
Alma Mater Studiorum – Universitá di Bologna

Dottorato di ricerca in

Automatica e Ricerca Operativa

XXV Ciclo

Settore concorsuale di afferenza: 09/G1

Settore scientifico disciplinare: ING-INF/04

Titolo tesi

Coordination and Control of

Autonomous Mobile Robots Swarms

by using

Particle Swarm Optimization Algorithm
and Consensus Theory

Presentata da

Raffaele Grandi

Coordinatore di dottorato Relatore

Andrea Lodi Claudio Melchiorri

Esame finale anno 2013

ii

Abstract

This thesis presents some different techniques designed to drive a swarm of

robots in an a-priori unknown environment in order to move the group from

a starting area to a final one avoiding obstacles. The presented techniques

are based on two different theories used alone or in combination: Swarm

Intelligence (SI) and Graph Theory. Both theories are based on the study of

interactions between different entities (also called agents or units) in Multi-

Agent Systems (MAS). The first one belongs to the Artificial Intelligence

context and the second one to the Distributed Systems context. These

theories, each one from its own point of view, exploit the emergent behaviour

that comes from the interactive work of the entities, in order to achieve a

common goal. The features of flexibility and adaptability of the swarm have

been exploited with the aim to overcome and to minimize difficulties and

problems that can affect one or more units of the group, having minimal

impact to the whole group and to the common main target.

Another aim of this work is to show the importance of the information

shared between the units of the group, such as the communication topology,

because it helps to maintain the environmental information, detected by

each single agent, updated among the swarm.

Swarm Intelligence has been applied to the presented technique, through

the Particle Swarm Optimization algorithm (PSO), taking advantage of its

features as a navigation system. The Graph Theory has been applied by

exploiting Consensus and the application of the agreement protocol with

the aim to maintain the units in a desired and controlled formation. This

approach has been followed in order to conserve the power of PSO and to

control part of its random behaviour with a distributed control algorithm

like Consensus.

iv

“All truths are easy to understand when they are revealed.

The hard part is finding”

(Galileo Galilei)

“Logic will get you from A to B.

Imagination will take you everywhere”

(Albert Einstein)

To my family and ...

To all the people that

in unexpected ways and often unconsciously,

have contributed to this work.

ii

Contents

1 Aims of the Thesis 1

2 Introduction 3

2.1 A Brief Overview on Robotics . 3

2.1.1 Evolution of Robotics . 3

2.1.2 Intelligent Robots . 8

2.1.3 Groups of Robots . 12

2.2 Mobile Robot Systems . 13

2.3 Outline . 17

3 Swarm Intelligence 19

3.1 Applications of Swarm Intelligence . 21

3.2 Background on Particle Swarm Optimization Algorithm 24

3.3 Application of the Particle Swarm Optimization Algorithm 27

4 A Navigation Strategy for Multi-Robot Systems Based on PSO Tech-

niques 29

4.1 Introduction . 29

4.2 Improving the PSO Algorithm . 31

4.2.1 Matching PSO Agents with Physical Robots 32

4.2.2 Matching the Search Space to the Environment 32

4.2.3 Obstacles and Local Minima Avoidance 34

4.2.4 Neighbors Aggregation Vector . 37

4.2.5 Dynamic Constriction Factor . 37

4.3 Simulations and Comments . 38

4.4 Conclusions and Future Work . 40

iii

CONTENTS

5 A Distributed Multi-Level PSO Control Algorithm for Autonomous

Underwater Vehicles 41

5.1 Introduction . 41

5.2 The Algorithm . 43

5.2.1 Matching Particles with Physical Vehicles 43

5.2.1.1 Model of the AUV . 44

5.2.1.2 General Structure of the Control System 46

5.2.2 Matching the Environment with the Search Space 48

5.2.2.1 Obstacle Detection . 48

5.2.2.2 Obstacle Avoidance . 50

5.2.2.3 Local Minima Avoidance 51

5.2.3 Exchanging Information . 51

5.3 Simulations . 52

5.3.1 Statistical Results and Parameter Selection 53

5.4 Conclusions and Future Work . 55

6 A Hybrid Technique for Controlling Platoons of Mobile Robots with

PSO and Consensus 57

6.1 Introduction . 57

6.2 The Algorithm . 59

6.2.1 Model of the Robot and Mathematical Tools 60

6.2.2 Simulation Environment . 61

6.2.3 Sensor Device . 62

6.2.3.1 Obstacle Avoidance . 62

6.2.3.2 Dynamic Window approach 65

6.2.4 Communication Device . 65

6.2.5 The Control Algorithm . 65

6.2.5.1 PSO Blocks . 69

6.2.5.2 Consensus Block . 69

6.3 Simulations . 70

6.4 Conclusions and Future Work . 71

iv

CONTENTS

7 Robotics in Education: Platform & Infrastructures 73

7.1 Unibot . 73

7.2 Unibot Remote Laboratory . 78

7.3 LEGO MindStorm . 79

7.3.1 LEGO Mindstorms Kit . 79

7.3.1.1 LEGO Mindstorms RCX 80

7.3.1.2 LEGO Mindstorms NXT 81

7.3.1.3 LEGO Mindstorms NXT Kit EV3 81

7.3.2 Programming Language . 82

7.3.2.1 LeJOS . 84

7.3.3 Applications . 85

7.3.4 Laboratory Activities . 85

7.3.5 Conclusions . 86

8 UniBot Remote Laboratory 89

8.1 Introduction . 89

8.2 The UniBot Differential-Wheeled Mobile Robot 91

8.2.1 UniBot Hardware . 91

8.2.1.1 Motor Board . 92

8.2.1.2 Main Board . 92

8.2.1.3 Proximity Sensors Board 93

8.2.2 UniBot firmware . 93

8.3 Remote Laboratory architecture’s overview 95

8.3.1 Local Management System . 95

8.3.1.1 Tracking Server . 95

8.3.1.2 Local Software Agents Environment 96

8.3.1.3 Local Communication Server 96

8.3.2 Remote Management System . 96

8.3.2.1 Remote Software Agent Environment 96

8.3.2.2 Remote Communication Server 97

8.3.3 The Java UniBot Simulation Environment (J.U.S.E.) 97

8.4 An Application Example . 99

8.5 Conclusions and Future Work . 99

v

CONTENTS

9 Simulators 101

9.1 J.U.S.E. 102

9.1.1 Simulation Environment Components 103

9.1.2 Multi-threading Computation . 105

9.1.3 Scenario Loader . 105

9.1.4 Future Work . 105

9.2 M.U.S.E. 106

9.2.1 Sensor Device . 107

9.2.2 Communication Device . 108

9.2.3 Unit’s Level . 110

9.2.4 Software Agent . 110

9.2.5 Class Vector and Components’ Systems 110

9.2.6 M.U.S.E. - Blender Interconnection 110

10 Conclusions and future work 113

References 115

vi

1

Aims of the Thesis

The aim of this thesis is to investigate the possibilities of integration between two dif-

ferent theories: Swarm Intelligence (SI) and Graph Theory. Both theories are based

on the study of interactions between different entities (also called agents or units) in

Multi-Agent Systems (MAS). The first one belongs to the Artificial Intelligence context

and the second one to the Distributed Systems context. These theories, each one from

its own point of view, exploit the emergent behaviour that comes from the interactive

working of the entities, in order to achieve a common goal. The features of flexibility

and adaptability of the swarm have been exploited with the aim to overcome and to

minimize difficulties and problems that can affect one or more units of the group, hav-

ing minimal impact to the whole group and to the common main target.

Another aim of this work is to show the importance of the information shared between

the units of the group, such as the communication topology, because it helps to main-

tain the environmental information, detected by each single agent, updated among the

swarm.

Swarm Intelligence has been applied to the presented technique, through the Particle

Swarm Optimization algorithm (PSO), taking advantage of its features as navigation

system. The Graph Theory has been applied by exploiting Consensus and the appli-

cation of the agreement protocol with the aim to maintain the units in a desired and

controlled formation. This approach has been followed in order to conserve the power

of PSO and to control part of its random behaviour with a distributed control algo-

rithm like Consensus. In conclusion the final goal of this thesis is to lay the basis of a

distributed control algorithm for a Mobile Robotic Transportation Platform, which is

1

1. AIMS OF THE THESIS

based on the interaction between many robots, that collaborating are able to transport

heavy loads, which are difficult or impossible to be managed by a single robot. Exploit-

ing the benefit of being composed by many simpler coordinated robots, the platform

has a huge amount of applicative scenarios and it may be transported and reassembled

everywhere. Moreover the possibility to substitute damaged units or to add one or

more of them in a real time fashion is very important. This thesis shows the benefit

of involving not only terrestrial robots but also underwater vehicles and maybe in the

future even aerial ones.

2

2

Introduction

A brief introduction to the world of robotics with no claim of completeness is dutiful,

in order to frame the reader in the vast field which inspired this work. After a brief

excursus on the birth of robotics and the related fields of development which are cur-

rently most active, we have moved from considering robotics as something related to

a single unit, to the frontier of robotics, today consisting in groups of robots that are

adequately coordinated to achieve a common goal. There are many multi-robot coordi-

nation algorithms, but in this work we have considered only two of them, the Particle

Swarm Optimization, that comes from the field of Swarm and Artificial Intelligence

and the Theory of Consensus, which exploits the power of Graph Theory and which is

applied in the field of Distributed Controls.

2.1 A Brief Overview on Robotics

Nowadays the concept of robotics is no longer considered only as industrial robotics,

where robots are used in production lines, but also as a complex system that inter-

acts autonomously with the environment and man, on many levels and with various

methodologies.

2.1.1 Evolution of Robotics

The concept of robotics was born in the very moment when man thought to give some

heavy works to a man-made machine, an automaton. The word robot comes from the

3

2. INTRODUCTION

(a) An example of assembly-line where a

chain of ABB robots produces automobiles.

(b) A manlike-arm robot, produced by

KUKA, is used as amanuensis.

Figure 2.1: Example of industrial robots.

Czech word robota that means literally heavy work1. Although we immediately tend

to think about humanoid robots for performing these tasks, the first robots used with

profit to make heavy works have been industrial robots, designed and created not just

to emulate man’s full-body, but only his arm.

Robot’s science has developed a lot in that direction, mainly for two reasons: the first

was certainly due to industrial and commercial interests,the second one was due to the

fact that the first technological components used to create robots were not enough so-

phisticated and therefore it was possible to create robots only in this fashion. Modern

industrial robots are largely used for moving relatively heavy loads in a restrict and

controlled workspace and the 90% of them have anthropomorphic arm shape. This type

of robot generally has 5-6 degrees of freedom2 and it is used in industries to assemble

parts of vehicles (see Fig. 2.1a), or for painting, welding, cleaning mechanical parts

and handling loads. All these works need great precision and repeatability and modern

commercial robots embed the state of art of these features: both control algorithms and

mechanical structures are well known, studied and tested. One of this high precision

works is represented in Fig. 2.1b, where a anthropomorphic robot is used to produce

copies of The Holy Bible with a charming calligraphy.

1From Wikipedia “The word robot was introduced to the public by the Czech inter-war writer

Karel apek in his play R.U.R. (Rossum’s Universal Robots), published in 1920”
2In mechanics, the degrees of freedom (DOF) of a mechanical system are the number of independent

parameters that uniquely define its configuration

4

1_introduction/figures/ABB_robot_IRB_6400.eps
1_introduction/figures/kuka-robot_54.eps

2.1 A Brief Overview on Robotics

However, in the last twenty years, other needs have grown up. The necessity of deeper

and more complex human-robot interactions forced roboticists to study a new concept

of robot, that could be used out of the secure and automatised working cell of an in-

dustrial environment. Fortunately, the research in electronics has developed powerful

and low cost electronic components, with a very high integration and strong miniatur-

isation, allowing scientists to develop something different from the classical industrial

robot and going back to the original target of robotics: a closer emulation of human

abilities.

New knowledge and scientific approach have been developed in this new science, not

only from the mechanical construction’s point of view but even from the robot’s be-

haviours one, that has been studied in Artificial Intelligence. When a robot moves out

from its structured working cell environment to go to work in an unfamiliar, highly

variable and crowded environment, a lot of interesting scenarios have open in a large

number of situations, for example safe human-robot interaction, or object recognition

algorithms used for obstacle avoidance, object manipulation, multi-robot cooperation.

In the real environment, the ability to recover information from the on-board sensors

is fundamental. Sensors are distributed on the whole robot’s body to measure dis-

tances from objects or the position of the robots, to give the robots the image of the

environment and to permit to the algorithms to make the right movements and take

the right decisions. More or less as in human body. It’s easy to understand that an

intelligent algorithm mounted on a mobile robot is very different from the one mounted

on a classical industrial robot. The first one must have characteristics of adaptability

and self organisation that the second one does not require. From a conceptual point of

view, it is possible to identify two macro-blocks in which the new disciplines that are

revolving around alternative robotics are divided:

• the first one tries to extend or supplement human skills and human activities

using robots to fill the gap (see Fig. 2.2a);

• the second one tries to study autonomous and self-organised behavioural algo-

rithms, often by borrowing concepts that belong to biological life and it applies

them to individual robots or group (e.g in Fig. 2.2b).

The biomedical field can be taken such as a representative scenario of the first cat-

egory. Both from patient’s and doctor’s point of views important aspects have been

5

2. INTRODUCTION

(a) A Luke Arm robotic prosthesis. (b) An example of mobile robot swarm.

Figure 2.2: Two important aspects of Robotics.

developed: most advanced prosthetic limbs could help in human disability or exoskele-

tons and robots could help in rehabilitation. Robots can help the surgeon in making

operations less invasive and more precise, eliminating the normal human hand tremors,

all supported by technologies that seek to improve the force feedback and increase the

presence of the operator, in short words haptic interfaces.

Figure 2.3: An haptic glove useful to remotely

control a proper robotic hand.

With regards to the second cat-

egory, there are robots that try to

solve problems of exploration in un-

known and/or humans inaccessible en-

vironments, taking decisions as individ-

ual or as a group, along with other

robots also performing the same opera-

tive task. Between the two categories,

often, there isn’t a clear division and

cross-contamination has given rise to

new research areas or has strengthened existing ones providing benefits. To face this

type of challenge it seems to be necessary a human-like intelligence.

Even though the objective of developing a robot with a human-like reasoning ability

still remains in the science fiction imagination (see Fig. 2.4), some steps are being made.

An example could be a result in the Artificial Intelligence (AI) research field re-

ported in 2008 from the Rensselaer Artificial Intelligence and Reasoning (RAIR) Lab-

6

1_introduction/figures/luke_arm.eps
1_introduction/figures/Robot_swarm_medium.eps
1_introduction/figures/haptic_glove.eps

2.1 A Brief Overview on Robotics

Figure 2.4: The main character of “I robot”, the film inspired by the related Isaac

Asimow’s book.

(a) (b)

Figure 2.5: The virtual child Eddie (2.5a) and the chess-playing computer Deep Blue

(2.5b) are two remarkable examples of Artificial Intelligence applications.

oratory, where a software (Eddie) that seems to have a capacity of reasoning similar

to a four years-old child has been developed. By interacting in the simulated environ-

ment “Second Life” with other human-driven characters, Eddie is able to provide the

correct answer of some “False Belief problems”, an answer that a child is able to give

only from age four. Another significant example coming from Chess is “Deep Blue”,

a chess-playing computer developed by IBM (see Fig. 2.5b). On May 11, 1997, the

machine, with human intervention in games, won the second six-game match against

world champion Garry Kasparov by two wins to one with three draws. It has repre-

sented a crucial event toward the development of a real “intelligent machine”. More

recently, at Thomas J. Watson Research Center under the supervision of David Fer-

7

1_introduction/figures/sonny.eps
1_introduction/figures/eddie23.eps
1_introduction/figures/deep_blue.eps

2. INTRODUCTION

rucci it has been developed in IBM’s DeepQA project a machine called Watson able to

answer questions on the quiz show Jeopardy! understanding human natural language.

In 2011, Watson competed on Jeopardy against former winners Brad Rutter, and Ken

Jennings. Watson received the first prize of 1 million. Later Watson has been tested

as medical assistant with high score results. On February 2013, IBM announced that

Watson’s first commercial application would be in management decisions in lung can-

cer treatment at Memorial SloanKettering Cancer Center in conjunction with health

insurance company WellPoint. On IBM project’s site it is possible to read:

“Watson is a Question Answering (QA) computing system built by IBM that
describes it as an application of advanced Natural Language Processing, In-
formation Retrieval, Knowledge Representation and Reasoning, and Machine
Learning technologies to the field of open domain question answering which
is built on IBM’s DeepQA technology for hypothesis generation, massive evi-
dence gathering, analysis, and scoring.”

These examples show how it is possible to develop powerful and intelligent algorithm

but in any case quite close to their specific field of application and in any case they are

limited to the physical constraints of the computer that calculates their program.

Figure 2.6: An exemplary of the

humanoid platform IIT-iCub.

To ensure that the ghost in the shell may be con-

nected with what exists in the outside environment

and may produce an appropriate interaction, it is

necessary to move towards robotics (e.g.Fig. 2.6).

The challenge to human intelligence, which has al-

ways been the object of many research fronts, taking

the path of evolution from the bottom to the top,

which means to start from the interaction with the

environment.

2.1.2 Intelligent Robots

Giving the definition of what an intelligent robot actually is, it is more difficult than

you may think, especially for the reason that it has not been possible to provide a

clear definition of Intelligence yet. Usually when we talk about intelligent robots,

we talk about machines that can be able to perform a limited task with a specific

8

1_introduction/figures/IIT_iCub.eps

2.1 A Brief Overview on Robotics

(a) (b) (c)

Figure 2.7: The 4 wheeled mobile platform Pioneer 3-AT, endowed with laser-scanner,

GPS device, video-camera, robotic griper, ultrasonic sensors, is one of the best platforms

used to study mobile robotics. By exploiting the laser scanner it is possible to build an

environmental map (2.7b) which needs a post elaboration in order to be usefully exploited

(2.7c).

grade of intelligence and autonomy. Mobile robots have many locomotion devices,

someone can even fly but today when we speak about mobile robots we speak about a

simple rudimentary machine if compared to human skill. Although, these machines are

excellent platforms for developing different types of algorithms: behavioural, learning,

adaptive and exploratory, we can speak about biologically inspired robotics, cognitive

robotics, collective robots, autonomous mobile robots and many other disciplines that

are involved in this field, in relation to their main research focus. One of the most

complete working platforms that is usually adopted to study theories and algorithms,

it’s a mobile robot with two or four wheels (see an example in Fig. 2.7a) that can interact

with the environment by using a wide range of sensors: infrared sensors, location

sensors, on board cameras and laser tracking systems. The information provided on

the surrounding environment, allows robot’s algorithm to build any map of the route

and then to plan paths in a previously unknown environment. Through a laser scanner

it is possible to retrieve the characteristics of the surrounding environment and then

through a post elaboration of recorded data, to reconstruct the map of the explored

area.

The presence of on-board cameras helps the robot to recognize objects or other

features of the environment. Sometimes, to complete the robot’s equipment, it is also

installed a GPS sensor, allowing path tracking with very good approximation, especially

9

1_introduction/figures/mobile_robots_example.eps
1_introduction/figures/map-building0.eps
1_introduction/figures/map-building.eps

2. INTRODUCTION

Figure 2.8: Stanley, the Stanford University Car that won the DARPA Grand Challenge

in 2005 edition. It has completed the entire path by covering 240 Km in 6:54 hours.

when the environment to be explored includes many miles of desert like DARPA Grand

Challenge. It was a car race competition organized by the U.S. Defence Department in

2004 and 2005, where participants were only driver-less full autonomous vehicles with

the objective to complete an off-road path of 240 km across part of the Mojave Desert

within a limited time. Each vehicle was endowed by a full-set of sensors with laser

scanner, hi-resolution cameras, GPS and so on, and clusters of computers stored in

their luggage box. As an example the Stanford University’s vehicle, that won the 2005

edition, is depicted in Fig. 2.8. The exploration of unknown environments, and the

related development of an appropriate capacity to process information autonomously,

have always had a big support from all the researches that in some way are involved

in space exploration. The inability to directly manage the situation by man forced

researchers to develop autonomous intelligent programs as agents. Even staying within

mobile robotics, it is easy to move in any other adjacent area, space exploration is

an interdisciplinary field where a variety of knowledge converges whit no comparison

to other areas. An example of the deep usage of the previously described techniques,

could be the autonomous robots called mars-rover sent on Mars to analyse the soil

for life search (see Fig. 2.9). The scientists have worked on developing intelligent

algorithms that permit to rovers an almost total operational autonomy in task solving.

A brief radio contact with Earth to download acquired information and receive new

tasks has been the only connection of the robot with man. Moving the attention from

space to Earth’s surface, it is impossible to ignore one of the most agile and dexterous

robot on the Earth: Big Dog. Built by Boston Dynamics, under the sponsorship of

DARPA, the robot is able to perfectly emulate a mule (despite of the name) with

10

1_introduction/figures/Stanleyrobot.eps

2.1 A Brief Overview on Robotics

(a) (b) (c)

Figure 2.9: Mars rover is another well know example of full autonomous mobile robot.

Different types of rovers with different types of tasks and features have been sent to the

Martian soil. The dimensions of robots have grown up during the different missions: from

Spirit (2.9a) sent on Mars in 2006 to Curiosity (2.9b) sent in 2012, the complexity of tasks,

the types and the number of environmental analysis scheduled have need more on-board

instruments and more autonomy in term of task managing with respect to the earlier

mission, which was performed by the the “little” Sojourner sent on Mars in 1997 (2.9c in

the middle).

the capacity to carry very heavy loads. The platform is continuously updated (see

Fig. 2.10a and Fig. 2.10b). The robot has both autonomous capacity and a remote

radio-controller device. It has been developed to give support to military operations

in the most various scenarios. The studies conducted by Boston Dynamics on the legs’

motion and locomotion have produced even a biped version of legged robot named

Petman (See Fig. 2.10c). The movement of these robot is so natural that watching it

is very impressive. The applications of this kind of robot are quite obvious. Besides

research centers, government agencies and more other institutions it is possible to

study robotics and robot applications within the dinner room of our houses or in some

little laboratories of every schools and faculties through the Lego Mindstorm Kit (see

Sec. 7.3). Lego has developed a robotic kit that permits us to build from scratch a

real mobile robot as the one depicted in Fig. 2.11. The application of this robotic kit

(e.g. the one in the Sec. 8.4) depends only by users’ imagination and it is possible to

build a huge quantity of different electro-mechanic devices, from the simpler to the most

sophisticated ones. The attention of researchers is not focused only on a single powerful

robot and in the study of robotics some interesting questions arise, for example, why

don’t we use two or three robots instead of one? And why not a swarm of robots?

What is the task that can be brought to accomplishment only with the coordination of

11

1_introduction/figures/mars_rover_spirit.eps
1_introduction/figures/mars_rover_curiosity.eps
1_introduction/figures/mars_rover_comparison.eps

2. INTRODUCTION

(a) (b) (c)

Figure 2.10: The evolution of the Boston Dynamics’ Big Dog (from left to right) and the

science-fiction realization of a robotic soldier, Petman (2.10c), show the deeply interest of

researchers in the field of robotics.

Figure 2.11: A differential wheeled mobile robot built with Lego Mindstorm NXT Kit.

the whole swarm? How it is possible to coordinate so many robots all together? What

kind of communication topology is needed? All these questions and many other ones

suggest a new research path toward all that concerns the control and coordination of

groups of robots.

2.1.3 Groups of Robots

In all the examples shown before, it has always been taken in consideration only individ-

ual robots but a lot of recent studies are directly involved in the developing of groups

of robots, because a swarm of collaborative robots, each one observing the problem

from a different point of view, is able to solve more difficult tasks than one robot by

itself. The strength of a swarm can be found in the sharing of information. Pieces of

information are sent by a robot to a nearby robot and so on, connecting in this way all

12

1_introduction/figures/big_dog_1.eps
1_introduction/figures/big_dog_2.eps
1_introduction/figures/petman.eps
1_introduction/figures/mindstorms_lfb.eps

2.2 Mobile Robot Systems

(a) (b)

Figure 2.12: Some robots of the Swarm-Bots Project developed at Université libre de

Bruxelles (ULB).

the robots of the swarm in a synergistic network. For example, each robot used for the

exploration of unknown environment could explore by itself a little part of the search

space and at the same time could share information with neighbours. In this fashion

the exploration task is achieved after a shorter time than using a single robot. From

a general point of view the decomposition of the problem in less difficult sub-problems

gives the possibility to a simpler robot to positively contribute to the global solution.

In many cases a practical problem admits solutions, only when the robots work

together as a group. An example could be the one depicted in Fig. 2.12b, where a

robot must pass upon a rift of the terrain larger than itself. Other examples can be

an obstacle to avoid or an object too heavy to be transported by a single robot. I all

these problems the group makes the difference. Mobile robots could have any sort of

dimensions, from the ones as large as a car (see Fig. 2.8) to the ones as little as a 2

euro coin (e.g. Fig. 2.13a) or less (Fig. 2.16b). In many research centers around the

world roboticists are still studying nano-scale robots (e.g. [1, 2]) with the aim to drive

a robot swarm inside human body and treat various diseases, from virus infections to

cancer (see Fig. 2.13b).

2.2 Mobile Robot Systems

The main difference between a group of robots and a Mobile Robot System (MRS) is

the control algorithm. In that case the group of robots operates as a single entity with

13

1_introduction/figures/swarm-bots-01.eps
1_introduction/figures/swarm-bots-02.eps

2. INTRODUCTION

(a) (b)

Figure 2.13: Alice (2.13a), developed at EPFL, is one of the most used mini-robots in

the world. A very little area is large enough for the mobile robotics techniques applications

that involve this robot model, because its dimensions are 2x2x2 cm. However the frontier

of the robot dimensions’ reduction process is in the nano-scale robotics. A futuristic vision

of the nano-bots technology as substitution of neurons 2.13b may be representative of the

future.

the same target. The basic principle behind this new approach to robot coordination

was directly inspired by the observation of natural systems. In nature, in fact, it is

possible to see a lot of animals that work together for a final common purpose. Some

typical example can be found in the sea, on the ground and in the air, and more evolved

animals can collaborate to perform more complex social behaviours (see Fig. 2.14)

A Mobile Robot System is generally composed by homogeneous units on which the

importance of a single unit is negligible and it can be substituted without affecting

the global task. This highlights the intrinsic robustness of a MRS but it is not only a

feature of the swarm. More depends on the algorithm’s control structure. It is possible

to identify four typologies of control structure:

• centralized: there is a unique supervisor that receives data from all the robots

connected and calculates the related motion for each one. The advantage of

this approach is to have a single control point that computes and collects the

information for the whole swarm. Each robot could be very simple and completely

remotely controlled. This could also be a drawback. The supervisor node must

be powerful enough for all the robots. Scalability is not possible and the task’s

complexity is directly related to the power of the super-node. Moreover if the

super-node encounters a fault, all the system is compromised. (e.g. in [3, 4]);

14

1_introduction/figures/microbot_Alice.eps
1_introduction/figures/nanobot.eps

2.2 Mobile Robot Systems

(a) (b) (c) (d)

Figure 2.14: Schools of fishes, flocks of birds, termite mounds and hunting wolves are clear

examples of complex behaviour where the rules at the basis of the coordinated behaviours

make the difference.

• cecentralized : each robot computes the data by itself and operates on the basis

of the local information, self-generated or received by team-mates. Shared infor-

mation are fundamental, units are generally homogeneous. The architecture has

all the good properties coming from the swarm structure (cf. Chp. 3). However

the complexity of the task is limited to the structure of the control algorithm

because designing a completely decentralized task is not simple (e.g. in [5]). The

Swarm-Bots project depicted in the figure-set 2.12 is an example;

• hierarchical: this technique is directly inspired from military command proto-

cols. The architecture is composed by leader and followers robots distributed on

different command priority levels. Robots that are leaders in a lower level become

followers in the upper level and so on. The advantage comes from the division of

the global task in simpler sub-tasks. The architecture is scalable but the draw-

backs are similar as in the centralized method, indeed the recovering from failures

of the command leaders is difficult;

• hybrid: generally this kind of approach tries to combine the advantages coming

from centralized and decentralized methods. Some robots cover the role of leaders

by assigning tasks and swarm resources. Followers are limited to the accomplish-

ment of the given tasks by using the given resources. This technique often embeds

leaders re-election procedures in case of failures.

15

1_introduction/figures/schoolFish02.eps
1_introduction/figures/termiteMound01.eps
1_introduction/figures/wolvesHunting01.eps
1_introduction/figures/flockBird01.eps

2. INTRODUCTION

(a) Separation (b) Alignment (c) Cohesion (d) Flocking boids

Figure 2.15: Reynolds’ rules representation.

(a) (b) (c) (d)

Figure 2.16: Different typologies of robots, from real to simulated ones, can be used to

study mobile robotics in many research and application fields.

The first experiments on real robotic swarms began in the earlier ’90s. Roboticists

studied animals’ interactions in order to find basic rules applicable to the robot’s con-

text, by following the Reynolds example [6], the first remarkable example of this kind

of approach, depicted in the figure-set 2.15.

Reynolds’ rules are basically three: Separation, Cohesion and Alignment. The first

one defines the minimal distance between boids in order to avoid their crowding. The

second one defines the maximal distance for the opposite purpose. The third one instead

defines the boids’ flocking direction that is related to the average heading of local boids.

These studies have grown from ’90s [7, 8, 9] in order to become the modern Swarm

Intelligence theory (cf. Chp. 3) and exploit groups of real robots to study the emergent

behaviours [5] Different types of robots have been made to study and emulate natural

swarms in all fields: terrestrial, underwater and aerial. Not only real robots have been

exploited but also the simulated ones (see figure-set 2.16)

Another technique pointed out by researchers to control MRS, in addition to the

Swarm Intelligence, is based on graph control theory. This fully decentralized ap-

proach, initially used on groups of massless-point agents [10] and later on real robots

16

1_introduction/figures/boidsFlocking01.eps
1_introduction/figures/boidsFlocking02.eps
1_introduction/figures/boidsFlocking03.eps
1_introduction/figures/boidsFlocking04.eps
1_introduction/figures/robotZoo.eps
1_introduction/figures/microSwarm.eps
1_introduction/figures/robotSpider.eps
1_introduction/figures/webotsEpuck.eps

2.3 Outline

[11, 12, 13], is strictly based on the exploitation of the basic matrices that describe a

graph, like Incidence matrix and Laplacian matrix. The basic idea is to use the infor-

mation exchanged between edge-connected robots in order to maintain a coordination

on some state variables i.e. mutual positions or motion velocities. This approach called

Consensus is based on the agreement protocol. For more information see [14]

2.3 Outline

A large part of the themes just introduced has been investigated and realized during

the making of this thesis. Indeed in the following chapters the control techniques

designed and their applications are described, as well as both theoretical and practical

tools for their realization. This thesis is organized as follows: a brief introduction

of Swarm Intelligence and Particle Swarm Optimization (PSO) is done in Chp. 3,

while distributed control techniques respectively designed to drive a group of ground

mobile robots and a group of underwater vehicle, by exploiting algorithms based on

modified versions of the PSO, are described in Chp. 4 and Chp. 5. Moreover a hybrid

control technique based on both PSO and Consenus approach has been described in

Chp. 6. Educational Robotics and the Unibot Mobile Robot have been introduced in

Chp. 7 while the related Unibot Mobile Laboratory has been presented in Chp. 8. The

simulators on which all the techniques have been tested, are briefly described in Chp. 9.

Final conclusions and future work are illustrated in Chp. 10.

17

2. INTRODUCTION

18

3

Swarm Intelligence

Swarm Intelligence (SI) is a research field, afferent to Artificial Intelligence, that studies

the decentralized collective behaviour of entities belonging to both artificial and natural

systems. The expression has been used for the first time in the context of cellular robotic

systems [15] in 1989 even if studies on interaction rules inside flocks of simulated birds

(boids) already existed [6]. SI takes advantage of ideas and theories strongly inspired

by biological systems. The rules that lie beneath the natural interactions between

individuals in a biological system are quite complex but it is possible to extrapolate

the few of them that are useful to guide an artificial system, often created inside a

19

3_swarm_intelligence/figures/si_main_fig.eps

3. SWARM INTELLIGENCE

software simulator. The system commonly used as matter of tests is made up by a

population of entities, which are called units, agents or particles in relation to the

research field. Entities have the ability to interact with the surrounding environment

and with other entities of the population exchanging information in some fashions.

Each entity operates autonomously and in a completely decentralized fashion with

the purpose to achieve the same target and following the same simple rules. The

intelligent behaviour of the group emerges in a self-organized way from the behaviour

of each single entity. The most biological groups studied from SI are schools of fishes,

flocks of birds, swarms of bees, colonies of ants and herds of animals in general, from

which scientist have created many applications in mathematics, statistics, immunology,

sociology, engineering and in many other research fields included robotics e.g. multi-

robot systems. Swarm Intelligence has grown, in fairly recent period, providing great

contribution to both theoretical projects and applications [16, 17, 18, 19, 20].

This great interest in SI is due to the good intrinsic features of the swarm concept in

engineering contexts. As previously introduced, the typical swarm intelligence system

has the following properties:

• a swarm is composed by many entities;

• entities are relatively homogeneous i.e. equal or belonging to few different typolo-

gies;

• entities’ interactions are equal or similar and the information exchanged belongs

to the same symbolic ontologies;

• each individual action can modify the environment or the behaviour of other

entities;

• behaviours and interactions are based on the same simple rules and are computed

locally by each entities;

• the action expressed by the whole group results from the combination of the

individual coordinated actions without any supervisor.

The artificial system design starts following the above mentioned properties. The ob-

tained system is scalable, fault tolerant and it operates in a parallel fashion. Three

desired good properties for an artificial system:

20

3.1 Applications of Swarm Intelligence

(a) School of fish (b) Swarm of robots

Figure 3.1: In a natural system few rules can generate a very complex behaviour that

can be reproducible from artificial system with impressive similarity.

• scalability is obtainable in a simple way because each entity operates locally and

only with its own and neighbour’s information. Increasing (or decreasing) the

group’s entity number, system’s functionality remains the same without the need

to redefine anything;

• parallel operations can be performed because each entity has its own behaviour

and capabilities. It computes the basic rules autonomously and takes the deci-

sion and the related actions by itself. The resulting system is more flexible and

adaptable;

• fault tolerance is intrinsic in the concept of swarm. The control system is strongly

decentralized because the single entity is autonomous and weakly connected to

the swarm. One or more units can be lost without clearly affecting the global

behaviour. Moreover, the swarm operates without any problems even in case of

one or more units’ addition because swarm’s behaviour is self-organized.

It is evident that by changing the few basic rules (in the behaviour or in the interactions

of entities) it is possible to change the behaviour of the whole swarm by maintaining

the above mentioned good properties.

3.1 Applications of Swarm Intelligence

Before presenting in Sec. 3.2 the specific background on PSO, useful to better under-

stand the next chapters, a brief introduction of swarm intelligent applications is due.

21

3_swarm_intelligence/figures/school_fish.eps
3_swarm_intelligence/figures/swarmbots_group.eps

3. SWARM INTELLIGENCE

• flocks of birds and schools of fishes are the first applications of the swarm intel-

ligence concept. From the first entities developed by Reynolds [6] with the name

of boids, this kind of representation is strongly used in CGI and video games

applications to simulate different natural movements of many entities;

• the Ant Colony Optimization (ACO) is a meta-heuristic population-based tech-

nique commonly used in Operations Research fields to find approximate solutions

in difficult problems. Transforming the problem into a weighted graph [21] where

the nodes are the “resources” of the problem and the connecting edges are the

different paths to reach them, the entities of the system, which are simulated as

ants, move on the graph’s edges and find the shortest or longest path to link two

desired different nodes. Similarly to real ants, the simulated entities release on

the path a simulated volatile substance (pheromone) with a specific evaporation

ratio. This environmental modification (stigmergy) helps the entities to build

the correct solution, over the simulated time, because ants are attracted by the

pheromone and tend to travel on paths with more quantities of pheromone. Ex-

amples of applications can be found in logistic activities as load transportation

(such as the well known salesman problem) or network management as well as

all those problems that can be easily transformed into graphs and path-finding

search problems;

• the Particle Swarm Optimization [22, 23] was born as a meta-heuristic population-

based technique useful to find solutions for continuous problems. Inspired by so-

cial behaviours in schools of fishes and flocks of birds, the algorithm searches for

good solutions in a given optimization problem. Each entity of the system, called

particle, embeds a candidate solution for the problem. The simulated swarm of

particles flies into the problem’s search space, attracted by better solutions. It

continuously updates the best solution found among all the swarm’s particles dur-

ing the simulation. Better information on the complete algorithm are presented

in the next section.

Many other techniques based on swarm intelligence deserve to be mentioned, especially

the ones applied to the main focus of this thesis: mobile robotics.

———————–

22

3.1 Applications of Swarm Intelligence

(a) (b)

(c) (d)

Figure 3.2: The different tasks assigned to the different types of mobile robots show the

versatility of this area of robotics. The achievement of each task can involve even different

types of communications such as light.

23

3_swarm_intelligence/figures/swarm-bots-discotheque.eps
3_swarm_intelligence/figures/miniQuad.eps
3_swarm_intelligence/figures/quadrotors_formations.eps
3_swarm_intelligence/figures/swarmbots_2c.eps

3. SWARM INTELLIGENCE

3.2 Background on Particle Swarm Optimization Algo-

rithm

In literature, Particle Swarm Optimization (PSO) is usually considered as an opti-

mization algorithm, i.e. it is typically used to solve optimization problems defined in

a m−dimensional space by a fitness function f(·), that is subject to predefined con-

straints and whose value has to be minimized (or maximized). Many applications have

been studied [24] and an exhaustive discussion of these can be found in [25] or [26].

In the original PSO formulation [22], the optimal solution is computed by simulating

a group of n particles that explore the search space of the problem in order to find

the best fitness value. Each agent (or particle) moves in the solution search space with

known position and velocity, and with the ability to communicate with other agents.

In particular, PSO is based on a population P of n particles that represents a set of

possible solutions of the given m-dimensional problem, i.e. ‖P‖ = n where the operator

‖ · ‖ computes the cardinality of a given set. Position and velocity of the ith particle at

the kth iteration of the algorithm are identified by the m-dimensional vectors

pi(k) = [pi,1(k) . . . pi,m(k)]
T

vi(k) = [vi,1(k) . . . vi,m(k)]
T

i = 1 . . . n

When the algorithm is initialized, a random position pi(0) and a starting random ve-

locity vi(0) are assigned to each particle. At each iteration, a set of candidate solutions

is optimized by the particles which are moving through the search space toward bet-

ter values of the fitness function f(·). Each particle knows the value of the fitness

function corresponding to its current position in the m-dimensional search space and

it is able to remember data from previous iterations. In particular, each particle is

able to remember the position where it has achieved the best value of fitness function,

namely p∗
i (called local best). This value can be exploited by neighbours to change

their behaviour. In fact, assuming the possibility of a global communication between

the particles, each of them can gather the positions p∗
j of other team-mates where they

have detected their best fitness value. Therefore, the best value p+
i of all the particles

can be defined as global best. The propagation of p+
i through the swarm depends on

communication topology, thus it may happen that non-communicating particles have

temporarily different values. Moreover, each agent can use the best current fitness

value of its neighbours p×

i (called neighbourhood best) as another term to define its

24

3.2 Background on Particle Swarm Optimization Algorithm

pi,x(k) p∗i,x(k) p+i,x(k) p×i,x(k) pi,x(k + 1)

pi,y(k)

p∗i,y(k)

p+i,y(k)

pi,y(k + 1)

p×i,y(k)

x

y

pi(k)

wivi(k)

ω×

i (k) ∆t

ω∗

i (k) ∆t

ω+
i (k) ∆t

pi(k + 1)p+
i (k)− pi(k)

p+
i (k)

p∗
i (k)− pi(k)

p∗

i (k)

p×

i (k)− pi(k)

p×

i (k)

Figure 3.3: Original PSO algorithm applied to particles moving in a 2D environment.

behaviour. Fig. 3.3 clarifies this concept in a 2D space.

In conclusion, at each iteration of the algorithm, the behaviour of each particle is de-

fined by a proper function made of three factors: p∗

i (the local best), p+
i (the global

best), and p×

i (the neighbourhood best). From these considerations, it follows that

the communication topology chosen to route information among the particles is an

important feature able to drastically change the behaviour of the whole swarm. There-

fore, it has to be carefully chosen. There are many works on the importance of swarm

topological configurations [27, 28]. As an example, in case of a static communication

topology, the contribution of p+
i generates a quite static behaviour. Therefore, it is

not guaranteed that the search space is fully and properly explored. As a matter of

fact, in this case the movements of each particle must be somehow limited in order to

remain connected to the predefined neighbours. The consequence is that the search

possibilities also become limited. It follows that this approach could drive the system

to a local minimum and thus to a local optimal solution. Furthermore, if the chosen

static communication topology has not enough connections, each agent could even have

a different value for p+
i since the data could not be updated properly. In this case, the

swarm could eventually reach dispersed configurations. The ring graph depicted in

Fig. 3.4a is an example of a static communication topology where each agent chooses

a well defined neighbour, always keeping the same connections.

In order to avoid these problems, we have assumed a dynamic communication topology

that depends on inter-particle distances. Each particle can move without constraints in

25

3_swarm_intelligence/figures/PSO_standard_example_2.eps

3. SWARM INTELLIGENCE

R1

R2

R3

R4

R5

R6

R7

R8

(a)

R1

R2R2R2

R3

R4

R5R5
R6

R7R7R8∆

(b)

Figure 3.4: Examples of a 2D communication graph in case of ‖P‖ = 8 with ∆i = ∆,

i = 1 . . . 8: a ring graph, 3.4a, and a ∆-disc graph, 3.4b.

the search space and can communicate with any other neighbour in its communication

range. In this way we have obtained a better exploration of the search space and a

faster update of data related to the environment. If a particle has better data on the

environment, its neighbours automatically tend to aggregate around it to reach the

best available position (and solution).

Communication graphs, whose topology depends on inter-agents distance, are usually

addressed as ∆-disc graphs, see Fig. 3.4b. This kind of topology is typically applied to

2-D networks [29]. With abuse of notation we have addressed distance-based commu-

nication topology as ∆-disc graphs also in case of agents defined in m > 2 dimensions.

To this purpose, we have defined the neighbour-set of the ith particle as the set of all

the particles whose distance from pi is smaller than a predefined threshold ∆i

Ni =
{
j ∈ P : ||pi − pj|| ≤ ∆i

}

where || · || computes the length of a vector. At the kth iteration of PSO algorithm, the

state of each particle is updated as follows

vi(k + 1) = ξ0
(
wivi(k) + ω∗

i (k) + ω+
i (k) + ω×

i (k)
)

(3.1)

pi(k + 1) = pi(k) + vi(k + 1) ∆t (3.2)

where wi is a scalar constant that represents the inertia [30] of the particle, ξ0 is a

parameter called constriction factor [31] (introduced to avoid the dispersion of the

26

3_swarm_intelligence/figures/ring_example.eps
3_swarm_intelligence/figures/delta_disk_example.eps

3.3 Application of the Particle Swarm Optimization Algorithm

particles), wivi(k) is addressed in literature as persistence and represents the tendency

of a particle to preserve its motion direction; ∆t is the simulation time step. The terms

ω∗

i (k), ω
×

i (k) and ω+
i (k) represent historical and social contributions to the control

action and they are defined as

ω∗

i (k) = φ r∗i (k) (p∗

i (k)− pi(k))/∆t

ω+
i (k) = φ r+i (k) (p+

i (k)− pi(k))/∆t

ω×

i (k) = φ r×i (k) (p×

i (k)− pi(k))/∆t (3.3)

The first term represents the contributions to the velocity given by the best individual

value of the self particle. The second and third elements represent the swarm and

the neighbourhood contribution respectively. Each term is a vector attracting each

particle towards the corresponding point into the search space. The parameters r∗i (k),

r+i (k) and r×i (k) are usually selected as uniform random numbers in [0, 1] and they

are computed at each iteration of the algorithm to give a range of randomness to the

particle’s behaviour. The parameter φ is used to modulate the maximum influence of

this random behaviour. Because of its importance in tuning PSO parameters, the value

of φ has been determined in literature by using many methods, see e.g. [32], often with

empirical approaches as in our cases. As a matter of fact, after many simulations and

considering in particular the capability of the swarm to overcome obstacles without

loosing any particles, we have set φ = 2 for the algorithm described in Chp. 4 and

φ = 3.5 for the algorithm described in Chp. 5. The motivations for the choices on

parameters’ values and the related simulations are presented in Sec 4.3 and 5.3.

3.3 Application of the Particle Swarm Optimization Al-

gorithm

Two applications of the PSO on Unmanned Ground Vehicles (UGVs) and Autonomous

Underwater Vehicles (AUVs) are presented in the next two chapters in both cases to

drive a robotic swarm in a-priori unknown environments. In the first application the

algorithm has been designed to drive a classic differential wheeled robot swarm, while

in the second one it has been applied to underwater robots, which have been modelled

as under-actuated single thrust vehicles with four steering fins.

27

3. SWARM INTELLIGENCE

28

4

A Navigation Strategy for

Multi-Robot Systems Based on

PSO Techniques

A novel strategy with the aiming to control a group of mobile robots moving through

an unknown environment is presented. The proposed control strategy is based on a

modified version of the Particle Swarm Optimization (PSO) algorithm, and it has been

extensively validated by means of numerical simulations considering complex maze–like

environments and groups of robots with different numbers of units.

4.1 Introduction

As well known, the problem of driving a group of mobile robots through an unknown

environment from a starting area to a final one while avoiding obstacles has been widely

faced in literature on the basis of different classes of algorithms [33]. Among these, one

of the main approaches used to solve the problem, which are adopted by many popular

techniques, exploits the concept of virtual potential fields (VPFs). The comparison

between our technique, based on PSO, and VPFs seems to be useful because in au-

thor’s opinion among all the commonly used techniques, VPFs is the most close to

ours. Indeed, as described e.g. in [34], an attractive potential field is associated to

the target area, while repulsive potential fields are associated to the obstacles sensed

in the environment by the robots. The result is that the environment is perceived by

29

4. A NAVIGATION STRATEGY FOR MULTI-ROBOT SYSTEMS
BASED ON PSO TECHNIQUES

each robot as a landscape created by the combination of both static and time-varying

factors. In this landscape, valleys and peaks represent the global attracting and re-

pulsive zones respectively. Despite its versatility, virtual potential fields approach has

many drawbacks. First of all, the robots have to gather a huge amount of information

regarding obstacles, i.e. robots have to exchange many information to coordinate and

to reach the target area. Moreover, a typical problem that may arise is the presence of

local minima, i.e. areas in which robots are in deadlock situations. This problem has

been solved by introducing a new class of global potential fields, called social potentials

[35], that can ensure the convergence of the swarm to its final destination.

Another relevant aspect in the coordination of multiple robots is the definition of the

robot-to-robot interactions. As a matter of fact, as pointed out also in [36], by changing

the communication topology it is possible to improve the amount of information that

each robot can exploit in order to achieve a predefined goal.

The technique presented in this chapter solves these problems by using a very limited

exchange of data, a dynamic fitness function, and a free communication topology (cf.

Sec. 3.2). The proposed approach for the control of a swarm of robots adopts a meta-

heuristic algorithm based on the Particle Swarm Optimization (PSO) (cf. Sec. 3.2).

As a matter of fact, this technique has some interesting features that can be exploited

for the guidance of a swarm of robots, such as its reliability, its intrinsic simplicity

and the relatively small amount of information needed to create the desired emergent

behaviours. The PSO approach was originally developed in 1995 [22] to study social

interactions and it was initially inspired by flocks of birds. In literature, many mod-

ifications to the original PSO algorithm have been proposed in order to improve its

efficiency, such as in [30] where a parameter called inertia has been introduced to pre-

serve the motion direction of the particles. More recently, PSO algorithms have been

applied to path planning for robots, as in [37] or [38], where a multi-objective cost

function has been used. An exhaustive analysis of publications on PSO can be found

e.g. in [25].

This chapter is organized as follows: the modified version of the PSO is introduced

in Sec. 4.2. The results of the simulations, used to validate the presented approach, are

analysed in Sec. 4.3. Conclusions and future work are reported in Sec. 4.4.

30

4.2 Improving the PSO Algorithm

αi,13
θi

xi

yi

ρi

x

y

b1

b2

b3

b4

b5
b6b7b8

b9

b10

b11

b12

b13

b14

b15
b16 b17

b18

Figure 4.1: Kinematic model of the robots: the black dot identifies the robot’s front,

[b1 − b18] are the bumpers, and αi,j is the angle of the j-th bumper.

4.2 Improving the PSO Algorithm

The algorithm presented has been developed in order to drive a swarm of robots Ri, i =

1, . . . , n moving in unknown planar environments. To this purpose, we have considered

a group of differential-wheeled robots (see Fig. 4.1) whose kinematics is given by the

following equations

xi(k + 1) = xi(k) + ui(k) cos(θi(k))

yi(k + 1) = yi(k) + ui(k) sin(θi(k))

θi(k + 1) = θi(k) + ωi(k) ∆t

where ui(k), ωi(k) are respectively the forward and the steering control velocities of the

robot during the time step [k, k + 1]. Two problems need to be solved in order to apply

the PSO algorithm to the navigation of a robotic swarm: how to match each particle

to a single robot and how to match the search space to the environment surrounding

the swarm.

31

4_paper02/figures/robot_PSO_3.eps

4. A NAVIGATION STRATEGY FOR MULTI-ROBOT SYSTEMS
BASED ON PSO TECHNIQUES

4.2.1 Matching PSO Agents with Physical Robots

As PSO algorithm considers each agent as a single integrator in x, y coordinates (i.e. it

calculates a velocity vector vi(k) ∈ R
2 without taking into account robot’s kinematics),

the robot exploits the data pi(k + 1) = [pi,x(k + 1), pi,y(k + 1)]T given by the PSO as

a target for its movements. Since we are dealing with robots moving on a plane surface

and it is pi(k) = [pi,x(k), pi,y(k)]
T for Ri, the control input ui(k + 1), ωi(k + 1) are

computed as

ui(k + 1) = Ku|vi(k + 1) ∆t|

ωi(k + 1) = Kω atan2(yδpi ,
x δpi) ∆t

where yδpi = pi,y(k + 1) − pi,y(k),
xδpi = pi,x(k + 1) − pi,x(k)) and Ku,Kω are two

proper constants. In particular, we have assumed that the velocities of the left and

right motor (νL and νR respectively) are saturated at νmax, thus umax = rνmax and

ωmax = 2umax/d where r is the radius of the wheels and d is the distance between them.

We have set Kω ≫ Ku in order to favour the turning–on–the–spot behaviour of each

robot. In practice, when the control actions are calculated, the robot starts turning on

the spot and it moves slowly forward, then it accelerates only when it is almost aligned

with the desired direction and it stops when it reaches the target, or detects a collision.

Moreover, we have supposed that each robot knows its own position with respect to a

global inertial frame.

4.2.2 Matching the Search Space to the Environment

This problem has been solved by defining a proper fitness function embedding not only

the optimization problem but also the obstacle avoidance. The fitness function can be

described as the distance between two points ag and ai belonging to a 3D space called

fitness map. This map is defined by adding a third component z to the standard x, y

coordinates of the robot in the arena. In this manner, the position pi = (xi, yi) of

the ith robot in the arena has a corresponding point ai = (xi, yi, zi) in the map. The

coordinate zi represents, as described in the following, the cost of point pi in terms

of robot perception of the environment. In fact, the coordinate zi is computed by a

function Z(pi, k,C
k
i) ≥ 0 (see eq. (4.3)) that, roughly speaking, is a combination of

Gaussian functions related to the distance of the robot from known obstacles.

32

4.2 Improving the PSO Algorithm

Ri

RjRh
ci

Obstacle

∆i

Figure 4.2: Example of broadcasted data for a collision. The dash-dotted circumference

shows the communication area of robot Ri while dashed lines represent the inter-robot

communication network.

In the presented PSO–based coordination algorithm, each robot of the team, flock-

ing toward a common predefined global target (or goal), positioned in pg = (xg, yg)

and corresponding to ag = (xg, yg, 0) in the fitness map, evaluates the following fitness

function

f(pi, k,C
k
i) = γi |ag − ai(k))| (4.1)

where the parameter γi can be tuned to modify the relevance given by each robot to

the target point. The z component of ag is always zero, so that the target point pg

defines the minimum value of the fitness function.

Another important aspect has to be considered in order to apply the PSO ap-

proach to a robot swarm: the standard PSO algorithm does not consider agents with

physical properties or constraints. Therefore, with the purpose of defining an algo-

rithm that allows agents (i.e. robots) to navigate in an unknown environment while

avoiding obstacles, passing through narrow passages and preserving connectivity, we

have proposed two modifications to the PSO algorithm. These modifications concern

the obstacle avoidance capability and a modified social interaction between neighbour

particles, named neighbours’ aggregation vector.

33

4_paper02/figures/PSO_graph_obstacle.eps

4. A NAVIGATION STRATEGY FOR MULTI-ROBOT SYSTEMS
BASED ON PSO TECHNIQUES

4.2.3 Obstacles and Local Minima Avoidance

Since PSO was originally defined as an algorithm to drive particles in a virtual m-

dimensional environment, the case of agents with physical properties was not consid-

ered. In our case, as we are considering real robots, we must take into account that they

have a not-null radius (see Fig. 5.1a) and that they can possibly collide with obstacles

and teammates. In order to deal with these constraints, we have considered each robot

equipped with eighteen bumpers evenly spaced on its perimeter. Moreover, in case a

collision is detected, its position is broadcasted to teammates. If we suppose that the

robot Ri detects a collision, as depicted in Fig. 5.3c, the position of the contact point

ci,h = [xc,i, yc,i]
T is computed as

xc,i = xi + ρi cos(αi,m + θi)
yc,i = yi + ρi sin(αi,m + θi)

where ρi is the radius of the i-th robot, αi,m is the angle of the m-th bumper (see also

Fig. 5.1a), and h ≥ 0 is a label that uniquely identifies the collision point. Moreover,

the time step k0h at which a collision h is detected is saved. Let us remark that, as long

as robots do not have any knowledge of the environment, different ci,h could correspond

to the same obstacle. More formally, considering for simplicity the 2D case, let us define

O ∈ R
2 and Ri ∈ R

2 as the set of points of the plane that are part of an obstacle and

of a robot, respectively. We can then define the set of collisions detected by Ri up to

the k-th step as

Cki :=
{

ci,h ∈ R
2 : ci,h = (O ∩ Ri) ∧ (k − k0h) ≤ k̃

}

h ∈ [1..ni(k)]
(4.2)

where k̃ represents the lifetime of the detected collisions and ni(k) is the total number

of collisions detected by the i-robot from the beginning of the simulation until the time

step k. Namely, eq. (4.2) states that a point of the plane can be considered as a collision

point for the i-th robot at time k if there is at least an intersection between the set of

points of the robot and the set of points of the obstacles. In order to include obstacle

avoidance in the fitness function, the function Z used to compute the fitness map is

defined as

Z(pi, k,C
k
i) = β

∑

ci,h∈C
k
i

Θ(k, k0h) g(|pi − ci,h|, σq) (4.3)

34

4.2 Improving the PSO Algorithm

where β is a proper parameter, Θ(k, kh0) is a forgetting factor for detected collisions,

g(·) is a Gaussian function. The forgetting factor Θ(·) has been introduced in order to

decrease in time the effects of an obstacle. This introduction is due in consideration of

the fact that, when robots move in the environment, the obstacles earlier detected are

probably already far from them, consequently the related stored collision data have a

minor probability to be helpful in real time obstacle avoidance at kth step. For k ≥ k0h,

it is defined as

Θ(k, k0h) =

λ

k − k0h + 1
if (k − k0h) ≤ k̃

0 otherwise

where k̃ is defined in eq. (4.2). In our case we set λ = 1 and k̃ = 500. The term

g(|pi − qj |, σq) is a normal Gaussian distribution defined as

g(|pi − qj |, σq) =
1

σq
√
2π

e

−|pi − qj |2
2σ2q

where the variance σq is used to shape the influence of a collision on its surrounding

area. This way, the function (4.3) defines a map shaped with ‘peaks’ and ‘valleys’

generated by collisions. When two robots are within the communication range, the

relative collision sets Cki are exchanged, and each robot merges its information with

those of the other one. In this manner, by sharing information about detected collisions,

a collective memory is introduced able to faster drive agents towards the target while

avoiding obstacles.

However, the obstacle avoidance technique defined by using (4.3) is not sufficiently

fast for avoiding local minima in real time. Indeed, the fitness function takes into

account obstacles, but the detected collisions do not directly affect the robot’s motion

and therefore a considerable amount of time could be necessary to move a robot away

from critical zones. In order to solve this problem, a technique inspired by the dynamic

window approach [39] has been applied. In particular, as depicted in Fig. 4.3a and

similarly to what described in [40], we have assumed that each robot can project around

itself a probability curve that depends on the obstacles detected by on board sensors.

Thus, each robot computes the relative angle ϑo,i where the probability of colliding

with an obstacle is minimal

ϑo,i = min(ϕo,i), ϕo,i =

Nb∑

h=1

bh g(β, σh,i, αh,i) (4.4)

35

4. A NAVIGATION STRATEGY FOR MULTI-ROBOT SYSTEMS
BASED ON PSO TECHNIQUES

ϑo [rad]
-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

P(ϑ0)

b1 b5

b6

b7 b17

b18

ϑo,i

(a) Probability curve related to (4.4).

Obstacle

Obstacle

θi

xi

yi

pg + po,i(k)

po,i(k)

pg

x

y

b1

b5
b6b7

b16 b17
b18

(b) Escape windows technique.

Figure 4.3: Example of escape window computed by considering obstacles detected by

bumpers {b17, b18, b1} and {b5, b6, b7}.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

where β ∈ [−π . . . π], bh = 1 if the hth bumper detects a collision and bh = 0 otherwise,

and g(·) is the normal Gaussian distribution centred on µ = αh,i defined by

g(β, σh,i, αh,i) =
1

σh,i
√
2π

e

−

(β − αh,i)
2

2σ2h,i

where the variance σh,i can be used to define how each bumper affects robot’s per-

ceptions. Once the value of ϑo,i in (4.4) is determined, a virtual target ao,i(k) =

[xo,i(k), yo,i(k), 0]T is temporarily defined, with

xo,i(k) = xi(k) + ̺i cos(ϑo,i(k))
yo,i(k) = yi(k) + ̺i sin(ϑo,i(k))

where ̺i = |pg−pi(k)| is the distance between the actual position of the robot and the

36

4_paper02/figures/gauss_obstacle_2.eps
4_paper02/figures/PSO_obstacle_window_2.eps
4_paper02/figures/scenario_1.eps
4_paper02/figures/scenario_2.eps
4_paper02/figures/scenario_3.eps
4_paper02/figures/scenario_4.eps

4.2 Improving the PSO Algorithm

target area’s center. The fitness function in (4.1) is then modified as (see Fig. 4.3b)

f(pi, k,C
k
i) = γi|(ag + ao,i(k)) − ai(k)|

4.2.4 Neighbors Aggregation Vector

Bearing in mind the things that have been presented in Chp. 3.2, especially the neigh-

bours contribution in (3.3), the last main modification introduced respect to the stan-

dard PSO algorithm is the Neighbours Aggregation Vector (NAV), indicated as ω⊗

i (k).

This term replaces ω×

i (k) in (3.1) and it is inspired by the idea that if the team-mates

move in a certain direction, maybe that direction is the right one [6]. Indeed, the term

ω⊗

i (k) modifies the robots’ behaviour by taking into account the best solution found

by their neighbours, and is defined as

ω⊗

i (k) = φ · r⊗i (k)
∑

pj∈Ni

p×

j (k) − pi(k)

∆t
(4.5)

where r⊗i (k) ∈ [0, 1] is a random number updated at each iteration and φ a proper

tuning value. In a nutshell, (4.5) represents a randomly weighted barycentre of the

position where the neighbours of Ri have detected their neighbour best at the kth time

step.

4.2.5 Dynamic Constriction Factor

Moreover, the parameter ξ0 in (3.1) is replaced by a dynamic constriction factor [31]

that depends, for each robot, on the mean value of the number of collisions memorized

by the robot itself in the last 3 time steps. If we assume Dj
i ⊂ Cki where j ∈ [k− 2, .., k]

the constriction factor is defined as

ξi = ξ0(1 +
1

3

k∑

j=k−2

‖Dj
i‖) (4.6)

In practice, the term ξi in (4.6) is a sort of collision trading that increases if a high

number of collisions is detected, thus changing robot’s behaviour and pushing it away

from critical zones. It follows that in environments with few obstacles robots flock

clustered, while in case of many constraints robots are forced to move sparsely.

37

4. A NAVIGATION STRATEGY FOR MULTI-ROBOT SYSTEMS
BASED ON PSO TECHNIQUES

To conclude, with the proposed modifications, the standard PSO algorithm defined

in (3.1) and (3.2) is rewritten as

vi(k + 1) = ξi
(
wivi(k) + ω∗

i (k) + ω⊗

i (k) + ω+
i (k)

)

pi(k + 1) = pi(k) + vi(k + 1) ∆t

4.3 Simulations and Comments

The presented PSO algorithm has been widely tested in our simulated environment

J.U.S.E. [41], better described in Sec. 9.1. In particular, we have considered a 2×2 [m]

virtual arena where the starting and goal areas are placed in non-trivial positions, i.e.

with at least an obstacle between them. Robots have been modelled as real differential-

wheeled robots with radius 0.05 [m], maximum speed umax = 0.35 [m/s], wmax =

7 [rad/s] and communication range ∆ = 0.4 [m]. Obstacles have been modeled as

rectangles of arbitrary length and width of 0.05 [m], and a sample time of ∆t = 0.01[s]

has been selected for the controller.

To enlighten the algorithm’s performances, we have considered different scenarios,

see figure-set 4.4a–4.4d. The starting area has been placed in the upper-left corner

while the goal area is at the opposite corner, except in the case of Fig. 4.4a, where the

target is in the center of the arena.

In order to gather statistical results about the performance of the proposed PSO

algorithm in driving robot swarms, we have performed 20 simulations, executed in the

arena depicted in Fig. 4.4c using both standard PSO and PSO–NAV. The results are

shown in Fig. 4.4 where the mean square error (MSE) and standard deviation (STDEV)

for the data set provided by a team of 5 robots are reported. Note that the distance

error between each robot and the final goal area does not converge to zero if standard

PSO is used. Vice versa, by using the NAV, the system converges to a value close to

zero. Due to robots’ physical dimensions, the value of the MSE cannot be null because

robots aggregate around the final point. STDEV demonstrates that despite the random

parameters introduced in (3.1)–(3.2) and (4.5), the algorithm is able to adapt and to

drive the robots to the goal area. Moreover, let us remark that the Z–shaped maze

in Fig. 4.5 would not allow to either classic potential field algorithms or original PSO

algorithm to reach the target area since, before moving toward the final location, robots

38

4.3 Simulations and Comments

*5y

NO NAV

NAV

Time [s]

-50 0 50 100 150 200 250 300

0

5

10

15

20

25

30

35

40

45

Figure 4.4: MSE and STDEV of distance error between each robot’s position and the

goal both with and without NAV. Data gathered over 20 simulations on Scenario 3.

have to move temporarily away from it. For this reason, PSO-NAV increases swarm’s

dispersion to overcome local minima as shown in Fig. 4.4 at about T=100 [s]. This

is related to the choice φ = 2: lower values make the swarm too compact and unable

to overcome obstacles (and local minima), while higher values makes the swarm to

free and thus not able to converge after their exceeded. Moreover, notice that the

considered scenarios do not have the same complexity. Scenario 3 and 2 are the most

difficult. In scenario 2, the obstacle located in the center of the arena decreases the

NAV contribution and the algorithm’s performances are close to classical PSO.

Fig. 4.5 shows a simulation involving 4 robots in Scenario 3. We have considered

swarms with a number of robots ranging from 3 to 12. From the case studies, it results

that swarms with less than 3 robots are usually not able to perform the given tasks

in complex scenarios, while more than 10-12 robots create too many collisions and the

algorithm fails to maintain the group compact. In this case, the swarm breaks up into

small groups that reach the target autonomously. Probably, with larger arenas, the

number of robots necessary to have a fully functional swarm would be greater but in

our environment, the simulations suggest that 4-6 robots are the best trade-off. Finally,

39

4_paper02/figures/statSIM_s6_510_01.eps

4. A NAVIGATION STRATEGY FOR MULTI-ROBOT SYSTEMS
BASED ON PSO TECHNIQUES

(a) t = 5 s (b) t = 50 s (c) t = 170 s (d) t = 270 s

Figure 4.5: Scenes of a simulation with 4 robots in Scenario 3.

we want to remark that only a very limited set of data is exchanged by robots during

their rendez-vous: the three vectors p+
i , p

×

i , p
∗

i , and the set Cki .

4.4 Conclusions and Future Work

In this chapter, a novel version of the classic Particle Swarm Optimization algorithm

has been proposed in order to drive a group of mobile robots in unknown environments

from a starting point to a final one. In particular, PSO algorithm has been modified in

order to consider robots’ physical constraints, i.e. their dimensions and their interaction

with the environment. Mobile robots have been modelled as differential-wheeled robots,

able to access their own position, to broadcast data to neighbours and to sense the

environment by using bumper sensors. The performances of this modified version of

PSO algorithm have been validated using the data collected in several simulations,

where different groups of robots have been simulated in many maze-like environments.

Future work will include experiments on real robots such as the one described in [41]

and in Sec. 7.1. Moreover, the application of this algorithm to more complex systems

as groups of heterogeneous robots (e.g. groups of robots including both ground and

aerial vehicles) and in more complex environments (e.g underwater) will be considered.

40

4_paper02/figures/scenario6_1.eps
4_paper02/figures/scenario6_2.eps
4_paper02/figures/scenario6_4.eps
4_paper02/figures/scenario6_6.eps

5

A Distributed Multi-Level PSO

Control Algorithm for

Autonomous Underwater

Vehicles

This chapter presents a distributed control technique based on the Particle Swarm Op-

timization algorithm and able to drive a group of autonomous robots to a common

target point in unknown environments. We have considered in particular the case of

underwater vehicles. The algorithm is able to deal with complex scenarios, frequently

found in benthic exploration e.g. in presence of obstacles, caves and tunnels. More-

over, the algorithm is able to consider the case of a mobile target. The data are

asynchronously exchanged between the vehicles and dynamic communication topolo-

gies have been considered. Simulation results are provided to show the features of the

proposed approach.

5.1 Introduction

In this chapter, a navigation control technique able to drive a group of autonomous

underwater vehicles (AUVs) is presented. Main features of this technique are its dis-

tributed structure and intrinsic robustness with respect to the presence of unknown

obstacles, tunnels and dead ends, and also with respect to the possibility of loosing

41

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

one or more units. Moreover, the case of a mobile final target has also been consid-

ered. This technique is based on the fairly recent theory of Swarm Intelligence, which

takes into account the study of self-organizing systems [17]. This means that the action

expressed by the whole group results from the combination of coordinated actions by

individual entities. Initially, simple motion rules have been defined from the study of

these actions [6]. More recently, more complex techniques have been introduced, such as

the optimization algorithm initially considered for the development of our navigation

technique. As presented in section 3.2, the Particle Swarm Optimization algorithm

(PSO) [23, 24] is a meta-heuristic algorithm biologically inspired by flocks of birds.

It is a non-gradient and direct-search based optimization strategy, in which a set of

N possible solutions (namely a population of particles) is iterated in parallel. They

search for the best solution in a multi-dimensional space (or domain). As a matter of

fact, this technique has some interesting features that can be exploited in the guidance

of a swarm of robots, such as its reliability and flexibility, its intrinsic simplicity, the

robustness to failures and the relatively small amount of information needed to create

desired emergent behaviours. PSO approach was originally developed in 1995 to study

social interactions, [22]. Later, many modifications to the original formulation of the

algorithm have been proposed in order to improve its efficiency [25] and, more recently,

PSO algorithms have been applied to robot navigation [42], [43] and path planning [38].

PSO has also been used in a hybrid fashion with other bio-inspired techniques: Genetic

Algorithm (GA) [44] and Artificial Neural Network (ANN) [45]. Concerning control

strategies for autonomous underwater vehicles, many papers have been presented in

the literature, see e.g. [46, 47]. Some applications of the PSO algorithm on AUVs can

also be found e.g. in [48] and [49], although probably the most interesting modification

to original PSO algorithm, useful to guide a swarm of robots, has been only recently

introduced: the asynchronous and completely decentralized features described e.g. in

[50], where each particle evaluates PSO rules autonomously and a dynamic communi-

cation topology is considered [27]. Recent applications of these features are presented

in e.g. [43, 51, 52, 53]

A novel improvement of the algorithm is presented in this chapter, starting from

its asynchronous version in order to use it in the navigation of underwater vehicles.

The purpose is to make the group of robots suitable for seabed and cave exploration,

42

5.2 The Algorithm

being simultaneously able to avoid collisions with obstacles and team-mates. Navi-

gation algorithm is completely decentralized and structured in three levels. The two

upper levels, which are directly based on PSO, provide navigation way-points and ob-

stacle avoidance respectively. The third one is devoted to AUV control with standard

techniques. Each agent is autonomous and it exploits not only its own knowledge of

the environment, but also the data received from reachable neighbours. A particular

feature of this technique is the addition of obstacle avoidance. Unknown environment

barriers, perceived by vehicle sensors, are displayed by the algorithm as constraints into

the search space. During the navigation, agents exchange data about best locations

and encountered obstacles. The sharing of these information creates a kind of collec-

tive memory that is used in the selection of future way-points towards final destination.

This procedure runs asynchronously and in an intermittent fashion, depending on a free

communication topology which is a function of inter-agent distances.

This chapter is organized as follows: the developed PSO technique is described in

Sec. 5.2 while the simulations used to validate our approach are presented and dis-

cussed in Sec. 5.3. Final conclusions and future work are reported in Sec. 5.4.

5.2 The Algorithm

The presented algorithm has been developed with the aim to drive a swarm of under-

water vehicles Vi, i = 1, . . . , n moving in unknown 3D environments. Each vehicle is

autonomous: this means in particular that a local version of PSO algorithm is executed

individually by each agent, and that all the decisions are made on the basis of the data

locally available at the kth step. In order to apply PSO algorithm to AUV 3D naviga-

tion, there are some problems to be solved: the matching of each particle to a single

vehicle; the matching of the PSO search space with the environment surrounding the

swarm and the manner to embed obstacle avoidance capabilities; local minima avoid-

ance and the transformation of exchanged information, collected by each vehicle, into

a unique collective map.

5.2.1 Matching Particles with Physical Vehicles

In this section, we describe the model of the vehicles considered in the PSO algorithm

(see also Sec. 3.2), the general control structure, and the matching between the mobile

43

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

Base
Fram

e
y0

x0

z0

Body Frame

xb

yb

zb

u

v

w

ω

ψ

θ

(a)

PSOnav

decentralized

PSOoav

standard

VCU

(b) (c)

Figure 5.1: In order to define AUV’s movements and to follow way-points, two different

reference frames are needed, namely the Body and the Base Frame. By exploiting VCU’s

input variables, PSO control algorithm is able to change the AUV’s attitude and speed,

providing underwater navigation.

robots and the particles of the algorithm.

5.2.1.1 Model of the AUV

Since our interest is mainly focused on the distributed control algorithm, we have taken

into account only the kinematic model of the vehicle, neglecting its dynamics as also

done in many other works in literature. We have defined a body reference frame bFi =

{xb,i, yb,i, zb,i} for each vehicle, and a common inertial (base) frame oF = {x0, y0, z0},
as shown in Fig. 5.1a (for the sake of simplicity, in the following the subscript i will be

neglected). Moreover, we have assumed that each vehicle is equipped with an engine

generating a linear velocity u along the xb direction, and with four fins that can change

the orientation of the vehicle itself with respect to oF . We have used RPY angles to

describe the orientation of the vehicle with respect to oF , as shown in Fig. 5.1a. This

way, the state of the vehicle can be defined by: the body-fixed linear velocity vector

bẋ = [u, v, w]T , the body-fixed angular velocity vector bω = [ω,ψ, θ]T and the three

RPY angles (see Tab. 5.1). The correspondence between velocity in body and inertial

frame is expressed by (see also [46])

ẋv =

ẋ
ẏ
ż

 = Rzyx(Θ,Ψ,Ω)
bẋ Γ̇v =

Ω̇

Ψ̇

Θ̇

 =
1

cΨ

cΨ sΩsΨ cΩcΨ
0 cΩcΨ −sΩcΨ
0 sΩ cΩ

 bω (5.1)

44

5_paper03/figures/nautilusWhiteRef01_ai.eps
5_paper03/figures/sys_block_diagram_ai.eps
5_paper03/figures/wpNav02.eps

5.2 The Algorithm

Table 5.1: Kinematic variables

Name Description Unit Name Description Unit

x Position with respect to x0 m u Linear velocity along xb m/s

y Position with respect to y0 m v Linear velocity along yb m/s

z Position with respect to z0 m ω Linear velocity along zb m/s

Ω Roll angle with respect to x0 rad w Angular velocity about xb rad/s

Ψ Pitch angle with respect to y0 rad ψ Angular velocity about yb rad/s

Θ Yaw angle with respect to z0 rad θ Angular velocity about zb rad/s

where

Rzyx(Θ,Ψ,Ω)=Rz(Θ)Ry(Ψ)Rx(Ω)=

cΘcΨ cΘsΨsΩ − sΘcΩ cΘsΨcΩ + sΘsΩ
sΘcΨ sΘsΨsΩ + cΘsΩ sΘsΨcΩ + cΘsΩ
−sΨ cΨsΩ cΨcΩ

is the matrix that represents the relative orientation of the two frames, and ca =

cos(a), sa = sin(a). Notice that this model presents a singular configuration if Ψ =

±π
2
rad: this is acceptable since the vehicles typically do not operate close to this

configuration. However a different representation, free of this kinematic singularity,

can be defined as in [54], where quaternions have been used. Notice also that, due to

the non-holonomic characteristics of the vehicle, velocities v and w are always null.

Finally, the inverse homogeneous transformation matrix between bF and oF is:

bTo =

[
oRT

b −oRT
b xv

0T 1

]

(5.2)

where oRb = Rzyx(Θ,Ψ,Ω). Control inputs available to drive the vehicle are engine

thrust, that in our model corresponds to the velocity u along xb, and the position of

the four fins. In particular (see Fig. 5.2), if ‘fin up’ (Fu), ‘fin down’ (Fd), ‘fin left’ (Fl),

and ‘fin right’ (Fr), represent the four fins, three fin configurations can be defined:

• α: Fu and Fd both rotated of an α angle on the right of vertical axis. This

produces a Yaw angle rotation of the vehicle;

• β: Fl and Fr both rotated of a β angle over the top of horizontal axis. This

produces a Pitch angle rotation of the vehicle;

• γ: all the fins are rotated on the left of the relative fin’s axis. This produces a

Roll angle rotation of the vehicle.

45

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

α

α

−α

−α

(a)

ββ

−β−β

(b)

γ
γ

γ
γ

(c)

Figure 5.2: Rear view of the AUV with directional fins in α, β, γ configurations.

We have assumed that the range of motion of each fin is bounded, i.e. α, β, γ ∈
[−0.26, 0.26] rad. Furthermore, when the vehicle is moving and fin positions are not

null, angular velocities are not null as well. We have modelled the relation between fin

positions [α, β, γ]T and angular velocities [ω,ψ, θ]T in bF with a (non-linear) function

bω = Kω u sin
(
[γ, β, α]T

)
(5.3)

where Kω is a proper diagonal gain matrix. In conclusion, taking into account that

control input consists in the vector τ = [u, α, β, γ]T and that velocities v and w are

null, the kinematic model of each AUV is given by (5.1) and (5.3).

5.2.1.2 General Structure of the Control System

On the basis of the results presented in [46], we have designed the vehicle’s low-level

control (the Vehicle Controller Unit (VCU)) as an autopilot that provides a point-to-

point navigation mode (see Fig. 5.1b). To this purpose, we have assumed that the

AUV state variables (see Tab. 5.1) are available, that a desired way-point bxV CUd =

[xd, yd, zd]
T and a desired velocity vector bẋV CUd have been assigned in the body-frame

(provided by PSO algorithm, see below). Then, VCU has to generate both the linear

speed u and the fin angular positions α, β, γ. Linear speed is computed using the

following simple control law

b ˙̂xv =
bẋV CUd +Kp (

bxV CUd − bxv) (5.4)

from which u = ||b ˙̂xv||. Kp is a proper constant (diagonal) matrix used to tune the

proportional term. The steering variables [α, β, γ]T are also computed on the basis of

46

5_paper03/figures/finsAlpha_ai.eps
5_paper03/figures/finsBeta_ai.eps
5_paper03/figures/finsGamma_ai.eps

5.2 The Algorithm

the desired position bxV CUd . In fact, with a simple transformation from Cartesian to

spherical coordinates given by

Ψd = atan2(yd, xd)

Θd = atan2(zd,
√

x2d + y2d)

ǫd =
√

x2d + y2d + z2d

(5.5)

azimuth (Ψd) and elevation (Θd) values are obtained and used to compute the desired

rotational velocities in bF as

ψ = kΨ (Ψd −Ψ), θ = kΘ (Θd −Θ) (5.6)

from which, by exploiting (5.3) and assuming ω = 0, it is finally possible to obtain fin

positions α and β useful to reach the given way-point as

[0, β, α]T = arcsin

(
1

u
K−1

ω [0, ψ, θ]T
)

Notice that it is not necessary to reach a specific final AUV orientation, but only to

reach the target. For this reason, the γ fin configuration, for the control of the Ω rota-

tion, has not been considered. The parameter ǫd in (5.5) is used by the algorithm as

an estimation of the remaining distance between the robot and the way-point target.

A way-point navigation test is depicted in Fig. 5.1c.

As described in Sec. 3.2, PSO algorithm considers each particle/unit as a single integra-

tor in x, y, z coordinates, i.e. it calculates a velocity vector vi(k) ∈ R
3 without taking

into account vehicle’s kinematic constraints deriving from its non-holonomic charac-

teristic. In order to solve this problem, we have developed an algorithm structured

into two levels, called PSOnav and PSOoav. They provide navigation and obstacle

avoidance respectively, see Fig. 5.1b. Each level is managed by a proper software agent

(later identify as SA).

Both levels’ agents run on-line in a decentralized fashion on each AUV and compute

their respective targets as detailed below. PSOnav has a distributed structure and each

SA
nav considers itself as a particle and the neighbor vehicles as other particles inside

its work-space. By exploiting the information given by sensors and team-mates, the

SA
nav computes its future position according to the PSO basic rules, see Sec. 3.2.

This position is taken as a temporary way-point xnavwp of the global path in order to

reach the final target. In the lower level, the PSOoav agent adopts the way-point xnavwp

47

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

provided by SA
nav as optimization target, and it tries to find the best way to reach

this point while avoiding obstacles (see next Section on obstacle avoidance). SA
nav

runs only when the previous way-point is reached by the vehicle. Instead, SAoav runs

continuously, in a real-time fashion, providing a series of better local positions over the

time, namely xoavwp . Notice that the unit computes both the PSOnav and the PSOoav

in an asynchronous and completely decentralized fashion. Finally, the way-point xoavwp

is transformed from the base frame oF to the body frame bF by using (5.2) and it is

exploited by the unit’s VCU as the desired bxV CUd in (5.4) and (5.5). When the vehicle

reaches xnavwp , the loop starts again until final target is reached.

5.2.2 Matching the Environment with the Search Space

The solution of this problem is not easy because in real space there are physical obstacles

that need to be mapped, creating therefore a constrained search space. We will show

how the search space on which PSO algorithms work can be modified to embed the

detected obstacles, and how SA
oav exploits these modifications for obstacle avoidance.

As first step, it is necessary to define the fitness function used to solve optimization

problems.

The fitness function used in both PSO levels is a simple distance function between two

points in a 3D space, i.e.

f(pji ,p
j
goal, k) = γji ‖pjgoal(k)− p

j
i (k))‖, i = 1, . . . , nj j = nav, oav

where the parameter γi can be tuned to modify the relevance given by each parti-

cle/agent to the target point. Considering PSOnav algorithm, the parameter pi =

[xi, yi, zi]
T is the position of the ith–AUV (Vi), while pgoal is the global target that the

swarm must reach. Notice that from VCU’s point of view pi = xv. The parameter

nnav is equal to ith–AUV’s neighbours. On the other hand, in case of PSOoav , the

parameter pi = [xi, yi, zi]
T identifies the position of the ith scout particle used by the

algorithm to perform obstacle avoidance, pgoal is the way-point given by PSOnav and

noav is the number of scout particles.

5.2.2.1 Obstacle Detection

In the simulated environment, we have used for simplicity spherical obstacles Oj, where

j ∈ [1 · · · no]. Moreover we have assumed that each vehicle is equipped with a spherical

48

5.2 The Algorithm

(a) (b) (c)

Figure 5.3: A circular collision area is produced when an AUV detects an obstacle (5.3a),

such as the related virtual patch (5.3b) created as constraint, in the search space. Each

virtual patch is defined by a 2D-Gaussian probability distribution that helps SAoav in the

computation of PSOoav.

proximity sensor device that detects obstacles in surrounding space. When a vehicle Vi

detects an obstacle Oj , it appends that the sensor sphere Si intersects it in a circular

section Ci,h = Si ∩ Oj (Fig. 5.3a). This section, centred in (xp0, y
p
0), is used to create a

virtual patch PC

i,h (Fig. 5.3b) in the search space of SAoav with the same positions of

Ci,h. Indexes i, h represent respectively the vehicle which detects the collision and a

time-marker that identifies each patch during the exchanging information phase later

explained. The patch data-set stored in unit’s internal database consists of several

elements: the point (xp0, y
p
0), the set of angles [Pitch, Yaw] of the section’s orientation

(respect to oF) and the collision’s probability data. Indeed, each patch is characterized

by a collision probability function, described with a Gaussian distribution (see Fig. 5.3b)

as follows

f(xp, yp) = A e
−

(xp − xp0)
2

2σ2xp
+
(yp − yp0)

2

2σ2yp

where xp, yp are the coordinates of the points belonging to the intersection plane which

incorporates Ci,h. Considering a probability threshold cth = 0.5, we have tuned Gaus-

sian function’s parameters σxp , σyp and A, in order to adapt the function to the PC
i,h

border, in correspondence of cth. This way, it has been created a plateau of values

whose collision is certain and thus we have considered the points with coordinates

xp, yp, belonging to the patch PC
i,h whose value is f(xp, yp) ∈ [0.5 . . . 1], as valid col-

lision points. In this fashion PC

i,h becomes a virtual wall in the search space. The

procedure is repeated for all the obstacles encountered. Roughly speaking, we can

49

5_paper03/figures/collision_sec.eps
5_paper03/figures/virt_patch01.eps
5_paper03/figures/virt_patch02.eps

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

consider this procedure like throwing a balloon full of fluorescent paint against a wall

in the dark. After several launches (i.e. collision detections) a virtual wall made of

fluorescent patches appears. So obstacles become visible and it is possible to plan the

right path (Fig. 5.4b).

5.2.2.2 Obstacle Avoidance

As we have explained before, obstacle avoidance is directly performed by the lower

PSO control level. Each patch is created inside the SA
oav search space and this

modifies AUV’s movements as follows. SA
oav computes PSOoav algorithm by using

noav particles called scout-particles. When it generates the next particle positions

poavi (k + 1), i = 1 . . . noav exploiting (3.2), a proper validation procedure checks if the

segments that connect current with future particle positions cross an existent patch. If

so, the algorithm recovers collision values of all the cross-points from the related patch

data-sets. New positions are considered valid if the collision probability values of the

related cross-points are below cth. Only valid particles are considered by SA
oav that

performs PSOoav computation over nk = 10 iteration steps. Among all the positions

reached by the particles during this session, the one with best fitness value is selected

as global “low-level best” (see Fig. 5.3c), that is useful to VCU’s way-point navigation.

The nk value has been empirically chosen as best trade-off between computational speed

and good results. During AUV’s flocking, many different collisions can be detected,

therefore the sum of all the patches
∑

i,h P
C

i,h creates a distributed wall structure that

limits particle movements in search space and AUV’s movements in real space. More-

over, during the flocking, team-mates are perceived like obstacles but AUVs’ positions

are shared in communication’s data-flows, so that a simple check on inter-vehicle dis-

tances, performed by connected neighbours, allows them to discard team-mates from

static obstacles. Other units are only considered by SA
oav to perform the on-line obsta-

cle avoidance but they are not stored in internal database. PSOnav also helps to avoid

obstacles: the same validation procedure that acts on next positions of the particles

belonging to PSOoav is exploited to select a valid high-level free-of-collision way-point.

Finally notice that SA
oav, basing its computation on scout particle’s always available

data, exploits a standard structure version of PSO algorithm, that is different from the

asynchronous and decentralized one of PSOnav.

50

5.2 The Algorithm

5.2.2.3 Local Minima Avoidance

The presence of local minima is always a problem because a single AUV or all the

swarm could remain stuck in the same position for a long time, loosing the possibility

to achieve final target. When a robot detects a possible local minimum, suggested by

the long time elapsed in the same position far from the target, a virtual spherical patch

PV

i,h is produced by the stuck AUV on its position. This patch affects the search space,

creating a virtual obstacle with the same benefit of the 2D patch previously described.

This way, the dangerous zone is avoided by the remaining team-mates and the good

result given by this position, in term of fitness value, is cancelled. So the agent possibly

entrapped in a local minimum can follow its better fitness values outside the virtual

patch area or it can be dragged out by the team-mates’ data contribution.

5.2.3 Exchanging Information

As already mentioned, from a global point of view, SAnav runs by using a completely de-

centralized version of PSO algorithm. This way each vehicle is completely autonomous.

In order to permit the algorithm’s correct behaviour, information exchanged between

vehicles is very important. As described in Sec. 3.2, the communication topology

adopted in this work allows agents to exchange data with any other close agents,

meanwhile distributing information on environment. Any information exchanged have

a time-stamp to identify them in temporal flow. Briefly we can sum up the set of

exchanged information between two rendez-vous agents as: 1) current positions of the

known AUVs; 2) individual global best value; 3) collision patch information. Taking

into account for example a two team-mate rendez-vous, respective current positions

recorded at each nk time step are exchanged and stored in a proper table with time-

stamp and vehicle’s owner number. Moreover, the two vehicles do not only exchange

their two data-sets but also past data-sets, deriving from previous exchanging with

other vehicles. This way a vehicle’s data can be viewed as broadcasted on vehicles’ net-

work established during every rendez-vous. As previously described, individual global

best value is provided by PSOnav algorithm of each vehicle during the flocking and it

is shared in the same fashion of position’s data. SAnav that receives this value, it uses

this p∗i data as a neighbour value useful to compute PSOnav. Data belonging to other

vehicles are updated whenever two or more vehicles have a match. The data managing

51

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

background routine computes the same sharing procedure on collision patches’ data.

Each patch individually collected by each AUV is shared with all the connected team-

mates. Update cycle is continuous and information run on established network. Finally,

the last procedure executed by control algorithm is the merging of all the received data,

in which each unit collects the most recent among the received data. To conclude, each

unit updates environmental information with “best zones” and team-mate positions.

Ideally, the updates of environmental data are broadcasted to the entire swarm and it

is possible to consider a sort of shared collective memory used by all the units. Notice

that a long-lived connectionless situation can produce a warp perception of the envi-

ronment by unconnected units and a delay on task accomplishment. In our simulations

we have detected that in order to reach the target point at least two agents must be

connected.

(a)
(b) (c)

Figure 5.4: Each AUV, detecting an obstacle, creates a shared constraint that helps the

other team-mates to find the best path, in order to achieve the final target.

5.3 Simulations

The presented PSO algorithm has been intensively tested in a Matlab 3D simulated

environment. In particular, we have considered an environment volume whose di-

mensions range in [30 . . . 300] [m3] and three different types of scenarios: a map with

obstacles randomly disposed (Fig. 5.5a), different simulated tunnels (Fig. 5.5b) and

caves (Fig. 5.5c). In order to maintain the simulated physical parameters closer to

real devices [55], each unit has been modelled as an ellipsoid whose dimensions are

52

5_paper03/figures/multiPatch02b.eps
5_paper03/figures/path-patch02.eps
5_paper03/figures/simCave02.eps

5.3 Simulations

[0.7 × 0.4 × 0.3] [m], maximum velocity umax = 5 [m/s], four fins with equal open-

ing speed wmax = 0.07 [rad/s], max fin’s opening angle δa = 0.26 [rad], sensor range

rS ∈ [5 − 25] [m] and communication range ∆ ∈ [10 − 50] [m]. A sample time of

∆t = 0.02 [s] has been selected for the controller. Notice that the virtual time step

∆tv perceived by the high-level agent SAnav is equal to 0.2 [s] due to the fact that the

computation session of PSOoav runs over nk = 10 time steps. The number of scout

particles noav = 5. The first scenario (e.g. Fig. 5.5a) has been created by using obsta-

cles modelled as spheres of arbitrary radius rO ∈ [0.5 · · · 5] [m] randomly deployed in

the middle of the testing volume. On the contrary, in the second and in the third ones

the sphere’s radius is fixed at rO = 2.5 [m] but the dimension of the built structures

has been changed. In the second scenario (e.g. Fig. 5.5b) a simulated tunnel has been

created composing a different number of spherical obstacles disposed along a spline.

The aperture radius of the tunnel rta in the different simulations varies in [4 . . . 8] [m].

The last type of scenario (Fig. 5.5c) tests the algorithm in a simulated cave whose

dimensions are WxHxD = [14, 10, 15] [m].

(a) (b)
(c)

Figure 5.5: The presented technique is suitable to drive the AUV swarm in different

scenarios, from the one with only dispersed obstacles to the heavily constrained one. The

target can also be mobile (5.5a.).

5.3.1 Statistical Results and Parameter Selection

In order to gather statistical results about the performance of the proposed PSO algo-

rithm, we have performed hundreds of simulations for each scenario. In each simulation

of the first scenario obstacles’ positions and dimensions have been changed. Despite of

53

5_paper03/figures/simFreeMap.eps
5_paper03/figures/simTunnel.eps
5_paper03/figures/simCave.eps

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

(a) (b) (c) (d)

Figure 5.6: All the figures represent the mean of the units’ distances between the respec-

tive start and goal areas. Statistical results for scenario 1 are depicted with respect to a

fixed and a mobile target (5.6a, 5.6b) while data related to scenarios 2 and 3 are presented

in 5.6c and 5.6d respectively.

this, it is possible to notice in Fig. 5.6a that AUVs are able to overcome obstacles and

achieve the target even in case the target is moving, as reported in Fig. 5.6b mobile

target velocity ṗnavgoal = [−4, 0, 0] [m/s]. The enlargement of the standard deviation in

the middle of the statistic graphs, describes the various path followed by the vehicles

to overcome obstacles. Fig. 5.6a shows the data related to ϕ = 3.5 in scenario 1, that

produces the best algorithm’s performances. This choice has been made on the basis

of the simulations made by changing ϕ = 1, 1.5, 2, depicted in Fig. 5.7a. From top to

bottom it is possible to notice how performances increase. When ϕ > 3.5 randomness

is too high, standard deviation increases and swarm’s behaviour is not controllable any

more, so units do not converge. This ϕ value has been adopted for all three scenar-

ios. We have considered swarms with a number of units ranging from 2 to 50. From

(a) (b) (c)

Figure 5.7: Swarm’s behaviour is closely related to parameter values and to environmental

conditions. As depicted in Fig. 5.7a the number of robots that achieved the target in

scenario 1 changes with the different values assumed by the ϕ parameter. From top to

bottom ϕ = 1, 1.5, 2. The same test has been made on scenario 2 changing tunnel’s radius

from rta = 4 (5.7b) to rta = 8 (5.7c).

54

5_paper03/figures/statPHI_FIX_target_02b.eps
5_paper03/figures/stat_MOB_target.eps
5_paper03/figures/stat_tunnel_01.eps
5_paper03/figures/stat_cave.eps
5_paper03/figures/statPHI_FIX_target_01b.eps
5_paper03/figures/stat_tunnel_02.eps
5_paper03/figures/stat_tunnel_03.eps

5.4 Conclusions and Future Work

these case-studies, it appears that in case there is only one vehicle, the target is not

reached even in simple scenarios, the information on the environment is too poor and

the random part of the particle’s velocity provides too much noise, making the accom-

plishment of the task difficult. We have not reached good results with a single vehicle,

even tuning the random parameters in different ways. Moreover simulations show that

there are some problems with robots’ number in scenario 2, indeed using more than

25-30 robots creates too many collisions and the algorithm fails to maintain the group

compact. In this case, the swarm breaks up into smaller groups that reach the target

autonomously. By enlarging the tunnel’s aperture this problem tends to disappear but

it reoccurs increasing the number of units.

5.4 Conclusions and Future Work

In this chapter, a novel version of the Particle Swarm Optimization algorithm has been

proposed in order to drive a group of AUVs in unknown underwater environments

from a starting point to a final one, that can be possibly mobile. In particular, we have

used a double-level and a completely asynchronous, decentralized version of PSO to

manage swarm’s coordination. Moreover, PSO algorithm has been modified in order to

consider robots’ physical constraints, i.e. their dimensions and their interaction with the

environment. Vehicles know their own position, and they are able to broadcast data

to neighbours and to sense the surrounding environment by using spherical sensors.

During the navigation, units collect data on the environment not only to reach the

target but also to map the environment. This technique could be useful for example in

benthic exploration or search and rescue. The performances of the algorithm have been

validated using the data collected in several simulations, where different groups of AUVs

have been simulated in many complex environments. Future work will include deeper

analysis of the relation between environmental features, parameters’ optimization and

performances. We will also study the possibility of controlling team-mates’ distances

according to environmental conditions. Moreover, the possibility of using dynamic

patches to map both moving and evanescent obstacles, exploiting proper predictive

algorithms will be considered. Finally, applications of this algorithm to more complex

systems, like groups of heterogeneous robots (e.g. groups of robots including both naval

and aerial vehicles) and to more complex environments will be considered.

55

5. A DISTRIBUTED MULTI-LEVEL PSO CONTROL ALGORITHM
FOR AUTONOMOUS UNDERWATER VEHICLES

56

6

A Hybrid Technique for

Controlling Platoons of Mobile

Robots with PSO and Consensus

A hybrid technique used to control swarms of robots, which is based on both Particle

Swarm Optimization (previously introduced in Sec. 3.2) and Consensus (whose details

can be found in [14]), is presented in this chapter. The purpose of this hybrid tech-

nique is to combine PSO’s adaptation skills in unknown environments’ exploration and

the ability of the Consensus to maintain a group of robots in a desired formation as

explained in [14, 56, 57]. As presented in the related sections, both techniques are

designed in a distributed form. This fact is particularly suitable for the control of a

swarm of robots where one or more robots can experience temporary or permanent

disconnections from the group due to various reasons (e.g. malfunctions).

6.1 Introduction

Formation control is a very well studied problem, and many different approaches can

be found in the literature. Different approaches can be divided into those that use

a centralized technique from those that apply a decentralized one. In a real Mobile

Robot System contest, thinking to manage all the robots from a unique source that

elaborates the huge information flow coming from all units and that coordinates the

system, is not reliable. Using an algorithm like Consensus, that works in a decentralized

57

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

fashion [58], exploiting agents’ interconnections given by the communication topology

trough graph theory [10, 59, 60], even in presence of communication delays or switching

[61, 62], it seems to be the right way, as described in [13, 63]. Consensus has been

applied in many different fashion and environment, free [64] or constrained [65]. It has

been applied to many kinds of robot systems, not only to Unmanned Ground Vehicles

(UGVs) that are normally used to test this kinds of techniques, but also to Autonomous

Underwater Vehicles (AUVs) as presented in [47], Unmanned Air Vehicles (UAVs) and

Satellites [66]. Consensus concerns the idea of agreement and synchronization [67]

between agents in different fashions. When the purpose is to achieve formation control,

it is possible to a-priori fix the inter-agent distances or, as reported in [56, 57], it

is possible to dynamically change and control them in order to obtain soft or rigid

formations on-demand. This allows to regulate the platoon’s geometry, with the aim

to overcome obstacles or narrow passages without loosing the connections between

agents. In presence of obstacles in the environment it is possible to exploit virtual

potential fields [63] or to project virtual nodes and to create virtual edges [68] in

correspondence of the detected obstacles’ positions. This kind of approach permits

to embed obstacles inside the graph’s structure and to take properly advantage of

the decentralized control’s behaviour of Consensus avoiding them in an auto-regulated

fashion. In the technique presented in this chapter, knowledge and methods from

Chp. 4, Chp. 5 and [14, 56, 57] have been exploited in order to take advantage of PSO’s

features as a swarm navigation system and, on the other side, to maintain the units in

a desired and controlled formation through the application of the agreement protocol

performed by Consensus. This approach has been followed with the aim to conserve the

power of PSO and to control part of its random behaviour with a distributed control

algorithm. The chapter is structured as follows: the structure of the algorithm, the

description of the simulated devices that provides sensors data and communication,

the obstacle avoidance technique and the interconnection between PSO and Consensus

are described in Sec. 6.2. Moreover the simulations are presented in Sec. 6.3. Final

conclusions and future work are reported in Sec. 6.4.

58

6.2 The Algorithm

Figure 6.1: Kinematic model of the robots with the state variables. The blue ring

represents the sensor’s area defined by the 36 proximity sensors equally spaced around the

robot, whose sensible distance and quantization can be freely configured. The parameter

αi,j defines the angle of the jth sensor.

6.2 The Algorithm

The algorithm presented has been developed with the aim to drive a swarm of differen-

tial wheeled mobile robots Ri, i = 1, . . . , nmoving in unknown planar 3D environments.

Each vehicle is autonomous: this means in particular that all the computation is exe-

cuted individually by each software agent (SAi) that controls its own robot, and that

all the decisions are made on the basis of the data locally available at the kth step. The

exchanged information, coming from the on-board devices (sensors, communications

and positioning system) are elaborated by each agent, with the purpose to reach a final

point, both maintaining the connection with the other team-mates in a deformable

formation and avoiding obstacles on the robot’s path.

59

6_1_paper04/figures/kinematics_model_02.eps

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

Xbyb

zbz0

y0

x0

Figure 6.2: The base oF and the body bFi frame.

6.2.1 Model of the Robot and Mathematical Tools

In order to obtain the robot’s model used in this technique we have defined a body

reference frame bFi = {xb,i, yb,i, zb,i} for each vehicle, and a common inertial (base)

frame oF = {x0, y0, z0} useful to describe the robot’s position with respect to the

simulation environment. The kinematic model of the robot has already been presented

in Chp. 4. For convenience it is reported below, remembering that it is defined with

respect to oF

xi(k + 1) = xi(k) + ui(k) cos(θi(k))

yi(k + 1) = yi(k) + ui(k) sin(θi(k))

θi(k + 1) = θi(k) + ωi(k)∆t

where ui(k), ωi(k) are the forward and the steering control velocities of the robot during

the time step [k, k + 1] respectively and θi(k) is the Yaw angle with respect to z0.

Notice that zi(·) = 0 for any k-step.

Also remembering the things described in Sec. 5.2.1.1 we report the rotation matrix

Rzyx(θ, ψ, α)=Rz(θ)Ry(ψ)Rx(α)=

cθcψ cθsψsα − sθcα cθsψcα + sθsα
sθcψ sθsψsα + cθsα sθsψcα + cθsα
−sψ cψsα cψcα

that represents the relative orientation between mobile and fixed frame, where ca =

cos(a), sa = sin(a). The matrix is useful to define the homogeneous transformation

between oF and bF as
oTb =

[
oRb xb
0T 1

]

(6.1)

60

6_1_paper04/figures/sim_unibot_frames.eps

6.2 The Algorithm

and the related inverse homogeneous transformation matrix

bTo =

[
oRT

b −oRT
b xb

0T 1

]

(6.2)

where xb is the position vector of bF with respect to oF and oRb = Rzyx(θ, ψ, α). The

parameters θ, ψ, α are the Yaw, Pitch and Roll angles respectively, with respect to the

base frame oF . Being the simulation computed in a planar 3D environment and having

z0 the same orientation of zb,i we have assumed ψ = 0, α = 0. Finally we define a

simple transformation from Cartesian to spherical coordinates given by

φd = atan2(yd, xd)

ξd = atan2(zd,
√

x2d + y2d)

ρd =
√

x2d + y2d + z2d

(6.3)

where φd (desired azimuth) and ρd (desired distance) are values used to compute the

correct viewing angle of a desired point xd = [xd, yd, zd]. Being a planar simulation the

value ξd is always zero. The unusual representation of polar coordinates has been used

with the purpose to easily define the right and the left side from the robot’s point of

view, in relation with the azimuth value. The inverse transformation is given by

xd = ρd cos(ξd) cos(φd)
yd = ρd cos(ξd) sin(φd)
zd = ρd sin(ξd)

(6.4)

More details are provided in the following sections.

6.2.2 Simulation Environment

As for the technique presented in Chp. 5, simulation environment is provided by

M.U.S.E. As described in Sec. 9.2, M.U.S.E. is a 3D simulator designed with the pur-

pose to provide support for the control algorithm developed for Unibot (see Sec. 7.1).

As depicted in Fig. 6.3, it has the possibility to work with 2D or 3D simulated elements.

M.U.S.E. provides not only the graphical view of the simulated robots and obstacles

but also collisions detection in the robot-to-robot and robot-to-obstacle interactions.

Each robot is equipped with Proximity Sensors and a Communication System later

described in the related sections.

61

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

(a) (b)

Figure 6.3: Obstacle detection is performed by sensors’ device, providing the agent the

possibility to perform obstacle avoidance while the agent is still computing the right control

action to reach the final target. Notice that the sensor’s area is clearly deformed by the

presence of obstacles (6.3a).

6.2.3 Sensor Device

Each robot is equipped with a Sensor Device able to detect obstacles in the surrounding

environment and able to provide the related distance to SA. Each device is equipped

with 36 proximity sensors equally spaced around each robot. The sensible distance is

freely configurable as well as the quantization of the sensors’ area. In Fig. 6.3a, the

sensors’ area of each robot deformed by collisions with obstacles is depicted, while in

Fig. 6.4a the sensors’ cloud during a simulation is shown. Notice that the area is linearly

quantized but it is possible to chose any other function to define sensor distances. The

sensor cloud is visible only in debug mode as well as the collision ring visible in Fig. 6.3a.

6.2.3.1 Obstacle Avoidance

The Sensor Device exploits data coming form sensors’ cloud to project a circular Gaus-

sian Field around the robot (see figure-set 6.5). On the basis of each sensor’s value

a summation of Gaussian function, where the expected value µ is calculated in corre-

spondence of the sensor’s angle value, is shaped around the robot, similarly to what

described in Chp. 4. Each robot computes the relative angle ϑo,i where the probability

62

6_1_paper04/figures/collisionRing2D.eps
6_1_paper04/figures/reachingTarget2D.eps

6.2 The Algorithm

(a) (b)

Figure 6.4: The sensible points’ cloud projected around the robot by the sensor device, is

exploited to detect the distance from obstacle (6.4a). Normally it is only visible the sensible

area while the point cloud is hidden. In the debugging mode it is possible to show the cloud.

Moreover, when the robots move around, they have the possibility to communicate each

other, indeed an obstacle avoidance sequence is shown in Fig.6.4b where communication’s

device action is visible. The two upper robots are connected by a blue line while the bottom

one is not connected because its position is outside the communication range (i.e. the blue

ring surrounding each robot).

of colliding with an obstacle is minimal

ϑo,i = min(ϕo,i), ϕo,i =

Nb∑

h=1

bh g(β, σh,i, αh,i) (6.5)

where β ∈ [0 . . . 2π], bh depends on the inverse of the hth sensor’s value, which is

normalized with respect to the quantization function chosen, and g(·) is the normal

Gaussian distribution centred on µ = αh,i defined by

g(β, σh,i, αh,i) =
1

σh,i
√
2π

e

−

(β − αh,i)
2

2σ2h,i

where the variance σh,i can be used to define how each sensor affects the robot’s per-

ceptions. In this technique, in a different fashion from what has been done previously,

the minimum value of the Gaussian Field is calculated exploiting the Particle Swarm

Optimization, as described in more detail later, and the related value ϑbest is provided

to the Sensor Device for the Dynamic Windows computation. In case more than one

value is detected by PSO, the one close to the robot’s front is selected.

63

6_1_paper04/figures/sensCloud.eps
6_1_paper04/figures/seq01Ab.eps

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

(a)

(b)

Figure 6.5: The Gaussian Field is used to detect obstacles and to perform obstacle

avoidance. It is based on a Gaussian mask applied to the activated sensors when the robot

encounters obstacles. The field can be represented as a continuous distance function on

which the minimum values are calculated. The red line (visible in 6.5b), defined as the

valid threshold, is the limit under which it is possible to consider the angle’s aperture as

free of collisions.

64

6_1_paper04/figures/gauss_field.eps
6_1_paper04/figures/gauss_threshold.eps

6.2 The Algorithm

6.2.3.2 Dynamic Window approach

Similarly to Chp. 4 a Dynamic Window approach has been used to determinate the

correct escape (virtual) angle av during the obstacle avoidance. In correspondence of

the minimal value detected by PSO exploiting (6.5), namely ϑbest, a dynamic window

with a variable aperture is created, whose value, experimentally defined and related to

the robot’s body dimensions, is γ ⊆ [10 . . . 120] [deg] range. The window’s aperture γ

is correlated by the Gaussian Field valley’s aperture in correspondence of ϑbest and is

defined as the maximum angles-range available, free of collisions so that ϑbest ∈ γ. The

virtual angle is simply defined as av = γ/2. In Fig. 6.5b av = 0.

6.2.4 Communication Device

As previously mentioned, each robot is equipped with a communication device, whose

activity is shown in Fig. 6.4b during an obstacle avoidance sequence. The two upper

robots are connected by a blue line while the bottom one is not connected because

its position is outside the communication range (i.e. the blue ring surrounding each

robot). Moreover, the communication device stores in its internal database the positions

of the robots encountered in the simulation, during the last m-time-steps, where m is a

parameter that defines the device’s memory depth. In this works it has been chosenm =

3. This helps SAi to better understand the formation’s evolution during the simulation.

Moreover, the communication device, on the basis of the connected robots, computes

the local Laplacian matrix useful to calculate the Consensus agreement protocol.

6.2.5 The Control Algorithm

The aim of the algorithm is to maintain a desired robots’ formation during the navi-

gation from a starting area to a final one avoiding obstacles. In order to achieve this

target, at the beginning of the simulation, the algorithm calculates the final destination

for each robot and the connections’ matrix useful to create the connection graph and

to compute the Consensus protocol.

When the final destination is given to each SAi and the connected team-mates are cho-

sen, each robot agent starts to compute the algorithm depicted in Fig. 6.6. The main

control procedure begins with the computation, by the sub-procedure CalculateReal-

Target, of a surrogate target point that takes into consideration the possible presence

65

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

CoordTransform

xi = 0

phi

rho ideal distance

ideal angle

FindVirtualAng

(PSOoav)

phi,rho

RotOmogInv

cart2sph

Calculate

Real

Target

Stop

ReachTargetAvoidObst

Execute Motion

Controller

realTarget

valid
invalid

GlobalTarget

GaussField

Data

Regulate

Virtual Target

Dynamic Window

with

Variable Compression

vPhi

rho

virtual angle

CoordTransform-1

RotOmog

sph2cart

realAng

realDist

trimmed angle

trimmed distance

RealTarget

Gradient

GF

FrontFilter

GF

Forecast Angle

(PSO)

ControllerFF

(wSat)

rPhiRef

rPhi

vPhi, rho

switch
activeFlag vPhiT

F

realAng

realDist =
K rho

(K+realAng)

rho

vPhi

realAng,realDistRobotSpeed (v,w)

RotOmogInv

cart2sph

ControllerPD(rho)

ControllerPD(phi)

xi = 0

phi

rho

rho

RobotToCartesian

SpeedsConverter

vc
xi

vc
yi

vG
xi = vR

xi+KC
x(rho) vC

xi

vG
yi = vR

yi+KC
y(rho) vC

yi

Figure 6.6: The global control scheme of the algorithm, from the robot’s (agent’s) point

of view, is useful to better understand all the operations computed by the control system.

Moreover it is possible to understand the interconnections between “classic” and modern

control techniques as PSO and Consensus.

of obstacles. The sub-procedure starts with the transformation of the global target co-

ordinates ox
g
i = (xgi , y

g
i , 0) with respect to the base frame oF , acquired by the agent,

into polar coordinates, which are measured with respect to the mobile frame bFi. By

using (6.1) and (6.3) the global target coordinates are transformed as follows

bx
g
i = bTo

ox
g
i
T

φd = atan2(bygi ,
b xgi)

ρd =

√

bxgi
2
+ bygi

2
+ bzgi

2

(6.6)

where the obtained values (φd, ρd) represent the desired ideal distance and angle of

the global target in a robocentric view. The data are filtered by the FindVirtualAngle

66

6_1_paper04/figures/controlScheme0.eps

6.2 The Algorithm

block, which operates exploiting Gaussian Field Data in order to find the right virtual

angle as described in Sec. 6.2.3.2. The virtual target, identified by the couple (vφd,
vρd),

where vφd = av, is not ready to be used as a reference for the MotionController block

yet, that moves the robot toward the final destination. The virtual target needs a

regulation procedure, which is operated by the RegulateVirtualTarget block (identifiable

by the light-orange color block in Fig. 6.6).

Defying the front of the robot as the angle-set belonging to the range [−π/4 . . . π/4]
centred on 0 just in front of the robot, the regulation block provides a distance and

angle adjustment: by using the Gaussian Field Data related to the robot front, it

calculates the gradient of the Gaussian Field on the front and finds the minimum value

filtering the result trough a second PSO block. The result of this procedures’ chain is

the data rφref called forecasting angle. To clarifying the concept, when a robot moves

and encounters an obstacle, the gradient of the Gaussian Field suggests the direction to

follow in order to anticipate the Dynamic Windows procedure. The forecasting angle

is used as reference angle step in a linear feed-forward controller

rφ = Kp
rφref∆t

The value rφ is saturated at 10 degs with the purpose to maintain the forecasting angle

controlled, independently by the obstacle’s geometry. In case the compensation, given

by the forecasting angle, is not enough in order to avoid obstacle and the Dynamic

Window is activated because the robot moved too close to the obstacle, the Switch

block deactivates the feed-forward controller and the resulting value is substituted by

the unregulated previous value vφd. The final obtained value, at the output of the

Switch block, namely real angle or φreal, is used to regulate the virtual distance ρd

simply as follows

ρreal =
K ρd

K + φreal

where K is a proper coupling constant that specifies how much the angle value affects

the distance value. The couple (ρreal, φreal) is used to determinate the linear velocity

and the steering velocity in the subsequent procedures. It is clear that when the

67

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

steering angle (φreal) grows the real distance (ρreal) decreases, following what normally

happens in car driving: in order to maintain the control during a strict curve the speed

is decreased.

By using (6.2) and (6.4) the absolute real target oxreali = [oxreali , oyreali , 0] is obtainable

from the relative one bxreali = [bxreali , byreali , 0] as follows

bxreali = ρreal cos(ξ) cos(φreal)
byreali = ρreal cos(ξ) sin(φreal)
oxreali = oTb

bxreali

T

This way the inverse coordinates’ transformation of (6.6) is used to produce a valid

target for the MotionController block.

As shown in the global scheme depicted in Fig. 6.6, this block uses (ρreal, φreal) in two

different linear PD-controllers after the (6.6) transformation as described below

ui(k + 1) = KD
u

ρreal(k)

∆t
+KP

u ρreal(k)

ωi(k + 1) = KD
ω

φreal(k)

∆t
+KP

ω φreal(k)

in order to compute linear (ui(k + 1)) and angular (ωi(k + 1)) robot’s velocities. By

using the well known odometric methods [69] as the Exact Solution methods or the

2nd order Runge-Kutta method (in case ωi(k) = 0), it is possible to estimate with good

precision the robot’s position and to calculate its Cartesian speeds oẋRi = [vx
R
i , vy

R
i , 0].

The Consensus contribution is evident at this point of the control algorithm. Indeed the

speed’s contribution, related to Ri, coming from the Consensus agreement protocol and

defined by oẋCi = [vx
C
i , vy

C
i , 0] is added to the robot’s Cartesian speeds just calculated

as follows

vx
G
i = vx

R
i + KCx(ρreal(k)) vx

C
i

vy
G
i
= vy

R
i
+ KCy(ρreal(k)) vy

C
i

obtaining the global speed contribution oẋGi = [vx
G
i , vy

G
i
] from which it is possible to

recalculate the new inputs ui, ωi useful to control the robot maintaining the connection

with the team-mates. The parameters KCx and KCy are proper coupling constants

useful to tune the influence of the Consensus contribution. Notice that each constant

depends on ρreal(k) value. When the ρreal value is high, it means that there are no

68

6.2 The Algorithm

obstacles and the robot can perform formation control. Otherwise, when ρreal is low, it

means that there are obstacles and the robot needs to pay more attention to obstacle

avoidance and not to the formation control, or it means that the robot is arrived close

to the final destination and the formation control is not so important as during the

motion.

6.2.5.1 PSO Blocks

In the presented control algorithm two different PSO control blocks have been used as

optimizers, with the purpose to find the minimum value of the function associated to

Gaussian Field and its gradient. This meta-heuristic technique has been adopted in

order to overcome the difficulties coming from the unknown obstacle’s geometric profile

and its related Gaussian Field deformation. The approach used for PSO algorithm’s

structure is the same adopted in Chp. 5 for the PSOoav . In both PSO blocks the

tested number of scout-particles ranging from 5 to 10. Instead of using a random

initial position for each particle, in this technique a well defined initial set-up has been

chosen, where the positions are equally spaced on the related valid angular range. This

helps to quicker find the optimal solution.

6.2.5.2 Consensus Block

As described in [14, 56, 57], the Consensus algorithm is based on Graph Theory and

it implements the agreement protocol. A graph is a mathematical structure suitable

to describe relations in a collection of resources. Generally in graph’s terminology the

relations are called edges while the resources are called nodes or vertices. Associating

the robots with the nodes of the graph and the communication links between the robots

with the edges of the graph, it is possible to take advantage of the mutual information

shared between the connected robots, in order to create a desired formation.

At each edge could be associated a fixed or a variable weight in order to modify for-

mation’s behaviour by changing the weights. In this case the Laplacian matrix, that

is the matrix that describes the graph’s connections, is called weighted Laplacian. By

exploiting the weighted Laplacian matrix defined as follows

Lw = IWI
T

69

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

where I represents the incidence matrix of the graph and W the edge-weights matrix,

it is possible to configure Consensus in order to provide the robot’s speed contribution,

represented in Cartesian coordinates, as follows

ẋ(t) =

n∑

j=1

aij (xi(t)− xj(t)) or ẋ(t) = −Lw x(t) (6.7)

where n is the cardinality of the Ri neighbours set and aij represents the weight of the

edge that connects Ri with its j-neighbours. The variables xi and xj are the related

state variables on which Consensus operates. Defining the desired position that each

robot must reach as xfi and as xci its current position, it is possible to write the position’s

error of the ith robot as ei = x
f
i −xci . By changing the state variable in (6.7) with the

position’s error as

ė(t) = −Lw e(t) (6.8)

from which, selecting the ith element of the resulting vector ėi(t) = [ėxi(t), ėyi(t)], it is

possible to define the Consensus speed contribution to Ri as [vx
C
i , vy

C
i
] = [ėxi(t), ėyi(t)].

This way it is possible to obtain a basic control algorithm that provides formation’s

control.

With the purpose to have the geometric shape of the formation modifiable on-

demand, in order to achieve elastic or rigid behaviour of the robot group, it is possible

to change the weight value aij in relation to a specified potential function like the one

used in [56]. When the edge-weight is high the influence that a robot has on it’s graph’s

neighbours is high and it produces perturbations on their motion. Otherwise when the

weight is low the robot does not affect neighbours. In order to maintain the formation

as elastic as possible and stable, in this technique we have assumed aij = 0.8 when

two robots are connected and zero otherwise. We want to remark that Consensus is a

decentralized algorithm and it is computed by each SAi on the basis of data provided

by the Communication Device.

6.3 Simulations

Many simulations have been performed in order to validate the presented technique but

due to its greenness, the number of simulations is not high enough to provide statistical

70

6.4 Conclusions and Future Work

(a) (b) (c)

Figure 6.7: The soft formation control is performed by robots in order to avoid obstacles

and remain connected.

results, able to demonstrate the good performances of the algorithm. However three

different instants of a formation’s control simulation are depicted in the figure-set 6.7.

The robot group, after reaching the desired formation geometry, moves remaining in

contact, opening and closing the formation in order to overcome a detected obstacle.

6.4 Conclusions and Future Work

In this chapter a hybrid technique useful to drive a group of mobile robots in an a-priori

unknown environment has been presented. This technique not only drives the robots

from a starting area toward a final one but it is also able to maintain the group compact

with the purpose to control the related robot positions and to create a desired formation.

The power of this technique comes from the simultaneous use of PSO and Consensus

with the aim to exploit the better features of both. Unfortunately the greenness of this

technique does not allow to permanently state the good behaviour presented during the

simulations done. Future work will include many tests in order to give statistical results

and the enhancing of the algorithm in the context of a completely rigid formation with

the aim to achieve the final target of the thesis (see Chp. 1) Moreover one of the future

works could be the application of this technique to the AUVs described in Chp. 5 with

the purpose to create reconfigurable underwater MANETs.

71

6_1_paper04/figures/form01A.eps
6_1_paper04/figures/form01B.eps
6_1_paper04/figures/form01C.eps

6. A HYBRID TECHNIQUE FOR CONTROLLING PLATOONS OF
MOBILE ROBOTS WITH PSO AND CONSENSUS

72

7

Robotics in Education: Platform

& Infrastructures

The works developed in the field of educational robotics are presented in this chap-

ter. The “Unibot Mobile Robot Project” and the “Unibot Remote Laboratory” are

platforms and infrastructures that permit the study and the real application of the

coordination algorithms presented in the previous chapter.

7.1 Unibot

Unibot is a prototype of a differential wheeled mobile robot. It was born with the aim

to develop an experimental robot platform with a low economic impact for testing and

validating the distributed control algorithm that involved groups of robot. The aim

also includes the subsequently possibility to implement these algorithms on higher scale

robotic platforms.

The basic idea of Unibot is to have a robot as much modular as possible, expandable

and easy to use, following the idea previously developed at Ecole Polytechnique Federale

de Lausanne (EPFL) with the mobile robot E-puck (see Fig. 7.5a). The basic version

is equipped with a very small set of sensors but in any case useful enough to give good

performances. In the table 7.1 a short summary of robot’s features, deeply described in

the Chp. 8. The design and realization of Unibot have been involved both Master and

PhD students. Their collaboration has produced the prototype version of the robot in

2008 (Fig. 7.1a) and subsequently an optimized version in 2009 (Fig. 7.1b).

73

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

Name Description

Platform Custom, based on MicroChip PIC16F54 micro controllers

Internal Bus Custom 10 bits bus: 1 byte of data, 2 bits of control

Motors Two motor stepper 56 step 3 A. Torque unknown

Sensors 8 infra-red sensors - working range 10 cm

Communications Bluetooth device

Chassis Painted preformed metal chassis and plastic

Table 7.1: Unibot V1 short list of specifics.

(a) (b)

Figure 7.1: The prototype version (left) and the first full-functional version of Unibot V1

(right) have been the inspiration for designing the later version.

The presence of this first version of the mobile robot has given to us, during the years

2009-2010, the opportunity to study, design and implement the information control

infrastructure described in Chp. 8. Using this infrastructure it is possible to drive

a group of Unibots inside an arena (see Fig.7.2), to test e.g. a trajectory following

algorithm (depicted in Fig.7.2b). The framework is completely developed with Java

technologies, exploiting the software agent programming paradigm. It is based on a

completely modular version of the Client-Server Architectural Pattern that allows a

strong decentralized information managing. In 2011 the framework has been expanded

[41] to include a web-interface responsible to laboratory exercises and experiments. The

interface allows the managing of the related hardware and software resources through

74

7_robinedu/figures/proto_unibot.eps
7_robinedu/figures/unibot_v1.eps

7.1 Unibot

(a) The Unibot markers exploited by the

system to recover the robot’s positions in-

side the arena.

(b) A trajectory following test inside

the arena.

Figure 7.2: Unibot tests arena.

a simple internet browser.

This expansion has included the J.U.S.E. simulator (see Sec. 9.1) as part of the

infrastructure. It has become the safety test field for Unibot control algorithms be-

fore the implementation on real robots. This way the experimental platform “UniBot

Remote Laboratory”, which is the topic of Chp. 8 was formed.

Through an experimental set-up consisting of a little arena, a webcam, a middle-

range workstation, two Unibots V1 and a video tracking program1, it has been possible

to test some distributed control algorithms during the laboratory activity carried out

in 2011 (see Fig.7.2b).

The tests carried out have pointed out some hardware limitations of this Unibot

version. In order to overcome these limitations we have studied a new version of Unibot,

more functional, easier to use and to program, nearer to students and less expensive in

term of time for design and prototyping. The choice for the realization of a new version

of the robot has fallen on Arduino platform. The huge development encountered by

this platform in recent years, the large support community, the easiness of use and the

continuous effort to create new hardware and software are the points of strength of this

solution. The platform provides the possibility to quickly develop robot prototypes

of good quality and cheap, maintaining the modular and expandable philosophy that

characterized Unibot project. At the beginning of 2012 the first A-Unibot prototype

has been realized exploiting some parts of the previous version (see Figs 7.3a and 7.3b).

1The video tracking program is SwisTrack developed at EPFL.

75

7_robinedu/figures/unibotMarkerCap.eps
7_robinedu/figures/arenaImg.eps

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

(a) (b)

Figure 7.3: The A-Unibot prototype chassis with the main board (left) and the complete

prototype equipped with a custom DIY square sensor board and the WiFy device.

In figure-set 7.4 the chassis of the new version of Unibot is depicted. Its building

started on july 2012. The chassis’ mechanical structure was realized by using the 3D

printer available at Laboratory of Automation and Robotics (L.A.R.) of the University

of Bologna. Part of the equipment of which the robot is endowed (motors and motor-

drivers) is visible in figure-set 7.4. A short list of A-Unibot components is presented in

table 7.2.

In Fig. 7.5a a comparison between the different versions of Unibot and the well-

known E-puck is presented. The bigger dimensions and the rigid plastic structure allow

applications that would have been impossible to be tested with other kinds of robots.

The powerful motors provide a high torque, useful feature for the final aim of this

work. The next step, under development, is to equip the robot with a recharge board

so that it can interface with a charging base and autonomously manage the status of its

battery pack. On the recharge board infra-red ground sensors have been also inserted

(Fig. 7.5b) useful to detect void areas (e.g. stairs) or different color areas.

76

7_robinedu/figures/proto_ardu_unibot_01.eps
7_robinedu/figures/proto_ardu_unibot_02.eps

7.1 Unibot

(a) (b)

Figure 7.4: Frontal and lateral view of the A-Unibot chassis.

Name Description

Platform Arduino, based on Atmel Atmega 328 16 bit micro controllers

Internal Bus Arduino I2C Bus

Motors Two motor stepper 200 step 0.7 A. Torque 650 g/cm

Sensors 8 infra-red sensors - working range 15 cm

Communications Wireless device

Chassis 3D printed plastic

Table 7.2: Unibot V2 short list of specifics.

(a) A mobile robot comparison between

Unibot V1, V2 and E-puck.

(b) The future ground sensors’

board.

77

7_robinedu/figures/front_A_Unibot.eps
7_robinedu/figures/late_A_Unibot.eps
7_robinedu/figures/mobile_robots_compar.eps
7_robinedu/figures/groundSensBoard.eps

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

7.2 Unibot Remote Laboratory

This section briefly presents the Unibot Remote Laboratory (whose core infrastructure

has been explained in the Chp. 8) that was born with the aim to provide an educa-

tional platform for mobile robotics in a remote mode also. Indeed UniBot Remote

Laboratory (URL) is a prototype of tele-laboratory developed at University of Bologna

mainly designed with the purpose to interface with Unibot V1. The laboratory has

been implemented to provide remote access via TCP connection, to assign different

time-slots to students for their experiences, and to reduce the financial effort required

by real set-ups. Moreover, the entire framework has been developed with high modu-

larity both from hardware’s and software’s point of view and, even if the basic set-up

has been conceived for mobile robotics, different kind of robots or automatic machines

can be easily added and be available for experimental activities.

78

7.3 LEGO MindStorm

7.3 LEGO MindStorm

This section is not so closely related to the field that is normally considered “research”,

anyway it is deeply related to the concept of “Educational Robotics”, focus of this

chapter. During the PhD period we have spent almost ten months full-time as lab-

oratory tutor for the course of “Foundations of Industrial Robotics” at University of

Bologna. The main activity developed in this experience has been the teaching of

techniques, methods and methodologies belonging to Computer Science Engineering

context, in order to apply them to Mobile Robotics using LEGO Mindstorms NXT. In

thirty hours of lesson as theoretic support for the laboratory activities, the students

who have attended the course have learned the basic skills of Java programming, useful

to write programs for the LEGO Kit, using an alternative open-source firmware based

on Java technology, which name is LeJOS (presented in Sec. 7.3.2). A brief introduction

of the LEGO Kit and its applications in many research fields, especially in robotics,

has been presented in section 7.3.3. Moreover the task developed during the tutoring

activity has described in section 7.3.4. Finally, conclusions are described in section

7.3.5.

7.3.1 LEGO Mindstorms Kit

The LEGO Mindstorms series of kits contain software and hardware to create small,

customizable and programmable robots. They include a programmable brick computer

that controls the system, a set of modular sensors and motors, and LEGO parts, coming

from the Technics line in order to create the mechanical systems. The hardware and

software on which the Mindstorms Robotics Invention System kit is based, take the

basis from the programmable brick created at the MIT Media Lab. This brick was

programmed using Brick Logo and an adaptation of the more famous programming

language Logo. The software innovation was the possibility to programming the brick

in a visual fashion. The first visual programming environment was called LEGOsheets

since it was created by the University of Colorado in 1994 and based on AgentSheets

an educational program for the Cyberlearning.

Virtually all kinds of existing integrated electromechanical systems (such as trucks or

industrial robots) can be modelled with LEGO Mindstorms. The brick is programmed

by uploading a program, written in one of the several programming languages available

79

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

Name Description

CPU 8-bit Renesas H8/300 micro-controller

RAM 32K that stores both the firmware and user programs

Ports 3 motor ports and 3 sensor ports

Motors 3 servomotors each one equipped with an integrated ro-

tation sensor for a precision feed-back controlling

Sensors Light and Touch sensors

Communications USB 1.0/serial port or special infra-red communication’s

interface. The second one also for team-mates communi-

cation

Display 1 row 10 character LCD display

Pieces 519 pieces of LEGO Technic

Standard Programming

Interface

RCX Code or ROBOLAB (based on LabVIEW)

Power supply Cable or batteries

Table 7.3: LEGO Mindstorms RCX specifics.

(see Sec. 7.3.2) Different versions of LEGO Kit have been released over the time, from

the initial versions to the final ones, following the growth of electronics, the features

of each versions have grown permitting the development of more sophisticated robots

(and programs). In the following sections the basic features of the LEGO Mindstorms

Kits have been presented. For more details it is possible to consult the related websites.

7.3.1.1 LEGO Mindstorms RCX

The first generation of LEGO Mindstorms was built around a brick known as RCX

(Robotic Command eXplorers). Also nowadays, after many electronic innovations in

the field of SOCs (single onboard computer), RCX specifics are not so bad, especially

for an educational purpose (see table 7.3). An example of application with RCX brick

is shown in Fig. 7.5d.

These LEGO version was used in the laboratory exercises carried out some years

ago by using BrickOS as C/C++ programming interface.

80

7.3 LEGO MindStorm

Name Description

CPU 32 bit Atmel AT91SAM7S256 at 48 MHz (ARM7) and a

coprocessor 8 bit Atmel ATmega48 at 8 MHz (RISC)

RAM 256k flash and 64k RAM for the CPU, 4k flash e 512 byte

RAM for the coprocessor

Ports 3 motor ports and 4 sensor ports

Motors 3 servomotors each one equipped with an integrated ro-

tation sensor for a precision feed-back controlling. More

powerful with respect to the previous one in terms of

torque and speed

Sensors Color sensor, 2 touch sensors, audio sensor and an ultra-

sonic sensor with approximatively 60 cm of useful range

Communications USB 2.0 or Bluetooth. The second one also for activate

a communication with at most 4 team-mates

Display LCD with a 60x100 pixel of resolution

Pieces 619 pieces of LEGO Technic

Standard Programming

Interface

NXT-G a graphical programming environment that en-

ables the creation and downloading of programs to the

NXT developed by National Instruments as branch of

LabVIEW

Power supply Cable or batteries, also rechargeable

Table 7.4: LEGO Mindstorms NXT specifics.

7.3.1.2 LEGO Mindstorms NXT

The second version of LEGO Mindstorms (called NXT from the word NEXT) was

released by LEGO in July 2006, replacing the first LEGO Mindstorms kit generation.

It is much more powerful in term of hardware and also the standard programming

interface is changed following the philosophy of visual programming and using visual

structured block connectible with a logic line. This Kit has been intensively tested in

our laboratory experiment as described in 7.3.4. An example of application with NXT

brick is shown in Fig. 7.5f.

7.3.1.3 LEGO Mindstorms NXT Kit EV3

The strong worldwide demand of LEGO Mindstorms Kits has forced LEGO Company

to build a renewed Mindstorms Kit called LEGO MINDSTORMS NXT EV3, the most

81

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

Name Description

CPU ARM9 300 MHz with Linux-based operative system

RAM 16 MB of Flash and 64 MB of RAM and a Mini-SDHC

card reader for 32 GB of expansion memory

Ports 4 motor ports and 4 sensor ports

Motors 3 servomotors (2 large 1 medium) with the same features

of the NXT ones

Sensors The same NXT sensors and moreover an improved 6-color

detection sensor

Communications USB 2.0, Bluetooth v2.1 and WiFy connection. Also a

remote controller is available. Up to four intelligent brick

can be connected together

Display LCD with a 178x128 pixel of resolution

Pieces 594 pieces of LEGO Technic

Standard Programming

Interface

The same of NXT

Power supply Cable or batteries, also rechargeable

Table 7.5: LEGO Mindstorms NXT EV3 specifics.

international robotics platform the company has ever developed. Presented in January

2013 at Consumer Electronics Show (CES), its release is planned for July 2013 and

the specifics have been improved yet, in order to follow electronics evolution. In table

7.5 a brief list of specifics. An example of application with the new version of NXT is

depicted in Fig.7.5h.

7.3.2 Programming Language

The standard interface for LEGO Mindstorms programming is provided by National

Instruments and has been developed with the Visual Programming philosophy, using

the same concept applied in the well known Matlab-Simulink and LabVIEW. The name

of this graphical programming environment that comes in bundle with the NXT kit is

NXT-G (see Fig. 7.6). The possibility to easy program the LEGO brick with this

kind of interface is most user friendly and powerful but not useful for our purposes.

Many other programming software can be used as an alternative to NXT-G, some

based on C/C++ other on Java, Visual Basic, Logo and so on. In some cases it is

necessary to replace the original firmware in order to command the brick. The aim of

82

7.3 LEGO MindStorm

(c) RCX Brick with some sensors and two

motors.

(d) A Sumo ring where the robots are con-

trolled by a RCX brick.

(e) The LEGO Mindstorms NXT brick.

(f) A line-follower application developed

with a NXT differential wheeled robot.

(g) An inverse pendulum disguised as a

biped robot built with NXT-EV3.

(h) A LEGO Mindstorms NXT-EV3 scor-

pion.

Figure 7.5: Different application of the LEGO Mindstorms from the first one RCX to

the last one NXT EV3 which release is programmed for July 2013.

83

7_robinedu/figures/legoMindRCX.eps
7_robinedu/figures/legoSumoRCX.eps
7_robinedu/figures/legoMindNXT.eps
7_robinedu/figures/lineFollowerNXT.eps
7_robinedu/figures/lego-mindstorms-ev3-1.eps
7_robinedu/figures/lego-mindstorms-ev3-2.eps

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

Figure 7.6: Screenshot from LEGO Mindstorms NXT-G programming interface.

the laboratory’s experiences has been to learn the basic skills of programming a real

automatic machine and the multi-thread concurrent programming. The most complete

software available to achieve these targets was LeJOS.

7.3.2.1 LeJOS

LeJOS is a firmware replacement for LEGO Mindstorms programmable bricks. It cur-

rently supports the LEGO RCX brick and the NXT brick. It includes a Java virtual

machine, which allows LEGO Mindstorms robots to be programmed in Java program-

ming language. Some LeJOS important features are the following:

• object oriented language (Java);

• pre-emptive threads (determined context switching);

• arrays, including the multi-dimensional ones;

• recursion;

• synchronization;

• exceptions;

• types of variable including float, long, and String;

• most of the standard Java classes are available (as java.lang, java.io, java.util);

• a well-documented Robotics API;

• a wide community of support.

A remarkable example of LeJOS application was the leJOS-based robot Jitter that flew

around on the International Space Station in December 2001.

84

7_robinedu/figures/lego-nxtg-scrn.eps

7.3 LEGO MindStorm

7.3.3 Applications

LEGO Mindstorms is deeply used worldwide not only as a children’s toy but also as a low-cost

but powerful tool for mobile robotics. Many paper are based on LEGO Kit as tests platform,

papers that involve the construction of new sensors or papers that develop a new software

architecture in order to provide a better firmware. LEGO Company provides also accelerometer

or gyroscope sensors and many other specific sensors not included in the basic kit, useful for

example to build an inverse pendulum like the one depicted in Fig. 7.5g or the one described in

[70] where a PD controller exploits accelerometer’s data to maintain the robot vertically stable.

On the same robot configuration many other algorithms can be tested, such as the Extended

Kalman Filter described in [71]. LEGO Kit has also been used in the experimenting of remote

controlling as the one presented in [72] or the one executed to test the Unibot Infrastructure

presented in Chp. 8, where both Unibot Mobile robot and a LEGO Mindstorn NXT robot

have been involved, which have been properly configured to receive remote commands from our

infrastructure in order to perform a leader-follower test. Moreover LEGO has been exploited

in the experiment that involved Multi-Agent Systems like the one described in [73]. In the

next section our laboratory activities with some brief descriptions of the tasks performed are

presented.

7.3.4 Laboratory Activities

This section briefly describes the applications developed with LEGO Mindstorms NXT during

the laboratory activities:

• car parking: the main task was to build a self parking robot-car. The scenario used as

test for this task was a model of a real street, built using pieces of cartoon, old books and

boxes found in the laboratory. The street was built with different parking areas, each one

with different dimensions, distributed on both sides of the street. Moreover the street

was built with only one entrance (as a classic blind street). This way the cars had the

possibility to recognize the end of the street and execute the manoeuvre to come back

in order to check the other side of the street for finding a better parking area. The final

target was achieved only when the car found the correct parking or it went out from the

entrance. Some figures of this task are depicted in 7.7a and 7.7b;

• sumo robot: this task, inspired by the ancient art of Sumo combat, took place on a

self-made wooden squared arena on which a black ring was painted. Different matches

were played with different opponent configurations e.g. one-to-one and many-to-many

matches with always the same target: to push the other opponent/s out of the ring,

remaining inside it. Different strategies of searching, following and pushing have been

studied in order to win the match, exploiting all the LEGO resources. Two images of

this task are presented in Figs 7.7c and 7.7d;

• mobile gripper: the main task was to build a Mobile Gripper that involved two different

LEGOMindstorms physically connected to each other. This task consisted in recognizing,

85

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

collecting or discharging different coloured objects in relation to a specified desired color.

In order to perform the task, the student’s group needed to build a gripper with 4 degrees

of freedom, mounted on a mobile robot with a basket. The mobile robot and the gripper

must communicate with each other to recover the object and to identify if the object’s

color was the desired one. In affirmative case the robot must collect the object inside the

basket, positioned on the robot’s back, otherwise it had to discharge it and to continue

the search for another object. The objects were placed on a black line, painted on the

floor as a track, which was followed by the robot. The task was accomplished when all

objects were correctly processed and the right coloured objects deployed on the path were

collected in the basket. Two moments of the performance are shown in Figs 7.7e and

7.7f;

• box transportation: this task was based, such as the first ones, on a robots’ compe-

tition. The challenge of this task was to transport a box, properly configured in order

to be managed by the LEGO robots, from a starting area to a final one of an unknown

environment full of obstacles. In this task the robots identified the starting area and the

final one exploiting some proper lines on the floor. With the sonar sensors, the robots

were able not only to detect the position of the box but also to avoid the obstacles. Some

pictures that represent this task are shown in Figs 7.7g and 7.7h.

7.3.5 Conclusions

The teaching method based on coding programs for a real machine and giving to students the

target of “winning a competition” has been the success of this experience and it has been very

appreciated from the students. The tasks developed have been hard and challenging but the

method used to create teams of development in order to better face the given tasks has proven

successful. Moreover the learned knowledges have been useful also for computer science courses.

86

7.3 LEGO MindStorm

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.7: Some pictures show the different activities developed during the laboratory

of robotics.

87

7_robinedu/figures/autoParking01.eps
7_robinedu/figures/autoParking02.eps
7_robinedu/figures/sumo01.eps
7_robinedu/figures/sumo02.eps
7_robinedu/figures/mobGrip01.eps
7_robinedu/figures/mobGrip02.eps
7_robinedu/figures/boxTransport01.eps
7_robinedu/figures/boxTransport02.eps

7. ROBOTICS IN EDUCATION: PLATFORM & INFRASTRUCTURES

88

8

UniBot Remote Laboratory

This chapter presents the UniBot Remote Laboratory, a scalable web-based set-Up for educa-

tion and experimental activities in robotics. It is a prototype of tele-laboratory developed at

University of Bologna. The laboratory has been implemented to provide remote access via TCP

connection, to assign different time-slots to students for their experiences, and to reduce the

financial effort required by real set-ups. Moreover, the entire framework has been developed

with high modularity both from hardware’s and software’s point of view and, even if the basic

set-up has been conceived for mobile robotics, different kind of robots or automatic machines

can be easily added and be available for experimental activities.

8.1 Introduction

There are no doubts about the importance of laboratory’s experiences, for education, in several

engineering fields [74]. This is a consequence of the fact that, while students learn new concepts

during classes, they need to test their abilities on real systems, in order to fix and prove their

knowledge. Although the ideal situation should be having an experimental set-up for each

student, and possibly for each class of control problems, this is not possible, due to several

practical reasons:

• each set-up is typically sold in bundle with its own teaching software, thus it may be

difficult to modify it in order to implement different set-ups than the ones suggested by

the dealer;

• each student, before using every experimental set-up, should understand the entire ar-

chitecture of the system, and sometimes this might require more efforts than solving the

problem for which the set-up has been made available;

• the financial effort for the maintenance of a large number of experimental set-ups is not

indifferent.

89

8. UNIBOT REMOTE LABORATORY

Different experimental set-ups are provided by different companies, thus generally it may also

result quite complex to interface or connect them together. It follows that it could be difficult to

create a complex student lab without a great effort in order to re-engineering all these systems.

In recent years, starting from this simple considerations, many papers, focusing on low cost

experimental set-ups, have been presented in literature, spacing in a wide range of different

applications, from automation control [75] to robotics [76]. In fact, due to the increased com-

putational power of personal computers, it has become possible to create small low-cost set-ups,

built with off-the-shelf components, whose teaching potentialities can be compared with more

expensive and performing systems.

In parallel, the recent diffusion of high bandwidth internet connections and the rapid devel-

opment of web-based technologies, have led to a new concept of laboratory experience. In fact,

current generation of laboratory facilities has been implemented in order to allow the remote

access to a real experimental set-up [77, 78]. This means that students can experience the effects

of their control programs on real machines, without the need to be physically present, e.g. by

using a web-cam to observe the behaviour of the real system and collecting data to be analysed

later on their own computers. Most of these labs use a web-based interface where the students,

after authentication, can choose the experiment to be performed, and reserve a time-slot, for

their own purposes. Some of them provide the possibility to create a Matlab/Simulink control

scheme to be uploaded and executed. Nevertheless, all these virtual labs are strictly limited

by many factors, in principle the fact that no local supervisor is usually implemented in the

set-up, and the system must be safe and open-loop stable to prevent faults, due to an inefficient

uploaded controller. Focusing the discussion on robotics labs, to our knowledge, some of the

first remote robotic laboratories have been implemented by [79] and by [80], where the user can

not strictly control the manipulator, but can only define a sequence of movements that are then

computed by the local robot controller. Even if these results could be considered milestones

for remote robotics labs, in order to provide students with a more involving experience, more

efforts should be devoted to the implementation of flexible and user-friendly environment. As

we will describe in the following sections, we have created a remote robotics lab that allows

students to define a complete controller for a mobile robot, such that it can interact both with

the environment and with other robots present in the arena (eventually driven by different

users). Before working on real robots, users can test their algorithms in a virtual environment,

where experimental set-ups are reproduced.

This chapter is organized as follows: in Section 8.2, the UniBot (UNIversity of Bologna mo-

bile roBOT) differential-wheeled robot, the first robot used to test our framework, is presented,

focusing on its mechanical and electronic design. In Section 8.3, an overview of the UniBot

Remote Lab architecture is given, focusing on the web-based design of the system. An applica-

tive example of our virtual lab is presented in Sec. 8.4, while in Section 8.5 some considerations

about the presented work and future developments are reported.

90

8.2 The UniBot Differential-Wheeled Mobile Robot

Robot Name Producer Price (USD)

E-Puck EPFL ≈ 850

Roomba iRobot ≥ 450

Khepera III K-Team Corporation ≈ 3000

K-Junior K-Team Corporation ≈ 600

AmigoBot ActivMedia Robotics ≈ 3500

Robotino Festo Didactic ≈ 4000

UniBot University of Bologna ≈ 250

Table 8.1: Comparison of different robots suitable for research and teaching purposes.

8.2 The UniBot Differential-Wheeled Mobile Robot

Since part of the research interests in our lab focuses on mobile robotics, and in particular

on the control of platoons of differential-wheel robots, it was taken the decision to design a

small mobile robot that could be used both for teaching and research activities. Even if many

small robots can be found [81, 82], we start analysing the solutions offered by the market,

typically too expensive to be used by many students. Roughly speaking, to define the basic

specifications of our robots, we have previously defined the basic properties requested to a

research and teaching instrument, ensuring at the same time the possibility of upgrading each

vehicle with additional boards/functionalities to improve its performances. In particular, we

have analysed many commercial robots suitable for our purposes considering at the same time

both the price and the hardware/software configuration (see Table 8.1). Form the hardware’s

point of view, the K-Junior by K-Team is the commercial robot more similar to UniBot.

One of the main issues related to the analysed models is that, typically, they are sold

with many hardware features that are rarely used or are redundant (such as the small camera

embedded in the E-Puck robots or the sonar and IR sensors in the Khepera III robots), and thus

the price is not always justified for some predefined tasks. Moreover, many of the commercial

robots, whose price is low enough to be used as part of the teaching activity, are usually sold

as monolithic machines whose performances cannot be upgraded by adding new hardware.

Starting from these considerations, we designed a small differential wheeled robot as part

of our research and teaching framework, with particular attention to the hardware modularity,

that is considered a key point in order to create a versatile robot that can be customized for a

set of experiments as large as possible.

8.2.1 UniBot Hardware

A prototype of our robot, named UniBot, can be seen in Fig. 8.1. UniBot has been designed in

order to be as flexible (and cheap) as possible: the chassis is composed by only two modelled

aluminium shapes, where the motors are bolted, and a plastic platform (like a safety ring) is

91

8. UNIBOT REMOTE LABORATORY

Sensor Board

Main Board

Motor Board

(a) (b)

Figure 8.1: Prototype of the UniBot differential-wheeled mobile robot. In evidence the

vertical bus on the main board’s schema.

used to prevent collisions between the robots and other robots or obstacles in the environment.

Moreover, the reduced dimensions of the robot (8 × 8 × 8 cm) make it suitable for experimental

set-up, even in small labs. Following the same philosophy, the on-board electronics has been

designed to be easily assembled, thus ensuring that broken boards can be easily replaced. It

follows that the easy-to-mount design allows the users to add or remove expansion boards in

order to improve or reduce the robot’s performances, depending on the experiments performed.

From these considerations it follows that UniBot differential-wheeled robot is structured in

order to preserve high modularity. In particular, in its basic version, it is composed by three

different boards able to ensure basic navigation skills. Namely, these three boards are the Motor

board, the Main board and the Proximity sensors board.

8.2.1.1 Motor Board

The board is endowed with two H-bridges in order to control the motors. For the actuation,

we have chosen two cheap step motors (≈ 0.07 Euro per motor) with 56 steps. Robot’s wheels

are endowed with plastic o-rings in order to reduce the slippage. Moreover, wheels of different

diameters are provided with the robot, and the motors can be fixed at different heights in order

to change the odometry precision. With the default wheels, the odometry precision is around 3

millimetres. Due to the chosen motors, it has been possible to codify a total of 11 speed levels,

5 levels forward, 5 backward and the null velocity.

8.2.1.2 Main Board

The board, equipped with a Microchip 20Mhz PIC16F877A, is the core of the UniBot robot.

In fact, the role of the main board is to execute the code programmed, exploiting information

provided by expansion boards, mounted on the UniBot. The only sensors directly connected

92

8_paper01/figures/unibot_ps2.eps
8_paper01/figures/board_schema.eps

8.2 The UniBot Differential-Wheeled Mobile Robot

to the main board are two chromatic sensors, placed under the base platform, in the front part

of the robot. These sensors allow students to work e.g. on the solution of the follow-the-line

task, a typical problem involving low-level control actions. Moreover, a bluetooth module has

been mounted on the main board to let different robots exchange data among them or with an

external computer.

8.2.1.3 Proximity Sensors Board

As an example of expansion board that can be mounted on the robot, in order to improve its

performances, a board equipped with 8 IR sensors is provided with the basic robot version. The

sensors are equally distributed around the board perimeter to detect obstacles or other robots

in the environment. This board is equipped with the same microprocessor mounted on the

main board so that it has enough on-board computational power to calculate a control action

to avoid the detected obstacles.

Each expansion board, mounted on UniBot robot, is able not only to gather information

from the environment, but also to calculate the best control action related to the collected data.

For example, let us consider the case where a robot equipped with an IR sensor board and a

sonar board is moving toward a predefined target. In this case, an obstacle higher than the

robot can be detected by the sonar board before being detected by the IR sensors: it follows

that, even if the IR board does not detect any object, the sonar board provides to the main

board a control action in order to avoid the obstacle. On the other side, if the obstacle is not

high enough, it cannot be detected by the sonars but only by the IR sensors, and thus the IR

sensor board will calculate the obstacle avoidance control action to be transmitted to the main

board. For example, a Braitenberg algorithm [83] can be programmed on these two sensor

boards. Receiving these information, the main board has to merge all the control actions in

order to reach the target while avoiding the obstacle.

From the user’s point of view, the peculiarity of the decentralized paradigm chosen to

design UniBot is that it allows many persons to work on different boards with the idea that

each of them can be used to define a particular behaviour of the robot depending on the sensors

mounted on each board. Once different behaviours have been implemented, they can be merged

by the main board that operates like a supervisor. This control paradigm, that is well known

in literature as behavioural control [8], allows to implement on the main board the competitive

version and the cooperative version of it, implementing controls such as the motor scheme [9] or

the null space based control scheme [84, 85]. Another advantage coming from the decentralized

paradigm applied to UniBot hardware is that the computational power of each board can be

exploited, thus creating a sort of parallel computing structure on each robot.

8.2.2 UniBot firmware

Even if each board mounted on UniBot can be programmed by users with an of-the shelf PIC

programmer, the basic version of the robot comes with a preloaded firmware that, basically, al-

lows to control the robots by simply sending command bytes via Bluetooth. Thus, the preloaded

93

8. UNIBOT REMOTE LABORATORY

Received Byte Instruction Description

000-00000 HALT HALT command for main board

001-00000 HALT HALT command for IR sensors board

xxx-00001 LST ON start listen procedure on board xxx

xxx-00010 LST OFF stop listen procedure on board xxx
...

...
...

000-0yyyy SRS Set Right motor Speed to yyyy

000-1yyyy SLS Set Left motor Speed to yyyy

001-00zzz IRS Read IR sensor zzzz on IR sensor board

Table 8.2: Example of instructions coded in the on board firmware useful to drive the

UniBot robot using a remote controller.

firmware on each board is able to parse the received bytes and to transform them in instructions

executable by the board. As the only board equipped with a Bluetooth module is the main

board, each byte must code the address of the location where the instruction must be executed.

More in particular, each byte received by a UniBot is structured as in figure 8.2. As it can

be clearly seen, the first three bits are used to index the board which the remaining 5 bits are

referred to. This depends on hardware project that provides only 3 address bits. It follows

that with the current implementation a maximum of 7 expansion boards can be mounted on

top of the main board and, consequently, a maximum of 25 = 32 instructions can be parsed by

each board. To ensure the possibility of creating complex expansion boards, two instructions

on each board are reserved to the LISTEN ON and the LISTEN OFF commands. When a

board receives the LISTEN ON command, it starts listening and buffering all the 5 bit instruc-

tions received till the LISTEN OFF command stops it. Then, all the 5-bits groups received are

concatenated to create instructions as complex as desired. Examples of instructions coded in

UniBot firmware are reported in Table 8.2.

The advantage of using an ad-hoc firmware coding all the possible instruction that can be

executed by a UniBot robot is that in this way it is possible to close the control loop of the

robot not only exploiting its on board hardware, but also using an external computer connected

to each robot via Bluetooth. It is worth to notice that in this way, as the calculus of the control

0 1 2 3 4 5 6 7
︸ ︷︷ ︸

Address bits

︸ ︷︷ ︸

Instruction bits
Figure 8.2: Byte command structure.

94

8_paper01/figures/command_byte.eps

8.3 Remote Laboratory architecture’s overview

Users
User’s Monitor

User’s Computer

Local Simulation Video Streaming

JUSE

In
te
rn
et

Remote Software Agents

Remote Managment

System
Remote

Comm.

System

(a)

Cam 1

Cam 2

A
re
n
a

Local Software

Agents

Local

Comm.

System

Tracking

Server

Position

Server

Streaming

Server

L
oc
a
l
M
an

ag
em

en
t
S
y
st
em

(b)

Figure 8.3: Scheme of the UniBot Remote Laboratory: Remote Management 8.3a and

Local Management System 8.3b.

actions of each robot is demanded to more powerful machine, more complex behaviours can be

performed, and thus more interesting and complex experiments can be tested.

8.3 Remote Laboratory architecture’s overview

Beside the creation of a low-cost teaching-oriented robot, our effort focused on the creation of

a software infrastructure (see Fig. 8.3) in order to allow the students to perform experiments

without being physically present in the laboratory. In fact, this software has its strengths in

the fully web-based architecture that can be considered as divided into three main parts: the

Remote Management System, the Local Management System and the Java UniBot Simulation

Environment (J.U.S.E.).

8.3.1 Local Management System

The Local Management System is the software used to let all the web-based laboratory software

structures to communicates each other. As depicted in Fig. 8.3, the Local Management System

is divided into three main interconnected parts: the Tracking Server, the Software Agents

Environment and the Local Communication Server.

8.3.1.1 Tracking Server

The tracking system is mainly based on the SwisTrack software [81]. Having we attached

special markers on the top of each point to be tracked (usually mobile robots, but more in

general the markers can be used to acquire the position of other objects in the scene, like

obstacles), a high resolution USB camera mounted on the top of the arena acquires the video of

95

8_paper01/figures/RMS_diag.eps
8_paper01/figures/LMS_diag_w.eps

8. UNIBOT REMOTE LABORATORY

the experimental environment that can be used both for streaming video and to get the position

and the orientation of each marked point. As the data recovered by Swistrack are more complex

and rich of information with respect to what our needs, they have to be preprocessed before

they can be used to close a control loop. In particular, as described in Section 8.3.3, a string

containing, for each robot, an ID number, the position and the orientation in the arena is

extrapolated so that it can be sent in streaming to a remotely connected user or, alternatively,

it can be saved to be analysed later.

8.3.1.2 Local Software Agents Environment

For each robot in the arena, a software agent is automatically created. The main task of each of

agent is to manage the control code loaded by the user, to parse the instructions and to transform

them in the right sequence of bytes that must be sent to the robots. After each instruction

is coded, the corresponding byte (or bytes in case of complex instructions) is transmitted via

Bluetooth to the robot assigned to the current software agents. The main advantage of using a

Software Agent layer as an intermediary between the user and the robot is that not only UniBot

robots but also any other robot equipped with a Bluetooth connection can be introduced in the

system, as long as it has a protocol similar to the one described in Section 8.2.2.

8.3.1.3 Local Communication Server

The Local Communication Server is a network interface created to control the robots in the

arena providing the connection between agents and remote user. In that case, each remote

software agent running on the computer of the remote user (see Sec. 8.3.2) sends strings to the

corresponding local software agent containing the unique index of the commanded robot and

the command to be executed. Then, each local software agent parses the received instructions

and send it via Bluetooth to the right robot in the arena.

8.3.2 Remote Management System

The Remote Management System, that runs on the computer of the remotely connected user, is

the counterpart of the Local Management System with the exception of the tracking server, that

of course is not installed on any other computer than the one directly connected with the USB

camera over the arena. The Remote Management System consists of two intercommunicating

subsystems: the Software Agent Environment and the Remote Communication Server.

8.3.2.1 Remote Software Agent Environment

For each robot in the arena controlled by the user, a software agent is created on the remote

computer. The task of each remote agent is to handle the peer-to-peer connection with its

counterpart actually running on the computer connected via Bluetooth with the real robots.

Let us note that software agents have a key role as all the messages exchanged between remotely

connected user and the local system (i.e. the real robots in the arena) are filtered and parsed

96

8.3 Remote Laboratory architecture’s overview

(a) (b)

Figure 8.4: Snapshots of the Java UniBot Simulation Environment (J.U.S.E.).

by these agents. Roughly speaking, it is possible to imagine a two-way communication channel

that connects each user to the real robot group assigned to him by the system (depending on

the experiment).

8.3.2.2 Remote Communication Server

The Remote Communication Server mediates the data exchange between the Remote Man-

agement System (i.e. user’s computer) and the Local Management System (i.e. the computer

connected via Bluetooth with the robots). Its task is to handle all the messages exchanged

between each couple of remote and local software agents, so that from the user’s point of view

it is not important if the controller is applied to a remotely controlled robot or to a robot

simulated in J.U.S.E. It follows that both the software agents (and thus the commands mapped

in the ad-hoc firmware) and the Remote Communication Server can be modified or updated

independently.

8.3.3 The Java UniBot Simulation Environment (J.U.S.E.)

As part of the Remote Management System, a Java technology based simulator has been de-

veloped (see Fig. 8.4). J.U.S.E. has been thought as a stand-alone simulator where users can

test algorithms on their computers before testing them on the real remote experimental set-up.

To this purpose, each module created for the UniBot mobile robot is simulated, such as the

IR sensors module. Moreover, by defining loading textures, it is possible to simulate different

properties for the arena.

Another point that makes J.U.S.E. an important feature of the Remote Laboratory is

97

8_paper01/figures/juse_GUI_01.eps
8_paper01/figures/juse_GUI_02.eps

8. UNIBOT REMOTE LABORATORY

Figure 8.5: Snapshots of real experiments performed by students. The two robots, a

UniBot and a Lego Mindstorm NXT, are engaged in a predator-prey algorithm. The black

wide line around the arena, detected by the UniBot robot using its chromatic sensors,is

used to delimit the escape area.

that it is possible to use it in order to overcome all the problems related to low bandwidth

communications. In fact, in case a connected user has a low bandwidth communication and

thus cannot exploit the streaming server, it is possible to configure J.U.S.E. in two different

ways such that:

• the behaviour of the markers in the arena (i.e. the robots) can be shown by plotting the

streamed position data into the simulator;

• a file collecting all the data recorded during an experiment can be loaded by the simulator

in order to show the behaviour of the marked robots off-line.

98

8_paper01/figures/sim01.eps
8_paper01/figures/sim02.eps
8_paper01/figures/sim03.eps
8_paper01/figures/sim04.eps

8.4 An Application Example

8.4 An Application Example

In this section, an application of our teaching/research framework is reported. In particular,

the task assigned to two groups of students was a problem of coordination between two different

robots: a UniBot Robot and a mobile robot created using Lego Mindstrom NXT 2.0. The task

assigned to the students was to coordinate the group of robots in a classic predator-prey task:

the UniBot robot described in Section 8.2 was used as the prey and had to move inside a 50 cm

radius arena while avoiding the other robot, while the Lego Mindstorm robot was the predator

and had to reach the UniBot. In Fig. 8.5 snapshots of the experiments are reported: it can be

clearly seen that a marker was placed on each robot as described in Sec. 8.3.1, in order to get

the robots’ positions. In fact, to force students to exploit all the features of our framework, the

Lego robot (follower) was sensor-less, and thus it had to rely on the broadcasted data by the

tracking server to know UniBot (leader) position. On the other side, the basic version of the

UniBot robot used as leader was controlled by a remote computer by exploiting the firmware

introduced in Section 8.2.2.

8.5 Conclusions and Future Work

In this work a framework for teaching and research purposes has been presented. This new

framework has been thought as composed by two different parts. The first one is the UniBot

differential-wheeled robot, a flexible (but cheap) mobile robot expressly designed for this ac-

tivity. The main advantages of UniBot w.r.t. commercial robots is its cost with respect to

other devices with comparable features and, at the same time, it allows users to add expansion

boards in order to power up the robots depending on the experiment. The second part of the

UniBot Remote Laboratory is the software developed in order to let registered users to perform

experiments remotely.

Even if we have developed a new Unibot robot based on the Arduino’s architecture (see

Chp. 7) it is possible think to improve Unibot V1 described in this chapter. This means that the

future work regarding the UniBot Remote Laboratory will focus both on hardware upgrade for

the UniBot robot and on new student oriented software features. From an hardware point of

view, many improvements could be developed in order to provide the UniBot robot with more

features. In particular, the attention could be focused on the project of a new set of boards,

such as:

• a sonar board to improve the sensing ability of the robots;

• an IR communication board inspired by the range and bearing board [86] created for the

Khepera III robot that will allow local communication between robots (this feature has

been developed for A-Unibot);

• a computational board equipped with a 200 MHz ARM processor in order to implement

on board more complex behaviours such that each robot can become a independent unit

from external devices;

99

8. UNIBOT REMOTE LABORATORY

Figure 8.6: Preview of the under construction website to allow students to register and

perform experiments via web.

• an arm equipped board to be mounted on top of the robot so that experiments where an

active interaction with the environment is required can be performed.

Moreover, with the prospect of mounting many expansion boards on a single robot, it is

possible to build a special board that allows to include an extra battery in the system.

From a software point of view, we are currently developing a website where registered

users (e.g. students) can load and perform experiments whose performances are automatically

evaluated by the software. The skill of each user can be tested with with increasingly difficult

experiments and the results are logged in a database. On the teacher’s (researcher’s) side, we

are creating a Graphical User Interface (GUI) to allow the definition of experimental set-ups

that can be shared on the web. A snapshot of the website is shown in Fig. 8.6.

100

8_paper01/figures/website_homepage_2.eps

9

Simulators

In this chapter two different types of simulators are presented, both developed with the

main aim to simulate Unibot (see Sec. 7.1) and to provide a support for algorithm’s testing and

validation. The first one, J.U.S.E., has been inherited from a previous project [87] and later

modified and extended as described in Sec. 9.1 with the purpose to embed it in the web interface

of the web-lab project (described in Chp. 8). The acronym means Java Unibot Simulation

Environment because the technology used as support is Java. The second simulator presented

is M.U.S.E. which name means Matlab Unibot Simulation Environment. It has been built from

scratch using Matlab as technology support, trying to overcome the lacks demonstrated by

J.U.S.E. in terms of control algorithm development. Despite of Matlab was not born to create

graphical objects and to operate with a code represented with Class and Objects models, in

the development of M.U.S.E. this kind of approach has been used with very good results. The

101

9_simulators/figures/simDTS.eps

9. SIMULATORS

Figure 9.1: A screenshot of JUSE during a simulation in one of the maze-like scenario.

possibility to embed Java code inside Matlab code and interfacing M.U.S.E. with Simulink,

provides a very powerful testing environment. Moreover M.U.S.E. can manage both 2D and 3D

simulations providing good support to the three-dimensional algorithm on which is based part

of this thesis (i.e. the one presented in Chp. 5). In Sec. 9.2 M.U.S.E. features are described in

more detail.

9.1 J.U.S.E.

JUSE is a differential wheeled robot simulator written entirely with Java Software technologies

with the aim to provide a simulation environment to university’s custom-robot Unibot (see

Sec. 7.1). Indeed it’s name is the acronym of Java Unibot Simulation Environment.

The simulator was born in 2008 as an integrated environment with the initial aim to give

only a visual support to our MSc-thesis project [87]. In Fig. 9.1 a simulation where it runs the

PSO algorithm studied in the master thesis is depicted. The figure shows the robot swarm that

moving in a maze-like scenario.

Afterwards, the need to have a simple simulation environment, modular, reusable and

completely written in Java, has transformed J.U.S.E. in a stand-alone program, available both

for research and educational activities.

The software architecture of JUSE follows the architectural pattern Model-View-Controller

(see Fig. 9.2). This way it is possible to embed JUSE in different frameworks as we have done

in Sec. 7.2 where the simulator was the main support for the Remote Laboratory Project. More

details about this project are available in Chp. 8.

The robot model is based on a differential wheeled robot with eighteen proximity sensors

(depicted in Fig. 9.3 as a little circle around each robot), a bidirectional communication device

and a GPS module that provides each robot its exact location inside the simulated environment

(aka arena).

102

9_simulators/figures/JUSE_Scenario4.eps

9.1 J.U.S.E.

Controller

View Model

Figure 9.2: The Model-View-Controller Pattern Diagram.

On each simulated robot a software agent runs computing the intelligent algorithm and

managing the virtual devices in order to detect environmental information and to share data

between the robot’s neighbours. As better explained in the related Sec. 7.2, JUSE is not only

a viewer but a real field of experimentation where i.e. collisions between robot and obstacle or

between robot and robot are computed.

9.1.1 Simulation Environment Components

The simulator is made by a large number of software components. In this section only a very

short but significant description of the structure is done. For more detail see [87]. Starting the

description from the bottom level to the top level of the simulator, the first component is the

Unit. The Unit component has been designed as a real mobile robot with different operative

levels. Two macro logic levels can be identified as

• Robot

The level provides the graphical object to be project on the arena’s surface. Moreover the

level implements robot’s motion, by computing the kinematic equations that define its

position during the simulation. Moreover Robot level embeds the Communication Device

and the Sensors. While the communication device is only a couple of message queue (in

and out) where the messages from or for other units are stored, sensors are structured

like a cloud of sensible points around each robot. When almost one of these points is

activated, the robot register a collision. Finally two different typologies of inputs are

accepted by robot procedures: linear and angular speeds or direct motor speeds. In both

cases the robot converts the data into Cartesian speeds in order to calculate the correct

robot’s movement;

103

9_simulators/figures/diagMVC.eps

9. SIMULATORS

Figure 9.3: A top view of the simulated arena where a swarm of robots is performs a task.

The depicted white circles are environmental obstacles, the yellow square a coloured area

only. The obstacle detection performed by J.U.S.E. is based on the colours detected below

the sensible area. This way it is quite simple to define if a coloured area is an obstacle or

not.

• Software Agent

The software agent is the mind of the robot. It computes the coordination algorithm and

uses robot’s resources as sensors and communication device with the purpose to achieve

information about surrounding environment and team-mates. Inside this level historical

data about environment are stored like a sort of memory. The algorithm executed by the

agent controls the robot through the appropriate inputs. Inside the unit the agent is the

actual operative component.

At the same bottom level it is possible to insert also the obstacles. Like the Robot, they have

a graphical patch but no other structure inside to be managed apart their structural data and

identification number. The second important component is the Communication Manager

(CM). It implements a sort of postal service: when two units move in the environment, CM

constantly monitors their positions and the related communication range. When a unit enters

in the communication range of another unit the CM sends a message to each unit with the ID

number of the other one and provides a communication link, if one of them needs to exchange

information, transporting any message.

The third component is the Environmental Manager (EM). This one provides the collision

detection. As CM, also EM constantly monitors unit’s positions and when a robot’s sensor

area collides with an obstacle the EM component provides the robot the collision point and its

distance from the robot’s center by activating the sensible points of the sensor’s area.

104

9_simulators/figures/JUSE_schermata.eps

9.1 J.U.S.E.

Many other components are included in the simulator’s structure but the ones just described

can be considered the core of the simulator.

9.1.2 Multi-threading Computation

Java is a multi-thread software technology and it has been heavily exploited in this fashion

in order to create the simulator. Indeed each software agent is a thread with it’s own time of

computation. This has been done to realize a simulation as close as possible to what happens in

the real world. CM is also a thread, but not EM, because it is necessary to calculate collisions

at each time-step of the simulation under a simulated real-time mode.

9.1.3 Scenario Loader

Simulation’s environment provides a simple way to create and load new scenarios useful to test

the algorithm in different situations and to validate it with more statistical results. From a

Computer Science point of view, each scenario is an object inherited from an abstract class

which defines the basic elements of the scenario like the number, the type of obstacles and their

positions. In the same fashion we have defined the same data for the units. Creating an abstract

class recognizable by the simulator as a sort of operative interface, the user can program a new

scenario and activate the automatic loading by the system that, through the abstract interface,

knows what elements need to be loaded. Other features are explained in [87]

9.1.4 Future Work

J.U.S.E. project is still active for educational activities but the simulator has no longer evolved.

Only update patches related to any bugs found inside the code by students or researchers are

still active.

105

9. SIMULATORS

Figure 9.4: The simulated Unibot, a fundamental component for testing the techniques

presented in this thesis.

9.2 M.U.S.E.

As anticipated, M.U.S.E. (Matlab Unibot Simulation Environment) is a software simulator

designed with the main purpose to give support to the Unibot control algorithms but it has

been extended in order to become a valid support not only for differential wheeled robots.

During the design of the simulator, the main idea was to follow the same structure of J.U.S.E.,

in terms of main components, as the Environmental Manager, that performs specific actions

and that interacts with each other component to produce the desired result. The decision to

write a new simulator has been chosen with the aim to overcome the limitation of JUSE due

to the impossibility to use any other type of unit inside the arena, different from the simulated

Unibot. Moreover the monolithic structure of the simulated robot and the inability to change

its only single specific part in order to solve specific needs, have suggested a new representation

of the object inside the environment. We have decided to build the simulated objects as pieces

of Lego, modular and mountable at will. For instance the simulated 3D Unibot depicted in

Fig. 9.4 is composed by seven different 3D objects: two wheels with two wheel hubs and the

chassis composed by the body (the blue cylinder) and two different covers that delimit the body

of the robot. Each object has been mounted with respect to the rotational axis of the object

on which it is mounted, in a fixed position decided by the designer. Using roto-translation

matrices, the simulator changes the positions of single or compound object. The idea was to

give the object the possibility to calculate its own attitude by itself, only commanding to the

object the entity of the new movement in term of Roll, Pitch, Yaw angle and X,Y,Z position

with respect to the absolute reference frame. Indeed, each object is characterized not only

106

9_simulators/figures/simUnibot3D.eps

9.2 M.U.S.E.

by its identification number, its position in the space, its vertices, its barycentre position and

the center of instant rotation but even by the methods and functionalities provided, useful

not only for the user but also for the other components of the simulator, that communicate

with each other using a specify object interface created by different abstract classes. At the

beginning, the Matlab Object Programming was quite difficult because the software was not

born to this purpose but the programming structure provided by Matlab in order to use this

kind of paradigm is quite simple and with some practice it is possible to handle Matlab Object

with good results. There is no difference between a 2D or 3D object, in the first case the height

of the 3D object is equal to zero. This way the properties remain the same for the two different

representations as well as the interactions with the other components. The obstacles inside the

environment have been programmed with the same technique used for the simulated objects,

inheriting all the functionalities just described. Furthermore, each obstacle has the data of

its own dimension, with respect to the base frame, inside. This way it is possible to define

the frontiers of the obstacle in a specific plane of intersection only by asking to it the data.

This feature is more useful during the obstacle detection. Finally when an obstacle is created

inside the environment by the simulator, the obstacle’s frontiers are stored in a modified B-Tree

database, which is a well known binary structure used for store data in a useful way, in order to

provide a quick search of the interested data. This database is internal to the Environmental

Manager and used as support to detect if a Unit, during its motion, is close to an object or not.

Indeed at each time step of the simulation, the Environmental Manager ask to the database (by

producing a Collisions Query) what the obstacles are near to the interested Unit, in order to

compare obstacles’ frontiers and unit’s position. Moreover, in that moment, the Unit’s position

has been stored in order to provide a quicker search when a new query is done at next time steps.

On the way to build components useful to the simulation, after the construction of obstacles,

database and raw-units, which represent a Unit from the graphical point of view only, it has

been necessary to build Unit’s sensors, in order to permit to the agent inside the Unit to detect

the obstacles. For each robot a Sensor Device has been built, planar or spherical in relation

to the type of robot and simulation. The basic sensors’ structure is planar and the spherical

sensor device used e.g. in Chp. 5 has been obtained just rotating the planar one on its center

and collecting the data in a rack of planar sensors. An example is depicted in figure-set 9.7.

9.2.1 Sensor Device

Each robot is equipped with a Sensor Device able to detect obstacles in the surrounding en-

vironment and to provide the related distance to its agent. Each device is equipped with 36

proximity sensors equally spaced around each robot. Each sensor is built instead as a line that

starts from the center of the robot and moves radial outside the unit to the end of the sensors’

range. On this line a number of sensible points are distributed, on which the Environmental

Manager acts the obstacle detection, verifying if this sensor point is inside or outside the obsta-

cle. Collecting this data, a Unit can detect the presence of an obstacle. Moreover the sensible

distance is freely configurable as well as the quantization of the sensors’ area. The sensors’ area

107

9. SIMULATORS

(a) (b)

Figure 9.5: Two different simulations about obstacle avoidance and tracking point test

with M.U.S.E. in a 2D view

of each robot is depicted in Fig. 9.5a, deformed by collisions with obstacles, while in Fig. 9.6a

the sensors’ cloud during a simulation is shown. Notice that the area is linearly quantized but it

is possible to choose any other function to define sensors’ distances. The sensor cloud is visible

only in debug mode as well as the collision ring visible in Fig. 9.5a. Being the Sensor Device

a component of the structure,it can interact with the other components of the Unit exploiting

the same command interface common to any other object. Moreover it is possible to remove

and to substitute it without affecting any other components of the Unit. Sensor Device, as

described in Chp. 6, is the component responsible for the generation and maintenance of the

Gaussian field. When the Environmental Manager changes the values on the sensible points,

the Sensor Device updates the field in order to provide correct environmental data. It has been

adopted this sensors’ representation in order to disjoint the representation from the related real

structure, because it is always possible to configure a virtual Gaussian field around a robot,

real or simulated, on the basis of the sensors’ values.

9.2.2 Communication Device

Each robot is equipped with a communication device whose activity is shown in Fig. 9.6b during

an obstacle avoidance sequence. The two upper robots are connected by a blue line while the

bottom one is not connected because its position is outside the communication range (i.e. the

blue ring surrounding each robot). Moreover, the Communication Device stores in its internal

database the positions of the robots encountered in the simulation, during the last m-time-steps

where m is a parameter that defines the device’s memory. In the simulations done in this thesis

m = 3. This helps the Unit’s agent to exploit the information on team-mates positions during

the simulation, in order to forecast the trajectory at the next time step. Moreover, the com-

munication device, on the basis of the connected robots, computes the local Laplacian matrix

useful to calculate the Consensus agreement protocol [14] exploited by the technique presented

108

9_simulators/figures/collisionRing2D.eps
9_simulators/figures/reachingTarget2D.eps

9.2 M.U.S.E.

(a) (b)

Figure 9.6: The sensible points’ cloud projected around the robot by the sensor device,

is exploited to detect the distance from obstacles (6.4a). Normally only the sensible area is

visible while the points’ cloud is hidden. In the debugging mode it is possible to show the

cloud. Moreover, when the robots move around, they have the possibility to communicate

with each other, indeed an obstacle avoidance sequence, where communication device action

is visible, is shown in Fig. 6.4b. The two upper robot are connected by a blue line while

the bottom one is not connected because its position is outside the communication range

(i.e. the blue ring surrounding each robot.)

(a) (b)

Figure 9.7: Simulations are fundamental for testing the designed techniques. A 3D

simulation, on which the PSO technique presented in Chp. 4 is running, is depicted in

9.7a. Many simulation have been done in order to test AUV’s behaviour and its orientation

capability. One of this tests is shown in 9.7b.

109

9_simulators/figures/sensCloud.eps
9_simulators/figures/seq01Ab.eps
9_simulators/figures/simFreeMap.eps
9_simulators/figures/wpNav02.eps

9. SIMULATORS

in Chp. 6. Also for this component, a sort of environmental supervisor called Communication

Manager is present, with the same meaning already described for J.U.S.E.

9.2.3 Unit’s Level

As a real robot, the Unit is structured in many different levels: from a logic point of view

and from the bottom to the top, at the lower level it is placed the graphical object previously

described. Above the graphical object level, the robot level runs, implementing the robot’s

kinematics and eventually the dynamics, providing virtual motors, engine or any sort of virtual

actuators useful to manage the attitude of the robot in the space. The level provides the

command inputs. Above the robot level is implemented a middle-ware level, it provides a

unique interface to all the robot’s resources and moreover, it provides to the agent the necessary

methods in order to read sensors’ data, to command motors, to recover its position in the

environment, to recover information by neighbours. Finally the middle-ware level elaborate the

robot raw-data in order to transform them in information more comprehensible by the agent.

At the top level is implemented the software agent level, where the unit’s mind operates in

order to compute the control algorithms

9.2.4 Software Agent

As just mentioned the software agent is the component that computes the algorithm, takes

decision and manages information coming from the robot, the environment and the team-

mates. From its point of view the agent is completely ignorant of the fact that it operates on a

virtual robot. It is completely disjoint from the external world and it can see the surrounding

environment only by the sensor’s data interpretation.

9.2.5 Class Vector and Components’ Systems

In order to increment the safety interaction of the components, structures that collect many

identical components with the same needs have been created, following the Iterator pattern,

such as the Units’ System component. Indeed, it is a component that manages a population

of Units and provides a large number of services for the needs of the simulator or the final

user. Another example of components’ system is the Obstacles’ Map where all the obstacles

are collected and managed. The Units’ System and the Obstacles’ Map are parts of the super

components’ system Environmental Manager that connects all the sub-components’ systems in

order to manage the simulation.

9.2.6 M.U.S.E. - Blender Interconnection

M.U.S.E. is continuously updated, modified and improved in order to find always better ways

to create a good simulator. Despite of this, and despite of the great power of this software,

it is opinion of the author that Matlab is not the answer for expanding M.U.S.E. in collision

detection and hard real simulation. For these reasons M.U.S.E. has been equipped with Java

110

9.2 M.U.S.E.

objects that provide a simple network bridge with external devices and infrastructures. One of

these new possibilities of expansion regards Blender.

From Wikipedia: “ Blender is a free and open-source 3D computer graphics software

product used for creating animated films, visual effects, interactive 3D applications

or video games. Blender’s features include 3D modeling, UV unwrapping, textur-

ing, rigging and skinning, fluid and smoke simulation, particle simulation, soft body

simulation, animating, match moving, camera tracking, rendering, video editing and

compositing. It also features a built-in game engine.”

Obviously the aim of this interaction is to exploit the powerful embedded game-engine of Blender

that provides a more accurate 3D collision detection than the one integrated in M.U.S.E. Some

successful interaction tests have been made (see Fig. 9.8) exploiting a bridge-code written in

Python language, the native Blender interface language, connected to teh M.U.S.E. Java bridge

just described.

Figure 9.8: An interaction test with the game-engine of Blender through UDP/IP Internet

protocol.

111

9_simulators/figures/blenderFig.eps

9. SIMULATORS

112

10

Conclusions and future work

In this work different techniques, able to coordinate and control groups of autonomous

robots, have been presented. The main feature of these techniques is to drive the group of

robots as a unique entity, a swarm, from a starting area to a final one avoiding the possible

obstacles detected on the path. The environments on which the robots operate are a-priori

unknown. The collisions detected are stored by the units and shared among the swarm in

order to create a sort of collective memory useful to help robots in path planning toward the

final destination. In the case of the technique presented in Chp. 4, the storing is only locally

helpful because the information is volatile, otherwise, in Chp. 5 the information stored are not

volatile and can be used to create an environmental map. The environment on which the robots

have been tested are both terrestrial and submarine, in order to apply the techniques in a 2D

and 3D fashion. These techniques are based on the fairly recent theory of Swarm Intelligence

exploiting, in different fashions, the powerful optimization algorithm called Particle Swarm

Optimization (PSO). Only in the last technique, presented in Chp. 6, the PSO algorithm has

been combined with the Consensus protocol coming from the Graph Theory. The aim of this

113

10_conclusions/figures/voronoi01.eps

10. CONCLUSIONS AND FUTURE WORK

combination derives from the idea of exploiting the intrinsic ability of Consensus protocol in

regulating distributed processes, in order to control the randomness of PSO and to maintain its

proved adaptability as navigation algorithm. Moreover the Consensus can be used to control the

geometry of the robots’ formation, which can be made as deformable as desired, and can be rigid

or elastic. This way the swarm has the ability to adapt itself and to overcome the encountered

obstacles maintaining the contact between team-mates. The feature of the Consensus algorithm

to be able to adjust the connection rigidity between the units as desired, has given the possibility

to study also undeformable geometry in order to achieve the final aim of this thesis (see Chp. 1)

and moreover to design, in a future work, a distributed transportation platform, whose control

technique is based on the one presented. Furthermore, in this thesis, the platform and the

control infrastructures developed (see Chp. 8), with the aim to support the research activities

done, have been illustrated. Finally, although in a brief and unfortunately incomplete fashion,

the simulators built as the basic and fundamental support for the designed techniques have

been presented.

114

References

[1] M. Anthony Lewis and George A. Bekey. The Behavioral Self-Organization of Nanorobots Using Local Rules.

Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems., 1992. 13

[2] Tad Hogg. Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-Agent Systems, 14:271–

305, 2007. 13

[3] G Bekey and B Khoshnevis. Centralized sensing and control of multiple mobile robots. Computers and industrial

engineering, page 503506, 1998. 14

[4] D. Milutinovic, P.; Lima. Modeling and optimal centralized control of a large-size robotic population. Robotics,

IEEE Transactions, page 22(6):12801285, December 2006. 14

[5] Michael Bonani, Francesco Mondada, Marco Dorigo, Stefano Nolfi, Gianluca Baldassarre, and Vito Trianni. Self-organized

coordinated motion in groups of physically connected robots. IEEE Transaction on System, Man and Cybernetics,

page 37:224239, February 2007. 15, 16

[6] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH Computer Graphics,

21, pages 25–34. ACM, 1987. 16, 19, 22, 37, 42

[7] M. Mataric. Designing emergent behaviors: From local interactions to collective intelligence. In International

Conference on Simulation of Adaptive Behavior, 1992. 16

[8] T. Balch and R.C. Arkin. Behavior-based formation control for multirobot teams. Robotics and Automation, IEEE

Transactions on, 14(6):926 – 939, dec. 1998. 16, 93

[9] Ronald Arkin. Behavior-Based Robotics. MIT Press, Cambridge, 1998. 16, 93

[10] Magnus Egerstedt. Graph-theoretic methods for multi-agent coordination. ROBOMAT, Sept, pages 1–10, 2007. 16,

58

[11] K. J. Kyriakopoulos and D. V. Dimarogonas. On the state agreement problem for multiple unicycles with varying

communication links. 45th IEEE Conference on Decision and Control, page 42834288, December 2006. 17

[12] Kostas J. Kyriakopoulos and Dimos V. Dimarogonas. On the rendezvous problem for multiple nonholonomic agents.

IEEE Transactions on Automatic Control, page 52(5):916922, 2007. 17

[13] Wei Ren. Consensus strategies for cooperative control of vehicle formations. Control Theory and Applications, page

1:505512, 2007. 17, 58

[14] Mehran Mesbahi and Magnus Egerstedt. Graph Theory and Methods in MultiAgent Networks. Princeton University Press,

2010. 17, 57, 58, 69, 108

[15] G. Beni and J. Wang. Swarm Intelligence in Cellular Robotic Systems. Proceed. NATO Advanced Workshop on Robots

and Biological Systems,Tuscany, Italy,, June 2630 1989. 19

[16] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. 1999. 20

[17] J. Kennedy and R. C. Eberhart. Swarm Intelligence. M. Kaufmann Pub., 2001. 20, 42

[18] Christian Blum. Swarm Intelligence: Introduction and Applications. 2008. 20

[19] Yuhui Shi. Innovations and Developments of Swarm Intelligence Applications. 2012. 20

115

http://dx.doi.org/10.1007/s10458-006-9004-3
http://portal.acm.org/citation.cfm?id=37406
http://www.ece.gatech.edu/~magnus/Papers/ROBOMAT07.pdf

REFERENCES

[20] Yuhui Shi. Recent Algorithms and Applications in Swarm Intelligence Research. november 2012. 20

[21] C. Godsil and G. Royle. Algebraic Graph Theory. 2001. 22

[22] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. on Neural Networks, 4, pages 1942

–1948 vol.4, nov/dec 1995. 22, 24, 30, 42

[23] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proc. 6th Int. Symp. on Micro Machine

and Human Science, MHS’95. 22, 42

[24] M. Clerc. Particle Swarm Optimization. Wiley-ISTE, 2006. 24, 42

[25] Riccardo Poli. An analysis of publications on particle swarm optimization applications. Journal of Artificial

Evolution and Applications, pages 1–57, 2007. 24, 30, 42

[26] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Particle Swarm Optimization and Intelligence: Advances and Applica-

tions. 2010. 24

[27] S. Burak Akat and Veysel Gazi. Particle swarm optimization with dynamic neighborhood topology: Three neigh-

borhood strategies and preliminary results. 2008 IEEE Swarm Intelligence Symposium, pages 1–8, September 2008. 25,

42

[28] J. Kennedy and R. Mendes. Population structure and particle swarm performance. Proceedings of the 2002 Congress

on Evolutionary Computation. CEC’02. 25

[29] F. Bullo, J. Cortes, and S. Martinez. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination

Algorithms (Princeton Series in Applied Mathematics). Princeton University Press, 2009. 26

[30] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In In Proc. IEEE Int. Conf. on Evolutionary

Computation, 1998. 26, 30

[31] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. In

Proc. of 2000 Congress on Evol. Computation. 26, 37

[32] I.C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. Infor-

mation Processing Letters, 85:317–325, 2003. 27

[33] Roland Siegwart and Illah Reza Nourbakhsh. Introduction to Autonomous Mobile Robots. The MIT Press, 2004. 29

[34] J. Antich and A. Ortiz. Extending the potential fields approach to avoid trapping situations. In Intelligent Robots

and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages 1386 – 1391, 2005. 29

[35] R. Gayle, W. Moss, M.C. Lin, and D. Manocha. Multi-robot coordination using generalized social potential fields. In

Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on, pages 106 –113, 2009. 30

[36] Tucker Balch and Ronald C. Arkin. Communication in reactive multiagent robotic systems. Autonomous Robots,

1:27–52, 1994. 10.1007/BF00735341. 30

[37] C. Liu, H. Wu, G. Yang, and Z. Wei. Path Planning of Flying Robot for Powerline Inspection Based on Improved

Particle Swarm Optimization. In Intelligent System Design and Engineering Application (ISDEA), 2010 International

Conference on, pages 48 –52, 2010. 30

[38] E. Masehian and D. Sedighizadeh. A multi-objective PSO-based algorithm for robot path planning. 2010 IEEE Int.

Conf. on Ind. Tech., pages 465–470, 2010. 30, 42

[39] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE Robotics & Automation

Magazine, pages 23–33, 1997. 35

[40] R. Falconi and C. Melchiorri. A decentralized control algorithm for swarm behavior and obstacle avoidance in

unknown environments. Proc. 2nd IFAC Work. Navigation, Guidance Control of Underwater Vehicles, 2008. 35

[41] R. Grandi, R. Falconi, and C. Melchiorri. UniBot Remote Laboratory: A Scalable Web-Based Set-up for Education

and Experimental Activities in Robotics. Proc. 18th IFAC World Congress, pages 8521–8526, 2011. 38, 40, 74

[42] S. Doctor and G.K. Vanayagamoorthy. Unmanned vehicle navigation using swarm intelligence. International Confer-

ence on Intelligent Sensing and Information Processing, 2004. Proceedings of, pages 249–253, 2004. 42

[43] Raffaele Grandi, Riccardo Falconi, and Claudio Melchiorri. A Navigation Strategy for Multi-Robot Systems Based

on Particle Swarm Optimization Techniques. In Proc. of the 10th IFAC Symposium on Robot Control, (SYROCO),

September 2012. 42

116

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4668298
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1004493
http://dx.doi.org/10.1007/BF00735341
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5472755
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1287661

REFERENCES

[44] J. Pugh and A. Martinoli. Particle swarm optimization for unsupervised robotic learning. Swarm Intelligence

Symposium,, 2005. 42

[45] J. Pugh and A. Martinoli. Parallel learning in heterogeneous multi-robot swarms. 2007 IEEE Congress on Evolutionary

Computation, pages 3839–3846, 2007. 42

[46] A. R. Girard, J. B. Sousa, and J. E. Silva. Autopilots for Underwater Vehicles: Dynamics, Configurations, and

Control. OCEANS 2007, pages 1–6, June 2007. 42, 44, 46

[47] M. A. Joordens. Underwater swarm robotics consensus control. Systems, Man and Cybernetics, (October):3163–3168,

2009. 42, 58

[48] J. Shen and J. Zhang. Route planning for underwater terrain matching trial based on particle swarm optimization.

2010 Second International Conference on Computational Intelligence and Natural Computing, pages 226–229, 2010. 42

[49] Xiaoyong Tang and Fei Yu. Path planning of underwater vehicle based on particle swarm optimization. Intelligent

Control and Information, pages 123–126, 2010. 42

[50] S.B. Akat and V. Gazi. Asynchronous Particle Swarm Optimization Based Search with a Multi-Robot System:

Simulation and Implementation on Real Robotic System. Turkish Journ. of Electric. Engineering and Comp. Sciences,

18(5):749–764, 2010. 42

[51] J. Pugh and Alcherio Martinoli. Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization.

2007 IEEE Swarm Intelligence Symposium, (Sis):332–339, April 2007. 42

[52] J.M. Hereford. A Distributed Particle Swarm Optimization Algorithm for Swarm Robotic Applications. In

Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pages 1678 –1685, 0-0 2006. 42

[53] J.M. Hereford, M. Siebold, and S. Nichols. Using the Particle Swarm Optimization Algorithm for Robotic Search

Applications. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 53 –59, april 2007. 42

[54] N.A. Chaturvedi, A.K. Sanyal, and N.H. McClamroch. Rigid-Body Attitude Control. Control Systems, IEEE, 31(3):30

–51, june 2011. 45

[55] Gunilla Burrowes and Jamil Y. Khan. Short-Range Underwater Acoustic Communication Networks, chapter 8, Autonomous

Underwater Vehicles. InTech, 2011. 52

[56] Riccardo Falconi, Lorenzo Sabattini, Cristian Secchi, Cesare Fantuzzi, and Claudio Melchiorri. EdgeWeighted Consensus

Based Formation Control Strategy With Collision Avoidance. Robotics and Autonomous Systems, 2012. 57, 58, 69,

70

[57] Riccardo Falconi and Claudio Melchiorri. A Graph-Based Algorithm for Robotic MANETs Coordination in Dis-

aster Areas. Proceeding of SYROCO 2012, Dubrovnik, 2012. 57, 58, 69

[58] J.a. Fax and R.M. Murray. Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions

on Automatic Control, 49(9):1465–1476, September 2004. 58

[59] Maria Carmela De Gennaro and Ali Jadbabaie. Decentralized Control of Connectivity for Multi-Agent Systems.

Proceedings of the 45th IEEE Conference on Decision and Control, pages 3628–3633, 2006. 58

[60] Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and Cooperation in Networked Multi-Agent

Systems. Proceedings of the IEEE, 95(1):215–233, January 2007. 58

[61] R. Olfati-Saber and R.M. Murray. Consensus Problems in Networks of Agents With Switching Topology and

Time-Delays. IEEE Transactions on Automatic Control, 49(9):1520–1533, September 2004. 58

[62] Wei Ren and R.W. Beard. Consensus seeking in multiagent systems under dynamically changing interaction

topologies. Automatic Control, IEEE Transactions on, 50(5):655–661, 2005. 58

[63] R.W. Beard and E.M. Atkins. Information consensus in multivehicle cooperative control. IEEE Control Systems

Magazine, 27(2):71–82, April 2007. 58

[64] Luca Scardovi, Naomi Ehrich Leonard, and Rodolphe Sepulchre. Stabilization of collective motion in three dimensions:

A consensus approach. 2007 46th IEEE Conference on Decision and Control, (2):2931–2936, December 2007. 58

[65] Asuman Ozdaglar and Pablo A Parrilo. Constrained Consensus and Optimization in Multi-Agent Networks. IEEE

Transactions on Automatic Control, 61801, 2010. 58

[66] Marriott Waterfront. Decentralized Consensus Based Control Methodology for Vehicle Formations in Air and

Deep Space. Control, pages 3660–3665, 2010. 58

117

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1501607
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4424971
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4302459
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5346165
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5643851
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5564218
http://journals.tubitak.gov.tr/elektrik/issues/elk-10-18-5/elk-18-5-4-0906-7.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4223193
http://www.intechopen.com/books/autonomous-underwater-vehicles/short-range-underwater-acoustic-communication-networks
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1333200
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4177054
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4118472
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1333204
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1431045
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4140748
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4434721
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5404774

REFERENCES

[67] DA Paley, NE Leonard, and Rodolphe Sepulchre. Oscillator models and collective motion. Control Systems, (August):89–

105, 2007. 58

[68] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms and theory. Automatic Control, IEEE

Transactions on, 51(3):401–420, March. 58

[69] Bruno Siciliano and Oussama Khatib. Handbook of Robotics. Springer, 2008. 68

[70] H. Ferdinando, H. Khoswanto, D. Purwanto, and S. Tjokro. Design and evaluation of two-wheeled balancing robot

chassis: Case study for Lego bricks. In Innovations in Intelligent Systems and Applications (INISTA), 2011 International

Symposium on, pages 514–518, June 2011. 85

[71] M. Pinto, A.P. Moreira, and A. Matos. Localization of Mobile Robots Using an Extended Kalman Filter in a LEGO

NXT. Education, IEEE Transactions on, 55(1):135–144, February 2012. 85

[72] M. Casini, A. Garulli, A. Giannitrapani, and A. Vicino. A LEGO Mindstorms multi-robot setup in the Automatic

Control Telelab. Proc. 18th IFAC World Congress, Milano, Italy., pages pp. 9812–9817, August 2011. 85

[73] D. Benedettelli, M. Casini, A. Garulli, A. Giannitrapani, and A. Vicino. A LEGO Mindstorms Experimental Setup

for Multi-Agent Systems. Proc. 3rd IEEE Multi-Conference on Systems and Control,Saint Petersburg, Russia, pages pp.

1230–1235, July 2009. 85

[74] T. Wolf. Assessing Student Learning in a Virtual Laboratory Environment. Education, IEEE Transactions on,

53(2):216 – 222, may. 2010. 89

[75] M. Casini, D. Prattichizzo, and A. Vicino. The automatic control telelab: a user-friendly interface for distance

learning. Education, IEEE Transactions on, 46(2):252 – 257, may. 2003. 90

[76] J. Fernandez and A. Casals. Open laboratory for robotics education. 2, pages 1837 – 1842, apr. 2004. 90

[77] N. Swamy, O. Kuljaca, and F.L. Lewis. Internet-based educational control systems lab using NetMeeting. Education,

IEEE Transactions on, 45(2):145 – 151, may. 2002. 90

[78] G.T. McKee. The development of Internet-based laboratory environments for teaching robotics and artificial

intelligence. 3, pages 2695 – 2700, 2002. 90

[79] D.W. Calkin, R.M. Parkin, R. Safaric, and C.A. Czarnecki. Visualisation, simulation and control of a robotic system

using Internet technology. pages 399 – 404, jun. 1998. 90

[80] Ken Taylor, Barney Dalton, and James Trevelyan. Web-based telerobotics. Robotica, 17(1):49–57, 1999. 90

[81] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Martinoli. SwisTrack - a flexible open source tracking

software for multi-agent systems. pages 4004 –4010, sep. 2008. 91, 95

[82] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J. C. Zufferey, D. Floreano, and A. Martinoli.

The e-puck, a Robot Designed for Education in Engineering. In Proceedings of the 9th Conference on Autonomous

Robot Systems and Competitions, pages 59 – 65, 2009. 91

[83] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. The MIT Press, February 1986. 93

[84] G. Antonelli and S. Chiaverini. Kinematic control of a platoon of autonomous vehicles. 1, pages 1464 – 1469 vol.1,

sep. 2003. 93

[85] G. Antonelli and S. Chiaverini. Kinematic Control of Platoons of Autonomous Vehicles. Robotics, IEEE Transactions

on, 22(6):1285 – 1292, dec. 2006. 93

[86] J. Pugh, X. Raemy, C. Favre, R. Falconi, and A. Martinoli. A Fast Onboard Relative Positioning Module for Multirobot

Systems. Mechatronics, IEEE/ASME Transactions on, 14(2):151 – 162, apr. 2009. 99

[87] Raffaele Grandi. Coordinamento di uno sciame di robot tramite algoritmi di Particle Swarm Optimization. Master’s thesis,

Alma Mater Studiorum - University of Bologna, February 2009. 101, 102, 103, 105

118

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4272331

	1 Aims of the Thesis
	2 Introduction
	2.1 A Brief Overview on Robotics
	2.1.1 Evolution of Robotics
	2.1.2 Intelligent Robots
	2.1.3 Groups of Robots

	2.2 Mobile Robot Systems
	2.3 Outline

	3 Swarm Intelligence
	3.1 Applications of Swarm Intelligence
	3.2 Background on Particle Swarm Optimization Algorithm
	3.3 Application of the Particle Swarm Optimization Algorithm

	4 A Navigation Strategy for Multi-Robot Systems Based on PSO Techniques
	4.1 Introduction
	4.2 Improving the PSO Algorithm
	4.2.1 Matching PSO Agents with Physical Robots
	4.2.2 Matching the Search Space to the Environment
	4.2.3 Obstacles and Local Minima Avoidance
	4.2.4 Neighbors Aggregation Vector
	4.2.5 Dynamic Constriction Factor

	4.3 Simulations and Comments
	4.4 Conclusions and Future Work

	5 A Distributed Multi-Level PSO Control Algorithm for Autonomous Underwater Vehicles
	5.1 Introduction
	5.2 The Algorithm
	5.2.1 Matching Particles with Physical Vehicles
	5.2.1.1 Model of the AUV
	5.2.1.2 General Structure of the Control System

	5.2.2 Matching the Environment with the Search Space
	5.2.2.1 Obstacle Detection
	5.2.2.2 Obstacle Avoidance
	5.2.2.3 Local Minima Avoidance

	5.2.3 Exchanging Information

	5.3 Simulations
	5.3.1 Statistical Results and Parameter Selection

	5.4 Conclusions and Future Work

	6 A Hybrid Technique for Controlling Platoons of Mobile Robots with PSO and Consensus
	6.1 Introduction
	6.2 The Algorithm
	6.2.1 Model of the Robot and Mathematical Tools
	6.2.2 Simulation Environment
	6.2.3 Sensor Device
	6.2.3.1 Obstacle Avoidance
	6.2.3.2 Dynamic Window approach

	6.2.4 Communication Device
	6.2.5 The Control Algorithm
	6.2.5.1 PSO Blocks
	6.2.5.2 Consensus Block

	6.3 Simulations
	6.4 Conclusions and Future Work

	7 Robotics in Education: Platform & Infrastructures
	7.1 Unibot
	7.2 Unibot Remote Laboratory
	7.3 LEGO MindStorm
	7.3.1 LEGO Mindstorms Kit
	7.3.1.1 LEGO Mindstorms RCX
	7.3.1.2 LEGO Mindstorms NXT
	7.3.1.3 LEGO Mindstorms NXT Kit EV3

	7.3.2 Programming Language
	7.3.2.1 LeJOS

	7.3.3 Applications
	7.3.4 Laboratory Activities
	7.3.5 Conclusions

	8 UniBot Remote Laboratory
	8.1 Introduction
	8.2 The UniBot Differential-Wheeled Mobile Robot
	8.2.1 UniBot Hardware
	8.2.1.1 Motor Board
	8.2.1.2 Main Board
	8.2.1.3 Proximity Sensors Board

	8.2.2 UniBot firmware

	8.3 Remote Laboratory architecture's overview
	8.3.1 Local Management System
	8.3.1.1 Tracking Server
	8.3.1.2 Local Software Agents Environment
	8.3.1.3 Local Communication Server

	8.3.2 Remote Management System
	8.3.2.1 Remote Software Agent Environment
	8.3.2.2 Remote Communication Server

	8.3.3 The Java UniBot Simulation Environment (J.U.S.E.)

	8.4 An Application Example
	8.5 Conclusions and Future Work

	9 Simulators
	9.1 J.U.S.E.
	9.1.1 Simulation Environment Components
	9.1.2 Multi-threading Computation
	9.1.3 Scenario Loader
	9.1.4 Future Work

	9.2 M.U.S.E.
	9.2.1 Sensor Device
	9.2.2 Communication Device
	9.2.3 Unit's Level
	9.2.4 Software Agent
	9.2.5 Class Vector and Components' Systems
	9.2.6 M.U.S.E. - Blender Interconnection

	10 Conclusions and future work
	References

