) ( )'k,k
yn

h,k
yn

h,k
yn

k,k
ynyn FFFFF 222121 +++=       (4.54) 

A similar calculation can be performed to determine the resultant x-projection, by 

considering term by term of (4.20) integrating with (4.18): 

( ) ( ) ( )[ ] ssssSkssssk
a

xn dsintkpcosBLrdsint,BLrF θθϕθ
μ

=θθθ
μ

= ∫∫
ππ 2

0

22

0

2

0

2

0 22
m  

      (4.55) 

By applying (4.25) to (4.55), it gives: 

( ) ( )[ ] ssss
Sk

ss
Ska

xn dsintkpcosLrBdsinLrBF θθϕθ
μ

+θθ
μ

= ∫∫
ππ 2

00

22

00

2
22

44
m   (4.56) 

By considering that: 

( ) ( ) ( ) ( )
2

β−α−β+α
=βα

sinsinsincos       (4.57) 
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By applying (4.57) to (4.56), it gives: 

( ) ( ) ( )[ ] ( ) ( )[ ] sss
Sk

sss
Ska

xn dtkpsinLrBdtkpsinLrBF θϕθ−
μ

−θϕθ+
μ

= ∫∫
ππ 2

00

22

00

2
212

8
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8
mm

      (4.58) 

( ) ( )[ ][ ]

( )[ ][ ]
⎭
⎬
⎫

ϕθ−−
−

−

+
⎩
⎨
⎧

ϕθ+−
+μ

=

π

π

2
0

2
0

0

2

212
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1

212
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1
8

m

m

ss
s
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s

Ska
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LrBF
    (4.59) 

( ) ( )[ ] [ ][ ]

( )[ ] [ ][ ] 022122
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1

22122
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1
8 0

2

=
⎭
⎬
⎫

ϕ+ϕ−π−
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−

+
⎩
⎨
⎧
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=
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s
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s
s

Ska
xn

 (4.60) 

In a very similar way to the equation (4.30), being both 12 +skp  and 12 −skp  

integer numbers, the arguments of the cosines in (4.60) differ by integer 

multiples of π2 , thus they assume the same value and their difference is equal to 

zero. Hence, the contribution of the terms in the form (4.55) to the x-component 

of the force is zero: 

( ) ( ) [ ] 0
22

2

0
11

22
1

0

2

0

2
1

0
=θθϕθ

μ
=θθθ

μ
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ππ

ssssSkssssk
a

xn dsinpkcosBLrdsint,BLrF m

      (4.61) 

For the same reason, the similar quadratic term related to the space vector sv2 and 

the one related to the rotor magnetic field give a null result (4.62), (4.63): 

( ) ( ) [ ] 0
22

2

0
22

22
2

0

2

0

2
2

0
=θθϕθ

μ
=θθθ

μ
= ∫∫

ππ

ssssSkssssk
b
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      (4.62) 

( ) ( ) ( )[ ] 0
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0
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2
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μ
=θθθ

μ
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ππ

sssrRhsssrh
c

xn dsinhpcosBLrdsint,BLrF

      (4.63) 
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By integrating the fourth term of (4.20): 

( ) ( ) ( )

[ ] [ ] ssssssSkSk

sssskssk
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 (4.64) 

By applying (4.27) to (4.64): 
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 (4.65) 

By applying (4.57) to both the integrals of (4.65): 
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 (4.66) 

We make the assumption (4.67), that according to (4.66) gives the relationship 

(4.68) and, consequently, (4.69): 

ssss pkpkpkpk 1221 101 +=⇒=+−       (4.67) 
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( )
( ) ( )[ ][ ]

[ ][ ]

( ) [ ]
⎭
⎬
⎫ϕ±ϕθ−+ϕ±ϕπ+

+ϕϕθ+

⎩
⎨
⎧

+ϕϕθ+−
+μ

=

π

π

π

2
02121

2
0211

1

2
0211

1
21

0

2
2
12

2
2

1

12
12

1
4

mm

mm

mm

s

ss
s

ss
s

SkSk
d

xn

cossin

pkcos
pk

pkcos
pk

BBLrF

 (4.69) 

The first, second and fourth terms in (4.69) have a null result, being differences 

between cosines with arguments multiples of π2 . The only term different from 

zero is the third, not depending on the integration variable sθ . Finally, the result 

of the integral (4.64), under the hypothesis (4.67) is: 

( ) ( ) 1if
2 212121

0
−=−ϕ±ϕ

μ
π

= ssSkSk
d

xn pkpksinBBLrF m   (4.70) 

We make the assumption (4.71), that according to (4.66) gives the relationship 

(4.72) and, consequently, (4.73): 

ssss pkpkpkpk 1221 101 +−=⇒=−−       (4.71) 

( ) [ ]

( )[ ]

[ ] [ ]
⎭
⎬
⎫θϕ±ϕ−θϕ±ϕθ+

θϕϕθ−−

+
⎩
⎨
⎧ θϕϕθ

μ
=

∫∫

∫

∫

ππ

π

π

sss

sss

sssSkSk
d

xn

dsindsin

dpksin

dpksinBBLrF

2

0
21

2

0
21

2

0
211

2

0
21121

0

2
12

2
1

12
2
1

2
2
1

2

mm

mm

mm

 (4.72) 

( ) ( )[ ]

( ) ( )[ ][ ]

( ) ( )
⎪⎭

⎪
⎬
⎫

ϕ±ϕπ−⎥⎦
⎤

⎢⎣
⎡ ϕ±ϕθ−

ϕϕθ−
−

+

⎩
⎨
⎧

ϕϕθ−
μ

=

π

π

π

21

2

0
21

2
0211

1

2
0211

1
21

0

22
2
1

12
12

1

2
2

1
4

mm

mm

mm

sincos

pkcos
pk

pkcos
pk

BBLrF

s

ss
s

ss
s

SkSk
d

xn

 (4.73) 

With very similar conclusions of the other assumption, the result of the integral 
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(4.64), under the hypothesis (4.71) is: 

( ) ( ) 1if
2 212121

0
=−ϕ±ϕ

μ
π

−= ssSkSk
d

xn pkpksinBBLrF m   (4.74) 

As done before, the assumptions regarding the sum of the numbers of pole pairs, 

replicated in (4.75), (4.76) are not examined because they don’t correspond to 

real cases. 

101 2121 =+⇒=−+ ssss pkpkpkpk       (4.75) 

101 2121 −=+⇒=++ ssss pkpkpkpk       (4.76) 

So, the final form of the x-projection of the normal component of the force, 

related to the d factor of (4.20), is given by: 

( )
( )

( )

0
22

0
11

212121
0

212121
0

:with

1if
2

1if
2

N
m

sk
N

m
sk

pkpksinBBLr

pkpksinBBLr

F

vv

ssSkSk

ssSkSk
d

xn

∈∧∈

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−ϕ±ϕ
μ

π
−

−=−ϕ±ϕ
μ

π

=

mm

m

m

  (4.77) 

As said before, the signs of the conditions of existence have to be accorded to 

signs of the angular phases in the same order that appears in (4.77). Note that the 

sign of the x-component changes depending on the condition to be verified (4.67) 

or (4.71), differently from the y-component (4.47). 

 By integrating the e and f factors of (4.20) in a very similar way to what 

has been done for d, the interactions between every single stator current space 

vector and the rotor field produced by the magnets can be expressed as: 
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( )
[ ]

[ ]

odd
v

rsrRhSk

rsrRhSk
e

xn

NhN
m

sk

hppkhpsinBBLr

hppkhpsinBBLr

F

∈∧∈

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−ϕθΔ
μ

π
−

−=−ϕθΔ
μ

π

=

0
11

111
0

111
0

:with

1if
2

1if
2

m

m

m

  (4.78) 

( )
[ ]

[ ]

odd
v

rsrRhSk

rsrRhSk
f

xn

NhN
m

sk

hppkhpsinBBLr

hppkhpsinBBLr

F

∈∧∈

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−ϕθΔ
μ

π
−

−=−ϕθΔ
μ

π

=

0
22

222
0

222
0

:with

1if
2

1if
2

m

m

m

  (4.79) 

By adding up all the non-zero terms of the x-projections of the normal 

component of the force, is obtained: 

( )

[ ]

[ ]

0
22

0
11

1
2

1
2121

0

1
2

1
2121

0
21

:with

1
2

1
2

N
m

sk
N

m
sk

N
p

pk
ksinBBLr

N
p

pk
ksinBBLr

F

vv

s

s

k
SkSk

s

s

k
SkSk

k,k
xn

∈∧∈

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈
+−

=∀ϕ±ϕ
μ

π
−

∈
+

=∀ϕ±ϕ
μ

π

=

∑

∑

mm

m

m

 (4.80) 

( )
[ ]

[ ]

odd
v

odd
r

s

k
rRhSk

odd
r

s

k
rRhSk

h,k
xn

NhN
m

sk

N
p

pk
hhpsinBBLr

N
p

pk
hhpsinBBLr

F

∈∧∈

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈
+−

=∀ϕθΔ
μ

π
−

∈
+

=∀ϕθΔ
μ

π

=

∑

∑

0
11

1

1
11

0

1

1
11

0
1

:with

1
2

1
2

m

m

m

(4.81) 
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( )
[ ]

[ ]

odd
v

odd
r

s

k
rRhSk

odd
r

s

k
rRhSk

h,k
xn

NhN
m

sk

N
p

pk
hhpsinBBLr

N
p

pk
hhpsinBBLr

F

∈∧∈

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈
+−

=∀ϕθΔ
μ

π
−

∈
+

=∀ϕθΔ
μ

π

=

∑

∑

0
22

2

2
22

0

2

2
22

0
2
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1
2

1
2

m

m

m

 
      (4.82) 

( )

[ ]

[ ]

0
22

0
22

2
2

2
2222

0

2
2

2
2222

0
22

:with

1
2

1
2

N
m

sk
N

m
sk

N
p

pk
ksinBBLr

N
p

pk
ksinBBLr

F

v
'

v

s

s'

k
''SkSk

s

s'

k
''SkSk

'k,k
xn

∈∧∈

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈
+−

=∀ϕ±ϕ
μ

π
−

∈
+

=∀ϕ±ϕ
μ

π

=

∑

∑

mm

m

m

 
      (4.83) 

The same considerations done for the equation (4.53), related to the meaning of 

2k  and 'k2 , are valid for (4.83). So, the resultant x-projection of the normal 

component of the force transmitted to the rotor is the sum of the equations (4.80), 

(4.81), (4.82), (4.83), taking into account all the presented assumptions: 

( ) ( ) ( ) ( )'k,k
xn

h,k
xn

h,k
xn

k,k
xnxn FFFFF 222121 +++=       (4.84) 
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44..44..22  TTaannggeennttiiaall  ccoommppoonneennttss  ooff  tthhee  ffoorrccee  

An analysis to determine the contribution of the tangential components of 

the magnetic field to the radial forces is presented, with reference to the 

equivalent surface current density ( )t,xG s , responsible for the normal component 

distribution of the magnetic field: 

( )
s

n
s x

Ht,xG
∂
∂

=            (4.85) 

Note that sx  is the linear abscissa corresponding to the angular one sθ . By 

considering the simplified assumption that gives the tangential component of 

magnetic field tH  equal to the linear current density J , it is possible to find a 

correlation between tH  and nH : 

( ) ( ) δ
∂
∂

≅⇒δ
∂
∂

=δ=≅
s

n
t

s

n
sst x

HH
x
HGt,xJt,xH     (4.86) 

In order to determine the expression of (4.86), based on (4.11), it is possible to 

write: 

( ) ( ) ( ) ( )∑∑∑ θ+θ+θ=θ
h

srrh
k

sssk
k

sssksn t,hpHt,pkHt,pkHt,H
2

22
1

11  (4.87) 

where 

ssrss xpp
τ
π

=θ=θ           (4.88) 

Note that as specified in (4.88), sp  and rp  have the same value, being the pole 

pair number of stator and rotor fields for the motoring torque. The derivative of 

nH  by using (4.87), (4.88) can be expressed as: 

( )
( )

( )
( )

( )
( )∑∑∑ θ∂

θ∂
τ
π

+
θ∂

θ∂
τ
π

+
θ∂

θ∂
τ
π

=
∂
∂

h sr

srrh

k ss

sssk

k ss

sssk

s

n

hp
t,hpHh

pk
t,pkHk

pk
t,pkHk

x
H

2 2

222

1 1

111  

(4.89) 
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By substituting (4.89) in (4.86), calculating the derivatives and explicating the 

values of the flux densities, tH  can be finally expressed as: 

( ) ( )[ ]

( )[ ] [ ]∑∑

∑

θΔ−θ
τ
π

μ
δ

−ϕθ
τ
π

μ
δ

−

+ϕθ
τ
π

μ
δ

−=θ

h
rsrRh

k
ssSk

k
ssSkst

hphpsinBhtpksinBk

tpksinBkt,H

02
222

2

0

1
111

1

0

m

m

 (4.90) 

According to the Maxwell stress tensor expression (4.15), the tangential 

component of T  is given by nt BH , calculated by multiplying (4.11) and (4.90), 

resulting in the sum of the following nine terms: 

( )[ ] ( )[ ]tpkcostpksinBk
ss

k
ssSk 11

1
11

2
1

0

1 ϕθϕθ
τμ

δπ
−∑ mm     (4.91) 

( )[ ] ( )[ ]tpkcostpksinBBk
ss

k,k
ssSkSk 22

21
1121

0

1 ϕθϕθ
τμ

δπ
−∑ mm     (4.92) 

( )[ ] [ ]θΔ−θϕθ
τμ

δπ
−∑ rsr

h,k
ssRhSk hphpcostpksinBBk

1
111

0

1 m    (4.93) 

( )[ ] ( )[ ]tpksintpkcosBBk
ss

k,k
ssSkSk 22

21
1121

0

2 ϕθϕθ
τμ

δπ
−∑ mm    (4.94) 

( )[ ] ( )[ ]tpkcostpksinBk
ss

k
ssSk 22

2
22

2
2

0

2 ϕθϕθ
τμ

δπ
−∑ mm     (4.95) 

( )[ ] [ ]θΔ−θϕθ
τμ

δπ
−∑ rsr

h,k
ssRhSk hphpcostpksinBBk

2
222

0

2 m    (4.96) 

( )[ ] [ ]θΔ−θϕθ
τμ

δπ
−∑ rsr

k,h
ssRhSk hphpsintpkcosBBh

1
111

0
m    (4.97) 
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( )[ ] [ ]θΔ−θϕθ
τμ

δπ
−∑ rsr

k,h
ssRhSk hphpsintpkcosBBh

2
222

0
m    (4.98) 

[ ] [ ]θΔ−θθΔ−θ
τμ

δπ
−∑ rsr

h
rsrRh hphpcoshphpsinBh 2

0
    (4.99) 

As done in section 4.4.1, every summation described in (4.91)-(4.99) has to be 

projected along the axes directions and integrated between 0 and 2π in order to 

determine the x- and y-components of the resulting tangential force in the 

cartesian reference system (4.100), (4.101): 

( ) ( ) sssnststxt dcost,Bt,HLrcosdFF θθθθ=θ= ∫∫
ππ 2

0

2

0
    (4.100) 

( ) ( ) ( ) sssnststyt dsint,Bt,HLrsindFF θθθθ−=θ−= ∫∫
ππ 2

0

2

0
    (4.101) 

As seen in the previous, the result of the integrals is non-zero when the difference 

between the pole pairs numbers of two fields in exam is equal to ± 1. 

Furthermore, the terms in summation are considered for the existing harmonic 

orders of 1k , 2k , h . Let us perform the calculations (4.101), considering the 

terms (4.91), (4.95): 

( ) ( )[ ] ( )[ ] ssssssSk
e,a

yt dsintkpcostkpsinBkLrF θθϕθϕθ
τμ

δπ
−−= ∫

π2

0

2

0
mm  (4.102) 

By considering that: 

( ) ( ) ( )α=αα 2
2
1 sincossin       (4.103) 

Applying (4.103) to (4.102), it gives: 

( ) ( )[ ] ssssSk
e,a

yt dsintkpsinLrkBF θθϕθ
τμ

δπ
= ∫

π2

0

2

0
22

2
1

m     (4.104) 

By assuming that: 
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( ) ( ) ( ) ( )
2

β+α−β−α
=βα

coscossinsin       (4.105) 

Applying (4.105) to (4.104), it gives: 

( ) ( )[ ] ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ θϕθ+−θϕθ−

τμ
δπ

= ∫∫
ππ

ssssssSk
e,a

yt dkpcosdkpcosLrkBF
2

0

2

0

2

0
212212

4
1

mm

      (4.106) 
( ) ( )[ ][ ]

( )[ ][ ] 0212
12

1

212
12

1
4
1

2
0

2
0

2

0

=
⎭
⎬
⎫

ϕθ+
+

−

⎩
⎨
⎧

+ϕθ−
−τμ

δπ
=

π

π

m

m

ss
s

ss
s

Sk
e,a

yt

kpsin
kp

kpsin
kp

LrkBF
 (4.107) 

Proceeding by analogy, it can be assumed that: 

( ) ( )[ ][ ]

( )[ ][ ] 0212
12

1

212
12

1
4
1

2
0

2
0

2

0

=
⎭
⎬
⎫

θΔ−θ+
+

−

⎩
⎨
⎧

+θΔ−θ−
−τμ

δπ
=

π

π

rsr
r

rsr
r

Rh
i

yt

hphpsin
hp

hphpsin
hp

LrhBF
 (4.108) 

Thus, the integrals related to the terms of the typologies a , e , i , are zero. Let us 

calculate the terms of the typology c , f , corresponding to equations (4.93), 

(4.96): 

( ) ( )[ ] ( )[ ] sssrssRhSk
f,c

yt dsinhpcostkpsinBBkLrF θθθΔ−θϕθ
τμ

δπ
−−= ∫

π2

0 0
m  (4.109) 

By considering (4.110) and applying it to (4.109), it gives (4.111): 

( ) ( ) ( ) ( )
2

β−α+β+α
=βα

sinsincossin       (4.110) 

( ) ( )[ ]

( )[ ]
⎭
⎬
⎫θθθΔ+ϕθ−+

+
⎩
⎨
⎧ θθθΔ−ϕθ+

τμ
δπ

=

∫

∫
π

π

ssrsrs

ssrsrsRhSk
f,c

yt

dsinhphpkpsin

dsinhphpkpsinLrBkBF

2

0

2

002
1

m

m

 (4.111) 
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By using (4.105) in (4.111): 

( ) ( )[ ]

( )[ ]

( )[ ]

( )[ ]
⎭
⎬
⎫θθΔ+ϕθ+−−

+θθΔ+ϕθ−−+

+θθΔ−ϕθ++−

+
⎩
⎨
⎧ θθΔ−ϕθ−+

τμ
δπ

=

∫
∫

∫

∫

π

π

π

π

srsrs

srsrs

srsrs

srsrsRhSk
f,c

yt

dhphpkpcos

dhphpkpcos

dhphpkpcos

dhphpkpcosLrBkBF

2

0

2

0

2

0

2

00

1

1

1

1
4
1

m

m

m

m

 (4.112) 

Consider, as done above, that the sum of the pole pairs of the stator and rotor 

fields cannot be equal to 1± , conditions impossible to verify, thus the hypothesis 

(4.113), (4.114) aren’t admitted: 

101 =+⇒=−+ rsrs hpkphpkp       (4.113) 

101 −=+⇒=++ rsrs hpkphpkp       (4.114) 

Let us suppose that (4.115): 

101 =−⇒=−− rsrs hpkphpkp       (4.115) 

By using (4.115) in (4.112), it gives (4.116) and consequently (4.117): 

( ) ( )[ ]

( ) ( )

( )
⎭
⎬
⎫θθΔ+ϕθ−

+θθΔ+ϕ+θθΔ−ϕθ−

+
⎩
⎨
⎧ θθΔ−ϕθ−

τμ
δπ

=

∫
∫∫

∫

π

ππ

π
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srsrss

srssRhSk
f,c

yt
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dhpcosdhpkpcos

dhpkpcosLrBkBF

2

0

2

0

2

0

2
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2

2

12
4
1

m

mm

m

 (4.116) 

( )
( ) ( )[ ][ ]

( )[ ] ( )

( )[ ]
⎭
⎬
⎫θΔ+ϕθ−

+θΔ+ϕπ+θΔ−ϕθ−

+
⎩
⎨
⎧

θΔ−ϕθ−
−τμ

δπ
=

π

π

π

2
0

2
0

2
0

0

2
2
1
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12
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1
4
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f,c
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hpcoshpkpsin
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m

mm

m

 (4.117) 
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For the reasons already mentioned several times, all the integrals dependent on 

sθ calculated on the interval [ ]π20,  are zero; so, the third term is the only 

contribution to the force: 

( ) ( )[ ] 1if
2 0

2
=−ϕθΔ

τμ
δπ

= rsrRhSk
f,c

yt hpkpthpcosBBLrkF m   (4.118) 

Let us suppose that (4.119) is verified: 

101 −=−⇒=+− rsrs hpkphpkp       (4.119) 

By using (4.119) in (4.112), it gives: 

( ) ( )

( )[ ] ( )

( )
⎭
⎬
⎫θθΔ+ϕ−

+θθΔ+ϕθ−+θθΔ−ϕθ+−

+
⎩
⎨
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τμ
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∫
∫∫

∫
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ππ

π
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4
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m
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m

 (4.120) 

By executing the integrals in (4.120): 

( ) ( )[ ]

( ) ( )[ ][ ]

( )[ ] ( )
⎭
⎬
⎫θΔ+ϕπ−θΔ+ϕθ−−

+θΔ−ϕθ+
+

−

+
⎩
⎨
⎧
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δπ
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s
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m

m
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2
1
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1

2
2

1
4
1

2
0

2
0

2
0

0

 (4.121) 

The only not null contribution to the force is the fourth term of (4.121): 

( ) ( )[ ] 1if
2 0

2
−=−ϕθΔ

τμ
δπ

−= rsrRhSk
f,c

yt hpkpthpcosBBLrkF m  (4.122) 

So, it can be concluded that the contribution of the terms of the typologies c  and 

f  to the y -component of the tangential force acting on the rotor is given as: 
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( )
( )[ ]

( )[ ]⎪
⎪
⎩

⎪
⎪
⎨
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−=−ϕθΔ
τμ

δπ
−

=−ϕθΔ
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δπ

=

1if
2

1if
2

0

2
0

2

rsrRhSk

rsrRhSk
f,c
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hpkpthpcosBBLrk
F
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m

 (4.123) 

Obviously, this contribution has to be considered in the interaction between 

everyone of the current space vector 1vs , 2vs , and the rotor magnetic field 

produced by the magnets: 

( )
( )[ ]

( )[ ]⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=−ϕθΔ
τμ

δπ
−

=−ϕθΔ
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δπ

=
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rsrRhSk

rsrRhSk
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 (4.125) 

Let us calculate the terms of the typology g , h , corresponding to equations 

(4.97), (4.98): 
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By considering (4.127) and applying it to (4.126), it gives (4.128): 

( ) ( ) ( ) ( )
2

β−α−β+α
=βα

sinsinsincos       (4.127) 

( ) ( )[ ]

( )[ ]
⎭
⎬
⎫θθθΔ+ϕθ−−

+
⎩
⎨
⎧ θθθΔ−ϕθ+

τμ
δπ

=

∫

∫
π

π

ssrsrs

ssrsrsRhSk
h,g

yt

dsinhphpkpsin

dsinhphpkpsinLrBhBF

2

0

2

002
1

m

m

 (4.128) 
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By using (4.105) in (4.128): 
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 (4.129) 

As done in the previous, the hypothesis (4.113), (4.114) are to be considered not 

valid, so suppose that: 

101 =−⇒=−− rsrs hpkphpkp       (4.130) 

By using (4.130) in (4.129), it gives: 
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 (4.131) 

By executing the integrals in (4.131): 

( )
( ) ( )[ ][ ]

( )[ ] ( )

( )[ ]
⎭
⎬
⎫θΔ+ϕθ+

+θΔ+ϕπ−θΔ−ϕθ−

+
⎩
⎨
⎧

θΔ−ϕθ−
−τμ

δπ
=

π

π

π

2
0

2
0

2
0

0

2
2
1

22
2

1

12
12

1
4
1

rs

rrss
s

rss
s

RhSk
h,g

yt

hpsin

hpcoshpkpsin
kp

hpkpsin
kp

LrBhBF

m

mm

m

 (4.132) 

The third term of (4.132) is the only contribution to the force: 
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( ) ( )[ ] 1if
2 0

2
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yt hpkpthpcosBBLrhF m   (4.133) 

Let us suppose that (4.134) is verified: 

101 −=−⇒=+− rsrs hpkphpkp       (4.134) 

By using (4.134) in (4.129), it gives: 
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By executing the integrals in (4.135): 
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 (4.136) 

The only not null contribution to the force is the fourth term of (4.136): 

( ) ( )[ ] 1if
2 0

2
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= rsrRhSk
h,g

yt hpkpthpcosBBLrhF m   (4.137) 

So, it can be concluded that the contribution of the terms of the typologies g  and 

h  to the y -component of the tangential force acting on the rotor is given as: 
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 (4.138) 
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As in the previous, this contribution has to be considered in the interaction 

between everyone of the current space vector 1vs , 2vs , and the rotor magnetic 

field produced by the magnets (4.139), (4.140): 
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The last typologies to analyze are b  and d , related to the equations (4.92), 

(4.94): 
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By applying (4.110) to (4.141), it gives (4.142): 
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By using (4.105) in (4.142): 
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As done in the previous, the assumptions (4.144), (4.145) are to be considered 

not valid: 

101 2121 =+⇒=−+ ssss pkpkpkpk            (4.144) 

101 2121 −=+⇒=++ ssss pkpkpkpk            (4.145) 

So, let us to examine the hypothesis (4.146): 

101 2121 =−⇒=−− ssss pkpkpkpk            (4.146) 

By using (4.146) in (4.143), it gives: 
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      (4.147) 

By executing the integrals in (4.147): 
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 (4.148) 

The third term of (4.148) is the only not null contribution to the force: 

( ) ( ) ( )[ ] 1if
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b
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Let us suppose that (4.150) is verified: 

101 2121 −=−⇒=+− ssss pkpkpkpk            (4.150) 

By using (4.150) in (4.143), it gives: 
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By executing the integrals in (4.151): 
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The only not null contribution to the force is the fourth term of (4.152): 
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So, it can be concluded that the contribution of the term of the typology b  to the 

y -component of the tangential force acting on the rotor is given as: 
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Without the need to execute the whole calculation, the contribution of the term of 

the typology d can be determined by analogy with respect to (4.154): 
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44..44..33  PPrroojjeeccttiioonnss  ooff  tthhee  ttaannggeennttiiaall  ffoorrccee  

 The components related to the x -projection were calculated in a very 

similar way to that shown in the case of y -projection; only the final results being 

reported here. In the following are listed all the contributions to the y-projection 

(4.156)-(4.161) and x-projection (4.162)-(4.167) of the tangential component of 

the force. Note that the equations (4.160), (4.161) and (4.166), (4.167) related to 

the interactions between different harmonic orders of the same current space 

vector 2vs , were determined by analogy. The resultant tangential force is given 

by adding all the terms, respectively along the x  and y  axis. 
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The same considerations done for the equation (4.53), related to the meaning of 

2k  and 'k2 , are valid for equations (4.160), (4.161), (4.166), (4.167). 
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44..55  SSiimmuullaattiioonnss  aanndd  rreessuullttss 

An electrical machine suitable for bearingless application (Tab. II) was analyzed 

in order to validate the relationships presented in the previous chapters, making a 

comparison with the results of the 2D FEA software “FEMM 4.2” [14]. 

 

TABLE II. DATA OF THE MACHINE 
Param. Description Value 

Nsl number of slots 30 

p pole pairs of the machine 1 

m number of phases 5 

In rated phase current (Arms) 64.68 

Tn rated torque (Nm) 30.29 

g airgap width (mm) 1 

De stator outer diameter (mm) 230 

Ds stator inner diameter (mm) 120 

Dm mean diameter of the magnet (mm) 116 

Dcv_ext diameter at the bottom of the slot (mm) 170 

Dcv_int diameter at the top of the slot (mm) 126.3 

Dr rotor outer diameter (mm) 114 

Dalb rotor inner diameter (mm) 60 

αLdg angle underlying the tooth surface 10.1° 

αsap semi-angle underlying the slot opening 0.95° 

αm angle underlying the magnet 172° 

αcv slot pitch angle 12° 

adt stator slot height (mm) 25 

hcl  slot opening height (mm) 1 

L axial length of the machine (mm) 180 

Lm magnet width (mm) 2 

Ldt tooth-body width (mm) 8 

Lcl slot opening width (mm) 2 

Ltc slot width at the top slot radius (mm) 5.23 

Lfc slot width at the bottom slot radius (mm) 9.7 

τcv slot pitch at the inner stator radius (mm) 12.57 
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 The analysis was carried out considering only the normal components of 

the force, after having verified that the contributions of tangential components 

are negligible, by applying phase currents given by the sum of the two space 

vectors 1vs = 1 and 2vs = 2. As a general criterion, the torque current space vector 

is maintained in leading by 90 electrical degrees with respect to the rotor position 

in order to reach the maximum torque per ampere behavior of the motor. In the 

following, the force is calculated by varying the phase angle 2ϕ  related to the 

levitation current space vector. From (4.52), (4.82) it is possible to determine the 

relationship between the direction of the force Frϕ , measured with respect to y -

axis and positive when clockwise-oriented, the phase 2ϕ  and the angular position 

of the rotor θΔ , obtaining: 

( )
( )

( ) odd
r

s
rh,k

yn

h,k
xnh,k

Fr N
p
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Considering the effects of the second spatial harmonic component of the stator 

magneto-motive force ( 2k = 2) which interacts with the first spatial harmonic 

component of the PM ( h = 1), (4.169) allows to calculate the direction of the 

force Frϕ  by means of the following relationship: 

( ) θΔ−ϕ=ϕ 2
12,

Fr       (4.170) 

In the equation is considered only the interaction between the main harmonic 

orders of the levitation current space vector and the rotor magnetic field: this is 

the usual approach when designing a control system for bearingless machines, 

following the relationship (4.170). In multiphase machines this can produce 

mistakes in determining both the module and the spatial phase of the radial force, 
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due to the interactions between the higher harmonic orders. The relationships 

(4.50)-(4.53) and (4.80)-(4.83), taking into account all the possible interactions, 

allows to calculate these errors in terms of differences, in module and phase of 

the radial forces, between the simplified prediction (4.170) and the actual 

function, representing the locus of radial force vector and allowing the 

appropriate corrections. 

Figs. 4.2-4.3 show a comparison between the simplified equation “main 

harmonic orders” (4.170) and the actual radial force vector determined by using 

both the “proposed method”, both the FEA software. The analysis was conducted 

by varying the phase angle of levitation current 2ϕ  by multiple values of 22.5 

electrical degrees. Particularly, in the Figs. 4.2-4.3 are shown the x - and y -

components of the calculated radial force and the good agreement with the FE 

software results, represented by the red dots. 

 

 
Fig. 4.2. y-component vs x-component of the radial force: 

isv1 = 0 Arms, isv2 = 45.74 Arms, Δθ = 0 mech. degrees, nac = 10 (/15) 
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Fig. 4.3. y-component vs x-component of the radial force: 

isv1 = 45.74 Arms, isv2 = 45.74 Arms, Δθ = 0 mech. degrees, nac = 10 (/15) 

 

In this case, the magnet axis is aligned to the phase “1” axis, consequently θΔ  = 

0 and the phase 1ϕ  of the torque current space vector is 90 electrical degrees. By 

comparing Fig. 4.2 to Fig. 4.3, the value of 1svi  was changed from 0 to the rated 

value of 45.74 Arms. As it is possible to see, the effect of the torque current space 

vector 1vs  determines a counterclockwise rotation of the locus that describes the 

position of the resultant radial force vector. In fact, for a null value of the torque 

current space vector, the actual direction of the radial force is practically 

coinciding with that of the phase angle 2ϕ  related to the space vector 2vs  given 

by (4.170), as shown in Fig. 4.2; the influence of 1svi  determines a significant 

change with respect to the actual value of 2ϕ  and the predicted one. The pitch 

winding is another important factor which influences the locus of radial force 

vector, that is represented by a nearly ellipsoidal shape only in the particular case 

of a shortened pitch winding, able to eliminate the third harmonic order 



An analytical method for calculating the distribution of forces in a bearingless 
multiphase surface-mounted pm synchronous machine 

_________________________________________________________________ 

_________________________________________________________________ 

171 

(corresponding to a acn  value of 10). 

 
Fig. 4.4. y-component vs x-component of the radial force: 

isv1 = 45.74 Arms, isv2 = 45.74 Arms, Δθ = 0 mech. degrees, nac = 9 (/15) 

 

In general, by changing this value, the locus seems to be warped with respect to 

this ideal shape, as can be seen in Fig. 4.4 for a acn  value of 9. In the Figs. 4.5-

4.6, modulus and phase of the radial force are presented in terms of differences 

with respect to the values of the “main harmonic orders” locus: in this way, they 

give the corrections to be made in order to obtain the actual radial force vector. 
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Fig. 4.5. Modulus of the difference of the radial force: 
isv1 = 45.74 Arms, isv2 = 45.74 Arms, Δθ = 0 mech. Degrees 

 

 

Fig. 4.6. Phase difference of the radial force: 
isv1 = 45.74 Arms, isv2 = 45.74 Arms, Δθ = 0 mech. Degrees 
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The influence of the rotor position, for a fixed space vector 1svi , represents 

another analysis tool, shown in Figs. 4.7-4.8. In Fig. 4.7 the rms torque current is 

null, while in Fig. 4.8 is equal to the rated value of 45.74 Arms. In every picture 

the magnet axis is rotated in three different positions with respect to phase “1” 

axis: 0, 45 and 90 mechanical degrees. The analysis shows a clockwise rotation 

of the locus by the same mechanical angle than the magnet axis, but is important 

to note that the position of the corresponding points, characterized by a same 

value of the phase 2ϕ , changes by the same amount but in a counterclockwise 

rotation. 

 

 

Fig. 4.7. y-component vs x-component of the radial force: 
isv1 = 0 Arms, isv2 = 45.74 Arms, Δθ = 0, 45, 90 mech. degrees, nac = 10 (/15) 
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Fig. 4.8. y-component vs x-component of the radial force: 
isv1 = 45.74 Arms, isv2 = 45.74 Arms, Δθ = 0, 45, 90 mech. degrees, nac = 10 (/15) 

 

In the next will be shown an in-depth analysis, conducted with the presented 

algorithm by varying the main parameters in a large number of possible 

combinations, to highlight the influence of the magnet pitch, the rotor position 

and the coil pitch ( mα , θΔ , acn ); the rms values of the modulus of current space 

vectors 1svi , 2svi  are fixed to their maximum value. The results are presented in 

terms of modulus and phase differences, showing in this way the corrections 

which can be applied to the simplified function “main harmonic orders” to obtain 

the absolute values of the modulus and difference of the force. All the quantities 

are determined as functions of the levitation current space vector phase angle 2ϕ . 
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Fig. 4.9. 

 

 
Fig. 4.10. 
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Fig. 4.11. 

 

  
Fig. 4.12. 
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Fig. 4.13. 

 

 
Fig. 4.14. 
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Fig. 4.15. 

 

 
Fig. 4.16. 
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Fig. 4.17. 

 

 
Fig. 4.18. 
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44..66  CCoonncclluussiioonn  

In this chapter an analytical model for radial forces calculation in 

multiphase bearingless Surface-Mounted Permanent Magnet Synchronous 

Motors (SPMSM) is presented. It allows to predict amplitude and direction of the 

force, depending on the values of the torque current, of the levitation current and 

of the rotor position. It is based on the space vectors method, letting the analysis 

of the machine not only in steady-state conditions but also during transients. 

When designing a control system for bearingless machines, it is usual to 

consider only the interaction between the main harmonic orders of the stator and 

rotor magnetic fields: in multiphase machines this can produce mistakes in 

determining both the module and the spatial phase of the radial force, due to the 

interactions between the higher harmonic orders. The presented algorithm allows 

to calculate these errors, taking into account all the possible interactions; by 

representing the locus of radial force vector, it allows the appropriate corrections. 

In addition, the algorithm permits to study whatever configuration of 

SPMSM machine, being parameterized as a function of the electrical and 

geometrical quantities, as the coil pitch, the width and length of the magnets, the 

rotor position, the amplitude and phase of current space vector, etc. 

Finally, the results of the proposed method have been compared with those 

of a most used FEA software, obtaining very similar values of the analyzed 

quantities. 
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AAppppeennddiixx  AA44..11  
  

MMAAGGNNEETTIICC  FFIIEELLDD  DDIISSTTRRIIBBUUTTIIOONN  

IINN  TTHHEE  AAIIRRGGAAPP  OOFF  MMUULLTTIIPPHHAASSEE  

EELLEECCTTRRIICCAALL  MMAACCHHIINNEESS  
  

  

AA44..11..11  IInnttrroodduuccttiioonn  
 

In recent years, more and more advanced technologies and an impressive 

rise in the use of electronics, both in civil as in the industrial sector, given a 

contribution to reduce the cost of the components, allowing the use of complex 

technologies which in the past had high costs and therefore of little industrial 

interest. In the field of electrical machines this evolution led not only to the 

realization of power drives controlled by an inverter, capable of ensuring 

performance significantly better than those obtained with the previous control 

systems, but also the advent of a new type of machines with a different number 

of phases from the traditional three-phase, usually employed in generation and 

distribution of electric energy. This has reawakened the interest in the study of 

multi-phase electrical machines. 
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The field of study of polyphase machines is relatively new and in rapid 

evolution, but it is already possible to say that these machines are able to provide 

better performances of the classical ones, and precisely for this reason, are 

currently a matter of great interest. Indeed, the multiphase machines have several 

advantages compared to the traditional three-phase machines, such as the 

amplitude reduction and the increase of the frequency of pulsating torque, the 

reduction of stator phase current, the increase of the fault tolerance. In addition, 

the multiphase machines offer a larger number of degrees of freedom with 

respect to the three-phase machines, which can be used to improve the 

performances. 

Furthermore, the creation of software for analyzing the behavior of 

magnetic fields in electromechanical devices, based on numerical methods as the 

FEA, has greatly contributed to the improvement in the design of electrical 

machines by introducing, in addition to an excellent accuracy of the results, also 

a considerable saving of time and money. 

 

AA44..11..22  TThhee  mmuullttiipphhaassee  rroottaattiinngg  mmaaggnneettiicc  ffiieelldd  
 

For an in-depth understanding on the topic of multi-phase machines, 

making a brief reference to the theory of the rotating magnetic field, in steady 

state conditions, to better understand the equations that will be proposed in the 

following sections. 

By supposing to operate in linear regime, with an iron magnetic 

permeability of infinite value, it can be concluded that there are no appreciable 

drops of magneto-motive force (mmf) in the iron, considering in this region a 

null value for the magnetic field. 

Thus the study is conducted only in the airgap, considering the hypothesis 

of the representation along a straight line, as in Fig. A4.1-1, the distribution of 
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the current density ( )z,y,xJ  being only by means of z -component (A4.1-6); the 

current sources are located in the slots and considered as concentrated in a point. 

With reference to the Maxwell’s equations, develop the first of (A4.1-1): 

⎩
⎨
⎧

=

=

0Bdiv
JHrot

          (A4.1-1) 

 
Fig. A4.1-1. Reference system in the airgap 
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By executing the calculations, the first equation of (A4.1-1) gives three scalar 

components: 
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         (A4.1-5) 

( )k̂xJĵîJ z++= 00         (A4.1-6) 

Another very important hypothesis about the magnetic field distribution, gives 
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the only component in the y  direction, being ĵHH y= : by applying this to 

(A4.1-3)-(A4.1-5), it is obtained: 

⎪
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00

0

         (A4.1-7) 

From the first equation of (A4.1-7) it results that yH  does not depend on z , 

varying only as a function of the x  coordinate. 

 
Fig. A4.1-2. Representation of magnetic field distribution in the airgap 

( )xJ
x

H
z

y =
∂

∂
         (A4.1-8) 

In the Figs. A4.1-3 and A4.1-4 are shown the most known typologies of current 

density and the related magnetic field distributions, by following the relationship 

A4.1-8. 

The presented analysis of magnetic field distribution is based on the 

following assumptions: 

I) The permeability of iron is infinite; 

II) The slots of the machine are semi-closed, having an infinitesimal slot 

opening width and height; 
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Fig. A4.1-3. Sinusoidal (left) and square wave (right) distributions 

 

 
Fig. A4.1-4. Rectangular (left) and impulsive (right) distributions 

III) The magnetic field lines are radial and perpendicular to the rotor and stator 

boundary surfaces; 

IV) The mean airgap radius of curvature is infinite, so that the airgap path can 

be considered as a straight line; 

V) Extremity effects are neglected. 
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VI) The effects of the leakage fluxes are neglected. 

The analysis will be conducted starting from the magnetic field distribution 

produced by a one slot-per-pole winding (Fig. A4.1-5). Considering, with no lack 

of generality, a 2-pole machine and by applying the second equation of (A4.1-1): 

( )HHHLHLH

LBLBdSn̂BBdiv

pp

pp
cS

=−=⇒=τμ+τμ⇒

=τ+τ=⋅⇒= ∫
212010

21

0

00
 (A4.1-9) 

 
Fig. A4.1-5. Magnetic field distribution (1 slot-per-pole winding) 

By applying Ampere’s law on a path crossing the airgap which includes a group 

of n  conductors, neglecting the x -components of H and taking into account 

(A4.1-9) it gives: 

niHniHHnildH =δ⇒=δ−δ⇒=⋅∫ 221    (A4.1-10) 

where it is understood that H  stays for yH . After a simple step: 

δ
=

2
niH           (A4.1-11) 

As shown in Fig. A4.1-5, the considered reference system has the origin in the 

middle of the coil. So, the spatial distribution of the magnetic field is a periodic 

function of θ  and can be developed in Fourier harmonic series: 

( ) ( )θ=θ ∑
∞

=

kcosHH
,...,k

ks
31

       (A4.1-12) 
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where: 

( ) ( )∫
π

π−

θθθ
π

= dkcosHHk
1        (A4.1-13) 

Having all the coils the same pitch, equal to π  electrical radians, it can be easily 

prove that the Fourier series has only odd harmonic orders. Furthermore, it 

presents only cosine terms due to the choice of the reference system. 

The calculation of (A4.1-13) gives: 
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To obtain: 
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By substituting (A4.1-15) in (A4.1-12): 
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     (A4.1-16) 

By assumption the slot opening width and height are considered to be 

infinitesimal, without creating leakage fluxes; the coils of one phase are series-

connected with the same current flowing in. The equation (A4.1-16) contains the 

following terms: 
δπ 2

4 ni  represents the amplitude of fundamental harmonic order, 

( )21 πksink  is the harmonic factor whose value is k1± , the dependence on the 

function ( )θkcos  represents the spatial harmonic distribution. 
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The spatial distribution of the magnetic field is constituted by the superposition 

of sinusoidal distributions of decreasing amplitude with the harmonic order k1 . 

For each harmonic the maximum value of the field occurs at the center of the 

coil. The amplitude of each harmonic is proportional to the value of the current 

flowing in the coil. 

Consider a magnetic field distribution generated by a q  slots-per-pole 

winding, as shown in Fig. A4.1-6: 

 
Fig. A4.1-6. Magnetic field distribution generated by a q  slots-per-pole winding. 

The field distribution is formed by the superposition of q  contributions, 

relatively displaced by an electrical angle α  (the angle between two adjacent 

slots): the related representation, by means of the Fourier harmonic series, 

becomes: 

( ) ( )[ ]( )∑ ∑
=

∞

=

α−−θ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=θ

q

j ,...,k

q jkcosksin
k

niH
1 31

1
2

1
2

4    (A4.1-17) 

By varying the index j  from 1 to q  it is obtained a summation of cosine 

functions which can be calculated as: 

( ) [ ]( ) [ ]( ) ( )[ ]( )

⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ α

−
−θ=⎟

⎠

⎞
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ α

−
−θ

α

α

=

=α−−θ++α−θ+α−θ+θ

2
1

2
1

2

2

12

qkcosqKqkcosksin

kqsin

qkcos...kcoskcoskcos

dk
(A4.1-18) 
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where the terms dkK  is defined distribution factor of Blondel (A4.1-19): 

2

2
α

α

=
ksinq

kqsin
Kdk          (A4.1-19) 

By adopting a suitable winding distribution in the slots, dkK  allows to reduce, 

even remarkably, some harmonic orders. By substituting the relation (A4.1-18) in 

the expression (A4.1-17), it gives: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ α

−
−θ⎟

⎠
⎞

⎜
⎝
⎛ π

δπ
=θ ∑

∞

= 2
1

2
1

2
4

31

qkcosksin
k

qKniH dk
,...,k

q   (A4.1-20) 

Note that the diagram of the magnetic field distribution ( )θqH  moved in the 

original reference system with respect to (A4.1-16) due to the modification of the 

distribution, that now is related to q  slots-per-pole-per-phase: thus, is necessary 

to shift the reference system by an angle ( ) 21 α−q , corresponding with the new 

peak value of the ( )θqH  distribution as the centre of the phase. 

( ) ( )θ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=θ ∑

∞

=

kcosksin
k

qKniH dk
,...,k

q

2
1

2
4

31

    (A4.1-21) 

In the comparison between (A4.1-21) and (A4.1-16) the contribution of the q  

slots-per-pole-per-phase can be recognized in the term dkqK . 

 
Fig. A4.1-7. A slot with double layer winding 
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Consider now the distribution of magnetic field produced by a winding of 

q  slots-per-pole-per-phase in double-layer. It is shown in Fig. A4.1-7 the 

representation of a slot in double layer, while in Fig. A4.1-8 the representation of 

a double layer winding. 

 
Fig. A4.1-8. Double layer winding representation 

As can be seen, in a double layer winding it could happen to find, in the same 

slot, groups of conductors belonging to different coils. The magnetic field 

distributions produced by different layers of the same phase, can be seen as 

identical to (A4.1-21) but shifted by a β  electrical angle. Also, is important to 

note that in (A4.1-22) the number of conductors-per-slot n  is divided by 2 due to 

the presence of the layers. Thus, the resultant distribution can be written as: 

( ) ( )

[ ]( )β−θ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
+

+θ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=θ

∑

∑
∞

=

∞

=

kcosksin
k

qKin

kcosksin
k

qKinH

dk
,...,k

dk
,...,k

q

2
1

22
4

2
1

22
4

31

31    (A4.1-22) 

The even harmonic orders cancel each other for the two layers. Both the bottom 

layer than the top one, produces a field of q  slots-per-pole: being a phase shift 

between them, it is necessary to add the two sinusoidal functions taking into 

account of it. The result, by applying again an angular shift to the reference 

system on the new center of the phase, is equivalent to multiplying by 2 and by 

the shortened pitch factor (A4.1-23): 
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⎟
⎠
⎞

⎜
⎝
⎛ β

=
2
kcosKrk          (A4.1-23) 

The relationship (A4.1-24) represents the magnetic field distribution produced by 

a double layer winding of one phase, having q  slots-per-pole-per-phase: 

( ) ( )θ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=θ ∑

∞

=

kcosksin
k

KqKniH rkdk
,...,k 2

1
2

4

31

    (A4.1-24) 

The product of the Blondel’s factor dkK  and the shortened pitch factor rkK  gives 

the winding factor akK  related to k -th harmonic order: 

⎟
⎠
⎞

⎜
⎝
⎛ β

⎟
⎠
⎞

⎜
⎝
⎛ α

⎟
⎠
⎞

⎜
⎝
⎛ α

==
2

2

2 kcos
ksinq

kqsin
KKK rkdkak      (A4.1-25) 

Consider an instantaneous phase current ( )ti  which varies following a sinusoidal 

law (A4.1-26), being I  the rms value and ω  the angular frequency: 

( ) ( )tcosIti ω= 2          (A4.1-26) 

By substituting it in (A4.1-24) it gives: 

( ) ( ) ( )tcoskcosksin
k

qKnIt,H ak
,...,k

ωθ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=θ ∑

∞

= 2
1

2
24

31

  (A4.1-27) 

The equation (A4.1-27) can be written as: 

( ) ( ) ( )tcoskcosHt,H
,...,k

Mk ωθ=θ ∑
∞

= 31

      (A4.1-28) 

where: 

⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=

2
1

2
24 ksin

k
qKnIH akMk       (A4.1-29) 

The distribution given by (A4.1-28) represents, for each value of k , a stationary 
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wave with kp  pole pairs, shown in Fig. A4.1-9 in a succession of time instants. 

 
Fig. A4.1-9. The stationary wave shown in different time instants 

The equation (A4.1-28) can be seen also as the sum of two counter-rotating fields 

depending on a space-time variable ( )tkf ωθ m , each one moving in or opposite 

to the θ  axis direction without warping, as shown in Fig. A4.1-10 and in the 

relationship (A4.1-31). 

 

 
Fig. A4.1-10. A traslating wave 

( ) ( ) ( )[ ]tkcostkcosHt,H
,...,k

Mk ω+θ+ω−θ=θ ∑
∞

= 2
1

31

   (A4.1-30) 

( ) ( ) ( )∑∑
∞

=

∞

=

ω+θ+ω−θ=θ
,...,k

Mk
,...,k

Mk tkcosHtkcosHt,H
3131 2

1
2
1  (A4.1-31) 

Each distribution in (A4.1-31) represents, for each value of k , a rotating wave 

with kp  pole pairs: in particular, the first summation is a wave which rotates in 
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the same direction of θ , while the second one is a wave which rotates in the 

opposite direction of θ . In Fig. A4.1-11 is shown the dual interpretation of this 

phenomenon: the concepts of the stationary wave and the counter-rotating fields. 

 
Fig. A4.1-11. The stationary and the counter-rotating distributions 

The space-time distribution produced by one of the two rotating fields is repeated 

identical in the following situations: in a position 1θ  at the instant of time 1t  and 

in the position 2θ  at the instant of time 2t , such that: 

2211 t
k

t
k

ω
±θ=

ω
±θ         (A4.1-32) 

After some simple calculations: 

( ) ( )12121212 tt
k

tt
k

t
k

t
k

−
ω

=+−
ω

±=
ω

±
ω

=θ−θ mm    (A4.1-33) 

The electrical angular velocity ckEω  of the distribution, measured in radians per 

sec., is given by: 

kttckE
ω

=
−
θ−θ

=ω m
12

12         (A4.1-34) 

The mechanical angular velocity ckω  of the rotating field, measured in radians 
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per sec., is given by: 

kpck
ω

±=ω           (A4.1-35) 

From which follows the rpm speed of the k -th order of the magnetic field: 

kp
fnk

60
±=           (A4.1-36) 

Consider a system of currents characterized by a phase difference ( )mSt π2 : tS  

is defined as “sequence of time”. Some examples are presented in the Figs. A4.1-

12 - A4.1-14 (in the following, mk  will be assumed equal to 1): 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−ω=

m
TjStkcosIti tmj 12      (A4.1-37) 

 
Fig. A4.1-12. Sequences of time with m = 3 

 

 
Fig. A4.1-13. Sequences of time with m = 5 
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Fig. A4.1-14. Sequences of time with m = 5 

The sequence of time must comply with the following constraint: 

10 −≤≤ mSt          (A4.1-38) 

If the phases are disposed by following different spatial configurations, in this 

case one speaks of sequence of space sS . Consider a machine with p  pole pairs, 

m  phases shifted in space by an angle equal to ( )mSs π2 , in which flows a 

balanced system of currents. 

In the reference system centered in the phase 1, the magnetic field 

distribution produced by the j -th phase is given by: 

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ π

−−ω⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

−−θ=θ ∑
∞

= m
jStcos

m
jSkcosHt,H ts

,...,k
Mkj

2121
31

   

           (A4.1-39) 

The resulting magnetic field produced by all the phases of the machine can be 

expressed as: 

( ) ( ) ( )

( )( )∑ ∑

∑ ∑

=

∞

=

=

∞

=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ π

−−ωθ=

=⎟
⎠
⎞

⎜
⎝
⎛ π

−−ω⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

−−θ=θ

m

j
ts

,...,k
Mk

m

j
ts

,...,k
Mk

m
SkSjtkcosH

m
jStcos

m
jSkcosHt,H

1 31

1 31

21
2
1

2121

mm

  

           (A4.1-40) 
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Finally is obtained: 

( ) ( )( )∑ ∑
=

∞

= ⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ π

−−ωθ=θ
m

j
ts

,...,k
Mk m

SkSjtkcosHt,H
1 31

21
2
1

mm  (A4.1-41) 

The resulting magnetic field is given by adding m  sinusoidal contributions with 

a phase difference equal to ( ) mSkS ts π2m . 

There are two possible cases: if all the contributions have the same phase, the 

result is m  times the contribution; if the contributions are shifted by the same 

angle, their resultant is null. This result is explained in (A4.1-42): 

( )
( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠⇒

=⇒ωθ
=θ
∑
∞

=

integerif0

integerif
21

m
SkS

m
SkStkcosHm

t,H
ts

ts

k
Mk

m

m
m

 (A4.1-42) 

For a fixed value of k , the magnetic field distribution has a direction of rotation: 

direct, if integer=
−

m
SkS ts  

reverse, if integer=
+

m
SkS ts  

A symmetrical polyphase winding in which flows a balanced system of currents, 

produces a distribution of magnetic field in the airgap described by the following 

relation: 

( ) ( )∑
∞

=

ωθ⎟
⎠
⎞

⎜
⎝
⎛ π

δπ
=θ

,...k
ak tkcosksin

k
qKInmt,H

1 2
1

2
24

2
m    (A4.1-43) 

The terms in summation (A4.1-43) have to be considered not null only for the 

values of k  such that 
m

SkS ts m  is integer. This distribution can therefore be 

considered formed by the overlap of direct and inverse harmonic rotating 

magnetic fields. 
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CChhaapptteerr  55  
  

  

DDEESSIIGGNN  AANNDD  DDEEVVEELLOOPPMMEENNTT  OOFF  AA  

CCOONNTTRROOLL  SSYYSSTTEEMM  FFOORR  

MMUULLTTIIPPHHAASSEE  SSYYNNCCHHRROONNOOUUSS  

PPEERRMMAANNEENNTT  MMAAGGNNEETT  

BBEEAARRIINNGGLLEESSSS  MMAACCHHIINNEESS  
  

  

55..11  IInnttrroodduuccttiioonn  

In this chapter a control system for bearingless multiphase synchronous 

PM machines is presented, integrating the electromagnetic model seen in Chapter 

4 with a three-dimensional mechanical model developed based on the Euler’s 

equations. One end of the motor shaft is constrained, to simulate the presence of 

a mechanical bearing, while the other is free, only supported by the radial forces 

developed in the interactions between magnetic fields, to simulate a bearingless 
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system with three degrees of freedom. 

The body in Fig. 5.1 represents the rotor and the shaft of the machine, 

rotating around an axis with a fixed point. The interactions between the levitation 

current space vector 2svi  and the other sources of magnetic fields, i.e. rotor 

magnets and torque current space vector 1svi , provide to generate the levitation 

forces, as seen in the previous chapter by means of the analytical formulation. 

The system was implemented on a SIMULINK® model, representing the 

conceptual design of the experimental device and related control system that 

could be realized in a test bench application. 

 
Fig. 5.1 

 
Fig. 5.2 
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Consider three reference systems in the space: 

• Absolute (abs), characterized by the unit vectors ( )k̂,ĵ,î , Fig. 5.1; 

• Relative (rel), characterized by the unit vectors ( )K̂,Ĵ,Î , Fig. 5.2(a); 

• Fixed-to-rotor (ftr), characterized by the unit vectors ( )ηε ˆ,ˆ,Î , Fig. 5.2(b). 

The last two systems have a common unit vector because their first axes 

coincide.  

  

55..22  MMeecchhaanniiccaall  eeqquuaattiioonnss  

The rotor angular speed in the absolute reference system is calculated by 

applying the “principle of composition of angular speed”: 

relω+Ω=ω            (5.1) 

where Ω  is the angular speed of the relative reference system with respect to the 

absolute and relω  is the angular speed of the rotor with respect to the relative 

reference system. They can be expressed as: 

Ĵk̂ ϕ−ψ=Ω &&           (5.2) 

Îrel θ=ω &            (5.3) 

By substituting (5.2), (5.3) in (5.1), it gives the rotor angular speed vector: 

ÎĴk̂ θ+ϕ−ψ=ω &&&           (5.4) 

The equations of the motion are given by: 

o
o M

dt
d

=
Γ

           (5.5) 
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Being oΓ , oM  respectively  the moment of momentum and the moment of the 

external forces evaluated with respect to the point O. oΓ is given by: 

ω⋅ℑ=Γ oo                     (5.6) 

The fixed-to-rotor reference system is obtained by rotation of an angle θ  around 

the X-axis, and the relationships between its unit vectors and the ones of the 

relative system are (note that the unit vector Î  is the same because the X-axis is 

in common): 

ηθ−εθ= ˆsinˆcosĴ          (5.7) 

ηθ+εθ= ˆcosˆsinK̂          (5.8) 

In order to write the angular speed vector with respect to the fixed-to-rotor 

reference system, is necessary firstly to write it in explicit way, with respect to 

the relative system: 

K̂cosÎsink̂ ϕ+ϕ=          (5.9) 

By substituting (5.9) in (5.4): 

( ) K̂cosĴÎsin ϕψ+ϕ−θ+ϕψ=ω &&&&        (5.10) 

By substituting (5.7) and (5.8) in (5.10): 

( ) ( ) ( )ηθϕψ+θϕ+εθϕ−θϕψ+θ+ϕψ=ω ˆcoscossinˆcossincosÎsin &&&&&&  (5.11) 

which can be expressed in matrix form in the following: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θ
ϕ
ψ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθϕ
θ−θϕ

ϕ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

η

ε
&

&

&

0
0
10

sincoscos
cossincos

sinI

      (5.12) 

As the system chosen is principal of inertia, the oℑ   is a diagonal matrix thus, 
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with reference to (5.6), is possible to write: 

ηω+εω+ω=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=ω⋅ℑ=Γ ηηεε

η

ε

η

ε ˆIˆIÎI
I

I
I

ooIoI

I

o

o

oI

oo

00
00
00

   (5.13) 

Reminding that ω  is defined with respect to a stationary observer, the derivative 

dt
d oΓ

 has to be determined with respect to the same observer. It is possible to 

write: 

( ) ( )
o

ftr

o

abs

o

dt
d

dt
d

Γ×ω+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Γ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Γ
       (5.14) 

By considering the equation (5.6) and that the matrix of inertia oℑ  doesn’t 

change, it can be calculated: 

( )
ω⋅ℑ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Γ &o
ftr

o

dt
d

         (5.15) 

By substituting (5.6) and (5.15) in (5.14): 

( )
ω⋅ℑ×ω+ω⋅ℑ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Γ
oo

abs

o

dt
d &        (5.16) 

( )
ηηεε

ηεηηεε

ωωω
ωωω
ηε

+ηω+εω+ω=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Γ

ooIoI

IooIoI
abs

o

III

ˆˆÎ
ˆIˆIÎI

dt
d

&&&   (5.17) 

By executing the calculations: 

( )
( )[ ] ( )[ ]

( )[ ]ηωω−+ω+

+εωω−+ω+ωω−+ω=⎟
⎠

⎞
⎜
⎝

⎛ Γ

εεηη

ηηεεηεεη

ˆIII

ˆIIIÎIII
dt

d

IoIoo

IooIoooIoI
abs

o

&

&&
  (5.18) 
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Writing the moment of the external forces vector oM  with respect to the point 

O in the ftr reference system: 

η+ε+= ηε ˆMˆMÎMM oooIo                 (5.19) 

By substituting (5.18) and (5.19) in (5.5) is possible to determine the equations of 

the motion, also called “Euler equations”: 

( )
( )
( )⎪

⎩

⎪
⎨

⎧

=ωω−+ω

=ωω−+ω

=ωω−+ω

ηεεηη

εηηεε

ηεεη

oIoIoo

oIooIo

oIooIoI

MIII

MIII

MIII

&

&

&

              (5.20) 

It is now useful to define the relationship between the moment of the external 

forces vector evaluated in the ftr reference system and the one evaluated in the 

abs reference system. Thus, is necessary to write the unit vectors ( )k̂,ĵ,î  with 

respect the unit vectors ( )ηε ˆ,ˆ,Î . Firstly, the equations (5.7), (5.8) are presented in 

matrix form: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

η
ε

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθ
θ−θ=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ˆ
ˆ
Î

cossin
sincos

K̂
Ĵ
Î

0
0

001
       (5.21) 

The unit vector n̂  is defined as the projection of the unit vector Î  on the xy  

plane: 

K̂sinÎcosn̂ ϕ−ϕ=          (5.22) 

By substituting (5.22) in (5.23), (5.24), the relationships between the unit vectors 

( )k̂,ĵ,î  and the unit vectors ( )K̂,Ĵ,Î  are found: 

K̂sincosĴsinÎcoscosĴsinn̂cosî ϕψ−ψ−ϕψ=ψ−ψ=    (5.23) 

K̂sinsinĴcosÎcossinĴcosn̂sinĵ ϕψ−ψ+ϕψ=ψ+ψ=    (5.24) 
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K̂cosÎsink̂ ϕ+ϕ=          (5.25) 

By expressing (5.23)-(5.25) in the matrix form: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ϕϕ
ϕψ−ψϕψ
ϕψ−ψ−ϕψ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

K̂
Ĵ
Î

cossin
sinsincoscossin
sincossincoscos

k̂
ĵ
î

0
     (5.26) 

By combining (5.21) and (5.26), are presented the relationships between the unit 

vectors ( )k̂,ĵ,î  related to absolute reference system and the unit vectors ( )ηε ˆ,ˆ,Î  

related to fixed-to-rotor reference system: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

η
ε

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθ
θ−θ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ϕϕ
ϕψ−ψϕψ
ϕψ−ψ−ϕψ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ˆ
ˆ
Î
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By multiplying the matrices in (5.27) it gives: 
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            (5.28) 

The matrix obtained in (5.28), called ( )ψϕθ
−

,,B
1

, permits to directly convert the 

abs unit vectors in the ftr unit vectors. It is mentioned as an inverse matrix 

because the main matrix ( )ψϕθ ,,B  is that one which defines the moment of 

external forces vector oM  in the ftr reference system, being the most used. 

In fact, the latter can be immediately substituted in the Euler’s equations (5.20). 

By combining (5.29) and (5.30), is obtained (5.31): 
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In (5.31), (5.32) is shown the ( )ψϕθ ,,B  matrix, which permits to calculate the 

moment of the external forces vector oM  in the fixed-to-rotor reference system: 
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The relationship (5.32) is really important because the moments of external 

forces are given in the absolute reference system, but is necessary to express 

them in the fixed-to-rotor reference system in order to apply equations (5.20). 

  

55..33  GGeenneerraall  ssttrruuccttuurree  ooff  tthhee  ccoonnttrrooll  ssyysstteemm  

The external structure of the control system, realized with SIMULINK®, is 

composed by four main blocks, the other being “scope blocks” and “integrators”: 

Levitation forces block, Euler equations block, Lagrangian variables block, 
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Axis coordinates block. 

 

 
Fig. 5.3. General structure of the control system 

 

1) Levitation forces block: the action of PID controllers is based on the position 

error along the y  and z  axes, by calculating the force, of modulus Fr and 

spatial phase fi_Fr, requested to maintain the rotor in the centre of the stator 

bore. Together with the angular position of the magnets theta, the Force 

Controller block determines the modulus and the phase of the 2svi  current 

space vector, called as variables Irms_ and fi_In_, to produce the requested 

force. This couple of values is necessarily provisional, being the analytic 

relationship that gives the 2svi  parameters univocal only considering the main 

harmonic orders of stator and rotor magnetic fields. 

The next block, Electromagnetic Model, determines the real value of the 

force to suspend the rotor, by taking into account all the possible interactions 

between harmonic orders of the magnetic fields. Also, this model consider the 

effects of both current space vectors 1svi , 2svi , respectively torque and 
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levitation. It gives in this way an exact prediction of the radial force and 

electromagnetic torque produced by the motor. 

The drive maintains constantly the current space vector 1svi  in leading by 90 

electrical degrees with respect to magnet axis, in order to give the requested 

torque in whatever operating condition. The output gives in particular the 

components of the force (variables Fy, Fz) which are used to calculate the 

moments with respect to the absolute reference system, by means of the 

“Forces to Moments matrix” block. 

 
Fig. 5.4. Diagram of the Levitation Forces block 

 

2) Euler equations block: the sub-block “Applied Moments” calculates the 

moments of external forces with respect to the fixed-to-rotor reference system 

and applies them to the Euler’s equations (5.20) in the form (5.33), achievable 

after some simple calculations. The output is constituted by the components 

of angular speed vector, evaluated in the fixed-to-rotor reference system and 

determined by integrating (5.33), as can be seen in the SIMULINK® diagram 

of Fig. 5.5. 

FORCE CONTROLLER
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Fig. 5.5. Diagram of the Euler equations block 

 

3) Lagrangian variables block: applies the inverse matrix of (5.12), described 

in the equation (5.34), to the angular speed vector ω  in order to determine the 

derivatives with respect to time [ ]θϕψ &&& ,,  of the lagrangian variables [ ]θϕψ ,, , 

which are obtained by means of integration: they constitute the components 

of the angular speed vector ω  evaluated in the absolute reference system. 
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Fig. 5.6. Diagram of the Lagrangian variables block 

 

4) Axis coordinates block: it converts the lagrangian variables [ ]θϕψ ,, , 

constituted by angular coordinates, in the linear coordinates [ ]z,y,x  which 

describe the position of the motor shaft end point. These are then used in a 

closed loop feedback to return as an input in the “Levitation forces block”, 

closing in this way the loop of the bearingless machine control system. 

 

 
Fig. 5.7. Diagram of the “Axis coordinates block” 
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55..44  DDeettaaiilleedd  aannaallyyssiiss  ooff  tthhee  ccoonnttrrooll  ssyysstteemm  

55..44..11  LLeevviittaattiioonn  FFoorrcceess  BBlloocckk  

A) Position Errors 

These blocks determines the errors along the y and z axes, calculating the 

difference between the actual position, on the y-z plane, of the end shaft point 

and the reference values y0 and z0, which obviously have to be set to zero 

requiring a centered rotor (Fig. 5.8). 

 
Fig. 5.8. Position errors 

B) Pid Controllers 

In Fig. 5.9 is represented the general structure of the PID controller, where is 

possible to distinguish the three actions: proportional, integrator, derivative. 

  
Fig. 5.9. Diagram of the PID controllers 
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The parameter aTd in the derivative branch is a time constant which permits to 

set the duration of the transitional regime. The output of the PIDs gives the y- 

and z-components of the force, necessary to stabilize the rotor. 

C) Force Controller Block 

 The input stadium transforms the components of the force from cartesian 

representation to polar, providing the modulus Fr and the spatial phase fi_Fr. In 

addition, the angular position of the rotor theta is a required input variable. As 

said above, the Force Controller determines the modulus and the phase of the 

levitation current space vector 2svi  (respectively identified by the output 

variables Irms_ and fi_In_), required to generate the input force. These values 

result approximate because the analytic relationship that allows the calculation of 

the current space vector parameters from the value of the force, is invertible only 

considering the interaction between the main harmonic of the stator levitation 

field and the main one of the rotor field. In this way, all the higher harmonic 

orders are neglected. However, this is not a problem because the consequent 

block takes into account all the possible interactions between the magnetic fields, 

and the PID controllers provide to stabilize the system with their feedback action; 

but, the function of the Force Controller is necessary to give some initial values 

of the 2svi  parameters, in absence of which would not be possible to implement 

the regulation process. 

 
Fig. 5.10. The Force Controller of the model 

FORCE CONTROLLER
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In the following, the programming code of the Force Controller is shown, being 

a “Matlab function”. 

_________________________________________________________________ 

 
function ABF_inv = fcn(Fr,fi_Fr,theta) 
  
 %definizione costanti 
 Pi = 3.141592654; 
 muzero = 0.000001256; 
  
%*************************************************************************************** 
%INPUT DATI (begin) 
%*************************************************************************************** 
  
%%modulo della forza radiale 
% Fr = 2620.06; 
%%fase spaziale della forza radiale, misurata rispetto all'asse y (FEMM) 
% fi_Fr = -90 * Pi / 180; 
%%massimo ordine armonico indagato 
 k_max = 2; 
  
 Br_=zeros(1,1); 
 Bs_=zeros(1,1); 
 Irms_=zeros(1,1); 
 fi_In_=zeros(1,1); 
 k_=zeros(1,1); 
 hn_=zeros(1,1); 
 hp_=zeros(1,1); 
%dichiarazione array 
 ctr=zeros(k_max,1); 
 rot=zeros(k_max,1); 
 Kd=zeros(k_max,1); 
 Bs_hp=zeros(k_max,1); 
 Bs_hn=zeros(k_max,1); 
 Br_hp=zeros(k_max,1); 
 Br_hn=zeros(k_max,1); 
 fi_In_hp=zeros(k_max,1); 
 fi_In_hn=zeros(k_max,1); 
 Fq=zeros(k_max,1); 
 Fd=zeros(k_max,1); 
 %Fr=zeros(k_max,1); 
 %fi_Fr=zeros(k_max,1); 
 Irms_hp=zeros(k_max,1); 
 Irms_hn=zeros(k_max,1); 
 hp=zeros(k_max,1); 
 hn=zeros(k_max,1); 
  
 %angolo meccanico fra asse M ed asse fase 1 (gr.mecc.) 
  % deltath = 90; 
  % deltath = deltath * Pi / 180; 
 %numero di cave sottese dalla bobina 
  nac = 10; 
 %numero di fasi 
  m = 5; 
 %numero di cave/polo/fase 
  q = 6; 
 %numero di conduttori in cava 
  n = 2; 
 %numero cave statoriche 
  %Ncv = 30; 
 %coppie polari STATORE (riferite al campo PRINCIPALE) 
  N_ = 1; 
 %coppie polari ROTORE 
  M_ = 1; 
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 %angolo descritto dal magnete (rad.mecc.) 
  alfa_mag = 172; 
  alfa_mag = alfa_mag * Pi / 180; 
 %spessore del magnete 
  Lm = 0.002; 
 %spessore del traferro 
  g = 0.001; 
 %permeabilità relativa magnete 
  mu_mr = 1.045; 
 %fattore di Carter 
  kc = 1; 
 %induzione residua magnete 
  Bres = 1.05; 
 %profondità di macchina 
  L = 0.18; 
 %raggio medio al traferro 
  Rg = 0.0595; 
 %angolo di cava (rad.el.) 
  alfa_c = 12; 
  alfa_c = alfa_c * Pi / 180; 
  %alfa_c = Pi / m / q 
  %alfa_c = 2 * Pi / Ncv * N_ 
  %alfa_c = 2 * Pi / Ncv * M_  
 %sequenza temporale di corrente 
  st = 2; 
 %angolo elettrico correnti (pulsazione * tempo - gr.el.) 
  wt = 0; 
  wt = wt * Pi / 180; 
   
%*************************************************************************************** 
%INPUT DATI (end) 
%*************************************************************************************** 
  
%spessore traferro complessivo 
 deltag = Lm + g; 
%semiampiezza di una bobina (rad.el.) 
 gamma = nac * alfa_c / 2; 
%induzione al traferro generata dal magnete 
 BgM = Lm / (Lm + mu_mr * kc * g) * Bres; 
%passo polare (al traferro) 
 %Taup = Pi * Rg / N_; 
  
%ordine massimo sequenza di corrente 
 st_max = m - 1; 
 if st > st_max  
  return 
 end 
  
  for k = 1 : k_max 
   ctr(k) = 0; 
   rot(k) = ' '; 
   Kd(k) = 0; 
  %componenti della forza radiale definite rispetto all'asse y (d) (FEMM) 
   Fq(k) = Fr * sin(fi_Fr); 
   Fd(k) = Fr * cos(fi_Fr); 
  end 
  
  for k = 1 : k_max 
    
   if (k + st) / m == int32((k + st) / m) 
    ctr(k) = 1; 
    rot(k) = 'I'; 
   elseif (k - st) / m == int32((k - st) / m) 
    ctr(k) = 2; 
    rot(k) = 'D'; 
   else 
    ctr(k) = 0; 
    rot(k) = ' '; 
   end 
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   if ctr(k) == 1 || ctr(k) == 2  
   %fattore di distribuzione 
    Kd(k) = sin(q * k * alfa_c / 2) / q / sin(k * alfa_c / 2); 
   %valore h positivo 
    hp(k) = (1 + k * N_) / M_; 
   %valore h negativo 
    hn(k) = (-1 + k * N_) / M_; 
  
   %CASO hp INTERO e DISPARI 
   % (sovrapponibile con hn INTERO) 
    if hp(k) == int32(hp(k)) && hp(k) / 2 ~= int32(hp(k) / 2) 
     Br_hp(k) = 4 / hp(k) / Pi * BgM * sin(hp(k) * M_ * alfa_mag / 2); 
     Bs_hp(k)= 2 * muzero / Pi / L / Rg / Br_hp(k) * Fr; 
     Irms_hp(k) = 2 * k * Pi * 2 * deltag / muzero / m / 4 / n / sqrt(2) / q / Kd(k) / 

sin(k * gamma) * Bs_hp(k); 
     if ctr(k) == 2 
      fi_In_hp(k)= hp(k) * M_ * theta - wt - atan2(Fq(k),Fd(k)); 
     elseif ctr(k) == 1  
      fi_In_hp(k)= -hp(k) * M_ * theta - wt + atan2(Fq(k),Fd(k)); 
     end 
    end 
     
   %CASO hn INTERO e DISPARI 
   % (sovrapponibile con hp INTERO) 
    if hn(k) == int32(hn(k)) && hn(k) / 2 ~= int32(hn(k) / 2) 
     Br_hn(k) = 4 / hn(k) / Pi * BgM * sin(hn(k) * M_ * alfa_mag / 2); 
     Bs_hn(k)= 2 * muzero / Pi / L / Rg / Br_hn(k) * Fr; 
     Irms_hn(k) = 2 * k * Pi * 2 * deltag / muzero / m / 4 / n / sqrt(2) / q / Kd(k) / 

sin(k * gamma) * Bs_hn(k); 
     if ctr(k) == 2 
      fi_In_hn(k)= hn(k) * M_ * theta - wt + atan2(Fq(k),Fd(k)); 
     elseif ctr(k) == 1 
      fi_In_hn(k)= -hn(k) * M_ * theta - wt - atan2(Fq(k),Fd(k)); 
     end 
    end 
    
   %il ciclo si interrompe quando l'ordine armonico di rotore è INTERO, DISPARI ed 
   %assume il valore INFERIORE tra i due: hn, hp (in realtà questo è sempre 'hn' 
   %per definizione) 
    if (hn(k) == int32(hn(k)) && hn(k) / 2 ~= int32(hn(k) / 2)) && (hn(k) < hp(k)) 
     Br_=Br_hn(k); 
     Bs_=Bs_hn(k); 
     Irms_=Irms_hn(k); 
     fi_In_=fi_In_hn(k); 
     k_=k; 
     hn_=hn(k); 
     hp_=(1 + k_ * N_) / M_; 
     break 
    elseif (hp(k) == int32(hp(k)) && hp(k) / 2 ~= int32(hp(k) / 2)) && (hp(k) < hn(k)) 
     Br_=Br_hp(k); 
     Bs_=Bs_hp(k); 
     Irms_=Irms_hp(k); 
     fi_In_=fi_In_hp(k); 
     k_=k; 
     hn_=(-1 + k_ * N_) / M_; 
     hp_=hp(k); 
     break 
    else 
     Br_=0; 
     Bs_=0; 
     Irms_=0; 
     fi_In_=0; 
     k_=0; 
     hn_=0; 
     hp_=0; 
    end  
     
   end 
    
  end %(for k = 1 : k_max) 
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ABF_inv = [Br_,Bs_,Irms_,fi_In_,k_,hn_,hp_]; 

_________________________________________________________________ 

Note that the code goes to a “break” when the first value of an existing harmonic 

order is found, both for the magnetic field produced by levitation current space 

vector 2svi , both for the magnetic field produced by rotor magnets, taking in this 

way into account only the main orders. 

D) Electromagnetic Model Block 

The Electromagnetic Model block represents a complete model of the 

motor, by the electrical point of view. It determines the effective radial force 

necessary to support the rotor, in terms of the y- and z-components Fy and Fz, 

taking into account all the possible interactions between the harmonic orders of 

stator and rotor magnetic fields, according to the conditions of existence already 

seen in chapter 4 and revived hereunder (5.35)-(5.39): 

odd
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122 ±=− ss
' pkpk                    (5.39) 

 

This model also considers the effects of both space vectors 1svi , 2svi  

(respectively, torque and levitation), thus provides an accurate prediction of the 

radial force and torque generated by the motor. The drive maintains the current 

space vector 1svi   in leading by 90 electrical degrees with respect to the magnet 

axis, so that the motor produces the requested torque in each operating condition 

of the 2svi   space vector: particularly, this task is performed by the block 
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represented in the following Fig. 5.11, which adds an angle of 90 electrical 

degrees to the electrical angle corresponding to theta, angular position of the 

magnet axis. The obtained result, together with the value of Irms1 block, 

completely defines the current space vector 1svi . 

 

 
Fig. 5.11 

 

The input of Electromagnetic model block is given by the 1svi  modulus and 

phase Irms1 and fi_In1, the 2svi  modulus and phase Irms2 and fi_In2, the rotor 

position deltath (it is the same variable theta used in the Force Controller, its 

name changed only because of formal reasons), Fig. 5.12. 

 

 
Fig. 5.12 

 

In the following, the programming code of the Electromagnetic Model is 

shown, being a “Matlab function”. 
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_________________________________________________________________ 

%ALGORITMO COMPLETO 
% interazioni st1-rotore, st2-rotore, st1-st2, st2-st2 descritte tramite 
% sviluppo in serie di Fourier 
  
function ABF = fcn(Irms1,Irms2,fi_In1,fi_In2,deltath) 
  
 %Irms=zeros(1,1); 
 %fi_In=zeros(1,1); 
 %st=zeros(1,1); 
  
 %sequenze di corrente 
 st1=1; 
 st2=2; 
  
%definizione costanti 
 Pi = 3.141592654; 
 muzero = 0.000001256; 
%numero di cave sottese dalla bobina 
  nac = 10; 
 %numero di fasi 
  m = 5; 
 %numero di cave/polo/fase 
  q = 6; 
 %numero di conduttori in cava 
  n = 2; 
 %coppie polari STATORE (riferite al campo PRINCIPALE) 
  N_ = 1; 
 %coppie polari ROTORE 
  M_ = 1; 
 %angolo descritto dal magnete (rad.mecc.) 
  alfa_mag = 172; 
  alfa_mag = alfa_mag * Pi / 180; 
 %spessore del magnete 
  Lm = 0.002; 
 %spessore del traferro 
  g = 0.001; 
 %permeabilità relativa magnete 
  mu_mr = 1.045; 
 %fattore di Carter 
  kc = 1; 
 %induzione residua magnete 
  Bres = 1.05; 
 %profondità di macchina 
  L = 0.18; 
 %raggio medio al traferro 
  Rg = 0.0595; 
 %angolo di cava (rad.el.) 
  alfa_c = 12; 
  alfa_c = alfa_c * Pi / 180; 
 %massimo ordine armonico indagato 
  k_max = 30; 
  k1_max = k_max; 
  k2_max = k_max; 
 %angolo elettrico correnti (pulsazione - gr.el.) 
  wt = 0; 
  wt = wt * Pi / 180; 
  
%*************************************************************************************** 
%INPUT DATI (end) 
%*************************************************************************************** 
  
%spessore traferro complessivo 
 deltag = Lm + g; 
%semiampiezza di una bobina (rad.el.) 
 gamma = nac * alfa_c / 2; 
%induzione al traferro generata dal magnete 
 BgM = Lm / (Lm + mu_mr * kc * g) * Bres; 
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%passo polare (al traferro) 
 Taup = Pi * Rg / N_; 
 
 ctr=zeros(k_max,1); 
 rot=zeros(k_max,1); 
 Kd=zeros(k_max,1); 
 Bs=zeros(k_max,1); 
 Br=zeros(k_max,1); 
  
 Fq_hp1=zeros(k1_max,1); 
 Fd_hp1=zeros(k1_max,1); 
 Fq_hn1=zeros(k1_max,1); 
 Fd_hn1=zeros(k1_max,1); 
 Fnq_hp1=zeros(k1_max,1);  
 Fnd_hp1=zeros(k1_max,1);  
 Fnq_hn1=zeros(k1_max,1);  
 Fnd_hn1=zeros(k1_max,1);  
 fi_Frp1=zeros(k1_max,1); 
 fi_Frn1=zeros(k1_max,1); 
  
 Fq_hp2=zeros(k2_max,1); 
 Fd_hp2=zeros(k2_max,1); 
 Fq_hn2=zeros(k2_max,1); 
 Fd_hn2=zeros(k2_max,1); 
 Fnq_hp2=zeros(k2_max,1);  
 Fnd_hp2=zeros(k2_max,1);  
 Fnq_hn2=zeros(k2_max,1);  
 Fnd_hn2=zeros(k2_max,1); 
 fi_Frp2=zeros(k2_max,1); 
 fi_Frn2=zeros(k2_max,1); 
  
 Fq_s12=zeros(k1_max,1); 
 Fd_s12=zeros(k1_max,1); 
 Fq_s22=zeros(k2_max,1); 
 Fd_s22=zeros(k2_max,1); 
 
  
 Torque1=zeros(k_max,1); 
 Torque2=zeros(k_max,1); 
 Fq=zeros(1,1); 
 Fd=zeros(1,1); 
  
%*************************************************************************************** 
  % SEQUENZA DI CORRENTE ST1 
   
  for i = 1 : k1_max 
   ctr(i) = 0; 
   rot(i) = ' '; 
   Kd(i) = 0; 
   Bs(i) = 0; 
   Fq_hp1(i) = 0; 
   Fd_hp1(i) = 0; 
   Fq_hn1(i) = 0; 
   Fd_hn1(i) = 0; 
   fi_Frp1(i) = 0; 
   fi_Frn1(i) = 0; 
  end 
  
  for k1 = 1 : k1_max 
    
   if (k1 + st1) / m == int32((k1 + st1) / m)  
    ctr(k1) = 1; 
    rot(k1) = 'I'; 
   elseif (k1 - st1) / m == int32((k1 - st1) / m)  
    ctr(k1) = 2; 
    rot(k1) = 'D'; 
   else 
    ctr(k1) = 0; 
    rot(k1) = ' '; 
   end 
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   if ctr(k1) == 1 || ctr(k1) == 2 
   %fattore di distribuzione 
    Kd(k1) = sin(q * k1 * alfa_c / 2) / q / sin(k1 * alfa_c / 2); 
   %ampiezza della k1-esima armonica di campo 
    Bs(k1) = muzero * m / 2 * 4 / k1 / Pi * n * sqrt(2) * Irms1 / 2 / deltag * q * 

Kd(k1) * sin(k1 * gamma); 
   %valore h positivo 
    hp = (1 + k1 * N_) / M_; 
   %valore h negativo 
    hn = (-1 + k1 * N_) / M_; 
   %CASO hp INTERO 
   % (sovrapponibile con hn INTERO) 
    if hp == int32(hp) && hp / 2 ~= int32(hp / 2)  
     Br_hp = 4 / hp / Pi * BgM * sin(hp * M_ * alfa_mag / 2); 
     if ctr(k1) == 2  
      Fnq_hp1(k1) = Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hp * sin(hp * M_ * deltath - 

wt - fi_In1); 
      Fq_hp1(k1) = Fnq_hp1(k1); %+ Ftq_hp1(k1) - Fttq_hp1(k1); 
      Fnd_hp1(k1) = Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hp * cos(hp * M_ * deltath - 

wt - fi_In1); 
      Fd_hp1(k1) = Fnd_hp1(k1); %+ Ftd_hp1(k1); 
     elseif ctr(k1) == 1 
      Fnq_hp1(k1) = Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hp * sin(hp * M_ * deltath + 

wt + fi_In1); 
      Fq_hp1(k1) = Fnq_hp1(k1); %+ Ftq_hp1(k1) - Fttq_hp1(k1); 
      Fnd_hp1(k1) = Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hp * cos(hp * M_ * deltath + 

wt + fi_In1); 
      Fd_hp1(k1) = Fnd_hp1(k1); %+ Ftd_hp1(k1); 
     end 
    end 
   %CASO hn INTERO 
   % (sovrapponibile con hp INTERO) 
    if hn == int32(hn) && hn / 2 ~= int32(hn / 2) 
     Br_hn = 4 / hn / Pi * BgM * sin(hn * M_ * alfa_mag / 2); 
     if ctr(k1) == 2 
      Fnq_hn1(k1) = -Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hn * sin(hn * M_ * deltath - 

wt - fi_In1); 
      Fq_hn1(k1) = Fnq_hn1(k1); %+ Ftq_hn1(k1) - Fttq_hn1(k1); 
      Fnd_hn1(k1) = Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hn * cos(hn * M_ * deltath - 

wt - fi_In1); 
      Fd_hn1(k1) = Fnd_hn1(k1); %+ Ftd_hn1(k1); 
     elseif ctr(k1) == 1 
      Fnq_hn1(k1) = -Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hn * sin(hn * M_ * deltath + 

wt + fi_In1); 
      Fq_hn1(k1) = Fnq_hn1(k1); %+ Ftq_hn1(k1) - Fttq_hn1(k1); 
      Fnd_hn1(k1) = Pi * L * Rg / 2 / muzero * Bs(k1) * Br_hn * cos(hn * M_ * deltath + 

wt + fi_In1); 
      Fd_hn1(k1) = Fnd_hn1(k1); %+ Ftd_hn1(k1); 
     end 
    end 
   else 
    Fq_hp1(k1) = 0; 
    Fd_hp1(k1) = 0; 
    Fq_hn1(k1) = 0; 
    Fd_hn1(k1) = 0; 
   end 
    
  end %(next k1) 
  
%RISULTANTE 
  for i = 1 : k1_max 
   Fq = Fq + Fq_hp1(i); 
   Fq = Fq + Fq_hn1(i); 
   Fd = Fd + Fd_hp1(i); 
   Fd = Fd + Fd_hn1(i); 
  end 
  
%*************************************************************************************** 
 % SEQUENZA DI CORRENTE ST2 
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  for i = 1 : k2_max 
   ctr(i) = 0; 
   rot(i) = ' '; 
   Kd(i) = 0; 
   Bs(i) = 0; 
   Fq_hp2(i) = 0; 
   Fd_hp2(i) = 0; 
   Fq_hn2(i) = 0; 
   Fd_hn2(i) = 0; 
   fi_Frp2(i) = 0; 
   fi_Frn2(i) = 0; 
  end 
  
  for k2 = 1 : k2_max 
    
   if (k2 + st2) / m == int32((k2 + st2) / m)  
    ctr(k2) = 1; 
    rot(k2) = 'I'; 
   elseif (k2 - st2) / m == int32((k2 - st2) / m) 
    ctr(k2) = 2; 
    rot(k2) = 'D'; 
   else 
    ctr(k2) = 0; 
    rot(k2) = ' '; 
   end 
    
   if ctr(k2) == 1 || ctr(k2) == 2  
   %fattore di distribuzione 
    Kd(k2) = sin(q * k2 * alfa_c / 2) / q / sin(k2 * alfa_c / 2); 
   %ampiezza della k2-esima armonica di campo 
    Bs(k2) = muzero * m / 2 * 4 / k2 / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd(k2) * sin(k2 * gamma); 
   %valore h positivo 
    hp = (1 + k2 * N_) / M_; 
   %valore h negativo 
    hn = (-1 + k2 * N_) / M_; 
   
    %CASO hp INTERO 
    % (sovrapponibile con hn INTERO) 
     if hp == int32(hp) && hp / 2 ~= int32(hp / 2) 
      Br_hp = 4 / hp / Pi * BgM * sin(hp * M_ * alfa_mag / 2); 
      if ctr(k2) == 2 
       Fnq_hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hp * sin(hp * M_ * deltath - 

wt - fi_In2); 
       Fq_hp2(k2) = Fnq_hp2(k2); %+ Ftq_hp2(k2) - Fttq_hp2(k2); 
       Fnd_hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hp * cos(hp * M_ * deltath - 

wt - fi_In2); 
       Fd_hp2(k2) = Fnd_hp2(k2); %+ Ftd_hp2(k2); 
      elseif ctr(k2) == 1 
       Fnq_hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hp * sin(hp * M_ * deltath + 

wt + fi_In2); 
       Fq_hp2(k2) = Fnq_hp2(k2); %+ Ftq_hp2(k2) - Fttq_hp2(k2); 
       Fnd_hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hp * cos(hp * M_ * deltath + 

wt + fi_In2); 
       Fd_hp2(k2) = Fnd_hp2(k2); %+ Ftd_hp2(k2); 
      end 
     end 
      
   %CASO hn INTERO 
   % (sovrapponibile con hp INTERO) 
    if hn == int32(hn) && hn / 2 ~= int32(hn / 2) 
     Br_hn = 4 / hn / Pi * BgM * sin(hn * M_ * alfa_mag / 2); 
     if ctr(k2) == 2  
      Fnq_hn2(k2) = -Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hn * sin(hn * M_ * deltath - 

wt - fi_In2); 
      Fq_hn2(k2) = Fnq_hn2(k2); %+ Ftq_hn2(k2) - Fttq_hn2(k2); 
      Fnd_hn2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hn * cos(hn * M_ * deltath - 

wt - fi_In2); 
      Fd_hn2(k2) = Fnd_hn2(k2); %+ Ftd_hn2(k2); 



Chapter 5 
 

_________________________________________________________________ 

_________________________________________________________________ 

222 

     elseif ctr(k2) == 1 
      Fnq_hn2(k2) = -Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hn * sin(hn * M_ * deltath + 

wt + fi_In2); 
      Fq_hn2(k2) = Fnq_hn2(k2); %+ Ftq_hn2(k2) - Fttq_hn2(k2); 
      Fnd_hn2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br_hn * cos(hn * M_ * deltath + 

wt + fi_In2); 
      Fd_hn2(k2) = Fnd_hn2(k2); %+ Ftd_hn2(k2); 
     end 
    end 
   else 
    Fq_hp2(k2) = 0; 
    Fd_hp2(k2) = 0; 
    Fq_hn2(k2) = 0; 
    Fd_hn2(k2) = 0; 
   end 
    
  end % Next k2 
 
 %RISULTANTE 
  for i = 1 : k2_max 
   Fq = Fq + Fq_hp2(i); 
   Fq = Fq + Fq_hn2(i); 
   Fd = Fd + Fd_hp2(i); 
   Fd = Fd + Fd_hn2(i); 
  end 
  
%*************************************************************************************** 
 %INTERAZIONE fra i due campi STATORICI di sequenza ST1, ST2 
   
  for k1 = 1 : k1_max 
  %campo k1 INVERSO 
   if (k1 + st1) / m == int32((k1 + st1) / m) 
    %ampiezza della k1-esima armonica di campo 
    Kd_k1 = sin(q * k1 * alfa_c / 2) / q / sin(k1 * alfa_c / 2); 
    Bs_k1 = muzero * m / 2 * 4 / k1 / Pi * n * sqrt(2) * Irms1 / 2 / deltag * q * Kd_k1 

* sin(k1 * gamma); 
    k2p = (1 + k1 * N_) / N_; 
    k2n = (-1 + k1 * N_) / N_; 
    if (k2p + st2) / m == int32((k2p + st2) / m)  
      Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
      Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * sin((wt + fi_In1) - (wt + 

fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * cos((wt + fi_In1) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
    if (k2p - st2) / m == int32((k2p - st2) / m) 
      Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
      Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * sin((wt + fi_In1) + (wt + 

fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * cos((wt + fi_In1) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
     
    if (k2n + st2) / m == int32((k2n + st2) / m) 
      Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
      Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s12(k1) = -Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * sin((wt + fi_In1) - (wt + 

fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * cos((wt + fi_In1) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
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     Fd = Fd + Fd_s12(k1); 
    end 
    if (k2n - st2) / m == int32((k2n - st2) / m) 
      Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
      Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s12(k1) = -Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * sin((wt + fi_In1) + (wt + 

fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * cos((wt + fi_In1) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
   end 
  %campo k1 DIRETTO 
   if (k1 - st1) / m == int32((k1 - st1) / m) 
    %ampiezza della k1-esima armonica di campo 
    Kd_k1 = sin(q * k1 * alfa_c / 2) / q / sin(k1 * alfa_c / 2); 
    Bs_k1 = muzero * m / 2 * 4 / k1 / Pi * n * sqrt(2) * Irms1 / 2 / deltag * q * Kd_k1 

* sin(k1 * gamma); 
    k2p = (1 + k1 * N_) / N_; 
    k2n = (-1 + k1 * N_) / N_; 
    if (k2p + st2) / m == int32((k2p + st2) / m) 
      Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
      Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * sin(-(wt + fi_In1) - (wt + 

fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * cos(-(wt + fi_In1) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
    if (k2p - st2) / m == int32((k2p - st2) / m) 
      Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
      Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * sin(-(wt + fi_In1) + (wt + 

fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2p * cos(-(wt + fi_In1) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
     
    if (k2n + st2) / m == int32((k2n + st2) / m) 
      Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
      Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s12(k1) = -Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * sin(-(wt + fi_In1) - (wt 

+ fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * cos(-(wt + fi_In1) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
    if (k2n - st2) / m == int32((k2n - st2) / m) 
      Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
      Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s12(k1) = -Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * sin(-(wt + fi_In1) + (wt 

+ fi_In2)); 
     Fd_s12(k1) = Pi * L * Rg / 2 / muzero * Bs_k1 * Bs_k2n * cos(-(wt + fi_In1) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s12(k1); 
     Fd = Fd + Fd_s12(k1); 
    end 
   end 
     
  end %Next k1 
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%*************************************************************************************** 
  %INTERAZIONE fra diversi ordini armonici della sequenza ST2 
   
  for k2 = 1 : k2_max 
  %campo k2 INVERSO 
   if (k2 + st2) / m == int32((k2 + st2) / m) 
    %ampiezza della k2-esima armonica di campo 
    Kd_k2 = sin(q * k2 * alfa_c / 2) / q / sin(k2 * alfa_c / 2); 
    Bs_k2 = muzero * m / 2 * 4 / k2 / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * Kd_k2 

* sin(k2 * gamma); 
    k2p = (1 + k2 * N_) / N_; 
    k2n = (-1 + k2 * N_) / N_; 
    if (k2p + st2) / m == int32((k2p + st2) / m)  
     Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
     Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * sin((wt + fi_In2) - (wt + 

fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * cos((wt + fi_In2) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2); 
     Fd = Fd + Fd_s22(k2);  
    end 
    if (k2p - st2) / m == int32((k2p - st2) / m)  
     Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
     Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * sin((wt + fi_In2) + (wt + 

fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * cos((wt + fi_In2) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2); 
     Fd = Fd + Fd_s22(k2); 
    end 
     
    if (k2n + st2) / m == int32((k2n + st2) / m) 
     Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
     Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s22(k2) = -Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * sin((wt + fi_In2) - (wt + 

fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * cos((wt + fi_In2) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2);  
     Fd = Fd + Fd_s22(k2);  
    end 
    if (k2n - st2) / m == int32((k2n - st2) / m)  
     Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
     Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s22(k2) = -Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * sin((wt + fi_In2) + (wt + 

fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * cos((wt + fi_In2) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2);  
     Fd = Fd + Fd_s22(k2);  
    end 
   end 
   
  %campo k2 DIRETTO 
   if (k2 - st2) / m == int32((k2 - st2) / m) 
    %ampiezza della k2-esima armonica di campo 
    Kd_k2 = sin(q * k2 * alfa_c / 2) / q / sin(k2 * alfa_c / 2); 
    Bs_k2 = muzero * m / 2 * 4 / k2 / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * Kd_k2 

* sin(k2 * gamma); 
    k2p = (1 + k2 * N_) / N_; 
    k2n = (-1 + k2 * N_) / N_; 
    if (k2p + st2) / m == int32((k2p + st2) / m) 
     Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
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     Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 
Kd_k2p * sin(k2p * gamma); 

     Fq_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * sin(-(wt + fi_In2) - (wt + 
fi_In2)); 

     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * cos(-(wt + fi_In2) - (wt + 
fi_In2)); 

     Fq = Fq + Fq_s22(k2);  
     Fd = Fd + Fd_s22(k2);  
    end 
         
    if (k2p - st2) / m == int32((k2p - st2) / m) 
     Kd_k2p = sin(q * k2p * alfa_c / 2) / q / sin(k2p * alfa_c / 2); 
     Bs_k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2p * sin(k2p * gamma); 
     Fq_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * sin(-(wt + fi_In2) + (wt + 

fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * cos(-(wt + fi_In2) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2);  
     Fd = Fd + Fd_s22(k2); 
    end 
    if (k2n + st2) / m == int32((k2n + st2) / m)  
     Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
     Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s22(k2) = -Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * sin(-(wt + fi_In2) - (wt 

+ fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * cos(-(wt + fi_In2) - (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2); 
     Fd = Fd + Fd_s22(k2); 
    end 
    if (k2n - st2) / m == int32((k2n - st2) / m)  
     Kd_k2n = sin(q * k2n * alfa_c / 2) / q / sin(k2n * alfa_c / 2); 
     Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * 

Kd_k2n * sin(k2n * gamma); 
     Fq_s22(k2) = -Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * sin(-(wt + fi_In2) + (wt 

+ fi_In2)); 
     Fd_s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * cos(-(wt + fi_In2) + (wt + 

fi_In2)); 
     Fq = Fq + Fq_s22(k2); 
     Fd = Fd + Fd_s22(k2); 
    end 
   end 
     
  end %Next k2 
 
 
%CALCOLO RISULTANTI 
  
 %modulo della forza radiale 
  Fr1 = sqrt(Fd ^ 2 + Fq ^ 2); 
 %angolo misurato rispetto all'asse y (FEMM) 
  fi_Fr = atan2(Fq, Fd); 
 
%***************************************************************************************  
  % sequenza ST1: CALCOLO COPPIA Torque1(k) 
   
  for k = 1 : k_max 
    
   if (k + st1) / m == int32((k + st1) / m) 
    ctr(k) = 1; 
    rot(k) = 'I'; 
   elseif (k - st1) / m == int32((k - st1) / m) 
    ctr(k) = 2; 
    rot(k) = 'D'; 
   else 
    ctr(k) = 0; 
    rot(k) = ' '; 
   end  
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   if ctr(k) == 1 || ctr(k) == 2  
   %fattore di distribuzione 
    Kd(k) = sin(q * k * alfa_c / 2) / q / sin(k * alfa_c / 2); 
   %ampiezza della k-esima armonica di campo 
    Bs(k) = muzero * m / 2 * 4 / k / Pi * n * sqrt(2) * Irms1 / 2 / deltag * q * Kd(k) * 

sin(k * gamma); 
    if k / 2 ~= int32(k / 2) 
     Br(k) = 4 / k / Pi * BgM * sin(k * M_ * alfa_mag / 2); 
     if ctr(k) == 1  
      Torque1(k) = 1 / muzero * deltag * L * N_ ^ 2 * Taup * Bs(k) * Br(k) * sin(k * M_ 

* deltath + wt + fi_In1); 
     elseif ctr(k) == 2 
      Torque1(k) = 1 / muzero * deltag * L * N_ ^ 2 * Taup * Bs(k) * Br(k) * sin(k * M_ 

* deltath - wt - fi_In1); 
     else 
      Torque1(k) = 0; 
     end 
    else 
     Br(k) = 0; 
     Torque1(k) = 0; 
    end 
   else  
    Kd(k) = 0;    
    Bs(k) = 0;    
   end 
    
  end  
  
 %CALCOLO RISULTANTE 
  Torque1sum = 0; 
  for k = 1 : k_max 
   Torque1sum = Torque1sum + Torque1(k); 
  end 
  
 % sequenza ST2: CALCOLO COPPIA Torque2(k) 
  
  for k = 1 : k_max 
    
   if (k + st2) / m == int32((k + st2) / m) 
    ctr(k) = 1; 
    rot(k) = 'I'; 
   elseif (k - st2) / m == int32((k - st2) / m) 
    ctr(k) = 2; 
    rot(k) = 'D'; 
   else 
    ctr(k) = 0; 
    rot(k) = ' '; 
   end 
    
   if ctr(k) == 1 || ctr(k) == 2  
   %fattore di distribuzione 
    Kd(k) = sin(q * k * alfa_c / 2) / q / sin(k * alfa_c / 2); 
   %ampiezza della k-esima armonica di campo 
    Bs(k) = muzero * m / 2 * 4 / k / Pi * n * sqrt(2) * Irms2 / 2 / deltag * q * Kd(k) * 

sin(k * gamma); 
    if k / 2 ~= int32(k / 2) 
     Br(k) = 4 / k / Pi * BgM * sin(k * M_ * alfa_mag / 2); 
     if ctr(k) == 1  
      Torque2(k) = 1 / muzero * deltag * L * N_ ^ 2 * Taup * Bs(k) * Br(k) * sin(k * M_ 

* deltath + wt + fi_In2); 
     elseif ctr(k) == 2 
      Torque2(k) = 1 / muzero * deltag * L * N_ ^ 2 * Taup * Bs(k) * Br(k) * sin(k * M_ 

* deltath - wt - fi_In2); 
     else 
      Torque2(k) = 0; 
     end 
    else 
     Br(k) = 0; 
     Torque2(k) = 0; 
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    end 
   else 
    Kd(k) = 0;    
    Bs(k) = 0;    
   end 
    
  end %(for k = 1 : k_max) 
 
%CALCOLO RISULTANTE 
  Torque2sum = 0; 
  for k = 1 : k_max 
   Torque2sum = Torque2sum + Torque2(k); 
  end 
   
ABF = [Fq,Fd,Fr1,fi_Fr,Torque1sum,Torque2sum,Irms1,fi_In1,Irms2,fi_In2,deltath]; 

_________________________________________________________________ 

Note that the variables Fq, Fd, restituted as output arguments of the “Matlab 

function”, correspond to the searched Fy, Fz components of the radial force. 

E) Forces To Moments Matrix Block 

This block simply provides to calculate the moments given by the resultant radial 

force in the absolute reference system, by means of the contributions of its 

components (5.40)-(5.41): 

k̂coscosLFîsinLFM sh
y

sh
yyF ψϕ+ϕ−=

22
     (5.40) 

ĵcoscosLFîsincosLFM sh
z

sh
zzF ψϕ−ψϕ=

22
     (5.41) 

 
 Fig. 5.13 
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The relationships were implemented in SIMULINK® by describing every single 

term, as shown in Fig. 5.13. 

 

55..44..22  EEuulleerr’’ss  EEqquuaattiioonnss  BBlloocckk  

A) Applied Moments Block 

In the Applied Moments block, the moments of the resultant radial forces are 

recalculated from the abs to the ftr reference system. The important feature in 

this block, is the “ABSOLUTE to FTR” function which provides to realize the 

above action; other blocks are used for auxiliary functions, as the signals scope. 

 
Fig. 5.14 

The array MFyz represents the moments already calculated in the Levitation 

Forces block, which are added in summation to the moment produced by the 

weight force, given in (5.42) with respect to the abs reference system. 

( )ĵcoscosîsincos
L

mg

mg

sin
L

sincos
L

coscos
L

k̂ĵî

M

sh

shshsh
g

ψϕ+ψϕ−=

=

−

ϕψϕψϕ=

2

00
222    (5.42) 
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Consider the mass m of the rotor and the shaft, the center of gravity located on 

the axis with a fixed point at the origin O of the system at a distance Lsh/2 from 

the latter. The total moment is then expressed, by means of the ( )ψϕθ ,,B  matrix 

(5.31), with respect to the ftr reference system and passed to the next block. 

B) Euler’s Equations Block 

 
Fig. 5.15 

This part of the system implements the Euler’s equations, seen in (5.20) as 

rearranged in (5.33): the output of the block is constituted by the angular speed 

vector with respect to the ftr reference system (Fig. 5.15). The variables marked 

with a capital letter which compare in Fig. 5.15 correspond to the moments of 

inertia seen in (5.33). 
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55..55  TThhee  sseettttiinngg  ooff  PPIIDD  ccoonnttrroolllleerrss  

To set up the PID controllers, firstly the system was analyzed by disabling 

the Force Controller and Electromagnetic model blocks, because of the high 

complexity of these Matlab functions which introduce the Fourier harmonic 

series distribution of the various magnetic fields: in fact, considering the whole 

harmonic contributions, it would be very difficult to define the corresponding 

transfer function. On the contrary, in this way the PID controllers output gives 

directly the Fy, Fz components of the resultant force. Obviously, this represents 

only an intermediate step to produce some provisional values of the PID 

coefficients Ki, Kp and Kd, being not the original system, but it permitted to 

obtain the actual values in an easier way. In fact, after having calibrated the 

values of the PID coefficients by means of this simplified analysis, the two 

functions were reintroduced to set up and recalculate the coefficients in the 

actual, original configuration. 

The analytical approach to the problem was formulated by expressing the force, 

resultant of the interactions between magnetic fields by means of its y- and z- 

components, as the direct result of the PID controllers regulation, thus as a 

combination of proportional, integral and derivative actions (5.43), (5.51). Also, 

the rotor is considered subject to the weight force, obviously acting along the z- 

axis: 

 

A) Equilibrium along the y-axis: 

( ) ( ) ( ) ( )[ ]
dt

tydKdyKtyKtf d
t

ipy
Δ

+ττΔ+Δ= ∫0
     (5.43) 

Where Δy represents the error with respect to y coordinate, as defined in (5.45). 

Applying the Laplace transformation, it gives: 
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( ) ( ) ( ) ( ) ( )[ ]0ysYsKsY
s

K
sYKsF d

i
pY Δ−Δ+Δ+Δ=     (5.44) 

( ) ( ) ( ) ( ) ( ) ( )
s

ysYsYytyty 00 −=Δ⇒−=Δ      (5.45) 

By substituting (5.45) in (5.44) it gives: 

( ) ( ) ( ) ( ) ( ) ( ) ( )000
2

yKssYKy
s
K

sY
s

K
s

yKsYKsF dd
ii

ppY −+−+−=  (5.46) 

By applying the second law of motion along the y axis: 

( ) ( ) ( )[ ]tfL
dt

ydmLtftym yy =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⇒=−

2

2
0&&      (5.47) 

By substituting the respective L-transforms in the equation (5.47) it gives: 

( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )000

00

2

2

yKssYKy
s
K

sY
s

K
s

yKsYK

ysysYsm

dd
ii

pp −+−+−=

=−− &

 (5.48) 

Considering that ( ) ( ) 000 == yy & , by substituting into (5.48) it gives: 

( ) ( ) ( ) ( )ssYKsY
s

K
sYKsYms d

i
p ++=2       (5.49) 

By collecting the common terms in (5.49), it gives the trivial solution (5.50): 

( ) 0=sY            (5.50) 

Similarly, proceed to writing the equation along the z- axis: 

 

B) Equilibrium along the z-axis: 

( ) ( ) ( ) ( )[ ]
dt

tzdKdzKtzKtf d
t

ipz
Δ

+ττΔ+Δ= ∫0
     (5.51) 
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( ) ( ) ( ) ( ) ( )[ ]0zsZsKsZ
s

K
sZKsF d

i
pz Δ−Δ+Δ+Δ=     (5.52) 

( ) ( ) ( ) ( ) ( ) ( )
s

zsZsZztztz 00 −=Δ⇒−=Δ      (5.53) 

( ) ( ) ( ) ( ) ( ) ( ) ( )000
2

zKssZKz
s
K

sZ
s

K
s

zKsZKsF dd
ii

ppz −+−+−=  (5.54) 

This time the equation includes the weight force, as said above: 

( ) ( ) ( )[ ]
s

mgtfL
dt

zdmLmgtftzm zz −=⎥
⎦

⎤
⎢
⎣

⎡
⇒−=

2

2
&&     (5.55) 

( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )

s
mgzKssZKz

s
K

sZ
s

K
s

zKsZK

zszsZsm

dd
ii

pp −−+−+−=

=−−

000
00

2

2 &

 (5.56) 

( ) ( ) ( ) ( )
s

mgssZKsZ
s

K
sZKsZms d

i
p −++=2      (5.57) 

By collecting the common terms in (5.57), it gives (5.58), (5.59): 

( )[ ] mgKsKsKmssZ ipd −=−−− 23       (5.58) 

( )

m
K

s
m

K
s

m
K

s

g
KsKsKms

mgsZ
ipdipd −−−

−
=

−−−

−
=

23
23

  (5.59) 

The L-transform of the z coordinate (5.59) describes the height of the shaft 

ending point with respect to the centre of the motor. By studying the stability of 

the equation (5.59) is possible to obtain the order of magnitude of the PID 

coefficients. It is not the exact solution because, as mentioned before, a 

simplified system configuration is examined. To find the correlation between the 

three poles and the coefficients of the polynomial equation in s, given by putting 

the denominator of (5.59) equal to zero, a generic expression of a third degree 
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polynomial is written: 

( )( )( )
( ) ( ) 0321323121

2
321

3
321

=−+++++−=

=−−−

pppsppppppsppps

pspsps
 (5.60) 

By equating the coefficients of the polynomial (5.60) to those of the denominator 

in the equation (5.59), it gives: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

−=++

=++

m
K

ppp

m
K

pppppp

m
K

ppp

i

p

d

321

323121

321

       (5.61) 

To solve the problem, the easiest way is to choose only one pole of multiplicity 

equal to three and of negative value if real or, if complex, having a real part of 

negative value (5.62), to assure the stability of the system: 

{ }⎩
⎨
⎧

∈<ℜ
ℜ∈<

===
Cppe

pp
pppp

if0
if0

321      (5.62) 

Finally, by substituting (5.62) in (5.61) and developing the equations, it’s 

possible to obtain the relationships between the PID coefficients and the pole; 

choosing suitably its value, are determined Ki, Kp and Kd: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=⇒=

−=⇒−=

=⇒=

33

22 33

33

mpK
m
Kp

mpK
m

K
p

mpK
m

Kp

i
i

p
p

d
d

       (5.63) 

In the next, p is chosen as a real number: the general criterion is to vary the value 

of p until the maximum excursion of the motor shaft ending point falls within the 
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desired tolerance, which can be reasonably fixed in one-tenth of the amplitude of 

the airgap, or less if necessary. 
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55..66  SSiimmuullaattiioonnss  aanndd  rreessuullttss  

The software SIMULINK® was used in order to complete the simulations; the 

analyzed machine is characterized by the following parameters (Tab. I): 

TABLE I. DATA OF THE MACHINE 
Param. Description Value 

Nsl number of slots 30 

p pole pairs of the machine 1 

m number of phases 5 

In rated phase current (Arms) 59.82 

Tn rated torque (Nm) 30.29 

g airgap width (mm) 1 

De stator outer diameter (mm) 230 

Ds stator inner diameter (mm) 120 

Dm mean diameter of the magnet (mm) 116 

Dcv_ext diameter at the bottom of the slot (mm) 170 

Dcv_int diameter at the top of the slot (mm) 126.3 

Dr rotor outer diameter (mm) 114 

Dri rotor inner diameter (mm) 60 

αcv slot pitch angle 12° 

adt stator slot height (mm) 25 

hcl  slot opening height (mm) 1 

L axial length of the machine (mm) 180 

Lsh total length of the shaft (mm) 320 

Dsh shaft diameter (mm) 40 

Lm magnet width (mm) 2 

Ldt tooth-body width (mm) 8 

Lcl slot opening width (mm) 2 

Ltc slot width at the top slot radius (mm) 5.23 

Lfc slot width at the bottom slot radius (mm) 9.7 

τcv slot pitch at the inner stator radius (mm) 12.57 

m rotor and shaft mass (kg) 16.75 

I0I moment of inertia, I axis (kg m2) 2.7∙10‐2 

I0ε moment of inertia, ε axis (kg m2) 50.6∙10‐2 

I0η moment of inertia, η axis (kg m2) 50.6∙10‐2 
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Using the method described in the previous section, a list of values for Ki, Kp and 

Kd is obtained, shown in Tab. II. By applying these values in the simulation, it 

can be seen that by increasing the absolute value of p, the maximum excursion of 

the motor shaft ending point is progressively reduced. 

TABLE II. VALUES OF PID COEFFICIENTS 

p Kd Kp Ki 
           

‐20  ‐1.005E+03 ‐2.01E+04 ‐1.34E+05

‐40  ‐2.01E+03 ‐8.04E+04 ‐1.072E+06

‐80  ‐4.02E+03 ‐3.216E+05 ‐8.576E+06
 

In the following, will be analyzed the simulation results for p = -80  by 

representing in the Figs. 5.17, 5.18, the positions of the shaft ending point and of 

the axis point corresponding to the rotor stack length in the y, z coordinates of the 

absolute reference system (Fig. 5.1). It is important to note that, with reference to 

the constrained extremity of the shaft, the rotor stack length extends up to 250 

mm and its corresponding axis point position represents the parameter to be 

verified. The shaft ending point extends up to 320 mm, thus its excursion will be 

obviously greater than the latter (Fig. 5.16). 

 
Fig. 5.16 

Rotor stack length 
axis point 

Shaft ending point 
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The simulations were performed at a rotor angular speed Iω  = 1004.8 rad/s, 

corresponding to 9595.13 rpm and the torque current has the rated value of 59.82 

Arms. 

 
Fig. 5.17 

 

 
Fig. 5.18 
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As explained above, all the possible interactions between magnetic fields acting 

in the airgap are considered, by means of the “Electromagnetic model”. Thus, the 

analyzed situation can be considered as a complete and realistic operating 

condition of the bearingless machine. In addition, the locus occupied by the same 

points on the y-z plane, represented in Fig. 5.19, provides a clearer representation 

of the rotor axis position. It is also interesting to observe the behavior of the 

torque and levitation current space vectors, 1svi  and 2svi , in terms of rms value 

and phase, Figs. 5.20-5.21: 

 

 
Fig. 5.19 
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Fig. 5.20 

 

 

 
Fig. 5.21 
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The current space vector 1 has an imposed constant rms value (59.82) to generate 

continuously the requested torque, its phase which varies remaining in leading by 

90 electrical degrees with respect to magnet axis. 

The modulus of current space vector 2, after having reached a maximum 

value of almost 4.5 Amps rms in the early instants of time, oscillates between 3 

and 3.3 Amps, while the phase continuously changes its value in the whole range 

(0 to 360 electrical degrees), having to follow the spatial phase of the required 

force necessary to counterbalance the weight and the other forces generated by 

the interactions between harmonic orders of the magnetic fields. To give a more 

realistic idea, the resultant force vector acting on the rotor, in the time interval 

from 0 ms to 100 ms, changes its position on the yz  plane as shown in Fig. 5.22. 

 
Fig. 5.22 

 

As can be seen by comparing the Figs. 5.17-5.19, the maximum value of the 

excursion of the rotor stack length axis point is about 2 tenth of millimeter in the 
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negative z-axis direction and 1.5 tenth of millimeter in the negative y-axis 

direction, over the prefixed value of 1 tenth, which represents 1 tenth of the 

airgap width. So, it is necessary to set a different calibration of the PID 

controllers. The first attempt, based on the values of Tab. II corresponding to p = 

-80, is made by varying the coefficients Kd, Kp, Ki and verifying the result. 

Proceeding in this way there is no more correlation with general criterion (5.63), 

but lower absolute values for parameters could be found with, consequently, an 

easier way to practically realize the controller. A good compromise is found by 

acting only on Kp, multiplying by three its value in Tab. II. Thus, the values of 

Tab. III were used and the simulation results are shown in the following: 

 

 

TABLE III. VALUES OF PID COEFFICIENTS 

Kd Kp Ki 
        

‐4.02E+03 ‐9.648E+5 ‐8.576E+06
 

 
Fig. 5.23 
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Fig. 5.24 

 

 
Fig. 5.25 
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Fig. 5.26 

 

 

 
Fig. 5.27 
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The modulus of current space vector 2 has an oscillating behavior with a 

progressive reduction tending to the regime, standing in the range of 3 to 3.4 

Amps, as can be noted in Fig. 5.27 and, clearly, in Fig. 5.28 where the same 

function is represented with an extended time axis. 

 

 
Fig. 5.28 

 

As can be seen by comparing the Figs. 5.23-5.25, now the maximum excursion 

of the rotor stack length axis point is about 1 tenth of millimeter in the negative 

z-axis direction and about 0.75 tenth of millimeter in the negative y-axis 

direction. Thus, it is possible to say that the target has been achieved. As done 

before, in Fig. 5.29 is shown the succession of the different positions occupied by 

the resultant force vector on the yz  plane in the time interval from 0 ms to 100 

ms. In the Figs. 5.30, 5.31 the time axis has been scaled up to the value of 1 

second with respect to Figs. 5.23-5.24, to highlight the stable state achieved by 

the system. 
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Fig. 5.29 

 
Fig. 5.30 
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Fig. 5.31 

 

The second way to proceed is by continuing to use the general criterion (5.63), 

which would probably permits a finest regulation of the PID coefficients. Finally, 

the values in Tab. IV were found with p = -120: 

 

TABLE IV. VALUES OF PID COEFFICIENTS 

p Kd Kp Ki 
           

‐120  ‐6.03E+03 ‐7.236E+05 ‐2.8944E+07
 

 

The results of the simulation are shown in the following, from Fig. 5.32 to Fig. 

5.37. 
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Fig. 5.32 

 

 

 
Fig. 5.33 
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Fig. 5.34 

 

 
Fig. 5.35 
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Fig. 5.36 

 

 

 
Fig. 5.37 
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As can be seen by comparing the obtained results with the previous, a sensible 

reduction of the overshoot and a faster attainment of regime condition are 

achieved, even if the absolute values of the PID coefficients are in general greater 

than in the previous attempt. It can be noted that the system behaves as if in the 

instant −= 0t  the rotor would be perfectly centered and the motor is off; in the 

instant += 0t  the weight force and the other forces, produced by the interactions 

between stator and rotor magnetic fields, begin their action on the rotor, with the 

control system trying to bring it in the requested position. In the Figs. 5.38, 5.39 

is shown the analyzed 5-phase bearingless motor. 

 

 
Fig. 5.38 
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Fig. 5.39 
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55..77  CCoonncclluussiioonn  

In this chapter a control system for bearingless multiphase synchronous 

PM machines is presented, integrated by a three-dimensional mechanical model 

based on the Euler’s equations. 

The electromagnetic model of the machine, seen in Chapter 4, takes into 

account all the possible interactions between harmonic orders of the magnetic 

fields produced by the current space vector 1svi , which gives the torque, produced 

by the current space vector 2svi , which gives the levitation forces, and produced 

by rotor magnets. 

Differently from other authors, which propose models that take into 

account only the main harmonic orders interactions between magnetic fields, the 

developed system is a complete one, giving in this way a more accurate modeling 

of the mechanical and electromagnetic phenomena. 

For these reasons, it constitutes an important tool for the design of a 

bearingless multiphase synchronous PM machines control system and represents 

the design of the experimental device with related control system to realize in a 

test bench application. 



 
 

_________________________________________________________________ 

_________________________________________________________________ 

253 



 
 

_________________________________________________________________ 

_________________________________________________________________ 

254 

 



Conclusion 
 

_________________________________________________________________ 

_________________________________________________________________ 

255 

CCoonncclluussiioonn 

 

The main scope of this Ph.D thesis is constituted by the non linear analysis 

and design of bearingless multiphase machines and drives. 

The thesis work began with the development of a method to analyze the 

distributions of the magnetic vector potential, magnetic field and flux density in 

the airgap of a permanent magnet electrical machines by applying a two-

dimensional model. The original contribution of the approach, inspired by a 

literature paper, consisted in the complete calculations to get the solution of the 

problem, conducted by using the techniques of mathematical analysis applied to 

physical and engineering problems. This model is characterized by a linear 

analysis.  

The previous constraint of magnetic linearity is overcome by the second 

chapter of this Thesis, where an algorithm for the non-linear magnetic analysis of 

multiphase surface-mounted PM machines with semi-closed slots has been 

presented. Previous papers proposed the analysis of open-slot configurations with 

a prefixed structure of the motor, with a given number of poles and slots, or by 

studying only a particular position of the rotor with respect to the stator. In this 

work, the PM machine is represented by using a modular structure geometry. The 

basic element of the geometry is duplicated allowing to build up and analyze 

whatever typology of windings and ampere-turns distribution in a pair of poles. 

In the third chapter the theme of the bearingless machines has been 

introduced, analyzing and describing the main concepts and ideas developed in 

the literature. 

The fourth chapter presents an analytical model for radial forces 
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calculation in multiphase bearingless Surface-Mounted Permanent Magnet 

Synchronous Motors (SPMSM). The model allows to predict amplitude and 

direction of the force, depending on the values of the torque current, of the 

levitation current and of the rotor position. It is based on the space vectors 

method, letting the analysis of the machine not only in steady-state conditions but 

also during transients. The calculations are conducted by developing the 

analytical functions in Fourier series, taking all the possible interactions between 

stator and rotor mmf harmonic components into account. The proposed method 

allowed to emphasize the effects of electrical and geometrical quantities like the 

coil pitch, the width and length of the magnets, the rotor position, the amplitude 

and phase of current space vector, etc. 

In the last chapter a three-dimensional mechanical model model of a 

bearingless multiphase synchronous PM machines has been analized. The 

mechanical model  is based on the Euler’s equations, while the electromagnetic 

model of the machine, developed in the previous chapter, takes into account all 

the possible interactions between harmonic orders of the magnetic fields 

produced by the current space vector mainly responsible for the torque, and by 

the current space vector injected for producing levitation forces. In the control 

model, implementd in MATLAB SIMULINK, the errors in the rotor position are 

used in order to calculate the components of the radial forces necessary to control 

the rotor axis position of the machine. 

The performances of the proposed non linear model of SPMSM have been 

compared with those obtained by FEA software in terms of linkage fluxes, co-

energy, torque and radial force. The obtained results for a traditional three-phase 

machine and for a 5-phase machine with unconventional winding distribution 

showed that the values of local and global quantities are practically coinciding, 

for values of the stator currents up to rated values. In addition, they are very 

similar also in the non-linear behavior even if very large current values are 
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injected. The relevant edge of the method consists in the possibility of defining 

the machine characteristics in a simple user interface. Then, by duplicating an 

elementary cell, it is possible to construct and analyze whatever typology of 

windings and ampere-turns distribution in a pole-pair. Furthermore, it is possible 

to modify the magnet width-to-pole pitch ratio analyzing various configurations 

in order to minimize the cogging torque, or simulating the rotor movement in 

sinusoidal multiphase drives or in a user-defined current distribution. 

When developing a new machine design the proposed method is useful not 

only for the reduction of computing time, but mainly for the simplicity of 

changing the values of the design variables, being the numerical inputs of the 

problem obtained by changing some critical parameters, without the need for re-

designing the model in a CAD interface. For a given rotor position and for given 

stator currents, the output torque as well as the radial forces acting on the moving 

part of a multiphase machine can be calculated. The latter feature makes the 

algorithm particularly suitable in order to design and analyze bearingless 

machines. For these reasons, it constitutes a useful tool for the design of a 

bearingless multiphase synchronous PM machines control system. 

With reference to the control system for bearingless machines the 

presented model allows to calculate the radial force avoiding the errors 

introduced by the use of only the basic mmf harmonic components. In fact, when 

designing a control system for bearingless machines, many authors considered 

only the interaction between the main harmonic orders of the stator and rotor 

mmfs. In multiphase machines this can produce mistakes in determining both the 

module and the spatial phase of the radial force, due to the interactions between 

the higher harmonic orders. In addition, the proposed algorithm permits to study 

whatever configuration of SPMSM machine, being parameterized as a function 

of the electrical and geometrical quantities,  like the coil pitch, the width and 

length of the magnets, the rotor position, the amplitude and phase of current 
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space vector, etc. Finally, the results of the proposed method have been 

compared with those of a most used FEA software, obtaining very similar values 

of the analyzed quantities. 

In conclusion, this thesis aims to be a complete reference for the design 

methodologies of multiphase bearingless machines and drives, in the linear and 

non-linear fields of application. 
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