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Abstract

Over the years the Differential Quadrature (DQ) method has distinguished
because of its high accuracy, straightforward implementation and general ap-
plication to a variety of problems. There has been an increase in this topic by
several researchers who experienced significant development in the last years.

DQ is essentially a generalization of the popular Gaussian Quadrature
(GQ) used for numerical integration functions. GQ approximates a finite in-
tegral as a weighted sum of integrand values at selected points in a problem
domain whereas DQ approximate the derivatives of a smooth function at a
point as a weighted sum of function values at selected nodes. A direct appli-
cation of this elegant methodology is to solve ordinary and partial differential
equations. Furthermore in recent years the DQ formulation has been gener-
alized in the weighting coefficients computations to let the approach to be
more flexible and accurate. As a result it has been indicated as Generalized
Differential Quadrature (GDQ) method.

However the applicability of GDQ in its original form is still limited. It has
been proven to fail for problems with strong material discontinuities as well as
problems involving singularities and irregularities. On the other hand the very
well-known Finite Element (FE) method could overcome these issues because
it subdivides the computational domain into a certain number of elements
in which the solution is calculated. Recently, some researchers have been
studying a numerical technique which could use the advantages of the GDQ
method and the advantages of FE method. This methodology has got different
names among each research group, it will be indicated here as Generalized
Differential Quadrature Finite Element Method (GDQFEM).

The purpose of this PhD Thesis is to introduce the limitations of the di-
rect GDQ method and more importantly the implementation technique of the
GDQFEM. Moreover, in order to show the accuracy, stability and flexibility of
the current methodology some numerical examples are shown. The examples
are related to the mechanics of civil and mechanical engineering structures
such as membranes, state plane structures and flat plates. The static and
dynamic behaviour of these structures are proposed in the following chapters.
Numerical comparisons with literature and FE analyses are reported and very
good agreement is observed in all the computations.
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Sommario

Negli ultimi anni il metodo di Quadratura Differenziale (DQ) si è distinto per
la sua elevata accuratezza, semplicità di implementazione e applicazione a sva-
riati problemi matematici. Recentemente, molti ricercatori hanno utilizzato
sempre più frequentemente questa tecnicha per la risoluzione di problemi di
meccanica delle strutture.

Il metodo DQ è essenzialmente una generalizzazione della Quadratura
Gaussiana (GQ) utilizzata per l’integrazione numerica delle funzioni. Il meto-
do GQ approssima un integrale finito come una somma dei valori della funzione
integranda in certi punti particolari del dominio, mentre la tecnica DQ appros-
sima le derivate di una funzione regolare in un punto, come somma pesata di
valori della funzione nei punti del dominio. Una diretta applicazione di que-
sta metodologia si trova nella risoluzione di sistemi di equazioni alle derivate
parziali e totali. La formulazione DQ classica è stata generalizzata per quanto
riguarda il calcolo dei coefficienti di ponderazione, e ciò ha permesso di avere
un calcolo dei coefficienti più flessibile ed accurato. Infatti, in letteratura viene
indicato come metodo Generalizzato di Quadratura Differenziale (GDQ).

Tuttavia l’applicabilità della tecnica GDQ nella sua forma originaria ri-
mane comunque limitata. Il metodo non può essere applicato in presenza di
discontinuità del materiale come anche in problemi che riguardano le singo-
larità e la forma generica. D’altro canto, il ben noto metodo agli Elementi
Finiti (FE) può andare oltre questi aspetti poiché suddivide il dominio com-
putazionale in un certo numero di elementi in cui viene calcolata la soluzione.
Recentemente, molti ricercatori si sono occupati di una tecnica numerica in
grado di unire i vantaggi del metodo GDQ e del metodo FE. In letteratura,
questa tecnica viene indicata in svariati modi a seconda del gruppo di ricerca
che se ne è occupato, anche se in tutti i casi la tecnica ha sempre lo scopo
di andare oltre i limiti della tecnica DQ standard. In questa tesi, tale tecni-
ca, viene indicata come Metodo agli Elementi Finiti basato sulla Quadratura
Differenziale Generalizzata (GDQFEM).

L’obiettivo di questa tesi è quindi quello di introdurre le limitazioni del
metodo diretto GDQ e di mostrate le tecniche di implementazione del metodo
GDQFEM. Inoltre per mostrare l’accuratezza, la stabilità e la flessibilità del
GDQFEM vengono proposti alcuni esempi numerici (e.g. membrane, stati
piani e piastre piane) relativi alla meccanica delle strutture sia in ambito
civile che meccanico. Per ogni esempio si riporta: il comportamento statico
e dinamico e le correlazioni numeriche tra i risultati pubblicati in letteratura,
le soluzioni ottenute con analisi FE e quelli proposti. Tutte le correlazioni
numeriche hanno evidenziato un ottimo accordo.
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Chapter 1

Generalized Differential Quadrature

Finite Element Method

Sommario

Gran parte dei problemi ingegneristici sono governati da sistemi di equazioni alle derivate
parziali (PDEs) con opportune condizioni al contorno. In generale, risulta molto comp-
lesso ottenere una soluzione in forma chiusa di questi sistemi differenziali. D’altro canto
però, la soluzione di un PDE è necessaria per fini pratici.

Nella maggior parte dei casi, la soluzione approssimata è presentata con valori della
funzione incognita in alcuni punti discreti del dominio (punti della griglia o della maglia).
Le relazioni tra le derivate nel sistema di equazioni alle derivate parziali e i valori della
funzione nei punti della griglia prende il nome di tecnica di discretizzazione.

Nel presente capitolo si presenta un’efficiente tecnica di discretizzazione per ottenere
soluzioni numeriche accurate utilizzando un piccolo numero di punti di griglia. Questa
tecnica è stato introdotto da Bellman et al. [7, 8] negli anni 70. In particolare Bellman
introdusse il metodo di Quadratura Differenziale (DQ), secondo il quale una derivata
parziale di una certa funzione, rispetto ad una coordinata direzionale, può essere espressa
come una somma lineare pesata dei valori che la funzione assume in certi punti (detti
punti di griglia) moltiplicati per dei coefficienti di ponderazione. Tale metodo fu succes-
sivamente generalizzato da Shu [9] permettendo una definizione ricorsiva dei coefficienti
di ponderazione per il calcolo delle derivate di ordine superiore al primo. Tale tecnica
prende il nome di metodo Generalizzato di Quadratura Differenziale (GDQ).

Risulta dunque possibile risolvere un qualsivoglia sistema differenziale discretizzando
le derivate di tale sistema e ottenendo così un sistema algebrico di equazioni. È quindi
possibile risolvere le equazioni fondamentali delle strutture direttamente in forma forte
senza indebolire il sistema, come avviene invece per il metodo ad Elementi Finiti (FE).

Sicuramente un punto di forza del metodo GDQ è l’elevata accuratezza e stabilità,
ma purtroppo non può essere applicato in casi in cui la geometria sia distorta o vi siano
discontinuità geometriche o del materiale. Nella seconda parte di questo capitolo quindi
si introduce una tecnica numerica avanzata che ha come base il metodo GDQ e ne gen-
eralizza i concetti per essere applicato in quei casi in cui il GDQ classico non può essere
applicato. Tale tecnica viene qui indicata come Metodo agli Elementi Finiti basato sulla
Quadratura Differenziale Generalizzata (GDQFEM) poiché è possibile far uso dei punti di
forza del metodo GDQ e del metodo FE. Riassumendo, il metodo GDQFEM [11] inizial-
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2 Chapter 1. Generalized Differential Quadrature Finite Element Method

mente discretizza il dominio reale in una serie di sottodomini a seconda delle discontinuità
presenti nel modello. Si applica una trasformazione conforme per passare da un dominio
distorto ad uno regolare (così come avviene negli elementi finiti). Infine, si applica la
tecnica GDQ sul dominio di forma regolare. L’assemblaggio tra gli elementi della suddi-
visione avviene tramite la scrittura di condizioni di compatilbità tra i bordi degli elementi
e condizioni di equilibrio nei punti di spigolo degli elementi stessi.
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1.1 Introduction

Most engineering problems are governed by a set of partial differential equations (PDEs)
with proper boundary conditions. In general it is very difficult to obtain a closed form of a
given differential problem. On the other hand, the solution of a PDE is always demanded
due to practical interests.

In most cases, the approximate solution is represented by functional values at certain
discrete points (grid points or mesh points). The connection between the derivatives in
a partial differential equation system and the functional values at the grid points is the
discretization technique.

Nowadays, several numerical discretization techniques are available. Among them
the Finite Difference (FD), Finite Element (FE), and Finite Volume (FV) methods fall
under the category of low order methods, whereas spectral and pseudo-spectral methods
are considered global methods. The FD is based on the Taylor series expansion or the
polynomial approximation. whereas the FE method is based on the variational principal or
the principal of weighted residuals. The FV method applies the physical conservation law
directly to a finite cell. The spectral method may be viewed as an extreme development
of the class of discretization schemes known as the methods of weighted residuals. There
is a close relationship between FE and spectral methods in the sense that both methods
use a set of base functions and weighting functions. The choice of the base function is
one of the features that distinguishes the spectral method from the FE method.

Most numerical simulations of engineering problems can be carried out by the low
order FD, FE and FV methods using a large number of grid points. In some practical
applications, however, the numerical solutions of PDEs are required at only a few specific
points in the physical domain. In order to achieve an acceptable degree of accuracy, low
order methods still require the use of a large number of grid points to obtain accurate
solutions at these specified points. It seems that to avoid the drawbacks of low order
methods the solution accuracy can be improved by using high order and global methods.
In general, high order methods have a high order of truncation error. Thus, to achieve
the same order of accuracy, the mesh spacing used by high order methods can be much
larger than that used by lower order methods. As a consequence, high order methods are
capable of yielding accurate numerical solutions using a very few amount of grid points.
The spectral method is the natural choice for this purpose. At present, application of
spectra methods demand substantial mathematical knowledge of the theory.

In seeking an efficient discretization technique to obtain accurate numerical solutions
using a considerably small number of grid points, Bellman et al. [7, 8] introduced the
method of differential quadrature (DQ), where a partial derivative of a function with
respect to a coordinate direction is expressed as a linear weighted sum of all the functional
values at all mesh points along that direction. The DQ method was initiated from the
idea of integral quadrature. The key to DQ is to determine the weighting coefficients for
the discretization of a derivative of any order. Bellman et al. [7, 8] suggested two methods
to the determine the weighting coefficients of the first order derivative. The first method
solves an algebraic equation system. The second uses a simple algebraic formulation,
but with the coordinates of the grid points chosen as the roots of the shifted Legendre
polynomial.
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a k b

f k

f (x)

x

Figure 1.1: Integral of a generic function f(x) over a closed interval [a, b].

1.2 Integral quadrature

The differential quadrature (DQ) method was presented by Bellman and his associates
in the early 1970’s. It is a numerical discretization technique for the approximation
of derivatives. The DQ method was initiated from the idea of conventional integral
quadrature. In fact one problem which arises frequently in structural mechanics and
in many other engineering problems is the evaluation of the integral∫ b

a

f(x)dx (1.1)

over a finite and closed interval [a, b]. If F is a function such that dF/dx = f , then
the value of the given integral is F (b) − F (a). Unfortunately, in practical problems, it
is extremely difficult, and most of the times impossible, to obtain an explicit expression
for F . The values of f , perhaps, can be known at a discrete set of points and in this
situation, a numerical approach is essential.

As it is very well known from literature that the integral (1.1) represents the area under
the given curve f(x) as shown in Figure 1.1. Since evaluating the integral is equivalent
to the approximation of the area. Using this basic principle, many numerical method
techniques were developed. In general, the integral (1.1) can be approximated by

∫ b

a

f(x)dx = w1f1 + w2f2 + · · ·+ wnfn =

n∑
k=1

wkfk (1.2)

where w1, w2, . . . , wn are the weighting coefficients, f1, f2, . . . , fn are the functional values
at the discrete points a = x1, x2, . . . , xn = b. Equation (1.2) is called the integral quadra-
ture, which uses all the functional values in the whole integral domain to approximate an
integral over a finite interval.

In general, the discrete points are selected so as to give a uniform distribution, e.g.
xi = xi−1 + h, i = 2, 3, . . . , n, where h is called the step size. All the conventional
quadrature rules can be written in the form of (1.2).

1.3 Differential Quadrature

As shown in Figure 1.2 a one dimensional problem is considered. It is assumed that a
function f(x) is sufficiently smooth over the whole domain. The given function must not
have any singularity and it should be derivable over the domain.
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1 2 N...       i ...

Figure 1.2: A one dimensional problem discretization.

Following the idea of integral quadrature (1.2), Bellman et al. [8] suggested that
the first order derivative of the function f(x) with respect to x at a grid point xi, is
approximated by a linear sum of all the functional values in the whole domain, that is

fx(xi) =
df

dx

∣∣∣∣
xi

=

N∑
j=1

aijf(xj), for i = 1, 2, . . . , N (1.3)

where aij represent the weighting coefficients, and N is the number of grid points in
the whole domain. The differential quadrature is represented by (1.3). It should be
noted that the weighting coefficients aij are different at different locations of xi. The
main procedure in DQ approximation is to determine the weighting coefficients aij . In
[9, 10, 41] the determination of the weighting coefficients are presented in detail from the
analysis of a linear vector space and the analysis of function approximation. For the sake
of completeness only the main formulae are given in the following.

1.3.1 First order weighting coefficients

In this section, same details will be shown for the determination of the weighting coeffi-
cients in the DQ approximation when the solution of a partial differential equation (PDE)
is approximated by a polynomial of high degree. For the sake of simplicity, since the DQ
approximation is related to the polynomial approximation to the solution of a PDE, this
methodology is termed polynomial based differential quadrature (PDQ) method.

Consider a one dimensional problem over a closed interval [a, b]. It is supposed that
there are N grid points with the coordinates a = x1x2, . . . , xN = b. Bellman et al. [8]
assumed that a function f(x) is sufficiently smooth over the interval [a, b] so that its first
order derivative f (1)(x) at any grid point can be approximated by the following formulation

f (1)
x (x) =

N∑
j=1

aijf(xj), for i = i, 2, . . . , N (1.4)

where f(xj) representes the functional values at a grid point xj , f
(1)
x (xi) indicates the

first order derivative of f(x) at xi, and aij is the weighting coefficient of the first order
derivative. It is shown in [9, 10, 41] that f (1)

x (x) is a linear operator. The determination of
the weighting coefficients aij of (1.4) is a key procedure in the DQ approximation. Once
the weighting coefficients are determined, the derivatives in the governing differential
equation and the functional values at the mesh points are related by (1.4). In other words,
with the weighting coefficients, one can easily use the functional values to compute the
derivatives.

Bellman’s approaches

Bellman et al. [8] proposed two approaches to compute the weighting coefficients aij (1.4).
The two approaches are based on the use of two different test functions.
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In his first approach the test functions are chosen as

gk(x) = xk, for k = 0, 1, . . . , N − 1 (1.5)

Obviously, (1.5) gives N test functions. For the weighting coefficients aij in (1.4) i and
j are taken from 1 to N . Thus, the total number of weighting coefficients is N × N . In
order to obtain these weighting coefficients, the N test functions should be applied at N
grid points x1, x2, . . . , xN . As a consequence, the following N × N algebraic equations
for aij are obtained.⎧⎪⎨

⎪⎩
∑N

j=1 aij = 0∑N
j=1 aijxj = 1 for i = 1, 2, . . . , N∑N
j=1 aijx

k
j = kxk−1

i , for k = 2, 3, . . . , N − 1

(1.6)

Equation (1.6) has a unique solution because its matrix is of Vandermonde form. Unfor-
tunately, when N is large, the matrix is ill-conditioned and its inversion is difficult. In
the practical application of this approach, N is usually chosen to be less than 13.

In the Bellman’s second approach, that is similar to the first one, nevertheless it has
different test functions

gk(x) =
LN (x)

(x− xk)L
(1)
N (xk)

, for k = 1, 2, . . . , N (1.7)

where LN (x) is the Legendre polynomial of degree N and L
(1)
N (x) is the first order deriva-

tive of LN (x). By choosing xk to be the roots of the shifted Legendre polynomial and
applying (1.7) at N grid points x1, x2, . . . , xN , Bellman et al.[8] obtained a simple alge-
braic formulation to compute aij.

aij =
L
(1)
N (xi)

(xi − xj)L
(1)
N (xj)

, for j �= i

aii =
1− 2xi

2xi(xi − 1)

(1.8)

Using (1.8), the computation of the weighting coefficients is a simple task, nevertheless
this approach is not flexible as the first approach because the coordinates of the grid
points in this approach can not be chosen arbitrarily. They should have chosen as the
roots of the Legendre polynomial of degree N instead. As a result (1.8) reflects only a
special case. Due to the inflexibility associated with the second approach in selecting the
grid points, the first approach is usually adopted in practical applications.

Quan and Chang’s approach

In order to improve Bellman’s approaches in computeing the weighting coefficients, many
attempts have been made by a lot of researchers. One of the most useful approaches
is the one introduced by Quan and Chang [18, 19]. They used the following Lagrange
interpolation polynomials as test functions

gk(x) =
M(x)

(x− xk)M (1)(xk)
, for k = 1, 2, . . . , N (1.9)
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where

M(x) = (x− x1)(x− x2) . . . (x− xN )

M (1)(xi) =
N∏

k=1,k �=i

(xi − xk)
(1.10)

Subsequently, by applying (1.9) at N grid points, they obtained the following algebraic
formulations to compute the weighting coefficients aij

aij =
1

xj − xi

N∏
k=1,k �=i

xi − xk

xj − xk
, for j �= i

aii =
N∑

k=1,k �=i

1

xi − xk

(1.11)

When (1.11) are used, there is no restriction on the choice of the grid points.

Shu’s general approach

Shu’s general approach was inspired by Bellman’s approaches. It covers all the approaches,
including Quan and Chang’s approach.

It is shown in [9, 10, 41] that the solution of a PDE can be accurately approximated
by a polynomial of high degree. It is supposed that the degree of the approximated
polynomial is N − 1.

f(x) =
N∑
k=1

ckx
k−1 (1.12)

where ck is a constant. This approximate polynomial constitutes an N dimensional linear
vector space VN with the operation of vector addition and scalar multiplication. Many
sets of base vectors in the linear vector space VN exist. In the current case, the vector is
actually the polynomial. As a result the base vectors are also called the base polynomials.
For the sake of generality, two sets of base polynomials have been used. The Lagrange
interpolation polynomials are taken as the first set of base polynomials

rk(x) =
M(x)

(x− xk)M (1)(xk)
, for k = 1, 2, . . . , N

M(x) = N(x, xk)(x− xk), for k = 1, 2, . . . , N

(1.13)

with N(xi, xj) = M (1)(xi)δij, where δij is the Kronecker operator. Using the second of
(1.13), the first of (1.13) can be simplified to

rk(x) =
N(x, xk)

M (1)(xk)
, for k = 1, 2, . . . , N (1.14)

so the coefficients with the given base polynomial are

N. Fantuzzi PhD Thesis
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aij =
N (1)(xi,xj)

M (1)(xj)
(1.15)

In (1.15), M (1)(xj) can be computed from the second of (1.10). To evaluate N (1)(xi, xj)
the first of (1.13) have to be differentiate with respect to x so the following recurrence
formulation is obtained

M (m)(x) = N (m)(x, xk)(x− xk) +mN (m−1)(x, xk)

for m = 1, 2, . . . , N − 1 k = 1, 2, . . . , N
(1.16)

where M (m)(x) and N (m)(x, xk) indicate the m-th order derivative of M(x) and N(x, xk).
From (1.16) the expressions of N(xi, xj) can be obtained

N (1)(xi, xj) =
M (1)(xi)

xi − xj
, for i �= j

N (1)(xi, xj) =
M (2)(xi)

2

(1.17)

Substituting (1.17) into (1.15) the weighting coefficients are obtained

aij =
M (1)(xi)

(xi − xj)M (1)(xj)
, for i �= j

aii =
M (2)(xi)

2M (1)(xi)

(1.18)

It is observed from (1.18) that if xi is given, it is easy to compute M (1)(xi) from (1.10) and
as a consequence aij for i �= j. However, the calculation of aii is based on the computation
of the second order derivative M (2)(xi) which is not an easy task. This difficulty can be
eliminated by using the second set of base polynomials. According to the property of
a linear vector space, if one set of base polynomials matches a linear operator, so does
another set of base polynomials. As a result, the equation system for the determination
of aij derived from the Lagrange interpolation polynomials should be equivalent to that
derived from another set of base polynomials xk−1, k = 1, 2, . . . , N . Thus aij satisfies the
following equation which is obtained by the base polynomial xk−1 when k = 1

N∑
j=1

aij = 0 or aii = −
N∑

j=1,j �=i

aij (1.19)

The first of (1.18) and (1.19) are the two formulations to compute the weighting coeffi-
cients aij. It is noted that in the development of these two formulations, two sets of base
polynomials were used in the linear polynomial vector space VN .

1.3.2 Higher order weighting coefficients

For the discretization of the second order derivative a similar approximation is introduced

N. Fantuzzi PhD Thesis
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f (2)
x (xi) =

N∑
j=1

bijf(xj), for i = 1, 2, . . . , N (1.20)

where f (2)
x (xi) is the second order derivative of f(x) at xi, bij are the weighting coefficients

of the second order derivative. It is clear that (1.20) is a linear operator and it has got
the same form of (1.4).

Quan and Chang’s approach

In this approach Quan and Chang used the Lagrange interpolation polynomials as the
test functions and then derived

bij =
2

xj − xi

(
N∏

k=1,k �=i,j

xi − xk

xj − xk

)(
N∑

l=1,l �=i,j

1

xi − xl

)
, for i �= j

bii = 2
N−1∑

k=1,k �=i

(
1

xi − xk

N∑
l=k+1,l �=i

1

xi − xl

) (1.21)

Shu’s general approach

Following the same idea of the first order derivative, Shu’s general approach is based on
polynomial approximation and linear vector space analysis. Two sets of base polynomials
are used obtaining

bij =
N (2)(xi, xj)

M (1)(xj)
(1.22)

On the other hand from (1.16) it is obtained

N (2)(xi, xj) =
M (2)(xi)− 2N (1)(xi, xj)

xi − xj
, for i �= j

N (2)(xi, xi) =
M (3)(xi)

3

(1.23)

Substituting (1.23) into (1.22) yields

bij =
M (2)(xi)− 2N (1)(xi, xj)

(xi − xj)M (1)(xj)
, for i �= j

bii =
M (3)(xi)

3M (1)(xi)

(1.24)

Finally by substituting the first order weighting coefficients (1.18) into (1.24) the final
form of the second order weighting coefficients is obtained

bij = 2aij

(
aii − 1

xi − xj

)
, for i �= j (1.25)
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While the computation of the weighting coefficients when i �= j is easy, on the contrary
that is not same when i = j, because it involves the third order derivative of M (3)(xi)
which can not be computed easily (1.24). This difficulty can be eliminated by employing
the properties of a linear vector space. Similar to the analysis for the case of the first
order derivative, the equation system for bij is derived from the Lagrange interpolation
polynomials (a set of base polynomials) is equivalent to that derived from another set
of base polynomials xk−1, k = 1, 2, . . . , N . Thus bij should be also satisfy the following
formulation derived from the base polynomial xk−1 when k = 1

N∑
j=1

bij = 0 or bii = −
N∑

j=1,j �=i

bij (1.26)

For the application of Shu’s approach, bij is firstly computed when i �= j. Subsequently
bii is calculated.

1.3.3 Higher order recurrence formulation

For the discretization of higher order derivatives, the following two linear operators are
applied

f (m−1)
x (xi) =

N∑
j=1

w
(m−1)
ij f(xj)

f (m)
x (xi) =

N∑
j=1

w
(m)
ij f(xj)

for i = 1, 2, . . . , N m = 2, 3, , . . . , N − 1

(1.27)

where f
(m−1)
x (xi), f

(m)
x (xi) indicate the (m− 1)-th and the m-th order derivatives of f(x)

with respect to x at xi. The weighting coefficients related to f
(m−1)
x (xi), f

(m)
x (xi) are wm−1

ij ,

wm
ij . Two sets of base polynomials will also be used to derive explicit formulations for w(m)

ij .
The first set of base polynomials is given by (1.14), so substituting that relationship into
(1.27) gives

w
(m−1)
ij =

N (m−1)(xi, xj)

M (1)(xj)

w
(m)
ij =

N (m)(xi, xj)

M (1)(xj)

(1.28)

by rewriting the first of (1.28)

N (m−1)(xi, xj) = w
(m−1)
ij M (1)(xj) (1.29)

which is valid for any i and j. From the recurrence formulation (1.16) can be obtained

N. Fantuzzi PhD Thesis
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N (m−1)(xi, xj) =
M (m)(xi)

m

N (m)(xi, xj) =
M (m)(xi)−mN (m−1)(xi, xj)

xi − xj
, for i �= j

N (m)(xi, xi) =
M (m+1)(xi)

m+ 1

(1.30)

Substituting the first of (1.30) into the second of (1.30) leads to

N (m)(xi, xj) =
m
(
N (m−1)(xi, xi)−N (m−1)(xi, xj)

)
xi − xj

, for i �= j (1.31)

which can be further simplified by using (1.29)

N (m)(xi, xj) =
m
(
w

(m−1)
ii N (1)(xi)− w

(m−1)
ij N (1)(xj)

)
xi − xj

, for i �= j (1.32)

Substituting (1.32) into the second of (1.28) and using the recurrence formulation of
the first order (1.18) a recurrence formulation is obtained as follows

w
(m)
ij = m

(
aijw

(m−1)
ii − w

(m−1)
ij

xi − xj

)

for i, j = 1, 2, . . . , N m = 2, 3, . . . , N − 1

(1.33)

where aij is the weighting coefficient of the first order derivative described above. The
formulation for w

(m)
ii can be obtained by substituting the third of (1.30) into the second

of (1.28), which gives

w
(m)
ii =

M (m+1)(xi)

(m+ 1)M (1)(xi)

for i, j = 1, 2, . . . , N m = 2, 3, . . . , N − 1

(1.34)

Unfortunately this relationship does not give an east expression to evaluate the weighting
coefficients w

(m)
ii . Again this difficulty is overcome by the properties of a linear vector

space, as it has been done in the previous sections.

N∑
j=1

w
(m)
ij = 0 or w

(m)
ii = −

N∑
j=1,j �=i

w
(m)
ij (1.35)

1.4 Multi dimensional case

In the most of practical engineering problems the physical domain under study is two or
three dimensional. Thus, it is necessary to extend the DQ approximation from the one
dimensional case to the multi dimensional one. In the following section the extension
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Figure 1.3: Mesh distribution sample on a regular domain.

from the one to the two dimensional case is reported. For the three dimensional problems
other works can be used as a reference [10, 41].

The DQ approximation is based on polynomial approximations. Since these kind of
functions differ if the domains are regular or irregular the extension of DQ approximation
would be quite different in these two cases.

As shown by Shu [20], the one dimensional PDQ formulation can be directly extended
to the multi dimensional case if the discretization domain is regular. The regular domain
could be a rectangle or other regular shapes such as a circle. Here, for simplicity, a
rectangular domain is considered. Consider a two dimensional function f(x, y) defined on
a rectangular domain, as shown in Figure 1.3. In the case presented in figure N and M
grid points have been chosen along x and y, respectively. In Figure 1.3 N = 7 and M = 6,
so it is not necessary that the two coordinates are discretized with the same amount of
points. Hence in a DQ application there can be N �= M .

It has been shown in the previous sections that the DQ derivative of a given function
in a fixed point can be written as a function of all the other points in the given domain.
In a two dimensional problem two kinds of derivatives can be used. A derivative along a
direction line (x or y) and the mixed derivative in which both x and y appear.

In Figure 1.4 a general order derivative along x is graphically presented. The point
at which the derivative is calculated is indicated by a cross f(xi, yj) and the solid line
rectangle represents all the points involved in the computation. When the derivative
along x of the function f(x, y) have to be evaluated at the point (xi, yj) it is clear that
the resultant polynomial expression varies only with the first index i.

On the other hand (see Figure 1.5) the evaluation of a general order derivative along
y involves only the index j. In Figure 1.5 the crossed point f(xi, yj) reveals where the

N. Fantuzzi PhD Thesis
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x

y

N

M

i

j

fi,j

Figure 1.4: Graphical meaning of the derivative along x.

x

y

N

M

i

j

fi,j

Figure 1.5: Graphical meaning of the derivative along y.
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x

y

N

M

i

j

fi,j

Figure 1.6: Graphical meaning of the mixed derivative.

derivative is calculated and the solid line rectangle represents the points involved in the
numerical computation.

Finally when a mixed derivative has to be evaluated the computation involves all the
points of the domain. In fact first the derivative takes all the points along one direction
(solid rectangular line) and the second derivative needs the other points in the second
direction (dashed rectangular lines) for every point of the previous derivative (empty
circle points). Following the graphical rules presented in Figures 1.4-1.6 the mathematical
expressions of the derivatives along a direction are

f (1)
x (xi, yj) =

∂f(x, y)

∂x

∣∣∣∣
x=xi
y=yj

=

N∑
k=1

aikf(xk, yj), for i = 1, 2, . . . , N

f (1)
y (xi, yj) =

∂f(x, y)

∂y

∣∣∣∣
x=xi
y=yj

=
M∑
l=1

ājlf(xi, yl), for j = 1, 2, . . . ,M

(1.36)

where aik and ājl are the first order weighting coefficient along x and y respectively. It
is noted that for a general order derivative the equations can be be written using Shu’s
notation.
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f (n)
x (xi, yj) =

∂(n)f(x, y)

∂xn

∣∣∣∣
x=xi
y=yj

=
N∑
k=1

w
(n)
ik f(xk, yj)

for i = 1, 2, . . . , N n = 1, 2, . . . , N − 1

f (m)
y (xi, yj) =

∂(m)f(x, y)

∂ym

∣∣∣∣
x=xi
y=yj

=
M∑
l=1

w̄
(m)
jl f(xi, yl)

for j = 1, 2, . . . ,M m = 1, 2, . . . ,M − 1

(1.37)

where w
(n)
ik and w̄

(m)
jl are the weighting coefficients of order n and m along x and y respec-

tively. Furthermore following the same rule of (1.37) the mixed derivative can be written
as follows

f (n+m)
xy (xi, yj) =

∂(n+m)f(x, y)

∂xn∂ym

∣∣∣∣
x=xi
y=yj

=
N∑
k=1

w
(n)
ik

(
M∑
l=1

w̄
(m)
jl f(xk, yl)

)

for i = 1, 2, . . . , N j = 1, 2, . . . ,M

for n = 1, 2, . . . , N − 1 m = 1, 2, . . . ,M − 1

(1.38)

where w
(n)
ik and w̄

(m)
jl have the same meaning of (1.37).

1.4.1 Multi dimensional weighting coefficient matrices

When a one dimensional problem is considered the derivatives that belong to the problem
can be written using DQ as the previous sections have shown. The resultant algebraic
system of linear equations has got a N × N dimension, if N is the total number of grid
point which have been used to discretize the physical domain (see the next section for
further details about grid point distributions).

When a multi dimensional case is considered, using (1.37), (1.38) can result to be
not computationally handy. Thus new weighting coefficients matrix form can be defined
instead. Starting off Figure 1.7, the main step between the one and two dimensional
case is the disposition of the functional values that are written in (1.37), (1.38). For the
one dimensional case it is obvious that the functional values vector goes from f(x1) to
f(xN). However in the two dimensional case the sorting of the functional values can not
be defined uniquely. All the numerical results that will be shown in the following chapters
for several two dimensional cases, the functional values are stored as depicted in Figure
1.7.

The generic grid point f(xi, yj) structure starts from the first column j = 1 and
1 ≤ i ≤ N to the last column j = M and 1 ≤ i ≤ N . As a result following these rules
the (1.37), (1.38) can be rewritten as

N. Fantuzzi PhD Thesis



16 Chapter 1. Generalized Differential Quadrature Finite Element Method

x

y

1 2 ... ... ... M
columns

Figure 1.7: Functional values in a two dimensional problem.

∂(n)f(x, y)

∂xn

∣∣∣∣
x=xi
y=yj

=
N∑
k=1

w
(n)
i,k f(xk, yj) =

= w
(n)
i,1 f(x1, yj) + w

(n)
i,2 f(x2, yj) + · · ·+ w

(n)
i,Nf(xN , yj)

∂(m)f(x, y)

∂ym

∣∣∣∣
x=xi
y=yj

=

M∑
l=1

w̄
(m)
j,l f(xi, yl) =

= w̄
(m)
j,1 f(xi, y1) + w̄

(m)
j,2 f(xi, y2) + · · ·+ w̄

(m)
j,Mf(xi, yM)

∂(n+m)f(x, y)

∂xn∂ym

∣∣∣∣
x=xi
y=yj

=

N∑
k=1

w
(n)
i,k

(
M∑
l=1

w̄
(m)
j,l f(xk, yl)

)
=

= w
(n)
i,1

(
w̄

(m)
j,1 f(x1, y1) + w̄

(m)
j,2 f(x1, y2) + · · ·+ w̄

(m)
j,Mf(x1, yM)

)
+

+ w
(n)
i,2

(
w̄

(m)
j,1 f(x2, y1) + w̄

(m)
j,2 f(x2, y2) + · · ·+ w̄

(m)
j,Mf(x2, yM)

)
+

+ · · ·+
+ w

(n)
i,N

(
w̄

(m)
j,1 f(xN , y1) + w̄

(m)
j,2 f(xN , y2) + · · ·+ w

(m)
j,Mf(xN , yM)

)
(1.39)

So the derivative respect to x is a function of each point along the same column of the
point (xi, yj) chosen. On the contrary the derivative respect to y is a function of each
point along the same row of the point (xi, yj) chosen. Finally the mixed derivative is a
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Figure 1.8: Extended matrix derivative along x direction.

Figure 1.9: Extended matrix derivative along y direction.

function of all the domain points, because for each weighting coefficient w
(n)
ij there are all

the columns multiplied by the coefficients w̄
(m)
ij .

The extended polynomial expressions (1.39) simplify all the algebraic and numerical
expressions of the code. Each expression of (1.39) represent a N M×N M matrix, because
the total number of grid points in a two dimensional problem has got N M points. These
matrices are general when the functional values order is defined and they are valid for any
derivation order. They differ from each other for the inner algebraic structure.

The matrix representing the derivative along x for the whole computational grid is
termed W

(n)
x , which has got w(n) matrix on the main diagonal repeated M times as

graphically presented in Figure 1.8. In fact each w(n) matrix depicted in Figure 1.8 has
got N ×N dimension. In the particular grid point choice of Figure 1.3 where N = 7 and
M = 6, W (n)

x is made of six blocks (M = 6) of 7× 7 w(n) matrices.
In Figure 1.9 the derivative along y is presented and the matrix is termed W

(m)
y which

has got w̄(m) linearised and put next to each other. In particular each column of w̄(m)

matrix is taken separately. Every column vector is transposed and each component is
outdistanced of N spaces in the W

(m)
y matrix line. In other words for the case reported
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Figure 1.10: Extended matrix for the mixed derivative.

in Figure 1.3, the first line of W(m)
y , see Figure 1.9, has got six bullets (M = 6) shifted

of seven columns among them. Furthermore the following lines shifts of one column right
every row down. So the resultant extended matrix W

(m)
y is graphically represented by a

series of diagonal bullets.
In the end the mixed derivative is depicted in Figure 1.10 and, as reported by (1.38),

it gets all the grid points of the computational domain. The extended mixed derivative
matrix is full, and generally it does not have any zero element whereas W

(n)
x and W

(m)
y

have a lot of zero elements. The extended mixed derivative matrix is indicated by W
(n+m)
xy

1.5 Typical grid point distributions

In the previous sections the main DQ development has been shown. It is noted that (1.37),
(1.38) are valid if and only if a discretization procedure is preformed (other than the
weighting coefficient computation). The grid point distribution is a fundamental choice
of the technique. In fact stability and accuracy strongly depend on the discretization
[9, 10, 41]. For the sake of simplicity a one dimensional problem is considered in the
following. Starting off a linear domain it can be divided following a equally spaced or a
not equally spaced grid (not uniform). It is more often preferred a not uniform grid, due
to the fact that DQ gives more accurate results respect to the one with a uniform grid.

A type of discretization must be chosen as roots of an orthogonal polynomial, which
can be taken as base vectors of the polynomial vector space. The Jacobi polynomial,
defined in a closed interval are used in the DQ method. A not uniform discretization can
be chosen as roots of Chebyshev polynomial of the first kind, or the second kind or of
the Legendre polynomial. Thus all these kinds of discretization belong to the orthogonal
polynomial category.

The most used grid distribution in literature is the Chebyshev-Gauss-Lobatto. In this
kind of discretization the location of the nodal points is defined with a cosine function
(not uniform discretization). However it will be shown in this PhD Thesis that the roots
of the Legendre polynomial gives the best results for the method developed in this study.
Another not uniform discretization is given by the quadratic grid point distribution. It
should be also noted that the uniform discretization leads to not accurate and not stable
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numerical results, due to the ill conditioned weighting coefficient matrices when N and
M increase.

If N are the number of points along the one dimensional domain under study. For the
sake of generality the domain is considered dimensionless a ≤ x ≤ b → 0 ≤ ξ ≤ 1, when
ξ = (x− a)/L and L = b− a that is the length of the closed interval [a, b].

• Uniform grid distribution

ξk =
k − 1

N − 1
, k = 1, 2, . . . , N (1.40)

• Chebyshev-Gauss-Lobatto grid distribution

ξk =
1

2

(
1− cos

(
k − 1

N − 1
π

))
, k = 1, 2, . . . , N (1.41)

• Quadratic discretization

⎧⎪⎪⎨
⎪⎪⎩
ξk = 2

(
k − 1

N − 1

)2

, k = 1, 2, . . . , N+1
2

ξk = −2

(
k − 1

N − 1

)2

+ 4

(
k − 1

N − 1

)
− 1, k = N+1

2
+ 1, . . . , N − 1, N

(1.42)

• Roots of the Chebyshev polynomial of the first kind

ξk =
rk − r1
rN − r1

, rk = cos

(
2k − 1

2N
π

)
, k = 1, 2, . . . , N (1.43)

• Roots of the Chebyshev polynomial of the second kind

ξk =
rk − r1
rN − r1

, rk = cos

(
k

N + 1
π

)
, k = 1, 2, . . . , N (1.44)

• Roots of the Legendre polynomial

ξk =
rk − r1
rN − r1

, rk =

(
1− 1

8N2
+

1

8N3

)
cos

(
4k − 1

4N + 2
π

)
, k = 1, 2, . . . , N (1.45)

It should be noted that the last three discretizations use the roots of some orthogonal
polynomial as reference points in the grid.

All these distributions can be used in the multi dimensional case, even though they
have been defined for a one dimensional problem. In addition to the previous discretiza-
tions it is possible to define other grids in which the points are more or less refined as a
function of a parameter. This technique is called stretching formulation. It is possible to
relocate the grid points of a standard grid as follows

ζk = (1− α)
(
3ξ2k − 2ξ3k

)
+ αξk, k = 1, 2, . . . , N (1.46)
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where α is the stretching parameter. It is noted that for α = 1 ⇒ ζk = ξk. When
α < 0 some nodal values can go beyond the initial closed interval [a, b]. In order to avoid
this inconvenience, the grid points near the domain boundaries must satisfy the following
relations

ζk < 0, ζk+1 > 0, k = 1, 2, . . . ,
N + 1

2
(1.47)

and they are redefined as

ζk = βζk+1, ζN−k+1 = 1− ζk (1.48)

where β is a positive constant that must verify the condition: ζk − ζk−1 < ζk+1 − ζk.
Frequently β = 0.1. Applying this kind of discretization it is possible to arbitrary refine
(α < 1) or clear (α > 1) the grid points of any boundary mesh.

1.6 Solution techniques

In most applications of the DQ method to engineering problems, which are governed
by time-dependent partial differential equations (PDEs), the spatial derivatives are dis-
cretized by the DQ method whereas the time derivatives are discretized by low order finite
difference schemes. For the general case a time dependent PDE is considered as follows


(u(x, t)) + q(x, t) =
∂2u(x, t)

∂t2
(1.49)

where 
(u) is a differential operator containing all the spatial derivatives and q is a given
function. The configuration variable u depends on space x and time t. The problem
(1.49) should be specified with proper initial and boundary conditions for the solution.
By using DQ method to discretize the spatial derivatives in the differential operator 
(u)
and applying the (1.49) at all interior grid points, a set of ordinary differential equations
(ODEs) is obtained

LU+Q =
d2U

dt2
(1.50)

where U is a vector representing a set of unknown functional values at all the interior
points, L is a matrix resulting from the DQ discretization and Q is a known vector arising
from the function q and the given initial and boundary conditions.

In this PhD Thesis static and dynamic engineering problems are solved. It must be
underlined that the dynamic process investigated here is related to free vibrations only.
As a result the dynamic equilibrium equations of a system is transformed into a linear
eigenvalue problem through the variable separation process

u(x, t) = U(x)eiλt (1.51)

substituting (1.51) into (1.49), considering q = 0 a linear eigenvalue problem is obtained


(U(x)) + λ2U(x) = 0 (1.52)

after the discretization of (1.52) the eigenvalues λ2 and the eigenvectors U of the problem
can be found, in a discrete form (1.52) becomes
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Figure 1.11: Boundary points of a rectangular DQ discretized domain.

LU+ λ2U = 0 (1.53)

On the contrary when a static analysis is performed the configuration variable does
not depend on time u(x, t) = u(x) and the (1.49) becomes


(u(x)) + q(x) = 0 (1.54)

that in discrete form becomes

LU+Q = 0 (1.55)

The linear algebraic systems (1.53) and (1.55), obtained by using DQ rule, can not be
solved directly because the boundary conditions have not been introduced yet.

1.6.1 Boundary condition implementation

A proper implementation of the boundary conditions is very important for accurate and
stable numerical solution of ODEs (1.53), (1.55). It has been widely shown in literature
that the DQ discretization of the boundary conditions leads to accurate and stable re-
sults [9, 10, 41]. According to mathematics, in any PDE at least two kinds of boundary
conditions exist: the Dirichlet condition and the Neumann condition. The first is a con-
dition on the configuration variable, u(x̄, t) = c1, and the second one is a condition on the
derivative of the configuration variable u′(x̄, t) = c2. In the previous cases c1 and c2 are
two arbitrary constants and x̄ represents the coordinates of the domain boundary. It is
underlined that in all the problems developed in this PhD Thesis the number of boundary
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conditions are always equal to the number of degrees of freedom per point, so there is no
need of implementing any mixed condition (the same conditions that have to be used in
the Euler-Bernoulli beam and in the Kirchhoff-Love plate for example) which would lead
to a complex implementation of the technique [9, 10, 41].

In Figure 1.11 the boundary points for a rectangular discretized DQ domain is pre-
sented. Since either Dirichlet or Neumann boundary conditions can be implemented four
sides and four corners should be considered. Considering the plane reference system x-y
the four sides can be named as the four cardinal directions: west and east edges for the
sides of normal y and north and south for the sides of normal x. It is compulsory to
separate the corner points from the sides because they have separate boundary conditions
depending on the boundary conditions of the neighbouring sides. In fact the Upper-Left
corner (UL corner) conditions depend on the Dirichlet and Neumann conditions of the
west and north side, the Upper-Right corner (UR corner) conditions depend on the north
and east sides, the Lower-Right corner (LL corner) conditions depend on the west and
south sides, finally the Lower-Right corner (LR corner) conditions depend on the east and
south conditions.

It can be noticed from Figure 1.11 that if a DQ discretized domain is composed of
N M grid points: there are (N − 2)(M − 2) domain points and 2N +2(M − 2) boundary
points (sides plus corners). It will be shown in the next section that when more complex
problems are studied the boundary conditions play a fundamental role for the solution of
the algebraic system.

1.6.2 Solving the discretized problems

Since the discretized systems of equations obtained via DQ method (1.55), (1.53) after the
imposition of the boundary conditions are linear, the linear algebra rules can be applied
as follows. In structural mechanics the linear algebraic operator L used in (1.55), (1.53)
is called stiffness matrix and it is generally indicated Kt, which is the stiffness matrix of
the whole system. In particular

Kt =

[
Kbb Kbd

Kdb Kdd

]
(1.56)

where all the boundary conditions are written in the first couple of matrices Kbb and Kbd,
whereas the domain equations are written in Kdb and Kdd. As a result the static solution
(1.55) of a generic structural model can be found as

[
Kbb Kbd

Kdb Kdd

] [
Ub

Ud

]
+

[
Qb

Qd

]
=

[
0

0

]
(1.57)

where Ub, Ud are the displacements on the boundary and domain points respectively, and
Qb, Qd are the external forces, the first represent the reaction forces of the boundaries and
the second stands for the external loads. Thus with reference to the algebraic structure
(1.57) the static condensation of the variables can be performed in order to improve the
numerical performance. From the first set of equations the boundary displacements can
be found as a function of the domain displacements

Ub = −K−1
bb KbdUd −K−1

bb Qb (1.58)
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Figure 1.12: Generic plane domain of boundary B and internal domain Ω.

Substituting (1.58) into the second set of equations of (1.57) the solution system can be
written

(
Kdd −KdbK

−1
bb Kbd

)
Ud = KdbK

−1
bb Qb −Qd (1.59)

Once the linear algebraic system (1.59) in terms of domain displacements, the boundary
displacements can be found using (1.58) where now Ud is not an unknown vector any
more.

Analogously for the dynamic case (1.53) the condensation can be applied to the eigen-
value problem also. However the external load vector is considered null, Q = 0. As it is
very well known by linear algebra an eigenvalue problem can be solved by

(
Kt + λ2M

)
U = 0 (1.60)

where M is the mass matrix of a structural system, λ2 are the eigenvalues and U represent
the eigenvectors of the problem under study. In structural mechanics the mass matrix
M represent the inertia forces of a mechanical system, nevertheless the boundary of the
physical domain do not attend into the equation of motion so[

Kbb Kbd

Kdb Kdd

] [
Ub

Ud

]
+ λ2

[
0 0

0 Mdd

] [
Ub

Ud

]
=

[
0

0

]
(1.61)

The static condensation can be performed in (1.61) by using (1.58), imposing Q = 0. The
linear eigenvalue problem becomes

(
Kdd −KdbK

−1
bb Kbd + λ2Mdd

)
Ud = 0 (1.62)

1.7 Multi-domain differential quadrature

In the previous sections the applications of the DQ method for solving simple domains
have been described. The DQ method discretizes the derivatives along a straight line.
Thus, it requires the computational domain to be regular so that the physical boundary
could be a mesh line. If the physical boundary is generally curved, the DQ method can
not be directly applied. There are two basic approaches to overcome this difficulty. The
first is called the multi-domain DQ approach, in which the whole domain is decomposed
into several regular sub-domains and the DQ discretization is applied locally upon each
sub-domain. The other follows the coordinate transformation approach. In the latter, the
irregular physical domain in the Cartesian coordinate system is transformed into a regular
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Figure 1.13: Generic multi-domain decomposition using regular elements.

domain. So it becomes similar to the very well-known Finite Element FE method. The
big difference between the DQ applied to irregular domains and the FE method is that the
equations are solved in their strong form and the connections between the elements are
imposed with the inter-element compatibility conditions. In this section the multi-domain
technique is firstly explained and than the irregular multi-domain method will be shown
in the following section.

1.7.1 General aspects of the technique

The domain decomposition technique was firstly introduced by Shu [20] to simulate in-
compressible flows past a backward facing step and a square step. In the past decades
many authors [11, 22–25, 28, 30–35] apply this technique to several problems. All over
the years researchers have been used different definitions to name this advanced DQ tech-
nique: multi-domain technique, quadrature element method, etc. In this PhD Thesis are
all used as synonyms but the main term is Generalized Differential Quadrature Finite
Element Method (GDQFEM). The technique is called ’Generalized’ because it is based
on the DQ rule of Shu [9], who was the first to define a general formulation of the weight-
ing coefficients definition. Moreover the ’Finite Element’ is introduced because, as it will
be shown in the following chapters, the implemented code make one do a general shape
computational domain to solve several engineering problems, without defining a priori
any geometric limit to the element shapes, like the standard FE methodology.

Considering a generic physical domain, Figure 1.12, of a general shape that can be
represented by Ω with a continuous boundary B. The multi-domain technique firstly
decomposes the domain Ω into several sub-domains Ωn, n = 1, 2, ne, where ne is the
total number of sub-domains, as presented in Figure 1.13. For the sake of simplicity, the
sub-domains can be called elements also, by analogy with the FE method. Over each
sub-domain Ωn a local discretization is performed and a local DQ technique is applied in
the same manner as the application of DQ in a single domain problem. It is underlined
that every sub-domain is disjoint to each other, that is Ωn ∩Ωm = ∅ if n �= m, where ∅ is
the empty set. It is also noted that Ω = Ω1 ∪Ω2 ∪Ωne

. The decomposition of the domain
into several sub-domains should follow the general guidelines that the physical constants
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Figure 1.14: The two kinds of interface topology: a) patched, b) overlapped.

in each sub-domain such as material constants, density and thickness are kept constant.

The information exchange between neighbouring sub-domains is conducted through
the interface. The solutions for the interior grid points are independent for each sub-
domain. Globally, the information exchange between sub-domains is required. This can be
achieved across the interface boundaries of the sub-domains. Since any complex geometry
can be transformed into a rectangular domain or combination of rectangular sub-domains,
a rectangular domain is chosen for demonstration without loss of generality. Basically,
there are two kinds of interface topology: patched and overlapped. The second one
considers two sub-domains that have an overlapping area which is needed to exchange
information between the two elements, in fact the boundary points of one element should
be related to the interior points of the second element. Considering Figure 1.14b the sub-
domain ABCD is overlapped with sub-domain GEFH. It is noted that the right boundary
of the subdomain Ω1, BC, is in the interior of sub-domain Ω2, and the left boundary of
sub-domain Ω2, GH, is in the interior of sub-domain Ω1. On the other hand, the patched
interface topology that is applied also in this PhD Thesis is based on the enforcing of
the continuity conditions between the two given elements. For the patched interface, the
governing equation is not applied along the interface. Instead, the continuity condition
is enforced. The common approach is to let the function and its normal derivative be
continuous across the interface. In other words, the function is considered as C1 continuous
across the interface. In detail two different kinds of boundary conditions are indicated
B0

n and Bm
n in Figure 1.13. The first condition is an external boundary condition. The

second one is related to the inter-element boundary condition, that in this case is treated
as a patched interface.

A generic interface (Figure 1.13) of each sub-domain has got two types of boundaries:
an external boundary condition B0

n and a connectivity boundary condition Bm
n (interface),

which is the boundary between element n and m, for n �= m. It should be noted that Bm
n

and Bn
m are two different compatibility conditions. A compatibility condition must have a

kinematic relation (on the displacements) and a static one (on the stresses), so two bound-
ary relations are needed in order to connect the two sub-domains properly. In other words
if the kinematic relations are written on the edge Bm

n , the corresponding static relations
must be written on the Bn

m edge. In fact the information exchange between neighbouring
sub-domains is conducted through the interfaces. Whereas the boundary conditions on
B0

n can be treated in the same way as in the single domain GDQ approach. On the generic
interface Bm

n care must be taken to properly treat boundary conditions. The boundary
conditions on the interfaces, called compatibility conditions, are imposed within two rela-
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Figure 1.15: Total stiffness matrix multi-domain structure.

tions. In the first one, the displacements calculated from the two neighbouring domains
are set equal Un = Um, where U is one of the generalized displacements of the model. In
the second set of equations, the tension at the interfaces are set equal Sn = Sm, where S
is one of the generalized stress components taken by the external boundary condition of
the mathematical mode.

The main idea of the multi-domain GDQ technique is to assembly a system like the
algebraic one (1.56), following the physical approach for each sub-domain. For instance
let us consider a rectangular plate composed of two sub-domains. As shown in Figure
1.14a the two neighbouring sub-domains are overlapped by one grid points line, along
the line BC. It is noted that the right boundary of the sub-domain Ω1 is connected to
the left boundary of the sub-domain Ω2. Therefore, the first condition B2

1 is written as
a kinematic condition between the two boundaries and the second one B1

2 is written as
a static condition on that edge. Whereas in each sub-domain the governing equations
are discretized at all interior points and they are completely independent. Following
the structure of equation (1.56) a total stiffness system is written for the multi-domain
approach. It is clear that the global system must be in the same form

Kt =

[
K̄bb K̄bd

K̄db K̄dd

]
(1.63)

where each stiffness matrix K̄ is composed as a function of the two sub-domains in different
manners. The external and internal (compatibility) equations are written in K̄bb and K̄bd,
whereas the internal domain equations are written in K̄db and K̄dd. Starting off Figure
1.15 the matrix structure will be explained below. It is clear that the domain relations
are independent between the elements, in fact K̄db and K̄dd fill only the diagonal areas
of the total stiffness matrix and they have zeros out of the main diagonal, because the
internal points of each element are not related to the neighbouring elements. On the
contrary the bounded part contains not only external boundary conditions Kn

b and Km
b

but connectivity relations K
n,m
b and K

m,n
b as well. The M̄dd do not change respect to

the single domain case because the inertia terms lead to the domain points only. This
is in agreement with what it has been proposed in (1.63). This will also be validated by
numerical examples given in the following.

It must be underlined that if the sub-domain boundaries are not parallel to the exter-

N. Fantuzzi PhD Thesis



Chapter 1. Generalized Differential Quadrature Finite Element Method 27

Corner
point

Boundary
points

Domain
points

Figure 1.16: Differential quadrature finite element topology.

1Ω 2Ω

Bm
n

Bn
m

Bn
mB =m

n

Ωn mΩ

mΩ
Ωn

Figure 1.17: Computational domain decomposition for an arbitrarily shaped problem.

nal reference system, irregular sub-domain decomposition is needed, nevertheless further
details will be given in the following.

For the sake of completeness in Figure 1.16 a sample domain DQ finite element is
represented. Obviously the generic element follows the same computational scheme de-
picted in Figure 1.11 which has been used in standard DQ technique. The general element
is composed of three different groups of points: the domain points used for the funda-
mental equations implementation, the boundary points along the element sides are used
for the imposition of boundary conditions, external and internal (compatibility condi-
tions), finally the corner points that must follow some special rules. The main issue
of the Generalized Differential Quadrature Finite Element Method (GDQFEM) are the
implementation of the boundary conditions and in particular of the inter-element condi-
tions. However the numerical implementation of the GDQFEM concerning the boundary
conditions will be explained in the following.
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1.7.2 Mapping technique for irregular domains

When the domain subdivision is made by only regular (e.g. rectangular) elements, the
boundaries of each sub-domain are parallel to the external Cartesian system (Figure 1.13).
It follows that local GDQ scheme can be applied directly to each sub-domain in the same
manner as the single domain. In a multi-domain DQ approach applied to arbitrarily
shaped structures the computational domain is divided into a certain number of sub-
domains, as depicted in Figure 1.17, according to the problem geometry [11, 36]. In this
case coordinate transformation is needed to map the irregular domains into a square com-
putational domain in the natural coordinates. The same technique is applied in classic
FE analysis. The all set of differential equations: fundamental equation, boundary con-
ditions and compatibility conditions are transformed into the natural coordinate system.
Consequently all the computations are performed in the rectangular computational do-
main, as reported in Figure 1.16. Furthermore applying this methodology it is possible
to consider several inhomogeneities, such as irregular boundaries, different materials and
mixed boundary conditions in the problem under study.

Coordinate transformation is used to transform the irregular sub-domains in the Carte-
sian x-y plane to a square computational domain in the natural coordinate ξ-η by using
the following equations

x = x(ξ, η), y = y(ξ, η) (1.64)

In literature the (1.64) is very well known as mapping technique. In fact the same method
is used in the FE method to map any finite element. All the spacial derivatives of the
configuration variables of the problem have to be mapped to the new coordinate system
ξ-η (computational domain). Since DQ method solves directly the strong form of any
engineering problem the configuration variable for all the cases under study in this PhD
Thesis are the structure displacements.

The first order derivatives of an arbitrary function defined in the Cartesian x-y plane
with respect to x and y, are given by

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

∂

∂ξ
ξx +

∂

∂η
ηx

∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y
=

∂

∂ξ
ξy +

∂

∂η
ηy

(1.65)

where ξx, ηx, ξy, ηy are the first order derivatives of ξ and η with respect to x and y
respectively.

The second order derivatives of a function can be derived from (1.65) as

∂2

∂x2
=

∂

∂x

∂

∂x
= ξ2x

∂2

∂ξ2
+ η2x

∂2

∂η2
+ 2ξxηx

∂2

∂ξ∂η
+ ξxx

∂

∂ξ
+ ηxx

∂

∂η

∂2

∂y2
=

∂

∂y

∂

∂y
= ξ2y

∂2

∂ξ2
+ η2y

∂2

∂η2
+ 2ξyηy

∂2

∂ξ∂η
+ ξyy

∂

∂ξ
+ ηyy

∂

∂η

∂2

∂x∂y
=

∂

∂x

∂

∂y
= ξxξy

∂2

∂ξ2
+ ηxηy

∂2

∂η2
+ (ξxηy + ξyηx)

∂2

∂ξ∂η
+ ξxy

∂

∂ξ
+ ηxy

∂

∂η

(1.66)

The mapping of a sub-domain from the initial configuration to the current configu-
ration is performed using an approximate deformation map. The deformation gradient
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Fn is used to perform the mapping technique upon a generic sub-domain Ωn [11]. It is
noted that the mapping procedure is the discrete version of the continuum mechanical
description of the motion of a body. The deformation gradient is related to the Jacobian
matrix which can be obtained directly from (1.65).[

∂
∂x
∂
∂y

]
=

[
ξx ηx
ξy ηy

] [ ∂
∂ξ
∂
∂η

]
= J−1

[ ∂
∂ξ
∂
∂η

]
(1.67)

The above 2× 2 matrix denoted by J−1 is the inverse of Jacobian matrix of the transfor-
mation J defined as

J =

[
xξ yξ
xη yη

]
(1.68)

From (1.68) it is possible to obtain the inverse matrix of Jacobian as

J−1 =
1

detJ

[
yη −yξ
−xη xξ

]
, detJ = xξyη − xηyξ (1.69)

where detJ is the determinant of the Jacobian.
Comparing the inverse matrix of Jacobian in (1.69) with that in (1.67), the following

relationships are obtained

ξx =
yη

detJ
, ξy = − xη

detJ

ηx = − yξ
detJ

, ηy =
xξ

detJ

(1.70)

The substitution of (1.70) into (1.65) yields

∂

∂x
=

1

detJ

(
yη

∂

∂ξ
− yξ

∂

∂η

)
∂

∂y
=

1

detJ

(
−xη

∂

∂ξ
+ xξ

∂

∂η

) (1.71)

Then, the second order derivatives of ξ with respect to x and y can be expressed as

∂2ξ

∂x2
=

∂

∂x

(
∂ξ

∂x

)
=

∂

∂x
(ξx) =

1

detJ

(
yη

∂

∂ξ
− yξ

∂

∂η

)( yη
det J

)
=

=
1

detJ2

(
yηyξη −

y2η
detJ

detJξ − yξyηη +
yξyη
detJ

detJη

)
∂2ξ

∂y2
=

∂

∂y

(
∂ξ

∂y

)
=

∂

∂y
(ξy) =

1

det J

(
−xη

∂

∂ξ
+ xξ

∂

∂η

)( −xη

detJ

)
=

=
1

detJ2

(
xηxξη −

x2
η

detJ
detJξ − xξxηη +

xξxη

detJ
detJη

)
(1.72)

In a similar manner, the second order derivatives of η with respect to x and y can also
be obtained

N. Fantuzzi PhD Thesis



30 Chapter 1. Generalized Differential Quadrature Finite Element Method

∂2η
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detJ
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detJ
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∂2η
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∂
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∂η
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=

∂
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1

detJ

(
−xη

∂
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∂
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detJ
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1
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ξ
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(1.73)

where detJξ and detJη are the first order derivatives of the determinant of Jacobian with
respect to ξ and η, respectively. Differentiation of detJ in (1.69) leads to

detJξ = xξyξη − yξxξη + yηxξξ − xηyξξ

detJη = −xηyξη + yηxξη − yξxηη + xξyηη
(1.74)

and finally the mixed derivatives of ξ and η with respect to x and y are given by

∂2ξ

∂x∂y
=

1

detJ2

(
−yηxξη +

yηxη

detJ
detJξ + yξxηη − yξxη

detJ
detJη

)
∂2η

∂x∂y
=

1

detJ2

(
−yξxξη − yηxξ

detJ
detJξ + yηxξξ +

yξxξ

detJ
detJη

) (1.75)

The above formulation of coordinate transformation is general, so various shape func-
tions for coordinate transformation can be used. Herein, an 8-nodes and a 12-nodes
serendipity element has been presented and depicted in Figure 1.18. It is worth noted
that linear shapes can not be used because GDQ method is an high order method, there-
fore when the second derivative is applied the shape function becomes null.

Quadratic serendipity element

The mapping of quadratic serendipity domain (see Figure 1.18a-b) in the Cartesian x-y
plane to an 8-node square computational domain in the natural coordinates ξ-η, |ξ, η| ≤ 1
can be achieved by using the following relationships

x =
8∑

i=1

Ni(ξ, η)xi

y =

8∑
i=1

Ni(ξ, η)yi

(1.76)

where xi and yi are the coordinates of the i-th boundary node in x-y plane, Ni(ξ, η) are
the quadratic serendipity shape functions defined as

Ni =
1

4
(1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1), i = 1, 2, 3, 4 (1.77)
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Figure 1.18: Mapping of a quadrilateral 8-nodes serendipity element: a) physical domain,
b) computational domain. Mapping of a cubic 12-nodes serendipity element: c) physical
domain, d) computational domain.
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Ni =
1

2
(1− ξ2)(1 + ηηi), i = 5, 6 (1.78)

Ni =
1

2
(1− η2)(1 + ξξi), i = 7, 8 (1.79)

where ξi and ηi are the coordinates of the node i in the ξ-η plane. All of these shape
functions possess the delta function property, i.e., the shape functions are equal to unity
at the i-th point and zero at all the other points. The first order derivatives of the physical
coordinates with respect to the natural coordinates are calculated as

xξ =
4∑

i=1

1

4
ξi(1 + ηηi)(2ξξi + ηηi)xi +

6∑
i=5

−ξ(1 + ηηi)xi +
8∑

i=7

1

2
ξi(1− η2)xi

xη =

4∑
i=1

1

4
ηi(1 + ξξi)(ξξi + 2ηηi)xi +

6∑
i=5

1

2
ηi(1− ξ2)xi +

8∑
i=7

−η(1 + ξξi)xi

(1.80)

yξ =
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4
ξi(1 + ηηi)(2ξξi + ηηi)yi +

6∑
i=5

−ξ(1 + ηηi)yi +

8∑
i=7

1

2
ξi(1− η2)yi

yη =

4∑
i=1

1

4
ηi(1 + ξξi)(ξξi + 2ηηi)yi +

6∑
i=5

1

2
ηi(1− ξ2)yi +

8∑
i=7

−η(1 + ξξi)yi

(1.81)

And the second order derivative are given by

xξξ =
1

2

4∑
i=1

ξ2i (1 + ηηi)xi −
6∑

i=5

(1 + ηηi)xi

xηη =
1

2

4∑
i=1

η2i (1 + ξξi)xi −
8∑

i=7

(1 + ξξi)xi

(1.82)

yξξ =
1

2

4∑
i=1

ξ2i (1 + ηηi)yi −
6∑

i=5

(1 + ηηi)yi

yηη =
1

2

4∑
i=1

η2i (1 + ξξi)yi −
8∑

i=7

(1 + ξξi)yi

(1.83)

Finally mixed derivatives are

xξη =

4∑
i=1

1

4
ξiηi(2ξξi + 2ηηi + 1)xi +

6∑
i=5

−ξηixi +

8∑
i=7

−ηξixi

yξη =

4∑
i=1

1

4
ξiηi(2ξξi + 2ηηi + 1)yi +

6∑
i=5

−ξηiyi +

8∑
i=7

−ηξiyi

(1.84)
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Cubic serendipity element

A curvilinear quadrilateral domain with curve boundaries (see Figure 1.18c-d) in the
physical coordinate x-y. Each side of the domain can be approximated by a cubic function.
The irregular domain can be mapped into a square domain |ξ, η| ≤ 1 by use of the following
serendipity shape functions

x =
12∑
i=1

Ni(ξ, η)xi

y =
12∑
i=1

Ni(ξ, η)yi

(1.85)

where Ni(ξ, η) is the cubic serendipity shape function defined by

Ni(ξ, η) =
1

32
(1 + ξiξ)(1 + ηiη)(9(ξ

2 + η2)− 10), i = 1, 2, 3, 4 (1.86)

Ni(ξ, η) =
9

32
(1− ξ2)(1 + ηiη)(1 + 9ξiξ), i = 5, 6, 7, 8 (1.87)

Ni(ξ, η) =
9

32
(1 + ξiξ)(1− η2)(1 + 9ηiη), i = 9, 10, 11, 12 (1.88)

where ξi and ηi are the coordinates of the node i in the ξ-η plane. All of these shape
functions possess the delta function property, i.e., the shape functions are equal to unity
at the i-th point and zero at all the other points. The first order derivative of the physical
coordinate with respect to the natural coordinate are derived as

xξ =
4∑

i=1

1

32
(1 + ηiη)(ξi(9ξ

2 + 9η2 − 10) + 18ξ(1 + ξiξ))xi+

+
8∑

i=5

9

32
(1 + ηiη)(−2ξ(1 + 9ξiξ) + 9ξi(1− ξ2))xi +

12∑
i=9

9

32
(1− η2)(1 + 9ηiη)ξixi

xη =
4∑

i=1

1

32
(1 + ξiξ)(ηi(9ξ

2 + 9η2 − 10) + 18η(1 + ηiη))xi+

+

8∑
i=5

9

32
(1− ξ2)(1 + 9ξiξ)ηixi +

12∑
i=9

9

32
(1 + ξiξ)(−2η(1 + 9ηiη) + 9ηi(1− η2))xi

(1.89)
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yξ =
4∑

i=1

1

32
(1 + ηiη)(ξi(9ξ

2 + 9η2 − 10) + 18ξ(1 + ξiξ))yi+

+

8∑
i=5

9

32
(1 + ηiη)(−2ξ(1 + 9ξiξ) + 9ξi(1− ξ2))yi +

12∑
i=9

9

32
(1− η2)(1 + 9ηiη)ξiyi

yη =

4∑
i=1

1

32
(1 + ξiξ)(ηi(9ξ

2 + 9η2 − 10) + 18η(1 + ηiη))yi+

+

8∑
i=5

9

32
(1− ξ2)(1 + 9ξiξ)ηiyi +

12∑
i=9

9

32
(1 + ξiξ)(−2η(1 + 9ηiη) + 9ηi(1− η2))yi

(1.90)

and the second order derivatives are obtained as follows

xξξ =

4∑
i=1

1

32
(1 + ηiη)(18 + 54ξiξ)xi +

8∑
i=5

9

32
(1 + ηiη)(−2− 54ξiξ)xi

xηη =
4∑

i=1

1

32
(1 + ξiξ)(18 + 54ηiη)xi +

12∑
i=9

9

32
(1 + ξiξ)(−2− 54ηiη)xi

(1.91)

yξξ =

4∑
i=1

1

32
(1 + ηiη)(18 + 54ξiξ)yi +

8∑
i=5

9

32
(1 + ηiη)(−2− 54ξiξ)yi

yηη =

4∑
i=1

1

32
(1 + ξiξ)(18 + 54ηiη)yi +

12∑
i=9

9

32
(1 + ξiξ)(−2− 54ηiη)yi

(1.92)

xξη =

4∑
i=1

1

32
(18ξiη + 27ξiηi(ξ

2 + η2)− 10ξiηi + 18ξηi)xi+

+

8∑
i=5

9

32
ηi(−2ξ − 27ξiξ

2 + 9ξi)xi +

12∑
i=9

9

32
ξi(−2η + 9ηi − 27η2ηi)xi

yξη =

4∑
i=1

1

32
(18ξiη + 27ξiηi(ξ

2 + η2)− 10ξiηi + 18ξηi)yi+

+
8∑

i=5

9

32
ηi(−2ξ − 27ξiξ

2 + 9ξi)yi +
12∑
i=9

9

32
ξi(−2η + 9ηi − 27η2ηi)yi

(1.93)

1.7.3 Inter-element compatibility conditions

As far as the GDQFEM numerical implementation is concerned a specific procedure must
be followed in order to solve the algebraic problem for arbitrarily shaped structures. As
it has been already explained the physical domain must be divided into several sub-
domains. The best accuracy can be yield by increasing the number of elements and fixing
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Figure 1.19: Generic representation of the normal vector n between two elements.

a certain number of grid points, or keeping the same amount of elements and increasing
the number of nodes per element. However in order to solve an algebraic discretized
system of equations some boundary conditions are needed. In all the PDEs presented in
this PhD Thesis the number of equations is equal to the number of unknown paramters.
So a single grid point line is enough, as reported in Figure 1.16, to impose all the boundary
conditions necessary to solve the differential problem.

In general the boundary conditions of a quadrature element can be classified as two
kinds: internal boundary conditions (IB) and external boundary conditions (EB). As far
as the external boundary conditions are concerned the discussion can be moved to the
single domain DQ method widely known in literature [39–61]. The compatibility condi-
tions between two adjacent elements require that at each node of the internal boundary
displacements and the derivative of the given displacements are equal [22], [11].

Taking the simplest example reported in Figure 1.18a which consider a mesh of two el-
ements. The kinematic and natural transition conditions over the inter-element boundary
of two adjacent elements n and m (as reported in Figures 1.13, 1.17) are the continuities
of the displacements and the equilibrium conditions written as

U (1) = U (2) and S(1) = S(2) on B (1.94)

where U stands for one of the generalized displacements of the model and S is one of the
stress components of the model, which has to be written for a general outward normal if
the sub-domain has been divided using an irregular shape. These relationships (1.94) have
to be referred to the normal vector n of the current sub-domain. It is worth noting that
the outward unit normal vectors n1 and n2 at a point upon the interface B are different
from each other as depicted in Figure 1.19.

The direction cosines of the outward unit normal vector n on the element boundary are
necessary for defining the discrete natural transition conditions and the natural boundary
conditions. Several techniques can be used to calculate the direction cosines of the outward
unit normal vector n at a node on the element boundary. The mapping technique used
for generating the mesh and the grid in conjunction with the tangent operation and
the transformation operation of the first-order Cartesian tensor are adopted [11, 36]. In
constructing the secant approximation, the positions of the two consecutive nodes are used
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to construct the unit secant vectors at the two end nodes of an element side, whereas the
locations of three consecutive nodes are used to construct the unit secant vector at interior
nodes.

Direction cosines of the outward unit normal vector on the element boundary are
necessary for the natural transition conditions and the Neumann boundary conditions.
Let n = (nx, ny), where nx, ny are the cosines of the angles between the normal direction
n and the axes x and y, in other words they are the normal vector components. The
expression for the two direction cosines on the four sides of a quadrilateral sub-domain
can be given as follows

nx =
ξ√

x2
η + y2η

yη, ny = − ξ√
x2
η + y2η

xη, for ξ = ±1 (1.95)

The expression above is valid for the edges parallel to ξ axis, and the following is used
for the edges parallel to η axis

nx = − η√
x2
ξ + y2ξ

yξ, ny =
η√

x2
ξ + y2ξ

xξ, for η = ±1 (1.96)

It should be noted that ξ and η correspond to x and y when the domain has got
all the edges parallel to the external Cartesian system (see Figure 1.13). Obviously, the
displacement compatibility, the first of (1.94), can be applied into the natural coordinate
directly without coordinate transformation. In fact they do not have any derivative.

The static conditions, the second of (1.94), should be mapped into the computational
domain, instead, as a function of x and y because the membrane inter-element tension is
related to the derivatives ∂/∂x and ∂/∂y of the direction cosines, nx and ny, of the given
outward normal on the current boundary. The formal mathematical development of these
conditions depend on the PDEs that are used to describe the problem under study. In
general the first step is the decomposition of the stress components written in Cartesian
coordinates x-y along the normal and tangential direction of the current edge. Then the
coordinate transformation (1.70) must be applied so the decomposed stress can be written
in natural coordinates ξ-η. An easy logic scheme is reported by

S(x, y) → S
n
(x, y) → S

n
(ξ, η) (1.97)

where the generic stress S(x, y) in Cartesian coordinates, is firstly decomposed S
n
(x, y)

upon two orthogonal directions of the current side of normal n, nevertheless it remains
in Cartesian coordinates. Finally the coordinate transformation is applied and S

n
(ξ, η)

is the final stress boundary component that is needed for the boundary condition imple-
mentation.

1.7.4 Corner type compatibility condition

The inter-element compatibility conditions, presented above, are valid when the conditions
are written between two opposite sides as it is well depicted in Figure 1.17. One of
the technical details encountered in quadrature element analysis is the establishment of
equations at the corners of a generic quadrilateral element [22, 28, 36, 37].

Considering a system of PDEs composed of fμ equations. It is noted that the number
of equations μ is considered equal to the number of degrees of freedom of the mathemat-
ical model under study. Thus μ equations are set up at each node of a given element.
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Figure 1.20: a) Internal corner compatibility condition implementation work out. b)
boundary corner compatibility implementation work out.
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Since a kinematic and a static compatibility condition must be written at each connected
element boundary, the same should have been done at element corners. When any domain
decomposition/subdivision is performed during a numerical analysis, either by FEM or
GDQFEM, there are some configurations for an element corner which are reported in
Figure 1.20 [22, 28, 36, 37]. It is supposed to have a mesh as in Figures 1.20, where only
one corner per element is represented. The numbers represent the element enumeration
of the current mesh. In general the element enumeration does not follow the boundary
condition implementation.

For a corner, as depicted in Figure 1.20a, both kinematic and static compatibility
conditions must be prescribed. It has been discovered by the author that it is sufficient
to write a static condition between two corners and a kinematic one among the others.
In fact, the numerical code imposes the kinematic conditions at first until it reaches the
final corner in which it enjoins the static one. For example taking Figure 1.20a as a
reference in the current corner five elements concur at the displayed node. At first the
code has to find out the correct sequence of elements which belong to the current node,
e.g. in Figure 1.20a the sequence is 1, 3, 5, 2, 4. Hence following the given sequence the
algorithm imposes the kinematic conditions Ui,j , which are written in the node i respect
to the node j till the end of the sequence in which the static condition is enjoined. It must
be underlined that the kinematic condition Ui,j stands for the first of the (1.94) Ui = Uj .

In the other configuration reported in 1.20b, there are two different boundary condi-
tions the external and the internal one. This is generally the most complicated one. In
fact the boundary conditions enforcement depend on the physical toughness of the con-
dition itself. In other words if structural mechanics is taken as an example the clamped
edge condition is stronger than a compatibility condition that is more robust than the
free edge condition. Besides the free condition is weaker than a continuity condition that
is weaker than the fixed edge condition. So the corner implementation work out strongly
depend on which kind of boundary conditions are the EBs. Because if they are clamped
the corner owned by that element should be fixed at first and than the continuity condi-
tion can be written. If the external boundary if free the corner should follow the previous
computational rule, valid for the interior corner. In conclusion in Figure 1.20b the case
of free EBs is graphically presented. The continuity condition is enforced between the
elements owned by the corner following the same rule of the interior node, in which firstly
all the kinematic conditions are imposed and a static condition is written in the end.
Moreover, it has been found out by the author that it is forbidden to enforce a condition
between two nodes that are on two opposite sides of the external boundaries in fact there
is no connection between them.

It should be added that, in the FE analysis the corners are the mesh nodes, so there
is one node at which several elements belong to, nevertheless in the GDQFEM there
are as many nodes as many elements concur at that point. So in the case presented in
Figures 1.20 there are five nodes which are owned by five different elements, so at least five
equations have to be written in order to solve the system. This condition leads to another
aspect. When a solution is found by FE method, the stresses are no longer continuous
between the elements, whereas in a GDQFEM implementation either the displacements
and the internal stresses are continuous through the entire mesh.

N. Fantuzzi PhD Thesis



Chapter 2

Arbitrarily Shaped Membranes with

Inclusions

Sommario

In questo capitolo viene risolto il problema delle vibrazioni libere di membrane sottili.
Questo problema è stato considerato da vari autori in letteratura [13, 62–69, 76–85] sia
per membrane di forma generica che in materiale composito.

In letteratura, si possono trovare numerosi articoli relativi alla soluzione esatta di
membrane di forma semplice come quella rettangolare o circolare. Tuttavia, per mem-
brane di forma complessa la soluzione è possibile soltanto in forma numerica. Kang ed il
suo gruppo di ricerca hanno presentato un rapporto completo sul problema delle vibra-
zioni libere delle membrane di varia forma [77–81, 85], risolvendo i problemi attraverso
membrane connesse in modo semplice o multi-connesse. Allo stesso tempo Wu et al. [84]
hanno applicato le local radial basis function-based on differential quadrature per lo studio
di membrane di forma generica.

In generale la tecnica numerica che si utilizza per risolvere i sistemi strutturali deve
essere stabile [93–95]. Rispetto all’ormai consolidato metodo agli Elementi Finiti (FE),
la tecnica GDQ porta risultati molto accurati utilizzando un numero di punti esiguo.
Questa caratteristica di elevata accuratezza è stata ampiamente presentata e dimostrata in
letteratura [39–61, 96–105]. Tuttavia, sorgono alcune difficoltà quando si vogliono trattare
problemi elastici con discontinuità o sconnessioni, per esempio, in strutture di forma
generica come membrane, piastre oppure nei casi in cui vi siano inclusioni di materiale
e/o la presenza di fessurazioni interne.

In questo capitolo, sono risolte con l’innovativa tecnica GDQFEM le stesse struttu-
re analizzate in letteratura [13, 62–69, 76–85] (come ad esempio le membrane di forma
qualunque e composte da più materiali) e sono proposti nuovi casi studio per possibili
sviluppi futuri. Si vuole far rilevare che, nella prima parte dei risultati numerici sono
proposte varie analisi di stabilità e accuratezza della tecnica con riferimento alla soluzione
esatta per la membrana rettangolare.
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2.1 Introduction

In this chapter the problem of solving the free vibration of membranes is considered in
the following. Free vibration analysis of membrane has been solved by several authors in
the past decades, as reported in [62]. The problem of a composite plate of various shapes
has been deeply studied by Bhadra [63]. Buchanan et al. [64] and Buchanan [65] used
Ritz and finite element method for vibration analysis of circular and elliptic membranes
with variable density. The differential quadrature method was applied for frequency
analysis of rectangular and circular membranes by Laura et al. [66, 67]. Moreover, the
method of discrete singular convolution has been used recently for the vibration analysis
of curvilinear membranes by Civalek et al. [62] who deeply studies skew and rhombic
membrane also [68]. Ersoy et al. [69] have used the method of singular convolution on
rectangular membranes with variable density.

Because of its relationship to the wave equation, the Helmholtz equation arises in
problems in such areas of mathematical physics as the study of acoustics. In fact, some
important studies concerning the Helmholtz equation and the waveguide problem have
been studied by several authors [70–72]. Shu et al. [73–75] have used the differen-
tial quadrature technique and the multi-domain differential quadrature for solving the
Helmholtz equation, too. The vibration of arbitrarily shaped membranes has been dis-
cussed by using the general methods which include the following: finite difference, point
matching, Rayleigh-Ritz method, Galerkin method, finite element and boundary element
method. These general methods are applied for solving the vibration of membranes of
general shape [13, 76–85]. Furthermore, it is well-known that there is an analogy between
membrane vibrations and plate vibrations. In fact, the eigenfrequencies of a simply sup-
ported polygonal plate are the squares of the eigenvalues of a membrane under constant
tension with identical geometry and fixed edges, and their eigenfunctions are identical
[14, 86–92]. This analogy has greatly evoked researchers’ interest in vibration analysis of
membranes, because solutions for polygonal membranes can be converted into those of
polygonal simply supported plates.

For a membrane of simple geometry such as rectangular and circular membranes there
are several exact solutions available in literature. However, for a membrane of a complex
geometry only numerical solutions are possible. There is a complete presentation of the
membrane vibration problem by Kang et al. in literature [77–81, 85], who have been
solved the problem in several manners for simply and multi-connected membranes. Wu
et al. [84] have applied the local radial basis function-based on differential quadrature to
the study of arbitrarily shaped membranes.

In general the dynamic benchmarks for a structural system need to be very accurate
in order to find out the stability and accuracy of the numerical technique [93–95].

Differential Quadrature was introduced by Bellman in the early 1970s as a simple
and rapid method for solving linear and non linear differential equations. It is essentially
a global collocation method that approximates the derivatives at a point by use of a
weighted sum of function values at a group of nodal points. In his book Shu [9] developed
the Generalized Differential Quadrature which leads to a more simple and straightforward
implementation of this method to partial differential system of equations with well-known
boundary conditions. Compared to the widely-used Finite Element Method (FEM), the
GDQ method yields very accurate results by using very small number of nodal points.
The character of high accuracy has been widely presented in some articles presented in
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literature [39–61, 96–105]. However, there arise difficulties when GDQ is applied to elastic
problems where discontinuities or disconnections are present, for example, in arbitrarily
shaped structures such as membranes and plates or in the case of material inclusions and
presence of internal cracks.

In this PhD Thesis a Generalized Differential Quadrature Finite Element Method has
been applied to the study of arbitrarily shaped membranes. This technique is named also
multi-domain differential quadrature [11, 22, 26–29, 35, 38, 75, 105, 127–135]. The aim
of this technique is to subdivide the computational domain into several sub-domains or
elements in which the quadrature rule [9] can be applied. The GDQFEM is an extension
of the classic GDQ technique introduced by Shu [9]. The multi-domain method can be
applied directly to regular sub-domains, of rectangular shape, nevertheless if the elements
have a general shape the coordinate transformation must be implemented [11, 27, 29].
Subsequently, the mapping technique is used to transform both the governing differential
or partial differential equations and the differential or partial differential type transition
conditions of two adjacent sub-domains and the boundary conditions defined on the phys-
ical sub-domain into the regular master element in the parent space, called computational
space.

The Generalized Differential Quadrature GDQ technique has been introduced to dis-
cretize all the equations defined by the natural coordinates in the master element. For the
sake of clarity, the GDQFEM has been firstly applied to rectangular domains, in order to
focus on the assembly technique when a regular domain is given. Secondly, the irregular
multi-domain is introduced by using mapping technique also.

The present method is valid only if the solution function, the applied load and the
material properties are continuous over the domain, in fact GDQ is not applicable if the
elastic structure under consideration is made of different materials, not uniform external
loadings and mixed boundary conditions over the same edge. In all these cases the stress
components, at the interface of the discontinuity, lead to a finite jump of their value.
According to mathematics, a finite discontinuity can not be described by a continuous
function. Since GDQ is an high-order numerical technique (because it solves the strong
form of the fundamental system) compatibility conditions must be applied at the discon-
tinuity to obtain an accurate solution, nevertheless it remains of high-order elsewhere.

A GDQFEM is formulated in this paper to solve free vibration of arbitrarily shaped
membranes in presence of discontinuities of any kind, e.g. material discontinuity or ir-
regular geometry. By putting the boundary of each sub-domain on the corresponding
interfaces, discontinuity is imposed with kinematic and static compatibility conditions
at the interface. Pursuing the following multi-domain differential quadrature technique
a generic engineering or scientific problem can be converted into a computer algorithm.
The convergence of the solution can be usually achieved by either increasing the number
of elements or nodes per element. In fact it has been shown by many papers that the
GDQ convergence rate is excellent [39–61, 96–105].

The final numerical implementation of the global algebraic system obtained by this
technique is simply and straightforward, because it follows the elements connectivity rule
such as in FEM.
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Figure 2.1: Arbitrarily shaped membrane with continuous boundary B and uniform do-
main Ω.

2.2 Equation of motion

Consider the transverse motion of an elastic membrane extended in two dimensions. The
membrane equilibrium position lies in the x-y plane. Since the membrane has negligible
bending stiffness. It is assumed that constant tension forces are applied uniformly to
the membrane edges in all directions. Consider a uniform membrane of arbitrary shape
(Figure 2.1), the equation of motion for the free flexural vibrations of a membrane is
written as

T

(
∂2w

∂x2
+

∂2w

∂y2

)
= ρh

∂2w

∂t2
(2.1)

where T is the uniform tension per unit length, ρ is the mass per unit area, h is the
membrane thickness and w is the configuration variable or in other words the transverse
deflection of the membrane. It is assumed that in the equilibrium position the membrane
lies entirely on one plane under uniform tension T per unit length and it does not have
any deflections at its edges. On the other hand the equation of motion for the free flexural
vibration of a thin plate (Kirchhoff-Love plate theory) is written as

D∇4w + ρs
∂2w

∂t2
= 0 (2.2)

ρs is the surface density and D is the flexural rigidity expressed as D = Eh3/12(1− ν2)
in terms of Young’s modulus E, Poisson’s ratio ν and the plate thickness h.

The governing equation of motion of the membrane (2.1) and the one for the thin
plate (2.2) can be both solved by using the method of variable separation. It is possible
to seek solutions that are harmonic in time and whose frequency is f = ω/2π. The flexural
displacement w can be written as follows

w(x, y, t) = W (x, y)eiωt (2.3)

where the vibration spatial amplitude value W fulfil the fundamental equation (2.1).
Hence, substituting (2.3) into (2.2) it leads

∇4W + Λ4W = 0 (2.4)

where ∇4 = ∂4

∂x4 + 2 ∂4

∂x2∂y2
+ ∂4

∂y4
, Λ = (ρsω

2/D)1/4. In which Λ is called frequency
parameter, which is a function of the actual frequency f [Hz]. Since an analogy exists
between the vibration of polygonal plates with simply supported boundary conditions and
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a similarly shaped membrane with fixed edges [14, 85–91], equation (2.4) can be reduced
to the membrane equation, that is the same problem obtained starting from (2.1)

∇2W + Λ2W = 0 (2.5)

where ∇2 = ∂2

∂x2 +
∂2

∂y2
. If the i-th eigenvalue Λi is obtained by solving equation (2.5), the

i-th thin plate natural frequency may be calculated

fi =
Λ2

i

2π

√
D

ρs
(2.6)

as reported in [85].
It should be noted that c =

√
T/ρh is the speed of sound. The frequencies of a

vibrating membrane represent the sound produced by a membrane with the corresponding
modal shape. The natural frequency f = ω/2π can be determined by solving the standard
eigenvalue problem (2.5). In the following, the problem (2.5) will be solved for several
structures and the numerical results will be compared to the analytical solutions, valid
for a rectangular and circular membrane only, and some numerical solutions found in
literature.

In order to solve the eigenvalue problem the boundary conditions must be applied to
the membrane sides. Since the membrane is not having deflections at its sides the unique
boundary condition is the clamped one

W = 0 on the boundary edge B (2.7)

It must be underlined that no free edge boundary condition is acceptable in this kind of
theory.

2.3 Boundary conditions

The free vibration of elastic membrane problems described by (2.1) and (2.7) can be
discretized by the GDQ method following the rules introduced in the first chapter. Once
the dynamic system is written in a discretized form, the boundary conditions and the inter-
element boundary conditions must be defined (see section 1.7.3). For the membrane case
the S, introduced in (1.94) that each element exchanges with the neighbouring elements
is the uniform tension T , which has to be written for a general outward normal. In
other words, the static condition, for the membrane case, is actually a derivative of the
generalized displacement W .

In this work the lowest number of elements within the highest number of grid points
per element has been considered, because it can be noted from the numerical results that
this solution gives the most accurate results. In fact increasing the number of elements
the final matrix illness grows rapidly, due to the not symmetric element stiffness matrix.

The stress equations (1.94) are function of x and y. In fact, the membrane inter-
element uniform tension T is related to the derivatives ∂/∂x and ∂/∂y of the direction
cosines, nx and ny, of the given outward normal. In other words the directional derivative
on each element side must be calculated and it can be written for the membrane case as

∂W

∂n
= (nx − ny)

2 ∂W

∂x
+ (nx + ny)

2 ∂W

∂y
(2.8)

N. Fantuzzi PhD Thesis



44 Chapter 2. Arbitrarily Shaped Membranes with Inclusions

It is noted that if the current element is regular (rectangular sub-domain) the relation
(2.8) coincides with the directional derivative (∇W = ∂W

∂x
+ ∂W

∂y
) of a scalar function for

any element edge.
When an irregular sub-domain is considered the coordinate transformation (1.70) must

be applied, so the generalized directional derivative (2.8) becomes

∂W

∂n
=
(
(nx − ny)

2 ξ,x + (nx + ny)
2 ξ,y

) ∂W
∂ξ

+
(
(nx − ny)

2 η,x + (nx + ny)
2 η,y

) ∂W
∂η

(2.9)

As far as the corner type compatibility condition are concerned, all the necessary
computational data have been reported in section 1.7.4. For the membrane case the
external conditions are always stronger than the internal compatibility ones, because only
the clamped case can be considered. As a result, a generic corner node is fixed and the
kinematic conditions is written automatically by the code.

2.4 Numerical applications

In order to show the accuracy and stability of the current technique some numerical tests
are performed comparing the GDQFEM solution to the exact solutions of rectangular
and circular membranes. It should be noted beforehand that the solution for circular
membranes is exact only mathematically, in fact in order to find the actual eigenval-
ues the zeros of the Bessel function of the first kind must be found. Moreover some
other comparisons have been done by following the results of several authors in literature
[62, 70, 77–79, 84, 85]. In conclusion, some new arbitrarily composite and homogeneous
membranes have been proposed for further studies.

The GDQFEM is based on a grid point distribution upon each sub-domain. Conse-
quently, a test on several grid distributions has been performed in order to use the one
that has the highest performance for this technique. In the following all the used dis-
tributions are presented [41]. It should be noted that the following point distributions
are defined in the interval ξ̄ ∈ [0, 1]. Since the computational element is defined between
−1 ≤ ξ, η ≤ 1 a coordinate shifting must be done.

The first is the Chebyshev grid distribution which can be recursively defined from the
second to the previous, before the last point, when the first and the last points are fixed.

ξ̄1 = 0, ξ̄N = 1, ξ̄k =
1

2

(
1− cos

(
2k − 3

2(N − 2)
π

))
, k = 2, . . . , N − 1 (2.10)

Then there is the extended Chebyshev grid distribution (roots of the Chebyshev polynomial
of first kind), that is defined by the roots rk.

ξ̄k =
rk − r1
rN − r1

, rk = cos

(
2k − 1

2N
π

)
, k = 1, 2, . . . , N (2.11)

Analogously to the previous distribution the extended Chebyshev grid distribution

(roots of the Chebyshev polynomial of second kind) can be written

ξ̄k =
rk − r1
rN − r1

, rk = cos

(
k

N + 1
π

)
, k = 1, 2, . . . , N (2.12)
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The most used grid point distribution for the single domain case is the Chebyshev-

Gauss-Lobatto grid distribution

ξ̄k =
1

2

(
1− cos

(
k − 1

N − 1
π

))
, k = 1, 2, . . . , N (2.13)

Finally, the Legendre grid distribution (roots of the Legendre polynomial of second
kind) is written

dN−2

dτN−2

(
τN−2 (τ − 1)N−2

)
= 0 → ξ̄k, k = 1, 2, . . . , N (2.14)

It should be noted that in order to find the Legendre grid distribution (2.14) the roots
of the differential equation reported in (2.14) must be found for a fixed N points.

Firstly, several accuracy tests have been performed on the rectangular membrane
compared to the exact solution. Secondly, several case studies have been considered
in order to compare the numerical solution obtained with GDQFEM to some reference
solutions found in literature [62, 70, 77–79, 84, 85]. The results are presented in form of
tables and figures in which the first eigenfrequencies are depicted. It should be noted that
FEM solutions are presented in the following tables. These kinds of numerical results have
been obtained by many authors in literature by using the analogy between the membrane
fixed at all edges and the thin simply supported plate.

2.4.1 Rectangular membrane

In the first example the natural frequencies of a rectangular membrane are considered.
The exact reference solution is obtained, as it is well-known from literature [92] by the
following equation

ωmn = π

√
T

ρh

√(m
a

)2

+
(n
b

)2

(2.15)

where m, n are the modal shapes indices, a, b are the two sides of the rectangular mem-
brane, T is the membrane tension, ρ is the material density and h is the membrane
thickness. In the following the rectangular membrane whose dimensions are a = 1.2 m
by b = 0.9 m is considered. First of all in order to show which is the best discretization
technique to apply to GDQFEM, a numerical test has been shown. The aim of the ac-
curacy test is to demonstrate how fast is the trend for the first twenty frequencies of a
rectangular membrane solved by GDQFEM and what is the maximum error for the case
under study. In Figures 2.2a-2.2e the five grid distributions reported above are used to
find the first twenty frequencies with the exact solution. The number of grid points N per
element edge is on the horizontal abscissa and the orthogonal axis represents the relative
error

Er =
∣∣∣∣Λgdq − Λexact

Λexact

∣∣∣∣ (2.16)

It is noted that the chosen grid which leads to obtain the first twenty frequencies
within the less number of grid points is the Legendre grid distribution. In fact for N = 25
the first twenty frequencies are kept within a relative error less than Er < 10−14. In
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addition another important aspect is that the accuracy is stable when the minimum error
is reached.

In Figure 2.2f a summary of all the distributions is presented. The resulting eigenfre-
quencies Λgdq normalized with respect to the exact solution are plotted versus the mode
number m by the total number of degrees of freedom (dofs) Ntot [93, 94]. To reproduce
the spectra of Figure 2.2f, a grid of 51×51 points have been used so that Ntot = 2601 dofs.
The total number of calculated modes, that is given by the dofs subtracted of the bound-
ary conditions is mtot = 2401. Each curve has been obtained within a fixed error tolerance
tol = 10−4. Almost, all the distributions have less than 25% of the modes accurate below
the given tolerance, but above that the maximum error is almost 5% for the first 40% of
the modes. This means that is not possible to obtain the 100% of accurate modes given a
certain mesh. This numerical phenomenon explains why more points are needed to cap-
ture high frequencies. The symbol Pm reported in Figure 2.2f represents the percentage
of the total number of accurate modes respect to the maximum mtot computable. In must
be underlined that if a less restricted tolerance is considered the maximum amount of
accurate modes increases obviously.

Secondly, distortion effect on a two element mesh is presented in the following. In
Figure 2.3a the parametric representation of the current mesh is presented. The dimension
of the membrane are kept constant (a = 1.2 m, b = 0.9 m) and the parameter c varies
from c = 0.6 m in which no distortion is applied to c = 0 m where the two elements
degenerate into two triangles. In Figure 2.4 the discrete spectra for different grids are
presented. The grid points number varies from N = 11 to N = 41. Figure 2.4 shows
that increasing the distortion, so for c = 0.6 to c = 0, for all the considered grids the
percentage of accurate frequencies, under the fixed tolerance tol = 10−4, decreases. In
fact the number of modes (and its percentage Pm) written in the legend of Figures 2.4a-d
decreases when c increases.

The seven curves plotted in Figures 2.4a-d form a sheaf of lines that becomes thinner
when the N increases. This is clear because it has been shown in 2.2, where the accuracy
increases when the number of grid point increases, until it becomes stable. It is also
noted that the maximum percentage is never above the 20% under the tolerance. So the
GDQFEM (as any numerical method) can not capture the total number of modes related
to a fixed number of degrees of freedom (dofs) nevertheless the maximum percentage is
always below the 20% of the total number of the computable dofs mtot.

The last numerical test is depicted in Figures 2.5-2.6. In Figure 2.6 the maximum
percentage of accurate modal shapes Pm, under a fixed tolerance tol = 10−4, is presented
for several meshes (Figure 2.5). In Figure 2.5 all the meshes used for the numerical
analysis of the rectangular membrane are graphically reported. The red digits represent
the element number, whereas the black digits are the nodes used for in the coordinate
transformation. In this case only 8 nodes elements have been used, because no curved
boundaries are needed to map this geometry. In Figure 2.6a a Chebyshev-Gauss-Lobatto
grid distribution has been used for solving the accuracy problem whereas in Figure 2.6b
the Legendre grid distribution has been applied. Up to eleven different meshes have been
used. Starting from the single element mesh to sixteen distorted element mesh. In the
legend of Figure 2.6 the symbol ne indicates the number of elements and with the acronym
sk a skewed mesh is employed. It is clear that the percentage of accurate modes decreases
if a skewed mesh and a high number of elements is considered. In fact for the single
element mesh the Pm > 20% whereas for a mesh composed of sixteen elements, or almost
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a) b)

c) d)

e) f)

Figure 2.2: Accuracy test for a single element rectangular plate: a) Chebyshev grid, b)
Extended Chebyshev grid (I kind), c) Extended Chebyshev grid (II kind), d) Chebyshev-
Gauss-Lobatto grid, e) Legendre grid, f) Normalized discrete spectra.

all the skewed meshes, Pm < 15%.
In Figure 2.7 the first nine modal shapes of the rectangular membrane are depicted.

It should be noted that the pictures have been created by using a single element domain
with a 41 × 41 grid distribution. The numerical solution obtained within several meshes
and grid points numbers is compared to analytical solution and other numerical solutions
found in literature [69, 77–79, 84, 85]. In Table 2.1 the first ten eigenfrequencies are
reported for the rectangular membrane of sides a = 1.2 m and b = 0.9 m. The results are
presented for three different meshes. Firstly one single element with N = 41 grid points
is used which gives the same results as the single domain GDQ. Secondly four regular
elements and twelve regular elements with N = 21 grid points are considered. It can be
noted that the three cases under study gives the same results which are very accurate
respect to the exact solution.
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Figure 2.3: Distorted rectangular plate meshes: a) two element distorted mesh, where
0 ≤ c ≤ 0.6, b) Distorted mesh with c = 0, c) Distorted mesh with c = 0.1, d) Distorted
mesh with c = 0.2, e) Distorted mesh with c = 0.3, f) Distorted mesh with c = 0.4, g)
Distorted mesh with c = 0.5, h) Distorted mesh with c = 0.6.
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a) b)

c) d)

Figure 2.4: Normalized discrete spectra for a two distorted element rectangular plate: a)
11× 11 grid, b) 21× 21 grid, c) 31× 31 grid, d) 41× 41 grid.

Λ Exact Ref. [77] FEM [77] Ref. [78] Ref. [79] Ref. [84] Ref. [85]
GDQFEM

ne = 1 ne = 4 ne = 12
N = 41 N = 21 N = 21

1 4.36332 4.3633 4.3651 4.3633 4.363 4.3633 4.36 4.36332 4.36332 4.36332
2 6.29287 6.2929 6.3006 6.2929 6.293 6.2929 6.29 6.29287 6.29287 6.29287
3 7.45605 7.4560 7.4669 7.4560 7.456 7.4561 7.45 7.45605 7.45605 7.45605
4 8.59475 8.5948 8.6213 8.5945 8.596 8.5948 8.59 8.59475 8.59475 8.59475
5 8.72665 8.7266 8.7407 8.7266 8.726 8.7267 8.73 8.72665 8.72665 8.72665
6 10.50827 10.5083 10.5370 10.5135 10.50 10.5083 10.51 10.50827 10.50827 10.50827
7 10.79427 10.7943 10.8313 10.7871 10.79 10.7941 - 10.79427 10.79427 10.79427
8 11.03843 11.0389 11.1029 11.0385 11.05 11.0384 - 11.03843 11.03843 11.03843
9 11.70802 - - - 11.70 - - 11.70802 11.70802 11.70802
10 12.58575 - - - - - - 12.58575 12.58575 12.58575

Table 2.1: First ten eigenfrequencies of a rectangular membrane with a = 1.2 m and
b = 0.9 m.
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Figure 2.5: GDQFEM meshes for a rectangular membrane: a) single element, b) four
elements, c) four skewed elements, d) eight elements, e) eight skewed elements, f) twelve
elements, g) twelve skewed elements, h) sixteen elements, i) sixteen skewed elements.
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a)

b)

Figure 2.6: Modal shape percentages for rectangular membrane: a) Chebyshev-Gauss-
Lobatto grid distribution, b) Legendre grid distribution.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.7: First 9 mode shapes for the rectangular membrane.
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2.4.2 Circular membrane

Considering a clamped circular membrane with thickness h, radius R and mass density
ρ is subjected to a uniform radial force per unit length T acting on its edge. The nat-
ural frequencies of vibration are identified by two integers (m,n) that characterize the
mode shape. The index m = 1, 2, 3, . . . correspond to the number of circumferential lines,
with r =constant, on the membrane that have zero displacement, whereas n = 1, 2, 3, . . .
corresponds to the number of diametrical lines, with θ = constant, that have zero dis-
placement. The natural frequencies of vibration are obtained by solving the differential
equation of the membrane (2.1) written in polar coordinates

T

(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

)
= ρh

∂2w

∂t2
(2.17)

The general solution to this equation, which can be found by separation of variables [63],
[14], is

w(r, θ) = (AJn(kmnr) sin(nθ + θ0) +BYn(kmnr) sin(nθ + θ1)) cos (ωmnt + φ) (2.18)

where kmn =
√
ρh/T , A, B, θ0, θ1, φ are arbitrary constants, and Jn, Yn are Bessel

functions of the first and the second kind, with order n, respectively. The solution must
satisfy w(θ) = w(2π + θ), which is only possible if n is an integer. Moreover the Bessel
function of the second kind is infinite at r = 0, this implies B = 0. The transverse
displacement must satisfy the boundary conditions w = 0 on the edge of the membrane,
which leads to the condition

Jn(ωmnR
√

ρh/T ) = 0 (2.19)

In conclusion, the problem of finding the natural frequencies of a circular membrane is
transferred to find the zeros of the Bessel function of the first kind Jn.

Table 2.2 shows the first ten eigenfrequencies of a circular membrane of unit radius
R = 1 m obtained by using GDQFEM with a single element (with 8 and 12 nodes), a four
element mesh and a twelve element mesh all compared to some results found in literature
[77], [79], [84]. It is noted how more accurate is a 12 node element respect to the 8 node
one. This happens because the boundary of the circular membrane is not straight so more
points are needed in order to apply the mapping technique accurately.

Figure 2.8 represents the four different meshes reported in Table 2.2. Figure 2.8a is a
single element with 8 nodes, Figure 2.8b is a single element with 12 nodes, which has a
mapping accuracy better than the previous one as demonstrated in Table 2.2. In Figure
2.8c, d are depicted a four element and a twelve element mesh, respectively. In conclusion
the first fifteen modal shapes of the circular membrane are graphically presented in Figure
2.9, that have been generated by a single 12 node element with 41× 41 grid.
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Figure 2.8: GDQFEM meshes for circular membrane: a) single element (8 nodes), b)
single element (12 nodes), c) four elements, d) twelve elements.

Λ Exact Ref. [77] FEM [77] Ref. [79] Ref. [84]

GDQFEM
ne = 1 ne = 1 ne = 4 ne = 12
N = 41 N = 41 N = 21 N = 21

(8 nodes) (12 nodes) (8 nodes) (8 nodes)
1 2.4048 2.4048 2.4166 2.405 2.4047 2.41939 2.40301 2.40576 2.40576
2 3.8317 3.8317 3.8513 3.832 3.8316 3.85488 3.82881 3.83320 3.83320
3 5.1356 5.1356 5.1744 5.136 5.1356 5.15778 5.12694 5.13763 5.13763
4 5.5201 5.5201 5.5515 5.520 5.5202 5.55333 5.51588 5.52223 5.52223
5 6.3802 6.3802 6.4610 6.380 6.3802 6.41845 6.37528 6.38265 6.38265
6 7.0156 7.0156 7.0592 7.016 7.0158 7.05795 7.01029 7.01832 7.01832
7 7.5883 7.5876 7.7445 7.588 7.5884 7.62043 7.58610 7.59036 7.59224
8 8.4172 8.4172 8.4841 - 8.4174 8.45279 8.41863 8.42053 8.42053
9 8.6537 - - - - 8.70591 8.64721 8.65710 8.65710
10 8.7715 - - - - 8.82411 8.76481 8.77490 8.77490

Table 2.2: First ten eigenfrequencies of a circular membrane of radius R = 1 m.
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1st mode 2nd/3rd modes 4rd/5th modes

6th mode 7th/8th mode 9th/10th/11th mode

12th mode 13th/14th mode 15th mode

Figure 2.9: First 15 mode shapes for the circular membrane.
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Figure 2.10: GDQFEM meshes of an elliptic membrane with a/b = 2: a) single element
(8 nodes), b) single element (12 nodes).

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.11: First 9 mode shapes for an elliptic membrane with a/b = 2.

2.4.3 Elliptic membrane

An elliptic membrane is considered in the following. Its major and minor axes are 2a and
2b respectively, as a result the major and minor semi-axes are a and b. Four different
ellipses within three different a/b ratios are considered, a/b = 1.5, 2, 2.5, 3. It is noted
that for a/b = 1 the ellipse becomes a circle. So increasing the ratio a/b the geometry
tends to be every step more distorted. In Figure 2.10 a single element mesh with 12 and
8 nodes are depicted. It is more clear in this case respect to the previous one that the
12 nodes element is more suitable for solving the problem because the 8 nodes element
is not sufficient for mapping the elliptical curve. In fact from Table 2.3, where the first
ten eigenfrequencies are reported, the solution given by the 8 nodes single element mesh
do not agree with the literature [62] and the solutions obtained with other geometries. In
conclusion, in Figure 2.11 the first nine modal shapes are depicted for a single element
mesh with 12 nodes and N = 41 for a a/b = 2 semi-axes ratio.
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Λ

a/b = 1.5 a/b = 2

Ref. [62]

GDQFEM

Ref. [62]

GDQFEM
ne = 1 ne = 1 ne = 12 ne = 1 ne = 1 ne = 12
N = 41 N = 41 N = 21 N = 41 N = 41 N = 21

(12 nodes) (8 nodes) (8 nodes) (12 nodes) (8 nodes) (8 nodes)
1 2.041 2.04125 2.05179 2.03991 1.892 1.88664 1.90085 1.88931
2 - 2.91870 2.93087 2.91676 - 2.50476 2.51751 2.50603
3 - 3.54806 3.56927 3.54623 - 3.16637 3.18140 3.16812
4 - 3.83828 3.86340 3.84253 - 3.42067 3.45093 3.42725
5 - 4.35050 4.35941 4.33940 - 3.85438 3.88067 3.85857
6 - 4.78022 4.82423 4.79099 - 3.98824 4.01469 3.99180
7 - 5.10449 5.14018 5.10483 - 4.56093 4.59722 4.56743
8 - 5.18280 5.18731 5.17220 - 4.58702 4.60023 4.58714
9 - 5.73312 5.78934 5.74859 - 4.97991 5.02613 4.99065
10 - 5.89534 5.91463 5.88134 - 5.20583 5.22263 5.20636

Λ

a/b = 2.5 a/b = 3

Ref. [62]

GDQFEM

Ref. [62]

GDQFEM
ne = 1 ne = 1 ne = 12 ne = 1 ne = 1 ne = 12
N = 41 N = 41 N = 21 N = 41 N = 41 N = 21

(12 nodes) (8 nodes) (8 nodes) (12 nodes) (8 nodes) (8 nodes)
1 1.814 1.80810 1.82256 1.81098 - 1.76060 1.77539 1.76368
2 - 2.28123 2.29320 2.28243 - 2.14296 2.15527 2.14436
3 - 2.78894 2.79902 2.78956 - 2.55231 2.56014 2.55249
4 - 3.31984 3.33741 3.32196 - 2.98059 2.99295 2.98156
5 - 3.35594 3.38672 3.36295 - 3.31540 3.34621 3.32264
6 - 3.79614 3.82656 3.80099 - 3.42486 3.44266 3.42679
7 - 3.86887 3.89416 3.87258 - 3.67487 3.70826 3.68072
8 - 4.26006 4.27587 4.26104 - 3.88112 3.90673 3.88483
9 - 4.43072 4.46537 4.43668 - 4.05295 4.07224 4.05491
10 - 4.73908 4.75322 4.73946 - 4.34719 4.38013 4.35257

Table 2.3: First ten eigenfrequencies of an elliptic membrane for three values of a/b.
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Λ Ref. [77] FEM [77] Ref. [79] FEM [79] Ref. [84]

GDQFEM
ne = 1 ne = 1 ne = 3 ne = 12
N = 41 N = 41 N = 21 N = 21

(8 nodes) (12 nodes) (8 nodes) (8 nodes)
1 2.7097 2.7230 2.709 2.728 2.7106 2.71992 2.71063 2.71121 2.71121
2 4.2279 4.2598 4.225 4.270 4.2310 4.24701 4.23211 4.23294 4.23294
3 4.3579 4.3786 4.359 4.386 4.3579 4.37239 4.35778 4.35878 4.35878
4 5.5649 5.6336 5.559 5.656 5.5728 5.59987 5.56888 5.57401 5.57401
5 5.9336 5.9846 5.934 6.003 5.9339 5.94775 5.93730 5.93525 5.93525
6 6.1159 6.1641 6.114 6.181 6.1180 6.13819 6.11819 6.11931 6.11931
7 6.9974 7.1334 6.985 7.117 7.0134 7.05239 7.00729 7.01465 7.01465
8 7.1868 7.3002 7.186 7.340 7.1880 7.21106 7.18680 7.18967 7.18967
9 - - - - - 7.77899 7.76632 7.76426 7.76426
10 - - - - - 7.85995 7.83897 7.83837 7.83837

Table 2.4: First 10 eigenfrequencies of an arbitrarily shaped membrane.

2.4.4 Arbitrarily shaped membrane

The free vibration analysis is carried out for an arbitrarily shaped membrane. In this case
an exact solution do not exist. The membrane geometry is composed of a half-circle of a
unit radius R = 1, and a triangle of sides L =

√
2, this kind of shape has been widely used

in literature [77, 79, 84] and it is depicted in Figure 2.12 for several GDQFEM meshes.
Since previous authors have done a very good work in the past [77, 79, 84], for sake of
conciseness not all the geometric details are graphically reported in this paper.

This kind of shape has two geometrical issues given by the circle and the triangle,
because both of them are not well represented by a quadrilateral element. Although
this problem has been solved by using one irregular element only, the results suit the
eigenfrequencies given by literature. The first 10 eigenfrequencies Λi are presented in Table
2.4 for a single element mesh and two subdivided meshes or three and twelve elements.
It is noted that all the results obtained by using GDQFEM are in good agreement with
the proposed results by literature. It is underlined that the geometric mapping with the
12-nodes element works better that the 8-nodes one, because it can capture the geometric
circle shape better, so the coordinate transformation is better accomplished. In fact
the results obtained with a 12-nodes single element are similar to a mesh composed of 12
elements with 8 nodes. The first nine modal shapes for the current structure is graphically
presented in Figure 2.13.
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Figure 2.12: GDQFEM meshes for arbitrarily shaped membrane: a) Single element, b)
Single element with 12 nodes, c) Three elements, d) Twelve elements.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.13: First 9 mode shapes for the arbitrarily shaped membrane.
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Figure 2.14: GDQFEM meshes for concave with high concavity membrane: a) Three
elements, b) Four elements.

2.4.5 Concave membrane with high concavity

In order to obtain the eigenvalues of a concavely shaped membrane with high concavity,
the GDQFEM is applied to rectangular membrane with a partially concave region, as
shown in [78, 84, 85]. The concavity cuts a regular rectangle of a = 1.2 m and b = 0.9 at its
half (for further details see what is reported in [78, 84, 85]). In Figure 2.14 two GDQFEM
meshes are presented. Figure 2.14a presents a mesh with three elements in which one
is a triangle (degenerate quadrilateral element) and in Figure 2.14b a four element more
regular mesh is depicted. This kind of geometry has the main issue of being highly
distorted so more than one element is needed to map it correctly. In Table 2.5 the first ten
eigenfreqencies Λi are presented. It can be said that the first ten eigenvalues obtained by
the present method are accurate compared with those obtained by literature [78, 84, 85].
It is underlined that a single-domain method can not be applied because the element
shape must satisfy the Jacobian transformation, and in this case with high concavity
the transformation matrix degenerates due to the geometric distortion. However a three
element mesh (see Figure 2.14a) can be used even though one the elements degenerates
into a triangle. Increasing the number of points upon each edge the results tend to the
reference solutions, in fact it is clear from Table 2.5 that N = 7 is not sufficient to get
the solution. Furthermore, the first nine modal shapes are depicted in Figure 2.15 for a
four elements mesh.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.15: First 9 mode shapes for the highly concave shape membrane.

Λ Ref. [78] FEM [78] Ref. [84] Ref. [85] FEM [85]
GDQFEM

ne = 3 ne = 3 ne = 4 ne = 4
N = 7 N = 21 N = 7 N = 21

1 5.79 5.71 5.7470 5.73 5.71 5.66509 5.69058 5.66305 5.69032
2 6.42 6.42 6.4186 6.43 6.42 6.41852 6.41887 6.41877 6.41887
3 8.15 8.17 8.1733 8.12 8.17 8.15453 8.15976 8.15322 8.15970
4 8.88 8.89 8.8845 8.89 8.89 8.88306 8.88430 8.88423 8.88430
5 9.92 9.87 9.8757 9.84 9.87 9.81900 9.83697 9.82108 9.83679
6 11.25 11.31 11.2627 11.27 11.31 11.35337 11.26363 11.29974 11.26363
7 11.55 11.46 11.4503 - - 11.41094 11.41339 11.40127 11.41322
8 11.81 11.84 11.8172 - - 11.86147 11.81728 11.81822 11.81728
9 - - - - - 12.50875 12.43991 12.46745 12.43990
10 - - - - - 13.15245 13.03749 13.07237 13.03749

Table 2.5: First ten eigenfrequencies of a concave membrane.
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Figure 2.16: GDQFEM meshes for L-shaped membrane: a) Two elements, b) Three
elements.

Λ Ref. [78] Ref. [78] FEM [78] Ref. [84] Ref. [85] FEM [85] Ref. [86]
GDQFEM

ne = 2 ne = 3
N = 21 N = 21

1 3.16 3.14 3.11 3.1124 3.10 3.11 3.11 3.10478 3.10463
2 3.89 3.89 3.90 3.8982 3.93 3.90 3.9 3.89837 3.89837
3 4.44 4.44 4.45 4.4429 4.46 4.45 4.44 4.44288 4.44288
4 5.43 5.43 5.44 5.4334 5.45 5.44 5.44 5.43337 5.43337
5 5.72 5.70 5.67 5.6593 5.62 5.68 5.44 5.64912 5.64892
6 6.49 6.48 6.47 6.4469 6.47 6.47 5.83 6.44006 6.43993
7 6.68 6.69 6.73 6.7039 - - - 6.70436 6.70436
8 7.03 7.03 7.05 7.0249 - - - 7.02481 7.02481
9 - - - - - - - 7.02481 7.02481
10 - - - - - - - 7.53057 7.53045

Table 2.6: First ten eigenfrequencies of a L-shaped membrane.

2.4.6 L-shaped membrane

Figure 2.16 shows the GDQFEM discretized models for a L-shaped membrane with equal
sides. The longest edge is L = 2 m and the shortest one l = 1 m. The total domain is
divided into two (Figure 2.16a) or three (Figure 2.16b) sub-domains. No 12-node elements
are needed in this case because there is no curved boundaries in this model. It is noted
from Table 2.6 that the solution with two elements is enough to capture the first ten
eigenvalues considering N = 21. The results are compared with some others found in
literature [78, 84–86]. Moreover, the first nine modal shapes are presented in Figure 2.17
for a two element mesh.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.17: First 9 mode shapes for the L-shape membrane.
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Figure 2.18: GDQFEM meshes for square membrane with a rhombic hole: a) Six elements,
b) Fourteen elements.

Λ Ref. [78] FEM [78] Ref. [84]
GDQFEM

ne = 6 ne = 6 ne = 6 ne = 14 ne = 14 ne = 14
N = 7 N = 15 N = 21 N = 7 N = 15 N = 21

1 3.71 3.67 3.6731 3.63607 3.64121 3.64161 3.63739 3.64131 3.64164
2 4.00 3.99 3.9800 3.95333 3.96145 3.96201 3.95826 3.96197 3.96219
3 4.50 4.53 4.5084 4.50788 4.50948 4.50948 4.50942 4.50948 4.50948
4 5.27 5.19 5.1964 5.16035 5.16727 5.16764 5.16338 5.16736 5.16766
5 5.90 5.89 5.8615 5.84206 5.84782 5.84822 5.84567 5.84818 5.84834
6 6.48 6.51 6.4344 6.41746 6.40876 6.40909 6.40605 6.40885 6.40911
7 7.03 7.07 7.0287 7.03138 7.02895 7.02895 7.02867 7.02895 7.02895
8 7.12 7.24 7.1156 7.11596 7.10775 7.10805 7.10606 7.10803 7.10815
9 7.23 7.39 7.2455 7.34050 7.24790 7.24790 7.24746 7.24790 7.24790
10 7.77 7.73 7.7211 7.71306 7.70686 7.70706 7.70529 7.70692 7.70707

Table 2.7: First ten eigenfrequencies of a square membrane with a hole.

2.4.7 Square membrane with a rhombic hole

As shown in Figure 2.18 two discretized models can be used to find the eigenvalues of a
square membrane with a rhombic hole [18,24]. The geometry is composed of a square of
side L = 2 m with a centred rhombic hole of side l = 0.5 m. In Figure 2.18a a 6 element
mesh is reported and it is the mesh with the lowest number of element possible for this
geometry, then in Figure 2.18b a fourteen elements mesh is depicted. It should be noted
that both the boundaries the external and the internal one are fixed in order to satisfy
the membrane equation (2.1). Moreover, the six element mesh, used in the analysis,
is composed of two triangular elements (quadrilateral degenerated elements) and four
irregular quadrilateral elements. In spite of that, the numerical solutions are in very good
agreement with the others found in literature [18,24] (see Table 2.7). In Table 2.7 the two
presented meshes have been solved for different number of grid points N = 7, N = 15,
N = 21. In addition, the first twelve modal shapes are represented in Figure 2.19.
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1st mode 2nd-3rd mode 4th mode

5th mode 6th-7th mode 8th mode

9th mode 10th-11th mode 12th mode

Figure 2.19: First 9 mode shapes for the L-shape membrane.
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Λ Ref. [81] FEM [81]
GDQFEM

ne = 1 ne = 1 ne = 1 ne = 1 ne = 4 ne = 4 ne = 4
N = 7 N = 15 N = 21 N = 41 N = 7 N = 15 N = 21

1 3.81 3.81 3.79961 3.79970 3.79970 3.79970 3.79968 3.79970 3.79970
2 5.28 5.29 5.28189 5.25530 5.25530 5.25530 5.25523 5.25530 5.25530
3 6.57 6.58 6.52742 6.56287 6.56287 6.56287 6.56282 6.56287 6.56287
4 7.06 7.07 6.85693 7.02835 7.02835 7.02835 7.02756 7.02835 7.02835
5 7.60 7.62 7.65102 7.57808 7.57808 7.57808 7.57907 7.57808 7.57808
6 8.73 8.75 8.77546 8.69734 8.69734 8.69734 8.71887 8.69734 8.69734
7 9.03 9.06 9.37736 8.98051 8.98052 8.98052 8.99064 8.98052 8.98052
8 9.73 9.78 10.00105 9.72533 9.72533 9.72533 9.72565 9.72533 9.72533
9 - - 11.02739 10.08759 10.08759 10.08759 10.10097 10.08759 10.08759
10 - - 13.26855 10.46275 10.46297 10.46297 10.51129 10.46297 10.46297

Table 2.8: First ten eigenfrequencies of a trapezoidal membrane (first type).

Λ Ref. [85] FEM [85]

GDQFEM
ne = 1 ne = 4 ne = 16 ne = 4 ne = 4 ne = 16 ne = 16
N = 41 N = 21 N = 21 N = 7 N = 21 N = 7 N = 21

dist. dist. dist. dist.
1 1.90 1.89 1.89725 1.89725 1.89725 1.89725 1.89725 1.89725 1.89725
2 2.88 2.88 2.88383 2.88383 2.88383 2.88381 2.88383 2.88383 2.88383
3 3.08 3.08 3.08253 3.08253 3.08253 3.08255 3.08253 3.08253 3.08253
4 3.80 3.79 3.80064 3.80064 3.80064 3.80188 3.80064 3.80063 3.80064
5 3.99 3.99 4.00871 4.00871 4.00871 4.01338 4.00871 4.00871 4.00871
6 4.36 4.35 4.35744 4.35744 4.35744 4.36605 4.35744 4.35742 4.35744
7 - - 4.73760 4.73760 4.73760 4.74824 4.73760 4.73762 4.73760
8 - - 4.99037 4.99037 4.99037 4.99489 4.99037 4.99037 4.99037
9 - - 5.12632 5.12632 5.12632 5.14672 5.12632 5.12634 5.12632
10 - - 5.62843 5.62843 5.62843 5.61886 5.62843 5.62852 5.62843

Table 2.9: First ten eigenfrequencies of a trapezoidal membrane (second type).

2.4.8 Trapezoidal membrane

A trapezoidal membrane is considered in the following. Two different reference geometries
have been found in literature. One has been studied by Kang et al. [81] and another
geometry was widely shown in the work by Kang et al. [85]. For more details about the
two geometries it is suggested referring to [81, 85]. In Figure 2.20 all the used GDQFEM
meshes are represented. Tables 2.8, 2.9 summarise the first ten eigenfrequencies for the
two trapezoidal geometries compared to the same results found in literature. Several grid
point numbers have been used N = 7, N = 15, N = 21 and for single element mesh
N = 41. All the presented results are in good agreement with the same in literature. It
should be noted that some distorted meshes have been applied in this study showing that
there is good accordance for a distorted mesh too (see Table 2.9). Moreover, the first nine
modal shapes are depicted in Figure 2.21.
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a) b)

c) d)

e) f)

Figure 2.20: GDQFEM meshes for trapezoidal membrane: a) Single element (first type),
b) Single element (second type), c) Four elements, d) Four elements distorted, e) Sixteen
elements, f) Sixteen elements distorted.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.21: First 9 mode shapes for the trapezoidal membrane.
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a) b)

Figure 2.22: GDQFEM meshes for skewed or rhombic membrane for a skew angle of
θ = π/3: a) Single element, b) Four elements.

Λ Ref. [68] FEM [68]
GDQFEM

ne = 1 ne = 1 ne = 1 ne = 4 ne = 4 ne = 8 ne = 8
N = 15 N = 21 N = 41 N = 15 N = 21 N = 15 N = 21

1 4.2611 4.2608 4.25686 4.25686 4.25686 4.25686 4.25686 4.25686 4.25686
2 5.7103 5.7049 5.69300 5.69299 5.69300 5.69300 5.69300 5.69300 5.69300
3 7.3568 7.3564 7.30990 7.30990 7.30990 7.30990 7.30990 7.30990 7.30990
4 7.6752 7.6741 7.61125 7.61125 7.61125 7.61125 7.61125 7.61125 7.61125
5 8.8156 8.8148 8.70857 8.70855 8.70857 8.70857 8.70857 8.70857 8.70857
6 9.0189 9.0162 8.86259 8.86259 8.86259 8.86259 8.86259 8.86259 8.86259
7 - - 10.32732 10.32731 10.32732 10.32732 10.32732 10.32732 10.32732
8 - - 10.34155 10.34155 10.34155 10.34155 10.34155 10.34155 10.34155
9 - - 11.13091 11.13091 11.13091 11.13091 11.13091 11.13091 11.13091
10 - - 11.64007 11.64007 11.64007 11.64007 11.64007 11.64007 11.64007

Table 2.10: First ten eigenfrequencies of a skew membrane b/a = 3/2 with θ = π/3.

2.4.9 Skew or rhombic membrane

There has been an article by Civalek [68] which widely discussed the free vibration analysis
of skew membranes. Hence, comparing the results obtained by [68] the GDQFEM is
applied to several skew membranes. In Figure 2.22 two types of meshes are presented for
a particular rhombic geometry. The skew or rhombic membrane has got two sides a and b
of various length and a skew angle θ. In the following several ratios b/a and θ values are
presented. In Table 2.10 is presented a rhombic membrane with the ratio b/a = 3/2 and
θ = π/3. Using one element is sufficient to capture the FEM solution with a negligible
error. More refined meshes are presented too. A parametric study for a b/a = 1 skew
membrane is presented in Table 2.11. The skew angle θ varies from θ = π/4 to θ = 5π/12.
All the proposed results are in good accordance with the ones obtained by Civalek [68].
Another parametric study has been done in Table 2.12 for b/a = 2 and skew angle θ
variable. Finally, varying b/a in Table 2.13 the results are presented for θ = π/3. In
conclusion, the first nine modal shapes are depicted in Figure 2.23 for a skew membrane
of b/a = 3/2 and θ = π/3.
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θ = π/4 θ = π/3

Λ Ref. [68]
GDQFEM

Ref. [68]
GDQFEM

ne = 1 ne = 4 ne = 8 ne = 1 ne = 4 ne = 8
N = 41 N = 21 N = 21 N = 41 N = 21 N = 21

1 5.9019 5.89528 5.89528 5.89528 4.9912 4.98993 4.98993 4.98993
2 8.1477 8.14171 8.14171 8.14171 7.2588 7.25530 7.25530 7.25530
3 10.0261 10.01317 10.01317 10.01317 8.4751 8.46840 8.46840 8.46840
4 10.3592 10.34676 10.34676 10.34676 9.1623 9.15593 9.15593 9.15593
5 11.8780 11.86690 11.86690 11.86690 11.0856 11.08264 11.08264 11.08264
6 - 12.97365 12.97365 12.97365 - 11.08268 11.08268 11.08268
7 - 13.60300 13.60300 13.60300 - 11.85141 11.85141 11.85141
8 - 14.77270 14.77269 14.77269 - 13.00895 13.00895 13.00895
9 - 14.98905 14.98905 14.98905 - 13.02982 13.02982 13.02982
10 - 15.39859 15.39859 15.39859 - 14.51061 14.51061 14.51061

θ = 7π/18 θ = 5π/12

Λ Ref. [68]
GDQFEM

Ref. [68]
GDQFEM

ne = 1 ne = 4 ne = 8 ne = 1 ne = 4 ne = 8
N = 41 N = 21 N = 21 N = 41 N = 21 N = 21

1 4.6708 4.67779 4.67779 4.67779 4.5671 4.56809 4.56809 4.56809
2 7.0061 7.00860 7.00860 7.00860 6.9514 6.94262 6.94262 6.94262
3 7.7520 7.76083 7.76083 7.76083 7.4940 7.49040 7.49040 7.49040
4 8.9403 8.94571 8.94571 8.94571 8.8954 8.89012 8.89012 8.89012
5 10.4162 10.42871 10.42871 10.42871 10.2019 10.19774 10.19774 10.19774
6 - 10.82155 10.82155 10.82155 - 10.43476 10.43476 10.43476
7 - 10.96750 10.96750 10.96750 - 10.97543 10.97543 10.97543
8 - 12.29977 12.29977 12.29977 - 11.99422 11.99422 11.99422
9 - 12.95083 12.95083 12.95083 - 12.99845 12.99845 12.99845
10 - 13.70667 13.70667 13.70667 - 13.36409 13.36409 13.36409

Table 2.11: First ten eigenfrequencies of a skew membrane b/a = 1 for θ variable.
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θ = π/4 θ = π/3

Λ Ref. [68]
GDQFEM

Ref. [68]
GDQFEM

ne = 1 ne = 4 ne = 8 ne = 1 ne = 4 ne = 8
N = 41 N = 21 N = 21 N = 41 N = 21 N = 21

1 4.7903 4.77759 4.77759 4.77759 4.0046 3.98457 3.98457 3.98457
2 5.6728 5.64261 5.64261 5.64261 4.9288 4.88922 4.88922 4.88922
3 6.8153 6.77872 6.77872 6.77872 6.0811 6.06516 6.06516 6.06516
4 8.0096 7.96701 7.96701 7.96701 7.3029 7.25530 7.25530 7.25530
5 9.1403 9.03840 9.03840 9.03840 7.5362 7.52274 7.52274 7.52274
6 9.1719 9.09843 9.09843 9.09843 7.9846 7.94813 7.94813 7.94813
7 - 9.78725 9.78725 9.78725 - 8.65414 8.65414 8.65414
8 - 10.05661 10.05661 10.05661 - 8.83295 8.83295 8.83295
9 - 10.81602 10.81602 10.81602 - 9.87782 9.87782 9.87782
10 - 11.15829 11.15829 11.15829 - 9.94657 9.94657 9.94657

θ = 7π/18 θ = 5π/12

Λ Ref. [68]
GDQFEM

Ref. [68]
GDQFEM

ne = 1 ne = 4 ne = 8 ne = 1 ne = 4 ne = 8
N = 41 N = 21 N = 21 N = 41 N = 21 N = 21

1 3.7116 3.70843 3.70843 3.70843 3.6447 3.62010 3.62010 3.62010
2 4.6329 4.62814 4.62814 4.62814 4.5802 4.54424 4.54424 4.54424
3 5.8359 5.82676 5.82676 5.82676 5.7857 5.75153 5.75153 5.75153
4 6.8602 6.85697 6.85697 6.85697 6.7240 6.68936 6.68936 6.68936
5 7.1648 7.15602 7.15602 7.15602 7.1081 7.08686 7.08686 7.08686
6 7.4413 7.42143 7.42143 7.42143 7.2495 7.24473 7.24473 7.24473
7 - 8.28620 8.28620 8.28620 - 8.09724 8.09724 8.09724
8 - 8.46712 8.46712 8.46712 - 8.43702 8.43702 8.43702
9 - 9.39081 9.39081 9.39081 - 9.18571 9.18571 9.18571
10 - 9.74868 9.74868 9.74868 - 9.75341 9.75341 9.75341

Table 2.12: First ten eigenfrequencies of a b/a = 2 skew membrane with variable θ.
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b/a = 1 b/a = 1.5

Λ Ref. [68]
GDQFEM

Ref. [68]
GDQFEM

ne = 1 ne = 4 ne = 8 ne = 1 ne = 4 ne = 8
N = 41 N = 21 N = 21 N = 41 N = 21 N = 21

1 4.9912 4.98993 4.98993 4.98993 4.2611 4.25686 4.25686 4.25686
2 7.2588 7.25530 7.25530 7.25530 5.7103 5.69300 5.69300 5.69300
3 8.4751 8.46840 8.46840 8.46840 7.3568 7.30990 7.30990 7.30990
4 9.1623 9.15593 9.15593 9.15593 7.6752 7.61125 7.61125 7.61125
5 11.0856 11.08264 11.08264 11.08264 8.8156 8.70857 8.70857 8.70857
6 - 11.08268 11.08268 11.08268 9.0189 8.86259 8.86259 8.86259
7 - 11.85141 11.85141 11.85141 - 10.32732 10.32732 10.32732
8 - 13.00895 13.00895 13.00895 - 10.34155 10.34155 10.34155
9 - 13.02982 13.02982 13.02982 - 11.13091 11.13091 11.13091
10 - 14.51061 14.51061 14.51061 - 11.64007 11.64007 11.64007

b/a = 2 b/a = 3

Λ Ref. [68]
GDQFEM

Ref. [68]
GDQFEM

ne = 1 ne = 4 ne = 8 ne = 1 ne = 4 ne = 8
N = 41 N = 21 N = 21 N = 41 N = 21 N = 21

1 4.0046 3.98457 3.98457 3.98457 3.8006 3.68421 3.68421 3.68421
2 4.9288 4.88922 4.88922 4.88922 4.2403 4.15420 4.15420 4.15420
3 6.0811 6.06516 6.06516 6.06516 4.8999 4.83193 4.83193 4.83193
4 7.3029 7.25530 7.25530 7.25530 5.6425 5.63460 5.63460 5.63460
5 7.5362 7.52274 7.52274 7.52274 6.5117 6.49967 6.49967 6.49967
6 7.9846 7.94813 7.94813 7.94813 7.3310 7.10792 7.10792 7.10792
7 - 8.65414 8.65414 8.65414 - 7.37337 7.37337 7.37337
8 - 8.83295 8.83295 8.83295 - 7.38081 7.38081 7.38081
9 - 9.87782 9.87782 9.87782 - 7.84575 7.84575 7.84575
10 - 9.94657 9.94657 9.94657 - 8.14107 8.14107 8.14107

Table 2.13: First ten eigenfrequencies of a skew membrane with variable b/a and θ = π/3.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.23: First 9 mode shapes for the skew membrane with θ = π/3 and b/a = 3/2
membrane.
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Λ FEM [70] BEM [70]
GDQFEM

ne = 4 ne = 4 ne = 4 ne = 4 ne = 4 ne = 4 ne = 4
N = 5 N = 9 N = 13 N = 15 N = 21 N = 25 N = 31

1 2.03 2.06 2.05099 2.06135 2.06137 2.06137 2.06137 2.06137 2.06137
2 2.20 2.23 2.22236 2.23727 2.23729 2.23729 2.23729 2.23729 2.23729
3 2.20 2.23 2.22236 2.23727 2.23729 2.23729 2.23729 2.23729 2.23729
4 2.62 2.67 2.64238 2.67144 2.67145 2.67145 2.67145 2.67145 2.67145
5 2.62 2.67 2.67310 2.68062 2.68065 2.68066 2.68066 2.68066 2.68066
6 3.15 3.22 3.24398 3.23258 3.23261 3.23261 3.23261 3.23261 3.23261
7 3.15 3.22 3.24398 3.23258 3.23261 3.23261 3.23261 3.23261 3.23261
8 3.71 3.81 3.81578 3.81489 3.81505 3.81505 3.81506 3.81506 3.81506
9 3.71 3.81 4.15469 3.82889 3.82885 3.82885 3.82885 3.82885 3.82885
10 4.06 4.18 4.79012 4.18746 4.18744 4.18744 4.18744 4.18744 4.18744

Table 2.14: First ten eigenfrequencies of an annular membrane, Ri = 0.5 m, Re = 2 m.

2.4.10 Multiply connected domain

In the work by Chen et al. [70] multiply connected domains for acoustic cavities have
been studied within the Helmholtz equation. Since the fundamental equation has the
same mathematical form of the free vibration of a membrane, the eigenvalues can be
compared. However it is clear that they have different physical meaning. In Figure 2.24
the multi-connected membranes considered in this paper are graphically reported. The
radius of the outer circle is R = 2 m and the inner circle radius is r = 0.5 m and the inner
square has a side l = 0.5 m. In both the eccentric cases the inner circle and the square
are shifted on the left of the same quantity of the inner main dimension (l = r = 0.5 m).

In table 2.14 the first ten eigenfrequencies are reported for an annular membrane,
the GDQFEM results are compared with the numerical results obtained with FEM and
Boundary Element Method (BEM) [70]. In Table 2.15 the first ten eigenfrequencies for
an annular membrane which has an eccentric hole is considered and compared to several
methodologies [13, 70, 95]. Another kind of geometry is considered in Table 2.16 in which
a circular membrane with a square hole is taken into account. In conclusion a circular
membrane with an eccentric square hole is numerically presented in Table 2.17. In all
the results reported in this paper the less number of elements is used in this study in
order to have the most accurate solution for this methodology. In addition, to see the
rapid convergence of the GDQFEM sevaral grid point numbers are considered (see Tables
2.14-2.17). For further details about the modal shapes they can be found well depicted
in [70], thus they are not reported in this PhD Thesis for the sake of conciseness.

N. Fantuzzi PhD Thesis



76 Chapter 2. Arbitrarily Shaped Membranes with Inclusions

1
1 2

3

4

5
6

78

2

1

2

3

4

5 6

7
8

3

1

23

4

5

6
7

8

4
1 2

3

4

5

67

8

a)

1
1 2

3

4

5
6

78

2
1 2

3

4

5

67

8

3

1

2

34

5

6
7

8

41

2

34

5 6

7
8

b)

1
1 2

3

4

5
6

78 2
1 2

34

5

6

7

8

3
1 2

3

4

5

67

8

4

1

2

34

5

6
7

8 5
1 2

34

5

6

7

8

61

2

34

5 6

7
8

c)

1
1 2

3

4

5
6

7
8

2
1 2

3
4

5

6

7

8

3
1 2

3

4

5

67

8

4

1

2

34

5

6
7

8
5

1
2

34

5

6

7

8

61

2

34

5 6

7
8

d)

Figure 2.24: Multi connected membrane: a) Annular membrane, b) Annular eccentric
membrane, c) Circular membrane with a square hole, d) Circular membrane with an
eccentric square hole.

Λ FEM [70] Ref. [13] Ref. [95] Ref. [70]
GDQFEM

ne = 4 ne = 4 ne = 4 ne = 4 ne = 4
N = 5 N = 11 N = 15 N = 21 N = 31

1 1.73 1.75 1.74 1.75 1.73339 1.74485 1.74485 1.74485 1.74485
2 2.13 2.14 2.14 2.14 2.13282 2.14429 2.14430 2.14430 2.14430
3 2.45 2.47 2.47 2.47 2.45323 2.47804 2.47805 2.47805 2.47806
4 2.76 2.78 2.78 2.78 2.79978 2.78287 2.78287 2.78287 2.78287
5 2.95 2.97 2.98 2.98 2.99047 2.98403 2.98404 2.98404 2.98404
6 3.30 3.33 3.33 3.33 3.40060 3.33627 3.33627 3.33627 3.33627
7 3.34 3.37 3.37 3.37 3.43506 3.38613 3.38615 3.38615 3.38615
8 3.36 3.38 3.39 3.39 4.04953 3.39119 3.39120 3.39120 3.39120
9 3.83 3.85 3.87 3.87 4.04953 3.87768 3.87768 3.87769 3.87769
10 3.84 3.87 3.87 3.87 4.20014 3.88442 3.88443 3.88444 3.88444

Table 2.15: First ten eigenfrequencies of an eccentric annular membrane, Ri = 0.5 m,
Re = 2 m.
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Λ FEM [70] BEM [70]
GDQFEM

ne = 6 ne = 6 ne = 6 ne = 6 ne = 6 ne = 6 ne = 6
N = 5 N = 9 N = 13 N = 15 N = 21 N = 25 N = 31

1 2.19 2.19 2.19737 2.19102 2.19006 2.18993 2.18977 2.18973 2.18970
2 2.33 2.33 2.33710 2.33926 2.33851 2.33841 2.33828 2.33824 2.33822
3 2.33 2.33 2.34089 2.33933 2.33852 2.33841 2.33828 2.33825 2.33823
4 2.67 2.69 2.66678 2.68510 2.68509 2.68509 2.68509 2.68509 2.68509
5 2.76 2.76 2.77300 2.77177 2.77079 2.77065 2.77049 2.77045 2.77042
6 3.22 3.24 3.24049 3.24535 3.24510 3.24507 3.24503 3.24502 3.24501
7 3.22 3.24 3.24971 3.24802 3.24774 3.24770 3.24765 3.24763 3.24763
8 3.76 3.81 3.81839 3.81111 3.81110 3.81110 3.81110 3.81110 3.81110
9 3.77 3.81 3.87910 3.81539 3.81523 3.81521 3.81518 3.81517 3.81517
10 4.32 4.40 4.43422 4.39112 4.39112 4.39112 4.39112 4.39112 4.39112

Table 2.16: First ten eigenfrequencies of a circular membrane with a square hole.

Λ FEM [70] BEM [70]
GDQFEM

ne = 6 ne = 6 ne = 6 ne = 6 ne = 6 ne = 6 ne = 6
N = 5 N = 9 N = 13 N = 15 N = 21 N = 25 N = 31

1 1.81 1.81 1.81216 1.81274 1.81251 1.81249 1.81247 1.81247 1.81246
2 2.20 2.21 2.21769 2.21981 2.21949 2.21946 2.21943 2.21943 2.21942
3 2.50 2.53 2.52615 2.52954 2.52938 2.52936 2.52934 2.52933 2.52933
4 2.79 2.83 2.83281 2.83397 2.83388 2.83387 2.83385 2.83385 2.83384
5 3.07 3.10 3.12876 3.11083 3.11053 3.11050 3.11045 3.11043 3.11042
6 3.36 3.42 3.47473 3.43360 3.43330 3.43326 3.43321 3.43319 3.43318
7 3.40 3.47 3.52113 3.46600 3.46572 3.46569 3.46565 3.46564 3.46563
8 3.41 3.47 4.00575 3.48288 3.48258 3.48256 3.48254 3.48254 3.48253
9 3.79 3.90 4.05591 3.89608 3.89607 3.89607 3.89606 3.89606 3.89606
10 3.85 3.95 4.22877 3.96028 3.95996 3.95991 3.95986 3.95984 3.95983

Table 2.17: First ten eigenfrequencies of a circular membrane with an eccentric square
hole.
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Figure 2.25: GDQFEM meshes for a triangular membrane: a) Single distorted element,
b) Three quadrilateral elements.

2.4.11 Triangular membrane

In the next example a triangular membrane is considered (Figure 2.25). Since this kind of
geometry is complex to model with only quadrilateral elements, its solution is proposed
in this paper. The triangle is isosceles and right, with the two sides a = b = 2 m. The
membrane is homogeneous but two different mesh are considered. The first is composed of
a single triangular element (heavily distorted quadrilateral one), and the second one has
three standard elements. In Table 2.18 the first ten eigenfrequencies of the two meshes
are reported. Table 2.18 reports a convergence test for the two given meshes (Figure 2.25)
from N = 7 to N = 31. It should be noted that the single element captures the solution
like the three element mesh, with a small number of points per element. In addition the
first nine modal shapes are graphically presented in Figure 2.26.

N. Fantuzzi PhD Thesis



Chapter 2. Arbitrarily Shaped Membranes with Inclusions 79

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.26: First 9 mode shapes for the triangular membrane with a = b = 2 m.

Λ
GDQFEM

ne = 1 ne = 1 ne = 1 ne = 1 ne = 3 ne = 3 ne = 3 ne = 3
N = 7 N = 15 N = 21 N = 31 N = 7 N = 15 N = 21 N = 31

1 3.51408 3.51241 3.51241 3.51241 3.51241 3.51241 3.51241 3.51241
2 4.96170 4.96729 4.96729 4.96729 4.96708 4.96729 4.96729 4.96729
3 5.64173 5.66359 5.66359 5.66359 5.66369 5.66359 5.66359 5.66359
4 6.47801 6.47656 6.47656 6.47656 6.47917 6.47656 6.47656 6.47656
5 7.32056 7.02481 7.02481 7.02481 7.03474 7.02481 7.02481 7.02481
6 7.94265 7.85398 7.85398 7.85398 7.85818 7.85398 7.85398 7.85398
7 8.99767 8.00952 8.00952 8.00952 8.05906 8.00952 8.00952 8.00952
8 10.72028 8.45899 8.45900 8.45900 8.52245 8.45900 8.45900 8.45900
9 11.91513 9.15923 9.15924 9.15924 9.24026 9.15924 9.15924 9.15924
10 12.24676 9.55482 9.55478 9.55478 9.57057 9.55478 9.55478 9.55478

Table 2.18: First ten eigenfrequencies of a homogeneous triangular membrane.
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Figure 2.27: Not homogeneous rectangular membrane.

f Ref. [82] FEM [82]
GDQFEM

ne = 2 ne = 2 ne = 2 ne = 2 ne = 2 ne = 2 ne = 2
N = 7 N = 9 N = 11 N = 15 N = 21 N = 31 N = 41

1 150.2 150.3 150.0465 150.0471 150.0471 150.0471 150.0471 150.0471 150.0471
2 215.2 215.5 214.9795 214.9755 214.9755 214.9755 214.9755 214.9755 214.9755
3 262.9 263.9 263.4968 262.6327 262.6284 262.6284 262.6284 262.6284 262.6284
4 271.6 272.3 271.6737 271.3645 271.3631 271.3631 271.3631 271.3631 271.3631
5 317.0 318.3 317.4088 316.6872 316.6862 316.6862 316.6862 316.6862 316.6862
6 342.1 343.8 341.0872 341.7805 341.7957 341.7958 341.7958 341.7958 341.7958
7 375.7 377.9 365.0773 375.1450 375.3420 375.3436 375.3436 375.3436 375.3436
8 380.2 383.0 378.4822 379.3738 379.7712 379.7751 379.7751 379.7751 379.7751
9 414.1 416.9 409.1291 413.4438 413.6652 413.6675 413.6675 413.6675 413.6675
10 418.1 421.0 411.9351 417.5918 417.9653 417.9693 417.9693 417.9693 417.9693

Table 2.19: First ten frequencies of a rectangular not homogeneous membrane.

2.4.12 Not homogeneous rectangular membrane

A composite rectangular membrane composed of two homogeneous regions, of which com-
mon boundary is oblique against the vertical axis, has been considered in the following.
This problem was studied by Kang et al. [82] in their accurate work about transverse
vibrations of composite rectangular membrane with oblique interface. In this paper only
the not homogeneous example is considered. The dimensions of the membrane are a = 1.8
m, b = 1.0m and the coordinate of the points defining the oblique interface are a1 = 1.0,
a2 = 0.7 m (see Kang et al. [82] for further details). In Figure 2.27 the membrane ge-
ometry is presented in which the grey area represents the second material. The values
of the surface density are ρs1 = 1.293 · 10−5 kg/m2, ρs2 = 2ρs1. It is noted that the
defined densities are per surface area and not per unit volume, as a FEM program needs.
Furthermore, the tension per unit length T is needed. Since the exact definition of T
is not-existent in [82] it has been assumed to be T = 1.5 N. In conclusion, the results
are summarised in Table 2.19 for the first ten frequencies for the given not-homogeneous
membrane, and the GDQFEM are in perfect accordance with the solution proposed by
Kang at el. [82] and the FEM solution. In conclusion, in Figure 2.28 the first nine modal
shapes are presented for the case under study. Since a composite membrane has been
considered the modal shapes are not symmetric due to the mechanical configuration of
the membrane. Moreover, the first modes excites the part of the membrane that has a
lower surface density due to the fact that is more flexible ρs1 < ρs2.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.28: First 9 mode shapes for the not homogeneous rectangular membrane.
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Figure 2.29: GDQFEM mesh for a multiply connected composite membrane.

2.4.13 Multiply connected not homogeneous membrane

Since the GDQFEM methodology and the implemented code has been tested with several
reference solutions found in literature, some new results are proposed in this section. In
particular a multiply connected membrane with different kind of materials will be solved.
The membrane is a square one a = b = 4 m with a circular eccentric inclusion of radius
r1 = 0.5. The surface densities are ρs1 = 1.293 ·10−5 kg/m2 and ρs2 = ρ̄ ·ρs1, where ρ̄ ≥ 0.

At first a convergence analysis has been performed (Table 2.20) to see if increasing
the number of points upon each domain the solution converges to a value. It should
be noted that the convergence rate is very fast, just N = 15 is enough to get a stable
solution. In Table 2.21 the first ten frequencies for several values of ρ̄ = ρs2/ρs1 are
presented. It should be noted that when ρ̄ increases, the inclusion increases its density
until it is a couple of order of magnitude greater than the rest of the membrane. It is can
be seen clearly from Figure 2.30 that there is a convergence to some values for the first
ten frequencies presented here. This phenomenon has a physical explanation, due to the
mass concentration of a free vibrating system. The first nine modal shapes for ρ̄ = 100
are depicted in Figure 2.31.
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Figure 2.30: First ten frequencies as a function of the density ratio ρ̄ between the two
materials.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.31: First 9 mode shapes for the multiply connected not homogeneous membrane
for ρ̄ = 100.
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f
GDQFEM

N = 5 N = 7 N = 9 N = 11 N = 13 N = 15 N = 17 N = 19 N = 21
1 34.6484 34.5012 34.4997 34.5000 34.5001 34.5001 34.5001 34.5001 34.5001
2 74.0716 73.6562 73.6550 73.6547 73.6548 73.6548 73.6548 73.6548 73.6548
3 76.3162 75.1313 75.1127 75.1135 75.1137 75.1137 75.1137 75.1137 75.1137
4 91.8147 90.7731 90.7920 90.7915 90.7914 90.7915 90.7915 90.7915 90.7915
5 106.7880 106.8676 106.8550 106.8545 106.8545 106.8545 106.8545 106.8545 106.8545
6 112.8499 112.5921 112.6267 112.6273 112.6275 112.6275 112.6275 112.6275 112.6275
7 119.3370 121.5284 121.7230 121.7256 121.7249 121.7248 121.7248 121.7248 121.7248
8 130.0696 126.0597 125.8806 125.8816 125.8827 125.8828 125.8828 125.8828 125.8828
9 132.3283 131.7961 132.1487 132.1520 132.1514 132.1514 132.1514 132.1514 132.1514
10 143.3690 140.0522 140.2786 140.2823 140.2827 140.2828 140.2828 140.2828 140.2828

Table 2.20: Convergence of the first ten frequencies for a multiply connected not homo-
geneous membrane.

f
GDQFEM

ρ̄ = 0.01 ρ̄ = 0.5 ρ̄ = 1 ρ̄ = 2 ρ̄ = 5 ρ̄ = 10 ρ̄ = 20 ρ̄ = 50 ρ̄ = 100
1 64.6370 62.5046 60.2104 55.5970 44.5712 34.5001 25.5146 16.5660 11.8151
2 96.1424 95.7029 95.2010 91.0617 83.1683 73.6548 56.9805 37.1871 26.5326
3 99.5594 97.4385 95.2010 94.0052 88.4188 75.1137 57.0158 37.2947 26.6118
4 121.1201 120.7970 120.4208 119.4922 107.6825 90.7915 81.4912 58.4954 41.5701
5 136.3449 135.5919 134.6345 125.3128 114.7667 106.8545 90.5362 58.7220 41.7268
6 142.6137 139.2744 134.6345 131.9958 121.6532 112.6275 90.9606 59.8642 43.1608
7 153.9685 153.7661 153.5070 149.2257 136.4922 121.7248 98.3322 78.7936 55.8694
8 158.9617 156.3680 153.5070 152.6544 142.8069 125.8828 103.4421 78.7962 55.8705
9 179.0877 177.7852 175.5420 166.8093 151.3406 132.1514 120.9102 81.1882 59.8125
10 181.5585 179.8294 175.5419 168.5625 157.2960 140.2828 122.3917 83.0111 59.8183

Table 2.21: First ten frequencies for a multiply connected not homogeneous membrane
for N = 21.
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Figure 2.32: GDQFEM mesh for an arbitrarily shaped composite membrane with an
elliptic inclusion.

2.4.14 Arbitrarily shaped composite membrane

An arbitrarily shaped composite membrane is considered in the following. The external
boundaries follow the geometric shape of the arbitrarily shaped membrane studied by
[78, 84, 85]. However, an internal elliptic inclusion has been inserted. The inclusion has
a = 0.5 m and b = 0.25 m. The GDQFEM mesh is presented in Figure 2.32, for the sake
of clarity the current mesh is reported without the node numbers per element.
The surface densities are ρs1 = 1.293 · 10−5 kg/m2 and ρs2 = ρ̄ · ρs1, where ρ̄ is a number
that defines how much the second density is greater or smaller than the first one. In this
example T = 1 N has been considered and the thickness h = 0.005 m.

In Table 2.22 the first ten frequencies of the current model are presented as a function
of the ratio between the two materials ρ̄. It is noted that increasing the density coefficient
ρ̄ the resulting frequencies decrease due to the mass concentration. In other words, the
system tends to be similar to a single degree of freedom because all the mass is concen-
trated at the membrane center. In conclusion the first nine modal shapes are depicted
in Figure 2.33. It can be noted from the modal shapes that the center of the membrane
has an higher density due to the concentration of the vibrating motions, especially in the
higher modes.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 2.33: First 9 mode shapes for the arbitrarily shaped composite membrane for
ρ̄ = 100.

f
GDQFEM

ρ̄ = 0.01 ρ̄ = 0.5 ρ̄ = 1 ρ̄ = 2 ρ̄ = 5 ρ̄ = 10 ρ̄ = 20 ρ̄ = 50 ρ̄ = 100
1 85.51755 12.0992 8.5555 6.04975 3.8261 2.7055 1.9131 1.2099 0.8556
2 145.1793 20.5398 14.5239 10.2700 6.4953 4.5929 3.2477 2.0540 1.4524
3 195.7015 27.6960 19.5841 13.8481 8.7583 6.1931 4.3792 2.7696 1.9584
4 208.3611 29.4776 20.8439 14.7389 9.3217 6.5914 4.6609 2.9478 2.0844
5 258.8820 36.6282 25.9002 18.3142 11.5830 8.1904 5.7915 3.6629 2.5900
6 273.3447 38.6698 27.3438 19.3350 12.2285 8.6469 6.1143 3.8670 2.7344
7 320.4384 45.3324 32.0550 22.6663 14.3355 10.1367 7.1677 4.5333 3.2055
8 327.0688 46.2894 32.7318 23.1450 14.6382 10.3508 7.3191 4.6290 3.2732
9 339.4402 48.0186 33.9544 24.0094 15.1849 10.7374 7.5925 4.8019 3.3955
10 382.0120 54.0395 38.2118 27.0199 17.0889 12.0837 8.5444 5.4040 3.8212

Table 2.22: First ten frequencies for an arbitrarily shape composite membrane N = 11.
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Chapter 3

Composite Plane Structures with

Discontinuities

Sommario

Il seguente capitolo fa riferimento ad una presentazione sommaria di un metodo generale
per la soluzione di alcune classi di problemi piani. Il sistema differenziale in due equazioni
riguardante la teoria dell’elasticità piana è risolto con la tecnica GDQFEM per studiare
problemi di interesse pratico. Il problema viene caratterizzato matematicamente con il
classico sistema di equazioni che è descritto in letteratura [1–3, 15, 16]. Successivamente,
applicando la tecnica GDQ, il sistema è discretizzato e vengono risolti problemi di varia
complessità con il metodo GDQFEM.

Nella parte introduttiva sono risassunte le principali equazioni governanti il proble-
ma piano (sia tensionale che deformativo). In particolare, viene illustrata la simbologia
utilizzata per indicare spostamenti, tensioni e deformazioni. Successivamente la dualità
del problema viene riassunta trattando un sistema in due equazioni e due incognite che
sintetizza entrambi gli aspetti: dato che lo stato piano di tensione e deformazione diffe-
riscono soltanto per alcune costanti, dal punto di vista matematico, è possibile studiare
un sistema facendo riferimento ad una certa nomenclatura che cambia di significato a
seconda delle ipotesi iniziali.

In questo capitolo i primi esempi riportano strutture classiche in materiale omogeneo
che permettono di valutare la convergenza e la stabilità della tecnica. Vengono, inoltre,
proposti test ben noti (adottati anche per la validazione del metodo FE) come la trave
sottile di MacNeal e la trave di Cook.

Infine, si riportano esempi di strutture in materiale composito, come travi laminate con
nucleo soffice, travi curve composite e con fori, per i quali vengono risolti sia problemi di
natura statica, con ricostruzione del profilo tensionale, sia che problemi di natura dinamica
come le vibrazioni libere. Per ogni esempio i risultati ottenuti con la tecnica GDQFEM
sono confrontati con quelli riportati in letteratura e con quelli derivanti dall’applicazione
del metodo FE mostrando un ottimo accordo.
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3.1 Introduction

This chapter is devoted to a concise presentation of one general method of solution of
certain broad classes of two dimensional boundary value problems in elasticity [1–3]. The
equations of the plane theory of elasticity are applied to two cases of equilibrium of elastic
bodies which are of considerable interest in practice. The first is the case of a plain strain
and the second one of the the deformation of a thin plate under forces applied to its
boundary and acting in its plane. These two cases will be discussed in the following
sections theoretically. After the characterization of the mathematical problem the main
formulae are presented in order to apply the GDQFEM approach.

3.2 Preliminary remarks

A deformation or a tension state can be considered plane if the equations of motion can
be defined by three stresses or strains components. If a thin plate is loaded by forces
applied at the boundary, parallel to the plane of the plane and distributed uniformly over
the thickness (Figure ...), the stress components σz = τzx = τzy = 0 are zero on both faces
of the plate, and they may also assumed that they are zero within the plate. The state
of stress is then specified by σx, σy, τxy. Furthermore, it can also be assumed that these
components are independent of z, so any functional derivative ∂/∂z is equal to zero. As
a result σx, σy, τxy do not vary through the thickness, and they are function of x and y
only. In conclusion the stress tensor components for the plane stress analysis are

σx = σx(x, y), σy = σy(x, y), σz = 0

τyz = 0, τxz = 0, τxy = τxy(x, y)
(3.1)

An analogous simplification is possible at the other extreme when the dimension of
the body in the z direction is very large. If a long prismatical body is loaded by forces
which are perpendicular to the longitudinal elements and do not vary along the length, it
may be assumed that all cross sections are in the same condition. The hypothesis of first
and end section fixed, smooth and rigid can be considered, so that displacement in the
axial direction is prevented. Since there is no axial displacement, by symmetric it can be
assumed that the same holds at every cross section. There are many important problem
of this kind in practical engineering applications. Given these hypotheses the following
relations must be valid

w = 0,
∂u

∂z
= 0,

∂v

∂z
= 0 (3.2)

where w is the axial displacement of the deformable solid, and u and v are the in plane
displacements that do not vary with z because of the symmetry of the problem.

3.2.1 Equilibrium equations

Starting off the equilibrium equations valid for the three dimensional elasticity [1–3], the
state plane hypotheses can be introduced. The derivatives respect to z and the out of
plane stress are negligible. Thus, they can be written for a plane state as follows
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∂σx

∂x
+

∂τxy
∂y

+ fx = 0

∂τxy
∂x

+
∂σy

∂y
+ fy = 0

(3.3)

where the third equation is not reported due to the problem hypotheses, introduced above.

3.3 Plane strain state

Consider a prismatical solid in a plain strain state, parallel to the plane x-y, so the six
deformation components, according to the hypotheses of a state plane, are

εx = εx(x, y), εy = εy(x, y), εz = 0

γyz = 0, γxz = 0, γxy = γxy(x, y)
(3.4)

From (3.4) the cubic dilation can be calculated. This quantity is equal to the first strain
invariant I1ε that is

I1ε = εx + εy (3.5)

The congruence equations can be defined also

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+

∂v

∂x
(3.6)

When the constitutive equations are introduced the stress components can be found as a
function of the strain components

σx = 2Gεx + λI1ε, σy = 2Gεy + λI1ε, σz = λI1ε, τxy = Gγxy (3.7)

which are called inverse Hooke’s laws. It is noted that the third relation of (3.7) gives a
normal stress along z that is not negligible. In fact when a state plain is considered it can
not be assumed a plain stress also. Moreover in (3.7) G is the shear modulus and λ is the
second Lamé constant. They can be both written as a function of the Young’s modulus
E and the Poisson’s modulus ν

G =
E

2 (1 + ν)
, λ =

νE

(1 + ν) (1− 2ν)
(3.8)

Introducing the congruence relations (3.6) into the constitutive equations (3.7) the inverse
Hooke’s laws can be written as a function of the displacements only.

σx = (λ+ 2G)
∂u

∂x
+ λ

∂v

∂y

σy = (λ+ 2G)
∂v

∂y
+ λ

∂u

∂x

τxy = G

(
∂u

∂y
+

∂v

∂x

) (3.9)
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and using the constitutive equations in terms of displacements into the equilibrium equa-
tions for a general state plane the fundamental equations in terms of displacements can
be found

(λ+ 2G)
∂2u

∂x2
+G

∂2u

∂y2
+ (λ+G)

∂2v

∂x∂y
+ fx = 0

(λ+ 2G)
∂2v

∂y2
+G

∂2v

∂x2
+ (λ+G)

∂2u

∂x∂y
+ fy = 0

(3.10)

the (3.10) is the static equilibrium equation system for the plain strain case. For the
dynamic case the inertia forces can be added to (3.10) to obtain the equations of motion

(λ+ 2G)
∂2u

∂x2
+G

∂2u

∂y2
+ (λ+G)

∂2v

∂x∂y
+ fx = ρ

∂2u

∂x2

(λ+ 2G)
∂2v

∂y2
+G

∂2v

∂x2
+ (λ+G)

∂2u

∂x∂y
+ fy = ρ

∂2y

∂y2

(3.11)

where ρ is the material density. In the following only the static and the free vibration
problem is solved. Thus for the free vibration case the equation of motion (3.11) are taken
considering fx = fy = 0.

3.4 Plane stress state

Consider a thin plate in a plain stress state, the stress components are (3.9). As far as
the strain components are concerned the Hooke’s laws give

εx =
σx − νσy

E
, εy =

σy − νσx

E
, εz = −ν (σx + σy)

E
, γxy =

τxy
G

(3.12)

so it is clear that a plain stress case do not imply a plain strain one, because εz �== 0.
The equilibrium equations are the same as the plain strain problem. Furthermore it
can observed that substituting the congruence and the constitutive equations into the
equilibrium equations the fundamental system in terms of displacements is formally equal
to the plain strain case (3.10)

(λ∗ + 2G)
∂2u

∂x2
+G

∂2u

∂y2
+ (λ∗ +G)

∂2v

∂x∂y
+ fx = 0

(λ∗ + 2G)
∂2v

∂y2
+G

∂2v

∂x2
+ (λ∗ +G)

∂2u

∂x∂y
+ fy = 0

(3.13)

where the constant λ∗ is related to the shear modulus G and the second Lamé constant

λ∗ =
2Gλ

2G+ λ
or λ∗ =

Eν

1− ν2
(3.14)

so the equation of motion for the plain stress case become
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z

y

x

z s

n

Figure 3.1: Local reference system of a generic side of normal n.

(λ∗ + 2G)
∂2u

∂x2
+G

∂2u

∂y2
+ (λ∗ +G)

∂2v

∂x∂y
+ fx = ρ

∂2u

∂x2

(λ∗ + 2G)
∂2v

∂y2
+G

∂2v

∂x2
+ (λ∗ + G)

∂2u

∂x∂y
+ fy = ρ

∂2y

∂y2

(3.15)

It should be noted that both the plain states can be studied by the same set of fundamental
equations. Formally the (3.11), (3.15) are the same, because the only difference is the
definition of the parameter λ and λ∗. In the following only one set of differential equation
is presented due to this symmetry between the two state plane cases.

3.5 Boundary conditions

The state plane problems described by (3.11) and (3.15) can be discretized by the GDQ
method following the rules introduced in the first chapter. Once the static or the dynamic
system is written in a discretized form, the boundary conditions and the inter-element
boundary conditions must be defined (see section 1.7.3).

A triangular domain is considered in Figure 3.1, in which a generic reference system
nsz is related to a Cartesian one xyz. According to the Theory of Elasticity [1–3] the
normal and shear stresses of the local system nsz can be written as a function of the
Cartesian system xyz

σn = σxn
2
x + σyn

2
y + 2τxynxny

τns = (σy − σx)nxny + τxy
(
n2
x − n2

y

) (3.16)

where σx, σy are the normal stresses along the Cartesian axis x, y and τxy is the shear
in-plane stress. Substituting (3.9) into (3.16) the stresses as a function of the Cartesian
displacements are found.
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σn =

(
(λ+ 2G)n2

x + λn2
y

)
∂u

∂x
+ 2Gnxny

∂u

∂y
+

+ 2Gnxny
∂v

∂x
+

(
(λ+ 2G)n2

y + λn2
x

)
∂v

∂y

τns = −2Gnxny
∂u

∂x
+G

(
n2
x − n2

y

) ∂u
∂y

+

+G
(
n2
x − n2

y

) ∂v
∂x

+ 2Gnxny
∂v

∂y

(3.17)

the relationships (3.17) can be directly mapped for an arbitrarily shaped domain using
the extended derivative matrices introduced in section 1.4.1. The equations (3.17) are
valid for any side. Either it is straight, with a constant normal vector along the side as
depicted in Figure 3.1, or curved in which the normal vector changes node by node. It
must be added that the geometric mapping plays a fundamental role in this aspect. It will
be shown in the numerical examples that a 12-nodes elements works much better than an
8-nodes one, when there are several curved boundaries. In fact in order to capture a given
curve generally more than one 8-nodes element is needed for the correct representation of
the physical geometry.

3.6 State plane applications

Beyond the classic examples that are used for the introduction of states planes, such as
thin uniform plates subjected to in plane loads or gravity walls in a plain strain condition.
There are some more complex problems that can be studied by using simplified plain
models.

The natural extension to the state plain problems is the study of composite materials.
Today, these kinds of structures are widely used in several industries. Sandwich beams
and plates which are categorized as composite structures with high values of strength
to weight ratios. Another composite material application is the structural behaviour of
structures with inclusions. In these cases, it is interested to know the stress distribution
between two different kinds of materials. Another widely developed research branch is
fracture mechanics, which is the study of cracks in a continuous media. For all these
problems the classic GDQ technique is not sufficient due to the discontinuities that these
problems have inherently. So in the following sections some numerical applications of the
GDQFEM will be shown in order to study the accuracy of this advanced technique. As far
as the numerical examples are concerned several cantilever elastic and composite beams
will be studied in the following. In particular the free vibration case is firstly proposed.
The natural frequencies of the given beam are reported as a function of the core elasticity,
and geometric ratios. Secondly the static case of a cantilever composite beam is developed,
where the stress recovery is reported in order to show the stress distribution along the
beam thickness. Some inclusion and discontinuity problems follow the initial benchmarks
of GDQFEM.
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f
Abaqus

MLPG NBNM EFG ne = 1 ne = 3
[Hz] Ref. [136] Ref. [136] Ref. [136] N = 41 N = 21
1 821.059 824.44 844.19 811.63 822.08 822.08
2 4925.76 5070.32 5051.21 4907.9 4931.61 4931.60
3 12823.2 12894.73 12827.6 12852 12823.20 12823.20
4 12975.4 13188.12 13258.2 13075 12989.85 12989.84
5 23581.1 24044.43 23992.8 24113 23605.51 23605.48
6 35964.9 36596.15 36432.2 37463 36000.21 36000.16
7 38440.5 38723.9 38436.4 38616 38441.64 38441.63
8 49516.7 50389.01 49937.2 51999 49564.38 49564.31
9 63831.7 64413.89 63901.2 64566 63894.24 63894.16
10 63965.6 64937.83 64085.9 68585 63970.67 63970.64

Table 3.1: First ten natural frequencies for a cantilever elastic beam.

y

xh x(  )

L

Figure 3.2: Geometry configuration of a tapered cantilever beam.

3.6.1 Free vibration analysis of a cantilever elastic beam

First of all for verification of the proposed method, a simple elastic cantilever beam is
considered. As reported in [136] some other methods have been used in literature for
the study of this problem. The properties of the beam are E = 2.05939 · 1011 N/m2,
ν = 0.3, ρ = 7845.32 kg/m3, where E is the Elastic modulus, ν the Poisson coefficient, ρ
the material density. The geometric properties are L = 0.10 m, D = 0.01 m, where L is
the beam length and D is the beam thickness.

In Table 3.1 the first ten natural frequencies f are reported. In the first column the
FEM analysis is reported for the numerical comparison. A 200 × 20 element grid has
been used for the FEM solution. The eigenfrequencies are obtained by various analysis
methods also, such as "node by node method" (NBNM), Meshless Local Petrov-Galerkin
(MLPG) and Element Free Galerkin (EFG). The GDQFEM is applied considering two
simple cases. A single element with a grid of 41× 41 points and a three element mesh in
which a 21× 21 points are used per element. All the results are in good agreement with
the results proposed in literature and the one obtained by FEM.

3.6.2 Free vibration of a variable cross-section beam

In the following example the free vibration problem of a cantilever beam with variable
cross-section is considered, as reported in [139]. The beam geometry is represented in
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ω [rad/s]
MLPG FEM ne = 1 ne = 1 ne = 1 ne = 1

Ref. [139] Ref. [139] N = 13 N = 21 N = 31 N = 41
1 263.21 262.09 261.8031 261.6137 261.5746 261.5648
2 293.03 918.93 917.4574 917.5720 917.5941 917.5994
3 953.45 951.86 951.9089 951.9198 951.9247 951.9265
4 1855.14 1850.92 1852.2551 1852.2071 1852.1880 1852.1838
5 2589.78 2578.63 2584.4408 2584.3861 2584.3747 2584.3716
6 - - 2736.5644 2736.5885 2736.5902 2736.5905
7 - - 3286.4464 3286.4786 3286.4916 3286.4953
8 - - 3701.2990 3701.8364 3701.8417 3701.8412
9 - - 3853.8719 3853.9282 3853.9316 3853.9321
10 - - 4155.5147 4155.4625 4155.4595 4155.4590

Table 3.2: Eigenvalues of a variable cross-section cantilever elastic beam.

y

xtf

tf

tc D

L

Figure 3.3: A fully clamped sandwich beam.

Figure 3.2 and the numerical parameters are: the length L = 10 m, the tapered height
h(x = 0) = 5 m, h(x = L) = 3 m, the elastic modulus E = 3 · 107 Pa and the Poisson’s
ratio ν = 0.3.

The results in terms of eigenvalues ω are reported in Table 3.2. Moreover the results
obtained by GDQFEM in the last column of the present table are compared with a refer-
ence solution as reported in [139] calculated by Meshless Local Petrov-Galerkin (MLPG)
method and FE method (Abaqus). It has been shown that the present code with a single
element and a sparse grid point distribution N = M = 13 can capture the solution with a
small difference respect to the other solutions. Furthermore in Table 3.2 the convergence
rate of GDQFEM can be seen in fact the solution does not oscillate increasing point
numbers from N = 13 to N = 41.

3.6.3 Free vibration analysis of a cantilever sandwich beam

A cantilever sandwich beam is considered in the following. In Figure 3.3 a schematic
diagram of the model is presented. In the case under study the beam has a flexible core
which has an elastic modulus lower than the top and bottom face sheets. A partially
clamped sandwich plate is considered also, where only the top and bottom sheets are
fixed and the soft core is free instead.

The geometrical properties of the beams are L = 1 m, D = 0.02 m, where L is the
beam length and D is the beam thickness as reported in Figure 3.3. In addition the core

N. Fantuzzi PhD Thesis



Chapter 3. Composite Plane Structures with Discontinuities 95

f [Hz] Abaqus EFG [136]
ne = 3 ne = 3
N = 21 N = 31

1 21.5438 21.93 21.5620 21.5632
2 93.998 97.07 94.2283 94.2307
3 200.354 207.9 201.0721 201.0765
4 307.277 319.12 308.8174 308.8408
5 417.978 432.88 420.8502 420.8787
6 531.631 547.97 536.3943 536.4781
7 651.009 667.01 658.3320 658.4971
8 776.451 790.25 786.1107 787.3466
9 909.587 919.32 928.6953 924.6957
10 1050.72 1054.06 1136.3864 1070.8950

Table 3.3: First ten frequencies for a fully clamped sandwich cantilever beam.

f [Hz] Abaqus EFG [136]
ne = 3 ne = 3
N = 21 N = 31

1 21.5437 21.92 21.5643 21.6575
2 93.9951 96.81 94.2207 94.2002
3 200.346 207.24 201.0034 200.8917
4 307.264 318.1 308.7793 308.2736
5 417.961 431.49 420.6148 420.6976
6 531.609 546.14 536.3559 536.3396
7 650.981 664.67 658.6543 658.4117
8 776.418 787.28 779.5960 787.0041
9 909.547 915.61 904.8425 925.1526
10 1050.67 1049.9 1131.9594 1070.3390

Table 3.4: First ten frequencies for a partially clamped sandwich cantilever beam.

thickness is tc = 1.4 · 10−2 m and the face sheet thickness tf = 3 · 10−3 m. The material
properties of the soft core are E = 0.2 GPa, ν = 0.27, ρ = 60 kg/m3 and the elastic
properties of the sheets are E = 200 GPa, ν = 0.3 and ρ = 7800 kg/m3.

The first ten natural frequencies of the cantilever sandwich beam are extracted. The
results of the present work and the FE analysis performed to check the solution are
shown in Table 3.3. Furthermore the first ten eigenfrequencies of a partially clamped
composited beam are written in Table 3.4. The numerical solutions show that the first
ten frequencies of a cantilever sandwich beam with flexible core (Tables 3.3, 3.4) have
good agreement with the results obtained in literature and the FE reference solution.
The linear eigenvalue problem provides the modal shapes of the structure. So the first
four modal shapes calculate with the GDQFEM code for the fully clamped beam are
shown in Figure 3.4

To study the effect of flexibility of the core on the natural frequencies, the Young’s
modulus of the core is considered to be variable. The elastic modulus of the elastic core is
Ec = χEf , where the χ factor is reported in Table 3.5.The geometrical properties of the
beam are the same, as given above. The first ten natural frequencies for fully clamped
sandwich beam are given in Table 3.5. The results show that the natural frequencies of
the sandwich beam increase when the Young’s modulus of the core increases, which in
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1st mode 2nd mode

3rd mode 4th mode

Figure 3.4: First four modal shapes of a cantilever sandwich beam.

turn is due to increasing the stiffness of the sandwich beam. Furthermore the difference
between the the higher frequencies, keeping χ constant, is greater than the difference
between the lower ones. Finally the first four modal shapes for the clamped composite
cantilever beam are depicted in Figure 3.4.

χ 0.0001 0.001 0.01 0.1
f EFG ne = 3 EFG ne = 3 EFG ne = 3 EFG ne = 3

[Hz] Ref. [136] N = 31 Ref. [136] N = 31 Ref. [136] N = 31 Ref. [136] N = 31
1 13.744 13.40 21.93 21.56 24.085 23.77 25.08 24.58
2 45.235 44.70 97.07 94.23 141.64 139.30 155.82 152.70
3 85.857 86.77 207.9 201.08 364.23 356.48 430.59 421.75
4 129.63 135.08 319.12 308.84 645.17 628.03 828.52 810.72
5 181.01 194.44 432.88 420.88 960.92 930.75 1339.4 1308.72
6 240.41 265.12 547.97 536.48 1275.5 1249.23 1421 1393.58
7 309.26 348.60 667.01 658.50 1294.9 1269.31 1950 1901.87
8 388.13 444.90 790.25 787.35 1638.1 1575.31 2647.2 2576.28
9 477.52 554.53 919.32 924.70 1985.3 1904.92 3418.3 3318.73
10 577.98 677.41 1054.06 1070.90 2334.6 2236.38 4251.9 4117.36

Table 3.5: First ten natural frequencies of sandwich beams with various cores

3.6.4 Static analysis of a cantilever composite beam

In the following section a static analysis of the plain strain problem of composite beams
is considered. A sandwich composite cantilever plate consisting of three layers of two
materials, shown in Figure 3.3, is analyzed [11]. The composite beam is subjected to
a uniform vertical load q. The upper and lower surface layers, are made of the same
materials. The core layer is made of a material different from the surface sheets. For the
surface sheets the Young’s modulus E = 1.67·109N/m2 and for the core layer E = 1.67·108
N/m2; the Poisson’s ratio is ν = 0.3 for both materials. The geometric parameters are
L = 4.8 m, D = 1.2 m, where L is the beam length and D is the thickness of the beam,
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a) b)

Figure 3.5: Displacements of of sandwich cantilever beam at section x = L/2: a) Dis-
placement along x axis; b) Displacement along y axis.

moreover tc = 0.8 m, tf = 0.2 m and q = 100 N/m. The solution is very well known in
literature according to [11, 12, 38]. The solutions for the displacements and the stresses
at the middle section x = L/2 are given in Figures 3.5-3.6. Displacements are continuous
as required by the compatibility condition. It is noted that discontinuous finite jumps are
observed at the material interfaces in σx and sharp turning point in shear stress τxy. The
comparison is made with a FE analysis, performed with Abaqus.

In the case under study two GDQFEM meshes are considered: a three element mesh
with a 21× 11 grid points and a nine element mesh with a 21× 21 grid. It is noted that
three elements are not enough (with a uniform grid) to capture the numerical solution
due to the highly stretched elements in the mesh. In fact N �= M has been used in order
to have an accurate solution with three elements only. So, from Figures 3.5, 3.6 it is clear
that the red lines that represents the three element mesh captures the axial displacement
ux, the vertical displacement uy and the stresses σx and τxy especially at the top layer in
which the loading q has been applied. This means that for the case under consideration
three elements are enough to evaluate the composite beam stresses and displacements.

a) b)

Figure 3.6: Stress results of sandwich cantilever beam at section x = L/2: a) Normal
stress σx; b) Tangential stress τxy.

3.6.5 MacNeal’s thin cantilever beam

In the following example a standard benchmark used in several FE tests is performed
[112]. It is worth noting that this kind of problem is a classic benchmark for measuring

N. Fantuzzi PhD Thesis



98 Chapter 3. Composite Plane Structures with Discontinuities

6 m

0.2 m 1 N

θ

Figure 3.7: MacNeal’s beam three elements mesh under shear force.

exact [124] 1.000 (0.1081 m)

FEM [126]
Regular Parallelelogram Trapezoidal
0.993 0.985 0.988

GDQFEM
ne = 1 ne = 3, θ ≈ π/6 ne = 3, θ ≈ π/18
0.99882 0.99775 1.00031

Table 3.6: Normalized tip deflection of MacNeal’s thin beam for different load cases and
mesh geometries.

accuracy and testing the sensitivity to mesh distortion for plane elements, in fact some
other researchers used this example in the past [113, 115, 116, 121, 123–126]. The given
beam, represented in Fig. 3.7, is L = 6 m long and H = 0.2 m high. Since a state
plane problem is under consideration the model has a constant thickness h = 0.1 m. The
MacNeal’s beam elastic modulus is E = 10 MPa and Poisson’s ratio ν = 0.3. An unit
shear load F = 1 N is considered at the tip of the beam. The vertical displacement at
the end of the beam is calculated in the following. The numerical solution obtained by
GDQFEM has been compared to the exact solution v = 0.1081 and some other results
found in literature. Furthermore for examining the accuracy and sensitivity of the present
methodology regular and distorted meshes are considered as it has been already done by
[126]. It should be underlined that GDQFEM does not need so many elements as FE
because it is high-accuracy methodology. In fact from Table 3.6 it is clear that only one
element is sufficient to capture the solution. Moreover some distorted meshes are attached
for deeply underline the good accuracy that GDQFEM has. In particular the angle θ,
reported in table 3.6 is graphically presented in Fig. 3.7, which is the angle between
the horizontal axis and the shortest side of the elements used in the current mesh. In
the present solution the considered grid distributions are Chebyshev-Gauss-Lobatto ones
within N = 41 and M = 21 points. It is noted that more points are needed along x
direction because a thin beam is under consideration. In table 3.6 the distortion angle
θ is indicated. In order to visually see the mesh distortion Fig. 3.7 can be taken as a
reference.

3.6.6 Cook’s cantilever beam

In order to show the GDQFEM behaviour against the mesh distortion another popular
benchmark, which is used to asses the efficiency of the plane elements, is the Cook’s
cantilever beam [117]. The reference geometry of a Cook’s beam is graphically presented
in Figure 3.8. The structure is subjected to a constant shear distributed load P = 1 N
at the free edge. The beam is elastic and homogeneous within an elastic modulus E = 1
Pa and a Poisson’s ratio ν = 1/3. The numerical results obtained by means of GDQFEM
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P = 1

16

44

48

44 A

B C

Figure 3.8: Cook’s cantilever beam geometry.

methodology are compared with a FE analysis. In particular the maximum deflection
at point C, the maximum principal stress at point A and the minimum principal stress
at point B are considered in the comparison. The proposed example has been taken by
other researchers’ solution [126] and the present results are reported in Table 3.7. It must
be added that this problem does not have an analytical solution, so a refined FE solution
has been taken as a reference.

In order to calculate the principal stresses the following formulae will be used

σ1

σ2

}
=

σx + σy

2
± 1

2

√
(σx − σy)

2 + 4τ 2xy (3.18)

where σ1 is the maximum principal stress and σ2 is the minimum principal stress. σx, σy

and τxy are the stresses that are taken from the numerical solution written respect to the
Cartesian Coordinate system.

The numerical solution obtained via GDQFEM is shown for several meshes and dif-
ferent levels of distortions. Moreover the number of grid points is variable to see the rate
convergence number within each different mesh. In Table 3.7 four different meshes that
are depicted in Figure 3.9 are presented for various grid point distributions, either uniform
N = M and not uniform N �= M . It can be noticed that either with regular mesh or
not regular mesh the results are in good agreement with literature [119, 126] and a FE
solution obtained by ABAQUS.
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a) b)

c) d)

Figure 3.9: Cook’s beam GDQFEM meshes: a) Two elements mesh after horizontal
division; b) Two elements mesh after vertical division; c) Four elements mesh within
regular division; d) Four elements distorted mesh.
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ABAQUS Ref. [119] Ref. [126]
GDQFEM ne = 1

N = 21 N = 35 N = 41
M = 21 M = 27 M = 31

σA,max 0.2369 0.2362 0.2367 0.2374 0.2371 0.2367
σB,min -0.2035 -0.2023 -0.2039 -0.2034 -0.2060 -0.2014
uy,C 23.961 23.96 23.90 24.0627 23.9690 23.9677

GDQFEM ne = 2 (vertical) GDQFEM ne = 2 (horizontal)
N = 21 N = 31 N = 41 N = 21 N = 31 N = 41
M = 21 M = 31 M = 31 M = 11 M = 21 M = 21

σA,max 0.2379 0.2374 0.2383 0.2367 0.2371 0.2369
σB,min -0.1970 -0.1992 -0.1943 -0.1967 -0.2050 -0.2009
uy,C 23.9790 23.9717 23.9665 23.9644 23.9973 23.9680

GDQFEM ne = 4 (regular) GDQFEM ne = 4 (distorted)
N = 21 N = 23 N = 31 N = 21 N = 23 N = 31
M = 21 M = 17 M = 21 M = 21 M = 17 M = 21

σA,max 0.2371 0.2369 0.2369 0.2366 0.2368 0.2369
σB,min -0.2032 -0.1982 -0.1980 -0.1962 -0.1773 -0.1726
uy,C 24.0021 23.9756 23.9691 23.9431 23.9196 23.9386

Table 3.7: Numerical comparison for the Cook’s beam.
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a) b)

Figure 3.10: Cantilever wall GDQFEM meshes: a) Four elements regular mesh; b) Four
elements highly distorted mesh.

3.6.7 Cantilever wall

In order to make further investigations into the accuracy of the GDQFEM technique, the
in-plane vibration of a square cantilever plate, which can be viewed also as a deep beam
under the plane stress condition. This problem can be considered as another standard
benchmark due to the fact that it had been taken by several researchers under consider-
ation [114, 120, 122]. In particular Gupta [114] studied this problem in great detail and
provided a very fine mesh of plane stress elements that can be considered to be an exact
solution.

This numerical solution had been taken as a reference for the accuracy tests of different
alternatives for the same kind of problem by [114, 118, 120, 122]. As a result the in-plane
vibration of a square cantilever plate under the plane stress condition can serve as a
standard problem. The same parameters as in literature [114, 120, 122] have been used:
the elastic modulus E = 1, the Poisson’s ratio ν = 0.3 and the density ρ = 1. The length
and the width of the given cantilever wall are equal to L = 10. The numerical results
in terms of frequencies obtained by GDQFEM and the results taken from literature are
presented. Furthermore a FE numerical solution obtained by ABAQUS is added in the
comparison. In Table 3.8 the first ten eigenfrequencies ωi = 2πfi are reported. Three
different meshes have been used in the computation a single square element ne = 1 is
considered at first within several grid point numbers. A four regular and distorted meshes
ne = 4, graphically depicted in Figure 3.10, are used to show the accuracy and stability
of GDQFEM methodology. It is noted that the four element distorted mesh has a high
level of distortion (see Figure 3.10). For each numerical case a Chebyshev-Gauss-Lobatto
grid points distribution have been used considering the same number of points along the
master element coordinates N = M .

In addition some more detailed accuracy tests are presented in Figure 3.11. The
logarithmic error is plotted as a function of the number of grid points N = M , considering
the three meshes reported above. The convergence tests are based on the logarithm of
the absolute error between the GDQFEM and FEM solution.

log10 (ωGDQFEM − ωFEM) (3.19)

It can be noticed that as the number of grid points increases the absolute error de-
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ω
Ref. [120] ABAQUS

GDQFEM ne = 1
[rad/s] N = 11 N = 21 N = 31 N = 41

1 0.065853 0.065820 0.065917 0.065828 0.065819 0.065816
2 0.157951 0.157956 0.157948 0.157948 0.157950 0.157951
3 0.176908 0.177207 0.177197 0.177206 0.177206 0.177205
4 0.279651 0.281591 0.281572 0.281588 0.281590 0.281590
5 0.30337 0.303671 0.303475 0.303636 0.303652 0.303656
6 0.321367 0.322280 0.322276 0.322281 0.322280 0.322280
7 - 0.406225 0.406195 0.406225 0.406223 0.406223
8 - 0.427679 0.427694 0.427663 0.427662 0.427662
9 - 0.472234 0.472220 0.472235 0.472233 0.472233
10 - 0.475256 0.475288 0.475252 0.475249 0.475248
ω GDQFEM ne = 4 (Regular) GDQFEM ne = 4 (Distorted)

[rad/s] N = 7 N = 11 N = 21 N = 7 N = 11 N = 21
1 0.065952 0.065845 0.065818 0.065794 0.065826 0.065819
2 0.157974 0.157952 0.157951 0.158004 0.157952 0.157950
3 0.177241 0.177218 0.177208 0.177212 0.177217 0.177210
4 0.281638 0.281595 0.281591 0.281752 0.281601 0.281592
5 0.303666 0.303665 0.303661 0.303519 0.303671 0.303667
6 0.322306 0.322286 0.322281 0.322317 0.322287 0.322282
7 0.406221 0.406209 0.406222 0.406472 0.406213 0.406226
8 0.427720 0.427660 0.427665 0.427872 0.427694 0.427678
9 0.472557 0.472227 0.472232 0.472759 0.472242 0.472233
10 0.475375 0.475225 0.475243 0.475507 0.475209 0.475239

Table 3.8: First ten eigenfrequencies of a cantilever wall.

creases rapidly to the reference solution (ABAQUS). It should be noticed that as expected
the GDQFEM solution using a four elements distorted mesh has a less rapid convergence
respect to the regular mesh and the single element mesh. These kinds of results have been
already reported for the membrane case in Chapter 2, in which the convergence rate is
reported for a rectangular membrane compared to the analytical solution.
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a)

b)

c)

Figure 3.11: Convergence tests for a cantilever wall: a) Single element; b) Four elements;
c) Four elements within an highly distorted mesh.
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a) b)

Figure 3.12: Cantilever tapered plate with a circular centred hole: a) Four elements mesh;
b) Eight elements mesh.

3.6.8 Tapered cantilever plate with a central circular hole

In the following example the vibration of a tapered cantilever plate with a central circular
hole under plane stress conditions is considered. The side length is set to L = 10 and the
radius of the inner circle is R = 1.5. Herein the main difficulty is given by the curved
internal boundary. So more elements are needed in order to capture this particular shape.

ω
abaqus

GDQFEM ne = 4 GDQFEM ne = 8
[rad/s] N = 11 N = 21 N = 41 N = 11 N = 21 N = 31

1 0.0700 0.071226 0.070128 0.070120 0.069976 0.069978 0.069978
2 0.1558 0.155596 0.155998 0.155998 0.155851 0.155863 0.155864
3 0.1999 0.199411 0.199967 0.199962 0.199874 0.199880 0.199879
4 0.2620 0.262110 0.262643 0.262636 0.262028 0.262070 0.262071
5 0.2917 0.292303 0.292199 0.292197 0.291744 0.291732 0.291732
6 0.4192 0.419199 0.419846 0.419847 0.419260 0.419256 0.419259
7 0.4208 0.420896 0.420925 0.420918 0.420825 0.420818 0.420818
8 0.4678 0.468142 0.468025 0.468024 0.467834 0.467844 0.467845
9 0.4801 0.480427 0.480894 0.480894 0.480190 0.480122 0.480124
10 0.5281 0.525467 0.528197 0.528203 0.528079 0.528074 0.528076

Table 3.9: First ten eigenfrequencies of a tapered cantilever plate with a circular centered
hole.

Once again this example is useful to examine the accuracy and applicability of the
current methodology when irregular geometries are used in the analysis. As depicted in
Figure 3.12 the tapered cantilever plate with a circular hole in its center is divided into
eight irregular quadrilateral elements. This example had been studied by some researchers
[120, 122], so the following material parameters are used in the analysis: elastic modulus
E = 1, Poisson’s ratio ν = 0.3 and density ρ = 1. In this example the reference solution
is obtained with the aid of ABAQUS. In Table 3.2 the first ten eigenfrequencies are
reported ωi = 2πfi and several convergence tests are depicted in Figure 3.13 in which the
logarithmic error is plotted as a function of the number of grid points N = M .
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a)

b)

Figure 3.13: Convergence tests for a tapered cantilever plate with a centred circular hole:
a) Four elements mesh; b) Eight elements mesh.

Although few irregular elements have been used, the accuracy of the present solution
is in very good agreement with the reference solution. It is clear that the solution within
ne = 8 is more accurate compared to ne = 4 because the curved boundary is better
approximated. For every computation a Chebyshev-Gauss-Lobatto grid distribution has
been employed within various grid point number. It is underlined that the same number
of points is used along the two sides of the element N = M .
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Figure 3.14: Geometry configuration of the sandwich circular arch.

Figure 3.15: GDQFEM mesh of a sandwich circular arch.

3.6.9 Curved composite beam

In the following example the static and dynamic analyses of a composite circular plane
arch are considered. The arch geometry is reported in figure 3.14, where the inner radius
D1 = 6 m and the outer radius D2 = 8 m, as a result the arch thickness is t = 1 m.
A sandwich circular arch is considered, in which the two face sheets at the top and the
bottom of the arch are made of Ef = 3 ·107 N/m2 , νf = 0.3 and density ρf = 2000 kg/m3

with a thickness tf = 0.25 m, in addition the core is made of a material that is softer
than the top and bottom sheets with Ec = 3 · 104 N/m2, νc = 0.25 and density ρc = 100
kg/m3 with a thickness tc = 0.5 m. It is noted that in this problem the elastic modulus
of the core is 1000 times and the density is 20 times lower than the two face sheets.

Static analysis

Given the problem geometry depicted in Figure 3.14 an inner uniform pressure is applied
to the structure q = 100 N/m. This kind of load simulate an internal pressure in the
opposite direction of the conventional positive normal. A mesh composed of 27 elements
has been used in which three elements are located along the thickness only, as reported
in Figure 3.15). Moreover a 15 × 15 Chebyshev-Gauss-Lobatto grid point distribution
is used in the computation per element. The comparison of displacements, strains and
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Figure 3.16: Displacement values along the arch thickness at section x = 0.

stresses have been done with Abaqus at the symmetry section of the arch, in other words
all the Figures 3.16-3.17 are made along the y axis at x = 0.

In is obvious that the displacement in the x direction, ux, is not represented due to
the symmetry of the problem. It is also noted that the GDQFEM solution is in very good
agreement with the solution obtained by Abaqus, either for the displacements and the
stresses.

The GDQFEM, like the classic GDQ, solves the strong form of the fundamental gov-
erning system, so the static algebraic system gives the displacements of all the grid points
of the current mesh. In order to obtain the strain and the stresses point by point no
complex algorithm is needed. The strains are calculated deriving the displacements, com-
putationally speaking multiplying the GDQ matrices to the obtained displacements and
the stresses are computed using the constitutive equations of the theoretical problem.

Dynamic analysis

In this section the dynamic analysis of the composite circular arch represented in Figure
3.14 is presented. The first ten frequencies are reported in Table 3.10 for several mesh
grids per element and compared with a FE solution. The eigenfrequencies are in good
agreement with the ones of Abaqus and the solution converges when the number of points
increases. It should be noted from Table 3.10 that not always the same number of grid
points has been used. In fact an accurate solution can be found when N �= M , in particular
more points are considered along the circumference and less along the thickness obtaining
almost the same accuracy of N = M . In Figure 3.18 the first four modal shapes are
reported for the composite arch under study. It is underlined that the modal shapes
involve the arch thickness due to the soft core of the curved beam.
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a)

b)

Figure 3.17: Stress values along the arch thickness at section x = 0: a) Normal stress σx;
b) Normal stress σy.
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f [Hz] Abaqus
N = 9 N = 11 N = 15 N = 9 N = 11 N = 13
M = 9 M = 11 M = 15 M = 21 M = 21 M = 17

1 0.5524 0.5531 0.5535 0.5531 0.5537 0.5531 0.5529
2 1.1561 1.1588 1.1584 1.1573 1.1580 1.1571 1.1570
3 1.9997 2.0027 2.0023 2.0008 2.0015 2.0004 2.0004
4 2.2463 2.2512 2.2497 2.2483 2.2479 2.2477 2.2479
5 2.6446 2.6459 2.6461 2.6456 2.6458 2.6454 2.6454
6 2.8359 2.8354 2.8354 2.8347 2.8356 2.8346 2.8345
7 3.2546 3.2557 3.2561 3.2554 3.2564 3.2554 3.2551
8 3.8607 3.8602 3.8605 3.8602 3.8612 3.8602 3.8600
9 4.1803 4.1815 4.1805 4.1789 4.1796 4.1786 4.1785
10 4.5884 4.5872 4.5868 4.5869 4.5870 4.5871 4.5870

Table 3.10: First ten frequencies for a circular composite arch for several grid points.

1st mode 2nd mode

3rd mode 4th mode

Figure 3.18: First four modal shapes of a composite circular arch.
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Figure 3.19: Graphical depiction for interface elasticity problem

a) b)

Figure 3.20: Generic RVE configurations: a) square packing; b) hexagonal packing.

3.6.10 Inclusion problem

The elasticity of composite solids such as particle and fibre-reinforced composites is a
boundary value problem (BVP) that can be modelled in several ways according to [137].
These kinds of problems have discontinuous coefficients across the material interfaces in
terms of displacements and stresses.

An elastic solid occupies a bounded and open domain as in Figure 3.19, that is com-
posed of two perfectly bonded materials with zero-thickness interface Γ. The equilibrium
configuration of the elastic body is characterized by the continuity of displacements and
continuity of normal stresses across the material interface Γ. Typical inclusions of realistic
morphology such as reinforced particles or fibres can be idealized as in Figure 3.19, in
which the matrix is generally Ω1 and the fibre is represented by Ω2.

In a real unidirectional fibre-reinforced composite the fibres are arranged randomly.
Since it is difficult to model random fibre arrangement, usually, the actual cross-section
of the composite is idealized as a regular array of fibres, either in a square or hexagonal
fibre array packing, as reported in [138]. In Figure 3.20 both square and hexagonal fibre
packing are depicted.

One direct approach that comprehend the inclusion problem is the micro-mechanical
analysis of heterogeneous materials. In particular it is of engineering interest the predic-
tion of macroscopic moduli of heterogeneous materials given the moduli of the individual
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Figure 3.21: Square plate with a square inclusion.

phases and their geometric arrangement. Micro-mechanical analysis are typically con-
ducted based on either the concept of a representative volume element (RVE), which
characterizes heterogeneous materials with macroscopically or statistically heterogeneous
micro-structures at an appropriate scale [106] or a repeating cell unit (RUC) which char-
acterizes periodic heterogeneous materials . These two concepts are based on different ge-
ometric representations of heterogeneous micro-structures and require different boundary
conditions in the micro-mechanical analysis of the smallest material sub-volume whose
response is indistinguishable from that of the material-at-large. In particular, micro-
mechanical analysis of an RVE is based on the equivalence of homogeneous traction and
displacement boundary conditions, which in fact defines the RVE concept, while micro-
mechanical analysis of an RUC is based on combined periodic displacement and traction
boundary conditions [107].

The RVE and RUC concepts have been re-examined recently in greater deal by several
investigators [108], [109], [110], [111]. It has been assumed in [138] that all effective
characteristics and global behaviour of the composite are similar to those of the RVE.
Hence, special care should be taken to select the correct RVE and to apply the correct
boundary conditions to model the real loading conditions on the composite.

However in this PhD Thesis the problem of composite homogenization is not performed
because the purpose of this work is to show that it is possible to obtain and compare some
numerical application to inhomogeneous problems.

Static analysis of a square plate with a square inclusion

Considering the simple case of a square plate with a square inclusion at its center under
uniform distributed forces at its right edge and clamped on the left side (see Figure 3.21).
The plate and its inclusion posses different material properties, but the two parts are
bonded firmly to each other.

According to the material and geometric discontinuity, the analysis domain can be
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a)

b)

Figure 3.22: Displacements on a square plate with a square inclusion at y = L/2: a) ux.
b) uy.
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a)

b)

c)

Figure 3.23: Stresses on a square plate with a square inclusion at y = L/2: a) σx. b) σy.
c) τxy.
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N σxA σyA uxB · 106 uyB · 106 σxC

7× 7 38.5153 -6.9317 19.7554 -3.6159 100.0000
9× 9 38.3985 -7.0648 19.7935 -3.6468 100.0000
11× 11 38.3530 -7.1166 19.8141 -3.6722 100.0000
13× 13 38.3300 -7.1423 19.8268 -3.6909 100.0000
15× 15 38.3166 -7.1572 19.8353 -3.7049 100.0000
21× 21 38.2980 -7.1775 19.8492 -3.7303 100.0000
Abaqus 38.2677 -7.2084 19.8945 -3.74357 99.8991

Table 3.11: Convergence of the GDQFEM results for the square plate with a square
inclusion

divided into regular sub-domains. The material constants for the plate are E1 = 3 · 107
N/m2, ν1 = 0.3, whereas for the inclusion E2 = 3 · 106 N/m2, ν2 = 0.25. The problem has
been solved for the plain stress case considering L = 4 m, q = 100 N. In order to transform
the nine elements in the physical coordinates into the normalized natural coordinates -
1 ≤ ξ, η ≤ 1 by 8-node quadratic sub-domain the mapping technique has been used.
However the same problem could have been solved without coordinate transformation due
to the fact that all the elements have a regular shape (rectangular), without achieving any
computational error, as reported in [11]. Furthermore the numerical solution is compared
to a finite element solution obtained with commercial FE program (Abaqus). For the
analysis a 4× 4 regular square element mesh has been used, within a 21× 21 grid points
per element.

In Figures 3.22-3.23 a horizontal section has been done at y = L/2 for displaying the
stresses along the x axis. It is noted that the results in terms of stresses and displacements
are in excellent agreement with those obtained by FE analysis. Moreover it is noted that
the displacements are continuous but not smooth through the material interface. In fact
a sharp turning point at the interface exists for the displacements, in other words the
derivative of the displacements are not equal on the left and on the right side of the
material discontinuity. On the other hand as illustrated in Figures 3.23 the normal stress
σx and the shear stress τxy are continuous at the interface as compatibility conditions
have enforced, whereas the normal stress σy clearly experiences a finite jump at the nodes
upon the interface. It should be noted that the normal stress σy discontinuity can be
clearly captured by GDQFEM, in fact the stress distribution around before and after the
interface is smoother than the FE solution obtained by Abaqus. As a result the multi-
domain DQ results to be first order accurate at the discontinuity due to the imposition
of the compatibility conditions between adjacent elements.

For the sake of completeness and to further investigate the converge of the GDQFEM
numerical solution, the results at some selected nodes are summarized in Table 3.11 with
different grid sizes. The reference points A, B and C are shown in Figure 3.21. It is
noted from Table 3.11 that the results have a very fast convergence as the grid number
increases.

Static analysis of a square plate with a circular inclusion

A square plate with a circular inclusion subjected to uniform distributed forces at its upper
edge is shown in Figure 3.24. According to the material and geometric discontinuity
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Figure 3.24: Square plate with a circular inclusion.

the physical problem is decomposed into twelve GDQFEM elements. All the material
parameters are taken from the previous example, in which the material constant with the
subscript 1 are given to the plate and the constants with the subscript 2 are related to
the inclusion, nevertheless in this case L = 5 m. A plane stress simulation is performed
also in this case.

It should be noted that, as it has been shown in the previous chapter, in order to
capture an accurate solution in curved boundaries two ways can be chosen: on one hand
a 12-node element can be used for the computation, on the other hand using an higher
number of 8-node elements can be employed in the mesh in order to obtain the same
numerical accuracy. For the sake of simplicity in this case four 8-node elements have been
defined for modelling the inclusion.

A 21×21 grid point per element is used. The displacements ux and uy are reported in
Figures 3.25,3.26, respectively. Figures 3.26 depict the stresses comparison with Abaqus.
The two numerical solutions are very closed to each other, indicating the very good
convergence rate that can be achieve with this methodology. In fact very few number
of elements have been used compared to the FE solution. Once again Figures 3.25 show
that a turning point occurs at the interface in the displacement plots and a finite jump is
related to normal stresses σx and σy. Furthermore the tip stress is captured and smoother
than the FE numerical results.

In Table 3.12 the numerical results at the points A and B are reported. The solution
is given as a function of several grid points number, nevertheless an accurate solutions is
reached with a few number of grid points.

Static analysis of a cantilever beam with elastic inclusion

A cantilever beam composed of two elastic materials is considered and depicted in Figure
3.27. The beam is composed of an elastic and homogeneous material of Young’s modulus
E = 2 · 107 Pa and Poisson’s ratio ν = 0.3. The beam is L = 4 m long and D = 1
m high, clamped on the left edge and a vertical force of P = 1 kN is applied on the
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a)

b)

Figure 3.25: Displacements on a square plate with a circular inclusion: a) ux at x axis.
b) uy at y axis.

N σxA σyA uyB · 106 σyB

7× 7 -6.6406 33.3275 32.1107 100.0000
9× 9 -6.5731 33.2575 32.0298 100.0000
11× 11 -6.5719 33.2453 32.0189 100.0000
13× 13 -6.5746 33.2422 32.0174 100.0000
15× 15 -6.5771 33.2411 32.0174 100.0000
21× 21 -6.5813 33.2403 32.0181 100.0000
Abaqus -6.5856 33.2365 32.0232 99.6211

Table 3.12: Results of a square plate with a circular inclusion
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a)

b)

Figure 3.26: Stresses on a square plate with a circular inclusion along y axis: a) σx. b)
σy.
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Figure 3.27: Cantilever beam problem: geometry and boundary conditions.

ABAQUS
ne = 16 ne = 16
N = 11 N = 21

tip displ ·10−2 1.2272 1.2371 1.2364

Table 3.13: Maximum tip displacement comparison between GDQFEM solution and FE
solution.

right edge. The inclusion is a circular elastic one, with radius R = 0.4 m, located at its
center with L1 = 2.11 m and D1 = 0.5 m with an Elastic modulus of E = 2 · 1010 Pa
and Poisson’s ratio of ν = 0.3. Since the exact solution is not available a FE reference
solution has been calculated. The geometric description is taken from the work [137], in
which several composite plane structures are studied. The tip displacement of the beam
under consideration is reported in Table 3.13

The GDQFEM mesh used in the computation is composed of ne = 16 with variable
number of grid points per element. The mesh used in the computation is reported in
Figure 3.28a. Moreover in order to underline the composite nature of this example the
Von-Mises stress map is graphically presented in Figure 3.28b, in which a finite stress
jump can be noticed between the beam and its inclusion.

In conclusion two stress recoveries along three different cross sections are depicted in
Figures 3.29-3.30. The three sections are taken at x = 1.71 m, x = 2.11 m and x = 2.51
m, which are the section at immediate left hand of the inclusion, the sections that is at the
middle of the inclusion and the last one is on the right hand of the inclusion, respectively.
In the stress recovery the numerical GDQFEM solution is compared with a FE analysis
obtained with Abaqus. It is noted from Figure 3.29b that there is an abrupt stress jump
between the inclusion and the matrix due to the Young’s Modulus difference between the
two materials. In addition the same jump is related to a slope change of shear stress
profile in Figure 3.30.
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a)

b)

Figure 3.28: Cantilever composite beam with elastic inclusion: a) GDQFEM mesh; b)
Mises contour plot and deformed shape.
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a)

b)

c)

Figure 3.29: Normal stress σx distribution though three sections along the beam length
and compared with FE solution: a) x = 1.71 m; b) x = 2.11 m; c) x = 2.51 m.
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a)

b)

c)

Figure 3.30: Shear stress τxy distribution though three sections along the beam length
and compared with FE solution: a) x = 1.71 m; b) x = 2.11 m; c) x = 2.51 m.
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D L

σ

BA

a) b)

Figure 3.31: Square plate with a centred circular hole subjected to tension σ: a) Geometric
representation; b) GDQFEM mesh.

3.6.11 Plate with circular hole

In the following section the classic example of a plate with a circular hole under tension is
considered. In Figure 3.31a the geometry of the problem under consideration is depicted.
The geometric parameters are the side of the plate L = 5 m, the diameter of the hole
D that is variable and the tension σ = 100 Pa. The elastic constants of the material
are Young’s modulus E = 3 · 107 Pa and Poisson’s ratio ν = 0.3. The numerical results
obtained with this geometry are compared to a FE analysis performed with Abaqus for
several ratios χ = D/L. In Figure 3.32 four different solutions in term of the internal
stress σy are represented. The solution in terms of stress captures well the tip stress for
every ratio χ and the stress distribution is smooth all over the x axis even though for
χ = 0.05 and χ = 0.1 two elements have been used in the computation. For the sake of
completeness a GDQFEM mesh and a FE mesh is depicted in Figure 3.31b in order to
show how simple the geometry mapping is respect to a FE analysis.

When the ratios χ = 0.5 and χ = 0.25 only eight elements have been used in the
computation with a N = M = 21 grid points, otherwise for the other two cases sixteen
elements have been used within N = M = 15 grid points. The grid point distribution for
all the cases is a Chebyshev-Gauss-Lobatto one.

It can be notices, from Figure 3.32, that when the plate side is four times greater than
the circle diameter the vertical stress σy tends to the value of the applied stress σ = 100
Pa. The x axis used in Figure 3.32 is indicated in Figure 3.31a within the two letters A
and B.

3.6.12 Plate with hollow elastic inclusion

In the following example an hollow elastic inclusion is examined, in order to show how an
elastic inclusion immersed into a softer matrix within a circular hole can be treated. The
sample geometry is presented in Figure 3.33 where the side of the plate is L = 5 m, the
outer radius R1 = 1.5625 m and the inner radius R2 = 1.25 m the external load is equal
to the previous case σ = 100 Pa. The two material which constitute the plate are a soft
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Figure 3.32: Stress profile of a square plate with a centred circular hole subjected to
tension σ = 100 Pa.

Figure 3.33: Square plate with a centred hollow inclusion subjected to tension σ.

matrix of Em = 3 · 106 Pa and a Poisson’s ratio νm = 0.25, whereas the fibre is made of a
harder material with Ei = 3 · 107 Pa and νi = 0.3.

In Figure 3.34 the stress profile between the points A and B is depicted. It is noted
that there is an abrupt jump at the material interface due to the difference in the elastic
modulus. Figure 3.34 shows two groups of curves. The single dashed curve represents
the homogeneous case in which only the matrix is present, and it is clear that there is a
stress tip due to the circular hole but the stress profile is smooth from the tip A to the
right edge of the plate B. Whereas the other two curves represent the matrix with the
hollow inclusion obtained with a FE analysis and the GDQFEM. It is noted that even
the bi-material case is in very good agreement respect to the homogeneous solution.

N. Fantuzzi PhD Thesis



Chapter 3. Composite Plane Structures with Discontinuities 125

Figure 3.34: Stress profile of a square plate with a centred circular hollow inclusion
subjected to tension σ = 100 Pa.
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Figure 3.35: Geometric representation of an elliptic soft core arch with holes.

f [Hz] Abaqus N = 9 N = 11 N = 13
1 25.2318 25.2320 25.2691 25.2757
2 31.0079 31.8934 31.5975 31.4676
3 45.6878 45.9543 45.8373 45.8205
4 46.5109 47.9696 47.4468 47.1375
5 56.1484 57.5597 57.1569 56.8099
6 65.019 65.3243 65.2754 65.2259
7 70.9465 71.0756 70.9368 70.9230
8 74.8534 75.7430 75.4100 75.1430
9 87.995 88.2576 88.2303 88.2124
10 91.3028 91.5527 91.6743 91.6779

Table 3.14: First ten frequencies of an hollow soft core elliptic arch.

3.6.13 Free vibration of an elliptic soft core arch with holes

In this last section the free vibrations of a composite soft core elliptic arch with elliptic
holes is considered. Due to the complexity of this geometry the geometry is graphically
presented in Figure 3.35, where the top and bottom layers of a stronger material are
indicated with a different colour respect to the soft core. The dimensions of the outer
ellipse are a1 = 10 m, b1 = 5 m, whereas the inner ellipse is defined by a2 = 5 m, b2 = 2.5
m. The structure has a vertical symmetry where the inner and outer radii of curvature
are not constant.

The mechanical properties of the top and bottom sheets are Es = 3 · 109 Pa and
νs = 0.3, whereas the soft core has an elastic modulus Ec = 3 ·107 Pa and νc = 0.25. Since
a dynamic analysis is considered the density of the two materials are needed ρs = 1000
kg/m3 and ρc = 500 kg/m3.

It can be noticed that the frequencies are in very good agreement with the Abaqus
solution as reported in Table 3.14. Furthermore the first four modal shapes of this complex
structure are depicted in Figure 3.36. From Figure 3.36 is clear that the structure has
a soft core because in any modal shape there is an independent movement of the core
respect to the rest of the structure.
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1st mode 2nd mode

3rd mode 4th mode

Figure 3.36: First four modal shapes for an elliptic soft core arch with holes.
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Chapter 4

Arbitrarily Shaped Composite Cracked

Plates

Sommario

Secondo la meccanica del continuo, le teorie delle piastre rappresentano la descrizione ma-
tematica della meccanica delle piastre piane. Le piastre sono strutture con uno spessore
relativamente sottile rispetto alle dimensioni nel piano della struttura (ovvero strutture
con rapporto tipico tra spessore e lato più corto pari a circa h/L < 0.1). Nel seguente ca-
pitolo la teoria classica del primo ordine delle piastre piane (FSDT) [10, 17, 41] è applicata
utilizzando la tecnica GDQFEM a piastre composite e fessurate di forma generica.

Tutti gli esempi numerici sono incentrati sulle vibrazioni libere delle piastre suddette
facendo uso di condizioni al contorno omogenee e non omogenee. Per quanto riguarda
il materiale, si sono utilizzati materiali isotropi ma anche compositi laminati sfruttando
la teoria del Singolo Strato Equivalente (ESL), riducendo cioè tutte le lamine ad una
singola lamina equivalente in corrispondenza del piano medio della struttura. Tutti i
risultati sono stati confrontati con una soluzione numerica ad FE e si è osservata un’ottima
corrispondenza tra le due soluzioni, mostrando quindi la versatilità e la flessibilità della
tecnica GDQFEM rispetto alle tecniche classiche ormai consolidate della letteratura.

Nei paragrafi seguenti, vengono inizialmente introdotte le equazioni governanti il pro-
blema, seguendo lo schema delle teorie fisiche. Quindi partendo dall’ipotesi cinematica si
scrivono le caratterstiche di defomazione. Successivamente, tramite l’equilibrio del concio
elementare, si ottengono le equazioni indefinite di equilibrio in regime statico che posso-
no essere generalizzate al moto forzato aggiungendo le forze d’inerzia; in alternativa le
equazioni del moto forzato possono ottenere tramite il principio di Hamilton. Dato che
il materiale oggetto di studio è considerato omogeneo ed elastico, si introducono le leggi
costitutive valide per i materiali laminati, composti da lamine isotrope o ortotrope nel loro
piano. Infine sostituendo le equazioni di congruenza nel legame elastico e il risultato nelle
equazioni del moto si ottengono le equazioni fondamentali in termini di spostamenti. In
generale per una piastra laminata, con schema di laminazione generico, le equazioni sono
cinque e si ha che gli spostamenti nel piano sono accoppiati a quelli fuori piano, grazie
alla matrice di accoppiamento B. Considerando invece un materiale composto da una
singola lamina isotropa, il sistema fondamentale risulta disaccoppiato e quindi è possibile
risolvere un sistema in tre equazioni e tre incognite, nel puro caso flessionale.

Infine si riportano le applicazioni numeriche relative a piastre isotrope, ortotrope e
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fessurate con varie condizioni al contorno e con discontinuità di natura geometrica. Tutti
i risultati numerici sono avvalorati da confronti con la letteratura e con modellazioni ad
elementi finiti.
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4.1 Introduction

In continuum mechanics, plate theories are mathematical descriptions of the mechanics
of flat plates. Plates are defined as plane structural elements with a small thickness
compared to the planar dimensions [4, 5]. The typical thickness to width ratio of a plate
structure is less than h/L < 0.1. A plate theory takes advantage of this disparity in length
scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional
problem. The aim of plate theory is to calculate the deformation and stresses in a plate
subjected to in plane and out of plane loads. Of the numerous plate theories that have been
developed since the late 19th century, two are widely accepted and used in engineering.
These are the Kirchhoff-Love (KL) theory of plates, Classical Plate Theory (CPT) and
the Reissner-Mindlin (RM) theory of plates, First-order Shear Deformation plate Theory
(FSDT).

The RM theory of plates is an extension of KL plate theory that takes into account
shear deformations through-the-thickness of a plate. The theory was proposed by Mindlin
[141]. A similar, but not identical, theory had been proposed earlier by Reissner [140].
Both theories are intended for thick plates in which the normal to the mid-surface remains
straight but not necessarily perpendicular to the mid-surface.

The form of RM plate theory that is most commonly used is actually due to Mindlin
and is more properly called Mindlin plate theory [142]. The Reissner theory is slightly
different. Both theories include in-plane shear strains and both are extensions of KL plate
theory incorporating first-order shear effects. Mindlin’s theory assumes that there is a
linear variation of displacement across the plate thickness and but that the plate thickness
does not change during deformation. This implies that the normal stress through the
thickness is ignored; an assumption which is also called the plane stress condition. On the
other hand, Reissner’s theory assumes that the bending stress is linear while the shear
stress is quadratic through the thickness of the plate. This leads to a situation where the
displacement through-the-thickness is not necessarily linear and where the plate thickness
may change during deformation. Therefore, Reissner’s theory does not invoke the plane
stress condition. The RM theory is often called the First-order Shear Deformation Theory
(FSDT) of plates. Since a FSDT implies a linear displacement variation through the
thickness, it is incompatible with Reissner’s plate theory.

The Reissner-Mindlin rectangular plate problem is one of the most studied engineering
problem over the last years ‘citeTimWoi, Szilard, Reddypl, Leissa, Reis, Mind, WangLim-
ReddyLee, Leissacrk1, Leissacrk2, Leissacrk3, Leissacrk4. In recent years the problem of
composite rectangular plates has been widely investigated [4–6, 14, 140–146].

In this chapter the problem of Reissner-Mindlin (RM) flat plates is considered. As
considered in the previous chapters, at first the flat plate formulation is presented for the
general case. The generic thick plate is a composite anisotropic one in which the middle
surface is the mathematical surface for the computation.

The Generalized Differential Quadrature Finite Element formulation will be shown in
the following considering not only regular geometries but also complex plates with holes
and arbitrary shape.
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4.2 Theoretical equations

The shape of a plate is adequately defined by describing the geometry of its middle surface,
which is a surface that bisects the plate thickness h at each point. The FSDT of plates was
originally derived for isotropic plates using equilibrium considerations. A more general
version of the theory based on energy considerations is discussed in [6]. In the following
section the general framework of FSDT plates will be shown for FGM thick plates.

4.2.1 Displacement field

The RM hypothesis implies that the displacement field have the form

U(x, y, z) = ux(x, y) + zβx(x, y)

V (x, y, z) = uy(x, y) + zβy(x, y)

W (x, y, z) = w(x, y)

(4.1)

where x and y are the Cartesian coordinates on the mid-surface of the undeformed
plate and z is the coordinate for the thickness direction, u, v are the in-plane displacements
of the mid-surface, w is the displacement of the mid-surface in the z direction, β1 and β2

designate the angles which the normal to the mid-surface makes with the z axis. Unlike
KL plate theory where are directly related to w, RM theory requires that β1 �= ∂w

∂x
and

β2 �= ∂w
∂y

.
As a result the theory under consideration has five degrees of freedom. It is noted

that in literature can be found the RM theory within three displacement parameters only.
Because some researchers prefer to uncouple the membrane deformation from the flexural
ones, and that can be done if and only if in general the material is elastic homogeneous
and isotropic or for some anisotropic cases. However in this PhD Thesis the general case
of anisotropic Equivalent Single Layer (ESL) RM plate is considered, so all the parameters
must be considered in the theoretical formulation.

4.2.2 Strain-displacement relations

The membrane and flexural strains are

ε0x =
∂ux

∂x
, ε0y =

∂uy

∂y
, γ0

xy =
∂uy

∂x
+

∂ux

∂y

kx =
∂βx

∂x
, ky =

∂βy

∂y
, kxy =

∂βy

∂x
+

∂βx

∂y

γxz = βx +
∂w

∂x
, γyz = βy +

∂w

∂y

(4.2)

where ε0x, ε
0
y and γ0

xy are the in plate deformation for normal and shear respectively, kx, ky
and kxy are the plate curvatures, finally γx and γy are the out of plane shear deformations
of the plate.

N. Fantuzzi PhD Thesis



Chapter 4. Arbitrarily Shaped Composite Cracked Plates 133

4.2.3 Equilibrium equations

The equilibrium equations of a RM plate for small strains and small rotations have the
form

∂Nx

∂x
+

∂Nxy

∂y
+ px = I0üx + I1β̈x

∂Nxy

∂x
+

∂Ny

∂y
+ py = I0üy + I1β̈y

∂Tx

∂x
+

∂Ty

∂y
+ pz = I0ẅ

∂Mx

∂x
+

∂Mxy

∂y
− Tx +mx = I1üx + I2β̈x

∂Mxy

∂x
+

∂My

∂y
− Ty +my = I1üy + I2β̈y

(4.3)

where Nx, Ny and Nxy are the in plane stresses, Tx, Ty are the shear forces, Mx, My the
bending moments and Mxy is the torque. Moreover px, py are the in plane loads, pz is the
out of plate load and finally mx, my the distributed bending moments. Furthermore the
inertias are indicated by I0, I1 and I2.

It is noted that from (4.3) it is possible to study the static and dynamic case of flat
RM plates. If the static analysis is considered the inertia forces are equal to zero Ii = 0
for i = 0, 1, 2, whereas if the free vibration of a plate has to be known so the domain
loading are taken equal to zero px = py = pz = mx = my = 0.

In order to obtain the fundamental system of equations valid for the static and dynamic
behaviour of RM flat plates the constitutive relations have to be introduced. In particular
these are found starting from the 3D stress tensor valid under the RM plate hypotheses.

4.2.4 Constitutive equations

Beyond the classic RM hypotheses for the study of thick laminated plates some other
statements have to be added. In fact these new hypotheses are related to the mechanical
behaviour of laminated composites structures. They are called perfect bonding between
layers also [4, 6, 10].

1. The bonding itself is infinitesimally small (there is no flaw or gap between layers).

2. The bonding is non-shear-deformable (no lamina can slip relative to another).

3. The strength of bonding is as strong as it needs to be (the laminate acts as a single
lamina with special integrated properties).

4. The shear stresses at the top and the bottom of the plate are equal to the top and
bottom shear load application.

The last hypothesis derives from the fact that the starting 3D problem becomes a plane
model, defined upon the middle surface of the plate. Following the starting hypotheses of
the FSDT the normal strain εn and the normal stress σn are negligible. So the Hooke’s
law can be written for a generic anisotropic lamina as follows
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⎡
⎣ σ̂x

σ̂y

τ̂xy

⎤
⎦
(k)

=

⎡
⎣C11 C12 C16

C12 C22 C26

C16 C26 C66

⎤
⎦

(k) ⎡
⎣ ε̂x
ε̂y
γ̂xy

⎤
⎦
(k)

σ̂(k)
n = 0[

τ̂xz
τ̂yz

](k)
=

[
C44 C45

C45 C55

](k) [
γ̂xz
γ̂yz

](k)
(4.4)

where σx, σy, σn are the three normal stresses along the three dimensional material refer-
ence system, the corresponding strains are εx, εy, εz. Whereas the shear stresses are τxy,
τxz, τyz and the corresponding strains are γxy, γxz and γyz. The hat symbol ˆ represents
the fact that all the stresses of equation (4.4) are written in the material reference system
that in general has a generic angle θ with the geometric reference system. When the
generic lamina is orthotropic the relations (4.4) become

⎡
⎣ σ̂x

σ̂y

τ̂xy

⎤
⎦

(k)

=

⎡
⎣Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎦
(k) ⎡
⎣ ε̂x
ε̂y
γ̂xy

⎤
⎦

(k)

σ̂(k)
n = 0[

τ̂xz
τ̂yz

](k)
=

[
Q44 Q45

Q45 Q55

](k) [
γ̂xz
γ̂yz

](k)
(4.5)

where Q
(k)
ij are the generic lamina material constants that are defined as follows

Q
(k)
11 =

E
(k)
1

1− ν
(k)
12 ν

(k)
21

, Q
(k)
22 =

E
(k)
2

1− ν
(k)
12 ν

(k)
21

, Q
(k)
12 =

ν
(k)
12 E

(k)
2

1− ν
(k)
12 ν

(k)
21

Q
(k)
66 = G

(k)
12 , Q

(k)
44 = G

(k)
13 , Q

(k)
55 = G

(k)
23

(4.6)

Since each lamina of the stacking sequence can have its orientation θ. The constitutive
equations for each lamina must be transformed into problem coordinate system. For the
generic lamina k the stress components are

⎡
⎣σx

σy

τxy

⎤
⎦

(k)

=

⎡
⎣Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎦
(k) ⎡
⎣ εx
εy
γxy

⎤
⎦

(k)

σ(k)
n = 0[

τxz
τyz

](k)
=

[
Q̄44 Q̄45

Q̄45 Q̄55

](k) [
γxz
γyz

](k)
(4.7)

in order to obtain the stresses in the global coordinate system (4.7) the Q̄
(k)
ij transforma-

tions are needed [10].
In case the generic lamina is isotropic or inhomogeneous along the thickness (func-

tionally graded lamina) the stiffness constants are
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Q
(k)
11 = Q

(k)
22 =

E(k)

1− (ν(k))
2 , Q

(k)
12 =

ν(k)E(k)

1− (ν(k))
2 , Q

(k)
66 = Q

(k)
44 = Q

(k)
55 = G(k) (4.8)

4.2.5 Internal stresses

The internal stress characteristics acting on the generic plate element are function of x, y
since they represent the integration along the thickness of the stress components. In this
way the original 3D problem is highly simplified because the unknown displacements are
function of x and y only. The stress components can be recovered afterwards once the
solution in terms of displacements is found from the fundamental system of equations.
The recovery procedure can be done most of the times by using numerical procedures
because of the complexity of the 3D stress equilibrium equations.

As far as the internal stresses are concerned several integrations along the thickness
must be performed. For the present case the stress components can be written as a
function of the strain on the middle surface as

σ(k)
x = Q̄

(k)
11

(
ε0x + ζχx

)
+ Q̄

(k)
12

(
ε0y + ζχy

)
+ Q̄

(k)
16

(
γ0
xy + ζχxy

)
σ(k)
y = Q̄

(k)
12

(
ε0x + ζχx

)
+ Q̄

(k)
22

(
ε0y + ζχy

)
+ Q̄

(k)
26

(
γ0
xy + ζχxy

)
σ(k)
n = 0

τ (k)xy = Q̄
(k)
16

(
ε0x + ζχx

)
+ Q̄

(k)
26

(
ε0y + ζχy

)
+ Q̄

(k)
66

(
γ0
xy + ζχxy

)
τ (k)xz = κ

(
Q̄

(k)
44 γxz + Q̄

(k)
45 γyz

)
τ (k)yz = κ

(
Q̄

(k)
45 γxz + Q̄

(k)
55 γyz

)
(4.9)

It must be noted that the shear stresses τxz, τyz associated to the two sliding strains γxz,
γyz are defined with a shear correction factor κ, due to the RM original hypotheses. The
shear correction factor takes into account the fact that the shear stresses are not constant
along the thickness but they have a parabolic shape distribution. For thick shells the
shear correction factor is assumed to be equal to κ = 5/6.

The stress resultants introduced in the equilibrium equations (4.3) are defined as the
integral of the stress components along the plate thickness. Since a generic flat plate can
be composed of several laminae l, the stress resultants are defined as

Nx(x, y) =

l∑
k=1

∫ ζk+1

ζk

σx(x, y, ζ)dζ (4.10)

Ny(x, y) =

l∑
k=1

∫ ζk+1

ζk

σy(x, y, ζ)dζ (4.11)

Nxy(x, y) =
l∑

k=1

∫ ζk+1

ζk

τxy(x, y, ζ)dζ (4.12)

Mx(x, y) =
l∑

k=1

∫ ζk+1

ζk

ζσx(x, y, ζ)dζ (4.13)
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My(x, y) =
l∑

k=1

∫ ζk+1

ζk

ζσy(x, y, ζ)dζ (4.14)

Mxy(x, y) =
l∑

k=1

∫ ζk+1

ζk

ζτxy(x, y, ζ)dζ (4.15)

Tx(x, y) =
l∑

k=1

∫ ζk+1

ζk

τxz(x, y, ζ)dζ (4.16)

Ty(x, y) =
l∑

k=1

∫ ζk+1

ζk

τyz(x, y, ζ)dζ (4.17)

Substituting the stress components into the internal stresses

⎡
⎣Nx

Ny

Nxy

⎤
⎦ =

l∑
k=1

∫ ζk+1

ζk

⎡
⎢⎣Q̄

(k)
11 Q̄

(k)
12 Q̄

(k)
16

Q̄
(k)
12 Q̄

(k)
22 Q̄

(k)
26

Q̄
(k)
16 Q̄

(k)
26 Q̄

(k)
66

⎤
⎥⎦
⎡
⎣ ε0x + ζχx

ε0y + ζχy

γ0
xy + ζχxy

⎤
⎦ dζ

⎡
⎣Mx

My

Mxy

⎤
⎦ =

l∑
k=1

∫ ζk+1

ζk

⎡
⎢⎣Q̄

(k)
11 Q̄

(k)
12 Q̄

(k)
16

Q̄
(k)
12 Q̄

(k)
22 Q̄

(k)
26

Q̄
(k)
16 Q̄

(k)
26 Q̄

(k)
66

⎤
⎥⎦
⎡
⎣ ε0x + ζχx

ε0y + ζχy

γ0
xy + ζχxy

⎤
⎦ ζdζ

[
Tx

Ty

]
= κ

l∑
k=1

∫ ζk+1

ζk

[
Q̄

(k)
44 Q̄

(k)
45

Q̄
(k)
45 Q̄

(k)
55

] [
γxz
γyz

]
dζ

(4.18)

Introducing the matrices A, B, D usually indicated in literature as membrane stiffness
matrix, mixed stiffness matrix and flexural stiffness matrix. So the (4.18) can be written
in matrix form as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nx

Ny

Nxy

Mx

My

Mxy

Tx

Ty

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 κA44 κA45

0 0 0 0 0 0 κA45 κA55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0x
ε0y
γ0
xy

χx

χy

χxy

γxz
γyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

It must be underlined that the mixed stiffness matrix B couples the in-plane membrane
stresses with the flexural bending moments. So if B = 0 the in-plane equations are
uncoupled with the bending equations and the fundamental system of equations can be
split into two independent set of equations. In addition the stiffness matrices components
depend on the elastic coefficients Q̄

(k)
ij and they are defined as

Aij =
l∑

k=1

∫ ζk+1

ζk

Q̄
(k)
ij dζ, Bij =

l∑
k=1

∫ ζk+1

ζk

Q̄
(k)
ij ζdζ, Dij =

l∑
k=1

∫ ζk+1

ζk

Q̄
(k)
ij ζ2dζ (4.20)
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4.2.6 Fundamental equations

Using all the previous relationships from the kinematic and static definitions for RM flat
plates the fundamental system of equations can be found

First fundamental equation(
A11

∂2

∂x2
+ A66

∂2

∂y2
+ 2A16

∂2

∂x∂y

)
ux+

+

(
A16

∂2

∂x2
+ A26

∂2

∂y2
+ (A12 + A66)

∂2

∂x∂y

)
uy+

+

(
B11

∂2

∂x2
+B66

∂2

∂y2
+ 2B16

∂2

∂x∂y

)
βx+

+

(
B16

∂2

∂x2
+B26

∂2

∂y2
+ (B12 +B66)

∂2

∂x∂y

)
βy + px = I0üx + I1β̈x

(4.21)

Second fundamental equation(
A16

∂2

∂x2
+ A26

∂2

∂y2
+ (A12 + A66)

∂2

∂x∂y

)
ux+

+

(
A66

∂2

∂x2
+ A22

∂2

∂y2
+ 2A26

∂2

∂x∂y

)
uy+

+

(
B16

∂2

∂x2
+B26

∂2

∂y2
+ (B12 +B66)

∂2

∂x∂y

)
βx+

+

(
B66

∂2

∂x2
+B22

∂2

∂y2
+ 2B26

∂2

∂x∂y

)
βy + py = I0üy + I1β̈y

(4.22)

Third fundamental equation(
κA44

∂2

∂x2
+ κA55

∂2

∂y2
+ 2κA45

∂2

∂x∂y

)
w+

+

(
κA44

∂

∂x
+ κA45

∂

∂y

)
βx +

(
κA45

∂

∂x
+ κA55

∂

∂y

)
βy + pn = I0ẅ

(4.23)

Fourth fundamental equation(
B11

∂2

∂x2
+B66

∂2

∂y2
+ 2B16

∂2

∂x∂y

)
ux+

+

(
B16

∂2

∂x2
+B26

∂2

∂y2
+ (B12 +B66)

∂2

∂x∂y

)
uy+

−
(
κA44

∂

∂x
+ κA45

∂

∂y

)
w+

+

(
D11

∂2

∂x2
+D66

∂2

∂y2
+ 2D16

∂2

∂x∂y
− κA44

)
βx+

+

(
D16

∂2

∂x2
+D26

∂2

∂y2
+ (D12 +D66)

∂2

∂x∂y
− κA45

)
βy +mx = I1üx + I2β̈x

(4.24)
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Fifth fundamental equation(
B16

∂2

∂x2
+B26

∂2

∂y2
+ (B12 +B66)

∂2

∂x∂y

)
ux+

+

(
B66

∂2

∂x2
+B22

∂2

∂y2
+ 2B26

∂2

∂x∂y

)
uy+

−
(
κA45

∂

∂x
+ κA55

∂

∂y

)
w+

+

(
D16

∂2

∂x2
+D26

∂2

∂y2
+ (D12 +D66)

∂2

∂x∂y
− κA45

)
βx+

+

(
D66

∂2

∂x2
+D22

∂2

∂y2
+ 2D26

∂2

∂x∂y
− κA55

)
βy +my = I1üy + I2β̈y

(4.25)

the five equations written above represent the fundamental system of equations for a RM
rectangular plate composed of a generic anisotropic material for the static and dynamic
case.

4.3 Isotropic case

In case of isotropic rectangular plates the five fundamental equations can be separated
into the membrane problem and the flexural one. In particular the first two equations
represent the in plane displacements ux and uy of the plate and the other set of three
equations give the vertical displacement w and the two rotations βx and βy of the plate.
Furthermore some elastic coefficients can be neglected for the present case. In particular

A11 = A22 =
Eh

1− ν2
, A12 = νA11, A44 = A55 = A66 =

1− ν

2
A11

D11 = D22 =
Eh3

12(1− ν2)
, D12 = νD11, D44 = D55 = D66 =

1− ν

2
D11

A16 = A26 = A45 = 0, D16 = D26 = D45 = 0, Bij = 0

(4.26)

in the following the three flexural fundamental equations for the flat plates are presented

First flexural fundamental equation(
κA44

∂2

∂x2
+ κA55

∂2

∂y2

)
w +

(
κA44

∂

∂x

)
βx +

(
κA55

∂

∂y

)
βy + pn = I0ẅ (4.27)

Second flexural fundamental equation

−
(
κA44

∂

∂x

)
w +

(
D11

∂2

∂x2
+D66

∂2

∂y2
− κA44

)
βx+

+

(
(D12 +D66)

∂2

∂x∂y

)
βy +mx = I1üx + I2β̈x

(4.28)
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Third flexural fundamental equation

−
(
κA55

∂

∂y

)
w +

(
(D12 +D66)

∂2

∂x∂y

)
βx+

+

(
D66

∂2

∂x2
+D22

∂2

∂y2
− κA55

)
βy +my = I1üy + I2β̈y

(4.29)

4.4 Boundary conditions

In order to solve the static or the dynamic problem for a RM plate the boundary con-
ditions must be imposed. However, as it has already shown for the state plane case and
the membrane problem, the boundary conditions implementation for the RM plate are
different considering the outward normal of the given boundary. In particular two kinds
of boundary conditions have to be considered: the first kind is the external boundary
condition and the second kind is the inter-element compatibility condition or the inter-
nal boundary condition. Firstly the external boundary conditions for a single element
GDQ will be considered in the following. Secondly these conditions are extended for the
GDQFEM case using the composition of the normal and shear stresses given by the 3D
elasticity.

Starting off the internal stresses matrix form presented in (4.19), the same forces and
moments in terms of displacements can be written as

Nx =

(
A11

∂

∂x
+ A16

∂

∂y

)
ux +

(
A16

∂

∂x
+ A12

∂

∂y

)
uy+

+

(
B11

∂

∂x
+B16

∂

∂y

)
βx +

(
B16

∂

∂x
+B12

∂

∂y

)
βy

(4.30)

Ny =

(
A12

∂

∂x
+ A26

∂

∂y

)
ux +

(
A26

∂

∂x
+ A22

∂

∂y

)
uy+

+

(
B12

∂

∂x
+B26

∂

∂y

)
βx +

(
B26

∂

∂x
+B22

∂

∂y

)
βy

(4.31)

Nxy = Nyx =

(
A16

∂

∂x
+ A66

∂

∂y

)
ux +

(
A66

∂

∂x
+ A26

∂

∂y

)
uy+

+

(
B16

∂

∂x
+B66

∂

∂y

)
βx +

(
B66

∂

∂x
+B26

∂

∂y

)
βy

(4.32)

Mx =

(
B11

∂

∂x
+B16

∂

∂y

)
ux +

(
B16

∂

∂x
+B12

∂

∂y

)
uy+

+

(
D11

∂

∂x
+D16

∂

∂y

)
βx +

(
D16

∂

∂x
+D12

∂

∂y

)
βy

(4.33)

My =

(
B12

∂

∂x
+B26

∂

∂y

)
ux +

(
B26

∂

∂x
+B22

∂

∂y

)
uy+

+

(
D12

∂

∂x
+D26

∂

∂y

)
βx +

(
D26

∂

∂x
+D22

∂

∂y

)
βy

(4.34)
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Mxy = Myx =

(
B16

∂

∂x
+B66

∂

∂y

)
ux +

(
B66

∂

∂x
+B26

∂

∂y

)
uy+

+

(
D16

∂

∂x
+D66

∂

∂y

)
βx +

(
D66

∂

∂x
+D26

∂

∂y

)
βy

(4.35)

Tx = κ

(
A44

∂

∂x
+ A45

∂

∂y

)
w + κA44βx + κA45βy (4.36)

Ty = κ

(
A45

∂

∂x
+ A55

∂

∂y

)
w + κA45βx + κA55βy (4.37)

It must be noted that the external loadings of the rectangular element follow the
positive rule of the external forces (the sum of all the external forces must equilibrate the
infinitesimal element), whereas the external forces which are on the generic side of normal
n follow the direction of the n, s and z axis. The transformed stresses are defined on the
generic normal n as

Nn = Nxn
2
x +Nyn

2
y + 2Nxynxny

Nns = (Ny −Nx)nxny +Nxy

(
n2
x − n2

y

)
Tn = Txnx + Tyny

Mn = Mxn
2
x +Myn

2
y + 2Mxynxny

Mns = (My −Mx)nxny +Mxy

(
n2
x − n2

y

)
(4.38)

It must be noted that (4.38) are valid for external boundary conditions only. If the
inter-element compatibility conditions in terms of stresses have to be written the relation-
ships are quite different. For the sake of completeness they are reported in the following

Nn = Nxn
2
x +Nyn

2
y + 2Nxynxny

Nns = (Ny −Nx)nxny +Nxy

(
n2
x − n2

y

)
Tn = Tx (nx − ny)

2 + Ty (nx + ny)
2

Mn = Mxn
2
x +Myn

2
y + 2Mxynxny

Mns = (My −Mx)nxny +Mxy

(
n2
x − n2

y

)
(4.39)

comparing (4.39) to (4.38) only the shear forces relation is different, in fact changes the
projection of the shear force of one element respect to given outward normal.

In the following the external and internal boundary conditions (4.39), (4.38) are re-
ported in extended form as a function of the plate degrees of freedom. The membrane
stresses are
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Nn =

(
A11

∂ux

∂x
+ A16

∂ux

∂y

)
n2
x +

(
A12

∂ux

∂x
+ A26

∂ux

∂y

)
n2
y + 2

(
A16

∂ux

∂x
+ A66

∂ux

∂y

)
nxny+

+

(
A16

∂uy

∂x
+ A12

∂uy

∂y

)
n2
x +

(
A26

∂uy

∂x
+ A22

∂uy

∂y

)
n2
y + 2

(
A66

∂uy

∂x
+ A26

∂uy

∂y

)
nxny+

+

(
B11

∂βx

∂x
+B16

∂βx

∂y

)
n2
x +

(
B12

∂βx

∂x
+B26

∂βx

∂y

)
n2
y + 2

(
B16

∂βx

∂x
+B66

∂βx

∂y

)
nxny+

+

(
B16

∂βy

∂x
+B12

∂βy

∂y

)
n2
x +

(
B26

∂βy

∂x
+B22

∂βy

∂y

)
n2
y + 2

(
B66

∂βy

∂x
+B26

∂βy

∂y

)
nxny

(4.40)

Nns =

(
(A12 − A11)

∂ux

∂x
+ (A26 − A16)

∂ux

∂y

)
nxny +

(
A16

∂ux

∂x
+ A66

∂ux

∂y

)
(n2

x − n2
y)+

+

(
(A26 − A16)

∂uy

∂x
+ (A22 − A12)

∂uy

∂y

)
nxny +

(
A66

∂uy

∂x
+ A26

∂uy

∂y

)
(n2

x − n2
y)+

+

(
(B12 − B11)

∂βx

∂x
+ (B26 −B16)

∂βx

∂y

)
nxny +

(
B16

∂βx

∂x
+B66

∂βx

∂y

)
(n2

x − n2
y)+

+

(
(B26 − B16)

∂βy

∂x
+ (B22 −B12)

∂βy

∂y

)
nxny +

(
B66

∂βy

∂x
+B26

∂βy

∂y

)
(n2

x − n2
y)

(4.41)

The shear force valid for an external boundary condition

Tn = κ

((
A44nx + A45ny

)
∂

∂x
+

(
A45nx + A55ny

)
∂

∂y

)
w+

+ κ (A44nx + A45ny) βx + κ (A45nx + A55ny) βy

(4.42)

The shear force valid for an internal boundary condition

Tn = κ

((
A44 (nx − ny)

2 + A45 (nx + ny)
2

)
∂

∂x
+

+

(
A45 (nx − ny)

2 + A55 (nx + ny)
2

)
∂

∂y

)
w+

+ κ
(
A44 (nx − ny)

2 + A45 (nx + ny)
2)βx+

+ κ
(
A45 (nx − ny)

2 + A55 (nx + ny)
2)βy

(4.43)

In conclusion the bending moments are reported in the following
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(4.45)

For the boundary conditions implementations the same rules, introduced in the pre-
vious chapters, are introduced for RM flat plates. It must be noted that two different
kinds of boundary conditions are implemented in order to distinguish the external and
the internal boundary conditions.

4.5 Numerical applications

In this section several static and dynamic numerical applications will be shown in order
to demonstrate the accuracy and stability of GDQFEM applied to RM flat plates.

4.5.1 Free vibrations of a rectangular plate

As it has already been demonstrated in chapter 2, the free vibrations of a thin membrane
give the same results of a thin plate simply supported on all the edges. In the following
section it is shown that given the same geometry the same results can be reached. For
the sake of clarity the rectangular plate has got two sides of length a = 1.2 m, b = 0.9
m. Since an isotropic plate must be considered for the literature comparison only the
flexural RM problem is applied. This choice brings two computational advantages, firstly
the flexural modal shapes are separated from the membrane motions and secondly the
computational effort of the problem is highly reduced, because the system goes from five
differential equations to three only. Computationally speaking if N ×M grid points per
element are considered the total algebraic system effort is N ·M · ne · 3, where ne is the
total number of element of the problem under consideration.

N. Fantuzzi PhD Thesis



Chapter 4. Arbitrarily Shaped Composite Cracked Plates 143

f [Hz] Exact FEM
GDQFEM

N = 13 N = 15 N = 21 N = 31 N = 41
1 47.58 47.56 47.56 47.56 47.56 47.56 47.56
2 98.96 98.89 98.89 98.89 98.89 98.89 98.89
3 138.93 138.79 138.79 138.79 138.79 138.79 138.79
4 184.60 184.35 184.35 184.35 184.35 184.35 184.35
5 190.31 190.05 190.05 190.05 190.05 190.05 190.05
6 275.95 275.39 275.39 275.39 275.39 275.39 275.39
7 291.18 290.55 290.56 290.55 290.55 290.55 290.55
8 304.50 303.82 303.61 303.83 303.82 303.82 303.82
9 342.56 341.70 341.70 341.70 341.70 341.70 341.70
10 395.85 394.70 394.53 394.71 394.70 394.70 394.70

Table 4.1: First ten eigenfrequencies of a rectangular simply supported RM plate consid-
ering the flexural problem only.

In the present example a steel plate is considered with an elastic modulus E = 2.1·1011
Pa and a Poisson ratio ν = 0.3, the material density is ρ = 7800 kg/m3 and the uniform
plate thickness is equal to h = 0.01 m. So the slenderness ratio of the plate under
consideration is almost 1/100. In table 4.1 the first ten frequencies of a rectangular
plate considering only three degrees of freedom is reported. Furthermore the numerical
results are compared with the exact solution and a numerical solution obtain with a
commercial FE program. The GDQFEM numerical solutions are obtain within a C-G-L
grid distribution of grid points considering N = M so equal number of points along x and
y.

For the computational point of view it can be interested seen if the algorithm is stable
considering an irregular geometry. In the following example several distorted geometries
are shown in order to see the stability and accuracy of GDQFEM methodology. The
same example has been already performed for the membrane case, so the same geometric
sample is used. It can be seen from table 4.2 that if the mesh is distorted more points
per element are needed. In fact increasing the distortion, e.g. c < 0.5, the error increases
for higher natural frequencies. The error decreases passing from N = 13 to N = 21. For
the flexural problem of thin membranes presented in chapter 2 degenerate quadrilateral
element could be considered (c = 0.0), in the flexural RM plate can not be considered
instead because numerical issues occur. So the minimum value of the distortion parameter
is c = 0.1.

4.5.2 Free vibrations of a V-notched plate

In the present section the same geometry used in the membrane problems (Chapter 2) is
used for the FSDT computation. However in the present case mixed boundary conditions
are taken into account. In particular the v-notched part is let free and the other external
boundaries are once clamped and once simply supported. In Table 4.3 the first ten natural
frequencies obtained by GDQFEM are compared to FE solution. Furthermore the first
nine modal shapes are graphically presented for the simply supported case in Figure 4.1.

N. Fantuzzi PhD Thesis



144 Chapter 4. Arbitrarily Shaped Composite Cracked Plates

f [Hz] Exact
GDQFEM N = 13

0.5 0.4 0.3 0.2 0.1
1 47.58 47.85 49.04 50.84 51.27 49.79
2 98.96 98.89 98.82 98.61 98.32 98.41
3 138.93 138.71 138.53 138.36 138.26 138.33
4 184.60 184.38 184.35 184.65 185.01 184.86
5 190.31 190.14 191.52 195.80 197.55 193.46
6 275.95 275.36 275.39 275.24 274.52 274.92
7 291.18 290.97 292.79 295.97 296.49 293.56
8 304.50 303.82 303.79 303.82 303.71 303.77
9 342.56 341.70 341.50 340.91 340.23 340.62
10 395.85 394.81 395.19 394.69 397.71 400.46

f [Hz] Exact
GDQFEM N = 21

0.5 0.4 0.3 0.2 0.1
1 47.58 47.60 47.69 47.76 47.86 47.88
2 98.96 98.89 98.88 98.78 98.56 98.57
3 138.93 138.79 138.74 138.62 138.47 138.56
4 184.60 184.36 184.35 184.41 184.57 184.58
5 190.31 190.06 190.19 190.47 190.90 190.96
6 275.95 275.39 275.39 275.34 274.83 274.57
7 291.18 290.61 290.74 290.85 291.00 291.02
8 304.50 303.82 303.81 303.82 303.73 303.53
9 342.56 341.71 341.68 341.42 340.87 340.89
10 395.85 394.72 394.75 394.70 395.02 395.18

Table 4.2: First ten frequencies for a distorted 2 element plate for two grid points selection.

4.5.3 Arbitrarily Shaped Plate with elliptic hole

In the following section arbitrarily shaped composite plates are considered within the
dynamic case. The plate under consideration is a three layer composite of two sheets
of Graphite-Epoxy and a core of Glass-Epoxy with the following mechanical properties.
The Graphite-Epoxy is defined by E1 = 137.9 GPa, E2 = 8.96 GPa, G12 = G13 = 7.1
GPa, G23 = 6.21 GPa, ν12 = ν13 = 0.3, ν23 = 0.49 and ρ = 1450 kg/m3. The Glass-
Epoxy is E1 = 53.78 GPa, E2 = 17.93 GPa, G12 = G13 = 8.96 GPa, G23 = 3.45 GPa,
ν12 = ν13 = 0.25, ν23 = 0.34 and ρ = 1900 kg/m3. The two sheets have a constant
thickness of hs = 0.03 m and the core thickness is equal to hc = 0.04 m. The three
laminae have different orientations θ1 = 30 for the first lamina, θ2 = 65 for the core and
θ3 = 45 for the top sheet. The first example considers an arbitrarily shaped plate, with a
shape of half of a circle and a triangle ad and inner elliptic hole. The external boundaries
are clamped and the inner elliptic hole is free instead. The results in terms of natural
frequencies are reported in Table 4.4 within the first nine modal shapes depicted in Figure
4.2. It is noted that the reference solution is obtained with a 3D FE analysis and the
GDQFEM solution is an ESL solution, so it has much less computational effort on the
machine.

In the second example the same geometry and lamination scheme is considered but
fixing all the edges, instead. Compared to the previous case the frequencies are expected
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f
Clamped edges Simply supported edges

ABAQUS
GDQFEM

ABAQUS
GDQFEM

[Hz] N = 15 N = 19 N = 23 N = 15 N = 19 N = 23

1 83.598 83.611 83.571 83.573 45.764 44.819 45.514 45.920

2 141.453 141.628 141.410 141.332 92.146 92.671 92.482 92.401

3 201.464 201.126 201.341 201.411 136.853 136.605 136.948 137.076

4 233.511 232.811 232.903 232.955 166.040 165.895 166.105 166.193

5 234.049 234.339 234.034 233.928 174.109 175.148 174.733 174.586

6 321.943 321.731 321.478 321.380 250.309 251.154 250.902 250.812

7 350.397 350.514 350.450 350.413 271.291 272.575 272.506 272.479

8 382.438 382.356 382.384 382.379 289.007 289.295 289.386 289.354

9 411.891 411.340 411.676 411.793 322.755 322.817 323.132 323.253

10 447.395 447.248 447.174 447.158 353.763 354.761 354.748 354.744

Table 4.3: First ten natural frequencies of a partially clamped and simply supported
v-notched free plate.

f
ABAQUS 3D

GDQFEM
[Hz] N = 9 N = 11 N = 15 N = 21
1 342.338 343.1773 343.3080 343.3374 343.3375
2 403.947 405.5717 405.7801 405.7815 405.7803
3 580.529 584.2223 584.1184 584.1061 584.1063
4 675.803 680.2441 680.2718 680.2600 680.2613
5 779.553 784.9928 784.9080 784.9043 784.9047
6 905.879 908.5571 908.6854 908.6918 908.6909
7 976.738 984.9963 984.7488 984.7125 984.7134
8 1033.360 1039.0524 1039.3920 1039.4444 1039.4438
9 1154.610 1158.6843 1158.6069 1158.6693 1158.6688
10 1219.100 1231.1261 1231.1231 1231.1331 1231.1351

Table 4.4: First ten frequencies for an arbitrarily shaped plate with elliptic hole free and
lamination scheme 30/65/45.

to be greater due to the stronger boundary conditions. In Table 4.5 the first ten natural
frequencies are presented and compared with 3D ABAQUS model. Very good agreement
is observed. The solution in terms of modal shapes is graphically shown in Figure 4.3.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.1: First 9 mode shapes for the V-notched Simply supported plate.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.2: First 9 mode shapes for an arbitrarily shaped composite plate.
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f
ABAQUS 3D

GDQFEM
[Hz] N = 9 N = 11 N = 15 N = 21
1 705.635 708.2110 708.2110 708.2103 708.2102
2 885.299 880.5386 880.5386 880.5419 880.5420
3 1087.090 1095.0781 1095.0781 1095.0781 1095.0781
4 1192.900 1190.2398 1190.2398 1190.2417 1190.2416
5 1299.990 1306.3506 1306.3506 1306.3502 1306.3500
6 1429.970 1430.0371 1430.0371 1430.0381 1430.0381
7 1519.500 1525.4432 1525.4432 1525.4455 1525.4456
8 1612.750 1620.9464 1620.9464 1620.9511 1620.9512
9 1644.720 1652.4347 1652.4347 1652.4291 1652.4291
10 1761.310 1769.9693 1769.9693 1769.9765 1769.9770

Table 4.5: First ten frequencies for an arbitrarily shaped plate completely clamped with
a lamination scheme 30/65/45.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.3: First 9 mode shapes for an arbitrarily shaped composite plate.
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f
ABAQUS 3D

GDQFEM
[Hz] N = 9 N = 11 N = 15 N = 21
1 208.147 204.1345 205.8710 206.8864 207.2350
2 294.469 294.7771 294.9040 294.9505 294.9638
3 362.795 363.7379 363.6722 363.5987 363.6076
4 401.596 402.2692 402.3907 402.4663 402.5144
5 559.412 552.5122 555.1034 557.4070 558.5249
6 598.087 600.4364 600.6977 600.9066 601.0051
7 660.154 664.1406 663.8556 663.7433 663.7312
8 757.921 757.7512 757.9036 758.0472 758.1167
9 765.747 766.7499 767.3330 767.3254 767.3737
10 800.982 804.1498 804.0763 804.1637 804.2068

Table 4.6: First ten frequencies for an arbitrarily shaped plate with mixed boundary
conditions with a lamination scheme 30/65/45.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.4: First 9 mode shapes for an arbitrarily shaped composite plate.
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f
ABAQUS 3D

GDQFEM
[Hz] N = 9 N = 11 N = 15 N = 21
1 399.734 397.5259 397.4676 397.4302 397.4265
2 430.049 428.3228 428.4792 428.4647 428.4611
3 669.013 666.0062 665.5853 665.4911 665.4902
4 770.025 766.0478 765.5949 765.5113 765.5091
5 792.164 792.2105 792.5574 792.6193 792.6199
6 843.403 837.8935 837.3440 837.1955 837.1920
7 991.892 989.6197 989.8877 989.8844 989.8874
8 1081.220 1075.4533 1075.5904 1075.6027 1075.6055
9 1228.200 1226.2621 1226.2535 1226.2428 1226.2399
10 1232.880 1229.0524 1229.0333 1228.9714 1228.9697

Table 4.7: First ten frequencies for a composite arbitrarily shaped plate with 0/0/0 lam-
ination scheme.

1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.5: First 9 mode shapes for an arbitrarily shaped composite plate.
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y

x
y0

x0

b
α

d

a

Figure 4.6: Dimensions and coordinates for a rectangular plate with an internal crack (x0

and y0 locate the center of the crack)

4.5.4 Cracked plates with central and side cracks

In the following section some numerical results are compared with literature for several
isotropic cases of cracked plates [143–146]. In the given reference papers this kind of
problem is solved by using the Ritz method. In [143] rectangular plates with internal
cracks or slits had been studied. The geometry of this kind of problem is depicted in Figure
4.6. Since crackes square plates with simple support boundary conditions were often
studied in the published literature, convergence studies were carried out for such plates
with different crack lengths to verify the correctness of the solutions and demonstrate
the effects of the number of grid points on the solutions. All the numerical results are
presented for the first ten non-dimensional frequency parameters Λ = ωa2

√
ρh/D, which

are commonly used in the plate vibration literature. In the following different crack
lengths d/a = 0.2, d/a = 0.5, d/a = 0.8 and inclination angle α are shown below. The
plate under consideration has got a side a = 2 m and thickness h = 0.01 m. The material
is an homogeneous, isotropic and elastic one with Young’s modulus of E = 210 GPa and
Poisson’s ratio ν = 0.3. In Table 4.8 the first ten natural frequencies of a square plate
with a centred crack of d/a = 0.2 are reported. Moreover the numerical solution by FE
analysis is presented in the first column. A very good agreement is shown among the three
different methodologies. In addition the first nine modal shapes are graphically presented
in Figure 4.7. For a crack length equal to d/a = 0.5 the numerical results are reported
in Table 4.9. In this case also good agreement is observed. The first nine eigenvectors
are graphically presented in Figure fig:square-hor-05. The last example for a square plate
with a linear crack is presented in Table 4.10 in which the crack length is d/a = 0.8. It
is noted that in this case, due to the strong discontinuity, a lot of nodes per elements are
needed to obtain a correct solution, respect to the previous cases. Finally the first nine
modal shapes for the cracked plate under consideration is shown in Figure 4.9.

It is noted that all the results given for the current examples are in good agreement
with the results obtained with ABAQUS 2D shell solution and the solution given by Huang
et al. [143]. In these particular cases the plate is isotropic and so only three equations of
the complete set can be considered for the flexural vibration case of FSDT plates.

In the first part of this section a internal crack has been considered. Using the work
by Huang et al. [144] as a reference, some examples about plates with side cracks are con-
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Λ ABAQUS Ref. [143]
GDQFEM

N = 13 N = 15 N = 17 N = 19 N = 21
1 19.300 19.32 19.371 19.362 19.360 19.362 19.366
2 49.163 49.18 49.132 49.138 49.142 49.145 49.147
3 49.314 49.32 49.216 49.237 49.258 49.276 49.293
4 78.912 78.95 78.827 78.848 78.862 78.870 78.877
5 93.818 94.11 94.128 94.033 93.952 93.885 93.831
6 98.657 - 98.611 98.621 98.628 98.633 98.637
7 127.506 - 127.350 127.378 127.399 127.415 127.426
8 128.036 - 127.801 127.840 127.873 127.901 127.923
9 165.485 - 164.954 165.035 165.101 165.154 165.195
10 167.510 - 167.304 167.334 167.362 167.385 167.403

Table 4.8: Convergence of frequency parameter Λ for a simply supported square plate
with a horizontal center crack (x0/a = y0/b = 0.5, d/a = 0.2, α = 0).

Λ ABAQUS Ref. [143]
GDQFEM

N = 13 N = 15 N = 17 N = 19 N = 21
1 17.698 17.72 5.928 13.086 15.483 16.574 17.111
2 42.969 43.06 43.966 43.438 43.138 42.965 42.864
3 48.668 48.69 46.728 48.301 49.001 49.288 49.376
4 77.658 77.72 77.917 77.714 77.634 77.602 77.589
5 82.034 82.17 86.759 84.953 83.971 83.415 83.073
6 95.070 - 95.680 94.906 94.679 94.643 94.670
7 98.349 - 105.120 102.460 101.193 100.441 99.937
8 122.768 - 129.553 127.032 125.654 124.811 124.252
9 134.881 - 134.813 134.562 134.527 134.552 134.591
10 166.253 - 166.216 166.216 166.218 166.221 166.222

Table 4.9: Convergence of frequency parameter Λ for a simply supported square plate
with a horizontal center crack (x0/a = y0/b = 0.5, d/a = 0.5, α = 0).

sidered in the following. The parametric representation is graphically reported in Figure
4.10. Convergence studies are carried out, as in the previous case, for simply supported
rectangular plates with different crack lengths to verify the correctness of the solutions
and demonstrate the effect of the number of grid points per element. The material is once
again an isotropic and homogeneous one, so only the three flexural equations are consid-
ered in the computation. In Table 4.11 the first ten frequencies of a simply supported
rectangular plate compared with FE analysis and literature results are shown. Moreover
the first nine modal shapes for the current plate are depicted in Figure 4.11.

In the last example taken from [144] a square plate with a not-centred crack c/b = 0.75
with a length d/a = 0.3 and an inclination α = π/6 is considered. The first ten frequency
parameters Λ are reported in Table 4.13 and the first nine modal shapes are graphically
presented in Figure 4.13.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.7: First 9 mode shapes for a cracked square plate with a centred crack and
d/a = 0.2.

Λ ABAQUS Ref. [143]
GDQFEM

N = 15 N = 21 N = 23 N = 25 N = 27
1 16.397 16.41 16.676 16.557 16.534 16.515 16.500
2 27.703 27.77 27.419 27.545 27.583 27.615 27.640
3 47.179 47.21 47.234 47.213 47.209 47.206 47.203
4 65.642 65.76 65.399 65.421 65.431 65.440 65.448
5 76.297 76.37 76.391 76.322 76.299 76.279 76.260
6 78.308 - 78.153 78.203 78.212 78.217 78.221
7 96.702 - 96.600 96.653 96.668 96.681 96.692
8 113.338 - 113.024 113.122 113.135 113.144 113.148
9 121.207 - 120.824 120.889 120.908 120.923 120.936
10 125.768 - 125.388 125.410 125.418 125.423 125.427

Table 4.10: Convergence of frequency parameter Λ for a simply supported square plate
with a horizontal center crack (x0/a = y0/b = 0.5, d/a = 0.8, α = 0).
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.8: First 9 mode shapes for a cracked square plate with a centred crack and
d/a = 0.5.

Λ ABAQUS Ref. [144]
GDQFEM

N = 21 N = 23 N = 25 N = 27
1 48.948 48.98 49.027 49.060 49.082 49.096
2 77.802 77.89 77.918 77.976 78.015 78.039
3 126.430 126.6 126.518 126.571 126.608 126.631
4 166.926 167.1 166.844 166.854 166.860 166.865
5 193.664 194.2 193.388 193.430 193.459 193.478
6 194.969 - 194.998 195.018 195.030 195.038
7 237.292 - 236.766 236.853 236.913 236.955
8 283.318 - 283.290 283.286 283.283 283.281
9 298.406 - 297.669 297.789 297.875 297.937
10 357.819 - 357.195 357.273 357.330 357.372

Table 4.11: Convergence of frequency parameters Λ for a simply supported rectangular
plate having a central (c/b = 0.5) side crack with d/a = 0.2.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.9: First 9 mode shapes for a cracked square plate with a centred crack and
d/a = 0.8.
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Figure 4.10: Dimensions and coordinates for a side-cracked plate.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.11: First 9 mode shapes for a rectangular side-cracked plate with a centred crack
c/b = 0.5 and d/a = 0.2.

Λ ABAQUS Ref. [144]
GDQFEM

N = 21 N = 23 N = 25 N = 27
1 40.224 40.42 40.388 40.442 40.489 40.529
2 72.728 72.82 72.740 72.725 72.715 72.707
3 73.290 75.63 73.103 73.114 73.122 73.129
4 123.289 123.5 123.145 123.104 123.073 123.050
5 168.461 169.3 168.215 168.233 168.245 168.255
6 191.723 - 191.772 191.752 191.739 191.730
7 197.712 - 197.446 197.470 197.488 197.501
8 256.068 - 255.979 255.977 255.977 255.977
9 280.218 - 280.287 280.277 280.272 280.271
10 288.093 - 287.734 287.763 287.786 287.806

Table 4.12: Convergence of frequency parameters Λ for a simply supported rectangular
plate having a central (c/b = 0.5) side crack with d/a = 0.5.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.12: First 9 mode shapes for a rectangular side-cracked plate with a centred crack
c/b = 0.5 and d/a = 0.5.

Λ ABAQUS Ref. [144]
GDQFEM

N = 21 N = 23 N = 25 N = 27
1 19.434 19.44 16.592 17.554 18.102 18.445
2 48.292 48.33 48.320 48.326 48.335 48.333
3 49.287 49.3 49.310 49.352 49.343 49.324
4 77.725 77.78 77.151 77.344 77.458 77.532
5 96.024 96.12 92.032 93.227 93.943 94.391
6 98.085 - 97.969 97.965 97.963 97.964
7 122.634 - 121.251 121.767 122.099 122.321
8 125.669 - 125.573 125.601 125.608 125.601
9 157.826 - 156.896 157.723 158.265 158.624
10 167.255 - 167.191 167.194 167.198 167.202

Table 4.13: Frequency parameters Λ for simply supported square plates with side cracks
at orientation α = π/6, location c/b = 0.75 and length d/a = 0.3.
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1st mode 2nd mode 3rd mode

4th mode 5th mode 6th mode

7th mode 8th mode 9th mode

Figure 4.13: First 9 mode shapes for a rectangular side-cracked plate with a centred crack
c/b = 0.5 and d/a = 0.5.
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Over the years Generalized Differential Quadrature

(GDQ) method has distinguished due to its high

accuracy, straightforward implementation and general

application to several engineering problems.

However, the applicability of GDQ in its original form

is still limited. In fact, it fails with strong material

discontinuities and geometric irregularities. On the

other hand these issues can be overcome subdividing

the physical domain into regular or irregular sub-

domains as well as in the Finite Element Method (FEM).

Furthermore, through the mapping technique it is

possible to describe any irregular geometry into a

regular one, where the classic GDQ can be applied. This

methodology is indicated as Generalized Differential

Quadrature Finite Element Method (GDQFEM).

Starting from the theoretical framework of the GDQ

method, the main aim of this PhD Thesis is to show the

applicability and the implementation of the GDQFEM,

which goes beyond any GDQ drawback.

In order to show the accuracy, stability and flexibility

of the current methodology several numerical

applications are shown. The static and dynamic

behavior of advanced engineering structures are

compared to literature and other numerical solutions.

Very good agreement has been observed.
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